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Abstract

The principle of inductive-inductive definitions is a principle for defining data types 
in Martin-Lof Type Theory. It allows the definition of a set A, simultaneously defined 
with a family B  : A -> Set indexed over A. Such forms of definitions have been used 
by several authors in order to for example define the syntax of Type Theory in Type 
Theory itself. This thesis gives a theoretical justification for their use.

We start by giving a finite axiomatisation of a type theory with inductive-inductive 
definitions in the style of Dybjer and Setzer's axiomatisation of inductive-recursive def
initions. We then give a categorical characterisation of inductive-inductive definitions 
as initial objects in a certain category. This is presented using a general framework for 
elimination rules based on the concept of a Category with Families. To show consistency 
of inductive-inductive definitions, a set-theoretical model is constructed. Furthermore, 
we give a translation of our theory with a simplified form of the elimination rule into 
the already existing theory of indexed inductive definitions. This translation does not 
seem possible for the general elimination rule. Extensions to the theory are investigated, 
such as a combined theory of inductive-inductive-recursive definitions, more general 
forms of indexing and arbitrarily high (finite) towers of inductive-inductive definitions. 
Even so, not all uses of inductive-inductive definitions in the literature (in particular 
the syntax of Type Theory) are covered by the theories presented. Finally, two larger, 
novel case studies of the use of inductive-inductive definitions are presented: Conway's 
Surreal numbers and a formalisation of positive inductive-recursive definitions.
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C h a p t e r

Introduction
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l . l The importance of dependent ty p e s ...........................................................  1
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1.3 O v e r v ie w ........................................................................................................... 10

This thesis describes a novel class of data types in the context of Martin-Lof Type theory 
We argue that expressive data types are important, both from a foundational point of 
view (using Type Theory as a foundation for constructive mathematics) and for the 
programmer that wishes to write programs that are correct by construction.

This chapter provides an introduction to the main body of the thesis. We first 
emphasise the importance of expressive data types. We then review the history of 
inductive definitions -  both inside and outside of Type Theory -  before giving an 
overview of the rest of the thesis and the publications it is based upon.

1.1 The importance of dependent types

We start by motivating the use of dependent types for programming and mathematics.

1.1.1 Data types for computer science

Software is becoming increasingly im portant and w idespread in modern society. It 
is also becoming increasingly complex. At the same time, w ith computer programs 
appearing in more and more everyday and safety-critical devices, the cost of failure is 
increasing as well. How can we effectively develop programs, and be sure that they are 
correct?

One option for the program m er is to tell the computer more of their intentions, 
so that it can help spot errors or even derive trivial parts of programs. The question 
then becomes how we can tell the computer w hat we want. There are of course many
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1. Introduction

options, for example formal specifications, exhaustive testing frameworks or refinement 
development, to name a few.

This thesis pursues another solution, which begins with a simple observation: even 
the earliest programming languages such as FORTRAN [IBM Applied Science Division, 
1954] and ALGOL [Perhs and Samelson, 1958] had a facility for the programmer to 
tell the compiler some of her intentions -  a type system1. For example, consider the 
following simple Haskell [Marlow, 2010] program snippet:

f : Integer -> Integer 
f x = True

The programm er is telling the compiler that she intends to write a function f which 
takes an integer x as input and returns an integer. However, both the compiler and 
the reader can easily spot the error the programmer has made: she is not returning an 
integer after all, bu t is trying to return the Boolean True! Luckily, a Haskell compiler 
would be clever enough to inform our programmer of her mistake.

But now consider the following program:

sort: List Integer -» List Integer 
sort xs = [ 2, 0, 3 ]

This time, the compiler does not complain. The reader, however, should! It is not 
such a wild guess that the programmer intended for this function to return a sorted 
permutation of its input. This is exactly the kind of information we would like to pass 
on to the compiler. As it stands, though, the input is irrelevant and the output is not 
even sorted. If we w ant the compiler to alert us to this fact, we should make the type 
system more expressive. Martin-Lof Type Theory [Martin-Lof, 1972,1984; Nordstrom 
et al., 1990,2001] is a programming language with such an expressive type system. Even 
though intended as a foundational system for constructive mathematics, Martin-Lof 
[1982] has also stressed the connection to programming. The result is very expressive. 
By exploiting the Curry-Howard isomorphism (see Section 2.1.5), we can encode any 
specification written as a first-order formula in the type system.

