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Abstract: This study examined individual responses in leg stiffness, reactive strength index (RSI),
movement proficiency (deep overhead squat and in-line lunge), and trunk muscular endurance
(flexor and extensor tests) in young female gymnasts following an 8-week neuromuscular training
intervention. Thirty-four pre-peak height velocity (PHV) female gymnasts were divided into
either an experimental group (EXP n = 17) or control group (CON n = 17). The EXP replaced
their normal gymnastics physical preparation with a neuromuscular training program, while the
CON continued with their habitual gymnastics program. Chi square analysis showed that the
EXP resulted in significantly more positive responders compared to CON for measures of leg
stiffness (41% versus 12% responded positively), extensor muscular endurance, (76% versus 29%),
and competency in the deep overhead squat, (76% versus 29%) and in-line lunge (left lead leg) (65%
versus 18%). Conversely, the number of positive responders for RSI (53% versus 61%), the flexor
endurance test (88% versus 53%), and the right in-line lunge (47% versus 35%) were not significantly
different between groups. These findings suggest that most young gymnasts responded positively
to neuromuscular training from the perspective of improving movement proficiency and trunk
endurance; however, changes in leg stiffness and RSI were more variable and may require higher
intensities to realise further adaptations.
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1. Introduction

Female artistic gymnastics is an early specialisation sport, typically involving high volumes and
intensities of training during the pre-pubertal years aimed at mastering the performance of complex
skills [1]. Since relative strength is a more important determinant of gymnastics performance than
absolute strength [2], it is unsurprising that many coaches traditionally use body-weight training in the
form of circuits and repetition of skills to physically prepare gymnasts [3]. However, while this training
modality is often effective in developing highly sport-specific qualities, the addition of developmentally
appropriate neuromuscular training could offer pre-pubertal gymnasts’ numerous benefits, that surpass
body-weight and skills training alone [4–6]. Research suggests that neuromuscular training which
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integrates the development of fundamental movement skills with muscular strength and power could
facilitate technical competency of sport-specific skills [7,8], assist in correcting aberrant movement
patterns [9–11], and help promote long-term participation in competitive and recreational sport [8].

Gymnastics involves a series of rebounding activities which utilise various expressions of
stretch-shortening cycle (SSC) activity, ranging from slow-SSC (ground contact time >250 ms e.g.,
acrobatic skills on the beam) to fast-SSC activity (ground contact time <250 ms e.g., tumbling) [12].
The sport also requires gymnasts to isometrically hold shapes during the performance of individual
static skills (e.g., a planche) and during a series of dynamic skills (e.g., giants on the bars) [13].
When measuring different expressions of SSC function, selecting a test protocol that represents the
specific type of SSC action is recommended, owing to the different mechanisms involved in fast- and
slow-SSC activity [14–16]. Current methods of examining neuromuscular training interventions on
fast-SSC function in youth have included reactive strength index (RSI) and leg stiffness, from drop
jumps [17] and hopping tasks [18–20].

Recent research suggests that supplementary neuromuscular training (e.g., inclusive of resistance
training and plyometric training) targeting the development of muscular strength could improve
gymnasts’ ability to utilize their SSC [5], when performing explosive skills such as vaulting or
tumbling [5,21]. Due to the potential confounding effect of skill proficiency when using actual
sporting techniques, measuring RSI and leg stiffness in lab-based conditions can provide an insight
into the underlying mechanisms of the gymnasts’ SSC abilities and thus, inform coaches training
programmes. However, very few studies have investigated the effects of neuromuscular training
on measures of RSI and leg stiffness in young female gymnasts [22]. Furthermore, the importance
of youth developing a high level of movement proficiency across a range of basic motor skills has
been well documented [8], as correct technique may enable a more effective transfer of force when
performing more dynamic, complex skills [23]. Specific tests from the functional movement screen
(FMS) (in-line lunge and deep overhead squat) [24,25] have been used to assess movement pattern
proficiency, and have been correlated with measures of physical performance such as RSI and squat
jump height in young athletes [23]. Since most gymnastics skills are underpinned by basic athletic
motor skill competencies (AMSCs) (e.g., jumping, landing, trunk bracing), assessing the efficacy of
neuromuscular training on young female gymnasts’ movement proficiency would appear noteworthy.

