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Abstract

Background
and aims

Plants damaged by herbivores emit a variety of volatile organic compounds (VOCs). Here we
used proton-transfer reaction mass spectrometry (PTR-MS) as a sensitive detection method
for online analysis of herbivore-induced VOCs. Previously, it was found that Brassica nigra
plants emit several sulfur-containing VOCs when attacked by cabbage root fly (Delia
radicum) larvae with m/z 60 as a marker for the formation of allylisothiocyanate from the glu-
cosinolate sinigrin. We tested the hypothesis that m/z 60 emission occurs only in plants with
sinigrin in their roots. Additionally, we tested the hypothesis that methanethiol, dimethylsul-
fide and dimethyldisulfide are only emitted after larval infestation.

Methodology Proton-transfer reaction mass spectrometry was used to track sulfur-containing VOCs from six
different species of Brassica over time. The roots were either artificially damaged or infested
with cabbage root fly larvae. Glucosinolate profiles of the roots were analysed using high-
pressure liquid chromatography and compared with VOC emissions.

Principal results Brassica nigra, B. juncea and B. napus primarily emitted m/z 60 directly after artificial damage or
root fly infestation. Sulfide and methanethiol emissions from B. nigra and B. juncea also increased
after larval damage but much later (6–12 h after damage). Brassica rapa, B. oleracea and
B. carinata principally emitted methanethiol after artificial and after larval damage. Brassica oler-
acea and B. carinata showed some increase in m/z 60 emission after larval damage. Comparison
with root glucosinolate profiles revealed that sinigrin cannot be the only precursor for m/z 60.

Conclusions The principal compound emitted after root damage is determined by the plant species, and
not by damage type or root glucosinolate composition. Once determined, the principal com-
pounds may be used as markers for identifying damaged or infested plants. Further analyses
of plant enzymes involved in the breakdown of sulfur compounds is needed to reveal the
origin of sulfur-containing VOCs from plants.
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Introduction
Plants infested by herbivores emit a variety of volatile
organic compounds (VOCs). In addition to ozone
quenching and contributing to resistance to pathogens,
VOCs also act indirectly in defence (Holopainen 2004).
Herbivore-induced VOCs specifically attract natural
enemies that kill or parasitize the herbivore, which may
then reduce current and future herbivore damage to
the plant (Dicke and Baldwin 2010). The role of VOCs
as indirect defences has been studied in many plant–
herbivore interactions. So far, most studies have primar-
ily been based on above-ground interactions whereas
interactions between below-ground herbivores and
roots have received much less attention (van Dam
2009). One reason may be the obscurity of plant–herbi-
vore interactions in the soil. It follows from this that the
feeding activities of below-ground-feeding herbivores
cannot be easily observed.

Recently, it has been found that indirect defence
responses involving herbivore-induced VOCs and natural
enemies of root herbivores also occur below ground (van
Tol et al. 2001; Neveu et al. 2002; Rasmann et al. 2005). Trad-
itionally, techniques based on gas chromatography (GC),
such as gas chromatography-mass spectrometry (GC-MS),
have been used to analyse herbivore-induced VOCs.
The disadvantage is that gas chromatography-based
techniques have limited sensitivity. The VOCs emitted
from the plant must first be accumulated on a trap for
some time—usually minutes to hours—before they can
be analysed. This limits the ability for dynamic profiling
of herbivore-induced VOC emissions. Proton-transfer
reaction mass spectrometry (PTR-MS) has emerged as a
useful tool for online VOC analysis by allowing real-time
detection of trace gases from various chemical groups
of the order of seconds at (sub) parts per billion (ppb)
levels (Lindinger et al. 1998). Briefly, the PTR-MS instru-
ment uses proton-transfer reactions of H3O+ with trace
gas compounds to ionize a neutral molecule chemically.
The ionized product is then analysed by a quadrupole
mass spectrometer and detected as the MH+ ion
(M ¼molecular weight of the molecule) according to
their mass-to-charge ratio (m/z). As a primary condition,
the instrument detects those compounds that have a
proton affinity higher than water (166.5 kcal mol21).
Unsaturated and aromatic hydrocarbons as well as most
oxygenated VOCs (aldehydes, ketones, alcohols, acids,
etc.)—with the exception of some light alkanes—are
included in this category. The common inorganic constitu-
ents of air, oxygen, nitrogen and carbon dioxide, possess
proton affinities lower than that of water and cannot be
measured (Hansel et al. 1995; de Gouw et al. 2003). In

