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Abstract

To date, work to assess the progression of wear and the effects o f wear damage on low cycle 
fatigue has tended to be focused on specific components and their operating conditions. 
Although effective in the short term to solve today’s problems, these efforts often deliver 
insufficient understanding o f the overall design space limits to have much influence o f future 
component design.

Therefore, the following research attempts to understand how wear damage progresses and 
how it impacts on fatigue performance in order to develop more accurate lifing models to 
predict the behaviour and life of real engine components.

In order to do this, a survey o f the internal Rolls-Royce database and public literature on wear 
damage on components from ex-service and current service engines was performed. 
Information relating to the wear scar morphologies in the reports was extracted as well as 
physically measuring and analysing wear damage on worn components within the Rolls- 
Royce failure investigation department. The wear damage was then replicated onto 
Udimet720Li laboratory fatigue specimens by a means o f altering the pad pressure and pad 
sliding distance to produce a range o f wear damage in order to carry out fatigue testing. 
Fatigue testing o f the damaged specimens allowed fatigue knockdown factors to be calculated 
to determine the impact o f wear on the fatigue life.

A fretting fatigue rig was also designed and built for this research to focus on in-situ fretting 
fatigue at high temperatures o f 600°C.
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Abbreviations

Parameter Description Units
p Normal load N

Q Tangential load N

M M oment Nm

x,y,z Coordinate system M

u,v,w Displacements in x,y,z coordinate 
directions

M

P Coefficient of friction

CTo Subsurface bulk stress N/m2

h(x) Contact geom etry profile, gap function M

a Contact radius M

c Stick zone radius M

P(x) Normal contact pressure N/m2

q(x) Contact shear traction N/m2

W W ear volume per unit displacement mm3/m

k Dimensional w ear coefficient mm3/(Nm)

H Indentation hardness N/m2

R Radius of contact pin M

E* Equivalent Young's modulus N/m2

Po Maximum Hertzian pressure N/m2

f(x) Slip (or shift) function M

t Time Seconds

u Time derivative of displacement 
(=du/dt)

m/s



1 Introduction

In the aerospace industry alone, statistics show that the majority o f service failures in aircraft 

components occur by fatigue and it amounts to about 60% of the total failures1. When a 

material fails by fatigue, the nominal maximum stress values are less than the ultimate tensile 

stress limit, and may even be below the yield stress limit o f the material. Hence, failure can 

occur unexpectedly.

In most cases, fatigue failure initiates from regions o f high stress intensity that provide the 

perfect platform for crack initiation and propagation. Sometimes the region o f high stress 

intensity can be due to geometric discontinuities such as material imperfections, surface 

roughness or sharp comers, all o f which decrease the fatigue life. In the case o f plain fatigue, 

for a defect free material, regions o f stress can result from the localisation o f persistent slip 

bands caused by the movement o f dislocations when the material is subjected to a repeated 

cyclic stress.

Contact fatigue is a damage wear mechanism concerning oscillating contacts that are 

intended to be fixed and can have detrimental effects on the fatigue performance o f materials. 

For example, fretting fatigue is a form o f contact wear most commonly witnessed in bolted 

configurations, splines, lockplates, coverplates on disc rims and most notably, the disc/blade 

root interface. The relative slip between the mating contacts does not have to be sufficiently 

large in order to produce wear by fretting. In fact, it has been experimentally measured, that 

the most life limiting sliding amplitude of fretting occurs on a microscale of 50pm.

The myriad o f factors involved in the contact wear problem makes modelling of contact 

fatigue extremely difficult with previous research suggesting that fretting fatigue involves as 

many as 50 variables. As a result, this has generally led to focused experiments where the 

geometry and load conditions o f a particular application are replicated as closely as possible. 

Experiments can take the form of full scale rig tests to sub-element testing which only 

replicate a section o f the engine such as the disc/blade root. Sub-element wear tests aim to 

simulate the problems experienced in service as accurately as possible, taking into 

consideration factors such as stress, geometry, sliding distances, friction coefficients,

1



temperature and environments. However, in order to simplify the analysis phase o f the 

experiment, i.e. FE modelling, the variables are kept to a minimum and the geometry is also 

kept relatively straightforward.

Though successful in the short term, such experimental investigations to reproduce and 

simulate each practical situation in which evidence of fretting fatigue is observed may 

become less feasible as costs escalate. The ensuing redesign to mitigate fretting fatigue in 

each instance also becomes difficult because there is inadequate understanding o f the 

influence o f the contact fatigue parameters themselves. Thus, the development o f modelling 

methods capable of capturing the fundamental mechanics o f the contact fatigue problem is 

required to develop next generation life prediction schemes and to maintain the current sub­

element testing methodology being employed by Rolls Royce. Thus, before this can be done, 

the progression o f wear and its effects on the components service life needs to be understood.



2 Literature Review

2.1 Characteristics of High Temperature Materials

If it were not for the remarkable ability o f a certain class o f materials to maintain their 

properties at elevated temperatures, jet flight would not be possible. It is this class o f 

materials that we refer to as the high temperature materials and in the aerospace industry; 

they are known as the super alloy s. These alloys are chosen for their excellent load-bearing 

capabilities at temperatures in excess o f 80% of their incipient melting temperatures, a 

fraction that is higher than for any other class o f engineering alloys. Their uses are wide and 

varied, and currently constitute over 50% of the weight in advanced aircraft engines , being 

implemented in the hottest parts o f the o f jet engines for components such as disks, 

combustion chambers, bolts, casings, shafts, exhaust systems, cases, blades, vanes, burner 

cans, afterburners and thrust reversers.

Indeed, consistent with the concept thermodynamics, the limiting factor to improved thrust 

and fuel economy in modem aeroengines is the ability to increase the turbine inlet 

temperatures (TIT) and this is dependent upon on the capability o f the superalloys to maintain 

their mechanical properties at higher combustion temperatures. To reach higher TIT in the 

future, there will either need to be improvements in processing and developments o f current 

superalloys, or a new generation of superalloys will need to be introduced. Current research 

into new and improved superalloys is already underway, with optimistic results leaning 

toward cobalt alloys as the superalloys of the future.

For a material to be classed as a ‘high temperature material’ it must be able to withstand 

considerable loading at an operating temperature close to its melting point. To define a high 

temperature material, let the operating temperature be donated as Toper and the melting point, 

Tm. A criterion based upon the homologous temperature x, defined, as Toper/ Tm should 

produce a value > 0.6.

3



Hence, a superalloy operating at 1000°C in the vicinity of the melting temperature of nickel, 

1455°C, working at a x of (1000+273)/( 1455+273)- 0.75, is classified as a high temperature 

material.3

Another desirable characteristic of high temperature materials is to maintain a substantial 

resistance to mechanical degradation over extended periods o f time. In this case, mechanical 

degradation refers to two common failure systems (i) Fatigue, where a component is 

subjected to a repeated stress cycle (ii) Creep, a time-dependant, inelastic and irrecoverable 

deformation which is problematic at high temperature due to the promotion of thermally 

activated processes. Furthermore, as with all structural materials, the static properties o f yield 

stress, ultimate tensile strength and fracture toughness must all be maintained over extended 

periods o f time. In the case of superalloys, the high temperature strength is improved by the 

process o f solid solution strengthening. The technique works by adding atoms of one element 

(the alloying element) to the crystalline lattice o f another element (the base metal). The 

alloying element diffuses into the matrix, forming a solid solution. Since the strength o f a 

material is dependent on how easily dislocations in its crystal lattice can be propagated, when 

solute atoms are introduced, local stress fields are formed that interact with those o f the 

dislocations, impeding their motion and causing an increase in the yield stress of the material. 

Thus, the increase in strength o f the material is a result o f both lattice distortion and the 

modulus effect. However, the most important strengthening mechanism is through the 

formation o f secondary phase precipitates such as gamma prime and carbides through 

precipitation strengthening and will be discussed in Chapter 2.5.

A final desirable characteristic o f high temperature materials is the ability to operate in severe 

corrosive and oxidising environments. Kerosene used for aeroengine fuel is relatively clean 

but corrosion due to impurities such as potassium salts and the ingestion o f sea-water can 

occur during operation. It is well understood that any surface degradation reduces component 

life considerably since flaw free materials spend most o f their life in the crack initiation stage. 

Therefore, introducing a stress concentration effect from surface degradation provides a 

perfect nucleation site for fatigue cracks to propagate from.

2.2 Superallovs for Turbine Disc and Blade Applications

The primary function o f a turbine disc is to provide fixing o f the turbine blades. The blades 

are located in the gas stream, from which mechanical energy is extracted. The extracted



energy is then transferred to the fans and compressor sections via the shaft, which runs along 

almost the complete length o f the engine. Essentially, it is the job o f the turbine to keep the 

compressor functioning.

The turbine discs are amongst the most critical o f components in the je t engine and are thus 

designated critical group A parts by the aerospace industry. This is because if a disc were to 

fail it could have severe repercussions on the aircraft’s safety, since the kinetic energy that 

the disc fragments possess is uncontainable by the engine casing. To put this into context, the 

turbine disc o f a modem civil turbofan such as a Trent 800 represents 20% of its total weight 

and rotates at 10,500rpm. Consequently, the mechanical stresses generated in the bore region 

may reach lOOOMPa during takeoff i.e. they may exceed the uniaxial tensile yield strength o f 

the material. Disc failures can also result in an overspeed condition, which puts higher 

stresses on the drive shaft. An interesting analogy put forward by Rolls-Royce is: “The 

energy stored in a HP turbine disc under such conditions is very significant: equivalent, in 

fact, to 0.75kg o f high explosive, or a saloon car traveling at over 100 mph.”2

Hence, to ensure discs have a safe working life, risk mitigation by an appropriate fifing 

strategy is o f huge importance. Mechanical degradation during service and its acceleration 

due to oxidation and/or corrosion must therefore be quantified and predicted, so that each 

disc is withdrawn from service after a predicted number of take off/landing cycles, known as 

the predicted safe cycle fife (PSCL) or safe working fife. There are also other methods used 

for fifing turbine discs such as the life-to-first-crack approach, damage tolerance fifing (also 

known as retirement for cause) and the probabilistic method all o f which can be found in 

literature.

2.3 Basic Stress Loads in Turbine Blades and Discs

Since it is the turbine blades job to extract energy from the gas stream and transmit it to the 

compressor, they must be carefully positioned in the direct path o f the high velocity, working 

fluid. Consequently, the operating temperatures are much higher for the turbine blades 

(=1550°C) than the turbine disc rims (~650°C), but the stresses experienced in the discs are 

much greater, and extraordinarily different. This has obviously been taken into consideration 

when designing the discs and blades, as the two have very different compositions, 

microstructures and properties that are tailored to their specific operating environments.
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In the case o f turbine blades, a specialised manufacturing process by investment casting, 

termed directional solidification is used to produce turbine blades that have a single crystal 

microstructure. The drive for industry to produce blades in this way is to eliminate grain 

boundaries to lessen the effects of creep deformation. Creep occurs in materials that are 

subjected to high temperature and stresses below the materials yield stress. Over time, plastic 

strain is accumulated, which causes the material to elongate in length. Creep involves a 

combination o f dislocation and diffusion mechanisms with one particular diffusion 

mechanism, termed Coble creep, occurring through the grain boundaries o f materials. Hence, 

by removing the grain boundaries, coble creep is eliminated, improving the creep behavior o f 

the material. However, creep still remains a problem in turbine blades as other mechanisms o f 

diffusion and dislocation creep remain. These mechanisms are eased by the use o f solid 

solution strengthening due to the presence o f solute atoms or precipitation hardening such as 

y’ which act to pin dislocations that cause plastic strain. The effect o f creep on blades can be 

hazardous to the aircraft, since the large centrifugal stresses cause the blades to extend 

outwards. If the blades are allowed to grow long enough so that they make contact with the 

engine shroud, multiple blade loss can occur with secondary damage to other critical rotating 

parts.

The hot gases inflict a complex set o f stresses on the blades, not just thermally but also 

because o f the high pressure and velocity o f the gas stream. The most obvious deformation is 

the action o f the blade bending backwards as a response to the pressure incident upon the 

front face of the blade. This results in bending stresses on the blade in both the axial and 

tangential direction and therefore induces further stresses in the blade root. However, due to 

the action o f CF forces, the amplitude o f the deflection is reduced slightly since the blades 

naturally try to straighten outwards from the root. It has been shown that the gas bending 

stresses are inversely proportional to the number o f blades and the blade section modulus is 

directly proportional to the blade height and specific work output. Even so, the number o f 

blades cannot be increased beyond blade fixing constraints and furthermore, reducing the 

height o f the blades but maintaining the annulus area implies an increase in annulus mean 

diameter and increase in CF stresses. The second main deformation is that o f a twisting 

motion, generated by the torsional moment about the non-symmetrical compressor blade. The 

effect o f this torsion is limited in the high-pressure compressor but becomes much more 

significant in the larger low pressure compressors and fans.



Blades also experience vibration but in practice, amplitude tends to decrease as frequency 

increases, so the higher frequencies are considered to be o f secondary importance. It is the 

scale o f the local perturbation in the gas stream that drives the blade vibration. These 

perturbations are larger at higher engine speeds, so attention should be focused on the higher 

end o f the Campbell diagram. Stresses in components are also higher at speed (a a  RPM2) 

and it is at these higher stresses that vibratory modes are most effective. Hence, it is usual to 

consider engine speeds larger than 70-80%. Vibration results in engine ordered excitations, 

which is a subset o f high cycle fatigue (HCF). There are three main sources o f excitation (1) 

fixed wake excitation which occurs due to vanes causing stationary flow disturbances (2) 

rotating stall cell excitation (3) self excitation or flutter. An example o f an engine ordered 

excitation is caused by a stator up-wind o f the rotor. As air flows past the stator, a pressure 

wake is set up behind it, and the rotor will experience a pressure disturbance every time it 

passes a stator blade up-wind. Any engine feature, which disrupts the clean airflow e.g. 

intermediate casing struts, can generate these disturbances and assuming sub-sonic airflow, 

the pressure differentials can travel both up-stream and down-stream. There are also non­

engine ordered excitations caused by intake flow distortions such as crosswinds or bifurcated 

(s- shaped) intakes, which alter the pressures differentials within the engine. Like LCF, 

engine ordered excitations add up to produce destructive vibrations, and it is primarily for 

this reason why vibration engineers design against this phenomenon by making sure the 

excitation frequency never matches the natural frequency of the blades.

In the case of turbine discs, “creep resistance is also important, but traditionally it has been 

given less emphasis due to lower operating temperatures and because a stress relaxation 

capability around notches and features o f stress concentration is desirable”2. The high 

rotational speeds and temperatures within the HP turbines pose a significant life-limiting 

factor on the rotors, due to the effects o f fatigue and creep. Primarily, stresses originate from 

three main sources (i) Centrifugal loading o f the disc material itself (ii) Centrifugal loading 

from external features such as blades, lockplates, spacers and coverplates (iii) Temperature 

gradients between bore and rim. There are also end loads from pressures on disc faces and 

nip loads due to rims and spacers being clamped together. Working in the disc’s rotating 

frame o f reference, the centrifugal loading acts to pull the disc material outwards generating 

radial stresses that can lead to radial expansion. Since, centrifugal loading is given by mct)2r, 

where m is the mass, co is the angular velocity and r is the radius, it suggests that CF loading



is highest for large radii, high rotational speeds and heavy components. The stresses 

experienced in the disc are not evenly distributed. For example, the radial stresses are 

obviously zero at the bore (radius is zero), increases to a maximum at the diaphragm and 

reaches a finite value at the rim. The maximum radial stresses occur at the middle o f the disc 

profile but due to the large circumferential cross sectional area in this region, it permits the 

thickness to be kept relatively thin. The radial expansion (strain) caused by the centrifugal 

forces act to further increase the CF loading since the radius is increasing. This also causes 

further problems, since there must be a safe tip clearance between the blade tips and the 

casing structure.

To limit the effect of CF stresses, discs are designed with a complex geometry whilst 

achieving optimum strength at minimum weight. For HP turbine discs, which rotate with a 

high angular momentum, they are designed to have more mass at the bore region and less 

mass in the diaphragm and rim region, which reduces the moo2r effect. This is also why high 

strength to weight ratio materials, such as nickel superalloys, are vital in the aerospace 

industry.

Fatigue has a major effect on the life o f a component. Statistics show that majority of service 

failures in aircraft components occur by fatigue and it amounts to about 60% of the total 

failures4. When a material fails by fatigue, the nominal maximum stress values are less than 

the ultimate tensile stress limit, and may be below the yield stress limit of the material. 

Fatigue may be classed into two domains, Low cycle fatigue (LCF) and High cycle fatigue 

(HCF). LCF is associated with relatively high loads that produce not only elastic strains but 

also some plastic strain during each cycle. In this case, fatigue lives are relatively short and 

occur at less than 104 to 105 cycles. For lower stress levels, wherein deformations are totally 

elastic, longer lives result. This is called high-cycle fatigue and is associated with fatigue 

lives higher than 104 to 105 cycles.

A number of factors influence the fatigue life of a component in service, (i) complex stress 

cycles, (ii) engineering design, (iii) manufacturing and inspection, (iv) service conditions and 

environment and (v) material o f construction. Analysis shows that premature fatigue crack 

initiation in the components can be attributed to defects of various types introduced mostly 

inadvertently in various stages o f component design, manufacture, maintenance, inspection, 

operation etc. Ultimate care is taken when machining jet engine components to ensure that no 

impurities or surface discontinuities are introduced into the component before entry into



service. A major source o f stress intensification occurs when two materials come into contact 

with each other and cause wear, which in tribological terms, is referred to as fretting fatigue.

Other stresses associated with rotating components are hoop stresses and axial stresses. Hoop 

stresses act circumferentially around the disc and are found to be a maximum at the bore and 

decreases steadily with increasing radius. This is also another reason why more mass is 

shifted to the bore region compared to the rest o f the disc and allows the large hoop stresses 

to be distributed over a larger area.

Axial stresses occur at the wider sections o f the disc due to the interaction o f the turbine 

blades with the gas stream and are a product o f the expansion in the radial and hoop 

directions with contributions from unbalanced discs. However, since axial stresses are small, 

and contribute very little to the overall stress o f the disc, the combination o f the CF stress, 

hoop stress and axial stress is actually considered biaxial, as the axial stress contribution has a 

modest effect on the total stress. The effect o f biaxiality is strongest when the constituent 

forces are equal, and although this is not likely to occur in a disc, there is a section near the 

diaphragm where the radial and hoop stresses are o f equivalent magnitude. In fact, having a 

biaxial stress field basically enables the disc to withstand larger individual forces than the 

material would usually permit if  the stress field were uniaxial. This can be demonstrated by 

employing the Von-Mises yield criterion, which is based upon the differences between the 

three primary stresses, and essentially states that if  all three primary stresses have the same 

value the material will never fail.

Stresses in turbine discs are also modified by temperature gradients. One such modification 

causes the radial stress to be zero at the bore and rim but peak in the diaphragm. This acts to 

lower the tolerance the diaphragm has for mechanically induced radial stresses, meaning 

mass would need to be added to the design in order to compensate for this deficiency. 

Furthermore, temperature gradients act to modify the radial and hoop stresses from the CF 

forces and induce a tensile hoop stress at the bore, which drops to a compressive value at the 

rim. Although the rim only experiences relatively small hoop stresses, the presence o f a stress 

concentration (Kt) feature can magnify the stresses quite significantly. The compressive 

stress at the rim can have a helpful effect, since it can improve the life of stress concentration 

features in the rim region of the disc by closing up flaws and cracks.
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Other problems that turbine discs have to contend with is during the take-off/landing and 

acceleration stages as it is these stages that undergo thermo-mechanical fatigue (TMF). This 

occurs due to the overlay o f a cyclical mechanical loading with cyclic thermal loading as a 

result o f different heating and cooling rates during these regimes. It is also at these stages 

where the discs life deteriorates substantially and is also the most common time of failure. 

When the engine is operating at a steady speed i.e. cruise, the temperature gradient will start 

to soak out, increasing the average disc temperature but decreasing the temperature difference 

between the bore and the rim.

Stress concentration features such as boltholes, air holes and disc slots act to increase the 

stresses in the disc. Furthermore, any feature that has a sharp comer or irregular 

microstructure also acts to magnify the nominal stress in that region. An object is strongest 

when force is evenly distributed over its area, so a reduction in area, e.g. caused by a crack, 

results in a localised increase in stress i.e. the force lines become more intensified. A material 

can fail, via a propagating crack, when a concentrated stress exceeds the material's theoretical 

cohesive strength. Disc/blade root slots are an important feature since they are responsible for 

fixing the turbine blades to the discs, but are also sources o f stress concentration. The stresses 

in this region are complex and large due to the shear forces, bending stresses and large 

crushing stresses that result from the interaction o f the blade with the root o f the disc. Modem 

disc slots are o f two types; firtree slots and dovetail slots. The firtree slots have up to four 

teeth in to which the blade root is slotted, whilst the dovetail has just one large tooth. There 

are approximately five hotspot locations in dovetail root fixings alone and failure o f all but 

one is containable by the engine. Most failures could at the worst release a turbine blade or 

blade and root together, but is containable. The most serious hotspot location is at the disc 

rim, located at the bottom comer o f the root fixing. A crack initiating at this point can 

potentially result in a disc burst, which as discussed earlier, is not containable by the engine 

casing. Another common problem with dovetail and firtree roots is the onset of fretting 

fatigue, which occurs due to the very small amplitudes of movement between the disc and 

blade teeth. This is very similar to friction but results in the onset of micro fissures and small 

cracks that can grow with further stress cycles and potentially cause blade release or disc 

burst. The topic o f fretting fatigue is the basis o f this research and will be discussed in more 

detail in the following chapters.



2.4 Processing and Microstructure of Turbine Disc Nickel Superallovs

The microstructure of jet engine components differ from each other depending on the 

conditions they operate under and the properties they require. For example, as discussed 

earlier, turbine blades experience creep, so a single crystal microstructure helps to alleviate 

this by removing the grain boundaries that are partly responsible for this effect. Turbine discs 

on the other hand have a polycrystalline microstructure that is similar to most crystalline 

solids. That is, they consist o f many small crystals or grains at random crystallographic 

orientations to each other. The polycrystalline structure is formed during the solidification 

process whereby the small grains grow by the successive addition o f atoms from the 

surrounding liquid. The grain size is dependent on the speed at which the melt solidifies (or 

crystallises). Due to the atomic mismatch within the region where the grains meet, a grain 

boundary is formed, which is the basis o f polycrystalline materials. The fact that each grain is 

at a different orientation to the next, implies that polycrystalline materials have isotropic 

properties i.e. the properties are equal in all directions. A single crystal turbine blade is 

referred to as highly anisotropic because its properties are engineered to perform better in one 

direction i.e. the uniaxial direction. This is because the centrifugal forces during turbine 

spinning are radial as discussed in the ‘basic stress loads section’, Chapter 2.3. However, 

discs require strength in all directions due to the effects o f radial stress, hoop stress, 

centrifugal stresses and a combination o f HCF and LCF. Hence a polycrystalline material 

displays the best properties for this purpose.

The size o f the grains, or average grain diameter, in a polycrystalline metal influences the 

mechanical properties. During plastic deformation, slip or dislocation motion must take place 

across this common grain boundary. The grain boundary acts as a barrier to dislocation 

motion for two reasons:

• Since the two grains are of different orientations, a dislocation passing into an adjacent 

grain will have to change its direction o f motion. This becomes more difficult as the 

crystallographic misorientation increases.

• The atomic disorder within a grain boundary region will result in a discontinuity o f slip 

planes from one grain into the other.
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Figure 2.4.1. The motion o f a dislocation as it encounters a grain boundary acts as a barrier to continued slip. 

Slip planes are discontinuous and change directions across the boundary4.

It is well understood that a fine grained material is harder and stronger than one that is coarse 

grained, since the former has a greater total grain boundary area to impede dislocation 

motion. Furthermore, grain size reduction improves not only strength, but also the toughness 

o f many alloys. For many materials, the yield strength a, varies with grain size according to

a y =cr0 +kyd- ' /2 (2.4.1)

This expression is termed the Hall-Petch equation, where d  is the average grain diameter, and 

a0 and ky are constants for a particular material. However, this expression is not applicable to 

both very large (coarse) grain and extremely fine grain polycrystalline materials. The grain 

size is dependent on many factors but primarily depends on the rate o f solidification and the 

processing route.

The discs for the gas turbine engine are processed by the machining o f superalloy forgings, 

using two distinct approaches. The first uses conventional ingot metallurgy, which involves 

the thermal-mechanical working o f material produced by vacuum induction melting, electro- 

slag remelting and vacuum arc remelting. Billets produced in this way are referred to as Cast 

and Wrought product. A second route involves powder metallurgy. The choice o f route 

depends on the chemistry o f the particular superalloy5. Udimet 720Li, a modem nickel 

superalloy used for turbine discs is produced using ingot metallurgy, because the levels o f 

strengthening elements Al, Ti and Nb are relatively low, so that the additional cost associated 

with powder processing cannot be justified6.



Heavily alloyed grades such as Rene 95 and RR1000 cannot be processed using ingot 

metallurgy, since the levels o f segregation arising during melt processing and the significant 

flow stress at temperature cause cracking during thermal-mechanical working5. For this 

reason, powder processing is preferred. For powder processing, vacuum induction melting 

(VIM) is used as in ingot metallurgy, followed by remelting and inert gas atomisation to 

produce a powder. After sieving the powder to improve cleanliness, the powder is 

consolidated by sealing it into a can, which is then degassed and sealed and hot isostatic 

pressing and/or extrusion follows. In essence, the number of inclusions in a product produced 

by powder processing will be far lower than if  it was produced by ingot metallurgy. 

However, this accompanied by higher costs and a more complex processing route.

2.5 Composition of Nickel based Superallovs

The superalloys are amongst the most complex, intricate and laudable o f materials engineered 

by man. The number o f alloying elements that make up these exciting materials is often 

greater than ten with each element adding its own unique properties to the alloy. The general 

pattern for superalloys is that most contain significant amounts o f chromium, cobalt, 

aluminium and titanium with small amounts o f boron, zirconium and carbon often included. 

Other such elements that are used in some superalloys but not all include rhenium, tungsten, 

tantalum and hafnium from the 5d block o f transition metals and ruthenium, molybdenum, 

niobium and zirconium from the 4d block. Hence, most of the alloying elements are taken 

from the d block o f transition metals7 and the behavior o f each alloying element and its 

influence on the phase stability depends heavily on its position within the periodic table2.

However, it does raise the question as to why nickel-based alloys have emerged as the

materials o f choice for high-temperature applications. Firstly, although the aerospace industry

is a lucrative, budget is always important so it is advantageous that nickel is relatively cheap,

since it is the fifth most abundant element on earth. For example, the platinum group metals

belong to the transition metal series and have a high density and display the same structure as

nickel, but they are also very expensive, thus nickel is favoured. Nickel displays the face

centered cubic (FCC) crystal structure and is therefore both tough and ductile due to the

multiple slip systems in FCC structures and the cohesive energy arising from the bonding

imparted by the outer d electrons. Nickel is stable in the FCC form from room temperature to

its melting point2, which implies that no phase transformations will occur to cause
13



expansions, and contractions, which might complicate its use for high-temperature 

components. Conversely, the body centered cubic (BCC) metals such as Cr are prone to 

brittleness and undergo a ductile to brittle transition at certain temperature which means the 

toughness drops significantly with decreasing temperature. Another reason why nickel is 

ideal for its use in superalloys is its low rates of thermally activated processes. When 

considering the correlation between activation energies for self-diffusion and creep in pure 

metals, it suggests that low rates o f thermally activated creep require low rates o f diffusion. 

Thus, since diffusion rates in FCC metals are low, microstructural stability is imparted at
o

higher temperatures .

The fundamental solutes in nickel based superalloys are aluminium and/or titanium, usually 

having a total concentration less than 10 atomic percent. This generates a two-phase 

equilibrium microstructure, consisting of gamma (y) and gamma-prime (y'). It is the y' which 

is largely responsible for the elevated-temperature strength o f the material and its excellent 

resistance to creep deformation. The fraction of y' depends on the chemical composition and 

temperature, as illustrated in the following ternary phase diagrams.

0.20 0.20

0.10 0.10

0.90 0.80 0.90 0.80 0

973 K

Figure 2.5.1. Ternary Phase Diagrams illustrating the amount o f y’ with varying chemical composition and

temperature9.

The Ni-Al-Ti ternary phase diagram in Figure 2.5.1 shows that for a given chemical 

composition, the fraction of y' decreases as the temperature is increased. This phenomenon is 

used in order to dissolve the y' at a sufficiently high temperature {a solution treatment) 

followed by ageing at a lower temperature in order to generate a uniform and fine dispersion 

o f strengthening precipitates7.The microstructure o f a nickel superalloy consists o f different 

phases drawn from the following 10,



Gamma phase, denoted y

This is the main constituent o f the superalloy as a result o f  the FCC structure o f  nickel. In 

nearly all cases, it forms a continuous, matrix phase in which the other phases reside. It 

contains significant concentrations o f elements such as cobalt, chromium, molybdenum, 

ruthenium and rhenium, where these are present, since these prefer to reside in this phase.

Figure 2.5.2. FCC Crystal Structure of y 7. All comers occupied by Ni atoms.

The gamma prim e precipitate, denoted y’

It has a cubic-P (primitive cubic) lattice in which the nickel atoms are at the face-centers and 

the aluminium or titanium atoms at the cube comers. This atomic arrangement has the 

chemical formula Ni3Al, Ni3Ti or N i3(Al,Ti). However, as can be seen from the (y+y')/y' 

phase boundary on the ternary sections o f the Ni, Al, Ti phase diagram, the phase is not 

strictly stoichiometric. There may exist an excess o f vacancies on one o f  the sub-lattices 

which leads to deviations from stoichiometry. On the other hand, some o f the nickel atoms 

might occupy the Al sites and vice-versa. In addition to aluminium and titanium, niobium, 

hafnium and tantalum partition preferentially into y'.
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Figure 2.5.3. Ni3Al primitive cubic lattice o f y ’ 1. Al atoms occupying the comers of the cube and the Ni atoms

positioned at the cube faces of the lattice.

It can be seen that both the y and y* phases have a cubic lattice with similar lattice 

parameters, since its cell edges are exactly parallel to corresponding edges o f the y phase. As 

a result the y' precipitates form a cube-cube orientation relationship with the y, involuntarily. 

Furthermore, because their lattice parameters are similar, the y' is coherent with the y when 

the precipitate size is small. Dislocations in the y nevertheless find it difficult to penetrate y', 

partly because the y' is an atomically ordered phase. It is this preferential ordering that 

interferes with dislocation motion and hence strengthens the alloy.

Another very important advantage concerning the two phases is a small misfit between the y 

and y' lattices, which is important for two reasons (i) When combined with the cube-cube 

orientation relationship, it ensures a low y/y' interfacial energy. The ordinary mechanism of 

precipitate coarsening is driven entirely by the minimisation o f total interfacial energy. A 

coherent or semi-coherent interface therefore makes the microstructure stable, a property 

which is useful for elevated temperature applications, (ii) The magnitude and sign o f the 

misfit also influences the development o f microstructure under the influence o f a stress at 

elevated temperatures. The misfit is said to be positive when the y' has a larger lattice 

parameter than y. The misfit can be controlled by altering the chemical composition, 

particularly the aluminium to titanium ratio. A negative misfit stimulates the formation o f 

rafts o f y', essentially layers o f the phase in a direction normal to the applied stress. This can 

help reduce the creep rate if the mechanism involves the climb o f dislocations across the 

precipitate rafts7.



The transmission electron micrographs shown in Figure 2.5.4 illustrates the large fraction o f 

y', typically in excess o f 0 .6 , in turbine blades designed for aeroengines, where the metal 

experiences temperatures in excess o f 1000°C. Only a small fraction (0.2) o f y' is needed 

when the alloy is designed for service at relatively low temperatures (650°C) as experienced 

in turbine discs.

Figure 2.5.4. Transmission electron micrograph showing a large fraction o f  cuboidal y' particles in a y matrix.

Ni-9.7A1-1,7Ti-l 7.1Cr-6.3Co-2.3W at% ".

