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Abstract 

This thesis describes the development and refinement of a number of techniques 

for molecular docking and ligand database screening, as well as the application of 
these techniques to predict the structures of several protein-ligand complexes and 
to discover novel ligands of an important receptor protein. 

Global energy optimisation by Monte-Carlo minimisation in internal 

co-ordinates was used to predict bound conformations of eight protein-ligand 

complexes. Experimental X-ray crystallography structures became available after 

the predictions were made. Comparison with the X-ray structures showed that the 

docking procedure placed 30 to 70% of the ligand molecule correctly within 1.5A 

from the native structure. 
The discrimination potential for identification of high-affinity ligands was 

derived and optimised using a large set of available protein-ligand complex 

structures. A fast boundary-element solvation electrostatic calculation algorithm 

was implemented to evaluate the solvation component of the discrimination 

potential. An accelerated docking procedure utilising pre-calculated grid potentials 

was developed and tested. For 23 receptors and 63 ligands extracted from X-ray 

structures, the docking and discrimination protocol was capable of correct 

identification of the majority of native receptor-ligand couples. 51 complexes with 

known structures were predicted. 35 predictions were within 3A from the native 

structure, giving correct overall positioning of the ligand, and 26 were within 2A, 

reproducing a detailed picture of the receptor-ligand interaction. 

Docking and ligand discrimination potential evaluation was applied to screen the 

database of more than 150000 commercially available compounds for binding to 

the fibroblast growth factor receptor tyrosine kinase, the protein implicated in 

several pathological cell growth aberrations. As expected, a number of compounds 

selected by the screening protocol turned out to be known inhibitors of the 

tyrosine kinases. 49 putative novel ligands identified by the screening protocol 
6% 



were experimentally tested and five compounds have shown inhibition of 

phosphorylation activity of the kinase. These compounds can be used as leads for 

further drug development. 
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1. Introduction 

Formation of non-covalent complexes is an essential part of almost any 
biological process. The remarkable complexity of the biochemical machinery of 
the living organisms would have been impossible without the ability of the 

participating molecules to recognise each other among thousands of other 

compounds simultaneously present in any cell. Specific binding between 

molecules is crucial in catalysis, signal transduction, molecular transport 

mechanisms, and determines the pharmacological effect of many drugs. 

Better knowledge of the nature of molecular recognition on the microscopic 
level is important for our understanding of the normal and pathological processes 
in the cell and may help in such practical applications as drug design. X-ray 

crystallography has revealed detailed atomic descriptions' of many individual 

proteins, nucleic acids and small biological molecules, as well as a number of 

structures of complexes. The Protein Data Bank (PDB) [1], where solved protein 
3D structures are deposited, is growing by about 1000 new structures a year. 

Available structures of complexes can be analysed to discover the basic 

interactions and principles of molecular recognition, while the individual 

structures can be used in the prediction of unknown or novel complexes. First 

attempts to predict molecular interactions and design novel ligand utilised hand- 

made physical models of receptor sites and ligands [2]. Since manipulation of 

systems containing hundreds or thousands of atoms is necessary to simulate the 

binding process, the progress in numerical and computational approaches was 

essential for the advancement of macromolecular association studies. Computer 

simulations of molecular recognition were first attempted more than twenty years 

ago [3]. Considerable progress has been achieved in recent years, but reliability 

and precision of the existing complex prediction methods is still far from ideal. 

5 



1.1 Docking 

1.1.1 Molecular docking problem 

Prediction of the structure of a complex starting from the structures of individual 

molecules is commonly called the molecular docking problem. Structures of the 

protein-ligand and especially protein-protein complexes often show remarkable 

shape complementarity on the interface, suggesting the idea that the docking 

algorithms should search for such matching surfaces. Early approaches such as the 

original DOCK algorithm [3] used exclusively this geometric criterion. Both 

components of the complex were assumed rigid and the docking procedure 

searched for favourable mutual orientation using "sphere matching" [4], least- 

squares fitting of the surface patterns [5,6], Fourier-transform [7], distance-matrix 

matching [8] or "geometric hashing" [9]. Purely geometric approaches 
demonstrated certain success in recombining the structures of protein-protein 

complexes when the components were taken from the native complexed structure, 

which is a somewhat artificial starting point. In the more realistic cases, where the 

individual structures of the constituents were used, these techniques often failed to 

distinguish the correct orientation from the false positives [5]. High 

complementarity of the interacting surfaces in the native complexes is in part due 

to the "induced fit", e. g. the conformational change in the constituents of the 

complex upon binding, while individual structures often do not show the perfect 

matching expected in the complex. There are two general directions in which the 

simplistic geometric docking algorithms are being improved. First is the 

introduction of flexibility of ligand and/or receptor to reproduce or mimic the 
induced fit, and the second is the inclusion of binding determinants other than pure 

surface complementarity. Most attempts to introduce flexibility in protein-protein 
docking have so far been limited to "softening" of the geometric criteria which 

would allow a certain degree of penetration between the two interacting surfaces 

r" 
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[10,11]. Direct simulations with all-atom models may account for the flexibility 

more accurately and sometimes show promising results [12,13,14], but are often 

extremely computationally expensive. Whichever way the flexibility is introduced, 

it results in much greater ambiguity of the results of geometric docking, since 

many apparently good matches can be found. The multiplicity of solutions calls 
for additional criteria to select the correct answer. This lead to the inclusion in the 

docking protocol of the other binding determinants such as estimates of solvation 
free energy change or molecular mechanics energy (15), and ultimately, the 

approximations of the free energy change upon binding [16,171. Most methods 
however still use simplistic measures during the generation of the bound 

conformations and than re-evaluate the putative solutions using more sophisticated 

potentials. 

1.1.2 Docking as an energy optimization problem 

Complexes considered in the docking studies are, in general, thermodynamically 

stable systems. Thus, the native bound conformation should represent the global 

minimum of the free energy of the system. Consequently, to find the docked 

conformation, the global minimum of the free energy function of the system has to 

be located. Since the precise evaluation of the free energy is difficult, one can try 

to use some approximation that would have a similar global minimum. From the 

energetic point of view, surface complementarity docking methods assume that the 

interaction energy is proportional to the contact area or other similar measure of 

the fit of two surfaces, possibly with some penalty, for bad contacts (clashes). 

While this assumption may account reasonably well for van der Waals interactions 

and, to some extent, for solvation, it obviously disregards the energy contributions 

from specific pairwise atomic interactions such as hydrogen bond formation and 

electrostatics. Many recent docking studies try to incorporate these terms, often as 

the additional. criteria to select the answer from many solutions generated by 

0 
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geometric docking, either using force-field energy evaluation [15] or elaborate 

scoring functions [17,18]. In several works, physical energy terms were used 
throughout the algorithm [13,19]. 

Two major components are required for a successful prediction of the structure 

of the protein-ligand complex: an efficient global optimisation procedure which is 

capable of finding a global minimum for the strongly anisotropic function of 
dozens of variables, and a free energy approximation for the complex in solution 

which is computationally inexpensive to be used in the search procedure, yet 

sufficiently accurate to ensure the uniqueness of the native conformation. In the 
following two parts we will review the energy calculations and global optimisation 

techniques. 

1.2 Energy terms 

Energy calculations are at the centre of almost any molecular simulation 

technique. It is convenient and customary to divide the energy of the molecular 

system into a number of components, or energy terms. Below, five major 

components of the molecular interaction energy will be considered in greater 
detail. 

1.2.1 Electrostatic Interactions 

Electromagnetism is the fundamental force of biochemistry [20]. All processes on 

the molecular level can be described in terms of electromagnetic interaction 

combined with quantum mechanical and thermodynamic effects. While covalent 

and hydrogen bonding as well as van der Waals interaction all have an 

electrostatic nature, these interactions are complicated by quantum mechanics and 
it is often convenient to separate them from the longer-range electrostatic 
interactions. It is the latter type of interactions which is customarily referred to as 

d 
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electrostatics in biomolecular structure. All proteins, and the large majority of 

ligands, contain polar atoms interacting strongly with each other and the solvent 

over a wide range of distances. For a 'charged amino-acid the strength of 

electrostatic forces may exceed by more than an order of magnitude the strength of 

van der Waals interaction [21]. 

The evaluation of electrostatic interactions in proteins was first attempted by 

Lingstrom-Lang in 1924 and Tanford and Kirkwood [22]. These macroscopic 

studies gave some qualitative insights, but only the availability of high-resolution 

protein structures and computer calculations allowed quantitative studies of 

protein electrostatics. 
The largest problem in electrostatic calculations is the presence of highly polar 

solvent (water). In vacuum or in the uniform media the interaction between two 

charges can be simply described by Coulomb's law 

E=kq`q2 (1.2.1.1) 
eR12 

where qj are the charges, R12 is the distance between them, E the dielectric 

constant and k is 332.0 when the charges are expressed in electron units, distance 

in angstroms and energy in kcal/mol. In an aqueous -environment this relation has 

to be corrected to include the interaction of the charges under consideration with 

the large (virtually infinite) number of surrounding water molecules.. Early 

attempts to simulate macromolecules without consideration of solvent screening 

ran into difficulties, such as DNA helices torn apart by electrostatic forces unless 

the electric charges were drastically reduced [23]. 

The straightforward and rigorous approach is to include explicitly a sufficiently 

thick layer of water molecules into the calculations. Obviously, it makes 

calculations heavier, but the principal difficulty of the explicit methods is that 

liquid water. is an. essentially dynamic environment. Any static placement of water 

molecules around the system under consideration would result in large errors, as 

k the physically observed interaction with water is the result of averaging over a 

r" 
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large thermodynamic ensemble of the possible states of the solvent. Thus, to 

achieve accurate results one has to generate this ensemble by an extensive 

molecular dynamics simulation [54,103]. While this might be the most rigorous 

approach to the solvation electrostatic calculations, it is impractical in many cases. 
The solvent effectively screens the interaction of the charges of the solute. 
Generally the farther from each other and the more exposed to the solvent charges 

are, the more their interaction is attenuated. This observation suggested simple 

corrections to the Coulomb law such as distance-dependent dielectric constant and 

charge-scaling. While it is somewhat ad hoc and doesn't take into account the 
interaction of the individual charges with the solvent (self-energy ), distance- 

dependent dielectric constant c=EOR is widely used because of its simplicity [104, 

105]. This expression actually accelerates calculations of the energy and forces 

because they become dependent only on R2 instead of R, eliminating costly square 

root calculations. Charge scaling was shown to improve the simulation results for 

such systems as DNA. While these crude approaches can hardly be used for 

quantitative evaluation of the properties of a macromolecule in solution, they keep 

the extra calculations to a minimum. 

Alternatively, the solvent can be considered as a continuous medium of high 

dielectric constant. This treatment of the solvent is more computationally tractable 

than the inclusion of explicit water molecules. The electric potential obeys the 

Poisson differential equation 

-D(E(r)0$(r))=P(r) (1.2.1.2) 

where E is the dielectric constant (permittivity), 0 is the electric potential, and p is 

the charge density. In a uniform medium it is equivalent to the Coulomb law, but 

the solution becomes more complicated when the space is divided into the regions 

of different dielectric permittivity. Analytic results exist only for special cases 

such as a sphere or a plane. Certain methods, for example the electrostatic image 

technique, utilise these analytic solutions to obtain relatively simple 

approximations of electrostatic energy under an assumption that the protein has 

10 



near-spherical shape, [106,107,40]. The precision of this approximation is 

obviously limited. A much more rigorous approach is to solve the Poisson 

equation numerically. Several techniques based on this idea were developed and 

are widely used in protein energy calculations [24]. 

1.2.2 Hydrophobicity 

Transfer to the aqueous solution of a number of organic groups results in a free 

energy loss related to the ordering of water molecules around such groups which is 

known as the hydrophobic effect. The concept of the hydrophobic interaction was 

introduced by Kauzmann in 1959 [25]. This effect is similar in nature to the 

macroscopic surface tension. The hydrophobic interaction is a major driving force 

in the formation of most ligand-receptor complexes. For some ligands such as 

steroids the interaction is almost exclusively hydrophobic, and many other ligands 

are amphiphilic with hydrophobic groups binding into hydrophobic pockets of the 

receptor. By fitting the transfer free energies of hydrocarbons against the solvent 

accessible surface, the hydrophobic contribution was shown [26] to be 

proportional to the solvent accessible surface with fairly good precision. However, 

the coefficient of this proportionality is a subject to some controversy since it 

differs sharply from the microscopically observed value of the surface tension 

constant. The microscopic surface tension value derived from the transfer energies 

of aliphatic compounds is close to 30 cal/A2 while macroscopic hydrocarbon- 

water surface tension constant is -75 cal/A2. Some attempts were made to explain 

the discrepancy by taking into consideration the curvature dependence of the 

surface tension and the difference of the molar volume of solute and solvent [27]. 

It remains to be seen if the division of the water-solute interaction into solvation 

electrostatics and hydrophobic components, is the most adequate approach. 

Methods - based on this partitioning were shown to reproduce,. successfully 

experimental data on transfer free energies for a large set of compounds [28]. 

4% 
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However, alternative approaches to water-solute interaction evaluation were also 
developed, particularly a number of atomic solvation parameters (ASP) based 

methods. ASP methods differentiate the atoms of the solute into a number of 
types, each with a particular value of solvation energy surface density, 

generalising the surface tension. The underlying assumption is that the water- 

solute interaction can be partitioned into atomic contributions, which are 

proportional to the solvent accessible surface areas of the atoms. Popularity of the 
ASP approach is in part due to the simplicity and computational efficiency, while 
the drawbacks are that neither proportionality of the solvation energy to the 

accessible surface nor the partitioning of the solvation energy into atomic 

contributions can be rigorously justified, and are both largely ad hoc assumptions. 
Nevertheless, good agreement with experimental data can be achieved [29], which 

might in part be explained by the large number of adjustable parameters in the 

ASP models. It is questionable that these methods can perform well on a set of 

compounds which is much larger then the set used for the parameter adjustment. 

