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Abstract:  

Satisfactory corrosion resistance remains an issue in the widespread implementation of 

magnesium (Mg). The use of alloying to improve mechanical properties of Mg generally 

accelerates corrosion due to microstructural heterogeneity. However, recent works have 

revealed that additions of elements serving as ‗cathodic poisons‘ such as arsenic (As) and 

germanium (Ge) can reduce cathodic reaction rates and suppress cathodic activation - 

imparting corrosion resistance. The effect of Ge was translated into a ternary (and 

mechanically relevant) Mg-alloy system for the first time, revealing an alloy system with a 

balance of properties, and low rate of corrosion relative to Mg-alloys to date. 

 

Keywords: Magnesium, Magnesium alloys, Zinc, Germanium, Corrosion, Hydrogen 

evolution, ICP-OES.    
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1 Introduction 

Magnesium (Mg) alloys have the lowest density (~1.74 g/cm
3
) of the engineering metals, 

approximately 65% the density of aluminium alloys and 25% that of steels [1-3]. The high 

specific strength of Mg alloys makes them attractive materials for the demands of light-

weighting in transport and consumer electronics [1-2, 4-5], whilst Mg alloys have also been 

increasingly studied as biomedical components due to their biocompatibility and 

bioresorbability [6-7]. Since Mg alloys possess a negative electrode potential in aqueous 

environments (~ -1.3 to -1.8 VSCE) [8-9], and high theoretical energy density [10-11], they 

have also been greatly sought for use as electrodes in primary battery systems [12-13].  

A high susceptibility to corrosion remains a key issue that restricts the wider commercial 

utilisation of Mg, including in applications such as the automotive sector [4, 14-16]. The 

hydrogen evolution reaction, HER (2H2O + 2e
-
  H2 + 2 OH

-
), is the primary cathodic 

reaction in the case of Mg-alloys in aqueous environments, with no kinetic limitation from the 

requirement of oxygen [11, 17]. Magnesium and its alloys do not nominally possess a 

protective native oxide/surface layer on their surface in aqueous environments of pH <11, 

allowing corrosion to readily occur (at high rates) over a large range of pH nominally 

encountered in service conditions [11, 18]. Uniquely, the HER (a cathodic reaction) can be 

sustained on the surface of anodically polarised Mg, a phenomenon known as ―negative 

difference effect‖ (NDE) [19-20]. The NDE has been documented over several decades [5, 19, 

21-23]. Recent research regarding the NDE of Mg has also highlighted that anodic dissolution 

(or anodic polarisation) results in so-called ―cathodic activation‖, whereby the cathodic 

reaction is catalysed by anodic dissolution of Mg [20-21, 24]. It has also been observed that 

during exposure aqueous electrolytes at open circuit, hydrogen gas is evolved from the 

surface of Mg spatially concomitant with the dissolution of Mg [25, 26];  as such, cathodic 

activation can even occur without external anodic polarisation, allowing the corrosion of Mg 

to readily proceed (and often accelerate) [19, 20, 27]. Interestingly, it was also recently 

revealed that such cathodic activation is not unique to Mg, and occurs on many reactive 

metals including Gd, La and Sc, as shown by Liu [21]. Such a general manifestation of 

cathodic activation was not unambiguously reported previously, likely due to the fact most 

reactive metals (other than Mg) with electrode potentials in aqueous electrolytes of << 1VSHE 

are scarcely used in an engineering context. Interestingly, cathodic activation was empirically 

associated with metals and electrolytes that have a tendency to form surface hydroxides as the 

primary surface film [21, 28]. Cathodic activation of Mg impairs several applications of Mg, 
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such as being the cause of parasitic discharge in Mg primary battery systems [13, 29, 30]. 

Another salient feature of Mg is that Mg and Mg alloys are non-polarisable or weakly 

polarisable, manifested by the low ―Tafel slope‖ derived from anodic polarisation testing [19, 

31, 32]. Thus, small changes in cathodic kinetics can significantly alter the overall corrosion 

performance of Mg alloys, placing the corrosion of Mg-alloys under what is termed ‗cathodic 

control‘. 

The use of alloying, as demonstrated in other metal systems, is one method to impart intrinsic 

corrosion resistance to Mg. However, unlike the significant improvements realised with 

mechanical properties, alloying elements generally have either a minor or detrimental effect 

on the corrosion performance of Mg alloys [19, 31, 33, 34]. The principal reason for this is 

that Mg is an inherently poor catalyst for supporting the HER (possessing a low exchange 

current density for HER among all the engineering metals [10, 35]) and thus alloying 

additions tend to increase the catalytic activity of Mg-alloys. In particular, impurities (such as 

Fe, Cu and Ni), or second phase particles and intermetallic phases, serve as localised cathodes 

promoting substantial dissolution of the Mg matrix [31, 36-38]. Furthermore, the limited solid 

solubility of alloying elements in Mg restricts the possibility of appropriate alloying to form 

protective oxide films on the surface (such as is done with steels) [31, 39]. An exceptional 

case was the recent breakthrough of Xu et al.[40], where a bcc structured Mg alloy was 

produced (by adding >30 at. % Li) and shown to form a Li-rich carbonate film. Such an Mg-

Li was revealed to kinetically (as opposed to thermodynamically) provide a significant 

reduction in corrosion rate [41]. Imparting such a ‗stainless‘ character to other Li-free Mg 

alloys with an hcp structure remains an important pursuit (as to date, essentially all 

commercial Mg-alloys are hcp structured).    

