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Abstract
College of Engineering 

Doctor of Philosophy

by Sean P. Walton

The aim of this thesis was to investigate the application of gradient free optimisation 

algorithms to a number of practical engineering applications. A modified cuckoo search 

algorithm was developed which outperformed a number of other optimisation algorithms 

in a variety of benchmark cases. The algorithm was applied to two selected practical 

examples. The first was th a t of aerodynamic shape optimisation, where the algorithm 

performed well when applied to both inverse design and aerofoil improvement prob

lems. A lim itation of gradient free algorithms is poor efficiency, in terms of number of 

function evaluations. W hen a single function evaluation is computationally expensive, 

this presents a  problem. In an attem pt to address this an interpolation scheme based 

on proper orthogonal decomposition was developed for unsteady fluid flow problems. 

This approach resulted in a significant reduction in the CPU time required to find new 

solutions, without a significant loss in accuracy. Modified cuckoo search was also ap

plied to mesh optimisation. For this application reduced order mesh optimisation, was 

introduced. It was applied to the difficult problem of optimising meshes for use in co

volume techniques. Proper orthogonal decomposition was used to reduce the number of 

dimensions in the problem. This reduction allowed the expression of the optimisation 

problem globally, rather than  locally as in other techniques. This technique performed 

better than  other existing techniques at improving mesh quality in both two and three 

dimensional examples.
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Chapter 1

Introduction

1.1 G eneral

Design is at the core of engineering. Many different definitions of the word design exist. 

The main focus of this thesis was the verbal meaning of the word design, i.e. the process 

of design. Many fields in engineering attem pt to improve some part of this core process.

Design processes all begin with two main questions: what is it th a t the final design needs 

to achieve and what constraints are there on the design? A designer’s role is to best 

meet the goals given by the first question, whilst satisfying the constraints identified in 

the second. This is often achieved during design cycles.

Before a design cycle can take place, an initial design is required. This initial design will 

almost certainly be formed using a designer’s own experience and training, or perhaps 

even simply utilising a previous design from another project. Once an initial design is 

constructed, it will need to be analysed. Historically, this analysis is achieved through 

physical experiments. Such an example is the invention of the first commercially practical 

light bulb by Thomas Edison. Lacking the required theoretical background Edison 

undertook a trial and error search for the best material for the filament. This type of 

trial and error is sometimes called the Edisonian approach.

Using the evidence obtained through this analysis, the original design can be refined 

to better meet performance goals and constraints. As scientific theories became more 

sophisticated, it was increasingly possible to predict the performance of different designs 

using hand calculations. However, this is a laborious process and the models used would 

often contain approximations to make hand calculations possible.

To simplify the process of refining a design, parameterisat-ions are often employed. This 

allows the size and shape of a design to be represented by a series of parameters. For

1



Introduction 2

instance, a simple beam may be parameterised in terms of length, width and height. 

The goal of the design cycle is therefore to find a set of these parameters which result in 

the best performance whilst meeting the constraints. The designer must parameterise 

the design in an efficient and logical manner to make the process easier.

The initial design represents a first guess of the best set of parameters for the problem. 

The cycle of testing a design at a given set of parameters, readjusting the parameters, 

then retesting, could be repeated many times. As problems become more complex, 

with more param eters, a designer will want to keep a design in this cycle longer. The 

limiting factor in how long a design cycle can last, in reality, are deadlines specified 

by contractors, potential customers or competitors. The designer has no control over 

this time period, so the field of engineering seeks to make the design cycle increasingly 

efficient.

Computer simulation is making a measurable impact on the efficiency of design cycles 

across multiple disciplines. Sophisticated computer models now allow the construction of 

virtual experiments for many different potential designs. The primary example consid

ered in this work was th a t of computational fluid dynamics (CFD). Before computational 

power and model validation made CFD a practical and reliable tool, wind tunnel testing 

and hand calculations were used to test designs in aerospace engineering. Wind tunnel 

testing requires expensive experimental equipment, with new models needed for each 

new geometry. This results in a very limited number of design cycles before a deadline 

is reached.

In 1980, Boeing constructed 77 different model wings for wind tunnel testing whilst de

veloping the 767. This is compared to 11 wings for the development of the 787 in 2005. 

The reduction is due to advancements in CFD [4]. Compared to experimental and hand 

calculation analysis, computer simulations allow the, relatively, fast and cheap analy

sis of potential designs. Computer aided design applications also allow the automatic 

param etrisation and generation of new design geometries. The designer is faced with 

the task of using this potentially endless supply of data  efficiently and effectively.

The requirements and constraints of a problem can first be used to define some kind of 

quality measure of a  design. One example might be the lift to drag ratio of an aerofoil. 

Once the quality measure is defined, a computer simulation can be run for a set of sample 

designs, to obtain the quality measure for each. If only a single param eter defines the 

design, the quality measure can simply be plotted against this param eter on a simple line 

graph. By simply inspecting this graph this designer can determine the optimum design. 

When two param eters exist, the quality measure will have to be plotted as a contour 

map or a surface, which the designer may inspect. W ith three or more parameters it 

becomes difficult, if not impossible, to visualise and understand this data.
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As the number of param eters increase, it becomes increasingly difficult to determine the 

optimum design by hand. Doing so relies on the intuition and experience of a skilled 

designer. As technology and development pushes the boundaries of current knowledge, 

this experience and intuition becomes less important. For example, in the design of micro 

air vehicles on the scale 15cm and below, classical aerodynamic design theory does not 

apply [5]. This could result in unexpected shapes representing optimum designs. In 

addition, the time taken to comprehend the effect of each param eter on the performance 

of the design will limit the number of possible design cycles.

The methods presented in this thesis all aimed to autom ate this searching process, while 

increasing its efficiency. There were two methods considered for increasing the efficiency 

of the process. The first was to reduce the number of sample designs needed to obtain 

the optimum design, this is the aim of the field of optimisation. The second was to 

reduce the time taken to obtain the quality measure for a given design, which is the role 

of reduced order modelling (ROM).

1.2 O bjectives

The initial objective of this work was to apply reduced order fluid flow modelling and 

optimisation techniques to aerospace design problems. The goal was to develop tech

niques which would be capable of making large design changes. It was recognised that 

many local optimisation techniques exist which can make significant improvements to 

initial designs. However, local optimisation techniques are sensitive to the initial design 

supplied. The aim here was to develop techniques which are not sensitive to an initial 

design. An additional aim, was to write algorithms which were as general and automatic 

as possible.

To achieve this aim, an optimisation technique capable of global optimisation needed 

to be identified. In addition to this, a ROM technique was required to reduce the 

computational cost of numerical models used by the optimiser. Such a ROM technique 

would need to be able to  predict responses to significant changes in the geometry and 

flow regime.

1.3 Layout o f th e  Thesis

Chapter 2 provides a brief overview of optimisation. The concepts of local and global 

optimisation are discussed. This resulted in a motivation to use metaheuristic gradient 

free optimisation methods. The Cuckoo Search (CS) algorithm was selected as the
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optimisation algorithm for this work. The algorithm and motivations for selecting it, 

are discussed in Section 2.4.1.4.

Chapter 3 discusses the modifications made to the CS algorithm. These modifications 

which became known as Modified Cuckoo Search (MCS) [1], are detailed. The mod

ifications result in an algorithm which can minimise a function in a low number of 

evaluations, compared to other metaheuristic gradient free methods.

Further changes, discussed in Section 3.4, were made to the published MCS algorithm. 

The motivation for these changes originate from the results presented by Bhargava et 

al [6], who applied MCS to phase equilibrium modelling.

The MCS algorithm was applied to the problem of aerofoil shape optimisation, which 

is presented in Chapter 4. It was found that the method could improve the design of a 

given aerofoil. However the high CPU cost of evaluating the objective function would 

make the method impractical for use in an industrial setting. This led to an investigation 

into ROM techniques.

An overview of ROM is given in Chapter 5. A ROM technique based on Proper Orthog

onal Decomposition (POD) and interpolation methods was deemed the most suitable for 

optimisation purposes. The existing method as it applies to steady fluid flow problems, 

discussed in Section 5.4, was extended, successfully, to unsteady flow problems [2]. The 

resulting unsteady ROM technique is presented in Section 5.5.

The ROM techniques considered are not suited to predicting changing flow regimes, 

which makes them unsuitable for general aerodynamic shape optimisation. However, 

POD was used to reduce the dimension of mesh optimisation problems. When coupled 

with MCS, the technique, Reduced Order Mesh Optimisation [3], is found to be very 

successful in otherwise difficult mesh optimisation problems. The reduced order mesh 

optimisation algorithm is presented in Chapter 6.

Finally the general findings of this thesis are discussed in Chapter 7, along with areas 

for future work.



Chapter 2

Overview of O ptim isation

optimum

n. The most favourable or advantageous condition, value, or amount 

adj. Best, most favourable, esp. under a particular set of circumstances

Oxford English Dictionary

2.1 In troduction

In Section 1.1, the design cycle was discussed. Typically, a design cycle is a series of 

decisions made by a designer or team of designers, based on experience and intuition. 

Decisions need to be made on which parameter of the design to adjust, and by how 

much. Another decision is when to stop making changes and finalise the design. The 

field of optimisation involves developing techniques to automatically make these kinds 

of decisions.

Modern optimisation techniques originate from methods developed to find roots of poly

nomials, or to solve systems of equations. One such example is the conjugate gradient 

method, which was designed to solve a system of linear equations [7]. The solution is 

found by minimising the residual of the system, which means that if a problem could 

be framed as a minimisation problem then this technique can potentially be applied. 

An early example of such an application is the minimisation of an energy function to 

numerically determine the electronic structure of molecules [8].

Computers were the key to the development of optimisation techniques. Little was known 

about how to approach the numerical optimisation of many variable functions before

5
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1940. In the 1940s and 1950s, a new branch of research, named linear programming, 

was introduced. Essentially, this was the birth of linear optimisation. The kind of 

functions these early techniques could be applied to was very restricted. In the 1960s, 

it was still considered quite a challenge to optimise functions with 10 variables. Modern 

techniques are designed to optimise functions with hundreds of variables [9].

2.2 Fundam entals

Let / (x )  represent some measure of quality or performance of interest. The aim of 

optimisation is to find the set of inputs, or parameters in the case of design optimisation, 

x  that either maximises or minimises the output of this function. The inputs of the 

function may be represented over any number of dimensions or degrees of freedom. 

The space on which x  is represented is often referred to as the search or parameter 

space. Optimisation algorithms traverse the search space to find the optimum set of 

parameters by evaluating the objective function at different coordinates. The evaluation 

of the objective function, /(x ) ,  may be expensive so it is desirable to minimise the 

number of evaluations required to find optimum value.

2 .2 .1  C a te g o r is in g  O p tim isa tio n  P r o b le m s

A wide range of optimisation methods exist. To select a suitable method, for a par

ticular objective function, methods of classifying objective functions are required. In 

this section, a number of terms used to describe objective functions and optimisation 

problems are explained.

2.2.1.1 S m o o th n ess

The de Jong function
d

/ ( x )  =  ] T x ?  Xi G [—5.12,5.12] (2.1)
i =  1

with d = 1 is plotted in Figure 2.1(a). This is an example of a smooth objective function. 

Smooth functions have continuous second derivatives. Conversely, non-sm ooth functions 

do not have second derivatives and may contain discontinuities [10]. An example of 

a non-smooth function is plotted in Figure 2.1(b). Non-smooth functions provide a 

challenge, in particular, for optimisation techniques which require gradient calculations.
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FIG U R E  2.1: Smooth and non-smooth functions 

2.2.1.2 L o c a l-m in im a

T he concep t of lo c a l-m in im a  is im p o rta n t in o p tim isa tion . O p tim isa tio n  a lgorithm s can 

be considered  e ith e r local o r global m inim isers [11]. T h is is illu stra ted  in F igure  2.2, 

w hich show s a  p lo t of Schwefel’s function given by

/ (x )  =  [-®»sin(\/jxii) Xi e  [-500,500]
2 = 1

(2 .2 )

w here d  =  1. M u lti-m o d a l functions have m any lo ca l-m in im a, w hereas u n i-m o d a l 

functions do no t. O p tim isa tio n  algorithm s which de te rm ine  search d irec tion  using g ra

d ien ts  m ay  becom e tra p p e d  in a local-m in im a, depend ing  on th e  in itia l guess of the  

in p u t p a ram e te rs . T h is  leads to  th e  concept of local vs. global m inim isers.

Local m in im isers dep en d  critically  on th e  in itia l guess of th e  in p u t p aram eters . Such 

o p tim isa tio n  a lg o rith m s will only converge to  th e  global m in im um , if th e  in itia l guess 

is close to  it, o therw ise  th ey  converge to  the  lo ca l-m in im um  closest to  th e  in itia l guess.
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True global m inim isers, however, will find th e  global m in im um  in every case, regardless 

of the in itia l guess. In p rac tice  locating  th e  global m in im um  is difficult, as is recognising 

it w hen it is found [10].

2.2.1.3 N oise

F igure 2.3 shows an  exam ple of a  noisy function. T hese types of ob jective functions are 

often found when optim ising  a function  based on d a ta  from  e ith e r physical or num erical 

experim ents. T he noise is likely to  rep resen t experim en ta l or num erical error. Noise 

will resu lt in a  function  which is b o th  n o n -sm o o th  and  m u lti-m o d a l and, therefore , the  

difficulties discussed for those  classes of functions app ly  here. A key s tra teg y  in dealing 

w ith  noise is to  a tte m p t to  find an  underly ing  function  and  rem ove th e  noise.
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2.2.1.4 C ontinuous and D iscrete

All the objective functions plotted above axe examples of continuous optimisation prob

lems. The input variables have continuous values within a specified range. Some prob

lems, however, contain inputs which have discrete states. For these problems, discrete 

optimisation strategies are required.

A defining feature of discrete optimisation problems is th a t the input parameters are 

drawn from a large, but finite, set. In continuous optimisation, the set of feasible input 

parameters can be considered infinite [10]. All applications considered in this thesis fell 

into the continuous category.

2.2.1.5 C onstrained and U nconstrained

In unconstrained problems, the input parameters can take any value [9]. Constrained 

optimisation problems represent most real design problems, where constraints are im

posed on the input parameters. These constraints may be simple bounds on the input 

parameters, such as size, or more complex constraints which themselves are a function 

of the input parameters, such as budgetary or structural constraints. Constraints are 

often expressed in the form of equalities

<7i(x) = 0  i £ l

and of inequalities

0i(x) > 0  i £ e

Here, gi is the function representing the constraint z, and the sets l and e contain the 

equality and inequality constraints respectively [10].

2.2.1.6 Linear and non-linear

A linear optimisation problem has all linear objective and constraint functions, whereas 

non-linear optimisation problems do not. Linear programming aims to solve linear opti

misation problems and non-linear programming tackles non-linear problems. During the 

initial development of optimisation techniques most problems, such as those in manage

ment, financial and economics, were formulated as linear problems. This is because linear 

problems are much easier to solve being uni-modal by nature. In physics and engineering 

the objective functions are almost always non-linear, which forced the development of 

non-linear programming techniques. This development has allowed more sophisticated 

non-linear formulations of financial and economic optimisation problems [10].
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2 .2 .1 .7  R ob u st D esign  O ptim isation

Standard deterministic formulations of optimisation techniques rely on a static specifica

tion of operating conditions and do not account for the inevitable uncertainty in design 

param eters associated with the manufacturing process. The result is a design which 

will perform poorly in conditions outside of those defined in the optimisation. Robust 

design optimisation attem pts to produce designs which perform well in a wide range of 

uncertain param eters (operating conditions, manufacturing errors etc) [12].

2.3 G radient B ased  A lgorithm s

Gradient based algorithms have existed since the introduction of linear programming. 

Gradient based techniques are among the most used optimisation techniques in engineer

ing, because of their high computational efficiency and well understood behavior. Ex

amples of gradient based techniques include Newton-Rapshon [13], steepest descent [14] 

and the conjugrate gradient method [15].

All gradient based algorithms start with an initial set of input parameters x fc=1. This 

initial set is a user’s best guess at where the optimum may exist. Using information 

about the function at x fc=1 the algorithm decides upon a new set of parameters x fc+1 to 

inspect. The aim is for / ( x fe+1) < / ( x fc) [10] i.e. the value of the objective function to 

decrease each iteration. Often when describing these techniques the input parameters 

are referred to as solutions, probably due to the origin of these methods in equation 

solvers.

2 .3 .1  G ra d ien t B a se d  O p tim isa t io n  S tr a te g ie s

A number of different gradient based algorithms and strategies are now described. 

These techniques are commonly used and can be found in commercial packages such 

as DOT [16] or the MATLAB [17] Optimisation Toolbox.

2.3.1.1 Line Search A lgorithm s

Line search algorithms are optimisation techniques which undergo the following basic 

procedure each iteration

1. calculate a search direction p fc,
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2. find the value of a  which minimises f(x .k +  a p fc), and 

3 x k+ 1 _  x k _|_ fc

Different algorithms result from different methods of determining p k. If the method of 

determining p k is effective any value of a  > 0 should result in a reduction of the objective 

function. This means in practice it is not worth the effort to calculate the value of a  

which minimises / ( x fc +  ctpk) exactly. Instead approximate optimisation techniques can 

be used to find a  [9].

In the steepest descent method
p* =  —V /(x*)

where V is the gradient operator. This is the most obvious choice for p*1, but it can 

result in slow convergence for complex problems. The slow convergence is due to the 

fact that —V /( x fc) is always orthogonal to the contours of the function [10].

Conjugate gradient methods attem pt to solve this problem by setting

p k =  - V /(x fc) +  /3 V ' 1

where (3k is determined to ensure pk an d p fc_1 are conjugate. Conjugate gradient methods 

are much more effective than steepest descent in terms of convergence rate [10].

The fastest convergence rates achieved by line search algorithms come from Newton 

direction descent methods. To find a Newton descent direction the second-order Taylor 

expansion

/(x *  +  p) «  /*  +  p T V f k + i p TV2/ feP

is employed. The aim is then to find a direction, p k, which minimises this function. 

Taking the derivative with respect to p  and setting it equal to zero results in

p k = _ ( v 2/ fc)- 1V / fc

for Newton descent methods. The primary drawback of Newton type methods is the 

requirement for a second derivative, which may not exist for non-smooth problems [10].

2.3.1.2 Trust R egion  A lgorithm s

Trust region algorithms use information gathered about / ,  during the optimisation pro

cess, to construct a model function m k. The model function m k will change each iteration 

and it resembles /  close to the current optimisation point x fc. For this reason, the search
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for the minimum is restricted to a region close to x k where the approximation m k is 

trusted. The basic procedure followed by a trust region algorithm each iteration is

1. find p which minimises rafc(xfc +  p) under the constraint ||p|| < a k where a k is the 

trust-region radius for the current iteration k

2. x fe+1 =  x k +  p fe

3. calculate the ratio
/(x* ) -  / ( x t+1)

m k(xk) — m k(xk+1)

If this ratio is close to one then m k is a good representation of /  so increase a fc+1. 

Otherwise decrease a k+1

The difference between trust region and line search algorithms is the order in which the 

direction and distance to x fc+1 is determined. In line search algorithms, a direction is 

specified and the distance calculated by solving a minimisation problem. The reverse is 

true for trust region algorithms where a maximum distance is specified and the direction 

calculated using a minimisation [10].

2.3.1.3 M eth od  o f Feasible D irections

The method of feasible directions is a gradient based algorithm applied to constrained 

optimisation problems. The starting point is selected such that it satisfies all the con

straints. A solution is said to be feasible if all constraints are satisfied. The value of 

a  is selected to be small enough not to move outside a region of feasible solutions. In 

the method of feasible directions, p k is selected such tha t a small move in that direction 

does not violate any constraints and also results in a reduction in the objective func

tion. Calculating p fc for this method requires gradient information for both the objective 

function and the constraint functions [18].

2.3.1.4 Sequential Linear Program m ing

Originally introduced as the m ethod of approximation programming, sequential linear 

programming is a technique to optimise non-linear problems. The technique uses a 

Taylor expansion to linearise the non-linear objective and constraint functions. Linear 

programming methods can then be applied to this linearised function. The linearised 

function is constructed using local gradients and is only valid in a given region. A dis

tance is calculated, which represents the maximum distance the optimisation algorithm
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can move from a solution before the function needs to be approximated again. This 

leads to solving a sequence of linear problems [19].

2.3 .1 .5  Sequential Q uadratic Program m ing

Sequential quadratic programming was introduced in the late 1970s to solve non-linearly 

constrained optimisation problems. The technique works the same way as sequential 

linear programming except tha t the non-linear objective and constraint functions are 

approximated as quadratic problems, so tha t quadratic programming techniques can be 

applied. There are many rapid and accurate algorithms which belong to the family of 

quadratic programming techniques, which motivates the quadratic approximation in this 

method [20].

2.3 .1 .6  T he A djoint Approach

Jameson [21] introduced the idea of regarding a shape design optimisation problem as 

a control problem. This has become known as the adjoint method. In this method, 

the shape of the design is considered as the input to a control problem. Let s(x)  be 

a function representing the shape of a design. A variation in the surface 8s results in 

a variation in the objective function 8f .  When the objective function is the output of 

some system, which is specified by variables and parameters w, such as Mach number 

or angle of attack, then the objective function is a function of these parameters and the 

shape of the surface s. This allows the expression

Sf = dJ ldw+dJLds
dw ds

The trick in the adjoint method is to eliminate the dw  term  by using a Lagrange mul

tiplier T. If T  is selected to satisfy the adjoint equation

d R
dw

T  =
d f T
dw

(2.3)

where R  is the governing equation for the model defining the objective function, it is 

shown that

8 f  = Gds

where
r  dfT 
G ~ ~ d T ~ r

d R
8s

This means th a t 8 f  is independent of 8w and, hence, equation (2.3) only has to be solved 

once to calculate the objective function gradient for any number of input parameters [22].
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Although Jameson has applied this technique to a number of real design problems, the 

development of adjoint techniques has not been rapid. A number of limitations are 

identified [23] which may explain this:

• in constrained optimisation an adjoint calculation is required for each constraint 

function.

• The benefit of the adjoint approach only becomes significant for large number of 

input parameters.

• The technique can be difficult to implement, despite the straight forward concept.

• Additional limitations of gradient based algorithms, which are discussed in detail 

below in Section 2.3.2.

2 .3 .2  P r o b le m s w ith  G ra d ien t B a sed  A lg o r ith m s

The practicality of using gradient based optimisation techniques is reduced by the dif

ficulty of automatically generating the derivatives of objective functions in real appli

cations. When the objective function represents a complex numerical model, it is not 

possible to calculate derivatives analytically. It is possible to approximate derivatives 

numerically using, for example, finite difference methods, but this can be unreliable. In 

addition, it becomes increasingly difficult, and computationally expensive, to numeri

cally calculate derivatives for large numbers of input parameters [10].

Gradient based techniques are particularly sensitive to noise in the objective function. 

Since many of the described techniques make use of the second derivatives, non-smooth 

functions pose challenges. Furthermore, for a number of non-linear engineering prob

lems, the gradient will change throughout the search space and may not always point in 

the direction of the global minimum solution [12].

2.4 Gradient Free A lgorithm s

There are two broad categories of gradient free algorithms: metaheuristic and determin

istic. Metaheuristic methods make use of random numbers to drive the optimisation [24], 

whereas deterministic techniques are, as the name implies, repeatable without random

ness.

The Nelder-Mead Method [25] is an example of a deterministic technique which uses 

the concept of simplices to represent the agents in the search space. A simplex is a
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collection of vertices which are connected to form a simple shape, for example a triangle 

in two dimensions. For an N  dimensional problem, each simplex has N  +  1 vertices. 

The objective function is evaluated once at each vertex and one of three operations 

then takes place to  generate a new candidate vertex. These operations are reflection, 

contraction and expansion of the simplex. It has been shown that the method does not 

converge to a global minimum for general problems [26] but, despite this, it remains 

popular in industry, e.g. it has been widely used in the fields of chemistry, chemical 

engineering and medicine. This popularity is probably due to its simplicity and to the 

fact tha t it generally produces a significant improvement in the solution, within the first 

few iterations [26].

Broadly speaking deterministic techniques tend to be local optimisers, whereas meta- 

heuristic techniques have the potential to be global optimisers [24]. For this reason 

deterministic techniques were not considered further.

Computer scientists investigated the possibility of applying the concepts of evolution as 

an optimisation tool for engineers during the 1950s and 1960s. This work gave birth to 

the genetic algorithm (GA), which is an example of an metaheuristic technique [27].

Although no rigorous definition exists, most metaheuristic algorithms contain the fol

lowing elements:

•  population of agents,

•  selection according to fitness,

•  crossover of agents, and

• random m utation of agents. [27]

These algorithms use large populations of agents to search the solution space. The 

objective function is calculated at the position of each agent and a series of rules are 

followed, with the aim to  move the agents towards the global minimum.

An agent can be considered as a potential set of inputs to the objective function. These 

agents axe given different names in specific algorithms, depending on the analogy em

ployed. A selection scheme, based on the objective function, is constructed to be biased 

towards selecting the best individual agents to survive from one generation to the next. 

As the number of generations increases, the agents should approach the global optimum. 

This results in a number of gradient free methods based on principles of evolution.

In practice, testing for convergence in metaheuristic algorithms is not straightforward. 

This is due to most algorithms being designed to maintain diversity and avoid early
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convergence to a local sub-minimum. Thus, algorithms of this type tend to simply be 

run for a prescribed time. Discussions with engineers in industry suggested that this 

would typically be overnight.

A successful metaheuristic technique finds a balance between exploring new areas of the 

search space and refining areas of the search space where current information suggests 

the minimum might lie. This balance is often determined by a set of parameters which 

are tuned to control the behavior of the agents.

To avoid the problem of sensitivity to the initial guess, gradient based techniques are 

often paired with metaheuristic techniques. For example, when applying optimisation 

techniques to training a neural network, Salimi et al [28] proposed a simple hybridisation 

between MCS [1] and a conjugate gradient method. They were training a neural network 

for classification and pattern  recognition purposes. A neural network has an associated 

series of weights which governs its behaviour. Traditionally, the conjugate gradient 

method would be used to find the optimum weights. They found tha t this technique 

depends critically upon the initial guess, due to the multi-modal nature of the problem. 

The performance of the trained neural network increases when the global optimisation 

properties of the MCS were used to find an initial guess, which is then refined using a 

conjugate gradient solver.

2 .4 .1  E x a m p le s  o f  M e ta h e u r is t ic  A lg o r ith m s

2.4 .1 .1  G enetic A lgorithm s

Among the earliest gradient free metaheuristic optimisation algorithms developed, GAs 

are based upon concepts of biological evolution. In most optimisation algorithms, the 

agents are represented by a vector of real numbers which refer to coordinates in the 

search space of interest. In GAs, the agents are, typically, represented by the strings of 

Is and Os th a t define the binary representation of the coordinates in the search space. 

Crossover and m utation operate on the string representation of each candidate solution, 

not on the physical, geometrical or real representations [27]. Representing a solution in 

this way can lead to the requirement for large numbers of degrees of freedom for complex 

problems. The fitness of each agent is evaluated and a number of the best candidates are 

selected to undergo the crossover and mutation processes to generate a new population. 

GAs have been applied successfully to many problems, including pattern  recognition, 

robotics, electronic circuit design [29] and aerofoil shape optimisation [30].
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2.4 .1 .2  D ifferential E volution  (D E)

In DE, the agents are simply represented by vectors of real numbers referring to co

ordinates in the search space. Given an initial population of agents, new agents axe 

generated in the following manner:

1. A target agent, x*, is selected, with n th  element denoted by x n^.

2. Three more randomly selected agents are selected, Xj, xjt, x/, where i ^  j  ^  k ^  I.

3. A donor agent, v, is generated using v =  xj  — /3(x*. — x/). Here, /? is a mutation 

factor, which is a constant user selected param eter from the interval [0,2]. For the 

studies presented in this thesis the value of =  0.5 was employed.

4. A trial agent, t, is generated by crossing the target and donor agents. Many 

different crossover strategies exist. The most competitive is binomial crossover [31], 

which was the strategy adopted in this thesis.

5. For each dimension, n, in the search space a random number rn is generated from 

a uniform distribution between zero and one. If rn <  7 then tn =  vn else tn =  x nj .  

The user specified param eter 7 is known as the crossover probability. In the studies 

presented in this thesis the value 7 =  0.9, which appears to be a commonly used 

value for this param eter [31], was used.

6. The fitness of t is evaluated and, if it is better than Xj, then it replaces it.

This iteration scheme repeats until a suitable stopping criterion is met [32].

DE has been applied with success in the fields of electrical power systems, electromag

netic engineering, control systems and robotics, chemical engineering, pattern  recogni

tion, artificial neural networks and signal processing [31].

2 .4 .1 .3  P artic le  Swarm  O ptim isation  (PSO )

PSO is a metaheuristic technique used for global optimisation [33]. The method is 

based upon an analysis of how swarms of creatures behave in nature. Although these 

swarms are found to exhibit complex behaviour, each individual in the swarm follows a 

simple set of rules [34]. PSO attem pts to mimic this behaviour by defining a swarm of 

individuals wandering in the design space [12]. Each individual, j ,  has a position, Xj, 

defined by the design parameters, an associated fitness defined by the objective function, 

a local memory of its best location pj  and knowledge of the best position, pff, found 

globally by the swarm. In the process, the velocity, Vj, of individual j  changes, so that
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the individual is drawn towards the best region of the design space, based upon the 

accessible information [34]. This is achieved by updating the velocities iteratively, using 

the equation

v ‘ +1 =  x[u>*v‘ + Cj r j (pk -  x j)  +  c9r 9(p j -  xj)] (2.4)

where k  denotes the iteration number, rj and rg are random coefficients and y, wk, Cj 

and cg are coefficients which can be selected to control the evolution of the algorithm. 

The coefficient x  determines how far a particle can move in an iteration step, Cj is 

the local memory coefficient, which controls the pull towards the best position in the 

memory of particle j , and cg controls the pull to the best position found globally. The 

coefficients cj and cg and are always less than  one and are typically given the value 0.75. 

PSO techniques are not dramatically influenced by the non-smoothness of the objective 

functions and are easy to implement. In addition, PSO can be readily parallelised [12].

B ratton and Kennedy [33] discuss the main improvements tha t have been made to the 

PSO procedure since its original introduction, e.g. the form adopted in equation (2.4) 

includes a small modification, involving the inertia weight parameter w k, which affects 

the amount by which individuals overshoot known areas of high fitness. The lower the 

value of wk, the greater the tendency of the swarm to cluster around the best solution 

found. This param eter is initially assigned a value greater than one and its value is 

then reduced, as the iterations proceed [33]. A problem with PSO is the large number 

of tuning parameters th a t are required. The effect of these parameters may not be 

immediately obvious.

PSO has been applied to training artificial neural networks, electrical power systems and 

biological systems [35].

2 .4 .1 .4  C uckoo S earch  (C S)

The CS algorithm is inspired by the breeding behaviour of cuckoos [36]. This behaviour 

is combined with an efficient flight strategy exhibited by many organisms. CS has been 

applied to a number of optimisation problems since its introduction [37-46]. In this 

section, the development of the original algorithm is described [36]. CS is discussed in 

more detail, since this is the algorithm which was modified and used in this thesis.

T h e  A nalogy  In CS, the agents are represented by cuckoo eggs. Yang and Deb [36] 

aimed to emulate cuckoo breeding behaviour to drive their optimisation algorithm. They 

specify tha t an egg in a nest represents a solution and an egg represents a new potential 

solution. An equivalent representation, which is used throughout this thesis, is to let an 

egg represent any solution (new or old) and the nests simply being containers for the
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eggs. Each egg carries two pieces of information, tha t is, the coordinates it has in the 

solution space and its fitness value. Using this analogy, the nests can be thought of as 

locations in an array where this information is stored. A nest may contain one or more 

eggs, although in most algorithms each nest contains only a single egg.

Cuckoo B reed ing B ehaviour The breeding behaviour of cuckoos is interesting be

cause of its aggressive nature. This aggression motivates its application to optimisation 

algorithms. The key mechanism in cuckoo breeding is brood parasitism. This is the 

act of laying eggs in the nests of other birds, which may or may not be of the same 

species [47]. There are three types of brood parasitism, which are termed intraspecific, 

cooperative and nest takeover [48]. If the host bird discovers the cuckoo egg in her nest, 

she may destroy the egg or abandon the nest altogether. These mechanisms led to  the 

evolution of cuckoo eggs which resemble eggs of locally found birds. Cuckoo eggs which 

resemble eggs of locally found birds are analogous to solutions with high quality fitnesses 

in CS.

Yang and Deb [47] attem pt to model this behaviour by introducing the following three 

rules:

•  Each cuckoo lays one egg at a time and deposits it into a random nest

•  The best nests, which contain the highest quality eggs, carry over to the next 

generation

• The number of available host nests is fixed and there is always a probability that 

the cuckoo egg is discovered by the host. If an egg is discovered, the host bird 

throws it away. This effect is approximated by discarding a fraction of the eggs 

and replacing them  at each generation.

Essentially, these rules provide a selection process for the optimisation algorithm, ensur

ing the best eggs survive from generation to generation. To complete the algorithm, a 

method of generating the eggs is required. This is where the Levy flight is applied.

One of the most powerful features of CS is the use of Levy flights to generate new eggs. 

It is this complex, random walk, strategy tha t makes CS stand out when compared 

with many other optimisation algorithms [49]. It should, however, be noted th a t this 

search pattern  is applied in other optimisation techniques [50]. A Levy flight is a random 

walk, characterised by a series of instantaneous jumps generated by a probability density 

function which has a power law tail. The Cauchy distribution, plotted in Figure 2.4, is 

often used for this purpose. The result is a path  made up of many small steps and the
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F i g u r e  2.4: Cauchy probability distribution

occasional large ju m p . A p a th  of th is  type  is frequently  found in n a tu re  an d  is generally  

considered  to  rep resen t th e  op tim u m  random  search p a tte rn  [51].

O ne of th e  defin ing ch arac teristics  of th e  Levy flight search  p a tte rn  is th a t  it is scale 

free [47]. T h e  scale free n a tu re  m eans th a t  th e  p a tte rn  is th e  sam e in sm all scale searching 

and  large scale searching. Sm all scale searching occurs locally in th e  so lu tion  space, and  

large scale search ing  occurs globally. T h is should  lead to  an  au to m a tic  ba lance  betw een 

ex p lo ra tio n  and  refinem ent. However, th e  random  n a tu re  of th e  flight m eans th is  can 

no t be g u a ran teed . A n exam ple of a  Levy flight is shown in F igu re  2.5. T h is is com pared  

w ith  a G au ssian  walk, show n in F igure  2.6, w here th e  random  steps are  gen era ted  using a 

p ro b ab ility  fu n c tio n  w ith  a norm al d is trib u tio n . T h e  lack of large ju m p s in th e  G aussian  

walk m eans th a t  it is less su ited  to  large scale global searching.

