# PDF hosted at the Radboud Repository of the Radboud University Nijmegen 

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/103736

Please be advised that this information was generated on 2018-07-08 and may be subject to change.

## EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)



# Search for resonant $W Z$ production in the $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ channel in $\sqrt{s}=7 \mathrm{TeV} p p$ collisions with the ATLAS detector 

The ATLAS Collaboration


#### Abstract

A generic search is presented for a heavy particle decaying to $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ final states. The data were recorded by the ATLAS detector in $\sqrt{s}=7 \mathrm{TeV} p p$ collisions at the Large Hadron Collider and correspond to an integrated luminosity of $1.02 \mathrm{fb}^{-1}$. The transverse mass distribution of the selected $W Z$ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a $W Z$ pair.


# Search for resonant $W Z$ production in the $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ channel in $\sqrt{s}=7 \mathrm{TeV}$ $p p$ collisions with the ATLAS detector 

The ATLAS Collaboration<br>(Dated: June 29, 2012)


#### Abstract

A generic search is presented for a heavy particle decaying to $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ final states. The data were recorded by the ATLAS detector in $\sqrt{s}=7 \mathrm{TeV} p p$ collisions at the Large Hadron Collider and correspond to an integrated luminosity of $1.02 \mathrm{fb}^{-1}$. The transverse mass distribution of the selected $W Z$ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a $W Z$ pair.


PACS numbers: $12.60 . \mathrm{Nz}, 12.60 . \mathrm{Cn}$

## I. INTRODUCTION

The study of electroweak boson pair production is a powerful test of the spontaneously broken gauge symmetry of the Standard Model (SM) and can be used as a probe for new phenomena beyond the SM. Heavy particles that can decay to gauge boson pairs are predicted by many scenarios of new physics, including the Extended Gauge Model (EGM) 1], Extra Dimensions [2, 3], and Technicolor models [4].

This paper describes the search for a resonant structure in $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ production above 200 GeV . The dataset used corresponds to an integrated luminosity of $1.02 \mathrm{fb}^{-1}$, collected by the ATLAS detector at the Large Hadron Collider in $p p$ collisions at a center-of-mass energy of $\sqrt{s}=7 \mathrm{TeV}$ during the 2011 data taking. Events are selected with three charged leptons (electrons or muons) and large missing transverse momentum $\left(E_{\mathrm{T}}^{\mathrm{miss}}\right)$ due to the presence of a neutrino in the final state. Two benchmark models, which predict the existence of narrow heavy particles decaying into $W Z$, are used to interpret the results: the EGM, through heavy vector boson $W^{\prime}$ production, and the Low Scale Technicolor model (LSTC) [4], through technimeson production.

The couplings of the EGM $W^{\prime}$ boson to the SM particles are the same as those of the $W$ boson, except for the coupling to $W Z$, whose strength is $g_{W^{\prime} W Z}=g_{W W Z} \times$ $m_{W} m_{Z} / m_{W^{\prime}}^{2}$, where $g_{W W Z}$ is the SM $W W Z$ coupling strength, and $m_{W}, m_{Z}$ and $m_{W^{\prime}}$ are the masses of the $W$, $Z$ and $W^{\prime}$ particles, respectively. Strong bounds exist on $m_{W^{\prime}}$ from $W^{\prime} \rightarrow \ell \nu$ searches $[7-10]$ assuming the Sequential Standard Model (SSM) as the benchmark model, in which the $W^{\prime}$ coupling to $W Z$ is strongly suppressed. The $W^{\prime} \rightarrow W Z$ search presented in this paper is thus independent of, and complementary to, $W^{\prime} \rightarrow \ell \nu$ searches. Searches for the EGM $W^{\prime}$ boson in the $W Z$ channel have been performed at the Tevatron and $W^{\prime}$ bosons with a mass between 180 GeV and 690 GeV are excluded at $95 \%$ confidence level (CL) [11, 12].

In the LSTC model, technimesons with narrow widths are predicted which decay to $W Z$. Examples are the lightest vector technirho $\rho_{\mathrm{T}}$ and its axial-vector partner techni- $a a_{\mathrm{T}}$. A previous search in the $W Z$ decay channel
has been performed by the D 0 experiment and $\rho_{\mathrm{T}}$ technimesons with a mass between 208 GeV and 408 GeV are excluded at $95 \% \mathrm{CL}$ under the specific mass hierarchy assumption $m_{\rho_{\mathrm{T}}}<m_{\pi_{\mathrm{T}}}+m_{W}$, where $m_{\rho_{\mathrm{T}}}, m_{\pi_{\mathrm{T}}}$ are the masses of the technirho and technipion, respectively [13].

## II. THE ATLAS DETECTOR

The ATLAS detector [14] is a general-purpose particle detector with an approximately forward-backward symmetric cylindrical geometry, and almost $4 \pi$ coverage in solid angle [15]. The inner tracking detector (ID) covers the pseudorapidity range of $|\eta|<2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a calorimeter system covering an $\eta$ range up to 4.9 , which provides three-dimensional reconstruction of particle showers. For $|\eta|<2.5$, the electromagnetic calorimeter is finely segmented and uses lead as absorber and liquid argon (LAr) as active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the endcaps use LAr as the active material and copper as absorber. The forward calorimeter also uses LAr as active medium with copper and tungsten as absorber. The muon spectrometer (MS) is based on one barrel and two endcap air-core toroids, each consisting of eight superconducting coils arranged symmetrically in azimuth, and surrounding the calorimeter. Three layers of precision tracking stations, consisting of drift tubes and cathode strip chambers, allow a precise muon momentum measurement up to $|\eta|<2.7$. Resistive plate and thin-gap chambers provide muon triggering capability up to $|\eta|<2.4$.

## III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to model signal and background processes. Events are generated at $\sqrt{s}=7 \mathrm{TeV}$ and the detector response simulation [16] is based on the GEANT4 program [17].

The simulation of the signals, both for the EGM $W^{\prime}$ and the LSTC $\rho_{\mathrm{T}}$ production, is based on the leadingorder (LO) PYTHIA 18 event generator, with modified leading-order ( $\mathrm{LO}^{*}$ ) 19] parton distribution function (PDF) set MRST2007 LO* [20]. By default, pythia also includes $a_{\mathrm{T}}$ production, as discussed below. A massdependent $k$-factor is used to rescale the LO* PYTHIA prediction to the next-to-next-to-leading order (NNLO) cross section. The $k$-factor is computed using the zWPROD program [21] in the approximation of zero-width for the resonance; its value decreases with the resonance mass from 1.17 at $m_{W^{\prime}}=200 \mathrm{GeV}$ to 1.08 at $m_{W^{\prime}}=1 \mathrm{TeV}$.

The LSTC simulated samples correspond to the following set of parameters: number of technicolors $N_{T C}=4$, charges of up-type and down-type technifermions $Q_{U}=$ $1, Q_{D}=0$, mixing angle between technipions and electroweak gauge boson longitudinal component $\sin \chi=$ $1 / 3$. The $\rho_{\mathrm{T}}$ can decay both to $W Z$ and $\pi_{\mathrm{T}} W$; if the $\rho_{\mathrm{T}}$ and $\pi_{\mathrm{T}}$ masses are degenerate, the branching ratio $B R\left(\rho_{\mathrm{T}} \rightarrow W Z\right)$ is $100 \%$. Two-dimensional exclusion regions are set on the technicolor production in the ( $m_{\rho_{\mathrm{T}}}$ , $m_{\pi_{T}}$ ) plane. In addition, for comparison purpose with previous results [13], the relation $m_{\rho_{\mathrm{T}}}=m_{\pi_{\mathrm{T}}}+m_{W}$ is used when extracting one-dimensional limits on the $\rho_{\mathrm{T}}$ mass, which entails a value of $B R\left(\rho_{\mathrm{T}} \rightarrow W Z\right)=98 \%$. The axial-vector partner of the $\rho_{\mathrm{T}}$, the $a_{\mathrm{T}}$, also decays to $W Z$, and depending on its mass, contributes to the $W Z$ production cross section. Two scenarios for the value of the mass of the $a_{\mathrm{T}}$ technimeson are considered: $m_{a_{\mathrm{T}}}=1.1 \times m_{\rho_{\mathrm{T}}}$, which is the standard value implemented in PYTHIA, and $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$, which is simulated by removing the $a_{\mathrm{T}}$ contribution at the generator level.

The SM $W Z$ production, which is an irreducible background for this search, is modeled by the mC@NLO event generator [22], which incorporates the next-to-leadingorder (NLO) matrix elements into the parton shower by interfacing to the HERWIG program [23]. The underlying event is modeled with Jimmy [24]. Other SM processes that can mimic the same final state include: $Z Z \rightarrow \ell \ell \ell^{\prime} \ell^{\prime}$, where one of the leptons is not detected or fails the selection requirements; $Z(\rightarrow \ell \ell)+\gamma$, where the photon is misidentified as an electron; and processes with two identified leptons and jets, namely $Z$ production in association with jets $(Z+$ jets $), t \bar{t}$ and single top events, where leptons are present from $b$ - or $c$-hadron decays or one jet is misidentified as a lepton. SM $Z Z$ events are simulated at LO using HERWIG and $W / Z+\gamma$ production is modeled with Sherpa [25]. The cross sections for these two processes are corrected to the NLO calculation computed with MCFM 26, 27]. The $W / Z+$ jets process is modeled at LO using alpgen [28], and then corrected to the NNLO cross section computed with FEWZ [29]. Single top and $t \bar{t}$ events are simulated at NLO using mc@nlo. The backgrounds due to the $Z+$ jets, $t \bar{t}$ and single top processes (called the " $\ell \ell^{\prime}+$ jets" background in this paper) are estimated using data-driven methods and the corresponding MC samples mentioned above are used only for
cross-checks.

## IV. EVENT SELECTION

The data analyzed are required to have been selected online by a single-lepton ( $e$ or $\mu$ ) trigger with a threshold of 20 GeV on the transverse energy $\left(E_{\mathrm{T}}\right)$ in the electron case and 18 GeV on the transverse momentum ( $p_{\mathrm{T}}$ ) in the muon case. After applying data quality requirements, the total integrated luminosity of the dataset used in this analysis is $1.02 \pm 0.04 \mathrm{fb}^{-1}$ [30, 31].

Due to the presence of multiple collisions in a single bunch-crossing, about 6 on average, each event can have multiple reconstructed primary vertices. The vertex having the largest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard collision and it is used to compute any reconstructed quantity referred to the primary interaction vertex. To reduce the contamination due to cosmic rays, only events where the primary vertex of the hard collision has at least three associated tracks with $p_{\mathrm{T}}>0.5 \mathrm{GeV}$ are considered.

Electrons are reconstructed from a combination of an ID track and a calorimeter energy cluster, with $E_{\mathrm{T}}>$ 25 GeV and $|\eta|<1.37$ or $1.52<|\eta|<2.47$, avoiding the transition region between the barrel and the endcap electromagnetic calorimeters. Candidate electrons must satisfy the medium [32] quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. To make sure candidate electrons originate from primary interaction vertex, they are also required to have a longitudinal impact parameter $\left(\left|z_{0}\right|\right)$ smaller than 10 mm and a transverse impact parameter $\left(d_{0}\right)$ with significance $\left(\left|d_{0}\right| / \sigma_{d_{0}}\right)$ smaller than 10, both with respect to the selected primary vertex. In addition, the electron is required to be isolated in the calorimeter such that the sum of the $E_{\mathrm{T}}$ of the clusters around the electron within a cone of $\Delta R=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}=0.3$ is less than 4 GeV . Corrections are applied to account for the energy deposition inside the isolation cone due to electron energy leakage and additional pile-up collisions.

Muon candidates must be reconstructed in both the ID and the MS, and the combined track is required to have $p_{\mathrm{T}}>25 \mathrm{GeV}$ and $|\eta|<2.4$. Good quality is ensured by requiring a minimum number of silicon strip and pixel hits associated to the track. To suppress the contribution of muons coming from hadronic jets, the $p_{\mathrm{T}}$ sum of other tracks with $p_{\mathrm{T}}>1 \mathrm{GeV}$, within a cone of $\Delta R=0.2$ around the muon track, is required to be less than $10 \%$ of the muon $p_{\mathrm{T}}$. The muon candidate is required to be compatible with the selected primary vertex, with $\left|z_{0}\right|<$ 10 mm and $\left|d_{0}\right| / \sigma_{d_{0}}<10$.

The missing transverse momentum, $E_{\mathrm{T}}^{\text {miss }}$, is reconstructed, in the range $|\eta|<4.5$, as the negative vector sum of calorimeter cell transverse energies, calibrated to the electromagnetic scale 33], to which the transverse momenta of identified muons are added.

The $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ candidate events are selected by requiring two oppositely-charged same-flavor leptons with an invariant mass within 20 GeV of the $Z$ boson mass, plus a third lepton and $E_{\mathrm{T}}^{\text {miss }}>25 \mathrm{GeV}$. The transverse mass of the reconstructed $W$ boson, i.e. $m_{\mathrm{T}}^{W}=$ $\sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos \Delta \phi)}$, where $p_{\mathrm{T}}^{\ell}$ is the transverse momentum of the charged lepton and $\Delta \phi$ is the opening angle between the lepton and the $E_{\mathrm{T}}^{\text {miss }}$ direction in the plane transverse to the beam, is required to be greater than 15 GeV to suppress multijet background. Selected events are also required to have exactly three charged leptons to suppress the $Z Z \rightarrow \ell \ell^{\prime} \ell^{\prime}$ background. These selection criteria define the signal region. Four decay channels evee, e $\nu \mu \mu, \mu \nu e e$ and $\mu \nu \mu \mu$ are analyzed separately and then combined. The measurement of the inclusive $p p \rightarrow W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ cross section has previously been reported by ATLAS 34]. This analysis goes further by using the reconstructed event properties to probe for new phenomena.

After the final selection, the transverse mass of the $W Z$ candidates $\left(m_{\mathrm{T}}^{W Z}\right)$ is examined for any resonant structure. Here $m_{\mathrm{T}}^{W Z}$ is calculated as $m_{\mathrm{T}}^{W Z}=$ $\sqrt{\left(E_{\mathrm{T}}^{Z}+E_{\mathrm{T}}^{W}\right)^{2}-\left(p_{x}^{Z}+p_{x}^{W}\right)^{2}-\left(p_{y}^{Z}+p_{y}^{W}\right)^{2}}$, where $E_{\mathrm{T}}^{Z}$ and $E_{\mathrm{T}}^{W}$ are the scalar sums of the transverse energies of the decay products of the $Z$ and $W$ candidates, respectively. The $E_{\mathrm{T}}^{\mathrm{miss}}$ vector is used as the estimator of the transverse momentum of the neutrino arising from the $W$ boson decay.

## V. BACKGROUND ESTIMATION

The dominant background for the $W Z$ resonance search comes from SM $W Z$ production. Its contribution is estimated using MC simulation. Simulated events are required to pass the event selection criteria and the final yield is normalized to the integrated luminosity. Lepton reconstruction and identification efficiencies, energy scale and resolution in the MC simulation are corrected to the corresponding values measured in the data in order to improve the overall modeling. Other diboson processes such as $Z Z$ and $Z \gamma$ are also estimated using MC simulation.

A data-driven approach is used to estimate the contribution of the $\ell \ell^{\prime}+$ jets background in the signal region. It is estimated by selecting a data sample containing two leptons that pass all the quality criteria requested in the lepton selection, and a lepton-like jet, which is defined as a reconstructed object that satisfies all quality criteria but fails the electron medium quality or the muon isolation requirement. The overall contribution is obtained by scaling each event by a correction factor $f$. The factor $f$ is the ratio of the probability for a jet to satisfy the full lepton identification criteria to the probability to satisfy the lepton-like jet criteria. The factor $f$ is measured both for muons and electrons in a dijet-enriched data sample as a function of the lepton $p_{\mathrm{T}}$, and corrected for the small
contribution of leptons coming from $W$ and $Z$ bosons decays using MC simulation.

Data and SM predictions are compared in two dedicated signal-free control regions, selected by requiring the same selection criteria as used for the signal region except requiring $m_{\mathrm{T}}^{W Z}<300 \mathrm{GeV}$ for the "SM $W Z$ control region", and requiring $E_{\mathrm{T}}^{\text {miss }}<25 \mathrm{GeV}$ for the " $\ell \ell^{\prime}+$ jets control region". The SM $W Z$ control region is used to test the modeling of the irreducible background from non-resonant $W Z$ production, and the $\ell \ell^{\prime}+$ jets control region is used to assess the modeling of the $\ell \ell^{\prime}+$ jets background. Good agreement between data and SM predictions is found in both control regions, as shown by the transverse mass distribution of the $W$ boson in the SM $W Z$ control region and by the invariant mass distribution of the two leptons coming from the $Z$ boson decay in the $\ell \ell^{\prime}+$ jets control region displayed in Fig. 1 .

## VI. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainties have been considered. The first source is related to the lepton trigger, reconstruction and identification efficiencies. These efficiencies are evaluated with tag-and-probe methods us$\operatorname{ing} Z \rightarrow \ell \ell, W \rightarrow \ell \nu$ and $J / \psi \rightarrow \ell \ell$ events 35]. Scale factors are used to correct for differences between data and MC simulation. The lepton trigger efficiency scale factors are compatible with unity and a systematic uncertainty of $1 \%$ is considered. The lepton reconstruction and identification scale factors are close to one and have a systematic uncertainty of $1.2 \%$ for the electrons and $0.5 \%$ for muons [35]. The lepton isolation efficiency uncertainties are estimated to be $2 \%$ for electrons and $1 \%$ for muons.

The second source of uncertainty is related to the lepton energy, momentum and $E_{\mathrm{T}}^{\text {miss }}$ reconstruction. Additional smearing is applied to the muon $p_{\mathrm{T}}$ and to the electron cluster energy in the simulation, so that they replicate the $Z \rightarrow \ell \ell$ invariant mass distributions in data. The uncertainty due to the lepton resolution smearing is of the order of $0.1 \%$ [35]. The uncertainty on the $E_{\mathrm{T}}^{\text {miss }}$ reconstruction receives contributions from different sources: energy deposits due to additional $p p$ collisions which are in-time and out-of-time with respect to the bunch-crossing; energy deposits around clusters associated to reconstructed jets and electrons; energy deposits not associated to any reconstructed objects; and muon momentum uncertainties. The total systematic uncertainty on the dominant SM $W Z$ background estimation due to the $E_{\mathrm{T}}^{\mathrm{miss}}$ uncertainties lies between $(2-3) \%$, depending on the channel considered.

The third source of uncertainty is due to the limited knowledge of the theoretical cross sections of SM processes, used both to evaluate $W Z, Z Z$ and $Z \gamma$ background contributions, and for subtracting contributions of $W$ and $Z$ leptonic decays from the dijet sample used for the measurement of the correction factor $f$. An un-


FIG. 1: (color online) Observed and predicted $W$ boson transverse mass ( $m_{\mathrm{T}}^{W}$ ) distribution in the SM $W Z$ control region (a) and dilepton invariant mass $\left(m_{Z}\right)$ distribution in the $\ell \ell^{\prime}+$ jets control region (b)
certainty of $7 \%$ is assigned for the $W Z$ process, $5 \%$ for the $Z Z$ process and $8 \%$ for the $Z \gamma$ process [27], to which the MC statistical uncertainty is added in quadrature.

The fourth source of uncertainty is related to the uncertainty on the $\ell \ell^{\prime}+$ jets background estimation. The systematic uncertainty comes mainly from the uncertainty on $f$ due to differences in the kinematics and flavor composition of the QCD dijet events with respect to the $\ell \ell^{\prime}+$ jets processes, and differences in event selection criteria for QCD dijet events and $W Z$ candidates. The factor $f$ is around 0.15 for muons and 0.07 for electrons over the full range of $p_{\mathrm{T}}$ and $\eta$, with a relative uncertainty between $5 \%$ and $20 \%$. The estimated number of events from the $\ell \ell^{\prime}+$ jets background in the signal region using the data-driven method is $6.4 \pm 1.0$ (stat.) $)_{-4.0}^{+3.2}$ (syst.). A MC-based cross-check gives a consistent estimation of $4.3 \pm 1.1$ (syst.) events.

The fifth source of uncertainty is related to the estimation of the signal acceptance based on MC simulation. The systematic uncertainty is mainly due to the choice of PDF and is found to be $0.6 \%$ when comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO [36], using the standard LHAPDF framework [37]. A cross-check has been done using the NNPDF LO* 38], CT09MCS, CT09MC1 and CT09MC2 39] PDF sets, leading to a compatible uncertainty.

Finally the luminosity uncertainty is $3.7 \%$ [30, 31].

## VII. RESULTS AND INTERPRETATION

The numbers of events expected and observed after the final selection are reported in Table I A total of $48 W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ candidate events are observed in data, to be compared to the SM prediction of $45.0 \pm$
1.0 (stat.) ${ }_{-5.2}^{+4.6}$ (syst.) events. The expected numbers of events for a $W^{\prime}$ with a mass of 750 GeV and a $\rho_{\mathrm{T}}$ with a mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction and selection efficiencies $(A \times \epsilon)$ for EGM $W^{\prime} \rightarrow W Z \rightarrow$ $\ell \nu \ell^{\prime} \ell^{\prime}$ and the LSTC $\rho_{\mathrm{T}} \rightarrow W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ events as implemented in PYTHIA is shown in Table $\Pi$ for various $W Z$ resonance masses. The value of $A \times \epsilon$ is $6.2 \%$ for $m_{W^{\prime}}=200 \mathrm{GeV}$ and increases to $20.5 \%$ for $m_{W^{\prime}}=1$ TeV . The corresponding $A \times \epsilon$ for the LSTC $\rho_{\mathrm{T}}$ is found to be slightly lower than that of the EGM $W^{\prime}$ due to the fact that the PYTHIA implementation of the $\rho_{\mathrm{T}} \rightarrow W Z$ process does not account for the polarizations of vector bosons in their decay. A massive $W^{\prime}$ boson is expected to decay predominantly to longitudinally polarized $W$ and $Z$ bosons, as is the $\rho_{\mathrm{T}}$ technimeson. While the production and decay with spin correlations is fully implemented in PYTHIA for $W^{\prime}$, spin correlation information is not considered in the decay of the $W$ and $Z$ bosons in the $\rho_{\mathrm{T}}$ case, hence they each decay isotropically in their respective rest frames. This leads to a softer lepton $p_{T}$ spectrum and consequently lower $A \times \epsilon$. The interpretation of the data in terms of $\rho_{\mathrm{T}}$ production is performed in two different manners: the first uses the PYTHIA implementation of $\rho_{\mathrm{T}}$ production and decay, and the second assumes that $A \times \epsilon$ for the $\rho_{\mathrm{T}}$ is equal to that of the $W^{\prime}$.