1.2.3 Van der Waals interactions 

The most generic type of interatomic force exhibits itself as a very strong 

repulsion at short distances and turns into relatively weak and quickly decreasing 

attraction as the distance between two atoms grows. It is commonly described by 

the "6-12" potential: 

Evw(Rvý-- 
6+ 

Bel 

Rýýi 
1 

RJ 
ý 
12 (1.2.3.1) 

where R; j is the distance between the two atoms i and j. Parameters Al and B1 

depend on the types of atoms and are usually calculated using combination rules 
from the parameters for the identical pairs of atoms, which are in turn evaluated 
from quantum-mechanical or experimental data. Usually these parameters are 
derived along with the other components of the atomic interaction energy to form 

1" 
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so-called molecular mechanics force-fields, such as CHARMM [30], AMBER 

[31], MMFF [32] and ECEPP [33]. In this work we generally, utilise ECEPP/3 

parameterisation since it is optimised for internal co-ordinate representation. 
While the 1/R6 form of the attraction term has strict quantum-mechanical basis, 

rigorous description of the repulsion term is more complicated. Alternative forms 

of the repulsion term have been proposed [32]. Fortunately, the interactions in 

biomolecular systems occur mostly in the range of inter-atomic distances where 

the attractive term is prevalent, and seem to avoid the strong repulsion, alleviating 
the problem of finding an exact description for the repulsion term. 
Still, extreme sensitivity of the Van der Waals term to the small conformational 

changes makes its inclusion in the calculation of AGbind problematic. This led a 

number of authors to simply omit the Van der Waals contribution in the binding 

energy, as it seems to introduce more noise than signal into the answer. Such 

omission is partly justified by the cancellation of ligand-receptor interactions in 

the bound state and the ligand-solvent/receptor-solvent interactions in the unbound 

state. One can assume that the overall number of interatomic contacts in the 

system remains nearly constant upon binding, resulting in the conservation of the 

total Van der Waals interaction energy. However, this approach leaves out entirely 

the dependence of the interaction energy on the quality of the interface. It might be 

of lesser importance for the prediction of the binding energy of the known 

complexes where the interface exhibits remarkable complementarity in most cases 
[34]. In the case of database scanning for novel ligands, the quality of the interface 

varies significantly and cannot be ignored in the evaluation of the binding energy. 
A possible compromise is to modify the Van der Waals potential so that it 

becomes less sensitive to the small deviations in atomic co-ordinates. We 

implemented this approach as described later. 

1.2.4 Hydrogen Bonds 

4. 
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Hydrogen bond interaction is a specific attraction between polar hydrogens and a 

number of heavy atoms, which have lone electron pairs. From the large number of 

complexes whose 3-D structures have been solved it is known that many ligands 

form extensive networks of hydrogen bonds with their receptors, especially in 

cases of high specificity and high affinity binding. Hydrogen bonds also play an 
important role in protein folding, where their formation between the turns of the 

a-helixes and between the ß-strands stabilises these essential secondary structure 

elements. Unfortunately, there seems to be no agreement so far about the adequate 
functional form for the hydrogen bonding interaction term and even the energetic 

value of an average hydrogen bond. Since its origin lays in the same electrostatic 

and quantum interactions as the origin of Van der Waals and electrostatic terms, 

hydrogen bonding is often included in the force field as a modification to the Van 

der Waals potential for the specific atom pairs [35,32]. The modification may only 
involve change in the parameters (MMFF), or a different functional form (10-12 

instead of the standard 6-12 Van der Waals potential in ECEPP). Some force fields 

simply ignore hydrogen bonding in the hope that the electrostatic term will 

provide a sufficiently favourable contribution when positive hydrogen atoms and 

negative hydrogen bond acceptors are brought together. However, the charge 
distribution around the acceptor atoms is highly anisotropic since the lone electron 

pairs occupy spx orbitals, resulting in strong anisotropy of the HB interaction. High 

directionality of the HB interaction can also be observed in the solved structures of 

the proteins and protein complexes [36]. This anisotropy is largely ignored by 

pair-wise, atom-centric potentials used by the majority of the force fields. This 

omission may not lead to large errors as long as only naturally occurring 

conformations are considered, since they often already have optimal or sub- 

optimal configuration of hydrogen bonds. However, in the course of a simulation, 

such as docking, it may result in erroneous formation of hydrogen bonds of 

physically impossible geometries. Several forms of hydrogen-bonding term with 

explicit angular dependence were proposed [37,38]. 
4. 
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1.2.5 Conformational Entropy 

Binding of the ligand to the receptor usually imposes strong constraints upon its 

conformational freedom. In most cases, the bound state locks the ligand in a single 

conformation. Also, the surface side-chains of the receptor which are in contact 

with the ligand may no longer access some of their rotameric states. There is also a 
loss in translational and rotational degrees of freedom, which does not depend on 

the participating molecules and can be seen as a constant so long as we only 

consider 1-to-1 stoicheometry complexes. Binding may result in considerable 
decrease in the entropy which has to be included in the binding energy evaluation. 
As an illustration, one can consider the burial of one CH2 group in an aliphatic 

chain. The loss of three rotameric states of the chain results in an entropy loss that 

adds R71n3 = 0.66 kcal/mole to the free energy of the system, while the decrease 

in hydrophobic term is around -0.88 kcal/mole [39]. 

Exact determination of the entropy change would require extensive molecular 

dynamics simulations. Currently such simulations are too expensive 

computationally, to use them routinely for a large number of putative complexes. 
An alternative approach is to assume that each free torsion rotation gives 

, approximately the same contribution to the entropy. Then one can further assume 

that all torsions get locked upon binding, and use the simple count of torsions in 

the ligand multiplied by the constant per torsion contribution (usually 0.6 

kcal/Mol). More sophisticated schemes attempt to evaluate the degree of 

conformational restraint imposed on each free torsion angle, e. g. according to the 

fraction of the accessible surface of the corresponding atom groups buried upon 

binding [40]. Furthermore, for the amino-acid residue side-chains statistical 

distributions of the x angles can be derived from the database of known X-ray 

protein structures. These distributions can be used to calculate more exactly the 

entropy loss associated with locking of a particular side-chain in a single rotameric 

d% 
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state [40]. An alternative approach is to run a Monte-Carlo or molecular dynamics 

simulation of the components of the complex and of the complex as a whole to 

sample extensively the conformational space of the complexed and uncomplexed 

molecules and evaluate directly the change in the number of available states. 
Though such simulations give the most precise estimates of the entropy loss, they 

are prohibitively expensive computationally to be used routinely, especially in the 

case of molecular dynamics. 

1.3 Conformational search techniques 

An efficient global optimisation procedure is a key component of the docking 

protocol. Many approaches treat both ligand and receptor as rigid bodies [3,5,41]. 

Such treatment allows for rapid location of the optimal mutual orientation of the 

two molecules by special techniques (DOCK), but has limited applicability since 

the majority of small ligands are flexible and structural rearrangements occur in a 

number of receptors. To some extent, the limitations of the rigid-body docking can 

be circumvented if several low-energy conformations of the ligand are generated 

and then docked. The best solution can than be* picked as an answer [42]. 

However, the number of conformations which have to be docked independently to 

achieve an accurate solution may become very large even for relatively small 

compounds. Therefore, many techniques try to treat the flexibility of the ligand 

more directly. The flexible ligand can often be partitioned into rigid fragments. 

For each fragment, rigid docking can produce a number of favourable orientations. 

Fragments are then reassembled into the original chemical structure 

("Hammerhead", [43] ). Alternatively, one fragment is assumed to be essential for 

binding and placed in the active site first, then others are attached incrementally 

[44]. 

Two features of the protein-ligand energy landscape complicate the problem of 

the energy optimisation: high dimensionality and multiplicity of local minima. 
4' 
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High dimensionality makes the exhaustive search of the conformational space very 

:- computationally . expensive. Large number . of , 
local minima makes rational 

,,, _ 
determination of the global search direction virtually impossible and limits the 

usability of the derivatives to a small vicinity of one local minimum. 

.. 
In, order to deal with these difficulties, we use the technique of Monte-Carlo 

minimisation in internal co-ordinates. 

1.3.1 Monte-Carlo 

The term Monte-Carlo has been introduced by Metropolis and Ulam [45], with 

an allusion to the essentially random nature of such simulations. Monte-Carlo 

minimisation consists of three repetitive steps: 
1. Random Jump. One or several variables in the system are changed randomly. 

2. Local Minimisation. The energy of randomised conformation is optimised 

using a conjugate gradient or quasi-Newton technique to achieve a new local 

minimum. 
3. Evaluation. The new conformation is accepted or rejected according to the 

Metropolis criterion: If the energy of the new conformation Ene,, is lower than the 

energy of the old one Eo1d , the new conformation is always accepted and used in 

the next iteration. Otherwise, it is accepted with the probability of 

Pacc=exp(-(E�ew Eold)/kT), where k is Boltzman's constant and T is the effective 

temperature of the, simulation. 
The Monte Carlo methods can be subdivided into local step and non-local step 

procedures, the former tending to make a random step in the vicinity of a current 

local minimum and the latter trying to jump to different minimum (in general not 

even to the neighbouring one) at each step., Rather sophisticated local step 

methods have been developed [108,109,110]. They find the appropriate search 

directions (related to the covariance matrix) in an. attempt to make a step along 

low-energy valleys. However, these methods have limitations in their global 
1% 

01 
17 



sampling capacity because they rely upon local harmonic approximation of the 

energy surface that is valid only close to the original conformation. This feature 

makes them adequate for sampling of the local environment of a certain 

conformation rather than for the large-scale searches. 
In the alternative approach with non-local random steps, the main question is 

how to make the step, so that both the fraction of accepted random moves (the so- 

called acceptance ratio) and the performance are sufficient. High-dimensionality 

of protein systems clearly calls for much more efficient 'sampling algorithms than 

the existing ones. It has been established that a full local minimisation of each 

random step greatly improves the efficiency of the procedure [46,47]. However, 

some components of the energy, such as the solvation electrostatic energy, may 
have no derivatives and/or may be too computationally expensive for local 

minimisation. The double-energy MC minimisation scheme [13] circumvents this 

obstacle by using two sets of energy terms, one for the local gradient minimisation 

stage and another one for the Metropolis criterion evaluation stage in the MC step. 

Such division can be justified if the extra terms included for the Metropolis 

criterion are relatively "slow", insensitive to small conformational changes. 

1.3.2 Internal co-ordinates 

One of the principal difficulties in biomolecular simulations is the size of the 

system which often contains thousands of atoms. As a consequence, the 

conformational space has a very high dimensionality, complicating the search for 

the global energy minimum. The use of internal co-ordinates substantially reduces 

the number of variables defining the conformation of the system. The Cartesian 

description requires 3 variables (x, y, z) per atom. The internal co-ordinates 

description uses bond lengths, planar angles and torsion angles instead. Since bond 

lengths and planar angles are practically rigid under normal conditions, one can 

consider them as constants and only allow torsion angle changes (rotations around 

0% 
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the bonds), reducing the dimensionality of conformational space at least threefold. 

In practice, even greater reduction is achieved because at every branching point 

several atoms essentially share the same torsion angle (Fig 1.1 (a)). 

The formal geometrical description to allow efficient manipulations of the multi- 

molecular system in internal co-ordinates with arbitrary subsets of free and fixed 

variables was introduced [13]. The technique represents the system as a directed 

treelike graph imposed on all atoms as well as on some auxiliary virtual atoms 
(Fig 1.1 (b)). Each atom in this basic description has three geometric parameters 
determining its position with respect to the preceding part of the tree. The 

parameters are bond length b, bond angle co and torsion ( or phase 0 dihedral 

angles for the main branch and side branches, respectively. The sub-trees of 

different molecules join in the starting triplet of virtual atoms which are fixed at 

the origin of the co-ordinate system and allow for standard treatment of all real 

atoms including the root atoms of each molecular sub-tree. When several internal 

variables are fixed (considered constant) a group of atoms may form so-called 

rigid-body, where mutual positions of the atoms involved do not change upon any 

changes of the remaining free variables. The concept of rigid bodies provides an 

important additional advantage for the energy calculations, since all pair-wise 

energy contributions from the atoms within a rigid body are constant. Such 

contributions often can be excluded from the calculations when only the relative 

energy change is important, improving the computational performance. 

f. 

Throughout this study, we have applied the internal co-ordinate ideology in the 

representation of molecular conformations during local and global energy 

minimisation using the molecular simulation program suite ICM (Internal 

Co-ordinate Mechanics, Molsoft LLC). 
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Fig. 1.1 (a) Four types of internal variables considered in ICM. (b) The ICM 
tree representing the geometry of multi-molecular arbitrarily fixed system 
and containing both real atoms and bonds (continuous lines) and virtual 
ones (dot-dashed lines). Atoms are numbered so that any atom in the 
directed graph starts a sub-tree with a continuous numbering. An arbitrary 
subset of free internal variables is shown in bold black characters, all the 
others being fixed (grey characters). The atomic regular directed graph is 
the basic one, the order of variables and rigid bodies following it. The 
numbering does not change as a result of re-fixation and redefinition of the 
rigid bodies. The attribution of the main (torsion) branch at the branching 
point is arbitrary and does not necessarily follow the atomic numeration. 
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1.3.3 Other approaches 

Various global optimisation techniques were applied to the docking problem. 
Among the more popular is the genetic algorithm (GA), which was widely applied 

in protein folding simulations [111,112,113]. The idea of GA is to mimic the 

evolution process by manipulating "chromosomes", each containing a set of 

variable values defining a possible solution, e. g. a certain binding mode. The 

values inside the "chromosome" might be the rotatable torsion angles of the ligand 

and the variables defining the relative orientation of the ligand and receptor. The 

algorithm starts with a random "population" of chromosomes, from which new 

generations are produced by "mutations" and "crossovers", which involve, 

respectively, randomisation of some variables inside the chromosome or 

reshuffling of some variable values between two chromosomes. The best-fit 

"individuals" are preserved while others are discarded according to the fitness 

function. The assumption is that as the algorithm progresses, this strategy will find 

and keep the advantageous combinations of variable values, converging to the 

minimum of the fitness function. The GA docking was used fairly successfully to 

reconstitute a large number of known complexes [48], , although no tests were 

undertaken to compare its performance with more conventional approaches such 

as MC. 

Notably, Fourier-transforms were also used to locate the optimal geometric fit [7]. 

The method is efficient and attractively simple conceptually. Unfortunately it 

seems to be only applicable to a rather simplistic fitness function and can only 

optimise the three translational degrees of freedom. Rotations still need to be 

sampled by other means, i. e. systematic or random search. The Fourier-transform 

approach may be useful primarily in cases where the interacting molecules are 

very big, making other methods too expensive computationally. 

0. 
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Molecular dynamics (MD) simulation can be used as an optimisation method, and 

potentially it can provide a realistic picture of the binding process. However, MD 

is the most computationally expensive approach, and so far it is impossible to 

simulate the whole progress of the system from unbound components to the 

complex. The use of MD in docking is now limited to the simulations of the 

already bound complexes, where it is successfully used to predict various 
thermodynamic properties. Somewhat better performance can be achieved using 

so-called Brownian dynamics [49], which was applied to simulate long-range 

diffusion-like motions of the interacting macromolecules [50]. It is not clear if 

Brownian dynamics is capable of finding the final bound configuration of the 

complex. 

1.4 Ligand discrimination 

In the context of database screening, the goal of the docking simulation is two- 

fold: not only to predict the bound conformation for a particular ligand, but also to 

predict if any given compound would bind at all. The task of the discrimination 

procedure can be formulated as the assignment -of a certain score to each 

compound in the database, reflecting the strength of its binding to the receptor. 
Ideally, such a score is the binding energy OGbind" 

1.4.1 Binding energy prediction. 

As described in Chapter 1.2, a number of terms contribute to the free energy of the 

molecular system in solution and, subsequently, to OGb; nd. Simple use of the 

molecular force-field energy has been shown to produce unsatisfactory results 
[15]. Van der Waals energy is extremely noisy because of the rigidity of the 6-12 

potential, and its gain upon complexation is believed to be largely offset by the 

loss of the Van der Waals contacts with the solvent (water). These considerations 

suggest that it is advantageous to exclude Van der Waals energy entirely from the 
r 
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evaluation of OGbind [51,52]. Some approaches only include various forms of 

solvation energy [29] or solvation and electrostatic terms [51] plus a constant term 

to account for the translational and rotational entropy loss. Unfortunately, the 

precision of the calculations for these components of the energy is rather low, as 

the estimates for the values of their critical parameters, dielectric constant and 

surface tension, vary at least two-fold. The problem is further complicated by the 

fact that the individual terms are often much larger than the total AGb; od, negative 

contributions from hydrophobic and Coulombic terms being largely offset by the 

positive contribution from the desolvation of hydrophilic polar and charged atoms. 

