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Abstract 

This thesis explores the morphology, dynamics and causes of landslides and 

debris flows in mountainous regions of northern Iceland. The primary objectives 

are to define the initiation and evolution of Icelandic landslides and debris flows, 

and to understand the link between ground-ice thaw and rapid mass movements.  

Slopes are predicted to react more intensely to global warming, so improving our 

knowledge of rapid mass movements in cold environments, which are even more 

sensitive to climate change, is crucial, as they could pose at risk local population 

in Iceland and other mountainous periglacial areas. 

I first perform a detailed study of debris flows in north-western Iceland, 

distinguishing through quantitative geomorphological methods the different 

mechanisms of debris-flow initiation and the associated geomorphic features. 

The approach of this study is easily applicable to similar settings, and its results 

could help in anticipating new potentially destructive events. Secondly, I describe 

and quantify the morphometric characteristics of two landslides in northern 

Iceland, whose source materials comprised ground ice-cemented deposits. This 

study reveals different dynamic landslide processes and the crucial role of 

thawing ground ice in landslide emplacement. I then analyse meteorological and 

seismic data near these two landslides. I define and distinguish precipitation, 

seismic activity and permafrost degradation as the preparatory and triggering 

factors for the failures.  Finally, through a geomorphic approach I analyse 

molards, conical mounds of debris that I found in both landslides deposits. I show 

conclusive evidence that molards form from thawing of blocks of ice-rich 

sediments that degrade into cones of debris. I demonstrate that molards are the 

‘fingerprint” of permafrost degradation, and their different morphology and 
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distribution can reveal different types of landslide processes in periglacial 

terrains.  

This thesis widens our knowledge of the conditions and processes controlling 

rapid mass movements in cold environments, which is crucial in the perspective 

of hazard assessment, and opens up new avenues for the study of potentially 

hazardous geomorphic responses of cold landscapes to changing climate 

conditions. 
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Chapter 1 . Introduction 

1.1  Focusses and aims  

The objective of this work is to study landslides and debris flows occurring in 

mountain regions in northern Iceland. The term landslide is widely used to 

indicate different types of movement of a mass of rock, debris, or earth down a 

slope (Varnes, 1978). Debris flows are a particular type of landslide and are 

commonly defined as “poorly sorted sediment agitated and saturated with water, 

surge down slopes in response to gravitational attraction” (Iverson, 1997).  

Rapid mass movements such as debris flows (Figure 1.1) pose a potential risk 

to the local population in Iceland (Decaulne, 2005). The first focus of this thesis 

is to explore the geomorphological processes that characterise the release of 

debris flows, their impact on the Icelandic landscape and the potential risk that 

they pose to the local communities.  

 

Figure 1.1. Oblique aerial view of the slope above the town of Ísafjörður (north-western Iceland) affected 

by debris flows. 
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A second focus of this thesis is to understand the possible connections 

between the thawing of shallow ground ice in mountainous areas of Iceland with 

discontinuous permafrost and the occurrence of landslides. Ground ice was found 

in the deposits of landslides in the northern regions of the country (Figure 1.2) 

immediately after they had been deposited. This can indicate that permafrost is 

present in these areas, and it is degrading. Although models of permafrost extent 

showed it was present in the central-northern regions of the island (Etzelmüller et 

al., 2007), little information exists on its state and on the possible consequences 

on the Icelandic landscape due to its degradation. Therefore, this thesis aims to 

understand the geomorphological impact of landslides in permafrost terrains, 

their origin and evolution, with the goal of increasing our knowledge on this type 

of potentially hazardous phenomena in general. 

I developed the thesis with the intent of: 

i) defining the release processes of debris flows in north-western Iceland and 

their geomorphological and hazardous impact (Chapter 3); 

ii) testing whether the morphological signature of the landslides in northern 

Iceland where ground ice was found can be used to prove the presence of 

permafrost and its degrading state, and to reconstruct the dynamics of the 

landslides and to evaluate their potential hazard (Chapter 4 and 6);  

iii) identifying the exogenous and endogenous factors that determined the 

release of these landslide, including permafrost degradation (Chapter 5). 
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Figure 1.2. Oblique view of the Árnesfjall landslide (north-western Iceland), where ground ice was found 

in the failure deposits after its occurrence. 

 

1.2 Methodology and technical approach 

Geomorphology is the science concerned with the study of landforms and the 

processes that create and modify them. I have analysed debris flows and 

landslides that occurred in recent years in northern regions of Iceland using a 

geomorphological approach. This has allowed me to analyse the geomorphic 

characteristics of debris flows and landslides in Iceland, and to reconstruct their 

origin and evolution.  

In order to accomplish the objectives of this thesis, I used fieldwork and remote 

sensing. The fieldwork involved field observations and measurements, and used 

high accuracy differential Global Positioning System (GPS) and (where possible) 

ground penetrating RADAR. Remote sensing comprised two types of data. The 

first was acquired in the field through the Structure from Motion photogrammetric 
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technique, which allowed the production of high resolution topographic data and 

orthoimages. The second type of data was airborne laser altimetry and aerial 

photography. These approaches were supported by complementary analysis, 

such as weather data analysis. Both fieldwork and remotely-sensed data allowed 

the accurate and detailed quantification of the morphological signatures left by 

debris-flows and landslides. This allowed me to measure the magnitude of the 

mass-movement phenomena, the characterisation of their features and 

structures to trace back to their emplacement processes and evolution, and, 

finally, to the understanding of their causes, dynamics and their geomorphological 

and hazardous significance. 

 

1.3 Published or submitted work  

Parts of this thesis have been published or are in review in international peer-

reviewed journals (Table 1.1). Chapter 3 is in review in the international journal 

Earth Surface Processes and Landforms. Chapter 5 includes parts of a 

manuscript which I am second author of and that has been published on the 

international journal Science of the Total Environment. Chapter 6 is in review on 

the international journal Earth and Planetary Science Letters. These publications 

are detailed in Table 1.1, which also shows the contribution of the co-authors to 

each of the papers. The co-authors reported in Table 1.1 are in addition to my 

supervisors Susan J. Conway, Matthew R. Balme, Þorsteinn Sæmundsson, Colm 

Jordan, John Hillier and Tom Argles. 

Except for Chapter 5, the content of the manuscripts remains essentially 

unchanged from the version in review. Some minor changes have been made to 

avoid repetition and to maintain consistency throughout the thesis. The first 
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person plural in the manuscripts has been changed to the first person singular 

where appropriate. Numbering of figures and tables has also been changed. In 

Chapter 5, parts of the manuscript have been deleted to avoid redundancy of the 

content of other chapters. Finally, parts of Chapter 5 were expanded for 

completeness and coherency with the rest of the thesis. A summary of the 

changes made to each manuscript is given at the start of each chapter. 

 

Table 1.1 - Summary of published work contained in the thesis and contribution of co-authors. 

 

 

1.4  Thesis structure 

Chapter 2 presents a review of the state of the art on rapid mass movements 

in cold environments, with a focus on these processes in Iceland. It provides also 

an account of the up-to-date knowledge on the state of permafrost in the island, 

and a consideration of the hazard presented by rapid mass movements in cold 

environments. Chapter 3 presents a quantitative geomorphological study of 

debris flows in north-western Iceland based on the comparison between two 

Chapter Manuscript title Co-authors Journal Status

Chapter 3 - Debris-

flow release 

processes revealed 

through the analysis 

of multi-temporal 

LiDAR datasets in 

north-western 

Iceland

Debris-flow release 

processes revealed 

through the analysis of 

multi-temporal LiDAR 

datasets in north-

western Iceland

— —

C.M.=100%

Earth Surface 

Processes and 

Landforms

Reviewed and 

awaiting minor 

corrections

Chapter 5 - The 

preparatory and 

triggering factors of 

the Móafellshyrna 

and Árnesfjall 

landslides in 

northern Iceland

The triggering factors 

of the Móafellshyrna 

debris slide in northern 

Iceland: Intense 

precipitation, 

earthquake activity and 

thawing of mountain 

permafrost

Jón Kristinn 

Helgason, Halldór 

G. Pétursson

J.K.H. provided the 

data, contributed to 

their manipulation 

and interpretation. 

H.G.P. contributed 

to finalise the 

manuscript.

C.M.=85%, 

J.K.H. =15%, 

H.G.P.=<1%

Science of the 

Total 

Environment, 621, 

1163-1175 

(2018)

Published

Chapter 6 - Molards 

as a marker of 

permafrost 

degradation and 

landslide processes

Molards as a marker 

of permafrost 

degradation and 

landslide processes

Jón Kristinn 

Helgason, Frances 

E.G. Butcher

J.K.H. contributed 

to data collection 

and manuscript 

preparation. 

F.E.G.B. provided 

the data for Mars 

and contributed to 

manuscript 

preparation

C.M.=90%, 

J.K.H. =5%, 

F.E.G.B.=5%

Earth and 

Planetary Science 

Letters

Moderate 

corrections after 

review

Contribution (%)
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datasets of high resolution (1 m/pixel) airborne laser altimeter data. This study 

allowed me to identify the release mechanisms of debris flows in the area, and to 

analyse the implications for their potential mobility and hazard, resulted in a paper 

submitted to Earth Surface Processes and Landforms (and is in review at the time 

of writing of this thesis). 

Chapter 4 presents the measured geomorphological characteristics of two 

recent landslides in northern Iceland, whose deposits were found to be partially 

cemented by ground ice. The analysis of field evidence and high resolution 

remote sensing data from Structure from Motion and airborne laser altimetry data 

reveals how the presence of ground ice affected the dynamics of these landslides.  

Chapter 5 examines the same two landslides as Chapter 4, but details the 

analysis of the preparatory and triggering factors of these mass movements, 

leading to the identification of precipitation, seismic activity and permafrost 

degradation as the main factors that brought to the release of the landslides. More 

than half of this chapter was published in Science of the Total Environment. 

Chapter 6 describes the morphometric characteristics of peculiar landforms 

that were found in both the landslides featured in Chapter 4 and Chapter 5: 

molards. Molards are cones of debris that can be found in landslide deposits. 

Through field observations and the quantitative analysis of Structure from Motion 

and airborne laser altimetry data, the chapter shows that molards can be used in 

the field and through remote sensing as a marker of permafrost degradation and 

landslide processes in cold environments. This chapter resulted in a paper under 

review in Earth and Planetary Science Letters. 

The thesis concludes with Chapter 7: a synthesis of the work in the thesis, 

including final conclusions and potential avenues of future research. The 
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appendices include supporting materials including data obtained by auxiliary 

techniques and raw data.
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Chapter 2 . Rapid mass movements in 

cold environments 

2.1  Introduction 

In 2012, a landslide occurred on the north-western slope of the Móafellshyrna 

Mountain. Blocks of ice-rich sediments were found on the landslide deposits 

immediately after its occurrence, a phenomenon that was never officially reported 

in Iceland before the occurrence of this event. Immediate questions rose after this 

event: Is the Móafellshyrna failure an evidence of degrading permafrost in 

Iceland? Is the cementing ground ice seasonal frost or perennial ice? Is this 

landslide the harbinger of similar future failures threatening the population and 

infrastructures around the island? The Móafellshyrna event was the trigger for the 

research presented in this thesis, which focusses on rapid mass movements in 

Iceland. In particular, as stated in Chapter 1, the two main focusses of the thesis 

are the study of ground ice-thaw-induced landslides and the analysis of the 

release and geomorphic and hazardous impacts of debris flows in northern 

Iceland. Therefore in this chapter, a review of the current state of knowledge on 

rapid mass movements in Iceland (Section 2.2) then in cold environments 

generally (Section 2.3) is performed, with a particular focus on periglacial ones 

(with ”periglacial” defined as “the conditions, processes and landforms associated 

with cold, non-glacial environments, Permafrost Subcommittee, 1988). The 

chapter then continues with, a summary on the current state of art regarding the 

knowledge of permafrost in Iceland (Section 2.4), and ends with some 

considerations on the hazard of rapid mass movements in cold environments 

(Section 2.5). 
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Mass movement is a term that refers to the processes that imply a downslope 

movement of rock, debris and soil under the influence of gravity (Crozier, 1989; 

Hutchinson, 1968). Mass wasting, mass movement, slope movement or slope 

failure are commonly used as synonyms. Apart from processes of subsidence 

and creep that can lack discrete failure boundaries, for discrete slope movements 

Crozier (1989) uses the general term landslides. Mass movements can be divided 

into slow and rapid mass movements (e.g., French, 2007). Slow mass 

movements comprise, among the many, gravity-induced processes evolving over 

very long periods of time such as deep-seated gravitational slope deformations 

(e.g., Dramis and Sorriso-Valvo, 1995). They also include phenomena like 

solifluction, a process that originates from the action of freeze–thaw cycles that 

induce downslope displacement in general at a rate of at most 1 m/year of soils 

in cold environments, where vegetation is lacking or sparse (e.g., Andersson, 

1906; Ballantyne and Harris, 1994; Washburn, 1979). This thesis focusses on 

rapid mass movements, a term that refers to geomorphological processes that 

involve a transfer of slope material downwards and that can be extremely fast 

moving (up to the scale of 5 m/s; Hungr, 1981) and that may affect different parts 

of a slope.  

Various types of processes involved in rapid mass movements may be 

distinguished, according to the type of material, the type of movement, the volume 

of displaced material, and the extent of the material’s spreading area (Cruden and 

Varnes, 1996; Hungr et al., 2014; Varnes, 1978). Varnes (1978) developed a 

classification system for slope movements, based on five possible types of 

movement (fall, topple, slide, spread and flow) and on the type of material (rock, 

debris and earth). Varnes' (1978) classification has been revised by several 

authors (Cruden and Varnes, 1996; Hungr et al., 2001; Hutchinson, 1988; Julian 
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and Anthony, 1994), but remains probably the most compelling and widely used 

classification system for mass movements. In Varnes' (1978) classification, slow 

processes such as subsidence, creeping and solifluction are not accounted for, 

and are considered by other authors (Sidle and Ochiai, 2006). In this chapter, and 

for the whole thesis, I adopt the updated Varnes landslide classification from 

Hungr et al. (2014) (see Table 2.1) , where the most significant changes from the 

initial Varnes’ version are: i) the use of textural classes to replace the term “earth”, 

which has no standard definition in either geological or geotechnical material 

description schemes; ii) the reintroduction of “ice” as type of material, because 

many destructive mass movements on mountain slopes contain varying 

proportions of glacial ice (note that Hungr et al. (2014) do not introduce “snow” as 

a type of material to maintain separation from the field of snow science); iii) the 

introduction of slow mass movements under the movement type of “slope 

deformation”. 
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Table 2.1 - Summary of the Varnes (1978) classification system updated following Hungr et al. (2014). 

 

 

2.2  Rapid Mass Movements in Iceland 

2.2.1 Paraglacial mass movements in Iceland 

Landslides are a process that occurs in many mountainous landscapes over 

an extensive range of temporal and spatial scales. Their spatial distribution, 

frequency, and magnitude control the effects that they have on the landscape 

Movement type Definition

Rock Soil

Fall

The detachment of rock and soil from a cliff 

or steep slope, where the detachment takes 

place with little or no shear displacement 

along the failure surface

Rock/ice fall* Boulder/debris/silt fall*

Topple

The forward rotation of a mass of rock or soil 

out of a slope around a point or axis below 

the center of gravity of the displaced mass, 

usually at or near the base of the slope

Rock topple* Gravel/sand/silt topple*

Gravel/sand/debris 

rotational slide*

Clay/silt rotational slide

Gravel/sand/debris 

translational slide*

Clay/silt translational slide

Sand/silt liquefaction 

spread*

Sensitive clay spread*

Sand/silt/debris dry flow

Sand/silt/debris flowslide*

Sensitive clay flowslide*

Debris flow*

Mud flow*

Debris flood

Debris avalanche *

Earth flow

Peat flow

Mountain slope deformation Soil slope deformation

Soil creep

Solifluction

Complex

The combination in space and/or time of one 

or more of the principal movements 

described above

— —

Slope deformation

Rock slope deformation

Type of material

*Movement types that usually reach extremely rapid velocities as defined by Cruden and Varnes (1996). The other landslide 

types are most often extremely slow to very rapid.

The relatively coherent downslope movement 

of a mass of rock or soil along a circular 

concave upward shear surface

The relatively coherent downslope movement 

of a mass of rock or soil along a planar shear 

surface

The near-horizontal spatial dilation or 

extension of a cohesive rock or soil mass 

generated by shear or tensile fractures and 

coupled with subsidence into underlying 

material 

Rock rotational slide*

Rock translational slide*

Rock slope spread

Rock/ice avalanche*

A spatially continuous turbulent movement of 

disaggregated rock or soil over a rigid 

surface 

Large-scale gravitational deformation 

characterised by a slow or unmeasurable 

movement rate of steep, high mountain 

slopes lacking a fully defined shear surface 

Flow

Spread

Translational slide

Rotational slide
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(Densmore and Hovius, 2000; Palmquist and Bible, 1980). Mass movements are 

one the main sources of erosion, affecting the sediment budget and the 

morphological evolution of hillslopes (e.g. Burbank et al., 1996 Beylich et al., 

2004; Beylich and Kneisel, 2009; Cendrero and Dramis, 1996; Hovius, et al., 

1997; Schmidt and Montgomery, 1995). Paraglacial rapid mass movements (with 

paraglacial referring to non-glacial earth-surface processes, sediment 

accumulations, landforms, land systems and landscapes that are directly 

conditioned by glaciation and deglaciation; (Ballantyne, 2002)) have shaped the 

landscape of Iceland. Falls, debris flows, and debris slides have been recognised 

among the main phenomena that have contributed to mass transfers in eastern 

Iceland in the Holocene (Beylich and Kneisel, 2009). The retreat of rock walls and 

the continued accumulation of talus cones at their foot due to slope processes 

caused the gradual erosion of hillslopes and valley widening (Beylich, 2000).   

Ancient slope failures in Iceland (see Figure 2.1 for an example) have been 

recently reported and analysed by different authors (Coquin et al., 2015, 2016; 

Decaulne et al., 2016; Feuillet et al., 2014; Jónsson et al., 2004; Jónsson, 1957; 

Líndal, 1936; Mercier et al., 2017; Peras et al., 2016; Thorarinsson et al., 1959; 

Þorarinsson, 1956). Ancient mass movements are widespread, particularly in the 

Tertiary basalt formation of the northern, eastern and north-western regions of 

Iceland (Jónsson, 1957; Sæmundsson, 1973; Whalley et al., 1983; see Chapter 

3 and Chapter 4 for the details of the Tertiary basalt formation). The abundance 

of slope failures in these areas of Iceland has been linked to post-glacial rebound 

(Cossart et al., 2014) and dated to the paraglacial phase in the early Holocene 

(Decaulne et al., 2016; Mercier et al., 2017).  In the northern central parts of 

Iceland, the majority of the slope failures occurred before 12ka (Mercier et al., 

2012, 2017), thus during the early stage of the Late Weichselian deglaciation, 
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when the uplift rate was at a maximum (Coquin et al., 2015; Cossart et al., 2014; 

Jónsson, 1957; Mercier et al., 2017). It has also been recognised that in these 

areas of Iceland, some paraglacial landslides were probably initiated from 

propagation of deep-seated gravitational slope deformations (also known as 

mountain slope deformations, see Table 2.1) related to post-glacial rock-stress 

release (Coquin et al., 2016). Coquin et al. (2016) also report the favourable dip 

of the lava layers of the Tertiary basalt formation and interbeds of poorly cohesive 

palagonite ─ which they infer act as weak horizons for the landslides to exploit ─ 

predisposing the release of landslides generated by paraglacial topographic 

readjustments. Other predisposing factors for failure such as slope inclination, 

valley depth and curvature could have influenced these ancient mass movements 

as well (Feuillet et al., 2014). In the Westfjords of Iceland, slope failures are 

preferentially distributed on hillslopes close to the coasts, where steep slope 

gradients, availability of cohesion-less material and excess moisture to saturate 

and mobilise the material favour gravitational mass movements (Decaulne, 2001, 

2007; Decaulne and Sæmundsson, 2003).  

Nearly two hundred slope failures have been identified in area this area, which 

deglaciated during the Last Glacial Maximum to Younger Dryas transition, 

meaning that potentially their origin could be related to the deglaciation patterns 

of northern central regions (Peras et al., 2016). 

Against this backdrop of ancient landslides, Iceland has experienced many 

landslides within human timescales. These are different in scale, causes and 

morphology, but that have equally shaped the landscape of the country, and are 

the object of the following Section 2.2.2. 
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Figure 2.1. Lateral view of one of the paraglacial slope failures in northern central Iceland (the dashed 

line in the bottom panel marks the perimeter of the slope failure). The length from 

the headscarp to the toe is roughly 1600 m.  

 

2.2.2 Recent mass movements in Iceland 

Landslides can cause environmental damage (e.g., Blaschke et al., 2000) and 

be a major risk to population, infrastructure and land use (e.g., Geertsema et al., 

2009; Kjekstad and Highland, 2009; Petley, 2012; Schuster, 1996; Selby, 1993). 

Rapid mass movements, whether involving debris, snow and/or water, are a 

direct threat to many towns in Iceland, where, in the last century, they have 

caused the death of nearly 200 people (Jóhannesson and Arnalds, 1992) and 

considerable damage to the road system and buildings, both in rural and urban 

areas (Pétursson et al., 2010). It should also be taken into account that some 

proportion of disastrous events may not have been recorded during the last 
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century, as in remote areas of Iceland urban sites are sometimes not older than 

40 years (Decaulne, 2004). Coastal villages and towns of north-western, northern 

and eastern Iceland are subject to recurrent snow-avalanche and debris flow 

activity, whose catastrophic effects are increasing with time (Decaulne, 2004). 

The increasing awareness of this hazard has been attributed to the snow 

avalanches that killed 35 people in three successive winters between 1994 and 

1995 in the Westfjords (Decaulne, 2005). Most of the fatalities in the last decades 

have been caused by snow avalanches, but the hazard of other rapid mass 

movements should not be neglected (Arnalds et al., 2001, 2002, 2004; 

Jóhannesson and Arnalds, 1992; Pétursson, 1999) 

Debris flows, rock falls, rock and debris slides and avalanches are widespread, 

particularly in the weathered Tertiary basaltic area (Sæmundsson and Pétursson, 

2000). This bedrock (see Chapter 3 and 4 for detailed description) is easily 

erodible by phenomena like frost shattering, creating a constant supply of new 

debris on the mountain slopes, which recent glaciations have steepened, forming 

the perfect conditions for the occurrence of rapid mass movements (Pétursson et 

al., 2010).  

Four main triggering factors promote rapid mass movements in Iceland: heavy 

precipitation, snowmelt, permafrost thaw and earthquakes (Decaulne et al., 2005; 

Decaulne and Sæmundsson, 2007; Sæmundsson et al., 2003, 2014a, 2018).  

The first three of these factors depend on the climate of Iceland, where the Mean 

Annual Air Temperature (MAAT) for the period 1971–2000 was 4–5°C in the south, 

3–4°C in the east and west parts, and 2–3°C in northern coastal parts of the country 

(Tveito et al., 2000). The whole country experienced a warming of between ∼0.7–

1.6 °C during 1871–2002 (Hanna et al., 2004). Easterly and southerly prevailing 

winds bring the majority of the precipitation (Einarsson, 1984). Consequently, 
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mean annual precipitation increases from about 400 mm in the central and 

northern parts of the country to more than 5000 mm in the southeast (Figure 2.2; 

Crochet et al., 2007).  

 

Figure 2.2. Mean annual precipitation of Iceland in 1971–2000; thick black lines outline the main four ice 

caps, in red are marked the study sites of this thesis (modified from Crochet et al., 2007).   

 

From October to May, heavy snowfall and snowdrift cause snow avalanches 

(Jonsson et al., 1992). From May to October, heavy precipitation generates debris 

flows and rock falls, with a peak during the autumn (Valsson and Sigurbjornsson, 

1996). Rapid mass movements, particularly debris flows, are reactive to 

snowmelt (most intensive period from April to June) in north-western and central 

northern Iceland (Decaulne and Sæmundsson, 2007; Jonsson et al., 1992; 

Sæmundsson et al., 2003), and have a high frequency of occurrence (a debris 

flow every 4-5 years; Decaulne et al., 2005). Rapid mass movements related to 

earthquakes are usually observed locally around the epicentres in the volcanic 



Chapter 2 - Rapid mass movements in cold environments 

 
 

17 
 

zones and in the fault zones of the southern lowlands (e.g., Valsson and 

Sigurbjornsson, 1996). The relationship between permafrost-thaw and the 

occurrence of rapid mass movements in Iceland has been highlighted by recent 

studies (Sæmundsson et al., 2014a, 2018), but has not been routinely studied, 

and is one of the two main focusses of this thesis (see Section 2.4 for the state of 

art on permafrost in Iceland). Finally, further factors that can lead to rare but high-

magnitude rock avalanches on glaciers in Iceland are glacial erosion and glacier 

retreat. These are thought to be the causes of a ~4,000,000 m3 rock avalanche 

that occurred in 2007 on the Morsárjökull glacier on the southern part of the 

Vatnajökull ice cap, in south Iceland, leaving one fifth of the glacier surface buried 

and extending over the eastern flow unit and the medial moraine (Decaulne et al., 

2010; Evans et al., 2017; Sæmundsson et al., 2011; see Figure 2.3).  

  

Figure 2.3. The deposits of the Morsárjökull rock avalanche  (in the foreground) that fell on the 

Morsárjökull glacier (in the background) in 2007. Photo taken on the surface of the rock avalanche. 
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The literature on rapid mass movements in Iceland shows that the Icelandic 

landscape is prone to their occurrence, particularly debris flows, rock falls, and 

rock/debris slides and avalanches. Slope movements have high frequency of 

occurrence in northern, eastern and western regions of the country, presenting a 

significant threat to the local inhabitants, as many settlements in Iceland are 

located on the coast in a limited space between steep rockwalls and the sea 

(Decaulne et al., 2005).  The investigation and quantification of the sediment 

sources of rapid mass movements, and the analysis of their transfer and 

reproduction are the forefront of the research in natural hazard posed by hillslope 

processes. These have been attempted by different studies in the Westfjord of 

Iceland – an area particularly prone to debris-flow events (Conway et al., 2010; 

Decaulne et al., 2005; Glade, 2005) - as the definition of the magnitude of these 

phenomena is crucial in the prospective of hazard assessment. Deaculne et al. 

(2005) produced volume estimates of a singular debris-flow event in Ísafjörður 

from field inspections, and at the same location Conway et al. (2010) defined 

erosion and deposition patterns along the slope of multiple debris flows from 

DEMs and dGPS measurements (Figure 2.4). Glade (2005) used an empirical 

model to assess the sediment available for debris-flow occurrence in Bíldudalur, 

to define potential run-out zones and depositional areas of new debris-flow 

movements. However, new more accurate methods could improve these 

estimates. The geomorphological study of rapid mass movements in these 

regions of Iceland, and in particular the quantification of sediment supply and 

transfer of rapid mass movements can aid in evaluating risks and designing 

protection measurements. In Chapter 3 and Chapter 4, I produce a quantitative 

volume assessment of material mobilised by debris flows and landslides in 
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northern and western Iceland, with the final aim of better understanding their 

release, evolution and hazard. 

 

Figure 2.4. Long profile and isopach map of two debris flows in Ísafjörður, Westfjord. Contours on the 

isopach maps are at 5-m spacing (MA10 stands for Moving Average over 10 data points). Black points 

correspond to elevation on the right-hand axis, and pink/blue points correspond to slope represented on the 

right-hand axis (Conway et al., 2010). 

 

2.3  Rapid Mass Movements in permafrost 

terrains  

Permafrost is defined as soil or rock with a temperature below 0°C continuously 

for >1 year (Permafrost Subcommittee, 1988). Ground ice is a potential, but not 
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essential, component of permafrost: “All types of ice formed in freezing and frozen 

ground” fall within this term (Permafrost Subcommittee, 1988). Pores, voids and 

cavities in soil and rock can all contain ground ice, whose formation is controlled 

by air and ground temperature, water content and soil grain size (MacKay, 1972). 

The spatial variability of ground ice and the absence of surface manifestations 

make it difficult to detect (French, 2007; Pollard and French, 1980). Rapid 

changes in local climate, snow cover, topography, incoming radiation, ground and 

soil characteristics determine the variability of ground thermal regimes at local 

scale (e.g., Harris et al., 2009; Harris and Pedersen, 1998; Hasler et al., 2015; 

Thomas et al., 2009). Different techniques can be used to detect permafrost, to 

map its extent and define its state, such as geophysical investigations, mapping 

and GIS probability maps, numerical distribution modelling, and physical 

modelling of thaw-related slope processes (e.g., Haeberli et al., 2011; Harris et 

al., 2009, 2001; Hauck et al., 2003; Kaab, 2008; Kneisel et al., 2014; Lewkowicz 

and Harris, 2005; Mühll et al., 2002).  

In the last thirty years, rapid mass movements such as active-layer detachment 

slides (the active layer is “the layer of ground that is subject to annual thawing 

and freezing in areas underlain by permafrost”, Permafrost Subcommittee, 1988), 

retrogressive-thaw-slumps, debris flows, rock/debris falls, slides and avalanches 

have been studied in relation to possible interactions with changing permafrost 

conditions (e.g., Ashastina et al., 2017; Blais-Stevens et al., 2015; Deline et al., 

2014; Fischer et al., 2006; Gruber and Haeberli, 2007; Haeberli et al., 2017; 

Huscroft et al., 2003; Pedersen et al., 2002). There are various reasons why rapid 

mass movements are particularly effective under periglacial conditions (French, 

2007): i) frost action promotes mechanical fragmentation of rocks, with resulting 

loose material available for transport; ii) shallow sediment movements are 
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accelerated by short-term free-thaw cycles of the ground surface; iii) moisture 

content produced by active-layer thaw reduces cohesion; iv) permafrost limits 

infiltration of water into the ground, generating high pore-water pressures in the 

near-surface; and v) the active layer can act as slip plane. 

Active-layer-detachment slides are localised slope failures confined to the 

permafrost active layer in ice-rich terrains (Lewkowicz, 1990; Lewkowicz and 

Harris, 2005a). They occur due to a reduction in shear strength resulting from 

progressive soil weathering and an increase in ice content of the active layer 

usually during rapid spring thaw or prolonged summer precipitation, genereting 

shallow (~1 m deep) failures (French, 2007). 

Retrogressive-thaw slumps are semi-circular depressions resulting from 

thawing of ice-rich permafrost terrains (Pollard, 2005; Van Everdingen, 2005; see 

Figure 2.5A).They occur where ice-rich permafrost is exposed to thaw, and are 

generally triggered by wave action along coasts, undercutting erosion of banks 

along streams or lakes, or active-layer-detachment slides (de Krom, 1990; Lantuit 

and Pollard, 2008). Thaw slumps can cover areas of 50,000-40,000 up to 800,000 

m2, expose ground ice to thaw, modify the landscape, and can erode and 

transport thawed material to lakes, valley-bottoms or coastal zones (Kokelj et al., 

2015, 2013; Lantuit et al., 2012; Murton et al., 2017). Thaw slumps cannot be 

classified as “rapid movements” ─ they can develop over decades (Lacelle et al., 

2010) ─ but phenomena like falls or flows can transport thawed material from the 

slump headwall as secondary movements (Lantuit et al., 2012; Murton, 2001). As 

they are one of the most rapid erosion processes in permafrost terrains, their 

accelerated activity due to global warming is causing concern in different 

periglacial environments, from western Canadian Arctic to Siberia (e.g., 

Ashastina et al., 2017; Segal et al., 2016).  
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Debris flows are rapid, downslope flows of poorly sorted debris mixed with 

water (e.g., Iverson, 1997), and can severely affect periglacial environments. 

Debris flows can travel over long distances and transport large amounts of 

material at great speed (Zimmermann and Haeberli, 1992). They are 

characterised by a distinct failure scar, a central channel, the construction of 

levees on one or both sides of channel, and a terminal depositional lobe or lobes 

(e.g., Costa, 1984). Steep slopes, loose materials and wet conditions are 

favourable for the occurrence of debris flows (Lewin and Warburton, 1994). This 

combination of factors is extremely common in periglacial mountain 

environments, such as the Swiss Alps, where climatic warming during the 19th 

and 20th centuries has indirectly increased the frequency of debris flows 

(Haeberli et al., 1990; Rebetez and Lugon, 1997; Zimmermann, 1990; 

Zimmermann and Haeberli, 1992). This increased frequency is not directly linked 

to the thaw of perennially frozen debris in the source areas (i.e., meltwater 

producing a source of fluid), but it has been shown that there is a link between 

the initiation zones and the thickening of the active layer as a reaction to the 

increase in atmospheric temperatures (Sattler et al., 2011). This has also been 

observed in Yukon, where the interface between frozen and unfrozen ground 

seems to control the depth of movement in debris flows (Huscroft et al., 2003; see 

Figure 2.5B).  

 Rock falls are bedrock mass movements on steep slopes, rockslides are 

bedrock mass movements that occur along discrete surfaces, and rock 

avalanches are large-volume (>1M m3) bedrock mass movements which cause 

fragmentation during rapid transport (Cruden and Varnes, 1996; Hungr et al., 

2014). These phenomena are frequent in mountain glacial and periglacial 

environments, where glacial over-deepening, stress-release fracturing after 
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removal of glacial ice (McColl, 2012), glacial debuttressing (Cossart et al., 2008) 

and degrading permafrost (Deline et al., 2015; Fischer et al., 2006; Gruber and 

Haeberli, 2009; Huggel et al., 2012; Krautblatter et al., 2013) can destabilise rock 

walls (Figure 2.5D). These factors can induce changes in the stress field of the 

rock walls and expose previously insulated surfaces to altered mechanical and 

thermal erosion (Haeberli, 1997; Wegmann et al., 1998).  In particular, when 

permafrost degrades due to climate change, physical changes also occur in the 

rock mass. After permafrost thaw, the shear strength of a rock significantly 

reduces with warming (minimum factor of safety is between −1.5°C and 0°C)  

(Davies et al., 2001). Ice segregation and volume expansion subsequent to 

increased temperatures can lead to failures (Gruber and Haeberli, 2007). 

Elevated water pressure and reduced frictional strength can result from meltwater 

or ground-water flow in previously frozen rock masses (Harris, 2005). 

The processes of fall, slide and avalanche where loose debris is main the 

transported material are underreported in permafrost environments in the 

literature. However, these types of mass movements can reveal permafrost 

degradation in a similar way to processes involving bedrock, as  permafrost in 

loose deposits has a role in controlling terrain drainage and strength (Huscroft et 

al., 2003). Ground ice was observed in the landslide deposits of the Little Salmon 

Lake landslide in central Yukon (Brideau et al., 2009; Lyle et al., 2014, 2004; see 

Figure 2.5), a zone characterised by sub-arctic continental climate and 

discontinuous permafrost (Heginbottom et al., 1995). The authors infer that the 

degradation of ground ice produced high pore-water pressure and triggered the 

landslide. Another example is the Chita landslide, in the central Andes, whose 

source is thought to be the deposits of an active rock glacier terminus, whose lack 

of cementation due to permafrost thaw caused the release of the slide (Milana, 
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2016). Exposed ground ice was found also in the Ram Plateau slide, Yukon, a 

sliding process similar to a retrogressive-thaw-slump and thought to be caused 

by permafrost thaw (Jermyn and Geertsema, 2015).  

Ice-rich permafrost occurs in loose-deposits landforms such as rock glaciers, 

ice-cored moraines and talus slopes (e.g., Isaksen et al., 2000; Kenner et al., 

2017; Lukas et al., 2005; Monnier and Kinnard, 2015; Schwamborn et al., 2008). 

Its degradation can cause a reduction in cementation, which can lead to the 

occurrence of rapid mass movements. As shown in this literature review, there is 

paucity of studies on loose-deposit landslides in periglacial environments and of 

the role of permafrost thaw in their release and evolution. This opens up a fruitful 

area for progress in landslide geomorphological analysis and hazard. To explore 

this area, in Chapter 4 and Chapter 6 I describe a quantitative geomorphological 

study of landslides involving ice-cemented loose deposits in Iceland, and a 

geomorphic analysis of their features, with the aims of (i) determine how ground-

ice thaw influence the landslide dynamic processes, (ii) to characterise landslide 

features that can be recognised and used to detect permafrost degradation, 

revealing permafrost degradation, and (iii) widen the knowledge of landslide 

behaviour and hazard in periglacial environments. 
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Figure 2.5. Examples of mass movements in cold environments. (A) Scar zone and headwall of a 

retrogressive-thaw-slump on the Peel Plateau, Canada (from Kokelj et al., 2015); (B) Debris-flows channel 

on Mount Sumanik, Yukon, related to permafrost thaw (from Huscroft et al., 2003); (C) the Little Salmon Lake 

landslide, Yukon, a rare example of loose-debris failure in permafrost terrain (from Brideau et al., 2009); the 

Crammont rock avalanche in the Mont Blanc massif, Italy, resulted from permafrost degradation (Deline et 

al., 2013). 

 

2.4 Permafrost in Iceland 

Permafrost is present in Iceland as “mountain permafrost” (Brown et al., 1997; 

Etzelmüller et al., 2007) as defined by Haeberli et al. (1993) and the Permafrost 

Subcommittee (1988) “permafrost existing at high altitudes in high, middle, and 

low latitudes”. The nature of mountain permafrost, which is extremely 

heterogeneous (Hauck et al., 2004) and whose temperature is close to the 

freezing point, makes it particularly vulnerable to climate variations (Haeberli et 

al., 1993; Nelson et al., 2002). Due to the problems related to recognition (spatial 

variability and absence of surface expression), the distribution of ground ice in 
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Iceland is not well-constrained. In the past, many studies have focussed on 

geomorphological features related to permafrost or active periglacial processes 

(Clark, 1983; Feuillet et al., 2012; Priesnitz and Schunke, 1983, 1978; Stötter, 

1991; Thorarinsson, 1951; Van Vliet-Lanoë et al., 1998). Priesnitz and Schunke 

(1983) and Clark (1983) gave a detailed report on different periglacial landforms, 

distinguishing features non-indicative of permafrost, such as micro-relief features, 

sorted and non-sorted patterned ground (stone polygons and stripes, thufur, frost 

mounds; see Figure 2.6), stone pavements, gelifluction forms, and features 

directly indicative of permafrost aggradation, i.e. palsas, and degradation, i.e. 

thermokarst depressions and mounds. Patterned grounds show spatial  

distribution and geomorphic characteristics controlled by altitude, insolation, grain 

size characteristics and type of drift in northern Iceland (Feuillet et al., 2012; 

Stötter, 1991).  

 

Figure 2.6. Patterned ground in Iceland. (A) Thufur patterned ground in northern central Iceland; (B) 

patterned stone stripes in the north-western fjords of Iceland. 