The transverse mass distribution of the $W Z$ candidates is presented in Fig. 2 for data and background expectations together with possible contributions from $W^{\prime}$ and $\rho_{T}$ using PYTHiA. The $\ell \ell^{\prime}+$ jets and $Z \gamma$ background contributions to the $m_{\mathrm{T}}^{W Z}$ distribution are extrapolated using exponential functions to extend over the full $m_{\mathrm{T}}^{W Z}$ signal region. The transverse mass distribution is used to build a log-likelihood ratio (LLR) test statistic [40], which allows the compatibility of the data with the presence of a signal in addition to the background

TABLE I: The estimated background yields, the observed number of data events, and the predicted signal yield predicted by PYTHIA for a $W^{\prime}$ boson with a mass of 750 GeV and a $\rho_{\mathrm{T}}$ technimeson with a mass of 500 GeV , are shown after applying all signal selection cuts, for each of the four channels considered and for their combination. For the $\rho_{\mathrm{T}}$ production, the relation $m_{a_{\mathrm{T}}}=1.1 \times m_{\rho_{\mathrm{T}}}$ is used. Where one error is quoted, it includes all sources of systematic uncertainty. Where two errors are given, the first comes from the limited statistics of the data and the second includes systematic uncertainties.

|  | evee | $\mu \nu e e$ | $e \nu \mu \mu$ | $\mu \nu \mu \mu$ | Combined |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{W Z}$ | $6.2 \pm 0.7$ | $7.6 \pm 0.7$ | $9.2 \pm 0.8$ | $11.6 \pm 1.0$ | $34.6 \pm 3.1$ |
| $Z Z$ | $0.25 \pm{ }_{-}^{+0.07}$ | $0.48 \pm{ }_{-}^{+} 0.14$ | $0.37 \pm{ }_{-}^{+} 0.15$ | $0.63 \pm{ }_{-}^{+} 0.16$ | $1.7 \pm \begin{aligned} & +\begin{array}{l}0.5 \\ 0.3\end{array}{ }^{\text {a }} \text { ( }\end{aligned}$ |
| $Z \gamma$ | $1.3 \pm 0.7$ | - | $1.0 \pm 0.9$ | - | $2.3 \pm 1.1$ |
| $\ell \ell^{\prime}+$ jets | $1.1 \pm 0.4 \pm 0.7$ | $1.3 \pm 0.5 \pm{ }_{-0.8}^{ \pm 0.6}$ | $3.0 \pm 0.7 \pm{ }_{-1.9}^{1.6}$ | $1.0 \pm 0.4{ }_{-}^{+0.6}$ | $6.4 \pm 1.0{ }_{-}^{+3.2}$ |
| Overall backgrounds | $8.9 \pm 0.4 \pm 1.2$ | $9.4 \pm 0.5{ }_{-1.1}^{+0.9}$ | $13.6 \pm 0.7{ }_{-2.3}^{2.0}$ | $13.2 \pm 0.4{ }_{-1.2}^{+1.3}$ | $45.0 \pm 1.0{ }_{-}^{+4.6}$ |
| Data | 9 | 7 | 16 | 16 | 48 |
| $\overline{W^{\prime}} \rightarrow W Z\left(m_{W^{\prime}}=750 \mathrm{GeV}\right)$ | $0.74 \pm 0.07$ | $0.82 \pm 0.06$ | $0.97 \pm 0.06$ | $1.10 \pm 0.08$ | $3.64 \pm 0.21$ |
| $\rho_{\mathrm{T}} \rightarrow W Z\left(m_{\rho_{\mathrm{T}}}=500 \mathrm{GeV}\right)$ | $0.68 \pm 0.08$ | $0.79 \pm 0.08$ | $0.97 \pm 0.09$ | $1.11 \pm 0.10$ | $3.55 \pm 0.24$ |

TABLE II: Signal $A \times \epsilon$ for $W^{\prime} \rightarrow W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ and $\rho_{\mathrm{T}} \rightarrow W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ samples as implemented in PYTHIA, with statistical uncertainties. Missing values for $\rho_{\mathrm{T}}$ correspond to signal samples not considered.

| Mass $[\mathrm{GeV}]$ | $A \times \epsilon$ for $W^{\prime}(\%)$ | $A \times \epsilon$ for $\rho_{\mathrm{T}}(\%)$ |
| :---: | :---: | :---: |
| 200 | $6.2 \pm 0.2$ | $5.7 \pm 0.2$ |
| 250 | $8.2 \pm 0.4$ | $6.1 \pm 0.2$ |
| 300 | $10.0 \pm 0.5$ | $7.6 \pm 0.3$ |
| 350 | $11.6 \pm 0.3$ | $9.4 \pm 0.3$ |
| 400 | $13.2 \pm 0.5$ | $10.8 \pm 0.3$ |
| 450 | $14.5 \pm 0.6$ | $11.8 \pm 0.3$ |
| 500 | $15.9 \pm 0.3$ | $12.6 \pm 0.3$ |
| 550 | $16.9 \pm 0.6$ | - |
| 600 | $17.9 \pm 0.6$ | $13.8 \pm 0.3$ |
| 650 | $18.7 \pm 0.6$ | - |
| 700 | $19.4 \pm 0.7$ | $15.6 \pm 0.4$ |
| 750 | $19.9 \pm 0.3$ | - |
| 800 | $20.3 \pm 0.7$ | $16.1 \pm 0.4$ |
| 850 | $20.6 \pm 0.7$ | - |
| 900 | $20.6 \pm 0.7$ | - |
| 950 | $20.6 \pm 0.7$ | - |
| 1000 | $20.5 \pm 0.3$ | - |

to be assessed, in a modified frequentist approach 41]. Confidence levels for the signal plus background hypothesis, $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$, and background-only hypothesis, $\mathrm{CL}_{\mathrm{b}}$, are computed by integrating the LLR distributions obtained from simulated pseudo-experiments using Poisson statistics. The confidence level for the signal hypothesis $\mathrm{CL}_{\mathrm{s}}$, defined as the ratio $\mathrm{CL}_{\mathrm{s}+\mathrm{b}} / \mathrm{CL}_{\mathrm{b}}$, is used to determine the exclusion limits.

The probability that the background fluctuations give rise to an excess at least as large as that observed in data has been computed as $p$-value $=1-\mathrm{CL}_{\mathrm{b}}$ and is reported in Table III for the signal hypothesis of a $W^{\prime}$ particle with mass from 200 GeV to 1 TeV . Since no sta-
tistically significant excess is observed for any value of the $W^{\prime}$ mass, limits are derived on the production cross section times branching ratio $\left(\sigma \times B R\left(W^{\prime} \rightarrow W Z\right)\right)$ for a $W^{\prime}$ decaying to $W Z$, already corrected for the $A \times \epsilon$ of the leptonic decay $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$. The $95 \%$ CL limit on $\sigma \times B R\left(W^{\prime} \rightarrow W Z\right)$ is defined as the value giving $\mathrm{CL}_{\mathrm{s}}=0.05$. The upper limit on $\sigma \times B R\left(W^{\prime} \rightarrow W Z\right)$ for $p p \rightarrow W^{\prime} \rightarrow W Z$ as a function of the $W^{\prime}$ mass is shown in Fig. 3(a) and the values are reported in Table III. Simulation of $W^{\prime}$ bosons is performed for $m_{W^{\prime}}$ between 200 GeV and 1 TeV with a 150 to 250 GeV mass spacing, and an interpolation procedure provides $m_{T}^{W Z}$ shape templates with a 50 GeV spacing. The $m_{\mathrm{T}}^{W Z}$ shapes from the fully simulated signal samples have been fitted with


FIG. 2: (color online) Observed and predicted $m_{\mathrm{T}}^{W}$ distribution for events with all selection cuts applied. Predictions from three $W^{\prime}$ samples with masses of $350 \mathrm{GeV}, 500 \mathrm{GeV}$ and 750 GeV and a $\rho_{\mathrm{T}}$ sample with a mass of 500 GeV using PYTHIA are also shown.
a Crystal Ball function using RooFit [42]. The obtained Crystal Ball parameters are fitted as a function of the $W^{\prime}$ mass and the functional value for these parameters is then used to build the $m_{\mathrm{T}}^{W Z}$ templates for the intermediate $W^{\prime}$ mass points. The observed (expected) exclusion limit on the $W^{\prime}$ mass is found to be 760 (776) GeV .

TABLE III: Expected and observed limit on the $\sigma \times B R\left(W^{\prime} \rightarrow\right.$ $W Z)[\mathrm{pb}]$ for $W^{\prime}$ production decaying to $W Z$, as a function of the $W^{\prime}$ mass. The $p$-values are also reported.

| $W^{\prime}$ Mass $[\mathrm{GeV}]$ | Excluded $\sigma \times B R\left(W^{\prime} \rightarrow W Z\right)[\mathrm{pb}]$ | $p$-value |  |
| :---: | :---: | :---: | :---: |
|  | Expected | Observed |  |
| 200 | 7.31 | 7.62 | 0.43 |
| 250 | 5.26 | 6.55 | 0.34 |
| 300 | 2.74 | 3.38 | 0.28 |
| 350 | 1.72 | 2.06 | 0.25 |
| 400 | 1.18 | 1.48 | 0.25 |
| 450 | 0.92 | 1.07 | 0.23 |
| 500 | 0.76 | 0.93 | 0.21 |
| 550 | 0.61 | 0.79 | 0.19 |
| 600 | 0.54 | 0.63 | 0.26 |
| 650 | 0.51 | 0.56 | 0.33 |
| 700 | 0.48 | 0.53 | 0.34 |
| 750 | 0.49 | 0.52 | 0.34 |
| 800 | 0.45 | 0.50 | 0.37 |
| 850 | 0.46 | 0.47 | 0.38 |
| 900 | 0.50 | 0.50 | 0.39 |
| 950 | 0.44 | 0.44 | 0.40 |
| 1000 | 0.48 | 0.46 | 0.35 |

The observed (expected) limits on $\sigma \times B R\left(\rho_{\mathrm{T}} \rightarrow W Z\right)$ for the $\rho_{\mathrm{T}}$ technimeson are presented in Fig. 3(b) assuming $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$ and unpolarized $W$ and $Z$ decays. This corresponds to an observed (expected) limit on the $\rho_{\mathrm{T}}$ mass of 467 (506) GeV . A limit on the $\rho_{\mathrm{T}}$ mass of 456 (482) GeV is obtained if $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$. Assuming $A \times \epsilon$ for the $\rho_{\mathrm{T}}$ signal to be equal to that of the $W^{\prime}$ signal, which is estimated by accounting for predominantly longitudinal $W$ and $Z$ polarization, the observed (expected) limit on the $\rho_{\mathrm{T}}$ mass is 483 (553) GeV for $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$, and 469 (507) GeV for $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$. Table IV summarizes these limits, which all assume the relation $m_{\rho_{T}}=m_{\pi_{T}}+m_{W}$.

TABLE IV: Observed (expected) limit on the $\rho_{\mathrm{T}}$ mass with two different assumptions about $A \times \epsilon$ for $\rho_{\mathrm{T}}$ and two mass hierarchy assumptions between $a_{\mathrm{T}}$ and $\rho_{\mathrm{T}}$.

|  | Excluded $\rho_{\mathrm{T}}$ mass $[\mathrm{GeV}]$ |  |
| :---: | :---: | :---: |
|  | $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$ | $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$ |
| $A \times \epsilon$ from $W^{\prime}$ sample | $483(553)$ | $469(507)$ |
| $A \times \epsilon$ from $\rho_{\mathrm{T}}$ sample | $467(506)$ | $456(482)$ |

Figure 4 shows the $95 \%$ CL expected and observed excluded regions in the $\left(m_{\rho_{T}}, m_{\pi_{T}}\right)$ plane for $m_{a_{T}}=$ $1.1 m_{\rho_{\mathrm{T}}}$ and $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$, respectively. Results are shown under the two assumptions on $A \times \epsilon$ for the $\rho_{\mathrm{T}}$ signal.

## VIII. CONCLUSION

A search for resonant production of a pair of $W Z$ bosons with three charged leptons in the final state has been performed using $1.02 \mathrm{fb}^{-1}$ of data collected with the ATLAS detector in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ at the Large Hadron Collider. No significant excess of events is observed and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the $W Z$ system. EGM $W^{\prime}$ bosons with masses up to 760 GeV are excluded at $95 \% \mathrm{CL}$. Using the mass hierarchy assumption $m_{\rho_{\mathrm{T}}}=m_{\pi_{\mathrm{T}}}+m_{W}$, LSTC $\rho_{\mathrm{T}}$ technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at $95 \% \mathrm{CL}$ for $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$ and $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$ respectively using the PYTHIA implementation of $\rho_{\mathrm{T}}$ production. Assuming the kinematics of the $W^{\prime}$ production and decay are valid for the $\rho_{\mathrm{T}}$ technimeson, $\rho_{\mathrm{T}}$ with masses from 200 GeV up to 483 GeV and 469 GeV are excluded for $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$ and $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$ respectively.

## IX. ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CCIN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.


FIG. 3: The observed and expected limits on $\sigma \times B R\left(W^{\prime} \rightarrow W Z\right)$ for $W^{\prime} \rightarrow W Z$ (a) and $p p \rightarrow \rho_{T}, a_{T} \rightarrow W Z$ (b) The theoretical prediction is shown with a systematic uncertainty of $5 \%$ due to the choice of PDF and is estimated by comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO PDF using the LHAPDF framework. The green and yellow bands represent respectively the $1 \sigma$ and $2 \sigma$ uncertainty on the expected limit.


FIG. 4: The $95 \%$ CL expected and observed excluded mass regions in the ( $m_{\rho_{\mathrm{T}}}, m_{\pi_{\mathrm{T}}}$ ) plane for $m_{a_{\mathrm{T}}}=1.1 m_{\rho_{\mathrm{T}}}$ (a) and $m_{a_{\mathrm{T}}} \gg m_{\rho_{\mathrm{T}}}$ (b), above the curves. Two different assumptions about the $\rho_{\mathrm{T}}$ signal $A \times \epsilon$ are used: assuming a $\rho_{\mathrm{T}}$ signal where $A \times \epsilon$ is equal to that of the $W^{\prime}$ signal and assuming a $\rho_{\mathrm{T}}$ signal where $A \times \epsilon$ is obtained through its implementation in PYTHIA.
[1] G. Altarelli, B. Mele, and M. Ruiz-Altaba, Z. Phys. C 45, 109 (1989)
[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), arXiv:hep-ph/9905221 [hep-ph]
[3] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Lett. B 473, 43 (2000), arXiv:hep-ph/9911262 [hep-ph]
[4] E. Eichten and K. Lane, Phys. Lett. B 669, 235 (2008)
[5] S. Catterall, L. Del Debbio, J. Giedt, and L. Keegan, arXiv:1108.3794
[6] J. Andersen et al., Eur. Phys. J. 126, 81 (2011), arXiv:1104.1255 [hep-ph]
[7] ATLAS Collaboration, Phys. Lett. B 705, 28 (2011),
arXiv:1108.1316 [hep-ex]
[8] CMS Collaboration, Phys. Lett. B 701, 160 (2011), arXiv:1103.0030 [hep-ex]
[9] CDF Collaboration, Phys. Rev. D 83, 112008 (2011), arXiv:1102.4566 [hep-ex]
[10] D0 Collaboration, Phys. Rev. Lett. 100, 031804 (2008), arXiv:0710.2966 [hep-ex]
[11] D0 Collaboration, Phys. Rev. Lett. 107, 011801 (2011), arXiv:1011.6278 [hep-ex]
[12] CDF Collaboration, Phys. Rev. Lett. 104, 241801 (2010), arXiv:1102.4566 [hep-ex]
[13] D0 Collaboration, Phys. Rev. Lett. 104, 061801 (2010),
arXiv:0912.0715 [hep-ex]
[14] ATLAS Collaboration, JINST 3, S08003 (2008)
[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the $z$-axis along the beam pipe. The $x$ axis points from the IP to the center of the LHC ring, and the $y$ axis points upward. Cylindrical coordinates $(R, \phi)$ are used in the transverse plane, $\phi$ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle $\theta$ as $\eta=-\ln \tan (\theta / 2)$. The transverse energy $E_{\mathrm{T}}$ is defined as $E \sin \theta$, where $E$ is the energy associated to the calorimeter cell or energy cluster. Similarly, $p_{\mathrm{T}}$ is the momentum component transverse to the beam line.
[16] ATLAS Collaboration, Eur. Phys. J. C70, 823 (2010), arXiv:1005.4568 [physics.ins-det]
[17] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003)
[18] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 0605, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
[19] A. Sherstnev and R. Thorne, (2008), arXiv:0807.2132 [hep-ph]
[20] R. Thorne, A. Martin, W. Stirling, and G. Watt, (2009), arXiv:0907.2387 [hep-ph]
[21] R. Hamberg, W. van Neerven, and T. Matsuura, Nucl.Phys. B 359, 343 (1991)
[22] S. Frixione and B. R. Webber, JHEP 0206, 029 (2002), arXiv:hep-ph/0204244 [hep-ph]
[23] G. Corcella et al., JHEP 01, 010 (2001).
[24] J. Butterworth, J. Forshaw, and M. Seymour, Z. Phy. C 72, 637 (1996), arXiv:hep-ph/9601371.
[25] T. Gleisberg et al., JHEP 02, (2009) 007.
[26] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999), arXiv:hep-ph/9905386
[27] J. M. Campbell, R. K. Ellis, and C. Williams, JHEP 07, 018 (2011), arXiv:1105.0020 [hep-ph].
[28] M. Mangano et al., JHEP 07 (2003) 001.
[29] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011), arXiv:1011.3540 [hep-ph].
[30] ATLAS Collaboration, Eur. Phys. J. C71, 1630 (2011), arXiv:1101.2185 [hep-ex]
[31] ATLAS Collaboration, ATLAS-CONF-2011-116 (2011).
[32] ATLAS Collaboration, Submitted to EPJC (2011), arXiv:1110.3174 [hep-ex]
[33] ATLAS Collaboration, Eur.Phys.J. C72, 1844 (2012), arXiv:1108.5602 [hep-ex]
[34] ATLAS Collaboration, Phys. Lett. B 709, 341 (2012), arXiv:1111.5570 [hep-ex]
[35] ATLAS Collaboration, JHEP 1012, 060 (2010), arXiv:1010.2130 [hep-ex]
[36] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009) arXiv:0901.0002 [hep-ph]
[37] M. R. Whalley, D. Bourilkov, and R. C. Group, hepph/0508110 (2005), arXiv:hep-ph/0508110
[38] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, et al., Nucl.Phys. B838, 136 (2010), arXiv:1002.4407 [hep-ph].
[39] H.-L. Lai, J. Huston, S. Mrenna, P. Nadolsky, D. Stump, et al., JHEP 1004, 035 (2010), arXiv:0910.4183 [hep-ph]
[40] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics (Charles Griffin and Company Limited, London, 1967).
[41] W. Fisher, FERMILAB-TM-2386-E (2006)
[42] W. Verkerke and D. Kirkby, (2003), arXiv:physics/0306116

