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Abstract 
This paper compared the accuracy of producing patient-specific cranioplasty implants using four different approaches.  

Benchmark geometry was designed to represent a cranium, and a defect added simulating a craniectomy.  An ‘ideal’ contour 

reconstruction was calculated and compared against reconstructions resulting from the four approaches – ‘conventional’, 

‘semi-digital’, ‘digital – non-automated’ and ‘digital –semi-automated’.   

 

The ‘conventional’ approach relied on hand-carving a reconstruction, turning this into a press tool, and pressing titanium 

sheet.  This approach is common in the UK National Health Service (NHS).  The ‘semi-digital’ approach removed the hand-

carving element.  Both of the ‘digital’ approaches utilised Additive Manufacturing (AM) to produce the end use implant.  

The geometries were designed using a non-specialised Computer Aided Design (CAD) software; and a semi-automated 

cranioplasty implant-specific CAD software.  It was found that all plates were clinically acceptable, and that the digitally 

designed and AM plates were as accurate as the conventional implants.  There were no significant differences between the 

AM plates designed using non-specialised CAD software, and those designed using the semi-automated tool. 

 

The semi-automated software, and AM production process, were capable of producing cranioplasty implants of similar 

accuracy to multi-purpose software and AM, and both were more accurate than handmade implants.  The difference was not 

of clinical significance, demonstrating that the accuracy of AM cranioplasty implants meets current best-practice. 
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Introduction  
 
Cranioplasty is a common procedure across the world, including within the UK National Health Service (NHS).  Patient-

specific cranioplasty implants (Figure 1) are used to replace absent portions of cranium – usually following the removal of 

diseased anatomy 1, or a decompressive craniectomy procedure to relieve pressure on a patient’s swelling brain 2.  The viable 

size of decompressive craniectomy following severe traumatic cranial and brain injury has increased in recent years 3, 

making the design and production of cranioplasty plates more challenging.  Technologies, including Computer Aided Design 

(CAD) and Additive Manufacturing (AM) have the potential to improve the accuracy of, and access to, both large and small 

patient-specific cranioplasty implants.  This paper reviewed the accuracy of cranioplasty implant outputs from four different 

UK production methods.  Two were based on more typical, craft-based, hospital-laboratory approaches, and two were based 

on CAD and AM techniques.  Each approach incorporated design and fabrication activities – and the important translation 

stages between them.  A literature review was undertaken to evaluate previous work on accuracy, and to highlight relevant 

key factors from beyond the featured production methods and materials.  

 

 

TAKE IN FIGURE 1 

 
Figure 1 – Typical Cranioplasty Implant Fixed to Anatomical Model of Partial Cranium 

 

 

Broadly, in the UK NHS, patient-specific cranioplasty implant production can be classified according to the degree of digital 

technology involvement as: conventional production (hereafter: “Process A”), semi-digital production  (hereafter: “Process 

B”), and digital production  (hereafter: “Process C”) 4.  Because the most expensive and time-consuming of the three 

approaches was found by Peel and Eggbeer 4 to be the digital route, (requiring multiple software packages and a specialist 

design engineer), this investigation introduced a fourth classification for comparison, semi-automated digital  (hereafter: 

“Process D”).  This new route involved a single software package which can be used by a surgeon directly, or by laboratory 

staff, to rapidly specify, design, and verify a custom cranioplasty implant design prior to direct AM of the end-use titanium 

(Ti6Al4V – equivalent to grade 23) part.     

 

 

Literature Review 
 

Across a broad range of surgical applications, digitally planned procedures and AM devices have been shown to offer a more 

accurate device fit 5, 6, improved viability for complex procedures 7, improved predictability 8, 9, a reduced need for two-stage 

surgeries 10, and shorter duration surgeries 11; when compared to off-the-shelf implants which are intraoperatively adapted 12, 

or to more traditional autologous reconstruction techniques using bone 13.  Additionally, positive secondary effects can be 

reasonably inferred but not yet explicitly and consistently proven; such as reduced infection risks and blood loss 14, and 

accelerated recovery 10.  The new semi-automated AM implant workflow therefore sought to reduce the amount of design 

time and specialised human resources required when digitally designing simple cranioplasty implants, without sacrificing 

accuracy, and the other established CAD/AM benefits. 