Following the demonstration that arsenic (As) based compounds could inhibit the corrosion of 

Mg in aqueous electrolytes [42], Birbilis and co-workers reported an Mg-alloy that contained 

metallurgically alloyed additions of As (in an Mg-0.37 wt.% As alloy) which demonstrated 

markedly decreased cathodic kinetics and significantly decreased corrosion rate [43]. The 

influence of As was attributed to the ability of As to serve as a ‗cathodic poison‘ as it was 

able to effectively reduce the rate of cathodic HER [35, 42, 44] (as also evidenced by 

hydrogen collection experiments). However, due to the toxic nature of As, industrial 

production of Mg-As alloys is complicated due to occupational health and safety 

considerations [10]. In the pursuit of alloying additions with a cathodic poisoning effect 

demonstrated by As, more recently, an Mg-0.3 wt.% Ge alloy was developed -  capable of 
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being easily produced without toxicity concerns [45]. On the basis that controlling the rate of 

anodic kinetics upon Mg by alloying elements which modify surface films is difficult, and 

that the corrosion of Mg is under the aforementioned ‗cathodic control‘, the use of minor 

alloying with cathodic poisons such as Ge is a rational means to develop Mg alloys with 

improved corrosion resistance. 

Whilst a binary Mg-Ge has been previously presented with one of the lowest corrosion rates 

ever reported for an Mg-alloy, it must be noted that requisite mechanical properties are also of 

great importance in the design of Mg alloys of practical utility. As early as 1942, McDonald 

investigated the mechanical performance of Mg alloys as a function of Ge alloying content 

ranging from 0.1 to 10 wt .%, and 0.5~5 wt.% of Ge was suggested to be the optimum range 

to improve the strength of the alloys [46]. However, the combined mechanical and corrosion 

performance of ternary Mg-alloys containing Ge (and of which would be of direct relevance 

to industrial applications) are yet to be reported to date.  

Zinc (Zn) has been extensively used as an important alloying addition in the portfolio of the 

existing Mg alloys, such as the AZ, ZK and ZE series of Mg alloys [1, 31, 47, 48], which also 

contain either aluminium or zirconium and rare earth additions, respectively. Consequently, 

there are numerous reports regarding the influence of Zn alloying on the mechanical and 

corrosion properties of Mg alloys. Hanawalt et al. in 1942 defined a threshold tolerance limit 

of Zn alloying in Mg of ~ 2.5 wt.% beyond which Zn would rapidly increase corrosion rates 

[36]. Zinc alloying nominally increases the hardness and tensile strength of Mg alloys, with 

Kirkland reporting that the addition of Zn (from 1 to 20 wt.%) increased both the compression 

strength and the yield strength of both binary and ternary Mg-Zn-Ca alloys [6]. As in prior 

studies, the additional Zn concentration increased the corrosion rate of Mg, where the primary 

reason for the increase in corrosion rates with excess Zn additions was attributed to both Zn 

being a better HER catalyst than Mg, and the finding that Mg-Zn intermetallic phases were 

more noble than the α-Mg matrix, leading to micro-galvanic coupling [6, 38, 47, 49-55]. The 

strengthening mechanism of Zn alloying was attributed to some grain refinement, in addition 

to solid solution strengthening and (with further alloying) secondary phase strengthening [56-

59]. In addition to the influence of bulk alloy (chemical) composition, several independent 

studies have also revealed that processing techniques including heat treatment and 

deformation processing may also optimise microstructure and further improve the mechanical 

and corrosion properties of Zn containing Mg alloys [47-48, 60-63].  
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The influence of Ge alloying upon the electrochemical and mechanical properties of Zn 

containing Mg alloys has not been previously investigated. There is also a lack of information 

regarding whether Ge in synergy with the Zn additions will affect the HER kinetics and the 

extent of anodic dissolution induced cathodic activation. Herein, Mg-1Zn (in wt.%) binary 

alloys, Mg-1Zn-0.3Ge and Mg-1Zn-0.5Ge (in wt.%) ternary alloys were uniquely designed 

and produced. The alloys were solution treated and extruded to obtain alloys of industrial 

relevance with regards to processing and properties. The aim of this work was to assess the 

influence of Ge in combination with Zn additions in order to explore a safe and effective 

mode of producing Mg alloys with superior corrosion resistance and suitable strength.  
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2 Experimental procedures  

2.1 Materials  

The samples used in this work were prepared from commercially pure Mg (sourced from 

Amac alloys, Australia), pure Zn and pure Ge (sourced from Alfa-Aesar®, USA) with a 

nominal purity of 99.95 %. Alloys were produced via induction melting using a Leybold-

Heraeus ISO1/III induction furnace under a flowing protective atmosphere consisting of 

Argon and HFC-134a in a ratio of 10:1. The alloy melt was held at 750 °C for 30 min in a 

boron nitride coated steel crucible, while stirred at 6 min intervals to ensure mixing. The 

molten alloy was cast into a graphite coated and preheated (200 °C) rectangular steel mould 

under the same protective atmosphere and allowed to cool to room temperature. The as-cast 

alloy ingots were subsequently solution treated at 400 °C for 24 h and water quenched.  

Following solution treatment, the alloys were extruded using a horizontal extrusion press. The 

extrusion of the alloys was performed at 180°C, with an extrusion speed of 1 mm/s and 

extrusion ratio of 19:1. The alloys were cooled with water following the extrusion process.   

The specific chemical compositions of the alloys produced herein are listed in Table 1. The 

compositions were determined via inductively coupled plasma atomic emission spectroscopy 

(ICP-AES) by Spectrometer Services (Australia). In all cases, the concentration of the major 

impurities, such as Fe and Cu were well below so-called impurity threshold values [31, 37]. 

Trace analysis indicated that the results of this work represent the influence of the selected 

alloying upon Mg.  