## The ATLAS Collaboration

G. Aad ${ }^{48}$, B. Abbott ${ }^{112}$, J. Abdallah ${ }^{11}$, S. Abdel Khalek ${ }^{116}$, A.A. Abdelalim ${ }^{49}$, A. Abdesselam ${ }^{119}$, O. Abdinov ${ }^{10}$, B. Abi ${ }^{113}$, M. Abolins ${ }^{89}$, O.S. AbouZeid ${ }^{159}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{137}$, E. Acerbi ${ }^{90 a, 90 b}$, B.S. Acharya ${ }^{165 a, 165 b}$, L. Adamczyk ${ }^{37}$, D.L. Adams ${ }^{24}$, T.N. Addy ${ }^{56}$, J. Adelman ${ }^{177}$, M. Aderholz ${ }^{100}$, S. Adomeit ${ }^{99}$, P. Adragna ${ }^{76}$, T. Adye ${ }^{130}$, S. Aefsky ${ }^{22}$, J.A. Aguilar-Saavedra ${ }^{125 b, a}$, M. Aharrouche ${ }^{82}$, S.P. Ahlen ${ }^{21}$, F. Ahles ${ }^{48}$, A. Ahmad ${ }^{149}$, M. Ahsan ${ }^{40}$, G. Aielli ${ }^{134 a, 134 b}$, T. Akdogan ${ }^{18 \mathrm{a}}$, T.P.A. Åkesson ${ }^{80}$, G. Akimoto ${ }^{156}$, A.V. Akimov ${ }^{95}$, A. Akiyama ${ }^{67}$, M.S. Alam ${ }^{1}$, M.A. Alam ${ }^{77}$, J. Albert ${ }^{170}$, S. Albrand ${ }^{55}$, M. Aleksa ${ }^{29}$, I.N. Aleksandrov ${ }^{65}$, F. Alessandria ${ }^{90 a}$, C. Alexa ${ }^{25 a}$, G. Alexander ${ }^{154}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{9}$, M. Alhroob ${ }^{165 a, 165 c}$, M. Aliev ${ }^{15}$, G. Alimonti ${ }^{90 a}$, J. Alison ${ }^{121}$, M. Aliyev ${ }^{10}$, B.M.M. Allbrooke ${ }^{17}$, P.P. Allport ${ }^{74}$, S.E. Allwood-Spiers ${ }^{53}$, J. Almond ${ }^{83}$,
A. Aloisio ${ }^{103 a, 103 \mathrm{~b}}$, R. Alon ${ }^{173}$, A. Alonso ${ }^{80}$, B. Alvarez Gonzalez ${ }^{89}$, M.G. Alviggi ${ }^{103 \mathrm{a}, 103 \mathrm{~b}}$, K. Amako ${ }^{66}$, P. Amaral ${ }^{29}$, C. Amelung ${ }^{22}$, V.V. Ammosov ${ }^{129}$, A. Amorim ${ }^{125 a, b}$, G. Amorós ${ }^{168}$, N. Amram ${ }^{154}$, C. Anastopoulos ${ }^{29}$, L.S. Ancu ${ }^{16}$, N. Andari ${ }^{116}$, T. Andeen ${ }^{34}$, C.F. Anders ${ }^{20}$, G. Anders ${ }^{58 \mathrm{a}}$, K.J. Anderson ${ }^{30}$, A. Andreazza ${ }^{90 a, 90 b}$, V. Andrei ${ }^{58 a}$, M-L. Andrieux ${ }^{55}$, X.S. Anduaga ${ }^{71}$, A. Angerami ${ }^{34}$, F. Anghinolfi ${ }^{29}$, A. Anisenkov ${ }^{108}$, N. Anjos ${ }^{125 a}$, A. Annovi ${ }^{47}$, A. Antonaki ${ }^{8}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{97}$, J. Antos ${ }^{145 \mathrm{~b}}$, F. Anulli ${ }^{133 a}$, S. Aoun ${ }^{84}$, L. Aperio Bella ${ }^{4}$, R. Apolle ${ }^{119, c}$, G. Arabidze ${ }^{89}$, I. Aracena ${ }^{144}$, Y. Arai ${ }^{66}$, A.T.H. Arce ${ }^{44}$, S. Arfaoui ${ }^{149}$, J-F. Arguin ${ }^{14}$, E. Arik ${ }^{18 a, *}$, M. Arik ${ }^{18 \mathrm{a}}$, A.J. Armbruster ${ }^{88}$, O. Arnaez ${ }^{82}$, V. Arnal ${ }^{81}$, C. Arnault ${ }^{116}$, A. Artamonov ${ }^{96}$, G. Artoni ${ }^{133 a, 133 b}$, D. Arutinov ${ }^{20}$, S. Asai ${ }^{156}$, R. Asfandiyarov ${ }^{174}$, S. Ask ${ }^{27}$, B. Åsman ${ }^{147 a, 147 \mathrm{~b}}$, L. Asquith ${ }^{5}$, K. Assamagan ${ }^{24}$, A. Astbury ${ }^{170}$, B. Aubert ${ }^{4}$, E. Auge ${ }^{116}$, K. Augsten ${ }^{128}$, M. Aurousseau ${ }^{146 a}$, G. Avolio ${ }^{164}$, R. Avramidou ${ }^{9}$, D. Axen ${ }^{169}$, C. $\mathrm{Ay}^{54}$, G. Azuelos ${ }^{94, d}$, Y. Azuma ${ }^{156}$, M.A. Baak ${ }^{29}$, G. Baccaglioni ${ }^{90 \mathrm{a}}$, C. Bacci ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, A.M. Bach ${ }^{14}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{29}$, M. Backes ${ }^{49}$, M. Backhaus ${ }^{20}$, E. Badescu ${ }^{25 a}$, P. Bagnaia ${ }^{133 a, 133 b}$, S. Bahinipati ${ }^{2}$, Y. Bai ${ }^{32 \mathrm{a}}$, D.C. Bailey ${ }^{159}$, T. Bain ${ }^{159}$, J.T. Baines ${ }^{130}$, O.K. Baker ${ }^{177}$, M.D. Baker ${ }^{24}$, S. Baker ${ }^{78}$, E. Banas ${ }^{38}$, P. Banerjee ${ }^{94}$, Sw. Banerjee ${ }^{174}$, D. Banfi ${ }^{29}$, A. Bangert ${ }^{151}$, V. Bansal ${ }^{170}$, H.S. Bansil ${ }^{17}$, L. Barak ${ }^{173}$, S.P. Baranov ${ }^{95}$, A. Barashkou ${ }^{65}$, A. Barbaro Galtieri ${ }^{14}$, T. Barber ${ }^{48}$, E.L. Barberio ${ }^{87}$, D. Barberis ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Barbero ${ }^{20}$, D.Y. Bardin ${ }^{65}$, T. Barillari ${ }^{100}$, M. Barisonzi ${ }^{176}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{27}$, B.M. Barnett ${ }^{130}$, R.M. Barnett ${ }^{14}$, A. Baroncelli ${ }^{135 a}$, G. Barone ${ }^{49}$, A.J. Barr ${ }^{119}$, F. Barreiro ${ }^{81}$, J. Barreiro Guimarães da Costa ${ }^{57}$, P. Barrillon ${ }^{116}$, R. Bartoldus ${ }^{144}$, A.E. Barton ${ }^{72}$, V. Bartsch ${ }^{150}$, R.L. Bates ${ }^{53}$, L. Batkova ${ }^{145 a}$, J.R. Batley ${ }^{27}$, A. Battaglia ${ }^{16}$, M. Battistin ${ }^{29}$, F. Bauer ${ }^{137}$, H.S. Bawa ${ }^{144, e}$, S. Beale ${ }^{99}$, T. Beau ${ }^{79}$, P.H. Beauchemin ${ }^{162}$, R. Beccherle ${ }^{50 \mathrm{a}}$, P. Bechtle ${ }^{20}$, H.P. Beck ${ }^{16}$, S. Becker ${ }^{99}$, M. Beckingham ${ }^{139}$, K.H. Becks ${ }^{176}$, A.J. Beddall ${ }^{18 \mathrm{c}}$, A. Beddall ${ }^{18 \mathrm{c}}$, S. Bedikian ${ }^{177}$, V.A. Bednyakov ${ }^{65}$, C.P. Bee ${ }^{84}$, M. Begel ${ }^{24}$, S. Behar Harpaz ${ }^{153}$, P.K. Behera ${ }^{63}$, M. Beimforde ${ }^{100}$, C. Belanger-Champagne ${ }^{86}$, P.J. Bell ${ }^{49}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{19 a}$, F. Bellina ${ }^{29}$, M. Bellomo ${ }^{29}$, A. Belloni ${ }^{57}$, O. Beloborodova ${ }^{108, f}$, K. Belotskiy ${ }^{97}$, O. Beltramello ${ }^{29}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 a}$, M. Bendel ${ }^{82}$, K. Bendtz ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Benekos ${ }^{166}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{49}$, J.A. Benitez Garcia ${ }^{160 \mathrm{~b}}$, D.P. Benjamin ${ }^{44}$, M. Benoit ${ }^{116}$, J.R. Bensinger ${ }^{22}$, K. Benslama ${ }^{131}$, S. Bentvelsen ${ }^{106}$, D. Berge ${ }^{29}$,
E. Bergeaas Kuutmann ${ }^{41}$, N. Berger ${ }^{4}$, F. Berghaus ${ }^{170}$, E. Berglund ${ }^{106}$, J. Beringer ${ }^{14}$, P. Bernat ${ }^{78}$, R. Bernhard ${ }^{48}$, C. Bernius ${ }^{24}$, T. Berry ${ }^{77}$, C. Bertella ${ }^{84}$, A. Bertin ${ }^{19 a, 19 b}$, F. Bertinelli ${ }^{29}$, F. Bertolucci ${ }^{123 a, 123 b}$, M.I. Besana ${ }^{90 a, 90 b}$, N. Besson ${ }^{137}$, S. Bethke ${ }^{100}$, W. Bhimji ${ }^{45}$, R.M. Bianchi ${ }^{29}$, M. Bianco ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, O. Biebel ${ }^{99}$, S.P. Bieniek ${ }^{78}$, K. Bierwagen ${ }^{54}$, J. Biesiada ${ }^{14}$, M. Biglietti ${ }^{135 \mathrm{a}}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{19 a, 19 \mathrm{~b}}$, S. Binet ${ }^{116}$, A. Bingul ${ }^{18 \mathrm{c}}$, C. Bini ${ }^{133 a, 133 b}$, C. Biscarat ${ }^{179}$, U. Bitenc ${ }^{48}$, K.M. Black ${ }^{21}$, R.E. Blair ${ }^{5}$, J.-B. Blanchard ${ }^{137}$, G. Blanchot ${ }^{29}$, T. Blazek ${ }^{145 a}$, C. Blocker ${ }^{22}$, J. Blocki ${ }^{38}$, A. Blondel ${ }^{49}$, W. Blum ${ }^{82}$, U. Blumenschein ${ }^{54}$, G.J. Bobbink ${ }^{106}$, V.B. Bobrovnikov ${ }^{108}$, S.S. Bocchetta ${ }^{80}$, A. Bocci $^{44}$, C.R. Boddy ${ }^{119}$, M. Boehler ${ }^{41}$, J. Boek ${ }^{176}$, N. Boelaert ${ }^{35}$, J.A. Bogaerts ${ }^{29}$, A. Bogdanchikov ${ }^{108}$, A. Bogouch ${ }^{91, *}$, C. Bohm ${ }^{147 a}$, J. Bohm ${ }^{126}$, V. Boisvert ${ }^{77}$, T. Bold ${ }^{37}$, V. Boldea ${ }^{25 a}$, N.M. Bolnet ${ }^{137}$, M. Bomben ${ }^{79}$, M. Bona ${ }^{76}$, V.G. Bondarenko ${ }^{97}$, M. Bondioli ${ }^{164}$, M. Boonekamp ${ }^{137}$, C.N. Booth ${ }^{140}$, S. Bordoni ${ }^{79}$, C. Borer ${ }^{16}$, A. Borisov ${ }^{129}$, G. Borissov ${ }^{72}$, I. Borjanovic ${ }^{12 \mathrm{a}}$, M. Borri ${ }^{83}$, S. Borroni ${ }^{88}$, V. Bortolotto ${ }^{135 a, 135 b}$, K. Bos ${ }^{106}$, D. Boscherini ${ }^{19 a}$, M. Bosman ${ }^{11}$, H. Boterenbrood ${ }^{106}$, D. Botterill ${ }^{130}$, J. Bouchami ${ }^{94}$, J. Boudreau ${ }^{124}$, E.V. Bouhova-Thacker ${ }^{72}$, D. Boumediene ${ }^{33}$, C. Bourdarios ${ }^{116}$, N. Bousson ${ }^{84}$, A. Boveia ${ }^{30}$, J. Boyd ${ }^{29}$, I.R. Boyko ${ }^{65}$, N.I. Bozhko ${ }^{129}$, I. Bozovic-Jelisavcic ${ }^{12 b}$, J. Bracinik ${ }^{17}$, A. Braem ${ }^{29}$, P. Branchini ${ }^{135 \mathrm{a}}$, G.W. Brandenburg ${ }^{57}$, A. Brandt ${ }^{7}$, G. Brandt ${ }^{119}$, O. Brandt ${ }^{54}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{85}$, J.E. Brau ${ }^{115}$, H.M. Braun ${ }^{176}$, B. Brelier ${ }^{159}$, J. Bremer ${ }^{29}$, K. Brendlinger ${ }^{121}$, R. Brenner ${ }^{167}$, S. Bressler ${ }^{173}$, D. Britton ${ }^{53}$, F.M. Brochu ${ }^{27}$, I. Brock ${ }^{20}$, R. Brock ${ }^{89}$, T.J. Brodbeck ${ }^{72}$, E. Brodet ${ }^{154}$, F. Broggi ${ }^{900}$, C. Bromberg ${ }^{89}$, J. Bronner ${ }^{100}$, G. Brooijmans ${ }^{34}$, W.K. Brooks ${ }^{31 b}$, G. Brown ${ }^{83}$, H. Brown ${ }^{7}$, P.A. Bruckman de Renstrom ${ }^{38}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{48}$, S. Brunet ${ }^{61}$, A. Bruni ${ }^{19 a}$, G. Bruni ${ }^{19 a}$, M. Bruschi ${ }^{19 a}$, T. Buanes ${ }^{13}$, Q. Buat ${ }^{55}$, F. Bucci ${ }^{49}$, J. Buchanan ${ }^{119}$, N.J. Buchanan ${ }^{2}$, P. Buchholz ${ }^{142}$, R.M. Buckingham ${ }^{119}$, A.G. Buckley ${ }^{45}$, S.I. Buda ${ }^{25 a}$, I.A. Budagov ${ }^{65}$, B. Budick ${ }^{109}$, V. Büscher ${ }^{82}$, L. Bugge ${ }^{118}$, O. Bulekov ${ }^{97}$, A.C. Bundock ${ }^{74}$, M. Bunse ${ }^{42}$, T. Buran ${ }^{118}$, H. Burckhart ${ }^{29}$, S. Burdin ${ }^{74}$, T. Burgess ${ }^{13}$, S. Burke ${ }^{130}$, E. Busato ${ }^{33}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{167}$, F. Butin ${ }^{29}$, B. Butler ${ }^{144}$, J.M. Butler ${ }^{21}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{78}$, W. Buttinger ${ }^{27}$, S. Cabrera Urbán ${ }^{168}$, D. Caforio ${ }^{19 a, 19 b}$, O. Cakir ${ }^{3 a}$, P. Calafiura ${ }^{14}$, G. Calderini ${ }^{79}$, P. Calfayan ${ }^{99}$, R. Calkins ${ }^{107}$, L.P. Caloba ${ }^{23 a}$, R. Caloi ${ }^{133 a, 133 b}$, D. Calvet ${ }^{33}$, S. Calvet ${ }^{33}$, R. Camacho Toro ${ }^{33}$, P. Camarri ${ }^{134 a, 134 b}$, M. Cambiaghi ${ }^{120 a, 120 b}$,
D. Cameron ${ }^{118}$, L.M. Caminada ${ }^{14}$, S. Campana ${ }^{29}$, M. Campanelli ${ }^{78}$, V. Canale ${ }^{103 a, 103 b}$, F. Canelli ${ }^{30, g}$, A. Canepa ${ }^{160 a}$, J. Cantero ${ }^{81}$, L. Capasso ${ }^{103 a, 103 b}$, M.D.M. Capeans Garrido ${ }^{29}$, I. Caprini ${ }^{25 a}$, M. Caprini ${ }^{25 a}$, D. Capriotti ${ }^{100}$, M. Capua ${ }^{36 a, 36 b}$, R. Caputo ${ }^{82}$, R. Cardarelli ${ }^{134 a}$, T. Carli ${ }^{29}$, G. Carlino ${ }^{103 a}$, L. Carminati ${ }^{90 a, 90 b}$, B. Caron ${ }^{86}$, S. Caron ${ }^{105}$, E. Carquin ${ }^{31 b}$, G.D. Carrillo Montoya ${ }^{174}$, A.A. Carter ${ }^{76}$, J.R. Carter ${ }^{27}$, J. Carvalho ${ }^{125 a, h}$, D. Casadei ${ }^{109}$, M.P. Casado ${ }^{11}$, M. Cascella ${ }^{123 a, 123 b}$, C. Caso ${ }^{50 a, 50 b, *}$, A.M. Castaneda Hernandez ${ }^{174}$,
E. Castaneda-Miranda ${ }^{174}$, V. Castillo Gimenez ${ }^{168}$, N.F. Castro ${ }^{125 a}$, G. Cataldi ${ }^{73 a}$, A. Catinaccio ${ }^{29}$, J.R. Catmore ${ }^{29}$, A. Cattai ${ }^{29}$, G. Cattani ${ }^{134 a, 134 b}$, S. Caughron ${ }^{89}$, D. Cauz ${ }^{165 a, 165 c}$, P. Cavalleri ${ }^{79}$, D. Cavalli ${ }^{90 a}$, M. Cavalli-Sforza ${ }^{11}$, V. Cavasinni ${ }^{123 a, 123 b}$, F. Ceradini ${ }^{135 a, 135 b}$, A.S. Cerqueira ${ }^{23 b}$, A. Cerri ${ }^{29}$, L. Cerrito ${ }^{76}$, F. Cerutti ${ }^{47}$, S.A. Cetin ${ }^{18 b}$, F. Cevenini ${ }^{103 a, 103 b}$, A. Chafaq ${ }^{136 a}$, D. Chakraborty ${ }^{107}$, I. Chalupkova ${ }^{127}$, K. Chan ${ }^{2}$, B. Chapleau ${ }^{86}$,