 

The first attempts to geographically define the extension of permafrost in 

Iceland were by Harris (1981), who highlighted that permafrost is present in 

Iceland as discontinuous (“Permafrost occurring in some areas beneath the 

exposed land surface throughout a geographic region where other areas are free 

of permafrost”, Permafrost Subcommittee (1988)), in accordance to Priesnitz and 
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Schunke (1978), and confined in the central highlands. Whalley and Martin (1994) 

suggested that permafrost was likely to exist on high-elevation plateaus above 

1200 m a.s.l. A census and characterization of active rock glaciers and ice-cored 

moraines was performed in northern Iceland (Farbrot et al., 2007a; Lilleøren et 

al., 2013; Wangensteen et al., 2006; Whalley et al., 1995a, 1995b). In the Circum-

Arctic map of permafrost and ground-ice conditions of the official International 

Permafrost Association (IPA) (Brown et al., 1997), the palsa-rich areas of central 

Iceland are within the zones of sporadic discontinuous permafrost (subcategory 

of discontinuous permafrost defined as “permafrost underlying 10 to 35 percent 

of the exposed land surface”, Permafrost Subcommittee (1988)), with isolated 

patches on the north-eastern side of the Vatnajökull ice cap and the on the 

eastern side of the Drangajökull ice cap.  

Etzelmüller et al. (2007) developed a simplified regional permafrost distribution 

model for Iceland, which for the first time attempts to constrain the potential 

distribution of ground ice. They used mean annual air temperature (1961–90), 

topography, ground surface temperature and the presence of typical features of 

mountain permafrost, such as active rock glaciers and creeping ice-cored 

moraines (Guodong and Dramis, 1992; Hoelzle and Wagner, 1998; Washburn, 

1979b), to compile their map. The study by Etzelmüller et al. (2007) revealed the 

presence of widespread mountain permafrost outside the already known 

permafrost zone in central Iceland. In their map, the lower altitude limit of 

permafrost increases in elevation towards the southeast, with elevations between 

800 m and 900 a.s.l. in the north and more than 1000 a.s.l. in the southern part of 

Iceland (see Figure 2.7). The largest continuous area on the map is on the 

peninsula of Tröllaskagi and southwards towards the area between Hofsjökull 

and Vatnajökull. The mountain permafrost zone covers an area of 7000–8000 
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km2. The cryosphere in terms of glacier and permafrost is estimated to cover 

around 15% of the total land area of Iceland at present.  

 

Figure 2.7. Regional mean annual air temperature (MAAT)-based map of mountain permafrost 

distribution in Iceland. The contours indicate the lower limit of potential mountain permafrost. The shaded 

areas show the distribution of predicted permafrost based on topography extending to elevations with MAAT 

<3°C. The hatched ellipses denote areas of active rock glaciers and their elevation range. The triangles 

indicate the location of rock glacier’s velocity measurements. (B) The inset map shows the original map of 

MAAT. (C) Topographic profile lines with proposed lower limit of mountain permafrost (from Etzelmüller et 

al. (2007)). 

 

Etzelmüller et al. (2007) were the first to hypothesise that permafrost is 

probably degrading, as indicated by the surface offset between air and ground 

surface temperatures. This was also confirmed by Farbrot et al. (2007b), who 
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suggested that the northern central regions of Iceland could expect permafrost 

degradation within decades (Farbrot et al., 2007b). The suggestion of an ongoing 

degradation of permafrost was also supported by the study of Kneisel et al. 

(2007), who in central Iceland detected shallow and spatially heterogeneous 

permafrost, an indication of likely rapid reaction of permafrost to changes in 

climate, confirmed in the same area by the detection of degrading permafrost in 

palsas (Sæmundsson et al., 2012). However, so far relatively little attention has 

been paid to the consequences of the recent climate change on the possible 

degradation of mountain permafrost in Iceland. The relationship between 

permafrost-thaw and the occurrence of rapid mass movements in Iceland has 

been highlighted by recent studies (Sæmundsson et al., 2014a, 2018), but not 

routinely studied, and is the main focus of this thesis.  

 

2.5  The hazard of rapid mass movements in 

cold environments  

According to the definition of (Varnes, 1984), landslide hazard is defined as the 

probability that a landslide event of a certain magnitude occurs within a period of 

time in a given area. Landslide risk refers to the expected degree of loss due to a 

landslide event, and is the result of the product of the landslide hazard and the 

vulnerability, with the latter defined as the degree to which a community, a 

structure, a service or an area is likely to be damaged by a hazardous 

phenomenon. Mass movements represent can be extremely dangerous, as they 

are processes that can severely threaten human life and affect infrastructures 

(Crozier, 1989; Geertsema et al., 2009; Haque et al., 2016; Kjekstad and 

Highland, 2009; Petley, 2012). Slope failures can involve different types of 
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materials and can have a great diversity of velocities and fluid contents making it 

hard to understand them and produce the appropriate countermeasures. Even if 

high level of uncertainty of global-climate predictions and the lack of spatial 

resolution of the available downscaled projections, there is a strong theoretical 

basis for increased landslide activity as a result of climate change (e.g., Crozier, 

2010; Guzzetti et al., 2005; IPCC, 2007). This increased activity could also affect 

cold environments, which are particularly sensitive to variations in atmospheric 

temperatures (e.g., Clague et al., 2012; Huggel et al., 2012), leading to an 

enhanced reaction of mountain slopes to glacial retreat and permafrost 

degradation (e.g., Deline et al., 2014; Gruber et al., 2017; Gruber and Haeberli, 

2007; Schoeneich et al., 2011). While glacier volumes in most cold mountain 

environments rapidly decrease due to climate change, degradation of permafrost 

at altitudes above and below glaciers is much slower (Haeberli et al., 2017), 

causing disequilibria and consequent hazardous phenomena like those 

described above. The frequency of rapid mass movements in cold periglacial 

environments has particularly increased during the past two decades, as reported 

from the European Alps (Ravanel and Deline, 2011), New Zealand (Allen et al., 

2009), and northern British Columbia, Canada (Geertsema et al., 2006a). In these 

geographical contexts, although permafrost degradation could have played a role 

in some of these failures, isolating its effects from those of glacier thinning and 

retreat is difficult (Clague et al., 2012).  

Several catastrophic mass movements in cold environments have occurred in 

the recent past. Disastrous debris flows have occurred in periglacial 

environments with permafrost degradation as one of the main causes (e.g., 

Haeberli et al., 1990; Harris and Gustafsson, 1993; Rapp and Nyberg, 1981; 

Zimmermann M, 1992). Several rock falls, rock slides and rock avalanches 
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triggered by permafrost degradation threaten the mountain populations of the 

European Alps (Bottino et al., 2002; Deline et al., 2013, 2015; Dramis et al., 1995; 

Fischer et al., 2006; Gruber and Haeberli, 2007; Phillips et al., 2017; Schoeneich 

et al., 2011). Rock/ice avalanches are one of the most catastrophic mass 

movements in cold environments (Davies and McSaveney, 2012; Evans and 

Clague, 1988; Geertsema et al., 2006b, 2006a; Hungr and Evans, 2004).  

Several examples with volumes ranging up to a few million cubic metres 

include the Thurwieser rock avalanche in the Italian central Alps (Sosio et al., 

2008), the Brenva rock avalanche that detached in the Mont Blanc range in 1997 

(Barla et al., 2000), the rock slide from Monte Rosa in the western Italia Alps in 

2007 (Fischer et al., 2011), the rock avalanches at Mount Munday in 1997 and at 

Kendall Glacier in 1999 in British Columbia (Delaney and Evans, 2014; 

Geertsema et al., 2006a). Rock/ice avalanches with volumes of 30 to >100 million 

m3 include cases like a rock/ice avalanche of about 100×106 m3 volume occurred 

at at Kolka/Karmadon, Russian Caucasus, causing in 2002 destruction and the 

death of ca. 140 people, or the 2005 Mt. Steller rock avalanche in Alaska that 

mobilised 40 to 60 million m3 volume in the Alaska Range (Huggel et al., 2007). 

The consequences of landslides in cold environments can be more unexpected 

and severe than the events themselves, generating hazardous consequences 

because of dam-creation (e.g., Strom and Korup, 2006), or tsunami if they reach 

the water (e.g., Dahl-Jensen et al., 2004; Evans et al., 2006).  

In Iceland, as reported in Section 2.2.2, the death of 35 people between 1994 

and 1995 because of snow avalanches was the turning point for improving the 

work on landslide and snow-avalanche hazard assessment. Thorough reports of 

landslide and snow avalanche risk in different zones of the country are regularly 

updated by the local and state authorities, as the current Icelandic regulation on 
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hazard zoning requires the same individual phenomenon risk criteria to be used 

for landslides and for snow-avalanche hazard zoning (i.e., landslide hazard 

zoning is done jointly with avalanche hazard zoning), and  the combined risk is 

presented on one map (e.g., Arnalds et al., 2001, 2002, 2004). Detailed 

assessments of snow-avalanche and debris-flow risk have been produced by the 

Icelandic Meteorological Office (IMO) for the main town and villages of Iceland 

and by independent researchers for towns in the northwest fjord regions of 

Iceland (see an example in Figure 2.8), producing risk maps pointing out critical 

regions in relation to the different hazardous processes and the elements at risks 

(Bell and Glade, 2004; Decaulne, 2004, 2005, 2007; Glade and Jensen, 2004). 

These are directly used by decision makers to identify the need for and then plan 

the emplacement of mitigation measures. 

 

Figure 2.8. Debris flow risk map for the town of Bíldudalur in the Westfjords, showing the individual risk 

to life (from Bell and Glade, 2004). 
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Solutions that offer a reduction of risk to population exposed to the hazard of 

rapid mass movements in cold environments are various. Preventive solutions 

can be either structural physical defences or non-structural measurements, such 

as land-use planning (e.g., integrated spatial information on glacier/permafrost 

evolution, rapid mass movements susceptible areas and vulnerability; Haeberli et 

al., 2017) and increasing the awareness of the population at risk. However, 

structural and non-structural risk-reduction measurements as designed 

nowadays are likely to be insufficient in the framework of a changing climate, so 

existing historical records, monitoring datasets, modelling and computational 

means should be implemented to adapt to the new, predicted climate conditions 

(Gariano and Guzzetti, 2016), particularly in more sensitive cold environments. 

This thesis is not designed with the purpose of offering direct prevention-risk 

solutions to potentially hazardous slope movements, but provides a detailed 

investigation of debris flows and landslides that, being so frequent in Iceland, 

need to be fully characterised. Landslide management involves prediction, 

prevention, and risk assessment (Dai et al., 2002), and none of these steps can 

be achieved without the characterisation of the landslide as a process. The 

analysis performed in this thesis can contribute to widen the information on rapid 

mass movements in Iceland and other cold environments, and can be correlated 

to the existing knowledge to enhance our ability to predict, prevent and mitigate 

these gravity-induced hazardous phenomena. 
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2.6  Conclusions 

One of the most obvious reactions of permafrost-affected terrains to climate 

change is rapid mass movement. From my literature search I have ascertained 

that: 

- the landscape of Iceland has been shaped by ancient and recent slope 

failures, with the latter being frequent and potentially disastrous. In Chapter 

3 and 4, I report the analysis of the morphology and processes of some of 

these potentially hazardous rapid mass movements; 

- the influence of the changing cryosphere on the stability of rock walls are 

well documented, since the number of periglacial rapid mass movements 

has increased over the past century in periglacial environments worldwide. 

However, little is known about how the dynamics of rapid mass movements 

involving loose deposits are conditioned by thawing ground ice, which is 

the topic of Chapter 4; 

- permafrost in Iceland is expected to be located in the central-northern 

regions of Iceland generally at altitudes above ~800-900 m a.s.l.. It is 

estimated that permafrost is degrading in the island, but the consequences 

on the landscape of this decay are so far unknown. Permafrost as trigger 

of rapid mass movements in Iceland is the topic of Chapter 5, and the 

possible morphological signatures as consequences of this process are 

analysed in Chapter 4 and 6; 

- as degrading permafrost is predicted to increasingly affect mountain 

regions in the future, improving our knowledge on rapid mass movements 

in cold environments is important, since they could be a new source of risk 

for local population in Iceland and other mountainous periglacial areas, 
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where rapid mass movements are a significant source of risk for local 

population and infrastructure. 
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Chapter 3 . Debris-flow release 

processes revealed through the 

analysis of multi-temporal LiDAR 

datasets in north-western Iceland1 

3.1 Introduction 

Debris flows are among the most dangerous and damaging of all landslide 

phenomena (Hungr, 1995), and can pose a severe threat to many towns in 

Iceland, causing life loss and damage to infrastructures (Jóhannesson and 

Arnalds, 1992; Pétursson et al., 2010). In Chapter 2, I have reported that in wide 

areas of Iceland the frequency of debris flows is increasing with time (Decaulne, 

2004). This highlights the need to of detailed geomorphic analysis of debris flows, 

as they provide information for future hazard assessment, as scenario modelling 

are dependent on processes and sediment availability. A clear identification of 

the geomorphic signatures of different debris-flow release styles and a precise 

quantification of their magnitude is necessary when evaluating risks and 

designing protection measurements, and is one of the final aims of this thesis. 

                                              

1 The work contained in this chapter of the thesis is based on a paper that has been published 
on the journal Earth Surface Processes and landforms entitled “Debris-flow release processes 
investigated through the analysis of multi-temporal LiDAR datasets in north-western Iceland”. The 
full citation of this paper is: 

 
Morino, C, Conway, S. J., Balme, M. R., Hillier, J., Jordan, C., Sæmundsson, Þ., Argles, T. 

2018. Debris-flow release processes investigated through the analysis of multi-temporal LiDAR 
datasets in north-western Iceland. Earth Surface Processes and Landforms. DOI: 
10.1002/esp.4488 

 
Typological changes to the paper have been made to ensure consistency with the rest of the 

thesis. These changes are: removal of the abstract, the use of the first person singular instead of 
the first person plural where appropriate. 
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Debris flows are rapid (e.g., 0.8-28 ms-1; Rickenmann, 1999) and potentially 

destructive mass movements composed of a cohesion less mixture of water and 

poorly sorted sediments (Iverson, 1997). To initiate, debris flows require the 

availability of unconsolidated material, excess moisture to saturate and mobilise 

this material, and slopes greater than 15°-20° (e.g., Costa, 1984; Imaizumi et al., 

2006; Rickenmann, 1999; Terzaghi et al., 1996). Hundreds of thousands of cubic 

metres of sediment can be transported for distances of over tens of kilometres, 

even on moderate (~5-10%) gradients (e.g., Iverson, 1997; Rickenmann and 

Koschni, 2010). They are distinct from other forms of landsliding due to their 

periodic occurrence on established paths, usually in gullies or first order drainage 

channels (Hungr et al., 2014). 

Debris flows can initiate in several ways, e.g. by shallow translational or 

rotational sliding (e.g., Costa, 1984; Innes, 1983), by the erosion and mobilisation 

of accumulated material on hillslopes or in pre-existing depressions (e.g., Cannon 

et al., 2001; Davies, 1986), or by sediment entrainment in channels (e.g., Hungr 

et al., 2005). Different styles of triggering and propagation processes of debris 

flows have inherently different preconditioning factors. It is important to 

understand which triggering processes (or combination of processes) are active 

during the formation and evolution of debris flows to anticipate their behaviour in 

zones exposed to their hazard, and hence to design mitigation and prevention 

measures.  

Direct observation of the initiation processes of debris flows is the best way to 

identify them, but is seldom possible. In recent years, the development of high-

resolution topographic data from Laser Scanning (or “LiDAR”, Light Detection 

And Ranging) and other photogrammetric datasets has facilitated the study of 
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debris flows. Monitoring of debris flows through multi-temporal LiDAR data is 

becoming more and more common, particularly for sediment budget analysis and 

for studying debris-flow initiation (e.g., Blasone et al., 2014; Bossi et al., 2015; 

Bull et al., 2010; Cavalli et al., 2017; Scheidl et al., 2008). Bremer and Sass 

(2012) used a combination of Terrestrial Laser Scanning (TLS) and Airborne 

Laser Scanning (ALS) to quantify and map the sediment volume transported by 

a single debris-flow event in the Austrian Alps. Erosion and deposition generated 

by channel-bed entrainment of sediments by debris flows in the Swiss Alps have 

been calculated by differencing two ALS Digital Elevation Models (DEMs) (Frank 

et al., 2015). Loye et al. (2016) used time series TLS data to quantify the sediment 

budgets of two debris-flow events in the Manival catchment (France). They were 

able to distinguish between the seasonal debris recharge produced by rock fall in 

winter, and the debris produced by hillslope sediment reworking in spring and 

autumn. In the same area, Theule et al. (2015) used TLS to quantify erosion and 

deposition caused by debris flows, and ALS to detect unstable sediment deposits 

that could be a source for new events. In all these studies, the number of the 

debris-flow events was known and the debris-flow catchments were monitored by 

other means. However, when catchment changes are not easily identifiable - in 

the absence of monitoring systems or witnesses - knowing how and when 

individual or multiple debris-flow events occur is challenging. A possibility that 

has not been fully explored in literature is the identification and quantification of 

different debris-flow release processes from multi-temporal laser altimetry 

datasets, where the conditions for their development are poorly monitored. 

Two debris-flow triggering processes were previously hypothesized for the site 

of Ísafjörður (Conway et al., 2010; Decaulne et al., 2005): (i) slope failure, 
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characterised by landslides evolving into debris flows, and (ii) the fire-hose effect, 

in which debris accumulated in pre-existing, steep-sided bedrock passages is 

transported by a surge of water. It is unknown which process dominates and 

determines the local risk. In this chapter, I investigate how two debris-flow 

initiation processes (slope failure and fire-hose effect, which have been 

previously proposed for my study area in the Westfjords of Iceland; Conway et 

al., 2010; Decaulne et al., 2005) manifest themselves in terms of geometric 

properties and geomorphological features recognisable and measurable in 

remote sensing data. Specifically, I quantify the geomorphic effects of debris 

flows on the slope above the town of Ísafjörður through the comparison of two 

repeat aerial photograph and airborne laser altimetry datasets from 2007 and 

2013. In particular, I use the airborne LiDAR data to calculate the volumes eroded 

and deposited along debris-flow tracks by potential multiple debris-flow events, 

and I couple these volume quantifications with the analysis of changes in slope 

and geomorphic observations and interpretations from the aerial photographs. 

This allows us to assess and distinguish the role of two release mechanisms in 

debris-flow generation: slope failure and fire-hose effect.  

Identifying and characterising different debris flows processes is useful for 

understanding both sediment cascades and the implications of the potential risk 

posed by debris flows where they occur near inhabited areas. This can be 

achieved by LiDAR differencing, which in my case has permitted the detection 

and quantification of debris accumulated at high gradients without the assistance 

of any other monitoring system or information on the evolution of the hillslope. 

From remote sensing interpretation alone, I do not know if one or several debris-

flow events have mobilised the material between 2007 and 2013 in the tracks that 
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I analyse, but this debris could be the source-material for potentially large debris 

flows in the future. This kind of study, implemented with in situ channel survey 

and monitoring, can improve both our understanding of how debris flows develop 

and mitigate the risks associated with them. 

 

3.2 Debris-flow activity in the study area 

Slopes in the north-western region of Iceland, the Westfjords (Figure 3.1A), 

are prone to debris flows (Decaulne, 2005). Ísafjörður is the largest town of the 

peninsula, with a population of approximately 2600 inhabitants over an area of 

4.2 km² in 2016. It has more than 150 buildings (including houses, a hospital, a 

church, two schools, two elderly residences, and three kindergartens) less than 

50-300 m from recently emplaced debris-flow runout deposits. Although in this 

century debris flows have not caused major loss of life in the Westfjords, they do 

pose at serious risk local infrastructure and population (Decaulne, 2004). In mid-

June 1999, six debris flows occurred after a sudden and intensive snowmelt 

period on the slope overlooking the town of Ísafjörður, damaging houses and 

infrastructure (Decaulne et al., 2005). Moreover, at least 24 debris-flow events 

occurred on this slope between 1900 and 1999, giving a return period for debris 

flows of 4-5 years (Decaulne et al., 2005). 

My study site is located above the town of Ísafjörður in the Gleiðarhjalli area, 

situated on the western side of the Skutulsfjörður fjord (Figure 3.1A). The fjord 

was shaped by Pleistocene-age glaciers and is carved into the Tertiary Basalt 

Formation, comprised of 2 to 30 m thick jointed basaltic lava flows separated by 

lithified sedimentary horizons (from a few centimetres up to tens of meters thick; 
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Thordarson and Hoskuldsson, 2002), which are gently dipping towards the 

southeast (Kristjánsson et al., 1975; Sæmundsson, 1980).  

The Gleiðarhjalli bench, which is located on the south-eastern side of Eyrarfjall 

Mountain at a height of 470 m above sea level (a.s.l.), is 1500 m long and 450 m 

wide (Figure 3.1B). Deposits of poorly sorted glacial till 20-35 m thick (surveyed 

and measured by visual inspection in the field) are perched on this bench (Figure 

3.2A), at whose margin they are unstable. The till deposits are composed of 

subangular to subrounded clasts varying in size from pebbles to metre-scale 

boulders and lying in a matrix of clay, silt and sand. The deposits are covered by 

centimetre to metre-sized angular clasts from talus deposits, which are either 

lying scattered on the bench or leaning against the rockwall (Figure 3.2B). Chutes 

(i.e., steep-sided passages scoured in bedrock along which the debris flows can 

move) are incised into the exposed rockwall at the edge of the bench (Figure 3.2), 

forming areas through which most of the transfer of sediment to the lower parts 

of the slopes takes place.  
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Figure 3.1. The study site in Ísafjörður, Westfjords. (A) The study area in the Icelandic Westfjords. 

Elevation data are from the Digital Elevation Model over Europe (EU-DEM) from the Global Monitoring for 

Environment and Security service for geospatial reference data access project (GMES RDA). (B) Aerial 

photograph shows the town of Ísafjörður, with debris flows analysed in this study marked with white outlines. 

 

The SE-facing hillsides above Ísafjörður have steep slopes in the range 25° to 

35°, and slightly concave profiles. Below the exposed rockwall, the slope is 

covered by talus material and relict debris-flow deposits (Figure 3.2). Grass, moss 

and patches of dwarf birches and bilberries (30-40 cm high) cover the slope of 

Ísafjörður in its lower part. Trees are absent, apart from two small artificially 

forested areas at the foot of the slope (covering ~43,000 m2 and 6,800 m2 

respectively), planted with spruce (3-4 m high on average) as wind-breaks and 

for aesthetic reasons. The lack of substantial vegetation in the upper part of the 

slope favours erosional processes (e.g., Elwell and Stocking, 1976; Wells, 1981, 

1987). 
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Figure 3.2. Southeast flank of the Eyrarfjall mountain above the town of Ísafjörður showing the four 

debris-flow tracks analysed for this study (debris flow 2DF in (A), debris flows 1DF, 11DF and 12DF in (B)). 

Above the rock cliff it is possible to observe talus fans and perched deposits on the Gleiðarhjalli bench; 

chutes are scoured in the bedrock below the bench ridge and the debris flows’ channels incise the deposits 

from talus material and relict debris flow deposits. Arrows and dashed lines indicate the migration of the 

channels of 1DF and 2DF in the terminal parts, leaving fan-shape debris accumulation. Some of the run-out 

depositional lobes reach the inhabited areas. The white dotted line marks an example of chute area, the 

white indented line an example of crown overlying the main failure scarp. Photograph taken on July 26, 2013. 

 

In Ísafjörður, heavy and prolonged rainfall and rapid snowmelt have been 

recognised as the main factors that promote rapid mass wasting phenomena, 

which are also favoured by the steepness of the slope (Decaulne and 

Sæmundsson, 2003, 2007; Sæmundsson et al., 2003). However, the exact 

physical mechanisms by which debris flows are initiated have been hypothesised 

but not studied in too much detail. This is partially due to the difficulties in 
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accessing and observing the phenomena directly, which is only rarely possible in 

Ísafjörður (Decaulne et al., 2005), and other mountain environments (e.g., Berti 

et al., 1999; Coe et al., 2008; McArdell et al., 2007). 

Among the many possibilities, two processes are most commonly considered 

responsible for triggering debris flow here: slope failure and the fire-hose effect 

(Conway et al., 2010; Decaulne et al., 2005). Initiation by slope failure is 

characterised by one or more discrete slope failures, instigated by changes in 

pore water pressure due to gradual in situ infiltration of rain or snowmelt (e.g., 

Hungr et al., 2001). As failure proceeds, contraction of debris causes an excess 

in pore water pressure, weakening the debris mass and resulting in the 

transformation from localized failure into a debris flow (Iverson, 1997). It is 

believed that this initiation style is experienced in the Gleiðarhjalli area; Decaulne 

et al. (2005) observed that intense precipitation and snowmelt caused the 

saturation of the debris mantle covering the bench. Decaulne et al. (2005) further 

observed that the debris flows begin with rock falls originating from the edge of 

the bench. This implies a subsequent loss of support, leading to the perched 

deposits sliding and then forming channelized debris flows. The authors report 

that, between the rock-fall phase and the debris-flow phase, the uppermost part 

of the tracks were temporarily blocked by the collapsed material from upslope, 

being prone to be re-mobilised by further events.  

Initiation by the fire-hose effect (Johnson and Rodine, 1984) is characterised 

by a concentrated flow of water that entrains loose deposits, which are generally 

located in a steep bedrock channel, torrent or chute (e.g., Godt and Coe, 2007). 

An increase in pore-pressure results in their conversion into a debris flow (e.g., 

Coe et al., 1997; Griffiths and Webb, 2004; Johnson and Rodine, 1984). The 
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recurrence interval of such flows is controlled by the debris accumulation rate in 

the source area and the timing of triggering precipitation. The fire-hose effect has 

been inferred to have been active in the Westfjords based on field inspections 

(Conway et al., 2010; Decaulne and Sæmundsson, 2006), but has never been 

fully characterized and quantified.  

 

3.3 Methods 

3.3.1 Dataset-processing and Digital Elevation 

Model generation and interpolation 

In 2007 and 2013, the U.K. Natural Environment Research Council's Airborne 

Research Facility Data Analysis Node (NERC-ARF-DAN) collected aerial 

photography and LiDAR data for Súgandafjörður and Skutulsfjörður areas in 

Iceland. Details of both aerial surveys are reported in Table 3.1. As the methods 

of remote sensing data collection differed between the two years, including the 

location/type of the reference GPS base stations on the ground, the two LiDAR 

datasets needed further processing to attain a satisfactory comparison. 

Alignment and filtering are required when comparing different type of datasets, in 

order to achieve sufficient accuracy for producing volumetric differencing (e.g., 

Bremer and Sass, 2012; Roberti et al., 2017). Furthermore, co-registration error 

between flightlines needs to be corrected. Approaches such as morphometric 

parameter distributions (Sofia et al., 2013) or spatially variable error models 

(Schaffrath et al., 2015) have been developed to correct these errors. Fuzzy 

inference system (Fis) has also been used to estimate the spatial variability of 

elevation uncertainty in individual DEMs, in order to propagate the uncertainties 

into the so-called DEM of Differences (DoD) map (e.g., Blasone et al., 2014; 
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Bossi et al., 2015; Moss, 2000; Scheidl et al., 2008; Theule et al., 2012), and then 

assess the significance of the propagated uncertainty (Bangen et al., 2016; 

Cavalli et al., 2017; Wheaton et al., 2010). The Iterative Closest Point (ICP) 

algorithm has been successfully used to ameliorate co-registration errors where 

data from individual flightlines can be used (Besl and McKay, 1992; Chen and 

Medioni, 1992; Zhang, 1994). The correction is based on a least squares 

adjustment (similar to that of Akca, 2007), which matches the surface shape 

between each track to individually align the tracks relative to a reference point 

cloud (e.g., Brasington et al., 2000; Lane et al., 2003; Milan et al., 2007). The ICP 

procedure allows to obtain the alignment between two point clouds to be as close 

as possible (e.g. James and Robson, 2014; Micheletti et al., 2015). Since I have 

reliable LiDAR data collected in 2013, and I could use this as the reference 

elevation dataset for aligning the 2007 LiDAR flightline(s), I chose to apply ICP 

procedure. In order to assess the DEM accuracy I assumed the propagated DEM 

uncertainty in the DoD as uniform, and determined a minimum level of detection 

of  above which changes were considered real (Brasington et al., 2000, 2003; 

Fuller et al., 2003). This approach has been successfully used in recent analogue 

case studies (e.g., Bossi et al., 2015; Cavalli et al., 2017). 

Table 3.1 - Details of airborne survey of Súgandafjörður and Skutulsfjörður fjords for year 2007 and year 

2013. 

 

 

Date of collection Type of data Survey instrument Survey details

Aerial 

photography Leica-Wild RC10 63 photographs

LiDAR data Optech ALTM3033 17 lines, 68 M Points, 2.5 points/m²

Aerial 

photography Leica RCD 105 340 photographs

LiDAR data Leica ALS50-II 23 lines, 287 M Points, 1.5 points/m²

05 August 2007

12 August 2013
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The 2007 LiDAR point data have horizontal and vertical shifts of up to 2 m 

between flightlines caused by a lack of between-track corrections in the initial 

processing (such errors are particularly problematic in steep terrain, see Favalli 

et al. (2009) for a full analysis). The 2013 data by comparison have averagely 6 

cm vertical and horizontal differences between overlapping flightlines. I used only 

one flightline from the 2007 LiDAR data and cropped out the area of interest in 

order to reduce the errors from the LiDAR data processing. Cropping the dataset 

into a relatively short along-track segment (1.5 km) reduces the errors introduced 

by poorly integrated flight navigation and positional information. I then corrected 

the mis-alignment between the 2013 and 2007 datasets by means of the open 

source CloudCompare software, using an implementation of the ICP algorithm. I 

used the point cloud from the 2013 LiDAR data as the reference data for the 2007 

data, as the 2007 cloud had more severe co-registration issues. Once corrected, 

the mean value of the normal distances of the 2007 point cloud from the 2013 

reference is 0.49 m (standard deviation 0.28 m); from this value I defined the 

minimum level of detection as ±0.5 m. 

After the co-registration, I imported the point clouds into ArcGIS and gridded 

the LiDAR data at 1 m/pixel, using the return time of the last peak of light to reach 

the receiver from the LiDAR laser shot, which is generally assumed to be the 

ground return. To do so, I used the LAStools extension for ArcGIS, which 

temporarily triangulates the LiDAR points into a Triangulated Irregular Network 

(TIN), and then rasterises the TIN into a Digital Elevation Model. The rasters were 

constructed so as to be orthogonal, i.e. so that the pixel-size and pixel-centres 

were the same. Finally, using ArcGIS, I calculated elevation changes and 
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volumes by subtracting the 2007 gridded data from the 2013 data, producing the 

DoD.  

3.3.2 DEM of Difference Error Propagation 

Any individual errors in the DEMs derived from the LiDAR, generated during 

surveying and post-processing, are propagated into the DoD (Goulden and 

Hopkinson, 2010). The DoD error varies spatially and arises from factors such as 

steepness of the terrain (causing data-gaps), the growth/change of dense 

vegetation, the varying density of the point clouds (data-gaps or false-smoothing) 

or misalignment between datasets (which causes an increase in error with the 

measurements between different datasets; Reuter et al., 2009). On the majority 

of the hillslope of Ísafjörður, between 2007 and 2013 there are few changes in 

elevation above the minimum level of detection (less than 0.5 m vertical change 

for 89% of the area analysed), and those that do occur are usually caused by 

noise or artefacts in the data (e.g., Figure 3.3A-D). Figures 3.3A and B show 

areas with no observable differences in the aerial photographs between 2007 

(Figure 3.3A) and 2013 (Figure 3.3B), yet detectable differences in the DoD. 

Apparent elevation changes of up to ±5 m in the DoD are caused by the 

steepness of the bedrock cliff – where different (sub-pixel) horizontal positions of 

the laser spots between years result in large differences in the height values. 

Artefacts with a magnitude of ±2.5 m can be caused by growth and/or changes 

in vegetation, but such example can be easily identified by comparison with the 

aerial photographs (Figure 3.3C-D). 
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Figure 3.3. DEM of difference error propagation. Aerial photographs from 2007 (left side) and 2013 (right 

side) of a portion of the steep cliff above Ísafjörður (A, B) and of the forest on ESE side of the town (C, D) 

showing different sources of noise in the map of difference in elevation (in the centre, see Figure 3.5 for 

legend). Noise has been cleaned by checking for changes in the aerial photographs and distinguishing the 

signal. 

 

The deposited and eroded volumes along and within the debris-flow tracks are 

key metrics in this study, so I explicitly derived the effects of errors on my volume 

calculations, using the DoD to determine the relative absolute and percentage 

errors in the estimates (Table 3.2). Firstly, I manually selected areas lacking 

visible change from aerial photographs (“stable areas”) and with similar setting 

(i.e., slope angles and vegetation/materials) to the debris flows analysed, and I 
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calculated their volume changes. I then divided the volumes of the sampled 

debris flows obtained from the DoD by the area of the selected zones that showed 

no changes in the aerial images, and multiplying the results by the area of the 

sampled debris flows. The volume error calculated with this approach depends 

on the scale of the process (when the uncertainty on the measurements have 

minimum values, errors are not proportional to the measurement), so errors are 

low for medium-scale flows (volumes between 1000-100,000 m3; Innes, 1983), 

ranging between ±3% and ±5% for deposited volumes and ±4% for eroded 

volumes. Small-scale flows (volumes of 1-1000 m3; Innes, 1983) often have 

higher relative error because they cover smaller areas and mobilise less material, 

giving calculated errors of ±9-11% for deposited volumes and ±5-7% for eroded 

volumes. Particularly high values of error occur where small volume flows cover 

large spatial areas. Furthermore, some of the error values for volumes are 

relatively large (see Table 3.2), because I have used a fixed vertical uncertainty, 

so zones whose volume values are dominated by vertical changes with 

magnitudes close to that of the minimum level of detection (±0.5 m) have large 

percentage errors. 
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Table 3.2 - Results of the measured eroded and deposited volumes and other parameters of debris flows. 

 

 

3.3.3 Track selection, naming and segmentation 

I studied four debris-flow tracks on the slope above Ísafjörður (Figure 3.1B). I 

adopted and extended the naming protocol for debris-flow tracks used in Conway 

et al. (2010), who studied debris flows in the same area. They named 10 debris-

flow tracks using numbers from 1 to 10 followed by the acronym “DF”. As two of 

the debris-flow tracks coincide with two tracks analysed in this study, namely 

debris flows 1DF and 2DF, I used those names. I continued the same numbering 

system for two newly developed debris flows: debris flows 11DF and 12DF 

(Figure 3.1B).   

I selected these four tracks because they show substantial (>±0.5 m) 

geomorphic changes between 2007 and 2013 in the differenced LiDAR datasets. 

These include morphological changes in the chutes at the front edge of the 

Gleiðarhjalli bench and in the upper part of the channels. I focussed my analysis 

at these locations, being the zones of the debris flows where the majority of the 

changes occurred. Two of the four tracks, 11DF and 12DF (Figure 3.2B), did not 

Erosion (m
3
) Error (m

3
) Error(%) Deposition  (m

3
) Error (m

3
) Error (%) Area (m

2
)

Maximum 

lenght (m)

Chute 

width (m)

Elevation 

drop (m)

8552  ± 322  ± 4 4079  ± 223  ± 5 23952 803 125 406

Subareas ID 1DFa 5622  ± 132  ± 2 629  ± 91  ± 15 9845 168 - -

1DFb 256  ± 31  ± 12 2234  ± 21  ± 1 2300 129 - -

1DFc 2674  ± 159  ± 6 1216  ± 110  ± 9 11807 506 - -

5001  ± 183  ± 4 3760  ± 127  ± 3 13596 727 74 411

Subareas ID 2DFa 3601  ± 28  ± 1 63  ± 19  ± 31 2077 51 - -

2DFb 201  ± 43  ± 22 3058  ± 30  ± 1 3225 156 - -

2DFc 1198  ± 111  ± 9 639  ± 77  ± 12 8294 520 - -

862  ± 46  ± 5 339  ± 32  ± 9 3394 325 29 235

Subareas ID 11DFa 832  ± 31  ± 4 70  ± 21  ± 30 2303 187 - -

11DFb 30  ± 15  ± 49 269  ± 10  ± 4 1091 138 - -

628  ± 42  ± 7 271  ± 29  ± 11 3131 286 32 207

Subareas ID 12DFa 549  ± 24  ± 4 82  ± 16  ± 20 1777 137 - -

12DFb 78  ± 18  ± 23 188  ± 13  ± 7 1354 149 - -

Debris flow ID

Debris flow 1DF

Debris flow 2DF

Debris flow 11DF

Debris flow12DF
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exist in the 2007 data. The other two, 1DF and 2DF tracks (Figure 3.2A-B) were 

already present in 2007, but they had changed their form by 2013. Because 1DF 

and 2DF are different from 11DF and 12DF in their size, morphology and the 

processes that controlled their formation (as discussed below), I treat the two 

pairs of debris flows separately in the “Results” and “Discussion” sections. 

Having differenced the LiDAR datasets, I observed that, within the four debris-

flow tracks, elevation changes occur in clearly defined, down-flow spatial 

domains. Since the debris flows tracks present an atypical distribution of volumes, 

I segmented them and outlined different subareas according to the predominance 

of negative or positive elevation change from visual inspection; for example, 

negative elevation change was predominant in the upper part of 2DF track, so I 

split it from the strongly contrasting area below, characterised by a positive 

change in elevation (see Figure 3.5A in “Results” section). This in turn allowed 

us to calculate the eroded and deposited volumes for these subareas and for the 

debris-flow tracks as a whole (see Table 3.2 in “Results” section). 

3.3.4 2007-2013 Comparison  

In order to analyse the changes occurring along each debris-flow track, I 

adopted the following approaches: 

i) in order to evaluate the deposited and eroded volumes within each debris-

flow track, I derived the volumetric changes in these zones (i.e., debris-flow tracks 

and debris-flow sub-areas); 

ii) I visually identified geomorphological changes occurred along the tracks in 

aerial photographs. Additionally, I performed repeated field observations 

(summer 2012, 2013, 2016) in order to check what I observed and mapped from 

remote sensing;   
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iii) I created a slope map at 1 m/pixel using the standard tools provided in 

Spatial Analyst of ArcGIS; the slope angle was derived using the steepest 

downhill slope as calculated by fitting a plane through the eight nearest 

neighbours (neighbourhood slope algorithm, also known as the average 

maximum technique; e.g., Burrough et al., 2015). Slope was evaluated for each 

sub-areas of the four debris flows: I took topographic profiles along the line of 

steepest descent, then extracted both the elevation values and the slope values 

for both the 2007 and 2013 DEMs along those lines. Accumulation of boulders 

could generate high slope angles where they pile onto each other, but in my case 

boulders do not register in the slope map as they are smaller than its resolution.  

