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Abstract

We have studied electron scattering by out-of-plane (flexural) phonon modes in doped suspended graphene and its effect
on charge transport. In the free-standing case (absence of strain) the flexural branch shows a quadratic dispersion
relation, which becomes linear at long wavelength when the sample is under tension due to the rotation symmetry
breaking. In the non-strained case, scattering by flexural phonons is the main limitation to electron mobility. This
picture changes drastically when strains above ū = 10−4n(1012 cm−2) are considered. Here we study in particular the
case of back gate induced strain, and apply our theoretical findings to recent experiments in suspended graphene.
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1. Introduction

Graphene is a novel two dimensional material whose
low-temperature conductivity is comparable to that of con-
ventional metals [1], despite much lower carrier concentra-
tions. Interactions with the underlying substrate seem to
be the main limitation to electron mobility, and recent
experiments on suspended samples show a clear enhance-
ment of mobility (more than one order of magnitude) at
low temperatures [2–4].

In suspended graphene carbon atoms can oscillate in
the out-of-plane direction leading to a new class of low-
energy phonons, the flexural branch [5, 6]. In the free
standing case, these modes show a quadratic dispersion
relation, so there is a high number of these low-energy
phonons and the graphene sheet can be easily deformed
in the out-of-plane direction. For this reason it can be
expected that flexural phonons are the intrinsic strongly
T-dependent scattering mechanism which ultimately lim-
its mobility at room temperature [7]. However, since the
scattering process always involves two flexural phonons,
a membrane characteristic feature, its effect could be re-
duced, specially at low temperatures [8].

In the present manuscript we analyse theoretically the
contribution of flexural modes to the resistivity in sus-
pended graphene samples. Our results suggest, indeed,
that flexural phonons are the main source of resistivity in
this kind of samples. We also show how this intrinsic lim-
itation is reduced by the effect of strain. A quantitative
treatment of back gate induced strain where graphene is
considered as an elastic membrane with clamped edges is
given.

2. The model

In order to describe long-wavelength acoustic phonons
graphene can be seen as a two dimensional membrane
whose elastic properties are described by the free energy
[5, 6]

F =
1

2
κ

∫

dxdy(∇2h)2 +
1

2

∫

dxdy(λu2
ii + 2µu2

ij). (1)

where κ is the bending rigidity, λ and µ are Lamé co-
efficients, h is the displacement in the out of plane di-
rection, and uij = 1/2 [∂iuj + ∂jui + (∂ih)(∂jh)] is the
strain tensor. Typical parameters for graphene [9] are
κ ≈ 1 eV, and µ ≈ 3λ ≈ 9 eVÅ−2. The mass density
is ρ = 7.6× 10−7 Kg/m2. The longitudinal and transverse
in-plane phonons show the usual linear dispersion relation

with sound velocities vL =
√

λ+2µ
ρ ≈ 2.1 × 104m/s and

vT =
√

µ
ρ ≈ 1.4 × 104m/s. Flexural phonons have the

dispersion
ωF
q = α |q|2 (2)

with α =
√

κ
ρ ≈ 4.6×10−7m2/s. The quadratic dispersion

relation is strictly valid in the absence of strain. At finite
strain the dispersion relation of flexural phonons becomes
linear at long-wavelength due to rotation symmetry break-
ing. Let us assume a slowly varying strain field uij(r). The
dispersion in Eq. (2) is changed to:

ωF
q (r) = |q|

√

κ

ρ
|q|2 + λ

ρ
uii(r) +

2µ

ρ
uij(r)

qiqj
|q|2 (3)

In order to keep an analytical treatment we assume uni-
axial strain (uxx ≡ ū, and the rest of strain components
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zero), and drop the anisotropy in Eq. (3) by considering
the effective dispersion relation

ωF
q = q

√

α2q2 + ūv2L. (4)

Long-wavelength phonons couple to electrons in the ef-
fective Dirac-like Hamiltonian [10] through a scalar poten-
tial (diagonal in sublattice indices) called the deformation
potential, which is associated to the lattice volume change
and hence it can be written in terms of the trace of the
strain tensor [11, 12]

V (r) = g0 [uxx(r) + uyy(r)] (5)

where g0 ≈ 20 − 30 eV [11]. Phonons couple also to elec-
trons through a vector potential associated to changes in
bond length between carbon atoms, and whose compo-
nents are related with the strain tensor as [12, 14]

A(r) =
β

a

{

1

2
[uxx(r) − uyy(r)] ,−uxy(r)

}

(6)

where a ≈ 1.4Åis the distance between nearest carbon
atoms, β = −∂ log(t)/∂ log(a) ≈ 2− 3 [15], and t ≈ 3 eV is
the hopping between electrons in nearest carbon π orbitals.