J.D. Chapman ${ }^{27}$, J.W. Chapman ${ }^{88}$, E. Chareyre ${ }^{79}$, D.G. Charlton ${ }^{17}$, V. Chavda ${ }^{83}$, C.A. Chavez Barajas ${ }^{29}$, S. Cheatham ${ }^{86}$, S. Chekanov ${ }^{5}$, S.V. Chekulaev ${ }^{160 a}$, G.A. Chelkov ${ }^{65}$, M.A. Chelstowska ${ }^{105}$, C. Chen ${ }^{64}$, H. Chen ${ }^{24}$, S. Chen ${ }^{32 \mathrm{c}}$, T. Chen ${ }^{32 \mathrm{c}}$, X. Chen ${ }^{174}$, S. Cheng ${ }^{32 \mathrm{a}}$, A. Cheplakov ${ }^{65}$, V.F. Chepurnov ${ }^{65}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{24}$, E. Cheu ${ }^{6}$, S.L. Cheung ${ }^{159}$, L. Chevalier ${ }^{137}$, G. Chiefari ${ }^{103 a, 103 b}$, L. Chikovani ${ }^{51 a}$, J.T. Childers ${ }^{29}$, A. Chilingarov ${ }^{72}$, G. Chiodini ${ }^{73 \mathrm{a}}$, A.S. Chisholm ${ }^{17}$, R.T. Chislett ${ }^{78}$, M.V. Chizhov ${ }^{65}$, G. Choudalakis ${ }^{30}$, S. Chouridou ${ }^{138}$, I.A. Christidi ${ }^{78}$, A. Christov ${ }^{48}$, D. Chromek-Burckhart ${ }^{29}$, M.L. Chu ${ }^{152}$, J. Chudoba ${ }^{126}$, G. Ciapetti ${ }^{133 a, 133 b}$, A.K. Ciftci ${ }^{3 a}$, R. Ciftci ${ }^{3 \mathrm{a}}$, D. Cinca ${ }^{33}$, V. Cindro ${ }^{75}$, C. Ciocca ${ }^{19 a}$, A. Ciocio ${ }^{14}$, M. Cirilli ${ }^{88}$, M. Citterio ${ }^{90 a}$, M. Ciubancan ${ }^{25 a}$, A. Clark ${ }^{49}$, P.J. Clark ${ }^{45}$, W. Cleland ${ }^{124}$, J.C. Clemens ${ }^{84}$, B. Clement ${ }^{55}$, C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, R.W. Clifft ${ }^{130}$, Y. Coadou ${ }^{84}$, M. Cobal ${ }^{165 \mathrm{a}, 165 \mathrm{c}}$, A. Coccaro ${ }^{139}$, J. Cochran ${ }^{64}$, P. Coe ${ }^{119}$, J.G. Cogan ${ }^{144}$, J. Coggeshall ${ }^{166}$, E. Cogneras ${ }^{179}$, J. Colas ${ }^{4}$, A.P. Colijn ${ }^{106}$, N.J. Collins ${ }^{17}$, C. Collins-Tooth ${ }^{53}$, J. Collot ${ }^{55}$, G. Colon ${ }^{85}$, P. Conde Muiño ${ }^{125 a}$, E. Coniavitis ${ }^{119}$, M.C. Conidi ${ }^{11}$, M. Consonni ${ }^{105}$, S.M. Consonni ${ }^{90 a, 90 b}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{25 a}$, C. Conta ${ }^{120 a, 120 b}$, G. Conti ${ }^{57}$, F. Conventi ${ }^{103 a, ~}$, , J. Cook ${ }^{29}$, M. Cooke ${ }^{14}$, B.D. Cooper ${ }^{78}$, A.M. Cooper-Sarkar ${ }^{119}$, K. Copic ${ }^{14}$, T. Cornelissen ${ }^{176}$, M. Corradi ${ }^{19 a}$, F. Corriveau ${ }^{86, j}$, A. Cortes-Gonzalez ${ }^{166}$, G. Cortiana ${ }^{100}$, G. Costa ${ }^{90 a}$, M.J. Costa ${ }^{168}$, D. Costanzo ${ }^{140}$, T. Costin ${ }^{30}$, D. Côté ${ }^{29}$, L. Courneyea ${ }^{170}$, G. Cowan ${ }^{77}$, C. Cowden ${ }^{27}$, B.E. Cox ${ }^{83}$, K. Cranmer ${ }^{109}$, F. Crescioli ${ }^{123 a, 123 b}$, M. Cristinziani ${ }^{20}$, G. Crosetti ${ }^{36 a, 36 b}$, R. Crupi ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, S. Crépé-Renaudin ${ }^{55}$, C.-M. Cuciuc ${ }^{25 a}$, C. Cuenca Almenar ${ }^{177}$, T. Cuhadar Donszelmann ${ }^{140}$, M. Curatolo ${ }^{47}$, C.J. Curtis ${ }^{17}$, C. Cuthbert ${ }^{151}$, P. Cwetanski ${ }^{61}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{43}$, Z. Czyczula ${ }^{177}$, S. D'Auria ${ }^{53}$, M. D'Onofrio ${ }^{74}$, A. D'Orazio ${ }^{133 a, 133 b}$, P.V.M. Da Silva ${ }^{23 a}$, C. Da Via ${ }^{83}$, W. Dabrowski ${ }^{37}$, A. Dafinca ${ }^{119}$, T. Dai ${ }^{88}$, C. Dallapiccola ${ }^{85}$, M. Dam ${ }^{35}$, M. Dameri ${ }^{50 a, 50 b}$, D.S. Damiani ${ }^{138}$, H.O. Danielsson ${ }^{29}$, D. Dannheim ${ }^{100}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{50 a}$, G.L. Darlea ${ }^{25 b}$, W. Davey ${ }^{20}$, T. Davidek ${ }^{127}$, N. Davidson ${ }^{87}$, R. Davidson ${ }^{72}$, E. Davies ${ }^{119, c}$, M. Davies ${ }^{94}$, A.R. Davison ${ }^{78}$, Y. Davygora ${ }^{58 a}$, E. Dawe ${ }^{143}$, I. Dawson ${ }^{140}$, J.W. Dawson ${ }^{5, *}$, R.K. Daya-Ishmukhametova ${ }^{22}$, K. De ${ }^{7}$, R. de Asmundis ${ }^{103 a}$, S. De Castro ${ }^{19 a, 19 b}$, P.E. De Castro Faria Salgado ${ }^{24}$, S. De Cecco ${ }^{79}$, J. de Graat ${ }^{99}$, N. De Groot ${ }^{105}$, P. de Jong ${ }^{106}$, C. De La Taille ${ }^{116}$, H. De la Torre ${ }^{81}$, B. De Lotto ${ }^{165 a, 165 c}$, L. de Mora ${ }^{72}$, L. De Nooij ${ }^{106}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{165 a, 165 c}$, A. De Santo ${ }^{150}$, J.B. De Vivie De Regie ${ }^{116}$, G. De Zorzi ${ }^{133 a, 133 b}$, S. Dean ${ }^{78}$, W.J. Dearnaley ${ }^{72}$, R. Debbe ${ }^{24}$, C. Debenedetti ${ }^{45}$, B. Dechenaux ${ }^{55}$, D.V. Dedovich ${ }^{65}$, J. Degenhardt ${ }^{121}$, C. Del Papa ${ }^{165 a, 165 c}$, J. Del Peso ${ }^{81}$, T. Del Prete ${ }^{123 a, 123 b}$, T. Delemontex ${ }^{55}$, M. Deliyergiyev ${ }^{75}$, A. Dell'Acqua ${ }^{29}$, L. Dell'Asta ${ }^{21}$, M. Della Pietra ${ }^{103 a, i}$, D. della Volpe ${ }^{103 a, 103 b}$, M. Delmastro ${ }^{4}$, N. Delruelle ${ }^{29}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{149}$, S. Demers ${ }^{177}$, M. Demichev ${ }^{65}$, B. Demirkoz ${ }^{11, k}$, J. Deng ${ }^{164}$, S.P. Denisov ${ }^{129}$, D. Derendarz ${ }^{38}$, J.E. Derkaoui ${ }^{136 \mathrm{~d}}$, F. Derue ${ }^{79}$, P. Dervan ${ }^{74}$, K. Desch ${ }^{20}$, E. Devetak ${ }^{149}$, P.O. Deviveiros ${ }^{106}$, A. Dewhurst ${ }^{130}$, B. DeWilde ${ }^{149}$, S. Dhaliwal ${ }^{159}$, R. Dhullipudi ${ }^{24, l}$, A. Di Ciaccio ${ }^{134 a, 134 b}$, L. Di Ciaccio ${ }^{4}$, A. Di Girolamo ${ }^{29}$, B. Di Girolamo ${ }^{29}$, S. Di Luise ${ }^{135 a, 135 b}$, A. Di Mattia ${ }^{174}$, B. Di Micco ${ }^{29}$, R. Di Nardo ${ }^{47}$, A. Di Simone ${ }^{134 a, 134 b}$, R. Di Sipio ${ }^{19 a, 19 b}$, M.A. Diaz ${ }^{31 a}$, F. Diblen ${ }^{18 \mathrm{c}}$, E.B. Diehl ${ }^{88}$, J. Dietrich ${ }^{41}$, T.A. Dietzsch ${ }^{58 a}$, S. Diglio ${ }^{87}$, K. Dindar Yagci ${ }^{39}$, J. Dingfelder ${ }^{20}$, C. Dionisi ${ }^{133 a, 133 b}$, P. Dita ${ }^{25 a}$, S. Dita ${ }^{25 a}$, F. Dittus ${ }^{29}$, F. Djama ${ }^{84}$, T. Djobava ${ }^{51 \mathrm{~b}}$, M.A.B. do Vale ${ }^{23 \mathrm{c}}$, A. Do Valle Wemans ${ }^{125 \mathrm{a}}$, T.K.O. Doan ${ }^{4}$, M. Dobbs ${ }^{86}$, R. Dobinson ${ }^{29, *}$, D. Dobos ${ }^{29}$, E. Dobson ${ }^{29, m}$, J. Dodd ${ }^{34}$, C. Doglioni ${ }^{49}$, T. Doherty ${ }^{53}$, Y. Doi ${ }^{66, *}$, J. Dolejsi ${ }^{127}$, I. Dolenc ${ }^{75}$, Z. Dolezal ${ }^{127}$, B.A. Dolgoshein ${ }^{97, *}$, T. Dohmae ${ }^{156}$, M. Donadelli ${ }^{23 \mathrm{~d}}$, M. Donega ${ }^{121}$, J. Donini ${ }^{33}$, J. Dopke ${ }^{29}$, A. Doria ${ }^{103 a}$, A. Dos Anjos ${ }^{174}$, M. Dosil ${ }^{11}$, A. Dotti ${ }^{123 a, 123 b}$, M.T. Dova ${ }^{71}$, A.D. Doxiadis ${ }^{106}$, A.T. Doyle ${ }^{53}$, Z. Drasal ${ }^{127}$, J. Drees ${ }^{176}$, N. Dressnandt ${ }^{121}$, H. Drevermann ${ }^{29}$, C. Driouichi ${ }^{35}$, M. Dris ${ }^{9}$, J. Dubbert ${ }^{100}$, S. Dube ${ }^{14}$, E. Duchovni ${ }^{173}$, G. Duckeck ${ }^{99}$, A. Dudarev ${ }^{29}$, F. Dudziak ${ }^{64}$, M. Dührssen ${ }^{29}$, I.P. Duerdoth ${ }^{83}$, L. Duflot ${ }^{116}$, M-A. Dufour ${ }^{86}$, M. Dunford ${ }^{29}$, H. Duran Yildiz ${ }^{3 a}$, R. Duxfield ${ }^{140}$, M. Dwuznik ${ }^{37}$, F. Dydak ${ }^{29}$, M. Düren ${ }^{52}$, W.L. Ebenstein ${ }^{44}$, J. Ebke ${ }^{99}$, S. Eckweiler ${ }^{82}$, K. Edmonds ${ }^{82}$, C.A. Edwards ${ }^{77}$, N.C. Edwards ${ }^{53}$, W. Ehrenfeld ${ }^{41}$, T. Ehrich ${ }^{100}$, T. Eifert ${ }^{144}$, G. Eigen ${ }^{13}$, K. Einsweiler ${ }^{14}$, E. Eisenhandler ${ }^{76}$, T. Ekelof ${ }^{167}$, M. El Kacimi ${ }^{136 c}$, M. Ellert ${ }^{167}$, S. Elles ${ }^{4}$, F. Ellinghaus ${ }^{82}$, K. Ellis ${ }^{76}$, N. Ellis ${ }^{29}$, J. Elmsheuser ${ }^{99}$, M. Elsing ${ }^{29}$, D. Emeliyanov ${ }^{130}$, R. Engelmann ${ }^{149}$, A. Engl ${ }^{99}$, B. Epp ${ }^{62}$, A. Eppig ${ }^{88}$, J. Erdmann ${ }^{54}$, A. Ereditato ${ }^{16}$, D. Eriksson ${ }^{147 a}$, J. Ernst ${ }^{1}$, M. Ernst ${ }^{24}$, J. Ernwein ${ }^{137}$, D. Errede ${ }^{166}$, S. Errede ${ }^{166}$, E. Ertel ${ }^{82}$, M. Escalier ${ }^{116}$, C. Escobar ${ }^{124}$, X. Espinal Curull ${ }^{11}$, B. Esposito ${ }^{47}$, F. Etienne ${ }^{84}$, A.I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, D. Evangelakou ${ }^{54}$, H. Evans ${ }^{61}$, L. Fabbri ${ }^{19 a, 19 b}$, C. Fabre $^{29}$, R.M. Fakhrutdinov ${ }^{129}$, S. Falciano ${ }^{133 a}$, Y. Fang ${ }^{174}$, M. Fanti ${ }^{90 \mathrm{a}, 90 \mathrm{~b}}$, A. Farbin ${ }^{7}$, A. Farilla ${ }^{135 \mathrm{a}}$, J. Farley ${ }^{149}$, T. Farooque ${ }^{159}$, S. Farrell ${ }^{164}$, S.M. Farrington ${ }^{119}$, P. Farthouat ${ }^{29}$, P. Fassnacht ${ }^{29}$, D. Fassouliotis ${ }^{8}$,
B. Fatholahzadeh ${ }^{159}$, A. Favareto ${ }^{90 a, 90 b}$, L. Fayard ${ }^{116}$, S. Fazio ${ }^{36 a, 36 b}$, R. Febbraro ${ }^{33}$, P. Federic ${ }^{145 a}$, O.L. Fedin ${ }^{122}$, W. Fedorko ${ }^{89}$, M. Fehling-Kaschek ${ }^{48}$, L. Feligioni ${ }^{84}$, D. Fellmann ${ }^{5}$, C. Feng ${ }^{32 \mathrm{~d}}$, E.J. Feng ${ }^{30}$, A.B. Fenyuk ${ }^{129}$, J. Ferencei ${ }^{145 \mathrm{~b}}$, J. Ferland ${ }^{94}$, W. Fernando ${ }^{110}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, V. Ferrara ${ }^{41}$, A. Ferrari ${ }^{167}$, P. Ferrari ${ }^{106}$, R. Ferrari ${ }^{120 a}$, D.E. Ferreira de Lima ${ }^{53}$, A. Ferrer ${ }^{168}$, M.L. Ferrer ${ }^{47}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{88}$,
A. Ferretto Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Fiascaris ${ }^{30}$, F. Fiedler ${ }^{82}$, A. Filipčič ${ }^{75}$, A. Filippas ${ }^{9}$, F. Filthaut ${ }^{105}$,
M. Fincke-Keeler ${ }^{170}$, M.C.N. Fiolhais ${ }^{125 a, h}$, L. Fiorini ${ }^{168}$, A. Firan ${ }^{39}$, G. Fischer ${ }^{41}$, P. Fischer ${ }^{20}$, M.J. Fisher ${ }^{110}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{142}$, J. Fleckner ${ }^{82}$, P. Fleischmann ${ }^{175}$, S. Fleischmann ${ }^{176}$, T. Flick ${ }^{176}$, A. Floderus ${ }^{80}$, L.R. Flores Castillo ${ }^{174}$, M.J. Flowerdew ${ }^{100}$, M. Fokitis ${ }^{9}$, T. Fonseca Martin ${ }^{16}$, D.A. Forbush ${ }^{139}$, A. Formica ${ }^{137}$, A. Forti ${ }^{83}$, D. Fortin ${ }^{160 a}$, J.M. Foster ${ }^{83}$, D. Fournier ${ }^{116}$, A. Foussat ${ }^{29}$, A.J. Fowler ${ }^{44}$, K. Fowler ${ }^{138}$, H. Fox ${ }^{72}$, P. Francavilla ${ }^{11}$, S. Franchino ${ }^{120 a, 120 b}$, D. Francis ${ }^{29}$, T. Frank ${ }^{173}$, M. Franklin ${ }^{57}$, S. Franz ${ }^{29}$, M. Fraternali ${ }^{120 a, 120 b}$, S. Fratina ${ }^{121}$, S.T. French ${ }^{27}$, C. Friedrich ${ }^{41}$, F. Friedrich ${ }^{43}$, R. Froeschl ${ }^{29}$, D. Froidevaux ${ }^{29}$, J.A. Frost ${ }^{27}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{29}$, B.G. Fulsom ${ }^{144}$, J. Fuster ${ }^{168}$, C. Gabaldon ${ }^{29}$, O. Gabizon ${ }^{173}$, T. Gadfort ${ }^{24}$, S. Gadomski ${ }^{49}$, G. Gagliardi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, P. Gagnon ${ }^{61}$, C. Galea ${ }^{99}$, E.J. Gallas ${ }^{119}$, V. Gallo ${ }^{16}$, B.J. Gallop ${ }^{130}$, P. Gallus ${ }^{126}$, K.K. Gan ${ }^{110}$, Y.S. Gao ${ }^{144, e}$, V.A. Gapienko ${ }^{129}$, A. Gaponenko ${ }^{14}$, F. Garberson ${ }^{177}$, M. Garcia-Sciveres ${ }^{14}$, C. García ${ }^{168}$, J.E. García Navarro ${ }^{168}$, R.W. Gardner ${ }^{30}$, N. Garelli ${ }^{29}$, H. Garitaonandia ${ }^{106}$, V. Garonne ${ }^{29}$, J. Garvey ${ }^{17}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{120 a}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{137}$, P. Gauzzi ${ }^{133 a, 133 b}$, I.L. Gavrilenko ${ }^{95}$, C. Gay ${ }^{169}$, G. Gaycken ${ }^{20}$, J-C. Gayde ${ }^{29}$, E.N. Gazis ${ }^{9}$, P. Ge ${ }^{32 \mathrm{~d}}$, Z. Gecse ${ }^{169}$, C.N.P. Gee ${ }^{130}$, D.A.A. Geerts ${ }^{106}$, Ch. Geich-Gimbel ${ }^{20}$, K. Gellerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M.H. Genest ${ }^{55}$, S. Gentile ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, M. George ${ }^{54}$, S. George ${ }^{77}$, P. Gerlach ${ }^{176}$, A. Gershon ${ }^{154}$, C. Geweniger ${ }^{58 \mathrm{a}}$, H. Ghazlane ${ }^{136 \mathrm{~b}}$, N. Ghodbane ${ }^{33}$, B. Giacobbe ${ }^{19 a}$, S. Giagu ${ }^{133 a, 133 b}$, V. Giakoumopoulou ${ }^{8}$, V. Giangiobbe ${ }^{11}$, F. Gianotti ${ }^{29}$, B. Gibbard ${ }^{24}$, A. Gibson ${ }^{159}$, S.M. Gibson ${ }^{29}$, L.M. Gilbert ${ }^{119}$, V. Gilewsky ${ }^{92}$, D. Gillberg ${ }^{28}$, A.R. Gillman ${ }^{130}$, D.M. Gingrich ${ }^{2, d}$, J. Ginzburg ${ }^{154}$, N. Giokaris ${ }^{8}$, M.P. Giordani ${ }^{165 c}$, R. Giordano ${ }^{103 a, 103 b}$, F.M. Giorgi ${ }^{15}$, P. Giovannini ${ }^{100}$, P.F. Giraud ${ }^{137}$, D. Giugni ${ }^{90 a}$, M. Giunta ${ }^{94}$, P. Giusti ${ }^{19 a}$, B.K. Gjelsten ${ }^{118}$, L.K. Gladilin ${ }^{98}$, C. Glasman ${ }^{81}$, J. Glatzer ${ }^{48}$, A. Glazov ${ }^{41}$, K.W. Glitza ${ }^{176}$, G.L. Glonti ${ }^{65}$, J.R. Goddard ${ }^{76}$, J. Godfrey ${ }^{143}$, J. Godlewski ${ }^{29}$, M. Goebel ${ }^{41}$, T. Göpfert ${ }^{43}$, C. Goeringer ${ }^{82}$, C. Gössling ${ }^{42}$, T. Göttfert ${ }^{100}$, S. Goldfarb ${ }^{88}$, T. Golling ${ }^{177}$, A. Gomes ${ }^{125 a, b}$, L.S. Gomez Fajardo ${ }^{41}$, R. Gonçalo ${ }^{77}$, J. Goncalves Pinto Firmino Da Costa ${ }^{41}$, L. Gonella ${ }^{20}$, A. Gonidec ${ }^{29}$, S. Gonzalez ${ }^{174}$, S. González de la $\mathrm{Hoz}^{168}$, G. Gonzalez Parra ${ }^{11}$, M.L. Gonzalez Silva ${ }^{26}$, S. Gonzalez-Sevilla ${ }^{49}$, J.J. Goodson ${ }^{149}$, L. Goossens ${ }^{29}$, P.A. Gorbounov ${ }^{96}$, H.A. Gordon ${ }^{24}$, I. Gorelov ${ }^{104}$, G. Gorfine ${ }^{176}$, B. Gorini ${ }^{29}$, E. Gorini ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, A. Gorišek ${ }^{75}$, E. Gornicki ${ }^{38}$, V.N. Goryachev ${ }^{129}$, B. Gosdzik ${ }^{41}$, A.T. Goshaw ${ }^{5}$, M. Gosselink ${ }^{106}$, M.I. Gostkin ${ }^{65}$, I. Gough Eschrich ${ }^{164}$, M. Gouighri ${ }^{136 a}$, D. Goujdami ${ }^{136 c}$, M.P. Goulette ${ }^{49}$, A.G. Goussiou ${ }^{139}$, C. Goy ${ }^{4}$, S. Gozpinar ${ }^{22}$, I. Grabowska-Bold ${ }^{37}$, P. Grafström ${ }^{29}$, K-J. Grahn ${ }^{41}$, F. Grancagnolo ${ }^{733}$, S. Grancagnolo ${ }^{15}$, V. Grassi ${ }^{149}$, V. Gratchev ${ }^{122}$, N. Grau ${ }^{34}$, H.M. Gray ${ }^{29}$, J.A. Gray ${ }^{149}$, E. Graziani ${ }^{135 a}$, O.G. Grebenyuk ${ }^{122}$, T. Greenshaw ${ }^{74}$, Z.D. Greenwood ${ }^{24, l}$, K. Gregersen ${ }^{35}$, I.M. Gregor ${ }^{41}$, P. Grenier ${ }^{144}$, J. Griffiths ${ }^{139}$, N. Grigalashvili ${ }^{65}$, A.A. Grillo ${ }^{138}$, S. Grinstein ${ }^{11}$, Y.V. Grishkevich ${ }^{98}$, J.