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Abstract

In this thesis we discuss how to extend the notion of one-parameter Feller 

semigroups and one-parameter Markov processes to several time parame­

ters. Following a summary of the most important preliminaries we discuss 
N-parameter Feller semigroups and address the difficulty of extending the 
generator of one-parameter semigroups to multiparameters semigroups. In 
particular we extend the differential equation associated with the generator 
in the classical case to several parameters. Finally, we investigate families of 
operators depending on several parameters which go beyond operator semi­

groups and construct associated processes. For these families of operators 
the equality Ts oT ( =  T s+t, s , i  G R+, which is typical for operator semi­
groups, does no longer hold, and consequently the associated processes are 
time-inhomogeneous. However, using a transform of variables we link these 
operator families with operator semigroups.
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Introduction

The aim of this thesis is to extend the notion of thoroughly studied 
one-parameter convolution semigroups of (sub-)probability measures and 
semigroups of operators to N-parameter convolution semigroups of (sub-) 

probability measures and semigroups of operators, respectively, i.e. to 
objects indexed by a parameter t € MN. On the one hand this extension to 
N-dimensional parameters is interesting in itself, on the other hand we are 
particularly interested in families of probability measures which give rise to 
stochastic processes. We will mainly concentrate on the analytic point of 
view. One-parameter convolution semigroups of (sub-)probability measures 

are associated to (one-parameter) Levy-processes. The analytic counterpart 
are strongly continuous one-parameter semigroups of translation invariant 
operators on Coo. More generally, positivity preserving, strongly continuous 

contraction semigroups on Coo, be. Feller semigroups, are associated with 
(one-parameter) Feller processes. We aim to extend this correspondence 

to the N-parameter case. Certain stochastic processes with N-dimensional 
(time-)parameter £, in literature also called random fields, can be described 

by N —parameter convolution semigroups of (sub-)probability measures 

or N —parameter semigroups of operators. When extending stochastic 

processes or semigroups to parameters of N dimensions the main difficulty, 

which arises from the extension to a multidimensional index, is the lack 
of a total order on the parameter set. The notion of the generator of an 

N-parameter semigroup of operators, for example, cannot be defined as 
smoothly as in the one-parameter case. Another problem, which we do not
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2 INTRODUCTION

attempt to tackle is the definition of multiparameter cadlag-property. Yet 
there exists a partial order on R N of which we may make use. Together 
with a commutation property this will allow us to define nice processes 

indexed by subsets of R N. Moreover, we will construct vaguely continuous 

N-parameter families of probability measures - not fulfilling an N-parameter 
semigroup property - which give rise to multiparameter stochastic processes, 

which - to the best of our knowledge - have not yet been discussed by other 
authors before.

Summing up, the processes considered in Chapter 2 are both time- and 

space-homogenous Markov processes whereas the processes in Chapter 3 are 

space-homogenous and, in particular, time-inhomogeneous processes. If one 

wishes to drop space-homogeneity the characteristic exponent needs to be 
substituted by an x —dependent symbol. Symbols of this kind are briefly 
introduced in the first chapter.

Multiparameter processes have been investigated by many authors before. 
We mention just a few: R. Cairoli [5] looked at the (direct) product of 
two Markov processes and compared its properties with those of the factor 
processes, in [7] with J. B. Walsh they studied stochastic integrals in the 

plane, i.e. of processes with a two-dimensional continuous parameter. 
Moreover, in a book with R. C. Dalang [6] they provide a systematic 

exposition of the theory of optimal stopping for multiparameter stochastic 

processes with discrete parameter spaces. E. B. Dynkin [8] solved a type of 

Dirichlet problem for the product of the infinitesimal generators of several 

diffusion processes. In [17] G. Mazziotto developed a potential theory for 
two-parameter Markov processes with regular trajectories and in [10] F. 

Hirsch and S. Song introduce a Skrorokhod topology which allows them to 
define the notion of complete N —parameter symmetric Markov processes. 
O. E. Barndorff-Nielsen, J. Pedersen, and K.-I. Sato [2] analyse multivariate 

subordination of multiparameter processes. The latter comes very close
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to some parts of this thesis and will be focused on in the due text. The 

book [16] by D. Khoshnevisan presents a comprehensible account on the 

theory of multiparameter stochastic processes, in which both the discrete 

time-parameter case and the continuous time-parameter case is discussed. 

Moreover, two different notions of multiparameter martingales are intro­
duced and it is proved that these two are equivalent under a commutation 

hypothesis; examples of multiparameter processes axe presented and a 

potential theory for these processes is developed. Finally we mention paper 
[18] of J. Pedersen and K.-I. Sato who investigated stochastic processes 

indexed by a cone, more general than R+.

We briefly want to describe the content in some detail. In the first chapter 

we give preliminaries, which are necessary to sooth the reading of Chapters 
2 and 3. We start by defining the partial order X on multidimensional pa­
rameter sets which substitutes the total order. We state a theorem on tensor 

product spaces and define the Fourier transform which is an important tool 
to find the correspondence between convolution semigroups and continuous 

negative definite functions, in addition we discuss the convolution theorem. 
Moreover, we state a representation theorem for continuous negative definite 
functions, the Levy-Khinchin formula. We define convolution semigroups of 
measures which are supported on the positive half-line and subordination 
of convolution semigroups as well as semigroups of operators. We introduce 

the notion of the generator of a (one-parameter) semigroup of operators and 

state the Hille-Yosida-Ray theorem, which characterises generators of Feller 

semigroups. Finally, we list some special functions which are needed later in 
the text.

In Chapter 2 we extend the notion of convolution semigroups of probability 

measures and semigroups of operators to the case of an N-dimensional 
parameter. The first section focuses on N-parameter convolution semi­
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groups. After the definition an intuitive example is given. Then we prove 
the continuity of the N-parameter convolution semigroups with respect 
to (time-) parameter t. The first theorem of this section establishes a 
one-to-one correspondence between N  continuous negative definite functions 
and A —parameter convolution semigroups. The second theorem validates 
subordination in the sense of Bochner for A —parameter convolution semi­

groups. The following Section 2.2 is devoted to A —parameter semigroups 

of operators. The definition is complemented by two examples which also 
illustrate that A —parameter convolution semigroups of measures give rise 
to A-parameter semigroups of operators. Continuity with respect to the 
(time-)parameter t is shown and decomposition of A —parameter semigroups 

into its marginal (one-parameter) semigroups is proven. Concluding this 

section we address the problem of generalising the generator by looking 
at the evolution equation associated to the generator of a one-parameter 
semigroup of operators. We extend it to an A-parameter evolution equation 
which is associated to the composition of the generators of the marginal 

semigroups of the N-parameter semigroup and analyse the domain of this 
operator. In the subsequent Section 2.3 subordination (in the sense of 
Bochner) is defined for N-parameter semigroups of operators. We emphasize 

that the subordinate semigroup may be a indexed by an M-dimensional 

parameter and both M  < A  and M  > A  (as well as M  = A) are possible. 
Moreover, we describe the generator substitute of the subordinate semigroup. 
The concluding section of this chapter contains examples of multiparameter 

processes and draws attention to the third example of this section which 
illustrates the limitations following from the semigroup property.

In Chapter 3 drop the restrictive semigroup property and focus, more gen­

erally, on vaguely continuous families of probability measures and operators. 
We are especially interested in the processes which correspond to these fam­

ilies. The first section contains a case study of a two-parameter family of 
probability measures. Since it does not possess the semigroup property, sub­
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ordination as described in Chapter 2 is not feasible, instead we use iterated 

subordination ”by hand” . In addition we construct two kinds of processes 

which are associated to this family of probability measures. In Section 3.2 we 

look at other examples of two-parameter families of measures with the aim 

of finding a convolution property or commuting structure as known from the 
semigroup case discussed in Chapter 2. Indeed we obtain such a structure 

on a curvilinear net and are also able to transform the families of probability 

measures into convolution semigroups of probability measures.



Chapter 1 

Prelim inaries

In this chapter we introduce necessary notations and definitions and state 
theorems needed in the due text. Moreover, the reader will be made familiar 
with some basic facts of one-parameter semigroups which, in the subsequent 

chapter, will serve as a basis for the introduction and analysis of A-parameter 
semigroups. Where it seems helpful we give references for the reader to find 

proofs to the theorems and further properties.

1.1 N otation

We use the following notation for vectors in R N to handle N-dimensional 

parameters in a comfortable manner. First, ej := ( 0 , . . . ,  1 , . . . ,  0) defines 

the j-th canonical basis vector of R N. Further let s , t  G then we define 

s X t := (si A t i , . . . ,  sjv A tat) where for a, b G K we set a A b = min(a, b). 
Furthermore, s >z t is defined to hold if and only if Sj > tj holds for all 
j  G { 1 ,.. . ,  N }. In an analogous way we define s >- t, s ^  t  and s -< t.

(c) defines the open ball of radius 8 centered at c in the space Rn.

Among others we will need the following function spaces, (fi C K" is an 
open set)

7



8 CHAPTER 1. PRELIM INARIES

c(ci) continuous functions on Cl

c0(n) continuous functions with compact support in Cl
cm(n) m-times continuously differentiable functions on Cl
c°°(n) n m€Nc m(n)

cs°(n) C0(G) n  c™ (Cl)

B(n) Borel measurable functions on ft

D efinition 1.1.1. Let f t j , j  = 1,2, be open sets in Rn̂' and uj £ C(ftj). 
Then we define on x fi2 C Rni+na the function ui 0  U2 by

(ui ® u2)(rci,x2) =  ni(xi) • u2(x2), for all Xj £ ftj,

and we call Ui 0  u2 the tensor product of Ui and u2. Furthermore, let 
0C'5°(Q2) denote the set of all finite linear combinations of the form

m
E ^ ® ^ .
k=l

with uj^ £ Co°(fij), k = 1 , . . . ,  m, m  £ N, j  = 1,2. We call Co°(fti)0Co°(ll2) 
the algebraic ten sor product of Co°(fii) and Cg°(Q2).

The importance of the tensor product for our considerations lies in the fol­
lowing lemma.

Lemma 1.1.2. A dense subset ofC™(ft\ x f t 2) is given by Cg°(f2i)0Co°(S72).

See §14 in [13] for a proof of this lemma and more properties of tensor product 
spaces.

When introducing convolution semigroups of measures we will need the space 
Mjj"(Rn) of positive bounded measures on Rn and for a measure p £ M ^(Rn) 
its total mass is defined to be the non-negative value \\p\\ = p{Rn). Now, we 

can define the convolution of measures.

D efinition 1.1.3. Let pj £ M^(Rn) , j  = 1,2, and define the mapping A2 : 

R 2n — > Rn, 1— ► X\ +  %2 - The image of p i 0  p 2, i.e. the product
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measure of fi\ and P2 , under the mapping A2 is called the convolution of p\ 
and P2 and is denoted by

Moreover, the convolution of two integrable functions f , g : Rn —> R is defined 
by

D efin ition  1.1.4. Let p be a Borel measure on Rn. We define the support 
of p as the complement of the largest open set G, such that p{G) =  0, and 

we will denote it by supp p.

1.2 One-Parameter Convolution Semigroups

In this chapter we will summarize definitions and theorems arising when 
analysing convolution semigroups and semigroups of operators depending on 
one parameter. Since our aim is to investigate multi-parameter convolution 

and operator semigroups we sometimes speak of one- or multi-dimensional 
semigroups with reference to the parameter set. We omit proofs, however, 
refer the reader to [14] by N. Jacob and [4] by C.Berg and G.Forst.

First we introduce the Schwartz space:

D efin ition  1.2.1. The S c h w a r tz  space  <S(Rn) consists of all functions 

u £ C°°(Rn) such that for all m i, m 2 £ No and a  £ No

pi * P2 := A2(/xi ® p 2).

It follows that
p i ( k - y )  p 2{dy)

Kx ~ y)z(y) dy

Prm.maW := sup (1 +  \x\2)mi/2 ^  |<9Qu(a;)| < 0 0 .
a:(EKn

The family (Pmi,m2)mi,m2eN is a family of separating semi-norms on <S(Rn) and 
the Schwartz space equipped with the topology induced by these semi-norms
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is a Frechet space. Before introducing the Fourier transform we mention that 

Cg°(Rn) C <S(Rn) and <S(Rn) C I / ,  1 < p < oo, as a dense subspace.

D efin ition  1.2.2. A .T h e  F ourier tra n s fo rm  of u € <S(Rn) is defined by

u(£) := (27r)_ 2 f  e-ia^u(:r) da:,
JRn

instead of u we sometimes write F(u) or Fxi_^(u).
B . The F o u rie r  tra n s fo rm  o f  a m easure p on Rn is defined by the fol­
lowing integral (if it exists):

KV) ■= (27r)- * [  e-'zin(dx).
JRn

It is easy to see that the Fourier transform extends from <S(Rn) to L1(R").

T h eo rem  1.2.3. The Fourier transform is a linear operator from  <S(Rn) into 
itself which is continuous and bijective and has a continuous inverse given

eia*u(£)d£, for all u G <S(Rn).

