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Abstract

This research is mainly concerned with two classes of stochastic differential equations arising 

from financial modeling with stochastic volatility-reflections and mean-reversion. In Chapter 

1, I compare the no free lunch with vanishing risk condition and the no good deal condition 

for fundamental theorem of asset pricing in a continuous-time market model. I aim to 

determine the relationship between the conditions. In Chapter 2, I propose to model rating 

processes arising from rating based models for credit derivatives by SDEs with reflections. 

Chapter 3 is the infinite dimensional analogue of the mean-reversion type SDEs. The linear 

term in the drift is linked to the mean term and the nonlinar part can be viewed as the 

correcting term if the infinite system describes the equilibrium situation. As for the path 

independence of the Grisanov density, it is exactly corresponding to the equilibrium system.

The motivation of our investigation comes from the mathematical study of economics and 

finance. In recent years, due to the necessity of stochastic volatility as the measurement of 

uncertainty in modeling of financial markets, stochastic differential equations have received 

huge attention from both theoretical and practical aspects [48, 16, 18, 24, 38, 47]. The 

primary point here is to model the price dynamics or the wealth growth by utilising SDEs, 

after having established a so-called real world probability space (e.g., the seminal paper [8] 

by Black and Scholes). To an equilibrium financial market, there must exist a so-called 

risk neutral probability measure which is absolutely continuous with the given real world 

probability measure and it is pivotal to determine the path-independence property for the 

associated density process defined by the Radon-Nikodym derivative.



C hapter 1

Introduction

This research mainly studies two classes of stochastic differential equations arising from 

financial modeling with stochastic volatility-mean-reversion and reflection. Let us start with 

a general introduction of the stochastic differential equation (SDE). Stochastic integrals were 

first introduced by K. Ito [31] to rigorously formulate the SDE. In 1942 this theory was first 

applied to Kolmogorov’s problem of determining Markov processes [30]. Today Ito’s theory 

is applied not only to Markov processes (diffusion processes) but also to a large class of 

stochastic processes. This framework provides us a powerful tool for describing and analyzing 

stochastic processes. Since Ito theory may be considered as an integral-differential calculus 

for stochastic processes, it is often called Ito’s stochastic analysis or stochastic calculus. J.L. 

Doob pointed out the martingale character of stochastic integrals and suggested that a unified 

theory of stochastic integrals should be establish in the framework of martingale theory. So 

he plays an important role in the modern theory of stochastic analysis. His program was 

accomplished by D.L. Fisk, P. Courrege, H. Kunita, S. Watannbe [59] and P. Meyer [66]. The 

class of stochastic processes to which Ito theory can be applied (usually called Ito processes 

or locally infinitely divisible processes) is now extended to a class of stochastic processes 

called semimartingales. Such processes appear to be the most general for which a unified 

theory of stochastic calculus can be developed. The modern theory of semimartingales 

and the stochastic calculus on them have been extensively developed in France by Meyer,
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Dellacherie, Jacod etc, [32], A somewhat different type of stochastic calculus has been 

introduced by Stroock and Varadhan under the name of martingale problems [53].

Stochastic processes in finance and economics are developed in concept with the tools of 

stochastic calculus that are needed to solve practical importance. In 1973, Fischer Black and 

Myron Scholes used stochastic analysis and an equilibrium argument to compute a famous 

Black-Scholes formula which represented a triumph for mathematical modeling in finance [4]. 

It has become an indispensable tool in the trading of options and other financial derivatives. 

In 1997 Myron Scholes and Robert Merton were awarded the Nobel prize in Economics for 

their work related to this formula. (Fischer Black died in 1995.)

Virtually all continuous stochastic process of importance in applications satisfy an equa­

tion of the form

d X t = fi(t, X t)dt +  a(t, X t)dBt with initiala data X q =  xq.

Such SDEs provide an exceptionally effective framework for the construction and analysis of 

stochastic models. As the coefficients /i and a of the equation can be interpreted as measures 

of short-term growth and short-term variability, the modeler has a ready-made pattern for 

the construction of stochastic processes that reflect real-world behavior. SDEs also provide 

a link between probability theory and much older but more developed fields of ordinary 

and partial differential equations. Wonderful consequences flow in both directions. The 

stochastic modeler benefit from centuries of development of physical sciences, and many 

classic results of mathematical physics and pure mathematics can be given new intuitive 

interpretations. In recent years, due to the necessity of stochastic volatility as measurement 

of uncertainly in modeling of financial markets, SDEs have received huge attention from 

both theoretical and practical aspect. A growing number of concepts, methods and results 

from the SDE which can be applied to give a financial model have been studied, [37] [39] 

[54].

All financial models in this thesis are based on the equilibrium economy. In the economy, 

an equilibrium state is where the net demand equals to total resources, in other words, 

that the excess demand is zero, [21]. In this economy, there are no taxes, transaction costs



or information asymmetries, that is, any market in this economy is a perfect market. The 

representative agent is provided a positive initial amount without receiving any intermediate 

income and only concerned with his terminal wealth. All his consumption takes place at the 

terminal time T. There are only two kinds of infinitely divisible financial securities available 

in the market: a bond (risk assets) which pays one unit of consumption at time T  and whose 

net supply is zero, and a stock (risky assets) with an equilibrium price process (X t)t>o- We 

shall mainly work in an equilibrium market which can be characterized by the utility function 

of a representative agent. We assume the utility function belongs to the class of increasing, 

concave and continuously twice differentiable Von Neumann-Morgenstern utility functions. 

In such an equilibrium market, the representative agent maximizes his expected utility of 

time T  > 0 wealth, i.e.,

max E[U{ X T)}.

It is natural that one would have different utility functions for different terminal date T  > 0, 

so we would like to write the utility function U as a function of wealth x and also time t ,

i.e.,

U(x, t).

Cox and Leland [10] show that path independence is necessary for expected utility maxi­

mization. By path independence, they mean that the value of portfolio will depend only on 

the asset prices at that point, not on the path followed by the asset in reaching that price. 

Namely, the utility function U depends on the state price X t at time t, for t > 0, that is, 

the function U is of the form U(Xt,t), for each t > 0. On the other hand, in an equilibrium 

market without arbitrage opportunities, there exists a risk neutral probability measure Q 

which is absolutely continuous with respect to the objective probability P. Under the risk- 

neutral probability the drift of the stock return is the riskless interest rate r(t). Then the 

Radon-Nikodym derivative is also a function of the state price X t at time t , for t > 0.

Motivated by financial models in an equilibrium market, I have written three chapters 

in this thesis. Chapter 3 compares the no free lunch with vanishing risk condition and the 

no good deal condition for the fundamental theorem of asset pricing in a continuous-time 

market model. Due to the seminal work [13] by Delbaen and Schachermayer, the fundamental



theorem of asset pricing became pivotal in mathematical finance, which is a key result in 

establishing a mathematical framework for pricing and the key. condition in the so-called No 

Free Lunch with Vanishing Risk condition [14]. Since then, many investigations are devoted 

to generalize this remarkable condition to cover more general situations in the mathematical 

modelings, cf. eg.[1],[5],[15],[48] and references therein. Most recently, Bion-Nadal and Di 

Nunno [1] proposed a new condition for pricing in incomplete markets. This condition is 

named as No Good Deal Condition, which should be thought as an analogy or modified 

version of the celebrated No Free Lunch with Vanish Risk Condition. In this chapter, I 

aim to determine the relationship between the conditions. Tools from probability such as 

martingale, equivalent martingale measure, stochastic integrals, Girsanov transformation are 

all used in this framework.

In Chapter 4, on modeling credit risk via reflected stochastic differential equations, I 

propose to model rating processes arising from rating based models for credit derivatives by 

SDEs with boundary conditions. Rating-based models usually use characteristics such as 

rating process, yield curve and the recovery rate to compute price of risky assets. Crouhy-Im- 

Nuelman model and Hull-White model are famous ones in this family. They proposed in [27], 

[28] defines a rating process X t which is a pure Brownian motion, but the “default barrier” 

which is not necessarily a straight line is adapted so as to match the default probability. 

In order to get a risk-neutral probability, they modify the location of the barrier. We shall 

follow the rating based framework presented by Douady and Jeanblanc [17] in modeling a 

defaultable zero coupon bond with a continuous rating process R  — (Rt)t>o £ [0,1]. This 

continuous rating process R  has an intuitive meaning: it can be seen as an interpolation of 

rating provided by agencies. More precisely, one can specify the model in such a way that 

a given agency rating corresponds to some sub-interval (n;,rq+1) C [0,1]. Rating migrations 

correspond to crossing one threshold rii E (0,1). In [17], the continuous rating process 

R  = {Rt)t>o £ [0,1] of each bond issuer is determined by the following SDE

dRt =  htdt +  a(Rt, t)dWt

with a given initial value Rq E [0,1], where Wt is a Brownian motion, the drift ht is an 

integrable function of t and volatility cr(Rt, t) is a deterministic function of Rt and t. ht and
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a(R t , t) are chosen to ensure that for each Ro < 1 implies for all t > 0, Rt < 1 a.s.. R q =  1 

corresponds to a non-defaultable bond and R t = 1, for all t > 0. Default happens when 

R t = 0 which is an absorbing state.

In the basis of Douady and Jeanblanc [17], we propose a natural model of SDE with 

reflections for the rating process X(t)  E [0,1]. We shall model a “continuous” rating X (t)  E 

[0 , 1], which is incorporated to a bond issuer subject to a possible default, by the following 

SDE with reflections

dX(t) =  6X{t)dt + aX(t)dB(t)  +  drj{t) — dfj(t)

where coefficients #, a are positive constants. Here B (t) is a Brownian motion, and rj(t) 

is the local time of X (t)  at 0. This is a non-decreasing process which only increase when 

X(t)  =  0. Similarly fj(t) is the local time of X(t)  at 0. It is a non-decreasing process which 

only increase when X (t)  =  1. Here we propose a natural model of stochastic differential 

equation with reflections for the rating process X ( t ) E [0,1]. In Chapter 3, we shall use this 

new diffusion process with reflections feature to model the rating processes and compute risk 

neutral probability for pricing the defaultable zero-coupon bond.

In Chapter 5, I provide a characterization of the path-independence property in the den­

sity process of Girsanov transformation for infinite-dimensional SDEs. From a mathematical 

viewpoint, as the utility function U is a smooth function, this is equivalent to saying that 

there exists a function F  : R x [0, oo) which is C2 with respect to the first variable x and C 1 

with respect to the second variable t such that

n x t,t) = fp.

We shall call this property the path independence of the density of the Girsanov transforma­

tion. To an equilibrium financial market, there must exist a so-called risk neutral probability 

measure which is absolutely continuous with the given real world probability measure and 

it is pivotal to determine the path-independence property for the associated density process 

defined by the Radon-Nikodym derivative [25, 26]. It is often encountered in the economical 

and financial market models that one should consider agents in large scale that there are
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(at least) countably many stocks are treated together so that their pricing dynamics form 

an infinite-dimensional SDEs. This thesis studies the infinite dimensional analogue of the 

mean-reversion type SDEs. In Chapter 5, there are some researches which utilize this path 

independence property to characterize the behaviors of the drift of stock prices and certain 

ratio between drift coefficient and volatility coefficient in consistence with an equilibrium 

economy.

Furthermore, from the view point of variational calculus, optimization problems -  either 

in the pattern of maximizing the utility functions (and/or profits) or in the formulation 

of minimizing the cost functions (and/or risk factors) -  are in fact linked with the path- 

independent property of the pricing trajectories, cf. e.g., [20, 67]. Hence, characterizing the 

relevant path-independence of the SDEs in terms of (non-linear) PDEs would be interesting 

and useful.

To our aim, we notice that the methods employed in [63] and in [56] are Ito formula 

and Girsanov transformation. However, it is not straightforward to have Ito formula in 

infinite-dimensional so we have to use the finite-dimensional approximation approach here. 

We will derive a complete link of infinite-dimensional semi-linear SDEs to Burgers-KPZ 

nonlinear PDEs infinite dimensions. Extensions to more general infinite-dimensional spaces 

like Banach spaces, multi-Hilbertian spaces as well as locally convex topological vector spaces 

are interesting and will be considered in the forthcoming works.

Given a real separable Hilbert space (H , (•, •)//, || • ||//). Let {H^}i>o be a cylindrical Brow­

nian motion defined on {Jrt}t>o, P)- We consider the following semi-linear stochastic

partial differential equation (SPDE) on H

[ dX t =  { A X t + bit, X M d t  +  a i t , X t)dWu t > 0
{ (i-1)
I X 0 = x £ H ,

where b : [0, oo) x H  —» H  and a : [0, oo) x H  —> L/\(H) are measurable mappings. In 

this paper, we require the two coefficients fulfill further that b : [0, oo) x H  —> H  and 

(t, x ) £ [0, oo) x H  i—> etAa(t , x) £ Lhs{H ) are C l with respect to the first variable and C 2 

with respect to the second variable respectively. We assume that:
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(HI) Assume that —A  has discrete spectrum with eigenvalues

0 < Ai < A2 < . . .  < X3 < . . .

counting multiplicities such that
OO -

i  .7 3=1 J

We let be the corresponding eigen-basis of —A  throughout the paper.

(H2) There exist a constant e G (0,1) and an increasing function L  : [0, oo) —» (0, oo) such 

that

te[o
and

sup (||6 (* ,0 )|& +  [  \\e{t s)Aa ( s , 0 ) \ \ 2HSs  fd s )  < oo, VT > 0 
6[0,T] L Jo  J

\\b{t,x) -  b(t,y)\\H +  ||e ((?(t,x) -  (j(t,y))\\Hs < L(t)\\x -  y\\H, Vi > 0, Vx,y e H.

It is well known by [12, 6] that (HI) and (H2) imply the existence and uniqueness of the 

mild solution to (1.1), that is, for any x G H  there exists a unique //-valued {^t}t>o-adapted 

continuous process X t,i  > 0, such that P-a.s.

X t = eiAx + f e(t- sM6(s, X s)ds + [  e{t~s)Aa{s, X„)dWs , t  > 0.
Jo Jo

Next, I give a brief account of the Girsanov transformation for infinite-dimensional SDEs 

on / / ,  followed by the main result on the characterization of path-independence of the 

Girsanov density and its proof.

T heo rem  1.0.1. Assume (HI), (H2), (H3) and let v : [0, oo) x H —> R be in C£’2([0, oo) x H ) 

such that [Vu(£, -)]x : / / —> / /  G Dom(A) for any (t,x) G [0, oo) x H and \\AVv(t, -)||// is 

bounded locally and uniformly in t G [0, oo). I f  v satisfies

= ~^{Tr[(aa*)V 2v]{t,x) +  \\a*S7v\\2H{t,x)} -  {x ,A V v(t ,x ))H

and

b(t,x) =  [(<7cr*)Vu](i, x), V(i,x) G [0, oo) x //,

7



then the Girsanov density (5.6) for (1.1) satisfies the following path-indendenpent property

-j-± = exp{v(0,X0) - v ( t , X t)}, t >  0.

More specifically, I take stochastic heat equation on a bounded domain as an example 

demonstrate my work.

' dv dv*
+ <l>(v(t,x)) +  tp (v ( t ,x ) ) -^ ^ ( t ,x )  t >  0 ,z  G (0 , 1),

< v(t, 0) =  v(t, 1) =  0 , t > 0 ,

 ̂ u(0 ,z) =  v0(x), x e  (0,1),

where W(t, x), (t , x ) G [0, oo) x [0,1] is a Brownian sheet [0, oo) x [0,1]. A Brownian sheet

can be regarded as a cylindrical Wiener process on L2(0,1), see [57].

The organization of this thesis is organized as follows: Chapter 2 prepares some prelimi­

naries on stochastic differential equations, which will be used in later derivations and proofs. 

First , we introduce Brownian Motions and stochastic integration. Then we show a few 

well known results on Ito processes and Ito formula. Next we give a brief introduction on 

SDEs, especially on the existence and uniqueness of the solutions to SDEs and SDEs with 

reflections. Girsanov theorem and some useful equations are also given in this chapter.

In Chapter 3, we aim to determine the relationship between the no free lunch with 

vanishing risk condition and the no good deal condition for fundamental theorem of asset 

pricing in a continuous-time market model. This chapter begins with the basic ideas of the 

First and Second Fundamental Theorems of asset pricing in the discrete model. Then a 

general continuous market model is defined and the fundamental theorems of asset pricing 

are proved in this setting. In the latter scenario we focus on conditions of the model which 

satisfy no free lunch with vanishing risk. Finally, we present a complete comparison with a 

thorough derivation. The paper ends with a conclusion to highlight our consideration.

In Chapter 4, under the assumption of equilibrium markets, we propose to model rating 

processes arising from rating based models for credit derivatives by stochastic differential 

equations with boundary conditions. Namely, for a rating process X(t)  taking value in the



unit interval [0 , 1], which is assigned to a bond issuer subject to possible default, by stochastic 

differential equation with two sided reflections.

