

 Swansea University E-Theses ___

An assessment of the usability of aspect-oriented programming and

the usability of current implementations.

Rohani-Sarvestani, Nadim

 How to cite: ___
Rohani-Sarvestani, Nadim (2010) An assessment of the usability of aspect-oriented programming and the usability of

current implementations.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa43138

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43138
http://www.swansea.ac.uk/library/researchsupport/ris-support/

An Assessment of the usability of Aspect-oriented
Programming and the usability of current

implementations

by

Nadim Rohani-Sarvestani

Supervisor: Dr C.P.Jobling

A thesis submitted to the
University of Wales

in fulfilment for the degree of
MASTER OF PHILOSOPHY

School of Engineering

SWANSEA UNIVERSITY
2009

Swansea University
Prifysgol Abertawe

Nadim Rohani-Sarvestani

ProQuest Number: 10821530

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821530

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Summary

Crosscutting concerns are responsible for producing scattered and tangled

representations throughout the software life cycle. Effective separation of such concerns

is essential to improve understandability and maintainability of system components at

the various software development stages. Aspect-oriented software development

(AOSD) holds promise for the purpose.

The study discussed how modularization can aid the development of a robust, re-usable,

flexible and sustainable system. It suggests that modular programming can be achieved

when certain criteria are met and, while the sustainability of modularity requires certain

rules. The study introduced assumptions about software design processes and

programming languages. The study recommended that a design process and a

programming language work well together when the programming language provides

abstraction and composition. These mechanisms can cleanly support the kinds of units

the design processes that break the system into and a clear and simple one-to-one

mapping from design level concepts to their source code implementation.

The study analysed the state-of-the-art in AOP techniques that would provide the tools

to assess and compare AOP versus other programming approaches. It investigates

language models and meta-models for AOP which would allow a more general but

comprehensive comparison and analysis of the fundamental aspect language features as

well as their implementation and execution techniques. It contributed to the aspect-

oriented software development (AOSD) survey by classifying an aspect extension to a

procedural language.

Furthermore, different scenarios were explored to understand the usability, usefulness,

strengths and weaknesses of the AOP as a software technique and the current strategies

that are in place to deal with crosscutting concerns. In addition, three different case

studies were selected to analyse AOP implementations of none trivial applications that

Nadim Rohani-Sarvestani 1

uncovered benefits and drawbacks of the AOP technique. The first case study provided a

comparative analysis of the changes required to evolve the tangled and scattered code

versus aspect-oriented implementations. The second case study presented an AOP

implementation of a crosscutting concern known as persistence and showed that

persistence can be a highly re-usable aspect and be developed into a general aspect-

based persistence framework. The third case study outlined how to conduct AOSD with

use-cases. This contribution offered a new way of visualizing and capturing application

and infrastructure use case flows while keeping infrastructure separate from the

application and infrastructure services separate from each other. The use-case models

that were analyzed also helped to verify that a resilient architecture is achieved by

treating infrastructure use-cases as extensions of application use-cases.

Nadim Rohani-Sarvestani 2

Declaration/Statements

Declaration

This work has not previously been accepted in substance for any degree and is
not being concurrency submitted in candidature for any degree.

Signed . . . (N. Rohani-Sarvestani, candidate)

Date.

Statement 1

This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by footnotes giving explicit references.
A bibliography is appended.

Signed . . (N. Rohani-Sarvestani, candidate)

Date.

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Signed (N. Rohani-Sarvestani, candidate)

Date . ..

Nadim Rohani-Sarvestani 4

Acknowledgements

The period of my research study and hence the completion of this thesis would not have

been possible without the steady support of many special people, hopefully, most will be

listed below.

First, I would like to thank my supervisor Dr C.P. Jobling for his guidance and

enthusiasm on the subject.

An especial acknowledgment goes to my wife Nesrin for her love; support and patience

during my candidature.

My warmest thanks go to my family Bijan, Nagme, Nada, Lua and Noura for the

support throughout my education and their continual encouragement and guidance.

Finally, I would also like to thank all other supporting people that have inspired and

encouraged me is some way shape or form, in particular Neil P., Hussein Y., Jonathan

J., Dimitris P., Justin B., Josie A., Geoff A., Dr Tim D., Dr Andy M. and Matt J. for

their friendship and support.

Nadim Rohani-Sarvestani 5

Contents
Summary... 1
Contents.. 6
List of Figures...8
List of Tables...9
List of Abbreviations..10
1. Introduction...11
2. Evolution of Modularization...13

2.1 Programming Language Evolution... 13
2.2 Modularization...15
2.2.1 Criteria for Modularization... 17
2.2.2 Rules for Modularization..20
2.3 Constraints of Object Oriented Technologies..23
2.4 Aspect-oriented Programming...27
2.5 Summary.. 33

3. AOP Language Metamodel...35
3.1 Overview.. 35
3.2 Language Models.. 38
3.3 Survey Dimensions and Results...39
3.4 Common Language Concepts Metamodel... 45
3.5 Execution Semantics of the Metamodel Interpreter.. 50
3.6 Classification of Aspect Languages According to the Metamodel......................... 57
3.6 Summary.. 63

4. Assessing AOP - Approach and Implementation..66
4.1 Evaluation of Software Techniques and Management of Concerns During
Evolution Tasks.. 67
4.1.1 Evaluating a Software Development Technique.. 67

Tools U sed... 68
Case Studies... 68
Experiments.. 69
Lessons Learned...70
1. Selection of an Evaluation Method...70
2. Maintaining Realism...72
3. Designing the Empirical Study..72
Conclusion... 72

4.1.2 Managing Crosscutting Concerns During Software Evolution Tasks.................73
Setup and Tools U sed ...75
Results...76
Result Implications... 79

4.2 Case Study I: A Retroactive Study of Aspect Evolution in Operating System Code
 81

Overview...81
Analysis of the Crosscutting Concerns...83

1. Page Daemon Activation concern...83
2. Pre- fetching concern... 85

Nadim Rohani-Sarvestani 6

3. Disk Quotas Concern... 87
4. Blocking in Device Drivers Concern... 88

Analysis of the Results of the Experiment... 89
1. Evolving Scattered and Tangled Code... 90
Page Daemon Wakeup..90
Pre-fetching..90
Disk Quotas..90
Device Blocking in Drivers..91
2. General Improvements using Aspects.. 91
3. Runtime Costs... 93

Conclusion and Open Issues....................................... 94
4.3 Case Study II: Persistence as an Aspect... 94

Modularising Persistence..96
1. Database access...96
2. SQL Translation.. 102
3. The Emerging Persistence Framework.. 105

Conclusion... 107
4.4 Case Study III: AOSD with Use-Cases...108

4.4.1 Introduction...109
4.4.2 Solution Architecture.. I l l
4.4.3 Capturing Concerns with Use-Cases... 115
4.4.3.1 Requirements Gathering...115
4.4.3.2 Use-Case modelling..116
4.4.3.2 Use-Case Specification..119
4.4.3.4 Use-case Slices.. 122
4.4.3.5 Visualizing Use-Case Flow s... 123
4.4.3.6 Capturing Infrastructure Use-Cases... 125
4.4.3.7 Visualizing Infrastructure Use-Case Flow s.. 126
4.4.3.8 Analysis M odel...128
4.4.3.9 Keeping Infrastructure Use-Cases Separate.. 131
4.4.3.10 Conclusion.. 133

4.4 Summary...135
5. Conclusion and Future W ork... 138

5. 1 Conclusion and Discussion... 138
5. 2 Further Work...145

Bibliography..146
Appendix A ...159
Appendix B ... 160

Nadim Rohani-Sarvestani 7

List of Figures

Figure 1 “one node to all” and “maximised nodes” ...22
Figure 2 System evolution without modularization...26
Figure 3 System evolution: AOP Based.. 27
Figure 4 Aspects crosscut classes.. 31
Figure 5 AOSD Timeline [32]... 36
Figure 6 Aspect Language Dimensions.. 40
Figure 7 Survey Dimensions and Common Metamodel adapted from [54].....................46
Figure 8 The Join Point Metamodel adapted from [54].. 47
Figure 9 The Pointcut metamodel adapted from [54]... 48
Figure 10 The base- and aspect-level interpreters of the metamodel from [54].............. 56
Figure 11 AspectC in the Join point Metamodel... 59
Figure 12 AspectC in the Pointcut Metamodel.. 61
Figure 13 Persistence framework from [80]...106
Figure 14 High level view of the current and new environment...................................... 110
Figure 15 User Access Control Architecture..113
Figure 16 User Access Control showing Presentation Layer Components..................... 114
Figure 17 Self-registration process use cases..118
Figure 18 Pre-Registration Process.. 124
Figure 19 Registration Request...124
Figure 20 User Account Activation... 124
Figure 21 <Perform Transaction> use-case..125
Figure 22 Structuring infrastructure use-cases..126
Figure 23 Handle Authorization use-case... 126
Figure 24 Handle Scalability use-case...127
Figure 25 Provide Cached Access use-case..127
Figure 26 Smart Sync use-case...127
Figure 27 Analysis stereotypes...128
Figure 28 Interaction diagram for Account Activation use-case..................................... 130
Figure 29 Interaction diagram for Handle Authorization... 130
Figure 30 Interaction diagram for Smart Sync..131
Figure 31 Infrastructure package for Handle Authorization use-case..............................132
Figure 32 Use-Case slice Authorization [138, p. 249]...133
Figure 33 Execution Model Dimensions... 160

Nadim Rohani-Sarvestani 8

List of Tables

Table 1 Matching join points for AspectC.. 60
Table 2 Experimental Methods Overview and Results..70
Table 3 Developers task descriptions, obstacles and strategies... 77
Table 4 Summary of the results... 91
Table 5 Functional Requirements.. 116
Table 6 Non-Functional Requirements..116
Table 7 Actor names and their description... 118
Table 8 Self-Registration process - Use-Case 000 specification: Pre-Registration
Process... 119
Table 9 Self-Registration process - Use Case 001 specification: Registration Request 120
Table 10 Self-Registration process - Use-Case 002 specification: User Account
Activation...121
Table 11 Composing peer use-case realizations with use-case slices............................. 122

Nadim Rohani-Sarvestani 9

List of Abbreviations

AOSD: Aspect-Oriented Software Development

ECOOP: European Object-oriented Programming

ESEC: European Software Engineering Conference

FOOL: Foundations of Object-Oriented Languages

SIGSOFT: Symposium on the Foundations of Software Engineering

ICSE: International Conference on Software Engineering

JAOO: Java and Object-Oriented Software Engineering Conference

OOPSLA: Object-oriented Programming Systems, Languages and Applications

0 0 : Object-oriented

OOP: Object-oriented programming

AOP: Aspect-oriented programming

VM: Virtually Memory

OS: Operating System

CASB: Common Aspect Semantics Base

TAM: Tivoli Access Manager

TDS: Tivoli Directory Server

TIM: Tivoli Identity Manager

Nadim Rohani-Sarvestani

1. Introduction

The aim of this research is to introduce aspect-oriented programming (AOP) and its

benefit when modularizing concerns. It introduces a model that would allow a more

general but thorough comparison and analysis of the fundamental aspect language

features, implementation and execution techniques. It contributes to the aspect-oriented

software development (AOSD) survey by classifying an aspect extension to a procedural

language. It suggests ways to assess AOP as a software technique and introduce non

trivial applications that applied AOP in order to strengthen the claim that this technique

benefits the current conventional programming. It introduces a new way of visualizing

and capturing application and infrastructure use case flows. Finally, it discusses any

drawbacks that were found from the results of various experiments and case studies

from the AOSD community.

The main part of research is divided in the following chapters:

C hapter 2 discusses how modularization can aid the development of a robust, re-usable,

flexible and sustainable system. It includes a survey of programming language

evolution, introduction of the concept of modularization, the principles required when

decomposing a system into modules, discussion regarding the constraints of the object-

oriented approach when capturing or implementing modularity concepts, and finally

introducing the aspect-oriented approach and its benefits.

C hapter 3 continues the discussion regarding that AOP provides support for design

decisions are difficult to express cleanly in code using existing programming techniques

because they crosscut the systems’ basic functionality. Subsequently, it aims to reflect

and analyse the state-of-the-art in AOP techniques that would provide the tools to assess

and compare AOP versus other programming approaches. It investigates language

models and meta-models for AOP which would allow a more general but

comprehensive comparison and analysis of the fundamental aspect language features as

well as their implementation and execution techniques.

Nadim Rohani-Sarvestani 11

In this chapter the study also contributes to the survey by the classification of a simple

AOP extension to the programming capabilities of C. Modelling AspectC would assist

in a better understanding of AOP capabilities and constraints, when trying to facilitate

an AOP implementation in a procedural language. Modelling will also aid the

understanding of a case study that is analysed in chapter 4.

Chapter 4 assesses AOP as a software technique and introduces a benchmark that any

technique must meet. The chapter begins by reporting the results of the research of two

papers that discusses the evaluation of a new software development technique in terms

of its usability, usefulness, strengths and weaknesses of the AOP methods and the

current strategies that are in place in order to deal with crosscutting concerns.

Finally, three different case studies were selected to analyse real world none trivial

applications discussing the benefits and drawbacks of the AOP technique. The first case

study provides a comparative analysis of the changes required to evolve the tangled and

scattered versus aspect-oriented implementations. The second case study presents an

AOP implementation of a classical example of crosscutting concern known as

persistence. The third case study, a new contribution towards the AOSD community,

outlines how to conduct AOSD with use-case driven approach. The suggested solution

is a new way of visualizing and capturing application and infrastructure use case flows

while keeping infrastructure separate from the application and infrastructure services

separate from each other.

C hapter 5 concludes the thesis and examines the potential of further investigations.

Nadim Rohani-Sarvestani 12

2. Evolution of Modularization

This chapter discusses how modularization can become the building blocks of a robust,

re-usable, flexible and sustainable system. It starts with a brief survey in order to

establish a perspective of the programming language evolution. Then, the concepts of

modularization, it’s meaning, and benefits are introduced. Next, criteria and rules are

discussed when decomposing a system into modules. The discussion leads to some

constraints of the object-oriented approach, while capturing or implementing modularity

concepts. This results into introducing the aspect-oriented approach and its benefits.

2.1 Programming Language Evolution

Assembly [1] was one of the first programming languages created for computers in the

early 1950s. Soon after, FORTRAN [2], a procedural (i.e. routines, subroutines,

methods), imperative programming language was developed that is especially suited to

numeric computation and scientific computing. An important milestone in 1960s was

the structured programming language known as ALGOL 60 (Algorithmic language) [3].

ALGOL 60 set a standard for block structure as it is known today. It supported

branching, looping, delimited scope of variables, pass by value, pass by name, and

recursion.

In the 1970s, Simula67 (Simulation language) [4] provided linguistic support for object-

orientated programming (OOP), and CLU (function clusters) [5] provided linguistic

support for data abstraction. While Simula67 supported encapsulation when developers

obeyed rules, CLU offered further language enforcement, contributing to a key idea in

programming methodology from the same era that focused on separation of concerns

[6], organising systems into separate parts that could be dealt with in relative isolation.

Although, the idea of what precisely constitutes a concern remains rather vague [7],

linguistic support for modules as a collection of operations with hidden information

separating the ‘what’ from the ‘how’ was standard for some time in languages such as C

[8] that supported library modules with separate compilation. Also, breaking a system

into modules required some criteria for decomposition. Pamas [9] originally suggested

Nadim Rohani-Sarvestani 13

that decomposition should begin with a list design decisions that are either difficult or

likely to change, and those decisions should be hidden into modules. Pamas set some

additional criteria for good modularity including support for comprehensibility and

independent development which will be discussed later.

Smalltalk [10], an object-oriented reflective programming language, developed at

roughly the same time as CLU, had early support for what was later called metaobject

protocols [11]. Metaobjects enabled dynamic manipulation of methods or types in an

application. This approach offered a powerful way of making system-wide, crosscutting

changes by facilitating the modification of language implementation. Open

implementation [12] allowed clients of a module to influence its implementation by use

of a metaobject, accessed through a separate module interface.

The 1980s were years of relative consolidation. For example, C++ [13] combined

object-oriented and systems programming or Ada [14] also an object-oriented and

systems programming language intended for use by defence contractors. Therefore,

instead of creating new paradigms, all of these movements elaborated upon the ideas

invented previously. However, there was an increased focus on programming for large-

scale systems through the use of modules, or large-scale organizational units of code.

Many researchers expanded on the ideas of the existing languages and adapted them to

new contexts. For example, the languages of the Argus and Emerald systems adapted

OOP to distributed systems [15].

Then, in 1990s also known as the internet age, [16] more OOP languages were

developed such as Java [17] that were influenced by the well established OOP

principles, such as modularization mentioned by Pamas [9]. Furthermore, structuring

implementations along dimensions that continue to go beyond standard procedural or

object-oriented technology has been addressed by several research projects in the

Aspect-Oriented Software Development research community (AOSD) [18]. Some

examples are subject-oriented programming [19] and subsequent work on hyperspaces

[20] which deal with collection of classes that define a view of a domain, and provide a

Nadim Rohani-Sarvestani 14

means of integrating these multiple views for the development of complex systems.

Another notable example is aspect-oriented programming (AOP) [21], as defined by

work in the Aspect! project, which provides linguistic support for concerns that are

inherently crosscutting - by their very nature they are present in more than one module.

The premise of this approach is that some concerns dictate a natural primary modular

decomposition of a system, whereas others, called aspects, crosscut this structure. The

goal is to better separate and modularise crosscutting functionality from the primary

decomposition of the system using simple linguistic mechanisms. This will be analysed

in more detail.

2.2 Modularization

As seen earlier the concept of modularization has been around for some time and is

introduced as a mechanism for improving the flexibility and comprehensibility of a

system whilst permitting curtailment of its development time [9]. Because

modularization is a broad subject, the perspective of this research, when discussing

modularization is assessing the benefits that AOP claim to provide and try to define the

‘ideal’ modular programming technique.

A lucid statement of the philosophy of modular programming can be found in a 1970

textbook [22] on the design of system programs by Gauthier and Pont, which states that

“a well defined segmentation o f the project effort ensures system modularity. Each task

forms a separate, distinct program module. A t implementation time each module and its

inputs and outputs are well-defined, there is no confusion in the intended interface with

other system modules. At checkout time the integrity o f the module is tested

independently; there are few scheduling problems in synchronizing the completion o f

several tasks before checkout can begin. Finally, the system is maintained in modular

fashion; system errors and deficiencies can be traced to specific system modules, thus

limiting the scope o f detailed error searching”.

Subsequent to this statement, Pamas [9] discussed the benefits expected from modular

programming (modularization) suggesting some criteria which can be used in

Nadim Rohani-Sarvestani 15

decomposing a system into modules. The definition of “module” is considered to be a

responsibility assignment rather than a subprogram; modularizations include the design

decisions which must be made before the work on independent modules can start.

Quoted benefits expected of modular programming are [9] :

• Managerial: Development time could be reduced if separate groups could work on

each module with little need for communication.

• Product flexibility: The possibility of making drastic changes to one module

without a need to change others.

• Comprehensibility: A system can be better designed and understood if it is possible

to study it one module at a time.

Furthermore, the effectiveness of modularization is dependent upon the criteria used in

dividing the system into modules. One method to decompose a system design problem

is to begin with a basic flowchart and move from there to a detailed implementation.

This is useful when the problem domain is for small applications. However, when the

application develops and grows to a larger scale, issues such as changeability,

independent development and comprehensibility become important and vital for the

system to remain modular [9].

Another method is to decompose a system design problem using “information hiding” as

a criterion [23]. Modules therefore no longer correspond to steps in processing but rather

tend to vary as the specifications continue to change. Hence, the design begins with a

list of difficult design decisions or ones which are likely to change; each module is then

designed to hide such decisions from the others. Since, in most cases, design decisions

transcend the time of execution, modules will not correspond to steps in processing. An

example of decompositions mentioned by Pamas is the sequence in which certain items

will be processed should (as far as practical) be hidden within a single module.

However, various changes ranging from equipment additions to unavailability of certain

resources in an operating system make sequencing extremely variable. Furthermore,

Nadim Rohani-Sarvestani 16

efficiency and implementation can reduce the development to a relatively independent

number of small manageable programs.

Subsequently, important issues such as comprehensibility, efficiency, extensibility and

reusability came into consideration and the need for flexible system architecture, made

by autonomous software components became apparent [23]. Modular programming,

already mentioned by Pamas, was once taken to mean the construction of programs as

assemblies of small pieces; usually subroutines. But such a technique cannot bring real

extensibility and reusability unless modules (i.e. a responsibility assignment rather than

a subprogram) are used [9]. It is important to explore what precise properties a method

must possess to deserve the modular label. Focusing on subjects such as; design

methods, early stages of system construction (analysis, specification), implementation

and maintenance, will provide a better understanding of object technology and refine

this informal definition of modularity [24].

Next, the effectiveness of a modularization is dependent upon the criteria and rules used

in dividing the system into modules. Therefore, some criteria and rules of modularity

extending Pamas’ principles are introduced which; taken collectively, cover the most

important requirements of a modular design method.

2.2.1 Criteria for Modularization

Five fundamental design requirements need to be satisfied for a design method to be

called modular [25]. These are:

a) Modular decomposability

The Modular decomposability criterion is satisfied when a software construction helps

in the task of decomposing a software problem into a small number of less complex

sub-problems, connected by a simple structure, and independent enough to allow

further work to proceed separately on each of them [25, p. 40]. A natural effect of the

decomposability requirement is division of labour: once the system is decomposed into

subsystems, work allocation should also be distributed among the different systems.

Nadim Rohani-Sarvestani 17

This is a difficult task since it limits the dependencies that may exist between the

subsystems. Therefore, such dependencies must be kept to bare minimum; otherwise

the development of each subsystem would be limited by the pace of the work on the

other subsystems. Furthermore, all the dependencies must be known: through a failure

to list all the relations between the subsystems the project may result in a set of

elements that appear to work individually but cannot be put together to produce a

complete working system. This leads to failure to satisfy the overall requirements of the

original problem.

A well known example of a method satisfying the decomposability criterion is called the

“top-down” design [26]. Basically the method directs designers to start with a most

abstract description of the system’s function, then refine this view through successive

steps, decomposing each subsystem at each step into a small number of simpler

subsystems until all remaining elements are of a sufficiently low level of abstraction to

allow direct implementation. A typical counter example is a global initialization module;

included in every software system produced. Many modules in a system will need some

kind of initialization, such as opening certain files or initialization of certain variables,

which the module must execute before it performs its first useful tasks. Although it may

seem a good idea to concentrate all such actions, for all modules of the system, in a

single module, to do so would endanger the autonomy of modules. Therefore the

initialization module would need to have access to many separate data structures

belonging to the various modules of the system and requiring specific initialization

actions. This is incompatible with the decomposability criterion which states that every

module will be responsible for the initialization of its own data structures [25, p. 41].

As it will be shown later, AOP is trying to overcome the issue of a global service, for

example, where logging or database access is required and where all classes need to

connect to this service in order for that system to work properly.

b) Modular composability

Nadim Rohani-Sarvestani 18

The Modular composability criterion is satisfied when a method favours the production

of software elements which may then be freely combined with each other to produce

new systems, possibly in an environment quite different from the one in which they

were initially developed [25, p. 42]. Composability is the reverse process of

decomposability; extracting software elements that are sufficiently autonomous from

the context for which they were originally designed so that they may be used again in a

different context. Composability is directly connected with the goal of reusability: the

aim is to find ways to design software elements performing well-defined tasks and

usable in widely different contexts.

Composability and decomposability are independent of each other and they don’t match

at all. The top-down design, for example, which is a technique that is favoured by

decomposability, tends to produce modules that are not easy to combine with modules

coming from other sources. This is because the method suggests developing each

module to fulfil a specific requirement, corresponding to a sub-problem obtained at

some point in the refinement process. Such modules tend to be closely linked to the

immediate context that led to their development, and are unfit for adaptation to other

contexts. Also, it is important to note that both composability and decomposability are

part of the requirement for a modular method and reflect the inevitable mix of top-down

and bottom-up reasoning.

c) Modular understandability

The Modular Understandability criterion is satisfied when a method helps to produce

software in which the human reader can understand each module without having to

know the others, or, at worst, by having to examine only few of the others [25, p.

43].The importance of this criterion follows from the influence on the maintenance

process. Most maintenance activities involve exploring existing software. A method

cannot be called modular if a reader of the software is unable to understand its elements

separately. This criterion, like the others, applies to the modules of a system description

at any level: analysis, design implementation. The modular understandability criterion

also affects the maintenance of the implementation and makes it harder to give the

Nadim Rohani-Sarvestani 19

implementation task to a team member as the implementation touches many segments

that other team members are working on; an issue that AOP solves.

d) Modular continuity

The Modular continuity criterion is satisfied if a problem specification triggers a

change of just one module, or a small number of modules in the software architecture

that it yields [25, p. 44]. This criterion is directly connected to the general goal of

extensibility. It is a known fact that “change” is an integral part of the software

construction process. The requirements will almost inevitably change as the project

progresses. Continuity means that small changes should affect individual modules in

the structure of the system, rather than the structure itself.

e) Modular protection

In a similar manner the modular protection criterion is satisfied when the effect of an

abnormal condition occurring at run time in a module remains confined to that module,

or at worst only propagates to a few neighbouring modules in the software architectures

that it yields [25, p. 45]. This criterion is for errors and failures within a software

system such as run-time errors, resulting from hardware failures, erroneous input or

exhaustion of needed resources (e.g. memory storage). It is important to mention that

the method does not address the correction of errors, but the aspect that is directly

relevant to modularity which is “propagation”. A good example of modular protection

is the use of exception handling because is validating input at the source.

2.2.2 Rules for Modularization

Following the five fundamental requirements that should be satisfied for a modular

design method, four rules are suggested to ensure the sustainability of “modularity”. The

first rule addresses the connection between a software system and external systems. The

rest address a common issue called “communication between modules” that is important

for obtaining good modular architectures [25].

a) Direct Mapping

Nadim Rohani-Sarvestani 20

The modular structure devised in the process of building a software system should remain

compatible with any modular structure devised in the process of modelling the problem

domain [25, p. 47]. This means that when a good model is obtained from the problem

domain it is desirable to maintain clear correspondence (mapping) between the structure

of the solution and the structure of the problem. This rule follows from two of the

modularity criteria:

• Continuity: Thus keeping a trace of the problem’s modular structure in the

solution’s structure will make it easier to assess and limit the impact of changes.

• Decomposability: if some work has already been done to analyze the modular

structure of the problem domain, it may provide a good starting point for the

modular decomposition of the software.

b) Small and Explicit Interfaces

This Small Interface rule follows from the criteria of Continuity and Protection stating

that if two modules communicate, they should exchange as little information as

possible and must be public [25, pp. 48-50]. The Explicit Interface rule stands from

the criteria of Decomposability and Composability (decompose a module into several

sub-modules or compose it with other modules; any outside connection should be

clearly visible).

c) Few interfaces

This rule follows in particular from the criteria of continuity and protection which states

“if there are too many relations between modules, then the effect of a change or of an

error may propagate to a large number of modules”. Communication may occur between

modules in variety of ways but with as few others as possible. [25, p. 47] Modules may

call each other, share data structures etc. This rule limits the number of such

connections. One way for this to be achieved is shown in Figure 1, “one node to all” is

preferred to “maximised nodes” where each module is connected to all other modules.

Nadim Rohani-Sarvestani 21

Figure 1 “one node to all” and “maximised nodes”

The one node to all is an extremely centralized structure where the master module

communicates to all the other modules. The problem with this communication method is

that if the master module fails the entire system would fail. Therefore, depending on the

requirements other communication channel configurations can be used.

d) Information hiding

The designer of every module must select a subset of the module’s properties as the

official information about the module, to be made available to authors of client modules

[25, p. 51]. Application of this rule assumes that every module is known to the rest of

the world through some official description or public properties. Obviously the whole

text of the module itself (program text, design text) could serve as the description but

this rule states that this should not be the case. The description should include some of

the module’s properties; the rest should remain non-public or private. The fundamental

reason behind this rule is the continuity criterion. Assume a module changes, but the

changes apply only to its private elements leaving the public ones untouched; then the

clients will not be affected. The smaller the public part, the higher the chances that

changes to the module will be in the secret part. Imagine a module information hiding

as an iceberg; only the tip (interface) is visible to the clients. Information hiding

emphasizes separation of function from implementation. The key to information hiding

is not management or marketing policies as to who may or may not access the source

Nadim Rohani-Sarvestani 22

text of a module, but strict language rules to define what access rights a module has to

properties of its suppliers. [9]

2.3 Constraints of Object Oriented Technologies

An important assumption about software design processes and programming languages

is that they exist in a mutually supporting relationship. Design processes break a system

down into smaller and smaller units. Programming languages provide mechanisms that

allow the programmer to define abstractions of system sub-units, and then compose

those abstractions in different ways to produce the overall system. A design process and

a programming language work well together when the programming language provides

abstraction and composition mechanisms that cleanly support the kinds of units the

design process breaks the system into. From this perspective, many existing

programming languages, including object-oriented languages, procedural languages and

functional languages, can be seen as having a common root in that their key abstraction

and composition mechanisms are all rooted in some form of generalized procedure (GP)

[21]. This doesn’t ignore the OOP advantages it makes it simpler to focus on what is

common across all GP languages. It was mentioned that the design methods that have

evolved to work with GP languages tend to break systems down into units of behaviour

or function. This style has been called by Pamas functional decomposition [23]. The

nature of the decomposition differs between the language paradigms, but each unit is

encapsulated in a procedure/function/object. In each case it is best to discuss it as a

functional unit of the overall system.

When a programmer is writing an application there is some notion of “design” of the

main features and functionalities that the application must support and how it might be

represented in the code. The “ideal” mapping from design-level to source code

implementation would be to have a simple and clear one-to-one correspondence i.e. each

requirement would have a unique correspondence with an implementation construct. For

example if the program needs to deal with an Employee, it would be ideal if the concept

of the employee had a one-to-one mapping to an Employee class. The Employee class

encapsulates everything the program needs to know about working with employees. If

Nadim Rohani-Sarvestani 23

there were different kinds of employees they could be mapped into an Employee class

hierarchy. Therefore it is clear which portion of the implementation correspond to the

design-level notions of the Employee.

A clear and simple one-to-one mapping from design level concepts to their source code

implementation makes the application simpler to understand and maintain. The concepts

and requirements at the design level correspond closely to the units of change over the

program’s lifetime i.e. if a new kind of employee is needed a new class can be added to

the employee hierarchy. In the same way, if it is no longer required to keep a track of

salary it can deleted from the Employee class.