Carbides and borides also play a vital role in the superalloys performance. Carbon, often 

present at concentrations up to 0.2 wt%, combines with reactive elements such as titanium, 

tantalum and hafnium to form MC carbides. During processing or service, these can 

decompose to other species such as M23C6 and M6C, which prefer to reside on the y-grain 

boundaries, and which are rich in chromium, molybdenum and tungsten. Boron can combine 

with elements such as chromium or molybdenum to form borides, which reside on the y-grain 

boundaries and prevent grain boundary sliding.

The following table provides the chemical compositions o f some typical turbine disc alloys.
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Alloy Cr Co Mo W Nb Al Ti Ta Fe Hf C B Zr Ni

Astraloy 11.5 15 2.3 5.9 1.7 3.8 3.9 0.75 - . 0.03 0.02 0.05 Bal
Inconel 706 16 - - - 2.9 0.2 1.8 - 40 - 0.03 - 0.03 Bal
Inconel 718 19 - 3 - 5.1 0.5 0.9 - 18.5 - 0.04 - 0.03 Bal
Rene 95 14 8 3.5 3.5 3.5 3.5 2.5 - - - 0.15 0.01 0.05 Bal
Rene 104 13.1 18.2 3.8 3.8 1.4 3.5 3.5 2.7 - - 0.03 0.03 0.05 Bal
RR1000 15 18.5 5 5 1.1 3 3.6 2 - 0.5 0.027 0.015 0.06 Bal
Udimet 500 18 18.5 4 4 - 2.9 2.9 - - - 0.08 0.006 0.05 Bal
Udimet 520 19 12 6 6 - 2 3 - - - 0.05 0.005 - Bal
Udimet 700 15 17 5 5 - 4 3.5 - - - 0.06 0.03 - Bal
Udimet 710 18 15 3 3 - 2.5 5 - - - 0.07 0.02 - Bal
Udimet 720 17.9 14.7 3 3 - 2.5 5 - - - 0.035 0.033 0.03 Bal
Udimet 720Li 16 15 3 3 - 2.5 5 - - - 0.025 0.018 0.05 Bal
Waspaloy 19.5 13.5 4.3 4.3 - 1.3 3 - - - 0.08 0.06 - Bal

Table 2.5.1. The chemical composition o f some common turbine disc alloys in wt% 12

The nickel base superalloy, Waspaloy, was introduced in 1967, and is still used today 

regardless of its limitations o f strength and maximum temperature o f use.

Various elements are identified as having particular effects on the chemistry/mechanical 

property relationships o f nickel based superalloys. With particular reference to Udimet 720Li, 

the elements and their benefits are outlined as follows.

Cobalt (15 - 18.5 wt % range). The presence o f 15 wt % cobalt generates a minimum 

Stacking Fault Energy (SFE) which promotes planar deformation and potentially improved 

fatigue crack propagation resistance. It has no significant effect on the tensile or creep 

strength of the alloys.

Chromium levels have been raised to improve fatigue crack propagation resistance without 

excessive formation of TCP phases. Chromium is also critical for oxidation resistance due to 

the formation o f self healing C^Ch.

Molybdenum has a beneficial effect on tensile strength and ductility at high temperatures, but 

levels have been controlled to balance the high chromium with respect to TCP phase 

formation.

Tantalum increases tensile strength, but segregates to form very stable tantalum carbide (MC 

carbide). The tantalum concentration has been controlled to allow the MC carbide to 

breakdown and promote the formation o f grain boundary carbides.



Titanium, along with aluminium, controls the weight fraction gamma prime, and has the 

greatest effect on the gamma prime solvus. The titanium content has been increased to 

balance the reduced tantalum levels in order to maintain tensile strength, whilst also 

controlling the gamma prime weight fraction and TCP phase formation.

Aluminium has been balanced with respect to titanium in order to control the gamma prime 

weight fraction. The aluminium concentration has also been limited in order to reduce the 

propensity for TCP phase formation.

Boron has been reduced to levels which are beneficial to creep, fatigue crack propagation 

resistance and tensile strength.

Carbon has been maintained at levels to promote hot ductility and high temperature creep 

resistance.

Zirconium has been increased to 0.06 wt %, as it has a beneficial effect on stress rupture and 

creep resistance.

Hafnium has been included at 0.75 wt %. The addition o f hafnium improves all properties. 

Rhenium has a strong beneficial effect on creep resistance.

2.6 Strength Vs Temperature for Nickel Based Superallovs

It is well understood that the strength o f most metals decreases with increasing temperature. 

This is largely due to thermal activation processes, which makes it easier for dislocations to 

overcome obstacles. However, nickel based superalloys containing y' are particularly resistant 

to temperature. Ordinary slip in both y and y' occurs on the {111} <110>. If slip was confined 

to these planes at all temperatures then the strength would decrease as the temperature is 

raised. However, there is a tendency for dislocations in y' to cross-slip on to the {100} planes 

where they have a lower anti-phase domain boundary energy13. This is because the energy 

decreases with temperature. Situations can arise where the extended dislocation is then partly 

on the close-packed plane and partly on the cube plane. When this occurs, the dislocation 

becomes locked and increases strength o f the superalloy further. The strength only starts to
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drop when the temperature goes beyond 600°C, which is when thermal activation processes 

become active enough to allow dislocations to overcome obstacles.

Hence, it is the presence of y' which is responsible for the high strength of nickel based 

superalloys at high temperature.
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Figure 2.6.1. A theoretical prediction o f  the yield strength o f a particular superalloy containing approximately 

20% of y' against temperature. Notice how the strength is at first insensitive to temperature but starts to drop at

around 600°C.

When greater strength is required at lower temperatures (e.g. turbine discs), alloys can be 

strengthened using another phase known as gamma double prime, donated y". This phase 

occurs in Nickel-Iron superalloys, when nickel and niobium combine in the presence o f iron 

to form a body centered tetragonal (BCT) such as N i3Nb. This phase, like y’, is coherent with 

the gamma matrix and imparts large mismatch strains. The strengthening occurs by both a 

coherency hardening and order hardening mechanism. This provides high strength at low to 

medium temperature but is unstable at temperatures above 650°C. The y' phase is shown in 

Figure 2.6.2, below.
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Figure 2.6.2. Crystal structure o f gamma double prime, y”

2.7 M anipulating the Composition and M icrostructure of Turbine Disc Alloys

An added complexity in turbine discs, which does not apply to single-crystal superalloys, is 

the existence o f grain boundaries, which must be carefully engineered. Hence, a strong 

appreciation o f the relationship between alloy chemistry and microstructure is important if 

the best possible combination o f properties is to be achieved.

According to Roger C. Reed, author o f The Superalloys: F undam entals and  A pp lica tions'4, 

three guidelines should be adhered to achieve optimum properties in superalloys.

Guideline 1

“To impart strength and fatigue resistance, the fraction o f the y’ phase should be optimised by 

appropriate choice o f the y’-forming elements (Al,Ti and Ta) -  placing it in the range 40%- 

50% - and heat treatments chosen to promote a uniform distribution o f y’ particles.”

The yield stresses o f the turbine disc alloys correlate very strongly with the proportion o f 

strengthening phases y’ and y” , hence the concentration o f elements that promote these 

phases must be chosen carefully.

Guideline 2

“The grain size should be chosen for the desired combination o f yield strength, resistance to

fatigue crack initiation (both o f which scale inversely with grain size), creep strength and
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resistance to fatigue crack growth (which scale directly with it). A size in the range 30pm to 

50pm is commonly chosen.”

Guideline 3

“When added in small quantities, grain boundary elements such as boron and carbon are 

beneficial, particularly to the creep and low-cycle fatigue resistances.”

2.8 Nickel Superallov - Udimet 720Li

Udimet 720 was developed in 1986 with enhanced strength, but was found to be unstable 

(with respect to the formation o f deleterious Topologically Close Packed (TCP) phases) and 

was superseded in 1990 by powder processed Udimet 720Li (low interstitial), an alloy with 

reduced chromium, carbon and boron. Improvements in cast and wrought (CW) processing 

techniques led to the introduction o f CW Udimet 720Li in 199415. Cast and wrought Udimet 

720Li exhibits equivalent properties to those o f its powder variant. However, although 

Udimet 720Li has adequate strength, its resistance to fatigue crack propagation is somewhat 

lower than Waspaloy, and its maximum operating temperature is limited to approximately 

650° C.

More recently, Udimet 720 has been recognized as having outstanding strength and fatigue 

resistance when used in a fine grain form for turbine disk applications. From a mechanical 

property standpoint the alloy retains the high strength characteristics of alloys such as P/M 

alloy Rene 95, but has superior crack growth characteristics. Overall, Udimet 720 has the best 

combination of mechanical properties in its class o f high strength cast/wrought disk alloys 

and is used in a variety o f applications in small- to medium-sized gas turbine engines.

As mentioned previously, there is an alternative process route which is based on Powder 

Metallurgy (P/M). The key advantages o f this process is that it is possible to manufacture 

parts with a geometry and size close to a near net shape resulting in a reduction in post 

machining costs. Moreover, the P/M route allows the production o f a very homogeneous 

material, resulting in better defect detection ability by ultrasonic inspection. Nevertheless, 

this process suffers from other drawbacks such as the possible pollution by ceramic 

inclusions issued from the powder atomisation which may act as fatigue crack initiation sites, 

and the formation of precipitates at the Prior Particle Boundaries (PPB). Because of the



presence o f small precipitates at the PPB which pin the grain boundaries, one can hardly 

coarsen the grains by a supersolvus heat treatment and the P/MU720 LI grain size is roughly 

limited to the average size o f the powder particles16. The morphology o f the gamma prime 

phase is controlled by way in which it is processed. This can be seen in the images below 

whereby the cast and wrought route yields a different geometry o f gamma prime to the 

powder metallurgy process. As mentioned previously, the gamma prime phase is what gives 

these superalloys their exceptional high temperature mechanical properties.

Figure 2.6.36. Gamma prime morphology; Left - Cast and wrought process. Right - Powder metallurgy process.

Because o f the fine grained microstructure, the behaviour o f P/M U720 is usually not suitable 

for high temperature applications (>650°C) when good creep and crack propagation 

resistance are required. The PPBs have also a detrimental effect on the workability o f as- 

HlPed material, and initial attempts to use conventional forging routes were unsuccessful17. 

Therefore, high-cost extrusion processes were developed to ensure the minimum forging 

ratios imposed for critical applications.

2.9 Introduction to W ear Damage

Tribology (from the Greek word meaning rubbing or attrition) is “The science and 

technology o f interacting surfaces in relative motion, and embraces the studies o f  friction, 

wear and lubrication." I.M. H utchings, Tribology, 1992, A cadem ic Press

In the USA, the estimated direct and consequential annual loss to industries due to wear is 

approximately 1-2% o f GDP. (Heinz, 1987). Research into wear is therefore a priority in
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order to produce engineered surfaces or palliatives against wear, which extend the working 

life o f materials, thus saving large sums o f money and leading to conservation o f material, 

energy and the environment. Methodologies to minimise wear include systematic approaches 

to diagnose the wear and to prescribe appropriate solutions. Laboratory tests are widely used 

to simulate the wear behaviour o f components in service so that engineers can better 

understand the factors that affect it.

The word ‘wear’ is a very broad term for materials that degrade with time but can in fact be 

broken down into many subcategories. Materials don’t have to be in contact in order to wear 

and can be as simple as being subjected to repeated stress cycles, such as fatigue. Other forms 

o f  wear which do involve materials in contact can be difficult to distinguish from each other 

because o f their wear scar similarities although the mechanisms that drive them may not be 

the same. For example, there are over 50 variables that affect the fretting wear o f materials in 

contact, which makes it very difficult to understand.

Subsurface Fatigue - Subsurface fatigue is a form o f wear that occurs when a component is 

subjected to long-term repeated stress cycles. This causes microcracks in the subsurface o f 

the metal, which then propagate to the surface, resulting in a piece o f surface metal being 

removed. This type o f wear does not depend on surface-surface contact.

Surface-initiated Fatigue- This type of wear damage involves components in contact and 

relative movement of their respective surfaces. It usually begins with a loss o f the surface 

lubricant film. The high points o f the bare metal surface, known as asperities, are removed by 

shearing, which initially appear as a matted or frosted surface. Once removed, the asperities 

can become oxidised, especially at high temperatures and become much harder than the 

parent metal. As a consequence, asperities can result in greater wear if  they become trapped 

between the two surfaces.

Microcracks will eventually form on the surfaces and migrate down into the metal, 

interacting with other microcracks, resulting in fracture.

Temperature can have a considerable effect on the extent o f wear damage to metallic 

components. During reciprocating sliding, under conditions where frictional heating has little 

impact on surface temperatures, there is generally a transition from severe wear to mild wear 

after a time o f sliding that decreases with increase in ambient temperature. At low



temperatures, from 20-200°C, the layers generally consist o f loosely-compacted particles. At 

higher temperatures, there is an increase in the rates o f generation and retention of particles 

while compaction, sintering and oxidation o f the particles in the layers are facilitated, leading 

to development o f hard, very protective oxide ‘glaze’ surfaces. Oxide glazes are beneficial to 

components in contact as the friction coefficient in significantly reduced as a result. It has 

been proposed that an oxide film thickness o f 20A is critical in reducing the tendency o f steel 

surfaces to scuff18

2.10 Friction

Contact wear is largely governed by a surface resistive force known as friction. Therefore, to 

gain a better understanding o f wear, the concept o f friction must first be understood along 

with the factors that affect it.

Friction is defined as the resistance to motion when one body is slid over another. Put simply, 

friction is high if  the two materials in contact are rough and low when the materials in contact 

are smooth.

Universal agreement as to what causes friction does not exist, but is thought to be due to a 

number of mechanisms that act together contributing in different proportions under different 

conditions.

The ‘Bowden and T abor Theory’ suggests friction arises from two sources,

a) An adhesive force developed at the real contact areas (asperities)

b) A deformation force needed to plough the asperities o f the harder surface through the 

softer one

The contribution o f the adhesive molecular attractions was not taken into consideration until 

recent times. It was believed that friction was solely caused by surface roughness, but it has 

been established beyond doubt that the contribution o f adhesive forces between two sliding 

surfaces is a major contributor towards the friction effect. The peripheral molecules o f the 

two surfaces in contact are attracted towards each other, and form adhesive bonds. These 

bonds need to be snapped for the two surfaces to slide over each other.
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Surface roughness is another leading factor resulting in frictional forces that oppose easy 

motion. Most solid bodies do not have precisely uniform surfaces. Even visibly symmetrical 

geometries are not regular, and have protrusions as well as cavities. When two surfaces slide 

over each other, it is extremely likely that the respective protrusions and cavities would 

interlock amongst themselves, leading to a force that restricts the sliding motion. This was 

believed to be the sole cause behind friction for many years, but is now regarded as a minor 

effect as compared to the above mentioned adhesive bond effect.

Figure 2.10.1. Actual surface contact. In reality, no surface is ‘smooth’

Essentially, the deformation effect is a logical extension o f the roughness factor. Soft solid 

surfaces are prone to getting deformed and compressed upon impact from another relatively 

hard solid body. In such a case, the harder and more rigid body would sink a little in the 

depressions caused by the contact. This sinking inhibits the sliding motion o f the solid bodies 

over each other, and has to be overcome for the bodies to continue moving.

Friction can be represented in the equation below:

Frictional F orce (F) = C oefficient o f  F riction (ju) x  N orm al Force (P) (2.9.1)

From the equation above, it can be seen that the frictional force depends on the coefficient o f 

friction o f each material and the normal load that holds the materials in contact with each 

other. Every material has a unique coefficient o f friction associated with it but also depends 

on other factors.

In some cases, friction can be useful, as in car breaking systems where high friction between 

the breaking pads and discs is imperative. However, as the body of this research suggests, it 

can also be problematic, as in engine components, where are high values o f friction leads to 

wear damage.



2.10.1 Friction Coefficients

The friction coefficient between two surfaces depends on a number o f factors:

• The materials involved (and hence the degree o f mutual solubility)

• The surface roughness

• The presence o f surface films (lubricating oil, grease, oxide films, contaminants)

• The temperature

• The surrounding environment (corrosion)

• Nature o f the contact (conforming, non-conforming)

• Which material is static and which is dynamic

• Velocity o f sliding

Therefore, it is clear that the friction coefficient is not a unique material property but depends 

on the conditions.

SS Vs Ni (Oxide Film)

FrictionFriction

DFL

Sliding SpeedTemperature (°C)

Figure 2.10.1.1 Change in friction with temperature and sliding speed.

2.11 C ontact W ear Damage

When two materials are placed in contact with one another and there are small amplitudes of 

sliding between them, there will be some form o f wear damage taking place at their surfaces. 

The difference between heavy wear and light wear is dependent on the contact load or the 

friction at the interface, as shown in the following diagram.
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Material Transfer
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Load/Friction

Figure 2.10.1. Ideally, low friction results in low wear but this is specific to one material couple under very 

specific conditions. Graph courtesy of Rolls-Royce Pic.

W ear is broken down into two subcategories, termed adhesive wear and abrasive wear.

2.11.1 Abrasive W ear

Abrasive wear usually results from particle contamination and roughened surfaces that cause 

cutting and damage to a mating surface that is in relative motion to the first. Abrasive wear is 

estimated to be the most common form o f wear in lubricated machinery.

Abrasive wear usually proceeds in two ways and is outlined schematically in Figure 2.11.1.1

Three-body abrasion occurs when a relatively hard contaminant (particle o f dirt or wear 

debris) o f roughly the same thickness as the lubricant layer becomes trapped between the two 

metal surfaces, which are in relative motion to each other. When the particle size is greater 

than the fluid film thickness, scratching, scoring and ploughing can occur. This creates 

parallel furrows in the direction o f motion, like rough sanding. Mild abrasion by fine particles 

may cause polishing with a satiny, matte or lapped-in appearance. At high temperatures, wear 

debris can be oxidised and sintered, becoming much harder than the parent material and 

increasing the wear rate further.



Load
|  Moving

Stationary Surface

Figure 2.11.1.1. Schematic illustration of the four possible mechanisms for relative motion and escape of debris 

particles during sliding: (a) rotation, (b) skidding, (c) rolling, (d) entrapm ent.19

Two-body abrasion occurs when metal asperities (surface roughness, peaks) on one surface 

cut directly into a second metal surface. In this case, contaminant particle are not directly 

involved. The contact occurs in the boundary lubrication regime due to inadequate lubrication 

or excessive surface roughness which could have been caused by some other form o f wear.

Two Body Abrasive W ear

Three Body Abrasive W ear
■ ■ ■ ■ ■ ■

Figure 2.11.1.2. Abrasive wear occurs in sliding contacts usually due to contamination o f particles20.

2.11.2 Adhesive W ear

Adhesive wear is the transfer o f material from one contacting surface to another. It occurs 

when high loads, temperatures or pressures cause the asperities on two contacting metal 

surfaces, in relative motion, to spot-weld together then immediately tear apart, shearing the 

metal in small, discrete areas. Although abrasive wear is more common, adhesive wear is 

arguably the most life limiting.
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Adhesive W ear

Figure 2.11.2.3. Adhesive wear is a result o f micro-junctions due to welding of opposing asperities. Large 

tangential forces can cause the asperities to shear and break off, becoming entrapped within the surfaces.

Typical examples o f adhesive wear include fretting, scuffing and galling and these will be 

discussed in more detail.

2.12 Fretting Fatigue

W henever two contacting materials are subjected to a cyclically applied bulk load, the 

resulting highly localised edge-of-bedding (EoB) contact stresses can lead to a condition 

called contact fatigue21. If the two contacting surfaces have small amplitudes o f  motion 

relative to each other, the process is referred to as fretting fatigue. The sharp stress gradients 

and multi-axial stress state at the contact location can prematurely nucleate cracks resulting in 

a reduction o f overall fatigue life. If the material is subjected to a cyclically applied bulk load, 

the cracks formed by fretting can grow inwards normal to the free surface, exist in elastic 

stress fields, hence, resulting in crack propagation and eventual bulk brittle fracture.

It is well understood that the initiation and propagation o f fretting cracks are largely 

determined by the severe stress gradients that are generated from the effective shape o f 

contact, co-efficient o f friction and the applied bulk loads22. A typical contact problem is 

shown in Figure 2.12.1, which illustrates the frictional contact between two spheres, first 

solved by Mindlin*"'. This is an example o f incom plete  contact where the contact area is 

proportional to the applied load (i.e. spherical, cylindrical, and so called ‘flat with rounded 

edges’ contact geometries).



Q(t),

!Q|<nP
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Figure 2.12.1. Schematic o f a Mindlin (Spherical) incomplete contact with friction. (Where p is the coefficient 

of friction, Q is the tangential force, P is the normal load and M is the centrifugal force.

Blade and disc interactions are particularly difficult to understand due to the complex load 

histories, complicated geometries, and extreme environments in which they operate. Figure 

2.12.2, highlights in red the regions o f high stress in a typical blade/disc root.

High Frequency Aeroelastic Drivers

Contact Stresses
Rotating Disc (Bulk Inertial Stresses)

Figure 2.12.2. Schematic o f critical locations in a dovetail attachment highlighting each contacting lobe (shown

in red).

Fretting between two materials in contact occurs on a range o f sliding distances but is 

considered most detrimental during the partial slip regime, which occurs on a sliding scale o f 

approximately 50pm. For this reason in particular, most components that operate in contact 

with other materials will usually have their surfaces hardened by processes such as shot- 

peening or have their surfaces coated with anti-fretting coatings. An added problem in the 

fretting process is when the eroded material oxidises in air and becomes harder than the 

parent material. The oxidised debris can get trapped between the two materials in contact and 

abrade the surface further, increasing the rate o f  wear.
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A synergistic competition between crack formation, corrosion, and wear at the contact 

interface leads to complex patterns o f movement and an evolution o f friction that is very 

difficult to predict. In some rig and engine hardware, these stress gradients have led to 

surface fissures, near surface micro-cracks, and NDE detected cracks near the EoB24. If the 

stress in the bulk material is sufficiently large, these micro-cracks, nucleated under the 

influence o f the near surface contact stresses, have the potential to propagate by fatigue.

Unlike other forms o f wear, the incidence o f fretting problems in machinery has not declined 

over the past decades25. Fretting fatigue damage o f components has been observed on 

countless occasions, some even leading to component failure. The biggest cause for concern 

among engineers is when fretting fatigue occurs in critical group A parts such as turbine and 

compressor discs that are rotating at thousands o f revolutions per minute and contain huge 

amounts o f kinetic energy. As discussed earlier, failure o f such components would seriously 

hazard an aircraft, which is why so much care is taken to produce accurate lifing calculations 

to ensure that failure never occurs.

2.13 Mechanisms and Fretting Regimes

Whenever there is contact between two materials, coupled with an applied bulk cyclic 

loading there is an issue with Contact Fatigue associated with edge-of-bedding (EoB) contact 

stresses. Contact fatigue introduces stress raisers to a system and causes the greatest fatigue 

strength reduction factor (SRF) due to the large multi-axial stresses and sharp stress gradients 

at the EoB, which drives crack nucleation.

Since, this phenomenon reduces the fatigue life, it is imperative to understand the concept 

and the broad scope o f situations in which it can arise.

2.13.1 Microscopic Movements Between Two Contacts Under Applied Loads

It is well understood that when two solids are pressed together and subjected to a tangential 

force of increasing magnitude, there is a certain value of tangential force at which 

macroscopic sliding occurs. Although true, it is less widely realised that micro-movements 

could occur below this limiting value o f tangential force under an applied force. It has been 

revealed that these micro-movements are a fundamental feature o f Hertzian contact subjected



to a tangential force26. There are two types o f models, which attempt to explain the behavior 

o f such contacts: The ‘elastic’ model and the ‘elasto-plastic’ model.

2.13.2 Elastic Model for F retting Contacts

Under stationary Hertzian contact, the normal stress ‘p ’ rises smoothly from zero at the 

contact edges to a maximum at the centre of the contact as shown in Figure 4.4.2.1(a). If the 

coefficient o f friction ‘p ’ remains constant across the contact surface, the frictional stress 

‘p p ’ resulting from the normal stress ’p ’, also rises smoothly from zero at the edge of contact 

to a maximum at the centre o f contact, as shown in Figure 4.4.2.1(b). When there is no 

relative movement between any two points on the contacting surfaces there is no fretting 

damage and the contact is said to be in the stick regime i.e. there is normal traction at the 

contact interface.

If an external tangential force Q <pP is applied to the contact, the resulting tangential stress 

rises from some arbitrary value at the centre o f the contact to an infinite value at the edges as 

shown in. (b). The distribution o f tang27ential stress ’q ’ across a circular contact can be 

described by Equation 2.12.2.1, where qx is the shear stress along the ‘x ’ axis, a is the radius 

o f the contact area (m) and Q is the superimposed tangential force (N )28.

* QVx  ^  /  2 2 \ 0.5
2/zor(tf - x  ) (2.13.2.1)

This is illustrated in the diagram below.
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a is the raduis of the contact area (m)
Q is the superimposed tangential force (N)

T angential 
stress due to 
superimposed 

force

L muting 
frictional 

I stress
t  -  u i*

a) No-slip condition

c) Slip condition

N b) No-sbp condition

' '  - - >   \
L i p  ( »  h V n  q

. 29Figure 2.13.2.1 Normal and tangential stress fields for Hertzian contact with and without slip .

In the stick regime, the value o f tangential stress was determined to be no greater than the 

sum o f the local contact stress and the coefficient o f friction. Hence, assuming the normal 

load, P, is kept constant and the tangential force, Q, is slowly increased from zero, then 

microslip is seen to occur immediately at the edges o f  the contact area and spreads inwards 

until ‘Q ’ approaches ‘j iP \

When the global tangential load Q, is less than required to produce relative movement over 

the whole o f the contact area Q<jiP, partial slip fretting fatigue occurs. Partial slip is 

characterised by a central non-slip region flanked by a ring o f  small relative movement, 

termed the slip zone. In general, the relative slip amplitudes associated with this condition o f 

partial slip fretting fatigue are in the order o f l-5 0 p m 16 although this is dependent on the 

material combination involved. The small relative movement, results in low levels o f wear 

and subsequent oxidation o f debris, which serve to increase the wear process as the debris are 

harder than the parent material.

Mindlin proposed a model for the ratio o f the radius o f the central non-slipped region to the 

radius o f the contact area, shown in Equation 2.12.2.2, where:

a ’ is the radius o f the central non-slipped region (m)

a is the contact radius (m)

Q is the superimposed tangential force (N)



p is the coefficient o f static friction

P is the normal load acting on the contact (N)

a
a

1 - Q
1/3

( 2 . 12 .2 .2 )

This theoretical relationship is in good agreement with experiments conducted with a steel

ball oscillating on a glass surface 30 shown in the following schematic.

Figure 2.13.2.2 Schematic representation of the partial slip fretting regime. The central non-slip zone is denoted

a’ and the outer slip region, a-a’.

The large stress gradients produced at the edge-of-bedding can result in premature crack 

nucleation. In partial slip, the initiation o f these cracks occurs at the stick-slip interface. If the 

tangential load, Q is increased further, the ring o f partial slip grows towards the centre and 

the peak shear stress max, q x, a|S0 increases. As a result, the fatigue strength reduction factor 

(SRF) also increases and the fatigue life is thus reduced. It is logical to suggest then, that the 

greatest reduction in fatigue life occurs at the transition between partial and gross slip (Q > fiP )  

fretting regimes because it is at this point where the max q x is at its highest value.

If ‘Q ’ is increased beyond ‘ p P ’ the contact will begin to slide and gross slip can occur. In 

general, the relative slip amplitudes associated with this condition o f gross slip fretting 

fatigue are in the order o f 50-200pm. In this regime, the sliding distance is large enough to 

slide over the whole contact surface and the wear rate increases at a greater rate due to the 

entrapment o f  debris. Although the subsurface material sees large peak stresses at the EoB, 

the increased wear rate effectively removes premature crack initiations as debris that would
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otherwise have propagated as bulk fatigue cracks16. This effect accounts for the increase in 

fatigue life observed as the relative sliding distance increases away from the partial slip 

fretting fatigue regime.

The appearance o f  the gross slip regime is a complete slip zone with no central non-slipped 

region. A real life comparison o f the partial slip and gross slip fretting regimes is shown in 

Figure 2.13.2.3.

Figure 2.13.2.3. Comparison o f (a) partial slip and (b) gross slip fretting regimes as a result o f increasing the

sliding distance between contacts (adapted from31).

If the global tangential load is greater than required to produce full sliding across the whole 

contact ( Q » p P ) ,  reciprocating sliding occurs. At this point. Q is no longer directly related to 

the relative slip between the two bodies. It differs from gross sliding, since the relative 

movement is large enough that every point o f the wear surface comes out o f contact during 

some point o f  the cycle, so that effectively, no debris are entrapped. W ear rates remain high 

but are constant with increasing slip amplitude.

To determine what fretting regime will occur with respect to its slip amplitude, refer to Figure 

2.12.2.4, which shows a simplistic relationship between wear coefficients and slip amplitude 

with its corresponding fretting regime and fatigue life.
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Figure 2.13.2.4 Fretting regimes corresponding to the value of slip amplitude13.

For the notice o f the reader, fretting fatigue is a highly debatable topic and it is important to 

realise that some academic work has defined fretting fatigue as only occurring in the partial 

slip (or stick/slip) regime and not after gross slip across the contact occurs. For this reason, 

the definitions used above are adopted by Rolls-Royce and may differ to those defined in 

other literature. The boundary between these regimes is material-specific, and should 

therefore be obtained experimentally for each material combination. Each regime will have a 

unique impact on the fatigue life, and so it becomes paramount to not only understand where 

the boundaries lie for the materials, but to also know where on this graph the component in 

question operates. From experimental investigations to date, there is strong evidence to 

suggest that a location close to the transition region between partial slip and gross slip fretting 

fatigue results in the most pronounced reduction in fatigue life as illustrated in

Figure 2.13.2.4 by the minimum on the red curve and is approximately 50pm.

2.13.3 Elasto-Plastic Model for Fretting Contacts

The ‘elasto-plastic’ model offers a more realistic explanation. It assumes that the asperities in

the central non-slip zone deform elastically, surrounded by a zone in which the asperities

have undergone slight plastic yielding, but have not undergone fracture. The plastic zone is

then flanked by a slip zone, where the asperities have been subjected to fracture, as in the
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case o f the elastic model. Hence, the ‘elasto-plastic’ describes a constant gradient to final 

fracture, unlike the ‘elastic-model’, where the stress gradient is sharp at the interface between 

the stick and slip zone. The elasto-plastic wear morphology is evident in Figure 2.13.2.3, 

shown previously.

2.14 Initiation and Propagation of Fretting Fatieue Cracks

Fretting fatigue affects the initiation and propagation o f cracks. In essence, the propagation of 

cracks is no different from plain fatigue, although there are some differences such as non­

proportional loading, multiaxial stress states, variable R-ratio and high stress gradients. 

Therefore there has been much interest in recent years in the initiation of fretting cracks with 

question being raised such as is there an initiation threshold? What role does surface damage 

play? Is there a special fretting effect or is it just a sharp stress concentration? Finally can we 

predict initiation life?

The fatigue process can be roughly divided into three stages: cyclic hardening/softening, 

crack initiation, and crack propagation leading to final fracture. In flaw-free materials a 

significant fraction o f the total lifetime is spent before the first detectable microcracks appear. 

A t low amplitudes the initiation stage can occupy even the majority o f the lifetime. At high 

amplitudes the initiation is usually accomplished within a small fraction o f the fatigue life. 

Furthermore, the fatigue limit can be reduced by up to about 40% if  fretting damage occurs in 

the contact area, since fretting damage accelerates the initiation of cracks.

Another fraction o f the lifetime is needed for the propagation o f the microstructurally small 

cracks to reach the size o f the physically small cracks (i.e., cracks of the size about 0.1±1 

mm). Propagation o f physically small cracks and macrocracks (i.e., cracks o f the size o f the 

order o f millimetres and more) can be quantitatively described by means o f fracture 

mechanics. On the other hand, there is no generally accepted quantitative description o f the 

initiation process and there is no widely applicable description o f the propagation o f the 

microstructurally small cracks. Thus, any numerical analysis o f the initiation o f microcracks 

and following propagation o f microstructurally small cracks must be preceded by deeper 

understanding o f physical mechanisms.



Direct observations o f surfaces have shown that there are three types o f initiation sites: (i) 

Initiation at fatigue slip bands (ii) Initiation at grain boundaries and (iii) Initiation at surface 

inclusions.