The estimate in the following theorem is often called Lemma of Riemann- 
Lebesgue:

T h eo rem  1.2.4. The Fourier transform is a linear operator which maps 

(L1(Rn), ||.Hl1 ) continuously into (C00(Mn),\\.\\oo). In particular, the follow­
ing inequality holds true for all u G L ^R 71) :

N l o o  < (27r)~^||u||Li.

For the Fourier transform on <S(Rn) and Ad^(Rn) we have the following 

convolution theorem:

T h eo rem  1.2.5. A . For u, v G <S(Rn) it holds

(u -v )A(£) =  (2tt)-S (u * v)(£) (1.1)

and

(u * v )A(f) =  (27T)?u(f) • v(f). (1.2)

T  ‘(^ (x )  := (27r) 3 j
Jm
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B . For p ,v  G .Ad^R71) we have the following equality

( p  * z/)A(£) =  (2 t t ) * £ ( £ )  • £ ( 0 » ( L 3 )

as well as for p  G (Rn) and v  G (Rm)

(/* ® ^)A (f , rj) = A(f) • H*)), (1-4)

/o r £ G Rn and rj G Rm.

To characterise bounded Borel measures on Rn and convolution semigroups 

of measures we introduce positive definite functions:

D efinition 1.2.6. A function u : Rn — > C is said to be positive definite if 
for any fixed k G N, vectors f 1, . . . , G Rn and all A i,. . . ,  Ajt G C it holds

k
£  -  ?')AjXi >  0.
j,l=1

Now, we can state Bochner’s theorem:

Theorem  1.2.7. A function u : Rn — ► C is the Fourier transform of a 

measure p  G Mjj"(Rn) with total mass \\p\\, if and only if  the following three 

conditions are fulfilled

(i) u is continuous,

(it) u (0 )= A (0 )  =  (27r)-» ll/til,

(Hi) u is positive definite.

(1.5)

Remark. We found a one-to-one correspondence between positive bounded 

Borel measures and continuous positive definite functions; especially, for a 
probability measure the corresponding continuous positive definite function 
attains the value (2tt)~^ at the origin. Note that this correspondence can be 
extended to a correspondence respecting natural topologies on Mjj~(Rn) and 

on C&(Rn), respectively.
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D efin ition  1.2.8. Let C M^~(Rn) be a sequence of bounded positive
measures on Rn and (Aq G MjJ"(Rn).
A . Then p u is said to converge weakly to po as v tends to infinity, if  for all 

u G Cb(Rn;R)

lim / u(x) pv(dx) =  / u(x) p 0(dx). (1.6)
V —>-00 J ^ n  J ^ n

B . Moreover, p u is said to converge vaguely to po as v — > oo, i f  equality
(1.6) holds for all u G Co(Rn;R).

R em ark . It is obvious, that weak convergence implies vague convergence, 

since Co(Rn;R) C Cb(Rn;R).

D efin ition  1.2.9. A family (pt)t>o of bounded Borel measures on Rn is called 
a convolution sem igroup on Rn if the following conditions are satisfied:

(i) p t(Rn) < for all t >  0,

(ii) ps * p t = ps+t, for all s, t > 0,

and po — £q,

(Hi) p t — > £0 vaguely as t — ► 0.

R em ark . The vague convergence of a convolution semigroup for t — > 0 
already implies weak convergence to £o for t — ► 0 as the following theorem 
states.

T h eo rem  1.2.10. A sequence (pn)nen of positive bounded measures on Rn 
which converges vaguely to p  G Af^"(Rn) and satisfies lim ^oo ^n(Rn) =  

p(Rn) also converges weakly to the same limit p.

D efin ition  1.2.11. A function ip : Rn — ► C satisfying 

(■i ) ip(0) > 0

(ii) f  i— > (27r)“ ^e_t^ ^  is positive definite for all t  > 0,

is called negative definite.
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For continuous negative definite functions we have the following representa­

tion theorem:

Theorem  1.2.12 (Levy-K hinchin). Every continuous negative definite 

function ip : Rn — > C has a representation of the form

t/>(£) =  c + i ( d - £ ) + q ( z ) +  f ( l - e - ^ -  ^   ̂ )  1 +  ^(dx) (1.7)JK"\{0}V 1 +  \X\ ) \X\
with a non-negative constant c > 0, a vector d G Rn, a symmetric positive 

semidefinite quadratic form  q, and a finite Borel measure p on Rn \  {0}. The 

quadruple (c, d, q, p) determines the function ip uniquely. Conversely, any 

such quadruple defines a continuous negative definite function by equation
(1.7).

Using the correspondence between positive definite functions and positive 
Borel measures we now establish a one-to-one correspondence between con­

tinuous negative definite functions and convolution semigroups on Rn :

Theorem  1.2.13. Let (pt)n>o be a convolution semigroup on Rn, then there 
exists a unique continuous negative definite function ip : Rn — ► C, such that

fiM ) = (2 7 r)- te -* « \ (1.8)

for all t > 0 and £ G Rra. The converse also holds, to every continuous nega­
tive definite function, there exists a convolution semigroup such that (1.8) is 

satisfied.

To investigate subordination of convolution semigroups we introduce convo­
lution semigroups of measures which are supported on the positive half-line 

and again we find a one-to-one correspondence between convolution semi­

groups which are supported on [0, oo) and a class of functions, called Bern­
stein functions and this correspondence will be established using the Laplace 
transform.

D efinition 1.2.14. Let (vt)t>o be a convolution semigroup of measures on 
R. It is said to be supported by [0, oo), ifsu p p u t C [0, oo) for all t > 0.
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D efinition 1.2.15. A real-valued function f G C°°((0, oo)) is called a B ern ­
ste in  fun ction  if

j  jfc
f > 0 and (—l ) k— rf(^) < 0, for all k G N. 

axk

D efinition 1.2.16. A .The Laplace transform  o f a function  u G

L ^ M ^ su p p u  C [0, oo), is defined by

noo
£ (u )(z) := / e~ztu(t) dt, for all z  G C.

Jo

B. Moreover, we define the Laplace transform  o f a measure p on R

which fulfils supp p  C R as well as J0°° e~xs p(ds) < oo by

n oo
C{n){z) := /  e~ztfi(dt).

Jo

Remark. Only the real-part of z = x  + iy, for x ,y  G R is relevant for the 
convergence of the Laplace transform of a function . Furthermore, there 

exists an x q , called the abscissa o f convergence, such that the Laplace 
transform exists for z €  C with Rez > xq and diverges for all z  G C with
R ez < Xq, where Xq may also assume the values — oo or +oo.

T h eo rem  1.2.17. Let f : (0, oo) — ► R be a Bernstein function. Then there 

exists a uniquely defined convolution semigroup {yt)t>o supported on [0, oo) 
such that

C(vt)(x) = (1.9)

holds for all x  > 0 and t > 0. Conversely, for a convolution semigroup 

iyt)t>0 ) which is supported on the positive half-line, there exists a unique 

Bernstein function such that (1.9) holds.

Bernstein functions have a modified Levy-Khinchin representation of the fol­
lowing form:
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Theorem  1.2.18. For every Bernstein function f  there exist constants 

a, b > 0 and a measure p on (0, oo) satisfying

f°° s
/   p(ds) < oo

J0+ 1 +  s

such that
poo

f(:r) =  a +  for-f /  (1 — e-xs) p{ds), x > 0. (1-10)
J o+

The triple (a, b, /a) is uniquely determined by f. Conversely, each such triple 

defines by (1.10) a Bernstein function.

Rem ark 1.2.19. A . Since the Laplace transform of a probability measure
poo
/  e~zxvt(dx)

Jo

is well defined for z G C with Rez > 0, we extend the domain of Bernstein 
functions to the complex half-plane Rez > 0 and only in the light of this 
extension Lemma 1.2.20 makes sense.
B. Using the relation between Fourier transform and Laplace transform we 
find

(2ir)^F(vt)(y) = C(vt)(iy) = e~i{ly), y G R

and hence, remembering Theorem 1.2.13, it becomes apparent that for a Bern­
stein function f the function x \— ► f(irr) is negative definite.

Lemma 1.2.20. Let f  be a Bernstein function and 'ip a continuous negative 

definite function. Then the function f  o xp is also continuous and negative 

definite.

Now, we have all tools to introduce subordination in the sense of Bochner 

for convolution semigroups.

Theorem  1.2.21. Let ip be a continuous negative definite function onR” as­
sociated with the convolution semigroup {p>t)t>o- Furthermore, let a Bernstein 
function f with associated convolution semigroup (yt)t>o be given. Then the
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convolution semigroup (p\)t>o associated with the continuous negative definite 
function f  oip is given by

(j>(x)nl(dx) = (  [  4>(x) na(dx) vt (ds), (j) G C0(Mn).
Jo Jrn

D efin ition  1.2.22. The semigroup (/4)t>o is called the sem igroup subor­
dinate (in the sense o f Bochner) to (f^t)t>o with respect to (vt)t>o.

1.3 (One-Parameter) Operator Semigroups

Now, we extend our considerations to semigroups of operators. It is an 

extension since every convolution semigroup defines an operator semigroup 
as will be shown in this section. As in the previous sections we do not prove 
the theorems stated and refer the reader to [14].
We start with:

D efin ition  1.3.1. Let (X, ||.||x) be a real or complex Banach space, then 

a one-parameter family (T*)*>o of bounded linear operators T t : X — ► X, 
t > 0, is called a strongly continuous one-param eter contraction  
sem igroup o f operators if

(i) Tq =  id and Ts+* =  Ts o T* for all s, t > 0,

(ii) lim ||T(u -  u ||x =  0,

(Hi) ||Tt || < 1, for all t > 0,

where ||.|| denotes the operator norm.
If, instead of condition (in), we only know that inequality

(Hi') ||Tt || < C, for all t > 0,

holds for an arbitrarily fixed C > 0, then we call (Tt)t>0 a strongly con­
tinuous one-param eter semigroup.

Furthermore, we define a special class of semigroups of operators:
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D efin ition  1.3.2. Let (T t)t>o be a strongly continuous contraction one- 
parameter operator semigroup on X =  Coo and assume that for all t > 0 
the operators T t : are positivity preserving, i.e. u > 0 implies
Ttu > 0, t > 0, then we call (T t)t>o a Feller semigroup.

L em m a 1.3.3. For a strongly continuous one-parameter semigroup {Tt)t>o 

on (X, 11.11 x ) we have the following estimate:

for all t > 0 , with constants u  > 0 and Mw > 1.

Due to the following theorem we are able to define subordination of one- 
parameter contraction operator semigroups:

T h eo rem  1.3.4. Let (Tt)*>o be a strongly continuous contraction semigroup 

on the Banach space (X, ||.||x) and (ut)t>o be a positively supported convolu­
tion semigroup associated with the Bernstein function f . Then we define T[u, 
for  u G X; by the Bochner integral

or (vt)t>o-

For a strongly continuous (one-parameter) contraction semigroup (Tt)t>0 we 

define an operator A called the generator of (Tt)t>0.

D efin ition  1.3.5. Let (Tt)t>0 be a strongly continuous (one-parameter) con­
traction semigroup on a Banach space (X, ||.||x) > then we define its gener­
a tor by

The integral is well-defined and (Tj)*>o is a strongly continuous contraction 

semigroup on X.

The semigroup (Tj)*>o is called the subordinate to (T*)t>o with respect to f

Au =  limt—+o as strong limit,
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for all

u G D(A) := -j u G X : lim ~ exists as strong limit } .

Prom the general theory of strongly continuous one-parameter semigroups 
we need the following result:

Lemma 1.3.6. Let (Tt)t>o be a strongly continuous semigroup on the Banach 

space (X, ||. ||x) and denote its generator by A with domain D(A) C X.
A . For any u G X and t > 0 it follows J^Tguds G D(A).

B . For u G D(A) and t > 0 we have T*u G D(A); i.e. D(A) is invariant 
under T t, and

■^T, u =  ATt u =  T(A u.
dt

To characterise generators of Feller semigroups we need the following two 
definitions

D efinition 1.3.7. A linear operator A  : D(A) — ► B(Rn;R),D (A) C 

B(Rn;R), is said to satisfy the positive maxim um  principle if  for 

u G D(A) and some x0 G Rn it holds u(xo) =  sup^^n u(x) >  0 then it 
follows:

Au(^o) <  0.

D efinition 1.3.8. Let q : Rn x Rn — > C be a measurable, locally bounded 

function for which £ i— > q(x, £) is continuous negative definite for all x  G Rn. 

Then we define a pseudo-differential operator for  u G CJ5°(Rn) by

q(z, D)u(z) := (27t)~* [  q{x,£)u(£)d£,
jRn

and we call the function q the symbol of the pseudo-differential operator 
q(x, D). Since q (x ,.) is a continuous negative definite function we call q(x, D) 
a pseudodifferential operator with continuous negative definite symbol.

The following result due to Courrege gives an important representation the­

orem for operators which satisfy the positive maximum principle.



1.3. (ONE-PARAM ETER) OPERATOR SEMIGROUPS 19

Theorem  1.3.9 (Courrege). Let A : Cg°(Rn;R) — ► C(Rn;R) be a lin­
ear operator satisfying the positive maximum principle. Then there exists a 

pseudo-differential operator with continuous negative definite symbol q(x, f) 

such that
A =  —q(x,D ). (1.12)

In the following characterisation theorem for generators of Feller semigroups 

the positive maximum principle plays a central role and together with The­

orem 1.3.9 it interlinks pseudodifferential operators with generators of Feller 
semigroups.