1.4.2 Discrimination score 

Successful discrimination method should be able to rank the ligands in agreement 

with their experimental binding affinities, while remaining computationally 

manageable to be applied to a , large number of potential complexes in an 

acceptable time. Most accurate techniques for binding energy prediction, such as 

free energy perturbation (FEP), achieve good agreement with the experiment but 

are rather slow, [53,54]. Instead of attempting to predict the actual binding energy, 

one can try to generate a score which is a sufficiently good correlate of AGb; od to 

differentiate high-affinity ligands from non-binding compounds. Such a score can 

"- be based on the statistics of interfacial atomic contacts. Two studies applied the 

statistical approach with some success to the HIV protease inhibitors [114,115]. 

Earlier, a somewhat similar technique was proposed, splitting the binding energy 
into specific contributions from chemical groups such as C00,. OH, CO etc., 

which were determined from existing binding energy data [55]. Other methods use 

matching of certain properties on the interface, '- such - as hydrophobicity and 
hydrogen bond donors and acceptors (e. g. [56] ). 
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2. Methods 

2.1 Optimisation 

2.1.1 Monte Carlo minimisation and conformational stacks 

Throughout this study, MC minimisation was used as the main tool for the 

conformational search and optimisation. Main elements of the MC minimisation 

procedure in the internal co-ordinates are outlined above (sec. 1.3.1 and 1.3.2). To 

monitor the MC procedure and to introduce certain improvements into the basic 

MC protocol, the so-called conformational stack was maintained during the 

simulations [47]. The stack is a data structure containing the sets of variables 
defining certain conformations of the molecular system. The following algorithm 

was applied: At the start of the simulation, the stack is usually empty. After each 

accepted MC step, the generated conformation was compared to those stored in 

the stack. If the RMSD to all already accumulated conformations was above a 

certain cut-off value (vicinity parameter), the conformation was considered "new" 

and added to the stack unless the stack was full, i. e. the maximum number of 

conformations was already achieved. In that case the energy of the new 

conformation was compared to the energy of the worst (highest-energy) 

conformation in the stack. If the new conformation had lower energy, it replaced 

the old one, otherwise no modification of the stack was done. If the generated 

conformation was within the vicinity of one of the stored stack conformations, 

their energies were compared, and if the old one had higher energy it was 

replaced, otherwise no modification of the stack was done. For each conformation 
in the stack, the number of visits value was maintained. It was initialised as zero, 
increased each time the MC procedure generated a conformation within the 

vicinity from the particular stack conformation and reset to zero when it was 

replaced. Thus, at the end of simulation the contents of the stack could be 
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examined to discover the low-energy regions of the conformational space covered 
by the MC procedure and to determine how long the procedure has spent 

searching various regions. The information accumulated in the stack was also used 

to improve the efficiency of the search through the introduction of - certain 

modifications to the basic MC procedure. To prevent the search from getting 

"stuck" in a single low-energy region, a limit on the number of visits, for a stack 

conformation was imposed. After the limit was reached, a randomisation of 

variables much more drastic than the regular MC step was applied to force the 

system out of the over-visited region. 

2.2 Boundary element numerical solution of the Poisson equation 

2.2.1 Electrostatic interactions in solution 

It is well recognised that electrostatic interactions have profound effects on 

macromolecular structure, folding and binding. Simplistic pair-wise Coulomb 

energy used in a number of molecular force fields proved to be inadequate in 

many cases since it does not account for the solvent effects. 
The most rigorous approach might be an inclusion of explicit solvent (water) 

molecules into the system. Such calculations require addition of thousands of new 

atoms even for a moderately sized macromolecule and a long run' of molecular 
dynamics is necessary to achieve even rather superficial sampling of the phase 

space for the added water molecules. Such sampling is necessary because the 

solvent molecules are not static and their thermal motion is essential for the 

electrostatic properties of the solvent. 
As an alternative to explicit solvent one can use the continuous dielectric model. 
Instead of the discreet solvent molecules, the system is surrounded by a 

contiguous media of high dielectric constant. In this case, the electrostatic energy 
`.. can be calculated as an energy of a set of point chargesin a low dielectric constant 
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media surrounded by a high dielectric constant media. The molecular surface is 

usually taken as a boundary between the two. To calculate electrostatic potentials 

and energy in such a system, two major approaches have been developed: the 
finite difference method [24], and the boundary element method [64,63], as well 

as some approximations which use additional assumptions to achieve better 

performance, e. g. MIMEL [40], where quasi-sphericity is assumed in order to use 
the electrostatic image technique. 

The finite difference method is currently the most popular approach. The major 
disadvantage of the method is that it requires manipulations of very large three- 

dimensional arrays since the properties such as electrostatic potential, charges and 
dielectric constant have to be represented on a grid. To achieve adequate precision, 

sub-Angstrom grids are required. For a medium-sized system of 50A diameter and 

the grid mesh size of 0.5A, the calculations involve the manipulation of several 

arrays of 100x100x100 = one million values each, which is both slow and 

memory-consuming. 

An alternative approach is based on the mathematical observation that the solution 

of Poisson's equation for the system, where the space is divided into two regions 

of different dielectric permittivity, can be represented as the solution for a uniform 

medium if certain additional electrical charge density is distributed over the 

boundary between the regions. Since the electric field in the uniform medium 

obeys Coulomb's law, once the charge density on the boundary is known, 

electrostatic potentials and energy can be easily calculated. However, to find the 

boundary charge distribution, an integral equation has to be solved. The efficiency 

of the method depends to a great extent on the implementation of this solution. 

2.2.2 Molecular surface 

Since the continuous dielectric model involves the division of space into low- 

dielectric constant region (interior of the protein) and high-dielectric constant 
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region (solvent), it is important to define the boundary between the two. There are 

two types of surface widely used in the studies of solute-solvent -interactions: 

solvent accessible surface which is displaced outward from the Van der Waals 

surface by the radius of the solvent probe [57,58]; and molecular surface, which is 

a smooth envelope touching the Van der Waals surface of atoms as the solvent 

probe rolls over the molecule [59]. In the electrostatic calculations the second type 

of surface is commonly used, as it represents the limits of the space which can be 

potentially occupied by solvent molecules. Several numeric algorithms were 

proposed for generating the approximations of the molecular surface, e. g. 

marching cubes [60]. Connolly [61] was the first to introduce a computer 

algorithm to generate the precise analytical molecular surface. In this work we 

used an improved contour-build-up algorithm to calculate the analytical molecular 

surface [62]. 

Tessellation of the molecular surface is an important part of the procedure and has 

a crucial effect on its performance and precision. The number of surface elements 
has to be kept as small'as possible to make the calculations fast and reduce the 

amount of memory needed. On the other hand, the shape of the surface has to be 

adequately represented in order to achieve good precision. These contradictory 

requirements are hard to satisfy. Usually the surface is divided into triangles used 

as the boundary elements. One of the popular approaches essentially projects a 

pre-triangulated sphere onto the molecular surface [63]. While producing a 

relatively small number of surface elements, it will only generate satisfactory 

surface representation for a quasi-spherical molecule and any clefts, which are 

quite common for enzymes, may get severely distorted. Another approach is to use 

the detailed triangulated molecular surface [64], which guarantees good precision 
but is extremely slow and requires huge memory to store the matrix. Here we try 

to avoid both the excessive number of boundary *elements 'and the 

oversimplification of the surface. Instead of directly using triangles as boundary 

elements, we combine them into relatively few patches of arbitrary shape. The 
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limited number of boundary elements keeps the calculations fast while their 

complex shape to a large extent preserves the precision. 

2.2.3 Theory of the Boundary Element method 

The basic task in the continuum dielectric solvation electrostatics calculation is to 
find the electric potential or field produced by a system of charges q; in the region 

of space with dielectric constant E;,, surrounded by a medium with dielectric 

constant Ea�, . The idea behind the boundary element method is to find an 

appropriate charge distribution on the surface of the dielectric boundary which 

would reproduce the same electric field in a uniform medium with dielectric 

constant Ei,, . Once such a distribution is found, one can calculate the potential at 

any point from the Coulomb law since the dielectric is now uniform. 
The electric field at an arbitrary point on the boundary should obey two conditions 

which can be used to deduce an equation for the surface charge density a. The first 

condition is the continuity of the normal component of the electric displacement 

vector at any point on the boundary. If n is the normal to the boundary, Din is the 

displacement just inside the boundary and Da,,, is the displacement just outside the 

boundary, than 
Din-n = Dout'n (2.2.3.1) 

The second condition is for the discontinuity of the normal component of the 

electric field: 
(0 -E, n)'n = 47rß (2.2.3.2) 

where Eo�c and E1 are the electric field vectors just outside and just inside the 

boundary, respectively. Combining these two equations and taking into account 

that D=eE we obtain the following equation relating Eo�t and ß: 

a. _ 
eln _ Engt 

Eout "n 
(2.2.3.3) 
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On the other hand, the electric field E can be calculated with the help of 

Coulomb's law from the known electric charges q; and the charge, density 

distribution ß: 

E=Z q, (r - r; 
3+ 

ff -; 
r-a ds (2.2.3.4) 

E, ýIr-r, 
) Ir-r, l 

where r is the radius-vector of the point where the electric field is being 

calculated, r; are the radius vectors of the charges q;, rs and ßs are the radius- 

vector and the surface charge density of an infinitesimal element of the boundary 

ds and the integral is taken over the whole boundary. This expression should not 

however be directly used in Eq. 2.2.3.2, because the surface integral has a 

discontinuity at the surface point. It can be shown that the value of the integral at 

the surface point and at the point infinitely close to it but outside the surface differ 

by 2itan , and for E0 one can have: 

Eon q`(r-r, 3 
+21ran+ 

ýr-rJ3, ds (2.2.3.5) 
C. r-r; r-r, 

where r is now the radius-vector of a point on the boundary. 

Now we can substitute Eo�c in Eq. 2.2.3.2 and obtain an integral equation for the 

l 

6: 
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din -bout qi (r - ri) n+ dirt -bout 

, ý, 
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(2.2.3.6) 

or 

a- 
e; 

� - gout p c, (r - r, ) .n ds = 
Crrt - Cour q, (r - r) .n 

27r(em + eoýt) Ir - rs13 2ir(E; 
� + ýoýt) Ir - r113 

(2.2.3.7) 

To solve this integral equation numerically, we can break the boundary into 

fragments, or elements, and approximate the continuous surface charge 
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distribution by a set of surface charge density values, one for each boundary 

element. The integral equation 2.2.3.7 then turns into a linear equation system: 
Ra=e, (2.2.3.8) 

where ß is the vector of surface charge density, matrix R only depends on the 
boundary shape and is defined by 

R= S-( -oil-gout (r, - rJ) "n1 ds jk ik 27r(e, 
n 

+ em )3 
st 

Irk 
- r, 

I 

and e is the vector defined by 

ej = 
ern - eouºJZ q, (r1-r, )"nj 

2ir(e. +E)3 27r(-Ein oýý r Ire 
- r; I 

(2.2.3.9) 

(2.2.3.10) 

Indexes j and k refer to the boundary elements, and rj is the radius-vector of the 

point chosen to represent the `centre' of the boundary element Sj. 

The approximation of the integral in Eq. 2.2.3.9 can be obtained by using rk 
instead of rs: 

_ 
e1 - foul (r1- rk) "n 

. 2.3.11) 2» Ir/-rkl 
Rjk Slk 3 (2 

However, this approximation is obviously not valid for the diagonal elements of 

the matrix, since it is singular for j=k. The simplest solution is to discard the 

integral for the diagonal elements completely, which would imply that individual 

surface elements are considered as flat, disregarding their curvature. Rashin and 
Namboodiri achieved some improvement in precision using finer tessellation of 

the surface for the calculation of the diagonal elements. Purisma and Nilar [65] 

have shown that if the surface is composed of interlocking spheres, one can 
deduce the diagonal elements of the matrix from the off-diagonal ones with the 

help of a certain normalisation condition. However, the molecular surface 

normally has many non-spherical (torroidal) elements. That, and especially the 
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imperfections of the surface may lead to erroneous estimates of the diagonal 

elements. 11 1 

2.2.4 Implementation 

A major problem of the boundary element method is the necessity of solving the 

linear equation system with the matrix R of the size NxN, where N is the number 

of boundary elements. 
Unsatisfactory performance in terms of speed remains an obstacle for the wider 

usage of the boundary element method for macromolecular electrostatics 

calculations. In its simplest form, the method is only practical for the relatively 

small systems where a few hundreds of boundary elements are sufficient. 

Unfortunately, as the number of surface elements grows, the size of the matrix and 

especially the speed of the matrix inversion can make the boundary element 

electrostatic calculations impractical. The size of the matrix is proportional to the 

squared number of the surface elements (N), which means that one can not have 

more than a few thousand surface elements, i. e. 4000 elements require a matrix of 

64 Mbytes in size. Also, the time required for the matrix inversion is proportional 

to the cube of N. 
,I-. 

The second problem can be circumvented if, instead of the matrix inversion, one 

uses iterative solution of the linear system. When done properly, the iterative 

process usually, converges in only a few (<10) steps. Making. the size of the 

surface elements bigger helps to decrease the number of them, but quickly 

deteriorates precision. The characteristic size of the bumps and pits on the protein 

surface is close to the radius of an atom, which is about an angstrom for the 

hydrogens which are the majority of, . the surface atoms. If the surface is 

triangulated and the triangles are used as the boundary elements, these triangles 

should have the sides of less than an angstrom in length to retain any atomic 
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details. Bigger triangles may lead to exceedingly large errors: some atoms become 

very close to the surface and may even get outside of it. 

To keep the number of boundary elements low we define our boundary element 
as an association of all triangles of the surface belonging to one atom. This allows 

us to have a detailed representation of the molecular surface shape with dozens of 
triangles per surface atom, while the number of boundary elements which are 
involved in the linear equation 2.2.3.8 is much lower and equals the number of 

surface atoms. The underlying assumption is that the variations of the surface 

charge density across the atomic surface patch are relatively minor. 
Molecular surface was generated by the contour build-up algorithm [62] with 

subsequent triangulation of the three basic elements (convex spherical patches, 

torroidal saddles and concave spherical triangles). The algorithm also assigned 

each triangle to one of the atoms of the molecule. The assignment was used to 

group the triangles into patches of the surface used as boundary elements. The 

matrix elements RJk were then calculated by summation of all contributions from 

the triangular components of patches j and k: 

R,. k =I I r,, mk Ij Alt 

f 

(2.2.4.1) 

where 1j and Mk are indices of the triangles of the respective patches. The 

elementary triangular contributions rl,,,, were calculated according to Eq. 2.2.3.11. 