 

 



 

Previous Work - Accuracy 
 

Previous published cranioplasty studies have assessed the quantified accuracy of: automated die design for hydroforming 15; 

differences between cast and machined polymethyl methacrylate (PMMA) 16; an algorithm for implant design based on 

combining low-resolution diagnostic Computed Tomography (CT) scans with high-resolution surgical-planning scans 17; an 

algorithm for reconstructing cranial defects with depressed contours to ease wound closure 18; and the degree of compliance 

of a conventionally-pressed titanium plate with the edges of defective anatomy 19.  In many studies however, the evaluation 

of cosmetic outcomes was based on subjective judgements by patients and / or clinicians, either in person or via imaging 20-

24.  No published literature was found with quantified accuracy comparisons between NHS laboratory and CAD/AM 

production techniques.  This paper established initial quantified benchmarks for laboratory accuracy, and compares them 

with the two fully digital CAD/AM approaches mentioned above (and described in detail in the ‘Methods’ section).  This 

was to capture the fundamental difference between the high-skill, artisanal nature of the current laboratory and non-

automated digital methods 4, 15, 23 and the comparatively de-skilled, potentially more accessible, new semi-automated digital 

method.  This was especially relevant when the relative uniqueness of UK hospital-laboratory capabilities were considered. 

The authors defined implant accuracy as: the degree to which the final implant form matched a pre-defined ‘ideal’ result.  

The ideal result was known prior to design and fabrication, by basing the investigations on an artificial defect modelled on 

healthy donor cranium scan-data (as opposed to a real defect where the precise original form is unknown). 

 

 

Clinical Background - Craniectomy 
 

When medical management (including temperature control, sedation, and coma) fails to relieve elevated intracranial pressure 

following a traumatic brain injury, a surgical intervention may be made in the form of a decompressive craniectomy 2.  After 

removing a portion of the cranium, and creating extra space for the brain to swell into, the bone flap can be replaced 

immediately (craniotomy) or left off (with only the soft tissues covering the brain) pending further recovery 2.  Other 

indications for craniectomy (or procedures resulting in similar defects) include resections of cranial lesions 25; together with 

benign bone pathologies such as fibrous dysplasia 26, and needing access to the brain to remove tumours 27.    

 

 

Clinical Background - Reconstructions  
 

Reconstruction of the cranium is primarily undertaken to restore its protective and cosmetic functions 28.  Further benefits 

involve the relief of neurological symptoms – potentially caused by atmospheric pressure acting upon the dura and brain via 

the skin flap 27.  To minimise infection risk, cranioplasty should be undertaken at least six months after craniectomy 29 with 

up to fourteen months reported by Cabraja et al. 20.  The defect shape can change over time as the bone remodels – which 

can be problematic for pre-fabricated implants based on older scans from the time of the original surgery 5.  Soft tissues can 

also change during this time and have been shown to obstruct the successful insertion of implants fabricated in materials 

which are difficult to modify in-theatre 4.   

 

Generally, cranioplasty implant geometry is based on mirroring contralateral healthy anatomy  – unless the defect crosses the 

midline, in which cases contours were assessed for aesthetic continuity with surrounding tissues 30.  Edwards 31 highlighted 

the importance of keeping cranioplasty implant extents as small as possible – to reduce the size of the raised skin flap.  

Raising the skin flap is the most time-consuming stage of the surgical procedure 32.  After inserting the implant, suturing 



 

without tension of the skin is essential to prevent implant exposure 33.  This can be achieved by using skin expanders 33 or by 

depressing the otherwise optimal cosmetic contours of an implant design before fabrication  18.       

 

 

Conventional Reconstructions – Autologous Material 
 

Reconstructing with the patient’s own bone flap (after storing it cryogenically, or in the patient’s abdomen post-craniectomy) 

is still considered the ‘gold standard’ 34-36.  This is surprising – given the high frequency of major bone resorption which 

required revision surgery (30.4% of patients, in one study) 37.  Patients with PEEK or titanium cranioplasty implants 

experienced lower complication rates and shorter hospital stays than for patients with re-implanted bone flaps 13, but primary 

treatment costs were reported as being higher.    Lethaus et al. 13 also noted the relatively short follow-up history for 

alloplastic materials – which may indicate the reason for the enduring ‘gold standard’ label resting with bone flaps. 