Chapter 5 is devoted to present links between infinite-dimensional SDEs and nonlinear 

PDEs of Burgers-KPZ type, we first give a brief account of the Girsanov transformation for 

SDEs on (infinite-dimensional) a separable Hilbert space H. Then we prove our main result 

on the characterization of path-independence of the Girsanov density of the SDEs. The final 

section is devoted to a consideration of parabolic stochastic partial differential equations as 

an example where we demonstrate an application of our main result.
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C hapter 2

Prelim inaries

This chapter is intended as an introduction to some elements of mathematical finance and 

stochastic differential equations (SDEs). We shall present some important analysis tools, 

Girsanov theorem, Ito formula, Brownian Motion and Stochastic Integration. All the explo­

ration in this chapter is mainly based on Ikeda Watanabe [59], Williams [61], 0ksendal [44], 

and Klebaner [19].

2.1 C oncep ts o f  P rob ab ility  T heory

In this section we give fundamental definitions of probabilistic concepts. Since the theory 

is more transparent in the discrete case, it is presented first. Then a continuous probability 

model is defined in this setting.

2.1.1 D iscrete Probability  M odel

A probability model consists of a filtered probability space on which variables of interest 

are defined. Here we introduce a discrete probability model by using an example of discrete 

trading in stock.

Filtered Probability Space

10



A filtered probability space consists of: a sample space of elementary events, a field of 

events, a probability defined on that field, and a filtration of increasing subfields.

Sample Space

Consider a single stock with price St at time t =  1, 2 , . . . ,  T. Denote by fI the set of all 

possible values of stock during these times.

=  {co : uj =  («Si, S2, . . . ,  S71)} =  K.+ = (0 , + 00)^.

If we assume that the stock price can go up by a factor u and down by a factor d, then the 

relevant information reduces to the knowledge of the movements at each time.

=  {uj : cxj = (ai, a2, . . . ,  ax)} at = u or d.

To model uncertainty about the price in the future, we list all possible future prices, and call 

it possible states of the world. The unknown future is just one of many possible outcomes, 

called the true state of the world. As time passes more and more information is revealed 

about the true state of the world. At time t — 1 we know prices Sq and Si. Thus the true 

state of the world lies in a smaller set, subset of O, A C fh After observing Si we know 

which prices did not happen at time 1. Therefore we know that the true state of the world 

is in A and not in f t \A  = A.

Fields of Events

Define by T t the information available to investors at time t , which consists of stock 

prices before and at time t. For example when T  =  2, at t =  0 we have no information about 

Si and 5*2, and T q =  {0, fi}, all we know is that a true state of the world is in Q. Consider 

the situation at t — 1. Suppose at t. =  1 stock went up by u. Then we know that the true 

state of the world is in A, and not in its complement A, where

A  =  {(w, S'2), S2 = u ot d} = {(u, u), (u, d)}.

Thus our information at time t — 1 is

^  = {0,0, A, A}.

11



Note that fo  C f i ,  since we do not forget the previous information.

At time t investors know which part of Q contains the true state of the world. F  is called 

a field or algebra of sets. J 7 is a field if

1. 0 ,0  E F\

2 . If A e  F ,  and B e f ,  then A U  B e  F, A n  B e F, A \B  e  F.

A partition of O is a collection of exhaustive and mutually exclusive subsets,

{Di , . . . ,  Dk}, such that Di fl Dj = 0 , and U A  =  n.
i

F iltra tio n

A filtration F is the collection of fields,

F =  {^o, Fi, ■ ■ •, F t}. . . ,  F t } F t C F t+\.

F is used to model a flow of information. As time passes, an observer knows more and more 

detailed information, that is, finer and finer partitions of 0 . In the example of the price of 

stock, F describes how the information about prices is revealed to investors.

P red ic tab le  P rocesses

Suppose that a filtration F =  {Fq,F\, . . . ,  F t , . . .  ,F t } is given. A process Ht is called 

predictable (with respect to this filtration) if for each t, Ht is ^)_i-measurable, that is, 

the value of the process H  at time t is determined by the information up to and including 

time t — 1. For example, the number of shares held at time t is determined on the basis of 

information up to and including time t — 1. Thus this process is predictable with respect to 

the filtration generated by the stock prices.

P ro b ab ility

If O is a finite sample space, then we can assign to each outcome uj a probability, P(u;), 

that is, the likelihood of it occurring. This assignment can be arbitrary. The only requirement 

is that P{<jS) > 0 and Yh *̂(̂ -0 =  1-
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2.1.2 Continuous Probability M odel

In this section we define similar probabilistic concepts for a continuous sample space. We 

start with general definitions.

a  Fields

A cr-field is a field, which is closed with respect to countable unions and countable inter­

sections of its members, that is a collection of subsets of ft that satisfies

1. T\

2. A e T  => A c e T\

3. A u A 2, . . . ,  A n, . . .  E T  then (J~  i An e T .

Any subset B  of Q that belongs to T  is called a measurable set.

Borel cr-Fields

The Borel cr-field is the most important example of a cr-field that is used in the theory 

of functions, Lebesgue integration, and probability. Consider the cr- field B on R  (12 = R) 

generated by the intervals. It is obtained by taking all the intervals first and then all the 

sets obtained from the intervals by forming countable unions, countable intersections and 

their complements are included into collection, and countable unions and intersections of 

these sets are included, etc. It can be shown that we end up with the smallest cr-field which 

contains all the intervals. One can show that the intersection of cr-fields is again a cr-field. 

Take the intersection of all cr-fields containing the collection of intervals. It is the smallest 

cr-field containing the intervals, the Borel cr-field on R. In this model a measurable set is a 

set from B , a Borel set.

Probability

A probability P  on (£7, J-) is a set function on T ,  such that

1. P(Q) = 1;

13



2. If A  6  P, then P (AC) = 1 -  P(A);

3. Countable additivity (a-additivity): If Ai, A 2 , . . . ,  An, . . .  € J- are mutually exclusive, 

then P(U”  ,) =  £ “  j P(An).

The a-additivity property is equivalent to finite additivity plus the continuity property of 

probability, which states: If A\ D A 2  D • • • D A n . . .  A = fX li  A n £ F , then

lim P{An) =  P{A).
n—>oc

A similar property holds for an increasing sequence of events.

Predictable Processes

Recall that in discrete time a process PI is predictable if Hn is T n-\  measurable. Pre­

dictability in continuous time is harder to define. We recall some general definitions of 

processes starting with the class of adapted processes.

Definition 2.1. [19, Def. 8.2, p.212] A process X  is called adapted filtration F = {Ft}, if  

for all t, X(t) is T t-measurable.

In construction of the stochastic integral H(u)dS(u), processes H  and S  are taken to 

be adapted to F. For a general semimartingale S, the requirement that H  is adapted is too 

weak, it fails to assure measurability of some basic constructions. H  must be predictable. 

For our purposes it is enough to describe a subclass of predictable processes which can be 

defined constructively.

Definition 2.2. [19, Def. 8.3, p.213] H  is predictable if  it is one of the following:

1. a left-continuous adapted process, in particular, a continuous adapted process;

2. a limit (almost sure, in probability) of left-continuous adapted processes.

3. a regular right-continuous process such that, for any stopping time r, HT is F r -measurable, 

the cr-field generated by the sets A f ] { T  < t}, where A G Ft\

4■ a Borel-measurable function of a predictable process.

14



2.2 B row nian M otion

This chapter is mainly about Brownian motion. It is the main process in the calculus of 

continuous processes.

2.2.1 Introduction

Observations of prices of stocks, positions of a diffusing particle and many other processes 

observed in time are often modeled by a stochastic process. A stochastic process is an 

umbrella term for any collection of random variables X(t)  depending on time t. Time can 

be discrete, for example, t = 0 , 1, 2 , . . . ,  or continuous, t > 0. Calculus is suited more to 

continuous time processes. At any time t, the observation is described by a random variable 

which we denote by X(t). A stochastic process X(t)  is frequently denoted by X  or with a 

slight abuse of notation also by X(t).

In practice, we typically observe only a single realization of this process, a single path, out 

of a multitude of possible paths. Any single path is a function of time t, x t =  x(t), 0 < t < T; 

and the process can also be seen as a random function. To describe the distribution and 

to be able to do probability calculations about the uncertain future, one needs to know 

the so-called finite-dimensional distributions. Namely, we need to specify how to calculate 

probabilities of the form P(X(t) < x ) for any time t, i.e. the probability distribution of 

the random variable X{t)\ and probabilities of the form P{X{t\) < X\ , A(£2) < £2) for any 

times £1,^2, i-e. the joint bivariate distributions of X (ti)  and Xfa)', and probabilities of the

for any choice of time points 0 < t\ < t<i. . .  < tn < T, and any n > 1 with X\, . . . ,  xn G R.

form

(2 .1)

Often one does not write the formula for (2 .1), but merely points out how to compute it.

15



2.2.2 Properties of Brownian M otion

Botanist R. Brown described the motion of a pollen particle suspended in fluid in 1828. 

It was observed that a particle moved in an irregular, random fashion. A. Einstein, in 

1905, argued that the movement is due to bombardment of the particle by the molecules of 

the fluid, he obtained the equations for Brownian motion. In 1900, L. Bachelier used the 

Brownian motion as a model for movement of stock prices in his mathematical theory of 

speculation. The mathematical foundation for Brownian motion as a stochastic process was 

done by N. Wiener in 1931, and this process is also called the Wiener process. The Brownian 

Motion process B (t) serves as a basic model for the cumulative effect of pure noise. If B (t) 

denotes the position of a particle at time t , then the displacement B (t) — B (0) is the effect 

of the purely random bombardment by the molecules of the fluid, or the effect of noise over 

time t. ,

D efin ition  2.3. Brownian motion {B(£)} is a stochastic process with the following proper­

ties.

1. (Independence of increments) B(t) — B (s ), f o r t  > s, is independent of the past, that 

is, of B(u), 0 < u < s, or of T s, the cr-field generated by B(u), u < s.

2. (Stationary Normal increments) B ( t) — B(s) has Normal distribution with mean 0 and 

variance t — s. This implies (taking s = 0) that B(t) — B{0) has N(0,t) distribution.

3. (Continuity of paths) B (-,uj) is continuous for each oj G and B(t), t > 0 are contin­

uous functions oft.

The initial position of Brownian motion is not specified in the definition. When B (0) =  x, 

a.s. then the process is a Brownian motion started at x. The time interval on which Brownian 

motion is defined is [0, T] for some T  > 0, which is allowed to be infinite.

R em ark  2.2.1. A definition of Brownian motion in a more general model (that contains 

extra information) is given by a pair {B(t),lFt}, t > 0, where IFt is an increasing sequence 

of a-fields (a filtration), B ( t) is an adapted process, i.e. B ( t) is measurable, such that 

Properties 1-3 above hold.
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An important representation used for calculations in processes with independent incre­

ments is tha t for any s > 0

B{t +  s) = B(s) +  (B(t +  s) -  B (s )),

where the two variables Bs and (B(t + s) — B(s)) are independent. An extension of this

representation is the process version.

2.2.3 Brownian M otion Paths

An occurrence of Brownian motion observed from time 0 to time T, is a random function of

t on the interval [0,T]. It is called a realization, a path or trajectory.

Definition 2.4. [19, p .63] The quadratic variation of Brownian motion [B,B](t) is defined 

as
n

[.B, B] ( t ) =  [B,B]([0,«]) =  lim V | B ( C )  -  B ( tU ) ?
O n —

1 = 1

where the limit is taken over all shrinking partitions of [0 ,£], with 6n — maxj(£™+1 — i") —> 0 

as n —> co.

It is remarkable that although the sums in the Definition 2.4 are random, their limit is 

non-random, as the following result shows.

Theorem 2.2.1. [19, Theorem. 3.4, p.63] The Quadratic variation of a Brownian motion 

over [0 , t] is t.

Properties of Brownian paths

B(t) is as functions of t have the following properties. Almost every sample path B(t), 

0 < t < T

1. is a continuous function of t;

2. is not monotone in any interval, no matter how small the interval is;
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3. is not differentiable at any point;

4. has infinite variation on any interval, no matter how small it is;

Properties 1 and 3 of Brownian motion paths state that although any realization B ( t ) is a 

continuous function of t , it has increments A B ( t )  over an interval of length A t  much larger 

than A t  as A t  —► 0. Since E ( B ( t  + A t )  — B ( t ) ) 2 =  A t , it suggests that the increment is 

roughly like y / t .  This is made precise by the quadratic variation Property 5.

Theorem  2.2.2. [19,  T h e o r e m .  3 .5 ,  p . 64]  F o r  a n y  t  E [0, Too) a l m o s t  a l l  t r a j e c t o r i e s  o f  

B r o w n i a n  m o t i o n  a re  n o t  d i f f e r e n t i a b l e  a t  t .

2.3 S toch astic  C alculus

In this chapter stochastic integrals with respect to Brownian motion are introduced and their 

properties are given. They are also called Ito integrals, and the corresponding calculus Ito 

calculus. For more details and further background we refer to reader to Klebaner [19].

2.3.1 D efinition of the Ito Integral

Our goal is to define the stochastic integral JQT X ( t ) d B ( t ), also denoted X  ■ B .  This integral 

should have property that if X ( t )  — 1 then JQT d B ( t )  = F ( T )  — B ( 0). Similarly, if X ( t )  

is a constant c, then the integral should be c ( B ( T )  — B ( 0)). In this way we can integrate 

constant processes with respect to B .  The integral over (0, T] should be the sum of integrals 

over two subintervals (0, a] and (a, T ] .  Thus if X ( t )  takes two values C\ on (0, a], and C2 on 

(a, T ] ,  then the integral of X  with respect to B  is easily defined. In this way the integral is 

defined for simple processes, that is, processes which are constant on finitely many intervals. 

By the limiting procedure the integral is then defined for more general processes.

Ito Integral o f Simple Processes

We call X (t) is a simple non-random process if there exist times 0 =  to <  h  <  . . .  <  t n —
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T  and constants cq, ci, . . . ,  cn_i such that

n— 1

i=l

Then the Ito integral X(t)dB(t)  is defined by

(2 .2)

R em ark  2.3.1. According to the independence property of Brownian increments, the inte­

gral defined in (2.2) is a Gaussian random variable with mean zero and variance

To integrate random processes, it is important to allow for constants c* in (2.2) to be 

random. If Cj’s are replaced by random variables £j’s, then, in order to have convenient

B(t) for t < ti , but not on future values of B{t) for t > U. If J-t is the cr-field generated 

by Brownian motion up to time t, then £* is T ti-measurable. The approach of defining 

the integral by approximation can be carried out for the class of adapted processes X(£), 

0 < t < T.

D efinition 2.5. [19, Def. 4-1, P-92] A process X  is called adapted to the filtration F =  {^G} 

if for all t, X(t) is Tt-measurable.

R em ark  2.3.2. In order that the integral has desirable properties, in particular that the ex­

pectation and the integral can be interchanged (by Fubini’s Theorem), the requirement that 

X  is adapted is too weak, and a stronger condition, a progressive (progressively measurable) 

process, is needed.

D efinition 2.6. X  is progressive if it is a measurable function in the pair of variables (t,cj),

i.e., B([0, <]) x J-t measurable as a map from [0, t] x into R.

T \
X { t ) d B ( t )  Ci(B{ti+1) -  B(ti)) j = y  Var(ci{B(ti+1) -  £(£*)))

properties of the integral, the random variable £j’s are allowed to depend on the values of
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R em ark  2.3.3. It can be seen that every adapted right-continuous with left limits or left- 

continuous with right limits (i.e., cadlag) process is progressive.

D efin ition  2.7. [19, Def. 4.2, p.93] A process X  — {X(£),0 < t < T}  is called a simple

£o>£i) • • • j£n-i> such that £o is a constant, & is ^-m easurable (depends on the values of 

B{i3) for t  ^ but not on values of B(i3j for t  > U) ,  and E ( g )  < oo, i  — 0 ,1 , . . . ,  n  — 1; 

such that

R em ark  2.3.4. Note that when £j’s are random, the integral need not have a normal 

distribution.

R em ark  2.3.5. Simple adapted processes are defined as left-continuous step functions. 

One can take right-continuous functions. However, when the stochastic integral is defined 

with respect to general martingales, other than the Brownian motion, only left-continuous 

functions are taken.

P ro p e rtie s  of th e  I to  In teg ra l of Sim ple A d ap ted  Processes

In what follows we recall some basic properties of the Ito integral of simple processes.

(PI) L inearity :. If X(t)  and Y(t)  are simple processes and a  and (3 are some constants

adapted process if there exist times 0 =  i o < ^ i  < ••• < in — T  and random variables

n —1

* M  = 6A>(0 +  £ « * W i](0-

For simple adapted processes Ito integral JQT X d B  is defined as a sum

then

[  (a X { t ) +  (3Y(t))dB{t) = a f  X(t)dB(t)  +  (3 [  Y{t)dB(t) 
Jo Jo Jo 

(P2)
[  I {aM(t)dB(t) = B(b) -  R(a), C  I[aM(t)X{t)dB(t) = f  X(t)dB(t), 

Jo Jo Ja 
where I(a,b](t) — 1 for t G (a, 6], and zero otherwise.
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(P3) Zero M ean: E  JQT X ( t ) d B ( t )  = 0;

(P4) T he Ito  Isom etry :

E  ( J  X { t ) d B ( t ) j  =  J  E  (X 2( t )) d t .