New eggs are  g en era ted  by perform ing  a  Levy flight from  a random ly  selected  egg. T he

new  egg is th e n  rep resen ted  by th e  coo rd ina tes reached  a t th e  end of th e  flight. O nce 

th e  fitness of th is  new  egg is evaluated  a random  nest is selected. If th e  fitness of the  

new egg is b e tte r  th a n  th a t  of th e  egg a lready  in th e  random  nest, th en  it is replaced. To 

con tro l th e  size of th e  Levy flight a user specified coefficient a  is defined. W hen  a Levy 

s tep  is g en era ted , using a random  num ber genera to r, it is first m ultip lied  by a  before it 

is used to  gen era te  a  new egg.

T h e  CS a lgo rith m  is shown in its  full form  in A lgorithm  1 [47].

To b en ch m ark  th e  CS a lgorithm , Yang and  Deb [36] com pared  its perfo rm ance to  th a t

of P S O  an d  G A , by app ly ing  it to  10 s ta n d a rd  op tim isa tio n  benchm ark  functions. Each 

a lg o rith m  was ru n  100 tim es, to  provide s ta tis tic a l significance to  th e  te s t. A lgorithm s 

were te rm in a te d  w hen th e  varia tion  in th e  values of th e  ob jec tive  function , th ro u g h o u t 

th e  p o p u la tio n  of eggs, was less th a n  10- 5 . T he  p ercen tage  success ra te  a t finding the  

global m in im um , an d  th e  num ber of function  evaluations needed before th e  stopp ing  

c rite ria  was m et, were recorded for each function  for each algorithm . For all functions
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(a) An exam ple of an 100 step Levy flight. Note the small localised searches connected
by large jumps.

2 45

100 110 
Parameter 1

120 130 14080 90

(b) A detailed section of the sam e Levy flight, it shows the sam e characteristics as 
the full flight highlighting the scale free nature of this process.

FIGURE 2.5: Example of a Levy Flight

considered, CS ou tperfo rm s PSO  and  GA in te rm s of success ra te  and  num ber of required  

objective function  evaluations. Yang an d  D eb [36] s ta te  th a t  th e  reason  for th is  success 

is b o th  a good balance of local and  global searching and  th e  sm all num ber of contro l 

param eters .

A m ajo r s tre n g th  of th is  a lgo rithm  is its  sim plicity. T h ere  are  only two p a ram e te rs  to  

be ad ju sted  i.e. th e  frac tion  of eggs to  be aban d o n ed  each genera tion  and  th e  flight 

s tep  size. F u rtherm ore  they  found th a t  th e  convergence ra te  was no t sensitive to  th e  

p a ram e te r values. In th e  exam ples p resen ted  in th is  thesis, th e  Levy flight coefficient

a  =  1 and  th e  frac tion  of eggs to  be d iscarded  p a =  0.25 were used, as suggested  by 

Yang and  Deb [47].
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roQ_

Parameter 1

F ig u r e  2 .6 :  A n  100 step Gaussian Walk w ith  a step size o f  1. Compared witli the 
L ev y  fligh ts th ere  are no large ju m p s accross th e  search  sp ace .

A lg o rith m  1 C uckoo Search (CS)

In itia lise  a  p o p u la tio n  of n  host nests Xj, i  =  1 ,2 , • • • , n  
for all x, do

C alcu la te  fitness F, =  / ( x , )  
e n d  for
w hile  N  u m b e r  O b j  e c t i v e  E v a l u a t i o n s  < M  a x  N  u m b e r  E v a l u a t i o n s  do 

G en era te  a  cuckoo egg (x j)  by tak in g  a Levy flight from  a random  egg 
C a lcu la te  fitness F j  =  / ( x j )
C hoose a ran d o m  nest i 
if ( F j  > F {) th e n

X j < -  X j

Fj <- F j  
e n d  if
A b an d o n  a  frac tion  p a of th e  w orst eggs
B uild  new eggs at new locations v ia Levy flights to  replace th e  lost eggs 
E v a lu a te  th e  fitness of th e  new eggs and  ran k  all so lu tions 

en d  w hile

A p p lica tio n s  A num ber of app lica tions of CS have been published  since its  in tro 

d u c tio n . A selection  of these app lica tions, in w hich com parisons w ith  a lte rn a tiv e  o p ti

m isa tio n  techn iques have been m ade, are  now be discussed.

M ach ine learn ing  has becom e a p o p u la r ap p lica tio n  a rea  for CS. For exam ple, in th e  

tra in in g  of spik ing  neu ra l netw orks [45]. T h e  artificial neurons th a t  m ake up  a spiking

n eu ra l netw ork  a t te m p t to  m odel th e  behav iour of biological neurons su b jec ted  to  an  

in p u t c u rren t. Such a netw ork can  be tra in ed , based  on th e  p a ram e te rs  associa ted  w ith  

each neuron , to  perfo rm  a variety  of tasks. Vazquez [45] tra in ed  a netw ork to  perfo rm  a
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pattern  recognition task, using both CS and DE, and found tha t networks trained using 

CS perform slightly better than  those trained with DE.

Selvi and Purusotham an [44] compared the performance of a number of heuristic algo

rithms for the task of breaking encrypted messages. Together with a number of heuristic 

algorithms, they also used a variety of ciphers to encrypt the messages. They found that 

CS performs well at breaking some of the ciphers, but is not as consistently successful 

as PSO.

A bloom filter is a simple data structure which is used to check if a string belongs 

to a particular database of strings. Bloom filters can be used as spam filters to detect 

unsolicited e-mails. A limitation of bloom filters is tha t there is always the risk of a false 

positive and, depending on parameters th a t define the filter’s behaviour, different strings 

in the database have different probabilities of producing false positives. N atarajan and 

Subramanian [43] constructed an objective function which minimised the probability 

of producing false positives on the strings in a spam database which had the highest 

occurrence in spam mail. They found tha t filters constructed using CS outperform 

filters constructed in other ways.

CS has also been applied to the problem of optimising cutting parameters in milling op

erations [46]. In this example, the goal was to maximise the total profit rate by adjusting 

the cutting speed and feed rate of the milling process. A series of complex constraints 

were applied to these parameters, to ensure feasibility and sufficient product quality. 

It was found that, not only does CS find the maximum profit rates but that it also 

requires the smallest number of function evaluations compared to six other competing 

optimisation algorithms.

Another popular application of CS is for structural optimisation problems. These prob

lems are highly nonlinear and involve large numbers of design variables with complex 

constraints. Problems of this type are difficult to solve globally using gradient based 

techniques. Gandomi et al [39] presented 13 different structural design problems, rang

ing from the simple design of an I-beam  to the optimisation of a complete car structure 

subject to a side impact. They applied CS to the problems and compared its perfor

mance to a number of other state of the art optimisation algorithms. In almost every 

case, CS is better than the other methods used and, it was noted that, the sensitivity of 

the solution to the CS parameters is very small.

In the field of truss optimisation, Gandomi et al [40] applied a number of optimisation 

algorithms to five truss problems of increasing complexity. They were also able to 

show that CS outperforms many other state of the art algorithms. It should be noted 

that, in both papers [39, 40], different numbers of nests were used in each example
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without comment. This implies that either this parameter needed tuning to get the best 

performance, which was at odds with their conclusions [39], or that this param eter was 

changed because of the increased CPU costs associated with some examples.

2 .4 .2  P r o b le m s w ith  M e ta h e u r is t ic  A lg o r ith m s

In metaheuristic algorithms, the objective function needs to be evaluated for each agent, 

each generation, resulting in a large number of objective function evaluations. The 

computational cost of metaheuristic techniques is, therefore, often greater than gradient 

based methods [52]. The problem is particularly significant when considering applica

tions where a single objective function evaluation represents a significant computational 

cost. This situation often arises in many engineering applications and the problem is 

often addressed by the use of cheap surrogate, or meta-models, to approximate the 

expensive objective function [53-56].

The long term  goal is to produce a black-box metaheuristic optimisation algorithm which 

can be applied to any problem [57]. In an attem pt to reach this goal, algorithms based 

on novel analogies are published on a regular basis. There is a possibility tha t this 

large number of different algorithms may cause confusion and hinder the application of 

these algorithms to real problems. In addition, when a new optimisation algorithm is 

introduced, there is generally an interest among academics in attem pting to improve its 

performance. While this is obviously beneficial to the wider community, there might 

be a concern that this can lead to a large number of different classes of the same algo

rithm, which can cause difficulties when trying to compare individual algorithms. For 

example, it is not enough now to simply state that a PSO algorithm has been used, 

but the modifications which have been applied, to the base algorithm, must also be 

stated. Furthermore, it is valid to ask if these different analogies actually represent 

different approaches or can they be considered as specific examples of a more general 

algorithm [58].

The large number of associated tuning parameters may have also prevented the applica

tion of these algorithms to real problems. These tuning parameters effect the behavior 

of the agents in some way and often need to be tuned for a particular problem. CS was 

considered in this study, since it has only two such parameters, which is a small number 

compared with other algorithms.

Another potential problem with metaheuristic algorithms was raised with the publication 

of the ”No Free Lunch” (NFL) theorem [57]. NFL states that, when averaged over all 

possible objective functions, the performance of all optimisation algorithms are the same. 

This can equivalently be stated by considering two optimisation algorithms A  and B.
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The result of the theorem is tha t for as many objective functions which A  out performs 

B  there are equally as many where this is not the case. The potential worrying outcome 

of NFL is that a completely random search will perform as well as any other algorithm 

averaged over all functions. In reality, no optimisation algorithm would be applied to 

all possible objective functions, only the subset of real problems of interest.

The NFL theorem highlights the care which must be taken during development and 

validation. New optimisation algorithms are often tested by applying them to benchmark 

problems, which have known analytical optimum finesses. Inevitably, a collection of 

popular benchmarking functions has emerged to which most algorithms were applied. 

For a new algorithm to be accepted by the research community, it will most likely have 

performed well on this set of functions. Over time, this could lead to optimisation 

algorithms which are engineered with these functions in mind [57].

The benchmark objective functions used in the optimisation literature have known min

ima, which allow the definition of an exact stopping criterion. Having a known minimum 

allows an easy comparison between two algorithms, which may be difficult in real applica

tions. Adding the computational expense of the objective functions in real applications, 

leads to benchmark functions being the only practical way of comparing two algorithms. 

An open question is how well do benchmark functions actually model real problems? 

Using benchmarking functions to compare algorithms, and determine the sensitivity of 

tuning parameters, is a fruitful endeavour. However, wherever possible, real applica

tions should be used to benchmark algorithms. Even if real applications are used, any 

comparisons may still be difficult, due to the random nature of these algorithms. Unlike 

gradient based optimisation, metaheuristic optimisation will not always result in the 

same answer for a single problem. Thus, in practice it is desirable to run the optimiser 

multiple times, which can be an expensive process.

2.5 C onclusion

A question may be asked which is better, gradient free metaheuristic or gradient based 

optimisation?

Gradient free metaheuristic algorithms belong to the field of soft computing. In this 

field, inexact solutions to difficult tasks are the goal. By contrast, the field of hard 

computing searches for the exact solutions to more simple problems. Gradient based 

algorithms fall into this category.

Is it better to have an exact set of inputs, which may be sub-optimal, or a set which axe 

within the region of the global optimum? This highly depends on the situation. If the
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objective function is the model of some physical system, then there will be errors both 

in terms of the inputs and outputs of the function. This makes the idea of finding an 

exact set of inputs less important.

The differences between metaheuristic and gradient based optimisation are so large that 

the question of which one is better was considered meaningless. It completely depends 

on the application and, ideally, both methods could be applied to the same problem.

The direction taken in this thesis was to investigate the application of gradient free meta

heuristic optimisation, specifically CS. A long term goal is to tackle global optimisation 

problems as automatically as possible. The need for global optimisation points towards 

metaheuristic gradient free algorithms. CS itself has fewer tuning parameters than most 

algorithms of this type so lends itself to automation, since it would be expected that less 

tuning is necessary. Further to this initial studies into the performance of CS has shown 

it can perform better than  other state of the art algorithms.



Chapter 3

Improving the Cuckoo Search 
Algorithm

3.1 Introduction

Yang and Deb [36] introduced CS in 2009. Their work shows tha t the CS algorithm 

has a much stronger ability to find true global minima solutions than a number of 

other metaheuristic algorithms. For this reason CS was applied to the problem of mesh 

optimisation, which is the subject of Chapter 6. It was initially found tha t the time 

taken to find optimum meshes using CS was prohibitively long. This was due to the 

large number of objective function evaluations CS needs to find an objective function’s 

minimum.

To address this problem a number of modifications were made to the algorithm, to 

speed up convergence. The result of this work was MCS [1]. When applied to a mesh 

optimisation scheme [3] MCS is found to outperform existing techniques.

To present MCS to the wider community, the study presented in Section 3.2.2 was 

undertaken and published [1]. The study aimed to recreate the study performed by 

Yang and Deb [36] for CS. It is found that MCS outperforms CS in almost every case.

Since the publication of MCS, other modifications have been made to CS. For complete

ness a selection are briefly discussed in Section 3.3.

In a recent study, Bhargava et al [6] found tha t CS outperforms MCS when applying 

them both to a phase equilibrium modelling problem. This raised questions about the 

suitability of the validation studies performed both in CS [36] and MCS [1]. These 

questions are explored and a more detailed study presented in Section 3.4.

27
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3.2 M odified Cuckoo Search (M CS)

Two modifications were made, with the goal of speeding up the convergence and, hence, 

reducing the number of objective function evaluations required to find the global mini

mum.

How well the CS algorithm modelled cuckoo behaviour was not considered important. 

In reality, cuckoo populations actually appear to be in decline [59]. Furthermore, it was 

apparent tha t many modifications to other optimisation algorithms are less concerned 

with modelling the original analogy and more concerned with improving performance.

The first modification was to the Levy flight coefficient, a. In the CS, a  is constant 

and typically the value a = 1 is employed [36]. In MCS, the value of a  was made to 

decrease as the number of generations increased. This was done for the same reason that 

the inertia constant might be reduced in PSO [33], which is to encourage more localised 

searching as the agents, in this case the eggs, get closer to the solution.

An initial value of the Levy flight coefficient a  = A = 1 was selected and, at each gen

eration, a new value is calculated using a  =  A/y/G ,  where G is the generation number. 

This exploratory search is only performed on those nests that are to be abandoned.

The unmodified CS algorithm could be considered as a series of independent Levy flights, 

where the ineffective flights are reset each generation. The missing ingredient was 

crossover between the solutions. The second modification added this crossover. This 

was done by changing the structure of the algorithm, as illustrated in Figure 3.1.

The eggs are first ordered by fitness and a fraction of the best, or top, eggs are considered 

as the elite eggs. This initial population is shown in Figure 3.1(a). The first step in the 

algorithm models both host birds discarding eggs and random genetic mutation in the 

next generation of eggs. Starting at each non-elite egg, a Levy flight is performed to 

generate a new egg. The fitness of these new eggs is calculated and they replace each of 

the non-elite eggs, as shown in Figure 3.1(b). The replacement is performed regardless 

of the relative fitnesses of the new and old eggs.

Crossover between cuckoos, which survive to the next generation, is modelled as follows:

1. Each of the top elite eggs randomly picks a second elite egg

2. A new egg is generated along the line which connects these two eggs and the 

fitness evaluated. The distance along this line at which the new egg is located is 

calculated, using the inverse of the golden ratio if = (1 +  \/5 )/2 , such that it is 

located closer to the egg with the better fitness. In the case that both eggs have
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Top

□  Nest £  Egg

(a) Initial population of eggs in MCS

| Nest £  Egg

(b) Levy flights of the non-elite eggs

Top

[ Nest Egg □  Nest £  Egg

(c) Crossover of elite nests (d) The top  eggs updated

F i g u r e  3.1: Illustration of the Modified Cuckoo Search Algorithm

th e  sam e fitness, th e  new egg is g enera ted  a t th e  m idpo in t. T h ere  is a  possib ility  

th a t ,  in th e  prev ious step , th e  sam e egg wass picked twice. In  th is  case, a local 

Levy flight search  is perform ed, from  the  random ly  picked nest, w ith  Levy flight 

coefficient a  =  A / G 2 .

3. A nest is picked a t  random , from  all nests. T he  egg genera ted  in th e  process above 

is com pared  w ith  the  egg in th e  random  nest. If the  newly genera ted  egg is of 

b e tte r  fitness th a n  the  egg a lread y  in th a t  nest, th en  it replaces it, o therw ise  it is 

d iscarded .

T h is process is show n in  F igure 3.1(c), w here egg C  is found to  be b e tte r  th a n  egg A  

an d  so replaces it, b u t  egg D  is no t b e tte r  th a n  egg B  and  so it does no t replace it.
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Once all eggs which are not in nests are discarded, the group of top eggs is updated, as

shown in Figure 3.1(d), and the process iterates.

There is a possibility, particularly during crossover, th a t a new egg may be generated 

at the same location as an existing egg. To evaluate the objective function again at this 

location would be wasteful, so a check is made to see if the newly generated egg exists. 

If it is found tha t the newly generated egg does already exist in the population, a local 

Levy flight search is performed. Ideally, it would be good to  check if the location of a new 

egg has been visited previously by the algorithm, but this would require a potentially 

prohibitively large amount of storage, so it is considered unfeasible.

Algorithm 2 details the steps involved in the MCS technique. It was found through 

experience that abandoning 75% of the nests and placing the remaining 25% in the elite 

group produced the best results for a variety of test functions.

3 .2 .1  P o p u la t io n  In it ia lisa tio n

Most gradient free algorithms require that a starting population be specified by the 

user. Many optimisation algorithms show a bias to the starting population [33], which 

suggests that this is an aspect of these algorithms that needs to be carefully considered. 

Latin hyper-cube sampling (LHS) is a popular choice for generating initial populations 

for gradient free algorithms and this was the method adopted here.

The field of work which attem pts to build a theoretical foundation for sampling a pa

rameter space is experimental design. Figure 3.2 compares two contrasting techniques, 

full factorial sampling and LHS. In full factorial sampling each dimension is split into a 

number of bins where the same number of bins, n, is taken for each dimension. The total 

number of samples would be N  = n d where d is the number of dimensions. Clearly, as 

n  and d increase N  will increase rapidly. An example of full factorial sampling is shown 

in Figure 3.2(a).

LHS attem pts to sample the full design space, with a minimum number of samples. 

For LHS with N  samples, each dimension in the design space is split into N  bins. 

The N  samples are randomly selected such that, if a projection is viewed along any 

single dimension, there is a sample in each bin [60]. An example of LHS is shown in 

Figure 3.2(b). The random nature of this sampling method means that a space filling 

sampling is not guaranteed. To account for this, in the examples presented here, 1000 

LHS were generated iteratively and the sampling with the maximum minimum distance 

between sample points was selected.
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A lg o rith m  2 Modified Cuckoo Search (MCS) [1]

A <— M axLevyS tepS ize  
V? GoldenRatio
Initialise a population of n eggs x*(z =  1,2, • • ■ , n) 
for all Xj do

Calculate fitness F{ =  f (x{)  
end for
Generation number G <— 1
w hile N  umber ObjectiveEvaluations < M a x N  umber Evaluations  do

G< - G + 1
Sort eggs by order of fitness 
Select the eggs to be abandoned 
for all eggs to be abandoned do  

Current position x*
Calculate Levy flight step size a  <— A /y /G  
Perform Levy flight from x* to generate new egg Xk 
x» <- x k
F{ Calculate fitness /(x j)  

end for
for all of the top eggs do  

Current position X{
Pick another egg from the top eggs at random Xj 
if  Xi=Xj then

Calculate Levy flight step size a  A jG 2
Perform Levy flight from x* to generate new egg x k 
Calculate fitness Fk = / ( x k)
Choose a random nest I from all nests 
if  (Fk > F i) then  

xz <- x fc 
Fi Fk 

end if  
else

dx =  |xj -  Xj \ /ip
Move distance dx from the worst egg to the best egg to find x^ 
Calculate fitness Fk = f ( x k)
Choose a random nest I from all nests 
if  (Fk > Ft) then  

x/ <- x fc 
Fi <- Fk 

end if  
end if 

end for 
end w hile
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X
X

X
x x

(a) Full Factorial Sampling (b) Latin H yper-Cube Sam
pling

F ig u r e  3 .2 :  Comparing sampling techniques, x  and y  represent two dimensions of the 
search space, and the symbol ”X ” indicates sample locations

F ig u r e  3.3: Example of a CVT. The vertices of the equilateral triangles are the 
Voronoi generators and the Voronoi vertices connect to form hexagonal Voronoi cells.
In this case, the Voronoi generators lie at the centroid of the Voronoi cells, creating a

CVT

Recently, S hatnaw i an d  N asrud in  [61] a tte m p te d  to  address th is  issue by em ploying 

cen tro idal Voronoi tesse lla tion  (C V T ) as a  techn ique to  im prove th e  s ta r tin g  positions 

of th e  eggs. If each egg is considered as a Voronoi genera to r, th e n  each egg is su rrounded  

by a Voronoi cell in th e  so lu tion  space. E ach  Voronoi cell defines th e  a rea  of space 

conta in ing  all p o in ts  closest, in te rm s of E uclidean  d istance , to  its genera to r. W hen  th e  

centro id  of the  V oronoi cell lies a t th e  sam e po in t as th e  Voronoi gen e ra to r, th e  set of 

po in ts define a C V T . F igure  3.3 shows an exam ple of a  C V T .

Shatnaw i and  N asru d in  [61] argued  th a t,  if an  ite ra tiv e  a lgo rithm , such as th e  one 

presen ted  by D u an d  G unzburger [62], is used to  move an  in itia l ran d o m  d is trib u tio n  

of eggs close to  a C V T , th is  resu lts  in faster convergence to  th e  global m in im um . T h is 

is because a C V T  is space filling and  resu lts  in an  increased  p ro b ab ility  of one of th e  

in itia l eggs being close to  th e  global m inim um . T heir re su lts  show a m arg in a l decrease in 

th e  num ber of ob jec tive  function  evaluations required  to  find th e  global m in im um , w hen 

com paring  C V T  to  a ran d o m  sam pling. However, they  no ted  th a t  th e  ad d itio n a l cost 

of genera ting  a C V T  m ay outw eigh any benefit in function  evaluation  cost reduction . A 

C V T  algorithm  m ay also be difficult to  im plem ent for an a rb itra ry  nu m b er of dim ensions,
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so it was not adopted as a technique in the applications presented in this thesis.

3 .2 .2  B en c h m a r k in g

In this section, MCS was compared to DE, PSO and CS. All algorithms were imple

mented in MATLAB [17]. To compare the relative performance of each method, a  series 

of seven test functions, taken from those originally used by Yang and Deb [36], were 

used as objective functions.

For each function, 30 trials were performed for each method. Both unimodal and mul

timodal functions were selected and a range of dimensions were tested to gauge the 

robustness of each method. The initial population of 20 individuals were picked at 

random using LHS. Since many optimisation methods show a bias towards the initial 

population of samples [33], the same 30 sets of initial populations, were generated and 

used for benchmarking each algorithm.

To compare the relative success of each method, the Euclidean distance from the known 

global minimum to the coordinates of the member of the population with lowest objective 

function value was measured. Each data point represents the mean, taken from all 30 

trials, of this distance at a given number of objective function evaluations and the error 

bars represent the standard deviation.

3.2.2.1 R osenbrock’s Function

Rosenbrock’s function 

d — l

/ W  =  K1 -  x*)2 +  10°(X<+1 -  x?)2] x< e  [-iOO, 1001 (3.1)
i — 1

with d = 10 was used in this example. The two dimensional version of this function is 

plotted in Figure 3.4(a). This has a unique global minimum of /  =  0 which lies inside 

a long, narrow, parabolic shaped valley. The valley is easy to find, but finding the true 

global minimum inside this valley is difficult.

The results obtained for Rosenbrock’s function are plotted in Figure 3.4(b). In this 

example, PSO and MCS showed an initial fast convergence towards the known mini

mum. As the number of objective function evaluations increased, MCS moved closer to 

the minimum than PSO. The DE had a slower initial convergence rate, but eventually 

matched the performance of MCS. All methods clearly outperformed the standard CS 

algorithm.
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(a) Function Plot
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N u m b er of ob jec tiv e  function  e v a lu a tio n s

(b) Comparison of the performance of the different m ethods 

FIGURE 3 .4 : R o sen b ro ck ’s fu n ctio n
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(a) Function Plot
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N u m b er of ob jec tiv e  function  e v a lu a tio n s

(b) Comparison of the performance of the different m ethods

F igure  3.5: de Jong’s function

3.2.2.2 de J o n g ’s F u n c tio n

T he de Jong  function

/ ( x )  =  ^ x ?  6  [ -5 .1 2 ,5 .1 2 ]
1=1

(3.2)

w ith  d  =  50 p lo tted  in F igure  3 .5(a) for d  =  2. T h is  function  has a  un ique global 

m inim um  of /  =  0.
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The results obtained for minimising this function with each optimisation algorithm are 

plotted in Figure 3.5(b). Clearly MCS had the fastest convergence rate, finding the global

found the global minimum. CS did not manage to succeed, in this relatively simple 

problem, within the maximum number of objective function evaluations, showing a wide 

range of obtained results. This highlights the lack of information exchange between nests 

in the standard algorithm, meaning CS could not take advantage of the symmetry of 

this function, as the other methods appeared to.

3.2 .2 .3  R astrig in ’s Function

Figure 3.6(a) shows a plot of Rastrigin’s test function

d

i — 1

for d =  2. This function has a unique global minimum of /  =  0, for benchmarking the 

function was used with d = 100.

For this high dimensional unimodal function, MCS outperformed both PSO and CS in 

all 30 trials across the full range of objective function evaluations. It also showed a much 

higher convergence rate than DE. These results are presented in Figure3.6(b).

3.2.2.4 Schw efel’s Function

Figure 3.7(a) shows a plot of Schwefel’s test function

d

i = 1

for d =  2. This is a multimodal function with a global minimum of /  =  —418.9829d. 

The 10 dimensional version of the function was used in the benchmark test.

minimum after 103 objective function evaluations. Although slower, DE eventually

Xi e  [-5.12,5.12] (3.3)

Xi  e  [-500,500] (3.4)

For this case, Figure 3.7(b) shows th a t there was little difference between the perfor

mance of PSO, CS and MCS. Here DE significantly outperformed all other methods.
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(a) Function Plot

e

e-pso

v de

N u m b er of o b jec tiv e  function e v a lu a tio n s

(b) Comparison of the performance of the different m ethods

F i g u r e  3.6: R astrig in ’s function
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-500 -500

(a) Function Plot

© -P S O

N u m b er of ob jec tiv e  function  ev a lu a tio n s

(b) Comparison of the performance of the different m ethods

F ig u r e  3 .7: Schwefel’s function
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70
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30
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10

(a) Function Plot

1:

11

II-

•V  DE

N u m b er of ob jec tiv e  function e v a lu a tio n s

(b) Com parison of the performance of the different m ethods

F i g u r e  3.8: A ckley’s function
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3.2 .2 .5  A ckley’s Function

Figure 3.8(a) shows a plot of Ackley’s function

/(x )  =  — 20exp —0.2, -  x f  —exp \  V'cos(27r:Ei) +(20+e) X i  G [—32.768,32.768]
\  d d

(3.5)

with d =  2. This is a multimodal function with a global minimum of /  =  0. 50 

dimensions were used for this function in the benchmark.

MCS outperformed all other methods in this example, as shown in Figure 3.8(b).

3.2 .2 .6  G riew ank’s Function

Figure 3.9(a) is a plot of Griewank’s test function

with d =  2. This function has many local minima, but a global minimum of /  =  0. In 

this example d =  100 was used for benchmarking.

In this high dimensional multimodal problem, MCS outperformed all other methods 

in all 30 trials across the full range of objective function evaluations. The results are 

presented in Figure 3.9(b).

3.2.2.T E asom ’s 2D  Function

Figure 3.10(a) shows a plot of Easom’s two-dimensional test function

/(x )  =  — cos(xi) cos(x2) exp [— ( x \  — 7r ) 2 — (X 2 — t t ) 2 ] X{  G [—100,100] (3.7)

which has a very sharp minimum of /  =  — 1.

The PSO performed better than CS and MCS at higher numbers of objective function 

evaluations. The results are presented in Figure 3.10(b). This performance difference 

could be due to the nature of how the particles move compared to the nests in CS and 

MCS. In MCS and CS, the nests jum p around, searching from point to point via random 

walks. In PSO, the particles move smoothly with velocities influenced by local and global 

memory, which possibly increases the possibility of finding the very sharp minimum. DE

X i  G [—600,600] (3.6)
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(a) Function plot

- © - P S O  
- 0 -  CS

i  I-V  • DE

N u m b er of ob jec tiv e  function  e v a lu a tio n s

(b) Comparison of the performance of the different m ethods

F i g u r e  3.9: Griewank’s function
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x 10"* 

31

y

(a) Function Plot

- © - P S O

■ V  DE

N u m b er of o b jec tiv e  function  e v a lu a tio n s

(b) Comparison of the performance of the different m ethods

F i g u r e  3.10: Easom's 2D function
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came closest to the minimum at the maximum number of objective function evaluations. 

However, its initial convergence rate was slower than the other methods.

3 .2 .3  C o n c lu sio n

For all the test examples considered, MCS outperformed CS and performed as well as, 

or better than, PSO. In some examples, the MCS performed significantly better.

At low numbers of objective function evaluations, the differences between the methods 

tested were less significant but, in general the PSO and MCS outperformed CS in this 

region, which was one of the main goals of this work. This led to the conclusion that, in 

applications with computationally expensive objective functions, PSO and MCS would 

be the techniques of choice.

At high numbers of objective function evaluations, MCS outperformed PSO in a number 

of cases, and was matched elsewhere. It followed that MCS is the technique of choice, 

even when the CPU cost of the objective function is not prohibitive.

The results suggested tha t MCS is well suited to problems where the objective function 

has a high number of dimensions. In these situations, MCS significantly outperformed 

PSO and CS. This is probably due to the Levy flight effectively reducing the size of the 

search space with the large jumps between steps, and the simultaneous refinement of local 

searches, which an unmodified CS did not achieve. A similar behaviour can be achieved 

in the PSO by using multiple swarms from an initial particle population [63]. However, 

MCS has the advantage of being simple to implement compared to sophisticated multiple 

swarm PSO algorithms.

In the majority of cases tested, MCS exhibited a much higher convergence rate than 

DE. Eventually, DE got as close to the minimum as MCS and in some cases closer. 

However, the success of DE came at the cost of many more objective function evaluations. 

The examples showed that MCS performed equally well over a variety of functions and 

dimensions, and can find a good minimum in a conservative number of objective function 

evaluations.

The caveat on all the findings detailed in this conclusion is th a t they were limited to 

the comparison of the optimisation algorithms considered. This means tha t when a 

statement such as ’MCS is the technique of choice...’ was made, it was only valid when 

compared to PSO, DE and CS on this subset of problems. It would be impossible to 

compare MCS to all algorithms for all problems.

Since the publication of the original paper [1], a MATLAB implementation of MCS has 

been made available in the open source project modif ie d -c s  [64]. This has led to the use
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of MCS in a number of applications, including the optimum design of steel frames [41] 

and as a diagnostics tool for the autom atic detection of diabetes [65]. This, along with 

the applications presented as part of this thesis, continues to build a body of evidence 

showing tha t MCS can be successful for a wide range of problems.

3.3 Other M odifications

3 .3 .1  E m o tio n a l C h a o tic  C u ck oo  S earch  (E C C S )

The modification suggested by Lin and Lee [66] includes no comparison of its perfor

mance with that of the original CS. The two goals of their work were to improve the 

quality of neighborhood searching, when generating new eggs, and to increase the like

lihood of eggs escaping local minima.

To address the first goal, they identify an issue with the Levy flight. The coefficient 

a  which determines the size of the Levy flight step size needs to be correctly selected, 

depending upon the scale of the problem. The scale may be unknown in some cases. This 

is also often difficult because the random Levy flight steps do not have a well defined 

range of values. A Levy flight with a fixed a  does not display ergodicity, which means 

there is not an equal chance of an egg travelling through every point in the solution 

space. They attem pted to address this issue by replacing a  with a value taken from a 

chaotic sequence. This sequence is ergodic and, thus, increases the chance th a t every 

possible scale is used during the search. This, in turn, increases the chance of finding 

the correct minimum. This also removes the step size from the list of parameters that 

must be specified by the user.

The second goal was addressed by using an emotional model to change the simple egg 

replacement scheme of CS, where an egg replaces another if its fitness is better. The 

emotional model compares the fitnesses and, based on a logarithmic relationship, only 

replaces an egg when a certain threshold is exceeded. This resulted in an increased 

probability of moving across hills and valleys in the fitness landscape, which, it is claimed, 

reduced the chance of getting trapped in local-minima. However, without a detailed 

comparison to the original CS, it is hard to verify tha t these claims are actually justified.

3 .3 .2  P S O  C S H y b rid

A common practice is to hybridise two gradient free algorithms, in an attem pt to replace 

the weaknesses of one with the strengths of the other. Ghodrati and Lotfi [67] recognise
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that the original CS lacks communication between the individual eggs. They add this 

communication, using a PSO update equation to move the eggs, after the Levy flight 

step is performed and before the worst eggs are discarded.

The hybridisation with PSO results in double the number of parameters that require 

adjustment in the algorithm compared with CS. Over a range of benchmarking functions, 

they found that, in terms of convergence rate and closeness to the global minimum, the 

hybrid algorithm outperforms CS 80% of the time and PSO 85% of the time.

3.4 D issecting th e  Cuckoo Search

Recently Bhargava et al [6] applied CS [36] to the problem of phase equilibrium mod

elling. This is of interest in the development of novel chemical industrial processes. The 

problem involves the minimisation of a free energy function which is highly non-linear, 

with many local sub-minima which have values close to the true global minimum.

As part of their work, the performance of CS is compared with th a t of MCS. They found 

that, although MCS has a higher success rate than CS at low numbers of iterations, it 

almost always became trapped in sub-minima. W ith more iterations, the performance 

of CS overpowers that of MCS, reaching a success rate of almost 100%.

These findings suggested tha t there may be a problem with the MCS performance study 

undertaken initially, because their conclusions were quite different. This motivated a 

more detailed investigation into the mechanisms of CS and MCS.

The benchmarking functions originally used to validate MCS [1] are selected from the 

set of functions used to validate the CS algorithm [36]. Issues can be identified with 

using these functions as models for real optimisation problems. In every function the 

global optimum occurs at a point where all the function inputs have the same value 

and, in most cases, that point is near the centre of the search space. W ith this in mind, 

it was deemed necessary to complete a param eter study of MCS on more appropriate 

benchmark problems. The results of this study are presented in this section, after which 

the findings of Bhargava et al [6] are discussed.

To provide a better model of a real optimisation problem, the point of the global optimum 

was shifted, using the mapping

F (x ) =  / ( x  -  onew +  oaid) (3.8)

where / (x )  is the non-shifted function, o 0̂  is the global optimum of the non-shifted 

function, onew is the new global optimum and F (x ) is the shifted objective function.
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The new optimum position can have different values in each of its elements to better 

reflect real problems.

A series of studies are now presented which show the sensitivity of MCS’s performance 

to the tuning param eters and various strategies used in the algorithm. Each study was 

performed on both shifted and non-shifted problems, to show th a t different conclusions 

can be reached if only one type of problem is considered. The new global optima in the 

shifted functions were randomly positioned within the domain of the problem. For each 

problem, the number of dimensions used were as in the original validation [1] and each 

data point represents the mean of 100 runs with 100 different sets of starting eggs. In 

the graphs, the distance from the global minimum represents the Euclidean distance of 

the best egg from onew for the shifted functions and oQid for the non-shifted problems.