However not all design-level requirements are easy to have a clear one-to-one mapping

with an implementation construct when using an object-oriented (OO) language.

Consider, for example, the requirement that a view be notified whenever the state of an

employee object it is displaying is updated. Usually this would be implemented by

fragments of codes across the Employee hierarchy instead of an encapsulated module.

Below an extract of the code is shown:

public class Employee {

private String name;
private Double salary;
private Date birthDate;
private List listeners;

public Employee(...) {...} // details omitted

public void addListener (EmployeeListener listener) {
listeners.add(listener);
}

public void removeListener (EmployeeListener listener) {
listeners. remove(l istener);
}

public Date getbirthDate () {
return this.birthDate;
}

public Double getsalary () {

Nadim Rohani-Sarvestani 24

return this.salary;
}

public String setname (String employeename) {
this.name = employeename;
notifyListeners(this);
}

//etc.

}

The Employee class has methods to add and remove listeners, and has calls to a

notifyListeners method every time the state is changing. Hence instead of a simple and

nice one-to-one mapping, there is a one-to-n mapping known in AOP community as

“scattering”. In general whenever a one-to-n mapping occurs from design-level concepts

and requirements to implementation constructs the following problems can be expected:

[27, p. xix]

• It is harder to understand and reason about the implementation of the

requirement, because to get the full picture the developer needs to look in

multiple places in the source code.

• It is harder to add or remove the implementation of the requirement from the

code base. It is required to remember to add or remove logic at each relevant

point.

• It is harder to maintain the implementation. As shown in the previous example

any occurring changes must be consistent and correct across the application.

• It is harder to give the implementation task to a team member. The

implementation touches many segments that other team members are working

on.

• It is harder to reuse the implementation in another system. The implementation

pieces are not modularized in a way that can be easily extracted and there are a

lot of other dependencies from the current system tangled in with it.

When an application has multiple design concepts and requirements and some of them

are one-to-n mappings, it inevitably ends up with source modules that contain logic to

Nadim Rohani-Sarvestani 25

do with multiple concepts and requirements. In the case o f the E m ployee class it

exhibits a two-to-one m apping ratio: one single m odule is im plem enting both the

Em ployee concept and the “view notification” requirement. This is also know n as

“ tangling” i.e. the different im plem enta tion com ponents have been tangled together

inside a single m odule [27, p. xx].

Therefore, failing to m odularize crosscutting concerns leads to tw o things:

1) Code tangling (coupling o f concerns)

2) Code scattering (the same concern spread across modules)

Figure 2 shows another exam ple w hereby a system consisting of a Bank, a C us tom er

and Reporting Service has both code tangling and code scattering as it is evolving.

Code Scaterring

BankService CustomerService ReportingService

| Security f I Logging J | I

Transactions \ ̂ Security | [--------Security — [*
Code Tangling

Security^
|| Logging

Logging , Transactions
Transactions | Logging f

Figure 2 System evolution without modularization

On the other hand as shown in Figure 3, if the sam e system concerns were dealt with as

aspects the system w ould achieve a better m odularity as it would achieve a one-to-one

mapping. Aspects are a unit o f modularity , encapsulation and abstraction with the

difference that aspects can be used to im plem ent crosscutting concerns in a m odular

fashion. Aspects will be explained later in more detail.

Therefore when any application contains a one-to-n, n-to-one or n-to-n m apping

between design-level concepts and requirem ents to im plem enta tion constructs it has

strayed from the goal o f simple, clear, direct one-to-one mapping. O O P does not p rovide

the tools to cleanly m ap all concepts and requirem ents into a m odular constructs

whereas A O P is about getting as close as possible to a one-to-one mapping.

N adim R ohani-Sarvestani 26

Security
Aspect

Customer ServiceBankService

Security

Security
Security Logging

TransactionsLogging

ReportingService

Security 1
_______________I

Logging j

Transactions 1

Logging Transaction
Aspect Aspect

Figure 3 System evolution: AOP Based

2.4 Aspect-oriented Programming

A O P is a new evolu tion in the line o f technology for separation o f concerns which

m eans technology that a llows design and code to be structured to reflect the way

developers want to think about the system [28, pp. 33-38J. A O P grew at the Palo Alto

Research C en ter (P A R C) during the 1 9 8 0 's and 1990's and the first paper to use the

term was titled “A spec t-orien ted P rog ram m in g ” and was published in June 1997 [21].

Kiczales et al. [21] state the reason and purpose o f this p rogram m ing technique. It

expla ins that O O P was presented as a technology that can fundam enta lly aid software

engineering, because the underly ing object model provides a better fit with real dom ain

problem s. H ow ever, m any p rog ram m ing problem s were found that O O P techniques

w ere not sufficient to clearly capture all the im portant design decisions the program

m ust im plem ent. Instead, it seem s that there are some p rogram m ing problem s that fit

neither the ob jec ted-orien ted approach nor the procedural approach it replaces. This

forces the im plem enta tion o f those design decisions to be scattered throughout the code,

resulting in “tang led” code that is excessively difficult to develop and maintain. Then it

presents an analysis o f w hy certain design decisions have been so difficult to clearly

capture in the actual code. These decisions address aspects, and show that the reason

N adim R ohani-S arvestan i 27

they have been hard to capture is because they cross-cut the system’s basic functionality.

The paper presents the basis for a new programming technique, called Aspect-oriented

programming, which makes it possible to clearly express programs involving such

aspects, including appropriate isolation, composition and reuse of the aspect code.

Aspect Orientation is not a completely new approach to writing software. For some time

there have been many technologies that existed previous to AOP and now are placed

under the banner of Aspect Orientation [29]. In the same way as virtual machine

systems was not an entirely new concept when Java became recognized and adopted by

the software community. The significant difference is in the philosophy behind the

approach and how that philosophy drives the technology and tools. Hence, Aspect

orientation is a new and more modular implementation of the advantages of the object

orientation technologies [29, p. 1].

In objected-oriented analysis and design the requirements and statements are like nouns

and verbs. Nouns become candidate classes and verbs become candidate methods of

those classes. As discussed, AOP enriches OOP and other conventional paradigms by

giving a new way to modularize the implementation of adverbs and adjectives. For

example a thread-safe class or secure transaction. Adverbs and adjectives exist in order

to define concepts independent of nouns and verbs to which they apply. Because they

can be applied to many different entities they are a form of a crosscutting concern.

In the same way that for a design method to be called modular, fundamental design

requirements need to be satisfied. There are various attempts to summarize AOP

properties to satisfy the requirement of successful separation of concerns. Some of these

suggestions where featured at the special edition for AOP at Communications of the

ACM [28]. In brief, Mehmet Aksit summarizes the key issues of AOP properties using

the following six "C"s:

1. Crosscutting is a behaviour that is used across the scope of a piece of software.

Nadim Rohani-Sarvestani 28

2. Canonicality (i.e. conforming to well-established rules or patterns) is necessary

for the stability of the implementation of concerns.

3. Composability is necessary for providing quality factors such as adaptability,

reusability, and extensibility.

4. Computability is necessary for creating executable software systems.

5. Closure is necessary for maintaining the quality factors of the design at the

implementation level.

6. Certifiability is necessary for evaluating and controlling the quality of design and

implementation models.

And Harold Ossher [28] suggests also the four "S"s for successful separation of

concerns. These are:

1. Simultaneous coexistence of different decompositions is very important.

2. Self-contained separation. Hence, each module should declare what it depends

on, so that it can be understood in isolation.

3. Symmetric separation. They can be composed together most flexibly which

means that there should be no distinction in form between the modules

encapsulating different kinds of concerns. E.g. aspects are able to extend other

aspects as well as classes.

4. Spontaneous separation that would make possible to identify and encapsulate

new concerns, and even new kinds of concerns, as they arise during the software

life cycle.

Therefore, AOP builds on existing technologies and provides additional mechanisms

that make it possible to affect the implementation of systems in a crosscutting way. As

mentioned crosscutting concern is a behaviour, and often data, that is used across the

scope of a piece of software. It may be a constraint that is a characteristic of the

application or a behaviour that every class must perform. In other words two concerns

crosscut if the methods related to those concerns intersect. [29, p. 2] An example of a

crosscutting concern was already shown earlier on with the Employee class and the

Nadim Rohani-Sarvestani 29

requirement that a view be notified whenever the state of an employee object it is

displaying is updated.

Another classic example (also known as the “Hello world” example for crosscutting

concerns) is one in which there are two concrete classes of Figure element, points, and

lines [28]. These classes manifest good modularity, in that the source code in each class

is closely related (cohesion) and each class has a clear and well-defined interface. But

consider the concern that the screen manager should be notified whenever a Figure

element moves. This requires every method that moves a Figure element to do the

notification.

This is illustrated in Figure 4. Every method that must implement this concern is

highlighted, just as the Point and Line boxes are drawn around every method that

implements those concerns. It can be noticed that the box for DisplayUpdating fits

neither inside of nor around the other boxes instead it cuts across the other boxes.

Hence, is called a crosscutting concern. Using just OOP, the implementation of

crosscutting concerns tends to be scattered out across the system, just as it would be

here. Using the mechanisms of AOP, the implementation of DisplayUpdating behaviour

can be modularized into a single aspect, which, can be seen as a single design unit. In

this way Karl Lieberherr said that the programming language mechanisms of aspects can

allow aspects to be thought even at the design level [28]. These aspects are also known

as early aspects which are defined as crosscutting concerns in the early life cycle phases

including the requirements gathering, requirements analysis, domain analysis and

architecture design phases, i.e. early aspects refer to crosscutting properties at the

requirements and architecture level. Examples of such properties include security,

mobility, availability and real-time constraints [30], [31], [32] . Further discussion on

crosscutting concerns in the early life cycle phases will be covered later.

Nadim Rohani-Sarvestani 30

Display

Figure

Point
getXQ
getYQ -42-

Aspect modularity cut across class
modularity

•*~H FigureElem entj

I Line

getP1
setP1

setX(int)
setY(int) setP1 (Point) DisplayUpdating

setP2(Poimt)

Figure 4 Aspects crosscut classes

In AOP, a single aspect can contribute to the im plem enta tion o f a num ber o f procedures,

modules, or objects. The contribution can be hom ogeneous, for exam ple by providing a

logging behaviour that all the procedures in a certain interface should follow; or it can

be heterogeneous, for exam ple by im plem enting the two sides o f a protocol betw een two

different classes [28]. Like a class, an aspect is a unit o f modularity, encapsula tion and

abstraction with the difference that aspects can be used to im plem ent crosscutting

concerns in a m odular fashion.

A second key benefit that aspects provide is that they encapsulate the im plem enta tion of

the feature or function that they im plem ent. As already explained encapsulation means

that all information relating to the im plem enta tion o f the feature is hidden from other

modules. Aspects also provide a pow erful form of in form ation hiding that classes

cannot. This is done by being able to hide how and w hen som ething is done. For

example, it would be hard to im plem ent the requirem ent that any errors occurring within

the control flow o f an application due to user interaction should be flagged and all o ther

errors logged without the use o f aspects. This is because the inform ation about the

application for error handling w ould leak into all places that the error m ight occur.

A spect-oriented approach provides a set o f sem antics and syntactical constructs in order

that aspects can be applied generically regardless o f the type o f software being written.

N adim R ohani-Sarvestani 31

These constructs are advice, join points, and pointcuts. Advice is called the code that is

executed when an aspect is invoked. Advice contains its own set of rules as to when it is

invoked in relation to the join point that has been triggered. Join points are specific

points within the application that may or may not invoke some advice. The specific set

of available join points is dependent on the tools and the programming language being

used under development. Pointcuts are a mechanism for declaring an interest in a join

point to initiate a piece of advice. They encapsulate the decision-making logic that is

evaluated to decide if a particular piece of advice should be invoked when a join point is

encountered.

Another major key issue is the reusability of aspects. To make aspects more reusable

“aspectual collaborations” concept can be introduced [31]. An aspectual collaboration

describes an aspect using a class graph. When the collaboration is used, the class graph

is mapped into a larger class graph using an adapter. Aspectual collaborations and

adapters lead to better separation of crosscutting issues expressed in adapters and

reusable behaviour expressed in aspectual collaborations. It is not good enough to

modularize crosscutting concerns because the modularization might scatter another

concern leading to a program that is still hard to maintain. It is therefore important to

modularize crosscutting concerns such that they are loosely coupled to other parts of the

program. The usefulness of reusability of aspects is covered in more detail later in the

thesis.

Also, during early AOSD conferences [32], some papers argued [33, pp. 1-4] that the

current AOP languages do not provide the third point of the benefits quoted by Pamas

[9] i.e. comprehensibility, because they require systems to be studied in their entirety.

Also in [34, p. 327] arguing for AOP, states that the modularity of a system should

reflect the way developers would like to think about modularity, rather than the way in

which developers are forced to think about it due to the language or other tools. Current

aspect-oriented languages such AspectJ, however, do have tools and mechanisms that

compensate this lack of modularity. Furthermore a preliminary evaluation has showed

[33, p. 11] that with some modifications the language can provide sufficient flexibility

Nadim Rohani-Sarvestani 32

according to second criteria of Pamas. This discussion will be covered in more detail in

the thesis.

2.5 Summary

This chapter starts with a survey in order to establish a perspective of the programming

language evolution. Next, the concepts of modularization were introduced as a

mechanism for improving the flexibility, efficiency, extensibility, reusability and

comprehensibility of a system while allowing the shortening of its development time.

The meaning of modularization and the benefits expected from modular programming

are also explained. Criteria were suggested when decomposing a system into modules

and discuss design requirements for modular methods. These requirements are

decomposability, composability, understandability, continuity and protection.

Furthermore, four rules were added to ensure the sustainability of modularity. These are

direct mapping, fewer, smaller and explicit interfaces and information hiding.

Assumptions about software design processes and programming languages were

discussed and it was shown that a design process and a programming language work

well together when the programming language provides abstraction and composition.

These mechanisms can cleanly support the kinds of units the design process breaks the

system into and a clear and simple one-to-one mapping from design level concepts to

their source code implementation. This helps the application simpler to understand,

easier to maintain and reuse it in another system. It was also shown how some of the

concepts of modularity are hard to capture in the conventional object oriented

programming and how AOP offers a clear and simple one-to-one mapping from design

level concepts to their source code implementation which also helps the program to be

simpler to understand and maintain. These are known as Aspects and they provide a

mechanism by which a crosscutting concern can be specified in a modular way. Aspect-

oriented approach provides a set of semantics and syntactical constructs in order that

aspects can be applied generically regardless of the type of software being written.

These constructs are advice, join points, and pointcuts. Finally it was suggested the

Nadim Rohani-Sarvestani 33

importance to modularize crosscutting concerns such that they are loosely coupled to

other parts of the program.

Nadim Rohani-Sarvestani 34

3. AOP Language Metamodel

3.1 Overview

The previous chapter presented modularization as a mechanism for improving a system

in terms of management, product flexibility and comprehensibility [35]. It was shown

also that there are design decisions that a system must implement in a modular fashion

but are difficult to express and define them clearly because they crosscut the systems’

functionality [36]. It was mentioned earlier that this research attempts to show the way

that AOP provides support for these design decisions. The first contribution towards this

goal is captured in this chapter.

This chapter aims to reflect and analyse the state-of-the-art in AOP techniques that

would provide the tools to assess and compare AOP versus other programming

approaches. The first step towards this aim is to survey AOP technologies and

frameworks and investigate language models and meta-models for AOP. This would

allow a more general but comprehensive comparison and analysis of the fundamental

aspect language features as well as their implementation and execution techniques.

When searching for AOP languages or frameworks issues may arise due to the

uniqueness of each of the tools because not all have been developed equally and for the

same purpose and due to the open source nature of many AOP projects many have

contributed either out of interest or trying to resolve some of the problems they

encountered in their research or projects. Furthermore, although the principles of

programming maybe the same but the development or approach of the project varies

which, makes standardized information difficult to obtain.

When AOP started to gain momentum and was featured as the major themes in many

journals such as communications of the ACM [37, pp. 28-32] many research groups and

developers started to classify AOP languages and frameworks in different ways. For

example [38] suggested that AOP should be classified based on their implementation

approaches. These categories were defined as (1) class-weaving-based (bytecode) and

Nadim Rohani-Sarvestani 35

(2) proxy-based. Typical examples of the first approach are AspectJ [39] and JBOSS

[40] where the crosscutting concerns are implemented independently and the weaving

can be performed at compile, load and run time. Examples of the latter approach are

SpringSource [41], Nanning [42] where the method invocations on an object can be

intercepted to inject custom code and they typically use JDK dynamic proxy [43],

CGLIB proxy [44], or both.

For this reason the Aspect-Oriented

Software Development (AOSD)

community started a research language

lab [18]. AOSD community started soon

after the first time the term AOP was

published (June 1997) and held its 1st International Conference in April 2002 in

Netherlands [45]. The purpose of the conference was to create a forum for dissemination

and discussion of leading-edge research and for researchers in the field to get together.

In addition the opportunity was given for practitioners to learn about AOSD

technologies, the practical advantages they offer and meet with the inventors and

providers of those technologies. In similar fashion the opportunity for researchers to

learn from practitioners about real-world technical problems that can motivate further

research, discuss the challenges faced when adopting AOSD in industry and what can be

done to address them [45]. Figure 5 shows AOSD timeline [45].

AOSD became an emerging paradigm that provided explicit abstractions for concerns

that tend to crosscut multiple system components and result in tangling in individual

components [46]. It started at the programming level of the software development life

cycle and in the last decade several AOP languages were introduced such as AspectJ

[39], HyperJ [47], ComposeJ [48], DemeterJ [49] etc. As the number of activities,

languages and innovations increased the need of a unified network was more immanent.

The European Network of Excellence on AOSD emerged to harmonise and integrate the

research, train and disseminate the activities of its members in order to address

fragmentation of AOSD activities in Europe and strengthen innovation in areas such as

Advanced Separation of Concerns

Aspect-Oriented Software Development

1997 2000 2001 2002 2004

H 1-------1-----1-------- 1------
Introduction First AOSD AOSD EU

of Conference
AOP

Figure 5 AOSD Timeline [32]

Nadim Rohani-Sarvestani 36

aspect-oriented analysis and design, formal methods, languages and applications of

AOSD techniques in ambient computing. The European Network of Excellence also acts

as an interface and a centralised source of information for other national and

international research groups, industrial organisations and governmental bodies to

access the members' work and enter collaborative initiatives [18].

The AOSD-Europe project structures its research labs in five areas [18]:

1. Analysis and Design Lab focuses on requirements engineering, architecture and

design research.

2. Languages Lab focuses on research in language models, meta-models and language

implementation.

3. Formal Methods Lab focuses on formal specification and verification research.

4. Applications Lab focuses on key concerns needing AOSD, adaptive AO middleware

and demonstrator applications.

5. Atelier provides the integration dimension for the labs in terms of a development

methodology, language implementation toolkit and a framework for IDE integration.

Therefore, it deemed appropriate to start the investigation of AOP languages from the

AOSD languages lab where it adapts aspect-oriented languages that are concrete, high-

quality with a clean design, supported by advanced implementation technology and

preferably with production support and quality. The lab’s main goals are design space

and implementation and runtime support technology:

Design space:

a. Identification and description for aspect-oriented languages that all partners agree.

b. The advancement of language constructs for each of the points identified.

c. The integration and cooperation along a common theme of interest.

Implementation and runtime support technology:

a. The advancement of current language implementation processes

b. To increase direct support of the specifics of aspect-oriented language concepts

Nadim Rohani-Sarvestani 37

Consequently, the purpose of these goals is to investigate language models and meta

models for aspect-oriented programming as well as an inventory of aspect language

implementation platforms and techniques [18].

3.2 Language Models

As already mentioned, in order to achieve the aim of this research a survey of AOP

languages was to be conducted which could enable to define a common model for

comparison and analysis purposes. However, the AOSD Languages Lab had already

performed an extensive survey on twenty seven AOP languages according to particular

dimensions of interest ensuring that each language is appropriately reviewed and the

commonalities and the variations of each language identified. This is very important as

it can be used as an input on the classification of aspect languages and a common

metamodel. The survey consisted of two different categories the first is the language

model where the focus is the language itself and the latter is the execution model where

the focus is on the implementation of the woven code i.e. the output of the aspect

weaver. It is worth mentioning that in the survey not all aspect languages are

represented in both categories. This selection was determined based on initial interest by

all partners, on available information about the languages and the observables

differences. Furthermore, many language implementations only have a proof-of concept

execution model, which are not very interesting from the survey’s point-of-view [50].

As with the survey, the AOSD Languages Lab had already defined an initial language

metamodel for AOP languages representing a fundamental characterization of their

essential language features. An intermediate step towards this metamodel was refining

the survey into a taxonomy of aspect languages which, helped to identify some of the

major properties in each dimension of interest. Another important dimension in the

design space is investigating join point models and pointcut languages [18].

In terms of the aspect-oriented execution models as already mentioned the focus of the

languages lab is on the description and comparison of implementation and execution

mechanisms for aspect-oriented language features. The survey analysed more than 17

Nadim Rohani-Sarvestani 38

different AOP tools on several platforms and implementation languages, from Java over

.NET to C and Smalltalk. All approaches were analysed according to a common

structure, so that the descriptions would contain information at the same level of detail

for all surveyed tools. The results led to the formulation of an inventory of aspect-

oriented execution models presenting technical documentation about implementation

approaches for AOP execution models such as the representation of AOP entities in an

execution model, the implementation of an execution model's join point and pointcut

models, a model's approach to weaving, its way of managing advice instances,

and support for distribution. For each of these mechanisms, the design space has been

analysed and the various ways of implementing the mechanism have been documented

[18]. The list of the languages that the survey covers can be found in the Appendix. Note

that this research will not discuss the execution side of the language model.

3.3 Survey Dimensions and Resuits

Each language and execution model in the survey has to be described among the same

dimensions of interest. AOSD Languages Lab defined a set of questions regarding what

the dimensions should be in agreement with all language lab partners [50, p. 14]. Figure

6 depicts the set of dimensions that were agreed and includes the related questions that

define each aspect language dimension. The execution model dimensions were also

defined and can be found in the Appendix.

Figure 2 illustrates the six dimensions of interest that describe the languages conducted

in the survey [50, p. 14]. In the taxonomy of aspect languages [51], which was derived

from this survey, the major commonalities and variations between the surveyed aspect

languages were filtered and had an impact in the dimensions of interest in order to

reflect better the essential dimensions.

Nadim Rohani-Sarvestani 39

Aspect
Language

Dimensions

Joinpoint Model & Pointcut
Language

1) Where can an aspect change
the base code?
2) What are the possible
joinpoints & pointcuts?
3) How can joinpoints &
pointcuts be described?
4) What are their advantages
and disadvantages

Advice Model and Language

1) How can an aspect change the
base code?
2) What are the advices?
3) How is aspect functionality
described?
4) What can be expressed in
advices?
5) Any 'special' elements

Aspects

* *
Aspect Aspect Module

Composition Model
Model

1) Consequences of
multiple aspects in a
single application?
2) Composition of
aspects to implement
a new aspect?
3) Interferences and
interactions?

Aspect
Instantiation

Model

1) Is there control
over aspect
instantiation ?
2) How are aspects
instantiated ?
3) How about
aspect data?

Figure 6 Aspect Language Dimensions

1) How are aspects
modularized?
2) W hat are the
implications? Aspect Weaving Model

1) How well does the aspect
language hide the weaving
model?
2) Is there access to the
weaving model?
3) Implications of the weaving
model of the language into
the aspect language

This meant that the module and composition models were merged; the join point model

and the pointcut language separated and the weaving model discontinued as it relates to

a specific implementation of certain aspect languages and does not reflect the essential

concepts of an aspect language. Therefore, the new view of the dimensions is the join

point model, pointcut language, advice model and language, aspect module and

composition model and aspect instantiation model.

Nadim Rohani-Sarvestani 40

The next step is to investigate language models in order to create meta-models. The

conception of a metamodel for AOP languages can give a fundamental understanding of

what can be done. Similar to how OOP languages can be characterized by concepts such

as object identity, encapsulation and polymorphism [52] this metamodel describe an

initial characterization of AOP languages. The metamodel entailing a common

understanding of AOP languages will allow collaboration and integration activities

between the designers of these languages. Furthermore, these activities need to be

supported by an experimental environment such as the language implementation toolkit

of the Atelier (WP2) [53].

The Atelier, which means literally a studio especially for an artist or designer, is the

activity leading the integration of the various tools, methods and techniques developed

in AOSD-Europe, to create a "software workbench" for AOSD practitioners and

researchers. In focussing on the creation of a "software workbench" the Atelier expects

to act as a vehicle for technology transfer and to help to improve integration between

activities within AOSD-Europe. The Language Implementation Toolkit (LIT) provides

tools for building AOP language implementations; e.g. parsers, weavers, run-time

environments, etc. The use of this toolkit provides the possibility to compare and

integrate the different language features without focusing on implementation and

performance details. The analysis of the surveyed aspect languages is an important step

in the design of the metamodel because it results in an understanding of the fundamental

commonalities and the important variability between aspect languages [54, p. 5].

Taking into consideration the questions of the dimensions shown in Figure 6 and the

impact in the dimensions of interest after taxonomy the following common language

features of aspect languages have been identified. These are join point model, pointcut

language, advice model and language, aspect module and composition model and aspect

instantiation model.

Nadim Rohani-Sarvestani 41

I. Join point model

Most AOP languages have a join point model for aspects to specify “when” they

want control. When applications execute, methods are called, objects get initialized,

fields are accessed and updated and constructors are executed. The join point

model defines these events known as join points which are visible to an aspect when

a program is running. The aspects specify or filter which of these events they are

interested through a pointcut [27, p. 137]. The results of the taxonomy showed that

most of the aspect languages have a dynamic join point model which means that the

join points are points that can be directly identified in the execution of the program

(static, event-based and state-based join point models are less common in the set of

surveyed aspect languages). Also, an important number of aspect languages

provided paradigm- or domain-specific join points. A domain-specific aspect

language is used to express a concern that cuts across multiple concerns [55].

II. Pointcut language

A pointcut is used to select join points. It acts like a filter, matching join points that

meet its specification and blocking all others. For example AspectJ supports three

different categories of pointcuts. The first and most fundamental are join points

based on the “kind” of join point i.e. the execution of an exception handler, the

static initialization of a class. The second category matches join points based on

“scope” i.e. checking is the join point has occurred within the control flow of a

given operation. The final category matches join points based on “context

information” at the join point itself i.e. checks whether the currently executing

object is an instance of a given type [27, p. 139].

The results of the taxonomy showed that most of the aspect languages used

pointcuts that were either (1) Query languages: a complete query language to

match join points in the join point’s space i.e. contains all possible join points

(primitive predefined predicates that can be combined into new user-defined

predicates) or (2) Assembly of predicates: a limited version of a query language

where pointcuts can only be created by grouping existing, pre-defined predicates.

Nadim Rohani-Sarvestani 42

In order to match a pointcut, most aspect languages offer predicates that can extract

structural as well as behavioral properties from join points [54, p. 6].

III. Advice model and language

Advice contains its own set of rules as to when it is be invoked in relation to the

join point that has been triggered. As mentioned pointcuts are predicates that match

join points, and advice specifies what to do at those join points that the pointcut

matches. Each segment of advice is associated with a named or anonymous pointcut

and specifies the behaviour that it wants to execute before, after or around, the join

point that pointcut matches. Unlike method calls in which parameters values are

explicitly passed by the caller, an advice declaration may contain parameters whose

values can be referenced in the body of the advice and the parameter values are

provided by the pointcut [27, p. 140].

The results of the taxonomy showed that all but a few aspect languages use the base

language to express their advice and this is often an object-oriented language. The

application of advices is almost always before, after and around constructions.

Finally, most aspect languages offer join point reflection in the advice [54, p. 6].

This is very useful because join point reflection can be used to handle specific cases

within a piece of advice when its pointcut matches several join points of different

types or with different types of arguments. Reflection can also provide more

information about a join point via the signature of the join point. The signature

contains details about the point in the base code corresponding to the join point

[56].

IV. Aspect module and composition model

The results of the survey showed that the majority of aspect languages offer an

asymmetric aspect module concept. This means that the crosscutting concerns are

modularized using a separate programming construct for aspects, which differs

from the modules used to encapsulate the implementation of other concerns rather

than modularizing all the concerns in the same kind of module. Since most aspect

Nadim Rohani-Sarvestani 43

languages represent aspects as a kind of classes, the object-oriented principles of

specialization and substitutability [57] can often be applied to aspects [54, p. 6].

V. Aspect instantiation model

An aspect instance defines the values of the variables defined in an aspect and used

in its advices. It seems that there is no general principle for aspect instantiation that

is accepted by the vast majority of aspect languages. The paper by [58] discusses

the shortcomings of AOSD languages, arguing that the lack of polymorphism and

the difficulty with which aspect instances can be accessed and used within AspectJ,

forces programmers to resort to less elegant solutions For example by introducing

code tangling in advice definitions, increasing code complexity and diminishing

maintainability and robustness. This issue was addressed by [59] in the 2nd AOSD

conference and they suggested potential solutions to this argument such as aspectual

polymorphism as it make aspects in any comparable AOSD language more

expressive and reusable across programs, while preserving safety.

From the results of the taxonomy the aspect instantiation model is characterized

with two distinct properties namely its specification and policy. The specification

consists of explicit and implicit instantiation. In explicit instantiation the aspect

state is only instantiated when the developer explicitly instantiates an aspect (i.e.

sending a message to an aspect that creates an instance of that aspect). In implicit

instantiation the aspect state is instantiated implicitly, which means the first time an

aspect gets executed in a certain context, the state is initialized and that the aspect

invocation mechanism selects the correct state for the aspect. In terms of its policy

there are three possibilities: the first is when a single aspect definition (singleton) is

associated with a single state and therefore there are no multiple states, the second

is when the scope of the state (fixed scopes) can be determined by the developer but

the possibilities are fixed by the language (there can be multiple aspect states for a

single aspect definition) and thirdly the scope of the state (customizable scopes) can

be determined completely by the developer (there can be multiple aspect states for a

single aspect definition).

Nadim Rohani-Sarvestani 44

The analysis of the survey and taxonomy provides an understanding of the fundamental

commonalities and the important variations between AOP languages. This

understanding will help to define an initial metamodel as the fundamental

characterization of the essential and diverse concepts present in the current aspect

languages.

