
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is an author's version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/103677

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16188127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/103677


                                                                            1      

 

Anaerobic oxidization of methane in a minerotrophic peatland: enrichment 1 

of nitrite-dependent methane-oxidizing bacteria 2 

 3 

Baoli Zhu1, Gijs van Dijk2,3, Christian Fritz2, Alfons JP Smolders2,3, Arjan Pol1, Mike S.M. 4 

Jetten1, Katharina F. Ettwig1* 5 

1Department of Microbiology, Institute for Water and Wetland Research, Radboud University 6 

Nijmegen, The Netherlands 7 

2Department of Aquatic Ecology and Environmental Biology Ecology, Institute for Water and 8 

Wetland Research, Radboud University Nijmegen, The Netherlands 9 

3B-WARE Research Centre, Radboud University Nijmegen, The Netherlands 10 

 11 

 12 

* For correspondence: Dr. Katharina F. Ettwig, Department of Microbiology, Institute for 13 

Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ 14 

Nijmegen, The Netherlands. Email: k.ettwig@science.ru.nl; phone: +31-24-36 52 557     15 

mailto:k.ettwig@science.ru.nl


                                                                            2      

 

Abstract   16 

The importance of anaerobic oxidation of methane (AOM) as methane sink in freshwater 17 

systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic 18 

methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the 19 

bacterium ‘Candidatus Methylomirabilis oxyfera’ that is affiliated with the NC10 phylum. So 20 

far, several M. oxyfera enrichment cultures have been obtained using a limited number of 21 

fresh water sediments or wastewater treatment sludge as inoculum. In this study, using stable 22 

isotope measurements and pore water profiles, we investigated the potential of n-damo in a 23 

minerotrophic peat land in the south of the Netherlands that is infiltrated by nitrate-rich 24 

ground water. Methane and nitrate profiles suggested that all methane produced was oxidized 25 

before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where 26 

counter-gradients of methane and nitrate occur. Quantitative PCR showed high NC10 27 

bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to 28 

enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite 29 

at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was 30 

successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed 31 

that the enriched bacteria were very similar to the ones found in situ, and constituted a new 32 

branch of NC10 bacteria, with an identity percentage of less than 96% and 90% to the 16S 33 

rRNA and pmoA genes of M. oxyfera, respectively. The results of this study expand our 34 

knowledge of the diversity and distribution of NC10 bacteria in the environment, and 35 

highlight their potential contribution to nitrogen and methane cycles. 36 

 37 

  38 
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 Introduction 39 

Wetlands are the largest single source of methane with estimated emissions of 103 Tg per 40 

year, which account for about 20% to 40% of the global annual atmospheric methane flux (1, 41 

8, 19). It is estimated that about 50% of the methane produced in wetlands is consumed before 42 

it reaches the atmosphere; this significant microbial methane sink is usually considered to 43 

consist exclusively of aerobic methanotrophic bacteria, which degrade methane using oxygen 44 

as electron acceptor (2, 5, 19, 39). In ecosystems where oxygen is depleted but sufficient 45 

alternative electron acceptors, e.g. sulfate or nitrate are present, methane can also be 46 

converted anaerobically (25, 38). Anaerobic oxidation of methane (AOM) coupled to sulfate 47 

reduction is performed by a consortium of anaerobic methanotrophic archaea (ANME) and 48 

sulfate reducing bacteria (SRB) (25, 47). Its significance is well established for marine 49 

ecosystems, where it may consume more than 90% of the produced methane (39). In 50 

freshwater wetlands, and especially peatlands, electron acceptors are scarcer, with 51 

concentrations typically in the low µM range (37). Due to this reason, redox processes are 52 

mostly limited by electron acceptor supply, very dynamic and highly susceptible to alterations 53 

e.g. by influx of polluted groundwater and atmospheric deposition of nitrogen and sulfur 54 

species (18, 46). The influence of nitrogen pollution on methane oxidation is complex, and 55 

not all feedback loops are well understood (2, 3, 16, 29). In principal the role of the alternative 56 

electron acceptors nitrate and sulfate for diverting carbon fluxes away from methane 57 

production is better established, given that sulfate and nitrate reduction are 58 

thermodynamically more favorable than methanogenesis (17, 30, 31, 51). However, these 59 

alternative electron acceptors can in principle also enable methane oxidation (47, 54), but this 60 

topic has received only little attention with respect to methane cycling in peatlands (43).  61 
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In the meantime, for other freshwater ecosystems, more and more evidence about the 62 

occurrence of AOM coupled to sulfate (11, 40), iron(III) (42) and nitrate  reduction (9, 38, 44, 63 