First-order logic in itself is not enough. Without meaningful atomic propositions, 
we cannot specify many properties. By the Curry-Howard isomorphism again, atomic 
propositions correspond to ground types in Type Theory2. Thus, it is im portant to 
extend Type Theory with a large collection of basic data types as well. By the dual logical 
and mathematical nature of Type Theory, these will be used both for computation and 
for reasoning.

We will review current systems of data types for Type Theory in Section 1.2. This 
thesis studies a class of data types, called inductive-inductive definitions for reasons that

10 f  course, these early type systems were not introduced for this purpose, but were rather meant for 
the programmer to help the compiler, not the other way around (different data types require different 
memory layouts). Likewise, type theory does not begin with FORTRAN, but rather with Russel [1903, 
Appendix B].

2From now on, we will simply write Type Theory for Martin-Lof Type Theory.
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1.1. The importance of dependent types

will become clear below, which generalises most of the data types previously considered. 
With inductive-inductive definitions, we can give sort the type

sort: List Integer -> SortedList (Integer, <)

which w ould rule out the implementation above -  the list [2,0,3] is not sorted. See 
Example 3.2 for the inductive-inductive definition of a data type of sorted lists.

We could also consider to go further. The type given to sort above does not guarantee 
the correctness of the function; a possible function of that type would for instance be

wrong-sort: List Integer -»> SortedList (Integer, <) 
wrong-sort xs = []

since the empty list [] certainly is sorted. To be sure that we have a correct program, we 
could give sort the dependent3 type

so rt: (xs : List Integer) -»• (E ys : SortedList (Integer, <)) (Permutation xs ys)

where Permutation xs ys is a data type consisting of proofs that xs is a permutation of 
ys. Such a data type can also be defined using inductive-inductive definitions (in fact, 
indexed inductive definitions, see Appendix A. 1.2).

It is important to point out that types are not only there to tell us about our mistakes 
after we have made them. Instead, types can also guide us towards the program we 
w ould like to write, or even help the compiler to automatically derive parts of the 
program  for us. For this, dependent types are crucial; if we ask for a list, any list, we 
might be disappointed by the result -  most lists are not sorted! However, if we ask for a 
sorted list that is a permutation of the input, we will be much happier with whatever 
the compiler is coming up with for us.

1.1.2 Data types for the working mathematician

So far, we have focused on the needs of the programmer. But, as Martin-Lof [1982] 
points out:

If programming is understood not as the writing of instructions for this or 
that computing machine but as the design of methods of computation that 
it is the computer's duty to execute [...], then it no longer seems possible to 
distinguish the discipline of programming from constructive mathematics.

Hence data types should be im portant also for the constructive mathematician. For 
constructive mathematics in the style of Bishop [1967], w here mathematics is done 
informally (but without the use of the principle of excluded middle), this is perhaps not 
immediately obvious. Martin Lof Type Theory was invented with the goal of being "a 
full-scale system for intuitionistic mathematics" [Martin-Lof, 1972] carried out in such

3See Section 2.1 for notation and background on dependent types.
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1. Introduction

an informal fashion. Thus, if a mathematical object has been informally constructed, 
it is important that the underlying formal system is able to faithfully represent this 
object as well. We will see examples of how inductive-inductive definitions support 
such informal mathematical developments in Chapter 7.

1.2 Inductive definitions in Type Theory and set theory

Inductive definitions are ubiquitous in mathematics, perhaps especially so in construc
tive circles. In this section, we review the basic approaches to formal systems including 
such definitions, both in Type Theory, set theory and first order logic.

1.2.1 Inductive definitions in Type Theory

Martin-Lof s formulations of Type Theory [Martin-Lof, 1972,1982,1984] includes induc
tive definitions of, for example, disjoint unions A + B, the identity set x =a y, finite sets 
Fin(n), the natural numbers N, well-orderings \N(x : A)B(x )  and lists List^, as well as 
an inductive-recursive definition of a universe (U,T) k la Tarski; we will come back to 
these specific type formers as examples of classes of data types in Section 1.2.1.3. It is 
understood that further data types may be added, as long as they are meaningful, i.e. 
are supported by the semantics of the language.