3.4 Common Language Concepts Metamodel

The construction of a collection of concepts within a certain domain, i.e. a metamodel,

has been conceived by the AOSD Languages Lab as an open and extensible framework

that makes it possible to describe and categorize aspect languages according to common

language concepts and their semantics. These concepts represent essential aspect

language features and according to their particular dimensions of interest four sub

metamodels have been defined: the join point, pointcut, aspect binding and advice

metamodels that together are known as the common language concepts framework

metamodel (common metamodel) [54, p. 10].

Any aspect language needs to be defined as a mapping of its own language features to

the concepts in the metamodel. Hence, a framework approach has been taken in order to

avoid oversimplification as specific language features of particular aspect languages can

only be partially described as specializations of the concepts described in the common

metamodel. Furthermore it gives the opportunity for all aspect languages to be described

with respect to the framework metamodel instead of a separate metamodel for each

aspect language. Therefore the framework approach essential because it allows the users

to describe specific features of aspect languages as specializations of the framework.

Figure 7 illustrates how the Aspect Language dimensions that were derived from the

survey and the resulting taxonomy of aspect languages features feed in the creation of an

initial metamodel that is an open and extensible framework. The aspect language

concepts are defined as specializations of the concepts in the common metamodel and

can also introduce new language concepts which are specific to one language and relate

them to the concepts represented in the common metamodel. The framework is

Nadim Rohani-Sarvestani 45

complemented with an interpreter that describes the semantics of the common language

concepts. The interpreter interprets instantiations of the model which is a fundamental

part of the common metamodel as it implements the operational semantics of all

language concepts [54, p. 8].

Aspect Languags
Dimensions

Aspect module A
composition modelPointcut languageJoin point model Aspect Instantiation

Common Language
Concepts MetamodelJoin point mstamodtl

Common Language Concepts
Metamodel specialized with an

aepoct language

Aspect Language
Aspect binding

Aspect Language
Pointcut language Aspect LanguageAspect Language

. Join point metamodsl

Metamodel Aspect Interpreter Frwnework

Join point metamodel is
dependent on the base
programming language

In which the aspect
language Is Integrated

Pointcut language
metamodel Is an explicit

part
of almost all aspect

languages
Integrated Common

Metamodel

Join point ~ Join Point Selector ~ So lectorAdviceBlnding - Advice

Advice metamodel
describes the actions
that can be triggered

by aspects at
particular Join points

Aspect binding
: metamodel describe how;
: aspects are Instantiated,
scoped, modularized and:
how advices are bound

to pointcuts

Figure 7 Survey Dimensions and Common Metamodel adapted from [54]

As stated earlier and shown in Figure 2 the model consists of four essential parts in the

model where each part describes one or more important dimensions of an aspect

language. These four parts also known as common language concepts metamodel will

be explained in more detail in the following sections.

I. The Join Point Metamodel

The concept of the join point is the same as in the aspect language. The most widely

used base languages for aspect orientation are object-oriented languages and this

model is very much dependent on the base programming language in which the

aspect language is integrated. Join points are essential in the execution of an

application as they specify when aspects want control. The metamodel consists of

Nadim Rohani-Sarvestani 46

the structural part which refers to a location in the source code and the behavioural

part that is a representation of the application’s execution state.

Join Point Metamodel
Join Point

Structural Join Point Part B ehavioural Join Point P art
continuation()

Functional B ehaviour Join Point Logic B ehaviour Join Point Part
O bject-oriented Structural Join Point Part

O bject-oriented Behaviour Join Point Part
S ta tem en t Join Point PartC lass Join Point P art

class()
method))

statement))

class))

A ssignm ent JP P
M ethod Join Point Part M ethod Execution JP P

R eturn JP P
method))

Figure 8 The Join Point Metamodel adapted from [54]

All join points (static or dynamic) are represented as dynamic join point in the

metamodel. A dynamic join point consists of structural or behavioural part whereas

the static join point has only structural part. Because most aspect languages have an

object-oriented language as the base language the focus of the metamodel is on the

object-oriented structural and behavioural elements. The general concept of a join

point is covered in the metamodel as a point in the execution of a program but needs

further specialization to reflect the different kinds of join points available in

different aspect languages. The model that is illustrated in Figure 4 deals with join

points in the execution of an advice because advices are executed in the same way

as any other expression in the program that result the creation of the join points

during the execution of advice (D39 - Language Lab, 2006, p. 10). Later in this

chapter the metamodel illustrated in Figure 8 will be used to model an aspect

language that is not covered in the AOSD survey.

Nadim Rohani-Sarvestani 47

II. The Pointcut Language Metamodel

Pointcut expressions are represented as predicates over join points i.e. they evaluate

join points. If the join point is matched by the pointcut expression the evaluation

returns true and false if it does not. Due to the existence of diverse pointcut

languages various evaluators need to be represented. The language of a pointcut is a

property of the join point selector and contains enumeration and query languages as

well as reflection protocols present in the base language. Furthermore, the

metamodel express the concept of the pointcut as a join point selector. This can be a

primitive selector (single predicate to the join point) or composed selector (multiple

predicates to the join point).

Pointcut Metamodel
Join Point Selector

Pointcut Language Evaluator

Composed SelectorPrimitive Selector

Query LanguageBase Language

Predicate

Enumeration
Composition Operator

Primitive Behavioural Predicate Custom PredicatePrimitive Structural Predicate

Current State PredicateExecution History Predicate

Figure 9 The Pointcut metamodel adapted from [54]

Also the join point metamodel consists of different kinds of predicates that can be

applied to a join point in a selector. As shown in Figure 9 [54] these are behavioural

predicates which deals with the behavioural properties of the join point.

Behavioural predicates may be further specialized into execution history and

current state predicates, the structural predicate which deals with the structural

properties of the join point and finally the composed predicate which is a user-

defined predicate that is expressed as a composition of selectors to be executed

using operators. The composed predicate is defined as a set of selectors that each

Nadim Rohani-Sarvestani 48

applies another predicate to the join point and that are composed using operators

(D39 - Language Lab, 2006, p. 12).

III. The Advice Metamodel

The initial advice metamodel use the same language as the base language but this is

not a restriction of the entire metamodel. Following the selection of a join point, the

advice metamodel describes the particular actions that can occur as the result of the

application of an aspect. Advice, which express the functionality which needs to be

invoked by an aspect, are modelled using strong advice actions that are composed

as a tree structure. This structure, like the previous metamodels can be composed of

primitive or composed base level i.e. normal application expressions and metalevel

actions i.e. specific actions that can only be contained in an advice. Metalevel

actions are explained in more detail when discussing metalevel operations.

Furthermore, each advice action is related to the evaluator that needs to be executed

hence different evaluators metalevel actions need to be defined. More details can be

found in [54, p. 14].

IV. The Advice Binding Metamodel

The aspect binding metamodel represents aspects that consist of pointcuts, advice

and variable declarations. An aspect has the selectoradvicebindings which relate to

join point selectors, and advice definitions. Furthermore, each aspect also contains

variable declarations. These define the state of an aspect ‘instance’. A stateselector

is associated with each variable in an aspect. The stateselector defines how a

particular state is selected. Finally, a bindingselector represents the composition of

advices when multiple aspects and/or advices apply at the same join point. More

details can be found in [54, p. 14],

The above metamodels are related to each other and integrated into the common

language concepts metamodel. This is done as shown in Figure 3 by having the join

point evaluated by the join point selectors which in turn, are bound to advice by a

SelectorAdviceBinding.

Nadim Rohani-Sarvestani 49

3.5 Execution Semantics of the Metamodei Interpreter

A definition of a programming language is usually defined through semantics.

Semantics is concerned with the interpretation or understanding of applications and how

to predict the outcome of program execution. The semantics of a programming language

describe the relation between the syntax and the model of computation [60]. There are

several widely used techniques for the description of the semantics of programming

languages also known as syntax-directed semantics. These are: [61]

I. Algebraic semantics which describe the meaning of a program defining them in

algebraic relationships and operations.

II. Axiomatic semantics which define the meaning of the program implicitly. It

makes assertions about relationships that hold at each point in the execution of

the program.

III. Denotational semantics which describe what is computed by giving a

mathematical object such as a function which is the meaning of the program.

IV. Operational semantics which define how a computation is performed by defining

how to simulate the execution of the program. Operational semantics may

describe the syntactic transformations which mimic the execution of the program

on an abstract machine or define a translation of the program into recursive

functions.

V. Translation semantics which describe how to translate a program into another

language usually the language of a machine. Translation semantics are used in

compilers.

A language can also be defined by an interpreter [54, p. 15]. The description of the

semantics of the metamodel can be done by using the implementation of an interpreter

because the set of evaluation functions defined by the interpreter can have a close

relation with its description using operational semantics. This can be seen as a first step

towards formal semantics i.e. the field concerned with the rigorous mathematical study

of the meaning of programming languages and models of computation [61].

Nadim Rohani-Sarvestani 50

Furthermore, the interpreter can provide executable semantics which establishes a solid

ground for tools to investigate and experiment with the semantics of language features.

The following sections describe the concepts an interpreter employs to explain the

semantics of the metamodel. These are: the base and metalevel aspect interpreter,

discrete evaluation through join point stepping, continuations, woven execution of

applications, metalevel operations, metalevel aspect state, and aspect environment.

I. Base and Metalevel Aspect Interpreter

The interpreter is separated into two parts: the base and metalevel aspect interpreter.

Thus, when the interpreter evaluates an aspect-oriented application, the application

entities can be expressed according their base or aspect-oriented language concepts.

In order that the metamodel and its interpreter focus only on the aspect-oriented

language concepts; the metalevel aspect interpreter evaluates aspect applications

that are expressed using concepts of the metamodel and therefore the semantics of

the aspect-oriented language concepts are localized in the definition and

implementation of the metalevel aspect interpreter. However, this does not assume a

clean separation of aspect and base languages at the language level

Also because aspects impose a different behaviour on the base program, an

integrated behaviour of the base and aspect programs is required. This can be

achieved when the metalevel aspect interpreter that interprets the aspect-oriented

part of the program in a metamodel representation, controls the execution of the

base interpreter which, interprets the base program part (shown in Figure 10). As a

result, the execution of the aspect program essentially modifies the execution of the

base program [54, p. 15].

II. Discrete Evaluation through Join Point Stepping

During the evaluation of a program, after every discrete evaluation step the base

interpreter communicates join points to the metalevel aspect interpreter. After each

evaluation step, the base language interpreter stops the execution of the program at

Nadim Rohani-Sarvestani 51

hand, creates a join point that represents the current execution state and passes

control to the metalevel aspect interpreter. The aspect interpreter can then decide to

invoke an aspect at this join point or it can decide to let the base interpreter continue

its normal evaluation. These discrete evaluation steps are similar to the notion of

continuation marks described in [62] as a mechanism for implementing an algebraic

stepper. The stepper inserts a break point between each evaluation step to show the

execution of a program. At each break point, the stepper prints representations of

both the current value and the current continuation. Figure 6 illustrates these join

points.

III. Continuations

The most essential concept to model the execution semantics of aspect languages is

the notion of a continuation [54, p. 16]. The term continuation refers to an abstract

representation of the control state. In other words it is questioning where in the

application, which function and which line are being executed. Current continuation

or continuation of the computation step is the instructions that will be executed after

the current line of code is executed. In other words, it captures the current execution

state of the program such that it can be stored and reconstructed later on. Hence,

applications must allocate space in memory for the variables its functions use (call

stack) because it allows for fast and simple allocating and automatic de-allocation

of memory (heap) [63].

In the case of the metalevel aspect interpreter, it manipulates continuations of the

base interpreter’s program to model the semantics of the execution of aspect-

oriented applications. When a join point triggers the execution of an aspect’s

advice, a continuation of the current base program is stored and a new continuation

is created that executes the aspect’s advice [54, p. 18].

IV. Woven execution of applications

The standard semantics of woven execution go through the suspension and re

activation of continuations. It is preferred to have the execution of the instruction at

Nadim Rohani-Sarvestani 52

the join point controlled through a metalevel action rather than omitting the

execution of the instruction at the join point when re-activating a continuation [54,

p. 19]. For example Common Aspect Semantics Base (CASB) framework defines

the semantics of base and woven applications using the models of the execution

semantics [64]. CASB is one of the main tasks of the formal labs. It aims to provide

a framework with precise formal definitions of concepts and terminology of AOSD

in order to prove the correctness of aspect transformations [65]. It allows the

developer to inspect the woven program or to debug its execution in order to

understand its semantics.

Furthermore, besides explaining briefly that the standard interwoven execution of

applications goes through switching, suspension and activation of continuations it is

important to mention there are some specific execution scenario’s where the

generality of the approach is illustrated by dealing with some aspect interaction

scenarios [54, p. 21].

V. Metalevel Operations

It was explained earlier that the execution of an aspect-oriented program is the

execution of a set of continuations, but then, how can the semantics of particular

AOP language determine the way that an aspect-oriented program modifies these

continuations and their execution? In addition, how can advices that contain specific

expressions which cannot be understood at the base level be modelled using

metalevel operations?

As shown in the advice metamodel, the metalevel operations are embedded in the

advice and these metalevel operations are executed but not understood by the base

interpreter. Therefore, the base interpreter’s execution must be halted in order to

execute the metalevel operations by the aspect interpreter. Through the survey [50]

that was conducted three metalevel operations emerged. These are: continuation

manipulation operations, aspect program operations and reification operations [54,

p. 21].

Nadim Rohani-Sarvestani 53

a) Continuation manipulation operations

These operations manipulate the stack of aspect continuations. Every continuation

keeps a list of applications that it already activated. This list is copied to the

continuation that is created to execute the join point instructions. The list is emptied

when a continuation is reactivated. Therefore, unless a continuation is restarted, it

will never cause the activation of the same program at the same execution state [54,

pp. 19-20].

b) Aspect program operations

These operations are necessary to model dynamic selector-advice binding semantics

that can activate or deactivate aspects and allows to model aspect deployment and

dynamic aspects. The field of metalevel actions that manipulate different parts of

the aspect program is still developing and thus cause changes in the classification of

aspect languages which could refine the metamodel [54, p. 20].

c) Reification operators

Reification is used when making a data model for a previously abstract concept. In

this case, operators reify metalevel aspect values, such as join points, to the base

level. The metamodel includes these metavalues and maps them onto the values

used in the metamodel [54, p. 20].

VI. Metalevel Aspect State

An important aspect of the interpreter is keeping track of specific data relating to

the execution of the aspect program. The specific data is metadata that consists of

the execution of the base program and can be used by the aspect program in order to

select join points, advice etc. Probably the most important part of the metalevel

aspect state is the trace of all events, known as execution history, that happened in

the base program since the evaluation started. This execution history helps to model

pointcut predicates that reason about the state of the base program at some point in

Nadim Rohani-Sarvestani 54

time before the current state i.e. runtime stack of the base program. Examples of

such predicates are found in stateful pointcuts or event-based pointcut languages

[54, p. 20].

VII. Aspect Environment

Besides crosscutting behaviour an important factor of the metalevel operations is to

consider the crosscutting state. By this is meant that subsequent advice activations

of the same aspect may need to occur in the same scope and the variable

initialization needs to happen when the advice needs to execute in a new scope. For

this purpose metalevel aspect interpreter has a heap where references can be kept to

actual variable values in the base interpreter’s heap as shown in Figure 10. This

references need to be kept because the advices are anyway executed by the base

interpreter, which means that the variable values also need to be base language

values [54, p. 21].

A summary of the concepts that interpreter employs to explain the semantics of the

metamodel can be shown in Figure 6. It represents the base interpreter’s runtime stack

as a stack of frames (Fr) and the aspect interpreter’s runtime stack as a stack of

continuations also known as suspended continuations (Ct). For each such program that

is executed by the base interpreter, a continuation is created which means that

continuations are used to represent and store the state of the execution of the base

program in the metalevel aspect interpreter. In a nutshell, each time the base interpreter

halts the execution of the program at a join point; it passes this join point to the

metalevel aspect interpreter. When an aspect needs to be invoked at this join point, the

metalevel aspect interpreter stores a continuation that represents the execution state of

the currently executing program.

Nadim Rohani-Sarvestani 55

I Aspect Program I
I__________________I

Advlcad” links

fcE
c t c t c t

Suspended Continuations

Aspect State

“Aspins” Environment

Execution History

i

Ct - Continuations
Fr = Frames
As = Aspins
Ob = Objects t

 - Metalevei
: Action .

oin-point •

\ i i
\ I <Tob~̂)

“Heap” Environment
r ----------------------------------1
I Base Program I Fr Fr Fr Fr

Runtime Stack

Figure 10 The base- and aspect-level interpreters of the metamodel from [54]

As shown in Figure 10 each time, only one executing program is the currently active

continuation and all other continuations are suspended and saved. Each continuation

(Ct) on this stack is a container for a set of frames (Fr) in the base interpreter and the

continuation on top of the suspended continuations stack is actually the currently active

continuation. The metalevel aspect interpreter creates a new continuation that represents

the execution of the aspect’s advice. It then schedules the execution of this continuation

in the base interpreter that needs to execute the advice. When the base interpreter is

restarted, it will thus first execute the advice. When the advice execution has finished,

the aspect interpreter will re-activate the previous continuation on the stack. Each

continuation also keeps a link to the continuation from which it was activated. This

facilitates later manipulations such as the re-activation of the continuation at the join

point from which the aspect was invoked. Each continuation is also activated again after

the continuation that was switched to “has” finished executing. However, when a

Nadim Rohani-Sarvestani 56

program is halted at a join point, it effectively skips the evaluation of the expression that

was scheduled to be executed at that join point.

Regarding metalevel operations, a metalevel action is an explicit join point, where

control is given to the metalevel aspect interpreter. The ‘aspin environment’ in the

metalevel interpreter allows keeping track of particular values for each different variable

declared by all aspects. Upon execution of an aspect’s advice, the aspect program

executes the StateSelector to retrieve the correct scope and the associated variable

values [54, pp. 15-21].

3.6 Classification of Aspect Languages According to the
Metamodel

The metamodel described earlier in this chapter, adapted from the [54], provides the

foundation and the common understanding of the essential features of an aspect

language. The metamodel was conceived in order to represent the commonalities and

variations between aspect languages. Although the metamodel is a low-level aspect

language in which other aspect languages can be expressed, often the metamodel need to

implement specialisations in order to describe specific language features. Most of the

aspect languages that the survey conducted in [50] had an object-oriented language as

the base language. The aspect language that was chosen for the classification does not

require implementing any specializations as such, because the language that it extends is

not object oriented.

The survey did not cover AspectC [66] , a simple extension that adds AOP

programming capabilities to C, because it was outside of the particular dimensions of

interest of the partners of the network [50]. AspectC++ [67] was briefly covered in the

survey but it was thought that it would be a useful exercise for this thesis to model

AspectC for the following reasons. Firstly, in order to better understand the AOP

capabilities and constraints that a developer may come across when trying to facilitate

an AOP implementation in a procedural language [8]. Secondly the modelling will aid

Nadim Rohani-Sarvestani 57

the understanding of a case study [68] which is analysed in the next chapter. When that

case study was first published, no framework had been defined that would allow an

aspect language to be modelled in the way that the common language concepts

metamodel would classify. Therefore, attempting to model AspectC can be useful for

future researchers because it is another example that augments the usefulness of the

metamodel even if in AspectC, aspects structure and modularize concerns that crosscut

functions, files and directories rather than objects and modules.

For this purpose the metalevel aspect interpreter (metaspin interpreter) was developed to

implement the metamodel which provides developers and researchers with a versatile

aspect languages sandbox to be used for experimental classification of aspect languages

and possible language integrations [54, p. 26].

Using AspectC as an example, this section will describe how the building blocks

provided by the metamodel express the elementary features of an aspect language

features. In other words how different aspect languages relate to the metamodel.

Furthermore, it discusses the implementation of aspect languages in Metaspin based on

the dimensions of an aspect language described in section 3.3. Note, that due the

limitations of AspectC only join point, pointcut, and advice will be classified. More

details about the rest of the dimensions can be found in [69].

Join Point Metamodel

The [50] identified the following categories of join point models [69, p. 6] :

Dynamic join points: All dynamic join point models fit the metamodel because the

metamodel itself is completely based on dynamic join points.

Event-based (stateful) dynamic join points: These are identified as a sequence of

events in the execution of the program.

Static join points: The metamodel itself is completely based on an interpreted

semantics.

Domain-specific join points: The metamodel does not limit itself to a specific kind of

paradigm but there hasn’t been enough experimentation apart from with OOP. [68]

Nadim Rohani-Sarvestani 58

Classification into metamodel using Metaspin: Each jo in point is represented by a

separate subclass o f the jo in point class and then conFigured by a structural part (defined

by the developer) and behavioural part (autom atically represented by m eans o f a

continuation). In general, metaspin directly executes the m ethods for the m ining o f the

behavioural properties on the jo in point class.

Figure 11 show how the A spectC jo in point model is classified in the m etam odel

through the use o f the M etaspin Interpreter. A spectC intended to support operating

systems and em bedded system s program m ing [66]. It supports static jo in points (i.e.

nam ed entities in the p rogram structure) as well as dynam ic jo in points (i.e. events that

happen during the program execution) [50, p. 24]. A spectC supports two types o f jo in

points: function call and function execution [66], Pointcut functions are used to filter or

select jo in points w ith specific properties. Som e of them are evaluated at com pile time

and other at run tim e [50, p. 24],

/ “ ~ s
J o in P o in t M e ta m o d e l

!L2

Functional Behaviour Join Point

Object-oriented Behaviour Join Point Part

AspectC Join Point
Metamodel

ExecutionCall

Return JPP

R eference JP P

Assignment JP P

M essage Send JP P

Class Join Point Part

Method Join Point Part Method Execution JP P

Structural Join Point Part

Statem ent Join Point Part

Behavioural Join Point Part

tspect C Join Point

Logic Behaviour Join Point PartObject-oriented Structural Join Point Part

Figure 11 AspectC in the Join point M etam odel

N adim R ohan i-S arvestan i 59

Table 1 shows the pointcuts that AspectC can use for matching join points in terms of

function signature and the type that would correspond to the metamodel [70, p. 26].

Table 1 M atching join points for AspectC
Syntax Type Com m ents

execution(Signature)
Current state

predicate
Function execution join points signature matches

Signature

call(Signature)
Current state

predicate
Function execution join points signature matches

Signature

base(Pointcut) Query Classes based on queries in the class hierarchy

derived(Pointcut) Query Classes based on queries in the class hierarchy

cflow(Pointcut) Execution History
Captures all join points in the control flow o f the join

points specified by Pointcut

Within(File or
Directory)

Current state
predicate

Join points when the code executing is defined in one
o f the files found in File or Directory

that(Type pattern)
Current state

predicate
Filters join points depending on the current object type

target(Type pattern)
Current state

predicate
Filters join points depending on the target object type

in a call

result(Type pattern)
Current state

predicate
Filters join points depending on the result type of a

join point

arg(Type pattern)
Current state

predicate
Filters join points depending on the arguments type o f

a join point

Operators (!, &&, II)
Composition

Operator
Intersection, union, and exclusion o f join points in

pointcuts

Pointcut Language Metamodel

The main characteristics to classify a pointcut language are the following [69, p. 7]:

Language paradigm: The pointcut language paradigm is defined by the pointcut

language evaluator.

Structural Properties: The definition of pointcuts is able to rely on structural

properties of the source code. For that reason, a number of structure-reifying predicates

can be offered in a pointcut language.

Behavioural Properties: The definition of pointcuts is able to rely on behavioural

properties of the execution. For that reason, a number of predicates that reify dynamic

and behavioural properties of the program are offered in a pointcut language.

Classification into metamodel using Metaspin: Because each pointcut language is

specific to an aspect language the metamodel provides a common set of concepts for the

classification of predicates and operators and also provides the interface through the

Nadim Rohani-Sarvestani 60

eval(JoinPoint) method. The im plem enta tion o f the pointcut language must occur

independently for each aspect language.

F igure 12 shows how the AspectC pointcut model is c lassified in the m etam odel through

the use of the M etaspin Interpreter. As m entioned already pointcut expressions

determine the jo in points that need to be captured by the aspect. For the case o f the

metam odel, pointcuts correspond to their exact definition. For exam ple as illustrated in

F igure 12 the pointcut language parad igm is determ ined by the pointcut language

evaluator. The definition o f pointcuts can rely on structural properties o f the source code

behavioural properties o f the execution [69, p. 8].

P o in tc u t M etam o d el
Join Point Selector

Pointcut Language Evaluator

Composed SelectorPrimitive Selector

Query LanguageBase Language

Predicate

Enumeration
Composition Operator

Primitive Behavioural Predicate \ Pnfrutive Structural Predicate" Custom Predicate

Current State PredicateExecution History Predicate

Asjae c_tC_Pojr11cut M etam od el
Operators (I, &&,

BaseTarget

CallCflow
ArgExecution

Derived
Within

Result
That

Figure 12 AspectC in the Pointcut M etam odel

N adim R ohani-S arvestan i 61

Advice Metamodel

An advice in the metamodel [69, p. 9] has a number of actions that are executed instead

of the join point by which it was triggered. Advices in the metamodel consist of

expressions for the base (executed by the base language interpreter) and the aspect

evaluator (executed by the aspect evaluator) and they can be mutually nested. The

advice in the metamodel are before, after, around, join point reflection, base language

versus aspect-specific language and classification into the metamodel using metaspin. In

the last one (classification into the metamodel using metaspin) where an advice can

implement a metalevel action as a message send to the metaspin class of which the

selector is the same name as the metalevel action.

In terms of AspectC the only type of advice that is currently supported for static join

points is the introduction. Using this advice the aspect code is able to add new elements

to classes, structures, or unions. Dynamic join points use advice to affect the flow of

control when the join point is reached. The types of advice that are supported are before,

after and around. These advice types can orthogonally be combined with all dynamic

join point types [50, p. 26]. Both after and around advice introduce additional special

keywords such as the variable, returned for the after advice or proceed for the around

advice. The returned variable accesses the return value of a function and the proceed

variable explicitly requests execution of whatever would have run if the around advice

had not been defined [70, p. 27].

Discussion

It can be seen that from this initial mapping of different language features into the

metamodel that some improvements are required such as the syntax and structure of a

language have not been taken into account in the metamodel. Although the initial

metamodel was not intend to do that, structure and syntax have a significant impact on

the expressiveness and identification of a language.

Furthermore, in the AOSD the Aspect Sandbox (ASB) [71] has similar approach with

this work apart that the way that the interpreter execution semantics is considered

without any weaving. ASB is a scheme interpreter to experiment with aspect-oriented

Nadim Rohani-Sarvestani 62

language features. The ASB provides a framework for building simple interpreters for

AOP languages, together with implementations for a number of existing languages.

Each interpreter models the semantics and implementation of one kind of AOP

language. The framework is designed so that it is easy to understand the semantics of

one AOP language in terms of what it adds to the underlying OOP language; to compare

two AOP languages to each other; and to model the runtime costs of an AOP language

construct [72]. The ASB focuses on the weaving semantics through the computation of

join point shadows. On the contrary, the explicit setup of the metamodel and its

interpreter is a complete interpreted execution.

3.6 Summary

This chapter attempts to set the foundations for reflection and analysis of AOP

techniques. A survey of the current AOP technologies and frameworks was followed by

an investigation of existing work on language models and meta-models for aspect-

oriented programming which would allow the comparison and analysis of the

fundamental aspect language features as well as their implementation and execution

techniques. This was based on the results of an extensive survey was already conducted

by the Aspect-Oriented Software Development (AOSD) community but the analysis was

done with the pre-defined dimensions of interest by the partners rather than providing a

complete overview of all language and execution model details. Nevertheless, because

AOSD is an emerging paradigm that is trying to harmonise and integrate the research,

train and disseminate the activities of its members in order to address fragmentation of

AOSD activities in Europe and strengthen innovation in areas such as aspect-oriented

analysis and design, formal methods, languages and applications of AOSD techniques in

ambient computing [73]; AOSD Languages Lab goals were used to identify suitable

AOP languages in terms of design space, implementation and runtime support

technology.

Nadim Rohani-Sarvestani 63

Following the survey, an initial metamodel was conceived in the AOSD language labs

and described from the survey results, the lessons learned from the survey and the

extracted taxonomy of language features. Next, the results of the final dimensions of

interest that reflect the essential concepts of an aspect language according to the AOSD

Languages Lab where presented. These dimensions are the join point model, pointcut

language, advice model and language, aspect module and composition model and aspect

instantiation model. It was shown how the metamodel for aspect language is designed as

an open-ended metamodel where the common concepts of aspect languages are

represented and was explained that the open-ended property is of importance because it

makes it possible to represent specific aspect language features through a translation of

the specific aspect language features to the concepts in the metamodel and through a

specialization of the common concepts in the metamodel.

Moreover, it was shown that the metamodel consists of a common model and an

interpreter for instantiations of the common model. While the conceptual model

describes the aspect language features, the metamodel interpreter implements their

execution semantics. The common language concepts framework metamodel (common

metamodel) were defined and explained in detail as four sub-metamodels namely the

join point, pointcut, aspect binding and advice. The framework approach was taken in

order to avoid oversimplification as specific language features of particular aspect

languages can only be partially described as specializations of the concepts described in

the common metamodel. An interpreter was also defined because the description of the

semantics of the metamodel can be done by using the implementation of an interpreter.

This is because the set of evaluation functions defined by the interpreter can have a

close relation with its description using operational semantics. The interpreter can

provide executable semantics which establishes a solid ground for tools to investigate

and experiment with the semantics of language features.

Finally, it was described how different aspect languages can be expressed in terms of the

metamodel. The initial experimentation was done using the metaspin interpreter, which

is gradually reaching completion for further use in the languages lab. Using AspectC as

an example, it was described how the specific language features that were identified in

Nadim Rohani-Sarvestani 64

the survey and the taxonomy can be modelled in terms of the metamodel. The resulting

description allows modelling and classifying different aspect languages in the

metamodel.

Nadim Rohani-Sarvestani 65

4. Assessing AOP - Approach and Implementation

The aspect-oriented approaches were developed based on certain instances of

crosscutting code. Some examples of such approaches, implementations and models are:

AspectJ, an aspect-oriented extension for the Java programming language that has been

designed to be implemented in many ways [39] , [74]; a language framework for

distributed computing [75]; synchronization policies [76]; database integration

modelling using a composition-filters approach [77]; the specification of subject-

oriented compositions [78]; and features such as multi-dimensional separation of

concerns [79].