Ito  In teg ra l of A d ap ted  P rocesses

Let A(£) be an ^-adap ted  process and assume that {X n ( t ) } n£^ is a sequence of simple 

processes such that

E  I  |X n ( t )  -  X ( t ) \ 2d t  -► 0.
Jo

Any j^-adapted processes can be approximated by a sequence of simple processes in L 2 ( P ) .  

Then we define

[  X ( t ) d B ( t )  := lim [  X n { t ) d B ( t )  in L 2 ( P ) .
Jo n~>oo J 0

It is clear that the limits of X n ( t ) d B ( t ) does not depend on the choice of the approxima­

tion sequence {Xn(£)}nGjv-

T heorem  2.3.1. ([19, Theorem 4.3, p.96]) Let X { t )  be a regular adapted process such that 

Jq \ X { t ) \ 2d t  < oo with probability one. Then Ito integral X ( t ) d B ( t )  is well-defined and 

enjoys the properties (P1)-(P4).

Let X  be a regular adapted process, such that JQT X 2 ( s ) d s  < oo with probability one, so 

that f *  X ( s ) d B ( s )  is defined for any t  < T .

The Ito integral also possesses the following properties (see, e.g., [41, Theorem 5.9, p.22], 

[19, Theorem 4.7, p .101]): for and t  > s,

• X ( s ) d B ( s )  is .^-measurable;

E  X ( u ) d B ( u ) \ E a}  = 0 ;

• E I I  X ( u ) d B ( u )  \ T S )  = J i E ( \ X ( u ) \ 2 \ f , ) d u - ,

Martingale Property: Y ( t )  := X ( s ) d B ( s )  ? 0 < t < T, is a square integrable martin- 

gale if E jg  |X (s)|2ds < oo, i.e., E ( Y ( t ) \ T s ) = K(s).
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2.3.2 Ito Integral Processes

Let A be a regular adapted process, such that E(J^ X 2 (s)ds) < oo with probability one, 

so that Jq X(s)dB(s)  is defined for any t < T .  Since it is a random variable for any fixed t, 

Jq X(s)dB(s)  as a function of the upper limit t  defines a stochastic process

Y ( t ) =  [  X(s)dB{s).
Jo

It is possible to show that there is a version of the Ito integral Y  (t ) with continuous sample 

paths. It is always assumed that the continuous version of the Ito integral is taken. It will be 

seen later in this section that the Ito integral has a positive quadratic variation and infinite 

variation.

M artingale Property of the Ito Integral

It is intuitively clear from the construction of Ito integrals that they are adapted. To see 

this more formally, Ito integrals of simple processes are clearly adapted, and also continuous. 

Since Y (t) is a limit of integrals of simple processes, it is itself adapted.

Suppose that in addition to the condition X 2 (s)ds < oo, condition JQT E ( X 2 (t))dt < 

oo holds. (The latter implies the former by Fubinis theorem.) Then Y(t)  =  X(s)dB(s)  ,0 <  

t < T, is defined and possesses first two moments. It can be shown, first for simple processes 

and then in general, that for s < t :

E  ^  X{u)dB(u)\Es ĵ = 0.

Thus

E (Y ( t ) \T a) = E  U \ ( u ) d B ( u ) \ T S

= J  X(u)dB(u) + E  ( j  X(u)dB(u)\Fs

= [  X(u)dB(u)
Jo

=  r(s).

Therefore Y(t)  is a martingale. The second moments of Y(t)  are given by the isometry
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property,

E  ^ j f  X(s)dB(s)J  = Jo E  ( ^ 2(«)) ds.

This shows that supt<T E  (Y 2 (t)) =  Jq E X 2 (s)ds < oo.

D efin ition  2.8. [19, Def. 4-0, p .101] A martingale is called square integrable on [0, T] if its

second moments are bounded.

Thus we have

Theorem  2.3.2. [19, theorem f . l ,  p.101] Let X(t) be an adapted process such that / QT E X 2 (s)ds <

oo. Then Y(t) =  f* X(s)dB(s),0  < t < T, is a continuous zero mean square integrable mar­

tingale.

Theorem 2.3.2 above provides a way of constructing martingales.

Corollary 2.1. [19, Corollary 4-8, p .101] For any bounded function f  on R, f(B (s))dB(s)  

is a square integrable martingale.

Quadratic Variation and Covariation of Ito Integrals

The Ito integral Y(t) =  Jq X(s)dB(s), 0 < t < T, is a random function of t. It is

continuous and adapted. The quadratic variation of Y  is defined by

71—1

i= 0

where for each n, {£”}̂ =0) is a partition of [0, T], and the limit is in probability, taken over 

all partitions with 5n =  max(f"+1 — t™) —» 0 as n —> oo.

Theorem  2.3.3. [19, Theorem 4-9, p. 101] The quadratic variation of the ltd integral f* X(s)dB(s), 0 

t < T  is given by



Let now Yi(t) and Y2 (t) be Ito integrals of X\(t)  and X 2 {t) with respect to the same 

Brownian motion B(t). Then, clearly, the process Yi(£) +  Y2 (t) is also an Ito integral of 

Xi(t)  +  X 2 {t) with respect to B{t).

Quadratic covariation of Y\ and Y2  on [0, t] is defined by

[ri,y2](t) = i([vi + u,yi + vym - [n,n](o - k.uiw).
By (2.3) it follows that

[Yl t Y2 ]{t)= [  X 1 (s)X 2 (s)ds.
Jo

It is clear that [Yi,Y2 ](t) — [Y2, Yi](t), and it can be seen that quadratic covariation is 

given by the limit in probability of products of increments of the processes Y\ and Y2 when 

partitions {£”} of [0, t] shrink,

71—1

\Yu Y2 ](t) = lim £  (U(C+i) -  *!(*?)) (U(C+1) -  U ( O )  •
1= 0

2.3.3 Ito Formula

Let X t be a d-dimensional Ito process on t > 0 with the stochastic differential

dXt =  Rtdt +  ZtdB t , X q — 2 , (2-4)

where {B t }t>0 is an n-dimensional Brownian motion defined on a filtered probability space 

(n, J-t, P ) satisfying the usual conditions, and R  : [0, 00) —> R d, Z  : [0, 00) —> R d x R n are 

progressively measurable. Let /  E C 1 ,2 (R+ x R d]R), the family of all real-valued functions

/(£, 2 ) defined on R + x R d such that they are continuously once differentiable in t and twice

in 2 . Then the following Ito formula (see, e.g., [29, Theorem 5.1, p.66])

f i t ,  X , )  = / (  0, X Q) +  j f ‘ |£ ( s ,  X . ) d s  +  Y  / '  x * ) R i d s

d  71 rA p

+ E E  a f ( s ' x ^ z ? d B i  <2-5)
i=1 7=1 J o  1i=i j=i

' d2f

U=lJo dxiXj 3 “ 1 J
( s , x s) ( z z fyjds .
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The Ito formula (2.5) can also be rewritten in a compact form

f ( t ,  X t) = /(0 , Xo) + j  X s)ds + x s), d X a)

+ \ J  trace(Zj'V 2 f ( s , X s)Z,)ds,

where V and V2 stand for the gradient and Hessian operators with respect to the second 

variable respectively, i.e.,

and
/  d2f ( t  x) ' _ _ d2f( t ,x)  \  

dx2 dx\dxd

V 2 f ( t , x )  =
d2f(t,x) d2f(t,x)

\  dxddxi dxj /

2.4 M artingale R ep resen tation  T heorem

The following result is used several times in the Chapters 3 on continuous market models as 

the Martingale Representation Theorem can be used to establish the existence of a hedging 

strategy. Suppose that B  =  { B t , t  G [0,T]} defined on the complete probability space 

(O,^7, P )  is standard n-dimensional Brownian motion (for some n > 1) and let { F h t  G 

[0,T]} be its standard filtration. Without loss of generality we assume that T  =  T t-  It is 

important for this result that the filtration is the standard one generated by the Brownian 

motion. For a proof of this theorem, see for example Revuz and Yor [47], Theorem V.3.4.

Theorem 2.4.1. ( M a r t i n g a l e  R e p r e s e n t a t i o n  T h e o r e m )  S u p p o s e  t h a t  { B t , T u t  G [0,T]} i s  

a r i g h t  c o n t i n u o u s  local  m a r t i n g a l e .  T h e r e  is  a n  a d a p t e d ,  n - d i m e n s i o n a l  p r o c e s s  r) = {r}t , t  G 

[0,T]} s a t i s f y i n g

1. rj : [0,T] x f i - 4  R n i s  { B T  x F t - m e a s u r a b l e  w h e r e  r]{t ,uj )  = 7jt{uS) f o r t  G [0,T] a n d

uj G

Jo M 2*  < oo P - a . s . ,
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such that P-a.s.,

Mt = M0 + f  r\sdBs for t G [0, T}.
J o

2.5 In troduction  to  stoch astic  d ifferential equations

Consider a Stochastic Differential Equation (SDE) in the framework

dX t = b(t, X t)dt +  cr(£, X t)dWt, t > 0 (2-6)

with the initial value X q = x G Rn. Here b : [0, oo) x Rn —> P n, a : [0, oo) x Rn —> Rnxm 

be measurable, and is an m-dimensional Brownian motion defined on the stochastic

basis (f i,P , P) equipped with the reference family {Tt}t>o satisfying the usual conditions,

i.e., T t+ := n s>fJFs =  T s C for s < t, and T q contains all P-null sets.

Next we recall two kinds of notions of solutions to (2.6).

Definition 2.9. (Strong Solution) A process X(t)  is called a strong solution of (2.6) if for 

all t '> 0 the integrals ^  6(s, Ar(s))ds and <t(s, A(s))dVE(s) exist a.s., and

X(*) =  x ( 0 ) +  [  b(s,X(s))ds +
Jo

Definition 2.10. We shall say that the pathwise uniqueness holds for (2.6), if, for any two

solutions {Ari(x)}(>o, { (j/)}t>o that X t(x) is the solution with Xo(a;) =  x and Yt(y) is the

solution with Vo(2/) — V defined on the same quadruplet (f2, P , {jFt}t>o, P), x =  y implies 

X t(x) = Yt(y) a.s.

Definition 2.11. (Weak Solution) If there exist a probability space with a filtration, a 

Brownian motion W (t) and a process X (t) adapted to that filtration, such that: X (0) has 

the given distribution, for all t the integral below are defined, and X (t) satisfies

))ds +  f  <j(u,X(u))dW(u),
Jo

then X (t)  is called a weak solution to (2.6).

X(t) =  X (0 ) +  /  f i(u ,X (u

JJo
cr(s, A(s))dW (s), a.s.
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D efinition 2.12. A weak solution is called unique if whenever X(t)  and X'{t) are two 

solutions (perhaps on different probability spaces) such that the distributions of A’(O) and 

^ '(0 ) are the same, then all finite-dimensional distributions of X(t)  and X'(t)  are the same.

R em ark  2.5.1. The concept of weak solution allows us to give a meaning to an SDEs 

when strong solutions do not exist. Weak solution are solutions in distribution, they can be 

realized (defined) on some other probability space and exist under less stringent conditions 

on the coefficients of the SDE.

For the strong solution, we need to give a probability space (ft, J-, {J-t}t>o, P) and the 

Brownian motion Wt in advance. For the weak solution, we need to construct a probability 

space (fl, T , {.Ft}t>o, P) and the Brownian motion, and then ask for X t such that the equation 

considered.

To guarantee the existence and uniqueness of strong solutions of (2.6), we impose the 

following conditions.

T heorem  2.5.1. (Existence and Uniqueness of Strong Solutions: Global Case) Let T  > 0 

be fixed and assume that there exist Li, L 2  > 0 such that, for any x ,y  G Rn and t G [0, T],

\b(t, x ) \  + ||<t(£, x ) || < Li(l  +  |a:|) (Linear Growth Condition) (2-7)

and

\b(t, x) — b(t, y)\ +  \\cr(t, x) — a(t, y)\\ < L>2 \x — y\- (Lipschitz Condition) (2-8)

Then (2.6) has a unique strong solution {A^(:r)}f>o with the starting point x G l "  such that 

sup0<j<T E \X t{x)\p < 00 for any p > 0.

T heorem  2.5.2. (Existence and Uniqueness of Strong Solutions: Local Case) Replace the 

global Lipschitz condition (2.8) by the following local L ipschitz condition: for A  > 1, 

there exists > 0 such that

\b(t, x) -  b(t, y )| +  ||a(t, x) -  a (t , y)|| < K N\x -  y\, \x\ V \y\ < N.

Then (2.6) has a unique strong solution { ^ ( a ; ) } ^  with the starting point x G Rn such that 

sup0<t<T E \X t(x)\p < 00 for any p > 0.
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R em ark  2.5.2. Let b(x) := xs inx,x E R. It is easy to see that b is of linear growth, but 

satisfies a local Lipschitz condition, not a global one.

R em ark  2.5.3. Clearly, by definition, a strong solution is also a weak solution. Uniqueness 

of the strong solution (pathwise uniqueness) implies uniqueness of the weak solution, (a 

result of Yamada and Watanabe (1971)) [65].

underlying probability measure, so that the process which was the driving Brownian motion 

becomes, under the new probability measure, the solution to the differential equation.

2.6 G irsanov T heorem

Girsanov Theorem is another powerful probabilistic tool to solves SDEs by changing the

Lem m a 2.6.1. (Girsanov Transformation) Let </?(•) be an ^-predictable process such that

(2.9)

Then the process

is Brownian motion with respect to {^}t>o c»n the probability space P), where

dP{u)) \= exp

R em ark  2.6.1. The following Novikov condition:

is one of the sufficient condition such that (2.9) holds.

2.7 Som e Fundam ental Inequalities

For later use, we recall some fundamental inequalities.
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Lemma 2.7.1. (The Gronwall Inequality [19, Theorem 1.20, p .18]) Let f( t ) ,  g(t) and h(t) 

be continuous non-negative functions on interval [a, b], and

f ( t ) < g ( t ) +  f  h(s)f(s)ds , for te[a,b].
J  a

Then

f( t)  < g(t) +  J  g(s)h(s)exp  ̂J  h(a)da^ds a G [a, b].

In particular, if g is non-decreasing, then

f ( t )  < g(t) exP ( J  h{a)do^j a  G [a,b].

Lemma 2.7.2. (The Chebyshev Inequality [41, Theorem 1.20, p .18]) For each constant 

c > 0 and any random variable Y  such that E \Y\P < oo for some p > 0,

P{Y > c ) < ^ l .V -  j  -  c p

Lemma 2.7.3. (The Holder Inequality [35, Theorem 7.3, p.40]) If S' is a measurable subset of 

Mn with the Lebesgue measure, and /  and g are measurable real-or complex-valued function 

on S, then

\f{x)g(x)\dx < ( J s \f(x)\Pdx) P ( \g(x)\qdx ĵ q,
's

where  ̂  ̂ =  1 with p,q > 1.

Lem m a 2.7.4. (The Burkholder-Davis-Gundy inequality) [19, Theorem 7.34, p.201]) Let 

g G L 2 {R+\ R dxm). Define, for t > 0,

x(t) = f  g(s)dB(s) and A(t) =  f  |p(s)|2ds.
Jo Jo

Then for every p > 0, there exist universal positive constants cp, Cp (depending only on p), 

such that

cp£|yl(t)|? < e (  sup |x(s)|pl  < CpE\A(t)|f
0 < s < t

for all t > 0. In particular, one may take

'3 2 ' E 

P

cp =  1, Cp = 4 if p =  2;

©'■ < M ? )*

zp =  ( 2p ) 2 > C p =  [PP+1/ 2(p -  l ) p *] ’ if p >  2 .
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Chapter 3

A C om parison o f N o Free Lunch W ith  

V anishing R isk C ondition A nd N o  

G ood D eal C ondition

3.1 In troduction

Due to the seminal work [13] by Delbaen and Schachermayer, the fundamental theorem of 

asset pricing became pivotal in mathematical finance, which is a key result in establishing 

a mathematical framework for pricing and the key condition in the so-called No Free Lunch 

with Vanishing Risk condition [14]. Since then, many investigations are devoted to generalize 

this remarkable condition to cover more general situations in the mathematical modelings, 

cf. eg.[1],[5],[15],[48] and references therein. Most recently, Bion-Nadal and Di Nunno [1] 

proposed a new condition for pricing in incomplete markets. This condition is named as No 

Good Deal Condition, which should be thought as an analogy or modified version of the 

celebrated No Free Lunch with Vanish Risk Condition.

This chapter begins with the basic ideas of First and Second Fundamental Theorems 

of asset pricing in the discrete model. Then a general continuous market model is defined 

and the fundamental theorems of asset pricing are proved in this setting. The objective
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is to compare these two conditions in some simplified models. We aim to seek certain 

links between the No Free Lunch with Vanishing Risk condition and the No Good Deal 

condition by explicating them into several simple models so that one can compare them 

more concretely. Our discussions reveal the essential properties of these models.

The rest of the chapter is organized as follows. In the next section, we start with the 

discrete time market model. Then introduce the basic concepts of the First and Second 

Fundamental Theorems of asset pricing in the continuous model. Then a general continuous 

market model is defined and the fundamental theorems of asset pricing are proved in this 

setting. In the latter scenario we focus on conditions of the model which satisfy no free 

lunch with vanishing risk. Tools from probability such as martingale, equivalent martingale 

measure, stochastic integrals, Girsanov transformation are all used in this framework. In 

Section 3, we present a complete comparison with a thorough derivation. The paper ends 

with a conclusion to highlight our consideration.