2.2 Polarisation experiments  

Specimens for potentiodynamic polarisation experiments were mounted within a 45 mm 

diameter epoxy resin disc. The rear surface of the specimens was connected to a strip of 

copper tape to provide an electrical connection. For all electrochemical experiments, the 

surface of the specimens was metallographically prepared to a 1200 grit surface finish by SiC 

paper. A Biologic
®
 VMP3 potentiostat was used for all the electrochemical testing, under the 

control of EC-lab 11.10 software. Tests were carried out using a three-electrode 

electrochemical flat cell (K0235, Princeton Applied Research), with a 1 cm
2 

exposed working 

electrode area, a saturated calomel electrode (SCE) as the reference electrode and a Pt-mesh 

counter electrode. The test electrolyte herein was quiescent (unbuffered) 0.1 M NaCl in the 

ambiently aerated condition with ~ 1 atm gas pressure at 25 °C.  
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Prior to polarisation experiments, samples were conditioned at open circuit potential (OCP) 

for 10 min to ensure a relatively stable potential. To fully assess the influence of alloying on 

the anodic and cathodic kinetics of Mg, separate anodic and cathodic polarisation experiments 

were carried out. Anodic polarisation was in an anodic or upward scanning direction from 100 

mV below OCP to -1 VSCE; whilst cathodic polarisation was performed from 20 mV above 

OCP to -2 VSCE. The polarisation scan rate was 1 mV/s.  

A custom galvanostatic-potentiostatic electrochemical signal was applied to further assess the 

cathodic activity of the specimens following anodic polarisation. The testing signals involved 

cyclic anodic polarisation in a stepwise increasing manner from 0.025 to 2.5 mA/cm
2
 with a 2 

min duration for each step. Potentiostatic currents at a fixed negative potential, -2 VSCE were 

hold between each anodic current step to measure the cathodic current density sustained upon 

the anodically polarised surface. The galvanostatic-potentiostatic experiments were repeated 

with higher anodic polarisation current density (2~24 mA/cm
2
) for a comprehensive analysis. 

This technique has been shown to provide quantitative information to evaluate the extent of 

anodic polarisation induced cathodic activation of Mg [21, 24, 27].  

 

2.3 Mass loss and hydrogen collection  

The mass loss and hydrogen collection testing were performed to assess the longer term 

cumulative corrosion of specimens. The procedures for the preparation and cleaning of 

immersion test specimens were in accordance with the ASTM-G1-03 standard [64]. All 

specimens were prepared from the extruded alloys and metallographically machined into 

cuboids with an exposed surface area of approximately 5 cm
2
. The surfaces of the specimens 

were ground to 1200 grit finish by SiC paper and cleaned with ethanol. Prior to the immersion 

testing, the dimensions and weight of all the specimens were accurately measured. The tests 

were carried out in 0.1 M NaCl over a 24 h duration in quiescent and ambiently aerated 

conditions at 25 °C. An inverted burette and funnel set up were utilised to collect the 

hydrogen gas evolved from the specimens during the immersion. Following immersion testing, 

specimens were cleaned by chromic acid solution (200 g/L chromium trioxide, 10 g/L silver 

nitrate and 20 g/L barium nitrate) to remove surface corrosion products prior to the weighing 

of the specimens.  
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2.4 Microstructural analysis  

Microstructural analysis of the samples was conducted using a JEOL 7001F scanning electron 

microscope (SEM) equipped with a Bruker energy dispersive x-ray spectroscopy (EDXS) 

detector, in backscattered electron (BSE) mode. SEM samples were metallographically 

polished to a 0.05 µm surface finish using a silica suspension and rinsed with ethanol.  

The characterisation of corrosion morphologies following 24 h immersion in 0.1 M NaCl was 

carried out by SEM in secondary electron (SE) mode. Prior to the SEM imaging, the corroded 

specimens were cleaned by chromium acid solution to remove the corrosion products.  

Grain size characterisation of the specimens was performed using an FEI® Quanta 3D-FEG 

dual beam scanning electron microscope equipped with a Pegasus Hikari® electron 

backscattered diffraction (EBSD) detector. TSL-OIM 6 software was used for the analysis of 

EBSD results. The size of grain was calculated from the measurement of grain area and 

represented in the form of grain size diameter (√
          

 

 
). 

2.5 Atomic emission spectroelectrochemistry (AESEC)  

Atomic emission spectroelectrochemistry experiments were carried out for the quantitative 

analysis of the dissolution rates of Mg at OCP and polarised conditions. This AESEC method 

as developed by Ogle has been demonstrated to have ultra-sensitivity in detecting dissolved 

metal ions as a result of free corrosion or dissolution in response to electrochemical 

polarisation [65-69]. An electrochemical flow cell coupled with an Inductively Coupled 

Plasma-Optical Emission Spectrometer (ICP-OES) was utilised in the experiment. The flow 

cell (012799, ALS Co.) was used in a three-electrode configuration with an exposed working 

electrode area of 0.6 cm
2
. The 0.1 M NaCl electrolyte was continuously pumped through the 

flow cell tubing at a flow rate of 1 ml/min. The downstream electrolyte from the flow cell was 

carried to the coupled ICP-OES instrument for instantaneous analysis of dissolved metal ions. 

A Perkin Elmer® Optima 8000 ICP-OES spectrometer controlled by Syngistix software was 

used in this experiment. The emission wavelength for the detection of Mg is 279.07 nm with a 

detection limit of ~ 1 ppb.  

The electrochemical control of the AESEC experiment was controlled by a Bio-logic® SP150 

potentiostat.  Potentiodynamic polarisation was carried out after 10 min exposure to the 

flowing electrolyte at the OCP. The polarisation testing was commenced from -100 mV below 

OCP to -1VSCE at a scan rate of 1 mV/s. The dissolved Mg
2+

 ion concentration was measured 
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as a function of time by the means of ICP-OES and converted to the partial elemental 

dissolution current density (iMg
2+

) using the Faraday‘s law, by equation (1) [27, 67]:  

iMg
2+

 = n.F.f.CM /A                                                                                        (1) 

Where n is the oxidation state of the dissolved ions (n = 2 for Mg), F is the Faraday‘s constant, 

f is the flow rate (f = 1 ml/s), CM is the volume adjusted ion concentration and A is the 

exposed working electrode surface area (A = 0.6 cm
2
).  