This however raises the question: what extensions are meaningful? The possibility 
of developing a general formulation of meaningful extensions was mentioned already 
by Martin-Lof [1982]4:

The type N is just the prim e example of a type introduced by an ordinary 
inductive definition. However, it seems preferable to treat this special case 
rather than to give a necessarily much more complicated general formulation 
which would include (Ex : A)B(x) ,  A + B,  Fin(n) and N as special cases.
See Martin-Lof [1971] for a general formulation of inductive definitions in 
the language of ordinary first order predicate logic.

1 .2 .1 .1  Schemata of inductive definitions

An early schema of inductive definitions is presented by Martin-Lof [1971], as referred 
to in the quote above. In fact, it is so early that it predates Type Theory, and is instead 
couched in first-order logic. Backhouse [1988] (see also Backhouse et al. [1989]) was 
the first to give a general formulation of "disciplined extensions" of Type Theory. By 
defining a schema of inductive definitions, Backhouse shows how the elimination and 
computation rules can be automatically derived from the introduction rules, which 
can considerably simplify the presentation of the theory. The idea that the elimination 
rules for first-order logic are derivable can be found in Prawitz [1979]. In computer 
science, the same idea can implicitly be found in Burstall [1969], where (simply typed)

4The notation for the different data types in the quoted text has been changed to coincide with the rest 
of this thesis.
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1.2. Inductive definitions in Type Theory and set theory

data types such as lists and trees are given by constructors, i.e. only their introduction 
rules are specified.

However, the schema given by Backhouse allowed inconsistent definitions, since 
it did not enforce strict positivity (this is also remarked upon in the conclusion of the 
article). Dybjer [1994] gave a different schema, which only gives rise to consistent 
definitions. Dybjer proves this using a set-theoretic semantics [Dybjer, 1991]. The 
schema also extends Backhouse's schema in several ways, most notably by also allowing 
the inductive definition of a family of types, i.e. an indexed inductive definition. Coquand 
and Paulin-Mohring [1990] give a similar schema in the setting of the Calculus of 
Constructions [Coquand and Gerard, 1988], i.e. impredicative Type Theory.

There are other constructively justified forms of induction-like definitions, such as 
Martin-Lof's universe of small types, that are not covered by the schemas discussed so far. 
Dybjer [2000] proposed another schema of inductive-recursive definitions, which does 
cover Martin-Lof's universe and many other examples, such as Martin-Lof's computabil
ity predicates [Martin-Lof, 1972] or Aczel's Frege structures [Aczel, 1980]. Setzer was 
interested in inductive-recursive definitions as a proof-theoretically strong extension of 
Type Theory, but found the schematic presentation too imprecise for proof-theoretical 
analysis. To remedy this, he developed a finite axiomatisation together w ith Dybjer 
[Dybjer and Setzer, 1999] by internalising the schema. This axiomatisation was then 
further studied and extended [Dybjer and Setzer, 2003,2006]. We take much inspiration 
from their work in the current thesis. The idea of representing data types internally in 
Type Theory has been used for generic programming [Benke et al., 2003; Morris, 2007; 
Magalhaes, 2012], and forms the basis for all data types in Epigram 2 [Chapman et al., 
2010].

1.2.1.2 O ther approaches to inductive definitions

We will use an internalised schema of data type definitions in this thesis. Nonetheless, 
let us discuss some other approaches to inductive definitions, and why they are not 
suitable for intensional Type Theory.

Containers [Abbott et al., 2005] and indexed containers [Altenkirch and Morris, 
2009] give a more semantic view of data types, without e.g. syntactical criterions of strict 
positivity. This is very similar to representing inductive definitions by W-types [Dybjer, 
1997; Abbott et al., 2004], but makes essential use of extensional Type Theory, which we 
wish to avoid for the initial axiomatisation because of its not so nice meta-theoretical 
properties (see Section 2.1.6.1). We will explore an inductive-inductive extension of 
containers in Section 5.2.

