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ABSTRACT 

Epilepsy is a neurological disorder that is characterised by spontaneous seizures. After 

various epileptogenic injuries, astrocytes become dysfunctional and experimental evidence 

indicates that these cells contribute to seizure mechanisms. The generation of 

inflammatory molecules in astrocytes appears to play a key pathogenic role in seizures. 

However, astrocytes may also contribute to repair the hyperexcitable neuronal networks 

underlying seizures. 

We focused our studies on understanding the role of astrocytes in epilepsy by (1) 

developing a new in vivo imaging method to monitor astrocytic cell activation during 

epileptogenesis and coupled this with their phenotypic characterization; (2) studying the 

role of Toll-like receptor 3 (TLR3) signaling in seizure mechanisms.  

We report that in vivo bioluminescence imaging is a powerful tool for monitoring astrocytic 

activation in diseased conditions. Characterization of astrocytic activation during 

epileptogenesis showed a rapid cell activation corresponding to their inflammatory 

phenotype while homeostatic (neuroprotective) mechanisms were activated with a delay. 

Moreover, we demonstrate that in vivo imaging of astrocyte activation allows to study the 

potential involvement of these cells in the therapeutic effects of anti-inflammatory drugs.  

We also show that priming TLR3 activation in astrocytes with the use of a synthetic agonist 

results in remarkable anti-inflammatory and anti-ictogenic effects. Mechanistic studies 

revealed that interferon regulatory factor (IRF)-3/Interferon-β mediated cascade is likely 

responsible for the inhibitory effects of TLR3 priming on seizures and neuronal excitability.   

In summary, astroglia activation during the critical epileptogenesis phase provides a 

potential target for interfering in a timely manner with the inflammatory phenotype of 

these cells contributing to seizures. Importantly, there are astrocytic cell functions that 
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mediate decreased neuronal excitability and they should be carefully considered when 

developing treatments targeting these cells for therapeutic purposes.  
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1.1 EPILEPSY 

1.1.1 Definition and classification 

Epilepsy is one of the most common neurological disorders affecting about 1% of the 

population worldwide. Epilepsy is characterized by an enduring predisposition to generate 

epileptic seizures, and by the neurologic, cognitive, psychological, and social consequences 

of this condition. The definition of epilepsy requires the occurrence of at least two 

unprovoked or reflex seizures > 24 h apart or one unprovoked or reflex epileptic seizure 

and a probability of having another seizure similar to the general recurrence risk after two 

unprovoked seizures (≥ 60%) over the next 10 years, or an epilepsy syndrome (Fisher, 2014). 

An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neuronal activity in the brain (Fisher, 2014). Seizures can be 

divided in those that have focal onset, involving one hemisphere of the brain, in those that 

have generalized onset and involve both hemisperes of the brain and those of unknown 

onset (Figure 1.1.1).   
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Figure. 1.1.1. Seizure classification a) Basic seizure classification according to the International 

League Against Epilepsy 2017. b) Expanded seizure classification where motor and non-motor 

categories are further divided according to features that might be present during seizures, such as 

automatisms and myoclonus. Adapted with permission from Fisher, R. S. et al. Operational 

classification of seizure types by the International League Against Epilepsy: Position Paper of the 

ILAE Commission for Classification and Terminology. Epilepsia 58, 522–530 (2017)(Devinsky et al., 

2018).  

 

Epilespy is classified as focal, generalized, combined generalized and focal which refers to 

epilepsy syndromes such as Dravet and Lennox-Gastaut, and finally as unknown when the 

onset is unknown. Furthermore, epilepsy is divided into six categories based on its etiology. 

The first category includes structural alterations visualized by imaging, that can increase 

the risk of being associated with epilepsy (Berg et al., 2010). The second group is genetic 
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epilepsies that can result from a genetic mutation that leads to seizure manifestation as a 

core symptom. One of the most common etiologies of epilepsy in less developed countries 

that can have specific treatment implications is infection (Vezzani et al., 2016). Metabolic 

etiology involves a known or presumed metabolic disorder that is associated with epilepsy 

development. Moreover, autoimmune-mediated epilepsies are described in both adults 

and children (Vezzani et al., 2016). Lastly, epilepsies that do not have a known cause fall 

into the category of unknown etiology epilepsies. Classification of epilepsies based on the 

seizure type and etiology is summarized in Figure 1.1.2. 

 

 

Figure. 1.1.2. Framework for the classification of the epilepsies. This framework begins with the 

diagnosis of an epileptic seizure, following which, the diagnosis of an epilepsy type and, if possible, 

an epilepsy syndrome. After diagnosis of an epileptic seizure, the etiology should be identified where 

possible. Associated comorbidities should also be considered. *Denotes seizure onset. Adapted with 

permission from Scheffer, I. E. et al. ILAE classification of the epilepsies: Position paper of the ILAE 

Commission for Classification and Terminology. Epilepsia 58, 512– 521 (2017)(Devinsky et al., 2018). 

 

Temporal lobe epilepsy (TLE) is a form of focal epilepsy and is typically resistant to anti-

seizure drugs (ASDs). Mesial temporal sclerosis (MTS) is most often associated with TLE 

(Blair, 2012). Status epilepticus (SE) is one of the causes of TLE and is often induced in 

animal models to ignite the development of epilepsy. 
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SE is defined as a clinical situation in which a seizure is manifested continuously for more 

than 5 minutes, or in which multiple seizures are repeated at very short intervals 

representing a continuous condition of epileptic activity (Trinka et al., 2015). It is a 

condition resulting either from the failure of the mechanisms responsible for seizure 

termination or from the initiation of mechanisms which lead to abnormally prolonged 

seizures, or both. It is a clinical condition that can result in long-term neurological 

consequences, including neuronal death and maladaptive neuronal network alterations 

which contribute to further seizures and neurological deficits (Trinka et al., 2015). 

 

1.1.2 Unmet clinical needs 

Despite the availability of a number of ASDs, it is estimated that up to 40% of newly 

diagnosed epilepsy patients will remain resistant to drug therapy and continue to have 

seizures (Abraham and Shaju, 2013; Löscher et al., 2013). Drug resistant epilepsy is defined 

as failure of adequate trials of two tolerated and appropriately chosen and used ASDs 

schedules (whether as monotherapies or in combination) to achieve sustained seizure 

freedom (Kwan et al., 2010). This condition impacts negatively on the patients’ quality of 

life and increase the risk of injury and even death. Continuing seizures can also interfere 

with memory, cognitive functions, educational opportunities and also implicate a socio-

economic disadvantage (Abraham and Shaju, 2013; Löscher et al., 2013). Another major 

unmet clinical need is the lack of treatments for preventing epilepsy in patients at risk of 

developing seizures after acute brain insults such as traumatic brain injury, stroke and 

prolonged acute symptomatic seizures such as complex febrile seizures or SE (Löscher et 

al., 2013). In fact, the available ASDs offer only symptomatic control of seizures without 

providing preventative or disease-modifying effects. Disease modification applies to 
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therapeutic strategies which resolve or lessen the pathologic mechanisms underlying 

epileptogenesis (i.e. the development and extension of tissue capable of generating 

spontaneous seizures), therefore, preventing or alleviating the development of epilepsy or 

its progression, or the associated co-morbidities. Thus, the need for more effective 

therapies remains urgent. 

 

1.2 EPILEPTOGENESIS 

1.2.1 Definition 

Epileptogenesis is triggered by genetic or acquired causes as shown both in humans and in 

animal models (Pitkänen et al., 2015). It is a continuous process by which a brain network, 

previously normal, is altered towards increased excitability, thus showing enhanced 

propensity to generate seizures. Epileptogenesis encompasses both the period preceding 

seizure onset as well as disease progression (Dudek and Staley, 2012)(Figure 1.2.1A, B).  

This is supported by experimental and clinical studies providing evidence of increased 

frequency of spontaneous seizure over time and development of neurological 

comorbidities (Pitkänen et al., 2015). Furthermore, the molecular, cellular and functional 

alterations that precede the occurrence of the first unprovoked seizure, often continue 

thereafter likely contributing to disease progression (Dudek and Staley, 2012; Pitkänen and 

Lukasiuk, 2011; Pitkänen and Sutula, 2002; Rakhade and Jensen, 2009). This concept has 

implications both for therapy and biomarker discovery (Pitkänen and Engel, 2014; Pitkänen 

et al., 2013). 

 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1. Definition of epileptogenesis. (A) Epileptogenesis was considered as the latent period 

between the precipitating insult and the occurrence of the first unprovoked clinical seizure. (B) Based 

on experimental and clinical observations, epileptogenesis is now considered to extend beyond the 

onset of epilepsy (Pitkänen et al., 2015). 

 

Epileptogenesis is often associated with neurological comorbidities such as anxiety, 

cognitive deficits and depression (Kanner, 2016; Keezer et al., 2016). It is still unclear 

whether comorbidities originate from networks overlapping or distinct from those 

provoking seizures. Notably, animal studies have shown that cognitive deficits may arise 

before the first manifestation of spontaneous seizures indicating that they may not be a 

mere consequence of seizures (Hort et al., 2000; Kobow et al., 2012; Pascente et al., 2016; 

Pitkänen and Kubova, 2004). 

Anti-epileptogenesis is defined as a process that counteracts the effects of epileptogenesis, 

including prevention, seizure modification and cure (Pitkänen et al., 2015). Since the 

current preclinical and clinical research is focused on developing anti-epileptogenesis or 

disease modifying drugs, the identification of biomarkers that can reliably predict which 

patients have a high likelihood of developing epilepsy is essential for clinical studies.  
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1.2.2 Mechanisms underlying epileptogenesis 

The studies in experimental models of epilepsy have provided the main source of current 

knowledge on the mechanisms underlying the epileptogenic process. Epileptogenesis in 

these models is induced either by structural brain alterations or by infectious or genetic 

causes (Table 1.2.1). Most often epileptogenesis is studied in models of SE or neurotrauma 

(Table 1.2.2) (Pitkänen and Lukasiuk, 2009). 

Table 1.2.1. Epileptogenesis models. 

ETIOLOGIES RODENT MODELS 

STRUCTURAL  

Neurotrauma* Fluid percussion; Controlled cortical impact; Cortical undercut 

De novo status 

epilepticus* 

Electrical stimulations; Chemoconvulsants; Hyperthermia 

Unilateral hippocampal 

sclerosis* 

Intrahippocampal or intracortical kainic acid; Perforant path 

stimulation 

Stroke* Cortical phototrombosis; Permanent  middle cerebral artery 

occlusion; Intracortical endothelin-1 

Blood-brain barrier 

damage* 

Sub-chronic albumin or TGF-β1 intracerebroventricular infusion 

Developmental epileptic 

encephalopathies 

Hypoxia-ischemia injury in rats; 

Infantile spasms: Multiple hit rat model; Tetrodotoxin in rats 

Cortical dysplasia Genetic: Pten, Dcx, Otx1 knock-out mice; Knock-in of human Lis1; Arx 

mutations in mice 

Congenital acquired: In utero rat irradiation or alkylant agents (MAM, 

BCNU) 

Glioblastoma Neocortical transplantation of human glioma cells in SCID mice or 

glioma cell lines in rat 

INFECTIOUS  

Viral encephalitidies Theiler murine encephalomyelitis virus 

Cerebral malaria Plasmodium berghei ANKA murine model 
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*Models apply to both rats and mice if not otherwise indicated. Mutiple hit rat model: 

doxorubicin+lipopolysaccharide±p-chlorophenylalanine. 

Abbreviations: apc, adenomatous polyposis coli; Arx, aristaless related homeobox; BCNU, 

carmustine 1-3-bis-chloroethyl-nitrosurea; Dcx, doublecortin; GAERS, Genetic absence epilepsy rat 

from Strasbourg; Gabrg2, GABA-A receptor 2 subunit; HSV, high voltage spike-and-wave spindles; 

Lis1, lissencephaly 1; MAM, methylazoxymethanol; Otx,1 orthodenticle homeobox 1; Pten, 

phosphatase and tensin homolog; Scid, severe combined immundeficient; Scn1A,B, sodium voltage-

gated channel (Nav1.1α,β subunit); scn8a, sodium voltage-gated channel alpha subunit 8 (Nav1.6); 

TGF-β1, transforming growth factor-beta1; Tsc1-2, tuberous sclerosis complex 1,2; WAG/Rij, Wistar 

Albino Glaxo from Rijswijk. 

 

 

 

 

 

 

 

GENETIC OR PRESUMED 
GENETIC 

 

Tuberous sclerosis 

complex (TSC) 

Cell specific-conditional Tsc1 or Tsc2 knock-out mice 

Spontaneous mutations Rat absence epilepsy: GAERS, WAG/Rij, HVS; 

Murine absence epilepsy: Tottering, Lethargic, Stargazer, Mocha 2j, 

Slow-wave, Ent, Ducky, Gabrg2 conditional knock-in mutation 

Induced monogenic 

mutations 

Mouse knock-out or knock-in mutation of voltage-gated ion channels 

subunits (Na+, K+, Ca2+), neurotransmitter receptor subunits (GABAA, 

nicotinic) and transporters, accessory synaptic proteins; cystatin B 

(Cstb) knock-out 

Developmental 

epileptic 

encephalopathies 

Dravet syndrome: SCN1A, SCN1B: Knock-in of human mutations in 

mice; Constitutive or conditional knock-out mice; 

Infantile spams: ARX: Knock-in of human mutations in mice; 

Constitutive or conditional knock-out mice; Apc: Conditional knock-

out mouse 

SCN8A: Knock-in of human mutations in mice 
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Table 1.2.2. Epileptogenesis models induced by acute brain injury (modified by Pitkanen and 

Lukasiuk, 2009). 

 

 

The molecular and cellular alterations along with their pathological outcomes have been 

best characterized in the hippocampus although the epileptogenic process may involve also 

other limbic and extralimbic areas (Jutila et al., 2002). The hippocampus has a well known 

neuronal circuitry and plays a key role in network hyperexcitability in various models of 

acquired epilepsy (Pitkänen and Lukasiuk, 2009). Figure 1.2.2. summarizes the cellular and 

molecular alterations identified in the hippocampus during epileptogenesis. 

 

TYPE MODEL REFERENCES 

Immature brain 

SE 

Kainic acid (PN14) (Stafstrom et al., 1992) 

Li-Pilocarpine (PN12 or PN21) 

(Kubova et al., 2004; 

Marcon et al., 2009; Roch 

et al., 2002) 

Prolonged febrile seizures (PN10) (Dube et al., 2006) 

Mature brain 

SE 

Kainic acid 
(Ben-Ari and Lagowska, 

1978; Mouri et al., 2008) 

Pilocarpine (Turski et al., 1983) 

Li-pilocarpine (Jope et al., 1986) 

Perforant pathway stimulation (Mazarati et al., 1998) 

Intrahippocampal stimulation (Lothman et al., 1989) 

Amygdala stimulation 
(Mazzuferi et al., 2013; 

Nissinen et al., 2000)  

Trauma 

Lateral fluid percussion 
(D’Ambrosio et al., 2004; 

Kharatishvili et al., 2006a) 

Controlled Cortical Impact 
(Bolkvadze et al., 2009; 

Clausen et al., 2009) 

 Cortical or icv albumin (Seiffert et al., 2004) 

Stroke 

Cortical photothrombosis 
(Karhunen et al., 2007; 

Kelly et al., 2001) 

Cortical endothelin (Karhunen et al., 2006) 

Cortical albumin (Seiffert et al., 2004) 
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Figure 1.2.2. Cellular and molecular alterations occurring during epileptogenesis. Acute brain 

insults, such as SE, TBI or stroke trigger molecular, cellular and functional alterations in the 

hippocampus, a brain area implicated in epileptogenesis in experimental models and in humans. 

These alterations include neurodegeneration, neurogenesis, inflammation and gliosis, blood brain 

barrier (BBB) damage, extracellular matrix reorganization, axonal sprouting and injury, dendritic 

plasticity and alteration in voltage- and ligand-gated ion channels (channelopathy). They may 

determine the generation of seizures and neurological deficits and are modulated by epigenetic 

mechanisms and the genetic background (Pitkänen and Lukasiuk, 2009). 

 

Neurodegeneration. Neuronal cell loss may occur in the brain after an acute epileptogenic 

insult. After SE, the two areas of the hippocampus mostly affected by neuronal cell loss are 

the hilus of the dentate gyrus, where inhibitory interneurons have a key role in controlling 

the excitability of the granule cells, and the CA1 pyramidal cell layer of the cornu ammonis. 

Damage often also involves CA3 pyramidal cells. The amygdala and parahippocampal 

cortices as well as the thalamus may be also affected. Neuroprotection (i.e. rescue of 

neuronal cells) does not prevent epilepsy development (Brandt et al., 2003; Nehlig, 2007) 

but it may be associated with improvement of behavioral dysfunctions (Brandt et al., 2006).  
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Hippocampal neurogenesis. This is a phenomenon observed in both healthy and epileptic 

animals. In healthy animals newly born neurons correctly migrate to the subgranular cell 

layer of the dentate gyrus and they integrate into the functional neuronal circuitry (van 

Praag et al., 2002; Toni et al., 2008). However, in epileptic animals increased neurogenesis 

is detected within a few days from SE onset and some of these cells aberrantly migrate into 

the hilus (i.e., ectopic neurogenesis) which results in enhanced dentate excitability (Parent, 

2007; Parent et al., 1997; Scharfman et al., 2000). This altered neurogenesis is associated 

with several comorbidities such as learning and memory impairment and depression and 

might contribute to epileptogenesis (Cho et al., 2015; Jakubs et al., 2006). 

Reactive gliosis. Gliosis and neuroinflammation are two of the most pronounced 

phenomena induced in the brain by an epileptogenic insult. They are common hallmarks of 

epilepsy foci (Aronica and Crino, 2011; Vezzani et al., 2011a). A more detailed description 

of this phenomenon is given in Section 1.3.  

Blood brain barrier (BBB) alterations. BBB dysfunction is a common finding described after 

epileptogenic insults such as SE, TBI and stroke (Friedman and Heinemann, 2012). When 

BBB permeability is massively altered, serum proteins such as albumin can extravasate into 

the brain parenchyma and activate transforming growth factor (TGFβ) receptors in 

perivascular astrocytes. This activation induces modifications in astrocyte phenotype and 

functions such as (1) reduced expression of potassium inward rectifying channels (Kir4.1) 

and water channels (aquaporin 4, AQP4), (2) reduced gap junctions, (3) reduced glutamine 

synthase and changes in its intracellular distribution, (4) impaired glutamate reuptake and 

(5) increased transcription of inflammatory genes generating mediators with ictogenic 

properties such as IL-1β, tumor necrosis factor (TNF)-α and HMGB1. Recently, astrocytic 

release of extracellular matrix proteins such as thrombospondin has been shown to 
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mediate excitatory synaptogenesis (Weissberg et al., 2015). These functional modifications 

in concert increase neuronal network excitability thus contributing to establish an epileptic 

network (Devinsky et al., 2013; Robel et al., 2015; Vargas-Sánchez et al., 2018). Blocking of 

TGF-β signaling, effectively prevents the development of spontaneous seizures in animal 

models of BBB dysfunction while mimicking BBB dysfunction is sufficient to induce epilepsy 

in animals (Bar-Klein et al., 2016; Weissberg et al., 2015). In addition, BBB damage is 

associated with increased adhesion molecules on endothelial cells which promote the 

interaction of circulating leukocytes (Fabene et al., 2008). Brain-infiltrating monocytes 

were identified as a myeloid-cell subclass that contributes to neuroinflammation and 

morbidity after SE, and preventing monocyte recruitment accelerated weight regain, 

reduced BBB degradation, and attenuated neuronal damage (Varvel et al., 2016).  

Acquired channelopathies. Both voltage-gated and receptor-gated ion channels are 

functionally altered by brain insults such as SE (Bernard et al., 2004; Chen et al., 2001; Su 

et al., 2002). This phenomenon, called acquired channelopathy, has been described in the 

dendritic, somatic, and axonal channels. For example, dendritic HCN channels in 

hippocampal pyramidal cells are dysregulated after prolonged febrile seizures as well as 

pilocarpine-induced SE in rodents (Brennan et al., 2016; Brewster et al., 2002; Jung et al., 

2011). Acquired channelopathies in epileptogenesis are not restricted to HCN but affect a 

number of different ion channel subtypes including A-type potassium and sodium (Navs1.2, 

1.6) channels and voltage-gated pore-forming Ca2+-subunit CaV3.2 (Becker et al., 2008; Su 

et al., 2002). Increase of CaV3.2 mRNA and protein levels as well as up-regulation of the T-

Type current after SE increases intrinsic burst firing in CA1 pyramidal neurons (Becker et 

al., 2008). Notably, neuroinflammation can independently trigger an acquired HCN1 

channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties 
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(Frigerio et al., 2018). Some of the functional changes persist after the brain injury thus 

contributing to lower seizure threshold (Su et al., 2002). 

Mossy fibre sprouting. Axonal and dendritic plasticity in the dentate gyrus include granule 

cell axon sprouting (mossy fibre sprouting) which establishes excitatory connections with 

somata and dendrites of both normal or ectopic granule cells (Buckmaster, 2012). Mossy 

fibre sprouting is often associated with degeneration of excitatory mossy cells and loss of 

inhibitory γ-aminobutyric acid (GABA)-ergic and neuropeptidergic hilar interneurons 

(Buckmaster, 2012). The aberrant mossy fibres might either establish excitatory feedback 

loops with the somata and dendrites of normal and ectopic granule cells in the inner 

molecular layer and hilar region or innervate inhibitory basket cells located in the granule 

cell layer and reduce neuronal excitability (the so-called "dormant basket cells hypothesis"; 

(Buckmaster, 2012; Sloviter et al., 2006). Moreover, several factors released by granule 

cells can promote this aberrant sprouting such as neuromodulin/GAP43 brain derived 

neurotrophic factor (BDNF), extracellular matrix proteins and induction of mTOR pathway 

(Heck et al., 2004; Hester and Danzer, 2014).  

Transcriptomic and epigenetic mechanisms. Various genes are differentially expressed 

during epileptogenesis and microarray analysis of epileptogenic tissue in animal models 

has revealed common molecular pathways, such as alterations in voltage-gated and 

receptor-operated ion channels, neuropeptides, neurotrophins, and immune-related 

molecules (Dingledine et al., 2017; Pitkänen et al., 2015). DNA methylation, histone 

modification and changes microRNA (miRNAs) biosynthesis are some of the epigenetic 

mechanisms described in epileptogenesis (Henshall and Kobow, 2015; Henshall et al., 

2016). For instance, DNA hypomethylation (leading to gene activation) and DNA 

hypermethylation (gene silencing) were described in seizure-generating areas in epilepsy 
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models and in patients with TLE (Henshall and Kobow, 2015). Reduction in seizure-like 

activity in rodent brain slices and attenuation of seizure progression in vivo were induced 

by DNA methylation inhibitors and adenosine-induced DNA hypomethylation (Machnes et 

al., 2013; Williams-Karnesky et al., 2013). Histone acetylation and phosphorylation also 

affect the expression of genes that have a potential role in epileptogenesis through 

mechanisms that involve neuroprotection and reduction of aberrant neurogenesis 

(Henshall and Kobow, 2015).  Several studies identified changes in more than 100 miRNAs 

in rodents and human TLE tissue.  These miRNAs target dendritic spines, neurotransmitter 

receptors, transcriptional regulators and inflammatory signalings (Henshall et al., 2016; Iori 

et al., 2017). Their role in epileptogenesis was identified with the application of either 

small-molecule inhibitors of miRNA (such as antagomir) or with oligonucleotides that mimic 

the action of miRNA in animal models. It has been shown for example that targeting 

miR146a, which controls the activation of the neuroinflammatory IL-1 receptor/Toll-like 

receptor 4 pathway or miR134, which negatively regulates dendritic spine volume both 

resulted in strong inhibition of epileptogenesis (Iori et al., 2017; Reschke et al., 2017). 

miRNAs control broad epileptogenic pathways and their exact role in vivo remains to be 

better identified. 

 

1.3 NEUROINFLAMMATION IN EPILEPSY 

1.3.1 Definition and role in epilepsy  

Inflammation is a defensive response of the host tissue against infections, sterile injuries 

or immune cell activation, for example in the context on autoimmunity. It consists of the 

generation of a cascade of inflammatory mediators, as well as anti-inflammatory molecules 

and lipid mediators that are induced to resolve the inflammatory response. Inflammation 
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is characterized by the production of an array of cytokines, chemokines and related effector 

molecules released from tissue-resident cells and circulating immunocompetent cells, and 

involves the activation of innate and adaptive immunity (Vezzani et al., 2011a). Both arms 

of the immune system have been implicated in epilepsy. In the brain, microglia, astrocytes, 

neurons and endothelial cells of the BBB chiefly contribute to the innate immunity 

response that generates neuroinflammation by producing and releasing pro-inflammatory 

cytokines, chemokines and inducing adhesion molecules on endothelial cells of the BBB 

(Aronica et al., 2012; Vezzani et al., 2011a). In healthy brain tissue, the activation of the 

immune system acts to eliminate the injurious event, and astrocytes and microglia act in 

concert to promote tissue repair (Stoll et al., 2000). However, under pathological 

conditions, the resolution of inflammation is compromised, leading to proliferation of 

microglia and astrocytes with cytotoxic functions (Walker and Sills, 2012). Changes 

occurring during epileptogenesis likely comprise both pathogenic and homeostatic 

functions of glia that depend on the timing of cell activation after the brain insult and the 

concomitant events occurring in the tissue microenvironment.  

Neuroinflammation is a common event in various epileptogenesis models of brain injury 

such as SE, stroke, neurotrauma, and in structural and genetic human epilepsies (Vezzani 

et al., 2011a). Importantly, the inflammatory mediators measured in epilepsy brain 

specimens also act as “neuromodulators” (Vezzani et al., 2011a). In fact, they activate their 

cognate receptors expressed by neurons, thus directly affecting neuronal functions and 

excitability (Vezzani et al., 2011b; Viviani et al., 2007). Specific inflammatory mediators 

significantly contribute to the mechanisms of seizure generation and to 

pharmacoresistence in experimental models and neuroinflammation is perpetuated by 



33 

 

neuronal damage and recurrent seizures (Dupuis and Auvin, 2015; Vezzani et al., 2011c; 

van Vliet et al., 2010). 

 

1.3.2 Astrocytes  

Astrocytes provide trophic support to neurons, they contribute to synaptic transmission 

and control BBB function (Lundgaard et al., 2014; Verkhratsky et al., 2013). In the 

hippocampus, two distinct astrocytic cell populations have been described: 1. astrocytes 

expressing glutamate transporter are enriched in glial fibrillary acidic protein (GFAP, a 

cytoskeletal protein), they have irregular cell bodies and branched processes and are 

involved in glutamate reuptake and gap-junction coupling. 2. astrocytes expressing 

functional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate 

receptors (GluRs) but lacking glutamate reuptake are characterized by relatively low GFAP 

expression and no gap-junction coupling (Matthias et al., 2003). Neuroinflammation 

promotes the phenotypic switch of astrocytes to AMPAR-expressing cells thereby 

promoting extracellular glutamate accumulation and hyperexcitability. Indeed, astrocytes 

form a large intercellular network that regulates extracellular glutamate (Wetherington et 

al., 2008), ion homehostasis through expression of Kir4.1 channels and AQP4 and 

dissipation of metabolites that could be detrimental if they accumulate in the extracellular 

space (Devinsky et al., 2013; Farina et al., 2007; Pekny and Nilsson, 2005). Astrocytes 

modulate synaptic transmission by releasing gliotransmitters such as D-serine, ATP, 

glutamate and GABA that act on their cognate neuronal receptors. Gliotransmission is 

promoted by increased intracellular Ca2+ oscillations in astrocytes in response to neuronal 

stimulation (Devinsky et al., 2013; Farina et al., 2007). For example, glutamate released by 

neurons activates metabotropic glutamate receptor subtypes (mGluR5 and mGluR3) in 
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reactive astrocytes thus modulating the release of gliotransmitters and cytokines (Aronica 

et al., 2005). Together with the pre- and post-synaptic terminals of neurons, astrocytes are 

part of the tripartite synapse indicating a bidirectional communication between neurons 

and astrocytes (Wetherington et al., 2008).  

Astrocytes are key regulators of BBB integrity since their endfeet wrap around the 

endothelial cells and by releasing chemical signals they help to form and maintain tight 

junctions between endothelial cells. Astrocytes also regulate the movement of water and 

molecules between the blood and brain parenchyma (Devinsky et al., 2013). Pro-

inflammatory chemokines and cytokines released by astrocytes activate their cognate 

receptors in brain microvessels thus affecting BBB permeability at multiple levels and 

contributing to its dysfunction in epilepsy (Morin-Brureau et al., 2011).  

Reactive astrogliosis is a typical feature of many CNS disorders, such as neurotrauma, focal 

brain ischemia, CNS infections and epilepsy (Pekny and Pekna, 2014). Upregulation of GFAP 

is most commonly used as a hallmark of reactive astrocytes (Eng et al., 2000). Astrogliosis 

and scar formation have been often regarded as a tissue-harmful response but it became 

apparent that they may exert beneficial functions including wound healing, neuronal cell 

protection, BBB repair and resolution of CNS inflammation (Kang and Hébert, 2011; Pekny 

and Nilsson, 2005; Sofroniew, 2014).  

Reactive astrocytes can be either neurotoxic or neuroprotective depending on their 

phenotype (Anderson et al., 2016; Benner et al., 2013; Faulkner et al., 2004; Fitch and 

Silver, 2008; Rodríguez-Arellano et al., 2016). Zamanian et al. (2012) reported that 

neuroinflammation induced by ischemia and by systemic injection of lipopolysaccharide 

(LPS), an agonist of TLR4 receptors expressed on microglia and other immune cells, induces 

two different types of reactive astrocytes, termed ‘‘A1’’ and ‘‘A2,’’ respectively. In this 
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study, gene transcriptome analysis revealed that many genes involved in synaptic 

degeneration were upregulated in A1 neuroinflammatory reactive astrocytes induced by 

LPS, suggesting that A1 may have ‘’harmful’’ function (Zamanian et al., 2012). On the 

contrary, A2 reactive astrocytes induced by ischemia, upregulated neurotrophic factors, 

which promote neuronal survival and growth and synapse repair suggesting a ‘’repairing’’ 

function of A2 reactive astrocytes (Zamanian et al., 2012). Tarassishin et al. (2011) reported 

that overexpression of transcription factor interferon regulatory factor (IRF)-3 in primary 

human astrocytes induced shifting of cytokine production profile from A1 to A2 phenotype 

and was associated with neuroprotection through suppression of the proinflammatory 

miR-155 (Tarassishin et al., 2011a). 

The mechanism of A1 phenotype induction is thought to be mediated by secretion of IL-

1alpha, TNF-α, and C1q by activated microglia (Liddelow et al., 2017). A1 astrocytes lose 

their ability to promote neuronal survival and axonal outgrowth, to promote synapse 

formation and function, while they secrete neurotoxins that induce neuronal death 

(Liddelow et al., 2017). In fact, A1 astrocytes are abundant in neurodegenerative diseases, 

where their presence contributes to neurodegeneration and help to drive disease 

progression. Under specific circumstances, astrogliosis has the potential to lead to harmful 

effects, such as contributing to persistent neuroinflammation or to excitotoxicity (Silver 

and Miller, 2004; Sofroniew, 2014, 2015; Sofroniew and Vinters, 2010). In contrast, the 

activation of A2 astrocytes is suggested to be mediated by the JAK-STAT3 pathway which is 

implicated in scar-forming astrocyte reactivity after acute injury (Anderson et al., 2016; 

Ceyzériat et al., 2016; Herrmann et al., 2008). This pathway regulates multiple cell 

functions, including cell proliferation, differentiation and growth, and some anti-

inflammatory functions (Ceyzériat et al., 2016). 
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Figure 1.3.1. Heterogeneity of reactive astrocytes.  Following tissue injury, astrocytes become 

reactive assuming either an A1 neurotoxic phenotype or an A2 neuroprotective phenotype. 

