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A bstract

This dissertation explores a metamodeling tool tha t aims at reducing the computational cost 

of expensive computer models broadly used in engineering: the finite element method and 

the stochastic finite element method. The metamodeling tool, known as Gaussian process 

emulation, consists of building a statistical approximation to the output of expensive com

puter codes. Following the Bayesian paradigm, a small and carefully selected set of code runs 

is treated as training data used to update the prior beliefs about the code’s output. These 

beliefs are represented as a Gaussian stochastic process prior distribution. After conditioning 

on the training runs and updating the prior distribution, the mean of the resulting poste

rior distribution approximates the output of the simulator at any untried input, whereas it 

reproduces the known output of the code at each initial input.

The use of Gaussian process emulators is justified due to the fact that in the analysis of 

engineering systems, running a detailed high-resolution computer model can be expensive 

even for obtaining the response at few points in the input domain. The incorporation of emu

lation is explored for several problems in engineering, including damped structural dynamics 

(both in a deterministic and non-deterministic context), the assimilation of multi-fidelity 

finite element models and domain decomposition, the approximation of random field realiza

tions discretised via de Karhunen-Loeve expansion, and the reduction of the computational 

cost of the polynomial chaos expansion.

By proposing several novel ideas and algorithms, it is shown that Gaussian process emu

lators can be an efficient and effective tool both for prediction and uncertainty quantification 

in the analysis of engineering systems.
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Chapter 1

Introduction

1.1 M otivation  for th is W ork

The behaviour of complex systems (e.g. physical, chemical, biological, among many other 
types) is usually investigated constructing mathematical models. In the last decades, as 
computing power has steadily increased, the implementation of such models in computer 
programmes or codes has become more frequent. This is justified because many processes 
are extremely complex and physical experiments can become prohibitively expensive or sim
ply impossible. Computer experiments can thus become an alternative to study intricate 
phenomena. A computer code implementation of a mathematical model, also referred to as 
simulator (O’Hagan, 2006), can be understood as a function 77 : Q —► Kd whose domain is a 
p-dimensional input space Q = fb  x . . .  x A simulator is deterministic if evaluating the 
same input x  =  (aq,. . .  , x p) results in the same output y  =  ??(x). Deterministic simulators 
are a common tool when studying intricate phenomena in a wide range of disciplines. In 
particular, many engineering systems are complex enough to render physical experimenta
tion very costly. As a consequence, these systems are often investigated running simulators 
often involving the finite element method (Zienkiewicz and Taylor, 1991; Bathe, 1995; Cook 
et a/., 2001; Hughes, 2000; Petyt, 1998) and the stochastic finite element method (Ghanem 
and Spanos, 1991; Matthies et al., 1997; Shinozuka and Yamazaki, 1998; Haidar and Ma- 
hadevan, 2000; Nair and Keane, 2002; Elishakoff and Ren, 2003; Sachdeva et al., 2006a,b; 
Li et al., 2006). However, these simulators can have a high cost of execution, measured in 
terms of employed CPU time, number of floating point operations performed or required 
computer capability. For instance, the analysis of large engineering systems such as auto
mobiles, aircrafts, and space shuttles usually employs finite element models with well over 
several million degrees of freedom. Therefore, a prodigious, computer power is needed to 
carry out, for example, crashworthiness design (Thomke et al., 1999).

1



2 Chapter 1. Introduction

Several strategies have been devised to reduce the computational cost of expensive sim
ulators. Based on different underlying methodologies, these strategies are referred to as 
metamodels, response surfaces, surrogate models, auxiliary models, among others (Klei- 
jnen, 2009). Metamodels have been extensively applied in engineering. To list some few 
examples, Fan et al. (2006) incorporated surrogate modeling to multi-objective optimiza
tion; Sultan (2007) applied surrogate modeling to replace an expensive iterative procedure 
used to prevent rotor-housing interference in a fluid processing machine; Zhao et al. (2008) 
also applied metamodel-based design optimization. More examples of metamodels in engi
neering will be provided in the following sections, when some of the available strategies are 
discussed in more detail.

A particular type of metamodeling approach, which has been in constant development 
over the last two decades, is Gaussian process emulators (GPEs). Based on the analysis and 
design of computer experiments (Sacks et a/., 1989; Santner et al., 2003) and using concepts 
of Bayesian statistics, this approach makes it possible to obtain a statistical approximation 
to the output of a simulator after evaluating a small and carefully selected set of design 
points {xi} ^ = 1  in the input domain fi, hence reducing the required computer processing time. 
Broadly speaking, emulation works by generating a small set of training runs {x*, 7y(x^)}”=1 

that are treated as data used to update some prior beliefs about the simulator’s output. These 
beliefs are represented by a Gaussian stochastic process prior distribution. After conditioning 
on the training runs and updating the prior distribution, the mean of the resulting posterior 
distribution approximates the output of the simulator at any untried x  E 9 , whereas it 
reproduces the known output at each design point.

GPEs have already been implemented in a number of different scientific fields in or
der to alleviate the computational burden of expensive simulators with encouraging results. 
Kennedy et al. (2006) presented three case studies related to environmental computer mod
els. They emulated a vegetation dynamic model, a model of ecosystem photosynthesis and 
water balance, and finally a model tha t estimates the UK’s carbon budget. Challenor et al.
(2006) emulated what they consider to be a moderately complex climate model. Rougier
(2007) presented another application to a climate model. Bates et al. (2006) emulated a 
model of a complete revolution of a piston’s shaft. Haylock and O’Hagan (1996) emulated 
a model of doses to organs of the body after ingestion of a radioactive substance. Oak
ley and O ’Hagan (2004) worked with a simulator of the cost resulting from bone fractures 
for patients suffering from osteoporosis. Other disciplines in which GPEs have been em
ployed include biomechanics (Kolachalama et al., 2007), reservoir forecasting (Busby, 2009), 
hydrogeology (Marrel et al., 2009), heat transfer (McFarland and Mahadevan, 2008), and 
reliability analysis (Daneshkhah and Bedford, 2008), among others.

Bearing in mind all the above research and considering that complex finite element mod
els are prone to the use of computer intensive simulators, it is natural to think about the
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potential benefit from the application of GPEs in an engineering context, both in deter
ministic and non-deterministic settings. The motivation of this dissertation is therefore the 
integration of GPEs with established computational and mathematical techniques in en
gineering, particularly the finite element method and the stochastic finite element method. 
The latter with the aim of establishing GPEs as an effective predictive and uncertainty quan
tification tool for several problems faced by computational modeling in engineering. We now 
briefly discuss the basic principles and strategies within the finite element method and the 
stochastic finite element method.

1.2 T he F in ite  E lem ent M ethod

A system’s response on a domain Q, can be described in terms of partial differential equations 
with associated initial and boundary conditions. The finite element method discretises these 
partial differential equations replacing the geometry of Q by a set of nodes in a mesh, whose 
components are known as finite elements. The displacement field is approximated by the 
nodal displacement vector u(x). For a linear A-degree-of-freedom system, the deterministic 
finite element method eventually yields a system of the form

K (x)u(x) =  f  (1.1)

where K(x) E HNxN is known as the stiffness matrix, u(x) E R^ is the response vector, 
and f  E RN is the forcing vector. The stiffness matrix K(x) is obtained by assembling the 
element stiffness matrices

k€ =  I  B T • D • B (1. 2)

where Qt C Q, B is the matrix relating strains to nodal displacements and D is the elasticity 
matrix. Note tha t sometimes, for notational convenience, the stiffness matrix will simply be 
denoted by K.

The literature on the finite element method is vast and a complete study of its foundations 
is beyond the scope of this dissertation. However, the response of all the systems studied here 
will be based on implementations of the finite element method and its stochastic counterpart.

1.3 T he S tochastic F in ite E lem ent M ethod

A realistic and reliable mathematical model of a complex engineering system must incor
porate uncertainty. No m atter how sophisticated the constitutive model or powerful the 
computational tools employed are, the intrinsic randomness of the material or the loads in-
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volved may be such tha t deterministic models deliver a highly inaccurate representation of 
reality. Engineering systems can be quite complex to analyze, and addressing such complex
ity requires the employment of numerical algorithms with a sound theoretical basis. Since the 
finite element method has been extensively tested in the context of deterministic engineering 
mechanics, one natural extension of this approach is to include random parameters in the 
partial differential equations governing the system’s response. The stochastic finite element 
method sets the framework to model the physical properties of a given engineering system 

' as random fields. When uncertainty is introduced into the system, the stiffness matrix K (x)
; in Eq. (1.1) becomes a random matrix. It thus becomes a function of the spatial coordinates 
f and a random parameter, namely K (x, 9). Also, note that if the linear system in Eq. (1.1) 

is solved, a random stiffness matrix would require the response vector u(x) to be random. 
The new equilibrium equation therefore becomes

K (x, #)u(x, 0) =  f (1-3)

The stochastic finite element method is aimed at designing strategies to solve Eq. (1.3)
; and consequently quantify and propagate the uncertainty in the random system response 
; u(x, 9). We now present a brief introduction to random fields, their discretisation and the 
[ available theoretical tools for uncertainty propagation.

[ 1 .3 .1  U n certa in ty  M od elin g

! Let (0 ,^ ,7 ^ )  be a probability space, where 0  is a sample space, T  is a cr-algebra, and 
! 7̂  : J?-* —> [0,1] a probability measure. Let £ 2 (0 , T , V) be the space of random variables with 
; finite second moment. Let E[-] denote the expectation operator. Thus, if X(6) : 0  —> T>x C 

i Et is a random variable, then

E [X2(0)\ = /  X 2(6)dV(6) < +oo (1.4)
J q

£ 2 (0 ,^ r, V) is a Hilbert space with respect to the inner product

e [* i (0) * 2(0)] =  [ x1($)x2(e)dv(e) ( 1.5)
J q

A random field 7i(x , 0), with x G R ^ and 0 G 0 , is a curve in £ 2 (0 ,.F , P). For a 
given x0, 7i(x0, 0) is a random variable; whereas for a given 0q, H (x,0o) is a realization of 
the random field. Random fields are a useful tool to model distributed random mechanical 
properties of engineering systems, such as Poisson’s ratio, Young’s modulus or yield stress.
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When implementing the deterministic finite element method, functions are represented 
by a set of parameters, tha t is, the values of the function and its derivatives at the nodal 
points. In the case of the stochastic finite element method, the random fields involved are 
discretised by representing them as a finite set of random variables. Therefore, 7Y(x, 0) needs 
to be discretised in order to solve the associated system of random algebraic equations. There 
are several discretisation strategies available in the literature. Some of the most common 
are listed below.

Point D iscretisation  M ethods

In this type of methods, a spatial discretisation of the finite element mesh is employed for 
the approximation of the system’s response. Some of the available strategies are listed here.

•  Shape function m ethod (Liu et al., 1986). This method approximates the random 
field 7 i(x , 6) in each element using nodal values Xj € 9  and polynomial shape functions 
N{ as follows

Q
H(x,  0) ~  ^ 2  Ni(x)H(xi, 6) (1.6)

i=1

where Q is an open set describing the geometry and q is the number of nodes.

•  M id-point m ethod (Kiureghian and Ke, 1988). For each element f2e C £1, this 
method approximates the random field by a random variable equal to the value of the 
random field at the centroid x c of the element. Mathematically,

H (x,d) ~ H ( x c,0) (1.7)

where x e

• Optim al linear estim ation  (OLE) m ethod (Li and Der Kiureghian, 1993). Under
this scheme, the approximation to the random field is done with random variables

dependent on nodal values x  — {Ft{x\, Q), • • • Ft(xq, 0)}. The dependence is linear, 
such that

7i(x,0) ~  a(x,0) +b](x ,9 )Xi  (1-8)

The coefficients are calculated by minimizing the variance of the difference between the 
approximate and the exact random field, namely Var[?i(x, 0) — 7Y(x, 0)], while restrict
ing the mean of that difference to be equal to zero, namely E [H(x, 6) — Ft(x, 0)] =  0.

•  In tegration  point m ethod (Matthies et al., 1997). This method associates a single 
random variable to each Gauss point of each element appearing in the finite element
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resolution scheme, given that every integration appearing in the finite element model is 
obtained from integrand evaluation at each Gauss point of each element. Unfortunately, 
the total number of random variables involved increases dramatically with the size of 
the problem.

A verage D iscretisation  M ethods

In this type of methods, the random variables Xi are represented by weighted integrals of 
the random field over a domain Q,

Xi =  [  ? f(x , 0) w( - x ) dn  (1.9)
J  Qe

Some of the available methods are described below.

•  Spatial average m ethod (Vanmarcke and Grigoriu, 1983). Given a finite element 
mesh, this method defines an approximation to the random field in each element as a 
constant equal to the average of the original random field over the element. Thus,

Jo ^ ( ( x >^))"  (1.10)

where x 6 A disadvantage of this method is that the variance of the spatial average 
over an element under-represents the local variance of the random field (Kiureghian 
and Ke, 1988).

• W eighted integral m ethod (Deodatis, 1991; Deodatis and Shinozuka, 1991). This 
method considers the element stiffness matrices as random quantities. Each random 
variable is the result of integrating the product of one of the monomials used in the 
finite element method by the random field over each element. The original random 
field is projected onto the space spanned by the shape functions of the finite elements.

Series Expansion M ethods

The idea behind this type of discretisation methods is to expand any realization of the 
original random field over a complete set of deterministic functions {0i(-)}^o anc  ̂ truncate 
the series after a finite number of terms

M

7Y(x,0) ~ ( l . i i )
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•  Orthogonal series expansion (OSE) m ethod (Zhang and Ellingwood, 1993). 
This approach is based on the selection of a set of deterministic orthogonal functions 
{hi(z)}£2i which are a basis of the space £ 2 (0). The coefficients of the expansion are 
zero mean random variables

Xi(0) =  [  [# (x ,0 ) -  //(x)]/i*(x)dft (1.12)

where /i(x) is the mean of the random field. The approximation to 7Y(x, 0) is obtained 
after computing the covariance matrix £ xx, which completely characterizes the vector 
X = {Xh  • • ■ 5 Xm}- The approximation is of the form

OO

tf(x ,0 ) =  /z(x) +  ^ X i(0 )h » (x ) (1.13)
i=l

•  Expansion optim al linear estim ation  m ethod (Li and Der Kiureghian, 1993). 
This method is an extension of OSE. It employs a spectral representation of x , namely

N

x(0) = f ix +  (1-14)
i=i

where £* are independent standard normal variables and (A*,</>;) are the eigenvalues 
and eigenvectors of the covariance matrix E xx.

•  Karhunen-Loeve expansion m ethod (Karhunen, 1946; Loeve, 1948).

An advantageous alternative for discretising ?f(x. 0) is the Karhunen-Loeve expansion 
(KLE), for which

OO

W(x, 0) =  V ^& W <M X) (T15)
i=0

where {^(0 )}“ o is a set of random variables, {Aj}^L0 a set of constants, and {<fo(x) } “ 0 

an orthonormal set of deterministic functions. In particular, {A^}°10 and {0;(x)}°flo are 
eigenvalues and eigenfunctions. They arise from the solution of the following eigenvalue 
problem

/  K ( x ! , x 2) ^ ( x i ) d x i  =  A ^ ( x 2) (1.16)
JRN

where the function K{- ,  •) is a covariance kernel, that is, a function which is bounded, 
symmetric and positive definite. Equation (1.16) is known as a Fredholm integral 
equation.
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The truncated KLE of 7-f(x, #) up to M  terms is defined as (see for example Sudret 
and Der-Kiureghian (2000))

M

w (x, 9) = //(x) +  ^  C1-17)
2 = 1

The KLE has uniqueness and error-minimization properties that make it a convenient 
choice over other available methods. See Devijver and Kittler (1982) for a detailed 
study of the cited and other KLE properties.

As an example, consider a random field 7i (x,  9) with exponential correlation function

where b is the correlation length. The eigenfunctions {</>i(x)}°20 and eigenvalues {Ai}?20 

are the solutions to equation

= e l|xi_X2ll/i’ (1.18)

^ b4>('x.2)dx2 = A«i(x1) (1.19)

The explicit expressions of the eigenfunctions are

COs((JiX)
for i even (1.20)

A*(x ) (1.21)

The corresponding eigenvalues are

A* =     for i  even
cuf +  c2

for i  even ( 1.22)

A* =  —j----- o f°r * °dd* /.1* (1.23)

where c =  1/6. a;*, and uj* are the solutions to

c — uj tan(u;a) =  0 for i  even 

uj* +  ctan(a;*a) =  0 for i  odd

(1.24)

(1.25)
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The KLE of 7i(x, 9) is therefore

OO

(1.26)
i=0

1.3 .2  U n certa in ty  P rop agation

Several methods to solve Eq. (1.3) and consequently calculate the statistics of the response 
vector u(x, 6) are available in the literature. Some of these methods are briefly discussed
below. They include Monte Carlo simulation techniques (Hurtado and Barbat, 1998; Pa- 
padrakakis and Papadopoulos, 1996), perturbation methods through Taylor series (Shinozuka 
and Yamazaki, 1998; Kleiber and Hien, 1992; Elishakoff et al., 1995), expansion methods 
through Neumann series (Yamazaki et al., 1988; Shinozuka and Nomoto, 1980) and the 
spectral stochastic finite element method (Ghanem and Spanos, 1991). Note tha t in ad
dition to these traditional methods, there exist a vast amount of literature in alternative 
analytical methods (Muscolino et al., 2000; Impollonia and Muscolino, 2002; Falsone and 
Impollonia, 2002, 2003; Impollonia and Ricciardi, 2006) that will not be reviewed here.

M o n te  C arlo  S im ulation

Let be a series of realizations of a random parameter 6 € © for a given engineering
system. For every 0*, the vector u* =  u (x ,0*) is a solution to Eq. (1.3). Each solution 
expresses the system response given a specific value of 9. As a consequence, each U; can be 
obtained by solving a deterministic finite element model.

In the probabilistic analysis of the response u(x, 0), quantities of interest can be written 
as an expectation of a function ip of u(x, 0) of the form

(1.27)

where pe(0) denotes the probability function of 0. In practice, given a sample {0z}f=i, the 
expectation in Eq. (1.27) can be estimated by

(1.28)
i=1

The standard deviation of the estimator E[-] equals where a^ is the standard devi
ation of </?(•) (Nouy, 2009). The convergence of this estimator, in 0 { S ~ 1̂ )  is independent of 
the dimension of the data. Apart from its straightforward implementation, the independence
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of the dimension is probably the main advantage of the Monte Carlo method.

In particular, the mean and variance of the response can be approximated by

1 5
E N  -  (L29)

i=1 

1 5
V ar[uJ ~  - ^ 2 ( u ( x ,6 i )  -  E [uJ)2 (1.30)

I i=1

? The obvious disadvantage of this approach is tha t its slow convergence might require 
an enormous number of samples to achieve a required accuracy. Several alternatives tha t 
increase the efficiency of the approach are available in the literature, such as importance 
sampling (Schuller et a/., 2004), adaptive sampling (Au and Beck, 1999), directed Monte 
Carlo simulation (Feng et a/., 2010), among many others.