Another option is to use an impredicative Church or Scott encoding of data types. 
Pfenning and Paulin-Mohring [1990] explore such encodings for the Calculus of Con
structions, bu t this is not a possible solution in Martin-Lof Type Theory, which is a 
predicative theory. Furthermore, Church encodings only give rise to non-dependent 
elimination principles [Geuvers, 2 0 0 1 ].

Yet another option is to add a (least) fixed point operator to the theory [Mendler, 
1987]. This is not so different from the schema approach; for instance, one still has to

5



1. Introduction

make sure that the fixed point operator is only applied to strictly positive expressions. 
Conceptually, the approach is not so clear, however, as inductive types are represented 
as equirecursive types, and hence e.g. the natural numbers N = nX. { l  + X )  are both 
a sum  type and not a sum  type at the same time; this often requires the use of subset 
types in order to make sense.

1.2.1.3 Different classes of data types in Type Theory

Let us now look at some examples of inductive definitions, such as the natural numbers, 
lists, well-orderings, the identity set, finite sets, and a universe a la Tarski. These 
examples can be categorised as different kinds of inductive definitions.

The first few (up to well-orderings) are just ordinary inductive definitions, where a 
single set is defined inductively. A typical example is the type W(A, B ) of well-orderings, 
parameterised by A  : Set, B  : A -*■ Set. The introduction rule is:

a : A f  : B(a)  -> \N(A,B)  
sup(a, / ) :  W(A, B)

Each element of W(A, B)  can be thought of as a well-founded tree, where the set A 
contains the possible branching types of the tree and B  : A -> Set describes the branching 
degree of each type. Thus sup(a, / ) :  W(A, B)  is a tree with top-most branching type 
a : A, "above" all the subtrees f {b) for b : B(a)  (hence the constructor name 'sup'). Here 
a: A  is a non-inductive argument, whereas /  : B (a) -> \N(A, B)  is an inductive argument 
because of the occurrence of W(A, B). Note how the later argument depends on the 
earlier non-inductive argument.

The identity type and the finite sets are examples of inductive families, where a whole 
family X  : I  -> Set is defined inductively at the same time, for some fixed index set I. 
For the family Fin : N -»• Set of finite sets (i.e. Fin(n) is a set with n elements), the index 
set is the natural numbers N. We have introduction rules

n : N n : N m  : Fin(n)
zn :Fin(n + l )  sn ( m ) : Fin(n + 1)

Thus, indeed, the type Fin(n + 1) has n + 1 elements, which can be enumerated as zn, 
S n ( z n - i ) ,  sn(sn- i ( zn- 2 )) up to sn(sn_i(—si(z0))). The type of the inductive argument 
m  : Fin(n) of the second rule has index n, which is different from the index n + 1 of the 
type of the constructed element. Thus the whole family has to be defined at the same 
time.

The universe h la Tarski is an example of an inductive-recursive definition, where 
a set U is defined inductively together w ith a recursive function T  : U -*■ Set. The 
constructors for U may depend negatively on T  applied to elements of U, as is the case 
if U, for example, is closed under dependent function spaces:

a : U b : T(a) -* U 
7T (a,b):U

6



1.2. Inductive definitions in Type Theory and set theory

with T(ir(a, b)) = (x : T(a))  -  T(b(x)).
In the last example, T  :U -»> Set was defined recursively. Sometimes, however, one 

might not want to give T ( u ) completely as soon as u : U is introduced, but instead define 
T  inductively as well. This is the principle of inductive-inductive definitions. A set A  is 
inductively defined simultaneously with an A-indexed set B, which is also inductively 
defined, and the introduction rules for A  may also refer to B. Typical introduction rules 
might take the form

a: A b : B ( a ) . . .  cio -A b:B(ao) a\ : A ...
introJ4 (a ,6 , ...)  : A  intrOB(ao, b, a i , ...)  : B{a\)

Notice that this is not a simple mutual inductive definition of two sets, as B  is indexed 
by A. It is not an ordinary inductive family either, as A  may refer to B.  Finally, it is not 
an instance of induction-recursion, as B  is constructed inductively, not recursively.