-F. Grivaz ${ }^{116}$, E. Gross ${ }^{173}$, J. Grosse-Knetter ${ }^{54}$, J. Groth-Jensen ${ }^{173}$, K. Grybel ${ }^{142}$, V.J. Guarino ${ }^{5}$, D. Guest ${ }^{177}$, C. Guicheney ${ }^{33}$, A. Guida ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, S. Guindon ${ }^{54}$, H. Guler ${ }^{86, n}$, J. Gunther ${ }^{126}$, B. Guo ${ }^{159}$, J. Guo ${ }^{34}$, A. Gupta ${ }^{30}$, Y. Gusakov ${ }^{65}$, V.N. Gushchin ${ }^{129}$, P. Gutierrez ${ }^{112}$, N. Guttman ${ }^{154}$, O. Gutzwiller ${ }^{174}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{119}$, C.B. Gwilliam ${ }^{74}$, A. Haas $^{144}$, S. Haas ${ }^{29}$, C. Haber ${ }^{14}$, H.K. Hadavand ${ }^{39}$, D.R. Hadley ${ }^{17}$, P. Haefner ${ }^{100}$, F. Hahn ${ }^{29}$, S. Haider ${ }^{29}$, Z. Hajduk ${ }^{38}$, H. Hakobyan ${ }^{178}$, D. Hall ${ }^{119}$, J. Haller ${ }^{54}$, K. Hamacher ${ }^{176}$, P. Hamal ${ }^{114}$, M. Hamer ${ }^{54}$,
A. Hamilton ${ }^{146 \mathrm{~b}, o}$, S. Hamilton ${ }^{162}$, H. $\operatorname{Han}^{32 \mathrm{a}}$, L. $\operatorname{Han}^{32 \mathrm{~b}}$, K. Hanagaki ${ }^{117}$, K. Hanawa ${ }^{161}$, M. Hance ${ }^{14}$, C. Handel ${ }^{82}$, P. Hanke ${ }^{58 a}$, J.R. Hansen ${ }^{35}$, J.B. Hansen ${ }^{35}$, J.D. Hansen ${ }^{35}$, P.H. Hansen ${ }^{35}$, P. Hansson ${ }^{144}$, K. Hara ${ }^{161}$, G.A. Hare ${ }^{138}$, T. Harenberg ${ }^{176}$, S. Harkusha ${ }^{91}$, D. Harper ${ }^{88}$, R.D. Harrington ${ }^{45}$, O.M. Harris ${ }^{139}$, K. Harrison ${ }^{17}$, J. Hartert ${ }^{48}$, F. Hartjes ${ }^{106}$, T. Haruyama ${ }^{66}$, A. Harvey ${ }^{56}$, S. Hasegawa ${ }^{102}$, Y. Hasegawa ${ }^{141}$, S. Hassani ${ }^{137}$, M. Hatch ${ }^{29}$, D. Hauff ${ }^{100}$, S. Haug ${ }^{16}$, M. Hauschild ${ }^{29}$, R. Hauser ${ }^{89}$, M. Havranek ${ }^{20}$, B.M. Hawes ${ }^{119}$, C.M. Hawkes ${ }^{17}$, R.J. Hawkings ${ }^{29}$, A.D. Hawkins ${ }^{80}$, D. Hawkins ${ }^{164}$, T. Hayakawa ${ }^{67}$, T. Hayashi ${ }^{161}$, D. Hayden ${ }^{77}$, H.S. Hayward ${ }^{74}$, S.J. Haywood ${ }^{130}$, E. Hazen ${ }^{21}$, M. He ${ }^{32 \mathrm{~d}}$, S.J. Head ${ }^{17}$, V. Hedberg ${ }^{80}$, L. Heelan ${ }^{7}$, S. Heim ${ }^{89}$, B. Heinemann ${ }^{14}$, S. Heisterkamp ${ }^{35}$, L. Helary ${ }^{4}$, C. Heller ${ }^{99}$, M. Heller ${ }^{29}$, S. Hellman ${ }^{147 a, 147 \mathrm{~b}}$, D. Hellmich ${ }^{20}$, C. Helsens ${ }^{11}$, R.C.W. Henderson ${ }^{72}$, M. Henke ${ }^{58 a}$, A. Henrichs ${ }^{54}$, A.M. Henriques Correia ${ }^{29}$, S. Henrot-Versille ${ }^{116}$, F. Henry-Couannier ${ }^{84}$, C. Hensel ${ }^{54}$, T. Henß ${ }^{176}$, C.M. Hernandez ${ }^{7}$, Y. Hernández Jiménez ${ }^{168}$, R. Herrberg ${ }^{15}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{99}$, L. Hervas ${ }^{29}$, G.G. Hesketh ${ }^{78}$, N.P. Hessey ${ }^{106}$, E. Higón-Rodriguez ${ }^{168}$, D. Hill ${ }^{5, *}$, J.C. Hill ${ }^{27}$, N. Hill ${ }^{5}$, K.H. Hiller ${ }^{41}$, S. Hillert ${ }^{20}$, S.J. Hillier ${ }^{17}$, I. Hinchliffe ${ }^{14}$, E. Hines ${ }^{121}$, M. Hirose ${ }^{117}$, F. Hirsch ${ }^{42}$, D. Hirschbuehl ${ }^{176}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{154}$, M.C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{29}$, M.R. Hoeferkamp ${ }^{104}$, J. Hoffman ${ }^{39}$, D. Hoffmann ${ }^{84}$, M. Hohlfeld ${ }^{82}$, M. Holder ${ }^{142}$, S.O. Holmgren ${ }^{147 a}$, T. Holy ${ }^{128}$, J.L. Holzbauer ${ }^{89}$, Y. Homma ${ }^{67}$, T.M. Hong ${ }^{121}$, L. Hooft van Huysduynen ${ }^{109}$, T. Horazdovsky ${ }^{128}$, C. Horn ${ }^{144}$, S. Horner ${ }^{48}$, J-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{152}$, M.A. Houlden ${ }^{74}$, A. Hoummada ${ }^{136 a}$, J. Howarth ${ }^{83}$, D.F. Howell ${ }^{119}$, I. Hristova ${ }^{15}$, J. Hrivnac ${ }^{116}$, I. Hruska ${ }^{126}$, T. Hryn'ova ${ }^{4}$, P.J. Hsu ${ }^{82}$, S.-C. Hsu ${ }^{14}$, G.S. Huang ${ }^{112}$, Z. Hubacek ${ }^{128}$, F. Hubaut ${ }^{84}$, F. Huegging ${ }^{20}$, A. Huettmann ${ }^{41}$, T.B. Huffman ${ }^{119}$, E.W. Hughes ${ }^{34}$, G. Hughes ${ }^{72}$, R.E. Hughes-Jones ${ }^{83}$, M. Huhtinen ${ }^{29}$, P. Hurst ${ }^{57}$, M. Hurwitz ${ }^{14}$, U. Husemann ${ }^{41}$, N. Huseynov ${ }^{65, p}$, J. Huston ${ }^{89}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$,
G. Iakovidis ${ }^{9}$, M. Ibbotson ${ }^{83}$, I. Ibragimov ${ }^{142}$, R. Ichimiya ${ }^{67}$, L. Iconomidou-Fayard ${ }^{116}$, J. Idarraga ${ }^{116}$, P. Iengo ${ }^{103 a}$, O. Igonkina ${ }^{106}$, Y. Ikegami ${ }^{66}$, M. Ikeno ${ }^{66}$, Y. Ilchenko ${ }^{39}$, D. Iliadis $^{155}$, N. Ilic ${ }^{159}$, M. Imori ${ }^{156}$, T. Ince ${ }^{20}$, J. Inigo-Golfin ${ }^{29}$, P. Ioannou ${ }^{8}$, M. Iodice ${ }^{135 \mathrm{a}}$, K. Iordanidou ${ }^{8}$, V. Ippolito ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, A. Irles Quiles ${ }^{168}$, C. Isaksson ${ }^{167}$, A. Ishikawa ${ }^{67}$, M. Ishino ${ }^{68}$, R. Ishmukhametov ${ }^{39}$, C. Issever ${ }^{119}$, S. Istin $^{18 a}$, A.V. Ivashin ${ }^{129}$, W. Iwanski ${ }^{38}$, H. Iwasaki ${ }^{66}$, J.M. Izen ${ }^{40}$, V. Izzo ${ }^{103 a}$, B. Jackson ${ }^{121}$, J.N. Jackson ${ }^{74}$, P. Jackson ${ }^{144}$, M.R. Jaekel ${ }^{29}$, V. Jain ${ }^{61}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{35}$, J. Jakubek ${ }^{128}$, D.K. Jana ${ }^{112}$, E. Jansen ${ }^{78}$, H. Jansen ${ }^{29}$, A. Jantsch ${ }^{100}$, M. Janus ${ }^{48}$, G. Jarlskog ${ }^{80}$, L. Jeanty ${ }^{57}$, K. Jelen ${ }^{37}$, I. Jen-La Plante ${ }^{30}$, P. Jenni ${ }^{29}$, A. Jeremie ${ }^{4}$, P. Jež ${ }^{35}$, S. Jézéquel ${ }^{4}$, M.K. Jha ${ }^{19 \mathrm{a}}$, H. Ji ${ }^{174}$, W. Ji ${ }^{82}$, J. Jia ${ }^{149}$, Y. Jiang ${ }^{32 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{41}$, G. Jin ${ }^{32 \mathrm{~b}}$, S. Jin ${ }^{32 \mathrm{a}}$, O. Jinnouchi ${ }^{158}$, M.D. Joergensen ${ }^{35}$, D. Joffe ${ }^{39}$, L.G. Johansen ${ }^{13}$, M. Johansen ${ }^{147 a, 147 b}$, K.E. Johansson ${ }^{147 a}$, P. Johansson ${ }^{140}$, S. Johnert ${ }^{41}$, K.A. Johns ${ }^{6}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{119}$, R.W.L. Jones ${ }^{72}$, T.W. Jones ${ }^{78}$, T.J. Jones ${ }^{74}$, O. Jonsson ${ }^{29}$, C. Joram ${ }^{29}$, P.M. Jorge ${ }^{125 a}$, J. Joseph ${ }^{14}$, K.D. Joshi ${ }^{83}$, J. Jovicevic ${ }^{148}$, T. Jovin ${ }^{12 b}$, X. Ju ${ }^{174}$, C.A. Jung ${ }^{42}$, R.M. Jungst ${ }^{29}$, V. Juranek ${ }^{126}$, P. Jussel ${ }^{62}$, A. Juste Rozas ${ }^{11}$, V.V. Kabachenko ${ }^{129}$, S. Kabana ${ }^{16}$, M. Kaci ${ }^{168}$, A. Kaczmarska ${ }^{38}$, P. Kadlecik ${ }^{35}$, M. Kado ${ }^{116}$, H. Kagan ${ }^{110}$, M. Kagan ${ }^{57}$, S. Kaiser ${ }^{100}$, E. Kajomovitz ${ }^{153}$, S. Kalinin ${ }^{176}$, L.V. Kalinovskaya ${ }^{65}$, S. Kama ${ }^{39}$, N. Kanaya ${ }^{156}$, M. Kaneda ${ }^{29}$, S. Kaneti ${ }^{27}$, T. Kanno ${ }^{158}$, V.A. Kantserov ${ }^{97}$, J. Kanzaki ${ }^{66}$, B. Kaplan ${ }^{177}$, A. Kapliy ${ }^{30}$, J. Kaplon ${ }^{29}$, D. Kar ${ }^{53}$, M. Karagounis ${ }^{20}$, M. Karagoz ${ }^{119}$, M. Karnevskiy ${ }^{41}$, V. Kartvelishvili ${ }^{72}$, A.N. Karyukhin ${ }^{129}$, L. Kashif ${ }^{174}$, G. Kasieczka ${ }^{58 b}$, R.D. Kass $^{110}$, A. Kastanas ${ }^{13}$, M. Kataoka ${ }^{4}$, Y. Kataoka ${ }^{156}$, E. Katsoufis ${ }^{9}$, J. Katzy ${ }^{41}$, V. Kaushik ${ }^{6}$, K. Kawagoe ${ }^{70}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{82}$, M.S. Kayl ${ }^{106}$, V.A. Kazanin ${ }^{108}$, M.Y. Kazarinov ${ }^{65}$, R. Keeler ${ }^{170}$, R. Kehoe ${ }^{39}$, M. Keil ${ }^{54}$, G.D. Kekelidze ${ }^{65}$, J.S. Keller ${ }^{139}$, J. Kennedy ${ }^{99}$, M. Kenyon ${ }^{53}$, O. Kepka ${ }^{126}$, N. Kerschen ${ }^{29}$, B.P. Kerševan ${ }^{75}$, S. Kersten ${ }^{176}$, K. Kessoku ${ }^{156}$, J. Keung ${ }^{159}$, F. Khalil-zada ${ }^{10}$, H. Khandanyan ${ }^{166}$, A. Khanov ${ }^{113}$, D. Kharchenko ${ }^{65}$, A. Khodinov ${ }^{97}$, A.G. Kholodenko ${ }^{129}$, A. Khomich ${ }^{58 a}$, T.J. Khoo ${ }^{27}$, G. Khoriauli ${ }^{20}$, A. Khoroshilov ${ }^{176}$, N. Khovanskiy ${ }^{65}$, V. Khovanskiy ${ }^{96}$, E. Khramov ${ }^{65}$, J. Khubua ${ }^{51 b}$, H. Kim ${ }^{147 a, 147 b}$, M.S. Kim ${ }^{2}$, S.H. Kim ${ }^{161}$, N. Kimura ${ }^{172}$, O. Kind ${ }^{15}$, B.T. King ${ }^{74}$, M. King ${ }^{67}$, R.S.B. King ${ }^{119}$, J. Kirk ${ }^{130}$, L.E. Kirsch ${ }^{22}$, A.E. Kiryunin ${ }^{100}$, T. Kishimoto ${ }^{67}$, D. Kisielewska ${ }^{37}$, T. Kittelmann ${ }^{124}$, A.M. Kiver ${ }^{129}$, E. Kladiva ${ }^{145 b}$, M. Klein ${ }^{74}$, U. Klein ${ }^{74}$, K. Kleinknecht ${ }^{82}$, M. Klemetti ${ }^{86}$, A. Klier ${ }^{173}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{24}$, R. Klingenberg ${ }^{42}$, J.A. Klinger ${ }^{83}$, E.B. Klinkby ${ }^{35}$, T. Klioutchnikova ${ }^{29}$, P.F. Klok ${ }^{105}$, S. Klous ${ }^{106}$, E.