W hen fretting occurs the surface o f the material becomes deformed, which causes the 

dislocations to shuffle around and slide over one another along slip planes in order to 

accommodate the induced plastic strain. When this occurs, the dislocation density builds up 

and becomes intensified in this area, shifting material and forming structures known as 

persistent slip bands (PSB). PSBs are areas that rise above (extrusion) or fall below 

(intrusion) the surface o f the component. This leaves tiny steps in the surface that serve as 

stress raisers where fatigue cracks initiate from. A crack at the edge o f a PSB taken with a 

scanning electron microscope is shown in the following image:

craclc

Figure 2.13.1. A crack at the edge of a PSB. (Suresh 1991)32

Once a crack is formed, the life o f  the material is shortened dramatically. The stress intensity 

is large and a plastic zone develops at the tip o f the crack. As the applied load increases, the 

plastic zone increases in size until the crack grows and the material behind the crack tip 

unloads. The crack will eventually be large enough to cause catastrophic failure o f the 

material.

2.15 Application to Engine H ardw are

It is important to consider fretting fatigue during normal engine running. Up to now, only the 

effect o f contact force and sliding distance on fretting fatigue has been discussed. In actual
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engine hardware, the operating environment, mission history, evolution o f friction and bulk 

stresses arising from three-dimensional geometry and rotating inertial stresses, result in a 

complex evolution of stick and slip at the contact interface. Consequently, this history- 

dependant stick/slip interface behaviour affects the resulting near surface stress and life of 

contacting components.

2.15.1 Effect of Environment and Temperature

The effect of environment and temperature can be both beneficial and detrimental to the 

fretting process in engine hardware. In a reduced atmosphere, wear debris have limited 

oxygen with which to oxidise in. For some metals, this can be favourable, if  the oxide debris 

acts as an abrasive between the contact surfaces. For others, however, oxidation is essential to 

creating an oxide film that protects the surface from further wear. For example, Ni alloys 

form a Ni-oxide ‘glaze’ layer above 250°C, which becomes relatively self-healing, and 

therefore more stable, above 400°C. In vacuum, this glaze layer cannot form, and so the base 

material continues to wear33. This research is will touch upon the impact o f glaze on the 

fretting fatigue life o f U720Li. It is hypothesised that the presence of a glaze will reduce the 

SRF.

2.15.2 Effect of Bulk Stress

In addition to the stresses due to contact, the engine spool-up and operational loads (as well 

as variation in operating temperatures) generate a significant bulk stress in the subsurface 

material. These bulk stresses can result in the development o f relative slip at the contact 

interface. Figure 2.15.2.1a illustrates a condition o f symmetric slip, which results from a 

cylindrical punch held against a flat body with a symmetrically applied bulk load.

Note that Figure 2.15.2.1b illustrates the shear traction, q(x), that results from the application 

of the bulk stress, cr0 according to the geometry and loading conditions o f Figure 2.15.2.1a. 

This figure illustrates that as the subsurface material is pulled out from under the punch, slip 

to the left o f the centre o f contact (a<0) is sliding in one direction where as slip to the right of 

the centre of contact (a>0) is in the opposite direction. This phenomenon has been called 

symmetric slip. Symmetric slip manifests itself in the signs (or direction) o f the shear traction 

being opposite. It is important to note that Figure 2.15.2.1 only shows a bulk stress in one 

body. In practice, a bulk stress exists in both contacting bodies and can also influence the



contact tractions. This shear traction behaviour must also be accounted for in the case o f 

complicated load histories.

i k

slip -slii

x/a

Figure 2.15.2.1. (a) Contact involving round punch on flat body subjected to a subsurface bulk stress, (b) 

Representative plot illustrating contact shear traction and symmetric slip that occurs due to applied bulk stress,

c t0.

2.15.3 Effect of Mission History

In aircraft engines, complex cycles lead to operation in various relative movement regimes 

associated with the defined contact fatigue zones. For example, engine dovetail and firtree 

attachments can see the full range o f fretting fatigue contact at various times within the flight 

cycle. The duration spent in each relative movement regime (partial slip and gross slip 

fretting fatigue) is mission and engine dependent. Since the life is dependent on the contact 

fatigue regime o f operation, it therefore becomes necessary to determine the regime(s) in 

which each engine operates and the approximate duration that the flight cycle spends in each 

regime.

2.16 M ethods of Controlling Fretting

Fretting can be efficiently controlled through design optimisation (e.g. geometry changes) 

and through the applications o f surface treatments such as coatings and shot peening.

2.16.1 Design Optimisation

The control o f  fretting by design optimisation entails geometric modifications o f components 

aimed at mitigating excessive shear stress concentrations at the interface.
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The geometry o f the contacting bodies can have significant influences on the near surface 

stresses as illustrated in Figure 2.16.1.1. Given certain restraints, for two components in 

contact, reducing the radius and increasing the flat length may allow a larger area o f contact 

over which to distribute the contact loads. However, a sharp radius can lead to excessively 

high EoB stresses and consequently, a reduction in life. The illustration in Figure 2.16.1.1 

suggests there is an optimum geometry under given constraints that will result in the best 

contact fatigue performance. In general, larger edge radii are desirable. However, in the case 

o f  design optimistaion, there is a compromise between reduction o f strength caused by the 

larger edge radii and relief from fretting20.
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Figure 2.16.1.1. Schematic of contact normal tractions that develop when a normal load is applied to a 

cylindrical geometry (left), a flat with rounded edges geometry (centre), and a flat-punch, or complete contact,

geometry (right)13.

For the blade/disc contact problems, internal discussions have also taken place to insert cut­

outs in the blade roots at the edge o f bedding contact zone to relieve the overwhelming stress 

concentrations in this region.

2.16.2 Lubrication and A nti-Fretting Coatings

Fretting fatigue cracks tend to occur at the boundary between fretted and non-fretted regions 

where shear stresses are sufficiently high20. A reduction in fatigue strength due to fretting can 

be best estimated from the following equation, noting how the fatigue strength is lower for 

high coefficients o f friction34:



(2.15.2.1)

Where:

Sfr is the fretting fatigue strength (MPa)

So is the fatigue strength in the absence of fretting (MPa) 

p  is the coefficient o f friction 

Po is the contact pressure (MPa)

1 is the fretting amplitude (pm)

It can be seen from Equation 2.15.2.1 that by reducing the coefficient o f friction between 

contacting surfaces, higher fatigue strengths can be gained. Application o f lubrications and 

coatings to the surfaces is one way o f achieving this.

The basic principle o f lubricants and coatings is to cover the fretting surfaces with a non- 

metallic layer which suppresses adhesion and stops the oxidation caused by fretting o f plain 

metal surfaces. The lubricants will separate the contact surfaces by generating a fluid film 

and will reduce the coefficient o f friction in almost every case. The lubrication will reduce 

fretting wear by manipulating the fretting process, so that the sliding distance is increased 

above the partial slip sliding regime. The purpose o f using lubrication is to keep the sliding 

distances in the gross slip regime or indeed the reciprocating sliding regime, which will tend 

to reduce the large complex stresses associated with partial slip fretting fatigue and edge o f 

bedding effects. Fretting in turbine engine dovetail blade/disk contact surfaces is commonly 

reduced by using inorganic substances such Molybdenum Disulphide (M0 S2) dry film 

lubricant (DFL).35

Titanium carbides, chromium nitrides and copper nickel indium (Cu-Ni-In) anti-fretting 

coatings are currently the most common coatings used for aerospace components. The 

coatings behave as soft metallic films, keeping the substrate surfaces from coming into 

contact and dissipating vibrational energy by intra-coating shear mechanisms. However, in 

the case of Cu-Ni-In, at temperatures above about 1000°F (538°C), accelerated oxidation will
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rapidly deteriorate the coatings, allowing the substrate surfaces to come into contact and 

fret36

There are a variety o f methods used for applying the coatings to components. These include: 

thermal spray, plasma spray, CVD (chemical vapor deposition), PVD (physical vapor 

deposition), and IBED (ion beam enhanced deposition). The major disadvantage o f anti- 

fretting coatings is that the component performance depends upon the integrity o f the 

coating/lubricant system during service. Continuous rubbing at the contact surface during 

operation tends to remove the lubricant and wear away the coating, eventually exposing the 

base metal to fretting damage. Furthermore, the performance o f the coating depends heavily 

on the process in which they are applied. For example, plasma nitriding appears to be a good 

treatment in elevating the fretting fatigue resistance o f stainless steels. The nitriding 

temperature o f 520°C was found to be most effective in achieving a coating with good 

fretting fatigue resistance. A coating produced at a lower temperature of 400°C was less 

effective.

2.16.3 Surface Treatments

A new approach to mitigate fretting fatigue damage has emerged through the use o f surface 

treatment processes that impose deep compressive residual stresses. For example, shot 

peening is the most popular method and involves impacting a surface with shot (round 

metallic, glass or ceramic particles) with force sufficient to create plastic deformation. Plastic 

deformation induces a residual compressive stress in a peened surface, along with tensile 

stress in the interior. Surface compressive stresses confer resistance to fretting fatigue by 

creating a hetrzian stress field which acts to pin dislocations by increasing the stress required 

for a dislocations to slip along its plane. The tensile stresses deep in the part are not as 

problematic as tensile stresses on the surface because cracks are less likely to start in the
• 17

interior. Several methods, including shot peening, laser shock peening (LSP), and low 

plasticity burnishing (LPB) work in a similar way.

2.16.4 Surface Finish and Material Properties

It is important to note that ‘manipulating hardness is found to be an unreliable means of 

improving fretting resistance20. For example, fretting studies o f alloyed steel surfaces 

revealed that hardness has no direct relation to the level o f fretting wear38. In some cases, if a



hard and soft material is fretted against each other, the harder material can be worn as well as 

the softer one. For example, aluminium alloy A357, is a non-ferrous alloy that is softer than 

52100 bearing steel. When this alloy is fretted against a steel ball, there is an initial adhesion 

of aluminium alloy to the steel surface. If the fretting between these materials occurs in open 

air then the aluminium wear debris eventually oxidises to form aluminium oxide. Since 

aluminium oxide debris are harder than steel, the oxidised debris is able to abrade the steel 

ball.

“It is commonly known that a good surface finish accentuates damage due to fretting and to 

minimise the damage rough surfaces are preferred. At elevated temperatures as in the 

disc/blade root, the converse is tme, i.e. surfaces with better surface finish suffer less damage 

than rough surfaces”39

2.17 Numerical Methods for Fretting Fatigue Life Predictions

The numerical methods used for fretting fatigue life predictions are many and varied. A large 

number o f them are based on the blade /disc attachments where complex multiaxial stresses 

and friction are very difficult to predict.

Current life prediction efforts are aimed at using specimen test results directly with a simple 

scaling from a frictionless model. Recent work has shown that modelling with friction 

predicts failure locations in sub-element tests better than the frictionless model. Based on 

these observations, 3D friction modelling is likely to show that geometric skew effects 

significantly impact stresses. This necessitates the development o f more robust methods 

capable o f capturing 3D and history dependent frictional effects for the engine. In order to 

illustrate the plan for implementation and development o f the chosen 2D/3D hybrid contact 

fatigue lifing tool, the following comments will assume geometry and loading representative 

of gas turbine engine blade attachments.

As illustrated in Figure 2.16.1, the damage due to frictional contact accumulates because of:

• Wear and high stress gradients on the contact interface / wear patch near the EoB

• Sharp gradient, multi-axial stresses due to contact and bulk stresses just below the contact 

surface, and in the case o f engine attachments
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• Stress concentrations arising from notch (or bulk) stresses influenced by the presence o f 

frictional loading (illustrated in Figure 2.16.1c)

Q(tQ(t
Location and intensity 

of Notch K, = fct (p)

Micro-cracks or fissures due to 
EoB stresses Extent influenced by EoB Stress 

contact stresses Concentration

Figure 2.16.1: Illustration of damage due to contact and notch stresses for different contact fatigue 

configurations, (a) Contact fatigue due to pure contact loading as seen in button-on-plate tests where no bulk 

stress is present to propagate fissures or micro-cracks nucleated by contact stresses, (b) Contact fatigue due to 

combined contact and bulk stresses as seen in in-line fretting fatigue test rigs. Note that while under the 

influence o f highly multi-axial contact stresses, cracks grow at an angle to the surface. Once the crack grows 

beyond the influence of the contact stresses, it grows perpendicular to the direction of applied bulk stress, (c) 

Contact fatigue due to interaction of EoB stress concentration and frictionally modified notch stresses as seen in

engine blade/disc attachments (dovetails, firtrees) l6.

Therefore, in order to assess mechanical integrity o f  the blade/disc joint, both conventional 

fatigue outside the contact region and fretting fatigue at the EoB must be characterised. To 

address conventional fatigue, finite element analysis will be used to determine the stresses in 

the attachment notch region. The analysis will include the effects o f friction which tend to 

shift the position and magnitude o f the peak stress. The effects o f creep and plasticity may 

also need to be accounted for in the notch analysis.

In order to address the fretting fatigue issue, the localised EoB stresses must also be 

determined. There are currently no well established methods for determining such stresses in 

a high temperature, multiaxially loaded component. It is proposed that a three level approach 

is adopted: (Sourced from 13)

Level 1 involves the use o f a coarse 3D FE model o f  the full attachment in order to determine 

lobe load distributions. This is likely to include material non-linearity as well as frictional

effects.



Level 2 is a more refined submodel o f the first level model aimed at resolving frictionally 

modified notch stress behaviour and magnitude for a specific lobe. This may include material 

non-linearity.

Level 3 is likely to be a quasi-analytical approach which may require further FE submodelling 

to resolve the EoB stresses. This level o f stress resolution is likely to require an extension of 

existing SIE and/or bounded asymptote methods currently employed for analysing EoB 

stresses for simplified contact conditions.

If  the coefficient o f friction is sufficiently low, it may be possible to treat the EoB stress 

concentration and the frictionally modified notch stress concentration separately. However, as 

the coefficient o f friction increases, the stress concentration initially located in the notch 

approaches the EoB stress concentration and the two can superpose to result in a significant 

decrease o f contact fatigue life.

2.17.1 Contact Fatigue Analysis

Despite the complexity o f the contact fatigue problem, current research and experience have 

led to the development of several contact fatigue analysis and modelling schemes. Before a 

mechanics based assessment o f contact fatigue life parameters can be performed, an 

appropriate contact stress analysis method capable o f resolving the EoB stress concentrations, 

relative motion and sharp stress gradients must be developed. These stress analysis methods 

generally fall into four categories: (1) numerical analyses (finite element (FE) modelling, FE 

submodelling, boundary element (BE) modelling), (2) Analytical Methods (2D half-plane and 

3D half-space solutions), (3) asymptotic analyses (crack analogue, bounded asymptotes), and 

(4) hybrid methods that combine the computational efficiency o f 2D quasi-analytic methods 

with 3D FE modelling to capture out-of-plane effects.

The modeling department associated with solid mechanics in the university technology centre 

(UTC) at Oxford University is developing a bounded asymptote approach. Although there 

has been some promising results for lifing correlations thus far, further work is required so 

that this method can be implemented into lifing prediction methods.
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2.17.2 Finite Element (FE) Modelling

In finite element modelling techniques40,41 the structure o f interest is separated into an 

assembly o f solid elements (termed finite elements) each o f which have a stiffness 

relation. When taken collectively, the applied boundary conditions can be used with 

equilibrium and compatibility requirements to iteratively solve for the displacements, 

stresses, and strains within the body. The accuracy o f the solution then depends on the 

complexity and number o f elements used to model the domain o f interest. Since an infinite 

number of elements would be required to get the exact solution, FE is classified as an 

approximate method.

Even though computational power continues to advance at a rapid pace, any stress analyst 

employing a finite element (FE) code for contact stress solutions must be conscious o f the 

extremely fine mesh required for resolving EoB stress peaks and stress gradients related 

with contact and fretting fatigue. The computational demand and convergence difficulties 

increase further when solving three-dimensional problems. It therefore becomes important 

to identify the FE mesh resolution required to capture the EoB stresses that drive the 

nucleation o f micro-cracks and determine if  the resulting model will be prohibitively large.

Rolls Royce has employed FE technology via the use of the commercially available FE 

code ABAQUS and a computationally efficient in-house FE code, SC03, developed 

specifically for static and dynamic stress analysis o f gas turbine engine components. 

Previously, SC03 has been used for modelling contact in engine attachments. However, 

SC03 does not currently allow for inclusion of frictional effects and truncates the contact 

geometry to result in sharp comers at the EoB. As a result, SC03 cannot capture changes 

in contact area with applied normal load as seen in incomplete contacts. FE modelling 

efforts that have required frictional contact solutions have usually been employed in 

ABAQUS.

2.17.3 Boundary Element (BE) Modelling

Boundary element modelling42,43 in principle serves to convert the domain equations 

defined throughout a body into equations defined around the periphery o f the component. 

The advantage o f this method over FE modelling is in its ability to capture the stress 

solution within the body from a mesh only defined on the body’s surface. Hence, meshing



geometry is significantly easier. The disadvantage in this approach is that the 

mathematical formulation o f each surface element becomes significantly more complex. 

Although BE is currently primarily suited for linear elastic solutions, the data to define the 

model and the output results are concise and concentrated at the boundary where most 

stress concentrations occur. As a result, the file storage requirements are modest, boundary 

conditions are easier to apply, and, therefore, greater compatibility with CAD generated 

data. FE still remains a superior candidate due to its ability to handle non-linear problems, 

well-established procedures and developed software (commercially and in-house), as well 

as its ability to produces full information throughout the defined domain.

2.17.4 FE Submodelling

To alleviate the computational expense associated with solving a frictional contact 

problem for an entire engine component, some stress investigations have exploited the FE 

method44,45,46,47 to form a different method known as submodelling. In submodelling, a 

smaller, appropriately refined mesh (submodel) local to the contact can be used to get 

converged stresses in the area o f interest by applying displacement boundary conditions 

interpolated from a larger global model o f the contacting component. This submodel 

method takes advantage o f the fact that stresses and displacements away from highly 

stressed regions converge at a faster rate. Hence, a global (coarse) model o f the blade and 

disc competent o f modelling the service engine load and boundary conditions is first 

constructed. The global model mesh is refined until displacement convergence occurs at 

the boundary o f a smaller, more localised submodel defined in the identified region o f 

stress concentration to be analysed.

The submodelling process employed for the frictional contact problem in dovetail 

attachments of turbomachinery has been investigated for two36 and three37 dimensions. 

Submodelling has also been used to discover the partial slip contact stress behaviour for
10

contact between a polycrystalline nickel sphere and single crystal nickel specimen . Thus, 

using a suitably defined coefficient of friction and sufficiently refined submodel, this 

technique is able to model relative slip, tractions, stress characteristics o f contact problems 

and fretting fatigue.
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2.17.5 FE Super-Elements

The use o f super-elements in the contact problem has been investigated by the Nottingham 

University UTC and was based on the spline fretting fatigue research effort. It was found 

that the computational expense (length o f time) required to solve the contact problem with 

super-elements was greater than the time required to solve the contact problem with 

conventional FE elements.

2.18 Analytical and Ouasi-Analvtical Methods

2.18.1 2D Half-Plane Methods (Singular Integral Equations)

Initially, the closed-form contact stress solutions were for a frictionless, isotropic, similar 

material contact o f a general Hertzian configuration including plane, axisymmetric, and 

general second order geometries. Interestingly, for the Hertzian configuration, research 

shows that with the existence o f friction, the shear traction associated with partial slip due 

to a monotonically increasing tangential load can be found as the superposition o f two 

shear tractions: one which gives gross sliding over the whole o f the contact, and another 

that restores stick over a central region15. Many of the devised half-plane solutions have 

been aimed at capturing the stresses arising from this partial slip solution since model 

sizes of equivalently fine FE solutions become computationally time consuming and 

prohibitive.

The problem of contact between half-spaces has been analysed by a number of researchers 

for specific geometries. Jager48 presented a general solution for half-space contact 

modelling in the form o f a set o f singular integral equations (SIE) for contact of 

polynomial surfaces subjected to combined normal and tangential loading. Oxford 

developed a numerical method for analysing contact stresses arising from complex loading 

histories including the bulk stress effect using quadratic programming49. Murthy et al.50 

solved the more general problem of combined normal, tangential, and moment loading on 

a 2D plane strain, similar material contact between two arbitrary shapes sufficiently flat in 

the area o f contact. The solution involved evaluating the SIEs with a computationally



efficient Fourier transform approach while accounting for bulk stress effects on tractions. 

Experimental results are consistent with these efficient calculations51.

Contact o f dissimilar materials was initially investigated by Spence and was revisited by 

Nowell53 who developed partial slip solutions for the two-dimensional case. Rajeev54 

developed a contact solution for dissimilar bodies undergoing normal, tangential, and 

moment loading o f varying load histories. This was achieved by first observing that the 

Stroh formalism can be used to obtain Green’s function for the surface displacements of 

an anisotropic half-space subjected to a line load55. It is important to note that when 

analysing anisotropic or orthotropic material contacts in which the orientation o f the 

material principal axes are arbitrary, application of in-plane loading on half-planes could 

produce out-of-plane displacement. This in turn could produce relative slip and therefore a 

shear traction in the out-of-plane direction at the contact interface. To simplify this 

problem, Rajeev’s solution assumes an ‘anisotropic coefficient of friction’ such that the 

friction in the out-of-plane direction was equal to zero. Without this assumption, three 

coupled singular integral equations would need to be solved to obtain the contact tractions.

Hills et al.56,57,58 have provided several good reviews o f  known and potential solutions 

capable o f capturing partial slip contact behaviour. Most o f these solutions have been 

solved for the case when the contact problem can be reduced to two-dimensions (a half­

space). In many cases, however, complex 3D geometry and material behaviour 

necessitates the development o f 3D contact modelling methods to accurately capture the 

out-of-plane displacements and stresses associated with such problems.

2.18.2 3D Half-Space Methods

For evaluating stresses for a three-dimensional frictional contact between a sphere and 

half-space o f similar material, closed-form equations have been generated59,60. Hills, 

Nowell, and Sackfield provide an excellent survey o f the partial slip contact solutions as 

well as subsurface stress solutions for axisymmetric contacts o f similar, isotropic materials 

50. Later, these solutions were extended to dissimilar, isotropic materials for the full- 

sliding, three-dimensional61 and partial slip, axisymmetric cases62. These approaches 

provided solutions arising from a normal load and tangential load only. As the complexity
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o f the problem increases (e.g. geometry, different material contacts, anisotropic material 

behaviour, etc.), analytical solutions become sparse.

Hills, Nowell and Sackfield can be quoted saying that for analytical solutions, “...the 

inescapable fact is that three-dimensional problems cannot be solved without re-course to 

the theory o f potentials50 ”. The displacements for the problem of a concentrated load on 

an anisotropic, 3D half-space have not been found analytically. Therefore, it is unlikely to 

expect the development o f a complete analytical solution to the anisotropic contact 

problem without employing numerical methods. Pragmatically, this has required the use of 

numerical solution procedures like FE or BE when solving problems o f complex 3D 

geometries that have anisotropic and/or dissimilar materials in contact.

2.19 Asymptotic Analyses

2.19.1 Crack Analogue

The crack analogue method 63,64 derives a relationship between the stress field close to the 

edge-of-bedding and the tip o f an elastic crack. The correlation can be clearly seen by 

recalling the pressure distribution for a flat rigid punch (with sharp comers) resting on a 

half-plane as given by:

/?(*)= >— j- P-- ■ -  (2.19.1.1)
7Tyja —X

Taking an asymptotic expansion o f the above using a coordinate r = x + a to give for the 

left side:

p ( x ) ^ - a w - * — ^ =  (2.19.1.2)
7Tyl2ar

Where x = 0 lies at the centre o f contact, P  is the normal load, p(x) is the contact pressure

as a function o f x, and a is the contact half-width.

The only downside to this method is that it is restricted with regards to geometry.



2.19.2 Notch Analogue

Notch analogies55 derive a correlation between the stress field close to the EoB and the 

root of a notch. If the most highly stressed point is at the EoB and the contact is 

incomplete, the normal and shear tractions go to zero leaving only the stress parallel to the 

surface non-zero. Hence, the stress state at the point o f crack initiation is uniaxial, or close 

to it. This suggests that the complexity o f multi-axial parameters may be unnecessary in 

some circumstances. Note that the notch stress gradients are not as high as in EoB contact 

problems. Also, if  crack nucleation occurs at locations other than the EoB, multi-axial 

stresses will exist.

2.19.3 Bounded Asymptote

In the bounded asymptote methods65’66,67’68, contact stresses are obtained by appropriately 

bounding analytical (asymptotic) solutions with the help of an appropriately refined stress 

solution. Bounded asymptotes do not relate so directly to crack solutions, but provide a 

way o f correlating fretting contacts under different geometries and loadings.

As an example, consider the problem o f a flat-with-rounded-edges contact. When 

sufficiently away from the EoB, the centre contact region of the punch looks much like a 

flat punch which has a solution for pressure as illustrated in the following equation.

pOO = > — = = =  (2 .18.1.1)
- X

Hence, the stress behaviour in the centre o f the punch should asymptote to the flat punch 

behaviour when the flat is large with respect to the edge radii. Alternatively, the EoB location 

of the contact looks like a rounded punch whose contact pressure can be determined from the 

Hertzian solution. Hence, the stress behaviour near the EoB should asymptote to the Hertzian 

solution. The overall stress behaviour at the contact interface is then bounded by the flat 

punch and Hertzian stress solutions. Using these principals, analytical expressions can then 

be used to bound the “real” stress field.

The potential advantage o f this approach is that the contact stress field is fully defined by 

“contact stress intensity factors” and, hence, the length scale is accounted for in the solution.
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This removes the necessity o f volume averaging. The contact stress intensity factors come out 

o f  the asymptotic solutions. Although this method has demonstrated significant promise in 

modelling idealised fretting fatigue tests, the work is in very early stages. Significant further 

development is required before its potential can be fully assessed. Specifically, the procedure 

must be developed to enable contact stress calculation associated with dissimilar, anisotropic 

materials in frictional contact with 3D geometries.

2.20 H ybrid 2D/3D Schemes

Use of conventional FE modelling techniques require significant computational time to 

implement the fine meshes required for EoB stress analysis. As noted above, 2D analytical 

approaches for evaluation o f contact stresses have proved to successfully model the 

contact stress behaviour in significantly less computing time than that associated with an 

equivalently fine FE result. However, 2D methods ignore 3D effects such as out-of-plane 

stresses and slip. In order to reduce the required run-time o f the contact problem in FE and 

maintain the stress point calculation resolution required for EoB stress analysis, methods 

for mating coarse mesh 3D FE solutions with 2D analytical solutions allow for 

computationally efficient, high-resolution contact stress evaluation where 3D models fail.

Numerical / analytical hybrid methods use coarse FE models to attain the component bulk 

stresses, loads, and moments. Equivalent 2D contact loads are then calculated at parallel 

planar slices for several locations along the depth o f a contacting surface. These 2D line 

loads can then be used to evaluate the associated contact stresses at each depth location. 

Many 2D analytical methods employ half-plane models to solve for near surface stresses 

arising from the surface tractions alone. Hence, the final hybrid solution is obtained by 

superposing the analytically calculated EoB stress gradient with the bulk stress behaviour 

obtained by the coarse FE model.

When 3D effects become significant, the chosen hybrid model must account for the 

resulting out-of-plane stresses and slip. As a first order approximation, the out-of-plane 

normal stress has been corrected by multiplying the 2D plane strain result with an 

appropriate correction factor and has ignored the effects of out-of-plane slip and shear. As 

3D effects become increasingly more influential, however, the error associated with this 

approach becomes progressively larger. Future work may involve the solution a second set



o f 2D slices perpendicular to the original to better capture the out-of-plane contact 

tractions.

2.21 Modelling the Friction Coefficient

The actual behaviour o f the coefficient of friction between two contacting bodies is the result 

o f a complex combination o f load, surface geometry, surface condition, materials, and 

environment. Understanding the frictional behaviour generally requires an experimental 

reproduction o f contact parameters, representing the actual condition as closely as possible. A 

key measurement is the average coefficient o f friction and how it evolves with continued 

cycling. Details o f how the average coefficient of friction is measured as the contact 

transitions from static to dynamic friction at the point o f gross sliding has been documented 

in literature69. After experimentally obtaining the average coefficient o f friction behaviour, 

literature also details how to model the local friction coefficient behaviour and how it evolves 

within the contact area for the case o f partial slip fretting fatigue32,70

For contact between similar, isotropic materials, Hills and Nowell48 and Dini and Nowell62 

showed that the slip zone coefficient, p^ could be determined in terms o f the average 

coefficient o f friction, p, and the initial coefficient o f friction, po. A numerical method was 

also developed by Murthy63 to obtain ps in terms o f p and pQ for the case o f dissimilar 

isotropic materials. In this method, ps is increased in an incremental manner, starting from po, 

until the solution o f the sliding contact problem yields the experimentally measured average 

coefficient o f friction, p. Both o f these methods assume the slip zone coefficient evolves with 

time, but remains constant across the slip zone, and the coefficient of friction in the stick zone 

does not change. Initially, the coefficient o f friction is assumed to be constant (=p0) 

throughout the contact zone. As the slip zone coefficient, ps, increases, so does the stick zone 

size which locks in the evolved coefficient o f friction value at that point. In each increment, 

the ends o f the stick zone are determined by solving the partial slip problem, taking into 

account the remote tension applied and the material dissimilarity of the two contacting 

bodies. Keeping track o f the previous increments allows for determining the distribution of 

the coefficient o f friction within the contact zone at a current increment. It is important to 

note that these devised friction calculation methods do require a partial slip solution for the
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contact geometry and materials being investigated because o f variations in the coefficient o f 

friction with wear.

In gross sliding, the coefficient o f friction can be assumed to be constant across the whole o f 

the contact. This value can be captured by a series o f experiments. It is important to note that 

current models capable o f capturing the evolution o f friction coefficient for partial slip are 

primarily 2D. Hence, these models do not account for significant axial slip.

2.22 Measuring the Average Coefficient of Friction

In order to characterise the coefficient o f friction in slip zones o f the contact, important 

friction experiments are performed. Measurements o f the coefficient o f friction are 

imperative to accurate evaluation o f contact stresses. The coefficient of friction evolves as 

two material surfaces wear or fret against one another. It should be noted that wear in partial 

slip fretting fatigue is occurring only within an annulus o f slip whereas the wear in gross slip 

fretting fatigue is occurring over the whole o f the contact surface. As such the magnitude o f 

the slip zone coefficient o f friction cannot be measured as the tangential force divided by the 

normal force, (Q/P).

It is important that a suitable set o f experimental friction tests are performed to measure the 

behaviour and magnitude o f the average coefficient o f friction, p, for different contact 

situations. This is because the frictional behaviour o f materials is greatly dependant on a 

variety o f factors such as surface condition, lubrication, third bodies, temperature, 

environment, and contacting materials. Determining values for different contact situations 

can be fed into a database, which can be contact modeling purposes. Previously, button-on- 

plate (spherical button on flat plate) tests have been performed at Rolls-Royce and in line 

fretting tests have been performed at Oxford University and Purdue University which 

measure the coefficient o f friction between two specimens.

2.22.1 Button-on Plate Test for Measuring Co-Efficient of Friction

To-date, all coefficient o f friction measurements (static and dynamic) at Rolls-Royce have 

been obtained from button-on-plate friction testing. The button-on-plate wear test determines 

metal removal rates and the sliding friction coefficient o f the material combination tested.



The rig applies a sinusoidal reciprocating sliding motion between a spherical test button and 

flat test plate. Usually, the test is run at a sliding distance o f 2.54mm, which is unrealistic for 

many real world problems. A frequency o f 20 cycles per minute, normal force o f 9 .8 IN, and 

test duration o f  2 m inutes71 are also typical parameters used in a button-on plate test but can 

be tailored to suit specific requirements. It must be noted that at elevated loads, the frequency 

must be reduced to avoid the momentum o f the rig interfering with the friction results 65.

Figure 2.22.1.1. Button-on Plate Test 72

The disadvantage o f the button-on-plate friction test is that it is limited by the specimen 

geometry and upon initial point contact there is an extremely high contact stress at the start, 

but quickly reduces to much lower values following wear65. Lastly, because friction is often 

but not always dependant on contact stress, the resultant coefficient o f friction value may be 

unrepresentative o f the contacts found in real life machinery such as engine components.

