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Summary

The focus of this thesis is the development of fast low temperature platinisation for dye 
solar cell (DSC) counter electrodes substrates. Initial studies indicated that direct 
deposition results in poor catalytic material due to unrestrained growth, characterised 
through the limiting current obtained through cyclic voltammetry. These counter 
electrodes were further characterised through l-V measurements of DSCs, SEM and EIS 
measurements. As a result of this study an indirect route for platinisation was developed 
using galvanic replacement. A lead deposit formed a templating material, followed swiftly 

by electroless replacement with platinum metal. Analysis showed viable Pt deposits on the 
FTO surface, which proved to be catalytic towards triiodide. DSC devices produced using 
this catalyst resulted in 3.2% efficiency, compared to thermal Pt devices (3.9%) and 
chemically platinised devices (3.5%).

This research also developed an innovative observation and analysis technique for use in 
the quality assessment and control of mass produced metal substrate DSCs. RGB colour 
data was collected for 1000 hours. The progression of cell degradation through the 
reduction of triiodide was recorded and the vulnerability of critical industrial substrates 
assessed. Nitrogen containing heterocyclics (NHC's) electrolyte additives that have a 
unique corrosion inhibition effect were identified during this analysis. Electrolytes 
containing several NHC's were compared, showing that a critical concentration of 0.5M or 
1M could retard corrosion in several vulnerable substrates such as activated Al and Ni. A 
cobalt complex electrolyte was investigated in parallel to the triiodide investigation, using 
the RGB analysis method. Iron and copper substrate were found to be vulnerable, despite 
the cobalt electrolyte being heralded as a non-corrosive electrolyte.

Since NHC compounds were not seen to reduce the degradation of the examined 
vulnerable substrates, inhibition techniques such as blocking layer and NHC's were trialled, 
with analysis made on their affect compared with the previous study. The structure of the 
NHC's were discovered to be critical to the inhibition effect and from this, a number of 
theories for the corrosion inhibition mechanism were suggested.
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1 Introduction

A study by the International Energy Agency (IEA) showed that the total world consumption 

of energy was estimated to be 8677 million tonnes oil equivalent (Mtoe), or 

1.0091351el014 kWh, of which electricity consumption makes up 17.7%, from 2010 

statistics [1]. This need will grow over the next century as the global population and 

industrial base increases. Furthermore, there is an increasing need to turn to other energy 

generation methods in order to conserve limited fossil fuel resources, as a recent BP study 

has estimated that only 52.9 years of oil production remain [2]. This study also promotes 

the efficient utilisation of abundant natural sources such as wind, tidal and solar power, 

with nuclear power also included in these alternative options. However since the 

Fukushima Daiichi accident in 2011, there has been a marked decrease in the development 

of nuclear infrastructure, falling from the 2006 peak of 2660TWh, to 2346TWh in 2012, a 

drop of 12% [3]. Several countries including Germany have opted to phase out and close 

their nuclear program fully over the next decade [4]. This uncertainty over nuclear power 

and its total phase out in a number of countries, coupled with the increasing price of oil and 

gas, has enabled a resurgence in renewable electricity generation.

The most visible type of renewable is wind power, with large onshore and offshore wind 

farms built both in the UK and many European countries [5]. The issue with wind power is 

that it is intermittent and very difficult to predict, this coupled with the difficulty in storing 

energy and the increased infrastructure needed to attach offshore wind farms to the grid, 

leads to the conclusion that wind power will not easily play a large part in meeting future 

energy needs, unless the mismatch between fluctuating daily power requirements and 

generation can be balanced [6][7]. However, if power storage technology improves then 

wind could play a vital role in the energy generation of many countries [8][9][10]. Tidal 

generation or wave power are other interesting technologies, however due to the hostile 

sea water environment and again the increased infrastructure in placement and grid 

connection of these sources, this resource so far remains out of reach for current large 

scale or base load generation needs [11].

Solar power is a much studied and publicised technology with massive potential for large 

scale energy generation, with 2012 showing massive growth in PV capacity, achieving co. 

102GW installed capacity [12]. As of 2013, Silicon cells typically made up the bulk of 

manufactured commercial devices due to their high power conversion efficiency and 

stability, though the amount of CIGS or CdTe modules produced is climbing as the
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technology improves [13]. Unfortunately, these have several drawbacks such as high 

processing costs and the production of hazardous waste products. They also produce 

electricity at a higher cost than traditional generating technologies such as fossil fuels, 

though this is mitigated somewhat by feed in tariffs put in place by governments [14]. The 

potential for large scale uptake and commercialisation of photovoltaic technologies is high, 

especially considering recent public opinion on nuclear power and the projected scarcity of 

fossil fuels over the next century. Despite the high initial setup costs of solar power, the 

balance of system (BOS) infrastructure is much less than wind or tidal generation. The field 

of solar cell research is vast, with several different technologies reaching commercial 

viability and higher efficiencies over the last 20 years [15]. Thin film photovoltaic PV 

technologies use thin layers of PV materials to reduce the cell bulk and BOS needs, such as 

support for crystalline silicon roofing panels. Furthermore, thin films allow for continuous 

processing methods to be utilised rather than slower and more costly batch processing 

[16], [17].

Research on thin film photovoltaics has increased over the last 20 years, in order to 

improve upon standard polycrystalline silicon cells and to increase overall PV performance. 

One of the first thin film technologies was amorphous silicon (a-Si) [18]. Amorphous silicon 

cells are constructed using chemical vapour deposition (CVD) growth onto the required 

substrate. The materials used are known as P-type and N-type semiconductors, where the 

N-type has a large concentration of electrons and the P-type has an abundance of electron 

spaces, known as holes. The "P" and "N" refer to the positive and negative of the hole and 

the electron. A P-type semiconductor is created through the doping of silicon with electron 

accepting elements such as boron. This group XIII element has one less electron than the 

group XIV silicon and results in a substrate with a large positive charge that is able to accept 

electrons from a donor source. The N-type material is created through the addition of 

electron donating elements such as phosphorus or arsenic. These are group XV elements 

that will give the semiconductor a higher concentration of electrons than holes and an 

overall negative charge. Figure 1.1 illustrates a typical P-N junction and the energy levels 

involved in a typical silicon PV cell. Schematic 1 and 2 illustrate the movement of electrons 

and holes before and after the P and N material are joined. Schematics 3 and 4 show the 

change in energy levels of Schematics 1 and 2 respectively. Figure 1. shows a schematic of 

an amorphous silicon PV cell. As the material is illuminated by light with a higher energy 

than the band gap, charge carriers are excited and are free to move through the material.
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Charge separation w ill occur due to  band bending in the interface between P and N type 

materials.
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Figure 1.1: Energy level diagram for a p-n junction solar cell [1 9 ]
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Figure 1.2: Schematic of an amorphous

This technology is less costly than trad itional bulk silicon, though the efficiency is lower due 

to  defects in the film  that affect the film  much more than the bulk material [20]. 

Amorphous silicon solar cells are currently commercially available from  suppliers such as 

"Sungen" [21] and "HyET Solar" [22], and can be applied to  building roofing, walls and 

blinds using a fo il type architecture. Further uses o f this in building-integrated
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photovoltaics (BPIV) are as semi-transparent window glazing that can act as an aesthetic 

tint, as well as generating electricity [23].

The current highest performing single cell thin film solar cells have reached 29.1% using a 

gallium arsenide thin film cell (GaAs), Figure 1.3, at A M I.5 conditions, though this cell and 

its high performance come at increased cost [24]. Another attractive thin film solar cell 

technology is the Cu(lnGa)Se2 or CIGS cell. This type of cell uses a conducting glass or 

polymer and metal substrates with the active material in a sandwich configuration 

between, Figure 1.4. Repins eta l. reported a glass based CIGS cell reaching an efficiency of 

19.9% [25], though the current CIGS single cell record is now at 23.3% [24],

Cadmium Telluride (CdTe), Figure 1.5, is perhaps the most versatile thin film technology, 

due to its ideal band gap of 1.5eV that leads to an optimal conversion of photons from solar 

radiation to electricity [26], [27]. There are several drawbacks to this cell type, first is that 

the tellurium needed in this cell is mined as a by-product in other processes, gold and 

copper extraction, and as a result there is no large stockpile [28]. Further to this, the 

cadmium needed is toxic and banned by several countries leading to problems with 

commercialisation and eventual recycling of the product [28]. First Solar, a company 

heavily invested in this technology has developed recycling processes and has factored the 

cost of this and waste transport into their estimated cost of electricity [29]. Furthermore 

an independent review of the CdTe technology by the French Ministry of Ecology Energy 

and Sustainable Development indicated that the stability, efficiency and end life measures 

of CdTe cells, in particular First Solar was high and that, despite the materials problem the 

CdTe cells are a viable PV technology for use [30], To date, there are several large CdTe 

installations worldwide: In 2008 an 835kW roof was installed in Germany; also a 2.4MW  

roof was installed in S. California and a large 40M W  system was planned for installation in 

Germany [31].

Following on from this, the third generation of solar technologies includes 

photoelectrochemical (PED) and organic solar cells (OPV), which are currently under 

development. However, in comparison with first and second generation technology, large 

scale commercialisation has yet to be made a reality. There are current projects such as 

G24 Power Ltd in Cardiff [32]; the Swansea University SPECIFIC project and a variety of 

international programmes that are attempting to realise the dream of mass produced low 

cost solar power using these third generation developments [33],
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Dye sensitised solar cells (DSCs) are a type of photoelectrochemical thin film cell introduced 

by O'Regan and Gratzel in 1991 [34]. These have serious potential to be a contender in the 

low cost PV market due to the use of highly abundant, low cost and non-toxic materials. 

Before this can be realised, there is a need to progress from lab and batch processes to a 

mass producible device using low cost substrates such as metals and polymers. The change 

in substrates has engendered a requirement for fast and low temperature processing 

methods. In addition, there is increasing interest in building integrated photovoltaics (BIPV) 

and with this a requirement to produce cells on lightweight metallic substrates for use on 

roofing or as building cladding.

Currently, the highest performing DSCs are created in research centres and universities and 

use a traditional liquid electrolyte containing a redox couple (iodide/triiodide or cobalt 

complex ions) [35]. Unfortunately, the iodine based redox mediator is known as being 

highly aggressive, with the tendency to corrode several key industrial metals such as iron 

and aluminium and conductive connections such as silver and copper [36][37][38], [39]. 

Furthermore, the electrolyte requires a specially designed, expensive platinum nanoscale 

catalyst to accelerate the charge transfer reaction at the counter electrode [40]. Another 

type of cell, the perovskite solar cell, is also under development and hopes to avoid the 

current issues facing dye solar cells using liquid electrolytes, through the introduction of a 

solid perovskite photoactive material on a mesoporous scaffold such as T i02 or Al20 3 

nanoparticles [41].

This work focuses on two of the most pressing issues facing the scale up of liquid state DSCs 

[42][43]: The need to produce a fast low temperature method of platinisation for 

iodide/triiodide electrolyte DSCs and the eventual need to for an in situ monitoring method 

for DSC production and quality for a mass production process. The low temperature 

platinisation issue will be addressed through the development of an electrodeposition 

technique, initially for FTO glass, with the eventual goal of usage on conducting polymers.

A further study was built out of the device observation work, looking at methods to 

mitigate the aggressiveness of high performing redox electrolytes towards the metal 

substrates preferred in the mass production of DSCs on a roll to roll production line, rather 

than batch sampling or destructive testing of devices. In order to mitigate electrolyte 

aggressiveness, this study will also assess the benefits of certain performance enhancing 

compounds, nitrogen containing heterocyclics, to ascertain their impact and viability for 

production DSCs.
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1.1 Dye sensitised solar cells

This section covers DSC operation, components and electrochemistry, both current 

literature and industrial developments.

One of the earliest studies of photoelectrochemical solar cells was performed by Moser in 

1887 employing an erythrosine dye to sensitise silver halide electrodes [44]. A more 

modern version of dye sensitised solar cell was developed further through a device 

patented by Chen et al. for an N-methylphenazinc methosulfate dye sensitised titanium 

dioxide (Ti02) layer [45]. This early concept was unfortunately restricted to a monolayer of 

dye, resulting in a low surface area for the absorption of light and therefore low device 

efficiency. Desilvestro et al. then presented a paper on highly efficient sensitisation of T i02, 

using colloidal anatase T i02 particles, thus providing a method of increasing the surface 

area available for the dye [46]. This was taken further through the seminal report by M. 

Gratzel and B. O'Regan in 1991, who produced a highly efficient solar cell using a high 

surface area network of sintered T i02 particles as the semiconductor [34], Over the last 20 

years, this design has been improved upon and the current DSC efficiency record is over 

12% using a cobalt electrolyte and an engineered organic dye [35].

1.1.1 Operation

A liquid state DSC can be described as having four main components: The T i02 

semiconductor, the sensitising dye, the counter electrode redox catalyst and the redox 

mediator containing electrolyte [19]. There are other components, such as the sealing 

gasket used to join the electrodes, or the conductive paste used to enhance the cell contact 

points. These however are general components which vary according to the experimental 

procedure followed and the nature of the work to be performed.

The operational cycle of a DSC device is better explained in a diagrammatic format, Figure 

1.6, with both components and basic electrochemical cycle identified. When illuminated, 

photons of light pass through the front transparent conducting substrate and interact with 

the sensitising dye which is adsorbed onto the T i02 semiconductor. The transfer of photon 

energy "hv", where "h" is Planck's constant and V  is the frequency of the electromagnetic 

waves, to the dye molecule shifts it to an excited state. The electrons then move from the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO). This excitation allows the molecule to undergo a metal to ligand charge transfer 

(MLCT) process where the electron density shifts from the central metal complex ion to the 

ligands surrounding this ion. Due to this shift, these electrons can then be injected into the
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T i0 2 conduction band, where they diffuse through the mesoporous T i0 2 network to  the 

TCO layer. This layer facilitates passage to  the external circuit w ith  m inimal resistive and 

recombinative loss o f electrons [19].

Once work has been done in the external circuit, the electron return is facilita ted by the 

redox catalyst at the counter electrode, which promotes the reduction of triiod ide  to  

iodide. This species migrates through the electrolyte to  the working electrode where it is 

oxidised through transferral o f an electron to  the oxidised form  o f the dye molecule, thus 

returning it to  its neutral state. It should be noted tha t these electrochemical redox 

reactions at the working and counter electrode occur simultaneously and serve to  aid 

charge separation and reduce recombination losses [19].

W orking e lectrode C ounter electrode

Substrate TCO
Electrolyte

O xidation Reduction

External Circuit

Figure 1.6: Schematic representation of DSC operation

The processes w ith in  the DSC can be summarised by Equations 1.1 -1 .3 :

S 4- hv —* S* (Photoexcitation o f  dye sensitiser)  (1.1)

S* —* S+ +  e“b (TiO2 Charge Injection)  (1.2)

2S+ +  31” -+ 2S +  I 2 (Dye Sensitiser Regeneration)  (1.3)

Understanding the processes that occur in the electrochemical cell is crucial when 

attem pting to  improve the device performance and understand how to  best optim ise the 

cell architecture to  facilitate mass production.
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1.1.2 Semiconductor

The active semiconductor used in most common DSCs is titan ium  dioxide, T i0 2 is known fo r 

having high stability as weil as low toxicity. The most promising factor however, is that 

compared to  other photovoltaic materials, such as silicon or cadmium telluride, it is very 

low cost and highly abundant. T i0 2 exists in three main forms, rutile, anatase and brookite. 

Due to  the tri-phase nature o f the T i0 2, extensive investigations into the performance of 

each o f the T i02 phases have been reported in literature [47]. Generally, anatase type T i0 2 

is used due its electrical activity and pyramidal form  that maximises the surface area 

available fo r the adsorption of a sensitizing dye, see Figure 1.7. Titanium dioxide has a wide 

band gap o f 3.6eV, which limits its optical activity to  the UV portion of the optical spectrum, 

an unfortunate lim itation fo r a solar cell. Therefore, fu rthe r optim isation is needed so a 

larger range o f the optical spectrum can be utilised.

Figure 1.7: Anatase T i02 crystalline structure; Titanium (red), Oxygen (grey) [48]

The initia l structures used fo r the semiconductors in photoelectrochemical solar cells are 

comprised o f simple fla t compact layers w ith  low surface areas [49]. A radical change was 

needed to  increase the surface area available and thus improve device performance. A 

development of an anatase type T i0 2 cell using a sintered T i0 2 colloid to  manufacture a 

connected mesoporous network o f particles was achieved in the 1980s, through the work 

of Moser, and then Desilvestro [50][51]. This process produced an electrode w ith  a much 

larger surface area fo r dye adsorption than was previously possible and gave a large boost 

to  DSC performance. Gratzel and O'Regan pushed this transform ation fu rthe r in the ir study 

on dye sensitised T i02 mesoporous networks, achieving a highly efficient DSC device [34],
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During their investigation, it was determined that the performance of the T i02 

semiconductor could be affected in several ways. Five key factors at the forefront of the 

analyzed literature were:

•  Surface morphology

•  Porosity

•  Particle size

•  Film thickness

•  Sintering temperature

In the majority of devices, the T i02 should have a particle spacing large enough to allow the 

unhindered diffusion of the chosen electrolyte species into the T i02 mesoporous network 

[52]. This factor should be carefully balanced with surface area control and selection of 

particle size, to ensure the maximum surface area is available for dye adsorption. Small 

particles with an average size of 20nm are considered the best choice for this, although 

reports from literature recommend the inclusion of large particles, ca. 400nm, to act as 

light scattering particles to raise the incident photon to electron conversion efficiency 

(IPCE) and increase device performance [52]. Furthermore the film thickness should be 

optimised to avoid resistive losses in the electrode and reduce the migration distance of 

injected electrons, thus reducing the risk of recombination with the electrolyte charge 

carrying species [47], [53]—[55].

Titanium dioxide is usually applied in paste form, either from a commercial source, Dyesol, 

Solaronix or Sigma-Aldrich; or is produced from base materials such as P25 T i02 powder 

with the inclusion of binders and surfactants of the chemists' choice, this process also must 

utilise a complex autoclave process in order to produce the correct chemistry anatase 

powder and the specific Ti02 paste required for DSC devices [56]. No matter the source of 

materials or application method, printing or doctor blade, the majority of literature sources 

use a sintering process of 450°C for ca. 30 minutes to remove the organic binder and 

surfactant and to produce an excellent level of particle connectivity and TiO^substrate 

adhesion [57]. This high temperature has unfortunately limited the use of DSCs to 

materials that could withstand this high processing temperature. There have been 

numerous attempts to produce a low temperature T i02 photoanode, which typically has 

resulted in weakened particle interconnectivity [58], [59]. This has, in turn, resulted in 

lower electrical contact between T i02 particles. In addition, the high temperature sinter is 

applied over 30 minute, which is not a viable timescale for a roll to roll process.
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Different methods of sintering have been tria lled in an a ttem pt to  keep the advantages of 

the high tem perature sinter, but allow the use o f tem perature sensitive substrates. Vigil et 

al. reported a method using a microwave reactor fo r the deposition of T i0 2 onto conducting 

glass. The low power and fast application tim e was able to  produce a good quality T i0 2 

layer that could be applied to  a DSC substrate [60]. A fu rthe r radiative process was 

proposed by Guitierrez-Tauste et al., reporting a UV decomposition of a T i0 2 precursor to  

deposit a thick porous T i02 film  [61]. The method was successfully tria lled on conducting 

polymer, ITO-PET, and FTO glass. The efficiency of the DSCs produced w ith  this m ethod 

only reached 2%, however this was fo r a non-optim ised cell to  prove the viability o f the 

method.

An additional radiative technique was introduced by Watson et al. reporting the use o f a 

near infrared heating process (NIR) to  sinter the T i02 [62], This method was developed out 

o f the need fo r a rapid sintering method fo r T i02, in order to  better suit the needs o f 

commercial production. The NIR method was applied to  FTO glass substrate or metallic 

substrates sim ilar to  those needed fo r a flexible roll to  roll fabrication process. The FTO 

conductive layer w ill absorb the NIR radiation and the increase in tem perature w ill burn o ff 

the solvent, binder and cause T i0 2 particle sintering to occur, Figure 1.8. In the case of 

metal substrates, the NIR method directly heats the metal substrate in order to  sinter the 

T i02, the timescale reported in this study was 12.5s at varying power levels [62], The test 

efficiencies reported were up to  2.9% on un-optim ised cells fo r this sintering method.

Solvent Burn off Solvent Burn off

Ti02 Paste

FTO Layer 

Glass Substrate

NIR Radiation Source

Figure 1.8: NIR sintering of T i02 paste on FTO glass substrate

In this study, the T i0 2 w ill be applied through the standard convection sinter method at 

450°C due to  the current developmental nature of this process. However, this method has 

been included to give recent background into the developments surrounding DSC scale up 

and commercialisation. The studies by Kalyanasundaram & Gratzel and Barbe et al. are
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recommended for further information into the properties and structure of the T i0 2 

semiconductors used in DSC devices [11,14].

1.1.3 The dye sensitiser

The most common sensitising dye, and the one used throughout this work, is a ruthenium 

complex, the most widely used is N719, It has the formula "cis-Di(thiocyanato)bis(2,2'- 

bipyridyl)4,4'-dicarboxylate)ruthenium(ll)" the structure of which is exhibited in Figure 1.9. 

This dye adsorbs to the T i0 2  surface using the carboxyl groups on the outside of the 

molecule, in addition providing orientation to the molecule to improve its operation. These 

provide a strong anchoring point, as well as acting as the pathway for the electron transfer 

that proceeds via a mechanism known as metal to ligand charge transfer (MLCT). As light is 

absorbed, the charge density between the ruthenium complex ion and the carboxylate 

ligand changes, thus electron transfer to the T i0 2 conduction band becomes possible. The 

N719 dye is a wide spectrum absorber, which maximizes the range of the optical spectrum 

which the DSCs can utilize [64], [65].

In the last decade there has been a drive to develop dyes that encompass a wider portion 

of the optical spectrum. Research has also been undertaken into the co-sensitisation of 

Ti0 2  using two or more dyes tailored for different absorption ranges. There has also been a 

large movement toward organic dyes, rather than ruthenium based ones, in order to 

reduce the overall device cost [3,14-15].

The performance of these sensitising molecules is usually measured using a parameter 

known as the incident photon to electron conversion efficiency (IPCE) [69]. This gives a

0 ^ 0

HO

HO 2

0 ^ 0

Figure 1.9: N719 sensitiser dye [66]
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value fo r the quantity o f incident radiation that can be converted to  electrons fo r a given 

wavelength o f light. Figure 1.10 compares the d ifferent IPCE values o f a variety o f dyes, N3 

[RuL2(NCS)2], N749 [RuL'(NC5)3j and Z907 [RuL2[Ru(bpy)2(CN)2j2], w ith  that o f unsensitised 

T i02.
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Figure 1.10: IPCE spectra for T i02 and sensitised T i02 [7 0 ]

Figure 1.11 compares the popular N719 dye w ith  the black N749, where the N719 IPCE is 

ca. 80% fo r the 450nm to  550nm range mostly the visible light region, which is ideal fo r DSC 

operation.
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Figure 1.11: IPCE comparison between N719 and unsensitised T i0 2 [7 1 ]

The remaining 20% concerns the loss through absorption and reflection by the supporting 

substrates and transparent conducting oxide (TCO) layer. At the least used wavelengths,

i.e. the red light portion of the spectrum from  700-900nm the IPCE is very low or non­

existent. However, this can be improved through the inclusion of larger T i0 2 nanoparticles 

that act as a scattering layer; or through the use o f tailored dye mixtures [72],
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Gratzel et al. suggested a set of ideal properties that a dye sensitiser should possess to 

attain maximum cell performance [73].

•  They should absorb all possible light below a recommended threshold of 900- 

920nm

• They should strongly adsorb to the T i0 2  surface with minimum external 

interference

•  They need a redox potential that is compatible with the redox electrolyte, to allow 

easy dye regeneration

•  They should be highly stable and be able to sustain operations for ca. 20 years

The dyes should exhibit excellent light harvesting performance with these properties, to 

produce a large photocurrent and thus provide an increase in device performance. The 

aspect that has direct relevance to this work is the compatibility with the redox electrolyte. 

In common DSCs, the relationship between ruthenium complex dyes and the high 

performing iodide/triiodide redox couple is well documented, see Section 1.1.4 further in 

this text. However, with the advent of new dyes and new electrolytes, in addition to the 

recent developments in solid state DSC this point bears close consideration. In particular, 

the redox potential of the dye must reach a high enough positive value with respect to the 

chosen redox couple to facilitate the efficient reduction of the oxidised dye. This will 

involve tailoring the HOMO and LUMO dye levels through changes in the structure and 

choice of groups attached to the molecule [64], [65].

1.1.4 The redox electrolyte

The interaction of the electrolyte with DSC components is the main focus of this study. In a 

liquid state DSC, it is a critical component as it facilitates the transfer of charge carriers 

between the working and counter electrodes, so regenerating the oxidised dye molecules. 

In addition, spacing between the redox potential of the electrolyte and the Fermi level of 

the T i0 2 controls the Voc of the cell, making the choice of electrolyte a key factor in device 

performance [19]. The redox potential of this couple must be thermodynamically 

favourable to the dye sensitiser and have a large diffusion co-efficient.

The solvent of choice is also critical, as this will influence cell kinetics especially when using 

larger redox species such as large complex ions. A series of key factors were reported in 

the study by Stanley et al.
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These should be followed when choosing a high performing electrolyte for a DSC device

[74]:

•  Low Viscosity Solvent

•  Low Volatility Solvent

•  Redox couple must be soluble in the chosen solvent

•  The redox couple or solvent should not attack the dye sensitiser or other cell 

components

•  The solvent should be non-toxic or exhibit low toxicity

•  Low cost of chemicals

The solvent should not be extremely volatile as this will reduce the DSC stability and result 

in performance degradation over time. However, Papageorgiou et al. showed that the 

fairly volatile solvent, acetonitrile (ACN), and water provide the most facile kinetic 

performance in a DSC due to their low viscosity [40], The industry standard solvent in use is 

methoxypropionitrile (n-MPN), or the variant 3-MPN, which is much less volatile than ACN

[75]. Unfortunately, there is a corresponding increase in viscosity which will result in 

diffusion limitation of the redox species if the spacing between the photoelectrode and 

counter electrode exceeds 50pm, or the concentration of the l3' is too low. There are 

several further ideal characteristics which can aid in the choice of redox couple for a DSC 

electrolyte.

The iodide/triiodide redox couple is the most commonly used and until recently, the 

highest performing redox couple for DSCs [35]. This redox couple consists of I' ions and l3' 

ion in a suitable solvent, such as ACN or 3-MPN. The transfer of charge from working to 

counter electrode is facilitated through the reduction of l3' ions on the platinum catalyst 

deposited on the counter electrode and electrons are returned to the dye via oxidation of V

at the working electrode. A key reason for the success of the iodide/triiodide couple is the

kinetically slow reduction of triiodide at FTO or bare T i0 2 interfaces, reducing the 

recombination loss at the electrolyte/conductive substrate interface [76].

This recombination loss can occur in several ways in a DSC device; electrons from the T i0 2 

with the oxidised dye; these electrons with the triiodide species in the electrolyte or from 

the FTO layer to the triiodide [76]—[80]. This last pathway however, is kinetically the least 

favourable. Though the iodide/triiodide electrolyte has proved to give high performance in 

liquid based DSCs, it has several major drawbacks, which will unfortunately limit its use. 

The main issue is that it is highly aggressive and is known to corrode certain metals.
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As previous studies have shown, there is a variety of redox couples used throughout the 

literature, each using different counter-ions and solvents optimised for each couple. A 

study by Wang et al. offered an electrolyte using a disulfide/thiolate redox couple, resulting 

in an efficiency of 6.4% under standard testing conditions (STC) in addition to exhibiting less 

corrosive behaviour [81]. Another alternative uses a cobalt based complex, which has 

gained widespread use in liquid electrolyte based DSCs. A device using this couple has 

recently set the efficiency record for liquid state DSC devices at 12% using a 

Co(ll/lll)tris(bipryidyl)-based redox couple matched to a specially synthesised zinc porphyrin 

sensitising dye (YD2 -0 -C8 ) [35]. A thorough review of alternative redox electrolytes was 

performed by Yu et al. and details several alternative formulations to compare with the 

traditional iodide/triiodide redox electrolyte [82].

Equations 1.5 to 1.8 below represent the stoichiometric electrochemical reactions that 

occur in a DSC using an iodide/triiodide electrolyte. This is a multi-step, multi-electron 

process, aided by slow kinetics of the recombination of electrons injected into the T i0 2 

conduction band with the iodide species (I ) and the corresponding fast reduction of 

triiodide (l3 ) at the counter electrode [52].

Dye +  hv -*  Dye+ +  ecB (1.5)

Dye+ +  2 r -> Dye +  \  IJ  (1.6)

+ 2 e - ^ \ r  (1.7)

I 3  +  2e —> 31 (1.8)

The above reaction only holds for the standard ruthenium sensitiser used in conjunction 

with an iodide/triiodide redox couple. There are more exotic sensitising dyes or 

photoactive structures that can inject more than one electron for the same quantity of 

photons absorbed [83], [84]. In addition, the reaction will change if alternative redox 

couples are used. The reaction illustrated in Equations 1.9 to 1.12 are a key examples of 

this.
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Equations 1.9 to 1.11 show a cobalt complex redox couple that operates via a one electron 

transfer from the Co2+ species to the oxidised dye and simultaneously the Co3+ species is 

reduced at the counter electrode, as per Equation 1.12 [77].

Dye +  hv -*  Dye+ +  eCB 

e^B +  Dye+ -> Dye 

C o(II) +  Dye+ -> C o (III) +  Dye 

e^B +  C o(III) -> C o(II)

This cobalt complex electrochemical process is summarised schematically in Figure 1.12.

Electrolyte Solution

(1.9)

(1.10) 

(1.11) 

(1.12)

Sensitised 
TC0 TiO2

Counter
Electrode

LUMO

C.B.

HOMO

Load

Figure 1.12: Schematic diagram of electron transfers in a DSC using a Co2+/3+ redox couple. (C.B = Conduction 
band; Co2+/Co3+ = redox couple; —  = Recombination pathways) [85] [86]

Nusbaumer et al. reported on an efficient cobalt pyridine complex electrolyte to rival the 

iodide/triiodide based couple [87]. The complex used was bis[2,6-bis(r-butylbenzimidazol- 

2'-yl)pyridine]cobalt(ll) complex redox mediator in anhydrous ACN/ethylene carbonate 

(60:40) as the solvent. To create the redox couple, solid NOBF4  was used to partially oxidise 

ca. 10% of Co(ll) to Co(lll), rather than creating two separate compounds. During this 

oxidation process, problems were reported where increasing electrostatic binding of the 

cobalt complex to the T i0 2 occurs as the Co(ll) is converted to Co(lll). This was shown to 

inhibit the regeneration of the sensitiser and as a result, reduce the performance of the 

DSCs. The paper suggested that changing the dye to one with a neutral charge -  i.e. one 

with less carboxyl groups, could produce an increase in current [87]. The cobalt pyridine
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complex (Co-(dbbip)22+) used by Nusbaumer is illustrated in Figure 1.13. Nusbaumer et al. 

used a thin T i0 2 layer treated with TiCI4  to form a thin T i0 2 blocking layer on the FTO 

substrate and a variety of custom ruthenium sensitizers. Due to the fast outer-sphere, one 

electron transfer process used by Co2+/3+ couples, a compact T i0 2  blocking layer was 

required in order to reduce recombination loss from the FTO to the electrolyte.

Figure 1.13: bis[2,6-bis(l'-butylbenzimidazol-2'-yl)pyridine]cobalt(ll) complex (Co-(dbbip)22+)

The use of cobalt complex electrolytes was further investigated by Sapp et al., who 

reported that tailored complexes demonstrated in previous literature were difficult to 

synthesize, due chiefly to the unavailability of speciality ligands. As a result, Sapp et al. 

constructed their complexes using commercially available ligands [8 8 ]. The aim was to 

synthesise a cobalt complex with performance equal to l / l 3' rather than attempting to 

create a "hero cell" with very high performance. This study utilised a standard N3-dyed- 

Ti0 2 photo-electrode and compared a variety of catalysts such as Pt, Au and glassy carbon, 

with the latter two surpassing the platinum catalyst. The paper reported that cobalt 

complexes could easily be synthesised using widely available commercial compounds and 

then matched with standard DSC components in order to give a stable device. This should 

provide many advantages such as non corrosiveness, low volatility and low light absorbance 

when illuminated through the counter electrode.

Each of the previous literature sources investigated a pyridine type complex, though it was 

remarked by Sapp et al. that the cobalt complexes are amenable to tailoring into other 

structures through the use of different ligands [8 8 ]. A bipyridyl-type complex, rather than a 

pyridine complex was analysed by Klahr and Hamann and covered the methods by which 

DSC performance would be affected when using cobalt complex electrolytes [85]. The
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positive conclusion was that, to their knowledge, DSCs using cobalt mediators are not 

limited by dye regeneration, though they are restricted by recombination kinetics, which 

will reduce the IPCE of cobalt based electrolytes.

The use of different redox mediators has thus far focused on obtaining comparable 

performance to that of the iodide/triiodide electrolyte. This target was surpassed by Yella 

et al. through the use of a custom designed zinc porphyrin dye (YD2 -0 -C8 ) in combination 

with a Co(ll/lll,tris(bipyridyl)-based electrolyte [35]. This configuration resulted in a record 

efficiency of 12.3%, though it should be noted that this was through the use of a co­

sensitised film with both YD2 -0 -C8  and Y123 dyes. This setup increased the absorbance 

across the visible spectrum and obtained an IPCE (450nm-680nm) of over 80%. However, 

there is a slight reduction at 530nm (green) which was then covered through the co­

sensitisation treatment. The Jsc achieved was 17.3mA/cm2, which is much higher than the 

ll-13m A /cm 2 normally expected for the ruthenium sensitised, iodide/triiodide based DSC. 

The paper states that the performance difference stems from the high voltage loss attained 

in iodide/triiodide based cells during dye regeneration.

A further issue to consider when utilising the cobalt based complex, or any outer sphere 

one electron redox species, was how the structure of the dye affects device performance. 

Adding long chain molecules causes the inhibition of the electrolyte access to the T i0 2 

surface -  thus reducing the recombination rate and increasing performance [89]. This 

study utilises four octyloxy groups attached to the dye molecule. The combination of a 

custom dye with the cobalt sensitiser allows large Voc of over 0.8V to be obtained; this is 

due to the high reduction potential of the Co complex compared with l3\  The custom dye 

also results in a larger overall light harvesting efficiency (LHE), therefore increasing the 

photocurrent and resulting in higher cell efficiencies.

Due to the bulky nature of the cobalt complexes compared to the standard iodide/triiodide 

couple, the mass transport of this couple has become an issue, resulting in increased 

recombination losses and slow dye regeneration. Several authors have endeavoured to 

study this aspect of electrolyte development in order to better understand and improve 

upon this type of redox couple. Kim et al. submitted a study on improving the mass 

transport of cobalt complexes in DSCs, by changing the T i0 2  nanostructure [90]. This study 

focused on increasing the porosity of the T i0 2 film rather than changing the dye or cobalt 

complex structure. The results obtained showed a definite improvement in DSC 

performance when a thin 6 pm T i0 2 film with porosity around 60% and a pore size of ca. 24
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nm is used, rather than a thick film with smaller pores and lower porosity. It should be 

noted that, despite the lower level of adsorbed dye for the more porous film, the 

performance, in particular the Jsc, still shows a considerable increase. This was attributed to 

the enhancement of mass transport for the bulky electrolyte, which as a result will enhance 

the dye regeneration rate.

Despite the milestone reported by Yella et al, this was only achieved through custom 

synthesised critical cell components, the dye and electrolyte [35]. In comparison, the paper 

by Liu et al., reported a study of cobalt mediators with common ruthenium based dyes, in 

the form of the sensitizers N719 and Z097 [91]. This study uses EIS and in-situ NIR 

transmittance measurements to explain the difference in performance exhibited between 

two Ru-based dyes using the same Co-based electrolyte. DSC performance for the Z907 & 

Cobalt electrolyte is: Jsc=14mA/cm2; VOC=0.74V; FF=62% and r|=6.5%. The N719 & Cobalt 

electrolyte give much lower results: Jsc=3.8mA/cm2; VOC=0.62; FF=76% and q=1.8%. In 

comparison, the efficiency for the Ru dye combined with the standard r / l3' is 7.7% for Z907 

and 8.0% for N719. The main conclusion obtained here is that N719 & l'/l3' performs better 

than Z907 & l"/l3", and that the reverse is true when using a Co-complex redox mediator. 

The study builds on the work reported by Felt et al. and Yella et al. which suggested that 

the bulky dye structures, such as the alkyl chains found on the Z907 dye would reduce 

recombination and so improve performance. The nonyl chains attached to the Z907 dye 

increase the electron diffusion length "Ln, shown by EIS measurements, which is explained 

by the study as a sign of inhibited recombination, rather than faster electron transport 

through the device. When using a one-electron outer-sphere redox mediator such as 

cobalt (ll/lll), inhibited electron recombination is a crucial factor, as previous works have 

shown the recombination time to be fast in comparison to that of the l3' species [92][93].

The reasoning behind the introduction and development of the cobalt redox couple was 

because it is composed of less aggressive species than the iodide/triiodide electrolyte. As a 

result it lends itself for study on metallic substrates cells for possible roll to roll line 

manufacturing. This work will analyse a particular cobalt complex, tris-(2,2'- 

bipyridine)cobalt(ll/lll) di(hexafluorophosphate) or Co(bpy)3 (PF6)n in order to discover how 

it interacts when in contact with industrial metal substrates.
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1.1.5 The counter electrode & redox catalyst

The counter electrode or DSC cathode forms the interface with the electrolyte where 

electrons are returned from the external surface. This usually consists of a conductive 

substrate such as FTO glass, ITO PET or a metal that is covered with a high specific area 

catalytic material, with its performance tailored to the choice of redox electrolyte. A 

catalyst is needed to enhance electron transfer across the interface, and to reduce 

overpotential and resistive losses at the counter electrode. The original catalyst use in the 

1991 paper is not mentioned. However, further work has reported the use of a 2pm thick 

mirror layer of sputtered platinum as the catalyst material and to reflect back light from the 

counter electrode and increase the light harvesting capacity of the cell [94].

Further improvements to this device involved the use of a nano particulate structure for the 

catalyst, which so far, has produced the highest performance in catalysing the reduction of 

triiodide. The first nanostructured Pt catalyst for DSCs was introduced by Papageorgiou et 

al. who reported a thermally decomposed Pt nanocluster catalyst formed through the 

thermal decomposition of a 5mM chloroplatinic acid solution at 385-400°C [40]. The 

presence of this catalyst shown to be vital, as the study by Suzuki et al. showed, producing 

a DSC cell of 0.1% efficiency when bare FTO/glass was used as the substrate [95].

There are several application methods for this catalyst material, with the most stable and 

consistent being the previously reported thermal decomposition method. However, with 

the drive towards cheaper materials and mass production, there is a need to find low 

temperature alternatives to allow the use of polymeric substrates to act as a counter 

electrode, especially for industrial metal working electrode cells, where the counter 

electrode acts as the top-sheet of the device. To that end, there have been many reported 

methods in literature focused into three main groups: Chemical, electrochemical and 

vacuum methods.

Chemical platinisation uses the chemical reduction of a chloroplatinic acid precursor to 

deposit the platinum nanoparticles, though due to the chemical reaction involved, precise 

control of the deposit will be issue. Several reducing agents can be utilised, though sodium 

borohydride is the most commonly used in the platinisation of counter electrodes , though 

with this reducing agent, the boron constituent can result in the poisoning of the DSC if it 

remains on the counter electrode [96], [97]. The reduction process was explained by 

Sheppard et al., with the main advantage of this reduction pathway being that it operates 

at low temperature suitable for the platinisation of polymeric counter electrodes [98]. The
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main DSC studies to utilise this method were Park et al., Jun et al. and Kang et al., reducing 

chloroplatinic acid with 60mM sodium borohydride [99][100][101]. Of particular interest 

was the comment by Jun et al., stating that chemically applied Pt was found to be unstable, 

giving poor adhesion to the substrate, compared to the high temperature thermal Pt 

method on glass [100]. Furthermore, the chemical reduction method would require large 

quantities of hazardous reducing agents, which in an industrial setup would increase the 

cost and effort required, in addition to adding large quantities of hazardous chemical to the 

production line.

A different method, one utilising D.C. magnetron sputtering has also gained attention, due 

to the high performance and stability of the deposited catalyst and the speed of 

manufacture. Unfortunately, this method suffers from several shortcomings when 

considering large scale production, requiring vacuum conditions, the equipment of which is 

expensive to setup and maintain. In addition, the equipment geometry is limited which 

affects the size and shape of the work piece -  so not a particularly viable solution for mass 

production processes. However, the advantages of this process are fine control of the 

deposit and low contamination issues with the counter electrode, due to the vacuum 

environment and the pure Pt source used for the process. DSCs utilising this method have 

shown good performance when compared to the thermal Pt catalyst, though it is 

dependent on the layer thickness of the coating [102]. One of the critical findings when 

comparing the sputtered, chemical and thermal methods, was that each resulted in a 

different structure with varying performance [103], [104]. This is a crucial factor that must 

be investigated when analysing the platinisation methods developed in this work

Electrochemical deposition is the main focus of Chapters 3&4, in the hope of producing a 

viable low temperature, low cost and fast deposition process for use on FTO glass 

substrate. The intention is to develop a method that could be transferred onto conducting 

polymer substrate. Chapter 1.3 covers the background of electrodeposition and its usage 

as a viable technique for use in DSC devices and will summarise current research into this 

area of study. A previous study has compared the chemical, thermal and sputter deposited 

Pt catalysts in more detail [105], showing the current electrochemical superiority of the 

sputtered coating at 0.5nm and illustrating the material reduction and robustness 

compared with the more common thermal and chemically applied catalysts. Unfortunately, 

the sputtered Pt method has drawbacks when industrialising the process due to is 

requirement for vacuum conditions. The next section illustrates several areas that require 

development for industrialisation of DSCs to become a reality.
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1.2 Industrialisation of dye sensitised solar cells

The scale up o f laboratory devices w ith  an active area of mm 2 to  cm 2, to  modules and 

panels in the m2 range is an im portant area of research, and so far has only proved possible 

and commercially viable fo r high efficiency silicon and th in-film  technology solar panels 

commonly found on building roofs. Of additional value is decreasing production times from  

the hours/days per cell in lab scale processing, in order to  obtain a commercially viable 

product. The production process can be separated into its constituent parts in order to  

optim ise the stages fo r in line processing. Figure 1.14 shows the breakdown and timescale 

o f a typical lab scale DSC construction cycle w ith  general timescales.

Substrate Prep 
(minutes)

T i02 application 
(seconds)

T i02 Sinter (60min)

Dying step (16hrs)

Counter electrode 
prep (seconds)

Counter electrode heat 
treatment (30min)

Sealing (seconds)

Electrolyte Injection 
(minutes)

Final Seal and 
Encapsulation (min)

Figure 1.14: DSC manufacturing process and typical process times 

The main hindrance to  a fast production process is the sixteen hour dying tim e required to  

fu lly sensitise the T i02 layer. Recently, there have been several studies that investigated 

the dyeing process, uptake and sensitisation time. A study by Watson et al. studied tw o 

techniques fo r assessing dye uptake in situ, rather than using destructive testing methods
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to analyse the cell, allowing for a rapid assessment of individual cells, and possible for in 

line quality control for eventual continuous processing lines [106]. Further studies 

regarding the dye loading of sensitised T i0 2 were undertaken using spectroscopic analysis, 

showing variation in dye loading with immersion time from seconds to 24 hours [107]. This 

study showed that 5 hours was sufficient to see a change using a typical immersion 

technique, rather than the longer times used in other reports. Recent studies by Holliman 

et al. assessed the ultra-fast sensitisation of DSCs, whereby the dyeing time was reduced 

from the typical 16-24 hours to 5 minutes using a pumped dye method. This resulted in 

DSCs with no recorded performance loss compared with the cells dyed for 18 hours [108], 

A further study supported this result, with rapid dyeing in 5 minutes, and showing the 

performance gain in using multiple dyes to facilitate the absorption of more of the solar 

spectrum, thus increasing 1cm2 test cell efficiency to 7.5% [72].

A second production bottleneck is the T i0 2  sintering stage, taking 30 minutes for sintering, 

with an additional pre and post 15 minute treatment at a lower temperature (250°C) in 

order to remove the solvent and reduce the thermal shock to the substrate. A further 15 

minutes at 250°C is also required post-sinter to allow the substrate to cool thus reducing 

thermal shock and damage to the sintered Ti0 2  particle network. Reducing sinter time and 

temperature has garnered much interest ever since the inception of the DSC device by 

Gratzel. Several studies have shown that low temperature deposition of T i0 2  is possible, 

though the particle adhesion to the substrate and interconnectivity of the mesoporous 

network is much lower than for the high temperature sinter. These lead to a 

photoelectrode with much lower performance. A recent study has shown the potential of 

NIR as a method for rapidly sintering the T i0 2  in 12.5 seconds, reporting comparable 

performance to that of traditional 450°C T i0 2 cells [62].

The platinised counter electrode preparation stage will add a further 30 minutes to the 

manufacturing process, due to time needed for the decomposition of chloroplatinic acid to 

platinum, and for the platinum to form stable strongly adhered nanoclusters [109]. 

Temperature and time are critical in this case, as the counter electrode envisioned for mass 

produced DSCs are constructed from conducting polymers that are temperature sensitive 

and cannot withstand the standard thermal deposition temperature of 385-400°C for 

platinum catalyst deposition [40]. As a result, several alternative catalysts were studied, 

with examples such as PEDOT:PSS and several metal carbides and nitrides at the forefront 

of the investigations [110]—[112]. Due mostly to the early stage of this research and the
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already established nature of the Pt catalyst, it was decided to use platinum as the focus 

catalyst of the study in Chapters 3 & 4.

Different forms of deposition have also been compared, in order to reduce the temperature 

and decrease the amount of platinum used in each cell. Several of these, such as chemical 

reduction and sputter deposition, have been widely reported in the literature and also 

studied in previous work [105], Further to this, there have been investigations into the 

rapid thermal decomposition of the chloroplatinic acid precursor solution using near 

infrared radiation (NIR). This heats the FTO or ITO conductive layer on the glass or polymer 

substrate, causing the thermal deposition of the Pt particles [113].