50) has become available. Whereas nothing is known about the microorganisms mediating 64 

ferric iron reduction with methane, for sulfate reduction a very similar consortium of 65 

methanotrophic Archaea and SRB as in marine ecosystems is hypothesized to be responsible 66 

(11, 40). Nitrate- or nitrite-dependent AOM (n-damo), when linked to organisms, was so far 67 

always found to be performed by one bacterial species affiliated to the NC10 phylum (9, 13). 68 

Genome sequencing, expression studies and physiological experiments indicated that this 69 

bacterium, then named Candidatus Methylomirabilis oxyfera, is an “intra-aerobic” 70 

methanotroph that produces its own oxygen from the dismutation of nitric oxide into 71 

dinitrogen gas and oxygen. The produced oxygen is then used for canonical aerobic methane 72 

oxidation starting with the methane monooxygenase enzyme complex (12). Although 16S 73 

rRNA sequences similar to M. oxyfera‘s were found in various environments (14), so far n-74 

damo enrichment cultures have only been obtained from two types of ecosystems: eutrophic 75 

freshwater sediments and wastewater treatment sludge. The dominant bacteria in all described 76 

cultures were closely related (≥97% identity of the 16S rRNA gene sequence) to M. oxyfera 77 

(13, 14, 20, 33). Currently it is unclear, however, if M. oxyfera-related species are the only 78 

nitrite-dependent methane oxidizing bacteria; if methane oxidation is a general feature of 79 

NC10 phylum bacteria or limited to (close relatives of) M. oxyfera, and how important these 80 

bacteria are for methane cycling in various ecosystems.  81 

In this paper, we studied a minerotrophic peatland infiltrated by nitrate-containing 82 

groundwater. At the sampling site, no methane emission was detectable. Porewater profiling 83 

revealed a nitrate-methane transition zone below the oxic layer that could provide an 84 

ecological niche for n-damo microorganisms. NC10 bacteria abundance in soil cores was 85 

analyzed using quantitative PCR, and the section with highest cell numbers of M. oxyfera, 86 
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coinciding with the methane-nitrate transition zone, was used as inoculum for the enrichment 87 

of n-damo bacteria. Mimicking field conditions as much as possible by using nitrite-amended 88 

peatland water in continuous cultivation, a new cluster of M. oxyfera-like bacteria was 89 

enriched. 90 

 91 

Materials and methods 92 

Site description. The Brunssummerheide peatland (50°55’39.63”N/5°59’50.73”E) is a small 93 

(15ha) spring fen located in an oligothrophic sandy valley fed by locally upwelling, weakly 94 

buffered nitrate-polluted groundwater. The peat layer is relatively thin (maximum 2.5 m) and 95 

vegetation is dominated by Sphagnum spec., Narthecium ossifragum and Molinia caerulea. 96 

At the sampling site, nitrate-enriched groundwater overflows the peatland surface and 97 

infiltrates into the peat layer.   98 

Porewater profile determination and soil sampling. Nitrate and methane profiles were 99 

determined by measuring the concentrations in porewater samples collected using 5 cm 100 

ceramic cups (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) connected to 101 

Teflon tubes. Porewater samples were obtained at least in duplicate from the depth of 20 cm 102 

to 220 cm at 5 or 10 cm intervals in December 2009 and June 2010. Porewater for methane 103 

analyses was collected in vacuumed anaerobic glass bottles (40 ml) prefilled with 5 g sodium 104 

chloride and sealed with butyl rubber stoppers. For chemical analyses, porewater was 105 

collected in 60 ml syringes. Samples were transported to the laboratory within two hours in a 106 

cooling box, and stored at 4 oC for maximum 14 days before analysis. Methane in the bottle 107 

headspace was measured after pressure equilibration with argon using gas chromatography as 108 

described previously (14). Nitrate was analyzed colorimetrically on a Traacs 800+ auto-109 

analyzer as described previously (48). Redox potential measurements were performed by 110 
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gently pushing platinum electrodes into pre-drilled holes and allowing them to equilibrate. 111 

Stable readings were obtained after 30 min (15). Soil samples were obtained from 50 cm to 112 

130 cm depth with a Russian peat corer, sliced into 5-20 cm intervals in the field, immediately 113 

put into self-sealing plastic bags, and stored in air-tight bins with oxygen scavenger 114 

(Anaerogen, Oxoid, USA), then transported to the laboratory and stored anaerobically at 4 oC 115 

until further analysis. 116 

Incubation. Initially, 200 ml soil slurry of the depth layers of 80-100 cm, 100-120 cm and 117 