2.22.2 In-line Rig Friction Tests

These friction tests require the use o f  an In-line fretting fatigue rig similar to those developed 

by Oxford University48 and Purdue University. They are a superior alternative to button-on- 

plate tests because they allow a more accurate representation o f  the geometry and loading 

conditions experienced in service. Figure 2.22.2.1 shows a basic in line fretting test. A bulk 

cyclic load (Q) is applied to the specimen in the axial direction, whilst the fretting pads apply 

a contact force to the specimen to generate a fretting condition. The whole rig is placed in a 

furnace to replicate the service temperature.
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Figure 2.22.2.1. Schematic o f In-Line fretting test

W hen the pads are made from similar isotropic materials, an approach outlined in Hills and

generalised this formulation for application to a ‘flat with rounded edges' contact. These 

solutions work for the case o f similar material contacts. However for dissimilar materials, the 

solution for the contact pressure and the shear traction are coupled. Therefore, it becomes 

difficult to deduce a closed form relation between ps, p and p0

To obtain ps in terms o f p and p0j experiments can be performed and numerical methods can 

be used. Basically, ps is increased incrementally, starting from p0j until the solution o f the 

sliding contact problem yields the experimentally measured average coefficient o f friction, p. 

This process is explained in Farris et al (2003)61 and has been performed for Ti-6A1- 

4V/lnco718 contact by Rajeev and Farris (2002)74. However, it is important to note that these 

methods rely on a 2D formulation o f the contact problem and ignore 3D effects. Nonetheless, 

the methods provide a good understanding o f the behavior o f the coefficient o f friction under 

engine type loading

2.23 Contact Life Assessment Methods

Since the mechanisms related to contact fatigue are not well understood, the determination o f 

an appropriate life assessment method often is dependent on the specific contact situation 

(e.g. material, temperature, microstructure, geometry, etc.) being investigated as well as the 

contact stress analysis method being used. Hence, the main priority is to develop an adequate 

contact stress model to assess a range o f lifing parameters / methods for their ability to model 

contact fatigue life o f the desired contact pair. For this reason, a survey o f current contact 

fatigue life parameters and methods will be presented but will not be assessed in lieu o f the 

development o f the contact stress analysis. It is generally accepted that contact life

N ow ell4* is used to determine the slip zone coefficient o f friction, ps, in terms o f the average 

coefficient o f friction, p and the initial coefficient o f friction, p073 Dini and Nowell62



assessment methods fall into two main categories: (1) stress-based methods and (2) fracture 

mechanics methods.

2.24 Stress-Based Methods

2.24.1 Crushing Stress

Attachment bedding design is currently addressed at Rolls-Royce by ensuring the crushing 

(or bearing) stress is below a specified maximum. This ignores shear, slip, and edge-of- 

bedding normal stress peaks. Currently, the crushing stress is usually calculated from 

truncated contact geometry in SC03, which does not currently allow for inclusion of frictional 

effects. The crushing stress is defined as the load normal to the contact surface, P, divided by 

the contact area, A (<TcruShmg = P/A). It is important to note that the contact area can change 

significantly if  accurate EoB geometry is employed with plasticity.

2.24.2 Stress at a Point / Area / Volume

A general overview of “notch analogue” life prediction methods has been reviewed by 

Nowell, Dini and Hills58. This method derives a correlation between the stress field close to 

the edge-of-bedding and the root of a notch. If the most highly stressed point is at the EoB 

and the contact is ‘incomplete’, the normal and shear tractions will fall to zero leaving only 

stresses parallel to the surface non-zero58. Hence, the stress state at the point of initiation is 

then treated as a uniaxial stress state. This method suggests that the complexity of multi-axial 

parameters may not be necessary in some cases. The EoB life can then be predicted by 

correlating the EoB contact stress to the stress / life resulting from an appropriately shaped 

notch 75. Through this analogy, fretting fatigue life can then be predicted with conventional 

notch fatigue data using the ‘point’, ‘line’, and ‘area’ methods69. There will be a degree of 

empiricism in determining the critical distance. Note that the contact stresses are highly 

multi-axial and undergo non-proportional loading. Hence as soon as a crack is nucleated or 

formed in an area other than the EoB, multi-axial stresses will exist which are not captured in 

the notch analogue approach to contact fatigue lifing.
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2.24.3 Empirical Parameters

Early attempts at predicting contact and fretting fatigue performance used special empirical 

parameters formulated specifically for the contact fatigue problem. For fretting fatigue, Ruiz, 

Boddington, and Chen70 formulated parameters based on products o f the local slip amplitude 

(5), maximum shear stress (x), and maximum local stress parallel to the contact surface (a). 

The first parameter was an energy-based parameter comprised o f a product o f 8 and x. The 

second parameter proposed, g x 8 ,  better captured the location o f crack initiation, but its 

physical interpretation is less clear. It is unlikely that these parameters could be regarded as 

material constants; however, they do provide an acceptable means o f correlating across a
76range o f experimental conditions for a given pair o f contacting materials .

2.24.4 Multiaxial Parameters

While many theories for contact and fretting crack nucleation have been proposed, most of 

them fall short o f quantitative prediction o f the cycles to crack nucleation77. From the contact 

stress analysis, it is clear that the stress state underneath the contact is a highly complex and 

multiaxial one. Therefore, this stress behavior must be accounted for in any model used in 

quantitative prediction o f nucleation life.

Szolwinski and Farris have offered71 and validated78 an approach for predicting fretting crack 

nucleation through application o f a multi-axial fatigue life parameter that links the near­

surface cyclic stresses and strains to the number o f cycles required to nucleate a crack along a 

critical plane. The success o f the critical plane approach in this effort motivated the 

investigation of several multi-axial parameters for application to different material contacts. 

A range o f parameters including the Fatemi-Socie-Kurath79 and Smith-Watson-Topper 80
O 1

approaches were employed to investigate fretting fatigue tests on PH 13-8 stainless steel as 

well as Al-4Cu and Ti-6A1-4V82. Dang Van’s mesoscopic parameter83 has also been 

employed to predict fretting fatigue life o f a low alloy steel (30NCD16) using conventional 

fatigue in the same material84. This required the use o f an averaging dimension to account for 

high fretting fatigue stress gradients (size effect). A range of multi-axial parameters 

(including the Soci85, Findley86, Chu-Conle-Bonnen87, alternating Walker equivalent
QQ  O Q  n - J  r i

stresses , resolved shear stress , Fatemi-Socie-Kurath , McDiarmid , and Smith-Watson- 

Topper90 parameters) were also recently evaluated as to their ability to predict fretting fatigue 

in an FCC single crystal nickel alloy .



Stress invariant life parameters offer an approach for life calculation that is independent o f 

the coordinate system and without the need to calculate a critical plane orientation. These 

parameters can be determined quickly and efficiently from the given stress field. Murthy et 

al.42 have applied a modified Manson-McKnight multiaxial model, which employs a stress 

invariant parameter, cr^ (alternating Walker equivalent stress), as defined by Doner et al.80. 

This method showed some success in predicting nucleation lives for materials such as 

titanium (Ti-6A1-4V)83 and aluminium (Al 2024)91. Though successful for polycrystalline 

materials, Murthy showed that critical plane methods (i.e. Findley92 and Chu-Conle-Bonnen79 

parameters) better modeled the crack nucleation behaviour in a FCC single crystal nickel63.

Experiments show that higher peak stresses are required to produce failures in notch 

specimens as compared to smooth specimens using the same stress parameter. This is 

attributed to the fact that a smaller volume o f material is stressed for a notch fatigue test than 

for a smooth bar fatigue test. As the area o f stress increases, there is a greater chance o f 

finding a material flaw. Hence, there is a greater probability o f finding a flaw and failing 

earlier in the smooth bar specimen. As a result, both the critical plane and stress invariant 

multi-axial parameters require a method for accounting for the size effect (total area or 

volume of material being stressed). This has been accomplished by employing weakest link 

methodologies63,68 as well as other stressed area or stressed volume corrections58.

2.25 Fracture Mechanics Methods

2.25.1 Crack Analogue

The crack analogue56,93 is based on the assumption that the crack nucleation site is at the EoB 

and can be represented as a crack in mode II (shear) loading. Giannakopoulos et al. 

conducted a series o f fretting tests on this basis. The crack life was broken down into three 

stages: (1) the contact interface is treated as a crack loaded in shear, (2) immediately after the 

crack grows into the base material it is treated as a short crack growing from the EoB position 

under the influence o f contact stresses, and finally (3) after growing beyond the influence o f 

the contact stresses, a conventional long crack fatigue behaviour is assumed due to the bulk 

stresses. In the second step, the crack will grow at an angle to the worst principal stress
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(WPS) as it is strongly influenced by the contact shear loading. Eventually, the crack will 

grow away from the contact stress field and is treated by conventional fatigue according to 

the Paris Law driven by the WPS in the third stage o f growth. There are two limitations to 

this approach, both associated primarily with stage 1 o f the analysis procedure. First, it 

assumes that the contact surface is fully adhered and therefore ignores relative motion 

between the two surfaces. Second, it assumes a square root singularity for the stress field, 

which is not necessarily the case in contact conditions.

2.25.2 Bounded Asymptote

As mentioned previously, the bounded asymptote method58,57,94,95 is based on the assumption 

that a contact stress field can be idealised to a standard form close to the EoB position so as 

to produce contact “stress intensity factors”. These parameters can then be used analogously 

to stress intensity factors in linear elastic fracture mechanics (LEFM) for lifing purposes.

2.25.3 Short Crack Arrest

Short crack arrest methods56,96,97 are an infinite lifing method that does not give a quantitative 

measurement o f life. Kitagawa and Takahashi showed that when a crack length is less than a 

critical value, a D, the short crack propagation threshold is found as a function o f the crack 

length, a . Short cracks, a  < a Q, will propagate if the applied stress range exceeds the fatigue 

limit (Aa > Acta). Writing the stress intensity factor range, AK, in terms o f the short crack 

stress range reveals that short cracks arrest if  AK < YAan(7ia)1/2. Conventional long crack 

fatigue dominates once a  > a 0 at which point crack arrest occurs if  AK < AKo. Further details 

are presented in Nowell et. al56.

2.26 Previous Fretting Fatigue Experiments

In order to develop appropriate contact fatigue lifing methods for real je t engine components, 

laboratory controlled fretting fatigue experiments tests are carried out to closely simulate the 

fretting processes that occur during engine functioning. The tests are also used to provide 

further understanding o f the fretting fatigue process by analysing and characterising the 

fracture surfaces associated with test specimens in order to provide evidence regarding the 

physical nature o f fretting and fretting fatigue cracks.



Fretting fatigue experiments aim to simulate the fretting conditions as accurately as possible, 

taking into consideration, factors such as stress, geometry, sliding distances, friction 

coefficients, temperature and environments. As mentioned earlier, there are reported to be as 

many as 50 variables associated with the contact fatigue problem, but in order to simplify the 

analysis phase o f the experiment i.e. In FE modeling, the variables are kept to a minimum 

and the geometry is also kept relatively straight forward.

Since the problem of fretting fatigue is hugely dominated by the disc/blade root contact 

problem, most tests discussed in literature are designed with this in mind. Although not all, 

most o f the laboratory test methods can be applied to a general case of fretting fatigue and 

can be easily manipulated to other fretting fatigue issues. For example, reports have shown 

fretting to occur between disc rims and external features such as lockplates and coverplates. 

Furthermore, reports have shown fretting to be the cause o f rig test failures, where fretting 

has occurred within the bolt holes o f backing discs and the tests discs. In this case, a bolted 

configuration can be implemented into the test design.

In the following chapter, a few fretting fatigue experiments will be briefly discussed. The 

reader will notice that the test setup used for most o f the experiments is quite. The most 

obvious similarity will be the use o f fretting pads on a test specimen to represent the contact 

fatigue element o f the fretting process. For this reason in particular, the tests discussed are 

those which have been successful and designed leaders in this field. However, for the 

interested reader, there are a plethora of published articles in open literature outlining a vast 

number of fretting fatigue experiments.

Experimental investigations o f fretting fatigue have taken a number o f forms over recent 

years. Initially it was common to use bridge type fretting pads as shown in Figure 2.25.1. 

Unfortunately, there are a number o f difficulties with such a simple arrangement. Contact 

conditions at the pad feet are difficult to characterise, especially if  there is bending in the 

bridge itself. Further, conditions at each foot will not be completely identical and it is 

expected that one foot will slip before the other, even under nominally symmetric conditions. 

This means that the slip regime during the experiment is often unknown.

A series o f papers were published in the late 1960s and early 1970s by Nishioka and 

Hirakawa98. These used a quite different contact configuration o f cylindrical pads clamped
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against a flat specimen Figure 12.1b. This geometry has a number o f advantages: pad 

alignment is less critical and the stresses may, in principle, be predicted by classical contact 

analysis99,100. Further, the important parameters for subsequent stress analysis (normal load, 

P, tangential load Q (t), and specimen remote stress r (t)) may all be readily measured and 

controlled. The geometry has since been adopted by a large number o f other researchers, 

including Bram hall101, Hills et a l.102, and Szolwinski and Farris103. In this type o f test the 

normal load is normally fixed, whereas the tangential load is cycled, and applied using 

springs Figure 2.25.1b.

A --
f

(a) (b)

Figure 2.25.1. (a) Bridge pads (b) Cylindrical pads on flat specimen

2.26.1 H-Testing

H-Testing is used to support disc-lifing and is designed for fretting fatigue problems and EoB 

under static and vibratory loading and high temperature (optional).

It is specific to disc/blade root fretting fatigue and can be classified as a subset o f  In-line 

fretting fatigue testing. As can be seen in Figure 2.26.1.1, a typical turbine disc /blade firtree 

root is simulated using the exact same geometry. By factoring down the loads experienced in 

service to the scale o f  the laboratory rig, near equivalent loading conditions can be achieved. 

The effects o f temperature and environment can also be tested by placing the rig an in an 

‘environmental box’. In the figure, Force Q is applied to simulate the centrifugal force 

exerted in the root when the disc is spinning.



Figure 2.26.1.1. Photograph of H-Specimen simulating the disc/blade firtree root.

2.26.2 Servo-Hydraulic Fatigue Testing M achine with Fretting Chassis

The apparatus shown in Figure 2.26.2.2 was developed by Purdue University in order to 

conduct a fretting fatigue test that simulates the loading conditions o f  the disc/blade dovetail 

root. The experiment uses a servo-hydraulic test machine with the addition o f a fretting 

chassis that brings two nominally flat contact pads into contact with the flat dog-bone 

specimen. The experimental design is based on the fact that the blade/disk contact is 

equivalent to a nominally flat indenter in contact with a flat surface104. It is worth noting that 

this set-up has been adaptable for a wide range o f materials, indenter geometries and load 

conditions14.

Figure 2.26.2.2. Photograph of Purdue University fretting fatigue experimental testing apparatus

The servo-hydraulic machine applies a cyclical bulk load to the dog-bone specimen whilst the 

static hydraulic actuators apply a compressive load through the contact pads to the dog-bone
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specimen. The normal load that is transferred to the specimen by the pads also creates a shear 

traction that is generated due to the bulk load displacement. This tangential force is then 

measured by calculating the difference in the applied force and reaction force by load cells at 

the upper and lower load cells, respectively95.

It is important to mention that this experiment creates the partial slip condition disseminating 

the familiar ring pattern, where the centre is in the stick regime and the outer flanked ring is 

the slip regime. As discussed previously, it is the partial slip condition that brings about the 

highest reduction in fatigue life. The small relative displacements induce large localised 

stresses at the edge o f contact that can potentially initiate and propagate cracks. Due to these 

highly localised stresses, fretting fatigue crack nucleation sites can be accurately predicted 

with analytical tools on various geometries and materials105

2.26.3 Fretting Wear Testing Machine

The fretting fatigue testing machine below designed by Purdue University106 and involves 

two stationary cylinder specimens, attached to a rotary table, and clamped both sides to a 

reciprocating specimen. The advantage o f this machine is that the rotary table allows for 

different angles o f contact to be made between the stationary and moving specimens. When 

the stationary specimens are clamped at 90° to the moving specimen, cross specimen 

geometry is achieved which gives a well-defined point contact without suffering any 

alignment problems. Furthermore, varying the angle between the fixed and the moving 

specimens can obtain an elliptical contact o f varying aspect ratio. See Figure 2.25.3.2

Dead weights on top o f the upper stationary specimen provide the normal loads o f contact 

and because o f the simple nature o f the set-up, this force can be varied easily. A piezoelectric 

force sensor is situated inside the connection between the actuator and the moving specimen. 

This force sensor measures the tangential force applied by the actuator. The output o f the 

force sensor is routed to the same data acquisition card (DAQ) driving the actuator.
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Figure 2.26.3.3 - Fretting wear testing machine as used by Purdue University, USA97.
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Figure 2.26.3.4 - Various contact angles between moving specimen and stationary specimens9'.

A microscope head inserted into a slot machined above the sapphire window enables easy 

observation o f the fretting contact as it undergoes wear.

Unfortunately, the rig does not introduce a fatigue element to test fretting fatigue. However, 

Purdue University has confirmed that the rig may have some scope for customisation to 

introduce fretting fatigue if  a more powerful m otor is used. The motor would need to have the 

capability o f introducing a cyclical bulk stress to the moving specimen so that the effects o f 

fretting fatigue can be induced in the specimen.

2.26.4 Servo-H ydraulic fatigue Testing M achine with Two Actuators

The servo-hydraulic machine shown below was designed by D.Hills et al. 4N and has two 

separate actuators that introduce fretting wear and cyclic bulk stress independently to a 

specimen. This allows a more representative approach to fretting fatigue, as components in
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service are often subjected to varying shearing stresses and bulk stresses from independent 

sources. The set up is shown in Figure 2.26.4.5.

n r

B

Test specimen

F r e tt in g

Pads
~i

Figure 2.26.4.5 -  Two actuator fretting fatigue apparatus48

The hydraulic actuators are mounted co-axially, one to provide the bulk tensile loading 

(Actuator A) and one to provide the shearing force (Actuator B) The second actuator is 

connected by a set o f rods to a carriage supporting the fretting blocks, which are self- 

centering but pressed together by a third small actuator (Actuator C) which is loaded 

statically by a mall hand pump48.

2.26.5 Fretting Fatigue Experiment Based on a Constant Deformation

The fretting fatigue apparatus shown in Figure 2.25.5.1 is a relatively simple design 

compared to the servo-hydraulic testing machine. It was developed by K.Endo and H.Goto et 

al107 and uses a constant deformation type o f plane bending fatigue testing. Essentially, the 

specimen comes into contact with a cylindrical surface o f the fretting pad o f the same 

material. The contact load is applied by dead weights, which are connected by a pulley. 

Hence, as the contact surfaces wear down, the dead weights maintain a constant contact load. 

The fretting pads (2) are fixed through a bearing (4) and are able to move along the direction 

o f the bending deflection of the specimen (1). The relative reversed slip, which is 

synchronised with repeated stress occurs because o f the difference in displacement o f the 

specimen and ultimately leads to fretting101. The tangential force o f fretting on the contact 

surface induces strains in the rotating shafts connected to the fretting pads. The tangential 

force is then measured by strain gauges that are fixed to the shaft and recorded dynamically 

by an electromagnetic oscillograph. The gauges work by measuring the relative slip 

amplitude between the specimen and the pads.
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Figure 2.26.5.1. Fretting apparatus: (1) specimen (2) fretting pad (3) dead weight (4) bearing (5) block fixing

fretting pads (6) thin plate (7) strain gauge101.

The resulting fatigue crack depths were measured continuously using a precision type double 

bridge by the electrical resistance o f the specimen, which varied due to the flow contraction 

at the crack portion. This is shown in Figure 2.25.5.2.

Specim en

- C u r r e n t

Electrical R esistance
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Direct Current 
Pow er Source

Double
Bridge

Figure 2.26.5.2. Block diagram o f the crack detector

The apparatus shown in Figure 2.26.5.2 are also capable o f testing environmental effects on 

fretting fatigue. For this type o f experiment, the specimen and fretting pads are housed in an 

‘environmental box’ which can be set to a required temperature and filled with various gases 

or liquids.



2.27 Bolted Configurations

In the aerospace industry, there have been many instances o f fretting in and around bolted 

configurations that have led to fatigue fracture. In the modem aircraft industry, the main 

objectives o f aircraft design are weight saving and reliability o f aircraft. The fatigue life o f 

key components are mainly determined by the geometrical detail design such as fastener 

holes, filleting, where stress concentration occurs. According to statistic, fatigue fracture o f
1 AO

fastener holes account for 50-90%  o f  fracture o f aging plane . W ithin Rolls-Royce, bolt 

hole fretting has mainly been a problematic in rig tests. For example, in one particular high 

pressure compressor (HPC) rig test, fretting from within a bolt hole had resulted in failure of 

a backing disc, compressor test disc and shaft.

There are many factors involved in the fretting o f bolted configurations, such as material 

combination i.e. bolt and mating surfaces, and the way they interact with each other. By this, 

one means the coefficient o f friction between the materials. Obviously, if  the coefficient o f 

friction is high, then the fretting severity will be worse. Other factors include the stresses on 

the bolted configuration. For example, under high centrifugal loads, the bolt hole will 

naturally form an elliptical shape, due to the shift o f  material in the axial direction. This effect 

narrows the bolt hole and clamps onto the bolt with a larger force, essentially increases the 

fretting process. Further, the bolt itself will naturally want to be ‘thrown out' by the large 

centrifugal forces and thus causes larger forces between the hole and bolt. The clamping 

force or tightening torque o f the bolt head also plays a vital role on the stress concentration 

close to the hole, the fatigue life o f the configuration and also influences the crack nucleation 

origin. For example, as shown in Figure 2.26.1, the crack position at the bolt hole changes 

position with increasing tightening torque.

Figure 2.26.1. Typical bolt hole failures in specimens with initial clamping force o f 1.15 kN (Top) and initial 

clamping force o f 11.8 kN (bottom) and applied maximum gross axial stress of: (a) 144 and (b) 210 MPa. Note 

how the crack position changes with increasing initial clamping force109.



Hence, there exists an optimum tightening torque that depends upon thread pitch, bolt 

diam eter and the friction coefficient between the nut and bolt110. According to Shigley m , to 

a first-order level o f accuracy, it can be shown that the tightening torque is given by:

T  - K F d  (2.26.1)

W here K is the thread coefficient and d is  the bolt diameter.

The thread coefficient may vary between 0.12 and 0.20, depending on many variables, such 

as thread material, surface finish and coefficient o f friction. From tests typically it is found 

that:

d  (2.26.2)

The effect o f bolt pre-loading or tightening torque is very important to the fatigue lives o f 

bolted configurations and invites much discussions over the way in which it preloading helps 

to do so. One might ask whether the bolt preload - prior to joint separation - eliminates the 

bolt from "feeling" any o f the external load, or whether it reduces the magnitude o f the 

external load felt. To help understand the concept o f a pre-load, the bolted joint spring 

analogy can be used which is shown in the following diagram.

External load 
0 - 1000 Ibf

External load 
removed

Pre-load 
(1000 Ibf)

A 1000 Ibf 
pre-load is 
applied to 
a scale

A block is 
inserted and 
the load 
removed. 
The spring 
scale is 
un-affected

Any load may 
be applied, up 
to the pre-load, 
and the sping 
scale d oesn 't 
move, a s  long 
as the block is 
very stiff.

Only when 
the external 
load exceeds 
the pre-load 
does the 
spring scale 
move.

I
This analogy 
may be applied 
to bolted 
jo ints when 
the m em bers 
being clam ped 
are m uch 
stlffer than 
the bolt.

Figure 2.26.2. Bolted Joint Spring A nalogy"2
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Referring to Figure 2.26.2, the modulus o f the clamped material is much higher than the 

modulus o f the bolt. In the limiting case o f an infinitely stiff block, the bolt feels nothing until 

preload is exceeded. This is equivalent to the joint diagram where the slope o f the green line 

(stiffness o f the clamped material) is vertical. More realistically, if the clamped material has 

some stiffness, there is sharing o f loads in proportion to the ratio o f stiffness. Studying the 

diagram, one would agree that as long as the external load is less than 1000 Ibf, the bolt will 

feel a load o f lOOOlbf. But the ‘source’ o f that load varies. For example, if a 2501bf load is 

applied, the bolt will feel lOOOlbf, 2501bf from the load, and 7501bf from the block. W ith a 

900 Ibf load, the bolt will feel lOOOlbf, 9001bf from the load, and lOOlbf from the block. With 

no load at all, the bolt will still feel lOOOlbf, but all o f it from the block.

Referring to the diagram in Figure 2.26.3, it can confirm the argument above i.e. that the bolt 

does indeed "feel" part o f the external load, albeit with a greatly reduce magnitude which 

itself depends on the relative stiffness o f the bolt and joint members.

Force Bolt Force Increases

Applied Force to the 

Joint

Joint Clamp Force 

Decrease

Extension

F orce  A pplied to the 

Jo in t

Bolt Extension Joint Compression

Figure 2.26.3. Forces on a bolted Joint.113

Many studies have shown that the details o f holes will affect the fatigue life o f fastener holes, 

such as bolt and processing quality. Ralph et a l.114 have studied the quality o f  holes that 

drilled by various aircraft production drilling procedures. Zhang and Pei115 have investigated 

the surface roughness o f holes drilled by different drilling processes and predicted the fatigue 

life.



Depending on the location, the bolted configuration is also subject to vibration. Vibrations 

can increase relative slip between the bolt head and mating surfaces and can also loosen the 

joint which further increases the fretting process. An added problem caused by bolt head 

loosening is a hammering effect caused by the bolt head on the mating surface o f the disc. 

The ever present effect o f corrosion can also reduce the fatigue life of bolted joints, which 

occurs mainly under the bolt head or from within the hole itself. It is more problematic in 

engines but can also occur in rig tests if  an engine environment is simulated. As mentioned 

earlier, lubrication applied between two materials/components in contacts can increase the 

fatigue lives. This is also true for corrosion prevention compounds (CPC) that help to reduce 

the corrosion in bolted joints.

Geometry and design of the bolted configuration is probably o f the most importance. For 

example, on one occasion, a bolt hole failure occurred due to a threaded bolt in a non­

threaded hole. The threads acted to abrade the inside o f the hole, causing surface roughening 

and therefore a source o f high stress concentration, which eventually developed into a crack. 

Mitigation o f sharp comers and rough surfaces is paramount to extending the fatigue life in 

bolted joints.

It is therefore possible to see the large scope o f research surrounding bolted joints and the 

drive to find an optimum design for eliminating failure by fretting fatigue. Carrying out 

various experiments to simulate the bolted joint of say, a rig test, with the aim o f 

understanding the effect tightening torque, vibration, lubrication, corrosion, geometry and 

material combination can have huge potential rewards for the aerospace industry.

2.27.1 Bolt Hole Experiments

The following chapters will outline some interesting experiments for investigating fretting 

fatigue around bolted/fastened joints. An important point o f interest to note in these 

experiments is the inherent increase in stress concentration factors that accompany the 

geometry of the specimen, hole in specimen and the bolt through hole. This is shown in 

Figure 2.26.1.1.
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Stress Concentration Factor K i- 1.6

— — O  — "*■ Stress Concentration Factor K t* 2.5

V Stress Concentration Factor Kt -  5.5

Figure 2.26.1.1 Stress concentration factors for test specimen sections

2.27.2 Reverse Double Dog Bone T est116

In this experiment, a series o f fatigue tests were conducted to investigate the fatigue 

behaviour o f fastener holes in reverse double bone specimens. W ith respect to finite element 

results, the fatigue life o f  fastener holes in reverse double bone is predicted based on critical 

plane approaches, including Sm ith-W atson-Topper (SWT) model and W ang-Brow n (WB) 

model. After that, the predicted values are compared with that from tests. The effect o f bolt 

clamping force on fatigue life o f fastener holes is also investigated based on the two models. 

The reverse double dog bone specimen is shown in Figure 2.26.2.1 and involves two 

specimens bolted together in a servo-hydraulic fatigue testing machine, shown in Figure 

2.27.2.2. The main point regarding the reverse double dogbone specimen is that the two 

specimens clamped together have different gauge lengths with the purpose o f  inducing 

different strains in each specimen, when a cyclic bulk stress is applied to them by the 

machine. The effects o f different materials combination and other variables on the fatigue life 

o f  bolted joints can also be investigated.

Figure 2.26.2.1. Reverse double dog bone specimen incorporating two specimens o f different gauge lengths.



Figure 2.27.2.2 Reverse Double-Dog Bone test setup.

The experiment concluded the following:

1. The critical plane approach is capable o f predicting the fatigue life o f fastener hole in 

reverse double bone specimens.

2. For the fastener holes in reverse double bone specimens, the SWT approach achieved a 

better accuracy than the WB approach for high cycle fatigue (HCF) while the opposite holds 

for low cycle fatigue (LCF).

3. The fatigue life o f fastener holes decreases with the increase o f bolt clamping force as 

shown in Figure 2.27.2.3.
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Figure 2.27.2.3. Predicted fatigue life against bolt clamping force 

2.27.3 Single/Double Lap Joint Fatigue Test117

In this particular experiment, an investigation was carried out to investigate the effect o f 

tightening torques on the life o f bolted plates using single and double lap joints. The effect of 

plate thickness using an aircraft grade aluminium alloy with double lap joints was also 

studied. Constant amplitude fatigue tests, under load control, were carried out, with a near 

zero stress ratio, on plain specimens (for bench mark purposes) and on both single and double 

lap joint specimens, for which several torque levels were applied on the bolted joints. The 

objective of the fatigue tests was to demonstrate failure trends for each joint type, material 

thickness and torque loading, rather than the generation o f comprehensive S/N curves.
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Figure 2.27.3.1. (a) Double Lap Joint (b) Single Lap Joint108

The tightening torque applied to the bolts results in a compression o f the joint plate members, 

which causes friction between them, and so prevents their relative slipping. Thus, the bearing



of the bolt against the hole edges is avoided, or at least relaxed, and a high proportion of the 

shear load may be transmitted through the joint by friction. In this way, the load is distributed 

over a larger area around the hole, so that the stress concentration factor is diminished and the 

fatigue performance o f the joint is much improved.

It was found that in all torque tightened joints, a greater fatigue life resulted, often greater 

than 10 times longer than zero torque tightened joints. Nonetheless, once the tightening 

torque is strong enough to prevent the slipping o f the joint members and the bearing o f the 

bolt against the hole edges, increasing the torque only has the benefit o f spreading the load 

transmission over a wider area. Since the rigidity o f the joint members helps extend this area, 

a thicker joint may benefit from a high tightening torque further than a joint between thinner

members.

It follows that the experiment is beneficial for the failure types associated with joints loaded 

in shear as shown in Figure 2.27.3.2.

(a) (b) (c)

pin shearing plate tension  plate shearing

(e)

plate tension on plate bearing 
the bearing zone

Figure 2.27.3.2. Failure modes for joints loaded in shear108
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2.27.4 Four Point Bend Test

The setup shown involves loading a test piece in Four Point Bend and is designed to damage 

the bore o f the bolt hole. This is achieved by offsetting the bolt hole in the test piece which 

encourages failure in bore o f the hole. A pair o f identical bolt carriers is fastened on either 

side o f the test piece by a W aspaloy bolt (W aspaloy is the material o f choice for most modem 

bolted configurations in the aerospace industry). The bolts are loaded in such a way that the 

bolt is forced down and the shank presses against the test piece.

The pressure on the bolt hole depends on (i) Position o f the rollers in the lower fixture and (ii) 

stiffness o f the bolt carrier arms.

Offset Hole Testpiece

? Upper fixture 
/

3 piece lower fixture

Bolt Carriers (2 off)

Figure 2.27.4.3. Four Point Bend Test for Bolt hole Fretting Fatigue Tests

The fatigue element o f the test comes from the repeated cyclic bending and the value o f stress 

exerted by the machine depends on what the user is testing. For a LCF test the stress would 

be large with small amplitude and the opposite would be true for HCF.

The 4 point bend test in Figure 2.27.4.3 has been designed with the purpose o f  testing bolt 

hole fretting. The test boasts the simplicity o f geometry which is ideal for FE modeling 

prediction methods. The test can be utilised to study the effects o f many factors on the 

fretting fatigue life o f certain material combinations, such as bolt design, bolt tightening 

torque/preload, specimen thickness, lubrication, geometry, temperature and environment.