3.2 D iscrete  T im e M arket M odel

Let us first consider the discrete-time market. We consider a market model in which 

d +  1 assets are priced at time t = 0,1, . . .  ,T. Let the random vector St = ( S ^ S t) — 

(5^, S' /,. . . ,  5^=1,.,.,t be an adapted process on a filtered probability space (fi, T ’, (T t), P), 

t = 0 ,1, . . .  ,T. Note that if S  is not a semi-martingale, then the space of S'-integrable pro­

cess cannot include all the local bounded process. The price of the ith asset at time t is 

modeled as non-negative random variable S S t is assumed to be measurable with respect 

to a ex-algebra T t C T . Here S \  is a riskless bond which will pay a sure amount at time T. 

St is a risky stock price process.

A trading strategy is a predictable jRd+1-valued process =  (£f°, £?)t .=i , . . . ,T-

The value Q of a trading strategy corresponds to the quantity of shares of the i th asset 

held during the t th trading period between t — 1 and t. Thus, QSl_i is the amount invested 

into ith asset at time t — 1, while QSl is the resulting value at time t [23, p210].

31



The total value of the portfolio & at time t — 1 is

d 

i= 0

By time £, the value of the portfolio has changed to

d

V i m = i f S t = Y , € t S i
2=0

D efinition 3.1. A trading strategy is called self-financing if

f t - S t = £t+i * St. (3-1)

(3.1) means that the portfolio is always rearranged in such a way that its value is preserved.

It follows that

£t+i • St+i — • St = Cit+i ■ {St+i — S t) (3-2)

In fact, a trading strategy is self-financing if and only if (3.2) holds for t = 1 , . . . ,  T  — 1.

It follows that t
I  ■ St =  6  • So + ^ 2 1  ■ {Si -  $ _ , )  t =

i=1

Here, the constant • So can be interpreted as the initial investment for the purchase of the 

portfolio £i.

It will simplify computation to use discounted asset price processes. For i = 0 ,1 , . . . ,  d, 

we define
q*>i — zl_ t — 1 t  

~  S° ’

Then Sf = (S'*’0,S^’1, . . . , Sf*’d) is the value of the vector of discounted assets prices at time 

t.

D efinition 3.2. The discounted value process for a trading strategy £t is defined by

It is also given by Vt* =  • St* for t =  1 ,___ T.
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Definition 3.3. A self-financing trading strategy £t is called an arbitrage opportunity if its 

value process V* satisfies

1. VQ* =  0,

2. V f > 0  P -a .s .,

3. P[Vf > 0] > 0.

A model satisfies the no-arbitrage condition if such a strategy does not exist. The market 

model is said to be viable if  it has no arbitrage opportunities.

Definition 3.4. The discounted gain process for £ is defined by

t
G'tlO = Y , • (A5*)> t = l , . . . . T .  (3.3)

S=1

Where AS* =  S* — S*_1. Clearly, We set Gq =  0, It involves only the risky assets, since 

A S * ’0 = 0 for s = 1 . . . .  ,T .

3.2.1 First Fundamental Theorem  of A sset Pricing in the discrete 

tim e

An equivalent martingale measure is a probability measure Q on (f2, J-), such that Q is 

equivalent to P  and S  is a martingale equivalent under Q , ie, for each t E {1 ,2 , . . .  ,T},

E q  [Sn+1 \En] =  Sn.

Theorem 3.2.1. ([51, Theorem 1.2, p4j) (First Fundament Theorem of A sset Pricing 

in the discrete tim e model)A model is arbitrage-free if  and only if  exists an equivalent 

martingale measure, i.e., M (P)  ^  0, Let M (P ) denote the totality of equivalent martingale 

measure on (Cl, T , P), where Q is equivalent to P  and S  is a (J-n,Q)-martingale.

Proof. The argument is motivated by[61, p35]. We first prove the “if’ part. Suppose 

there is an equivalent martingale measure Q. For a proof by contradiction, suppose £ is an
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arbitrage opportunity, that is £ is a trading strategy with initial value Vo(£) =  0, and the 

final value Vr(£) > 0, It follows that the discounted values satisfy V̂ *(£) =  0, V^(£) > 0, 

and since Q is equivalent to P, Eq [V^\ > 0. As is a martingale under Q,

and so

W ( 0 1  =  W K ) ] -

However, the left side object above is strictly positive whereas the right member is zero, 

which yields the contradiction. Thus there cannot be an arbitrage opportunity in the finite 

market model.

We now turn to prove “only if’ part. Suppose that the finite market is viable. Since ft is 

a finite set, for any random variable Y  defined on (fi, F), by enumerating Q as {cji, . . . ,  u>n}, 

we may view Y  as (Y(a;i),. . .  ,Y(u)n)) G Rn. Since T  consists of all subsets of all subsets 

of O, any point in R  can be thought of a real-valued random variable defined on Q. Thus, 

there is a one-to-one correspondence between points in Rn and random variables defined on 

Q. Adopting this point of view for the terminal discounted gain random variable G^(£), we 

define

L = {G^(£) : £ is a trading strategy such that Vo(£) =  0}.

Note that L is a linear space, since is linear in £ and any linear combination of trading

strategies with initial values of zero is again a trading strategy with the same initial value. 

Also, L is non-empty because the origin is contained in L. Let

D — {Y  G Rn : Yi > Oforz =  1, . . .  , n and Yj > Ofor some j } .

Thus, D is the positive orthant in Rn with the origin removed.

C = \ Y  <LD-.Yj Yi = l b
1 = 1

Then C is a convex, compact, non-empty subset of Rn and L fl C = 0. By applying the 

Separating Hyperplane Theorem. We see that there is a vector Z  G Mn {0} such that the 

hyperplane. H = {Y  G Mn : Y  • Z  = 0} contains L and Z ■ Y  > 0 for all Y  G F. By setting
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Yi = 1 if i =  j  and Y* = 0 if i ^  j.  We see that Zj > 0 for each j  E {1, . . . ,  n}. Define

Zi
£ " = i V

i = 1 , . . .  . 7 1 .

Then Q is a probability measure on (f2, T ) and it is equivalent to P, Moreover, for any 

trading strategy £ such that Vq(£) =  0, we have

E,
i = i  2 ^ = 1

Gt ( 0  • £
E L i  ^

(3.4)

=  0 .

where the last line follows from the fact that Z  is perpendicular to H , which contains L.

Note that involves only (£*, . . . ,  £f). Given £*, . . . ,  where for 2 =  1, . . . ,  d, =

{£,l}t=i...,:r and Q is a real valued, T t- i  measurable random variable for each £, there is a 

unique time-ordered set of T  real-valued random variable £° = {^}t=i,...,T such that £ = 

■ ■ ■ > £t*}t=i,.-,T is a trading strategy with an initial value of zero. Upon substituting 

this in (3.4), we see that

' T

0 = e q {g *t(0\ = e q '

E,Q
t=  1 2—1

For each fixed i G of}. If we set =  0 for all t and j  ^  2, we obtain

0 = EtQ
2—1

for each }t=i...,T‘ snch that Q is a real-valued ^-i-m easurable random variable for

each t. It then follows from lemma 3.2.1, proved below, that for i E {1, . . . ,  d}: S * '1 is a 

martingale under Q, Hence Q is an equivalent martingale measure. □
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3.2.2 Second Fundamental Theorem  of A sset Pricing in the dis­

crete tim e

We will frequently refer to the random variable X ,  which represents a European contingent 

claim. For a European contingent claim X , we let X * =  X/Sj-, the discounted value of X.  

A replicating (or hedging) strategy for a European contingent claim A is a trading strategy 

£ such that Vr(£) =  X.  If there exists such a replicating strategy,the European contingent 

claim is attainable. The finite market model is said to be complete if all European contingent 

claims are attainable.

T h eo rem  3.2.2. ([61, Theorem 3.3.1, p40]) Suppose that the finite market model is variable 

and X  is a replicable European contingent claim, Then the value process {K(£), t =  1 , . . . ,  T}  

is the same for trading strategies £ for X .  Indeed, for any trading strategy £ and any 

equivalent martingale measure Q, we have

V :(t)  = EQ[X '\T t},t = l  ,T.

Before proceeding to the next result, we need to use the following Lemma 3.2.1.

Lem m a 3.2.1. ([61, Lemma 3.2.6, p39]) Let M  =  {Mt,t  =  0 , 1 , . . . , T} be a real-valued 

process such that Mt G T t. Then, M  is a martingale if and only if

T

E 0y  v tAM t
.t=i

for all rj = {T]t, t =  1, . . .  ,T} such that ry is a real-valued T t-\-measurable random variable 

for t = 1 , . . . ,  T. Here A Mt = Mt — Mt_ i.

T heo rem  3.2.3. (Second F undam en ta l T heorem  of A sset P ric ing  in th e  d iscrete  

tim e) ([61, Theorem 3.3.2, pfl])A  variable finite market model is complete if and only in 

the admits a unique equivalent martingale measure.

Proof. The argument follows the lines of [61, p41]. If the finite market model X  is viable 

and replicable, there is an equivalent martingale measure Q due to the first fundamental
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theorem of asset pricing. Let Q be another equivalent martingale measure. For any A G Tp  

and X  =  xA, according to theorem 3.2.2, one has

E q [ X *] =  E q [ X ' } .

Multiplying both sides by the deterministic quantity Sy- yields

Eq[X] = E q[X}.

This of course implies from X  =  \ A  that

Q(A) = Q(A).

Then we conclude that Q = Q by the arbitrariness of A G Tp = T .

If the market is not complete, then there exists-a European contingent claim X  unattain­

able. Set

v  ■■= { t  =  (f1, ■ . . , ? ) : ?  = {£}t=i, ...,t and f* e JS-i}.

Then there is no pair (c, £) with £ G V  and c G R such that

T

c + y > - A S 7  =  x ‘,
t=1

-'*,1 o*,dyin which S* = {S*’\ . . . , S * ' d).

Let

L =  | c + X ^ ‘ A S t e P . c e E j .

Observe that L is a strict subspace of Rn. So there exists Z G L1 , the orthogonal complement 

of L  in K71. Then it follows that

y  Z(uj)Y(uj) = 0 for all Y  G L  (3.5)

Since the finite market model is viable, there is at least one equivalent martingale measure 

Q, then Q({u;}) > 0 for all wGfl .  Set

:= and Q * ( M )  :=  for a11 “  G
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in which ||Z||oo := max|Z(u;)|. Thus (3.5) can be rewritten as

E q[ZY] = 0 for all Y  G L. (3.6)

Since Z  ^  0, Q* — Q. Moreover, Q*({^}) > 0 for each u  G 91. By the definition of Q*, note 

from (3.6) with Y  = 1 G L that
1

1 +

2||Z||

■E,
m i

=  1 .

Thus, Q* is a probability measure that is equivalent to Q.

We finally need to check that S* is a martingale under Q*. For any £ G V, by the 

definition of Q*, it is easy to see that
rP “1

i
Eq. E « ‘ - A5<

t—i
EtQ E ? « - AS«

t= i

+ ■KQ
t= 1

(3.7)

The first term on the first right side of the equality above is zero, by lemma 3.2.1, since S* 

is a martingale under Q. The second term is zero by (3.6), since Y  = Ylt=i£t. • AS**- On 

setting £/ = 0 for all j  ^  i , and t = 1, 2 , . . . ,  T, and applying lemma3.2.1 again, it follows 

that S * '1 is a Q*-martingale and for i =  1, . . .  ,d, and since this is trivially so for i = 0, it 

follows that S* is a Q* martingale and hence Q* is an equivalent martingale measure that is 

different from Q. □

3.3 C ontinuous M arket M odel

We consider a market model in which d + 1 assets are priced at time t G [0, T]. Our model 

has two assets, a risky stock and a riskless bond. We use S\ =  (S j , . . . ,  S f ) t£[o,T] to denote 

d risky stock price processes. We use Sf as the riskless bound with growing 5° =  1 + r, r is 

a given interest rate.

Let St — S [ , . . . ,  S f ) t.e[o,T] denote the corresponding price processes for this multi 

asset, which can be viewed as a vector valued stochastic process. In general, we take S t
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to be a semi-martingale on a filtered probability space (f2, J-, {Tt)t£[o,T], P)- Here as usual, 

the filtration {Tt)t£[Q,T\ is assumed to be right-continuous. The price of the ith asset at 

time t is modeled as non-negative random variable S\. We assume that (S}}. . . ,  S f) te[o,t] is 

{^i}-adapted.

Recall a trading strategy is an {.T^j-predictable Rd+1-valued process £t =  (£t\£t) — 

(£,t’£t i • i£t)t<z[o,T]- The value Q of a trading strategy £* corresponds to the quantity of

assets of the ith asset held at time t. We simplify computation to use discounted asset price 

processes. For i =  0 , 1, . . . ,  d, we define

=  < e [ 0 , n -

Then S[ =  S'*’1, . . . ,  S['d) is the value of the vector of discounted assets prices at time

t. Next we will introduce some definitions.

D efin ition  3.5. ([61, Lemma 4-2.1, p59[) A trading strategy =  (£f°, £ j , . . . ,  £?)i>o is called 

self-financing if and only if Vt* is a continuous, adapted process such that P-a.s., for each 

t G [0,T],

v t =  6  • s ;  =  J2  f  t e { 0 , T ] , i  =  0 , l , . . . , d .  ( 3 .8)

i= 0 ^0

D efinition 3.6. A self-financing trading strategy £t is called an arbitrage opportunity if the 

discounted value process Vt* satisfies the following

1- V0* = 0;

2. there exists a constant a such that P{{u; G : Vt*(u)) > a, for all t G [0,T]}) =  1;

3. V f > 0 P—a.s.]

4- P[Vf > 0] > 0.

A model satisfies the No-Arbitrage condition if such a strategy does not exist.

It turns out that in the continuous-time setting, the No-Arbitrage condition does not 

guarantee the existence of an equivalent local martingale measure (see Example 7.7 in F.
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Debaen and W. Schachermayer in [13]). A stronger condition is needed. The following 

modification of the no-arbitrage property was introduced by A. N. Shiryaev, A. S. Cherny 

in [51].

D efin ition  3.7. ([51, Definition 1.6, p 6 ])A trading strategy . . . ,  £t*)te[o,T] fulfills

free lunch with vanishing risk condition, if

1. V0* =  0;

2 . for each k = 0 , 1 . . . ,  d, there exists a constant a* such that

P({lj G O : Vt*’k(uj) > afc, for all t G [0,T]}) — 1, 

where V f ’k := £kS['k;

3. for each k, V f ,k > — P  — a, s , ;

4 . there exist constants a such that P{{co G O : Vt*(u) > a, t G [0,T]}) =  1;

5. there exist constant d'i > 0; 8 2  > 0 such that, for each k, P {V f’k > <$i} > 6 2 .

A model satisfies the No Free Lunch with Vanishing Risk condition if such a sequence of

strategies does not exist.

D efinition 3.8. A trading strategy , %?)t£[o7T] realizes free lunch with bounded

risk if it satisfies condition 1, 2 of Definition ?? as well as the following conditions:

1 . there exists a constant a such that, for all k =  0 ,1 , . . . ,  d,

P{{u) G : Vt*,k(uj) > a, for all t G [0,T]}) = 1;

2. there exist constants £1 > 0, 6 2  > 0 such that, for each k, P{V f'k > d'i} > £2- and, for

each 6  > 0, P { V f’k < —5} —» 0.

A model satisfies No Free Lunch with Bounded Risk condition if such a sequence of strategies 

does not exist.
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Theorem  3.3.1. ([13, Theorem 1.1, p4-79[) (Fundamental Theorem of Asset Pricing )

Let St be a locally bounded, (d+ 1 )-dimensional vector valued semi-martingale. An equivalent 

local martingale measure exists for S t if and only if the No Free Lunch with Vanishing Risk 

condition holds.

3.4 N o  good  deal cond ition

Here we will focus on the no-good deal condition. Following J. Biog-Nasal and G. Dvi Nunno 

[3] we assume that the given {•7rt}te[o,T] satisfies that T t  — T .  We work in an Loo-framework 

and consider claims as elements of the space L^ifFf) L ^ Q ,  T t, P) of random variables 

with finite norm UAHoo := esssup|A|, X  E L ^ T t ) .  For any time t E [0,T], let Lt C L ^ T f )  

denote the linear sub-space representing all market claims that are payable at time t. Note 

that on a complete market Lt =  L ^ T t ) .  For a given asset X  E Lt we denote the systems 

of prices by xst, 0 < s < t < T  . We assume that price xst(X) 0 < s < t < T, for marked 

assets X  E Lt are given and we describe them in axiomatic form where denote the

price of asset X  from s to t . Here we set the bounds on prices m si{X) < xst(X) < Mst( X )  

and we study the existence of a pricing measures Pq that allows a linear representation 

a;Si(X) = Ep0 [X\Ts], X  E Lt, fulfilling the given bounds. The pricing measure Pq will reflect 

the choices of bounds. When we use +  in the notation of space, we refer to the corresponding 

cone of the non-negative elements.