120-135 cm (sampled in July 2009) were incubated in separate bottles (500 ml). Surface water 118 

from the peatland was collected and used for medium preparation after removal of particles 119 

by filtering through a hemo-filter (Hemoflow HF80S, Fresenius Medical Care, USA). The 120 

medium contained: 2 mM KHCO3, 0.2 mM Na15NO2
 (99.6% 15N; Isotec, USA) and 0.5 mM 121 

NaNO3. The bottles were made anaerobic by 6 cycles of vacuuming and gassing with Ar/CO2 122 

(75:25), followed by 5 min of flushing with Ar/CO2. Then 10 ml 13CH4 was injected into the 123 

headspace (final concentration ca. 20%). The pH in the bottles was around 6.0 and the bottles 124 

were incubated at 25 ºC, with gentle shaking at 100 rpm. The production of 13CO2 was 125 

measured by GC-MS in the headspace (see below). 126 

After three months incubation, the bottle with strongest 13CO2 production was used as 127 

inoculum for continuous culturing in a 3 liter glass bioreactor (working volume 1.5 l; 128 

Applikon, Schiedam, The Netherlands) that was operated in sequencing batch mode to 129 

prevent biomass loss. One cycle constituted of 23 h of continuous supply of medium, 0.5 h 130 

settling, finally followed by 0.5 h discharging with a level-controlled pump. To keep the 131 

culture anaerobic, the reactor was continuously flushed with 20 ml min-1 Ar/CO2 (95:5) and 5 132 

ml min-1 methane. The temperature was controlled at 25 oC and the pH at 6.0 to 6.2. 133 

Dissolved oxygen, temperature and pH in the reactor were monitored by respective 134 
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electrodes. Medium was prepared as described above, except using unlabeled nitrite. The 135 

nitrite concentration in the reactor was estimated daily with Merckoquant test strips (0-80 mg 136 

l-1; Merck, Germany), and the concentration in the medium was slowly increased from 0.2 137 

mM to 2.5 mM dependent on the activity of the continuous culture. Nitrite concentrations in 138 

the reactor were kept below 20 mg l-1 (0.44 mM). The medium loading to the reactor was 139 

between 200 to 500 ml per day.   140 

Activity analysis. Methane oxidizing activity in bottles was measured by determining the 141 

amount of 13CO2 produced from 13CH4 oxidation with GC-MS (Agilent 5975C inert MSD; 142 

Agilent, United States) as previously described (14). Activity in the reactor was tested in 143 

batch experiments with the whole culture. First medium supply was stopped and unlabeled 144 

nitrite was allowed to be depleted. The reactor was flushed with Ar-CO2 (95:5) for 1 h while 145 

stirring, and checked for residual methane in the headspace. When undetectable, 0.2 mM 146 

15NO2
- and 50ml 13CH4 were added. 20 µl gas samples were taken every hour for 13CO2, 147 

15,15N2, 15,14N2 analysis. At the same time, 1 ml culture liquid was taken and centrifuged; the 148 

supernatant was kept at 4 oC for nitrite analysis. Nitrite concentrations were determined with 149 

colorimetric methods as described elsewhere (23). The influence of pH on activity was 150 

determined in batch incubations of 10 ml biomass in 40 ml serum bottles, buffered with MES 151 

(2-(N-morpholino) ethanesulfonate, 20 mM) to pH values between 5.9 and 6.7, and with 152 

MOPS (3-(N-morpholino) propanesulfonate, 20 mM) to pH values between 6.75 and 7.4 153 

(measured at the end of incubation). 154 

DNA isolation. Total DNA from soil samples was isolated with the PowerSoil○,R DNA 155 

isolation kit (MO BIO Laboratories Inc., USA) according to the manufacturer’s manual. 156 

Approximately 0.3 g homogenized soil was used for DNA isolation, and two independent 157 

isolations were carried out for each depth interval. DNA was eluted three times with pre-158 
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warmed Milli-Q water from the column to ensure that the entire DNA had been collected. 159 

DNA in the third elution was undetectable by agarose gel electrophoresis (<0.2 ng µl-1). DNA 160 

obtained from the same depth interval was pooled for qPCR analysis to minimize the 161 

influences from soil inhomogeneities. DNA from enrichment cultures was isolated with a 162 

method based on bead-beating and SDS lysis, as described previously (14). DNA quality was 163 

checked on agarose gel, and concentrations were measured in triplicate with NanoDrop (ND-164 