As mentioned above, special consideration has to be given to the diagonal 

elements r11. The expression 2.2.3.9 has to be written more precisely as 

ru =1- S 
, -+ ff (r, - r2) nß ds, ds2 (2.2.4.2) 

St 2n(lýn out) s, s, 
jr, 

r213 
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If the surface element S, is flat, the normal vector nj is a constant and the integral 

becomes anti-symmetric with respect to rl and r2 , and since both integration 

variables cover the same surface, the integral is zero. Thus, the value of the 

integral reflects the curvature of the surface element S1. As the calculation of the 

integral for the arbitrary shape of the element is difficult, we use the following 
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approximation: If the triangle belongs to the torroidal segment of the molecular 

surface, the value of integral is assumed to be zero since the average curvature of 

the surface is close to zero; if the triangle belongs to the spherical patch of the 

surface, the integral is estimated as ±Sir"2' ht where r; is the radius of the sphere and 

the sign is positive for the concave and negative for the convex triangles. 

To solve the linear equation system, the conjugate gradients method was used 

[66]. Iterations converged after 8-12 steps. For an average-size 130 residue protein 

lysozyme, the total runtime to calculate the electrostatic energy was 13 second on 

R10000 195 MHz SGI Indigo computer. Surface calculation took 3 seconds, 

matrix preparation 4.5 seconds, conjugate gradients linear equation solution 4 

seconds and final energy calculations 1.5 seconds. The time distribution shows 

that the technique is currently well-balanced, with no prominent bottlenecks. It 

was applied throughout this work for the electrostatic solvation energy 

calculations. 

2.3 Deviation measure to rank docking solutions 

To rank different conformations of a ligand of N atoms (i=1, N) docked to the 

receptor with respect to the known correct solution (i'=1, N) one may use a RDE 

(relative displacement error) measure which is related to the CAD [67] measure, 

but is much easier to calculate: 

RelativeDisplacementError =100 
11. 

-L1, N r=t. rv L+ Dýt" 

where L is the scale parameter, N is the number of ligand atoms and D; p is the 

deviation of the model atom i from the corresponding atom i' in the reference 

structure. The scale parameter defines the accuracy scale. Values of L between 

1.5A and 3A are reasonable, since at these distances specific interactions of ligand 

atoms with the receptor atoms are significantly reduced and possibly replaced by 
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different interactions. From the above formula one can deduce the following 

properties of the proposed measure: if all the deviations are 0., RDE is 0%; if 

deviations are equal to L, RDE is about 50%; the same result may be achieved if 

half of the ligand atoms are predicted correctly (or deviate by much less than L), 

while the other half deviates by much more than L. 
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3. Flexible protein-ligand docking in full-atom representation. 

Eight protein-ligand complexes were simulated using global optimisation of a 

complex energy function, including solvation, surface tension and side-chain 

entropy in the internal co-ordinate space of the flexible ligand. and the receptor 

side-chains [13,40]. The procedure uses two types of efficient random moves, a 

pseudo Brownian positional move [13] and a Biased-Probability multi-torsion 

move [40], each accompanied by full local energy minimisation. The best docking 

solutions were further ranked according to the interaction energy which. included 

infra-molecular deformation energies of both receptor and ligand, the interaction 

energy, surface tension, side-chain entropic contribution and an electrostatic term 

evaluated as a boundary element solution of the Poisson equation with the 

molecular surface as a dielectric boundary. The geometrical accuracy of the 

docking solutions ranged from 30% to 70% according to the relative displacement 

error measure at a 1.5A scale. Similar. results were obtained when the explicit 

receptor atoms were replaced with a grid potential. . 

3.1 Introduction 

Theoretical prediction of the association of flexible ligands with protein 

receptors requires efficient sampling of the conformational space of a flexible 

ligand, a sufficiently accurate energy function and an efficient way to account for 

the receptor flexibility (see recent reviews [71,77,87,88]. Flexible docking 

schemes can be based on incremental construction of the docked conformation 

from separately docked rigid pieces [43,68,69] or on a limited discrete set of 

ligand conformations [42,70]. A molecular dynamics simulation of the entire 

continuously flexible ligand can be used to sample the conformational space of 

relatively small compounds [71,72,12,73]. Monte Carlo methods allow one to 

increase the sampling efficiency by making larger conformational rearrangements 
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[74,75]. Typically, sampling is performed by making random changes of one angle 
by a random value [75,76]. Caflish et al. [76] used Monte Carlo combined with 
local energy minimisation after each random change of a ligand torsion (receptor 

assumed to be rigid), as suggested by Li & Scheraga [46] for peptide structure 

prediction. 
The continuous flexible docking procedure in internal co-ordinate space of both 

the ligand and the side-chains of protein receptor was first introduced in 1994 [13] 

and applied to predict the association of two a-helical peptides. This method 

attempted to globally optimise a rather complex energy function simultaneously 

with ligand and receptor rearrangements (each followed by local energy 

minimisation) rather then refine a set of solutions generated with rigid ligand 

molecules and with a simpler energy function. Later, the side-chain entropy and 
the MIMEL approximation of the solvation energy were added to the globally 

optimised objective function [40] , these terms being evaluated after each local 

minimisation as outlined in a `double energy' scheme [13]. The ICM docking 

procedure correctly docked lysozyme and its antibody in full atom representations 

with flexible side-chain association and reached a discrimination of 19 kcal/mole 

between the correct lowest energy conformation and the closest false solution [19]. 

Later, the association of ß-lactamase and its inhibitor [77,78] were correctly 

predicted with a similar energy discrimination gap, this time under blind 

prediction conditions. 

Here, we apply the ICM docking method to small flexible ligands which are 

globally energy optimised together with the active site side chains using the 

double energy scheme. Additionally, we use an accurate boundary element 

solution of the Poisson equation to evaluate the 30 best docking solutions for each 

compound. 
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3.2 Method 

3.2.1 Monte-Carlo conformational search 

The ICM method describes both the relative positions of two molecules and their 

conformations by a uniform set of internal variables. Any subset of internal 

variables can be subjected to local or global energy minimisation procedures. 
Docking of flexible ligands into a flexible receptor requires three groups of free 

variables: positional variables of the ligand, intramolecular variables of the ligand 

and the torsion angles of the active site side chains (Figure 3.1). Flexible loops can 

also be sampled simultaneously with the ligand (e. g. in antibodies conformation of 

the loops is crucial for binding, see ref. 79 on immunoglobulin loop simulation). 
All the other variables are fixed to accelerate energy evaluation and sampling. In 

this study, the global minimisation procedure involved a random change of the 

internal variables followed by local energy minimisation (up to 100 steps of 

conjugate gradient minimisation) and selection by the Metropolis, criterion (the 

temperature factor was set to 600K). Pseudo-Brownian random moves changed 

the position of the ligand molecule as a whole with a certain amplitude (here we 

used 2A), as well as randomly rotated it around its centre of gravity by an angle 

close to the translation amplitude over the radius of gyration [13]. Internal torsion 

angles of the ligand were randomly changed one at a time, with an amplitude of 

180°. Coupled groups of receptor side-chain torsion angles were sampled with 

biased probability moves [40]. 

Once the set of free variables was defined, the ICM global energy optimisation 

was performed from multiple starting points. Multiple starts were used to ensure 

convergence of the procedure. The number of starting points depends on the size 

of a ligand and here we used six random starting points. The energy optimisation 

routine consisted of the following iterative steps [13]: 

d` 

37 



Sil 

Psei 

Fig 3.1. ICM docking set-up with flexible ligand and explicit flexible 
receptor. Most of the receptor variables are fixed, combining a large 
fraction of the receptor atoms into one rigid body. 
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" make a random conformational change of three possible types (Figure 1, 

loops were not considered here); 

" perform local energy optimisation of the vacuum ECEPP3 energy [35] with 

a distance-dependent dielectric constant F, =4r ; 

" evaluate surface-based solvation energy and entropic contribution from the 

receptor side-chains and add it to the ECEPP3 energy; 

" apply Metropolis et al. [45] selection criterion at a certain temperature T and 

make another step; 

Geometrically different (as evaluated by the root mean square displacement of 

the ligand atoms with a threshold of 2.5A) and low energy conformations were 

accumulated in the conformational stack [47]. 

3.2.2 Energy evaluation 

During the MC runs, the energy was calculated using the ECEPP3 molecular 
force field, surface based solvation energy and entropic contribution. At the end of 

simulations, the conformational stacks were merged and the thirty best energy 

conformations were ranked with a more rigorous evaluation of the electrostatic 
free energy. Electrostatic free energy was calculated by a numerical solution to the 

Poisson equation using the boundary element algorithm [64] with E=4 inside the 

molecules and e=80 outside. Our implementation of the boundary element 

algorithm uses the accurate analytical molecular surface built by the fast contour 

build-up method [62] and is described in Chapter 2. The ECEPP charges [33] were 

used for the protein atoms. Since ECEPP doesn't provide the charge evaluation 

mechanism for an arbitrary chemical, charges of the ligand atoms were calculated 

with the quantum-mechanical program Gaussian [116]. 
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3.2.3 Preparation of the individual initial structures 

The techniques developed were tested on the docking prediction targets in the 

CASP-2 (Critical Assessment of Structure Prediction techniques) protein structure 

prediction contest. For the docking simulations, 8 ligand-protein complexes were 

proposed (Table 1). We made predictions for all eight complexes. For each of the 

targets, the co-ordinates for a complex of the protein with some other ligand(s) 

were found in the Protein structure Database (PDB), which allowed us to establish 

the approximate locations of the binding sites as a first step of the prediction. 

Next, three-dimensional models of the ligands had to be built. The chemical 

structures of the ligands were available in the form of connectivity tables. Since 

the experimental 3D co-ordinates for the ligands were not available, we built the 

models in the ICM program [13] from the fragments of the compounds found in 

the Cambridge Structural Database (CSD) [80] with known 3D structures. To find 

those, CSD was searched for the compounds with chemical structures similar to 

the chemical structure of the ligand. The third step was the assignment of partial 

charges to the individual atoms of the ligand, which were needed for the 

subsequent energy calculations. This was done with the help of the quantum- 

chemical program package Gaussian [116]. A CNDO hamiltonian was used to 

obtain the ligand atomic charges that are the most consistent with the standard 

ECEPP3 charges used for the protein molecule. The fourth and central step of the 

procedure was global energy optimisation of the ligand-protein complex. The 

ligand was placed in the vicinity of the binding site of the protein, and the system 

was subjected to the ICM docking procedure described above. During the 

procedure, torsion angles of the ligand and of the protein side-chains in a 7A 

vicinity of the binding site were randomly changed. Each random change was 

followed by up to 100 steps of local conjugate-gradient minimisation. New 

conformations were accepted or rejected according to the Metropolis criterion 

using the temperature of 600K. Several independent Monte-Carlo runs of 300,000 
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energy evaluations were done for each ligand to ensure the convergence of the 

optimisation. 
In the last step, putative solutions accumulated in the conformational stacks were 

re-evaluated using a more precise solvation electrostatic energy approximation 
based on the boundary element solution of the Poisson equation. The solution 

which scored best in this energy approximation was taken as the answer. 

3.3 Results 

3.3.1 Comparison of the predicted structures to X-ray results 

For all 8 complexes, the best answers were submitted to the CASP-2 organisers. 

When the experimental structures became available, we were able to check the 

predictions. In most cases, the parts of the ligand inside the binding centre were 

predicted with good accuracy. Relatively large deviations occurred only for atoms 

outside the binding centre. We used RDE (relative displacement error) [67] as well 

as RMSD to evaluate our solutions. The results are summarised in Table 3.1. The 

high RMSD values for several complexes are somewhat misleading, because in 

fact only' about half of the atoms of these ligands have large deviations, as the 

RDE measure correctly suggests. In the case of target 35, elastase/elastase 

inhibitor, the actual structure of the ligand has undergone chemical changes which 

were impossible to predict. 

N, 
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Table 3.1. 

Results for the docking of eight ligands to their receptors evaluated by all heavy atom 
RMS deviation and the relative displacement error (RDE). 

Target Ligand Receptor 
(PDB template 
code) 

Site Restraints RMSD 
B 

Fraction 
correct C 

t13 methyl alpha-D- Concanavalin A pocket no 3.5 49.6% 
arabinofuranoside (5cna) 

t33 pentamidine Pancreatic trypsin pocket tip E 9.27 51.7% 
(2tbs) 

t34 amiloride, Pancreatic trypsin pocket tip 4.2 48.1% 
(2tbs) 

t35 SBAA Pancreatic elastase covalent chem. '10.6 31.2% 
(linc) bond 

t36 SBBA Pancreatic elastase covalent chem. 10.7 35.6% 
(linc) bond 

t39 Aica-Riboside Fructose bis- pocket no 1.8 70.1% 
Phosphate phosphotase (Ifpd) 

t40 INH Pancreatic trypsin pocket tip 6.7 49.7% 
(2tbs) 

t41 INIA Pancreatic trypsin pocket tip 7.8 44.6% 

A We use abbreviations suggested by the CASP2 organizers. SMILES strings of these compounds 
can be found at (http: //PredictionCenter. llnl. gov/casp2/targets. html). 
B Cartesian RMS deviation was calculated for all ligand heavy atoms with the receptor models 
superimposed. 
C Fraction correct, or 100%-Relative Displacement Error, is calculated for all N heavy atoms of a 
ligand using this formula: 100% (UN) IZ+D,; )'1, where D;, is the deviation of the model atom i 
from the corresponding atom in the reference structure, and the scale parameter L=1.5 L. 
D Predictions were misled by the wrong chemical structure of the t35 ligand suggested for 
predictions. 
E Tip indicates a distance restraint imposed on the carbon atom of the guanyl group. 
Runtimes for simulations with fully flexible receptor side-chains and ligand varied from 5 to 15 
hours. 
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Fig. 3.2 Predicted docked conformations are shown in red and 
conformations determined by x-ray crystallography are shown in green. 
Analytical molecular surface of protein receptor was generated by the 
contour-build-up method [62]. 
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3.3.2 Grid potential docking 

Goodford [37] introduced the idea of pre-calculating the potentials produced by 

the receptor on a grid to accelerate radically the binding energy calculations. After 

the CASP-2 meeting, we attempted to predict the same complexes with the 

explicit receptor replaced by the grid potential. Four types of potentials were pre- 

calculated: the van der Waals potential for a hydrogen atom probe (1.0A radius), 

the van der Waals potential for a heavy atom probe ( generic carbon of 1.7A radius 

was used) , an electrostatic potential from the receptor atoms, and the hydrogen 

bonding potential calculated as spherical Gaussians centred at the ideal putative 
donor and/or acceptor sites. Grid cell size was set to 0.5A. Simulations took only 

about five minutes per compound and results similar to the results of the full-atom 

simulations were obtained. While this approach does not allow the explicit 

receptor flexibility, it might be preferred when the calculation speed is crucial, e. g. 
in database scanning. 