Theorem  1.3.10 (Hille-Yosida-Ray). A linear operator (A, D(A)) on 

C00(Mn;R ); D(A) C Coo(Rn;R), is closable and its closure is the genera­
tor of a Feller semigroup if  and only if  the three following conditions are 

fulfilled:

(i) D(A) C Coo(Rn;R) is dense,

(ii) (A, D(A)) satisfies the positive maximum principle,

(Hi) R(A — A) is dense in Coo(Rn;R) for some A >  0.

Here R(A — A) defines the range of the operator A • id — A.

There exist more general versions of the previous theorem, however, since 
we will be handling Feller semigroups this form is the best choice for our 
purpose. In order to prove that a given operator extends to a generator of a 

Feller semigroup we have to verify conditions (i)-(iii) in the Hille-Yosida-Ray 

theorem. Courrege’s theorem helps tackling (ii), (i) is a question of starting 

with a good domain. Condition (iii) is crucial, it requires to solve the 

equation (A — A)u =  f for f in a dense set Coo- For certain operators we 
may use Hoh’s symbolic calculus for this problem. The idea is to reduce 

manipulation of (pseudo-differential) operators to calculations on the level 
of symbols, i.e. functions. In our presentation we follow §2.4 of [15] but also 

refer to [11] and [12] by W.Hoh.
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Let ip : Rn — ► R be a continuous negative definite function with Levy- 
Khinchin representation

^ ( 0  =  C +  Q ( 0 +  [  (1 -cosx -^)z /(dx ).
J R n \ { 0 }

Here c > 0 is a non-negative constant, Q a symmetric positive semidefinite 

quadratic form and let v  be a measure whose absolute moments for 2 <  I < k 

we assume to exist, i.e.

M; := I  \x\l v(dx) < oo, 2 < I < k. (1-13)
J R n \ { 0 }

Then we know that ip is of class Cfc(Rn;R). Moreover, for a £ Ng, |a | <  k 
the estimates

f ^(C)> “  = o
|^“V'(€)[ < ci«i• < ipHz), H  = i  .

( 1, M  = 2

hold for a constant C|a |, only depending on |a|.

L em m a 1.3.11. Let the negative definite function ip satisfy (1-13) for all
k G N. Then for all m  £ R and all a  G Ng we have the estimate

|<9j(l +  V’(?))!f |  < C |a |- ( l  +  0 (? ))!!L̂ M! (1-14)

Here and in the following we use the function p : No =>  No, p(k) = k A 2.

D efin ition  1.3.12. The class A is the set of continuous negative definite

functions ip : Rn — ► R satisfying (1.14) f or m  = 2 and all a  G Ng.

D efin ition  1.3.13. For m  G R and ip £ A a function q G C°°(Rn x Rn, C) is 

called a symbol of the class S ^ ( Rn) if for all a, (3 £ Ng there are constants 

Ca,i3 > 0 such that

|ded£q(x,f)| <  Ca,p- +  ( i-is)

holds for all x £ Rn and f  G Rn. The order of the symbol is m. I f  instead of
(1.15) q satisfies the weaker inequality
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for all a, (3 E x ,£  E Rn, and some constants ca$  > 0, then q is called a 

symbol of the class It is obvious, that S™’̂  C Sm,̂ \

Now, we extend the definition of pseudo-differential operators and introduce 

certain operator classes:

D efin ition  1.3.14. Let q E or q E SJJ^. On S(Rn) we define the 

pseudo-differential operator q(x , D) by

The classes of these operators are denoted by ^ ^ ( R n) and ^ ^ ( R 71), re­
spectively.

T h eo rem  1.3.15. The operator q(x,D ) E maps <S(Rn) continuously 

into itself

Further we need to introduce double symbols:

D efin ition  1.3.16. For if E A and m, m' E R the class S™’m ’̂ (Rn) of double 
symbols of order m and m ’ consists of all C°°-functions q : R" x R" x R" x 
Rn — ► C satisfying

for all a , (3, a \  (3' E Nq. For q E S™’m ’̂ (Rn) we define on <S(Rn) the operator 

q (xi 'Dx]x\'D xi)M{x)

T h eo rem  1.3.17. Let ip E A and q E S™’m ’̂ (Rn). Then the iterated integral 
(1-16) exists for  u E <S(Rn) and defines a pseudo-differential operator in the 
class 4r̂ +m ’̂ (Rn). Moreover,

(1.17)
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is a symbol in S™+Tn ’̂ (Rn) and

q(z, Dx; x \  DX>)\1 = qL(z, Dx)u.

The symbol qL is called the simplified symbol of q(x, £; x ', £').

Remark. The integral in (1.17) is an oscillatory integral which in this case 

is defined by:

lim /  /  e~iy T1x{ey , ep)q(x, £ +  7 7 , x  +  y, f ) dy dry, 

where x  £ <S(Rn, Rn) and x (0 ,0) =  1.

One important consequence of Theorem 1.3.17 is that for q̂  G S™J,^(Rn), j  =
1,2, we know that qi(x, D) o q2(x , D) G holds.

Lemma 1.3.18. For ip G A and q G S™’m ’̂ (Rn) swc/i

a fq fo  £; 1', /')  € S™“'’(WW’,(’(Rn)> /or all a  € NJ,

it holds

laK^ “ !

/iere qL denotes the simplified symbol of q and

qa(x,£)  =  D ^ q ( s , f ; z ' , £ ' ) | , _  €  S“ +ro'-"(l“l)'','(M'‘).

Finally we want to point out that under certain conditions on the symbol 
of the operator —q(a;, D), the operator extends to the generator of a Feller 

semigroup. For the proof of the following theorem we refer to Chapter 2.6 in 

[15].

Theorem  1.3.19. Let ip : Rn — ► R be a continuous negative definite func­
tion in the class A which satisfies a minimum growth condition, i.e.
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for some c, r > 0 and all £ G Mn, |f| large. Furthermore, let q(x, £) be a 

continuous negative definite symbol of class S ^ (R n) and

q (z ,0  > 5 {  1 +  ^ ( 0 ) .

/o r  some (5 > 0 and all £ G l " ,  |f  | /arge.

Then —q(x, D) with domain Co°(Rn) «s closable in Coo and the closure is the 
generator of a Feller semigroup.

1.4 Other Preliminaries

This final preliminary section is a collection of a few results which cannot be 

assigned any of the previous sections.
Our first result is about functional equations. Prom Theorem 5.3, page 216 
of [1] we deduce:

L em m a 1.4.1. The general continuous nonvanishing solution of

f (x ) -% )  =  f(x +  j/), (1.18)

for x, y G Mn, is

f(x) =  ecx, 

for an arbitrary constant vector c G Cn.

The following result is taken from page 146 in [9].

L em m a 1.4.2. The Laplace transform of

f(q) =

where R et > 0, is given by

£(f)(p ) =  r ( t ) - 2* - e ^  -D_t(2p),
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where D* is the parabolic cylinder function given by:

, r ( - i )  / I  1 3  1 , 1 1  1.J

A M  =

+  ■ 5 - H 'i 1F1 f - h ;  i ;  h 2 ) Z ~ h ~ i z2
r ( i - | < )  V 2 ’ 2 ’ 2 )

here iFx denotes the confluent hypergeometric function, see below.

Since we will need it in another context, we give the definition of the gen­

eralised hyperbolic function with indices m  and n. The confluent hypergeo­
metric function is a generalised hypergeometric function with indices m = 1, 

n = l .

D efin ition  1.4.3. The generalised hypergeometric function is given by:

X? / .U U . \ S ' '  (al)k • • * (0'm)k z k
m F n ( f l l )  • • • i a rm b\ , . • • , bn, Z )  /  J \ / ,  \ . , >

(Oi)k ’ * * (0n)k K\

with (a)k =  a, • (a +  1) • . . .  • (a -I- k — 1) for k € N.



Chapter 2 

N -Param eter Semigroups of 
Operators

2.1 N-Param eter Convolution Semigroups

In this section we introduce N-parameter convolution semigroups of measures 

which will be used to construct examples of N-parameter operator semi­
groups. Further we define subordination of multi-parameter semigroups of 
operators. Many of our statements are quite analogous to the one-parameter 
case and in our presentation we often follow N. Jacob [14], Chapter 3.6., 
where the one-parameter case is treated. As source for the multi-parameter 

case we refer to D. Khoshnevisan [16].

D efin ition  2.1.1. By definition an N -param eter convolution sem i­
group (pt)tyo,t E R+, on Rn is a family of sub-probability measures sat­
isfying for all s, t >z 0 :

(z) /z*(Rn) < l ,

(zz) fl3 * flf = fls+t, 

and po = £q,

(Hi) p t — > £o,

where the convergence in (iii) is meant in the vague sense and for t — > 0.

25
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Exam ple 2.1.2. Let (fis)s>o and (^)t>o be two one-parameter convolution 
semigroups of sub-probability measures on Rn, then

Vs,t ■= Vs ® vt for all s , t>  0 

defines a two-parameter convolution semigroup on R2n.

Proof Obviously ?7S)t(R2n) <  1 is fulfilled. Moreover, for f  =

(?i> £2 ) and fi, $ 2  ^ Rn as well as arbitrary si, S2 , h , t 2 £ we find

F ( ^ 1>tl * ? W 2) ( 0  =  (27r)n ?7ai>t1( 0 ^ 2,t2( f )

=  (27r)V si(& K (6)A s2(&)£t2(6)

=  ( ^ i  * / O a (&) • K  * ^ 2)a(6 )

=  {Vsi+S2 ® ^tl+t2) (^15^2)

Asi+s2,ii+*2 (O j

where we applied (1.3) and (1.4) of Theorem 1.2.5. Moreover, 770,0 =  £o> thus, 
the second property (ii) of a convolution semigroup is proven. It remains to 

prove, that r)3it — ► e0 vaguely as s, t — ► 0. For this let 0 ^  and <jf2̂ be 

elements of Co(Rn). For <j>[x) := • <ft2\ x 2 ) with x  =  {xi^xf) G R2n,
Xi,X2 G Rn, we obtain

[  <t>dr]s,t =  /  0 (1)d//s - [  0(2W*. (2 .1)
JM.2n jRn jRn

Since (/7S ) S> 0  and (^)t>o are convolution semigroups on Rn, ps and vt con­
verge vaguely to £ 0  as s and t tend to zero, respectively, we find that the prod­

uct of the integrals on the right hand side of (2.1) converges to 0 ^ (0 )  -0^(0 ), 

respectively. Thus, the integral on the left hand side converges to 0(0) as

s, t — > 0. Using the density of Co(Rn) ® Co(Rn) in Co(R2n) we obtain the
result. □

Remark. For convolution semigroups (p3)s>o on Rni and [yt)t>0 on 
77.1, 77-2 G N, the product (fis ®Vt)s,t is a two-parameter convolution semigroup 
r)sj  tm R ni+712.
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E xam ple  2.1.3. A . Let ( p ? ) s>o and (fĴ ) t>o be Brownian semigroups on 

R, then their product (pi1̂ 0  p ^ ) s,t>o w given by

(/4 1} ® /42))  (da;i> da;2) =  2 )
1 X 52.

e_4sda:i • —— rr-^e-  4t d£2
(47T S)1/ 2 ( I v r t ) 1/ 2

1 x2
■e 4s 4t d^i dx2,

4 n (s ty /2 

for all s, t > 0.

B . Now, let (p i^ )s>0  and {p[2̂ )t>0 be T-semigroups, their product is given by

(a4:) ® /4 2))  (d x i> dx'i) =  • /4 2)(dx2)

=  X(0,oo) (^l) • — di i

•X(0,oo)(z2) • f 7 ^ xt_le^ 2 dx2

=  X(o,oo)2( î> *£2) • p ,  *+  x s+ t~ 2e ~ x l~ X2 drt dx2,

/o r all s, t > 0.

Lemma 2.1.4. Let (pt)teR% be an N-parameter convolution semigroup on 
Rn. Then the mapping 1 1—> p t is continuous at 0 with respect to the Bernoulli 
topology.

Proof. For 0 £ Co(Rn), 0 <  0 < 1 and 0(0) =  1, we find by Definition 2.1.1 

1 =  0(0) =  lim /  0 d(it <  liminf pt(Rn) < limsup/zt (Rn) <  1,
I t\-*QjRTi |t|-»0

hence,

lim p t(Rn) =  £o(Rn),|t| >-0
and since now vague convergence to £ 0  implies weak convergence to £q for 

t — ► 0, see Theorem 1.2.10, the lemma is proved. □

Lem m a 2.1.5. Let (pt)t>z0 be an N-parameter convolution semigroup on R n. 
Then the mapping 1 1— ► pt is continuous from  R+ to A4^(Rn) equipped with 
the Bernoulli topology.
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Proof. For s, t £ R+ and £ £ Rn we get

|A « (0  — At ( 0 1 =  IAsi, - , sjv(£) — Ati,a2,-,Siv(0 —

Ail ,<2 ,S3,...,SN ( 0  +  A* s,t2,S3,---,SN (£)

( 0  ~  Ati,...,tiv(0l 

5: |AsiAti,S2 ,-,S7v(OI |A|ti-sx|,0,...,o(0 — (2tt) 2 | +  . . .