In this thesis, the primary focus is alternative low temperature platinisation techniques 

using electrodeposition. This method is already in use commercially for the application of 

metallic coatings on metal sheets, such as galvanisation, in addition to the production of 

electronics components, particularly in battery manufacture. Our interest is in the 

availability of large electrolyte tanks used in previous roll to roll coating processes, such as 

galvanising. These are set up in such a way as to have high potential for adaptation to large 

scale electrochemical platinisation. If successful, the technique could pave the way for the 

production of polymeric counter electrodes for flexible dye sensitised solar cell devices.

1.2.1 Building Integrated Photovoltaics (BIPV)

One of the main goals behind the need for scaled up devices is the growing popularity of 

building integrated devices where the power or heat generation is integrated into the 

architecture of the building. In the case of building integrated photovoltaics (BIPV), higher 

efficiency panels mean that for the same area, more power is generated, or that less panel 

area is needed to produce the required power [42]. In addition, the integration of PV with 

building architecture should reduce the balance of system (BOS) that is the supporting, 

strengthening and connecting materials that are needed for conventional solar systems. 

BIPV was mentioned by Gratzel et al. as one of the main areas of application for DSC 

devices [52]. The scale up of DSC manufacture, both glass-based and flexible, is taking 

place on an international scale. Germany has several projects, known as ColorSol and 

InnoCo, that are focused on the large scale production of glass DSC devices, with the aim of 

module development for facades and PV windows [114].

Oliver et al. focused on the evaluation of BIPV in terms of economic analysis and compares 

it to conventional energy sources [115]. They report that, at the time of writing, PV energy 

supply had significant environmental benefits, but the economic cost of PV was much
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higher than other energy sources. BIPV does reduce this cost somewhat, as long as there is 

a reduction in the supporting systems required. They also conclude that BIPV would be 

come more economically viable due to the dynamic nature of the PV industry as new 

technology becomes available. Jelle et al. reviewed the current state of the art of BIPV, 

including work on all forms of PV panel such as silicon, windows, foil PV and summarising 

the manufacturers involved [116].

Printed or thin film solar panels are ideal for BIPV, as they are generally flexible and easy to 

apply to existing buildings. Furthermore, due to the use of flexible materials such as sheet 

metal and polymers, the cells weigh much less than conventional devices, allowing them to 

be used without the need for large scale reinforcing of the roofing. These thin film devices 

are also much lower in cost than conventional bulk material devices, due to a reduction in 

both the material required purity [117]. It is the development of metal/polymeric solar 

cells that this study is intended to facilitate, in order to make roll to roll produced DSCs a 

reality.

1.2.2 Requirements and stability

When constructing liquid state-DSCs for commercial applications, there are several criteria 

that should be adhered to in order to produce viable devices. Those listed here are 

adapted from thin film cell criteria:

•  Thermal stability. Including cycling, humidity and light soaking (lOOOhrs)

•  Mechanically robust to withstand exposure and processing

•  Chemically stable to avoid performance and material degradation

•  Life time of ca. 20 years to match building roof or 108  redox turnover events [118]

Since solar cells are exposed to the elements on building roofs or walls, they need to be 

stable for a set period of time to be economically viable. Kato et al. achieved an 

improvement in DSC stability by utilising a solvent free electrolyte. This will reduce the 

vapour pressure in the liquid state DSC devices in addition to removing the degradation 

susceptible solvent from the cell [119]. Their conclusion stated that the resulting cell would 

be stable for an estimated 15 years outdoor usage. Further negative effects were found to 

be influenced by the quantity of water in the electrolyte. Sinke et al. reported that the 

inclusion of a nitrogen containing heterocyclic has a positive effect on stability through the 

protection of the cells from the destructive effects of water on the dye sensitiser, in 

addition to suppressing recombination [75].
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Liquid state DSCs require a seal between the counter and working electrodes, this also acts 

as a separator, with the electrolyte injected into the resulting 25pm or 50pm cavity. This 

seal is based on a thermosetting polymer, commonly Surlyn or Bynel, from DuPont. This 

seal must provide a barrier against moisture ingress from the outer environment and also 

attack from the electrolyte (solvent or redox couple). Furthermore, it must be a good 

enough seal to withstand the change in vapour pressure as the device warms and cools in 

its daily operational cycle. Glass frit, a low melting point glass that is used like solder, can 

also be used as a sealant and separator for glass based devices [120], [121]. This type of 

cell was reported to be more durable and increased cell stability. Unfortunately, it will be 

difficult to use in flexible cells or in roll to roll fabrication.

A particular danger is from the degradation of DSCs through long term exposure to outdoor 

conditions such as temperature extremes, UV radiation and intense periods of illumination. 

The study by Pettersson et al. indicates that encapsulation and cell protection are critical 

requirements for the reproducible manufacture of DSC devices [122]. The study also 

acknowledged that the modules required a UV filter when outside to avoid degradation. 

Following this Hinsch et al. reported the use of an Mgl2 addition to the electrolyte which 

acts as a stabiliser by either faster hole reduction by iodide, or the formation of MgO as a 

surface layer to prevent unwanted side reactions. In addition, this study also used UV 

filters to enhance cell stability [120]. Carnie et al. reported that DSCs exposed to UV-A 

radiation failed within 400 hours due to the photocatalytic oxidation of the triiodide on the 

Ti0 2 photoelectrode [123]. However, this was shown to be preventable through the use of 

a UV filtering top sheet, though a corresponding loss of efficiency was reported [124]. Cell 

stability is a critical issue to consider when constructing DSCs, especially when attempting 

the scaling up the process from lab devices to a roll to roll or large scale batch process. Any 

measures needed must be able to be processed or easily included in the device or they will 

drastically increase cost and materials usage.

The substrates used for both the working and counter electrode must be able to withstand 

varying environmental conditions, such as changes in temperature and humidity. The 

substrates must also be stable when in contact with the liquid electrolyte and other cell 

components. Certain metals, such as iron, are susceptible to corrosion in the electrolyte, 

and several polymers have been found to degrade following prolonged contact with 

electrolytes or exposure overtime to UV light [125].
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It was reported that the platinum nanoparticle catalyst was vulnerable to dissolution in the 

iodide/triiodide based electrolyte. Papageorgiou et al reported that electrochemically 

deposited Pt is prone to dissolution in iodide electrolyte, a finding of interest to this study 

due to the focus on electrodeposition of Pt in Chapters 3 and 4 [109]. This finding was 

explored further by Olsen et al. who reported on the stability of vapour deposited Pt on 

FTO-Glass [126]. They suggested that the dissolution of Pt through the formation of Ptl4  

compounds was thermodynamically favourable. Interestingly, the study showed that only 

the vapour deposited Pt, rather than the solid Pt wire showed dissolution activity, leading 

to the conclusion that the deposition technique has an influence on the stability of the 

catalyst. Furthermore, the thermal Pt deposition reported by Papageorgiou et al. also 

reported high stability in the DSC electrolyte. It is critical then, that care must be taken in 

the choice of deposition and production of counter electrodes for commercial DSCs, as 

failure will drastically reduce cell efficiency and, lifetime.

The performance of the counter electrode can be studied through EIS characterisation, or 

cyclic voltammetry assessment of the counter electrode limiting current density. The 

degradation reported by literature was thought to be caused by poor adhesion of Pt to the 

conductive substrate and further problems could also be caused by the transport of loose 

Pt to the working electrode, causing sites of increased recombination loss.

1.2.3 Processing methods

Laboratory scale devices are normally constructed using a batch process and high 

temperatures to gain the best possible performance per device. However, this is not 

suitable for industry since batch processing is costly and limits the quantity of product per 

run. The most viable mass production process which could be used for thin film solar cells, 

such as CIGS and DSC would use roll to roll production, where flexible substrates such as 

metal sheets and polymers are coated with the required material on a continuous 

processing line.

A roll to roll manufacturing line is a highly controllable processing method, with each 

process stage optimised to give consistent performance [127]—[129]. This should allow for 

a high productivity process with much lower capital costs than the batch process used for 

bulk material or rigid solar cells. Typical coil coating processes run at up to lOOOm/min for 

activities such as hot or cold rolling. A galvanising line will typically run at 200m/min and a 

coating line at 150m/min. If this is adapted for manufacturing DSC many factors need to be 

accounted for, such as dwell times between each stage, either for sintering, drying or dying
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times depending on the process step. Flexible materials are preferred fo r mass production, 

as they w ill enable the use of a coil line, in addition to  weighing less than the glass substrate 

typically used in DSC devices, in a BIPV system, the weight is a critical factor so as to  not 

stress the building architecture or require extensive balance o f system (BOS) expenditure to  

support it. Furthermore, flexible substrates allow the PV system to  conform to  the 

structure of the building, improving the appearance o f the structure and allowing fo r 

varying architectural choices.

1.3 Electrochemical deposition

Electrochemical deposition, also known as electrodeposition or electroplating, is a versatile 

technique tha t uses an imposed current to  deposit metal, from  an electrolyte containing 

metal ions, on the surface of a substrate. This is a potentia lly  low cost method fo r 

platinisation, as it w ill enable control o f material quantity through careful optim isation of 

electrical parameters and electrolyte concentration. It also w ill avoid the high 

temperatures, vacuum conditions or reducing chemicals necessary fo r other common 

platinum deposition techniques. When considering the electrodeposition methodology, 

there are tw o  type o f electrochemical cell in use fo r lab based experim entation. These cells 

can be a variety o f sizes or shapes, as long as there is provision fo r electrical contact to  the 

work piece and an appropriate counter electrode to  complete the circuit. The simplest 

form  is a tw o  electrode cell, containing an anode and a cathode which is connected to a 

potentiostat, Figure 1.15.

Anode Cathode 
M +n -> M

M -> M

Electrolyte

D.C Supply

Figure 1.15: Diagram of a basic two electrode electrochemical cell

The electrodes are placed into an e lectrolyte solution containing a source o f the required 

metal ions and an inert supporting e lectrolyte to  minimise the Ohmic drop during
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deposition and counter the depletion o f metal ions as the deposition progresses [130]. The 

supporting electrolyte provides a source of ions to combat any IR drop during the process, 

chosen so tha t it takes no active part in the deposition process. The potentiostat provides 

the impetus fo r the reaction, or acts to  negate any electrolyte reactions between the 

electrodes and the solution. In some cell set ups, the anode dissolves into the electrolyte 

solution to keep the concentration of ions constant.

The other type of deposition cell introduces a th ird  electrode commonly known as a 

reference electrode. A reference electrode normally contains an ionic solution tha t is 

separate from , but ionically connected to  the deposition solution [131]. This is placed near 

to  the working electrode in order to  give a localised, accurate reading o f the cell potentia l, 

Figure 1.16.

Reference Electrode Working Electrode

Counter Electrode

Electrolyte

D.C Supply

Figure 1.16: Three electrode electrochemical cell set up

The most common reference solutions are the Calomel electrode or an Ag/AgCI system. A 

three electrode cell is much more controllable than a tw o  electrode set up as it allows fo r a 

more reliable reading o f the solution potential and conditions.

1.3.1 Supporting electrolytes

In an electrochemical solution, a supporting electrolyte is used to  increase the conductivity 

o f a solution. The ionic species it contains should not be electroactive in the conditions 

used fo r the experiment and usually has a larger ionic strength than the active species in
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solution. They are also used to  elim inate the transport o f the electroactive ions through 

m igration in the electric field.

1.3.2 Electrochemical solutions

In an active electrochemical solution, the charge difference between the electrodes w ill 

fo rm  a d istribution o f ion charge throughout the solution. This takes the form  of a gradient, 

w ith  the largest concentration being adjacent to  the electrodes. In this way, an electrode 

acts similar to  a capacitor, as when the electrode potential changes, the amount of charge 

stored at the electrode/electro lyte interface also changes. However, this w ill not happen 

instantaneously due to  the solution having an intrinsic resistance. Therefore the 

electro lyte/e lectrode interface can be represented as a resistor and capacitor in parallel. 

The situation at this interface is known as a double layer that includes the double layer 

capacitance (Cdi) and the solution resistance (RD), and there have been several models 

developed to explain this.

The basic model is known as the Helmholtz model, where the ions in solution form  a 

monolayer at the electrode surface, which equally balances the charge on the electrode, 

Figure 1.17. The double layer capacitance here is independent of the applied potential.

Electrode Electrolyte

# t
• - b
• 1 1 j

•
1
HP*

# HR*

• <

\uH elm holtz Layer

Figure 1.17: Helmholtz model of the electrochemical double layer. Solid black line indicates the steep 
potential distribution from the electrode to the solution

The Helmholtz model predicts tha t the entire ty o f the potentia l is reduced in the monolayer 

o f ions at the electrode surface, w ith  no residual potential in the bulk electrolyte. The next 

model, the Gouy-Chapman model, increases the complexity from  a simple surface 

monolayer of ions, to  a random atmosphere o f ions at the electrode surface, Figure 1.18. 

Closer to  the surface of the electrode, the atmosphere, i.e. the concentration of oppositely
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charge electrodes is higher and the concentration of similar charge to  the electrode is much 

less. As the distance from  the electrode is increased, the reverse is true.

• • • •  ;
•
• • • •  :
•
• f  §  #
• •  0  #

Figure 1.18: Gouy-Chapman model of the double layer (Grey=Electrode, White=Electrolyte)

The th ird  model is known as the Stern model, Figure 1.19, which explores the middle 

ground between the extremes of the Helmholtz and Gouy-Chapman models. This modei 

proposes tha t most o f the charge on the electrode is balanced by the Helmholtz layer, while 

the rem ainder is taken by the diffuse layer theorised by the Gouy-Chapman model.

Electrode Electrolyte

Helmholtz Layer Diffuse Layer

Figure 1.19: Stern model of the double layer, with solid line indicating potential distribution 

There is a fourth  model known as the Grahame trip le-layer model. This final refinem ent 

includes species specific behaviour, where ions in solution w ill have d ifferent sizes and 

strengths, so introducing chemistry into the model o f the e lectrode/electro lyte interface. 

The ion specific behaviour is dependent on the condition o f the anions. If these are 

dehydrated, they can move close to  the electrode surface, the degree of dehydration w ill 

contro l the type o f interaction. If fu lly  dehydrated, then short range bonding forces w ill 

dom inate in addition to  the expected electrostatic forces. In Figure 1.20, this difference in
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bonding distance is represented by the inner and outer Helmholtz planes added to  the 

Stern model [131].

Inner Helm holtz Plane (IHP)
....................   OHP)

Modelling the behaviour at the electrode surface is crucial when considering surface 

processes such as catalysis and electrodeposition, in addition to  unwanted processes such 

as corrosion. These models also illustrate how the conditions in a solution or 

electrochemical cell w ill change its behaviour through the movement and placement of

ions.

1.4 Electrochemical control

Deposition control is achieved by applying a controlled current or potential difference 

between the working and counter electrode. This can take the form  of a constant value, a 

pulsed or oscillating waveform or another specified profile. Simple waveforms include 

pulsed, square wave, sine etc. More complex forms include pulse reverse, where the 

amplitude of the first pulse is reversed fo r the second pulse and so on. There are other 

types, where a short high am plitude pulse is superimposed onto a background waveform. 

It is one o f these pulsed waveforms that forms the basis o f the method used in Chapter 4. 

The most common type used in industry is a pulsed waveform, an example of which can be 

seen in Figure 1.21.

This wave profile has been previously used in DSC and fuel cell research to  deposit catalytic 

materials such as platinum, resulting in a variety of depositions [132]—[135]. Ayyadurai et 

al. produced deposits o f varying agglomeration, depending on the chemical w etting  agent 

added to  the deposition solution [133]. Comparatively, Ye et al. produced spherical clusters

Diffuse Layer Bulk Solution

Figure 1.20: Triple iayer model of the electrode/electrolyte interface
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to 100-200nm crystal aggregations depending on the solution utilised [132]. However, in 

each of these methods so far, the Pt deposits have been discrete and spherical, rather than 

dendritic or layered, both of which would decrease the surface area of the catalyst. 

Chandrasekar et al. investigated several pulse deposition types, reviewing the advantages 

and disadvantages of each [134]. In particular, the report stated that the pulse current 

methodology would produce fine grained structures, which would be advantageous for a 

catalyst.

Square

Figure 1.21: Example of a pulsed square waveform

In assessing the literature, it was seen that the pulsed waveform was thought to increase 

control over the deposit formation through the accurate tailoring of deposit quantity. In 

addition, it also allows the control of solution charging to enable the replenishment of the 

ion layer adjacent to the work piece and so avoiding areas of low ion concentration during 

deposition.

Once the wave profile has been determined, the potential or current to be applied will 

depend very much on the material to be deposited. This value can be found using the half 

cell potential of the material or by analysis of the deposition solution by cyclic voltammetry. 

The cyclic voltammetry scan, run from rest to positive and negative points will determine 

the electrochemical behaviour of the solution on the work piece material and will assist in 

optimising the values for the deposition run. Cyclic voltammetry analysis of a deposition 

solution is explained further in Chapter 2.2.3. Previous literature has shown that platinum 

is favourably deposited at -0.6V, which provides a starting point for the studies in this work 

[103].

1.4.1 Pulse width

The pulse width is defined by the ton and t0ff values and controls the shape of the deposition 

waveform and as a result has a serious impact on the nucleation and growth behaviour of 

the deposit. Longer ton values will increase the deposit size and general morphology. In the 

case of a platinum catalyst, a small deposit size is recommended to maximise the surface 

area, therefore a short pulse (ton) should be applied. Typical values for ton in the literature 

are: 100-600ms [136]. The t0ff time, or the time for which the applied current/voltage is
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zero or at open circuit (OCP) is also of critical importance. The schematics in Figure 1.22 

and Figure 1.23 display an example of different ton and toff lengths over the deposition cycle.

>

*3
C0)*->o
CL

toff Time (s)

Figure 1.22: Cycle using a long ton and toff time

>
re
c0)

Time (s)

Figure 1.23: Cycle using a short and a long t^

As a current is applied to the work piece, an electrical double layer is charged adjacent to 

the surface, restricting the flow of metal ions to the work piece from the bulk solution. As 

the metal ions in the diffusion layer are depleted, the current density decreases and the 

deposit characteristics change. The t0ff period allows for full or partial discharging of this 

layer, permitting the uninhibited passage of ions on the next deposition cycle [137].

1.4.2 Duty cycle

This is the percentage of total time of a cycle and is a rate determining step in pulsed 

electrodeposition [138]. Equations 1.13 -1 .14  below show the relationship between the ton 

and toff times, w here/is  the frequency and is given by 1 /t ,  the reciprocal of the cycle time:

D u ty  Cycle =  =  t0nf  (1.13)
to n + to //

Therefore:

Frequency  =  —   =  -  (114)
ton+to// t
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When the duty cycle is 50%, the ton and t0ff times are equal, changing the ratio of ton to toff 

affects the pulse profile, and as a result will affect the resulting deposit. It was reported by 

several sources that the duty cycle has a large impact on deposit structure as the Tontime 

controls the nucleation and growth stage, and toff influences diffusion and dissolution 

stages [139].

1.4.3 Temperature

Changing the temperature of the electrolyte will change its conductivity by making the 

solution less viscous. The ions in solution will have more energy and find it easier to diffuse 

to the work piece. This usually increases the speed of deposition, decreasing the pulse 

amplitude and duty cycle needed. There are varying examples in the literature of the 

temperature of deposition; there are a range of temperatures used dependent on the 

deposition solution -  the most common and economic temperatures are in the range 25°C 

to 45°C.

1.4.4 Solution concentration

The concentration of the solution controls the quantities of ions available for deposition in 

solution. This will control the limiting current of the solution and the current density. 

However, this also depends on the area of the work piece and the applied current/voltage. 

Widely varying solution concentrations have been reported in the literature for use in DSC 

devices: 5, 10, 20mM [140]-[142]. The reviewed papers all use a form of aqueous 

chloroplatinic acid, with different additions or supporting electrolytes. Increasing the 

concentration of Pt ions in solution will result in variations in the deposit morphology or 

allow the reduction in applied potential, as more ions are available to deposit over time in 

high concentration solutions than low concentration. In addition, the formation of low 

specific area dendritic structures is reduced in high concentration solutions, as the 

concentration gradient from the electrode to the bulk solution will remain shallow for a 

longer period during the deposition activity.

1.4.5 Solution components

Aside from the desired compound or metal to be deposited, there are several other 

components that can be added to the electrolyte to influence the deposition behaviour and 

morphology. A simple change reported by Chen et al. was the choice of aqueous or non- 

aqueous solution, where an aqueous solution led to larger particle formation [142]. As a 

result of this, care should be taken to control the potential so that the deposit size is
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decreased. Physical control additives such as viscous inert surfactant, i.e. Triton-X or 

poly(ethylene glycol) (PEG) can be used to control the rate of diffusion and the pattern of 

the deposit [38, 50]. Chemical control additives such as lead acetate, acids or supporting 

electrolytes are used to change the conditions under which the metal ions will deposit 

[144]. Wetting agents in particular are favoured additions, Ayyadurai et al. reported that 

the introduction of wetting agents to a solution [PtCI6]’ aided and accelerated the reduction 

of the ion to Pt metal [133]. The result was uniformly distributed spherical particles 

through the production of more nucleate Pt and the suppression of Pt particle growth. 

Supporting electrolytes are used to increase the conductivity of the electrolyte solution by 

adding an inert species into the solution which takes no part in the occurring reactions, this 

effectively eliminates the ohmic (IR) drop that occurs due to solution resistance [145].

1.4.6 Electrodeposition of platinum from chloroplatinic acid solution 

Feltham and Spiro presented a mechanism by which platinum is electrodeposited from 

chloroplatinic acid solution, summarised in Equations 1.15 to 1.17 presented below [146]:

p tA+c il~  +  2e~ ^  P t2+c ii~  +  2 c r  ( 1 .1 5 )

P t2+C ll~  +  2e~ ^  P t +  4 Cl~ (1.16)

P t*+C ll~  +  4e~  ^  P t  +  6 Cl~ (1.17)

The paper recognises that all steps involve the breaking of Pt-CI bonds, a kinetically slow

process with low exchange current densities, an advantage for control purposes as this 

means no reactions should occur until a potential is applied to the electrodes.

In 1988, Baumgartner and Raub published a review of electrochemical deposition of 

platinum and platinum alloys. Their work brought together many techniques for the 

electrochemical deposition of platinum from the 2 0 th century, focusing in particular on the 

variety of available electrolytes, i.e. chlorides, ammines, sulphate-nitrite and hydroxyl 

complexes [147]. The particular electrolyte used in this work uses aqueous chloroplatinic 

acid (H2 PtCI6 .xH2 0). The electrolyte used also determines the platinum ion used in the 

deposition, either Pt (II) or Pt (IV). Each has drawbacks, such as corrosion damage to metal 

substrates and hydrogen evolution due to high current density. In addition the oxidation 

state will decide the electrochemical effort required to reduce the ions to platinum metal 

Pt(0). The ion Pt(ll) requires only two electrons, whereas Pt(IV) must gain four electrons to 

reduce it to platinum metal on a substrate surface. The choice will influence the efficiency 

of the deposition activity and affect the resulting morphology of the deposit.

52 | P a g e



1.5 Electrodeposition in DSCs

As stated previously, electrodeposition is an ideal process for in-line platinisation of counter 

electrodes, chiefly due to Tata's prior experience with ED lines for galvanising steel and 

large scale production. This process is attractive due to highly controllable depositions 

through varying the time, temperature and deposition voltage or current density. Changing 

the electrolyte composition also plays a significant role in determining the deposit 

characteristics and the performance of the catalyst.

Electrodeposited platinum catalysts have been previously used in several DSC studies, 

though the early iterations were used chiefly as comparison techniques for other 

platinisation methods and cell architecture [40], Since the inception of the flexible DSC in 

the early 1990's, there have been several papers that investigate electrodeposited platinum 

as a low temperature alternative to the thermal platinisation method introduced by 

Papageorgiou et al in 1991 [40].

Kim et al. reported the first use of direct and pulsed current deposition techniques to 

deposit an efficient platinum catalyst for use in dye sensitized solar cells [136]. The catalyst 

consisted of 40nm clusters of 3nm nanoparticles and concluded that pulsed deposition 

dramatically increases the platinum surface area by ca. 1.86 times, though it seems the 

quantity of Pt is larger than the thermally deposited catalyst presented by Papageorgiou et 

al. The efficiency of DSC devices including this electrodeposited Pt on FTO-glass was stated 

to be in the range 3.68-5.03%, whereas on a flexible substrate the efficiency was 0.86%, 

due chiefly to the low temperature application of T i02. The deposition solution used in this 

study was chloroplatinic acid (H2PtCI6), which is typically used for thermal and chemical 

platinisation. In this method, the solution concentration was increased to lOmM and 

lOm M KCI electrolyte was added as a source of CF ions. The study compares pulse and 

direct current deposition profiles and uses the control of current over time, rather than 

potential control in order to deposit the platinum. As previously mentioned, pulse current 

demonstrates a considerable advantage in the control of the deposit morphology and 

properties.

In comparison, direct current was shown to produce dendritic crystals due to ion limitation 

near the electrode substrate surface that requires diffusion of Pt ions from the bulk 

solution. These structures have a much lower specific area for catalyst than the pulse 

current structures, as the pulse allows the replenishment of ions from the bulk to the 

substrate. The direct deposition electrochemically favours growth of existing structures on
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the substrate surface, however due to the replenishment activity allowed by pulse 

deposition, more nucleation is allowed and therefore smaller more distinct deposition will 

form with a higher specific area. This was proven electrochemically using impedance 

spectroscopy measurements which proved that the pulse current method produces a 

counter electrode with a lower charge transfer resistance and therefore a much higher 

catalytic efficiency than the direct current method. The use of impedance measurements 

will be detailed in Chapter 2 for the characterisation of DSC devices and counter electrode 

performance. In addition, this paper uses cyclic voltammetry to qualitatively ascertain if 

the catalyst is active toward the triiodide/iodide redox couple, showing the reduction and 

oxidation peaks referred to by Equation 1.7 and 1.8.

Adding complexity to this method, Yoon et al. reported on a technique of introducing a 

physical addition, in the form of the non-ionic surfactant, octaethylene glycol 

monohexadecyl ether (C2 8 H5 8 O9 ) to the plating bath [148]. In contrast to Kim et al., this 

method used potential control deposition at a value of -0.06V vs. Ag/AgCI reference 

electrode. The surfactant was used as a liquid crystal template to form a regular platinum 

deposit on the substrate surface. The end result was a high surface area deposit of 

spherical granules and some clusters. Similarly to Kim et al., cyclic voltammetry was utilised 

to assess the catalyst behaviour toward the triiodide/iodide redox couple, though they also 

reported an additional technique known as chronoamperometry to verify the CV analysis. 

The DSC efficiency of cells using ED-Pt counter electrodes was reported as 7.6%, in 

comparison to the 6.4% reported for DSCs with thermally or sputter deposited platinum 

catalysts. The high efficiency was reported to be the result of a tailored deposit surface, 

showing an increased active surface area and decreased sheet resistance (Rs). In addition, 

these cells were only tested under forward illumination and used a thick platinum layer 

with a high reflectance -  enhancing the light harvesting of the cell. This study differs from 

Kim et al. as it seeks to use the solution composition rather than the deposition parameters 

and profile to control the deposit morphology.

Tsekouras et al. reported a technique that builds on the previous study by Kim et al, 

utilising a short overpotential pulse of -0.6V followed by a constant potential of -0.4V to 

deposit the Pt [103]. The aim of the overpotential pulse was to activate the majority of 

nucleation sites on the substrate material. The direct current method produced large, ca. 

600nm, particles similar to those produced by Kim et al. In comparison, the use of an initial 

overpotential pulse reduced the particle size to ca. 40nm with several larger 

agglomerations at ca. 350nm. The pulse and constant potential electrodeposition method
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achieved a low Rce value of 0.612cm'2, which is half that of the sputtered and constant 

potential methods presented in this paper. In terms of DSC performance, the low Rct value 

results in a high fill factor that surpasses the compared sputtered method. The lsc and Voc 

values were comparable with DSCs using sputtered platinum CE's. Cell efficiencies reported 

were ca. 6.5%, compared with ca. 6.2% of the sputtered method. In addition, the 

electrodeposited catalysts were shown to degrade slower over a period of 2 1  days than the 

sputtered method.

It is interesting to note the variety of potentials used in these papers, though all used 

similar cell set ups and the H2 PtCI6  based deposition electrolytes. Potential control seems 

to be the favoured method of deposition, as is the monitoring of charge density to act as 

the deposition cut off point rather than a specified time.

In contrast to previous studies, Li et al. used a nanoparticle colloid solution for the 

electrodeposition [149]. The deposition of already formed nanoparticles was performed at 

2V, a larger value than the -0.6V or -0.4V used by Tsekouras et al. or Kim et al, though since 

the nanoparticles were already in solution there will be no detrimental reactions such as 

hydrogen adsorption or evolution to hinder the deposition activity. The mean particle size 

was reported to be 20-30nm and uniform and the coating on the FTO glass was thought to 

have less platinum loading than the comparison thermal and electroplating. DSC efficiency 

using these counter electrodes ranged from 3.81% for the 10 minute deposition time, to 

6.41% efficiency after 40 minutes. Little improvement was seen when the deposition time 

was increased further to 20 minutes, as the efficiency remained at ca. 6.4%. Similar trends 

were also reported for the Jsc, Voc and fill factor parameters. The drawback to this method 

is the reported high sheet resistance of the counter electrode at 9.3JTcm'2and the need to 

sinter the electrode at 450°C after deposition, a requirement that electrodeposition is 

supposed to circumvent.

A recent paper by Ko & Kwon returned to the traditional electrodeposition method, 

investigating the nucleation mechanism behind electrodeposited platinum on FTO glass 

[140]. Using cyclic voltammetry to analyse the deposition, they reported that the onset of 

Pt deposition occurs at ca.0.14V, when using a potassium tetrachloroplatinate solution, 

which contains the Pt(ll) ion rather than the Pt(IV) of H2 PtCI6  used by most other report 

literature in this chapter. The CV scan reported an increase in current when the deposition 

begins, followed by a drop at 0.01V said to be where PtCI42' ion depletion occurs at the 

electrode surface. Flydrogen absorption was shown to occur on the deposited platinum at
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-0.14V which will compete with and limit further deposition activity. Hydrogen evolution 

was shown to occur at a more negative onset potential of -0.2V. It seems that regardless of 

deposition conditions, the particle size of the deposit rises with increasing deposition time, 

due to the amount of charge passed during the process. This paper also goes on to identify 

the nucleation mechanisms and show that there is a change from progressive to 

instantaneous nucleation on the simultaneous increase of the deposition overpotential and 

the concentration of ions [140]. Of particular interest was the conclusion that the 

deposited particle surface roughness increases with the overpotential. This seemingly 

combines the previously mentioned dendritic growth effect, with the already deposited 

high surface area particles, in order to increase the specific area of the catalyst.

The paper continues, stating that nucleation sites have different activation energies for 

nucleation, confirming the method used by Tsekouras et al. where they utilised an initial 

pulse to form many Pt nucleation centres before applying a potential in order to control the 

particle growth [103]. These can be saturated under certain applied potentials, -0.15 to - 

0.2V, where there will be no increase in particle density due to the activation and 

saturation of almost all the available nucleation sites. However, the particle size was 

reported to increase with overpotential. They go on to say that decreased particle size is 

closely associated with increased particle density when the overpotential is high. This was 

reported to be due to the overlap of diffusion zones around the nucleated platinum 

particles. This reduces the flux density of PtCI42' ions and thus reduces the particle size. 

The movement from low to high overpotential produces a change in the morphology of the 

deposits from smooth to rough, which was then shown, using cyclic voltammetry to 

increase the surface area. It should be noted that similar effects are not seen when only 

the concentration is changed. This agrees with the results reported previously by Chen et 

al in their paper on pulse deposition of Pt on carbon nanotubes, though they controlled 

diffusion using physical additives rather than electrochemical effects (CNT) [142].

Lin et al demonstrated highly efficiency DSCs with a low charge transfer resistance (Rct), 

using an electrodeposited counter electrode fabricated in a lOmM PtCI6  solution supported 

by 0.05M HCI [141]. A fast 30 second direct current deposition procedure was followed and 

3-(2-Aminoethylamino)propyl-methyldimethoxysilane (Me-EDA-Si) was added to the 

electrolyte as a possible deposition control method. This is similar to the study by Yoon et 

al. who utilised octaethylene glycol monohexadecyl ether as a deposit control agent [148]. 

Coarse, high surface area deposits were found when Me-EDA-Si was used, in contrast to the 

inhomogeneous deposition when no Me-EDA-Si was added to the solution. In addition, no
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dendritic deposits were seen where the growth phase has predominated over the 

nucleation phase, solving the issue found by Kim et al when purely DC deposition was 

employed with no additive chemicals in solution [136]. At high additive concentrations, the 

morphology was reported as rough, nodular with rod like grains. If the additive 

concentration is kept at 0 .0 1 vol%, a dispersed nodular structure is obtained with less 

aggregation than a solution containing 0.05 vol% Me-EDA-Si, so therefore the reduction 

promotes an active surface area increase. Me-EDA-Si was thought to inhibit the 

semicircular particle growth, as seen in other deposition methods. The paper goes on to 

report a low Rct of 1.39f2cm ' 2 for the solution containing 0.01 vol% of Me-EDA-Si. This low 

value indicates a facile electron transfer between the counter electrode and the triiodide 

species, attributed to a well-dispersed nodular structure with minimised aggregation. A 

comparison sputtered platinum counter electrode gave an Rct value of 2.0312cm'2. 

Interestingly, the trend in Rct did not follow that of increasing platinum loading, possible 

reasons being a lack of active sites or lack of Pt in general at the surface. A major result was 

that the efficiency of the DSC was seen to decrease as the platinum loading increased, with 

the explanation given that increased particle agglomeration drastically reduces the 

efficiency of the catalyst and therefore the performance of the cell. The DSC efficiency 

using 0.01 vol% Me-EDA-Si addition was 7.39% with a low platinum loading of ca. 

4.76pgcm'2.

Throughout the literature, the pulse deposition method for platinisation has become more 

popular due to its increased control over the deposit morphology. One of the earlier 

reports using this method in DSCs was submitted by Yang et al. A pulse electrodeposition 

method was compared to a sputtered platinum counter electrode, the end result being a 

6.0% DSC using the electrodeposited counter electrode [150]. An interesting factor in this 

method is the use of Triton X-100 surfactant as an additive. This work compares well with 

prior art such as Yoon et al and Lin et al, where a surfactant was utilised to reduce 

agglomeration in solution and provide a liquid crystal template for deposit control [148]. 

However, Yang et al. do not mentioned why the surfactant was added in this paper. The 

studies conclusion is that the pulse deposition method produces a catalyst with a high 

activity, surpassing that of the sputtered and direct current deposited platinum comparison 

samples. The cycle time used was 0.5s, with a duty time of 0.2s.

A more recent development applied a polystyrene template onto FTO glass, whereupon Pt 

was electrodeposited into the pores in the film [151]. The result was a high performing DSC 

with a Jsc of 18.94mA/cm2 compared with a standard cell of 16.63mA/cm2. This type of
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physical template has been reported in several fields for the production of catalyst 

material.

1.6 Templated electrodeposition and galvanic replacement 

Templated deposition can refer to several types of technique, as mentioned in the previous 

section. This can comprise of physical templates, liquid crystal agents, physical additives or 

the use of sacrificial material deposits to be replaced. Template electrodeposition allows 

for targeted and controlled deposition using the voids or holes in an insulating layer on the 

target substrate [152]. If necessary, the template can be removed post deposition, leaving 

the deposit on the surface.

A development of this method is known as double templating, and involves the placement 

of a physical template on a substrate surface, which acts as a template for the final material 

deposition. Ghanem et al. utilised this method in the electrodeposition of metal nanodots, 

where the secondary template consisted of electrodeposited macroporous polypyrrole 

which in turn was formed through self assembled polystyrene spheres on a substrate [153]. 

This technique was also used by Yin et al. in the synthesis of Pt nanomaterials for oxygen 

reduction [154]. It is a versatile process, however is complex and does not lend its self to 

inclusion in a roll to roll process.

As the previous sections report, electrodeposition is a viable route for the low temperature 

preparation of DSC catalysts. However, due to the non-uniform topography of the FTO 

surface layer, the deposition process is not straightforward. An interesting technique that 

may facilitate this action was the templated deposition of platinum thin films through single 

layer redox replacement (SLRR) by Brankovic et al. [155]. A sacrificial metal is 

underpotentially deposited onto the substrate, in the cited paper an A u ( l l l )  surface. This 

is achieved through a short pulse stage, giving maximum control over the deposit structure. 

The second stage involves transferring the templated substrate to a second bath of the 

required metal salt, and holding at open circuit potential. At OCP the more noble metal 

ions dissolve and replace the sacrificial metal template on the surface, due to the difference 

in redox potentials, which is known as galvanic replacement. The process is known as 

"single-layer" as only a monolayer of template metal is underpotential deposited on the 

substrate surface.

Brankiovic's procedure is built on the technique of galvanic, or "redox" replacement, where 

the differences in equilibrium potentials of two elements drives the replacement of one by
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another. It is based around the standard electrode potentials that describe the individual

potentials of reversible ionic reactions, Equations 1.18 and 1.19 [156]:

Pb2+ + 2e' Pb (E =-0.1251V) (1.18)

Pt2+ + 2e' Pt (E = 1.188V) (1.19)

The positive difference "AU" between electrode potentials of the more noble metal, in this 

case Pt and the Pb layer, drives the replacement process. It should be noted that the 

substrate must be more noble than the reactants in order to remain inert. Brankovic et al. 

summarised this process using Equation 1.20 [155]:

M upd + (? )pZ+ => M m +  + { j ) p ° (L2°)

Where M °UPD represents the sacrificial metal deposit; Pz+ is the more noble metal cation and 

M z+ is the metal cation in solution following the oxidation of the sacrificial metal. P° 

represents the noble metal deposited through this process. The paper reported that this 

deposition activity is an irreversible process, which indicates good adhesion of the deposit 

to the substrate.

Surface limited replacement was also utilised for the production of bimetallic catalysts, 

illustrating the versatility of the method and the different materials that could be used. 

Mkwizu et al. studied the electrodeposition of ruthenium and platinum nanoclusters, with 

copper used as the sacrificial material [157]. Interestingly, spontaneous co-deposition of 

the catalyst elements Pt and Ru also occurred at open circuit without the sacrificial Cu 

being present. This should be assessed in any practical application of this technique as it 

will change the morphology of the catalyst in unanticipated ways. The end use was 

electrocatalysts of reactions such as oxygen reduction in a fuel cell, demonstrating that this 

method allows the fabrication of highly catalytic and versatile nanoparticles.

The combination of electrodeposition and electroless deposition was utilised by 

Papadimitriou et al. for the fabrication of Pt/Pb coatings on carbon and platinum substrates 

[158]. When a Pb coated substrate was immersed in Pt solution, it was spontaneously 

replaced by the Pt, resulting in a combined Pt/Pb electrode on carbon or Pt substrate, 

Figure 1.24. The unfortunate side effect is that there is remaining Pb template material, 

which may cause issues for its application area, in addition increasing the material waste.
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Figure 1.24: SLRR electrochemical deposition process schematic 

The original technique reported by Brankovic etal. was refined further by Viyannalage etal. 

who reported the use of a single electrolyte bath containing both the sacrificial template 

metal salt, and the required replacement metal [159]. In contrast to Brankovic, this paper 

used Pb as the sacrificial material for growth of Cu layer on A u ( l l l )  and A g (ll l) .  The 

original techniques reported by Brankovic and initially by Viyannalage used several solution 

baths, which left the electrode exposed to air, and the solutions in different stages of de­

oxygenation. This was reported to be a serious issue, as the oxygen reduction reaction 

competes with the redox replacement reaction. The one pot process was developed in 

order to ensure the solution remains at a minimum oxygen concentration. In addition, the 

solution contains a high concentration of sacrificial ions, to ensure that only as short pulse 

would be required to form a layer. Furthermore, the replacement metal ions were kept at a 

low concentration, to control the amount that would simultaneously deposit on the 

deposition of the sacrificial metal.

A similar SLRR technique was reported by Rettew et al, however this study analysed the use 

of Ni, rather than Pb as the sacrificial metal, for the deposition of Pt onto Au substrate 

[160]. Interestingly, this study utilised chloroplatinic acid, a Pt(IV) solution, rather than the 

previously reported Pt(ll) solutions due to the 1:2 stoichiometry that deposits more Ni on a 

surface than the equivalent Pt. Therefore, two nickel atoms will be required for every Pt 

replacement event - thus adding further control to the Pt deposition quantity, Equation 

1.21:

Pt4* + 2Nisurf.ce -» Ptsurf.ce + 2N|2* (1.21)

This study also noted that under potential deposition techniques did not necessarily need 

to be used for SLRR to be successful.
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Gocken et al further reported on the SLRR method, showing that the choice of replacement 

anion is important in controlling the stoichiometry of the reaction. The study showed that 

in a Cu/Pt reaction, four Cu atoms are replaced by one Pt - a factor that will influence the 

coverage of the adatoms on the substrate [161]. Similar to the study by Viyannalage et al., 

Fayette et al. utilised Pb as the sacrificial metal instead of Cu, and included Pt2+ as the 

replacement ion in acidic conditions [162]. Their results showed the formation of a 

network of Pt clusters on the substrate surface, in this report a A u ( l l l )  surface. 

Interestingly, they also found that the adsorption of OFT species on the substrate surface or 

the formation of PtOH compounds can increase the positive charge of the deposition 

system, and result in increased deposition of the Pt species outside of the experimental 

control. Further exploration of this effect suggested this could produce a non 

stoichiometric Pb to Pt exchange ratio. The Pt deposits were said to be in the P t ( l l l )  

crystallographic orientation, which agrees with a study submitted by Zhang et al., where it 

was found that P t ( l l l )  was the crystallographic orientation that favours the highest 

catalytic activity [163].

These methods have been used for the formation of thin films on organised, uniform metal 

surfaces, such as A u ( l l l ) ,  A g ( l l l )  and glassy carbon. However, the methods were used for 

the successful formation of catalyst materials and as a result it is believed this will make a 

viable route for development in the field of dye solar cells.

1.7 Corrosion and corrosion prevention methods

In order for flexible, mass produced DSCs to become a reality, they need to be viable on 

flexible substrates such as polymers and sheet metal, in order to reduce device cost and 

support structures [164]-[166]. However, unlike the beneficial catalytic reaction that 

occurs at the counter electrode, the electrolyte interaction between the iodide/triiodide 

and certain metal substrates results in degradation of the electrolyte or corrosion of the 

substrate. In order to ensure the stability of metal substrate dye solar cells during 

operation, the interaction at metal electrode substrates requires investigation.

1.7.1 General corrosion

Corrosion generally occurs at thermodynamically favourable sites on metal substrates. 

These "active sites" have a lower bonding energy than the surrounding metal, which 

increases the ease of any reactions occurring on the surface. The most common type of 

corrosion, for bare metals in a liquid environment, is through redox reactions where ionic 

species in solution attack the surface of a substrate and form corrosion products. The
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attack usually occurs at "active sites", these are points on the surface that can accept or 

donate an electron, i.e.: dangling bonds, cracks, pits or defects in the material. An example 

reaction can be seen in the interaction between iron and oxygen, Equations 1.22 and 1.23:

Fe(s) -» Fe2+ + 2e~ (1-22)

0 2(g ) +  4 < r  +  2 H20  -> 4 O H -  (1.23)

Corrosion prevention falls into several categories:

•  Additives, such as corrosion inhibitors

•  Sacrificial materials or coatings

•  Electrochemical passivation

•  Coatings.

Anti corrosion coatings have been widely used in the protection of vulnerable metal 

substrates, especially in the rolled steel industry as a large quantity of these products are 

used for environmental protection, i.e. roofing, and cladding of buildings. Coatings are an 

active measure, forming a barrier against any corrosion agents. These are mostly polymeric 

or colloidal coatings such as anti-rust paints. Recent research has suggested the use of 

metal nitride particles combined with a polymer such as polyimide. This coating has the 

potential to both conduct and protect a vulnerable metal substrate from corrosion, which 

has much use for the conducting substrate in DSC devices [167][168].

Anti corrosion treatments using sacrificial material are not a viable solution in DSC cells, as 

this will reduce device performance through depletion of charge carriers though corrosion 

of the sacrificial material, in addition to the inclusion of a vulnerable material into the 

device that could poison the cell or form recombination centres, so reducing Voc and Jsc. 

Physical anti-corrosion measures are further made difficult due to the restricted 

architecture of the DSC devices. As a result, this fostered interest into chemical corrosion 

inhibition.

1.7.2 Corrosion inhibition in industry

There are many forms of additives used by industry for corrosion inhibition on common 

industrial metals in aggressive environmental conditions. In-organic inhibitors are the most 

common; such as chromate additions in chrome coatings were a popular anti corrosion 

additive, however, the use of this compound is now restricted for public health reasons.
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Organic compounds, in the form of aliphatic or aromatic compounds can also be used. 

Aliphatic compounds, such as aliphatic amines are particularly of use in acidic environments 

[169], [170]. Aromatic compounds are also used, with compounds such as nitrogen- 

containing heterocyclics used to prevent corrosion of metal in acidic or similarly aggressive 

media [171]—[173]. Heterocyclic compounds are used as performance enhancing additives 

in dye solar cells, and as a result it was decided to restrict this study to this type of organic 

compound.

The reviewed studies on nitrogen containing heterocyclics report that these additives can 

bond via two mechanisms to a metal substrate. The first type, physisorption, involves the 

electrostatic attraction between molecule dipoles and the substrate surface at the 

metal/electrolyte interface. Chemisorption is the second mechanism, where charge is 

shared between molecule and substrate to create a coordinate bond. Many types of 

organic compound are used in industry, such as imidazoles, benzimidazoles and pyridine 

compounds [174], [175]. The study by Riggs et al. summarised the possible additive effects 

for corrosion inhibition [176]:

•  Changing the electropotentials of the substrate or reactants

•  Altering the corrosion product nature

•  Chemisorption and physical blocking

•  Changing electrolyte resistance.

These are suggested mechanisms for organic molecule inhibition action for metal substrate 

in contact with corrosive media such as HCI. It is hoped that the basic nature of NHC 

molecules will allow them to passivate metal substrate active sites through surface bonding 

and so restrict the interaction between the triiodide species and the metal in a DSC device. 