-E. Kluge ${ }^{58 a}$, T. Kluge ${ }^{74}$, P. Kluit ${ }^{106}$, S. Kluth ${ }^{100}$, N.S. Knecht ${ }^{159}$, E. Kneringer ${ }^{62}$, J. Knobloch ${ }^{29}$, E.B.F.G. Knoops ${ }^{84}$, A. Knue ${ }^{54}$, B.R. Ko ${ }^{44}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{43}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{127}$, K. Köneke ${ }^{29}$, A.C. König ${ }^{105}$, S. Koenig ${ }^{82}$, L. Köpke ${ }^{82}$, F. Koetsveld ${ }^{105}$, P. Koevesarki ${ }^{20}$, T. Koffas ${ }^{28}$, E. Koffeman ${ }^{106}$, L.A. Kogan ${ }^{119}$, S. Kohlmann ${ }^{176}$, F. Kohn ${ }^{54}$, Z. Kohout ${ }^{128}$, T. Kohriki ${ }^{66}$, T. Koi ${ }^{144}$, T. Kokott ${ }^{20}$, G.M. Kolachev ${ }^{108}$, H. Kolanoski ${ }^{15}$, V. Kolesnikov ${ }^{65}$, I. Koletsou ${ }^{90 a}$, J. Koll ${ }^{89}$, M. Kollefrath ${ }^{48}$, S.D. Kolya ${ }^{83}$, A.A. Komar ${ }^{95}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{66}$, T. Kono ${ }^{41, q}$, A.I. Kononov ${ }^{48}$, R. Konoplich ${ }^{109, r}$, N. Konstantinidis ${ }^{78}$, A. Kootz ${ }^{176}$, S. Koperny ${ }^{37}$, K. Korcyl ${ }^{38}$, K. Kordas ${ }^{155}$, V. Koreshev ${ }^{129}$, A. Korn ${ }^{119}$, A. Korol ${ }^{108}$, I. Korolkov ${ }^{11}$, E.V. Korolkova ${ }^{140}$, V.A. Korotkov ${ }^{129}$, O. Kortner ${ }^{100}$, S. Kortner ${ }^{100}$, V.V. Kostyukhin ${ }^{20}$, M.J. Kotamäki ${ }^{29}$, S. $K^{\prime}$ otov $^{100}$, V.M. Kotov ${ }^{65}$, A. Kotwal ${ }^{44}$, C. Kourkoumelis ${ }^{8}$, V. Kouskoura ${ }^{155}$, A. Koutsman ${ }^{160 a}$, R. Kowalewski ${ }^{170}$, T.Z. Kowalski ${ }^{37}$, W. Kozanecki ${ }^{137}$, A.S. Kozhin ${ }^{129}$, V. Kral ${ }^{128}$, V.A. Kramarenko ${ }^{98}$, G. Kramberger ${ }^{75}$, M.W. Krasny ${ }^{79}$, A. Krasznahorkay ${ }^{109}$, J. Kraus ${ }^{89}$, J.K. Kraus ${ }^{20}$, F. Krejci ${ }^{128}$, J. Kretzschmar ${ }^{74}$, N. Krieger ${ }^{54}$, P. Krieger ${ }^{159}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{100}$, J. Kroll ${ }^{121}$, J. Kroseberg ${ }^{20}$, J. Krstic ${ }^{12 a}$, U. Kruchonak ${ }^{65}$, H. Krüger ${ }^{20}$, T. Kruker ${ }^{16}$, N. Krumnack ${ }^{64}$, Z.V. Krumshteyn ${ }^{65}$, A. Kruth ${ }^{20}$, T. Kubota ${ }^{87}$, S. Kuday ${ }^{3 \mathrm{a}}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 \mathrm{c}}$, T. Kuhl ${ }^{41}$, D. Kuhn ${ }^{62}$, V. Kukhtin ${ }^{65}$, Y. Kulchitsky ${ }^{91}$, S. Kuleshov ${ }^{31 b}$, C. Kummer ${ }^{99}$, M. Kuna ${ }^{79}$, N. Kundu ${ }^{119}$, J. Kunkle ${ }^{121}$, A. Kupco ${ }^{126}$, H. Kurashige ${ }^{67}$, M. Kurata ${ }^{161}$, Y.A. Kurochkin ${ }^{91}$, V. Kus ${ }^{126}$, E.S. Kuwertz ${ }^{148}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{143}$, R. Kwee ${ }^{15}$, A. La Rosa ${ }^{49}$, L. La Rotonda ${ }^{36 a, 36 b}$, L. Labarga ${ }^{81}$, J. Labbe ${ }^{4}$, S. Lablak ${ }^{136 a}$, C. Lacasta ${ }^{168}$, F. Lacava ${ }^{133 a, 133 b}$, H. Lacker ${ }^{15}$, D. Lacour ${ }^{79}$, V.R. Lacuesta ${ }^{168}$, E. Ladygin ${ }^{65}$, R. Lafaye ${ }^{4}$, B. Laforge ${ }^{79}$, T. Lagouri ${ }^{81}$, S. Lai ${ }^{48}$, E. Laisne ${ }^{55}$, M. Lamanna ${ }^{29}$, L. Lambourne ${ }^{78}$, C.L. Lampen ${ }^{6}$, W. Lampl ${ }^{6}$, E. Lancon ${ }^{137}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{76}$, J.L. Lane ${ }^{83}$, C. Lange ${ }^{41}$, A.J. Lankford ${ }^{164}$, F. Lanni ${ }^{24}$, K. Lantzsch ${ }^{176}$, S. Laplace ${ }^{79}$, C. Lapoire ${ }^{20}$, J.F. Laporte ${ }^{137}$, T. Lari ${ }^{90 a}$, A.V. Larionov ${ }^{129}$, A. Larner ${ }^{119}$, C. Lasseur ${ }^{29}$, M. Lassnig ${ }^{29}$, P. Laurelli ${ }^{47}$, V. Lavorini ${ }^{36 a, 36 \mathrm{~b}}$, W. Lavrijsen ${ }^{14}$, P. Laycock ${ }^{74}$, A.B. Lazarev ${ }^{65}$, O. Le Dortz ${ }^{79}$, E. Le Guirriec ${ }^{84}$, C. Le Maner ${ }^{159}$, E. Le Menedeu ${ }^{11}$, C. Lebel ${ }^{94}$, T. LeCompte ${ }^{5}$, F. Ledroit-Guillon ${ }^{55}$, H. Lee ${ }^{106}$, J.S.H. Lee ${ }^{117}$, S.C. Lee ${ }^{152}$, L. Lee ${ }^{177}$, M. Lefebvre ${ }^{170}$, M. Legendre ${ }^{137}$, A. Leger ${ }^{49}$, B.C. LeGeyt ${ }^{121}$, F. Legger ${ }^{99}$, C. Leggett ${ }^{14}$, M. Lehmacher ${ }^{20}$, G. Lehmann Miotto ${ }^{29}$, X. Lei ${ }^{6}$, M.A.L. Leite ${ }^{23 \mathrm{~d}}$, R. Leitner ${ }^{127}$, D. Lellouch ${ }^{173}$, M. Leltchouk ${ }^{34}$, B. Lemmer ${ }^{54}$, V. Lendermann ${ }^{58 \mathrm{a}}$, K.J.C. Leney ${ }^{146 \mathrm{~b}}$, T. Lenz ${ }^{106}$, G. Lenzen ${ }^{176}$, B. Lenzi ${ }^{29}$, K. Leonhardt ${ }^{43}$, S. Leontsinis ${ }^{9}$, F. Lepold ${ }^{58 a}$, C. Leroy ${ }^{94}$, J-R. Lessard ${ }^{170}$, J. Lesser ${ }^{147 a}$, C.G. Lester ${ }^{27}$, C.M. Lester ${ }^{121}$, J. Levêque ${ }^{4}$, D. Levin ${ }^{88}$, L.J. Levinson ${ }^{173}$, M.S. Levitski ${ }^{129}$, A. Lewis ${ }^{119}$, G.H. Lewis ${ }^{109}$, A.M. Leyko ${ }^{20}$, M. Leyton ${ }^{15}$, B. $\mathrm{Li}^{84}, \mathrm{H}^{4} \mathrm{Li}^{174, s}$, S. Li ${ }^{32 b, t}$, X. Li ${ }^{88}$, Z. Liang ${ }^{119, u}$, H. Liao ${ }^{33}$, B. Liberti ${ }^{134 a}$, P. Lichard ${ }^{29}$, M. Lichtnecker ${ }^{99}$, K. Lie ${ }^{166}$, W. Liebig ${ }^{13}$, C. Limbach ${ }^{20}$, A. Limosani ${ }^{87}$, M. Limper ${ }^{63}$, S.C. $\operatorname{Lin}^{152, v}$, F. Linde ${ }^{106}$, J.T. Linnemann ${ }^{89}$, E. Lipeles ${ }^{121}$, L. Lipinsky ${ }^{126}$, A. Lipniacka ${ }^{13}$, T.M. Liss ${ }^{166}$, D. Lissauer ${ }^{24}$, A. Lister ${ }^{49}$, A.M. Litke ${ }^{138}$, C. Liu ${ }^{28}$, D. Liu ${ }^{152}$, H. Liu ${ }^{88}$, J.B. Liu ${ }^{88}$, M. Liu ${ }^{32 \mathrm{~b}}$, Y. Liu ${ }^{32 \mathrm{~b}}$, M. Livan ${ }^{120 \mathrm{a}, 120 \mathrm{~b}}$, S.S.A. Livermore ${ }^{119}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{81}$, S.L. Lloyd ${ }^{76}$, E. Lobodzinska ${ }^{41}$, P. Loch ${ }^{6}$, W.S. Lockman ${ }^{138}$, T. Loddenkoetter ${ }^{20}$, F.K. Loebinger ${ }^{83}$, A. Loginov ${ }^{177}$,
C.W. Loh ${ }^{169}$, T. Lohse ${ }^{15}$, K. Lohwasser ${ }^{48}$, M. Lokajicek ${ }^{126}$, J. Loken ${ }^{119}$, V.P. Lombardo ${ }^{4}$, R.E. Long ${ }^{72}$, L. Lopes ${ }^{125 a}$, D. Lopez Mateos ${ }^{57}$, J. Lorenz ${ }^{99}$, N. Lorenzo Martinez ${ }^{116}$, M. Losada ${ }^{163}$, P. Loscutoff ${ }^{14}$, F. Lo Sterzo ${ }^{133 a, 133 \mathrm{~b}}$, M.J. Losty ${ }^{160 \mathrm{a}}$, X. Lou ${ }^{40}$, A. Lounis ${ }^{116}$, K.F. Loureiro ${ }^{163}$, J. Love ${ }^{21}$, P.A. Love ${ }^{72}$, A.J. Lowe ${ }^{144, e}$, F. Lu ${ }^{32 \mathrm{a}}$, H.J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, A. Lucotte ${ }^{55}$, A. Ludwig ${ }^{43}$, D. Ludwig ${ }^{41}$, I. Ludwig $^{48}$, J. Ludwig ${ }^{48}$, F. Luehring ${ }^{61}$, G. Luijckx ${ }^{106}$, W. Lukas ${ }^{62}$, D. Lumb ${ }^{48}$, L. Luminari ${ }^{133 a}$, E. Lund ${ }^{118}$, B. Lund-Jensen ${ }^{148}$, B. Lundberg ${ }^{80}$, J. Lundberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, J. Lundquist ${ }^{35}$, M. Lungwitz ${ }^{82}$, G. Lutz ${ }^{100}$, D. Lynn ${ }^{24}$, J. Lys ${ }^{14}$, E. Lytken ${ }^{80}$, H. Ma ${ }^{24}$, L.L. Ma ${ }^{174}$, J.A. Macana Goia ${ }^{94}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{100}$, B. Maček ${ }^{75}$, J. Machado Miguens ${ }^{125 a}$, R. Mackeprang ${ }^{35}$, R.J. Madaras ${ }^{14}$, W.F. Mader ${ }^{43}$, R. Maenner ${ }^{58 \mathrm{c}}$, T. Maeno ${ }^{24}$, P. Mättig ${ }^{176}$, S. Mättig ${ }^{41}$,
L. Magnoni ${ }^{29}$, E. Magradze ${ }^{54}$, Y. Mahalalel ${ }^{154}$, K. Mahboubi ${ }^{48}$, S. Mahmoud ${ }^{74}$, G. Mahout ${ }^{17}$, C. Maiani ${ }^{133 a, 133 b}$, C. Maidantchik ${ }^{23 a}$, A. Maio ${ }^{125 a, b}$, S. Majewski ${ }^{24}$, Y. Makida ${ }^{66}$, N. Makovec ${ }^{116}$, P. Mal ${ }^{137}$, B. Malaescu ${ }^{29}$, Pa. Malecki ${ }^{38}$, P. Malecki ${ }^{38}$, V.P. Maleev ${ }^{122}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{63}$, D. Malon ${ }^{5}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{9}$, V. Malyshev ${ }^{108}$, S. Malyukov ${ }^{29}$, R. Mameghani ${ }^{99}$, J. Mamuzic ${ }^{12 \mathrm{~b}}$, A. Manabe ${ }^{66}$, L. Mandelli ${ }^{90 a}$, I. Mandićc ${ }^{75}$, R. Mandrysch ${ }^{15}$, J. Maneira ${ }^{125 a}$, P.S. Mangeard ${ }^{89}$, L. Manhaes de Andrade Filho ${ }^{23 a}$, I.D. Manjavidze ${ }^{65}$, A. Mann ${ }^{54}$, P.M. Manning ${ }^{138}$, A. Manousakis-Katsikakis ${ }^{8}$, B. Mansoulie ${ }^{137}$, A. Manz ${ }^{100}$, A. Mapelli ${ }^{29}$, L. Mapelli ${ }^{29}$, L. March ${ }^{81}$, J.F. Marchand ${ }^{28}$, F. Marchese ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, G. Marchiori ${ }^{79}$, M. Marcisovsky ${ }^{126}$, C.P. Marino ${ }^{170}$, F. Marroquim ${ }^{23 a}$, R. Marshall ${ }^{83}$, Z. Marshall ${ }^{29}$, F.K. Martens ${ }^{159}$, S. Marti-Garcia ${ }^{168}$, A.J. Martin ${ }^{177}$, B. Martin ${ }^{29}$, B. Martin ${ }^{89}$, F.F. Martin ${ }^{121}$, J.P. Martin ${ }^{94}$, Ph. Martin ${ }^{55}$, T.A. Martin ${ }^{17}$, V.J. Martin ${ }^{45}$, B. Martin dit Latour ${ }^{49}$, S. Martin-Haugh ${ }^{150}$, M. Martinez ${ }^{11}$, V. Martinez Outschoorn ${ }^{57}$, A.C. Martyniuk ${ }^{170}$, M. Marx ${ }^{83}$, F. Marzano ${ }^{133 a}$, A. Marzin ${ }^{112}$, L. Masetti ${ }^{82}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{95}$, J. Masik ${ }^{83}$, A.L. Maslennikov ${ }^{108}$, I. Massa ${ }^{19 a, 19 b}$, G. Massaro ${ }^{106}$, N. Massol ${ }^{4}$, P. Mastrandrea ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, A. Mastroberardino ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, P. Matricon ${ }^{116}$, H. Matsumoto ${ }^{156}$, H. Matsunaga ${ }^{156}$, T. Matsushita ${ }^{67}$, C. Mattravers ${ }^{119, c}$, J.M. Maugain ${ }^{29}$, J. Maurer ${ }^{84}$, S.J. Maxfield ${ }^{74}$, D.A. Maximov ${ }^{108, f}$, E.N. May ${ }^{5}$, A. Mayne ${ }^{140}$, R. Mazini ${ }^{152}$, M. Mazur ${ }^{20}$, L. Mazzaferro ${ }^{134 a, 134 b}$, M. Mazzanti ${ }^{90 a}$, S.P. Mc Kee ${ }^{88}$, A. McCarn ${ }^{166}$, R.L. McCarthy ${ }^{149}$, T.G. McCarthy ${ }^{28}$, N.A. McCubbin ${ }^{130}$, K.W. McFarlane ${ }^{56}$, J.A. Mcfayden ${ }^{140}$, H. McGlone ${ }^{53}$, G. Mchedlidze ${ }^{51 b}$, R.A. McLaren ${ }^{29}$, T. Mclaughlan ${ }^{17}$, S.J. McMahon ${ }^{130}$, R.A. McPherson ${ }^{170, j}$, A. Meade ${ }^{85}$, J. Mechnich ${ }^{106}$, M. Mechtel ${ }^{176}$, M. Medinnis ${ }^{41}$,
R. Meera-Lebbai ${ }^{112}$, T. Meguro ${ }^{117}$, R. Mehdiyev ${ }^{94}$, S. Mehlhase ${ }^{35}$, A. Mehta ${ }^{74}$, K. Meier ${ }^{58 a}$, B. Meirose ${ }^{80}$, C. Melachrinos ${ }^{30}$, B.R. Mellado Garcia ${ }^{174}$, F. Meloni ${ }^{90 a}, 90 \mathrm{~b}$, L. Mendoza Navas ${ }^{163}$, Z. Meng ${ }^{152, s}$,
A. Mengarelli ${ }^{19 a, 19 b}$, S. Menke ${ }^{100}$, C. Menot ${ }^{29}$, E. Meoni ${ }^{11}$, K.M. Mercurio ${ }^{57}$, P. Mermod ${ }^{49}$, L. Merola ${ }^{103 a, 103 b}$, C. Meroni ${ }^{90 a}$, F.S. Merritt ${ }^{30}$, H. Merritt ${ }^{110}$, A. Messina ${ }^{29}$, J. Metcalfe ${ }^{104}$, A.S. Mete ${ }^{64}$, C. Meyer ${ }^{82}$, C. Meyer ${ }^{30}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{175}$, J. Meyer ${ }^{54}$, T.C. Meyer ${ }^{29}$, W.T. Meyer ${ }^{64}$, J. Miao ${ }^{32 \mathrm{~d}}$, S. Michal ${ }^{29}$, L. Micu ${ }^{25 a}$, R.P. Middleton ${ }^{130}$, S. Migas ${ }^{74}$, L. Mijović ${ }^{41}$, G. Mikenberg ${ }^{173}$, M. Mikestikova ${ }^{126}$, M. Mikuž ${ }^{75}$, D.W. Miller ${ }^{30}$, R.J. Miller ${ }^{89}$, W.J. Mills ${ }^{169}$, C. Mills ${ }^{57}$, A. Milov ${ }^{173}$, D.A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Milstein ${ }^{173}$, A.A. Minaenko ${ }^{129}$, M. Miñano Moya ${ }^{168}$, I.A. Minashvili ${ }^{65}$, A.I. Mincer ${ }^{109}$, B. Mindur ${ }^{37}$, M. Mineev ${ }^{65}$, Y. Ming ${ }^{174}$, L.M. Mir ${ }^{11}$, G. Mirabelli ${ }^{133 a}$, L. Miralles Verge ${ }^{11}$, A. Misiejuk ${ }^{77}$, J. Mitrevski ${ }^{138}$, G.Y. Mitrofanov ${ }^{129}$, V.A. Mitsou ${ }^{168}$, S. Mitsui ${ }^{66}$, P.S. Miyagawa ${ }^{140}$, K. Miyazaki ${ }^{67}$, J.U. Mjörnmark ${ }^{80}$, T. Moa ${ }^{147 a, 147 b}$, P. Mockett ${ }^{139}$, S. Moed ${ }^{57}$, V. Moeller ${ }^{27}$, K. Mönig ${ }^{41}$, N. Möser ${ }^{20}$, S. Mohapatra ${ }^{149}$, W. Mohr ${ }^{48}$, S. Mohrdieck-Möck ${ }^{100}$, R. Moles-Valls ${ }^{168}$, J. Molina-Perez ${ }^{29}$, J. Monk ${ }^{78}$, E. Monnier ${ }^{84}$, S. Montesano ${ }^{90 a}$, 90 b , F. Monticelli ${ }^{71}$, S. Monzani ${ }^{19 a, 19 b}$, R.W. Moore ${ }^{2}$, G.F. Moorhead ${ }^{87}$, C. Mora Herrera ${ }^{49}$, A. Moraes ${ }^{53}$, N. Morange ${ }^{137}$, J. Morel ${ }^{54}$, G. Morello ${ }^{36 a}, 36 \mathrm{~b}$, D. Moreno ${ }^{82}$, M. Moreno Llácer ${ }^{168}$, P. Morettini ${ }^{50 a}$, M. Morgenstern ${ }^{43}$, M. Morii ${ }^{57}$, J. Morin ${ }^{76}$, A.K. Morley ${ }^{29}$, G. Mornacchi ${ }^{29}$, S.V. Morozov ${ }^{97}$, J.D. Morris ${ }^{76}$, L. Morvaj ${ }^{102}$, H.G. Moser ${ }^{100}$, M. Mosidze ${ }^{51 b}$, J. Moss ${ }^{110}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{9, w}$, S.V. Mouraviev ${ }^{95}$, E.J.W. Moyse ${ }^{85}$, M. Mudrinic ${ }^{12 b}$, F. Mueller ${ }^{58 a}$, J. Mueller ${ }^{124}$, K. Mueller ${ }^{20}$, T.A. Müller ${ }^{99}$, T. Mueller ${ }^{82}$, D. Muenstermann ${ }^{29}$, Y. Munwes ${ }^{154}$, W.J. Murray ${ }^{130}$, I. Mussche ${ }^{106}$, E. Musto ${ }^{103 a, 103 b}$, A.G. Myagkov ${ }^{129}$, M. Myska ${ }^{126}$, J. Nadal ${ }^{11}$, K. Nagai ${ }^{161}$, K. Nagano ${ }^{66}$, A. Nagarkar ${ }^{110}$, Y. Nagasaka ${ }^{60}$, M. Nagel ${ }^{100}$, A.M. Nairz ${ }^{29}$, Y. Nakahama ${ }^{29}$, K. Nakamura ${ }^{156}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{111}$, G. Nanava ${ }^{20}$, A. Napier ${ }^{162}$, R. Narayan ${ }^{58 \mathrm{~b}}$, M. Nash ${ }^{78, c}$, N.R. Nation ${ }^{21}$, T. Nattermann ${ }^{20}$, T. Naumann ${ }^{41}$, G. Navarro ${ }^{163}$, H.A. Neal ${ }^{88}$, E. Nebot ${ }^{81}$, P.Yu. Nechaeva ${ }^{95}$, T.J. Neep ${ }^{83}$, A. Negri ${ }^{120 a, 120 b}$, G. Negri ${ }^{29}$, S. Nektarijevic ${ }^{49}$, A. Nelson ${ }^{164}$, T.K. Nelson ${ }^{144}$, S. Nemecek ${ }^{126}$, P. Nemethy ${ }^{109}$, A.A. Nepomuceno ${ }^{23 a}$, M. Nessi ${ }^{29, x}$, M.S. Neubauer ${ }^{166}$, A. Neusiedl ${ }^{82}$, R.M. Neves ${ }^{109}$, P. Nevski ${ }^{24}$, P.R. Newman ${ }^{17}$, V. Nguyen Thi Hong ${ }^{137}$, R.B. Nickerson ${ }^{119}$, R. Nicolaidou ${ }^{137}$, L. Nicolas ${ }^{140}$, B. Nicquevert ${ }^{29}$, F. Niedercorn ${ }^{116}$, J. Nielsen ${ }^{138}$, T. Niinikoski ${ }^{29}$, N. Nikiforou ${ }^{34}$, A. Nikiforov ${ }^{15}$, V. Nikolaenko ${ }^{129}$, K. Nikolaev ${ }^{65}$, I. Nikolic-Audit ${ }^{79}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{24}$, H. Nilsen ${ }^{48}$, P. Nilsson ${ }^{7}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 a}$, T. Nishiyama ${ }^{67}$, R. Nisius ${ }^{100}$, L. Nodulman ${ }^{5}$, M. Nomachi ${ }^{117}$, I. Nomidis ${ }^{155}$, M. Nordberg ${ }^{29}$, P.R. Norton ${ }^{130}$, J. Novakova ${ }^{127}$, M. Nozaki ${ }^{66}$, L. Nozka ${ }^{114}$, I.M. Nugent ${ }^{160 a}$, A.