2.6 Microhardness and tensile testing  

Microhardness testing was performed on all extruded Mg alloy samples. Prior to the testing, 

samples were metallographically prepared to a 1200 grit SiC paper surface finish and 

ultrasonically cleaned in ethanol. An auto-harness tester (Struers® Duramin A300) was used 

for the microhardness testing with a 1kg load. Ten measurements were performed on each 

sample.   

Tensile testing was performed on specimens were prepared from the Mg alloy extrusions with 

a gauge length of 10 mm and a width of 5 mm. An Instron® 4505 tensile test machine was 

used in all testing, with tests carried out at 25 °C with an initial strain rate of 0.001 /s. 
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3 Result and Discussion 

3.1 Microstructural analysis  

The microstructures of the alloys prepared herein were analysed by backscattered electron 

imaging in conjunction with EDX mapping, as shown in Fig. 1.  

The microstructure of the Mg-Zn alloy consisted of a single α-Mg phase, with Zn alloying 

homogenously distributed in the matrix with no obvious solute segregation (Fig. 1a). 

Conversely, with Ge additions (0.3~0.5 wt.%) to Mg-Zn, the presence of additional 

intermetallic particles was stimulated in the microstructure, as evident by the particles of 

brighter contrast in BSE-SEM images (Fig. 1b and 1c). The notable microstructure difference 

between Ge free and Ge containing Mg-Zn alloys is due to the relatively high solid solubility 

of Zn (maximum ~2.5 at.%) and limited solid solubility of Ge in Mg (which is reported to be 

~0.003 at.% at 602 °C) [70]. The microstructure of Mg-Zn-Ge alloys reveals the presence of 

intermetallic particles with a columnar morphology in the α-Mg matrix. Energy dispersive X-

ray spectroscopy revealed that intermetallic phases in Mg-Zn-Ge alloys contained principally 

elemental Ge and Mg. There was no evidence that Zn (which is present in the α-Mg matrix) 

was associated with second phase/intermetallic particles. It is noted that there is a paucity of 

thermodynamic data available for the prediction of equilibrium phase in Mg-Zn-Ge alloys (i.e. 

using PANDAT
®
 or ThermalCalc

®
 Mg databases). The stoichiometry of the Mg-Ge 

intermetallic phase in Mg-Zn-Ge alloys is posited to be Mg2Ge, as in the case of Mg-Ge 

binary alloy [21].   

Grain size determination of the alloys tested herein was carried out using EBSD mapping, as 

presented in Fig. 2. It was observed that the average grain size of the extruded Mg-1Zn alloy 

was ~1.2 µm. The grain structure of the Mg-Zn alloy was revealed to be uniform in grain size 

and shape. A large fraction (~85 %) of α-Mg grains were equiaxed ranging from ~0.6 to 3.2 

µm in grain size dimension (Fig. 2a). In the case of Mg-Zn-Ge alloys, a bimodal grain size 

distribution was observed suggesting that ternary alloying additions of Ge could alter the 

grain size distribution of the Mg-Zn alloy. It was observed that the microstructure of extruded 

Mg-Zn-Ge alloys contained several discrete columnar grains (larger than 10 µm) (Fig 2b and 

c). The fraction of the large columnar grains increased with Ge concentration from ~1 % to 

~16 % (Fig. 2d).  
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3.2 Potentiodynamic polarisation experiments  

Potentiodynamic polarisation tests were performed in quintuplicate and the typical 

polarisation curves and presented in Fig. 3 for the three distinct alloys studied herein. 

The potentiodynamic polarisation response of pure Mg was also included for the purposes of 

electrochemical assessment, as it represents a reference point of zero alloying additions for 

comparison purposes. It can be observed from Fig. 3 that binary alloying additions of Zn 

increased the corrosion potential (Ecorr) of pure Mg by ~50 mV. The ternary alloying addition 

of Ge decreased Ecorr (of Mg-Zn) by ~90mV (to ~ -1.67 VSCE). 

It can be observed that the alloys produced herein (both Mg-Zn and Mg-Zn-Ge) demonstrated 

similar behaviour on the anodic polarisation responses compared to that of pure Mg (Fig. 3), 

suggesting a minor influence of alloying on the anodic kinetics of Mg. As such, the changes 

in Ecorr observed were nominally from alteration of cathodic kinetics, influenced by alloying. 

To further elucidate the influences of the alloying on the cathodic kinetics of Mg, cathodic 

potentiodynamic polarisation was carried out (Fig 4).  

It is revealed in Fig. 4 (which also includes polarisation data from Pure Mg as the benchmark 

for comparison) that the Mg-Zn alloy exhibited a higher rate of cathodic reaction than that of 

pure Mg; with Zn enhancing cathodic (HER) kinetics. In contrast, ternary additions of Ge 

shifted the cathodic polarisation response to lower current densities (for the case of Mg-Zn-

Ge), indicating that the addition of Ge to Mg-Zn alloys supersedes the effect of Zn alloying - 

significantly decreasing the HER kinetics. 

3.3 Mass loss and hydrogen collection tests 

Whilst potentiodynamic polarisation reveals the relative anodic and cathodic kinetics of the 

alloys produced herein,  due to the instantaneous nature of polarisation experiments [71], 

longer-term exposure testing at open circuit potential (OCP) was performed to assess the 

corrosion behaviour of the alloys under investigation.  Testing over a longer period was 

carried out in 0.1 M NaCl, using a 24 h immersion period. The summary of mass loss and 

hydrogen evolution is presented in Fig. 5, with pure Mg included for comparison.  

It can be seen from Fig. 5 that ternary additions of Ge and Zn decreased the corrosion rate of 

Mg, as indicated by the lower extent of mass lost following exposure testing - compared with 

that of pure Mg and Mg-Zn alloy. In agreement, the attendant hydrogen gas evolved from the 

Mg-Zn-Ge alloy was also lower. Concomitantly, a lower rate of mass loss and hydrogen 

evolution was realised for the Mg-Zn-Ge alloys. The results of mass loss and hydrogen 
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collection reveal the ability of combined additions of Zn and Ge to decrease the corrosion rate 

of Mg. 