It is also thought that the addition of large complex molecules could hinder the movement 

of triiodide towards the metal surface, providing further corrosion protection to the metals 

and reducing triiodide depletion. The addition of NHC molecules is not designed to have a 

negative influence in performance and careful study of prior work has ensured that the 

compounds chosen have a corresponding positive effect on DSC devices, through other 

electrochemical mechanisms.
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1.7.3 Corrosion in metal substrate DSC cells

It is well known that corrosion in liquid state DSCs with metal substrates is due to the highly 

aggressive nature of the iodide/triiodide electrolyte or more particularly the attack on the 

metal by the triiodide ion (l3) [38][177], [178], shown by the Equation 1.24 below, when the 

number of electrons "n" is 2 :

M  +  / 3" -*  M n+ +  37" (1.24)

This interaction will cause substantial loss of performance in the DSC through the reduction 

of charge carriers; furthermore the loss of l3" will be visible as a colour change from 

yellow/brown to clear as the triiodide attacks the metal substrate, thus making DSC 

production on metal substrates somewhat problematic. So far corrosion inhibition studies 

for DSCs have focused on the use of barrier coatings, or the development of none-corrosive 

or low-corrosion electrolytes, such as the cobalt based complexes analysed by Sapp et al. 

and Nusbaumer et al [8 8 ], [179]. Cobalt based electrolyte corrosion behaviour will be 

investigated further in Chapter 6 . Several studies have explored the stability of metal 

substrates for DSC cells. Toivola et al. discussed the use and suitability of several industrial 

sheet metals such as zinc-coated steel and stainless steel, in addition to conductors such as 

copper [38]. Their study focused on soaking and encapsulation tests using relatively large 

volumes of electrolyte compared with that of standard DSC cells, a feature recognised that 

would give different degradation performance to the thin layer DSC reality. An important 

realisation made by this paper was that the corrosive action reduces the amount of 

triiodide in the cell, leading to a detrimental loss of performance. This was found to be a 

more important factor than the loss of the zinc protective coating on the tested zinc-coated 

carbon steel. An important conclusion was that stainless steel appeared to be resistant to 

degradation after 12 months of storage when used as a counter electrode substrate. One 

of the drawbacks of this technique is that, the usage of large electrolyte volumes does not 

accurately represent the conditions in a DSC where the electrolyte is only present

Miettunen et al. also reported on the stability of stainless steel when used as a counter 

electrode or a working electrode in contact with the electrolyte [180]. Their results showed 

that standard 304 stainless steel produced high performing cells with 4.7% efficiency with 

no cell degradation reported, a much higher efficiency than reported by Toivola et al. A 

critical difference between these two studies is the latter utilises thin layer DSCs, rather 

than the bulk volumes used by Tsekouras, thus the result will be more representative of the 

response of DSC cells. A prior study on industrial metals, though not DSC substrates, by
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Tsukaue et al. reported that stainless steel 304: and 316L exhibited pitting corrosion in wet 

air containing slight amounts of iodine, the cause of which is believed to be the 

concentration of triiodide [181]. This indicates that control over the composition of the 

DSC electrolyte will be critical in the inhibition of corrosion on a metallic substrate.

A further paper by Miettunen et al. studied stainless steel, Inconel 600 and titanium for 

feasibility as dye solar cell counter electrode substrates [182]. Their study reported the 

degradation of stainless steel and Inconel 600 through the thermal platinisation process as 

the high temperatures utilised in the deposition cause the accelerated oxidisation of the 

metal. Corrosion products and a loss of electrolyte colour were observed following the 

lOOOh study. Titanium was found to be the only stable metal in this study. However, the 

study also found that a thick 20nm film of Pt was able to improve metal stability for all 

metals, apart from Inconel - surmised to be due to the high reactive nickel content in the 

metal.

1.7.4 Use of additives in photovoltaics

The use of electrode surface modification treatments by the inclusion of additive 

compounds has been used for photo-electrochemical cells for several years. An early 

example was reported by Canfield and Parkinson who studied the passivation of exposed 

edge planes on nWSe2 crystals by using 4-tert.-butylpyridine (4-tBP) [183]. The method 

involved the treatment of the crystal surface with neat 4-tBP at 60°C with the result that it 

increased Voc and Jsc of the cell and reduced the dark current. The mechanism was thought 

to be one of intercalation, where the pyridine group of 4-tBP would bind between the 

crystal layers at exposed edges. Then the tert.-butyl segment of the molecule was said to 

provide a steric anchor preventing any further penetration of the TBP into the crystal 

lattice, thus confining the interaction area to the edge of the crystal structure.

In 1993, Nazeeruddin et al. explored the benefit of additives to DSC performance [184], 

Their study exposed a sensitised T i0 2 electrode to a solution containing 4-tert- 

butylpyridine, in a similar manner to Canfield and Parkinson, before testing its effect on the 

performance in a standard DSC cell containing an iodide/triiodide electrolyte. They found 

that the 4-tBP suppressed the recombination, or dark current, reaction at the 

TiO^electrolyte interface, Equation 1.25:

Is +  2e~b(T i0 2) -  3 I~  (1.25)

Thus improving Voc causing an increase in the fill factor and DSC cell efficiency.
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The reduction of triiodide ions by interaction with injected electrons in the T i0 2 conduction 

band was originally said to occur through crossing the dye layer due to its small molecular 

size. However, more recent studies have shown that the reaction occurs at bare sites on 

the T i02, where no dye has adsorbed [185]. The 4-tBP compound decreases the reduction 

rate of triiodide, by adsorbing onto the T i0 2  surface at active sites, thought to consist of 

Ti(IV) ions [186]. These are areas of high Lewis acidity, prone to interacting with basic 

molecules, such as pyridine compounds, via nitrogen lone pairs. However, other studies 

such as Suzuki et al., observed that pyridine (not quite 4-tBP) was physisorbed through 

electrostatic attraction, or Van der Waals force in a parallel orientation to the T i0 2 surface. 

It was reported that the bond originated between the charged Ti active sites and the charge 

located on the pyridine ring [187]. The nitrogen lone pair was said to increase the 

attraction, but was not the main bonding point.

The effect of 4-tBP on DSC performance was studied further by Huang et al. They studied 

how the compound influenced recombination kinetics and cell performance [79]. They also 

investigated two further additives, 2 -vinylpyridine and poly(2 -vinylpyridine) to assess their 

performance. The evaluation confirmed the conclusion reached by Nazeeruddin et al., in 

that TBP and other pyridine compounds increase the Voc and efficiency of DSCs and 

illustrated the dependence of Voc on the recombination kinetics of DSC devices. They did 

not however, explore the possibility of energy level changes through the introduction of 

these N-containing heterocyclic compounds. These questions were discussed by 

Schlichthorl et al. in the same year, through the analysis of the band edge movement in 

DSCs using intensity modulated photovoltage spectroscopy (IMVS) showing that treating 

the T i0 2  with 4-tBP or NH3  caused a band edge movement and resulted in a more negative 

Voc for the device [188]. The suggested mechanism was that TBP and NH3 deprotonate the 

T i0 2 surface, which is partially protonated during dye adsorption at the surface. 

Deprotonation shifts the conduction band (Vcb) in a negative manner, thus increasing the 

photovoltage of the device.

Greijer et al. used resonance Raman scattering to study several mechanisms in DSC 

operation. The study mainly focused on dye ligand exchange mechanisms. However, the 

technique studied was also used to observe the role of 4-tBP in a DSC device. One of the 

results obtained was that the thiocyanate group on the sensitising dye was seen to be 

unaffected by the addition of 4-tBP, which is an important factor when considering cell 

stability. The study suggested that, as pyridine is known to react with iodine, there will be a 

drop in the l3‘ concentration and thus an increase in stability of the device through
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preservation of the thiocyanate ligand on the dye molecule. The improvement of DSC 

performance was an additional beneficial effect, which has not been previously explored in 

the literature. Several other sources analysed the interaction between iodine species (l3 ) 

and pyridine compounds (Py). Kebede et al. has published two possible routes for the 

relationship between iodine species and pyridine in acetonitrile solution. These are shown 

in Equations 1.26-1.27 [189]:

P y  +  Is «-* P y l2 (1-26)

2Py +  Is Py2I + +  2 l~  (1.27)

If these remain true for 4-tBP in a DSC electrolyte, Greijer et al. suggested that the following 

reactions would thus occur due to the electron donating ability of the lone pair on the 

nitrogen included in the pyridine compound, Equations 1.28-1.29 [190]:

(47TB) +  Is «-> (4T B P )I2 +  / “ (1.28)

2(47TP) +  Is ~  (47TP)2/ + +  2 I~  (1.29)

This reaction could then reduce the l3' concentration in the electrolyte and increase the 

amount of I' present in solution. It was also suggested that the drop in triiodide 

concentration would increase the concentration of electrons in the T i0 2 electrode, thus 

provoking a rise in Voc by reducing the probability of interaction between l3' and injected 

electrons. Returning to Kebede et al., the study further suggested that the bonding 

between an excess quantity of pyridine (Py) and either the l2 or l3' species would form a 

sterically bulky complex ion, which would be less capable of approaching close to the T i0 2  

surface [189], Their conclusions suggested that the increase of DSC performance was due 

to the formation of the dipyridine complex ion, shifting the reaction equilibrium to reduce 

the concentration of l2 and other electron scavenging species in solution. Their study was 

based around the previous work on pyridine iodine bonding by Reid & Mulliken [191] and 

Tassaing & Besnard [192], and the earlier work on voltammetry studies of iodine species in 

acetonitrile solutions undertaken by Popov & Geske in 1957 [193].

Pyridine based compounds containing only one nitrogen atom one of several additive forms 

that have been considered for use in DSC devices. The 2005 study by Kusama et al. 

catalogued the behaviour of heterocyclic compounds containing more than one nitrogen 

atom in their structure and their effect on dye solar cells when included in the electrolyte 

solution [185]. This study was used to benchmark the additives possible for use in this
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thesis. Figure 1.25 shows several structures for nitrogen-containing heterocyclic (NHC) 

candidates for use in this study.

N
PyridinePyrazole Imidazole

,N.

'N' N' N
Pyrazine1,2,3-Triazole 1,2,4-Triazole Pyridazine Pyrimidine

Tetrazole 1,3,5-Triazine

Figure 1.25: Nitrogen containing heterocyclics studied for use in DSC devices [185]

Kusama et al. showed that the Voc of DSCs was greater with NHC additives included, than 

for devices containing no additive in the electrolyte [185]. There were, however, some 

exceptions: The compounds: 1,2,3-triazole; tetrazole and pyridazine reduced the device Voc. 

and Jsc values. The exceptions appeared, from their data, to be due to the smaller (more 

positive) lowest partial charge of the N atom in the molecule. In addition, the paper also 

stated that nitrogen molecules in the 1, 3 or 2, 4 or 1 ,4  positions will not be able to interact 

with the T i0 2 surface. Therefore there will be less NHC adsorption to free areas on the T i0 2  

surface, which will reduce their effectiveness. Despite these exceptions, the cell fill factor 

improved as the majority of the NHC's studied were added to the electrolyte formulations, 

thus increasing device efficiency. This study further reported a decrease in dark current 

and an increase in Voc as the lowest partial charge of the nitrogen atom in the compound 

increased. This value was said to give an estimate of the donating ability of the nitrogen's 

lone pairs; a factor considered previously by Greijer et al. [190].

The results suggested that the NHC’s were adsorbed onto the bare areas of the T i0 2  

electrode, thus increasing Voc through the decrease in recombination losses. This result 

supports the previous findings of Nazeeruddin et al. and is further supported through IPCE 

studies undertaken by Lindstrom et al. Here, a pyridine compound was adsorbed onto the 

T i0 2  surface at un-dyed T i0 2  sites, thus causing a higher IPCE value through blocking of the 

T i0 2  surface, or through the passivation of recombination sites [184], [194]. This was also 

said to lead to more efficient collection of electrons from further away from the conducting 

substrate [194].
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They continued describing the relationship between the T i0 2  surface states and the 

additive compounds [185]. They suggested that the atoms of the additive compound with 

the lowest partial charge would provide preferential sites for bonding and adsorption on 

the T i0 2  electrode surface, due to the bare Ti4+ site being Lewis acidic. Therefore the lower 

the partial charge of the nitrogen atom, the easier and more frequently it will adsorb to the 

surface of the T i0 2 at un-dyed, or "active", sites. In addition, this study uses a relationship 

between the flat band potential (VFB) and the redox potential of the electrolyte (Vre(j) to 

explain the change in Voc when including N-containing heterocyclic additives in the 

electrolyte, Equation 1.30:

Kc =  Vfb ~  Vred (1.30)

In previously reported literature, Schlichthorl et al confirmed that the inclusion of additives 

or nitrogen-containing heterocyclics to the electrolyte move the flat band potential, due to 

their adsorption to the T i0 2  surface [188]. The redox potential was said to be negligibly 

affected by these additions, therefore the increase in Voc was attributed to the movement 

of VFB. The reduction in Jsc was then suggested to be due to the negative movement of the 

Ti0 2  conduction band, which unfortunately decreases the rate of electron injection from 

the dye to the semiconductor. The final factor reported in this study was the effect of 

nitrogen lone pair donating ability for each compound.

These studies build on the work of S. F. Nelsen who investigated the effect of additional 

groups attached to an N-heterocyclic ring [195]. The study concluded that as larger alkyl or 

other groups are added, the ionisation potential of the compound will decrease. Kusama et 

al. used this feature to explain the behaviour of different compounds on the performance 

of DSC devices. The analysis by Kusama et al. also agreed with the previous work of Kebede 

et al. and Greijer et al., showing that the heterocyclic compounds react with iodine or 

triiodide in the electrolyte, forming charge transfer complexes [189], [196]. The bond here 

is between the nitrogen lone pair and the triiodide or iodine atoms as illustrated in 

Equation 1.31:

NHC  +  /J  -*  N H C Q 2) +  I~  (1.31)

As mentioned previously, this reaction will reduce the quantity of l3" in the electrolyte and 

increase the concentration of iodide (I ). This should improve hole collection at the working 

electrode and reduce the recombination of injected electrons with triiodide (l3 ).
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Further papers by Kusama et al. investigated the interactions of a large variety of 

heterocyclic compounds for use in dye sensitised solar cell devices [197]—[202]. These 

studies gave a good account of the performance benefits and limitations of each of the 

molecules investigated, and were an invaluable tool for informing the selection of 

electrolyte additives for this study.

The simplest form of reported additive is a pyridine compound, illustrated in Figure 1.26, 

and as previously mentioned in this chapter, the typical additive most commonly 

introduced to DSC electrolytes in literature is the pyridine derivative, 4-fert-butylpyridine 

(4-tBP). This is followed closely in popularity by n-methylbenzimidazole (n-MBI), see Figure 

1.27.

Figure 1.27 : Nitrogen containing heterocyclic compounds commonly used as performance enhancers in DSCs

(a) 4-TBP, (b) 1-MBI

In order to select additional compounds for testing in this study, the reports on 

performance enhancing compounds by Kusama et al. were used as a guide [185], [201], 

[203]. Earlier studies into corrosion inhibition in other areas of industry were used to aid in 

the formulation of mechanisms and testing regimes for the selected compounds.

1.8 Monitoring methods

In order to investigate corrosion and corrosion inhibition behaviour and the characteristics 

of electrolytes and additives in the 2 nd part of this work, a monitoring technique needed to 

be developed to accurately assess and record any variation over a large number of samples. 

Current non-destructive assessment of DSCs involves several electrochemical testing 

techniques or a passive absorption spectra analysis. Watson et al. presented two methods 

for the in situ monitoring of the dye uptake in dye sensitised solar cells[106]. The spectrum 

analysis method monitors used UV-VIS reflectance spectroscopy to show the wavelength

Figure 1.26: A simple nitrogen containing heterocyclic compound. "Pyridine'

f-Bu

(a) (b) ch3
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change as the dye is adsorbed to the T i0 2 surface. The second method involves the use of a 

camera/RGB sensor to analyse the colour change as the dye is adsorbed. This method is 

fast and accurate and correlates well to the UV-VIS study and shows the colour change or 

change in average intensity over long term or short term studies, depending on the 

requirements of the study and the limitations of the hardware used. The UV-VIS 

reflectance study has been adapted to study the corrosion of different industrial metals in 

contact with thin electrolyte layers by Reynolds et al. [204], Encapsulation cells using 

different industrial metal substrates were exposed to thin electrolyte layers and analysed 

using this method. The report indicates different results to those previously submitted by 

Toivola et al. due to the thin electrolyte layers used rather than bulk electrolyte solution. 

The results by Reynolds et al. showed that in this setup, only titanium has complete 

corrosion resistance, whereas other metals such as zinc corroded in seconds.

UV-VIS and colour change studies were also used by Carnie et al for the assessment of UV 

photocatalytic oxidation of triiodide in DSC devices [123]. Their work showed that UV 

radiation photocatalyses the oxidation of triiodide causing electrolyte discolouration. An 

interesting conclusion was that cells degraded faster under loading, through triiodide 

consumption through increased hole availability. This factor has a large impact on future 

cell stability work, as it was initially thought that a passivation current through an active 

DSC would inhibit corrosion of metal substrate. Fortunately, this increased degradation can 

be mitigated through the use of UV protection measures, and the study also found that a 

reverse bias applied to the device could restore some of the cell performance following UV 

degradation.

Asghar et al. also assessed ageing through UV exposure and temperature, through using an 

RGB colour analysis technique [205]. They indicated that it was the interaction between 

electrolyte and T i0 2  that was a cause of electrolyte bleaching and that the dye layer was 

able to slow degradation, as seen through the photographic observation of cell colour 

change. The study also showed that it was possible to relate electrolyte colour to iodine 

concentration, an important factor for applying the result to later studies. The conclusion is 

of great interest as it indicates that the monitoring method is viable for large scale and long 

term observation. In addition, it also stresses that a stable background environment is 

required to make this method quantative and comparable. It is this RGB method that will 

be adapted for use in this study for the analysis of the corrosion inhibition efficiency of 

nitrogen-containing heterocyclics in DSC electrolytes.
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1.9 Literature Conclusions 1

•  Electrochemical platinisation is a viable route of study for the large scale solution 

processing of DSC counter electrodes

•  There have been several problems, such as low performance and lack of adhesion 

to the substrates in previous experimental reports

•  Platinum will be utilised over the newer, lower cost catalysts as it is better 

understood and to reduce the number of variables in this investigation

•  There is a large variety in the deposition morphology between electrodeposition 

methods

•  Only basic direct and pulse waveform deposition has been used for DSC counter 

electrode production

• There are other catalyst formation methods available to the electrochemist

•  The most promising of these electrochemical methods, uses a low cost template 

material to form the initial deposit structure. Followed by electroless deposition of 

the required metal

•  The electrochemical deposition methods have high potential for mass production, 

as an already templated substrate could be introduced into a running mass 

production line for electroless deposition, resulting in reduced manufacturing 

complexity for the process

1.10 Literature Conclusions 2
•  There is a lack of in-situ monitoring methods that are viable for use in the quality

assessment and control of mass produced DSC devices and current methods rely on 

small batch or individual studies that are slow to feed back into the process

•  UV-VIS, in particular, has been an important technique in the analysis of DSC 

devices, however, the analysis of colour change (RGB value) for in situ monitoring 

has been utilised for the study of dye uptake in DSC devices and has potential for 

large scale monitoring of DSC production

• It is thought that the RGB analysis method should be investigated further especially 

on metal substrates for the investigation of corrosion and degradation of metal 

substrate cells

•  Since the most viable method of DSC mass production will require the use of metal 

substrate, work will be required to assess the stability of the most common 

materials to be used in thin layer DSCs
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•  To that end these substrates should be trialled in a test environment mimicking 

that of DSC devices - though without the active T i0 2  and catalyst to complicate the 

study of substrate with electrolyte

•  Commercially available non-iodide electrolytes should also be observed in a parallel 

study

•  The degradation of metal substrates in triiodide electrolyte is a well known 

phenomenon in DSC cells

•  Traditional anti-corrosion methods are known to affect the performance of the cell 

through chemical (poisoning) or physical (reduction in component performance, i.e. 

conductivity) effects

•  It is possible that several chemical components of DSC cells could be used as 

corrosion inhibitors, in particular are those components already in use as inhibitors 

in industry such as organic compounds or heterocyclics

•  It is suggested that traditional additives in DSC electrolytes could provide metal 

substrate a measure of protection

•  In addition, this review has found that several alternative electrolytes are less 

aggressive toward metallic substrates than the triiodide/iodide redox couple.

•  Little work has been done, to date, on the effect of these redox couples on metals.

1.11 Aims and Objectives

This thesis will first investigate the counter electrode/electrolyte interaction through the 

analysis and development of rapid electrochemical platinisation methods through the 

adaptation of existing methodology, these results will be compared against current 

platinisation methods. Following this, an alternative electrodeposition technique will be 

investigated, to discover its viability for use in DSC devices for batch and continuous 

processing.

Secondly, the working electrode/electrolyte interaction will be analysed using mass 

observation and analysis methods adapted for this usage. The interaction specified is 

between the triiodide/iodide electrolyte and a series of metallic substrates, chosen due to 

their potential as flexible materials for roll to roll produced DSCs. This will also be used to 

observe and analyse how the stability of these observation cells is affected by the inclusion 

of additives in the electrolyte. Finally, this technique will be trialled on a cobalt based 

electrolyte, thought to be less aggressive than the iodide/triiodide redox couple. The study 

is designed to assess this and ascertain the metals that are viable DSC substrate candidates.
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Chapter 3: The intention of this thesis is to further develop and characterise simple 

electrochemical platinisation methods to ascertain if they are able to be adapted for fast 

usage for mass produced DSC cells, as a low temperature replacement for the high 

performance thermal deposition or the chemical reduction platinisation methods.

Chapter 4: This chapter looks at the development of an alternative electrodeposition 

method using a low cost templating process, which, was adapted from a surface layer redox 

replacement method to produce a platinum catalyst. First developed on FTO-glass and 

then characterised through physical and electrochemical analysis, before the being applied 

to FTO-glass based DSC cells.

Chapter 5: This section of research focused on the electrolyte reaction at the working 

electrode substrate and the detrimental corrosion of candidate metallic substrates for 

industrially produced DSC substrates. In mass production, quality assurance is critical in 

ensuring that the process runs efficiently and constantly. To that end, an RGB image 

analysis method was developed and compared with a currently available 

spectrophotometric method for the in situ monitoring of DSC devices. Of particular 

importance was the monitoring of cell degradation through the corrosion of the metal 

substrate when exposed to the aggressive iodide/triiodide electrolyte. In the process of 

characterising metal/electrolyte interaction, it was noticed that several electrolyte additives 

had corrosion inhibiting effects. This resulted in a secondary study into the performance of 

several nitrogen containing heterocyclic additives when included in a simple DSC 

electrolyte. A critical consideration was that these compounds should not be detrimental 

to performance when included in the electrolyte solution.

Chapter 6 : Another solution to the corrosion issues of triiodide/iodide electrolyte is the use 

of one of the many reported electrolytes developed recently. In this study, a cobalt 

complex redox couple was exposed to several crucial metal substrates and analysed using 

the RGB analysis method developed in Chapter 5. Further to this, several corrosion 

inhibition methods were also trialled in the event that the less corrosive cobalt complex 

reacted poorly with any of the metal substrates.

Chapter 7: After reporting the experimental work in Chapters 3-6, this chapter looks at 

future work, adaptations and possibilities of the techniques put forward in this thesis.
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2 Experimental

2.1 Platinum deposition characterisation

In order to establish a baseline for the study of an electrochemical platinisation technique 

suitable for eventual use in a roll-to-roll DSC production process, several studies were 

undertaken to assess the nature of this method and what direction to move, in order to 

develop a viable process. The goals were: fast processing, low material use and ease of 

integration into a mass production process.

The initial investigation utilised cyclic voltammetry in a 3 electrode cell to qualitatively 

characterise the 0.5mM potassium tetrachloroplatinate, K2[PtCI4] (99.9% K2PtCI4 powder, 

Sigma-Aldrich) deposition solution. The electrochemical cell consisted of a Pt mesh counter 

electrode (99.9%Pt, Goodfellow), an FTO-glass working electrode of 1cm2 exposed area 

(NSG, 15Q/n) and an Ag/AgCI reference electrode (Sigma-Aldrich, 3M KCI and +0.230V 

±10mV vs. SHE). The scan range (max and min values) was initially set at +1V and - IV  to 

establish basic electrodeposition activity. Once this was achieved, the scan range was 

narrowed to -0.8V and 0.6V to obtain the best resolution of the electrochemical process. 

Furthermore, three different scan speeds were applied to establish if any kinetically 

restrictive processes were present.

Since the deposition events are known to take place under negative potential in this cell, 

the potential was cycled from 0V to the negative max range and then to the positive 

maximum range. A current will then be recorded flowing between the working and counter 

electrodes. This current represents the flow of ionic species towards the working 

electrode, where they are adsorbed and then reduced from platinum chloride ions to 

platinum metal. The CV scan will give several features, peaks and troughs that indicate 

electrochemical processes occurring in solution. From these features, an idea regarding the 

possible deposition potentials can be reached, as will the values required to avoid 

detrimental processes such as hydrogen adsorption on the working electrode or evolution 

from solution when increasingly negative potentials are applied.

To assess the potential of electroplatinisation of FTO glass, symmetrical cells were 

constructed using the method detailed in Section 2.5.4. A key feature to check in these CV 

scans is the symmetrical nature of the peaks, which will give an indication of the 

repeatability of the catalyst deposition method. However, the most important value 

obtained from these is the limiting current (J|im), the value of which indicates the potential
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where the catalytic performance becomes kinetically limited as species are transferred 

from the bulk electrolyte to the electrode. This is a good quantitative measure to compare 

the performance of catalyst material, which avoids the need to build full DSC devices until 

the best performing catalyst has been identified.

2.1.1 Direct electrodeposition

Simple direct electrodeposition of platinum onto FTO glass used novel rapid deposition 

times at several deposition potentials adapted from literature sources, which were 

compared against the CV scan taken of the Pt deposition solution. Tsekouras eta l. and Ito 

et al. supplied the -0.6V and -1.8V respectively for the initial study of platinum 

electrodeposition [1][2]. A three electrode electrochemical cell was used, including an 

Ag/AgCI reference electrode (Sigma-Aldrich, 3M KCI and +0.230V ±10mV vs. SHE), platinum 

wire mesh counter electrode (99.9%, Goodfellow) and FTO-glass working electrode (NSG, 

15Q/n). The deposition solution was 5mM chloroplatinic acid (H2PtCI6.xH20, Sigma-Aldrich) 

in distilled water. The deposition event was controlled and monitored through a 

potentiostat (Ivium Technologies, CompactStat). The deposition times chosen were 1, 5 ,10  

and 20 seconds. After each deposition, the working electrode was removed from solution 

and rinsed with distilled water and dried at room temperature. Samples were stored in a 

desiccator under vacuum conditions in the dark until required for analysis or DSC 

construction.

2.1.2 Direct deposition characterisation

Since the nature of different deposition methods makes accurate comparisons difficult, 

these platinised FTO-glass samples were characterised using UV-Vis spectroscopy to give a 

point of reference between different methods. UV-VIS analysis will be described in detail in 

Chapter 2.6.4. Following UV-VIS characterisation, scanning electron microscopy (SEM) was 

used to understand more about the deposition quantity, morphology and coverage over 

the substrate. Once the better performing deposition parameters were obtained, counter 

electrodes were used in DSC devices to test their performance under full operating 

conditions. The method for DSC construction and characterisation will be described further 

in Chapter 2.4 and 2.5.
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2.2 Lead template deposition and platinum redox replacement process 

Following on from the direct platinisation study, this deposition method used a 

modification of the procedure reported by Fayette etal., in this case using FTO glass rather 

than A u ( l l l )  as the deposition substrate surface [3]. In this study, the working electrodes 

were maintained at 1cm2 for electrochemical studies and 15mm x 25mm FTO glass when 

used for DSC counter electrodes. The glass electrodes were stored in a vacuum sealed 

desiccator following preparation and only immersed in the electrolyte solution immediately 

prior to deposition to avoid contamination. This process utilises a similar three electrode 

cell to that of the CV study: FTO glass working electrode (NSG, 150 /n ) Pt mesh counter 

electrode (99.9% Goodfellow) and an Ag/AgCI reference electrode (Sigma-Aldrich). All 

potentials used in this study are quoted with respect to an Ag/AgCI reference electrode, 

with the electrode spacing held at ca. 20mm.

2.2.1 Lead & platinum one bath electrolyte preparation

The one pot electrolyte solution consisted of 0.1M NaCI04 (>98%, ACS Reagent, Sigma- 

Aldrich), Im M  Pb(CI04)2.3H20  (98%, ACS Reagent, Sigma-Aldrich), 0.5mM K2[PtCI4] (99.9%, 

Aldrich) and lOmM HCI04 (70%, Analytical reagent grade, Fisher Scientific) was measured 

and combined in distilled water, using sonication to ensure full dissolution of all 

constituents. The solution was purged with N2 for 2 hours before the commencement of 

any experimental activity.

2.2.2 Redox replacement deposition process

The electrodeposition process was controlled via a potentiostat (Ivium CompactStat, Ivium 

Technologies) and consists of two steps, repeated immediately after each other until the 

set number of cycles was reached. The range of cycles tested was: 1, 5 ,1 0  and 20. Step 1 

(Ei) consisted of Pb deposition at a reducing potential of either -0.75V or -0.5V for one 

second. In Step 2 (E2) the sample was held at open circuit conditions (OCP) for redox 

replacement of Pb by Pt to occur. The OCP stage was held until a pre-set OCP value was 

reached, or if 60 seconds had passed. This cut off time ensures that all samples remained 

comparable to each other. Holding OCP for a longer time will ensure that all Pb has been 

replaced by Pt. Cyclic voltammograms were used to select the E2 voltages at -0.75V or 

-0.5V. The E2 cut off voltages were set as 0.2V or 0.5V.
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2.2.3 Cyclic voltammetry for redox replacement platinisation analysis 

An electrochemical cell was set up using a platinum mesh counter electrode, Ag/AgCI 

reference electrode and a working electrode prepared from FTO/Glass, Figure 2.1. The 

working electrode consisted of an FTO glass of 10mm x 5mm where the area to be exposed 

was 1cm2, the rest of the electrode was covered by PTFE tape. For the study of Pb/Pt 

deposition in Chapter 4, the CV potential scan range was set at -0.8V to +0.6V, with the 

scan start at 0V to discover the potential range of the reaction. The initial scan rate was 

25mV/s, then 50mV/s to discover kinetic variables in the solution. The CV electrolyte 

consisted of either 0.1M NaCI04, Im M  Pb(CI04)2 and lOmM HCI04 for the study of Pb 

deposition; or 0.1M NaCI04, Im M  Pb(CI04)2, 0.5mM K2[PtCI4] and lOmM HCI04 for the 

study showing the interaction of Pb and Pt in solution as the deposition occurs. The 

electrode spacing here was ca. 20mm and an Ag/AgCI reference electrode was used, set 

using previous literature settings [4].

Reference Electrode

Pt Mesh Counter Electrode

Metal working electrode

Figure 2.1: Three electrode cell schematic

The scan was run at scan speeds of 10, 20 and 50 mV/s and several scans were run per 

sample in order to discover any variation or process issues. In this study, 10 scans were run 

with the 1st and last used to characterise the deposition. A typical deposition scan will 

consist of several peaks, denoting the behaviour or change in ions in solution. The paper by 

Ko & Kwan was used as a reference source for this section, as they fully described the CV of 

platinum deposition from chloroplatinic acid, though in their paper they use compounds 

containing Pt4+ ions, rather than the Pt2+ compounds used in this work [5].
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2.3 Fabrication of dye sensitized solar cells

2.3.1 Working electrode fabrication

The working electrodes were firs t prepared by cutting a 100mm x 25mm strip from  FTO 

glass (NSG, 15Q/n) and cleaning w ith  mild detergent and ethanol. In addition, the glass was 

heat treated at 450°C to  remove any organic contaminants on the substrate surface. A fter 

cooling to  ambient, scotch tape was used to define a trough o f ca. 1cm2 in the centre o f the 

glass strip, and then T i0 2 layer (DSL18NR-T or DSL NR-AO, Dyesol) was doctor bladed onto 

the surface using a glass rod. The scotch tape acted as both guide and T i0 2 layer thickness 

control. The FTO glass strip was then heat treated using a program o f 150°C (15min) to  

450°C (30min) to  150°C (15min) then covered and left to  cool to  ambient. The strip was 

then measured out to  the required 15mm x 25mm lengths and then carefully cut to  shape. 

Immediately prior to  immersion in the dye, the T i0 2 photoelectrodes were shaped to  1cm2 

squares in the centre o f the glass piece using a microscope slide and ruler to  ensure 

repeatability. Finally, the working electrodes were immersed in a dye solution consisting of 

0.3mM N719 dye (Dyesol, B2 dye) in a 1:1 solution of aceton itrile /te rf-bu tano l fo r 16-24 

hours to  facilitate dye adsorption, Figure 2.2.

Figure 2.2: Sensitisation of T i0 2 photoelectrodes in N719 dye

2.3.2 Counter electrode fabrication

The counter electrode (CE) consists o f platinised FTO glass cut to  25mm x 15mm to  match 

the working electrode. An electrolyte filling hole was pre-drilled into the CE using a 0.5mm 

tungsten carbide drill bit. The glass was then cleaned using water and a mild detergent and 

then rinsed thoroughly w ith ethanol. The platinisation solution o f 5mM chloroplatinic acid 

in 2-propanol was applied to  the conductive side using a capillary tube and allowed to  wet 

out to  a th in layer. This must be carefully done when constructing reverse illum inated cells,
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as increased thickness w ill start to  restrict the illum ination entering through a counter 

electrode in this type o f cell. Figure 2.3, illustrates the procedure of applying chloroplatinic 

acid to  the FTO-glass substrate.

Figure 2.3: Chloroplatinic acid application process for a counter electrode

The counter electrodes were then heat treated at 400°C fo r 30 minutes to  deposit the 

platinum nanocluster catalyst. Once heat treated, the CE's were covered and left to  coo! to  

ambient before being used on the same day. In addition to  therm al platinisation, 

electrochemical platinisation was also used and is described in detail in Chapter 2.1. A 

completed therm ally platinised electrode can be seen in Figure 2.4.

Figure 2.4: Thermally platinised counter electrode -  excess applied to demonstrate Pt coverage

The platinum layer is usually barely visible to  the naked eye. However in this example, an 

excess o f precursor has been applied to  illustrate the coverage, giving a grey/black layer 

across the FTO/glass surface. To chemically platinise this electrode the chloroplatinic acid 

coated electrode was dried in a furnace at 120°C fo r 20 minutes and then immersed in a 

60mM solution o f potassium borohydride fo r 60 seconds. The electrode was then dried at 

130°C fo r 20 minutes before leaving to  cool in a covered container. Sputter platinisation 

utilised the same 25mm x 15mm electrode substrate as the therm al and chemical 

platinisation methods. The electrode was fixed to  a rotating stage inside the vacuum 

chamber of a Quorum Q150T vacuum sputter coater (Quorum Technologies Ltd). Once the 

vacuum was pulled, the sputter deposition was performed using parameters controlled by
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the internal software. The target used was a 0.1mm platinum disc (SC502-314C, Quorum 

Technologies Ltd) and the layer thickness chosen was 0.5nm. Once coated, the electrodes 

can be used in a DSC device w ith  no fu rthe r processing.

2.3.3 Sealing, electrolyte injection and finishing

Following dye sensitisation, the working electrodes were removed from  the dye and 

immersed briefly in e ither ethanol or ACN/t-butanol solution to  remove any excess dye and 

to  ensure the T i0 2 pores are clear. The counter and working electrodes were then dried 

w ith  nitrogen or clean dry air to  ensure no particles o f dust or glass remained on the 

surface. The tw o  electrodes were sealed together using 25pm Surlyn gaskets and a T-shirt 

press or a hot plate and fla t weight, the Surlyn was cut to  shape using a pre-made tem plate 

and a scalpel. The tem perature fo r both hot plate and press was 105°C found though tria l 

sealing w ith  sample materials. Immediately fo llow ing sealing, the cells were checked fo r 

short circuits using a m ultim eter. A drop of the chosen electrolyte, see Section 2.4, was 

placed inside an O-ring set over the electrolyte filling hole, the cell was then placed in a 

desiccator and a vacuum was drawn to  remove the air in the DSC electrolyte cavity. As the 

vacuum is reduced, the electrolyte was allowed to  flow  into the void in the cell. The cell 

was carefully cleaned o f excess electrolyte and the hole was sealed using Surlyn and a 5mm 

diameter cover glass. Figure 2.5 shows an example of a standard cross shaped lab DSC.

Dye sensitised TiO.

FTO/glass CESilver current collector

FTO/glass WE
Figure 2.5: Schematic of DSC device

Silver paste was carefully applied to  the exposed ends of the working and counter 

electrodes to  give low resistance contact points on the cell. Care was taken that no silver 

came between e ither FTO glass electrodes, as this w ill cause a short circuit and render the 

DSC inoperable.
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2.4 Electrolyte preparation

2.4.1 Preparation of a basic iodide/triiodide electrolyte

The basic iodide/triiodide electrolyte used for all corrosion studies and electrochemical 

measurements contains 0.5M Lithium Iodide (Sigma-Aldrich), 0.1M Iodine (Sigma-Aldrich) 

and 0.5M 4-tert-butylpyridine (4-TBP, Sigma-Aldrich) in 3-methoxypropionitrile (3-MPN, 

Sigma-Aldrich) and was sonicated for ca. 15 minutes to ensure that all components had 

dissolved in solution.

2.4.2 Standard DSC electrolyte

A typical DSC electrolyte was prepared using 0.8M l-propyl-3-methylimidazolium iodide 

(PMMI, Dyesol Ltd), 0.1M iodine (Sigma-Aldrich), 0.05M guanidinium thiocyanate (GuSCN, 

Sigma-Aldrich) and 0.3M 1-Methylbenzimidazole (1-MBI, Sigma-Aldrich) in 20ml of 3-MPN 

(Sigma-Aldrich). The addition of GuSCN is used to suppress the recombination rate of 

electrons at the photoelectrode of the cell. The resulting solution was sonicated for 15 

minutes to ensure all constituents were evenly dissolved in solution.

2.4.3 Preparation of an electrolyte with N-heterocyclic additions

A basic DSC iodide/triiodide electrolyte containing Lil and l2, similar to that described in 

Section 2.4.1 was used as the starting point. Next, nitrogen containing heterocyclic 

additives (NHC's) were added, at concentrations of 0.25M, 0.5M and 1M creating a sample 

of each electrolyte, and one without NHC addition as a control. Additives selected for 

testing were 4-tert-butylpyridine (4-TBP) and 1-methylbenzimidazole (1-MBI) and 1, 3, 5- 

Triazine (135-T). The additives 4-TBP and 1-MBI have been used previously to increase DSC 

performance through the reduction of dark current and recombination processes. The 

third additive, 135-T, was chosen for its reported high effect as a performance enhancer by 

Kusama et al. [6] and due to the inclusion of 3 nitrogen atoms in the structure of the 

molecule compared to the 1 and 2 of 4-TBP and 1-MBI respectively.

2.4.4 Preparation of a cobalt complex redox electrolyte

This electrolyte used the compounds "tris-(2,2,-bipyridine)cobalt(ll) di- 

(hexafluorophosphate)" or Co(bpy)3(PF6)2 based complex and "tris-(2,2'- 

bipyridine)cobalt(lll) tri(hexafluorophosphate)" also known as Co(bpy)3 (PF6)3 (Dyenamo AB, 

Sweden) [7]. A cobalt electrolyte solution was created with 0.2M of Co(bpy)3(PF6)2 and 

0.02M or 0.2M of Co(bpy)3 (PF6)3. A further compound, 0.1M LiCI04; was also added to the
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DSC electrolyte as a source of lithium ions to improve DSC performance. Previous literature 

reported that two main concentrations of 4-TBP were in use, 0.5M and 0.25M. Both 

concentrations were used in test DSC cells to optimise the electrolyte formulation. Due to 

the known stability of the 3-MPN solvent from literature concerning the iodide/triiodide 

electrolyte, this was used for the study of the cobalt complex electrolyte. However, due to 

the more viscous nature of 3-MPN, a higher concentration of Co3+ ions (0.2M) was utilised 

in addition to the literature recommended concentration of 0.02M in an attempt to avoid 

mass transport related losses in these devices.

The preparation method for the electrolyte used in the study of corrosion behaviour of the 

cobalt electrolyte was similar to that described previously. In this study, the NHC additives, 

4-TBP and 1-MBI, were added at the concentrations 0.25M, 0.5M and 1M. A control 

electrolyte containing no additives was used for preparing control samples. Furthermore, 

in the corrosion cell, the LiCI04 was not added in order to minimise interactions with the 

substrate and allow focus on the interactions of the Co2+/3+ redox couple with the substrate.

2.5 DSC device characterisation

2.5.1 l-V testing

DSC testing was done on a Newport Oriel Sol3A class AAA Solar Simulator, see Figure 2.6. 

The equipment contains a 450W Xenon light source which is certified to IEC 60904-9 Ed 2 

(2007), JIS C 8912 and ASTM E 927-05 standards. An NREL certified secondary standard 

silicon reference cell connected to the test rig was positioned under the stabilised lamp to 

calibrate the output of the lamp to 1 sun, using the provided sun level meter and a variable 

power supply. DSCs with an active area of 1cm2, as described in Section 2.3, were placed 

on a testing stage and carefully positioned in the centre of the illumination area. They were 

then connected to the Keithley 2420 Sourcemeter via four leads, see Figure 2.7. The leads 

and crocodile clips used as connectors are highly conductive and are connected using silver 

connection points on the cell. These can be further enhanced using copper tape. Prior 

experience has shown the crocodile clip connectors to be reliable for the purpose of lab 

scale DSC testing. The current-voltage (l-V) characteristics of the DSCs to be studied were 

recorded using the Keithley 2420 Sourcemeter and the Oriel IV software package provided 

with the instrument. Tests were programmed by using a designated recipe, with the user 

inputs: max reverse bias = -1.00V, max forward bias = 0.8V, a current limit = -50mA, sample 

area = 1cm2, number of sweep points = 200, pre-sweep delay = Is  and a dwell time per
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point = 200ms; an additional parameter, the Sun Level, is also needed to  aid in the 

calculation o f cell parameters.

Xenon Lamp 
Aperture

Sample Stage

Controlling PC

Sun Level Meter

Power Supply
Keithley Sourcemeter

Figure 2.6: Newport Oriel Solar Simulator

Figure 2.7: DSC connection setup

However, to  ensure fu ll understanding o f the result, the testing theory was assessed before 

running analysis on the DSCs constructed in the process o f this study.

2.5.2 l-V testing theory

The cells in this work were studied under standard testing condition (STC); tha t is A M I.5 

terrestria l spectrum, a to ta l irradiance of lOOOWm 2 and ca. 25°C [4-5]. The performance of 

DSCs was calculated using the current vs. voltage (l-V) response o f each cell, where the 

specific performance parameters required were:

•  Short Circuit Current Density (Jsc)

•  Open Circuit Voltage (Voc)

•  Fill Factor (FF)

•  Efficiency (r|)
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The Oriel software calculates the performance of each test cell within the software 

package. However, the basic equations are included below to facilitate understanding of 

the characterisation method:

The short circuit current density (Jsc) is the maximum current generated under short circuit 

conditions, at V=0, for a given cell area, under standard reporting conditions. The active 

cell area used for all DSC in this work was 1cm2, meaning that the more comparable 

parameter of short circuit current density (Jsc) was assumed to equal to the short circuit 

current (lsc), as a result, Jsc is used from here on in this work, thus facilitating comparisons 

between cells in this work and by others.

The fill factor (FF) represents the comparison of the l-V curve to the response of an ideal 

diode. It illustrates the relationship between the actual and maximum power of a DSC, and 

as a result is a sensitive measure of performance losses in the DSC such as transfer 

resistance and diffusion problems. The fill factor is mainly influenced by the internal 

resistances of a DSC. The TCO resistance, electrolyte diffusion resistance and charge 

transfer resistance. This value was calculated through using the relationship with key cell 

parameters, as can be seen in Equation 2.1:

F F _  C ,  _ ’} * A c x E  
V x j  V x joc sc oc sc

Where Pmax represents the point of maximum power, Voc is the open circuit voltage, q is the 

energy conversion efficiency (%), Ac is the surface area (m2 or cm2) and E is the irradiance 

(Wm'2 or Wcm'2). A benchmark value for the fill factor of high performing cells is 0.7 or 70% 

for a cell of ca. 1cm2.

The final and most widely used comparative performance value is the energy conversion 

efficiency of the DSC, Equation 2.2:

(22)
E x A c E x A c

Where Pmax is the maximum power point on the l-V curve and the product of Voc, Jsc and FF; 

E represents irradiance (Wm'2 or Wcm'2) and Ac is the area available for light absorption 

(mm2 or cm2), in this case the area of T i02 is 1cm2 for all cells.
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2.5.3 EIS characterisation of DSC device

Electrochemical impedance spectroscopy (EIS) scanning was used to study the interfacial 

properties of DSC cells, a detailed explanation of the process and theoretical background 

can be found in the work of Bisquert, Fabregat-Santiago and J. Halme [8]—[14]. A Gamry 

Reference 600 Potentiostat/Galvanostat/ZRA was used both to run the EIS measurement 

and record the data returned. Scans on full DSC devices were run in the light with a D.C 

voltage applied to the device to retain the cell at the maximum power point (M pp). When 

testing symmetrical CECE cells no D.C potential needs to be imposed due to the absence of 

a working electrode. The imposed D.C voltage for DSC devices depends on the electrolyte 

used, as the open circuit potential differs for each redox couple. It is usually taken from l-V 

measurements made on the devices prior to EIS testing, as a result a DC voltage of -0.65V 

vs. ERef was used for iodide/triiodide cells. The frequency range used for all scans was 

50000 Hz to 0.1Hz, using 10 points/decade.

A small amplitude AC voltage modulation is superimposed on the DV voltage applied to the 

cell, Equation 2.3, where Et is the potential at time "t" and E0 is the amplitude of the signal, 

u> is the frequency in radians:

Et = E0sin(a)t) (2.3)

The resulting AC current response to this is measured over a set frequency range.