Next we consider no-good-deal pricing measures. The good-deal bound is a way to restrict 

the choice of equivalent martingale measures in incomplete markets. The idea is to consider 

martingale measures that not only rule out arbitrage possibilities, but also deals with “too 

good to be true” . As usual we work with general price systems and not with specific price 

dynamics.

Following Chicharee and Sa Requejo [9], a good-deal of level 5 > 0 is a non-negative 

JFT-measurable payoff X  such that

E( X)  -  Eq (X) y  5  

^ V a r ( X )  -
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Accordingly, a probability measure Q is equivalent to P  is a no good-deal pricing measure 

if there are no good-deals of level 5 under Q , i.e.,

Eq [X\ > E\X\ -  Sy /Var(X),  X  > 0. (3.9)

Note that (3.9) holds for all X  G L ^ T t ) as we have that X  +  H^Hoo > 0. Hence also the

relation

E q[X] < E[X} + 5s/V a r (X ) ,  X > 0

holds true for all X  G This motivates the following extended general definition of

no good-deals pricing measure.

D efinition  3.9. ([3, Theorem 6.1, p24]) A probability measure Q equivalent to P  is a no 

good-deal pricing measure if there are no good-deals of level 5 > 0 under Q, i.e.,

~  v 'Var (X)  ~

for a l i x  e  L2 (Xt ,P)  n i i ( f T,P ) .

3.5 C om parison and further d iscussions

In general, for fixed T  > 0, consider a stochastic differential equation on [0,T] x Rn,

dXt = fi(t, X t)dL + cr(£, X t)dWt, (3.10)

where fi : [0, T] x Rn Rn, a : [0, T] x Rn —> Rnxmand Wt is an m-dimensional Brownian

motion. Under linear growth condition and Lipschitz condition

\p(t,x)\ + \\a(t,x)\\ < Ct (l + \x\) x  G Rn, t G [0, T];

|p{t,x) -  p ( t ,y )| + \\<r(t,x) -  cr(t,2/)|| < Ct \x - y \  x ,y  £ Mn, t G [0,T].

for some constant Ct > 0 , for every t G [0, T\, (3.10) admits a unique strong solution (X t)t>o

for a given initial X q.
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In the special case, let (St)t£[o,T] be the price process satisfying the following Black-Scholes 

pricing dynamics
dSt _ _
— - = jidt + adWt.
St

along with a bank account dSf =  rdt , where r, /x, a are positive constants. Given initial 

data So, St is determined uniquely by the above equation, and St is given explicitly by 

St =  Sq [exp(/i — \<J2)t +  aW(t)] . The discounted price process is given by Sf  = Jfr. We 

then have discounted price:

ST = So exp (M -  r -  -cr2)i +  aW t (3.11)

Now applying Ito formula for (3.11), we have

dS*t = ( n -  r)S;dt + aS't dWt. (3.12)

According to (3.12) and Definition 3.5 with d = 1 and =  e , the value process is then

v? =  v0* + r & d s ;
Jo

= v0*+ [  Z tS ; { (n - r )d t  + <TdWt}
J o

= erT + (M -  r) f  i ts;dt  + a f ( tS;dWt
J o  Jo

= erT +  (M -  r)So [  +  aS 0  [  i te ^ - ’- ^ 2 )t+<’w‘dWt.
Jo Jo

Let

then we have

(7

d f
dx

a2/  
w  =  a ^ e

{ n - r - \ o 2)t e<jx

and

Ol = - 0 i - r -  I a 2)^ e ^ - r- ^
at  a 2 a at

where we assume £* is differentiable w.r.t t.
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Clearly, in terms of the Ito formula [44, Theorem 4.2.1, p48] 

/ 7 | f ( t ,  W,)dWt = f (T ,  WT) -  /(0 , Wo) -  f dt

=  _ ^ T e ( M - r - i a 2 ) T &aW T _  _- £ o -  [  
V Joa

+  _  r  _  i a 2N^e(M- r - i a 2)feaWt +  l e(M- r- I a 2)tecT̂ t ^
(7 2 (7 O t -

•r r i  i a &

(At-r-i(T2)fe(rWt

=  - h o  -  f
O CF Jo

- ( M - 0 & + -  o,<J <7 O t

d t

eb-r-\<T*)teaWtdL

Thus,

erT + ( j i -  r)So J  i ie ^ - T- ^ 2)t+'!W‘dt + a S 0[ ^ T e U‘~r~ ^ 2}Te,’WT -  h o

[ T \ 1 t \C a. 1 a£<
70 _<*■ ^ ^

* - r —  | o - 2 ) t e 0 - W *  |

=  e rT  +  S o ^ T e (fl- ^ 2) T e aWT -  S 0 f  ^ e ^ - r ~ ^ 2) t e a W t d t
Jo ot

=  ^  (Jf;erT +  ^ S o f r e ^ - ^ e ^  -  dt.

By the item 5 of definition (3.7), if there are constants > 0, 8 2  > 0, then free lunch with 

vanishing risk exists,

P {Jo + ^ S°& e('‘“ ’'“ l '’2)7’e‘TWT -  S 0 ^ e ^ - ’- l ‘’2 »e‘rW‘)  dt > <5,1 > S2. (3.13)

Set X(t)  := ^erT +  ^ S 'o ^ t^ - 7’- ^ 2)7 eaWr — So^ -e^~r~^a2 t̂eaWt. Then (3.13) reduce to

P { j  X(t)dt  > 6 1  }> > S2.

For any p  > 0 , by Chebyshev’s inequality,

■T
So < P

For any p, q > 1 and 1 + ± =  1,

x(t)dt\  >  <5i} <

E ( \ j o X i O d t A  < T« J  E ( X ( t ) )pdt.

More generally, if p  =  q = 2 , in that case, we can get

'•T
T

< [  E ( X ( t ) f d t .  
Jo
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We calculate J q E  ( X( t ))2 dt. By E(eaWt 2 ^ )  =  1, assume =  C t , we can compute

E { X { t ) f d t  =  j^ E  ( ^ e rT +  (^So^Tel,' - ' - ^ 2)Te,’WT -  S o C e^ -r- ^ 2)te,rW‘) j  dt

=  I e2rT +  S 2C2e<2<'-r>+<’2>T ( t +
cr2 +  (/x — r) cr2 +  2(/i — r)

J f j . - r ) T  f t l  c 2, o q'Zs~i2  e _________ U
0 cr2 +  (fi — r) a 2 +  2(/  ̂— r)

+ 25„Ce"r  -

T ( n - r )  T( f i  — r) T

(3.14)

Let

I =  J e2rT +  502C2e2("-’')- <’2)T ( t  -  -3— I    +
T  u V °  +  (A* - r )a 2 +  (// — r) cr2 +  2(/x — r)

(/x-r)T ^ 2  0 2, nc^ 2  e______________U °0
0 a 2 + (// — r) a 2  + 2(// — r)

+ 250Cef‘r  -
T(/z -  r)  T(n -  r)

J  =  eP ( r - r ^ y r  / T  _  3 \  2(m -  r )T  +  1 2 e f
\  2(er2 +  (fi -  r))  J  a 2 +  2(/z — r) T S qC 2 S 0C

Obviously J > J . Thus, if

e(2(„-r)+<P)T / r  _  3 A , 2(/r -  r )T  + 1  e2rT 2 e ^  i52,52
V 2(<r2 +  (,u -  r ) ) /  (72 +  2 ( / i - r )  TS$C2 S0C ~ TCPS^' 1

Then

£  E ( X ( t ) f d t > 5- ^ .

Clearly, (3.15) is stronger than(3.14).

On the other hand, under no good deal conditions, the price is given by x Sjt. 0 < s < 

t < T .  We define \i : (0, T) x R  —> R, a : (0, T) x R  —> R,

xSjt(X)  := f  f i(r ,Xr)dr+ f  a(r ,Xr)dWr. (3.16)
J  S J  S

By Girsanov transformation, we have

* t =  *o + f  ° ( s , X s)dWs,
Jo
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here Wt = Wt + f 0 o~l (s, X s)fi(s, X s)ds and Wt is a Q-Brownian motion, where Q is defined

as dQ = efoa 1 (s,xs)^(s,xs)dBs-^  /0[<r 1 (s,xa)n(s,xs)]2 ds^p Taking expectation on both sides 

yields that,

E Q( Xt) =  E { X o) +  E q f a f a X J d W ,
Jo

=  E { X  o) +  0 

=  E ( X  o)

and

Therefore,

E ( X t) = E  f  /i(r, X r)dr +  E ( X 0).
Jo

E ( X t) -  EQ(Xt) = E  f  /i(r, X r)dr + E ( X 0) -  E ( X 0) 
Jo

/ /i(r, X T)dr.
Jo

= E

By the definition of Variance,

Vai(Xt) =  EQ(Xt -  EQ(Xt) f

Eq (Xo + t  a(s, X,)dW, -  X o f  
Jo

E q ( [  <t(s, X s)dWs ) 2  

Jo

E [  <j2(s, X s)ds.
Jo

(3.17)

(3.18)

Considering a special case of above equation with the riskless bond 5^ and interest rate t , 

we have

, t{St)-=i [  s°udu+ [  ixS;dr+ [  uSldWu.
J  s J  s J  s

According to the definition (3.9), and identities (3.17) and (3.18), the no good-deal condition 

can be satisfied if
E( fi' rS?dt + (nT /iSTdt)

- 6  < Uo 1 Jo 1 ——  < S. (3.19)
r\S?}y + f0T o*S?dt)
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Compute (3.19),

E( [  rS?dt + [  jxSldi) = E( [  reTtdt +
Jo Jo Jo Jo

t e r T  _  1 }  +  ) T  _  ^

/i — r

and

E { J ^  r2 (Sf)2dt + £ < ? 2 S f d t )  = J
r  e ( 2 ( / i - r ) + c r 2 ) T  _  J

Then we can get

E(Jo r S t dt +  So VS *tdi)

(erT -  1) +  ^  (e^~^T -  1)

I t / 2rT  i - 2  0 2  e ^ ~ r)+a2)T - I
V 2Ve a  ‘-’O 2(/x-r)+a2

Now substituting the result above into (3.19), we derive the following

(erT -  1) +  ^  (e ^ -r)T -  l)
- 5  < ------------ ^~r ’ < b. (3.20)

,  L ( P2rT  _  _ i _  2  0 2  eW » - r)+tr2)T - lV 2̂  -1- 0- 2(At_r)+ff2

Now we summarize the above derivation as the following main result

T heo rem  3.5.1. Under conditions T  > 2(CT2+̂ At_r)), b < \ J \  and r > (/j, — /iSo) V 0. Con­

dition (3.20) can imply Condition (3.14) which means in financial market, the no-good deal

condition for fundamental theorem is more general than the No Free Lunch with Vanishing 

Risk condition.

Proof. (3.20) can be reduced to

r 6 2
e ( 2 ( M - r ) + c r 2 ) T  >  ^  _  I _ ) e2̂  + 2(fj,S0  + l)erT + pSo {fi_r)T _  /iS0(/i -  r) + p?S$ 

_ [ i - r e n 2 S$
(p, -  r ) 2 2 (n  -  r )  +  2fiSp +  p?S$

p ? S l  nSQ (fi - r )  ( f i -  r )2
rb2  ( S2 a2SQ i ^ 2( / /— r) +  cr2

(3.21)

+  — -------1----------------------- ~ U------------ L { )  -------------------------
2 2 (fi — r)  +  cr2 /  b2cr2SQ
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If (3.20) is true, putting (3.21) into LHS of (3.15) then yields that

rb2
L H S  of (3.15) > [((1  -  )e2rT + 2(/iS0 +  l)erT + 

(fi -  r ) 2  2 ( p i - r )  2fiS0

pS 0  {fl_ r)T _  f iS o j f i - r )  +/x2So 
p?S2p — r

2 o2

+ +
1 2 F2h1

(m - r )  i l l -  r ) ‘p?Sl fiS0  

r P  b2 a2Sl
2 2 (/i — r) + <j2  ^  J b2 (j2SQ

a  2(/j -  r) + r2 n

T -
+ 2(/i -  r)T  +  1 + e2rT 2 e^T 

+
2 (a2  + fa -  r )) J a 2  +  2 (fi — r) T S 2 C 2 S0C

Let us assume (3.22) > 0, then it is easy to find

rb2a - - ) > o

T  - > 0
2 (<r2 +  (fi ~ r))

(fi -  r ) 2 2 (/i -  r) 2 fiS0  fi2 S$
+ + > 0.

(3.22)

ji2 S$ fiS0  ' ( f i - r )  ' (fi — r ) 2

Therefore, we have under conditions T  > 2̂ 2̂ _ r^ , b < and r > (fi — fiSo) V 0, (3.20) 

can imply (3.15). As (3.15) is stronger than (3.14), we then prove that (3.20) implies (3.14).

R em ark  3.5.1. I f T — 2(cr2+̂ t_T.)) < 0, it might not feasible to compare. We can not compare 

them in a short time.

On the other hand, we would like to examine whether (3.14) implies (3.20). Assume

(3.14) is true, then we have

e2(M-r) - ^ ) T  ( T  -   1 ----  +  --------  )  >
\  o 2 +  (/i — r)  a 2 +  2 (fi — r)  J

S j S 2  1 2rr 2 e ^ T  1 2 e"T
TS^C2 T S lC 2 a 2  + (fi -  r) a 2  + 2(// -  r) S„C K ’ 1

2 e “T  2 e rT
+ TS0C ( t i - r ) ~  T S o C f a - r ) '

Letting RHS of (3.23) > 0, we need



and

We can show that:

and

We conclude that

1 ~  r > 0 .T(f i  -  r)

T >  a 2 +  3(/x -  r)
rcr2 +  (/i — T')] [cr2 +  2(fi — r)] 

1
T  >

pi — r

y  >  / _______ff2 +  3 ^ ~ r)_______V — 1 .  (3.24)
\ [ ( j 2 +  ( / i - r ) ] [ a 2 +  2( /z - r ) ]  fi -  r  J

Consequently, our conclusion is that under the condition (3.24), (3.14) implies (3.21). Prom

(3.21), we work backwards

(erT -  1) +  ( e ( M - r ) T  _  - A

pi — r

2  r p(2(M-0 +cr2)T _  1
< ^ ( - ( e ^ - l  ) +  ^ -  ),

then we obtain

o <  (e-  _  1} +  _  l}  <  _  x) +

The above is equivalent to (3.20). We summarize our discussion by the follows

T heorem  3.5.2. Under conditions T  > j  +^ _ r)] ^  jl^r} ’ (3^4) implies (3.20),which 

means no-good deal condition for fundamental theorem is weaker than No Free Lunch with 

Vanishing Risk condition.

We now turn to the situation in higher dimensions. We consider a finite time interval 

[0, T] as the interval during which trading may take place. We assume as given a complete 

probability space (fi, T , P\ Tf) on which is defined a stranded m-dimensional Browning mo­

tion W  =  {Wt,t G [0, T]}. In particular, W  = (W 1, W 2, . . . ,  W m) is an m-dimensional 

process defined on the time interval [0, T]. Our multi-dimensional model has d + 1 assets 

where d is a strictly positive integer.

Sometimes, the money market asset is referred to as a riskless asset, denoted by S® which 

is given by
dSt

=
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We assume that there are d stock with continuous, adapted price process SI = (S f , S} , . . . ,  Sf)  

which satisfying the following high-dimensional Black-Scholes pricing dynamics and

JC! 171

- ±  = n idt + ' £ ° ildw;.  
bt j=i

Here the solution can be explicitly given as follows

/  i 771 m \
S} =  Sj exp + E aiiWt J  (3.25)

where Sq is a strictly positive constant and / /  is the ith component of a d-dimensional drift

vector, and a =  (^lJ)i<i<d,i<j<m is a (d x m)-matrix.

Now applying Ito formula then yields that:

m
dS?  =  S(* V  -  r)dt + S ?  (3.26)

3=1

A trading strategy in this case is a (d+ l)-dimensional process £ =  {£®, £^,. . . ,  £f, t E [0, T]}.

The value at t of the portfolio associated with £ is given by

vt* =  6 • s;

= E i € [0,T],i = 0,1, —,d.
2=0 *'0

Putting (3.26) into above, we get

d, rTs/
d r x

vt - k* = E  f T ̂
d pT /  m

E / s ~r̂d t + E
i=0 *'° V j=l

Y  f  (.IS?(v? -  r)dt
2= 1  

d m p j1

E E  /
2 = 1  7 =  1 ^
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here let =  1, S j  = erT, 

Vi = erT
d rJfi /  777, 771 \

+  X  f  r)€tS lo exp \ - r - \  £ w t  +  X  cry W? ) dt
2=1 ■'« V  ̂ ;=i ;=i )

d 772 »J> /  1 772 772 \

+ X Xa / exp ( _ r - o X^)1̂ + X ) dW t-
i=l j= i J o  \  j=1 j=1 J

R em ark  3.5.2. For fixed i , j ,  (acr'fii is given by

m

(arj'Y’ = Y ° ik° ,k’
k=1

where ' denotes transpose.