Scanning electron micrographs in secondary electron (SE) mode of the surface morphology 

(following chromic acid cleaning) for alloys produced herein and pure Mg are presented in 

Fig 6.  

A typical filiform-like corrosion morphology was observed on the surface of pure Mg and the 

Mg-Zn alloy (Fig. 6a and 6b). The presence of such filiform like corrosion has been reported 

to be associated with the enhanced catalytic ability of the Mg surface previously anodically 

dissolved, towards HER [22, 72]. The corrosion morphology observed upon the surface of Ge 

containing alloys (with both 0.3 and 0.5 wt.% Ge) is present in the form of discrete superficial 

corrosion sites (Fig. 6c and 6d). The difference in corrosion morphology (which is noted to be 

cathodically controlled) was ascribed to the functionality of Ge alloying to suppress both the 

cathodic kinetics and cathodic activation of Mg. 

 

3.4 Response of galvanostatic-potentiostatic experiment for assessment of cathodic 

activation  

The galvanostatic-potentiostatic experiment was carried out to assess the effects of alloying 

on the cathodic activation of Mg. The abridged results are presented in Fig. 7. Pure Mg was 

also benchmarked against alloys produced herein.  

Fig. 7a summarises the results of tested specimens with anodic dissolution current density 

from 0.025 to 2.5 mA/cm
2
. It can be seen from Fig. 7 that cathodic current density gradually 

increased with increasing anodic dissolution current density for all tested specimens, 

suggestive of enhanced rate of cathodic reaction arising from prior anodic polarisation. It was 

also noteworthy that the magnitude of cathodic current sustained upon Mg-Zn-Ge alloys was 

about 2~3 times lower than that of the Mg-Zn alloy and pure Mg irrespective of the level of 

prior anodic dissolution. This slower rate of cathodic reaction reveals the beneficial effects of 

Ge additions to suppress the cathodic kinetics and cathodic activation following anodic 

polarisation for both Mg-Zn alloy and pure Mg.    

The galvanostatic-potentiostatic experiment was further carried out to assess the response of 

tested specimens with higher anodic dissolution current density from 2 to 24 mA/cm
2
, as 

shown in Fig. 7b. A similar trend was observed, whereby all tested specimens displayed 
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evident cathodic activation following anodic polarisation. Whilst, markedly lower cathodic 

current was observed for the alloys with Ge additions, it was also noted that the Mg-Zn alloy 

exhibited relatively lower cathodic current in comparison to that of pure Mg. Such an 

observation might not have been expected, based on the results of cathodic polarisation. The 

possible reason for this is that both corrosion rate and cathodic activation of Mg is a time-

dependent process and that the influence of Zn alloying on the cathodic kinetics of Mg is not 

fully revealed, especially over the short duration of the potentiodynamic experiments 

represented in Figure 4.  

 

3.5 AESEC analysis of the Mg-Zn-Ge alloys 

Atomic emission spectroelectrochemisrty testing of the Mg-Zn-Ge alloys was carried out in 

order to further rationalise the mechanistic role of alloying additions upon dissolution. The 

Mg dissolution current density (iMg
2+

) determined by online ICP-OES analysis during the 

open circuit potential (OCP) and potentiodynamic polarisation exposure for pure Mg and the 

Mg alloys produced herein in 0.1 M NaCl is presented in Fig 8. Again, pure Mg was included 

as a benchmark.  

It is observed immediately from the visual inspection of Fig. 8a that a rapid and instantaneous 

dissolution of Mg commenced from initial few seconds of exposure of the electrolyte and then 

stabilised with a steady dissolution rate at OCP for all tested specimens. Such rapid 

attainment of steady dissolution rate was attributed to the low resistance of the metal-

electrolyte interface, which indicated the dynamic development of so-called ―temporarily 

protective hydroxides films‖, as previously reported by Williams and co-workers [25]. 

Following a 10 min OCP conditioning, potentiodynamic polarisation was carried out from 

100 mV below OCP to -1 VSCE with a 1 mV/s scanning speed. It was observed that persistent 

dissolution of Mg occurred during cathodic polarisation for all tested specimens. This 

unsuppressed dissolution of Mg under low cathodic overpotential (with respect to OCP) has 

also been noted by other independent studies [41, 73]. Upon transition to anodic polarisation, 

iMg
2+

 commenced to increase gradually with exposure time. Another salient feature of the data 

in Fig. 8a is that a relatively lower value of iMg
2+ 

was realised with combined additions of Zn 

and Ge during OCP and potentiodynamic polarisation exposure. The AESEC results reveal 

that binary additions of Zn had a small impact on the anodic kinetics of Mg; whilst the ternary 
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Ge alloying additions to the Mg-Zn alloy decreased the anodic dissolution rate of the alloy, 

both at OCP and during anodic polarisation. 

The potentiodynamic polarisation data collected by AESEC analysis is presented in the 

format of applied potential vs. current density iMg
2+

 (in logarithmic form), as shown in Fig. 8b. 

It can be seen from Fig. 8b that, the dissolution current density, iMg
2+ 

increased linearly on the 

log scale with increasing potential for all tested specimens, representing the nominal ―Tafel 

behaviour‖. The magnitude of the anodic partial reaction current density of Mg-Zn-Ge alloys 

was markedly lower compared to that of pure Mg and the Mg-Zn alloy. This is suggestive of 

the ability of Ge alloying to reduce the anodic kinetics of the Mg-Zn alloy and pure Mg 

independent of cathodic partial reaction, as ICP determined iMg
2+

 was only associated with the 

anodic partial reaction [74]. However, the ICP determined data (Fig. 8b) is somewhat 

different from that of conventional electrochemical testing (Fig. 2).  

3.6 Microhardness results  

Microhardness testing was carried out to evaluate the hardness of the alloys produced herein, 

the results of which are presented in Fig. 9a.  