/ =  u ) / 2t i  (2.4)

At different frequencies, the device interfaces respond with varying behaviour, 

corresponding to different interfacial properties, giving a varying current response, lt , see 

Equation 2.5:

Et = E0sin((ot) (2.5)

Thus the impedance can be calculated as an analogue to Ohms law, Equation 2.6:

7  — El— Eos in ^<t)t  ̂ _  y  s in ja it )  g.
l t I0sin(a>t+<t>) 0 (&>t+0)

This allows the impedance to be expressed in terms of magnitude Z0 and the phase shift O, 

further aiding in the graphical illustration of impedance for the assessed devices.

102 | P a g e



The interfaces and interactions found in a DSC are:

•  T i02/E lectrolyte

•  Counter e lectrode/Electrolyte

•  Conducting substrate/E lectrolyte

•  Diffusion o f species in the electrolyte

Simple combinations o f components such as resistors and capacitors are thus used to  

model certain interfaces. A resistor and capacitor pair in parallel is commonly used to 

model an electrode/electro lyte interface such as the one found in a DSC cell at the counter 

electrode, see Figure 2.8. The capacitance value represents the charging of the 

electrochemical double layer, often known as the Helmholtz layer fo r a simple analysis, or 

the combined Gouy-Chapman-Stern model fo r a more complex model, explanations of 

these models can be found in Chapter 1.3.2; and the resistor represents the charge transfer 

resistance at the interface. The impedance of a resistor is simply equal to the resistance or 

by the equation:

Z M  =  Z0e>* (2.7)

Whereas the impedance of a capacitor is represented by:

Z =  —  (2.8)
)U )C  '  '

To more accurately represent the interface, the capacitor can be replaced by a constant 

phase element (CPE), that accounts fo r the 3D nature o f the interfacial double layer and 

returns more strongly representative value illustrating "real w orld" behaviour.

Figure 2.8: Modelling the interface (The Counter Electrode)

The addition o f more elements and increased circuit complexity allow the modelling of 

many electrochemical systems. The Randles circuit and the transmission line model 

explored in this next section are examples o f such modelling.
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Impedance is defined as the measure o f the opposition of a circuit to  a current, when a 

voltage is applied. This is d ifferent to  resistance, in that it is applicable to  AC circuits and 

has both magnitude and phase, rather than just magnitude. The value "impedance" can be 

thought o f as possessing a real and imaginary component, these can be plotted graphically 

w ith  the "real" part is on the X-axis and the "im aginary" impedance is in the Y-axis. This 

graph is known as a Nyquist plot, such as the example found in Figure 2.9. The key thing to  

notice is that on a Nyquist plot, each point is the impedance at one frequency, high 

frequencies results are plotted on the left side and get lower as you progress along the X- 

axis. The drawback is tha t the exact frequency is not shown on this type o f plot. 

Impedance is represented as a vector, where the length of the vector is the magnitude of 

the impedance. The angle between the vector and the X-axis is called the phase angle.

The diameter, or apex, is also where the resistive effect equals the capacitive effect. Either 

side of this point, the system is e ither acting in a more capacitive nature (vertical 

component) or a more resistive nature (horizontal component) - thus giving rise to  the 

d ifferent paths found on a typical Nyquist curve.

txo
fC
E
MI

argZ

R0
Zreal

Figure 2.9: Graphical plot of a resistor and capacitor in parallel, known as a Voigt element

In order to  record and assess the frequency, a d ifferent style o f presentation is the Bode 

plot. In this, the log o f the frequency is on the X-axis and the impedance and phase-shift 

are p lotted on the Y-axis, Figure 2.10. Bode plots are usually used in parallel to  Nyquist 

diagrams in order to  capture the frequency response of the electrochemical system. There 

are tw o types o f Bode plot: The phase plot and the magnitude plot which represent the 

phase shift at d ifferent frequencies and the magnitude of the frequency response.
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Figure 2.10: Standard Bode plots for the Voigt element a.) Magnitude plot and b.) Phase plot 

Since the DSC device includes several elements, it requires a larger model than given by the 

Voigt element. Figure 2.11 shows a typical Nyquist plot fo r a standard DSC cell w ith  a 

therm al deposited platinum counter electrode. The three semicircles represent the 

sections fo r cell series resistance (Rs), charge transfer resistance (Rct) and T i02 resistance 

(Rr) are marked on the graph. The recombination resistance can also be w ritten  as Rrc, 

which is the term inology use throughout this work.
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Figure 2.11: Standard EIS plot for an iodide/triiodide based DSC

Equivalent circuit modelling is then used to determ ine the values fo r Rs, Rct and Rrc by fitting  

a curve to  the dataset. In addition to  the standard resistor and capacitor components, 

some theoretical components are also used, such as the constant phase element, which has 

attributes of both capacitors and resistors or the Warburg, which is used to  model diffusion 

in porous electrodes. The simplest electrical equivalent model used to  start modelling a 

DSC is the Randles circuit [14]. This consists of a resistor in series to  a capacitor and resistor 

placed in parallel, see Figure 2.12. In some cases, the capacitor is replaced by a constant 

phase element, as most commonly used in DSC models due to  the complicated and three
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dimensional nature o f the T i0 2 photoelectrode. An additional component, a Warburg 

element can also be used to  model the diffusional aspect o f a DSC porous electrode.

RE .
-\AAA-
R Series

V \ A A
Rce

Cce

V \ A A
RTi02

CTi02

Figure 2.12: Randles Circuit Diagram

The Rs value represents the series resistance o f the conductive substrate and is found on 

the Nyquist plot as the X-axis offset before the firs t small semicircle forms. This small 

radius semicircle (Rct) represents counter e lectrode/electro lyte interface and can be 

modelled through a parallel capacitor/resistor combination. The capacitor can be replaced 

by a constant phase element or CPE which provides a better fit fo r DSC cells as the interface 

w ill not behave in an ideal manner -  as modelled using a resistor and parallel capacitor. 

This is the critical value used to  assess the performance of d ifferent redox catalysts in DSC 

devices, the smaller the value o f Rct, the more efficiently the charge transfer at the counter 

electrode, and the higher the fill factor o f the cell. The final large semicircle represents the 

recombination resistance o f the DSC (Rrc). In a high perform ing cell, this is expected to  have 

a large radius, indicating low recombination losses in the device.

If the frequency range is set to  encompass frequencies down to  0.01 Hz, there w ill be a 

th ird  semicircle or part semicircle that represents the diffusion resistance o f the electrolyte 

itself, known as RD. This is represented in the Randles circuit by the Zd impedance, 

commonly modelled as a Warburg element. This elements impedance depends on the 

applied frequency, thus at higher frequencies, the Warburg impedance w ill be small since 

the spacing between electrodes is low. Conversely, at low sampling frequencies, the 

reactants in the cell have to  diffuse much fu rthe r and w ill thus increase the impedance. 

W arburg elements come in several configurations: Bounded, in fin ite  and porous to  better 

represent the type o f diffusion tha t is occurring in the system.

Due to  the variability o f the real world, these "ideal" components do not necessarily give 

the most accurate model o f the dye solar cell system. An indication o f this is usually 

obtained through a depressed or flattened semicircle on the EIS Nyquist plot. The need fo r
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this element is normally caused through having a roughened or 3D surface, like that 

required by a high surface area catalyst material. The element known as a constant phase 

element (CPE) can be used in place of the capacitor, and is represented by Equation 2.9:

ZcPE = TJ^Q o (29)

The Qo value is equal to the capacitance of the element and /? represents the ideality of the 

CPE with respect to capacitance. If this exponent is equal to 1, the impedance will equal 

that of a capacitor, see Equation 2.10:

Z  =  —  (2.10)
jcoC  '  7

In most cases, the equivalent capacitance can be calculated from the constant phase

element parameters used in addition to the values for the resistor placed in parallel, see 

Equation 2.11:

Ceq=̂ l ! i  (2.n )

Understanding the methods and equations behind the data obtained from the EIS software 

facilitates a more comprehensive understanding of how cell architecture affects the results. 

To increase device performance, a larger surface area for light absorption is required, a 

mesoporous network of Ti02 is utilised. This can be modelled in EIS by the use of a 

transmission line. Modelling a porous electrode interface is different from a planar surface 

as the volume of a pore is much smaller and access to the active surface will be limited, 

resulting in the diffusion of ions into and out of the pore becoming the rate limiting step. 

As a result, modelling must separate the regions of the porous material in order to 

encompass all the effects. In a standard liquid electrolyte DSC architecture, the conductive 

substrates are modelled as planar, where the reaction occurs on the surface to electrolyte 

interface. The porous material has several other interfaces: The outer surface/electrolyte 

and the active surface within the porous network, in addition the size and shape of the 

pores will also limit the flow of ions into and out of it, a factor than must also be accounted 

for.

As mentioned previously, the rate of ion diffusion within the pores is a rate limiting step in 

a DSC and must be modelled accordingly, hence a transmission line model. The model 

consists of several connected elements that describe the charge transfer resistance and 

capacitance, in series and parallel, that describe the outer layer of the porous structure and
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the inner active surface w ith in  the porous network. This model was developed fo r DSC 

devices by Bisquert et al. [15], and is illustrated in Figure 2.13.

solution TCO+Pt
-W------

TCO TiO

Figure 2.13: Transmission line model of a dye solar cell [11]

In this model, RTCo denotes the charge transfer resistance at the transparent conducting 

oxide (TCO) back layer, CTco denotes the chemical capacitance fo r charge accumulation and 

recombination at the same interface. The transport resistance across the TCO layer is given 

by Rs, and the diffusion o f the triiod ide/iod ide  redox species is given as the impedance ZD 

(SOi). Cp denotes the chemical capacitance due to  the change in electron density and Rt is the 

electron transport resistance. Rr is the charge transfer resistance related to recombination 

at the T i02 interface. Rpt is the counter e lectrode/electro lyte interface charge transfer 

resistance and Cpt is the interface capacitance at the same interface [8]. If the transmission 

resistance is less than the recombination resistance, a 45° line w ill appear in the region 

between the counter electrode and working electrode collected data. The Nyquist plot of 

that is described thus is shown in Figure 2.14; the length o f this transmission line is 

described as 1/3 of the electron transport resistance.

30

20

20 30 40r  (o)
Figure 2.14: Nyquist plot showing the transmission line segment 

This is a complete model o f an active dye solar cell device. However, to reduce the number 

o f parameters or depending on the cell behaviour, a simpler model such as a Randles circuit 

can be used.
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2.5.4 Cyclic voltammetry for electrochemical analysis of symmetrical counter 

electrode cells

FTO glass electrodes were cut to  25mm x 15mm, marked and pre-drilled w ith  a 0.5mm 

electrolyte filling hole similar to  the counter electrode preparation method fo r DSCs in 

Section 2.3.2. The counter electrodes were then platinised using therm al, sputtered or 

electrochemical platinisation techniques. The tw o  electrodes were assumed to be 

symmetrical in nature and were sealed together using a 25pm Surlyn Gasket. The 

e lectrolyte was vacuum backfill injected and the hole sealed w ith  Surlyn and th in cover 

glass. A schematic of this cell set up can be seen in Figure 2.15, showing the key elements 

in a counter electrode cell. Figure 2.16 shows an image o f a representative cell used in this 

study.

Ag current collector :TO-glass substrate

Pt catalyst

25um Surlyn gasketElectrolyte

Figure 2.15: Symmetrical counter electrode cell

Figure 2.16: Standard CECE cell for catalyst testing in electrolyte

The key issues to  note in this testing is that the effect o f the T i0 2 w ill not be taken into 

account on any electrochemical measurements. Therefore, when taking measurements, 

this should be clearly stated and the results then compared w ith  fu ll DSC devices when and 

where possible.
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The cyclic vo ltam m etry (CV) scan was run w ith in  the operational lim its fo r the solar cell, i.e. 

from  IV  to  - IV  [16], care should be taken not to  exceed these lim its as the integrity o f the 

cell w iil be compromised through the damage o f the electrolyte, Figure 2.17.
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Figure 2.17: CV curve representing CECE cells (Ag /  AgCI (3M KCI)

The scan rate was varied from  2mV/s to 50mV/s to  ensure any variance due to diffusion 

lim itations were visible and could be accounted for. A standard CECE cell w ill give an ohmic 

response w ith  the current increasing in a steady relationship w ith applied potential, until a 

lim it is reached and the current response becomes static no m atter the applied potential. 

This value is known as JNm and is a good indication and point o f comparison fo r catalyst 

material -  particularly in th in layer test cells. This value can be used alongside the 

previously discussed counter electrode charge transfer resistance (Rct) value obtained from 

EIS characterisation in order to  assess the performance of catalyst materials w ithou t the 

need to  dismantle the devices and perform a physical analysis.

2.6 Corrosion testing

All metals used as corrosion cell substrates were purchased from  Goodfellow Metals Ltd. 

Metals o f d ifferent purity were initia lly assessed to  determ ine the effect on corrosion 

behaviour, Table 2.1. Once this was achieved, the lower purity, lower cost metals were 

used fo r fu rthe r corrosion testing. While copper is not a construction material, it is 

extensively used as a highly conductive contact in DSC devices, an as a result is utilised in 

the later corrosion inhibition testing o f nitrogen containing heterocyclic compounds (NHC's) 

in Chapter 5.
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Table 2.1: Metals used for corrosion cell substrates

Metals Purity

Nickel 99.98% Ni

Aluminium 99.999% Al

99.9% Al

Iron 99.5% Fe

Titanium 99.6% Ti

Molybdenum 99.9% M o

Stainless steel 316 18%Cr, 10%Ni, 3%Mo

Stainless steel 304 18%Cr, 8%Ni

Zinc 99.9%Zn

Inconel 625 61%Ni, 22%Cr, 9% Mo, 5%Fe

Tungsten 99.95%W

Chromium 99.95%Ch

ECCS N/A

Copper 99.9%Cu

2.6.1 Metal substrate preparation

Two types of corrosion cell were produced fo r this work, one fo r DR UV-VIS 

spectrophotom etric observation and the o ther fo r time-lapse photographic m onitoring and 

image analysis. Metal coupons o f 50mm x 50mm x 2mm were prepared firstly by abrading 

the metal surface using 1200 grit silicon carbide paper to  remove any oxide layer and 

surface impurities. The coupons were then washed w ith  mild detergent and then ethanol 

before being air dried. In the case of aluminium, the surface must be activated through 

abrasion w ith  1200 grit paper and fu rthe r polishing w ith  Al20 3 and distilled water, the 

samples are cleaned in the same manner as the other metals. For the cobalt electrolyte 

corrosion study in Chapter 5, a th in  titania blocking layer was applied to  ascertain if this 

would give a physical anticorrosion effect, both by NHC augmented electrolyte and 

electrolyte containing no additive. The blocking layer was applied by immersing the metal 

substrate in a prepared TiCI4 solution at 80°C fo r 30 minutes inside a fume cupboard.

2.6.2 Glass top sheet preparation

The top  sheet consisted o f 2mm thick plain non-conducting glass, cut to  50mm x 50mm, to 

allow clear observation o f the behaviour o f electrolyte on a metal substrate. Drill points for 

the electrolyte injection holes were marked in positions dictated by the placement of the 

e lectrolyte cavities in the Surlyn used to  seal the cell. The necessary holes were drilled
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using a 0.5mm drill bit and then the glass was cleaned using mild detergent and rinsed w ith  

ethanol.

2.6.3 Sealing and electrolyte filling

The UV-Vis corrosion cells were constructed from  50x50mm metal coupons and plain glass, 

a square o f Surlyn 25|im th ick and 50mm x 50mm in size was used as the spacer. The 

electrolyte void here was 25mm x 25mm in order to  allow enough area fo r the reflectance 

measurement in the UV-Vis equipment. The tim e lapse photographic m onitoring corrosion 

cells, use e ither a 25pm or 50pm Surlyn piece cut to  50mm x 50mm size and then 1cm2 

squares apertures were cut out the centre to  create electrolyte cavities. Thinner Surlyn was 

used initia lly to  create a cell sensitive to  changes in the electrolyte. Once the cells had been 

successfully characterised using these tw o  methods, the th icker 50pm Surlyn was used to 

better model actual DSC devices and electrolyte volumes.

The cell substrates were sealed together using a hot press set at 105°C,, to  melt the Surlyn 

between the tw o substrates, thus creating the corrosion cell. It was found that pre-washing 

the Surlyn w ith  ethanol and drying under enforced vacuum conditions improved its sealing 

behaviour, thus allowing cells to  be manufactured prom ptly and minimising the exposure o f 

the prepared metal surface to  reaction w ith  the atmosphere.

Figure 2.18: Hot press used for sealing substrates using thermosetting polymer gaskets

When the seal was complete, d ifferent electrolytes were then vacuum injected into the 

cavities. The injection holes were then sealed w ith  Surlyn pieces and 5mm diameter cover 

glass. The iod ide/triiod ide electrolyte used as the basis fo r all corrosion investigations 

consisted of 0.1M Lil and 0.05M l2 in 3-MPN. This is a simple three component electrolyte 

used in order to  isolate the reaction o f the iod ide /triiod ide  electrolyte w ith  the metal 

substrate. The nitrogen containing heterocyclic compounds (NHC's) chosen as additives fo r 

the ir possible corrosion inh ib ition properties were then added to  samples o f this basic
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solution at the concentrations of: OM, 0.25M, 0.5M and 1M, see Sections 2.4.3 fo r a 

detailed explanation of e lectrolyte preparation.

Pipettes used for measuring electrolyte 
quantity to be injected

Vacuum pump

Vacuum container for 
DSCs and electrolyte

Figure 2.19: Vacuum pump set up for vacuum injection of electrolyte 

In addition, the cobalt complex used in this study consisted o f 0.2M Co2+ and 0.02M Co3+ in 

one cell and a higher quantity o f Co3+ at 0.5M in a second cell, w ith  3-m ethoxypropylnitrile  

(3-MPN) chosen as a low vo la tility  solvent. The additive 4-TBP was added in 0.25M and 

0.5M concentration in tw o o ther cells in order to  study the effectiveness o f this additive on 

the behaviour o f these corrosion cells. This NHC has previously been utilised as a 

performance enhancer in several cobalt electrolyte studies.

2.6.4 UV-VIS analysis for catalyst material and corrosion cells

UV-VIS analysis was performed using a Perkin Elmer Lambda 750S UV-VIS 

spectrophotom eter and the product software package fo r analysis. In Chapters 3 & 4, this 

method is used to  provide a means of characterising the platinum layer on FTO glass in 

order to  allow comparison o f d ifferent platinisation methods. A plain FTO glass counter 

electrode o f 6.25cm2 was used as a control sample.

increasing

Figure 2.20: Different levels of platinisation for UV-VIS samples

The therm ally platinised, chemically reduced and electrochemically platinised FTO glass 

were placed one after the o ther in the centre chamber o f the 750S spectrophotom eter in 

the forward light path (the back path was used as a reference point). The scan range used
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was 250nmnm to  800nm in order to  obtain a wide analysis spectrum. The platinum peak 

was thus recognised to  be ca. 430-440nm, allowing several critical cell parameters, such as 

j sc, efficiency, FF and Voc and lim iting current (J|jm) to  be compared. Furthermore, the 

absorbance value can be used as a qualitative value fo r the quantity of platinum catalyst 

present on the FTO glass surface. A labelled example spectrum fo r platinum on FTO-glass 

can be seen in Figure 2.21.

 FTO Glass  5mM Thermal Platinum on FTO Glass
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Figure 2.21: Example UV-VIS absorbance spectra for platinised FTO-glass

In Chapter 5 this method was used to  study the corrosion o f metal coupons when 

interacting w ith  a triiod ide/iod ide  electrolyte. This process uses the attached 60mm 

integrating sphere in the Lambda 750S equipment, which monitors the absorbance changes 

in the l3‘ redox m ediator over a specified tim e frame when it is placed in contact w ith  a 

prepared metallic substrate. The integrating sphere arrangement acts to  direct the light 

beam to  the sample, Figure 2.22. The encapsulation cell, described in Section 2.6, was thus 

placed in the reflectance aperture of the integrating sphere so tha t only the electrolyte 

region interacted w ith  the beam path. The monochromatic light beam was able to  pass 

through the 2mm glass top layer and 2pm thick electrolyte layer to  reflect o ff the metal 

substrate surface. This reflected light is carried back to  the detector where it was then 

analysed through the Perkin Elmer software package.
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Figure 2.22: Integrating sphere schematic

All experiments were carried out in-situ using the time-lapse setting in the software 

package. Absorption spectra over a range between 300nm and 800nm were recorded 

every 5 minutes fo r 24 hours. These spectra were analysed, concentrating on the 

absorption wavelength of triiod ide  (co.410nm) to  give the rate o f colour change, and thus 

the rate o f l3' disappearance. If no corrosion had occurred, the metals were subjected to 

fu rthe r testing over longer tim e periods.

2.6.5 Time-iapse photographic monitoring and image analysis

The time-lapse corrosion analysis was performed in an Ortery light box w ith  a com puter 

controlled Canon EOS600D acquiring the images, Figure 2.23 shows a schematic o f this 

process.

Camera View

DSC Electrolyte

Transparent glass

/  Sealed Injection Hole

25pm Surlyn® Gasket Metal Substrate

Figure 2.23: Schematic of time-lapse setup for image analysis

The lighting, focal length and sample position were constant throughout the experiment to  

ensure repeatability. Corrosion cells, as described in Section 2.6.1-2.6.3, were placed on 

the sample table and labelled to ensure accurate data analysis. The images were collected 

every 5 minutes w ith  no initia l delay fo r up to 1000 hours, or until no visible change 

occurred.
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Figure 2.24 shows an example image of a corrosion cell captured via this set up. Once the 

images were collected, they were transferred to  the Sigma Scan program and analysed 

using a purpose w ritten  macro to  streamline data analysis process, and a region selection 

tool, an example of which is shown in Figure 2.24b. The output values required were the 

area analysed, average red, blue and green values and the average intensity (RGB colour). 

An example of the variation in these values is presented in Figure 2.25.

Figure 2.24: a./Example corrosion cell image, b.)Area selection in Sigma Scan software
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Figure 2.25: Graph showing the change in Avg. RGB vs.time for an example corrosion cell

The graph shows a change in the average colour o f the observed cell as the corrosion 

proceeds over the observation tim e. Values in the range 40-100 denote a ye llow /brow n 

colour, an indication o f the presence o f triiodide. The 170 value indicates the complete loss 

o f electrolyte colour. The numbers should be treated as relative values at this stage, since 

the metal background and variation in triiodide concentration between each cell w ill 

produce variations in the values. As a result, it is the change in value that is im portant to 

this study.
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2.7 Scanning Electron Microscopy (SEM)

The fie ld  emission gun scanning electron microscope (FEG-SEM) used to characterise 

samples in this w ork was the Hitachi S4800. The equipm ent software was used to capture 

images at various accelerating voltages (Vacc) and working distances (W.D). An FEG is used 

to  produce a coherent small diameter electron beam that can use a larger current density 

than a standard SEM, resulting in improved image resolution and a reduction in noise. This 

was considered an asset in this study, as it involved the imaging of nanoscale platinum 

particles.

Samples o f 1cm2 were prepared on FTO glass and then mounted on the provided sample 

stage, carbon clips and copper clips were used to facilitate conduction from  the conducting 

FTO to  the stage in order to  prevent charging and damage of the sample. The initia l 

analysis should be done at an accelerating voltage Vacc o f lOkeV and a working distance 

(W.D) o f 10mm, in order to  orientate the sample and avoid damage to vulnerable samples 

through high power electron beam burning. The W.D and Vacc can be fu rthe r optim ised 

th roughout the process to  provide the best image quality. Figure 2.26 shows a sample 

image from  a S4800 showing a bare FTO layer on a glass substrate. The FTO grains can be 

described as scale-like and several microns in size.

Figure 2.26: Sample image from an S4800 FEG-SEM

2.8 X-Ray Photoelectron Spectroscopy (XPS)

XPS spectra were obtained fo r electrochemically platinised samples using a Physical 

Instruments 5600 x-ray spectrometer. The Al Koc rad ia tion  (1486.6eV, 300W) was used as 

the excitation potentia l and the target element spectra were measured w ith  the pass 

energy o f 23.50eV at 45°. Thickness calibration was achieved using a silicon wafer w ith  a
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top layer consisting of lOOnm Si02. Atomic percentages were measured from an area of 

800pm2 at 1.3nm interval thickness, the pass energy here was 117.40eV. For atomic 

percentage determination, the peak areas were corrected with sensitivity factors of the 

instrument software (MultiPakV6.1A, Physical Electronics Inc., 1994-1999) which used 

photoionization cross sections of Scofield (a) and the asymmetry parameter (p). The XPS 

spectra were analysed using the Origin 8.6 Pro software and used Gaussian algorithms to fit 

peaks to the spectra. The visible peaks were fitted using local maxima and hidden peaks 

were revealed using the 2nd derivative. A baseline for peak finding was formed using eight 

manually selected data points; this will be shown on each XPS spectra included in this work.

2.8.1 XPS theory

XPS is a method of using x-ray radiation to irradiate a material and recording the number 

and energy of the electrons that are released from the sample surface. The method 

requires a vacuum chamber and a beam energy of 200-2000eV, though there are sources 

such as from synchrotrons that are able to use a wider energy range up to 5000eV. An X- 

ray photoelectron spectrometer consists of an X-ray source, a vacuum chamber and 

collection and analytical tools for the electrons produced through the X-ray bombardment, 

Figure 2.27.

Hemispherical 
electron analyser

X-Ray source Collection
lenses

^ J J I t r a  high vacuum 

chamberSample

Figure 2.27: XPS schematic 

The X-rays produced usually consist of several varying energy levels, called a non- 

monochromatic beam. However, to obtain accurate results, a monochromatic beam of one 

energy level is required. This is usually produced through the diffraction and focusing of 

the original beam off a crystalline quartz disc. The resulting beam is monochromatic and 

usually exhibits an energy of 1486.6eV, which corresponds to the aluminium Ka energy
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level and has a wavelength of 0.83nm. This beam is then focused on the surface o f a 

sample where it encourages the emission of electrons from  the top 3-10nm when using the 

Al Ka x-ray radiation. 1 his technique is used to measure the type and quantity o f surface 

elements, discover any contam ination and can discover the chemical states and bonding 

energies o f surface atoms. The electrons that are excited from  the material during X-ray 

bombardment "hv" are collected and then passed through an analyzer which measures the 

binding energy values. These are characteristic o f the element and electron position in the 

atomic structure, such as the Is , 2s, 2p, and o ther levels, Figure 2.28.

Kinetic Energy

Binding Energy

h\j Photoelectron emission

T

■ ■ ■ ■ IB Valence Band

3s

Is

Figure 2.28: Energy level diagram for the operation of XPS 

The number of electrons detected can be related to  the quantity o f tha t element in the 

surface of the sample under analysis. It is critical that this be performed under high 

vacuum, as this w ill minimise the amount of random electrons being detected and causing 

errors in the data. The collection o f electron binding energies w ill form  a spectrum, such as 

the example shown in Figure 2.29, where the binding energy is p lotted versus the intensity, 

in counts per second, of those energies.
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Figure 2.29: Example XPS spectra for Pt/Pb on FTO-glass substrate

Each peak represents the intensity o f a certain binding energy, which can then be matched 

against known energy levels using either the software database integral to  the XPS 

software, or literature sources [17]—[20]. The main peaks fo r this sample were at:

• 69.71eV fo r Pt4f

•  135.51eV fo r Pb4f

• 486.91eV fo r Sn3d5

• 530.91eV fo r O ls

When the spectrum is examined more closely, certain peaks can be broken down into tw o 

near identical peaks, known as doublet peaks. This feature is known as spin orbital splitting 

and is generally exhibited by electrons from  the p, d and f shells [21]. These slight 

differences in peak value can give fu rthe r identification to  elements contained in the 

spectra. Spin orbital splitting is referenced through the use of fractional indices that are 

given a fter the shell notation, i.e. p3/2 or d5/2. The indices refer to  the peak area ratio 

between the split peaks. Figure 2.30 shows the doublet peak fo r platinum using the data 

from  Figure 2.29. The spin orb ita l splitting means that the binding energy peak fo r the Pt4f 

energy level has been split into tw o peaks, which using the local maxima characterisation 

m ethod were found to  be at 70.16eV and 73.45eV, referring to  Pt4f7/2 and Pt4f5/2. When

the NIST database is used value from  70.80 to 71.30eV are reported to  be platinum metal,

or Pt0 [17].
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Figure 2.30: Doublet XPS peak for Platinum (Pt4f binding energy), with peak fitting and baseline indicated.
Dark line represents measured data

This doublet, as previously mentioned, allows fo r a more accurate identification of the 

elements present in the XPS spectrum. This method only allows fo r the accurate 

characterisation of the samples surface. To analyse deeper, an ion gun is used to etch 

layers o ff the sample fo llow ing each XPS measurement. The relative intensities of elements 

at each layer can then be compared using a thickness profile, giving more information 

regarding the atomic makeup of the sample, Figure 2.31.
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Figure 2.31: Example thickness profile for FTO-glass sample after Pb/Pt deposition 

Care must be taken to ensure that the ion gun is fu lly  calibrated, allowing fo r an accurate 

value fo r the depth etched from  the sample.
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3 Investigation into fast electrochemical platinisation on FTO-Glass for 

potential use in a roll to roll fabrication process

3.1 Introduction

Standard glass based DSCs have progressed to the stage where their high efficiency and 

durability allows them to be commercialised. However, the use of glass means that the 

resulting cells are expensive, due to the supporting infrastructure and require a batch type 

manufacturing process. However, there has been a recent drive to construct DSC devices 

using polymeric and metal sheet materials in an effort to reduce device costs and weight, in 

addition to allowing mass production on a roll to roll coating line.

A metal and polymer substrate cell, as previously mentioned in Chapter 1, consists of a 

flexible sheet metal substrate, such as titanium upon which a sensitised T i02 electrode is 

fixed. A conducting polymer such as ITO-PET or ITO-PEN is then platinised and sealed to the 

metal using the same Surlyn as used in standard glass cells. Electrolyte can be vacuum 

injected through holes left in either the metal or polymer electrode and then sealed.

The drawback of using the lower cost conducting polymers is that their low thermal 

tolerance precludes the use of high temperature processing such as the 385°C required for 

thermal platinisation, or the 450°C needed for sintering a T i02 photoelectrode. Low 

temperature processing is available for the application of the T i02 semiconductor. 

However, this process results in a poorly connected T i02 semiconductor and a less efficient 

DSC device.

In terms of the application of the catalyst, there are several high performing alternatives to 

thermal platinisation, see Chapter 1.1.5. Sputter deposition for example produces a highly 

catalytic platinum layer, which has been compared and contrasted with other methods in 

previous studies [1]. Unfortunately, this is a costly process that is limited to certain work­

piece geometries and vacuum conditions [2]-[4]. A further low temperature alternative 

involves the chemical reduction of a chloroplatinic acid precursor. This has been 

investigated in previous literature [5]—[7], and further compared with thermal and sputter 

deposition in previous research [1]. Chemical platinisation (using sodium borohydride) 

provides a viable low temperature platinisation method, though it will introduce further 

hazardous chemicals and time sensitive processes to an already complex production line.
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It was thought that the usage of electrochemical deposition, or "electrodeposition", would 

mitigate some of the disadvantages of other platinisation methods. Further, this would 

capitalise on the industry expertise of strip product manufacturers, such as Tata Steel 

Colours and in coating methods, electrodeposition and galvanising. In addition, the coating 

and galvanising industry has large solution tanks available that could be repurposed for 

electrodeposition of platinum on a roll to roll production line. As a result, electrochemical 

deposition seems to be an extremely viable option and has already been introduced for the 

production of fuel cell electrode and catalyst material [9,10].

To avoid large performance losses in DSC devices, a specific deposit morphology and 

catalytic performance is required. The catalyst is thus defined by the active area, also 

known as the specific surface area of the catalyst. This can be assessed through 

electrochemical means such as cyclic voltammetry (CV) and electrical impedance 

spectroscopy (EIS). In electrodeposition, such a highly catalytic structure can only be 

created through fine control deposition parameters, such as potential, time and the 

deposition solution.

There have been many reports on the electrodeposition of platinum for the manufacture of 

the redox catalyst for dye sensitised solar cell counter electrodes, but most of these studies 

have used timescales from 30 seconds to several minutes [10]—[12]. While this has been 

reported to produce viable, high performing catalytic material, the longer timescales used 

are not considered practical for a rapid continuous manufacturing process. The primary 

study here analyses the adaptation of previously reported electrodeposition techniques, 

but using shorter, <1 minute timescales to ascertain if fast simple processing is possible on 

FTO-Glass substrate.

FTO-Glass was chosen instead of ITO-PET due to its stability and common use, a key quality 

for this initial study where we are analysing the deposit rather than the deposit/substrate 

interaction. This will also remove the complication of a flexing substrate from the 

construction and testing process. The widespread use of FTO-glass throughout DSC 

literature will allow a straightforward comparison with other common platinisation 

methods. FTO-glass will give a stable, but also a challenging surface for electrodeposition 

due to its scale like morphology rather than a consistent, smooth surface.

As typical literature methods use timescales over 30 seconds, the aim of this chapter is to 

improve several high performing published methods, to develop them to run at the high 

speeds required for a continuous coating line, i.e. under 30 seconds if possible. It is hoped
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that this development will rival the application speed and performance of the chemical 

reduction platinisation method that is also under consideration for industrial use. Since the

resources available do not permit the use of a full or pilot scale manufacturing plant, this

study utilises lab-scale electrochemical analysis.

3.2 Experimental

The reaction mechanism for the electrodeposition of platinum from hexachloroplatinic acid 

[H2PtCI6(aq)] are as follows [13]:

P t* +C ll~  +  2e~ ^  P t2+C ll~  +  2Cl~ (3.1)

P t2+C ll~  -I- 2e~ ^  Pt +  4 Cl~ (3.2)

P t4+C ll~  +  4e~ ^ P t - 1- 6 C V  (3.3)

As previously mentioned in Chapter 1.5, the Pt-CI bond cleaving is a kinetically slow process 

that should not occur until a potential is applied to the electrodes. This ensures that the 

deposition will be fully under external control and this will dictate the overall structure. 

However, once platinum is present on the surface, the process may auto-catalyse, 

increasing platinum deposition over the externally controlled amount. To control this, a 

positive potential should be applied following each deposition event.

The electrochemical deposition cell consisted of an Ag/AgCI reference electrode, platinum 

mesh counter electrode and a FTO glass working electrode. The initial deposition working 

electrode size was 1cm2. The deposition solution consisted of 5mM chloroplatinic acid in 

aqueous solution, with 50mM HCI used as the supporting electrolyte in order to control the 

ohmic drop in the solution and control mass transport effects, further to this its inclusion 

will control the pH throughout the deposition event.

Initially, constant voltage deposition potentials were used as this remains the simplest 

method of applying the necessary power needed to deposit the platinum material. The 

potentials used here are adapted from literature sources: The -0.6V potential, from 

Tsekouras et al. [14], lies at the high edge of the negative, or cathodic, region of the Pt CV 

curve, Figure 3.1, whereas -1.8V, taken from the report of Ito et al. [15], lies outside the 

presented CV curve. In this region hydrogen ions will adsorb to the working electrode 

substrate from solution or evolve on previously deposited platinum particles.
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Figure 3.1: Example CV curve for the deposition of platinum from H2PtCI6(aq)

Competition w ill thus occur between deposition and hydrogen adsorption and it was 

theorised tha t this com petition could reduce the platinum particle size. Deposition times 

from  1 second to  30 seconds were tested at each voltage to  observe how the deposit was 

affected by voltage and tim e. In addition, the effects of pulse deposition was studied and 

compared to  the constant potential methods in order to  fu rthe r understand the 

requirements needed fo r fast deposition o f an efficient catalyst.

Throughout this study, the electrochemically deposited platinum catalyst was compared 

against therm al, chemical and sputter platinised FTO glass electrodes. These were 

produced through the methods detailed in Chapter 2.2.2. In summary, the therm al catalyst 

was applied using 5mM chloroplatinic acid in 2-propanol, heat treated on FTO-glass at 

385°C fo r 30 minutes, as per the method introduced by Papageorgiou et ol. The chemically 

platinised CE's utilised a 60mM sodium borohydride reducing agent to  reduce 5mM 

chloroplatinic acid in 2-propanol that was dried onto the FTO-glass at 120°C fo r 20 minutes. 

The sputter platinised electrode was produced through vacuum magnetron sputtering to  a 

layer thickness o f 0.5nm, see Chapter 2.2.3.

127 | P a g e



3.3 Results and Discussion

3.3.1 Electrodeposition for platinum redox catalyst

It was known from  the outset that shorter deposition times would be favourable fo r 

inclusion in a ro ll-to-ro ll process due to  the reduction o f process specific bottlenecks in in­

line fabrication. As a result, this study favours rapid sub-minute deposition times when 

designing the experiments. In this initia l study, a simple direct deposition technique using a 

potential o f -0.6V from  Tsekouras et al. [14], was firs t characterised using UV-VIS 

spectrophotom etry to  measure the change in absorbance as the deposition tim e was 

varied. Previous studies have shown tha t a th icker platinum layer would result in higher 

absorbance at certain wavelengths, specifically around 440nm [1]. This method was shown 

to  allow comparison between counter electrodes produced through d ifferen t platinisation 

methods and so w ill allow the comparison o f this method. Increasing values fo r absorbance 

at a wavelength o f 430-440nm, given in Figure 3.2, relate to  Pt quantity on the FTO-glass 

substrate as deposition tim e increases.

0.2
30s

0.18 Platinum absorbance  15s

- - 1 0 s16 440nm

0.12

0.1

0.08
350 400 450 500

Wavelength (nm)

Figure 3.2: UV-Vis Spectra for potentiostatically deposited platinum at -0.6V for varying deposition times. The 

platinum absorbance peak can be seen at a wavelength of 440nm. (Average of three measurements)

The results were not as expected, w ith  30, 15 and 10s giving highly variable absorbance 

values from  the expected increasing trend. The difference is believed to  be due to the 

varying growth patterns on FTO substrate, in addition to  dendritic and partial continuous 

layer form ation on the FTO surface. This w ill be explored fu rthe r in the text using SEM 

imagery.
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Comparing the absorbance at 440nm allows for the comparison of different platinisation 

techniques, where different measures for deposition (temperature, time or measured 

thickness) are used, Figure 3.3. Fresh samples of 0.5nm sputtered platinum, 5mM  

concentration thermal platinum and 5mM concentration chemically applied platinum were 

produced in order to compare the more common platinisation method with the 

electrodeposition technique used in this chapter. These other methods are known to 

produce catalysts structures composed of small particles on the scale of 5-50nm, resulting 

in a much lower absorbance and scattering effect than seen for the electrodeposited CE.

There is a large increase in ABS from plain FTO-glass to the 0.5s value of 0.11, which is 

higher than the equivalent thermal or chemical platinisation electrodes. This indicates the 

growth stage of large particle of Pt has predominated, rather than nucleation of many small 

particles. This is supported by the work of Kim et al., who stated that direct deposition 

favours the growth of existing structures and dendritic formations due to ion limitation at 

the electrode surface [16].

0.16 -0.6V Electrodeposition 

Thermal 5mM  

Chemical 5m M  

Sputtered 0.5nm

0.15

0.14

E 0.13 
c

0.12
</>
“  0.11

0.1

0.09

0.08
0 5 10 20 25 3015

Deposition Time (s)

Figure 3.3: Absorbance of the platinum layer at 440nm versus deposition time at -0.6V (average of 3

measurements)

The peak in ABS value at 5s, for the electrodeposited counter electrodes, was thought to be 

due to the increasing growth of dendritic formations. The reduction at 10s was attributed 

to particle agglomeration or the formation of a continuous or near continuous layer with 

less scattering and absorbance ability than of discrete particles. It is known that once 

nucleation has occurred during direct deposition, growth of the original deposits will 

continue as long as the potential is applied. After a given time, suggested in Figure 3.3 to
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be 5s, the small particles that have nucleated and grown on the FTO surface may begin to 

agglomerate, forming crystalline formations with less scattering and absorbance effects 

than a large quantity of faceted particles. It is also postulated that the difference in crystal 

morphology between electrochemically grown Pt and other common platinisation methods 

could be the cause of the increased absorbance of the ED-Pt, though later in this chapter, 

the scanning electrode microscope images indicate that the thermal, chemical and 

sputtered Pt clusters are smaller by several orders of magnitude than even the most rapidly 

electrodeposited Pt catalyst.

To provide a comparative study, further experiments were conducted using settings 

adapted from Ito et al. [15]. Their paper presented a 7.2% efficient DSC using titanium and 

polymer substrates and an electrodeposited platinum counter electrode. The 

electrodeposition in this chapter utilises the same potential of -1.8V, but it has been 

applied it using times of 15,10, 5 and 1 seconds, the time noted in the Ito et al work was 15 

seconds, tested in this study as a comparison point to ascertain how repeatable this 

technique is on FTO-glass. As Figure 3.4 shows, a relatively large increase in ABS value 

occurs from Is to 10s, which is then followed by a plateau up to 15s. This trend illustrates 

the growth of the platinum layer on the substrate. The range from 10s to 15s is thought to 

be a brief plateau before further growth occurs. From this, it was suggested that the 

technique used by Ito et al. can be further improved and adapted to faster processing 

times.

As previously seen, only the most rapid deposition times of Is  has a comparable 

absorbance to the thermal, chemical and sputter platinised electrodes. As the time is 

increased, it was seen that the 5 second deposition gives a value approximately four times 

that of the thermal 5mM catalyst, Figure 3.4. The difference indicates that a larger quantity 

of Pt is deposited using this higher deposition potential. In a potential DSC counter 

electrode, this is unwanted as more material coverage will result in less light penetration 

through the electrode, a serious issue in reverse illuminated cells with a metal electrode. 

However, despite the high potential, the initial ABS values are comparable to that of the 

-0.6V potential study, lying in a similar ABS range of 0.11 to 0.17. It is only when the longer 

deposition times of 10, 20 and 30s are compared, that a large increase in ABS can be seen, 

compared with the lower potentials used previously. The large potentials facilitate 

increased deposition in the same timeframe due to the higher overpotential driving force 

for deposition.
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The linear nature o f the increase in absorbance, compared w ith  that o f platinum deposited 

at -0.6V, was unexpected. It was believed that the differences between these 

electrodeposition methods was due to  increased com petition at -1.8V w ith H2 evolution 

and PtOH adsorption, as mentioned by Fayette et al [17]. This com petition, in addition to 

the increased concentration gradient between the substrate and bulk electrolyte through 

fast ionic depletion, was believed to  increase dendritic fo rm ation and layer thickness, 

resulting in a Pt layer tha t growth progressively w ith  deposition tim e.
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Figure 3.4: UV-VIS analysis of -1.8V electrochemically deposited platinum at 440nm for different deposition

times (average of three measurements)

The UV-VIS technique can give a qualitative idea o f the structure and form ation of the Pt on 

FTO-glass. In order to  obtain a clearer representation o f catalyst performance fo r this 

study, a more accurate testing regime must be employed. Therefore, fu rthe r CV studies 

using a simple iod ide/triiod ide e lectrolyte in a symmetrical cell setup were undertaken to 

record the lim iting current density (Jrim). A typical CV scan fo r a symmetrical counter 

electrode cell containing iod ide/triiod ide electrolyte is shown in Figure 3.5.
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Figure 3.5: CV plot for symmetrical counter electrode cells prepared through different platinisation methods 

The variation in J|im w ith  deposition tim e is displayed in Figure 3.6. As the potentia l is 

scanned from  OV to a maximum defined lim it o f 1.5V, the redox reduction o f the triiodide 

species is forced to take place at the counter electrode catalyst defined by the polarisation 

o f the scan (Positive or Negative). However, since this is a symmetrical cell, the response of 

e ither scan w ill be identical or near to  identical. The 7,,m value occurs where the potentia l is 

high enough that the species near the electrode have all been reduced and must be 

transferred in from  the bulk solution. The rate o f electron transfer o f the m inority species

(l3) in the cell w ill then become mass transfer lim ited, as the reaction becomes dependent 

on how fast species can diffuse from  the bulk e lectrolyte to  the electrode. In th in layer cells 

such as these, the triiodide depletes rapidly, causing a lim iting current plateau to  be visible 

on the CV scan. The higher the J|jm value, the more efficient the electron transfer reaction 

at the catalyst before the cell becomes mass transfer lim ited.

The thermal, chemical and sputter produced catalysts used as comparison values can be 

seen in Figure 3.6, which uses the absorbance (ABS) of Pt on FTO-glass to  compare the J|jm 

of d ifferent platinisation method, the higher the absorbance, the longer the deposition 

time. They exhibit higher values fo r Jjim than any tested electrochemically platinised 

counter electrode. This is despite the higher Pt amount indicated by the high absorbance 

value. These lower values suggest that electrochemically produced platinum has a d ifferent 

reactivity and lower specific area than the more common platinisation methods. This also 

means tha t unless the crystal structure can be fu rthe r controlled, a larger quantity o f Pt w ill 

be required to produce a similar catalytic effect to  rival the more common methods.
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Figure 3.6: Absorbance (relative Pt quantity) vs. limiting current density for thin layer Pt/Pt cells (average of 3

measurements)

So far, the electrodeposition methods have been analysed using electrochemical or indirect 

analysis (UV-VIS). In order to  better explain the results observed in Figure 3.6, SEM imagery 

of the deposition morphology was undertaken, Figure 3.7. The therm al Pt catalyst exhibits 

discrete deposits in the range of 5-50nm that are evenly distributed across the surface of 

the FTO glass substrate, Figure 3.7a.

The small size and uniform  distribution (i.e. little  agglomeration) lead to  the low 

absorbance values returned in the UV-VIS analysis, Figure 3.3. Comparatively, the UV-VIS 

absorbance fo r the -0.6V and -1.8V potentiostatically electrodeposited platinum is around 

1.5x greater, Figure 3.7b&c, explains this through the presence of large (co. lOOnm) clusters 

tha t have formed due to  particle agglomeration and poorly controlled deposit growth. 