comparison with conventional techniques such as
GC-MS, PTR-MS has a high sensitivity down to the
sub-ppbv range (parts per billion by volume, 1 : 109)
and a fast response time (seconds), which allow real-time
measurements without the need for sample pre-
concentration. Owing to these advantages, it has
become a powerful tool for the analysis of VOCs in many
fields including plant research (Brilli et al. 2011; Ruuska-
nen et al. 2011; Danner et al. 2012), food and flavour re-
search (Biasioli et al. 2011), environmental research (de
Gouw and Warneke 2007) and breath analysis (Cristescu
et al. 2011). There are a few examples where PTR-MS
has been used for screening plant VOCs induced after
herbivory, but these studies primarily focused on above-
ground emissions (Schaub et al. 2010; Ruuskanen et al.
2011) or measured root VOCs from in vitro grown plants
(Steeghs et al. 2004). Only recently has it been acknowl-
edged that PTR-MS can also be used to detect the activ-
ities of ‘invisible’ root herbivores in vivo on the basis of
root-emitted VOCs (Crespo et al. 2012; Danner et al.
2012). As such, this opens new opportunities to screen
for infested plants in fundamental ecological studies as
well as in applied research.

The genus Brassica (Brassicaceae) contains many
economically important crops, such as cabbage, broccoli
and oil seed rape (Ahuja et al. 2010). Upon herbivore
attack, Brassica plants emit complex blends of VOCs, in-
cluding alcohols, ketones, aldehydes, esters, terpenoids,
sulfides, carboxylic acids, nitriles and isothiocyanates
(ITC) (Geervliet et al. 1997). The latter two compound
classes are breakdown products of glucosinolates, a
class of plant-produced organic compounds that are
typical secondary metabolites of Brassicaceae (Bones
and Rossiter 2006). Over 120 different glucosinolate
structures have been identified to date (Fahey et al.
2001). Glucosinolates have limited biological activity
themselves but, upon plant damage, for example by
herbivore feeding, they are hydrolysed by thioglucosi-
dase enzymes known as myrosinases. As a result, a
variety of volatile hydrolysis products, including ITC,
nitriles, epithionitriles and thiocyanates, are formed
(Bones and Rossiter 2006; Halkier and Gershenzon
2006). The product formed by this reaction chiefly
depends on the chemical structure of the glucosinolates
present in the plant, the reaction conditions (pH) and the
presence or absence of additional enzymes that modify
the outcome of the reaction (Wittstock and Halkier
2002; Bones and Rossiter 2006). The glucosinolate–myr-
osinase defence system is distributed throughout the
plant but the levels vary from organ to organ. Roots,
for example, have higher glucosinolate levels than
shoots, and also contain a specific glucosinolate,
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gluconasturtiin, that is generally lacking from above-
ground organs (van Dam et al. 2009). Myrosinase-
containing cells have been found to be present in the
roots, confirming that the ‘mustard oil bomb’ compo-
nents are all available in below-ground organs as well
(McCully et al. 2008; Kissen et al. 2009).

Delia radicum, the cabbage root fly, is a major pest of
Brassica crops. Females lay their eggs in batches near
plant stems and, after hatching, the larvae crawl down
to feed on the roots until they pupate in the soil
(Neveu et al. 2002). Chromatography-mass spectrometry
based analyses of Brassica nigra plants showed that in-
festation by D. radicum larvae increased the emissions
of dimethyldisulfide (DMDS) and dimethyltrisulfide
(DMTS) in the plant’s headspace (Ferry et al. 2007;
Soler et al. 2007). Real-time analysis with PTR-MS
revealed that methanethiol and dimethylsulfide (DMS),
two related sulfur-containing compounds, were also
induced in root fly-infested plants, in addition to a spe-
cific sulfur-containing marker compound with m/z 60
(Crespo et al. 2012; Danner et al. 2012). The m/z 60
was emitted from the roots when larvae were actively
feeding, or directly after artificial damage. In B. nigra
plants, methanethiol and sulfide emissions were not
enhanced by artificial damage to the roots. Comparisons
with pure ITC clearly linked the emission of m/z 60 to the
conversion of sinigrin into allylITC, as pure phenylethy-
lITC did result in the production of an m/z 60 signal
(Crespo et al. 2012). Because of the close correlation
with actively feeding larvae, it was proposed that the
emission of m/z 60 may be used as a marker to discrim-
inate between infested and uninfested roots (Crespo
et al. 2012). However, there is substantial variation in
root glucosinolate profiles within the genus Brassica
(Bellostas et al. 2007; van Dam et al. 2009; Kabouw
et al. 2010). This implies that not all Brassica species
may show m/z 60 emissions in the PTR-MS when
damaged artificially or by root herbivores, if allylITC
formed after the conversion of sinigrin is indeed the
sole source for this marker.