P e r tu rb a t io n  M e th o d

The perturbation method works by expanding the stiffness matrix K, the response u  and 
load vector f in Eq. (1.3) as Taylor series around their mean value. Let a  G M.N be a zero 
mean random vector. The series expansions are

where

N  N

K =

u

f =

K„ +  £  K ‘ai + i  £  K l ‘a iaj + 0 ( | |a | |2)
z=l i= 1 j =1

u o + u i a i + \  1 2  u t /  aiai + ° ( iia ii2)
i=1 i=1 j —1

f0 +  +  \  +  ° ( i ia ii2)
i=l j =1

K  =
d K
don a—0

SPK
da, da,

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)
Q = 0

After substituting Eq. (1.31) and Eq. (1.32) into Eq. (1.33) and identifying the similar
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order coefficients, the following expressions are obtained

(1.36)

(1.37)

(1.38)

The statistics of u  are available from those of ct in equation (1.32), namely

1 N  N

E[u] «  u 0 +  - £ £ u " C o v h , ^ ]  (1.39)
i= 1 j=1

N  N

Cov[u, u] ~  E E  u [ .(u j)TCov[o!j, atj] (1-40)
i=1 j =1

N eu m an n  E xp an sio n  M e th o d

The KLE of the random stiffness matrix in Eq. (1.3) can be shown (Sudret and Der- 
Kiureghian, 2000) to be

matrix in an analogous way to the deterministic finite element method. Thus, Eq. (1.3) can 
be recast as

OO

where each K j(x) is a deterministic matrix obtained by assembling the elementary stiffness

(1.42)

Analytically, the vector of nodal displacements would be obtained by inverting the ex
panded matrix K (x, 0). However, no closed form solution exists. An alternative solution is 
to rewrite Eq. (1.42) as
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The Neumann series expansion is

OO /  OO \  k

u ( x , « )  =  5 3 ( - l ) M ^ K o l K i(x ) ^ )  "0  ( !-45)
A:=0 \  i=1

Therefore, an approximate displacement vector u(x, 9) can be obtained by truncating both 
the KLE of K(x, 9) and the Neumann series expansion in Eq. (1.45).

Spectral S tochastic F inite E lem ent M ethod

All the uncertainty propagation methods presented so far have a sound mathematical basis. 
However, despite this theoretical appeal, their implementation presents at least one of the 
following disadvantages: a) lack of the geometrical appeal presented by the deterministic 
.finite element method; b) limited applicability due to restrictive analytical constraints; c) 
non-guaranteed convergence of the Taylor and Neumann series involved; d) potentially high 
computational cost. Additionally, since the covariance structure of the response random field 
îs generally unknown, the KLE cannot be employed to represent the random displacement 

vector u(x,0).

Aiming to tackle some of the above mentioned disadvantages, Ghanem and Spanos (1991) 
applied and extended some of the ideas by Wiener (1938), namely the polynomial chaos 
j | expansion method, (also known simply as polynomial chaos). Later, this approach was further 
|extended by several authors, for example Nair and Keane (2002); Sachdeva et al. (2006a,b); 
pCiu and Karniadakis (2002, 2003); Wan and Karniadakis (2006). This method essentially 
jconsists in representing each component of the random displacement vector u(x, 9) as a

f^hes of orthogonal polynomials {'L7(0)}jLo ^ e  standard normal variables {&(0)}^i- The 
olynomial chaos of order p is defined as the set of polynomials r p in {&(#)}£8i of degree not 
jexceeding p, orthogonal to the set of polynomials r p_!. Ghanem and Spanos (1991) mention 

that any square-integrable random function a (9) E £ 2(0 ,.F , P)  can be approximated as 
closely as desired with the representation:

oo oo i i

a (9) = aoEo +
i i = l  i i = H 2 = l

OO i\ 22
+  5 Z  ^2*3^3 (£px(0), £*>2 W>£p3 W ) +  • • • (1.46)

21 = 1 22 = 1 23=1
OO

3= 0
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The vector of random displacements can be thus shown to be expressed as

u ( M )  =  ^ Z u 3
3=o

(1.47)

where each Wj(x) is a deterministic vector. If the random stiffness matrix K (x, 6) from 
Eq. (1.3) is expanded via the KLE, the new equilibrium equation that incorporates the 
polynomial chaos expansion of u(x, 6) reads

. i= 0

(1.48)

After truncation of both expansions, the residual is

M  P - 1

f t ( x , 0 )  =  -  f
z = 0  j — 0

(1.49)

This residual can be minimized in a mean square sense, such that E[7£(x,0) • =  0 for
M  P - 1

k =  0 , . . .  P  — 1. If we define =  and ik =  E[4/fcf], then the error
i = 0  j = 0

minimizing procedure leads to the linear system

oo

■

K 0jp _ i

1

£ O
1 11

•• 
* o W i

=
f l

K p - i , o  • i
i7a. tip- 1

-------11

1

(1.50)

Which is an N P  x N P  system of the form

K  U  = T (1.51)

The polynomial chaos expansion is widely used in engineering. Its main disadvantage how
ever is its potential cost of implementation. The method will be revisited in Chapter 6, when 
a strategy to reduce this cost incorporating GPEs is proposed.
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1.4 Som e M etam odels in Engineering

The following is a very brief overview of some of the metamodels that have been used in 
engineering. This overview is by no means exhaustive, and metamodeling is currently an 
active research area. An account of the following and some other metamodels can be found 
in Keane and Nair (2005).

1.4.1 Taylor Series A p p rox im ation s

One of the simplest metamodels that can be employed are local approximations by a Taylor 
series. That is, in order to approximate the output of the simulator ?y(x) in a neighborhood 
of x*, say ||x* — x|| < e, one would typically use a metamodel of the form

„(*) =  /(x*) +  y >  -  x -t ) y g p .  + l-  ±  ± ( Xi -  + . . .  (1.52)
i=l 1 i=1 j=1 1 i

Despite the simplicity of the implementation, this metamodel presents two disadvantages. 
On the one hand, the radius of convergence e might be small and therefore the approximation 
very poor (Storaasli and Sobieszczanski-Sobieski, 1974). On the other hand, the higher order 
terms may be expensive to compute.

1.4 .2  R esp o n se  Surface M eth o d s

These metamodels are related to least-square regression techniques, in the sense tha t they as
sume independent and identically distributed measurement errors of computer experiments. 
A (quadratic) polynomial approximation to the output of a simulator r)(-) at x  is achieved 

by
7/(x) =  C0 +  E CjXj +  E Cp—i+j+j'Ej3'k (1.53)

1 <3<P 1 <j<p,k>j

where {co, Ci,. . . ,  cm_i} are coefficients to be determined. Response surface methods have 
been employed extensively in engineering. For instance, Craig et al. (2005) performed 
variable screening and optimization in crashworthiness design based on a response surface 
methodology. Perez et al. (2008) solved nonlinear optimization problems using quadratic 
response surfaces. Faravelli (1989) and Schuller et al. (1989) applied the methodology to 
reliability analysis. Despite being an intuitive and interpretable approach, response surface 
methods may lack effectiveness when modeling complex input/output relationships. Addi
tionally, the radius or neighbourhood where the approximation is acceptable may also be 
limited.
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1.4 .3  N eu ra l N etw orks

Neural networks are inspired in idealized models of brain structure whereby multiple neurons 
are connected following a configuration whose simplest form consists of an input layer, a 
hidden layer and an output layer. This configuration, known as feed-forward system, is 
mathematically represented by

m
r}{x) = (1.54)

i = 1

where
p

ai = WijXj +  5j (1.55)
j=i

where A and w  are the weight parameters; 8 is a bias parameter; and </>(•) is a transfer 
function. The number of parameters is determined by m  neurons in the hidden layer and p 
inputs. Neural networks have been applied in engineering in areas such as damage detection 
(Pierce et al., 2006) and fatigue lifetime prediction (Bezazi et al., 2007; Pierce et al., 2008). 
There is a copious amount of literature on neural networks. A study of their properties, 
different configurations, and the estimation of their parameters can be found in Bishop 
(1996).

1.4 .4  R ad ial B asis F un ctions

A radial basis function is a function whose value depends on the distance to some center x c, 
that is iT(x, xc) =  A"(||x — xc||). In particular, if the design points {x;}^=1 are selected to 
run a deterministic computer model, then the radial basis approximation is defined as

n

t/(x ) =  ^AT(||x -  X i| |)  (1.56)
i = l

where {ĉ }™=1 are weights to be determined. Typical choices of radial basis functions are

Name RBF
Linear spline ||x -  x c||
Cubic spline ||x — x c||3
Gaussian exp( 11 *4  )

Multiquadrics (l +  ^ ^ ) - 1/2

T able 1.1: Examples of radial basis functions i f ( x ,x c) =  K {||x — x c||), where xc is called 
the center. The parameter 0 is a smoothness parameter.

Radial basis functions have also been applied to solve engineering problems. For example,
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Rocha (2009) applied it to the construction of a wing weight estimation formula for the 
conceptual design of subsonic transports.

1.4 .5  H D M R

The high dimensional model representation (HDMR) method approximates the response of 
a system in terms of functions of lower dimensions. The approximation can be denoted by

i  7?(x) =  f o  +  ' ^ 2 f i ( X i ) + ' ^ 2 f i j ( X i , X j ) +  . . .  +  f i 2 . . . N ( X u X 2 i . . . i X N )  (1.57)
i  i < j

where /o is a constant, f i (xi) is the first-order effect associated with the variable Xi upon 
the output, f i j ( x i , X j )  is the cooperative effects of variables X {  and X j  and analogously for 
the higher order terms. Finally, / i 2 ...at(^1 j ^ 2 , • • • ,£at) is the residual dependence of all the 
variables affecting the output cooperatively.

HDMR efficiently approximates the system's response by representing the physical system 
hierarchically. Note however that the approximation is reliable if high-order variable corre
lations are weak, whereby the features of the system can be captured by the first low-order 
.terms. The approach has been applied in areas such as reliability analysis (Rao and Chowd- 
hury, 2009; Chowdhury and Rao, 2009), and stochastic finite element analysis (Chowdhury 
.and Adhikari, 2010).

jl.4 .6  K rig ing

A metamodeling approach closely related to Gaussian process emulation is kriging (Krige,
$
|1951). This method was originally applied in geostatistics (see for example Cressie (1993)) 
|and made its way into the design and analysis of computer experiments following the work 
,of Sacks et al. (1989). Although kriging and Gaussian process emulator have similar compu
tational procedures, authors like Pepelyshev and Oakley (2009) have noted that they have 
different motivations. For a more detailed study of kriging, refer to Forrester et al. (2008).
j

1.5 A reas o f O pportunity

jThe above discussion shows that several metamodeling strategies have been widely used in 
jengineering problems. However, GPEs have not been applied in this context, particularly 
(when they involve the finite element method and the stochastic finite element method. This
f
topens up the opportunity of investigating the possibility of employing GPEs as an efficient 
jmetamodeling tool in engineering. We have identified the following areas of opportunity:
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1. The introduction of GPEs as an efficient and effective metamodeling tool to the engi
neering community.

2. The establishment of GPEs as an inexpensive approximation to the output of computer 
intensive simulators used in engineering, both in deterministic and non-deterministic 
settings. Such approximation should be efficient by minimizing the number of evalua
tions of the expensive simulator and thus reducing the computational cost involved.

3. The exploration of GPEs as an alternative metamodeling scheme for deterministic 
engineering problems that are expensive to solve computationally, such as damped 
structural dynamics and domain decomposition methods.

4. The proposal of new strategies for approximating the output of engineering models 
where parametric uncertainty needs to be taken into account in order to realistically 
model complex phenomena.

5. The exploration of GPEs as a new uncertainty quantification tool whose accuracy is 
comparable to Monte Carlo simulation, but much cheaper in terms of its implementa
tion.

6. The efficient metamodeling of expensive random fields discretised via the Karhunen- 
Loeve expansion.

7. The coupling of GPEs with established schemes of stochastic finite element analysis. 
Specifically, to achieve a coupling with the polynomial chaos expansion, which despite 
being a widespread technique, its application is limited by its computational cost.

1.6 Layout o f th e D issertation

The dissertation is organized as follows. In Chapter 2, theoretical and practical aspects 
of the implementation of GPEs are introduced. Chapter 3 begins our study of GPEs for 
engineering models by applying them in the context of deterministic structural dynamic 
analysis. Chapter 4, proposes a novel methodology where GPEs are implemented jointly with 
domain decomposition methods in order to assimilate low-fidelity finite element models into 
high-fidelity models. In Chapter 5, the application of GPEs to structural dynamic analysis 
is revisited, assuming parametric uncertainty. Chapter 6 proposes a coupling between GPEs 
and the polynomial chaos expansion. Finally, Chapter 7 offers some conclusions and suggests 
some future research directions.



Chapter 2

Overview of Gaussian Process 

Em ulators

2.1 Basic D efin itions

Let 77(-) be an expensive simulator, such that it is practical to evaluate it only at a limited 
number of inputs. This allows rj(-) to be regarded as a random variable in the sense that 
the output is unknown until the simulator is actually run. A Bayesian treatment is followed 
throughout this dissertation, whereby prior beliefs about the relationship between the input 
and the unknown output are conditioned on a set of evaluations of ?7(-), thus combining 
subjective and objective information. Begin by assuming that rj(-) admits the following 
stochastic representation

^(x) =  h (x)T/3 +  Z(x)  (2.1)

where h(-) is a vector of known functions of x  and (3 is a vector of unknown coefficients. 
The function Z(-) is assumed to be a stochastic process with mean zero and some covariance 
function of x. An advantageous choice for Z(-) is the Gaussian stochastic process.

D efinition. Let X  C Rd. Then Z(x)  for x 6 X  is a G aussian stochastic process
if for any L > 1 and any choice { x ! , . . . ,x ^ }  C X , the vector [Z’(x i) , . . . ,  Z (x l ) ] j  has a
multivariate normal distribution.

As noted by Kennedy and O ’Hagan (2001), the choice of a Gaussian process is made for 
much the same reasons that the Gaussian distribution repeatedly appears in statistics: it is 
analytically tractable, flexible, and quite often realistic. Despite these advantages, they are

18
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careful to refer to alternative ways of expressing prior beliefs available in the literature. One 
such approach is to represent 7/(-) as a linear combination of basis functions such as splines, 
wavelets, and sigmoidal functions.

Suppose a linear structure of the form h(-)T/3, where h(-) is a vector of regression functions 
and (3 is a vector of coefficients, is chosen to model the prior mean of r/(-). Then, the 
interpretation of Eq. (2.1) becomes clearer. That is, rj(-) is assumed to deviate from the 
mean of its distribution following a Gaussian stochastic process. Oakley and 0 ’Hagan (2004) 
note tha t the choice of h(-) is arbitrary, although it should be chosen to reflect the available 
information about the functional form of rj(-). Authors such as Keane and Nair (2005) note 
that, for a sufficiently flexible correlation structure, h(-) =  1 is often found to be suitable for 
modeling highly complex input-output relationships. This is currently an area for further 
investigation.

An im portant assumption is to regard 7/(-) as a smooth function of its inputs. It follows 
that if x  and x  are close together, then the values of ?7 (x) and ^(x') should also be close. It 
is therefore reasonable to think that the correlation between 7y(x) and r](x) increases when 
the distance between x and x  decreases and viceversa. This implies tha t each element of the 
training set provides considerable information about r)(-) for inputs close to the corresponding 
design points. Hence, the uncertainty about the value of untried inputs is reduced as the 
number of design points increases because the maximum distance from any design point 
decreases. The discussion on how to determine suitable covariance functions can become 
very technical and further details can be consulted in Santner et al. (2003). A popular 
choice for covariance function is the one that is adopted hereafter, namely

Cov{r]{x),r](x)) =  a 2C(-, •) (2.2)

with the correlation function C(-, •) such that

C(-,-) =  e " (x" x/)TB(x- x/) (2.3)

where B is a positive definite diagonal matrix. Observe that C(x, x) =  1 and tha t it decreases 
as the distance between two points increases, as required.

As a consequence of the above, the prior knowledge about ??(•), given (3 and cr2, is
represented as having a Gaussian process distribution with mean h(-)T/3 and covariance
expressed by Eq. (2.2). The latter is symbolized by

j;(-)|/3, a2 ~  V (h (-)T/3, a2C(-, ■)) (2.4)
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The subjective information about the input and the unknown outputs is contained in this 
prior distribution. The next step is to update it by adding the objective information con
tained in a vector of observations, denoted here by y  =  [ ^ ( x i ) , . . .  ,7/(xn)]T.

Let H =  [ h ( x i ) , . . . ,  h ( x n)]T, and A G Rnxn such that A^ = C ( x i , X j )  Vz,j G { 1 ,...  , n}. 
Then

y| /3,  a2 ~  a 2A)  (2.5)

To incorporate the information y  and obtain the distribution of 7?(-)|y> use the following 
result (Krzanowski, 2000).

Theorem. Let z  G K N be a random vector such that z ~  £). Partition z  as
( z i , z 2) t , where Zi G HN~n and z 2 G R n. Consequently, partition /i = (/xx, /x2)T and

s  =
£ 1 1  E 12

£ 2 1  ^ 2 2

, so that E[zj] =  Uj and Cov(zj,Zk) = Ej*. Then, z i | z 2 ~  A7(^1, £ ) ,
y ^ 2 1  ^ 2 2

where Jjl — +  E ^ E ^ f e  — /x2) and £  — £ n  — £ i2£ 221£ 2i.

It follows tha t

? K -) |y ,A ^ 2 ~  a r ( m * { • ) ,  a 2 C * ( - , - ) )  (2.6)

where
m*(x) — h(x )T(3 +  t(a:)A_1(y — H/3) (2.7)

C*(x, x )  =  C (x ,x ;) — t(x )TA ~1t(x /) (2.8)

t ( x ) =  P ( x , x i)> • • •, £ ( x > x n)]T (2.9)

Removing the conditioning on j3 using standard integration techniques (Haylock and 
O’Hagan, 1996), obtain the posterior distribution

r/(.) |y ,a2 ~ ^ ( m ^ ( - ) , a 2C ^(-,-)) (2 -10)

where

m**(x) =  h(x)T3  +  t(x )A _1(y -  h 3 )  (2.11)

, C * * ( x , x )  =  C * ( x , x )  +  (h(x)T — t(x )TA _1H )(H TA ~1H )_1(h(x/)T — t(x /)TA _1H )T (2.12)

3 =  ( H ' A - ' H ^ W A ^ y  (2.13)
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To estimate a in Eq. (2.10), let q be the rank of H. Then

n — q — 2

The conditioning on a2 can also be eliminated, such that

77 (x) — m**(x)
( n - q - 2 ) C 7 » ( x )  

n —q

tn-q (2.15)

which is a Student’s t-distribution with n — q degrees of freedom (not to be confused with 
the degrees of freedom in a finite element method context).

As it can be seen, Gaussian process emulation consists in updating the prior distribution 
(2.4), which contains subjective information, by adding the objective information y  in order 
to obtain the posterior distribution (2.10). This enables the calculation of the predictive 
mean m**(-) given the data y. This mean is a fast approximation of ?7 (x) for any x  in the 
domain of ?7(-). The complete process is summarized in Algorithm 1.