The studies resulted in a  large set of data. To aid readability of the thesis, only a 

selection of the graphs, showing typical results, are presented. The remaining data  is 

available on request.

3 .4 .1  F ra ctio n  o f  D isc a rd ed  E ggs

The fraction of eggs to be discarded, pa , controls how many eggs are replaced using a 

Levy flight at each generation. The remaining eggs undergo a crossover scheme and 

are only replaced if an improvement is made. It would be expected tha t increasing the 

value of pa would result in a more exploratory type search, with less chance of getting 

trapped in local-minima. To determine if this is the case, a diversity metric was defined. 

The metric is simply the standard deviation of egg position normalised by the distance 

between the pairs of eggs furthest apart in the current population.

The optimisation algorithm was run with 50 eggs, for varying values of pa, with all other 

parameters kept constant at the values used in the original study [1]. An adaptive value 

for pa was also tested, where the diversity was tracked every iteration and pa set to one 

minus the diversity measure. The argument for doing this was tha t the more diverse the 

search, there may be benefit to refine the search, so tha t fewer eggs should be discarded.

3.4.1.1 N o n -sh ifted  Functions

Figures 3.11 to 3.14 show the results obtained for the non-shifted Ackley and de Jong 

functions. The general trend showed an increase in diversity as pa was increased. This 

increase in pa also, unexpectedly, resulted in a decrease in performance. The distance 

from the best egg to the global minimum increased as pa was increased.
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F ig u r e  3 .

25 Generations 50 Generations
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6
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2'0 0.2 0.4 0.6 0.8 1
Fraction of eggs discarded

— Adaptive Pa

§ 4

0.2 0.4 0.6 0.8
Fraction of eggs discarded

100 Generations 200 Generations
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0.5
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Fraction of eggs discarded

0 7
 Adaptive Pa
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0.2 0.4 0.6 0.8
Fraction of eggs discarded

11: F raction  o f  d iscard ed  eg g s stu d y : A c k le y ’s fu n ctio n , n o n -sh ifte d , d is
ta n ce  to  m in im u m

In all cases the  ad ap tiv e  p a perform ed significantly  b e tte r  th a n  a co n stan t p a m ain ta in ing  

an  alm ost co n stan t d iversity  th ro u g h o u t th e  o p tim isa tio n  process.
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F i g u r e  3.
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12: Fraction of discarded eggs study: Ackley’s function, non-shifted, diver
sity measure
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F ig u r e  3.
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13: Fraction of discarded eggs study: de Jong’s function, non-shifted, dis
tance to minimum
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F ig u r e  3.
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14: Fraction of discarded eggs study: de Jong’s function, non shifted, diver
sity measure
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3.4 .1 .2  Shifted Functions

The results obtained for the shifted Ackley and de Jong functions are presented in 

Figures 3.15 to 3.18. The effect of increased pa on diversity was the same as in the 

non-shifted cases, tha t is, increased pa resulted in an increased diversity. However, the 

effect of pa on performance was quite different. The general trend was th a t performance 

decreased as pa was increased. The adaptive pa strategy performed reasonably well, but 

not as well as some constant values for pa, when applied to the shifted functions.

For low values of pa, the dominating search mechanism is the crossover step, in which 

a new egg is generated at points along lines connecting the eggs. It is not difficult to 

imagine that, in the case that this crossover step is performed on a distribution of eggs 

repeatedly, the eggs would naturally move towards the centre of the search space. In 

the non-shifted functions, this will pull the eggs towards the global optimum whereas, 

in the shifted cases, this may pull the eggs away from the optimum.

Furthermore, in the current crossover strategy, there is no mechanism for searching 

different distances along different dimensions. The only mechanism for doing this is the 

Levy flight. This is perhaps less im portant for non-shifted functions, since the global 

optimum positions have the same value along each dimension.
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25 Generations

—  Adaptive Pa0.6
0.55

0 5

045

0.4

> 0.35

0.3

0 25

0.2
0.2 0.4 0.6 08
Fraction of eggs discarded

100 Generations

—  Adaptive Pa
0.7

0 6
0.5

0.4

0.3

0 2

0.2 0.4 0.6 0.8
Fraction of eggs discarded

50 Generations 

-  Adaptive Pa ]

0.2 0.4 0.6 0 8  1
Fraction of eggs discarded

200 Generations

0.2 0.4 0.6 0.8 1
Fraction of eggs discarded

FIGURE 3 .16: Fraction of discarded eggs study: Ackley’s function, shifted, diversity
measure
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FIGURE 3.19: Number of eggs study: Easom’s 2D function, non-shifted, distance to
minimum

3 .4  2 N u m b e r  o f  eg g s

The effect of th e  num ber of eggs used in M CS was investigated . All o th e r p a ram ete rs  were 

kepi co n stan t to  th e  values suggested  by th e  orig inal s tu d y  [1]. I t  w ould be expected  th a t  

an  increased num ber of eggs would result in an  increased perfo rm ance, sim ply because 

th e  sam pling of th e  so lu tion  space would be b e tte r.

3 .42 .1  N o n -sh if te d  F u n c tio n s

T h e general tren d  for th e  n o n -sh ifted  functions was th a t  increasing th e  num ber of eggs 

increased perform ance. T h e  resu lts  which showed th is  are  presen ted , for E aso m ’s and  

R a s r ig in ’s functions, in F igures 3.19 and  3.20. In teresting ly , th e  tre n d  was m ore a p p a r

ent n th e  25 genera tion  p lo t and  becam e less significant as th e  n um ber of genera tions 

increased.
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FIGURE 3.20: Number of eggs study: Rastrigin’s function, non-shifted, distance to
minimum

3.4.2.2 S h ifted  F u n c tio n s

For th e  sh ifted  E aso m ’s an d  R a s tr ig in ’s functions, F igures 3.21 an d  3.22 show th e  in 

crease in perfo rm ance w ith  increased num ber of eggs was m uch m ore significant th a n  

in th e  n o n -sh if ted  case. T h e  tren d  rem ained  ap p a ren t as th e  num ber of genera tions 

increased. T h is m ay b e  an  in d ica to r th a t  th e  in itia l search space sam pling , which can 

be d irec tly  con tro lled  by th e  num ber of eggs, is m ore im p o rta n t in general functions.

3 .4 .3  I n i t ia l  S te p  S ize

In  M CS, th e  coefficient, o , is reduced  as th e  a lgo rithm  ite ra tes. T h e  value of th e  in itia l 

coefficient is investiga ted  in th is  section.

I t is s ta te d  in a n u m b er of CS p apers [1, 36, 47] th a t  th e  step  size is d ep en d en t on th e  

size of th e  problem . In th e  following study, th is  was reflected by expressing th e  in itia l 

s tep  size, A, as a  frac tion  of th e  bounds of each d im ension of the  ob jec tive  function . 

T h is was ca lcu la ted  using

A =
N F

(3.9)
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FIGURE 3.21: Number of eggs study: Easom’s 2D function, shifted, distance to mini
mum

w here N F  is th e  s tep  size n o rm alisa tion  factor and  L is th e  range of each search space 

dim ension here. A  is a vector since som e problem s will have varying ranges for each 

d im ension in th e  search  space.

T h e  step  size con tro ls th e  size of th e  Levy flight tak en  w hen an  egg is d iscarded . Since 

th e  Levy d is tr ib u tio n  has an  infin ite  m ean, th e  value of N F  needs to  be large enough to  

s to p  the  search  d iverging ou tside  th e  search space, b u t sm all enough no t to  lim it global 

exp loration .
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3.4.3.1 N o n -s h if te d  F u nc tions

T he resu lts  for th e  non shifted  E aso n i’s and  G riw an k ’s functions are  p resen ted  in F ig

ures 3.23 an d  3.24. In  general, th e  o p tim u m  value for N F  ap p eared  to  lie betw een 102 

and  103. In m ost cases, the  perfo rm ance did no t change m uch as N F  was increased 

beyond these  values. However, for E aso m ’s 2D function  (F igure 3.23), w hich has a  very 

sh a rp  global o p tim u m , it was clear th a t  102 was th e  best value for N F .
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3.4.3.2 S h ifted  F u n c tio n s

Sim ilar findings ap p eared  w hen th e  sh ifted  functions were considered. R esu lts  are  pre

sen ted  for E aso m ’s an d  G riw an k ’s fun tions in F igures 3.25 and  3.26. A slightly  higher 

value of N F  seem ed to  be b e tte r  in th e  sh ifted  cases, i.e. 103 ra th e r  th a n  102. T h is 

could be because, as discussed previously, th e  Levy flight is th e  only m echanism  which 

allows different search ing  along different d im ensions. T h is  is m ore im p o rta n t for the  

sh ifted  functions th a n  lion-sh ifted . A larger value of N F  allows finer searching along 

in dependen t d im ensions.

3 .4 .4  S te p  S ize  R e d u c t io n

E ach genera tio n  in  M CS th e  s tep  size, a ,  is ca lcu la ted  using

a  = Q P w r (3.10)

w here G  is th e  genera tion  num ber and  A  is defined in eq ua tion  (3.9). T h is  s tep  is 

included as an  a tte m p t to  speed up  convergence, by encouraging  local searching tow ards 

th e  end of th e  o p tim isa tio n  process. T h e  value P w r  =  0.5 is used in th e  orig inal s tu d y  [1].
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F ig u r e  3 .2 6 :  Initial step size study: Griewank’s function, shifted, distance to mini
mum

T h e  effect of changing  th is  p a ram e te r  was stud ied . G iving th is  to o  large a value m ay 

reduce global search ing  too  quickly, resu lting  in trap p in g s in lo ca l-m in im a. Specifying 

a too  sm all value m ay no t have th e  desired effect a t all.
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F i g u r e  3.27: Step size reduction study: Easom’s 2D function, non-shifted, distance
to minimum

3.4.4.1 N o n —sh ifted  F unctions

T he m ajo rity  of th e  re su lts  for non sh ifted  functions showed th e  sam e tren d , sam ple 

resu lts  for E aso m ’s and R osenhrock’s functions are p resen ted  in F igures 3.27 and  3.28. 

N egative values of P w r ,  which corresponds to  increasing a ,  showed th e  w orst perfo r

m ance. T h e  perform ance was alm ost iden tical for all negative values considered, th e re  

was a su dden  increase in perform ance a t P w r  =  0, correspond ing  to  co n stan t a ,  a fte r 

which th e  perform ance d id not change significantly. R esults ob ta in ed  for E aso m ’s 2D 

function , show n in F igure  3.27, were* slightly  different in th a t  P w r  =  0.5 seem ed to  be 

th e  o p tim um  value after which there  was a d rop  in perform ance.
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F i g u r e  3.29: Step size reduction study: Easom’s 2D function, shifted, distance to
minimum

3.4 .4 .2  S h ifted  F u n c tio n s

T h e  sh ifted  func tions behaved  m uch like E aso m ’s 2D function  in  th e  lion -sh ifted  case. 

R esu lts  for E aso m ’s an d  R osenbrock’s function  are  p resen ted  in F igures 3.29 and  3.30 

P w r  =  0.5 a p p ea red  to  be the  op tim um  value. In all cases having P w r  >  0 was the  

best s tra teg y , i.e. reducing  a  as th e  num ber of genera tions increases was b e tte r  th a n  a 

co n stan t a .
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3.4 .5  C rossover Fraction

As prev iously  discussed, M CS adds a step  to  m odel genetic  crossover betw een th e  e lite  

cuckoos [1]. For each egg in th e  elite  set, a  second egg is picked and  a  new egg is 

g enera ted  along th e  line w hich connects th e  tw o eggs. T he  fraction  along th e  line w here 

th e  new egg was p o sitioned  is taken  as th e  inverse of th e  golden ra tio  </? =  (1 +  \ /5 ) /2 ,  

such th a t  it is closer to  th e  egg w ith  th e  best fitness.

In th e  following s tu d y  various different fractions were used to  see th e  effect th is  had  on

th e  a lgo rithm s perfo rm ance.

3.4.5.1 N o n —sh ifted  F u n c tio n s

F igures 3.31 and  3.32 show  th e  resu lts  of th is  s tu d y  for th e  n o n -sh ifted  Ackley and  de 

Jong  ob jec tiv e  functions. T h e  general tren d  showed roughly  equally  good perform ance 

for th e  frac tion  tak in g  values betw een 0.2 an d  0 .8 , w ith  decreased perform ance for the 

m ax im um  and  m in im um  values of th e  fraction . If th e  fraction  was e ith er too  high or too 

low th is  would sim ply g en era te  eggs close to  ex isting  eggs which slowed down convergence 

to  th e  global op tim um .
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3.4 .5 .2  S h ifted  F u n c tio n s

F igures 3.33 an d  3.34 show th e  re su lts  of th is s tu d y  for th e  sh ifted  Ackley and  de Jong  

objec tive  functions. T h e  tre n d  here was m uch less clear. Some functions, such as 

A ckley’s and  G riew an k s’s for exam ple, showed a  sim ilar tre n d  to  th e  sh ifted  functions 

initially , b u t o th e rs  d id  no t. As th e  num ber of genera tions increased, th e  effect of th is  

frac tion  becam e even less clear. As prev iously  discussed, independen t searching along 

each different d irec tio n  is m ore im p o rta n t in th e  sh ifted  functions, th is  m ay explain  

th e  behavior. It m ay be fru itfu l to  consider d ifferent crossover stra teg ies , w hich allows 

in dependen t search ing  along each dim ension.
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3 .4 .6  C ro sso v er  S tr a te g y

The crossover strategy in the original MCS algorithm can be considered a weighted mean 

between two eggs, the fraction considered in the last section being what determines the 

weight given to each egg [1]. There are many other possible crossover strategies used in 

various different optimisation algorithms.

A successful crossover scheme was discussed in Section 2.4.1.2 and is used in the DE 

optimisation algorithm [32].

In MCS the weighted mean is calculated for each dimension in the search space. These 

means are all entered into the new trial egg. In DE, this is not the case. Once a 

donor agent, which is equivalent to the weighted mean in MCS, is generated, each 

element of the agent enters the trial agent with a probability 7 , called the crossover 

probability. Crossover of this type is called binomial crossover and considered to be the 

most successful strategy in DE [31].

Using the DE crossover terminology, the original MCS can be considered a mean crossover 

with 7 = 1. The unmodified CS is a mean crossover with 7 =  0 since no crossover takes 

place. Having a crossover probability less than one means that there is the opportunity 

for different searching in different dimensions, which may be beneficial for the shifted 

functions.

In the following study, such a scheme was tested. The algorithm was structured as 

follows:

1. a random egg from the elite group, considered the target vector, is selected,

2. the weighted mean between tha t egg and a second random elite egg is calculated 

to form a donor vector,

3. the target vector is duplicated to make a trial vector, and

4. elements from the donor vector replace elements in the trial vector with a proba

bility 7 .

A second strategy similar to tha t used in DE was also tested. In this strategy, the donor 

vector was calculated as

X-d =  best 4“ ( X-randElitel ~  ^ ran dE lite2 )

where x best is the position of the best known egg, x randEUte 1 and x r andE iite2 are the 
positions of two randomly selected elite eggs and is the donor vector. This strategy 

is one of the most competitive DE strategies [31].
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FIGURE 3 .3 5 :  Crossover strategy study: Griewank’s function, non-shifted, distance to
minimum

All o th e r p a ra m e te rs  were kept co n stan t to  th e  values suggested  in th e  original s tu d y  [1], 

and  th e  a lg o rith m  was ru n  w ith  50 eggs.

3.4.6.1 N o n -s h if te d  F u nc tions

F igures 3.35 an d  3.36 show th e  resu lts of th is  s tu d y  for th e  n o n -sh ifted  G riew ank and  

R astrig in  functions. For each function  th e  w eighted m ean  was a m uch m ore successful 

s tra tegy , and  as 7 increased  th e  perform ance increased. T h e  b est value was 7 = 1 .  T h is 

reflects th e  s ta te m e n ts  m ade earlier th a t ,  for th e  n o n -sh ifted  functions, ind ep en d en t 

searching along each d irec tion  is not im p o rta n t. I11 fact, it seem ed th a t  th ere  was a 

d isadvan tage  w ith  th e  independen t searching.



Modifying the Cuckoo Search Algorithm  74

2 5  G e n e ra t io n s

fu -O
c0
Eo — M e an  

e - DE<Doc
03

Q
0 0 .5 1

C ro s s o v e r  P ro b ab ility

1 00  G e n e ra t io n s

1  25  Ec
2 20

—1—  M e an  
-®  - D E

CD.o
o
O
E
o

a>o
c
CD

0 0 .5 1
C ro s s o v e r  P ro b ab ility

5 0  G e n e r a t io n s

^  25

a 15
—1•— M e an  

DE

0 0 .5 1
C r o s s o v e r  P ro b ab ility

2 0 0  G e n e r a t io n s

2 5

—1—  M ean  
- e  - DE

0 0 .5 1
C r o s s o v e r  P ro b ab ility

F i g u r e  3.36: Crossover strategy study: Rastrigin’s function, non-shifted, distance to
minimum



Modifying the Cuckoo Search Algorithm 75

2 5  G e n e r a t io n s  5 0  G e n e r a t io n s

E 4 2 0 0
5  4 2 0 0

=  4 0 0 0
5  4 0 0 0

—•—  M e an  
- e - D E

— M e an  

- •  DE£  3 8 0 0
-2 3 8 0 0

E 3 6 0 0
£  3 6 0 0

o  3 4 0 0
3 4 0 0

Q  3 2 0 0
3 2 0 0

0 0 .5
C r o s s o v e r  P ro b ab ility

0 0 .5
C r o s s o v e r  P ro b ab ility

11

1 0 0  G e n e ra tio n s  2 0 0  G e n e ra t io n s
4 2 0 0

' e 3 8 0 0E 4 0 0 0

2  3 6 0 0£  3 8 0 0 —•— M e an  
- e  D E

£  3 4 0 0g  3 6 0 0

o  3 2 0 03 4 0 0

3 0 0 03 2 0 0 —1—  M e an  
- •  DEi5 2 8 0 0

3 0 0 0

0 0 .5
C ro s s o v e r  P ro b ab ility

0 0 .5
C r o s s o v e r  P ro b ab ility

11
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minimum

3 .4 .6.2 S h ifted  F u n c tio n s

T h e  sh ifted  functions showed a different resu lt to  th e  n o n -sh ifted  functions. F igures 3.37 

and  3.38 show th e  re su lts  for G riew ank’s and  R a s tr ig in ’s functions. I t  can he seen th a t ,  

for m ost functions, th e  w eighted m ean crossover s tra teg y  still worked best. T h e  difference 

betw een th e  sh ifted  and  n o n -sh ifted  functions was th a t ,  in th e  sh ifted  functions, th e re  

seem ed to  be som e advan tage  to  having 0.2 <  7 <  0.8. T h is, again, was no t surprising , 

considering  th a t  th e  sh ifted  functions have global o p tim a  a t ran d o m  positions in each 

search  d im ension.
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F i g u r e  3.39: Probability density plotted for normal, uniform and Cauchy distributions 

3 .4 .7  R andom  W alk S trategy

In  M CS, a Levy flight is used to  move each of th e  d iscarded  eggs. As d iscussed in 

Section 2.4.1.4, th e  Levy flight ran d o m  walk s tra te g y  m akes CS s ta n d  ou t com pared  

w ith  o th e r o p tim isa tio n  a lgorithm s [49]. T he  Levy flight is no t th e  only possible random

walk stra tegy .

A num ber of s tra teg ie s  were com pared . All o th e r tu n in g  p a ram ete rs  rem ained  co n stan t, 

as in th e  o th e r stud ies. Five d ifferent random  walk stra teg ies  were com pared . T h e  first 

s tra te g y  was th e  Levy flight, as im plem ented  in Y ang and  D eb ’s [30] M A TLA B  [17] CS 

im p lem en ta tio n  w hich is available [47]. T h e ir im p lem en ta tion  uses M an teg n a ’s a lgo rithm  

for s im u la ting  a  Levy flight [68]. C auchy and  G aussian  walks are  random  walks w here 

each steps is tak en  from  C auchy and  G aussian  d is trib u tio n s  respectively. T hese were 

gen era ted  using  a s tab le  random  n um ber g en era to r [69]. T he  C auchy walk re su lts  in 

a  Levy flight. T h e  N orm al d is tr ib u tio n  was a  G aussian  walk in w hich each step  was 

tak en  from  th e  M A TLA B  [17] im p lem en ta tio n  of a  G aussian  d is trib u tio n . T h e  uniform  

d is tr ib u tio n  was a ran d o m  walk w here each step  was taken  from  th e  M A TLA B [17] 

im p lem en ta tio n  of a un ifo rm  d is tr ib u tio n . F igure  3.39 com pares th e  p ro b ab ility  density  

functions of th e  th ree  different d is trib u tio n s . In  th e  figure, th e  x  axis can be th o u g h t of 

as rep resen ting  th e  size of a  s tep  in a ran d o m  walk. N ote how th e  C auchy d is tr ib u tio n  

has a  p ro b ab ility  of large steps, w hereas th e  norm al and  uniform  d is trib u tio n s  do not.
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FIGURE 3 .4 1 :  Random walk strategy study: de Jong’s function, non-shifted, distance
to minimum

3.4.7.1 N o n -s h if te d  F u n c tio n s

Sam ple resu lts , for th is  study, are p lo tted  in  F igures 3.40 to  3.43. In  a lm ost every case, 

th e  tw o G au ssian  w alks an d  th e  un iform  d is tr ib u tio n  perform ed th e  best for n o n -sh ifted  

functions. T h is  is su rp ris in g  since it is o ften  s ta te d  th a t  th e  Levy flight is an  o p tim um  

search p a tte rn  [51]. P e rh ap s th is  resu lt was because th e  n o n -C au ch y  walks have a 

higher likelihood of search ing  th e  sam e d istance  in each d irection , since th e  p ro b ab ility  

d is tr ib u tio n s  are  sym m etrica l. T h is could be an  advan tage, w hen th e  ob jec tive  functions 

have th e  sam e o p tim u m  value for each search dim ension.
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F i g u r e  3.43: Random walk strategy study: Rosenbrock’s function, non-shifted, dis
tance to minimum
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F i g u r e  3.45: Random walk strategy study: de Jong’s function, shifted, distance to
minimum

3.4 .7 .2  S h ifted  F u n c tio n s

F igures 3.44 to  3.47 show sam ple resu lts  of th e  flight s tra te g y  s tu d y  for th e  sh ifted  

functions. In  these  cases, it was h a rd e r to  tell th e  difference betw een each stra tegy . 

E aso m ’s 2D function , re su lts  p lo tte d  in F igure  3.46, and  R osenbrock’s function , resu lts  

p lo tted  in F igure  3.47, had  th e  m ost ap p a ren t differences. In th ese  cases, th e  C auchy 

walks show ed th e  b e tte r  p erfo rm ance. T h is fu rth e r su p p o rted  th e  conclusions m ade 

w hen considering  th e  re su lts  from  th e  n o n -sh ifted  functions in th is  study.
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3 .4 .8  C o n c lu s io n s

Conclusions reached by using the two different types of function, shifted and non-shifted, 

gave very different outcomes. It can be easily argued that shifted functions are a more 

suitable benchmark and, thus, the conclusions made in the original MCS study [1] using 

non-shifted functions come under question. This could explain the different findings 

presented by Bhargava et al [6], a point which will be discussed in more detail later 

in this chapter. W ith this in mind, it was considered appropriate to use the results 

from the shifted function studies to tune MCS such tha t it is better suited to more 

general functions. In all further analysis, only shifted functions will be considered as 

benchmarks.

W hen considering the value of p0, the results from the shifted functions suggested that 

a value of pa of around 0.75 seems to be the best. The adaptive pa did not perform well 

enough, for general functions, to be used.

The number of eggs has a direct effect on the number of function evaluations required. 

More eggs results in more evaluations in each generation. The results from the shifted 

function showed th a t a larger population of eggs is better. The trend between the 

number of eggs and performance remained almost unchanged as the algorithm is run 

longer. There is a possibility that this increase in performance was due to a better 

sampling of the search space. This raised the question: is it possible to start with a 

large population and then reduce the number of eggs each generation?

A study was carried out in which the starting population of eggs was 50. At each 

generation, a number of the worst eggs were eliminated from the search so that the 

population was decreased. The population was decreased by different amounts each 

generation, to ascertain the effect on performance. When the population reaches 10 

eggs, no further reduction is made.

Figures 3.48 and 3.49 show sample results of this study. Although there was a significant 

drop in performance if 10 eggs are eliminated each generation, there was not a significant 

decrease if only 1 egg is eliminated each generation. Even after the algorithm was left 

to run for 200 generations, the difference in the performance was very small between the 

algorithm with no reduction and the one where a single egg is eliminated each generation. 

The savings in number of function evaluations will be significant, so it is worth including 

this step in the algorithm.

The studies into the step size was very clear. The values of N F  = 103 and P w r = 0.5 

were clearly the best options.



Modifying the Cuckoo Search Algorithm 83

25 Generations 50 Generations

§ 85

O 83

“ 81

Number of Eggs Removed each Generation

86
|  85 
E
|  84
<u
jj 83 
t3
|  82 
3 81

0 2 4 6 8 10
Number of Eggs Removed each Generation

100 Generations 200 Generations

79l * * * * ' 791---------- ‘ * * * '
0 2 4 6 8  10 0 2 4 6 8  10

Number of Eggs Removed each Generation Number of Eggs Removed each Generation

F i g u r e  3.48: Decreasing population strategy study: Ackley’s function, shifted, dis
tance to minimum

When considering different crossover fractions and strategies, there was a clear difference

betw een th e  sh ifted  and  n o n -sh ifted  functions. T he  value of the  crossover seem ed to  be 

u n im p o rta n t, as long as it was betw een  0.2 and  0 .8 . Since th e  global o p tim a  of general 

functions do no t necessarily  have th e  sam e o rd in a te  value in each dim ension, th e re  is an  

advan tage  to  having  a crossover ra te  less th a n  one.

Rather than use the Binomial crossover strategy from DE [32], to further encourage 

independent searching along each dimension in the weighted mean operation, a different 

weight is now applied to each dimension. This is done using a different random number

betw een 0 an d  1 as th e  crossover frac tion  for each dim ension.

The best choice for the random walk strategy was the Levy flight implementation in 

Yang and Deb’s MATLAB CS code, which offered best performance in terms of the 

optimisation and, it turns out, CPU cost of generating a Levy flight.
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In summary, for best performance

• Set pa = 0.7

• Use as many eggs as can be afforded in the first generation then remove the worst 

egg each generation down to a minimum of 10 eggs

• Set N F  = 103

• Set P w r = 0.5

•  In the weighted mean calculation take a random fraction for each search dimension

•  Use Yang and Deb’s Levy flight

3.5 A dding a B iased R andom  W alk

The study by Bhargava et al [6] clearly showed that CS outperforms MCS in their 

application. This appeared surprising since, at the most basic level, MCS is CS with 

some extra steps. No insight was provided into why this difference occurs, but it is 

stated tha t it is the MATLAB implementation of CS developed by Yang and Deb [47] 

which is employed.

The MATLAB implementation of CS has three main sub-routines tha t are performed at 

each generation, viz. g e t cuckoos, g e t b e s t  n e s t  and empty n e s ts . The sub-routine 

g e t cuckoos generates new eggs by performing a Levy flight step from the previous 

location of each egg. The sub-routine g e t b e s t  n e s t  calculates the objective function 

at each of these new locations and determines the best solution found so far. Once 

this is done the sub-routine empty n e s ts  is applied. The sub-routine essentially takes 

random pairs of eggs, calculates the vector between them, multiplies this by a random 

number and adds it to the eggs originally marked as candidates for discarding. It was 

clear th a t this process is very similar to the DE [32] strategy detailed in Section 2.4.1.2. 

The process is not mentioned in the original CS paper [36] and is only touched upon 

in the second CS paper [47], where is is referred to as being a biased random walk. No 

process of this type is included in MCS [1].

To investigate the effect of the inclusion of a biased random walk, a number of differ

ent algorithms were tested. The published CS implementation [47] was used without 

modification, as was the MCS implementation. In addition, the CS implementation was 

modified to create two new algorithms. The first incorporated only the g e t cuckoos 

sub-routine, meaning tha t new eggs were generated by Levy flights only and not by a
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FIGURE 3.51: Different cuckoo search algorithms: de Jong’s function, shifted, distance
to minimum

biased ran d o m  walk. T h e  second in co rp o ra ted  th e  em pty n e s t s  ro u tine  only, m eaning 

th a t  new  eggs were on ly  genera ted  using  th e  b iased  random  walk. A final a lgo rithm  was 

the  M CS im p lem en ta tio n  w ith th e  em pty n e s t s  su b -ro u tin e  added  as an  add itio n a l 

s tep  at th e  end of each generation . T h e  num ber of eggs used for each a lgo rithm  was 50. 

R esu lts are  p resen ted , in F igures 3.50 to  3.55.

T hese  resu lts  gave insigh t in to  th e  possible reasons beh ind  th e  findings of B hargava et 

al [6]. F irstly , M CS w ithou t th e  em pty n e s t s  su b -ro u tin e  had  a  fast in itia l convergence,
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b u t did get tra p p e d  in loca l-m in im a. T h e  ad d itio n  of th e  em pty ing  su b -ro u tin e  fixed 

th is  p roblem  and  th e  m odified m eth o d  had  a fast in itia l convergence an d  found th e  best 

so lu tion  in every case. For R osenbrock’s function , F igure 3.55, CS also perform ed well. 

W h a t was really  in te restin g  is th a t  w hen th e  em pty n e s t s  su b -ro u tin e  was used alone 

it perform ed b e tte r  th a n  CS in every case, a p a r t  from R osenbrock’s function . Sim ply 

using Levy flights alone resu lted  in a very poor perform ance.

T hese resu lts  show ed th a t ,  in Y ang an d  D eb ’s im p lem en ta tion  [47], th e  m ost influential 

ro u tin e  was em pty n e s t s .  T he  CS im p lem en ta tio n  used in the  orig inal M CS validation  

does no t include th is  em pty n e s t s  rou tin e , w hich a lm ost certa in ly  explains th e  findings 

of B hargava et, al [6].

As prev iously  m entioned , th e  em pty n e s t s  ro u tin e  could be considered a specific exam 

ple of a D E  stra tegy , which m akes it easy to  explain  why th e  su b -ro u tin e  im proves b o th  

CS and  M CS so m uch.

F igures 3.56 to  3.61 are  an  a tte m p t to  q u an tify  th e  effect of th e  b iased ran d o m  walk on

overall perfo rm ance. As described  previously, each genera tion  th e  a lgo rith m  applied  the  

s ta n d a rd  M CS followed by a ran d o m  biased  walk. T he  redu c tio n  in ob jec tive  function  

value along w ith  th e  num ber of fu nc tion  evaluations for each step  was recorded  each 

generation . T h e  im provem ent was d iv ided  by th e  num ber of function  evaluations to  

yield an  ob jec tive  function  value red u c tio n  ra te . T h is reduc tion  ra te  was th en  p lo tted  

ag a inst th e  num ber of function  evaluations perform ed for the  s ta n d a rd  M CS and  th e  

b iased  ran d o m  walk. T h e  g raphs show th a t ,  in itially , M CS yielded th e  fastest reduc tion  

in function  value, w ith  th e  b iased  walk becom ing m ore significant as th e  num ber of 

function  evaluations increases.
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T hese  findings are  very  recent and  th e  m esh op tim isa tio n  app lica tion  of M CS p resen ted  

in th is  thesis does no t include th e  em pty n e s t s  rou tine . However, th e  open  source 

p ro jec t m od if i e d - c s  [64] has been u p d a te d  to  include th is  step .

3 .6  F u r th e r  C o m p a r is o n  w it h  E x is t in g  A lg o r ith m s

U p to  th is p o in t in th e  thesis, a lgo rithm s have been com pared  by m easu ring  th e  d is tan ce  

from  th e  co o rd in a tes  of the  lowest found ob jective function  value to  th e  know n global 

m inim um . T h is m easure  of success is th e  m ost frequently  used in o p tim isa tio n  lite ra tu re .
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It was se lected  as a m easu re  in o rd er to  publish  an  in itia l M CS valida tion  [1] reflecting 

th e  valida tions p resen ted  for CS [36, 47].

A question  can  however be raised  as to  how su itab le  it  was to  com pare a lgo rithm s th is 

way. C onsider again  Schwefel’s function  in one d im ension show n in F igure  3.62. T he 

lowest lo ca l-m in im u m  occurs a t  a ro u n d  x  =  -3 0 0 , and  is in fact th e  fu rth e s t loca l- 

m in im um  aw ay from  th e  global m inim um . Using d istance  from  th e  global m in im um  as 

a m easure  of success, an  algo rithm  w hich found th e  x  =  —300 lo ca l-m in im um  would 

be considered  w orse th a n  one which found, say, th e  sub  m in im um  a t x  — 200. If th is 

fu nc tion  rep resen ted  a  real value, such as m esh quality  or d rag  coefficient, th en  would it
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be  b e tte r  to  have a lower value fu rth e r away from  th e  global m in im um  or a higher value 

closer to  th e  global m in im um ? In  th e  con tex t of th e  app lica tions to  be p resen ted  in th is 

thesis, it is b e tte r  to  have a  lower value.

In th is  section , th e  la te s t version of M CS was com pared  w ith  th e  la te s t version of CS, 

includ ing  th e  b iased  random  walk, D E  and  PSO . E ach  of th e  a lgo rithm s had  user spec

ified p a ra m e te rs  set to  th e  values used previously  in o th e r  stud ies. For each objective 

func tion  used in prev ious stud ies, 100 se ts  of s ta r tin g  pop u la tio n s, each w ith  100 agents, 

were genera ted . To com pare perform ance, th e  lowest ob jec tive  fu nc tion  value o b ta ined  

was p lo tte d  ag a in st th e  num ber of function  evaluations.

T h e  s tu d y  was carried  o u t, initially, on th e  sh ifted  ob jec tive  functions used in previous 

s tu d ies. I t was th e n  carried  o u t on ro ta te d  versions of th e  ob jec tive  functions. M ost 

b en ch m ark  ob jec tive  functions are linearly  separab le . T h is  m eans th a t  each dim ension
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can  be op tim ised  independen tly  of any o ther. M any real ap p lica tions are  no t linearly  

separab le , since th e re  are  in terdependencies betw een th e  in p u t variables. T h is kind of 

in te rd ep en d en cy  can  be in troduced  in to  analy tica l benchm ark  problem s by ro ta tin g  th e  

co o rd in a te  system  of th e  te s t function  [70].

3.6.1 Sh ifted  O bjective Functions

T h e  resu lts  of th e  s tu d y  using sh ifted  ob jec tive  functions are p lo tted  in F igures 3.63 

to  3.68. W hen  app lied  to  A ckley’s function , M CS in itia lly  reduced  th e  value of the  ob

jec tive  function  faster th a n  any o th e r m ethod . However, as m ore function  evaluations 

were perform ed, D E  found a lower value. S im ilar behav io r was found w hen apply ing  th e  

alg o rith m s to  de Jo n g ’s, G riew ank’s and  R osenbrock’s functions. For E aso m ’s 2D func

tion , P SO  found th e  m inim um  in th e  fewest num ber of ob jec tive  function  evaluations, 

w ith  M CS th e  second fewest followed by DE. M CS was th e  b est perform ing  a lgorithm  

a t  any nu m b er of ob jec tive  function  evaluations, w hen applied  to  R a s tr ig in ’s function  

in 100 d im ensions. T hese  findings fu rth e r suggested  M CS would be a good algorithm  to  

app ly  to  h igh d im ensional problem s, w here th e  num ber of ob jective function  evaluations 

m ight be lim ited .