Using PTR-MS we analysed the emissions of sulfur-
containing VOCs from damaged roots of six different
Brassica species and correlated these to their root
glucosinolate composition. We chose six species repre-
senting the members of the so-called Brassica U triangle
(Nagahara 1935; see Table 1 for species). Based on pre-
vious experiments on the same PTR-MS, we focused on
the emission of m/z 60 as a tracer for the formation of
allylisothiocyanate, as well as the emission of metha-
nethiol (m/z 49), DMS (m/z 63) and DMDS (m/z 95). We
tracked the emissions dynamically for several hours
after artificial damage or for several days after infest-
ation with D. radicum larvae. By combining the natural

and artificial damage-elicited VOC profiles we identified
those sulfur-containing compounds that serve as
markers for root damage in each plant species. The glu-
cosinolate profiles of the roots were analysed by high-
performance liquid chromatography (HPLC) in each
species and compared with the PTR-MS data. Based on
the results obtained by Crespo et al. (2012) we postu-
lated that artificial damage only induces m/z 60 emis-
sions provided sinigrin is present in the roots but that
root feeding by root fly larvae also enhances metha-
nethiol and sulfide emissions independently of the
plant’s glucosinolate profile.

Materials and methods

Plant and insect rearing

Seeds were obtained from sources shown in Table 1.
Seeds were germinated on glass beads and water in
10 × 10 cm plastic containers with a clear lid for 1
week in the greenhouse. Thereafter, selected seedlings
were transferred to tall plastic 2.2 L pots (11 × 11 ×
21.5 cm) filled with a peat–potting soil mixture
(Type ZPV—potting soil for floriculture, Holland
Potgrond, Poeldijk, The Netherlands) till �5 cm under
the rim. The upper 5 cm was filled with fine sand to
facilitate the retrieval of the root fly larvae. The pots

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Names, origin and seed sources of the Brassica species
used in the experiments.

Species

name

Details Source/referencea

Brassica

carinata

var. 007 ‘Utopia’ M. de Vries, Joordens

Zaden, Neer,

The Netherlands

Brassica

juncea

var. Varuna Mathur et al. (2011)

Brassica

napus

var. Westar Borgen et al. (2010)

Brassica

nigra

Population

Wageningen,

NL

van Dam et al. (2005)

Brassica

oleracea

population

Winspit, UK

Gols et al. (2008)

Brassica

rapa

subsp.

campestris

var. Ys143

G. Bonnema, Plant

Breeding, Wageningen

University, Wageningen,

The Netherlands

aPublished references can be found in the reference list.
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were transferred to an insect-free greenhouse (16 h
daylight, minimum T ¼ 15 8C) supplemented with
SON-T high-pressure sodium lamps (Philips, Eindhoven,
The Netherlands) when photosynthetically active radi-
ation was ,150 mmol m22 s21.

Root fly larvae and pupae for rearing were obtained
from the Laboratory of Insect Ecology, University of
Rennes, France. Essentially, they were reared as
described in Neveu et al. (2002) on kohlrabi, turnips or
rutabaga, depending on seasonal availability.

PTR-MS

The analysis of sulfur volatile compounds emitted by the
roots was performed with a custom-built PTR-MS,
described in detail elsewhere (Boamfa et al. 2005). To
calibrate the system, a calibration gas mixture was
used consisting of acetaldehyde, acetone, isoprene,
benzene, toluene, xylene and a-pinene (covering mol-
ecular weights from 32 to 136 amu), each in a concen-
tration of 1 ppmv (parts per million volume, +5 %)
(Linde, Dieren, The Netherlands). From this calibration,
calibration factors for other compounds could be calcu-
lated by considering transmission efficiency factors, col-
lision rate constants and fragmentation ratios (de Gouw
and Warneke 2007). In this way, ion intensities in nor-
malized counts per seconds (ncps) were converted to
gas mixing ratios (ppbv).