1000, ISOGEN Life Science, The Netherlands). 165 

Quantitative PCR. In order to quantify n-damo bacteria and all bacteria in different depths of 166 

the soil cores, quantitative PCR (qPCR) targeting the 16S rRNA gene was performed. To 167 

account for imperfect primer matching and known variability of results (14), two different 168 

primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F & p1R 169 

and p2F & p2R, and for all bacteria, primer pairs 1100F & 1492R and 533F & 805R (Table 1) 170 

were applied. All q-PCR assays were performed according to the MIQE guidelines (Minimum 171 

Information for Publication of Quantitative Real-Time PCR Experiments) (4). qPCR 172 

experiments were carried out with the Bio-Rad IQTM 5 cycler real-time detection system 173 

using IQTM SYBR green Supermix (Bio-Rad, United States) in 25µl reaction volume as 174 

previously described (14), except using 65 oC for n-damo specific primer pairs and 58 oC for 175 

universal primer pairs as annealing temperature, which had been determined as most suitable 176 

for the present samples by gradient PCR. The qPCR reactions were carried out in 96 well 177 

plastic plates (Bio-Rad, United States) sealed with Opti-Seal Optical disposable adhesive 178 

(BIOplastics, The Netherlands). Fluorescence signals were obtained at 72 oC at the end of the 179 

elongation step of each cycle. PCR products obtained with n-damo specific and universal 180 

bacteria primer pairs were cloned and sequenced using the vector pGEM-T Easy (Promega, 181 

United states). The sequences retrieved were of the correct length (201 bp for p1F & p1R; 292 182 

bp for p2F & p2R; 291 bp for 515F & 805R and 410 bp for 1100F & 1492R), and the 183 
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obtained n-damo sequences were similar (>97.2% identity) to the sequence of M. oxyfera 184 

(accession no. FP565575). Standard curves for n-damo bacteria and general bacteria were 185 

constructed with plasmids containing corresponding inserts, taking into account the molecular 186 

mass of the plasmid including the insert, and the plasmid concentration. Plasmids copy 187 

numbers used as standard were between 30.7 to 3.07×108 µl-1 for NC10 bacteria, 86.9 to 188 

8.69×108 µl-1 for all bacteria. Two soil cores with partial overlap were analyzed. Both cores 189 

were sliced in sections between 5 and 10 cm in the field (see soil sampling and DNA 190 

isolation). In Fig. 1, each depth interval is represented by its average depth. DNA isolated 191 

from soil of 85-90 cm depth was used to test dilution effect; 10 times and 100 times had a 192 

maximum difference of 8.7%, compared with non-diluted ones. For NC10 bacteria non-193 

diluted DNA was used as templates; but for primers targeting all bacteria, 100 times diluted 194 

DNA was used. PCR efficiencies calculated based on standards were between 90.6% and 195 

99.2%. Both standards and samples were run in triplicates. The copy numbers in samples 196 

were calculated based on comparison with the threshold cycle values of the standard curve, 197 

taking into account the dilution and the amount of total DNA obtained per gram soil. 198 

Phylogenetic analysis. PCR was performed with DNA isolated from the soil layer used as an 199 

inoculum (80-100 cm depth), the enrichment culture after 3 months of incubation in bottles, 200 

and the continuous culture after 1 and 17 months of enrichment in the reactor. 16S rRNA 201 

sequences of n-damo bacteria were obtained with universal bacteria primer 8F or n-damo 202 

specific primer 193F in combination with n-damo specific primer 1043R (Table 1). PCR 203 

products of the correct size were ligated into the pGEM-T Easy cloning vector (Promega, 204 

United States) and amplified in Escherichia coli DH5α. Plasmids were isolated from 10 to 15 205 

randomly selected white colonies per library using the GeneJet miniprep kit (Fermentas, 206 

Lithuania), and were sequenced at the DNA Diagnostics Center of Nijmegen University 207 

Medical Center. The sequences were aligned to reference sequences with the MUSCLE 208 
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algorithm. Phylogenetic trees were constructed with MEGA5 using the neighbor-joining 209 

method and the robustness of tree topology was tested by bootstrap analysis (1000 replicates).  210 

With the same DNA samples also functional gene (particulate methane monooxygenase 211 

subunit A, pmoA) clone libraries were constructed. The particulate methane monooxygenase 212 

catalyzes the first step of methane oxidation and is well conserved in methane oxidizing 213 

bacteria, therefore pmoA is widely accepted as a marker gene for assessing diversity of 214 

aerobic and M. oxyfera-like anaerobic methanotrophs in the environment (34, 36). Two 215 

different forward primers targeting either most methanotrophs (A189b) or only close relatives 216 

of M. oxyfera (cmo182) were combined with a specific reverse primer (cmo682) (Table 1). A 217 

pmoA phylogenetic tree based on nucleotide sequences was constructed as described above.  218 