It can be seen from Fig. 9a that the hardness of the Mg alloys was increased with increasing 

alloying content, from ~50 HV1 for the extruded Mg-1Zn alloy to ~83 HV1 for the extruded 

Mg-1Zn-0.5Ge alloy.   

3.7 Tensile testing results  

Tensile tests were performed to evaluate the tensile properties (yield strength and ductility) of 

the Mg-Zn-Ge and Mg-Zn alloys produced herein; the results of which are shown in Fig. 9b.  

The extruded Mg-1Zn alloy possessed a yield strength (YS) of ~257 MPa, with a total 

elongation of ~23%. However, with the addition of 0.3 wt.% Ge to the Mg-1Zn alloy, the 

yield strength of the alloy increased to 281 MPa, with an attendant 5% reduction in elongation. 

Further increasing ternary Ge alloying content to 0.5 wt.%, the yield strength of the Mg-Zn-

Ge alloy increased to ~311 MPa, whilst total elongation decreased to ~16%.  

The increase in both the hardness and yield strength was attributed to the presence of the 

Mg2Ge phase (the phase appearing to be a strengthening phase) and the bimodal grain size 

distribution of Mg-Zn-Ge alloys (allowing an increase in strength owing to the Hall-Petch 

effect [75, 76]). The reduction of ductility with increasing Ge content (0.3~0.5 wt.%) 

indicates that there is a trade-off between the strength and ductility of the alloys produced and 
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studied herein. However, it is noted that the tensile strength of the (extruded) Mg-Zn-Ge 

alloys herein is considered exceptionally high in the context of specific strength displayed by 

Mg-alloys (noting that the alloying concentrations studied in this work are considered dilute). 

Furthermore, the accompanying ductility is also considered to be significant. As a comparison, 

Mg alloy AZ31 has the following properties YS= 229 MPa, total elongation = 15 %, AZ91 

YS = 264 MPa, total elongation = 9 %, and WE43 YS= 237 MPa, total elongation = 16 %, as 

some examples [2, 77-79]. Indeed, the optimisation of alloying concentration in the Mg-Zn-

Ge system, to balance strength, ductility, and corrosion resistance, remains important future 

work.        

3.8 General discussion  

Mg-Zn-Ge alloys displayed significantly reduced corrosion rates in comparison to that of pure 

Mg and Mg-Zn (Fig. 5). The results were rationalised on the basis of potentiodynamic 

polarisation tests combined with longer-term observations from mass loss and hydrogen 

collection. The corrosion morphology following immersion testing was also considerably 

altered by combined alloying additions of Zn and Ge, from heavily corroded filiform-like 

corrosion attack to discrete superficial corrosion sites (Fig. 6).  

The AESEC testing herein provided some unique insights, revealing the influence of alloying 

on the kinetics of the anodic partial reaction of Mg. This was rationalised on the basis that 

AESEC determined dissolution current (iMg
2+

) is only associated with the anodic partial 

reaction, irrespective of other effects such as cathodic activation - which cannot be isolated 

from net current measurements by a potentiostat. It is noticeable that the values of AESEC 

determined current densities from potentiodynamic polarisation were as much as an order of 

magnitude lower than those measured by the potentiostat. This indicates that ion 

concentration (Mg
2+

) detected by ICP-OES did not represent all dissolved ions; whilst a large 

fraction of dissolved ions (Mg
2+

) involved in the formation of insoluble corrosion films (such 

as MgO and Mg(OH)2) on the surface of Mg. The potentiostat net current density (inet) during 

anodic polarisation can be described by the summation of ICP determined Mg dissolution 

current density (iMg
2+

), current density associated with the formation of corrosion films (ifilm) 

and cathodic current density (ic) [80, 81]:  

inet = iMg
2+

 + ifilm – ic                     (2) 

According to the Butler-Volmer equation, the cathodic current, ic should decrease with the 

increasing potential during anodic polarisation, as larger anodic current is applied. In the case 
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of pure Mg, cathodic current however increases with increasing applied potential [20, 23, 26, 

81]. Such a feature of cathodic activation is not readily tallied by conventional polarisation 

techniques (using potentiostat). In many cases, some electrons consumed by local cathodic 

reactions (such as those supported by corrosion films) might not be fully collected by the 

potentiostat [19, 20]. As such, similar values of inet were obtained for the alloys prepared 

herein. In contrast, ICP determined dissolution current density (iMg
2+

), was independent of the 

measured variation of cathodic current density during potentiodynamic polarisation, and is 

indicative of the relative kinetics of the anodic partial reaction (MgMg
2+

).  

To quantitatively assess the anodic kinetics of tested specimens, a 
  

  
 slope fit was used to 

estimate potential dependent reaction kinetics as revealed by AESEC analysis (Fig. 8b). The 

  

  
 slope was executed by the linear fit of ICP determined potentiodynamic polarisation results 

and shown in Table. 2.  

It may be observed from the data in Table 2 that the ICP determined 
  

  
 slope for Mg-Zn was 

slightly lower than that of pure Mg, suggesting that binary additions of Zn enhanced the rate 

of the anodic partial reaction. In contrast, the 
  

  
 slope measured for Mg-Zn-Ge specimens 

increased with increasing ternary additions of Ge. An approximately 50% higher 
  

  
 slope was 

obtained for Mg-1Zn-0.5Ge (wt.%) - compared to that of Mg-Zn alloys and pure Mg. This 

indicates the functionality of the combinations of Zn and Ge alloying to decrease the kinetics 

of the anodic partial reaction of Mg. 