P ro p o sitio n  3.5.1. Each price process S lt can be represented as S lQe^ %~r~ ^ a%̂ t+crWt, where

rn

(cr*)2 =  Y ^ f  = (CT<T*)” >  0
3=1

and m
X < 7ljd w ;  =  aldWt. (3.27)
j=1

Proof. From above equation (3.27), we have

Wt =
£ ”l i  < r 'W /

a 4

According to definition of quadratic variation

1 771 777.

d w  w o w  =
 ̂ 7=1 j=l

_ 772

= ( ^ E ( ^V > ,-=13

= dt.

Therefor W* is a Browning motion and =  SQe^~r~ \ye are done. □

This proposition shows that the result from Multi-dimensional model is essentially similar 

to the one-dimensional case. In other words, one-dimensional model is a special case in high
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dimensional model. By item 5 of Definition (3.7), and Proposition(3.5.1) if there is constant 

A > 0 , 6 2  > 0 , then free lunch with vanishing risk exists,

p {  f i  ( i  erT +  Er=.("')«)TeE"=l "‘M
V Jo T  T  (3.28)

_ S'0% ^ - r- i > <5i| > <52.
o t  J

Set X(t)  :=

Then (3.28) reduce to

P< [  X { t ) d t > 8 l \  > 8 2.

For any p > 0 , and =  1, by Tchebychev’s inequality, we can get 8 2  < P  K  X{t)dt\ > <hj < 

gl/0 ' ]y[ore generally, if p = q =  2 , in that case, we have that

[  E ( X ( t ) f  
Jo

We calculate f Q E  (X ( t ) ) 2 dt. By E(e 2 E ^ d ^ T ^ + E ^ i crlJWt'j — ^  an(j £* = Clt, where 

i = 1, . . . ,  d, j  = 1, . . . ,  m. We can get the following inequality

, c i2/-»2-2((,i‘-r)+EJii(<r<r')y )r T _______________ ?____________  , ______________)_____________
T ° (  Y,7=i(™’)ij + (n -  r) E™i(<Oy + 2(M*-r)

+ 2 S lQC
2 _ 2  e ^ - r)T C^S,

Y!?= + (A -  r) Yl]Li(a(T'yj + 2(A - r)
+ 2SiCie ^ T -  2S%qC% cyT  +  ^  crT > —
+ 2A°C e  T(M* - r ) e + T(/i‘ - r ) e "  T  '

(3.29)

In no good deal conditions, the price is x ls t . 0 < s < t < T. We define p : (0 , T ) x / ? - >  Rd, 

a  : (0, T) x R -+  R dxm,

nt m nt

< , ( * ) : =  /  M<(«,X u)dii +  ^ ;  / ^ (u .J Q d W ” . (3.30)
JS - _ J  J s

Considering a special case of (3.30) with the riskless bond, we have

/ * i  nt

< t(S ,) :=  /  r S > +  /  pVSl'rfo +  E  /  (3-31)
S J  5 ■ 2 5
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By the definition, the no good-deal condition can be satisfied if

E < C rS ? d t+  C  / s s r d t )  , , ,
- 5  <  wo * <  <5. (3.32)

r2(5?)2 +  £ ”Li J0T

We can find the explicit solutions

(erT ~  1) +  # ? :  -  l )
—(5 < , . " V . . . /  <  g. (3 .33)

/ o (V-O+E1" ! (<ra,)i3)T ,
y  ^(e2rT -  1) +  20,_ r)+g Li(^ - 1

We summarize our above discussion as the following results

T heorem  3.5.3. Under conditions T  > '2̂ Tn (aJyj+i^-r)~); ^ an^ r — (m*- o) VO.

(3.33) can imply (3.29) which means in financial market, the no-good deal condition for 

fundamental theorem is more general than the no free lunch with vanishing risk condition.

T heorem  3.5.4. Under conditions T  > { »17-, 0( t—« V —  } , (3.29)
— t  E j = i ( « ' tJ)2 +(M t - » - ) ] [ E j = i ( ^ ' y j + 2 ( n l - r ) ]  n - r  J ’ V '

implies (3.33), which means the no-good deal condition for fundamental theorem is weaker 

than the no free lunch with vanishing risk condition.

3.6 C onclusion

In this paper, we gave a detailed discussion on comparison of the no free lunch with the 

vanishing risk condition and no good deal condition for the fundamental theorems on option 

pricing. We used concrete examples to explore our comparison. Our examples are simple 

but intrinsic in mathematical modeling.

53



C hapter 4

M odelling Credit R atings via  

R eflected Stochastic D ifferential 

Equations

4.1 In troduction

The recent turmoil in the international financial markets has drawn attention to the signif­

icance of correctly assessing and pricing credit risk. The credit rating provided by rating 

agencies has been criticized for their inability to predict major corporate defaults. Two 

basic model categories are: reduced models and optional pricing models. Structure models, 

default-intensity-based models and rating-based models belong to the reduced models cat­

egory. A well utilized structure model is proposed in Merton’s article [42] which describes 

that the firm value, which depends on the investor’s risk aversion, is a deterministic function 

of three variables: the yield curve, the probability of default, and maturity. The seminal 

articles concerning the family of default-intensity-based models are Jarrow-Turnbull [33] and 

Lando [38]. In those articles, only the possible default of bond issues is observed but their 

rating is ignored. Clearly, the rating in those formulation takes only two possible values: 

either a prescribed value X  or 0.
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Rating-based models usually use characteristics such as rating process, yield curve and the 

recovery rate to compute price of risky assets. Crouhy-Im-Nuelman model and Hull-White 

model are famous ones in this family. M. Crouhy, J. Im and G. Nuelman in [11] model the 

rating as Markov chain with finitely many states, in order to mimic agency ratings. They 

build a risk-neutral probability that is inconsistent with interpolation of discontinuous rating 

by continuous ones. While Hull-White model proposed in [27], [28] defines a rating process 

X  (t) which is a pure Brownian motion, but the “default barrier” which is not necessarily a 

straight line is adapted so as to match the default probability. In order to get a risk-neutral 

probability, they modify the location of the barrier. In addition, M. Avellaneda and J.-Y. 

Zhu in [2] introduce the idea of “risk-neutral-distance-to-default process” of a firm. They 

characterize risk-neutrality by the fact that the default index satisfies a Fokker-Planck type 

parabolic PDE and show the easiness of calibration and the “square-root” shape of barriers.

This chapter is motivated by Douady and Jeanblanc [17], which presents a rating-based 

credit risk model that is both tractable (in terms of statistics), considers the effects of credit 

derivative pricing and hedging, and flexible enough to reproduce the real features of credit 

events in financial markets. In this paper, we propose to use stochastic differential equations 

with reflections to model rating processes, such that the object automatically falls into the 

values between 0 and 1. Under the framework of a rating-based model in pricing “zero- 

coupon-bond” presented in [18], we shall model a “continuous” rating X(t)  G [0,1], which 

is incorporated to a bond issuer subject to a possible default, by the following stochastic 

differential equation with reflections

dX(t)  =  QX{t)dt + aX{t)dB(t)  +  drj(t) — dfj(t).

where coefficients 9, a are positive constants. Here B{i) is a Brownian motion, and r]{t) 

is the local time of X(t)  at 0. This is a non-decreasing process which only increase when 

X (t) = 0. Similarly fj(t) is the local time of X (t) at 0. It is a non-decreasing process which 

only increase when X(t)  =  1. Here we propose a natural model of stochastic differential 

equation with reflections for the rating process X(t)  G [0,1].

The rest of the chapter is organized as follows: in Section 4.2, we first introduce the
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model studies in [17] and then we present a rating-based model in pricing “zero-coupon- 

bond” in which a bond issuer subject to possible default is assigned a “continuous” rating 

by stochastic differential equation with reflections.

4.2 C redit D erivative pricing m odel

Let X(£)te[o|00] be a rating process. Default occurs when the rating reaches 0, which is an 

absorbing state. Non-defaultbale bonds have rating 1, which is unreachable when starting 

from other rating. The “continuous” rating of a bond issuer has a rather intuitive meaning: 

it can be seen as an interpolation of rating provided by agencies. More precisely, one can 

specify the model in such a way that a given agencies rating correspond to some sub-interval 

[ai, ai+i] C [0,1]. Rating migrations correspond to crossing one threshold n j(0 ,1).

At any time f, the bond is valued as the sum of its scheduled payment, which are propor­

tional to “defaultable discount factors” which rating Rsit)-  The defaultable discount factor 

with time to maturity x and rating R  is denoted D(t, x, R) and decomposed as follows:

D(t , x , R) = exp(—l(t, x) — ?/>(£, x, R)). (4.1)

In other words, this quantity consists of two parts: the risk-free part l(t, x) and the risky 

part 'ipftjX, X(t)). The non-default yield y ( t ,x , l )  = l ( t ,x ) /x  follows a traditional interest 

rate model. The spread field -0(£, x , R) is a positive random function of two variable x and 

R, which is decreasing with respect of R.

4.2.1 Non-defaultbale Bond Pricing

Non-defaultable bonds have rating 1. We assume that the dynamics of default-free interest 

rate are given via a HJM or BGM model (see Heath-Jarrow-Morton [24]). More precisely, 

the default free zero-coupon bond D(t: x, 1) with face value 1 and time to maturity x  is given 

by:

D(t,x,  1) =  e - '(t'l) .
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The function l{t, x) stands for the opposite logarithm of discount factor, which is a convenient 

structure representation for stochastic modeling. The parameter 1 in D(t , x , 1) makes precise 

that we are dealing with non-defaultable bonds. One has

/ t+x
f( t , s)ds  = y(t,x)x,

where /(£, s) is the forward rate at date s and y(t, x) is the zero-coupon yield. We assume 

that the interest rate dynamics, under a measure V,  is given by:

m

dl(t, x) =  fi(t, x , lt)dt + z/J (£, x , lt)dZ{,
j = i

where Z  =  (Z i , . . . ,  Zm)T is an m-dimensional Brownian motion. The drift p and the 

volatility factor not only depend on the time and maturity, but also on the whole yield 

curve lt = l{t, •)

R em ark  4.2.1. Let r{t) — f{ t , t )  be the short term rate. It is well known, from Arbitrage 

Pricing Theorem, that there exists an equivalent probability to the given P  (the real probabil­

ity) which is risk-neutral for non-defaultable bond. In case P is the risk neutral probability, 

by the celebrated Girsanov theorem, we can get

.. 771
fj.(t, x , lt) = f( t ,  t + x ) -  r(t) + -  ^ 2 (i4 ) 2

j=i

where vJt = u^[t ,x, lt).

4.2.2 Spread Field Process

Defaultable discount factors also depend on the spread field process. A bond issued by a 

company depends on the default-free yield curve and on its yield spread over default-free 

bond, which is a function of the company rating and of the recovery rate in case of default. 

The long-ratio between the actual market price and the “would be” default-free value, which 

may be different for each bond and, in particular, depends on the bond seniority, is itself 

modeled as a random function ^[t,  x , R ), which we call the spread field.
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Let 77(7, x, 77) be the price of a defaultable zero-coupon bond with rating R  such that

D(t , x , R) =  exp(—Z(t, x) — V>(7, x, 7?)), 

where the spread field ip is defined by:

ip{t,x,R) = log ' D t̂ , x ’^
77(7, x, 77)

This is a random function of x and 77, which for fixed (7, x), should decrease when 77 increases 

and vanish for 77 =  1.

The spread field properties allow us to write it in the form:

ip(t, x, 77) =  J ' </?(7, x, ri)dn,

where </? is non-negative random field, called the derived spread field. Following the above 

remark, p  must satisfy p(t, 0, u) =  0, with the same comment about payment even possible 

discounts.

If the company defaults at time t, the value of the bond is a percentage of the default-free 

bond:

D{t, x, 0) =  77(7, x, l)e_x^’̂ .

Here, the spread field value for 77 = 0 is linked to the recovery rate by the equation:

77(7,x, 1)
ip(t, x, 0) = / </?(7, x, u)du =  x{t, x) = log 

Jo 77(7, x, 0)

A formal zero recovery rate would correspond to a function ip that is singular in 77 =  0, so 

that x  =  Too.

The dynamics of the derived spread field for fixed (x, u) is given by a multi-factor diffu­

sion:
n

dp(t, x, u) = 7 (7, x, u, p t)dt T &(7, x, u, p t)dW}, (4.2)
1 = 1

where W  =  (Wfi, . . . ,Wn) is an n-dimensional Brownian motion. In this formulation, the 

drift 7  and the volatility £* may depend on the whole derived spread field ipt = cp(t, •, •).
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Further assumptions on the correlation between the different Brownian motion are made,

i.e.

d (W \  B)t = w'dt d (W \  Z j ) = pijdt d{Zj , B) =  —  dt, i ^  j.
wl

Let us make the assumption of dx^  and <9^7 , for every i, dxl-f and duff are almost surely 

bounded and continuous with an at most uniform linear growth with respect to (p. If we 

assume the same property with the initial derived spread field (fo(x,u) =  y>(0, x,u),  then 

dx<p and dRip remain a.s. bounded and continuous for all times. More discussion on the 

dynamics of interest rate and derived spread field can be found in [17].

Lem m a 4.2.1. ([17, Lemma2.1 p7j) For fixed T, the dynamics of the composed spread 

process 4/ defined by 4!t =  ^{ t^T — t , X ( t )) is given by the following formula, in which 

x = T  — t :

dtyt = f  d<p(t, x, u)du — p(t, x, X(t))dX(t)
J X { t )

-  ( [  dxp(t, x , u)du)dt -  d(R , ip)t -  \ d Rp(t, x, X( t))d(R)t.
J X ( t )  1’X( t )

In this formula, (R,<pt) stands for the bracket of X(t)  with the process (p(t,x,u) for fixed 

(x, u), evaluated at u — X(t),  whereas (R)t is the usual bracket of the process X{t).

4.2.3 R ating Diffusion Process

Let (Q, F, P, {J-t}t>o) be a given probability space, we consider the simplest case which is 

one bond issuer in the market and assume the issuer of a bond suffer possible default risk. 

Here the default is evaluated by a “continuous” rating X(t)  E [0,1], £ > 0 that possesses a 

feature of reflections between 0 and 1. We propose the rating process X(t),  t > 0 which 

determined by the following stochastic differential equation of Markovian type

dX(t)  =  9X(t)dt  +  aX(t)dB(t)  + drj{t) -  f}{t), (4.4)

where coefficients 0, cr, are positive constants. B  is a Brownian motion.

Let D be the domain of X (t) which is [0,1] and dD  be the boundary of D. (X{t),r](t),fj(t)) 

is the solution of (4.4). rj(t) and fj(t) are increasing processes which increase only when X(t)
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is on the boundary dD. drj(t) and drj(t) act when X ( t ) G 5D and cause reflections. drj(t) > 0 

if and only if X(t)  =  0, dfj(t) > 0 if and only if X(t)  =  1.

In what follows, we shall discuss the rating processes with two reflecting barriers in more 

detail. Suppose we are given a(x) =  (al,k(x)) : R d —> R dx R r , and 0(x) =  (9l(x)) : R d —> 

Consider the following stochastic differential equation

V
d X \ t )  =  ' ^ 2 < 7 i 'k ( X ( t ) ) d B k {t )  +  0 i { X ( t ) ) d t ,  i =

fc=l

Here we consider the case of a domain with boundary, a diffusion is described by a second 

order differential operator. For simplicity we only consider diffusion processes on the upper 

half space R±, d > 2.

So let D be a convex domain in R d and D its closure. For instance, D = R+ = {x = 

(x1, x2, . . . ,  xd) \xd > 0}, dD — {x G D \ x d =  0} be the boundary of D and D =  {x G 

D ; x d > 0} be the interior of D. Suppose we are given a second order differential operator on 

D acting on Cl(D), where C%(D) is the set of all twice continuously differentiable functions 

with compact support.

where al̂ (x) and bl(x) are bounded continuous functions on D and (alj(x)) is symmetric and 

non-negative definite. Assume that a boundary operator of the Wentzell type is also given,it 

has been introduced by Feller and Wentzell in the context of diffusion processes, see [60], 

i.e., a mapping from C%(D) to the space of continuous functions on dD given as follows:

where x G dD , and Qy (x), /3%(x), p{x) are bounded continuous functions on dD and such 

that (aZJ(;c)) is symmetric and non-negative definite, <5(x) > 0 and p(x) > 0 . A diffusion 

process is generated by the pair of operator (A, L), or simply (A, L)-diffusion process.

Next we will formulate a stochastic differential equation which describes an (A, L)- 

diffusion process. For this, we choose cr(x) =  (cr1,fc(:r)) : D —> Rd 0  R r and t ( x ) =  {r^ix))  :
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dD —► R d 1 <S> R s which are continuous and
r

a^{x) = ^ a hk(x)a3 'k{x), i, j  =  1, 2, . . .  ,d,
k=  1

and
S

a l'3 (x) =  i, j  = 1, 2, . . . ,  d -  1.
i=i

Now, let us consider stochastic differential equation with reflection:
r

d X \ t )  = Y l ° i'k( m ) X b d B ( t ) k + ei(X{t))Xbdt
k—1
s

+  5> J ''W * ))x a i> d M {(t)  +  fA[X(t))xt ,Ddn(t)  (4.5)
1=1
s

“  5 Z r2,l(X(t))xdDdMl(t) p i2 (X{t))xdDdfj(t).
1=1

An intuitive meaning of the equation is as follows. Here drj(t), dfj(t), are increasing processes 

which increase only when X  (t ) is on the boundary dD  and is called the local time of X  (t ) on 

dD. dr)(t), and dfj(t), act only when X(t)  G dD  and causes the reflection at dD. {B k{t), M l(t) 

is a orthogonal system of martingales such that d(Bk)(t) = dt, k = 1,2, . . .  ,r  and d(Ml)(t) — 

dr)(t), d (Ml)(t) = dfj(t), I — 1,2, . . .  ,d. d(Bk, M l)t = 0. i.e., B  is an r-dimensional Brownian 

motion in the ordinary time, and M  is an s-dimensional Brownian motion if the time is 

measured by the local time.