These structures are much th icker in aspect than the equivalent structures o f the therm al 

and chemical alternatives so w ill absorb or reflect a much larger fraction o f the incoming 

light when analysed using the UV-VIS technique.
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Figure 3.7: SEM imagery of (a) Thermal Pt; (b) -0.6 ED-Pt; (c) -1.8V ED-Pt, on FTO glass substrate

134 | P a g e



Figure 3.8 fu rthe r illustrates how a long deposition tim e o f 30 minutes w ill affect the 

catalyst structure. The SEM shows an irregular crystalline structure that has clearly 

undergone much agglomeration. Further to  this, the dendritic "spike" morphology o f the 

crystals indicates that the growth is occurring using ions from  the bulk solution, as the layer 

adjacent to  the electrode has been quickly depleted and not replenished due to  the 

constantly applied potential. This form ation w ill reduce the specific catalytic area of the 

platinum catalyst and w ill result in a counter electrode w ith  an increased ability to  absorb 

or scatter incoming light - a serious drawback if used in reverse illum inated DSCs.

Figure 3.8: -1.8V deposition from 30 minutes; as a comparison with short timescale deposition of platinum

It was then necessary to  construct example DSC test cells in order to  evaluate the 

electrodeposited counter electrodes examined in this study. To that end, cells were 

constructed using counter electrodes platinised by potentiostatic deposition at -1.8V fo r 

deposition times o f 1, 5, 10 and 30 second. A fter analysis of the UV-VIS and FEG-SEM 

images in addition to  the cyclic vo ltam m etry data, it was predicted that the device peak 

efficiency would lie around five seconds deposition, as this resulted in the peak J|jm value o f 

0.051A/cm 2. Following this characterisation work, fu ll DSC devices were constructed to 

obtain experimental performance values fo r DSC using potentiostatically platinised counter 

electrodes, see Table 3.1, w ith  literature value from  Tsekouras et ol and Ito et ol. included 

fo r comparison [14], [15]. The main observation made from  this date, is that the DSCs using 

the electrodeposited platinum counter electrodes exhibits comparable performance to  the 

control samples using therm al, chemical and sputter platinised counter electrodes. The 

therm al and chemically applied catalysts were produced using 5mM chloroplatinic acid
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precursor, which in previous work showed balanced platinum quantity and specific activity 

fo r a standard liquid state DSC [1].

Table 3.1: DSC results from cells using -1.8V electrodeposited CE's (from an average of 3 test cells)

ABS (440nm) Deposition Time (s) V0£ (V) Jsc (mA/cm ) FF (%) n (%)

0.1722 15 0.71(±0.01) 8.60(±0.40) 56(±6.5) 3.4(±0.6)

0.1716 10 0.72(±0.02) 9.30(±0.37) 55(±5.4) 3.7(±0.2)

0.1397 5 0.71(±0.002) 8.80(±0.45) 57(±2.0) 3.6(±0.3)

0.1175 1 0.69(±0.01) 8.90(±0.92) 50(±2.6) 3.1(±0.3)

0.1125 Thermal 5mM 0.74(±0.002) 10.49(±0.40) 70(±6.0) 5.5(±0.7)

0.1105 Chemical 5mM 0.65(±0.002) 7.90(±0.12) 69(±0.006) 3.5(±0.04)

0.1025 Sputtered 0.5nm 0.75(±0.004) 8.10(±0.53) 68 (±1.3) 4.1(±0.3)

Ito et al. 15 (ITO/PEN) 0.78(N/A) 13.6(N/A) 68(N/A) 7.2(N/A)

Tsekouras et a l Various 0.80(N/A) 12(N/A) 67(N/A) 6.4(N/A)

The main conclusion that can be drawn here is that our adapted methods were not 

comparable to the optim ised literature techniques o f the original studies by Ito et al. and 

Tsekouras et al. Surprisingly though the performance o f the DSCs using our adapted 

methods are w ith in  0.5% efficiency of the lab produced cells using chemically platinised 

counter electrodes. However, the therm ally platinised devices still exhibit much higher 

performance, Figure 3.9. It was fu rthe r seen that increasing the platinum quantity through 

longer electrodeposition times does not produce an enhancement of performance relative 

to  the quantity o f platinum used, as the peak efficiency was seen to be at 5s and 10s 

deposition times, giving 3.6% and 3.7% respectively. It was thought that these deposition 

times give the best balance between platinum quantity and specific surface area when 

using un-optim ised conditions and FTO/glass substrate.

DSC analysis has previously shown that the fill factor is the most direct way to  obtain a 

representation of the counter electrode effect on DSC performance. The value can be 

quantita tive ly compared through the current density (J) - Potential (E) curves generated by 

solar simulator testing, Figure 3.10. The comparison samples: therm al, chemical and 

sputtered all return a fill factor of ca. 70%, which represents an efficient cell w ith  little  

internal factors detrim entally affecting DSC internal resistance. In comparison, the 

electrodeposited Pt devices return a fill factor correspondingly lower in the range 50-60%. 

This reduction describes losses due to  internal resistances in the DSC device. Since the 

electrolyte, T i02 and dye were produced at the same tim e and using the same batch, it was 

concluded that the decrease was due to  the change in counter electrode specific activity,
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due to  the difference in Pt catalyst structure, as visible in the SEM images, Figure 3.7 and 

Figure 3.8.
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Figure 3.9: DSC efficiency comparison of cells using different counter electrode types (3 cell average)
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Figure 3.10: J-E curves for -1.8V deposited platinum using best performing DSC devices 

Catalyst activity relates to the active area o f the catalyst material where reactants can bond 

to  the surface. Smaller particles are known to  have a high specific surface area, therefore  

when comparing the relative sizes of the particles the electrodeposited material is clearly at 

a disadvantage due to  the ir large size. The previous studies also indicate tha t the 

electrodeposited material may not be as catalytically active as the therm ally or chemically 

applied material, though fu rthe r work w ill be require to  confirm  this theory. However, it is
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postulated that the nucleation and growth mechanism o f electrodeposition does not 

produces the most viable crystal structure fo r catalysts, instead form ing in the most 

favourable orientation fo r growth. Despite this, the surprisingly high DSC results fo r the 

cells using electrodeposited counter electrodes seem to suggest that, as least in small lab 

devices, the catalyst performance does not have as large an impact on device performance 

as expected.

To fu rthe r explore this, these cells were also tested in the reverse orientation, where 

illum ination enters through the counter electrode side to  mimic the orientation of 

m eta l/po lym er substrate cells. Here, the presence and absorbance o f the platinum layer 

w ill have a crucial effect, see Table 3.2.

Table 3.2: Performance of reverse illuminated cells with electrodeposited counter electrodes

Pt Type ABS
Deposition 

time (s) Voc(V) Jsc (mAcm 2) FF (% ) n (%)

ED 0.1175 1 0.69(±0.01) 6.32(11.1) 53(10.7) 2.3(10.4)

ED 0.1397 5 0.70(±0.01) 5.63(10.3) 61(10.7) 2.4(10.1)

ED 0.1716 10 0.69(±0.01) 5.95(10.6) 59(15.7) 2.4(10.01)

ED 0.1722 15 0.71(±0.01) 5.49(10.3) 62(14.4) 2.4(10.3)

Thermal
5m M 0.1125 N /A 0.75(±0.001) 5.16(10.09) 71(11.4) 2.7(10.01)

Chemical
5mM

0.1105 N/A 0.74(10.004) 5.09(10.13) 67(11.4) 2.6(10.02)

Sputter
0.5nm

0.1025 N/A 0.74(10.003) 5.59(10.54) 67(11.6) 2.8(10.28)

Immediately visible is an overall reduction of co. 1% efficiency, due to  the reduction o f the 

quantity o f light reaching the photoelectrode and as a result a lower Jsc value from  the 

decrease in excited electrons. The m ajority of this loss is caused through absorbance by the 

electrolyte solution, though there w ill also be an effect from  the reflectance and 

absorbance of the platinum counter electrode. Therefore, when considering Pt application 

techniques, lower quantity techniques and parameters were sought wherever possible.

Direct deposition, it seems is not the most ideal method fo r platinisation o f DSC counter 

electrode, as only the short Is  electrodeposition tim e produces a coating w ith  sim ilar 

absorbance to  the comparison therm al, chemical and sputter platinisation methods. On 

analysis of the data, there is a slight reduction in Jsc as the deposition tim e increases giving a 

difference of 0.84mAcm 2 between Is and 15s. This study concluded that the method does 

not allow fo r stringent control o f the deposition quantity and morphology. The deposits 

were large, w ith  a low specific surface area expected. As a result, the next technique uses a

138 | P a g e



modified literature methods from Tsekouras et al. to analyse if the nucleation and growth 

stages of electrodeposition can be further controlled.

3.4 Control of nucleation and growth

Tsekouras et al. reported that an initial -0.6V pulse followed by a constant potentiostatic 

step at -0.4V formed an efficient catalyst for use in DSCs [14]. The stated aim of the pulse 

was to create nucleation sites on the conductive substrate, and then the potentiostatic hold 

stage will enable these nucleation points to steadily develop into platinum clusters. It was 

thought that adapting this method but using shorter hold times could result in a higher 

specific surface area catalyst, rather than the large scale growth observed previously in 

purely potentiostatic deposition.

The pulse method is strongly recommended as it allows the replenishment of ions at the 

substrate surface by the bulk solution [18]. This reduces the concentration gradient that 

facilitates the unwanted dendritic growth. Removing the current also allows the nucleation 

of new platinum particles, which should promote the coverage of small, high surface area 

deposits over larger growth or agglomeration of Pt.

The absorbance of the electrodeposited coating was noticeably higher than the 

alternatives, leading to the conclusion that ED-Pt layers are thicker and cover more of the 

FTO/Glass substrate and that control of the -0.4V direct potential hold is critical. This will 

reduce the overall fraction of light reaching the working electrode under reverse 

illumination. The absorbance does not increase in a linear fashion with deposition time, as 

one might expect, see Figure 3.11. There is little overall change in ABS from 1 to 15 

seconds, however as the deposition time is increased from 10s, a jump in ABS occurs, which 

is thought to represent the change from individual growth to amalgamation of clusters, 

thus increasing the coverage of the FTO/glass.

Now that the variation in platinum quantity was ascertained in comparison to conventional 

platinisation methods, cyclic voltammetry testing of ED-deposited counter electrodes in a 

symmetrical sandwich cell configuration was used to compare the catalyst performance or 

Jnm value against the thermal, chemical and sputter platinum catalysts, using the relative 

absorbance of the catalyst on FTO glass as a comparative aid, Figure 3.12.
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Figure 3.12: Comparison of J|im for pulse + hold and other platinisation methods

Unfortunately, it was demonstrated that the J|im values fo r electrodeposition using the 

adapted methods are much lower than fo r the more common platinisation techniques. 

However, both techniques produce variable results depending on deposition time. The 

pulse/potentia l hold method produces particularly poor results, which is believed to be due 

to  the lower surface area dendritic growth caused by the potentia l hold stage. This is 

sim ilarly thought to  explain the poor activity o f the -1.8V method. As a result o f this study, 

one o f our original theories regarding the control o f deposition using the rapid depletion of 

the diffusion layer, w ill now be abandoned. This method w ill promote irregular crystal 

form ations and growth and lead to  poor control o f the deposition and deposit morphology.

140 | P a g e



This now confirms our need to reduce the deposition time and further control the deposit 

morphology through solution and electrochemical controls. This will be addressed in the 

work presented in Chapter 4.

3.5 Conclusions

This initial chapter has adapted several previously reported electro-platinisation methods 

for DSC counter electrodes to ascertain the effect of decreased deposition times on the 

resulting counter electrode. This is an important feature when looking to develop a 

method for large scale fast continuous processing on an industrial roll to roll coating line. 

The performance of these catalysts is has been extremely variable and poor in comparison 

to the more commonly used thermal and chemical platinisation. Optimisation will be 

required in order to produce a viable counter electrode catalyst, when using direct or pulse 

deposition, due to the large amount of variables in the process.

A conclusion drawn from this data is that electrodeposited platinum requires much more 

material than the more established techniques due to the growth stage, and that if this can 

be removed or more thoroughly controlled, then the method could reach comparable 

performance with the standard platinisation methods. Whether this is due to the crystal 

structure of the deposit resulting in a lower specific area and specific catalytic activity, or 

through poor adhesion of the electrochemically produced catalyst to the substrate, is not 

yet understood. Due to the requirement for more controlled and directed deposition and a 

reduction in materials usage, the next section covers the development of a replacement 

process, where a low cost material is used as a template for replacement by platinum. The 

templating material deposit should be able to be optimised so that the morphology is one 

that gives the desired performance, in addition to remaining rapid enough for inclusion in a 

rapid continuous coating process.

As found through this study, the electrodeposition of platinum on FTO-glass substrate is far 

from simple, giving varying microstructures with poor catalytic activity compared to other 

low temperature platinisation methods.

Further work recommended is an assessment of the deposition potentials required when 

using lower deposition concentrations than 5mM. This should allow the development of a 

lower power and lower material deposition technique to use on FTO/glass, metal 

substrates and conducting polymers.
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4 Controlled electrodeposition -  Use of templating deposits to control 

the size and shape of a platinum deposit

4.1 Introduction

Chapter 3 demonstrated that the electrodeposition of Pt on to FTO-glass is not 

straightforward. Direct deposition was seen to lead to uncontrolled growth of the platinum 

material, producing a catalyst with lower specific activity for triiodide reduction than the 

alternative thermal and chemically produced catalysts, evidenced through the comparison 

of limiting current for the counter electrodes and the EIS comparison of DSC devices. In 

addition, the assessment of lower potential deposition and an attempt at nucleation 

control also resulted in low performing, high materials usage Pt catalyst. Therefore it was 

considered that the direct deposition of Pt was not the most viable method.

This chapter involves the novel production of platinum nanostructures via galvanic 

replacement of an electrodeposited Pb template through low power electrodeposition onto 

FTO-glass. The template material is thought to be able to aid in the control of deposit 

formation and morphology to a larger extent than direct deposition of Pt from solution. 

The redox replacement method was adapted from a previous study on surface layer redox 

replacement (SLRR) by Fayette et al. Their study focused on the deposition of Pt on Au 

through the replacement of underpotentially deposited Pb template material [1]. Fayette 

et al. in turn built on the work of Brankovic et al. on the replacement of a Cu monolayer on 

a simple A u ( l l l )  substrate [2].

For the work presented in this chapter, an FTO glass substrate, rather than the A u ( l l l )  

used in the original study, is utilised as the deposition substrate. The aim was to optimise 

the deposition parameters and deposit morphology to produce a viable triiodide reduction 

catalyst suitable for dye sensitised solar cell devices (DSCs). The use of a single solution 

bath containing both Pb2+ and Pt2+ ions in a supported aqueous solution was adapted from 

the literature to ensure that there would be no multi stage or lengthy processing steps to 

scale up to pilot production [1], [3]. This will aid in reducing line length, line complexity and 

the number of stages in the DSC fabrication process.

The authors are aware of the toxic nature of the Pb sacrificial metal, however in the 

developmental stages it has been chosen to provide further understanding of the process 

as it is applied to FTO-glass. From this it is hoped that other metals will eventually replace 

Pb to give a low cost, non-toxic templating material.
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4.2 Experimental

A one pot deposition electrolyte solution was adapted from the SLRR deposition study 

performed by Fayette et al. [1], and is described in detail in Chapter 2.2. Briefly, the 

electrolyte contains 0.1M NaCI04 (>98%, ACS Reagent, Sigma-Aldrich), Im M  Pb(CI04)2.3H20  

(98%, ACS Reagent, Sigma-Aldrich), 0.5mM K2[PtCI4] (99.9%, Aldrich) and lOmM HCI04 

(70%, Analytical reagent grade, Fisher Scientific), these were combined in distilled water. 

The solution was purged with N2 for 2 hours before the commencement of any 

experimental activity.

Cyclic voltammetry (CV) measurements were performed in solution using FTO/glass 

working electrodes, to ascertain the correct parameters for the deposition. Several 

samples were then produced using the deposition process described in Chapter 2.2: A Is  

cathodic pulse at either -0.75V or -0.5V to deposit Pb, followed by a potential and time 

controlled OCP stage where Pb is replaced by Pt. To fully characterise the deposits, working 

electrodes of 1cm2 FTO glass were produced and then characterised using SEM and XPS, as 

described in detail in Chapter 2.7 and 2.8. UV-Vis analysis was not utilised in this study due 

to the possibility of lead deposits causing errors in the reading. To assess the catalyst in an 

operational environment, DSC counter electrodes were produced using this deposition 

method. Full DSC devices were constructed according to the procedure described in 

Chapter 2.3 and were then tested under standard testing conditions (STC), using a AAA- 

class solar simulator, as per the method reported in Chapter 2.5.

4.3 Initial Pb/Pt deposition solution characterisation

Since the electrochemical characteristics of FTO-glass differ from the A u ( l l l )  surfaces used 

by the reference studies, CV analysis was run to determine the deposition potential for Pb 

(Ei) and an appropriate cut off potential for the open circuit potential redox replacement 

stage (OCP). The scans were run in both the absence and presence of Pt2+ ions to ensure 

that the correct potentials were chosen with respect to both Pb and Pt, and to assess the 

electrochemical behaviour of Pb2+ and Pt2+ ions in solution.

The deposition was experimentally observed to occur from -0.6V, shown on the scan profile 

in Figure 4.1. In this solution the reaction exhibits reversibility, as evidenced by a large peak 

at -0.4V on the anodic sweep, illustrating the stripping of Pb from the FTO surface back into 

solution. At potentials positive of -0.3V no reaction was seen to occur, indicating that 

holding the potential at >0.3V will inhibit any deposition activity on the FTO-glass 

electrode.
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The CV profile also demonstrates the consistent behaviour o f the Pb2+ solution (w ithout Pt 

present) over m ultip le scans, as the m ajority o f the deposited material is stripped back into 

the solution on the anodic sweep. There is a slight increase in the deposition and stripping 

peaks w ith  each cycle, which is believed to  be due to  changes in the ion concentration 

adjacent to  the working electrode over time. The ability to  strip Pb allows the removal of 

any excess material after the deposition. This is a great benefit as Pb has the potentia l to 

act as a poison fo r the catalyst, as has been seen in automotive catalytic converters [4]. 

This w ill occur through the bonding o f Pb w ith  the iodide species in the electrolyte, or 

through m igration to  the T i0 2 surface where it w ill form  recombination centres. Its removal 

w ill conserve the tem plating material in solution and benefit both cell performance and 

process efficiency. Previous literature has noted tha t the replacement reaction between Pb 

and Pt is an irreversible process [2], supporting the suggestion of stripping as a method of 

removing unwanted sacrificial metal from  the substrate surface.
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Figure 4.1: Cyclic Voltammetry Scan of FTO-Glass electrode in a supported Pb2+ solution (Pt mesh counter 

electrode, Ag/AgCI reference, Scan rate: 25mV/s)

On the introduction o f Pt2+ ions into the deposition solution the CV profile changes are 

immediately visible through the absence o f a stripping peak at -0.4V and the deposition 

peak at ca. -0.6V shifting to -0.5V after the initia l scan, see Figure 4.2. The peak shift is 

believed to  be due to  the presence o f Pt ions in solution. They may also auto catalyse the 

deposition o f materials, as the presence o f a catalyst material w ill reduce the activation 

energy fo r deposition reactions. The gap in readings at -0.4V is a the result o f reading lag in 

the Ivium software, the feature itself "II" describes the first deposition peak fo r Pb2t ions 

and it is also thought to  cause m inor Pt deposition due to  the relatively large potential, as
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confirm ed by the w ork done in Chapter 3. Pt can deposit from  solution at -0.4V. The 

second peak, labelled "Ml" also represents Pb2+ or Pt2+ reduction to  lead [Pb(0)] or platinum 

[Pt(0)] metal. The potentia l continues to  increase w ith the commencement o f another 

peak, labelled "IV", from  -0.75V, indicating the occurrence of hydrogen evolution rather 

than adsorption due to  the presence o f a current flow. Due to  the visible presence of 

hydrogen and the comm only known ability o f platinum to  catalyse the reduction of 

hydrogen from  solution, it was postulated that a small quantity o f Pt, as well as Pb, co­

deposited onto the FTO while the cathodic scan was in progress. Furthermore, a positive 

peak is visible at 0V, labelled "V", indicative of the re-absorption o f hydrogen into the 

deposition solution thus fu rthe r supporting this theory. This peak potentia lly represents a 

small am ount o f Pb stripping from  the electrode surface, though in this scan it is thought to  

be mostly masked or out competed by hydrogen evolution from  solution. Point "I" 

represents the start and finish o f the CV scan at an anodic potentia l large enough to 

p roh ib it any deposition or o ther reaction occurring when not required, thus giving more 

contro l over the deposition mechanism.
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Figure 4.2: CV scan for deposition on FTO-glass - 1st cycle

The lack o f a large Pb stripping peak, visible in both the 1st scan and all subsequent scans, 

Figure 4.3, when the solution contains Pt2+ ions is suggested to  be due to  the presence of 

the hydrogen reduction peak, which w ill grow as the quantity o f catalytic Pt increases, this 

increases the com petition between hydrogen reduction and the stripping of Pb. Further to  

this, the previously deposited platinum particles w ill act as low energy deposition sites and 

catalyse the deposition of fu rthe r platinum metal, increasing the quantity deposited each
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cycle more than the amount originally thought. On comparison of scans in the presence 

and absence o f Pt ions, Figure 4.1 and Figure 4.2, a visible increase in cathodic current was 

seen at the start o f the scan when Pt^+ ions are added. This combined w ith  the known fact 

that hydrogen adsorption and evolution preferentially takes place on Pt, supports the 

theory fo r the co-deposition of Pb and a small amount of Pt.

There are other electrochemical factors involved in the activity seen in these scans. Several 

studies report Pb underpotential deposition (UPD) occurring on already deposited Pt, thus 

providing more Pb tem plate material than controlled by the applied potential [1]. These CV 

scans, Figure 4.3, form  the basis o f the study o f templated electrodeposition onto FTO-glass 

and provide comparison data fo r other electrodeposition studies encountered. 

Appropriate values fo r the deposition and redox replacement were chosen, where "Ex" 

represents the deposition potential and "E2", the redox replacement or OCP cut-o ff 

potential. The tw o Ea values represent the tw o  maximum cathodic potentials used in this 

study. In addition, tw o cut o ff anodic potentials "E2M were also studied.

Ej = -0.75V Ej = -0. 5V E2 = OCP < 0.2 V E2 = OCP < 0.5V
t = 1 s t = 1 s or 60 s or 60 s
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Figure 4.3: CV scan for FTO-glass in a supported Pb2+/P t2+ solution

Each d ifferent potential w ill return d ifferent deposition behaviour and allow fo r in-depth 

characterisation. A cut o ff tim e o f 60s was programmed into the OCP stage o f the 

deposition to  ensure all sample were relatable through controlling the replacement stage, 

despite the varying parameters investigated through this study.
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The high deposition overpotential (Ea) was set at -0.75V which was chosen as it sits outside 

the initial deposition peak -  thus indicating that there is enough applied energy to activate 

the majority of active sites on the FTO [5]. Care was taken when choosing and applying this 

potential, as its large cathodic nature may cause hydrogen adsorption at already deposited 

Pt and thus competing with further deposition on the working electrode surface. The low 

deposition overpotential (Ej) chosen was -0.5V, which sits directly on the deposition peak 

shown in Figure 4.3. The cut off potentials, E2, were chosen as either 0.2V or 0.5V. Where 

E2 = 0.2V, this is positioned immediately after the exhibition of oxidation and stripping 

behaviour on the CV scan, which should give a shorter replacement step. The E2 = 0.5V was 

chosen to study the effect of a longer replacement step on the final deposit morphology.

Now that the solution was fully characterised and the deposition parameters Et and E2 were 

chosen, the next stage was to perform several deposition events on FTO-glass samples of 

lcm 2 and examine the resulting deposits through Scanning Electron Microscopy (SEM) to 

ascertain the deposit morphology and the deposit constituents through X-Ray 

Photoelectron Spectroscopy (XPS). The aim was to establish how the final deposit makeup 

is influenced through deposition potential parameters.

4.4 Deposition of Pb/Pt

Deposition profiles were obtained from the potential vs. time data, which is presented in 

Figure 4.4 (a-d). These show visually the experimental behaviour and show how closely the 

reality matches the desired experimental outcome.

Figure 4.4a shows the outcome of utilising a high Pb deposition potential (Ei=-0.75V) that is 

then followed by a low replacement potential cut off stage (0.2V), or the 60s cut-off time. 

Figure 4.4b differs, showing a high replacement potential cut off (E2=0.5V), or the 60s cut­

off time. Figure 4.4c and Figure 4.4d indicate the result of using a low deposition voltage 

(Ei=-0.5V). However, a short replacement potential (E2=0.2V) is used in Figure 4.4c and a 

long replacement potential cut-off (E2=0.5V) is used in Figure 4.4d. For all experiments, the 

potential cut off may not be reached on all cycles, due to the slow increase in as OCP is held 

- hence the 60s imposed cut off for all samples.

A key point to note on Figure 4.4 a & c is that the time taken to complete each OCP 

replacement stage becomes longer with each competed deposition cycle, an unfortunate 

factor that could make rapid deposition on an in-line process problematic on a larger scale. 

This varying replacement stage length is suggested to be due to diffusion limitations in 

solution, caused by the increase of Pb on the surface of the FTO. The large scale
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replacement of Pb by the Pt w ill create areas o f low ion concentration adjacent to  the 

working electrode surface as the Pt ions are depleted. Therefore, the deposition tim e w ill 

increase due to  slow diffusion of ions from  the bulk solution. In comparison, the OCP step 

where a long potential OCP cu t-o ff o f 0.5V is used appears regular, Figure 4.4b & d. This is 

suggested to  be due the increase in tim e fo r Pt ions to diffuse into and replenish the double 

layer adjacent to  the working electrode.
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Figure 4.4: Deposition profiles on FTO-glass in a 3 electrode cell consisting of a Pt mesh counter electrode, 

Ag/AgCI reference; (a) Ei=-0.75V, E2=0.2V; (b) Ej=-0.75V, E2=0.5V; (c) E^-O.SV, E2=0.2V; (d)Ea=-0.5V, E2=0.5V, 

for all cells there is a 60s cut off for the E2 stage, to keep samples relatable

This initial work has shown tha t Pb/Pt deposition and replacement is electrochemically 

feasible on FTO glass substrates. It had also indicated that a high degree o f control must be 

exerted over the process to  obtain the desired deposition and replacement events. This is 

not just controlled through the choice of potentials, but also in cycle tim e and through 

choosing conditions that stop electrochemical activity occurring when not needed and 

changing the deposit growth behaviour and final morphology.

After the successful production of electrodeposited Pt samples, these were fu rthe r 

characterised in order to  discover the material coverage and the effect on composition and 

morphology o f d iffering the deposition potentials and cycles.
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4.5 Effect of deposition profile on deposit morphology

The Pt/Pb coated FTO glass were further characterised through SEM imaging to determine 

the effect of changing the Ei and E2 parameters on the surface coverage and deposit 

morphology. The SEM images in Figure 4.5 (a-h) show the results of different deposition 

schemes on FTO-glass substrate. The left hand images are low magnification, and the right 

hand are high magnification images of the corresponding sample. A & B refer to Sample 1; 

C & D refer to Sample 2; E & F refer to Sample 3; and G & H refer to Sample 4. As a general 

description, the deposit was seen to consist of a varied distribution of both large and small 

diameter nanoparticles and clusters on the FTO surface. The FTO is visible as the large, ca. 

100+ nm scale like formations in the background of the image.

The images show that the Pb deposition potential "Ei" and the OCP cut off time "E2" have a 

large effect on the deposit morphology and coverage. A combination of a low deposition 

potential (E2 = -0.5V) and a low cut off potential (E2 = 0.2V) for Sample 3, gave the lowest 

coverage, shown in Figure 4.5e&f. The employment of a low potential causes a reduction in 

the amount of Pb deposition occurring during the application of E2. This was theorised to 

be due to the reduction in activated nucleation sites on the FTO surface. Therefore, as less 

Pb is deposited, the Pt quantity will reduce in parallel to the replacement events. A low cut 

off voltage for the OCP replacement stage (E2=0.2V) means that the growth of 

nanoparticles will also be limited. When the cut off potential "E2" is increased, a la Sample 

4, the coverage was seen to improve, confirming the influence of the growth stage of 

electrodeposition for improving the Pt layer.

Samples 1 and 2 use a larger E2 potential of -0.75V, which results in excellent coverage of 

the FTO-glass, despite different E2 cut offs of -0.2V and -0.5V respectively in Figure 4.5a&c. 

After comparison of the potential vs. time plots in Figure 4.4, it was initially thought that 

the higher Ea value is able to activate more of the nucleation sites on the FTO surface [6], 

thus resulting in the increased coverage of small particles visible in Figure 4.5a&c, 

irrespective of cut off potential. Sample 4 also shows a large coverage of small particles, 

similar to the distribution of sample 1, but using a lower initial potential of -0.5V. It is 

possible that -0.5V is enough potential to activate the majority of nucleation points on the 

FTO surface, and the difference between particles on sample 3 and 4 is due to varying 

particle growth from the 0.2V cut off and the 0.5V cut off potentials.
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Figure 4.5: SEM images showing Pb/Pt nanoparticle deposit coverage and morphology on FTO-glass: (a) & (b) 

Sample 1: E^-O.TSV, EZ=0.2V; (c) & (d) Sample 2 Ej=-0.75V, E2=0.5V; (e) & (f) Sample 3 Ej=-0.5V, EZ=0.2V; (g) & 

(h) Sample 4 E^-O.SV, EZ=0.5V, for all cells there is a 60s cut off for the Ez stage, to keep samples relatable

This conclusion was reached as the OCP replacement tim e or E2 stage is approximately 

identical in size from  the 4 th cycle onwards due to  the set cut o ff tim e of 60s set fo r all
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cycles. The basic study of catalysis undertaken in Chapters 1.1.5 and Chapter 3 indicated 

that the most ideal structure for a highly efficient catalyst is small particles in great 

numbers. From the SEM images, it can be seen that the parameters of Sample 1, 2 and 4 

produce large quantities of 20-50nm particles, which are believed to be good for use as a 

reduction catalyst in DSC devices.

4.6 XPS analysis of P t/P b  nanoparticles deposit on FTO glass surface 

Once the SEM imagery indicated the presence of nanoparticle and -cluster formations on 

the FTO-glass substrate, it was then necessary to discover what elements were present in 

order to determine the efficiency of this deposition method for the production of a Pt 

catalyst. Unfortunately, energy dispersive spectroscopy (EDS) analysis using a SEM-EDS 

detector proved not to have the sensitivity required in order to fully determine the 

elements present in the surface structures, therefore an alternative method was sought. X- 

Ray photoelectron spectroscopy (XPS), described in Chapter 2.8 was used to determine the 

exact nature of the surface and to further determine the effect of Ei and E2 on the structure 

of the deposit. FTO-glass samples of 1cm2 were assessed in layers from the top down, using 

an electron beam to etch away each layer down to the base FTO-glass conducting 

substrate. Thus, four samples were chosen for study using the potentials for Ex and E2 

listed below, using 10 deposition cycles for each potential set as it was felt this deposited a 

viable amount of material for analysis:

SI: Ex = -0.75V; E2 = 0.20V

S2: Ex = -0.75V; E2 = 0.50V

S3: Ex = -0.50V; E2 = 0.20V

S4: Ex = -0.50V; E2 = 0.50V

A full XPS spectrum, while useful, does not lend itself to interpretation without further 

analysis, as Figure 4.6 demonstrates quite handily. Thus a table of known atomic binding 

energies was used to split the XPS data into peaks representing individual elemental spectra

[7], this was further matched against the results obtained in past studies to verify their 

accuracy. The full spectrum indicates the presence of the element: Pt, Pb, Sn, O and C on 

the substrate surface.
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Figure 4.6: Example full XPS spectra of Sample 1 (SI) highlight represents the region of interest for Pt and Pb

detection

The Sn peaks, Figure 4.7, were confirmed through literature to  represent the FTO-glass 

electrode, the peaks 487.13 ±0.24eV corresponding to  the Sn3d5/2 peak; and 495.55 

±0.23eV fo r the Sn 3d3/2 peaks depending on the sample analysed [8][9].
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Figure 4.7: Example XPS spectra for Sn, using the Sn3d energy level. (Sample 1)

Figure 4.8 focuses on the spectral response of the platinum particles, using the Pt4f energy 

level, where images (a)-(d) refer to  Samples 1-4 respectively. The presence o f these spectra 

in all samples is both expected and reassuring, as is the consistency o f the spectral response 

across all samples. The doublet peaks at ca. 71eV and 74eV represent Pt4f7/2, indicating the 

presence o f metallic platinum particles, denoted as Pt(0). The o ther smaller doublet peaks
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at 72eV and 75eV represent o ther oxidation states of Pt, such as Pt(ll) or Pt(IV) that indicate 

o ther platinum compounds such as P t0 2.
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Figure 4.8: Comparison XPS Pt4f spectra (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4

Figure 4.9 shows XPS spectral comparison of Sample 1-4 in image (a)-(d) respectively. This 

set o f data is interesting as it indicates that there is still Pb present on the surface o f the 

prepared electrode, despite already being exposed to several replacement cycles during 

deposition. In these spectra, metallic Pb, Pb(0), is indicated by doublet peaks at 136.5 and 

141eV respectively. Peaks at 138.9eV indicate Pb2+ oxidation states, whereas Pb4+ is 

represented at 137.7eV [10][11]. The presence o f remaining Pb w ill present an issue in full 

DSC devices, as Pb can potentia lly act as a poison or facilitate unwanted processes that 

degrade cell performance. In addition, the ir presence increases the size of the catalytic 

particles and clusters on the substrate surface, reducing the specific surface area. The Pb 

also takes up surface sites that could potentia lly hold catalytic Pt. Further work suggested 

here is to  fu rthe r adjust the electrodeposition parameters and use XPS to ascertain those 

where the m inimum Pb remains.
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Figure 4.9: Comparison of XPS spectra for Pb4f, (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4 

Figure 4.10 and Figure 4.11 show the presence of Pt and Pb using the 4f energy level peaks 

fo r Sample 1 (SI). These spectra indicate the presence o f both the Pb tem plate and the Pt 

replacement e lement a fte r 10 cycles o f deposition and replacement, when the high Pb 

deposition potentia l o f -0.75V is coupled w ith  a short cut o ff potentia l (E2 = 0.2V). The 

larger deposition potentia l is known from  literature to  activate more nucleation sites on the 

FTO surface [12], as evidenced by the particle density seen in Figure 4.5a, in itia lly resulting 

in a high quantity  o f Pb on the surface. When this is combined w ith  the low E2 replacement 

potentia l o f -0.2V it is suggested to  account fo r the presence o f remaining Pb on the 

surface.

The presence o f Pb was detected using the Pb4f energy, which shows up as visible peaks 

given at 135.73±0.28, 137.76±0.18, 140.53±0.32 and 142.56±0.17eV corresponding to  

samples 1-4 respectively. Each peak can be fu rthe r matched to  d ifferent oxidation states of 

Pb present at tha t point in the deposit. The peaks at 135.73±0.28eV and 140.53±0.32eV 

correspond to  the 4 f7/2 and 4 f5/2 regions representing Pb° or non-oxidised Pb atoms. The 

peaks at 137.76±0.18eV and 142.56±0.17eV refer to  high oxidation states of Pb, such as 

Pb2+ which is expected to  be present from  the Pb(CI04)2 component of the deposition 

solution.
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Figure 4.10: Pt spectra using the Pt4f peaks for Sample 1 (SI)
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Figure 4.11: Pb spectra using the Pb4f peaks for Sample 1 (SI)

In order to  find platinum, a 2nd derivative method was used which can find partially or fu lly  

hidden peaks. A partially hidden set o f Pt° peaks, denoting free or non-combined Pt, was 

discovered at a value of 69.93±0.24eV and 73.36±0.25eV, this peak form ation is also known 

as a doublet peak. The characteristic pattern is caused by a condition known as sp in-orb it 

splitting in the Pt “f  shell. This is caused by the effective unbalancing o f a n /s h e ll orb ita l 

due to  the ionisation of an electron by the applied X-ray energy [13]. Further evidence o f Pt 

at d ifferent oxidation states was seen through the respective peaks 70.88±0.22eV and
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73.96±0.34eV, which could also be an indication o f remaining K2[PtCI4] from  the deposition 

solution.

If local maxima are used to  find and characterise XPS peaks, the centre of the tw o peaks in 

the Pt doublet are at 70.16±0.24eV and 73.45±0.25eV relating to  Pt4f7/2 and Pt4f5/2. Using 

the NIST database fo r referencing the elemental binding energies, this states that peak 

values o f 72.90 and 74.20eV relate to  K2[PtCI6] and values from  70.83-71.30eV can be seen 

as metallic platinum, or Pt0 [7]. Thus using these values, the presence of Pt can be 

confirmed w ithout the use of the 2nd derivative method or local maxima used here. The 

Pt4f spectra also gives a firm  confirm ation to  the presence o f Pt0 and fu rthe r higher 

oxidation states o f Pt, here suggested to  be Pt2+ from  any K2[PtCI6] deposition solution 

remaining on the surface of the sample.

Once the presence o f Pt was confirmed on the FTO surface, it was necessary to  examine the 

surface coverage of Pt and discover the ratio o f Pt to  remaining Pb. The ratio of Pt to  Pb 

considers all forms of the element detected, at any oxidation state. The variation in the 

atom ic percentage of tin (Sn) can be used as an indicator o f Pt/Pb coverage, since higher 

Pt/Pb coverage w ill leave less Sn exposed. Table 4.1 summarises the previously described 

peak values fo r Pb and Pt and furtherm ore  lists the ratio of Pt:Pb found on the surface of 

each sample in addition to  the percentage o f detectable Sn.

Table 4.1: Summary of Sn3d, Pb4f and Pt4f peak positions; Pt:Pb atomic ratio and Sn percentage on the

sample surface

Sample
Sn 3d 

(eV)

Pb 4f 

(eV)

Pt 4f 

(eV)
Pt:Pb Sn%

Sample 1 486.97 135.55; 140.38 (Pb°) 69.77; 73.18 (Pt6) 2.74:1 25.49

495.39 137.58; 142.39 (Pb2+) 70.79; 73.93 (Pt2+)

Sample 2 487.37 136.01; 140.85 (Pb°) 70.18; 73.61 (Pt°) 3.72:1 23.85

495.79 137.90; 142.69 (Pb2+) 71.11; 74.30 (Pt2+)

Sample 3 486.97 135.49; 140.30 (Pb°) 69.777; 73.18 (Pt°) 1.31:1 34.20

495.39 137.70; 142.52 (Pb2+) 70.79; 73.93 (Pt2+)

Sample 4 487.21 135.86; 140.60 (Pb°) 70.02; 73.50 (Pt°) 3.97:1 20.54

495.65 137.87; 142.65 (Pb2+) 70.82; 74.04 (Pt2+)

Samples 2 and 4 give the highest ratio o f Pt:Pb w ith  3.72:1 and 3.97:1 respectively, showing 

that the E2 value has a large impact on the final composition o f the deposit and surface 

coverage. The lowest ratio is given by Samples 1 and 3 w ith  2.74:1 and 1.31:1 respectively.
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If this Is compared with the Sn% on the surface layer it gives the highest to lowest surface 

coverage as: Sample4 (Sn20%) > Sample 2 (Sn23%) > Sample 1 (Sn25%) > Sample 3 (34%).

The difference in the Pt:Pb ratio and the surface coverage indicated by the change in 

detectable Sn on the surface is due to the relationship between the Ex and E2 values used to 

control the deposition. The different Ei values activate different numbers of nucleation 

sites and further control the size of these sites in the initial Is deposition. The E2 value, 

both the pre-programmed and one controlled through the cut off time of 60s will result in 

different levels of platinisation, which will vary for each sample and cycle. In addition, as 

platinum is deposited on the FTO surface it will affect the deposition conditions of the cell. 

At the larger potential of -0.75V, there is potential for hydrogen evolution on the deposited 

Pt to compete with the next cycle of Pb deposition.

Despite the observed variations, the Pt:Pb ratios remain comparable, believed to be due to 

the enforcement of the 60s cut-off time, which ensured that most deposition steps were as 

similar as possible. The higher ratios exhibited by Samples 2 & 4 have different Ex values of 

-0.75V and -0.5V respectively. The higher ratio of Sample 4 was suggested to be due to the 

Ex potential lying in the supposed UPD region of the deposited Pt surface layer and causing 

UPD deposition to occur. Thus this will give steady, regular deposition and replacement 

activity. The Ex value of Sample 2 however is -0.75V which is a cathodic enough potential to 

allow hydrogen adsorption or reduction to occur on the surface of any deposited Pt. This 

will compete with Pb deposition and thus result in a smaller Pt:Pb ratio.

Another critical factor is the length of the deposition cycles. This is dictated by E2 the OCP 

cut off potential, or the imposed 60s time limit on this stage. However, the potential is not 

always that as was dictated by the program. Sample 2 was seen to reach an OCP value of 

0.4V at the start of the deposition, which gradually reduced to 0.25V after the 4th cycle of 

deposition. Sample 4 however reaches the desired values, at 0.47-0.5V throughout the 

deposition event. The difference was thought to be due to the high Ex potential depleting 

the ions closest to the electrode. As a result it will take time to replace these from the bulk, 

and since Ex is repeated the depletion effect is cumulative, resulting in the cut off potential 

not being reached within the allotted 60s time limit. The lower potential used for Sample 4 

would cause less depletion and as a result, solution can recover faster, resulting in a more 

rapid rise in recorded potential as OCP is held.

Samples 1&2 with the same Ex value have a comparable deposition cycle profile after the 

4th cycle, as previously mentioned, which provide an explanation for the similar surface
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coverage seen in the SEM imagery and in the XPS values discussed in this section. However, 

due to  the d ifferent pre-set E2 values between Sample 1&2 o f 0.2V and 0.5V this w ill lead to 

the d ifferent Pt:Pb ratios seen in Table 4.1. Further evidence of this trend can be seen on 

examination of Sample 3, as the low surface coverage and Pt content are due to  short 

replacement steps and the low pre-set OCP cut o ff potentia l o f 0.2V being maintained 

throughout the deposition event in this case.

The values fo r coverage are taken from  XPS analysis of the top surface layer o f each sample. 

In order to  fu rther understand and characterise this deposition method, a thickness profile 

was measured using the XPS and ion etching as shown in Figure 4.12 to  Figure 4.15. All 

samples have a high Pt value, independent of Ea or E2 though the amount of Pt at the final 

layer and the depth the Pt varies between samples.

20 30 40
Thickness (nm)

♦  Pt 

■  Pb

60

Figure 4.12: Varying atomic percentages of Pt and Pb with thickness, measured through XPS (Sample 1; Ej=-

0.75V, E2=0.2V)

Samples 2 and 4 appear to  demonstrate sim ilar layer growth, giving an increase in Pt 

quantity in the top 40-45nm depth. It was thought that this is the result o f the long initial 

OCP replacement stage observed in Figure 4.4 b & c. In comparison, Samples 1 and 3 

indicate that the shorter OCP Pt replacement tim e results in reduced Pt present directly on 

the FTO-glass surface. Thus the overall layer thickness fo r these samples is also reduced, 

giving co. 35nm and ca. 25nm thickness values respectively. Finally, the Pt content of 

Sample 4 increases to  over 14% and in Sample 2 the Pt content reaches 12%, thus showing 

tha t the E2 value is also an im portant parameter fo r determ ining the structure o f the 

deposit and Pt content.
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Figure 4.13: Variation in atomic percent of Pt and Pb as a function of layer thickness, measured through XPS

analysis (Sample 2; Ea=-0.75V, E2=0.5V)

16 

14 J 

12 

10 

8 H 

6 

4 

2 

0

♦  Pt 
■  Pb

♦ ♦ ♦ ♦ ♦ ,
♦ ♦ ♦ ♦ ,

20 30 40
Thickness (nm)

60

Figure 4.14: Variation of atomic percent of Pb and Pt with layer thickness. Measured by XPS analysis (Sample

3; E!=-0.5V, E20.2V)
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Figure 4.15: Variation in atomic percent of Pb and Pt with layer thickness, measured by XPS analysis (Sample

4; Er 0.5V, E2=0.5V)
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The XPS data confirms the presence of Pt on all samples, and shows there is still Pb 

remaining on the surface, even following several deposition and replacement events. 

Samples 2 or 4 give the highest ratio of Pt:Pb at 3.72:1 and 3.97:1 respectively, though 

Sample 4 indicates the highest surface coverage, giving a reading of 20.54Sn% compared to 

Sample 2 at 23.85Sn% detected through surface analysis, the lower number indicates less 

FTO visible to the XPS surface scan at each layer, which agrees strongly with the SEM 

imagery in Figure 4.5g&h. Since the catalytic performance of electrodeposited Pt is known 

to be less than thermal or chemical, it was decided to select the parameters from Sample 4 

(E!=-0.5V, E2=0.5V or 60s) as this will provide more Pt on the counter electrode for this 

developmental investigation. If this was proven to be successful, then future work would 

focus on limiting the size of Pt deposits through potential and chemical controls.

4.7 Use of electrodeposited counter electrodes in DSCs

Now that the catalyst deposit has been characterised, the next stage involves the 

manufacture of DSC counter electrodes containing an iodide/triiodide redox couple. The 

aim of this section is to assess this process for use as a low temperature, rapid alternative 

for current platinisation methods. The initial tests characterising the catalyst behaviour as 

a site for the reduction of triiodide was achieved using cyclic voltammetry to qualitatively 

assess the ability to reduce triiodide in solution. Following this, EIS measurements were 

made on symmetrical type cross cells as described in Chapter 2.5.4. DSC cells were then 

constructed using the electrodeposited counter electrodes and then tested under standard 

testing conditions (STC) using a simulated light environment, the testing setup and 

parameters are described in Chapters 2.5. The parameters chosen were as for Sample 4, 

using an Ei value of -0.5V to deposit the Pb, and a potential cut off E2 value of -0.5V. 

Further to this, the potential was held at 0.5V prior to the start of the deposition to ensure 

no electroless deposition occurred before the commencement of the study. The range of 

cycles used to deposit the catalyst was 1, 5, 10 and 20, chosen due to the particle size and 

distribution indicated in the previous characterisation stage. This should give the broadest 

useful idea of the catalyst performance in a DSC cell.
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4.7.1 Cyclic Voltammetry in iodide/triiodide solution

Basic cyclic vo ltam m etry allowed the qualitative assessment of the catalyst activity fo r the 

reduction of the triiod ide  species necessary in a DSC device. Figure 4.16 exhibits several 

peaks representative o f the sought a fter reduction activity, thus confirm ing the catalyst 

v iab ility  fo r use in a DSC cell. A typical CV plot gives the current density "J" vs. the potential 

"E" w ith  the potentia l given versus the reference electrode used in the electrochemical cell. 