The assessment of cathodic activation by galvanostatic-potentiostatic experiments indicated 

that the rate of cathodic reaction sustained upon the surface of anodic polarised Mg-Zn-Ge 

alloys was significantly lower than that of pure Mg and Mg-Zn alloys. The custom-designed 

galvanostatic-potentiostatic electrochemical signals of experiments simulated the ―on-off‖ 

cycles of Mg primary batteries in an aqueous environment. Parasitic discharge is a major 

issue in primary Mg battery system, where anodic dissolution (i.e. which occurs during the on 

or duty cycle) induces cathodic activation of Mg and subsequent enhanced Mg corrosion 

during the off (or no duty) cycle [19, 27, 29, 30]. The findings in the present work provide 

one possible means to produce more charge effective and durable Mg electrodes for primary 

aqueous batteries, although the quantification of any benefits would require a focused study. 
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Metallurgical additions of Zn and Ge additions reported herein achieved a similar outcome of 

corrosion control, as previously reported in Mg-As and Mg-Ge alloys [43, 45]. Furthermore, 

the Mg-Zn-Ge alloys displayed superior mechanical properties (~80 HV1 and ~300 MPa yield 

strength) and appreciable ductility (~16-20 % elongation). Comparing the primitive property 

space of hardness/yield strength versus mass loss rate (which is a convincible and universal 

parameter to indicate corrosion rate of Mg) for the alloys produced herein with other types of 

Mg alloys is difficult. The reasons for this are on the basis that: (і) the mechanical property of 

Mg alloys is a complex function of corrosion resistance (which is generally revealed to be 

inversely correlated) [5, 31, 47, 48, 63]; (іі) a limited number of works to date simultaneously 

investigated the mechanical and corrosion property of Mg alloys [40, 47, 48, 63, 82]; whilst 

(ііі) the study that carried out both types of testings in bio-simulated environment such as 

simulated body fluid (SBF) [6] is not of direct relevance for industry implications. The Mg-

Zn-Ge alloys produced herein demonstrated simultaneously improved mechanical strength 

and corrosion resistance relative to both pure Mg and M-Zn alloy. The finding provides 

meaningful implications for the development of high strength and corrosion resistant Mg 

alloys.        

The reduction of cathodic kinetics by combined alloying additions of Zn and Ge was ascribed 

to the ability of Ge to serve as a strong cathodic poison to hinder the kinetics of HER on the 

surface of cathodic sites of Mg. Cathodic activation and corrosion of Mg have been reported 

to be strongly correlated with Fe impurity level of Mg by McNulty and Hanawalt in 1942 [36, 

37]. The tolerance limit of Fe has been determined to be ~170 ppm, above which the 

corrosion rate of Mg will increase dramatically [37, 83, 84]. The presence of Fe particles and 

Fe rich phase upon corroded Mg surface have been validated by several independent studies 

[24, 85-88]. The extent of cathodic activation of Mg has also been shown to vary as a function 

of Fe impurity concentration [22, 27, 80]. It is, therefore, plausible that Fe and Fe rich phase 

were important sites that support HER and cathodic activation of Mg. The kinetics of HER at 

the surface of  Fe and many steels have been shown to be significantly retarded by absorption 

of cathodic poisons (such as arsenic, antimony, bismuth and tin) which reduced surface 

coverage of hydrogen atom intermediate (Had) and restricted hydrogen atom recombination 

towards HER [89-93]. It is thus postulated that the metallurgically alloyed Ge as explored in 

this study may also have a similar ―cathodic poisoning‖ effect upon impurities or local 

cathode sites. The rationale is that since Ge has a ‗noble‘ electrode potential of ~ +0.12 VSHE 

[10], Ge and Ge containing phase are cathodically polarised during OCP and potentiodynamic 
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polarisation exposure of Mg (and Mg-alloys). Such apparently inert Ge containing particles 

may accumulate on the Mg-alloy matrix during anodic dissolution or are possibly dislodged 

and redeposited at local cathode sites [83, 85-88]. It is thus reasonable to hypothesise that Ge 

additions in the context of the ternary alloys studied herein, also serves to impart a cathodic 

poisoning effect that markedly suppresses cathodic kinetics [22, 35, 42, 43].  

A recent study by Lysne, et al. investigated the cathodic activation of Mg samples with a 

range of Fe content ranging from 25 ppmw to 13000 ppmw [94]. A primitive model for 

cathodic activation was proposed based on the enrichment of Fe impurities alone, and it was 

suggested that efficiency of Fe enrichment upon anodic polarised Mg surface was low (less 

than 1%) [94]. In other works, cathodic activation was still reported to be manifested on the 

surface of ultra-high purity Mg (0.1 ppmw Fe) following anodic polarisation [80, 95]. Thus, 

Fe impurities are unlikely to be the only (or the major) factor that accounts for the cathodic 

activation of Mg in unalloyed Mg. Several independent studies showed that the formation of 

Mg(OH)2 on the surface of Mg is also an important factor that contributed to the cathodic 

activation of Mg [9, 28, 81, 96-98]. A more recent density function theory (DFT) based study 

revealed that dilute additions of cathodic poison, such as As, Sb and Ge decreased the 

thermodynamic favourability of Mg (0001) surface of Mg slab model (with basal texture) 

towards HER [99]. Therefore, combined alloying additions of Zn and Ge used herein might 

also affect the formation of any surface hydroxide film which correspondingly hinders 

cathodic activation of Mg. This latter concept was very recently demonstrated as a feasible 

assumption from results obtained via DFT calculated equilibrium diagrams [100]. 
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4 Conclusions 

In the present work, Mg alloys with low-level additions of Zn (1 wt. %) and Ge (at 0.3 and 

0.5 wt.%) were subjected to a range of testing to assess the electrochemical and mechanical 

properties of the prepared alloys. The following key conclusions may be drawn:  

 The binary addition of Zn to Mg led to enhanced cathodic kinetics and more severe 

corrosion of pure Mg in the case of the extruded Mg-Zn alloys studied herein. 

However, metallurgical additions of Ge to Mg-Zn alloys were successfully able to 

offset the effects of Zn alloying by significantly decreasing the net cathodic (HER) 

kinetics in the case of Mg-Zn-Ge alloys relative to both Mg-Zn and pure Mg.  

 The Mg-Zn-Ge alloy displayed remarkable corrosion resistance relative to both Mg-

Zn and pure Mg, as indicated by both the mass loss and hydrogen collection tests. 