We assume that if the stochastic differential equation (4.5) satisfies the following condi­

tions: a and b are linear growth and Lipschitz continuous on D, i.e., there exists a constant 

K  0 such that

|b(x) -  b(y)| < K\x  -  y\, ||<j(a;) -  a(y) ||< K\x -  y \ ,x ,y  G R d.

\\b(x) + (j(x)H < K ( 1  4- |x|).

Then the uniqueness and existence of solutions hold for equation (4.5). A proof of this result 

can be found in Hiroshi Tanaka [55] (cf. Section 4 pl74).

Now consider a special case of (4.5), let d =  1, we only consider 1-dimensional condition

because the rating X(t)  G [0,1]. Then the rating process X ( t ) , t  > 0 is modeled as a reflected

diffusion process (4.4) with D = [0,1] and dD  = {0,1}.
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Our main result is as follows:

T heorem  4.2.1. Let P be a risk-neutral probability for non-defaultable discount factor 

D(t,x,  1). Assume that ip(t,x,u), almost surely and that the process 9 defined by:

cpt9X( t ) = Tt - d xil>t - Y ^ ( r X { t ) C twl -  ^ pta2 X ( t )2 -
i = 1 

n  m
, dq{t) i'i d Y(i\P 1 3

i—1 i=1 i = l

is such that:
»T

VT > 0, £p[exp(^ f  (9 — 9)2 dt)] < +oo. (4.6)
2 Jo’o

Then the probability P defined by

dP x rT
dP

exp (/ (9 — 9)dB(t) — -  J  (9 — 9)2 dt"j . 

is a risk-neutral probability for defaultbale zero-coupon bonds.

Proof It has been proved in Lemma 4.2.1, the dynamics of the composed spread process 

4/t = J>(t,T — t ,X(t )) ,  in which x = T  — t. From (4.3), together with (4.4) (4.2), we have

d ^ t = f  d(f(t, x, u)du — ip(t, x, X( t) )dX(t)
J x ( t )

f 1 1-  ( /  dxip(t, x, u)du) -  d(R, ip)t -  ~dRip(t, x ,X ( t ) )d(R) t
Jx(t) 1

f 1 (  n \= / (r(t, x, u, (pt)dt +  y ^C(t,  x , u, ipt)dWlt )du
Jxd) i=i

— ip(t, x ,X ( t ) )  ^9X(t)dt  +  aX(t)dB( t ) +  rj(t) — ^{t)^
O pi n

' dx<p(t, x, u)du\dt — V '' crX(t)dB(t)£l(t: x, u, ipt)dWI
x u )  '  ~ i

(4.7)

* ( * )  ^=l

-  ^ d Rtp(t, x ,X ( t ) )a 2 X ( t ) 2 dt.

62



Let us now denote:

i4 = v3{t,xjt)

Ft = T(t , x ,X( t ) )  = [  7 (t, x , u, ipt)
J X ( t )

HJ = Zt( t , x ,X ( t ) ) =  [  ?(t,x,u,<pt)du
J X { t )

Ct =  €{ t ,x ,X ( t ) , ip t) tpt =  </?(£, :r,.X(i))

X(i)) d x ipt =  / d x ( p ( t , x , u ) d u ,
Jx(t)

then (4.7) is equivalent to

n

E  E\dW { -  ipt ( e x ( t ) d t  + a X ( t ) d B ( t )  + dq{t) -  dfj(t))
i = 1

H 1
— d x il)t d t  — ^ ^ a X ( t ) Q w l d t  ip't cr2X ( t ) 2d t

i = 1
n ,

=  (r, -  Vtetx { t )  -  dxt t  -  E  **(«)&,t«>‘ ~  ov W 2 x (t)2) d t
1=1

n

— cPtdr]( t) + i f t d f j ( t )  4- — <ptc r X ( t ) d B ( t ).
1 =  1

Using the Ito formula to (4.1), for fixed T, the defaultable discount factor dynamics is given
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by

rl n. . . .
— —dlt — d^ t  +  ~d{l)t +  — d(ty)t +  nd(l, ^ ) t

dDt „ „  1 1 1
~d 7

+

(rt -  iptOtX(t)  -  dxipt - Y ' V X m w 1 -  -(p'ta2 X ( t )2^jdt -  (ptdrj{t) +  <Pt)dr](t)
i—1

n

^  EjdW? -  iptaX(t)dB(t)
2 = 1  

n  m h3+ E E  E i4<ptX{t)!—rdt
i—1 j=l j=1

=  - d l t + l-d( l) t

+ -  r t + <ptdtx ( t )  +  d ^ t  +  ŷ 2 / <jX(t)ct'wl +  -ip't (i2x { t ) 2 +  ^
2 = 1  

m
w t - j r -  + J 2 Y 1  " i - tp i j  -  ^ tX  w dt

dt *—' '£—' " " " *—' ' ' w  Ji=i j=i j=i

+ martingale.

Let us recall that, for P  to be a risk-neutral probability for non-defaultable bonds, one must 

have, for fixed T  :

—dlt +  7̂ d(l)t =  X(t)  +  martinglae

Equating the drift of to X(t),  we get the “risk-neutral drift” 6  of the rating process and 

the proof is completed. □

The Girsanov theorem shows that, under condition (4.6), P  is probability measure equiv­

alent to P  and that defaultable zero-coupon bonds are martingales with respect to P. We 

should point out here that the price we obtain is not necessarily “arbitrage price” but the 

risk premium. We summarise our conclusion as the following:

T heorem  4.2.2. In the defaultable context, with being given and positive a.s., there exists 

an equivalent probability to the real world probability which is risk neutral for the defaultable 

bonds.
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C hapter 5

A  sufficiency theorem  for th e  

path-independent property

5.1 In troduction

The aim of this paper is to derive a link of (Markovian type) semi-linear stochastic differential 

equations (SDEs) in infinite dimensions to nonlinear partial differential equations (PDEs) of 

Burgers-KPZ type which gives a characterization of the path-independence property of the 

density process of Girsanov transformation for the infinite-dimensional SDEs. The above 

link for finite-dimensional SDEs was considered in [63, 56] where the simple case of one­

dimensional SDEs was discussed in [63] in which a (generalized) Burgers equation has been 

derived from SDEs on R. In [56], a complete link of finite-dimensional SDEs on Rd as well as 

on connected complete differential manifolds to Burgers-KPZ equations has been established.

The motivation comes from the mathematical study of economics and finance in conjunc­

tion with optimization problems. In recent years, due to the necessity of stochastic volatility 

as the measurement of uncertainty in modeling of financial markets, stochastic differential 

equations have received huge attention from both theoretical and practical aspects cf. e.g. 

[29, 39, 44]. The primary point here is to model the price dynamics or the wealth growth 

by utilising SDEs, after having established a so-called real world probability space (e.g., the
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seminal paper [4] by Black and Scholes). To an equilibrium financial market, there must ex­

ist a so-called risk neutral probability measure which is absolutely continuous with the given 

real world probability measure and it is pivotal to determine the path-independence property 

for the associated density process defined by the Radon-Nikodym derivative [25, 26]. It is 

often encountered in the economical and financial market models that one should consider 

agents in large scale that there are (at least) countably many stocks are treated together 

so that their pricing dynamics form an infinite-dimensional SDEs. From the view point of 

variational calculus, optimization problems -  either in the pattern of maximizing the utility 

functions (and/or profits) or in the formulation of minimizing the cost functions (and/or risk 

factors) -  are in fact linked with the path-independent property of the pricing trajectories, 

cf. e.g., [20, 67]. Hence, characterizing the relevant path-independence of the SDEs in terms 

of (non-linear) PDEs would be interesting and useful.

Going a step further, it is well known that a fairly rich class of the large scale systems is 

modeled by infinite-dimensional Markovian type semi-linear SDEs and the associated scaling 

limits of such systems are determined by KZP type nonlinear PDEs, cf. e.g. [34, 52, 62], 

Thus, it is very natural to reveal an intrinsic link between the infinite-dimensional SDEs 

and nonlinear Burgers-KPZ type PDEs. In fact, our main result obtained in this paper 

does provide a direct link between infinite-dimensional stochastic equations and parabolic 

nonlinear PDEs in a persuasive manner, which shows that certain intrinsic properties of 

the (infinite) stochastic dynamical systems are indeed characterized by Burgers-KPZ type 

equations. This indicates in certain sense that the Burgers-KPZ type equations is ubiquitous 

for infinite systems of stochastically dynamical motions. Actually, this point inspired our 

investigation of the present work.

In this chapter, we will consider SDEs on a separable Hilbert space. To our aim, we 

notice that the methods employed in [63] and in [56] are the Ito formula and Girsanov trans­

formation. However, it is not straightforward to have Ito formula in infinite-dimensional 

so we have to use the finite-dimensional approximation approach here. We will derive a 

complete link of infinite-dimensional semi-linear SDEs to Burgers-KPZ nonlinear PDEs infi­

nite dimensions. Extensions to more general infinite-dimensional spaces like Banach spaces,
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multi-Hilbertian spaces as well as locally convex topological vector spaces are interesting and 

will be considered in the forthcoming works.

The rest of the chapter is organized as follows. In the next section, we first give a brief 

account of Girsanov transformation of SDEs on (infinite-dimensional) a separable Hilbert 

space H . Then we prove our main result on the characterization of path-independence of the 

Girsanov density of the SDEs. The final section is devoted ti a consideration of parabolic 

stochastic partial differential equations as an example where we demonstrate application of 

our main result of Section 5.3.

5.2 T he sufficiency theorem  for th e  path -in d ep en dent 

p roperty

Let be a given filtered probability space satisfying the usual conditions

that (fi, J-, P) is a complete probability space and for each t > 0,J-t contains all P-null sets 

of T  and J-t+ := =  Ft- We use E  to denote the expectation with respect to P.

Given a real separable Hilbert space (//,(•,•)//, || • \\h )- Let {Wt}*>o be a cylindrical 

Brownian motion defined on (fi,P , {Pt}t>o, P) with the following expression

OO
Wi := Wt(u) := to G fi, t G [0, oo)

i = 1

where {A(L < )̂}i>i is a family of independent one-dimensional Brownian motions and {ej}j>i 

is a complete orthonormal basis for H  which is fixed throughout the paper. We have

E((Wu x)H(WS}y)H) = (t A s)(x,y)H, t , s e [ 0,oo), x ,y  e  H.

Notice that the covariance operator of our cylindrical Brownian motion is just the identity 

operator I  on H.

Let L(H ) be the collection of all bounded linear operators L : H —> H  equipped with
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the usual operator norm

||L|| := sup \\Lx \\h .
\\x\\=l

Clearly, (L (H ), || • ||) is a Banach space.

Furthermore, we use L h s {H) for the family of all Hilbert-Schmidt operators L : H  —» H  

endowed with the norm OO
||L||„S := (£ l|£e .|li)* ,-

i= 1

then (Lh s {H), || • \\h s ) is a Hilbert space.

Before proceeding further, let us introduce the notion of Frechet differentiation for 

infinite-dimensional spaces which is crucial in our paper. We state it in a little general 

form. Given two Banach spaces X and Y, we let L(X, Y) denote the totality of all bounded 

linear operators from X to Y. L(X, Y) is a Banch space endowed with the usual operator 

norm. A function /  : X —■> Y is called Frechet differentiable at x G X, if there exists a 

bounded linear operator Ax : X —> Y such that

r  \\f(x + h) -  f (x )  -  A xh\\Y =
Whht o  IMx

If the limit exists, we write V f( x )  := A x and call it the Frechet derivative of /  at x. A  

function /  : X —> Y that Frechet differentiable for any point x G X is said to be C 1 if the 

function

V /  : x g X h  Df(x)  6  L(X,Y)

is continuous. Furthermore, /  : X —> Y is called a C2 function if V /  : X —> L(X, Y) is a C 1 

function. Moreover, we let Dom(V) denote the totality of all Frechet differeintiable functions 

/  : X —» Y.

We would like to follow [58] to introduce the stochastic equation we are concerned. Let 

(A, V{A)) be a linear, unbounded, negative definite, self-adjoint operator on H  generating a 

contraction Co-semigroup {etA}t>o- Let L a {H) be the totality of all densely defined closed 

linear operators L : H  —> H  with domain Dom(L) C H  such that for every t > 0, etAL 

extends to a unique Hilbert-Schmidt operator from H  to / / ,  while we use the same notation
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for the extension so etAL G L h s {H)- Namely,

La (H) : = { L : H - + H \  etAL G L h s (H), Vi > 0} .

We endow LA(H) with the <j-algebra induced by the family

{L —>< etALx ,y  >h \ t > 0, x ,y  G H}

from B{R) so that La {H) is a measurable space.

We are concerned with the following initial value problem for a semi-linear stochastic 

differential equation on H

dXt = { A X t + b(t, X t)}dt +  a(t , X t)dWu t > 0
(5.1)

X q = x  G H,

where b : [0, oo) x H  —> H  and a : [0, oo) x H  —> La(H)  are measurable mappings. In 

this paper, we require the two coefficients fulfill further that b : [0, oo) x H  —► H  and 

(t , x ) G [0, oo) x H  i—> eiAa{t,x)  G Lhs(H)  are C 1 with respect to the first variable and 

C2 with respect to the second variable respectively. Here we would like to point out that 

one should interpret ([0, oo), | • |) and (/?, | • |) as Banach spaces and the differentiation with 

respect to f G [0, oo) or for i?-valued functions on any Banach space follows from above

description. Throughout the paper we shall assume the following two conditions:

(HI) Assume that —A  has discrete spectrum with eigenvalues

0 < Ai < A2 < . . .  < A j < . ..  

counting multiplicities such that
OO -

i 13= 1  J

We let {ej}jeN be the corresponding eigen-basis of —A  throughout the paper.

(H2) There exist a constant e G (0,1) and an increasing function L : [0, oo) —> (0, oo) such 

that

sup i \\b(t: 0)||^ +  f  ||e^-s)Acr(s, 0)||^5s~ed s |  < oo, VT > 0
te[o,T] I Jo j
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and

||b(t,x) -  b(t,y)\\H +  \\etA (a(t,x) -  a(t,y))  | |# 5 < L(t)\\x -  y\\H, Vt > 0, Vx,y  G H.

R em ark  5.2.1. Under the assumption (HI), it clear that the space La {H) allows to have 

invertible operators from H to H , such as the identity operator.

It is well known by [12, 6] and most recently [58] that (HI) and (H2) imply the existence 

and uniqueness of the mild solution to (1.1), that is,for any x G H  there exists a unique 

//"-valued {^ j^o -ad ap ted  continuous process X t,t > 0, such that P-a.s.

X t = etAx +  [  e{i- a)Ab(s ,Xs)ds+ f  e{t~a)Aa(s, X s)d,Ws , t > 0. (5 .2)
Jo Jo

Moreover, we have

E  sup \\Xt \\2H < 00, VT > 0.
W o .n  J

For our purpose, we need a finite dimensional approximation to (5.1) so that we can 

link the characterization theorem for finite-dimensional SDEs obtained in [63, 56] to the 

present infinite-dimensional problem (5.1). To be more precise, we want to set a Galerkin 

approximation to (5.1), which is classical and efficient to get existence an uniqueness results 

for infinite-dimensional equations (see, e.g., Chapter 6 of [6]). So let us follow [6] to set up 

the Galerkin approximation for (5.1). We notice that our assumption (HI) indicates that 

the operator A satisfies the coercivity condition and the monotonicity condition in [6] (see 

page 178 there). For simplicity, we assume that a : [0, oo) x H  —> La {H) is diagonal with 

respect to the eigen-base {e^}i>i.

For any n  > 1, let 7rn : H  —► Hn := span{ei,--- ,en} be the (orthogonal) projection 

operator, that is
n

7Tnx := ^ 2 ( x ,  ei)Hei, x G H.
i = 1

UAWe note that the projection operator 7rn commutes with the semigroup e , t  > 0. Further­

more, we let An := A  |Hn,bn 7Tnb and an := 7rncr. We consider the following stochastic
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differential equation in Hn

dXJ? =  {AnXi  +  bn(t, X™)}dt +  <jn(t, X™)dWt,
(5.3)

X n(0) = 7rnx.

As illustrated in [58], the assumption (H2) implies that the coefficients bn and an fulfill 

the usuall growth and Lipschitz conditions so that there exists a unique strong solution 

X™ G Hn,t  G [0, oo) to (5.3). Furthermore, by Theorem 3.1.2 of [58], one has

lim E\\X™ — XtW'jj = 0, t >  0. (5.4)
71—KX)

Before we present our result, let us recall the Girsanov theorem in infinite-dimensions 

(see 10.2.1 page 290 in [12]). Notice that the covariance operator of our cylindrical Brownian 

motion {Wt}t>o is the identity operator I  on (77, || • ||//). One can then determine the infinite 

dimensional Brownian motion on Ito’s universal Wiener space with the reproducing kernel 

space H, cf. e.g. [22].