Quantizing the displacements fields in terms of the
usual bosonic ai=L,T,F

~q operators for phonons of momen-
tum q we arrive at the interaction Hamiltonian. The term
which couples electrons and flexural phonons reads

HF
e−ph =

∑

k,k′

∑

q,q′

(

aFq + aF−q

†
)(

aFq′ + aF−q′

†
)

δk′,k−q−q′

×





∑

c=a,b

V F
1,q,q′c

†
kck′ +

(

V F
2,q,q′a

†
kbk′ + h.c.

)



 ,

(7)

where operators a†k and b†k create electrons in Bloch waves
with momentum ~k in the A and B sublattices respectively.
The matrix elements are

V F
1,q,q′ = − g0

2ε(q+ q′)
qq′ cos(φ− φ′)

~

2Vρ
√

ωF
q ω

F
q′

,

V F
2,q,q′ = −vF

~β

a

1

4
qq′ei(φ−φ′) ~

2Vρ
√

ωF
q ω

F
q′

(8)

where φq = arctan (qy/qx) and V is the volume of the sys-
tem. The effect of screening has been taken into account
in the matrix elements of deformation potential through a
Thomas-Fermi -like dielectric function ε (q) = 1+ e2D(EF )

2ǫ0q
,

where D (EF ) is the density of states at Fermi energy. Note
that g = g0/ε(kF ) ≈ 3 eV in agreement with recent ab ini-

tio results [13].

3. Resistivity in the absence of strain

From the linearized Boltzmann equation we can cal-
culate the resistivity as ̺ = 2

e2v2

F
D(EF )

1
τ(kF ) , where vF ≈

106 m/s is the Fermi velocity. Our aim is to compute the
inverse of the scattering time of quasiparticles, given by
τ−1
k =

∑

k′(1 − cos θk,k′)Wk,k′ , where Wk,k′ is the scat-
tering probability per unit time, which can be calculated
through the Fermi’s golden rule. For scattering processes
mediated by two flexural phonons, within the quasi-elastic
approximation, we obtain

Wk,k′ =
4π

~

∑

i=1,2

∑

q,q′

∣

∣V F
i,q,q′

∣

∣

2
f
(i)
k,k′×

× nq(nq′ + 1)δk′,k−q−q′δ (Ek − Ek′) (9)

where f
(1)
k,k′ = 1 + cos θk,k′ and f

(2)
k,k′ = 1, nq is the Bose

distribution, and Ek = vF ~k is the quasi-particle disper-
sion for the Dirac-like Hamiltonian [10]. Eq. (9) is valid in
the high T limit to be specified in the following.

In order to obtain analytical expressions for the scat-
tering rates it is useful to introduce the Bloch-Grüneisen
temperature TBG. If we take into account that the rele-
vant phonons which contribute to the resistivity are those
of momenta q & 2kF then we have kBTBG = ~ω2kF

. For
in-plane longitudinal (transverse) phonons TBG = 57

√
n K

(TBG = 38
√
n K), where n is expressed in 1012 cm−2. For

flexural phonons in the absence of strain TBG = 0.1n K.
From the last expression it is obvious that for carrier den-
sities of interest the experimentally relevant regime is T ≫
TBG, so let us concentrate on this limit.