Alg. 1 Gaussian process em ulation.
Input: Design points {x*}™=1
Output: Predictive mean E[?7 (x)|y] =  m**(x) and variance Var[7](x)|y] =  cr2C**(~, •) 

begin
1. Select n  design points {xi}™=1
2. Obtain the vector of observations y  =  [77(xi ) , . . . ,  ?7 (xn)]T
3. Update the prior distribution (2.4) using y  and obtain the posterior

distribution (2.10)
4. Compute the predictive mean ra**(x) and variance a 2C**(-, •) for any untried x  

end___________________________________________________________________________

Following O ’Hagan (2006), a GPE should satisfy some minimal criteria:

1. Since by definition the output at each design point is known, the em ulator should 
reproduce this output with no uncertainty.

2. At any x  that is not a design point, the probability distribution provided by 
the emulator should produce a mean value that constitutes a plausible interpola
tion/extrapolation of the training data. The probability distribution around this 
predictive mean should also express the uncertainty about how the em ulator might 
interpolate /  extrapolate.

In addition to these criteria, Rougier et al. (2007) note tha t the key feature of an emulator 
is tha t it quantifies the uncertainty tha t arises from having a training set w ith  limited
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size. Naturally, it is also desirable that emulation is at least as efficient as other available 
techniques, if it is to be worthy of implementation.

2.2 Introductory Exam ple

To illustrate the above criteria, take the trivial one-dimensional simulator r)(x) =  0.5x — 
xsin(x) and suppose for a moment it is computationally intensive. Figure 2.1(a) depicts the 
case when six training runs (the circles) are used. The mean of the distribution provided by 
the GPE (the dots) approximates the real values of the simulator (the solid line) at several 
untried inputs across the input domain. As required, it returns the known value of the 
simulator at each training run. Note how the approximation improves when more training 
runs are used, as shown in Figure 2.1(b). On the other hand, Figure 2.2 shows upper and 
lower bounds of two standard deviations for the predictive mean of the GPE. As the number 
of training runs increases, there is a reduction of the uncertainty in the value of the predictive 
mean. Note how the uncertainty is equal to zero in each of the training runs, as it would be 
expected, since the GPE reproduces the simulator’s output at these points. Observe however 
that for both cases, the uncertainty increases rapidly when extrapolating the training set.

2.3 Som e Im plem entation  D etails

2.3 .1  T h e  In itia l D esign

In Algorithm 1, the selection of an initial design 2) =  {xj}”=1 in step 1 must be done carefully. 
It would be ideal to extract the most information about rj(-) out of the minimum number of 
evaluations possible. The choice of the initial design is an active research area. A copious 
amount of literature on the subject is available. We now present a brief overview of different 
approaches to this issue. For the following discussion, recall denotes the domain of rj(-).

' One natural strategy for selecting a set of inputs to evaluate the code at is to choose 
ID such tha t its elements are spread evenly throughout 0 . In that case, random sampling
from the distribution of the inputs could be the suitable strategy. Nevertheless, this schemeI
might have a drawback. Consider the case of the output being influenced by only a few 
Components of the input. In this situation, each dimension should be guaranteed to be fully 
represented. McKay et al. (1979) proposed Latin hypercube sampling as a solution to this 
problem. Furthermore, it is a computationally cheap method. Latin hypercube sampling can 
be viewed as an extension of Latin square designs to higher dimensions. The construction 
of a Latin hypercube design is carried out as shown in Algorithm 2.
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(b) Predictive mean using 7 design points

F ig u re  2.1: Approximation to the output of the simulator rj(x) = 0.5x — xsin(x) with the 
mean of a GPE; (-): output of the simulator, (o): training runs, (• • •): emulator’s predictive 
mean. The approximation improves the more training runs available.

The notion of points spread evenly throughout Q can have many other interpretations. 
Johnson et al. (1990) provide a criterion for quantifying this desirable property. Given an 
arbitrary design X) and a distance function p : ft x Q —► R, they call a maximin design 
if no two points are too close together, that is, if the minimum distance between any two 
points is maximized. Formally,
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(a) Uncertainty about the predictive mean using 6 design points
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Simulator Input, x

(b) Uncertainty about the predictive mean using 7 design points

F ig u re  2.2: Uncertainty bounds (two standard deviations) about the predictive mean of a 
GPE that approximates the output of the simulator 77(x) =  0.5x — xsin(x). The uncertainty 
is reduced the more training runs available.

min p(x, x  ) =  max min p (x ,x )  (2.16)
x , x ' e s °  2) x . x ' e s

In the same way, they call D* a minimax design if the maximum distance between any 
x G and the candidate design D* is minimum over all possible designs D. That is,
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Alg. 2 L atin  hypercube.
Input: Number of design points n, input domain 12 C Rp
O utput: Latin hypercube design D

beg in
1 . Divide the range of the p components of x  e  D into q regions of equal

marginal probability.
2 . Sample once from each of these regions.
3. To obtain D, sample without replacement from { x ^ ,. . . , x ig}, for i =  1 , . . . , p .

en d

m inm axp(x, 2)) =  m axp(x, 2)*) (2-17)
2) xeRd xeRd

Following the above ideas, Morris and Mitchell (1995) extended the definition of minimax 
design in the following way. Given n  points in a design D, construct an increasing-order list 
( d i , . . . , d m) whose elements are the distinct values of the inter-element distances. Also, 
construct an index list (J i , . . . ,  Jm) where Jj is the number of pairs of elements in the design
separated by distance dj. It is easy to see that m  (E {1 , . . . ,  (2)}- Note tha t a design that
maximizes d\ and minimizes J\ is a maximin design in the original sense. Morris and Mitchell
(1995) call D a maximin design if among the available designs it

•  maximizes di, and among designs for which this is true

• minimizes Ji, and among designs for which this is true

• maximizes g?2 , and among designs for which this is true

•  minimizes J 2, and among designs for which this is true

•  maximizes dm, and among designs for which this is true

•  minimizes Jm

The authors use a design construction algorithm based on a technique known as simulated 
annealing, for which we present a very brief summary. They start with a Latin hypercube 
design and randomly perturb it (e.g. changing the values of a randomly selected column of 
the design matrix). The perturbed design D' is evaluated via a fitness function <p : D ' —» R, 
and if it leads to an improvement, it is taken as the current design. On the other hand, if it 
is less fit, the replacement of D with D ' occurs with probability

7r =  exp{-[<p(S)') - (2 .18)
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where t is a parameter (known as ”temperature”) that decreases with every iteration. That 
way, a less fit design is more likely to be chosen in early iterations, when t is high. The values 
of certain parameters, such as initial temperature or rate of cooling are selected heuristically 
and/or based on experience.

Both Latin hypercube sampling and minimax and maximin designs rely on the idea of a 
set of inputs being evenly spread throughout fi. A different criterion is maximum entropy 
sampling, whose objective is to maximize the gain in information for prediction at unsampled 
sites. Shewry and Wynn (1987) used the Shannon entropy of a random vector T  with density 
function p(-), namely

E nt(  T) =  Er {-log{p( T)}] (2.19)

to show th a t the expected change in information is maximized by the design £)# whose 
inputs maximize the entropy of the output. They called 0 ^  a maximum entropy design 
and established tha t it maximizes the determinant of the variance-covariance matrix of the 
output. Currin et al. (1988) applied the maximum entropy criterion to select designs for 
expensive computer experiments. They adopted the Bayesian approach and the Gaussian 
process model discussed previously.

As mentioned before, the choice of design points is an active research area. The overview 
presented here is by no means exhaustive. There exist a number of different strategies 
such as criterion based designs, sequential designs, combined designs and designs based on 
optimization procedures. A more complete account can be consulted in Santner et al. (2003). 
Throughout this dissertation, unless otherwise stated, the Latin hypercube sampling strategy 
proposed by McKay et al. (1979) is employed.

2.3.2 T h e  S m o o th n ess P aram eters

It was previously assumed that g(-) is a smooth function of its inputs. Additionally, the 
correlation function between any two inputs, x and x ,  was defined by Eq. (2.3). A crucial 
component of such correlation function is the diagonal matrix B, which contains what are 
known as smoothness parameters. Intuitively, these parameters specify how far an untried 
input needs to go from a design point before the uncertainty becomes appreciable. In other 
words, they quantify the rate at which the output varies as the one input changes.

There are at several techniques to estimate the smoothness parameters from the vector 
of observations y =  [r?(xi),. . .  ,77(xn)]T. One is called cross-validation and proceeds as fol
lows. Define y_ { as the vector that excludes the i-th observation from y. Let p(-) be a 
distance function defined as above and let B be given. Denote the diagonal of B by b. The 
computation of the cross-validation estimator of b is summarized in Algorithm 3 below.
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Alg. 3 Cross-validation.
Input: Initial smoothness parameters b 
Output: Cross-validation estimator b 

begin
for i — 1 ,. . .  , n
1. Calculate the predictive mean E[?7(x)[y_J =  ra!_*(x)
2 . Calculate the distance d* =  p(ral* (•), ?y(xj)) 
end

71
3. Compute b =  min ^  di

i=i
end

The technique to estimate the smoothness parameters used in this dissertation is to derive 
the density function /(B |y )  and obtain a maximum likelihood estimator. Using the same 
definitions as in the prior-to-posterior analysis in the beginning of this chapter, Haylock
(1996) shows that the posterior likelihood function is

/(B |y )  oc (3:2) - I=i^1|A |- i |H TA H |- i  (2.20)

Hankin (2005) observes that it is more convenient to work with the logarithms of the smooth
ness parameters, as this will force them to be positive and will lead B  to be positive definite.

Another approach to estimate the smoothness parameters is to use Markov chain Monte 
Carlo (MCMC) (Neal, 1998). However, Oakley and O’Hagan (2004) point out the inten
sive computation required. More recently, Toal et al. (2011) have applied population-based 
methods such as particle swarm optimization.

2.4 C onclusions

In this chapter, the mathematical background of GPEs was presented. Basic definitions, 
assumptions and algorithms were presented. The output of a simple simulator was emulated 
in order to illustrate the properties of the metamodel. Additionally, some aspects of the 
implementation were detailed, such as the selection of the initial design and the estimation 
of the smoothness parameters. In the next chapter, we present a first application of GPEs 
applied to deterministic engineering systems by proposing them as an efficient predictive 
tool for expensive structural dynamic analysis.



C hapter 3

D eterm inistic S tructura l Dynamic 

Analysis 1

3.1 Introduction

We begin our study of GPEs applied to deterministic engineering systems by proposing 
GPEs as a tool for reducing the computer cost of expensive structural dynamic analyses. 
In such cases, running a detailed high-resolution finite element model can be costly even 
for obtaining the dynamic response at few frequency points. To address this problem, this 
chapter investigates the possibility of representing the output of an expensive finite element 
code as a Gaussian stochastic process. GPEs are applied to both simulated and experimen
tally measured data from the frequency response of a cantilever plate excited by a harmonic 
force. The dynamic response over three frequency ranges is approximated using only a small 
number of response values, obtained both by running a finite element model at carefully 
selected frequency points and from experimental measurements. The results are then val
idated applying some adequacy diagnostics. It is shown that the GPE method can be an 
effective predictive tool for deterministic engineering systems, whenever the data is expensive 
to obtain, either from a computer-intensive code or a resource-consuming experiment. To 
the best of our knowledge, GPEs have not been implemented in structural dynamics and it 
can be seen it has good potential for this area of engineering.

:The ideas developed in this chapter have been published as DiazDelaO, F.A. & Adhikari, S. (2010), 
‘Structural dynamic analysis using Gaussian process emulators” , Engineering Computations, 27 (5) 580- 

605.

28
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3.2 D am ped Structural D ynam ics

Consider the problem of modeling the response of a damped structural system subject to 
different frequency ranges of vibration. Viscous damping is the most common model for 
representing vibration damping in linear systems. First introduced by Rayleigh (1877), this 
model assumes that the instantaneous generalized velocities are the only relevant variables 
tha t determine damping. Viscous damping models are used widely for their simplicity and 
mathematical convenience even though the behavior of real structural materials is, at best, 
poorly mimicked by simple viscous models. For this reason it is well recognized that in 
general a physically realistic model of damping will not be viscous. Damping models in 
which the dissipative forces depend on any quantity other than the instantaneous gener
alized velocities are nonviscous damping models. Mathematically, any causal model which 
makes the energy dissipation functional nonnegative is a possible candidate for a nonviscous 
damping model. Clearly a wide range of choice is possible, either based on the physics of the 
problem, or by a priori selecting a model and fitting its parameters from experiments. For
the sake of generality, we consider nonviscously (or viscoelastically) damped systems (see
for example Torvik and Bagley (1987), Woodhouse (1998), Maia et al. (1998), and Adhikari 
and Woodhouse (2003)).

The equation of motion of a V-degree-of-freedom linear system with such damping can 
be expressed by

M q(f) +  I  Q(t -  r)  q (r) dr  +  K q(i) =  f(t) (3.1)
Jo

where q(t) 6 K N is the displacement vector, f (t) G R ^ is the forcing vector, M  G HNxN 
is the mass matrix, K  G HNxN is the stiffness matrix, and Q(t) G HNxN is the matrix of 
damping kernel functions. The kernel functions Q(t) are known as retardation functions, 
heredity functions, after-effect functions or relaxation functions in the context of different 
subjects. Early works in this area can be traced back to Biot (1958) in the context of 
viscoelastic materials. In the limit when Q(t — r) = C 5(t — r), where 5(t) is the Dirac-delta 
function, Eq. (3.1) reduces to the case of viscous damping. Taking the Fourier transform of 
Eq. (3.1), the equation of motion in the frequency domain can be expressed in terms of the 
frequency level, uj  G [0,..., oo) as

D(u;)q(a;) =  f  H  (3.2)

where q(o;) and f(u>) are the Fourier transforms of q(f) and f(t), respectively. The dynamic 
stiffness matrix D(u;) is the complex symmetric matrix given by

D(w) =  - uj2 M  +  iuuG(u) +  K  (3.3)

where G(u;) is the Fourier transform of Q(t). Provided that D(u;)-1 exists, the response
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vector becomes q(cj) =  D(n;) 1f(o;). Suppose there is interest in working with some linear 
function of the elements of q(o;), namely

<£(w) =  Qq(u;) =  Q D (w )-rf(o;) (3.4)

where Q is a rectangular matrix. Since </>(•) is a complex-valued function, only its modulus
is relevant in practice. That way, rj(u) is expressed as

ri(u) = |Q D (a;)-1f(a;)| (3.5)

For systems with general nonproportional damping as considered here, it is in general not 
possible to represent the response in terms of undamped modes. In such cases the response
needs to be expressed in terms of the complex modes of the system (Adhikari, 2004). The
computation of complex modes is numerically much more expensive as the size of the eigen
value problem doubles (Newland, 1989) due to the use of the state-space approach. For 
systems with general frequency-dependent viscoelastic damping models, a higher-order non
linear complex eigenvalue problem (Wagner and Adhikari, 2003) needs to be solved in order 
to obtain the dynamic response in terms of the modal series. The solution of such eigen
value problems is significantly more expensive compared to even nonproportional viscously 
damped systems. Adhikari and Wagner (2004) showed that for such system a direct inte
gration scheme in the time-domain can be more efficient compared to the modal approach. 
In this chapter, the alternative approach of obtaining the response by solving the linear 
system (3.2) for only few frequency points is explored. In such context, a GPE might be a 
convenient choice. In the following section an introductory example is discussed.

3.3 A  Sim ple Exam ple

Consider the simple three-degree-of-freedom spring-mass system shown in Figure 3.1. For 
Purposes of illustration, the simulator of the corresponding frequency response function 
(FRF) is regarded as if it were computer intensive. Let the mass of each block be 1 kg, 
the stiffness of each spring be 1 N/m,  and the viscous damping constant of the damper 
associated with each block be 0.8 Ns/m. The mass, stiffness, and damping matrices of this
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F ig u re  3.1: Three-degree-of-freedom non-viscously damped spring-mass system; m  = 1 kg, 
fc =  1 N/m , c = 0.8 Ns/m. The relaxation parameter A is taken as the first natural frequency 
of the system, \ / 2  — y/2 s_1.

simple system can be can be obtained as:

m 0 0 2k - k 0

M  = 0 m 0 , K  = —k 2k —k

0 0 m 0 - k 2k

and G(u>) =
A

A T  iui

c 0 0

0 0 0

0 0 c

(3.6)

where m  = 1, k = 1, c = 0.8, and A, the relaxation parameter, is chosen to be equal to the first 
natural frequency of the system, \J2 — \/2  s-1 . Note tha t the system has nonproportional 
damping. Let the forcing vector be f =  [0,1,0]T. In that case, the FRF corresponding to the 
£-th degree of freedom has the following form

<t>t {u) =  (3.7)

where D(o.')7l denotes the t-th  row of D(a>)-1 , for I  =  1 , . . . ,  3. Since <pt{;) is a complex- 
valued function, the simulator for t  fixed is the following single-variable function

7](u) = \<f>e(w)\ = |D(oj-)71f(c^) | (3.8)

Suppose that n  design points, namely . . .  ,cun, are chosen in the input domain of the
simulator rj(-). Let ( 77(0 1̂) , . . . ,  y(can)} be the training set resulting from the evaluation of r/(-)
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in each of the design points. Figure 3.2(a) shows the case when £ =  3 and n = 13 training runs 
(the circles) are used. As in the simple example in Chapter 2, the approximation improves 
when more training runs are used, as shown in Figure 3.2(b) with n = 21. Figure 3.3 shows

oa-a
of

-1 0

-1 5 ,

Frequency, Hz

(a) Predictive mean using 13 design points.

c333cr
,8Un

-1 0

-1 5

Frequency, Hz

(b) Predictive mean using 21 design points.

Figure 3.2: Emulation of rj(v) = for a damped spring-mass system with 3 degrees
of freedom. The forcing vector is [0,1,0]T; (-): simulator’s output, (o): training runs, (■••): 
emulator’s predictive mean.

upper and lower bounds of two standard deviations for the predictive mean. The expected 
reduction of the uncertainty is observed when more training runs are employed.
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F ig u re  3.3: Probability bounds (two standard deviations) for the predictive rneatn of the 
G PE tha t approximates the output of = \(f>3(u;)\ for a damped spring-mass system  w ith  
3 degrees of freedom. The forcing vector is [0,1,0]T; (-): simulator’s output, (o): tra in ing  
runs.
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3.4 N um erical Example: Frequency R esponse o f a

C antilever P late

Consider a finite element model of a rectangular steel plate 998 mm long, 530 mm wide, 3 
mm thick, and with a mass of 12.47 kg. Suppose it is clamped along a short edge and that 
it has a damping patch attached to it, as shown in Figure 3.4. The resulting damping is 
nonproportional, since the corresponding damping matrix becomes a block matrix with some 
zeros along the diagonal. Hence, it cannot be represented as a positive linear combination 
of the mass and stiffness matrices whose diagonals are non-zero (Caughey and O’Kelly, 
1965; Adhikari, 2001). Suppose that the plate is excited by a unit harmonic force and the 
frequency response is measured at one of the nodes. If the standard four-noded thin plate 
bending element model is assumed, it results in 12 degrees of freedom per element. As 
already mentioned in Section 3.2, the calculation of the frequency response for this kind of 
systems can be very expensive. Even for a relatively small case, say 25 x 15 elements, solving 
the linear system (3.2) for each frequency level can be very resource-consuming. Consider 
three frequency ranges, namely 0 - 1 . 0  kHz as the low-frequency range, 1.0 - 2.5 kHz as the 
medium-frequency range, and 2.5 - 4.0 kHz as the high-frequency range. Note that these 
frequency boundaries are selected on the basis of the qualitative nature of the response and 
devised purely for the presentation of the results.