3.6 .2  R ota ted  O b jective F unctions

T h e  sam e s tu d y  was perform ed using ro ta te d  versions of t he benchm ark ing  functions. 

A ran d o m  o rth o g o n al ro ta tio n  m atrix  was genera ted  for each function  and  applied  to
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F i g u r e  3 .6 4 :  C o m p a r in g  D E ,  PSO, CS and  MCS a lg o r i th m s  using o b je c t iv e  fu n ct io n
value: de Jong’s shifted function

g  - 0  5

F i g u r e  3.65: Comparing DE, PSO, CS and MCS algorithms using objective function 
value: Easom ’s 2D shifted function

th e  in p u ts  before evaluation . T h is was achieved by genera ting  a d x  d  m a tr ix  of ran d o m  

num bers, th en  app ly ing  singu lar valued decom position  to  th is m atrix . T h e  resu lt was an  

o rth o g o n al ro ta tio n  m a tr ix  th a t  will in tro d u ce  in terdependencies betw een th e  different 

in p u t p a ram ete rs .

T h e  re su lts  of th e  s tu d y  were p lo tted  in F igures 3.69 to  3.74. T h e  ro ta te d  E aso m ’s 2D 

function  resu lts  were sim ilar to  the  n o n -ro ta te d  case.

For a lm ost all o th e r  ro ta te d  functions, a  sim ilar p a tte rn  em erged. In itia lly  PSO  ap p eared  

to  perfo rm  best, b u t in every case P S O  was overtaken  by M CS a fte r th e  first 2000 or 

so function  evaluations. P S O  seem ed to  get tra p p e d  in su b -m in im a  on a num ber of



Modifying the Cuckoo Search Algorithm 95

>§
§

0.2 0.4 0.6 1.2 1.60.8 1 1.4 1.8 2
Function Evaluations x 104

F i g u r e  3.66: Comparing DE, PSO, CS and MCS algorithms using objective function
value: Griewank’s shifted function
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F i g u r e  3.67: Comparing DE, PSO, CS and MCS algorithms using objective function
value: Rastrigin’s shifted function

occasions, w hereas M CS d id  no t. D E  and  CS d id  no t ap p ea r to  cope well w ith  th e  

ro ta tio n , a p a r t  from  for R osenbrock ’s function  w here D E  did eventually  o u tp erfo rm  

M CS.
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FIGURE 3 .6 8 :  Comparing D E ,  FSO, CS and MCS algorithms using objective function 
value: Rosenbrock’s shifted function
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F i g u r e  3 . 6 9 :  Comparing D E ,  PSO, CS and MCS Algorithms using objective function
value: rotated Ackley’s function
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F i g u r e  3.70: Comparing DE, PSO, CS and MCS Algorithms using objective function
value: rotated de Jong’s function
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F igure  3.71: Comparing DE, PSO, CS and MCS Algorithms using objective function
value: rotated Easom’s 2D function
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F i g u r e  3.72: Comparing DE, PSO, CS and MCS Algorithms using objective function
value: rotated Griewank’s function

1600
— DE 

PSO 
CS

- MCS
1400

1200

01
>  1000co
oc
^  800

600

400

0.2 0.4 0.6 0.8 1.2 1.6 1.8 2 2.21 1.4
Function Evaluations x ^q4

F igure  3.73: Comparing DE, PSO, CS and MCS Algorithms using objective function
value: rotated Rastrigin’s function
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F i g u r e  3.74: Comparing DE, PSO, CS and MCS Algorithms using objective function 
value: rotated Rosenbrock's function

3.7 C onclusion

In th is  ch ap te r, it was show n th a t  CS has m any desirab le  fea tu res for use in op tim isa tio n  

app lica tio n s. I ts  p erfo rm an ce  was increased by th e  in tro d u c tio n  of M CS, which has since 

been  refined fu rth e r. T h e  final s tu d y  using ro ta te d  functions showed th a t  M CS is largely 

unaffected  by th e  ad d itio n  of p a ram e te r in te rdependency  w hen com pared  to  DE, PSO  

an d  CS. T h is suggested  th a t  M CS could perfo rm  well w hen app lied  to  real problem s. 

T h e  focus of th e  rem ain d er of th is  thesis, was to  a scerta in  how M CS perform s w hen 

app lied  to  real p rob lem s.



Chapter 4

Aerofoil Shape O ptim isation

4.1 Introduction

The use of CFD solvers continues to increase in industrial settings. Predominantly, 

these solvers are used, along with experimental data, during a user led design cycle. As 

computational power continues to increase, both in terms of clock speed and increased 

parallelisation, the possibility of using CFD to automatically determine the optimum 

design for a given application becomes practical [71].

The area of work which is attem pting to reach this goal is shape optimisation. Aero

dynamic shape optimisation is typically the search for a body with minimum resistance 

to a surrounding moving fluid [72]. The optimisation process will also be subject to a 

number of constraints, such as the level of lift th a t is required, or an allowable body 

thickness. Once an objective function for the desired application is formulated, two ad

ditional ingredients are required for shape optimisation, viz. a shape parameterisation 

and an optimisation technique.

In the work presented in this chapter, the shape parameterisation technique introduced 

by Kulfan and Bussoletti [73] was coupled with MCS [1] to perform aerofoil shape opti

misation.

There is a long history of applying classical gradient based optimisation methods to 

shape optimisation [74]. One of the most popular techniques is to express the optimi

sation problem in terms of control theory and to apply an adjoint formulation to find 

the optimum design [22]. The primary advantage of these methods is their high compu

tational efficiency, i.e. their ability to converge in a short time [75]. This high rate of 

convergence has resulted in a capability to make an impact on real design problems [76]. 

Despite this success, it is well understood tha t these methods are highly dependent upon

100
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the assumed initial design [75], which motivated the consideration of the application of 

metaheuristic gradient free techniques. These techniques could, of course, potentially 

enhance gradient based techniques by providing this initial design.

A large body of the work published on the application of metaheuristic techniques to 

shape optimisation focuses on attem pts to address the issue of computational cost using 

meta-models [53-56]. The focus of the work, presented in this chapter, was to illustrate 

the capability of metaheuristic techniques. M eta models were not considered at this 

stage of assessment, as these may have had unforeseen effects on the performance of the 

optimisation.

Makinen et al [77] applied GA to aerofoil shape optimisation. The flow past the aerofoil 

was modelled using the full potential equations. They are able to construct a shape 

which matches a target velocity distribution, to eliminate shocks in the pressure field on 

the aerofoil surface, using their technique.

GA has also been applied with success to multidisciplinary shape optimisation, both 

minimising aerodynamic drag and radar cross section. It was found, however, th a t due 

to excessive CPU cost (around 85 hours for a single optimisation run) it is difficult to 

tune the algorithm to the problem [78].

Evolutionary algorithms (EA) are able to decrease the drag on an aerofoil by 10% at 

a Mach number of 0.8 [79]. EAs were also applied to the robust shape optimisation of 

aerofoils. A drag reduction of 30 -  40% is achieved in 24 hours [80].

Two types of test problem were considered here. The first was the inverse design of 

a transonic RAE2282 aerofoil. Inverse design attem pts to find a shape whose surface 

pressure matches one specified by the designer. This leads to a faster convergence rate, 

when compared to optimising the drag or lift coefficients alone [81]. The principle 

drawback of inverse design is the requirement of a surface pressure distribution, which, if 

incorrectly specified, may not represent the optimum distribution. This raised questions 

about the suitability of inverse design in real applications, but it was useful as a validation 

exercise.

The second problem considered was the drag minimisation of a shape at a target lift 

coefficient which is a common application in aerofoil design.

4.2 M ethods

Implementing the shape optimisation process required the coupling of shape parameter

isation, geometry meshing and a fluid solver with the optimiser. The optimiser itself
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F ig u r e  4.1: NURBS definition o f NACA0012

should treat the application as a black box objective function. It provides a set of inputs 

and expects an objective function value in return. In this section, the parameterisation 

and geometry meshing techniques employed are discussed.

The two dimensional version of the unstructured finite volume compressible inviscid 

fluid solver developed at Swansea University, FLITE [82], was used to calculate pressure 

distributions on the aerofoils. An edge-based, node-centered finite volume approach 

is adopted in the solver, to discretise the Euler equations. This discretisation is per

formed on an unstructured triangular mesh. All techniques developed in this thesis were 

designed to be independent of the solver.

MCS was used to perform the optimisation. The specifics on how the various tuning 

parameters are set is discussed at the end of this section.

4 .2 .1  S h a p e  P a r a m e te r isa tio n

A number of different strategies can be employed for parameterising aerofoil shapes. 

The most basic parameterisation is to consider the ordinate of each surface node as 

a parameter. This would result in a prohibitively large number of param eters in two 

dimensions, and even more in three dimensions. This number of param eters could be 

reduced by considering spline representations of a curve, such as non-uniform rational 

B-Splines (NURBS). Figure 4.1 shows a NURBS representation of a NACA0012. The 

vertices of the control polygon define the surface shape entirely. By moving these nodes 

the shape can be changed. Although this could be a suitable parameterisation, initial
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testing showed that this often resulted in shapes with high frequency wiggles, or bumps, 

along the surface. W ith this in mind, a parameterisation tha t resulted in more realistic 

shapes was sought.

Initially, it was considered appropriate to use the definitions associated with various 

aerofoil series as the optimisation parameters. For example, the four digits defining a 

NACA aerofoil represent three degrees of freedom, which specify the shape. This would 

almost always result in valid realistic shapes. However, this form of param eterisation 

suffers from a lack of flexibility, in th a t only standard shapes will emerge from the 

optimisation process. Since the key motivation in using metaheuristic gradient free 

methods was to remove the dependence on initial designs, this form of param eterisation 

was deemed to be unsuitable.

The param etrisation technique, which balances shape flexibility with number of param

eters, introduced by Kulfan and Bussoletti [73] was adopted in this work.

Kulfan and Bussoletti [73] define analytical shape, S { x / c ), and class, C (x/c),  functions 

to represent an aerofoil, where c is the chord length. Using these functions, the y 

coordinate of the aerofoil surface is defined to be

y (x/c) = C (x/c) * S  (x/c)  (4.1)

In practice, both C  and S  are defined in terms of two separate functions, one defining 

the upper surface and one the lower surface. The class function is given by

C (x/c) = (x /c ) " 1 (1 -  x /c ) " 2 (4.2)

where N1  and N 2 are exponents which define the general shape class. Most aerofoils 

have values N l  =  0.5 and N 2 =  1.0, which lead to the class function form illustrated in 

Figure 4.2. There is still ongoing work in determining whether or not these exponents 

should be considered as free parameters. In the inverse design example presented, they 

were held constant at N \  =  0.5 and N2 = 1.0, but, in the RAE2822 optimisation 

example, they were allowed to change, in order to gain higher shape flexibility.

It follows, from equations (4.1) and (4.2), tha t the class function acts as a constraint, 

ensuring tha t the aerofoil is closed at both the leading and the trailing edges. This 

enables a large degree of flexibility in the shape function.
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F ig u r e  4.2: The class function for N1 = 0.5 and N 2 =  1.0

Kulfan and Bussoletti [73] suggest using Bernstein polynomials as shape functions, lead

ing to the expression

when K r>n is a binominal coefficient, n  is the order of the Bernstein polynomial and ar is 

a member of the set of n  control parameters which define the shape. Here, a Bernstein 

polynomial order 5 was used to represent each surface, which adds 10 degrees of freedom 

to the parameterisation. Most aerofoils can be represented using this number of degrees 

of freedom with this technique [73]. Given more time, it would have been advantageous 

to investigate the effect increasing and decreasing the order of this polynomial has on 

the optimisation process.

From now on, a  is regarded as a vector containing the degrees of freedom which defines a 

particular shape and the notation aRAE2822, for example, as representing the particular 

set of coefficients which produce the RAE2822 aerofoil is employed. There is no easy 

way to calculate a  for a general shape. In order to determine a, a minimisation problem 

was constructed as the square of the difference between the actual shape and y (x/c).  

To find values of a  MCS was applied to solve the minimisation problem.

Like most gradient free optimisation algorithms, MCS will require an initial population 

of shapes for the optimisation process. This is almost always done using Latin hypercube 

sampling, as discussed in Section 3.2.1. To generate a population in this way, limits on 

the value of each param eter were needed. In the parameterisation adopted here, the

n

(4.3)
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F igure 4.3: The initial NACA 0012 mesh

coefficients w hich m ake lip a  have no physical m eaning, and  th u s, a p p ro p ria te  lim its  on 

th e ir  values were no t im m edia te ly  a p p a ren t.

A sam ple  of 25 ex is tin g  aerofoils were selected to  aid  determ ine  lim its to  he applied  on 

th e  p a ram ete rs . For each aerofoil considered, values of a  were d e te rm in ed  using M CS. 

T h e  m in im um  and  m axim um  values of each p a ram e te r  in th is  g roup  of 25 aerofoils 

was th en  d e te rm in ed  to  give a  range for each. For each p a ram ete r, th e  range was also 

ex ten d ed  by 10% in each d irection , in an  a tte m p t to  avoid th e  lim ita tio n s of using  a 

finite sam ple of aerofoils. T hese final ex tended  ranges were th en  used as lim its for LHS 

in th e  genera tion  of th e  in itia l popu la tio n .

4 .2 .2  M esh M ovem ent

G en era tin g  a  new  m esh each tim e an  ob jective function  evaluation  is requ ired  would be 

inefficient. A D elaunay  m esh genera tion  techn ique [83], w ith  au to m a tic  node crea tion , 

was used to  c rea te  an  in itial m esh a ro u n d  a NACA 0012 geom etry. T h is m esh con

ta in ed  33 ,278 tr ia n g u la r  elem ents, connecting  16,821 nodes, an d  an  en largem ent near 

th e  aerofoil is p lo tte d  in F igure  4.3.

E ach  tim e a  new ob jec tive  function  evaluation  is required , the  NACA 0012 geom etry  was 

m oved to  th e  new  aerofoil shape  defined by eq u a tio n  (4.1). T he  m esh was moved using 

a so called D elaunay  g rap h  m eth o d  [84].

T he  course D elaunay  trian g u la tio n , used for m esh m ovem ent in th e  following exam ples, 

is show n in F igure  4.4. O nce a course D elaunay  trian g u la tio n  is defined th e  steps in the  

rem eshing  m eth o d  are  as follows:

1. locate  th e  unm oved m esh p o in ts  in th e  course D elaunay trian g u la tio n ,
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F igure  4.4: Course Delaunay triangulation of NACA0012

A

C 

B
F igure 4.5: Barycentric coordinates of P

2 . ca lcu la te  th e  b ary cen tric  coo rd ina tes of each m esh p o in t w ith in  an  elem ent of th e  

course D elaunay  tr ian g u la tio n ,

3. m ove th e  D elaunay  trian g u la tio n  accord ing  th e  b o u n d ary  change, and

4. tran sfo rm  th e  m esh from th e  b a ry cen tric  coord inates, ca lcu la ted  in th e  second step , 

in to  physical space using th e  new location  of th e  course D elaunay  trian g u la tio n .

C onsider th e  course D elaunay  elem ent A B C , show n in F igure 4.5, th a t  con tains th e  

m esh p o in t P .  T h e  physical coo rd ina tes of P  can  be defined in term s of th e  coo rd ina tes 

of po in ts  A , B  and  C  and  th e  th ree  area ra tio  coefficients e i ,  e 2 an d  e-j. T hese are 

ca lcu la ted  using

Gi =  ft =  1 ,2 ,3  (4.4)
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F igure 4.6: A mesh movement invalidating the Delaunay mapping due to inverted
elements

w here S  is th e  a re a  of th e  D elaunay  elem ent A B C  an d  S i, S 2 and  S3 are the  areas of th e  

triang les B B C ,  P A C  and  P A B  respectively. T hese a re  essentially  th e  b a ry cen tric  co

o rd in a tes  of P  in  A B C .  G iven th is  in fo rm ation , th e  physical coo rd inates of P ,  (x p , y p ), 

can be ca lcu la ted  using the  equations

i=i

w here (X i , y i ) , i  =  1 , 2 , 3  are the  nodal coo rd ina tes of th e  D elaunay  elem ent.

A 11 im p lem en ta tio n  of th is techn ique needs to  identify  which D elaunay  e lem ent each 

m esh po in t lies in an d  th e  a rea  coefficients associated  w ith  th a t  po in t. C a lcu la ting  th is  

m app ing  is th e  largest c o m p u ta tio n a l cost of th is  rem eshing technique. However, th is  

ca lcu la tion  only needs to  be perfo rm ed  once. T h e  tran sfo rm atio n  from  b ary cen tric  to  

physical co o rd ina tes will rem ain  valid, as long as th e  b o u n d ary  m ovem ent does no t cause 

th e  inversion, or flipping, of any  elem ents in th e  D elaunay  g raph , such as illu s tra te d  in 

F igu re  4.6. As long as th is  cond ition  is no t v io lated  th e  resu lting  m esh will be valid. If 

th is  p rob lem  occurs, th e  p rocedure  will need to  be perform ed a t an  in te rm ed ia te  m esh 

m ovem ent to  ensure a valid m esh.

O nce th e  m app ing  h ad  been gen era ted  for th e  unm odified  NACA0012, for a new  ob

jec tive  function  eva lua tion  th e  b o u n d a ry  was m oved to  th e  new aerofoil shape  defined 

by eq u a tio n  (4.1). T h en , for all th e  m esh p o in ts  inside a  D elaunay elem ent for w hich 

one or m ore vertex  co o rd in a te  has changed , th e  new coord inates were found by app ly ing  

equ a tio n s (4.5) and  (4.6) using th e  new coord ina tes of A ,  B  and  C .

3

(4.5)

3

(4.6)
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This method offers high quality fast mesh reconstruction and also results in a fast check 

for shape validity. If any of the mesh elements are inverted in the mesh movement this 

indicates that the new aerofoil surface intersects itself, which is invalid. Further examples 

are shown in Figures 4.7 to 4.11 to give an indication of the range of achievable shapes 

using the param etrisation and meshing techniques.

4 .2 .3  M C S  P a r a m e te r s

The parameters used for MCS in the optimisation were:

• pa = 0.7

•  50 initial eggs were generated using LHS with the limits found for the parameters 

in the initial study

• N F  — 102

• P w r  = 0.5

A constraint was placed on the optimisation in regards to the shape of the aerofoil. If 

a set of parameters resulted in a boundary which is self-intersecting, it was considered 

invalid and the solution was ignored during the optimisation. A CPU time limit of 100 

hours was placed on each optimisation, rather than a generation number limit.

4.3 Exam ples

For the examples in this chapter, the calculations were performed on a single 1400 

MHz AMD Opteron 240 processor. In the results presented, pressure is given as a 

dimensionless pressure normalised by pU ^, where p is density and Uqo is the free-stream 

velocity norm.

4 .3 .1  In v erse  D e s ig n  o f  R A E 2 8 2 2

To define the objective function in this example, the surface pressure on the a RAE2822 

mesh was first calculated and stored. The objective function was simply the squared 

difference between the pressure on the surface of current aerofoil and th a t for the target 

RAE2822. Since an optimum solution for this problem exists, and is known, it provided 

a good benchmark for determining the validity of this approach.
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(a) OAF102

(b) R1080

F ig u r e  4.7: Sample aerofoils taken from a study to investigate the values of a. The
black circles are the original aerofoil geometry, the mesh shows the closest fit found

using the parameterisation
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(a) RAF30M D

(b) Sokolov

F ig u r e  4.8: Sample aerofoils taken from a study to investigate the values of a .  The
black circles are the original aerofoil geom etry, the mesh show s the closest fit found

using the parameterisation
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(a) STE87391

I.S.X'S.V;:

(b) Strand

FIGURE 4.9: Sample aerofoils taken from a study to investigate the values of a. The
black circles are the original aerofoil geometry, the mesh shows the closest fit found

using the param eterisation
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(a) Tempest.2
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(b) R.AF89

F ig u r e  4 .1 0 : Sample aerofoils taken from a study to investigate the values of a. The
black circles are the original aerofoil geometry, the mesh shows the closest fit found

using the parameterisation
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(a) Saratov

5 5 « ij*. •* '‘'‘’libv'iSSJSSvV-

(b) W hitcomb

F ig u r e  4. 11:  Sample aerofoils taken from a study to investigate the values of a. The
black circles are the original aerofoil geometry, the mesh shows the closest fit found

using the param eterisation
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F ig u r e  4.12: Convergence history for inverse design of a RAE2822 aerofoil at Mach
0.5

The basic implementation of MCS was used, with tuning parameters suggested in the 

original validation [1]. An example was performed for two Mach numbers, 0.5 and 0.75, 

and zero angle of attack. In this example the param eter values were constrained to 

within the limits found in the previously discussed study.

M ach  0.5 Figure 4.12 shows the convergence history for the Mach 0.5 inverse design 

example. After 277 generations of MCS, the sum squared difference between the target 

RAE2822 aerofoil surface pressure and the current best design decreased, by two orders 

of magnitude, from 0.3870 to 0.0016.

A sum squared difference of 0.0016 represents a small difference in the pressure distri

bution. This difference is shown in Figure 4.13. The solution obtained after 12 hours is 

also plotted to show the improvement achieved. This agreement in the surface pressure 

coincided with a close match to the target geometry, as shown in Figures 4.14 and 4.15. 

The solution obtained after 12 hours is also plotted to show the improvement achieved.
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E la p s e d  C P U  T im e  (h o u rs )

F igure 4.16: Convergence history for inverse design example, Mach 0.75.

M ach  0.75 T h e  convergence h isto ry  for the  M ach 0.75 inverse design exam ple is 

show n in F igure  4.16. T h e  sum  squared  difference betw een the  ta rg e t RA E2822 aerofoil 

surface p ressure  and  th e  cu rren t best design decreased from  1.6580 to  0.0172 in 134 

generations. T h is  rep resen ted  a  decrease of tw o o rders of m agn itude . F igure  4.17 shows 

th e  differences betw een  th e  surface pressures of th e  final design, th e  design after 12 hours 

and  th e  ta rg e t. A shock can clearly  be seen in th is  figure. T h is  has had no negative 

effect on th e  convergence of M CS. F igures 4.18 and 4.19 show how closely th e  final design 

geom etry  m atch ed  th e  ta rg e t R A E2822.

4.3 .2  A erofoil Im provem ent

In th is  exam ple, th e  a im  was to  im prove an ex isting  aerofoil by reducing  th e  d rag  coeffi

cient w ith o u t reducing  th e  lift. As w ith  th e  prev ious exam ple, th e  R A E2822 was used as 

a ta rg e t. T h e  ta rg e t lift coefficient, C \ a ' get, for th is  geom etry  was ca lcu la ted  and  stored. 

T h e  objec tive  fu n c tio n  was defined as

f ( a )  =  m a x  if}, ( C \ arget -  C {))  +  a b s ( C d ) (4.7)

w here C/ and  C d are th e  lift and  d rag  coefficients of th e  aerofoil, and  a b s ( C d ) ind icates 

th a t  th e  m ag n itu d e  of th e  drag  coefficient was m inim ised. Here th e  flow was inviscid so 

th e  physical m ean ing  of C d is no t im m edia te ly  obvious. T ru ly  shock free inviscid flowr
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T a b l e  4.1: Limits of the parametrisation defined in the vector a, used in the con
strained examples. Notation from Section 4.2.1 has been employed

Param eter Minimum Maximum
N 1 0.1927 0.6669
N  2 0.5542 1.4730

Angle of Attack (degrees) —5 5
Top Surface

ai 0.0975 0.3090
Q>2 -0.0205 0.5708
«3 0.0118 0.4853
U4 -0.0208 0.5074
<25 0.0572 0.3078

Bottom Surface
<21 0.0442 0.2709
G2 -0.2817 0.3854

-0.6530 0.4805
(24 -0.3646 0.3300
CL5 -0.2998 0.3829

has Cd =  0. Minimising Cd in inviscid flow is often used to design shock free aerofoils. 

Studies of this kind have even reported negative values of Cd, which simply means the 

flow field is not shock free [85]. To reflect the aim to eliminate shocks the free-stream 

Mach number selected for this example was 0.8.

The param eter vector a RAE2822 was included as a starting egg, which means tha t equa

tion (4.7) ensures th a t any improvement in drag would only be accepted if the lift 

coefficient was equal or higher to that of the initial design.

Together with the 10 degrees of freedom defining the shape function, and the 2 exponents 

defining the shape function, the angle of attack was included as a degree of freedom in 

these examples. The initial RAE2822 lift and drag coefficients corresponded to an angle 

of attack of zero. These values are shown in Table 4.2. Two studies were performed, 

one in which the optimisation was constrained and one without constraints.

In the constrained optimisation the values of each parameter in the vector a  was re

stricted to within the limits determined during the study detailed in Section 4.2.1. The 

limits are presented in Table 4.1.
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T able  4.2: Initial Design Lift and Drag Coefficients

RAE 2822 
Mach Number Ci Cd

0.8 0.4783 2.309 x IQ-**

T a b le  4.3: Final Design from Unconstrained MCS Design Lift and Drag Coefficients

Unconstrained MCS Design 
Mach Number Q  Cd

0.8 0.4783 1.562 x 10~3

T a b l e  4 .4 : Final Design from Constrained MCS Design Lift and Drag Coefficients

Constrained MCS Design 
Mach Number Ci Cd

0 8  0.7056 -1.3646 x 10“ *

To aid readability, all the results are presented in Tables 4.3 and 4.4. These results are 

then discussed in detail in the remainder of this section. For both examples, sample ge

ometries are plotted, to show the evolution of the shapes. The samples selected represent 

the large jumps in design quality which seems to be characteristic of MCS optimisation.

4.3 .2 .1  N o  C onstraints

In this example, the coefficient of lift for the final design, shown in Figure 4.20, did 

not change compared with the original RAE2822. However, the coefficient of drag was 

reduced by an order of magnitude to Cd =  1.562 x 10-3 compared with the RAE2822. 

The surface pressures plotted in Figure 4.21 explain this. The RAE2822 had two shocks 

in the flow on the surface at Mach 0.8 and the optimisation process managed to remove 

these shocks. The final angle of attack for this design was —1.1598 degrees.

The convergence history is shown in Figure 4.22. The evolution of the shape of this 

design is shown in Figure 4.23.
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FIG U R E 4.20: Dimensionless pressure around the final design for the Mach 0.8 aerofoil
unconstrained optimisation
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_
20 100 12040 60 80

G eneration

F i g u r e  4.22: Convergence history for the Mach 0.8 aerofoil unconstrained optimisation

0 0.2 0.4 0 0.2 0.4  0.6 O f 0 0.2 0.4 0.6 0.8 1

(a) G eneration 1 (b) Generation 6 (c) Generation 10

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6

(d) Generation 21 (e) Generation 26

F i g u r e  4.23: Evolution of the best egg: Mach 0.8, Unconstrained MCS
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1.6
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1.2

1

0.8

0.6

F i g u r e  4.24: Dimensionless pressure around the final design for the Mach 0.8 aerofoil
constrained optimisation

4 .3 .2.2 C o n s tra in e d

F igu re  4.24 shows th e  dim ensionless p ressu re  field a round  th e  final design in th e  con

s tra in ed  M ach 0.8 exam ple. Unlike th e  u n co n stra in ed  case, th e  shock was no t e lim inated , 

as show n in F igu re  4.25. T he  final angle of a tta c k  was —0.8317 degrees. A t th is M ach 

num ber, th e  d rag  coefficient achieved by th e  co n stra ined  M CS, —1.3646 x 10- * was m uch 

lower th a n  th a t  found by u n co n stra in ed  M CS.

T h e  convergence h is to ry  and  sh ap e  evo lu tion  are show n in F igures 4.26 and  4.27 re

spectively. T h e  sh ap e  was m uch f la tte r  th a n  th e  u n constra ined  case and  it was a lm ost 

app roach ing  a flat p la te .
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_J___________ I___________ I___________ I___________ I___________ I___________ I___________ I—
30 40  50  60  70  80  90  100

G eneration

F i g u r e  4.26: Convergence history for the Mach 0.8 aerofoil constrained optimisation

0 0 .2  0 4  0 .6  0 .8  1 0 0 .2  0.4 0 .6  0 .8  1 0 0 .2  0 .4  0 .6  0 .8  1

(a) G eneration 1 (b) Generation 3 (c) Generation 8

0  0 .2  0 4  0.6 0 0 .2  0.4 0 .6  0.6 0  0 .2  0.4 0 .6  0 .8  1

(d) Generation 13 (e) Generation 15 (f) Generation 21

0 0 .2  0 .4  0 .6  0 .8  1 0  0 .2  0.4 0 .6  0.6

(g) Generation 29 (h) Generation 35

F i g u r e  4 .2 7 :  Evolution of the best, egg: M ach 0.8,  Constrained MCS
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4.4 D iscussion

The results presented in this chapter show the potential for applying a CS based al

gorithm to the problem of shape optimisation. Validation of the approach has been 

achieved here by using an inverse design problem with a known solution. The ability of 

the m ethod to  improve an existing design has also been shown. The examples considered 

are still very much toy problems and, in the future, it will be necessary to add more 

complexity by improving the flow physics and moving to three dimensions. In addition 

structural constraints, such as minimum thickness, will need to be considered. This will 

inevitably lead to increased CPU costs, which may limit the practicality of using the 

approach. This difficulty could be alleviated if a suitable method of approximating the 

objective function could be devised. In the next few chapters, a potential m ethod of 

achieving this is explored.



Chapter 5

R educed Order M odelling

5.1 Introduction

The equations describing fluid dynamics have a wide application in engineering design 

and analysis. The non-linearity of the equations mean analytical solutions only exist 

once simplifications are made. These simplifications limit their application to a small 

number of flow situations [86]. The field of CFD has arisen to solve this problem by 

advocating numerical solutions of the governing equations.

The nature of the equations tha t govern fluid flow has meant the development of such 

code is difficult and computationally expensive [87]. Typically, the solution of equations 

with millions of degrees of freedom is required for accurate Navier-Stokes simulations. 

This can result in calculations which take in excess of 24 hours to run, even on modern 

parallelised hardware. These kinds of problems, which have high numbers of degrees of 

freedom, are examples of high-dimensional problems.

Calculation time needs to be reduced to make CFD an effective practical addition to the 

design process. As discussed in previous chapters, such a process may require a large 

number of unsteady solutions for a geometry over a large number of parameters [88]. The 

excessive CPU cost of running CFD codes is particularly prohibitive when considering 

applications in metaheuristic gradient free optimisation. ROM originates from this need 

to solve these kinds of complex nonlinear multiparametric problems in a computationally 

efficient way [89, 90].

The fundamental aim of ROM is to reduce the number of degrees of freedom representing 

a system, whilst retaining an acceptable level of accuracy [91]. This is done by developing 

dimension reduction techniques [92]. ROM can be thought of as an example of data

131
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compression, from high-dimensional data  to low-dimensional data, which is why many 

ROM techniques originate from the field of data  compression [88].

The number of degrees of freedom representing a system in a typical CFD solver is large, 

this is primarily caused by the governing equations being discretised in space. Each 

degree of freedom in this case is an unknown variable on a mesh node. The key step 

in ROM is to generate a set of spatial modes, each containing information about every 

mesh node. These modes can be used to, essentially, remove the spatial dependence of 

the equations. The modes provide key spatial ingredients for a ROM. By changing the 

mixture of these modes, the structures of the full order model (FOM) will recreated [93]. 

A solution can be represented by a sum of these modes and the modal coefficients can 

be considered the degrees of freedom of the system of equations. These coefficients can 

be considered a function of either time, control parameters or a combination of both. 

The vast m ajority of ROMs are applied to time-dependent problems, where the exact 

governing, time-dependent, equations of a system are projected onto a series of spatial 

modes [94]. The time-dependent coefficients of these modes become the unknowns of 

the system.

Each member of the set of spatial modes, sometimes called basis functions, has a different 

energy contribution to the system of interest. The term energy is used throughout the 

field of ROM to describe the importance of each mode. In a number cases this energy 

may not be defined in terms of the physical meaning of the word, but the total energy 

in a system is defined as the sum of energy contribution from each mode. The energy of 

each individual mode is normally expressed as a percentage of the total energy. Different 

methods will have different techniques of calculating tha t contribution. The basis may 

sometimes be truncated, such that the low energy modes are discarded.

There are two contrasting families of techniques to calculate these spatial modes, viz. 

data  driven and equation driven techniques. In equation driven methods, such as non

linear normal modes [95], the modes are constructed by applying mathematical reduc

tion techniques directly to the equations themselves. D ata driven methods, such as 

POD, use sample stored calculated solutions or experimental data to generate the spa

tial modes [88]. These sample solutions are often referred to as snapshots.

For the optimisation applications considered in this thesis, the important question was 

how well do these methods deal with param eter changes, such as shape or angle of attack? 

The work presented in this chapter aimed to answer this question. Initially, a number of 

different methods for generating the spatial modes are discussed. The selected method, 

POD, is discussed in more detail. Existing methods using POD applied to parametric 

steady problems were studied, and a technique was developed to apply POD to unsteady 

param etric problems.
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5.2 M ethods for G enerating the Spatial M odes

5 .2 .1  P r o p e r  O rth o g o n a l D e c o m p o s it io n

POD (also known as Karhunen-Loeve decomposition, and the Hotelling transform [96, 

97]) was first proposed in 1901 as a tool to analyse complex systems [97]. The goal of 

POD is to identify an optimal coordinate system to represent an ensemble of snapshots by 

removing redundant information [98]. This is equivalent to finding the smallest possible 

linear set of basis functions which represent the ensemble [90, 97]. When restricted 

to a finite dimensional case, and truncated after a few terms, POD can be considered 

equivalent to principle component analysis [96].

Performing POD can be computationally expensive, so the technique was virtually un

used until the middle of the 20th century [96]. POD has since been applied to a 

wide range of problems, including signal analysis, pattern  recognition, image recon

struction [91] and weather prediction [93].

The most striking property of POD is its optimality. It is very efficient at capturing 

dominant components [93]. In fact, when truncated at any number of modes, it captures 

more relative energy, with those modes, than any other decomposition method truncated 

in the same way. POD is also an unbiased technique, since it acts on the data  itself and 

requires no prior information about the problem of interest [99].

W hen applied to flow problems, the linear POD procedure results in a number of or

thogonal modes [91, 92]. The POD mode which carries the dominant percentage of 

energy typically represents the mean flow structure in the example being studied. All 

other modes represent an optimum basis to decompose the flow [99]. The resulting 

projection of high-dimensional da ta  into lower dimensional space can reveal important, 

perhaps even unexpected, structures hidden in the data  [96]. Today, one can find many 

examples of its use in flow analysis [92, 99, 100]. It has been applied with success to 

laminar flows, both compressible and incompressible, and in particular it has been used 

to successfully extract large-scale organized motions from turbulent flows [97].