This chapter explains the criteria that must be met in order to assess AOP as a software

technique that enables these approaches in practice. It begins with a discussion of the

results of the research of two papers that answer the following questions:

1. How can one evaluate a new software development technique in terms of its usability

and usefulness?

2. What are the typical factors that are required when evaluating a method?

3. What are the strengths and weaknesses of these evaluation methods?

4. How do developers manage when they encounter crosscutting code during a program

change task?

5. What strategies are in place to deal with crosscutting concerns?

Further to the analysis, three different case studies were selected to analyse real world

none trivial applications discussing the benefits and drawbacks of the AOP technique.

The first case study provides a comparative analysis of the changes required to evolve

the tangled and scattered versus aspect-oriented implementations. The second case study

presents an AOP implementation of a classical example of crosscutting concern known

as persistence. The third case study outlines how to conduct AOSD with use-case driven

approach. The suggested solution is a new way of visualizing and capturing application

and infrastructure use case flows while keeping infrastructure separate from the

application and infrastructure services separate from each other.

Nadim Rohani-Sarvestani 66

4.1 Evaluation of Software Techniques and Management of
Concerns During Evolution Tasks

4.1.1 Evaluating a Software Development Technique

The following section presents an evaluation of AOP from [81]. This explorative

evaluation although limited, presents the lessons learned from two kinds of empirical

study approaches (i.e. the use of a case study and experimental methods and the costs

associated from them) with particular focus in assessing AOP. Some of the sources cited

were found in the original research but investigated further. The presentation introduces

the empirical study approach, summarizes the tools used, brief explanation of the case

study, experiments and lessons learned. Further analysis and discussion was done,

drawn from the results.

There are various ways that a technique can be evaluated. Murphy et al. [81] suggested

making the technique accessible to the greater community and to see whether the

approach sinks or swims but unfortunately this approach has drawbacks: useful

techniques that are not yet usable can be lost, and usable techniques that are not

particularly useful can inhibit the adoption of other, more powerful techniques.

Another approach [81, p. 2] is a form of empirical study that could include surveys, case

studies, and experiments [82] and [83]. Empirical social research is commonly evaluated

according to four tests [84]. These are construct validity, internal validity, external

validity, and reliability. Construct validity refers to whether appropriate means of

measurement for the concept being studied have been chosen; internal validity refers to

how a causal relationship is established to argue about a theory from the data; external

validity refers to the degree of generalization of the study; and reliability refers to the

degree to which someone analyzing the data would conclude the same results.

However, direct application of these methods to studying software engineering

questions is difficult. Therefore, many researchers are adopting variations of empirical

techniques to assess development aids. These results can be found in [85], [86] and [87].

Nadim Rohani-Sarvestani 67

To evaluate the aspect-oriented approach, the Murphy et al. [81] decided to apply a

three-month case study and a series of four experiments. This is because of the need to

understand and characterize the kinds of information that each approach might provide

when studying a technique that is in its infancy. The method for the case study [81] is

based on the exploratory case study method described by Yin [84] reflecting on which

aspects of the case study format proved useful, and which aspects of the format did not

substantially help generate meaningful results. This was further complemented by

domain-specific techniques. An example of domain-specific technique is to have lists of

observational techniques that have been found to be useful for understanding the effects

of the new software development approach on the development process [81, p. 3]. The

experimental method is based on the human-computer interaction literature which has

the same root as the experimental software engineering literature. The experimental

methods were based on the human-computer interaction literature such as [88]. This

literature has the same roots as the experimental software engineering literature such as

[89].

Tools Used

Regarding the tools that were used in Murphy et al. [81], some of the design decisions

are difficult to express cleanly in code using existing programming techniques. AOP is a

new programming technique that intends to enable a more modular expression of these

design decisions, which are known as aspects in the actual code [36, pp. 220-242].

AspectJ is used for the case study and experiments within the Microsoft Visual J++

environment running on Microsoft NT workstations. AspectJ uses a slightly modified

form of Java, known as JCore and supports two aspect languages: COOL for expressing

synchronization concerns and REDL for expressing remote data transfer and method

invocation concerns [90].

Case Studies

The case study method was used to answer two broad questions [81, p. 5]

I. What types of programs are easier to write and change when using AOP?

II. What effect does AOP have on software design?

Nadim Rohani-Sarvestani 68

The first question is regarding the usefulness of the technique and the latter on usability.

Both questions are occurring with multi-person development environment. The case

study set-up consisted of two phases:

Phase 1: Four interns developed a distributed game using AspectJ

Phase 2: Two interns re-developed the same application but using the traditional OOP

approach and two interns implementing a distributed library application using AspectJ.

In summary, the results showed that AOP approach was particularly useful when the

aspect language matched a design concern, such as concurrency because the language

provided a vocabulary for expressing and reasoning about that concern but an increase

in design complexity, when a particular aspect language is used to try to express a

concern not intended by that aspect language [81, p. 6]. Furthermore, it helped realise

potential challenges of the usefulness of AOP in other settings; improve the usability of

the approach by providing a concrete set of language features; a number of potential

research directions [91].

Experiments

After the use of the case study method to evaluate usefulness and usability, four

experiments were set to examine three specific tasks in order to understand how AOP

can act as a catalyst for particular programming tasks [81, p. 14].

The experiments are:

I. Comparison of OOP versus AOP in terms of the ease of creating a program.

II. Comparison of OOP versus AOP in terms of ease of debugging.

III. Comparison through investigation in terms of ease of changing an OOP versus

AOP program.

IV. Investigation of a combination of these activities.

The experiments were considered as semi-controlled empirical studies due to constrains

by small number of participants, time shortage, high costs in relation with running and

analyzing experiments and forfeit precision of measurement in favour of realism [92].

Nadim Rohani-Sarvestani 69

Table 2 depicts an overview of all the experiments including details about it set-up and

results in terms of development man hours.

The experiments were successful in gathering qualitative but sometimes supported with

limited quantitative evidence about the usefulness of AOP helping into revealing which

parts of the approach contribute to its usefulness and usability. More detail about the

experimental setup and results can be found in [93].

Experim ent Description Experim ent Set-up
Results (Hours)
OOP AOP

Pilot Study

Can a develop er produce an AOP
working m ulti-threaded program in
less tim e, and with few er bugs than

OOP?

Small program ming problem
with concurrency

3 4

Debugging

Can th e ability o f a user to find and
fix functionality errors (bugs)

present in a m ulti-threaded program
enhanced by th e separation o f

concerns in AOP?

Three cascading synchronization
into an approxim ately 600 line

digital library program
3 3

Change
Comparison through investigation in

term s of e a se o f changing a
program.

Add sam e functionality into a
1500 line distributed digital

library
Tools: OOP: Emerald distributed

0 - 0 language
AOP: RIDL,COOL

4 4

Com bination o f
activ ities

D evelopers working independent
applications using AspectJ

Substantive changes to a
skeleton o f a program

n/a 8

Table 2 Experimental Methods Overview and Results

Lessons Learned

The paper presents some of the highlights of the overall assessment lessons learned so

far [81, p. 22] which are divided into three areas:

1. Selection of an evaluation method.

2. Areas to which particular attention must be paid to maintain realism.

3. Issues that may arise in designing either a case study-based or experimentally-

based empirical evaluation.

1. Selection of an Evaluation Method

Nadim Rohani-Sarvestani 70

The choice of the method is based on the degree of control an investigator has over the

environment in which the study is conducted. The spectrum of the choice method starts

with case studies which exerted less control than combinative experimental method

which exerted less control than our comparative experimental methods. [81, p. 23] What

questions must be considered if this method was to evaluate a new software engineering

technology. For example, what elements of the technology does the researcher need to

know? What is the budget (time and cost) for the evaluation? What are the expected

results? [81, p. 23]

In terms of goals of the evaluation, a case study approach was more effective if the

primary interest is in the broad effects of the new technology. This approach gives the

ability to gather data from diverse areas such as design processes or environment

problems. The combinative experiment was also used to gather similar qualitative data

about multiple facets of tasks in a more controlled setting but it wasn’t as broad. The

case study approach was more effective because it quickly identified and addressed the

usability issues with the technology. Furthermore, it allowed sufficient flexibility for the

developers to have a range of interaction with the technology. An important question

when evaluating a technology is to decide whether it is reasonable to try to address

concurrently usefulness and usability. Because usefulness and usability are closely

tangled for new technologies, determining how to investigate them together or how to

separate these issues at reasonable cost is important. [81, pp. 23-24]

Selecting a method also requires consideration of the stability of the technology. The

greater the control that is desired in a study, usually the greater the investment that is

required in preparation time and labour costs. For the sake of stability it is helpful to

maintain the programming environment versions consistent over a course of evaluation

for result comparison. Furthermore, new versions could introduce more problems or

bugs to the current implementation of the case studies. As mentioned evaluation cost is

also an issue, particularly for technologies that are rapidly evolving. Finally, regardless

of the chosen method the appropriate balance of construct validity, internal validity,

external validity, and reliability is necessary. The paper suggests that none of the

Nadim Rohani-Sarvestani 71

methods used achieved the desired balance easier than any other. [81, pp. 23-24].

Therefore, choosing a method should depend on the feasibility of conducting a study

given the budget is available for the questions of interest.

2. Maintaining Realism

Maintaining a reasonable degree of realism is a difficult task [81, pp. 25-26] while

investigating how a new technology can help the process of software development. For

example, how can a case study balance strict time constraints while is trying to tackle a

serious problem arising in software development? The “time” issue is even greater in the

context of experiments when selecting appropriate problems (motivating to the

participants and reasonably realistic) that developers could tackle. It is difficult to

provide general guidelines on how to approach the problem selection problem for

experiments apart from suggesting dress rehearsal (trials) and planning in order to

ensure that the problem is manageable. Realism can be introduced into the environment

by letting developers interact as much as possible with the tools, settings and the

development environment. Finally, the skill set and experience of the developers is an

important factor for results expected to achieve.

3. Designing the Empirical Study

Further to the guidance already suggested earlier on with particular emphasis on

experimental studies for software engineering from [89] and [82] are data gathering and

analysis. Gathering meaningful data about a task i.e. trying to achieve the construct of

validity is a difficult task. Performing these kinds of tasks involves problem solving at

abstract and concrete levels [94] , time management, and communicating ideas, among

other activities. Finally, determining what data analysis is required before conducting

experiments and case studies is ideal but difficult to put it in practice because the data

analysis strategy is usually not clear at the start of a project.

Conclusion

Nadim Rohani-Sarvestani 72

Validity, realism and cost are typical factors that are required when evaluating a method

that helps software development. The flexibility in each of this factors increases with the

maturity of the technology. Two methods were used to study AOP, namely case study

and experiments. Because the paper was written at the time that AOP was relatively a

new technology these methods were more exploratory.

The case study method provided results about the usefulness and challenges of the

technique, concrete features that could improve the usability of the approach, and about

potential research directions. The experimental approach provided qualitative evidence

about the usefulness of the technique and identified more specific parts of the approach

that contribute to its usefulness and usability. Overall, the case study was more effective

means of achieving our initial goals of assessing whether and how AOP might ease

some development tasks. Regardless of the results it is important to note that AOP is not

trying to replace OOP but to capture important design decisions that are difficult to

capture in the traditional OOP (i.e. a new programming technique) [36]. Therefore, the

experiments although exploratory, would yield better results if better focussed on issues

such as crosscutting concerns.

The paper [81] makes two contributions. First, analyzes the costs of applying several

different evaluation methods highlighting some strengths and weaknesses of the various

approaches and introducing data gathering and analysis method particularly on

experimental studies. Second, discuss the possible value of various forms of semi

controlled studies particularly in new technologies. These studies can help determine if

the technique shows promise, and whether it can help direct the evolution of a

technology to increase its usability and potential for usefulness.

4.1.2 Managing Crosscutting Concerns During Software
Evolution Tasks

The code of an application is modularized as a mechanism for improving the flexibility,

efficiency, extendibility, reusability and comprehensibility of a system while allowing

the shortening of its development time [35]. AOP provides support on design decisions

that the program must implement but are hard to express them clearly with a modular

fashion because they crosscut the systems basic functionality [36]. The aspect-oriented

Nadim Rohani-Sarvestani 73

approaches were developed based on certain instances of crosscutting code. Examples of

such approaches, implementations and models at the time that the paper was conducted

are: HyperJ, a multi-dimensional separation of concerns supporting construction,

evolution and integration of software [47]; AspectJ, an aspect-oriented extension for the

Java programming language that has been designed to be implemented in many ways

[39] , [74]; Language framework for distributed computing [75]; Synchronization

policies [76]; Database integration modelling using a composition-filters approach [77];

Specifying subject-oriented compositions [78]; Features such as multi-dimensional

separation of concerns [79].

There have been few papers introducing evaluation and empirical methods that provided

results on the usefulness and challenges of AOP [81] or discussing the effect of aspects

on object-oriented development practices [95]. But there haven’t been empirical studies

to consider the various crosscutting concerns that developers would find beneficial to

modularize, or how are developers currently managing those concerns in existing

systems. The presentation of the study [96] aims to gain an insight on these concerns by

studying the progression of eight developers from industry and academia on a change

task. Each developer was making non-trivial changes to different non-trivial

applications. The data analysis results showed that each developer had to consider at

least one crosscutting concern that arose when encountering problems in making their

desired change. For example, a developer encountered security issues, communication

protocols and hardware platform dependencies concerns when trying to change the

mathematical model applied to a specific new purpose. In order to manage these issues

three solutions emerged depending on how the concern interacted with the core code

associated with the change: (1) change the entire concern, (2) work within the

conventions of the concern, (3) alter the change task rather than coping with the

concern.

Furthermore, the results of this study [96] provides with:

• Empirical evidence about the kinds of crosscutting concerns that impact software

developers

Nadim Rohani-Sarvestani 74

• The strategies developers use to cope with these kinds of concerns in existing

systems.

• A comparison basis in order to answer whether the use of aspect-oriented

approaches enables developers to better represent and work with crosscutting

code. In other words, does the use of AOP eliminate the need to alter a change

task in situations similar to those described by this paper?

As with the previous case study, the approach that was taken to present this case study

[96] is to briefly explain the setup of the experiment and its outcome followed by a

discussion on the implications of the results. Also, few of the sources cited were found

in the original research but investigated further.

Setup and Tools Used

The duration of study method was three weeks and used interviews as its main tool,

based on the data collection methods for software field studies [97]. Eight separate

change tasks were considered, each performed on a unique system. The systems were

implemented in range of programming languages: three systems were implemented in C

[98], three in C++ [99], and two in Java [100]. The tasks were implemented by eight

participants, four senior developers of which two had prior AOP experience, and four

graduates with generic programming experience. An important requirement of the study

was that participants would have limited prior knowledge of the code base and therefore

would have to investigate the scope of the change. This was achieved by having them

working on an application that they weren’t the initial or a principal developer.

The information that was required to be gathered through the series of these three one

hour interviews was: the program change of the developer, the approach to the task, the

approach to determine which segments of code needed to change, and the degree of

difficulty to make the change, if so, why it was difficult.

As mentioned, the main focus of the study [96, p. 2] was determining the kinds of

crosscutting concerns that developers must consider in existing code bases. The

approach that was taken was by asking questions about the change task rather than

directly about the concerns. This approach was taken because it showed through the

Nadim Rohani-Sarvestani 75

interviews that most of the developers hadn’t thought about crosscutting concerns. They

didn’t understand the meaning of the questions when asked directly about these

concerns not to mention that some with prior AOP knowledge would just answer with

popular crosscutting concerns like tracing, debugging, or distribution and therefore,

could have hidden other concerns related to the task. Finally, it took time for the

developers to think about the problem in broader terms because of their heavy

involvement in the details of the task. As the interviews progressed the developers

started to think about their tasks in a more conceptual level which allowed them to

consider more high level questions. This led to aid them to indentify portions of the code

that they would like to see modularized.

Results

Most developers described their change task from two perspectives: a structural

perspective and an obstacle based perspective [96, pp. 2-5].

Looking into the straightforward structural perspective, it can be seen from the initial

description of the developers that their change task was easily identifiable structure in

the code. They described the change in terms of a particular data structure or a particular

module in the code which was straightforward but often scattered. They could

understand the purpose of the code and its context within the structure of the application

and point out portions of the code that corresponded to their change, but only the

developer with prior AOP knowledge described crosscutting code as the target of the

change.

In terms of the non-straightforward obstacle perspective, the developers realised that

although they knew the locations in the code that needed to be changed, they faced a set

of obstacles when making the change. The obstacles comprised segments of code that

were relevant to the task but that also affected an underlying concern; this code was at

the intersection of the core change and the broader concern. Hence, in order to make the

change the developer had to understand the entire concern and since that underlying

concern was not well-modularized or well-documented, it was difficult to conceptualize

and to reason about [96, pp. 2-5].

Nadim Rohani-Sarvestani 76

Table 3 summarizes the program change tasks, the obstacles faced and the strategy

employed for each developer.

Three strategies were used to deal with the obstacles:

I. Change: Alter the concern code to enable the change task.

II. Within: Understand the concern associated with the obstacle but not changing

sufficiently to make the change work within the concern.

III. Around: Completely alter the change task to account for the concern without

understanding the concern.

Examining how participants addressed the obstacles they faced and focusing on the

obstacle points the locations at which the change task intersected the crosscutting

concern, it was found that there were certain patterns of interaction between the concern

and the change code. It was determined that there was a relationship between the

patterns and the strategy to address the obstacle. [96, pp. 2-5]

Table 3 Developers task descriptions, obstacles and strategies

Developer Straightforward
Structural view

Non-straightforward
obstacle view Strategy

1
Moving particular computation

to an aspect-like module
Synchronization Performance Within

2
Tailoring a matching algorithm

for a specific purpose
Memory allocation Change

3
Changing matrix

calculation
Memory allocation Around

4 Changing Table representation
Implicit assumptions about data

structure representations
Around

5
Changing packaging o f user

interface mechanism
Distribution, Tracing Within

6
Changing the

mathematical model
applied

Security issues
Communication protocols, Hardware

platform dependencies
Within

7 Changing printing look and feel
User Interface consistency,

Printing speed
Change

8
Adding cancellation

notification to an
existing system

Multithreading,
Behavioural consistency

Within

Nadim Rohani-Sarvestani 77

Change strategy - changing the relevant portions of the crosscutting concern to suit the

change: The change strategy had a structural intersection point. The developers could

identify, from the code related to the change, certain structures such as types, objects,

and computations directly related to those structures as obstacles to their change task.

I.e. these obstacle points provided enough information about the broader concern to lead

the developer reason the points of change, located in the broader concern. Developer

seven was more visible because the changes were at the user interface level. Developer

two was able to estimate that all functionality of a certain kind involving a particular

type would have to be altered. It was then straightforward, though tedious, to make the

changes.

Within Strategy - understand the effect of the code on the crosscutting concern that

presents an obstacle to the change, and work within the conventions of the concern: The

within strategy, followed a behavioural pattern. The intersection of the change code and

the behavioural concern code could not be assessed as easily as the structural case,

because the obstacle points were implied. The developers had to examine the broader

concern in order to understand the conventions of the concern and then had to reason

inward about how to change the core code to work within the broader concern.

Essentially, they had to gain a general understanding of the code base in order to work

within the concerns. Once they had this understanding, they were able to identify

portions of code that would allow them to reason inward about their specific change

task. Developers one, five, six and eight used this strategy. It is worth mentioning that

developer eight had to perform considerable testing to ensure the obstacle had been dealt

with appropriately.

A good example of inward reasoning is the attempt of developer one to move pre

fetching functionality within operating system code into a separate aspect like module.

The developer knew that this change would impact synchronization in the system and

had to reason inward from the synchronization concern to the core change. A suggested

solution was to include synchronization code in the new pre-fetching module even

though the code was not directly related to the core of the change. The inclusion of this

Nadim Rohani-Sarvestani 78

code ensured that the locking invariants encoded in the synchronization concern were

maintained. The study of aspect evolution in operating system code by [68] discusses

further suggestions on how concerns such as pre-fetching can better modularized using

aspect-oriented implementation. In all cases, however, developers were unable to

cleanly determine when they had addressed all of the code related to their change.

Around Strategy - a significant rethink of the original approach to change task because

of the developers lack of understanding for obstacles, and not being able to address the

concern: The around strategy, was dense. The code made ambiguous use of

assumptions from around the code base and was thus subtle and difficult to reason

about. When the change approach became too difficult, the developers were forced to

work around both the obstacle and the concern code. The obstacles associated with the

strategy are encoded, meaning that they are neither structurally explicit, nor are they

implied by comments or conventions. As a result, the developer was unable to use either

of the inward or outward reasoning strategies employed by other participants. In the end,

the participant simply worked around this difficult code. Developers three and four used

this strategy i.e. each worked around the obstacle.

It worth mentioning how developer four ran into memory allocation problems after

making what should have been a simple change. After failed attempts to understand how

the change affected the memory allocation for the application, a work around was

devised to trick the memory allocation portions of the source into thinking that the

change had not been made.

Result Implications

The results showed that a significant effort was required by the developers to understand

the segments of the crosscutting concern associated with the obstacle. It was not an easy

task to determine the connection between the code related to the change and the broader

concern especially for those who used the within strategy i.e. when the developers were

considering the code related to the change they had to ask themselves how the

crosscutting concern will be affected if this location in the code is changed.

Nadim Rohani-Sarvestani 79

The outcome of the study [96, pp. 5-6] is an empirical evidence of crosscutting concerns

and the strategies used in coping with such concerns, because of the similarities in the

form of the crosscutting code involved, and in the strategies used by the participants to

cope with these concerns despite the differences in developers, tasks and systems. These

similarities are indicative of real software developments and allow results to generalize.

The outcome also showed that AOP can help avoiding the around strategy by

modularizing a particular crosscutting concern.

However, because of its exploratory nature, the study was limited to a small number of

systems, tasks and time constraints. An important observation is that prior to the study it

was assumed that concerns might be more directly linked with change tasks, i.e. a

change might correspond with a concern, but the study showed that concerns typically

intersected changes. Further testing is needed to see if it is imperative that concerns

intersect change.

This study can compare with other empirical work in two areas: (1) studying the way

developers perform software change task and (2) examining AOP.

Developers study: A lot of work has been done to analyze the cognitive and thought

process approach that developers use to understand code. These approaches can be

characterized as

I. Top-down [101], [102], where the developer begins with understanding of a general

nature.

II. Bottom-up [103], [104], where developer begin by reading source code and by

mentally forming higher-level abstractions.

III. Knowledge-based [105]which involves incorporating domain knowledge and the

mental models formed during program analysis.

IV. Integrated [106], which incorporates all of the above.

The above approaches are focussing on work practices and the models built by

developers while understanding the code. The study is focussed on the form and role of

the code that developers examine when performing a program change task.

Nadim Rohani-Sarvestani 80

Examining AOP: The study showed that when performing a task at certain points the

developer needed to see the behavioural effects of aspects on methods of interest.

Another point was regarding the controlled experiment to investigate whether AOP

could ease program maintenance tasks. The results showed that developers found it

difficult to reason about a separated concern when the interface between the core code

and the concern code was too broad i.e. the more constrained and defined the interface,

the easier it was for developer to determine the area of influence between the code and

concern code. This result was also verified by [107].

4.2 Case Study I: A Retroactive Study of Aspect Evolution in

Operating System Code

Overview

Operating Systems (OS) must perform well under an increasingly diverse set of

workload demand. But evolving OS code is hard because it involves extending,

integrating, optimizing, re-optimizing, and maintaining system functionality. It not only

requires understanding the individual concerns within the system, but often their

inherently complex interactions.

As mentioned modularity helps evolution by providing a shorten development time

because separate groups would work on each module with little need for

communication, the possibility of making drastic changes to one module without a need

to change others and the ability to study a system one module at a time i.e. the entire

system can therefore be better designed because it is better understood. But providing a

clear division of responsibilities in OS code is hard and many studies such as [108] has

shown that the average number of modules involved in a change rose significantly in

new releases due to unintentional interaction among modules.

This case study [68] describes the impact evolution had on these concerns, and provides

a comparative analysis of the changes required to evolve the tangled versus aspect-

oriented implementations. Coady [68] suggests that AOP can be used to improve

Nadim Rohani-Sarvestani 81

evolvability of OS code by providing better modularity of crosscutting concerns and

interacting concerns without harming non-interacting concerns. The results show that

for the concerns that were explored, the aspect-oriented implementation facilitated

evolution in four key ways:

1. Changes were better localized

2. Configurability was more explicit

3. Redundancy was reduced

4. Extensibility aligned with an aspect was more modular

The experiment [68] was set up on FreeBSD v2.2.8 Dec 1998, v3.3, Sep 1999 and v4.4

Sep 2001. FreeBSD's development began in 1993 and grew into an operating system

taken from U.C. Berkeley's 4.4BSD-Lite. FreeBSD is representative of a high quality

implementation of an operating system because of it design lineage in the research

community and successful adoption in industry. It is one of the most widely-distributed

Unix-based operating systems and because of its open source nature; FreeBSD is an

excellent platform for research in operating systems as well as other branches of

computer science. FreeBSD's freely available nature also makes it possible for remote

groups to collaborate on ideas or shared development without having to worry about

special licensing agreements or limitations on what may be discussed in open forums

[109].

The FreeBSD operating system was doubled in size in terms lines of code (LOC)

between version 2 and 4 (i.e. during the span that the research took place). Changes to

primary modularity at high-level such as new device drivers are easier to trace than

changes to crosscutting concerns such as the number of places where disk quotas are

tracking disk utilization enforcing limits to users. Four crosscutting concerns were re

factored in version 2 of the code into aspects [36] in order to better understand how an

aspect-oriented implementation works from the view of system evolution [68]. The

concerns are waking the page daemon, pre-fetching for mapped files, quotas for disk

usage, and tracing blocked processes in device drivers. These implementations were

then rolled forward into their subsequent incarnations in versions 3 and 4 of FreeBSD.

This paper describes the impact evolution had on these concerns, and provides a

Nadim Rohani-Sarvestani 82

comparative analysis of the changes required to evolve the original versus aspect-

oriented implementations through a range of scenarios. [68]

The approach that was taken to review this research [68] is as follows, each crosscutting

concern is analysed individually starting from an understanding of its nature, overview

of the original implementation, changes required to evolve the aspect-oriented

implementation followed by a comparison with the impact of evolution on the original

tangled implementation. After summarizing and analysing all the concerns, a collective

analysis that reviews the results including a brief introduction of the costs associated

with the AspectC runtime is discussed. As with the previous research papers, some of

the cited sources were found in the original research but have been investigated further.

Also, the sample source codes are taken from the research but further comments have

been added, as it hoped to illustrate the AOP implementation approach in practice for

non-trivial applications.

Analysis of the Crosscutting Concerns

1. Page Daemon Activation concern

A page or virtual page is a fixed-length block of main memory that is contiguous in both

physical and virtual memory addressing [110, p. 32]. When the number of available

pages falls below a certain threshold page daemon is designed to be activated in order to

assess where is needed to free physical memory. Determining which pages will be

replaced and writing them back to disk if necessary imposes overhead and therefore

timing is important as the daemon should be activated only when required. The structure

of page daemon activation is a set of context-specific triggers within the virtual memory

system and the file buffer cache. Therefore, the activation crosscuts operations that

consume available pages [68, p. 50]. In the original implementation the function

pagedaemon_wakeup(), and its lower level counterpart, wakeup (&vm_pages needed)

are invoked less as moving from version 2 to 4. Triggers for page daemon wakeup were

eliminated as the virtually memory (VM) system evolved and many functions such as

(swap_pager.c) were significantly revised. Finally from version 3 to 4 the function to

Nadim Rohani-Sarvestani 83

allocate pages was reworked, which resulted in eliminating further triggers. In addition

the introduction of a new synchronization operation in VM added a new low-level

activation of the daemon [68, p. 51].

Three main changes had to be done to the code to evolve the aspect-oriented

implementation. The first was introducing page daemon activation as an aspect using

AspectC. This involved re-factoring and removal of code that controlled activation from

the operations it crosscut. The second change was regarding internal structure and

implementation. The page daemon use thresholds to determine when activation is

required. Therefore it imperative to understand for the entire system the contexts of the

threshold checks, the specifics of the thresholds used, and the relationship between the

contexts and the thresholds. The below code extract shows some of the core

implementation of the page daemon wakeup aspect common to all versions. [68, p. 52]

aspect page_daemon_wakeup {

// pointcuts identify specific points in kernel execution when paging may be needed i.e. when

//unqueuing available pages & when allocating buffers

pointcut unqueuing_available_pages(vm_page_t m):

execution(void vm_page_unqueue(m))

&& cflow(execution(void vm_page_activate(vm_page_t))

|| execution(void vm_page_wire(vm_page_t))

|| execution(void vm_page_unmanage(vm_page_t))

|| execution(void vm_page_deactivate(vm_page_t, int)));

pointcut allocating_buffers(vm_object_t obj, vm_pindex_t pindex):

execution(vm_page_t vm_page_lookup(obj, pindex))

&& cflow(execution(int allocbuf(struct buf*, int)));

// advice declarations use pointcuts to associate a given page threshold with a point in the

execution of the system and wake the daemon accordingly

around(vm_page_t m):

unqueuing_available_pages(m) {

int queue = m->queue;

proceed(m);

if (((queue - m->pc) == PQ_CACHE)

&& (pages_available() < vm_page_threshold()))

pagedaemon_wakeup();

Nadim Rohani-Sarvestani 84

}

around(vm_object_t obj, vm_pindex_t pindex):

allocating_buffers(obj, pindex) {

vm_page_t m = proceed(obj, pindex);

if ((m != NULL) && !(m->flags & PG_BUSY)

&& ((m->queue - m->pc) == PQ_CACHE)

&& (pages_available() < vfs_page_threshold()))

pagedaemon_wakeup();

return m;

The aspect was impacted from evolutionary changes such as the swap pager, the VM

page operations, and page daemon activation code. The changes involved further re

factoring, adding or deleting specific pointcuts and advice, and introducing some helper

functions to reduce redundancy and increase readability. [68, p. 52]

2. Pre- fetching concern

The inherent structure of pre-fetching is shaped by specific execution-paths that retrieve

pages from disk, which is an expensive operation [111, IBM]. Pre-fetching is a heuristic

meaning that it is designed to reduce the costs by securing additional pages that may be

required but it important to pre-fetch only when it is cost effective. Pre-fetching

crosscuts virtual memory and file systems, coordinating high level allocation and low

level de-allocation of pre-fetched pages [68, p. 51]. The study regarding managing

crosscutting concerns during software evolution tasks by [96] discussed how a

developer struggled when stumbled on a concern such as the pre-fetching functionality,

and worked hard to understand the effect of their code on the crosscutting concern that

presented an obstacle to their change. This resulted working within the conventions of

the concern i.e. to reason inward from the synchronization concern to the core change. It

is hoped that aspect-oriented implementation presented in this study aid the future

implementations of this kind.