An exploration of the applicability of GPEs for six dynamical systems was carried out. 
Keeping the aspect ratio of the plate, an increasing number of elements (up to 50 x 30 
elements and 4650 degrees of freedom) were considered. Assuming the same boundaries for 
the low, medium, and high-frequency ranges and taking a resolution of 1 Hz, a simulator of 
the FRF was coded in M atlab™ . For each frequency range, a training set whose size was 
chosen to be 5% the size of the corresponding level (50 design points for low, 75 design points 
for medium, 75 design points for high) was selected. The corresponding training runs were 
obtained by solving the linear system (3.2) at each of the design points. Using a machine 
with MS Windows Vista 64 bit, 2.66 GHz Quadcore Intel Xeon Processor, and 16.0 GB 
RAM, an emulator of the FRF was run for the six models in each frequency range and the 
time employed was registered. Following Keane and Nair (2005), h(-) =  1 was assumed due 
to the absence of prior knowledge of the mean. The smoothness parameters were obtained 
with the maximum likelihood method outlined in Chapter 2. The comparison of the time 
taken by the simulator and the emulator is shown in Table 3.1. The time taken purely 
by the emulator, tha t is, disregarding the time employed in obtaining the training runs is 
shown in parenthesis. Note how it remains approximately constant despite the increase in 
resolution. To illustrate the performance of emulation in the system with 50 x 30 elements, 
the predictive mean of the emulator and the corresponding probability bounds across each
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Outputs

Y d irection  (w idth) 0 0
X  direction  (length)

F ig u re  3.4: Finite element model of a steel cantilever plate with a damping patch. The 
material and geometric properties are: Lx = 998 mm, Ly — 530 mm, C — 3 mm, p =  7860 
kg/m 3, E  =  2.0 x 105 MPa. p r = 0.3, W  = 12.47 kg.

RESOLUTION TIME (seconds)
Low Frequency Medium Frequency High Frequency

No. elements DOF Simulator Emulator Simulator Emulator Simulator Emulator
25x 15 1200 794.28 40.47 1169.72 62.87 1201.85 65.71

(0.91) (4.74) (7.37)
30x18 1710 2098.56 106.06 3149.57 160.64 3107.51 162.80

(0.98) (4.87) (7.57)
35x21 2310 4830.03 244.50 7202.22 366.02 7207.08 365.68

(0.96) (4.88) (7.21)
40x24 3000 10040.81 499.31 15025.99 749.04 14934.11 759.22

(0.97) (4.84) (7.55)
45x27 3780 19253.25 992.63 29091.82 1429.92 29787.58 1495.28

(0.94) (4.86) (7.62)
50x30 4650 35273.89 1763.70 53107.12 2437.01 56063.20 2781.38

(0.97) (4.83) (7.49)

T able 3.1: Computation time in seconds of the simulator against the emulator, for the three 
frequency ranges and different resolutions. The numbers in parenthesis are the time employed 
purely by the emulator, without taking into account the computation of the training runs.

frequency range are shown in Figure 3.5, Figure 3.6 and Figure 3.7. Note that this numerical 
model is aimed at representing the experimental example studied in the next section.
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Figure 3.5: Emulation of the response in the low-frequency range with 50 design points; 
(-): simulator’s output, (o): training runs, (•••): emulator’s predictive mean. The shaded 
areas are probability bounds for the predictive mean (2 standard deviations).
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Figure 3.6: Emulation of the response in the medium-frequency range with 75 design points; 
(-): simulator’s output, (o): training runs, ( •••) : emulator’s predictive mean. The shaded 
areas are probability bounds for the predictive mean (2 standard deviations).

3.5 E xperim ental Exam ple: Frequency R esponse o f a 

Cantilever P la te

3 .5 .1  E xp erim en ta l S etup

Suppose that the cost of obtaining measurements for a given experiment is such th a t they 
can only be generated for a very limited number of points. Also, suppose there is no suitable
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Figure 3.7: Emulation of the response in the high-frequency range with 75 design points; 
(-): simulator’s output, (o): training runs, (•••) : emulator’s predictive mean. The shaded 
areas are probability bounds for the predictive mean (2 standard deviations).

model to simulate the frequency response function, due perhaps to lack of knowledge about 
the physics of the system. In that case, the available data can be regarded as a training set 
upon which the emulation algorithm can be applied. In this section, an emulator is used 
to substitute the runs necessary to approximate experimental output (Adhikari et a/., 2009; 
Adhikari and Sarkar, 2009), whereby a cantilever plate was excited by a harmonic force and 
the frequency response was measured at different locations. A rectangular steel plate with 
the same physical and geometrical properties specified before was used, except that it had
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no damping patch attached. The plate was clamped along a short edge using a clamping 
device. The clamping device was attached to the top of a heavy concrete block and the whole 
assembly was placed on a steel table. Special care was taken to ensure its stability and to 
minimize vibration transmission. Six accelerometers were used as the response sensors. Their 
locations were selected such that they covered a broad area of the plate. Small holes were 
drilled into the plate and the accelerometers were attached by bolts through the holes. The 
test iig is shown in Figure 3.8.

Figure 3.8: Experimental setup. A steel cantilever plate was excited by a harmonic force 
and die frequency response was measured. Six accelerometers were used as the response 
senscrs. Their locations were selected to cover a broad area of the plate.

3.5.2 E xperim en ta l M ethodology

Experimental modal analysis (Ewins, 2000; Maia and Silva, 1997; Silva and Maia, 1998) 
was ised in the experiment. The three main components of the implemented experimental 
techrique were (a) the excitation of the structure, (b) the sensing of the response, and (c) 
the data acquisition and processing. A shaker was used to act as an impulse hammer. The 
shaker generated impulses at a pulse interval of 20s and a pulse width of 0.01s. It was placed 
so that it impacted at a particular node of the plate. It was driven by a signal from a 
Sim uinkrM and dSpacerM system via a power amplifier. A hard steel tip is used for the 
ham ner to increase the frequency range of excitation. The steel tip used in the experiment
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only gave clean data up to approximately 4500 Hz. Therefore, 4000 Hz was used as the 
upper limit of the frequency in the measured frequency response functions. The data logged 
beyond 4000 Hz were ignored. The data obtained are available on the world wide web for 
research purposes at http://engw eb.sw an.ac.uk/~adhikaris/uq/.

3.5.3 E m ulation  of E xperim ental D ata

Emulation was performed to approximate the response of one of the nodes to vibration in 
the three frequency ranges, where 50, 75, and 75 design points were respectively employed. 
Analogously to  the emulation of simulated data in Section 3.4, h(-) =  1 was assumed due 
to the absence of prior knowledge of the mean. The smoothness parameters were obtained 
with the maximum likelihood method mentioned in Chapter 2. The results are shown in 
Figure 3.9, Figure 3.10, and Figure 3.11.

Note that the number of design points for each frequency range was chosen arbitrarily. 
However, if it were truly expensive to carry out the experiment, the number of design points 
would depend on the cost of generating data. Moreover, the experimental data for every 
frequency level would not be available for comparison with the emulator’s predictive mean. 
This brings up the problem of measuring if the simulator is a suitable representation of the 
emulator. This problem is addressed in Section 3.7.

3.6 D iscussion  of th e  M ethod and the R esults

Based on the above results, it can be argued tha t the use of GPEs in the context of structural 
dynamics can help approach the following questions:

a) Efficiency - Can the output of a structural dynamics simulator be approximated using

only a few trial runs?

b) Computational cost - Can the number of floating point operations and the CPU time
employed by an expensive simulator be dramatically reduced but still produce a satis

factory output?

c) Interpolation of experimental data - Can expensive experimental data be confidently in
terpolated to cope with the lack of a mathematical or computational model?

Regarding the first question, a GPE for the simple spring-mass system in Section 3.3 illus
trates how the predictive mean can be a plausible approximation to the corresponding FRF. 
Related to to the second question, the dynamic response of systems with up to 4650 degrees 
°f freedom was emulated in Section 3.4. Note that when the complete model was run, the
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F ig u re  3.9: Emulation of the response in the low-frequency range with 50 design points 
obtained from the experiment; (-): experimental results, (o): training runs, ( •••) : emula
to r’s predictive mean. The shaded areas are probability bounds for the predictive mean (2 
standard deviations).

linear system (3.2) had to be solved 4000 times. Adopting the GPE approach, it had to be 
solved only 200 times, equivalent to the number of training runs necessary to approximate 
the output across the frequency range. The saving in CPU time was considerable and it 
was observed that the computational burden was mainly due to the calculation of the train
ing runs, not to the emulation itself. From the figures presented, the approximation looks 
particularly appealing for the medium and high frequency ranges where the frequency re-
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Figure 3.10: Emulation of the response in the medium-frequency range with 75 design 
points obtained from the experiment; (-): experimental results, (o): training runs, ( •••) : 
Emulator’s predictive mean. The shaded areas are probability bounds for the predictive 
jnean (2 standard deviations).

Iponse function is smoother compared to that in the low frequency region. This smoothness 
Ian be attributed to the phenomenon of modal overlap for high frequencies (see for exam
ple Manohar and Keane (1994)). Nevertheless, this is encouraging since the medium and 
< ligh frequencies are in the computationally demanding ranges of vibration where numerical 
models of real-life systems can have several millions of degrees of freedom. W ith regards 
j o the third question, an FRF obtained via experimental modal analysis was emulated in
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F ig u re  3.11: Emulation of the response in the high-frequency range with 75 design points 
obtained from the experiment; (-): experimental results, (o): training runs, (•••) : emula
to r’s predictive mean. The shaded areas are probability bounds for the predictive mean (2 
standard deviations).

Section 3.5. Real test data were used as the set of training runs necessary to construct a 
GPE and the experimental output was compared with the corresponding approximation.

As mentioned before, a GPE is a statistical approximation to the simulator. For both 
the simulated and the experimental examples presented here, the predictive mean and the 
corresponding uncertainty bounds were provided. This is one of the main differences be
tween emulation and traditional interpolation techniques: emulation provides a probability
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distribution and thus a method of quantifying the uncertainty that arises from being able 
to evaluate the simulator very few times. In the examples presented, the emulator’s output 
seemed to represent the simulator’s output fairly well. Note, however, that visual inspection 
is not enough to rigourously determine the quality of the agreement between the simula
tor’s output and the emulator’s predictive mean. Despite the computation time for some of 
the simulators employed took tens of hours, it was still possible to obtain their output on 
the entire frequency range. For more expensive systems, the comparison of the simulator’s 
output against the emulator’s predictive mean would be, by definition, only possible in a 
very reduced number of points. Visual inspection would be unable to detect whether the 
emulator misrepresents the simulator’s output, in which case, all inferences made using the 
emulator would be spurious. Moreover, in case of having more than two inputs, graphical 
comparison is not possible. It is therefore important to have a suitable means of assessing 
the adequacy of a GPE.

3.7 Em ulator V alidation

Although the Gaussian process is a flexible class of distributions to represent prior beliefs 
about a computer model, a GPE might poorly represent the simulator due to a wrong choice 
of the mean and covariance structures or a wrong choice of the training set that might induce 
an inappropriate estimation of parameters. To cope with these disadvantages, Bastos and 
O’Hagan (2009) proposed several methods for the validation of the emulators, some of which 
were applied to  the results presented above.

Let fP =  {cjj1, . . . ,  a;*} be a set of validation points in the frequency domain, different 
from the already chosen design points, but similarly chosen using a criterion such as Latin 
hypercube sampling. The corresponding validation data are y* =  ■. • , r?(a;*)]T. One
possible diagnostic of y* is to calculate the standardized prediction errors of the simulator’s 
output and the predictive mean of the emulator given the training data. That is, for j  =

Each one of these standardized prediction errors has a Student’s t-distribution, conditional 
on original vector of observations y (and on the smoothness parameters). Note tha t the size 
of the training data can be large enough such that Ssj e(y*) approximates a standard normal 
distribution. Therefore, | ^ e(y*)| >  2 for a high j  would hint inadequacy of the GPE in a 

neighborhood of cu*.
The emulation of experimental data in Section 3.5 was validated using this measure. The 

validation set was chosen to have 50 validation points. Figure 3.12(a), Figure 3.13 (a), and
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Figure 3.14 (a) plot the predictive mean of the emulator against the standardized errors 
in the low, medium and high-frequency ranges. This type of graph can help to identify 
problems in the specification of the predictive mean, a situation tha t would be evident 
if, for example, most of the points lied in the positive area or viceversa. Additionally, 
Figure 3.12(b), Figure 3.13(b), and Figure 3.14(b) are the plots of the validation points 
against the standardized errors. This type of graph can be used to identify areas of the input 
domain for which the emulator misrepresents the simulator. In this case, a GPE appeared 
to be a sensible choice to represent the simulator, confirming what had been suggested by 
Figure 3.9, Figure 3.10, and Figure 3.11. Similarly satisfactory results were obtained for 
each of the frequency ranges.

A disadvantage of using the individual standardized errors is that correlation between 
the elements of the validation data set is not taken into account. Another possibility is to 
employ the Mahalanobis distance of y*, defined as

< W y * ) =  {y* -  m**[7?(J1*)]}W[»/(n*)]-l {y* -  m**fo(n*)]} (3.10)

where
(3.11)

is the vector of individual predictive means and V[t7(Q*)]-1 is the inverse of the emulator’s 
conditional covariance matrix expressed by Eq. (2.12) in Chapter 2. Note that it can be 
decomposed such tha t V  =  G G T. That way, the vector of validation errors is

tfG(y*) =  G - 1{ y * - m ” h(fi*)]} (3.12)

which implies tha t the Mahalanobis distance can be decomposed as

< W y * ) =  M yT W )  (3-13)

One available strategy to obtain G is the pivoted Cholesky decomposition. It has
the property of permuting the individual validation errors in Eq. (3.12), such that 
they are decreasingly ordered with respect to their variance. Figure 3.15, Figure 3.16, 
and Figure 3.17 show the individual validation errors, plotted against the index of 
the ordered validation data for the low, medium and high-frequency ranges. An im
plementation of the pivoted Cholesky decomposition is provided by Higham (2002) at 
http://ww w .m aths.m anchester.ac.uk/~higham /m ctoolbox/. Again, the adequacy of the 
emulator was sought to be confirmed by the validation errors being uniformly spread around 
zero.
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F ig u re  3.12: Individual standardized errors diagnostics. Low-frequency range.

3.8 C onclusions

In this chapter, the adoption of GPEs as an efficient predictive computational approach in 
deterministic structural dynamics was proposed. The capabilities of this computational tool 
were tested in both simulated and experimental contexts. Additionally, some diagnostics of 
adequacy were implemented, and the agreement between a simulator’s and an emulator’s 
output was verified. The main contribution of this chapter is that, although GPEs have 
been used in other disciplines, there is no precedent of them having been implemented 
for deterministic structural dynamic analysis. It was shown tha t the technique has good
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F igu re  3.13: Individual standardized errors diagnostics. Medium-frequency range.

potential for this area of engineering.
The approach applied in this chapter will be extended to the case of stochastic struc

tural dynamics in Chapter 5. Before that, the capabilities of emulators in the context of 
deterministic engineering systems are further explored. In Chapter 4, a novel coupling be
tween GPEs and the domain decomposition method is proposed. Based on this coupling it 
will be shown how to assimilate a low-fidelity finite element model with a more expensive 
high-fidelity model.
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Chapter 4

A ssim ilation of D eterm inistic  

M ulti-fidelity F inite Elem ent M odels

4.1 Introduction

The size of the finite element models has increased significantly over the past decades. For 
example, in the automotive and aerospace industries, models with millions of degrees of 
freedom are quite common nowadays. Such high-resolution models, combined with detailed 
physics can give good fidelity to experimental results. However, a potential disadvantage is 
that such large models may be computationally expensive. One alternative to address this 
problem is to use a low-resolution model. Although such low resolution models are often 
used during the design iteration, they are likely to be low-fidelity and may miss some crucial 
physics. The motivation of this chapter is therefore to investigate the possibility of improving 
the fidelity of a low-fidelity model without completely solving a detailed high-fidelity problem. 
A Bayesian approach that unifies GPEs and the domain decomposition method to solve the 
underlying boundary value problem of the finite element model is developed. Using this 
approach one can seamlessly assimilate a low-fidelity model with a more expensive high- 
fidelity model.

The Domain Decomposition Method (Schwarz, 1890; Glowinsky et al., 1987; Glowin- 
ski and Wheeler, 1987; Bjprstad and Widlund, 1989; Babuska and Elman, 1989; Toselli and 
Windlund, 2005; Rao et al., 2003; Gallimard and Sassi, 2010; Guibert and Tromeur-Dervout, 
2007; Bendali et al., 2007) is a divide-and-conquer algorithm aimed at solving partial dif
ferential equations (PDEs). W ith the develpment of more powerful computers and parallel 
architectures, it has become a common tool when solving expensive finite element models. 
Its main feature is that a linear system of discretised PDEs is recast as a set of smaller linear

51



52 Chapter 4. Assimilation of Deterministic Multi-fidelity Finite Element Models

systems to be solved separately. A finite element model can thus be parallelized by parti
tioning the domain ft in a number of subdomains. This allows an increase in the resolution
of the model, along with a reduction in CPU requirements. There is, however, a potential 
disadvantage with this approach, since in order to obtain the finite element solution for each 
subdomain, the governing PDEs must be solved in the interface of each pair of subdomains. 
In this chapter, GPEs are used to approximate the solution to the interface problem.

4.2 M ulti-fidelity  F inite E lem ent M odeling

Let ft be a bounded domain in R 2 with Lipschitz continuous boundary <9ft, that is, there 
exist a finite number of covering open sets On such that, for every £, <9ft C l  On is the graph of 
a Lipschitz continuous function and ft fl On lies on one side of this graph. The requirement 
of this type of continuity is important to control the smoothness of the boundary <9ft. Let 
T h be a family of conforming meshes (triangles) which are shape-regular as the mesh size 
h —> 0. Consider the elliptic PDE with the following Dirichlet boundary condition

— V [a(x)V u(x)] +  /3(x)u(x) — / ;  x G ft

u(x) = 0; x G dft (4.1)

The Hilbert space L 2 (ft) and Sobolev space H k (ft) are respectively endowed with inner 

products (u,v) = f i}u(x)v(x)dx  and (u,v)k = f n u(x)v(x)dx + f n ( g X & )  + - • - +  ( 0 ) ( 0 ) -  
The aim is to obtain the function u : ft -» R  which satisfies the conditions of problem (4.1) 
for a given /  : ft —> R.