One drawback of constructing a ROM, using a POD basis, is that the basis, and hence 

the model, only contains information tha t was present in the set of snapshots used to 

create it [98]. Intelligent selection of snapshots is, therefore, the key to constructing a 

successful POD basis.
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5 .2 .2  N o n lin e a r  N o rm a l M o d e s

NNM constructs and defines the ROM from specific properties of the dynamic system. 

It does this by adapting the mathematical reduction techniques, of the centre manifold 

theorem and normal form theory directly into the governing equations. Not requiring 

any snapshot information NNM results in a reduced system of equations to represent 

the FOM [95].

Amabili et al [95] provide a comparison between POD and NNM as methods of producing 

a ROM for non-linear vibrations of fluid filled shells. One advantage NNM has over the, 

essentially linear, POD method is tha t it is non-linear. The result is th a t fewer modes, 

and therefore less computational cost, is required to capture the dynamics of a  system 

by a NNM based ROM than by a POD based ROM. Amabili et al [95] found th a t both 

methods perform equally well compared to a FOM in most cases. This is not the case in 

situations where the driving vibration amplitude is large, resulting in chaotic behaviour. 

In this case, the POD method has the advantage, since the snapshot da ta  means that, 

unlike NNM, it is a global method and can capture complex behaviour, as long as the 

snapshots are well selected.

5 .2 .3  C V T  R e d u ce d -O rd er  b a ses

CVT was discussed in Section 3.2.1 as a method of moving an initial set of geometric 

points to better sample a given space. CVT in the context of ROM is a da ta  compression 

technique, whose starting point is a set of snapshots as in POD. The Voronoi tessellation 

takes place in the abstract multi-dimensional space defined by the snapshot vectors. 

Each snapshot is assigned a weight, which defines a density function throughout this 

space. A set of points is sought, where the mass, as defined by the density function, 

centroid of the Voronoi vertices coincides with the point which generated them. These 

points become the basis functions, which can be used to form ROMs [88]. The weighting 

allows different significance to be given to different snapshots, which is not possible in 

POD.

Burkardt et al [88] compared POD to CVT, using a so called T-cell example. This is an 

incompressible, viscous flow problem in a T-shaped region with a parameterised time- 

varying inflow boundary. They used 500 snapshots, created at different time steps using 

a finite element model, to generate the POD and CVT basis functions. These functions 

were used to find solutions for various inflow parameters and compared to the full order 

finite element model. They found th a t both ROMs are very effective in approximating 

the FOM in low dimensions. They could not find an advantage with either technique,
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both the computational cost and the errors are of the same order. It was stated th a t CVT 

is less tested in the literature than POD and that differences may be found with further 

research. Burkardt et al [88] suggested combining the two techniques by using CVT to 

group the snapshots into clusters and performing POD on each group of snapshots.

5.3 Proper O rthogonal D ecom position

POD was picked as the method of choice for two reasons. Firstly it is a da ta  driven 

technique which can be treated, in the most part, as a general black box. Equation 

driven methods, however, may require problem specific formulations. The other reason 

was tha t POD appeared to be well tested and popular in the literature.

Consider some spatial and parameter-dependent value 0(x, a ) ,  defined over a domain 

12, where a  represents some parameters, which may or may not include time, and x 

represents space. A snapshot, t/fc(x), of 0(x, a )  at a particular set of parameters a*, is 

obtained as

Uk{x) = 0 ( x ,a fc) (5.1)

POD attem pts to find a set of spatial modes $ (x )  which best represent the characteristic 

structure of an ensemble of these snapshots. The field data is then approximated using 

these modes as
M

0(x, a )  =  $*(x)Ti(a) (5.2)
i =  1

where M  is the number of POD modes, is a typical member of and Ti(oc) are 

coefficients which depend on the parameters. In the above expression, is given as 

a function of x  since it is a spatial mode. The practical implication is tha t 3>*(x) is a 

vector, containing a list of unknown variables, one for every mesh node in the model of 

interest. The same is true for C/fc(x). To construct a ROM, using these modes, methods 

for determining Ti(ac) are required.

5 .3 .1  C a lc u la tin g  th e  P O D  M o d e s

Specifically, the aim is for the POD modes to describe a typical member of the snap

shot set better than  any other basis [93]. The terms characteristic structure and typical 

member point towards the use of an averaging operation. W ith this in mind, the POD 

modes are constructed mathematically by maximising the mean of the square of the 

projection of 3?(x) onto each snapshot, i.e. the expression ^  {ph, | ^  / l l ^ l |2 is max

imised. Throughout this thesis the symbols (*) refer to the mean, ||*|| is the norm and
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(*, *) is an inner product. The mean is maximised to reflect the goal of representing 

a typical member of the snapshots and the normalisation factor ||3>||2 is included to 

prevent $  increasing without limit.

The maximisation problem described would result in a single POD mode, but other 

critical points of the function have physical significance and, together, they correspond

to the desired basis [93]. To find these critical points, under the condition | |$ | |2 =  1,

the problem is reformulated as seeking the maximum of

i J = / | ( % , $ ) | 2\ - A ( | | $ | | 2 - l )  (5.3)

where A is a Lagrange multiplier. This can be shown [96] to lead to the integral eigenvalue 

problem

J  ( u k(-x)Uk{x')^ $ (x ')d x ' =  A$(x) (5.4)

where ( u k(x.)Uk(-x')^ is the spatial autocorrelation function. This function compares a 

spatial field to itself and is a mathematical tool for finding repeating patterns.

It is assumed th a t the modes can be expressed in terms of a linear combination of a set 

of M  snapshots sampled from the FOM, i.e.

M

<S, =  J 2 biU i (5.5)
i = 1

where the values of b i  are to be determined. Substituting equation (5.5) into equa

tion (5.4) yields the eigenvalue problem [91]

Lbi = Xibi i =  1...M (5-6)

where L is the M  x M  matrix form of the spatial autocorrelation function, with typical 

entry

L H = (5.7)

The eigenvalues A* of L  are real and positive and represent the relative energy contained 

in each POD mode. The corresponding eigenvectors b i  are mutually orthogonal and are 

termed the POD basis vectors or modes 4>i, i = 1, , M  [91]. Constructing the POD 

basis using snapshots implies tha t any ROM based on this basis will intrinsically contain 

all linearly invariant properties of the snapshot set, e.g. the incompressibility condition, 

if applicable. This follows from the fact that the basis has been computed by performing

only linear operations on the snapshot set [101].
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The problem of solving equation (5.6) can be stated, equivalently, as finding the eigenval

ues and eigenvectors of the matrix UUT, where U is the D x M  m atrix of snaphots [100], 

where D  is the number of degrees of freedom in the system of interest. Each column of 

U is a vector length D  which contains all the degrees of freedom representing a partic

ular snapshot. A solution to this problem may be achieved by employing singular value 

decomposition (SVD) [88, 96, 100]. Any real matrix can be decomposed as

U =  (5.8)

where $  is a D x D  m atrix, whose columns contain the left singular vectors of U, S  is 

a M  x M  matrix, whose columns contain the right singular vectors of C7, and £  is a 

pseudo-diagonal D x M  matrix, whose diagonal elements are the singular values Si of 

U. It can be shown [100] tha t the matrix UUT can be decomposed as

UUT =  $ £ 2$ t  (5.9)

It follows tha t the POD modes are the left singular vectors of U, given by [88],

and tha t the corresponding eigenvalues are given by A; — sf  [100]. Reliable algorithms 

have been developed to  compute the SVD and can be easily applied to POD applica

tions [96]. In the examples presented in this thesis the algorithm presented by Demmel 

and Kahan [102] is used to perform SVD.

The ability of a POD basis to approximate the FOM relies entirely on the information 

contained in the set of snapshots used to generate the basis itself [88]. Ravindran [103] 

gives three different strategies for generating snapshots:

• a set of steady-state  solutions corresponding to several different sets of parameters, 

e.g. angle of attack, Reynolds number,

• an unsteady solution for a fixed set of parameters, evaluated at different instants 

in time, and

•  a combination of the above, in the form of multiple unsteady solutions of varying 

sets of param eters, each evaluated at different instants in time.

POD can be thought of as an interpolation or an extrapolation technique, with the set of 

snapshots supplying information about the system to the resulting ROM. It is difficult 

to perform a general error analysis of a ROM based on POD, because of the dependency 

on the quality of the snapshot selection. For this reason, in practical applications, a 

POD based ROM generally needs to be assessed for each new problem.
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To use the POD modes as part of a ROM, methods need to be developed for generating 

solutions outside of the snapshot set [104]. The choice of method for generating these 

snapshots and solutions outside the set largely depends on the problem to be tackled, in 

respect to the number and types of parameters which make up a . Two types of problems 

were considered here, steady problems where, a  does not contain time but any number 

of other parameters, and unsteady problems, where a  contains time and any number of 

additional parameters.

5.4 R educed Order M odelling of S teady Fluid Problem s

Two contrasting techniques were considered for this problem, a residual reduction method 

and a POD interpolation technique.

5 .4 .1  R e s id u a l R e d u c tio n  M e th o d  for S te a d y  F lo w s

Alonso et al [89] introduced a residual reduction method for using a POD basis for 

steady flows. The governing equations for the flow of interest are assumed to consist 

of m  partial differential equations, in a domain fi, and n  boundary conditions, on a 

boundary T. These equations will include flow control parameters, such as, for example, 

the Reynolds number. A FOM is used to generate snapshots with different parameter 

values and the snapshots are used to calculate a set of POD modes for each fluid variable 

in the ways discussed above. A minimisation problem is then formulated with the aim 

of minimising the residuals associated with the governing equations and the boundary 

conditions, where the inputs or variables for the problem are the POD mode coefficients. 

Such a problem could be solved using optimisation techniques.

In their study, Alonso et al [89] use a GA to find the POD coefficients. This step has the 

potential to be computationally expensive, since using a GA requires the residual to be 

calculated many times and over all nodes. They overcome this difficulty by limiting the 

number of nodes, over which the residual is calculated, to a small area in the domain. 

This area is called the projection window, this modification is justified by noting that, 

since the calculations involved are not exact, the number of nodes used in the residual 

calculation needs only to be larger than the total number of unknown amplitudes, but 

not necessarily equal to the total number of mesh points. The total number of mesh 

points is, after all, a property of the CFD model and not of the POD approximation.

To test their method, 25 snapshots of a non-isothermal flow past a backward facing step 

were used, with 6 POD modes retained for each fluid variable when constructing the
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ROM. The method is shown to work well, with the location of the projection window 

having only a small effect on the accuracy of the ROM when compared to the FOM. 

When the window is placed in a region where the most flow topology existed, they found 

the highest accuracy. The accuracy of solution is virtually independent of the number 

of nodes used in the residual calculation, provided the number used is greater than the 

number of unknown amplitudes. The results show a striking accuracy throughout the 

domain, despite only performing calculations on a small fraction of it.

This technique was not deemed suitable at this stage. Experience gained through work 

on this thesis has shown that metaheuristic algorithms do require tuning and the same 

solution for the same problem is not guaranteed. The consequence is th a t if a ROM 

constructed in this way was applied to an optimisation problem, the same point in the 

param eter space may have slightly different objective function values.

5 .4 .2  P O D  B a se d  In te r p o la t io n

The interpolation approach is described by M y-Ha et al [105], who considered the shape 

of the water plume on the surface following a set of underwater explosions. The shape 

depends on parameters defining the explosions, and particular shapes can be used to 

obstruct aerodynamic objects near the surface. The implementation rapidly predicts 

the param eters needed to achieve a free surface plume of any shape.

A similar technique was also used by Qamar et al [106], who tested the ability of POD 

to predict flow fields. The example of steady high-speed flow past an axisymmetric 

triangular surface of various heights, mounted on a spherical nosed body was considered. 

They found that, when interpolating within the snapshot parameter space, the root mean 

square error is less than  1% over the full flow field and even smaller when just considering 

the variables on the body surface.

Using POD as a basis for interpolation is very simple. First, M  snapshots Ufc, k = 

1 , . . . ,  M  are calculated using a FOM off-line. The term off-line is used to indicate the 

processes of building the ROM, while the term on-line is used for the process of using the 

ROM. The snapshots are sampled throughout the param eter space, with corresponding 

param eter coordinates a , using the FOM and axe then used to calculate the POD basis. 

Each snapshot can be reconstructed as

M

Uk = Y , T i ( a k)$k
1 = 1

(5.10)
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For each param eter vector, a set of coefficients, considered as functions of a ,  are calcu

lated, using an inner product, as

T , (ak) = (*k,Uh) (5.11)

for / =  1, . . .  , M . In the on-line process, a set of coefficients, T (a ) ,  which best repro

duce U(ct) using the POD basis, is calculated using interpolation techniques. These 

coefficients are used to reconstruct a solution at the new set of parameters. Depending 

on the capability of the interpolation technique adopted, the snapshots may be sampled 

uniformly or non-uniformly throughout the param eter space.

This family of POD coefficient interpolation techniques, which appear to have been 

introduced originally by Ly and Tran [97], have not been widely adopted. When all POD 

modes are retained, these techniques are exactly equivalent to nodewise interpolation of 

the solution field. To illustrate this, consider the simple case of two snapshots, in a one

dimensional param eter space, at coordinates a i  and a 2 , where

M

=  (5.12)
1=1

and
M

^2 =  ^ J i ( a 2)$i (5.13)
1 = 1

Using linear interpolation, 7) ( a ) can be obtained, for any a , as [107]

T,(a) =  r , ( a i )  +  T i(0l) ~  Tl(a2)- (a  -  a i )  (5.14)
ai  — a  2

for / =  1, . . . ,  M .  Since
M

E/(a) =  £ > ,(< * )$ , (5.15)
1 = 1

substituting from equations (5.12), (5.13) and (5.14), and applying simple summation 

rules, equation (5.15) can be expressed as

U(a) = U i +  - ~ a i  (U2 -  Ui) (5.16)
ai  — oi2

This represents a simple nodewise interpolation. These findings are also discussed by

Bouhoubeiny and Druault [108], who applied a similar technique to interpolate exper

imental data  in time. Their proof can be generalised to higher dimensions and other 

interpolation techniques, as discussed by Zimmermann and Gortz [104].

If this method is simply equivalent to nodewise interpolation, the question needs to be



Reduced Order Modelling 141

asked, are there any advantages to POD coefficient interpolation over nodewise inter

polation? A number of benefits were identified, which result from the reduced number 

of interpolation operations. It can be measured that, even when including an SVD of 

the snapshot matrix, POD coefficient interpolation is orders of magnitudes faster than  

nodewise interpolation. Fewer values requiring interpolation also means it becomes fea

sible to inspect the smoothness of these values with respect to parameter variation and 

to apply adaptive interpolation schemes [109]. These adaptive schemes may make it 

possible, with future investigation, to identify and capture discontinuities in non smooth 

parameter spaces.

Zimmermann and Gortz [104] compared interpolation techniques to a residual reduction 

technique and found tha t the interpolation method provides a better match to the FOM, 

when considering aerodynamic coefficients. However, the residual reduction method 

is better at capturing flow features in the solution field itself. Since the majority of 

optimisation applications will mainly be considering the aerodynamic coefficients, this 

method was deemed most suited to the problems considered here.

5 .4 .3  E x a m p le s

The performance of this technique was assessed by applying it to the steady turbulent 

compressible flow past an RAE2822 aerofoil. The Reynolds number remained constant 

at 6.5 x 106 and both a one and a two-dimensional parameter space were considered.

5.4.3.1 ID  Param eter space: A ngle o f A ttack

In the following examples the angle of attack, a , was considered the parameter of interest. 

A sample of snapshots were generated, between a  =  — 5 and a  = 5 degrees, using the 

2D version of the FLITE solver for viscous flow [82]. In all the meshes considered, layers 

of structured quadratic elements were generated at the aerofoil boundary to correctly 

capture the boundary layer.

Each solution had a lift coefficient converged to four orders of magnitude. Five sets of 

snapshots were considered, each containing snapshots at different sample spacings of a , 

these are shown in Table 5.1.

Each set of snapshots resulted in a ROM which could predict a flow field for a given value 

of a. To test the prediction capability, the FOM was used to generate solutions between 

5 and -5 degrees sampled every 0.2 degrees. The sum percentage error, compared to the 

FOM, of the density field at each sample point was then calculated. This represented a 

CPU cost, on an 1400 MHz AMD Opteron 240 processor, of around 40 hours using the
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No. of S napsho ts, N Values of a
3 -5, 0, 5
4 -5, -1.8, 1.4, 5
5 -5, -2.8, -0.4, 2, 5
6 -5, -3, -1, 1, 3, 5
11 -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5

T a b l e  5 .1 :  S n a p sh o t se ts  for an g le  o f  a tta ck  p a ram eter  sw eep

x 10'3

3 snapshots
4 snapshots
5 snapshots
6 snapshots
11 snapshots

3.5

c<DTJ
'o

C

<Da .
E
3(/)

0.5

± 4 *  * » 4  4 * f r 4 4 4 . >  a_3C4H
-5 -4 -2

Angle of attack (degrees)

FIGURE 5 .1 : P ercen ta g e  error o f  d e n s ity  field at var iou s an g les o f  a tta ck  a t M ach 0 .5

FO M  an d  5 seconds using  th e  11 snapsho t ROM . T h e  s tu d y  was rep ea ted , for d ifferent 

M ach num bers, to  gauge th e  effect of th e  ap p earan ce  of shocks in th e  snapsho t sets. In 

these exam ples, a  cubic  spline was used to  in te rp o la te  th e  P O D  coefficients.

Mach 0.5 F igu re  5.1 shows how th e  percen tage  erro r varied w ith  th e  angle of a tta c k  

for each sn ap sh o t se t. E ven for th e  3 sn ap sh o t set, all erro rs were below 4 x 10- 3 %. As 

th is  was a sum  of all erro rs over th e  en tire  field, th is  was a very  good resu lt. Looking a t 

th e  g rap h  in F igu re  5.1 in detail, th e  re su lts  betw een 3 an d  5 degrees s tan d  o u t as being 

h igher th a n  th e  o th e r  errors, a lth o u g h  they  were still accep tab ly  low.

T h e  resu lt a t 3.8 degrees for th e  11 sn ap sh o ts  set was very close to  a  know n so lu tion  

from  th e  sn ap sh o t se t, yet it rep resen ted  th e  m axim um  e rro r over th e  sam pled  angles.
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F i g u r e  5 .2 : P ercen ta g e  error o f  d en s ity  field at variou s a n g les  o f  a tta ck  a t M ach 0 .65

An e rro r in th e  den sity  m ay have im pac ted  th e  accuracy  of th e  lift and  d rag  calcu lations. 

A t a  =  3.8 th e  FO M  gave lift an d  d rag  coefficients of 0.71570 and  0.010063 respectively. 

P erfo rm ing  th e  sam e calcu la tions using th e  fields o b ta in ed  from  th e  11 snap sh o t ROM , 

lift an d  d rag  coefficients of 0.71362 and  0.010065 were found. T hese were still very close 

to  th e  FO M .

M ach  0.65 T h e  challenge in th is  exam ple was p red ic ting  th e  onset of weak shocks as 

the  angle of a tta c k  increased. No shock ap p eared  betw een —3 and  + 3  degrees. However, 

for larger angles, shocks began  to  ap p ear. D espite  th is, th e  p ercen tage  erro r rem ained  

below 0.01%  as show n in F igure  5.2.

T he  m ax im um  e rro r in the  11 sn ap sh o ts  ROM  occurred  a t  4.6 degrees, w hich corre

sponded  to  a lift coefficient of 0.94288 and d rag  coefficient of 0.017332. T h e  so lu tions 

are  p lo tte d  for th is  case in F igures 5.3(a) and  5.3(b). T h e  RO M  failed to  fully cap tu re  

th e  shock as seen in th e  FO M . However, w hen ca lcu la ting  th e  lift and  d rag  coefficients,
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(a) FOM
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1 0.400 
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(b) 11 snapshot ROM  

FIGURE 5 .3 : D en s ity  field a t a  =  4 .6  d egrees, M ach  0 .65

using  th e  so lu tion  o b ta in ed  w ith  th e  R O M , th e  values were still close to  the  FO M  values 

of 0.94137 and  0.017296 respectively.

E ven th o u g h  th ese  re su lts  still showed close agreem ent betw een th e  ROM  pred ic tions 

and  th e  FO M , it d id  suggest a  possible weakness in P O D  based  in te rp o la tio n  m eth o d s 

to  p red ic t changes th a t  resu lt in a significant change in flow regim e. For exam ple, it is 

unlikely th a t  th is  techn ique  would be able to  p red ic t th e  ap p earan ce  of shocks in th e  

so lu tion  field.

M ach  1.0 F igu re  5.4 shows th e  e rro r p lo ts co n stru c ted  th e  sam e way as in previous 

exam ples w ith  free s team  M ach nu m b er of 1.0. Even w hen c o n stru c tin g  a  RO M  w ith
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FIG U R E 5.4: Percentage error of density field a t various angles of attack at Mach 1.0 

only 3 snap sh o ts , all e rro rs  were less th a n  7 x 10- 3 %

T h e  h ighest e rro r for th e  11 snapsho t set was a t 4.6 degrees. A t th is  angle, th e  lift, and  

d rag  coefficients using th e  FO M  were 0.40630 an d  0.13953 respectively. F igures 5.5(a) 

and  5.5(b) show th e  den sity  fields from  th e  FO M  an d  RO M  respectively. T h e  ROM  

failed to  correc tly  c a p tu re  th e  shock, as found in th e  prev ious exam ple. D espite th is , th e  

lift and  d rag  coefficients of 0.40615 and  0.13958 respectively, ca lcu la ted  using th e  RO M , 

were still very close to  th e  FO M  values.

M ach  1.25 T h e  so lu tions in th is  exam ple were all in th e  supersonic  flow region and  

co n ta in  bow shocks. F igu re  5.6 shows th a t  th e  erro r in rep roducing  these so lu tions using 

th e  RO M  was less th a n  0.01%  in all cases. T h is was no t as good as th e  subsonic cases, 

b u t was still a  good resu lt.

T h e  w orst so lu tion  in  th e  11 sn ap sh o t se t occurred  a t a  =  4.6, as shown in F igu re  5.7(a) 

and  5 .7(b). I t  can be seen th a t  the  bow shock was no t correctly  rep resen ted  in th e  ROM . 

T h is  had  little  effect on th e  lift and  d rag  ca lcu lations. T h e  lift coefficient was 0.37004 

using th e  FO M  an d  0.36994 using th e  RO M , while th e  d rag  coefficient was 0.12265 and  

0.12266 using  th e  FO M  an d  ROM  respectively.
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(b) 11 snapshot ROM

FIG U R E 5.5: Density field at 4.6 degrees, Mach 1.0

S e t R a n g e  o f  M x R a n g e  o f  a N o .  o f  S n a p s h o t s

A 0.1 to  0.3 -1 .7 9  to  1.79 12
B 0.1 to  0.4 -2 .7 9  to  2.79 24
C 0.1 to  0.5 -3 .7 9  to  3.79 40
D 0.1 to  0.6 -4 .7 9  to  4.79 60
E 0.1 to  0.7 -5 .7 9  to  5.79 84

T a b l e  5.2: Snapshot sets for angle of attack and Mach number parameter sweep

5.4.3.2 2D P a ra m e te r  space: A ngle  o f A tta c k  an d  M ach  n u m b er

To gauge th e  ab ility  of P O D  to  p red ic t th e  flow field w hen two p a ram ete rs  are changed, 

b o th  th e  M ach nu m b er and  angle of a tta c k  were varied. A to ta l of 84 sn ap sh o ts  were 

calcu la ted  for th e  in itia l exam ple using th e  FO M , a t  angles of a tta ck , a ,  rang ing  from  

—5.79 to  + 5 .79  degrees in 1 degree steps, and  a t  a  free-stream  M ach num bers, A/0OJ 

ranging  from  0.1 to  0.7 in steps of 0.1.
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FIG URE 5.6: Percentage error of density field at various angles of attack at Mach 1.25

T h e  sn ap sh o ts  were g ro u p ed  in to  5 sets, as shown in Table 5.2. to  de te rm ine  th e  effect 

of shocks ap p earin g  in th e  sn ap sh o t set. No shocks were p resen t in  sets A, B and  C, 

weak shocks s ta r t  to  a p p e a r  in se t D and  s tro n g  shocks can be found in se t E. E ach  

set was used to  ca lcu la te  a  set of P O D  inodes and these were em ployed to  reco n stru c t 

density  fields a t M 00 =  0.2 to  — 0.3 in steps of 0.01, all w ith  ot =  0. U nlike th e  ID  

p a ra m e te r space exam ple, th e  different sets d id no t refine th e  p a ram e te r space, b u t th ey  

expanded  it. Essentially , th is  was a s tu d y  to  gauge th e  effect of snapsho t set q u a lity  on 

th e  so lu tion  p roduced . In  these  exam ples, b icubic in te rp o la tio n  was used to  in te rp o la te  

th e  coefficients.

F igure  5.8 com pares th e  FO M  to  so lu tions reco n stru c ted  using snap sh o t se ts  A and  E. 

In  th is  exam ple, th e  effect on th e  n u m b er of P O D  m odes re ta in ed  in a so lu tion  was also 

investiga ted . F igu re  5.9 show s how th e  erro r decreased, as the  num ber of P O D  m odes 

used to  reco n stru c t a  so lu tio n  increased for sn ap sh o t set C. T h is tre n d  was th e  sam e for
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FIG URE 5.7: Density field at 4.6 degrees, Mach 1.25

all sn ap sh o t sets. T he g rap h  also shows how th e  erro r converged. In  th is study , only 

aro u n d  half th e  to ta l  n um ber of th e  inodes were needed to  reach  th e  m in im um  erro r.

F igure  5.10(a) show s th a t ,  as th e  ROM  moves away from  so lu tions in th e  sn ap sh o t set, 

its  e rro r increased. T his effect was m ore significant as th e  qu a lity  of th e  sn ap sh o t set 

decreases. T h e  rela tive  q ua lity  of each sn ap sh o t set is shown in F igure  5 .10(b), by tak in g  

the  m ean  percen tag e  erro r over all so lu tions reco n stru c ted  by each set. I t i llu s tra te d  two 

factors th a t  ough t to  be considered w hen selecting snapsho ts: th e  first, in tu itively , was 

the  n um ber of sn ap sh o ts  and  the  second was th e  in fo rm ation  con ta ined  in th e  sn ap sh o ts . 

T he  ab ility  of th e  P O D  reco n stru c tio n  to  app ro x im ate  th e  FO M  relies en tire ly  on th e  

in fo rm ation  con ta in ed  in th e  set of snapsh o ts  used to  genera te  th e  P O D  m odes [88]. As
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(a) Full order model

(b) Snapshot set A

(c) Snapshot set E

FIGURE 5 .8 : C o m p a rin g  full order (a) and  reco n stru c ted  d en s ity  fields (b ) 12 sn a p sh o ts  
and (c) 24 sn a p sh o ts , for M 0c =  0 .25 , a  =  0.
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F i g u r e  5 .9 :  Percentage error plotted against number of POD Modes used to construct 
the solution, for M ^  =  0 .2 5 , a  =  0.

th e  nu m b er of sn ap sh o ts  increased the  error decreases, up to  the  po in t w here shocks 

s ta r t  ap p earin g  in th e  sn ap sh o t set. T he  m ore shocks in th e  sn ap sh o t set, th e  bigger 

effect th ey  had  on th e  so lu tion  quality.

R esu lts p resen ted  here  showed th a t  th is  m ethod  was able to  successfully rep roduce  solu

tions w ith  erro rs of th e  o rder of 10~4%. T his was an  excellent resu lt, w hen considering  

th e  co rrespond ing  red u c tio n  in C PU  tim e th a t  was achieved, from  around  30 m in u tes  

on an  1400M hz A M D  O p tero n  240 to  less th a n  a few seconds on a 2.4G H z In te l C ore 2 

Duo.

5.4.4 D iscussion

T h e  ab ility  of th e  P O D  coefficient in te rp o la tio n  m ethodology  to  deal w ith  p a ram e tric  

v a ria tio n  in s tead y  flow was investigated . It was found th a t  th is m e thod , in  som e cases, 

could reduce th e  co m p u ta tio n a l cost of p a ram etric  s tud ies significantly, w ith  losses of 

accu racy  m uch less th a n  1%. I t was not able to  w hen th e  p a ram etric  varia tion  caused  

significant change in th e  flow charac teristics, for exam ple th e  onset of shocks in tran so n ic  

flow.
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F I G U R E  5.10: Investigating the changing error in the 213 param eter space example
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o: o
(a) Snapshot 1 (b) Snapshot 2

F i g u r e  5.11: Two-dimensional Gaussian peaks at two different centres

✓ o
(a) ROM (b) FOM

F i g u r e  5.12: Comparing the FOM and ROM in the Gaussian peak example

T he  root of th is  p rob lem  is th a t  th e  m eth o d  is equivalent to  independen t in te rp o la tio n  of 

th e  nodal values. In te rp o la tio n  in th is  way will no t move features, like shocks, b u t sim ply 

diffuse them . T h is concep t can be easily show n th ro u g h  a sim ple tw o-dim ensional G aus

sian  function . C onsider th e  two G aussian  peaks p lo tted  in F igures 5.11(a) and  5.11(b). 

B o th  fea tu res have th e  sam e rad iu s  and  m agn itu d e  b u t have different locations. U sing 

th e  tw o peaks as sn ap sh o ts  to  genera te  PO D  m odes an d  in te rp o la tin g  th e  resu lting  P O D  

coefficients resu lts  th e  field p lo tted  in F igure  5 .12(a). If th is  was a m oving featu re , th en  

th e  ex p ec ted  resu lt m ight be th e  field p lo tte d  in F igure  5.12(b) which could rep resen t 

any  scaler variab le  of in terest. Since th e  P O D  in te rp o la tio n  techniques see th e  m odel 

as a  b lack-box, an d  only  ac ts  on th e  d a ta , it will alw ays resu lt in th e  surface show n in 

F igure  5 .12(a). In  s itu a tio n s  w here th e  flow regim e changes, or problem s w ith  m oving 

shocks or fea tu res, th is  could be a  significant problem .
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5.5 R educed  Order M odelling o f U nsteady Fluid P roblem s

In this section, problems where a  contains time are considered. Galerkin projection is 

the most frequently used method for generating solutions for an unsteady problem using 

POD. It was decided th a t Galerkin projection was not suited to the examples considered 

in this thesis. Since Galerkin projection is so popular, justification was needed to explain 

why it was not being considered for application here.

In Galerkin projection, the exact time dependent governing equations are directly pro

jected over the POD basis [89]. A ROM is generated which predicts solutions at varying 

time, t, and at a single set of flow control parameters i.e. a  = t. Suppose the time 

dependent flow field state vector, u(x , t), is represented by a linear combination of the 

POD modes, <3>j, as
M

u(x, t) = ^ 2  Ti(t)$i(x.) (5.17)
i=1

where Ti(t) denotes the time dependent amplitude for the POD mode It is assumed 

that the governing equation for the system is defined, in general form, as

=  A lU  +  A 2 ( u , u )  +  A 3 ( u , u , u )  (5 .1 8 )

where Ai is a linear operator, A2 is a quadratic operator and A3 is a cubic operator. 

Projecting this equation onto the POD basis, using an inner product, results in the 

equation

( ^ ’ = ÂlU’ ^  +  (A2(U) U)’ ^  +  (As (u ’u ’u )’ (5-19) 

and substituting the expansion of equation (5.17) into this equation gives

I l ,m l ,m,n
(5 .2 0 )

This is the ROM for equation (5.18) using Galerkin projection onto a POD basis [90].

Either the discrete representation of the FOM equations, or the continuous FOM equa

tions, can be used in the projection. Using the continuous equations has the advantage 

that the  ROM does not need to be made for a specific FOM. This means tha t any solu

tion algorithm can be used to generate the snapshots [90]. It must be remembered that 

the discrete representation might contain unphysical stabilisation terms, which would 

also need to be accounted for in the governing equations which the POD modes are 

projected upon [89].
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In simulations involving several different physical variables, the choice of which inner 

product to use is not obvious [110]. Standard inner product definitions may not yield 

physically meaningful results when acting on solution vectors. Barone et al [90] and 

Rowley et al [110] both detail how the numerical stability of the Galerkin projection 

based ROM depends upon the proper selection of inner product definition. They pro

vide detailed formulations of how to define the inner product for any set of governing 

equations. This decreases the generality of the Galerkin projection method, since a new 

set of equations will have a new condition for the inner product. However, it is noted 

that, if coded intelligently, only subroutine for calculating the inner product would need 

changing, as this is the only part of the projection which is not general [110].

The solution of equation (5.20) requires the evaluation of integrals over the entire domain 

for each mode. This could potentially be computationally expensive [89]. To reduce 

this cost, the series of POD modes 4>j, making up the POD basis 3>, is often truncated. 

Suppose 3>m represents a POD basis tha t has been truncated to contain M  modes. This 

truncation can significantly reduce the computational cost, but may lead to instabilities 

in the ROM. An example in which this is shown to be particularly im portant is ocean 

flow models. Here, with high characteristic Reynolds numbers, energy transfer between 

large and small scale flow structures is very important. If the value of M  is selected 

to be too small, this transfer is inhibited and a projection type ROM based on 4>M is 

unstable [91].

The appropriate selection of a value for M , as described by Hung et al [97], can be 

assisted by interpreting the eigenvalues Aj of equation (5.6) as representing the relative 

energy contained in each POD mode, $*. These eigenvalues give the relative importance 

of each POD mode. As previously discussed in the field of ROM this relative importance 

is usually termed the energy of each mode, but may not be a physically meaningful 

measure of energy. The total energy is captured by the non-truncated basis and a 

suitable measure of this is the sum of the eigenvalues YhiLi ^ i • An im portant step during 

POD is arranging the eigenvalues and eigenvectors in ascending order, such that Ai is 

the largest eigenvalue and Am  is the lowest. This allows the calculation of the relative 

energy captured by the truncated basis function §>M as l The value of M  is then 

selected such that
M  m

(5.21)
i = 1 i = 1

The percentage of energy captured by 3>M can be easily calculated as x

100%. The POD method has the property of rapid convergence of the energy associated 

with each POD mode, which results in a small value of M  for most simulations [100].
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Despite the rapid convergence of energy, truncating the basis function may still be a risky 

process. If each POD mode is considered a dimension, in the space which represents the 

solutions of a given set of equations, truncating removes one of these dimensions. ROMs 

based on Galerkin projection are frequently unstable, due to the truncation of the POD 

basis which neglects high order modes [89].

Further disadvantages of Galerkin projection are detailed by Lucia et al [111]. It is 

observed tha t the boundary conditions are not explicitly accounted for, so the basis 

function used for the projection needs to be formed to meet them. Non-linearities, 

which couple unknown variables, cause the number of terms in a Galerkin projection to 

increase rapidly. These terms can contain of the order of M 3 components, making them 

difficult to evaluate [110, 111].

In addition to these problems, it is also well understood that a  particular set of snapshots 

will result in POD modes which are only appropriate in a  limited param eter space. 

For example, Lieu et al [112] applied Galerkin projection to  a complete F-16 aircraft 

model, which depended only on the angle of attack and free stream  Mach number, M 0c. 