 

3.4 Results 

3.4.1 Morphology and morphometry of debris-

flow tracks 1DF and 2DF  

1DF and 2DF are the largest debris-flow tracks analysed in this study, having 

mobilised volumes up to 14 times larger over areas up to 8 times wider than 11DF 

and 12DF (see dimensional details in Table 3.2). They are deeply incised and 

have chutes carved in bedrock in their upper part, with channels cutting slope 

deposits (Figure 3.2). In their terminal parts it is possible to observe fan-shaped 

debris accumulations (Figure 3.2). Over the whole debris-flow tracks, total 

erosion volumes are larger than their total deposition volumes. 1DF has an 

erosion volume more than twice the depositional volume, while 2DF has 25% less 

deposition than erosion over the whole volume mobilised (see Table 3.2). The 

net sediment budget should be near zero, but the deposits of the terminal lobes 

that reached the defensive protections were removed by the local authorities. 
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Figure 3.4. Morphology and morphometry of debris –flow track 1DF. (A) Elevation-difference map of 

debris-flow track 1DF obtained calculating the difference in elevation occurred between 2007 and 2013, 

overlying the hillshade model derived from 2013 LiDAR. (B) Maps of the erosion and deposition distribution 

of debris-flow track 1DF derived by differencing the LiDAR generated topography from 2007 and 2013.  The 

debris flow was segmented in subareas of prevailing erosion and deposition along its length. Distal lobes 

extensively modified during protection works (Figure 3.10) are omitted to avoid confusion. (C-F) Aerial 

photographs of the upper zones of debris flows 1DF, 11DF and 12DF from 2007 (C) and 2013 (D) compared, 

with simplified sketches of the main observable features (E and F, where the hillshade models derived from 

2007 and 2013 LiDAR data respectively are overlain by aerial photographs in transparency). 

 

1DFa and 2DFa: Most of the erosion in 1DF and 2DF occurs in their upper 

subareas (designated as “a”), namely in the perched material at the edge of the 

bench and in the apical chutes carved into the bedrock. Erosion occurs in sub-

areas 1DFa and 2DFa, amounting respectively to 5600 m3 and 3600 m3 (Figure 

3.4B for 1DF, Figure 3.5B for 2DF, Table 3.2), over a great range of slope (Figure 
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3.6). For both the debris-flow tracks in the time span between 2007 and 2013, 

the slope angle below the scarps and in the apical chutes remains on average 

above 35° (Figure 3.6A-H, Table 3.3). Erosion is also evident from the 

morphology of the upper sub-areas 1DFa and 2DFa. In 1DFa in 2007, tension 

cracks, associated with areas of erosion located directly below them, cut the 

bench above the crown (Figure 3.4C, E), with three more appearing in 2013, 

concomitant with enlarged erosion areas (Figure 3.4D, F). In 2DFa, the main 

failure scarp in 2013 originated from two already well defined release scarps that 

since 2007 regressively eroded 22 m (Figure 3.5E, F; note the paler material 

marking the main scarp below the crown in Figure 3.5D). Tension cracks that are 

present above the crown in 2DFa in 2007 had been partially erased by regressive 

erosion by 2013. Springs rise at the contact between the deposits perched on the 

bench and the underlying bedrock (Figure 3.5D, F).  
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Figure 3.5. Morphology and morphometry of debris –flow track 2DF. (A) Elevation-difference map of 

debris-flow track 2DF obtained calculating the difference in elevation occurred between 2007 and 2013, 

overlying the hillshade model derived from 2013 LiDAR. (B) Maps of the erosion and deposition distribution 

of debris flow track 2DF derived by differencing the LiDAR generated topography from 2007 and 2013. The 

debris flow was segmented in subareas of prevailing erosion and deposition along its length. Distal lobes 

extensively modified during protection works (Figure 3.10) are omitted to avoid confusion. (C-F) Aerial 

photographs of the upper zones of debris flow 2DF from 2007 (C) and 2013 (D) compared, with simplified 

sketches of the main observable features (E and F, where the hillshade models derived from 2007 and 2013 

LiDAR data respectively are overlain by aerial photographs in transparency). 

 

1DFb and 2DFb: Immediately below 1DFa and 2DFa, positive elevation 

change of up to ~5 m occurs in the chutes and in the upper channels (Figure 3.4A 

for 1DF, Figure 3.5A for 2DF). The majority of the accumulated deposits of 1DF 

and 2DF, 2200 m3 and 3100 m3 respectively (Table 3.2), lie in these subareas 

(designed as “b”). In 1DFb, the slope angle values for 2013 are equal to or less 
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than those of 2007, with deposition occurring at a high slope gradient (mean of 

38° in 2013, 49° in 2007, Table 3.3). In subarea 2DFb, slope angle values 

remained constantly high along the profile between 2007 and 2013 (mean is 37-

38°, Table 3.3, Figure 3.6E-H). In 1DFb, the aerial images show that new deposits 

have been transferred into the chute by 2013, obliterating the scours and filling 

the zones of erosion that were present in 2007 (Figure 3.4C-F). In 2DFb, the 

upper catchment, the chute and the upper channel were largely empty of debris 

in 2007, whereas by 2013 they are filled by a deposit of blocky material (Figure 

3.5C-F).  
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(Figure continues in the next page) 
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Figure 3.6. Slope analysis of debris flows. Aerial photographs of the upper zones of debris flows from 

2007 (A, E, I) and 2013 (B, F, J) showing the steepest slope lines with colour indicating the slope values. 

Below, plots of the slope angles from 2007 (in red) and 2013 (in blue) against the long profile representing 

the terrain elevation in 2013 (black continuous line) for subareas “a” (C, J, K, M) and “b” (D, H, L, N). Red 

and blue continuous lines indicate the moving average (MA) for year 2007 and 2013 respectively. 

 

1DFc and 2DFc: Further downstream, I have grouped smaller, more 

discontinuous zones of negative and positive elevation change of up to 1 m in 

magnitude in the sub-areas 1DFc and 2DFc (Figure 3.4A-B for 1DF, Figure 3.5A-

B for 2DF). These zones of erosion and deposition do not correspond to the 

position of the channel and levees, but they alternate along the channel, almost 
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as far downslope as the terminal lobes. Levees are built up in association with 

discrete zones of erosion. Part of the debris transferred between 2007 and 2013 

was deposited here (1200 m3 in 1DFc and 600 m3 in 2DFc, see Table 3.2). In 

both the subareas, the slope angle values do not greatly vary between 2007 and 

2013 (Table 3.3).  

Table 3.3 - Analysis and uncertainty values for slope angle values plotted on profiles in Figure 3.6 

 

 

3.4.2 Morphology and morphometry of debris-

flow tracks 11DF and 12DF  

Debris-flow tracks 11DF and 12DF are smaller than 1DF and 2DF (see 

morphometric properties in Table 3.2). They originate from the edge of the bench, 

and their channels are only moderately incised into the existing slope deposits. 

The spatial distribution of negative elevation change extends from the upper 

catchments, along the chutes and into the upper part of channels newly incised 

into the slope deposits (Figure 3.7). 11DF and 12DF tracks are unconstrained by 

previous levees in their mid-sections and have newly formed levees and 

depositional lobes in their lower reaches (Figure 3.7).  

Median 

slope
Mean slope

Standard 

Deviation

Median 

slope
Mean slope

Standard 

Deviation

1DFa 36.91 35.98 ±10 37.29 35.33 ±8

1DFb 37.96 38 ±7 48.83 49.44 ±8

1DFc 30.18 30.19 ±11 25.83 25.95 ±10

2DFa 38.08 37.61 ±7 44.21 43.83 ±13

2DFb 35.97 37.08 ±7 37.34 37.81 ±3

2DFc 32.57 31.15 ±7 30.73 32.4 ±12

11DFa 36.37 37.52 ±5 37.58 40.43 ±10

11DFb 33.85 33.74 ±2 33.33 33.24 ±2

12DFa 34.31 40.86 ±7 37.1 40.22 ±9

12DFb 34.31 34.48 ±2 34.65 34.46 ±2

2013 2007

Debris flow 

subareas ID
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11DFa and 12DFa: On the failure scarps, the negative elevation change 

between 2007 and 2013 is up to 2.5 m, whereas in the chutes and channels it is 

up to 5 m (Figure 3.7A). Erosion is dominant in these sub-areas: 800 m3 in 11DFa 

and 500 m3 in 12DFa (Table 3.2). Both 11DFa and 12DFa erosional subareas 

(Figure 3.7B) show an anti-correlation in their slope profiles between the two 

observation dates: low slope values in 2007 match increased slope angle in 2013, 

and vice versa (Figure 3.6I, K, M, Table 3.3). Between 2007 and 2013, in both 

the upper catchments and chutes of 11DF and 12DF the slope angle in the chutes 

generally remained above 35°. In the 2007 aerial photographs, the presence of 

tension cracks and material different in colour and with fewer blocks than the 

surroundings in the scarp area of 11DF indicates that erosion had already 

occurred (Figure 3.4C, E). A well-defined main failure scarp and associated 

erosion are observable in the upper catchments in 2013, and two new channels 

overlay the coarse grey deposits of the talus slope (Figure 3.4D, F). Springs rise 

at the contact between deposit mantle on the bench and the underlying bedrock 

(Figure 3.4D, F) 
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Figure 3.7. Morphology and morphometry of debris –flow tracks 11DF and 12DF. (A) Elevation-difference 

map of debris-flow tracks 11DF and 12DF obtained calculating the difference in elevation between 2007 and 

2013, overlying the hillshade model derived from 2013 LiDAR. (B) Maps of the erosion and deposition 

volume distribution of debris-flow tracks 11DF and 12DF derived by differencing the LiDAR generated 

topography from 2007 and 2013.  The debris flows were segmented in subareas of prevailing erosion and 

deposition along their length. 

 

11DFb and 12DFb: These sub-areas (Figure 3.7B) show zones of positive 

elevation change (up to 1 m), and these take the form of slightly outlined lateral 
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levees and a straight terminal lobe (Figure 3.7A). These depositional landforms 

constitute 300 m3 of material in 11DFb and 200 m3 in 12DFb. The slopes along 

the steepest profiles of 11DFb and 12DFb show a steady trend with high average 

values (33°-34°) in both years (Figure 3.6J, L, N, Table 3.3). 

 

3.5 Discussion 

3.5.1 Analysis of debris-flow initiation: 11DF and 

12DF 

A debris flow originates by slope failure when individual failures, or numerous 

small failures, coalesce, transforming into a debris flow (e.g., Fairchild, 1987; 

Iverson, 1997; Rodolfo et al., 1996). Slope failure-initiated debris flows require 

the availability of loose material on steep slopes and an accumulation of water in 

the deposits, so they occur when rainfall and snowmelt cause an increase of 

pore-water pressures (Anderson and Sitar, 1995; Sidle and Swanston, 1982). 

This can commonly cause the rise of a water table at the contact of the debris 

cover with the impermeable bedrock or on top of impermeable layers (Campbell, 

1975; Decaulne et al., 2005; Iverson, 1997). In the Westfjords of Iceland, long-

duration rainfall and/or snowmelt associated with rain are the two main sources 

of water for triggering debris flows. For example, extreme rainfall of 63 mm/24h 

after one month of rainy days (about 140 mm of cumulative precipitation) 

triggered the debris-flow event in Ísafjörður in September 1996 (Smith et al., 

2009). Over 40 mm of one month-cumulative precipitation related to snowmelt 

triggered a debris-flow event in Ísafjörður in June 1999, after a sudden (two 

weeks) increase in air temperature from 1-4°C to 14-17°C (Decaulne et al., 2005; 

Smith et al., 2009). In Decaulne et al. (2005), the initiation for the debris flow-
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events in Ísafjörður in June 1999 is identified by the appearance of the subsurface 

runoff at the edge of the Gleiðarhjalli bench, causing erosion of material and 

generation of rotational slide evolving into debris flows downslope. Debris flows 

11DF and 12DF — that were not present at the time of observations made by 

Decaulne et al. (2005) — have these characteristics. Springs coming out between 

the sediment mantle and the bedrock are visible in aerial images in the scarp of 

11DF (Figure 3.4D,F) showing that runoff could have initiated erosional 

processes. This is a condition that has been observed in other environments; 

Bremer and Sass (2012) in the Austrian Alps identified the starting zones of 

debris flows at the bedrock-debris interface where runoff is concentrated. The 

combination of springs and loose debris has also been reported in the Alpine 

environment as one of the most important preparatory factors for slope failure 

(e.g., Marchi et al., 2002; Wieczorek and Glade, 2005). This is a plausible 

mechanism in Ísafjörður for the weakening and saturation of the deposits, leading 

to the development of discrete slope failures evolving into debris flows. 

Debris flows 11DF and 12DF have a simple morphology: erosion in the upper 

part (11DFa with -832 ±31 m3, and 12DFa with -549 ± 24 m3) and deposition in 

the terminal part (11DFb with 268 ±10 m3, and 12DFb with 188 ± 13 m3). Erosion 

extends from the edge of the bench, to the chutes, into the newly formed channels 

on the hillslope. Simple curved main scarps and crown-parallel tension cracks 

are due to rotational sliding process (Figure 3.4C-F, Figure 3.8A). A negative 

elevation change of up to 5 m in the chute and in the channel shows that, once 

slope failure started from the front of the bench, it mobilised material that was 

already in transfer, and with saturation evolved into a debris flow, forming a 

terminal lobe and lateral levees. Sediment transfer is further evidenced by the 
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fact that in the chutes and upper channels, low slope values in 2007 match 

increased slope angles in 2013, and vice versa. The entrainment and transport 

of debris from the chutes and channels is also expected because of their gradient 

above 35° both in 2007 and 2013.   Debris-flow tracks 11DF and 12DF are short: 

<250 m long. 

My suite of observations and measurements for 11DF and 12DF tracks fits 

with the characteristics of the slope failure process reported in literature. Theule 

et al. (2012) used multi-temporal topographic surveying from TLS and ALS to 

monitor sediment transport by two debris flows in the French Alps. Low rainfall 

intensity events caused short-runout debris flows (less than 100 m) generated by 

talus slope failure (magnitude of erosion 266 m3, magnitude of deposition 268 

m3). Cannon et al. (2001) reported ~84 debris flows in Colorado initiated by 

landslides; they back-traced the debris-flow paths to discrete landslide-scar 

sources and estimated their volumes, which had a range of ~95 to 2500 m3. 

Debris flows in Switzerland have been shown to originate from individual shallow 

rotational slides on slopes with angles between 25° and 45°, and with volumes of 

tens to a few hundred cubic meters (Hürlimann et al., 2003). The order of 

magnitude of the volumes and the size and morphological characteristics of the 

debris flows analysed in these three studies match well with my quantification 

and observations of debris-flow tracks 11DF and 12DF (Figure 3.8A).   



Chapter 3 – Debris-flow release processes  

 
 

66 
 

 

Figure 3.8. Simplified sketch of the main geomorphological characteristics of the slope failure (A) and 

the fire-hose effect (B). 
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3.5.2 Analysis of debris-flow initiation: 1DF and 

2DF 

Material released by slope failure can be transferred into a channelized area. 

Then, debris can either be transferred down slope, if saturated, evolving into a 

debris flow, or can cease to be mobile, generating a debris dam and obstructing 

the channel (Bovis and Jones, 1992; Iverson et al., 2000). Formation of such a 

debris dam creates the optimal conditions for the development of the fire-hose 

effect. This mechanism occurs when an overland flow is concentrated by chutes 

or depressions in the bedrock and becomes a debris flow when impinging on 

loose debris accumulated in those depressions (Berti et al., 1999; Berti and 

Simoni, 2005; Coe et al., 1997, 2008; Curry, 1966; Fryxell and Horberg, 1943; 

Glancy and Bell, 2000; Godt and Coe, 2007; Johnson and Rodine, 1984; Larsen 

et al., 2006). Coe et al. (2008) reported that the initiation via the fire-hose effect 

is controlled by the sediment supply, rather than by the moisture level.  

In the Westfjords, Decaulne and Sæmundsson (2006) link the presence of 

release scars to debris flows originated by rotational slides. In Ísafjörður, debris 

flows tracks 1DF and 2DF ‒ not of new formation as 11DF and 12DF, but already 

formed at the time of the surveys ‒ have curved release scarps showing signs of 

regressive erosion, ephemeral springs at the contact between loose debris and 

bedrock, erosion in the upper catchment (subareas 1DFa and 2DFa), and a main 

depositional area in the chute (subareas 1DFb and 2DFb). These are all evidence 

of slope failure, which through rotational sliding eroded material in the upper 

catchments and dammed the chutes depositing up to 3000 m3 of debris at high 

slope angles (>35°). The slope failure process in this case has generated the 



Chapter 3 – Debris-flow release processes  

 
 

68 
 

preparatory conditions for future debris flows to occur. It is improbable that the 

deposits currently located in the chutes remains stable.  

In particular, I believe that the debris-flow tracks 1DF and 2DF show the 

preparatory conditions for the fire-hose effect. 54.7% and 81.3% respectively of 

the overall deposited volumes in 1DF and 2DF are gathered in the chutes. It has 

been observed that hundreds to few thousand cubic meters of loose deposits 

reflects pulses of sediment supply from upslope catchments (Theule et al., 2015), 

and that these pulses can be induced and fed by processes such as rock falls 

(Loye et al., 2016). Cascades of processes leading to slope failure has been 

observed in the field and in experiments, where surface water runoff causes 

erosion and accumulation of material, subsequently mobilised by shallow slides. 

Depending on the topography, sediment can be re-accumulated and periodically 

released as a debris flow surge when impinged on by water flow (Hu et al., 2016; 

Kean et al., 2013). 

Debris flows can be initiated by saturation and breaching of dams of sediment 

located in channels. I suggest that in 1DF and 2DF tracks there has been scarp 

failure and sediment storage in the chutes and channels, a setting that is 

favourable to fire-hose debris flows. I hypothesise that some of the accumulated 

debris has already been transported downslope by the fire-hose effect. This is 

suggested by a trend of alternating zones of erosion and deposition throughout 

the 1DF and 2DF tracks and at different scales in the different subareas (Figure 

3.8B).  For example, in the lower parts (1DFc and 2DFc) of debris-flow tracks 

1DF and 2DF, small zones of deposition and erosion are aligned within the 

channel, and along the central steepest path in the upper catchments and apical 

chutes, particularly clearly in 1DFa (Figure 3.4B, Figure 3.5B). I infer that this 
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setting cannot be due to the failure of pre-existing material, such the collapse of 

lateral levees or lateral banks (Frank et al., 2015; Hu et al., 2016), as in the DoD 

erosion of these features would be visible in correspondence of deposition in the 

chute or the channel. Therefore, I interpret these alternating zones of erosion and 

deposition to be likely the result of the transport of debris by the fire-hose effect: 

this has caused instantaneous sediment-entrainment, as the built-up of the lateral 

levees occurs in association of discrete erosion zones in the chutes and channels 

(potential impact points; Coe et al., 2008). The presence of these fire-hose events 

is also supported by the erosion volume being larger than the deposited one (i.e. 

debris has left the survey zone). 

In Table 3.4, I compare my volume calculations to the volume results obtained 

by Decaulne et al. (2005) and Conway et al. (2010). My deposition results for 1DF 

(4079 m3) and 2DF (3760 m3) are similar to those of Conway et al. (2010): 8287 

m3 and 1925 m3 respectively for the same tracks. The deposition value calculated 

for debris flow 2DF by Decaulne et al. (2005) matches fairly well with my 

calculation, but the event described by these authors extended to the base of the 

slope. In my  study, much of the total deposited volumes for 1DF and 2DF lies in 

the chutes (1DFb with 2234 ± 21 m3 and 2DFb with 3058 ± 30 m3 in Table 3.4), 

rather than along the tracks, or in the depositional lobes as measured by 

Decaulne et al. (2005) and Conway et al. (2010). These volumes are of the same 

order of magnitude as the material mobilised by a debris flow in 1999 (estimates 

at 3000 m3 for 2DF; Decaulne et al., 2005) and from 1999 to 2007 (1925 m3 for 

2DF; Conway et al., 2010). Previous studies (Conway et al., 2010; Decaulne and 

Sæmundsson, 2006; Glade, 2005) recognised debris flows that had originated 

through the fire-hose effect in other areas of the Westfjords in Iceland, but with a 
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lower frequency (~10 years return) than the mean return period of Gleiðarhjalli 

area (4-5 years; Decaulne et al., 2005). Those previous studies considered the 

fire-hose effect to only involve smaller volumes of material (700-1000 m3), based 

on debris collected in the chutes by weathering and erosion of the bedrock (i.e. 

those flows are most likely supply-limited). Since 2007, much larger volumes 

gathered in the chutes of 1DF and 2DF tracks (subareas “b”) at high slope angle 

(~37-38°, see Figure 3.6). This setting is vulnerable to the fire-hose effect, and 

shows high potential mobility of the debris in the chutes of the 1DF and 2DF 

tracks.  

Table 3.4 - Data regarding the debris flows described in this study, compared with the data of Conway et 

al. (2010) and Decaulne et al. (2005). 

 

Debris flow 

ID

Years of 

activity

Years of 

data 

collections 

and authors

Method of 

survey

Estimated 

deposition m3 

(standard 

error)

Deposition  m3 

(relative 

uncertainty) - 

This study

Estimated 

erosion m3 

(standard 

error)

Erosion  m3 

(relative 

uncertainty) - 

This study

Summer 

2007, 

Summer 

2008: 

Conway et al. 

(2010)

LiDAR/airborne 

photographs, 

DGPS

8000 (±66%) _ 41000 (±38%) _

Summer 

2007, 

Summer 

2013: This 

study

LiDAR/airborne 

photograph

_ 4079 (±5%) _ -8552 (±4%)

Summer 

1999: 

Decaulne et 

al. (2005)

Aerial 

photographs, 

field survey

3000 _ _ _

Summer 

2007, 

Summer 

2008: 

Conway et al. 

(2010)

LiDAR/airborne 

photographs,  

DGPS

2000 (±134%) _ 16000 (±62%) _

Summer 

2007, 

Summer 

2013: This 

study

LiDAR/airborne 

photographs

_ 3760 (±3%) _ -5000 (±4%)

11DF 2007-2013 Summer 

2007, 

Summer 

2013: This 

study

LiDAR/airborne 

photographs

_ 339 (±9%) _ -862 (±5%)

12DF 2007-2013 Summer 

2007, 

Summer 

2013: This 

study

LiDAR/airborne 

photographs

_ 271 (±11%) _ -628 (±7%)

1965, June 

1999, June 

2006, 2007-

2013

June 2006, 

2007-2013

1DF

2DF
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3.5.3 Summary of debris-flow initiation 

processes identified in Ísafjörður 

I have shown that the use of differenced LiDAR datasets for volume change 

detection, integrated with slope and geomorphic analysis from remote sensing 

data, and demonstrate its potential for identifying debris-flow initiation processes. 

The deposits in the chutes described by us would be “invisible” in the datasets of 

Conway et al. (2010) and Decaulne et al. (2005), since in their field-based studies 

they could not quantify the material in the chutes of the flows. My approach of 

identifying pre- and post-events changes in topography, volumes, slopes and 

morphology allowed us to distinguish between slope failure initiation process and 

the formation of preparatory conditions for the fire-hose effect without having to 

witness them, making possible a discrimination that would have been virtually 

impossible otherwise. 

The slope failure and the fire-hose effect as initiating processes for debris flows 

in the Westfjords were previously only hypothesised (Conway et al., 2010; 

Decaulne et al., 2005; Decaulne and Sæmundsson, 2006). The comparison of 

airborne datasets with a six-year separation shows that the four debris-flow tracks 

analysed are geomorphically distinctive (see Figure 3.8) and show two different 

modes of flow initiation and evolution: 

(1) Slope failure is the mechanism that triggered the newly-developed 

debris flow 11DF and 12DF, and that caused erosion in the upper 

catchments and deposit transfer in the chutes of the already-formed 1DF 

and 2DF tracks. 

(2) I have been able to quantify the magnitudes of the volumes of material 

stored within debris-flow chutes and tracks above Ísafjörður by slope 
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failure: this has produced debris dams at high slope angle, forming the 

preparatory conditions for the fire-hose effect. Part of this debris has 

probably already been transported by this mechanism. The large volumes 

of material stored in the chutes and channels of 1DF and 2DF (2000-3000 

m3 in subareas 1DFb and 2DFb) in the past were moved in a single sudden 

event, so they provide a substantial amount of material that could be 

mobilised by the fire-hose effect, leading to potentially hazardous debris 

flows, as cyclic damming has been proved to enlarge the size of new 

debris-flow pulses (Hu et al., 2016). This further suggests that this 

repeated storage of large volumes of sediment in the upper parts of the 

slope could result in longer runout debris-flow tracks, compared to smaller 

flows that are formed by single slope failures. 

3.5.4 Implications for potential mobility and 

hazard 

In general, slope angles exceeding 20°–40° are sufficient for the development 

of slides in dry conditions, and these values can be much lower in saturated 

conditions, depending on the nature of the material (Anderson and Anderson, 

2010). Mean values of slope angles in 2013 in the upper zones of all the analysed 

debris flows are high (Table 3.3; 36° in 1DFa, 38° in 2DFa, 37° in 11DFa, 41° in 

12DFa). Instead of decreasing since 2007, the slope angle in the scarp zones is 

maintained, hence prone to new slides. I also found such high angles in other 

debris-flow chutes along the slope above Ísafjörður (Figure 3.9). Over an area of 

0.55 km2 defined along the edge of the bench, I calculated that ~17% is occupied 

by deposits perched on slopes exceeding 35° and ~4% exceeding 45°. This 

means that all these areas could be prone to failures. 
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In geomorphologic studies, the mobility of gravitational movements has been 

related to the volume and angle of repose (Corominas, 1996; Legros, 2002; 

Rickenmann, 1999; Toyos et al., 2008). Steep slopes and initial failure volume 

have previously been shown to be important factors with respect to debris-flow 

initiation (Bovis and Dagg, 1992; Iverson, 1997; Brayshaw and Hassan, 2009). 

Steep channels are intrinsically less stable than low-angle channels, thus debris-

flow initiation is more likely. Additionally, large sediment volumes — which can 

self-increase as they travel downslope if runoff-initiated, as with fire-hose or 

sediment bulking (Godt and Coe, 2007) — usually travel at a higher flow speed 

than small failures when they enter the channel. Large volumes acquiring high 

speed are also more likely to impinge catastrophically on saturated deposits 

stored in the channel, triggering a further debris flow. Furthermore, the incision of 

the channel can progressively increase the volume of the flow during different 

debris-flow surges, with further material supplied in the flow by processes like 

channel scouring (e.g., Berti et al., 1999; Hungr et al., 2005; Rickenmann and 

Zimmermann, 1993). For these reasons, deeply incised pre-existing tracks like 

1DF and 2DF in Ísafjörður are a further source of instability for the material 

upslope, and constitute a preferential path for sediment delivery downstream.  

 

Figure 3.9 - Slope map calculated from DEM 2013, showing loose deposits with angle higher than 35° 

and 45°. 

 



Chapter 3 – Debris-flow release processes  

 
 

74 
 

A high mobility debris flow, such as those that could be initiated by the fire-

hose mechanism in tracks 1DF and 2DF, poses at potential risk people and 

properties. The construction of new engineering solutions (in Figure 3.10 barriers 

A, 4A and 4B realised with gabions) and the improvement of old ones (barrier 3) 

to protect Ísafjörður from debris flows and snow avalanches were commissioned 

in 2012 by the municipality of Ísafjörður (report in icelandic) and constitute a 

substantial improvement to the risk mitigation of the town. Old barrier 3 has been 

raised from 3 m to 5 m, while the new ones reach heights of up to 14 m. As 

barriers A and 3 are positioned beneath debris flow 2DF, they have the potential 

to retain a new flow in this track. However, there is no protection apart from the 

ditch beneath debris flow 1DF, whose terminal lobe deposits are located just 90 

m above the main road (Figure 3.10).  

The presence of these engineering solutions suggests that previous studies 

contributed to planning the measures of risk mitigation for the town of Ísafjörður. 

Further efforts should be made in understanding debris-flow initiation, as the 

reliance of runout distance, flow volume, and frequency of repeat for debris flows 

on their initial triggering mechanisms has broad implications for assessment of 

debris-flow hazards.  

Finally, I note that the high quality topography data that can be obtained from 

airborne LiDAR surveys can be effectively used for hazard-monitoring purposes, 

but they are expensive and time-consuming to process. In this perspective, the 

use of Unmanned Aerial Systems (UAS) able to collect topography data (usually 

from photogrammetry) and remote sensing images has been proven a valuable 

resource for high-resolution hazard surveys (Jordan and Napier, 2015; Lucieer et 

al., 2014; Mancini et al., 2013), and could be used as a data source for the same 
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kind of analyses that I describe here. Annual UAS surveys of the debris-flow 

tracks above Ísafjörður could provide a flexible, cost-effective, and time efficient 

method for monitoring their evolution, especially the build-up of deposits in 

unstable parts of long tracks located above inhabited areas. Such data would 

also provide an important scientific resource for furthering the study of debris-flow 

initiation and evolution. 

 

Figure 3.10. Plan of the snow avalanche and debris-flow protection measures ordered by the municipality 

of Ísafjörður in 2011 (protection measures have the same naming protocol used in the report in Icelandic 

from the municipality). Ditch and barrier 3 were already present in 2013 (ditch 2-3 m deep, barrier 3 3 m 

high). Dashed red line mark the perimeter of studied debris flows. 

 

3.6 Conclusions 

I have compared two airborne datasets (LiDAR topography and aerial images), 

collected in 2007 and 2013, that describe debris flows above the town of 
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Ísafjörður in Iceland. This multi-temporal high-resolution approach reveals details 

about debris-flow processes in the steepest source areas that previous studies 

using traditional survey techniques (i.e., Decaulne et al., 2005; Conway et al., 

2010) were unable to fully analyse. My main conclusions are:  

a) Slope failure of the deposits from the edge of the Gleiðarhjalli bench is the 

dominant initiation process, leading to a new generation of debris flows above the 

town (11DF and 12DF) and mobilising debris now in transit in the chutes and 

upper channels of pre-existing tracks (1DF and 2DF). The fire-hose effect could 

re-activate older flows (1DF and 2DF), and has probably already mobilised debris 

within their channels. 

b) The two mechanisms can be geomorphologically distinguished, with slope 

failure characterized by a simple upper-lower erosion-deposition pattern, defined 

scarps with possible regressive erosion, steep (>35°) discrete slide surfaces with 

ephemeral springs, modest (below 1000 m3) mobilised volumes, and short-

runout. Preparatory conditions for the fire-hose effect-triggered debris flows are 

discrete zones of deposited material at high angle (>35°) in the chute and along 

the channel, and alternating zones of fill and scour along their whole length. 

c) Volumes of debris stored in the chutes and upper channels of medium-

scale debris-flow tracks 1DF and 2DF (2200-3000 m3) are stored at high angles 

(37-38°) and have the same order of magnitude as those estimated for single 

damaging events that happened in the past (Conway et al., 2010; Decaulne et 

al., 2005). I infer that these two debris dams have high potential mobility. This 

confirms hypotheses previously suggested (but not confirmed directly, nor 

precisely quantified) by Decaulne et al. (2005) and Conway et al. (2010) – namely 

that there are large volumes of material blocking steep channels in Ísafjörður.  
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More widely, I have shown that my geomorphic criteria applied on LiDAR 

differencing has permitted to detect, quantify and characterise debris 

accumulated at high gradients, without the assistance of any other monitoring 

system or information on the evolution of the debris flow and of their triggering 

conditions. This work accomplishes one of the final aims of the thesis, namely the 

identification of the different release processes of debris flows in Iceland, and the 

quantification of their geomorphological and hazardous impact. The slope of 

Ísafjörður is extremely prone to activation and re-activation of debris flows, so this 

kind of study in this and other debris-flow threatened areas, supported by in situ 

channel survey and monitoring, can improve our understanding of both how 

debris flows develop and how to mitigate the risks associated with them. 
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Chapter 4 . The dynamics of landslides 

induced by ground-ice degradation: two 

case studies in northern Iceland 

4.1 Introduction 

In Chapter 2, I reported that rapid mass movements are one of the most 

obvious reactions to climate change of mountain slopes affected by permafrost. 

The influence of the changing cryosphere on the stability of rock walls is well 

documented (e.g., Gruber and Haeberli, 2007), and the frequency of periglacial 

rock falls has increased over the past century in cold mountain environments 

worldwide (e.g., Beniston et al., 2018; Clague et al., 2012; Haeberli et al., 2011; 

Huggel et al., 2012; Kellerer-Pirklbauer et al., 2012; Phillips et al., 2017). Active 

layer detachments and thaw slumps caused by permafrost degradation are also 

well-documented in areas with continuous permafrost (Blais-Stevens et al., 2015; 

Günther et al., 2016; Huscroft et al., 2003; Lewkowicz and Harris, 2005b; Segal 

et al., 2016). However, little is known about how the dynamics of rapid mass 

movements involving loose deposits, such as debris flows and debris slides, are 

conditioned by thawing ground ice in periglacial environments. This Chapter aims 

therefore to explore the morphological impact of two landslides in northern 

Iceland, where ground ice was found after their occurrence. This because 

understanding the geomorphological signatures of these underreported 

landslides can attest the presence of permafrost and its ongoing degradation, and 

can aid in reconstructing the dynamics of the failures and in evaluating their 

potential hazard. 
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Few examples of landslides involving loose debris in permafrost terrains are 

reported in the literature. In particular, direct observation of frozen landslide 

material during or after the occurrence of rapid mass movements that involve 

loose debris, such as talus or moraine deposits, is very rare (Brideau et al., 2009; 

Huscroft et al., 2003; Lyle et al., 2004, 2014; Sæmundsson et al., 2018). This is 

due to the fact that, once mobilised, frozen material thaws rapidly; furthermore, 

this type of landslide commonly occurs in remote glacial and periglacial areas, so 

they are either not witnessed, or reported a long time after their occurrence. 

Nevertheless, these observations are crucial, as they help to understand the 

effect of the presence of ice on the mobility of the landslide. The Little Salmon 

Lake landslide, a debris slide in Yukon that developed in ice-cemented deposits, 

is an exceptional example where debris cemented by ground ice was observed 

in the landslide deposits a few days after the occurrence of the failure (Lyle et al., 

2004, 2014). The 800 m long landslide, involving metasedimentary rocks with 

minor metabasic and ultramafic rocks, occurred on a moderately steep (15-25°) 

north-facing slope in central Yukon (Brideau et al., 2009), a zone characterised 

by sub-arctic continental climate and considered affected by discontinuous 

permafrost (Heginbottom et al., 1995). At this location, ground ice was thought to 

provide cohesion to blocks of surficial material that were then “mobilized by high 

pore water pressure in the surrounding saturated sediments” (Brideau et al., 

2009), and ground ice degradation was inferred to have caused the failure. 

However, it is not clear how the ground ice affected the mobility of the landslide. 

Different cases of debris slides, debris flows and thaw slumps related to thermal 

disturbance of the permafrost active layer have also been reported in Yukon 

(Huscroft et al., 2003). Here, in the last thirty years, rapid mass movement activity 

has involved surficial material such as colluvial till and lacustrine sediments 
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affected by shallow permafrost, and has impacted the surrounding environment 

and infrastructures. These failures were ascribed to permafrost and its thaw 

controlling terrain drainage and strength, but how permafrost affected the 

dynamics of the mass failures was not investigated.   

The closest analogue for debris slides that mobilise ice-rich material are rock-

ice avalanches. It is known that rock-ice avalanches have 20-35% higher mobility 

than rock avalanches of the same magnitude in non-glacial settings (Evans and 

Clague, 1988; Huggel et al., 2005; Schneider et al., 2011a; Sosio et al., 2012). 

This enhanced mobility is attributed to fluidization, caused by the reduction of 

granular friction due to ice melting, basal lubrication by frictional heating of ice 

(Davies and McSaveney, 2012; Evans and Clague, 1988), and internal mass and 

momentum exchange (Pudasaini and Krautblatter, 2014). Laboratory 

experiments with a rotating drum show that the ice in a moving mass of a gravel 

affects the mobility of the mass as the thaw of that ice supplies water to the flow 

(Schneider et al., 2011b). In particular, the friction coefficient of a granular moving 

mass containing ice decreases linearly with increasing ice content, and this has 

also been shown to be the case in numerical modelling (Sosio et al., 2012). A 

volume of ice in the mixture greater than 40% causes an increase in pore-water 

pressure and liquefaction, consequently generating a transition from a dry 

granular mass to a debris flow-like movement, and eventually to a 

hyperconcentrated flow (De Blasio, 2014; De Blasio and Elverhøi, 2008; 

Schneider et al., 2011b). However, laboratory studies do not consider the scale 

effects introduced by ice on the friction angle ─ Schneider et al. (2011b) 

recognised to have a stronger dependence on ice content for mixtures with larger 

grains; this could have important implications for natural scale events. Also, it is 

not known if debris slides or flows affecting loose deposits cemented by ground 
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ice would have the same dynamics as rock-ice avalanches, due to the different 

distribution of the ice within the material that could make the ice melt progress 

differently.  

Two landslides in ice-cemented sediments have occurred in the last decade in 

northern Iceland. The first landslide occurred on 20th September 2012 on the 

north-western facing side of the Móafellshyrna Mountain in the Tröllaskagi 

peninsula; the second one occurred on 10th July 2014 on the northern slope of 

the Árnesfjall Mountain in the northern Westfjords. Immediately after their 

occurrence, blocks and ridges of ice-cemented debris were found in the 

landslides’ deposits (Figure 4.1). This observation has given rise to the 

hypothesis that these landslides were related to permafrost degradation 

(Sæmundsson et al., 2014a). 

 

Figure 4.1. Blocks and ridges of ice-cemented sediments. (A) An oblique view of the Móafellshyrna 

landslide on the day of its occurrence, with one of the blocks of ice-rich sediments found in its deposits (see 

red circles); (B) a close-up photo of the block of ice-rich sediments shown in Figure 4.1A, taken nine days 

after the occurrence of the Móafellshyrna landslide (in the yellow circle a close-up image of the ground ice 
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cementing the deposits with a walking pole for scale); (C) one of the ridges of ice-cemented deposits found 

two days after the Árnesfjall failure; (D) ground ice found at one meter of depth in the landslide deposits two 

days after the occurrence of the Árnesfjall landslide. 