-E. Nuncio-Quiroz ${ }^{20}$, G. Nunes Hanninger ${ }^{87}$, T. Nunnemann ${ }^{99}$, E. Nurse ${ }^{78}$, B.J. O’Brien ${ }^{45}$, S.W. O’Neale ${ }^{17, *}$, D.C. O'Neil ${ }^{143}$, V. O’Shea ${ }^{53}$, L.B. Oakes ${ }^{99}$, F.G. Oakham ${ }^{28, d}$, H. Oberlack ${ }^{100}$, J. Ocariz ${ }^{79}$, A. Ochi ${ }^{67}$, S. Oda ${ }^{156}$, S. Odaka ${ }^{66}$, J. Odier ${ }^{84}$, H. Ogren ${ }^{61}$, A. Oh ${ }^{83}$, S.H. Oh ${ }^{44}$, C.C. Ohm ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T. Ohshima ${ }^{102}$, H. Ohshita ${ }^{141}$, S. Okada ${ }^{67}$, H. Okawa ${ }^{164}$, Y. Okumura ${ }^{102}$, T. Okuyama ${ }^{156}$, A. Olariu ${ }^{25 a}$, M. Olcese ${ }^{50 \mathrm{a}}$, A.G. Olchevski ${ }^{65}$, S.A. Olivares Pino ${ }^{31 \mathrm{a}}$, M. Oliveira ${ }^{125 a, h}$, D. Oliveira Damazio ${ }^{24}$, E. Oliver Garcia ${ }^{168}$, D. Olivito ${ }^{121}$, A. Olszewski ${ }^{38}$, J. Olszowska ${ }^{38}$, C. Omachi ${ }^{67}$, A. Onofre ${ }^{125 a, y}$, P.U.E. Onyisi ${ }^{30}$, C.J. Oram ${ }^{160 a}$, M.J. Oreglia ${ }^{30}$, Y. Oren ${ }^{154}$,
D. Orestano ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, N. Orlando ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, I. Orlov ${ }^{108}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{159}$, B. Osculati ${ }^{50 a, 50 \mathrm{~b}}$,
R. Ospanov ${ }^{121}$, C. Osuna ${ }^{11}$, G. Otero y Garzon ${ }^{26}$, J.P. Ottersbach ${ }^{106}$, M. Ouchrif ${ }^{136 d}$, E.A. Ouellette ${ }^{170}$, F. Ould-Saada ${ }^{118}$, A. Ouraou ${ }^{137}$, Q. Ouyang ${ }^{32 \mathrm{a}}$, A. Ovcharova ${ }^{14}$, M. Owen ${ }^{83}$, S. Owen ${ }^{140}$, V.E. Ozcan ${ }^{18 a}$, N. Ozturk ${ }^{7}$, A. Pacheco Pages ${ }^{11}$, C. Padilla Aranda ${ }^{11}$, S. Pagan Griso ${ }^{14}$, E. Paganis ${ }^{140}$, F. Paige ${ }^{24}$, P. Pais ${ }^{85}$, K. Pajchel ${ }^{118}$, G. Palacino ${ }^{160 b}$, C.P. Paleari ${ }^{6}$, S. Palestini ${ }^{29}$, D. Pallin ${ }^{33}$, A. Palma ${ }^{125 a}$, J.D. Palmer ${ }^{17}$, Y.B. Pan ${ }^{174}$, E. Panagiotopoulou ${ }^{9}$, B. Panes ${ }^{31 a}$, N. Panikashvili ${ }^{88}$, S. Panitkin ${ }^{24}$, D. Pantea ${ }^{25 a}$, M. Panuskova ${ }^{126}$, V. Paolone ${ }^{124}$, A. Papadelis ${ }^{147 a}$, Th.D. Papadopoulou ${ }^{9}$, A. Paramonov ${ }^{5}$, D. Paredes Hernandez ${ }^{33}$, W. Park ${ }^{24, z}$, M.A. Parker ${ }^{27}$, F. Parodi ${ }^{50 a, 50 b}$, J.A. Parsons ${ }^{34}$, U. Parzefall ${ }^{48}$, S. Pashapour ${ }^{54}$, E. Pasqualucci ${ }^{133 a}$, S. Passaggio ${ }^{50 a}$, A. Passeri ${ }^{135 a}$, F. Pastore ${ }^{135 a, 135 b}$, Fr. Pastore ${ }^{77}$, G. Pásztor ${ }^{49, a a}$, S. Pataraia ${ }^{176}$, N. Patel ${ }^{151}$, J.R. Pater ${ }^{83}$, S. Patricelli ${ }^{103 a, 103 b}$, T. Pauly ${ }^{29}$, M. Pecsy ${ }^{145 a}$, M.I. Pedraza Morales ${ }^{174}$, S.V. Peleganchuk ${ }^{108}$, D. Pelikan ${ }^{167}$, H. Peng ${ }^{32 b}$, B. Penning ${ }^{30}$, A. Penson ${ }^{34}$, J. Penwell ${ }^{61}$, M. Perantoni ${ }^{23 a}$, K. Perez ${ }^{34, a b}$, T. Perez Cavalcanti ${ }^{41}$, E. Perez Codina ${ }^{160 a}$, M.T. Pérez García-Estañ ${ }^{168}$, V. Perez Reale ${ }^{34}$, L. Perini ${ }^{90 a}, 90 \mathrm{~b}$, H. Pernegger ${ }^{29}$, R. Perrino ${ }^{73 a}$, P. Perrodo ${ }^{4}$, S. Persembe ${ }^{3 \mathrm{a}}$, V.D. Peshekhonov ${ }^{65}$, K. Peters ${ }^{29}$, B.A. Petersen ${ }^{29}$, J. Petersen ${ }^{29}$, T.C. Petersen ${ }^{35}$, E. Petit ${ }^{4}$, A. Petridis ${ }^{155}$, C. Petridou ${ }^{155}$, E. Petrolo ${ }^{133 a}$, F. Petrucci ${ }^{135 a, 135 b}$, D. Petschull ${ }^{41}$, M. Petteni ${ }^{143}$, R. Pezoa ${ }^{31 b}$, A. Phan ${ }^{87}$, P.W. Phillips ${ }^{130}$, G. Piacquadio ${ }^{29}$, A. Picazio ${ }^{49}$, E. Piccaro ${ }^{76}$, M. Piccinini ${ }^{19 a, 19 b}$, S.M. Piec ${ }^{41}$, R. Piegaia ${ }^{26}$, D.T. Pignotti ${ }^{110}$, J.E. Pilcher ${ }^{30}$, A.D. Pilkington ${ }^{83}$, J. Pina ${ }^{125 a, b}$, M. Pinamonti ${ }^{165 a, 165 c}$, A. Pinder ${ }^{119}$, J.L. Pinfold ${ }^{2}$, J. Ping ${ }^{32 \mathrm{c}}$, B. Pinto ${ }^{125 \mathrm{a}}$, O. Pirotte ${ }^{29}$, C. Pizio ${ }^{90 \mathrm{a}, 90 \mathrm{~b}}$, R. Placakyte ${ }^{41}$, M. Plamondon ${ }^{170}$, M.-A. Pleier ${ }^{24}$, A.V. Pleskach ${ }^{129}$, E. Plotnikova ${ }^{65}$, A. Poblaguev ${ }^{24}$, S. Poddar ${ }^{58 a}$, F. Podlyski ${ }^{33}$, L. Poggioli ${ }^{116}$, T. Poghosyan ${ }^{20}$, M. Pohl ${ }^{49}$, F. Polci ${ }^{55}$, G. Polesello ${ }^{120 a}$, A. Policicchio ${ }^{36 a, 36 b}$, A. Polini ${ }^{19 a}$, J. Poll ${ }^{76}$, V. Polychronakos ${ }^{24}$, D.M. Pomarede ${ }^{137}$, D. Pomeroy ${ }^{22}$, K. Pommès ${ }^{29}$, L. Pontecorvo ${ }^{133 a}$, B.G. Pope ${ }^{89}$, G.A. Popeneciu ${ }^{25 a}$, D.S. Popovic ${ }^{12 a}$, A. Poppleton ${ }^{29}$, X. Portell Bueso ${ }^{29}$, C. Posch $^{21}$, G.E. Pospelov ${ }^{100}$, S. Pospisil ${ }^{128}$, I.N. Potrap ${ }^{100}$, C.J. Potter ${ }^{150}$, C.T. Potter ${ }^{115}$, G. Poulard ${ }^{29}$, J. Poveda ${ }^{174}$, V. Pozdnyakov ${ }^{65}$, R. Prabhu ${ }^{78}$, P. Pralavorio ${ }^{84}$, A. Pranko ${ }^{14}$, S. Prasad ${ }^{29}$, R. Pravahan ${ }^{24}$, S. Prell ${ }^{64}$, K. Pretzl ${ }^{16}$, L. Pribyl ${ }^{29}$, D. Price ${ }^{61}$, J. Price ${ }^{74}$, L.E. Price ${ }^{5}$, M.J. Price ${ }^{29}$, D. Prieur ${ }^{124}$, M. Primavera ${ }^{73 a}$, K. Prokofiev ${ }^{109}$, F. Prokoshin ${ }^{31 b}$, S. Protopopescu ${ }^{24}$, J. Proudfoot ${ }^{5}$, X. Prudent ${ }^{43}$, M. Przybycien ${ }^{37}$, H. Przysiezniak ${ }^{4}$, S. Psoroulas ${ }^{20}$, E. Ptacek ${ }^{115}$, E. Pueschel ${ }^{85}$, J. Purdham ${ }^{88}$, M. Purohit ${ }^{24, z}$, P. Puzo ${ }^{116}$, Y. Pylypchenko ${ }^{63}$, J. Qian ${ }^{88}$, Z. Qian ${ }^{84}$, Z. Qin ${ }^{41}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{14}$, W.B. Quayle ${ }^{174}$, F. Quinonez ${ }^{31 \mathrm{a}}$, M. Raas ${ }^{105}$, V. Radescu ${ }^{41}$, B. Radics ${ }^{20}$, P. Radloff ${ }^{115}$, T. Rador ${ }^{18 a}$, F. Ragusa ${ }^{90 a, 90 b}$, G. Rahal ${ }^{179}$, A.M. Rahimi ${ }^{110}$, D. Rahm ${ }^{24}$, S. Rajagopalan ${ }^{24}$, M. Rammensee ${ }^{48}$, M. Rammes ${ }^{142}$, A.S. Randle-Conde ${ }^{39}$, K. Randrianarivony ${ }^{28}$, P.N. Ratoff ${ }^{72}$, F. Rauscher ${ }^{99}$, T.C. Rave ${ }^{48}$, M. Raymond ${ }^{29}$, A.L. Read ${ }^{118}$, D.M. Rebuzzi ${ }^{120 a, 120 b}$, A. Redelbach ${ }^{175}$, G. Redlinger ${ }^{24}$, R. Reece ${ }^{121}$, K. Reeves ${ }^{40}$, A. Reichold ${ }^{106}$, E. Reinherz-Aronis ${ }^{154}$, A. Reinsch ${ }^{115}$, I. Reisinger ${ }^{42}$, C. Rembser ${ }^{29}$, Z.L. Ren ${ }^{152}$, A. Renaud ${ }^{116}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{90 a}$, B. Resende ${ }^{137}$, P. Reznicek ${ }^{99}$, R. Rezvani ${ }^{159}$, A. Richards ${ }^{78}$, R. Richter ${ }^{100}$, E. Richter-Was ${ }^{4, a c}$, M. Ridel ${ }^{79}$, M. Rijpstra ${ }^{106}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{120 a, 120 b}$, L. Rinaldi ${ }^{19 a}$, R.R. Rios ${ }^{39}$, I. Riu ${ }^{11}$, G. Rivoltella ${ }^{90 a, 90 b}$, F. Rizatdinova ${ }^{113}$, E. Rizvi ${ }^{76}$, S.H. Robertson ${ }^{86, j}$, A. Robichaud-Veronneau ${ }^{119}$, D. Robinson ${ }^{27}$, J.E.M. Robinson ${ }^{78}$, A. Robson ${ }^{53}$, J.G. Rocha de Lima ${ }^{107}$, C. Roda ${ }^{123 a, 123 b}$, D. Roda Dos Santos ${ }^{29}$, D. Rodriguez ${ }^{163}$, A. Roe ${ }^{54}$, S. Roe ${ }^{29}$, O. Røhne ${ }^{118}$, V. Rojo ${ }^{1}$, S. Rolli ${ }^{162}$, A. Romaniouk ${ }^{97}$, M. Romano ${ }^{19 a, 19 b}$, V.M. Romanov ${ }^{65}$, G. Romeo ${ }^{26}$, E. Romero Adam ${ }^{168}$, L. Roos ${ }^{79}$, E. Ros $^{168}$, S. Rosati ${ }^{133 a}$, K. Rosbach ${ }^{49}$, A. Rose ${ }^{150}$, M. Rose ${ }^{77}$, G.A. Rosenbaum ${ }^{159}$, E.I. Rosenberg ${ }^{64}$, P.L. Rosendahl ${ }^{13}$, O. Rosenthal ${ }^{142}$, L. Rosselet ${ }^{49}$, V. Rossetti ${ }^{11}$, E. Rossi ${ }^{133 a, 133 b}$, L.P. Rossi ${ }^{50 a}$, M. Rotaru ${ }^{25 a}$, I. Roth ${ }^{173}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{116}$, C.R. Royon ${ }^{137}$, A. Rozanov ${ }^{84}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{32 a, a d}$, F. Rubbo ${ }^{11}$, I. Rubinskiy ${ }^{41}$, B. Ruckert ${ }^{99}$, N. Ruckstuhl ${ }^{106}$, V.I. Rud ${ }^{98}$, C. Rudolph ${ }^{43}$, G. Rudolph ${ }^{62}$, F. Rühr ${ }^{6}$, F. Ruggieri ${ }^{135 a, 135 b}$, A. Ruiz-Martinez ${ }^{64}$, V. Rumiantsev ${ }^{92, *}$, L. Rumyantsev ${ }^{65}$, K. Runge ${ }^{48}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{65}$, J.P. Rutherfoord ${ }^{6}$, C. Ruwiedel ${ }^{14}$, P. Ruzicka ${ }^{126}$, Y.F. Ryabov ${ }^{122}$, V. Ryadovikov ${ }^{129}$, P. Ryan ${ }^{89}$, M. Rybar ${ }^{127}$, G. Rybkin ${ }^{116}$, N.C. Ryder ${ }^{119}$, S. Rzaeva ${ }^{10}$, A.F. Saavedra ${ }^{151}$, I. Sadeh ${ }^{154}$, H.F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{65}$, F. Safai Tehrani ${ }^{133 a}$, H. Sakamoto ${ }^{156}$, G. Salamanna ${ }^{76}$, A. Salamon ${ }^{134 a}$, M. Saleem ${ }^{112}$, D. Salek ${ }^{29}$, D. Salihagic ${ }^{100}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{168}$, B.M. Salvachua Ferrando ${ }^{5}$, D. Salvatore ${ }^{36 a, 36 b}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{105}$, A. Salzburger ${ }^{29}$, D. Sampsonidis ${ }^{155}$, B.H. Samset ${ }^{118}$, A. Sanchez ${ }^{103 a, 103 b}$, V. Sanchez Martinez ${ }^{168}$, H. Sandaker ${ }^{13}$, H.G. Sander ${ }^{82}$, M.P. Sanders ${ }^{99}$, M. Sandhoff ${ }^{176}$, T. Sandoval ${ }^{27}$, C. Sandoval ${ }^{163}$, R. Sandstroem ${ }^{100}$, S. Sandvoss ${ }^{176}$, D.P.C. Sankey ${ }^{130}$, A. Sansoni ${ }^{47}$, C. Santamarina Rios ${ }^{86}$, C. Santoni ${ }^{33}$, R. Santonico ${ }^{134 a, 134 b}$, H. Santos ${ }^{125 a}$, J.G. Saraiva ${ }^{125 a}$, T. Sarangi ${ }^{174}$, E. Sarkisyan-Grinbaum ${ }^{7}$, F. Sarri ${ }^{123 a, 123 b}$, G. Sartisohn ${ }^{176}$, O. Sasaki ${ }^{66}$, N. Sasao ${ }^{68}$, I. Satsounkevitch ${ }^{91}$, G. Sauvage ${ }^{4}$, E. Sauvan ${ }^{4}$, J.B. Sauvan ${ }^{116}$, P. Savard ${ }^{159, d}$, V. Savinov ${ }^{124}$, D.O. Savu ${ }^{29}$, L. Sawyer ${ }^{24, l}$, D.H. Saxon ${ }^{53}$, J. Saxon ${ }^{121}$, L.P. Says ${ }^{33}$, C. Sbarra ${ }^{19 a}$, A. Sbrizzi ${ }^{19 a, 19 b}$, O. Scallon ${ }^{94}$, D.A. Scannicchio ${ }^{164}$, M. Scarcella ${ }^{151}$, J. Schaarschmidt ${ }^{116}$, P. Schacht ${ }^{100}$, D. Schaefer ${ }^{121}$, U. Schäfer ${ }^{82}$, S. Schaepe ${ }^{20}$, S. Schaetzel ${ }^{58 b}$, A.C. Schaffer ${ }^{116}$, D. Schaile ${ }^{99}$, R.D. Schamberger ${ }^{149}$, A.G. Schamov ${ }^{108}$, V. Scharf ${ }^{58 a}$, V.A. Schegelsky ${ }^{122}$, D. Scheirich ${ }^{88}$, M. Schernau ${ }^{164}$, M.I. Scherzer ${ }^{34}$, C. Schiavi ${ }^{50 a, 50 b}$, J. Schieck ${ }^{99}$, M. Schioppa ${ }^{36 a, 36 b}$, S. Schlenker ${ }^{29}$, J.L. Schlereth ${ }^{5}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{20}$, C. Schmitt ${ }^{82}$, S. Schmitt ${ }^{58 b}$, M. Schmitz ${ }^{20}$, A. Schöning ${ }^{58 b}$, M. Schott ${ }^{29}$, D. Schouten ${ }^{160 a}$, J. Schovancova ${ }^{126}$, M. Schram ${ }^{86}$, C. Schroeder ${ }^{82}$, N. Schroer ${ }^{58 c}$, G. Schuler ${ }^{29}$, M.J. Schultens ${ }^{20}$, J. Schultes ${ }^{176}$, H.-C. Schultz-Coulon ${ }^{58 a}$, H. Schulz ${ }^{15}$, J.W. Schumacher ${ }^{20}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{138}$,

Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{83}$, A. Schwartzman ${ }^{144}$, Ph. Schwemling ${ }^{79}$, R. Schwienhorst ${ }^{89}$, R. Schwierz ${ }^{43}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{20}$, M. Schwoerer ${ }^{4}$, G. Sciolla ${ }^{22}$, W.G. Scott ${ }^{130}$, J. Searcy ${ }^{115}$, G. Sedov ${ }^{41}$, E. Sedykh ${ }^{122}$, E. Segura ${ }^{11}$, S.C. Seidel ${ }^{104}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{43}$, J.M. Seixas ${ }^{23 a}$, G. Sekhniaidze ${ }^{103 a}$, S.J. Sekula ${ }^{39}$, K.E. Selbach ${ }^{45}$, D.M. Seliverstov ${ }^{122}$, B. Sellden ${ }^{147 a}$, G. Sellers ${ }^{74}$, M. Seman ${ }^{145 b}$, N. Semprini-Cesari ${ }^{19 a, 19 b}$, C. Serfon ${ }^{99}$, L. Serin ${ }^{116}$, L. Serkin ${ }^{54}$, R. Seuster ${ }^{100}$, H. Severini ${ }^{112}$, M.E. Sevior ${ }^{87}$, A. Sfyrla ${ }^{29}$, E. Shabalina ${ }^{54}$, M. Shamim ${ }^{115}$, L.Y. Shan ${ }^{32 a}$, J.T. Shank ${ }^{21}$, Q.T. Shao ${ }^{87}$, M. Shapiro ${ }^{14}$, P.B. Shatalov ${ }^{96}$, L. Shaver ${ }^{6}$, K. Shaw ${ }^{165 a, 165 c}$, D. Sherman ${ }^{177}$, P. Sherwood ${ }^{78}$, A. Shibata ${ }^{109}$, H. Shichi ${ }^{102}$, S. Shimizu ${ }^{29}$, M. Shimojima ${ }^{101}$, T. Shin ${ }^{56}$, M. Shiyakova ${ }^{65}$, A. Shmeleva ${ }^{95}$, M.J. Shochet ${ }^{30}$, D. Short ${ }^{119}$, S. Shrestha ${ }^{64}$, E. Shulga ${ }^{97}$, M.A. Shupe ${ }^{6}$, P. Sicho ${ }^{126}$, A. Sidoti ${ }^{133 a}$, F. Siegert ${ }^{48}$, Dj. Sijacki ${ }^{12 a}$, O. Silbert ${ }^{173}$, J. Silva ${ }^{125 a}$, Y. Silver ${ }^{154}$, D. Silverstein ${ }^{144}$, S.B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{128}$, O. Simard ${ }^{137}$, Lj. Simic ${ }^{12 a}$, S. Simion ${ }^{116}$, B. Simmons ${ }^{78}$, R. Simoniello ${ }^{90 a, 90 b}$, M. Simonyan ${ }^{35}$, P. Sinervo ${ }^{159}$, N.B. Sinev ${ }^{115}$, V. Sipica ${ }^{142}$, G. Siragusa ${ }^{175}$, A. Sircar ${ }^{24}$, A.N. Sisakyan ${ }^{65}$, S.Yu. Sivoklokov ${ }^{98}$, J. Sjölin ${ }^{147 a, 147 b}$, T.B. Sjursen ${ }^{13}$, L.A. Skinnari ${ }^{14}$, H.P. Skottowe ${ }^{57}$, K. Skovpen ${ }^{108}$, P. Skubic ${ }^{112}$, N. Skvorodnev ${ }^{22}$, M. Slater ${ }^{17}$, T. Slavicek ${ }^{128}$, K. Sliwa ${ }^{162}$, J. Sloper ${ }^{29}$, V. Smakhtin ${ }^{173}$, B.H. Smart ${ }^{45}$, S.Yu. Smirnov ${ }^{97}$, Y. Smirnov ${ }^{97}$, L.N. Smirnova ${ }^{98}$, O. Smirnova ${ }^{80}$, B.C. Smith ${ }^{57}$, D. Smith ${ }^{144}$, K.M. Smith ${ }^{53}$, M. Smizanska ${ }^{72}$, K. Smolek ${ }^{128}$, A.A. Snesarev ${ }^{95}$, S.W. Snow ${ }^{83}$, J. Snow ${ }^{112}$, S. Snyder ${ }^{24}$, M. Soares ${ }^{125 a}$, R. Sobie ${ }^{170, j}$, J. Sodomka ${ }^{128}$, A. Soffer ${ }^{154}$, C.A. Solans ${ }^{168}$, M. Solar ${ }^{128}$, J. Solc ${ }^{128}$, E. Soldatov ${ }^{97}$, U. Soldevila ${ }^{168}$, E. Solfaroli Camillocci ${ }^{133 a, 133 b}$, A.A. Solodkov ${ }^{129}$, O.V. Solovyanov ${ }^{129}$, N. Soni ${ }^{2}$, V. Sopko ${ }^{128}$, B. Sopko ${ }^{128}$, M. Sosebee ${ }^{7}$, R. Soualah ${ }^{165 a, 165 c}$, A. Soukharev ${ }^{108}$, S. Spagnolo ${ }^{73 a, 73 b}$, F. Spanò ${ }^{77}$, R. Spighi ${ }^{19 a}$, G. Spigo ${ }^{29}$, F. Spila ${ }^{133 a, 133 b}$, R. Spiwoks ${ }^{29}$, M. Spousta ${ }^{127}$, T. Spreitzer ${ }^{159}$, B. Spurlock ${ }^{7}$, R.D. St. Denis ${ }^{53}$, J. Stahlman ${ }^{121}$, R. Stamen ${ }^{58 a}$, E. Stanecka ${ }^{38}$, R.W. Stanek ${ }^{5}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{41}$, S. Stapnes ${ }^{118}$, E.A. Starchenko ${ }^{129}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{126}$, P. Starovoitov ${ }^{41}$, A. Staude ${ }^{99}$, P. Stavina ${ }^{145 a}$, G. Steele ${ }^{53}$, P. Steinbach ${ }^{43}$, P. Steinberg ${ }^{24}$, I. Stekl ${ }^{128}$, B. Stelzer ${ }^{143}$, H.J. Stelzer ${ }^{89}$, O. Stelzer-Chilton ${ }^{160 a}$, H. Stenzel ${ }^{52}$, S. Stern ${ }^{100}$, K. Stevenson ${ }^{76}$, G.A. Stewart ${ }^{29}$, J.A. Stillings ${ }^{20}$, M.C. Stockton ${ }^{86}$, K. Stoerig ${ }^{48}$, G. Stoicea ${ }^{25 a}$, S. Stonjek ${ }^{100}$, P. Strachota ${ }^{127}$, A.R. Stradling ${ }^{7}$, A. Straessner ${ }^{43}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 a, 147 b}$, A. Strandlie ${ }^{118}$, M. Strang ${ }^{110}$, E. Strauss ${ }^{144}$, M. Strauss ${ }^{112}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{175}$, D.M. Strom ${ }^{115}$, J.A. Strong ${ }^{77, *}$, R. Stroynowski ${ }^{39}$, J. Strube ${ }^{130}$, B. Stugu ${ }^{13}$, I. Stumer ${ }^{24, *}$, J. Stupak ${ }^{149}$, P. Sturm ${ }^{176}$, N.A. Styles ${ }^{41}$, D.A. Soh ${ }^{152, u}$, D. Su $^{144}$, HS. Subramania ${ }^{2}$, A. Succurro ${ }^{11}$, Y. Sugaya ${ }^{117}$, T. Sugimoto ${ }^{102}$, C. Suhr ${ }^{107}$, K. Suita ${ }^{67}$, M. Suk ${ }^{127}$, V.V. Sulin ${ }^{95}$, S. Sultansoy ${ }^{3 d}$, T. Sumida ${ }^{68}$, X. Sun ${ }^{55}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{140}$, S. Sushkov ${ }^{11}$, G. Susinno ${ }^{36 a, 36 b}$, M.R. Sutton ${ }^{150}$, Y. Suzuki ${ }^{66}$, Y. Suzuki ${ }^{67}$, M. Svatos ${ }^{126}$, Yu.M. Sviridov ${ }^{129}$, S. Swedish ${ }^{169}$ I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{127}$, B. Szeless ${ }^{29}$, J. Sánchez ${ }^{168}$, D. Ta ${ }^{106}$, K. Tackmann ${ }^{41}$, A. Taffard ${ }^{164}$, R. Tafirout ${ }^{160 a}$, N. Taiblum ${ }^{154}$, Y. Takahashi ${ }^{102}$, H. Takai ${ }^{24}$, R. Takashima ${ }^{69}$, H. Takeda ${ }^{67}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{66}$, M. Talby ${ }^{84}$, A. Talyshev ${ }^{108, f}$, M.C. Tamsett ${ }^{24}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{116}$, S. Tanaka ${ }^{132}$, S. Tanaka ${ }^{66}$, Y. Tanaka ${ }^{101}$, A.J. Tanasijczuk ${ }^{143}$, K. Tani ${ }^{67}$, N. Tannoury ${ }^{84}$, G.P. Tappern ${ }^{29}$, S. Tapprogge ${ }^{82}$, D. Tardif ${ }^{159}$, S. Tarem ${ }^{153}$, F. Tarrade ${ }^{28}$, G.F. Tartarelli ${ }^{90 a}$, P. Tas ${ }^{127}$, M. Tasevsky ${ }^{126}$, E. Tassi ${ }^{36 a, 36 b}$, M. Tatarkhanov ${ }^{14}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, C. Taylor ${ }^{78}$, F.E. Taylor ${ }^{93}$, G.N. Taylor ${ }^{87}$, W. Taylor ${ }^{160 \mathrm{~b}}$, M. Teinturier ${ }^{116}$,
M. Teixeira Dias Castanheira ${ }^{76}$, P. Teixeira-Dias ${ }^{77}$, K.K. Temming ${ }^{48}$, H. Ten Kate ${ }^{29}$, P.K. Teng ${ }^{152}$, S. Terada ${ }^{66}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{81}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{159, j}$, J. Thadome ${ }^{176}$, J. Therhaag ${ }^{20}$, T. Theveneaux-Pelzer ${ }^{79}$, M. Thioye ${ }^{177}$, S. Thoma ${ }^{48}$, J.P. Thomas ${ }^{17}$, E.N. Thompson ${ }^{34}$, P.D. Thompson ${ }^{17}$, P.D. Thompson ${ }^{159}$, A.S. Thompson ${ }^{53}$, L.A. Thomsen ${ }^{35}$, E. Thomson ${ }^{121}$, M. Thomson ${ }^{27}$, R.P. Thun ${ }^{88}$, F. Tian ${ }^{34}$, M.J. Tibbetts ${ }^{14}$, T. Tic ${ }^{126}$, V.O. Tikhomirov ${ }^{95}$, Y.A. Tikhonov ${ }^{108, f}$, S Timoshenko ${ }^{97}$, P. Tipton ${ }^{177}$, F.J. Tique Aires Viegas ${ }^{29}$, S. Tisserant ${ }^{84}$, B. Toczek ${ }^{37}$, T. Todorov ${ }^{4}$, S. Todorova-Nova ${ }^{162}$, B. Toggerson ${ }^{164}$, J. Tojo ${ }^{70}$, S. Tokár ${ }^{145 a}$, K. Tokunaga ${ }^{67}$, K. Tokushuku ${ }^{66}$, K. Tollefson ${ }^{89}$, M. Tomoto ${ }^{102}$, L. Tompkins ${ }^{30}$, K. Toms ${ }^{104}$, G. Tong ${ }^{32 a}$, A. Tonoyan ${ }^{13}$, C. Topfel ${ }^{16}$, N.D. Topilin ${ }^{65}$, I. Torchiani ${ }^{29}$, E. Torrence ${ }^{115}$, H. Torres ${ }^{79}$, E. Torró Pastor ${ }^{168}$, J. Toth ${ }^{84, a a}$, F. Touchard ${ }^{84}$, D.R. Tovey ${ }^{140}$, T. Trefzger ${ }^{175}$, L. Tremblet ${ }^{29}$, A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{79}$, T.N. Trinh ${ }^{79}$, M.F. Tripiana ${ }^{71}$, W. Trischuk ${ }^{159}$, A. Trivedi ${ }^{24, z}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{90 a}$, M. Trottier-McDonald ${ }^{143}$, M. Trzebinski ${ }^{38}$, A. Trzupek ${ }^{38}$, C. Tsarouchas ${ }^{29}$, J.C-L. Tseng ${ }^{119}$, M. Tsiakiris ${ }^{106}$, P.V. Tsiareshka ${ }^{91}$, D. Tsionou ${ }^{4, a e}$, G. Tsipolitis ${ }^{9}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51 a}$, I.I. Tsukerman ${ }^{96}$, V. Tsulaia ${ }^{14}$, J.-W. Tsung ${ }^{20}$, S. Tsuno ${ }^{66}$, D. Tsybychev ${ }^{149}$, A. Tua ${ }^{140}$, A. Tudorache ${ }^{25 a}$, V. Tudorache ${ }^{25 a}$, J.M. Tuggle ${ }^{30}$, M. Turala ${ }^{38}$, D. Turecek ${ }^{128}$, I. Turk Cakir ${ }^{3 e}$, E. Turlay ${ }^{106}$, R. Turra ${ }^{90 a, 90 b}$, P.M. Tuts ${ }^{34}$, A. Tykhonov ${ }^{75}$, M. Tylmad ${ }^{147 a, 147 b}$, M. Tyndel ${ }^{130}$, G. Tzanakos ${ }^{8}$, K. Uchida ${ }^{20}$, I. Ueda ${ }^{156}$, R. Ueno ${ }^{28}$, M. Ugland ${ }^{13}$, M. Uhlenbrock ${ }^{20}$, M. Uhrmacher ${ }^{54}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{29}$, D.G. Underwood ${ }^{5}$, A. Undrus ${ }^{24}$, G. Unel ${ }^{164}$, Y. Unno ${ }^{66}$, D. Urbaniec ${ }^{34}$, G. Usai ${ }^{7}$, M. Uslenghi ${ }^{120 a, 120 b}$, L. Vacavant ${ }^{84}$, V. Vacek ${ }^{128}$, B. Vachon ${ }^{86}$, S. Vahsen ${ }^{14}$, J. Valenta ${ }^{126}$, P. Valente ${ }^{133 a}$, S. Valentinetti ${ }^{19 a, 19 b}$, S. Valkar ${ }^{127}$, E. Valladolid Gallego ${ }^{168}$, S. Vallecorsa ${ }^{153}$, J.A. Valls Ferrer ${ }^{168}$, H. van der Graaf ${ }^{106}$, E. van der Kraaij ${ }^{106}$, R. Van Der Leeuw ${ }^{106}$, E. van der Poel ${ }^{106}$, D. van der Ster ${ }^{29}$, N. van Eldik ${ }^{85}$, P. van Gemmeren ${ }^{5}$, Z. van Kesteren ${ }^{106}$, I. van Vulpen ${ }^{106}$, M. Vanadia ${ }^{100}$, W. Vandelli ${ }^{29}$, G. Vandoni ${ }^{29}$, A. Vaniachine ${ }^{5}$, P. Vankov ${ }^{41}$, F. Vannucci ${ }^{79}$, F. Varela Rodriguez ${ }^{29}$, R. Vari ${ }^{133 a}$, E.W. Varnes ${ }^{6}$, T. Varol $^{85}$, D. Varouchas ${ }^{14}$, A. Vartapetian ${ }^{7}$, K.E. Varvell ${ }^{151}$, V.I. Vassilakopoulos ${ }^{56}$, F. Vazeille ${ }^{33}$, T. Vazquez Schroeder ${ }^{54}$, G. Vegni ${ }^{90 a, 90 b}$, J.J. Veillet ${ }^{116}$, C. Vellidis ${ }^{8}$, F. Veloso ${ }^{125 a}$, R. Veness ${ }^{29}$, S. Veneziano ${ }^{133 a}$,
A. Ventura ${ }^{73 a, 73 b}$, D. Ventura ${ }^{139}$, M. Venturi ${ }^{48}$, N. Venturi ${ }^{159}$, V. Vercesi ${ }^{120 a}$, M. Verducci ${ }^{139}$, W. Verkerke ${ }^{106}$, J.C. Vermeulen ${ }^{106}$, A. Vest ${ }^{43}$, M.C. Vetterli ${ }^{143, d}$, I. Vichou ${ }^{166}$, T. Vickey ${ }^{146 \mathrm{~b}, a f}$, O.E. Vickey Boeriu ${ }^{146 \mathrm{~b}}$, G.H.A. Viehhauser ${ }^{119}$, S. Viel ${ }^{169}$, M. Villa ${ }^{19 a, 19 b}$, M. Villaplana Perez ${ }^{168}$, E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{28}$, E. Vinek ${ }^{29}$, V.B. Vinogradov ${ }^{65}$, M. Virchaux ${ }^{137, *}$, J. Virzi ${ }^{14}$, O. Vitells ${ }^{173}$, M. Viti ${ }^{41}$, I. Vivarelli ${ }^{48}$, F. Vives Vaque ${ }^{2}$, S. Vlachos ${ }^{9}$, D. Vladoiu ${ }^{99}$, M. Vlasak ${ }^{128}$, N. Vlasov ${ }^{20}$, A. Vogel $^{20}$, P. Vokac ${ }^{128}$, G. Volpi ${ }^{47}$, M. Volpi ${ }^{87}$, G. Volpini ${ }^{90 a}$, H. von der Schmitt ${ }^{100}$, J. von Loeben ${ }^{100}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{20}$, V. Vorobel ${ }^{127}$, A.P. Vorobiev ${ }^{129}$, V. Vorwerk ${ }^{11}$, M. Vos ${ }^{168}$, R. Voss $^{29}$, T.T. Voss ${ }^{176}$, J.H. Vossebeld ${ }^{74}$, N. Vranjes ${ }^{137}$, M. Vranjes Milosavljevic ${ }^{106}$, V. Vrba ${ }^{126}$, M. Vreeswijk ${ }^{106}$, T. Vu Anh ${ }^{48}$, R. Vuillermet ${ }^{29}$, I. Vukotic ${ }^{116}$, W. Wagner ${ }^{176}$, P. Wagner ${ }^{121}$, H. Wahlen ${ }^{176}$, J. Wakabayashi ${ }^{102}$, S. Walch ${ }^{88}$, J. Walder ${ }^{72}$, R. Walker ${ }^{99}$, W. Walkowiak ${ }^{142}$, R. Wall ${ }^{177}$, P. Waller ${ }^{74}$, C. Wang ${ }^{44}$, H. Wang ${ }^{174}$, H. Wang ${ }^{32 \mathrm{~b}, a g}$, J. Wang ${ }^{152}$, J. Wang ${ }^{55}$, J.C. Wang ${ }^{139}$, R. Wang ${ }^{104}$, S.M. Wang ${ }^{152}$, T. Wang ${ }^{20}$, A. Warburton ${ }^{86}$, C.P. Ward ${ }^{27}$, M. Warsinsky ${ }^{48}$, A. Washbrook ${ }^{45}$, C. Wasicki ${ }^{41}$, P.M. Watkins ${ }^{17}$, A.T. Watson ${ }^{17}$, I.J. Watson ${ }^{151}$, M.F. Watson ${ }^{17}$, G. Watts ${ }^{139}$, S. Watts ${ }^{83}$, A.T. Waugh ${ }^{151}$, B.M. Waugh ${ }^{78}$, M. Weber ${ }^{130}$, M.S. Weber ${ }^{16}$, P. Weber ${ }^{54}$, A.R. Weidberg ${ }^{119}$, P. Weigell ${ }^{100}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Wellenstein ${ }^{22}$, P.S. Wells ${ }^{29}$, T. Wenaus ${ }^{24}$, D. Wendland ${ }^{15}$, S. Wendler ${ }^{124}$, Z. Weng ${ }^{152, u}$, T. Wengler ${ }^{29}$, S. Wenig ${ }^{29}$, N. Wermes ${ }^{20}$, M. Werner ${ }^{48}$, P. Werner ${ }^{29}$, M. Werth ${ }^{164}$, M. Wessels ${ }^{58 \text { a }}$, J. Wetter ${ }^{162}$, C. Weydert ${ }^{55}$, K. Whalen ${ }^{28}$, S.J. Wheeler-Ellis ${ }^{164}$, S.P. Whitaker ${ }^{21}$, A. White ${ }^{7}$, M.J. White ${ }^{87}$, S. White ${ }^{123 a, 123 b}$, S.R. Whitehead ${ }^{119}$, D. Whiteson ${ }^{164}$, D. Whittington ${ }^{61}$, F. Wicek ${ }^{116}$, D. Wicke ${ }^{176}$, F.J. Wickens ${ }^{130}$, W. Wiedenmann ${ }^{174}$, M. Wielers ${ }^{130}$, P. Wienemann ${ }^{20}$, C. Wiglesworth ${ }^{76}$, L.A.M. Wiik-Fuchs ${ }^{48}$, P.A. Wijeratne ${ }^{78}$, A. Wildauer ${ }^{168}$, M.A. Wildt ${ }^{41, q}$, I. Wilhelm ${ }^{127}$, H.G. Wilkens ${ }^{29}$, J.Z. Will ${ }^{99}$, E. Williams ${ }^{34}$, H.H. Williams ${ }^{121}$, W. Willis ${ }^{34}$, S. Willocq ${ }^{85}$, J.A. Wilson ${ }^{17}$, M.G. Wilson ${ }^{144}$, A. Wilson ${ }^{88}$, I. Wingerter-Seez ${ }^{4}$, S. Winkelmann ${ }^{48}$, F. Winklmeier ${ }^{29}$, M. Wittgen ${ }^{144}$, M.W. Wolter ${ }^{38}$, H. Wolters ${ }^{125 a, h}$, W.C. Wong ${ }^{40}$, G. Wooden ${ }^{88}$, B.K. Wosiek ${ }^{38}$, J. Wotschack ${ }^{29}$, M.J. Woudstra ${ }^{85}$, K.W. Wozniak ${ }^{38}$, K. Wraight ${ }^{53}$, C. Wright ${ }^{53}$, M. Wright ${ }^{53}$, B. Wrona ${ }^{74}$, S.L. Wu ${ }^{174}$, X. Wu ${ }^{49}$, Y. Wu ${ }^{32 \mathrm{~b}, a h}$, E. Wulf ${ }^{34}$, R. Wunstorf ${ }^{42}$, B.M. Wynne ${ }^{45}$, S. Xella ${ }^{35}$, M. Xiao ${ }^{137}$, S. Xie ${ }^{48}$, Y. Xie ${ }^{32 \mathrm{a}}$, C. Xu ${ }^{32 \mathrm{~b}, w}$, D. Xu ${ }^{140}$, G. Xu ${ }^{32 \mathrm{a}}$, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 \mathrm{~b}}$, M. Yamada ${ }^{66}$, H. Yamaguchi ${ }^{156}$, A. Yamamoto ${ }^{66}$, K. Yamamoto ${ }^{64}$, S. Yamamoto ${ }^{156}$, T. Yamamura ${ }^{156}$, T. Yamanaka ${ }^{156}$, J. Yamaoka ${ }^{44}$, T. Yamazaki ${ }^{156}$, Y. Yamazaki ${ }^{67}$, Z. Yan ${ }^{21}$, H. Yang ${ }^{88}$, U.K. Yang ${ }^{83}$, Y. Yang ${ }^{61}$, Y. Yang ${ }^{32 \mathrm{a}}$, Z. Yang ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S. Yanush ${ }^{92}$, Y. Yao ${ }^{14}$, Y. Yasu ${ }^{66}$, G.V. Ybeles Smit ${ }^{131}$, J. Ye ${ }^{39}$, S. Ye ${ }^{24}$, M. Yilmaz ${ }^{3 c}$, R. Yoosoofmiya ${ }^{124}$, K. Yorita ${ }^{172}$, R. Yoshida ${ }^{5}$, C. Young ${ }^{144}$, C.J. Young ${ }^{119}$, S. Youssef ${ }^{21}$, D. $\mathrm{Yu}^{24}$, J. Yu ${ }^{7}$, J. Yu ${ }^{113}$, L. Yuan ${ }^{67}$, A. Yurkewicz ${ }^{107}$, B. Zabinski ${ }^{38}$, V.G. Zaets ${ }^{129}$, R. Zaidan ${ }^{63}$, A.M. Zaitsev ${ }^{129}$, Z. Zajacova ${ }^{29}$, L. Zanello ${ }^{133 a, 133 b}$, A. Zaytsev ${ }^{108}$, C. Zeitnitz ${ }^{176}$, M. Zeller ${ }^{177}$, M. Zeman ${ }^{126}$, A. Zemla ${ }^{38}$, C. Zendler ${ }^{20}$, O. Zenin ${ }^{129}$, T. Ženiš ${ }^{145 a}$, Z. Zinonos ${ }^{123 a, 123 b}$, S. Zenz ${ }^{14}$, D. Zerwas ${ }^{116}$, G. Zevi della Porta ${ }^{57}$, Z. Zhan ${ }^{32 \mathrm{~d}}$, D. Zhang ${ }^{32 \mathrm{~b}, a g}$, H. Zhang ${ }^{89}$, J. Zhang ${ }^{5}$, X. Zhang ${ }^{32 \mathrm{~d}}$, Z. Zhang ${ }^{116}$, L. Zhao ${ }^{109}$, T. Zhao ${ }^{139}$, Z. Zhao ${ }^{32 \mathrm{~b}}$, A. Zhemchugov ${ }^{65}$, S. Zheng ${ }^{32 \mathrm{a}}$, J. Zhong ${ }^{119}$, B. Zhou ${ }^{88}$, N. Zhou ${ }^{164}$, Y. Zhou ${ }^{152}$, C.G. Zhu ${ }^{32 \mathrm{~d}}$, H. Zhu ${ }^{41}$, J. Zhu ${ }^{88}$, Y. Zhu ${ }^{32 \mathrm{~b}}$, X. Zhuang ${ }^{99}$, V. Zhuravlov ${ }^{100}$, D. Zieminska ${ }^{61}$, R. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{48}$, M. Ziolkowski ${ }^{142}$, R. Zitoun ${ }^{4}$, L. Živković ${ }^{34}$, V.V. Zmouchko ${ }^{129, *}$, G. Zobernig ${ }^{174}$, A. Zoccoli ${ }^{19 a, 19 b}$, A. Zsenei ${ }^{29}$, M. zur Nedden ${ }^{15}$, V. Zutshi ${ }^{107}$, L. Zwalinski ${ }^{29}$.
${ }^{1}$ University at Albany, Albany NY, United States of America
${ }^{2}$ Department of Physics, University of Alberta, Edmonton AB, Canada
$3^{(a)}$ Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Dumlupinar University, Kutahya;
${ }^{(c)}$ Department of Physics, Gazi University, Ankara; ${ }^{(d)}$ Division of Physics, TOBB University of Economics and
Technology, Ankara; ${ }^{(e)}$ Turkish Atomic Energy Authority, Ankara, Turkey
${ }^{4}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
${ }^{6}$ Department of Physics, University of Arizona, Tucson AZ, United States of America
${ }^{7}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
${ }^{8}$ Physics Department, University of Athens, Athens, Greece
${ }^{9}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{10}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{11}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
$12{ }^{(a)}$ Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{13}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{14}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United
States of America
${ }^{15}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{16}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{17}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
$18{ }^{(a)}$ Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Division of Physics, Dogus University, Istanbul;
${ }^{(c)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; ${ }^{(d)}$ Department of Physics, Istanbul
Technical University, Istanbul, Turkey
$19{ }^{(a)}$ INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica, Università di Bologna, Bologna, Italy
${ }^{20}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{21}$ Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
${ }^{23}{ }^{(a)}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Federal University of Juiz de Fora
(UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{24}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
${ }^{25}{ }^{(a)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ University Politehnica Bucharest, Bucharest; ${ }^{(c)}$ West University in Timisoara, Timisoara, Romania
${ }^{26}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{27}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{28}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{29}$ CERN, Geneva, Switzerland
${ }^{30}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
$31{ }^{(a)}$ Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
${ }^{32}{ }^{(a)}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu;
${ }^{(d)}$ School of Physics, Shandong University, Shandong, China
${ }^{33}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
${ }^{34}$ Nevis Laboratory, Columbia University, Irvington NY, United States of America
${ }^{35}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
$36{ }^{(a)}$ INFN Gruppo Collegato di Cosenza; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
${ }_{37}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
${ }^{39}$ Physics Department, Southern Methodist University, Dallas TX, United States of America
${ }^{40}$ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
${ }^{41}$ DESY, Hamburg and Zeuthen, Germany
${ }^{42}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{43}$ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
${ }^{44}$ Department of Physics, Duke University, Durham NC, United States of America
${ }^{45}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{46}$ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 32700 Wiener Neustadt, Austria
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
$50{ }^{(a)}$ INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
$51\left({ }^{(a)}\right.$ E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{53}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
${ }^{56}$ Department of Physics, Hampton University, Hampton VA, United States of America
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America $58{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(c)}$ ZITI Institut für technische Informatik,
Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
${ }^{61}$ Department of Physics, Indiana University, Bloomington IN, United States of America
${ }^{62}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{63}$ University of Iowa, Iowa City IA, United States of America
${ }^{64}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
${ }^{65}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{66}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{67}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{68}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{69}$ Kyoto University of Education, Kyoto, Japan
${ }^{70}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{71}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{72}$ Physics Department, Lancaster University, Lancaster, United Kingdom
${ }^{73}{ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Fisica, Università del Salento, Lecce, Italy
${ }^{74}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{75}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{76}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }_{77}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }_{78}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{79}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{80}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{81}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{82}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{83}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{84}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{85}$ Department of Physics, University of Massachusetts, Amherst MA, United States of America
${ }^{86}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{87}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{88}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{89}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
$90{ }^{(a)}$ INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{91}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{92}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{93}$ Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
${ }^{94}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{95}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
${ }^{96}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{97}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{98}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
${ }^{99}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{100}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{101}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science, Nagoya University, Nagoya, Japan
$103{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
${ }^{105}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen,
Netherlands
${ }^{106}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{109}$ Department of Physics, New York University, New York NY, United States of America
${ }^{110}$ Ohio State University, Columbus OH, United States of America
${ }^{111}$ Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
${ }^{113}$ Department of Physics, Oklahoma State University, Stillwater OK, United States of America
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
${ }^{116}$ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
$120{ }^{(a)}$ INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{121}$ Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
$123{ }^{(a)}$ INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{124}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
$125{ }^{(a)}$ Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; ${ }^{(b)}$ Departamento
de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
${ }^{126}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }_{127}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{128}$ Czech Technical University in Prague, Praha, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
${ }^{130}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{131}$ Physics Department, University of Regina, Regina SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
$133{ }^{(a)}$ INFN Sezione di Roma I; ${ }^{(b)}$ Dipartimento di Fisica, Università La Sapienza, Roma, Italy
$134{ }^{(a)}$ INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Fisica, Università Roma Tre, Roma, Italy
$136{ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
${ }^{139}$ Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford CA, United States of America
$145{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
$146{ }^{(a)}$ Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(b)}$ School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
$147{ }^{(a)}$ Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{148}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{149}$ Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
${ }_{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{155}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo,
Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
$160{ }^{(a)}$ TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{161}$ Institute of Pure and Applied Sciences, University of Tsukuba,1-1-1 Tennodai,Tsukuba, Ibaraki 305-8571, Japan
${ }^{162}$ Science and Technology Center, Tufts University, Medford MA, United States of America
${ }^{163}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
${ }^{164}$ Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
$165{ }^{(a)}$ INFN Gruppo Collegato di Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università
di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and
Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
${ }^{170}$ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
${ }^{171}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{172}$ Waseda University, Tokyo, Japan
${ }_{173}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
${ }^{174}$ Department of Physics, University of Wisconsin, Madison WI, United States of America
${ }^{175}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{176}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{177}$ Department of Physics, Yale University, New Haven CT, United States of America
178 Yerevan Physics Institute, Yerevan, Armenia
179 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
${ }^{a}$ Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
${ }^{b}$ Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
${ }^{c}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{d}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{e}$ Also at Department of Physics, California State University, Fresno CA, United States of America
${ }^{f}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{g}$ Also at Fermilab, Batavia IL, United States of America
${ }^{h}$ Also at Department of Physics, University of Coimbra, Coimbra, Portugal
${ }^{i}$ Also at Università di Napoli Parthenope, Napoli, Italy
${ }^{j}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{k}$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey
${ }^{l}$ Also at Louisiana Tech University, Ruston LA, United States of America
${ }^{m}$ Also at Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{n}$ Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{o}$ Also at Department of Physics, University of Cape Town, Cape Town, South Africa
${ }^{p}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{q}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
${ }^{r}$ Also at Manhattan College, New York NY, United States of America
${ }^{s}$ Also at School of Physics, Shandong University, Shandong, China
${ }^{t}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{u}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
${ }^{v}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{w}$ Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
${ }^{x}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{y}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
${ }^{z}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
${ }^{a a}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a b}$ Also at California Institute of Technology, Pasadena CA, United States of America
${ }^{a c}$ Also at Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{\text {ad }}$ Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
${ }^{a e}$ Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
af Also at Department of Physics, Oxford University, Oxford, United Kingdom
${ }^{a g}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a h}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

* Deceased