Two types of experiment were performed. In the first
experiment, the sulfur VOCs emitted during root
damage after D. radicum larval infestation were mea-
sured. In the second experiment, the roots of different
plants of the same Brassica species were mechanically
damaged with a scalpel and the sulfur-containing
VOCs were monitored. To collect the emitted gasses,
the sampling cuvette was placed around the stem on
top of the soil. This cuvette, custom made from two
halves of a 9-cm (diameter) glass Petri dish (see Fig. 1,
inset), was placed around the base of the stem and
sealed with a synthetic rubber-based sealant (Terostat
IX). Each cuvette was fitted with one gas inlet and
outlet port. A constant gas inlet flow of 2 L h21 with
hydrocarbon-free air was regulated by mass flow con-
trollers (Brooks Instrument, Ede, The Netherlands) to
flush the headspace of the roots and act as a carrier
gas. The outlet of the cuvette was connected via an
automated valve system to the PTR-MS instrument
where VOCs were measured online alternately for
30 min for each cuvette (see Fig. 1). The sampling line
from the cuvette to the PTR-MS instrument was heated
to 55 8C to prevent the condensation of compounds
and to minimize memory effects. In this study, four
plants were used per experiment, from which two were
infested with five (third instar) to 10 (second instar)

D. radicum larvae and two were left undamaged
(control). The D. radicum larvae were added to the
plants 2–3 h before the experiment started. The VOC
measurements were performed continuously over
2 days (45–50 h) at a constant temperature of 21 8C
and 16 h photoperiod provided by sodium lamps
(225 mmol m22 s21).

In a separate experiment, the plant roots were artifi-
cially damaged with a scalpel to compare the VOC emis-
sions with those from the larval damage experiments.
The VOC emissions were measured for 1–2 h after a
single bout of artificial damage. In total, three replicates
for each damage treatment (artificial or Delia infest-
ation) were analysed. The data were converted to ppbv
by using the calibration factors previously obtained.
After converting the values into ppbv (¼ nL L21), the
compound emission rates were calculated as nL h21 by
using the inlet flow value (2 L h21), and averaged per
three replicates.

Glucosinolate analysis

For glucosinolate analyses, the upper 2 cm of the main
root, where root fly larvae are typically feeding, were col-
lected and frozen at 220 8C. The root pieces were lyophi-
lized and ground to a fine powder using a Retsch mill
(Retch GmbH & Co., Haan, Germany). For each sample,
50.0 mg of ground and dried root material were
extracted and analysed on an HPLC equipped with a
photodiode array. Sinigrin (sinigrin monohydrate,
ACROS, NJ, USA) was used as an external standard. We
used the response factors at 229 nm from Buchner
(1987) and Brown et al. (2003) to calculate the
concentrations of the other glucosinolates. The desulfo-
glucosinolate peaks were identified by comparison of re-
tention times and UV spectra with a certified rapeseed
standard (Community Bureau of Reference, Brussels,
code BCR-367R) and authentic standards (progoitrin,
gluconapin, glucoiberin, glucobrassicanapin, glucotro-
peaolin, gluconasturtiin, glucoraphanin, glucoerucin,
glucobrassicin, sinalbin; Phytoplan, Heidelberg,
Germany).

Results
In control plants, the overall emission of the VOCs of
interest (m/z 49—methanethiol, m/z 60—ITC, m/z 63—
DMS, m/z 95—DMDS) remained low and constant
between 5 and 30 nl L21 (see Fig. 2 for an example of
infested and control Brassica carinata plants—note the
logarithmic scale). For reasons of clarity, the control
values were therefore omitted from consecutive graphs.

Artificial wounding with a scalpel as well as damage
with D. radicum larvae resulted in two types of primary
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response among the six plant species. Three out of six
Brassica plant species, namely B. nigra, B. juncea and
B. napus, primarily emitted m/z 60 immediately after
artificial root damage (Fig. 3A, C and E). With the excep-
tion of m/z 49, which showed a minor increase in
B. nigra, sulfide emissions did not increase after artificial
damage. The emission of m/z 60 was also increased
in these three plant species when they were infested
with root fly larvae (Fig. 3B, D and F). Interestingly,
in B. nigra and B. juncea, methanethiol (m/z 49), DMS
(m/z 63) and DMDS (m/z 95) emissions were also
enhanced, 6–12 h after infestation with root fly larvae
(Fig. 3B and D).