While research has demonstrated that youth can respond positively to forms of neuromuscular
training [7,11,20,26], these studies have typically considered the group response to training
interventions. However, research that solely examines training responses at a group level will fail to
account for the differentiation between positive responders, non-responders, and negative responders.
Given that individuals of the same chronological age can differ markedly with respect to growth and
maturation, training experience and cognitive development [27], the responsiveness to training has the
potential to differ greatly within a cohort of young athletes. Research has indicated that adaptations to
sprinting and jumping performance in response to resistance-based interventions are influenced by
maturation in young males [19,20]. Thus, large variations in responsiveness to training in youth are
probable, evidencing the need to examine how young athletes respond to training at an individual
level in other sports.

Unfortunately, very few studies in youth have examined the individual responses to
neuromuscular-based training programs. One recent study found that in school-aged boys, individual
responsiveness to training was influenced by both the mode of resistance training and maturity
status [19]. However, the effects of similar training interventions in young female gymnasts remains
unclear. These athletes are routinely exposed to a high amount of plyometric and body weight
strength type activities; thus, examining the individual responsiveness to neuromuscular training
could provide a useful insight into the trainability of this unique population. The aim of this study
was to determine the individual responsiveness of pre-pubertal female gymnasts participating in
an 8-week neuromuscular training programme, on measures of SSC, trunk muscular endurance,
and movement quality.
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2. Materials and Methods

2.1. Subjects

Thirty-four female artistic gymnasts aged between 6 and 12 years (n = 17 experimental group
and n = 17 control group) volunteered to take part in this study. All gymnasts were from the same
gymnastics club and were assigned to either the experimental (EXP) or control (CON) group based on
the days they attended gymnastics training (i.e., those training on a Monday and Wednesday = EXP and
those training Tuesday and Thursday = CON). Participant characteristics for both EXP and CON groups
are presented in Table 1. Each participant had a minimum of 1 year’s artistic gymnastic experience,
trained between 6 and 20 h per week, and reported no injuries at the time of testing. All gymnasts
were of a similar standard and classified by the gymnastics coaches as being at an intermediate
standard. This was based on the coach’s evaluation of gymnastics competency and the level of
competition the gymnasts had competed at. Both groups of gymnasts were in a competitive phase of
training, which involved 2–3 competitions over a 4–6-week period, and none of the participants had
previously engaged in formalized strength and conditioning programs. The study was approved by
Cardiff Metropolitan University’s Research Ethics Committee (approval code 13/7/01U), and informed
parental consent and participant assent were obtained in advance of the study commencing.

Table 1. Anthropometric measures for the training and control groups.

Group Age (Year) Body Mass (kg) Standing Height (cm) Seated Height (cm)

Training 8.2 ± 1.7 26.1 ± 5.1 127.0 ± 10.0 68.5 ± 5.3
Control 10.0 ± 1.2 * 30.8 ± 5.4 * 134.0 ± 9.2 * 70.4 ± 4.1

* Significantly greater than the training group (p < 0.05).

2.2. Procedures

2.2.1. Familiarization Session

Anthropometric data were collected including standing and seated height using a stadiometer
to the nearest 0.1 cm (SECA, 321, Vogel & Halke, Hamburg, Germany), and body mass using scales
to the nearest 0.1 kg (SECA, 321, Vogel & Halke, Hamburg, Germany). Standing height, seated
height, and body mass were entered into a validated sex-specific prediction equation [28] to determine
participants’ maturity status as years from peak height velocity (PHV), which refers to the maximum
rate of growth during the adolescent growth spurt [29]. Functional leg dominance was determined
by the most frequently used leg during the step up and balance recovery tests [30]. Participants were
then provided with the opportunity to familiarize themselves with all testing protocols until the lead
researcher was satisfied with the gymnast’s technical competency.