 

In this chapter, I describe and discuss how the presence of ground ice has 

affected the mechanical behaviour of these landslides. Specifically, I analyse the 

geomorphology and dynamics of the two landslides, whose source material was 

composed of ice-cemented talus deposits. A volume percentage of 20-30% 

ground ice has been estimated from visual inspection of the material mobilised 

by both landslides (see Chapter 6 for theoretical estimations). I assess if this 

relatively low ice content has affected the mechanical behaviour of the debris 

compared to “normal” rock/debris slides/avalanches. I describe and quantify the 

morphometric characteristics of these two landslides, which have different 

mobilities, and assess how the thawing of ground ice could have affected their 

emplacement. Geophysical investigations (Ground Penetrating Radar) and 

runout modelling have been also performed to obtain a better characterisation of 

the Móafellshyrna landslide. However, the results obtained have not been 

considered conclusive or satisfactory (see Sections 4.4.2.1 and 4.4.2.3.). This 

study contributes to our understanding of this complex type of landslide, where 

ground ice has an unknown impact on the landslide dynamics and may be an 

additional factor that needs to be included when predicting the hazard posed by 

rapid mass movements in permafrost areas. 

In Chapter 5, I complete my analysis of the Móafellshyrna and Árnesfjall 

landslides, identifying and discussing their main preparatory and triggering 

factors: heavy precipitation, seismic activity and permafrost degradation. As 

degrading permafrost is predicted to increasingly affect mountain regions in the 
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future (e.g., Haeberli et al., 2011; Stoffel and Huggel, 2012), improving our 

knowledge on this type of landslide is important, since they could be a further 

source of risk for local population in Iceland, and in general in other mountain 

periglacial areas. 

 

4.2 Setting of the case studies 

4.2.1 The Móafellshyrna Mountain, Tröllaskagi 

peninsula 

The first case study is the Móafellshyrna landslide, which occurred on the 

north-west facing slope of the Móafellshyrna Mountain. The site is in the 

Tröllaskagi peninsula in northern Iceland, a mountain plateau with summits up to 

1550 m high located between the Skagafjörður fjord in the west and the 

Eyjafjordur fjord in the east, which both strike north-south (Figure 4.2A). The 

Móafellshyrna Mountain is located in the Móafellsdalur valley, a tributary valley of 

the Stífludalur valley in the north-western part of the peninsula, located 21 km 

southwest of the town of Ólasfjörður, and 26 km south of the town of Siglufjörður 

(Figure 4.2A). The Þrasastaðir farm, the innermost inhabited farm in the 

Stífludalur valley (Figure 4.2B), is situated on the northern side of the Fljótaá 

River, facing the Móafellshyrna Mountain (Figure 4.2C). The occurrence of the 

Móafellshyrna landslide was first reported by the farm residents, who witnessed 

the event (see Chapter 5). In the Móafellsdalur valley, the Galtará river flows from 

SSW to NNE, joining the Fljótaá river that flows from SE to NW (Figure 4.2C), 

ultimately draining into the Denmark Strait. The Móafellshyrna ridge is 1000 m 

high and strikes NNE, extending 5 km between the Fljótaá valley in the north and 

the Móafellsjökull glacier in the south. 
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Figure 4.2. The geographic setting of the Móafellshyrna site, Tröllaskagi peninsula, northern Iceland. (A) 

A hillshaded digital elevation model (DEM) showing the main geographic locations of Tröllaskagi peninsula 

and the Móafellshyrna Mountain (DEM source EU-DEM from the Global Monitoring for Environment and 

Security service for geospatial reference data access project (GMES RDA). (B) Hillshaded DEM and 

contours (in green, metres above sea level) of the Móafellshyrna region. (C) Aerial photograph (source 

samsyn.is) of the Móafellshyrna Mountain before the landslide (perimeter of the landslide marked by a red 

line) in 2012, showing some of the main geographic features of the area. 

 

The bedrock of the mountain is within the Tertiary basalt series, and consists 

of closely-jointed basaltic layers, composed of 2 to 30 m thick individual flows 

(Figure 4.3A). These are interbedded with poorly cohesive red to yellow 

hyaloclastites, with thicknesses from a few centimetres up to decametres (Figure 

4.3C). Horizons of red lithified paleosols up to meters thick are also observable 

in the basaltic sequence (Figure 4.3B). The basaltic layers dip 5-10° towards SW-

WSW on average, are 15 to 10 Ma old (Jóhannesson, 2014), and are cut by 3 

and 7 Ma old dikes, sills and faults (Garcia et al., 2003).  
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Figure 4.3. The bedrock of Móafellshyrna region. (A) Basalt layers interbedded with red paleosols and 

yellow hyaloclastite forming the Lambahnjúkur mountain on the south-eastern side of the Móafellsdalur 

valley; (B) a layer of red lithified paleosols on the northern crest of Móafellshyrna mountain; (C) yellow 

hyaloclastite interlayered with the basaltic lava layers forming the Móafellshyrna mountain. 

 

After the Last Glacial Maximum (LGM), when the Icelandic ice sheet extended 

to the submarine shelf break (Einarsson and Albertsson, 1988; Eiríksson et al., 

2000; Hubbard et al., 2006; Spagnolo and Clark, 2009), the last major 

deglaciation of Iceland occurred (Pétursson et al., 2015) between 15 ka (Andrews 

et al., 2000) and 10.2 ka (Caseldine et al., 2003; Caseldine and Stotter, 1993; 

Geirsdóttir et al., 2009; Stötter et al., 1999). The landscape of the whole 

Tröllaskagi peninsula has been sculpted by the Icelandic Ice sheet, and is 

characterised by deeply incised glacial valleys and cirques. 167 glaciers, mostly 

debris-covered, are catalogued on the peninsula; all are in regions above 800 m 
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a.s.l. (Andrés et al., 2016). Rock glaciers and ice-cored moraines are abundant 

in the region (Lilleøren et al., 2013; Whalley and Martin, 1994), as well as several 

other periglacial features such as sorted and non-sorted stripes, thufur, and 

sorted nets or polygons (Clark, 1983) observed in field investigations). As I report 

in detail in Chapter 2, discontinuous permafrost has been predicted in the area 

above 800-900 m elevation using numerical models calibrated by observations 

(Etzelmüller et al., 2007; Farbrot et al., 2007a, 2007b; Lilleøren et al., 2013). In 

the Tröllaskagi peninsula, rock-slope failures and deep-seated gravitational slope 

deformations dating from the early Holocene onwards are very common, and they 

provide evidence of the destabilization of the slopes during the paraglacial phase 

(Coquin et al., 2016; Cossart et al., 2014; Decaulne et al., 2016; Feuillet et al., 

2014; Mercier et al., 2012, 2017). 

The precipitation in the Tröllaskagi peninsula is estimated to be 2000–2500 

mm/year, of which the majority falls as snow on the glaciers (e.g., Lippert et al., 

2003); however, this region of Iceland receives less precipitation than the rest of 

the island, being sheltered from the prevailing south-western wind by the great 

central volcanoes. See Chapter 5 for a detailed description of the weather data in 

the Móafellshyrna area before and during the occurrence of the failure. 

 The Móafellshyrna landslide originated at 870 m a.s.l. and travelled 1,320 m 

on the north-west facing slope of the mountain. The topographic long profile of 

the landslide can be subdivided into five distinct sections (Figure 4.4): 

- Section 1 is the detachment zone. It includes the headscarp, the 

topographic bench where the source deposits detached, and the bedrock cliff 

over which the mass fell. The highest elevation of the headscarp is 873 m a.s.l., 

and its elevational extent is 183 m. This section has a stair-case shaped profile: 

the headscarp has an average slope of 36°, then there is a break-in-slope leading 
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to the bench, which has an average slope of 14°, and then further downslope the 

cliff has a slope of 44°; 

- Section 2 is the first transport zone. It consists of the talus slope below the 

topographic bench, with an average slope of 31°. The top of this section is at 690 

m a.s.l., and the elevation drop is 180 m; 

- Section 3 is the first low slope (16°) accumulation zone, and its top is at 

510 m a.s.l. with an elevation drop of 30 m; 

- Section 4 is the second transport zone. The  topographic profile has a 

convex-up shape, with its top located at 480 m a.s.l, an elevation drop of 90 m, 

and an average slope of 23°; 

- Section 5 is the second accumulation zone. Its top is at 390 m a.s.l., and it 

has an average slope of 14°. The landslide toe is located at 329 m a.s.l.. 

Later in this chapter I will show that the Móafellshyrna landslide does not 

comprise thick deposits. Therefore, its step-like topographic profile is not caused 

by the morphological changes produced by the failure, but follows the underlying 

topography, typical of periglacial landscapes that have undergone recent 

deglaciation. This kind of profile is known as the “free-face model” and is 

composed of a rockwall above 40° below which there is, first, a talus slope, and 

then, second, a footslope or a basal complex (French, 2007; King, 1953).  
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Figure 4.4. The division of the Móafellshyrna landslide into sections based on topography and whether 

erosion, transport or accumulation dominates. (A) Oblique view looking south-east of the Móafellshyrna 

landslide with the different sections outlined; (B) longitudinal topographic profile divided into five sections, 

corresponding to the detachment, transport, transport/accumulation and accumulation zones detailed in the 

text and marked in A. 

 

4.2.2 The Árnesfjall Mountain, Westfjords 

The second case study is the Árnesfjall landslide, which occurred on the north 

facing slope of the Árnesfjall Mountain. This site is located in north-western 
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Iceland on the Westfjords peninsula, between the Húnaflói bay in the east and 

the Breiðafjörður bay in the SSW (Figure 4.5A). The Árnesfjall Mountain is located 

on the coast of Norðufjörður fjord in the north-eastern part of the peninsula, 26 

km east-south-east of the southern terminus of the Drangajökull glacier, and 34 

km north-north-east of the town of Hólmavík. The Árnesfjall ridge rises from the 

sea level to 490 m of elevation and strikes north-east, extending 1.7 km between 

the Meladalur valley in the north-west and the Árnesdalur valley in the south-east 

(Figure 4.5B).  

 

Figure 4.5. The geographic setting of the Árnesfjall site, on the Westfjords peninsula, north-western 

Iceland. (A) The hillshaded DEM showing the main geographic locations of Westfjords peninsula and the 

Árnesfjall Mountain (base map from the EU-DEM from the Global Monitoring for Environment and Security 

service for geospatial reference data access project (GMES RDA)). (B) Aerial photograph from 1981 (source 

National Land Survey of Iceland - Landmælingar Íslands) of the Árnesfjall Mountain before the landslide in 

2014, showing some of the main geographic features of the area. 
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The bedrock of the mountain is within the Tertiary basalt series and consists 

of superimposed basaltic lava flows, dating from the Miocene and Lower Pliocene 

epochs (Jóhannesson, 2014). Individual lava layers are sub-horizontal (locally 

dipping 5-10° towards ESE), 2 to 30-40 m thick (Figure 4.6), and are interlayered 

by red lithified paleosols, a few centimetres to a few meters thick, and sometimes 

volcanoclastic sedimentary horizons. Intrusions of rhyolite crop out on the 

northern slope of the mountain (Figure 4.6B).  

 

Figure 4.6. The bedrock of the Árnesfjall area. (A) Basaltic lava layers visible on the Hlíðarhúsafjall 

Mountain, north of the Meladalur valley. The red-brown colour indicates the presence of paleosols and/or 

volcanoclastic sedimentary layers interbedded with the basaltic ones; (B) an example of a rhyolite intrusion 

on the northern slope of the Árnesfjall mountain.  

 

The Westfjords are characterised by deep fjords, glacial valleys and wide 

cirques, while the mountains have flat summits (up to 998 m a.s.l.) and steep 

flank-slopes (25-35°, Decaulne et al., 2005), a landscape shaped by the glacial 

history of the area. During the Last Glacial Maximum, the Icelandic ice sheet 

extended up to 30 km out onto the shelf beyond the Westfjords peninsula 

(Andrews et al., 2002; Geirsdóttir et al., 2009, 2002). The Icelandic ice sheet 

retreated rapidly between 15 ka and 10.2 ka in the Westfjords (Andrews et al., 

2000, 2002; Bovis and Jones, 1992; Brynjólfsson et al., 2015; Geirsdóttir et al., 

2002; Ingolfsson et al., 2010; Norddahl and Pétursson, 2005; Pétursson et al., 
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2015). An extensive ice cap remained over the eastern peninsula in the 

Drangajökull region until at least 9 ka (Brynjólfsson et al., 2015). Today, 

Drangajökull is the only ice cap present in the Westfjords. 186 rockslides have 

been mapped in the Westfjords: they are concentrated along the coasts and are 

thought to be primarily paraglacial (Peras et al., 2016; Whalley et al., 1983) and 

might be associated with slope debuttressing and isostatic rebound as are other 

rockslides in northern Iceland (Coquin et al., 2015, 2016, Mercier et al., 2012, 

2017). 

As specified in Chapter 2, permafrost is not predicted in the Westfjords (e.g., 

Etzelmüller et al., 2007). However, a number of periglacial features are found 

around Árnesfjall mountain, including sorted stone polygons in flat areas, sorted 

and non-sorted stripes in steep areas, and solifluction lobes. The presence of 

these features cannot be used as an indication of present-day permafrost, but 

their presence does suggest discontinuous permafrost could be present in this 

area of Iceland, as other authors also have inferred (Brynjólfsson et al., 2015; 

Glade, 2005). 

The Árnesfjall landslide originated at 420 m a.s.l. from the north facing slope 

of Árnestindur and travelled 563 m. The topographic long profile of the landslide 

can be subdivided into three sections (Figure 4.7): 

- Section 1 is the detachment zone, which consists of the headscarp and the 

bedrock exposed from underneath the landslide mass. The top is located at 418 

m a.s.l., the elevation drop is 60 m, and the section has an average slope of 37°; 

- Section 2 is the depletion zone (as defined by Cruden and Varnes (1996), 

namely the area of the landslide where the displaced mass overlies the rupture 

surface and underlies the original ground surface), with the top at 358 m a.s.l., an 

elevation drop of 42 m, and an average slope of 23°; 
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- Section 3 is the accumulation zone, with the top at 316 m a.s.l., an 

elevation drop of 246 m, and an average slope of 32°. 

 

Figure 4.7. The Árnesfjall landslide divided into sections based on topography and dominant 

process.Oblique view looking south towards the Árnesfjall landslide showing its local geographic setting; (B) 

Topographic long profile divided into three sections, corresponding to the detachment, depletion, and 

accumulation zones. 
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4.3 Methods 

4.3.1 Fieldwork 

I performed fieldwork at the Móafellshyrna landslide in summer 2015. I also 

used personal communication and photographs collected by my supervisor Þ. 

Sæmundsson and colleagues from the Icelandic Meteorological Office, who 

visited the site a few hours, four days and nine days after the Móafellshyrna event. 

I performed fieldwork at the Árnesfjall landslide in summer 2016, and I received 

photographic documentation of the landslide from Jón Kristinn Helgason at the 

Icelandic Meteorological Office, who visited the site two days after the occurrence 

of the landslide.  

Detailed fieldwork was conducted with the purpose of identifying, 

characterising and classifying geomorphic features and structures of the 

landslides, in order to reconstruct the failure history, and to compare field 

observations with remote sensing datasets. I performed geological and 

geomorphological field analyses in every section of each landslide (see Sections 

4.2.1 and 4.2.2 above), observing and measuring the thickness (using a 

measuring tape), composition and texture (using comparative charts) of the 

deposits. Debris thickness measurements made at the edges were validated for 

the centre of the mass using Ground Penetrating Radar profiles in different zone 

of the landslide (see Section 4.3.6). In both field sites, I performed differential 

GPS (dGPS) surveys of the landslides using two GNSS Leica System 1200 in 

Móafellshyrna and two GNSS Leica VIVA GS10 Systems in Árnesfjall (one as 

rover unit and one as base station; average accuracy of samples is around 1cm 

in the horizontal and 2 cm in height). In Móafellshyrna, a base GPS unit was 

positioned on the landslide deposits, always within 1 km of the rover GPS unit, 
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whose antenna was attached to a helmet worn by the operator. These GPS 

measurements were collected to survey the landslide perimeter, the thickness of 

the deposits and the main geomorphic features of the landslide, recording a 

sample every 10-15 m for at least 5 epochs (seconds) per sample. In Árnesfjall, 

a base GPS unit was positioned at the foot of the northern slope of the Árnesfjall 

mountain, within 500 m of the rover GPS unit, whose antenna was positioned on 

a pole. The dGPS measurements were used to survey the perimeter of the 

landslide, logging data when the rover was static and moving, with a record rate 

every 1 second.  Samples were recorded every 20-30 m, recording for at least 10 

epochs every sample. To ensure high quality, at both field sites date were not 

collected when the Global Dilution of Precision (GDOP) value (which is calculated 

real-time from relative satellite positions) was > 7. Finally, dGPS units were also 

used to support Structure from Motion and Ground Penetrating Radar data 

collection (see Section 4.3.3 and 4.3.6 respectively). 

4.3.2 Airborne data 

In September 2015, the U.K. Natural Environment Research Council's 

Airborne Research Facility (NERC-ARF), on behalf of the European Facility for 

Airborne Research (EUFAR), collected aerial photography and airborne light 

detection and ranging (LiDAR) data for the Móafellshyrna area in Iceland, three 

years after the Móafellshyrna landslide occurred. 170 aerial photographs were 

collected with a Leica RCD105 digital camera, and 15 lines were flown to collect 

126 million LiDAR points with (a mean of 1.7 points/m2) using a Leica ALS50-II 

instrument. A GNSS Leica VIVA GS10 dGPS was used in a fixed location at 1 Hz 

during the flight to collect base station data for the on-board dGPS. The 

processing of the LiDAR point cloud was performed by NERC-ARF-DAN (Data 
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Analysis Node). I used the LAStools extension for ArcGIS to convert the point 

clouds into gridded data at 1 m/pixel, using the return time of the last peak of light 

to reach the receiver from the LiDAR laser shot, which is usually assumed to be 

the ground return. I used Agisoft Photoscan Professional 1.3.5 software to 

produce a seamless orthomosaic from the airphotos, where the position of the 

images was controlled using ten well-spread ground control points, derived by 

locating matching positions in a hillshaded version of the LiDAR Digital Elevation 

Model and the air photos. 

Aerial photographs of the Móafellshyrna area from August 1985 and of the 

Árnesfjall area from August 1981, both collected at 5486 m of elevation (provided 

by the National Land Survey of Iceland), were also used to analyse the pre-failure 

morphology of the mountain, in order to compare the source area before and after 

the failure, and to improve the estimate of the volume of debris mobilised. 

4.3.3 Structure from Motion 

With the recent advances in digital photogrammetry and availability of low-cost 

high-resolution cameras, topographic modelling produced by ground-based 

photogrammetric techniques is becoming more accessible (James and Robson, 

2012; Micheletti et al., 2015; Remondino et al., 2014; Smith et al., 2015). For this 

study, to produce a base map for geomorphic mapping and analysis for the 

Árnesfjall site, I processed digital photos with the ground-based Structure from 

Motion (SfM) photogrammetry technique (Westoby et al., 2012). The SfM 

technique uses a series of input images with overlapping view perspectives to 

simultaneously reconstruct three dimensional (3-D) camera pose and sparse 

scene geometry using an iterative bundle-adjustment procedure (Fonstad et al., 

2013; James and Robson, 2012; Micheletti et al., 2015; Snavely et al., 2008; 
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Westoby et al., 2012). A point cloud is then produced, increasing the density by 

two orders of magnitude using the estimated camera positions and image 

clustering, and multi-view stereo methods (e.g., Furukawa and Ponce, 2010). The 

quality of Digital Elevation Models (DEMs) produced using the SfM technique can 

be comparable to, or better than, models derived from aerial or terrestrial LiDAR 

data (Fonstad et al., 2013; James and Robson, 2012; Micheletti et al., 2015; 

Remondino et al., 2014; Smith et al., 2015; Westoby et al., 2012). However, the 

construction of the DEM and orthomosaic using SfM is an automated workflow, 

in which errors can be difficult to quantify (Fonstad et al., 2013; James and 

Robson, 2012; Micheletti et al., 2015; Remondino et al., 2014). 

I collected photographs in July 2016, two years after the Árnesfjall landslide 

occurred. The photographs were taken from ground-based oblique perspective 

(at approximately 3 km from the landslide), using a single-lens reflex (SLR) 

camera (Canon EOS 450D, 12.2-megapixel image sensor) set to a fixed focal 

length of 200mm and automatic exposure settings enabled.  I identified clearly 

visible blocks and features on the landslide — a total of 19 ground control points 

(GCPs) — and obtained their coordinates by using differential GPS 

measurements, whose errors are detailed in Table 4.1. Photographs were 

inspected manually, blurry images were deleted, and the sky was masked out of 

each image manually. The remaining 73 photographs were imported into Agisoft 

Photoscan Professional 1.4.1, which uses an algorithm based on the Scale 

Invariant Feature Transform (SIFT) object recognition system (Lowe, 2004) to 

identify key points for photograph alignment. I removed any misaligned 

photographs at this stage and then identified the GCPs recorded in the field in the 

image set, importing their GPS coordinates, in order to apply an absolute 

coordinate system to the 3D model. Scaling and georeferencing the point cloud 
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was achieved by applying a linear similarity transformation, which was then 

optimised by adjusting the camera parameters and the 3D points in order to 

minimize the sum of the re-projection error and the georeferencing error 

(Javernick et al., 2014). For the 19 ground reference points I obtained a horizontal 

positional accuracy ranging from 0.05 m to 0.08 m, and a vertical uncertainty 

ranging from 0.05 to 0.15 m. This processing procedure allowed me to produce a 

3D topographic model, from which I derived an orthomosaic at 9 cm/pixel and 

DEM at 18 cm/pixel. The 3D model has reconstruction errors of 0.9–1.8 pixels and 

an absolute precision of 0.5–1.5 m. I then imported the DEM and the orthomosaic 

into ArcGIS for further analysis. 

Table 4.1 - Summary of estimated measurement and processing error generated during GPS data 

collection and processing. 

  Vertical error (m) Horizontal error (m) 

Instrument error 0.02 0.01 

Human error 0.05 0.05 

Wobble of antenna 0.1 0.1 

Error in identifying the 
GCP in processing phase 

0.5 0.5 

 

4.3.4 Volume analysis 

In order to quantify the material deposited and eroded by the landslides, I 

calculated the volume of debris that both landslides mobilised. Firstly, I calculated 

an estimation of the entire volume mobilised by the landslides and the volumes 

eroded or deposited by their different features by multiplying the estimated 

thickness of the deposit/depth of the erosional scar for the area that they cover. 

The thickness was obtained either using tape measurements in the field, by dGPS 

measurements, or using GPR profiles (see Section 4.4.2.1).  
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I also made another volume calculation using the 3D topographic data of the 

source material of the landslides and the different geomorphic features that they 

produced, such as molards (see Chapter 6) and secondary lobes. I calculated 

these volumes following Conway and Balme (2014), reconstructing the pre-failure 

surface, and deriving the deposited or eroded volumes by subtracting the pre-

failure surface from the landslide surface (Figure 4.8). I defined the pre-failure 

surface by different means: i) field observations and tape measurements, ii) 

dGPS measurements of the perimeter of the landslides and of the molards, ii) 

GPR profiles to define the thickness of the deposits (see Section 4.4.2.1). I have 

used the contour lines of the morphology not affected by the landslides as a 

reference to draw the estimated topographic contours of the pre-failure 

topography. This task was possible because both landslides’ features have well-

defined edges; in the case of Árnesfjall, the talus slope next to the landslide 

serves this purpose particularly well, as its surface is smooth and homogeneous, 

and the edges of the source area are well-defined. The topographic contour 

intervals used to reconstruct the pre-failure surface for the landslides and their 

features are reported in Table 4.2. 
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Table 4.2 - Summary of the topographic contour values used to reconstruct the pre-failure surfaces of 

the landslides. 

Móafellshyrna landslide and features Topographic contour interval Unit 

Source mass 5 m 

Entrained talus deposits 2 m 

Secondary lobe 2 m 

Árnesfjall landslide and features Topographic contour value Unit 

Landslide 10 m 

Source mass 5 m 

 

I used the reconstructed topographic contours and the topography adjacent to 

the landslides ─ or their surface features ─ as input data for a natural neighbour 

interpolation to estimate the pre-failure surface. This allowed me to obtain a new 

DEM with the same resolution as the original DEM. I then calculated the 

difference between the original DEM and the pre-failure surface in order to obtain 

the volume of material transported, eroded or deposited by the landslides. Error 

propagation calculations by Conway and Balme (2014) suggest that such volume 

estimates are accurate to within 25%. However, since the features analysed in 

this study are not always well defined, it is possible that this measurement might 

only be accurate to within 50%. Finally, to calculate the volume mobilised by the 

whole landslide, in both the Móafellshyrna and Árnesfjall cases, I coupled the 

volumes obtained with the method of Conway and Balme (2014) with estimates 

from field and DEM measurements for the parts of the landslides where 

reconstructing the pre-failure surface was not possible due to high uncertainty. 
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Figure 4.8. An example of volume analysis. Secondary depositional lobe (in red) in the Móafellshyrna 

landslide’s body. In yellow are marked the extrapolated contours for the topography from before the landslide 

occurrence. 

 

I have identified and measured the volumes of boulders that fell during the 

Móafellshyrna event. To distinguish them from earlier rock falls, I used blocks with 

freshly-broken surfaces and checked their presence in the photos taken just after 

the event. I have chosen only blocks that fell within the landslide perimeter, or at 

few meters distance from the boundary. The use of these data will be detailed in 

the Section 4.3.5. Whenever field measurements were not recorded, I selected 

boulders lying on top of the landslide deposits and measured their surface area 

from the aerial photographs and assumed a cubic shape to calculate their volume. 
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4.3.5 Fahrböschung  

A broadly recognised method to quantify the mobility of a landslide is to 

calculate the Fahrböschung. Fahrböschung  is the mobility index of a landslide 

and is defined as the ratio H/L, where H is the fall height and L is the horizontal 

length of the landslide (Abele, 1974; Scheidegger, 1973; Shreve, 1968). This ratio 

corresponds to the arctangent of the dip of the line connecting the source area to 

the distal fallen boulder of a rock fall or to the tip of a rock/debris slide/avalanche. 

This angle of dip is also known as the “Fahrböschung” angle (Heim, 1932), travel 

angle (Cruden and Varnes, 1996), reach angle (Corominas, 1996) and travel 

distance angle (Hunter and Fell, 2003). The Fahrböschung is adopted for different 

types of landslides, including rock and debris avalanches (Erismann and Abele, 

2001; Hsu, 1975; Scheidegger, 1973), rock falls (Copons et al., 2009; Corominas, 

1996), and debris flows (Iverson, 1997; Rickenmann, 1999). The longer the travel 

distance is for any given distance, the lower the value of the reach angle. Also, 

the ratio H/L is thought to vary inversely with the source volume (e.g. Hungr, 1990; 

Legros, 2002). For rock falls, the tangent of the reach angle is considered 

equivalent to the coefficient of friction of the ground surface where the rock fall 

starts (Scheidegger, 1973; Shreve, 1968). Therefore, we adopted this method for 

analysing the mobility of both Móafellshyrna and Árnesfjall landslides and the 

rock/debris fall activity associated with the Móafellshyrna landslide.  

In the analysis of the Móafellshyrna molards and bedrock boulders, the source 

point from where they detached was not identifiable, although I assumed they 

originated from somewhere between the bedrock cliff and the topographic bench. 

Using the final position of the fallen boulders as a reference, I constructed a 

“centreline” path, connecting the boulder to the nearest point where this line 
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connects to the edge of the bench (Figure 4.9). The length of the centreline path 

was used as the horizontal travel distance L in the Fahrböschung calculation. I 

calculated the fall height subtracting the elevations of the two points connected 

by the centreline.  I also evaluated the Fahrböschung using other ‘potential 

energy’ paths: I created 10-20 other possible lines connecting the bench with the 

boulder, spaced every 10 m along the edge of the bench (Figure 4.9), and used 

their median length as the length for the horizontal travel distance L. The fall 

height H was obtained in the same way as for the centreline. The deviation 

between the Fahrböschung value calculated using the length of the centreline 

path from the one using the median of the other potential fall lines was below 5%. 

Therefore, in the Results I show the Fahrböschung calculated using the centreline 

of the path as the horizontal travel distance. 

 

Figure 4.9. Illustration of the method applied for calculating the length L of the Fahrböschung for the 

boulders and molards that fell during the Móafellshyrna failure. 
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4.3.6 Ground Penetrating Radar 

For detecting the subsurface of the Móafellshyrna site, I chose to use Ground 

Penetrating Radar (GPR), which uses an electromagnetic pulse emitted from a 

transmitter antenna to identify sub-surface interfaces. The GPR has allowed me 

to detect the sliding surface of the Móafellshyrna landslide, and I have used these 

measurements to calibrate the volume estimates of the landslide. The pulse is 

reflected by targets or interfaces buried within a visually opaque substance, and 

received by a second antenna after a measured travel time (Davis and Annan, 

1989). In August 2015, I conducted a GPR survey to investigate the thickness of 

the Móafellshyrna landslide deposits, using a PulseEKKO™ Pro system with 50 

and 100 MHz antennae. Survey lines covered 750 m of surface travel and were 

completed both parallel and perpendicular to the landslide runout direction 

(Figure 4.10). Antennae were aligned perpendicular to the survey direction and 

were towed manually across the landslide surface at 0.5 m and 1 m intervals for 

the two antenna frequencies mentioned above. Raw GPR data were processed 

in EKKO View Deluxe (Sensors and Software, 2003). Processing consisted of 

applying a dewow filter (time filter for signal saturation), band‐pass filtering, 2‐D 

migration, and topographic correction (using the 1m DEM from LiDAR data). A 

ground-wave propagation velocity of 0.075 m ns−1 was used for processing and 

interpretation of the profiles (the common midpoint (CMP) method was used to 

determine average velocity values for the landslide deposits).  
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Figure 4.10. Location of the GPR profiles performed on the Móafellshyrna landslide deposits. 

 

4.3.7 Rapid Mass Movements Simulation 

I applied the Rapid Mass Movements Simulation (RAMMS) model (Christen et 

al., 2010) to simulate the runout of the Móafellshyrna landslide. I adopted the trial 

version of the RAMMS::DEBRIS FLOW module, which uses the two-parameter 

Voellmy relation to describe the frictional behaviour of the flowing debris. The 
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Voellmy friction law divides the frictional resistance into a dry-Coulomb type 

friction (coefficient μ) that scales with the normal stress, and a viscous-turbulent 

friction (coefficient ξ). The frictional resistance S (Pa) is then 

𝑆 = 𝜇𝜌𝐻𝑔 cos(𝛷) + (
𝜌𝑔𝑈2

𝜉
)                                   (1) 

where μ is the resistance of the solid phase or the tangent of the internal shear 

angle, ρ is the density, g the gravitational acceleration, Φ the slope angle, H the 

flow height, U the flow velocity and ξ is the viscous-turbulent friction coefficient. μ  

and ξ are responsible for the behaviour of the flow: μ dominates when the solid 

phase is prevailing, ξ when a viscous or turbulent fluid is prevailing.  

I used as topographic data the 1 m Digital Elevation Model from LiDAR data. I 

calibrated the starting conditions of the simulation of a granular flow (solid 

dominated), in order to simulate a behaviour expected from a flow with talus 

deposits as source material and solid dominated, with the meltwater from the 

ground ice as the only source of fluid. I used the following parameters: 

Table 4.3 - Calibrated RAMMS::DEBRIS FLOW parameters. 

Release area 32,748 m2 

Released volume 151,395 m3 

Initial release deposits height 15 m 
μ 0.100 
ξ 200 m/s2 

ρ 1863 kg/m3 

 

Since RAMMS::Debris Flow uses a single-phase model, and therefore it is not 

possible to distinguish between fluid and solid phases, I used values for a bulk 

flow composed  by 80% solid dominated granular flow (2100 kg/m3; Iverson, 

1997) and 20%  ice (917 kg/m3). I defined the percentage of ice from the content 

visually estimated in the field immediately after the occurrence of the landslide. A 

bulk density value of 1100 kg/m3, simulating a higher content of ice (50%) and 
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estimating for the loose debris a 30% of porosity at saturation (based on rock-ice 

avalanche values (Evans and DeGraff, 2002)), was also applied, but the results 

of the module were completely unrealistic. The friction parameters μ and ξ were 

chosen in accordance with the values suggested by the authors of the RAMMS 

simulation, who suggest an initial value of 0.2 for μ and a value of 100-200 m/s2 

to calibrate the procedure. Varying µ around the initial value with steps of ±1 and 

ξ with steps of ±100 m/s2, I found that the best-fit Voellmy friction coefficients for 

simulating a granular flow in Móafellshyrna were μ =0.100 and ξ=200 m/s2. 

Finally, the release area was defined by digitising on the 1m DEM the perimeter 

of the source area, and using as a release volume the value calculated for the 

source volume in Section 4.4.2.1. I set as the release height the average 

thickness of the blocks of deposits perched on the topographic bench and of the 

biggest block felt in the accumulation area. To simplify the simulation, I did not 

consider sediment entrainment in the model. 
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4.4 Results 

4.4.1 Morphology and structures of the 

landslides 

4.4.1.1 Morphology and structures of the Móafellshyrna 

landslide 

 

Figure 4.11. Aerial image of the Móafellshyrna mountain (photo LMI-Kort-J10-J-1733-qv taken in 1985, 

flight line Ármannsfell-Ámárhyrna, National Land Survey of Iceland – Landmælingar Íslands). 

 

The highest point of failed debris in the Móafellshyrna source area is at 870 m 

a.s.l., and the toe of the debris is at 330 m a.s.l. (Figure 4.4), meaning a vertical 
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distance H of 544 m. The horizontal travel distance L is 1,320 m, so the 

Fahrböschung (tan−1 H/L) for the Móafellshyrna landslide is 22°. The landslide 

originated on a 665 m wide topographic bench on the north-western side of the 

Móafellshyrna Mountain. The failure mass consisted of ice-cemented talus 

deposits lying against the sub-vertical rockwall of the mountain. Figure 4.11 

shows the appearance of the slope and the talus deposits located at the source 

of the landslide, 27 years before the occurrence of the failure. The landslide 

material ranges from fine clay to 1-3 m-sized boulders. At the time of the failure, 

the ground was covered by a ~20-30 cm of snow. 
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Figure 4.12. The main morphological features of the Móafellshyrna landslide and the flow chart 

summarizing the different processes that occurred during the Móafellshyrna landslide. The arrows in yellow 

indicate continuous and consecutive processes, while the dashed red arrows indicate intermittent and/or 

non-consecutive processes. Time goes from top to bottom of the diagram. 
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In Figure 4.12 the sequence of the different processes that occurred during the 

Móafellshyrna failure is illustrated. The first initial movement of the source 

material was by rotational sliding, accompanied at the same time by rock/debris 

fall. The debris mass fell on the talus cone downslope (Figure 4.12), entraining 

new material. Part of the material continued further downslope through a process 

analogous to debris flow/slide, while part of the material stalled on the first bench 

forming secondary lobes. After the deposition of the landslide deposits, prolonged 

rock/debris fail activity occurred intermittently over time. I will describe here the 

different morphologies and structures left by all of these processes. 

The initial movement of the talus slope deposits was by rotational sliding. The 

initial movement direction of the detached talus deposit mass from the source 

area was N340°. The entirety of the talus deposits did not slide off the bedrock 

cliff, as remnants are still perched on a topographic bench in the source area 

(Section 1 in Figure 4.4).  At the time of the failure the remnant talus material 

appeared as rectilinear blocks standing vertically at the edge of the bench. In 

photographs taken a few days after the occurrence of the landslide (Figure 4.13D 

and E), the blocks of frozen sediments perched at the edge of the topographic 

bench are clearly visible. Their vertical dimension has been visually estimated to 

be 15-20 m (see Chapter 6), and some of them have degraded in place, as they 

are today still observable in the field and in the aerial images, preserved as 

mounds of debris (Figure 4.13F,G). The debris deposits at the edge of the bench 

have an average slope angle of 39°, and a drop in elevation between their surface 

and their contact with the bedrock of 30 m. At this contact, in the field I observed 

the presence of active water springs Figure 4.13C).  
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Figure 4.13. The geomorphology of the Móafellshyrna landslide’s headscarp zone. (A) Oblique view of 

the headscarp of the Móafellshyrna landslide, with remnants of the source deposits lying against the rockwall 

and perched at the edge of the bench; (B) bedrock of the Móafellshyrna mountain dissected by sub-vertical 
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and sub-horizontal systems of discontinuities; (C) water spring at the contact between the bedrock and the 

remnant of the source talus deposits; (D) oblique view of the topographic bench and the headscarp of the 

Móafellshyrna Mountain four days after the failure; (E) unstable blocks of frozen talus deposits perched at 

the edge of the topographic bench four days after the failure; (F) one of the cones of deposits resulting from 

the degradation of blocks of ice-rich sediments, and perched at the edge of the topographic bench (picture 

taken in July 2015); (G) aerial photo of the remnants of the source talus deposits, with conical features at 

the edge of the topographic bench as result of the degradation of blocks of frozen talus deposits. 

 

The bedrock of the mountain is dissected by sub-vertical and sub-horizontal 

systems of fractures, which are pervasive and spaced on the scale of tens of 

centimetres (Figure 4.13B). This orthogonal discontinuity geometry gives rise to 

multiple blocks that are prone to topple and fall. On the mountain ridge, I also 

observed a reverse fault with several metres of offset. Three years after the 

occurrence of the failure, the bedrock still appeared wet at the headscarp, and ice 

was visible on the headscarp wall (Figure 4.13A). This could reflect the presence 

of groundwater flow that exploits the intersecting discontinuity systems. The 

headscarp is marked by a distinctive red colour, caused by the fine silty clay 

deposits that compose the matrix of the original talus deposits, and which have 

not been completely removed (Figure 4.13; see Chapter 6 for full description of 

the ice-cemented talus deposits). The angle of slope of the headscarp, where 

bedrock is fully or partially exposed, is generally ~50°and the slip surface in the 

source area is upwards concave. 

After the initial sliding movement, the debris mass encountered the edge of the 

topographic bench, and fell downslope through the process of rock/debris fall. 

The residents of the Þrasastaðir farm report debris fall activity for months after 

the occurrence of the landslide; this activity stopped over the winter, and new 

debris fall activity started again in the following spring. The debris mass was 
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probably transferred through the chutes that are carved in the bedrock cliff below 

the source area.  

Topographically below, in Section 2, the debris mass encountered the talus 

deposits of slope angle of 30° that are located at elevations of 690 m to 510 m 

a.s.l. The falling debris mass entrained new material from these talus deposits, 

and eroded a channel down the middle of the talus slope (Figure 4.14). 

Measurements from the DEM reveal that the talus deposits were incised to a 

depth of up to 3 m from their original surface. However, visual estimations from 

pictures taken a few days after the occurrence of the failure show that the 

thickness of the talus debris entrained by the initial mass was probably much 

higher (up to 5 m, Figure 4.14), but this channel has been partially re-filled by 

material that fell subsequently on the talus slope. A minor debris flow 140 m long 

is also observable on the north-eastern side of the of the talus slope. 

 

Figure 4.14. Entrained talus deposits. (A) The erosional area as result of the entrainment of talus deposits 

by the initial mass (the picture was taken on 29th September 2012); (B) the same view of the erosional area, 

partially re-filled by new talus material (the picture was taken in July 2015). Note the cone of debris as scale, 

resulting from the degradation of the ice-cemented block in panel A. 