 

However, when successful, the autologous approach resulted in complete biological integration 36.  Furthermore, Lauerman 

and Stein 2 recommended recreating the original cranial vault volume to avoid potential complications – if the swelling is 

low enough.  Logically, replacing the full-thickness of original cranium – by using the original portion of cranium itself – 

was identified as one method of achieving this. 

 

 

Conventional Reconstructions – Alloplastic Materials 
 

There is a significant body of published literature focusing on the review and evaluation of alloplastic cranioplasty implant 

materials; and it is clearly still the major area of controversy.  The use of acrylic (PMMA) was commonly described thanks 

to its low cost, and its ability to be easily shaped 23.  PMMA implants were fabricated intraoperatively by mixing a liquid 

polymer and powdered monomer, then forming the flowing material manually, and (where necessary) making adjustments 

using burrs after the mix has hardened 38.  Alternatively, the implants were pre-formed via a moulding technique 23 which 

can save time in-theatre.  However, Vahtsevanos et al. 39 listed several major disadvantages to PMMA including: incomplete 

biological inertia; tendency to fracture; high local temperatures (during intraoperative polymerisation); and inflammatory 

scarring.  Other reported intraoperatively-shaped materials included titanium mesh and hydroxyapatite.  The latter could 

exhibit bioactive behaviour and avoided many of the listed problems with PMMA, but it did require a dry anatomical defect 

site and took longer to set 38.     

 

Making an assessment of the nature of a craniectomy defect, during pre-operative alloplastic implant planning, historically 

involved taking an impression manually through the patient’s skin-flap 32.  In the 1990’s however, techniques were 

developed for representing defects using stacked cross-sections derived from individual patient Computed Tomography (CT) 

scan-data slices 21, and using milled polyurethane foam models 19.  Now, the conventional approach in the NHS is shown to 

rely on AM medical models 4, 31, 40.  It is these models on which the hospital-laboratory design and fabrication processes for 

common pressed-titanium implants are based.  This process results in implants which: can achieve aesthetically pleasing 

results in a material which is strong and dimensionally stable 40; are inexpensive relative to current digitally designed and 

additively manufactured plates 4; which can be adjusted in-theatre by trimming or bending 4; and which have excellent 

biocompatibility 38.  The combined, highly-skilled design and fabrication process was undertaken by maxillofacial 

prosthetists or laboratory technologists in the published literature, not by the operating surgeon as previously referenced in 

autologous reconstruction and acrylic examples.  However, surgeon-consultation was recommended by Edwards 31.  Similar 



 

implants were produced by pre-shaping titanium mesh 41  or in a non-NHS laboratory setting, by hydroforming titanium 

sheet 15. 

 

 

Digital Reconstructions – Alloplastic Materials  
 

General benefits from using CAD to design patient-specific devices are well established in the literature: improved accuracy 

of fit, reduced theatre time, and a reduced likelihood of surgical revisions 42.  With AM titanium parts specifically, the ability 

to incorporate porous areas, coatings, and varied internal structures can result in tailored mechanical properties 43, and 

improved osseointegration 44.  As highlighted previously, despite some clear potential benefits this approach has not been 

shown to be widely undertaken on a routine basis, particularly for simpler implant geometries such as cranioplasty, because 

of high costs relative to conventional and semi-digital workflows 4.  Furthermore, access to specialised planning and design 

services, or similar in-house skills, is limited.  Where the hospital capability does exist, it varies in extent and is 

inconsistently integrated - across prosthetics laboratories 45, individual units 46, and photographic departments 47.        

 

Digitally designed cranioplasty implants have been fabricated from: titanium using AM 35, 48, 49, titanium using Computer 

Numerically Controlled (CNC) machining 20, 25, 50, and from PolyEther Ether Ketone (PEEK) also using CNC 8, 13, 41, 51, 52.  

Lethaus et al. 13 emphasised key benefits of PEEK in relation to AM titanium; it is closer in strength, stiffness, and elasticity 

to the original bone, which reduces stress shielding.  Likewise it has a lower thermal conductivity, lower density, and lighter 

weight than titanium, contributing to improved patient comfort, especially in particularly hot or cold environments 53.  PEEK 

implants have been modified in-theatre using burrs 36 and are radiolucent for improved clarity in post-operative imaging 54.  