3.4 Discussion 

3.4.1 Flexible ligand and receptor optimisation 

Accurate prediction of protein-ligand association requires inclusion of the ligand 

flexibility and protein surface flexibility in the docking procedure as well as 

precise evaluation of the interaction energy. The developed docking technique 

allows continuous and efficient sampling of internal torsion angles of the ligand 

and receptor side-chains as well as sampling of the variables which define the 

mutual orientation of the receptor and ligand within the same Monte-Carlo-based 

global optimisation framework. The pseudo-Brownian random moves differ from 

other schemes of random positional sampling, such as local minimisations from 

multiple starting points [81], or random translations and rotations (e. g. ref. [76]) 

and have the advantage of imitating local ligand rearrangements. The proposed 
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biased-probability sampling method for all surface side-chains in the vicinity of 
the active site is much more efficient than either 'discrete sampling [1ea94] or 

�r . changing one side-chain torsion angle at a time [76,81]. This method also can be 

used to sample . the ligand if its conformational preferences in the form of 

continuous distributions are preliminary generated or evaluated using the database. 

However, even if the global optimisation of the ligand/side-chain subsystem is 

fast and convergent, deformations of the backbone may still be crucial to docking 

with detailed atomic models. An adequate simulation of the backbone flexibility 

simultaneously with the ligand docking is still out -of reach for the current 

computational approaches. To some extent, softening the potential (e. g. ref. [5,10]) 

or using an approximate grid potential [37,73,75], which is less steep than the 

realistic van der Waals repulsion, may be a practical way ' of overcoming this 

problem. Furthermore, simulations with the grid potential are much faster than the 

explicit flexible docking simulations and can be used for scanning large databases. 

Clearly, the choice between the explicit receptor model or the grid potential model 

depends on the docking problem and the available computer time and power. 
In this work the receptor side-chains were sampled together with the ligand. 

Previously we found that for protein-protein docking this approach leads to a 

better discrimination between the correct and incorrect solutions [19,78]. It was 

unclear, however, that in this work the flexibility was essential. 

3.4.2 Energy function 

The energy function optimised by the procedure included a detailed vacuum 

energy complemented with the surface-based solvation and side-chain entropy. 

Since we intended to compare different conformations of the same ligand rather 

than binding affinities of different ligands, we did not estimate the ligand entropy 

loss [82]. However, inclusion, of the side-chain entropy into global optimisation 
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[40] may be essential for discrimination between putative binding sites since these 

contributions can reach 2 kcal/mole/residue. 

Numerical solution of the Poisson or the Poisson-Boltzmann equations (for 

review see ref. [20,83]) provides an accurate representation of the electrostatic 

solvation component of the ligand binding energy and can be added to the 

molecular mechanical force field to rank the docking solution [15,84,85]. We 

ranked the 30 best solutions using a more accurate evaluation of the electrostatic 
free energy calculated with the boundary element algorithm [63,64,86]. However, 

even these energies could not identify the correct positions of the solvent exposed 

parts of the long ligands. Technically, explicit water molecules could have been 

sampled together with the ligand, but explicit solvation can only be adequately 

considered within the framework of molecular dynamics. 

3.4.3 Accuracy of predictions 

Although the smaller compounds were predicted reasonably well, the relatively 

poor quality of prediction for the longer ligands suggests that the part of the ligand 

outside the binding pocket might not have a strong preference towards any one 

conformation. Presumably, the experimental structure in these cases is defined by 

a fine balance of energy terms which is still beyond the accuracy of the available 

energy approximations, or even perhaps by the crystallographic packing. The 

presence of many alternative configurations for such parts of the, ligand molecule 

among the low-energy conformations accumulated during the simulations also 

suggests that the energy minimum for them is less well defined. Some of these 

alternative configurations are closer to the native conformation, but also have 

significantly higher energy then the lowest-energy conformation, suggesting that 

sampling of the conformational space of the ligand is sufficient. Further 

improvement in the free energy evaluation is necessary to achieve better docking 

precision for the weakly bound groups. 
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4. Ligand discrimination and fast flexible ligand docking using 

potential maps. 

Discovery of new lead compounds is a crucial step in drug development. As the 

available computing power grows rapidly, virtual screening of the databases of 

chemicals becomes an increasingly viable alternative to direct experimental 

screening of hundreds of thousands of putative ligands. However, the ability of 

existing algorithms to distinguish high-affinity ligands from false positives 

remains low, with typical success rate of 1 active compound out of 10 to 50 

selected by the screening protocol. We developed a novel approach to the 

derivation of binding potential by direct optimisation of its discriminative 

capability and derived an improved binding function using that approach. An 

exhaustive cross-docking of 23 receptors and 63 putative ligands extracted from 

high-resolution PDB structures of protein-ligand complexes was used as a 

benchmark. Ligands were diverse in size, from 12 to 84 atoms, and had a broad 

range of chemical properties and included sugars, fatty acids, phosphates, bases, 

heterocyclic and other compounds, which ensured the transferability of the scoring 

function to a larger variety of receptor/ligand pairs. Continuously flexible ligands 

were docked using the Monte-Carlo minimisation docking algorithm in the 

internal co-ordinate space. All complexes were subsequently evaluated and the 

best ligands for each receptor identified. The optimised scoring potential placed 

the native ligand first for 13 receptors and in all but two cases at least one native 

ligand was within the first 3 selected compounds. 
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4.1 Introduction 

4.1.1. Overview 

Automated identification of high-affinity ligands of various macromolecules 

enzymes, receptors etc. ) in a large database of compounds (virtual screening), 

may become a valuable tool in such applications as drug discovery. The basic idea 

of virtual screening is to find an optimal binding configuration for every 

compound in the database or in its large subset (docking, see revues ref. 
[71,77,87,88]), and then evaluate the bound structure by a discrimination 

procedure which should determine if one can expect high-affinity binding for the 

complex. A number of algorithms for docking and discrimination have been 

developed recently, such as DOCK [89], FLOG [42], and others (reviewed in ref. 
[90]). A number of successful applications of the scanning algorithms to discover 

the ligands for particular receptors were reported [90]. However, the success ratio 
is often relatively low. Therefore the improvement of the ligand discrimination 

remains an important issue. Attempts to achieve better discrimination were so far 

directed mostly towards finding a better approximation of binding energy OGbind 

using the values of AGbind for known complexes as a benchmark. In this work an 

alternative approach to the derivation of a sensitive discrimination algorithm will 

be described. 

4.1.2 Ligand discrimination and its optimisation 

The task of the discrimination procedure can be formulated as the assignment of 

certain score to each compound in the database, reflecting the strength of its 

binding to the receptor. Ideally that score would be the binding energy AGb1 d. 
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Thus, every compound in the database has to be docked to the receptor and its 

OGbind evaluated. Energetic terms contributing to the AGb; ad are as follows: 

(i) electrostatic interaction of the polar atoms with each other and the solvent, 
(ii) hydrophobic term which accounts for the unfavourable interactions between 

certain groups and the solvent, 
(iii) Van der Waals interactions, 

(iv) formation of the hydrogen bonds, 

(v) entropic contributions related to the loss of conformational freedom of the 

ligand and of surface side-chains of the receptor. 

However each of the terms is also a source of errors, and for some of the 

contributions their magnitude is itself a matter of controversy, especially in the 

case of hydrophobic interaction, solvation electrostatics and hydrogen bonding 

interactions. Therefore, it appears legitimate to attempt an improvement of the 

discriminating potential by scaling the various contributions and subsequently 

optimising the weights. Moreover, since the goal in the derivation of an optimised 

potential is to achieve better discrimination, instead of trying to predict more 

accurately the actual binding energy of the known complexes, we will try to 

maximise the difference in the energy estimates between the binding and non- 

binding ligand-receptor pairs. Such an approach takes into consideration the 

numerous possible false pairs with low or no real affinity for each other which 

may have favourable apparent binding score, while traditional adjustment to the 

binding energy data only includes the (rather) high-affinity ligand-receptor pairs. 

4.2 Materials and methods 

4.2.1 Evaluation of discrimination potential performance 

Optimisation requires a scoring function to evaluate the quality of a particular set 

of parameters. Our scoring function is based on a collection of known high- 
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resolution complexes from PDB from which a set of receptors and a set of ligands 

was extracted. For some receptors several complexes with different ligands were 

present in the data set, and vice-versa. Each ligand was then docked to each 

receptor, and the binding potential E; j(a) was calculated for the resulting 

complexes (a is the vector of current weights (z for the potential terms, i and j are 

the indices of the receptor and ligand, respectively). 

Parameter set evaluation function had the form 

S(a)= Il ma 
4 

Ei. i (a)- min (Eº. k (a))-lo 
i /w-(i) k. -++(, ) 

C(=(al, a2, (X39 a4, a5) (4.2.1.1) 

which is essentially the sum of the energy differences between the native ligands 

and first false positive for each receptor. Successful discrimination results in a 

negative contribution to S((X), while unsuccessful cases add positive penalty. The 

cut-off value of -10 kcal/mol was utilised to prevent the optimisation procedure 
from finding meaningless minima where one of the ligands would have 

exceptionally high separation at the expense of other ligand-receptor pairs. 

4.2.2 Discrimination potential 

Our binding potential consisted of the following terms: 

E(a) = AEFFi-AEEN+a1Nat+a20EHB+a3AESE+a4OEEL+a5 ESo (4.2.2.2) 

REFF is the force-field energy which included inter- and intra-molecular Van der 

Waals interactions and torsion energy for the ligand calculated with ECEPP/3 

parameters10. Since ECEPP/3 only has parameters for amino-acid atom types, the 

atoms of ligands were assigned closest chemically similar atom types. Because of 
its extreme rigidity, Van der Waals potential in its standard 6-12 form may 
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introduce large noise in the energy function. For inter-molecular interactions we 
therefore used a modified smoother form of the potential with most of the 

repulsive part truncated. Truncation was achieved by the following transformation 

of the original value of Van der Waals potential: 

E, °,,,,, if E, °,,,, <- 
E`'"' E,, 

Q'W 
E,.,, 

, if f E0 >0 
(4.2.2.1) 

,,, + Ex 

l 

This expression ensures smooth transition from undistorted form of Van der 

Waals potential in the negative range of values to increasingly attenuated form in 

the positive range, asymptotically approaching Emax cut-off value. Ems was chosen 

on the basis of preliminary tests to be 1.5 kcal/mole. Lower values sometimes 

result in severely clashed docking solutions as the Van der Waals repulsion is no 
longer able to compete with attractive terms, primarily electrostatic. This and other 

potentials were pre-calculated on a grid to accelerate energy evaluation during the 

simulations. The grid cell size was set to 0.5A. 

LEEN is the entropic contribution, which was estimated as 0.6 kcaUmol/K times the 

number of free torsions in the ligand. IEHB is hydrogen bonding term which was 

calculated using Gaussian-type potential positioned around the centre of each lone 

electron pair of the hydrogen-bond acceptors: 

(r-r,, )' 
0 4a 

ERB = EH8e (4.2.2.2) 

The peak interaction energy E°HBwas assumed to be 2.5 kcal/mol as an average of 

various estimates, and the radius of the interaction sphere dHB was assumed to be 

1.4A, allowing for about 30° 
, 
to 40° deviation from the, ideal geometry in 

accordance with observations in X-ray structures. rhb is the radius-vector of the 

interaction centre, which was placed 1.7A from the atom. In case of hydrogen 

atoms the centre was placed along the axis of the covalent bond attaching the 

hydrogen to the rest of the molecule. In case of heavy sp2 atoms, one (for nitrogen) 
ý` 
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or two ( for oxygen ) centres were placed at the angle of 120° to the existing 

covalent bond. For spa oxygen and sulphur, two centres were placed in tetrahedral 

geometry, at 109° to the existing covalent bonds and to each other. 

We used a combination of two types of electrostatic terms: distance dependent 

electrostatics with E=4r (AEEL) and solvation electrostatics calculated by the 

boundary element solution of the Poisson equation with dielectric constant set to 4 

for the inside of the molecule (DEsE) [63,84,85,86]. 

The hydrophobic term AEso was calculated as proportional to the buried 

hydrophobic surface with the free energy density of 30 cal/mol/A2. To accelerate 

calculations, a grid-based form of the hydrophobic potential was developed. The 

fragments of the solvent-accessible surface were generated using the modified 
Shrake and Rupley algorithm [13,58]. The algorithm produces dots, which evenly 

cover the surface. The hydrophobic potential on the grid was then calculated as: 

=2 
E _Eoe dW 

so - so (4.2.2.3) 

ds,,, f is the distance to the closest point of the hydrophobic surface, and d, is 

effective radius of the hydrophobic interaction which was set to the diameter of 

the water molecule 2.8A. The value of E°so=3 kcal/mole was chosen to reproduce 

the surface tension of 30 cal/mol/A2 for extended hydrophobic surfaces in test 

cases. The non-physical term proportional to the number of atoms in the molecule 

was introduced after the preliminary tests showed a bias of the energy function 

towards bigger ligands. This trend might be explained by our use of the "softened" 

Van der Waals term which can result in artificial extra Van der Waals attraction 

roughly proportional to the number of the atoms. 

4.2.3 Docking 
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To generate docked conformations used in the binding potential evaluation, the 

Monte-Carlo minimisation technique in the internal co-ordinates was utilised. The 

protocol similar to the one used in Chapter 3. The energy function during the MC 

run included all the terms described above with the exception, of solvation 

electrostatics since it is too computationally expensive to be used during the 

docking procedure. Single solvation electrostatics energy evaluation may take up 

to a minute of CPU time, depending on the, receptor size, while the entire MC 

docking simulation takes from 1 tolO minutes, depending mostly on the ligand 

size. The adaptive length of the MC runs was used, with the limit on the total 

number of steps proportional to the size (number of atoms) of the ligand: 

NMCsteps=SO*NLigAtom. Similarly, an adaptive length of local minimisations during 

the MC run was used: NLocMiasteps=25+NLigAtom" The factors in these relations were 

established empirically from the convergence and efficiency considerations. 

4.2.4 Optimisation 

The set of 23 receptors (Table 1. ) and 63 putative ligands (Table 2. ) was 

extracted from high-resolution PDB structures. The structures were selected 

according to a number of criteria: All structures at resolutions worse than 2. OA 

were discarded since large errors in the receptor co-ordinates could result in poor 
docking and recognition for reasons unrelated to our study. Several complexes had 

the ligand bound covalently ' to the receptor and were also discarded since the 

prediction of such chemical reactions is beyond the scope of our approach. We 

'- also omitted complexes where metal ions were directly involved in the protein 

'ligänd'interaction since the force field used in the simulations did not provide for 

adequate modelling of such atoms. Some of the ligands in the set were retained 
from the structures of the receptors not used in the simulations for one of the 

reasons described above. We 'nevertheless kept these ligands to enrich the set and 

evaluate the discrimination protocol under more stringent conditions. For a 
d% 
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Table 4.1 Receptor structures used in docking simulations and recognition 
experiments 

PDB code Receptor name 
1881 Lysozyme mutant 
lake Adenylate kinase 
lars Aspartate aminotransferase 
lerb Retinol binding protein 
lfkh FK506 binding protein 
lfnd Ferredoxin reductase 
lgar Glycinamide ribonucleotide transformylase 
lgca Glucose/galactose-binding protein 
lhmr Fatty acid binding protein 
lhsl Histidine-binding protein 
licm Intestinal fatty acid binding protein 
list Lysine-, arginine-, ornithine-binding protein 
lmai Phospholipase c 8-1 
lmdq Maltodextrin-binding protein 
lmrg a-momorcharin 
lmrj a-trichosanthin 
lnsc Neuraminidase 
lrcf Flavodoxin 
lsre Streptavidin 
2dri D-ribose-binding protein 
2tbs Trypsin 
4dfr Dihydrofolate reductase 
FQf' Tyrosine kinase of FGF receptor 
1. The X-ray coordinates were kindly provided by S. Hubbard. 

number of receptors, structures of several complexes with different ligands were 

available. In all such cases we used a single receptor structure in recognition 

experiments with all ligands. Hydrogen atoms were added to all X-ray structures 

using the hydrogen placement algorithm of ICM software [13]. Electric charges 

were assigned to the atoms of the ligands using bond-charge increment algorithm 
from MMFF94 force field [32]. Each ligand in the set was docked to every 

receptor using the flexible Monte-Carlo docking procedure with potential maps as 
implemented in ICM software [13,40,91]. For every complex, all energy terms 
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were evaluated and the resulting three-dimensional (N1; gandXNreceptor xNcerm) set of 
data was utilised in the subsequent optimisation. 