Both the l3' reduction and I oxidation peaks are marked.

7

I oxidation 

peaks

Csl
Eu
<
E

- 0.8 - 0.6 0.6 0.8 1.2

 ThPt3O s reduce  20c-0.5V0.2V

Potential (V vs. Ag/AgCI (3M  KCI)

Figure 4.16: Cyclic voltammetry in a solution containing l3'/l  ions. (3 electrode cell: Pt/FTO-glass working 

electrode, Ag/AgCI reference, Pt mesh counter electrode)

Obtaining quantative measurements from  a CV scan is not a straightforward task. In the 

interests of streamlining this study and assessing d ifferent methods fo r potential use on 

scale up of this technology, electrical impedance spectroscopy (EIS) was next utilised to  

rapidly and accurately characterise the performance of the catalyst to  allow fo r a 

quantita tive comparison w ith  the trad itional therm al and chemical platinisation methods.

4.7.2 Electrical Impedance Spectroscopy (EIS) analysis

Electrical impedance spectroscopy and the theory behind the method was explained in 

Chapter 2.5.3, where it was detailed that the chief method of presenting DSC results was in 

the form  of a Nyquist plot and Bode plots. The Nyquist plot can be separated into three 

distinct areas, each giving details o f the d ifferent interfaces in a DSC device. The x-axis 

offset represents the series resistance o f the conductive substrate (Rs). The 1st semicircle 

describes the interface between the counter electrode/catalyst and the electrolyte, called
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the charge-transfer resistance (Rct) and the 2nd semicircle describes the recombination 

resistance o f the T i0 2 photoanode (Rrc), as detailed previously in Figure 2.9. To obtain the 

performance parameters, Rs, Rct and Rrc, electrical equivalent circuit modelling is used, 

represented in this case by the model shown in Figure 4.17. Modelling theory is described 

in greater detail in Chapter 2.4.2. This model provides a good fit to  the data sets, allowing 

the critical param eter "Rct" to  be calculated and used as a comparison of the catalytic 

efficiency o f the d iffe ren t counter electrodes.

R.E

V A  A W

< &

Qc
beta

&

beta.

W.E

Figure 4.17: Equivalent circuit model of a DSC

The EIS data is presented in Figure 4.18 to  Figure 4.21, where the main parameter used fo r 

the comparison o f the counter electrodes is the Rct value from  the initia l semicircle, 

indicating the efficiency of the electron transfer between the catalyst and the triiodide 

species. A higher Rct value indicates poor catalytic ability and therefore reduced efficiency 

of the counter electrode. DSC devices containing a therm ally or chemically platinised 

counter e lectrode are included fo r comparison, Figure 4.23 and Figure 4.23. The 

measurements were taken w ith the cells in the dark and a DC voltage o f -0.65V applied to 

the cell to  ensure tha t the cells are at the maximum power point when under measurement 

and comparable to  each other as a deviation in Voc w ill lead to  d ifferen t values o f Rct. Using 

this method, a clear difference w ill be able to  be seen between a good and poor catalyst

[14]. The frequency range used fo r this study was 50000Hz to  0.1Hz, using 10 

points/decade and an AC perturbation o f lOmV rms. The fu ll experimental details can be 

found in Chapter 2, in addition to  a theoretical background into the EIS study o f dye solar 

cell devices.
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In addition to  the Nyquist plots, a Bode plot showing the magnitude of the impedance and 

the phase angle at d ifferent frequencies is also included. As mentioned in Chapter 2, the 

Bode plot imparts fu rthe r information regarding the state of the cells undergoing testing as 

a function of the frequency. The Bode plots are generally in the form  of peaks and troughs, 

indicating constant phase elements/resistor pairs shown in Figure 4.17.
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Figure 4.18: Nyquist and Bode plots with fitting for DSC cells using SLRR electrodeposited Pt counter
electrodes at 1 cycle deposition
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Figure 4.19: Nyquist and Bode plots with fitting for DSC cells using SLRR electrodeposited Pt counter
electrodes at 5 cycles deposition
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Figure 4.20: Nyquist and Bode plots with fitting for DSC cells using SLRR electrodeposited Pt counter
electrodes at 10 cycles deposition
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Figure 4.21: Nyquist and Bode plots with fitting for DSC cells using SLRR electrodeposited Pt 
counter electrodes at 20 cycles deposition
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Figure 4.22: Nyquist and Bode plots with fitting for DSC cells with thermally deposited Pt counter
electrodes
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Figure 4.23: Nyquist and Bode plots with fitting for DSC cells with chemically deposited Pt counter
electrodes

Figure 4.24 illustrates that ED-Pt counter electrodes have a much higher Rct than the 

comparable therm al Pt and the chemically produced Pt catalyst when an average was taken 

o f three DSC cells. A single cycle deposition exhibited an Rct value o f ca. 30 Hem 2 compared 

to  the literature value fo r therm al platinum o f ca. 4 flcm  2 [15], though our therm ally 

produced Pt catalyst had an Rct of 12.8Qcm 2. As the number o f deposition cycles was 

increased to 5 cycles, a drop was seen to  occur in the Rct to  ca. 20 Hem 2 region. This 

suggests an increase in the specific surface area due to  an increase in the number of 

platinum active sites. Furthermore, the increase in Pt w ill remove or counterbalance any 

remaining poorly catalytic Pb on the FTO surface fu rthe r enhancing the performance.
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There is very little  variation in Rct on increases to  10 and 20 cycles, suggesting a lim it to the 

catalyst performance w ith  this electrodeposition method. The lim it was proposed to be 

due to  the increase in catalytic particle and cluster size thus reducing the catalyst specific 

area at higher cycles. Furthermore, it is known that d ifferent methods o f platinisation form 

d ifferent crystal structures o f platinum. The P t [ l l l ]  facet has been demonstrated as the 

most highly catalytic w ith  the Pt(411) and Pt(100) faces giving lower activity [16]—[18]. It is 

not yet known what orientation the electrodeposited method gives, though it is suggested 

that fu rthe r work to  examine this w ill allow fo r fu rthe r catalyst optim isation.
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Figure 4.24: Comparison of charge transfer resistance (Rrt) for eiectrodeposited CEs, average of 3x DSCs per 

point (Key: Solid line, average therm al Pt value; dashed line, average chemical Pt value; Red line, lite ra tu re

therm al Pt value [19])

It was suspected tha t if Pb remained present in the DSC, it would affect the electrochemical 

performance o f the DSC through interaction w ith  the electrolyte species, reducing 

efficiency and through migration to  the T i02 surface where it could form  recombination 

sites, which w ill increase recombination activity.

4.7.3 DSC testing

Following the extensive characterisation and testing o f the eiectrodeposited Pt coating on 

FTO through surface analysis and electrochemical means, counter electrodes were 

fabricated using this method and applied in the manufacture o f complete DSC devices. The 

cells were exposed to  a stim ulated operating environment to  assess the ir performance, the 

results were used to  compare the eiectrodeposited cells w ith  the standard DSCs using 

therm al and chemically platinised CE's. The EIS data presented in Figure 4.24 was thought 

to  give an idea o f the results to  expect. The relatively high Rct across all eiectrodeposited
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cells w ill increase the overall cell resistance and appear as a reduction in the DSC fill factor. 

A summary of the average performance data fo r these devices can be found in Table 4.2, 

where 1 cycle represents the least platinum deposited, and 20 cycles as the most Pt 

deposited in this study. The l-V characteristics of the eiectrodeposited DSCs were seen to  

be highly comparable w ith  standard DSCs, Figure 4.25, despite the low Rct values given by 

the EIS analysis in Figure 4.24. The J-V data enabled several key performance parameters 

to  be defined, that o f V 0C,Jsc/ FF and p.

Table 4.2: DSC Average Performance Data

Cycles Voc Jsc FF Efficiency Rce

(#) (v) (mA/cm2) (%) (%) (O/cm2)

1 0.71(10.005) 8.09 (±0.6) 55.48 (±2.2) 3.18 (±0.4) 30.81 (±4.9)

5 0.70 (±0.013) 7.73 (±0.4) 49.87 (±10.6) 2.70 (±0.5) 18.99 (±3.0)

10 0.69 (±0.001) 8.39 (±0.1) 46.89 (±4.1) 2.70(10.2) 23.99 (±8.9)

20 0.68 (±0.023) 7.51(10.5) 63.34 (±5.4) 3.23 (±0.3) 22.76 (±1.4)

Thermal 0.70 (±0.002) 10.49 69.34 (±5.0) 3.97(10.7) 12.80 (±1.1)

Pt (±0.4)

Chemical 0.65 (±0.0001) 7.86(10.1) 68.80 (±0.006) 3.53 14.07 (±2.1)

Pt (±0.04)
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Figure 4.25: l-V curves for DSCs using eiectrodeposited counter electrodes, DSCs using thermally deposited Pt 

counter electrodes are used for comparison (Average of 3 DSCs per variable)

The key performance parameters fo r the comparison of counter electrodes are the fill 

factor (FF) and the efficiency.
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The FF, as mentioned previously in Chapter 2.5.2 is a comparison of the ideal performance 

o f a DSC versus the actual performance o f the cell, taking into account resistive losses as 

well as manufacturing errors. Figure 4.26 compares the values fo r the ED-Pt w ith  standard 

Th-Pt and Ch-Pt containing DSCs. A variable range from  46-63% was given by the FF, w ith a 

large standard deviation indicating inconsistencies in manufacture. Compared w ith the 

usual 60-65% FF of standard DSCs using therm al counter electrodes the FF is low and 

unstable w ith 10 cycles displaying the lowest value. The drop in FF is considered to  be due 

to  Rct reduction when the catalyst specific area decreases w ith  the growth o f Pt deposit 

size. Flowever, there is an increase at 20 cycles to  ca. 60% which does fo llow  the 

decreasing trend. This was a ttributed to  the rise in overall catalyst material due to  more Pb 

available fo r Pt replacement. The increase in material w ill offset the reduction in deposit 

specific area as the to ta l surface coverage has doubled, as seen through XPS analysis.
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Figure 4.26: Fill factor (FF) of DSCs using eiectrodeposited counter electrodes for differing number of 

deposition cycles. (------- ) indicates thermal Pt Voc (Results average of 3 DSCs)

Efficiency, the other crucial parameter used fo r the assessment and comparison of solar 

devices, matches the variable trend of the FF results showing its reliance on fill factor 

changes, Figure 4.27. The conclusion can be made tha t the reduction in Voc and increase of 

cell resistance exhibited by a lower FF are the main contributing factors to  the reduced 

efficiency over that o f the comparison devices using chemical and therm ally produced 

counter electrodes. Flowever, the small variation in efficiency w ith deposition cycles 

indicates that deposition cycles and quantity o f catalyst have little  impact. There is no 

doubt that the catalyst structure of the eiectrodeposited platinum is less catalytic than 

therm ally deposited or chemically reduced Pt catalysts. This factor has been m entioned in
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recent literature as facet dependent catalytic activity o f platinum nanoparticles, where 

P t ( l l l )  was found to  have greater specific activity and therefore w ill give a lower Rct than 

Pt(411) or Pt(100) facets [16].
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Figure 4.27: Efficiency (r|) of DSCs using eiectrodeposited counter electrodes for differing number of 

deposition cycles. (------- ) indicates thermal Pt Voc (Results average of 3 DSCs)

The variation in Voc, illustrated in Figure 4.28, reduces slightly as the number of deposition 

cycles is increased. However, there is a relatively large variation between the cells used fo r 

the average value, particularly fo r 20 deposition cycles. The Voc is known to vary between 

devices due to  the quality of the T i0 2 photoanode and the performance of the dye 

photosensitiser, which accounts fo r small variations. However, in the case o f larger 

variations in cells o f the same batch, there w ill be o ther factors influencing this value.

SEM and XPS characterisation have previously shown that the surface coverage and cluster 

size increases w ith  number of deposition cycles, resulting in improvements in the Rct and 

amount of catalytic material, see Figure 4.24.
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Figure 4.28: Open circuit voltage (Voc) of DSCs using electrodeposited counter electrodes for differing number 

of deposition cycles, (--------) indicates thermal Pt Voc (Results average of 3 DSCs)

The short circuit current density (Jsc) shown in Figure 4.29 does not show the same 

decreasing trend shown by the Voc in Figure 4.28. Instead Jsc remains stable at ca. 8mAcm'2.
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Figure 4.29: Short circuit current (Jsc) of DSCs using electrodeposited counter electrodes for differing number 

of deposition cycles. (--------) indicates thermal Pt Voc (Results average of 3 DSCs)

This indicates that the amount of charge carriers in the electrolyte has changed little , 

contrasting w ith  previous hypothesis that Pb-iodide bonding occurs, reducing the amount 

o f charge carriers. Furthermore this also indicates that the remaining active components of 

the DSC, dye and T i02 remain stable. The Jsc was also discovered to compare favourably 

w ith  our typical DSC, w ith e ither a chemical or therm al Pt counter electrode, a fu rther 

indication that the active parts of the device were stable and fu lly functional.
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Previous literature has studied the relative catalytic abilities of platinum, reporting that the 

crystal structure has a significant influence on the specific activity of the Pt catalyst [16]. It 

was clear from the results, that there is a disparity between the catalytic activity and that of 

the more common methods (thermal and chemical) which is believed to be due to the 

nucleation and growth deposition route of the electrodeposited catalyst. Therefore, in 

order to further optimise this deposition method, it must be altered to ensure the 

deposition of highly catalytic platinum at short deposition cycles to minimise material 

usage. In addition, further analysis needs to be done on the effect of Pb in the DSC system, 

to ensure that it will not adversely affect any of the dye cell components.

4.8 Conclusions and Further Work

The aim of this study was to develop a low temperature deposition method that would 

allow electrochemical platinisation to rival more traditionally produced Pt catalysts that 

would be suitable for use in DSC devices and adapted for use on a mass production line. 

Previous literature has already established that the amount of material deposited depends 

on the applied power and deposition time; therefore here we have used a low cost initial 

template, which is deposited through the application of brief high power stage. This 

enabled the control of Pt catalyst formation.

This study demonstrated that the application of repeat cycles of electrodeposition and OCP 

replacement stages to FTO glass could produce a homogenous distribution of Pb/Pt 

nanoscale particles on the FTO surface. An essential development was the use of a single 

solution for the entire process. Fast deposition of Pb was performed at a chosen potential 

"Ei", which was quickly followed by redox replacement by Pt at OCP. This process occurs 

through the oxidation of Pb by Pt2+ ions and then the replacement of Pb at the substrate 

surface. It was shown that this replacement step can be finely controlled through the cut 

off potential "E2" or time limit, in this case 60s. It was further found that a small quantity of 

Pt co-deposits with Pb due the deposition potential chosen. This further increased the 

quantity of nucleation sites on the FTO for particle and cluster growth at OCP. Larger cut 

off potentials or time resulted in higher total coverage, therefore it was concluded that E2 

or an enforced cut off time play a significant role in determining the final coverage and 

structure when using this method. The Ei was seen to affect the amount of Pb template 

available for replacement events at Stage 2, therefore this value must be cathodic enough 

to deposit material, but also must ensure that no other competing reactions are initialised, 

i.e. hydrogen evolution that may occur once Pt replacement occurs.
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Despite the extra level of deposit structural control given by this method, the 

electrochemical behaviour was demonstrated to perform much lower than the standard 

thermally deposited Pt catalyst used for DSC devices. Whether this was due to poor 

particle connectivity or simply a function of the way in which the catalyst particles form 

remains to be studied. However, on the use of this method to manufacture DSC CE's, the 

performance found to remain comparable with the 3.9% cell efficiency exhibited by the 

standard thermally applied catalyst DSCs. The peak efficiency of 3.2% gained for 

electrodeposited CE devices was attained using both 1 and 20 deposition cycles. From this 

it was concluded that catalyst stability, more than electrochemical activity would dictate 

DSC performance. It was believed that a key point here was that the one cycle deposited 

catalyst was composed mostly of Pt, with little remaining Pb on the surface. Furthermore, 

the 20 cycle catalyst consisted of a high coverage of material which would contain mostly 

Pt. This was thought to account for the peak performance at 1 and 20 and led to the 

conclusion that both 5 and 10 cycles contained a less stable catalyst, possibly due to the 

presence of a larger amount of Pb remaining.

Despite the varying electrochemical and DSC performance given by this method, it has 

succeeded in proving to be a highly controllable deposition method, which through using a 

low cost lead template and reducing the concentration of expensive platinum in solution 

should result in an overall decrease in the cost of DSC counter electrode manufacture. In 

addition, this is a low temperature method which allows the use of polymeric substrates as 

the counter electrode. This would be of particular use in mass produced flexible DSCs were 

the working electrode is a metal substrate and there is a need for a flexible transparent top 

sheet as the CE. Now that this method has successfully been developed for us on FTO- 

Glass, future work should concentrate on the replacement of toxic Pb with other sacrificial 

metals. This could build on the prior work done by Rettew eta l. who successfully utilised a 

Ni template instead of the Pb material used in this research. In addition, the electrolyte 

should be exposed to Pb in an isolation experiment to assess whether there is a change due 

to interaction between the Pb and the electrolyte species. The reaction should be visible 

through a colour change, noticeable on a UV-VIS scan. Further work could also be done to 

assess the affect of oxide layers on the prevention of electrolyte degradation - building on 

the knowledge that the strongly bonded oxide layer of titanium prevents cell degradation 

and corrosion in DSC devices when this substrate is used.
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5 Corrosion of metallic substrates in liquid based DSC electrolyte

5.1 Introduction

In liquid based DSCs, the electrolyte is of critical importance, which is clearly shown by the 

vast quantity of literature on the makeup and interactions of the many viable electrolytes 

with other cell components. The previous chapters focused on the particular interaction at 

the counter electrode, the reduction of the triiodide species to iodide via the accelerating 

medium of a catalyst. This important reaction addresses loss mechanisms or 

"overpotentials" in the cell and seeks to improve the fill factor through the reduction of the 

cell internal resistance at the counter electrode (Rce). As the interaction at this 

electrode/electrolyte interface is crucial, it was thought that an investigation into the 

working electrode/electrolyte interface would also provide significant insights. Typically, 

DSC devices use stable FTO coated glass substrates, these are fairly fragile and inflexible, so 

will not be compatible with a roll to roll process. Comparatively, metal substrates are lower 

in cost, robust and flexible, in addition to having inherently higher electrical conductivity 

than FTO-glass [1]. Unfortunately, the seminal study by Toivola et al. found that the 

typically used iodide/triiodide DSC electrolyte is known to be corrosive to certain industrial 

sheet metals such as aluminium and zinc coated carbon steels [1], [2]. Previous experience 

has shown that only titanium and stainless steel, thus far, are resistant to corrosion and are 

currently undergoing study for use as flexible DSCs substrates [3]-[6].

The initial aim of this chapter is to prove the viability of a time-lapse photographic 

monitoring and image analysis technique for use in monitoring corrosion through a colour 

change that occurs as the triiodide species is reduced on interaction with a vulnerable 

metal surface. This method will be compared through comparison with a diffuse- 

reflectance UV-Visible light spectrophotometry technique (DR-UV/Vis) where a cell 

containing an electrolyte layer is fitted to the reflectance aperture and the absorption 

measure through time-lapse scanning. This has already been established as a viable 

monitoring method for dye uptake in DSC cells [7]. The time-lapse photography and image 

analysis method reported in this study has the ability to passively monitor a large number 

of corrosion cells simultaneously, unlike the DR-UV-Vis technique that actively analyses only 

one sample per scan. These observation and characterisation methods monitor the 

reduction of triiodide ions on interaction with the metal substrate over a period of 1000 

hours. Equation 5.1 shows a typical reaction that will occur between a metal substrate and
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the triiodide species, [Where "M" denotes the metal, l3 is triiodide, M x+ indicates metal ion 

with oxidation number "x", and f  is the iodide ions. ]:

On interaction, there is a visible loss of colour from the dark brown/yellow of triiodide to 

clear, which is the characteristic appearance of only iodide ions remaining in thin layer cells. 

The reduction of triiodide is known to decrease the number of charge carriers in the 

electrolyte, which will lead to a degradation in cell performance [8][9]. Both these methods 

are in situ and non-destructive thus removing the need for additional sample preparation.

Following the successful comparison of a DR-VIS observation and analysis technique with 

the image analysis method, the image analysis method is then used to assess the 

performance of several possible corrosion inhibiting chemicals. These are comprised of 

several nitrogen-containing heterocyclics compounds, hereafter termed NHC's, that are 

currently in use as performance enhancers in DSC devices [10].

It was initially thought that when under illumination, the DSC devices would provide a 

potential between both electrodes that should prohibit corrosion. However, a recent study 

by Miettunen et al. has cast doubt on this theory [2]. Despite this factor, a key period that 

cells are thought to require protection is in darkness or periods of low activity, where the 

operating potential is removed, lifting any impressed current anti corrosion protection. 

This study uses corrosion cells without the inclusion of a T i02 semiconductor in order to 

assess if any degradation will occur in these periods of low or zero potential. Furthermore, 

when the Ti02 electrode is present it will cover most of the metal substrate meaning that 

only a small area is vulnerable to damaging interaction by triiodide.

(5.1)
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5.2 Experimental

There are three main sections to  this chapter: The first addresses the UV-VIS and image 

analysis techniques in order to  compare the ir output. The second observes the inhibition 

possibilities o f nitrogen-containing heterocyclic compounds in liquid electrolyte and the 

th ird  details the application of image analysis to  large scale observation o f test cells and 

suggests conclusions drawn from  the data. The metal substrates studied in this work, along 

w ith  the ir purity and compositions are shown in Table 5.1.

Table 5.1: Metals substrates and their purity and composition

Metals Purity

Nickel 99.98% Ni

Aluminium 99.999% Al

99.9% Al

Inconel 625 61% Ni, 22%Cr, 9% Mo, 5%Fe

Iron 99.5% Fe

Titanium 99.6% Ti

Molybdenum 99.9% Mo

Stainless steel 316 18%Cr, 10%Ni, 3%Mo

Stainless steel 304 18%Cr, 10%Ni

Zinc 99.9% Zn

Tungsten 99.95% W

Chromium 99.95%Ch

In this study, tw o main types o f observation cell were constructed: The single w indow 

observation cell used fo r DR/UV-Vis analysis and the m ulti-cell type used fo r the time-lapse 

image analysis studies, Figure 5.1.

Figure 5.1: (a) UV-VIS observation cell (b) Time-lapse imaging cell 

A simple three component DSC electrolyte, as described in Chapter 2, was used fo r all 

m onitoring cells, w ith  the addition o f the additives 4-tert-buty lpyrid ine (4-TBP), 1-
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methylbenzimidazole (1-MBI) and 1, 3, 5-triazine (135T) for the corrosion inhibition study. 

The electrolyte formulation was further limited to simple chemical compounds, lithium 

Iodide (Lil) and iodine (l2); in place of room temperature ionic liquids such l-m ethyl-3- 

propylimidazolium iodide (PMII) in order to remove the complex interactions in more 

performance orientated DSC liquid electrolytes. Other commonly used performance 

enhancing compounds such as guanidinium thiocyanate were also avoided for the same 

reason.

5.3 In  s itu  corrosion analysis

The initial study compares two monitoring and characterisation methods and assesses any 

degradation that occurs in the interaction of a basic three component iodine-based DSC 

electrolyte with a variety of metallic substrates. The techniques presented in this study 

provide a complimentary dataset to assess the accuracy of each. The metals tested have 

been previously listed in Table 5.1, with emphasis on iron based and other inexpensive bulk 

substrates, due to their common use as industrial construction materials.

5.3.1 DR/UV-Vis absorbance measurement

Initially, the DR/UV-VIS method was trialled using a simple iron substrate, time-lapse scans 

of a fresh corrosion cell were recorded, as shown in Figure 5.2a. This clearly shows that the 

absorbance of the cell decreases with time using the reduction in the initial peak value of 

410nm, indicating a loss of triiodide as it is reduced by interaction with the metal substrate 

through Equation 5.2:

Fe +  / 3" -> F e2+ +  3 /“ (5.2)

This figure also illustrates the time dependant behaviour of the absorption spectra as the 

electrolyte interacts with the metal substrate. In comparison, the titanium substrate in 

Figure 5.2b shows little change over time; mainly due to a strongly bonded and quickly 

repaired oxide layer that forms on the substrate surface despite the attempted surface 

activation measures.
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Figure 5.2: DR UV/Vis Absorbance spectra for l3‘ and for metal corrosion rate, using the reflectance setting for 

encapslated corrosion cells for substrates (a) Iron and (b) Titanium

The drawback to the DR UV/Vis method is that only a single sample can be run at any tim e, 

an analysis bottleneck that w ill increase the risk of low quality devices on a production line. 

Due to the long testing periods o f up to  1000 hours required fo r a comprehensive study, 

this method is not viable fo r rapid large scale industrial analysis. Thus, an alternative was 

investigated using a sim ilar time-lapse imaging technique as used previously fo r dye uptake 

analysis, where it was used to m on itor the variation in average red/blue/green colour
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change over a set time period [7]. The UV-VIS data can be compared with the average RGB 

analysis in order to assess the viability of the latter technique for the characterisation of cell 

degradation, Figure 5.3a.

5.3.2 RGB image analysis method

This method uses image analysis for the mass monitoring of corrosion cells with a 1cm2. 

Photographic observation and image analysis was used to isolate the variation in 

Red/Blue/Green (RGB) colours over time. As explained previously, observation cells were 

constructed and placed within a consistently lit environment and imaged every 5 minutes 

throughout the experimental study. The colour change is analysed by using the RGB data 

extracted from the images using the Sigma Scan Pro software. The data on average RGB in 

addition to the specific red, blue and green colour changes, was taken from the Sigma Scan 

Pro software package and plotted versus time, as seen in Figure 5.3. Here it was seen that 

there is a definate correlation between the change in measured DR-UV/VIS absorbance and 

the average RGB value measured through timelapse image analysis. The degradation was 

seen to occurs rapidly within a 2 hour period for both methods. The decrease in l3' is 

immediantly visible at the experiment start, ending in the complete disappearance of the l3' 

colour from the observation cell. The slight decrepency between the degredation times for 

each methods was believed to be the result of small differences in electrolyte volumes 

between cells. This is due to the difficulty in controlling the thickness of the 25pm Surlyn 

gasket spacer when using a compression and melting process to seal the cell. A larger 

volume of electrolyte will take a longer time to show the degradation of triiodide colour. 

Since the study by Toivola et al utilised much larger volumes of electrolyte than the 

estimated 0.015cm3 volumes used in this study and as a result this is thought to be the 

reason for the longer degredation time of 2 months reported in their study [1].

The RGB analysis method has a significant advantage over DR-UV/VIS characterisation as 

the progression of the corrosion caused electrolyte colour change is visible over the range 

acquired images -  rather than concealed within the UV-VIS equipment while the reaction 

occurs. Furthermore, multiple samples can be analysed simultaneously, decreasing the time 

needed for a comprehensive study.
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Figure 5.3: Change of l3' amount shown by decrease in absorbance or average colour intensity (RGB) over time 

using DR UV/Vis or time-lapse photography, (a) Iron (b) Titanium

The data presented in Figure 5.3 proves the viab ility o f e lectrolyte colour change as an 

indicator o f DSC device stability. In addition, the in situ m onitoring of m ultiple samples 

results in a large quantity o f data collected simultaneously, using a low cost camera set up 

rather than an expensive spectrophotom eter, so m ultip le units may be purchased and used 

in place o f one spectrometer. Furthermore, the photographic m onitoring and image 

analysis process has the potential fo r quality control applications on a DSC production line. 

This wealth o f data does have its drawbacks in that the Sigma Scan Pro software used for
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the RBG analysis can only analyse a certain number of selected sites and the process has a 

large need for computing power.

Iron and titanium, the initial metals studied, are of major importance as they are used in 

both pure and alloy form as major industrial construction materials with potential for use in 

BIPV. The results strongly suggest that carbon steel and other iron based metals will be 

extremely susceptible to degradation in iodine based DSC electrolytes, which is in 

contradiction of previous studies of the stability of carbon steels metals in DSC electrolyte 

[1], The study here showed that corrosion, evidenced by electrolyte decolourisation, is 

visible within two hours of electrolyte injection into the corrosion cell using iron substrate.

The visible change in electrolyte colour from yellow to colourless on the prepared iron 

substrate indicated a reduction in the triiodide concentration over the initial two hours of 

the testing period. In comparing the two analysis methods, the small variation in the data 

was attributed to the small differences in electrolyte volumes in each type of cell. This 

caused by variable compression under heating of the 25pm Surlyn polymer gaskets used for 

joining and sealing. The 25pm thickness was used to ensure the cell was sensitive to small 

changes in electrolyte composition. The difference in electrolyte volume should also be 

taken into account when comparing the results of this study, chiefly because the majority 

of these use bulk volumes of electrolyte in excess of what is used for thin layer DSC devices. 

Our volumes of electrolyte will be 0.0025m2 for 25pm Surlyn and 0.0050m2 volume of 

electrolyte for cells using 50pm thick Surlyn. Furthermore, there will be variation from 

differences in composition or surface finish that will affect the results obtained, though 

these were expected and minimised through careful sample selection and preparation of 

the metal surfaces. Finally, there will be slight variation in output of the light source 

needed for the photographic monitoring method which will cause minor fluctuations in the 

RGB values.
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5.3.3 Metal corrosion study

This section o f work uses photographic monitoring, coupled w ith  image analysis to  study a 

selection o f industrial metals considered as substrates fo r DSC working electrode 

substrates. Table 5.2 summarises the performance o f these metals when in contact w ith 

the three component iod ide/triiod ide electrolyte.

Table 5.2: Corrosion performance of metal substrates from RGB analysis (up to lOOOhrs), indicates no

change over the study duration

M etal Type Time to complete l3 removal (h)

Titanium -

Iron 99.5% 2

Stainless steel (316L and 304) -

Zinc 99.9% 0.03

Aluminium 99.0% -

Aluminium 99.0 % surface activation 30

Aluminium 99.999% surface activation ~ 200

Nickel 99.98% ~65

Inconel (625) -

Tungsten 99.95% -

Molybdenum 99.9% -

Chromium 99.95% -

Many of the potential candidate materials fo r use as DSC substrates or as possible 

protective metallic coatings fo r iron based substrates were found to be vulnerable in the 

electrolyte. Aside from  the pure iron substrate, the most vulnerable metals were found to 

be zinc and surface activated aluminium metal sheet of 99.0% purity. Ironically, these 

metals are typically used as protective coatings or cladding fo r iron-based structural 

applications. Zinc reacts rapidly w ith  triiod ide, as per Equation 5.3, giving a visible loss of 

colour from  triiod ide yellow to  iodide clear. As a result the common galvanising method of 

corrosion and environmental protection w ill not be available fo r use in DSC cells containing 

the triiodide species.

Zn +  / 3"  -> Z n 2+ +  3 / “  (5.3)

Briefly, in an encapsulation cell using zinc metal substrate, the electrolyte loses colour 

rapidly, w ith  complete colour loss occurring w ith in  tw o  minutes (0.03 hours) o f electrolyte 

injection. This indicated the complete reduction of triiodide to iodide and therefore a loss
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of electrolyte viability through a large reduction in charge carriers. This result complements 

that of Toivola et al. regarding the immersion of zinc in a large quantity of DSC electrolyte, 

where they reported degradation times for zinc coated carbon steel varying from 1 hour to 

1 day [1]. The difference in timescales for the onset and completion of the corrosion action 

was considered to be due to the variation in electrolyte volumes. Thin layer cells will be 

more sensitive due to less triiodide ions per substrate surface area, so therefore giving an 

increased rate of reaction as the triiodide interacts with the zinc substrate.

More complex behaviour was observed when differently prepared aluminium substrate 

was exposed to the electrolyte. In none surface-activated 99.0%AI substrate, a negligible 

loss of triiodide was seen, indicating less aggressive interactions between the electrolyte 

and the substrate. However, on surface activation, both the 99.0%AI and highly pure 

99.999%AI gave an increased degradation rate leading to the complete disappearance of 

triiodide. However, the timescale did vary with the purity of the metal substrate.

The non-activated sample surface consists of an unbroken alumina (Al20 3) layer that is 

known to be an effective barrier to interaction by aggressive species, protecting the metal 

from further oxidation by the triiodide species. The surface activation of Al through 

abrasion and polishing with Al20 3 powder removes the protective alumina layer and 

produces an active layer of aluminium metal. This was found to behave differently from 

the metal oxide covered substrate of as-received aluminium foil [11], Equation 5.4 details 

the reaction between Al metal and triiodide, which leads to corrosion shown through the 

total loss of triiodide:

AI +  I 3 -► A l3+ -I- 37" (5.4)

The difference between the behaviour of surface treated and non-treated Al 99.0% 

substrate is illustrated clearly through the average RGB value taken from image analysis. 

On activation of the 99.0% Al metal surface, a colour change occurs over co. 5 hours shifting 

the average RGB value from 160 to 190 indicating the removal of the yellow triiodide 

colour, Figure 5.4. The surface layer of Al20 3 is known to be ca. 5nm if air formed at 

ambient temperature and gives sufficient coverage to act as an efficient uniform corrosion 

barrier [12], inhibiting the interaction of the very reactive Al substrate with triiodide ions.

However, if the samples are subject to a surface treatment, the rate of degradation is then 

dependent on the purity, with the reduction of triiodide occurring 7x faster for low purity 

aluminium (99.0% Al) than for the higher purity 99.999% Al, see Table 5.2. The evidence
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suggests that this increase was due to the greater density o f impurities inherent in the 

99.0%AI metal substrate, increasing the quantity of active sites where triiod ide can be 

easily reduced. In pure aluminium, there are less impurities and defects, so the rate of 

degradation w ill be slower.

If aluminium is eventually used as a DSC substrate care must be taken to ensure the 

coverage and quality o f the protective alumina layer before the device is constructed and 

that this continues throughout the manufacturing process, however this layer is also 

electrically insulating, so there must be a compromise between substrate protection and 

electrical conductivity that may require fu rthe r corrosion prevention methods to  be 

explored. This w ill potentia lly add tim e and cost, especially when using pre-rolled coiled 

sheet metal, which could cause damage to the surface layer.
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Figure 5.4: Difference in corrosion behaviour of surface activated and non-surface activated Al 99.0%

substrate

Next, metals such as nickel, chromium and nickel-chromium alloys (Inconel 625) along w ith  

molybdenum, tungsten and stainless steel are analysed due to  the ir industrial potentia l. 

The nickel samples showed complete degradation to  colourless in ca. 65 hours, a direct 

contradiction to  the previous study by Ma et al., tha t reported the stability o f nickel in l3'/r 

electrolyte [13]. Comparison of other reports has revealed a clear difference in behaviour 

when using bulk or th in layer e lectrolyte quantities [1]. As previously mentioned, the 

quantity of triiod ide per metal surface area increases in th in layer cells and therefore w ill be 

much more sensitive to  changes in internal conditions and variations in the electrolyte. A 

fu rthe r study on large scale DSC devices by Okada et al. indicated tha t sputter deposited 

nickel grids were resistant to  corrosion to  greater than 1600hrs [14], Since our study
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showed that bulk nickel interacts with the triiodide causing colour loss and so cell failure 

within 65 hours, it is thus suggested that the high purity structure of the sputtered 

materials increases its corrosion resistance. Nickel-Chrome based (Ni-Cr) alloys, such as the 

Inconel 625 used in this study, exhibited good performance under exposure to the 

electrolyte, remaining stable for over 1000 hours. This remains comparable with previous 

literature demonstrating the manufacture of DSCs using Ni-Cr alloys as the substrate [2], 

[15]. Molybdenum, Tungsten, Chromium and Stainless Steel are already well known for 

their resistance to several forms of corrosion in aggressive operating environments, such as 

those found in turbines and power stations [16]. Their resistance is known to be due to the 

formation of the strong oxide layers such as W 0 3, Cr20 3 in the case of Tungsten and 

Chromium. Molybdenum has a corrosion resistance similar to Tungsten. However, this was 

reported to come from the inherent un-reactivity of the material rather than the formation 

of a strongly bonded oxide layer. The work presented in this section excitingly confirms the 

stability of Molybdenum, Tungsten and Chromium in DSC iodide/triiodide electrolyte for up 

to 1000 hours, a study that has not previously been undertaken.

Negligible change was seen in the average RGB for Stainless Steel, which compares well to 

DR-UV/VIS analysis and previous reports for stainless steel DSC devices [2], [4], [17]—[21]. A 

caveat to the resistance of these materials was reported by Miettunen et al., showing that 

the Stainless Steel used in their study exhibited corrosion in the form of surface pits and 

EDX analysis indicated the presence of a corrosion residue comprising of iodine and 

stainless steel [4], [22].

One of the most important insights that came from this first study was the need to test 

substrates in a simulated cell environment, rather than with bulk quantities of electrolyte, a 

la Toivola et al [1]. Using thin layers and small volume study better reflects the actual state 

of the DSC cell operating environment. In addition, the high ratio of metal surface area to 

electrolyte species means that the cell is very sensitive to changes in internal conditions. 

This should lead to a clearly visible interaction between components, in this case exhibited 

by the yellow to clear colour change. The next study moves to using 50pm Surlyn gasket 

rather than the 25pm used up to this point, in order to better match the architecture of the 

proposed sheet DSCs that will use 50pm Surlyn to ensure clearance between electrodes 

when the cell is flexed. To ensure comparability between studies, 50pm Surlyn iron 

substrate cells were compared with a cell using 25pm Surlyn, Figure 5.5. The small 

difference exhibited here can be related to the previously mentioned variation between the 

DR-UV/VIS and RGB comparison observation cells, confirming that the difference in
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degradation tim e can be related to the change in e lectrolyte volume. Once the difference 

in behaviour was compared, the RGB analysis method could then be transferred between 

the d ifferent cell thicknesses uses in this study.
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Figure 5.5: Comparison between RGB data for 25pm and 50 pm Surlyn corrosion cells on iron substrate 

adjusted for background average RGB data. Yellow area denotes yellow to colourless colour transition zone

A major point o f comparison between the electrolyte used in this study and that o f those 

used in the literature is the varying degrees of electrolyte complexity. Common literature 

electrolytes include compounds such as 4 -fert.-buty lpyrid ine (4-TBP), guanidine thiocyanate 

or l-m ethyl-3-propylim idazolium  iodide (PMII) an ionic liquid as one o f the primary 

chemical constituents. To establish if increasing the electrolyte complexity could change 

cell corrosion processes, 4-TBP was in itia lly added to  a test cell in order to  determ ine the 

effects, if any, o f this addition. The 4-TBP compound was used fo r tria l due to  its common 

inclusion as a performance enhancer in literature  since the inception o f the DSC device in 

the early 1990s [23]. It was discovered that the addition of 4-TBP was able to  give a 

measure of corrosion protection fo r certain metal substrates, a result that is tested fu rther 

in Section 5.4.
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5.4 Electrolyte additions for corrosion inhibition

Typically, DSC electrolytes usually consist o f several o ther components to  improve 

performance, such as guanidine thiocyanate [24], [25] and compounds such as PMII in place 

o f iodine and fo r use in non-solvent containing electrolytes [26]. Other additives used are 

compounds known as nitrogen-containing heterocyclics (NHC's), the most comm only 

known is 4-terf.-butylpyrid ine (4-TBP). These are used as performance enhancers and act 

through adsorption onto uncovered T i0 2 sites and thus inhibit the back electron transfer 

[27]. Further to  this, these compounds shift the conduction band to  a more negative value, 

enhancing cell Voc through the widening o f the gap between the electrolyte redox potentia l 

(Vred) and the T i02flatband potentia l (Vfb) [28], [29].

In order to  study w hether the addition o f fu rthe r chemical components to  the electrolyte 

had an effect on the degradation behaviour o f metal substrates, a corrosion cell containing 

e lectrolyte w ith  0.5M 4-TBP additive was compared against a simple three component DSC 

electrolyte (Lil, l2 and 3-MPN as the solvent), the results obtained are presented as average 

RGB vs. tim e in Figure 5.6.
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Figure 5.6: Change in average RGB value with time on iron substrate, the electrolyte used was 0.1M  Lil, 0.05M  

l2 in 3-MPN on iron substrate, with as test quantity of 0.5M  4-tBP added to a cell

It should be noted that the 0.5M concentration o f 4-TBP is typical in DSC literature, hence 

the choice o f concentration as an example additive in this particular case. The change in 

corrosion behaviour was quite revealing. The addition of 0.5M TBP to  the electrolyte visibly 

inhibited cell degradation, preventing the reduction of the triiod ide through interaction
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w ith  the metal substrate over the measured tim e period. This result could also offer an 

explanation o f the d ifferent behaviour o f substrates in previous corrosion studies [1], [13].

The report by Kanta et al., supports our findings by stating that the presence of 4-TBP was 

instrumental in preventing the degradation o f the stainless steel 304 working electrode in 

the ir electrochemical study [30].

The pyridine based additive 4 -te /t-buty lpyrid ine (4-TBP) is not the only nitrogen containing 

heterocyclic compound (NHC) used to  increase DSC performance. Several key studies 

produced by Kusama et al. have detailed many d ifferent types and structures o f additive 

compounds such as NHC and compared the ir effect on DSC performance [31]—[35]. 

Currently, NHC's are used simply to  boost performance through the inh ib ition of 

recombination and through o ther synergistic electrochemical effects on DSC components. 

Heterocyclic compounds such as 4-TBP and other pyridines are previously known as 

excellent industrial corrosion inhibitors and as a result it is expected that our selected 

compounds w ill perform  a sim ilar function in DSC cells as fo r industrial applications. In a 

DSC device, there is a fu rthe r requirem ent to  retain the performance enhancing ability o f 

these chemicals and also allow them to navigate the mesoporous network o f the T i0 2 in 

order to  reach the metal substrate. An analysis o f previous studies has led to  three 

d ifferent simple structures being chosen fo r fu rthe r study; an alkyl pyridine, a 

benzimidazole and a simple triazine. This are exhibited in Figure 5.7 in the form  of 4-terf- 

butylpyridine (4-TBP), 1-methylbenzimidazole (1-MBI) and 1, 3, 5-triazine (135T). It was 

thought that the difference in carbon skeleton and the number o f nitrogen atoms would 

vary the corrosion inhibition behaviour of these small compounds to  allow the inhibition 

effect to  be fu rthe r tailored.

This next section investigates the effect o f varying the concentrations of these three NHC 

compounds to  assess the impact on the ir corrosion inhibition ability on the industrial sheet 

metals previously listed in Table 5.1.

Figure 5.7: Structure of NHC compounds used in this study, (a) 4-TBP (b) 1-MBI (c) 1,3,5-T

194 | P a g e



5.4.1 Industrial Metal Corrosion Inhibition

This next section utilises the, now characterised, RGB analysis method on a wider range of 

industrial metal substrates. Figure 5.8 to Figure 5.18 summarise the stability of metallic 

substrate corrosion cells containing three different additives, 4-TBP, 1-MBI and 135-T in the 

electrolyte. By monitoring the colour change over 1000 hours, the interaction between the 

triiodide and the metal substrate can be observed and the effect of the differing types and 

concentration of NHC inhibitor can be characterised as a function of time. On each 

substrate, a control cell was maintained containing no additives to better compare between 

the effects of each compound on different substrates. The other concentrations chosen 

were 0.25M, 0.5M and 1M to assess the optimum quantity for inhibition, while ensuring no 

chemical wastage.

Figure 5.8 details the inhibition effect of a variety of 4-TBP concentrations in the electrolyte 

formulation over the metal substrates observed. As expected, the titanium and stainless 

steel substrates were completely resistant to corrosion, showing no degradation of the cell 

throughout the experiment regardless of 4-TBP inclusion. Both metals have strongly 

bonded oxide layers that passivate the metal surface and reduce the exposure of the metal 

to the aggressive triiodide species. The addition of varying concentrations of NHC will only 

serve to enhance degradation resistance in case of surface damage.

The stainless steel and titanium substrates were both reported in literature and found in 

this study to be corrosion resistant, with the control cells showing no discolouration or 

corrosion products. However, the nickel and iron substrates exhibited much different 

behaviour. As shown in Figure 5.6 and Table 5.2, the iron substrates degraded quickly 

when in the control cell where no additives were included. However, the addition of 4-TBP 

prolongs the lifetime of the yellow triiodide colour, suggesting an increasing corrosion 

inhibition effect.

In the nickel control cell, the triiodide colour lasted only 22 hours, giving way to a red 

colouration, thought to be a nickel (II) iodide compound. The addition of 0.25M 4-TBP 

increases the longevity of the triiodide to 35 hours, after which the electrolyte discolours to 

brown/yellow. The electrolyte lifetime is raised further to 110 hours when the 

concentration of 4-TBP is doubled to 0.5M, thus indicating a threshold concentration that 

will halt the triiodide degradation. At the maximum tested concentration of 1M, the nickel 

cell remains stable up to the full 1000 hours observed. In the iron cell, a concentration of 

0.25M 4-TBP increases the lifetime to 137 hours, but maximum protection can be achieved

195 | P a g e



if the concentration is raised to  0.5M and 1M, where the cell remained stable over and 

above the 1000 hours duration o f this study.
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Figure 5.8: Time to complete cell degradation in iodide/triiodide electrolyte containing quantities of 4-TBP.

Sections that reach lOOOhrs indicate no discolouration throughout the duration of this experiment, and are

used if there is varying times on one substrate

As reported in the first section o f this study, certain grades o f aluminium react strongly to  

the action o f triiodide. The removal o f the Al20 3 layer through abrasion and the activation 

o f the Al surface facilitate the corrosion of the normally resistant Al substrate. The control 

cell containing no 4-TBP degrades fu lly in 88 hours due to the rapid and unhindered 

reduction o f triiod ide at the very reactive metal surface. In comparison, the cell containing 

1M 4-TBP retains the triiod ide  colour, at an RGB value o f ca. 140, throughout the 1000 

hours observation time.