Although AM Ti6Al4V Extra Low Interstitials (ELI) implants were difficult or impossible to modify intra-operatively, this 

limitation was mitigated with a robust design process to build-in positional flexibility, via the curation of high-fidelity 

specifications 4, 8.  PEEK does not have bioactive potential like titanium 13, and high upfront expense was often raised as a 

significant negative factor 41, 52, 53. 

 

 

Literature – Implications 
 

Reviewing the literature has demonstrated a clear gap in published knowledge about the accuracy of implant production – 

involving the fluid and iterative combination of design and fabrication activities in the hospital laboratory, as well as the 

fidelity of conventional and digital fabrication processes themselves.  As described, accuracy is an important consideration 

in cranioplasty implant design because of the aesthetic and morphological impacts of the procedure, and the success of the 

post-operative skin-flap coverage.  With material-selection still a significant topic of controversy, the benefits of alloplastic 

pre-formed reconstructions have substantial backing.  AM titanium and CNC PEEK, with CAD design as their prerequisite, 

are represented as promising routes to producing implants using fully digital methods; each with relative merits.  AM 

titanium alone will be explored in this study, to exclude any accuracy effects from material choice.     

 

 

Methods  
 

Research partners included a metal AM equipment manufacturer, a maxillofacial unit, and a specialist surgical and prosthetic 

design and research institute.  Study activities were divided according to partner expertise.  Generally this amounted to 



 

division according to which stakeholder would usually undertake each role for a real clinical case.  This meant that tasks 

were assigned to production engineers and a reconstructive scientist at the metal AM equipment manufacturer, two 

reconstructive scientists and one surgeon at the maxillofacial unit, and three design engineers at the design and research 

institute.  A summary is provided in Table 1.  

 

 

TAKE IN FIGURE 2 

 
Figure 2 – Original Cranium Geometry from Scan Data 

 

 

CT scan-data of a healthy cranium was segmented for bone by a design engineer at the institute using Mimics Version 18 

(Materialise, Leuven, Belgium).  After exporting the geometry (Figure 2) in the STereoLithography (STL) format, the 

cranium was imported into FreeForm Modelling Plus V2015 (3D Systems, Rock Hill, SC, USA).  This is general 

engineering and design CAD modelling software with a bundled proprietary haptic ‘PHANTOM’ interface.  On a duplicate 

of this initial model, a defect was added on the patient’s right in the form of a hole of a moderate cranioplasty size (as judged 

by the reconstructive scientists).  The defect did not cross the midline, which ensured mirroring was a consistent basis for 

implant design across all workflows.  A suitable extents-crop (see the removal of material inferiorly between Figures 2 and 

3) was agreed with the reconstructive scientists, to realistically minimise model costs while still providing enough material 

to assess new contours against the contralateral (intact) side.  These cropped models with artificial craniectomies (Figure 4) 

will be referred to as “defect models” in the remainder of the text.  The virtual, ideal (i.e. unmodified) contour model (Figure 

2) will be referred to as the “ideal reconstruction” in the remainder of the text. 

 

 

TAKE IN TABLE 1 

 
Table 1 – Overview of Task Allocation  

 

 

Across four different implant design and fabrication workflows, a total of eight implants were fabricated, fixed to defect 

models, scanned, compared against the ideal reconstruction, assessed for accuracy, and for clinical suitability.  One each, of 

the conventional and semi-digital implants were fabricated, because of their reliance on time-poor clinical human resources.  

Three each of the digital and semi-automated digital implants were fabricated, on account of their design and fabrication by 

non-clinical staff.  Each of the four workflows is described in detail below. 

  

 

TAKE IN FIGURE 3 

 
Figure 3 – Cranium Geometry with Artificially Modelled Defect 

 

 

TAKE IN FIGURE 4 

 
Figure 4 – SLA Defect Model 

 

 



 

 

Conventionally Designed and Fabricated Cranioplasty Implant 
 

Process A, undertaken by reconstructive scientists, was described by Peel and Eggbeer 4 as: manual re-contouring of an AM 

defect model using clay; creation of a dental-stone press tool; swaging 0.5mm thick commercially pure titanium sheet; and 

then refining the implant through further pressing, drilling, polishing, de-burring, and engraving.  StereoLithography 

Apparatus (SLA) was used to produce the defect model, following the institute’s established protocols.  Design specification 

points were derived from the standard processes for the maxillofacial unit and reconstructive scientists undertaking this 

implant design and fabrication.  This resulted in an overlay approach, and the implant overlapping the defect edge by a 5mm 

(with slight variations because of the manual trimming).  2.0mm diameter fixation screw-holes were drilled into the 

periphery of the implant.  Fluid transfer holes of 4.0mm diameter were arbitrarily spaced across the plate surface.  The 

surface was polished using pumice and a rotating brush.  Finally, the implant was screwed-onto a defect model.   