To find the optimal set of parameters, the zero order simplex minimisation 

algorithm ("amoeba") was implemented [66]. To ensure that the global minimum 

was found, 10 independent optimisation runs from random starting points with 10 

re-starts of the "amoeba" algorithm were conducted. All of the optimisation runs 

went quite far from the our initial guess of parameter vector a=(0.1.1.0.1. ) (see 

eq. 1) which included most terms with the weight of one and omitted the size 
factor and distance-dependent electrostatics. 
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Table 4.2 Ligands used in docking simulations and recognition experiments 

Code Source (PDB code) Name 
ela lhmr elaidic acid 
ola lhms oleic acid 
ste lhmt stearic acid 
mya licm Myristate 
mtx 4dfr Methotrexate 
ddf 1 dyj 5,10-dideazatetrahydrofolate 
dzf 1 dyh ' 5-deazafolate 
fol ldyi Folate 
ffo ljom folinic acid 
ben 2tbs Benzamidine 
amc ltng Aminomethylcyclohexane 
f ba 1 tnh 4-fluorobenzylamine 
pbn 1 tni 4-phenylbutylamine 
pea 1 tnj 2-phenylethylamine 
pra 1 tnk 3-phenylpropylamine 
tpa 1 tnl Tranylcypromine 
oxe 1881 o-xylene 
ind 1851 Indole 
i4b 1841 Isobutylbenzene 

pxy 1871 p-xylene 
n4b 1861 n-butylbenzene 
bnz 1811 Benzene 
den 1831 Indene 
bzf 1821 Benzofuran 

gtt lhnl glutathione 
pgh 1 tpb phosphoglycolohydroxamate 
etr l erb n-ethyl retinamide 
fen 1 fel fenretinide 

rea 1 fern Retinoic acid 
aze 1fen axerophthene 
hab Isre haba 

mhb Isrg 3 -methyl-haba 
dmb lsri 3 ,5 -dimethyl-haba 

nab 1 srj naphthyl-haba 
icl linc benzoxazinone 
gis 8est guanidinium isocoumarin 
ibr 9est guanidinium isocoumarin 
baa 1 elg n-(tert- butoxycarbonyl-alanyl-alanyl)-o-(p- 

nitrobenzoyl) hydroxylarnine 
t44 leta thyroxine 
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u89 Igar burroughs-wellcome inhibitor 1476u89 
fad 1 fnd adenosine-2', 5 -diphosphate 
ap5 lake inhibitor ap5a 
fmn lrcf flavin mononucleotide 
adn lmrg adenine 
mal lmdq maltose 
gal lgca galactose 
rip 2dri beta-d-ribose 
nag lnsc N-acetyl-D-glucoseamine 
stl livd 4-(acetylamino)-3-hydroxy-5-nitrobenzoic 

acid 
lys list Lysine 
his lhsl Histidine 
e6c lppp Inhibitor e64-c 
e64 laec Inhibitor e64 
clm 3cla chloramphenicol 
pip 1 ars pyridoxai-5 -phosphate 
pmb lxzc para-sulfurousphenyl mercury 
sbx 1fkh (1r)-1-cyclohexyl-3-phenyl-l-propyl (2s)-1- 

(3,3-dimethyl- 1,2-dioxopentyl)-2- 
piperidinecarboxylate 

i3p lmai inositol trisphosphate 
Mil HIM milrinone 
Mpd 1 nco 2-methyl-2,4-pentanediol 
Sia l nsc sialic acid 
Dan 1nsd 2,3 -dehydro-2-deox -n-acet l neuraminic acid 

4% 

4.3 Results 

4.3.1 Grid docking 

51 complexes with known structures were predicted. 35 predictions were within 

3A from the native structure, producing correct overall positioning of the ligand, 

and 26 were within 2A, giving fairly detailed picture of the receptor ligand 

interaction. Individual cases are further analysed: 
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Lysozyme mutant complexes o-xylene, indole, isobutylbenzene, p-xylene, n- 
butylbenzene, benzene, indene and benzofuran. Eight small aromatic and 
heteroaromatic compounds were docked into the cavity left in the core of the 
protein after the mutation of bulky residues for smaller ones. This is an example of 
low-specificity primarily hydrophobic binding. All but one compound were 
docked in the conformation closely resembling native, with RMSD under 1A. In 
the case of isobutylbenzene, the benzene and isobutyl groups are exchanged, 
resulting in rather large RMSD of 4.5A (Fig. 4.1). 

Adenylate kinase complex with the inhibitor ap5a. This is one of the biggest 
ligands in the set. Despite the size of the problem, the docking shows remarkable 
precision, with both adenosine moieties nicely docked into their pockets and 
somewhat higher deviations in the less specific central poly-phosphate region. 
Overall RMSD is 0.98A (Fig. 4.2). 

Aspartate aminotransferase complexed with pyridoxal-5'-phosphate. Due to the 
Shiff base formation, in the native structure one of the carbon atoms of the ligand 
is very close to the lysine 258 nitrogen atom. This type of interaction is not 
permitted by the docking technique used and resulted in considerable deviation of 
the docked structure. However, the overall binding mode is well conserved in the 

model generated, with RMSD 2.37A (Fig. 4.3). 

Retinol binding protein complexes with n-ethyl retinamide, fenretinide, retinoic 

acid and axerophthene. The correct binding mode was found in all cases, though 

quality of the prediction varied, with RMSD values from 0.92A to 2.21A (Fig. 
4.4). 

FK506 binding protein complex with (1 r)-1-cyclohexyl-3 phenyl-1 propyl (2s)- 
1-(3,3-dimethyl- 1,2-dioxopentyl)-2-piperidinecarboxylate. The solution found by 

the docking procedure was correct on the large scale, while the positioning of 
several groups was rather approximate, RMSD 2.27A (Fig 4.5). 

Ferredoxin reductase complex with FAD. The experimental complex structure 
actually contains adenosine-2', 5'-diphosphate as well as FAD. The docking 
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procedure correctly identified the flavin binding pocket, but failed to place the 

adenosine moiety which doesn't seem to interact strongly with the receptor (Fig. 

4.6) 

Glycinamide ribonucleotide transformylase complex with Burroughs-Wellcome 

inhibitor 1476u89. While. there are minor deviations throughout the predicted 

structure of the ligand, all the functional groups are placed correctly. RMSD 

2.19A (Fig. 4.7). 

Glucose/galactose-binding protein complex ' with galactose. The predicted 

structure has correct orientation with a minor overall' shift, mostly due to the 

inappropriate choice of the isomer of histidine 152 in the receptor. RMSD 1.27A 

(Fig. 4.8). 

Fatty acid binding protein complexes with elaidic, oleic and stearic acids. For 

these complexes, the prediction was one. of the worst. They ' seemingly lack 

strongly localised specific interactions, and the ligands are extremely flexible 

molecules. The flexibility makes . proper sampling of their conformational space 

difficult. While parts of the long aliphatic chain do follow the same course in the 

predicted structures, other parts deviate strongly. The RMSD ranges from 3.49A to 

6.69A (Fig. 4.9). 

Histidine-binding protein complex with histidine. While overall position of the 

ligand is predicted correctly, the imidazole ring is flipped. This flaw stems again 
from the problem of the isomeric states of histidine. Better docking could have 

been achieved if two alternative states were tried. RMSD 1.68A (Fig. 4.10). 

Intestinal fatty acid binding protein complexes with myristate and oleate. In 

contrast to the other set of fatty acid complexes, the predictions here rather closely 

resemble the native structures, even though the crystallographic structure of the 

oleate complex has considerable disorder, with three alternative positions for the 

carboxyl group. RMSD's are 1.79A and 1.46A (Fig. 4.11). 

Lysine-, arginine-, ornithine-binding protein complex with lysine. Remarkably 

good prediction, with RMSD of 0.61A (Fig. 4.12). 
ý` 
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Phospholipase c 8.1 complex with inositol trisphosphate. Rather poor prediction, 
possibly due to the complicated hydrogen-bond network formation in the native 
complex. RMSD 5.03A (Fig 4.13). 

Maltodextrin-binding protein complex with maltose. Though many details of the 
hydrogen-bonding network are not reproduced in the model, the two sugar rings 
are placed accurately. RMSD 0.92Ä (Fig 4.14). 

a-momorcharin complex with adenine. Incorrect docking, possibly due to 
insufficiently good treatment of hydrogen bonds. Interestingly, the five nitrogens 
of the adenine molecule are fairly well superimposed, but with incorrect order. 
RMSD 3.51 Ä (Fig. 4.15). 

a-trichosanthin complex with adenine. Very good prediction, RMSD 0.42Ä 

(Fig. 4.16). 

Neuraminidase complexes with sialic acid, 2,3-dehydro-2-deo y-n-acetyl 

neuraminic acid and 4-(acetylamino)-3-hydroxy-5-nitrobenzoic acid. All three 

predicted structures are fairly good, with only minor deviations. RMSD's are 
0.93A, 0.75Ä and 0.83A respectively (Fig 4.17). 

Flavodoxin complex with flavin mononuccleotide. Flavin moiety docking 

precision is excellent, while the sugar and phosphate have higher deviation, 

possibly due to the relatively loose contact of these groups with receptor. RMSD 

1.2A (Fig. 4.18). 

Streptavidin complexes with 2-((4 -hydroxyphenil)-azo)benzoate (HABA), 3- 

methyl-HABA, 3; 5 -dimethyl-HABA and naphthyl-HABA. Two of the complexes 
(the first and the last) are predicted correctly, while in the other two the phenyl 

rings are reversed. RMSD's are 1.50A, 7.24A, 7.53A and 0.76A respectively (Fig. 

4.19). 

D-ribose-binding protein complex with beta-d-ribose. Good prediction with 
RMSD 0.56A (Fig. 4.20). 

Trypsin complexes with inhibitors benzamidine aminomethylcyclohexane 4- 

f uorobenzylamine 4-phenylbutylamine 2-phenylethylamine 3-phenylpropylamine 
0% 
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tranylcypromine. While for the first three inhibitors prediction was satisfactory, 
for the last four precision was rather poor. In these complexes, the amino group 

penetrates much deeper into the active site than for the benzamidine-like 

compounds. It was the structure of the receptor from the trypsin-benzamidine 

complex that was used to generate the predictions. Possibly, the induced fit steered 

the prediction in all cases towards benzamidine-like binding. RMSDs are 1.91A, 

1.27A, 1.94A, 3.05A, 2.79A, 2.60Ä and 2.11A respectively (Fig. 4.21). 

Dihydrofolate reductase complexes with methotrexate 5,10- 

dideazatetrahydrofolate 5-deazafolate folate folinic acid. The overall position of 

the ligand is correct in all complexes, but placement of the individual chemical 

groups vary from fairly good in case of metatrexate to unsatisfactory for the 

folinic acid. RMSDs are 1.81A, 2.84A, 2.48A, 3.45A and 5.0OÄ respectively (Fig. 

4.22). 

Tyrosine kinase of FGF receptor complex with Sugen inhibitor. Good prediction 

with RMSD O. 76Ä (Fig. 4.23). 
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Fig. 4.1 Predictions and experimental conformations for the lysozyme 
mutant complexes o-xylene, indole, isobutylbenzene, p-xylene, n- 
butylbenzene, benzene, indene and benzofuran 
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Fig. 4.2 Predictions and experimental conformations for the adenylate 
kinase complex with with the inhibitor ap5a. 
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Fig. 4.3 Predictions and experimental conformations for the aspartate 
aminotransferase complexed with pyridoxal-5'-phosphate. 
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Fig. 4.4 Predictions and experimental conformations for the retinol binding 
protein complexes with n-ethyl retinamide, fenretinide, retinoic acid and 
axerophthene. 
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Fig. 4.5 Prediction and experimental conformation for the FK506 binding 
protein complex with (1 r)-1-cyclohexyl-3-phenyl-1-propyl (2s)-1-(3,3- 
dimethyl-1,2-dioxopentyl)-2-piperidinecarboxylate. 
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Fig. 4.7 Predictions and experimental conformations for the glycinamide 
ribonucleotide transformylase complex with Burroughs-Wellcome inhibitor 
1476u89. 
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Gal 

Fig. 4.8 Prediction and experimental conformation for the 
glucose/galactose-binding protein complex with galactose. 
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Fig. 4.9 Predictions and experimental 
binding protein complexes with elaidic, 

Ela 

conformations for the fatty acid 
. oleic and stearic acids. 
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Fig. 4.10 Prediction and experimental conformation for the histidine- 
binding protein complex with histidine. 
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Fig. 4.11 Predictions and experimental conformations for the intestinal 
fatty acid binding protein complexes with myristate and oleate. 
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Fig. 4.12 Predictions and experimental conformations for the lysine-, 
arginine-, ornithine-binding protein complex with lysine. 
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Fig. 4.13 Prediction and experimental conformation for the phospholipase 
c 5-1 complex with inositol trisphosphate. 
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Fig. 4.14 Predictions and experimental conformations for the maltodextrin- 
binding protein complex with maltose. 
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(X-momorcharin complex with adenine 

Aän 

Fig. 4.15 Predictions and experimental conformations for the a- 
momorcharin complex with adenine. 
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Fig. 4.16 Prediction and experimental conformation for the a-trichosänthin 
complex with adenine. 
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Fig. 4.17 Predictions and experimental conformations for the 
neuraminidase complexes with sialic acid, 2,3-dehydro-2-deoxy-n-acetyl 
neuraminic acid and 4-(acetylamino)-3-hydroxy-5-nitrobenzoic acid. 
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Fig. 4.18 Prediction and experimental conformation for the flavodoxin 
complex with flavin mononucleotide. 
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Fig. 4.19 Prediction and experimental conformation for the streptavidin 
complexes with 2-((4'-hydroxyphenil)-azo)benzoate (HABA), 3'-methyl- 
HABA, 3', 5'-dimethyl-HABA and naphthyl-HABA. 
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Fig. 4.20 Predictions and experimental conformations for the D-ribose- 
binding protein complex with beta-d-ribose. 
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Fig. 4.21 Predictions and experimental conformations for the trypsin 
complexes with inhibitors benzamidine aminomethylcyclohexane 4- 
fluorobenzylamine 4-phenylbutylamine 2-phenylethylamine 3- 
phenyipropylamine tranylcypromine., 
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Fig. 4.22 Predictions and experimental conformations for the dihydrofolate 
reductase complexes with methotrexate 5,10-dideazatetrahydrofolate 5- 
deazafofate folate folinic acid. 
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Fig. 4.23 Prediction and experimental conformation for the tyrosine kinase 
of FGF receptor complex with Sugen inhibitor. 
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4.3.2 Optimisation of discrimination potential 

The majority of the optimisations converged to u=(0.79 1.46 0.44 0.9 1.48). This 

combination of weights more than doubled the number of correctly recognised 
ligands, confirming the success of the optimisation. We also tested if any of the 

terms is superfluous by attempting optimisations with one of the terms excluded. 
In all such runs we found that the optimised parameter sets showed considerably 

poorer recognition ability measured by the number of native ligands placed below 

all false positives. Thus the minimum found is meaningful and there is no 

redundancy in the set of terms used. As the values of weights show, the 

hydrophobic and hydrogen bonding contributions are more important than we 

assumed initially, suggesting the cost of one ideal hydrogen bond is almost 4 

kcal/mol and the surface tension is close to 45 cal/mol/A2. There was a more than 

two-fold decrease in the weighting of the solvation electrostatics contribution 

while the distance-dependent term achieved considerable weight in the optimised 

function. This possibly indicates that the solute-solvent part of the solvation 

electrostatics might be overestimated when calculated with inner dielectric 

constant c=4. The resulting distributions of the discrimination potential for all 

ligands and receptors are shown on Fig. 4.24 

Interestingly, in most cases optimised potential would assign to the native 

ligands the energy values close to -30 kcal/mol. Though we did not directly 

attempt to obtain an absolute measure of binding affinity, this observation suggests 

that with a constant of around 25 kcal/mol added, the optimised potential might be 

used as an approximation of binding free energy. 