. . . +  |Pti,...,tN-i,SNAtN ( 0  | | Ao,...,0,|tjv-—Sjvl ~  ( ^ )  2 I (^’2)

The right hand side of (2.2) tends to zero as |£ — s| tends to zero, moreover, 

the mapping p \— ► p  is bicontinuous, compare Theorem 1.2.4, hence the 

lemma is proved. □

T h eo rem  2.1.6. For an N-parameter convolution semigroup (pt)teR% on 
there exist continuous negative definite functions 0 ! ,0 2» • • • 1 : Rn — ► C 
such that

fafe) = (2, r)-?e-*>*(fl— (2.3)

holds for all f  £ Rn and t >z 0.

Proof. Let s, t £ R+ then

*  P t  —  Ps-\-t  5

hence, by the convolution theorem

(27r)~?/i»(£) • &(£) =  /is+i(£)- (2.4)

We define for each f  £ Rn the function

M * )  :=  (27r)*A t(0>  * ^  °>

which, by the previous Lemma 2.1.5, is continuous in t and by (2.4) it holds:

M s) • M * )  = M s + *)» s, t h  o,
hence 0£ fulfils a generalised Cauchy Functional Equation. By Lemma 1.4.1 

it has a representation of the form:

fc(t) = 1
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with complex numbers . . . ,  4>n {0  depending only on £.

It remains to prove tha t ip i,. . .  are continuous negative definite functions 
in £ £ Rn. For this let j  £ { 1 ,. . . ,  N }  and t*j = ( 0 , . . . ,  t j , . . . ,  0), tj £ R+. 

We find that o is a one-parameter convolution semigroup and

which is the Fourier transform of a probability measure, hence by Schoen­

berg’s theorem a continuous positive definite function in f , herewith ipj is a 
continuous negative definite function for all j  = 1 , . . . ,  N  and the theorem is 

proved. □

R em ark . A . An N-parameter convolution semigroup (pt)t€mN has a repre­
sentation as a convolution of N  one-parameter semigroups. By definition

l t̂ — * Î t2-e2 * • • • * l^N-eN

(remember ej denotes the j-th unit vector). Now upon defining for all j  £ 
( 1 , . . . ,  N ) the one-parameter semigroup

:=

we arrive at

IM = $  * Vt? * ■ ■ ■ * ■ (2-5)

Conversely, given N  one-parameter convolution semigroups j  =
1 ,. . .  ,N , equation (2.5) defines an N-parameter convolution semigroup. In 

terms of the Fourier transform, given arbitrary continuous negative definite 

functions 'ipi,. . .  attaining value zero at the origin an N-parameter con­
volution semigroup is defined by (2.3). B . Finally, we show that the prod­
uct of convolution semigroups can be expressed by the convolution of con­

volution semigroups. Let (/4^)ti>o> • • • > (a4?)tn>o be one-parameter convolu­
tion semigroups on R and define the one-parameter convolution semigroups 

(.P*W>0> • • • > (.Pu)t . > 0  on Rn by

p ff(d x )  := /4f(dzj)>
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for all tj > 0 x  G Rn and j  G { 1 ,. . . ,  n}, then it holds

(1) „ (2) _ _ (n) ~(1) ~ (2) ~ (n)
(8) llt2 <8> . . . ® a C  =  fAi * ^2 * • • • * Ttn '

Next we want to extend subordination to multiparameter convolution semi­

groups.

T h eo rem  2.1.7. Let (p>s)seR^ be an arbitrary N-parameter convolution semi­
group on Rn and let (r]t)t£r™ be an M-parameter convolution semigroup sup­
ported on R + . Then the integral

vt =  f  VsVtids) (2.6)
J [0 ,0 0)-̂

defines an M-parameter convolution semigroup on Rn.

Proof. Since for t  G R ^  and 0 G Co(Rn) the mapping

<t>\— ► /  /  (j>{x) /j,s(dx)r}t(ds)
J[0,oo)N JRn

is positive and linear, there exists a measure vt on Rn such that

vt =  /  fJ>arit(ds) vaguely.
J [0 ,0 0)^

Obviously, vt is a (sub-)probability measure for all t G R ^  and we find for

t \ , 2̂ £ R+

/  ${?) ( ^ 1  * Vt2){dx) = (f)(x + y) vtl(dx)vt2(dy)
jRn JRn JRn

= (t){x-\-y)fip(dx)pr(dy)r)tl(dp)Vt2(dr)
JRn JRn JrH JrM

= ^(X) (Mp * lJ'r)(dx)rjtl(dp)rjt2(dr)
JR% JR% JRn

= 4>(x) fip+r(dx)r]tl (dp)T]t2(dr)
Jry J i n

=  /  /  ^W M d zH i+ tjC d p )
./r£ JRn
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thus {vt)t&M fulfills the semigroup property. Moreover, (fJ,s)s and 

{Wt)tm¥ converge vaguely to £q for s ,t  > 0 and so does hence

The semigroup we constructed in Theorem 2.1.7 leads to

D efin ition  2.1.8. The M-parameter convolution semigroup defined in 2.6 
is called the m ultiparam eter subordinate convolution sem igroup of

M seK Z  with respect to (r]t)teRM.

The following example illustrates subordination.

E xam ple  2.1.9. Let (ps)sgK2_ be a Product Brownian semigroup, i.e.

We subordinate {/^s)se^  with the Product T -sem igroup (r)t)teR\ which is 
given by

The latter equality follows with (17) on page 313 in [9] and K denotes the 

modified Bessel function of the third kind.

is an M-parameter convolution semigroup. □

^ 1,32 (da;) =
l l

( 47TSiy / 2 ^  (47TS2)1/ 2
e 4 s2 d xid x 2 -

rRj 47r(.si.s2)1/2

r(ti)r(t2) J0 (4tts1)V2 1
noo -1 x2

' /  Ta \T7^e-4s2522-1e_S2 ds'Jo (4tT52) 1/2 2
9 *1_I 

1 x \  2 4
7rr(*i)r(t2) 4

2 — ~

K i2_ i ( i 2).
2 2 4  2 2
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2.2 N-Param eter Operator Semigroups

Many properties of N-parameter operator semigroups are similar to those of 

one-parameter semigroups, which have been discussed in many monographs, 

we refer to [14]. When extending the notion of strongly continuous operator 

semigroups to the N-parameter case we encounter one main difficulty. This 

is the extension of the notion of a generator. We tackle this problem to a 
certain degree by investigating the differential equation which is associated 

to the generator of a one-parameter semigroup and extending it to a partial 
differential equation for the N-parameter case.

Let (X , ||.||x ) be a real or complex Banach space.

D efinition 2.2.1. A .  An N-parameter family (T*)^0 , t G R+, of bounded 
linear operators T t : X  — > X  is called an N -param eter sem igroup o f  
operators, if

To =  id

and

Ts+* =  Ts o Tt

holds for all s, t G R + .
B. We call {Tt)tyo strongly continuous if

lim ||T,u -  u||x  =  0

holds for all x  G X .
C. The semigroup (Tt)tH3 is a contraction semigroup, if

IIT.II < 1

holds for all t >z 0, i.e. each operator T t is a contraction. Here ||.|| denotes 

the operator norm ||.||xx*

Exam ple 2.2.2. Let A and B be bounded operators on X  such that [A, B] := 

AB — BA =  0, and define for all t = (ti, £2 ) £ R+
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For t >z 0 we find
° °  jfci °o +k 2

||e‘lA o etzB || <  | | e ^ | | . | ^ B | |  <  £  ||B* || (2-8)
fci=0 1 ' k 2= 0 2 ‘

° °  f k i  oo k 2

<  E FT HA llfc‘ E FT HB ll*2 (2-9)
fci=0 1 ' k 2= 0 2 '

=  e*l||A|1 • ei2||B|1 < oo. (2.10)

Hence, the sum converges uniformly in X  which allows us to change the 

order of summation, and using [A, B] =  0 we obtain the semigroup property 

° f  (T t) t to- For SU £ K+

T s o T*u =  eSlA o eS2fi o etlA o e<2Bu (2-11)
=  e(ai+ti)A Q e(S2+t2)Bu (2.12)

— Ts+fu, (2.13)

as well as e0A o e0Bu =  u.

Furthermore, we have uniform continuity of the family (Tt)teR2_ as t — ► 0, 
i.e.

lim ||etlA o etaB — id\\ =  0 t->o11 11
implying strong continuity, i.e. lim ^o ||etlA o et2Bu — u\\x  — 0. Hence, 
(Tt)teR^. as defined in (2.7) is a strongly continuous two-parameter semi­
group on (X , ||.||x ) • Moreover, if  for t \ , t 2 > 0 the operators etlA and et2B are 
contractions, then (T t ) * G K 2 is a contraction semigroup.

Exam ple 2.2.3. Let (fJLti)t!>o and {yt2)t2>o be two convolution semigroups of 
probability measures on Rn. On the Banach space (Coo(R2n), H-Hoo) we define 
for all t G R2 the operator

T tu(x) := [  u(x -  y){ptl <g> vt2)(dy). (2.14)
J R2™

We claim (Tt)tyo is a strongly continuous contraction semigroup.
First, since u e  Coo(R2n) is bounded, we find
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but (fitl <S> i't2)(R2n) < 1, which implies

sup |T*u(x)| < ||u||oo < 0 0 , (2.15)

i.e. T t is defined on Coo(R2n), for all t >z 0, and Ttu is a bounded function. 
We show that T*u G Coo(R2n). In fact, for  u G <S(R2n) we find using 
Theorem 1.2.5 and Theorem 1.2.13 that

where f  =  (fi, £2 ) with £1 , £ 2  € Rn and </>, i/j : Rn —> C are f/ie continuous neg­
ative definite functions associated with the convolution semigroups (pti)ti>o 

and {vt2)t2>o> respectively. Since p tx =  (27r)“n/2e_tl  ̂ andOt2 = (27r)_n/2e_t2^
(2.16) implies that (Ttu)A G L1(R2n) for u G <S(R2n); and the Riemann- 
Lebesgue-Lemma, Theorem 1.2.4, implies Ttu G Coo(R2n)- Using the density 
o fS (R2n) in Coo(R2n) and (2.15) we find that T t is a contraction on Coo(R2n) 
for all t G R+n. Furthermore, we find using Example 2.1.2

Obviously, we have T(o,o)U =  u; since po = £ 0  and = £q.
Finally, we prove that (T*)*>_o is strongly continuous for t —> 0. First, note 

that any function in Coo(R2n) is uniformly continuous. Hence, for £ > 0 

there exists 5 > 0 such that

(T(u)A(f) =  (27T)n u(£) (iMt ® i O A(£)

=  u (f) (27r)"/2/i( l(f i)  (2w)n/2t>t2(f2) 

=  u(£)e“‘1"W£l)e~‘2,i'(£2), (2.16)

/  W  u( x - y -  z)(/i(l ® y ) } (/*» <g> J^H dz)
JR2n L j M2n J

/  u(z -  z)((p Sl <g> vS2) * (ph ® z/t2))(d2 )
,/K2"

/  u(z -  «)(^1+«1 ® I/»2+t2)(dz)

— r̂ Sl+fl,S2+t2U(*C)

=  T s+tu(x).

u(x) — u (x — y )| < e for all \x — y\ < 5.
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The continuity of {fitl ®Vt2) t to with respect to the Bernoulli topology implies, 
see Lemma 2.1.4, that

lim ® vt2) ( B f  (0)) =  £o(Bf(0)) =  1, 

i.e. it exists r > 0 such that

(lHx ® vt2) (B£(0)) < e and 1 -  {ptl <g) vt2) (M2n) < e for all t 6 [0, r )2,

where BJj(O) denotes the complement of the open ball B2n(0).

Now, we find

|Ttu(x) -  u(x)\ < /  [u(z - y ) ~  u(a;)] (ptl <g> vt2) {dy)
JR  2n

+ |u (z ) |( l  -  (ptl <g> i /f2 ) ( R 2 n ) )

< /  \u(x -  y) -  \i(x)\(ptl ® vt2)(dy)
Jb5(o)

+  /  M x  - y ) ~  VL(x)\(ptl <S> vt2){dy)
J BS(0)j(0)

+  1̂ 1 1 0 0 (1 -  (fitl (8) vt2)(M2n))

< £ • {fia ® i/t2)(B5(0)) +  2 • IMIooO^ <8> i/t2)(BJ(0))

+  IHIoo(1 -  (P t l  ^ ^ 2)(M2n)) 

< ^ +  2 -£ ||u ||00 +  e ||u ||00

=  ^ I  +  S I H U

implying that (Tt)tyQ is strongly continuous as t  —> 0. Note also that (Tt)tM) 

?s positivity preserving, i.e. u >  0 yields T*u > 0 .  □

Remark. Clearly, Example 2.2.3 extends easily to the N-parameter case.

D efinition 2.2.4. Let (Tt)t>-o be a strongly continuous contraction N- 
parameter semigroup on (Coo(Rn), IMloo) which is positivity preserving. Then 
(T*)t>-o is called an N -param eter Feller semigroup.
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R em ark . Since for  u £ Coo(R2n;R) the function Ttu defined in Exam­
ple 2.2.3 by (2.14) is a real-valued function, it follows that (T*)^o is a Feller 
semigroup.