Neuroinflammatory stimuli such as LPS activate microglia that secretes the inflammatory cytokines 

IL-1a and IL-1β, TNF-α, and C1q which yield A1 reactive astrocytes that promote neurodegeneration 

and neurotoxicity, and are not synaptogenic. In vitro application of TGF-b1 reverts this neurotoxic 

A1 type to a non-reactive state. Ischemia induces the formation of A2 reactive astrocytes that 

secrete neurotrophic factors (Baldwin and Eroglu, 2017). 

 

In several human CNS diseases, including epilepsy, astrocytes can initiate, regulate, and 

amplify immune-mediated mechanisms that are involved in these pathologies (Farina et 

al., 2007; Seifert et al., 2010). Both in experimental and in human epilepsy brain tissue, 

astrocytes produce a wide range of immunologically relevant cytokines and chemokines 

such as HMGB1, IL-1β, IL-6, TNF-α, TGF-β and monocyte chemoattractant protein-1 (MCP-

1; chemokine, C-C motif, ligand 2; CCL2) (Aronica and Crino, 2011; Vezzani et al., 2008). 
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1.3.3 Microglia 

Microglia are the CNS-resident immune cell population (Kreutzberg, 1996). In the adult 

healthy brain, microglia have a ramified morphology with a small soma and fine cellular 

processes that are highly mobile in order to patrol the microenvironment (Garden and 

Möller, 2006; Kettenmann et al., 2011). Several molecules and conditions can induce the 

transition of microglia from a resting-like to an activated or reactive state (Hanisch and 

Kettenmann, 2007). Microglial responsiveness can be influenced by factors such as 

microbial molecules, genomic material, cytokines, ATP and protein aggregates (Block et al., 

2007; Hanisch and Kettenmann, 2007; Nakamura, 2002; van Rossum and Hanisch, 2004). 

Microglia can sense even minor changes in the microenvironment that provoke their rapid 

morphological changes. Activated microglia assume an amoeboid appearance by retracting 

their processes (Hanisch and Kettenmann, 2007; Kettenmann et al., 2011) although 

different reactive phenotypes are described depending on the type and modality of applied 

stimuli and the microenvironment (Figure 1.3.2). 
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Figure 1.3.2. Microglial activity states. Microglia at a resting-surveillance state is in a lookout for 

changes in the microenvironment that can disturb the homeostasis of the neuronal and glial-

vascular networks. Appearance of activating signals or loss of inhibitory signals can trigger 

transitions to alerted and activated state endowed of distinct reactive phenotypes depending on the 

nature of the stimuli. These phenotypes can be further influenced neurons and astrocytes as well as 

invading immune cells from the periphery. Microglia may be ‘’primed’’ suggesting that 

preconditioning with a first stimulus prepares the cell for an enhanced and efficient response to a 

second stimulus (Kettenmann et al., 2011). 

   

Microglial cells express a variety of receptors on their cell membrane. Purinergic receptors 

of both ionotropic and metabotropic receptor subtypes mediate the effect of ATP released 

from damaged cells after brain injuries (Garden and Möller, 2006; Kettenmann et al., 2011). 



39 

 

Activation of these receptors in microglia mediates the release of superoxide that induces 

neurotoxicity, cytokine release and autophagy (Brough et al., 2002; Inoue, 2006; 

Parvathenani et al., 2003; Takenouchi et al., 2009). Purinergic signaling is known to be 

activated in epilepsy. The P2X7 receptors are sensitive to low concentrations of ATP and an 

increase in their expression in microglial cells is found in rodent epilepsy models (Avignone 

et al., 2008; Rappold et al., 2006). Moreover, these receptors are involved in 

neurodegeneration and neuroinflammation after SE and in seizure recurrence in epileptic 

mice (Engel et al., 2012; Henshall and Engel, 2015; Jimenez-Pacheco et al., 2013; 

Takenouchi et al., 2009). P2X4, P2Y6 and P2Y12 receptor expression is also upregulated in 

microglial cells in rodent hippocampus during seizures (Avignone et al., 2008; Ulmann et 

al., 2013). Interestingly, microglial P2Y12 receptors were shown to have an anti-

epileptogenic effect when upregulated following SE (Eyo et al., 2016).  

Microglia express neurotransmitter receptors for glutamate, GABA, monoamines and CB1 

and CB2 cannabinoid receptors (Kettenmann et al., 2011). Activation of mGluR2-3 

receptors has been associated with microglial activation and neurotoxicity mediated by 

TNF-α release (Taylor et al., 2005). On the other hand, activation of cannabinoid receptors 

has been shown to increase microglia proliferation and may reduce microglia-mediated 

neurotoxicity (Carrier et al., 2004; Stella, 2009).  

Receptors for cytokines (IL-1β), chemokines, danger signals and trophic factors are 

expressed by microglia and play a role in communication between microglia and the 

surrounding cells as well as in the initiation and regulation of the immune response (Garden 

and Möller, 2006). Fractalkine (CX3CL1) is one of the molecules mediating the 

communication between neurons and microglia (Paolicelli et al., 2014; Wolf et al., 2013). 

CX3CL1 is a chemokine expressed principally by neurons and binds to the CX3CR1 receptor, 
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which is uniquely expressed in the brain by microglia (Ransohoff and Perry, 2009). Neuronal 

CX3CL1 acts as an inhibitory signal reducing the activation of CX3CR1-expressing microglia 

and genetic deletion of CX3CR1 enhanced microglia-mediated neurotoxicity (Cardona et 

al., 2006; Kettenmann et al., 2011). However, blocking this pathway by administering the 

anti-CX3CR1 antibody reduced microglial activation induced by SE, neurodegeneration and 

neuroblast formation in the adult rat hippocampus suggesting a more complex role of this 

chemokine in microglial activation (Ali et al., 2015).  

Toll-like receptors are widely expressed in microglia and directly control their activation 

(Garden and Möller, 2006; Kettenmann et al., 2011). Activation of TLR4 by LPS exacerbated 

pilocarpine-induced neurogenesis whereas TLR9 activation following kainic acid seizures 

reduced aberrant neurogenesis (Matsuda et al., 2015; Yang et al., 2010). Moreover, 

activation of TLR3 in microglia by its agonist polyinisinic:polycytidylic acid (Poly I:C) or TLR4 

by LPS mediates proinflammatory effects in vitro (Olson and Miller, 2004) and TLR4 

deficiency or pharmacological blockade reduced spontaneous recurrent seizures in 

epileptic mice (Maroso et al., 2010a).  

Microglia rapidly respond to seizures and release proinflammatory cytokines, that lead to 

neuronal hyperexcitability and neurodegeneration contributing to the development of 

spontaneous seizures and cognitive decline in epilepsy models (Brewster et al., 2013; Heo 

et al., 2006; Kwon et al., 2013; Nishimura et al., 2006; van Vliet et al., 2016; Yilmaz et al., 

2006; Zeng et al., 2009). However, there is a morphologically heterologous population of 

microglia in the hippocampus that can potentially promote neuroprotection (Wyatt-

Johnson et al., 2017).  
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1.3.4 Blood-brain barrier 
 

The BBB comprises a monolayer of brain capillary with endothelial cells distinguished by 

the presence of tight junctions that form an impermeable wall to xenobiotics and other 

circulating molecules and cells in physiological conditions. Endothelial cells are 

interconnected with basement membrane, pericytes, astrocytes, microglia (Correale and 

Villa, 2009; Pardridge, 1999; Persidsky et al., 2006). The BBB is both a physical and 

metabolic barrier that regulates the blood-to-brain exchange of nutrients, xenobiotics, 

blood components, and cellular elements by passive diffusion or catalyzed transport of 

large and/or polar molecules (Pardridge, 1999). BBB maintains brain tissue homeostasis 

necessary for physiologic neuronal function. BBB dysfunction has been proposed as a 

causal pathogenic factor in many CNS pathologies including epilepsy (Dallasta et al., 1999; 

Marchi et al., 2011a; Neuwelt et al., 2011; Ryu and McLarnon, 2009; Tomkins et al., 2011; 

van Vliet et al., 2007; Weis et al., 1996). Experimental and clinical studies suggest that BBB 

dysfunction leads to increased propensity for seizure generation in epilepsy (Aronica et al., 

2008; Friedman et al., 2009; Frigerio et al., 2012; Marchi et al., 2007; Marcon et al., 2009; 

Raabe et al., 2012; Seiffert et al., 2004; Shlosberg et al., 2010; Tomkins et al., 2001; van 

Vliet et al., 2007). BBB dysfunction is a common feature among patients with 

pharmacoresistant epilepsy (Michalak et al., 2013; Rigau et al., 2007).  

Mechanisms responsible for BBB dysfunction include inflammation (Fabene et al., 2008; 

Librizzi et al., 2012; Vezzani and Friedman, 2011), endothelial apoptosis and dysfunctional 

perivascular glia, loss of tight junction (TJ) proteins (Abbott et al., 2010; Neuwelt et al., 

2011) and altered expression of multidrug transporters such as the ABC efflux transporters 

that influence the uptake of a variety of xenobiotics, including many ASDs (Abbott et al., 

2006; Eugenin et al., 2011; Golden and Pollack, 2003; Wolburg et al., 2003). Loss or 
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dissociation of proteins responsible for the organization of the TJ such as Zonula occludens-

1 (ZO-1), or enhanced transcytosis is associated with increased barrier permeability (Abbott 

et al., 2010; Bednarczyk and Lukasiuk, 2011). The brain extravasation of serum proteins and 

in particular of albumin, is one of the consequences of BBB dysfunction following SE. 

Albumin extravasated in the brain parenchyma can be uptaken by neurons and glia (van 

Vliet et al., 2015). The presence of albumin in the human epilepsy tissue and in 

experimental models may contribute to lower seizure threshold through different 

mechanisms (Cacheaux et al., 2009; Ravizza et al., 2008a; Rigau et al., 2007; van Vliet et al., 

2007). In particular, albumin activates transforming growth factor β receptors (TGFβRs) 

signaling in astrocytes which leads to down regulation of inward rectifying potassium (Kir 

4.1) channels and the water channel aquaporin-4 (AQP4) that in turn accounts for the 

reduced extracellular buffering of potassium and water thus promoting hyperexcitability 

and epileptiform activity (Ivens et al., 2007). Furthermore, albumin induces transcriptional 

activation of inflammatory genes via TGFβ signaling (Cacheaux et al., 2009; Ralay Ranaivo 

and Wainwright, 2010; Ralay Ranaivo et al., 2010) and induces formation of new excitatory 

synapses by inducing the astrocytic release of trombospondin and other extracellular 

matrix components (Weissberg et al., 2015). Since albumin binds some ASDs, its presence 

in brain parenchyma may reduce free ASDs concentrations thereby reducing their 

effectiveness (Kwan et al., 2011; Neels et al., 2004).  

Autoantibodies against neuronal receptors and channels can be transported into the brain 

tissue through a leaky BBB thus providing another mechanism for alterating neuronal 

function (Bien and Scheffer, 2011; Rigau et al., 2007; van Vliet et al., 2007) (Figure 1.3.3). 
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Figure 1.3.3. Schematic representation of processes involved in blood–brain barrier dysfunction. 

Leukocytes enter the brain via a dysfunctional BBB or via upregulated adhesion molecule, such as 

ICAM-1 and VCAM-1, thus contributing to brain inflammatory responses. Increased extracellular K+ 

and glutamate due to inflammatory activated astrocytes may also modify neuronal excitability and 

physiological functions. These changes ultimately may lead to epilepsy (van Vliet et al., 2015). 

 

1.3.5 Neuroinflammatory ictogenic pathways 
 

The IL-1 receptor/toll-like receptor superfamily (IL-1R/TLR) has been shown to be involved 

in the generation of neuroinflammation in epilepsy and in seizure mechanisms (Aronica 

and Crino, 2011; Maroso et al., 2011a; Vezzani et al., 2008, 2010, 2011b). The IL-1R/TLR 

superfamily is part of the cell surface pattern recognition receptors (PRRs) sharing a 

conserved intracellular region termed the Toll/IL-1R (TIR) domain (O’Neill, 2008; O’Neill 

and Dinarello, 2000). TLRs are expressed in immunocompetent cells and several TLRs such 

as TLR2, TLR3, and TLR4 have been measured in glia, neuronal cells and endothelium in the 

CNS (Farina et al., 2007). In resting astrocytes, IL-1R1 or TLRs are expressed at low levels 

but they are upregulated in reactive astrocytes and microglia under different pathological 
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CNS conditions, including epilepsy (Maroso et al., 2010, 2011a; Ravizza et al., 2006a, 2008a; 

Vezzani et al., 2011b; Zurolo et al., 2011). TLRs have a key role in pathogen recognition 

(Kawai and Akira, 2007) but in the absence of pathogens, TLRs can be activated by 

endogenous molecules, named damage-associated molecular patterns (DAMPs), released 

from injured or activated cells (sterile inflammation). One of these molecules is the high 

mobility group box 1 (HMGB1) (Bianchi and Manfredi, 2009), a ubiquitous chromatin 

binding protein that is actively secreted by immuno-competent cells in response to immune 

challenges (Muller et al., 2004). Both in vitro and in vivo findings showed that astrocytes 

are a source of extracellular HMGB1 (Maroso et al., 2010a; Zurolo et al., 2011). HMGB1 

release has been shown to be induced in both rat (Hayakawa et al., 2010) and human 

astrocytes in culture (Zurolo et al., 2011) in response to the proinflammatory cytokine IL-

1β, and nuclear to cytoplasmic translocation, a step required for extracellular release, has 

been observed in human and experimental epilepsy tissue (Maroso et al., 2010a).  

Activation of IL-1R1-mediated signaling by IL-1β induces, via an NF-kB-dependent 

mechanism, the transcription of other genes encoding downstream mediators of 

inflammation, including IL-6, TNF-α, cyclooxygenase-2 (COX-2), (Andjelkovic et al., 2000; 

Dinarello, 2004). IL-1β, by acting on IL-1R type 1, can inhibit the astrocytic reuptake of 

glutamate (Hu et al., 2000; Ye and Sontheimer, 1996) and increases its glial release likely 

via induction of TNF-α (Bezzi et al., 2001). TNF-α is a cytokine released from activated 

astrocytes and microglia, and tightly associated with IL-1β, since the two molecules 

reciprocally induce their respective release from glia and mutually activate their gene 

transcription. TNF-α has been shown to increase the mean frequency of AMPA-dependent 

miniature excitatory postsynaptic currents in hippocampal neurons and to decrease 

GABAA-mediated inhibitory synaptic strength. These effects are mediated by the 
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recruitment of AMPA receptors lacking the GluR2 subunit at neuronal membranes (thus in 

a molecular conformation which favors Ca2+ influx into neurons) and by endocytosis of 

GABAA receptors respectively (Beattie et al., 2002; Stellwagen et al., 2005). IL-1β can also 

increase neuronal glutamate release via the activation of inducible nitric oxide synthase in 

glial cells (Casamenti et al., 1999; Hewett et al., 1994). Activation of NF-kB signaling 

pathway and induction of a large array of inflammatory mediators in astrocytes in 

experimental and human TLE suggest that these cells are pivotal for generating and 

sustaining neuroinflammation (Desjardins et al., 2003; Holtman et al., 2009; Ravizza et al., 

2008a; Wu et al., 2008). 

TLR4, one of the first Toll-like receptors identified in mammals, has a particular role in 

epilepsy. It shares its cytosolic domain with IL-1R1 and detects the major component of the 

gram-negative bacteria lipopolysaccharide LPS. TLR4 signals through both MyD88-

dependent and TRIF-dependent pathways in order to induce pro-inflammatory genes 

through NF-κB and/or MAPK pathways or type I interferons through TRIF/IRF3 axis (Liu and 

Ji, 2014; O’Neill and Bowie, 2007; Yamamoto et al., 2003). This receptor is rapidly up-

regulated in neurons and astrocytes both after seizure onset and during the chronic 

epileptic phase insults in rodent epileptogenic brain areas (Maroso et al., 2010). 

Interestingly, knock-out mice lacking this receptor exhibit low seizure susceptibility 

(Maroso et al., 2010). Its activation by LPS or HMGB1 results in a decreased seizure 

threshold and is linked to increased hippocampal excitability (Galic et al., 2008; Li et al., 

2015a; Rodgers et al., 2009; Sayyah et al., 2003). Moreover, IL-1R1/TLR4 activation leads 

to a rapid increase in Ca2+ influx through phoshorylation of the NR2B subunit of NMDA 

receptors (Balosso et al., 2008, 2014; Viviani et al., 2003). Activation of the IL-1β and IL-1R1 

axis and HMGB1-TLR4 axis in brain tissue from TLE patients is associated with BBB leakage 
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and albumin extravasation (Aronica et al., 2007; Maroso et al., 2010a; Ravizza et al., 2008b; 

Rigau et al., 2007; van Vliet et al., 2007). Activating transcriptional factor 3 (ATF-3), a 

negative regulator of TLR4, has lower expression in patients with frequent seizures whereas 

TLR4 expression positively correlates with seizure frequency (Pernhorst et al., 2013). 

Among the epigenetic modulators studied in animal models of epilepsy and in human brain 

tissue (Dębski et al., 2016; Sweatt, 2013), miRNA146a is of particular relevance for 

neuroinflammation since it is tightly linked to the feedback inhibition of IL-1R1/TLR4 

signaling (Iyer et al., 2012; van Scheppingen et al., 2016) and is up-regulated in astrocytes 

and neurons in TLE and focal cortical dysplasia (FCD) and ganglioglioma patients (Aronica 

et al., 2010; Omran et al., 2012; Quinn and O’Neill, 2011; van Scheppingen et al., 2016). 

miRNA profiling studies revealed brain region and temporal specific changes in miRNA146a 

expression in various animal models of epilepsy (Gorter et al., 2014; Roncon et al., 2015). 

This miRNA downregulates the levels of IL-1R/TLR downstream signaling molecules thus 

reducing the activation of this pathway (Taganov et al., 2006). Recently, Iori et al.(2017), 

using a synthetic mimic of miRNA146a injected in an animal model of acquired epilepsy, 

reported a dramatic reduction in neuronal excitability and chronic seizure recurrence and 

this treatment prevented disease progression (Iori et al., 2017).  

TLR3 has been also implicated in epilepsy. Its stimulation activates NF-kB and the 

transcription factor interferon regulatory factor (IRF)-3, thereby inducing the production of 

type I interferon (IFN)-responsive genes (Kawai and Akira, 2010). Differently from TLR4, 

TLR3 is primarily expressed intracellularly where it acts as a sensor for double-stranded 

RNA, a product of viral replication.The activation of TLR3 by the synthetic double-stranded 

RNA polyinosinic-polycytidylic acid (Poly I:C) mimics the effects of viral infection and leads 

to the production of type I IFNs, IFNα and IFNβ via activation of IRF-3 and IRF-7 
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(Cunningham et al., 2007). Experimental evidence indicates that the activation of TLR3 by 

Poly I:C induces the transcription and biosynthesis of cytokines and chemokines (Kirschman 

et al., 2011; Michalovicz and Konat, 2014). The pro-inflammatory action of Poly I:C in 

immature rats, is associated with long-lasting hippocampal hyperexcitability and enhanced 

seizure susceptibility as assessed in adult animals (Galic et al., 2009). Activation of TLR3 

may also alter glutamatergic transmission, contributes to epileptogenesis and to the 

impairment of working and contextual memory in rodents (Costello and Lynch, 2013; Gross 

et al., 2017; Galic et al., 2009; Okun et al., 2010). However, neuroprotective effects have 

been also reported specifically mediated by TLR3 activation in astrocytes therefore 

suggesting that this receptor may have a dual role possibly mediated by different cell types 

(Bsibsi et al., 2006; Tarassishin et al., 2011b).  

 

 

1.3.6 Clinical evidence of brain inflammation in human epilepsy 

 

Brain tissue analysis from patients with different forms of epilepsy such as TLE, 

Rasmussen’s encephalitis, FCD and tuberous sclerosis complex (TSC), has revealed 

inflammatory markers and the presence of activated innate and adaptive immune cells 

(Boer et al., 2006; Iyer et al., 2010; Maroso et al., 2010; Ravizza and Vezzani, 2006; Ravizza 

et al., 2006a, 2008a; Vezzani et al., 2011b).  

In hippocampal tissue from TLE patients, glial cells display an inflammatory phenotype with 

overexpression for example of NF-kB, activation of IL-1/TLR4 axis and of the complement 

system and cytoplasnatic translocation of HMGB1 (Aronica et al., 2007; Crespel et al., 2002; 

Ravizza et al., 2008a; van Vliet et al., 2007). Despite a common astroglia and microglia 

activation in human epilepsy specimens, peripheral immune system contribution depends 

on the epilepsy type. For example, leukocytes are not prominent in TLE specimens except 
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for the presence of macrophages (Ravizza et al., 2008a). Differently, in patients affected by 

Rasmussen encephalitis there is an increased expression of inflammatory genes (IL-1β, TNF-

α) and the presence of cytotoxic lymphocytes (Baranzini et al., 2002). Interestingly, a 

marked increase in the expression of TLR3 and TLR9, in the brain tissues of Rasmussen’s 

encephalitis patients was associated with severe brain atrophy suggesting a key role of TLR-

related pathway in this rare pediatric disorder (Wang et al., 2017). 

Epilepsy is the most common neurologic symptom in patients (70-80%) affected by TSC. 

TSC is an autosomal dominant and multisystem disorder that results from a mutation in 

Tsc1 and Tsc2 genes that encode for two proteins that act as a negative regulator for the 

mTOR pathway. This pathway is involved in cell metabolism, growth, proliferation and 

death as well as synaptic plasticity, neurogenesis, dendritic morphology and axonal 

sprouting (Ostendorf and Wong, 2015). Cortical tubers, subependymal nodules and giant 

cell tumors are characteristics of this disorder (DiMario, 2004; Mizuguchi and Takashima, 

2001) along with the presence of macrophages, TNF-α and NF-kB expression alterations 

and activation of the complement system and IL-1β pathway (Boer et al., 2008; Maldonado 

et al., 2003).  Lymphocytes with a T-cytotoxic phenotype and evidence of BBB dysfunction 

were also observed in the perivascular zone and adjacent brain parenchyma (Boer et al., 

2008; Wong, 2008).  

FCD represents cytoarchitectural malformations of the cerebral cortex which are among 

the causes of refractory epilepsy in young individuals (Blumcke, 2009). Specimens from 

type II FCDs were shown to express the complement system and activation of the IL-1β and 

TLR pathways, induction of the chemokine CCL2, microglial and astroglial cell reactivity, 

BBB breakdown, and the presence of cytotoxic T-lymphocytes (Iyer et al., 2010; Zurolo et 

al., 2011). 
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Pro-inflammatory mediators were measured in biological fluids such as CSF and plasma 

from patients with epilepsy of various etiologies (Gallentine et al., 2017; Lehtimaki et al., 

2004). In children with febrile SE, the IL-6 cytokine was found elevated in plasma (Gallentine 

et al., 2017). Moreover, in the same study IL-1RA/IL-6 ratio as a potential biomarker of 

acute hippocampal injury following febrile status epilepticus (FSE) was identified 

representing a potential serologic biomarker which offers rapid identification of patients at 

risk for ultimately developing mesial temporal lobe epilepsy. 

Immunomodulatory drugs provide further evidence that inflammation has an important 

role in epilepsy. Glucocorticoids such as dexamethasone, and adrenocorticotropic 

hormone (ACTH) can reduce seizure burden in some forms of drug-resistant epilepsies 

(Marchi et al., 2011b; Vezzani and Granata, 2005). Anti-inflammatory drugs that act on the 

IL-1β pathway such as VX765 (an ICE/Caspase-1 inhibitor) and Anakinra (IL-1R1 antagonist) 

have shown therapeutic effects in experimental models and reduced seizures in patients 

(Bialer et al., 2013; DeSena et al., 2018; Jyonouchi, 2016; Kenney-Jung et al., 2016). The 

efficacy of VX765 has been tested in a phase II clinical trial where it has shown a positive 

effect in patients with treatment-resistant partial epilepsy (Bialer et al., 2013). Anakinra 

induced a reduction on seizure activity and improved cognitive skills in patients with febrile 

infection-related epilepsy syndrome (FIRES) (Jyonouchi, 2016; Kenney-Jung et al., 2016). 

Adalimumab (a monoclonal anti-TNF-α antibody) was evaluated in a pilot clinical study in 

patients with Rasmussen’s encephalitis and showed seizure improvement along with 

functional deficit stabilization in half of the patients recruited (Lagarde et al., 2016). In an 

open-label trial, patients with severe drug-resistant epilepsy were treated with cannabidiol 

and motor seizure frequency reduction was reported (Devinsky et al., 2016). In another 

study, 6 out of 7 patients with FIRES demonstrated improved seizure frequency and 
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duration after cannabidiol treatment; an anti-inflammatory effect of this drug may in part 

mediate its therapeutic effects since cannabinoid receptors are found also in cells of the 

immune system.  Furthermore, minocycline, a tetracycline family antibiotic with known 

inhibitory effects on microglia activation and proinflammatory cytokine release, has been 

shown to reduce significantly seizure frequency in a patient with severe symptomatic 

epilepsy (Nowak et al., 2012). In a patient with multiple sclerosis (MS) that manifested 

tonic-clonic generalized seizures at disease onset, natalizumab (an anti-alpha4 integrin 

antibody) improved MS condition and reduced seizures (Sotgiu et al., 2010).   

 

 

1.3.7 Effect of anti-inflammatory treatments in experimental models of 

ictogenesis and epileptogenesis 

 

Experimental and clinical evidence suggest the involvement of several inflammatory 

mediators in the generation of seizures and their recurrence. Interestingly, some ASDs, 

such as valproic acid (VPA) and phenytoin (PHT) have anti-inflammatory properties. VPA 

inhibits activation of NF-kB and production of TNF-α and IL-6 whereas PHT decreases T- cell 

activity (Hashiba et al., 2011; Ichiyama et al., 2000). 

Some key inflammatory pathways activated in epilepsy along with the effect of anti-

inflammatory treatments in experimental studies are discussed below (see also Tables 

1.3.1 and 1.3.2).  

Interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling 

Studies in experimental models have proven that the IL-1R1/TLR4 axis is rapidly activated 

in brain areas involved in seizure generation and propagation during epileptogenesis 

(Pauletti et al., 2017; Ravizza et al., 2008a).  Activation of this signaling by brain application 

of endogenous agonists is ictogenic (Balosso et al., 2013; Maroso et al., 2011a; Vezzani et 
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al., 2011b). Pharmacological blockade and genetic interference with this signaling showed 

its contribution to seizure mechanisms. Inhibitors of this signaling such a IL-1Ra, caspase-1 

inhibitors, TLR4 antagonists, anti-HMGB1 monoclonal antibodies and specific microRNAs 

(e.g., miR-146a) mediate anti-seizure effects often associated with reduction of the BBB 

dysfunction and neuroprotection (Balosso et al., 2014; Fu et al., 2017; Maroso et al., 2010, 

2011b; Ravizza et al., 2006b; Vezzani et al., 2000; Wang et al., 2018; Zhao et al., 2017). 

Moreover, this signaling is activated in clinical specimens from patients with 

pharmacoresistant epilepsies such as low-grade epilepsy-associated glioneuronal tumors 

(GNT), FCD, TLE and RE (Fuso et al., 2016; Luan et al., 2016; Maroso et al., 2010; Pernhorst 

et al., 2013; Prabowo et al., 2013; Ravizza et al., 2006a, 2008a; Roseti et al., 2015; Zhang et 

al., 2018; Zurolo et al., 2011). 

Simultaneous targeting of IL-1R1 and TLR4 signaling after SE induction in mice or at disease 

onset, mediated significant reduction in chronic seizure recurrence and prevented disease 

progression after treatment withdrawal (Iori et al., 2017; Walker, 2017).  In a similar way, 

inhibition of HMGB1 by a monoclonal antibody reduced seizure frequency and improved 

cognitive deficits (Zhao et al., 2017).  In an experimental model of TBI, treatment with IL-

1Ra resulted in a rise in seizure threshold to pentylenetetrazol (PTZ)  accompanied by 

improvement in spatial memory (Semple et al., 2017). Further support for the involvement 

of this pathway in epilepsy comes from studies in transgenic mice with defective IL-1R1-

TLR4 signaling that show reduction in acute seizure susceptibility and in spontaneous 

seizures evoked by SE (Iori et al., 2013; Maroso et al., 2010; Ravizza et al., 2006b; Vezzani 

et al., 2000).  
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Tumor necrosis factor-alpha (TNF-α) 

TNF-α is a cytokine with a dual role in seizures. During seizures TNF-α is expressed by glia 

and endothelial cells in rodents (De Simoni et al., 2000; Dhote et al., 2007; Lehtimaki et al., 

2003; Turrin and Rivest, 2004). TNF-α receptor type 2 (TNFR2) levels are reduced in neurons 

and TNFR1 is increased in neurons and astrocytes (Balosso et al., 2013; Weinberg et al., 

2013). TNF-α and its receptors undergo similar changes in TLE and in TSC patients (Balosso 

et al., 2013; Maldonado et al., 2003). 

Activation of TNFR2 in the mouse hippocampus after injection of recombinant TNF-α 

resulted in reduction of seizures whereas activation of TNFR1 promoted seizure generation 

(Balosso et al., 2005). The same finding was observed also in two models of amygdala 

stimulation (Weinberg et al., 2013). Transgenic mice with low or moderate overexpression 

of TNF-α were less susceptible to develop seizures while mice with high TNF-α expression 

are more prone to developing seizures (Akassoglou et al., 1997; Balosso et al., 2005). These 

data support the concept that this cytokine exerts its actions depending on its 

concentration and the receptor subtype activated.  

Arachidonic acid-related pathways 

Cyclooxygenase-2 (COX-2), the enzyme responsible for the biosynthesis of prostanoids is 

expressed in physiological conditions in neurons (Hurley et al., 2002; Yamagata et al., 1993). 

COX-2 is upregulated in neurons early after SE and in astrocytes at later time points and 

during chronic seizures (Holtman et al., 2009; Kulkarni and Dhir, 2009; Lee et al., 2007). In 

TLE patients, COX-2 is expressed in neurons and it is found in astrocytes only in patients 

with HS (Desjardins et al., 2003).  

Increased neuronal expression of COX-2 in transgenic mice induced higher seizure 

susceptibility whereas COX-2 deficient mice or in mice treated with the COX-2 inhibitor 
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nimesulide showed reduced seizure susceptibility suggesting thus a proconvulsive role of 

this enzyme (Kelley et al., 1999; Takemiya et al., 2003). However, studies employing 

selective COX-2 inhibitors such as celecoxib, parecoxib, indomethacin and SC58236 have 

highlighted a dual role of this enzyme in epileptogenesis (Aronica et al., 2017; Kulkarni and 

Dhir, 2009). In particular, COX-2 inhibition before SE induction with pilocarpine or kainate 

(KA) had procolvusive effect whereas inhibition after SE and during epileptogenesis 

resulted either in neuroprotection and reduction of spontaneous seizure severity or no 

effects, or even seizure exacerbation (Holtman et al., 2009; Jung et al., 2006; Kunz and Oliw, 

2001a). These differential effects suggest that the timing of COX-2 blockade may determine 

the suppressive or aggravating outcome on seizures.  

These dichotomous results in SE models prompted to target downstream effector 

molecules of the COX-2 signaling pathway such as the prostanglandin EP1 and EP2 

receptors (Jiang et al., 2015; Kawada et al., 2012). The EP1 receptor antagonist SC-51089 

had only a moderate effect on seizure severity but antagonizing the EP2 receptors led to 

reduction of neuronal injury, inflammation, BBB opening and induced neuroprotection 

(Fischborn et al., 2010; Jiang et al., 2012, 2013). A combined treatment with the COX-2 

inhibitor CAY10404 and anakinra resulted in reduction of spontaneous seizure 

development after SE and limited the extend of CA1 injury and mossy fiber sprouting (Kwon 

et al., 2013).  