Next, assume that 7  : [0, 00) x H  —> H  is measurable such that for every T  > 0 (note 

here T  could take to be 00 as well)

£  (exp ||7 (s, X s)\\2Hds]^ < 00 , (5.5)

which is known as the Novikov condition. Then the process

Wt := W t -  f t 'y{s,Xa)ds1 t G [0, T]
Jo

is a cylindrical Brownian motion (i..e, having the identity operator /  on H  as its covariance 

operator) with respect to q,t] on the probability space (fi,-?7, Pt ), where Pt  is defined

via the Radon-Nikodym derivative

^ ( o ; ) : = e x p ^  (7 (s, X s(u))}dWs(uj))H -  i  ||7 (s ,X s(w))|&ds^ .

We refer the reader, e.g., to Proposition 10.17 of [12] (see page 295 there) for an alternative 

sufficient condition instead of of (5.5). The relation between Wt and Wt in the stochastic 

differentiation form is

dWt =  dWt - ' y ( t , X t)dt 
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from which, in terms of the new cylindrical Brownian motion Wt, the SDE in (5.1) reads

dX t = { A X t +  b(t ,Xt) + a{ t ,X t)7 { t ,X t)}dt +  o ( t ,X t)dWu t G (0, T]. 

Furthermore, if a(t ,x) is invertible for each (t,x) G [0, oo) x H, we can specify

7 (t,x) := — cr—1 (7, x)b(t, x), (t , x ) G [0, oo) x H.

Thus, if the coefficients b and a in our equation (5.1) fulfill the following condition

E  ^exp J  ||cr_1(s, As)5(s,Xs)||^ds]^  < oo, VT > 0

or equivalently,

for T  > 0, then our SDE in (5.1) becomes simply

dXt = A X tdt +  a(t, X t)dWu t G (0, T\.

From now on, we assume further the following condition throughout the rest of the paper:

(H3) The operator a(t , x) is invertible for each (£, a;) G [0, oo) x H  and the two coefficients 

6, a in Equation (1.1) fulfill

To summarize the above discussion, we conclude that under (HI), (H2) and (H3), the 

Girsanov density

dP r l
■= exp { - J  (<7- 1(s, X s(u))b(s,Xs{u)),dWs(u))H

1
~ 2 J  t - °  (5-6)

is a well-defined process for the SDE in (5.1).
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We are now in the position to state our main result. It gives sufficient conditions of the 

path-independence of the Girsanov density process for (infinite-dimensional) SDEs on sepa­

rable Hilbert spaces. To illustrate our main result in its simplest manner, let us assume that 

the operator a(t, x ) is diagonal for each (t , x) G [0, oo) x H  with respect to the orthonormal 

basis {eJieN, i-e.,

a(t ,x)  =  diag((Ti(t, x))ieN

with (cTi(t, z))ieN being, for each (t,x) G [0, oo) x 77, an (infinite dimensional) M°°-vector 

with respect to the orthonormal basis {e*}^.

T heo rem  5 .2 .1 . Assume (HI), (H2), (H3) and let v : [0, oo) x 77 —>• M be in C^’2([0, oo) x 77) 

such that [Vv(t, -)]x : 77 —> 77 G Dom(A) for any (t,x) G [0, oo) x 77 and ||AVt;(£, -)||h is 

bounded locally and uniformly i n t  G [0, oo). I f  v satisfies

—v{t, x) = --{Tr[(crcr*)V2'u](7, x) + \\a*Xv\\2H(t, x)} -  (x, A V v ( t , x))H (5.7)

and

b(t,x) =  [((T(7*)'Vv](t,x), V(t,x) G [0,oo) x 77, (5-8)

then the Girsanov density (5.6) for (1.1) satisfies the following path-indendenpent property

dP
- jp  = exp{v(0:X 0) -  v ( t ,X t)}, t >  0. (5.9)

Proof We note that showing (5.9) is equivalent to verifying the following 

v{ t ,X t) = v(0, X 0) + 1 J  ||<t'i (s,X s)6( s .X ) | |^ *

+ [ \ ( a - 1( s ,X s)b(s,Xs),dWs)H . (5.10)
Jo

However, unlike the procedure carried out in [56], we are not able to apply Ito formula 1

directly to the real-valued function v ( t ,X t) of the infinite dimensional process { X t, t  > 0},

due to the fact that our a in (5.1) is not Hilbert-Schmidt. Here we will use the Galerkin

1We refer the reader to, e.g., in [12, page 105, Theorem 4.17 of Chapter 4] or [6, page 153, Theorem 4.1

of Chapter 6] for the (infinite dimensional) Ito formula.
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approximation (5.3) associated with our initial value problem (1.1) where we have derived 

an approximation sequence {X™,t > 0}nGN for the solution { X u t > 0} of (5.1), that is, 

{ x ? , t  > 0}, is indeed n-dimensional (semimartingale) process (i.e., the process X™,t > 0 , 

lives on the finite dimensional space Hn for each n, respectively) and the sequence {X™,t > 

0}ncN converges to { X t, t  > 0} in || • \\2H. Furthermore, it clear that for each t > 0, || • \\h — 

limn^oo v(t, 7rnx) =  v(t, x) so

lim v(t, Xp) = v ( t ,X t).n—>oo

Hence, we turn to the expression i>(£,X™), which, for each fixed n G N,  is a real-valued 

function of the finite dimensional process X™, t > 0 and we can apply Ito formula to v(t , X™). 

To be more precise, viewing the expression v(t, X tn) as the composition of the deterministic 

C'1,2-function v : [0, oo) x Hn —■> R  with the finite dimensional, continuous semi-martingale 

X™ with expression (i.e., from our previous (5.3))

dXt" =  [ K X ?  +  bn(t, X?)\dt +  an(t, X?)dWu t > 0 ,

we can apply the Ito formula (e.g., [12, page 105, Theorem 4.17 of Chapter 4] or [6 , page 

153, Theorem 4.1 of Chapter 6]) to v{l,X™) with notice that here our Wt is (standard) 

cylindrical Brownian motion (with mean zero and covariance given by identity, which yields 

the following derivation

v ( t ,X tn) =  f  (0,7rnX 0) + [*((Vnv(s, X™), a„(s, X^))dWs)H
Jo

+  j  [ X?) +  <(Vn«(s, X ? ) , A nX? +  bn(s, * ;) ) )„ ]  ds

+ \ [ T r { V l v ( s , X ^ ) ( a n( s ,X ; ) ( I d ^ ) ( a n( s ,X : ) ( I d ) i r d s

= v(0,irnX o) +  [ \ a ' n(s ,X ? )V nv(s ,X?) ,dW ,)H 
Jo

+  J  [ X?)  +  {(Vnv(s, X ? ) , A nX? +  bn(s, *,"))>»]ds

+ \ f  Tr\(anal) (s , Xsn)V > (s , X")}ds (5.11)
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where Vn := X^=i ^ e ^ j i  Vej := (V ,ej)//,1  < j  < n, and we have used the following

identity in the above derivation

(Vnv(SiX ?) ,an(s,X?)dWa)H =  {a*(s,X?)Vnv(8 ,X?),dWt)„.

By our assumptions on v and that the operator A  is self-adjoint, we have

lim f \ K V nv}(s ,X :)1dWs)H=  A k * V u ](s , X a),dWa)H , 
n_>°°  Jo Jo

lim f  (Vnv ( s ,X s ) ,A nXZ)Hd s =  [ \ A V v ( s , X s) , X s)Hds, 
n ^ ° °  Jo Jo

lim [  (Vni ; ( s , I sn) ,6n(s, X ^ ) )Hds =  f  (Vv{s, X s), b(s, X s))Hds , 
n^°° Jo Jo

lim r T r [ K < ) ( 5, ^ sn) V ^ ( S, ^ ) ] d S =  / V [ ( ^ * ) ( 5,X s)V2r;(S,X s)]dS 
n^°° Jo Jo

and
r \ r \

lim — v { s ,X ”) = — v (s ,X s).
n —>oo O S  C/S

Therefore, letting n ^  oo, we get from (5.11) for any fixed t > 0

v ( t ,X t) = v (0 ,Xo)+  f  {(J*{s, X s)Vv(s, X s), dWs)H
Jo

+  J  [ J U (s ,  X.)  + ((V»(s, X,), b(s, X, )) )„ +  <2lVi;(s, X.), X , ) H] ds

+ \ [  Tr[(oo’){s, Xs)V2v(s, X s)]ds. (5.12)

Now from our assumption (5.8), we get

\\a*Xv\\2H(t,x) = {[(j*Vv](t,x),[a*Vv}(t,x))H

= (l(aa*)Xv}(t,x),1Vv(t ,x ))H

= {b(t ,x) ,Vv(t:x))H, (£, x) G [0, oo) x H  (5.13)

and

\\a*Xv\\2H{t, x) =  \\(J~lb\\2H(t, x ) . (5.14)

Putting the identity (5.13) to (5.7) yields

^ 1 1
foV(t,x) = —~Tr[(aa*)X2v](t: x) -  - (b ( t ,x ) ,V v ( t ,x ) )H -  (x ,AV v( t ,x ) )H
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and further along the path X s, s > 0

<r’Vv\\%(t,Xt) = (5.16)

Putting (5.15) and (5.16) into (5.12), we obtain

o 1 J o

*  JO JO

which is the exact (5.10) we wanted. This completes the proof.

□
We end up this section with two remarks on a link from finite-dimensional SDEs to 

infinite-dimensional SDEs.

R em ark  1 Let n E N be fixed. For Equation (5.7), we let v(t,x)  depend on the first n 

components of x =  (xq, X2 , xn, ...) E H , that is

v{t,x)  := v ( t , x i ,x 2, .. - ,x n).

Clearly, this is the similar to the case of finite-dimensions situation considered in [30]. In 

fact, for x E Hn recall that Ae.{ =  — \ e {  (see our assumption (HI)), so we have

(5.17)

Furthermore, since for i > n

we have for b = (bln,b2n, ..., b%+\  ...)

(5.18)
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and

(5.19)

Similarly, we set an(t,x) =  diag((<rn)i(/;, re)),

(5.20)

Combining (5.17), (5.18), (5.19) and (5.20), the equation (5.7) for such special v : [t,x) x 

H n —> R  then becomes

Moreover, letting n —> oo, we arrive the straightforward infinite dimensional analogy of the 

Burgers-KPZ equation

The link to the Burgers-KPZ equation obtained in [63] (as well as from the one-dimensional 

equation derived in [56]) is that at there Wt,t  > 0, is the standard Brownian motion with 

mean zero and covariance being the identity matrix, while as here our Wt, t > 0 , is the (stan-

Brownian motion with mean zero and identity matrix covariance. It would be of interest to 

study infinite dimensional SDEs driven by cylindrical Wiener processes with more general 

covariance operators Q in the framework of abstract Wiener spaces (cf., e.g., [12, 6 , 46, 58]). 

We will consider this problem in our forthcoming work.

R em ark  2 Let R  : H  —> be a fixed operator. For m  G 77, let R m : [0, oo) x H  i—►

Rm(t,x) E L h s ( H )  be bounded, i.e.,

(5.21)

dard) cylindrical Brownian motion whose finite dimensional projects are just the standard

(£ ,x )G[0,oo)x//

77



We set for the a(t:x) E Lh s {H), (£, x) E [0,oo) x i / ,  in our Theorem 2.1 as the following 

perturbation

crm(£, x) := i? +  2 x),  (£, x) E [0, oo) X H .

That is, under the given orthonormal basis the dependence of crm(i, x) on the m-th

coordinate xm =  (x, em) becomes weaker and weaker as m  goes to sufficiently large and 

limm^oo \\am(t,x)  — = 0. Next, we denote

(a™(t,x))i(zN := diag ((crm(t, x))NxN) = diag ({R + 2~mRTn(t, x))NxN)

i.e., the real-valued coordinate

a™(t, x) := (R +  2~mR m(t, x))u

with limm_>00 cqm(i, x) =  {Rei.Rei) =: r* E JR.. Then Equation (5.7) in Theorem 5.2.1 for the 

vm(t,x) reads

r\ 1 ^  /"î
=  - - {  £ ( ( *  +

I— 1 1
O O  o

+ ^ { { R + 2 ~ lRi { t , x) )n)2( t ,x){  —  Vm( t , x) )2}

As m ^  oo, we have the real-valued (point wise) limit v(t,x) := limTn̂ 00 vm(t, x) which 

satisfies the following infinite-dimensional Burger-KPZ equation (with constant coefficients)

5.3 A pplication  to  parabolic S P D E s

In this final section, we will consider an example of space time inhomogeneous parabolic 

SPDEs. Here, we take for granted the familiarity with the introductory account on SPDEs
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presented e.g. in [57, 6] or [46]. Let (fi, F , {Pt}t>o, P) be the given probability set-up as in 

Section 5.2. We consider the following problem for a parabolic SPDE on the bounded space 

domain [0,1] C R

{B(t,  £)}(f,x)e[0,oo)x[0,ih is a Brownian sheet on [0, oo) x [0,1]. The heuristic derivative 

is interpreted as the space time white noise, which can be made rigorously, e.g., by utilizing 

generalized functions ([57]).

It is sometimes also convenient, cf. e.g., [6 , 12], to link the space time white noise to 

an L2([0 , l])-valued cylindrical Brownian motion on (f2, T , {Pt}t>o> P)- Let us elucidate this 

point a bit here. First, let B(ds , dz) be such that

is D(A) =  H 2{[0,1]) f)i7o([0,1]), where H k([0,1]) stands for the L2-Sobolev space of order 

k and Hq[0, 1]() is the closure of Cq°([0, 1]) in Hk, for k — 1,2 . We denote by {^n}neN the 

complete orthonormal system in H  consisting of the eigenfunctions of A, which is given by

9n(x) := \ / 2 sin(n7r:r), n G N 

so that A9n(x) = — n2'K29n(x). Then

defines ^-cylindrical Brownian motion on H  (i.e., with covariance Q =  A).

The problem (5.23) is sovlable with a unique strong solution under the following assump­

tion on the coefficients (cf. e.g., Chapter 6 of [6] or Chapter 7 of [12])

f Q'n d2u d2 B
~dt ^  =  da? ^  + X’U X ^  + X, U X ^ d t d x ^ ’X^  1 > ° ’X G

< u(t, 0) =  u(t, 1) =  0 , t > 0 ,

 ̂ u ( 0 , x )  =  u q ( x ) ,  x G [ 0 , 1],
(5.23)

where </>, xj; : [0 , oo) x [0, 1] x M —> M are space time inhomogeneous coefficients, and

Next, it is clearly that the Hilbert space H := L2([0,1]) is separable. Let A  := be the 

one-dimensional Laplace operator on [0,1] with Dirichlet boundary condition so its domain



I) The coefficients 0, 0  are Lipschitz continuous with linear growth in the sense that 

there exists C > 0 such that

|0 ( t ,x ,z ) |2 +  |0 ( t ,x ,z ) |2 < C{ 1 +  |z|2),

and

10(t, X, Zi) -  0 (£ ,  X , z 2) | 2 +  |0 (£ ,  x ,  z )  -  0 ( t ,  x ,  z 2) |2 <  C | z i  -  z 2 |2 

hold for all (t , x) G [0, oo) x [0,1] and for abitrarily given z, Zi, z2 G M;

II) The diffusion coefficient 0  is uniformly bounded from below and above, i.e., there exist

positive constants C\ and C2 such that for all z G M.

Ci < |0(£,x, z)| < C2

holds for all (t, x, z) G [0, oo) x [0,1] x R.

If I) is fulfilled, one can show that (5.23) has a unique (global) mild solution u( t ,x ) , t  >

0,x G [0,1], i.e., u satisfies the following mild equation

u ( t , x )=  / p(t ,x ,y )u0{y)dy + / /  p(t -  s, x, y)<j>(s, y, u{s, y))dsdy
Jo Jo Jo

+ /  /  p(t- s ,x ,y ) i />(s ,y ,u (s ,y ) )B(ds t dy),
Jo Jo

with the property that u(t) u(t , •) : [0,1] R G ^ 2([0:1]) + H

E sup \\u(t)\\2H
Lfe[o,oo

< oo.

where p(t, x, y) stands for the fundamental solution of — A.

Now we want to reformulate the equation (5.23) in its abstract form. To this end, we set

X t :=u(t,-), b(t ,Xt) := <f>(t, -,u(t, •)), <r{t, X t)(v) := 0(£, •, u{t, -))v(t, •) (5.24)

for u(t, ■) ,v ( t , •) G H  for any t > 0. Then, Equation (5.23) becomes

dXt = { A X t +  6(t, X t)}dt +  cr(t, X t)dWu t > 0
(5.25)

X q =  uo G H,
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which is exactly in the form of (5.1). Therefore, our Theorem 2.1 goes to verbatim for 

characterizing the path-independent property of the Girsanov density process for (5.25), 

which can be further transferred to (5.23) via the links (5.24) in the straightforward manner.
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