Concomitantly, the corrosion morphology in the case of alloys with Ge additions, was 

altered from a heavily corroded filiform-like corrosion attack to discrete superficial 

corrosion sites.   

 The cyclic potentiostatic-galvanostatic tests indicated that the Mg-Zn-Ge alloys 

exhibited suppressed cathodic kinetics following prior anodic polarisation, in contrast 

to results of pure Mg and Mg-Zn alloys (both of which revealed evidence of classical 

cathodic activation). Such a result has ramifications in the case of Mg electrodes for 

use in aqueous primary battery systems.  

 Results from AESEC testing were able to confirm the rankings of corrosion rate (from 

other methods). However, of significance, AESEC results also uniquely revealed that 

combined Zn and Ge alloying additions reduced the partial anodic dissolution rate of 

Mg.  

 In addition to beneficial effects in the context of corrosion, combined Zn and Ge 

additions notably increased the hardness and yield strength of the Mg alloys reported 

herein. Such findings provide a practical means of improving both mechanical 

strength and corrosion resistance of Mg alloys (noting in the present case, an extruded 

alloy was presented). The combination of the strength reported, and low corrosion rate 

reported, is unique in the context of Mg-alloys to date, and as such represents an 

important breakthrough.  
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Table 1. Composition (in wt. %) of samples tested herein. Compositions were independently analysed using ICP-AES. 

 

Alloy Mg Zn Ge Al Cu Si Fe Ca Mn Ni 

Mg Bal. 0.005 - 0.005 0.002 0.02 0.006 0.001 0.01 0.001 

Mg-1Zn Bal. 1 - 0.013 0.001 0.02 0.005 0.001 0.02 0.001 

Mg-1Zn-0.3Ge Bal. 1.01 0.27 0.011 0.001 0.02 0.005 0.008 0.02 0.001 

Mg-1Zn-0.5Ge Bal 1.03 0.52 0.011 0.001 0.02 0.004 0.009 0.02 0.001 

 

  



 

 

Figure. 1. Scanning electron micrographs in backscattered electron (BSE) mode, and corresponding 

EDX maps of Mg, Zn and Ge for the extruded alloys produced herein: (a) Mg-1Zn, (b) Mg-1Zn-

0.3Ge and (c) Mg-1Zn-0.5Ge (wt.%).  

 

  



 

Figure. 2. EBSD maps of the extruded alloys produced herein: (a) Mg-1Zn, (b) Mg-1Zn-0.3Ge and 

(c) Mg-1Zn-0.5Ge (wt.%). (d) Grain size distribution of the custom prepared alloys. (Legend 

provides nominal alloy compositions in wt. %).  

 

  



 

 

Figure. 3. Potentiodynamic polarisation in 0.1 M NaCl for Mg, Mg-1Zn, Mg-1Zn-0.3Ge and Mg-

1Zn-0.5Ge extrusion alloys produced herein. Legend provides nominal alloy compositions in wt. %. 

  



 

Figure. 4. Cathodic potentiodynamic polarisation response 0.1 M NaCl for Mg, Mg-1Zn, Mg-1Zn-

0.3Ge and Mg-1Zn-0.5Ge extrusion alloys produced herein. Legend provides nominal alloy 

compositions in wt. %. 

  



 
 

Figure. 5.  Mass loss, and hydrogen collection, results for pure Mg and the Mg-1Zn, Mg-1Zn-

0.3Ge and Mg-1Zn-0.5Ge extrusion alloys produced herein following 24 h immersion in 0.1 M 

NaCl. The nominal alloy compositions are provided in wt. % (inset displays results using a linear 

scale). 

  



 

 

 

 
 

Figure. 6. Scanning electron micrographs in secondary electron (SE) mode of the surface 

morphology for: (a) Mg, (b) Mg-1Zn, (c) Mg-1Zn-0.3Ge and (d) Mg-1Zn-0.5Ge (wt.%) following 

24 h immersion in 0.1 M NaCl. Images are presented at low (left) and high (right) magnification. 

Legend provides nominal alloy compositions in wt. %. Corrosion products were cleaned from 

sample surface using chromic acid solution (200 g/L chromium trioxide, 10 g/L silver nitrate and 20 

g/L barium nitrate) to reveal the corrosion damage.  

  



 

 

Figure. 7. Abridged results of measured cathodic current density at the fixed (cathodic) potential of 

-2.0 VSCE in response to a prior anodic current signal, whereby the prior applied anodic current 

signals were: (a) 0.025 to 2.5 mA/cm
2
 in a stepwise manner, and (b) 2 to 24 mA/cm

2
 in a stepwise 

manner, for pure Mg and the Mg extrusion alloys produced herein in 0.1 M NaCl. 

  



 
 

 

 

Figure. 8. (a) Current density iMg
2+

 determined by online ICP-OES analysis during the open circuit 

potential (OCP) and potentiodynamic polarisation (PDP) exposure for pure Mg and the Mg 

extrusion alloys produced herein in 0.1 M NaCl. Legend provides nominal alloy compositions in 

wt. %. (b) Potentiodynamic polarisation data presented in the format of applied potential vs. current 

density iMg
2+

 for pure Mg and the Mg alloys produced herein.  

  



 

  

Figure. 9. (a) Microhardness of Mg-1Zn, Mg-1Zn-0.3Ge and Mg-1Zn-0.5Ge (wt.%). (b) 

Engineering stress strain curves of Mg-1Zn, Mg-1Zn-0.3Ge and Mg-1Zn-0.5Ge (wt.%). Legend 

provides nominal alloy compositions in wt. %.  

  



Table 2. Summary of the (
  

  
  slope as determined during AESEC for pure Mg and the Mg 

extrusion alloys produced herein. 

 

Alloy ICP determined 
  

  
 

(V/µA.cm
2
) 

Mg 0.0114 

Mg-1Zn 0.0106 

Mg-1Zn-0.3Ge 0.0168 

Mg-1Zn-0.5Ge 0.0234 

 