2.2.2. Testing Procedures

The EXP group followed an 8-week neuromuscular training program, consisting of two weekly
sessions that lasted approximately 35 min each, which replaced their normal gymnastics conditioning.
The CON group continued with their usual gymnastics program and did not receive any formalized
strength and conditioning provision. The gymnastics programme for the CON group involved 35 min
of gymnastics-specific conditioning (e.g., shaping and gymnastics skill-based exercises), which was
delivered by a club gymnastics coach and not the principle researcher. All testing sessions took place
at the local gymnastics club where the participants trained. Both EXP and CON groups completed
the same battery of tests at the beginning and end of the 8-week program (pre- and post-testing
occurred 1 week either side of the program), and the same researcher administered each protocol.
Gymnasts performed all tests barefoot wearing a gymnastics leotard. After a standardised 10-min
dynamic warm up and practise trials, gymnasts performed the test battery in the following order:
deep squat and in-line lunge (left and right lead leg), sub-maximal hopping, drop jump, and trunk
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endurance holds. All testing protocols have previously been shown to be reliable within the paedatric
literature [21,31,32]. The gymnasts performed three trials of the deep squat, in-line lunge and drop
jump protocols, while a single trial of the endurance hold tests [33] and the sub-maximal hopping
protocol [31] were performed according to previously reported guidelines. Participants were afforded
rest periods of 60 s between trials and 5 min between each protocol to limit the effects of fatigue on the
performance variables.

2.2.3. Movement Proficiency

Participants were screened using a modified version of the FMS [25], whereby two of the
protocols were chosen to assess movement proficiency; the deep overhead squat and the in-line
lunge. These specific tests were selected from the full FMS due to their significant correlations
with measures of physical performance in youth [23]. The tests also provided an assessment of the
gymnasts’ bilateral and unilateral lower limb movements, both of which are integral to gymnastics
performance [6]. Each gymnast performed three trials of both tests and were scored real-time using the
4-point scale from the FMS movement criteria (the rater had 2 years of experience using this screening
tool) [24,25]. Testing guidelines for scoring were followed, whereby the highest score of the three trials
was recorded for further analysis [25]. For the in-line lunge test, scores were recorded for the gymnasts’
left and right leg, which referred to the leading leg during the protocol.

2.2.4. Sub-Maximal Hopping

Leg stiffness (kN·m−1) was determined via a sub-maximal hopping test collected on a mobile
contact mat (Smart-jump, Fusion Sport, Brisbane, Australia). The Equation (A1) for leg stiffness can
be found in Appendix A [18,31]. Each participant performed one trial of 20 consecutive hops at a
frequency of 2.5 Hz, which was maintained via a quartz metronome [31]. The gymnasts were instructed
to keep their hands on their hips and rebound with their legs extended in time to the metronome.
All contact mat data were collected via a PDA (iPAQ, Hewlett Packard, Palo Alto, CA, USA) and
later exported as an Excel file for analysis. Ten consecutive “acceptable hops” were then selected
for analysis, whereby the participants’ hopping frequency was closest to the designated metronome
rate [31]. Variables obtained from contact mat data enabled the calculation of vertical leg stiffness
using equations and methods previously reported in youth-based studies [31].

2.2.5. Drop Jumps

All drop jumps were performed on a portable force plate (AMTI, Accupower, Boston, MA, USA)
from a box height of 20 centimetres [34]. Participants were instructed to step off the box and rebound
as high and as quickly as possible. The gymnasts were permitted to use an arm swing [35] to mimic the
activities they perform in their gymnastics practise, and were instructed to keep their legs extended
during the flight phase of the jump. Trials where the gymnasts noticeably stepped down or jumped up
from the box were discounted and repeated. Using previously established methods [35,36], the raw
vertical force-time data were used to calculate the variables needed to determine reactive strength
index (RSI). The Equation (A2) [35,36] for calculating RSI can be found in Appendix A.
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2.2.6. Trunk Muscular Endurance Hold Tests

To assess trunk muscular endurance, each gymnast performed the Biering-Sorenson test to assess
trunk extensor and flexor endurance [37], isometrically holding test positions until technical failure.
Both tests have previously been used in gymnastics-based literature [33]. The extensor muscular
endurance test required the participants to lie in a prone position, with their anterior-superior iliac spine
aligned to the edge of the testing box, while a coach held their lower extremities [33,37]. Participants
were then asked to cross their arms and place their hands on their shoulders, before lifting their
torso to the horizontal testing position. For the flexor endurance test, participants assumed a seated
position with 90◦ of flexion at the hips and knees [33]. The same arm position as the extensor test was
adopted by the gymnasts and a 60◦ back angle was measured for the testing position using a handheld
goniometer (plastic 12 inch, 66 fit). The principal investigator observed both tests from a lateral view
to check the gymnasts’ technique was being maintained. The gymnasts performed a single trial of
each isometric test, where maximum time held was recorded using a stop watch to the nearest 0.1 of
a second. To reduce testing bias, participants were not informed of their results following baseline
testing or prior to post testing [33].