Snapshots were taken from an unsteady finite element FOM by inducing vibrations in 

the system at a particular M 0c. The result is a POD basis which only applies to a ROM 

for the flow at th a t value. This posed a serious obstacle when considering applying 

these methods to optimisation problems, in which a param eter space is to be explored. 

An attem pt to overcome this difficulty is made [112] by performing a subspace angle 

interpolation of the POD modes, in order to retain orthogonality between each mode, 

and then projecting these onto the governing equations.

To circumvent this problem, and others introduced by projection methods, it was worth 

considering POD as a basis for interpolation, as detailed for the steady case in sec

tion 5.4.2. However, it has already been shown that POD interpolation techniques turn 

out to be equivalent to a simple nodewise interpolation. In this case, was it worthwhile 

pursuing them further? To answer this question, information on how direct interpolation 

of the solution field compared to projection based ROM techniques was required. It was 

difficult to find comparisons of this nature but, in an early PO D /RO M  paper, Pettit 

and Beran [113] speculated that using a ROM should be better than interpolation, but 

stated th a t this needed to be tested. Degroote et al [114] provide a comparison between 

Kriging interpolation of the solution field, and ROMs projected onto basis functions in

terpolated with respect to the param eter space. They found th a t direct interpolation of 

the solution field gives errors of similar order to those achieved by the projection ROMs.

Recently, Wang et al [107] also compared POD interpolation and POD projection tech

niques. In one of their examples, with a four dimensional param eter space, they found 

tha t the interpolation technique produces errors which are orders of magnitude lower
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than those produced with the projection technique. However, in another example, using 

a six-dimensional param eter space, they find the opposite result to be true. Based upon 

these results, they argue th a t POD interpolation was ineffective. However, it should be 

noted th a t only linear interpolation is used in their examples.

When considering the stability problems [111, 113, 115] and boundary condition viola

tions [111] which are reported when applying POD projection methods to simple two 

dimensional flow problems, interpolation appeared an attractive alternative. The suc

cess of a direct interpolation technique does however rely on a smooth variation of the 

unknowns with respect to the parameters. In applications, such as electromagnetic scat

tering [116], where a small variation in parameters can result a sudden change in the 

unknowns, at a fixed point in space, the sampling resolution required to capture para

metric variation may be so high as to make direct interpolation fruitless. In these cases, 

POD projection techniques may perform better.

Considering the applications of interest in this thesis it made sense to extend the POD 

interpolation technique to unsteady problems. An unsteady POD interpolation tech

nique was developed [2] as part of this thesis and is detailed in the remainder of this 

section.

5 .5 .1  T h e  U n s te a d y  F u ll O rder M o d e l

In previous examples, the steady 2D FLITE solver was used as the FOM. In this section, 

the 3D unsteady inviscid compressible flow past a moving boundary was considered. The 

solver used is a 3D version of FLITE, using an arbitrary Lagrangian-Eulerian (ALE) 

formulation to handle the moving boundaries. The spatial domain is discretised using 

an unstructured tetrahedral mesh and the Euler equations are approximated using a 

cell-vertex finite volume method in space. Stabilisation and discontinuity capturing is 

achieved by the explicit addition of artificial viscosity. A fully implicit three-level second- 

order method is adopted for the time discretisation. At each time step, the implicit 

equation system is solved by explicit iteration, with multigrid acceleration [82, 117, 118].

For the examples included in this section, the explicit solution process continued within 

each time step until the residual had been reduced by five orders of magnitude.

5 .5 .2  P O D  a n d  C h a n g in g  M esh es

In the examples considered in this section, and for many other examples of industrial 

interest [86], meshes may change as the parameters defining the problem of interest 

change. This could be between time steps, in an unsteady problem, or between different
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designs, for shape optimisation techniques. This introduces a difficulty when construct

ing the POD basis function using snapshots, since the number of degrees of freedom in 

the model could be different on different meshes. Furthermore, the POD construction 

acts on the computational space only and includes no information on the spatial location 

of each node.

Anttonen et al [119] attem pted to apply POD to a deforming grid used to model unsteady 

flow past an oscillating cylinder. The grid was deformed in a manner tha t retained 

connectivity between nodes, but the position of each node in physical space changed 

with time. Applying the same procedure in both cases, they find a loss of accuracy 

when comparing POD on a deforming mesh to POD on a constant mesh. To alleviate 

this problem, a series of POD basis functions were constructed for several meshes, with 

the model selecting the most appropriate POD basis from the mesh nearest to the current 

mesh.

An alternative solution has been developed by Fang et al [91, 120], who employed a 

POD inverse model for an adaptive mesh ocean model. A fixed grid was constructed to 

interpolate solutions to and from the adaptive mesh so that, when the snapshots were 

interpolated onto this fixed mesh, the normal POD procedure could be followed. The 

fixed reference mesh was constructed to be as fine as the finest adapted mesh used in the 

simulation. Their procedure for interpolation is as follows: for each node in the fixed 

mesh, the element of the adapted mesh in which the node lies is identified; using least 

squares, fit a local high-order polynomial to the patch of nodes around the element; use 

this polynomial to calculate the interpolated values. Excellent results are achieved using 

this method and errors in the velocity are reduced by half by increasing the polynomial 

order from linear to quadratic.

The Delaunay graph concept [84], discussed in Section 4.2.2, was used to generate moved 

meshes from an original mesh in this work, which resulted in the same nodal connectiv

ities on each mesh. Sufficient accuracy was obtained, when applying POD, without the 

need for more sophisticated techniques.

5 .5 .3  U n s te a d y  P O D  In ter p o la tio n

The simplest way to extend the steady POD interpolation method to unsteady problems 

would be to include t in a  as an additional dimension to interpolate over. This was not 

the approach adopted here for the following reasons:

•  For most optimisation applications, there is no interest in interpolating in time, 

only in the rest of the parameter space
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• It was identified during the steady interpolation study tha t this technique is unable 

to correctly interpolate moving features. Since, in the vast majority of cases, 

features will move with respect to time it is not suitable to interpolate along this 

dimension

• The approach adopted resulted in significantly less interpolation operations, and, 

hence, increased CPU cost savings, than simply adding t to the list of parameters.

Suppose that, for a particular problem, M  snapshots are computed, using the FOM for 

M  different values, a  1, • • • , olm, of the flow param eter set on a mesh with D  nodes. If 

each snapshot involves N  time steps, the output from the FOM is a total of iV x M  

solution vectors, p n(otfc), where k =  1, • • • , M  and n = 1, • • • , N.  These solution vectors 

can be used to form the columns of a snapshot m atrix

P  =

p f ( a i )  P i ( a 2) P i  ( « m )

Pb(a i )  P£>(a i)  ••• Pb(a i )  Pb(a 2) Pd (q m )

(5 .2 2 )

where p^(ak)  denotes component I  of the vector p n (afc). This matrix can be factorised, 

using SVD, as

P  = $ £ V *  (5.23)

where the columns of 3>, denoted by 3>j for j  =  1, • • • , N  x M , are the left singular 

vectors of P  and these will be used as the POD modes. In addition, U is the diagonal 

m atrix containing the singular values of P ,  which indicate the relative importance of 

each mode, and the columns of V* are the right singular vectors of P .  The vectors <£j 

are mutually orthogonal and can be regarded as a basis for an N  x M  dimensional space 

in which each element represents a different solution vector for the fluid problem under 

consideration. It follows tha t each column of P  can be reconstructed, using the POD 

modes, as
N x M

p n ( a k )  =  Y ,  ( 5 .2 4 )

3=1

For each set of param eter coordinates, the vector T n (ock) of coefficients in this recon

struction can be viewed as a path through the coordinate system 3>. The goal was to

predict a path  tha t the system takes through for a set of parameter values not in

cluded in the original sampling. This was achieved by considering each member of $  in
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turn  and creating new TV x M  snapshot matrices, Sj ,  for 1 < j  <  TV x M , where

T H a i ) T H a M)

T / V m )

(5 .2 5 )

Each column in S j  consists of the values of the coefficients, at different times, for a 

given POD mode, <f>j, for a given snapshot. A SVD of Sj  produces the matrix vF-7 of left 

singular vectors, whose columns where i = 1, • • , M , will be used as POD modes. 

Again, each m atrix ty3 can be viewed as a coordinate system, where a point represents 

the path taken by a given set of parameters along a given axis of 3>. These paths can 

be reconstructed using
M

T j ( a k ) = £ Q { ( a k) $ i (5 .2 6 )
i = 1

where T j  is the vector whose n th  component is T ” . Values of Q3(ctk) can be readily 

calculated, when the POD modes axe all generated. When this process was completed, 

the solution vector p n(a ) , at a new set of param eter coordinates a ,  was determined. 

Interpolation was required to find the values of Q3(ol) and these interpolated values may 

be used to obtain Tj(cx),  as
M

=  (5-27)
2 = 1

The ROM approximation to the solution vector follows as

N x M  

p"(a) =  £
3 =  1

(5 .2 8 )

This process resulted in fewer interpolation operations than nodewise interpolation. The 

number of interpolation operations undertaken to generate a single solution without 

using POD would be D  x TV. Using the unsteady POD interpolation scheme developed 

here, the number of interpolation operations was M  x TV. The use of M  < D  will result 

in a computational saving using POD based interpolation. This result is independent of 

the interpolation method implemented.

It may first seem th a t this condition will almost always be fulfilled since, in industrial 

applications, D  is very large. However, since the interpolation is applied to each node 

independently, the nodes used to generate the POD modes need only be in the area 

of interest in the design or optimisation process. For example, the nodes on boundary 

surfaces may be the only nodes of interest. In these cases, D  may be smaller, which may
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lead to nodewise interpolation being more efficient. It also depends on how many snap

shots are required to satisfactorily sample the parameter space, which is also problem 

dependent.

It is also worth considering how many interpolation operations would be required if the 

steady POD interpolation technique was extended by simply adding time as an extra 

interpolation dimension. In tha t case, each timestep would need to be interpolated 

separately leading to N  x M  x N  operations, which is N  times more than required using 

the technique developed here.

5.5.3.1 Initial V alidation

The examples which were considered initially involve the periodic oscillation of a wing, 

with the FOM solver used to simulate ten complete oscillation cycles. The results of the 

final cycle were used to form a snapshot for one prescribed set of the flow parameters. 

Different values of the parameter sets lead to different snapshots. These snapshots were 

used to create a ROM which could be employed to efficiently produce the flow solution 

for different param eter values. For illustration, it was only the pressure values of the 

final cycle tha t were used to form the snapshots.

In all examples a motion was initially applied to the tip of the wing. The deformation 

at the tip was then interpolated along the wing, such that there was zero deformation 

at the root, and applied to each boundary node. Pitch oscillation refers to a rotation of 

the tip, measured in degrees, and heave oscillation refers to a vertical translation of the 

tip, measured in the dimensionless coordinate system employed.

Example 1 is included to  demonstrate the validity of the approach that has been de

scribed. It involved inviscid flow over an oscillating ONERA M6 wing at a free stream 

Mach number of 0.2. In the dimensionless coordinates employed here, the wing chord 

was 10 units and the wing span was 14 units. The wing tip followed a prescribed si

nusoidal pitch oscillation, with a maximum amplitude of ±3 degrees, and the root of 

the wing was held fixed. The amplitude of the pitch oscillation varied linearly between 

the fixed root and the tip. The only flow parameter tha t was varied was the reduced 

frequency, / ,  of the oscillation.

An initial mesh with 44 573 nodes was generated and, to allow for the complete movement 

of the wing, a further 31 meshes were obtained from this mesh by mesh movement. The 

simulations were performed using 32 time steps per cycle, with each mesh representing 

the geometrical configuration at one time level. W ith this approach, oscillations of 

different reduced frequencies could be simulated by simply altering the size of the physical 

time interval between successive meshes.
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Identifier Reduced Frequency Time Step Size

/ I 0.1563 0.2

/2 7.813 x 10“ 2 0.4

/3 5.208 x 10" 2 0.6

/4 3.906 x 10" 2 0.8

/5 3.125 x 10“ 2 1.0

T a b l e  5 .3 : Reduced Frequencies and time step sizes used in Example 1
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F ig u r e  5.13: The lift coefficient as a function of pitch amplitude for each snapshot em
ployed in Example 1. In this graph the units of amplitude are dimensionless, normalised

by the maximum pitch amplitude

Five FOM simulations were performed, with the reduced frequency values employed, 

designated / I  to /5 , and the corresponding time step sizes, shown in Table 5.3. To illus

tra te  the effectiveness of the proposed process, the solutions obtained with the reduced 

frequencies / l ,  /2 , / 4  and /5  were used to create snapshots and the ROM was utilised 

to predict the solution at the reduced frequency /3 . The lift history for each of these 

snapshots is shown in Figure 5.13.

The snapshot pressure fields were used to create the snapshot m atrix P  of equation (5.22) 

and the POD modes, where j  =  1, • • • , 32 x 4, were generated from this matrix. The 

first four modes on the initial mesh, obtained in this fashion, are plotted on the upper 

surface of the wing in Figure 5.14.
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FIG U R E 5.14: The first four modes of the pressure coefficient on the upper surface
of the wing of Example 1

A set of coefficients w as ca lcu la ted , for each m ode for each sn ap sh o t, and  F igu re  5.15 

shows th e  v a ria tio n  in tim e  of th e  coefficient of th e  first m ode, <F|, for each sn ap sh o t.

T h e  tim e v a ria tio n  of th e  first sp a tia l m odes were used to  g en era te  th e  snap sh o t m a trix

S \ ,  as show n in E q u a tio n  (5.25). T h e  P O D  m odes '3>1, w here i =  1 ,2 , 3 ,4  are o b ta in ed  

by app ly ing  SVD to  th is  m atrix . T hese tem p o ra l m odes are  p lo tted  in F igure  5.16.

A coefficient was ca lcu la ted  for each of these m odes, such th a t  a linear com bination  of 

th e  m odes reco n stru c ts  one of th e  snapsh o ts  in F igure 5.15, as show n in eq u a tio n  (5.26). 

T hese coefficients a re  a function  of th e  flow p a ram ete r, w hich in th is  case was th e  re

duced frequency of th e  oscillation. O ne d im ensional linear, cubic spline and  H erm ite  

in te rp o la tio n  were used to  dete rm in e  th e  values of th e  coefficients in th e  m odel ap p ro 

p ria te  for th e  red u ced  frequency /3 .  T h is  was accom plished using th e  M A TLA B  [17]
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F i g u r e  5 .1 6 :  T em p ora l m o d es  \Er] ,  for i =  1 ,2 ,3 ,4 ,  for E x a m p le  1

function  i n t e r p l .  T he  resu lting  R O M s were used to  p red ic t th e  lift po lar for th e  re

duced frequency / 3  and  th e  p red ic ted  lift po lars are  com pared  to  th a t  o b ta in ed  from  

th e  FO M  so lu tion  for th is reduced  frequency in F igure  5.17.

T h e  pressure  coefficients on th e  u p p er surface of th e  w ing, a t th e  15th tim e step , p re

d ic ted  by these  R O M s are com pared  to  th e  d is tr ib u tio n  ob ta in ed  from  the  FO M  a t th is 

tim e in F igu re  5.18.

T h e  roo t m ean  square  e rro r in th e  pressure , E r p, and  in th e  lift coefficient, E r c e were 

de te rm in ed  and  expressed  as a percen tage  of th e  range of p  and  C (  respectively. T he 

resu lts  enab led  a  q u a n tita tiv e  com parison  to  be m ade betw een the  perfo rm ance of th e  

different m ethods. T h e  use of piecewise cubic H erm ite  in te rp o la tio n  produced  th e  lowest 

values of E r p =  0.2242%  and  E r c e =  1.5505%.

All ROM  ca lcu la tio n s in th is  ch ap te r were perfo rm ed  on a s ta n d a rd  desk top  m achine, 

w ith  an  In tel C ore i5-2500 ru n n in g  a t  3.30G H z, while th e  FO M  calcu la tions used a 

c luster of 4 1400 M hz AM D O p te ro n  240 processors ru n  in parallel. T he  typ ical C PU  

tim e for a single FO M  sim ula tion  was 13 500 s. O n average, the  to ta l C PU  tim e  used to  

com plete  all th e  task s  in th e  ROM  for th is  exam ple was 7 s, w hich included genera ting  the
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F ig u r e  5 .1 7 :  Comparison between the lift obtained using the ROMs constructed for 
Example 1 with th a t obtained from the FOM

m odes and  ca lcu la ting  the  coefficients. Subsequent p red ic tions of th e  so lu tion  at d ifferent 

values of th e  frequency had  negligible C P U  cost, since th e  m odes an d  coefficients are 

sto red . To p u t th is  in to  perspective, p lo ttin g  th e  th ree-d im ensional so lu tions involved a 

larger C P U  cost th a n  genera ting  th e  so lu tions using th e  ROM  on th e  desk top  m achine.

5.5.3.2 C o m p u ta tio n a l E ffectiveness o f th e  R O M

T h e RO M  was developed w ith  th e  ob jective of reducing  th e  cost associated  w ith  using 

a co m p u ta tio n a l s im ula tion  m ethod  as p a r t  of a  design or o p tim isa tion  process. T h e  

resu lts  p resen ted  for E xam ple 1 illu s tra te  th e  p o ten tia l of th e  technique, b u t it is w orth  

considering  how th is techn ique m ight be em ployed w ith in  th e  design process and  how 

th e  resu ltin g  C P U  costs m ight be e stim ated .

Since th e  techn ique was based upon  in te rp o la tio n , it would be naive to  th ink  th a t  sa tis 

fac to ry  accuracy  could be achieved w ith  th e  sam e num ber of sn ap sh o ts  for every exam ple. 

T he  accuracy  th a t  can  be achieved will depend  u p o n  th e  num ber of snapsh o ts  an d  also 

upo n  th e  location  of th e  snapsh o ts  in p a ram e te r  space. T h is  m eans th a t  va lida tion  will

1------------1------------1------------1------------1-------------1------------1------------r

->— FO M
L in ear in te rp o la tio n  
C u b ic  sp lin e
P ie c e w is e  c u b ic  H e rm ite  in te rp o la tio n

CG

- 1  - 0 8  ^ 0 6  -0.4 -0.2 0  0 2  0A ~ 0 6  08~~ 1
A m plitude
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FIGURE 5.18: The pressure coefficients on t he upper surface of the wing, at a prescribed 
time, computed for Example 1 with the FOM and predicted by the different ROMs

Cubic spline Piecewise cubic Hermite

be necessary  for each new exam ple. F o rtuna te ly , however, th is  is ac tu a lly  q u ite  a  sim ple 

process.

As p a r t  of th e  norm al procedure, th e  p a ra m e te r  space of in te rest will be sam pled  using 

th e  FO M  and  these  sam ples are  th en  availab le for use as snapsh o ts  for p roducing  a R O M . 

A series of R O M s can be c rea ted  by sim ply  o m ittin g  each sn apsho t, in tu rn , d u rin g  th e  

ROM  gen era tio n  process and  m easuring  th e  errors th a t  are o b ta in ed  w hen using th e  

ROM  to  p red ic t th e  o m itted  solu tion . If th e  erro r ca lcu la ted  in th is  m an n er is to o  large, 

m ore FO M  so lu tions can  be ca lcu la ted  an d  m ore snapsh o ts  genera ted . T hese ad d itio n a l 

FO M  so lu tions can  be ta rg e te d  tow ards those  areas of th e  p a ram e te r  space in w hich th e  

errors were orig inally  found to  be th e  largest. O f course, th is  still provides no th in g  m ore 

th a n  an  e s tim a te  of th e  erro r and  th u s  th e  ROM  will need to  be continuously  refined 

du ring  th e  design  or o p tim isa tio n  process.

To investiga te  th e  C PU  costs involved in va lida ting  th e  RO M  in th is  way, suppose  th a t  

th e  num ber of so lu tions requ ired  in a p a rtic u la r  p a ram e te r  space, for a p a rtic u la r  design

Linear
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cycle, is M t  and suppose that the cost of a single FOM evaluation is C f o m , expressed 

as seconds of wall clock time. It follows tha t the total CPU cost that would be incurred 

by using only the FOM in the design cycle would be

CrotaiFOM = M t  x  C f o m  (5.29)

The total CPU cost when the ROM in used to perform the same task can be expressed 

as

CrotaiROM = M t  x  C r o m  + C y ai + CRuiid +  M  x C f o m  (5.30)

where CBuild is the cost of building the ROM, but not including evaluation of the snap

shots, C v a i  is the cost of validating the ROM, C r o m  is the cost of evaluating a solution 

of the ROM and M  x C f o m  represents the cost of calculating the M  snapshots. The cost 

of validating the ROM, using the technique that has been described, can be expressed 

as

Cvai = M  X (Csuild +  C r o m )  (5.31)

It follows tha t the requirement for the process to be worthwhile, in terms of CPU saving, 

is that

C r o ta iF O M  > C r o ta iR O M  (5.32)

and, using the above expressions, this requires that

^ M  x  (C B u i ld  +  C r o m  +  C f o m ) +  C s u i l d  / c  QOxM t  > ----------------- ^ ~ -----------------------  (5.33)
^FOM ~  C/ROM

Since it is reasonable to assume that

CBuild <C M  X {CBuild +  Cr o m  +  Cr OM) (5.34)

the requirement of equation (5.33) may be expressed in the form

M r  — M  
M

where

> 0 - 1  (5.35)

a  C f o m  +  C s u i i d  +  C r o m
P  =  r -r --------------------------- (5 -3 6 )

O F O M  ~  '- 'R O M

The minimum number of new solutions which would need to be calculated using the

ROM, so as to result in a CPU saving, can then be determined, in terms of /3, as

(M t  -  M )  : = M(P -  1) (5.37)

W hen C r o m  + C B u ild  is much smaller than C f o m  , the value of j3 will be very close to 

unity. In this case, it would always be worth using this technique provided a ROM of
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satisfactory accuracy can be achieved for M  < M t - In the remainder of this chapter, 

the value of (Mt  — M ) min will be used as an indication of the CPU saving tha t can be 

achieved by using the ROM.

5.5 .3 .3  In terpolation  U sing R adial B asis Functions

As the dimension of the param eter space increased, the process of interpolation for the 

required coefficients became considerably more complicated. In this case, an attractive 

alternative was to employ interpolation using radial basis functions (RBF). To illustrate 

this process, suppose th a t the entries in the L  x 1 vector /  are the values, f t ,£  = 1, • • • , T, 

of an unknown function F ( x ) at a set of data  points, x # , t  =  1, • • • , L  in €  R d. The RBF 

approximation to F  is the function

L

F r b f ( x )  =  ^ 2  w e ® { \ x  ~  x e \) (5-38)
e = i

where © is defined, employing a multiquadratic form, as

Q  ( \ x  —  x e \ )  =  ( \ x  —  x g \ 2  +  c 2 ) 1 ^ 2  (5 .39 )

Here, c is a scalar param eter tha t effects the radius of influence of the data points. 

Suppose th a t the entries in the L x l  vector w  are the values of the unknown coefficients, 

we, £ =  1, • • • , L  and let

Wme =  © (\xm -  xe\) 1 < £ , m < L  (5 .40)

It follows, th a t the unknown coefficients can be obtained by solving the matrix equation

W w  =  f  (5-41)

where W m£ =  When the value of c is specified, the unknown coefficients can be

obtained, provided th a t W  is non-singular.

It is known that the accuracy of the RBF approximation depends upon the value that is 

adopted for the param eter c  [121]. Rippa [122] introduced an algorithm to find the opti

mum value for a particular data  set but, for all the cases considered here, the additional 

expense incurred in performing an analysis of this type did not prove to be justified. 

Instead, the value of c  was simply calculated to be the mean distance between any two 

data points.
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The primary advantage of using RBFs was its meshless nature. Other interpolation 

techniques require gradient information at each data point, which may result in the need 

for a triangulation, or possibly, restrictions on the structure of the points. Using RBFs 

removed the need to  consider the number of dimensions and allowed easy refinement by 

the addition of da ta  points.

It is almost certainly the case th a t in the examples considered here, the advantages of 

RBFs were diminished due to the small number of parameters. However, when consid

ering practical applications, such as shape optimisation where the parameter space may 

contain many more than three dimensions, the advantages may become more apparent. 

In addition, in a practical setting, the number of parameters may change through the 

development/design process. This can be achieved seamlessly with an RBF implemen

tation.

When compared with 31 competing interpolation techniques on a range of functions, it 

is found th a t RBFs perform best in terms of accuracy for a variety of functions [123]. 

Interpolation techniques based on triangulations have the disadvantages of a large aux

iliary storage required for the triangulation [123]. It is also found tha t the accuracy 

of techniques which require derivative information at the data  points, such as Hermite 

interpolation, depends highly on the accuracy of the derivative estimates. Franke [123] 

states tha t extending triangulation and derivative based techniques to problems with 

more than two dimensions is extremely difficult and, in some cases, impossible. The 

primary disadvantage of RBF interpolation is, as the number of data  points exceeds 

100, the cost of calculating the weights becomes significant [123].

To validate this interpolation approach, Example 1 was reconsidered, and a ROM was 

again based upon FOM snapshots calculated with oscillation frequencies of / l ,  /2 , /4  

and /5 . The pressure distribution on the upper surface of the wing, predicted by the RBF 

based ROM, was compared with corresponding results from the FOM in Figure 5.19. 

When RBF interpolation of the coefficients was employed, the magnitude of the errors 

produced when the ROM was used to predict the solution with the oscillation frequency 

/3  were E rp = 0.4345% and E r c e =  6.4293%. Although these were less accurate than 

the results obtained previously using Hermite interpolation, it was deemed appropriate 

to perform the analysis using RBFs, which will be the most desirable interpolation 

technique to use in real applications.

5.5.3.4 R e su lts

O N E R A  M 6 The numerical performance of the approach was demonstrated for three 

additional examples, involving additional complexity. For each of these examples, the
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Piecewise cubic Hermite

Linear

F ig u r e  5 .1 9 :  The pressure coefficients on the upper surface of the wing computed for 
Example 1 by the FOM and the ROM based upon RBF, Hermite and Linear interpo

lation at the time corresponding to the maximum deflection of the tip

R B F  m eth o d  was used to  in te rp o la te  th e  values of th e  coefficients.

E xam ple  2 involved tran so n ic  inviscid flow over an  oscillating  O N ER A M 6 w ing a t a free-

s tream  M acli nu m b er of 0.84. T h e  w ing followed a prescribed  sinusoidal p itch  oscillation  

to g e th e r w ith  an  oscilla tory  vertical heaving  m otion. T he  reduced  frequency of the  heave 

oscillation  was p rescribed  to  be /  — 2.778 x 10~2, while th e  reduced  frequency of th e  

p itch  oscillation  was taken  to  be equal to  2 / .  T he  w ing was held fixed a t th e  root and  

th e  values of b o th  th e  p itch  and  th e  heave a t any  in s ta n t varied linearly  betw een th e ir  

values a t  th e  tip  an d  at th e  roo t. T he  p a ra m e te rs  of in te rest were th e  am p litu d e , a p , 

of th e  p itch  a t th e  tip  and  th e  am p litu d e , ah ,  of th e  heave a t th e  tip , for th e  range of 

values 0 <  a p <  8°  and  0 <  a?t <  F 6 .
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(c)

F ig u r e  5.20: Variation of E r p over the param eter space for Example 2 for (a) the 
5 snapshot set; (b) the 9 snapshot set; (c) the 25 snapshot set. For each plot, the 
horizontal axis denotes the pitch amplitude and the vertical axis the heave amplitude.

S napsho ts E r p E r c t

5 5.1563 24.807

9 1.1613 1.7277

25 0.4253 0.1413

T a b l e  5 .4 :  Maximum percentage errors calculated during the validation procedure for 
Example 2 using ROMs with different numbers of snapshots

An in itia l m esh was genera ted  and  47 ad d itio n a l m eshes were p roduced , by m esh m ove

m ent, to  describe th e  wing geom etry  du ring  each stage  of the  heave oscillation . T h ree  

R O M s were con stru c ted , em ploying 5, 9 an d  25 sn ap sh o t sets. All snap sh o t sets included  

th e  case w here b o th  a p and  a/, were equal to  zero, which rep resen ts a  s tead y  s ta te  solu

tion . T he perform ance of each of th e  th ree  RO M s was te s ted  in  th e  p roposed  m anner, 

w ith  each sn ap sh o t, in tu rn , being o m itted  d u ring  th e  co n stru c tio n  of th e  RO M s. T h is  

enab led  th e  RO M  erro r E r p to  be e s tim a ted  a t each sn ap sh o t location  in tu rn .

T he  d is tr ib u tio n  of E r p is p lo tted , as a  function  of a  =  (a p ,c ih ) in th e  p a ra m e te r  

space, in F igure 5.20 for each of th e  th ree  RO M s. E ach vertex  of th e  tr ian g u la tio n  

show n in these  figures ind ica tes th e  location  of one of th e  snapsho ts. T h e  tr ia n g u la tio n  

was only used to  in te rp o la te , for p lo ttin g , betw een  th e  com pu ted  values of E r p a t th e  

vertices. I t was in te resting  to  no te  th a t  th e  R O M s co n stru c ted  using th e  9 and  th e  25 

sn ap sh o t sets were able to  successfully p red ic t th e  s tead y  so lu tion , using only u n s tead y  

sn apsho ts. W ith  th e  ROM  based upo n  th e  25 sn ap sh o t set, th e  s tead y  s ta te  value of th e  

lift coefficient was p red ic ted  to  w ith in  0.5268%  of th e  ac tu a l value. T able 5.4 lists th e  

m ax im um  percen tage  erro r m easu rem en ts for th e  u n s tead y  solu tions, ca lcu la ted  using 

the  v a lid a tio n  p rocedure  d iscussed in Section 5.5.3.2. T h e  m axim um  erro r for th e  25 

sn ap sh o t set occurred for th e  case a  =  (8 ° ,0 ). T h is  p o in t was located  on th e  b o u n d a ry

Pitch am plitude (degrees)
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F i g u r e  5 .21:  Comparison of the variation in the lift coefficient computed with the 
FOM with that obtained from the ROM using 25 snapshots for Example 2, at the point 

a  = (8° ,0) in the parameter space corresponding to the highest error.

Snapshots CBuild Crom (Mt  -  M ) min

5 1.7644 4.6279 0.0001

9 4.8053 8.6116 0.0004

25 115.6546 36.8045 0.0105

T a b l e  5.5: CPU costs for Example 2

of the param eter space, where a high error would be expected. Figure 5.21 compares, at 

this point in the param eter space, the variation in Ce computed by the FOM with the 

variation obtained from the ROM.

During the validation process, the values of CBuild, and Cr o m  were measured and this 

enabled the calculation of ({3 — 1) for each set of snapshots. In the evaluation of /3, the 

value of Cf o m  was taken as 442 800s, which was a typical time for the FOM calculations. 

The resulting values are shown in Table 5.5. It can be observed that, for the largest 

snapshot set, the value of (Mt  — M ) min was 0.0105, which means tha t there would 

almost always be a net saving in CPU time.

The specification for Example 3 was exactly the same as that for Example 2, apart 

from the fact that the reduced frequency /  was included in the list of flow parameters
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4 6 8
Pitch am plitude (degrees)

(a )

Pitch am plitude (degrees)

(c)

FIG URE 5.22: Variation of E r p over the param eter space for the ROM used in Example 
3 for a frequencies (a) 4.167 x 10~2; (b) 2.778 x 10-2 ; (c) 2.083 x 10-2 . For each plot, the 
horizontal axis denotes the pitch amplitude and the vertical axis the heave amplitude.

of in te rest, so th a t  a  =  (ap , a ^ , / ) .  T he  reduced  frequency range was defined to  be

2.083 x 10-2 <  /  <  4.167 x 10~2. S napsho ts a t different reduced  frequencies were 

com pu ted , on th e  sam e set of 48 m eshes, by changing, as in E xam ple 1, th e  size of 

the  physical tim e  step . For th e  purpose  of illu stra tio n , th e  reduced  frequency values

2.083 x 10- 2 , 2.778 x 10-2 and  4.167 x 10-2 were selected for th e  sn apsho ts, to g e th e r 

w ith  th e  nine values of (ap, ) used in  E xam ple 2. T his leads to  a set of 27 snapsho ts. 

T he  resu lting  RO M  was again  te s ted , by om ittin g  one snap sh o t in tu rn , and  th e  resu lting  

d is trib u tio n  of E r p is p lo tted  in F igure  5.22. T he h ighest e rro r in lift coefficient was 

2.5045%, w hich o ccu rred  a t th e  p o in t a  =  (0°. 1.6, 2.083 x 10- 2 ). T h e  tim e varia tion  

of th e  lift coefficient o b ta in ed  from  th e  RO M  a t th is  po in t is com pared  w ith  th e  resu lts 

of th e  FO M  in F igu re  5.23. For th is  case, ( M t  — M ) min  =  0.0135, which rep resen ts  a  

significant p o te n tia l saving in C P U  tim e using th e  m ethod .

Pitch am plitude (degrees)
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F i g u r e  5.23: C o m p arison  o f th e  varia tion  in th e  lift coefficient c o m p u ted  w ith  the  
FOM w ith  th a t  o b ta in e d  from  th e  ROM for E x a m p le  3 a t th e  p o in t a  =  (0°, 1.6, 2.083 x 

1 0 - 2 ) in  th e  p ara m eter  sp a ce  co rresp on d in g  to  th e  h ig h est error.
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Pilch am plitude (degrees)

F ig u r e  5 .2 4 :  Variation of E r p over the param eter space for the ROM used in Exam
ple 4. The horizontal axis denotes the pitch amplitude and the vertical axis the heave

amplitude.

S napsho ts E r p E r Ce

5 3.9271 30.259

9 0.8944 3.6152

25 0.2954 0.3301

T a b l e  5.6: Maximum error measurements calculated during validation procedure for
Example 4

T he  specification for E xam ple 4 was exactly  th e  sam e as th a t  for E xam ple 2, a p a r t  from  

th e  fact th a t  th e  values of the  am p litu d es of b o th  th e  p itch  and  th e  heave a t any  in s ta n t 

varied q u ad ra tica lly  betw een th e ir  values a t th e  tip  and  a t th e  roo t. T h e  q u a d ra tic  

va ria tion  ad o p ted  was such th a t  th e  values a t th e  sem i-sp an  are  a  q u a rte r  of th e  values 

a t th e  tip . T h e  so lu tion  p rocedure  followed th e  approach  ad o p ted  for E xam ple  2, and  

th e  com pu ted  values of E r p, o b ta in ed  w ith  th e  25 snap sh o t set, a re  p lo tted , as a  function  

of th e  am p litu d e  of th e  p itch  a t  th e  tip  and  th e  am p litu d e  of th e  heave a t  th e  tip , in 

F igure 5.24. T h e  m ax im um  percen tage  errors in th e  u n stead y  so lu tions co n stru c ted  

using 5, 9 an d  25 sn ap sh o ts  are  show n in T able 5.6, w here th e  m ax im um  E r c t value was 

0.3301% an d  th e  m ax im um  E r p value was 0.2954%. D espite th e  increased com plexity  

of th e  m otion , these  e rro r values were seen to  be of a  sim ilar o rder to  those  occurring  in 

E xam ple  2. T h e  m ax im u m  value of E r p again  occurred  for th e  case a  =  (8°,0 ).