 

 

Semi-Conventionally Designed and Fabricated Cranioplasty Implant 
 

Process B was undertaken in the same way as the conventional process described above, with one key exception.  The defect 

was reconstructed prior to fabrication of the medical model by a design engineer at the institute, and the reconstruction 

verified by a reconstructive scientist.  This eliminated manual carving.  Instead, virtual sculpting tools were used in 

FreeForm, having initially mirrored the healthy contralateral anatomy as a starting point.  The reconstruction was initially 

judged visually, and verified using digital measurements from the anatomy midline to key landmarks.  Supplying the 

reconstructive scientist with this type of model reduces the cost of this key component 4 and removes the time-consuming 

manual carving stage at the maxillofacial unit.   

 

 

Digitally Designed and Fabricated Cranioplasty (Manual, Non-Specialised Software) 
 

In Process C, two institute design engineers, and one reconstructive scientist at the AM equipment manufacturer, 

extrapolated the semi-conventional approach to achieve an implant design.  A 0.5mm layer was added on top of the 

reconstructed virtual model in FreeForm.  A similarly onlay approach was taken to permit comparisons with the other 

approaches, and to reflect the maxillofacial unit’s requests in a real clinical case.  Holes of the same diameter as for the 

conventional and semi-digital implants were added for fixation and fluid transfer.  Screw countersinks were designed-in – 

with a compensatory amount of material built-up around the screw-heads to facilitate this without compromising the 

minimum thickness of the implant.  Upon completion of the design, the implant components were exported in the STL file 

format for fabrication.  Production engineers supported the implants for fabrication using QuantAM file preparation software 

(Renishaw PLC, UK).  The implants were fabricated by Laser Melting (LM) (AM250, Renishaw, Miskin, UK) using 

Ti6Al4V ELI (grade 23).  The production engineers then followed a standard medical implant post processing procedure 

including a vacuum heat-treatment cycle, support removal, and (in this case) tumble polishing to a satin finish. 

 

 

Digital Cranioplasty (Semi-Automated, Specialised Software) 
 



 

In Process D, one reconstructive scientist and two design engineers operated a new specialist cranioplasty implant software 

prototype (ADEPT, Renishaw PLC, UK) to create implants which adhered to the same previously-stated design 

specifications.  The software automatically generated a mirrored form, and prompted the users to assess the result and amend 

it where necessary.  Users were then guided through detailing stages by a wizard feature, to add the fixation and fluid 

transfer holes.  Upon completion and approval of the three designs, the implants were fabricated and post-processed in the 

same way as the manual digital workflow.          

 

 

Clinical Placement and Evaluation 
 

The eight implants were each completed and then fixed to their respective defect models for evaluation and testing, and 

assessed for clinical suitability by the same consultant maxillofacial surgeon.  The surgeon was subjectively verifying the 

design and fabrication of the devices against what they would be happy to use in theatre to repair the artificial model defect 

if it were real bone in a real patient. 

 

 

Laser Scan Analyses 
 

The final implant-model assemblies were scanned using the FARO Edge ScanArm (FARO, USA) via PolyWorks software 

(InnovMetric Software Inc., QC, Canada).  The resulting scans were analysed using IMInspect (InnovMetric Software Inc., 

QC, Canada).  Scans were aligned with the STL of the ideal contours, and the aligned scan data then cleaned to within a 

5mm border of the STL.  The differential between the ideal reconstruction and the scanned implant-cranium assemblies was 

illustrated by colour maps.  The scans provided mean deviation values at user-selected points.  Those points were selected 

post-hoc, on the basis of proximity to extreme deviations and typical deviations as shown by the colour mapping.   

 

This scanning equipment and software setup was chosen for three key reasons: it could provide quantitative measures of the 

implants and immediately adjacent cranium models relatively quickly compared to contact methods; it could facilitate 

registration with the ideal geometry and display overlay images; and it was available to the researchers as part of the 

collaborative project. 