In the case of scattering by in-plane phonons at T ≫
TBG the scattering rate is given by [16]

1

τI
≈

[

g2

2v2L
+

~
2v2Fβ

2

4a2

(

1

v2L
+

1

v2T

)]

EF

2ρ~3v2F
kBT, (10)

where now g ≈ 3 eV is the screened deformation potential
constant. At T ≪ TBG the scattering rate behaves as
τ−1 ∼ T 4, where only the gauge potential contribution
is taken into account since the deformation potential is
negligible in this regime due to screening effects (τ−1 ∼ T 6

[17]).
In the case of flexural phonons in the non-strained case

(in practice ū ≪ 10−4n with n in 1012 cm−2), the scatter-
ing rate at T ≫ TBG reads [16]

1

τF
≈

(

g2

2
+

~
2v2Fβ

2

4a2

)

(kBT )
2

64π~κ2EF
ln

(

kBT

~ωc

)

+

+

(

g2

4
+

~
2v2Fβ

2

4a2

)

kBTEF

32πv2Fκ
√
ρκ

ln

(

kBT

~ωc

)

(11)

where we have taken into account two contributions, one
coming from the absorption or emission of two thermal
phonons, and other involving one non-thermal phonon.
The first one dominates over the second at T ≫ TBG. It
is necessary to introduce an infrared cutoff frequency ωc,
where for small but finite strain ū ≪ 10−4n(1012 cm−2) is
just the frequency below which the flexural phonon disper-
sion becomes linear.

From Eq. (10) we deduce a resistivity which behaves as
̺ ∼ T , with no dependence on n, whereas from Eq. (11)
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Figure 1: Contribution to the resistivity from flexural phonons in
the absence of strains for two different electronic concentrations (full
lines) and from in plane phonons (dashed line).

we have (neglecting the logarithmic correction) ̺ ∼ T 2/n,
as it was deduced for classical ripples in [7]. As it can be
seen in Fig. 3, the resistivity due to scattering by flex-
ural phonons dominates over the in-plane contribution.
However, this picture changes considerably if one consid-
ers strain above 10−4n(1012 cm−2), as is discussed in the
next section.

4. Resistivity at finite strains

4.1. Scattering rate

The Bloch-Grüneisen temperature for flexural phonons
at finite strains ū & 10−4n(1012 cm−2) is TBG = 28

√
ūn K.

In the relevant high-temperature regime, T ≫ TBG the
scattering rate can be written as [16]

1

τstrF

≈
(

g2

4
+

~
2v2Fβ

2

4a2

)

EF (kBT )
4

16πρ2~5v2F v
6
Lū

3
×

×
[

R2

(

αkBT

~v2Lū

)

+R1

(

αkBT

~v2Lū

)]

(12)

where Rn(γ) =
∫∞

0 dx x3

(γ2x2+1)[exp(
√

γ2x4+x2)−1]n
. The

two terms in Eq. (12) come from the same processes as in
Eq. (11) described above. It is possible to obtain asymp-
totic analytical expressions for Eq. (12). For instance, in

the limit T ≪ T ∗ =
~v2

L
ū

αkB

≈ 7 × 103ū K the scattering

rate behaves as τ−1 ∼ T 4

ū3 , whereas in the opposite limit it

behaves as τ−1 ∼ T 2

ū . The temperature T ∗ characterises
the energy scale at which the flexural phonon dispersion
under strain Eq. (4) cross over from linear to quadratic.

It is pertinent to compute the crossover temperature
T ∗∗ above which scattering by flexural phonons dominates
when strain is induced. This can be inferred by compar-
ing Eq. (10) with Eq. (12) and imposing τI/τF ≈ 1. The
numerical solution give for the corresponding crossover
T ∗∗ ≈ 106ū K. Since T ∗∗ ≫ T ∗ we can use the respec-
tive asymptotic expression for Eq. (12), τ−1 ∼ T 2

ū to ob-
tain T ∗∗ ≈ 32πκū/kB ≈ 106ū K. A remarkable conclusion
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Figure 2: Strain induced by the back gate in a suspended graphene
membrane of length L = 1 µm as a function of the respective carrier
density for two different ∆L (slack). Inset: sketch of a suspended
graphene membrane with clamped edges.

may then be drawn: scattering due to flexural phonons
can be completely suppressed by applying strain as low as
ū & 0.1%.

4.2. Back gate induced strain

In order to compute the strain induced by the back gate
we consider the simplest case of a suspended membrane
with clamped edges. A side view of the system is given in
the inset of Fig. 4.2.