Recently, Terrone et al. (2018) showed that Monoacyl-Glycerol-Lipase (MAGL), the enzyme 

responsible for the brain synthesis of arachidonic acid, is a potential target for the 

treatment of drug-resistant SE. They reported that administration of a MAGL inhibitor 

(CPD-4645) early during SE reduced significantly severity and duration of SE as well as 

neuronal loss and cognitive deficit in mice (Terrone et al., 2018).    
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Until now no clinical trials using specific COX-2 inhibitors have been conducted in epilepsy 

patients due to the side effects of such drugs (Radu et al., 2017). Despite that, non-selective 

COX inhibitors were studied in epilepsy patients (Ma et al., 2012; Xu et al., 2013). Ibuprofen 

treatment in children with febrile seizures failed to show significant effects (van 

Stuijvenberg et al., 1998). On the other hand, patients with Sturge-Weber syndrome or 

focal onset epilepsy showed reduction in seizure frequency although such results should 

be further validated (Bay et al., 2011; Godfred et al., 2013; Lance et al., 2013; Udani et al., 

2007).  

Transforming growth factor-beta (TGF-β) signaling 

Extravasation of serum albumin into the brain parenchyma after BBB breakdown activates 

transforming growth factor β (TGF-β) signaling in astrocytes that results in neuronal 

hyperexcitability and decreased seizure threshold through many mechanisms as discussed 

before (see sections 1.2.2 and 1.3.4). Transient treatment with losartan, an angiotensin II 

type 1 receptor antagonist which blocks TGF-β signaling, reduced neuronal loss, BBB 

dysfunction, neuroinflammation and incidence as well as severity of epilepsy in animal 

models of vascular injury and SE (Bar-Klein et al., 2014; Tchekalarova et al., 2014). 

Moreover, losartan delayed seizure onset, showed neuroptotection and alleviated seizure 

frequency and duration after discontinuation of the treatment in SE-exposed rats 

(Tchekalarova et al., 2016).  In a TBI mouse model, other two angiotensin II type 1 receptor 

antagonists, candesartan and telmisartan were tested and were shown to reduce glia 

activation, enchancement of cognitive and motor function along with reduction of lesion 

volume (Villapol et al., 2015).  
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Complement system 

The complement system consists of more than 30 proteins that interact in order to protect 

the organism against invading pathogens and from deposition of immune complexes in 

healthy tissue (Xiong et al., 2003). Both neurons and glia express complement proteins in 

normal conditions but in animal models of epilepsy and TLE patients several of these 

protein were overexpressed (Aronica et al., 2007; Becker et al., 2003; Gorter et al., 2006; 

Jamali et al., 2006; Yu et al., 2002). A number of animal studies has identified a role of the 

complement system in epilepsy. Mice deficient for C3 demonstrated a lower number of 

behavioral seizures after Theiler’s virus infection compared to wild-type mice and rats 

deficient for C6 had a delayed kindling development (Holtman et al., 2011; Libbey et al., 

2010). Intrahippocampal infusion in rats of C5b6, C7, C8 and C9 (complement proteins that 

form the membrane attack complex) induced seizures and neuronal cell loss (Xiong et al., 

2003). PMX53, a C5ar1 antagonist with short half-life, had anticonvulsant effects in both 

acute and chronic seizure models (Benson et al., 2015). The same antagonist or C5ar1 

genetic deletion resulted in reduced seizures and SE associated mortality along with 

neuroprotection in the hippocampus (Benson et al., 2015).  

Chemokines 

Apart from their classic role of chemotactic molecules, they can modulate voltage-gated 

ion channels and neurotransmitter release. Various chemokines and their receptors were 

found to be upregulated in human and experimental epilepsy brain tissue (Cerri et al., 2016; 

Fabene et al., 2010; Guyon and Nahon, 2007; Roseti et al., 2013; Rostène et al., 2007). In 

particular, CCL2 and its receptor CCR2 (CC receptor subtype 2), are upregulated in both 

human and experimental epilepsy and a CCL2 polymorphism causing elevated levels of 

CCL2 is associated with higher susceptibility to drug-resistant epilepsy (Cerri et al., 2016; 
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He et al., 2013). In a chronic epilepsy mouse model, three modulators of the CCL2/CCR2 

pathway, a CCL2 transcription inhibitor (bindarit), a selective antagonist of the CCR2 

receptor (RS102895), or an anti-CCL2 antibody prevented spontaneous seizure 

exacerbation caused by systemic challenge with LPS (Cerri et al., 2016). 

Sphingosine 1-Phosphate Receptors  

Sphingosine 1-phosphate receptors (S1PRs) are a family of 7 helix transmebrane G protein-

coupled receptors that bind extracellular sphingosine 1-phosphate (S1P) and are expressed 

by many cell types, including immune cells, glia and neurons (Bryan and Del Poeta, 2018). 

Fingolimod (FTY720) is an analogue of sphingosine and when phosphorylated in vivo by 

sphingosine kinases, binds S1PR1, 3, 4, and 5 (Albert et al., 2005). Its main mechanism of 

action is sequestration of lymphocytes into lymph nodes which is mediated by S1PR1 that 

leads to a functional antagonism once the receptor has been internalised and degraded 

(Brinkmann et al., 2002; Mandala et al., 2002; Oo et al., 2007). Fingolimod crosses the BBB 

and binds S1P receptors (S1P1, -3, -5) (Foster et al., 2007). It is clinically approved for oral 

treatment of relapsing forms of multiple sclerosis (Brinkmann, 2007). Apart from its 

immunomodulatory effects in periphery, fingolimod has shown neuroprotective and anti-

inflammatory effects in the brain (Rothhammer et al., 2017; Soliven et al., 2011) acting on 

astrocytes and extracellular-signal regulated kinase (ERK) phosphorylation through S1P1 

receptors (Osinde et al., 2007). In vitro data demonstrate that fingolimod can reduce 

transmigration of peripheral blood mononuclear cells through the BBB (Spampinato et al., 

2015). Gao et al. (2012), demonstrated that fingolimod exerts both anti-inflammatory and 

antiepileptogenic effects in a lithium-pilocarpine rat model of epilepsy (Gao et al., 2012). 

Fingolimod also inhibited pathological mossy fiber sprouting and activation of microglia and 

reduced the increased expression of IL-1β and TNF-α in the hippocampus (Gao et al., 2012). 
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Furthermore, the incidence, duration, frequency, and severity of spontaneous seizures was 

significantly decreased in fingolimod-treated animals. In a more recent study, fingolimod 

treatment alleviated overexpression of hippocampal P-glycoprotein (P-gp), an important 

mediator of ASDs efflux that is implicated in drug-resistant epilepsy, and reduced NF-kB 

activity and TNF-α and COX-2 expression in the same model (Gao et al., 2018). Interestingly, 

fingolimod was recently used in an animal model of TLE showing that although it had no 

effect on SE itself, animals developed less seizures associated with attenuation of gliosis, 

neuronal cell loss and immune cell infiltrates (Pitsch et al., 2018). 

Fingolimod also binds and inhibits histone deacetylases (HDACs) (Hait et al., 2014). 

Moreover, it can interact with lipids and inhibits the cannabinoid receptor CB1 and the 

activity of phospholipase A2 in mast cells (Brunkhorst et al., 2014).  

S1PR modulation represents therefore a potential therapeutic target for epilepsy (Huwiler 

and Zangemeister-Wittke, 2018; Pitsch et al., 2018).  

Table 1.3.1. Effects of anti-inflammatory treatments on seizures and epileptogenesis (van Vliet et 

al., 2018). 

Seizure susceptibility/recurrence 

Drug Convulsant stimulus/ 

Experimental model 

Effects Reference 

IL-1R/TLR signaling 

IL-1ra (IL-1 receptor antagonist) acute symptomatic seizures  

(KA) in rats; (Bic) in mice 

↓ total time in 

seizures 

delay in seizure 

onset;  

↓ seizure total 

duration 

(Vezzani et 

al., 1999, 

2000) 

VX-765 (IL-1 synthesis inhibitor) acute symptomatic seizures 

 (KA) in rats; (KA) in mice 

 delay in seizure 

onset;  

↓ seizure number 

and total duration 

(Ravizza et 

al., 2006b; 

Vezzani et 

al., 2010) 
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VX-765 SRS in mice; GAERS rat ↓ total time in SRS   

↓ number and 

duration of spike-

and-waves 

(Akin et al., 

2011; 

Maroso et 

al., 2011b) 

BoxA (TLR4 antagonist) acute symptomatic seizures  

(KA and Bic) in mice; SRS in 

mice  

 delay in seizure 

onset;  

↓ seizure number 

and total duration 

↓ SRS number and 

total duration 

(Maroso et 

al., 2010) 

LPS-Rs (TLR4 antagonist) acute symptomatic seizures  

(KA and Bic) in mice; SRS in 

mice 

 delay in seizure 

onset;  

↓ seizure number 

and total duration 

↓ SRS number and 

total duration 

(Maroso et 

al., 2010) 

Ifenprodil (NR2B antagonist) SRS in mice ↓ SRS number and 

total duration 

(Maroso et 

al., 2010) 

HMGB1 monoclonal antibody MES in mice; PTZ in mice ↑ threshold; ↓ 

time in tonic-clonic 

seizures; ↓ death 

delay onset of 

generalised 

seizures; ↓ seizure 

stage; ↓ incidence 

of tonic seizures 

(Zhao et 

al., 2017) 

A438079 (P2X7 antagonist) Intra-amygdala KA-induced  

SE in mice 

↓ SE duration (Engel et 

al., 2012) 

COX-2 signaling 

Celexocib PTZ in rats delay in seizure 

onset;  

↓ seizure duration 

(Oliveira et 

al., 2008) 

Celexocib acute symptomatic seizures  

(KA) in mice; (KA) in rats 

↑seizure severity 

and mortality 

(Baik et al., 

1999; 

Gobbo and 

O’Mara, 

2004; Kim 
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et al., 

2008) 

Rofecoxib PTZ in mice delay in seizure 

onset;  

↓ seizure duration 

(Dhir et al., 

2006) 

Rofexocib PTZ in mice ↑seizure threshold (Akula et 

al., 2008) 

Rofexocib PTZ in mice No effects on acute 

seizures 

(Claycomb 

et al., 

2011) 

Nimesulide PTZ in mice delay in seizure 

onset;  

↓ seizure duration 

(Dhir et al., 

2006) 

Nimesulide acute symptomatic seizures 

 (KA) in mice; (KA) in rats 

↑seizure severity 

↑seizure severity 

and mortality when 

administered 

before KA 

(Kim et al., 

2008; Kunz 

and Oliw, 

2001b) 

NS-398 acute symptomatic seizures  

(KA) in mice 

↑seizure severity 

and mortality 

(Baik et al., 

1999) 

Complement 

PMX53 (C5ar1 antagonist) 6 Hz and corneal kindling 

model in mice; Pilocarpine-

induced SE in mice; Intra 

amydgala KA-induced SE in 

mice 

↓ seizure severity 

↑ seizure 

threshold 

 mortality, 30% 

fewer mice 

experienced SE 

when treated after 

SE 

 number SRS and 

time spent in 

seizures 

(Benson et 

al., 2015) 

Chemokines 

Bindarit (CCL2 transcription 

inhibitor)  

SRS in mice  inflammation-

induced SRS 

worsening 

(Cerri et al., 

2016) 
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RS102895 (CCR2 antagonist) SRS in mice  inflammation-

induced SRS 

worsening 

(Cerri et al., 

2016) 

CCL2 antibody SRS in mice  inflammation-

induced SRS 

worsening 

(Cerri et al., 

2016) 

RNA interference against CCR5 KA-induced SE in rats delay in SE onset;  

SE severity;  

recovery time  

(Louboutin 

et al., 

2011) 

Epileptogenesis 

Drug Experimental model Effects Reference 

IL-1R/TLR signaling 

VX-765 Electrical rapid kindling in rats No kindling 

development 

(Ravizza et 

al., 2008b) 

VX-765+IL1ra Electrically-induced SE in rats No effects on SRS; 

neuroprotection 

(Noe et al., 

2013) 

VX-765+CyP Intra amydgala KA-induced SE 

in mice 

Blockade of SRS 

progression;  

   number SRS 

(Iori et al., 

2017) 

IL-1ra+BoxA 

+Ifenprodil 

Electrically-induced SE in 

rats 

Blockade of SRS 

progression;  

 number SRS; 

neuroprotection  

(Walker, 

2017) 

Synthetic miR-146a Intra amydgala KA-induced SE 

in mice 

Blockade of SRS 

progression;  

 number SRS 

(Iori et al., 

2017) 

HMGB1 monoclonal antibody Electrical rapid kindling in 

mice 

 severity of 

seizures  

(Zhao et 

al., 2017) 

HMGB1 monoclonal antibody KA-induced SE in mice  number SRS; 

improvement of 

cognitive deficits 

(Zhao et 

al., 2017) 

JNJ-47965567 (P2X7 antagonist) Intra amydgala KA-induced SE 

in mice 

 number SRS (Jimenez-

Pacheco et 

al., 2016) 

COX-2 signaling 

Rofexocib PTZ kindling in mice No effects on 

kindling 

(Claycomb 

et al., 

2011) 
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Nimesulide PTZ kindling in mice; Electrical 

rapid kindling in mice; 

Electrical rapid kindling in rats 

 kindling 

development 

(Dhir et al., 

2007; 

Takemiya 

et al., 

2003; Tu 

and Bazan, 

2003) 

Celecoxib Pilocarpine-induced SE in rats  number and 

duration SRS 

(Jung et al., 

2006) 

Celecoxib or NS-398 Electrical kindling in mice No effects on 

kindling 

(Fischborn 

et al., 

2010) 

Parecoxib Pilocarpine-induced SE in rats  severity SRS (Polascheck 

et al., 

2010) 

SC-58236 Electrically-induced SE in rats No effects on SRS (Holtman 

et al., 

2009) 

SC-58236 Electrically-induced SE in rats  mortality (Holtman 

et al., 

2010) 

SC-58236 Electrically-induced SE in rats  number SRS in 

50% of the rats 

(Holtman 

et al., 

2010) 

SC-51089 (EP1 antagonist) Electrical kindling in mice  seizure severity (Fischborn 

et al., 

2010) 

Bic= bicuculline, GAERS= Genetic Absence Epilepsy Rat from Strasbourg, KA= kainic acid, 

MES=maximal electroshock, PTZ=pentylenetetrazol, SE= status epilepticus, SRS= spontaneous 

recurrent seizures. KA= kainic acid, PTZ=pentylenetetrazol, SE= status epilepticus, SRS= spontaneous 

recurrent seizures. 
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Table 1.3.2. Clinical studies using anti-inflammatory treatments (van Vliet et al., 2018). 

Drug Patients Effects Reference 

IL-1R/TLR signaling 

VX09-765-401 (IL-1 

synthesis inhibitor) 

Phase IIa randomized 

double blind placebo 

controlled study in drug-

resistant focal onset 

epilepsy  

Delayed beneficial effects 

(subject with ≥50% 

reduction in seizure 

frequency) that persist 

after drug discontinuation 

(Bialer et al., 

2013) 

Kineret (IL-1 receptor 

antagonist) 

Case report: super 

refractory SE secondary to 

FIRES 

Drastic improvement of 

seizure control 

(Kenney-Jung et 

al., 2016) 

Kineret  4 case reports: drug 

resistant epilepsy 

Drastic improvement of 

seizure control and 

cognitive skills 

(Jyonouchi, 

2016) 

COX-2 signaling 

Ibuprofen Randomized placebo 

controlled studies in 

children with febrile 

seizures (n=230) 

Failure of preventive 

effects on the number of 

seizure recurrences in 

children at increased risk 

(van 

Stuijvenberg et 

al., 1998) 

Aspirin Sturge-Weber (n=9) 8 of 9 patients were 

seizure-free for 1 year or 

more 

(Udani et al., 

2007) 

Aspirin Sturge-Weber (n=58) Improvement of seizure 

control in 91% of the 

patients 

(Lance et al., 

2013) 

Aspirin Sturge-Weber (n=34) Improvement of self-

reported seizure control 

and reduction of stroke-

like events 

(Bay et al., 

2011) 

Aspirin Focal onset epilepsy 

(n=46) 

Improvement of seizure 

control 

(Godfred et al., 

2013) 

TNF- 

Adalimumab (anti-TNF-α 

monoclonal antibody 

Rasmussen’s  Seizure improvement in 5 

out of 11 patients, 

associated in 3 of these 5 

patients with stabilization 

of functional deficit 

(Lagarde et al., 

2016) 
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1.3.8 Biomarkers of epileptogenesis 

The lack of sensitive and specific biomarkers to identify people at risk of developing 

epilepsy is a major obstacle for developing novel therapeutic interventions to treat, cure or 

prevent epilepsy (Engel et al., 2013).  The ILAE task force's report identifies a biomarker “an 

objectively measured characteristic of a normal or pathological biological process" (Engel 

et al., 2013). Biomarkers of epileptogenesis could (1) predict the development of an 

epilepsy condition, (2) identify the presence and severity of tissue capable of generating 

spontaneous seizures, (3) measure progression after the condition is established, (4) be 

used to create animal models for more cost-effective screening of potential anti-

epileptogenic and anti-seizure drugs and devices, and (5) reduce the cost of clinical trials of 

potential antiepileptogenic interventions by enriching the patients population at high risk 

for developing epilepsy.” 

Ideally, a biomarker should be sensitive, specific, non invasive, of low cost and easily 

accessible. Different types of biomarkers are being characterized and validated in both 

preclinical and clinical studies and these include circulating molecules, genetic markers, 

electrophysiological and imaging biomarkers as well as behavioral biomarkers. Due to the 

complex and vast mechanisms implicated in epileptogenesis a single biomarker is assumed 

to be insufficient for predicting epileptogenesis. Thus, a combined approach may be 

necessary in order to identify suitable biomarkers at different stages of the disease (Loscher 

et al., 2013). To this end, the time-dependent evolution of cellular and molecular 

alterations occurring in the tissue during disease development has to be better understood. 
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1.4 IN VIVO IMAGING OF NEUROINFLAMMATION 

Brain imaging has become fundamental for helping the diagnosis of epilepsy and as a tool 

for identifying surgical candidates. However, a recent application of molecular 

neuroimaging is to detect alterations within brain networks which may be predictive of 

epilepsy development or disease severity and could act as early biomarkers of therapeutic 

effects of interventions (Obenaus, 2013). In this respect, imaging of activated glial cells in 

epilepsy has attracted much attention and research efforts. 

 

1.4.1 In vivo bioluminescence imaging 

Non-invasive bioluminescence imaging (BLI) is based on the ability of several organisms to 

produce light by luciferase-catalyzed reaction of the substrate luciferin in the presence of 

oxygen and ATP. When used for imaging purposes, a “luciferase” gene (bacterial lux, firefly 

luc or Renilla Rluc) is inserted into the genome of cells under the control of a specific 

promoter. Whenever the promoter is active, luciferase is expressed, resulting in the 

emission of light when its substrate luciferin is administered. This technique can be used to 

visualize gene expression, to study protein–protein interactions, and to track cells non-

invasively (Contag, 2007; Welsh and Kay, 2005). 

A number of studies have reported the use of BLI to track neuroinflammation in several 

CNS disorders. In particular, transgenic mice bearing the GFAP promoter upstream of the 

luciferase gene have been used. In an experimental autoimmune encephalomyelitis (EAE) 

model, GFAP-luc mice showed increased signal after immunization and this signal preceded 

the onset of clinical symptoms, correlated with clinical score, weight loss and histological 

markers of activated astrocytes (GFAP) and microglia (Luo et al., 2007, 2008). Zhu et al, 

using the same transgenic mouse detected reactive astrogliosis at 24 h and 48 h after 
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intracranial injection of kainic acid and this result correlated with endogenous GFAP and 

luciferase RNA levels as well as with hippocampal cell death (Zhu et al., 2004). Another 

study, proposed the use of a dual transgenic reporter mouse for monitoring glial activation. 

Firefly luciferase was under the control of the GFAP promoter and Renilla luciferase under 

the control of glyceraldehyde 3 phosphate dehydrogenase (GAPDH) promoter providing 

thus a normalized GFAP signal under inflammatory conditions (Cho et al., 2009). In the 

same study it was shown that changes in GFAP/GAPDH ratio preceded those in total GFAP 

protein assessed ex vivo after kanic acid-induced seizures (Cho et al., 2009). GFAP-luc mice 

were used successfully to study astrocytic activation in response to peripheral immune 

activation elicited by LPS or Poly I:C and in a model of mild TBI (Biesmans et al., 2015; Luo 

et al., 2014). 

Another approach for studying inflammation using BLI is to develop transgenic mice that 

express luciferase downstream the promoter for a specific inflammatory gene. Accordingly, 

transgenic mouse models were developed for monitoring immune activation in 

synucleinopathies, amyotrophic lateral sclerosis and ischemia (Breid et al., 2017; Keller et 

al., 2009; Lalancette-Hébert et al., 2009, 2017). Transcription factor CCAAT enhancer 

binding protein (C/EBP) and nestin, regulate inflammation through transcriptional 

activation of inflammatory genes and differentiation of astrocytes and microglia under 

neuroinflammatory conditions from nestin-positive cells (Krishnasamy et al., 2017; Lopez 

de Heredia et al., 2011). They both have been used for transgenic mouse generation in 

order to provide information on the cellular mechanisms underlying inflammation and their 

utility for noninvasive pre-clinical evaluation of therapeutic agents targeting inflammatory 

diseases or as context-dependent biomarkers of the inflammatory response has been 

suggested (Krishnasamy et al., 2017; Lopez de Heredia et al., 2011). Interestingly, IL-1β 
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gene promoter was also used for the generation of a transgenic mouse line that expressed 

luciferase (Li et al., 2008). In this study, LPS-induced sepsis and zymosan-induced arthritis 

were used as models of inflammatory diseases and increased luciferase activity was 

correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels which 

was suppressed in both models by application of the anti-inflammatory drug 

dexamethasone (Li et al., 2008). 

BLI offers several advantages such as high sensitivity, use of non-ionizing radiation and 

requirement for relatively inexpensive and simple instrumentation. One of the main 

limitations is the relatively low spatial resolution due to light scattering (~1 mm) that 

decreases with the depth of the luminescent source. However, the penetration depth is 

sufficient to image most tissue is rodents (Ntziachristos, 2006). This technique is based on 

the insertion of reporter luciferase genes into the organism thus restricting its use only to 

experimental models. Nevertheless, BLI does not require a light source for illumination 

limiting this way the background signal due to auto-luminescence and achieving high signal-

to-background ratios (Troy et al., 2004). 

 

1.4.2 Magnetic Resonance Spectroscopy 

1H-MRS spectroscopy is used in epilepsy models and in the clinic to reveal specific 

metabolic changes in the brain tissue that cannot be identified by MRI. Several metabolites 

implicated in epileptogenesis can be measured by this quantitative technique. In particular, 

glutathione (GSH) and myo-inositol (mlns) are strictly associated with astrogliosis. GSH is 

an antioxidant peptide synthesized mainly in astrocytes (Dringen et al., 1999). It exerts 

major antioxidant activity and may have antagonistic action at NMDA receptors (Janaky et 

al., 1999). Myo-inositol is a metabolic marker of astrocytes and is elevated during 
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epileptogenesis (Filibian et al., 2012; Lee et al., 2012). Filibian et al. (2012), suggested that 

GSH and mlns in the hippocampus are biomarkers of epileptogenesis (Filibian et al., 2012). 

Moreover, GSH hippocampal levels were negatively correlated with seizure frequency and 

mlns levels were negatively correlated with neuronal loss (Filibian et al., 2012). 

Additionally, in a pilocarpine status epilepticus model, where only a subpopulation of 

animals develops epilepsy, mlns levels were found elevated before the onset of the disease 

and could predict which animals developed epilepsy (Pascente et al., 2016).  

An increase in mlns levels was found in patients with TSC, TLE and Rasmussen’s encephalitis 

and was associated with astrogliosis (Doelken et al., 2008; Mizuno et al., 2000; Turkdogan-

Sozuer et al., 2000) 

 

1.4.3 Positron Emission Tomography 

Several PET ligands have been developed to target specific molecules expressed by immune 

cells in the brain tissue (Amhaoul et al., 2014) such as the translocator protein (TSPO). TSPO 

is a 18kDa protein located in the outer membrane of the mitochondria and has a role in 

physiological processes such as the translocation of cholesterol into the mitochondria 

(Casellas et al., 2002; Papadopoulos et al., 2006; Rupprecht et al., 2010). In healthy brain 

this protein is expressed at low levels but under inflammatory conditions it is upregulated 

both in animal models of epilepsy and in human tissue (Altar and Baudry, 1990; Amhaoul 

et al., 2015; Guilarte et al., 1995; Johnson et al., 1992; Kumlien et al., 1992; Sauvageau et 

al., 2002). Microglia is thought to be the primary cell population expressing this protein 

since TSPO was found to co-localize with markers of microglia (Amhaoul et al., 2015; 

Cosenza-Nashat et al., 2009; Dedeurwaerdere et al., 2012; Ji et al., 2008; Martín et al., 

2010). Higher uptake of the TSPO tracer 18F-DPA-714 has been shown in both epilepsy and 
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stroke models and this uptake was correlated histologically to activated 

microglia/macrophages (Harhausen et al., 2013). Furthermore, in a KA-induced SE rat 

model, [18F]-PBR111 ligand uptake was higher during early epileptogenesis phase in 

different epileptogenic regions including the hippocampus and the amygdala and was 

associated with activated microglia after post-mortem autoradiography (Dedeurwaerdere 

et al., 2012). The same study demonstrated that there is a correlation between SE severity 

and the extent of brain inflammation since animals that had a less severe SE displayed a 

lower TSPO overexpression (Dedeurwaerdere et al., 2012).  

Similarly, TSPO was upregulated in specific brain regions during epileptogenesis in the 

lithium-pilocarpine rat model of TLE (Brackhan et al., 2016; Yankam Njiwa et al., 2017). 

Interestingly, in a self-sustained SE rat model the higher uptake of the TSPO ligand 11C-

PK11195 was associated with drug resistance although the higher uptake might be related 

to higher seizure frequency of the non-responder to phenobarbital animals (Bogdanovic et 

al., 2014).  TSPO imaging was sensitive enough to detect the anti-inflammatory effect of 

minocycline in a stroke model and of fingolimod in an experimental autoimmune 

encephalitis model implying its role as a biomarker of drug response (Airas et al., 2015; 

Martín et al., 2011). 

However, experimental and clinical data provide evidence that TSPO is also increased in 

astrocytes (Chen et al., 2004; Cosenza-Nashat et al., 2009; Dickens et al., 2014; Ji et al., 

2008; Lavisse et al., 2012; Nguyen et al., 2018). In particular, a longitudinal PET imaging 

study in an intra-hippocampal KA mouse model using the TSPO ligand 18F-DPA-714 has 

revealed a time dependent switch of glia cells expressing TSPO. At 7 days the signal reached 

a peak and microglia was the cell population mainly involved in the TSPO PET uptake while 

at 6 months this uptake derived mostly from reactive hypertrophic astrocytes (Nguyen et 
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al., 2018). In the same model, quantitative longitudinal [18F]GE180 PET imaging revealed 

microglia activation early after SE in the KA-injected hippocampus and to a lesser extent in 

the contralateral homotipic area, indicating a neuroinflammatory response also in areas of 

seizure propagation as in humans (Amhaoul et al., 2015; Bogdanovic et al., 2014; Brackhan 

et al., 2018; Gershen et al., 2015). PET imaging of TSPO is therefore a sensitive and useful 

tool for identifying neuroinflammation during epileptogenesis (Amhaoul et al., 2015; 

Brackhan et al., 2016; Dedeurwaerdere et al., 2012; Russmann et al., 2017). 

Since elevated TSPO levels were found in various cell types (microglia, macrophages and 

astrocytes) and its distribution was disease, time and region dependent, combined 

histological evaluation should be performed in order to determine specific cell expression 

of TSPO.  

TSPO PET imaging has already been performed in clinic in order to identify the 

epileptogenic zone or determine the underlying pathology (Banati et al., 1999; Butler et al., 

2013; Goerres et al., 2001; Kumar et al., 2008). Importantly, TSPO has been detected in 

post-surgical tissue from patients with epilepsy: TSPO gene expression was increased in 

patients with HS and a correlation between higher TSPO binding and density of glial cells 

has been shown (Johnson et al., 1992; Kumlien et al., 1992; Sauvageau et al., 2002).  An 

increased TSPO binding has been shown both ipsilaterally and contralaterally to the seizure 

focus in TLE patients (Gershen et al., 2015; Hirvonen et al., 2012). Moreover, activated 

microglia was identified by [18F]-PBR111 uptake in tissue from Rasmussen's encephalitis 

and FCD patients (Banati et al., 1999; Butler et al., 2011). In a recent case report, seizure 

focus with no visible MRI correlate was successfully identified using TSPO PET imaging 

during a seizure-free period (Butler et al., 2016). Importantly, post-seizure imaging 

revealed increased inflammation spreading further from the clinically-defined seizure focus 
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and highlighted that post-seizure evaluation of inflammation may lead to less precise 

localization of the seizure focus (Butler et al., 2016). 

Other molecules are potential targets for developing imaging markers of 

microglia/macrophage activation such as CB2 receptors (Hosoya et al., 2017; Tolón et al., 

2009). In specimens from patients with FCD and cortical tubers, CB2 receptor was 

upregulated in balloon and giant cells and co-localized with astrocytes, microglia and 

macrophages (Zurolo et al., 2010). Some newly synthesised probes such as CB2 tracer 

[11C]NE40 have been shown to be useful for monitoring microglia activation early after 

stoke induction in rats (Hosoya et al., 2017). Another CB2-specific tracer, [11C]A-836339 

failed to monitor changes in CB2 expression in rat models of neuroinflammation whereas 

Moldovan et al. (2016) developed a CB2 ligand with high affinity over CB1 receptors that 

showed a high brain uptake in a mouse model of acute neuroinflammation induced by LPS 

(Moldovan et al., 2016, 2017; Pottier et al., 2017). 

Methionine can be also used to monitor microglia activation (by the PET tracer 11C-

methionine). Higher methionine uptake in epileptic foci of Rasmussen's encephalitis and 

FCD patients was reported and might be related to microglia activation and proliferation 

(Madakasira et al., 2002; Maeda et al., 2003; Sasaki et al., 1998). Tryptophan can be related 

to neuroinflammation since its catabolism by indoleamine 2,3-dioxygenase (IDO) is induced 

by cytokines during inflammatory processes (Chugani and Chugani, 2005; Chugani and 

Muzik, 2000; Haber et al., 1993; Taylor and Feng, 1991; Yamazaki et al., 1985). α-

[11C]methyl-L-tryptophan ([11C]AMT) was used in TSC patients to image epileptogenic 

tubers and provide information on the presence and localization of the tubers (Asano et 

al., 2000; Chugani et al., 1998, 2013; Kagawa et al., 2005; Rubí et al., 2013). Recently, P2X7 
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receptors were proposed as a novel molecular target for neuroinflammation imaging 

(Territo et al., 2017). 

Monoamine oxidase type B (MAO-B) is an enzyme abundantly present in activated 

astrocytes (Eddleston and Mucke, 1993; Ekblom et al., 1993, 1994; Gulyás et al., 2011; 

Saura et al., 1994). MAO-B is the main target for imaging astrocytes with PET and [11C]L-

deprenyl was used both in experimental and in clinical studies (Carter et al., 2012; Santillo 

et al., 2011). In TLE patients, imaging with [11C]-deuterium-deprenyl revealed epileptogenic 

regions with the presence of reactive astrocytes (Kumlien et al., 1995, 2001).  Interestingly, 

recent studies have identified [18F]-fluorodeoxyglucose (FDG) as a possible marker for 

astrogliosis. In particular, in the rat lithium-pilocarpine model of epilepsy, [18F]-FDG-

microPET imaging showed hippocampal glucose hypometabolism during epileptogenesis 

correlating with neuronal loss, but a partial recovery of glucose uptake in the chronic phase 

associated with GFAP-positive astrocytes (Zhang et al., 2015a). In support, Zimmer et al. 