0% 
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Fig. 4.24 Distributions of the discrimination potential for all ligands and 
receptors plotted versus ligand size. The native ligands are marked with 
their code-names. 
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4.4 Discussion 

4.4.1 Docking protocol 

To use the docking protocol developed previously (Chapter 3) in ligand (drug) 

discovery, a number of improvements were necessary. Ligand discovery involves 

scanning a large database of compounds, and identification of those that dock best 

with a particular receptor, i. e. might potentially have high docking affinity. 

Because a large number of compounds have to be docked, the docking procedure 

should be very fast. Also, since one has to be able to evaluate the resulting 

structures and identify the compounds, which have the highest binding affinity, the 

precision of the energy evaluation becomes more important. The largest 

modification introduced was the replacement of the explicit receptor molecule in 

the simulation with the effective potentials represented on a grid. In the old 

approach, to evaluate the energy of interaction of any particular atom of the 

ligand, contributions from each of the hundreds of atoms in the receptor had to be 

evaluated and added up. Now, the effective potentials of Van der Waals, 

electrostatic and hydrogen bond interactions with the receptor are pre-calculated 

on a grid only once before the simulation, and the values from the grid are later 

used to quickly evaluate the interaction energy. As a result, the simulations run 50- 

100 times faster. There is also another important advantage of the grid potential - 
it allows us to introduce certain modifications of the potentials easily. The Van der 

Waals potential is extremely rigid, which means that even small deviations of the 

structure can result in large energy penalties. Such behaviour deteriorates the 

efficiency of the minimisation procedure and the accuracy of conformation 

ranking. Using the grid representation, we can improve it by trimming the high 

energy peaks at a certain cut-off level and subsequently smoothing the potential 

surface. Another modification, which was introduced, is the expansion of low- 
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energy areas ("etching"). This technique implicitly accounts for the flexibility of 
the receptor, effectively providing some extra room for the ligand. 

4.4.2 Discrimination potential 

Binding potential functions used in the database scanning to discriminate high 

affinity ligands involve a number of rather arbitrary parameters due to the complex 

nature of ligand-receptor interactions. We propose and test a protocol for the 

parameter optimisation using a set of known ligand-receptor complexes. We use 

exhaustive cross-docking of all ligands and receptors in the set to provide a large 

number of negative (non-binding) test cases, while previously the potentials were 

only adjusted against sets of the positive (binding) ligand-receptor pairs. Our 

results show that the performance of the potential function can be substantially 
improved through such optimisation. The optimised parameter set more than 
doubled the number of native ligand-receptor pairs recognised by the procedure as 
high-affinity complexes. Geometric fit alone is clearly not sufficient to distinguish 

the native complexes. The change in relative weights of the various . terms during 

the optimisation underscores the importance of the. specific interactions such as 
hydrophobicity and hydrogen bonding. However, some complexes remain 

unrecognised. Possible further improvement might involve a more sophisticated 
hydrophobic potential with differentiation between aliphatic and aromatic group 

contributions, as well as a more selective hydrogen bonding potential, with better 
4' 1 

angular dependence and group-specific hydrogen-bonding energies. 
The next step in the application of the developed techniques is a large-scale 
database scanning utilising the improved parameters with a subsequent 

experimental test of the compounds found.: 

r 
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5. Ligand discovery by virtual database screening: novel 
ligands of FGFR. 

5.1 Introduction 

, 
5.1.1 Chemical database screening 

One of the most important applications of docking simulations is the discovery 

of drug leads, i. e. novel compounds that bind to a particular receptor. Previously, 

computational methods for the identification of the potential new ligands were 
limited to chemical similarity scanning. Such methods require the knowledge of 

other ligands beforehand, can hardly identify any substantially novel compounds 

and dismiss the essentially three-dimensional character of the protein-ligand 
interactions. As the techniques of protein structure determination mature, the 

three-dimensional structures of the receptors and enzymes implicated in many 

pathological processes become readily accessible and can be used to search large 

databases of commercially or synthetically available chemical compounds using 

novel docking techniques. A number of attempts at structure-based drug discovery 

have been reported in the past 5 years. Shoichet at al. [92] scanned the Fine 

Chemicals Directory of 55,000 compounds for the inhibitors of thymidylate 

synthase using program DOCK [93], which identified 600 compounds from which 
25 candidates were selected manually. 3 of them have shown some activity, albeit 

'rather weak (inhibition constant in the high micromolar range). Crystal structure 

was solved for one of the complexes and the binding mode was found to be 

different from the one predicted by DOCK, making this work only a partial 

success. More recently, Hoffman et al. [94] reported successful identification of 
low-micromolar inducer of the conformational change in the influenza virus 
hemagglutinin using an improved DOCK program to scan approximately 150,000 

0. 
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compounds. However, no experimental confirmation of the structure of the 

complex was attempted. 
The application of docking to the database screening imposes new requirements 

on the docking procedure. Since the number of compounds to be docked can be 

very large, the speed of the docking routine becomes more important than in the 

case where only a single ligand is considered. Accurate evaluation of the binding 

affinity becomes crucial for the selection of a few candidates to be tested 

experimentally out of many thousands. 

5.1.2 Tyrosine kinases and fibroblast growth factor receptor 

Tyrosine kinases (TKs) are important components of signalling pathways 

controlling cell proliferation and differentiation. Many cell membrane receptors 

contain tyrosine kinase domains in their intracellular part which self- or cross- 

phosphorylate in response to the binding of various factors to the extracellular 

part. Fibroblast Growth Factor Receptor (FGFR) plays an important role in 

embryonic development, angiogenesis, wound healing and malignant 
transformation [95]. Improper expression or activation of this receptor has been 

implicated in several skeletal disorders and angiogenic pathologies (e. g. [96]). 

Amplification and overexpression of FGFR has been detected in a number of 

cancers (e. g. [97]). The structure of the TK domain of FGFR was solved by X-ray 

crystallography [98]. 

Since the initial discovery of the TKs and their role in signal transduction and 

growth regulation [99,100], investigators soon began looking for selective 
inhibitors of various TKs, and the area is a subject of intense research (reviewed in 

[101]). 

Here we apply previously developed (Chapters 3 and 4) docking and ligand 

discrimination techniques to the specific case of database screening for the 

inhibitors of the tyrosine kinase of the fibroblast growth factor receptor. 
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5.2 Materials and Methods 

5.2.1 Drug-likeness filtering 

Apart from the binding affinity and specificity, there are a number of other 
requirements for drug candidates, such as bioavailability and low toxicity. 
Bioavailability is the capability of the drug to attain its target in the organism after 
being administered. The drug typically has to cross several barriers in the 

organism, especially in the case of oral administration, which is generally the 

preferred mode. A number of empirical criteria have been established [102]. In our 

pre-selection algorithm we utilised the following rules: 

-molecular weight of the selected compounds was between 100 and 500 Dalton, 

-the number of hydrogen bond acceptors did not exceed 10, 

-the number of hydrogen bond donors did not exceed 5. 
Very small ligands rarely exhibit sufficient specificity because of the very limited 

number of interactions with the receptor. Large compounds* are more likely to 
have delivery problems and have limited optimisation potential. Excessive 

hydrogen-bonding capacity interferes with successful membrane crossing, since 

such compounds often have a very unfavourable partitioning coefficient between 

water and lipids. 

Water solubility is essential for most drugs and in the case of particular study it 

was important to make the experimental in vitro tests possible. Insoluble 

compounds, often display otherwise good binding properties because their 

hydrophobicity promotes complexation. Thus, screening protocol generally 
favours such compounds and it is important to filter them out if possible. We used 

an estimate of solvation energy, as a solubility criterion in one of the filters. 

Solvation energy was calculated as a sum of the electrostatic solvation energy 

calculated, by boundary element method with an internal dielectric constant of 8, 
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and of surface tension with the constant of 8.23 calmole/A. Compounds with the 
.ý 

'. 

values above 1.8 kcal/mole were discarded. The threshold represents a crude 

estimate of the entropic energy gain of 6*(112)kBT = 3*0.6 kcalmole when 6 

degrees of freedom (three translations and three rotations ) are added for each 

molecule upon its dissolution. 

5.2.2 Docking 

If the ligand satisfied the pre-screening criteria, it was subjected to the docking 

procedure. The protocol used in this work was a modified version of the protocol 

developed in the previous stage of this project (Chapter 4). To reduce further the 

time required for the docking of each individual compound, the single Monte- 

Carlo simulation was replaced by a "map-annealing" procedure described below. 

The basic idea of map annealing is to dock the ligand initially into a very 

simplified and smoothed image of the binding site and then gradually adjust the 

solutions to the more and more exact versions of it. Such a protocol should quickly 

find a rough solution and then would only need to introduce minor improvements 

as the approximation of the receptor potential becomes more exact. Practically, 

several sub-optimal solutions have to be kept since in many cases best low- 

resolution conformation is not in the vicinity of the actual answer. Fortunately, the 

ICM conformational stack (see sec. 2.1.1) is ideally suited for keeping such a set 

of conformations. Practically, the protocol consisted of 

- preparation of 3 sets of potential maps, the final set and two other sets 

smoothened by iterative application of the formula P'+lj, k, i=((P'j. l, ka + Pj+l, k, t + 

P J, k+t, I +P jx. l, i +Pj, ka+1 +Pj, k, l. l)/6 +PJ, k, l)/2, which is a simple discrete 

a 
implementation of spatial averaging of the potentials. The most approximate 

set of maps was produced after 20 iterations and the intermediate after 5. 

- Putative ligand is subjected to a short Monte-Carlo run without any presence 

of the receptor. Up, to 50 low energy conformations are accumulated in the 
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stack during the run. To ensure diversity in this set only the conformations 

with torsion angular RMSD higher then 45° are retained. All conformers are 
then translated into an arbitrarily chosen initial position in the binding 

pocket. 

- Each conformer in the stack is duplicated and rotated 180° around its short 

axis to facilitate the sampling. 

- Each conformer is subjected to local minimisation in the set 3 of the potential 

maps. The stack is sorted according to the approximate interaction energy 

and the best conformer is subjected to a Monte-Carlo minimisation. During 

the MC run, some of the new conformations may get stored in the stack or 

replace old ones according to the stack maturation protocol (described in sec. 
2.1.1). If no new or better conformation is found within 10 MC steps, the 

procedure switches to another stack conformation (stack jump). Stack jump 

allows Monte-Carlo improvement of conformers other than the best one. 

- Same as above, but with the potential maps of set 2. 

- Same as above, but with the potential maps of set 1. 

- Best conformer is taken as the final solution. To produce a model without 

significant steric clash, the ligand is placed into rigid full-atom model of the 

receptor and subjected to local energy minimisation with weak harmonic 

restraints to the original solution. 
The discrimination potential was then calculated for the final docking solution to 

make a decision if the given compound should be stored or discarded. 

5.2.3 Discrimination potential 

The potential function used was derived as described in chapter 4 to discriminate 

putative high-affinity ligands. It included electrostatic, hydrogen-bonding, 

hydrophobic, Van der Waals and entropic contributions. To establish the threshold 

of the potential, a preliminary scan of an arbitrary subset of the database ( 3000 
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compounds ) was used, as well as an evaluation of the potential for a known 

inhibitor with solved 3D structure of the complex, SU4984. The latter gave the 

discrimination potential value of -26.1 . Some of the compounds in the subset 

gave values of the potential as low as -30.0 (see Fig. 5.1). To retain candidates 

with an affinity similar to the known compound and to keep a reasonable number 

of compounds, the threshold of -25.5 was chosen. 

5.2.4 Experimental tests 

To confirm the ability of the developed scanning protocol to identify binding 

ligands we have tested the binding ability of the compounds from the final 

selection list in a direct experimental assay. The assay was based on the 

autophosphorylation ability of the FGFR TK domain. Free FGFR TK in presence 

of ATP quickly phosphorylates a number of tyrosine residues on its surface, 

changing considerably the total electric charge of the molecule. The presence of a 

ligand bound in the active site inhibits the enzymatic activity. Thus, depending on 

the binding affinity of the ligand, incubation of FGFR TK with ligand and ATP 

results in varied degrees of the phosphorylation. The latter can be subsequently 

measured by gel electrophoresis which is sensitive to the difference in the electric 

charge of the phosphorylated and unphosphorylated protein. 

FGFR TK was incubated with 500µM ATP and 500µM putative ligand solution. 
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Fig. 5.1 The histogram for the distribution of the discrimination potential 
values for the entire database 
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5.3 Results 

5.3.1 Virtual Screening 

153000 compounds in the ACD library were scanned. About 25% of the 

compounds were discarded by the simple drug-likeness criteria. The main 

screening procedure selected and stored predictions of the bound conformation for 

each of 3821 ligands which had the discrimination potential below the cutoff of 

-25.5 . Calculations were performed on a 20-CPU symmetric multiprocessing 

machine, SGI Onyx R10000. To accelerate scanning, a simple "database striping" 

parallelisation technique was used, dividing the database into 15 subsets of 

approximately 10,000 compounds each, which were scanned in parallel on 15 

CPUs, taking about 240 hours to complete the scan. The histogram for the 

distribution of the discrimination potential for the entire database is plotted on Fig. 