E x am p le  2.2.5. Let (ptl 0 i/(2)t>=o> t = (£1 ,^2 ), be as in Example 2.2.3. For 
u £ <S(R2n) we define as before

T*u(a;) =  [  u ( x -  y)(ptl 0  vt2){dy) (2.17)
J R 2"

and we obtain for  £ =  (£1 , £2) with £1 , $ 2  £ Rn

(Ttu)A(£) =  e- tl^ l)-t2^ 2̂ u(£) (2.18)

where <f), ^  : Rn —► C are the continuous negative definite functions associ­

ated with the one-parameter convolution semigroups {/J’t j t i t 0 and (v't2)t2>o, 
respectively.

Now, PlanchereVs theorem, see Corollary 3.2.17 in [14], implies

l|T,u||o =  ||(Tfu)A||0 <  ||u||o,

where ||.||0 denotes the norm in L2(R2n).
Since <S(R2n) is dense in L2(R2n); it follows that each of the operators T t 
has an extension to L2(R2n) and that these extensions are contractions. We
denote this extension once again by (Tt)tyo- Moreover, we find

||Ttu — u | |q =  /  (2.19)
J R2n

=  f  — l | 2|u(£)|2d£ 0 , (2.20)
J R

implying the strong continuity o /(T t)tM) as |£| —► 0. From (2.18) it is obvious 
that (Tf)fH) is a semigroup, hence, it gives a strongly continuous contraction 

semigroup on L2(R2n). Now, let u £ L1(R2n) n  L2(R2n), then (2.17) makes 

sense as a Lebesgue integral and we find for  0 < u <  1 (a.e.) that 0 <  T*u <  1 

(a.e.). As before the operator T t maps real-valued functions onto real-valued 
functions.
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D efin ition  2.2.6. A. Let (T*)t^0 be a strongly continuous N-parameter con­
traction semigroup on I /(R n;R ) ,l  < p < oo. We call (Tt)t>_0 a sub- 
Markovian semigroup on IP, if  for u 6 L ^ R ^ R ) such that 0 < u < 1 (a.e.) 
it follows that 0 <  Tfu <  1 (a.e.). B. Let (Tt)ty0 be a strongly continuous 

contraction semigroup on I /(R n), 1 <  p < oo, or on Coo(Rn)- We call (Tt)ty0 
symmetric, if  for all u, v € I /(R n) fl L2(Rn) or u, v € Coo(Rn) fi L2(Rn), re­
spectively, we have

(T(U, v)0 =  (u, T tv)0 .

Remark. The semigroups constructed in Example 2.2.5 are sub-Markovian 

semigroups on L2(R2n;R). Furthermore, with the definitions given there, we 
find

At! (ft) =  (27r)-"/2e - ,1««‘)

and
=  (27r)-n/2e - !̂ « 2\

where £i, £ 2  £ Rn •
We get for  u, v 6 L2(R2n) and real-valued continuous negative definite <j> and 
ip

(T(u, v)0 =  ((Ttu)A, v)0 (2.21)

(2 .22)/JR 2n

=  [  (2-23)
J R2n

=  (u>T(v)0 . (2.24)

Hence, in this case the semigroups constructed in Example 2.2.5 are
symmetric on L2(R2n). Conversely, the same calculation gives that for
symmetric semigroups on L2(R2n) given by (2.17) the continuous negative 

definite functions cp and ip must be real-valued.

We introduce the following notation of marginal semigroups to handle and 

analyse N-parameter semigroups of operators in a more comfortable way.
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D efin ition  2.2.7. Let (T*)f^0 be an N-parameter semigroup of operators, for  

j  — 1 ,.. .  ,N  we define the j-th marginal (1-parameter) semigroup 

by
:= T tj.ej for all tj > 0.

R em ark . Note that by the very definition of an N-parameter semigroup of 
operators and its marginal semigroup it follows for L, tj > 0 and i ^  j  that

TU-ei+tjej = ^ti-ei ° Ttj-ej = Ttj-ej °

which yields
[T<*\ T 'f  ] := T<f o T<f -  T<f o T<*> =  0,

i.e. the marginal semigroups are mutually commutating.
Moreover for each marginal semigroup [tH M  we can define a generator

\  3 J tj>o
A ^  with domain D (A ^ ) according to Definition 1.3.5.
In the proof of Lemma 2.2.8 we make use of the following decomposition of 
(T*)t>-o into its marginal semigroups. For t = (U ,. . .  ,£/v) we have

L em m a 2.2.8. Let (Tt)tyo be a strongly continuous N-parameter semigroup 

on (X , \\.\\x ) . Then there exist constants u  E M+ and Mu > 1 such that

\\Tt \\XiX <  eT*

Proof. Using the decomposition of {Tt)tto we find

m i l  =  ||T<11)oT<22)o . . .o T < f | |

<  l|Ti(11)M |T ((22)| | - . . . . | | T ^ )||,

where ||.|| denotes the operator norm ||. ||x,x* By Lemma 1.3.3 there exist 
constants u  = (u i , . . . ,  u n ) >z 0 and , . . . ,  > 1 such that

||Tt || < M ^ ,

where M^ := MUl • . . .  • M ^ .  □
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C oro llary  2.2.9. Let (Tt)ty0 be a strongly continuous N-parameter semi­
group on (A, ||.||x ) . For any u € X  the mapping t —> T tu is continuous from
R+ to X .

Proof. Let t, h G M+ and —t ^ h  be fixed, then we find using Lemma 2.2.8

— ||TtA(t+/») \\x,X  ( | | r^t+^-(tA(*+^))U- — U |lx

+  ||T t_(tA(t+/i))U -  u\\x ) ,

implying the continuity. □

By definition the generator A of a strongly continuous one-parameter semi­

group of operators on a Banach space (X , ||.||x ), see Definition 1.3.5, is given 

by:
a i. Ttu — u .. .Au := lim ----------  as strong limit

t—*o t
with domain

D(A) := l u e X  : lim -(T*u — u) exists as strong limit 1 .
I  ̂ t \

Moreover, a solution to the differential equation

^ f ( x , t )  =  Af (x ,t)

is given by

f (x ,t) = Ttu(x)

for u € D(A).

However, this definition cannot easily be extended to the N-parameter case 

as we may see by investigating the ’generator’ of a 2-paramater semigroup 

of operators, starting with an analysis of the derivatives ^ -T t , for j  =

1,2, and « 4 “Tt.’ ’ dtldt2 1
It is well-known from the one-parameter case, that for j  = 1 , . . . ,  N  it holds:
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However, equality (2.25) does only make sense for u G X  with u, T tu G 

D (A ^). Therefore, to investigate 5 - ^ -5—T*, we first give some properties of 
the domain D (A ^  o ... o A ^ )  of the operator A^1) o ... o A ^ .

L em m a 2.2.10. Let (Tt)tyo be an strongly continuous N-parameter semi­
group of operators. Its marginal semigroups of operators are defined by 

( t ^ ) * >0 =  o ’ 3 = their generators be (A ^ ,D (A ^ )) ;

respectively. Then we have ( i ju G  D(A^^ o ... o A ^ )  ==> T*u G D (A ^ o ... o 

A ^ )  for all t >z 0, i.e. D (A ^^o ...oA ^) is invariant under T t for all t y  0, 
(ii) [A ^ ,A ^ ] =  0 for a l l i , j  =  1, i.e. commutate mutu­
ally, and (Hi) for all permutations tt : { 1 , ..., N }  — ► { 1 , ..., N } we get

D (A(1) o A ^  o ... o A(iV)) =  D (A(7r(1)) o A ^ 2» o ... o A<*<"»).

Proof, (i) Using Lemma 1.3.6, which states the invariance of D (A ^) under 
for j  = 1,..., iV, tj > 0, and the commutating property of marginal 

semigroups of operators, we obtain

A(1) O ... O A W  O T ^ u =  A(1) O ... O A(n_1) O O A ^ U

=  AWo...oA M  

= AWo...oA «

lim o J -L . o T<"> O A<w>u  -  T™  o A<">u)

lim J _  (t<"> o T ^ " 1’ o A ^ n  -  T<"> o A ^ u )
r - i — Ctv— 1 '  /

Since T \ n  is continuous from X to X we can interchange the limit and Tj ; 

we get

A W o . ^ a M o T J ’ Urn —  ( t £ ~ 1) o A(w>u -  A(Ar)u )  t N- 1 V ‘" -1 J
=  A(1) o ... o A<*-2> o T<^ o A(jv_1) o A<w>u ,

for the last equation we used that u G D (A ^  o ... o A ^ ) ,  thus in particular 

u G D ( A ( N ~ ^  o A<*>). Repeating this procedure (N-2)-times we obtain
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Since u G D (A ^ o ... o A ^ )  it follows A^) o ... o A ^ u  G X, thus the right 

hand side is well defined and so is the left hand side. Analogously, we see for 

an arbitrary tj with j  =  1,..., N  that

A(1) o  . . .  o  A(iv) o T ^ u  =  O A(1) o  . . .  o  A(JV)u.

Combining this result for all marginal semigroups we finally obtain

A(1) O . . .  O A(n) O T*u =  Tt O A(1) O . . .  O A(a° u,

and especially u G D (A ^ o ... o A ^ )  implies T t\i G D (A ^ o ... o A i . e .  
D (A ^  o ... o A ^ )  is invariant under T t.
(ii) u G D (A ^ o A ^ ) , then

AW o A ^ u =  lim —
ti—>0 ti

= lim lim —
t i -*o t j ->0 t { t j

=  lim lim —
t j —*0 t i—>0 t j t j

= A(j) o Awu,

T ®  o  A0)u -  A 0)uLl

T<? (T<f u -  u) -  (T<f u -  u f  

T«> (T « u  -  u) -  (T « u  -  u)'

where we can change the order of limits since the marginal semigroups are 
commutating and we have proven that A ^  and AV) commutate in case both 
Afi) o A ^  and A ^  o A ^  are defined.

(iii) Prom part (ii) we see that in case A ^  o A ^ u  is defined for some u G X  

then, due to t £ \ t ^  =  0, we can reformulate this as A ^  o A ^u , which 

therefore is also defined. Part (iii) is just a consequence a finite number of 
applications of this property. □

The previous lemma enables us to solve a partial differential equation which 
resembles the differential equation associated to the generator of a one- 

parameter semigroup. The following partial differential equation illustrates 
that to some extend the operator A ^  o A^2̂ o . . .  o may be considered as 

the multiparameter equivalent to the generator A of a one-parameter semi­
group.
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L em m a 2.2.11. For u G D ( A ^  o ... o A ^ )  and (Tt)tyo as above we have 

„ 9 "  Ttu =  A™ o  . . .  o  A W  o  Ttu.dtl-d tN
Proof. Let u G D (A ^ o . . .  o A ^ ) ,  then, in particular, u is in the domain of 

the generator A ^  of the iV-th marginal semigroup of (T*)t^0> and we have

• A - T ^ u  =  A ^ ’T ^ u . dtN N N
Now define

n(x) := A ' ^ u .

The u G D (A ^ o . . .  o A ^ -1)), since u G D (A ^ o . . .  o A ^ )  and D (A ^ o 

. . .  o AW )  is invariant under We obtain

a  t £ ; » u  =  A ^ T j ^ a ,
dtN-1

and by substituting u

d tN- i  ~tN~l d tN tN tN~' iN

Interchanging and the derivative as well as using the commuting
property as shown in the proof of Lemma 2.2.10 leads to

a d2a T ff~ 1)l f f )u =  ASn ~ v> o  A<"l o T ^ ' 1’ o r f V  
d tN- i d t N N_1 N N~' N

Iterating these steps another (N  — 2)-times we arrive at

a ^  a Tt.0 ' '  ’ T^ )u =  A<1> ° ' '  ' ° A(N) ° TS!) ° • • • ° T ^ U ,dti  ■.. .  ■ dtN h tN (l tN

which completes the proof. □

L em m a 2.2.12. Let (Tt)tyo be a strongly continuous N-parameter 

semigroup on the Banach space (X, ||.||x ) with commutating marginal 
semigroups \ T ^ }  , j  = 1, ...,1V, whose generators are given by

\  3 /  t j > o

A ^ \ . . . ,  A^N\  respectively. Then the domain D (A^) o . . .  o A ^ )  is dense
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in D (A W ) , for all i  = 1 , . . . ,  N, and A^1) o . . . o A  WO is a closed opera­

tor. Furthermore, (T*)^0 is a strongly continuous N-parameter semigroup 
on D (A^1) o  . . .  o  A<">) when D (A^1) o . . .  o A  WO) is equipped with the graph 

norm ||u ||A(1)o. oA(„ )x  =  HA*1* o  . . .  o  A W u||x  +  ||u| IX •

Proof. We give the proof of density in D (A^)), the other cases follow by 

permutation. Assume D (A^1)) , thus A^)u G X . With Fubini’s theorem 

and the commutating property of the marginal semigroups we get for t  G
>v- 1

rti
1

S 2  

rt

vt := f  T  T i? o  A(1)u ds2 . . .  dsN
Jo Jo

ft-rriN) /*t^(2)

=  I  T ' : ! ? • • • /  T W ' o A « u d 8, (2). . . d S, w ,

where 7r : { 2 , . . . ,  N }  —► { 2 , . . . ,  N }  is an arbitrary permutation.