(2017) demonstrated that astroglial glutamate transport via GLT1 can trigger glucose 

uptake suggesting a re-evaluation of [18F]FDG imaging data in different CNS disorders 

(Zimmer et al., 2017).  

Non-invasive PET imaging of inflammation still needs to be improved in order to increase 

cell-specificity and affinity of radioligands. 

 

1.4.4 Magnetic Resonance Imaging 

Magnetic resonance imaging has been used widely as a tool for anatomic imaging since it 

provides strong spatial resolution in soft tissues such as the brain. Several studies have tried 

to employ this imaging technique for visualising neuroinflammation.  
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BBB dysfunction can be monitored using contrast-enhanced MRI (CE-MRI) and contrast 

agents such as Gd-diethylenetriaminepentaacetate (Gd-DTPA) or gadobutrol that leak out 

of the blood vessels and accumulate in the brain parenchyma after BBB disruption in rat 

models of epilepsy (van Vliet et al., 2014, 2016). In an immature rodent model of febrile 

status epilepticus, MRI changes (reduction of T2 relaxation time) in the hippocampus and 

amygdala correlated with energy-demanding intracellular translocation of HMGB1 (Choy 

et al., 2014). VCAM-1, known to mediate extravasation of leukocytes across the vascular 

endothelium is another target molecule for MRI imaging of inflammation. Duffy et al. 

(2012) using an iron oxide labelled VCAM-1 antibody, reported marked focal signal in the 

hippocampus and cortex after SE in rats (Duffy et al., 2012). Other studies have exploited 

nanoparticles for MRI imaging of neuroinflammation. Small and ultrasmall particles of iron 

oxide were used to visualize inflammation in experimental models of encephalomyelitis 

and stroke as well as in patients with multiple sclerosis and stroke (Stoll and Bendszus, 

2009). Non-radioactive alpha methyl tryptophan (AMT) attached to magnetonanoparticles 

(MNPs) composed of iron oxide and dextran helped visualize epileptogenic regions with 

inflammation and correlated with the occurrence of spontaneous seizures in rodent model 

of TLE (Akhtari et al., 2008). Recently, fluorescent and magnetite-labeled nanoparticles 

were injected intravenously to rats with lithium-pilocarpine-induced chronic epilepsy 

(Portnoy et al., 2016). In this study, ex vivo MRI nanoparticle signal was detected in 

macrophages and microglia in areas of seizure origin (Portnoy et al., 2016). VCAM-1 

expression was visualized in vivo in a mouse model of acute neuroinflammation with the 

use of paramagnetic gadolinium (Gd)-loaded targeted micelles (Garello et al., 2017). 

Interestingly, IL-1β was the molecule targeted in another study employing 

superparamagnetic iron oxide nanoparticles (SPIONs). Functionalized SPIONs with anti-IL-
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1β monoclonal antibody attached, were used to simultaneously visualise and target IL-1β 

overexpressed in the brain of an acute rat model of TLE (Fu et al., 2016). The nanoparticles 

were administered intravenously and after crossing the BBB they concentrated in 

astrocytes and neurons of the hippocampus rendering this area visible on MRI and 

delivering neutralizing anti-IL-1β antibody to the epileptic focus (Fu et al., 2016). Indirect 

approaches for visualization of inflammatory mediators were applied in clinic using fluid-

attenuated inversion recovery (FLAIR)-MRI that enhances the visualization of lesions. A 

positive correlation between FLAIR-MRI and expression of nitric oxide and IL-1β was found 

in post-surgical specimens of TLE patients (Varella et al., 2011). 
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CHAPTER 2 - AIMS OF THE THESIS 
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In the past two decades various ASDs have been developed but treatment efficacy on 

pharmacoresistant epilepsies has not been improved significantly. ASDs affect mainly 

neuronal functions and alleviate symptoms rather than targeting the mechanisms 

underlying the disease. Increasing evidence has shown that astrocytes assume a reactive 

functional state in response to epileptogenic insults and they may be major contributors to 

epilepsy development. Thus, shifting the focus of therapeutic targets from neurons to 

astrocytes might improve the development of therapeutic interventions for treating 

patients not responsive to the currently available ASDs and for developing anti-

epileptogenic drugs. 

Based on this premise, the main scope of this research project is to improve our 

understanding of the role of astrocytes in epilepsy. Two principal studies were developed 

as follows: 

1. To develop a new in vivo imaging method to investigate the dynamics of astroglia 

activation during epileptogenesis. By coupling this method with post-hoc 

immunohistochemistry, we aimed at characterizing the inflammatory vs anti-inflammatory 

phenotype of these cells vis-à-vis with their functional activation state. Moreover, we 

wished to determine whether drugs with anti-epileptogenic effects could modulate the 

dynamics of astrocyte activation and/or their phenotype in the early aftermath of a brain 

insult. 

2. To uncover pathogenic vs homeostatic mechanisms related to astrocyte activation 

during seizures by focusing on Toll-like receptor (TLR)-mediated signaling. While the role 

of TLR4 in epilepsy has been deeply investigated, limited evidence is available on the role 
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of TLR3 and results have been reported on their pathogenic vs neuroprotective functions, 

the later possibly mediated by astrocytes.  

The two studies relied upon the use of in vivo models of either epileptogenesis (1) or acute 

seizures (2) in mice focusing our analyses in the hippocampus since this is a key area 

involved in seizure generation in these models and in human temporal lobe epilepsy. 
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CHAPTER 3 – GENERAL MATERIALS AND METHODS 
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3.1 CLONING 

3.1.1 IL-1β promoter 

DNA sequence of IL-1β gene from the Ensembl Genome Browser (gene code: 

ENSG00000125538) was analysed and compared to the previously described human IL-1β 

promoter/enhancer fragment (H-IL-1β) (Shirakawa et al., 1993). H-IL-1β fragments were 

cloned by polymerase chain reaction (PCR) using human genomic DNA as template. Phusion 

High-Fidelity DNA Polymerase (Thermo Scientific) was used to amplify the human IL-1β 

promoter/enhancer DNA. The thermocycling conditions used were: initial denaturation for 

1 min at 98°C, denaturation for 10 sec at 98°C, annealing for 40 sec at 70°C, extension for 

200 sec at 72°C for 35 cycles, final extention for 15 min at 72°C and hold at 4°C. The samples 

obtained from the PCR reaction were loaded in an 1% agarose-TBE gel and bands at the 

correct size were excised and DNA was recovered using Zymoclean Gel DNA Recovery Kit 

(Zymo Research). Each sample was digested with BglII and EcoRI (both from Thermo 

Scientific) at 37°C for 2h. Digestion product was then purified using DNA Clean and 

Concentrator-5 Kit (Zymo Research). For construction of the rAAV luciferase (LUC) reporter 

plasmids, pAAV-Cav3.2-LUC (Kulbida et al., 2015) harboring the AAV2 inverted terminal 

repeats was modified. pAAV-Cav3.2-LUC was digested with BamHI and EcoRI to excise the 

Cav3.2 promoter from the pAAV-backbone and the digested plasmid was loaded in an 

agarose gel. The pAAV-backbone was excised and purified from the gel using Zymoclean 

Gel DNA Recovery Kit (Zymo Research). The quantity and quality of the plasmids were 

assessed using a nanodrop by light absorption at 260/280 nm ratio. All plasmids were 

dissolved in nuclease free water. Fifty ng of H-IL-1β template were ligated, at room 

temperature overnight, to the pAAV-backbone using T4 DNA Ligase (5 U/µL, Thermo 

Scientific). Stbl2 bacteria (Invitrogen) were used for transformation and bacterial cultures 
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to minimize recombination events.  All clones were confirmed by sequencing analysis. 

Plasmid DNA for viral production was prepared using the Qiagen Maxiprep kit, according 

to the manufacturer’s protocol. 

3.1.2 GFAP promoter  

AAV2-GFAP-GFP-WPRE plasmid, which was kindly provided by Prof. Thomas McCown (UNC 

Gene Therapy Center, NC, USA), was digested with BamHI and EcoRI to excise the GFP 

reporter gene. The luciferase-coding sequence (pGL3-basic; Promega) was amplified and 

digested as for the H-IL-1β promoter/enhancer and then ligated into the backbone plasmid 

to form pAAV-GFAP-LUC-WPRE. All clones were confirmed by sequencing analysis. Plasmid 

DNA for viral production was prepared using the Qiagen Maxiprep kit, according to the 

manufacturer’s protocol. The quantity and quality of the plasmids were assessed using a 

nanodrop by light absorption at 260/280 nm ratio. All plasmids were dissolved in nuclease 

free water. 

 

3.2 CELL CULTURES 

3.2.1 Transfection 

Raw 264.7 cells were maintained at 37°C and 5% CO2 in Dulbecco's Modified Eagle's 

Medium (DMEM, Life Technologies) supplemented with 10% (v/v) heat inactivated Fetal 

Calf Serum (FCS) and 100 units/ml penicillin/streptomycin. Viability, which was assayed 

using trypan blue dye exclusion, was typically greater than 95%. Cultures were maintained 

until passage 20 and then discarded.  
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Transfection was performed in 24-well tissue culture plates (80% confluency) using 

Lipofectamine™ 2000 (Invitrogen, USA) following the manufacturer’s protocol. 0.8 µg of IL-

1β luciferase reporter plasmid with firefly luciferase, 0.2 µg of control pRL-TK vector with 

the Renilla luciferase gene (Promega) were mixed with 50 µl Opti-MEM® I reduced serum 

media (Invitrogen, USA). The mixture was incubated for 20 min at room temperature and 

then added to the appropriate wells. Cells were grown in complete culture medium at 37°C 

and 5% CO2. 

 

3.2.2 Luciferase assays 

The luciferase assays were performed using the Dual Luciferase Reporter Assay System 

(Promega) and Glomax Luminometer (Promega) was used for measuring Renilla and firefly 

luciferase activities. The results are given as firefly/Renilla relative luciferase activity and 

fold-induction compared to the basal activity for each construct. 

 

3.3 RECOMBINANT ADENO-ASSOCIATED VIRUSES (rAAVs) 

3.3.1 rAAV serotype 8 production 

For transfection HEK293T cells were seeded at a density of 1.5x106 cells/15 cm dish and 

allowed to reach 50-60% confluency. Three to four hours prior to transfection the DMEM 

medium (Thermo Scientific) (with 10% Fetal Calf Serum, 1% Penicillin/Streptomycin) was 

exchanged with IMDM medium (Thermo Scientific), supplemented with 5% FCS. To the 

transfection mixture containing water, CaCl2 and DNA, 2X HeBS (50 mM HEPES, 280 mM 

NaCl, 1.5 mM Na2HPO4, pH 7.05) buffer was added under vortexing drop-wise fashion and 

further incubated for 2 minutes, to allow complexes formation (Table 3.1). For transfection, 

p5E18-VD2/8 (AAV2 rep and AAV8 cap), pFdelta6 and the AAV plasmid were used. 



82 

 

Table 3.1. rAAV8 production method. 

 

3.3.2 rAAV serotype 8 purification 

After 48 h, cells were harvested in 1 ml DMEM medium and centrifuged at 

1.200rpm/20min. The pellet was resuspended in 10 ml lysis buffer (150 mM NaCl, 50 mM 

Tris-HCl, pH 8.5) and three cycles of freezing-thawing were performed. In order to get rid 

of nucleic acids, 20 μl benzonase (50 U/ml suspension) was added to the lysate and 

incubated for 30 min at 37°C. After the incubation, the suspension was centrifuged at 

4.000rpm/30min/4°C and the clear suspension was collected. The purification of the virus 

was performed using four layer discontinuous iodixanol gradients (Zolotukhin et al., 2002). 

The gradients were layered (Table 3.2) in ultracentrifuge tubes (Sorvall) using a peristaltic 

pump (P-1). 

Table 3.2. Iodixanol gradients. 

Components 15% Iodixanol 25% Iodixanol 40% Iodixanol 54% Iodixanol 

PBS 10x 5 ml 5 ml 5 ml 5 ml 

Iodixanol 12.5 ml 20 ml 33.3 ml 45 ml 

NaCl 5M 10 ml - - - 

KCl 2.5M 50 μl 50 μl 50 μl 50 μl 

MgCl2 1M 50 μl 50 μl 50 μl 50 μl 

0.5% Phenol red 75 μl 75 μl - 75 μl 

H2O 22.3 ml 24.9 ml 11.6 ml - 

Volume used for one gradient 

 8-9 ml 5-6 ml 5 ml 2-4 ml 

Components  
Serotype 8 

( 15 cm dish) 

dH2O  2.4 ml 

CaCl2 (2.5 M)  330 μl 

AAV plasmid  5 μg 

pFdelta6- helper virus  10 μg 

p5E18-VD2/8  5 μg 

2x HEBS - added under vortexing  2.6 ml 
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The cellular suspension (8-9 ml) was layered on top of the iodixanol gradients; the tubes 

were sealed, and centrifuged at 60.000rpm/2h/4°C (fixed angle rotor T865, Thermo 

Scientific). rAAV particles were recovered from the 40% iodixanol layer and iodixanol was 

removed by several rounds of washing with PBS, using Amicon centrifugal filters (Thermo 

Scientific). The purity of the virus was determined by SDS-PAGE and Coomassie staining. 

rAAV8 particles for GFAP-promoter-GFP plasmid were produced by triple transfection of 

HEK293T cells and purified by column chromatography at the UCN Vector Core (Chapel Hill, 

NC, USA). 

 

3.4 INTRAHIPPOCAMPAL ADMINISTRATION OF rAAVs 

Animals were anaesthetised with isoflurane 1.5% and head fixed to the stereotaxic device. 

For each injection one µl of viral suspension containing ~108 transducing units of the rAAVs: 

rAAV8-H-IL-1β(-2987/+570)-GFP, rAAV8-GFAP-GFP-WPRE, rAAV8-GFAP-LUC-WPRE or 

rAAV1/2-synI-dtTomato  was used and was infused (100 nl/min) into both the dorsal (from 

bregma, AP: -1.8, L: ±1.5, V: -2) and ventral (AP:-3, L: ±3, V: -3.3) poles of the hippocampus, 

bilaterally, using a 10 µl Hamilton syringe and a microprocessor controlled mini-pump 

(World Precision Instruments). After injection, the needle was left in place for 5 min before 

the incision was closed. Animals were allowed to recover on a heating pad and injected 

subcutaneously daily for 3 days with Ketoprofen (Gabrilen, 5.0 mg/kg,), Enrofloxacin 

(Baytril, 5.0 mg/kg) and twice/day with Buprenorphin (Buprenovet 0.05 mg/kg). Mice were 

daily observed for one week for their general health status. 
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3.5 CELL SORTING 

Mice were anaesthetised with 6 mg/kg xylazine (Rompun; Bayer, Germany) and 90-120 

mg/kg ketamine (Ketavet; Pfizer, Germany) intraperitoneally and decapitated. Hippocampi 

were isolated on ice and transferred into ice-cold HBSS. After 3 washing steps, 200 μl 

trypsin (dissolved in 1.8 ml HBSS) was added for 20 min at 37°C. The cell pellet was washed 

three times with Hank’s Balanced Salt Solution (HBSS, Life technologies) and then DNase 

(0.1 mg/ml; Roche) was added. Cells were dissociated using a 1 ml pipette tip and stored 

on ice until sorted. The fluorescent samples were sorted on a BD FACS Aria III instrument 

using a 100 μm diameter nozzle (University of Bonn, Medical School FACS Core Facility). 

Digital data collection was performed using BD FACS DIVA software (BD Diagnostics, 

Baltimore, MD, USA). 

 

3.6 BIOCHEMICAL ANALYSIS 

3.6.1 RNA isolation and real-time quantitative polymerase chain reaction 

Mice were deeply anaesthetised with 6 mg/kg xylazine (Rompun; Bayer, Germany) and 90– 

120 mg/kg ketamine (Ketavet; Pfizer, Germany) intraperitoneally and then decapitated. 

Four-hundred μm slices were cut on a vibratome in pre-chilled PBS. Hippocampi were 

microdissected under the microscope and subsequently homogenized in 100 µl lysis buffer 

with a tissue mincer (Dynabeads® mRNA DIRECT Micro Kit). Both mRNA from tissue lysates 

and FACS-sorted neurons were isolated using the Dynabeads® mRNA DIRECT Micro Kit, 

according to the manufacturer’s protocol (Life Technologies). mRNA was retranscribed into 

cDNA using the RevertAid H Minus First Strand cDNA Synthesis Kit (ThermoScientific). 

Transcript quantification was performed in triplicates by real-time reverse transcription–

PCR (RT-qPCR) according to the ΔΔCt method. A final reaction volume of 6.25 μl/well was 
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used containing 1.25 μl of cDNA, 0.1875 μl of forward and reverse primer (100 pM stock) 

and 3.125 μl 2x Master mix (Maxima SyBr green/ROX qPCR; Thermo Scientific).  

Primer sets were:  

• IL-1β: forward: 5’-TTGACGGACCCCAAAAGATG-3’  

reverse: 5’-CAGCTTCTCCACAGCCACAA-3’  

• β-actin: forward: 5’-ACCGTGAAAAGATGACCCAGA-3’ 

reverse: 5’-ATGGGCACAGTGTGGGTGA-3’ 

Quantitative PCR was performed in an ABI Prism 7900HT apparatus (PE Applied Biosystems, 

Foster City, CA, USA) with the following conditions: 50°C for 2 min, 94°C for 1 min, 40 cycles 

of 94°C for 20 s, 59°C for 30 s, 72°C for 40 s, 95°C for 15s and a final step of 60°C for 15 s. 

The signal threshold was set within the exponential phase of the amplification to determine 

the Ct values. β-actin, an endogenous non cell-specific gene, was used as a reference gene 

to normalize candidate gene expression. 

 

3.6.2 Western blot 

Hippocampi from mice deeply anaesthetised with ketamine (75 mg/kg) and medetomidine 

(0.5 mg/kg) were dissected out at 4°C and quickly frozen into liquid nitrogen. Tris-HCl 20 

mM buffer (pH 7.4) containing 1 mM EDTA, 5 mM EGTA, 1 mM Na-vanadate, 2 µg/µl 

aprotinin, 1 µg/µl pepstatin, and 2 µg/µl leupeptin was used for homogenization. Total 

proteins (20 µg) assessed with BCA Protein Assay Kit (ThermoScientific) were separated 

using SDS-polyacrylamide gel electrophoresis (PAGE) 10% acrylamide, for 40-50 min at 

200V. Each sample was run in duplicate. Then, proteins were transferred via electroblotting 

to Hybond nitrocellulose membranes overnight at 30mA at 4°C. 
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Non-specific binding sites were blocked by incubating the membranes in milk 10% and TBS-

Tween for 60 min at room temperature. For immunoblotting, an overnight incubation with 

blocking buffer (TBS-Tween and milk 3%) and GFAP (1:15000, Merck, Germany; # 

MAB3402) or anti-rabbit GLT-1 (1:1000, Abcam, USA; #ab178401) or anti-rabbit Kir4.1 

(1:2000, Alomone Labs, Israel; #APC-035) was carried out at 4°C. The following day the 

membranes were washed, incubated with secondary antibody anti-mouse or anti-rabbit 

HRP (1:10000, Sigma Aldrich) for 90 min at room temperature in blocking buffer, and then 

washed. GFAP, GLT-1 or Kir4.1 bands were visualized with ECL Luminata solution (Luminata 

forte, Western HRP substrate, Millipore, MA, USA) and a ChemiDoc Imaging system 

(Biorad). Images of GFAP, GLT-1 or Kir4.1 and the marker lane bands were captured and 

merged together. Afterwards, membranes were washed and incubated with β-actin 

(1:5000, Immunological Sciences, Italy; #MAB24007) in blocking buffer for 2 h at room 

temperature. β-actin was used since it represents an internal control with which to 

compare GFAP protein levels. The membranes were washed, incubated in secondary 

antibody, and protein bands visualized as above.  

Quantification was performed using Image Lab software (Biorad) in which a ROI was drawn 

around the protein bands to determine the optical density and thus the amount of protein 

present, for GFAP, GLT-1 or Kir4.1 and β-actin. Optical density values in each sample were 

normalized using the corresponding amount of β-actin and GFAP. 

 

3.7 EXPERIMENTAL ANIMALS 

Adult C57BL/6N male mice (~50 days, 20-25 g) were obtained from Charles River (Germany 

and Italy). Mice were housed at a constant room temperature (23°C) and relative humidity 

(60 ± 5%) with free access to standard food pellet and water, and with a fixed 12 h light/dark 
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cycle. Adult animals were housed two or four per cage and environmental enrichment was 

used. 

 

3.8 ANIMAL CARE 

Procedures involving animals were conducted at the University of Bonn and Istituto di 

Ricerche Farmacologiche “Mario Negri” IRCCS which both adhere to the principles set out 

in the following laws, regulations, and policies governing the care and use of laboratory 

animals: guidelines of the University of Bonn Medical Centre Animal-Care-Committee, 

Italian Governing Law (D.lgs 26/2014; Authorization n.19/2008-A issued March 6, 2008 by 

Ministry of Health); Mario Negri Institutional Regulations and Policies providing internal 

authorization for persons conducting animal experiments (Quality Management System 

Certificate - UNI EN ISO 9001:2008 - Reg. No. 6121); the NIH Guide for the Care and Use of 

Laboratory Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 

2010/63/UE). The Statement of Compliance (Assurance) with the Public Health Service 

(PHS) Policy on Human Care and Use of Laboratory Animals has been recently reviewed 

(9/9/2014) and will expire on September 30, 2019 (Animal Welfare Assurance #A5023-01). 

3.9 IN VIVO MODELS OF EPILEPTOGENESIS 

3.9.1 Intra-amygdala kainic acid in mice 

Mice were injected under general gas anesthesia (1-3% isoflurane in O2) and stereotaxic 

guidance. A needle was unilaterally lowered into the brain tissue for the intra-amygdala 

injection of kainic acid (from bregma, mm: nose bar 0; anteroposterior -1.06, lateral -3.3, 

ventral -4) (Franklin and Paxinos, 2008). Kainic acid (0.3 μg in 0.2 μl) was unilaterally 

injected in the basolateral amygdala. The needle was left in place for 5 min post-injection 



88 

 

before closing the incision with sutures. Mice recovered from anesthesia within a few 

minutes and SE was developed after approximately 10 min from kainic acid injection. 

Animals were observed for motor convulsions in order to assess the ictal activity since in 

this model ictal activity was always associated with generalized motor convulsions. After 

40 min from SE onset, mice received diazepam (10 mg/kg, intraperitoneally, i.p.) to improve 

their survival rate. Mice were sacrificed at different time points after SE for subsequent 

biochemical or immunohistochemical analysis according to the experimental protocol (for 

details regarding experimental groups, see Chapter 5). Control mice were animals 

subjected to surgery and injected with saline into the basolateral nucleus of the amygdala 

thus they were not exposed to SE (referred to as Saline or Control). No mice from the 

Saline/Control group showed any behavioural convulsions and were used for brain 

histological and biochemical analysis. 

This is an epileptogenesis model were epilepsy develops in 100% of mice exposed to at 

least 1.5 h of SE and is a model extensively described and used (Diviney et al., 2015; Iori et 

al., 2017; Jimenez-Mateos et al., 2012; Mouri et al., 2008). Spontaneous generalized motor 

seizures occur after a short latent period that is of 5.4 ± 0.5 days after the induction of SE 

(Iori et al., 2017). The number of seizures per day is stable for the first 60 days after the 

epilepsy onset and then seizure score increases in 80% of the mice by about 3-fold after 2 

months and remains stable thereafter (Iori et al., 2017). This model recapitulates the major 

co-morbidities found in epilepsy patients showing cognitive deficits and anxiety-like 

behaviours (Liu et al., 2013). Moreover, neuronal cell loss occurs progressively and mostly 

at the unilateral side to the injected amygdala (Mouri et al., 2008). 
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This model was used to characterize the glia activation during the epileptogenesis phase 

and to study the effects of anti-inflammatory treatment during epileptogenesis using the 

in vivo imaging tool developed (see data in Chapter 5). 

 

3.9.2 Intra-cortical kainic acid in mice 

Animals were anaesthetised with 6 mg/kg xylazine (Rompun; Bayer, Germany) and 90–120 

mg/kg ketamine (Ketavet; Pfizer, Germany) intraperitoneally, and head fixed to the 

stereotaxic device. Kainic acid (70 nl of 20 mM solution) was infused unilaterally in the 

cortex above the left dorsal hippocampus (coordinates from bregma, anteroposterior -2, 

lateral -2, ventral -1.3) using a microprocessor controlled mini-pump at a rate of 35 nl/min 

in order to induce status epilepticus. Animals recovered from anesthesia about 90 min later 

and were visually observed for the occurrence of behavioural motor seizures characterized 

by rearing and forelimb clonus which persisted for about 12 h and resulted in epilepsy 

development as previously described (Jefferys et al., 2016).  

The latent period in this model is 5 ± 2.9 days and is not free of ictal activity (Jefferys et al., 

2016). In this model 93% of the mice exposed to SE develop spontaneous recurrent seizures 

associated with motor seizures which vary significantly between animals ranging from 1 to 

20 seizures per day (Jefferys et al., 2016). Sponteaneous seizure frequency increases with 

time reaching a 4-fold increase 7-9 months after SE and does not correlate with the duration 

of SE or the length of the latent period (Jefferys et al., 2016). Neuronal loss is seen in the 

CA1, CA3 and hilus of the ispilateral hippocampus already at 2 days after KA injection and 

pyramidal cell degeneration induced by seizure activity along with reactive gliosis increases 

throughout a 9-month period after SE (Jefferys et al., 2016). This a model that mirrors the 
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morphological and functional alterations seen in human TLE patients thus making it suitable 

for drug testing.   

This model was used for production of the data reported in Chapter 4 where we developed 

an in vivo bioluminescence imaging tool. 

 

3.10 IMMUNOHISTOCHEMISTRY 

3.10.1 Immunohistochemical studies from in vivo preparations 

Mice used in Chapter 4 were anaesthetised with 6 mg/kg xylazine (Rompun; Bayer, 

Germany) and 90–120 mg/kg ketamine (Ketavet; Pfizer, Germany) intraperitoneally and 

perfused via the ascending aorta with 50 mM cold phosphate buffered saline (PBS, pH 7.4) 

followed by chilled 4% paraformaldehyde (PFA) in PBS. Brains were removed and fixed in 

PFA over-night. Forty μm coronal sections were cut using a vibratome (Thermo Scientific) 

throughout the septal-temporal extension of the mouse hippocampus (-0.94 to -3.64 mm 

from bregma; Franklin and Paxinos, 2008) and slices were used for GFP staining and co-

localization with the neuronal marker NeuN and the astrocytic marker GFAP. Two slices per 

animal were used for IL-1β staining and co-localization with GFP were processed as 

described in section 3.10.2. Slices from animals used to localize the GFP signal deriving from 

AAV8-GFAP-GFP-WPRE vector were not stained further for GFP since signal was strong 

enough to co-localize with GFAP and NeuN markers (see details below).  

Mice used in Chapter 5 were deeply anaesthetised with ketamine (75 mg/kg) and 

medetomidine (0.5 mg/kg) and perfused via the ascending aorta with 50mM cold PBS, pH 

7.4 and then with 4% paraformaldehyde (Merck, Darmstadt, Germany) in PBS. Brains were 

removed and post-fixed for 90 min at 4°C and then transferred to glucose solution 20% in 

PBS for 24 h at 4°C. Then brains were frozen by immersion in isopentane at -45°C for 3 min 
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and stored at -80°C until assayed. Using a cryostat serial coronal sections (40 μm) were cut 

and collected from -0.94 to -2.80 mm from bregma (Franklin and Paxinos, 2008). Two series 

of 30 sections each were prepared and in each series the first slice was used for staining 

for GFAP, the second for CD11b, the third for S100β, the forth for HMGB1, the fifth for TNF-

α and the sixth for PTX3. Three slices per animal were used for each marker.  

In order to stain astrocytes and microglia (Chapter 5), sections were incudated for 1h at RT 

with 10% normal goat serum, 1% Triton X-100 in Tris-buffered saline 0.1 m, pH 7.4, then 

overnight at 4°C with the following primary antibodies: mouse anti-GFAP (1:3500, 

Chemicon, Temecula, CA, USA; #MAB3402) and anti-rabbit S100β antibody (1:3000, 

Abcam, UK; #Ab52642) markers of astrocytes, or rat anti-CD11b (1:1000, MAC-1, Serotec; 

Cat# MCA719, Clone 5C6), a marker of microglia followed by visualization with the 

Vectastain ABC kit (Vector Laboratories), with diaminobenzidine (DAB; Sigma, #D8001 or 

nickel-intensified DAB for IL-1β) as chromogen.  

Slices from different animals and experimental groups were matched at comparable 

anteroposterior and dorsoventral levels.  

 

3.10.2 Green fluorescent protein (GFP) 

Slices (see Chapter 4 data) were blocked for 2 h at 37°C in blocking buffer (0.1% Triton-

X100, 0.1%Tween20, 2% BSA in PBS; Invitrogen) and then incubated with primary antibody 

against GFP (1:1000; Abcam, Cambridge, UK; #ab290) overnight at 4°C. After washing with 

PBS, slices were incubated with secondary antibody Alexa Fluor 488 donkey-anti-rabbit 

1:200 (Jackson Immunoresearch Laboratories, Inc., USA) for 2 h at room temperature and 

then mounted on slides with fluorescein mounting medium after a final wash (Vectashield, 
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Vector laboratories, USA). Slices were evaluated for fluorescent signal using Nikon Eclipse 

Ti confocal microscope (Nikon Instruments, Germany). 

 

3.10.3 TNF-α, HMGB1 and PTX3 

Slices were incubated at 4°C for 10 min in 70% methanol and 2% H2O2 in Tris-HCl-buffered 

saline (TBS, pH 7.4), followed by 30 min incubation in 10% fetal bovine serum (FBS), 1-10% 

bovine serum albumin (BSA) in 1% Triton X-100 in TBS. Overnight incubation was 

performed with goat anti-mouse primary antibody against TNF-α (1:1000, Peprotech, NJ, 

USA; #500-P64G) at 4°C in 10% FBS, 1-10% BSA in 1% Triton X-100 in TBS.  

For HMGB1 immunostaining sections were incubated at 4°C for 60 min in 10% normal goat 

serum (NGS) in 0.1% Triton X-100 in PBS (Ravizza and Vezzani, 2006). Then the slices were 

incubated with the primary rabbit polyclonal antibody against HMGB1 (1:1000, Abcam, 

Cambridge, UK; #AB18256) overnight at 4°C in 4% NGS in 0.1% Triton X-100 in PBS. 

PTX3 immunostaining was done as follows: slices were incubated with Triton X-100 0.3%, 

PBS, and normal goat serum (NGS) 2% for 60 min before overnight incubation at 4°C with 

the primary antibody against PTX3 (1:250, rabbit polyclonal anti-hPTX3 1mg/ml purified, 

kindly provided by C. Garlanda, Istituto Clinico Humanitas–IRCCS, Rozzano, Italy) in blocking 

buffer (PBS and NGS 1%). 

For HMGB1 and PTX3 immunostainings, after 1 h incubation with anti-rabbit biotinylated 

secondary antibodies (1:200, Vector Labs), immunoreactivity for HMGB1 and PTX3 was 

assessed using the avidin-biotin-peroxidase technique (Vectastain ABC kit, Vector Labs): 

PBS, avidin 1%, and biotin 1% were applied to the slices for 60 min, before reacting the 

slices and visualising the signal with 3’,3’-diaminobenzidine (DAB, 5mg) (Sigma, Munich, 

Germany), TBS (Tris-HCl-buffered saline, pH 7.4, 10ml), and H2O2 (3 µl). For TNF-α, after 
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incubation for 1 h with anti-goat biotinylated secondary antibody (1:200, Vector Labs), the 

avidin-biotin-peroxidase technique was used and signal was further amplified with addition 

of nickel ammonium into the DAB solution.  