2.28 Examples of Previous Wear Damage in Rolls-Royce Jet Engine Components

There have been and will continue to be numerous cases o f wear damage on engine 

components at Rolls-Royce. Some cases have been serious resulting in disc failure and some 

have resulted in blade loss which ultimately causes secondary damage to discs. Other cases 

have shown wear damage on these components but have been noticed during routine 

inspection before further serious damage is caused.

Having researched the archives o f the Rolls-Royce failure investigation department, Bristol, 

it was immediately apparent that the most common area o f wear damage was located at the 

disc/blade roots as a consequence o f fretting fatigue. Regardless o f whether the components 

had failed or not, the wear scars were all very similar, exhibiting the stick/slip pattern i.e. the 

centre o f the contact is not moving but the outer edge of the contacts is. Frequently, fatigue 

cracks were also seen emanating from the boundary between the two regions, where the 

stress concentrations are at their maximum. However, there were a lot o f cases o f wear 

damage that did not resemble the typical partial slip fretting morphology. It is well known 

that fretting can occur over a range o f sliding distances and does not always need to have the 

typical partial slip fretting pattern. Once the sliding distance increases above a specific value 

(usually quoted as 50pm but is in fact material specific), there is a transition into gross sliding 

and larger distances which moves the wear into reciprocating sliding. It is these sliding 

distances that cause confusion between tribologists and engineers alike, since the damage 

may or may not be fretting but could in fact be scuffing, galling or other kinds o f wear with 

entirely different failure modes. It is important to remember that the surface roughness of 

wear scars is not a direct correlation to its fatigue life deficit since partial slip fretting usually 

has a low surface roughness but large effects on fatigue life to the propensity to form cracks 

readily at the edge of bedding.

Fretting fatigue in blade/disc roots requires extensive testing and modelling to capture the 

exact mechanisms of failure. The geometry o f the blade/disc root adds to the complexity of 

the problem especially when trying to computationally model the problem on a microscale 

due to the very fine meshes involved. Testing usually relies on matching the exact geometry 

o f a disc/blade root so that it’s as realistic as possible.
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Wear damage was also seen on the rim o f turbine discs due to cover plates and lock plates 

which mate up against the rim and hold the blades in place. This can form a combination o f 

hammering and sliding wear and as a result, makes it very difficult to replicate in a test 

environment. There are many other instances o f wear damage in je t engine components such 

as splines and couplings but these components are outside the scope o f this project.

Regardless o f the location and the components involved, it is possible to replicate the same 

kind o f damage in laboratory environments with relatively simple apparatus and at the 

operating temperatures experienced by the components.

2.29 A dour 2nd Stage Low Pressure Com pressor Blade Root Cracking

This case was highlighted as a red top and involved 2 Incidences o f blade/disc root failure. 

The blade material was Titanium 6/4 and coated with a graphite dry film lubricant (DFL) 

over all root and underside platform but was not shot peened. The blades had a 2000 hour 

overhaul life but both blades failed to meet this waypoint as one blade was found with gross 

cracking at 1762 hours and the other failed prematurely at 1803 hours.

The blade failure location is shown in Figure 2.28.1. Note the two regions o f wear damage. 

The largest (dark grey) area appears to be lighter than the heavier (light grey) section which 

either suggests that there are two types o f wear damage present or it is the same form o f wear 

but with different severity. This is a perfect example o f how wear damage definitions can be 

misconstrued or overlapped and is the reason why this particular case has been chosen for 

discussion. In this investigation, both Rolls-Royce and Turbomeca refer to the wear as 

fretting.



Figure 2.29.1. Cracking at the edge of bedding in a blade root

The blade found with gross cracking is shown in Figure 2.28.2. The wear damage is heavy on 

both pressure and suction side, though pattern from one side to the other is very different. 

Both sides show full contact, though variations across flank axial length in terms o f 

heaviness. There are also appears to be pitting/ scallops formed by adhesive wear with radial 

directionality on the pressure side and a heavy rippled effect with axial directionality on the 

suction side.

It can be seen from the following images that fissures are abundant at the edge o f  bedding 

and progressing into the parent material shown by the yellow arrows. The total depth o f these 

fissures is 150pm. With increasing load cycles, these cracks would have grown larger and 

caused fracture.

Figure 2.29.2. Micro-fissures present at the edge o f bedding in the un-failed blade. Image courtesy o f

Turbomeca and Rolls-Royce.

Dye penetrant inspection o f the other blades in the same engine also showed indication o f 

fretting damage which further illustrates how big o f  a problem fretting in dovetail roots is.
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Figure 2.29.3. Dye penetrant inspection show s sign o f  w ear damage. Shown in light blue.

Case Outcomes

The outcomes o f this case were that DFL starts to erode after approximately 100-200 hours 

(previous case in another engine type at Rolls-Royce was certainly the case) and as a result, 

friction increases and the EoB stresses go up correspondingly. W ith a 2000 hour overhaul 

life, this is a long time to operate under high friction. The contact stresses and relevant slip 

distances in this case were considered large by Turbomeca, so raisers the question as to 

whether fretting fatigue was the dominant wear process. Or had the wear progressed into a 

more aggressive form such as scuffing or galling which would explain the removal o f the 

DFL and the surface o f the parent material. The diagram in Figure 2.28.4 illustrates how DFL 

starts to slowly fail with increasing contact pressure and temperature.
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Figure 2.29.4. DFL starts to slowly fail with increasing contact pressure and temperature.



There are further examples o f  wear damage on blade roots from other engines, shown in 

Figure 2.28.5. These also show signs o f heavy wear with gross material removal, spalling and 

pitting. In all cases o f inspection, it is important to note that unless the oxide/glaze layer is 

removed, it is impossible to confirm whether cracks present in the bedding wear surface 

extend into the substrate. On this basis, it is possible that there are fretting and contact fatigue 

nucleated micro-cracks present below the oxide layer that go undetected.

Figure 2.29.5. Both (a) and (b) shows wear damage on a turbine blade root from ex-engine. Images courtesy of

Turbomeca and Rolls-Royce.
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2.30 Sliding W ear of U720 T rent 500 HP T urbine Cover Plate and Disc

As a consequence o f the difference in mass and therefore heat sink capacity between the 

Udimet 720Li Trent 500 HP turbine disc (Part No.FW 21059) and cover plate (Part 

No.FW 23346) there is relative movement between the two components because o f the 

temperature changes experienced during the flight cycle. Examination o f test engine 

components showed this movement leads to pronounced sliding wear o f the cover plate and 

disc which exceeds the Engine Manual limits o f 25pm (0.001") after only a few cycles.

The following images show the wear on the disc posts and the cover plates.
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Figure 2.30.1. Disc rim wear due to cover plate sliding



Figure 2.30.2. Cover Plate wear
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Figure 2.30.3. (a) Black putty replica of wear on disc due to cover plate sliding (b) The sealing wire between 

cover plate and disc causes more wear to concentrate on the bottom edge as shown by white arrow.

The wear shown above has numerous score marks running along both the x and y axis due to 

both the cover plate ‘finger’ contact and the Haynes 25 sealing wire which seals the cover 

plate to the disc. There have been numerous incidences involving the sealing wire in previous 

components and this has added to the severity o f the wear problems especially since the



Haynes 25 sealing wire is harder than the U720 disc material. The resultant material removal 

is therefore large and unclear as to whether fretting wear caused this damage Unfortunately, 

since these images were taken from the Rolls-Royce archives, there was not any 

measurement as to how deep the wear scar was or the surface roughness characteristics but 

on comparing these images to other forms o f wear, it would imply that this all the trademarks 

o f a galling wear i.e. large material removal.

A modification to the interface between the two components is therefore needed which would 

reduce the degree o f wear to acceptable limits. The modification was approached from two 

fronts. In the existing design the contact between the cover plate and disc is restricted to a 1 

mm wide "finger” on the cover plate. Furthermore, the cover plate distorts, so that only a 

comer o f the 1mm wide finger is in contact with the disc for part o f the time. A modification 

to the geometry o f the cover plate was sought which reduced the contact stresses.

Secondly, a suitable surface coating on the cover plate to minimise wear o f the disc, without 

excessive wear o f the coating itself, was also sought. Coating the disc was not considered a 

desirable option in view o f the potential fatigue penalty the coating would inevitably 

introduce and because restricting the coating to the central region o f the firtree front face 

avoiding the firtree roots would mean achieving good coating adherence and robustness 

would be very difficult

Simple button-on-plate wear tests (Test Method MM31021) were carried out to record the 

various wear rates of surface coatings. A ranking procedure was then used to select the best 

surface coating which was found to be Tribomet T104CS. Modifying the cover plate finger to 

a “barreled geometry to alter the contact stresses between the disc and cover plate reduced the 

wear measured on the disc specimen. However, this was not to a sufficient degree to suggest 

that the required number o f flight cycles could be completed before wear exceeded engine 

manual limits.

2.31 Oil Pipe Failure by Residual Torsion -  Lynx Helicopter

Most fatigue failures, without the presence o f wear are caused by low cycle or high cycle 

fatigue as discussed previously whereby constant stress amplitude is acting on the 

component. This ultimately causes the movement of dislocations to relive the stress the 

component is under in that high stress vicinity, which leads to a high density o f slip bands -



weakening in the material in this region. Hence failure can occur through no interaction with 

other components but simply by the means o f the stress it is subjected to.

However, in one such case at Rolls-Royce, an oil pipe failure occurred on a Gem engine, 

which is a turboshaft engine developed specifically for the Westland Lynx helicopter in the 

1970s. The oil pipe was made from Alloy C263 is an aluminium-titanium age hardening 

nickel base superalloy. The Gem engine and the location o f the Number 8 bearing oil pipe is 

shown in Figure 2.30.1.

No 8 BRG Oil/Air Vent

Figure 2.31.1. Gem engine from lynx helicopter and the location of the No 8 bearing oil pipe

In this case, the pipe had failed by a mixed mode o f fatigue i.e. the failure started due to high 

cycle fatigue as a result o f  engine vibration and then changed to low cycle fatigue as the pipe 

progressed to failure. Additionally, there existed heavy ‘cross-ways’ rub marks across both 

sides o f the fracture surface (obliterating about 1/3 o f the visible fracture surface). This was 

due to both sides o f the fracture moving over one another after failure. On alignment o f  these 

rub marks it can be seen that they do not sit over the same portions o f the fracture surface on
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comparing one side to the other i.e. they have twisted with respect to each-other. This 

indicates that prior to failure of fracture #2 there was torsion (‘twist’) in the pipe that relaxed 

on failure.

This discovery led to an inquiry into how the pipe was fitted and it was unanimously agreed 

that the pipe had been manipulated into position which caused a residual stress by torsion in 

the pipe.

This is not direct wear contact and does not call for a contact wear damage inquiry but it is a 

form o f fatigue wear and does show that interference, whether by contact or not can 

considerably reduce the life o f components. This outcome is also helpful when considering 

fatigue testing and the loading o f specimens into the servo-hydraulic machines since much 

care should be taken not put torsion into the specimen when fastening into the machine.

2.32 Simulating Wear Damage

This chapter will discuss how specific types o f wear damage will be replicated onto 

specimens for the following test programmes. The way in which replication o f wear damage 

is performed is important so that it coincides with wear damage seen on current and ex- 

service engine components and also to some extent with the existing definitions o f these 

types o f wear in literature.

Simulating damage is not straightforward as it is such a complex phenomenon involving 

many variables. Assuming the tests are carried out in a regular laboratory environment and 

the material combination and their surface characteristics (surface finish and surface 

treatments such as DFL and shot peening) remain the same, the main variables which can be 

changed to achieve wear scars o f different morphologies are the slip distance of the pad and 

specimen, contact pressure between the pad and specimen, frequency o f slip and temperature.

Even with a preconception o f the intended damage, it is still difficult to obtain the types o f 

damage seen in service since there are many other factors that contribute to the contact wear 

within real engine components. For example, consider the blade and disc in a blade-disc joint, 

they are subjected to two different loads. One load is the low cyclic radial centripetal force 

from rotation and the other is high cycle and originates from lack o f media flow as the blade



passes vanes. Hence, depending on the contact design, the combination o f the two loads will 

give different normal and tangential contact distributions as well as bulk stresses in the 

contact surfaces. This is exacerbated by the thermal stresses at such high temperatures which 

can further alter the contact mechanics.

However, aside from the complex problem of thermal and cyclic stresses, there is also the 

added problem o f the flight profile and mission history - which for engines such as the EJ200 

or other military jet engines, not one operation is the same, and so this can give rise to 

unpredictable stresses and complex patterns o f movements between components in contact. 

Components in contact that have different mass and thermal expansion values also slip 

differently relative to each other at higher temperatures 84 and this can lead to unpredictable 

contact mechanics.

The tendency o f a material to wear as a result of contact is affected by the ductility of the 

material. Typically, hardened materials are more resistant to contact wear whereas softer 

materials o f the same type will wear more readily. The propensity o f a material to wear is 

also affected by the specific arrangement o f the atoms, because crystals arranged in a face- 

centered cubic (FCC) lattice will usually allow material-transfer to a greater degree than 

a body-centered cubic (BCC). This is because a face-centered cubic has a greater tendency to 

produce dislocations in the crystal lattice to accommodate the increase in stress and therefore 

plastic deformation occurs more readily. Due to this, an FCC metal is more prone to wear 

damage such as fretting, scuffing and galling and the surface roughness is likely to be larger 

than that o f a BCC material.

Another consideration is that if a metal has a high number of stacking faults (a difference in 

stacking sequence between atomic planes) it will be less likely to cross-slip at the 

dislocations118. Thus, a material's resistance to wear is usually measured by its stacking-fault 

energy. A material with high stacking-fault energy, such as aluminum or titanium, will be far 

more susceptible to wear than materials with low stacking-fault energy, like copper, bronze, 

or gold. Conversely, materials with a hexagonal close packed (HCP) structure, such as cobalt- 

based alloys, are extremely resistant to wear damage119.

The following chapter briefly discusses three mechanisms o f wear damage known as 

scuffing, fretting and galling and provides example images o f what each wear damage scar
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typically looks like in service. The images as well as wear scar measurements will be used in 

the ongoing test programmes so that it can be replicated in laboratory specimens.

2.32.1 Scuffing

Scuffing, like all the other contact wear mechanisms has been a research topic o f vast interest 

for many years but the factors that account for it are poorly understood. Even defining what 

constitutes scuffing has not yet been fully resolved. The majority o f research has focused on 

the macroscopic observations o f failure to define the onset o f scuffing. Familiar terminology
1 *5 a  191 199

includes "gross damage" , "solid-phase welding" and "adhesive wear" . On a 

microscopic scale "a roughening o f surfaces by plastic flow whether or not there is material 

transfer"123 has also been presented as an alternative definition.

Scuffing is frequently used in describing the breakdown o f lubrication usually at high sliding 

speeds and low loads. It is generally accepted that failure occurs when the rate o f film 

removal is greater than the rate of film formation124. These films could be the dry film 

lubricants applied during manufacture, oxide films or in the case o f nickel superalloys, nickel 

oxide glazes. Nevertheless, the failure o f these films is due to an unknown additional 

mechanism and some evidence suggests that film breakdown is dependent on the operating 

conditions, the physical and chemical nature o f the lubricant, the surrounding atmosphere and 

the material properties o f the surfaces .

There is strong evidence to imply that scuffing failure may be a result o f thermal effects and 

frictional heating due to interacting asperities is a significant factor. Under operational test 

conditions, scuffing generally results in a drop in the electrical contact resistance in a 

critically worn area, indicating a breakdown in the surface film and the base metal126.

It should be noted that if  the DFL has been worn away or if  the oxide layer or nickel oxide 

glaze does not have time to reform, then the bare metal will be exposed and full metal-to- 

metal contact will occur. Further sliding will result in the initiation o f fatigue cracks. This 

may be speeded up by other factors such as wear debris (that become trapped between the 

contacts), stress gradients between the worn and unworn regions and if  other mechanisms



come into play such as spalling and plucking which loosens the surfaces and causes it to 

break off.

There are numerous scuffing models that can help better understand this wear mechanism and 

these are outlined in W.F. Bowman and G.W. Stachowiak -  ‘A review o f scuffing m odels’127 

among others.

Examples o f  scuffing damage are shown in Figure 2.32.1.1 (a) and (b.) The wear damage in 

(a) was caused by lock plates that are designed to mate up against the disc rim  and prevent 

the blade roots from coming out o f the disc slots. Flowever, due to engine running and 

vibration, there is small relative slip between the two which can cause contact wear. From the 

scuffing descriptions given in literature, it would lead one to believe that the wear damage in 

this case is scuffing since the material removal is very small, just enough to remove the 

surface coating. The most severe wear depth measured for (a) was recorded as 20pm 

(0.02mm) and the surface roughness was relatively low at 1.34pm in contrast to its standard 

surface roughness o f 0.82pm. The damage shown in Figure 2.32.1(b) is a result o f slip 

between bolt and washer against the surface o f a high pressure BR715 turbine disc. As in the 

case o f (a), the damage is not in a visually severe condition but the wear depth was higher 

than (a) and found to be 0.06pm at it most sever point. The corresponding average surface 

roughness values were found to be 2.43pm in contrast to its original surface roughness o f 

0.79pm.

Figure 2.32.1.1. (a) Scuffing wear on a disc firtree root of the front face near the rim and (b) scuffing wear 

around a bolt hole due to bolt/washer contact on a BR715 HP turbine disc. In both cases the wear is mild but 

spread over a large area. Images courtesy of Rolls-Royce.
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From the examples seen in ex-service components within Rolls-Royce, the wear scar 

morphology o f scuffing tends to be widespread and relatively smooth. Closer inspection 

reveals linear wear tracks with patches o f oxide layer removed.

200 pm

Figure 2.32.1.2. SEM images o f wear tracks on a firtree root with scuffing (a) 20x (b) 50x. Image courtesy of

turbomeca and Rolls-Royce.

Further general images are shown below to provide examples o f scuffing in automotive 

engine components.

Scuffing on tooth addendum

Figure 2.32.1.3128. Scuffing on gear teeth. Note how the wear is widespread, light and just enough to remove

part o f the surface coating.

Damage evolution is directly related to the contact sliding condition. Hence when simulating 

scuffing damage onto laboratory specimens it is important that the contact force is relatively 

low and the sliding distance is large as not to create large material removal. Furthermore, 

since high frequency is generally associated with scuffing wear this should be taken into 

consideration during the test. Since replicating wear damage is purely empirical, it is



accepted that the key to achieving the most realistic wear scar morphologies is through a trial 

and error basis. Hence, it is important to recall on previous components that have undergone 

scuffing and compare them with laboratory worn specimens until they are as similar as 

possible before carrying out tests.

2.32.2 Fretting

Whereas sliding wear usually results from two solid surfaces moving over one another with 

relatively large sliding distances, fretting often arises between surfaces which are intended to 

be fixed and as a result, the sliding distances are very small. The small amplitude of 

movements are generally created as a result o f vibration or because of the complex stress 

systems in that particular area o f the engine e.g. disc/blade root.

Even though fretting occurs within a small sliding scale, its effect can be more damaging than 

larger sliding distances. Partial slip fretting occurs in the sliding scale range 1-100pm and 

research has shown that the greatest life reduction occurs when the sliding amplitude is 

approximately 50pm but this is material specific. The point at which the partial slip regime 

moves into gross slip fretting is not clear and again depends on the material involved, the 

mechanical properties o f the two contacting materials, and the environmental conditions. The 

transition to sliding wear has been reported at amplitudes as large as 300pm, and as small as 

50pm. However, once the gross slip regime is achieved, material removal increases and 

interestingly the fatigue life increases since cracks that are formed can be removed during the 

wearing process. In general, although fretting wear could be regarded as reciprocating sliding 

wear with very small displacements, there are enough differences in both wear rates and 

mechanisms to warrant the use o f a separate, distinct terms.

Since the sliding amplitude at which fretting becomes sliding is material specific, it makes 

fretting more difficult to understand. To distinguish between the two, one must consider the 

dimensionless wear coefficient, K. It should be noted that under fretting conditions, K is 

dependent on displacement but under sliding conditions, it is not.

The volume worn per unit sliding distance, Q, can be estimated using the Archard Wear 

Equation114.
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Q = ^ i r  (2.32.2.1)

This equation relates wear to the macroscopic quantities W, the normal applied load, L, the 

sliding distance, H, the indentation hardness o f the softer material, and K, the Dimensionless 

Wear Coefficient. The value K is of particular importance as it provides a valuable means of 

comparing the severity o f  wear in different systems.

For engineering applications, the value W/H is often replaced with the symbol k, which is the 

Dimensional Wear Coefficient and represents the volume o f material removed by wear per 

unit sliding distance per unit normal.

W ear Volume
Dimensional W ear Coefficient, k  =  -------------------------- --------------------------------------------- -— — ---------------------------------------------

Norm al Load x Total Sliding Distance

(2.32.2.2)

k the dimensional wear coefficient can replace W/H.

At very small amplitudes, the wear rate is negligible due to the contact zone ‘sticking’. As the 

amplitude is increased, microslip will arise at the outer edges o f the contact zone. As a result, 

a mixed stick and slip, or ‘partial slip’, situation is reached. During this ‘partial slip’ phase, 

the proportion o f microslip increases and k rises slowly. Once the area o f microslip covers the 

whole o f the contact area, ‘gross slip’ is achieved and k begins to increase more rapidly, k 

continues to rise until eventually leveling off at a constant value expected for the sliding 

regime.

Although fretting tends to produce less wear volume than sliding, it is this regime that causes 

the most problems. Fretting wear can firstly lead to loosening o f components that are 

intended to be fixed, resulting in a further increase in the relative movement and/or vibration, 

and a consequently accelerated rate o f further wear. Since the debris formed by fretting are 

predominantly oxide, which in most metals occupies a larger volume than its originating 

material, fretting wear can also lead to seizure o f parts that are designed to slide or rotate with 

a small clearance. Whether fretting leads to increased clearance, or to seizure, depends on the 

ease with which the wear debris can escape from the contact region. Fatigue cracks can also 

initiate at fretting sites leading to fretting fatigue.



Typical images o f  fretting are o f the partial slip kind. However, since fretting encompasses 

the gross slip and reciprocating sliding regimes, it is important to show these kinds also. As 

already mentioned, fretting generally results from components in contact that have more 

freedom o f movement that the design limits intended. This can result from engine vibration 

which is very difficult to control. The following images shows a typical example o f fretting 

wear on an ex Rolls-Royce firtree root.

Heaviei 
fret pat<

Figure 2.32.2.1. Fretting wear damage resulting in a crack running through the front face of a disc post. The 

average surface roughness o f the fret patch was recorded as 5.26pm.

The following set o f images was taken from an internal Rolls-Royce report which was written 

to detail the outcome o f a Trent 1000 HPC4 rig test. The diagram below shows the layout o f 

the rig test MRA47610.

Spacer
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Figure 2.32.2.2. Trent 1000 HPC4 Spin Test No.MRA47610 layout. Red circle indicates region of fretting wear

damage.

The wear damage on the rig test components, shown in Figure 2.31.2.2 has been described as 

fretting wear by Rolls-Royce failure investigation team, Derby. The damage itself occurred 

around the bolt holes where the spacer plate is attached to the RR1000 HPC4 disc. It is not 

known how much displacement takes place at this location (circled in red in Figure 2.32.2.2) 

but there is certainly considerable damage as a result o f the centrifugal force during spinning. 

During the test, the bolts "fidgeted" in the holes resulting in wear o f the washers and mating 

surfaces as well as contact wear between the bolt shaft and holes. As a result, six o f the bolts 

in the spin test failed. One bolt that did not fail is shown in Figure 2.32.2.3d.

The damage around the HPC4 bolt holes was found to be =0.1 mm deep on average with a 

large surface roughness o f 5.97pm. The wear scar morphology was not uniform and exhibited 

sharp asperity features, more typical o f severe galling wear. On the other hand, the fretting 

wear shown on the bolts had a much smaller wear depth o f only 0.05mm and a relatively low 

surface roughness o f 1.22pm. The Waspaloy washers also had lower values o f surface 

roughness compared to the RR1000 disc at 4.35pm.

Close up inspection o f the spacer in Figure 2.31.2.4 shows unpredictable patterns of 

movement whereby the wear marks are orientated in different directions. This suggests that 

the sliding displacements altered during the course o f the rig test.



It is important to realise that once the damage exceeds the partial slip regime, the wear scar 

resembles that o f full sliding to a high degree o f likeness and it makes characterisation 

difficult, due to the irregular wear scar morphology.

sp ac e r abutm ent face

F retting

2 Ttrr.

Figure 2.32.2.3. Components with stated fretting damage after a HPC4 rig test, (a) and (b) HPC4 RR1000 (c) 

Waspaloy washer (d) Waspaloy bolt with fretting wear. It is difficult to determine whether the damage is in fact

fretting once the gross slip regime is entered.
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Figure 2.32.2.4. Close up view of fretting around the disc abutment face of a spacer. Image courtesy of Rolls-

Royce.

W ear Marks

Figure 2.32.2.5. Failure of a Waspaloy bolt as a result o f fretting fatigue. Image Courtesy o f Rolls-Royce.

In order to simulate fretting damage in all its regimes, large contact stresses will be adopted 

in the range o f 150-250MPa and the sliding distances will be chosen in the range o f 0.05- 

lm m  to simulate the partial slip, gross slip and reciprocating sliding regime. The rate o f



material removal should be small resulting in a wear depth o f no larger than 0.5mm deep. 

However, this will be difficult to control once the wear test begins.

Since there is more emphasis on the contact load and sliding distance in fretting, the 

frequency o f sliding will kept at a standard frequency o f 2.5Hz used for most fretting wear 

tests at Oxford University.

2.32.3 Galling

Galling is a more severe form o f scuffing due to local welding and is associated with gross 

surface damage. The word often refers to damage resulting from unlubricated sliding at low 

speeds and high loads, characterised by severely roughened surfaces and transfer or 

displacement o f large fragments o f material. Galling may occur in nominally lubricated 

systems when the lubricant film breaks down and can be followed by seizure o f the surfaces 

and consequent gross failure o f the sliding surface. Certain metals will generally be more 

prone to galling, due to the atomic structure o f their crystals. Since aluminum is relatively 

soft, it will gall easily, whereas harder materials such the nickel base alloys are slightly more 

resistant to galling. The harder the material, the more resistant it is to wear and this is true for 

all other forms o f wear damage also.

Examples are shown in the following images and it can be seen that their surface morphology 

is highly irregular and roughened and its corresponding surface roughness values are much 

higher than that o f fretting and scuffing.
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2 m m

Figure 2.32.3.1 Galling wear around a spacer bolthole. Worst case was 0.8mm depth into material. Image

Courtesy of Rolls-Royce

The image above shows a heavy galling patch around a spacer bolthole. The damage 

illustrates a characteristic uneven surface. There does not appear to be a repeatable pattern o f 

continuous lines or stripes and the entire contact zone is patchy with exposed bare metal, 

some of which is raised or dropped below the surface. This is a highly severe form o f 

adhesive bonding between the metal surfaces. The largest depth o f wear was measured at 

0.6mm which is relatively large when compared to fretting and scuffing. The surface 

roughness was recorded at a staggering 7.34pm which illustrates the severity o f galling wear.

Figure 2.32.3.2. Examples o f severe galling wear. Images taken from a private forum.



The images shown in Figure 2.32.3.2 illustrate highly severe galling wear. It can be seen in 

both images that large quantities o f material removal have taken place. When simulating 

galling damage onto specimens, it is important that a highly roughened surface is produced 

with large surface roughness values to coincide with the examples shown above. The 

mechanisms that drive galling wear are very different to fretting and failure results from the 

overwhelming loss of material which increases the stresses in that region129.

2.33 Literature Review Summary

This literature review has given a comprehensive overview into an array o f topics that lays a 

solid foundation for further research into the complex subject o f contact fatigue o f metals and 

in particular, some o f the contact problems in nickel superalloys in turbomachinery. With this 

knowledge and awareness o f the problems seen in je t engine components during real 

operation, it allows one to concentrate on a particular area (or sub assembly) that will benefit 

the industry and hopefully prevent or lower the number o f failures in the future.

Referring to other institutions and building on the work they have carried out, new tests can 

be developed to gain a more specific understanding of variables which have not yet been 

tested or little understanding exists. Until now, there has been little work on fretting fatigue at 

high temperature and therefore the vision o f this research is to focus on this specifically.
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3 Experimental Methods

The material chosen for the programme o f work in this project was Udimet 720Li, a popular 

material o f choice for turbine engine discs within jet engines as well as land based turbines, 

where operating environments require excellent thermal and corrosion properties as well as 

good creep and fatigue properties.

The material was supplied by Rolls-Royce and all the specimens were manufactured from the 

same disc forging which ensured consistent material properties from one specimen to the 

next. It was also stipulated that all specimens were cut out o f the disc forging with the same 

orientation i.e. uniaxially from the bore to the rim.

The table below provides the properties and composition of Udimet 7201 Li.

Young’s

Modulus Yield Stress (0.2 % Chemical Composition

Material (GPa) Poisson’s ratio offset), (MPa) (%)

Cr( 15.5-16.5), Co(14.0- 

Udimet720LI 219 0.33 881 15.5),

A1 (2.3-2.8), C(0.01-0.02) 

B(0.01-0.02), Mo (2.8- 

3.3),

W (1.0-1.5),Zr(0.03-0.05) 

Ti (4.8-5.3), Ni (Balance)

Table 3.1. Typical elastic properties and composition for U720Li.

Fatigue Specimens were made to the dimensions shown in Figure 3.2 with very fine 

tolerances and polished to remove any surface imperfections that would otherwise weaken 

the material.
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Figure 3.2. (a) A front view technical drawing o f a fatigue specimen o f U720Li used throughout this entire 

project (b) A side view technical drawing of a fatigue specimen of U720Li used throughout this entire project

3.1 Tensile Testing

In order to choose the appropriate stress amplitude for baseline fatigue testing, the ultimate 

tensile strength (U.T.S) o f  U720Li was first established. Discovering the UTS value ensures 

that the stress value chosen for baseline fatigue testing is not above the UTS value which 

would otherwise give zero fatigue cycles and would therefore be a waste o f a specimen.

It has been shown that the yield stress and ultimate tensile strength o f U720Li remains 

relatively unaffected by temperature until about 600°C, typical o f superalloys strengthened
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by fine and coherent intermetallic Ni3Al-based precipitates130. As a result, the tensile tests 

had to be carried out at the same temperature that that the fatigue test would be undertaken at, 

which is 600°C. This is a typical operating temperature for the bore o f turbine discs during 

service.

Three tensile tests using U720Li specimens shown previously were carried out on a lOOkN 

servo-hydraulic machine at a temperature o f 600°C. The U720Li specimens were loaded into 

the machine and enclosed within a 100mm diameter split furnace and further insulted using 

Kao wool to prevent heat loss. The furnace was allowed to heat up until the temperature 

stabilised at 600°C ±3°C but every effort was made to ensure that the temperature was as 

close to 600°C as possible. Once the temperature had stabilised, the specimen was allowed to 

‘soak’ for one hour before the test was started. Soaking allows the specimen to reach 

equilibrium so that even the core o f the material is approximately 600°C, relieving any 

thermal gradients from the surface to the core.

Tests were conducted with a constant strain rate o f KfV1 until tensile failure o f the sample. 

The Phoenix software assigned to the machine produced a stress strain curve for the test 

specimen allowing the relevant data to be extracted with the most important properties being 

yield stress and UTS.

3.2 Baseline Testing

The cyclic stress level o f the first set o f tests is a large percentage of the UTS (-80% ), which 

produces failure in a relatively small number o f cycles. Ensuing tests are run at lower cyclic 

stress values until a level is found at which a reliable S-N curve can be created.

Baseline fatigue tests were carried out on a 1 OOkN servo-hydraulic machine at a temperature 

of 600°C. The procedure of preparing a specimen for testing is identical to that o f the tensile 

test section above in that the specimen was allowed to ‘soak’ for one hour prior to starting the 

fatigue test as this minimises thermal gradients form the specimen surface to its core.

The thermocouples used for measuring the temperatures within the furnace were ’N ’ type.