 

The debris mass then reached a low slope area in Section 3 at the foot of the 

talus slope (Figure 4.12), and then proceeded further downslope through a 

process similar to a debris flow/slide. It is likely that in a second stage — probably 
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a few minutes after the deposition of the main flow deposits — a second pulse of 

debris was transported in this intermediate flat area. This second pulse is 

recognisable by the granulometry, morphology and structures of the deposits in 

this flat area, and their geomorphic features have not been overprinted by newer 

flow features and therefore were the last to be formed. These deposits are 

characterised by the presence of multiple layers (at least 2). Distributed around 

this low slope accumulation area are thirteen relatively long (11-40 m) 

compressional ridges, separated by depressions (Figure 4.15). These 

compressional ridges are partially parallel to the runout direction of the flow (NW 

to WNW), but those towards the centre accumulation area verge towards NE, 

probably because the flow encountered a topographic obstacle to the west. The 

ridges are rounded and sinuous, are 5-10 m wide, and from the bottom of the 

intra-ridge depressions to the crest of the ridge they are 0.5-1 m high on average 

(Figure 4.16A). At the contact between the foot of the talus slope and the 

accumulation zone, there are lobate features, and discrete zones of well sorted 

fine or coarse deposits (Figure 4.15, Figure 4.16A). In this accumulation zone of 

the landslide, I found 17 cones of debris 4 to 39 m wide and tens of cm to 10 m 

high. These are called “molards”, and they are the result of the degradation of 

blocks of ice-cemented talus deposits that were observable a few days after the 

landslide occurred (Figure 4.16B). In Chapter 6, I reconstruct the formation of 

molards and I discuss their significance in periglacial environments. A fuller 

description of the geomorphological importance of molards is given in Chapter 6, 

but here I discuss their importance as pertains to the dynamics of the landslides. 

In this same zone of the landslide, at the foot of the talus slope, fresh boulders up 

to 1-3 m high are also present (Figure 4.15; see Section 4.4.2.2 for their runout 

analysis). 



Chapter 4 – The dynamics of landslides induced by ground-ice degradation 

 
 

115 
 

 

Figure 4.15. The main geomorphological features of the upper accumulation zone of the Móafellshyrna 

landslide with the black arrows indicating the main direction of the flow. Lighting angle from south. 
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In this flat accumulation zone of Section 3, a secondary lobe was deposited on 

the north-eastern side of the landslide, striking N260° (Figure 4.15). This 

secondary lobe has a distinctive “fish-tail” shape, characterised by a terminal 

bifurcation into two lobes. Other smaller secondary lobate features are also 

present further upslope. The lobate deposits have a thickness of 1 m up to 3 m 

(Figure 4.16C), and have abundant boulders and gravel in a fine (silty clay) 

matrix. There is a preferential distribution of coarse material at the edges of the 

lobe, while fine debris tends to be found towards its centre. Using aerial images, 

it can be seen that the fish-tail lobe is itself composed of lobate structures. From 

observations made four days after the failure, it also seems that the lobe 

bulldozed the snow as it travelled downwards on a slope of only 12° (Figure 

4.16D). 

 

Figure 4.16. The morphology of the accumulation zone. (A) Ridges (crests marked with solid lines) and 

intra-ridges depressions (white dashed lines) in the first flat accumulation area encountered by the flow. In 

the background, discrete zones of coarse debris and lobes of fine debris are present; (B) some of the cones 
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of debris (molards) scattered on the accumulation area; (C) secondary “fish tail” lobe located to the east of 

the main accumulation zone (red asterisk and arrow show the perspective view of panel D); (D) snow 

bulldozed by the “fish tail” lobe (pictures taken 9 days after the landslide). 

 

The main debris mass continued in a north-westerly direction and travelled 

downslope, forming a straight channel coated with debris (Figure 4.12). This is a 

zone where deposits were transferred (Section 4 in Figure 4.4), and the thickness 

of the deposited debris sheet is less than 1 m. This section of the landslide has a 

channel-form 263 m long and up to 107 m wide (Figure 4.17A). In the central part 

it is characterised by ridges and furrows with N145° direction (Figure 4.17B). The 

lateral margins show a different granulometry, being mainly composed by blocks, 

forming poorly-defined lateral levees (Figure 4.17C). The presence of a central 

“channel” with ridges and furrows might be an indication of erosion, because in 

the aerial images of the slope before the occurrence of the landslide (Figure 4.11) 

no channelized features seem to be present. The traces of lateral levees indicate 

deposition in this section of the landslide.  
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Figure 4.17. The channel of the Móafellshyrna landslide. (A) The channel has lateral levees, which are 

not-well defined downwards; (B) oblique view from south of the terminal part of the channel, with deposit-

ridges and scours downslope; (C) oblique view from north-east of the upper part of the channel, with finer 

material in the centre (see the two sheep for scale) and the coarser material at the edge forming lateral 

levees. 

 

The debris mass ended its path on a gently sloping surface in Section 5, almost 

reaching the Galtará river (Figure 4.4). The flow formed a terminal lobe 369 m 

long, up to 218 m wide, and with a thickness of at most tens of centimetres (10-

50 cm). This terminal zone of the landslide is characterised by discrete flat areas 

where silty to clay material segregated from the gravelly material, sometimes 

forming secondary lateral lobes with ponded water, or pools of muddy sand, and 

sometimes infilling areas with topographic ‘traps’ (Figure 4.18A). Where the 

topography is steeper, longitudinal ridges and furrows (up to 40 m long) created 

by the transport of blocky material are observable (Figure 4.18B). The zones 

dominated by the fines show “sand boil” structures (4 to 5 m in diameter), which 
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result from the liquefaction of water-saturated fine sediment (Iverson et al., 2015; 

Xu et al., 2012), and cracks a few meters long (1-5 m) (Figure 4.17C,D).  

 

Figure 4.18. The terminal lobe of the Móafellshyrna landslide. (A) Aerial view of the terminal lobe, with 

the main zones where fine (silty-clay) and coarse (bouldery-gravelly) debris are dominant (the coloured 

squares indicate the different panels B, C, and D); (B) view from south-east of part of the terminal lobe with 

ridges and furrows and where coarse bouldery-gravelly deposits are dominant, in contact downslope with 

an area where silty-clay deposits are dominant; (C) view from east of an area where silty-clay material is 

dominant and where sand boil structures are located; (D) view from south-east of sand boil structures. 
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4.4.1.2 Morphology and structures of the Árnesfjall 

landslide 

The Árnesfjall landslide detached from the northern flank of the Árnestindur 

peak (Figure 4.19A) at 418 m a.s.l., and its toe extends to the bottom of the valley 

at 70 m a.s.l., with a lateral debris flow that reached the road (Strandavegur 643) 

at a few meters above sea level (Figure 4.19B). The vertical distance H between 

the top and bottom of the landslide is 348 m, while the horizontal travel distance 

L was 560 m, giving a Fahrböschung of 32°. Similar to Móafellshyrna, the failure 

mass consisted of ice-cemented talus slope deposits, in this case lying against 

the north-facing, sub-vertical rockwall of the Árnestindur peak. Parts of the talus 

deposits were not mobilised by the landslide and still cover 75,000 m2 of the 

northern side of the Árnesfjall Mountain. These preserved talus deposits show 

deformation features, such as transverse fissures (20-50 m long; Figure 4.20A,B) 

probably due to permafrost creep. 

 

Figure 4.19. The Árnesfjall Mountain before and after the failure. (A) Oblique view from north-east of the 

Árnesfjall Peak (picture taken on 13-08-2008, courtesy of Ingvi Stígsson); (B) oblique view from north of the 

Árnesfjall landslide (picture taken in July 2016). 
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The landslide material ranges from clay to large boulders in grain size. On the 

western side of the landslide, the headscarp has a distinctive red colour due to 

remnants of fine material composing the matrix of the original talus deposits 

(Figure 4.20C; see Chapter 6 for full description of the ice-cemented talus 

deposits), and an average slope of 49°. On the eastern side, the landslide has 

three semi-circular and upwards concave minor scarps (50 to 85 m long), forming 

up to 15 m thick tilted blocks made from surficial colluvium (Figure 4.20D).  

The basalt composing the bedrock of the mountain displays a pervasive 

(spaced on the scale of centimetres) primary foliation due to the movement of 

lava flow during its emplacement, dipping 30° towards SSW. This is cut by a 

pervasive discontinuity system (probably cooling joints) that dips sub-vertically 

between WNW and ESE, with typical joint spacing of 1-2 m (Figure 4.20D). 

Locally, particularly at the contact between the headscarp and the remaining talus 

deposits, the bedrock appears wet.  
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Figure 4.20. The morphology of the source area of Árnesfjall landslide. (A) Oblique view from north of 

the Árnesfjall landslide, with the white squares indicating the different panels B, C D, E; (B) Preserved talus 

deposits next to the landslide that show deformation features probably due to permafrost creep; (C) the 

headscarp with a distinctive red colour left the source materials; (D) lateral minor scarps on the eastern side 

of the landslide; (E) the bedrock in the headscarp exposed by the failure, showing two perpendicular 

discontinuity systems in the bedrock. 
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In Figure 4.21 the sequence of the different processes that occurred during the 

Árnesfjall failure is illustrated. The first initial movement of the source material 

was by rotational sliding, accompanied at the same time by lateral debris flows. 

After the deposition of the landslide, a secondary set of debris flows occurred, 

accompanied by the transport of an ‘outrunner’ (nearly intact blocks of debris that 

detach from a submarine landslide body (De Blasio et al., 2006); the term is also 

used for terrestrial landslides (Milana, 2016). I will describe here the different 

morphologies and structures left by these processes. 

 

Figure 4.21. Flow chart summarising the different processes that occurred during the Árnesfjall landslide. 

The arrow in yellow indicates time continuous and consecutive processes, while the dashed red arrows 

indicate intermittent and/or non-consecutive processes. 

 

In the depletion zone (Figure 4.22), the source material was tilted downwards, 

but part of the talus deposits are still perched in this area of the landslide (Figure 

4.22A). In particular, multiple elongated cones of talus deposits lie here (Figure 

4.22A,B), densely grouped ~40-150 m below the top of the headscarp. They are 

up to 27 m long and almost 4 m high, and are the result of the degradation of 

angular ridges composed of ice-cemented talus deposits (see Figure 6.2 in 

Chapter 6) that formed during the tilting downwards of blocks of source material 

during the failure. Four of these are located in the accumulation area downslope. 

I have identified these cones as molards. I discuss in Chapter 6 their 
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morphometric characteristics, and how they not only reveal permafrost 

degradation in the area, but also information on the landslide process. On the 

downwards-facing surfaces of the cones that are closest to the external edge of 

the depletion zone it is possible to observe lichens: hence this surface has not 

been greatly disturbed by the failure: its preservation reflects a homogeneous 

rotation of the whole debris mass (Figure 4.22C).  

 

Figure 4.22. The cones of debris in the depletion zone of the Árnesfjall landslide. (A) The dense group of 

elongated cones of talus deposits perched below the headscarp; (B) the cones in the depletion zone are 

formed by bouldery talus deposits, can reach heights of 4 m, and are identifiable as molards; (C) the original 

surface of the source talus material is preserved in places in the depletion zone; (D) one of the circular 

isolated molards scattered on the surface of the accumulation zone, with a smaller molard sitting on top of 

it. 

 

The slope transition between the depletion zone and the accumulation zone is 

quite abrupt, from an angle of ~18° at the edge of the depletion zone, to 33° in 

the upper part of the accumulation zone. The direction of movement of the whole 

mass was N58°. The accumulation zone is composed in the centre by a relatively 



Chapter 4 – The dynamics of landslides induced by ground-ice degradation 

 
 

125 
 

uniform debris mass, with debris flows around the periphery (Figure 4.23). The 

debris mass is 180 wide and 360 m long, and its thickness ranges from 5 m in the 

upper part to up to 15 m at the toe. It has two central terminal lobes and the 

eastern lobe ends with two small (66 and 70 m long) debris flows. The deposits 

are composed of clasts (ranging from 5 cm to tens of centimetres, rarely bigger 

than 1 m) and gravel, with scarce silty clay matrix. Some isolated molards are 

scattered on the surface of the debris mass (Figure 4.23D). They are more 

circular and less elongated than those in the depletion zone, are generally 

composed of bouldery-gravelly material (with a couple of exceptions where they 

are matrix supported by silty-clay material), and range in height from 20 cm up to 

rare cases of 1 m. As opposed to Móafellshyrna, the molards in Árnesfjall 

sometimes preserve the original stratification of the talus deposits, evidence that 

the material was tilted downwards as a single mass (see Chapter 6 for the 

description and discussion of molard morphology and formation).  
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Figure 4.23. Map of the main morphological features of the Árnesfjall landslide. 

 

The north-eastern debris flow, which happened at the same time as the 

landslide, originates at the top of the debris mass (Figure 4.23), so spans the 
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whole accumulation zone, and then extends to the Strandavegur 643 road (Figure 

4.24C). It is 30 m wide at its head, where abundant clasts from 30-50 cm up to 1-

2 m size are present, particularly at the contact with the debris mass (Figure 

4.24B). The channel is 1 to 2 m deep, and shows 30-50 cm up to 1 m high lateral 

levees (Figure 4.24A). Secondary debris flows depart the foot of the east side of 

the accumulation zone as well, reaching the road downslope (Figure 4.24A). 

Other secondary debris flows on the north-north-western side of the landslide are 

224 m long and develop at the terminal edge of the main debris accumulation 

zone. They bifurcate downslope into two channels less deeply incised (30-60 cm) 

that have 10 to 30 cm thick lateral levees. The terminal lobes reach the fields at 

a few tens meters from the coast. From visual comparison of pictures taken 

immediately after the occurrence of the landslide (Figure 4.24C) and two days 

after the failure, it is clear that this debris flow developed after the occurrence of 

the landslide in the two days between the photos being taken. It is likely that, as 

blocks of ice-rich sediments from the debris mass started to degrade, a mixture 

of debris and fluid was released. In one of the terminal lobes of the debris flow a 

molard is present (Figure 4.24D). This block is not visible in the photos taken on 

the day of the failure, but is visible in those taken two days later, so must have 

failed in this range of time, likely at the same time of the north-north-western 

secondary debris flow. 
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Figure 4.24. The accumulation zone of the Árnesfjall landslide. (A) The debris flows on the eastern side 

of the accumulation area; (B) Clastic material at the head of the debris flow on the eastern side of the 

accumulation zone; (C) a view from the road Strandavegur 643 of the landslide on the day of the failure. 

Note the square shape of the blocks of ice-rich sediments scattered on the landslide’ surface. The white 

arrow points to the same place as the one in the next panel; (D) an isolated molard at the foot of the western 

debris flow (absent in Figure 4.24C), which developed two days after the occurrence of the failure. 

 

4.4.2 Volume and runout analyses  

4.4.2.1 Volumes and runout analysis of the 

Móafellshyrna landslide 

Estimations from field observations of the deposit thickness indicate that the 

volume of debris that was mobilised by the Móafellshyrna landslide was between 

295,000 and 440,000 m3, considering that the landslide covers an area of 

293,900 m2. The Fahrböschung of the Móafellshyrna landslide is 22°. A further 

calibration of the volume estimates has been obtained using the GPR profiles. 

The GPR results give a rough estimate of the thickness of the deposits, 

particularly in the Sections 4 and 5 of the landslide. These results, however, are 
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unsatisfactory and not fully reliable, as they were affected by a strong attenuation 

of the radar waves. Thus, the penetration depth was restricted to 4-6 m (100 MHz) 

and 6–8 m (50 MHz). Furthermore, the data analysis was severely disturbed by 

signal scattering caused by the presence of voids in the coarse landslide material. 

However, near-surface sediment structures were detected at profile GPR L1 at 

100 MHz frequency (Figure 4.25), which is located in the terminal lobe (see Figure 

4.10) nearly parallel to the runout direction, and where the sliding surface is 

observable at 2 m of depth. The sliding surface is sub-parallel to the topography. 

The sliding surface is also observable at 1 m depth in profile GPR L2, which was 

run in the terminal lobe (see Figure 4.26). These results are confirmed by field 

inspections, as I dug a hole in the landslide deposits along profile GPR L2 and 

found a clod of earth with grass at 82 cm depths.  Therefore I have used the GPR 

results only to have a rough estimate of the thickness of the deposits of the 

terminal part of the landslide (corresponding to Section 4 and 5). Other uncertain 

reflectors were recognized in the other GPR profiles (see Appendix 1) always 

sub-parallel to the topographic surface and always at depth between 0.5-4m. 
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Table 4.4 - Summary of the calculated parameters for the Móafellshyrna landslide and the DEM of 

difference (DoD) between the post-failure topography and the reconstructed pre-failure topography 

superposed on an aerial image. 

 

 

I reconstructed the pre-failure topography of the source deposits (see Section 

4.3.4 for the method) to quantify the talus deposit volumes that were perched on 
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the topographic bench before the occurrence of the failure. The panel below 

Table 4.4 shows the DEM of difference (DoD) for the source area, obtained by 

subtracting the manually reconstructed pre-failure topographic surface from the 

post-failure topographic surface. The volume of source talus deposits obtained 

through this calculation is 151,400 m3 (Table 4.4; Figure 4.27); in places, 15 to 20 

m thick debris is still perched at the edge of the bench.  

 

Figure 4.27. Conceptual diagram showing the eroded (blue) and deposited (orange) volume calculated 

for the main features of the Móafellshyrna landslide, which overall mobilised 314,000 m3 of debris. The 

volume mobilised by the whole landslide does not equal the volumes eroded in the source area and entrained 

from the talus deposits because the volume of material entrained was higher than estimated and because 

the landslide entrained further shallow material in the transport zone.  
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The channel carved in talus deposits below the topographic bench shows that 

there was entrainment by the source mass, or bulking of the landslide, as also 

shown in the DoD in the panel below Table 4.5, in which the channel has caused 

up to 7.8 m of erosion. Assuming that the surrounding talus deposits were not 

mobilised, I have reconstructed the topography of the talus slope before the 

failure, calculating the volume of debris eroded by the failing mass. The calculated 

entrained mass is 110,000 m3, which corresponds to 35% of the total mobilised 

material (Table 4.5; Figure 4.27). However, it is likely that the volume entrained 

was higher, since the visual estimations from the pictures taken a few days after 

the occurrence of the landslide reveal that the channel was more deeply incised 

than when the LiDAR data were collected ─ by at least 1 m on average, leading 

to an estimate of roughly 10,000 m3 extra volume considering the lower part of 

the channel where most of the material was eroded. The field estimates are lower 

(52,200-87,000 m3) than the volume calculated from the DEM probably because 

at the time of the field measurements, for safety reasons, I acquired data at the 

boundary of the channel and not at its centre, where it is at its deepest.  
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Table 4.5 - Summary parameters for the talus deposits entrained by the Móafellshyrna landslide and the 

DEM of difference (DoD) between the post-failure topography and the reconstructed pre-failure topography. 

 

 

The distinct borders of the secondary lateral lobe “fish tail” that deviated 

laterally from the main runout path of the landslide allowed a better constrained 



Chapter 4 - The dynamics of landslides induced by ground-ice degradation 

 
 

136 
 

reconstruction of the topography before its deposition. The volume deposited in 

this area (see DoD in the panel below Table 4.6) of the landslide is 17000 m3 

(Figure 4.27), a value that is within the range estimated from field inspection 

(11,200-33,700 m3; Table 4.6). The secondary lateral lobe travelled on a slope of 

only ~12° (Table 4.6) for 240 m, so with an estimated coefficient of kinetic friction 

(calculated according to the definition of Heim (1932) and Shreve (1966) as the 

tangent of the mean slope from the source to the distal margin of a landslide) of 

approximately 0.21.  

The calculation of the volumes of the landslide features via (i) differencing the 

present topography from the reconstructed pre-failure topography, and (ii) field 

and DEM measurements of the areas where this calculation was not possible, 

give a total volume of ~314,000 m3 (Table  4.6; Figure 4.27). The volume 

mobilised by the whole landslide does not equal the volumes eroded in the source 

area and entrained from the talus deposits (~261,400 m3), most likely because 

the volume of material entrained from the talus slope was higher than estimated 

and because the landslide eroded and transported shallow material in the 

transport zone. 
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Table 4.6 - Summary parameters for the secondary lobe of the Móafellshyrna landslide and the DEM of 

difference (DoD) between the post-failure topography and the reconstructed pre-failure topography. 

 

 

4.4.2.2 Runout analysis of molards and boulders of the 

Móafellshyrna landslide 

The blocks of ice-rich sediment that fell at the foot of the talus slope during the 

Móafellshyrna event were deposited almost intact to their rest position because 

ground ice was still cementing them during transport (see Chapter 6 for further 

details on ice content). To analyse the mobility of the blocks of ice-rich sediment 

now visible as molards, I compared the reach angles and the volumes of the 
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debris cones with those of normal boulders that were mobilised during the 

landslide event that fell to the foot of the talus slope via simple rock fall (Figure 

4.28). The debris cones show both travel distance and volumes coherent with 

those of boulders involved in common rock-fall processes. 

 

Figure 4.28. Semi-logarithmic plot of block and molards volume (m3) versus the tangent of reach angle 

(H/L), The vertical error bar is the propagation of errors of L (whose error is the standard deviation of the 

length of the various potential energy lines of fall) and H (whose error is the thickness of the bedrock cliff for 

boulders and the thickness of the deposits perched on the topographic bench for the molards in 

correspondence of the centreline path of fall). The horizontal error bar is calculated using an accuracy of 

25% according to Conway and Balme (2014) for molards, and is calculated arbitrarily using an accuracy of 

20%of field and plan-view measurements for boulders.  

  

4.4.2.3 Rapid Mass Movement Simulation applied on 

Móafellshyrna landslide 

I applied the Rapid Mass Movements Simulation (RAMMS) model (Christen et 

al., 2010) to simulate the runout of the Móafellshyrna landslide. Since the source 

material of the landslide is composed of talus deposits, I calibrated the starting 

conditions simulating a granular flow, with the purpose of modelling the runout 
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distance of a solid-dominated flow (as expected from non-saturated talus slope 

material) with the same percentage of ground ice as that observed in the source 

deposits in the field after the failure. The output runout of the RAMMS calibrated 

model was compared to that of the Móafellshyrna event. The runout obtained by 

the RAMMS simulation deviates from the Móafellshyrna runout by 47%, while the 

modelled volume deviates by 10% from the volume calculated in Section 4.4.2.1. 

Figure 4.29 shows the outputs of the RAMMS runout model applied to the 1m 

gridded DEM from LiDAR data, where the modelled deposit height is projected, 

and where the area covered by the Móafellshyrna landslide is also reported. The 

model simulates the deviation of the secondary lobe due to the topography, but it 

underestimates the main runout path. Therefore, the model did not give 

satisfactory results with the input calibration parameters.  
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Figure 4.29. The RAMMS::DEBRIS FLOW model of the Móafellshyrna landslide from 1m gridded data. 

 

4.4.2.4 Volumes and runout analysis of the Árnesfjall 

landslide  

Covering an area of 71,700 m2, the estimated volume mobilized by the 

Árnesfjall landslide is between 71,700 and 215,000 m3, considering an average 

landslide deposit thickness of 1-3 m. The Fahrböschung of the landslide is 32°. 

As it is possible to observe in Figure 4.7, the landslide deposits now lie on a slope 
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that was once homogeneously covered by talus deposits. Since parts of the talus 

deposits have not been mobilised by the Árnesfjall event, I have used the 

elevation of these deposits (using the 18 cm gridded DEM) as a reference to 

reconstruct the pre-failure topography of its source area. The volume obtained 

through this procedure, and combining field and DEM measurements for the rest 

of the landslide body, is 151,400 m3, giving an average debris thickness of 2 m, 

a value in agreement with field estimates (Table 4.7). 

The defined borders of the source area have allowed the reconstruction of the 

quantity of eroded material (see DoD in the panel below Table 4.7). The value 

obtained is 77,400 m3, which corresponds to almost half the volume mobilised by 

the landslide. From field and DEM measurements, I estimated a volume of debris 

deposited in the accumulation zone, excluding the debris flows, of 80,500 m3. The 

thickness of the debris mantle in the accumulation zone is heterogeneous, being 

up to 5 m thick in the upper part, and in the terminal lobe just a few tens of 

centimetres near the western debris flow. However, field estimations for the 

deposited volume of 55,000 - 275,000 m3 do not greatly deviate from the 

topographic calculation. 

Part of the deposit transported by debris flows was removed by local 

authorities, (because these deposits covered the Strandavegur 643 road). The 

major part of the deposits of these debris flows is so thin (often few tens of 

centimetres) that reconstructing the topography before their emplacement is not 

possible. It is likely from field estimations that less than 500-800 m3 of debris have 

been transferred via these debris flows. This volume is negligible in the overall 

sediment budget of the landslide, but is important in terms of hazard assessment 

purposes. 
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Table 4.7 - Summary parameters for the Árnesfjall landslide and its features and the DEM of difference 

(DoD) between the post-failure topography and the reconstructed pre-failure topography. 

 

 

4.5 Discussion 

Both the Móafellshyrna and Árnesfjall landslides can be broadly classified as 

complex landslides, where the downslope movement occurred. The initial 

movement occurred on a distinct curved surface in the source area. However, 
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both show morphological and morphometric characteristics that suggest other 

types of movement, due to the nature of the debris material, the topography and 

the presence of water and ice. In both landslides, the source material was weakly 

cemented (being formed of ice-cemented talus deposits), and perched on a steep 

slope, observations that can both be considered as preconditioning factors for the 

initiation of rapid mass movements (McColl, 2012). Despite the fact that these 

two landslides had similar preparatory and triggering factors (see Chapter 5), they 

developed quite differently. 

4.5.1 The dynamics of the Móafellshyrna 

landslide  

Detailed morphological analysis of the 2012 Móafellshyrna landslide 

(Fahrböschung of 22°) allowed me to infer emplacement mechanisms, since this 

landslide shows various forms and structures along its runout path. These give 

important information regarding the initiation, transport, deposition and evolution 

of the mass movement. I have recognised that the Móafellshyrna landslide 

evolved through three different types of dynamics: (i) rotational debris slide, (ii) 

rock/debris fall and (iii) debris flow/slide.  

The local residents of the Þrasastaðir farm observed the opening of a semi-

circular fissure at the crown of the Móafellshyrna landslide as one of the first signs 

of movement. The surface of the headscarp of the landslide is upward concave, 

a condition necessary for the development of a rotational slide. Once this material 

had propagated downwards over the cliff, the debris slide entrained the talus 

material below, a mechanism that is common in rock and debris 

slides/avalanches and that can cause liquefaction and an increase in flow volume 

(Geertsema et al., 2006b; Huggel et al., 2007; Hungr and Evans, 2004). This 
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entrained material must have had a strong impact on the emplacement of the 

debris, since it comprised at least ~35% of the total volume of the mobilised mass. 

The debris-slide dynamic is also evident from structures such as ridges and 

depressions in the flat accumulation area below the entrainment zone. Similar 

features have been observed in a debris avalanche in British Columbia and have 

been associated with a water-poor debris content (Roberti et al., 2017a). Ridges 

and intra-ridge depressions in Móafellshyrna show that the direction of the 

movement was affected by the topography and the fluid content. Coarse debris 

accumulated in this first flat accumulation area, as the debris mass encountered 

a topographic high (see Figure 4.12 and Figure 4.15); this made part of the debris 

mass deviate to the NW, creating new lobes of debris on a relatively flat surface 

(5-12°). The deviation of the secondary lobe with a fish-tail shape was predicted 

by the back analysis performed with the RAMMS numerical model where 

parameters of a granular (solid-dominated) flow were used.  These predictions, 

and a coefficient of kinetic friction of 0.21, imply that the fish-tail lobe developed 

as a granular flow. The RAMMS model however gave for the landslide as a whole 

unsatisfactory results. This could be due to several reasons, including the 

complex morphology and rheology of the landslide, and the fact that the RAMMS 

model is not designed to include the behaviour of ice melting. Therefore, further 

investigation is needed in order to obtain better simulations of landslides involving 

ice thaw, as they would serve to the purpose of risk prevention and mitigation. 

The fish-tail lobe and the other lobate features are well delimited and are also 

present at the contact between the debris entrainment area and the flat 

accumulation area, revealing debris emplacement in sequential pulses after the 

main mass failure. Furthermore, the fish-tail lobe bulldozed the snow while 

moving downward (Figure 4.16D). This mechanism and the deviation of the 
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debris from the main runout path have, in previous studies, been attributed to 

differential mobility of debris within the debris mantle, especially in debris 

avalanches on glacier surfaces (Delaney and Evans, 2014). I infer that the more 

fluid component of the falling mass was instead transferred downwards during 

the main mass failure. 

 The fall component of the Móafellshyrna failure is not limited to the boulders 

now found at the foot and on the surface of the talus slope below the source area, 

which fell during the Móafellshyrna event and up to months after the occurrence 

of the landslide. The isolated molards or cones of debris found scattered at the 

foot of the talus slope are the result of the degradation of blocks of ice-rich 

deposits that also fell from the source area (see Chapter 6 for further details). 

Coherent blocks were still visible nine days after the occurrence of the failure, 

unstably perched at the edge of the topographic bench (see Figure 4.13). Some 

of them were not transported downslope, but degraded in place resulting in cones 

of debris faintly preserved in the source area (see Figure 4.13). However, the 

question remains as to how the molards in the accumulation zone came to be 

there: did they fall or were they pushed? Since the reach angle model is one of 

the universally recognised methods to analyse travel distance of small rock falls 

(<100 m3), I have compared the reach angle and size of the cones of debris left 

during the Móafellshyrna event to those of normal boulders that fell in the same 

area of the landslide (Figure 4.28). Normally, “the larger the falling boulder, the 

smaller the value of the reach angle” (e.g. Copons et al., 2009; Corominas, 1996). 

According to this principle, both boulders and particularly molards in 

Móafellshyrna show a high mobility. In Figure 4.30, I compared the reach angle 

and size of the Móafellshyrna molards to the  shadow angle (same as reach 

angle, but calculated from the apex of the talus slope) of blocks of similar size in 
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Spain, where Copons et al. (2009) found that the rock fall size has a strong 

influence on the travel distance also for block size <105 m3. Copons et al. (2009) 

plotted individual block volumes and the farthest boulders found at the study area, 

since they represent the largest volumes and largest travel distances from past 

rock falls at the same site. They found a negative relationship between block 

volume and the shadow angle ratio value. Both boulders and molards in 

Móafellshyrna have high mobility (horizontal travel distance L values are high), 

but coherent with the mobility of ‘normal’ rock-fall boulders analysed by Copons 

et al. (2009). In the case of molards, this slightly higher mobility could also be 

partially attributed to a ‘compound’ transport mechanism, as it is possible that, 

once fallen, they landed on the still mobile landslide debris material. They might 

then have been rafted on the surface of a viscous flow (as shown by the 

compressional ridges) and transported to greater distances.  

 

Figure 4.30. Semilogarithmic plot of volume (m3) versus reach angle for the molards and boulders of 

Móafellshyrna landslide (error bars are the same for Figure 4.28) and shadow angle of documented 

individual boulders and farthest boulders beyond talus slope from Copons et al., (2009). Copons et al., (2009) 

fitted a regression equation by the lower envelope of plotted data, estimating the maximum travel distance 

of rock blocks by taking into account their volume. 
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The fluid-dominated phase of the Móafellshyrna landslide is evident in the 

landforms downslope of the flat accumulation area. The presence of sand-boil 

structures in the terminal lobe of the landslide could be an indicator of liquefaction, 

as similar features were observed in analogous landslides (for example in the 

Frank landslide in Alberta; McConnell and Brock, 1903) and attributed to 

liquefaction (Xu et al., 2012). In the same area of the landslide, segregation of 

coarse and fine material in discrete zones is observed, and probably occurred 

due to the fines leaking out of accumulations of coarse material in topographic 

traps. The presence of a straight channel with poorly-defined lateral levees, and 

of a terminal lobe with coarse and fine deposits in discrete zones, could also be 

related to a fluid-dominated phase, similar to a debris flow/slide (Costa, 1984). 

The fluid component of the failing mass overshot the flat accumulation area and 

even crossed a slight topographic high, and then flowed along the line of steepest 

descent. The transition from a rock/debris slide to a debris flow is a common 

process that has been related to liquefaction (Boultbee et al., 2006; Capra and 

Macı́ as, 2000; Crosta, 2001; Scott et al., 2002; Tost et al., 2014; Vallance and 

Scott, 1997; Voight and Sousa, 1994; Xu et al., 2012). Back analysis using 

RAMMS (see Section 4.4.2.3) did not predict this transition, as the parameters 

introduced for the simulation were those for a granular flow. This suggests that a 

source of fluid was necessary for producing saturation and to transfer of material 

downslope. There are two possible sources of fluid that caused the evolution of 

the Móafellshyrna landslide into a debris flow/slide-like mass movement. The first 

could have come from the fluid saturating the debris material before it was 

mobilised. In Chapter 5, I show that abundant precipitation preceded the 

Móafellshyrna event, so it is likely that the talus material both on and below the 

topographic bench was saturated. It is possible that the initial falling debris mass 
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encountered the talus slope below the topographic bench, and that here the fluid 

phase separated from the solid-dominated phase and slid further downwards, as 

it was more mobile. This is a common process that has been reported in other 

debris slides/avalanches (Geertsema et al., 2006b; Huggel et al., 2007; Hungr 

and Evans, 2004; Roberti et al., 2017a). The separation of a fluid dominated 

phase from a dry phase has also been reproduced by two-phase numerical 

modelling (Pudasaini, 2012; Pudasaini and Krautblatter, 2014). The second 

possible source of fluid could have been the thawing of the ground ice cementing 

the source debris material. I discuss this point in Section 4.5.2 below. 

Furthermore, in rock-ice avalanches on snow-covered glaciers, ice and snow are 

thought to reduce the friction by 50% (Schneider et al., 2011b; Sosio et al., 2012). 

The presence of a thin (few tens of centimetres) layer of snow on ground at the 

time of the failure could have had a role lubricating the movement, even if minor 

considering that in rock-ice avalanches the path material entrained is for the vast 

majority snow or ice, which is not the case for Móafellshyrna.  

To summarize the evolution of the Móafellshyrna landslide, the failure 

developed through four different chronological steps:  

- Step 1 – Rotational slide and rock/debris fall: The source mass formed by 

ice-cemented talus deposits detached with a rotational sliding process. 

Because of an abrupt topographic jump (the presence of a topographic 

bench), the source talus debris disaggregated and was transferred 

downslope through the process of rock/debris fall.  

- Step 2 – Debris entrainment: The source mass then encountered a talus 

slope lying below the topographic bench, and entrained part of the talus 

deposits and moved further downslope. Once the debris mass reached the 
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first flat accumulation area, the landslide material divided into two different 

rheology types: solid-dominated and fluid-dominated.  

- Step 3 – Fluid-dominated phase: The fluid dominated phase was transferred 

downslope and produced forms similar to those of a debris flow/slide, such 

as sand-boil structures, leveed channels and a terminal lobe with 

segregation of coarse and fine material in discrete zones.  

- Step 4 – Solid-dominated phase: The solid dominated phase left thick (up 

to meters) coarse debris ridges and depressions that show the direction of 

the movement. It also produced secondary lobes — one of which bulldozed 

the snow covering the ground at the time of the failure — which show a 

granular behaviour and reveal debris emplacement in sequential pulses 

after the main mass failure. 

- Step 5 – Rock/debris fall: Rock and debris fall processes occurred onto the 

landslide body when it was still mobile and rafted small boulders and 

molards landing on its surface/ The fall activity continued for months 

(probably even years) after its occurrence. 

4.5.2 The dynamics of the Árnesfjall landslide  

Similarly to the Móafellshyrna landslide, the Árnesfjall landslide initiation and 

emplacement involved different dynamic processes. The Árnesfjall landslide is 

characterised by a distinctive curved slip surface in the scarp zone, hence initial 

downslope movement is also attributable to rotational sliding. The presence of 

elongated conical ridges of loose deposits (molards), which were cemented by 

ground ice at the time of the failure, are further evidence of rotational-sliding 

motion, since they appear to be produced by en echelon concave-upward rupture 

surfaces (rotated ice-cemented ridges of debris), and they preserve the original 
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stratification of the talus slope. This process was only possible in talus material 

because the ground ice gave the loose debris a more rigid rheology. Similar 

conical features in debris slides that formed through an analogous process were 

observed by Brideau et al. (2009) in the Little Salmon Lake debris slide, Canada, 

where ice-rich deposits were transported by the surrounding sliding saturated 

material. Furthermore, most of the molards lie in the depletion zone, which is 

separated from the accumulation zone by an abrupt transition in slope. This 

subdivision is typical of rock/debris slides (Varnes, 1978), and the Árnesfjall 

landslide shows a Fahrböschung of 32° (Table 4.7) that is consistent with debris 

slides.   

In addition, the Árnesfjall landslide shows a different dynamic at its periphery, 

where debris material was mobilised as debris flows, which have lateral levees 

and terminal lobes. This is not an uncommon characteristic of debris slides, but 

the presence of secondary debris flows indicates the renewed presence of fluid 

saturating the material after the initial landslide. The eastern debris flow has the 

same length as the accumulation zone, and follows a channelized morphology 

that was already present at the time of the failure. It is therefore likely that this 

debris flow developed contemporaneously to the debris slide, and the pre-existing 

channel acted as a preferential path for the fluid component of the failing mass.  

However, I have shown that the western debris flow developed subsequently to 

the debris slide, likely triggered by the degradation of the ground ice within the 

material mobilised by the failure, providing fluid for sediment transport downslope. 

At the same time (or soon before or after), a block of ice-rich sediment rolled and 

slid downslope and arrived at repose in the terminal lobe of the debris flow, and 

then degraded to form a molard. In this terminal lobe the debris are only up to 30-

50 cm thick and are dispersed in multi-directional flow lines, so it is expected that 
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this thin sheet of debris was produced by the degradation of the ground ice that 

was cementing the source material at the time of the failure.  