For th e  case a  =  (8°, 1.6), th e  tim e  varia tion  of th e  lift coefficient o b ta in ed  from  th e  

25 sn ap sh o t R O M  is com pared  to  th e  resu lts  p roduced  w ith  th e  FO M  in F igu re  5.26. 

T h e  surface p ressu re  d is tr ib u tio n  com pu ted  w ith  th is  RO M  is com pared , a t two different 

tim es, w ith  th e  re su lts  o b ta in ed  w ith  th e  FO M  in F igure 5.25. T he  q u ad ra tic  defo rm ation  

of th e  w ing su rface  is c learly  ap p aren t in th e  figure. For th is  R O M , it was found th a t  

( M t  -  M ) min =0.0366.
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FOM, timestep 31

ROM timestep 31 ROM, timestep 41

F ig u r e  5 .2 5 :  The pressure coefficients on the upper surface of the wing for Example 4 
computed at the point a  =  (8°, 1.6) in the parameter space with the FOM and the 

25 snapshot ROM at two different times

50
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40
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o  35
c0)
0
1  30 
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25

20

50
Physical Time Step

FOM timestep 41

F i g u r e  5 .2 6 :  Comparison of the variation in the lift coefficient computed with the 
FOM with tha t obtained from the 25 snapshot ROM for Example 4 at the point a  =

(8", 1.6) in the param eter space.
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(a) Initial dimensionless y-velocity showing the sharp-edge gust 
downstream of the NACA 0012.

(b) The y-velocity after 12 tim esteps, as the gust crosses the aerofoil.

(c) The y-velocity after 26 tim esteps, after the gust has passed over 
the aerofoil.

F i g u r e  5.27: Evolution of a sharp-edge gust past the NACA 0012.

S h a rp  E d g e d  G u st p a s t a  N A C A  0 0 1 2  In  th is  exam ple com pressible, inviscid flow

a t free s tream  M ach num ber 0.25 p as t a  NACA0012 aerofoil was considered. A sharp - 

edge gust [124] was applied  u p stream  of the  aerofoil, by add ing  a co n stan t m ag n itu d e  of 

0.1 to  th e  velocity in th e  ^-d irec tion  in an  artificial box over a p rescribed  gust length  in 

th e  ^ -d irec tio n . T h is velocity was added  in th e  in itia l tim estep  only, th en  th e  freestream  

flow m oved th e  gust tow ards and  p as t th e  aerofoil. To avoid in tro d u c in g  shocks, th e  

m ag n itu d e  was decreased  linearly  in th e  ^ -d irec tion  from  0.1 a t  th e  edge of th e  box to  

zero a t th e  n o rth  and  so u th  farfield boundaries. F igure  5.27 shows an  exam ple of th e  

evolu tion  of such a gust, here th e  velocity in th e  ^/-direction is p lo tted .
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F ig u r e  5 .2 8 :  C h a n g in g  error o f  th e  ROM w ith  g u st len g th , for th e  g u st e x a m p le
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F i g u r e  5 .2 9 :  C o m p a rin g  th e  lift o f  th e  FOM to  ROM for th e  w orst case  in th e  gust
e x a m p le

G u st m odeling  itse lf is ail in te resting  area  of research , w here a num ber of different 

m odelling  techn iques exist. T he in te rested  reader is d irec ted  to  [124] for m ore details, 

w hich are  beyond the  scope of th is  thesis.

T h e  p a ra m e te r  space to  be sam pled  was th e  gust leng th , m easured  in chords of the  

aerofoil, an d  7 sn ap sh o ts  were tak en  from  1 chord leng th  to  11 chord lengths. Each 

s im u la tion  was ru n  for 100 tim esteps on F L IT E , which requ ired  a C P U  cost of over 

24 hours. T h e  percen tage  erro r in lift was ca lcu la ted  a t  each sn ap sh o t, in th e  fashion 

described  above, and  th e  erro r ca lcu la ted  is p lo tted  ag a inst gust leng th  in F igure  5.28. 

T h e  e rro r was high a t th e  ex trem ities of gust leng th  since these  po in ts  rep resen t e x tra p 

o la tions w hen rem oved from  th e  sn ap sh o t set. N ot coun ting  these po in ts, the  highest 

e rro r in lift was 2.6927%, a t  a  gust leng th  of 3 chord lengths. F igure 5.29 com pares the  

tim e  h isto ries of lift of th e  ROM  to  th e  FO M  for th is  case. T he  C P U  cost to  evaluate
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this ROM, on an Intel Core i5-2500 running at 3.30GHz, was 15 seconds.

5.6 A pplying PO D  Interpolation to  O ptim isation

A pilot study applying these POD interpolation type methods to the shape optimisation 

example presented previously has been performed and results are presented here. The 

inverse design example shown in Section 4.3.1 was performed at three values of the free- 

stream  Mach number, viz. 0.25, 0.5 and 0.75. Instead of the evaluating the objective 

using the FOM, a ROM was constructed in the way discussed in Section 5.4.2 using 

RBFs to interpolate the POD mode coefficients.

The number of snapshots, generated using LHS, was varied and the optimisation was 

repeated 10 times for each different number of snapshots. Figure 5.30 shows how the 

percentage difference between the target RAE2822 and the best design surface pressure 

decreases as the number of snapshots increases. A limitation of the technique was 

highlighted when comparing the results for the different Mach numbers. As the flow 

regime become transonic, the percentage difference increased. This was because the 

ROM failed to predict the movement of shocks, unlike the FOM. This was deemed a 

severe limitation of the POD technique and limits its application to shape optimisation. 

It may be possible to improve the technique with adaptive sampling, by increasing the 

number of snapshots in areas of the param eter space where the flow regime changes. An 

alternative technique, which has been shown to perform well in wave scattering problems, 

proper generalised decomposition [125], may be more suited to these types of problems.

A point worth noting, becomes apparent when the pressure field is the unknown being 

interpolated. Interpolating the pressure, and using these interpolated values to calculate 

lift and drag coefficients is equivalent to interpolating the lift and drag values themselves. 

This is because the lift and drag coefficients are simply a linear sum of surface pressures. 

It follows that, in the case where the objective function is made up of lift and drag only, 

it is more efficient to simply interpolate these values alone.

W ithout further development and investigation, the problems identified limit the ap

plication of the POD interpolation techniques to predict flow physics for optimisation 

algorithms. Some applications do not require such significant changes in flow physics, 

and require more information than just lift and drag coefficients. For such applications, 

POD interpolation techniques offer a good solution to reduce the cost of the objective 

function.

However the POD formulation can be used alone to reduce the dimension of optimisation 

problems which do not involve prediction. Such an example is presented in Chapter 6.
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5.7 C onclusion

The aim of this chapter was to attem pt to address the problem of the large costs tha t 

are normally encountered when computational methods for unsteady flow are employed 

as part of a design process. The ROM techniques that have been proposed acted upon 

the computational domain and require no knowledge of the system or of the solver used 

to generate the snapshots. The methods were completely general and could be applied, 

without modification, to general time-dependent or time-independent problems. For the 

examples presented, the CPU cost of the ROM was several orders of magnitude lower 

than th a t for the FOM. Convergence of the error, as the number of snapshots increases, 

has been shown and this increased confidence in the usefulness of the technique. The 

nature of the method means th a t the CPU cost of the ROM will almost always be 

much lower than tha t for the FOM. But, it cannot be assumed that the loss of solution 

accuracy will be small in every case. However, generating the snapshots necessary for 

building the ROM would already be part of a normal design process. The methods 

could seamlessly fit into a param eter sampling cycle, starting with a coarse sampling of 

snapshots and iteratively validating the resulting ROM each time the sampling is refined. 

If an acceptable error in the ROM was reached, significant saving could be achieved by 

employing the ROM for the remaining parameter sweep.



Chapter 6

Reduced Order M esh  
O ptim isation

6.1 Introduction

Traditionally ROM techniques are applied to find the solutions of differential equations. 

However, these techniques can be applied wherever it is useful to decrease the number 

of degrees of freedom in a system. W ith this in mind, POD was applied as a dimension 

reduction technique to enable the use of MCS in the high dimensional problem of mesh 

optimisation [3]. Specifically, the problem of interest was the optimisation of an unstruc

tured Delaunay primal mesh, and its orthogonal Voronoi dual, for use with co-volume 

solution algorithms. In this chapter, the technique is presented and a number of test 

cases are included to demonstrate its ability.

Ensuring the quality of the mesh employed is essential for a successful numerical sim

ulation of a physical problem. This is of a particular importance when considering 

unstructured mesh implementations of co-volume schemes, such as the marker and cell 

(MAC) algorithm for the solution of the Navier Stokes equations [126] or the Yee algo

rithm  for the solution of Maxwell’s equations [127]. Co-volume methods are classically 

staggered in time and implemented on a pair of staggered orthogonal meshes in space, 

resulting in a discretisation that is second order accurate in space and time on uni

form meshes [128]. Such algorithms exhibit a high degree of computational efficiency, in 

terms of a low operation count and low storage requirements. However, a successful im

plementation depends critically upon the generation of the pair of high quality mutually 

orthogonal meshes for the problem [129]. For simulations involving complex geometries, 

generating such a mesh can cause great difficulties, as current standard unstructured
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mesh generation and enhancement techniques normally only focus on the quality of the 

primal triangulation.

The problem of constructing a good quality dual orthogonal mesh for complex geome

tries can be approached by developing a stitching technique [130]. In this method, a local 

high quality triangulation of the region near the boundaries is stitched to an ideal equi

lateral triangular mesh covering the remainder of the computational domain. The local 

triangulation is constructed using a modification of the advancing front technique [131] 

in which, after splitting the boundary curve into edges, nodes are placed to enable the 

construction of a layer of near ideal elements adjacent to the boundary. A number of 

layers are generated in this fashion, before stitching to the ideal mesh is attempted. 

Although this technique proves effective at producing dual orthogonal meshes in two di

mensions, the approach has not been successfully extended to general three dimensional 

problems.

In the work presented in this chapter, a Delaunay mesh generation technique, with 

automatic node creation, was employed to generate primal unstructured meshes in both 

two and three dimensions [83]. This method starts with a set of the nodes defining 

the boundaries. Once a Delaunay triangulation of these boundary nodes is constructed, 

nodes are inserted sequentially at the centroids of the existing elements and a new 

Delaunay mesh of the nodes is produced at each stage. The process continues until the 

node density in the mesh meets the requirements specified by a user-defined mesh control 

function [132]. For the implementation of co-volume solution algorithms, the Voronoi 

diagram provides the natural choice for the dual orthogonal mesh. In this chapter, the 

standard convention of referring to the points in the Delaunay triangulation as nodes, 

and the Voronoi points as vertices is used.

The motivation of this work was to take these automatically generated meshes as a start

ing point and to attem pt to improve them, using appropriate optimisation techniques, 

to make them suitable for use with co-volume solution algorithms. Co-volume solution 

algorithms can be one to two orders of magnitude faster than standard finite element 

techniques [128] in terms of CPU time. Considering this, the CPU cost of any mesh 

optimisation procedure was considered less of an issue. The primary motivating factor 

in all of this work was to attem pt to make a mesh suitable for co-volume techniques. It 

was assumed that once a suitable mesh is generated, the subsequent saving in time due 

to the efficiency of co-volume techniques would make the increase in mesh preprocessing 

time become negligible.

In the present context, MCS [1] was utilised as an optimisation strategy, because the 

objective function, which represents a measure of the element quality in a mesh, could 

become non-smooth [133]. In the present application, the objective function was the
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weighted sum of a quality measure over all elements. The weight was given a value of 

either zero or one for each element. An objective function, constructed in this way, is 

highly likely to contain discontinuities due to the jum p of the weights, motivating the 

use of gradient free techniques.

W hen accurate simulations are being attem pted, the number of nodes in a mesh can 

quickly reach the order of millions. In mesh optimisation, the dimensionality of the global 

optimisation problem is equivalent to the number of nodes multiplied by the number of 

dimensions. Most gradient free algorithms are only tested on objective functions with 

up to 300 dimensions [134]. Clearly, this presents a significant problem to be overcome 

when considering the application of MCS to mesh optimisation.

In one approach, PSO was applied to hexahedral mesh smoothing [135]. This is shown 

to be a promising technique, but there are significant issues created by the large num

bers of degrees of freedom associated with the meshes typically employed for industrial 

simulations. To reduce the number of degrees of freedom, a two part process of dividing 

the domain into various sub-domains, and the exploitation of any available symmetry, 

is advocated. By dividing the domain, the problem becomes more localised.

In the work presented here, the dimensinality of the problem was reduced by applying 

POD as a dimension reduction technique [96, 97]. The technique was used to reduce 

the number of degrees of freedom in the mesh optimisation problem from millions to 

hundreds. This made the use of global gradient free optimisation techniques possible, 

without the need to divide the domain.

The approach proposed uses a combination of a gradient free optimisation method, the 

MCS, and a dimension reduction technique, POD, to tailor an unstructured mesh for 

use with a co-volume solution algorithm. The targeted mesh requirements are outlined 

first and then possible alternative techniques for solving the problem are discussed. The 

proposed approach is explained and its effectiveness was measured by applying it to a 

number of examples in two and three dimensions.

6.2 M ethodology

6 .2 .1  M esh  req u irem en ts  for c o -v o lu m e  tec h n iq u es

Co-volume methods are implemented on a pair of mutually orthogonal meshes. For an 

unstructured mesh implementation, the most obvious mesh choice is to use a primal De

launay mesh and its Voronoi dual [130]. To ensure second order accuracy of the solution 

algorithm, each Delaunay edge and its corresponding Voronoi edge must be mutually
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perpendicular and mutually bisecting. In addition, if a Voronoi vertex lies outside the 

corresponding Delaunay element, any integral over the element would be approximated 

in term s of values from outside the element. This results in a loss of accuracy [128]. 

Elements which do not include their corresponding Voronoi vertex are referred to as 

bad elements and the goal of the optimisation technique, tha t will be presented, was to 

remove the bad elements from a mesh generated using standard techniques.

The bad elements were removed at the expense of a loss of local second order accuracy, 

caused by the relaxation of the condition tha t the Delaunay and Voronoi edges should 

be mutually bisecting. This local loss of accuracy is not seen globally as illustrated 

in the examples presented in [128]. The goal of removing all bad elements is different 

from other mesh optimisation techniques, which commonly seek to improve the poorest 

elements in a mesh (such as in [136]). Attempting to improve the poorest elements in a 

mesh is a  problem which can be expressed locally, whereas removing all bad elements is a 

global problem and should be treated as such. Many experiments have shown that, after 

a series of local optimisation operations, some poor quality elements will still remain in 

a mesh [137], which further motivated the use of a global optimisation technique.

6 .2 .2  M e sh  s m o o th in g  for co—v o lu m e  tec h n iq u e s

6.2 .2 .1  E xisting sm ooth ing algorithm s

Laplacian smoothing is a widely used approach for improving mesh quality. In its sim

plest form, each node is moved towards the mean position of its neighbouring nodes [138]. 

This has the effect of increasing the regularity of the mesh. This may be of benefit in two 

dimensions, where the ideal mesh for co-volume techniques is equilateral triangles [130], 

but perhaps not in three dimensions, where the ideal mesh consists of non-perfect tetra- 

hedra [139-141].

Another algorithm, which initially appears to be well-suited to the problem of interest 

here, is Lloyd’s algorithm [137, 142]. This is a CVT scheme that begins with an initial 

mesh, then moves the generated nodes to the mass centroids of their corresponding 

Voronoi cells. The iteration process continues until all nodes are sufficiently close to 

their corresponding centroids. Lloyd’s algorithm has already been used in an attem pt 

to improve mesh quality for use with co-volume solution techniques. However, it was 

discovered that, for general meshes, around 10% of the elements are still not of sufficient 

quality at the end of the process, due to boundary constraints [128].

An alternative iterative algorithm was designed to eliminate all bad elements in a two 

dimensional triangular mesh, while retaining the connectivity, by moving the interior
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nodes to reduce a global energy function [143]. It is found that, in a situation where a 

node has fewer than  five neighbours, it is not possible to repair all the bad elements. A 

triangle subdivision technique was introduced which split elements around such nodes 

into a number of smaller elements until no bar! elements remained. It is advantageous 

to avoid, if possible, the requirement for such a subdivision as, in some practical appli

cations, the use of a uniform element size is desirable [130].

The failure of these smoothing techniques for the current application is due to two 

reasons; the smoothing acts locally both in terms of position in the mesh and in terms 

of a local sub-optimum, and the improvement is not specifically targeted at removing 

bad elements.

6.2 .2 .2  O ptim ising nodal coordinates

The number of degrees of freedom, representing the coordinates in a mesh, is equal to 

the number of nodes N  (not including the boundary nodes, which are fixed) multiplied 

by the number of dimensions D. When N  is large, it is difficult to optimise this high 

dimensional problem. The approach adopted was to split this global N  * .D-dimensional 

problem into N  local D-dimensional problems, by considering each node in turn. Since 

D < 3, these local optimisations were computationally cheap when applying the MCS.

To calculate the fitness of a single node, the function

F W  =  ^ t V i l |C i~ Vil1 (6.1)
1 =  1

was used in the optimisation process. In this expression, k is the node number, Ek is the 

number of elements which include node k , the index i points to the elements including 

node k, Ci is the position vector of the centroid of element i, V{  is the position vector 

of the Voronoi vertex of i and <5* is the mean edge length of element i. The quantity Wi 

is equal to zero if Vi is inside element i and equal to one otherwise. For the optimisation 

process, the argument of the objective function was a vector, x, which was added to the 

coordinates of k. After this addition had taken place, equation (6.1) was evaluated at 

the new coordinates of k and a fitness returned to the optimiser. When an optimum 

value of x was found, the coordinates of k were updated as

Xfc =  Xfc +  Ax (6.2)

where 0 < A < 1 is a relaxation parameter tha t was used to slow down the move

ment of the nodes. The objective function of equation (6.1) is plotted for some sample
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nodes in Figure 6.1. The plots show the objective function was clearly non-sm ooth and 

multimodal highlighting the need for a gradient free approach.

Each local optimisation was run for 5 generations using the MCS. It was found tha t 5 

generations provided a good balance between CPU cost and the improvement achieved 

by the optimisation. All of the algorithms developed as part of this work were heuristic 

in nature (see the work by Klinger and Shewcuck [144] for further discussion on this 

point). There were a number of parameters which will effect the optimisation process. 

For example, it may have been possible to optimise the value of A, but this turns out 

to be very problem specific. In practice, any algorithm should be automatic without 

the need for significant user input, so it was deemed best to pick a value of A which 

works well on a variety of examples and to keep it constant between examples. If A is 

set too high, the smoothing is too aggressive and the mesh can become tangled. This 

is of particular importance in 3D examples. This is illustrated in Figure 6.2, where the 

optimisation procedure was carried out on the internal mesh of a sphere with different 

values of A. It was found, through trial and error, tha t setting A =  0.25 produced the 

best performance in both 2D and 3D for a variety of cases and this was the value used 

in all examples presented.

Once the coordinates of k were updated, the next node to be optimised was selected at 

random and the process repeated until all nodes had been treated. After one complete 

sweep of the mesh, a new triangulation of the node set, constrained by the boundary 

connectivity, was generated. This eliminated problems, reported in [143], which can be 

created when nodes have insufficient neighbours. Adjusting the positions of the nodes 

along the boundary would clearly improve the performance of the algorithm, by adding 

more degrees of freedom. However, in practice, this is undesirable. The boundary 

nodes define the geometry of interest in an example. In three dimensional examples, in 

particular, it is undesirable to carry the geometric definitions, which would be required 

to move nodes along the boundary, throughout the meshing process. Since the aim 

was to make the technique as general as possible, the boundary node positions were 

maintained.

6.2 .2 .3  C om parison o f local node optim isation  techniques

To justify the use of MCS, a comparison was performed between a number of node 

optimisation techniques. In all cases, the techniques were applied to an unstructured 

mesh of triangles, which has been generated in the region around a NACA0012 aerofoil. 

The mesh contains a total of 32460 triangular elements. To compare performance of the 

different techniques, the number of bad elements in the mesh was plotted against the
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-0 015

F ig u r e  6 .1 :  Dual orthogonal mesh objective function plots for sample nodes. Each 
plot shows a single sample node from a 2D mesh along with its attached elements. The 
colour map shows the value of the objective function (6.1) if the node was moved to

that position in space.



Reduced Order Mesh Optimisation 189

5 5 0

5 0 0

U)c
0
E
00
S 4 0 0
o
<5.o
E

z
3 5 0

3 0 0

2 5 0

N u m b e r  o f  s w e e p s

F ig u r e  6 .2 :  L ocal n o d a l m esh  o p tim isa tio n  a p p lied  to  a  m esh  o f  th e  region in sid e  a
sp here w ith  various v a lu es o f  A

C P U  tim e in seconds. T h e  C P U  tim es quo ted  in th is  ch ap te r all refer to  th e  use of a 

3.30G H z In tel C ore i5 processor, unless s ta te d  o therw ise.

F igure 6.3 com pares th e  perfo rm ance of L aplacian  sm oo th ing  an d  L loyd’s a lgo rithm  to  

th e  M CS sm ooth ing  techn ique described above. In th e  first 10 seconds, L loyd’s a lgo rithm  

and  L aplacian  sm ooth ing  ou tperfo rm ed  M CS. However, over tim e, M CS significantly  

ou tperfo rm ed  b o th  th e  o th e r a lgorithm s which s ta r te d  to  level off. T h is  showed th e  

benefit of constru c tin g  an  ob jective function  ta rg e ted  a t  th e  m esh qu a lity  w hich needs 

to  be im proved.

To show th a t  M CS was th e  best choice of op tim iser, M CS was rep laced  by tw o o th er 

o p tim isa tio n  techniques app lied  to  th e  sam e ob jective function , in th e  sam e way, as de

scribed  above. T he  im p lem en ta tions fm inunc and  fm in s e a rc h  from  th e  M A TLA B  [17] 

o p tim isa tio n  too lbox  were used, to  replace M CS w ith  g rad ien t based  and  sim plex g ra 

d ien t free op tim isers respectively. T he  sim plex based o p tim isa tio n  is th e  N elder-M ead 

m eth o d  [25] and  is sim ilar to  th e  techn ique used by F re itag  and  P lassm an n  [145] for m esh 

un tang ling . F igure 6.4 shows how M CS ou tperfo rm ed  b o th  techniques, in te rm s of fast 

red u c tio n  of bad  elem ents a t low C P U  cost, and  in long te rm  m axim um  red u c tio n  of bad
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F i g u r e  6.3: Comparing the performance of Laplacian smoothing and Lloyd’s algo
rithm to the local MCS node optimisation

elem ents. T h is resu lt fu rth e r su p p o rted  the  previous findings regard ing  th e  behav iour 

of M CS [1]. D esp ite  th e  s trong  perform ance th is  local node op tim isa tio n  was un ab le  to  

fix all th e  bad  elem ents. To address th is , a  m eth o d  of globally  op tim ising  th e  position

of th e  Voronoi vertices was in troduced .

6 .2 .3  T he w eigh ted  V oronoi power diagram

A n a lte rn a tiv e  m e th o d  for e lim inating  bad  elem ents is to  move th e  Voronoi vertices, while 

re ta in in g  o rthogonality , by using th e  w eighted Voronoi pow er d iagram . To allow for a 

g re a te r  level of flexibility, th is  m eth o d  relaxes th e  requ irem en t th a t  th e  Voronoi edges and  

th e ir  co rrespond ing  D elaunay  edges should  be m u tua lly  in tersecting . T h e  requ irem ent 

th a t  these  edges should  be m u tua lly  p erp en d icu la r is re ta ined . F igure  6.5(a) illu s tra te s  

a V oronoi vertex  O  loca ted  a t th e  c ircum cen ter of a  bad  elem ent, A B C .  T h is  vertex  

can  be  located  a t  th e  in tersec tion  of th e  com m on chords of th e  circles, each w ith  th e  

sam e rad iu s  as th e  circum circle of A B C , cen tred  a t each of th e  vertices A , B  an d  C .  It 

can  be observed th a t  th e  com m on chords are p erp en d icu la r b isectors of th e ir  associated  

D elaunay  edges. In  F igu re  6 .5(b), th e  rad iu s  of th e  circle cen tred  at B  has been  reduced  

an d , using  th e  m odified  com m on chords, th e  Voronoi v ertex  is pu lled  inside th e  elem ent,
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F i g u r e  6.4: Comparing the performance of replacing MCS with a gradient based 
optimiser and gradient-free simplex search method

(a) The bad elem ent ABC and corresponding (b) Effect of applying a negative weight to  node D 
Voronoi vertex O

F i g u r e  6.5: Moving a Voronoi vertex to repair a bad element
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F

F igure  6.6: Illustration of the constraints on the weight optimisation process

while the chords are still perpendicular to the edges. Given the change in the radius Srx, 

at each node K , the coordinates of O can be readily obtained by solving the equations

(x f  -  x f  )2 +  (x f  -  x f  )2 -  5 r \ = (x f  -  x f  )2 +  (x f  -  x f  )2 -  <5r| (6.3)

(x f  -  x f  )2 +  (x f  -  x f  )2 -  5 r \  =  (x f  -  x f  )2 +  (x f  -  x f  )2 -  <5r£ (6.4)

where a two dimensional Cartesian (xi ,X2) coordinate system has been adopted. An 

identical process can also be applied to tetrahedral elements in three dimensions [128].

6.2 .3 .1  O ptim ising node w eights

Considering again the configuration illustrated in Figures 6.5(a) and 6.5(b), each node 

was assigned an associated weight, which is equal to the change in radius of the circle, 

used to define the Voronoi vertex, centred at tha t node. It is possible to improve the 

quality of the dual mesh, by optimising the position of the Voronoi vertices, and this may 

be achieved by considering the weight of each node when constructing the dual. The 

challenge was to optimise these weights, such that the number of bad elements globally 

was reduced.

If a bad element is considered independently of all other elements, it is a relatively 

straightforward three dimensional optimisation problem to minimise the distance be

tween the Voronoi vertex of the element and its centroid. Figure 6.5(b) provides a good 

example of this. However, difficulties occur when considering the elements connected to 

this initially bad element. It is possible tha t the optimisation may turn another, initially 

good element, into a bad element, such as the element shown in Figure 6.6. The weights 

were optimised in a similar fashion to which the coordinates were optimised. Each node
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was considered in turn, in a random order. If the value of the objective function at 

a node was greater than  zero, an optimisation was performed. This procedure can be 

thought of as a local optimisation of the Voronoi vertices, using the node weights. Each 

weight was optimised using MCS applied to the objective function of equation (6.1).

A similar local weight optimisation, using gradient based techniques in place of MCS, is 

applied to a mesh generated for the problem of scattering of an electromagnetic wave, 

by a perfect electrical conductor with two pairs of rear fins [128]. A detailed view of 

the discretised surface and of the discretisation on a cut through the volume is shown 

in Figure 6.7, along with the solution field calculated using a co-volume technique. For 

the mesh shown in Figure 6.7, the percentage of bad elements was reduced from 16% to 

4.8% using the local optimisation.

The results of the co-volume technique are compared to an explicit nodal low order 

finite element time domain scheme [146, 147], and a multi-level fast multipole method, 

in Figure 6.8. The distribution obtained from the co-volume scheme is in excellent 

agreement with the fast multipole results [128].

Local optimisation is unable to fix all the bad elements in a general mesh. However, in 

the work presented here, it is shown that the combination of MCS with reduced order 

modelling techniques proved much more effective than local optimisation.

6 .2 .4  R e d u c e d  o rd er  o p tim isa t io n

6.2 .4 .1  P roper orthogonal decom position

In the other applications considered in this thesis, model reduction was used to reduce 

the CPU time required to calculate solutions. In the present application, the major 

motivation for using POD was to enable the formulation of a global optimisation problem 

with a low number of degrees of freedom. This then enabled the use of MCS. The method 

of snapshots was used to construct a POD basis [96, 97].

The snapshots, y l \ i =  1 , . . . ,  M , represent different configurations of weights throughout 

the mesh of interest. Each snapshot is a vector, containing N  degrees of freedom and, 

if an N  x M  m atrix whose columns are the snapshot vectors is constructed, the POD 

modes, (f>j\j =  1 , . . . ,  M , can be calculated by applying a SVD to this matrix. The POD 

modes are the left singular vectors of the snapshot m atrix [96, 97]. Each of the snapshots 

used to generate the POD modes can be fully reconstructed, by a linear combination of 

these POD modes, as
M

y ' =  E 4 * j  <6-5)
j = i
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FIGURE 6.8: Scattering by a PEC fin/body configuration of electric length 6A: com
parison between the computed RCS distributions and the distribution obtained from a 

fast multipole method in the plane 0 = 7t/ 2  [128]

and the coefficient sets calculated, using the dot product, as

a) = {<t>j,yl) for z =  1, . . . , M  (6.6)

since <f>j _L ■ This allows the different configurations of weights to be represented by 

M  degrees of freedom and, if the number of snapshots is selected such tha t M  <C N , the 

number of degrees of freedom will have been successfully reduced. By picking new sets of 

coefficients, a®-, which do not belong to the snapshot set used to construct the basis, new 

configurations of weights can be reconstructed. Essentially, POD provides the ability to 

search between, and around, the original set of snapshots in a low dimensional space. 

Since the mesh domain is not divided into subsections, any objective function based on 

a POD representation is truly global. In essence, the POD provides a coordinate system 

on which the optimiser can operate. The coordinate system is generated numerically, 

using SVD, and is highly dependent on the snapshots used to construct it. This means 

it would be very difficult to infer an objective function’s smoothness, which further 

motivates the use of MCS.
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6.2 .4 .2  T he w eight optim isation  procedure

As the POD basis only contains information that is present in the snapshots, intelligent 

selection of snapshots is the key to constructing a successful POD basis [98]. Clearly, the 

resulting set of weights, calculated from the process described above, depends heavily 

on the order in which the node weights axe optimised. However, testing indicated tha t 

the behaviour of the optimisation process was independent of the choice of the initial 

node. Initially, each node is assigned a weight of zero, which produces the standard 

Voronoi diagram. This configuration of weights is represented by the vector MO. This 

is transformed into a new configuration M l  by following the process of optimising node 

weights described above. Following the same procedure, starting with MO, results in a 

third configuration of weights M 2. The configurations M l  and M 2 will be different, 

if the order of elements treated in the process is different. Since both configurations 

are a transformation of MO, there is the chance tha t they may be quite similar, as 

the quality improvement process always starts in areas of MO in which there are bad 

elements. Employing a group of similar snapshots is undesirable, since this will limit the 

diversity of solutions which can be represented by the POD basis functions. Thus, if the 

procedure is applied to either the configuration M l  or M 2 instead of always applying 

it to MO, there is a greater chance of introducing diversity to the snapshot set.

The procedure of generating snapshots, for a mesh with starting weight configuration 

MO, may be described as follows:

1. add MO to the list of snapshots;

2. pick a random configuration of weights, M R , from the list of snapshots and apply 

the process outlined in Section 6.2.3.1, resulting in a new configuration, M R*;

3. add M R* to the list of snapshots;

4. if the number of configurations in the list of snapshots is the desired number then 

stop, otherwise go to step 2.

These solutions can be used as snapshots to construct POD basis functions representing 

element weights. This allows a reduction in the number of degrees of freedom, from the 

number of nodes to the number of POD modes. Following this reduction, global optimi

sation of the weights is feasible, with the POD mode coefficients as the free variables. In 

this process, the objective function is of the form indicated in equation (6.1), summed 

over all elements.
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6.3 E xam ples

A number of examples were employed to demonstrate the performance of the proposed 

method. Unless otherwise stated, all meshes were generated using the method devel

oped by Weatherill and Hassan [83]. The optimisation procedure implemented in M AT- 

LAB [17] was as follows; firstly (unless stated otherwise) Lloyd’s algorithm was per

formed upon the mesh, until no reduction in the number if bad elements was achieved. 

The optimiser then switched to Laplacian smoothing, until no further improvement was 

seen. Once these algorithms could no longer improve the mesh, four sub-iterations of 

the node coordinate optimisation were performed, with A =  0.25. Following this, 30 

snapshots of potential weights were generated as described above. These snapshots were 

used to generate a POD basis on which MCS was performed with the 15 best snapshots 

as the starting eggs for 30 generations. The optimiser switched between these two tech

niques, until all the bad elements were repaired. The results were presented by plotting 

the number of bad elements against CPU wall time. These were recorded every iteration.

6 .3 .1  M e sh  q u a lity  m ea su res  in  tw o  d im e n sio n s

For present purposes, the primary measure of the quality of a mesh was the number 

of bad elements it contains. A number of alternative mesh quality parameters are now 

defined, which were used to gauge the other effects tha t this procedure has on the 

meshes. All the quality measures considered are for isotropic meshes applied to co

volume techniques, but it is stressed that the number of bad elements is the only quality 

measure this procedure was designed to improve.

6.3.1.1 D elaunay  elem ent quality

An attem pt to move a dual Voronoi vertex may result in a decrease in the quality of 

the primal Delaunay elements. To measure this effect, the Delaunay element quality 

parameter, qa , defined by

Qa =  3 — Otfnax (6-7)7r

was used for each element in the mesh, where a max is the maximum angle in the element 

being considered. This is a quality measure typically employed when analysing co

volume meshes [130]. For equilateral triangles, qa =  1 and for right angled triangles qa =  

0. The ideal mesh for a co-volume technique contains elements with qa =  1. A negative 

value of qa indicates that a triangle is obtuse, which implies tha t the corresponding 

Voronoi vertex lies outside the element. Thus, an acceptable element has qa > 0.
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6.3 .1 .2  D istance betw een  a Voronoi vertex  and a corresponding elem ent 

centroid, qp

In an ideal equilateral triangular mesh, the dual Voronoi vertex and the centroid of the 

corresponding primal element are co-located. For a general mesh, the distance between 

these two points was computed for each element and normalised by the inner radius of 

the corresponding element. The result, qp, was expressed as a percentage and qp < 100% 

is acceptable.

6 .3 .1 .3  Voronoi edge length

The magnitude of the time step in an explicit co-volume solution algorithm is restricted 

by the minimum Voronoi edge length [130]. Hence, an im portant mesh quality measure 

is the length of each Voronoi edge. The edge length was normalised with the value 8/  \/3, 

which corresponds to the Voronoi edge length for a primal mesh of equilateral triangles 

of side length 8. Expressing the result, g7, as a percentage, provides the value for each 

edge where g7 > 10% is considered acceptable.

6.3 .1 .4  D istance betw een th e  D elaunay edge m idpoint and th e  V oronoi edge

By changing node weights, the requirement that a dual edge be a bisector of the Delaunay 

edge has been relaxed. A significant deviation from this property can lead to a loss of 

solution accuracy when the co-volume discretisation is applied [128]. The magnitude of 

this deviation was measured, for each Delaunay edge, by calculating the perpendicular 

distance between the Delaunay edge midpoint and the Voronoi edge. This value, q$, was 

normalised by division by half the Delaunay edge length and expressed as a percentage.

200 x dov  (P.
q S = -----------   (6 .8 )

where dov  is the perpendicular distance between the Delaunay edge midpoint and the 

Voronoi edge, and 8d is the Delaunay edge length. A value of zero indicates bisection, 

while any value less than 100% indicates that the line defined by the segment of the 

Voronoi edge intersects the Delaunay edge and is considered acceptable.
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(a) Before optim isation (b) After optim isation

F i g u r e  6.9: Detail of the backward facing step example, with red circles indicating 
Voronoi vertices which lie outside their associated Delaunay element.