2.3. Training Program

To ensure technical execution of exercises was maintained throughout, the program was carefully
supervised by the lead researcher who was a certified strength and conditioning specialist and qualified
gymnastics coach. Program design adopted an integrative approach to neuromuscular training
based on previous training interventions shown to be effective with inexperienced youth [7,10,18,38].
Specifically, the program included elements of trunk muscular endurance, movement competency,
dynamic stabilization, plyometrics, and strength training. The content of the sessions was divided
into three sections: trunk muscular endurance (approximately 5-min), movement preparation
(approximately 15-min) and basic resistance training exercises (approximately 15-min), a more detailed
overview can be found in Table 2. The intensity was increased for participants that were technically
competent using resistance in the form of: body weight, resistance bands, medicine balls and free
weights. Specifically, individuals were progressed on a session-by-session basis using small increments
(increments < 5 kg) in load, depending on the gymnasts’ technical competency. The trunk conditioning
exercises were largely isometric and based around the shapes required for gymnastics, such as dish and
arch shapes and bracing activities for handstands. In the movement preparation part of the program,
fundamental movement skills were developed alongside force absorption/control landing activities.
The resistance training element concentrated on addressing the gymnasts’ lower body force expression
and technical competency through both unilateral and bilateral exercises. Emphasis was placed on
correct lower-limb biomechanics during all exercises to facilitate the safe execution of skills.

2.4. Statistical Analyses

Descriptive statistics (means ± standard deviations) were calculated for all pre- and post-data
for each group. A multivariate analysis of covariance (MANCOVA) was used to control for baseline
differences in group anthropometrics (multivariate comprised of body mass, height and leg length)
for each performance variable. The assumption of normality was assessed via the Shapiro-Wilk test.
A 2 × 2 repeated-measure analysis of variance (ANOVA) (group × time) was then used to examine
the group changes in performance for each variable. Sphericity was assessed using Mauchly’s Test and
where violated, a Greenhouse-Geisser adjustment was implemented. Percentage change from baseline
testing was calculated for all individuals in each of the performance variables. The group percentage
changes in performance were examined for each variable using an independent t-test.
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Table 2. Overview of the 8-week INT training programme.

W Exercise Sets Reps

1 TC Dish, arch & plank conditioning set 2 10
MP Inch worms, gluteal bridges, bilateral CMJs, broad jumps,
RT Countermovement squats, split squats, forward lunges,

2 TC Dish, arch & support conditioning set 2 10
MP Clams, SL gluteal bridges, bilateral CMJs, broad jumps,
RT Back squats *, split squats, forward lunges,

3 TC Extension, flexion & lateral isometric holds, plank isometric holds 4 6
MP Monster walks, SL gluteal bridges, rebounds, skipping, hop & stick
RT Goblet squats, drop landing, SL lunges (DB), SL rock to stand

4 TC Extension, flexion & lateral isometric holds, plank isometric holds 4 6
MP Monster walks, SL gluteal bridges, rebounds, skipping, hop & stick
RT Goblet squats, drop landing, SL lunges (DB), SL rock to stand

5 TC Extension, flexion & lateral isometric holds, plank isometric holds 4 6
MP Abductor leg lifts, Hamstring bridges, multidirectional hop & stick, pogos
RT Goblet squats, drop landing, SL lunges (DB), SL rock to stand

6 TC Handstand trunk conditioning set 3 5
MP Abductor leg lifts, Hamstring bridges, multidirectional hop & stick, pogos
RT Overhead squats *, RDL, SL squat to box

7 TC Handstand trunk conditioning set 3 5
MP Monster walks (MB), hamstring bridge feet raised, hop hop stick, pogos
RT Overhead squats *, RDL (RT), SL squat to box

8 TC Dish, arch & support conditioning set (loaded) 3 5
MP Monster walks (MB), hamstring bridge feet raised, hop hop stick, pogos
RT Overhead squats (RB), RDL (DB), SL squat to box

W = week; TC = Trunk conditioning; MP = Movement preparation; RT = Resistance training; SL = single leg; CMJ =
countermovement jumps; * = wooden dowel; MB = mini band; DB = dumbbell; RB = resistance band.