4.5.3 Ground ice and fluid: estimation and role in 

the Móafellshyrna and Árnesfjall landslide 

dynamics 

The Móafellshyrna and Árnesfjall landslides are two rare examples of 

landslides where blocks of ice-rich deposits were found immediately after the 

occurrence of the failure. Both the landslides are complex and show various forms 

related to different dynamic processes in different location of the landslides. The 

two landslides show dynamics analogous to those of rock-ice avalanches. The 

mobility of these types of mass movement can change during their propagation 

due to entrainment of ice, snow and substrate material; such mixing with the 

source material can reduce the friction coefficient altering the runout (Evans and 

Clague, 1988; Huggel et al., 2005; McSaveney, 1978; Schwab et al., 2003; Sosio 

et al., 2012). In general, the mobility of rock/debris slides/avalanches is not 

affected by their volume, but is mainly controlled by the availability and 

distribution of a source of liquid along their path (Hungr and Evans, 2004). I infer 

that there were two sources of liquid that changed the emplacement of the 

Móafellshyrna and Árnesfjall failures to a debris-flow/slide like movement: the 

entrainment of saturated material from the talus slope in Móafellshyrna and the 

ground ice thaw in both of the landslides. As I will show in Chapter 5, abundant 

precipitation fell in the Móafellshyrna area before the event. This probably caused 

the saturation of both the source material and the talus material below the source 

area, generating enough fluid to causing a transition to a debris-flow 

emplacement.  
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The total potential energy (PE) released by the falling mass in Móafellshyrna 

is 2.36x1013 J. This can be calculated using the equation  

 PE=ΔzgγV,      (2) 

 where Δz is the vertical distance between the centres of gravity from the initial 

position (arbitrarily estimated at the centre of the source mass at elevation of 800 

m a.s.l.) to the final position (arbitrarily estimated following Lucchitta (1978), at 

380 m a.s.l.), g is the gravitational constant, γ is the unit weight of the material 

and V is the volume mobilised (Erismann and Abele, 2001). This PE is calculated 

assuming an average density of 1863 kg/m3. This density is obtained by 

considering 80% of the failed mass having a density of an average granular flow 

(2100 kg/m3; Iverson, 1997), and 20% of the mass having the density of ice (917 

kg/m3). This assumption is based on the content of ground ice that was visually 

estimated at the time of the failure. Knowing the potential energy, it is possible to 

estimate the amount of ice melt through transmission of energy generated by the 

falling ice-cemented debris mass. Theoretically, the impact energy of the 

Móafellshyrna landslide could have melted up to 7.7x104 m3 of ice (assuming 

3.35x105J/kg necessary for melting ice at 0°C). Of course, an extensive amount 

of energy is dissipated during the collapse, fall and impact of the material, so the 

actual amount of energy available to melt is probably much less. However, 

considering that only part of the ground ice was still preserved after the failure in 

blocks of ice-rich sediment, the potential energy released by the initial 

Móafellshyrna mass (151,400 m3) could have contributed to melt at least part of 

the ground ice contained in it. 

If we assume that the fluid content of the landslide was coming only from the 

source material (151,400 m3), and that the content of ground ice is 20%, this 

would lead to an estimate of meltwater of ~3.0x104 m3 at maximum (since blocks 
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of ice-rich sediments had ground ice preserved in the source area and in the 

landslide body). The energy produced by the failure could have impacted the talus 

slope below the source area and caused an increase in temperature that 

generated a further source of fluid from the thawing of the ground ice. This would 

be also in agreement with laboratory studies: with an initial dry granular flow with 

an ice content above 40%, water supply by ice and snow melting caused 

liquefaction of the material and a reduction of the friction coefficient by more than 

50%, allowing the transition from a dry to a fully saturated flow (Schneider et al., 

2011b; Sosio et al., 2012). As shown in Figure 4.31, greater mobility is predicted 

for rock/debris avalanches interacting with ice during propagation than for those 

that do not (Evans and Clague, 1988). De Blasio (2014) lists as landslide 

characteristics affected by icy conditions and lubrication “strong stretching, 

longitudinal stripes, long runout, outrunner blocks, digitations, and marked spread 

of the landslide”.  Some of these characteristics are also found in Árnesfjall, where 

I found an outrunner molard at the end of its debris flow, and a multi-directional 

thin sheet of debris. Similarly to rock-ice avalanches, Árnesfjall and Móafellshyrna 

propagated on rough terrains and divided into several lobes. Tongue-shaped 

deposits, digitate margins and minor surface relief ─ features similar to wet snow 

avalanches ─ are found in rock/debris avalanches involving ice or propagating on 

ice surfaces (Sosio, 2015). 
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Figure 4.31. Logarithmic plot of the relative runout (H/L) versus volume (V) of rock/debris avalanches 

from different settings, with the values for Móafellshyrna and Árnesfjall superposed (modified after Sosio 

(2015)). 

 

The dynamics of both Móafellshyrna and Árnesfjall landslides are complex and 

this can raise problems when evaluating potential hazard. Their complexity is 

determined by different factors, such as topography, the entrainment of new 

saturated material in the case of Móafellshyrna, and the nature of the source 

material, composed of talus deposits cemented by ground ice. In Árnesfjall, two 

different mechanisms (rotational slide and debris flow) characterised the 

development of the landslide, while in Móafellshyrna there were three (rotational 

slide, debris flow/slide and rock/debris fall). This complexity is difficult to interpret 

and reconstruct. Models of the dynamics of rapid flow slides, debris flows and 

avalanches can accurately predict the runout extensions whenever the 

rheological parameters are well defined (McDougall and Hungr, 2004). Dynamic 

analyses of rock avalanches entraining large quantities of saturated debris were 
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carried out using numerical modelling showing that these are a complex type of 

landslide, transitional between rock avalanche and debris avalanche (Hungr and 

Evans, 2004). Rock avalanches in permafrost environments can be even more 

hazardous than in non-permafrost ones, as real runouts have been shown to 

exceed predicted ones by 30%, probably because of fluidization processes 

(Bottino et al., 2002). The presence of ground ice is another factor to be 

accounted for whenever considering the hazard of landslides involving ground 

ice. Landslides like the Móafellshyrna and the Árnesfjall ones are therefore more 

difficult to characterise and model, and this can generate problems when 

predicting similar rapid mass movements in analogous settings. 

 

4.6 Conclusions 

Landslides involving loose debris cemented by ground ice are unreported, but 

could have a large destructive potential and cause casualties if impacting on 

inhabited regions. In this chapter, I have analysed the dynamics of the 

Móafellshyrna and Árnesfjall landslides, two failures that occurred in the last 

decade in northern Iceland and that mobilised ground-ice cemented talus 

deposits. I have shown that the different morphological and morphometric 

characteristics of these landslides reveal their complex and dynamic nature. This 

fulfils one of the main aims of the thesis, to understand the connections between 

the degradation of ground ice and the occurrence of rapid mass movements in 

mountainous areas of Iceland with discontinuous permafrost by studying their 

morphological signatures. In particular, I draw the following conclusions: 

1. In both landslides, the nature of the movement evolved during the event, 

changing the mobility and trajectories of the landslides. In 
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Móafellshyrna, the failure started as a rotational slide and involved a 

component of rock/debris fall. The failure then evolved from a sliding 

motion to a more dispersive debris slide/avalanche motion. The failing 

mass then became more mobile due to liquefaction and began its 

emplacement as a debris flow/slide. In Árnesfjall, the landslide initiated 

with a rotational slide motion, with a more fluid lateral component that 

evolved as a debris flow. Once the main landslide body was deposited, 

secondary debris flows activated as a result of thawing ground ice 

cementing the source material, generating also a single outrunner.  

2. The complexity of the morphological features of these landslides reveal 

that mass movements involving ground ice can be multi-phase, 

comprising a fluid dominated phase and multiple pulses of a solid 

dominated phase. The solid dominated phase could derive from two 

sources, namely the entrainment of new saturated material and the 

thaw of ground ice. The potential energy of 2.36x1013 J released by the 

failing Móafellshyrna mass could have contributed to melt at least part 

of the ground ice, with the production of a new source of fluid (a 

maximum of 3.0x105 m3 of water) available for fluidization. The 

separation of a fluid dominated phase from a dry phase is a common 

phenomenon observed in rock and debris avalanches.   

3. The presence of ground ice and its role make this kind of landslides 

difficult to simulate in a back analysis environment. However, 

morphological and dynamic analogies with rock-ice avalanches confirm 

that the mobility of mass movements involving ice is enhanced, and that 

the ice melting can cause a more complex propagation of the failure, 

with a possible debris-flow like evolution. 
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4. I have shown that different rapid mass movements processes were 

involved during both Móafellshyrna and Árnesfjall failures due to the 

presence of ground ice, and they can be classified as complex (Hungr 

et al., 2014; Varnes, 1978). For this reason, this type of movement is 

difficult to model, making it more difficult to assess their hazard, and 

more difficult to predict similar rapid mass movements in comparable 

settings. 

5. These complex type of landslides might be more common than 

expected from the reports in the literature, as when such failures are not 

witnessed, the ground ice can completely degrade by the time that the 

landslide is surveyed. The concepts reported in this chapter might apply 

to other similar mass movements involving terrains affected by ground 

ice. It would be important in terms of hazard assessment to better 

understand the complex dynamics of these landslides in case they 

occur in inhabited areas.  
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Chapter 5 . The preparatory and 

triggering factors of the Móafellshyrna 

and Árnesfjall landslides  

in northern Iceland2 

5.1 Introduction  

As reported in Chapter 2, rapid mass movements, including rock falls, rock 

avalanches, debris flows and debris slides, are common geomorphological 

processes in Iceland and present a significant and direct threat to many towns, 

villages and farmhouses (Decaulne, 2005, 2007). Precipitation, snow melt, 

temperature variations and earthquake activity are the most common triggering 

factors for landslides in Iceland (Sæmundsson et al., 2003; Sæmundsson and 

Decaulne, 2007; Smith et al., 2009). However, during the last decade, two, 

somewhat unusual, rapid mass movements have occurred in northern Iceland. 

                                              

2 Part of the work contained in this chapter of the thesis is based on a paper that was published 
in the journal Science of the Total Environment  on 31 October 2017 entitled “The triggering factors 
of the Móafellshyrna debris slide in northern Iceland: intense precipitation, earthquake activity and 
thawing of mountain permafrost”. The full citation of this paper is: 

 
Sæmundsson Þ, Morino C, Helgason JK, Conway SJ, Pétursson HG. 2018. The triggering 

factors of the Móafellshyrna debris slide in northern Iceland: intense precipitation, earthquake 
activity and thawing of mountain permafrost. Science of the Total Environment  621: 1163–1175. 
DOI: 10.1016/j.scitotenv.2017.10.111 

 
Since the published manuscript focussed on the preparatory and triggering factors of the 

Móafellshyrna landslides alone, I have added new data, analysis and discussion of the 
preparatory and triggering factors of the Árnesfjall landslide for this chapter. This material was not 
published in the paper. Typological changes to the paper have been made to ensure consistency 
with the rest of the thesis. These changes are: change of the title, addition of relevant sections 
and figures regarding Árnesfjall landslide preparatory and triggering conditions, removal and/or 
changes of sections repeating descriptions and concepts already reported elsewhere in the thesis, 
the use of the first person singular instead of the first person plural where appropriate, and the 
inclusion of references to other parts of the thesis. 
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As reported in Chapter 4, the first occurred on the Móafellshyrna Mountain on 

20th September 2012 in the Tröllaskagi peninsula (Figure 5.1A), and the second 

on the Árnesfjall Mountain on 10th July 2014 in the Westfjords (Figure 5.1B; 

Sæmundsson et al., 2013, 2014a, 2014b). In all these landslides, ice-cemented 

debris was found within the deposits; to the best of my knowledge, this has never 

been previously reported in Iceland. The source areas of these landslides are all 

located on steep (above 40°) NW to NE facing-slopes, where discontinuous 

permafrost might be expected (e.g., Gorbunov, 1988; King, 1986). The source 

area at Móafellshyrna landslide is located at elevations of 870 m a.s.l., within the 

zone of discontinuous permafrost in Iceland as calculated by Etzelmüller et al. 

(2007), whereas at Árnesfjall the source area is located at about 400 m a.s.l., a 

much lower altitude than previously observed for mountain permafrost in Iceland 

(Etzelmüller et al., 2007). This has led to the hypothesis that degradation of 

permafrost in these areas of the island has played an important role in the 

occurrence of these mass failures, although other exogenous and endogenous 

factors could have conditioned the source region or triggered the release of the 

landslides. In this Chapter, I aim to fulfil one of the main aims of this thesis: to 

identify the exogenous and endogenous factors that caused the release of these 

landslide, focussing my attention to the role of permafrost degradation.  

In Chapter 4, I reported and discussed the morphological and morphometric 

characteristics of the Móafellshyrna and Árnesfjall landslides. In this chapter, I 

examine how intense precipitation and ground-ice degradation (via increased 

annual temperatures) could have contributed to the Móafellshyrna and Árnesfjall 

failures. Furthermore, since the Móafellshyrna landslide occurred after seismic 

activity, this aspect is also analysed for this case study. To examine these factors, 
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data from weather stations, seismometers, witness reports and field observations 

were used. I place emphasis on the field evidence of ground ice-thaw, because 

permafrost degradation has never previously been considered as a triggering 

factor for gravitational mass movements in Iceland, although other recent 

landslides elsewhere have been attributed to the melting of permafrost (e.g., 

Bottino et al., 2002; Dramis et al., 1995; Geertsema et al., 2006; Harris et al., 

2001; Huggel et al., 2012; Schwab et al., 2003).  

I described the state of knowledge of permafrost in Iceland in Chapter 2, so in 

the following sections I firstly describe the seismic conditions in central northern 

Iceland and their role in previous mass wasting events, and then I give an 

overview of the general meteorological conditions in Iceland. I then report the 

results, reconstructing the conditions that favoured the occurrence of the 

landslides. Next is discussion of the results, identifying the preparatory and 

triggering factors (as per McColl (2012) for paraglacial landslides) that induced 

the landslides. I posit that Móafellshyrna landslide was induced by a combination 

of intense precipitation in the weeks prior to the failure, and seismic activity on 

the 18th and 19th September, and that the degradation of ground ice was the final 

trigger. Finally, I propose that the Árnesfjall landslide originated after sudden 

precipitation, and the degradation of ground ice contributed as a final trigger in 

generating the failure.  
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Figure 5.1. The Móafellshyrna site, located in the Tröllaskagi peninsula, northern Iceland (A), and the 

Arnesfjall site, located in the Westfjords peninsula (B). The green dots mark the locations of the weather 

stations used for this study. The hillshaded digital elevation model used as a basis of these maps is from the 

Digital Elevation Model over Europe (EU-DEM) from the Global Monitoring for Environment and Security 

service for geospatial reference data access project (GMES RDA). The tables provide details on the 

Icelandic Meteorological Office and Icelandic Road and Coastal Administration weather stations, whose 

datasets have been used for this study. Symbols “X” and “-“ mean that data are or are not available at the 

stations, respectively. 

 

5.1.1 Seismic activity in central northern Iceland 

The seismic activity in Iceland is related to its position on the Mid-Atlantic plate 

boundary, which crosses the island and its location over the Icelandic Hotspot 

(Allen, 2002; Bjarnason, 2008; Einarsson, 2008; Thordarson and Hoskuldsson, 

2002; Tryggvason et al., 1983; Wolfe et al., 1997). The seismic activity in the 

northernmost region of the island is related to the Tjörnes Fracture Zone 

(Einarsson and Björnsson, 1979; Sæmundsson, 1974), which is defined by three 

seismically active lineaments - the Grímsey Oblique Rift, the Húsavík Flatey Fault 

and the Dalvík lineament (e.g., Gudmundsson, 2007, 2000; Sæmundsson, 1974) 

- and includes the Eyjafjarðaráll N-S extensional graben, located offshore north 
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of the Tröllaskagi peninsula (Figure 5.2).  Activity on this fault system caused the 

earthquakes prior to the Móafellshyrna landslide (Gudmundsson, G.B., Hensch 

et al., 2013), as shown in Section 5.3.3.3). 

Earthquakes are known to have contributed to the initiation of landslide and 

rock fall in Iceland in the past (e.g., Ágústsson and Pétursson, 2013; Halldórsson, 

1984; Jónsson, 1957; Jonsson et al., 1992; Sæmundsson et al., 2003; 

Thorarinsson, 1937; Thorarinsson et al., 1959), but no study has explored in 

detail the role of earthquake activity as a preparatory and/or triggering factor on 

rock fall or landslides in Iceland, as has been done elsewhere in the world (Harp 

and Jibson, RW, 1996; Yin et al., 2009). The above mentioned Icelandic studies 

relate mass movements to larger earthquakes than those prior to the failure in 

Móafellshyrna; e.g. in June 2000, two earthquakes of magnitude 6.4 occurred in 

Iceland, with the epicentre in the middle of the southern lowlands. Rock fall 

activity was reported as a result of this event as far as 75 km from the epicentre 

(Sæmundsson et al., 2003).  

 

Figure 5.2. The structural elements of the Tjörnes Fracture Zone marked in black (Grímsey lineament 

(GL), Húsavík-Flatey fault (HFF) and Dalvík lineament (DL); from Stefánsson et al., 2008) and the 

Eyjafjarðaráll graben marked in red (EY); the position of the epicenter zone for the earthquakes preceding 

the Móafellshyrna landslide is marked with a yellow star, the Icelandic Meteorological Office (IMO) 
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seismometers in the area marked with the green dots and the labels refer to their abbreviated names, as 

given in full in the key. On the right are reported the timing and magnitude of the earthquake sequence in 

the Eyjafjarðaráll graben from 19th to 20th September 2012 (from Gudmundsson et al., 2014). 

 

5.1.2 General weather conditions in Iceland and in 

the study areas 

Weather patterns in Iceland are highly variable, with frequent and strong 

variations in precipitation and temperature; this is mainly because Iceland is 

located on the main path taken by North Atlantic low-pressure systems 

(Einarsson, 1984). The mean annual air temperature for the period 1971–2000 

was 4–5°C in the south, 3–4°C in the east and west and 2–3°C in northern coastal 

parts of the country (Tveito et al., 2000). Hence precipitation can fall as either 

snow or rain. The two dominant precipitation-bringing wind directions in the 

Tröllaskagi area are NE and SW (Arnalds et al., 2001a; Brynjólfsson and 

Ólafsson, 2009). The precipitation is heavier during strong NE winds.  

Consequently, mean annual precipitation increases from about 500 – 1000 mm 

per year in the central and northern parts of the country to more than 3000 mm/yr 

in the southeast (Crochet et al., 2007).   

In the Tröllaskagi peninsula, during the winter months, from October to April, 

the precipitation in the outer part of the peninsula is almost exclusively snow or 

sleet, and the main period of snow avalanche activity is associated with strong 

north-easterly wind (Arnalds et al., 2001a). The northern part of Tröllaskagi 

peninsula is generally a heavy snow prone area, and Siglufjörður and Fljótin area 

are commonly considered to be one of the heaviest snow prone areas in Iceland 

(Arnalds et al., 2001a). According to Crochet et al. (2007), the annual precipitation 
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from 1971-2000 in the Tröllaskagi area varies from 1000-1500 mm in the coastal 

lowlands up to 2000-2500 mm on the summits. Localised orographic effects 

mean that in the Tröllaskagi peninsula precipitation is higher near the coastline 

when there are northerly winds (Brynjólfsson and Ólafsson, 2009). Conversely, 

the precipitation is likely to be higher in the lowlands in the interior of the 

Tröllaskagi peninsula area than at the coast during periods with southerly winds. 

In the mountains of the peninsula, the orographic effect also play a role during 

precipitation brought by southerly winds, increasing at higher elevation. The 

Mean Annual Air Temperature (MAAT) for the period 1971-2000 was 2-3°C in the 

northern coastal areas of Iceland (Crochet et al., 2007; Tveito et al., 2000). The 

data series for the Tröllaskagi area between 1940-1970 show MAAT of 2-4°C in 

the coastal areas and -2 to -4°C at the summits (Einarsson, 1984).   

In the Westfjords, the Mean Annual Air Temperature for the period 1961-1990 

is 3.2° (Glade and Jensen, 2004), and the decadal anomaly recorded for the 

periods 1991-2000 and 2001-2010 with respect to the reference period 1961-

1990 is respectively -0.25 – 1.25°C and 1 – 1.25°C (Crochet et al., 2007). For the 

same period (1961-1990), in Kvígindisdalur, a station on the south side of the 

Westfjords that has continuous data, the annual mean was 1380 mm (Glade and 

Jensen, 2004), while for the period 1949-1992, 770 mm of mean annual 

precipitation was recorded at the station of Gjögri, in the western side of the 

Westfjords. Average annual precipitation of 969 mm was calculated compiling 

data from the stations of Lambavatn, Galtarviti, Hornstrandir and Aedey in the 

Westfjords (Decaulne, 2001). In the Westfjords, the strongest winds are most 

often north-easterly and bring abundant precipitation (Jónsson et al., 2004). 
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5.2 Methods 

The preparatory and triggering factors of the Móafellshyrna and Árnesfjall 

landslides were analysed using meteorological data from the Icelandic 

Meteorological Office (IMO) for three and two months prior to the landslides 

respectively, and for the period 2000-2012 for the Móafellshyrna landslide and 

the period 2000-2014 for the Árnesfjall landslide. Data for the seismic activity of 

the north coast in 2012 were also obtained from the IMO. My supervisor Þorsteinn 

Sæmundsson and collaborators at the Icelandic Meteorological Office also 

interviewed the inhabitants of the Þrasastaðir farm Móafellsdalur valley regarding 

the Móafellshyrna event, while I interviewed them three years after the 

occurrence of the landslide. Jón Kristinn Helgason (IMO) interviewed the 

inhabitants of the Melar farm, located a few hundred meters from the terminal 

deposits of the landslide, about the failure at Árnesfjall. In Móafellshyrna, 

fieldwork was performed a few hours, four days and nine days after the landslide 

event, and then three years after the event in summer 2015. In Árnesfjall, 

fieldwork was performed two days after the occurrence of the landslide and then 

two years after the landslide event.  

5.2.1 Direct report from witnesses  

The local residents of the Þrasastaðir farm, located at the junction between the 

Móafellsdalur and the Stífludalur valleys and 1.7 km from the terminal deposits of 

the landslide, witnessed the release of the landslide, and were interviewed on the 

day of the event regarding the earthquake activity prior to the failure, the landslide 

evolution, timing of the landslide and the events that occurred during the first few 

hours of the failure and in the years after its occurrence.  



Chapter 5 - The preparatory and triggering factors of landslides in N-Iceland 

 
 

166 
 

The Melar farm is located in the Meladalur valley along the Strandavegur road 

343, at the foot of the northern slope of the Árnesfjall mountain. The terminal 

deposits of the landslide reached the bottom of the slope, few hundred meters 

from the farm. The inhabitants of the farm witnessed the release of the landslide, 

and were interviewed two days after the event regarding the landslide evolution, 

timing of the landslide and the events that occurred during the first few hours of 

the landslide and in the days after its occurrence.  

5.2.2 Meteorological data 

For Móafellshyrna only two weather stations in the northern part of the 

Tröllaskagi peninsula measure both precipitation and temperature, one located 

in the town of Siglufjörður (WMO (World Meteorological Organization) ID: 4157) 

at 6 m a.s.l. (25 km north of the site) and the other one in the town of Ólafsfjörður 

(WMO ID: 4155) at 5 m a.s.l. (21 km northeast of the site). A third station is 

located at the Öxnadalsheiði highlands pass (WMO ID: 4859) at 540 m a.s.l. (40 

km south of the site), can measure only temperature and is operated by the 

Icelandic Road and Coastal Administration (Figure 5.1). A problem in the 

approach of this study is that the majority of the stations used to establish mean 

atmospheric temperatures for the Móafellshyrna site are located near the coast 

and therefore at low altitude. This leads to a potential bias when evaluating trends 

in temperature, because such stations may not be representative of the 

atmospheric temperatures experienced in the highlands. To overcome this, the 

environmental lapse rate of 0.649°C per 100 m (Sheridan et al. 2010) was applied 

to the mean temperatures recorded at all three stations as an estimate of the 

temperature at the source zone of the Móafellshyrna landslide. The correction of  

the precipitation data collected near the coast for the inland conditions was not 
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attempted, because this would not only require a temperature correction, but 

would need to take into account variations in wind speed, wind direction and 

pressure in a meteorological model, which is beyond the scope of this  work. 

At the time of the failure, the closest weather station to the Árnesfjall site was 

the manned synoptic station of Litla-Ávík, operated by the Icelandic Road and 

Coastal Administration. The station (WMO ID: 4031) and is located along the 

coast at 15 m a.s.l., 5 km east to the Árnesfjall landslide and 7 km south-east to 

the village of Norðufjörður. Unfortunately, there is no other weather station 

located within 40 km of the Árnesfjall mountain recording precipitation and/or 

temperature. The closest automated station, Gjögur, located at 31.0 m a.s.l. 9 km 

east-south-east of the Árnesfjall mountain, was not operative at the time of the 

failure or during the time range considered (2000-2014). 

 

5.3 Results 

5.3.1 Witness report of the Móafellshyrna landslide 

The residents of the Þrasastaðir farm recounted that on the 20th of September 

2012 at around 12.30 p.m. they heard a rumbling noise, which originated from 

the Móafellshyrna mountain. They also recounted that a black tension crack, in 

the snow covered mountain, progressively formed above the colluvial cone at 

around 850 m a.s.l. They saw large blocks of debris that broke off the frontal part 

of the cone and fell onto the talus slope below. This activity was most intense in 

the first 1-1.5 hours, but they reported that there were intermittent noises and rock 

fall activity throughout the day. 
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The residents of the Þrasastaðir farm felt all the three earthquakes that 

occurred on the 19th and 20th September, with the last one only three hours before 

the landslide event. It was estimated that less than 1 m of snow was on the ground 

at the time of the failure.  

5.3.2 Witness report of the Árnesfjall landslide 

The resident of the Melar farm witnessed the Árnesfjall landslide on 10th July 

2014. In the morning, they saw debris movement of few meters, cracks forming 

in the source area of the landslide, and minor rock falls accompanying these 

precursory events. The failure happened at 1.30 p.m., and it was accompanied 

by a dust cloud that travelled in the same direction as the flow. After the landslide 

came to rest, they saw one of the blocks transported by the landslide, and they 

realised it was a block of frozen debris. They recounted that the ice melted 

throughout the day, and a few days later it had become a conical pile of debris. 

The farmers reported that some minor debris fall occurred throughout the day of 

the failure and some days after the main event. 

5.3.3 Antecedent conditions to the Móafellshyrna 

landslide 

5.3.3.1 Precipitation 

The spring and summer months preceding the Móafellshyrna event were dry, 

and the autumn was unusually wet (Figure 5.3Figure 5.4) (Jónsson, 2013). From 

April until 28th August 2012, dry conditions prevailed in the outer part of the 

Tröllaskagi peninsula, with only one day with precipitation greater than 10 mm: 
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23rd to 24th July, when 70 to 90 mm of rain was recorded at Siglufjörður and 

Ólafsfjörður weather stations (Figure 5.5). 

 

Figure 5.3. Matrix plots of the difference between the average monthly temperature (top) and precipitation 

(bottom) and the average value for that month for the period 2000-2012 for the Ólafsfjörður station (Data 

supplied by the IMO in 2016). The pink squares mark the month of the occurrence of the Móafellshyrna 

event.  

 

 From 20th August to 20th September around a third of the total precipitation for 

2012 fell in the area (~400-550 mm). For comparison, the average annual 

precipitation in the town of Ólafsfjörður is ~400 mm for the period 2000-2012 
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(Figure 5.3Figure 5.4). In detail, from 28th August to 8th September the cumulative 

precipitation in Siglufjörður was 190 mm and 120 mm in Ólafsfjörður, with an 

additional 30 to 40 mm precipitation at these stations on the 3rd, 6th and 7th 

September. From 9th to 11th September an unseasonal and severe snowstorm hit 

the north eastern and northern parts of the country (Hermannsdóttir, 2012; 

Jónsson, 2013). Following this snowfall, around 100 mm rain was measured in 

only two days at Siglufjörður and almost 150 mm at Ólafsfjörður. The precipitation 

continued from 11th to 17th September, either as snow, sleet or rain at these 

weather stations. From September 17th to 19th less than 10 mm of precipitation 

was recorded, but at the time of the Móafellshyrna event 540 mm precipitation 

had been recorded in Siglufjörður and 490 mm at Ólafsfjörður weather stations 

since 23rd July, which corresponds to 40-45% of the mean annual precipitation 

from 2000-2012 (Figure 5.3). The monthly precipitation data from Ólafsfjörður 

station from 2000 to 2012 show that September is the month with maximum 

precipitation for any given year, with a range between 70 and 250 mm (Figure 

5.3, 5.4). The year of 2012, however, had precipitation exceeding the average for 

this month (Figure 5.3). 
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Figure 5.4. A boxplot of the precipitation data from the Ólafsfjörður station for each month between the 

years 2000 to 2012 (Data from IMO 2016). The end of the dotted lines is where the max and min values of 

precipitation were measured for each month, excluding the outliers that are displayed as dots (outliers are 

defined as values which lie outside 1.5 times the interquartile range above the upper quartile and bellow the 

lower quartile). The blue boxes is where the 50% of accumulated measured precipitation falls and the black 

lines are the medians for each month. 

 

Unfortunately, there is no weather station located in the mountainous region of 

Tröllaskagi and, as previously mentioned, there is no weather station in the Fljótin 

area. This means that absolute precipitation data for the Móafellshyrna site 

cannot be reported, but it is reasonable to assume that, on a month by month 

basis, the trends should be similar to those of surrounding weather stations. 

Predicting whether precipitation falls as snow or rain at Móafellshyrna is outside 

the scope of this study and is complicated by a number of factors including snow 

drifting, wind-dependant snowmelt and variable orographic effects dependant on 

wind direction (Brynjólfsson and Ólafsson, 2009; see Section 5.1.2). Snow was 

visible on the ground on the day of the failure and was less than 1m thick from 
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eye witness accounts (equivalent to ~100 mm of precipitation, depending on 

snow density) Therefore, the majority of the precipitation received up to 20th 

September had been absorbed by the ground. The fact that snow was present 

on the ground argues against a sudden influx of water into the ground via 

snowmelt, known to trigger other mass wasting phenomena in Iceland (e.g. 

Decaulne et al., 2005). Hence, an analysis of the wind data from the weather 

stations was not pursued, because this would only be important if melt or 

precipitation were the primary triggers for the failure. 
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Figure 5.5. Precipitation and temperature in Siglufjörður and Ólafsfjörður in summer 2012. Top: daily 

precipitation (black bars), cumulative precipitation (blue lines) for temperature measurements from the 

Siglufjörður (SIFJO) and Ólafsfjörður (OLFJO) weather stations. Middle: daily temperature data from the 

Siglufjörður (SIFJO), Ólafsfjörður (OLFJO) and Öxnadalsheiði (OXAN) weather stations. Bottom: mean 

temperature data for all three stations adjusted to 880 m altitude of Móafellshyrna (red= SIFJO, green= 
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OXAN and blue= OLFJO). All data from 1st July to 30th September 2012 (Data obtained from IMO in 2016). 

The vertical line is the date of the Móafellshyrna event. 

5.3.3.2 Temperature 

At Móafellshyrna the temperature patterns in 2012 were also unusual, as the 

summer and spring were unusually warm, but the autumn was particularly cold 

(Figure 5.3; Jónsson, 2013). The average temperature measured in the town of 

Ólafsjörður was 10.4°C in July and 10.9°C in August in 2012. The average 

temperatures for these months for the period 2000-2012 are 9.8°C and 9.6°C 

respectively. On the other hand, the average temperature for September 2012 

was 5.7°C compared to an average of 7.2°C for 2000-2012.  

The average daily air temperature from 6th to 20th September at the Siglufjörður 

and Ólafsfjörður stations varied between 3 to 6°C, and at the Öxnadalsheiði 

weather station, fluctuated around zero, but reached approximately -3°C the night 

before the failure (Figure 5.5). Our corrected temperature data indicate average 

daily temperatures at the altitude of the Móafellshyrna event of around -1 to -2°C 

in the days preceding the failure, and hence night-time temperatures would have 

been even lower. During the evening of 19th September, a drop below 0°C in the 

atmospheric temperature in the mountains was measured in the Öxnadalsheiði 

weather station (Fig. 7). The snow on the ground at the time of the Móafellshyrna 

landslide shows that similar sub-freezing conditions also prevailed at this altitude 

prior to the event. These low temperatures combined with the snow cover are 

strong evidence that sudden influx of water from precipitation was not the trigger 

for the Móafellshyrna landslide. 
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5.3.3.3 Earthquake sequence 

In the Eyjafjarðaráll graben, three earthquakes with magnitudes M 4.2 to M 4.5 

were registered on 19th and 20th September (Gudmundsson, G.B., Hensch et al., 

2013). Their epicentres are located 25-27 km north-northeast of the town of 

Siglufjörður, and 60 km north-northeast of the Móafellshyrna site (Figure 5.2). On 

the morning of 19th September, one day prior to the failure, two earthquakes with 

magnitudes M 4.5 and M 4.3 occurred at 07:57 and 08:28 respectively. Following 

these earthquakes, smaller aftershocks occurred throughout the day. Another 

earthquake of magnitude M 4.2 occurred at 9:27 on the 20th September, 

approximately three hours prior to the first observations of the Móafellshyrna 

landslide (Figure 5.2). 

5.3.4 Antecedent conditions to the Árnesfjall 

landslide 

5.3.4.1 Precipitation 

The spring months preceding the Árnesfjall event were dry (Figure 5.6). From 

May to 30th June 2014, dry conditions prevailed in Litla-Ávík. Ten days before the 

occurrence of the failure, almost 90 mm of rain fell in the area close by the 

Árnesfjall mountain, of which 62 mm were recorded between 4th to 6th July (Figure 

5.7). From the beginning of May to 9th July the cumulative precipitation in Litla-

Ávík was 140 mm (Figure 5.7). July was the month with the maximum 

precipitation registered for the year 2014 (Figure 5.6), with the peak recorded in 

the ten days before the landslide (Figure 5.7). 
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It must be noted that the weather station of Litla-Ávík was the only weather 

station available for the area, and it lies in a rain shadow from easterly winds, 

shielded by the mountain next to the weather station. This means that the 

precipitation might be more abundant and intense at the site of the event, 

especially with northerly, north-easterly and easterly winds.     

 

 

Figure 5.6. Matrix plot of the difference between the average monthly precipitation and the average value 

for that month for the period 2000-2014 for the Litla-Ávík station  (Data supplied by the IMO in 2018). The 

pink square marks the month of the occurrence of the Árnesfjall event. 



Chapter 5 - The preparatory and triggering factors of landslides in N-Iceland 

 
 

177 
 

 

 

Figure 5.7. Daily precipitation (black bars) and cumulative precipitation (blue lines) for precipitation 

measurements from the Litla-Ávík (LTAV)  weather station (Data obtained from IMO in 2018). The vertical 

bar is the date of the Árnesfjall event. 

 

The cumulative precipitation recorded in Litla-Ávík in this period was 90 mm, 

but probably more rainfall felt on the Árnesfjall area. Figure 5.8 shows a wind rose 

for the weather station of Gjögur (9 km ESE to the Árnesfjall mountain) for the 

period 2000-2016, with the condition that the precipitation must be higher than 1 

mm (data plot from IMO), most of the precipitation-carrying winds in the area are 

north-north-easterly winds. This is coherent with the general wind trend of the 

Westfjords (Jónsson et al., 2004). As the station of Litla-Ávík is positioned on the 

west-south-western side of the Reykjarneshyrna mountain, the orographic part of 

the precipitation is probably missing. With only the precipitation data from the 

weather station of Litla-Ávík (the Gjögur weather station was not operative at the 

time of the failure), a careful interpretation suggests that a sudden rainfall, 

probably more intense that the one recorded, hit the region near the Árnesfjall 

Mountain and triggered the landslide. On the day of the event, almost no 
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precipitation occurred (0.2 mm). It is not unusual, and it is well documented in 

literature, that the onset of landslides can occur from a few hours to a days after 

intense precipitation (Baum and Godt, 2010; Iverson and Major, 1987; Iverson, 

2000; Matsuura et al., 2008). 

 

Figure 5.8. Wind in the Westfjords. On the top, wind rose for the weather station of Gjögur for the period 

2000-2016, with the condition that the precipitation must be higher than 1 mm; at the bottom, average wind  

speed for each wind direction (Data supplied by the IMO in 2018). 

 

5.3.4.2 Temperature 

The temperature patterns in 2014 were not unusual for the region (Figure 5.9). 

The average temperature measured in Litla-Ávík was 9.2°C in June and 9.8°C in 

July in 2014 (Figure 5.10), which are values that fall within the average range 

recorded for the period 2000-2014 (Figure 5.9). The average temperatures for 

these months for the period 2000-2012 are 7.4°C and 9.3°C respectively. 

However, on 8th June, two days before the occurrence of the Árnesfjall event, the 
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temperature raised from an average of 7.8°C (temperature recorded the week 

before), to an average of 11.0°C from 8th to 10th July (Figure 5.11).  

 

Figure 5.9. Matrix plots of the difference between the average monthly temperature and the average 

value for that month for the period 2000-2014 for the Litla-Ávík station  (Data supplied by the IMO in 2018). 

The blue square marks the month of the occurrence of the Árnesfjall event. 
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Figure 5.10. A boxplot of the temperature data from the Litla-Ávík station for each month between the 

years 2000 to 2012  (Data supplied by the IMO in 2018). The end of the lines is where the max and min 

values of temperature were measured for each month, excluding the outliers that are displayed as dots 

(outliers are defined as values which lie outside 1.5 times the interquartile range above the upper quartile 

and bellow the lower quartile). The green boxes is where the 50% of accumulated measured precipitation 

falls and the black lines are the medians of each month. 

 

 

Figure 5.11. Daily temperature data from the Litla-Ávík (LTAV) weather station for the months of May, 

June and July 2014  (Data supplied by the IMO in 2018). The vertical bar is the date of the Árnesfjall event.  
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5.4 Discussion  

Several factors might have contributed to the failure of the Móafellshyrna and 

Árnesfjall landslides: heavy precipitation, ground ice degradation (via a rise in 

average surface temperatures), and earthquake activity in the case of 

Móafellshyrna. For the Móafellshyrna landslide, it is possible to infer that 

precipitation was the main preparatory factor (but not the trigger) for this landslide 

for the following reasons: heavy prolonged precipitation was recorded across the 

area, where nearly half of the usual annual precipitation fell in less than one 

month (Figure 5.3). Many case studies have shown that high magnitude water 

input, either by rainfall (e.g., Rapp and Nyberg, 1981) or snowmelt (e.g., 

Decaulne et al., 2005), leads to oversaturation of soil, which can directly trigger 

debris flows and shallow landslides. These studies also point out the role of 

intense rainfall as a preparatory (rather than direct trigger) factor to failure 

(Addisson, 1987; Becht, 1995; Cannon and Reneau, 2000; Guzzetti et al., 2007; 

Innes, 1983; Johnson and Rahn, 1970; Johnson and Rodine, 1984; Luckman, 

1992; Rapp, 1995, 1964, 1985; Rapp and Nyberg, 1981; Sæmundsson et al., 

2003; Sæmundsson and Decaulne, 2007; Smith et al., 2009). However, the role 

of water infiltration in triggering shallow landslides and debris flow in permafrost 

areas is rarely well-documented (Harris and Gustafsson, 1993). Precipitation was 

probably not a direct trigger of the Móafellshyrna landslide, because snow was 

present on the ground at the time of the failure. However, saturation appears to 

have been a key preparatory condition for the failure to occur. 