The three other species, B. rapa, B. carinata and
B. oleracea, emitted methanethiol (m/z 49) as the

primary compound immediately after artificial root
damage (Fig. 4A, C and E). Even though methanethiol
was the primary compound emitted after root damage,
m/z 60 emissions were also enhanced in artificially
damaged B. oleracea and B. carinata. When plants were
infested with D. radicum larvae, all three species emitted
methanethiol (m/z 49) more prominently than m/z 60
(Fig. 4B, D and F). In B. oleracea and B. carinata, the DMS
(m/z 63) and DMDS (m/z 95) emissions were also
enhanced above base levels (Figs. 2, 4D and 4F).

Root glucosinolate profiles

Overall, glucosinolate profiles and concentrations in the
roots were similar to those reported for mature roots
of B. nigra, B. juncea, B. rapa and B. napus (Bellostas

Fig. 1 Schematic representation of the set-up for measuring volatiles emitting from roots of Brassica plants. A constant inlet flow of
2 L h21 hydrocarbon-free air was used to flush the headspace of plant root cuvettes. An automated valve system was used to switch
between cuvettes. The pressure in the drift tube chamber of the PTR-MS was regulated by an overpressure outlet. Inset: schematic
diagram of the root cuvette, which was made from two halves of a 9-cm glass Petri dish and placed on the sand on both sides of
the stem. The gap between the halves was closed with Terostat IX, a synthetic rubber-based sealant. Arrows indicate the inlet and
outlet ports.
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et al. 2007). Among the six species of Brassica under
study, B. nigra, B. juncea, B. oleracea and B. carinata
showed the presence of sinigrin in their roots, whereas
B. napus and B. rapa did not contain sinigrin (Fig. 5).
On the other hand, gluconasturtiin was present in all
six species. Substantial levels of aliphatic glucosinolates
other than sinigrin, as well as indole glucosinolates, were
found in all species except B. nigra, which almost exclu-
sively contained sinigrin and gluconasturtiin. The root
glucosinolate profiles of these six Brassica species were
compared with VOC emissions as measured in the
PTR-MS to test the hypothesis that the conversion of sini-
grin is required for the emission of m/z 60. Apparently,
this was not the case, as B. napus roots, which lack sini-
grin, clearly emitted m/z 60 after artificial damage. On
the other hand, the emissions of m/z 60 in B. carinata
were relatively low despite the fact that these roots
had the highest sinigrin levels of all species.

Discussion
This study shows that root damage to Brassica plants,
either by root-feeding insects or by artificial damage
using a scalpel, resulted in the emission of various
sulfur-containing VOCs. Two types of primary response
were observed; three species mainly emitted m/z 60,

whereas the other three primarily emitted methanethiol
(m/z 49) after larval infestation and artificial damage.
Overall, the primary compound that was emitted by
each species was consistent for artificial and natural
root damage. The type of sulfur-containing compounds
that were emitted after damage thus depends mainly
on plant species and not on the type of damage that is
inflicted.

Our results also challenge the hypothesis that the
presence of sinigrin is the main factor for m/z 60 emis-
sions; plants lacking sinigrin in their roots also showed
enhanced emissions of m/z 60 after damage. Previously,
it was established experimentally that the emission of
m/z 60 as an immediate response after artificial
damage to B. nigra was related to the glucosinolate–
myrosinase system that is constitutively present in Bras-
sica plants (Halkier and Gershenzon 2006; Crespo et al.
2012). Isotope-ratio correlations and analysis of pure
compounds suggested that m/z 60 is a sulfur-containing
fragment of a glucosinolate breakdown product (Crespo
et al. 2012). Most notably, allylITC, the product formed
after the reaction of sinigrin with myrosinase, was
found to yield m/z 60. 2-PhenylethylITC, the product of
the reaction of myrosinase with gluconasturtiin—the
other main root compound in B. nigra—did not result
in m/z 60. However, our current study shows that there