As discussed in previous chapters, the standard finite element method can be applied in 

order to recast the PDE in problem (4.1) as

K (x)u(x) =  f  (4.2)

with K  G R NxN and N  the number of degrees of freedom in the underlying finite element 

mesh.
Suppose Lf  and H f  are two finite element models to solve problem (4.1). Let n^L/) and 

niHf) denote the number of elements in the finite element meshes of Lf  and H f  induced by 
Eq. (4.2) and let JV(L/) and JV<H/) be the respective number of degrees of freedom. Also, let 
h(Lt) and be the respective element size. Finally, let u (r) be a reference solution (e.g. 
experimental results) to (4.1). We call Lf  a low-fidelity model and Hf  a high-fidelity model 

if the following inequalities hold:
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1. ||u ^ (x )  — u(L-^(x)|| > ||u ^ (x )  — u ^ ) ( x ) | |  (Accuracy)

2. > hfHA (Resolution)

3. A^Af) < AAA/9 (number of degrees of freedom)

4. n t f  ̂ < n k f  ̂ (number of elements)

It is im portant to note that the concepts of low and high fidelity based on the above 
definition are relative. A simple refinement of a given low-fidelity mesh would imply a 
different increase in the fidelity of the model depending on the particular characteristics of 
the problem at hand. A more accurate description of Lf  and Hf  would therefore be ’’lower” 
and ’’higher” fidelity models respectively. Keeping this note in mind, the current low and 
high fidelity terminology is kept in the remainder of the chapter. Also, note that in the above 
definition it is implicitly assumed that both models Lf  and Hf  have same polynomial order 
p. A general version of the finite element method, known as /ip-finite element method or hp- 
FEM (Babuska and Suri, 1990) would incorporate elements of variable size (h ) and variable 
polynomial degree (p). This kind of method is beyond the scope of this dissertation. Note 
tha t a high-fidelity model can possess more features than simply more spatial resolution. 
For example, with higher resolution new geometrical details and more physics can be also 
added. The scope of multi-fidelity modeling therefore encompasses multi-scale and multi
physics modeling. Figure 4.1 shows two finite element models on a D-shaped domain, each 
with a different fidelity level.

4.3 A  B rief O verview  o f D om ain D ecom position  and  

M etam odeling

4 .3 .1  T h e  D om ain  D eco m p o sitio n  M eth o d

Let D be partitioned in S  subdomains {f2j : 1 < j  < <S}, such that fi, — U j D p  Suppose 
these domains are non-overlapping, that is =  0,Vj ^  k. The interface is denoted
by T, where

r  =  y  (dDi n \on (4.3)
i,3

In Figure 4.2, the D-shaped domain Q from Figure 4.1 is partitioned into subdomains Di and 
^ 2 - The interface T separates both subdomains. Figure 4.3 shows the finite element mesh of 
the partitioned low-fidelity model Lf  and the partitioned high-fidelity model Hf.  In order to 
obtain the solution to these finite element models, it can be shown (Toselli and Windlund,
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(a) Low-fidelity model L f

H ig h -fid e lity

0 0.5 1
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(b) High-fidelity model H f  

F ig u re  4.1: Low and high-fidelity finite element models on the domain 0 .
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6L2

0 0.5 1
L ength  (m )

Figure  4.2: Domain decomposition of Q into the subdomains Yt\ and D2. The borders of 
each subiomain are dD\ and dMi respectively. The interface Y separates the subdomains.

2005) tint if Yl is the disjoint union of the subdomains f l i , . . . ,  Ds, then the discretised PDEs 
governing the system's response can be recast as the following partitioned linear system

I  /CT 0 .

0 k 2 .

0 0 .

\  B\ B2 .

0 B ] \  (  u, \

1*10 B \

JCn B f  

Bs C )

U2

Ur fs

\  fc )

(4.4)

The solution of the partitioned linear system (4.4) is obtained by solving the interface 
problem

(C -  B xK,flB l  -  . . .  -  BslCs'Bl) uc 

= f c -  B ^ lh  - ■ ■ ■-  B s K s l f s (4 .5 )
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(b) High-fidelity model H f

F igure  4.3: The finite element mesh of the low and high-fidelity finite element models on 
the domain D, which is decomposed into the subdomains Qi and fJ2-

and then solving in parallel

u\ =  /Q 1 ( /i  -  B j u c)

Us = KS l Us  -  B SUc) (4.6)
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Figure 4.4 shows the domain decomposition solution of problem (4.1) for Hf  and for the 
values a(x) =  1, ,d(x) =  0, and f  = 1. The model represents the deformation of a membrane 
in the domain Q.

0 . 06 '

Width (m) ( Length (m)

F ig u re  4.4: Domain decomposition solution of the high-fidelity finite element model H f .

The main problem with solving a finite element model using domain decomposition is 
that the Schur complement matrix

E = C  — B ^ B J  -  . . .  -  Bs JCf;l B rs  (4.7)

is numerically expensive to obtain. Hence, solving the linear system (4.5) is likely to be
come a bottleneck of the domain decomposition strategy for a high-fidelity model H f .  A 
metamodeling approach based on GPEs is therefore proposed, whereby the solution to the 
interface problem (4.5) is approximated using only a few' evaluations of a lower-fidelity model 
Lf .

4.3.2 M etam odeling  A pproach

Let it*(x) : Lt C R 2 —> R be a finite element solution to problem (4.1). If x =  (x, y)  and 
u*(x) =  2 , then u* is a function that maps (x,y)  i—> 2 . Adopting this notation, a level set of
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the domain with respect to the rr-axis is defined as

£ x(c) = 1 2: it*(c, y) = z  ; c G R j (4.8)

and analogously for a level set with respect to the y-axis

£ y(d) =  |  z u*(x, d) = z \ d  G R } (4.9)

For nx, ny G Z +, let A denote

A =  j £ x(cj),£y(dj) 1 < i < nx , l  < j  < ny\ (4.10)

that is, the family of level sets with respect to x and with respect to y  on Q, determined 
by every number in C =  {c*, dj G R  | 1 <  i < nx, 1 <  j  < ny}. Let Fx(q) and Ty(dj) be the 
preimages of every Cx(cj), Cy(dj) G A, tha t is

r ' f e )  =  ( y e n  

r»(rfj) =  j i e s i

U

U

(Ci, y) 

' (x,dj) =  z j

(4.11)

(4.12)

Notice th a t u*(x) : R 2 R, whereas Tx(ci) 1—> Cx(ci) and Ty(dj) 1—> Cy(dj) are both
mappings rjf : R  —> R  and 77J : R  —> R. Moreover, for every Ci,dj G C, the set of points 

defined by j £ x(q) (J Cy(dj) J is the solution of the two-dimensional interface problem 
(4.5) whenever the interface between any two subdomains is parallel to any of the axis 
x and/or y. As mentioned before, this solution is the image of the mappings in Ti = 

{^fO)*77j ( ' )  | 1 <  * < 1 < J < ny}• In order to reduce the computational cost of the
interface problem, these mappings can be approximated using GPEs. The main idea is that 
the level sets defined by every interface problem in a low-fidelity finite element model can 
be emulated in order to approximate the interface problem in a corresponding high-fidelity 

finite element model.

W ithout loss of generality, suppose th a t n design points x i , . . . ,  xn are chosen in the input 
domain of any mapping rj(-) G H  (which will thus become the relevant simulator). Therefore, 
the set |? 7( x i ) , . . . ,  r/(xn) | ,  will be regarded as the training set. Once the simulator r?(-) is 
defined, the same principles used in Chapter 2 can be applied.
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4.4 T he U nification o f G aussian P rocess E m ulation  

and D om ain D ecom position

Let u*(x) : Q —»■ R  be a finite element solution to the problem (4.1) for a low-fidelity finite 
element model Lf.  Suppose that the solution U*( x )  : f2 —> R of a high-fidelity model Hf  
is to be obtained via domain decomposition. Assume the finite element mesh of Hf  to be 
a refinement of the mesh of Lf.  If a Delaunay triangulation is assumed for these meshes, 
it can be proved (George, 1991) that MfiLf)  C Af ( Hf ), where M{Lf )  and Af (Hf )  are the 
low and high-fidelity sets of nodes respectively. After being partitioned in subdomains, 
suppose the domain Q contains nx level sets with respect to the £-axis and ny level sets with 
respect to the y-axis. As discussed in Section 4.3, a total of nx +  ny simulators of the form 
p f  ( • )  : P ^ C i )  —> C x { c i )  and p ^ ( - )  : T v ( d j )  —> C y ( d j )  can be specified for u*(x).

Notice that, since N ( L f )  C Af (Hf ) ,  the sets Af (Hf )  n r x(cj) and M{Hf)  Pi r y(dj) can be 
regarded as design points upon which GPEs can be built in order to infer the output of each 
simulator pf  (•) and yjf(-)- That way, all the values of U*(x)  that solve the interface problem 
for Hf  would be approximated by the emulator.

4.5 N um erical Exam ples

4 .5 .1  A  C ase o f  2 Su b d om ain s

The model of the deforming membrane presented in Section 4.3 was considered again. The 
low-fidelity mesh consisted of 145 nodes, whereas a refinement yielded a high-fidelity mesh 
with 2113 nodes. The level set £ x(0.5) for Lf  was determined by solving the interface 
problem, by means of Eq. (4.5). The set f i f{Hf)  fl r x(0.5) determined the design points 
upon which to build the GPE to approximate the solution to the interface problem for Hf .  
Figure 4.5 illustrates how these design points are assimilated from Lf  to Hf .  Figure 4.6 
shows the simulator defined by px : r x(0.5) —» £ x(0.5). It also shows the approximation 
to £ x(0.5) provided by the predictive mean of the GPE, as well as probability bounds of 2 
standard deviations about this mean.

Once the solution of the interface problem for Hf  was emulated, the approximate solution 
for the subdomains and was obtained in parallel by solving Eqs. (4.6). Figure 4.7 
shows the approximate solution to Hf  for all the nodes in the high-fidelity mesh. The training 
runs obtained from the level set £ x(0.5), which were calculated by solving the low-fidelity 
model L f , are also shown.

The computational advantage of the proposed approach can be appreciated by noting that 
13 nodes lie in the interface of Lf .  Thus, the cost of solving the interface problem for Lf  was
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(a) Low-fidelity model L f
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(b) High-fidelity model H f

Figure 4.5: The finite element mesh of the low and high-fidelity finite element models on 
the domain Q, which is decomposed into the subdomains and ft2- The design points on 
Hf are defined by the triangulation of Lf  and therefore lie on the interface T.
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F ig u re  4.6: Approximation to the level set £ r (0.5) of Hf  with the mean of a Gaussian 
process emulator and uncertainty (2 standard deviations) about this mean; (o): training 
runs, (• • •): emulator's predictive mean.

width (m) o Lcngth (m)

F ig u re  4.7: Solution of the high-fidelity finite element model H f .  The blue dots represent 
the training runs obtained from the level set £ x(0.5) from the low-fidelity model L f .  The 
interface problem for H f  was approximated by a GPE.
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0 {  133) due to the solution of the Schur complement system in Eq. (4.5). The refinement of 
the Delaunay triangulation led to an increase of 4 times the number of nodes on the interface, 
which implied a cost of 0 ( 4 ?  x 133). In order to compare the approximate solution of H f , 
denoted by U*(x), with the domain decomposition solution U*(x) the absolute difference 
\U*(x) — U*(x)\ was computed for every node. By definition, the maximum difference over all 
the nodes is the norm ||t/*(x) — t/*(x) ||oo , which for this case had a magnitude of 8.12 x 10-4. 
The contour defined by this comparison is shown in Figure 4.8. Note how, by construction, 
the difference in every design point is equal to 0. The same is true for the boundary, given 
the boundary conditions of problem (4.1).

F igure 4.8: Absolute value of the difference between the domain decomposition solution of 
Hf , denoted by t/*(x), and the solution with the proposedjnethod, denoted by U*(x).  By 
definition, the maximum of this difference for all nodes is \\U*(x) -  E/*(x)||0O ~  8.12 x 10-4 .

4.5.2 A Case of Two N on-convex Subom ains

An interesting case arises when the domain fit or any of its subdomains is not convex. As a 
reminder, a set 12 is convex if for any pair of points x  and y G D, the point Xx +  (1 — A)y G 12 
for all A G [0,1]. Consider the domain shown in Figure 4.9. 12 is clearly non-convex in R2, 
as it is trivial to construct a segment that connects two points belonging to the domain such 
that part of the segment does not belong to it. Due to this, the level set £*(0.5) has a
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preimage r x(0.5) which is non-convex in R, namely

r x(0.5) =  w*(0.5, y) = 2: |

=  € n  u*(0.5, y) = z; 0 < y < 0.25

= r? (o .5 )u rx(o.5)

} u { j e n  u*(0.5, y) =  2 ; 0.75 < y < l}

(4.13)

Hence, in order to approximate £ x(0.5), two GPEs were built, taking the respective 
design points from N ( H f )  n  Tf(0.5) and Af{Hf )  fl rf(0.5). The proposed method could thus 
be applied as previously. The result of doing this can be seen in Figure 4.10. Note tha t 
for the sake of brevity, figures with the predictive means of the emulators, as well as the 
uncertainty bounds is omitted. However, they resemble the parabolic curve in Figure 4.6.

For this case, the low-fidelity mesh consisted of 532 nodes, whereas a refinement yielded 
a high-fidelity mesh with 2008 nodes. The refinement of Lf  into Hf  yielded two nodes per 
design point per preimage, such that the computational cost of solving each interface problem 
for Lf  and obtaining the training runs was 2 x 0 ( 73) as opposed to 2 x G(23 x 73). The 
node-to-node comparison yielded a maximum difference of ||£/*(x) — f/*(x)||00 =  3.80 x 10-5 . 
The corresponding contour is shown in Figure 4.11.

4 .5 .3  A  C ase o f  T h ree  Su b d om ain s

In this example, the proposed method is tested assuming a domain Q tha t is partitioned into 
three subdomains. This partitioning determined two interfaces, whose intersection with the 
corresponding nodes produced two level sets, £ x(0.5) and £ y(0.5). The L-shaped domain Q, 
as well as the low and high-fidelity meshes and the interfaces defining the design points are 
all depicted in Figure 4.12. In this example, the low-fidelity mesh consisted of 150 nodes, 
whereas a refinement yielded a high-fidelity mesh with 557 nodes.

The simulators r]x : r x(0.5) —> £ x(0.5) and rf  : r x(0.5) —> £^(0.5) were emulated running 
two GPEs. The solution for the subdomains S72, and was obtained in parallel following 
Eqs. (4.6). The solution is shown in Figure 4.13. Note that the refinement of Lf  into Hf  
yielded again two nodes per design point on each interface, such that the computational 
cost of solving each interface problem for Lf  and obtaining the training runs was (9(83) as 
opposed to 0 ( 23 x 83). Finally, The node-to-node comparison yielded a maximum difference 
of ||E/*(x) — t/*(x) 11co  =  5.71 x 10-3. The resulting contour is shown in Figure 4.14.
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(b) High-fidelity model H f

Figure 4.9: The finite element mesh of the low and high-fidelity finite element models on 
the non-convex domain D, which is decomposed into the subdomains and D2 . The set of 
design points lies on a non-convex interface.
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F ig u re  4.10: Solution of the high-fidelity finite element model H f .  The blue dots represent 
the training runs obtained from the level set £ T(0.5) from the low-fidelity model L f .  The 
interface problem for H f was approximated by two GPEs, due to the non-convexity of the 
domain 12.

4.6 C onclusions

In this chapter, a novel method based on GPEs to solve boundary value problems employing 
of domain decomposition was proposed. Given some conditions, the method can assimilate a 
low-fidelity finite element model with a computationally more expensive high-fidelitv model. 
The computational cost of the domain decomposition solution of the high-fidelity model was 
reduced by solving the interface problem of the low-fidelity model. The main contribution of 
the chapter is the novel coupling between GPEs and domain decomposition methods to solve 
boundary value problems, reducing the computational cost and assimilating finite element 
models with different levels of fidelity.

This chapter concludes our study of GPEs for deterministic engineering systems. So 
far. we have proposed two methods for coupling GPEs with the finite element method. In 
the next chapters, the systems that will be analyzed will include parametric uncertainty, 
whereby the parameters of the system will be represented either by random variables or by 
random fields. As it will be seen, this will considerably increase the computational cost of
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x 1 0 5

F igure  4.11: Absolute value of the difference between the domain decomposition solution 
of H f ,  denoted by U*(x), and the solution with the proposed method, denoted by U*{x). By 
definition, the maximum of this difference for all nodes is ||[/*(x) — U*(x)Hoc ~  3.8 x 10~°.

the simulators involved and the stochastic finite element methods available.
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(a) Low-fidelity model L /
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(b) High-fidelity model Hj

Figure  4.12: The finite element mesh of a low fidelity model on an L-shaped domain Q, 
decomposed in three subdomains Q,\. and Q3, thus inducing two interface problems.
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F ig u re  4.13: Solution of the high-fidelity finite element model H f .  The blue dots represent 
the training runs obtained from the level sets £*(0.5) and £ y(0.5) from the low-fidelity model 
L f .  The interface problems for H f  was approximated by Gaussian process emulators.

0 0.5 1

F igure  4.14: Absolute value of the difference between the domain decomposition solution 
of Hf,  denoted by £/*(x), and the solution with the proposed^method, denoted by U*(x). By 
definition, the maximum of this difference for all nodes is || t/* (x) — £/*(x)||00 ~  5.71 x 1CT3.