However, it is the 0.25M and 0.5M concentrations that given unexpected results. The 

0.25M concentration shows a much greater inhibition effect than 0.5M, w ith  fu ll 

degradation occurring at near 1000 hours, though as Figure 5.9 shows, the in itia tion  of 

degradation starts at co. 50 hours and continues at a constant rate. The 0.5M 

concentration shows degradation to  be complete in 500 hours. The degradation in this 

case starts rapidly, as shown by the steep gradient, compared to  the shallow slope o f the 

0.25M cell. The decreasing rate is suggested to  be due to the increased effect o f the 4-TBP
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on the reduced quantity o f triiodide. Unfortunately, the inhibition effect is still not enough 

and the cell once more degrades to  clear. The unexpected degradation pattern was 

suspected to  be due to partial oxidation or a variation in activation o f the Al surface, where 

the preparation step did not fu lly activate the surface around the 0.2BM cell. Despite the 

maximum concentration of 1M showing high resistance to  degradation throughout the 

study, there is evidence of an increase in RGB at 900 hours. This leads to the conclusion 

tha t the Al substrate remains vulnerable to  attack, though at a much reduced rate. It 

should be noted tha t the less pure 99.0%AI was used rather than the ultra-pure 99.99%AI, 

as it is a more feasible substrate fo r use in mass processing, mainly due to  its reduced cost, 

and greater availability. This reduced purity w ill result in more sites vulnerable to  attack by 

the triiod ide  species and contribute to  the corrosion susceptibility o f the substrate.

2 5 0

Yellow to colourlessYellow to colourless

* 0 M  TB P

• 0 .2 5 M T B P

* 0 .5 M  TBP

• 1 M  TB P

0  1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  1 0 0 0
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Figure 5.9: Variation in 99.0%AI cell stability with electrolyte containing different 4-TBP quantities. Inset 

graph showing the first 100 hours observation

An additional metal considered as a viable DSC substrate was electrolytically chromium 

coated steel (ECCS), Figure 5.10. This simply consists of a low carbon steel sheet that has 

been electrolytically coated w ith  chromium and chromium oxide, the outer coating is 

hydrated chromium oxide and the inner layer consists of chromium metal [36]. The study 

indicated that the chrom ium /chrom ium  oxide coating by itself was not enough to  resist the 

aggressive triiodide-substrate interaction, w ith  the ECCS control cell showing complete 

colour loss a fter 1.92 hours. This was unexpected due to  the high ability o f Chromium to 

resist attack previously found fo r chromium metal, Table 5.2. The fluctuations in the
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average RGB on this figure are due to changes in the light intensity from  the light sources 

used, and appear due to  the tim e lapse nature of the study.

Following this finding, the vulnerability o f ECCS was suggested to be due to defects in the 

electrolytic chromium coating that w ill allow the triiod ide to  access the vulnerable low 

carbon steel substrate. If this substrate is also subjected to  similar surface preparation 

methods as Al, this w ill strip the protective layer from  the metal and simply leave low 

carbon steel, which is known from  literature to  be very susceptible to  attack and resulting 

in rapid degradation of the triiod ide colour [1].
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Figure 5.10: Initial 150 hours graph showing the average RGB vs. time for an ECCS substrate corrosion cell

However, once the 4-TBP was added in concentrations as low as 0.25M, the stability o f the 

substrate increased dramatically, showing no colour degradation in the 1000 hours 

observation time. This was believed to be due to the blocking action of 4-TBP on exposed 

active sites where the chromium coating was damaged or not continuous. A physical block 

w ill stop triiod ide from  interacting w ith the carbon steel substrate base o f ECCS and ensure 

tha t degradation of the triiodide colour does not occur.

5.5 1-methylbenzimidazole (1-MBI)

The 4-TBP compound is not the only additive used in the pursuit o f higher DSC 

performance, 1-methylbenzimidazole (1-MBI) has also been used as a performance 

enhancer fo r the improvement of dye solar cell open circuit voltage (Voc) through the 

suppression of the dark current and the movement o f the fla t band potential (Vfb) [37], [38]. 

Figure 5.11 summarises the effect this additive has on the longevity of the corrosion cells
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on the selection of metal substrates used in this study. As previously reported in literature 

and reinforced through this study, titan ium  and stainless steel of 316L and 304 grades 

prove resistant to  aggressive attack by the triiod ide species in the control cell, which was 

expected as they are specifically ta ilored to  be resistant to  corrosion in aggressive 

environments, such as acidic conditions.
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Figure 5.11: Stability of corrosion cells containing 1-MBI in the electrolyte at varying concentrations

The nickel substrate in contact w ith  electrolyte containing 1-MBI behaves in a similar 

manner to  that in the previous section on 4-TBP. The control cell quickly changes colour, 

transitioning from  a value o f ca. 120 fo r the yellow triiodide, to  red at ca. 40, Figure 5.12. It 

should also be stressed that this is very d ifferent from  the expected and conventional 

yellow to colourless reaction seen fo r the o ther metal observation cells.
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Figure 5.12: Progression of cell degradation for Ni substrate with electrolyte containing 1-MBI. Time 

progression is: Ohrs, 2.5hrs, 5hrs. Clockwise from top left, the concentrations are 0M, 0.25M, 0.5M  and 1M in

each cell.

The 0.25M concentration degrades over ca. 30 hours which matches the 4-TBP result. 

However, a yellow tin t was observed to  remain in the cell, indicating that there may be 

some remaining triiodide. It is possible this simply represents the white /cream  colour of
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the 3-MPN solvent containing corrosion products. The 0.5M 1-MBI containing cell degrades 

completely too colourless in 68 hours, again showing the conventional yellow-colourless 

transform ation rather than the yellow-red transition o f the nickel control cell. The 1M 

concentration shows the complete cessation of cell degradation fo r the 1000 hours 

observation tim e used in this study. The slight negative shift in the average RGB fo r 1M 

over time, Figure 5.13, is thought to  be an indicator o f electrolyte -  NHC complex form ation 

due to  the large concentration o f NHC molecules in the cell.
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Figure 5.13: Degradation of Nickel substrate over time in electrolyte containing 1-MBI, shown by change in

RGB value; Yellow shading indicates area of initial triiodide colour presence

The RGB value at the experiment start remains the range 100-120, the variety due to  small 

differences in the metal surface and small variations in e lectrolyte volume between cells. 

As the experiment progresses, the disparity in values widen as degradation occurs. If it is 

indeed the triiod ide attacking the Ni substrate then the inh ib ito r w ill prohibit the 

movement o f the species toward the metal surface; it is also known that some NHC 

molecules are able to  form  a complex w ith  triiodide, therefore it was thought something 

sim ilar could be occurring here. The unusual red transform ation o f the 0M control cell is 

believed to  be due to  the form ation o f nickel(ll) iodide, which is believed to  occur through 

bonding w ith  iodide in the electrolyte rather than the triiodide. This is a possible 

explanation, though it has not yet been explored fully.
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Nonetheless, the end result is tha t the OM, 0.25M and 0.5M are discoloured, indicating the 

degradation o f the cell. The OM cell also shows a green residue near the electrolyte 

injection hole a fter 200 hours, an indication o f nickel oxide form ation fo llow ing cell 

degradation, Figure 5.14.
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Figure 5.14: Nickel substrate observation cell after 200 hours; Clockwise from top left cell: OM, 0.25M, 0.5M,

1M

The next substrate analysed was iron, which shows an almost exponential improvement in 

corrosion resistance as the 1-MBI additive concentration is increased. The 0.25M 

concentration remains stable fo r ca. 20 hours, before slowly degrading to  colourless at 52 

hours to  match the final RGB value o f the 0M control cell at 170. The 0.5M 1-MBI 

concentration typically used in DSC electrolytes slows cell degradation up to ca. 150 hours, 

a fter which it fails fully. This is in contrast to  the effect o f 0.5M 4-TBP on iron which 

extends the lifetim e up to  1000 hours. The cell containing 1M concentration remains at an 

RGB value o f 120 throughout the experimental tim e period, indicating no degradation has 

occurred. The iron substrate seems to  exhibit the clearest response to the addition o f the 

NHC compounds, where the increase additive concentration ensures fu ll coverage o f the 

metal substrate from the triiodide. It is believed that this inhibition mechanism functions in 

parallel to  the complexation of the 1-MBI and triiod ide  species in a manner similar to  4-TBP 

[38]. However, a recent study by Hansen et al. clearly stated that no interaction was 

observed when 4-TBP and triiod ide  were mixed [39], this report has serious implications for 

the work here, as it negates one o f the possible routes fo r the inhibition of cell degradation 

that was thought to  exist.

As previously reported, the behaviour of the aluminium substrate depends on metal purity 

and surface finish. Compared w ith  the previous inhibitor, 4-TBP, all concentrations o f 1MBI 

showed increased stability. An issue that should be addressed is the discrepancy between 

control cells containing no additives on each Al substrate. This was due to  the varying
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metal surface that is present fo llow ing preparation and cell construction, as the Al surface 

w ill oxidise quickly when exposed to  air and later heat during cell sealing. As a result the 

contro l cell w ill have variable surface layer protection due to d ifferen t levels of surface 

oxide coverage at the tim e o f e lectrolyte injection. In this case, the control cell degrades in 

45 hours, a much shorter period than seen fo r the 4-TBP control cell containing the iodide 

and triiod ide  species but no additives. The response from  the three concentrations o f 1MBI 

is remarkably similar, w ith  the yellow triiod ide  colour fading to  colourless in a similar 

tim efram e of 176 hours. All these cells leave a purple/brow n residue in place in the cell 

which, though currently unanalysed, is thought to  be aluminium iodide. What is interesting 

about the 0.25M response is tha t by the half way test period of 500 hours, the yellow 

colour has returned, leaving only a few of the supposed aluminium iodide purple deposits. 

The 0.5M and 1M concentration cells however, remain clear w ith  deposits w ith in  the cell, 

Figure 5.15.
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Figure 5.15: Aluminium substrate after 500 hours in contact with electrolyte and 1-MBI. Left to right and 

from top and bottom, the cells contain OM, 0.25M, 0.5M and 1M of 1-MBI. Electrolyte contains Lil, l2 in 3-

MPN

In order to  characterise how much protection the aluminium oxide layer w ill give the metal 

substrate in these observation cells, several identical observation cells were processed, only 

w ithou t the application of the surface activation method used previously in this study. 

Figure 5.16 illustrates that not even the control cell degraded a fter 1000 hours if the oxide 

layer remained in place, which contrasts strongly w ith  the result shown in Figure 5.15 

where all cells have degraded to  colourless, w ith  the exception of 0.25M. The exception in 

Figure 5.16 was the 0.5M concentration cell, which exhibited a loss in colour a fter 500 

hours, and the form ation o f small purple/brown precipitates similar to  those found in the 

0.25M cell, Figure 5.15. It is thought these precipitates form  where there is damage to the 

aluminium oxide layer that was not visible during the initial substrate preparation, allowing 

the reaction o f the electrolyte species w ith the vulnerable aluminium metal.
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So the question was thus, "W hy use inhibitors in the first place?" The presence of the NHC 

is designed to be tw ofo ld  in fu ll DSCs, as performance enhancers first, and then as a 

corrosion inh ib ito r when required. Thus, passivated aluminium w ith  an unbroken alumina 

layer is protected from  the aggressiveness of the triiod ide species. As a comparison of 

Figure 5.16 and Figure 5.17 show, surface activated aluminium is too reactive fo r even 1M 

of 4-TBP or 1-MBI to  successfully inh ibit fo r 1000 hours. W ith Figure 5.17 showing 

degradation of the colour o f the triiod ide  and the substrate surface exposed to  the 

electrolyte w ith in  the cell.
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Figure 5.16: Aluminium substrate without surface treatment, in contact with electrolyte containing 1-MBI 

after 500 hours; Left-right and top to bottom, the 1MBI concentrations are 0M, 0.25M, 0.5M and 1M
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Figure 5.17: Surface activated Al in contact with electrolyte containing (a) 4-TBP and (b) 1-MBI after 500 

hours; Left-right and top to bottom, the 1MBI concentrations are 0M, 0.25M, 0.5M  and 1M for both cells

The 0.25M concentration o f 1-MBI only increases the triiodide lifetim e to 27 hours, before 

complete colour loss occurs. As the concentration is increased to 0.5M and above, the 

lifetim e was seen to match the equivalent 4-TBP concentrations, showing no discolouration 

fo r the fu ll 1000 hour observation time.
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5.6 1, 3, 5-triazine (135T)

The final additive studied in this work is 1,3,5-triazine (135T or s-triazine), this is the least 

understood o f the compounds selected fo r this study and despite the advantages to 

performance reported by Kusama et al., 135T has not been widely used fo r DSC devices at 

this tim e [10]. Its performance as a corrosion inh ib ito r fo r industrial metals is summarised 

in Figure 5.18.
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Figure 5.18: Stability of corrosion cells containing 1,3,5T in the electrolyte at varying concentrations

When using 135T, the nickel substrate showed increased longevity at 0.25M concentration 

compared w ith  1-MBI or 4-TBP. However, even when the concentration is increased to

0.5M or 1M, the maximum lifetim e o f the triiod ide  colour is 600 and 800 hours 

respectively. Surface activated 99.0%AI, the other vulnerable metal tested, shows a 

variable results set that did not conform to  the expected relationship o f increasing 

corrosion inhibition w ith  concentration. The degradation of both the control and 1M 

additive containing cells occurs w ith in  5 hours, an unexpected result fo r the 1M 

concentration in particular. The 0.25M and 0.5M concentrations show a complete loss of 

colour at 170 and 78 hours respectively. Since the result fo r aluminium did not f it  the 

predicted trend, fu rthe r notice was taken of the sample condition at several points 

throughout the study, as there may be an issue w ith  the surface uniform ity. These images 

taken throughout the experiment show areas o f complete discolouration, surrounded by 

the yellow presence o f triiodide, as illustrated in Figure 5.19.
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Figure 5.19: Observational analysis of Al metal samples with 135T additive present in the electrolyte. ; Left- 

right and top to bottom, the 135T concentrations are OM, 0.25M, 0.5M  and 1M

Once the condition of the samples was ascertained through visual inspection, the RGB 

changes became easier to  understand, Figure 5.20. The slow change in average RGB colour 

is due to  the inconsistent nature of the degradation over the 1cm2 cell area. All the 

observed cells lost much o f the triiod ide yellow in the initial 5 hours of interaction, w ith 

RGB values from  140-170 representing the pale yellow colour tha t remained after the 

m ajority o f the triiod ide reacted w ith  the substrate.
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Figure 5.20: Average RGB vs. time for Al substrate exposed to triiodide/iodide electrolyte containing different 

concentrations of 135T (0-200hours); Inset showing the first 5 hours of degredation

After 200 hours this remnant continues to  fade until by 1000 hours the cells are clear, 

Figure 5. The remaining slight cream colouration is from  the solvent and the slight 

remnants o f iodine or iodide compounds in solution.
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Figure 5.21: 99.0%AI substrate in contact with electrolyte containing 1,3,5T after 1000 hours; Left-right and 

top to bottom, the concentration of 135T is OM, 0.25M, 0.5M, 1M

Similarly, 135T shows little  effect on the degradation o f the iron and ECCS substrate cells. 

On the iron cells, a rapid colour change was observed in the cells containing OM additive 

and 0.25M 135T, where the triiod ide colour degraded to  clear in less than one hour. In the 

0.5M and 1M cells, this tim e was extended to  1-3 hours respectively. The ECCS substrate 

resisted a little  better, no doubt due to  residual electro-chrome coating, giving an overall 

lifetim e o f 5 hours.

5.7 Inhibition mechanisms - theoretical analysis

It is possible to  theorise what inhibition mechanisms are occurring over tim e in the

observation cells using the data collected, supported by current literature on the subject of

nitrogen containing heterocyclics and electrolyte interactions. The mechanism of NHC 

inhibition on metals substrates has been the source o f study in several previous reports, 

w ith  d ifferent forms o f inhibition seen as the NHC compound concentration and structure 

was varied [40][41][42][43], [44][45]. Several mechanisms o f inh ib ito r action have thus 

been suggested:

1. Steric hindrance or diffusion lim iting action

2. Nitrogen lone pairs to  metal substrate reactive site bonding

3. Bonding via the pyridine ring 7r-electrons to the metal substrate surface

4. Bonding via electrostatic attraction to  the metal surface

5. Formation of a complex ion between NHC and electrolyte components (Li+ or the I 

and l3' species )

Our choice o f additive compound was prim arily decided by the ir performance enhancing 

abilities and the ir small molecular size reported in the studies by Kusama et al as it was not
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known what factors would benefit both DSC performance and perform  a degradation 

inhibiting action.[10]. The main structural differences between the compounds are the 

presence of an alkyl group or a variation in the number o f nitrogen heteroatoms contained 

w ith in  the compounds. In addition, these compounds all contain an extremely versatile 

pyridine ring structure, consisting of n electrons tha t are contributed from  the p-orbitals of 

the carbon ring and to varying extent, the nitrogen atoms. These are able to  form  areas of 

high electron density above and below the plane o f the NHC compound, Figure 5.22, and 

allow the electrostatic attraction between the negatively charged ring and a positive metal 

surface.

H

&y 9
$

0

a \
Figure 5.22: Electronic structure of 4-TBP

Figure 5.23 shows skeleton diagrams fo r the three NHC compounds used in this study, note 

the attached methyl and butyl groups and the ir positions on the 4-tBP and 1MBI molecules. 

There are several electron lone pairs from  specific nitrogen heteroatoms in the chemical 

structure, these can also be seen in Figure 5.23 and indicate areas o f high electrophilic 

activity, i.e. high electron donating ability, though this w ill depend on the makeup of the 

NHC compound. This w ill be covered later in this section.

(b) (c)

n
Figure 5.23: Structure of (a) 4-TBP, (b) 1-MBI and (c) 135T

Previous reports have noted that certain metals only allow adsorption of NHC's in certain 

orientations, leading to d ifferent inhibition effects. Lashkari et al. reported that the
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orientation of the transition metal orbitals leads to different favourable (low energy) 

orientations of the NHC compounds [45]. This report focused on the pyridine molecule, 

which was shown to bond in either vertical or parallel orientation to the iron substrate used 

in the study. This preference for orientation is due to the plethora of vacant d-orbital 

orientations in iron. In contrast, pyridine was only able to bond vertically to an Al substrate 

as only the Pz orbital here is free, thus resulting in a minimum energy orientation when 

bonded vertically. A further complicating factor which decides the compound orientation is 

the inclusion of functional groups into the NHC structure. These groups, such as the tert- 

butyl or methyl groups seen in the 1-MBI additive affect the lone pair donating ability of the 

nitrogen heteroatom located within the pyridine ring structure repelling away from the N 

atom, allowing it to be donated more easily. The compounds have several methods of 

adsorbing to the metal surface due to the existence of both "Pi" and lone pair electrons, 

which will also decide the orientation.

The first inhibition method considered is the bonding via chemisorption of the NHC 

compound to sites of Lewis acidity, such as vacant d-orbitals in the transition metal atoms. 

This is achieved by using the sp2 lone pair on the nitrogen heteroatom. The electron 

transfer will create a chemisorptive bond between the NHC and the metal surface, iron in 

the case of the literature examples given by Maksoud et al and Lashkari et al. [42], [45]. It 

is proposed that in the case of 4-TBP, the compound bonds in a vertical orientation due to 

the presence of the tert-butyl group opposite the nitrogen heteroatom. According to the 

widely accepted theory presented by Nyholm and Gillespie, otherwise known as "valence 

shell electron pair repulsion theory" (VSEPR), these groups change the electron density of 

the NHC, increasing the electro-negativity of the nitrogen atom so increasing its ability to 

donate its lone pair electrons [46]. In accordance with VSEPR, the lone pair electrons move 

further from the atom centre allowing for more probable bonding with the metal surface 

[47]. Furthermore, this could create preferential conditions for the 4-TBP to adsorb 

vertically, where the molecule extends out into the electrolyte solution. The presence of 

the NHC's will perform a physical blocking action at the interface of the triiodide with the 

metal substrate, desirably prolonging cell lifetime.

The vertical orientation should provide an interface layer extending from the surface into 

the Helmholtz layer and restricting diffusion of the triiodide, an effect known as steric 

hindrance. Since triiodide reduction is a comparatively slow process compared with the 

outer-sphere electron transfer of other electrolyte species such as cobalt complexes, the 

triiodide must fully adsorb to the metal surface for electron transfer to occur. Depending
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on the metal or electrolyte solvent involved, an alternative bond maybe formed using the 

n-electrons in the ring structures, which is thought to bond using electrostatic attraction 

between the positively charged metal and the compound due to the negative charge of the 

dissociated n-electrons. This was considered to be the most likely mechanism for the 1MBI 

and 135T compounds.

The condition of the metal surface also has a key relationship with inhibitor performance. 

In metals, defects such as steps, dislocations or dangling bonds are considered to be active 

sites and vulnerable to attack from the triiodide species [41]. In the corrosion inhibition 

study, all the metals had their surfaces abraded and cleaned. This treatment is designed to 

remove any oxide layer, dirt or surface impurities, but has the disadvantage of increasing 

the surface roughness, enabling a greater area vulnerable to triiodide attack. The result of 

this can be seen in Figure 5.4, which compares the degradation of cells fabricated using 

either activated or non-activated Al substrate. The activated substrate reacts much quicker 

as the protective oxide has been removed and the surface area has increased with the 

roughness.

Strong chemisorption will physically block these reactive sites on the metal surface from 

attack. Restricting the interaction between the metal and triiodide should slow or 

completely inhibit cell degradation. Therefore a bond would be required where the 

molecules are held close to the substrate, or at an orientation that provides high coverage 

in order to improve the inhibition effect. If a passivation layer is already in place on the 

metal surface, a la titanium and aluminium, then little aggressive interaction will occur. If 

this layer has defects or only partial coverage it will allow the ingress of triiodide and thus 

aid in surface attack and possible de-lamination of this oxide layer through corrosion of the 

underlying metal. Furthermore, constant interaction with triiodide could cause potential 

weakening of the surface layer and lead to gradual cell degradation.

An important factor in the efficiency of the inhibitor is the concentration used within the 

electrolyte and as expected, higher concentrations generally have a larger inhibition effect. 

However, there are certain discrepancies, such as for Al and 1-MBI or 4-TBP, Figure 5.8 & 

Figure 5.11, where lower concentrations have given greater than expected inhibition 

effects. The initial conclusion was to suspect the uniformity of the surface preparation 

method, as there could be a partial alumina layer of varying thickness present that will 

affect the progression of the degradation reaction. Despite this possibility, this effect has 

been documented in previous literature where corrosion inhibitors were used in metals
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immersed or exposed to an acidic environment [42], These reports indicated that at lower 

concentrations, the inhibitor molecules congregated mainly on the grain boundaries or 

metal defects, rather than the centre of the grain itself. It is at these boundaries or defects 

that the corrosion reaction is more likely to progress at a higher rate. The concentration of 

the inhibitors at these locations will provide a higher than expected inhibition effect and so 

increase the longevity of the triiodide species. As the concentration is increased the 

coverage of the surface by the inhibitor increases up to full coverage and therefore 

complete inhibition, as can be seen for most of the 1M NHC concentrations tested in this 

study. It was also suggested that at high concentrations, the double layer at the metal- 

electrolyte interface will be saturated and therefore inhibit the movement of the triiodide 

toward the substrate.

The 1,3,5-triazine (135T) additive, also known as s-triazine, has no alkyl or other functional 

group attached to effect the electron density. However, as shown in the literature, the s- 

triazine molecule has several methods of bonding to other species, which has made it an 

invaluable building block in supramolecular chemistry [48]. S-triazine molecules are able to 

form coordinate bonds with metals, bond to nitrogen or oxygen (impurities in this study) 

via lone-pair n or o interactions, stack to other s-triazine molecules by ti-cj stacking or 

combine with anions or cations via n or a interactions, thus there are many possible routes 

for inhibition when using this molecule. However, in this study it gave poor inhibition 

performance. The lack of inhibition effect for ECCS, iron and surface activated aluminium 

indicates that the these substrates require a more active form of inhibition due to their 

increased reactivity once the oxide layer is removed. Since s-triazine does not have an alkyl 

group attached as in 4-tBP or 1MBI, its electronic structure will be less electronegative and 

will not easily donate the nitrogen lone pair electrons to facilitate bonding to the substrate.

A different pathway to inhibition was suggested in literature, involving the formation of 

dissociated charge transfer complexes under steady state conditions. This was achieved 

through the interaction of pyridine and pyridine derivatives according to the Equation 5.5 

below, in a polar solvent such as 3-MPN, or ACN [49]—[51]:

2 (P y r* l2)  ~  Pyr2I + +  / 3" (5.5)

While this route will not reduce the amount of triiodide in the electrolyte, the presence of a 

large positively charged molecule, i.e. Pyr2l+ adjacent to the substrate is thought to be able 

to restrict the diffusion of triiodide and could slow or reduce the interaction of the triiodide 

and the metal substrate.
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Boschloo et al. reported that a large enough concentration of 4-TBP has a significant effect 

on the iodine electrochemistry in DSC electrolyte when 3MPN is used as the solvent [52]. 

They concluded that for a high enough concentration of 4-TBP, the amount of iodine not in 

a complex with 4-TBP is low, thus reducing the free iodine and the concentration of 

triiodide in solution, a similar possibility exists for the 1-MBI additive. It is thought 

therefore that this reaction plays an integral part in the inhibition of electrolyte 

degradation a recent study by Hansen et al concluded that there was no other interaction 

between 4-tBP and l3‘ in a DSC electrolyte. This also indicates that the structure of NHC 

compounds is critical, as shown by the comparison between the active triiodide/pyridine 

reaction and the lack of reaction between triiodide/4-tBP.

A study by Fischer et al. and Kusama et al. analysed the formation of a compound between 

1-MBI and triiodide, which again proved to lower the concentration of the latter, affecting 

the progression of the degradation activity [53], [54], The decrease in triiodide causes a 

change in the concentration of species adjacent to the substrate. The remainder of un- 

complexed 4-TBP or 1-MBI can thus act to block the interaction of the now lower 

concentration of triiodide with the metal substrate.

The inclusion of NHC's as DSC performance enhancers in sufficient quantities to reduce or 

completely inhibit corrosion is thus the final goal of this study. The performance of 4-tBP, 

1MBI have shown that this is possible, though further optimisation will be required to 

synchronise both to produce the most efficient and stable dye sensitised solar cell. In 

addition, the study has shown that the difference in NHC structure plays a critical part in 

deciding the inhibition factor, exhibited by large difference between the effects of 4TPB and 

135T. So clearly, it is not the amount of nitrogen heteroatoms that are included in the 

compounds, but the overall chemical structure that is important.

5.8 Current use of metal substrates in DSCs

Metal foils are a popular choice as a replacement substrate for FTO-glass due to their 

higher durability and conductivity. Unfortunately, metal substrate DSC development has 

remained behind traditional FTO-glass cells in performance and in addition some of the 

most attractive substrates such as steels increase cell degradation through depletion of the 

triiodide charge carriers through corrosion processes.

One of the first major studies in this area was undertaken by Ma et al. This assessed 

several substrates including stainless steel 304, which is one of the most commonly used 

and low cost stainless steels. Nickel, aluminium and copper were also assessed [13]. The
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metals were used for the counter electrode rather than the photoelectrode substrate, a 

placement designed to increase cell performance, as the light intensity will not be reduced 

through the requirement of travel through the electrolyte solution as would occur in metal 

photoelectrode substrate devices. The device efficiencies varied from 1.95% to 5.24%, 

depending on the platinisation method, with sputtered platinum giving the highest 

efficiency cells. This paper concluded by showing that stainless steel and nickel had good 

stabilities in the DSC environment and that the excellent electrical conductivity of the metal 

substrate improved device performance through the reduction of internal resistance. This 

will benefit large area devices especially.

Improving upon the previously mentioned study, Kang et al showed that the use of stainless 

steel substrate was able to produce stable high performing devices, with an average 

efficiency of 4.2%. The high temperature tolerance of the flexible steel substrate is a key 

point for this paper, as it allows the processing of T i02 through high temperature sintering, 

resulting in a stable high performance photoelectrode, rather than the previous use as the 

counter electrode substrate. As mentioned previously, the reduction in light intensity due 

to absorption by the electrolyte will decrease the device Jsc and thus efficiency when 

compared with front illuminated cells. However, due to the reflective metal substrate, this 

loss can be mitigated through reflection of light from the substrate back to the 

photoelectrode. Three types of stainless steel were used in this study: Stainless 461, ITO 

coated stainless steel and SiOx coated stainless steel. Unfortunately, no stability study was 

run, leaving the longevity of these cells in doubt [17].

Fast becoming one of the most popular substrates for flexible cells, titanium foil was 

investigated by Ito et al., as the DSC photoelectrode substrate [5]. Titanium is known for its 

high resistance to both corrosion and temperature, excellent for use in the aggressive 

triiodide/iodide solution and also able to withstand the high temperatures required for the 

processing of efficiency DSC devices. The DSCs performed with an efficiency of 7.2%, which 

is double that of the stainless steel devices assessed by Kang et al., however the stability of 

these devices was reduced due to the use of volatile acetonitrile as the electrolyte solvent, 

which has a tendency to evaporate from the cell, and the reduced performance of the Pt 

coated polymeric counter electrode due its low charge transfer efficiency.

A key study for the assessment of metallic substrates for DSCs was undertaken by 

Miettunen et al. They produced a study on the stability of DSCs with metal substrate 

photoelectrodes. The metals included common stainless steels 316, 316L, 304, 321, in
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addition to several highly resistant metals such as the nickel alloy Inconel 600 and titanium. 

The compositions of the stainless steels were described to differ mainly through additive 

elements such as Mo and Ti [2], The DSCs produced, including the glass substrate control 

cell were illuminated through the counter electrode, producing a reduction in performance. 

An additional effect of reverse illumination is that the electrons generated in the 

photoelectrode will have a longer path length to the collecting substrate than for forward 

illuminated cells. This length from generation to collection could cause recombination 

losses and a further decrease in performance. Like the previous studies, the FTO-glass 

based cells produced the highest Jsc and efficiency at 11.3mA/cm2 and 4.6% respectively for 

forwards illuminated cells and 8.7mA/cm2 and 3.5% respectively for reverse illuminated 

cells. Cells using titanium foil reached comparable values of 7.9mA/cm2 and 3.4%, using 

0.13mm thick foil and 7.0mA/cm2 and 3.0% for 0.03mm foil. This difference was reported 

to be caused by a difference in the thickness of the T i02 layer through experimental issues.

Despite the high performance reported for the Stainless 304 substrate cells, the Miettunen 

paper also shows that all stainless steel substrate cells assessed showed degradation 

through interaction with the electrolyte [2]. This outcome is the reverse of that seen by the 

study in this thesis chapter. One possibility for the difference between these works is that 

Miettunen et al. studied active DSC devices containing different electrochemical processes 

to our simple corrosion cells. The addition of other processes could provide an added 

driving force for corrosion. Thus it is recommended that further in-depth studies be 

completed if possible to prove the long term viability of stainless steel substrates.

An interesting cause of performance losses in DSCs using metallic substrates was current 

leakage. This can be mitigated through the use of a compact T i02 blocking layer that will 

reduce the recombination of triiodide with electrons collected at the metal electrode 

substrate. The Ti foil substrates used throughout the literature have a naturally occurring 

blocking layer of T i02, which will minimises current leakage and contributes to the high 

performance of the Ti substrate cells over the stainless steel devices. Lee et al. also studied 

cells manufactured with a compact T i02 layer beneath the dyed-Ti02 photo electrode [55]. 

Care was taken here as the typical TiCI4 process is acidic and leads to substrate corrosion. 

Instead, another route was used using Ti(OH)4 to form a Ti02 sol. Unfortunately, this 

process takes 8-10 hours using the method described in literature and therefore would not 

be viable for roll to roll produced DSCs. The metal substrate cell produced an efficiency of 

2.58% without the compact T i02 layer and 4.51% with a compact T i02 layer.
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Electrochemical studies undertaken by Kanta et al. worked to further assess the effect of 

the electrolyte solution on stainless steel 304L counter electrode substrates [56]. EIS was 

used to monitor the decrease in impedance from the initial passivated state. After 24hrs, 

the EIS showed an inductive loop, a characteristic of corrosion and for stainless steel this 

takes the form of pitting, corrosion mechanism seen previously by Miettunen et al. The 

electrolyte was thought to be attacking the substrate through the breakdown of the passive 

surface layer and thus activating the steel surface. Following the first 24hrs, the impedance 

was seen to increase due to the presence of surface corrosion products, which were 

thought to re-passivate the surface. However the reduction in triiodide charge carriers 

would have already occurred, leading to an irreversible performance loss. Due to the ability 

of EIS to give a fundamental insight into corrosion processes, it is recommended this be 

included as further work in the study of corrosion inhibition in DSC devices.

One of the key issues addressed by Kanta et al. was the presence of oxygen and water 

molecules in the electrolyte solution [56]. The presence of water and oxygen are known 

accelerants for metal corrosion and as a result, their presence is thought to be detrimental 

to metal substrate cells. These were removed in this study through dehydration and 

deoxygenating processes in order to minimise their effect on the substrate and cell 

performance. Dehydration was shown to make little difference to the cell quality and 

lifetime. However, the deoxygenating treatment had much more interesting effects. The 

removal of oxygen from the electrolyte inhibits the reduction of dissolved oxygen at the 

metal surface, thus slowing the corrosion process [56]. Unfortunately, it is very difficult to 

completely deoxygenate the electrolyte solution - especially if the cells were to be 

manufactured by a mass production process.

Watson et al. assessed the viability of DSC constructed onto aluminium coated steel and 

steel pre-sputtered with titanium [57]. The efficiency recorded was 2.9%, compared to a 

full titanium substrate cell at 3.2% and is still low compared with 7.2% recorded by Ito et al 

[5], The reduction in efficiency was due to lower fill factor, caused by damage of the 

sputtered titanium layer. The future work suggested in this paper on the use of zinc- 

aluminium alloy coated steels for DSCs, has been shown by this thesis to be less viable as in 

an iodide/triiodide environment. Aluminium was seen to be vulnerable to degradation, 

Figure 5.4. In addition, the work of Miettunen et al. also indicated that zinc also exhibits 

corrosion in iodide/triiodide electrolytes, therefore an investigation into other anti­

corrosion additives and coating are thus suggested instead [2].
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Miettunen et al. published a paper concentrating on metal substrate counter electrodes 

rather than photoelectrodes [15]. This paper assessed the same metals as the previous 

2010 study: Stainless steel 304, 321, 316, 316L, Inconel 600 and Titanium. Previous 

research has already shown stainless steel 304 to be more susceptible to corrosion than 

other stainless compositions when used in full DSC cells [2], [56]. Since this thesis has 

reported that both Stainless Steel 304 and 316 appear to have good lifetimes in simple 

iodide/triiodide corrosion cells, it is thought that the active DSC processes influence and 

increase the rate of the degradation processes.

As a counter electrode substrates, the results for these metals was variable. The method of 

Pt application to the substrate was critical in determining their stability. The high 

temperature thermal platinisation process caused serious degradation of DSC performance 

over the testing period of 6 weeks in the 304, 321 and Inconel cells. These metals were 

shown to have degraded substantially before the initial measurement was taken. Inconel, 

normally a highly corrosion resistant material was thought to be vulnerable due to its high 

nickel content and as shown in this thesis nickel substrate is easily attacked by triiodide, 

remaining stable for only 65 hours compared with the 2000 hour lifetime of stainless steels 

304 and 316, Figure 5.8, Figure 5.10, Figure 5.11 and Figure 5.18. Interestingly, Miettunen 

et al. reported that a thin sputter coating of Pt provided a modicum of corrosion protection 

for the stainless steels, though due to pin holes and imperfections in the sputtered layer, 

the Inconel metal cells still degraded rapidly [15].

Methods of physically coating vulnerable metal substrates for corrosion protection were 

investigated by Ouyang & Tai, this study used titanium nitride (TiN) as an anticorrosion 

coating for stainless steel 301 [58]. TiN of varying thicknesses was applied through a 

sputtering process. Their results show an improvement in the corrosion resistance of 

Stainless Steel 301 in contact with a triiodide/iodide electrolyte. The single TiN layer and 

the bi-layer TiN/Ti are both able to protect the steel substrate. However, the single layer 

also increased the sheet resistance of the substrate and reduced performance. Once a Ti 

interlayer was added, this compensated for the reduction on using TiN. The DSC results 

showed an increase of over 200% from an efficiency of 1.64% for naked stainless 301 to an 

average of 4.09% for steel coated with TiN. The suggestions for the improvement in 

performance were the increased surface roughness of the TiN promoting increased contact 

area of T i02 and as a result a larger area of dye molecules. This seems to be indicated in 

the Jsc increase from ca. 4.5mA/cm2 for steel to an average of 9.95mA/cm2. This type of 

physical corrosion inhibitor was further assessed through the work of Vyas et al. who
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studied the use of a combined TiN/Polyimide coating as both a conductive layer and an 

anticorrosion substrate for DSC devices [59], [60]. At the time of writing, this coating was in 

the process of being investigated in full DSC devices.

Titanium was also assessed as a sputtered coating by Meng et al, on stainless steel 304 

sheets in order to increase the stability of the steel substrate [61]. A thin Ti-layer was used 

instead of bulk metal in order to reduce costs. The DSC device efficiencies for titanium 

coated steel are comparable to those of the FTO glass based control cells at 2.26% and 3.15 

efficiency respectively. The highest efficiency was produced when the sputtered Ti was 

applied at 700°C. The different temperatures of sputter deposition were seen to reduce 

the Rct of the photoelectrode from 261.30 when sputtered at room temperature to 45.00  

when applied at 700°C. This reduction was said to be the source of the improvement in 

efficiency for the Ti-coated steel DSCs, as Rrt of the counter electrode was unaffected, as 

was Voc, FF and Rs. The high temperature sputtering reduces defects in the sputtered Ti 

layer and improves the connection between the Ti layer and the T i02 semiconductor, which 

will increase the charge collection efficiency and as a result raise the Jsc of the device and 

thus cell efficiency.

The current state of the art of metal substrate solar cells appears to be focused on physical 

protection of the counter electrode through barrier coatings of resistant metals, rather 

than the use of potentially less expensive, though possibly more complex use of additive in 

the electrolyte as utilised in this thesis. Coating processes and more resistant metals add 

materials or process expenses to an already high cost process. It is thus beneficial for a 

means of corrosion protection to be found that will support the usage of low cost mass 

produced stainless steel.

This thesis has sought to develop a method of this through the addition of nitrogen 

containing heterocyclics (NHC) to the electrolyte. These previous works have shown that 

metal substrate cells with high performance are possible, but are currently handicapped 

from reaching a comparison with FTO glass device due to stability issues. The findings in 

this chapter show that for corrosion cells, degradation is effectively halted for 2000hrs in 

stainless steel 304 and 316L, in addition to aiding the stability of aluminium sheet metal. 

Therefore it is hoped that this will result in high performance and good stability of metal 

substrate DSC, through the combined anticorrosion and performance enhancing effects of 

the NHC compounds.
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5.9 Conclusions

In the first section of this chapter it was confirmed that the RGB image analysis method was 

a viable in situ method of observing and characterising the corrosion of metal substrates in 

iodide/triiodide electrolyte, which correlated well with an existing DR-UV-VIS 

characterisation method. The most vulnerable industrial metal substrates were found to be 

Fe (99.5%); Ni (99.5%) and surface activated Al (99.0%). Stainless steel 304 and 316L along 

with titanium have proven to be resistant to cell degradation and the inclusion of a 

chemical corrosion inhibitor such as 4-tBP or 1MBI at 1M concentration will increase this 

native resistance and add a performance enhancing effect to DSC devices. Since these 

compounds are already known as DSC performance enhancers, their inclusion should not 

destabilise the cells. Further work should be done on assessing other viable substrates.

The second section of this chapter analysed the effectiveness of three nitrogen containing 

heterocyclics, 4-tBP, 1MBI and 135T that have already been reported as DSC performance 

enhancers. It was found that the differences in concentration and molecular structure had 

large effects on the performance of the compound on a variety of metal substrates.

In commonly used DSC electrolyte formulations, concentrations of 0.5M are typically used 

for 4-TBP and 1-MBI additives. The results obtained in this chapter show that this 

concentration slows but does not fully inhibit cell degradation. The higher 1M 

concentration of 4-TBP and 1-MBI fully inhibits the vulnerable Al, Ni and Fe substrates 

observed in this study. In comparison, the 135T compound gave poor performance for 

vulnerable metals, which was suggested to be due to the balanced and poorly 

electronegative structure, which will not easily donate electrons to form bonds. It was then 

proposed that the NHC inhibition effect will occur through a combination of mechanisms, 

ranked in the following order of effect:

•  Reactive site blocking through adsorption on to the metal surface

•  Causing steric hindrance of the triiodide molecules

•  Potential formation of an NHC to l3' or I' complex (steric hindrance and reduction

of aggressive species)

While only three additives have undergone testing here -  the choice of compounds of 

varying structure has meant that predictions on the inhibition efficiency can be made for 

the vast variety of NHC compounds available, with particular emphasis on those indicated 

as excellent performance enhancers from the studies of Kusama et al. [29], [34], [35], [54],

[62], [63].

217 | P a g e



5.10 References

[1] M. Toivola, F. Ahlskog, and P. Lund, "Industrial sheet metals for nanocrystalline dye- 
sensitized solar cell structures," Sol. Energy Mater. Sol. Cells, vol. 90, no. 17, pp. 
2881-2893, Nov. 2006.

[2] K. Miettunen, X. Ruan, T. Saukkonen, J. Halme, M. Toivola, H. Guangsheng, and P.
Lund, "Stability of Dye Solar Cells with Photoelectrode on Metal Substrates," J. 
Electrochem. Soc., vol. 157, no. 6, p. B814, 2010.

[3] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, "Flexible counter
electrodes based on metal sheet and polymer film for dye-sensitized solar cells," 
Thin Solid Films, vol. 472, no. 1-2, pp. 242-245, Jan. 2005.

[4] K. Miettunen, J. Halme, M. Toivola, and P. Lund, "Initial Performance of Dye Solar
Cells on Stainless Steel Substrates," J. Phys. Chem. C, vol. 112, no. 10, pp. 4011 -  
4017, Mar. 2008.

[5] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy,
M. K. Nazeeruddin, and M. Gratzel, "High-efficiency (7.2%) flexible dye-sensitized 
solar cells with Ti-metal substrate for nanocrystalline-Ti02 photoanode.," Chem. 
Commun. (Camb)., no. 38, pp. 4004-6, Oct. 2006.

[6] "G24 Innovations," 2013. [Online]. Available: http://www.g24i.com/. [Accessed: 12- 
Jul-2013].

[7] T. Watson, P. Holliman, and D. Worsley, "Rapid, continuous in situ monitoring of dye 
sensitisation in dye-sensitized solar cells," J. Mater. Chem., vol. 21, no. 12, p. 4321,
2011.

[8] A. Hagfeldtt and M. Gratzel, "Light-Induced Redox Reactions in Nanocrystilline 
Systems," Chem. Rev., vol. 95, no. 1, pp. 49-68 ,1995.

[9] S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, and A. J. Frank, "Charge 
Recombination in Dye-Sensitized Nanocrystalline Ti02 Solar Cells," /  Phys. Chem. B, 
vol. 5647, no. 96, pp. 2576-2582,1997.

[10] H. Kusama, M. Kurashige, and H. Arakawa, "Influence of nitrogen-containing 
heterocyclic additives in I-  13-redox electrolytic solution on the performance of Ru- 
dye-sensitized nanocrystalline Ti02 solar cells," J. Photochem. Photobiol. A Chem., 
vol. 169, pp. 169-176, 2005.

[11] C. Vargel, "Chapter B .l The Corrosion of Aluminium," in Corrosion of Aluminium, 
Illustrate., Elsevier, 2004, p. 81.

[12] J. E. Hatch, Aluminium: Properties and Physical Metallurgy. American Society for 
Metals International, 1984, p. 242.

218 | P a g e



[13] T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, "Properties of several 
types of novel counter electrodes for dye-sensitized solar cells," J. Electroanal. 
Chem., vol. 574, no. 1, pp. 77-83, Dec. 2004.

[14] K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, "100mm x 100mm 
Large-Sized Dye Sensitized Solar Cells," J. Photochem. Photobiol. A Chem., vol. 164, 
no. 1-3, pp. 193-198, Jun. 2004.

[15] K. Miettunen, I. Asghar, X. Ruan, J. Halme, T. Saukkonen, and P. Lund, "Stabilization 
of metal counter electrodes for dye solar cells," J. Electroanal. Chem., vol. 653, no. 
1-2, pp. 93-99, Apr. 2011.

[16] J. Olsson and B. Wallen, "Experience with a high molybdenum stainless steel in 
saline environments," Desalination, vol. 44, no. 1-3, pp. 241-254, May 1983.

[17] M. Kang, N. Park, K. Ryu, S. Chang, and K. Kim, "A 4.2% efficient flexible dye- 
sensitized Ti02 solar cells using stainless steel substrate," Sol. Energy Mater. Sol. 
Cells, vol. 90, no. 5, pp. 574-581, Mar. 2006.

[18] Y. Jun, J. Kim, M. G. K. A, and M. Kang, "A study of stainless steel-based dye- 
sensitized solar cells and modules," Sol. Energy Mater. Sol. Cells, vol. 91, no. 9, pp. 
779-784, 2007.

[19] J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee, and M. G. Kang, "Fabrication of an Efficient 
Dye-Sensitized Solar Cell with Stainless Steel Substrate," J. Electrochem. Soc., vol. 
155, no. 7, p. F145, 2008.

[20] M. T. A, J. Halme, K. Miettunen, K. Aitola, and P. D. Lund, "Nanostructured dye solar 
cells on flexible substrates — Review," Int. J. Energy Res., no. September, pp. 1145- 
1160, 2009.

[21] M. I. Asghar, K. Miettunen, S. Mastroianni, J. Halme, H. Vahlman, and P. Lund, "In 
situ image processing method to investigate performance and stability of dye solar 
cells," Sol. Energy, vol. 86, no. 1, pp. 331-338, Jan. 2012.

[22] K. Miettunen, "Performance and Stability of Dye Solar Cells on Stainless Steel," 
Helsinki University of Technology, 2009.

[23] B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye- 
sensitized colloidal Ti02 films," Nature, vol. 353, no. 6346, pp. 737-740, Oct. 1991.

[24] L. Peter, "Characterization and Modeling of Dye-Sensitized Solar Cells," ECS Trans., 
vol. 6, pp. 555-565, 2007.

[25] Z. Yu, M. Gorlov, G. Boschloo, and L. Kloo, "Synergistic Effect of N - 
Methylbenzimidazole and Guanidinium Thiocyanate on the Performance of Dye- 
Sensitized Solar Cells Based on Ionic Liquid Electrolytes," J. Phys. Chem. C, vol. 114, 
no. 50, pp. 22330-22337, Dec. 2010.