In order to examine the individual responsiveness to the training intervention, the smallest
worthwhile change (SWC) was calculated as 0.2 of the between subject SD for the total sample, using
pre-intervention data. The SWC was expressed as a percentage of the group mean and a frequency
count was then used to establish the number of individuals who made changes greater than the
SWC, identifying those individuals who responded positively in performance. Chi-squared analysis
was used to evaluate between-group differences for the number of positive responders for each
performance variable. Analysis of the standardized residuals was used to identify frequencies that
would be considered larger in magnitude than might be expected by chance [39], and was identified as
significantly different using the >1.96 criteria [40]. Descriptive statistics, repeated-measures ANOVAs
and chi-squared analysis were all computed using SPSS Statistics v.22, with statistical significance set
at an alpha level of p < 0.05. Median values and percentages of individual scores for the deep overhead
squat and in-line lunge data were calculated via Microsoft Excel for Mac version 15.35.

3. Results

The results from the MANCOVA did not reveal any significant between-group differences for
any performance variable at baseline testing when maturity was controlled for as a multivariate factor
(p < 0.05). The between-group results from the repeated-measures ANOVA and percentage change
are displayed in Table 3. The EXP group showed significant improvements in the flexor and extensor
muscular endurance, when compared to the CON group (p < 0.05). Neither group showed significant
improvements in RSI; however, the control group showed a significant reduction in leg stiffness.
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The individual percentage change and the number of individuals that responded positively
(n > SWC) for the flexor and extensor endurance test, leg stiffness, and RSI is shown in Table 3,
and Figures 1 and 2. Chi-squared analysis revealed there were significantly more positive responders
than would be expected by chance for leg stiffness and extensor muscular endurance in the EXP
group, compared to the CON group (standardized residual values n > 1.96). Specifically, for leg
stiffness, the number of positive responders and non-responders were greater in the EXP group (41%
and 24%) versus the CON group (12% and 12%); while the EXP also showed a lower number of
negative responders (35% versus 76%). A similar pattern of positive responders, non-responders,
and negative responders emerged for extensor muscular endurance (76%, 12%, 12% versus 29%, 35%,
35%, respectively).

Over 50% of individuals made improvements greater than the SWC in the flexor muscular
endurance test and RSI in both groups; however, analysis of the standardized residuals revealed that
neither group’s number of positive responders were significantly greater than what would be expected
by chance. Of note, the distribution of positive responders, non-responders and negative responders
for the flexor muscular endurance would suggest overall, the EXP group had a more favourable
response (88%, 6%, 6%) compared to the CON (53%, 18%, 29%). Conversely, the opposite pattern was
evident for RSI (EXP = 53%, 23.5%, 23.5% versus CON = 65%, 6%, 29%, respectively).

The median values and the distribution of test scores for the deep squat and in-line lunge are
presented in Table 4 for both groups. The EXP group demonstrated improvements in median values,
improving from a score of 1 to 2 in both the deep squat, left and right in-line lunge. The distribution
of the CON group’s individual scores for the deep overhead squat and in-line lunge also improved;
however, the median values of the pooled data remained the same, with a score of 2 for each test.
Chi-squared analysis revealed there were significantly more positive responders than expected in the
EXP versus CON group for the deep overhead squat (72% versus 29%) and the in-line lunge (left)
(76% versus 18%). However, for the in-line lunge (right) test, neither group’s number of positive
responders were significantly greater than the expected frequency count (EXP group = 47% versus
CON group = 35%).
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Table 3. Group mean and percentage changes in performance variables for both groups.