 

 

Results 
 

‘Positive deviation’, shown towards the orange-red end of the scale, will refer to implant deviations which were superficial 

to the ideal contours.  ‘Negative deviation’, shown towards the blue-pink end of the scale, will refer to implant deviations 

which were deeper than the ideal contours.  Results are presented in Table 2 below.  Values for maximum positive and 

negative deviations exclude the screw heads used for fixation. 

 

 

TAKE IN TABLE 2 

 
Table 2 – Design and Fabrication Process Outcomes and Scanning Results 

 



 

 

Discussion  
 

Research Relevance  
 

These results must be considered in the context of the study limitations, prior to evaluating their relevance.  This was a 

laboratory study, unable to assess true clinical impacts of the implants on soft tissues laid over the finished implant contours.  

There were only one each, of the Process A and B implants, and only three each of the Process C and D implant sub-groups.  

Statistical significance could therefore not be established.  Additionally, only one craniectomy defect was tested, which did 

not extend beyond the midline.  At the implantation (i.e. fixation-to-a-model) stage, subjective variability was introduced on 

account of the surgeon (deliberately, as standard practice) pressing gently on the conventional and semi-conventional plates 

prior to securing the screws.  Clearly, this subjective aspect contributed to the deviation-measures in a way that was absent 

from the stiffer, fixed shape AM implants.  This was unavoidable. 

 

Finally, the discrete impacts of distinct design and fabrication activities were not explicitly and independently assessed.  

Indeed, the line between design and fabrication was especially blurred in Processes A and B which relied on designing-

through-making, without necessarily establishing clear design intent up-front 4.  Responsibility for the results was easier to 

assign for the AM produced implants using Processes C and D; on account of their being built in a tightly-controlled, BS EN 

ISO 13485-compliant 55 system.  The form of the devices in those instances was determined by the design process alone, not 

by potential flaws in, or variations from the manufacturing process.  Furthermore, as opposed to designing-through-doing, 

the very necessity of creating a finished design before fabrication with AM, ensures more thorough consideration towards 

the front-end of the process.  The specific nature of individual details is more likely to be driven by the designer, rather than 

serendipity when, for example, a crease in the plate after swaging leads to removal of material from that area.   

 

With the limitations acknowledged, the results can be said to apply to the implants measured in this research, while 

indicating, but requiring future work to confirm, wider validity.  The four cranioplasty production methods tested in this 

research are all used, to varying degrees, in current practice.  Therefore, this study is valid for comparing current clinical 

techniques.  This work focused on the accuracy and efficacy of the aesthetic reconstruction and with that, implant fit.  

Lethaus et al. 35 addressed the relative mechanical efficacies of titanium and PEEK for cranioplasty; with regard to the 

protective function for the brain.       

 

 

Relative Accuracies 
 

There were no clear and obvious trends when comparing the implants, other than confirmation that the emerging techniques 

for digitally designed implants (of both sub-group C and D) produced implants that were as accurate, or more accurate than 

those produced by established Processes A and B.  This finding in and of itself represents a key indicator for the continued 

development of digital design and AM cranioplasty applications.  Some minor insights were evident, though they should be 

verified in future work.  Insofar as can be inferred from this data, the digital techniques (Process D in particular) produced 

implants with the largest cumulative areas of negative deviation from the ideal contours.  This, alongside the smaller 

maximum values for that negative deviation, and smaller maximum values for positive deviation, suggested that digitally 

designed and AM implants provided the better and more consistent balance between contour accuracy and theoretical skin 

flap tension.    



 

 

 

Clinical Relevance 
 

All of the implants produced for this study were subjectively verified by one consultant surgeon as acceptable for use in real 

surgery.  However, they could not be assessed in terms of post-surgery clinical outcomes either quantitatively or 

qualitatively, as they were not implanted.  Previous reports have largely relied on subjective qualitative assessments of the 

cosmetic result, whereas this work has introduced a degree of quantitative rigour, at least to the pre-surgery stage.  This is 

important for contributing evidence towards supporting the continued adoption of digitally designed and AM devices.   

 

Negative deviations on the scale shown by the results in this research are effectively ‘perfect’ reconstructions in that they 

directly negate the implant thickness.  Even at the most extreme positive deviations in these results, the aesthetic significance 

of the inaccuracies is questionable; especially when the layers of overlaying soft tissues are considered.  Palpability and 

visibility have though, been demonstrated to be more significant concerns where this layer is thinner, such as in temporo-

orbital-frontal reconstructions 8.   