Chapter 5 

Em ulation of System s w ith  Random  

Param eters

5.1 Introduction

In this chapter we begin our study of GPEs applied to engineering systems with parametric 
uncertainty by revisiting the structural dynamic analysis presented in Chapter 3 and extend
ing it by including random parameters. The consideration of uncertainty in numerical models 
to obtain the probabilistic description of a system’s response is becoming more desirable for 
industrial-scale finite element models. This is because uncertainty is practically unavoid
able in the description of realistic physical systems. Randomness can be introduced due 
to uncertain material properties, uncertain boundary conditions or unknown manufacturing 
tolerances. Very large finite element models are used for complex engineering dynamical 
systems such as helicopters, automobiles and aircrafts. For such models, the consideration 
of uncertainty and a wide frequency-range of interest make the stochastic structural dynam
ics particularly challenging from the point of view of computational methods. Stochastic 
finite element based methods have been proposed for uncertainty propagation in static or 
low-frequency vibration problems. For dynamic problems, perturbation based approaches 
utilizing the random eigenvalue problems (Scheidt and Purkert, 1983; Adhikari and Friswell, 
2007) have been used for the forced vibration response of linear dynamical systems. These 
methods are however, normally restricted to low level of random variation in the parameters. 
This problem can be avoided if a simulation based approach is adopted. The disadvantage is 
tha t direct Monte Carlo simulation based approaches are computationally expensive. This 
context is therefore suitable for the inclusion of GPEs as a tool for reducing the computa
tional cost involved.
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5.2 Prelim inary Ideas

As mentioned in Chapter 2, emulation makes it possible to obtain a statistical approximation 
to the output of a simulator after evaluating a small number of design points in its domain, 
hence reducing the required computer processing time. However, there are cases when even 
obtaining the training runs can be computationally demanding. Consider a complex physical 
process that involves a random parameter 9. Let this process be investigated by running 
an expensive simulator 77 : f2 x 0  —> Rd, where f2 contains only non-random parameters 
(spatial coordinates, units of time, frequency levels as in Chapter 3, etc.) and 0  is the 
set of possible realizations of 6. Note that in this case the term “non-random” is preferred 
over “deterministic” , since the distinction between random and non-random parameters is 
artificial: when implemented numerically, a set of realizations of 9 is a sequence of pseudo
random numbers; for a fixed random seed such a sequence is deterministic. Suppose that 
a statistic of the output of 77(-), such as the mean or the variance, is to be obtained. Since 
running ?7(-) is assumed to be expensive, a GPE can be employed to approximate the desired 
statistic. Note however that if the training runs upon which the emulator is built are based 
on design points chosen from 12, then the task may easily become burdensome. That is 
because in order to obtain even a few instances of the desired statistic it would be necessary 
to evaluate r](-) at each design point repeatedly for a potentially large number of realizations 
of 9, say S.  An example of this is shown in Figure 5.1, where rj{x,9) — 9sin{9x), x  £ 12 =  
{0 ,0 .01 ,..., 5.99,6}, 9 is uniformly distributed in 0  = [0,2], and S = 150. Figure 5.1(a) 
shows the corresponding 150 realizations of 7y(-), as well as the mean output (the dotted 
line) for all x  e  12. The direct calculation of the mean output would involve 150 x 601 
evaluations of Suppose tha t in order to reduce the cost of calculating the mean output 
at every x, 100 design points {xjjJP} are chosen, amongst which are x h = l , x i2 =  3 ,x i3 =  5. 
Figure 5.1(b) shows the corresponding three mean output values (the circles), which would 
be part of the 100 training runs upon which a GPE would be built in order to approximate 
the mean output (the dotted line) for the remaining x ’s. In this case, ?](•) would have to 
be evaluated 150 x 100 times, representing 16.64% of the original computational effort. 
Suppose tha t even this number of evaluations is still more than what can be afforded, so 
that less design points are chosen. As has been in seen in previous chapters, this reduces the 
accuracy of the approximation.

The aim of this chapter is to explore an alternative design point generation scheme for 
cases analogous to the one above, where not only does a computer model is expensive but 
also the approximation of its output via a GPE is hindered by the cost of generating the 
corresponding training runs. The proposed scheme is based on observing that the structure 
of the domain f2 x 0  offers the possibility of sampling the design points from 0,  whilst fixing 
the x ’s in £2. That is, if the output of rj(-) is treated as a function of 9 only, then it is
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(b) Mean output of r/(x, 9) for x =  1,3,5

F ig u re  5.1: 150 realizations of r)(x.,Q) = Osin(f)x) and mean output; x  E 0  =
{0.0 .01 ....,5 .99 ,6} , d ~ U [ 0,2].

possible to build an emulator at every point in Q and approximate the statistic of interest 
using design points taken from ©. If the number of selected design points per emulator is 
less than S,  then the total number of evaluations of r/(-) is reduced. Figure 5.2 illustrates 
this idea. For x =  3 fixed, the mean of 150 realizations of rj(3, 0)  is -0.32307, as shown in 
Figure 5.2(a). On the other hand, Figure 5.2(b) shows the same 150 realizations and their 
mean (the dotted straight line), this time with 0 as the abscissas. Consider choosing (say) 6 
design points from 0  (the diamonds). Using these training runs, a GPE could approximate
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the remaining 144 realizations of 77(3 , 9) and the mean of the resulting 150 values would in 
turn be used to approximate the mean output at x  =  3. If the same procedure is followed for 
all the x ’s in fi, then Ty(-) would be evaluated 6 x 601 times. This represents 24.04% of the 
effort in the approach above and only 4% of the original computational effort. Additionally, 
if the time taken to emulate the statistic for every point in Q is reasonably short, there might 
be an improvement in the overall computer processing time required.
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(a) 150 realizations of r;(3,9) and mean output
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F igure  5.2: 150 realizations of 77 (3 ,9) and mean output as functions of both x  and 9.
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5.3 Structural D ynam ics w ith  Param etric U ncertain ty

Refer to the spring-mass system shown in Chapter 3. A more credible model would incor
porate uncertainty in the equation that governs the system’s response. Suppose tha t any of 
the matrices in Eq. (3.3) is a random matrix, that is, it includes a random parameter 9 £ 0 . 
W ithout loss of generality, if the stiffness matrix K is random, then the relevant simulator 
is

r,(ui,0)= |[—cj2M  +  iwC +  K(#)]-1f(w)| (5.1)

The domain of Eq. (5.1) is Q x 0 , where Q is the set of admissible frequency levels and 0  
is the set of realizations of the random parameter 9. Note that for a fixed random seed, 
the simulator in Eq. (5.1) is deterministic, as it produces the same (scalar) output given the 
same stream of pseudo-random numbers. For notational convenience, the random seed does 
not appear explicitly as a parameter of the simulator.

Consider a dynamical system whose FRF is simulated by Eq. (5.1). Suppose tha t a 
statistic of the FRF, such as the mean or the variance, is to be estimated. Let ||S7|| =  TV 
and I  € {1 , . . . ,  TV}. Also, let {0f}f=1 =  {9{, . . . ,  9es } be a set of realizations of 9 associated 
to a fixed cjg in Q = { o ^ } ^ . Then, at every the mean FRF is estimated by

. . .  ,6es ) =  (5.2)

whereas the variance of the FRF is estimated by

S'
rj2(uj(>,9[, . . . ,9g )  =

S -  1 , v I,
s = l  s = l

(5.3)

A possible approach is Monte Carlo simulation (MCS): For i  =  1 , . . . , T V ,  simulate 
{rj(uj£, #f)}f=1 and compute Eq. (5.2) or Eq. (5.3). The number of evaluations of ??(•) would 
be S • T V .  Nevertheless, if r](-) is computationally expensive, MCS can quickly become im
practicable. Two strategies to cope with this problem are discussed below.

5 .3 .1  S tra teg y  1

This approach operates by sampling design points from fh The principle is to apply MCS 
to a small set of design points and use tha t information as the training runs necessary to 
emulate the statistics of interest for the remaining o/s in ST To do this, select n  design points 

where n  <C T V .  For i = 1, . . .  ,n,  simulate ^ )} f=i and compute Eq. (5.2) or
Eq. (5.3). Use the resulting training runs to emulate the T V  — n  statistics corresponding to
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all the untried uj's in Cl. The number of evaluations of rj(-) would be reduced compared to 
MCS, since the assumption n < ^ N = > S - n < t i S - N .

5.3 .2  S tra teg y  2

Observe however that given the structure of 0  x 0 , it is possible to sample design points 
from 0  rather than Cl. That way, the number of evaluations of r](-) can be further reduced. 
This approach operates by sampling design points from 0  whilst keeping the parameters in 
Cl fixed. For £ = 1,...,  N,  generate Li design points { 9 j } ^ v  Then, compute the training 
runs {9j, r)(ue, and emulate iVE runs tb.e untried points 1 ^ } ^  =
[6{, . . . ,  $jvE} in order to calculate the mean

1 ne 

E k=i
(5.4)

or the variance

r)2{ut,6[, . . .  ,0{vE) =
N e 

N t?, 1

-̂ e Ne

—  ^2 n 2̂ ,  «[)- [—  ^2 v(»t,
k=l k=1

(5.5)

N
The number of evaluations of Ty(-) would be L = L Note that if L S,  the

£=1
computational burden should also be reduced compared to Monte Carlo simulation, since

5.3 .3  C o m p u ta tio n a l C om p lex ity

Both strategies above involve less evaluations of r)(-) than MCS. However, the interest lies 
in determining the conditions under which strategy 2 is less expensive than strategy 1. 
Clearly, the computational effort of each strategy is divided in two: first in simulating 
(sampling design points either from Cl or © and evaluating t/(-)) and second in emulating. 
Both strategies take less time in emulating than in simulating. Then, for strategy 2 to 
outperform strategy 1 it has to be true that

L < S n (5.6)

However, this condition is trivially met for n > 1, since by assumption
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5.4 N um erical Investigation: A  D am ped C antilever

P la te

In order to compare the strategies outlined in Section 5.3, consider the finite element model 
of the rectangular steel plate used in Chapter 3. It is well established that, for a finite 
element model with ne elements, the global stiffness matrix K  can be obtained from the 
element stiffness matrices K ^ , . . . ,  using the direct stiffness method (Bathe, 1995). 
Let E  denote Young’s modulus, the measure of stiffness in the material of the plate. Assume 
(for now) tha t E  is the same for every element. Then

Tig
K  =  £ ^ K (e) (5.7)

e = l

Where in order to perform the summation, each element stiffness matrix is written as a
-—- ĝ̂ •—■ ĝ̂

m atrix K  of the same dimensions as K. All the entries in K  are zero except those which
correspond to an element degree of freedom. Analogously, for Eq. (5.1), if Young’s modulus
is random, but the same for every element, then

ne ~< \
K{0) = 9 J 2 k  (5.8)

e = l

A number of sample FRFs of the plate were computed with the same finite element 
simulator described in Chapter 3. For every run of the simulator, the random Young’s 
modulus was assumed to be of the form

9 =  E q • (1 +  e (p) (5-9)

where E q is an initial value, e 6 B + with e « l ,  and <p is a (pseudo) random number such 
that tp ~  A7(0,1). Hence, 9 ~  N(Eq, [eE0]2).

A preliminary study was carried out by running a series of 10 experiments, each with 
S = 100 Monte Carlo simulations of ?7 (-). One of these runs is shown in Figure 5.3. The finite 
element model employed had 25 x 15 elements, e =  0.1, and E q  = 2.0 x 1011 Pascals (Pa) 
(the typical value for steel). Notice that 99% of the values of 9 must lie within 3 standard 
deviations from Eq, namely within the interval [1.4 x 10u ,2.6 x 1011] and thus negative, 
nonphysical values of 9 are unlikely. The frequency domain Q ranges from 1 to 100 Hz. The 
resolution is 1 Hz, therefore |f2| =  AT =  100. The preliminary study confirmed tha t near the 
resonance frequencies, the system is more sensitive to parametric uncertainty. Due to this
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effect, the frequency u  = 64 was identified to consistently exhibit the widest spread between 
its maximum and its minimum frequency response. This was the case for every one of the 
10 repetitions of the experiment. Consequently, for uj = 64 fixed, the mean and variance 
of the FRF was computed for sample sizes S  ranging from 1 to 2000. As it can be seen in 
Figure 5.4, both the mean and the variance seem to stabilize around a sample size of 1000. 
Therefore, th a t was the value chosen for S.

- 5 0
FRF envelope

- 6 0

- 7 0

- 8 0

-110

-120

- 1 3 0

- 1 4 0 100
Frequency [Hz]

F igu re  5.3: The envelope resulting from S  — 100 Monte Carlo simulations of ??(•), with 25 
x 15 elements, Eq = 2.0 x 1011 Pa, and e =  0.1

The Monte Carlo mean and variance of the FRF at every u  ( E  were taken as the 
benchmark against which the accuracy of strategies 1 and 2 was compared. The random 
seed was fixed, such tha t for the same design points and the same number of simulations, 
the statistic of the FRF remained constant. Note that it was the output of the simulator, 
not the value of the quantity the simulator is attempting to predict, what was taken into 
account to determine the accuracy of both strategies.

Strategy 1 was implemented sampling n = N/10  =  10 equally spaced design points from 
f2. For each design point, the mean and the variance of the FRF was computed as in Eq. (5.2) 
and Eq. (5.3). A GPE was built upon the set of training runs. W ith no prior knowledge 
about the functional form of the mean or the variance of the FRF, h(-) =  1 was assumed in 
both cases. The smoothness parameters were obtained with the maximum likelihood method 
outlined in Chapter 2. Figure 5.5 shows the comparison between the emulated mean and 
the MCS benchmark. Figure 5.6 shows the comparison between the emulated variance and
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F igu re  5.4: Mean and variance of the frequency response function (FRF) at u  =  64 for 
different sample sizes. Both statistics seem to stabilize for sample sizes greater than or equal 
to 500.

the MCS benchmark.

Previous to implementing strategy 2. the set containing the number of design
points for each of the 100 emulators corresponding to every frequency level had to be deter
mined. Since for each {<xy}̂ 2°i fixed the functional form of rj(-) is unknown, an exploration 
of © to determine every Lg would have been very costly. Instead, it was decided to take 
L( equal for every u)g. Ten design points for each emulator where generated using Latin 
hypercube sampling from the distribution of 0. As in strategy 1, h(-) =  1 was assumed for
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F igure  5.5: Emulation of the mean frequency response function (FRF) using strategy 1. 
The corresponding probability bounds have been omitted for a the sake of a clearer graph.

 MCS benchmark
• Emulator’s predictive mean 
O Training runs___________

<uo

100
Frequency [Hz]

F igu re  5.6: Emulation of the variance of the frequency response function (FRF) using 
strategy 1. The corresponding probability bounds have been omitted for a the sake of a 
clearer graph.
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every emulator and the smoothness parameters were obtained by the maximum likelihood 
method. Given tha t the random seed was previously fixed, it was expected tha t for N e  — S,  
rji(-) in Eq. (5.4) should approximate 771 (*) in Eq. (5.2) and that rj2(-) in Eq. (5.5) should 
approximate 772(■) in Eq. (5.3). To carry out the comparison, for every emulator associated 
to each {o^}}=°i, the untried points whose output was emulated were chosen to be
the same realizations {0f}f=i generated for the benchmark MCS runs.

Figure 5.7 and Figure 5.8 show respectively a comparison between the emulated mean 
and variance of the FRF against the MCS benchmark, using strategy 2. At this point, the 
advantages of strategy 2 over strategy 1 were confirmed. First, there was an improvement 
in the computation time for both the mean and the variance, as shown in Table 5.1 and 
Table 5.2. Note that, although strategy 2 took longer in emulating, the percentage of time 
both approaches took in simulating was by far larger. Thus, condition (5.6) held.

-50
—  M C S benchmark

E m ulators’ predictive m eans-60

-70

-80
03
T3Z -90

g
£ - 1 0 0o
£

-110

-120

-130

-140 10040
Frequency [Hz]

F ig u re  5.7: Emulation of the mean frequency response function (FRF) using strategy 2.

M E A N
Method Time (seconds) Percentage

Simulation Emulation Total
MCS 73136.43 0 73136.43 100%

Strategy 1 7682.24 0.039 7682.28 10.50%
Strategy 2 782.72 24.08 806.80 1.10%

T able 5.1: Computer processing time (seconds) for the mean frequency response function.
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M C S benchm ark  
E m ulators’ predictive m eans

oc
.2
'S>

100
Frequency [Hz]

Figure 5.8: Emulation of the variance of the frequency response function (FRF) using 
strategy 2.

V A R IA N C E
Method Time (seconds) Percentage

Simulation Emulation Total
MCS 73136.43 0 73136.43 100%

Strategy 1 7698.75 0.038 7698.79 10.52%
Strategy 2 756.82 24.36 781.18 1.07%

Table 5.2: Computer processing time (seconds) for the variance of the frequency response 
function.

The improvement in the computation time was a reflection of the dramatic reduction in 
the number of evaluations oirj(-) when Strategy 2 was applied, as opposed to Strategy 1 and 
MCS. The results are summarised in Table 5.3.

Additionally, there was an improvement in accuracy. Figure 5.9 and Figure 5.10 show 
a comparison between the distributions of the simulated and emulated mean and variance 
for both strategies. In the case of strategy 1, a few emulated values of the variance were

Method Evaluations of rj(-)
MCS 105

Strategy 1 104
Strategy 2 103

T able 5.3: Number of evaluations of the simulator ry(-) by each strategy.
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negative, especially for frequency levels below 10 Hz. Since this is clearly a disadvantage, 
negative values were corrected to 0. Note how the histogram for strategy 2 resembles tha t of 
MCS very closely for both statistics. Naturally, the accuracy of strategy 1 could have been 
improved by selecting a larger number of design points in Cl. However, the computation time 
of this already expensive strategy would have increased due to the additional evaluations of

v ( ‘)-

5.5 C onclusions

In this chapter, the application of GPEs to structural dynamic analysis with parametric 
uncertainty was discussed. A design point generation strategy which takes advantage of the 
domain structure of a simulator with a random parameter was proposed. This is the main 
contribution of this chapter, since a reduction in the number of simulator evaluations was 
attained. This is clearly advantageous in a context in which not only the simulator but even 
the generation of training runs is expensive.

In the next chapter, the representation of the random parameter as a random variable 
will be replaced by assuming that it is represented by a random field. This means that 
a novel method is needed in order to couple GPEs with one of the most frequently used 
stochastic finite element methods suitable for this kind of representation: the polynomial 
chaos expansion.
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(a) Strategy 1
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F igure 5.9: Histograms of simulated output mean and emulated output mean for strategy 
1 and strategy 2. The degree of similarity of the distributions reflects the accuracy of each 
strategy.
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(a) Strategy 1
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F igu re  5.10: Histograms of simulated output variance and emulated output variance for 
strategy 1 and strategy 2. The degree of similarity of the distributions reflects the accuracy 
of each strategy.



C hap ter 6

Stochastic F inite Elem ent Analysis 2

6.1 In t ro d u c t io n

As mentioned in Chapter 5, the realistic modeling and prediction of engineering systems 
can be better achieved when their random aspects are taken into account. The associated 
uncertainty can be represented by stochastic coefficients in the system of stochastic partial 
differential equations th a t govern the system’s response. The theoretical framework un
der which this problem is solved is the stochastic finite element method (SFEM). Broadly 
speaking, the SFEM aims at characterizing the global probabilistic structure of the system’s 
random response. However, when a system with a large number of degrees of freedom is 
investigated, a computer code designed to study it may become prohibitively expensive to 
run.

The present chapter explores the integration of GPEs into the SFEM in order to reduce 
the computational cost of studying engineering systems with random mechanical properties. 
The chapter focuses on the problem of emulating random fields based on few evaluations of 
a simulator. Firstly, discretised Gaussian and lognormal random fields are emulated. As it 
will be seen, the simulators of these random fields take inputs from a spatial domain that are 
trivially generated. Once it is shown that GPEs can efficiently approximate both Gaussian 
and non-Gaussian random fields, the problem of approximating the random response of an 
engineering system obtained by the SFEM is studied. The rationale is that since this response 
is itself a random field, it can be expected to be emulated satisfactorily. Nevertheless, the 
generation of the training runs upon which to build the GPE is not straightforward. Due to 
this, an algorithm to obtain the necessary training runs is proposed.

2The ideas developed in this chapter have been accepted for publication as DiazDelaO, F.A. & Adhikari, S., 
’‘Gaussian process emulators for the stochastic finite element method” . International Journal for Numerical 
Methods in Engineering.