Extensor End. Flexor End. Stiffness RSI

Pre Post Group ∆% n > SWC Pre Post Group ∆% n > SWC Pre Post Group ∆% n > SWC Pre Post Group ∆% n > SWC

Exp 72.0 ± 45.9 102.9 ± 44.6 * 28.5 ± 29.7 * 13 # 100.5 ± 72.0 179.2 ± 95.8 * 38.7 ± 33.0 * 15 20.2 ± 4.6 20.8 ± 4.8 1.82 ± 15.69 * 7 # 0.78 ± 0.30 0.94 ± 0.56 0.89 ± 48.01 9

Con 89.4 ± 25.6 92.5 ± 22.4 0.3 ± 26.5 5 119.1 ± 28.3 129.4 ± 58.33 −3.7 ± 47.7 9 23.9 ± 4.8 19.5 ± 4.8 ˆ −27.63 ± 30.72 2 0.84 ± 0.38 0.95 ± 0.29 7.21 ± 40.86 11

Ext = Experimental group; Con = Control group; End. = endurance; RSI = reactive strength index; SWC = smallest worthwhile change; ∆ = change in group; * = significantly greater than
the Con (p < 0.05); ˆ = significantly less than pre-testing (p < 0.05); # = significantly greater number of positive responders than the expected count compared to the control group.
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Table 4. Group deep overhead squat and in-line lunge median results.

Deep Squat In-Line Lunge Left In-Line Lunge Right

Exp

Median pre Median post n > SWC Median pre Median post n > SWC Median pre Median post n > SWC

1 2 13# 1 2 11# 1 2 8

% of 1 52.9 1 0 % of 1 76.5 1 17.6 % of 1 64.7 1 29.4
% of 2 23.5 2 52.9 % of 2 5.9 2 58.8 % of 2 23.5 2 47.1
% of 3 23.5 3 47.1 % of 3 17.6 3 23.5 % of 3 11.8 3 23.5

Con

Median pre Median post n > SWC Median pre Median post n > SWC Median pre Median post n > SWC

2 2 5 2 2 3 2 2 6

% of 1 35.3 1 11.8 % of 1 41.2 1 35.3 % of 1 29.4 1 5.9
% of 2 35.3 2 52.9 % of 2 41.2 2 35.3 % of 2 41.2 2 52.9
% of 3 29.4 3 35.3 % of 3 17.6 3 29.4 % of 3 29.4 3 41.2
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4. Discussion

The aim of this study was to examine individual responses in leg stiffness, reactive strength index
(RSI), movement proficiency (deep overhead squat and in-line lunge), and trunk muscular endurance
(flexor and extensor tests) in young female gymnasts following an 8-week neuromuscular training
intervention. The main finding of this study was that an 8-week neuromuscular training program
resulted in a higher percentage of responders in in pre-pubertal female gymnasts in most performance
variables. The EXP group had a higher number of positive responders in both trunk endurance
tests, the deep overhead squat and the in-line lunge tests, and had a significantly greater number
of positive responders in leg stiffness compared with the CON. The number of positive responders
for RSI were not significantly greater in either group. These findings suggest that supplementary
neuromuscular training can provide additional benefits to pre-pubertal female gymnasts’ training
programs. However, given the range of positive responders, non-responders and negative responders
across all performance variables, alternative training prescription (e.g., different exercise selections,
higher training intensities) may be required to promote more homogenous improvements in reactive
strength and stiffness qualities.

The group results from the deep squat and in-line lunge tests suggest that the training program
was effective in eliciting improvements in the EXP group, with median values improving from a
score of 1 to 2 in the deep squat and in-line lunge (consistent on both left and right limbs). While the
distribution of the CON group’s individual scores showed improvement, the median values of the
pooled data remained the same across all three tests. Participation in gymnastics can develop a variety
of motor skills [41], but this study highlights the potential benefits of exposing young trained gymnasts
to movement skill training that is different to their habitual gymnastics training. Furthermore, as the
neuromuscular training program included a variety of squatting and lunging movement patterns, it is
likely that the improvements in FMS scores of the EXP group were the result of a specific response to
the imposed training demand.

In terms of the extensor and flexor muscular endurance tests, the EXP group made significant
improvements in both tests, when compared with the CON. Previous research has shown participation
in gymnastics develops trunk muscular endurance [42]; however, this study indicates that young
trained gymnasts can benefit from an alternative trunk endurance training stimulus. These results
suggest that neuromuscular training which incorporates traditional gymnastics “shaping” exercises
(e.g., dish/arch holds, handstand shaping), with isometric trunk endurance exercises (e.g., plank
holds, flexor and extensor gravity holds) is more effective in eliciting improvements in trunk muscular
endurance than sports-specific training alone.