 

For the sake of comparability, implants from Processes C and D in this study were constrained to replicating the on-lay 

approach of implants from Processes A and B.  Cranioplasty plates that fit entirely within the defect, via an inlay approach 

making them level with the surrounding anatomy, were not investigated.  Such implants can offer aesthetic and comfort 

advantages by alleviating palpability through the skin.  In light of work by Carloni et al. 33 on skin flap tension, a total 

elimination of positive deviation from the ideal result would also have been preferable.  However, this would have created an 

unfair comparison with conventional devices which did not have this potential.  While this was unavoidable, it is important 

to acknowledge the additional design freedoms offered by CAD and AM (or CNC).   

 

In addition to the direct impact of aesthetics, other tangential benefits of digitally designed and AM implants are brought into 

focus, including consistency, repeatability, and accessibility.  In-hospital laboratory provision is less-common outside of the 

UK NHS.  Therefore, digitally designed, AM produced implants offer a proven method of routine, effective, and safe 

production; especially where cost is a less significant factor, such as in insurance-based healthcare systems.  As the trend for 

reductions in AM costs 56 continues, it is reasonable to anticipate the use of sub-optimal cranioplasty methods and materials 

(highlighted as such by the literature review) will be phased out; as digital design and AM fabrication become accessible by 

the majority of countries. 

 

 

Infrastructure and Regulatory Considerations 
 

Unlike those from hospital laboratories, commercially produced patient specific implants must conform to strict quality 

management 55 and regulatory standards 57.  Furthermore, there are no agreed standard procedures or specifications for 

conventionally produced cranioplasty implants, with a high degree of variability across practitioners more likely as a result.  

They require highly skilled staff, significant experience, laboratory facilities, and specialised knowledge; but they are time 

consuming – sometimes competing with patient-facing clinical work, and can lack clear design intent 4.  In-hospital skillsets 

are evolving.  Polymer printers are increasingly common on-site 47, 58, but the economic argument cannot generally be made 

for metal printers thanks to high capital and infrastructure costs, and a need for specialist operators 5. 

 



 

When new drugs, techniques, or technologies are seeking to enter the UK NHS market, the major gatekeeper is value.  

Clinical outcomes, and their value judgement counterparts, are assessed for efficacy, efficiency, and quality-of-life by the 

National Institute for health and Care Excellence (NICE) 59.  Currently, NICE offers limited advice to clinicians about 

digitally designed implants specifically; focusing on customised implants as a whole 60, 61.  This situation in the UK mirrors 

more urgent concerns from clinicians and researchers in the USA 62 and Australia 63, 64 with regulatory and health-insurance 

billing vacuums, respectively.   

 

With increasing discussion, development, and emphasis on quality management and regulatory compliance, it is possible to 

envisage a medium term future in which commercially produced patient-specific implants become the norm.  In such a 

scenario, design services may be distributed across hospitals and external organisations, because of more cost-effective 

infrastructure and regulatory compliance relative to manufacturing.  When based in-hospital, Process D enables a shift in 

users; away from expert designers, towards non-designers, non-engineers, and other non-CAD specialists like reconstructive 

scientists or surgeons.  The full implications of such a switch should be explored fully in future work.  It would be likely to 

alleviate some of the collaboration barriers to routine use of CAD and AM for simpler implants 4.  Complex implant projects 

or brand new applications, which have been shown to rely on multi-disciplinary teams with a broad range of design, 

engineering, and clinical expertise 7, are unlikely to be automated to any significant degree in the short term.      

 

 

Conclusions and Future Work 
 

In conclusion, semi-automated digitally designed, non-automated digitally-designed, and additively manufactured 

cranioplasty implants were as accurate as conventionally produced and semi-conventionally produced titanium implants in 

this study.  When additional factors like skin flap tension and implant thickness were considered, a potential improvement 

could be inferred relative to laboratory made devices.  This aspect requires verification across a larger sample size and a 

wider range of cranioplasty defect locations in future studies.  With the digitally designed implants being no worse than the 

existing UK standard plates, the potential non-accuracy related benefits like accessibility, consistency, and regulatory 

compliance were considered as being of increased importance.  By partially automating the design of simple, routine 

implants, and additively manufacturing them under validated systems, routine adoption of AM devices may be possible in 

the short to medium term.         
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