Lemma 1.3.6 then gives vt G D (A^2) o . . .  o A WO) and for

i  r t N  i  r t 2

" ' - - J .

with t j  > 0, for all j  =  2 , . . . ,  N , we get ut G D (A^1) o . . .  o A WO) , where 

we again used the commutating property of the generators of the marginal 

semigroups. Since for t{ —> 0 it holds j-_ J ^ T ^ w d s i —► w (strongly), for all 

w G X ,  we finally obtain ut —► it strongly as t  —> 0, which gives the density 

of D  (A^1) o . . .  o A WO) in D (A^1)) .

We want to show that A W) o . . .  o A ^  is a closed operator. For this we 

let (uI/)I/>0 C D  (A^1) o . . .  o A WO) be a sequence converging to u G X  as 

v  —► oo and A^1) o . . .  o AW0Ul/ —► g g X  as v  —> oo. We need to prove that 

u G D  (AW) o . . .  o AW0)and it holds AW)o. . .oAWOu =  g. From Lemma 2.2.11 

we obtain for a l l t  >z 0

E  ( - D ' f e - m
sie{0;ti},...,sjvG{0;t;v} V j =1

f t N  g  (  rt2 g  (  rtI g
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and for v —> oo, . . . ,  t ^  > 0 we find

i

 ̂ ^  5i6{0;(i},...,3jv€{0;tAr} \  j—1

=  t  1— ~  r  % A {N) 0 . . . 0  A ^ u  d(s) =   -----1~ —  f  T sg ds.t \  • . . . '  i n  J q t \  • . . .  • In  J o

As t —► 0 we find that the limit on the right hand side exists, hence so 
does the limit on the left hand side, herewith u G D (A^) o . . .  o A ^ )  and 
A^1) o . . .  o A ^ u  =  g, implying that A^) o . . .  o is closed.

Next we want to prove that (T t)tyo is a strongly continuous contrac­

tion semigroup on (A ^  o . . .  o A ^ )  , IMIa(i)0...0a(n),x) • The semigroup 
property on D (A^) o . . .  o A i s  obvious since T*D (A^1) o . . .  o A ^ )  C 

D (A^) o  . . .  o  A W ) , and from

IITtu -  u ||A(i)o . . .o A ( n ) i X  =  ||A(1) 0 . . . 0  A(w) o  T (u -  A(1) 0 . . . 0  A(w)u ||x

+  ||Ttu -  u ||x  

=  ||T( o A(1) o . . .  o Aw u -  A(1) o . . .  o A(JV)u ||x

+  ||T,u -  u ||x

follows the strong continuity on D (A ^  o . . .  o A-w*) since is strongly
continuous on X . □

R em ark  2.2.13. Since D (A ^  o . . .  o A ^ )  is dense in D (A ^ ) , which 

again is dense i n X ,  see Corollary 4-1.15 from [14], we get immediately, that 
D (A ^  o . . .  o A W ) is a dense subset of X . Furthermore, the proof can easily 

be extended to show that D ^(A ^)*1 o . . .  o ( A ^ ) tjv  ̂ with i \ , . . .  , i ^  £ N is 
dense in D (A ^ ) .

P ro p o sitio n  2.2.14. Let (T t)tyo be a strongly continuous N-parameter semi­

group on the Banach space (X , \\.\\x) with strongly continuous marginal 
semigroups and generators [ A ^ \  D ( A ^ ) )  , j  =  1 , . . . ,  N, respec­

tively. Suppose 7 c D  (A^1) o . . .  o A ^)) is dense in X  and invariant under
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T*, for all t >z 0, i.e. T tY  C Y. Then Y  is a core for  A ^  o . . .  o A ^ ,  i.e. 
Y II-IIa ( 1) o . . . o a ( jv ) , x  _  £ )  o . . . o A(iV)) .

Proof. If Y  is dense in X , then for all u G D (A ^  o . . .  o A ^ )  there exists 

a sequence C Y  with ||u„ — u\\x  —> 0 as v —► oo. By Lemma 2.2.12

and Corollary 2.2.9 the mapping t i—► T t\iu is continuous with respect to 

||.||a(i)0 ...oawjx  and it follows that

f  T,u„ d s €  YII IIa(1)-  - a(' ' )^ .
Jo

Moreover, by the strong continuity and the commutating property we find

f T au„ d s — f  T su ds 
Jo Jo

(  T s (A ^  o . . .  o A ^  (u^ — u)) ds
Jo

and the right hand side goes to zero for v — ► oo. Thus,

/  T su ds G y r|l' l|A(1)o...°A(JV), x i 
Jo

Finally we get

A(l)o...oA(N),X

+  ||Ttu„ -  Ug, -  T*u +  u|

/JO
TcU ds — u

A(1'>o...oA(n ),X

1 U
4 - -------------  /  Tsu ds — u

h  • . • • • tN Jo x

which tends to 0 for t —► 0, hence u G y^^A(1)o"-°A(iV).*.

o . . .  o A ' \
x

□

2.3 Subordination for Operator Semigroups

Now we analyse the behaviour of N-parameter operator semigroups under 

subordination by an M-parameter convolution semigroup. The subordinating
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convolution semigroup has its support in [0, oo)N. Here we also stress that 

by performing this subordination an N-parameter semigroup is transformed 
into an M-parameter semigroup.

We start with

T h eo rem  2.3.1. Let (Tt)tyoit G R+, be a strongly continuous N-parameter 

contraction semigroup on a Banach space (X, ||.||x ) and (f]s)syo,s G 

R ^ , be an M-parameter convolution semigroup on ~RN with swppr]s C 

[0, oo)^, for all s G R ^ . We define using the N -dim ensional Bochner 
integral for all u G X :

T^u  := [  Tturjs(dt). (2.26)
Jr*

Then the integral is well-defined and (TJ/ )S>-o is a strongly continuous M- 
parameter contraction semigroup on X.

Proof We find

||7>\\x < f  \\Ttu\\x  r)a(dt) <  %(M^) ||«||x  < IMI*,
J

thus, for s >z 0, is a contraction on X. Moreover, using the semigroup 

property of 0 and (r]s)syo, respectively, we find

Tf-̂ -gU — I Tpwqr+S(dp)
Jr.*

= /  Tpu(r)r *r)s)(dp)
J  R*

= Tp+qu rjr (dq)r)s (dp)
Jr* Jr*

= [  [  {Tp o T g)urjr(dq)r}s(dp)
Jr* Jr*

Tp(T?u) r)s(dp)

=  ( T ? o T ? ) u ,

f
Jr1

thus, (77) s>-o is a semigroup on X.

Finally, we show that (T^)ay 0 is strongly continuous on X. For this note
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that the function t i—> ||Ttu — u\\x is continuous and bounded on R+ and 

lim ^o —w||x =  0- Furthermore, the convolution semigroup (rjs)syo tends 
to £ 0 in the Bernoulli topology as s —» 0, see Lemma 2.1.4.

Since

\\Tsu — u\\x < [  \\Ttu - u \ \ X Tia(dt) + ( l - r i 8 (R+))\\u\\x,
J  R"

it is sufficient to prove for any function v G Cb(R+),u(0) =  0 that

lim /  v(t) r}s(dt) = 0  
s~>° Jr*

which follows from the definition of the Bernoulli topology and the definition 
of £0. Thus the theorem is proved. □

D efinition 2.3.2. The semigroup (T^)syo as defined in (2.26) is called the 
subordinate (in the sense o f Bochner) to (Tt)tyo with respect to the 
convolution semigroup (r]s)syo.

Rem ark. Since the convolution semigroup (r)s)syo has the representation

T1 — 77 sk 77'Is 'Isi 'Ism ’

one gets instantly that

(T”) « = T £ ,

for Sj > 0 and j  G 1 , . . . ,  M , and (T 7lJj )Sj >o is obviously the j- th  marginal 

semigroup of (T J^O ; compare Definition 2.2.7.

Corollary 2.3.3. Let (T t )tyo be either an N-parameter Feller semigroup on 

Coo(Rn;M) or an N-parameter sub-Markovian semigroup on L ^ R ^ R ) ,!  < 

P < oo? further let (r]s )syo be an M-parameter convolution semigroup on 
R+ with supp Tjs  C R+, i.e. with positive support. Then (T£)sy0 is an M- 
parameter Feller or sub-Markovian semigroup, respectively.

Lem m a 2.3.4. For the derivatives of the subordinate {T£)sy 0 we have:
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and
8M

7 >  =  o ... o o 7 > ,

where A i s  the generator of the j-th marginal semigroup of operators 

{is, ) Sj> o•

8_
ds

Proof. We start with the partial derivative

T y  = l i m i ^ y  Ttu(x)rjs+h.ej(dt) — Ttu{x)g3 {d t)Sj  

= Ttu{x){rjs * gh.ej)(dt) -  J  Ttu{x)gs(dt)

Y  /  p o o  POO POO

=  l i m - H  J  Tt+qu(x)r]h.ej(dq)r]s(dt) -  j  Ttu(x)r)s(dt)

= I t  «(*) ~  “ (*)))

=  77  o A ( * )  =  A’’•W O T?u(x),

where e3 = (0 , . . . ,  0 , 1 , 0 , . . . ,  0 ) is the j-th  unit vector in RM.
o 2

For the second partial derivative -q—a-T ^ u with i ^  j  we find
5i sj

-2 > (x )  =  - j f  (A”'® oT?u(x))dSidSj * dSi
r\

— 0
Osi

= A ^ o A ^ o T y { x ) .

Applying this calculations another (M-2)-times in an analogous manner leads 

to f)M
THu = A ^ l) o . . .  o A ^ m) o TPu.

8  8  s  u s 1 • • • U S M

□

P ro p o sitio n  2.3.5. Let {Tt)tyo be a strongly continuous N-parameter con­
traction semigroup on a Banach space (X , ||.||x ) with marginal semigroups 

and their generators ( A ^ \  D ( A ^ ) ) , j  =  1 , . . . ,  N. Further, let 

(r1s)s^o be an M-parameter convolution semigroup with positive support, i.e.
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supp Tjs C R+, for all s >z 0. Where (rjs)syo may be represented as the prod­
uct, see the remark following Theorem 2.1.6, of M  one-parameter convolution 
semigroups (r]$ )  , for j  = 1 each with support on the positive

\  /  S j > o

half-line [0, oo). Thus we can associate ('rjs)syo with M  Bernstein functions 

f^1) , . . . ,  f(M), through its association with (,r]t^)ti>o, • • • 5 {rt t ^ ) t M>o> respec­
tively.
Then D (A^1) o . . .  o A ^ ))  is a core for D o . . .  o  A^ m )7 (m)^ .

Proof. Recall that Remark 2.2.13 states that D ^(A ^1) ) * 1 o  . . .  o  (A (N ^ y N ^  , 

i i , . . .  ,iN  £ N is dense in X . In order to apply Proposition 2.2.14 we have to 
show that D ^(A ^1) ) 11 o  . . .  o  ( A ^ ) ,JV̂  is invariant under T]? for t >z 0. For

this take u £ D  ^(A ^1) ) * 1 o  . . .  o  ( A a n d  consider the sequence

r(n,...,n)
/ T su 77* (ds)

7(0,...,o)
n € N

This sequence converges to T^u and the closedness of the operator A^1) o . . .  o 
At^) gives

(A(1))n o . . .  o (AW y N (  T su r]t (ds)
J  ( )

[  T s o (A(1))n o . . .  o (A(N)) lN u 77*(ds)
J ( )

< j  ||Ta|| 77*(ds) (A(1))n o . . .  o [ k {N))%N u 
J  (m , . . . , m )

< rjt ([m ,n]N)•  (AW)i l o . . .o (A l» ) ) i"  ,
X

implying that ^(A ^1 ) ) 11 o . . .  o (A ^ )) tN J ^ ’" ^  T su ?7*(ds)^ is a Cauchy 

sequence in the Banach space X , and the closedness of (A^1)) o . . .  o (A ^)) 

yields that T?D ((A*1))*1 o . . .  o (A<">)<N)  C D ((A*1))*1 o . . .  o ( A ^ ) ^ )  .
□

x

x

We once again draw attention to the fact that the dimension of the parameter 
of the subordinated semigroup (T j)tM) may differ from the dimension of
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the parameter of semigroup (Ts)s^0. Now we give an example in which 

subordination reduces the dimension of the (time-)parameter.