Then sections were washed twice in TBS and once in saline and mounted on gelatin-coated 

slides and allowed to dry at room temperature overnight. The following day, slices were 

dehydrated using a series of ethanol concentrations (70%, 95%, and 100%) and xylene 

before covering with DPX mountant for histology (Sigma, Germany) and a coverslip. 

No immunostaining was observed in control slices when incubating with the primary 

antibody preabsorbed with the corresponding peptides (1 μM, 24 h at 4°C), or without the 

primary antibodies (Ravizza and Vezzani, 2006; Vezzani et al., 1999).  

Quantitative analysis of S100β, HMGB1 and TNF-α staining in DAB coloured sections was 

done by counting automatically the total number of positive cells marked using Fiji 

software. Three slices per mouse were used for quantification of the signal in the whole 

hippocampus captured at 20X using a BX61 microscope equipped with motorised and 

digitised platform (Virtual Slider Microscope, Olympus, Germany) and one field 

representing the CA1 area was captured for representation. GFAP-, CD11b-, S100β-, TNF-

α- and PTX3-positive total area (µm2) occupied by the staining was quantified with the same 

tool. Data obtained in each slice/mouse were averaged, providing a single value per mouse, 

and this value was used for the statistical analysis. 

 

3.10.4 Double and triple immunostaining  

Two slices from 4 mice perfused at 24 h after SE were used in order to identify the cell type 

marked by the H-IL-1β(-2987/+570)-GFP construct (Chapter 4). After incubation with the 

GFP primary and secondary antibody slices were incubated with primary antibody mouse 
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anti-GFAP (1:2500, Chemicon, Temecula, CA, USA; #MAB3402) or mouse anti-NeuN 

(1:1000, Chemicon; #MAB377) followed by the corresponding secondary antibodies (1:400, 

Alexa Fluor 488 and Alexa Fluor 568, Jackson Immunoresearch Laboratories, Inc., USA). 

Two slices from 3 animals were used in order to identify whether the cells expressing 

endogenous IL-1β are the same as the ones marked by the H-IL-1β(-2987/+570)-GFP 

construct (data reported in Chapter 4). Briefly, after GFP staining, slices were incubated at 

4°C for 10 min in 70% methanol and 2% H2O2 in Tris-HCl-buffered saline (TBS, pH 7.4), 

followed by 30 min incubation in 10% fetal bovine serum (FBS), 10% bovine serum albumin 

(BSA) in 1% Triton X-100 in TBS. Overnight incubation was performed with the goat 

polyclonal primary antibody against IL-1β (1:200, Santa Cruz Bio., CA, USA; #sc-1252) and 

followed by incubation with secondary biotylinated anti-goat antibody (1:500, Vector Labs) 

and streptavidin–horseradish peroxidase with amplification of the signal with tyramide 

conjugated to Fluorescein using TSA amplification kit (NEN Life Science Products, Boston, 

MA, USA). Identification of the cell type expressing the endogenous IL-1β was done in the 

same slices after IL-1β and incubation with primary antibody mouse anti-GFAP.  

Two slices from 3 randomly chosen animals and adjacent to those used for single 

immunohistochemistry were used for double or triple immunostaining to identify the cells 

expressing HMGB1, TNF-α and PTX3 (Chapter 5). After incubation with the primary 

antibodies to HMGB1, TNF-α and PTX3, the slices stained for HMGB1 and PTX3 were 

incubated with anti-goat (for TNF-α) or anti-rabbit (for HMGB1 and PTX3) secondary 

antibody conjugated with Alexa488 (1:500; Molecular Probes, Leiden, The Netherlands) 

while sections stained for TNF-α were incubated with streptavidin–HRP and the signal was 

revealed with tyramide conjugated to Fluorescein using TSA amplification kit (SAT-

701001EA; NEN Life Science Products, Boston, MA, USA). Sections for all stainings were 
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subsequently incubated with primary antibodies against GFAP, CD11b and NeuN. 

Fluorescence was detected using secondary antibodies conjugated with Alexa546 (1:500, 

Molecular Probes, Leiden, Netherlands). Cells expressing S100β were co-localised with 

GFAP using the same method. For HMGB1-stained sections, an additional incubation of 15 

min in DAPI (1:500; Molecular Probes) was done in order to visualize the cell nucleus. Slide-

mounted sections were examined with an Olympus Fluoview laser scanning microscope 

(microscope BX61 and confocal system FV500) using excitations of 488 nm (Ar laser), 546 

nm (He-Ne green laser) and 350 nm (ultraviolet) for fluorescein, Alexa546 and DAPI, 

respectively. The emission of fluorescent probes was collected on separate detectors. To 

eliminate the possibility of bleed-through between channels, the sections were scanned in 

a sequential mode. 

 

3.11 IN VIVO BIOLUMINESCENCE IMAGING 

Two weeks after intrahippocampal injection with the AAV8-GFAP-LUC virus, mice were 

randomly divided into the experimental groups and were injected intraperitoneally with D-

Luciferin (150mg/kg; Cayman, USA) and then anaesthetised with 2% isoflurane and placed 

in an IVIS-Spectrum Optical In Vivo Imaging System (PerkinElmer) for baseline 

bioluminescent signal measurement. The head of each mouse was shaved with clippers 

and a depilatory cream before imaging in order to increase the signal detected by the 

ultrasensitive charged coupled device (CCD) camera. At each time point, a sequence of 

images was acquired every 2 minutes for 14 minutes (exposure time: 2 min, binning: 

medium, f/stop: 1) to ensure that the peak luciferase activity was captured. Twenty-four 

hours after baseline measurement, KA was injected into the cortex as described previously 

and the bioluminescent signal was recorded at 24 h and 3 d post-SE (Chapter 4). For data 
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reported in Chapter 5, mice were injected intraperitoneally with saline or with FTY720 

(6mg/kg) 1 h after intra-amygdala injection of KA and then daily, once per day for 7 

consequitive days and monitored at 2 h, 24 h, 3 d and 7 d post-SE (Chapter 5). Control group 

were mice injected in the cortex (Chapter 4) or amygdala (Chapter 5) with PBS or saline and 

treated with saline with the same protocol described above. Images were analysed using 

Living Image 4.5.5 software (PerkinElmer) and regions of interest (ROI) contouring the area 

of bioluminescent signal were drawn in order to quantify the surface radiance in photons 

per second per square centimeter per steradian (photons/s/cm2/sr).  

 

3.12 STATISTICS 

Quantification of each experiment was done blindly. Sample size was determined a priori 

based on previous experience with the respective models and statistical tests were 

prospectively selected. All efforts were made to reduce the number of animals used to 

minimum. GraphPad Prism 6 (GraphPad Software, USA) for Windows was used for 

statistical analysis using absolute values. Data are presented as mean ± S.E.M. (n indicates 

the number of individual samples). For each variable, differences between the groups were 

assessed using Mann–Whitney U test for two independent groups and one-way ANOVA 

followed by Tukey or Dunnet’s post-hoc test or Kruskal-Wallis followed by Dunn’s post-hoc 

test for more than two independent groups (details are reported in the figure legends). 

Differences were considered significant with a p<0.05. 
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CHAPTER 4 – CHARACTERIZATION OF IL-1β PROMOTER 

FRAGMENTS AND DEVELOPMENT OF IN VIVO 

BIOLUMINESCENCE IMAGING OF ASTROCYTES 
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4.1 INTRODUCTION 

Astrocytes are among the principal cells involved in the expression and release of this 

cytokine during epileptogenesis and they are pivotal for sustaining the inflammatory brain 

response (Aronica et al., 2012; Maroso et al., 2011a; Vezzani et al., 2011a). Reactive 

astrocytes with an inflammatory phenotype express high levels of glial fibrillary acidic 

protein (GFAP), a member of the cytoskeleton protein, essential for the process of 

astrogliosis (Eng et al., 2000). Astrocytes become dysfunctional cells during epileptogenesis 

and they contribute to seizure generation by various mechanisms. Pivotal for their 

involvement in epileptogensis is their abilty to release IL-1β and other ictogenic cytokines 

such as HMGB1 and TNF-α as well as promoting an hyperexcitable microenvinronment due 

to their impaired capacity of buffering extracellular glutamate and K+ ions (Devinsky et al., 

2013; Friedman et al., 2009). Thus, one therapeutic option to interfere with epileptogenesis 

is to modulate astrocytic activation and restore their physiological functions, however, this 

intervention requires a better understanding of the extent and timing of the astroglia 

activation after epileptogenic injuries. Since dysfunctional astrocytes express high levels of 

both IL-1β and GFAP, we focused on these two genes and developed an experimental 

design to monitor the dynamics and extent of cell activation during epileptogenesis based 

on in vivo bioluminescence signal of gene promoter activation by viral vector gene delivery.  

Gene promoter activation. The IL-1β gene promoter is well characterised since various 

regions of the gene's promoter and enhancer have been identified (Kominato et al., 1995; 

Shirakawa et al., 1993; Toda et al., 2002). The transcription of the IL-1β gene requires the 

interaction between the promoter sequence (from −131 to +12) that contains the TATA box 

and the far upstream enhancer known as upstream inducible sequence (UIS) located at 

−3134 to− 2179 (Adamik et al., 2013; Figure 4.1). Gene transcription depends on the 
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lineage-specific Spi-1/PU.1 (Spi1) transcription factor. Spi1 acts as an anchor for induction-

dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-kB, in 

order to induce transcription, likely in the context of a specific chromatin architecture 

(Figure 4.1; Adamik et al., 2013).  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Schematic depiction of IL-1β gene promoter regulatory region. (A) The upstream 

induction sequence (UIS) is located at −3134 to− 2179 whereas the promoter sequence at −131 to 

+12.  The relative Spi-1, C/EBP and TATA sites are noted. (B) Model for chromatin looping during 

activation of IL-1β (adapted from Adamik et al., 2013). 

 

The GFAP (gfa2) promoter has been thoroughly studied (Brenner et al., 1994; Lee et al., 

2006, 2008; de Leeuw et al., 2006; Yeo et al., 2013). A shorter 681 bp GFAP promoter 

fragment, gfaABC1D, has the same expression pattern of the 2210 bp gfa2 promoter and 

about two-fold greater activity, thus recommending it for gene targeting applications such 
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as insertion in a recombinant adeno-associated viral vector (rAAV) system where the size 

of the construct is a limiting factor (Lee et al., 2008; Figure 4.2). 

 

 

 

 

 

 

 

 

Figure 4.2. Schematic depiction of GFAP (gfa2) gene promoter and of the shorter gfaABC1D 

fragment. Coordinates for the 4 B subregions and the approximate position of the transcription 

factor (TF) binding sites are shown. Three subregions were identified as important contributors to 

activity in addition to the basal promoter (BP), regions A (bp −1757 to −1613), B (−1612 to −1489), 

and D (−132 to −56). The C1 (bp −1488 to – 1256) segment contains sequences required for 

astrocytes to express in certain brain regions, and for suppression of GFAP expression in neurons. 

The 681 bp gfaABC1D promoter drives expression of transgenes with the same developmental, 

spatial, and cell specificity properties as the 2.2 kb gfa2 promoter (Lee et al., 2008). (adapted from 

Yeo et al., 2013). 

 

Expression system. rAAVs are the most commonly used vectors for gene delivery and 

expression in the CNS. They contain a single stranded DNA and their serotype is important 

for targeting specific cell types. AAV hybrid serotypes or pseudo-serotypes have been 

created by viral engineering, and are constructed with integrated genome containing (cis-

acting) inverted terminal repeats (ITR) derived from AAV2 and capsid genes of other 

serotypes (Figure 4.3). This strategy increased viral cell specificity and transduction (Choi 

et al., 2005). In particular, AAV8-based vectors show selective expression in astrocytes of 

the spinal cord, hippocampus, striatum and substantia nigra of adult rats and were 

previously used to drive transgene expression of the human GFAP promoter (Lawlor et al., 
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2009; Li et al., 2014). An important limitation is the restrained construct size that can be 

accommodated in the rAAV genome (about 4.7-5.0 kb).  

Figure 4.3. Structure and characteristics of recombinant adeno-associated viral vectors (rAAVs).  

The gene of interest is inserted between the inverted terminal repeats (ITRs) that contain cis-

elements required for replication and packaging resulting in a vector genome of approximately 4.7 

kb flanked by the viral ITRs. The late SV40 poly A sequence (Simian virus 40 PolyA, also called PolyA) 

possesses the activity of transcription termination and can add PolyA tail to mRNA (adapted from 

Cucchiarini et al., 2015). 

 

In this study we focused on the generation of rAAV expressing reporter genes (GFP or 

luciferase) under the control of either the IL-1β or the GFAP promoters. In order to identify 

the minimal IL-1β promoter fragment with full activity to be accommodated into the AAV 

vector backbone, we first analysed the activity of various promoter fragments in Raw 246.7 

cells exposed to lipopolysaccharide (LPS). For GFAP, we choose the well characterised 

681bp promoter fragment suitable for rAAV (Lee et al., 2008). Both promoters were tested 

in vivo in a mouse model of status epilepticus (SE)-induced epileptogenesis, and their cell-

specific expression was analysed by post-mortem immunohistochemistry and compared 

with the expression of either IL-1β or GFAP proteins. Finally, we studied the induction of 

the GFAP promoter by in vivo bioluminescence imaging at different time points after SE. 
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4.2 SPECIFIC MATERIALS AND METHODS 

Cloning 

Human IL-1β promoter/enhancer fragment and several shorter promoter fragments were 

cloned as previously described in the General materials and methods, Section 3.1.1. Briefly, 

the human IL-1β promoter/enhancer fragment H-IL-1β(-3757/+570), 4327bp, was cloned 

by polymerase chain reaction (PCR) using human genomic DNA as template. Several shorter 

promoter fragments [H-IL-1β(-3757/+12), 3769bp; H-IL-1β(-3132/+570), 3702bp; H-IL-1β(-

3132/+1), 3131bp; H-IL-1β(-2987/+570), 3557bp; H-IL-1β(-2987/+1), 2987bp] were 

subsequently cloned using the H-IL-1β(-3757/+570) sequence as template with the 

following primer sets (Table 4.1; Figure 4.4). Construction of the AAV-GFAP-LUC-WPRE 

plasmid was done as previously described in the General materials and methods, Section 

3.1.2.  

Cell cultures  

Raw 264.7 cells were transfected as described in the General materials and methods, 

Section 3.2.1 and luciferase assays were performed as described in Section 3.2.2. For IL-1β 

promoter induction, Escherichia coli 055:B5 LPS (Sigma, St. Louis, MO, USA) was suspended 

in sterile water and added to the cell culture to obtain the desired concentrations. 

Luciferase assays were performed in four different experiments where Raw 264.7 cells 

were treated 24 h after transfection with LPS (100 ng/ml; Sigma) for 18 h prior to harvesting 

(Figure 4.4).  

Adeno-associated viral vectors 

rAAV8 were produced and purified are reported in the General materials and methods, 

Sections 3.3.1 and 3.3.2.  
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Mouse model of epileptogenesis 

SE was induced by intracortical injection of KA as described in Section 3.9.2 of General 

materials and methods. Mice (n=28) were not implanted with electrodes to minimise tissue 

damage and do not interfere with the bioluminescence signal, thus SE was visually 

monitored for behavioural motor seizures occurrence. Mice injected in the cortex with PBS 

served as controls for immunohistochemistry (n=3), cell sorting (n=5) and bioluminescence 

imaging (n=6). 

Immunohistochemistry 

A group of mice (n=4) was injected with KA to measure IL-1β promoter induction 24 h post-

SE (3.9.2 of General materials and methods). Mice were injected 2 weeks before SE 

induction with AAV8-H-IL-1β(-2987/+570)-GFP and GFP expression was assessed by 

immunohistochemistry (n=4; Figure 4.5; General materials and methods, sections 3.4 and 

3.10.2). Histological evaluation of IL-1β protein levels and its co-localization with GFP and 

GFAP was done in a separate group of mice (n=3) 24 h after SE induction (Figure 4.6; 

General materials and methods, sections 3.4, 3.10.1, 3.10.2 and 3.10.4). AAV8-GFAP-GFP-

WPRE tissue spread and cell specificity were evaluated by immunohistochemistry in 3 mice 

injected with the rAAV and sacrificed 2 weeks later (Figure 4.8 and 4.9; see sections 3.4 and 

3.10.1 from General materials and methods). GFP staining was strong enough to be 

detected directly by confocal microscopy withouth using a secondary antibody.  

Cell sorting 

rAAV1/2-synI-dtTomato that is specifically expressed by neurons was kindly provided by 

Dr. A. Becker. Five mice were injected in the hippocampus with rAAV1/2-synI-dtTomato 2 

weeks before performing neuronal cell sorting (Figure 4.7; sections 3.4 and 3.5 of General 
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materials and methods). A laser (561 nm) was used to excite tdTomato and a 582/15 filter 

was used to detect the tdTomato signal. 

RT-qPCR analysis 

Five animals injected with KA were sacrificed 24 h later and their hippocampi were rapidly 

removed (3.9.2 of General materials and methods). Dissected hippocampi (as well as sorted 

neurons, see above) were used to measure IL-1β mRNA levels as described in section 3.6.1 

of General materials and methods (Figure 4.7). β-actin was used as a reference gene to 

normalize IL-1β mRNA levels. 

In vivo bioluminescence imaging 

Mice (n=6-11/group) were injected with AAV8-GFAP-LUC (section 3.4 of General materials 

and methods). SE was induced 2 weeks later as described in section 3.9.2 of General 

materials and methods. Mice were behaviourally monitored by two investigators before SE 

induction and then at 24 h and 3 days after KA injection using in vivo bioluminescence 

imaging (Figure 4.10; General materials and methods, section 3.11). 

 

4.3 RESULTS 

4.3.1 In vitro characterization of IL-1β promoter fragments  

To identify the minimal H-IL-1β promoter region eligible for in vivo bioluminescence 

imaging, we cloned six H-IL-1β promoter fragments (Table 4.1; Figure 4.4) and we tested 

them for their luciferase activity in RAW 264.7 cells. The three fragments harbouring the 

570 nucleotides downstream of the transcription start site (TSS) (-3757/+570, -3132/+570 

and -2987/+570) showed stronger basal expression compared to the fragments lacking 

these downstream nucleotides (-3757/+12, -3132/+1 and -2987/+1) (Figure 4.4B). This 

indicates that the 570 nucleotides downstream of the TSS are necessary for efficient basal 
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H-IL-1β promoter activity. Next, we tested if stimulation with the pro-inflammatory agent 

LPS (100 ng/ml for 18 h) activates the various promoter fragments transfected in RAW 

264.7 by analysing their luciferase activity. We found that all fragments showed a 

significant activation after stimulation with LPS, with the -3757/+570, 3757/+12 and -

3132/+570 fragments having the strongest activation (12-fold increase, p<0.01). Among 

the shorter fragments, the one including the -2987/+570 region of the promoter showed a  

significant activation up to 8-fold (p<0.01) compared to the basal activity (Figure 4.4C). 

 

Table 4.1. Primers used for H-IL-1β promoter cloning and the respective restriction enzymes. 

Fragment PCR primers 
Restriction 

enzymes 

H-IL-1β(-3757/+570) 

For:5´-GCGAGATCTTCTAGACCAGGGAGGAGAATGGAATG-3´ 

BglII/ EcoRI 
Rev:5´-GCGGAATTCAGACACCTGTGTAAAAAGGAGAAAATGAGTG-3´ 

H-IL-1β(-3757/+12) 

For:5´-GCGAGATCTTCTAGACCAGGGAGGAGAATGGAATG-3´ 

BglII/ EcoRI 

Rev:5´- GCGGAATTCTCGAAGAGGTTTGGTATCTGCCAGTTTC-3´ 

H-IL-1β(-3132/+570) 

For:5´-GCGAGATCTCAGCTGAGAAAGGCTTTAGTGACTCAA-3´ 

BglII/ EcoRI 

Rev:5´-GCGGAATTCAGACACCTGTGTAAAAAGGAGAAAATGAGTG-3´ 

H-IL-1β(-3132/+1) 

For:5´-GCGAGATCTCAGCTGAGAAAGGCTTTAGTGACTCAA-3´ 
BglII/ EcoRI 

Rev:5´-GCGGAATTCTGTTTTTATGGCTTTCAAAAGCAGAAGTAGGAG-3´ 

H-IL-1β(-2987/+570) 

For:5´-GCGAGATCTTCCCTTAGTGCCAACTATGTTTATAGCG-3´ 

BglII/ EcoRI 
Rev:5´-GCGGAATTCAGACACCTGTGTAAAAAGGAGAAAATGAGTG-3´ 

H-IL-1β(-2987/+1) 

For:5´-GCGAGATCTTCCCTTAGTGCCAACTATGTTTATAGCG-3´ 

BglII/ EcoRI 

Rev:5´-GCGGAATTCTGTTTTTATGGCTTTCAAAAGCAGAAGTAGGAG-3´ 
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Figure 4.4. Schematic representation of the human IL-1β promoter fragments and the 

corresponding luciferase activity. (A) The full-length H-IL-1β promoter (upper fragment: -

3757/+570) and five deletion fragments based on Shirakawa et al., 1993 and the Ensembl Genome 

Browser. Restriction enzyme sites are numbered relative to the transcription start site (TSS)(+1). (B, 

C) Luciferase activity in RAW 264.7 cells in basal conditions (B) and 18 h after stimulation with 100 

ng/ml LPS (C). Data (mean ± SEM for duplicate samples from four independent experiments) were 

calculated as fold induction relative to the respective basal expression. *p<0.05; **p<0.01 by one-

way ANOVA followed by Tukey’s and Dunnett’s multiple comparison tests. 

 

4.3.2 In vivo characterization of IL-1β promoter fragments  

Next, we examined if the H-IL-1β(-2987/+570) promoter fragment, showing high basal 

activity and strong LPS-induced activation was suitable for in vivo monitoring of the IL-1β 

gene transcriptional activation. We first developed a rAAV8 vector containing GFP under 

control of the H-IL-1β(-2987/+570) promoter fragment. In order to induce a detectable 
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promoter activation, we induced SE in mice (n=4) injected 2 weeks before with the AAV8-

H-IL-1β(-2987/+570)-GFP viral particles. Indeed, 24 h after KA injection, strong GFP 

fluorescence signal was observed in the hippocampal region (Figure 4.5). However, a 

prominent activation of the promoter fragment was observed in neurons (Figure 4.5, 

panels a-c) whereas astrocytes accounted only for about 15% of the total cells expressing 

GFP (Figure 4.5A, panels d-f; Figure 4.5B).  

Figure 4.5. Ectopic neuronal induction of H-IL-1β promoter fragment in neurons after KA-induced 

status epilepticus (SE). (A) Representative photomicrographs of AAV8-H-IL-1β(-2987/+570)-GFP 

transduction in neurons but not in astrocytes 2 weeks after intrahippocampal vector injection. 

Mouse brains were analyzed 24 h after KA-induced SE. GC, granule cells, h, hilus. Scale bar, 100 μm. 

(B) Percent of cell type (mean ± SEM, n=4 mice) expressing the GFP reporter gene under control of 

the H-IL-1β(-2987/+570) promoter fragment. *p<0.05 compared to astrocytes by Mann-Whitney. 

 

Subsequent immunohistochemistry in the hippocampus of SE-exposed and AAV8-H-IL-1β(-

2987/+570)-GFP-injected mice (n=3) demonstrated that the GFP reporter gene did not co-
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localize with the endogenous IL-1β expression (Figure 4.6A) since endogenous IL-1β was 

expressed in activated GFAP-positive astrocytes (Figure 4.6B).  

 

 

 

 

 

 

 

 

 

Figure 4.6. H-IL-1β promoter activation and endogenous IL-1β protein expression after KA-

induced SE. (A) Representative images of IL-1β protein expression in the hippocampus 2 weeks after 

injection of AAV8-H-IL-1β(-2987/+570)-GFP in mice (n=3) killed 24 h after KA-induced SE. The GFP 

signal does not co-localize with endogenous IL-1β expression. (B) Localization of endogenous IL-1β 

protein in GFAP-positive astrocytes in mice killed 24 h after KA. GC, granule cells, h, hilus. Scale bar 

50μm. 

 

Since this result was in contrast with the astrocytic induction of this cytokine after SE, we 

further investigated if the endogenous IL-1β promoter was activated in neurons after SE. 

To this end, we injected mice (n=5) with rAAV1/2-synI-dtTomato which labels neurons and 

2 weeks later mice were exposed to SE and killed 24 h later. RT-qPCR analysis on total 

hippocampal homogenates revealed a massive (up to 500-fold, p<0.05) of IL-1β mRNA 

induction after SE (Figure 4.7A). Subsequent RT-qPCR analysis on Tomato-expressing FACS-

sorted hippocampal neurons showed that IL-1β mRNA was not up-regulated in neurons 

(Figure 4.7B). 
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Figure 4.7. Endogenous IL-1β expression after KA-induced SE. IL-1β mRNA expression levels 

measured by RT-qPCR in hippocampal homogenates (A) and in FACS-sorted neurons (B) from mice 

killed 24 h after KA-induced SE. Data (mean ± SEM, n=5 mice each group) represent the fold-increase 

in mRNA expression levels relative to basal expression measured in vehicle-injected mice (SHAM). 

Bargrams report measures in the hippocampi ipsilateral and contralateral to the injected cortex. 

*p<0.05 compared to SHAM; #p<0.05 compared to ipsilateral by one-way ANOVA followed by 

Tukey’s multiple comparison tests. 

 

4.3.3 In vivo characterization of GFAP promoter  

We evaluated the cell specificity and transduction efficiency of the AAV8-GFAP-GFP-WPRE 

vector containing the 681bp GFAP promoter fragment injected in the hippocampus of naive 

mice (n=3). Mice were sacrificed 2 weeks after the injection and the viral spread (Figure 

4.8) and cellular expression (Figure 4.9) of the GFP reported gene were determined. The 

anteroposterior spread of the virus around the injection sites was ~ 3 mm (from -1.25 mm 

to -3.98 mm relative to bregma) while the medio-lateral spread was ~ 1 mm. The signal was 
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mainly restricted to the dentate gyrus including the molecular and polymorphic layers as 

well as in the stratum radiatum of the CA3 region (Figure 4.8). Notably, the GFP signal co-

localized with GFAP-positive astrocytes (Figure 4.9, panels a-c) but not with NeuN-positive 

neurons (Figure 4.9, panels d-f). 

Figure 4.8. Antero-posterior spread of the GFP reporter gene in the hippocampus of rAAV8-GFAP-

GFP-WPRE-injected mice. Representative fluorescence pictures depicting the hippocampal spread 

( 3 mm) of the GFP reporter gene under the control of the GFAP promoter fragment (panels a-h). 

The GFP signal was mainly localised in the molecular and polymorphic layers of the dentate gyrus 

and stratum radiatum of the CA3 region. Slices close to the injection site are depicted by asterisks 

(c1, e1). Nissl-stained photomicrographs (panels a1-h1) depict the levels of antero-posterior slice 

analysis (Allen Mouse Brain Atlas; http://mouse.brain-map.org). Scale bar 100 μm. 
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Figure 4.9. Induction of the GFAP promoter fragment in astrocytes after KA-induced SE. 

Representative photomicrographs of rAAV8-GFAP-GFP-WPRE-transduced mice (n=3) 24 h after SE. 

GFP reporter gene transduction was observed in astrocytes (a-c) but not in neurons (d-f). GC, granule 

cells, h, hilus. Scale bar, 100 μm. 

 

4.3.4 In vivo bioluminescence imaging of GFAP promoter 

To determine whether the 681bp GFAP promoter fragment could be used for in vivo 

bioluminescence imaging, rAAV8 vector particles harbouring a luciferase gene under 

control of the GFAP promoter fragment were bilaterally infused in the mouse 

hippocampus. Two weeks later, mice (n=6-11) were injected with KA in order to evoke SE. 

Twenty-four hours after SE induction, we detected a 3-fold (p<0.05) increase in 

bioluminescence signal bilaterally in the hippocampus compared to the respective basal 

signal in the same mice (Figure 4.10A, B). A further up-regulation (up to 7-fold, p<0.01) was 

observed 3 days after KA injection (Figure 4.10A, B). 
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Figure 4.10. In vivo imaging of rAAV8-GFAP-LUC-injected mice. Mice were monitored 

longitudinally 24 h and 3 days after KA-induced SE. (A) Data (mean ± SEM, n=6-11 mice) represent 

the fold-induction of bioluminescence activity in the hippocampus relative to the respective basal 

signal in each group. Basal signal did not differ inPBS-injected mice. *p<0.05, **p<0.01 compared 

to the respective basal signal by one-way ANOVA followed by Tukey’s multiple comparison tests. 

Ipsi, ipsilateral to KA injection, Contra, contralateral to KA injection referred to the injected cortex. 

(B) Representative images of mice monitored before KA injection and 24 h and 3 days later. 

 

4.4 DISCUSSION 

Astrocytic activation and induction of IL-1β are two processes which occur concomitantly 

during epileptogenesis (Maroso et al., 2011b; Vezzani et al., 2011b). So far, these 

phenomena have been investigated post-mortem in cross-sectional studies in animal 

models and they have been validated in epileptic foci surgically resected from 

pharmacoresistant human epilepsies (Aronica and Crino, 2011; Vezzani et al., 2011b). In 

vivo bioluminescence imaging is a powerful tool for performing longitudinal studies in 

animals since it allows to follow up the dynamics of these changes during epileptogenesis. 

Moreover, this approach permits to correlate the bioluminescence changes with disease 
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outcomes, and potentially with the therapeutic response to drugs. To this end, we 

developed an in vivo approach for long-term monitoring of the astrocyte activation and the 

related inflammatory response to an epileptogenic stimulus. 

We provide evidence that the IL-1β promoter sequence upstream of the start ATG contains 

important elements for promoter activation in Raw 246.7 cells following inflammatory 

stimuli. Indeed, our in vitro results showed that the three fragments harbouring the 570 

nucleotides downstream the TSS showed sufficient basal activity and were significantly 

activated by LPS. This may be due to the presence of binding sites for transcriptional factors 

that control IL-1β gene induction by LPS in this cell line. However, we observed that the 

3557 kb promoter fragment, which responds to LPS stimulation in vitro, does not reflect 

the endogenous promoter cell-specific expression following SE since the promoter 

expression was observed in hippocampal neurons rather than in astrocytes. Likely, this 

promoter fragment lacks some regulatory elements that are required for the cell-specific 

IL-1β expression upon its transcriptional gene activation and that are instrumental for 

repressing IL-1β gene activation in neurons in vivo.  

We conclude that for in vivo imaging of the IL-1β promoter, the full-length IL-1β should be 

used instead of smaller core-promoter fragments. However, due to the limited packaging 

capacity of rAAVs (maximum of 5.000 basepairs), we could not analyze the full-length IL-1β 

promoter in vivo (Dong et al., 1996; Hermonat et al., 1997). Other types of vectors should 

be considered, such as the lentiviral systems hosting larger sequences of foreign DNA. The 

use of these systems, however, requires a higher level of safety procedures; moreover, 

these vectors are mostly neurotropic although modifications of the capsid serotype may 

help to improve transfection in other cells types (Fassler et al., 2013). The development of 

transgenic mice harboring the luciferase gene under the control of the full H-IL-1β 



114 

 

promoter provides another possibility to study the whole body induction of this cytokine 

(Li et al., 2008). 

As an alternative strategy, we studied the GFAP promoter fragment since it has been 

extensively characterized before (Lee et al., 2008). This fragment exhibits high specificity 

for astrocytes and shows prominent activation after SE, as shown by in vivo imaging. We 

used rAAV8 vectors containing the GFAP promoter fragment for delivering the transgene 

expressing luciferase into the hippocampus. Using this approach, we detected a significant 

increase in bioluminescence in astrocytes that expressed IL-1β at representative time 

points of epileptogenesis.  