Fluorescence in situ hybridization. On a monthly basis, 1.5 ml biomass was harvested from 219 

the reactor and forced through a 0.5 mm needle to break big cell aggregates. Then the sample 220 

was centrifuged and the pellet was washed twice with 1 ml 1×PBS, and fixed with 221 

paraformaldehyde on ice for three hours. Fluorescence in situ hybridization (FISH) was 222 

performed as previously described (13), using 40% formamide concentration.  The following 223 

oligonucleotide probes were used: S-*-DBACT-0193-a-A-18 and S-*-DBACT-1027-a-A-18 224 

specific for n-damo bacteria (38) and a mixture of EUB I-III and V for most Bacteria (7). 225 

Images were acquired with a Zeiss Axioplan 2 epifluorescence microscope equipped with a 226 

CCD camera, together with the Axiovision software package (Zeiss, Germany). 227 

Nucleotide sequences accession numbers. Representative 16S rRNA and pmoA gene 228 

sequences were deposited at the National Center for Biotechnology Information 229 

(http://www.ncbi.nlm.nih.gov/) with the accession numbers JX262153- JX262155 (pmoA) 230 

and JX262156-JX262161 (16S rRNA). 231 

 232 
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Results 233 

Porewater profiles. Porewater depth profiles of the Brunssummerheide sampling location 234 

were determined on five occasions between July 2009 and May 2011, with an overall very 235 

similar pattern. Representative winter (December 2009) and summer (June 2010) profiles are 236 

shown in Fig. 1. Nitrate concentration decreased with depth, and became undetectable below 237 

100 cm. No methane was detected in the upper 80 cm, but methane gradually increased below 238 

the depth of 80 cm and reached the maximum concentration at around 120 centimeters (Fig.1 239 

A, B). Redox data indicated that the soil was completely anoxic below 50 cm depth, and 240 

living roots of vascular plants were not found below 60 cm depth. The maximum 241 

concentration of nitrate (0.6 mM) in June 2010 (Fig.1 B) was about 0.2 mM higher than that 242 

in December 2009 (Fig. 1. A), possibly due to relatively stronger evaporation of surface water 243 

and higher groundwater influx in summer. The maximum concentration of methane remained 244 

similar in both seasons, as well as the overall pattern: an opposing gradient at around 80-100 245 

cm depth.  246 

 247 

Quantifying abundance of NC10 bacteria in different soil depths. Total bacterial and 248 

NC10 phylum abundance in different soil depths was determined in two overlapping cores by 249 

qPCR using primers targeting the 16S rRNA genes. The highest cell numbers (1.3-3.2×107 g-1 250 

wet soil) of NC10 bacteria were found at 80-85 cm depth (Fig. 1 C, D), coinciding with the 251 

concomitant decrease of methane and nitrate (Fig. 1 A, B), and a peak in abundance of NC10 252 

phylum-characteristic phospho-lipid fatty acids (Fig. 1 G; Kool et al, submitted). In contrast, 253 

total bacteria cell numbers, ranging from 0.9 to 11.8×108 cells g-1 wet soil, did not show a 254 

depth-related pattern (Fig. 1 E, F). 255 

 256 
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Enrichment and activity. Nitrite dependent methane oxidizing activity was initially 257 

determined by measuring the fraction of 13CO2 in total CO2 after supply of 13CH4 and nitrite 258 

to three soil sections (80-100; 100-120; 120-135 cm). Despite the addition (and permanent 259 

presence) of nitrate (0.5 mM), all soil cores produced some methane in the first two weeks of 260 

incubation, but no methane oxidation could be detected (detection limit approximately 0.5 261 

nmol d-1 g-1 soil). After about 3 month’s incubation, the 80 - 100 cm section showed methane 262 

oxidation activity (9.0 nmol d-1 g-1 soil, assessed as CO2 production), and an increase in this 263 

rate indicated microbial growth. This incubation (80-100 cm) was used as inoculum to start a 264 

sequencing batch reactor for the enrichment of the responsible microorganism. Over the first 265 

9 months of enrichment activity remained low with a nitrite reduction rate of about 50 µmol d-266 

1 L-1, and then started to increase to about 1.0 mmol (NO2
-) d-1 L-1 in month 15. Batch tests 267 

and experience with previous NC10 bacteria enrichment cultures had indicated that nitrite was 268 

preferred over nitrate; consequentially the medium, prepared with in situ water was not only 269 

amended with nitrate, but also nitrite. To test the coupling of nitrite reduction to methane 270 

oxidations, both activities were tested in batch experiments after 10 months with 15N- and 13C-271 

labelled substrates during the enrichment period (Fig. 2). Nitrite-N was completely recovered 272 

as nitrogen gas, concomitantly methane was fully oxidized to CO2. The ratio of 13CO2 and 273 