The original implementation of FreeBSD had some changes between version 2 and 4

such as files changes, levels of function Tables, variable names [112]. The most

significant change was between version 2 and 3, where the sequential mode pre-fetching

Nadim Rohani-Sarvestani 85

in one file system was modified to be more aggressive. However this was removed in

version 4.

In terms of the aspect-oriented implementation the code was re-factored like the page

daemon activation concern in order to introduce the pre-fetching concern as an aspect

for mapped files and allow for more fine-grain composition. The re-factoring did not

require further modification as the versions evolved [68, p. 53]. The below code extract

shows a portion of the implementation of the single aspect for normal and sequential

mode mapped file pre-fetching common to versions 2 and 4 [112].

// This aspect structures the coordination between the high-level allocation and their possible
//subsequent low-level de-allocation for pre-fetched pages

aspect mapped_file_prefetching{

// The pointcuts name the high-level (vm_fault_path) and the low-level (getpages_path) parts of
the //execution paths involved

pointcut vm_fault_path(vm_map_t map):
cflow(execution(int vm_fault(map,..)));

pointcut getpages_path(vm_map_t map, vm_object_t obj,
vm_page_t* plist, int n, in fpage):

cflow(execution(int ffs_getpages(obj, plist, n, fpage)
|| execution(int vnode_leaf_pager_getpages(obj, plist,n,fpage)));

// The advice coordinates allocation (before) / de-allocation (after) pages for pre-fetching

before(vm_map_t map, vm_object_t obj, vm_page_t* plist, int n,
int fpage):

execution(int vnode_pager_getpages(obj, plist, n, fpage))
&& vm_fault_path(map)

{ ...plan and allocate prefetched pages...}

after(vm_object_t obj, vm_page_t* plist, int n, int fpage, int valid):
execution(valid check_valid(..))
&& getpages_path(obj, plist, n, fpage)

{ ...dealloc all prefetched pages...}

after(vm_object_t obj, vm_page_t* plist, int n, int fpage,
struct transfer_args* trans_args):

execution (int calc_range(trans_args))
&& getpages_path(obj, plist, len, fpage)

Nadim Rohani-Sarvestani 86

{ ...dealloc non contiguous pages...}
. . . }

The aspect was not impacted from evolutionary changes however changes were done on

the concern itself. The aspect was split in two parts with the introduction of sequential

mode between version 2 and 3 and then became one after the removal of the sequential

mode in version 4 of the original implementation [68, p. 53].

3. Disk Quotas Concern

The disk quota system provides an effective way to control the use of disk space [113,

Publib boulder IBM]. The inherent structure of quota is a set of low-level disk space

related operations that consistently monitor or limit all disk usage. Quota crosscuts

operations that consume and free disk space in file systems that offer support for this

functionality. Because disk quotas are an optional feature of FreeBSD the original

implementation was conFigured through a combination of settings in both a kernel

configuration file and on a per-file system basis [68, p. 51].

In terms of the aspect-oriented implementation re-factoring quota in version 2 involved

separating the segments of quota code associated with compiler directives from the file

system operations it crosscut. This allowed for composition of the aspect with the

precise granularity of file system functionality it crosscut. Second extended file system

(EXT2), file system for the Linux kernel, introduce identical functionality to the

corresponding operations in the union of Unix File System (UFS) and fast file system

(FFS). That is, all the quota code in EXT2 is redundant. The below code extract shows a

section of the implementation of the disk quota common to all versions [68, p. 54].

aspect disk_quota {

//The pointcuts name the corresponding operations from the different file systems that are
//associated with shared quota operations.

pointcut flushfiles(register struct mount *mp, int flags, struct proc *p):
execution(int ffs_flushfiles(mp, flags, p))
|| execution(int ext2_flushfiles(mp, flags, p));

Nadim Rohani-Sarvestani 87

//Around advice that uses this pointcut provides a single shared implementation of the
//associated quota operation

around(register struct mount *mp, int flags, struct proc *p):
flushfiles(mp, flags, p) {

register struct ufsmount *ump;
ump = VFSTOUFS(mp);
if (mp->mnt_flag & MNT_QUOTA) {

int i;
int error = vflush(mp, NULLVP, SKIPSYSTEM|flags);
if (error)

return (error);
for (i = 0; i < MAXQUOTAS; i++) {

if (ump->um_quotas[i] == NULLVP)
continue;

quotaoff(p, mp, i);
}

}
return proceed(mp, flags, p);

}

For versions 2 and 3 the aspect was impacted from evolutionary changes such as the

introduction of a new feature for file servers, the implementation of compiler directives

and between versions 3 and 4 a new FFS operation was introduced requiring quota

tracking. This primarily consisted of adding pointcuts and advice as needed to

incrementally extend its configuration to include new functionality [68, p. 54].

4. Blocking in Device Drivers Concern

Scheduling is a key concept in computer multitasking and multiprocessing operating

system design, and in real-time operating system design. Scheduling is the way

processes are assigned priorities in a priority queue. Scheduling is concerned with tasks

such as keeping the CPU as busy as possible (CPU utilization), the number of process

that complete their execution per time unit (Throughput), the amount of time to execute

a particular process (Turnaround), The amount of time a process has been waiting in the

ready queue (Waiting time), the amount of time it takes from when a request was

submitted until the first response is produced (Response time) etc. Furthermore,

different computer operating systems implement different scheduling schemes [114].

Nadim Rohani-Sarvestani 88

Blocking in device driver code is designed to maximize CPU utilization while processes

wait for device I/O. The structure of diagnostic statements related to blocking behaviour

in device drivers shadows all points in the system where a process could be blocked on a

device indefinitely. Tracking process blocking in device drivers crosscuts all device

specific operations involved with I/O [68, p. 51]. When waiting for device I/O, a process

blocks by calling tsleep(). Functions such as tsleepO or ItsleepO implement voluntary

context switching and are used throughout the kernel whenever processing in the current

context cannot continue for reasons like when the current process needs to await the

results of a pending I/O operation or a process needs resources (e.g., memory) which are

temporarily unavailable etc [115]. The tsleepO is passed a value to block on and a

timeout after which the process will wake-up using the wakeupO if it has not been

unblocked [68, p. 52].

In the original implementation the device driver code has the highest rate of growth and

therefore the highest rate of bugs in the kernel [116]. An aspect was introduced in the

version 2 of the driver code to track processes that block on device operations without a

timeout. As processes may block indefinitely, diagnosing problematic behaviour

associated with device drivers can be of particular interest. Although the number of calls

to tsleepO in driver code grew from 5, to 55 and 110 in versions 2, 3 and 4 respectively,

the only modification required to evolve this aspect was to make one the functions

parameter constant between versions 3 and 4.

Analysis of the Results of the Experiment

The results are grouped into four areas:

1. The ways in which the original evolution of each concern was problematic is

overviewed.

2. The general ways in which the aspects addressed these problems are

summarized.

3. A brief overview of cost analysis associated with runtime support for the aspect-

oriented implementation.

Nadim Rohani-Sarvestani 89

4. Open Issues

1. Evolving Scattered and Tangled Code

The concerns discussed earlier are non modular, scattered and tangled in an unclear way

throughout the primary modularity they crosscut in their original implementations. The

specific problems that developed during the evolution of the original implementation of

each concern are summarized here.

Page Daemon Wakeup

Identifying exactly in the system when and why this concern should be activated is

important but also difficult because the code is spread out. This is why some of the

activations were re-factored, while others were not. It is also evident that is imperative

to understand for the entire system the contexts of the threshold checks, the specifics of

the thresholds used, and the relationship between the contexts and the thresholds. The

subtle differences are critical for understanding daemon activation, but difficult to

appreciate in the original implementation. For example page fault handling has the only

threshold check that does not use cache_rain which is the minimum number of pages

desired on the cache queue. Finally it seems that VM and the buffer code did not evolve

simultaneously because re-factoring of the threshold calculations were included but not

applied consistently to all the thresholds involved with activation [68, p. 55].

Pre-fetching

Although the there were only small changes to the system because of the addition of the

sequential mode in version 3 it introduced the relationship between VM, the file system,

and the buffer cache that did not exist previously [68, p. 55].

Disk Quotas

Implementing quota with pre-processor directives supports efficient, coarse grained

configurability. Pre-processor directives are not program statements but directives for

Nadim Rohani-Sarvestani 90

the pre-processor (preceded by hash sign #) and are executed before the actual

compilation of code begins [117]. When looking at the primary functionality of the file

system disk quotas is not seen as separate concern, which makes it difficult to conFigure

it when seen as a crosscutting concern. The reasons behind this are: it is difficult to

comprehensively reason about quota and identify the structural relationships that it

holds, directives can obscure reading of the file system code quota due to scattered code

and drift can occur between portions of quota code that should be identical [68, p. 55].

Device Blocking in Drivers

Driver code can be an issue because is the result of multiple independent developers

interacting with subtle OS specific protocols though maybe simple to state but hard to

manually apply in their scattered and tangled implementation. To make it more

complicated, extensions to the scheduling policy of an OS, such as the event-based

scheme in Bossa [118], necessarily involve invasive, non-modular, modifications to a

rapidly growing number of points in the system to detect events such as blocking. Bossa

is a kernel-level event-based framework that facilitates the implementation and

integration of new scheduling policies [119] based on a domain specific language

approach [120].

2. General Improvements using Aspects

The summary of the results of this paper are shown in Table 2 [68, p. 56] and illustrate

the major differences between the original and aspect-oriented implementations of these

concerns involve four key related properties: changeability, configurability, redundancy

and extensibility. These properties are discussed below in more detail.

Table 4 Summary of the results

Concern Major
evolution

Structural
challenge

Original/Aspect Benefits

Page daemon
wakeup

Revamping of
code it
crosscuts: VM

Multiple context
specific
thresholds

Scattered activation
/
Textually localized

Independent
development
Localized change

Nadim Rohani-Sarvestani 91

and buffer cache
Pre-fetching for
mapped files

Change in
design of
sequential mode

New subsystem
interaction along
execution paths

Internal to function
/
Explicit control flow

Explicit subsystem
interaction
pluggability in
makefile

Disk quota New
functionality in
code it
crosscuts:
UFS,FFS,EXT2

Configurability
And sharing
across file
systems

#ifdefs w / redundant
code
/
Explicit sharing

Pointcut
configurability
Reduced redundancy

D evice blocking New device
drivers added to
the system

Consistency
across rapidly
growing diversity

Individualized devices
/
Centralized assessment

Comprehensive
coverage
Further extensibility
modularized

Changeability

There are two kinds of change, as shown on Table 4 [68, p. 56]. The first type of change

is directly to the concern itself which in aspect-oriented implementation was facilitated

by textual locality. The second type is indirectly, as a result of revising the code the

concern crosscut which should be equally accessible, given tool support. Unfortunately

this sort of tool doesn’t exist in AspectC yet. Textual locality could also address two

further problems in the original implementation. First it could reduce the inconsistencies

that arose from non-uniform evolution of the underlying primary modularity the

concerns crosscut and secondly putting in one module all the diverse context-specific

elements, such as the thresholds in daemon activation. This would create a more natural

setting for the original implementation and would enable the developer the spot the

differences easier. [68, p. 56]

Configurability

Configuration changes mapped directly to modifications to pointcuts and/or make file

options had particular impact on the evolution of both pre-fetching and disk quotas.

“Pluggability” is very important for both concerns. In terms of pre-fetching the

optimization for sequential mode pre-fetching introduced a new interaction between

multiple subsystems and this interaction was unique to a single file system. Explicit

configuration as an aspect supported independent development and the eventual removal

from the system in case it was needed as it happened with the sequential mode from

versions 3 to 4. Similarly in terms of disk quotas aspect the pointcut declarations reveal

Nadim Rohani-Sarvestani 92

the underlying structural relationships between corresponding file system operations.

This helps to identify which core file system functions and values are involved, along

with their similarities and differences with respect to quota. [68, p. 56]

Redundancy

The elimination of redundancy across file systems increases the configurability of the

quota aspect. However there are differences between the implementation of quota in

FFS versus EXT2 which cause drift. Therefore the ability to specify similar quota across

all file systems eliminates redundant code prevents drift and ensures that quota

operations are consistently applied through the system. [68, p. 56]

Extensibility

Scheduling code spans interrupt handlers, device drivers, and all places in the system

where process synchronization occurs. One of the challenges in the development of

Bossa is to identify throughout the OS all the scheduling points, or the circumstances

under which the scheduler is activated. Extending the scheduler to respond to Bossa

defined scheduling events requires access to the context of the scheduler invocation,

which means invasive modifications to hundreds of places in the system, compromising

the modularity of the extension. Aligning the extension as a scheduling concern

structured within an aspect could improve the modularity of the extension. [68, p. 57]

3. Runtime Costs

In terms of cost analysis associated with runtime support for the aspect-oriented

implementation the constructs of AspectC are static and are resolved at compile time.

The current implementation does not introduce more overhead than a call to a function

containing the advice body. But cflow is a dynamic construct and hence has runtime

overhead associated with it. For cflow construct AspectJ implementation model was

followed i.e. which the overhead is distributed across executions of functions that are

cflow-tested, and dispatch to advice involving a cflow test. Though AspectC is modelled

after AspectJ, there are important differences that still must be addressed such as

different kinds of runtime support than is required for user-level AOP etc. [68, p. 57]

Nadim Rohani-Sarvestani 93

Conclusion and Open Issues

AOP proposes new mechanisms to enable the modular implementation of crosscutting

concerns. The results thus far have shown that AOP could improve the evolvability of

OS code. However, there some open issues that limit this study. [68, p. 58]

1. The focus was only on the evolution of specific concerns in isolation rather than

producing full successive versions of FreeBSD.

2. The concerns were evolved by a single developer for all versions.

3. Further aspects could have been considered such as system profiling and

networking concerns.

4. An in depth cost/benefit analysis is required because improving modularity of

operating systems will not be meaningful if aspects substantially reduce

performance.

5. Determine precise costs associated with more sophisticated compositions of

aspects in terms relative to their current implementation.

4.3 Case Study II: Persistence as an Aspect

This is case study has been adapted from [80] was chosen because persistence is a very

relative issue when designing applications. Many of the cited sources were found in the

original research but there some critical analysis done regarding the implementations

approach that the resarch [80] suggested when dealing with persistence. Also, the

sample source codes are taken from the research but further comments have been added,

as it hoped to illustrate the AOP implementation approach in practice for non-trivial

applications.

Persistence is considered a classic example for becoming an aspect [121], [122]. Other

known examples are synchronisation [123], [124] and tracing [125], [34]. The study

[80] claims that persistence can be modularised and re-used using AOP techniques

Nadim Rohani-Sarvestani 94

based on the criteria of Pamas [35]. In addition, applications can be developed unaware

of the persistent nature of the data. The result of the study is an attempt to establish

evidence of these claims in non-trivial database management systems.

There is currently some research on AOP regarding persistence and related concerns by

[126, On to Aspect Persistence], [127, Weaving Aspects in a Persistent Environment]

for example, describe an approach and a prototype to store aspects in an 0 - 0 database.

Therefore, it is imperative to define the main purpose of this study and what is not

considered or covered.

• Provides a model for aspect persistence including the persistence of application data,

independent of a particular AOP approach.

• Investigates aspectisation of transactions which are only one facet of persistence.

• The transactions considered operate in a pure object-oriented environment, a small

share of what is used in the industry.

• Re-factor an existing application.

• Present experiences in separating persistence of application data using AOP

techniques.

• Explore whether persistence can be effectively aspectised in a real world application.

• Determine whether such aspectisation can be reusable with the application and the

persistence aspect developed independently of each other.

• Provide some general insight into the suitability of other AOP techniques in this

context.

• Discuss how the emerging persistence model may be adapted to suit other database

technologies, e.g. 0 - 0 databases.

• Does not consider the separation of persistence in relational database applications.

• Code modularisation dealing with storage and retrieval of application data from

persistent storage is not dealt with in detail.

• Does not explore application development independent of persistence requirements

or development of a reusable persistence aspect.

• Does not explore application development independent of persistence requirements

or development of a reusable persistence aspect

Nadim Rohani-Sarvestani 95

The basis of the experiment is a database application (a bibliography system) and SQL-

92 compliant relational databases as the underlying persistence mechanism. The

application is written in Java using Java Database Connectivity (JDBC) and aspectised

using AspectJ 1.06 [39].

The research [80] uses a classical database application to show that persistence can be a

highly re-usable aspect and be developed into a general aspect-based persistence

framework. Furthermore, it shows that persistence has to be considered when designing

the architecture of data-consumer components where such components need to account

the declarative nature of retrieval mechanisms used by many database systems and

deletion operation during application design because is highly triggered by most

applications.

The approach that was taken to review this paper is a brief analysis on the approach to

modularising persistence using aspects and the reason behind the various design

decisions including discussing the lessons learnt from the study, possible limitations and

generalisation to other persistence scenarios. Related work is discussed when seem fit.

As already mentioned it is not indented to analyse any case study in detail but to try to

depict the most salient points in order to quantify and assess the claims of AOP and

where possible to present a brief overview of the non-trivial application.

Modularising Persistence

1. Database access

When developing aspectised database access, at least partly independent of persistence,

it is imperative to consider a way to distinguish persistent data from transient data, while

ensuring that the aspectised database access functionality has a high degree of

reusability including the availability of some customisation points to plug-in application

requirements. Examples of application requirements are a specific database management

Nadim Rohani-Sarvestani 96

system and/or drive, location of the database, points in the application control flow

where a database connection should be established or closed.

PersistentRoot class is used to separate persistent data and the concept is taken from O-

O database systems [128] whereby is required that all classes whose instances are to be

stored in the database extend a common base class. The base class has typically

persistence-related functionality and further functionality can be given to the persistent

classes by a (pre or post) compilation processor. The PersistentRoot class encapsulates

the “marking an object as deleted”, a basic but important feature that allows to be

partially ignored during application development. Furthermore, it has an important role

in aspectising database access in a highly reusable fashion by the ability to define join

points with reference to a common, application independent point: the PersistentRoot

class. This allows re-using the DatabaseAccess aspect in other applications whose data

classes have been declared as subclasses of the PersistentRoot class. It worth mentioning

that an application specific aspect can use AspectJ to declare the PersistentRoot class,

which inherits from Object, as the superclass of all classes whose instances are to be

made persistent.

The below code extract shows the PersistentRoot class:

public class PersistentRoot
{

protected boolean isDeleted = false;
public void delete() { this.isDeleted = true;}
public boolean isDeleted() { return this.isDeleted;}

}

The key features of the DatabaseAccess aspect are briefly discussed followed by a

commented code of the aspect in order to see a real world example of another

application that uses AOP (AspectJ) to modularize crosscutting concerns. Detailed

results and analysis can be found in [80, pp. 2-6]:

1. Connection: The ability to connect and disconnect from the database is a basic

feature for a persistent application and reusability requirements is required to remain

generic with the availability of specific customisation points to incorporate

application specific requirements (Examples already mentioned).

Nadim Rohani-Sarvestani 97

2. Storage and update: An object should be stored in the database as soon as it is

instantiated. Factors when considering aspectising this functionality: (1) all objects

reachable from a stored object should also be made persistent; (2) the constructor

must be executed before storing the object. The implementation showed that is

essential to treat advices as first class entities in order to clarify the signature of the

behaviour specified within an aspect. The declaration of exceptions thrown from the

advice code should be incorporated and more reflective access supported which is

fundamental in the development of reusable aspects. The update mechanism relies on

trapping all invocations of setter methods (calls in its control flow) for persistent

objects. It has been decided to rely on strict encapsulation for access to member

variables of persistent objects. The research [80] suggests that this practice should be

the case all persistent applications as it will ensure that the interface of the class is

not modified often due to changes to internal representation of member variables

(there are some exceptions).

3. Retrieval information from storage: The application cannot oversee the fact that the

persistent objects or the references to these are obtained from an external source that

is governed by the declarative nature of retrieval mechanisms in database systems

which retrieve data based on predicates or selection conditions. It is interesting to see

that aspects can play an important role in modularising parts of the retrieval related

code (PersistentData interface). The implementation approach remains application

independent and provides a high degree of reusability. Retrieval is an important

architectural consideration in the design of data consumer components because there

are important factors to consider such as the amount of data.

4. Deletion of persistent data is similar to retrieval functionality in terms of need to be

explicitly considered during application development and cannot be fully aspectised.

This is because a specific request from the application must be made for the data to

be deleted. Because the application is written in OOP, the automatic garbage

collection can create uncertainty. Therefore, the paper suggests that is to explicitly

Nadim Rohani-Sarvestani 98

delete persistent objects to ensure that there is no reference on which the aspect can

operate. Also, the deletion functionality is reusable and application independent by

the use of delete() method as a reference point. The developer does not need to be

aware of the existence of the deletion functionality in the DatabaseAccess aspect or

the SQLTranslation aspect.

5. Transactions: In brief, the transaction functionality encapsulates the update, retrieve

and transaction Wrapper methods. Transactions are always implicitly started

regardless of the explicit notion of transaction commit offered by JDBC. The advices

within the DatabaseAccess aspect do not invoke directly the update or the retrieve

method. Rather they pass the name of the method to be invoked together with an

array of arguments to the transactionWrapper method which is responsible for

catching SQL exceptions during the invocation of the commit and rollback methods

and reflectively invoke the required method to decide whether to commit the

transaction or rollback. The case study choose to abort a transaction when any

exception because it is safer. Also the application does not need to signal exceptions

to abort transactions because they are signalled by the aspectisation infrastructure

(JDBC, SQLTranslation aspect or Java Reflection API). A similar method is used in

[129] with the difference that the transactionWrapper is triggered strictly for database

operations and wrapping overheads for transient operations are avoided. As it can be

seen, the transactions do not operate in a pure OO environment which in this case

benefits the case study design. However, it introduces some overhead to the

transactions which is eased by locking optimisation is provided by the update and

retrieve methods which establish the appropriate read-write and read-only locks

respectively.

6. Meta-data Access: This static inner aspect encapsulates helper functionality, required

by the SQLTranslation aspect, to access the database meta-data, for example the

column names in a relational Table or its foreign key links. Its purpose is avoid

unnecessary duplication of JDBC meta-data calls during SQL translation and built on

top of more primitive features available any desired meta-data access feature that is

Nadim Rohani-Sarvestani 99

not supported by the underlying database driver. It is important to mention that this

functionality is a subset of the overall database access functionality and because is as

an inner aspect of the DatabaseAccess aspect a more natural separation of concerns

occurs than it being encapsulated in a sub-aspect. Not to mention that it does not

require any concretise or override of features.

The below code segment is the DatabaseAccess aspect with comments:

// 1) Connection: No connection pooling implemented, JDBC ODBC driver is chosen which
//offers the lowest common denominator in terms of supported functionality so aspect is more
//re-usable

public abstract aspect DatabaseAccess {

// variables used to hold the connection information
private static Connection dbconnection;
private static string dbURL;

// To obtain information to connect to the database abstract methods are invoked by a before
//advice operating on the abstract pointcut establishConnectionQ

abstract pointcut establishconnectionQ;
abstract pointcut closeconnection();

//DB URL & Driver Details are supplied by an application aspect extending the DatabaseAccess
//aspect

public abstract string getDatabaseURL();
public abstract string getDriverName();

/ / 2) Storage and update: Object should be stored in the database as soon as it is instantiated
//(after its constructor has been executed) and all objects reachable from it should also be made
//persistent, the objects are written to the database through translation to SQL insert statements
/ / Pointcuts identify the join points where an object should be stored in the database or its
//persistent representation updated. Update mechanism relies on trapping all invocations of
//setter methods for persistent objects. Method is used to rebuild the objects from their relational
//representation

pointcut traplnstantiations(): call(PersistentRoot+.new(..));
pointcut trapUpdates(PersistentRoot obj):
!cflow(call(public static vector SQLTranslation,getobjects(aesultset, string))) &&

(this(obj) &&
execution(public void PersistentRoot+.set*(..))

);

Nadim Rohani-Sarvestani 100

/ /3) Retrieval. The interface is used to provide hooks by trapRetrievals pointcut to identify the
//points at which the application tries to retrieve the data. All these methods return a Vector
//containing the objects retrieved.

pointcut trapRetrievals():
call(vector PersistentData.get*(..));

//provides a reference to an instance of a class implementing this interface where an application
//can obtain this reference and use it as the basis of any retrieval-related code

public static PersistentData getPersistentData() { . . . }

/ / 4. Deletion Application invokes this method for the persistent instances. The trapDeletesQ
//pointcut captures these invocations and a before advice, translates the request to SQL using
//the SQLTranslation aspect & removes the persistent representation of the object.

pointcut trapDeletes(PersistentRoot obj): this(obj) &&
execution(public void PersistentRoot+.delete());

// The detectDeletedObjects pointcut complements the trapDeletesQ pointcut by throwing an
//exception (wrapped as an AspectJ SoftException) whenever the application tries to access the
//transient representation of a deleted persistent object that has not yet been collected by the
//garbage collector.

pointcut detectoeletedobjects(PersistentRoot obj): this(obj)
(execution(public * PersistentRoot+.get*(..)) ||
execution(public * PersistentRoot+.set*(..)) ||
execution(public string PersistentRoot+.toStringO)
);

// 5) Transactions: the update and retrieve methods encapsulate the code that results in the start
//of read-write and read-only transactions respectively. className argument, for all the methods
//in the PersistentData interface, is obtained by the advice operating on the trapRetrievals
//pointcut. className establishes the mapping between the object structure and the underlying
//relational schema.

protected static Integer update(string sqlstatement) throws SqLException {. . . }
protected static Vector retrieve(string sqlStatement, string className) throws

SQLExCeption { . . . }
protected static object transactionWrapper(string methodName, object[] params) { . . . }

//6 Meta-data Access: encapsulates helper functionality, required by the SQLTranslation aspect,
//to access the database meta-data.

public static aspect MetaDataAccess { . . . }

// advice code
}

Nadim Rohani-Sarvestani

2. SQL Translation

As shown earlier database access is a concern for any application persistent data. But

this may not be the case for translation to the underlying model. Therefore, it must be

considered as a separate concern when aspectising persistence of 0 0 data using

relational databases. Also due to the lack of support for complex data types in relational

database the object structure must be flatten so that the inheritance relationship is

captured by a simple one-to-one relationship and with an additional relational Table to

accommodate many-to-many relationship.

The SQL translation provides the object-to-relational mapping that is required for this

application [80, pp. 6-7]. It important to mention that JDBC ResultSet objects were

considered to be employed in order to modify the database instead, but unfortunately not

all JDBC drivers support use of bi-directional cursors on result sets, an imperative

requirement to search for records. This approach requires retrieving the object into a

ResultSet and applying the update which results in unnecessary disk access. However,

pure relational databases are not supported by the SQLData interface in JDBC because

they only support mapping to or from user-defined SQL types in an object-relational

model [80, p. 6].

The case study has taken the approach of a singleton lookup Table to establish the

mapping. This approach was taken so it can be reusable and independent of application-

specific mapping. The use of the lookup Table is further minimised by maintaining a

broader granularity mapping (the Tables to which objects of a class and many-to-many

relationships map). EstablishMapping aspect specifies the mapping of the lookup Table

which, sets up the mapping before the connection with the database is established. Also,

EstablishMapping aspect should have a higher execution priority than the

DatabaseAccess aspect so that the mapping is established before connecting to the

database.

The SQLTranslation aspect main features are shown the below code segment with added

comments. While inspecting the code segment it important to mention that the mapping

to multiple SQL statements is an SQL translation concern. Therefore, the pointcut

Nadim Rohani-Sarvestani 102

dealing with this must form part of the corresponding aspect. Also, in order to maintain

good AOP practices it is important to be able to separate an essential piece of SQL

translation functionality and incorporate it within the SQLTranslation aspect. This is

possible even if the sqlExecution pointcut captures Statement.executeUpdate(String)

calls from a single update method in the DatabaseAccess aspect. [80, p. 6]

//Normal execution in the DatabaseAccess aspect proceeds when the around advice checks if a
//single SQL statement is being executed through the JDBC Statement object.

public aspect SQLTranslation {

//sqlExecution pointcut is used to capture if an object maps to multiple Tables that would result
//in translation multiple SQL statements, executed in a batch mode.

pointcut sqlExecution(Statement statement,String sqlstatement): target(statement)
&& call(public int Statement.executeupdate(String))
&& args(sqlstatement);

// around advice for sqlExecution pointcut
// The methods below employ Java Reflection and the mapping information in the lookup Table
//to map the objects, their updates and deletion to the database and recreate the objects upon
//retrieval
public static string getlnsertionSQL(PersistentRoot obj);
public static String getupdateSQL(PersistentRoot obj, String methodName, object arg);
public static String getDeletesQL(PersistentRoot obj);
public static string getQuerySQL(String className, String selectioncondition);
public static vector getobjects(Resultset rs, String className);

// helper methods
)
The SQLTranslation aspect needs to be very flexible and, therefore, the case study chose

to use the various methods to employ Java Reflection a powerful technique that can

enable applications to perform operations which would otherwise be impossible.

Reflection is a relatively advanced feature, commonly used by programs which require

the ability to examine or modify the runtime behaviour of applications running in the

Java virtual machine. [130]. Using this feature the mapping information in the lookup

Table to map the objects, their updates and deletion to the database and recreate the

objects upon retrieval.

Nadim Rohani-Sarvestani 103

According to [130] reflection is powerful, but should not be used promiscuously. If it is

possible to perform an operation without using reflection, then it is preferable to avoid

using it. The concerns that have been noted when accessing code via reflection are: (1)

Performance overhead, because it involves types that are dynamically resolved that

certain Java virtual machine optimizations cannot be performed. Therefore, reflective

operations have slower performance than their non-reflective counterparts. (2) Security

restrictions, because reflection requires a runtime permission which may not be present

when running under a security manager. This is in an important consideration for code

which has to run in a restricted security context, such as in an Applet. (3) Exposure of

internals, since reflection allows code to perform operations that would be illegal in non-

reflective code, such as accessing private fields and methods, the use of reflection can

result in unexpected side-effects, which may render code dysfunctional and can destroy

portability. Reflective code breaks abstractions and therefore may change behaviour

with upgrades of the platform. The case study suggests that only additional overhead is

caused during database interaction arguing that [131] points out that such trade-offs

have to be made when designing highly flexible components such as the

SQLTranslation aspect.