Fig. 2 Temporal dynamics of sulfur VOC emissions from roots of B. carinata plants after D. radicum larval infestation (solid lines)
compared with non-infested plant root (dash lines, m/z marked with ‘c’). Vertical bars indicate the standard mean error (n ¼ 3). m/
z 49—methanethiol, m/z 60—ITC marker, m/z 63—DMS and m/z 95—DMDS. On the x-axis t ¼ 0 indicates the time of experiment
starts. Delia larvae were added to plants 2–3 h before the experiment starts.
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Fig. 3 Emission of sulfur-containing volatile compounds after root damage by artificial wounding with a scalpel (left panels) or larval
infestation (right panels) in B. nigra (A, B), B. juncea (C, D) and B. napus (E, F). m/z 60—ITC marker, m/z 49—methanethiol, m/z 63—DMS
and m/z 95—DMDS. Vertical bars indicate the standard error of the mean (n ¼ 3). In (A), (C) and (E), t ¼ 0 indicates the time at which the
root was damaged with a scalpel. In (B), (D) and (F), t ¼ 0 is the starting time of PTR-MS analysis; Delia larvae were added to plants 2–3 h
before analysis.
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Fig. 4 Emission of sulfur-containing volatile compounds after root damage by artificial wounding with a scalpel (left panels) or larval
infestation (right panels) in B. rapa (A, B), B. oleracea (C, D) and B. carinata (E,F). m/z 60—ITC marker, m/z 49—methanethiol, m/z 63—
DMS and m/z 95—DMDS. Vertical bars indicate the standard error of the mean (n ¼ 3). In (A), (C) and (E), t ¼ 0 indicates the time at which
the root was damaged with a scalpel. In (B), (D) and (F), t ¼ 0 is the starting time of PTR-MS analysis; Delia larvae were added to plants
2–3 h before analysis.
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may be other sources for the m/z 60 signal than sinigrin
alone. Based on the literature, there appear to be several
possibilities. First, Crespo et al. (2012) showed that pure
thiocyanic acid (HCNS, Mw 59) also gives a m/z 60 signal
in the PTR-MS. Thiocyanic acid may therefore arise after
the reaction of indole glucosinolates with myrosinase.
The ITC formed from indole glucosinolates are unstable
in the presence of water and rapidly form carbinols
under the release of thiocyanate ions (CNS2) (Attieh
et al. 2000; Bones and Rossiter 2006). Thiocyanate ions
may easily take up an H+, thus forming thiocyanic
acid. It was found by Crespo et al. (2012) that pure ethy-
lITC gives a signal at m/z60 on the PTR-MS. Even though
ethylglucosinolate, which would be the direct precursor
for ethylITC production, was not detected in the roots
of the species analysed in this experiment, it shows
that ITC emerging from aliphatic glucosinolates other
than sinigrin may also give rise to m/z 60. Indeed,
most species lacking sinigrin possessed other aliphatic
glucosinolates that may be additional sources of m/z
60 (Fig. 5). This hypothesis, however, now needs
testing by analysing the various ITC that may arise
from the reactions of these glucosinolates with myrosi-
nase in the PTR-MS.

Other than the production of ITC and related products
from glucosinolates, the emission of methanethiol and
sulfides is not exclusively linked to members of the Bras-
sicaceae. Volatile sulfides may be produced by a wide
range of plant species and other organisms, including
algae, bacteria and fungi (Kai et al. 2010). The above-
ground parts of broccoli and other cultivated cabbages

have been found to contain several enzymes, mainly
transferases and lyases that convert the amino acids
methionine, cystine or cysteine into methanethiol and
sulfides (Chin and Lindsay 1994; Derbali and Makhlouf
1998). When the activity of these enzymes was chem-
ically inhibited, the emission of sulfur-containing VOCs
was reduced by 95 %, showing the involvement of
these plant enzymes in the production of these volatiles
(Derbali and Makhlouf 1998).

However, in Brassica species there is also a more spe-
cific plant-based source of sulfides that is related to the
formation of glucosinolate conversion products. High
levels of thiol methyltransferase (TMT) activities have
been found in shoots and roots of various Brassica
species (Saini et al. 1995; Attieh et al. 2002). This
enzyme is thought to have a function in detoxifying
the phytotoxic sulfur-containing (by)products of glucosi-
nolate conversion, such as cyanides and HS2 ions (Attieh
et al. 2000). Thiol methyltransferase methylates ITC and
related sulfur-containing reaction products from glucosi-
nolate conversions, thereby producing methylsulfides
(Attieh et al. 2000). Active interactions with herbivores
or micro-organisms is not required as sulfides are also
produced after artificial damage when Brassica species
are ploughed into the soil for biofumigation purposes
(Wang et al. 2009) and under sterile conditions (Derbali
and Makhlouf 1998).