Examination of the group mean data showed that the EXP group made non-significant
improvements in leg stiffness, while the CON groups’ leg stiffness significantly decreased. Furthermore,
neither group of gymnasts made significant improvements in RSI. These results indicate that on a
group level, while the neuromuscular training failed to make significant improvements in performance,
it was at least in part able to maintain leg stiffness and reactive strength qualities during the competitive
period, where cumulative fatigue and detraining are more likely to occur. Previous research in elite
pre-pubertal gymnasts showed gymnasts were unable to maintain gains in drop jump performance
(from previous plyometrics and resistance training), confirming detraining following a competitive
and transition period [5]. Therefore, it is possible that in the current study, accumulated fatigue blunted
the training response for the gymnasts in the EXP group.

While the group results provide some insight into the effectiveness of the neuromuscular training
intervention, they fail to differentiate between gymnasts that were positive responders, non-responders,
and negative responders. In terms of the individual response to training for movement proficiency,
a greater number of individuals in the training group responded positively in all three tests compared
with the CON group, and the total number of positive responders was significantly higher in two
(deep overhead squat and left in-line lunge [left leg lead]) of the three tests. Interestingly, 14/17 of the
individuals in the EXP group were right-leg dominant, which could indicate that the neuromuscular
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training was effective in starting to address lower-limb asymmetry that could have developed due
their sports-specific training [11,26]. These findings suggest that neuromuscular training targeting
the development of simple fundamental movement skills can improve movement proficiency in
pre-pubertal female gymnasts, beyond sports-specific training alone. This is somewhat unsurprising
and consistent with previous research in pre-pubertal youth (13, 38), given that fundamental movement
skills are particularly trainable in the pre-pubertal years [10,43] owing to the natural increases in neural
plasticity that occur at this stage of development [44].

Examination of the individual responsiveness for the extensor muscular endurance test
determined that the neuromuscular training intervention resulted in significantly more positive
responders (76%), when compared to the CON (29%). Interestingly, the distribution of positive
responders, non-responders and negative responders for the flexor muscular endurance in the
EXP group (88%, 6%, 6% versus 53%, 18%, 29%) suggests that the EXP group responded more
favourably than the CON. However, the number of positive responders in the EXP group was
not significantly higher than in the CON. Similar results have previously been noted in mature
female gymnasts, which investigated the effects of a 10-week trunk muscular endurance training
program (two 15-min sessions per week) on reducing incidences of low-back pain. The study
showed that the training group significantly improved lateral flexor, extensor and flexor endurance,
while the CON group only demonstrated improvements in flexor endurance [33]. Cumulatively,
the results indicate that gymnastics-training may favour the development of flexor muscular endurance;
however, supplementary training programs might be necessary to target lateral and extensor muscular
endurance. Furthermore, research shows that isometric training can enhance core/torso stiffness,
which as a result, increases athletes’ load bearing capacity and improves force transfer during ballistic
distal limb movement, albeit in adults [45,46]. These adaptations could be highly beneficial and
relevant to young gymnasts’ from both a performance and injury risk perspective; however, further
research is needed to explore these potential benefits in this population.

Individual responsiveness data revealed that significantly more gymnasts in the EXP group
elicited positive adaptations in leg stiffness (41%), when compared to controls (12%). However,
when examining the number of positive responders versus the number of trivial and negative
responders in the EXP group, the results indicate that the training stimulus only promoted
improvements in leg stiffness for approximately 50% of gymnasts. Individuals who demonstrated
improvements in RSI were not significantly greater than the expected count in either group.
Furthermore, the distribution of positive responders, non-responders and negative responders for
RSI (EXP = 53%, 23.5%, 23.5% versus CON = 65%, 6%, 29%) suggests that the addition of the current
neuromuscular training program did not provide a superior stimulus to the gymnastics training alone.
The differentiated individual responsiveness among both EXP and CON groups highlights the unique
aspects of the sport of gymnastics, whereby the inherent physical demands of training and competing
are likely to promote a degree of adaptation in various indices of SSC function [47].