6.3 .1 .5  D is ta n c e  b e tw een  th e  V oronoi edge m id p o in t a n d  th e  D e lau n ay  edge

T his  q ua lity  m easure  qe is the  reverse of th e  previous m easure  and  was ca lcu la ted  in a 

sim ilar m anner, as
200 x d v D  la  m

qe =      (6.9)
Oy

w here d y p  is th e  p erp en d icu la r d is tan ce  betw een th e  Voronoi edge m idp o in t and  the 

D elaunay  edge, and  6 y  is th e  Voronoi edge length . A value of zero ind ica tes bisection,

while any value less th a n  100% ind ica tes th a t  th e  line defined by th e  segm ent of th e

D elaunay  edge in te rsec ts  th e  Voronoi edge an d  is considered acceptab le .

6 .3 .2  2D  B ackw ard facing step

T h e  first exam ple w as th e  geom etry  of a  sim ple backw ard facing step . T he  g en era ted  pri

m al m esh con ta in s 53 427 elem ents, w ith  m ean  D elaunay elem ent quality  qn — 0.9260, 

and  th e re  are 60 b ad  elem ents. T h is is a  sm all p ercen tage  of b ad  elem ents, occur

ring  m ain ly  near th e  boundaries, m aking  op tim isa tio n  of th e  m esh quality  a re la tively  

stra ig h tfo rw ard  process. F igure 6.9(a) shows p a r t  of th e  m esh before o p tim isa tio n  and  

F igu re  6.9(b) show s th e  sam e p a r t  a fte r th e  process has tak en  place. Voronoi vertices 

w hich lie o u tside  th e ir  associated  D elaunay  elem ent are  shown circled in red. T h e  m ean 

C P U  cost of one ite ra tio n  was 93 seconds.

All 60 bad  elem ents were repaired  by th e  o p tim isa tio n  schem e. T he  h isto ry  an d  C PU  

cost a re  show n in F igu re  6.10. T able  6.1 shows the  qua lity  m easures before an d  after 

th e  op tim isa tio n , w ith  b o th  qa and  qp slightly  im proved. T h e  m in im um  value of q-y was 

increased  by two o rders of m agn itude , from  0.3901% to  11.14%, resu lting  in all Voronoi 

edge lengths being accep tab le . T h e  m axim um  value of qs had  increased, as expected ,
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F i g u r e  6.10: Optimisation history for backward facing step example

to 48.70% but, since this value was less than 100%, all edges remained acceptable. An 

improvement could also be seen in the values of qe, from 99.925% acceptable edges to 

all the edges being acceptable.
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T a b l e  6.1: Quality measures for the mesh for the backward facing step. 

Delaunay element quality, qa

Percentage acceptable Mean M inimum Maximum

Before 99.88 0.9260 -0.6272 1.0000
A fter 99.89 0.9239 -0.4034 1.0000

Distance between Voronoi vertex and centroid, qp

Percentage acceptable Mean Minimum Maximum

Before 99.94 5.456 0.0015 185.9
A fter 99.99 5.590 0.0013 101.0

Voronoi edge length, q1

Percentage acceptable Mean M inimum Maximum

Before 99.99 100.4 0.3901 301.7
A fter 100.0 100.4 11.14 344.1

Distance between the Delaunay edge midpoint and the Voronoi edge, q$

Percentage acceptable Mean M inimum Maximum

Before 100.00 0.0000 0.0000 0.000
A fter 100.00 0.0259 0.0000 48.70

Distance between the Voronoi edge midpoint and the Delaunay edge, qt

Percentage acceptable Mean M inimum Maximum

Before 99.93 3.880 0.0000 15230
A fter 100.00 3.280 0.0000 100.0
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F i g u r e  6.11: Mesh, englarged near the aerofoil, for the NACA0012 aerofoil

6 .3 .3  N A C A 0012  aerofoil

T he second exam ple  involved a tr ian g u la r  m esh gen era ted  in th e  region b o unded  in te r

nally  by a X A CA 0012 aerofoil and ex ternally  by a c ircu lar fa r-h e ld  boundary . A deta il 

of th e  m esh in th e  v icinity  of th e  aerofoil is show n in F igure  6.11. T he  m esh consists 

of 32 460 e lem ents, w ith  in itia l m ean D elaunay qua lity  qQ — 0.5278. However, 1 867, or 

a lm ost 6%, of these  elem ents are bad. T he ra te  a t which th e  num ber of bad  elem ents 

decreases to  zero is show n in F igure  6.12. T he  m ean  C P U  cost of one ite ra tio n  was 

12 seconds. F igu re  6.13(a) shows a deta il of th e  m esh, in th e  vicin ity  of th e  tra il

ing edge of th e  aerofoil, before op tim isa tio n  and  F igure  6.13(b) shows th e  sam e area  

of th e  m esh a fte r o p tim isa tion . T h e  m ean D elaunay  elem ent qu a lity  for th e  op tim ised  

m esh is qa =  0.6392, w hich m eans th e  quality  of th e  elem ents was im proved d u rin g  the  

o p tim isa tio n  process. C onsidering th e  value of qa alone, th e  percen tage  of accep tab le  

e lem ents was increased  by a round  4%. T he  full se t of qua lity  m easures is p resen ted  in 

T ab le  6.2. I t can  be seen th a t  th e re  was an  increase, of a ro u n d  3%, in th e  percen tage  

of accep tab le  e lem ents w hen considering qp. T h e  m in im um  value of qy was increased  by 

tw o o rders of m ag n itu d e  from  0.0160% to  3.308% and  th e  num ber of accep tab le  Voronoi 

edge leng ths h ad  increased  slightly. As in the  prev ious exam ple, the  m axim um  value of 

qs was increased  to  77.11%. T he  num ber of edges w ith  an  accep tab le  value of qc was 

significantly  increased  from  96.310% to  100%.
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F i g u r e  6.12: Optimisation history for the NACA example
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F i g u r e  6.13: Detail of the NACA example, with red circles indicating Voronoi vertices 
which lie outside their associated Delaunay element.
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T a b l e  6.2: Quality measures for the mesh for the NACA0012 aerofoil. 

Delaunay element quality, qa

Percentage acceptable Mean M inimum Maximum

Before
After

94.25
98.72

0.5278
0.6392

-1.625
-0.5017

0.9974
0.9992

Distance between Voronoi vertex and centroid, qp

Percentage acceptable Mean M inimum Maximum

Before
After

96.81
99.99

37.40
26.84

0.2046
0.0541

730.10
116.7

Voronoi edge length, q7

Percentage acceptable Mean M inimum Maximum

Before
After

98.90
99.99

107.0
103.9

0.0160
3.308

369.1
419.9

Distance between the Delaunay edge midpoint and the Voronoi edge, q$

Percentage acceptable Mean M inimum Maximum

Before
After

100.0
100.0

0.0000
0.4251

0.0000
0.0000

0.0000
77.11

Distance between the Voronoi edge midpoint and the Delaunay edge, qe

Percentage acceptable Mean M inimum Maximum

Before
After

96.31
100.0

43.33
19.56

0.0012 
5.842 x 10" 4

2.192 x 105 
99.99
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F ig u r e  6.14: Optimisation history for the Lake superior example 

6 .3 .4  2 D  L a k e  S u p e r io r

The next example involved a mesh generated to represent the geometry of Lake Supe

rior. The initial mesh consists of 10 850 elements, with mean Delaunay element quality 

qa =  0.6186, and contains 402 bad elements. The optimisation history is shown in Fig

ure 6.14. The mean Delaunay element quality increased to qa = 0.6697 and only one 

bad element remained. Further iterations were unable to repair this element. The initial 

and optimised meshes are shown in Figures 6.15(a) and 6.15(b) respectively. A detail of 

the region of the mesh which includes this bad element, before and after optimisation, is 

shown in Figure 6.16. The nodes of the remaining bad element all lie on the boundary 

and were unable to move. Since the snapshot generation process is a local optimisation, 

and only one bad element exists, the MCS could not find a set of weights to fix the 

element. The only way to fix this would be to move the boundary nodes along the 

boundary, which as discussed in the methodology is undesirable for practical reasons. 

The mean CPU cost of one iteration was 6 seconds for this example. The mesh quality 

measures are presented in Table 6.3. The results showed the same trends as in the pre

vious examples. The percentage of acceptable values of qp increased, the mean value of 

q1 remained close to the acceptable value of 100% and the minimum value increased by
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(a) Before optim isation

8r

6r

5r

(b) After optim isation

F i g u r e  6.15: The mesh for Lake Superior with red circles indicating Voronoi vertices 
which lie outside their corresponding Delaunay element.
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/

(a) Mesh before optim isa- (b) Mesh after optim isation  
tion

F i g u r e  6.16: Detail of the mesh for Lake Superior with red circles indicating Voronoi 
vertices which lie outside their corresponding Delaunay element.

two o rders of m agn itude . T he  m axim um  value of q$ increased to  66.77% from  zero and  

all values were accep tab le . T he  num ber of accep tab le  values of qt increased to  100%.
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T a b l e  6.3: Quality measures for mesh for Lake Superior 

Delaunay element quality, qa

Percentage acceptable Mean M inimum Maximum

Before 96.30 0.6186 -1.162 0.9972
After 98.64 0.6697 -1.162 0.9969

Distance between Voronoi vertex and centroid, qp

Percentage acceptable Mean M inimum Maximum

Before 98.33 29.18 0.1849 499.3
After 99.95 24.66 0.3446 256.9

Voronoi edge length, q1

Percentage acceptable Mean M inimum Maximum

Before 98.94 102.8 0.0584 656.5
After 99.98 102.1 6.046 360.0

Distance between the Delaunay edge midpoint and the Voronoi edge, q$

Percentage acceptable Mean M inimum Maximum
Before 100.0 0.0000 0.0000 0.0000
After 100.0 0.3696 0.0000 66.77

Distance between the Voronoi edge midpoint and the Delaunay edge, qe

Percentage acceptable Mean M inimum Maximum

Before 97.47 31.11 1.855 x 10" 4 66200
After 100.00 18.17 0.0020 99.99
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F i g u r e  6.17: Mesh for the multi-com ponent aerofoil

6.3 .5  M u lti-co m p o n en t aerofoil

T his  exam ple involved a tr ian g u la r  m esh gen era ted  in th e  region bounded  in te rn a lly  

by a m u lti-co m p o n en t aerofoil and  ex te rn a lly  by a c ircu lar far-fie ld  boundary . T he  

in itia l m esh consists of 166 294 elem ents, which was th e  largest two d im ensional exam ple 

considered. T his exam ple was different from th e  previous exam ples in th a t th e  in itial 

m esh con tains a significant v a ria tion  in th e  elem ent size, as is ap p aren t from  F igu re  6.17 

w hich shows a view of th e  m esh. In sp ite  of th e  com plexity  of th e  geom etry, th e  in itia l 

m esh only contains 158 bad  elem ents. T h is varia tion  in elem ent size had  no ap p a ren t 

im p act on th e  effectiveness of th e  o p tim isa tio n  techn ique, as F igure  6.18 shows all th e  

bad  elem ents were repaired . T his was th e  m ost expensive 2D exam ple, w ith  a  m ean  

C P U  cost of one ite ra tio n  equal to  232 seconds. A lthough  th e  nodes were m oved d u ring  

op tim isa tio n , th e  m ean  D elaunay  elem ent q ua lity  rem ained  largely unchanged. T able 6.4 

shows th e  full set of qu a lity  m easures for th is  exam ple. T h e  m axim um  value of qp was 

m ore th a n  halved, since all th e  bad  elem ents were e lim in a ted  from  th e  m esh. T he  

m ean  value, and  th e  percen tage  of elem ents w ith  an  accep tab le  value, of qp were no t 

significantly  changed due to  th e  sm all num ber of bad  elem ents in th e  in itia l m esh. T h e  

m ean  value of q1 rem ained  unchanged , b u t th e  m in im um  value was increased by an  order 

of m agn itude . T he m axim um  value of q$ was increased from  zero to  70.57%, so th a t  all 

th e  edges were acceptab le . T he num ber of accep tab le  values of qt increased to  100%.

Incom pressib le lam inar viscous flow, a t a  R eynolds N um ber R e= 1 0  000, over th is  m u lti

com ponen t aerofoil was m odelled by solving th e  N av ier-S tokes equations using a  u n s tru c 

tu red  m esh im p lem en ta tio n  of th e  co-vo lum e m arker and  cell m ethod  [148]. A lthough  a 

so lu tion  is ob ta ined  on th e  op tim ised  m esh, it proved to  be im possible to  o b ta in  a s tab le
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F i g u r e  6.18: Optimisation history for the m ulti-com ponent aerofoil example
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FIG URE 6.19: Plot of the vorticity for incompressible viscous How over the m ulti-
component aerofoil [148]

so lu tion  on th e  in itia l m esh. A d eta il of th e  com pu ted  d is tr ib u tio n  of vorticity , in th e  

v icinity  of th e  aerofoil on th e  op tim ised  m esh, is show n in F igure  6.19.
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T a b l e  6.4: Quality measures for the mesh for the multi-component aerofoil 

Delaunay element quality, qa

Percentage acceptable Mean M inimum Maximum

Before 99.90 0.8584 -0.7744 0.9999
After 99.95 0.8619 -0.4834 0.9999

Distance between Voronoi vertex and centroid, qp

Percentage acceptable Mean M inimum Maximum

Before 99.95 10.52 0.0041 216.8
After 100.0 10.21 0.0026 97.94

Voronoi edge length, q7

Percentage acceptable Mean Minimum Maximum

Before 99.99 100.9 0.3665 298.7
After 99.99 100.9 7.111 322.2

Distance between the Delaunay edge midpoint and the Voronoi edge, q§

Percentage acceptable Mean Minimum Maximum

Before 100.00 0.0000 0.0000 0.0000
After 100.00 0.0307 0.0000 70.57

Distance between the Voronoi edge midpoint and the Delaunay edge, qe

Percentage acceptable Mean M inimum Maximum

Before 99.94 7.485 0.0000 9853
After 100.0 6.986 5.451 x 10“ 6 99.99
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F ig u r e  6.20: Cost analysis, number of nodes plotted against mean iteration cost 

6 .3 .6  C o s t  a n a ly s is

Using the two dimensional examples a simple cost analysis of the scheme was performed. 

Since most operations involve looping over nodes, it would be expected tha t the cost of 

this scheme would be O(N) .  Figure 6.20 shows that this was indeed the case. The mean 

CPU cost of an iteration was plotted against N  for the above examples, with the solid 

line illustrating the relation was close to linear.
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F i g u r e  6.21: The sphere mesh before optimisation, the left hand plot shows all the 
elements and the right hand plot shows just the bad elements

6.3 .7  Sphere

Prim arily , th e  focus of th is  ch ap te r was to  use two dim ensional exam ples to  explore 

a new stra teg y  for m esh o p tim isa tion . A num ber of exam ples were also perform ed 

w hich illu stra te  th e  p o te n tia l for th is m ethod  to  work in th ree  d im ensions. In  th e  th ree  

dim ensional exam ples, only th e  num ber of bad  elem ents was considered as a  quality  

m etric , since th is  was th e  prim e m otivation  of th e  technique. For th e  first exam ple, 

an  in itia l te tra h e d ra l m esh, p lo tted  in F igure 6 .21, was g en era ted  for th e  region inside 

a  sphere. C om pared  w ith  th e  2D exam ples, th ere  was a m uch higher co n cen tra tio n  of 

bad  elem ents th ro u g h o u t th e  m esh. T he  m esh con ta in s 2 775 elem ents, of w hich 451, or 

16%, are bad. F igure 6.22 shows how th e  percen tage  of b ad  elem ents decreased  to  zero, 

during  th e  op tim isa tio n  process.
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F ig u r e  6.22: Optimisation history for the 3D sphere example
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F i g u r e  6 . 2 3 :  The cube mesh before optimisation, the left hand plot shows all the 
elements and the right hand plot shows just the bad elements

6.3 .8  C ube

T his exam ple, used by K linger and  Shewchuk [144], is a  m esh of a cube gen era ted  by 

N E T G E N  [149]. T he  m esh is p lo tte d  in F igure 6.23. D espite th is  being q u ite  a  small 

m esh of only 1184 elem ents, th ere  is a  large p ercen tage  of bad  elem ents in itia lly  (287 in 

to ta l) . T here  are also a  num ber of s itu a tio n s  a t  th e  corners of th e  cube w here an  elem ent 

is en tire ly  m ade up of b o u n d ary  nodes. In th is  case th e  only way to  fix th e  elem ent is 

by o p tim isa tion  of th e  w eights. D espite th is  difficulty all bad  elem ents were fixed by the  

o p tim isa tio n  process. T he  cost and  h isto ry  of convergence is show n in F igure 6.24.
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F ig u r e  6.24: Optimisation history for the 3D cube example
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F i g u r e  6.25: The St Gallen mesh before optimisation, the left hand plot shows all the 
elements and the right hand plot shows just the bad elements

6.3 .9  St G allen

Figure 6.25 shows th e  St G allen  m esh before o p tim isa tion . T h is  exam ple is also used 

by K linger and Shewchuk [144]. It has m any curved boundaries, and  was genera ted  

by Alliez et al. [150]. T h e  m esh con ta in s 50391 te tra h e d ra l elem ents, of w hich 15.3% 

are bad  initially. T he  num ber of boundaries in th is p rob lem  posed a challenge for th e  

op tim isa tion  schem e, and  th e  techn ique was unab le  to  fix all elem ents, w ith in  an  accep t

able tim e. D espite th is, th e  techn ique was significantly  b e tte r  th a n  L loyd’s a lgorithm , 

as show n in F igure 6.26. L loyd’s a lgo rithm  reduced  the  percen tage  of bad  elem ents to  

10.8%, w hereas a com bination  of local coo rd in a te  op tim isa tio n , using M CS, an d  global 

weight op tim isa tion , using P O D  and  M CS, was able to  reduce th e  p ercen tage  of bad  

elem ents to  0.788%. In th is  exam ple, L loyd’s a lgo rithm  and  Laplace sm oo th in g  were 

no t em ployed prior to  th e  node and  weight o p tim isa tion .
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15
 Reduced order mesh optimisation with MCS
 Best achieved by Lloyd’s algorithm________
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F i g u r e  6.26: Optimisation history for the St Gallen example
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F i g u r e  6.27: The ONERA M6 mesh before optimisation  

6.3.10 O N E R A  M6

An O N E R A  M6 wing m eshed  ex te rn a lly  to  a  spherical far field was th e  filial exam ple 

perform ed. P a r t of th e  surface m esh is p lo tted  in F igure 6.27. T his exam ple was the  

largest m esh considered, w ith  245421 elem ents, of w hich 42.6% are bad  initially. W ith  

th e  largest p ercen tage  of bad  elem ents initially, th is  exam ple was th e  m ost difficult con

sidered. As w ith  th e  S t G allen exam ple, th e  technique was unab le  to  fix all of the  

elem ents w ith in  an  accep tab le  tim efram e. However, th e  techn ique significantly  o u tp e r

form ed L loyd’s a lgorithm . W hen  ju s t  app ly ing  L loyd’s a lgorithm , th e  lowest num ber 

of bad  elem ents achieved was 35.4%. F igure  6.28 shows th e  o p tim isa tio n  h isto ry  for a 

com bination  of node and  weight o p tim isa tion , w ith o u t th e  in itia l app lica tion  of Laplace 

sm ooth ing  or L loyd’s a lgo rithm . A fter 5000 seconds of C P U  tim e, th e  num ber of bad 

elem ents was reduced  to  7.19% by th e  technique in troduced . In  b o th  th e  St G allen and  

O N ER A  M6 exam ples, b o u n d a ry  co n stra in ts  lim it th e  num ber of bad  elem ents which 

were able to  be fixed. W ith  fu rth e r research, th is  problem  m ay be allev iated  by m oving 

the  b o u n d ary  po in ts , or by in serting  po in ts  on th e  surface or in to  th e  volum e m esh. T he 

possibility  of m erging D elaunay  elem ents which have sm all Voronoi edges, as described 

in [128], has been neglected. T h is  m ay also result in a  reduc tion  in th e  num ber of bad 

elem ents.
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45
 Reduced order mesh optimisation with MCS
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F ig u r e  6 .28 : Optimisation history for the ONERA M 6 example

6.4 D iscussion

An optimisation technique for the problem of generating high quality dual orthogonal 

unstructured meshes has been presented. It has been shown that, by considering the 

weighted Voronoi power diagram, it was possible to find a coordinate/weight distribution 

which results in a mesh in which all, or almost all, the Voronoi vertices lie within their 

associated element. The positive effect of this improvement, on co-volume solution 

methods, has been discussed [128-130, 148]. In addition, it has been demonstrated tha t 

the optimisation technique did not have a negative effect on the spatial quality of the 

primal Delaunay mesh in two dimensions. Indeed, in some cases, the spatial quality 

of the primal Delaunay mesh was also improved. The maximum distance between any 

Voronoi vertex and the centroid of its corresponding element was reduced in all the 

examples considered and, unexpectedly, the optimisation process significantly increased 

the minimum Voronoi edge length in all two dimensional cases. This will have positive 

implications to the magnitude of time step size that can be adopted in explicit co-volume 

simulations. The cost of the process was that a Voronoi edge may no longer bisect the 

corresponding Delaunay edge. This will have certain implications on the accuracy of 

simulations. In the future, this could be addressed by considering the possibility of 

multi-objective function optimisation, i.e. attem pting to optimise the mesh based on
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multiple quality measures, such as adding a penalty for deviations from the Delaunay 

edge bisection.

The method is general and has been applied successfully in two simple three dimensional 

examples. It was unable to fix all bad elements in two of the more complex three dimen

sional examples presented. Despite being unable to fix all bad elements, the technique 

still performed well compared with standard techniques. In both these examples, the 

optimisation was still reducing the number of bad elements when the procedure was 

interrupted due to excessive CPU time. The rate at which the final 5 — 10% of bad ele

ments were being fixed was not rapid enough to be practical. This needs to be improved 

with further development of the technique. It is felt that the results presented here do 

show this novel technique has real potential moving forward.

The method did not require the subdivision of elements, by the addition of nodes, to 

repair all elements in a mesh, which is a requirement of some methods as discussed in 

Section 6.2.2.1. The aspects which led to the success of the method were the use of 

POD to reduce the dimensionality of the problem and enable the application of MCS. 

Although this method was applied specifically to optimising meshes for use with co

volume schemes, the method could be readily adapted for other applications, by simply 

changing the mesh quality objective function to reflect the new requirements. It would 

also be possible to apply model reduction to the node coordinates themselves.



Chapter 7

Conclusion

The objective of this thesis was to apply reduced order modelling and optimisation 

techniques to the problem of aerodynamic design. Only techniques where big design 

changes are possible were of interest. This objective can be split into two parts, the 

optimisation algorithm and the reduced order modelling techniques.

The overview given in Chapter 2 led to the consideration of metaheuristic gradient 

free optimisation techniques. Cuckoo search was selected as a potential algorithm and 

modified to improve performance in Chapter 3.

It was found, in Chapter 4, that, when not coupled with reduced order modelling tech

niques, the technique showed potential when applied to aerodynamic shape optimisation.

The literature study presented in Chapter 5 shows that most reduced order modelling 

techniques were only valid for fixed flow parameters. One technique which showed 

promise was the proper orthogonal decomposition interpolation technique discussed in 

Section 5.4.2. This technique was tested for steady problems in Section 5.4, where it 

was deemed unsuitable for many general optimisation problems.

The contributions and findings of the thesis are now summarised, and then suggestions 

for future work are presented.

7.1 C ontributions and Findings o f the Thesis

7 .1 .1  M o d ified  C u ck oo  S earch  [1]

As part of this work, the optimisation algorithm modified cuckoo search was developed. 

This algorithm is a modification of cuckoo search. The standard algorithm was modified

223
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by the addition of information exchange between the top eggs (best solutions). Stan

dard optimisation benchmarking functions were then used to test the effects of these 

modifications. It was found tha t modified cuckoo search performs as well or better than 

the standard cuckoo search and a particle swarm optimisation and differential evolution 

algorithm in most cases.

An implementation of the algorithm was published in the open source project modif ie d -  

cs [64]. The code has been downloaded around 1,000 times and has already been used 

in a range of applications which were discussed in Chapter 3.

7 .1 .2  R e d u ce d  O rder M o d e llin g  o f  U n s te a d y  F lu id  F low  u s in g  P r o p e r  

O rth o g o n a l D e c o m p o s it io n  an d  R a d ia l B a s is  F u n ctio n s  [2]

A technique was developed for interpolating unsteady solutions to parameterised fluid 

flow problems, using a combination of proper orthogonal decomposition and radial ba

sis functions. The technique was validated by considering simulations involving three 

dimensional unsteady compressible inviscid flow over an oscillating ONERA M6 wing. 

It was demonstrated tha t the approach can result in a large reduction in the CPU time 

required to find solutions, at new parameter values, without a significant loss in accuracy.

The technique developed is much simpler than other unsteady reduced order modelling 

techniques, based on proper orthogonal decomposition, and is less prone to stability 

problems and boundary condition violations. If the limitations of this technique, i.e. 

th a t it is equivalent to nodewise interpolation, are recognised and accepted it could be 

very useful in a number of applications.

7 .1 .3  R e d u ce d  O rder M e sh  O p tim isa t io n  u s in g  P r o p e r  O rth o g o n a l D e 

c o m p o sit io n  an d  a M o d ified  C u ck oo  S earch  [3]

A new mesh optimisation scheme, reduced order mesh optimisation, was introduced. The 

technique uses proper orthogonal decomposition to reduce the number of dimensions in a 

mesh optimisation problem. This reduction in dimensionality allows the expression of the 

optimisation problem globally rather than  the more traditional local mesh optimisation 

or smoothing algorithms. To perform the optimisation, modified cuckoo search was 

applied. The effectiveness of the algorithm was shown by considering the problem of 

optimising meshes for use in co-volume techniques. Co-volume techniques require the 

existence of two mutually orthogonal meshes. This is achieved by utilising the Delaunay- 

Voronoi dual. A combination of considering the problem globally, and the use of a
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gradient free technique, results in a scheme which significantly outperforms previous 

methods.

7 .1 .4  A p p ly in g  M e ta h e u r is t ic  A lg o r ith m s  to  E n g in eer in g  A p p lic a tio n s

An aim of the thesis was to investigate the use of metaheuristic gradient free algorithms 

for engineering applications. A number of applications have been presented, in which 

the use of gradient free methods proved successful. However, three key problems can 

been highlighted, which may deter the use of metaheuristic algorithms for practical 

optimisation problems. An attem pt to address these concerns is now presented.

7.1.4.1 Poor C om putational Efficiency

The large number of objective function evaluations required by metaheuristic algorithms 

results in poor computational efficiency. This problem can be approached from several 

angles.

One approach is to attem pt to improve the convergence behaviour of the optimisation 

algorithm itself, thus reducing the number of generations required to obtain a good 

solution. This often comes down to algorithm and tuning parameter selection, which is 

discussed in Section 7.1.4.2 below.

For a defined optimisation algorithm, two further strategies remain to increase com

putational efficiency, viz. parallelisation and meta modeling. Parallelisation appears 

promising and relatively straightforward, as each agent can simply evaluate the ob

jective function on its own CPU. An alternative use of multiple CPUs is discussed in 

Section 7.1.4.3 below.

Reduced order modelling is an active field of research and, as reduced order models 

continue to improve, it can be expected that the use of meta models to approximate the 

objective function will become more viable.

Of course, the efficiency problem will also become less significant as computational power 

continues to increase.

7.1.4.2 Tuning P aram eters and th e  R ange o f A vailable A lgorithm s

The choice of which algorithm to use may appear to be difficult. Experience indicates 

that, given enough experimental time, any algorithm can give good results for a particu

lar problem. The range of successful applications, discussed in this thesis and elsewhere,
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supports this statement. If this is the case, then the two main aspects tha t should be 

considered, when selecting an algorithm, are the ease of implementation and the number 

of parameters which need to be tuned.

The nature of metaheuristic algorithms means that it is very unlikely th a t a truly black- 

box optimiser, with no free parameters, will ever exist. A number of algorithms, includ

ing cuckoo search, claim low sensitivity to tuning parameters and this may be considered 

as a benefit. Conversely, a lack of tuning ability may mean tha t an algorithm shows 

reasonable convergence to most problems, but tha t it cannot be tuned to give excellent 

convergence for a specific problem of interest. For example, when applying modified 

cuckoo search to mesh optimisation, a single set of tuning parameters was used for every 

example [3], but, if time was spent tuning the parameters for each new example, better 

results probably could have been achieved. Problem specific tuning is, however, unlikely 

to be practical for real applications.

7.1.4.3 R andom ness o f M etaheuristic  A lgorithm s

People can often be deterred by the random nature of these algorithms. This is an 

understandable concern, as a gradient based algorithm, run multiple times, always pro

duces the same result. This is not guaranteed for gradient free techniques. Thus, in 

practice, it may be desirable to run the optimiser multiple times, which can be an ex

pensive process. There is an argument tha t the best way to parallelise these algorithms 

is to simply use spare nodes to run completely independent optimisers, possibly even 

different algorithms.

The randomness should not be seen as a problem. The evidence presented in this thesis 

and elsewhere shows these algorithms work in real problems. The issue can be summed 

up in the following question, posed in the context of using an optimiser to improve a 

certain design. Does it m atter if different designs are obtained with different runs, if 

they are all better than the starting design?

7.2 Future work

7 .2 .1  C u ck oo  S earch

In Chapter 3, a number of different modifications, made by various researchers, to  the 

cuckoo search algorithm were detailed. A comparison between the performances of these 

different modifications is needed. Currently cuckoo search development has branched
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into a number of different directions. It may be beneficial to merge some of these 

branches, by combining different modifications.

Parallisation strategies need to be investigated to improve computational efficiency. As 

previously discussed, there are many different strategies which will need to be compared.

Further validation of cuckoo search and modified cuckoo search is needed. Initially this 

could be done on a wider range of shifted and rotated test functions, but the ultim ate 

goal should be to test the algorithms on real problems. Comparisons between other 

gradient free and gradient based algorithms should be made where possible.

7 .2 .2  A e r o d y n a m ic  S h a p e  O p tim isa t io n  u s in g  M o d ified  C u ck oo  S earch

Using modified cuckoo search for aerodynamic shape optimisation requires much more 

investigation. Initially, it is important to increase the complexity of the flow physics 

to make the problem more realistic. It will be im portant to consider robust design 

optimisation going forward, which should result in more realistic and practical designs 

which are less sensitive to flow conditions.

Two parameter studies need to be performed. The first with regards to the number 

of degrees of freedom associated with the shape parameterisation itself. More degrees 

of freedom would result in increased flexibility, but possibly at an increased CPU cost 

to effectively sample the design space. The second param eter study should investigate 

the sensitivity 011 the modified cuckoo search tuning parameters. Comparing the perfor

mance of modified cuckoo search to other optimisation algorithms is also needed.

Finally, more work into developing a suitable reduced order modelling technique for this 

application will need to be undertaken. At present, the number of objective function 

evaluations required to reach a solution will be prohibitive for industrial applications. 

However, from a purely scientific point of view it would be interesting to investigate the 

limits of shape optimisation using this technique. Is it possible to start a design cycle 

with a circle and end up with an aerofoil? Further to this it would be interesting to apply 

this to more non-standard problems. For example, work has already begun on applying 

modified cuckoo search to the design of the intake duct for the BLOODHOUND super 

sonic car. The geometry for the car has already been fixed, but it would be interesting 

to see if the optimisation algorithm reaches the same conclusion as the aerodynamic 

engineers.
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7 .2 .3  U n s te a d y  P r o p e r  O rth o g o n a l D e c o m p o s it io n  In te r p o la t io n  T ech 

n iq u es

The most im portant study which needs to be performed is to compare the proper or

thogonal decomposition interpolation techniques developed in this thesis, for unsteady 

problems, to Galerkin projection based reduced order models. The literature suggests 

that Galerkin projection has a number of stability and implementation issues which are 

not exhibited by proper orthogonal decomposition interpolation. A direct comparison, 

however, is still required.

As with the shape optimisation example, it is im portant to increase the complexity of 

the flow physics to three dimensional viscous flow. If the technique cannot perform well 

in these more complicated situations, it may not be worth developing further.

If the results of the above two studies are positive for the proper orthogonal decomposi

tion interpolation technique, further investigation into which interpolation and sampling 

techniques are most efficient needs to be performed. In addition, these techniques may 

be enhanced by coupling them with the residual reduction method discussed in Sec

tion 5.4.1. Proper orthogonal decomposition interpolation could provide an initial guess 

solution for the optimisation process required by residual reduction methods. Further

more, it may be beneficial to use modified cuckoo search in place of the genetic algorithms 

currently used for the optimisation.

Another interesting line of investigation would be to find a way to measure the ability 

of a particular set of modes to recreate new solutions. It should be possible to calculate 

the best achievable accuracy for a set of modes to reproduce a solution. This would then 

give a very clear measure of how successful a particular technique for calculating mode 

coefficients is.

One area where the technique could be applied immediately is in an educational setting. 

For simple problems, a database of snapshots could be generated to allow students 

to interactively explore a param eter space in real time. Instead of just seeing how 

the aerodynamic coefficients change, students would be able to inspect a reasonable 

estimation of the full flow field.

7 .2 .4  R e d u c e d  O rd er M e sh  O p tim isa t io n

Reduced order mesh optimisation combines most of the techniques considered in this 

thesis and is a major contribution. It has the potential to be applied to many different 

forms of mesh optimisation. For example, it would be interesting to apply the technique
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to the optimisation of meshes to  be used for high order techniques, which currently 

presents a challenge. The work presented in the thesis may only scratch the surface of 

what this technique has to offer.

A weakness of the current algorithm is the computational cost required to improve 

tetrahedral meshes. Parallisation strategies, along the lines of those used by Doorly 

and Peiro [30], involving subpopulations of meshes on different CPUs evolving semi- 

independently may be beneficial. Another interesting avenue might be to assign different 

partitions of the mesh to different CPUs during local optimisation routines.

To strengthen the conclusions presented in this thesis, further comparisons with alter

native mesh optimisation techniques is required. In addition, the benefit of global mesh 

optimisation compared to node wise mesh optimisation needs to be quantified. Further 

to this it would be interesting to see how far the idea of a global objective function can 

be pushed. For instance, what would be the effect of using vectors containing not only 

node weights, but node coordinates, as snapshots?

An ultimate goal is to fully autom ate the generation and optimisation of a mesh for 

any arbitrary geometry. The problem is tha t mesh optimisation, and generation, is 

highly problem specific. It would be impossible to test and tune a technique for every 

conceivable geometry. One way of solving this problem might be to take advantage of 

the always on-line nature of modern computers. If a mesh optimisation toolbox was 

made available for general use, it could be developed to report performance statistics, 

along with tuning parameters, back to a central server. This could be done in such a way 

to avoid issues with confidential geometries, by only sending mesh quality information. 

Over time this would build up a much bigger sample than  any single research group 

could hope to achieve. The hope would be tha t an optimum set of tuning parameters 

would emerge.
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