Furthermore, because of encapsulation restrictions the object attributes corresponding to

the relational Table columns are identified recursively (defined in terms of itself) by

obtaining the declared members and not just the public ones. To ensure consistency

within a single transaction boundary the linked Tables are updated individually in case

the propagation of updates for linked Tables is not supported in the underlying database

design.

As mentioned, reflection has played an important role in the design of reusable

transaction wrapper and, more importantly, SQL translation mechanism by generalizing

wherever application specific code would be required otherwise. The drawbacks

explained earlier relate to the SQL translation and hence the well defined assumption

that strict encapsulation is enforced (only get/set methods are used for public access to

an object’s state). If developers ignore this assumption the translation mechanism

Nadim Rohani-Sarvestani 104

method would fail to operate. To overcome this issue support can be given for

generating get/set methods or add a declare feature in Aspect! to ensure that developers

define these methods. In terms of performance overhead, the suggested solution is cache

which becomes an issue as the database grows. At least the pointcuts of the

DatabaseAccess aspect can provide reference points for plugging a cache into the

persistence model.

The suitability of Aspect! is good for aspectising persistence because is a general

concern regardless of the individual state of an object (pointcuts and advices is useful).

The relationships in this implementation are done as aspects mainly relying on Aspect!

introductions. Unfortunately, because of their complexity in this implementation they

introduce additional overhead and therefore must be used very carefully with a well

define model such as the one suggested in the case study in the dynamic relationships in

OO Databases [132] using composition filters as in [133]. This suggests the need for

environments that allow multiple AOP techniques and platforms to co-exist hence

allowing the use of the best technique for modularising a particular crosscutting

concern.

Another important factor is aspect interactions, these interactions cut across aspects in a

system. The case study [80, p. 8] suggests that it imperative that AOP techniques in

general offer proper support for the detection, modularisation and resolution of

interactions. This is fundamental for testing and verification of aspect-oriented

applications and therefore, a critical factor in large scale adoption of aspect-orientation.

3. The Emerging Persistence Framework

This implementation of the DatabaseAccess and SQLTranslation aspects and their

results, like the previous case studies show scattering and tangling code can be

minimised by modularising crosscutting concerns and thus achieve aspectisation. This

may be true for simple cases but as it is shown in Figure 13 aspectisation requires a need

for collaboration of coherent set of modules including classes and aspects. [80]. Figure

13 illustrates a general aspect-based persistence framework that emerged from the

Nadim Rohani-Sarvestani 105

discussion in the previous sections. This will allow to work upon well established

practices and guidelines from the frameworks community as shown with the example of

the case study in terms of flexibility trade-offs. The arrows in the Figure 13 denote

usage.

Therefore, AOP ensures that aspectisation leads to a natural separation of concern such

as the separation of the DatabaseAccess and SQLTranslation aspects in the case of

persistence framework. This is also augmented in [134] which presents metaphor based

classification of crosscutting concerns, which is driven by their manifested shapes

through a system’s modular structure.

Persistence framework

« a s p e c t»
« a s p e c t» Metadata Access

SQL Translation
« in te r fa c e »

Persistence Data

« a s p e c t»Lookup Table
Database Access

« a s p e c t» « a s p e c t»
Application Database AccessEstablish Mapping

Persistent Data
Implementation

Application Specific
Customization

Figure 13 Persistence framework from [80]

In terms of using other persistence mechanisms, as mentioned the persistence

framework is from a classical relational database application so any OO application can

reuse it by employing an SQL-92 compliant relational database. Note that the

framework will need to be re-implemented if OO databases are used. This means that

the SQLTranslation aspect, lookup Table and EstablishMapping aspect will not be

required as there will be no data model issues between the OO application and the

database. Therefore, MetaDataAccess aspect will not be needed either as it is only

needed to support SQL translation.

Nadim Rohani-Sarvestani 106

Regardless of the nature of the persistence mechanism, DatabaseAccess aspect will be

required as these are the points in the application control flow where persistence features

are composed. Also, as mentioned a transaction wrapper will be required and a

PersistentData interface to support declarative access from the application. Finally the

PersistentRoot class will be required. The approach has worked successfully when

designing aspect persistence mechanisms in the past [126, On to Aspect Persistence],

[127, Weaving Aspects in a Persistent Environment] where the PersistentRoot class.

Finally in terms of reflection, if the resulting persistence framework were to be

implemented in another language environment, both the base language and the aspect

language would need to support reflection.

Conclusion

The aim of this study was to assess if AOP techniques offer an effective means to

modularise persistence in a real world application scenario. The outcome was positive

with a number of important software engineering factors to keep in mind.

Firstly, the necessity of the trade-offs between generalization and performance. The

application specific statements in the SQLTranslation aspect were not hardcoded like in

[135] but used reflection instead. This allowed for generalization and reusability of the

SQL translation mechanism i.e. the aspectised persistence mechanism.

Secondly, well modelled aspects require investigation the suitability of the available

techniques for implementing the various concerns within the aspect. For example, the

use of Aspect! constructs to identify points where persistence-related behaviour has to

be composed while reflection has been used to keep the SQL translation generic and

avoid duplication of transaction code during database access. However the choice of

suiTable technique is limiting the available tools and the way they interact. So instead of

using composition filters AspectJ introductions were used.

The study also tried to answer to two questions:

1. Can a persistence aspect be designed so it can be re-usable?

Nadim Rohani-Sarvestani 107

The result was also positive, the answer illustrated a persistence framework that does not

rely on the existence of an additional layer masking the relational database features for

example the DatabaseAccess aspect. However, the re-use of the framework should be

strengthened by re-use of specification which clearly defines the interface of aspects

behaviour.

2. Can an application and a persistence aspect be developed independently of each

other?

The case study showed that this can be partially. For example storage does not need to

be considered but retrieval is essential. The implementation details of the application

were not considered so the persistence mechanism had to be generic hence re-usable. All

these allowed natural separation of concerns while developing the persistence

infrastructure and keeping the reusability and application independence requirements

which, resulted in the framework.

Suggestions for further work would include performance concern with non-AO

techniques, the suitability of other languages and the implementation of persistence in a

real world application.

4.4 Case Study HI: AOSD with Use-Cases

Crosscutting concerns are responsible for producing spread and tangled representations

throughout the software life cycle. Effective separation of such concerns is essential to

improve understandability and maintainability of artefacts at the various software

development stages [9], [25, p. 43]. Aspect-oriented software development holds

promise for the purpose. There are numbers of papers [138], [139] discussing UML-

based realisation approach of the general aspect-oriented requirements engineering

process.

While [139] described a viewpoint-based implementation of the process, this case study

describes the experience gathered using the Aspect-Oriented software development use-

case driven approach. Use-case driven approach provides a sound method for

Nadim Rohani-Sarvestani 108

developing applications by focusing on realizing stakeholder concerns and delivering

value to the user. It has been shown so far that aspect orientation has helped with

modularizing crosscutting concerns. However, most of the work shown so far in this

area has concentrated on the implementation phases [68], [80]. The use-case driven

approach attempts to modularize crosscutting concerns much earlier, even during

requirements. The underlying concept in aspect orientation is similar to the concept of

use-case-driven development.

The study is based on a non-trivial new user provisioning system application adapted

from an established company and attempts to outline how to conduct AOSD with use-

cases in the requirements and analysis stages of the particular project. The study look at

a small subset of the intended solution for the non-trivial application, namely the gas

wrapper server replacement. Use-cases will be used to demonstrate the way that

separation of crosscutting concerns can be achieved for the user access management

processes. The study mainly focuses on the requirements and design of application

architecture with particular emphasis given to infrastructure use-case modelling based

on Jacobson methodology [140].

4.4.1 Introduction

The company is driven to optimise their application’s performance in the global

marketplace, hence a programme to transform their ecommerce infrastructure platform

was initiated. The programme’s purpose is to enable the company to reduce the cost and

complexity of delivering changes to the ecommerce estate and deliver a financial benefit

that is driven by productivity improvements and avoidance of maintenance costs. The

programme is offering a technically complex solution which, as an overall integrated

architecture, is not yet proven. The implementation of the new platform will be achieved

by replacing the current IBM WebSphere system [141]. The choice of using

technologies such as WebSphere was mainly due to shorter application development

time, the ability to support up-coming legislative changes and the reduction of costs

through web-based automation. One of these technologies to be replaced as part of this

assisted transformation programme is the current TAM (Tivoli Access Manager) [142]

Nadim Rohani-Sarvestani 109

security infrastructure. T he existing infrastructure is based on obsolete versions o f the

software and the Gas W rappers (locally-developed code) which are used for user

registration and m anagem ent. This is causing instability and perform ance issues.

Current Environment New Environment

WebSEAL
W ebS E A L

ApplicationsApp Migration
Applications

W ebServtce
TAM 5.1

TAM 6.1Gas
Wrappers TDS

6.2
TDS
5.2 TIM

 S m a rt \ _________________________
S y n c J

Figure 14 High level view of the current and new environm ent.

Figure 14 depicts a high level v iew o f the existing and new env ironm ent of the area of

interest. It shows the architecture o f a rep lacem ent system which, while continu ing the

use of TA M , will create a more resilient and flexible infrastructure to provide

authentication and access control. T he new system will standardise the security layer

offering, im proving stability and supportability by replacing custom code with TIM

(Tivoli Identity M anager) [143]. The solution allows applications to be m igrated in

phases and ensures that when users register in either environm ent both registration

databases are in sync.

The work for the rep lacem ent o f the security infrastructure is broken into three distinct

sections with the fo llow ing objectives:

1) Security service infrastructure

This entails the creation o f a w ell-defined security service infrastructure that provides

access control and identity m anagem ent to the W ebSphere application environm ents

with added build capabilities to allow rapid and consistent deploym ent. The solution

addresses requirem ents for fine-grained access control within service-layer applications.

N adim R ohani-Sarvestani 110

2) TAM upgrade

This deals with the replacement of the TAM and Tivoli Directory Server (TDS)

software components from the present obsolete versions. The TAM configuration

becomes simplified as part of the upgrade without impacting the application. The design

should also allow the simple and repeatable creation of a new environment.

3) Gas Wrapper server replacement

The replacement will provide a new user provisioning system to replace the Gas

Wrapper servers and remove the current significant obstruction to the stability and

maintainability of the TAM infrastructure. The proposed solution seeks to clarify the

interface between applications and the security infrastructure, by separating the

provisioning component and the authorization concerns. The proposed provisioning

system will be based on TIM which offers a workflow engine and generic

administration interface, thereby reducing the amount of custom code required to be

written and offering capabilities for easier future expansion.

4.4.2 Solution Architecture

A simplistic way would be to upgrade TAM and TDS and modify the gas wrappers to

work with these new versions, however, the locally-developed code that is currently

used for user registration and management is causing a number of issues:

1. The technology base on which they are built is obsolete and not strategic for the

company.

2. Maintenance and enhancements are problematic because of limited resources in the

TAM support team and the necessary skills within. Subsequently, requests for

change tend to take a long time to deliver.

3. Tendency to avoid making changes “in case it breaks something”.

4. The web interfaces offered are at a very granular level and are more appropriate for

local access than a networked service layer.

Nadim Rohani-Sarvestani 111

5. Although the individual API functions are documented, there has been less guidance

regarding the context in which they should be used. This has led to problems with

performance and instability in functions that are intended for user provisioning

which is used at application login.

6. There is no clear separation of crosscutting concerns in terms of the infrastructure.

7. There is minimal security surrounding the invocation of the Gas Wrapper service.

8. Many applications of various business branches are hosted in the current

infrastructure and any changes would impact the entire application stack.

As a result of the above issues there is a lack of consistency and scattered code among

the applications that use the services. This means that different applications with similar

access requirements may have slightly different behaviour and that within the Gas

Wrapper code there are a number of sections that do almost the same thing but with

subtle differences. As a result of ad-hoc use of the Gas Wrapper services over time, the

TAM user registry has become the authoritative source for some application-specific

data that is not directly related to its security role and which would be better placed in a

business data repository.

Figure 15 shows a simplified view of the suggested user access control architecture. The

architecture shown here would apply to almost all customer-facing applications and to

WebSphere-hosted applications that require access. The WebSeal layer operates as a

policy enforcement point for access control definitions which are maintained by a

central TAM policy server. Internet users will be authenticated using password, PIN and

certificate information held in the user registry. A user provisioning service will allow

user accounts to be created and for their access entitlements to be set. The rules for

provisioning will use policy definitions. The provisioning process will interact with the

end user and the applications.

Nadim Rohani-Sarvestani 112

WebSEAL

User TAM Policy
Provisioning
Server (TIM) User Registry

(TDS)

Server

Register
L o o k u p
Maintain Presentation

Functions

Applications

Figure 15 User Access Control Architecture

The access control com ponents could be div ided into two distinct parts: the Access

Control Layer (TA M W ebS E A L) and the Provisioning System (TIM) as shown in

Figure 16. To gain access to the business application, the end user m ust be allowed

access by the Access Control Layer. The u se r’s interactions with the access control layer

include such activities as logging in, changing passw ords and receiving error messages.

These are provided by the Access Layer Presentation Function.

N adim R ohani-S arvestan i 113

diLa
U s e r
A

A c c e s ; introl L a y e r

R e g is try

P O S T / R e d i r e c t I n te r f a c e

A c c e s s L a y e r P r e s e n ta t i o n

A p p lic a tio n

U s e r R e g is t r a t io n

s
U s e r D a ta

P ro v is io n in g S y s te m

Figure 16 User Access Control showing Presentation Layer Components

The processes for registering, updating and setting access entitlements for users are

im plemented by the Provisioning System, the core of the identity m anagem ent solution.

Its role is to handle the creation and m aintenance of users. This is done by m aintain ing a

database o f all the users in the system together with their access rights. It w ould then

apply policy rules to determ ine the accounts to create and entitlem ents to assign to them

within the Access Control Layer. The role o f the Access Control Layer is to enforce

access policy. The A ccess Layer Presentation Function handles all interactions between

the user and the A ccess Control Layer and also provides pages that interact with the

Provisioning System w hen the A ccess Layer intercepts particular situations during user

registration. The Registration Presentation Function provides users with a self

registration and self-service interface. It is based on W eb Services exposed by the

Presentation System.

For every access request, the A ccess Control L ayer should perform two checks:

1. Is the user a m em ber o f a group that is permitted to access the requested

resource?

1) Has the user been authenticated at an appropriate level for the protected resource?

N adim R ohani-Sarvestani 114

The first check is a conventional role-based access control. When an application is

defined to the security service the URL patterns to be protected and the access groups to

be given access will be defined in the form of access control lists. The second check is

drawn from the company Group Standards and defines access and the authentication for

each of them.

The Application must also have pre-registered one or more Access Definitions with the

Provisioning System that can act as an index into a metadata table, containing some, or

all of the following:

1. Access Permissions

2. The Access Layer group(s) to which registration with the Access Definition should

give access

3. The name of the Registration Process required for the Access Definition

4. The name(s) of any other Registration Process(es) that are trusted by the Access

Definition

5. The initial URL for the application

4.4.3 Capturing Concerns with Use-Cases

4.4.3.1 Requirements Gathering

In order for the above suggested architecture to be built properly it is important to

understand the stakeholders’ real concerns. Understanding these concerns is critical to

successful software development and to build the correct system it is imperative that the

requirements have been properly captured. In addition to this, it is important to

understand stakeholder priorities as not all concerns are of equal importance. The

priority determines which requirements have to be developed before others so that if

things do not turn out well some requirements can be dropped and your stakeholders still

get an acceptable, albeit incomplete, functionality. Stakeholders normally justify the

need for a new system or an enhancement by emphasizing the benefits and payoffs of

Nadim Rohani-Sarvestani 115

specific features. Features would be high-level statements of desired capability; these

can either be in terms of functionality (i.e. what the system can do) or some other quality

attribute (performance security etc). The listing below is a subset of the key

requirements that the system should be able to perform.

Table 5 Functional Requirements
Ref High level description Detailed description
FU1.1 Online Account Creation The ability to create an online account as part o f the registration

process. (Has the required authorization).
The account should have the following attributes: Userid,
Password, PIN and E-mail.

FU1.2 Online Account activation The ability to support the activation o f an account after the
creation o f that account.

FU1.3 Query Account The ability to query an online account for status, group & role
membership and the last logged on date & time.

FU1.4 Online Account Maintenance The ability to programmatically:
Change Userid
Change Password
Change PIN

FU1.5 Online Account Forgotten
Details support

The ability to programmatically:
Retrieve Userid
Reset Password
Reset PIN

Table 6 Non-Functional Requirements
Ref High level description Detailed description
NF2.1 Performance - Application response

time
All transactions should take no longer than 3 seconds.

NF2.2 Authorization All transaction must have the necessary permissions
NF2.3 Application scalability The ability to support up to 1000 online account

registrations per day
NF2.4 Smart Synchronization The ability to synchronize both environments when

registration occurs

One way to find out more about these requirements is to refine them, one by one,

resulting in a long list of requirements which may end up with loose pieces of

information. A more effective method is to walk through the use of the system and

uncover how the features are put into effect. This method puts features in context of the

system operation.

4.4.3.2 Use-Case modelling

Nadim Rohani-Sarvestani 116

In the earlier case studies it has been shown that an extensible system can be achieved

by keeping concerns separate all the way to the code and modularize the implementation

accordingly, however it was not shown in detail how to find concerns and express them

clearly. Using the use case technique it is hoped to explore the various ways in which a

system is used validating the stakeholders concern early in the project and drives the

definition of the system architecture [138, p. 29]. As the focus of the study is on

infrastructure, use-case modelling the above requirements will be depicted from an

architecture components perspective. Most practitioners model functional requirements

with use-cases but they tend to leave non-functional requirements out of use-case

modelling. However, as long as a requirement requires some observable response to be

programmed into the system, use-cases can be applied. In the case of non-functional

requirements, as they usually need the support of some underlying infrastructure

mechanisms, they are therefore called “infrastructure use-cases”. All functional

concerns are depicted through application use cases [138, p. 85].

Figure 17 is a first attempt at identifying use-cases that address the above requirements.

It describes some of the use-cases for customer interactions on which the design is

based. These use-cases are only a subset of the possible ones, with the intention of

indicating the processes for some key interactions between customers, applications, and

the provisioning and access control functions. The self-registration process has three

peer use-cases. Peer use-cases are those which have no relationship between them. They

are distinct and separate but their realizations overlap and they impose responsibilities

on the same classes [138, p. 40].

Nadim Rohani-Sarvestani 117

Self-Registration Process

-P ro cess request
-Validate-Initiate

UC000 Pre-Register process
-Initiate -Validate

Internet u ser Application-Initiate

-P ro c e ss re q u e s t

UC001 Registration Request-Prt
iss request

-Pr<
P ro cess tokens

Registration presentation function Provisioning system

UC002 User Account Activation -C reate act

-Authenticate Enable account

A ccess control layerA ccess presentation function ________________

Figure 17 Self-registration process use cases.

The table below depicts the actors involved in the use-case modelling for this section of
the solution design.

Table 7 Actor names and their description
Actor Name Description
Internet User A user who w ill be accessing data as specified in the Company Group Customer

Authentication standard. They will authenticate to the system with a user name,
password, and self-chosen PIN.

Application The application to which the internet user is seeking to gain access.
Provisioning System This is responsible for maintaining the information that allows a user to register for,

and gain access to, applications. In this design the role is taken by Tivoli Identity
Manager (TIM).

Registration Presentation
Function

This is the presentation layer code for the Provisioning System that interacts with the
user during user-registration and self-care operations.

Access Control Layer This provides a gateway for controlling access to the applications. In this environment
this role is taken by Tivoli Access Manager (TAM) WebSEAL.

Access Presentation Function This is the Presentation Layer code that interacts with the user during access control
operations. It can be thought of as the presentation part of the Access Control Layer.

The use-cases have now been identified for the system and, in effect, the different

concerns for a system have been separated from the actors’ perspective. The next step is

to explore the concerns of use-case in greater detail and then, for each use-case, identify

the flow of events describing how a particular variation is handled through that use-case.

Each use-case consists of a basic flow (main scenario) and all variations are described as

Nadim Rohani-Sarvestani 118

separate alternative flows (alternate scenario) to prevent the basic flow being entangled

by all the variations that the use-case needs to handle [138, p. 54]. The Pre-Registration

Process, Registration Request and User Account Activation use-case specifications have

been selected for the purposes of this study.

4.4.3.^ Use-Case Specification

Table 8 Self-Registration process - Use-Case 000 specification: Pre-Registration Process
Name UC000 - Pre-Registration Process

Description In this use case, the Application establishes a new user’s entitlement for access.

Pre-Conditions Main scenario: a page within the application will be registered in the access layer checks if
the user has the required authorization that is required by the Application.

Post-Conditions N/A

Main Scenario

Step Actions
1 The Use-Case starts with a request from the Internet User to the Application to register a new account.
2 The Application prompts the Internet User for personal and policy details. The application performs

standard processing to validate that the user is a recognised customer and that they are entitled to
access the application.

3 If the Application elects not to permit existing users to be given access to the application, the use-case
ends at this point.

4 The Application requests a search in the Provisioning system for any user whose registered email
address or login name matches the email address provided by the user. If no matching accounts are
found, the use-case ends.

5 The Application checks the response from the Provisioning system to see if any o f the returned
accounts has a registration process that has been initiated but not yet completed (a user should not
have more than one registration process outstanding).
If this is the case go to [AS00001 Terminate duplicate registration request]

6 The Application informs the Internet User if conflicting account(s) exist. If accounts are conflicting it
then gives the user a choice o f adding extra access to an existing account or continuing. If the user
chooses to create a new account, the use case ends.

7 If the user continues using an existing account name the Registration Presentation Function checks to
see if the chosen account has the authorization that is required by the Application.
If this is not the case go to [AS00002 Receive the required Authorization], otherwise it redirects the
Internet User to a URL protected at the same level as the user’s access level and the user is prompted
to login.

8 The Application calls the Provisioning System to assign its AccessDefinition to the user.

9 The use-case ends
Alternative Scenarios

Step Actions

AS00001 Terminate duplicate registration request
1 At step 2 in the main scenario, the Application determined that an account registration request was

already in progress for the user.
2 The Application asks the Internet User whether the existing request should be aborted. If confirmed,

the Application calls the Provisioning System to delete the inactive user.
3 The Use-Case ends.

Nadim Rohani-Sarvestani 119

AS00002 Receive the required Authorization
1 At step 4 in AS00001, the Application determined that a user has not the required authorization by the

Application.
2 The Application redirects the user to a page which requests security questions. If successful it then

calls the Provisioning System to define the required permissions and update its AccessDefinition that
will be assigned to the user account.

3 The Use-Case ends.

Table 9 Self-Registration process - Use Case 001 specification: Registration Request
Name UC001 - Registration Request

Description This Use-Case initiates a user self-registration process. In it, the user’s entitlement to
access is validated, user information is captured and user identity and registration tokens
are generated.

Pre-Conditions The application must have established the user’s right to hold a login account by following
Use-Case UC000.

Post-Conditions The user’s entitlement for access has been established.
A pending registration process is active in the Provisioning System.
A new, as yet unregistered, user has been added to the Access Control Layer user registry.
Activation token(s) have been sent to the new user.

Main Scenario
Step Actions
1 The Use-Case starts when a user initiates the self-registration process and the Application

calls the Provisioning System to initiate a registration process.
The Application passes the Access Definition ID, user’s name and email address to allow
the registration to proceed and then passes control to the Registration Presentation
Function.

2 The Provisioning System performs the following sequence of operations:
1) Generate a unique user account ID for the user
2) Initiate an Add operation to store the application-provided data together with the user
account ID as a new Person in ITIM.
3) Respond to the Application returning a registration handle containing the user account
and the request ED o f the Add operation.

3 1) The Application redirects the user to the Registration Presentation Function and requests
the ID received by the registration response.
2) Register the user [AS00101 All-in-one User Registration]

4 The Registration Presentation Function calls the Provisioning System to retrieve Access
Definition data.

5 The Registration Presentation Function presents a form to the Internet User containing:
1) User ID
2) Initial Password plus verification field.
3) Password recovery questions.

6 The Registration Presentation Function calls the Provisioning System to continue the
registration process. The request includes the registration handle, chosen user ID and
chosen password.

7 1) The Provisioning System validates that the user ID is unique and the password is
acceptable to the standard password policy. If not, it responds negatively to the caller and
the user is requested to try again.
2) The Provisioning System initiates a Modify operation for the user which will assign
them an account in the Access Control system with the appropriate permissions based on
the Access Definition and with a flag to indicate that registration is in progress.
3) The Provisioning System responds positively to the caller.

Nadim Rohani-Sarvestani 120

8 The Provisioning System generates a random activation code and PIN which it sends to the
Internet User in an email containing a link to an activation URL.

9 The Use-Case ends.

Alternative Scenarios

Step Actions
AS00101 All-in-one User Registration
1 At step 3 o f the Main Scenario, the Application collects all required information to

generate a new user definition instead of passing the collection o f user name, password etc.
to the Registration presentation function.
In this case, the application passes the following data to allow the registration to proceed:
Access Definition ID
User’s name
User’s email address
Users’s chosen ID

2 Processing continues at step 7 o f the Main Scenario

Table 10 Self-Registration process - Use-Case 002 specification: User Account Activation
Name UC002 User Account Activation
Description This use-case completes a user self-registration process initiated by UC001. In it the user

presents the activation code(s) that the Provisioning System previously generated during
UC001. These are checked and the user registration details are updated if the check is
successful.

Pre-Conditions UC001 must have been completed for the given user and application ID.
Post-Conditions All scenarios:

■ The user has been given access to the application
■ The user has accessed the application for the first time

Main Scenario

Step Actions
1 The Use-Case starts with a request from the Internet use to access a URL in the Registration

Presentation Function. This will happen as a result o f following a link in the email they received
containing the activation token and will be to the special activation URL within the Access
Presentation Function.

2 The Access Presentation Function presents the user with a form in which to enter the following details:

1) User name

2) Password

3) The activation code from the activation email.

4) The initial PIN code from their activation email.
3 The A ccess Presentation Function checks the user name, password and other token(s) provided by the

user. If any o f them are incorrect an error message is presented.
If the username is recognized the Access Presentation Function will increment a counter and compare
it with the maximum retries defined in the Access Definition.
[AS00202 Credentials entered incorrectly too many times]

4 When the user has successfully entered their credentials, the A ccess Presentation Function calls the
Provisioning System to flag the user as “no longer pending registration” and the user is prompted to
change their PIN. [AS00201. Update PIN]

5 The Access Presentation Function then presents the user with a confirmation page which contains a
link to pass them to the application home page.

6 When the user clicks the link the A ccess presentation Function redirects the user to the initial URL o f
the Application (drawn from the Access Definition).

Nadim Rohani-Sarvestani 121

7 The Use-Case ends.
Alternative Scenarios
Step Actions
A S00201, Update PIN
I At step 4 o f the Main Scenario, the Access Presentation Function determines that the activation is in

progress
2 The Access Presentation Function presents the user with a form requesting them to change their PIN.
3 The use-case continues at step 6 o f the main scenario.
A S00202 Credentials entered incorrectly too many times
1 At step 3 o f the Main Scenario, the Access Presentation Function determined that a user presented for

activation had failed to enter their password, PIN or activation code(s) correctly.
2 The Access Presentation Function calls the Provisioning System to suspend the user. It then presents

the user with a page informing them that their account has been locked-out.
3 The Use-Case ends.

4.4.3.4 Use-case Slices

Use-cases provide the means to model and separate crosscutting concerns effectively

and is important that this is preserved through design and implementation. This can be

achieved by collating the specifics of a use-case during design in a modularity unit

known as a use-case slice [138, p. 36]. Each use-case slice collates sections of classes,

operations, and so forth, which are specific to a use-case in a model. From this

perspective, the tangling of concerns is avoided and parallel development and managing

system configuration is assisted [138, p. 37].

Table 11 Composing peer use-case realizations with use-case slices.
Use-Cases Extensions of behaviour specific to use-case realization

UC000 Pre-
Registration
Process

X X X X

UC001
Registration
Request

X X X X X

UC002 User
Account
Activation

X X X X

Internet User Application Provisioning
System

Registration
Presentation

Function

Access
Control
Layer

Access
Presentation

Function

Nadim Rohani-Sarvestani 122

From the above use-cases and use-case specifications, Table 11 depicts all specifics to a

use-case slice, therefore each use-case slice may not have complete classes but have part

of classes (class extensions). In essence, these contain only the features of a class needed

to realize a specific use-case. It is worth noting in Table 11 that each horizontal row

shows a use-case slice containing the extensions of classes needed to realize the use-

case [138, p. 41].

4.4.3.5 Visualizing Use-Case Flows

An alternative way of visualizing the flow of use-cases is to depict them in

compartments. The ellipse notation within the top compartment depicts the use of use-

case. UML [144] allows tags to define values and give more information about

particular elements in the model. The tags [basic], [alt] and [sub] are not defined in

UML but introduced by Jacobson et al. [138, p. 58]. The tag [basic] indicates that a

flow can be triggered by an actor. The [alt] indicates an alternate flow triggered by an

actor or application instead of the basic main flow. The tag [sub] indicates that a flow

can be referenced or included only by another flow. Inclusions and extensions are

opposites. With extensions, an extension flow inserts itself into the existing use-case

flow, whereas with inclusions, it is the responsibility if the existing use-case flow to

insert the inclusion flow.

An extension use-case flow is realized by an advice [138, p. 43]. The extension points

in use-cases correspond to the points in the execution flow in AOP i.e. join points.

Pointcuts can refer to multiple extension points (join points) that may be defined in

multiple classes at once. This is advantageous especially for infrastructure mechanisms

such as authorization, performance etc. Figures 18, 19 and 20 visualize the selected use-

case specification including the extension pointcuts.