In conclusion, we developed an efficient in vivo imaging tool for monitoring activated 

astrocytes expressing an inflammatory phenotype after SE. This tool represents a powerful 

approach to monitor the dynamics of glial cell activation during epileptogenesis as well as 

after various acute and chronic CNS injuries associated with an inflammatory component. 
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CHAPTER 5 - CHARACTERIZATION OF ASTROCYTE ACTIVATION 

DURING EPILEPTOGENESIS 
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5.1 INTRODUCTION 

Astrocyte activation in epilepsy importantly contributes to neuroinflammation, neuronal 

network hyperexcitability and hypersynchrony thus promoting the generation and 

recurrence of seizures (Devinsky et al., 2013). Similar to microglia astrocytes have been 

identified to assume either a pro-inflammatory phenotype named A1 or an A2 anti-

inflammatory phenotype (Baldwin and Eroglu, 2017; Liddelow et al., 2017; Zamanian et al., 

2012). Reactive A1-type astrocytes release toxic compounds and pro-inflammatory 

molecules which may lead to tissue damage and neuronal cell death (Devinsky et al., 2013; 

Liddelow et al., 2017). On the other hand, A2 astrocytes upregulate neurotrophic factors 

which promote neuronal survival and synapse repair, thus suggesting a ‘’helpful’’ and 

homeostatic functions (Zamanian et al., 2012). These two types of astrocyte can be 

distinguished based on specific molecular traits. Pentraxin-3 (PTX3), for example, is an anti-

inflammatory protein expressed by A2-type astrocytes and is neuroprotective (Ravizza et 

al., 2001). TNF-α instead is upregulated in activated A1-type astroglia and contributes to 

increase neuronal excitability (Balosso et al., 2013). Similarly, to TNF-α other molecules 

potentially neurotoxic are expressed by A1-type astrocytes such as HMGB1 (Maroso et al., 

2010; Pedrazzi et al., 2007). Collectively, this evidence indicates the importance of 

monitoring astrocytic cell activation and determine their phenotype during epileptogenesis 

in order to understand when and how these cells contribute to epileptogenesis. 

In this study, we investigated the dynamics of phenotypic changes in astrocytes during 

epileptogenesis by combining immunohistochemistry, western blot and in vivo 

bioluminescence imaging approaches.  

Moreover, we also analysed whether drugs that have anti-epileptogenesis effects, as 

previously demonstrated in SE models, such as fingolimod (FTY720), modulate astrocyte 
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activation. We choose this drug since its inhibitory effects on inflammatory A1-type 

astrocytes appear to mediate the therapeutic action in animal models of epilepsy (Gao et 

al., 2012; Pitsch et al., 2018).  

FTY720 is a sphingosine-1-phosphate (S1P) analog that is phosphorylated by sphingosine 

kinase 2 to FTY720-P, the active metabolite and a ligand for S1P 1, 3, 4 and 5 receptors 

receptors (S1PRs) (Spiegel and Milstien, 2011). Microglia and astrocytes both express S1PRs 

mRNA. Loss of S1P1 through functional antagonism by FTY720-P is considered to be the 

primary mechanism of action of the drug in astrocytes (Choi et al., 2011). FTY720 removes 

S1PRs from the cell surface through irreversible internalisation, vesicular storage and 

degradation (Choi et al., 2011; Oo et al., 2007). This accounts for the amelioration of 

experimental autoimmune encephalomyelitis (EAE) by both genetic S1P1 deletion and 

exposure to FTY720 (Choi et al., 2011; Mandala et al., 2002). Interestingly, after the S1P 

receptors are internalised and plasma membrane-dependent signaling responses to 

FTY720 or S1P are reduced, the signaling activated by internalised S1P1Rs persists for hours 

(Mullershausen et al., 2009; Wu et al., 2013).  

 FTY720 was found to reduce astrocytic activation and the expression of pro-inflammatory 

cytokines and to mediate an increase in anti-inflammatory cytokines and neuroprotective 

mediators (Choi et al., 2011; Hoffmann et al., 2015; Rothhammer et al., 2017). In epilepsy 

models, FTY720 reduced astroglia activation and TNF-α expression, and decreased the 

frequency and duration of seizures in pilocarpine- and kainate-induced SE in rodents (Gao 

et al., 2012; Pitsch et al., 2018). In our study, we explored whether FTY720 modulates the 

extent of activation and the A1 vs A2 phenotype of astrocytes during epileptogenesis using 

in vivo bioluminescence imaging of astrocytes, post-mortem immunohistochemistry and 

western blot analyses in a mouse model of epilepsy. 
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5.2 SPECIFIC MATERIALS AND METHODS 

Induction of status epilepticus (SE) 

Kainic acid (0.3 μg in 0.2 μl) was unilaterally injected in the basolateral amygdala to induce 

SE (Section 3.9.1 of General materials and methods). Control mice were injected with saline 

under the same conditions but were not exposed to SE. Mice were not implanted with 

electrodes in order not to interfere with bioluminescence signal. Thus, SE was monitored 

visually by two independent investigators who observed the occurrence of behavioural 

motor seizures for at least 3 hours from KA injection, a condition required for developing 

spontaneous seizures after 7 days on average. Mice injected with KA but displaying SE 

shorter then 3 h were excluded from further analysis. 

Immunohistochemistry 

Mice (n= 5 each group) were exposed to SE and sacrificed at 2 h, 24 h, 3 and 7 days later by 

transcardial perfusion and their brains were collected for immunohistochemical evaluation 

of astrocytes (Figures 5.2 and 5.3), microglia (Figure 5.5) and expression of HMGB1, TNF-α 

and PTX3 (Figures 5.6, 5.7 and 5.8; section 3.10 of General materials and methods for 

details). The cell type expressing HMGB1, TNF-α and PTX3 was identified by co-localization 

with GFAP, CD11b or NeuN (section 3.10.4 of General materials and methods). 

In vivo bioluminescence imaging 

Mice (n=9-12) were injected with AAV8-GFAP-LUC (section 3.4 of General materials and 

methods) 2 weeks before SE induction (Section 3.9.1 of General materials and methods). 

Mice injected with saline but not exposed to SE served as controls. Mice were monitored 

using in vivo bioluminescence imaging before SE induction for baseline measurement, then 

longitudinally at 2 h, 24 h, 3 and 7 days post-SE (Figure 5.4; General materials and methods, 

section 3.11). 
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Pharmacological treatment 

Mice were injected with AAV8-GFAP-LUC 2 weeks before being exposed to SE. One hour 

after SE onset mice were randomly assigned to treatment or saline groups (n=6-12 each 

group).  FTY720 (6 mg/kg, i.p.) was injected according to a treatment schedule previously 

shown to exert anti-inflammatory and anti-epileptogenic effects: i.e., for seven consecutive 

days starting 1 h after SE onset (Figure 5.1). Mice were monitored by in vivo 

bioluminescence analysis and at the end of the last imaging session, they were sacrificed 

for post-mortem immunohistochemistry (Figures 5.9, 5.10, 5.11, 5.12 and 5.13; section 3.10 

of General materials and methods). One additional group of mice was treated with FTY720 

or saline (n=5 each group) and killed after the last imaging session (7 days post-SE). The 

hippocampi ipsilateral to the injected amygdala were dissected out and used for Western 

blot analysis of GFAP, GLT-1 and Kir4.1 (Figure 5.14; Section 3.6.2 of General materials and 

methods). 

 

 

 

 

Figure 5.1. Experimental design in SE-exposed mice treated with FTY720 and monitored by in vivo 

bioluminescence imaging (IVIS). Baseline in vivo bioluminescence imaging measurement was done 

in each mouse 1 day before SE induction (baseline) and imaging sessions were repeated in the same 

animal at 2 h, 24 h, 3 and 7 days post-SE. Mice were sacrificed at the end of the experiment (7 days 

after SE) for either immunohistochemical or western blot analysis of GFAP. Data related to this 

protocol are reported in Figures 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14). 
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Western blot  

At the end of the last bioluminescence imaging session (7 days post-SE), mice exposed to 

SE and treated with saline or FTY720 and control mice (not exposed to SE) (n=5/group) 

were perfused via the ascending aorta with 50 mM cold PBS, pH 7.4 for 1 min, then the 

hippocampi ipsilateral to the injected amygdala were dissected and homogenised for 

immunoblotting (Figure 5.14; section 3.6.2 of General materials and methods). Anti-mouse 

GFAP (1:15000), anti-rabbit GLT-1 (1:1000) and anti-rabbit Kir4.1 (1:2000) were used and 

immunoreactivity was visualised with ECL Luminata solution (Luminata forte, Western HRP 

substrate, Millipore, MA, USA) using peroxydase-conjugated anti-mouse IgG or anti-rabbit 

IgG (1:10000; Sigma, St Louis, MO, USA) as secondary antibodies (section 3.6.2 of General 

materials and methods). 

 

5.3 RESULTS 

5.3.1 Astrocyte activation 

In order to characterise the dynamics and extent of astrocyte activation during 

epileptogenesis, we assessed GFAP immunostaining in hippocampal slices of SE-exposed 

mice and their saline-injected controls (n=5 each group). In the hippocampus ispilateral to 

KA-injected amygdala, the GFAP-positive area was increased up to 2-fold (p<0.01) between 

2 h and 7 days post-SE (Figure 5.2; p<0.01) compared to time-matched controls. A delayed 

increase was observed 3 and 7 days post-SE in the homotypic contralateral area (p<0.05 

and p<0.01). 
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Figure 5.2. GFAP immunohistochemical signal in the hippocampus during epileptogenesis. (A) 

GFAP-positive area in ipsilateral and contralateral dorsal hippocampus of mice sacrificed at 2 h, 24 

h, 3 and 7 days post-SE. (B) Representative photomicrographs of corresponding hippocampal slices 

(CA1 area) stained for GFAP. Data (mean ± SEM, n=5 mice each group) *p<0.05; **p<0.01 compared 

to saline; #p<0.05; ##p<0.01 compared to 2 h and °p<0.05; °°p<0.01 compared to 24 h by one-way 

ANOVA followed by Tukey’s multiple comparison tests. sr, stratum radiatum; slm, stratum 

lacunosum-moleculare. Scale bar, 50 μm. 
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S100β-labeled astrocytes (high percentage of co-localization with GFAP) were also 

increased 3 and 7 days post-SE as shown by counting the number of postive cells and the 

area occupied by the specific signal (p<0.01) in both the ipsilateral and contralateral 

hippocampi (Figure 5.3). 

Figure 5.3. S100β-positive astrocytes in the hippocampus during epileptogenesis. (A) S100β-

positive area and (B) number of cells in the hippocampus of mice sacrificed at 2 h, 24 h, 3 days and 

7 days post-SE. (C) Representative photomicrographs of corresponding hippocampal slices (CA1 

area). Cells expressing S100β (green) were identified as GFAP-positive astrocytes (red). Co-

localization signal is depicted in yellow (insert).  Data (mean ± SEM, n=5 mice each group) **p<0.01 

compared to saline; ##p<0.01 compared to 2 h and °°p<0.001 compared to 24 h by one-way ANOVA 

followed by Tukey’s multiple comparison tests. sr, stratum radiatum; slm, stratum lacunosum-

moleculare. Scale bar, 50 μm. 

 

Next, in vivo bioluminescence imaging was used in order to monitor longitudinally the 

astrocytic cell activation at the same time points analysed by immunohistochemistry. The 

bioluminescence signal was stable over time in the control group (saline-injected mice not 

exposed to SE; n=9). In mice exposed to SE, the GFAP promoter was significantly induced 

during epileptogenesis (n=12) already 2 h post-SE (1.8-fold, p<0.05) and was further 
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increased at 24 h (4-fold, p<0.01) then declining at 3 days (2.8-fold, p<0.01) and returning 

to basal level at 7 days post-SE (Figure 5.4).   

 

 

 

 

 

Figure 5.4. In vivo bioluminescence imaging of activated astrocytes in the hippocampus during 

the epileptogenesis. Mice were injected with AAV8-GFAP-LUC and monitored longitudinally 2 h, 24 

h, 3 and 7 days after SE onset. Data (mean ± SEM, n=9-12 mice) represent fold-increase of reporter 

gene relative to the respective basal signal (before SE) in each group. Basal signal did not differ from 

control mice (saline-injected mice not exposed to SE). *p<0.05; **p<0.01 compared to respective 

basal signal; ##p<0.01 compared to 2 h; °°p<0.01 compared to 24 h; $$p<0.01 compared to 3 d by 

one-way ANOVA followed by Tukey’s multiple comparison tests. 

 

5.3.2 Microglia activation 

We also evaluated the microglia activation during epileptogenesis in order to compare with 

the astrocytic cell response. Microglia was activated as astrocytes from 2 h post-SE until 7 

days (18-fold on average, p<0.01) in the ipsilateral hippocampus (Figure 5.5), and a similar 

pattern of activation, although less pronounced, was detected in the contralateral side. 
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Figure 5.5. CD11b-positive cell activation in the hippocampus during epileptogenesis. (A) CD11b-

positive area in the ipsilateral and contralateral dorsal hippocampus of mice sacrificed at 2 h, 24 h, 

3 days and 7 days post-SE. (B) Representative photomicrographs of corresponding hippocampal 

slices stained for CD11b. Data (mean ± SEM, n=5 mice each group) **p<0.01 compared to saline; 

#p<0.05; ##p<0.01 compared to 2 h and °p<0.05 compared to 24 h by one-way ANOVA followed by 

Tukey’s multiple comparison tests. sr, stratum radiatum; slm, stratum lacunosum-moleculare. Scale 

bar, 50 μm. 

 

5.3.3 HMGB1, TNF-α and PTX3 expression in glial cells 

Next, we characterised the phenotype of the astrocytes during epileptogenesis to 

determine their A1- vs A2- phenotype. Thus, we stained hippocampal slices from the same 

mice as above (n=5) for detecting proinflammatory, ictogenic and neurotoxic molecules 

such as HMGB1 and TNF-α (markers of A1 reactive astrocytes) and PTX3, a marker of A2 

anti-inflammatory and neuroprotective astrocytes. 

We found an increased number of HMGB1-positive cells 3 and 7 days post-SE but not at 

earlier time points in both hippocampi. This signal was localized in the nuclei of neurons 

and astrocytes but not in microglia (Figure 5.6). 
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Figure 5.6. HMGB1 expression in hippocampal astrocytes and neurons during epileptogenesis. (A) 

HMGB1-positive cells in the ipsilateral and contralateral dorsal hippocampus of mice sacrificed at 2 

h, 24 h, 3 days and 7 days post-SE. (B) Photomicrographs of corresponding hippocampal slices 

stained for HMGB1. (C) HMGB1 nuclear signal (green) co-localises with the astrocytic marker GFAP 

(red) and the neuronal marker NeuN (red) but not with the microglial marker CD11b (red). Co-

localization signal is depicted in yellow. DAPI-positive nuclei are shown in blue. Data (mean ± SEM, 

n=5 mice each group) **p<0.01 compared to saline; ##p<0.01 compared to 2 h by one-way ANOVA 

followed by Tukey’s multiple comparison tests. sr, stratum radiatum; slm, stratum lacunosum-

moleculare. Scale bar, 50 μm. 

 

While TNF-α staining was virtually absent in control slices, the TNF-α-positive area 

increased from 24 h (8330 ± 833 μm2) until 7 days (53805 ± 8195 μm2) post-SE (Figure 5.7). 

TNF-α-positive cells were detected in both hippocampi from 24 h (1245 ± 167, ipsilateral 

side) until 3-7 days post-SE (1764 ± 310). 



126 

 

Figure 5.7. TNF-α expression in hippocampal astrocytes during epileptogenesis. (A) Area occupied 

by the TNF-α signal and (B) the number of cells in the ipsilateral and contralateral dorsal 

hippocampus of mice sacrificed at 2 h, 24 h, 3 days and 7 days post-SE. (C) Photomicrographs of 

corresponding hippocampal slices depicting TNF-α-positive cells. (D) TNF-α (green) co-localises with 

the astrocytic marker GFAP (red) but not with microglia cells marked by CD11b (red). Co-localization 

signal is depicted in yellow. Data (mean ± SEM, n=5 mice each group) °°p<0.01 compared to 24 h by 

one-way ANOVA followed by Tukey’s multiple comparison tests. sr, stratum radiatum; slm, stratum 

lacunosum-moleculare. Scale bar, 50 μm. 

 

PTX3 was not detected in control slices until 24 h post-SE (Figure 5.8). However, 3 days 

post-SE, a strong signal was detected in both hippocampi (183212 ± 55095 μm2, ipsilateral 

side) and this signal further increased at 7 days post-SE (698829 ± 64316 μm2, ipsilateral 

hippocampus). PTX3 was co-expressed with the astrocytic marker GFAP at all time points 

(Figure 5.8, insert).   
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Figure 5.8. PTX3 expression in hippocampal astrocytes during epileptogenesis. (A) Area occupied 

by the PTX3 signal and (B) PTX3 expression in cells with glial morphology at the different time points 

during epileptogenesis. Cells expressing PTX3 (green) were identified as GFAP-positive astrocytes 

(red). Co-localization signal is depicted in yellow (insert). Data (mean ± SEM, n=5 mice each group) 

**p<0.01 compared to 3 days by Mann-Whitney. sr, stratum radiatum; slm, stratum lacunosum-

moleculare. Scale bar, 50 μm. 

 

5.3.4 Effect of FTY72 treatment on astrocyte activation 

The effect of FTY720 (6 mg/kg i.p., 7-day treatment; protocol in Figure 5.1) on astrocyte 

activation during epileptogenesis was assessed first by in vivo bioluminescence imaging 

reflecting GFAP promoter activation (n=9-12). FTY720-treated mice showed a significantly 

higher increase in GFAP promoter activity from 24 h until 7 days post-SE (p<0.01) compared 

to SE-exposed mice injected with saline. At 2 h the promoter activity in FTY720-treated 

mice did not differ significantly from saline controls (p=0.08) whereas it was significantly 

enhanced in SE-exposed mice (p<0.05) (Figure 5.9). 
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Figure 5.9. FTY720 effect on GFAP promoter activity in the hippocampus during epileptogenesis 

assessed by in vivo bioluminescence imaging. AAV8-GFAP-LUC-injected mice were monitored 

longitudinally 2 h, 24 h, and 7 days after SE onset and treated either with saline (KA) or FTY720 

(KA+FTY; 6 mg/kg; i.p. for 7 days). Control mice (n=9) were injected with saline but not exposed to 

SE. Data (mean ± SEM, n=9-12 mice) represent fold-induction of the reporter gene relative to the 

respective basal signal of each group (before SE). *p<0.05 **p<0.01 compared to control group and 

#p<0.05 ##p<0.01 compared to KA+Saline group by one-way ANOVA followed by Tukey’s multiple 

comparison tests. 

 

Next, we analyzed the effect of FTY720 on astrocytes activation and their phenotype by 

immunohistochemical analysis of mouse hippocampi after 7-day treatment. Three groups 

of mice were studied: control mice not exposed to SE and injected with saline (n=6), SE-

exposed mice treated with either saline (n=9) or FTY720 (n=6). GFAP-postitive area was 

higher in SE-exposed mice (p<0.01) and FTY720 further increased the activated GFAP-

positive area compared to the SE-exposed mice (p<0.01; Figure 5.10). FTY720 did not 

modify the S100β-positive area (ipsilateral hippocampus; Saline: 51364 ± 3424 μm2; KA: 

189134 ± 28531 μm2; KA+FTY720: 179365 ± 18644 μm2; Figure 5.11A) or the number of 

S100β-positive cells (ipsilateral hippocampus; Saline: 1852 ± 84; KA: 2873 ± 64; KA+FTY720: 

2927 ± 77; Figure 5.11B). 
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Figure 5.10. FTY720 effect on GFAP-positive astrocytes. (A) GFAP-activated area in mice exposed 

to SE and treated with saline or FTY720 (6 mg/kg; i.p. for 7 days). (B) Representative 

photomicrographs of hippocampal slices from control mice (injected with saline but not exposed to 

SE) and SE-exposed mice treated with either saline or FTY720. Ipsilateral hippocampus (CA1 area) is 

depicted. Data (mean ± SEM, n=6-9 mice each group) **p<0.01 compared to control and ##p<0.01 

compared to KA+Saline by one-way ANOVA followed by Tukey’s multiple comparison tests. sr, 

stratum radiatum; slm, stratum lacunosum-moleculare. Scale bar, 50 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. FTY720 effect on S100β-positive astrocytes. (A) S100β-activated area and number of 

positive cells in mice exposed to SE and treated with saline or FTY720 (6 mg/kg; i.p. for 7 days). (B) 

Representative photomicrographs of hippocampal slices from control mice (injected with saline but 



130 

 

not exposed to SE) and SE-exposed mice treated with either saline or FTY720. Ipsilateral 

hippocampus (CA1 area) is depicted. Data (mean ± SEM, n=6-9 mice each group) **p<0.01 

compared to control by one-way ANOVA followed by Tukey’s multiple comparison tests. sr, stratum 

radiatum; slm, stratum lacunosum-moleculare. Scale bar, 50 μm. 

 

Similarly, no effects of FTY720 were detected on TNF-α-positive area (ipsilateral 

hippocampus; Saline: 53805 ± 8195 μm2; KA+FTY720: 56890 ± 6790 μm2; Figure 5.12A) or 

the number of TNF-α-positive cells (ipsilateral hippocampus; Saline: 1764 ± 310; 

KA+FTY720: 1672 ± 147; Figure 5.12B) and on PTX3 expression (ipsilateral hippocampus; 

Saline: 698829 ± 64316 μm2; KA+FTY720: 698435 ± 102019 μm2; Figure 5.13).   

Figure 5.12. FTY720 effect on astrocitic TNF-α expression. (A) TNF-α-positive area and number of 

TNF-α-positive astrocytes in SE-exposed mice treated with either FTY720 (6 mg/kg; i.p.) or saline. 

Controls are mice injected with saline but not exposed to SE.  (B) Representative photomicrographs 

of corresponding hippocampal slices depicting TNF-a-positive astrocytes. Ipsilateral hippocampus 

(CA1 area) is depicted.  Data (mean ± SEM, n=6-9 mice each group). sr, stratum radiatum; slm, 

stratum lacunosum-moleculare. Scale bar, 50 μm. 
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Figure 5.13. FTY720 effect on A2-type astrocytes. (A) PTX3-positive area and (B) representative 

photomicrographs of hippocampla slices (CA1 area) from control mice and SE-exposed mice treated 

with either saline or FTY720 (6 mg/kg; i.p for 7 days). Ipsilateral hippocampus (CA1 area) is depicted.  

Data (mean ± SEM, n=6-9 mice each group). sr, stratum radiatum; slm, stratum lacunosum-

moleculare. Scale bar, 50 μm. 

 

In line with the bioluminescence and immunohistochemical analysis, GFAP levels measured 

by western blot in the hippocampus (n=5) showed a 2-fold increase in protein levels 

(p<0.01) in SE-exposed mice which was higher in mice treated with FTY720 for 7 days 

(p<0.05) (Figure 5.14A). We also measured the protein levels of the GLT-1 glutamate 

transporter and Kir4.1 channel in the same brain homogenates used above to determine 

whether FTY720 treatment may enhance the buffering capacity of astrocytes which is 

compromized during epileptogenesis. We found a 50% decrease (p<0.05) in both proteins 

in SE-exposed mice as previously shown (Hubbard et al., 2016; Ueda et al., 2001; Zurolo et 

al., 2012) as compared to control mice (saline-injected but not exposed to SE) but FTY720 

did not rescue this decrease (Figure 5.14B,C). 
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Figure 5.14. GFAP, GLT-1 and Kir4.1 levels in the hippocampus during epileptogenesis in mice 

treated with FTY720 or saline. (A) GFAP (B) GLT-1 and (C) Kir4.1 protein levels 7 days post-SE in 

mice treated with FTY720 (6 mg/kg; i.p.) or saline.  Representative bands corresponding to GFAP 

levels in the hippocampus ipsilateral to KA-injected amygdala. Controls are mice treated with saline 

but not exposed to SE.  GFAP protein (50 kD), GLT-1 protein (70 kD), Kir4.1 protein (50 kD) and β-

actin (43 kD). FTY720 (6 mg/kg; i.p.) or saline was administered for 7 days during epileptogenesis 

Data (mean ± SEM, n=5 mice each group) are optical density values of the relevant bands normalized 

to the corresponding β-actin or GFAP values. *p<0.05; **p<0.01 compared to control and #p<0.05 

compared to KA by one-way ANOVA followed by Tukey multiple comparison tests. 

 

5.4 DISCUSSION 

Astrocytes have a key role in the innate immune response to epileptogenic insults and they 

are also pivotal cells for maintaining brain homeostasis through regulation of ions, 

metabolites and neurotransmitters (Aronica and Crino, 2011; Danbolt, 2001; Olsen et al., 

2015). During epileptogenesis, numerous pathologic changes occur in astrocyte functions. 

These alterations include increased expression of GFAP denoting their activation state and 

reduced expression of proteins involved in the regulation of extracellular potassium ([K+]o) 

and glutamate. These changes lead to altered tissue homeostasis that results in increased 

neuronal excitability and promote seizure generation (Seifert et al., 2010; Steinhäuser and 

Seifert, 2012). However, there is also evidence of compensatory mechanisms activated in 

astrocytes in order to balance the deleterious alterations occurring during the disease 

course. These include, secretion of growth factors that mediate neuronal survival, 
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generation of anti-inflammatory and proresolving lipids and proteins and PTX3 expression  

that  may  confer  neuroprotection (Borges et al., 2003; Fellin, 2009; Nagao et al., 2013; Pan 

et al., 2018; Ravizza et al., 2001). Thus, understanding how astrocytes respond to 

epileptogenic insults that lead to seizures and the dynamics of these detrimental or 

compensatory responses is important to understand their role in the disease mechanisms, 

hence for the development of drugs that specifically target the pathologic phenotype of 

astrocytes.  

The GFAP protein staining rapidly and progressively increases during epileptogenesis 

indicating that astrocytic activation precedes the onset of the spontaneous seizures. 

Microglia activation also occurs in parallel with GFAP-positive astrocytes showing a rapid 

increase that progresses over time and persists for at least one week post-SE. 

S100 was also induced in astrocytes but with a delay of days compared to GFAP possibly 

revealing the late activation of a specific set of astrocytes. In accord, these two astrocytic 

markers were previously reported to follow a different patter of induction in the 

hippocampus after KA, a phenomenon linked to distinct regulatory mechanisms of the 

respective gene expression (Bendotti et al., 2000). S100 is a calcium-binding protein 

(Donato, 2001; Heizmann, 2002) and its upregulation in the late epileptogenesis phase may 

reflect the activation of a population of astrocytes attempting to buffer the intracellular 

calcium increase which induces gliotransmitters release such as glutamate and D-serine 

(Araque et al., 2014; Bazargani and Attwell, 2016; Yang et al., 2003) or ATP and TNF-α 

(Agulhon et al., 2008, 2012). These gliotransmitters contribute to neuronal network 

synchronization and to neuroinflammation thus promoting seizure generation (Devinsky et 

al., 2013; Robel and Sontheimer, 2016). Notably, S100can be also released extracellularly 

by astrocytes and relatively high concentrations (µM) exert excitatory and neurotoxic 
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effects (Nishiyama et al., 2002; Rothermundt et al., 2003; Sakatani et al., 2008); moreover, 

its hippocampal levels correlate with the severity of epilepsy in animal models (Filibian et 

al., 2012; Pascente et al., 2016). Neurotrophic and gliotrophic effects of relatively low 

S100concentrations (nM) have also been reported (Rothermundt et al., 2003).  

Overall, the early vs late activation of GFAP- and S100-positive astrocytes, respectively 

supports the heterogeneity of the glial cell populations (Höft et al., 2014; Matthias et al., 

2003; Schitine et al., 2015) which may subserve different functions during epileptogenesis. 

It would be important to selectively interfere with these two cell populations to better 

understand their roles. In this respect, the induction of GFAP-positive astrocytes per se 

induces hippocampal hyperexcitability and spontaneous seizures (Ortinski et al., 2010; 

Robel et al., 2015) thus supporting that these cells contribute to the disease and their 

pathologic phenotype during epileptogenesis overcomes their homeostatic functions. 

When interpreting our results, we should also consider that S100labels the soma and 

large astrocytic processes while GFAP is visible also in fine processes, therefore the GFAP 

staining may represent a more sensitive marker for slight morphological modifications of 

astrocytes which cannot be detected by assessing S100 

In vivo bioluminescence imaging of astrocyte activation supports the immunohistochemical 

evidence. The GFAP promoter induction follows the temporal pattern observed by 

measuring GFAP in histological specimens. However, promoter induction elapses between 

3 and 7 days post-SE while the GFAP protein is still upregulated at 7 days. This result is 

compatible with the slow turnover rate of GFAP which levels outlast the gene promoter 

activity (Chiu and Goldman, 1984; DeArmond et al., 1986; Morrison et al., 1985; Price et 

al., 2010).  
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The in vivo monitoring of the GFAP promoter activation provides therefore a longitudinal 

information on the timing of morphological activation of astrocytes although it does not 

directly inform on the A1 or A2 phenotype of these cells or the molecules they might 

release upon cell activation. 

Our cross-sectional study addressed the astrocytic phenotype during epileptogenesis by 

comparing the expression of both A1 and A2 markers. Among the A1 markers we found an 

upregulation in nuclear HMGB1 indicating increased gene transcription of this ictogenic 

and neurotoxic mediator at late time points (3 and 7 days post-SE) matching the timing of 

activation of the S100-positive cells. The ictogenic cytokine TNF-α also showed a relatively 

late induction (from 24 h post-SE) in astrocytes. PTX3 expression (A2-phenotype marker) 

was detectable at 3 and 7 days post-SE. The PTX3 promoter displays a NF-кB-sensitive 

element which responds to both TNF-α and IL-1β (Basile et al., 1997; Goodman et al., 1996). 

Indeed, we showed that PTX3 induction in astrocytes follows that of TNF-α. We observed 

therefore a mixed induction of pathologic (HMGB1 and TNF-α) and homeostatic (PTX3) 

molecules at overlapping time points during epiletogenesis. In accord, both the A1- and A2-

phenotype markers were detected 24 h (TNF-α) and 3 days (HMGB1 and PTX3) but not 

earlier. This late induction (3 and 7 days post-SE) by matching the activation of S100β-

positive astrocytes suggests that it occurs predominantly in these cells although we were 

not able to co-localize S100β with A1- and A2-phenotype markers due to incompatibility of 

the primary antibodies. Although S100β signal highly co-localized with GFAP in astrocytes 

as all A2 and A1 markers, GFAP-positive, but not S100β-positive, astrocytes are rapidly 

activated within 2 h after SE. It would be very informative to determine which are the early 

markers of activated GFAP-positive astrocytes within hours of SE onset by analysing gene 

transcription in cell sorted cells (experiments are in progress).  



136 

 

In the second part of our study, we assessed the effect of FTY720 on astrocyte activation 

and their phenotype since this drug provided significant anti-epileptogenesis and 

neuroprotective effects in different animal models which were in part attributed to anti-

inflammatory actions on activated astrocytes (Gao et al., 2012; Pitsch et al., 2018). Our in 

vivo and ex vivo results showed lack of effect of FTY720 on both astrocyte activation and 

proliferation following a treatment schedule that provided anti-epileptogenic effects. 

Similarly, FTY720 did not modify the pro-inflammatory phenotype of astrocytes neither 

boosted the neuroprotective PTX3 expression. On the contrary, FTY720 further increased 

the astrocyte's promoter induction as shown by in vivo bioluminescence analysis reflecting 

activation of pre-existing cells rather than proliferation of new cells since FTY720 treatment 

increased the GFAP-positive area but not the number of positive cells (see also Wu et al., 

2013). However, cell activation was not accompanied by a concomitant induction of GLT-1 

or Kir4.1 therefore indicating the persistence of dysfunctional astrocytes. In accordance 

with our results, FTY720 did not change the mRNA or protein levels of GLT-1 in astrocyte 

cell culture after a pro-inflammatory stimulus (Lee et al., 2017). However, in a murine EAE 

model FTY720 treatment restored the reduced expression of GLT-1 presumably via anti-

inflammatory mechanisms (Lee et al., 2017). The lack of effect of FTY720 on GLT-1 protein 

levels in our model is therefore compatible with the lack of anti-inflammatory effects. 