15,15N2 production was 3:4.3, similar to the theoretical stoichiometry of 3:4 (38). An activity 274 

test at different pH values demonstrated that the culture preferred circumneutral conditions, 275 

but was active down to the lowest tested value of 5.9 (Fig. 3).  276 

 277 

FISH analysis of the enriched bacteria. FISH was performed on biomass of the enrichment 278 

culture fixed every month, but no clear hybridization with NC10 specific probes was observed 279 

until after 8 months of medium supply. Even though small numbers of NC10 bacteria must 280 
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have been present, they remained undectable at first due to strong autofluorescent background 281 

and hybridization inhibiton, presumably caused by peat material. Starting at month 9, NC10 282 

cells could be detected (Fig. 4A). With the progression of incubation, both total cell numbers 283 

visulized by DAPI stain, and  the percentage belonging to the NC10 phylum gradually 284 

increased (Fig. 4 B, C) and coincided with an increased activity of the culture. At month 14 285 

about 50%, and at month 19 more than 80% of the population did hybridize with the NC10 286 

sepecific probes (Fig. 4). 287 

16S rRNA and pmoA gene phylogenetic analysis. M. oxyfera-related 16S rRNA and pmoA 288 

genes were successfully obtained from both inoculum soil and the enrichment after 1 or 17 289 

months of incubation. Long (>1000 bp) 16S rRNA sequences obtained with primer 8F 290 

(universal) and 1043R (NC10 specific) were used for phylogenetic analysis. Results showed 291 

that the 16S rRNA sequences belong to the group A of NC10 bacteria (14), forming a cluster 292 

(differences between 0.1% to 2.7%) with sequences retrieved from coal-tar contaminated 293 

aquifer (AF351214, AF351217, FJ810544) and lake Constance sediment (HQ906524, 294 

HQ906538) (9). These sequences share only 94.9% to 95.5% identity with M. oxyfera (Fig. 5 295 

A).  296 

The phylogenetic analysis of the pmoA gene showed similar results. pmoA sequences from 297 

both soil and enrichment culture again cluster together with pmoA sequences retrieved from 298 

Lake Constance sediment (HQ906571, HQ906568, HQ906566) (9). These pmoA sequences 299 

had an identity with those of M. oxyfera of 86.2-90.9% on nucleotide level, but the 95.8-300 

97.9% on amino acid level indicated functional conservation (Fig. 5 B). No significant 301 

difference could be observed between the inoculum and the 17 months old enrichment 302 

culture, indicating that no population shift within the NC10 phylum had occurred. Both the 303 
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16S rRNA and pmoA genes phylogenetic results suggested that a new cluster of NC bacteria 304 

had been enriched.  305 

 306 

Discussion  307 

The Brunssummerheide peatland is a spring fen in an oligotrophic sand valley fed by nitrate- 308 

polluted groundwater, and therefore contains nitrate concentrations in the upper peat layer 309 

which are uncommonly high for pristine peatlands (52). Also in contrast to many other 310 

peatlands (6, 24, 26, 27), methane was not detected in the upper 70-80 cm of the depth profile 311 

at 5 sampling occasions in different seasons from 2009 to 2011, even though methane was 312 

produced in the deep anoxic zone (below 100 cm, Fig. 1A, B). As roots of vascular plants do 313 

not reach that deep in the Brunssummerheide (maximum 60 cm), this suggested the existence 314 

of an anoxic methane sink in the peat, independent from oxygen and aerenchymal transport by 315 

roots, for which oxidized nitrogen species could serve as electron acceptor. The counter 316 

gradient of methane and nitrate at the depth of 80 cm may provide an ideal niche for, and may 317 

be at least partly created by the recently characterized n-damo bacteria. Targeting their 16S 318 

rRNA gene in DNA extracts from different depths confirmed this: Highest n-damo cell 319 

numbers (up to 3.2×107 cells g-1 soil) and ratios (3 to 8% of total bacterial community) were 320 

observed at the depth of 80-90 cm (Fig. 1 C, D), coinciding with the methane-nitrate 321 

transition zone (Fig. 1 A, B). At this depth, also a peak in abundance of phospho-lipid fatty 322 

acids diagnostic for NC10 phylum bacteria was detected (Fig. 1 G; Kool et al., submitted). 323 