Nadim Rohani-Sarvestani 123

Pre-Registration Process
Flows
{basic} Account user validation
{alt} Terminate duplicate registration request {after Checking
ResponsefromProvisioningSystem }
{sub} Check Authorization {around PerformingTransactionRequest}

Extension Pointcuts
Checking ResponsefromProvisioningSystem = Check
Response.CheckProvisioningSystem
PerformingTransactionRequest = Perform Transaction.
Perform Request

Figure 18 Pre-Registration Process

Registration Request
Flows
{basic} Self-registration process
{alt} All-in-one User Registration {around PerformingRegistrationRequest }

Extension Pointcuts
PerformingRegistrationRequest = Perform Registration.
Perform Request

Figure 19 Registration Request

User Account Activation
Flows
{basic} Account activation
{alt} Incorrect Credentials {around PerformingAccessRequest}
{sub} UpdatePin {after PerformingRegistrationRequest}_______

Extension Pointcuts
Incorrect Credentials = Perform Access.Perform Request
PerformingRegistrationRequest = Perform Registration.
Perform Request

Figure 20 User Account Activation

Nadim Rohani-Sarvestani

4.4.3.6 Capturing Infrastructure Use-Cases

The non-functional requirements mentioned earlier such as authorization and

synchronization can be refined and kept separate as infrastructure use-cases and

modelled as extensions to application use-cases. There are also other kinds of non

functional requirements that deal with system wide qualities such as performance and

scalability. These system wide concerns are described simply as declarative statements

during requirements. There are usually several key infrastructure use-cases that are used

to achieve these qualities and the sum of these infrastructure uses-cases need to be

considered in order to determine whether these qualities are met [138, p. 93].

Table 2 non-functional requirements are qualities of the system that are required for

each step of an application use-case. Each step of use-case is called a use-case

transaction. It is an actor request-system response pair; the actor does something, the

system responds in return. Since the requirements need additional processing within the

basic use-case transaction, the non-functional requirements can be modelled as

extensions to this basic transaction. The basic transaction can be modelled through a

<Perform Transaction> use-case as shown in Figure 21 [138, p. 94].

<Actor>

Figure 21 <Perform Transaction> use-case

The <Perform Transaction> use-case is very important to the architect. It is from these

use-cases where infrastructure mechanisms are introduced. During analysis, design and

implementation the realization of <Perform Transaction> use-case becomes a pattern

that is applied to the realization of each application use-case step. For systems with

more infrastructure concerns, different extension use-cases can represent a separate non

functional concern. This is shown in Figure 22.

<Perform T ra n sa c tio n

Nadim Rohani-Sarvestani 125

Handle Authorization

« E x t e n d »
<Perform Transaction>

« E x t e n d » Handle Scalability

« E x t e n d »<lnternet User>

Provide Cache Access

« E x t e n d »

Smart Sync

Figure 22 Structuring infrastructure use-cases.

4.4.3.7 Visualizing Infrastructure Use-Case Flows

Now that infrastructure use-cases have been identified, they can be described

individually. Not all infrastructure use-case are as visible as Figure 23 and Figure 24.

For example Figure 25 Handle Cache Access fulfils the NF2.1 performance -

Application response requirement.

Handle Authorization o
Flows
{basic} Define Permissions
{alt} Check Authorization {around PerformingTransactionRequest}

Extension Pointcuts
PerformingTransactionRequest = Perform Transaction.
Perform Request

Figure 23 Handle Authorization use-case

Nadim Rohani-Sarvestani 126

Handle Scalability o
Flows
{basic} Define type o f support
{alt} Check Availability o f system {around PerformingScalabilityRequest}

Extension Pointcuts
PerformingScalabilityRequest = Perform Scalability.
Perform Request

Figure 24 Handle Scalability use-case

Handle Cache Access o
Flows
{alt} Look Up Cache {around Around accessing data}

Extension Pointcuts
AccessingData = Perform Transaction. Access Frequently Used Data

Figure 25 Provide Cached Access use-case

Smart Sync o
Flows
{alt} Synchronize current environment {after
PerformingRegistrationTransaction}
{alt} Synchronize new environment {after
PerformingRegistrationTransaction}

Extension Pointcuts
Synchronize current environment = Perform Registration.
Perform Transaction
Synchronize new environment = Perform Registration.
Perform Transaction

Figure 26 Smart Sync use-case

Nadim Rohani-Sarvestani

4.4.3.8 Analysis Model

The purpose of the analysis model is two-fold. Firstly, it is a refinement of the use-case

model and secondly, it is where the description of the internal structure of the system

begins. This assists to separate the infrastructure from the application. A separation that

has to begin with the requirements and be preserved though analysis, design and

implementation.

The language of the analysis model is a subset of the UML [144]. The analysis model

provides three stereotyped analysis constructs: boundary, control and entity. A boundary

construct is used to model the interaction between the system and the actors (i.e. users

and external systems). Boundary constructs act as mediators between the system

surroundings, it effectively shields the system from changes in its environment. If such

changes occur, only boundary classes are affected. Control constructs are responsible for

the coordination, sequencing, transaction, and control of other objects and is often used

to encapsulate control related to a specific use-case. An instance of a control class often

shares the lifetime as a use-case instance. Control constructs can also represent complex

calculations and business logic.

An entity construct is used to model information in the problem domain. Such

information is long-lived and often persistent. It encapsulates changes in the data

structure. These analysis stereotypes shown in Figure 27 are used widely in the software

development community [138, pp. 148-151] .

: <Boundarv> : <Control> : <Entitv>

Figure 27 Analysis stereotypes

The User Account Activation scenario will be used as an example to demonstrate the

separation of application and infrastructure concerns and their relationship in the design

Nadim Rohani-Sarvestani 128

phase. The application use-case will be analyzed alongside with couple of infrastructure

use-cases. The participating analysis classes for the Account Activation use-case are

• Internet User as a : <Boundary> construct

• Application as a : <Boundary> construct

• Provisioning System as an : <Entity> construct

• Registration Presentation Function as a : <Control> construct

• Access Control Layer as an : <Entity> construct

• Access Presentation Function as a : <Control> construct

An Interaction diagram is selected instead of a Communication diagram if the use cases

need be analysed in a greater detail. An interaction diagram shows how instances

interact with each other in a chronological sequence from top to bottom and assist in

identifying roles and responsibilities for class diagrams [138, pp. 192-194] . Figure 28

describes the chronological sequence that is important to the User Account Activation

use-case. Step 3 of the User Account Activation use-case occurs around the {around

P erfo rm in g T ra n sa ctio n R eq u est} pointcut identified earlier in the Handle Authorization

infrastructure use-case. The Access Presentation Function checks if the details provide

by the Internet User are correct and if they have sufficient authorization for the request

to be performed. If any of them are incorrect an error message is presented. The Handle

Authorization interaction is shown in Figure 29.

Nadim Rohani-Sarvestani 129

I K) O Q Q 0
: <I.User> : <App> : Reg Pres Fn : Prov System : <Acc CNTR Laver : <Acc Pres Fn

(1: / / Handle Request for access
1 1p i

i

t i i
^ i i i

i i i
2 : / / Present data to the ' 3 : / / <checkAuthorization>()

1 1
1 p L 4: H Registration not pending

5: / / Confirmation M !
! !

j . 1 1 1

6 : / / Redirect URL of the App !

i i I m
i i i i i i
i i i i i i i i i

Figure 28 Interaction diagram for Account Activation use-case

! K) O Q Q Q O
: <I.User> : <App> : <Acc Pres Fn : Session

i 1 : / / <Handle Request>() ■

: User : <Access Control : <Control>

2: / / <checkAuthorization>()

 h
Around (performingRequest) checkAuthorization

proceed

| J 3: / / <getllser>()

_j y
4: / / <getDetails>() 0

5: / / <checkUserAuthorization>() V
6: / / <performRequest>()

U

Figure 29 Interaction diagram for Handle Authorization

Nadim Rohani-Sarvestani 130

In a similar manner the interaction of other infrastructure use-case flow can be shown

even if they are still at a conceptual stage. For example Figure 30 depicts the Interaction

diagram for Smart Sync infrastructure use-case.

£ HD (
: <I.User> : <Boundary> : <C

! 1: Handle Request ^ !
^^erforrr^m artSyn^

4: Display Result

Mi
i ii ii i

Figure 30 Interaction diagram for Smart Sync

4.4.3.9 Keeping Infrastructure Use-Cases Separate

Continuing with the Handle Authorization use-case, the model structure need to become

further refined in to order to keep the concerns about authorization separate from the

application use-case it extends. This can be achieved by putting all the related classes in

a service packages. The Access Presentation Function and the Access control are for the

sole purpose of handling authorization so they can be placed together in the

infrastructure layer. The Session and User can be reused by other infrastructure services

therefore they can be placed together in an infrastructure support package [138, pp. 246-

249].

3 Q
:on tro l> : <Entitv>

3: Update Environment

Nadim Rohani-Sarvestani 131

Infrastructure
Layer

M iddleware
Layer

Figure 31 Infrastructure package for Handle Authorization use-case

The infrastructure can be kept separate by using a use-case slice that can comprise the

classes and features that are specific to the realization of the Handle Authorization use-

case and describe the interaction between the participating classes as shown in Figure

32. The Handle Authorization use-case slice also contains an extension of the boundary

<App> class that it extends. This class extension is housed within an abstract aspect,

HandleAuthorization. It is abstract because the pointcuts, though identified, are not

defined. Therefore the HandleAuthorization aspect has to be specialised and attached to

an actual use-case slice. This can be achieved through J2EE or AOP during

implementation. It is beyond the scope of this case study to demonstrate how this can be

achieved [138, pp. 252-256].

Q Q
: Session : User

o o
: Reg Pres Fn : <Acc Control

Nadim Rohani-Sarvestani 132

«u s e case slice» Handle Authorization

//<checkUserAuthorization()>

Access Control

//<handle request> {around (performingRequest)
checkAuthorization}

<App>

Class extensions

« a s p e c t»
HandleAuthorization

Figure 32 Use-Case slice Authorization [138, p. 249]

4.4.3.10 Conclusion

The study is based on a non-trivial new user provisioning system application adapted

from an established company. The applications’ purpose was to enable the company to

reduce the cost and complexity of delivering changes. The study provides an outline of

how to conduct AOSD with use-cases. Using the use-case driven approach allows the

architects to explore the various ways in which a system is used, validating the

stakeholders concern early in the project and drive the definition of the system

architecture. This work is hoped to compliment the work already done by [140], [139]

and [138]

The study starts discussing the functional and non-functional requirements gathering

process, their relationship with application and infrastructure concerns, how to address

stakeholders concerns and looking at the “typical” use-case models that are currently

used by the industry. It then looks at use-case business scenarios that the architecture

must achieve while maintaining all the requested requirements.

Nadim Rohani-Sarvestani 133

The suggested solution is a new way of visualizing and capturing application and

infrastructure use case flows while keeping infrastructure separate from the application

and infrastructure services separate from each other. This method results in assisting to

build and evolve a system incrementally to meet the evolving needs of the stakeholders.

This satisfies the decomposability criterion where a software construction helps in the

task of decomposing a software problem into a small number of less complex sub

problems, connected by a simple structure, and independent enough to allow further

work to proceed separately on each of them [25, p. 40]. Furthermore, it provides a

better modular understandability thus assisting the maintenance of the implementation.

The use-case models that were analyzed also helped to verify that a resilient architecture

is achieved by treating infrastructure use-cases as extensions of application use-cases.

Use-case modelling was very useful in terms of having a high-level view of how these

use-cases can be structured. Central to this approach was the use of the <Perform

Transaction> use case pattern as a reference for analyzing infrastructure use cases. The

result was a generic infrastructure use-case slice, a new modularity module, which can

be specialized to attach to actual application use-case slices.

Nadim Rohani-Sarvestani 134

4.5 Summary

This chapter begins discussing the results of the research of two papers that the criteria

that must be met in order to assess AOP as a software technique. In addition, three

different case studies were selected to analyse real world none trivial applications

discussing the benefits and drawbacks of the AOP technique. The first case study [68]

provides a comparative analysis of the changes required to evolve the tangled and

scattered versus aspect-oriented implementations. The second case study [80] presents

an AOP implementation of a classical example of crosscutting concern known as

persistence. The third case study outlines how to conduct AOSD with use-case driven

approach. The suggested solution is a new way of visualizing and capturing application

and infrastructure use case flows while keeping infrastructure separate from the

application and infrastructure services separate from each other. A brief summary of the

results are depicted below.

AOP was relatively a new concept in the time that [81] this research was conducted.

However, there is an interesting discussion regarding the experience gained when

evaluating a new software development technique. Murphy et al [81] starts its

discussion by questioning a new software development technique in terms of its

usability and usefulness. Validity, realism and cost were found to be the typical factors

that are required when evaluating a method. In order for this to be quantified, various

evaluation methods were introduced based on cost analysis highlighting some strengths

and weaknesses of the various approaches. The importance of data gathering and

analysis methods was briefly explained, particularly on experimental studies that are

also applicable to any new programming technique in their early stage of development.

This study can help determine if the technique is promising, and whether it can help

direct the evolution of a technology to increase its usability and potential for usefulness.

Baniassad et al [96] was presented in the 1st international annual conference of AOSD in

Enschede, the Netherlands [136] which as mentioned is the premier forum for the

dissemination and discussion of AOSD ideas for both practitioners and researchers. The

study was conducted to examine where developers encounter crosscutting code during a

Nadim Rohani-Sarvestani 135

program change task, and how the developers chose to manage that code. It was found

that crosscutting code became an obstacle that developers had to manage when making

the desired change.

When obstacle code related to a broader concern was encountered, developers had to try

to understand both how the changes they were making affected the crosscutting concern,

and how the crosscutting concern affected their change. Three strategies were used to

deal with the crosscutting concern each corresponded to a different form of the obstacle

code:

1. Change strategy - developers altered the crosscutting code to accommodate the

change: This was used when there were suitable structural links and a developer

could reason out from the obstacle point in the code related to the change to the

concern code.

2. Within strategy - developers made the change work in the context of the crosscutting

code: This was used when there were behavioural patterns but no structural links,

developers reasoned from the concern code into the change code.

3. Working around - developers worked around the crosscutting code: When neither of

these reasoning approaches was possible because of dense and implied code.

This paper also provides empirical evidence to support the existence and type of

crosscutting concerns on which AOP approaches are based and set the basis for further

examining of AOP

Coady et al., research [68] was presented in the 2nd international annual conference of

AOSD in Boston, Massachusetts [136] states that changes to crosscutting concerns in an

operating system are difficult to track. The study compares the evolution of four

scattered and tangled concerns in kernel code with an aspect-oriented implementation of

the same concerns. Localized changeability, explicit configurability, reduced

redundancy and subsequent modular extensibility, are shown to be the key benefits of

the aspect-oriented implementation assuming that they have negligible impact on

performance.

Nadim Rohani-Sarvestani 136

A.Rashid et al., research [80] was also presented in the 2nd international annual

conference of AOSD in Boston, Massachusetts [136] and is regarding persistence, a

classical example of crosscutting concern. Persistence, the storing and retrieval of

application data from non-volatile storage such as a file system or a relational database

hasn’t real world examples showing whether it can become an aspect and, if so, if it can

be done in a way that is re-usable but ignored during application development. The

paper uses a classical database application to show that persistence can be a highly re

usable aspect and be developed into a general aspect-based persistence framework.

Furthermore, persistence has to be considered when designing the architecture of data-

consumer components where such components need to account the declarative nature of

retrieval mechanisms used by many database systems and deletion operation during

application design because is highly triggered by most applications.

The use-case based driven approach with AOSD study is based on the candidates’

experience and research. The case study was based on a non-trivial new user

provisioning system application adapted from an established company. The study

provides an outline of how to conduct AOSD with use-cases. It shows that it is possible

to identify trade-offs among broadly scoped properties early on in the development

cycle and therefore providing decision support for the stakeholders involved. At the

same time, being based on use-cases, the approach adheres to the industry standard

hence making it suitable for incorporation in existing requirements engineering

practices.

The suggested solution is a new way of visualizing and capturing application and

infrastructure use case flows while keeping infrastructure separate from the application

and infrastructure services separate from each other. This results in assisting to build and

evolve a system incrementally to meet the evolving needs of the stakeholders. The use-

case models that were analyzed also helped to verify that a resilient architecture is

achieved by treating infrastructure use-cases as extensions of application use-cases.

Central to this approach was the use of the <Perform Transaction> use case pattern as a

reference for analyzing infrastructure use cases.

Nadim Rohani-Sarvestani 137

5. Conclusion and Future Work

In this chapter, points discussed throughout this thesis and final thoughts are brought'

together with an overview of potential avenues for further work.

5.1 Conclusion and Discussion

The thesis started with introducing the concepts of modularization as an instrument for

improving the flexibility, efficiency, extendibility, reusability and comprehensibility of a

system while allowing the shortening of its development time. It was showed that

modular programming can be achieved when criteria such as decomposability,

composability, understandability, continuity and protection are met, while the

sustainability of a modularity requires direct mapping, fewer, smaller and explicit

interfaces and information hiding. Assumptions about software design processes and

programming languages were discussed and it was shown that a design process and a

programming language work well together when the programming language provides

abstraction and composition. These methods can cleanly support the kinds of units the

design process breaks the system into and a clear and simple one-to-one mapping from

design level concepts to their source code implementation. AOP was suggested because

it offers a clear and simple one-to-one mapping from design level concepts to their

source code implementation which also helps the program to be simpler to understand

and maintain.

However, some papers argued [33, pp. 1-4] that AOP languages do not provide the third

point of the benefits quoted by Pamas [9] i.e. comprehensibility, because they require

systems to be studied in their entirety. Also in [34, p. 327] arguing for AOP, states that

the modularity of a system should reflect the way developers would like to think about

modularity, rather than the way in which developers are forced to think about it due to

the language or other tools. Current aspect-oriented languages such AspectJ, however,

do have tools and mechanisms that compensate this lack of modularity. Furthermore, a

Nadim Rohani-Sarvestani 138

preliminary evaluation has showed [33, p. 11] that with some modifications the

language can provide sufficient flexibility according to second criteria of Pamas. Lopes

also found in [137] that under the theory of modularity [9], certain aspect-oriented

modularizations can add value to the design.

The research attempted to explore and analyse the state-of-the-art in AOP techniques

that would provide the tools to assess and compare AOP versus other programming

approaches. As first step to achieve this goal was to survey AOP technologies,

frameworks and investigate language models and meta-models for AOP. This would

allow a more general but comprehensive comparison and analysis of the fundamental

aspect language features as well as their implementation and execution techniques.

However, the AOSD Languages Lab had already performed an extensive survey on

twenty seven AOP languages according to particular dimensions of interest ensuring

that each language is appropriately reviewed and the commonalities and the variations

of each language identified. This was very important as this survey can be used as an

input on the classification of aspect languages and a common metamodel. The survey

consisted of two different categories the first was the language model where the focus is

the language itself and the latter was the execution model where the focus is on the

implementation of the woven code.

Next, each language and execution model in the survey had to be described among the

same dimensions of interest. These dimensions were essentially derived from filtering

the major commonalities and variations between the surveyed aspect languages. The

view of this dimensions are the join point model, pointcut language, advice model and

language, aspect module and composition model and aspect instantiation model. These

dimensions were the building blocks of a common metamodel for AOP languages as an

open and extensible framework that will allow collaboration and integration activities

between the designers of these languages and categorize aspect languages according to

the common language concepts and their semantics. The common language concepts

framework metamodel (common metamodel) consisted of four sub-metamodels, namely

the join point, pointcut, aspect binding and advice metamodels. The metamodel took a

Nadim Rohani-Sarvestani 139

framework approach in order to avoid oversimplification as specific language features

of particular aspect languages can only be partially described as specializations of the

concepts described in the common metamodel which was essential because it allows the

users to describe specific features of aspect languages as specializations of the

framework.

An interesting observation that was found while looking at the results of the languages

lab [54] was that most of the aspect languages that exist today have an object-oriented

language as their base language, therefore, a particular focus was made because

particular properties are exhibited at join points and these properties depend on the

paradigm of the base language and the kind of join point that is used. Therefore, the

general concept of a join point is effectively covered in the metamodel as a point in the

execution of a program but needs to specialise this general notion in order to reflect the

different kinds of join points available in different aspect languages.

It was then shown that the description of the semantics of the metamodel can be done by

using the implementation of an interpreter because the set of evaluation functions

defined by the interpreter can have a close relation with its description using operational

semantics and the interpreter can provide executable semantics which establishes a solid

ground for tools to investigate and experiment with the semantics of language features.

The concepts that interpreter employs to explain the semantics of the metamodel are the

base and metalevel aspect interpreter, discrete evaluation through join point stepping,

continuations, woven execution of applications, metalevel operations, metalevel aspect

state, and aspect environment.

The research showed that because aspects impose a different behaviour on the base

program, an integrated behaviour of the base and aspect programs is required. This can

be achieved when the metalevel aspect interpreter that interprets the aspect-oriented part

of the program in a metamodel representation, controls the execution of the base

interpreter which, interprets the base program part. As a result, the execution of the

aspect program essentially modifies the execution of the base program [54, p. 15].

Nadim Rohani-Sarvestani 140

Furthermore, the notion of continuation was the most essential concept to model the

execution semantics of aspect languages because it captures the current execution state

of the program such that it can be stored and reconstructed later on. Also the advice

metamodel and the metalevel operations are embedded in the advice and these metalevel

operations are executed but not understood by the base interpreter. Therefore, the base

interpreter’s execution must be halted in order to execute the metalevel operations by

the aspect interpreter.

In terms of the classification of aspect languages, some improvements are required in

the initial mapping of different language features into the metamodel. For example the

syntax and structure of a language have not been taken into account in the metamodel.

Although the initial metamodel was not intend to do that, structure and syntax have a

significant impact on the expressiveness and identification of a language. Furthermore,

the Aspect Sandbox (ASB) [71] has similar approach with this work apart that the way

that the interpreter execution semantics is considered without any weaving. On the

contrary, the explicit setup of the metamodel and its interpreter is a complete interpreted

execution.

Next, the aim of the research when analysing the non-trivial applications was to

introduce a set of evaluation techniques that would enable the assessment of any new

software methodology, while trying to understand the usability and usefulness, the

strengths and weaknesses of these methods and the current strategies that are in place in

order deal with crosscutting concerns.

Murphy et al. [81] research was chosen as a first study not only because of it historical

value as it was the first assessment of its kind in terms of AOP, but it sets the criteria

that one needs to have prior starting any assessment of a new software technique and

introduced some important discussion regarding empirical research methods. Although

the research was effective in terms of assessing whether and how AOP might ease some

development tasks it is important to note that AOP is not trying to replace OOP but to

capture important design decisions that are difficult to capture in the traditional OOP

Nadim Rohani-Sarvestani 141

environment, (i.e. a new programming technique [36]. Therefore, the experiments

although exploratory, would yield better results if focused on issues such as crosscutting

concerns.

Perhaps more interesting results could have be taken by a similar case study known as

ATLAS [138] that was conducted at the same era that [81] took place. The application

was fairly moderate and was built initially in C++ and then in AOP using AspectJ. The

results were positive in favor of AOP but some lessons were learned. In brief the lessons

learnt were that it was found easier to manage the evolution of the system when classes

were not coupled to aspects. Class directional aspects facilitated the readability,

modifiability, and reusability of class and aspect code something also mentioned in

chapter 2. It made it easier to reason about and test when the aspect code is kept simple,

clear and with a well-defined scope. Using dynamic aspects provide runtime

configurability, but can complicate system set-up code. It is important to maintain a

stand-alone object model, which aspects extend and finally, the most important lesson

was that the hardest decision facing a developer working with AOP is determining what

should be an aspect and what should be a class. In the beginning of the ATLAS

development, it was thought that the implementation would have many more aspects but

in most of the cases, while implementing an aspect it was found that with some

straightforward changes to the object model could accomplish the same goal more

effectively.

In the case of research of Baniassad et al. [96] the results showed that when performing

a task at certain points the developer needed to see the behavioural effects of aspects on

methods of interest. Similar results were found also on a case study of AspectJ by [139].

Also developers found it difficult to reason about a separated concern when the interface

between the core code and the concern code was too broad i.e. the more constrained and

defined the interface, the easier it was for developer to determine the area of influence

between the code and concern code. This result was also verified by [90].

The first case study [68] provided a comparative analysis of the changes required to

evolve the tangled and scattered versus aspect-oriented implementations and had

Nadim Rohani-Sarvestani 142

positive results. It confirmed that AOP could improve the evolvability of OS code but

there were some issues that limit the validity of this research. In summary, the focus was

only on the evolution of specific concerns in isolation rather than producing full

successive versions of the OS code. The concerns were evolved by a single developer

for all the versions. An in depth cost/benefit analysis was still required because

improving modularity of operating systems will not be meaningful if aspects

substantially reduce performance. Finally it imperative to determine the precise costs

associated with more sophisticated compositions of aspects relative to their current

implementation.

This research decided to classify AspectC according to the metamodel as this would

help resolving this limitation because of a better understanding of the aspect language

features, strengths and weaknesses. It would also assist in the creation of a tool to assist

the indirect method for the textual locality in terms of changeability.

The second case study [80] presents an AOP implementation of a classical example of

crosscutting concern known as persistence. The aim of this study was to assess if AOP

techniques offer an effective means to modularise persistence in a real world application

scenario. The outcome was positive with a number of important software engineering

factors to keep in mind. First, the necessity of the trade-offs between generalization and

performance. The application used reflection which allowed for generalization and

reusability of the SQL translation mechanism i.e. the aspectised persistence mechanism.

Well modelled aspects require investigation the suitability of the available techniques

for implementing the various concerns within the aspect. For example, the use of

AspectJ constructs to identify points where persistence-related behaviour has to be

composed, while reflection has been used to keep the SQL translation generic and avoid

duplication of transaction code during database access.

However, the choice of suitable technique is limiting the available tools and the way

they interact. So instead of using composition filters, AspectJ introductions were used.

Some of these results verify the results shown in the Atlas case study. The research also

Nadim Rohani-Sarvestani 143

found that a persistence aspect can be designed so it can be reusable. This can be done

by utilizing the suggested persistence framework but the reuse of the framework should

be strengthened by reuse of specification which clearly defines the interface of aspects

behaviour. Finally, it was also showed that an application and a persistence aspect can

be partially developed independently of each other. For example storage does not need

to be considered but retrieval is essential. The most important factor is allowing a

natural separation of concerns while developing the persistence infrastructure and

keeping the reusability and application independence requirements.

Also the claims about advantages and disadvantages of aspect technologies are quite

broad. The main problem of aspect technologies, whatever approach is considered, is

not just about crosscutting or separation of concerns, but it involves deeper research

about how to understand a number of software parts as separated objects and then

integrate some of them into a coherent system. This situation also bears the issue of

locality of changes, because the more interactions with other components (or aspects)

the developer has to know in order to understand the system, the more complex the

maintenance of this software results.

Finally, the third case study is a new contribution towards the AOSD community. The

study provides an outline of how to conduct AOSD with use-cases allow the architects

to explore the various ways in which a system is used, validating the stakeholders

concern early in the project and drive the definition of the system architecture. This

continues the work already done in this field [139] and [138]. However, using the

Jacobson et al. [140] methodology this work is furthered by introducing a new way of

visualizing and capturing application and infrastructure use case flows while keeping

infrastructure separate from the application and infrastructure services separate from

each other. This results in assisting to build and evolve a system incrementally to meet

the evolving needs of the stakeholders.

Nadim Rohani-Sarvestani 144

5. 2 Further Work

There are few potential avenues for further research.

1. AOP is known to have a solution for concerns such as logging, tracing,

transaction management, security, caching, error handling, performance

monitoring, custom business rules [41]. This research started from the beginning

of the developments of AOP and there are still important non-trivial applications

to investigate. One of them is design patterns and pattern composition as it has

been shown as a challenge to apply design patterns in real software systems. One

of the main issues is that multiple design patterns in a system are not limited to

affect only the application concerns. They also crosscut each other in multiple

varied ways so that their separation and composition are not an easy task. In this

perspective, it is of vital importance to systematically verify whether AOP

supports improved composability of design patterns [140], [141], [142]. Another

classic example is studying idioms-based implementations of crosscutting

concerns in the context of a real-world, large-scale embedded software system

analysing apparently simple concerns such as tracing [143].

2. Further classification according to the metamodel would help understanding

better the aspect language features, strengths and weaknesses but also the

experimental interpreter of the metamodel ‘Metaspin’ requires more

development to render it into a complete experimental vehicle [69].

3. To approach the question of language integration from the formal viewpoint, and

discuss the differences between the CASB model and the metamodel as shown in

[64], [144]

4. To investigate other AOP approaches not in the scope of AOSD such as Spring

Source framework.

5. Further work can be done on the use-case driven approach by implementing the

use-cases introduced in the study.

Nadim Rohani-Sarvestani 145

Bibliography
[1] Assembly. (1950). History o f Computer Languages and Their Evolution. Retrieved

2009, from http ://w w w .scrip to l.com /p rogram m ing/h isto ry.php

[2] Fortran. (1953). M anual Fortran . Retrieved 2009, from h ttp ://w w w .fh -

jena.de/~kleine/history/languages/FortranAutomaticCodingSystemForThelBM704.pdf

[3] J.W.Backus, J. H.Wegstein, A.vanWijngaarden, M.Woodger, F. L.Bauer, J.Green,

C.Katz, J.McCarthy, A.J.Perlis, H.Rutishauser, K.Samelson, B.Vauquois. (1960). Report

on the A lgorithm ic Language ALGOL 60. Communications o f the A C M , 3 (5), 299-314.

[4] K.Nygaard,O.J.Dahl. (1978). The development o f the SIMULA languages. ACM

SIGPLAN Notices, 13 (8), 245 - 272.

[5] B.Liskov, A.Snyder, R.Atkinson, C.Schaffert. (1977). Abstraction mechanisms in CLU.

Communications o f the A C M , 20 (8), 564 - 576.

[6] E.W.Dijkstra. (1976). A Discipline o f Programming. Prentice Hall, Inc.

[7] G.C.Murphy, R.J.Walker, E.L.A.Baniassad, M.P.Robillard, A.Lai, M.A.Kersten. (2001).

Does aspect-oriented programming work? Communications o f the AC M , 44 (10), 75 -

77.

[8] B.W.Kernighan, D.M.Ritehie. (1988). The C Programming Language: Second Edition.

Englewood, New Jersey: Prentice Hall.

[9] D.L.Parnas. (1972). On the Criteria To Be Used in Decomposing System into

Modules. 15, pp. 1053-1058.

[10] D.H.Ingalls. (1978). The Smalltalk-76 Programming System Design and

Im plem entation. 5th ACM SIGACT-SIGPLAN symposium on Principles o f program m ing

languages, (pp. 9-16). Tucson.

[11] G.Kiczales, J.d.Rivieres, D.G.Bobrow. (1991). The A rt o f the M etaobject Protocol.