FTY720 may activate astrocytes primarily through S1P3 and S1P5 receptors whereas S1P1 

signaling appears to inhibit astrogliosis in organotypic cerebellar slice cultures modeling MS 

possibly by inducing the release of factors that modulate the astrocytic cell response 

(Miron et al., 2010). Indeed, S1Ps receptor engagement on astrocytes can induce growth 

factor production which in turn results in increased S1P5 levels (Furukawa et al., 2007; 

Healy et al., 2013; Miron et al., 2010; Sato et al., 1999). These mechanisms may be 
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operative also in our experimetal conditions. Release of growth factors from activated 

astrocytes even in an inflamed environment can afford neuroprotection as suggested by 

evidence in a demyelination model (Janssen et al., 2015).  

The increased GFAP promoter activation and protein levels induced by FTY720 may be 

caused also by epigenetic alterations mediated by the drug. Histone acetylation controls 

GFAP expression (Asano et al., 2009; Hsieh et al., 2004; Zhou et al., 2011). The acetylation 

state of histone proteins is regulated by histone acetylase and histone deacetylase (HDAC) 

enzymes. Inhibition of HDACs results in increased histone acetylation. Indeed, treatment 

with the HDAC inhibitor valproic acid increased histone H3 acetylation at the STAT3-binding 

site leading to enhanced STAT3 binding to the GFAP promoter resulting in gene activation 

(Asano et al., 2009; Cheng et al., 2011; Nakashima and Taga, 2002; Sauvageot and Stiles, 

2002; Taga and Fukuda, 2005). Similarly, nuclear FTY720-P binds to the active site of HDACs 

and inhibits their activity (Gardner et al., 2016; Hait et al., 2014). Moreover, both S1P 

receptor and FTY720-P inhibit HDAC activity and increase histone acetylation at H3K9, 

H4K8, H3K18, and H3K23 (Ebenezer et al., 2016, 2017; Gardner et al., 2016; Hait et al., 

2009, 2015). 

Overall, our study does not support that the anti-epileptogenic effects of FTY720 shown in 

in vivo models are mediated by drug's inhibition of GFAP- and S100-positive astrocytes 

or rescue of their proinflammatory phenotype. Although this mechanism appears to 

mediate the reduction of spontaneous seizure frequency when FTY720 is administered in 

the chronic epilepsy phase (Pitsch et al., 2018), it is unlikely to be involved in the 

epileptogenesis phase preceding the onset of the disease. 
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6.1 EXPERIMENTAL ANIMALS 

Adult C57BL/6N male mice (~50 days, 20-25 g) were obtained from Charles River (Italy) and 

Sprague–Dawley male rats were purchased from Charles River Laboratories (St. Constant, 

Quebec, Canada). Animals were housed at a constant room temperature (23°C) and relative 

humidity (60 ± 5%) with free access to standard food pellet and water, and with a fixed 12 

h light/dark cycle. Adult animals were housed two or four per cage and environmental 

enrichment was used. TICAM knock-out mice were provided by Dr. Cecilia Garlanda 

(Istituto Clinico Humanitas –IRCCS, Rozzano, Italy) and were housed at the same conditions 

described above. 

 

6.2 ANIMAL CARE 

Procedures involving animals were conducted at Istituto di Ricerche Farmacologiche Mario 

Negri IRCCS which adheres to the guidelines of the Italian Governing Law (D.lgs 26/2014; 

Authorization n.19/2008-A issued March 6, 2008 by Ministry of Health); Mario Negri 

Institutional Regulations and Policies providing internal authorization for persons 

conducting animal experiments (Quality Management System Certificate - UNI EN ISO 

9001:2008 - Reg. No. 6121); the NIH Guide for the Care and Use of Laboratory Animals 

(2011 edition); EU directives and guidelines (EEC Council Directive 2010/63/UE) and the 

institutional policies and guidelines of Sainte-Justine Hospital Research Centre and 

Université de Montréal (Montreal, QC, Canada). The Statement of Compliance (Assurance) 

with the Public Health Service (PHS) Policy on Human Care and Use of Laboratory Animals 

has been recently reviewed (9/9/2014) and will expire on September 30, 2019 (Animal 

Welfare Assurance #A5023-01). 
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6.3 IN VIVO MODEL OF ICTOGENESIS 

6.3.1 Intrahippocampal kainic acid in mice 

Adult male mice were surgically implanted under general gas anesthesia (1-3% isoflurane 

in O2) and stereotaxic guidance. Two nichrome-insulated bipolar depth electrodes (60 μm 

OD) were implanted bilaterally into the dorsal hippocampus (from bregma, mm: nose bar 

0; anteroposterior –1.8, lateral 1.5 and 2.0 below dura mater; Franklin and Paxinos, 2008). 

A 23-gauge cannula was unilaterally positioned on top of the dura mater and glued to one 

of the depth electrodes for the intrahippocampal injection of kainic acid (KA; see later). 

Two screw electrodes were positioned over the nasal sinus and the cerebellum, and used 

as ground and reference electrodes, respectively. The electrodes were connected to a 

multipin socket and, together with the injection cannula secured to the skull by acrylic 

dental cement. The correct position of the electrodes and injection needle in each mouse 

was evaluated by post-hoc histological analysis of brain tissue at the end of the 

experiments. 

Intrahippocampal injection of KA in freely moving mice was done 7 days after surgery as 

previously described (Balosso et al., 2008; Iori et al., 2017; Maroso et al., 2010). Briefly, KA 

(7 ng/0.5 μl; Sigma, Saint Louis, MI, USA) was dissolved in 0.1 M phosphate-buffered saline 

(PBS, pH 7.4) and injected unilaterally in the dorsal hippocampus by using a needle 

protruding 2.0 mm from the bottom of the guide cannula. The needle was left in place for 

one additional minute to avoid backflow through the guide cannula and then was removed. 

Mice were freely moving for the rest of the experiment. 

This dose of KA induces EEG ictal episodes in the hippocampus in 100% of mice without 

mortality (Balosso et al., 2008; Maroso et al., 2010). Selective cell loss in CA3 region of the 

injected hippocampus is observed 7 days after KA injection (Balosso et al., 2005, 2008; 
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Ravizza et al., 2006b). Previous experiments demonstrated that this dose of KA provokes 

seizures in rodents that could be either inhibited or exacerbated by pharmacological or 

genetic interventions (Balosso et al., 2005, 2008; Maroso et al., 2010, 2011b; Vezzani et al., 

2000). Thus, this model is suitable, and sensitive enough, to detect changes in seizure 

activity determined by specific target manipulation. 

Figure 6.1. Experimental model of acute seizures and related injection protocol. Brain atlas plate 

depicting kainic acid (KA, 7 ng/0.5 µl) unilateral injection site (black arrow) and the depth bipolar 

recording electrode that was placed in the hippocampus (green line) bilaterally. Schematic skull 

reproduction shows surface electrode placement (green circles) and the position of the guide 

cannula for intrahippocampal injection of KA (black circle). Representative EEG tracings depicting 

baseline recordings (top) and ictal activity after KA injection (bottom) simultaneously occurring in 

the left (LHP) and right (RHP) hippocampus in freely moving mice. 

 

6.3.2 Seizure assessment and quantification 

EEG seizures induced by intrahippocampal injection of KA in freely-moving mice have been 

extensively described before (Balosso et al., 2005, 2008; Ravizza et al., 2006b). A minimum 

of 30 min recording was done before KA injection to assess the basal EEG activity, and then 

recording continued for 180 min after KA injection. At least a 30 min recording similar to 

baseline was required before ending the experiment. Ictal episodes are characterized by 

high-frequency (7-10 Hz) and/or multispike complexes and/or high-voltage (700 µV-1.0 
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mV) synchronized spikes simultaneously occurring in the injected and contralateral 

hippocampi (Figure 8.1). Spiking activity may occur between seizures and after seizures 

subside. Quantification of seizure activity was done by measuring the time elapsed from 

KA injection to the occurrence of the first EEG seizure (onset), the number of seizures and 

the total duration of seizures (sum of the duration of every ictal episode during the EEG 

recording period). Seizures occur with an average latency of 10 min from KA injection, then 

recurred for about 90 min from their onset, and were associated with motor arrest of the 

mice.  

 

 

 

 

Figure 6.2. EEG tracings in KA-induced acute seizures. Representative EEG tracings depicting 

baseline recordings (top) and ictal activity after unilateral intrahippocampal KA injection (bottom) 

simultaneously occurring in the left (LHP) and right (RHP) hippocampus in freely moving mice (Iori 

et al., 2013). 

 

6.4 INTRACEREBROVENTRICULAR ADMINISTRATION OF DRUGS 

Mice were surgically implanted under general gas anesthesia (1-3% isoflurane in O2) and 

stereotaxic guidance (Iori et al., 2013; Maroso et al., 2010) with a guide cannula positioned 

on top of the dura mater (from bregma, mm: nose bar 0; anteroposterior +0.3, lateral 0.9) 

(Franklin and Paxinos, 2008) ipsilateral to the intrahippocampal injection of KA one week 

before treatments. Poly I:C (tlrl-pic, Invivogen) was dissolved in sterile PBS (10 mg/1.5 ml) 

and injected at doses of 33 μg/5 μl, 10 μg/1.5 μl, 1 μg/1.5 μl and 0.1 μg/1.5 μl,  

intracerebroventricularly (i.c.v., 0.5 μl/min) in freely moving mice using a 30-gauge 

injection needle protruding 2.3 mm from the bottom of the guide cannula connected to a 
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10 μl Hamilton microsyringe via PE20 tubing, according to convection-enhanced delivery 

method (Gasior et al., 2007). At the end of infusion, the needle was left in place for one 

additional minute to avoid backflow through the guide cannula, then gently removed.  

 

6.5 INTRAHIPPOCAMPAL ADMINISTRATION OF DRUGS 

Mice were surgically implanted under general gas anesthesia as described above (Section 

6.4) with a guide cannula positioned on top of the dura mater at the same position as for 

intrahippocampal injection of KA (from bregma, mm: nose bar 0; anteroposterior –1.8, 

lateral 1.5) (Franklin and Paxinos, 2008) one week before treatments. Recombinant mouse-

IFNβ (8234-MB, R&D Systems) was dissolved at 100ug/ml in sterile PBS containing 0.1% 

BSA and injected at 50 IU, 500 IU or 5000 IU intra-hippocampally (i.h., 0.5 μl/min, 0.5 μl in 

total) in freely moving mice over 1 min using a 30-gauge injection needle protruding 2.0 

mm from the bottom of the guide cannula connected to a 10 μl Hamilton microsyringe via 

PE20 tubing, as described above (Section 6.4).  

 

6.6 IMMUNOHISTOCHEMISTRY 

6.6.1 Immunohistochemical studies from in vivo preparations 

Mice were deeply anaesthetised with ketamine (75 mg/kg) and medetomidine (0.5 mg/kg) 

and perfused via the ascending aorta with 50mM cold PBS, pH 7.4 and then with 4% 

paraformaldehyde (Merck, Darmstadt, Germany) in PBS. Brains were removed and post-

fixed for 90 min at 4°C and then transferred to glucose solution 20% in PBS for 24 h at 4°C. 

Then brains were frozen by immersion in isopentane at -45°C for 3 min and stored at -80°C 

until assayed. Using a cryostat serial coronal sections (40 μm) were cut and collected from 

-0.94 to -2.80 mm from bregma (Franklin and Paxinos, 2008). Two series of 30 sections each 
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were prepared and three slices per animal were used for GFAP and CD11b staining. Briefly, 

sections were incudated for 1h at RT with 10% normal goat serum, 1% Triton X-100 in Tris-

buffered saline 0.1 m, pH 7.4, then overnight at 4°C with the mouse anti-GFAP (MAB3402, 

Merck, Germany; 1:3500) to mark astrocytes, or rat anti-CD11b (1:1000, MAC-1, Serotec; 

MCA719, Clone 5C6) to mark microglia. Visualization of the signal was done with the 

Vectastain ABC kit (Vector Laboratories), with diaminobenzidine (DAB; or nickel-intensified 

DAB for IL-1β) as chromogen. Matching slices at comparable levels from control mice and 

mice injected with Poly I:C were compared in order to evaluate glia activation.  

Tissue preparation for TLR3 staining differ, since TLR3 antibody does not react with the 

specific antigen in PFA-fixed slices.  Therefore, mice were perfused for 1 min via the 

ascending aorta with 50mM cold PBS in order to remove blood from brain capillaries and 

their brains were carefully removed from the skull and rapidly frozen in −50 °C isopentane 

for 3 min. Serial coronal sections of 14 μm were cut on a cryostat throughout the septal 

extension of the hippocampus (−1.22 to −2.54 mm from bregma; Franklin and Paxinos, 

2008), collected on lysine-coated slides, fixed in acetone for 10 min and kept at −20 °C until 

use.  

Signal in the hippocampus was captured at 20X using a BX61 microscope equipped with 

motorized and digitized platform (Virtual Slider Microscope, Olympus, Germany) and one 

field representing the CA1 area was used for representation. 

 

6.6.2 TLR3 

Slides were incubated at room temperature for 10 min with 0.03% H2O2. After 3 washes in 

PBS slides were incubated with 10% fetal bovine serum (FBS) and 4% BSA in PBS. Then, 

slides were incubated at 4°C overnight in the same solution with rabbit polyclonal anti-TLR3 
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antibody (1:75, IMGENEX, San Diego, CA, USA; IMG-516). Immunoreactivity was tested by 

the avidin–biotin–peroxidase technique (Vector Labs, Burlingame, USA) using DAB as 

chromogen. Sections were dried, dehydrated in graded alcohols, and coverslipped.  

Two additional slides from 5 randomly chosen animals were used for double 

immunostaining to identify the cells expressing TLR3 (Chapter 7). After incubation with the 

primary antibody against TLR3, slices were incubated for 1 h with anti-rabbit secondary 

antibody conjugated with Alexa488 (1:500; Molecular Probes, Leiden, The Netherlands) 

and then overnight with primary antibody against GFAP (1:3500, Chemicon, Temecula, CA, 

USA; #MAB3402) and fluorescence was detected using secondary antibody conjugated 

with Alexa546 (1:500, Molecular Probes, Leiden, The Netherlands). Slide-mounted sections 

were examined with an Olympus Fluoview laser scanning microscope (microscope BX61 

and confocal system FV500) using excitations of 488 nm (Ar laser), 546 nm (He-Ne green 

laser) for fluorescein and Alexa546 respectively. 

 

6.7 RNA ISOLATION AND REAL-TIME QUANTITATIVE POLYMERASE CHAIN 

REACTION 

For RNA isolation, frozen hippocampi dissected from mice perfused via the ascending aorta 

with 50mM cold PBS for 1 min, were homogenized in Qiazol Lysis Reagent (Qiagen Benelux, 

Venlo, The Netherlands). The total RNA including the miRNA fraction was isolated using the 

miRNeasy Mini kit (Qiagen Benelux, Venlo, the Netherlands) according to manufacturer’s 

instructions. The concentration and purity of RNA were determined at 260/280 nm using a 

high-speed microfluidic UV/VIS spectrophotometer QIAxpert (Qiagen, Milano, Italy) and 

the integrity and quality of RNA was evaluated by 4200 Tapestation (Agilent Technologies, 

Santa Clara, CA, USA).  
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cDNA was synthesized from 1000 ng RNA using the high capacity cDNA reverse 

transcription kit (Applied Biosystems, California, USA) following the manufacturer’s 

protocol (Applied Biosystems, California, USA). RT-qPCR experiments were run in triplicate 

for each case to assess technical variability using 384-well reaction plates using an 

automatic liquid handling station (epMotion 5075LH, Eppendorf, Hamburg, Germany), on 

an Applied Biosystems 7900HT System (Applied Biosystems, California, USA). cDNA was 

analyzed using Applied Biosystems TaqMan gene expression assays (IL-1β, NF-kB, HMGB1, 

TLR3, IRF3, IFNAR1, IFN-β, AHR, CYP1B1 and SOCS2) according to protocol’s instructions.  

CT values were obtained using manual threshold and baseline, analyzed using the 2-ΔΔCt 

method and normalized using geometric mean of 3 independent house-keeping genes 

(hprt1, pdg1, sv2b). 

RT-qPCR measurements were performed by Dr. Ilaria Craparotta, Translational Genomic 

Unit, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, 

Milan, Italy. 

 

6.8 ELECTROPHYSIOLOGY 

6.8.1 Acute hippocampal slices  

Mice were killed by cervical dislocation and brains quickly removed and placed in ice-cold 

modified artificial cerebrospinal fluid (aCSF) containing the following (in mM): 87 NaCl, 2.5 

KCl, 1 NaH2PO4, 75 sucrose, 7 MgCl2, 24 NaHCO3, 11 D-glucose, and 0.5 CaCl2 and bubbled 

with 95% O2 and 5% CO2. Coronal brain slices (350 um thick) were cut with vibrating-blade 

microtome VT1000s (Leica Microsystems GmbH). Slices were then transferred into an 

incubating chamber and submerged in aCSF containing (in mM): 130 NaCl, 3.5 KCl, 1.2 

NaH2PO4, 1.3 MgCl2, 25 NaHCO3, 11 D-glucose, 2 CaCl2 and constantly bubbled with 95% O2 



149 

 

and 5% CO2 at room temperature. Slices were incubated in this condition for at least 1 h, 

then transferred in a submerged recording chamber, perfused with oxygenated aCSF at a 

rate of 2 ml/min and a constant temperature of 28-30°C. Extracellular recordings of 

population spikes (PS) were obtained in CA1 pyramidal layer using glass micropipettes filled 

with 3 M NaCl. Stimulation of Schaffer collaterals was delivered by a Constant Voltage 

Isolated Stimulator (Digitimer Ltd., Welwyn Garden City, UK) through bipolar twisted Ni/Cr 

stimulating electrode. PS amplitude was measured as the amplitude of the first negative 

deflection overriding the field EPSP waveform. The input-output curves were plotted as the 

relationship of PS amplitude versus stimulus intensity (2V steps). Four consecutive PS were 

averaged for each stimulus intensity. Data were amplified and filtered (low filter 10 Hz, high 

filter 3 kHz) by a DAM 80 AC Differential Amplifier (World Precision Instruments, Sarasota, 

FL, USA), and digitized at 10 kHz by a Digidata 1322 (Molecular Devices, Foster City, CA, 

USA). 

Electrophysiological measurements were performed by Dr. Milica Cerovic, Laboratory of 

Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS - Istituto di 

Ricerche Farmacologiche Mario Negri, Milan, Italy. 

 

6.8.2 Organotypic hippocampal slices 

Male rats at postnatal day 10 (P10) were decapitated, and the brains were quickly removed 

and placed in ice-cold buffer solution optimised for organotypic slice preparation (slicing 

solution), which contained the following: 1x GIBCO Hanks' Balanced Salt Solution (HBSS) 

supplemented with calcium and magnesium (ThermoScientific), 30 mM glucose, and 0.5 

mM kynurenic acid; the pH was adjusted to 7.3-7.4, and osmolarity to 310-315 mOsm/L. 

Under sterile conditions, brains were hemisected and embedded in low melting point 
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TopVision agarose (ThermoScientific) dissolved in 37ºC pre-warmed slicing solution (2% 

weight/volume). After the agarose was allowed to solidify in an ice-bath, the brain-

containing agarose block was mounted on a slicing stage with superglue, and coronal brain 

slices perpendicular to the longitudinal axis of the dorsal hippocampus were cut with 

vibrating-blade microtome VT-1000-S (Leica Microsystems GmbH) at a thickness of 350 µm. 

Dorsal hippocampal slices were then transferred into a Petri dish containing slicing solution 

and incubated at 4°C for at least 1 hour. Then, individual slices were placed on 12 mm, 

PTFE, 0.4 µm Millicell membrane inserts (Millipore, MA, USA) at an interface with culture 

medium in 24-well culture plates and placed in a 5% CO2 incubator at 34ºC. Fresh medium 

was added after 48 hours, and thereafter the medium was replaced every 2-3 days 

throughout the course of the experiment. The composition of the culture medium was the 

following: 50% minimum essential medium with 25 mM HEPES, 20% heat inactivated horse 

serum, 25% HBSS supplemented with calcium and magnesium, 1 mM GlutaMAX, 0.5 mM 

L-ascorbic acid, 55 mM glucose, 50-100 U/mL Penicillin-Streptomycin; pH 7.3-7.4; 310-315 

mOsm/L. All culture medium components were purchased from ThermoScientific. No anti-

mitotics were used in these experiments. 

Whole-cell patch-clamp electrophysiological recordings were conducted between 7 and 11 

days in vitro (DIV). To investigate the effects of Poly I:C and IFN-β on synaptic excitability of 

brain slices, on the day of the recording, 5 μl of Poly I:C (tlrl-pic, Invivogen) or IFN-β (8234-

MB, R&D Systems) were added directly to the media at the doses and incubation times 

indicated in the results section. Following drug incubation, individual slices were 

transferred into a recording chamber, and continuously perfused with an artificial 

cerebrospinal fluid (aCSF), at a rate of 2-3 ml/min, constantly bubbled with 95% O2 and 5% 

CO2, and at a constant temperature of 32-34°C. The composition of aCSF was the following 
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(in mM): 124 NaCl, 3 KCl, 1.3 MgSO4-H2O, 1.4 NaH2PO4, 10 D-glucose, 26 NaHCO3 and 2.5 

CaCl2; pH 7.3-7.4; 320–325 mOsm/L. CA1 hippocampal pyramidal cells were visually 

identified based on cell morphology and the presence of a large apical dendrite with an 

upright microscope (Olympus) mounted on a differential interference contrast optics and 

infrared video camera (Hitachi Kokusai Electric). Recording pipettes pulled from 

borosilicate glass (World Precision Instruments) with a PP‐83 two‐stage puller (Narishige) 

to a resistance of 5–7 MΩ were filled with intracellular solution containing (in mM): 130 K‐

gluconate, 10 HEPES, 5 KCl, 2.5 MgCl2, 1 EGTA, 0.5 CaCl2, 3 Tris-ATP, 0.4 GTP-Li, 5 

phosphocreatine and 2.5 QX314-Cl; pH 7.20-7.25; 300-305 mOsm/L. To establish the 

whole-cell configuration, the membrane of pyramidal cell bodies was ruptured using 

negative pressure after a tight seal (>1 GΩ) is formed between the recording pipette and 

the cell membrane. Then, neurons were held at -60 mV for 5 mins in voltage-clamp before 

experimental recordings. Stimulation of Schaffer collaterals (SC) was achieved by a 

Constant Voltage Isolated Stimulator (World Precision Instruments) through a tungsten 

concentric bipolar stimulating electrode (World Precision Instruments) placed ~100 µm 

from the recording pipette, where 15 µS biphasic pulses were delivered to afferent SC fibers 

with successive incremental intensities of 25 µA ranging in amplitude from 25 µA to a 

maximum of 275 µA. Before placing the stimulating electrode, a cut was made at the CA3-

CA1 junction to prevent anti-dromical evoked stimulation in the CA3 to propagate through 

the SC to recorded cells in the CA1. During SC stimulation, cells were held at -60 mV in 

voltage-clamp in order to eliminate the inhibitory component of evoked responses, mainly 

GABAA receptor‐mediated currents. Recordings were repeated three times for each 

stimulus intensity and average values of evoked currents were used to generate input-

output graphs when plotted against each stimulus intensity. Data was amplified and low-
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pass filtered at 1 kHz using Axopatch 200B amplifier (Molecular Devices), digitized at a 

sampling rate of 10 kHz with a Digidata 1440A analog-digital converter (Molecular Devices), 

and signals were acquired using the pCLAMP software 10.4 (Molecular Devices). 

Data was analyzed using Clampfit 10.4 (Molecular Devices). Only one neuron per slice per 

animal was included in the analysis. Current outputs (I) were normalized relative to the 

maximal current (Imax), where Imax was considered the amplitude of currents evoked in 

response to the maximal stimulation intensity at 275 µA, and results are shown as a ratio 

of Imax, i.e. I/Imax. A sigmoidal curve was fitted to the input-output data using Boltzmann 

equation in order to calculate the stimulation intensity required to evoke half-maximal 

current amplitude.  

Electrophysiological measurements were performed by Dr. Tarek Shaker, Division of 

Neurology, Department of Pediatrics and Neurosciences, CHU Sainte-Justine, University of 

Montreal, Montreal, Quebec, Canada. 

 

6.9 STATISTICS 

Quantification of each experiment was done blindly and sample size was determined a 

priori based on previous experience with the respective models and statistical tests were 

prospectively selected. All efforts were made to reduce the number of animals used to 

minimum. GraphPad Prism 6 (GraphPad Software, USA) for Windows was used for 

statistical analysis using absolute values. Data are presented as mean ± S.E.M. (n indicates 

the number of individual samples). For each variable, differences between the groups were 

assessed using Mann–Whitney U test for two independent groups and one-way ANOVA 

followed by Tukey post-hoc test or Kruskal-Wallis followed by Dunn’s post-hoc test or by 
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two-way ANOVA for repeated measures followed by Bonferroni post-hoc test (details are 

reported in the figure legends). Differences were considered significant with a p<0.05. 
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CHAPTER 7 - EFFECT OF TLR3 PRIMING ON NEURONAL 

EXCITABILITY AND SEIZURES 
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7.1 INTRODUCTION 

TLR3 is a dsRNA-sensing TLR, known as a regulator of both anti-viral responses and injury 

repair processes since it also detects host-derived RNA. Different from other TLR family 

members, TLR3 does not activate MyD88-dependent signalling but signals through the 

Toll/IL-1 receptor (TIR) domain-containing adaptor TRIF, also known as TIR-containing 

adaptor molecule 1, (TICAM-1) pathway (Takeda and Akira, 2004). TRIF signalling activates 

NF-kB and the nuclear translocation of the transcription factor interferon regulatory factor 

(IRF)-3 that mediate the production of type I interferon (IFN), IFN-inducible products, and 

other inflammatory mediators (Kawai and Akira, 2010).  

TLR3 is primarily expressed intracellularly, in the endosomes, where it acts as a sensor for 

double-stranded RNA, an intermediate product of replicating viruses. In the CNS, TLR3 is 

expressed by neurons, microglia and astrocytes (Bsibsi et al., 2002; Carpentier et al., 2005; 

Farina et al., 2005; Olson and Miller, 2004; Préhaud et al., 2005; Scumpia et al., 2005). In 

glial cells and in neurons, TLR3 is expressed both in the endosomes and at the cell surface 

(Bsibsi et al., 2002; Lafon et al., 2008). Adult human astrocytes express TLR3 constitutively 

and upon TLR3 engagement they regulate immune response following viral infection (Bsibsi 

et al., 2002; Farina et al., 2005). Stimulation of TLR3 in human astrocytes also induces 

several neuroprotective and anti-inflammatory molecules implicated in neuroprotection 

such as brain-derived neurotropic factor, neurotrophin 4, pleiotrophin, TGF-2 and IL-10 

(Bsibsi et al., 2006; Endres et al., 2000; Yeh et al., 1998).  

TLR3 stimulation can have a protective or detrimental effect on tissues depending on the 

type of virus or endogenous activator involved and the cell type mediating the TLR3 

response (Verma and Bharti, 2017). In infection models, TLR3 activation may have 

deleterious effects. For example, TLR3-deficient mice were more resistant to West-Nile 
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Virus (WNV) encephalitis and Rabies virus infection (Ménager et al., 2009; Wang et al., 

2004).  

In epilepsy, TLR3 expression was increased in brain tissue of Rasmussen’s encephalitis 

patients and this expression positively correlated with the extent of brain atrophy (Wang 

et al., 2017). By contrast, other studies showed a protective role of TLR3 stimulation. For 

instance, TLR3 deficiency leads to enhanced viral replication in the primary cortical neuron 

cultures and greater WNV burden in CNS neurons (Daffis et al., 2008). Moreover, TLR3 

deficiency renders mice susceptible to herpes simplex virus infection (HSV-2) and 

astrocytes show a defective type I IFN production (Reinert et al., 2012). Interestingly, 

pretreatment with the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C), a synthetic 

double-stranded RNA, protected mice against Chikungunya virus (CHIKV) infection (Priya et 

al., 2014).  

Poly I:C mimics the effect of viral infection and leads to the production of type I IFNs, IFN-

α and IFN-β via activation of IRF-3 and IRF-7 (Cunningham et al., 2007; Farina et al., 2005). 

Furthermore, it induces the transcription and biosynthesis of cytokines and chemokines 

(Kirschman et al., 2011; Michalovicz and Konat, 2014). In neonatal animals, Poly I:C exerts 

a pro-inflammatory action associated with increased seizure susceptibility in adulthood 

suggesting that TLR3 activation during brain development has detrimental effects that 

increase vulnerability to later insults (Galic et al., 2009). TLR3 activation was shown to 

modulate hippocampal excitability and alter glutamatergic transmission by IFN-β 

production (Costello and Lynch, 2013). Another study revealed that TLR3 deficiency 

reduced spontaneous seizures, microglia activation and proinflammatory cytokine levels 

indicating a contribution of this pathway to epileptogenesis (Gross et al., 2017). Finally, 

TLR3 activation was shown to mediate working and contextual memory impairment in 



157 

 

rodents (Galic et al., 2009; Okun et al., 2010). However, neuroprotective effects have been 

also reported specifically following TLR3 activation in astrocytes due to induction of anti-

inflammatory cytokines and neuroprotective factors (Bsibsi et al., 2006; Li et al., 2015b; Pan 

et al., 2012; Tarassishin et al., 2011b; Zhang et al., 2015b). Therefore, TLR3 may have a dual 

role possibly mediated by different cell types. 

Our main goal was to explore the role of TLR3 activation in acute seizure susceptibility by 

activating these receptors with Poly I:C. Using a mouse model of acute symptomatic 

seizures we measured the astrocytic induction of TLR3. Notably, pre-treatment with Poly 

I:C led to a strong reduction of seizures which was both dose and time dependent. TLR3 

specificity was confirmed in TICAM-1 knock-out mice. Finally, hippocampal excitability in 

brain slices as well as morphological activation of glia and induction of pro-inflammatory 

genes were measured after Poly I:C injection in mice, and the mechanisms underlying its 

neuroprotective effects were explored. 

 

7.2 SPECIFIC MATERIALS AND METHODS 

Kainic acid model of acute seizures 

Mice (n=5-9 mice/group) were implanted with depth electrodes and guide cannula for KA 

injection and intracerebroventricular administration of different doses of Poly I:C and for 

the time-course experiments (Figures 7.2, 7.3; Sections 6.3.1 and 6.4 of General materials 

and methods). TICAM-1 knock-out mice (n=5-6) were implanted as described above and 

treated with 10 µg Poly I:C 6 h before intrahippocampal KA injection (Figure 7.4). Seizures 

occurred with an average latency of 10 min from KA injection in all mice and recurred for 

about 90 min from their onset. Seizure quantification (section 6.3.2 of General materials 

and methods) was done by measuring the time elapsed from KA injection to the occurrence 
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of the first EEG seizure (onset) and the number and total duration of seizures (sum of the 

duration of every ictal episode during the EEG recording period). After the end of the EEG 

recordings mice were sacrificed and the correct position of the electrodes and injection 

needle was evaluated by post-hoc histological analysis of the brain (see section 6.6 of 

General materials and methods). 

Intracerebroventricular administration of Poly I:C 

Mice were implanted with a guide cannula under isoflurane anesthesia (1-3% isoflurane in 

O2) above the left ventricle and injected with saline or 10 µg Poly I:C 1 week after recovery 

from surgery (sections 6.4 of General materials and methods). After 6 h mice (n=16) were 

sacrificed and hippocampal tissue was prepared for either electrophysiological recordings, 

immunohistochemistry or RT-qPCR analysis as previously described (Figures 7.5 and 7.8; 

sections 6.6, 6.7 and 6.8.1 of General materials and methods). Mice (n=16) injected with 

saline served as controls.  