Exam ple 2.3.6. Let (ps)s>zO» s G R+, be a two-parameter convolution semi­
group on Rn and define for all s >z 0 the integral operator

poo
T su(x) := /  u(y -  x )p s(dy),

Jo

for  u G Coo(Rn). Moreover, let (r)t)t>o be a one-parameter convolution
semigroup with support in R+ and representation 77t(d s i,d s2) = r j^ \d s i)  <g>

rjt2 \ d s 2 ), for all t > 0 , with two (one-parameter) convolution semigroups
( 77#̂  ) and ( r i 2̂ ) . Then there are Bernstein functions fi and f2 such
\  J t >o V / 1>o
that:

(T?u) (x) =  (27r)-t f  d {.
J]R™

Proof. Using Theorem 2.1.6 we find the existence of continuous negative 

definite functions ^ l and fa  such that

( T » a ( 0  =  [  e— i *(d»)
Jr\

p o o  p o o

=  /  e -511̂  7?t(1)(dsi) • /  e_S2V’2(e)77f)(ds2) - u ( 0  
JO J o

=  e-tfi(^(0 ) . e- tf2 ^ ^ u ( f ) ,  (2.27)

where the existence of the Bernstein functions fi and f2 follows from Theo­

rem 1.2.17. Applying the inverse Fourier transform to (2.27) we obtain

Tju(x) =  (2n)~i [  e“ V ttlWl® )- tW 2(0 )u(£) d f .
Jru

□
The dimension of the parameter may as well be increased by performing 

subordination as the following example illustrates:

Exam ple 2.3.7. Let ( / i s ) s > o be a one-parameter convolution semigroup on 

Rn with corresponding continuous negative definite function and define for  

all s >  0  the operator

T s u(z) = u ( y -  x ) p s(dy),
Jr™
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for u G Coo(Rn). Moreover, let (r}t)tyo, t G R 2 , be a two-parameter con­
volution semigroup on R with support on the positive half-line. Then the 

subordinate to (Ts)s>o with respect to (rjt)tyo is a two-parameter semigroup 
of operators and has representation

T ?u(i) =  (2jr)- ? /  elx«e_*lfl(,>K))_‘jfeW{))u(C) d f ,
JR

for the Bernstein functions fi and f2 which are associated to (rjt)tyo-

2.4 Examples of N-Param eter Semigroup

Finally, in this section we give some examples of multiparameter semigroups 
of operators. The first two examples fit smoothly into the category of N- 

parameter semigroups. The third example, however, unveils how restrictive 

the semigroup property is.

The first example is taken from [16], Ex. 11.2.2.

Exam ple 2.4.1 (Product Feller Sem igroup). i e i  ( T <») and

^ T ^ ^  be one-parameter Feller semigroups on Coo(Rn). Then we define 

a two-parameter semigroup on (Coo(R2n), ||.||oo) by defining it for f(xi, xf) = 

fi(z i) * fi,f2 € Coo(Rn) :

Tjf(z) =  • T'22>f(x2),

where we used the notation t = (£1 ,^2 ) > UU2 € R+ and x  =  ( z i ,^ ) ,  £
Rn. Using a density argument it becomes evident that T*, t >z 0, extends to 

an operator on Coo(R2n) and one can prove that (Tt)iM) is a two-parameter 

Feller semigroup. Note that (T^M  and (T?M  do not define the
\  / t i > o  V ' t 2>0

marginal semigroups of two-parameter semigroup. (Surely, this example may 

be extended to the N-parameter case.)

The next example is taken from Example 11.2.3 in [16].
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E xam ple  2.4.2 (A dditive Feller Sem igroup). Again starting with two
one-parameter semigroups (T ^M  and (T ?M  on Coo(Rn) we now de-

\  / t i> o  V /  t2>o 
fine a two-parameter family of operators (T t)tyo on Coo(Rn) by

Ttu(x) =  T tl o T t2 u(x), u e  Coo(Rn), t = ( t u  t 2 ).

Since we want the two-parameter family of operators to be a semigroup, ad­
ditionally we need pose a commuting condition on the one-parameter semi­
groups, namely T ^ , T ^  =  0, for all t i , t 2 € R+. Now it is easy to prove 

that (T t)tyo is a Feller semigroup on Coo(Rn).

Now we show that the semigroup property is, indeed, a very restrictive prop­

erty:

E xam ple  2.4.3. Let qi(:r, Dx) and <1 2(2 ;, Dx) be pseudo-differential opera­
tors on <S(R2) which are generators of the Feller semigroups (T^ ) t > 0 and 

respectively. We now define the following two-parameter family of 
operators on <S(R2)

T t :=  Ttj o T f2 , t  =  (ti, t 2) G R 2. (2.28)

We want (Tt)t^o 1° be a two-parameter semigroup of operators. Thus, ac­
cording to Lemma 2.2.10 the generators need to fulfil:

[qi(a;, D^), q2 (a;, D^)] =  0. (2.29)

On the other hand if condition (2.29) holds, then we know that the family 

defined in (2.28) is a 2-parameter Feller semigroup since the marginal semi­
groups are Feller. However, in general (2.29) is not fulfilled, but one needs 

further conditions on qi(x, D) and q2 (x, D), for example the following: if

q^XjDx) =  q i(z i,D Xl)

q2(^, Dx) =  q2 (x2 ,D X2)

where q i(x i,D Xl) and q2 (x2 ,D X2) are generators of (1-parameter) Feller 

semigroups on Cqo(R).
This condition is very restrictive and motivates the considerations in the next 
Chapter 3.



2.5. N -PARAM ETER M ARK O V PROCESSES 53

2.5 N-Param eter Markov Processes

In this section we briefly give the definition of an N-parameter stochastic 

process following the presentation in Chapter 1 1  in [16]. (Although there the 

definition is given in a more general context, we consider Rn-valued stochastic 

processes.) Furthermore, we interlink the theory developed there with our 

results.

D efin ition  2.5.1. An N-parameter,  Rn-valued stochastic process (Xt)teRn 

is said to be a m ultiparam eter M arkov process if  there exists an 

N-param eter filtration and a family of operator (T t)teRN, such that

for all x  G Rn, there exists a probability measure Px for  which holds:

(i) (Xt)t£RN is -adapted,

(ii) for  all G Rn (Xt)teRy has Pa.-almost surely right continuous paths,

(Hi) for  all t  G R+, T t is Px-complete for  all x  G Rn, and a
commuting cr-field with respect to all measures Px, x  G Rn,

(iv) for  all s , t  G R+ and  u G Coo(Rn); it holds for  all i G R n

Ea;[u(Xs+t)|^:;] =  T tu(Xa), Pa: ~  a.S. ,

(v) for  all i G R "  it holds Px(Xq =  x) =  1.

Furthermore (X t)teRN is called an iV-parameter Feller process, if: (i) for all 

t  G R+, : Coo(Rn) — > Cqo,

(ii) for each u G Coo(Rn),

lim ||T tu - u | | oo =  0.

Moreover, it is shown that {Tt)teRN is a semigroup. It follows that the 

process (Xt)tettAr is Feller, if the semigroup (Tt)teRN is Feller, as defined in 
Definition 2.2.4.



Chapter 3

Beyond N-param eter 
Semigroups

In this chapter we will analyse multiparameter families of probability mea­

sures leading to families of operators which no longer satisfy the semigroup 
property introduced and investigated in the previous chapter. In the first 
section we will construct such a two-parameter family of measures which we 

will then subordinate (in the sense of Bochner) to derive therefrom more 
families of this kind and to outline the differences to subordination in the 

’’nice” case of commuting families, i.e. semigroups. Moreover, we will show 
one way of how to obtain a stochastic process associated with such a family 

of probability measures. In section two we then will consider yet another 
multiparameter family which does not commute in the sense of Chapter 2 . 
However, we will investigate the structure of these operators in dependence 

of curves in the parameter space which will lead us to some interesting ob­

servations.

3.1 A Case Study

In the following we present two-parameter families of probability measures 

no longer satisfying the semigroup property introduced earlier. For this let

55
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if : Rn — ► C be a continuous negative definite function with ip(0 ) =  0. We 

consider

which is for s, t > 0 a continuous positive definite function, i.e. by Bochner’s 

theorem, Theorem 1.2.7 each <j>Stt is the Fourier transform of a measure on Rn. 

Obviously, we also have <̂s,*(0) =  1 for all s ,t  G R+, hence each associated 
measure is a probability measures and we can now define the two-parameter 

family (pSyt)s,t>o of probability measures by

M f )  :=  (2 ir ) -* e - ^ 0 .  (3.1)

R em ark  3.1.1. Fix s = So> 0, then (ps0 ,t)t>o is a (one-parameter) convolu­
tion semigroup in t associated with the continuous negative definite function 
Sqi/j and for so = 0, t > 0 we find that is the Dirac measure. The 
same holds, of course, for a fixed parameter to and a ” running” parameter s. 

However, {</>s,t)s,t>o is not a two-parameter convolution semigroup.

This case study of the family of measures defined in (3.1) is divided into two 

parts. The first of which is an investigation of the behaviour under subordi­
nation of this family and in the second part we show how one can construct 
processes from such a family of probability measures.
The nice results for subordination obtained in Section 2.3 are highly depen­
dent on the semigroup property, hence here we cannot expect to get the same 
results, since we are not able to make use of the convolution theorem, instead 

we perform the subordination of (fjLs,t)s,t>o step by step with two particular 
convolution semigroups supported on the positive half-line. First we subor­

dinate with respect to parameter s and then with respect to parameter t. For 

the primary step we consider the one-parameter family of measures (p S)t)s>o 
where t remains fixed greater or equal zero. We subordinate (ps,t)s>o with 
respect to the one-sided stable semigroup of order which is denoted by

i I
{&s)s>o and is associated to the Bernstein function f(x) =  x 2 . Let (^s,t)s> 0

1

be the subordinate of (ps,t)s>o with respect to (cr|)s>o, then we get for all
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s > 0

Pa,t (0  =  (27r )--2 e~sth^ \  (3.2)

Performing this subordination for all t > 0 we get a new two-parameter 

family of probability measures described by (3.2).

Now for each s > 0, fixed, we subordinate (y8,t)t>o with respect to the T- 
semigroup which is given by

p<(dz) =  X(o,oo)(x)^y(x)<_1e_:cA(1)(dx))

(here denotes the one-dimensional Lebesgue-measure) which is associated 

to the Bernstein function g(x) = log(l +  x). We denote the new family of 

probability measures by (TSjt)s,t>o• It is given by

poo i

M O  =  (2*)-* Jo e-*pl/2l « ,/! • ^  • p*-1 • e-* dp.

Now, substituting q = p 1//2 we obtain

M O  =  (2*)~i . e-«2 dq.

Using Lemma 1.4.2 we get

M O  =  ( 2 ^ F(2*)(t)2 l~t • • D _ * ( - L  • s ■ [V-(?)]1/2).

Here Du denotes the parabolic cylinder function. We transform fS)* to:

M O  =  ( 2 7 r ) " * - ^ p - 2 1_2t-[V'(0]<1/2)" A - s - i F 1 Q  +  * ; | ; j « V ( o )

+(2"r " m W i l ' ^  u Fl (*; b  IsV(e)) ’
where 1 F 1 is the confluent hypergeometric function. Table 3.1 gives fS)t, when 

(Ma.Os.t^o is subordinated in the first step by f(x) =  x 1/n.
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For the second example we start again with the two-parameter family defined

by 3.1 and subordinate (^s,t)s,t>o for each fixed t  > 0 with respect to (crs2)s>0, 

obtaining the same (vs,t)s,t>o as in the previous example. In the second step 

we subordinate (ys,t)s,t>o for each fixed s > 0  with respect to the one-sided 

stable semigroup of order \  and denote the resulting family by (ra>t)a>t>o. We 
get

Having analysed particular cases of subordination of the family (fis,t)s,t>o we> 
now, show two constructions of different processes associated to (fJ,s,t)s,t>o- 
The first one is merely a field of random variables, but nevertheless by 
definition a stochastic process.

Recall that

Since the function 0  is continuous negative definite and 0(0) =  0, hence by 

Bochner’s theorem is a probability measure on (fiS)t, A s,t) for all s, t >  0 , 

where fia>t =  M71 and A s,t = B^n\  Defining the product probability space by

(s,t)eR%

and using Corollary 9.5, p.62 in [3], one gets immediately the existence of an 

independent family of random variables {XSit)s,teR+ over the defined product

bP(0]1/2p

in the last step we substituted q = y/t. Using the Meijer-G-function we can 
represent f rtP as follows

Table 3.2 gives fS)* for (fJ,Stt)a,t>o subordinated by f(x) = x «  in the first step.

(fi, A , P) (££) (DSjt,A S)t, Ms,t)
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probability space P). The state spaces are equal, hence (X S)t)Site^ +

is a stochastic process. Due to the independence we shall not expect any 

further interesting properties of (Xsj ) s,teR+- The opposite is the case for the 
second process which is associated to {fis,t)s,t>o-
For this let 7  =  (7 1 , 7 2 ) : R+ — > R+ be a continuous, ^-monotone increasing 
curve starting at the origin, i.e. 7 (0 ) =  (0,0). We construct a process along 

7 , i.e. associated with ( / i s>t ) ( a>i)ey([o,oo))> by defining a projective family of 
probability measures.