Five specimens were initially tested with an R ratio o f -1 to provide tests with only bulk 

elastic deformation and a trapezoidal waveform o f l - l - l - l .  A further two series o f baseline



tests were also carried out to achieve greater accuracy. The stresses that were chosen for each 

test series are shown in the tables below.

Baseline Test 1

Specimen Number Stress Amplitude (MPa)

1 800

2 750

3 725

4 700

5 650

Baseline Test 2

Specimen Number Stress Amplitude (MPa)

1 800

2 750

3 710

4 690

5 650

Baseline Test 3

Specimen Number Stress Amplitude (MPa)

1 800

2 750

3 725

4 650

Table 3.2.1. Stress Amplitudes for baseline testing

The number o f cycles to failure was recorded for each stress amplitude and plotted on a 

Stress Vs Number o f cycles (S-N) graph in order to produce an S-N curve. This was repeated 

a further two times so that three S-N curves were produced. These curves would be used for 

future reference when choosing stress values for ongoing wear damage testing and to 

compare life reduction factors between baseline and damaged specimens.

3.3 Wear Testing at Oxford University - The Dartec Rig

The first series o f wear testing was part conducted at the University o f Oxford using the

Dartec servo-hydraulic wear testing machine. The main aim o f the programme was to subject

ten specimens to a range of pre-determined, reciprocating sliding wear damage at room

temperature thus producing artificial damage. After each specimen had been subjected to
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damage, they were fatigue tested at 600°C in order to determine the overall effect on its 

fatigue life when compared to baseline tests. Ideally, it would have been more realistic to 

impart wear damage and fatigue at the same time as in the case o f real life components. Part 

o f this project will attempt to deal with this particular problem.

The Dartec servo-hydraulic tensile testing machine consists o f a hydraulic ram, a 125kN load 

cell, a cast iron chamber mounted on the machine base, hydraulic pistons, two fretting pads, a 

specimen and a LVDT (linear voltage displacement transducer) used for accurate 

displacement measurement.

pressure pump)

Hydraulic pistons

(connected to hand

Hydraulic ram

Fretting pad Specimen

Norma^
load

Rigid block

Hydraulic cylinders

Base

Figure 3.3.1. Schematic o f the fretting wear rig.



Figure 3.3.2. Photograph of the fretting wear rig mounted on the servo-hydraulic

A pair o f U720Li fretting pads with a flat-and-rounded geometry was used for the tests and 

was machined back to their original geometry after every test. Furthermore, the contact 

surface o f the pads was polished with emery paper down to 1000 mesh after each machining.

Since the Dartec machine had only previously been used for performing wear tests on one 

type o f  specimen shape - in order to use fatigue specimens from this project, a custom 

specimen holder had to be designed and made. The specimen was connected to the cross­

head o f the testing machine by means o f a specially designed threaded grip and this is shown 

in Figure 3.3.3.
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Figure 3.3.3. Schematic representation o f a fretting wear pad

Vertical motion o f the specimen between the pads induced slip between the contacting 

surfaces, provided that the prescribed cross-head displacement range was sufficient to exceed 

the displacement taken up in the specimen and rig elastic compliance. The fretting pads were 

pushed against the specimen through a pair of hydraulic cylinders capable o f moving 

horizontally, perpendicular to the specimen axis.

During the test the normal force applied to each pad was maintained constant and equal. The 

load cell measures the total shear force applied to both contacts. The force in each contact is 

assumed to be half o f this. The coefficient o f friction was then readily computed as the ratio 

o f the shear force to the normal force produced by the hydraulic cylinders on each pad, 

during the sliding phase o f each cycle.



Test Frequency
Number Pad Pressure (Mpa) Displacement (mm)________ (Hz)_______ Number of Cycles

1 150 0.05 2.5 20,000

2 50 2 2.5 20,000

3 250 0.5 2.5 20,000

4 200 0.05 2.5 20,000

5 150 0.8 2.5 20,000

6 150 2 2.5 20,000

7 50 0.1 2.5 20,000

8 100 0.05 2.5 20,000

9 100 1 2.5 20,000

10 25 1.5 2.5 20,000

Table 3.3.1. Test matrix for 10 specimens with different pad pressures and displacement

The variables within the matrix parameters are the pad pressure and pad sliding displacement 

and these were chosen carefully to give a spread o f wear damage similar to what had been 

seen in service on engine discs and other jet engine components.

The test was stopped when the cycle (peak to peak) count reached 20,000 cycles. The 

frequency was chosen to be 2.5Hz which is a typical value chosen for wear tests of this kind.

3.3.1 Digital Profilometry - Surface Roughness Measurements

Digital 3D profilometry was carried out on an Alicona IF-Profiler and was used to measure 

the surface finish of each sample in high resolution. Surface roughness is measured based on 

the extraction o f a linear profile known as average surface roughness, Ra and the root mean 

square roughness, Rq and is completed according to ISO 4287/88.

The surface roughness measurements were carried out on the tested specimens in an attempt 

to provide further information, both quantitative and qualitative, about the damage obtained 

from the test. Surface roughness measurements were first taken o f a plain specimen with zero 

damage as a baseline measurement. Measurements were then taken o f the damaged 

specimens at different locations within the wear scar as it was anticipated that the surface 

roughness would not be uniform over the whole area. Hence, measurements were taken at the 

centre and the surrounding area.
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3.3.2 Fatigue Testing of Damaged Specimens

The worn specimens were then fatigue tested at Swansea University to determine the effects 

o f wear on the specimens fatigue life when compared to baseline tests conducted on U720Li 

earlier in the project.

The value of stress amplitude was chosen for this particular set o f fatigue tests was selected 

from the baseline data that corresponded to a fatigue life o f 20,000 cycles as this was the 

number o f cycles that the wear tests were performed at in Oxford University using the Dartec 

wear test machine. Therefore, this test assumes that for each fatigue stress cycle, there is one 

wear cycle from peak to peak occurring at the same time.

The tests were performed at 600°C with an R ratio equal to -1 and a trapezoidal waveform (1- 

1-1-1) which is the preferred waveform for Rolls-Royce when carrying out fatigue testing. R 

ratios o f -1 simulate the compression and tension experienced in components in jet engines 

more realistically. The same procedure was the same for these tests as the baseline tests 

discussed earlier.

3.4 Fretting Fatigue Testing

To focus on fretting fatigue, a fretting fatigue testing apparatus was designed in order to 

develop a series o f in-situ tests that involves fretting at high temperature. The fretting test 

uses a pair of clamping plates which hold replaceable fretting pads against the surface of 

fatigue test specimens. The clamping plates are clamped together with high tensile bolts at 

either end. The bolt tension is balanced by the compressive force in the fretting pads, which 

transmit normal forces. The compressive force encourages fretting o f the pads against the 

specimen surface during deformation (caused by the Poisson effect when the specimen cross 

sectional area decreases during tensile loading).

A schematic o f  the test arrangement is shown in Figure 3.4.1 and illustrates how the fretting 

pads are held in contact with the specimen by use o f clamping plates. Figure 3.4.2 shows an 

image o f the actual arrangement used during the tests. The plates were manufactured using 

CNC milling at Rolls-Royce Pic, Bristol.
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Figure 3.4.1. Birdseye view drawing of clamping plates and fretting pads

Figure 3.4.2. Bottom view o f the clamping plates showing the fretting pads and plates

The following images show CAD drawings (drawn in AutoDesk Inventor) o f the clamping 

plates for the initial part o f room temperature testing and a technical drawing outlining the 

dimensions o f the clamping plates.
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Figure 3.4.3 CAD drawing of clamping Plates created in AutoDesk Inventor.
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Figure 3.4.4. Technical drawing o f clamping plates.

During the testing programme, it became apparent that the clamping plates shown above in 

Figure 3.4.3 were not going to last the testing programme. This was due to the permanent 

deformation o f the plates as a result o f  yielding during room temperature testing. The 

problem would only be exacerbated during the high temperature testing section where the



plates would be exposed to 600°C. As a result, new clamping plates were redesigned and are 

shownin Figure 3.4.5. Note how the plates are a simple rectangular shape rather curved which 

negates high concentrations o f stress in the fillet radii regions o f the previous plates.

The redesigned clamping plates remained at 90mm in length and so did the distance between 

the bolthole centres and height o f the plates which is 80mm and 15mm alike. The only 

difference is that the thickness o f the plates has increased to 16 mm to cope with the high 

demands o f stress. The new clamping plates were manufactured at Swansea University 

workshop using stainless steel 316.

Figure 3.4.5. CAD Drawings of re-designed clamping plates.

In order to hold and locate the clamping plates over the specimen a rig was designed and 

fabricated. The rig was designed to allow fretting o f  the pads and specimen in the positive 

and negative y-direction but not in the x-direction.

The fretting cup has been designed to fit directly onto the servo-hydraulic pull rod. This 

makes it a relatively cheap and easy to use piece o f kit for generating reliable results in a 

short space o f time. The most suitable and cost effective material for fabricating the cup was 

stainless steel 316. This material offers relatively high temperature capabilities and adequate 

strength for this particular programme o f testing.

M achining o f the fretting cup was relatively straight forward using the turning method by use 

o f a lathe at the Swansea University.
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A 3D rendered m odel is show n below.

Figure 3.4.6. 3D rendered model o f fretting fatigue rig. The red arrow between the cut outs illustrates how the

unit will move during the test.

The cut outs in the side o f the fretting cup were designed in order to encourage compliance in 

the unit and encourage natural movement, since the unit was not intended transmit all the 

force through the pads but only enough to encourage partial slip.

Stirrups help  

locate  clamping 

p l a t e s t h o u g h t h e  

bolt  ho le s  (no t  

d raw n).
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Figure 3.4.7. Technical drawing of fretting cup showing the dimensions.

The fretting rig setup complete with clamping plates is shown below.

Figure 3.4.8. Images o f fretting fatigue rig and clamping plates as it would look during a fretting fatigue test. 

The left image is a side view and the right image is a front view of the cup.
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3.5 M easuring the Fretting Pad Pressure

A method o f m easuring the pad pressure acting on the specimen is now explained. Ideally, it 

would be beneficial to have a value o f  the pressure during the entire test so that pad pressure 

can be closely monitored to determine whether the pressure drops o ff at during the wear 

process at high temperature. However, a search for force/pressure sensors within the project 

budget were fruitless and most other sensors would not operate at temperatures in excess o f 

200°C and some 400°C. Furthermore, because o f the large pressures through the pad (up to 

355MPa) there were no pressure sensors on the market capable o f withstanding these 

pressures.

3.5.1 Torque W rench

To establish the initial pad pressure prior to encasing the setup within the furnace, a Clarke 

l/f’ drive digital torque wrench was used to supply tension to the bolts. The wrench was 

calibrated to BS EN IS06789 and was capable o f supplying torque o f up to 30Nm which is 

ample enough for the requirements o f this project.

The bolts were tightened up equally on either side by slowly and incrementally turning the 

wrench on each bolt until they both reached the required torque value in Nm which is 

displayed digitally. Furthermore, the distance between the plates being bolted together from 

the outside surfaces and inside surfaces (shown in Figure 3.5.1.1) was also measured with a 

set o f vernier calipers. This ensured that the mating surface o f the fretting pad was in full 

contact with the specimen on both sides and it was necessary in order to perform finite 

element analysis which will be discussed in the next section.

Figure 3.5.1.1. Schematic o f the clamping plates set-up highlighting how the distance between the plates was 

measured between a and b on both ends of the plate before and after bolt torque up.

a b



3.5.2 Finite Element Analysis

The clam ping plates have a characteristic stiffness which enables the compressive force to be 

estimated from the separation o f the bolt head and the nut (‘a ’ in Figure 3.5.1.1).

An FE model was created in Autodesk Inventor from a geometric model as shown in the 

images in Figure 3.5.2.1. Using this information, finite element analysis was performed to 

calculate a rough estimate o f the pressure through the pads.

The FE model assumes that the clamping plates are made from stainless steel 316 which is 

the material o f choice for the clamping plates. This has an elastic modulus o f 193 GPa. The 

model was loaded by applying a normal restraint on the fretting pad and then displacing the 

upper rim o f the bolt holes according to the real measurements taken in the laboratory.

Figure 3.5.2.1. A section o f a finite element model illustrating the stresses in the original clamping plates when a

displacement is applied to upper rim of the bolt section.
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3.5.3 Bolts

Initially, Waspaloy aerospace grade bolts and nuts were used because o f their high 

temperature capabilities and superior creep and tensile properties. The part number for the 

bolts was AS22520 and has a double hex head which is typical o f aerospace grades.

Waspaloy is a nickel base, age hardenable superalloy with excellent high temperature 

strength and good corrosion resistance, notably to oxidation, at service temperatures up to 

1200°F (650°C) for critical rotating applications, and up to 1600°F (870°C) for other, less 

demanding applications.

Temperature, °C
0 100 200 300 400 500 600 700 800 900 1000

1600

1400

1200

1000(£
5
co

800 a>
.fci 
CD

600

400 

200 

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temperature, °F

Figure 3.5.3.1131. Graphs gives the properties o f Waspaloy in a graphical format.

Since the design of the plates was changed and made thicker, the Waspaloy bolts were too 

short. It was decided that 12.9 high tensile steel cap screws (M10) would be used instead. The 

cap screws were cheaper, more accessible and had sufficient materials and mechanical 

properties for use in the ongoing tests.
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Technical Data

Material Class 12.9 Zinc Plated 

Steel

Standard DIN 912

Thread

Diameter

10mm

Thread Pitch 1.5mm

Socket Size 8mm

Head Height 10mm

Head Diameter 16mm

Table 3.5.3.1. Cap screw materials and dimensions

The manufacturer’s website, www.bossards.com claims that continuous operating at elevated 

temperatures may result in significant stress relaxation. The results o f their own tests for 12.9 

(M10) caps are shown in the table below. The screws are exposed to the temperatures shown 

for 100 hours and the yield stress is measured.

For this reason, the cap screws were replaced after each test.

Temperature
Property + 20 °C + 100°C + 200 °C + 250 °C + 300 °C

class Lower yield stress, FU or stress at 0,2% non-proportional elongation
[N/mm2]

12.9 1100 1020 925 875 825

Figure 3.5.3.2132. Temperature and yield strength tests performed by Bossards showing how temperature

exposure results in loss o f yield strength.
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4 Results and Discussion

In order to better understand the effect o f wear damage on components, an extensive internal 

damage survey was carried out on past and current engine discs with known wear damage. 

The information was collected from the internal technical reports or by physically taking 

measurements and images from the actual components. The information gained from the 

wear scars allowed correlations to be drawn between the different types o f damage as well as 

the subtle differences between them.

Diagnosing a specific type o f wear damage on a component is difficult as there are no 

detailed guidelines in place. Although opinions will almost certainly differ from each 

institution to the next, it would be helpful (for Rolls-Royce at least) to have an agreed 

definition in place for common wear damage such as scuffing, galling and fretting and have 

rigid damage metrics in place which define them.

An extensive review o f literature has proven fruitless in achieving clear definitions of various 

forms o f wear. The vague way in which wear is defined without clear damage metrics has led 

to a ‘research enquiry’ which attempts to understand in more depth the differences between 

certain types o f wear. For example, one person’s idea of scuffing may be fretting to another, 

but the mechanisms that drive them are significantly different and so it is vitally important to 

have a more clear understanding o f these differences.

Furthermore, it would be useful for component lifing specialists to have a database in place of 

how specific forms o f wear with specific dimensions affect the fatigue life o f materials. This 

may allow fatigue life knockdown factors to be easily applied to components in order to 

calculate safe working lives. At the very least, more accurate fatigue lives may be achievable, 

rather than being too conservative or too bold due to improper diagnosis.

A programme o f wear testing involving specimens with a range o f wear damage may prove 

useful to engineering specialists. The information gained can be used to construct 

deformation maps or a datum which contains information on the wear scar characteristics 

such as depth, wear scar area and volume, surface roughness, debris size, optical and SEM 

images, temperature, contact loads, sliding frequency and fatigue life. It is envisaged that 

future worn components can be compared to information outlined on the database for correct 

damage identification and clear-cut fatigue life predictions. Once enough information has



been gathered, it is envisaged that the boundaries between different forms o f wear can be 

more easily defined. Nevertheless, for a more in depth understanding, a large range o f wear 

tests with different test parameters would be required to take this research and develop it 

further. The results gained from this research will not only be fed back into the lifing 

methodology but may contribute towards improving and developing engineered surfaces and 

lubrications, which are widely known to reduce wear damage.

4.1 Research Results

The following chapter will discuss the work involved in attempting to better understand 

engine component wear damage by a combination o f wear tests and fractograhic 

examination. The results will be analysed to determine the effect o f various wear damage on 

the lives of components and to come up with clearer definitions o f various forms o f wear.

4.2 Baseline Testing of U720Li

4.2.1 Stress-Life (S-N) Curves

In order to generate a set o f S-N curves for U720Li at 600°C, a programme of baseline 

fatigue testing using constant amplitude-loading was carried out. These curves would allow 

information to be gathered on the correct stress amplitudes to use for further wear damage 

testing.

In reality, in-service components that are subjected to cyclic loads will not always have 

entirely constant stress amplitudes. However, in general, unless other factors are involved 

such as vibration, the amplitudes tend to remain constant enough so that one can assume that 

a laboratory fatigue test carried out at constant amplitude will replicate the components in 

service stress amplitude accurately. If the stress amplitude was not constant, it would be 

difficult to determine what constitutes a cycle and this would make the fatigue life 

calculations somewhat more complex133.

A set o f three S-N curves is shown in the fatigue data below.

Baseline Fatigue for U720Li at 600°C
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Figure 4.2.1.1. Baseline S-N data for U720 at 600°C, R -l, trapezoidal waveform (1-1-1 -1).

Initially, only one programme o f baseline testing was carried out and the stress amplitude 

required to produce 20,000 cycles was extracted from this curve, which was found to be 

715MPa. This stress value was chosen for all ongoing wear damage tests thereafter. A further 

two programmes o f baseline testing was carried out at a later date in order to create error bars 

and to account for data scatter.

4.2.2 Exam ination of Failed Baseline Specimens

The failed fatigue specimens were each studied under a scanning electron microscope to rule 

out any abnormality in the fracture surface and microstructure and to confirm that a 

combination o f fatigue and possibly creep were the main modes o f failure.

In the absence o f surface damage, fatigue fracture is complicated, involving the process o f 

initiation and propagation. The stresses are alternating (or cyclic) and in this case, well below 

the flow stress o f U720Li. As discussed previously, dislocations play a major role in the 

fatigue crack initiation phase (also known as stage I fatigue). In this stage, dislocations 

accumulate near surface stress concentrations and form structures called persistent slip bands 

(PSB) after a large number o f loading cycles. PSBs are areas that rise above (extrusion) or 

fall below (intrusion) the surface o f  the component due to movement o f material along slip 

planes. This leaves tiny steps in the surface that serve as stress risers where tiny cracks can 

initiate. These tiny cracks (called microcracks) nucleate along planes o f high shear stress 

which is often 45° to the loading direction.



During the fatigue process, it is the initiation that is the longest lasting phase with the actual 

propagation occurring over a relatively short time span in comparison. It can be seen from the 

SEM images that follow, fatigue cracks tend to initiate at free surfaces, although sub-surface 

initiation can occur.

The process o f initiation is accelerated by the presence o f damage, defects, scratches, 

corrosion, pits and wear damage -  all o f  which act to cut initiation time significantly.

Figure 4.2.2.2. An arrow shows a fatigue initiation site at the surface of a U720Li fatigue test specimen at 800

MPa and 600°C.

The intrusion/cracks now propagates at an angle o f approximately 45° to the tensile stress 

and surface and is described as stage 1 propagation. The 45° cracks are identified as the 

shallow depth (narrow) initiation zone on fracture surfaces after failure. It should be noted 

that some high-strength nickel and cobalt-based alloys have exceptionally large areas 

consisting o f 45° type cracking.
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Figure 4.2.2.3. (a) Beach marks typical o f fatigue and (b) secondary crack in the fracture surface of U720Li

fatigue specimen.

After the initiation phase in stage 1, which involves propagation at 45° to the tensile stress 

direction, stage 2 growth takes over with advancement perpendicular to the tensile stress. 

This occurs when the plastic zone at the crack tip exceeds the microstructural unit (e.g. grain, 

phase etc). Propagation continues to advance with each loading cycle, generally leaving 

striations on the surface. However, it must be noted that a ratio o f 1:1 striation to load cycle 

does not necessarily hold true. Striations in the U720Li baseline sample at 700MPa are 

shown in the following image.

S ig n a l A  = I n l e n *  
P h o to  N o  = 2 3

Figure 4.2.2.4. Striations in U720Li specimen after fatigue.



Crack propagation in stage 2 leaves certain characteristics. M acroscopically, these appear as 

beach marks (or bands) that occur at the crack front -  perpendicular to the direction o f 

growth. Each applied load cycle results in intensive plastic deformation that locally occurs 

around the crack tip. This is known as the plastic zone and can be kidney shaped in form. For 

polycrystalline microstructures such as U720Li, the crack front may be subdivided locally 

onto a number o f separate planes, resulting in numerous parallel crack paths that form steps 

(or ‘cliff edges’ where they join together).

The following image in Figure 4.2.2.5 shows the fracture surface o f an U720Li specimen 

after a fatigue test at 700MPa and 600°C taken using a 3D surface imaging machine. The 

arrow points to the site o f  initiation at the surface o f the material and advances perpendicular 

to the tensile loading. The initial plastic deformation o f stage II fatigue can be seen where the 

arrow is pointing too and is a typical kidney shape with a circular front radiating from the 

origin. Ductile propagation then takes over and is this stage is relatively fast in comparison to 

stage 2. In the case o f the following 3D image shown in Figure 4.2.2.5, ductile overload 

occurs leaving a roughened dull surface with an irregular surface morphology.
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Figure 4.2.2.5. A 3D image of fracture surface o f a failed U720Li fatigue specimen that underwent baseline 

fatigue testing at 750MPa and 600°C. The white arrow shows the kidney shaped plastic zone.

At higher magnification, proof o f ductile overload fracture can be shown by the fibrous like 

morphology, shown below in Figure 4.2.2.6.
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Figure 4.2.2.6. High magnification of ductile fracture in a U720Li specimen that underwent baseline fatigue

testing at 750MPa and 600°C.

Since high temperature is an integral part o f the fatigue testing in this project, creep must also 

be considered since turbine engine discs are also susceptible to creep at some point o f their 

working life. In this case, it was important to discover if  creep played a part in the failure o f 

the specimens during baseline testing. Generally, the presence o f creep can be evident in the 

fracture surface at high magnification and in particular, micro-voids and void coalescence can 

be seen. However, after inspection o f the fracture surfaces, is was concluded that no creep 

had occurred.

4.3 W ear Testing on U720Li -  University of Oxford/ Swansea University

This chapter will discuss a programme o f wear testing part carried out at the University O f 

Oxford. The tests were performed at room temperature as previously described in the 

‘experimental m ethods' section and the material chosen for these tests was U720Li i.e. 

U720Li fretting pad in contact with a U720Li specimen. However, since the tests were 

performed at room temperature, the growth o f a nickel oxide glaze depends entirely on the 

flash temperatures generated through sliding.



After being subjected to pre-determined wear damage, the specimens were fatigue tested at 

600°C, a temperature at which nickel oxide glaze grows readily. However, it is highly 

probable that the development o f a nickel oxide glaze is negligible on the fatigue life o f the 

specimens since it was formed after the introduction o f wear.

Although, it is desirable to produce wear damage in-situ with high temperature and a cyclic 

bulk stress to coincide with realistic service failures, it is also advantageous to be able to 

inspect the wear scars after each wear test prior to fatigue testing so that comparisons and 

contrasts can be drawn between the specimens.

4.3.1 Introducing Damage onto Specimens Using Dartec Wear Test Machine

Having seen examples o f previous wear damage in current and ex-service engine components 

and being able to identify and differentiate between them should allow better simulation o f 

the damage onto wear specimens for testing. With this in mind, the following test matrix was 

chosen for the programme o f testing.

Test
umber Pad Pressure (Mpa) Displacement (mm)

Frequency
(Hz) Number o f (

1 150 0.05 2.5 20,000
2 50 2 2.5 20,000
3 250 0.5 2.5 20,000
4 200 0.05 2.5 20,000

5 150 0.8 2.5 20,000

6 150 2 2.5 20,000

7 50 0.1 2.5 20,000

8 100 0.05 2.5 20,000

9 100 1 2.5 20,000

10 25 1.5 2.5 20,000

Table 4.3.1.1. Wear test matrix

The variables within the matrix parameters are the pad pressure and pad sliding displacement 

and these were chosen carefully to produce a spread o f wear damage similar to what had been 

witnessed on service components. It was agreed that the frequency o f sliding should remain 

as 2.5 Hz for all tests as this is the standard frequency used in most sliding contact tests at
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Oxford University. The temperature o f the test could not be altered or controlled as the 

Dartec machine does not have these capabilities at present.

The range o f parameters were chosen so that the known forms o f wear such as scuffing 

fretting and galling (the main area o f focus) would be simulated. The wear test matrix has 

been incorporated into the following graph to illustrate the spread o f wear and its intended 

simulation, represented by the colored rings.

Wear Map
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200
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Test 3

^  Test 4
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Test 5 Test 6
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^  Test 10

2 2.51.5
H  1— I 1 1 1 H

0.5 1
Peak-to-Peak Displacement (mm)

Figure 4.3.1.1. A map outlining the wear matrix parameters chosen for the wear test experiment. Points within 

each circle are attempting to simulate a type o f wear damage. Fretting red, Galling purple, Scuffing blue

Scuffing is considered to have a low wear rate. According to Hutchings114 ‘Scuffing wear 

occurs when the contact force between two materials is relatively low when compared to 

fretting and galling and the sliding distance is large’. For these tests, the loads for scuffing 

have been chosen in the range o f 25-50MPa with large sliding distances o f up to 2mm. 

Fretting occurs with large contact loads and small sliding displacements (10- 100pm). Hence, 

to simulate fretting damage, contact loads in the range o f 50M Pa-250M Pa and sliding 

amplitudes o f 100pm and smaller were used. Since galling is a severe form o f wear, large 

sliding distances and large contact forces were chosen to produce substantial quantities o f 

material removal with unpredictable surface morphology as seen in service.

The tests were performed as described in the experimental section. After the tests were 

completed each specimen was photographed using a standard SLR camera and then the wear



scars o f each specimen were photographed more closely using an Alicona 3D surface 

imaging machine to determine the surface roughness and inspect the surface profile. The 

images are shown in Figure 4.4.1.2.
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Figure 4.3.1.2. Wear specimens 1-10.



It can be seen from the images above how the severity o f wear differs from one specimen to 

the next by simply changing the contact force and sliding amplitude. Test 5, 6 and 9 in 

particular show very serious signs o f material removal. These specimens in particular were 

not subjected to the largest contact loads o f the group, but were subjected to relatively large 

slip distances in order to replicate galling. This immediately suggests that for the greatest 

wear volume removal to occur, provided that the contact load between two surfaces is large 

enough, the slip distance is responsible for the greatest rate of material removal. This can be 

proved by comparing specimens that have had the same contact pressure applied to them but 

different sliding distances such as specimens 1, 5 and 6 where there is a definite increase in 

wear volume and severity as the slip distance is increased. This holds true for specimens 2 

and 7 also where one can see an increase in material removal with an increase in pad sliding 

distance.

Test specimens 1,3,4,7 and 8 attempt to simulate fretting wear but more specifically, partial 

slip fretting. Referring to the images, it is evident that the stick/slip pattern is visible on 

specimens 4, 7 and 8 due to the unworn elastically deformed centre which is essentially 

‘stuck’ and the plastically deformed circumference which is ‘slipping’. This pattern is 

fundamental to fretting in disc/blade roots. Test 1 and 3 appear to have a mixed mode of 

contact wear since the partial slip pattern is observed as well as full sliding across the whole 

wear scar. This is characterised by wear tracks running linearly across their surfaces.

Finally, for specimens 2 and 10, scuffing wear was envisaged due to the relatively low 

contact loads (smaller than for galling wear specimens 5, 6 and 9) and large sliding distances 

chosen. However, it was surprising that specimens 2 and 10 showed large material removal. 

As discussed previously, scuffing is generally characterised by light surface damage 

removing only the top layer o f a materials surface such as the DFL or the oxides that have 

formed naturally. Since the pad pressures chosen for specimens 2 and 10 are relatively small 

compared to the pad pressure on the other specimens, this also reinforces the theory that slip 

distance is the more dominant factor in the wear process.

Close up optical images using an Alicona digital profilometer o f specimens 1-10 taken at the 

centre o f the wear scars (including an undamaged specimen for reference) is shown in Figure 

4.3.1.3.
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Figure 4.3.1.3. Optical images o f the damaged surfaces of specimens 1-10.



The specimens were expected to have different surface roughness values for different regions 

of the damaged area. Above all, since specimens 1,3,4,7 and 8 attempt to replicate partial slip 

fretting wear, a considerable difference in roughness from the centre o f its wear scar to its 

outside is expected. This proved to be the case when the Alicona measurements were carried 

out. This is demonstrated in the figure below for specimen 1.

Left Edge Centre Right Edge
Ra = 5.026pm  Ra = 2 .4 10pm Ra = 4.043pm
Rq = 6.594pm  Rcj = 3 .193pm Rq = 5.495pm

Figure 4.3.1.4. Detailed individual area measurements from the tested surface of specimen 1.

It can be seen in Figure 4.3.1.4 above that neither gross nor reciprocating sliding has occurred 

for specimen 1 and as a result, the centre o f the wear scar has a relatively low average surface 

roughness compared to its left and right edge. Furthermore, there are regions o f the centre 

that have not experienced slip which has confirmed the presence o f unworn parent material 

(gold colour), which indicates that this specimen was in partial slip fretting regime.

Specimen Number Left Edge Centre Right Edge

Ra (pm) Rq(pm) Ra (pm) Rq(pm) Ra (pm) Rq(pm)

1 5.026 6.594 2.410 3.193 4.043 5.495

3 2.98 4.46 1.222 1.558 3.01 4.54

4 3.69 5.16 1.92 2.46 3.76 4.97

7 4.71 4.91 2.14 3.06 3.49 4.93

8 2.15 3.64 1.98 2.42 2.01 3.32

Table 4.3.1.2. Specimens with anticipated fretting wear. Values in bold (centre) are the used values for further

analysis.
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Since the surface roughness does vary across the wear scar, an average value o f the roughness 

is used and is given for all o f the specimens in the table below along with a root mean square 

roughness value.

Test Number/Position Ra (pm) Rq(pm)

Undamaged 0.7 0.89

Test 1 2.41 3.193

Test 2 4.882 6.382

Test 3 1.222 1.558

Test 4 1.92 2.46

Test 5 3.57 4.61

Test 6 5.18 7.27

Test 7 2.14 3.06

Test 8 1.98 2.42

Test 9 3.49 4.04

Test 10 5.27 6.14

Table 4.3.1.3. Specimen and corresponding average surface roughness (Ra) and root mean square surface

roughness (Rq).

Measured values o f displacement do not represent the actual relative slip displacement at the 

interface because o f compliance o f the bodies between the displacement measurement 

location and contact interface. Hence, measured values o f displacement amplitude are in 

reality reference values that depend on test method, geometries, and contact configurations 

etc. Wear scars and hysteresis loops are the best indicators o f the slip condition. The 

morphology o f the wear scar aids in determining the coefficient of friction to use in the 

analysis. In reality, the coefficient o f friction often varies along the interface.

Hence, the results are presented in graphical formats for each test. There are two plots:

i) A plot o f the evolution o f the Tangential Force Ratio (Q/P) versus number of cycles [max 

(Bar Load)-m in (Bar Load)] / [4 x Pad Normal Load] ;

ii) A plot o f three example load cycles -  in most cases, choosing an early cycle where the 

surface was “fresh”, one from the middle and one from the end of each individual 

experiment.