219 | P a g e



[26] P. Wang, S. M. Zakeeruddin, J. Moser, and M. Gra, "A New Ionic Liquid Electrolyte 
Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells," pp. 13280-13285,
2003.

[27] M. K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, 
and M. Gratzel, "Conversion of Light to Electricity by cis-X2Bis(2,2'-bipyridyl-4,4'- 
dicarboxylate)ruthenium(ll) Charge-Transfer Sensitizers (X = CI-, Br-, I-, CN-, and 
SCN-) on Nanocrystalline Ti02 Electrodes," J. Am. Chem. Soc., no. 4, pp. 7863-7863, 
1993.

[28] N. Kopidakis, N. R. Neale, J. van de Lagemaat, and A. J. Frank, "First Demonstration 
of Surface Passivation in Dye-sensitized Ti02 Solar Cells by an Additive in the 
Electrolyte," in 2004 DOE Solar energy technologies program review meeting, 2004.

[29] H. Kusama, H. Orita, and H. Sugihara, "Ti02 band shift by nitrogen-containing 
heterocycles in dye-sensitized solar cells: a periodic density functional theory 
study.," Langmuir, vol. 24, no. 8, pp. 4411-9, Apr. 2008.

[30] A.-F. Kanta and A. Decroly, "Stainless steel electrode characterizations by 
electrochemical impedance spectroscopy for dye-sensitized solar ceils," Electrochim. 
Acta, vol. 56, no. 27, pp. 10276-10282, Nov. 2011.

[31] H. Kusama, Y. Konishi, H. Sugihara, and H. Arakawa, "Influence of alkylpyridine 
additives in electrolyte solution on the performance of dye-sensitized solar cell," Sol. 
Energy Mater. Sol. Cells, vol. 80, no. 2, pp. 167-179, Oct. 2003.

[32] H. Kusama and H. Arakawa, "Influence of quinoline derivatives in I - / I3 -  redox 
electrolyte solution on the performance of Ru(ll)-dye-sensitized nanocrystalline Ti02 
solar cell," J. Photochem. Photobiol. A Chem., vol. 165, no. 1 -3 , pp. 157-163, Jul.
2004.

[33] H. Kusama, H. Sugihara, and K. Sayama, "Nitrogen-Containing Heterocycles' 
Interaction with Ru Dye in Dye-Sensitized Solar Cells," J. Phys. Chem. C, vol. 113, no. 
48, pp. 20764-20771, Dec. 2009.

[34] H. Kusama and H. Sugihara, "Theoretical studies of 1:1 charge-transfer complexes 
between nitrogen-containing heterocycles and 12 molecules, and implications on the 
performance of dye-sensitized solar cell," J. Photochem. Photobiol. A Chem., vol.
181, no. 2-3, pp. 268-273, Jul. 2006.

[35] H. Kusama and H. Arakawa, "Influence of pyrimidine additives in electrolytic solution 
on dye-sensitized solar cell performance," J. Photochem. Photobiol. A Chem., vol. 
160, no. 3, pp. 171-179, Aug. 2003.

[36] T. M. Watson, "Corrosion Mechanisms and Inhibition on Organic Coated Packaging 
Steel," University of Wales, Swansea.

[37] G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg, and A. Hagfeldt, 
"Optimization of dye-sensitized solar cells prepared by compression method," J. 
Photochem. Photobiol. A Chem., vol. 148, no. 1-3, pp. 11-15, May 2002.

220 | P a g e



[38] C. Zhang, J. Dai, Z. Huo, X. Pan, L. Hu, F. Kong, Y. Huang, Y. Sui, X. Fang, K. Wang, and 
S. Dai, "Influence of 1-methylbenzimidazole interactions with Li+ and Ti02 on the 
performance of dye-sensitized solar cells," Electrochim. Acta, vol. 53, no. 17, pp. 
5503-5508, Jul. 2008.

[39] P. E. Hansen, P. T. Nguyen, J. Krake, J. Spanget-larsen, and T. Lund, "Dye-sensitized 
solar cells and complexes between pyridines and iodines. A NMR, IR and DFT 
study.," Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 98, pp. 247-251, Dec.
2012.

[40] S. L. Granese, "Study of the Inhibitory Action of Nitrogen-Containing Compounds' 
s," pp. 322-327,1987.

[41] K. F. Khaled, "The inhibition of benzimidazole derivatives on corrosion of iron in 1 M
HCI solutions," Electrochim. Acta, vol. 48, no. 17, pp. 2493-2503, Jul. 2003.

[42] S. A. Abd El-Maksoud and A. S. Fouda, "Some pyridine derivatives as corrosion
inhibitors for carbon steel in acidic medium," Mater. Chem. Phys., vol. 93, no. 1, pp.
84-90, Sep. 2005.

[43] X. Wang, H. Yang, and F. Wang, "An investigation of benzimidazole derivative as 
corrosion inhibitor for mild steel in different concentration HCI solutions," Corros. 
Sci., vol. 53, no. 1, pp. 113-121, Jan. 2011.

[44] A. Popova, M. Christov, S. Raicheva, and E. Sokolova, "Adsorption and inhibitive 
properties of benzimidazole derivatives in acid mild steel corrosion," Corros. Sci., vol. 
46, no. 6, pp. 1333-1350, Jun. 2004.

[45] M. Lashkari and M . . R. Arshadi, "DFT studies of pyridine corrosion inhibitors in 
electrical double layer: solvent, substrate, and electric field effects," Chem. Phys., 
vol. 299, no. 1, pp. 131-137, Mar. 2004.

[46] R. J. Gillespie and R. S. Nyholm, "Inorganic stereochemistry," Q. Rev. Chem. Soc., vol. 
11, no. 4, pp. 339-380,1957.

[47] D. Landolt, Corrosion and Surface Chemistry o f Metals. CRC Press, 2010, pp. 549 - 
551.

[48] T. J. Mooibroek and P. Gamez, "The s-triazine ring, a remarkable unit to generate 
supramolecular interactions," Inorganica Chim. Acta, vol. 360, no. 1, pp. 381-404, 
Jan. 2007.

[49] T. Tassaing and M. Besnard, "Ionization Reaction in Iodine /  Pyridine Solutions :
What Can We Learn from Conductivity Measurements, Far-Infrared Spectroscopy, 
and Raman Scattering J. Phys. Chem. A, vol. 101, pp. 2803-2808,1997.

[50] Z. Kebede and S.-E. S.-E. Lindquist, "Donor-acceptor interaction between non- 
aqueous solvents and 12 to generate 1-3, and its implication in dye sensitized solar 
cells," Sol. Energy Mater. Sol. Cells, vol. 57, no. 3, pp. 259-275, Mar. 1999.

221 | P a g e



[51] C. Reid and R. S. Mulliken, "Molecular Compounds and Their Spectra. IV. The 
Pyridine-lodine System/' J. Am. Chem. Soc., vol. 76, no. 15, pp. 3869-3874,1954.

[52] G. Boschloo, L. Haggman, and A. Hagfeldt, "Quantification of the effect of 4-tert- 
butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured 
Ti02 solar cells.," J. Phys. Chem. B, vol. 110, no. 26, pp. 13144-50, Jul. 2006.

[53] A. Fischer, H. Pettersson, A. Hagfeldt, G. Boschloo, L. Kloo, and M. Gorlov, "Crystal 
formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye- 
sensitized solar cells," Sol. Energy Mater. Sol. Cells, vol. 91, no. 12, pp. 1062-1065, 
Jul. 2007.

[54] H. Kusama, H. Arakawa, and H. Sugihara, "Density functional study of imidazole- 
iodine interaction and its implication in dye-sensitized solar cell," J. Photochem. 
Photobiol. A Chem., vol. 171, no. 2, pp. 197-204, Apr. 2005.

[55] C.-L. Lee, W.-H. Lee, W.-T. Li, C.-H. Yang, and P.-C. Kao, "StSt/Ti02 compact 
Iayer/Ti02 triple-layered conducting substrates for large active area dye-sensitized 
solar cells," Mater. Res. Bull., vol. 48, no. 7, pp. 2625-2629, Jul. 2013.

[56] A.-F. Kanta and A. Decroly, "An investigation of the electrolytic solution effects on
stainless steel electrode for dye-sensitized solar cells," Mater. Chem. Phys., vol. 130, 
no. 3, pp. 843-846, Nov. 2011.

[57] T. M. Watson, G. J. Reynolds, and D. a Worsley, "Painted steel mounted dye 
sensitised solar cells: titanium metallisation using magnetron sputtering," Ironmak. 
Steelmak., vol. 38, no. 3, pp. 168-172, Apr. 2011.

[58] F.-Y. Ouyang and W.-L. Tai, "Enhanced corrosion resistance of TiN-coated stainless 
steels for the application in flexible dye-sensitized solar cells," Appl. Surf. Sci., vol. 
276, pp. 563-570, Jul. 2013.

[59] N. Vyas, D. A. Wragg, C. Charbonneau, M. Carnie, and T. M. Watson, "Low Cost TCO 
Less Counter Electrodes for Dye-Sensitized Solar Cell Application," ECS Trans., vol. 
53 , no. 24 , pp. 39-46, Oct. 2013.

[60] N. Vyas, C. Charbonneau, M. Carnie, D. A. Worsley, and T. M. Watson, "An 
Inorganic/Organic Hybrid Coating for Low Cost Metal Mounted Dye-Sensitized Solar 
Cells," ECS Trans., vol. 53 , no. 2 4 , pp. 29-37, Oct. 2013.

[61] L. Meng, M. Wu, Y. Wang, W. Guo, C. Ma, T. Ma, and R. Silva, "Effect of the compact 
Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel 
sheets," Appl. Surf. Sci., vol. 275, pp. 222-226, Jun. 2013.

[62] H. Kusama and H. Arakawa, "Influence of alkylaminopyridine additives in 
electrolytes on dye-sensitized solar cell performance," Sol. Energy Mater. Sol. Cells, 
vol. 81, no. 1, pp. 87-99, Jan. 2004.

[63] H. Kusama, H. Sugihara, and K. Sayama, "Nitrogen-Containing Heterocycles' 
Interaction with Ru Dye in Dye-Sensitized Solar Cells," J. Phys. Chem. C, vol. 113, no. 
48, pp. 20764-20771, Dec. 2009.

222 | P a g e



6 Corrosion behaviour of cobalt electrolytes

6.1 Introduction

As Chapter 5 has shown, the triiodide/iodide based electrolyte reacts aggressively with 

certain industrial metals. Following this study, alternative electrolytes such as a cobalt 

(ll/lll) redox couple have been assessed as possible alternative liquid electrolytes in DSC 

devices as they are known to be less aggressive and give higher performance when 

optimised. As previously mentioned in Chapter 1, cobalt (ll/lll) complexes undergo an 

outer sphere, one electron transfer, and usually have a redox potential that will give a 

higher Voc than the 0.75V typical for the iodide/triiodide DSCs when matched with a 

suitable dye [1]. This usual iodide/triiodide redox couple operates through an inner-sphere 

electron transfer process, which proceeds at a slower rate to the cobalt complex electron 

transfer. It has been stated in the literature that a cobalt based redox couple is not 

corrosive to some metal substrates [2], [3]. However, no dedicated corrosion monitoring 

study has so far been published. This chapter seeks to monitor the interaction of cobalt 

with several metal substrates over a set time period, using the same in situ corrosion 

monitoring method that was developed for the triiodide corrosion analysis in Chapter 5.

6.2 Experimental

The electrolyte solutions and corrosion monitoring cells were prepared as detailed in 

Chapter 2. The cobalt complex selected for this study was the commercially available -(2,2'- 

bipyridine)cobalt(ll) di(hexafluorophosphate) or cobalt(bpy)3 PF6 based complex (Dyenamo 

AB, Sweden) [4]. Briefly, 0.2M of Co2+ complex and 0.02M Co3+ or 0.2M of Co3+ were 

dissolved in 3-methoxypropionitrile (3-MPN). A further compound, 0.1M LiCI04, was also 

added to the DSC electrolyte as a source of lithium ions to improve performance. Further 

to this, additions of 0.25M and 0.5M 4-fert.butylpyridine (4-TBP) were also added to two of 

the formulations in order to assess the corrosion inhibition effect of 4-TBP when used with 

a cobalt complex electrolyte. DSC devices on FTO-glass, using this electrolyte were 

successfully constructed and tested, showing that the electrolyte formulation was viable for 

use. Figure 6.1 demonstrates the comparison between a successful cobalt cell and a 

traditional DSC containing iodide/triiodide electrolyte.
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Figure 6.1: l-V curve illustrating the successful performance of cobalt electrolyte using 0.2M Co2+/  0.02 Co3+ in 
a DSC device compared with a standard triiodide/iodide electrolyte device

In the current non-optim ised configuration, an operational DSC device was still able to  be 

constructed, though the Jsc and Voc values are much less than fo r the comparison triiodide 

based device. The discrepancy between cells was the result o f unfam iliarity w ith  the cobalt 

e lectrolyte in a DSC form at and the non-optim ised components of the solar cell w ith 

regards to  the cobalt complex. The substrates tested in this study are listed here. Only the 

most relevant structural or vulnerable substrates were tested in this study:

• Iron

• Iron covered w ith  T i02 blocking layer

• Stainless Steel 304

• Titanium

• Nickel

•  Copper

Iron is the common base to  many industrial substrates, and as a result provides an ideal 

starting point fo r this analysis. An iron substrate was also covered w ith  a T i0 2 blocking 

layer, to  understand whether this could provide some corrosion protection - a T i0 2 layer is 

critical in a cobalt complex cell, as it acts as a blocking layer to  prevent the recombination 

o f electrons w ith  the Co3+ species, this happens rapidly due to  the outer sphere electron 

process [5]. Stainless steel 304 is a common type o f stainless steel, used in many 

applications from  structural to  tableware, thus it w ill be im portant to  assess this material's 

stability in this e lectrolyte fo rm ula tion, compared to w ith  the iod ide/triiod ide electrolyte. 

Titanium was included as a control metal, as it is known fo r the high corrosion resistance 

imparted by a strongly bonded oxide layer that forms rapidly in air. Nickel was studied as it
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remains one of the most common alloying elements, and fu rthe r a possible replacement fo r 

silver contacts in dye solar cells. Finally, copper was included as it is a commonly used 

connector used in DSC cells. This substrate was not previously tested in Chapter 5, as it is 

already proven to be extremely vulnerable in triiod ide electrolyte, even in literature  reports 

containing 4-TBP as an additive. The only additive used in this study was 4-TBP, as this is 

the only performance enhancing compound reported fo r cobalt e lectrolyte DSCs in the 

current literature. Further electrochemical studies are necessary before other NFIC can be 

utilised, due to  the current lack of data fo r cobalt electrolytes containing performance 

enhancing additives, compared w ith  iod ide/triiod ide DSC devices. The goal was to  assess if 

the cobalt electrolyte required a corrosion inh ib ito r and also if 4-TBP could fu lfil the 

requirem ent.

6.3 Assessment of cobalt complex electrolyte

Before analysis of the metal corrosion could progress, the UV-VIS spectra o f both the Co3+ 

and Co2+ species was assessed, see Figure 6.2. The Co2+ complex was seen to  absorb 

strongly in the 400-520nm range, resulting in a green/yellow  tin t. The Co3+ absorbance is 

much reduced in the same region, resulting a much weaker coloration of the solution. The 

large absorbance from  200nm to  325nm indicates absorbance in the UV region, typically 

from  the 3-MPN solvent.
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Figure 6.2: UV-VIS spectra of a 0.2M  Co2+ solution and a 0.02M Co3+ solution. The solvent for each is 3-MPN  

In literature, the initial synthesis study by Sapp et al. reports that the Co(bpy)3(PF6)x 

complex exhibits similar spectra to  other cobalt complexes, where the Co(ll) complex gives 

a weak absorption around the 440-450nm range, resulting in an electrolyte w ith  a green 

tin t, compared to the yellow coloured triiodide that has a strong absorption at 360nm to 

500nm [2]. Crucially, it was reported tha t the absorbance o f the Co(lll) species was m inimal

225 | P a g e



in comparison, which is the reverse o f the triiod ide/iod ide  species. Further to  this, the 

point was made tha t any partial oxidation o f the Co(ll) complexes would reduce the overall 

absorbance o f the electrolyte solution, rendering it more colourless. These features 

indicate tha t the RGB image analysis method may not be as viable as fo r the trad itional 

triiod ide  DSCs. Sapp et al. also investigated the effect o f adding pyridine molecules such as 

4 -ferf-buty lpyrid ine (4-TBP) to  the electrolyte. Their results show a similar increase in the 

Voc to  the effect in the triiod ide/iod ide  electrolyte system. However, in certain cases the Jsc 

o f cobalt e lectrolyte system DSCs also increases slightly. The Voc effect was due to  the 

shifting o f the Fermi level and the reduction o f dark current at vacant T i0 2 sites. Since the 

effect reported matched that o f the iodine based electrolyte used in Chapter 5, it was 

thought that there would be no detrim ental effect on fu tu re  DSC performance through the 

addition o f the compound as a possible corrosion inh ib itor in this Chapter.

6.4 Assessment of meta! substrates

Table 6.1 summarises the metals used in this study, in addition the cell components and 

resulting lifetimes observed.

Table 6.1: Lifetime and purity of metal substrates against Co3+ and 4-tBP concentration used in this study 
denotes no degradation over the observed experimental period

Metal Purity Co3+ (M) 4-tBP (M) Lifetime (hrs)
Iron 99.5%Fe 0.02 N/A 2
ii 0 .2 N /A 0 .5

Iron + TiCI4 
blocking layer

99.5%Fe 0.02 N/A 23

it
0 .2 N /A 2 2

II 0.02 0.25 ~24
n

0 .0 2 0 .5 2 5

Stainless Steel 
304

18%Cr, 10% Ni 0.02 N/A -

n
0 .2 N /A -

Ti 99.6%Ti 0.02 N/A -
it

0 .2 N /A -

Ni 99.98%Ni 0.02 N/A -
II

0 .2 N /A -

Al 99.95%AI 0.02 N/A -

" 0 .2 N /A -

Cu 99.9%Cu 0.02 N/A 100
ll

0 .2 N /A -
•1 0.02 0.25 -
ll

0 .0 2 0 .5 -

It should be noted that 4-TBP additions are only used fo r fu rthe r study on the most 

vulnerable substrates and not th roughout this chapter due to  the need to  focus mainly on 

the interaction of the cobalt complex w ith  the substrate, rather than w ith  chemical 

additions.
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6.4.1 Iron

The prelim inary study observed an iron substrate prepared using the surface preparation 

method detailed in Chapter 2. Two d ifferent concentrations 0.02M and 0.2M were used to 

determ ine if the concentration o f the Co3+ ion affected the corrosion behaviour of this 

e lectrolyte. Initially, the cells degrade rapidly, giving a colour change from  light 

ye llow/green to  blood red, Figure 6.3. The yellow /red transition was found to  be already 

underway in the high concentration cell in the firs t five minutes of the study. It was 

interesting tha t the reaction started in the corners o f the cell, thought to  be where the cell 

is th innest fo llow ing the pressure sealing. This would lower the volume at the corner point 

and prom ote faster degradation. The yellow to  red colour change matches tha t found by 

M iettunen et al. in cells containing a [Co(bipy)3]/[Co(bipy)2] redox couple [3]. Interestingly, 

this is the same colour change that was found fo r nickel substrates exposed to  a 

triiod ide /iod ide  electrolyte containing no additives.

Co Co ^  Co £  J *W ft V
tew Hi#'*

Increasing tim e

Co "m w
tew

Figure 6.3: Degradation of Iron substrate in a cell containing cobalt electrolyte. Left cell contains the low 
0.02M Co3+ concentration; the right cell contains the 0.2M high Co3+ concentration

The reaction was confirmed to  be chiefly between the iron substrate and the Co3+ complex 

through isolation experiments using Co3+ or Co2+ in 3-MPN, Figure 6.4. The cell containing 

Co3+ changes to  a defined red colour, while the Co2' cell remains mostly yellow/green, but 

begins to  show a red colouration.

Figure 6.4: Isolation test showing the effects of either Co2+ or Co3+species on the Fe substrate 

Figure 6.5 indicates that this shift from  yellow to  red w ith  Co3+ occurs fu lly w ith in  2 hours 

regardless o f the concentrations o f Co3+, though the end value o f low concentration 0.02M 

cell did not reach the same point as the higher concentration 0.2M. As mentioned

227 | P a g e



previously, this was theorised to  be due to  differences in the cell volume and material 

surface finish. The onset of the colourless region was also seen to  be variable, w ith  the 

higher concentration fu lly transitioning to  colourless at 1 hour compared to the 2.5 hours 

fo r the 0.02M concentration. The faster transition was thought to  be due to  the higher 

concentration o f Co3' ions in the electrolyte solution.
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Figure 6.5: Average RGB value vs. time for Iron substrate corrosion cells containing cobalt electrolyte. Yellow 

shaded area denotes green/yellow to red transition. Inset figure shows first 2 hours of degradation.

The m ultifaceted nature o f the cobalt complex ion means that several d ifferent interactions 

w ill be possible between it and the iron substrate. The cobalt metal ion, the bipyridyl 

ligands and the PF4 counter ion are all possible candidates. W ithout fu rthe r testing using 

the complex components, it was suggested tha t the red colouration represents the 

substitu tion o f the Co iron in the complex by a Fe ion, which w ill cause degradation in the 

performance of the electrolyte.

Due to the unexpected susceptibility o f the Fe substrate to  attack when in contact w ith  the 

cobalt e lectrolyte, a fu rthe r study was undertaken where a blocking layer was applied to  

the vulnerable iron substrate through immersion and heating in TiCI4 solution. A blocking 

layer is a necessary component in cobalt electrolyte DSC w ith  metal substrate, due to  the 

inherent fast electron transfer exhibited by outer-sphere electron transfer complexes to  

highly conductive substrates [5]. When a T i0 2 blocking layer is applied though TiCI4 

trea tm ent, the cell remained stable fo r 20 hours, Figure 6.6. This is in contrast to  the sub-1 

hour life tim e o f the o f the electrolyte exposed to bare iron, Figure 6.5, the blocking layer 

appears to  have been partially successful in protecting the substrate as a physical barrier to
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cobalt species movement, though it is thought that the simultaneous degradation o f both 

high and low Co3+ concentrations at ca.20 hours is the result o f the treatm ent rendering the 

iron substrate more vulnerable through the heating and chemical exposure during the TiCI4 

process. This seems to be supported by the sim ilar degradation o f the cells which included 

4-TBP and a iow 0.02M Co3' concentration.

As a result o f the success of 4 -te rt.buty lpyrid ine (4-TBP) as a corrosion inh ib ito r in 

triiod ide /iod ide  based DSCs, the compound was assessed fu rthe r fo r vulnerable metallic 

substrates exposed to  a cobalt e lectrolyte. However, the resulting study found that the 

4-TBP only has a small effect on the degradation. This was believed to  be indicated by the 

difference in final transition, Figure 6.6 inset, where the final change is slowed in the 0.25M 

and 0.5M 4-TBP cells, compared to  the control cell. As reported in the paper by Koh et al. 

the 4-TBP species increases the viscosity o f the electrolyte and w ill slow down diffusion o f 

the Co3+ species [6]. In addition it was also thought to  bond to  the substrate or TiO? and 

inh ib it movement toward the electrode, which previous literature has proven [7],

250  0.02M Co(lll) +BL
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—  0.25MTBP+BL
100200
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S  150
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21 23 25 27
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Figure 6.6: Average RGB value vs. time for iron substrate coating with a TiCI4 blocking layer (BL) and exposed 

to 0.02M Co3+ cobalt complex electrolyte and 4-TBP. Inset figure shows the 21-28hours section where the

colour transition occurs

One key observation in the reaction between the cobalt electrolyte and the substrate, is 

tha t there is a colour change to  red rather than colourless, shown by the drop in average 

RGB from  240 to 25-30 mentioned previously in Figure 6.6. This is also evidenced in Figure 

6.7 showing the change in colour from  Ohrs to  500hrs.
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Figure 6.7: Titania blocking layer coated nickel substrate in exposed to cobalt based electrolyte. Clockwise 
from top left: 0.02M Co3+, 0.2M  Co3+, 0.02M Co2++ 0.25M 4-tBP, 0.02M Co3+ + 0.5M 4-tBP.

This is theorised to be due to  the substitution o f the Co complex ion by Fe, the resulting 

iron complex would then be red in colour. However, w ithou t fu rthe r testing o f the 

electrolyte, this has yet to  be fu lly confirmed.

6.4.2 Titanium & Stainless Steel 304

Titanium has already proven to  be resistant to  the iod ide/triiod ide electrolyte, which is a 

much more aggressive electrolyte than this cobalt complex. The cobalt e lectrolyte 

containing low and high concentrations of CoB+ species was studied to  make certain this 

resistance is carried over to  a metal complex electrolyte species w ith  d ifferent chemistry. 

As expected, no noticeable change in RGB value was observed when studying the cobalt 

e lectrolyte and titanium  substrate interaction, Figure 6.8. The green/black residue external 

to  the observation cells at lOOhrs is not metal corrosion, but dried cobalt complex, which 

stresses the importance o f ensuring cell integrity when manufacturing fu ll DSCs.

c*> "5;
*

------------------ — -— ►

Ohrs lOOOhrs

Figure 6.8: Titanium substrate in contact with cobalt electrolyte. Left cell contains 0.02M Co3+; right cell
contains 0.2M Co3+

Stainless steel 304, hereafter w ritten  as StSt304, was studied in order to  verify the data of 

previous literature, and its common use in the construction industry. Figure 6.9 shows the 

lack o f colour change in the electrolyte over 1000 hours testing time, a similar response to  

tha t o f 304 in contact w ith  triiod ide  in Chapter 5.
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Figure 6.9: Stainless steel 304 in contact with cobalt electrolyte. Left cell contains 0.02M Co3+, right cell

contains 0.2M Co3+

The results of this test were supported by a previous study from  M iettunen et al., who 

reported up to  500 hour stability fo r this metal [3].

6.4.3 Aluminium & Nickel

The activated aluminium samples showed negligible colour change after 1000 hours contact 

w ith  the cobalt e lectrolyte at both high and low Co3+ concentrations, though there is a 

larger disparity in the ir average RGB than expected due to concentration differences, Figure 

6.10. It was though tha t this was caused by the light colour and high reflectiv ity o f the 

substrate compared w ith  the previous observed metals. The low concentration is much 

closer to  the base cream-yellow colour of the 3-MPN solvent, hence its high relative RGB. 

The long lifetim e seen fo r activated Al metal is an excellent result compared to  the 88hr 

lifetim e fo r the aluminium substrate cell containing no inhibitors, Figure 6.10.
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Figure 6.10: Comparison of Al substrate exposed to triiodide electrolyte and cobalt electrolyte at either 0.02M
Co3+ or 0.2M Co3+

This behaviour matches well w ith  previous literature on the subject, reporting the lack of 

visible corrosion or cell instability [3].
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The nickel cells also improve vastly upon the performance of the equivalent substrate in 

contact w ith  triiod ide/iod ide  electrolyte, Figure 6.11. This shows no degradation in 

comparison to  fu ll loss of colour in 60hrs fo r an uninhibited triiod ide  test cell. An 

interesting result was that the N i/cobalt cells did not exhibit the same yellow to  red initia l 

colour change tha t was shown by the N i/triiod ide  cells, Figure 6.11. The final RGB value o f 

the triiodide cell matches that o f the un-reacted cobalt containing cells, indicating tha t the 

cobalt cells RGB is very close to  tha t o f the 3-MPN solvent on this substrate, therefore care 

was taken to  check the RGB analysis method, so tha t it was able to  compensate fo r the 

reduction in RGB value versus tha t o f the background chemicals.

Despite previous evidence that d ifferent concentrations o f Co3+ provoke d ifferent RGB 

values, the difference between 0.02M and 0.2M Co3+ is remarkably small. It was thought 

tha t the variation is dependent on the background reflectiv ity and colour of the substrate, 

especially since the cobalt e lectrolyte is clearly much paler in colour to  the triiod ide  

electrolyte.
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Figure 6.11: Comparison of Ni substrate exposed to triiodide electrolyte and cobalt electrolyte at either
0.02M Co3+ or 0.2M CoB+ concentration

However, these samples are still potentia lly vulnerable w ith  some reports stating tha t 

microscopic analysis has observed small quantities of metal debris elsewhere in the test 

devices fo llow ing cell aging.
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6.4.4 Copper

Just as im portant as the bulk metallic substrates, the corrosion behaviour o f conductive 

layers is o f critical importance. One of the m ajor issues w ith  iod ide/triiod ide cells was the 

use o f the robust but poorly conductive FTO or ITO layers, as superior conductors such as 

copper and silver were susceptible to  corrosion by the triiod ide species [8]. Since the 

cobalt based electrolyte has been reported to  be less aggressive towards metal substrates, 

this fo llow ing study observe how conductive materials w ill perform in a th in layer cell 

arrangement. Copper tape has been used as a current collector and external connection 

point in dye sensitised solar cells, it is an excellent connection material that would increase 

the performance o f the DSC if the tape or a printed copper ink was able to  survive in the 

cell environm ent as an internal current collector to  replace the FTO or ITO layer. 

Unfortunately, even using the less aggressive cobalt electrolyte, the copper was still found 

to  be vulnerable to  attack, Figure 6.12. The cells in itia lly show some instability in RGB 

value, which from  experimental analysis is deemed to  be from  interference w ith in  the 

observation environment and the effects of the lighting system, as the copper is an 

extremely reflective substrate.
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Figure 6.12: Average RGB vs. time for copper substrate with varying concentrations of Co3+ complex and TBP

Despite this observation, the instabilities were seen to  settle at co. 20 hours. The 

instability, shown by the inset in Figure 6.12 has been deliberately left in to  these results as 

it shows the possible variability o f this image analysis technique. Given enough images and 

a baseline RGB fo r each component, this can be identified, interpreted and still return 

viable observation data fo r DSC quality management.
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The initia l degradation o f the 0.02M cell in the period 0-100 hours is visible through a 

colour change from  pale yellow to blood red, Figure 6.13. The average RGB value was seen 

to  reduce from  150 reducing to 90, w ith  the colour change showing sim ilarity to  the study 

w ith  triiod ide  and nickel substrate in Chapter 5.

c*

Figure 6.13: Copper substrate after exposure to cobalt electrolyte. Clockwise from top left: 0.02M Co3+, 0.2M  
Co3+, 0.02M Co3+ + 0.25M 4-tBP, 0.02M Co3+ + 0.5M 4-tBP

The low and high concentration Co3+ vary by ca. 60 relative RGB units, w ith  the low 0.02M

concentration falling to  90 and indicating fu rthe r reductions after 500 hours. The m ajority 

o f the Co3+ loss takes place in the first 100 hours of observation, though from  100 hours on 

the rate of colour loss decreases, suggesting the loss of the m ajority of Co3+ ions. In 

contrast, the high 0.2M Co3+ concentration remains at co. 150 relative RGB fo r the fu ll 500 

hours observed, though it can be seen that there is a slow reduction in the RGB value over 

tim e. Interestingly, the higher concentration of 0.2M Co3+ appears to  decrease the rate of 

colour loss, suggesting that e ither the lower concentration renders the cell more sensitive, 

or tha t the higher concentration has other inhibiting mechanisms in play.

The addition o f 0.25M or 0.5M 4-TBP to the 0.2M Co3+ cells also reduces degradation to

match that o f the 0.2M Co3+ cell. As previously suggested, the large concentration of the 

complex ion, Co3+, is thought to  self-restrict the diffusion o f molecules toward the metal 

surface. This then slows the interaction/degradation reaction and therefore the colour loss 

in the cell. Similar to  in the triiod ide  cells in Chapter 5, the lower concentration o f Co3+ 

made this experiment more sensitive to  the degradation interactions w ithin each test cell, 

whereby the coloured Co3+ compound reduces to  Co2+. Thus degradation w ill occur over a 

much longer tim e period than used in this study. It is still thought that the potentia l 

produced by a DSC device w ill inh ibit corrosion while the device is active, so the longer 

degradation tim e and less aggressive behaviour of the cobalt electrolyte would allow the 

investigation o f copper current collectors to  replace the FTO or ITO in use currently. 

Flowever, the study by M ie ttunen et al. puts doubt on this assumption, through reporting 

the degradation o f cells, despite being under illum ination and operating conditions [9].
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6.5 Comparison of electrolyte degradation using image analysis

In Chapters 5 & 6 we have sought to  prove the viability o f a mass sample observation and 

analysis process that could potentia lly be transferred to  a pilot or fu ll size production line as 

a quality management method. In the process we have also shown tha t certain substrates 

behave d ifferently in th in layer cells compared to reported studies. In brief this section 

compares several o f the key metal substrates analysed, in order to  quantify the difference 

in cell stability, Table 6.2.

Table 6.2: Comparison of electrolyte colour life times for metal in contact with cobalt based or triiodide based

electrolyte. indicates no colour visible change

Metal Lifetime (h)

Cobalt lodide/triiodide

Bare Fe 0.33 1.5

Inhibited Fe 20 -

Ti - -

StSt304 - -

Surface Activated 99.0%AI - 88

Ni - 9

Copper 160 <1

Surprisingly, the iron substrate in contact w ith  cobalt electrolyte exhibits a colour change 

before the equivalent triiodide containing cell. However, the red colouration to the cells 

indicated that the reaction was somewhat d ifferent than what was expected. As 

mentioned previously, it was believed that the Co and Fe atoms were substituted, form ing 

a red coloured iron complex molecule. In addition, the cobalt electrolyte, w ith  NHC 

inhibitors included, lasted only 20 hours when compared to  the equivalent 4-tBP containing 

triiod ide  cell. Since the metal used was of the same batch and subjected to  the same 

treatm ent, it was concluded tha t the cobalt complexes outer sphere electron transfer 

ability was able to  negate the inhibition action of the NHC compound, which was successful 

in inhibiting the l3' chemisorption w ith  the metal substrates in Chapter 5.

The Nickel substrate in contact w ith  triiodide electrolyte also exhibits a yellow to  red 

transition, believed to  be evidence o f the form ation of a nickel iodide compound. This 

resulted in a short cell lifetim e o f 9hrs in comparison to  the stable cobalt cells on Ni 

substrate observed throughout this study. A similar difference was found fo r surface 

activated 99.0%AI, where the cobalt cell appeared unchanged under RGB analysis, whereas 

the triiodide colour was removed from  the observation cells containing no additives in
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88hrs. An interesting comparison result is for copper metal. Lasting for 100 hours in cobalt 

electrolyte, compared to less than one for triiodide. It was believed that copper did not 

have as strong an affinity for the Co-complex molecule as it does when attacked by 

triiodide. Because of this, an appropriate inhibiting compound similar to NHC's may aid in 

the protection of copper substrate, to the extent that is could be used as an internal 

current collector in DSC devices.

These results have shown that the corrosion performance of this cobalt complex electrolyte 

is equally as variable as the triiodide containing electrolyte. A conclusion made for the 

different reaction of Ni and Al was that differing sizes of the Co3+ and l3" species allow the 

latter to move closer to the substrate and attack more active sites. The larger cobalt 

species is thought to self-restrict movement through the electrolyte, so that is does not 

approach that closely to the substrate surface.

6.6 Metal substrate DSCs using cobalt electrolytes

There have been several papers to date that have used metal sheets as DSC substrates to 

test their usability in full DSC containing cobalt complex electrolytes. Miettunen et al. 

published a paper concentrating on metal substrate counter electrodes [3]. The metals 

used were comparable to the previous work on DSCs in 2010 with metal photoelectrodes 

containing triiodide/iodide electrolytes. This paper focuses heavily on stainless steels such 

as 304, 321, 316, 316L, as these are the most attractive substrates for metal DSCs due to 

their low cost, durability and abundance in the form of large quantities of rolled sheets. 

This work also assessed the highly resistant metals Inconel 600, titanium and aluminium. 

Nickel and Zinc were also assessed, although these metals are commonly used as anti­

corrosion coatings rather than sheet metal. Finally copper was also assessed, a high 

efficiency electrically conductive material that is extremely vulnerable to corrosion in the 

more usually used triiodide/iodide electrolyte. Initial reports from Miettunen et al agreed 

with the findings exhibited in this thesis, in that the copper metal is still vulnerable to 

corrosion in the cobalt electrolyte. Corrosion products were found on the copper 

electrode, identified by the study as pitting corrosion. Unfortunately, this will still prevent 

this metal being used as high efficiency charge collectors in DSC cells.

An interesting comparison is that Aluminium corrosion products were found in the study 

cells. However in the work presented in this thesis, the aluminium sheet sample showed no 

visible deterioration in the simple metal observation cells. It is possible that the active 

electrochemical nature of the DSC cells used in the Miettunen study could prove
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detrimental to the Al substrate, therefore further work on the stability of metal substrates 

in complete DSCs with cobalt electrolytes is recommended. Of particular interest was the 

comparison of stainless steel 304 in a complete DSC cell with that of this thesis. The active 

cell showed no corrosion marks or products when stainless 304 was used as a counter 

electrode. The performance of these cells varied with the applied catalyst, the highest 

reached with chemically applied Pt at 1.9%, with a Jsc of 6.4mA/cm2 and Voc of 0.69V. This 

compared strongly with cobalt electrolyte cells on FTO glass substrates with 2.8% efficiency 

and with thermal Pt, but still unfortunately low compared with iodine based FTO glass cells 

which reached 4.1% efficiency, 8.1mA/cm2 and 0.781V for Voc.

6.7 Conclusions

Due to the recent interest in cobalt electrolyte based DSCs, there is a need for further 

exploration and experimentation in the study of the interaction with metal substrates. This 

would assess whether novel architectures using metallic substrates will still be vulnerable 

and be to be used long term in DSC devices. Using the RGB analysis method developed in 

Chapter 5, this study showed that the non-corrosive aspect of a cobalt complex electrolyte 

is strongly dependent on the metal substrate. Contrasting with the iodide/triiodide 

electrolyte study, the observed nickel and aluminium substrates show high resistance to 

degradation while in contact with the cobalt complex electrolyte. As expected, titanium 

and stainless steel 304 continue to be resistant to degradation and have high potential for 

DSC devices, though the high cost of titanium does detract from its performance. The 

susceptibility of the iron substrate to degradation by both low and high concentrations of 

cobalt electrolyte was unexpected and led the conclusion that there was an unforeseen 

interaction between the complex and the iron that was not susceptible to the inhibition 

methods studied here. Further assessment of the chemical reaction and other inhibition 

routes is recommended if DSCs are to be build using iron or low carbon substrates.

A further conclusion gained from this study is that nitrogen containing heterocyclics, such 

as the commonly used concentrations of 4-TBP compound have a negligible effect on the 

progress of the degradation reaction. It is thought that the size of the complex and the fast 

outer sphere electron transfer mechanism of the Co3+ complex ion avoid the 4-TBP barrier. 

Finally, it is clear that the corrosion aspects of this complex require further study, especially 

for DSC devices on sheet metal substrates. It is recommended that the progress be 

monitored electrochemically in future work to assess the reactions occurring within the 

observation cells.
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7  Conclusions and further research

The initial studies of platinum electrodeposition concluded that the methods previously 

trialled in literature were not easily reproducible or adaptable to faster processing at sub- 

30 seconds deposition time. Furthermore, electrodeposition resulted in the deposition of 

larger platinum quantities than seen in the more commonly used chemical and thermal 

platinisation methods, an extremely undesirable result considering the current high cost of 

platinum. The basic electrodeposited catalysts gave poor catalytic performance, the 

highest value for Jnm being 0.051A/cm2 for constant potential deposition, versus 0.067A/cm2 

for the chemical method, despite SEM imagery showing the presence of much more 

material seen than when chemical platinisation was utilised. A particular point of note is 

the difference in platinum deposit size, from 5-50nm in the case of the chemically platinised 

FTO-glass to 500nm to 2pm in the case of electrodeposited. Despite the published 

evidence of high performing devices using electrodeposited platinum counter electrodes, 

the technique is more complex and variable than the usual thermal or chemical 

platinisation. As a result of the variable and low performing nature of these initial 

methods, Chapter 4 explores other variations on the electrochemical deposition of catalytic 

material.

Research on catalyst development reported a technique known as Single Layer Redox 

Replacement (SLRR), utilising a low cost, easily deposited template material to aid in the 

initial formation of the desired catalyst microstructure. Chapter 4 details the successful 

development of this technique using FTO-glass as the substrate. The formation of small 

nanometre Pb clusters, characterised through SEM and XPS, allowed finer control of the 

deposit morphology leading to the galvanic replacement of Pb by Pt and the formation of 

small nanometre deposits of catalytic platinum on the FTO surface. Pulse potential 

deposition was deemed the most efficient method of controlling the electrodeposition, the 

short potential pulse resulting in small nanometre diameter Pb deposits and the potential 

off time resulted in the galvanic replacement of Pb by Pt. Due to the short pulses and the 

electroless nature of the replacement, this process also seemed to be the most efficient, 

power wise, for use in large scale production. After electrochemical analysis to determine 

the optimum potential setup, these counter electrodes were used in DSC devices, where 

efficiencies ranged from 3% to 3.5% compared with 3.53% using chemical CEs. The fill 

factor of these devices ranged from 55.48% at 1 cycle to a respectable 63.34% at 20 cycles, 

leading to a good comparison with the DSCs using chemically produced CEs at 68.80%.
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Further optimisation was thus thought to result in a stable catalyst to rival thermal or 

chemically platinisation.

Since the eventual aim of industry is to use ITO-Polymer, future research suggested is the 

trial and optimisation of this technique on the conducting polymer material. Furthermore, 

as lead is a toxic material, other metals should be investigated for use as the template. In 

particular, Sn has the correct potential difference to Pt to be able to be galvanically 

replaced. In addition, there is greater industrial expertise in the field of tin plating.

The second part of this thesis studied the relationship between the electrolyte and bulk 

metal substrates that are available for use in flexible metal DSC devices. This follows the 

thesis theme of electrolyte interactions with the various materials or substrates used in DSC 

architecture. Chapter 5 successfully presents a quantative method of the mass in situ 

monitoring and characterisation of samples, utilised for metal substrates exposed to a 

simple two component iodide/triiodide electrolyte. In a passive environment, damage to 

the metal substrate can easily be replaced or repaired, but in a DSC environment this is not 

possible so increasing substrate lifetime or resistance was deemed necessary. In addition 

to this, the degradation reaction in the cell depletes the number of charge carriers available 

in solution and thus decreases DSC performance, so it is vital for industry to have a rapid 

means of device assessment for quality control and bulk sample analysis.

The initial study in Chapter 5 compared time-lapse image RGB analysis with DR-UV-VIS 

absorbance measurements which are more commonly used. This successful comparison 

showed negligible difference between the methods, indeed it was concluded that the RGB 

method was superior as more samples can be processed simultaneously and there is always 

a sample visible, rather than hidden in the equipment.

This analysis further concluded that iron was intensely vulnerable to attack, showing cell 

failure in 2 hours. This also cast doubt on the use of low cost carbon steel as a DSC 

substrate. Zinc was also shown to have a major vulnerability to attack, leading to the 

galvanisation method of corrosion protection of steels being unusable in DSC devices. Low 

purity aluminium (99.0%) was only shown to react when surface activation occurred to 

remove the protective oxide layer on the surface and the nickel substrate showed cell 

failure at 65 hours and above. Despite this evident vulnerability, the metals are only 

exposed to corrosion when the DSC device is not operating, i.e. at night. Therefore, the 30 

and 65 hour degradation times for Al and Ni respectively may allow their usage in 

constantly operating devices. High cost materials such as titanium, tungsten, molybdenum
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and chromium were shown to be resistant, as did two grades of stainless steel 316L and 

304, which are formulated for high corrosion resistance, particularly in aggressive 

environments, such as acids. The alloy known as Inconel 625 was also found to be highly 

resistant to attack from the triiodide species.

Since a typical DSC electrolyte consists of more components than the iodide and triiodide, 

the additive 4-tBP was included in the initial testing to ascertain the reaction of a more 

complex electrolyte. The unexpected conclusion of this research was that the small 

nitrogen containing heterocyclic compound (NHC) functioned as a corrosion inhibitor, 

noticeably retarding the degradation of an iron substrate corrosion cell. Since large 

molecule NHC's have been extensively proven as corrosion inhibitors in industrial 

environments, the dual use of small NHC's as performance enhancers and corrosion 

inhibitors will have a positive impact on DSC construction. This research found that 

concentrations of 0.5M to 1M were sufficient to seriously retard, or fully inhibit the 

degradation reactions on the Al and Ni substrates. Iron was inhibited for up to 400 hours 

when high 4-tBP and 1-MBI concentrations were included, though unfortunately little effect 

was seen when the 135T compound used, thought to be due to the lack of functional 

groups on the triazine ring compared to 1-MBI and 4-tBP. It was concluded that the choice 

of functional group in the structure of small NHC's is a critical factor in determining the 

impact of the inhibitor compound. The known methods of corrosion inhibition using 

organic compounds were studied and the most likely method, steric hindrance, was 

concluded to be the most viable method of inhibition observed in these samples.

This chapter also theoretically explored the bonding mechanism used by the NHC's using 

the nitrogen lone pairs to bond to the metal surface. This will position the NHC compounds 

close to the metal and prohibit the interaction between the triiodide and the metal 

substrate. Future research should investigate the bonding mechanism between NHC's and 

the metal substrates in a full DSC environment.

Chapter 6 utilised the RGB analysis method presented in Chapter 5 for the study of the 

behaviour of a cobalt bipyridyl complex electrolyte in contact with metal substrate. This 

research concluded that iron substrate was vulnerable in cobalt electrolyte. This was 

evidenced despite changing the Co3+ concentration and applying a T i02 blocking layer to the 

metal surface, or including 4-TBP in the electrolyte. The majority of the industrial metals 

tested proved resistant to cobalt electrolyte degradation, result that is supported by 

available literature. Unfortunately, copper was shown to be as vulnerable to the cobalt
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electrolyte as the triiodide/iodide electrolyte. In order to further quantify these results, it is 

recommended that other cobalt complexes undergo a similar monitoring procedure. This 

will show if the design of the complex is able to aid in corrosion inhibition. Further to this, 

it was thought that other alternative electrolytes, both solid state and liquid state 

electrolytes should be subjected to study through the RGB image analysis method due to its 

rapid and easily comparable nature.
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