The n-damo cell number and lipid profiles also agreed with the finding that among soil 324 

samples from 80-100, 100-120 and 120-135 cm depth only the 80-100 cm sample showed 325 

anaerobic methane-oxidizing activity upon incubation. Despite the relatively high numbers of 326 

n-damo bacteria detected at a depth 80-90 cm, it took several months to obtain an enrichment 327 
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culture with measurable activity. Also detection by fluorescence in situ hybridization using 328 

NC10 phylum-specific probes, hampered by a strongly auto-fluorescent background from the 329 

organic-rich inoculum, was only possible after 9 months of continuous cultivation with 330 

constant supply of nitrite and methane. This may be due to the “dilution” of the naturally 331 

NC10 phylum-enriched soil layer with less active deeper layers (90-100 cm) in the inoculum, 332 

and a very low growth rate at the prevailing conditions, especially the pH (6.0 – 6.2). The pH 333 

optimum test showed that the NC10 phylum bacteria enriched in the continuous culture were 334 

only acidotolerant to a certain extent, not acidiphilic. They were active down to a pH below 6, 335 

but their physiological optimum was clearly higher, above 7 (Fig. 3). This is a prime example 336 

for the discrepancy between physiological and ecological optimum. In contrast to previous M. 337 

oxyfera enrichment cultures from neutral, eutrophic sediments (14), which had a similar 338 

optimum (around 7.5), but were not active at a pH below 7 (assessed under similar conditions, 339 

O. Rasigraf, MSc thesis, 2011, unpublished), a different ecotype was dominant in the more 340 

acidic and low nutrient environment. According to the species delineation of 97% identity of 341 

the 16S rRNA gene for bacteria in general and 93% of the pmoA gene diagnostic for 342 

methanotrophic bacteria (35), the NC10 phylum bacterium dominating the 343 

Brunssummerheide enrichment culture even constitutes a new species within the genus 344 

Methylomirabilis.  345 

Like other NC10 enrichment cultures (14, 20, 33), the enrichment period was characterized by 346 

a long phase without measureable activity, followed by a period of slow, but exponential 347 

increase in nitrite consumption rate. In the present case, nitrite-reducing activity remained low 348 

for the first 9 months, and then started to increase to about 1.0 mmol (NO2
-) d-1 L-1 in month 349 

15. After this increase it was not possible to stimulate the growth of the culture further and a 350 

sort of stationary phase was reached similar to other enrichments of NC10 bacteria (14, 20, 351 

22). The doubling time of the Brunssummerheide Methylomirabilis strain was estimated to be 352 
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about two months, which is 4 to 8 fold lower than the values reported before (14). It is 353 

difficult to predict whether this reflects the growth rate under field conditions. On one hand 354 

some factors like a higher temperature (25 ºC), the optimum temperature of methanotrophs in 355 

most peat soils (19) in contrast to 10-15 ºC in situ and constant substrate supply may be 356 

beneficial, but other factors like stirring, use of surface- instead of porewater or a decrease in 357 

microbial partner communities may also be disadvantageous for growth in the laboratory.  358 

However, once established, the methanotrophic community does not need to grow fast to 359 

constitute a relevant methane sink in the environment. According to previous estimations, 360 

Methylomirabilis cells in an enrichment culture have an activity of 0.1 to 0.4 fmol CH4 cell-1 361 

d-1 (14), indicating that the Brunssummerheide soil of 80 – 85 cm depth with about 1.3 to 362 

3.2×107 cells g-1 soil may convert between 1.3 and 12.8 nmol CH4 d-1 g-1 soil. This range is at 363 

the lower end of methane oxidation rates reported for aerobic methanotrophs (41) in wetlands, 364 

but apparently high enough to balance the methane diffusing upwards from deeper, 365 

methanogenic soil layers.  366 

Nitrite is clearly the preferred electron acceptor of previously reported M. oxyfera 367 

enrichments (13, 14, 20, 38). When nitrite was depleted in the present Methylomirabilis 368 

enrichment culture, methane oxidizing activity in the presence of nitrate (1 mM) ceased; upon 369 

addition of fresh nitrite, methane consumption started again (data not shown), demonstrating 370 

that the methane-oxidizing activity of Brunssummerheide enrichment is also nitrite 371 

dependent. Although nitrite was also detected in the depth profile, its concentrations were 372 

much lower (max. 4.2 µM, mostly around the detection limit of the colorimetric method) than 373 

those of nitrate. There was no depth-related pattern, and values were not constant over time. 374 