Let U\ , . . . ,  Uk G 7  with

U \< u 2 < . . .  < u k

and

{u i,u 2, . . .  ,u k} = K G H,

for the set TL of all finite subset of 7  C R+.
For K we define the measure Pk on (Rn)k by

Pk (Ai x A2 x . . .  x A k) =

j p(uk- u u k,x k- u d x k}- • .■p(w1 ,it2 ,®i,da:2 )-p(0 ,izi, jj,dxi)i/(cLr),
A k

for all A i , . . . ,  A* G B(Rn).
Here

P{uji uj+ii xj , A) =  fJ>uj,uj+i (A — Xj), 

for all A G B^n\  Where fiUj)uj+l{A — Xj) is defined by:

Tuu+1( 0  =  (27r)~^e“ 7̂l^ j+1 7̂2̂ i+1 _̂7l^ ^ 72̂ J^ ^ ^ , 

v  is the initial distribution.

This family is projective, and applying Kolomogorov’s theorem it follows the 

existence of a probability measure P on B ^  satisfying

7tk (P) =  P K, for all K eTC ,

and the existence of a stochastic process with state space Rn, whose finite­

dimensional distributions are given by (Pk)kgh-
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More general, we can consider (27r)- ^e-k^ ,  where we have to assume, that 

for fixed t  G M+ k (t ,.) is a continuous negative definite function and for all 

t >z s and £ € Rn

k(*,£) > k(s, £).

3.2 Commuting Structure on a Curvilinear 

N et

Previously we have constructed a multiparameter family of measures and 

one corresponding multiparameter process which does in general not satisfy 

the semigroup property or is not time-parameter homogeneous, respectively. 
However, in the case of s =  0 or t =  0 the measures were degenerated, 
moreover, we did not obtain any nice structure, meaning, we did not find 
the commuting property which is common to all semigroups mentioned in 
Chapter 2. Now we want to give an example of a 2-parameter family of 
measures - defined by its Fourier transform - which is not a convolution 

semigroup, and we will establish structural property similar to the commuting 
property in the sense, that the family of measures will be commuting on 
a skewed net which we will obtain by transformation of variables in the 
parameter space.

We start with the family (fis,t)s,t>o of probability measures, which we define 
by its Fourier transform:

£»,t(0 := (27r)“Se“(s+*+‘-arctim<<,))-',’(0 (3.3)

where ip is a continuous negative definite function, £ G Rn, and s , t  G R+. 

For so =  0 {^s0,t)t>o and for t 0 = 0 {f ŝ,t0 )s>o are convolution semigroups. 
However, for any other fixed So > 0 and > 0 we find that (fiSo,t)t>o 

and (^s,to)s>o, respectively, are no convolution semigroups and consequently 

(f^s,t)s,t>o is not a two-parameter convolution semigroup. One can also argue, 

that

f i 'Soto ' T s i , t l  7^ T s o + S l J o + t l (3.4)
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and hence

f J ' S o t o  *  ^ s i . i i  7 ^  V ' s o + s i j o + t i  • (3.5)

Although (fJ,s,t)s,t>o is not a convolution semigroup for s, t > 0 each is a
probability measure and on the Schwartz space we can define the following 

family of operators. Let s, t G R+ and u G <S(Mn), then

Ts,tu(z) =  (2tt)-9  J  (3.6)

is a well-defined 2 -parameter family of operators, since 0  <
e-(s+t+t-arctan(s))-v>(0 <  ^  but it is not a semigroup of operators with 

respect to the two-dimensional parameter vector (s,£). We want to find a 

two-parameter convolution semigroup (?7a,r)a,r>o such that

l^s,t =  7̂(7,T )

for all 5 , t > 0  and a = gi(s, t), r  =  g2 (s, £) for some mapping

g : (s, t) i— ► (<7, r )  =  p(s, t) =  (#i(s, £), #2 (s, *))•

To find a convolution semigroup {r}a>r)a ,T >o with this property we define the
following transformation of variables

a := cr(s, t) = s
r  := t ( s ,  £) =  [ 1  +  arctan(s)] • t

hence

s =  a
t —  i___

l+arctan(tr)'

and

( da da \
tr  a t I =  1 +  a r c W 5)-
ds dt /
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hence determinant of the Jacobian is non-zero for all s, t > 0 and herewith the 

transformation is one-to-one for all s ,t  E R+. We emphasise that {V(j,t)ct,t>o 
has the Fourier transform

for all c r , r > 0  and £ E R, and hence is a convolution semigroup while 

(Hs,t)s,t>o is not. However, the semigroup property of (v <t,t )ct,t>o is reflected 
on (fJLs,t)s,t>o as the following equation shows

A^so.to *  ^ S \ , t \  =  V(TO,To *  V<Tl,Tl =  Vcro+(Tl,TO+Tl =  /-%"1 ((T0+(Tl ,T0+ r i ) J

where a0 = gi(s0 , t 0), r 0 =  g2 (so,*o)> =  9 i(su ti), n  = g2 (s1 , t 1). Here­
with we find that the semigroup property of reflects on (fis,t)s,t>o
as a ’’curvilinear convolution additivity” , more specifically, a convolution 
additivity on the pre-image of the parallels of the coordinate axes of the 
(a, r)-coordinate system. To visualise this let us consider the convolution:

V0,0 *  VO,to *  Vsq,0 *  V0,t\  *  V si ,0  — V s o + s i , t 0+ t i

7 s i , o
J

V so + si,t 0 " K i

o » 0

V&Q j t o b i > 0

■ « 1
S

We find for all s, t  > 0 that

Vs,o l^s,o and Vo,t Âo ,t*
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Thus

ft0,0 *  ftO,to *  f tso ,0  *  f t0 , t \  *  f t s \ , 0  =  V s o + s i , t o + t i  f t g ~ 1( s o + s i , t o + t i ) -

The curvilinear convolution additivity becomes apparent in the following 

graphic, where r)(£) =  (2 7r)«e-(<,1+tl+(‘0+tl)arctan(50+Sl)- (oarct“ (s°)),/'({).

t

s

The convolution is additive on a curvilinear net. Especially notice that the 

path from (s0 , t 0) to (s0 +  Si,*o +  U) does not effect the distribution of

(- ŝo+si,£o+*i ■̂■so,to)-
We now investigate how the partial differential equation associated to T ^ , 

see (3.6), behaves under the variable transform. We perform the transform 

(s, t ) i— ► (a, r )  on the Fourier-transformed differential equation and expect 

the resulting equation to be associated with T a}T.

d2\i d 2

dsdt dsdt
^e -(s+ £+tarctan (s))V >u  ̂ _ (3.7)

d2u 1 . (1  +  £ +  5 2 ) ( 1  +  arctan(s)) 2 A
+  . . ~  o----------— u =  0 .dsdt 1  +  s2 ^ ~ 1 +  s2

Now performing the above-defined transformation of variables we obtain

(3.8)
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^  , . .  d 2v  t  d 2v  1 d v  1
( 1  +  arctan(cr)) 1 , _ 9 • —  +  1 , _ 9 •

d a d r  1 +  cr2 d r 2 1 +  a 2 d r  1 +  a A

ip2v = 0. (3.9)
( 1  +  cr2)(l -j- arctan(cr)) +  r  

1 +  a 2

Where in the latter equation v  is defined such that

v(cr ,  r )  =  v ( < j ( s ,  t ) ,  r ( s ,  t ) )  =  u ( s ,  t ) .

Now we assume that there exists a solution of the form

v ( a ,  r )  = e ~ a^  • w(r; ip) ,  (3.10)

and in the previous differential equation we substitute v  by the term on the 
right hand side of (3.10) and we get:

/ (  d w
0  =  e ( — ( 1  +  arctan((j))^—— I- —

<92w 1 d w
+

+  cr2 d r 2 1 +  a 2 d r

1 (1 +  cr
i

( 1  +  cr2)(l  +  arctancr) +  t  2 \  
r^w -  -̂-------  l  +  ^ 2-------  tP2 w )  . (3.11)

1 +  cr2

This reduces the partial differential equation to the ordinary differential equa­

tion:

. . .  d w  t  d 2w  1  d w
0  =  - ( 1  +  a rc tan (a))^—  +  — — r  y +  — — x ^ T

d r  1 - h a 2 e r r 2 1 +  a 2 d r

1 , ( 1  +  cr2) ( 1  +  arctan cr) +  r  (9
;l/>W ~  - ------------------  5----------  1pZW .

1 +  a2 1 +  <j 2

The in our case interesting w  which solves this equation is

w =  e " ^ .

Hence equation (3.7) is solved by

v ( c t , t )  =  e - ^  • e ~ T1p. (3.12)

The other possible solutions Ui(cr, r)  =  ea^ • er^, ^(cr, t )  = • er1̂ , and
V3 (cr, r )  =  e ^  • e~r^ are, in this context, of little interest, since they are not
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positive definite and do not correspond to convolution semigroups.

Now, more generally, we consider (fis,t)s,t>o with

M O  = (27r)-ie-k<s-t>̂ («) (3.13)

for all s, t >  0 and £ G Mn , where k : D — ► I ,  D C R+, is a C^-function 
and ip is a continuous negative definite function from Mn to R. Then by 

Bochner’s theorem /zS)t is a sub-probability measure for all pairs (s, t) for 

which k(s, t) > 0 holds. Therefore we define

D0 := {(s, t) G D : k(s, t) > 0} . (3-14)

We are aiming at constructing a process with an oriented parameter set
7  C Dq following Kolmogorov’s theorem. Thus we need to find a suitable
order on the parameter set Do or on 7 , such that

(7 ,r<.) (3-15)

is a totally order set.

By suitable we mean that for any two pairs (s i,ti) , (s2 , t 2 ) £ 7  the following 
implication holds:

(si, h )  (s2, t2) = >  AW2 =  Hsxm * V, (3.16)

where 77 =  r)S l> t l .tS2jt2 is a probability measure (on Rn). Desirable is also the 

reverse implication of (3.16).

R em ark . In case k(s, t) = s • t we find

(s i,ti)  r< (s2 , t 2) = » k (s i ,* i)  <  k(s2 , t2), (3.17)

where ■< denotes the partial order defined in Section 1.1. For pairs 

and (s2 , t 2), such that (s i ,ti)  7  ̂ (s2 , t 2 ) and (s i,ti)  'i. {s2 , t 2), we cannot draw 
any conclusion. Hence the partial order ■< is insufficient in this case.
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Using (3.13) we rewrite (3.16)

(s i .il)  =<, (S2 , t 2) =*• (3.18)

and get

i)(£) =  (27r)-?e-(k(s2’t2)- k(si’,l)),,’(f). (3.19)

Hence, for rj to be a probability measure it is necessary and sufficient to

assume that k(s2 , £2 ) — k(si, U) is positive, and (3.16) can finally be reformu­
lated as

(si, h )  d* (s2, t 2) =>  k(si, U) <  k(s2, t 2). (3.20)

Vice versa, if (si,U ), (s2, t 2) € R+ are such that

0 < k(si, U) < k(s2, t 2), (3.21)

then there exists an 77 such that

^32^2 = P'SiJi * V (3.22)

where 77 is defined by (3.19).
In the multiparameter case of Chapter 2 , admissible successive time- 
parameter points for a process, which has reached time-parameter p G R + , 

are exactly those of the subset {r : p ^  r}, i.e. the positive cone with vertex 

P-
Now assume that there exists a bicontinuous and injective map I from D to 

R+, I : ( s , t )  1— ► (cr, r )  such that

k(s,t)  = |I(s , £ ) | 2 =  cr +  r.

Moreover, we define a convolution semigroup (^a,r)cr,r>o of probability mea­
sures by

M f )  =  (27r)-«e-(ff+T>^(«, 

for all cr, r  >  0. Then for (s i,ti)  G R+ and (cr^Ti) =  I(si,U ) we have
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Admissible successive points with respect to (cri,Ti) are those in the cone

C i ( < 7 i , 7 i )  : =  { ( < 7 , t )  G R +  : ( < 7 i , t i )  ■< ( < 7 , r ) } ,

thus we get the following set C (s i,ti)  of admissible successive points for 

(si, t i )  with respect to (Hs,t)s,t>o in form of the pre-image of Ci(<7i, t ±) under 
the map I:

C(si, h )  := I-1 (Ci(<7i, ri)) =  {(s, t) E D : I(s, t) > I(si, h )}  .

If (5 2 ,^2 ) £ C (si,ti)  then we denote it by

(s2 ,h )  ^ 1  {si,ti). (3.23)

This relation satisfies (3.20), hence suffices our needs.

R em ark . There may be pairs (si, ti), (S2 , £2 ) € R+ Ŵ 1 (s i f f i)  i^i 
(5 2 ,^2 ) ond (s i,ti)  ^ 1  (S2 , 2̂ )• This, however, will not effect the Kolmogorov 
construction of a process.
I f  one chooses the function k(s, t ) to be strictly monotone increasing rh  be­
comes a total order, but since this would exclude curves 7 * which are gripped 

by rh; we do not for strict monotonicity.

Now define for all c > 0 a set Dc by

Dc =  { ( s , i ) € D :  k(s, t) > c} . (3.24)

Furthermore, let 7 * be an injective C1-function from [0, 0 0 ) onto 7 . Then 7 * 

is called a parameterisation of 7 . If in addition 7 * is increasing with respect 

to ^ 1, then it is called I-adm issible.

We conclude that for a I-admissible parameterisation 7 * of 7 , analogously 

to Chapter 3.1, there exists a projective family associated to the family of 

probability measures (^S)*)(S)i)e7. Thus by Kolmogorov’s theorem there exists 

a process associated to (psj)(s,t)e'y
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