Previous research has shown that pre-pubertal gymnasts are superior in jumping tasks when
compared to young athletes from other sports [48]. A training study designed to improve jumping
performance in elite pre-pubertal gymnasts’, showed that two sessions per week (90 min each) of heavy
resistance training and high impact plyometrics was effective in improving drop jump performance
(from 20, 40, 60 cm heights) parameters (flight time, contact time, estimated mechanical power
and flight: contact ratio) [5]. In the present study, the training program incorporated a number of
hopping and skipping-based plyometric exercises, instead of more eccentrically demanding exercises
such as drop jumps or maximal hopping. Therefore, it is suggested that the positive responders in
the EXP cohort experienced specific adaptations to the imposed demands. For those that did not
respond positively, it could be postulated that the training stimulus provided was not sufficiently
intense to promote improvements in fast-SSC (e.g., reactive strength) in the pre-pubertal gymnasts.
A recent meta-analysis concluded that the most effective dose-response relationship for young athletes
occurred with conventional resistance training programs of periods >23 weeks, 5 sets per exercise,
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6–8 repetitions per set, a training intensity of 80%–89% of 1 RM [49]. Thus, young gymnasts may require
higher intensities and longer training durations to elicit improvements in more physically demanding
movement tasks. Alternatively, gymnastics training itself might be a sufficient stimulus to improve
reactive strength qualities in certain individuals; however, long-term exposure to neuromuscular
training may increase gymnasts’ athletic development and reduce their sport-related injury risk [11].

Some limitations should be noted in this study. Firstly, participant characteristics between
the two groups were significantly different at baseline, with the CON group slightly more mature
by approximately 1 year. However, a MANCOVA revealed no significant differences between the
groups’ performance variables at baseline. Whether this difference in biological maturity would have
influenced the post-testing findings despite both groups being pre-PHV is unclear and warrants further
investigation. Secondly, as the current study took place over a competitive phase for the gymnasts,
it is possible that accumulated fatigue influenced the results by blunting the training response for
the gymnasts in the EXP group. Future research should aim to monitor workloads using rate of
perceived exertion scales in both CON and EXP groups that are specific to youth [50]. Furthermore,
the current study only used an 8-week training intervention and primarily field-based measures of
neuromuscular performance to evaluate the effectiveness of the training program. Owing to the nature
of the young artistic gymnasts’ population, future research is warranted that examines the effects of
longer-term exposure to strength and conditioning activities, using more advanced strength and power
testing diagnostics. Notwithstanding these limitations, this study has important strengths. Despite
the high injury rates in young artistic gymnastics [51] and the risk reducing benefits of strength and
conditioning for young female athletes [33,52], there is a dearth of published literature examining
individual training responsiveness of this population to neuromuscular training. This exploratory
study offers a novel contribution to the literature by providing researchers and practitioners with
insight into the differentiated responsiveness of young female gymnasts to a neuromuscular- and
gymnastics-training stimulus.

5. Conclusions

The results from this study show that a neuromuscular training programme can provide additional
benefits to some pre-PHV gymnasts, beyond gymnastics-training programs alone. With just 2 × 35-min
sessions per week, strength and conditioning coaches can enhance trunk muscular endurance and
movement proficiency in a relatively short period of time. For gymnasts to realise ongoing adaptations,
exercises will need to be progressively overloaded and training prescription will need to be altered.
Strength and conditioning practitioners should also be aware that providing technical competency
is sufficiently robust, pre-PHV gymnasts may require higher exercise intensities (i.e., larger external
resistance) and longer training durations to facilitate neuromuscular adaptations that improve reactive
strength, leg stiffness and fast-SSC function. Importantly, strength and conditioning practitioners must
prioritise technical competency at all times and aim to differentiate exercises on an individual basis via
regressions and progressions.
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Appendix A

Leg stiffness (kilonewtons per meter) was calculated using measures of body mass, contact times,
and flight times. Within the equation, KN refers to leg stiffness, M is the total body mass, Tc is equal to
ground contact time, and Tf represents the flight time [18,31].

KN =
[
M × π

(
Tf + Tc

)]
/Tc2

[(
Tf + TC/p

)
− (Tc/4)

]
(A1)

RSI (millimeters per milliseconds) was calculated using jump height and contact time, with jump
height calculated via flight time [35,36].

RSI (mm/ms) = jump height (millimeters)/contact time (milliseconds) (A2)
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