The nitrite needed by n-damo bacteria active in the soil might be supplied by other 375 

microorganisms (e.g denitrifying bacteria) or Methylomirabilis itself converting nitrate to 376 
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nitrite using organic carbon compounds other than methane. This would explain why nitrate is 377 

sufficient as an electron acceptor for methane oxidation in situ and in the initial batch 378 

incubations, whereas after enrichment, concomitant with a relative loss of other bacteria and a 379 

degradation of labile organic carbon, this supply path is insufficient and nitrite addition 380 

becomes mandatory for methane oxidation.  381 

The present study shows an additional, so far hardly investigated  pathway linking the 382 

biogeochemical cycling of nitrogen and methane in peatlands. Given the world-wide 383 

increasing groundwater nitrate and atmospheric nitrogen loads (32, 45), this methane sink 384 

may become more relevant for mitigating the mobilization of carbon in the form of methane 385 

from wetlands in the future.  386 

 387 
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Table 1 Primer pairs used for qPCR analysis and clone libraries construction in this study. 

  Forward primer   Reverse primer Annealing 

temp. (oC) 
Target 

 
Designation Sequence (5' - 3') Reference 

 

Designation Sequence (5' - 3') Reference 

qPCR 

p1F GGGCTTGACATCCCACGAACCTG (14)   p1R CGCCTTCCTCCAGCTTGACGC (14) 65 NC10 bact. 16S rRNA 

p2F GGGGAACTGCCAGCGTCAAG (14) 
 

p2R CTCAGCGACTTCGAGTACAG (14) 65 NC10 bact. 16S rRNA 

533F GTGCCAGCMGCCGCGGTAA (49) 
 

805R GACTACCAGGGTATCTAATC (28) 58 All bact. 16S rRNA 

1100F YAACGAGCGCAACCC (10)   1492R GGTTACCTTGTTACGACTT (53) 58 All bact. 16S rRNA 

Clone 

library 

8F AGAGTTTGATYMTGGCTCAG (21)   
1043R TCT CCA CGC TCC CTT GCG (14) 55-65 NC10 bact. 16S rRNA 

193F GACCAAAGGGGGCGAGCG (14) 
 

A189b GGNGACTGGGACTTYTGG (34) 
 cmo682 AAAYCCGGCRAAGAACGA (34) 55-65 NC10 bact. pmoA 

cmo182 TCACGTTGACGCCGATCC (34)   
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Figure captions 396 

Fig. 1 Depth profiles of the Brunssummerheide peatland. (A, B), Nitrate (filled square) and 397 

methane (open circle) concentrations in porewater sampled in December 2009 (A) and in June 398 

2010 (B). (C-F) Bacterial cell numbers (cells g-1 wet soil) as assessed by qPCR on DNA 399 

extracted from two overlapping soil cores from 51 to 102 cm (open circles), and from 77 to 400 

127 cm (open triangles). NC10 bacteria abundance was determined with primer pairs p1F & 401 

p1R (C), andp2F & p2R (D). Total bacterial abundance was determined with primer pair 535F 402 

& 805R (E), and 1100F & 1492R (F).  (G) Relative abundance of the phospho-lipid fatty 403 

acids 10-methyl-hexadecanoic acid (10MeC16:0, open diamonds) and 10-methyl-404 

hexadecanoic acid (10MeC16:1Δ7, multiplied by 3, closed squares) diagnostic of NC10 405 

bacteria (data from Kool et al., [24A]).  406 

 407 

Fig. 2 Activity test of the enrichment culture at month 10 with 15NO2
- and 13CH4. Nitrite 408 

(filled circle) was consumed, 15,15N2 (filled square), 14,15N2 and 13CO2 (filled triangle) were 409 

produced. The 13CO2 production rate was 20.2 µmol d-1, and the rate of 15,15N2 production 410 

was 29.0 µmol d-1.  411 

 412 
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Fig. 3 Methane-oxidizing activity of the n-damo enrichment culture incubated at different pH 413 

values.   414 

 415 

Fig. 4  Fluorescence in situ hybridization of the enrichment culture at different times of 416 

incubation. A: month 9; B: month 14; C: month 19. NC10 bacteria appear in pink, due to co-417 

hybridization of NC10 bacteria specific probes 193-Cy3 and 1027-Cy3 (red) and a mixture of 418 

probes EUBI-III, IV-Cy5 (light blue) for most eubacteria and DAPI (dark blue). (Scale bars: 419 

5µm). 420 

 421 

Fig. 5 Phylogenetic trees of the 16S rRNA (A) and the pmoA genes (B, including amoA and 422 

pxmA sequences) of the enrichment culture. The trees were calculated in Mega5 using the 423 

neigbor-joining method.  Bootstrap support values (1000 replicates) greater than 50% are 424 

indicated at the nodes. The sequences obtained in this study from inoculum soil and 425 

enrichment after 1 or 17 months of incubation are shown in bold. References 426 
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