[12] G.Kiczales. (1996). Beyond the black box: open im plem entation. Software, IEEE,

13 (1), 8,10-11.

[13] H.Schildt. (1983). C++ The Complete Reference (3rd ed.). Osborne McGraw-Hill.

[14] Ada Europe. (1983). Ada Europe. Retrieved from h ttp ://w w w .ada-europe.org /

Nadim Rohani-Sarvestani 146

[15] M.Tsukamoto, Y.Hamazaki, T.Nishioka, H.Otokawa. (1996). The version

m anagem ent architecture o f an object-oriented distributed systems environment:OZ++.

Springer Berlin / Heidelberg.

[16] S. Ruthfield. (1995). The Internet's History and Development. Retrieved 2008, from

http ://w w w .acm .org /crossroads/xrds2-l/ine t-h is to ry .h tm l

[17] Java Sun. (1995). Java. Retrieved 2004, from http://java.sun.com

[18] AOSD Europe. (2002). European Network o f Excellence on Aspect-Oriented

Software Development. Retrieved 2005, from h ttp ://w w w .aosd-europe.ne t/

[19] Harrison, Ossher. (1994). Subject-oriented programming: Supporting Decentralized

Development o f Objects. 7th (IBM) Conference o f Object Technology.

[20] H.Ossher, P.Tarr. (1999). Multi-d im ensional separation o f concerns and the

hyperspace approach. Symposium on Software Architectures and Component

Technology: The State o f the A rt in Software Developm ent.

[21] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.V. Lopes, J. Loingtier, J. Irwin.

(1997). Aspect-Oriented Programming. Proceedings o f the European Conference on

Object-Oriented Programming (ECOOP) (pp. 220-242). Springer.

[22] R.Gauthier, S.Pont. (1970). Designing Systems Programs. Englewood Cliffs, N.J.:

Prentice-Hall.

[23] D.L.Parnas. (1971). On the Criteria to be Used in decomposing Systems into

Modules. Technical, Departament o f Computer Science, Carnegie-Mellon U, Pittsburgh,

Pa.

[24] S.Schach . (2006). Object-Oriented and Classical Software Engineering. Seventh

Edition. McGraw-Hill.

[25] B.Meyer. (1997). Object-oriented software construction (2 ed.). Upper Saddle

River, N.J: Prentice Hall.

[26] N.W irth, C.A.R.Hoare. (1966). A Contribution to the development of ALGOL.

Communications o f A C M , 9 (6), 413-431.

[27] A.Colyer, A.CIement, G.Harley, M .W ebster. (2005). Eclipse AspectJ. Addison-

Wesley.

Nadim Rohani-Sarvestani 147

[28] T.EIrad, R.E.Filman, A.Bader, M.Aksit, G.Kiczales, K.Lieberherr, H.Ossher. (2001).

Aspect-oriented programming. Communications o f the AC M , 10.

[29] R.Miles. (2004). AspectJ Cookbook, Real-World Aspect-Oriented Programming w ith

Java, (1st ed.). O'Reilly.

[30] A.Rashid, A.M oreira, J.Araujo, P.CIements, E.Baniassad, B.Tekinerdogan. (2005).

Early-aspects. Retrieved 2008, from h ttp ://w w w .early-aspects.net/

[31] A. Rashid, A. Moreira, and J. Araujo. (2003). M odularisation and Composition of

Aspectual Requirements. Proceedings o f 2nd International Conference on Aspect-

Oriented Software Development (AOSD) (pp. 11-20). ACM.

[32] E. L. A. Baniassad and S. Clarke. (2004). An Approach fo r Aspect-Oriented Analysis

and Design. Proceedings o f In ternational Conference on Software Engineering (ICSE)

(pp. 158-167). IEEE Computer Society.

[33] M.Mezini, K.J. Lieberherr. (1998). Adaptive Plug-and-Play Components fo r

Evolutionary Software Development. OOPSLA, (pp. 97-116).

[34] AOSD Europe. (2002). European Network o f Excellence on Aspect-Oriented

Software Development. Retrieved 2005, from h ttp ://w w w .aosd-europe.ne t/

[35] C.Clifton, G.T.Leavens. (2002). Leavens Observers and Assistants: A Proposal fo r

M odular Aspect-Oriented Reasoning. Department o f Computer Science Iowa State

University.

[36] G.Kiczales, E.Hilsdale, J.Hugunin, M.A.Kersten, J.Palm, W.G.Griswold. (2001). An

Overview o f AspectJ. ECOOP. LNCS2072, pp. 327-353. Springer-Verlag.

[37] D.L.Parnas. (1972). On the Criteria To Be Used in Decomposing System into

Modules. Communications o f the ACM.

[38] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J. Loingtier, J. Irwin.

(1997). Aspect-Oriented Programming. Proceedings o f the European Conference on

Object-Oriented Programming (ECOOP) (pp. 220-242). Springer.

[39] T.EIrad, R.E.Filman, A.Bader. (2001). Aspect-oriented programming.

Communications o f the A C M .

[40] J.Zhicheng. (2005). Java news b r ie f . Retrieved 2007, from Ociweb - Object

Computing, Inc.: h ttp ://w w w .oc iw eb .com /jnb /jnbN ov2005 .h tm l

Nadim Rohani-Sarvestani 148

[41] AspectJ. (2002). Aspectl. Retrieved 2004, from http ://w w w .ec lipse .o rg /aspectj/

[42] JBoss. (2001). JBoss. Retrieved from h ttp ://w w w .jboss .o rg /

[43] SpringSource. (2002). Spring Source. Retrieved 2006, from

h ttp ://w w w .springsource .org /

[44] Nanning. (2002). Nanning. Retrieved 2006, from

http://nanning.codehaus.org/overview .htm l

[45] Java Dynamic Proxy Classes. (2004). Java Dynamic Proxy Classes. Retrieved 2006,

from http ://java .sun .eom /j2se /l.5 .0 /docs/gu ide /re flection /p roxy.h tm l

[46] Sourceforge. (2004). Code Generation Library. Retrieved 2007, from

http ://cg lib .sourceforge.net/

[47] AOSD Conference. (2002). 1st In ternational Conference on Aspect-Oriented

Software Development. Retrieved 2005, from Program:

http ://trese.es.utwente.n l/aosd2002/index.php?content=program

[48] TAOSAD. (2002). The Aspect-Oriented Software Architecture Design Portal.

Retrieved 2005, from http ://trese.cs.u tw ente.n l/taosad/aosd.htm

[49] HyperJ. (1999). HyperJ. Retrieved 2004, from

http ://w w w .a lphaw orks.ibm .com /tech /hyperj

[50] ComposeJ. (1999). ComposeJ. Retrieved 2007, from ComposeJ:

h ttp ://trese.cs.u tw ente .n l/o ldhtm l/pub lica tions/paperin fo /w ichm an.thesis.p i.top .h tm

[51] DemeterJ. (2002). DemeterJ. Retrieved 2008, from

http ://www.ccs.neu.edu/research/dem eter/sources/Dem eterJava/product-guide.htm l

[52] D12 - Language Lab. (2005). Survey o f Aspect-oriented Languages and Execution

Models. (M. J.Brichau, Ed.) AOSD-Europe.

[53] J.Brichau, M.Haupt. (2005). A Taxonomy o f Aspect Language Features. Technical

report o f AOSD-Europe.

[54] Sun Services. (2002). SJCP Course SL-275. Sun Microsystems Inc.

[55] AOSD Europe, A te lier Research. (2002). Ate lie r Research. Retrieved from

h ttp ://w w w .aosd -europe .ne t/ Industry » Collaborative Project:

h ttp ://ga tew ay.com p.lanes.ac.uk:8080/c/porta l/layout?p_l_ id=l.57

Nadim Rohani-Sarvestani 149

[56] D39 - Language Lab. (2006). An In itia l M etam odel fo r Aspect-Oriented

Programming Languages. (M. (. J.Brichau (INRIA/VUB), Ed.) AOSD-Europe.

[57] J.Fabry, D.Rebernak, T.CIeenewerck, A.FLemeur, J.Noy'e, E.Tanter. (2007).

Summary o f the Second W orkshop on Domain-Specific Aspect Languages. ACM .

[58] B.Harbulo, J.R.Gurd. (2006). A jo in po in t fo r loops in AspectJ. AOSD 2006

Conference.

[59] P.Bekaert, G.Delanote, F.Devos, E.Steegmans. (2002).

Specialization/Generalization in Object-Oriented Analysis: Strengthening and M ultip le

P artitio n in g . Springer Berlin / Heidelberg.

[60] T.Skotiniotis, K.Lieberherr, D.H.Lorenz. (2003). Aspect Instances and the ir

Interactions. AOSD 2003 Workshop on Software-engineering Properties o f Languages

fo r Aspect Technologies. Boston.

[61] E.Ernst, D.H.Lorenz. (2003). Aspects and polymorpshism in AspectJ. AOSD 2003

Conference. Boston.

[62] A.Aaby. (2004). Introduction to Programming Languages. Retrieved 2009, from

http://web.archive.org/web/20040410154109/cs.wwc.edu/~aabyan/PLBook/HTM L/Se

mantics.htm l

[63] G.Winskel. (1993). The Formal Semantics o f Programming Languages: An

In troduc tion . MIT Press.

[64] D.B.Tucker, S.Krishnamurthi. (2003). Pointcuts and advice in higher-order

languages . AOSD Conference 2003, (pp. 158-167).

[65] J.C.Reynolds. (1993). The Discoveries o f Continuations. LISP AND SYMBOLIC

COMPUTATION, 6, 233(247.

[66] D41 - AOSD Europe. (2006). Common Aspect Semantics Base. S.D.Djoko,

R.Douence, P.Fradet, D.L.Botlan.

[67] AOSD Europe, CASB. (2002). AOSD Europe,CASB. Retrieved 2008, from

h ttp ://w w w .aosd -europe.ne t/ » Research » Formal Methods » CASB:

http ://ga tew ay.com p. Iancs.ac.uk:8080/c/porta l/layout?p_l_ id=l. 26

[68] AspectC. (2002). AspectC - The softw are Practice lab. Retrieved 2008, from

http://www .cs.ubc.ca/labs/sp l/pro jects/aspectc.h tm l

Nadim Rohani-Sarvestani 150

[69] AspectC++. (2001). The Home o f AspectC++. Retrieved 2009, from AspectC++:

h ttp ://w w w .aspectc .o rg /

[70] Y.Coady, G.Kiczales. (2003). Back to the fu ture: a retroactive study o f aspect

evolution in operating system code. In ternational Conference on Aspect-Oriented

Software Development (AOSD) (pp. pp. 50-59). ACM New York, NY, USA.

[71] D55 - Language Lab. (2006). Classification o f Surveyed Aspect Languages according

to the Aspect Languages Metamodel. (T. (. J.Brichau (INRIA/VUB), Ed.) AOSD-Europe.

[72] M.Y.Coady. (2003). Improving evolvability o f operating systems w ith aspectC.

Thesis - University o f British Columbia.

[73] C.Dutchyn, G.Kiczales, H.Masuhara. (2002). Aspect Sandbox.

[74] AOSD, Sandbox. (2002). AOP Language Exploration Using the Aspect Sand Box.

AOSD 2002 Conference. Tutorial.

[75] A.Denmark . (2005). Am bient Computing in a Critical, Quality o f Life Perspective.

Retrieved 2009, from http://w w w .daim i.au.dk/~olavb/AQ LW S/

[76] C.V.Lopes, G.Kiczales. (1998). Recent Developments in AspectJ. uropean Confrence

on Object-Oriented Programming (ECOOP), 1543, pp. 398-401.

[77] C.V.Lopes. (1997). A Language Framework fo r D istributed Computing. Boston:

College o f Computer Science, Nertheastem University.

[78] C.V. Lopes, K.J.Lieberherr. (1994). Abstracting process-tofunction relations in

concurrent object-oriented applications. European Confrence on Object-Oriented

Programming (ECOOP), 821, pp. 81-99.

[79] M.Askit, L.Bergrnans, S.Vural. (1992). An Object-Oriented Language-Database

Integration Model: The Composition-Filters Approach. Proceedings o f European

Conference on Object-Oriented Programming (ECOOP), Vol. 615, pp. 372-395.

[80] H.Ossher, M. Kaplan, A.Katz, W.Harrison, V. Krnskal. (1996). Specifying subject-

oriented composition (Vols. Vol. 2, No. 3 .). TAPOS.

[81] P. Tan, H.Ossher, W.Harrison, S.M. Sutton. (1999). N degrees of separation: M u lti

dimensional separation o f concerns. Preceedings o f the 21 st In ternationa l Conference

on Software Engineering, (pp. pp. 107-119).

Nadim Rohani-Sarvestani 151

[82] G.C.Murphy, R.J.Walker, E.L.A.Baniassad. (1999). Evaluating Emerging Software

Development Technologies:Lessons Learned from Assessing Aspect-oriented

Programming. IEEE Transactions on Software Engineering Vol. 25, No. 4, pp. 438-455.

[83] S.L.Peeger. (1994). Design and analysis in software engineering, part 1: The

language o f case studies and fo rm al experiments. ACM SIGSOFT Software Engineering

Notes, 19(4).

[84] M.V.Zelkowitz, D.R. Wallace. (1998). Experimental models fo r validating

technology. Computer, 31(5).

[85] R.K.Yin. (1994). Case Study Research: Design and Methods. Thousand Oaks, CA:

Sage Publications.

[86] B.Curtis, S.B.Sheppard, E.Kruesi-Bailey, J.Bailey, D.A.Boehm-Davis. (1989).

Experimental evaluation o f software docum entation formats. Journal o f Systems and

Softw are , 9 [2).

[87] A.A.Porter, H.P.Siy, C.A.Toman, L.G.Votta. (1997). An experim ent to assess the cost

benefits o f code inspections in large scale software development. IEEE Transactions

onSoftware Engineering, 23 (6).

[88] M.A.D.Storey, K.Wong, P.Fong, D.Hooper, K.Hopkins, H.A. Muller. (1996). On

designing an experiment to evaluate a reverse engineering tool. Proceedings o f the

Third Working Conference on Reverse Engineering. IEEE Computer Society, Press.

[89] B.Schneiderman. (1989). Designing the User Interface: Strategies fo r Effective

Human-Computer Interaction. Reading, MA: Addison-Wesley Publishing Co.

[90] V.R.Basili, R. D. (1986). Experimentation in software engineering. IEEE Transactions

on Software Engineering.

[91] R.J.Walker, E.L.A.Baniassad, G.C.Murphy. (1999). An Initial Assessment o f Aspect-

oriented Programming. Proceedings o f the 21st International Conference on Software

Engineering.

[92] G.C.Murphy, E.L.A.Baniassad . (1997). Qualitative case study results. UBC-CS-SE-

AOP.

[93] J.E.McGrath. (1995). Methodology matters: Doing research in the behavioral and

social sciences (2nd ed.). (J. G. In R.M. Baecker, Ed.) Morgan Kaufmann Publishers,Inc.

Nadim Rohani-Sarvestani 152

[94] R.J.Walker, E.L.A.Baniassad,G.C.Murphy. (1998). Assessing AOP & design:

Prelim inary results. University o f British Columbia.

[95] A.V.Mayrhauser, A.M.Mans. (1996). Identification o f dynamic comprehension

processes during large scale maintenance (Vol. 22(6)). IEEE Transactions on Software

Engineering.

[96] M.A.Kersten, G.C.Murphy. (1999). Atlas: A Case Study in Building a Web-based

Learning Environment using Aspect-oriented Programming. Object-oriented

Programming Systems, Languages and Applications Conference (OOPSLA). 34(10), pp.

340-352. ACM, SIGPLAN Notices.

[97] E.L.A.Baniassad, G.C Murphy, C.Schwanninger M. Kircher. (2002). Managing

Crosscutting Concerns during Software Evolution Tasks: An Inquisitive Study. 1st

In ternational Conference on Aspect-Oriented Software Development(AOSD) (pp. 120-

126). ACM.

[98] T.Lethbridge, S.Sire, J.Singer. (2000). Studying Software Engineers:Data Collection

Methods fo r Software Field Studies. Empirical Software Engineering.

[99] BW.Kernighan, D.M.Ritehie. (1988). The C Programming Language: Second Edition.

Englewood, New Jersey: Prentice Hall.

[100] B.Stroustrup. (1991). The C++ Programming Language: Second Edition.

AddisonWesley Publishing Co.

[101] K.Arnold, J.Gosling. (1996). The Java Programming Language. ACM Press Books,

Addison Wesley Longman.

[102] R.Brookes. (1983). Towards a theory o f the comprehension o f com puter

programs. In ternational Journal o f M an-M achine studies (18), 543-554.

[103] E.Soloway, K. Erlich. (1989). Empirical studies o f programming knowledge. SE-10

(5), 595-609.

[104] B.Schneiderman, R.Mayer. (1979). Syntactic/semantic interactions in

programmer behaviour: A model and experimental results. In ternational Journal o f

Computer and Inform ation Sciences, 8 (3), 219-238.

[105] H.Permington. (1987). Stimulus structures and mental representations in expert

comprehension o f com puter programs . Cognitive Psychology, 19, 295-341.

Nadim Rohani-Sarvestani 153

[106] S.Letovsky. (1986). Cognitive Processes in Program Comprehension In Empirical

Studies o f Programmers.

[107] A.van Mayrhanser, A.Vans. (1994). Comprehension processes during large scale

maintenance. In Proceedings o f the 16th In ternational Conference on Software

Engineering, (pp. 39-48).

[108] R.J.Walker, E.L.A.Baniassad, G.C.Murphy. (1999). An Initial Assessment o f Aspen-

Oriented Programming. 21st In ternational Conference on Software Engineering, (pp.

120-130).

[109] L.L. Lehman, L.A. Belady. (1985). Program Evolution. APIC Studies in Data

Processing, Volume 3.

[110] FreeBSD. (2009). FreeBSD. Retrieved 2009, from h ttp ://w w w .freebsd.org /doc

[111] J. Belzer, A.G.Holzman,A.Kent. (1981). Virtual memory systems. Encyclopedia of

com puter science and technology, 14, CRC Press.

[112] IBM. (2009). IBM. Retrieved 2009, from

http ://pub lib .bou lder.ibm .com /in focenter/db2 luw /v9r5 /index.jsp?top ic= /com .ibm .db2

. luw. admin. perf.doc/doc/c0009651.htm l

[113] Y.Coady, G.Kiczales, M.Feeley,G.Smolyn. (2001). Using AspectC to Improve the

M odularity o f Path-Specific Customization in Operating System Code. Proceedings o f

the Joint European Software Engineering Conference (ESEC) and 9th ACM S1GSOFT

In ternational Symposium on the Foundations o f Software Engineering (FSE-9).

[114] IBM. (2009). Publib boulder IBM. Retrieved 2009, from

h ttp ://p u b lib . boulder. ibm .com /infocenter/pseries/v5r3/index.jsp?topic=/com .ibm .aix.

security/doc/security/d isk_quota.htm

[115] J.BIazewicz, K.H.Ecker, E.Pesch, G.Schmidt,J.Weglarz . (2001). Scheduling

Computer and M anufacturing Processes. Berlin : Springer.

[116] NetBSD. (2007). NetBSD Kernel Developer's Manual. Retrieved 2009, from

http://ww w.daem on-system s.O rg/m an/tsleep.9.htm l

[117] A.Chou, J.Yang, B.Chelf, S.Hallem, D.Engler. (2001). An Empirical Study o f

Operating System Errors. Proceedings o f the 18th ACM Symposium on Operating

System Principles (SOSP).

Nadim Rohani-Sarvestani 154

[118] Cplusplus. (2008). Cplusplus. Retrieved 2009, from

http ://w w w .cp lusp lus.com /doc/tu toria l/p reprocessor.h tm l

[119] L.P.Barreto, G.Muller. (2002). Bossa: A Language-Based Approach fo r the Design

of Real Time Schedulers. Proceedings o f the 23rd IEEE Real-Time Systems.

[120] L.P.Barret, R.Douence,G.Muller,M.Sudholt. (2002). Programming OSShedulers

w ith Domain-Specific Languages and Aspects:New Approaches fo r OS kernel

Engineering. Workshop on Aspects, Componenets,and Patterns fo r Infrastucture

Software a t AOSD.

[121] C.Consel and R.Marlet. (1998). Architecting software using a methodology fo r

language development. Proceeding o f the 10th International Symposium on

Programming Languages,lmplementations, Logics and Programs (PLILP/ALP).

[122] A.Rashid, R.Ghitchyan. (2003). Persistence as an Aspect, (pp. 120 - 129). Boston,

MA USA: ACM.

[123] K.Mens, C.Lopes, B.Tekinerdogan, G.Kiczales. (1997). Aspect-Oriented

Programming Workshop Report. ECOOP Workshop Reader. LNCS1357. Springer-Verlag.

[124] J.Suzuki, Y.Yamamoto. (1999). Extending UML fo r Modelling Reflective Software

Components. In ternational Conference on the Unified M odelling Language (UML).

[125] S.Clarke. (2000). Designing Reusable Patterns o f Cross-Cutting Behaviour w ith

Composition Patterns. OOPSLA Workshop on Advanced Separation o f Concerns.

[126] D.Holmes, J.Noble, J.Potter. (1998). Towards Reusable Synchronisation fo r

Object-Oriented Languages. ECOOP Workshop on Aspect-Oriented Programming.

[127] S. Clarke, R.J. Walker. (2001). Composition Patterns: An Approach to Designing

Reusable Aspects. ICSE.

[128] A.Rashid. (2000). On to Aspect Persistence. GCSESyrup. LNCS 2177, pp. 26-36.

Springer-Verlag.

[129] A.Rashid. (2002). Weaving Aspects in a Persistent Environment. ACM SIGPLAN

Notices. 37, pp. 36 - 44. ACM.

[130] R.G.G.Cattell, D.Barry, M.Berler, J.Eastman, D.Jordan, C.Russel, O.Schadow,

T.Stenienda, F.Velez. (2000). The Object Data Standard: ODMG 3.0. Morgan Kaufmann.

Nadim Rohani-Sarvestani 155

[131] J.Kienzle, R. Guerraoui. (2002). AOP: Does It Make Sense? The Case o f

Concurrency and Failures. ECOOP. LNCS 2374, pp. 37-61. Springer-Verlag.

[132] Sun Microsystems. (2008). Java Tutorials: The reflection API. Retrieved 2009,

from h ttp ://java.sun.com /docs/books/tu to ria l/re flect/index.h tm l

[133] D. Parsons, A. Rashid, A.Speck, A.Telea. (1999). A 'Framework' fo r Object Oriented

Frameworks Design TOOLS Europe. CS Press.

[134] A.Rashid, P.Sawyer. (1999). Dynamic Relationships in Object Oriented Databases:

A Uniform Approach. DEXA, LNCS 1677, 26-35.

[135] A.Rashid. (2001). A Hybrid Approach to Separation o f Concerns: The Story o f

SADES. Reflection conference. LNCS 2192, pp. 231-249. Springer-Verlag.

[136] B.Silva, E.Figueiredo, A.Garcia, D.Nunes. (2008). Refactoring o f Crosscutting

Concerns w ith Metaphor-Based Heuristics. In Electronic Notes in Theoretical Computer

Science.

[137] I.Kiselev. (2002). Aspect-Oriented Programming w ith AspectJ: SAMS.

[138] J. Araujo, A. Moreira, I. Brito, and A. Rashid. (2002). Aspect-Oriented

Requirements w ith UML. In ternational Conference on Unified M odelling Language

UM L

[139] A. Rashid, P. Sawyer, A. M oreira, and J. Araujo. (2002). Early Aspects: A Model fo r

Aspect-Oriented Requirements Engineering. Proceedings o f IEEE Joint International

Conference on Requirements Engineering (RE) (pp. 199-202). IEEE Computer Society.

[140] I.Jacobson, P.Ng. (2005). Aspect-Oriented Software Development w ith Use-Cases.

Addison-Wesley.

[141] IBM. (2010). IBM WebSphere. Retrieved 2010, from IBM WebSphere:

h ttp ://w w w -01.ibm .com /so ftw are /w ebsphere /

[142] IBM. (2010). TAM. Retrieved 2010, from TAM: h ttp ://w w w -

01.ibm .com /software/tivo li/products/access-m gr-e-bus/

[143] IBM. (2010). Tivoli Identity Manager. Retrieved 2010, from Tivoli Identity

Manager: h ttp ://w w w -01 .ibm .com /so ftw a re /tivo li/p roducts /iden tity -m g r/

[144] UML. (2010). UML. Retrieved 2010, from UML: h ttp ://w w w .u m l.o rg /

Nadim Rohani-Sarvestani 156

[145] AOSD-Europe. (2002). European Network o f Excellence on Aspect-Oriented

Software Development. Retrieved 2005, from h ttp ://w w w .aosd-europe.ne t/

[146] C.Lopes, S.Bajracharya. (2005). An Analysis o f M odularity in Aspect Oriented

Design. In ternational Conference on Aspect-Oriented Software Development (AOSD)

(pp. 15-26). ACM.

[147] M.A.Kersten,G.C.Murphy. (1999). Atlas:A Case Study in Building a Web-based

Learning Environment using Aspect-oriented Programming. OOPSLA. 34(10). ACM,

SIGPLAN Notices.

[148] M.Lippert, C.V.Lopes. (2000). A Study on Exception Detection and Handling Using

Aspect-Oriented Programming. 22nd In ternational Conference on Software

Engineering, (pp. 418-427).

[149] J.Hannemann,G.Kiczales. (2002). Design Pattern Implem entation in Java and

AspectJ. Proceedings o f OOPSLA. ACM.

[150] N.Cacho, C.Sant'Anna, E.Figueiredo, A.Garcia, T.Batista, C.Lucena. (2002).

Composing Design Patterns: A Scalability Study of Aspect-Oriented Programming.

nternational Conference on Aspect-Oriented Software Development (AOSD) (pp. 109-

12). ACM.

[151] A.Garcia, C.Sant'Anna, E.Figueiredo, U.Kulesza, C.Lucena, A.v.Staa . (2005).

Modularizing Design Patterns w ith Aspects: A Q uantitative Study. In ternational

Conference on Aspect-Oriented Software Development (AOSD) (pp. 3-14). ACM.

[152] M .Bruntink, A.v.Deursen, M .D 'Hondt, T.Tourwe . (2007). Simple Crosscutting

Concerns are not so Simple: Analysing Variability in Large-Scale Idioms-based

Implementations . In ternational Conference on Aspect-Oriented Software Development

(AOSD) (pp. 199-211). ACM.

[153] D112 - AOSD Europe. (2008). Description o f Advances and Integrations in the AO

Language Design Space. AOSD Europe.

[154] D87 - Language Lab. (2007). In itia l design o f advances and integrations in the AO

language design space. (C. (. K.Gybels (VUB), Ed.) AOSD-Europe.

[155] D.B.Tucker, S.Krishnamurthi. (2003). Pointcuts and advice in higher-order

language. AOSD 2003 Conference, (pp. 158-167).

[156] D. Parsons, A. Rashid, A.Speck, A.Telea. (1999). A Framework fo r Object Oriented

Frameworks Design TOOLS Europe. CS Press.

Nadim Rohani-Sarvestani 157

Nadim Rohani-Sarvestani

Appendix A
The following Table provides an overview of the language and execution models

described in the survey. [50, p. 13]

Aspect-oriented Language Language Survey Execution Survey
Alpha V
A04BPEL V V
AspectC++ V V
AspectCOBOL V
AspectJ V V
Aspects V V
Aspect Werkz V V
CaesarJ V V
CAM/DAOP V V
CARMA V
Compose* V
DemeterJ V
EAOP V V
FuseJ V V
HyperJ V
JAC V V
JAsCo V V
JBOSS AOP V V
Lasagne V
Object Teams V
OReA V
PROSE V V
Reflex V
Sourceweave.net V V
Steamloom V V
SuperJ V
VEJAL V
Weave.net V V

Nadim Rohani-Sarvestani 159

Appendix B

Execution Model
Dimensions

* *

Model Functionality

Architectural Characteristics Aspect Model

1) How is the model implemented
from an architectural point of view ?
2) At what stage of an application's
life cycle are AOP mechanisms
applied ?
3) What basic techniques are used ?
4) How is access to the AOP
infrastructure provided ?
5) To what extent is it possible to
assemble an aspect at run-time
without the need for preparations
prior to run-time ?

1) How is advice code represented,
both at language and execution
model level ?
2) Is there a meta-model, are advice
first-class entities ?
3) Do advice methods have to adhere
to some protocol ?

1) How are aspects modelled a id
represented internally, in the run
time environment?
2) Are aspects first-class entities?
3) What are the details o f the used
data structures?
4) Do aspects have to adhere to
some protocol?

* *

Advice Model Pointcut Model

1) How are pointcuts represented
internally, in the run-time
environment ?
2) Are they hrsl-class entities ?

Join Pomt Shadow Retrieval Advice Instance Management

1) How are join point shadows
retrieved ?
2) What representation of the
application is used to perform
queries for join point shadows on ?
3) Are there special optimisations
to enhance retrieval speed ?

Special Treatmoit o f Dynamic
Pointcuts

How does the execution model deal
with special operations or constructs
(offered by* the language) that cannot
be directly mapped to join point
shadows, such as cflow ?

1) How and where are instances
stored to which advice
invocations are sent ?
2) How are join point shadows
associated with the advice
instances responsible for them?
3) How is advice instance
creation handled for per-this,
application-widejnstance-local,
per-thread, thread-local,
...advice?

Deployment and Undeployment

1) How does the workflow for
(dynamic) deployment/
undeployment of aspects look ?
2) What happens Of possible)
when a particular part of an aspect
(e.g. one particular advice body) is
to be updated ?

Weaving Approach

* * *

Weaving Advice invocations Miscellaneous

1) What is woven, and when ?
2) How does woven code look ?
3) How is a class transformed during
weaving - are new members added ?
4) How is a method transformed during
weaving ?
5) How are introduced members
represented in a transformed class ?

1) Are advice invoked directly, or
is a meta-level required to provide
further information ?
2) How are advice executed ?

Are there special optimisations to
enhance //both// the performance of
woven code and of weaving itself?

Figure 33 Execution Model Dimensions

As mentioned in section 3.3 that AOSD Languages Lab defined a set o f questions regarding what the

dimensions should be in agreement with all language lab partners. Figure 7 depicts the set of dimensions

that were agreed and includes the related questions that define each dimension for the execution model

[50, p. 14].

Nadim Rohani-Sarvestani 160