The static height profile is obtained by minimising the
free energy, Eq. (1) in the presence of the load P = e2n2/(2ε0)
due to the back gate induced electric field. The built up
strain is related with the applied load as [5, 18],

ū =
PL2

8h0(λ+ 2µ)
≈ 5× 10−5 [n(10

12cm−2)L(µm)]2

h0(µm)
, (13)

where L is the length of the trench over which graphene
is clamped and h0 is the maximum deflection (see the in-
set of Fig. 4.2). We assume the length of the suspended
graphene region in the undeformed case to be L + ∆L,
where the ∆L can be either positive or negative. Under
the approximation of nearly parabolic deformation (which
can be shown to be the relevant case here [18]) the maxi-
mum deflection h0 is given by the positive root of the cubic
equation

(

h2
0 −

3

8
L∆L

)

h0 =
3PL4

64(λ+ 2µ)
, (14)

with trench/suspended-region length mismatch ∆L such
that ∆L ≪ L. If ∆L = 0 then Eq. (14) can be easily
solved and we obtain for strain

ū =
1

2 3
√
3

(

PL

λ+ 2µ

)2/3

≈ 2× 10−3(n2L)2/3, (15)

with n in 1012 cm−2 and L in µm.

3
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Figure 3: Left: Temperature dependent resistivity from Ref. [4] at
different gate voltages; the inset shows the same in log log scale.
Right: Result of Eq. 16; the inset shows the back gate induced strain
as given by Eq. (13).

In Fig. 4.2 the back gate induced strain is plotted as
a function of the respective carrier density. For a typi-
cal density n ∼ 1011 cm−2 and ∆L = 0 we see that a
back gate induces strain ū ∼ 10−4. This would imply a
crossover from in-plane dominated resistivity ̺ ∼ T to
̺ ∼ T 2/ū due to flexural phonons at T ∗∗ ∼ 100 K, well
within experimental reach. In the next section we will
argue that the experimental data in Ref. [4] can be under-
stood within this framework. Note, however, that gated
samples can also fall in the category of non-strained sys-
tem if ∆L > 0. This is clearly seen in Fig. 4.2 for ∆L as
small as ∆L/L ≈ 0.3%.

4.3. Resistivity estimates: comparison with experiment

Bolotin et al. [4] have recently measured the temper-
ature dependent resistivity in doped suspended graphene.
The experimental results are shown in the left panel of
Fig. 4.3 in linear scale, and the inset shows the same in
log log scale. In Ref. [4] the resistivity was interpreted as
linearly dependent on temperature for T & 50 K. In the
left inset of Fig. 4.3, however, it becomes apparent that
the behaviour is closer to the T 2 dependence in the high
temperature regime (notice the slopes of T 4 and T indi-
cated in full lines and that of T 2 indicated as dashed lines).
Within the present framework the obvious candidates to
explain the quadratic temperature dependence are flexural
phonons. Since the measured resistivity is too small to be
due to scattering by non-strained flexural phonons we are
left with the case of flexural phonons under strain, where
the strain can be naturally assigned to the back gate.

In the right panel of Fig. 4.3 we show the theoreti-
cal T−dependence of the resistivity taking into account
scattering by in-plane phonons and flexural phonons with
finite strain,

̺ =
2

e2v2FD(EF )

(

1

τI
+

1

τstrF

)

, (16)

where 1/τI is given by Eq. (10) and 1/τstrF by Eq. (12).
We calculated the back gate induced strain via Eq. (15),
and related the density and gate voltage as in a paral-
lel plate capacitor model, n ≃ Cg(Vg − VNP )/e [3, 4]
(Cg = 60 aF/µm2 and VNP ≈ −0.4 V). The obtained
strain is shown in the right inset of Fig. 4.3 versus ap-
plied gate voltage. It is seen that the system is well in
the region where Eq. 12 is valid. The agreement between
left and right panels in Fig. 4.3 for realistic parameter val-
ues [19] is an indication that we are indeed observing the
consequences of scattering by flexural phonons at finite,
though very small strains. Full quantitative agreement is
not aimed, however, since our two side clamped membrane
is a very crude approximation to the real device [3, 4].

5. Conclusions

Our theoretical results suggest that scattering by flexu-
ral phonons constitute the main limitation to electron mo-
bility in doped suspended graphene. This picture changes
drastically when the sample is strained. In that case,
strains with not too large values, as those induced by the
back gate, can suppress significantly this source of scat-
tering. This result opens the door to the possibility of
modify locally the resistivity of a suspended graphene by
strain modulation.
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