In the case of Árnesfjall landslide, precipitation was probably the main trigger 

for the landslide. Sudden and heavy precipitation occurred in the ten days before 
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the occurrence of the landslide (Figure 5.7), after a spring dominated by dry 

conditions (Figure 5.6).  

Only for Móafellshyrna was seismic activity a potential trigger for the landslide. 

The direct influence of the seismic activity and associated ground acceleration on 

the motion of the debris in the source area seems unlikely, as the event did not 

occur immediately following any seismic event. Earthquakes are a common 

triggering factor for landslide activity and are considered as a major cause for 

landslides worldwide (e.g. Keefer, 2002, 1994, 1984; Malamud et al., 2004). Yet, 

no other rapid mass movement was reported on the northern part of the 

Tröllaskagi area on 19th or 20th September, which might be expected if ground 

acceleration were sufficient to trigger landslides. However, the short time interval 

(three hours) between the last earthquake and the failure indicates a possible 

connection between the failure and the seismic events. 

Selby (1993) argued that “stability of the slope, orientation of the earthquake 

in relation to the slide mass, earthquake magnitude, focal depth, seismic 

attenuation and after-shock distribution” are factors that determine whether 

earthquakes trigger landslides. According to Keefer (1984), the maximum area 

likely to be affected by landslides in a seismic event increases from approximately 

none at M 4.0 up to 500.000 km2 at M 9.2. According to (Malamud et al., 2004), 

the lowest earthquake-magnitude is M 4.3 +/-0.4. for triggering gravitational mass 

movements. Tatard et al. (2010) state that earthquakes of M 4 and lower have 

little or no influence on landslide triggering. Nevertheless, different studies 

(e.g.,Sassa et al., 2007; Walter and Joswig, 2008) mention that small 

earthquakes (maximum M 3.6 in southern Italy according to Del Gaudio et al. 

(2000) and repeated shocks can influence hydrogeological settings and can 
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possibly cause landslides, sometimes with delay between the earthquake and the 

mass movement. Jibson et al. (1994) also discuss delayed landslide movements, 

from larger earthquakes (M 7.0), and state that the simplest explanation for the 

delay is a change in the ground-water conditions. Based on the above mentioned 

studies, it is unlikely that an earthquake of M 4.3 was the only triggering factor for 

the Móafellshyrna landslide, having taken place 60 km away from the epicentre. 

On the other hand, since the Móafellshyrna landslide occurred only three hours 

after a seismic event, the seismic sequence is likely playing some indirect role. 

The ground water flow systems of the talus deposits composing the source 

material of the Móafellshyrna and Árnesfjall landslide is expected to be very 

limited. This is due to several factors: i) the catchment areas above the source 

areas are not very large (around 350 m long in Móafellshyrna and 250 m long in 

Árnesfjall); ii) the talus cones were confined uphill by a vertical rockwall, and in 

the case of Móafellshyrna, downhill by the edge of a topographic bench; iii) the 

presence of ground ice cementing the deposits; iv) the sub-horizontal dipping of 

the bedrock layers where the deposits are perched. However, it has been shown 

that talus slopes can contain multiple and distinct groundwater flow systems 

beneath or within them, and that they have a rapid and localised response to 

precipitation and melt inputs (McClymont et al., 2010; Roy and Hayashi, 2009). 

One component of the groundwater flow in the talus cones of both landslides may 

originate in the pervasive systems of sub-horizontal and sub-vertical 

discontinuities affecting the bedrock. If a groundwater system was present before 

the failure, the response of the water table should have been rapid. In the case 

of Móafellshyrna, since seismic activity can release water by co-seismic 

liquefaction or consolidation of loose sediments (e.g., Manga et al., 2003; 
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Montgomery and Manga, 2003), a change in the hydrogeological equilibrium of 

the colluvial cone caused by seismic activity could have contributed to the 

occurrence of the failure. 

Field evidence from the Móafellshyrna and Árnesfjall landslides suggests the 

involvement of ground ice thaw in triggering the event. In the case of Árnesfjall 

landslide, the annual trend of temperature does not seem to differ from the past 

years (Figure 5.9). According to an Icelandic technical report (Sigfússon et al., 

2016), in the period 1949-1992 and 1995-2015 for the Gjögur and Litla-Avik 

stations, there were more than 150 frost days per year, but four months 

(December-March) had an average temperature below the freezing point. The 

combination of sudden and probably intense precipitation, and an abrupt rise of 

temperature up to 12.5°C in the days before the failure could have caused the 

degradation of the ground ice present in the source area, which is a combination 

of factors that have been attributed to the release of rapid mass movements 

elsewhere worldwide (Crosta et al., 2004; Huggel et al., 2005; Huscroft et al., 

2003). In Móafellshyrna, because the month of the event had temperatures lower 

than average and the days prior to the event were mostly below zero Celsius (as 

evidenced by snow on the ground), thaw water from the ground ice in the perched 

talus likely did not contribute significantly to the event. However, longer term, 

deeper thawing caused by an annual rise in temperature and therefore a shift in 

the permafrost table, including an anomalously warm preceding summer, is a 

more likely contributor.  

In recent years, there has been an increasing interest worldwide in the 

influence of climate warming and associated decline of mountain permafrost on 

the occurrence of mass wasting phenomena (e.g., Damm and Felderer, 2013; 
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Fischer et al., 2006; Gruber et al., 2004; Gruber and Haeberli, 2007; Rebetez et 

al., 1997; Sattler et al., 2011; Stoffel et al., 2014; Stoffel and Huggel, 2012). The 

increasing frequency of rapid mass movements, such as debris flows, debris 

slides, rock falls and rock avalanches, in mountainous areas have been linked in 

several cases to mountain permafrost degradation (Clague et al., 2012; Darrow 

et al., 2016; Haeberli et al., 2017; Wirz et al., 2013). Loss of ice-cementation, the 

presence of segregated ice, increased hydrostatic pressure and the associated 

reduction of shear strength can all lead to reduction of stability with increasing 

atmospheric temperature via permafrost degradation (Gruber and Haeberli, 

2007; Krautblatter et al., 2013; Pogliotti et al., 2015). Although, these previous 

studies have focused on the stability of massive rock masses, a similar (perhaps 

exaggerated) effect might be expected in ice-cemented talus. 

The increase of mean annual temperature, which has been observed in 

Iceland over the last few decades, is probably causing degradation of 

discontinuous permafrost in Iceland (Björnsson et al., 2008), and this process is 

thought to be present in the Tröllaskagi peninsula, but not in the Westfjords 

(Etzelmüller et al., 2007). Our observations of the ice-cemented deposits shows 

that the Móafellshyrna and Árnesfjall landslides originated from deposits 

containing pore-filling ground ice and equally that these deposits were still frozen 

at the time of the failures (see Chapter 4). Together, these argue for a permafrost 

origin for this ground ice in the Móafellshyrna case study. In the case of the 

Westfjords, and therefore of the Árnesfjall landslide, permafrost has not 

previously been expected to be present in the area. However, the proximity of the 

Drangajökull glacier could affect the presence of sporadic permafrost predicted 

in the permafrost map by Brown et al. (1997), and it has been shown in other 
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studies that permafrost conditions — even if sporadic — are present in areas 

near glaciers (Bolch and Marchenko, 1990; Etzelmuller and Hagen, 2005; Gruber 

and Haeberli, 2009; Haeberli and Beniston, 1998; Kneisel and Kääb, 2007). The 

existence of a glacier at 26 km from the Árnesfjall site, and the presence of ground 

ice cementing the deposits of the landslide are two arguments supporting a 

permafrost origin for the ground ice in its source material. The increasing average 

temperatures over the last decades in Iceland (Björnsson et al., 2008; Jónsson, 

2013) before the landslide events may have initiated the degradation of ground 

ice in the talus cones where the landslides initiated, not from the top-down, but 

from the base-up. This thawing may have: i) lubricated the base of the cemented 

talus cones, ii) lowered the effective friction angle (reducing cohesion), and hence 

iii) caused the downslope movement of the talus cones. In both landslides (north-

northwest facing), the warming of the rock mass onto which the colluvial deposit 

was previously cemented could have been brought about by a combination of 

propagation of the thermal wave through the rock mass from the warmer 

southeast-facing side (e.g., Noetzli et al., 2007) and the delivery of warmer liquid 

water (derived from the intense precipitation) to the talus-rock interface from the 

south-westward dipping strata in Móafellshyrna and the east-south-eastward 

dipping strata in Árnesfjall. Hence, the rupture occurred beneath the permafrost 

table. Perhaps the ice-cemented colluvium was in effect forming an underground 

“ice dam” that was holding back water-saturated debris until its own weight 

caused it to fail, with the additional contribution of the seismic shaking in the case 

of Móafellshyrna landslide. However, it is not possible to substantiate this link 

with certainty, due to the lack of direct temperature measurements in the talus 

cones. Our hypothesis is supported by (i) the slow widening of the tension cracks 
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at the top of the source areas as observed by eye-witnesses, (ii) the presence of 

multiple rupture surfaces in the Árnesfjall landslide as an indicator of cohesive 

rotational sliding downwards, and (iii) the fact that both the landslides were 

fluidised (a water content higher than expected for such a small catchment).  

Ice-cemented deposits have been observed in these two landslides and in a 

third in Iceland occurred in 2011 on the Torfufell mountain (source area at ~750 

m a.s.l.). The source zones for the Móafellshyrna and the Torfufell slides are at 

the lower elevation limit of discontinuous mountain permafrost in northern Iceland 

(i.e., 800 m a.s.l.; Etzelmüller et al., 2007). On the other hand, the source zone 

of the landslide in the Árnesfjall Mountain is at an unexpectedly lower elevation 

(source area at ~350 m a.s.l.). This event provides additional evidence to support 

the hypothesis that the lower limit of permafrost degradation extends to lower 

altitudes, and shows that knowledge of mountain permafrost in Iceland is 

incomplete. The setting of talus perched on benches or flat topographic surfaces 

is not a rare situation in Iceland because of the sub-horizontal basalt layers create 

topographic benches on which loose material can accumulate. Hence, 

investigating whether those benches with permafrost conditions, particularly 

above inhabited areas, contain ground ice and establishing its condition, should 

be a priority. 
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5.5 Conclusions 

Following the analysis of the weather and seismic data prior to the 

Móafellshyrna landslide, I have defined what are the exogenous and endogenous 

factors that brought to the release of the Móafellshyrna and Árnesfjall landslides, 

including a new factor that has never been conceived for Iceland: permafrost 

degradation. It can be concluded that heavy precipitation prior to the failure was 

the main preparatory factor, with over 400 mm of precipitation recorded in one 

month prior to the event after an unusually dry summer season. Weather data 

prior the Árnesfjall landslide were also analysed and sudden and intense 

precipitation was the main triggering factor for the occurrence of the landslide. In 

Móafellshyrna, the influence of seismic activity is unclear, but the close temporal 

association between the last earthquake series and the failure suggests that the 

shaking could have contributed to the initiation of the failure, weakening the 

cohesion between the ice-cemented deposits and the bedrock and/or changing 

the hydrology. The presence of ice-cementing in source talus deposits in the 

Móafellshyrna landslide at 870 m confirms the presence of discontinuous 

mountain permafrost at that elevation in the Tröllaskagi peninsula, while the 

presence of ground ice in the source deposits of the Árnesfjall landslide at 350 m 

a.s.l. highlights the possibility that unexpected zones of discontinuous permafrost 

could be present in areas of the island where permafrost has not been predicted 

by previous models. The partial thaw of these deposits was a trigger for the 

failures for these reasons: i) mean annual air temperatures are generally 

increasing in Iceland, ii) the talus cones initially slid as a single cohesive mass 

suggesting basal lubrication/melting, iii) the Móafellshyrna landslide followed an 

usually warm spring and summer. The fact that another recent landslide contains 
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similar ice-cemented deposits suggests that mountain permafrost degradation 

could be more prevalent in triggering landslides in Iceland than has previously 

been thought. 

The ice-cemented deposits within the slides of the Móafellshyrna, Torfufell and 

Árnesfjall Mountains have highlighted the need for a more detailed understanding 

of the distribution and condition of mountain permafrost within perched talus 

deposits in Iceland. These three landslides occurred in uninhabited areas, but 

future similar landslides might not, and these could represent a potential risk to 

society and infrastructure in the island. This is why Chapter 4 and 6 focus on the 

relationship between rapid mass wasting processes and the degradation of 

mountain permafrost in loose deposits in Iceland, and particularly on how the 

ground-ice can affect the mobility of the failures and how to interpret the 

geomorphic signatures of these landslides.  
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Chapter 6 . Molards as an indicator of 

permafrost degradation and landslide 

processes3 

6.1 Introduction 

This chapter uncovers the main finding of this thesis: the formation of a 

particular landform called “molards”, and its importance in both the understanding 

of permafrost degradation in cold environments and the landslide dynamics in 

ground-ice affected terrains. This particular type of landslides leaves clear 

morphological signatures, as I have shown in Chapter 4, and molards are a further 

feature that shows the different behaviour of permafrost-degradation induced 

landslides and their impact on the periglacial landscape.  

Glacial and periglacial environments are particularly sensitive to the effects of 

climate change (Haeberli and Beniston, 1998; Hinzman et al., 2005). However, 

few easily recognisable landforms in cold landscapes are reliable indicators of 

increasing atmospheric temperature. Here, I propose that molards, landforms 

                                              

3 The work contained in this chapter of the thesis is based on a paper that is in review on the 
journal Earth Planetary Science Letters entitled “Molards as a marker of permafrost degradation 
and landslide processes”. The manuscript has been reviewed and is awaiting moderate 
corrections. The full citation of this paper is: 

 
Morino, C, Conway, S. J., Sæmundsson, Þ., Helgason, J. K., Hillier, J., Butcher, F. E. G., 

Balme,, M. R., Jordan, C., Argles, T. 2018. Molards as an indicator of permafrost degradation and 
landslide processes. Earth Planetary Science Letters, under review. 

 
In addition to my supervisory team, this manuscript benefits from the collaboration with Jon 

Kristin Helgason, who provided photographs of the landslides and field observations, and Frances 
E. G. Butcher, who provided images of Mars. Both collaborators, with my supervisors, contributed 
to the manuscript preparation, which is the result of my own work. Typological changes to the 
paper have been made to ensure consistency with the rest of the thesis. These changes are: 
removal of the abstract, removal or changes of parts of the Introduction and Methods to avoid 
repetition with the rest of the thesis, the use of the first person singular instead of the first person 
plural where appropriate. 
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poorly reported in the literature, can help to fill this gap. Molards have been 

described as mounds of debris occurring in landslide deposits (Cassie et al., 

1988; Goguel and Pachoud, 1972; Mollard and Janes, 1984),. They are generally 

~0.3-12 m high (Brideau et al., 2009; Jermyn and Geertsema, 2015), up to 12 m 

wide (Milana, 2016), have a single, central, rounded to pointed summit (Jermyn 

and Geertsema, 2015; Xu et al., 2012), and flank slope angles of 27°-45° (Cassie 

et al., 1988; McConnell and Brock, 1903). Molards have been found in the distal 

zones, at the margins of the displaced mass, and/or below the main scarp of 

landslides (Cruden, 1982; Geertsema et al., 2006b).  

Molards have recently been identified in a variety of periglacial environments, 

including northern Canada, the Andes, and the Tibetan Plateau (Jermyn and 

Geertsema, 2015; Milana, 2016; Xu et al., 2012). Only three recent studies have 

hypothesised a link between molards and permafrost degradation (Brideau et al., 

2009; Lyle et al., 2014; Milana, 2016). These studies propose that movement of 

landslide material in permafrost regimes causes blocks of frozen material to 

detach and be transported downslope (Brideau et al., 2009; Lyle et al., 2014). 

When the blocks come to rest, the ground ice cementing them thaws, leaving 

conical mounds of rocks and debris. Although no previous studies have observed 

the full cycle of molard evolution, original ground ice contents of 50-80% have 

been estimated (Brideau et al., 2009; Milana, 2016) as sufficient for blocks of ice-

cemented sediments to survive both initial failure and transport.  

I combine field and remote sensing studies of molards found in the deposits of 

the recent Móafellshyrna and Árnesfjall landslides in Iceland to constrain their 

complete evolution, providing the first observations before and after ice loss. My 

data dispel any lingering doubts about the direct link between these landforms 

and permafrost degradation. I show that molards are a critical marker of 
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permafrost degradation, and they can reveal important information on the mobility 

of landslides in terrains affected by permafrost. I distinguish molards from other 

cone-shaped landforms, such as hummocks occurring in debris/rock avalanche 

deposits (Shea and van Wyk de Vries, 2008), and I detail characteristics that can 

be used to identify them in the field and from remote sensing data. 

 

6.2 Methods 

6.2.1 Fieldwork 

My supervisors Þorsteinn Sæmundsson and collaborators at the Icelandic 

Meteorological Office performed fieldwork of the Móafellshyrna landslide 9 days 

after its occurrence, and Jón Kristinn Helgason (Icelandic Meteorological Office) 

visited the Árnesfjall landslide two days after the event. I revisited the 

Móafellshyrna site in summer 2015 and the Árnesfjall site in summer 2016, in 

order to i) perform field observations, ii) collect Structure from Motion (SfM) 

photogrammetry datasets, iii) perform differential GPS (dGPS) surveys of the 

landslides using two GNSS Leica VIVA GS10 Systems (one as rover unit and one 

as base station; average accuracy of samples is around 1cm in plan and 2cm in 

height), and iv) ground-support the collection of airborne data for the 

Móafellshyrna site (for more details see Section 4.3.2 in Chapter 4).  

6.2.2 Airborne data 

In September 2015, the U.K. Natural Environment Research Council's 

Airborne Research Facility (NERC-ARF) on behalf of the European Facility for 

Airborne Research (EUFAR) collected aerial photography and LiDAR data for the 

Móafellshyrna area in Iceland, three years after the Móafellshyrna landslide 

occurred. 170 aerial photographs were collected with a Leica RCD105 digital 
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camera, and 15 lines were flown to collect 126 M LiDAR points with 1.7 points/m2 

using a Leica ALS50-II. A GNSS Leica VIVA GS10 dGPS was used in a fixed 

location at 1 Hz during the flight to collect base station data for the on-board 

dGPS. The processing of the LiDAR point cloud was performed by NERC-ARF-

DAN (Data Analysis Node). I used the LAStools extension for ArcGIS to convert 

the point clouds into gridded data at 1 m/pixel, using the return time of the last 

peak of light to reach the receiver from the LiDAR laser shot, which is usually 

assumed to be the ground return. I used Agisoft Photoscan to produce a 

seamless orthomosaic from the airphotos, where the position of the images was 

controlled using ten well-spread ground control points derived by locating 

matching positions in a hillshaded version of the LiDAR DEM and the air photos. 

6.2.3 Structure from motion 

For the Árnesfjall site, I processed digital photos with the ground-based 

Structure from Motion (SfM) photogrammetry technique (Westoby et al., 2012) to 

produce a 3-D topographic model, from which an orthomosaic at 9 cm/pixel and 

DEM at 18 cm/pixel (Digital Elevation Model) were derived. 73 photos were 

collected in July 2016, two years after the Árnesfjall landslide occurrence, using 

a single-lens reflex (SLR) camera. I applied an absolute coordinate system to the 

3D model by identifying clearly visible blocks and features on the landslide - a 

total of 19 ground control points (GCPs) - and obtaining their coordinates using a 

GNSS Leica VIVA GS10 System differential GPS, with an accuracy of 1 cm 

horizontally and 2 cm vertically. I produced the orthomosaic and the DEM using 

Agisoft Photoscan software, and then imported them into ArcGIS for further 

analysis (for more detail see Section 4.3.3 in Chapter 4). 

6.2.4 Morphometric analysis of molards 
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In order to link the landslides’ processes to the morphology of the molards, I i) 

analysed their distribution and geomorphic characteristics, ii) compared the slope 

angle of their longer and shorter flanks, iii) calculated their eccentricity, and iv) 

plotted the orientation of their long axes with  respect to those of the landslides. 

6.2.4.1 Area, height, volume and slope characteristics 

 The molards were first digitised as a polygon in ArcGIS using their contrast in 

terms of texture and shading on the aerial photographs. The area of molards was 

estimated by calculating the area of the resulting polygon (Figure 6.6E). To 

measure their height (Figure 6.6E), for each molard I used a topographic profile 

placed parallel to the contour lines outside the molard and passing through the 

molard’ peak, in order to obtain the elevation of the molards’ peaks and of their 

bases. The elevation data for these profiles was derived from LiDAR in the case 

of Móafellshyrna and SfM in the case of Árnesfjall. The volume of material 

composing the molards was calculated following Conway and Balme (2014), 

reconstructing the surface of the landslide without the molards, and deriving the 

deposited volumes by subtracting this surface from the surface with the molards 

(Figure 6.6E). Error propagation calculations by Conway and Balme (2014) 

suggest that such volume estimates are accurate to within 15%. Slope of the 

basal area where molards lie was calculated by creating a slope map of the 

surface of the landslide without the molards and taking the mean value. The slope 

angle for the long and short flanks of molards was the mean value of the slope 

obtained from the slope map of the original DEMs (Figure 6.6E).  

I performed two-sample t-tests assuming unequal variances for the volume, 

area, height, slope angle of the basal area and eccentricity of molards, using the 

values of Móafellshyrna and Árnesfjall respectively as variables. I used the values 
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of each site separately for testing the slope angles of short and long flanks of their 

molards (see Table 6.1). 

A dispersion parameter ψ=σ/μ (where σ is the standard deviation and μ is the 

mean) for height, axes and volumes of molards, show less homogeneous sizes 

in Móafellshyrna compared to those of Árnesfjall (see Table 6.2). This is 

confirmed by Pearson correlation coefficient calculated for height- long axis, 

height- short axis and long- short axis, showing a strong correlation in 

Móafellshyrna, suggesting a circular shape in plan- view and casually linked 

dimensions, while in Árnesfjall lower values suggest more elliptical shapes (see 

Table 6.2).  

The volume-frequency distribution for the molards in Móafellshyrna shows a 

power-law distribution, while the volume-frequency distribution for the molards in 

Árnesfjall conforms to an exponential distribution (see Figure 6.5). Both were 

determined by comparing three different plots of the volume-frequency 

distribution (i.e., linear-linear, logarithmic-linear, bi-logarithmic), where I 

considered the best distribution the one fitting the more to a straight line. 

6.2.4.2 Eccentricity and direction 

To measure the eccentricity of the molards, an ellipse was fitted to approximate 

the perimeter of each molard, with the area of each ellipse being equal to the area 

of the perimeter of the represented molard.  Then, the eigenvalue and 

eigenvectors of each zone were calculated, with the orientation of the ellipse 

being in the direction of the first eigenvector. Finally, the geometric characteristics 

of the ellipse were calculated, specifically the centroids, the major and the minor 

axes (the ratio of the major and minor axes of the ellipse is the same as the ratio 

of their eigenvalues). I plotted the orientation of the long axes of the molards 
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against the propagation direction of the landslides using GeoRose open-source 

software (Figure 6.6B,D).  

 

6.3 Results 

6.3.1 Landslide observations and molard 

formation 

I studied molards that developed on the two landslides that are the object of 

study of Chapter 4 and Chapter 5: the Móafellshyrna landslide (Tröllaskagi 

peninsula, Figure 6.1A) and the Árnesfjall landslide (Westfjords, Figure 6.1B), 

which, as reported in Chapter 4, both originated from talus deposits perched on 

topographic benches. Both landslides can be classified as complex landslides 

(Varnes, 1978), but molards have allowed me to identify different dynamic 

component in the failure processes. 
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Figure 6.1. The Móafellshyrna and Árnesfjall field sites. (A) The Móafellshyrna landslide photographed 

in summer 2015, with enlarged frontal view of molards. (B) The Árnesfjall landslide photographed in summer 

2016. (C) A molard in Árnesfjall preserving the original stratification of the source material. (D) A molard few 

days after the occurrence of Árnesfjall landside, preserving abundant fine deposits. 

 

During the field observations performed immediately after the failures, in the 

Móafellshyrna landslide deposits my supervisor Þ. Sæmundsson and 

collaborators found isolated pseudo-cubic and angular blocks of ice-rich 

sediments (Figure 6.2A,E) that came to rest at the foot of the talus slope and on 

a flat surface 295-390 m below the source area (Figure 6.2A). At Árnesfjall, J. K. 
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Helgason and collaborators found a spatially dense group of angular, elongated 

ice-cemented ridges of debris 40-150 m below the top of the main scarp of the 

landslide (Figure 6.2C), and an isolated block at the toe of the landslide. In both 

landslides, the blocks and ridges were composed of poorly sorted clast-supported 

talus deposits. Ground ice was cementing all the material, allowing the blocks and 

ridges to preserve a cubic or angular shape (Figure 6.2A,C) both during and after 

the failure. The lithological and grain-size composition of the blocks and ridges of 

ice-rich sediments were examined. They comprised slightly imbricated mixture of 

angular boulders, cobbles, and pebbles embedded in sandy silt to silty clay 

matrix. The colour of the matrix varied from brown to red, and the lithology of the 

clasts reflected the bedrock of the area (Tertiary Basalt Formation, see Chapter 

4), being composed of basalts, rhyolites and weathered tephra layers (Mioc.-

Lower Plioc.) (Jóhannesson, 2014). 
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Figure 6.2. The formation of molards. In each pair of images, ice-cemented blocks are on the left; the 

resulting molards are on the right. (A) Cubic and angular blocks of ice-rich sediments (blue arrows) at the 

Móafellshyrna site that are perched on the source area and have fallen onto the talus slope below. Photo 

taken the day after the failure (courtesy of G. Hansson). (B), Same perspective as Figure 6.2A, but three 

years after the failure, with remnants of the blocks of ice-rich sediments preserved as molards (blue arrows). 

(C) Angular ridges generated by tilting of ice-cemented talus at the Árnesfjall site. Photo taken two days after 

the failure (courtesy of V. Benediktsson). (D) Same perspective as Figure 6.2C, but two years after the 

failure, where remnants of the ice-cemented ridges have degraded into densely-packed, elongated mounds 
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of debris. € The largest block of ice-rich sediments that fell during the Móafellshyrna event; note different 

layers of deposits composed of imbricated gravel embedded in brown to red sandy to silty clay. (F) The 

remnant of the block in Figure 6.2E three years after the failure, preserved as a molard. (G) Schematic 

evolution of a molard, from the block of clast-supported imbricated deposits cemented by ground ice to the 

collapsed conical mound of debris, preserving sorted gravel deposits on its surface, with fine deposits being 

leached out. 

 

I revisited the sites 2 and 3 years after the failures, respectively. In 

Móafellshyrna, I found conical molards with rounded summits in the place of the 

original ice-cemented blocks (Figure 6.2B,F). In Árnesfjall, the group of elongate 

ridges below the main scarp had become smaller (with maximum height up to 3.7 

m) molards with the same elongated shape and pointed summits (Figure 6.2D). 

At both sites, at the surface most molards are clast-supported (by boulders, 

cobbles and pebbles, Figure 6.1C; Figure 6.3A), with fine material sometimes 

present, but there are rare cases of molards composed of matrix-supported 

gravelly sand to silty clay material (Figure 6.1D). However, the surface material 

does not necessarily reflect the inner composition of molards; I investigated the 

interior of one molard at each site to find that the deposits are richer in matrix just 

a few decimetres below the surface (Figure 6.3B). Once the blocks disaggregated 

into molards, I observed that some of them were still preserving a faint original 

layering of the source deposits (Figure 6.1C), with imbricated unsorted gravel in 

sandy silt to silty clay matrix, which is further proof that the deposits must have 

been ice-cemented during the failure. However, in most of the cases, molards’ 

deposits were non-stratified unsorted gravel to clay material, and I did not observe 

any radial grain size gradation (Figure 6.3A,B).  
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Figure 6.3. Material comprising molards. (A) A molard in Móafellshyrna showing coarse deposits on the 

surface with no gradation. (B) Typical internal granulometry of a molard, composed of unsorted gravel in 

sandy silt to silty clay matrix. 

 

A schematic evolution of the degradation of an ice-cemented block into a cone 

of debris has been recently proposed (Milana, 2016), reconstructing their 

degradation assuming a theoretical initial shape of a sphere. I observed that 

differently shaped molards are a direct result of the originally differently shaped 

blocks of ice-cemented material. From a cubic or angular block, the resulting 

molard has a rounded and symmetrical conical shape (Figure 6.2E-G); 

alternatively, in the case of ice-cemented elongated ridges, the final molards 

preserve the elongated shape. In both cases, I have measured that molards can 

be 30% lower than the initial block, because thaw results in the debris located at 

the top of the block/ridge collapsing to the base (Figure 6.2G). 

I have modelled how to estimate the original size of a block of ice-rich 

sediments from the resulting molard. Knowing the height (h) and length of the 

flank (L) of a molard, it is possible to estimate the width (B) – and then the area 

and volume – of the original block as shown in equation (3) (Figure 6.4): 

    𝐵 =  2√𝐿2 − ℎ2      (3) 
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I have tested this model through field measurements of the size of the largest 

block of ice-rich sediment. A molard of L=11.9 m and h=10.2 m will result from a 

block with B=12.2 m, which is the measured length of the biggest block in 

Móafellshyrna after the failure. So for example, from a cubic and angular block 

10.2 to 14.8 m high and with an area from 924.24 to 1002 m2, the resulting molard 

would have a rounded and symmetrical conical shape, would stand 10.2 m high 

maximum and cover an area of 1193 m2. In the future, this model could give 

important estimations of the initial ground ice content of the original blocks. 

 

Figure 6.4. Model for estimating the width of the original block of ice-rich sediment (assumed to have a 

rectangular section) knowing height and length of the flank of the molard, which is assumed to have a 

triangular section. 

. 

A similar surface lowering (35%) has been recorded in hummocks of thawing 

ice-cored moraines in the terminal region of outlet-glaciers in Iceland (Krüger and 

Kjær, 2000). Hummocks of ice-cored moraines are similar to molards not only in 

their conical shape, but also in their mode of formation: ice-cored moraines retain 

massive ice cores and form hummocks when the ice melts (Dyke and Savelle, 

2000). Similarly to molards, the form of the hummocks is determined by thaw and 

gravitational collapse. They can have similar flank slope angles of between 25° 
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and 35° (Hambrey et al., 1997)  or higher. Many meters of ice can be buried under 

only a few centimetres to meters of till (Schomacker and Kjær, 2008), meaning 

that the resulting feature can easily disappear when all the ice is melted (Mercer, 

1963). The ratio of ice to debris within molards in Móafellshyrna is much lower 

(15-20% ground ice content; Sæmundsson et al., 2018), giving them a much 

higher preservation potential. This is why molards remain recognisable even after 

the ice has gone. I posit that molards should vary in shape and size depending 

on the slope where they form. In Móafellshyrna, molards rest on a slope of 17 ° 

and have circular shapes and rounded summits, whereas those in Árnesfjall are 

on slopes of up to 28° and have elongated shapes and angular summits. I further 

hypothesise that molards’ shape and size should also depend on the 

granulometry of the source material (more rounded molards are expected for 

courser granulometry), and on their initial ground ice content (the more ground 

ice, the lower the final height of the molard). Finally, I infer that the lack of matrix 

on the surface of the molards is due to the action of precipitation, washing out the 

fines through the coarse debris by percolation (Figure 6.2G).  

6.3.2 Molards distribution and morphology: 

indicators of landslide dynamics 

The morphometry and the spatial distribution of molards in Móafellshyrna and 

Árnesfjall landslides can provide information about the failure dynamics of the 

landslides. Molards in Móafellshyrna have different characteristics to those in 

Árnesfjall, although the average height, basal area and volume of the molards do 

not differ significantly between the two landslides (see Table 6.1). 

 

 



Chapter 6 – Molards, indicator of permafrost degradation and landslide processes 

 
 

204 
 

Table 6.1 – Two-tailed t-test assuming unequal variances for correlating the morphometric measurements 

of molards in Moafellshyrna and Arnesfjall landslides, including: volume, area, height, slope of the basal 

area, slopes of the short and long axes respectively in Moafellshyrna and Arnesfjall, eccentricity, long flanks, 

and short flanks. df indicates degree of freedom.  

Volume   

   
t-Test: Two-Sample Assuming Unequal Variances   

      

  Móafellshyrna  Árnesfjall  

Mean 504.3476135 759.0220391 

Variance 3142722.376 497282.9869 

Observations 17 23 

Hypothesized Mean Difference 0  
Df 20  
t Stat -0.560452687  
P(T<=t) one-tail 0.290697652  
t Critical one-tail 1.724718243  
P(T<=t) two-tail 0.581395303  
t Critical two-tail 2.085963447   

   
Area   

   
t-Test: Two-Sample Assuming Unequal Variances   
      

  Móafellshyrna  Árnesfjall  

Mean 118.5581894 166.2943023 

Variance 77895.87538 12952.49165 

Observations 17 23 

Hypothesized Mean Difference 0  
Df 20  
t Stat -0.665492706  
P(T<=t) one-tail 0.256668957  
t Critical one-tail 1.724718243  
P(T<=t) two-tail 0.513337914  
t Critical two-tail 2.085963447   
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Height   

   
t-Test: Two-Sample Assuming Unequal Variances   

     

  Móafellshyrna  Árnesfjall  

Mean 2.021764706 1.937826087 

Variance 5.072590441 0.932126877 

Observations 17 23 

Hypothesized Mean Difference 0  
df 20  
t Stat 0.144183801  
P(T<=t) one-tail 0.443399156  
t Critical one-tail 1.724718243  
P(T<=t) two-tail 0.886798313  
t Critical two-tail 2.085963447   

   
Eccentricity   

   
t-Test: Two-Sample Assuming Unequal Variances   

     

  
Slope short 
side 

Slope long 
side 

Mean 0.535586297 0.737150731 

Variance 0.035206619 0.017255267 

Observations 17 23 

Hypothesized Mean Difference 0  
df 27  
t Stat -3.794866109  
P(T<=t) one-tail 0.000379784  
t Critical one-tail 1.703288446  
P(T<=t) two-tail 0.000759568  
t Critical two-tail 2.051830516   
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Short flanks   

   
t-Test: Two-Sample Assuming Unequal Variances   

     

  Móafellshyrna  Árnesfjall  

Mean 3.604113 3.465630957 

Variance 9.158176306 5.140505046 

Observations 17 23 

Hypothesized Mean Difference 0  
df 28  
t Stat 0.158618668  
P(T<=t) one-tail 0.437553922  
t Critical one-tail 1.701130934  
P(T<=t) two-tail 0.875107845  
t Critical two-tail 2.048407142   

   
Long flanks   

   
t-Test: Two-Sample Assuming Unequal Variances   

     

  Móafellshyrna  Árnesfjall  

Mean 6.271242118 9.190356087 

Variance 27.68073931 17.02352545 

Observations 17 23 

Hypothesized Mean Difference 0  
df 29  
t Stat -1.896795826  
P(T<=t) one-tail 0.03392757  
t Critical one-tail 1.699127027  
P(T<=t) two-tail 0.06785514  
t Critical two-tail 2.045229642   

   
Slope basal area   

   
t-Test: Two-Sample Assuming Unequal Variances   
      

  Móafellshyrna  Árnesfjall  

Mean 17.77304706 26.1175 

Variance 23.26567952 25.20092774 

Observations 17 23 

Hypothesized Mean Difference 0  
df 35  
t Stat -5.31562627  
P(T<=t) one-tail 3.0843E-06  
t Critical one-tail 1.689572458  
P(T<=t) two-tail 6.16861E-06  
t Critical two-tail 2.030107928   
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Slope short-long axes Móafellshyrna     

   
t-Test: Two-Sample Assuming Unequal Variances   
      

  
Slope short 
side 

Slope long 
side 

Mean 16.64106294 20.90587059 

Variance 40.5219231 41.41413294 

Observations 17 17 

Hypothesized Mean Difference 0  
df 32  
t Stat -1.942613405  
P(T<=t) one-tail 0.03045321  
t Critical one-tail 1.693888748  
P(T<=t) two-tail 0.060906419  
t Critical two-tail 2.036933343   

   
Slope short-long axes Árnesfjall    

   
t-Test: Two-Sample Assuming Unequal Variances   
      

  
Slope short 
side 

Slope long 
side 

Mean 33.47453478 27.29548261 

Variance 30.05328937 33.25067893 

Observations 23 23 

Hypothesized Mean Difference 0  
df 44  
t Stat 3.724520017  
P(T<=t) one-tail 0.000276948  
t Critical one-tail 1.680229977  
P(T<=t) two-tail 0.000553896  
t Critical two-tail 2.015367574   

   
 

 For instance, the Móafellshyrna molards have a larger range in volume (Figure 

6.6E). Also, the slope angles of the short and long flanks of molards are roughly 

equal in Móafellshyrna (Figure 6.6E), while the downslope faces of the Árnesfjall 

molards are longer and less steep than the scarp-facing short flanks (see Table 

6.2, Figure 6.6E). The Árnesfjall molards are consistently elliptical in shape 

(Figure 6.6E), whereas molards in Móafellshyrna are variable, but generally 
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closer to circular (Figure 6.6E). Finally, while Móafellshyrna molards do not show 

a preferential orientation in their long axes with respect to the landslide’s runout-

direction (Figure 6.6B), the long axes of the molards in Árnesfjall are oriented 

roughly perpendicular to the landslide’s runout direction, and parallel to the main 

scarp (Figure 6.6D).   
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In Móafellshyrna, the molards are clustered in an area with a mean slope of 

17° at the foot of, or beyond, the talus slope located below the topographic bench 

(Figure 6.6A). Their position matches that expected for rock falls, where 

competent fragments detach and fall, and come to rest either within, at the foot, 

or beyond the base of the talus slope (Evans and Hungr, 1993; Varnes, 1978). 

The large size variation of molards in Móafellshyrna mirrors that in rock fall 

(Figure 6.6E), where their power-law frequency–volume distribution (see Figure 

6.5) is related to rock fragmentation (Einstein, 1937). Their final position on a low 

slope allowed the blocks to degrade into isolated cones with a circular base, 

radially symmetrical flank slopes (see Figure 6.6E; see Table 6.2), and no 

preferential orientation.  

 

Figure 6.5. Volume-frequency distribution of molards. (A) Volume-frequency distribution (bi-logarithmic 

distribution) for the molards of Móafellshyrna, showing a power-law distribution. (B) Volume-frequency 

distribution for the molards of Árnesfjall (log-linear distribution), showing an exponential distribution. 

 

Molards in Árnesfjall lie on an average slope of 26° and are concentrated less 

than 30 m below the base of the failure scarp (Figure 6.6C). This position is typical 

of the location of en echelon concave-upward rupture surfaces in debris slides. 