Note that if  the contact is sliding, the Tangential Force Ratio may be interpreted as equal to 

the coefficient o f friction. In partial slip, the coefficient o f  friction must be greater than the 

tangential force ratio. However, it should be noted that in some experiments, the tangential 

force, Q shows a sharp peak at the end o f the sliding stroke, probably caused by wear scar 

interaction. This raises the maximum force above that caused during the main part o f the 

sliding stroke. Hence, in this case the Tangential Force Ratio is probably an overestimate o f 

the coefficient o f friction.
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Figure 4.3.1.5. Test 1 - Tangential Force Ratio (Q/P) vs. number of cycles for Test 1 (a) & (b) example load 

cycles obtained during Test 1 from 3 different periods of the experiment (red -  beginning, blue -  middle &

black -  end)
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Figure 4.3.1.6. Tangential Force Ratio (Q/P) vs. number of cycles for Test 2 (a) & (b) example load cycles 

obtained during Test 2 from 3 different periods of the experiment (red -  beginning, blue -  middle & black -

end).
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end).
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As discussed previously, a heterogeneous film of oxide can occur naturally on all metallic 

surfaces (usually only a few angstroms thick) as well as natural impurities or environment 

dependent contaminant layers48. The small-amplitude oscillation and corresponding relative 

motion between the surfaces wears away the contaminant and oxide layer and can lead to 

adhesion and plastic deformation o f the substrate metal134. This results in what has been 

termed micro-welding o f the contacting surfaces135. Experimental observations in air at room 

temperature indicate that the coefficient o f friction values are typically low during these first
1 'Xfkfew cycles, suggesting the existence o f a surface oxide and contaminant layer

Damage morphology and its evolution are directly related to the contact sliding conditions. 

For minute sliding amplitudes (<100pm) the tangential force presents a quasi proportional 

evolution displacement which leads to a closed partial slip hysteresis loop characterising the 

partial slip fretting condition and the resulting central stick domain surrounded by a sliding 

domain wear pattern. Such a condition favors the appearance o f cracks. For larger sliding 

displacements, the tangential force eventually reaches a constant value leading to full sliding 

over the whole contact area. The hysteresis loop displays a quadratic shape defined as the 

gross slip condition or full reciprocating sliding regime. This condition favours the wear 

induced by the debris formation.

It can be seen from the hysteresis loops that test 1 was probably in partial slip for much o f the 

test, since the area occupied by the hysteresis loop is very small. The tangential force starts 

off relatively high but then drops off as the cycle’s progress. In this case, the initial friction is 

high due to the adhesion o f asperities o f the two contacts that weld together due to the large 

contact forces. Further sliding shears the asperities which break off and become wear debris 

and the friction drops slightly. The debris can either be pushed out or can become trapped 

between the contacts and cause an increase in wear.

For Test 2, the area occupied by the hysteresis loops is large which suggests it is in full 

sliding and exhibits the wear scar interaction effects discussed above. The coefficient of 

friction starts off low (0.6) but increases gradually to its highest point o f 2.7. The wear 

observed in this case involved a high degree o f material removal, typical o f full sliding wear, 

such as galling and scuffing. If engine components are seen with damage o f this kind, one can



assume that the slip distances are relatively large with full sliding across the contacts and 

moderate to large contact forces.

Test 3 appears to have been in sliding initially, but transitioned to partial slip as the 

coefficient o f friction increased slightly. This is known as mixed slip and the boundaries 

between these regimes are controlled by the other fretting parameters including surface 

finishes, environment, and compliance o f the test system. Albeit an increase, note how the 

tangential force remained relatively constant for the duration o f the experiment which 

reinforces the premise that the contacts were in partial slip (‘bedding in’) with little sliding 

amplitude i.e. not enough to overcome the coefficient o f friction, Q < f iP .
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Figure 4 .3 .1.8. Tangential Force Ratio (Q/P) vs. number o f cycles for Test 4 (a) & (b) example load cycles 

obtained during Test 4 from 3 different periods of the experiment (red  -  beginning, blue — middle & black -

end).
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Figure 4.3.1.9. Tangential Force Ratio (Q/P) vs. number o f cycles for Test 5 (a) & (b) example load cycles 

obtained during Test 5 from 3 different periods of the experiment (red  -  beginning, blue -  middle & black -

end).
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Figure 4.3.1.10. Tangential Force Ratio (Q/P) vs. number of cycles for Test 6 (a) & (b) example load cycles 

obtained during Test 6 from 3 different periods of the experiment (red  -  beginning, blue -  middle & black -
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Figure 4.3.1.11. Tangential Force Ratio (Q/P) vs. number o f cycles for Test 7 (a) & (b) example load cycles 

obtained during Test 7 from 3 different periods of the experiment (red -  beginning, blue -  middle & black -

end).
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Figure 4.3.1.12. Tangential Force Ratio (Q/P) vs. number o f cycles for Test 8 (a) & (b) example load cycles 

obtained during Test 8 from 3 different periods o f the experiment (red -  beginning, blue -  middle & black -

end).
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end).
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Figure 4.3.1.14. Tangential Force Ratio (Q/P) vs. number of cycles for Test 10 (a) & (b) example load cycles 

obtained during Test 10 from 3 different periods of the experiment (red -  beginning, blue -  middle & black —

end).

It can be seen from the hysteresis loops above that test 4, 5, 7 and 8 were probably in partial 

slip for much o f the time. Although, for test 4, the coefficient o f friction started to increase 

towards the end stage o f the test and full sliding started to take over giving a mixed slip 

fretting regime.

Tests 6, 9 and 10 were in full sliding and this was evident from the large area occupied by the 

hysteresis loops and the increasing tangential ratio from the onset o f the test to the end. The



graphs suggest that material removal is large and is backed up by the surface images in 

Figure 4.3.1.2 and Figure 4.3.1.3.

The final wear scar produced for Test 8 appears very light in comparison to all the other tests. 

Referring to the optical images, it is quite difficult to differentiate test 8 from an undamaged 

U720Li surface. The tangential force readings for Test 8 appear to fluctuate aggressively 

through the whole test. This may be due to the formation o f an oxide glaze created from the 

flash temperatures during contact slip as discussed earlier. Alternatively, it may also be due to 

the creation and removal o f wear debris. The wear debris would certainly increase friction but 

the friction would drop off as soon as they are removed. The hysteresis loops also show an 

intermittent display o f partial slip and sliding wear from start to finish, never seeming to 

settle. Towards the end of the test the wear transitioned to partial slip as the coefficient of 

friction increased.

Test 9 had to be stopped after 8000 cycles, as the specimen holding fixture and the pad 

holders failed under the excessive loads that the system exhibited during the test (~80kN). 

From the table above, it can be seen that Test 9 was by no means subjected to the biggest 

contact forces but the slip distance was relatively large, reinforcing the idea that sliding 

distance accounts for the most material removal and wear damage.

It is important to realise that although the wear tests are being performed in the absence o f a 

bulk cyclic stress; contact stresses, especially fretting, can still initiate cracks. However, these 

stresses are likely to be confined to the surface and have a steep gradient. Therefore, as the 

crack propagates under contact fatigue, it may arrest after it grows beyond the influence of 

the contact. Once a cyclic substrate or bulk stress is present the contact nucleated crack can 

propagate if  the subsurface stresses are sufficiently large. This is illustrated in the following 

figure.
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Figure 4.3.1.15. Microcracks under the influence of contact and bulk cyclic stress.

4.3.2 Fatigue Testing of W ear Specimens

The ten worn specimens were fatigue tested to the procedure outlined in the experimental 

methods. The stress amplitude chosen for all the worn specimens was 715 MPa as this was 

the approximate stress amplitude that yielded a fatigue life o f 20,000 cycles for an 

undamaged U720Li specimen at 600°C and is therefore used as a reference.

The fatigue life as a consequence o f surface roughness is shown in Figure 4.4.2.1 for each o f 

the 10 worn specimens.
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Figure 4.3.2.1. Average surface roughness o f wear scar Vs the number o f cycles to failure at 600°C. R - l , 

Trapezoidal ( l - l - l - l ) .  Fretting red, Galling = purple, Scuffing blue

Figure 4.3.2.1 illustrates how difficult it is to predict the fatigue life in response to surface 

roughness. This is because albeit fretting wear, it would be obvious to assume that in 

general, materials that have a large surface roughness values would have a low fatigue life 

due to the presence o f multiple nucleation sites. However, the results in the graph do not 

show this entirely. The graph does go some way to suggest that for a larger value o f surface 

roughness, the number o f cycles to failure is smaller in most cases but it does not hold true 

for all. Average surface roughness values only give an average value o f asperity height o f the 

whole wear scar. However, although this will account for regions o f larger surface roughness 

or extremities, which are o f course the largest stress concentrations, it will go unnoticed, 

unless the whole wear surface is inspected in more detail. Hence, although a wear scar may 

have a relatively low surface roughness value, it may contain regions o f severely high stress 

raisers which can limit fatigue life considerably.
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Although the technique used to supply the wear damage to each specimen is controlled by the 

machine and ultimately, its software, repeat experiments would be beneficial to account for 

any anomalies or differences in the wear scars or corresponding fatigue life.

The graph in Figure 4.3.2.2 shows the fatigue life reduction with respect to root mean square 

surface roughness, Rq, which is a statistical measure o f the magnitude o f a varying quantity 

o f  asperity heights. It is especially useful when variants are positive and negative. This differs 

to the average surface roughness which only gives an average o f the asperity heights.

Life R educ t ion  Vs Surface R oughness  (Root M e a n  S quared )
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Life Reduction (%)
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0 1 2 3 4 5 6 7 8

Surface Roughness, Rq (pm)

Figure 4.3.2.2. Fatigue life reduction o f damaged specimens as a consequence of their surface roughness when 

tested at 715MPa at 600°C. Fretting ; red, Galling = purple, Scuffing blue

The graph above shows a positive trend for how the life o f a specimen decreases with 

increasing surface roughness. Error bars were also calculated to take into account the other 

baseline fatigue tests that were performed with the same parameters. Essentially, the fatigue 

life reduction could actually be larger for all specimens.

Although, it has been discussed that fretting wear, especially partial slip fretting is highly life 

limiting to components, when compared to highly severe forms o f wear such as galling, 

where there is a considerable material removal, it cannot be compared in the same context 

and must be looked at in a different way. Fretting relies on the large and complex stress



concentrations at the edge o f bedding to form and propagate cracks so it is very difficult to 

look at every aspect o f the fretting process. Therefore, for components that are intended to be 

fixed together but have very minute oscillation, fretting is a significant problem that can go 

unnoticed.

Focusing only on the fretting wear specimens (Test 1,3,4,7 and 8) and referring to Figure

4.3.2.2 and Table 4.3.2.1. for convenience, one can observe a tendency for a high contact 

load and small slip amplitude to produce a higher fatigue life reduction. For example, Test 4 

gives the largest life reduction o f the group. This particular specimen was subjected to slip 

amplitude of 50pm (typical o f partial slip fretting) and a large contact pad pressure of 

250MPa. Its surface roughness is low at 1.92pm which is one o f the lowest in the group. 

However, regardless o f the severity o f the wear scar and only concentrating on its fatigue life 

reduction value, it suggests that there is a criterion for partial slip fretting conditions in which 

contact load and slip distance combine to form the most life limiting state and Test 4 may 

have reached this threshold. As discussed previously, this criterion is material specific and 

the results in this work only apply to U720Li. Although, repeat tests need to be carried out to 

increase trust in this experiment, it is encouraging that this data echoes previous work that 

partial slip fretting results in large life reduction factors due to the large shear stresses at the 

stick/slip interface.

Test 8 has the lowest life reduction o f all the specimens tested. Its slip distance is typical o f 

partial slip fretting but the contact loads chosen were relatively small in comparison to the 

loads used for the other perceived fretting wear specimens (test 1, 3 and 4), except Test 7 

which was half its value at 50MPa. The wear scar morphology o f Test 8 appears to be 

relatively smooth in comparison to all other specimens - but there are definitely 

characteristics o f partial slip fretting which is why it is found to be in the same vicinity as 

Tests 1, 3, 4 and 7.

Further up the surface roughness scale (>4pm), whereby the sliding amplitude and contact 

forces are relatively large, the fatigue life reduction also increases. The surface topography of 

the specimens (shown in Figure 4.3.1.3) in this region shows a rough, uneven surface with no 

regular pattern. There are numerous sites for crack nucleation to take place and the reduction 

in specimen volume as result o f excessive material removal in the wear zone increases the
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tensile stress in this region. As a result, the fatigue life o f these specimens is drastically less 

than that o f the specimens with fretting wear.

It can be seen from the graph above that specimen 6 has the largest surface roughness and 

greatest fatigue life reduction. Due to the large sliding distances and relatively large contact 

forces chosen, it was anticipated that galling wear would occur with large quantities o f 

material removal. It is very interesting that relatively small changes in either the sliding 

distance or contact pressure can account for highly noticeable changes in wear scar 

morphology and fatigue life.

Specimen Test Number Ra (pm) Rq (pm) Pad

Pressure

(MPa)

Slip Amplitude 

(mm)

Undamaged 0.7 0.89 n/a n/a

Test 1 2.41 3.193 150 0.05

Test 2 4.882 6.382 50 2

Test 3 1.222 1.558 250 0.5

Test 4 1.92 2.46 200 0.05

Test 5 3.57 4.61 150 0.8

Test 6 5.18 7.27 150 2

Test 7 2.14 3.06 50 0.1

Test 8 1.98 2.42 100 0.05

Test 9 3.49 4.04 100 1

Test 10 5.27 6.14 25 1.5

Table 4.3.2.1. Fretting red, Galling purple, Scuffing blue



T estl Test 2 Test 3

Figure 4.3.2.3. Failed fatigue specimens 1-3 with known wear damage.

It can be seen from the images in Figure 4.3.2.3 that for Test 1, crack nucleation has 

nucleated at the interface between the stick/slip region where the stress concentrations are 

large and complex and there is change in surface morphology (and surface roughness) from 

the central zone to the plastically deformed slip zone. The following image shows a 3D 

topography o f  Test 1 displaying the edge o f bedding where the stress and failure originated 

from (shown by red arrow).
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Figure 4.3.2.4. Left edge of Test 1 showing the edge of bedding and where the failure originated during fatigue 

testing. In real life components that exhibit fretting fatigue, the edge of bedding is generally the region where

failure occurs.

Test 3 recorded the lowest Ra and Rq o f all the specimens. However, due to the large slip 

distances (i.e. > 100pm) chosen, partial slip fretting was not envisaged for Test 3. Rather, 

reciprocating sliding fretting was expected with full contact across each contacting surface. 

However, referring back to Figure 4.3.1.7 o f tangential Force Ratio (Q/P) vs. number o f 

cycles, it can be seen from the hysteresis loops that initially there was gross sliding but then 

transitioned into partial slip towards the middle and end o f the test. Furthermore, surface 

inspection showed this was not that the wear scar exhibited a plastically deformed ‘slip’ 

region (outside) adjacent to an elastically deformed ‘stick’ region (centre), which results in 

elevated shear stresses at or near the material surface. Given this, the stress concentrations 

between these two regions were not sufficient enough to initiate failure.

Thus, under bulk cyclic loading, the fatigue merely served to locate a feature with the highest 

stress concentration, which was at the com er o f the wear scar i.e. the edge o f  bedding. This 

sudden sharp change in stress concentration and surface roughness between the wear scar and 

the undamaged part o f the specimen increases the Kt factor and provides a perfect platform 

for crack initiation and propagation. This is shown in Figure 4.3.2.5.



Figure 4.3.2.5. Test 3 Crack nucleation site. Black arrows show the increased surface roughness surrounding a 

central zone with low surface roughness. Red arrow shows crack initiation point. Note the central black region is

heavily oxidised.

The results in this programme o f testing have proven that specific kinds o f  wear damage can 

be replicated onto test specimens by changing the pad contact pressure and the sliding 

distance o f the pad. By adopting a small sliding distance o f around 100pm or less, the partial 

slip fretting regime has been achieved and damage has occurred either from the edge o f 

bedding or at the boundary between the stick/slip regions which coincides with theory in 

literature60. Larger sliding distances have resulted in larger material removal, unpredictable 

surface morphologies and a significant reduction in fatigue life. In addition to the multiple 

stress concentration features on the wear scar surface, the reduction in fatigue life can be 

attributed to the lack o f bulk material in the gangue section o f  the specimen. The axial cyclic 

stresses and are therefore magnified in this region.

It has been demonstrated through this work that fretting wear should be considered on an 

entirely separate basis since the mechanisms that drive it are very different to that o f sliding 

wear such as scuffing and galling. The minute sliding distances involved in fretting and the
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complex stresses that accompany it make it very difficult to analyse and replicate in the most 

realistic way. For this reason, customised tests need to be employed which have greater 

control over the parameters involved.

From the results gained in this programme, it can be seen that the average surface roughness 

values o f fretting with sliding distances o f 100pm or less are no larger than 2.41pm. This is 

in contrast to the other specimens with anticipated scuffing and galling wear which had 

significantly higher values o f surface roughness. For example, specimens with relatively low 

contact pressures and large sliding amplitudes were intended to simulate scuffing wear, and 

the surface roughness values for these were in the higher range o f the ten specimens tested 

i.e. 4.882pm-5.27pm. Specimens with larger values o f sliding amplitude and relatively large 

contact pressures were intended to simulate galling wear, a more severe form o f scuffing and 

surprisingly, these were found to have a mid range surface roughness with values in the range 

of 3.49pm-5.18pm. This suggests that the surface roughness values and the resulting wear 

scar in response to changing the sliding distance and pad contact pressure is not 

straightforward. However, these tests have shown that a combination o f a large sliding 

distance and low pad pressure results in a greater rate o f material removal compared to a 

combination o f large contact pressure and smaller sliding distance which results in less 

material removal. However, if  the wear mechanism is fretting, then the rate o f material 

removal is not the most important factor, since it is the complex mechanisms that drive 

fretting that is the most life limiting and these occur synergistically on a microscale.

4.4 Fretting Fatigue Testing

To focus on fretting fatigue, a fretting fatigue testing apparatus was designed in order to 

develop a series o f in-situ tests that involves fretting at high temperature.

In order to fully understand the effects o f fretting, the tests must be carried out in as realistic 

conditions as possible. Therefore, unlike the previous test whereby wear was introduced onto 

the specimens before fatigue testing, in this case, fretting fatigue will be tested in-situ and at 

600°C. The rig is shown in the experimental section in Chapter 3.4.

As explained in the experimental section, the fretting test uses a pair o f clamping plates 

which hold replaceable fretting pads against the surface o f fatigue test specimens. The 

clamping plates are clamped together with high tensile bolts at either end. The bolt tension is



balanced by the compressive force in the fretting pads, which transmit normal forces. The 

compressive force encourages fretting o f the pads against the specimen surface caused by the 

extension of the specimen in response to axial cyclic stresses during fatigue.

Due to the large contact pressures between the pad and specimen and high operating 

temperatures o f the test, it was not possible to locate suitable pressure/force sensors to 

measure the pressure between the pads and specimen before or during the test. Therefore, the 

pressure o f the pads on the specimens could not be controlled as in the test performed at the 

University o f Oxford using the Dartec machine. In this case, the bolt tension may be 

estimated from the torque tightening requirement but this is not a direct measurement and 

does not take into account factors such as loss o f energy during friction. The torque supplied 

to each bolt was recorded using a torque wrench and the separation distance was also 

recorded between the clamping plates before and after torque up. The clamping plates have a 

characteristic stiffness which enables the compressive force to be estimated from the 

separation of the bolt head and the nut. The computation o f the resultant pad pressure will be 

discussed in due course.

Mock testing was carried out at room temperature using stainless steel fretting pads on U720 

fatigue specimens to determine the performance o f the rig and its effectiveness for achieving 

fretting fatigue. The ultimate goal was to produce fretting damage within the partial slip 

regime having the characteristic ring pattern. Achieving this would be totally empirical, since 

the rig was being used for the first time.

The following table provides the torque values supplied to each o f the two bolts for four 

separate tests.

Test Number Torque per Bolt (Nm) Resultant Pad Pressure (MPa)
1 3 70
2 6 160

3 9 250
4 12 355

Table 4.5.1. Torque per bolt (Nm)

The results are shown in the following graph.
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Fretting Fatigue at Room Temperature using Stainless Steel pads
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Figure 4.5.1. A graph showing the number of cycles to failure in response to tightening torque when U720 is in 

contact with stainless steel pads. (Cyclic stress amplitude = 715MPa).

From the results in Figure 4.5.1, it is possible to calculate the loss in fatigue life as a result o f 

the fretting fatigue in comparison to plain fatigue.

The fretting fatigue reduction factor can be calculated as follows.

_ _  _ , _  Fretting Fatigue Life Cycles Fretting Fatigue Life Cycles
F re tt in g  F a t ig u e  R eduction  F actor  = -----------------     - -------- ----------- = ---------------------- ----------------------------------- ------------Plain Fatigue Life Cycles 8 4 7 0 6

(Equation 4.5.1)

Test Number Fretting Fatigue Life 

(cycles)

Fretting Fatigue 

Reduction Factor

Life Lost (%)

1 52785 0.6232 37.68

2 35693 0.4214 57.86

3 21084 0.2489 75.11

4 51260 0.6052 39.48

Table 4.5.2. Values of fretting fatigue life reduction factors and corresponding life lost.



The fretting fatigue wear scars in response to change in pad pressure are shown below. For all 

specimens, the failure started at the edge o f bedding which is where most o f the wear damage 

is located and where the surface roughness values are highest. The images show a typical 

partial slip fretting response and this is easy to see as there is little oxide covering the surface 

except for the circumference o f the wear scar where the large temperatures as a result o f 

sliding have created an oxide scale.

100 a v *

12Nm

lOOOOu- 100 (XV-

Figure 4.5.2. Wear Scars as a result o f fretting fatigue.

The surface roughness values for each wear scar are shown in the following table. Note that 

for Test 3, the surface roughness values for the outside edge o f the wear scar are larger on 

average than the other specimens and this resulted in the largest fatigue life reduction.

IOOOCV*
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Specimen Number Left Edge Centre Right Edge

Ra (pm) Rq (pm) Ra (pm) Rq (pm) Ra (pm) Rq (pm)

1 3.06 4.76 1.62 1.91 2.86 3.67

2 3.12 3.95 1.54 1.86 3.01 3.13

3 4.01 4.34 1.13 1.66 3.45 3.76

4 2.23 2.54 1.11 1.54 2.01 2.32

Table 4.5.3. Pad pressures, torque per bolt and surface roughness o f 4 fretting fatigue specimens.

Fretting Pad Ra (pm)

Test Number Centre Outside

1 1.24 1.69

2 1.21 1.54

3 1.16 1.78

4 1.19 1.46

Table 4.5.4. Surface roughness values for fretting pad.

The graph in Figure 4.5.1 reveals an interesting relationship between tightening torque (pad 

pressure) and the number o f cycles to failure. It can be seen that the number o f fatigue cycles 

deceases as the tightening torque increases from 3Nm to 9Nm but then starts to increase with 

increasing tightening torque from 9Nm to 12Nm. This can be explained by the Hertzian 

contact force and relative slip which results from varying the pad pressures.

In essence, if  the pad pressure is low as in the case o f a 3Nm tightening torque, ample slip 

between the pad and specimen will occur and may be considered outside o f the partial slip 

fretting regime. Inspection o f the wear scar surface shows wear across most of the contact 

which further reinforces the theory that the slip amplitude was large and probably in the gross 

lip fretting regime. As a result, microcracks (which normally form prematurely under the 

partial slip fretting condition) may be removed by the constant wearing process137 and the life 

of the specimen is therefore extended. However, the gross slip fretting process in this case 

will increase the roughness o f the surface due to asperity shearing and the formation o f debris 

which will become trapped and increase abrasive wear. This is reflected in the surface 

roughness value shown in the table above but most o f the roughened surface is located on the 

outside o f the wear scar, which is where final failure initiated, shown in Figure 4.5.3 and 

Figure 4.5.4. The origin in Figure 4.5.3 resembles that o f a chip and therefore suggests that



another wear mechanism such as spalling has occurred as a result o f the large sharp stress 

gradients in that region.

Figure 4.5.3. Crack Initiation point for test 1 with 3Nm tightening torque and a corresponding pad pressure of

70Mpa.
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Figure 4.5.4. 3D Birdseye view o f fracture surface and fatigue origin shown by black arrow.

At 6Nm tightening torque, the fatigue life reduction is larger with a slightly higher surface 

roughness, mostly concentrating around the outside o f the scar as in the other cases. The 

failure origin again occurs at this location.

At a tightening torque o f 9Nm, we see the lowest fatigue life o f all specimens which suggests 

that the slip distance and pad contact pressure have combined to produce partial slip fretting 

in its most detrimental state. Visual examination o f the wear scars and fracture surface reveal 

the trademark pattern.

Figure 4.5.5. Test 3 with 9Nm tightening torque and pad pressure of 250MPa. Left -  Edge o f Bedding partial

slip fretting and Right - Wear scar centre.



One o f the m any life limiting features o f partial slip fretting fatigue is that microcracks which 

form at the edge o f bedding due to the large stress concentrations and limited slip are not 

removed by wear, producing multiple origin sites. These small microcracks or fissures can go 

undetected during routine inspection and under the influence o f further stress cycles, the 

cracks can grow, leading to premature ductile failure. Unfortunately, it was not possible to 

observe the formation and growth o f cracks in this experiment but it would be advantageous 

to quantify the time it takes for initiation and propagation o f cracks during fretting at these 

conditions.

Figure 4.5.6. 3D Birdseye view of ductile fracture surface and fatigue origin for Test 3. (Shown by black arrow).

The explanation for the increase in life after 9Nm may be due to restricted slip between the 

contacts, suggesting the contacts were approaching the ‘stick position’ and therefore most o f 

the wear surface was only elastically deformed during the test. In this case, mircocrack 

formation will be limited and the fretting fatigue life reduction factor will be lower. This is 

reflected in the surface roughness values o f the fretting fatigue specimen with a tightening 

torque o f 12Nm which has the lowest value for all four specimens. This value as well as 

inspecting the optical micrographs indicates that little movement across the contact surface 

took place, except for the outside o f the wear scar which does account for some relative slip. 

The crack initiation site was again found to be in the outside region consistent with all the
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other specimens. The initiation site for Test specimen 4 is shown below in Figure 4.5.7 and 

occurs at the edge o f bedding.

Figure 4.5.7. Fretting fatigue origin for Test 4.

Figure 4.5.8. Stainless Steel fretting pads after a test which supplied 3Nm torque per bolt.

The image o f  the surface o f the stainless steel 316 fretting pad shown above was taken after 

test 3 which was at a pad pressure o f 250MPa and a tightening torque o f 9Nm per bolt. It can



be seen from the image that the outside region o f the pad is highly worn (shiny appearance) 

compared to the lesser worn centre which is dull in color and slightly oxidised. This suggests 

slip occurred mostly at the edges and agrees with the theory that this test simulated partial 

slip fretting fatigue. A surface roughness reading also showed that the centre was 

considerably lower than the outside edge at 1.16 and 1.78 respectively.

Stainless Steel 316 is softer than U720Li and as a result, the wear rate between the steel 

fretting pad and U720Li is expected to be lower, compared to a harder material combination 

such as U720Li against U720Li, Waspaloy or Inco718. On account of stainless steel 316 

being softer than U720Li, steel will suffer a larger volume of material removal and there may 

be transfer o f its debris onto the U720Li specimen, known as smearing. Further analysis 

using EDX can confirm this. Furthermore, although these tests were carried out at room 

temperature, at higher temperatures, oxidation can lead to the hardening o f debris which can 

increase abrasion and reduce fatigue lives. The following table below illustrates the 

difference in hardness o f the two materials.

Material Hardness (Hv30)

Stainless Steel 316 140

U720Li 458

Table 4.5.5. Hardness values for stainless steel 316 and U729Li.138

4.5 Fretting Fatigue Testing at High Temperature Using U720Li Fretting Pads

Since good results were achieved at room temperature, the experiments were repeated at 

higher temperatures o f 600°C. However, the steel fretting pads were exchanged for U720Li 

and the clamping plates were also redesigned to better cope with the higher temperatures and 

accompanied thermal stresses. The change in design can be seen in the experimental methods 

section, 3.4 but the design change essentially involves removing the radii from the plates and 

increasing the volume o f material. The material remained as stainless steel 316.

In this series o f tests, as a result o f the high temperatures involved, the formation o f an oxide 

glaze is a certainty which can reduce the rate o f wear dramatically. Fretting wear tests 

performed by M.M Hamdy on the nickel base alloy, Inconel at 540°C saw a decrease in 

fatigue life by only 15%l 17 due to the presence o f an a nickel oxide glaze.
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Five Udimet720Li specimens were tested with different values o f pad pressure at 600°C to 

determine its effect on fatigue life when compared to baseline specimens.

Test Number Pad Pressure Torque per Bolt

1 70 4

2 160 6

3 250 9

4 355 12

5 390 15

Table 4.5.1. Pad pressures subjected to U720Li at 600°C.

The results are shown in the graph below.

Pad Pressure Vs Number of Cycles at 600°C, 715MPa, R-l
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Figure 4.5.1. A graph of pad pressure Vs number of cycles to failure at 600°C for U720Li.



Test Number Fretting Fatigue Life Fretting Fatigue Life Lost (%)

(cycles) Reduction Factor

1 16057 0.803 19.7

2 15759 0.788 21.2

3 15543 0.777 22.3

4 21667 1.083 +8.3 gained

5 26905 1.345 +34.5 gained

Table 4.5.2. Fretting fatigue life reduction factors at 600°C for U720Li fretting fatigue specimens.

The graph in Figure 4.5.1 shows a similar relationship to the fretting fatigue tests carried out 

at room temperature with steel fretting pads previously. It can be seen that the fatigue life 

decreases with increasing pad pressure up to a certain value, which in this case is 

approximately 250MPa and then starts to increase with increasing pad pressure.

To explain this phenomenon, the dimensional wear coefficient, k, must be taken into account. 

This is because there exists a boundary between sliding wear and fretting but it depends on 

many factors and it is not a palpable one. Under fretting conditions, k is dependent on 

displacement but under sliding conditions (>100pm) it is not. Wear rates under a sliding 

regime are significantly greater compared to fretting. This is due to a greater amount of 

relative movement, creating more asperity fractures, and hence more debris. Figure 2.13.2.4 

in Chapter 2.13.2 illustrates this theory well and will be used to help provide an explanation 

o f the results in Figure 4.5.1.

At a pad pressure o f 70MPa, the force through the pads is relatively small and allows for 

greater slip. The image o f the wear scar, shown in Figure 4.5.2(a), confirms this and reveals 

that full sliding contact has occurred across most o f the surface. Recalling the regime 

requirements for fretting and full sliding wear, it can be asserted that the slip distance as a 

result o f a pad pressure o f 70MPa, is too large to produce partial slip fretting. The tangential 

force is considerable enough to overcome the frictional force between the contacts i.e. Q>pP. 

Referring to the red curve in Figure 2.13.2.4, this would place the wear damage to the right 

hand side o f the minimum of the red curve. Thus, the wear can be considered gross slip 

fretting fatigue since slip (or wear tracks) is evident occurs across the majority o f the contact 

area. In this regime, any cracks formed can be removed as a result o f material removal and 

the fatigue life is higher as a result.
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At 160MPa the rate o f slip decreases due to the increased contact force and the microcracks 

that form are not always removed. The slip distance is small enough so that the contact wear 

damage moves into the partial slip fretting regime. Hence, a lower fretting fatigue life is 

accomplished.

An increase in contact force to approximately 220MPa shows the lowest life for all the data 

points. This suggests that the partial slip fretting regime has reached its most severe point 

where the stress concentrations are at their highest and most life limiting. Referring to Figure 

2.13.2.4, this would be shown as the minimum on the red curve. SEM inspection o f the 

specimen with 250MPa pad pressure revealed fissures on its plastically deformed wear 

surface and also within the bulk material close to the fretting wear. Their approximate 

locations are shown Figure 4.5.2(b).

At 250MPa the fretting fatigue life starts to increase due to the increase in contact force 

which restricts relative slip between the contacts. As a result, there is very little wear and 

fewer formations o f microcracks and this can be shown by the red curve in Figure 2.13.2.4. It 

is also observed that the life o f two specimens is greater than the baseline fatigue life (20,000 

cycles) at the same test conditions. A 34.5% and 8.3% gain in fatigue life is observed. It is 

well understood that specimens that are the same material, dimensions and surface finish will 

generally have different fatigue lives and this can be due to a number o f reasons including the 

presence o f microstructural anomalies that cannot always be detected. For this reason, error 

bars are often included to show the spread o f data. However, in this case, even the error bars 

cannot account for the increase in fatigue lives.