84
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6.2 D irect E m ulation of R andom  F ields

6 .2 .1  R a n d o m  F ie ld  D iscre tisa tio n

Extending the definition of random field given in Chapter 1, a random field ?i(x , 0) is 

Gaussian when for any n  >  1, the vector [H(x\, 0O)> • • •, ^ ( x n, ^o)]T is Gaussian. Moreover, it 
is homogeneous if its mean /i(x, Of) and variance <;2(x, Of) are constant and its autocorrelation 
coefficient p (x ,x ') is a function of x  and x' only. An analogous definition applies for a 
lognormal random field. The autocorrelation function may take many distinct forms. One 
example is the exponential type

lX ( l )  ~ X (1)I lx (2) -  X (2)l

/o(x,x') =  e a 2 (6.1)

where denotes the 2-th coordinate of x  and a i, q?2 are known as correlation lengths. Note 
tha t the variance of the random field is denoted by e, such tha t it is not confused with the 
variance of the GPE introduced in Chapter 2, denoted by a.

In Chapter 1, it was mentioned that for a linear A-degree-of-freedom system, the deter
ministic finite element method eventually yields a system of the form

K (x)u(x) =  f  (6.2)

where K  £ HNxN is known as the stiffness matrix, u  £ R ^  is the response vector, and 
f  £ R ^  is the forcing vector. If uncertainty is to be taken into account, then K  becomes 
a random matrix. This means tha t the stiffness matrix becomes a function of the spatial 
coordinates and a random parameter, namely K (x, 0). It was also established in Chapter 1 
tha t an advantageous alternative for discretising a random field 7i(x, 0) is the Karhunen- 
Loeve expansion (KLE), for which

00

H(x,  0) =  ^  y/Xi&(0)&i(x) (6.3)
t= 0

where {£i(^)}^o is a set of random variables, {Aj}^0 a set of constants, and {<Mx)}^0 an 
orthonormal set of deterministic functions. In particular, {Aj}^0 and {0;(x)}?^o are the 
eigenvalues and eigenfunctions of the covariance kernel tha t is, they arise from the



86 Chapter 6. Stochastic Finite Element Analysis

solution of the integral equation

/  i f ( x i ,x 2)<&(xi)dxi =  Ai0<(x2) (6.4)

The truncated KLE of 7Y(x, 0) up to M  terms is defined as

M

H(x,  9) =  jn(x) +  V ^ & m ( x )  (6-5)
1 = 1

In particular, engineers are interested in obtaining the probability density function and 
the cumulative distribution function of u(x, 9) in order to assess the reliability of the system 
under study. However, this objective can prove to be difficult to achieve and the approach 
is limited to obtaining the first few statistical moments of u(x, 9).

Before discussing the incorporation of GPEs to the SFEM, it is worth focusing on the 
problem of efficiently generating realizations of the associated random field 7i (x ,0 ) .  This 
can be a computationally expensive task as the number of points in which the random field 
realization is evaluated increases. Once the convenience of the use of GPEs for this particular 
problem has been established, a method to solve the stochastic version of the linear system 
(6.2) with the aid of GPEs will be proposed.

6.2.2 N um erical Exam ple: R andom  F ield Em ulation

Consider a Gaussian homogeneous two-dimensional random field 7i(x, 9) with mean n = 5, 
variance c2 =  1, and exponential autocorrelation function. Suppose the order of the KLE 
is fixed at M  = 100. Note that the estimation of these three parameters is an interesting 
problem in its own right. They might represent material properties and be determined by, 
for example, experimental measurements. However, since the purpose of the present study 
is to explore the capabilities of emulators in the SFEM context, the parameters above are 
chosen freely and following no particular methodology. The corresponding simulator is thus

100

rj(x, 9) = 5 +  ^  \/A &(9)(l>i(x) (6.6)
i=1

Let the spatial domain of the simulator be the square region 7Zl = [0, L\ x [0, L]. Divide this 
domain into square elements such that the nodal points are (L +  l ) 2 in total. The truncated 
KLE can be calculated based on the results provided in Chapter 1, where the analytical 
expressions for the eigenvalues and eigenfunctions corresponding to a random field with the 
above characteristics were specified. Figure 6.1 shows a realization H (x ,9 0) of the random
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field with L — 50, which in terms of Eq. (6.6) would be r/(x, 0o) for every x G 77-50. The 
correlation lengths were chosen to be [opa^]1 =  [0.02L, 0.02L]T.

F igu re  6.1: Realization of a G aussian homogeneous random  field 7f(x,$) in 77-50 =  [0,50] x [0,50] 
w ith m ean // =  5, variance f 2 =  1, and exponential autocorrelation  function w ith correlation lengths 
[nq,a2]T =  [0.02L,0.02L]T. T he KLE has M  =  100 term s.

In order to implement the Gaussian process emulation algorithm to similarly generated 
random fields, the n design points (x. #0) i , . . . ,  (x, B0)n were selected using Latin hypercube 
sampling and a nearest neighbour algorithm such that every point in the Latin hypercube 
was translated to a node. For a very fine grid, the difference in the initial design should 
be expected to be small. The value of n was chosen to be 10% of the number of nodes. 
The emulator’s predictive mean ra**(-) was calculated to infer the values of the random field 
realization in each unsampled node. As for the calculation of the smoothness parameters, 
the usual method by Haylock (1996) was employed. Figure 6.2(a) shows the values of m**(-) 
compared with a realization of a random field with correlation lengths [0.2L, 0.02L]T, as well 
as the design points employed in the construction of the emulator. Figure 6.3(a) shows the 
emulation of a realization of another Gaussian random field, whose correlation lengths are 
[0.1L, 0.02L]T. The same design points were considered. Being H(x.0)  a two-dimensional 
random field, the accuracy of the approximation provided by the emulator might be difficult 
to appreciate. The adequacy of the emulator can be better represented in Figure 6.2(b) and 
Figure 6.3(b), which are quantile-quantile plots (Q-Q plots) Chambers et al. (1983) of the 
emulated output against simulated output. This kind of graphical representation compares 
two probability distributions by plotting their quantiles against each other. In the examples 
below, the resulting plots are approximately linear, suggesting that the datasets come from 
the same distribution.



88 Chapter 6. Stochastic Finite Element Analysis

2

1.5>

s 
CD *
X

0.5  v

0
50

(a) Correlation lengths = (0.02L, 0.02L)T

1.6 

1.5 

1.4 

1.3

I - 12
o
"S l.i
3

0.9 

0.8 

0.7

F igure  6.2: Realization 74 (x. 0q) of a  G aussian homogeneous random  held 74 (x, 6). The adequacy 
of the em ulator is represented by the  Q-Q plot below.

The exercise was repeated for two lognormal random fields with correlation lengths 
[0.02L, 0.02L]T and [0.02L. 0.1L]T. The lognormal random fields were obtained using the 
Nataf transformation (Der Kiureghian and Li, 1986; Ditlevsen and Marsden, 1996) The re
sults of the emulation and their respective Q-Q plots are shown in Figure 6.4 and Figure 6.5.

0.7 0.8 1. 2 1.3 1.5.6 0.9 1.4
Emulated Output

(b) Q-Q plot

' # *  *

' **

The exercise above was carried out for several values of L and thus an increasing number
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(a) Correlation lengths =  (0.1L,0.02L)T

0.9
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0.7
0.7 0.8 0.9

Emulated Output

(b) Q-Q plot

F ig u re  6.3: Realization 7Y(x, 9q) of a Gaussian homogeneous random field 7Y(x,0). The adequacy 
of the emulator is represented by the Q-Q plot below.

of nodes. The percentage of design points was chosen to be as small as possible, taking 
care that the corresponding Q-Q plot remained approximately linear. The time employed to 
produce one realization of the corresponding random field for an increasing number of nodes 
is shown in Table 6.1. Note that the time the emulator takes includes the time of evaluating 
the design points.
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F ig u re  6.4: R ealization H( x ,  0O) of a lognormal homogeneous random  field H( x ,  9). T he  adequacy 
of the em ulator is represented  by th e  Q-Q plot below.

6.3 C alculation  o f the Stochastic R esponse

The results in Section 6.2 show tha t realizations of both Gaussian and non-Gaussian random 
fields can be efficiently approximated using GPEs. This motivates the study of a non- 
Gaussian random field of particular importance, that is, the random field induced by the 
solution of the stochastic version of Eq. (6.2) through SFEM analysis. This solution is
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F igu re  6.5: R ealization 7Y(x, <?o) °f a lognorm al homogeneous random  field H(x, 0). T he adequacy 
of the em ulator is represented by the Q-Q plot below.

im portant because it expresses the response of the engineering system under study. The 
problem of approximating it using GPEs is addressed in this section.
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No. Nodes % Design Points Time Simulator Time Emulator
121 10% 1.03 0.20
441 10% 3.58 1.26
961 5% 7.77 2.36
1681 3% 13.53 4.58
2601 3% 21.73 6.42

Table 6.1: Number of nodes vs. CPU time employed (seconds)

6 .3 .1  P o lyn om ia l C haos E xpansion

As mentioned in Chapter 1, this approach consists in representing each component of the 
random displacement vector u(x, 0) as a series of orthogonal polynomials {'Ej(0)}£Lo in the 
standard normal variables {£&(#) }j£Lu such that

p - i

u(x,0) = '£ U j ( x ) $ J(0)(6.7)
3= 0

where each U.3 is a deterministic vector in R N. Equation (6.7) is then substituted in (6.2), 
and K (x, 9) is discretised using the following truncated Karhunen-Loeve expansion

M

K(x,fl) =  ^ K i(xXj(9) (6.8)
i = 0

where each K*(x) is assembled from element matrices as in the deterministic finite element 
method. The approximate solution is obtained by minimizing the underlying residual

M  P - 1
ft(x ,0 ) =  y ^ ^ K i(x )W ,(x teW « JW - f  (6.9)

i —0  j = 0

by means of a projection onto the space spanned by • In Chapter 1, it was shown
tha t this projection can be determined by solving a linear system of the form

K U  = T  (6.10)

where each of the P  components of U =  [U0, . . . M p - i] t  is N ~dimensional and consequently 
the global stiffness matrix K  is of size N P  x NP.  Once every component in U  is determined, 
the vector u(x ,0) can be computed as in Eq. (6.7). Note that, if v denotes the number of 
nodes in the finite element mesh and 5 > 1 is the number of degrees of freedom per node, 
then N  = 8v. This definition will become useful in the following subsections.
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An im portant challenge in the implementation of polynomial chaos is its potentially high 
computational cost. The number P  of basis polynomials in the expansion grows very rapidly 
for small changes in the degree of the polynomials _p, and in the number of terms in the 
Karhunen-Loeve expansion M , as can be seen in Table 6.2.

M p =  1 p = 2 p = 3 p = 4 p = 5
2 3 6 10 15 21
3 4 10 20 35 56
4 5 15 35 70 126
5 6 21 56 126 252
6 7 28 84 210 462

10 11 66 286 1001 3003

T able 6.2: Number of basis polynomials for different degrees (p) and number of terms in 
the Karhunen-Loeve expansion (M).

In general,

P(P,M) = Y J (
k—Q ^

M  +  k — 1 
k

(6 .11)

This has an im portant implication, pointed out by Debusschere et al. (2005). Unless high 
order polynomials are employed, the accuracy of the polynomial chaos representation may 
be inaccurate and unstable, that is, produce non-physical values for the parameters modeled. 
Unfortunately, the use of high values of p may be computationally intractable. Similarly, for 
a bigger number of terms in the Karhunen-Loeve expansion, the solution of the linear system 
(6.10) becomes increasingly expensive. Additionally, if the engineering system under study 
has a large number N  of degrees of freedom, the computational effort can rapidly become 
prohibitive. In this setup, a GPE can be an inexpensive surrogate model of a polynomial 
chaos simulator. It can be seen from Eq. (6.7) that

p -1
u(x, 0) = Y U > (x)®,-(0)

j=o

7 j ' ’ (x ) " u{1) (x )

% ( 0)  + . . +

. (X) _ U(N) ( x ) _

(6 .12)

where the superscript in parenthesis numbers the row (the element) of the column vector it 
superscripts. Let T =  {7 1 , . . . ,  7 ^ }  C { 1 , . . . ,  N } be an index set with n5 <C N.  Suppose it is
possible to obtain n5 rows from each of the vectors W0> • • • > Wj>_i> that is, ^  t
from U q, , 7n«5)]T from until [Wpi \ , . . . , t i p l 5i]T from Consequently,
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n5 rows (elements) of the response vector u(x, 6) would be available, namely

p - i
u<71>(x,0) =  (x) * # )

j=0 
p - 1

u <i2>(x,0) = X A ‘72) (x)^-w
j=0

P - l

u<7"f)(x,0) =  '£(x )* j( e) (6.13)
J=0

That way, the set • • • M p - 1> • • • M o ,nS\  • • •, t i p ^  j  could be regarded as the design
points tha t would be used to build a GPE in order to approximate the N  — n5 remaining 
elements of u(x, 0), namely {u^7n5+P(x, 0 ) , . . . ,  u^7jv“n̂ (x , 0)}, where {7n$+i, • • •, lN-ns} = 
{1 , . . . ,  N } \T .  For notational purposes, let these sets be expressed as vectors, partitioning 
u(x, 9) as

( \
1 ui(x,6)

u  (x,0) =

V u 2(x,0) )

u ( 7 n 6 + l ) ( X )  # )  

U ( 7 l V - n « ) ( X j  0 )

u <7l)(x,0)

U(7̂ )(X) 0) j

(6.14)

Note however that obtaining the design points is not as simple as it was when emulating 
the random fields in Section 6.2: in that case each design point represented a node in the 
finite element mesh and the training runs were obtained by simply evaluating the random 
field at the selected node. In the current setup, obtaining the required design points would 
imply solving the linear system (6.10) only partially, such that the corresponding training 
runs will be used as input for the emulation algorithm. The training runs can be expressed 

as y = [yi,... ,y*] G ET*5, where

y , =  [u(7l)........ u<7‘>]7

y 2 =

(6.15)
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The following subsection elaborates on this idea and proposes an algorithm to solve the 
linear system (6.10) partially in order to obtain the design points and the training runs y.

6 .3 .2  P a rtitio n ed  C h olesk y  D eco m p o sitio n

Let, the stochastic finite element system 1C • LI = T  in Eq. (6.10) be partitioned as

B T C
(6.16)

where A G ]RmPxmP? C G jR/l5Pxn‘5p? with m  +  n5 = N . Note tha t LI, LI* and U£, and 

U 0, . . .  ,U P- \  are related in the following way

U  =

' u \  '

\ UC

(  Ua (x) ^

 ̂ U p - 1  (x) j

(6.17)

D efinition. Let /C be a positive definite matrix partitioned as in Eq. (6.16). The parti
tioned  C holesky factor L of /C is given by

L =
W T Ld

(6.18)

with L a and Ld the Cholesky factors of of A and D =  C — W TW  respectively, and W T 
such that

W TW  -  B TL^TL^1B =  B TA -1B (6.19)

The calculation of the partitioned Cholesky factor L of /C is summarized in Algorithm 4.

It can be shown (George, 1981) that the number of operations required to compute 
the partitioned factor L is the same as the required by the conventional, non-partitioned 
Cholesky decomposition. Once the matrix K  is decomposed as LLT, the solution of the 
linear system (6.16) can be obtained by first solving the lower triangular linear system

La 0 

W T Ld

\ / \yi

v y v
( 6 . 2 0 )
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A lg. 4 P a r t i t io n e d  C h o lesk y  fa c to r  L o f K  

In p u t: Matrices A ,B ,C  
O u tp u t: Partitioned Cholesky factor L 

beg in
1. Factor A into LAL^
2. Solve the (triangular) linear systems LAW  =  B
3. Compute D =  C -  W TW
4. Factor D into
5. Assemble L as in Eq. (6.18)

end

and then using the auxiliary solution vectors yi and y2 to solve the upper triangular linear 
system

L i  W  

0 t t
D  J \ Uh

(6.21)

The procedure is made explicit in Algorithm 5.

Alg. 5 Solution of th e  partitioned  system K U = T  
In p u t:
O u tp u t: U IM 2 

beg in
F orw ard  S o lu tio n :

1. Solve LAy i =
2. Compute f2 =  ^  — W Tyi
3. Solve LDy 2 =  f2 

B a ckw a rd  S o lu tio n :
4. Solve L d t £ ^2  — y 2

5. Compute y i =  y i — W IA1
6. Solve L i U* =  y i

end  ____________________________________

In the worst case scenario, the computational complexity of implementing Algorithm 4 to
gether with Algorithm 5 is the following: 0 ( N 3P 3) operations are required for the Cholesky 
decomposition, O(A^P^) are necessary for the forward substitution and 0 ( N  P  ) are re
quired for the backward substitution. The joint application of Algorithm 4 and Algorithm 5 

will hereafter be referred to as the symmetric algorithm.

From Table 6.2, it can be seen that even for a system with few degrees of freedom, the 
number of operations 0 { N 2P 2) can be considerably large. To potentially reduce the cost of 

the symmetric algorithm, an alternative approach is proposed.
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6.3.3 C oupling Polynom ial C haos w ith  G P E s

As discussed in Subsection 6.3.1, the key to emulating the stochastic response u(x, 6) is 
obtaining the training runs contained in u2(x, 9). From Eq. (6.12) and the relationship 
provided by Eq. (6.17), it can be seen that in order to obtain them, it is necessary to solve 
the linear system (6.10) for n6P  components of 14. Once these components are computed, 
the training runs would be obtained as in Eq. (6.13). Note that if these n8P  components 
were all contained in the partition ll£, then it would suffice to implement Algorithm 5 up 
to step 4. It is however unlikely that the components of 14% will be ordered such that the 
nodes associated to the training runs will be evenly spread throughout the finite element 
mesh. This would be detrimental to the predictive capability of the GPE, as it relies on 
design points that contain as much information as possible of the input domain. To solve 
this problem, the rows and columns of K, can be permuted in order to group the desired 
components in 14%. It is worth noting that this permutation will render a matrix tha t is still 
symmetric and positive definite, such tha t Algorithm 5 can be readily applied. This result 
is proved below.

Proposition . Let K  G Hdxd be a symmetric positive definite matrix. Then, any permuta
tion K  of the rows and columns of K  is symmetric positive definite.