These ruptures are oriented perpendicular to the flow direction, and blocks of 

material often move downward with little internal deformation (Varnes, 1978). 
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Molards in Árnesfjall derive from the degradation of densely packed, elongated 

ridges exposed by the rotational-sliding motion of the source material, cut by 

several curved planes of movement. These dynamics are reflected in their more 

homogeneous size (see Table 6.1) and their elliptical shape (Figure 6.6E), a 

result of the degradation of elongated cusps of ice-cemented precursor units 

produced by relatively coherent rotational sliding. This process can be deduced 

by the orientation of the mounds’ long axes, perpendicular to the main movement 

downslope (Figure 6.6D). Furthermore, the steep upslope-facing short flanks of 

these molards (Figure 6.2C,D; Figure 6.6E) reflects a common behaviour of 

rotational slides, where the upper part of the units produced by curved rupture 

surfaces tilt backwards toward the scarp. 

By measuring the size, morphology and distribution of molards, I have been able 

to discriminate between the processes of simple gravitational fall and of rotational 

sliding. I recognise that other types of motion might also transport ice-cemented 

materials, forming molards with morphometry and distribution different to those 

described here. For example, molards with a wide-range of dimensions scattered 

across the mobilised mass could be expected in rock/debris avalanches, due to 

their extremely rapid flow-like motion (Hungr et al., 2001), while molards 

accumulated in the terminal lobe could result from debris flows, due to their 

tendency of producing longitudinal sorting near the front of the surge (Iverson, 

1997).  
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6.3.3 Molards in remote sensing data 

Identifying molards reliably is crucial if they are to give insights into the 

geomorphological and climatic condition of the landscape where they form. 

Conical mounds can be generated by many processes, but molards are always 

associated with a landslide. They could, however, perhaps be confused with 

hummocky terrains found in rock avalanche deposits. Hummocks can be used to 

determine the kinematics of a landslide (Shea and van Wyk de Vries, 2008), but 

they have the following characteristics that  distinguish them from molards: (i) 

they usually decrease in size with runout distance (Yoshida et al., 2012) and 

towards the margins of the flow (Clavero et al., 2002), unlike molards, which have 

a heavy-tailed size distribution if generated by falling, or more homogeneous 

sizes if generated by sliding, (ii) hummocks in rock and debris avalanches can 

have volumes of up to 106 m3 (Clavero et al., 2002), while molards in Iceland have 

volumes of thousands of cubic meters at most, and (iii) hummocks tend to have 

their long axes parallel or orthogonal to the direction of the mass movement 

(Clavero et al., 2002; Yoshida, 2014), while I have demonstrated that molards are 

expected to have axes with no preferential orientation with respect to the flow if 

produced by fall. Hence, in addition to molards being readily identifiable in the 

field, I propose that in most cases they can also be reliably identified in remote 

sensing data, although in some areas field studies would be needed to confirm 

the identification. 

In Figure 6.7, I show a plan view image of molards in Móafellshyrna landslide 

(Figure 6.7A,B), a location with putative molards elsewhere on Earth (Figure 

6.7C,D), and possible candidates on Mars (Figure 6.7E,F). In Figure 6.6D, cone-

shaped landforms of ~1-46 meters-diameter are scattered across the surface of 
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deposits mobilised by a rock avalanche (Pedersen et al., 2002) in Greenland. The 

failure falls within a region where continuous permafrost has been reported (Van 

Tatenhove and Olesen, 1994); hence, I infer that these conical mounds are 

molards, but in situ investigation would be needed to test this hypothesis. 

Landslides have been active in this area since at least 1985 (Benjamin, 2014), 

and cones of debris were reported to be present in 2000 (Pedersen et al., 2002), 

so there is the potential that these cones are indicative of permafrost degradation 

in this area. Furthermore, many more putative molards are seen here than in my 

Icelandic examples, suggesting that more molards could be produced in areas 

with more pervasive ground-ice content.  
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Figure 6.7. Molards from remote sensing. (A) Aerial image of Móafellshyrna landslide, with the extent of 

Figure 6.6B outlined by the white box. (B) Molards in Móafellshyrna landslide. (C) Aerial image of a rock 

avalanche on the south coast of Nuussuaq, west coast of Greenland (image from Google Earth) with the 

extent of Figure 6.6D outlined by the white box. (D) Putative molards in Nuussuaq (image from Google 

Earth). (E) Impact ejecta flow deposits from Hale Crater on Mars, (Context Camera images 
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G14_023858_1429 and G19_025704_1431, credit NASA/JPL-Caltech/MSSS), with black arrows indicating 

the inferred flow directions. (F) Conical landforms in the ejecta blanket of Hale Crater on Mars (High-

resolution Imaging Science Experiment image ESP_052222_1425, credit NASA/JPL/University of Arizona). 

White arrows indicate lighting direction. 

 

Similar scattered conical landforms are identifiable within impact ejecta 

originating from Hale Crater on Mars (Figure 6.7E,F). The ice-rich nature of the 

impact ejecta has already been proposed based on other landforms (Jones et al., 

2011). I propose that conical landforms within the ejecta flow are molards, which 

with further study could yield important constraints on the ice-content of the 

original ejecta flow and insights into recent modification of ground ice reservoirs 

on Mars. 

 

6.4 Discussion and Conclusions 

Iceland has discontinuous permafrost (Brown et al., 1997; Rekacewicz, 2005), 

which in general is spatially and temporally heterogeneous (Rödder and Kneisel, 

2012), and mountain permafrost has been modelled at elevations above 800-900 

m a.s.l. in the central-northern regions of the island (Etzelmüller et al., 2007). This 

predicted permafrost distribution has been ground-truthed by comparison with the 

distribution of active rock glaciers and ice–cored moraines in the Tröllaskagi 

peninsula (Farbrot et al., 2007a; Lilleøren et al., 2013).  

The Móafellshyrna landslide falls within the predicted spatial zone and altitude 

band for mountain permafrost. In contrast, the Árnesfjall landslide occurred on 

the coastline of the Westfjords, 400 m below the predicted permafrost altitude in 

this area. Hence, the presence of molards here is the only unequivocal and 

pragmatically detectable indicator of permafrost conditions. Both landslides 
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originated from talus material. In general, coarse blocky talus material is a 

particularly favourable substrate for ice-rich permafrost (Etzelmüller et al., 2001; 

Harris and Pedersen, 1998). In talus slopes, ground ice can be formed by burial 

of snow by mass wasting debris, which protects the snow from ablation (Gruber 

and Hoelzle, 2008), and can lead to the development of ice-rich permafrost 

(Kenner et al., 2017). Annual freeze-thaw cycles in talus slopes in mountain 

permafrost environments can reach depths of ~3-7 m, but rarely decametres 

(Matsuoka et al., 1998). The ice-cemented blocks that detached in the 

Móafellshyrna landslide were 15-20 m thick, much larger than the expected 

maximum depths of annually-formed, ice-cemented ground. Hence, it is very 

likely that the source talus slopes were perennially-frozen ground and that the 

molards indicate permafrost degradation. 

Molards reported in landslides have all involved terrains that are known to be 

affected by discontinuous permafrost (Brideau et al., 2009; Cruden, 1982; Lyle et 

al., 2014). In one case, the deposits of an active rock glacier were the source 

material for the landslide with molards (Milana, 2016). As I have shown that 

molards evolve from parent blocks of ice-rich sediments, to the light of this study 

previously reported molards provide new information: they are an indicator 

(perhaps the only indicator) of ongoing or past permafrost degradation. 

Furthermore, in Móafellshyrna molards are the first direct indication of ongoing 

permafrost degradation in this region of Iceland, in an area already thought to 

host only mountain permafrost (Etzelmüller et al., 2007; Farbrot et al., 2007a; 

Lilleøren et al., 2013). In Árnesfjall, molards mark both the presence of permafrost 

in an area thought to have no perennially frozen ground and its recent/ongoing 

degradation.  
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My new recognition that molards provide a way to track permafrost degradation 

is important, as similar indicator-landforms (such as retrogressive-thaw slumps 

(Ashastina et al., 2017), thermokarst lakes (Yoshikawa and Hinzman, 2003), 

baydjarakhs (Séjourné et al., 2015)) are scarce, and generally occur only in zones 

of continuous permafrost. Other indicators of permafrost, such as active rock 

glaciers, ice-cored moraines, composite ridges, ice-wedges, or palsas, need 

long-term monitoring of air/ground temperature to detect the state of permafrost, 

whereas molards directly reveal permafrost degradation. I propose that future 

studies can use molards with the purpose of mapping historic-permafrost 

conditions and geographically tracking past climate change.  

By studying how the deposits of two landslides in northern Iceland evolved 

through time, I have shown for the first time that molards form in periglacial 

environments from the degradation of blocks and ridges of ice-cemented deposits 

into conical mounds of debris. Molards have distinctive spatial and geomorphic 

characteristics that reveal the dynamics of the landslides that formed them. 

Isolated molards indicate transport via fall, while densely-grouped elongated 

molards below the main scarp are generated by sliding. In this paper, I distinguish 

two different dynamic styles using molards, but future study is required to 

determine if molard characteristics could reveal other types of landslide motion. 

The relation between permafrost degradation and slope stability is well 

documented in the literature, but, in the light of my study, further efforts should be 

engaged in defining how molards can be used in risk mitigation. The types of 

landslide from which molards form are likely to become more common as ground 

temperatures in ice-rich permafrost zones increase, making thaw and slope 

instabilities in periglacial environments more probable. Furthermore, given that 

the presence of ice enables long runout and high velocity in mass movements 
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(Huggel et al., 2005), molards could be used to detect areas at risk of potentially 

disastrous ground ice thaw-induced landslides. 

I have demonstrated that molards are a landform that can be readily recognised 

in the field as a marker of recent and ongoing permafrost degradation. I found few 

molards in Iceland compared to studies of molards in permafrost-rich terrains, 

hence the number-density of molards at a site may reveal the abundance of 

ground ice at the time of the failure. One of my study sites in northern Iceland is 

a region where mountain permafrost has not been modelled, and until my study 

there was no direct field evidence to prove its presence and/or condition. The 

recent formation of molards reveals the presence of permafrost in the area, and 

its ongoing degradation.  

Finally, I have demonstrated that molards are not only readily recognisable in 

the field, but also via remote sensing. This opens up the possibility of efficiently 

identifying these landforms across large and remote areas, revealing the 

influence of ice thaw not only in mountain permafrost environments, but also on 

planetary surfaces such as Mars, where the role of volatiles in landscape 

evolution is vigorously debated. 

The discovery of the formation of molards and of their role as cipher key in 

reading the periglacial landscape to understand permafrost degradation and 

landslide dynamics accomplish one of the aims of this thesis: to understand what 

is the morphological inheritance of landslides occurring in degrading ground-ice 

terrains, and to use this inheritance to decipher permafrost degradation and 

failure dynamics.   
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Chapter 7 . Synthesis and conclusions 

7.1 How do debris flows and landslides affect 

the Icelandic landscape? 

The research contained in this thesis has shown that rapid mass movements 

can influence landscape evolution in Iceland, and has addressed some of the 

main problems that have been highlighted in previous studies concerning the 

triggers, the sediment supply and transfer of slope failures. Weathered and 

fractured volcanic bedrock, steep slopes mantled by loose deposits, changing 

climate conditions and earthquake activity have been identified as the main 

factors that lead to the initiation of landslides in Iceland (Sæmundsson et al., 

2003; Sigurđsson and Williams, 1991). Many debris flows in Iceland are released 

because of rapid snowmelt (Decaulne and Sæmundsson, 2006), and have a high 

frequency (Decaulne et al., 2005). These studies highlighted the need to define 

the threshold values of the different parameters necessary to trigger mass 

movements, such as atmospheric temperature increase, accumulated 

precipitation, or sediment accumulation, in order to efficiently predict landslides 

and debris-flows. A further knowledge gap was identified by Glade (2005), who 

advised that since hazard scenarios are dependent on sediment availability, 

debris-flow hazard assessment in Iceland and other locations should rely on 

geomorphic analysis. Bell and Glade (2004) reported that in the Westfjords of 

Iceland debris flows and rock falls pose a high risk to the local communities. They 

suggest that future research should determine the sediment supply rate from the 

source areas to the slopes, which is crucial when quantifying the risk that these 

processes can pose. I have quantified the material mobilised and the potential for 
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new sediment supply in different sections of debris flows affecting the town of 

Ísafjörður in the Westfjords (Chapter 3), and by two landslides in the Westfjords 

and in the Tröllaskagi peninsula (Chapter 4). This has allowed me to identify and 

characterise different failure mechanisms that are geomorphically distinct and 

that have affected the slopes of Iceland by mobilising large quantities of debris. I 

have recognised that in Iceland mass wasting phenomena are extremely prone 

to activation and re-activation, and occur through a range of processes that leave 

distinctive spatial geomorphic characteristics. Some of these processes result 

from heavy and intense precipitation, seismic activity and permafrost 

degradation, the magnitude of which I have estimated (Chapter 5). These 

different factors can cause an acute geomorphic response of the Icelandic 

landscape, resulting in a major mobilization of sediment by rapid mass 

movements.   

These new findings on the rapid mass movements in Iceland can be extended 

to other contexts worldwide, as my geomorphic analysis have permitted to detect, 

quantify and characterise debris accumulated at high gradients and debris 

transfer in complex landslides, without the assistance of any other monitoring 

system, and could be easily applied to other similar failures around the globe. 

The novel discovery that permafrost is degrading in Iceland and causing 

gravitational movements is a further evidence that we do not know enough about 

permafrost degradation in discontinuous mountain permafrost environments and 

the consequent hazard that could derive. This highlight the importance that future 

studies should focus on the field evidence of permafrost degradation, and how to 

link them to the regional extension of permafrost and its degrading state.  
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7.2 Is permafrost degrading in Iceland? 

The findings of my thesis feed into and complement the findings of the last 40 

years of research into permafrost in Iceland. Harris (1981) and Priesnitz and 

Schunke (1978) were the first to highlight that permafrost is present with different 

continuity of coverage in Iceland, and confined the permafrost distribution in 

Iceland to the central highlands. The same areas in central Iceland fall within the 

zones of sporadic permafrost in the official International Permafrost Association 

(IPA) map (Brown et al., 1997). Etzelmüller et al. (2007) modelled the overall 

extent of permafrost in Iceland, identifying that its lower limit decreases from 

southeast to north, and it is limited to above 800 m a.s.l in the north and east, and 

above 1000 m in the south. The authors found that permafrost covers around 15% 

of the total land area of Iceland, and is probably degrading. Farbrot et al. (2007a, 

2007b) and Lilleøren et al. (2013) outlined the distribution of permafrost at 

regional scale in north and eastern Iceland, recognising active permafrost 

landforms to determine the widespread occurrence of mountain permafrost above 

800-900 m a.s.l., with above 400 m a.s.l. in the northernmost zones of the country. 

An ongoing degradation of permafrost on the island was suggested by Kneisel et 

al. (2007), who detected shallow and heterogeneous distribution patterns of 

permafrost in different sites in the highlands of central Iceland, and acknowledged 

its sensitiveness to climate change. This was locally confirmed by Saemundsson 

et al. (2012), who recorded a deterioration of permafrost landforms such as 

palsas and a thickening of the active layer.   

Despite the exceptional progress achieved in understanding the distribution 

and state of permafrost in Iceland, unexpected events have proved that we are 

still far from having obtained conclusive findings. I have reported on two different 
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landslides that occurred in northern Iceland where ground ice was found in the 

landslide deposits immediately after their occurrence (Chapter 4). These two 

rapid mass movements resulted in changes in permafrost on the landscape that 

has never been reported before in Iceland. The Móafellshyrna landslide is located 

in an area where permafrost is expected by the model of Etzelmüller et al. (2007). 

In contrast, the Árnesfjall landslide occurred on the coastline in an area where 

permafrost had not been modelled, and at a lower altitude than the predicted 

permafrost elevation. I demonstrated that both landslides originated from talus 

material, a particularly favourable substrate for ice-rich permafrost (Harris and 

Pedersen, 1998). Both landslides mobilised material at a depth that exceeds the 

expected maximum depths of annually-formed, ice-cemented ground (Matsuoka 

et al., 1998). Hence, it is very likely that the source talus slopes were perennially-

frozen ground. The occurrence of this type of landslide in a short period of time 

after an increase of the mean annual air temperatures in Iceland is a further 

indication that permafrost degradation is one of the foremost causes for the 

release of these unusual rapid mass movements. The Móafellshyrna and 

Árnesfjall landslides are unexpected events that show that similar events might 

occur not only in Iceland, but also in similar mountain permafrost environments, 

where unstable loose ice-cemented deposits could fail due to ground-ice 

degradation with increasing atmospheric temperatures. 

After that my supervisors and I disseminated our observations and results 

regarding the Móafellshyrna and Árnesfjall landslides, we received the news that 

blocks of ice-rich sediments similar to those ones that we observed have been 

photographed on a landslide that occurred in eastern Iceland in April 1947 (see 

Figure 7.1.). This opens the possibility for future research on other past Icelandic 
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landslides triggered by ground-ice thaw, as they could give us important 

information of the distribution and state of permafrost in the past decades.  

 

Figure 7.1. A block of ice-rich sediments on the deposits of a landslide occurred in spring 1947 on the 

south-west facing slope of the Hoffell mountain in eastern Iceland. Note the path ploughed in the snow by 

the block (courtesy of R. Þorvaldsson). 

 

My study is at a local scale, so the conclusions drawn in this thesis cannot be 

extrapolated to reflect the conditions of permafrost in the whole country. However, 

if indications of permafrost degradation are locally present in different areas of 

Iceland, it is reasonable that the same state of degradation can be expected in 

other regions of Iceland. In Iceland, long-term standard air and ground-surface 

and subsurface  temperature measurements should be implemented and 

validated with extensive topographic and geophysical monitoring, in order to 

successfully predict the evolution of ground temperature in a changing climate  

and  analyse its potential impact. Since the periglacial environments in Iceland 

are predicted to react rapidly to changes of the environmental boundary 
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conditions (Kneisel et al., 2007), monitoring the effects of variations in permafrost 

on sediment stability and transport should be of primary importance, as these 

could have serious destructive consequences on Icelandic landscape and 

society.  

 

7.3 Is there a geomorphological marker for 

permafrost degradation? 

Landforms related to permafrost can be associated with its aggradation ─ 

permafrost growth ─ or its degradation ─ permafrost thaw. Surface features 

related to permafrost aggradation such as thermal-contraction-crack polygons, 

palsas or rock glaciers have been studied in Iceland and worldwide to monitor the 

extension and state of permafrost (Emmert and Kneisel, 2017; Haeberli et al., 

2006; Hubbard et al., 2013; Kneisel et al., 2007; Sæmundsson et al., 2012), as 

modifications in their morphometric characteristics can reveal changing 

conditions of permafrost. Monitoring techniques such as air/ground thermal 

monitoring or repeat geophysical surveys, even if very effective, can however be 

logistically difficult and require a long-term approach (Hachem et al., 2009; Hilbich 

et al., 2008). Landforms associated with permafrost degradation, such as 

retrogressive-thaw-slumps and mass movements, indicate ongoing permafrost 

degradation wherever the state of permafrost is well known, which again requires 

a long-term record of thermal, geothermal and geophysical monitoring and 

modelling. However, the link between these landforms and the presence and/or 

degradation of permafrost is difficult to ascertain wherever these datasets are not 

available and the distribution and conditions of permafrost are not clearly 

constrained, such as places at the border between discontinuous and patchy 
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permafrost. By studying landslides affecting permafrost terrains in northern 

Iceland, I have found that molards are landforms that can be used as a marker of 

permafrost degradation (Chapter 6). Molards are cones of debris that are found 

in landslide deposits and that form from the degradation of ice-cemented blocks 

involved in the development of landslides in periglacial environments. In the 

Móafellshyrna landslide, which falls in an area of Iceland where permafrost is 

expected (Etzelmüller et al., 2007; Farbrot et al., 2007a; Lilleøren et al., 2013), 

molards are the first direct indication of ongoing permafrost degradation. In the 

Árnesfjall landslide, located in a region where mountain permafrost has not been 

expected from model results (Etzelmüller et al., 2007; Rekacewicz, 2005), 

molards are the only evidence to prove permafrost presence and its degrading 

condition.  As opposed to other landforms associated with permafrost, I have 

shown that molards can directly reveal recent or ongoing permafrost degradation 

using field observations or remote sensing.  

Using molards as an indicator of permafrost degradation is not only possible in 

Iceland. The fact that molards are readily recognisable in the field and using 

remote sensing opens up the possibility of identifying these landforms in other 

remote areas. I have shown that candidate molards are also observable within 

impact ejecta originating from Hale Crater on Mars. In Chapter 6, I have reported 

an example of cone-shaped landforms lying on the deposits of a rock avalanche 

in the western coasts of Greenland. With further study, molards could reveal the 

influence of ice thaw in permafrost environments, and clarify the role of volatiles 

in landscape evolution of Mars and other planets. These are only two examples, 

but similar conical features are also identifiable in other regions of the globe, such 

on the accumulation zone of a landslide in eastern Kashmir (Figure 7.2). As for 
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the case in Greenland, here a great number of debris cones seem to be scattered 

on the landslide deposits, compared to the few molards that I found in Iceland.  

 

Figure 7.2. Aerial image of a landslide in the eastern Kashmir with conical features scattered in the 

accumulation zone (image from Google Earth). 

 

Other cones of debris have been observed in the Mount Meager debris 

avalanche in British Columbia (Roberti et al., 2017a), and molards were identified 

on the deposits of the Brazeau Lake slide in Alberta (Cruden, 1982; Figure 7.3). 

In both landslides, permafrost thaw was recognised to have a role in the release 

of the failures, but the cones of debris were not linked to this process. The 

Himalayas, Canada and Greenland are areas where continuous and 

discontinuous permafrost is expected (Brown et al., 1997); therefore further 

studies should clarify how the number and density of molards can depend on the 

abundance of ground ice in the terrains affected by failures. In general, a more 

thorough characterisation of molards in other contexts should be accomplished 
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with the purpose of linking their morphology and distribution to the presence of 

permafrost, its coverage and state. A second avenue for future research is to 

better understand the landslide processes that result in the formation of molards, 

as I have shown in Chapter 6, as different mass movement dynamics can bring 

diverse morphometric characteristics to molards. This thesis has qualitatively 

shown that molards are differentiable from landforms that share morphological 

similarities with them, such as hummocks in rock and debris avalanches, and 

hummocks in ice-cored moraines. However, quantitative geomorphological 

comparisons would be advisable to avoid confusion and misleading 

interpretations when distinguishing these landforms. Finally, experimental 

simulations of formation of molards should be performed on a wide variety of 

materials with different granulometry, rheology and ground-ice/debris ratio, with 

the aim of quantifying their relative control of the shape of the cones of debris 

deriving from the decay of the blocks of ice-rich deposits.  

 

Figure 7.3. Candidate molards in Canada. (A) The aerial view of the Mount Meager debris avalanche 

(photos DS_PHR1A_201508121923233_FR1_PX_W124N50_0718_02305 and 

DS_PHR1A_201508121923233_FR1_PX_W124N50_0718_02305 from Airbus Defence & Space); (B) a 

detail of one of the cones of debris on the surface of the Mount Meager debris avalanche (from Roberti et al. 

(2017)); (C) aerial view of the Brazeau Lake slide in Alberta and its structures, with inverted V to indicate 

molards (from (Cruden, 1982)). 
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7.4 Can permafrost degradation be traced back 

in the past? 

Reconstructing paleo-permafrost with accuracy is of great importance for 

understanding the origin of current landscapes, as their shape could precondition 

the occurrence of new mass movements. However, large uncertainties still exist 

on the maximal extent in Europe and Iceland during the Last Glacial Maximum 

(LGM) (Andrews et al., 2000; Clark et al., 2009; Hubbard et al., 2006; Jost et al., 

2005). Moreover, the paleo-permafrost development, its extent and degradation 

and the glacier-permafrost interaction during the LGM are difficult to constrain. 

One way of approaching this complex problem, is the spatial and temporal 

analysis of paraglacial and periglacial forms. Various studies have led to great 

progress in our knowledge of paraglacial and periglacial landforms developed 

during the LGM and the Holocene in Iceland. There is a strong relationship 

between deglaciation and slope instabilities during the paraglacial phase in 

Iceland (Mercier et al., 2017). In the Westfjords, almost two hundred rockslides 

have been identified in an area deglaciated during the LGM to Younger Dryas 

transition (Peras et al., 2016). In central northern Iceland (Skagafjörður), most 

landslides in the area occurred during the first half of the Holocene, and landslide 

susceptibility was enhanced when the post-glacial uplift was at its maximum 

(Coquin et al., 2015; Cossart et al., 2014; Mercier et al., 2012). Among periglacial 

forms, thufur, even if not directly linked to permafrost, expanded in Iceland over 

the Holocene, which is coherent  with permafrost extent in peri-Atlantic regions 

and with glacier fluctuations (Van Vliet-Lanoë et al., 1998). Although huge efforts 

have been made to define the origin of the paraglacial and periglacial landscape 

of Iceland, it is difficult to find a marker that can aid in defining the limit of paleo-
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permafrost degradation. In this thesis I have hypothesised that molards could be 

used to trace permafrost degradation in the past. This potential is illustrated via 

the following case studies. In Figure 7.4A, a rockslide in Tröllaskagi peninsula 

(north-western side of Tungudalur valley) has some conical features at the toe of 

its accumulation zone. Similar landforms are also present in the upper 

accumulation zone of a rockslide on the northern side of the Tindastóll ridge, on 

the western coast of Skagafjörður fjord (Figure 7.4B). These rockslide are 

amongst those which have been linked to a paraglacial origin after the glacial 

retreat following the maximal ice extent in Iceland (Mercier et al., 2017). Similar 

hummocky topographies have been observed in analogue landslides in northern 

Iceland and have been related to deep-seated gravitational slope deformation 

(Coquin et al., 2016; Mercier et al., 2012). Coquin et al. (2016) hypothesised a 

water supply from permafrost thaw for one of these rockslides. The similarities 

between the conical features found in these paraglacial rockslides and molards 

are remarkable: both are found scattered on landslide deposits, they share the 

same form and hence possibly a permafrost-thaw related origin. In visual 

investigations of aerial images of the western side of the Móafellsdalur valley (the 

same where the Móafellshyrna landslide developed) and in subsequent 

inspections in the field, I have found similar conical features at the foot of a talus 

slope lying on the south-east side of the Lambahnjúkur mountain. These conical 

debris features have the same shape and size as the fresh molards I have 

investigated, and they lay on the deposits of a rockslide of paraglacial origin 

(Mercier et al., 2017). Further in situ investigations, morphometric 

characterisation and dating of these features, could reveal if they are hummocks, 

like those found in rock avalanches as an expression of stretching around blocks 

by faults (e.g., Shea and van Wyk de Vries, 2008), or molards. Confirmation of 
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these landforms being molards would imply a permafrost-thaw related origin and 

support my hypothesis that molards can be used to track permafrost degradation 

in to the past. 

 

Figure 7.4. Candidate periglacial features in northern Iceland. (A) Aerial view of one of the paraglacial 

rockslides in the Tröllaskagi peninsula, with conical features at its toe (image from Google maps); (B) aerial 

view of other conical features present in the upper accumulation zone of a rockslide on the northern side of 

the Tindastóll ridge (western coast of Skagafjörður fjord; image from Google maps); (C) aerial view of conical 

features on the western side of the Móafellsdalur valley, on the south-east side of the Lambahnjúkur 

mountain; (D) oblique view of the conical features on the of the Lambahnjúkur mountain. 

 

  



Chapter 7 – Synthesis and conclusions 

 
 

233 
 

7.5 What is the hidden hazard of melting 

ground ice? 

The mean surface temperature of the Earth has risen 0.6 to 0.9 degrees 

Celsius between 1906 and 2005 (IPCC, 2007). The response of hillslope 

geomorphic systems to climate change is expected to be acute, particularly at 

high latitudes (Harrison, 2009). Permafrost is degrading, as permafrost areal 

extent is decreasing and the active layer is deepening in different areas worldwide 

(Jorgenson et al., 2010; Smith and Riseborough, 1996; Zhang et al., 2007). It is 

well known that there is an influence of degrading permafrost on the occurrence 

of mass wasting phenomena (e.g., Fischer et al., 2006; Gruber et al., 2017; 

Gruber and Haeberli, 2007; Rebetez et al., 1997; Sattler et al., 2011; Stoffel and 

Huggel, 2012). Permafrost degradation has been identified in mountainous areas 

as one of the causes of rising frequency of rapid mass movements, such as debris 

flows, debris slides, rock falls and rock avalanches (Clague et al., 2012; Haeberli 

et al., 2017; Huggel et al., 2017; Wirz et al., 2016). Permafrost degradation can 

result in a loss of ground-ice cementation, the presence of segregated ice, 

increased hydrostatic pressure and the associated reduction of shear strength, 

and therefore to a reduction of stability (e.g., Gruber and Haeberli, 2007; 

Krautblatter et al., 2013). Slope position and aspect influence the response of 

slopes to increasing atmospheric temperatures: more rapid and deeper thermal 

responses are recorded at convex summits and ridges (Gruber and Haeberli, 

2007), and north-facing slopes receive less solar radiation (Salzmann et al., 

2007).  

Little is known about the distribution and the state of permafrost in Iceland and 

its response to recent climate change. The occurrence in 2012 and 2014 of two 
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landslides affecting ground ice-rich terrains has highlighted the lack of knowledge 

of the present state of permafrost in Iceland and on the possible hazardous 

consequences of its degradation. I have shown that Móafellshyrna and Árnesfjall 

mobilised large volumes of material (see Chapter 4). Luckily, the Móafellshyrna 

landslide occurred at few kilometres from the nearest farm, and no one was on 

the road that was hit by the Árnesfjall landslide. However, this type of landslide 

might occur in more densely inhabited areas in the future, or could dam a valley, 

a circumstance that can cause outburst floods if the dam fails, with release down-

valley of large amounts of water and sediments (e.g., Clague and Evans, 2000; 

Korup, 2002). A complication in evaluating the hazard that this type of landslide 

represents is the fact that few landslides involving ice-cemented debris have been 

observed and studied. Furthermore, a crucial problem in predicting slope 

adjustments, and in general geomorphological responses to climate change, is 

the lack of preserved analogues (Knight and Harrison, 2009). Therefore, studying 

the Icelandic hillslope responses to present-day climate change needs to deal 

with issues concerning magnitudes and rates of potential mass failures, 

considering the fact that it is expected that hazardous rapid mass movements 

induced by permafrost degradation will become more common in the near future 

due to predicted future warming (e.g., Allen et al., 2011; Geertsema et al., 2006; 

Harris et al., 2009; Keiler et al., 2010). No record of permafrost-induced landslides 

in Iceland exists, so we do not know if the occurrence of the landslides discussed 

here, which happened over a relatively short period of time, is the prelude to an 

increase in the frequency of rapid mass movements. Awareness of this type of 

failures should be raised among the local authorities and population. 

The survey of the Móafellshyrna and Árnesfjall landslides immediately after the 

events, but before the ground ice completely thawed, was crucial to the 
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reconstruction of the history of the landslides’ evolution, but this is not always 

possible if failures occur in remote areas or when no one can witness them. A 

possible way to improve our knowledge of this type of landslide would be the 

automatic detection of the landslides in remote areas of the island from satellite 

imagery, a technique that has been successfully applied in other locations for 

features such as landslides and karst landforms (e.g., Martha et al., 2010; Siart 

et al., 2009). This would allow the detection of active rapid mass movements in 

uninhabited areas where they cannot be witnessed, and their subsequent prompt 

field inspections would allow timely collection of important information about their 

potential release causes (importantly, including permafrost degradation), their 

distribution, and their frequency, all of which are crucial in the perspective of 

hazard assessment.   

Another potential avenue for research, in order to improve the ability to predict 

the potential risk brought by rapid mass movements in Iceland and other 

mountain settings, is to identify zones with similar settings to those of 

Móafellshyrna, Árnesfjall and Ísafjörður. These case studies all share in common 

loose debris as source material that is located on a sub-horizontal topographic 

surface. Recognizing similar settings in other areas of Iceland would allow 

identification of possible at-risk locations and the installation of preventative 

measures, or at least monitoring systems. This is a possibility that could be 

applied in other at-risk periglacial environments. An effective monitoring of 

recurrent rapid mass movements could be the regular acquisition and differencing 

of topographic surfaces obtained through the technique of Structure from Motion 

(see Chapter 4). This approach can be used to monitor and quantify expeditiously 

and at low cost slopes affected by frequent mass movements like debris flows.  
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Another research strand arising from this thesis would be to investigate the role 

of soil creep and solifluction in contributing to the development of rapid mass 

movements in settings similar to those reported in this thesis. It has been reported 

in the literature that soil creep and solifluction could mobilise surficial debris in 

cold environments, providing new material to refill source areas of debris flows 

and debris slides (Glade, 2005; Sasaki et al., 2000). A similar process might be 

inferred for Ísafjörður, where creep features are observable in the deposits 

covering the Gleiðarhjalli bench above the town (Figure 7.5). Determining 

whether creep is active in this site will aid estimates of sediment availability and 

production, which in turn would allow a better estimates of magnitude and 

frequency of future debris-flow event. This could be applicable not only in Iceland, 

but wherever in cold environments debris flows and rapid mass movements recur 

regularly due to continuous sediment supply and threaten people and 

infrastructures on their path. 
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Figure 7.5. Possible creep structures above the town of Ísafjörður. (A) Aerial view of the slope affected 

by debris flows above the town of Ísafjörður, with potential creep structures on the Gleiðarhjalli bench; (B) 

an oblique view of the Gleiðarhjalli bench with stripes of coarse deposits.
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7.6 Conclusions 

This thesis has contributed to add new knowledge regarding rapid mass 

movements and their dynamics in cold environments. The first focus of this thesis 

was to identify signatures to distinguish different debris-flow release styles in 

northern Iceland, while the second focus was to understand the possible 

connections between the thawing of ground ice in mountainous areas of Iceland 

with discontinuous permafrost and the occurrence of landslides. I have 

demonstrated that a better understanding of landslides and debris flows is 

possible through quantitative geomorphological analysis. The melting of shallow 

ground ice in mountainous areas affected by permafrost was a “hidden hazard”, 

until the occurrence of two landslides sourced by ice-cemented talus deposits. 

Other zones in Iceland, even if not affected by ground-ice thaw, present even 

more hazardous phenomena, with debris flows recurring every 4-5 years above 

urban areas. The understanding of conditions and processes controlling rapid 

mass movements is crucial in the perspective of hazard assessment. 

I have analysed the different triggering styles and evolution of debris flows in 

the Westfjords of Iceland, where debris flows have historically posed at risk local 

population. I have reconstructed the evolution of different debris flows by 

quantifying morphological and volumetric changes that, because gradually 

occurring and not directly observed in action, are “hidden” to human sight, and 

therefore potentially more hazardous for inhabited areas.  

The morphologic study of two landslides in northern Iceland where ground ice 

was observed after their occurrence has included morphometric analysis of their 

features, quantification of the volumes mobilised, and characterisation of their 

different rheologies. This has allowed me to determine that ground ice had a 
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major role in the complex development of these landslides, promoting the failure 

and affecting the transport mechanisms. Therefore, understanding the mobility of 

such large slope failures is essential for mitigating the risk in the case of similar 

events in inhabited regions. 

The same landslides have been analysed for their preparatory and triggering 

factors. I have described and discussed the relative importance of intense 

precipitation, earthquake activity and thawing of ground ice in contributing to the 

release of the landslides, identifying ground-ice thaw as a major trigger for the 

landslides, which suggests that mountain permafrost degradation is more 

prevalent in generating landslides in Iceland than was thought previous to this 

work. 

In these two landslides of northern Iceland I found molards, conical mounds of 

debris that can form part of a landslide’s deposits. I have shown the first 

conclusive evidence that molards result from thawing of frozen blocks of ice-rich 

sediments, which collapse into cones of debris. Molards can be used as a marker 

of permafrost degradation, and their morphometry and spatial distribution give 

valuable insights into landslide dynamics in periglacial terrains. I have also 

demonstrated that molards are readily recognisable not only in the field, but also 

in remote sensing data on the surface of Earth and other planets, and could be 

used as an indicator of current and past permafrost conditions. 

 

7.7  Recommendations for future work 

There are a lot of open opportunities for extending the novel findings of this 

thesis. My research has opened up new questions and research opportunities to 

study the spatial and temporal distribution of ground ice in unstable loose 
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sediments in periglacial terrains and the ice-rich nature of the surface of Mars. In 

particular, further directions that can branch off from this thesis are: 

- To monitor zones of Iceland and periglacial environments potentially 

affected by rapid mass movements, which are expected to cause an acute 

geomorphic response to changing climate conditions. An extension of the 

hazard assessment of recurrent rapid mass movements like debris flows in 

Iceland and other mass-movements exposed areas would be to apply the 

same differencing of topographic surfaces that I have used in Ísafjörður for 

the monitoring of slopes affected by mass movements using repeated 

Structure from Motion. This is a user-friendly technique that can be 

effectively used by local authorities to monitor and quantify sediment 

transport by debris flows expeditiously and at low costs. At the same time, 

the information gathered could improve our understanding of how debris 

flows and landslides in cold environments are sediment supplied, initiate 

and develop. 

- To better characterise the geographic extent and state of permafrost in 

Iceland and other periglacial environments, in order to be able to predict 

the changes of ground temperature in a changing climate and their 

potentially hazardous consequences on the landscape. An obvious 

extension in the perspective of preventing future hazardous landslides in 

permafrost terrains would be to identify zones with unstable loose deposits 

affected by permafrost, inspect their stability and put in place protective 

measurements for inhabited areas and/or infrastructures; 

- To validate the work that I have done on molards in Iceland, verifying if 

molards reported elsewhere have the same distribution and morphologies, 

and if these show different dynamic processes. A further avenue would be 
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to track geographical distribution of landslides with molards in other zones 

where more detailed permafrost-distribution models are available and 

verify to what extent molards can be an index of permafrost degradation in 

the present. Dating candidate ancient molards could lead to evaluate if they 

can be used to map permafrost degradation in the past. Finally, the novel 

finding of the importance of molards in reading the periglacial environment 

can be exported to study the morphology of Mars and other planetary 

surfaces. The discovery of candidate molards in the ejecta of Hale Crater 

adds to the evidence that the impact was into ice-rich materials. The 

molards have the potential to constrain both the initial ground ice content 

at the Hale impact, but also the conditions during ejecta emplacement. 

Since the distribution and morphology of molards on Earth tell us about 

landslide dynamics, molards could then be used to probe the dynamics of 

impact ejecta emplacement on Mars and potentially other planetary 

surfaces. 
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Appendix 1 

Ground Penetrating Radar results 

 

Figure A. 4. Results of GPR measurements at profile GPR L3. 

 

Figure A. 5. Results of GPR measurements at profile GPR L4. 
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