Attieh and colleagues (1995) found a range of medium
to very high TMT activities in shoots of B. napus (100–
250 nmol day21 g21 fresh mass), B. juncea (250–500),
B. rapa (500–1000) and B. oleracea (.2000). Interestingly,
the latter two species, which had the highest TMT activ-
ities in their leaves, were also found primarily to emit
methanethiol after artificial and natural damage to
their roots. Brassica juncea, which was classified primar-
ily as an m/z 60 emitter under artificial damage, also
emits substantial levels of m/z 49 when infested with
root fly larvae, athough at later time points than the
m/z 60 emission. This suggests that the level of TMT
activity may play an important role in the production
of sulfides versus ITC and co-determines which sulfur
compound is primarily formed after artificial and natural
root damage. Unfortunately, B. nigra and B. carinata
were not analysed for their TMT activity by Attieh et al.
(1995). Based on their emission patterns, it can be
hypothesized that B. carinata should have TMT activity
levels close to those of B. oleracea, whereas B. nigra
TMT activities would be close to those of B. juncea.
Further analyses of TMT activities in these species, espe-
cially in the roots, should be performed to confirm this
hypothesis.

In D. radicum-infested plants, there is another poten-
tial source contributing to the formation of sulfides and

Fig. 5 Glucosinolate concentrations and profiles in roots of
six different Brassica species. Error bars indicate standard
error of the mean of the total glucosinolate concentration (n¼ 5–
7 per species). Black bars: sinigrin (allyl glucosinolate); crossed
bars: aliphatic glucosinolates other than sinigrin; white bars:
indole glucosinolates; striped bars: 2-phenylethylglucosinolate.
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methanethiol. It was found that the midgut of
D. radicum larvae contains a wide range of (symbiotic)
bacteria which are essential to digest the tough root
tissue that the larvae feed on (Lukwinski et al. 2006).
The bacterial gut community included several Serratia
species, some of which emit DMDS, DMTS and metha-
nethiol when grown on artificial medium (Lukwinski
et al. 2006; Kai et al. 2010). The slower evolving emis-
sions of methanethiol in D. radicum-infested B. nigra
and B. juncea—which did not occur in artificially
damaged plants of these species—may therefore come
from the growing population of gut bacteria in the
digested root materials. However, the immediate emis-
sion of methanethiol after artificial damage in B. rapa,
B. oleracea and B. carinata suggests that exposure to
gut bacteria is not an absolute requisite for the produc-
tion of these volatiles. Further research is needed to de-
termine the relative roles of plant enzymes such as TMT
and bacterial gut communities in the formation of these
volatile compounds.

Conclusions and forward look
Here we show that real-time PTR-MS analysis is a power-
ful tool for the analysis of sulfur-containing VOCs
emitted from plants infested with cryptically feeding
root herbivores. In all cases, undamaged plants could
be clearly distinguished from damaged plants on the
basis of one or two marker VOCs. The type of sulfur-
containing VOC emitted is species specific and independ-
ent of sinigrin being present in the roots. Before PTR-MS
can be implemented for detecting root fly-infested Bras-
sica plants or vegetables, further tests are required to in-
vestigate which compound can serve as a marker for
each species or variety. Artificial damage experiments
can be used to identify the most prominent marker for
each species, though it must be considered that, at
later time points, additional VOCs may be produced
under larval infestation.

Our results show that within the genus Brassica, the
combination of various enzymes and compounds is a
versatile platform for the launch of defence operations
such as the generation of toxic and noxious sulfur-
containing VOCs (Rausch and Wachter 2005). To under-
stand the mechanisms leading to the formation of the
various sulfur-containing VOCs in different species
better, the role of enzymes involved in the catabolism
of glucosinolate breakdown products will need to be
studied in more detail. The outcome will improve our
understanding of the formation of off-flavours in brassi-
caceous vegetables. To better understand the role of
sulfur-containing VOCs in attracting natural enemies
and predators, the relative roles of sulfides versus ITC

must be addressed. Both sulfides and ITC can be per-
ceived by parasitoids and predators, and are used by
these biocontrol agents to locate the most suitable herb-
ivorous hosts (Reddy et al. 2002; Ferry et al. 2007; Soler
et al. 2007). Interestingly, our results also show that
VOC emission patterns of ITC and sulfides are very
dynamic in time and differ considerably between plant
species. It will be vital to assess how and when natural
enemies deal with this variation in time to find their pre-
ferred hosts in different host plant species.
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