5.1. To illustrate the docking ability of the procedure, 100 docked ligands are 

shown inside the binding pocket of the receptor on fig. 5.2. 

The bound conformations of selected compounds were than used in the further 

filtering with the hydrogen bond formation criterion. Examination of several 

known structures of the FGFR tyrosine kinase complexes has shown that 

formation of two hydrogen bonds might be particularly important for ligand 

binding, one to the carboxyl oxygen of glutamic acid residue 562 and another to 

the amido hydrogen of alanine residue 564. Only ligands which had a polar 

hydrogen atom within 2.5A from the carboxyl oxygen and a hydrogen bond 

acceptor atom within the same cutoff distance from the amido hydrogen were 

retained. This simple hydrogen-bond formation criterion yielded 185 compounds. 

We calculated an estimate of the solvation energy for all of them and dismissed a 

further 23 compounds with the value above -1.8 kcal/mole as described above. 

The final list contained 162 compounds. 

ýý= 95 



5.3.2 Experimental tests 

Out of 162 potential ligands selected in the last stages of virtual screening, from 

practical considerations we purchased and tested 53 compounds available from 

Maybridge Chemical Company, Sigma-Aldrich library of rare compounds and 
Sigma Chemical Company catalogue. Some manufacturers were difficult to locate 

and contact or only had 1 or 2 compounds on our list, several compounds were 
known to be highly poisonous and a considerable number of compounds were 

either discontinued or not in stock. Only 4 of the purchased compounds had poor 

solubility, which confirmed the adequacy of the solvation energy prediction 
filtering. 49 compounds (see Table 5.1) were tested in the phosphorylation 
inhibition assay, and 5 of them showed activity. The gel electrophoresis results can 
be seen on Fig. 5.3 (a-c). Predicted bound conformations for the active compounds 

are shown on Fig. 5.4 (a-e). 
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Table 5.1 Compounds selected for the experimental inhibition activity tests. 
Some of the compounds listed were not tested for the reasons marked in the "comments" column. 

i 

N Index in 
the 
database 

Manufacturer and catalogue 
number 

Binding 
score 

Comments 

1 83384 Maybridge btb_05310 -27.39 
2 83653 Maybridge btb_05838 -27.61 
3 71589 Maybridge btb_06100 -25.83 
4. 71588 Maybridge btb_06212 -25.61 
5 84074 Maybridge btb_07226 -26.31 
6 74513 Maybridge btb_08002 -26.79 
7 76799 Maybridge btb_08046 -26.11 
8 123369 Maybridge btb_08301 -25.90 
9- 47013 Maybridge btb_08390 -26.672 
10 67642 Maybridge btb_09751 -30.07 Not received 
11 124904 Maybridge btb_09809 -28.39 
12 81504 Maybridge btb_10623 -25.97 

. 13 81507 Maybridge btb_10631 -25.73 Active 
14 81485 Maybridge btb_10632 

-25.93 

. 15 84253 Maybridge btbt_00050 
-26.21. 

16 84500 Maybridge cd_00745 -26.35 
17 64660 Maybridge cd_01222 -27.98 
18 85356 Maybridge cd_02746 ' -26.31 
19 85919 Maybridge cd_04622 -27.06 
20 86951 Maybridge cd_08948 -25.54 
21 87093 Maybridge cd_09631 -26.69 Active 

22 72307 Maybridge cd_10166 -25,79 

ý23 87424 Maybridge cd-12001 -26.58 Not received 
24 87500 Maybridge dfp_00333 -27.08 Not soluble 
25 124257 Maybridge gk_02307 -26.79 
26 81606 Maybridge han_00440 -30.05 Not received 
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27 150767 Maybridge jfd_00130 -26.13 
28 73181 Maybridge km 03091 -25.52 Not received 
29 91947 Maybridge km_04759 0 -25.72 
30 65216 Maybridge km_06760 -27.97 
31 19773 Maybridge km_06915 -26.56 Active 
32 124927 Maybridge km_07674 -28.19 
33 146366 Maybridge km_07869 -27.45 
34 68249 Maybridge nrb_01468 -25.98 
35 107222 Maybridge nrb_04029 -28.24 
36 13894 Maybridge nrb_04902 -28.44 
37 148120 Maybridge rjc 00213 -26.43 
38 72981 Maybridge rjf_01361 -25.98 
39 92029 Maybridge sew 04081 -27.10 Active 

40 81403 Maybridge spb_01635 -28.65 
41 123086 Maybridge spb_02037 -25.90 
42 47294 Maybridge spb_03282 -25.65 
43 145929 Maybridge spb_05775 -26.57 
44 151416 Maybridge spb_06122 -25.61 
45 146817 Maybridge spb_06890 -27.40 
46 34017 Sigma A7783 2 -azido-2 - 

deoxycytidine 
-25.53 Not received 

47 11177 Sigma H8502 3-hydroxytyramine 

hydrochloride 
-25.93 

48 6452 Sigma N7389 3-nitro-l-tyrosine -25.61 Not soluble 
49 36052 Sigma A5525 5-amino-5- 

deoxythymidine 
-32.13 

50 51533 Sigma E9386 5-ethyl-2 =deoxyuridine -26.28 
51 4538 Sigma P7644 9-phenyl-2,3,7- 

trihydroxy-6-fluorone 
-26.48 Not soluble 

52 94060 Sigma A1437 altertoxin i -26.96 Poisonous 
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53 94091 Sigma A1311 austdiol -27.05 Poisonous 

54 15669 Sigma C6007 chrysarobin -27.16 
55 141111 Sigma L7512 lacmoid -25.99 Active 

56 9613 Sigma A0156 n-(4-aminobutyl)-n- 

ethyliso1t minol 
-30.09 

57 44825 Sigma A1661 n-(6-aminohexyl)-n- 

ethylisoluminol 
-26.02 

58 137451 Salor s16,362-7 -29.67 
59 127340 Salor s2,949-2 -28.15 
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Fig. 5.2 A random sample of 100 ligands docked by the screening 
procedure in the active site of FGFR-TK. 
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Fig. 5.3 (a) The gel electrophoresis results of experimental tests for 
inhibition of kinase activity of FGFR-TK by 49 compounds selected in 
virtual database screen. Compounds 1 through 25 according to the index 
in Table 5.2 
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Fig. 5.3 (b) The gel electrophoresis results of experimental tests for 
inhibition of kinase activity of FGFR-TK by 49 compounds selected in 
virtual database screen. Compounds 27 through 50,56 and 57 according to 
the index in Table 5.2 
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Fig. 5.3 (c) The gel electrophoresis results of experimental tests for 
inhibition of kinase activity of FGFR-TK by 49 compounds selected in 
virtual database screen. Compounds 54,55,63,65 according to the index in 
Table 5.2. Also shown are the results of dilution test of compound # 13. The 
decline of the activity at lower inhibitor concentration can be clearly seen, 
with a median at 1: 4 dilution. 
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Fig. 5.4 (a) Predicted structure of the complex FGFR TK - compound 
Maybridge BTB10631 (number 13). Ligand is shown in bold lines, while the 
receptor is in gray. Only heavy atoms of the receptor are shown, with the 
exception of the hydrogen forming hydrogen bond to the ligand. Residues 
L484, V492, A512,1545, L630 create the hydrophobic pocket filled by the 
ligand. Two hydrogen bonds are formed upon complexation, one between 
the amid hydrogen of residue A564 and the nitrogen in the 6-membered 
heterocycle of the ligand, and the second between the carboxyl oxygen of 
residue Y563 and the lactam hydrogen in the same heterocycle. The 
stereo image pair is shown. 
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Fig 5.4 (b), (c) Predicted structure of the complexes FGFR TK - compound 
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Fig 5.4 (d), (e) Predicted structure of the complexes FGFR TK - compound 
Maybridge SEW04081 and Sigma L7512 lacmoid (number 39 and 55). 
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5.4 Discussion 

Automated identification of high-affinity ligands in a large database of 

.o,, compounds, such as the Available Chemicals Directory (ACD), can potentially 
become a valuable tool in such applications as drug discovery. 

Since database scanning involves docking of a very large number of ligands, of 
the order of 100000 and more, the acceleration 

_of 
the docking protocol is 

extremely desirable. The introduction of the "grid annealing" allowed for more 

than two-fold reduction in the average time required for the docking of a single 

compound. This technique involves docking into progressively more precise and 

... bb rigid grid potentials, thus finding quickly the approximate position of the ligand in 

strongly smoothed potentials which is then refined with the finer versions of the 

potentials. 

A number of rules to select drug-like compounds were also implemented in the 

scanning procedure, including such criteria as size, number of hydrogen bond 

donors and acceptors and solubility. 

f As a target receptor we have chosen Fibroblast Growth Factor Receptor (FGF-R) 

Tyrosine Kinase (TK). This receptor plays an important role in a number of 

, -cancers and other diseases, and the collaboration with the group of Steve Hubbard 

in the Skirball Institute provided us an opportunity to test the ' predictions 

experimentally. Dr. Hubbard also kindly provided the X-ray structure of FGF-R 

TK. 

The scanning of 150,000 compounds identified -4000 ligands with a favourable 

binding score and other features. From the complexes of several known inhibitors 

of FGF-R TK we could deduce the importance of the formation of two specific 

hydrogen bonds for the strong binding. This criteria was used as a further filter, 

which yielded -150 ligands. We were pleasantly surprised to find out that about 

0. 
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10% of them were known inhibitors of TK or closely related compounds. 
Successful identification of these ligands confirmed that our scanning procedure 
indeed distinguishes ligands from the very large number of other compounds. 5 

out of 49 experimentally tested novel ligand candidates showed inhibition activity. 
Predicted bound conformations for these ligands showed a number of favourable 

interactions. 

Still, the number of false positives was quite high, reflecting the imperfections of 
the binding discrimination potential. Ways to the further improvement in 

discrimination can be suggested by in-depth analysis of the compounds 

erroneously predicted as ligands. 

Lead discovery is the first step in the development of potent inhibitors. 

Improvement of the binding affinity of the discovered ligands can be achieved 

through chemical modifications, and docking simulations for the ligand 

derivatives can be used to suggest possible enhancements. 

I 
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6. Conclusions 

6.1 Overview 

The research project described in this thesis involved three main stages covered 
in Chapters 3,4 and 5. The first stage was primarily focused on the full atom 
docking predictions for individual ligands. The use of internal co-ordinate 

mechanics made'feasible the simulations involving flexibility of the receptor side- 

chains as well as the flexible ligand and achieved thorough sampling of the 

conformational space of the system. A convenient measure of the solution 

accuracy was developed. 

The second stage involved the implementation and improvement of the grid 

potential docking methodology as well as development of the discrimination 

potential which was capable of identifying of the ligands binding to a particular 

receptor in a large pool of compounds. Grid representation of the receptor was 

essential to make the docking procedure fast enough for docking of a large number 

of putative ligands. Such representation also facilitated modifications of the 

potentials which further accelerate the convergence of the docking simulations and 

allow for more accurate solutions. 

In third stage the techniques developed were further improved and applied to the 

real case of inhibitor discovery for fibroblast growth factor receptor tyrosine 

kinase. FGFR-TK is an important target for anti-cancer drugs. 

6.2 Summary of Results 
., 

6.2.1 Flexible docking of individual ligands in full-atom representation 

Using global minimisation of the free energy of the complex in the internal 

co-ordinate space eight protein-ligand complexes were simulated with flexible 
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ligand and receptor side-chains. Monte-Carlo minimisation procedure used two 
types of random moves, a pseudo Brownian positional move and a 
Biased-Probability multi-torsion move, each accompanied by full local energy 
minimisation. The best docking solutions were further ranked according to the 
interaction energy which included intramolecular deformation energies of both 

receptor and ligand, the interaction energy, surface tension, 'side-chain entropic 

contribution and an electrostatic term evaluated as a boundary element solution of 
the Poisson equation with the molecular surface as a dielectric boundary. The 

geometrical accuracy of the docking solutions ranged from 30% to 70% according 
to the relative displacement error measure at a 1.5A scale. 

6.2.2 Grid docking and ligand discrimination 

A fast and flexible docking protocol utilising the grid potential representation of 
the receptor molecule was developed. A sophisticated binding discrimination 

potential was implemented, which included all major contributions to the binding 

energy, such as electrostatic energy, hydrophobicity, hydrogen bonding, softened 
Van der Waals and entropic contributions. The docking protocol was tested on a 
set of 51 known structures of complexes for 23 receptor molecules. 35 predicted 

structures had a correct overall binding mode with RMSD of 3A or less from the 

native structure and 26 structures were closer than 2A with most of the details of 
binding conserved. Exhaustive cross-docking of 23 receptors and 63 ligand 

compounds produced putative complex structures for all ligand-receptor 

combinations. Generated complex structures were used to optimise the 
discrimination potential for identification of the native pairs. Optimised potential 

successively identified native ligands for 13 receptors and in all but two cases at 
least one native ligand was within the first 3 selected compounds. 

0. 
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6.2.3 Database screening and discovery of novel inhibitors of FGFR-TK 

Large database of the commercially available compounds containing over 
150000 was screened using the discrimination potential optimised for selectivity 

on a diverse set of protein-ligand complexes from PDB. Docking protocol 

produced putative complex structures of all database compounds and FGFR-TK 

domain, an important target in anti-cancer drug design. 49 putative ligands picked 

by the screening protocol were purchased and experimentally tested. Five of them 

showed detectable activity and four had sufficient affinity to compete with natural 

ligand ATP. At least two ligands belong to entirely novel families of tyrosine 

kinase inhibitors. 

6.3 Future work 

The results obtained in this work suggest promising further research in several 

directions. One important development would be the addition of the lead 

optimisation protocol which would attempt to evaluate possible chemical 

modifications of the discovered ligands with a view to improving the binding. 

Such a protocol would involve a combinatorial search of the derivatives of the 

lead using a library of chemical groups which can be attached to the lead at a 

number of positions in various combinations. All the derivatives constructed can 

be docked and evaluated by the procedures already developed. Such a procedure 

can then be used to improve the binding affinity of the FGFR-TK inhibitors that 

we have discovered. 

As the screening protocol is currently rather time-consuming, further 

acceleration of the docking routine is also desirable. 

Further improvement of the docking and discrimination potentials is another 

important direction, as the selectivity is still rather low - only 1 in 10 compounds 

selected worked as inhibitors. One possibility for the improvement of the potential 

111 



is the better treatment of hydrogen bonds. In its current form the directionality of 
hydrogen bonding is rather poor, especially in the case of the acceptor atoms of 

the ligand, where the geometry of the lone electron pairs is completely ignored. 

This problem can be circumvented by the introduction of the additional centres 

attached to the acceptor atoms and centred along the directions of the lone pairs. 
The hydrophobic potential currently treats all atoms only as totally hydrophobic or 
hydrophilic. Introduction of intermediate states may result in better treatment of 

such groups as aromatic rings, which are less hydrophobic than aliphatic groups. 

These enhancements should help the scanning procedure to identify reliably the 

most potent ligands and, ultimately, novel drugs. 
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