One theory for the increase in fatigue lives due to the large contact pressures is the 

compressive residual stress zones created at and around the fretting pad contact zone. 

Compressive residual stresses are widely used to enhance fatigue life in engine components, 

especially in the aerospace industry. It can be thought o f in much the same way as shot 

peening or surface rolling whereby a compressive layer produces a local plastic deformation 

and helps to suppress the movement of dislocations and effectively slow down the process of 

microcracking. The majority o f researchers agree that the presence o f compressive residual 

stresses has a beneficial influence on the fatigue life o f rolling contacts139,140,141.



The wear scars o f specimens with pad pressures o f 70MPa, 250MPa, 390MPa are shown 

below. Note how the wear specimens have oxidised under high temperature and have become 

a dark grey/brown colour.

?0000*m iMOOOv^

Figure 4.5.2. (a) 70MPa (b) 250MPa (c) 390MPa
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Fracture surface o f  (a) show ing crack origin due to sliding w ear (B lack arrow).

Fracture surface o f (b) showing failure initiation point for at edge o f specimen (Black arrow).

Fracture surface o f (c) showing the failure initiation point on the side edge, away from fretting damage (Black

arrow).

Figure 4.5.3.

With the exception o f the specimen subjected to 70MPa, the images shown in Figure 4.5.2 

and Figure 4.5.3 above reveal how the failure origins have initiated away from the fretted



areas. This indicates that the fretting wear has not had a direct effect on the failure location o f 

the specimens and has instead located a feature with a higher concentration o f stress away 

from the wear scar e.g. surface defect at the specim en’s edge. However, the change in surface 

roughness from the centre o f the wear scar to the fretted region should be more than adequate 

to form large stress concentrations, so it is surprising that failure did not occur in this region. 

The change in surface morphology is shown below in Figure 4.5.4. This is especially true for 

Test 3, since a change in surface roughness such as this would be adequate enough to initiate 

failure in service components.

Figure 4.5.4. Change in surface condition for Test 3. The red line indicates the change in surface condition.

Figure 4.5.5. Average surface roughness images for (b) showing the fretted region and the relatively unworn

region.
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The following table provides the pad pressure and surface roughness values for all five tested 

specimens.

Test
Number

Pad
Pressure

Torque per 
Bolt Ra (pm) Rq (pm)

1 70 4 1.26 1.77

2 160 6 1.13 1.66

3 250 9 1.02 1.48

4 355 12 0.92 1.33

5 390 15 0.86 1.31

Table 4.5.3. Pad pressure and surface roughness values.

Although the initiation site is not in the direct vicinity o f the wear damage, the wear can still 

have an effect on the fatigue life. The true concern in contact fatigue is not the generation of 

surface damage or wear due to relative motion between the surfaces. Rather, it is the 

premature nucleation o f micro-cracks or fissures which could extend beyond the bedding 

surface and subsequently propagate by fatigue into the body o f a disc or blade under the 

influence of bulk stresses. Indeed, it is possible to initiate cracking, with very little surface 

damage, if  the stress levels are high enough.

Fractographic examination o f all the specimens revealed that the EoB cracks displayed a 

multi-nucleated and stepped behaviour. This is characteristic o f fatigue initiation under high 

stresses. Furthermore, higher magnification assessment o f the fracture surfaces near the crack 

origin o f Test 3 revealed a series o f fissures aligned in the same plane as the main fracture 

surface. These observations are also consistent with surface fissure and micro-cracking 

damage observed in fretting fatigue tests presented in literature142. Although failure initiation 

did not occur at these sites, it suggests that they can still be created as a result o f the large 

contact stresses due to fretting fatigue.
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Figure 4.5.6. SEM image of (a) micro- fissures in the bulk material (b) microfissures observed in the oxide glaze 

layer on the fretted surface for the U720Li specimen with a contact pressure of 70Mpa (c) micro-fissures near

fretting damage on Test 3.
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Many o f the fissures, or micro-cracks, observed in the oxide/glaze layer o f the contact surface 

never propagate into the base material. Although the observation o f fissures on the contact 

surface is consistent with contact and fretting fatigue143, fissures in the oxide/glaze layer of 

the specimen wear surface are not conclusive evidence o f contact fatigue crack nucleation.

It is important to note that even though the images above show crack formation on the wear 

scar immediately at the edge o f bedding, unless the oxide/glaze layer is removed, it is 

impossible to confirm whether cracks present in the bedding wear surface extend into the 

substrate. On this basis, it is possible that there are fretting and contact fatigue nucleated 

micro-cracks present below the oxide layer that go undetected. Either way, if  microcracks are 

created and lie dormant under the glaze layer, it is difficult to determine if  they account for 

failure in locations that do not initiate there.

4.6 Apparent Lack of Fretting Wear and the Effect of Nickel Oxide Glaze

The apparent difference in wear damage compared to the room temperature tests is highly 

likely a result of the high operating temperature. Temperature can affect the fretting wear in 

two ways.

• Corrosion and oxidation rates usually increase with temperature

• Mechanical properties usually change with temperature -  this includes the fretting rig 

components

The temperature effects on fretting are best described in terms o f surface oxidation kinetics. It 

is well known that at high temperature, nickel oxide glazes can form readily and can have a 

considerable effect on the degree o f fretting and the fretting fatigue life. The coefficient of 

friction o f nickel oxide glaze varies but is approximately 0.2 for nickel base superalloys such 

as U720LI. The oxide film not only reduces friction but prevents metal-to-metal contact from 

occurring and this is the main reason for the lack o f wear damage. The oxide films produced 

vary in thickness and morphology and are formed at different temperatures for specific 

materials.

In this case, the materials are the same. They will form an oxide glaze at the same rate and 

they will also have the same hardness. Referring to the Button-on-Plate Tests in 4.7.1, it will 

be shown that U720 performs very well having a relatively low wear rate. Hence, the rate of



wear will be relatively low for U720LI on U720Li and the fretting fatigue life is also 

expected to be higher. This is seen in the images above where there is considerably less 

fretting compared to the stainless steel 316 on U720Li in the room temperature tests.

4.7 W ear Perform ance of U720Li

Since U720Li is used extensively in this research it is important to understand how it 

responds to material interaction and its resultant wear damage in terms o f material removal. 

Furthermore, since U720Li is a nickel base superalloy, it is well known that at high 

temperature, nickel oxide glazes can form preferentially, which can be highly beneficial to its 

wear response. The formation o f the nickel oxide glaze and its benefits will be discussed in 

the following chapters.

4.7.1 Button-on-Plate Tests

Previous tests at Rolls-Royce using standard button-on-plate wear tests have been carried out 

to compare the wear performance o f various disc alloys against CMSX4. The alloys o f 

interest are as follows: CMSX4, Udimet 720Li, W aspaloy and RR1000.

The results o f these tests are shown below and suggest that o f all the disc alloys, Udimet 720 

has the lowest rate o f w ear144.

Button-on-Plate Design, 5.56N Load, 2.54mm Sliding 
Amplitude, 25Hz
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Figure 4.7.1.1. Comparison o f Disc Alloys in Terms of Sliding Wear against CM SX41
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It can be seen in Figure 4.7.1.1 that for all o f the materials, the volume o f material removal is 

greatly reduced at higher temperatures. This can be explained due to the formation o f a nickel 

oxide glaze which forms preferentially at high temperatures. The oxide glaze formation is 

very important as it greatly reduces the rate o f wear between two materials in contact acting 

as a natural lubricant.

4.7.2 Formation of Nickel Oxide Glazes

Flash temperatures o f several hundred degrees can be generated in contact sliding alone. 

Even at room temperature and only small sliding velocities, the temperature can be increased 

enough to produce significant increases in surface oxidation. In fact, it has been shown that 

oxide thicknesses that would organically take a year to grow under normal conditions can 

develop in hours or even minutes during sliding wear145.

The ‘Oxide glaze’ that Nickel alloys such as U720Li form makes them particularly 

interesting as they can form a relatively stable oxide layer at elevated temperatures. Below 

250°C, an oxide layer is formed from the compacted wear debris. This initially protects the 

surface from further damage, but as soon as it is broken down by further sliding and a 

subsequent increase in wear rate is seen. Above 250°C, the compacted oxide layer is sintered 

(oxide particles combine under the influence o f load and heat), which gives rise to the smooth 

glaze layer developing on top o f the compacted oxide regions. Although this glaze is more 

stable than the compacted oxide layer alone, it is not until 400°C that it reaches its full 

potential114. Above this temperature, the glaze becomes self-healing, which inhibits any 

subsequent break down. The temperatures used in the high temperature fretting experiments 

are well above this temperature; hence nickel oxide glaze formation is an important factor in 

the wear process.

Without the formation o f a nickel oxide glaze, the working life o f components such as the 

disc and blades would be much lower and in the case o f the high temperature fretting test 

programme above, the wear damage would have been greater.

In the wear process, upon initial sliding any naturally occurring oxide film, or any due to pre­

oxidation, is quickly removed from the surface, exposing virgin alloy to the atmosphere. 

However, transient oxidation forms immediately on the exposed alloy, forming oxides o f 

mixed metal origin, depending on the particular alloying constituents. The amount o f wear



and alloy deformation that follows is dependent upon the high temperature strength o f the 

alloy.

During the wear process, most o f this transient oxide is removed from the load-bearing areas, 

due its moderately low shear strength but it is rapidly reformed due to the high, localised 

temperature. Eventually, the buildup o f oxides is sufficient to form a layer o f compacted 

oxide particles, and the debris particles are broken down to a critical size allowing them to 

become embedded into the wear tracks. At this point, the rate o f wear decreases and there is a 

‘severe to mild transition’.

The smooth glaze generated above 250°C is not always present as a continuous layer across 

the whole surface, but often as discrete islands that appear on top o f the compacted oxide 

layer. Its effectiveness, however, in decreasing friction and shear stresses, will increase with 

increased surface coverage. The islands o f glaze are usually visible as smooth dark regions 

with a bluish tint to the eye, which stand proud o f the surrounding area. Their elevation above 

the rest o f the surface suggests that these glazed regions are the main load bearing areas o f 

the contact zone. This is also enforced by the many small abrasion grooves that appear 

parallel to the direction o f sliding on the glaze surface, but not on the remaining scar area. 

Grooves on even the smallest o f islands, gives an indication o f the high level o f adhesion that 

the glaze has to the underlying oxide layer. This is shown below in Figure 4.7.2.2.

Underlying

C om pacted
O m d e

Figure 4.7.2.2. Glazed Regions on a Standard Udimet 720 Wear Scar (Testing Carried out at 400°C)
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4.7.3 Effect of Oxide Glaze on Friction and Fatigue

It has already been previously stated that the presence o f an oxide glaze leads to a dramatic 

decrease in friction. Simple friction tests show that on average, bare Ni alloys have a 

coefficient of friction o f about 0.7. A compacted oxide particle layer formed at room 

temperature decreases this value to about 0.6. A nickel oxide glaze however, decreases the 

coefficient o f friction even further to around 0.2146, a dramatic reduction.

Despite some differences in test results, it can be said that a glaze layer decreases friction, 

which reduces shear stresses at the surface. As a result, the fatigue deficit upon subsequent 

fretting will be reduced. Testing carried out on Inconel 718147 (Table 4.7.2.1) has shown that 

at 20°C and 280°C, the fatigue strength is reduced by 56% and 63% respectively, due to the 

action o f fretting. At 540°C, the presence o f a glaze reduces this impact on fatigue such that 

the fatigue strength is reduced by only 15%.

Temperature (°C) Normal Fatigue (cycles) Fretting Fatigue (Cycles) SRF

20 275 120 2.29

280 325 120 1.71

540 325 275 1.29

Table 4.7.2.1. Fatigue strength o f Inconel 718 in MPa tested at 107 and a mean strength reduction factors (SRF).

Tested at a mean stress o f  550MPa.

It is evident from this research that the presence o f a glaze not only reduces friction and wear, 

but also prevents the surface damage that can lead to the initiation o f fretting fatigue cracks. 

For the glaze to be effective, however, it must firstly a) form rapidly with the onset of fretting 

(especially as the initiation of cracks is known to occur in the first few thousand cycles), b) be 

stable and resistant to subsequent delamination, and c) if  it does breakdown, be self-healing. 

All these factors depend on the conditions to which a system is subjected and will be 

discussed in the following section.



4.7.4 Factors Affecting Glaze Formation

4 .7.4.1 Tem perature

Oxidational wear theory explains how the rate o f wear should increase with an increase in 

temperature due to an increased rate o f oxidation. However, when talking about nickel alloys, 

this does not hold true due to the formation o f an oxide glaze which helps to protect the 

surface from further wear. It is still highly debatable as to why this formation occurs but J 

Lang et a l116 explains that this may be due to the increase in particulate attraction that an 

increase in temperature provides. The development o f protective layers is closely related to 

the adhesion between wear debris particles, and not purely on the rate o f oxidation. Any rise 

in temperature will increase the attraction between these particles, and aid glaze formation. 

The same author plotted the graph below, which shows how the rate o f wear volume changes 

considerably at approximately 250°C. Temperatures higher than 400°C also show a decrease 

in material volume removal.
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Figure 4.7.4.3.1 Effect o f Temperature on the Wear Rate of Nimonic 80A.
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4.7.4.2 Norm al Applied Load

Jiang et al116 reported that the size o f wear debris particles increases with increased normal 

load (due to cracks propagating deeper into the surface). As a result, wear particles find it 

more difficult to become embedded into the wear tracks, and so the formation o f protective 

layers is hindered. The severe to mild wear transition is delayed or, if  the load reaches a 

critical value, can become altogether impossible. This critical value o f load is not quoted. 

However, similar testing has been carried out internally up to a contact pressure o f around 

600MPa. At these conditions, percentage glaze average continued to increase with increased 

load, suggesting that the 'critical value' of load had not yet been reached. However, a contact 

pressure o f 600MPa also produced a significant increase in wear rate, indicative o f a delay in 

the severe-to-mild wear transition.

So it can be summarised that a contact pressure o f 600MPa is still favorable to produce a 

stable glaze, but it will take longer to establish at these conditions.

4.7.4.3 A ir Pressure/ Partial Pressure o f Oxygen

For most metals there is a point, below which, there is insufficient oxygen to produce an 

oxide film. For Ni alloys this is about 0.1-0.2m bar partial pressure o f oxygen (or about 0.5- 

1.0 mbar total pressure in air). Below this value, oxidation cannot take place and so protective 

oxide layers cannot form. Any wear will be due to plastic deformation and fracture of 

metallic surface asperities, resulting in high wear rates and high levels o f friction. Above 0.1- 

0.2 mbar of partial pressure, oxidation can occur and so debris particles are likely to be 

formed from the oxidised surface. The effect that this has on a system will depend mainly on 

the temperature148.

4.7.4.4 Slip Distance

In terms o f glaze formation, an increase in slip distance increases the probability o f removing 

debris from the contact zone. Wear debris are essential for glaze formation, and so the severe- 

to-mild wear transition is either delayed, or in extreme circumstances prevented altogether. 

Although there has been no research carried out for this particular parameter, we can compare 

the results from two different authors using similar materials and similar applied loads. The



first author, J.Lang149, carried out testing using a large slip distance. The second, Iwabuchi118, 

carried out testing using a much smaller slip distance.

The results o f the tests show that the time taken to reach a coefficient o f friction o f around 0.2 

which is the typical friction value o f a glaze was significantly longer for a larger slip distance. 

Hence, it can be supposed that the severe-to mild wear transition is delayed as you increase 

the slip distance.

The same rules in terms of glaze formation apply if  you decrease the slip distance into the 

fretting regime (under 100pm). However, it is also well known that fatigue cracks are most 

likely to initiate under fretting, or more accurately, in the partial slip regime.

4.7.4.5 Slip Speed/ Vibration

Jiang et al150 reported that the size of wear debris particles increases with increased sliding 

velocity. As a result, wear particles take longer to break down and become embedded into the 

wear tracks, and so the formation o f protective layers is hindered. An increase in slip speed 

also increases the probability o f removing debris from the contact zone, which is essential for 

glaze formation. Both factors contribute to the severe-to-mild wear transition being delayed 

or, if  the sliding velocity reaches a critical value, becoming altogether impossible.

4.7.4.6 Surface Condition

It has been theorised that a rougher surface aids debris entrapment, promoting self- 

lubrication, and in the case of Ni alloys, potential for glaze formation. As such, polishing is 

reported to be undesirable for fretting fatigue performance151. Under normal fatigue 

situations, polishing improves performance due to the reduction o f residual stresses. Under 

fretting conditions, however, polishing eliminates the surface ‘key’ that is essential for debris 

formation and subsequent entrapment.

4.7.4.7 Multi-Directional Movement

Tribology theory states that a multidirectional sliding movement produces a lower friction 

than a unidirectional one152. It is theorised that this effect is due to increased smearing of
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wear debris, which accelerates debris breakdown, increases the probability o f particle 

entrapment within existing wear scars, and in the case of Ni alloys, aids glaze formation.

4.8 Shortfall of Fretting Test Rig

As well as the presence of a nickel oxide glaze, another plausible reason for the lack of 

fretting wear in the high temperature tests is the fretting rig itself and its competence to 

produce reliable and realistic fretting wear at high temperature.

Since the rig had never been used at high temperature before it was difficult to predict how 

much slip would occur between the pad and specimen. At room temperature, good wear scars 

were produced having the characteristics o f partial slip fretting, but at high temperatures, 

thermal stress relaxation in the bolts and clamping plates almost certainly took place. It 

would have been ideal to encompass pressure sensors between the pad and specimen to 

provide in-situ pressure force readings to observe the loss in clamping force.

The bolts themselves may have extended as a result o f creep at high temperature and this 

would cause a reduction in force through the fretting pads. The bolts will extend under a 

steady load at room temperature naturally but in the presence o f high temperature, this 

process is speeded up considerably. Aerospace grade bolts with good tensile strength and 

creep properties would be an ideal upgrade in order to maintain the clamping force through 

the fretting pads.

One o f the many advantages o f bi-axial rigs as used by Oxford University is the ability to 

maintain a constant force through the fretting pads and set a desired sliding displacement 

between the fretting pad and specimen. However, with the fretting rig used in this project, it 

is difficult to determine these parameters. Strain gauges could be adopted into future 

experiments to measure the sliding distance of the specimen and pad. The measurement of 

the pad pressure still needs further research but for now there are many reliable finite element 

analysis packages capable of measuring such contact problems.

The rig was designed as an ‘off the shelf testing apparatus to replicate the fretting wear 

process. For this reason alone, this rig is suitable to analyse wear scar surfaces and the 

formation o f microcracks that form on the wear scar itself or in the bulk material below it. It



is a relatively cheap test to perform and can produce partial slip fretting comfortably at room 

temperature. Further research is required to achieve reliable partial slip patterns at high 

temperature, specifically the use o f high temperature materials which would help to relieve 

the problems o f creep and thermal stress relaxation.
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5 Conclusion

Contact wear has been a research topic o f vast interest for many years but the factors that 

account for it are poorly understood. Even defining what constitutes specific kinds o f wear 

such as scuffing, galling and fretting has not yet been fully resolved. Fretting specifically, is 

very difficult to classify due to the number o f regimes that fall under its title and the 

extensive number of variables involved in the process. It has been quoted that there are over 

50 variables operating synergistically at one time during the fretting process.

Although much research has been made to better understand this contact wear phenomenon, 

there still exists a need to formulate guidelines that clearly define various forms o f wear 

damage. It would be valuable to component fifing specialists and failure investigators alike to 

have a database in place o f an array o f wear damage and their corresponding fatigue fife 

reduction factors. This would allow for more accurate fifing o f engine components which can 

ultimately extend their service fives, increase the time between inspection intervals or provide 

a case to end the components working fife prematurely if  the damage is deemed too high risk. 

In the long term, research into contact wear such as this can save vast amounts of money in 

the aerospace industry alone. For example, significantly low service fife hours can be 

assigned to engine discs with slight wear damage due to highly conservative fifing methods, 

sometimes only reaching a quarter o f their service fife potential. With increased knowledge 

on the effect o f wear damage on the fatigue fives o f components, this can be improved. 

Furthermore, research into contact wear can provide significant research into the manufacture 

o f surface treatments and lubrications to alleviate the actions o f contact wear damage.

In this research, previous wear damage from ex-engine and current engine components has 

been analysed to extract data such as surface roughness, wear depth and wear scar area as 

well as characteristic features which help differentiate the various kinds o f wear scars. The 

aim was to gather as much information as possible so that the wear damage could be 

simulated onto laboratory fatigue specimens to establish fatigue fife reduction factors.

The initial wear tests performed at room temperature by Oxford University produced wear 

scars with a range o f damage severity from fight fretting marks to heavy galling wear with 

gross material removal. The worn specimens were then fatigue tested at 600°C to determine



the effect o f wear damage on the specimens fatigue life. From the results gained, the

following conclusions can be drawn.

• A range o f wear scars can be produced by changing the combination o f pad sliding 

distance and the contact pressure. It was possible to determine the wear mechanism by 

referring to each test’s characteristic hysteresis loop at the start, middle and end o f the 

wear process. A large hysteresis loop with a quadratic relationship confirmed that full 

sliding across the contacts had occurred and a narrower loop illustrated smaller 

displacement amplitudes as in the case o f partial slip. A closed hysteresis loop implied 

that no sliding had occurred. If the shape o f the hysteresis loops changed throughout the 

test, it was suggested that mixed slip had occurred i.e. the contacts started with full sliding 

and transitioned to partial slip.

• In essence, If Q « p P  there will be no movement o f the contacts and this is known as 

‘stick’. When the tangential force is not large enough to create full sliding o f the contact 

surfaces but is just below the sliding amplitude threshold value, partial slip will occur i.e. 

Q<pP. However if the tangential force is equal or larger to the sum of the normal force 

and coefficient of friction of the material, gross or reciprocating sliding will occur. Q>pP.

• Partial slip fretting patterns were achieved exhibiting the plastically deformed (slip) outer 

region and the elastically deformed central region (stick) from applying small sliding 

amplitudes in the range o f 0.05mm-0.5mm and contact pressures in the range lOOMPa- 

250MPa. The surface roughness for these specimens varied from the centre to the outside 

and these proved that partial slip had indeed taken place.

• As the pad sliding distance was increased, the surface roughness and quantity o f material 

removal also increased. This was proven when specimens with the same contact pad 

pressure but different sliding distances was compared. It was therefore concluded that the 

rate o f material removal is proportional to the sliding amplitude.

• Wear scar morphologies were difficult to control when large pad sliding distances (0.8- 

2mm) were employed due to the large material removal. This was expected for specimens 

with anticipated galling wear but it was not expected for specimens with projected 

scuffing wear. As such, the scuffing and galling wear produced seemed to overlap as the 

spread o f surface roughness and fatigue life reduction factors was very similar. Therefore, 

it was suggested that to achieve scuffing wear, it is practical to use contact loads smaller 

than 25MPa.

181



• The worn specimens were fatigue tested at 600°C and the results showed a positive trend 

for a larger fatigue life reduction with increased surface roughness. It was suggested that 

the loss in fatigue life was due to the surface irregularity, multiple stress concentration 

features and therefore low surface energies that promote perfect platforms for fatigue 

nucleation.

• The specimens produced an array o f fatigue lives with the greatest life reduction 

measured at 96%. This specimen had large material removal and a large average surface 

roughness value (Ra) o f 5.18pm and a root mean square value (Rq) o f 7.27pm.

• It was obvious from the results that fretting wear should be considered on an entirely 

separate basis to other forms o f deleterious wear damage due to the nature o f the contact 

problem and the mechanisms that drive it. Partial slip fretting is considered the most life 

limiting o f its four regimes due to the sharp stress gradients at the stick/slip interface and 

edge o f bedding location. This was proven to be the case when the fatigue life of 

specimens with projected fretting wear was compared. It was found that the majority of 

specimens which were subjected to a slip amplitude typical o f partial slip (50pm) resulted 

in the greatest fatigue life reduction. Furthermore, it also suggests that there is an ideal 

combination o f slip amplitude and contact pressure that results in the lowest fretting 

fatigue life. In this research, a contact pressure o f 200MPa and slip distance o f 0.05mm 

(50pm) had a lower life than specimens with same slip distance but a contact pressure of 

150MPa and lOOMPa respectively, i.e. Fatigue life reduction factor = 200MPa, 50pm > 

150MPa, 50pm > lOOMPa, 50pm

The next stage o f research attempted to focus more specifically on fretting fatigue. To do this, 

a customised fretting rig was designed and manufactured to include fretting fatigue at high 

temperatures of 600°C, typical o f temperatures experienced by turbine discs at the bore and 

diaphragm regions. The fretting test uses a pair o f clamping plates which hold replaceable 

fretting pads against the surface o f fatigue test specimens. When the specimen is subjected to 

a cyclic axial stress amplitude, the specimens will extend and cause slip between the pad and 

specimen.

Initial tests were performed at room temperature using a stainless steel fretting pad. The 

results are summarised below.



• The number o f  fatigue cycles deceases as the pad pressure increases from ~70-250MPa 

(3Nm to 9Nm tightening torque) but then starts to increase from 220-355MPa (9Nm to 

12Nm tightening torque). This can be explained by the Hertzian contact force and relative 

slip which results from varying the pad pressure. At low contact pressures, the slip 

between the fretting pad and specimen is relatively large. With a larger sliding 

displacement, the material removal is larger and any cracks created will be removed more 

quickly due to the wear process. At larger contact pressures, the relative slip is small and 

material removal is small, so microcracks are not removed as readily. This is reflected in 

the surface roughness values o f the fretting fatigue specimen with a tightening torque of 

12Nm which has the lowest value for all four specimens, suggesting slip in that specimen 

was less than its counterparts. As in the previous wear tests performed at Oxford 

University, it is believed that there is combination o f pad pressure and slip amplitude that 

results in the greatest reduction in fatigue life.

• In all cases, failure initiated from the edge o f bedding where the stress concentrations are 

large and where the surface roughness changes drastically. Both these provide the ideal 

platform for fatigue nucleation.

• A small amount o f oxide was present on the outside o f the wear scars, where the relative

slip is at its maximum. The high friction during sliding creates flash temperatures which

increases the oxidation rate.

The next stage o f the testing moved to a higher temperature o f 600°C using a U720Li fretting

pad instead o f stainless steel 316. The conclusions from this part o f the testing are as follows.

• There was considerably less fretting damage at 600°C compared to room temperature 

tests and this was thought to be due to the development o f a nickel oxide glaze layer 

which decreases the friction and results in less wear. The nickel oxide glaze can reduce 

friction to values as low as 0.2. Simple friction tests show that on average, bare Ni alloys 

have a coefficient o f friction o f about 0.7. A compacted oxide particle layer formed at 

room temperature decreases this value to about 0.6. Furthermore, since the contacts are 

the same material (both U720Li) and the wear rate o f U720Li is excellent at high 

temperatures135, the rate of wear will be low between these two materials during sliding.

• As in the room temperature fretting tests, the fatigue lives o f each specimen with different

pad pressures was recorded and plotted in a graphical format. The results showed the
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same relationship as the room temperature tests in that the fatigue life decreased with 

increasing pad pressure to a certain value and then started to increase. The minimum of 

the curve showed the lowest fatigue life and it was suggested that this was due to an ideal 

combination o f pad pressure and slip distance that produced the most detrimental fatigue 

life reduction. The pad pressure was measured at approximately 220MPa. At this pad 

pressure and corresponding slip distance, the stress gradients at the edge o f bedding were 

considered most severe and mircocrack formation was more likely.

Fatigue life reduction factors were calculated for each specimen and it was observed that 

two out o f the six specimens had a fretting fatigue life greater than the baseline value o f 

20,000. A 34.5% and 8.3% gain in fatigue life is observed. This was thought to be due to 

compressive residual stresses created by the large pad pressures. These compressive 

residual stresses produce a local plastic deformation and aid to suppress the movement o f 

dislocations, effectively slowing down the process o f microcracking.

The failure locations of the specimens in the high temperature tests initiated at different 

locations from one specimen to the next. Only one specimen was found to have a failure 

location at the edge o f the wear scar. The other specimens initiated cracking at locations 

away from the wear scar. However, even though this was the case, it is still believed that 

the contact wear played a role in the failure due to the presence o f fissures in both the 

wear scar and the bulk material in various locations.



6 Future Work

The long term objective is to develop a mechanistic model o f fretting fatigue damage 

initiation and progression which takes into account the known contributory factors that have 

already been touched upon i.e. surface condition, temperature, sliding distance, contact 

pressure and bulk stress). It is acknowledged that this is an ambitious goal with large scope 

and potentially massive economical gains, especially considering the number o f engines 

operating under power-by-the-hour contracts. Hence, the work carried out in this project can 

be considered as a good introduction to long term objectives.

This work has attempted to capture and disseminate enhanced understanding in the form o f a 

practical guide for R-R personnel to use. The reduction in fatigue life as a consequence of 

wear damage can be used as a form o f risk scoring which illustrates the severity it poses to 

components. However, to ensure that this can be done in an effective, reliable and accurate 

way, a much greater datum of information is required to cover the whole spectrum of wear 

damage witnessed on engine components. This would involve using an extensive 

combination o f sliding distances and pad contact pressures as well as changing additional 

variables such as mutli-directional sliding and the environment conditions. Comparative 

analysis between worn specimens and worn engine components would then be performed to 

determine similarities and differences so that an appropriate safe working life prediction can 

be calculated for the worn component.

It was also mentioned previously how it would be beneficial to observe the formation and 

growth o f cracks to understand where they initiate and propagate from. Knowing these 

locations would allow palliatives to be designed, to reduce the stresses in these regions, and 

introduced back into the design process. Furthermore, it would also allow improved fifing 

calculations since the rate of crack growth could be observed in real time.

It is well known that lubrications and surface treatments reduce the rate o f wear damage by 

decreasing the friction, and this can increase the working fife o f a component significantly. 

Therefore, the addition of lubrications or surface treatments can be tested and compared to 

the results in this research to determine the differences in wear scar morphology and fatigue
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life benefits. Currently, solid dry film lubricants (DFL) such as Metco58 and Everlube 620 

which are molybdenum disulfide and graphite based are used. Surface treatments which 

induce residual stress fields as a way of reducing microcrack formation such as shot peening 

are used in certain wear prone regions, such as the disc/blade contacts. However, a new 

method such as low plasticity burnishing (LPB) is also being considered as an alternative 

method and very little testing has taken place thus far.

The customised fretting fatigue rig in this research was designed as a relatively cheap and 

quick method o f extracting information from straightforward fretting fatigue tests with high 

temperature capabilities. The rig also allows the fretting pad to be changed to test the effects 

o f material combination and geometry on the fretting fatigue life. Therefore, future research 

could incorporate new these variables, which increases the scope of data for more efficient 

and accurate service life predictions.

Restricted by the budget available for this project, it was not possible to include contact 

pressure sensors to accurately measure the pad pressure before, during and after the fretting 

tests. The large contact pressures and high temperatures involved also limit the availability o f 

force sensors on the market. Instead, a combination of tightening torque values and finite 

element analysis was used to measure the force through the pads before the tests began. 

Nonetheless, it would certainly be advantageous to constantly monitor the pad pressure in 

order to determine whether there was stress relaxation in the clamping force as a result o f 

creep or thermal effects.

Another point to note is that during the fretting fatigue tests, the slip distance was not 

recorded. Instead, the wear scars and fatigue life was measured with respect to the contact 

pressure o f the pad which ultimately determines the sliding distance. In future tests, it is 

possible to use strain gauges which measure the relative slip between the pad and specimen. 

A strain gauge can measure the deformation (extension) o f the specimen as a result o f cyclic 

axial stresses. This is measured in units o f distance deformed per unit o f distance placed 

under strain by measuring the change in resistance before and after the strain. Hence, by 

measuring deformation with a strain gauge and knowing the length of the object placed under 

strain, the total displacement can be measured and interpreted as the relative slip between the 

pad and specimen.



Testing may also be performed in a vacuum to determine the difference in wear volume, 

friction coefficient and wear scar morphology to tests performed in air. The formation o f a 

nickel oxide glaze will be non-existent when in a vacuum and fretting fatigue lives should 

therefore be higher.

With regards to tracking the progress o f crack formation during testing, the tests can either be 

interrupted at regular intervals to determine the onset o f cracking, crack development and its 

location; or alternatively, a high definition camera could be installed into the test to record the 

whole crack progression.
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