Proof. Let P G Hdxd be a permutation matrix, such tha t K  =  P T/CP. Then, for every 
z ^  0 G R d

z JK z  =  zTP T/CPz 

=  (P z)T/C(Pz) 

=  y T/Cy

> 0

The symmetry follows from

/CT =  (P T/CP)T =  P T/CTP  =  P T/CP

Once the design points are obtained, the training runs in Eq. (6.15) are computed and a 
GPE can be built in order to approximate each of the remaining m  components of u(x, 0), 
denoted previously as Ux(x, 6). For I  =  1 , . . . ,  m, this can be symbolically represented as

u^(x,0) =  0 P £ (u2(x ,0)) (6.22)

The proposed algorithm is summarized in Algorithm 6.
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A lg. 6 S o lu tio n  o f th e  p a r ti t io n e d  sy s tem  7C U . — T  u s in g  G P E s  
In p u t: /C,
O u tp u t: U ^,U*  

beg in
1. Choose a permutation K  of K
2. Compute the partitioned Cholesky factor L of K  

F orw ard S o lu tio n :
3. Solve LAy i =  T \
4. Compute f2 =  F 2 — W Ty!
5. Solve LDy2 =  f2 

P a r tia l B ackw ard  So lu tio n :
6. Solve L d t £̂ 2 =  Y2 

D esig n  po in ts:
7. Compute u 2(x, 0) as in Eq. (6.13)

T ra in ing  ru n s:
8. Compute the training runs y as in Eq. (6.15)

G a u ss ia n  P rocess E m u la tio n :
for i  =  1 , . . . ,  m
9. u f }(x, 6) =  £ P £ (u 2(x,0)) 
end

end  ___________________________________________________

6.3.4 N um erical Com plexity

Similar to the symmetric algorithm, the computational complexity of the proposed algorithm 
involves 0 { N 3P 3) operations for the partitioned Cholesky decomposition and 0 ( N 2P 2) for 
the forward substitution. However, the 0 { N 2P 2) operations required for the backward 
substitution are replaced by 0 ( n 252P 2) operations for the partial backward substitution. 
Additionally, the GPE step requires 0 (n 3S) operations. To see why, refer to  the prior to 
posterior analysis in Chapter 2, where the corresponding covariance matrix C  G P  and 
y  e R nx6. Therefore, the proposed algorithm would reduce the computational cost of solving 

the linear system (6.10) if and only if

0 ( N 2P 2) > 0 ( n 252P 2) +  0 (n 3S) (6.23)

In Subsection 6.3.1, v was defined as the number of nodes and N  = 6v. Let n  be a small 
fraction of v such that n = ev with 0 < e <  1. Thus, n -  eN/S. This expression allows
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relating condition (6.23) to the number of nodes as follows

n 2p 2 > n252P 2 +  n38

& n 2p 2 > e2N 2P 2 +  (e3N 3)/8 :

^  p 2 > e2P 2 +  (e3N )/S 2

&  1 > e2 + {e3N )/{ P 2S2)

1 > e2 +  (e3i/) /(P 25)

As discussed before, P  grows very rapidly for small changes in the number and order of basis 
polynomials. Naturally, P 2 grows even faster. This number is further scaled by 6 > 1. On 
the other hand, e3u is a very small fraction of v. Therefore, condition (6.23) is likely to be 
met, unless for example that the number of nodes v is considerably larger than the number 
of basis polynomials P.

6 .3 .5  E fficient M em ory  A llo ca tio n

In order to improve the memory usage when calculating the partitioned Cholesky factor L,
George (1981) observes that the matrix B TA -1B in Algorithm 4 can be calculated not only
by the conventional expressions

B TL ^TL ^1B =  W TW  (6.25)

but also by defining
W  =  L^t W  (6.26)

That way,
B TW  =  B T (L iTW ) =  B ^ L ^ L i 'B ) )  (6.27)

This asymmetric scheme can reduce storage requirements as W  is not needed to compute 
the solution to the linear system as long as B is available. A product of the form W Tz or 
W z can be computed by solving a triangular system and multiplying by a sparse matrix, 
namely B T(L^Tz) or L ^ (B z ) . Storage is then saved if B is sparser than W . Moreover, the 
storage of W  can be avoided by computing D following the asymmetric scheme: B TW  can 
be computed one column at a time, discarding each after modifying a column of D. That 
way, only a temporary vector is required.
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6.3 .6  N u m erica l Exam ple: A  C antilever P la te

The proposed algorithm is tested in an example of a square plate model clamped along 
one edge presented in Ghanem and Spanos (1991). The analysis is based on a polynomial 
chaos simulator by Haukaas and Der Kiureghian (1999). The plate is subjected to a uniform 
tension on the two vertices on the opposite edge. Young’s modulus is assumed to be a 
two-dimensional Gaussian random process with mean value E  — 2.0 x 105 MPa and known 
exponential covariance function. A finite element model of a plate with 15 x 15 elements 
(and v = 256 nodes) is shown in Figure 6.6. The number of design points (shown as circles) 
was chosen to be 5% of the total number of free nodes. In order to reduce uncertainty, the 
nodes on free edge could have also been taken as design points. However, this would have 
increased the number of design points dramatically. On the contrary, the nodes in the fixed 
edge were taken as design points as their displacement is known to be equal to zero. When 
the fixed edge is accounted for, the percentage of design points increased to around 11%.

------6 —

d — *— )— J— y - i >— »— y—i >— >— H-®

o  0 .2  0 .4  0 .6  0 .8  l

F igure  6.6: Cantilever plate model clamped along y = 0. The design points are shown as 
circles.

The polynomial chaos analysis with four basis third degree polynomials (Af 4, p  3) 
was run, resulting in 35 basis polynomials (P = 35). With 2 degrees of freedom per node (5 — 
2), the system matrix /C had 17,920 x 17,920 elements. The partitioned Cholesky factor had 
31.62% non-zero elements (see Figure 6.7(a)). The rows and columns of K  corresponding to 
the displacement of the design points were identified and a permutation was applied in order 
to apply Algorithm 6. The resulting Cholesky factor of K  had 8.26% non-zero elements (see 
Figure 6.7(b)). This is relevant since it could have been the case that the partitioned Choleksy 
factor suffered fill-in, with a potentially considerable increase in computer execution time
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and storage. At this point, the proposed algorithm cannot guarantee that the partitioned 
Cholesky factor of the permuted matrix Ki will be at least as sparse as that of K. This is a 
major research topic in numerical analysis, and for now beyond the scope of this dissertation. 
However, the important aspect to keep in mind is that, given a scheme that partially solves 
a linear system by determining a small part of the solution vector, a GPE can be employed 
to approximate the complement to that partial solution.

10000

12000

1 4 0 0 0

1 6 0 0 0

0  5 0 0 0  1 0 0 0 0  1 5 0 0 0
nz = 101534136

(a) Partitioned Cholesky factor. Original matrix K.

2000

4 0 0 0

6 0 0 0

8 0 0 0

10000

12000

1 4 0 0 0

1 6 0 0 0

0  5 0 0 0  1 0 0 0 0  1 5 0 0 0
nz = 26539660

(b) Partitioned Cholesky factor. Permuted matrix JC.

F ig u re  6.7: M atrix  profiles showing th e  non-zero elements of the  partitioned  Cholesky factors for 
the  original and  the  perm uted  m atrix . The perm uted  factor of K  is much sparser in th is case.

The displacements were computed for the design points, and a GPE was then built 
to predict the displacement of the remaining nodes. Condition (6.23) was satisfied, since 
N 2P 2 — 321,126,400 > 3. 930,290 =  n2S2P 2 +  n3d. Once the polynomial chaos analysis was
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complete, 10,000 samples of the random variables £o, • • •, £p- i where generated and each of 
these displacement fields was emulated. The mean simulated and emulated displacements 
for each node are compared in Figure 6.8(a). The relative (Euclidean) distance between the 
mean simulated and emulated displacements is shown in Figure 6.8(b), where each distance is 
normalized by the maximum overall distance. Notice how the relative distance is greater on 
the free edge of the plate, reflecting the fact that the uncertainty in the prediction of a GPE is 
greater when extrapolating the training runs. The prediction seems to be reasonably accurate 
for the rest of the nodes, as can be seen by comparing the magnitude of the distance between 
the simulated and the emulated responses with respect to the overall maximum distance. 
The same type of analysis was carried out for the standard deviation of the displacements. 
The results are shown in Figure 6.9(a) and Figure 6.9(b).

Finally, in order to treat the response u(x, 9) statistically, both in the vertical and hori
zontal directions, the probability density functions of the displacement of three nodes across 
the plate was generated. As Figure 6.10, Figure 6.11, and Figure 6.12 show, the uncertainty 
in the GPE prediction seems to increase the farther away is the node from the fixed edge, 
since the magnitudes of the node displacements are expected to be larger.

6.4 C onclusions

In this chapter, the capabilities of GPEs to approximate computationally expensive random 
fields was explored. Realizations of Gaussian and non-Gaussian random fields were emulated 
for an increasing number of points in the input domain. The generation of the training 
runs was straightforward once the simulator was defined and the output discretised with 
the Karhunen-Loeve expansion. A more particular random field, the one induced by the 
solution of a stochastic finite element analysis was emulated by a coupling of the polynomial 
chaos expansion method with GPEs. Generating the training runs from the polynomial 
chaos simulator was not straightforward. Therefore, the main contribution of this chapter is 
the proposal of a novel algorithm that solves a partition of the main linear system and thus 
generates the necessary training runs. Using the proposed approach it was possible to obtain 
a high-resolution random field and compute the complete response of a stochastic system.
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F igure  6.8: Comparison between the mean simulated (lines) and mean emulated (dots) displace
ment fields. The relative Euclidean distances are normalized by the overall maximum distance.
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0.6
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(a) Emulated and simulated displacements

1 0
(b) Relative Euclidean distances

Figure 6.9: Comparison between the standard deviation of the simulated (lines) and mean em
ulated (dots) displacement fields. The relative Euclidean distances are normalized by the overall 
maximum distance. The standard deviation was scaled up by a factor of 10 in order to make them 
comparable to the m agnitude of the mean displacements.
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(a) Displacement of (0.2,0.2) along the x-axis
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Figure 6.10: Probability density functions of the displacement of node (0.2,0.2) along the x and
the y axes. The solid line corresponds to the simulator, whereas the dotted line corresponds to the
emulator.
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F ig u re  6.11: Probability density functions of the displacement of nodes (0.4,0.4) along the x and
the y axes. The solid line corresponds to the simulator, whereas the dotted line corresponds to the
emulator.
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F i g u r e  6 .1 2 :  Probability density functions of the displacement of node (0.8,0.8) along the x and
the y axes. The solid line corresponds to the simulator, whereas the dotted line corresponds to the
emulator.



Chapter 7

Sum m ary and Conclusions

The work carried out in this dissertation aimed at introducing GPEs as an efficient predictive 
and uncertainty quantification tool for the analysis of complex engineering systems. Sum
mary and contributions have been taken up at the end of the relevant chapters. This chapter 
recapitulates the main findings and contributions and proposes future research directions.

7.1 Sum m ary o f C om pleted  W ork

After the motivation for this dissertation was presented in Chapter 1, Chapter 2 discussed the 
mathematical theory behind GPEs. Basic definitions and assumptions were presented, along 
with the main Gaussian process emulation algorithm. Some aspects of the implementation, in 
particular the selection of the initial design and the estimation of the smoothness parameters 
were discussed, and the output of a simple simulator was emulated to illustrate the properties 
of the metamodel.

In Chapter 3, the application of GPEs as an efficient predictive computational tool in 
deterministic structural dynamics was proposed. To this end, the capabilities of GPEs were 
tested in both simulated and experimental contexts. The FRFs of several dynamical systems 
were emulated and the results were contrasted with the output of the original simulators. 
An FRF obtained via experimental methods was also emulated. Real data were used as 
the set of training runs and the experimental output was compared with the corresponding 
approximation. The results were particularly appealing in the medium and high frequency 
ranges. Since the validation of GPEs as appropriate surrogate models cannot be carried 
out only by visual inspection, some diagnostics of adequacy were implemented, and the 
agreement between a simulator’s and an emulator’s output was verified.

In Chapter 4, a method based on GPEs to solve boundary value problems in the context 
of domain decomposition was proposed. The method can assimilate a low-fidelity finite

108
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element model with a computationally more expensive high-fidelity model, given that the 
solution of the governing elliptic PDE is sufficiently smooth. The solution of the interface 
problem of the low-fidelity model was shown to provide the training runs upon which the 
emulators can be built in order to approximate the more expensive solution of the interface 
problem of a corresponding high-fidelity model. That way, the computational cost of the 
domain decomposition solution of the high-fidelity model was reduced. A good agreement 
between the proposed approximation and the direct domain decomposition solution was 
found for different geometries of the domain. It was shown that neither the domain, or even 
the partitioning subdomains, need to be convex.

In Chapter 5, the application of GPEs to systems with parametric uncertainty was dis
cussed. A design point generation strategy which takes advantage of the domain structure 
of a simulator with a random parameter was proposed. Three possible advantages such a 
strategy might have in a situation when the generation of training runs is expensive were 
identified:

1. The proposed approach (strategy 2) can reduce the number of evaluations of the sim
ulator, compared both to Monte Carlo simulation and to an approach which employs 
a single GPE (strategy 1). This is clearly an advantage whenever such evaluations are 
expensive to carry out.

2. Even if a large number of GPEs had to be built (one for each point in the frequency 
domain), the cost of doing so was by far less than that of evaluating the simulator 
repeatedly at few design points in the frequency domain.

3. Besides the decrease in computer processing time, an improvement in accuracy was 
observed.

The method proposed may therefore be useful for linear dynamical systems with uncer
tainty.

In Chapter 6, the capabilities of GPEs to approximate computationally expensive random 
fields was explored. Assuming the covariance function is known, realizations of Gaussian and 
lognormal homogeneous random fields were emulated for an increasing number of points in 
the input domain. For these cases, the generation of the training runs was automatic once 
the relevant simulator was defined and implemented using the Karhunen-Loeve expansion. 
Good agreement between the original and the emulated values was observed. The results 
show tha t a realization of a random field can be obtained from only a small number of 
training runs.

The random field induced by the solution of a stochastic finite element analysis was 
emulated by coupling of the polynomial chaos expansion method with GPEs. The main 
objective of doing so was to propose an inexpensive alternative to the computation of the
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response of an engineering system with random parameters. For that case, generating the 
training runs from the polynomial chaos simulator was not immediate. Due to this, a novel 
algorithm to solve a partition of the main linear system was proposed. Good correspondence 
between the emulated and the simulated response was found for a stochastic mechanics 
example. It was shown that using the proposed approach it is possible to obtain a high- 
resolution random field and also compute the complete response of a stochastic system using 
the response values at few points only.

7.2 Sum m ary o f C ontributions M ade

The main contributions of this dissertation can be summarized as follows:

• Structural dynam ic analysis. GPEs were shown to be an efficient and effective 
predictive tool for deterministic structural dynamic analysis. It is efficient as the 
dynamic response of a system can be approximated using only a few evaluations of the 
original simulator, thus dramatically reducing the CPU time required. It is effective 
as the approximation was shown to be satisfactory in terms of different adequacy tests 
(Chapter 3).

• D om ain decom position . A novel method for assimilating a deterministic low-fidelity 
finite element model with a more expensive high-fidelity finite element model was 
proposed. The method is based on the use of GPEs to solve the interface problem in 
a domain decomposition algorithm (Chapter 4).

• C ost reduction  o f param etric uncertainty. When parametric uncertainty is taken 
into account for the calculation of a system response, running a simulator can become 
much more expensive than the original deterministic simulator. Due to this, a GPE 
might not alleviate this increase in the computational cost, unless the generation of 
the training runs is done carefully. A design point generation strategy which takes 
advantage of the domain structure of a simulator was proposed and compared with an 
alternative approach and Monte Carlo simulation (Chapter 5).

• Em ulation o f random  fields. The emulation of Gaussian and non-Gaussian random 
fields was shown to be efficient, even for an increasing number of nodes in the finite 
element mesh. This encouraging exploration led to the emulation of an im portant 
random field: the one defined by the stochastic response of a system whose parameters 
are modeled as random fields (Chapter 6).

• Em ulation o f th e stochastic response. A novel method to reduce the computa
tional cost of the polynomial chaos expansion was proposed. An im portant problem
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that had to be tackled for this novel algorithm to be implemented was the generation 
of training runs. The problem was solved by employing a partitioned Cholesky de
composition. The computational complexity proposed algorithm was quantified. An 
efficient memory management was also discussed (Chapter 6).

7.3 O utlook

There are several research directions that can be followed from the work carried out in this 
dissertation.

Regarding the use of GPEs in deterministic structural dynamic analysis, there are two 
potential advantages of using the proposed GPE-based approach. The first is that the 
computational cost is practically independent of the damping model. This is due to the fact 
that the cost of solving the governing partial differential equations at the training frequency 
points does not depend on whether the underlying damping model is viscous, viscoelastic 
or any other frequency-dependent damping model. The second advantage arises from the 
fact tha t once the training frequency points are selected, the governing partial differential 
equations can be solved at those points in parallel. On top of it, each solution of the 
linear system can be efficiently parallelized, for example using the conventional domain 
decomposition methods (Smith et al., 2004; Quarteroni and Valli, 1999; Mathew, 2008), 
since the dynamic stiffness matrix is highly banded in nature.

Related to the integration of GPEs and domain decomposition methods, future work 
should include the extension of the proposed methodology to the three dimensional case. 
Additionally, the extension of the method should include stochastic partial differential equa
tions. Some preliminary work in that direction has been already done by Sarkar et al. 
(2008).

Regarding the use of GPEs in structural dynamic analysis with random parameters, 
future work should include the extension to the case of more than one random parameter. 
The challenge for tha t case is to include the possible correlation between the parameters into 
the metamodeling, as their independence might be unlikely in certain contexts.

Finally, in the coupling between GPEs and the polynomial chaos expansion, the proposed 
algorithm could be refined in future research by carrying out a more profound study on how 
to guarantee tha t the partitioned Cholesky factor of the permuted matrix is at least as sparse 
as tha t of the original stiffness matrix.

7.4 P ublished  W ork

The following literature was generated from the present dissertation.
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7.4 .1  Jou rnal P ap ers

1. DiazDelaO, F.A. k  Adhikari, S. (2010), ’‘Structural dynamic analysis using Gaussian 
process emulators” , Engineering Computations, 27 (5) 580-605.

2. DiazDelaO, F.A. k  Adhikari, S., ’‘Gaussian process emulators for the stochastic fi
nite element method” . International Journal for Numerical Methods in Engineering. 
Accepted for publication.

7.4 .2  C on feren ce P ap ers

1. DiazDelaO, F.A. k  Adhikari, S., ’‘Coupling polynomial chaos expansions with Gaus
sian process emulators: An introduction” , Proceedings of the 27th Internationan Modal 
Analysis Conference (IM AC-XXVII), Orlando, FL, USA, February 9-12, 2009.

2. DiazDelaO, F.A. k  Adhikari, S., ’‘Bayesian emulators and the stochastic finite ele
ment method” , Proceedings of the Sixth International Conference on Engineering and 
Computational Technology, Athens, Greece, September 2-5, 2008.

3. DiazDelaO, F.A. k  Adhikari, S., ’‘Bayesian emulator approach for complex dynamical 
systems” , Proceedings of the 4&h A l  A A /A SM E /A SC E /A H S/A SC  Structures, Struc
tural Dynamics & Materials Conference, Schamburg, IL, USA, April 7-10, 2008.

7.4 .3  B o o k  C h apters

1. DiazDelaO, F.A. k  Adhikari, S., ’‘Gaussian process emulators for dynamical systems 
with random parameters” , in Safety, Reliability and Risk of Structures, Infrastructures 
and Engineering Systems - Furuta, Frangopol & Shinozuka (eds.), Taylor k  Francis 
Group, London, 2010.

7.5 W ork U nder R eview

At the time of the submission of this dissertation, the following work has been submitted
and is currently under review.

7.5 .1  Journal P ap ers

1. DiazDelaO, F.A. k  Adhikari, S., ’‘Gaussian process emulation for uncertain systems” . 
Under review.
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2. DiazDelaO, F.A. & Adhikari, S., ’‘Bayesian assimilation of multi-fidelity finite element 
models” . Under review.
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