Immunohistochemistry 

Mice (n=5) were implanted with depth electrodes and a guide cannula for KA injection and 

sacrificed 3 h after seizure induction for TLR3 immunohistochemical evaluation (Figure 7.1; 

sections 6.3.1 and 6.6.2 of General materials and methods).  A second group of mice (n=6) 

was implanted with a guide cannula above the left ventricle for intracerebroventricular 

administration of 10 µg Poly I:C and sacrificed 6 h later for glia activation assessment by 

immunohistochemistry (Figure 7.8; sections 6.6.1 of General materials and methods). 
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RT-qPCR analysis 

Five animals injected with Poly I:C were sacrificed 6 h later and their hippocampi were used 

to measure IL-1β, NFkB1, NFkB2 and HMGB1 mRNA levels as described in section 6.7 of 

General materials and methods (Figure 7.8). HPRT1, PDG1 and SV2B were used as reference 

genes to normalize mRNA levels. 

Electrophysiology 

Mice (n=5/group) were implanted with a guide cannula above the left ventricle and injected 

with 10 µg Poly I:C or saline and sacrificed 6 h later for in vitro electrophysiological 

recording of acute hippocampal slices as described in section 6.8.1 of General materials 

and methods (Figure 7.5).  

Male rats at postnatal day 10 (n=4-9) were used for preparation of organotypic 

hippocampal slices. In one group of slices (n=4-7), Poly I:C (tlrl-pic, Invivogen) was added 

directly to the media at the doses of 1-2 μg, 5-10 μg or 25 μg for 6 h (Figure 7.6). Another 

group of slices (n=4-7) was used for incubation of 25 μg Poly I:C for 6 h continuously or for 

6 h with media replacement overnight or for 24h continuous incubation (Figure 7.7). 

Whole-cell patch-clamp electrophysiological recordings were performed as described in 

section 6.8.2 of General materials and methods. Slices (n=9 in total) incubated with sterile 

water added to the media served as controls (Naïve). 
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7.3 RESULTS 

7.3.1 Effect of TLR3 stimulation on acute seizures 

 First, we investigated the cell type expressing TLR3 using immunohistochemistry in brain 

slices of naïve and KA-injected animals (n=5/group). We found that the specific signal was 

absent in control tissue while the receptor was induced 3 h after seizures onset in GFAP-

positive astrocytes (Figure 7.1).    

 

 

 

 

 

Figure 7.1. TLR3 immunoreactivity in the hippocampus of KA-injected mice. Representative 

photomicrographs from control (saline-injected) and 3 h after KA injection (n=5 each group). CA1 

pyramidal cell layer is shown. Scale bar: 50 µm. 

 

Next, mice (n=5-9/group) were injected into the left ventricle with Poly I:C at different 

doses (0.1, 1, 10 and 33 µg) 6 h before the induction of seizures. This time frame was chosen 

in order to allow sufficient time for transcriptional gene activation and related protein 

synthesis. Doses of 10 µg and 33 µg of Poly I:C mediated anti-ictogenic effects since the 

number (p<0.05; p<0.01) and the time spent in seizures (p<0.05; p<0.01) were significantly 

reduced compared to saline-injected mice (Figure 7.2). Lower doses were ineffective. 
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Figure 7.2. Dose-dependent effects of TLR3 stimulation on seizures. Mice were i.c.v. injected with 

0.1, 1, 10 and 33 µg Poly I:C 6 h before the intrahippocampal injection (unilateral to the Poly I:C-

injected ventricle) of 7 ng in 0.5 µl KA. Data are the mean ± SEM (n=5-9), *p<0.05, **p<0.01 

compared to saline by Kruskal-Wallis followed by Dunn’s multiple comparison test. 

 

In order to study the time course of this anti-ictogenic effect we used 10 µg of Poly I:C, the 

lower effective dose and we injected KA (n=5-9) at 15 min, 1 h, 6 h and 24 h after Poly I:C 

administration. Seizures were unaffected by Poly I:C when the TLR3 agonist was 

administered 15 min, 1 h or 24 h before KA injection (Figure 7.3). However, when Poly I:C 

was injected 6 h before KA it significantly delayed the onset of seizures (p<0.05) and 

reduced the number of seizures and time spent in seizures (p<0.01; Figure 7.3). These data 

indicate that the anti-ictogenic effect of Poly I:C develops over a specific time window 

before seizure induction and is transient since it elapses within 24 h. 

Figure 7.3. Time-dependent effects of TLR3 stimulation on seizures. Mice were i.c.v. injected with 

10 µg Poly I:C at different time points before seizure induction Data are the mean ± SEM (n=5-9), 

*p<0.05, **p<0.01 compared to saline by Kruskal-Wallis followed by Dunn’s multiple comparison 

test. 
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Cytosolic RNA helicases retinoic acid-inducible protein 1 (RIG-1) and melanoma 

differentiation-associated gene 5 (MDA-5) are two additional receptors that are activated 

by Poly I:C. In order to investigate the specific TLR3 involvement in the Poly I:C-mediated 

effects on seizures, we used knock-out mice (n=5-6) for TICAM-1, the adaptor molecule 

TRIF essential for TLR3 signalling. These mice were intrinsically less susceptible to KA-

induced seizures as shown by the increased latency time to the first seizure (p<0.05) and 

the reduction of both the number (p<0.05) and time spent in seizures (p<0.05) as compared 

to wild-type mice. When these mice were injected with 10 µg Poly I:C 6 h before KA, the 

anti-ictogenic effects observed in wild type mice were precluded (Figure 7.4). Thus, the 

anti-ictogenic properties of Poly I:C are specifically mediated by TLR3.

 

Figure 7.4. Effect of Poly I:C on seizures in TICAM-1 KO mice. Wild-type (n=10) and TICAM-1 KO 

(n=5-6) mice were i.c.v. injected with 10 µg Poly I:C (+) or saline (-) 6 h before the intrahippocampal 

injection of KA. Data are the mean ± SEM, *p<0.05 **p<0.01 compared to respective saline; #p<0.05 

and °p<0.01 compared to respective wild-type by Mann-Whitney test. 

 

7.3.2 Effect of TLR3 stimulation on hippocampal neuronal excitability 

We studied the effect of Poly I:C-induced TLR3 stimulation on neuronal excitability in acute 

hippocampal slices obtained from naïve mice injected 6 h before with either Poly I:C or 

saline (n=8-15 slices from 5 mice/each group). We performed extracellular recordings of 

population spikes in CA1 pyramidal cell layer evoked by electrical stimulation of the 
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Schaffer collateral pathway. The relationship between stimulus intensity and population 

spike peak amplitude was used to assess neuronal excitability. Neuronal excitability was 

reduced in slices from Poly I:C-injected mice as shown by a right shift of the input-output 

curve compared to control slices (F1.500= 46.22, p<0.01; Figure 7.5). 

 

 

 

 

 

 

 

 

 

Figure 7.5. Effect of Poly I:C on hippocampal neuronal excitability. Graph reports population spike 

(PS) amplitude of CA1 pyramidal neurons in response to increasing stimulation intensities of afferent 

Schaffer collaterals. Acute hippocampal slices were obtained from naive mice injected i.c.v. with 

either saline (black) or 10 µg Poly I:C (red), 6 h before in vitro stimulation. Insets are representative 

traces of PS obtained in response to 30 V stimulation. PS amplitudes are shown as percent of 

maximal response (mean ± SEM; n=8-15 slices from 5 mice/each group). F1.500= 46.22, p<0.01 by 

two-way ANOVA for repeated measures. 

 

We next evaluated the effects of Poly I:C on excitatory synaptic transmission using whole 

cell patch recording from organotypic hippocampal slices (n=4-9 slices/group). Evoked 

excitatory postsynaptic currents (eEPSC) recorded from pyramidal neurons in CA1 region 

upon stimulation of Schaffer collaterals were reduced after incubation with 25 μg/ml Poly 

I:C for 6 h as shown by measuring both half-maximal eEPSC amplitude (Naïve: 162 ± 10.5; 

Poly I:C 25 μg/ml: 204.7 ± 5.3; p<0.01; Figure 7.6A) and maximal eEPSC amplitude (Naïve: -

1937 ± 98.3; Poly I:C 25 μg/ml: -973.5 ± 108.5; p<0.01 Figure 7.6B). Lower doses of Poly I:C 
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were ineffective. These data are in line with the in vivo data, since the dose of 25 μg/ml 

Poly I:C corresponds to the dose of 10 μg Poly I:C used in the in vivo experiments.  

 

 

 

 

 

 

Figure 7.6. Effect of Poly I:C on hippocampal synaptic excitability. (A) Half-maximal and (B) 

Maximal eEPSC amplitude recorded from CA1 pyramidal neurons of brain slices incubated with 1-2 

μg/ml, 5-10 μg/ml and 25 μg/ml POLY I:C for 6 h. Data are the mean ± SEM (n=4-9), *p<0.05 and 

**p<0.01 compared to naive; #p<0.05 and ##p<0.01 compared to respective POLY I:C 25 ug/ml by 

one-way ANOVA followed by Tukey’s multiple comparison tests. 

 

The reduction of excitatory synaptic transmission mediated by continuous incubation for 6 

h with 25 μg/ml Poly I:C was partially lost after 24 h of incubation. Only maximal evoked 

EPSC amplitude remained reduced while the stimulus intensity required to reach half-

maximal EPSC in treated and naïve slices was not significantly different (Half-maximal 

eEPSC amplitude: Naïve: 162 ± 10.5; Poly I:C 24 h: 118 ± 7.7, Maximal eEPSC amplitude: 

Naïve: -1937 ± 98.3; Poly I:C 24 h: -586.8 ± 80.8; p<0.01; Figure 7.7). Six hours incubation 

with Poly I:C followed by media replacement overnight gave similar results to 6 h 

incubation (Half-maximal eEPSC amplitude: Poly I:C 6 h: 204.7 ± 5.3; Poly I:C 6 h + wash: 

170.2 ± 14.1, Maximal eEPSC amplitude: Poly I:C 25 μg/ml: -973.5 ± 108.5; Poly I:C 6 h + 

wash: -961 ± 143.9; Figure 7.7). 
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Figure 7.7. Effect of incubation time of Poly I:C on hippocampal synaptic excitability. (A) Half-

maximal and (B) Maximal eEPSC amplitude recorded from CA1 pyramidal neurons of brain slices 

incubated with 25 μg/ml Poly I:C continuously for 6 h, or for 6 h with media replacement or 

continuously for 24 h. Data are the mean ± SEM (n=4-9), *p<0.05 and **p<0.01 compared to naive; 

##p<0.01 compare to 6 h group and $p<0.05 compared 6 h+wash group by one-way ANOVA followed 

by Tukey’s multiple comparison tests. 

 

7.3.3 Effect of TLR3 stimulation on glia activation and their phenotype 

Finally, glia activation and induction of pro-inflammatory mediators by Poly I:C were 

studied by immunohistochemistry and RT-qPCR analysis (n=6 each group), respectively. 

There was no morphological activation of astrocytes and microglia and IL-1β, NF-kB and 

HMGB1 mRNA levels were not upregulated in the whole hippocampus by Poly I:C (Figure 

7.8). 
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Figure 7.8. Effect of Poly I:C on morphological activation of glia and pro-inflammatory gene 

transcription. Mice were i.c.v. injected with saline or 10 µg Poly I:C. After 6 h, hippocampal tissue 

was prepared for immunohistochemistry or RT-qPCR analysis. (A) Representativephotomicrographs 

showing CD-11b-immunoreactive microglia (left) and GFAP-immunoreactive astrocytes (right) in 

saline- (a,c,e,g,I,m) and Poly I:C-injected mice (b,d,f,h,l,n) in CA1 (a,b,g,h), CA3 (c,d,i,l) pyramidal 

layers and hilus (e,f,m,n).Scale bar: 100 µm (a-d,g-l), 50 µm (e,f,m,n). DG: dentate gyrus. (B) RT-

qPCR measurement of IL-1β, NF-kB and HMGB1 mRNA in the hippocampus from saline- and Poly 

I:C-injected mice. Data are mean ± SEM (n=6 each group). 

 

7.4 DISCUSSION 

The TLR3 pathway has been studied mostly in animal models of viral infections and little is 

known about its contribution to seizures. The data gathered so far show a dual role of this 

receptor in the immune system response after a challenge.  

We provide novel in vivo and in vitro evidence of a neuroprotective role of TLR3 possibly 

mediated by a priming-like effect after Poly I:C activation. Reduced neuronal excitability 
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and decreased number of seizures were observed when TLR3 stimulation was done hours 

but not minutes before the ictogenic challenge suggesting that a transcriptional pathway is 

involved. Moreover, this phenomenon was transient. In our study Poly I:C did not induce 

pro-inflammatory effects unlike the Poly I:C mediated neuroinflammation and glia 

activation that contribute to epileptogenesis (Dupuis et al., 2016; Galic et al., 2009; Gross 

et al., 2017). In accordance with the inhibitory effects on seizures, our in vivo paradigm of 

Poly I:C injection reduced neuronal excitability in hippocampal slices. Our data therefore 

suggest a novel and protective role of TLR3 stimulation that reduces neuronal excitability. 

Astrocytes were previously shown to be the cells responsible for the neuroprotective 

effects of Poly I:C. In fact, activation of the TLR3 axis by Poly I:C in human astrocytes induced 

expression of anti-inflammatory cytokines and neuroprotective mediators (Bsibsi et al., 

2006; Ghaemi et al., 2016; Tarassishin et al., 2011b). Recent studies have reported 

neuroprotective and anti-inflammatory effects of Poly I:C in cerebral ischemia models 

through downregulation of pro-inflammatory cytokines and expression of anti-

inflammatory cytokines in astrocytes (Li et al., 2015b; Pan et al., 2014; Wang et al., 2014). 

Poly I:C can promote neuronal survival and reduce cell death by oxygen-glucose deprivation 

or oxidative stress (Bsibsi et al., 2006; Marsh et al., 2009; Patel and Hackam, 2014).  

In our seizure model, TLR3 is induced in astrocytes suggesting that this cell-specific TLR3-

mediated pathway may represent a homeostatic attempt to control neuronal 

hyperexcitability.  
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CHAPTER 8 - TLR3-MEDIATED MECHANISMS OF 

NEUROPROTECTION 
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8.1 INTRODUCTION 

IFN-β signalling activation in astrocytes exerts protective effects in experimental 

autoimmune encephalomyelitis (EAE) animal models mediated by the immunomodulatory 

transcription factor AHR, its target cytochrome P4501B1 (CYP1B1) and SOCS2 

(Rothhammer et al., 2016). In EAE, AHR signalling in astrocytes controls inflammatory 

pathways involved in the recruitment of monocytes, glia activation and the neurotoxic 

activities of astrocytes (Rothhammer et al., 2016). IFN-β is used to treat multiple sclerosis 

(MS) and inflammation in EAE animal models (Khorooshi et al., 2015). Moreover, Poly I:C 

increases IFN-β expression and has a therapeutic effect in the disease outcome (Khorooshi 

et al., 2015). In ischemia models, the activation of TLR3 by Poly I:C induces IFN-β and 

mediates neuroprotective effects. Poly I:C preconditioning reduced cerebral ischemia 

injury in a TLR3-dependent manner by IFN-β increased expression in astrocytes and 

inhibition of inflammatory pathways (Gesuete et al., 2012; Kuo et al., 2016; Li et al., 2015b). 

Furthermore, IFN-β was reported to suppress astrocyte activation and glial scar formation 

after spinal cord injury (Ito et al., 2009; Nishimura et al., 2013). 

Based on this evidence, we have investigated the TLR3-mediated mechanisms of 

neuroprotection after Poly I:C stimulation in our experimental setting. 
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8.2 SPECIFIC MATERIALS AND METHODS 

Intracerebroventricular administration of Poly I:C 

Mice (n=6-12) were implanted with a guide cannula above the left ventricle and injected 

with saline or 10 µg Poly I:C. After 6 h, hippocampal tissue was prepared for RT-qPCR 

analysis as previously described (Figure 8.1; sections 6.4 and 6.7 of General materials and 

methods). 

Intrahippocampal administration of drugs 

Mice (n=3/group) were implanted with a guide cannula above the left hippocampus and 

injected with saline or 50, 500, 5000 IU mouse IFN-β 15 min, 1 h, 3h or 6h before 

intrahippocampal KA (Figure 8.2; sections 6.3.1 and 6.5 of General materials and methods). 

Kainic acid model of acute seizures 

Mice were implanted with depth electrodes and guide cannula for KA injection and intra-

hippocampal administration of mIFN-β as described before (see also sections 6.3.1 and 6.5 

of General materials and methods). Groups of 3 mice (n=12-18/group) were used for intra-

hippocampal mIFN-β injections at 15 min, 1h, 3h or 6h before KA injection and seizure 

assessment was done as described before (Figure 8.2; section 6.3.2 of General materials 

and methods).  

RT-qPCR analysis 

Five animals injected with Poly I:C were sacrificed 6 h later and their hippocampi were used 

to measure TLR3, IRF3, IFNB1, IFNAR1, AHR, CYP1B1 and SOCS2 mRNA levels as described 

in section 6.7 of General materials and methods (Figure 8.1). HPRT1, PDG1 and SV2B were 

used as reference genes to normalise mRNA levels. 
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Electrophysiology 

Organotypic hippocampal slices were prepared from male rats at postnatal day 10 (n=6-9) 

as described in section 6.8.2 of General materials and methods. In one group of slices (n=7), 

Poly I:C was added directly to the media of slices (n=7) at a dose of 25 μg for 6 h (Figure 

8.3). Another group of slices (n=6) was incubated with 5 μl of 500 IU IFN-β for 1 h (Figure 

8.3). Whole-cell patch-clamp electrophysiological recordings were performed as described 

in section 6.8.2 of General materials and methods. Slices (n=9) incubated with media and 

sterile water served as controls (Naïve). 

 

8.3 RESULTS 

8.3.1 Effect of TLR3 stimulation on IRF3-mediated pathway activation 

Stimulation with Poly I:C (n=6) induced upregulation of TLR3 (2-fold, p<0.01), IRF3 (6-fold, 

p<0.01) and IFN-β (2-fold, p<0.05) transcripts in the hippocampus 6 h after injection in 

naive mice (Figure 8.1). To further explore IFN-β downstream pathways, we analyzed the 

mRNA levels of AHR, and its targets CYP1B1 and SOCS2. AHR mRNA levels did not change 

but both CYP1B1 and SOCS2 levels were increased 6 h after Poly I:C (CYP1B1: 2-fold. p<0.01 

and SOCS2: 0.5-fold, p<0.05; Figure 8.1). AHR induction might have occurred at earlier time 

points which may account for the lack of changes in this gene.  
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Figure 8.1. Poly I:C  promotes the induction of TLR3, IRF3, IFN-β and IFN-β-regulated genes. Mice 

were icv injected with saline (n=6) or 10 µg Poly I:C (n=6-12) and hippocampal tissue was collected 

6 h later for RT-qPCR analysis. Data are mean ± SEM, *p<0.05 **p<0.01 vs saline by Mann-Whitney 

test. 

 

 

8.3.2 Effect of IFNβ on seizures and synaptic excitability in vitro 

To test the hypothesis that IFN-β mediated and AHR-dependent cascade may be 

responsible for the effects of Poly I:C on seizures, we injected various doses of mouse 

(m)IFN-β into the hippocampus (n=3/group) before inducing seizures in order to mimic the 

endogenous increase provoked by Poly I:C. We found that the dose of 50 IU mIFN-β given 

15 min before kainate increased both the number (p<0.05) and time spent in seizures 

(p<0.01; Figure 8.2). The doses of 500 and 5000 IU given either at 15 min, 1 h, 3 h or 6 h 

before KA had no effect compared to saline treated animals (Figure 8.2). We conclude that 

intrahippocampal injection of mIFN-β at various doses does not reproduce the TLR3-

mediated anti-ictogenic effects of Poly I:C. The lack of evidence for IFN-β involvement may 

be due to biological barriers encountered by IFN-β when injected in vivo which impair the 

efficient activation of its receptors. 

 



173 

 

 

 

Figure 8.2. Effects of mIFN-β injection on seizures. Mice were intrahippocampally injected with 50, 

500, 5000 IU mouse IFN-β (n=3 each dose) or saline (n=12) 15 min, 1 h, 3h or 6h before 

intrahippocampal KA. Data are the mean ± SEM, *p<0.05, **p<0.01 compared to saline by by 

Kruskal-Wallis test multiple comparison tests. 

 

We tested therefore the effect of IFN-β on synaptic excitability using in vitro slices and 

compared with Poly I:C effects. 500 IU of IFN-β for 1 hour resulted in similar reduction of 

synaptic excitability as seen with Poly I:C since both half-maximal and maximal eEPSC 

amplitude values were significantly decreased (Half-maximal eEPSC amplitude: Naive: 162 

± 10.5; Poly I:C 25 μg/ml: 204.7 ± 5.3; 500 IU mIFN-β: 211.6 ± 8.8, p<0.01; Maximal eEPSC 

amplitude: Naive: -1937 ± 98.3; Poly I:C 25 μg/ml: -973.5 ± 108.5; 500 IU mIFN-β: -911.7 ± 

82.7, p<0.01; Figure 8.3). 

These data suggest that IFN-β may mediate the Poly I:C effects on synaptic excitability, 

hence the anti-ictogenic effects observed in vivo after TLR3 stimulation.  
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Figure 8.3. Effect of incubation with IFN-β on hippocampal synaptic excitability. (A) Half-maximal 

and (B) Maximal eEPSC amplitude recorded from CA1 pyramidal neurons of brain slices incubated 

with 500 IU IFN-β for 1 h. Data are the mean ± SEM (n=6-9), *p<0.05, **p<0.01 compared to naïve 

by one-way ANOVA followed by Tukey’s multiple comparison tests. 

 

8.4 DISCUSSION 

IFN-β is a first line drug in MS treatment and is effective in the EAE animal model. Poly I:C 

injection in mice at the initial stages of the disease has therapeutic effects by inducing the 

expression of type I IFN genes by TLR3 activation (Khorooshi et al., 2015). In our 

experimental conditions, we found induction of IRF3 and IFN-β genes that may mediate the 

reduction in neuronal excitability and seizures due to TLR3 stimulation. IRF3 is a key 

element of the TLR3 pathway and its activation in glia cultures can switch the cytokine 

expression profile from pro- to anti-inflammatory and mediate neuroprotection 

(Tarassishin et al., 2011a, 2011c). In particular, IRF3 suppresses the expression of miR-155 

and miR155* in astrocytes which are involved in pro-inflammatory gene induction by 

targeting SOCS1 (Tarassishin et al., 2011a). IFN-β regulates inflammatory responses and 

provides neuroprotection in models of ischemic stroke (Liu et al., 2002; Marsh et al., 2009; 

Veldhuis et al., 2003). Our results indicate an activation of IFN-β pathway after Poly I:C 

challenge. Moreover, we found increased levels of CYP1B1, downstream target of AHR, and 
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SOCS2 that provide further support to a IRF3/IFN-β-mediated cascade responsible for the 

inhibitory effects of Poly I:C on seizures and neuronal excitability. In fact, in a model of EAE, 

IFN-β administered intranasally, resulted in reduced inflammation and improvement of 

clinical scores that were attributed to astrocytic AHR and SOCS2 signalling (Rothhammer et 

al., 2016). However, in our study, IFN-β injected directly into the brain failed to reproduce 

the TLR3-mediated anti-ictogenic effects of Poly I:C. This may be due to the inability of an 

exogenous application of the cytokine to activate the relevant signalling cascade induced 

when IFN-β is endogenously increased. Therefore we explored the possibility to reproduce 

the protective effect of Poly I:C in brain slices by direct incubation with IFN-β and indeed 

found an inhibitory effect on neuronal excitability similarly to that mediated by Poly I:C. 

Previous studies associate IFN-β with enhanced synaptic excitability in the hippocampus 

and other neocortical areas (Beyer et al., 2009; Costello and Lynch, 2013; Hadjilambreva et 

al., 2005). However, we report a reduction of evoked excitatory postsynaptic currents 

(eEPSC) within 6 hours indicating an inhibitory effect of IFN-β on neuronal excitability. The 

apparent discrepancy may be due to differences in the administration route, doses or the 

need for an additional trigger for enveiling the inhibitory effects.  

In conclusion, this study shows a new mechanism of neuroprotection mediated by the TLR3 

stimulation and subsequent induction of IFN-β involving astrocytes. 
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CHAPTER 9 - GENERAL DISCUSSION 
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Neuroinflammation is a key process for the pathogenesis of seizures as suggested by 

experimental studies and clinical data. Inflammatory pathways are commonly activated 

following various epileptogenic insults leading to the overexpression of molecules such as 

IL-1β, TNF-α and HMGB1 in seizure generating brain areas in both animal models and brain 

tissue from patients with parmaco-resistant epilepsy. Notably, these molecules possess 

neuromodulatory functions that contribute to seizure generation and recurrence (Aronica 

and Crino, 2011; Aronica et al., 2017; Vezzani et al., 2011b, 2011a, 2015).  

Glia and in particular astrocytes have been the focus of the research project described in 

this thesis since these cells are key modulators of brain homeostasis and neuronal function 

and their dysregulation, which includes an inflammatory phenotype, contributes 

significantly to experimental epilepsy development. It is crucial, therefore, to develop 

means to monitor the activation of the inflammatory pathways or the cells generating this 

response in the brain in order to interfere and possibly revert their detrimental effects in a 

timely manner. To be able to define the optimal time window for therapeutic interventions 

at the various stages of the disease may determine the success of disease-modifying or 

anti-epileptogenic therapies.  

One of our attempts was to monitor in vivo the activation of IL-1β in astrocytes using an 

adeno-associated virus. However, manipulation of gene promoter sequences was 

challenging since it resulted in ectopic gene expression and thus alternative approaches 

were required. To this end, we developed an in vivo imaging tool that allowed to monitor 

astrocyte activation during the disease and compare the time course of activation with 

their phenotype in post-mortem brain tissue. This comparison is important since astrocyte 

may have either a pro-inflammatory or an anti-inflammatory phenotype during 

epileptogenesis which will impact on their pathophysiological effects. Our data show an 
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activation of their pro-inflammatory phenotype as exemplified by TNF-α and HMGB1 

induction. However, we also identified increased PTX3 expression at the later stages of 

epileptogenesis possibly representing a homeostasic tissue response. These data suggest 

that pharmacological treatments that inhibit the inflammatory response should be 

administered promptly after the inciting event and that boosting the anti-inflammatory and 

neurotrophic phenotype of astrocytes may help to resolve the pro-inflammatory pathways’ 

activation.   

Anti-inflammatory drugs clinically available for other indications such as autoinflammatory 

or autoimmune disorders may offer a facilitated translation to the clinic. Recent studies 

have provided evidence that FTY720, a drug used for MS therapy, can exert anti-

inflammatory and anti-epileptogenic effects in animal models of epilepsy (Gao et al., 2012; 

Pitsch et al., 2018). Nevertheless, in our study, FTY720 failed to reduce astrocytic activation 

and proliferation and to alter the expression of both TNF-α and PTX3 during the 

epileptogenesis phase. Notably, FTY720 further increased the GFAP promoter activity and 

protein levels during the treatment period. We attribute this effect to additional 

mechanisms of action of this drug such as HDAC inhibition and activation of other S1P 

receptors, such as S1P3 and S1P5, that in turn activate astrocytes rather than inhibiting 

astrogliosis through the S1P1 pathway (Miron et al., 2010). Additionally, FTY720 did not 

restore the protein levels of GLT-1 and Kir4.1 during epileptogenesis. These data indicate 

that the anti-epileptogenic effects of previous studies (Gao et al., 2012; Pitsch et al., 2018) 

are likely mediated by mechanisms of action that do not involve modulation of astrocytic 

cell phenotype or their activation during the epileptogenesis phase. Our in vivo 

bioluminescence approach can therefore highlight if and how drugs affecting 

epileptogenesis impact on astrocytes, and could be also exploited for correlating the extent 
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of astrocytic acivation with the disease outcomes (e.g., seizure frequency, progression of 

seizures or comorbidities) using models of epileptogenesis where only a cohort of animals 

develops the disease (Brandt et al., 2003; Dube et al., 2006; Kharatishvili et al., 2006b; 

Nissinen et al., 2000; Pascente et al., 2016). 

The second part of this thesis is focused on the role of astrocytic TLR3 in ictogenesis. Innate 

immune system activation after pathogen invasion or cell damage is an important 

mechanism to fight infections or repair tissue by re-establishing homeostasis. TLR3 are 

amongst the pattern recognition receptors (PRRs) with a fundamental role in igniting innate 

immune responses to viral infections. There is limited investigation of their role in neuronal 

excitability. Moreover, the activation of TLR3 in the CNS has been associated with variable 

outcomes ranging from providing neuroprotection to provoking neuropathology.  

Viral infections and specifically viral encephalitis can cause seizures and epilepsy that 

appear to be dependent on the type of virus and multifactorial mechanisms (Vezzani et al., 

2016). Specifically, epilepsy development following viral encephalitis is probably due to 

neuronal cell loss and persistent neuronal hyperexcitability (Libbey and Fujinami, 2011). 

Patients with infection-related seizure disorders are often refractory to the available ASDs 

(Libbey and Fujinami, 2011). 

So far, various studies support that TLR3 activation promotes neuronal excitability. In fact, 

activation of TLR3 receptors in immature brain led to pro-inflammatory cytokine expression 

that in turn contributes to epileptogenesis and the associated comorbidities in adulthood 

(Galic et al., 2009; Okun et al., 2010). Moreover, TLR3-deficient adult mice showed a 

delayed epiletogenesis and less frequent spontaneous seizures than wild-type mice  (Gross 

et al., 2017).   
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On the other hand, a beneficial outcome of TLR3 stimulation in astrocytes has been 

suggested both in vitro and in vivo. TLR3 activation in astrocytes by its synthetic agonist 

Poly I:C results in the production of neurotrophic factors and type I IFNs that exert 

neuroprotective effects in animal models of ischemia, and EAE as well as in human 

organotypic brain slices (Bsibsi et al., 2006; Li et al., 2015b; Pan et al., 2014; Rothhammer 

et al., 2016; Tarassishin et al., 2011a).  

In line with this set of data, we report a reduced neuronal excitability, as shown by reduced 

seizures evoked in mice by KA, several hours after TLR3 stimulation with Poly I:C. In this 

seizure model, TLR3 is induced in astrocytes. This reduced neuronal excitability in vivo was 

reinforced by in vitro data showing a decrease in hippocampal neuronal excitability in both 

acute and organotypic brain slices after long lasting application of Poly I:C. 

Further evidence attributes this neuroprotective effect of Poly I:C to IRF3 axis activation 

and IFN-β expression whereas pro-inflammatory pathways involving IL-1β, HMGB1 and NF-

kB were not activated in our experimental paradigm. Previous evidence has shown that 

IFN-β expression in astrocytes mediates neuroprotective effects in CNS disease models 

(Marsh et al., 2009; Rothhammer et al., 2016; Tarassishin et al., 2011b). We propose 

therefore that TLR3 priming of astrocytes before a convulsive challenge activates an 

alternative neuroprotective mechanism which differs from the pathway favoring seizure 

generation in epilepsy models. 

This evidence also underscores that fine tuning of TLR3-activated pathway may be required 

at the appropriate time of disease development to attain therapeutic effects without 

interfering with the neuroprotective signalling mediated by astrocytes. Astrocytic TLR3 

could therefore represent a target for promoting neuroprotective mediators and anti-

inflammatory cytokines. The complexity of the mechanisms involved in epileptogenesis 
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after viral infections argues for a more careful evaluation of the results obtained in 

experimental studies since the same TLR may have a dual role depending on the cell type, 

the timing and persistence of activation in brain tissue.   

In conclusion, astrocytes are dynamic cells that react to an epileptogenic insult by rapid and 

lasting changes in their phenotype which involve both pro- and anti-inflammatory 

pathways. Dysfunction of astrocytes can contribute to seizure generation and recurrence 

and targeting this cell population during the critical phase of epileptogenesis may represent 

a promising avenue for drug development. 
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