1.2.1.4 Inductive definitions versus recursive definitions

In both an inductive-inductive and an inductive-recursive definition, a set U and a family 
T  : U Set are defined simultaneously. The difference between the two principles 
is how T  is defined: inductively or recursively. In the following, we first discuss the 
difference between an inductive and a recursive definition. To exemplify this difference, 
consider the following two definitions of a data type Nonempty : N -> Set of non-empty 
lists of a certain length (with elements from a set A):

Inductive definition The singleton list [a] has length 1; and if a is an element, and 
the list £ has length n, then cons(a,^) is a list of length n + 1 . As an inductive 
definition, this becomes

______ oj_A_________  a :A  N onem pty^n)
[a] : Nonempty^dCl) cons(a,£) : Nonemptyind(n + 1)

Notice that there is no constructor which constructs elements of length 0, i.e. in 
the set Nonemptyind(0).

Recursive definition In the recursive definition of the data type, we define the set 
Nonemptyrec(n) for every natural number:

Nonemptyrec(0) = 0 
Nonemptyrec(l)  = A 

Nonemptyrec(n + 2) = A  x Nonemptyrec(n + 1)

In the recursive definition, Nonempty rec(/c) is defined in one go, whereas the induc
tively defined Nonemptyind(fc) is built up from below. In order to prove that the set 
Nonempty^(0) is empty, one has to carry out a proof by induction over Nonempty^.

This difference is now carried over to an inductive-recursive/inductive-inductive 
definition of U : Set, T  :U -*■ Set. In an inductive-inductive definition, T  is generated

7



1. Introduction

inductively, i.e. given by a constructor intro^ : (x : F(U, T))  -+ T{i{x)) for some (strictly 
positive) functor F.  In an inductive-recursive definition, on the other hand, T  is defined 
by recursion on the way the elements of U are generated. This means that T(intrO[/(x)) 
must be given completely as soon as the constructor intros : G(U,T)  -» U is introduced.

There are some practical differences between the two approaches. An inductive- 
inductive definition gives more freedom to describe the data type, in the sense that many 
different constructors for T  can contribute to the set T(introt/(x)). However, because of 
the inductive generation of T, T  can only occur positively in the type of the constructors 
for U (and T), whereas T  can occur also negatively in an inductive-recursive definition.

Finally, as long as U : Set is inductively defined, it makes sense to define T  :U -+ D 
recursively for an arbitrary codomain D,  such as e.g. D = Set or D = N. By contrast, 
it does not make sense to define e.g. T  : U -> N inductively: this would mean that 
T ( u ) : N should be given by constructors, which is nonsense (a natural number such as 
17 does not have elements!). Thus, in an inductive-inductive definition, we are restricted 
to families T  : U -> Set w ith codomain Set, since only then does it make sense to be 
given by constructors. We will see in Section 6.2 that the domain of T  can be made 
more general for inductive-inductive definitions. See also Ghani et al. [2013b] for such 
extensions for inductive-recursive definitions.

1.2.2 Inductive definitions in set theory

We give a quick account of inductive definitions in (classical) set theory using Aczel's 
rule sets. For a more detailed exposition, the reader is referred to Aczel [1977], from 
which much of the following material is taken. We will use results from this section in 
Section 5.1.

Definition 1.1 Let A be a set.

(i) A rule on the base set A is a pair (X , x) where X  c A is a set -  the set of premises -  
and x  c A -  the conclusion of the rule. We often write a rule as

X
5

X

reminiscent of natural deduction.

(ii) Let $  be a set of rules on A (a rule set on A). A set Y  c A is closed if for each 
rule ^  e <3>, it is the case that X  c Y  implies x e Y , i.e. if the premises of a rule are 
contained in Y, then so is the conclusion.

(iii) Let $  be a rule set. The least ^-closed set is called inductively defined by <3>. ■ 

Using impredicativity, the set inductively defined by 3> can always be constructed as

Z ($) := p |{Y  c  A | y  is ^-closed} .

This is an intersection over a non-empty set, as for example A itself is trivially ^-closed. 
Furthermore, the intersection of any collection of ^-closed sets is ^-closed. Hence X(3>) 
indeed is the least ^-closed set.
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1.2. Inductive definitions in Type Theory and set theory

Examples 1.2 We give some examples of sets defined by rule sets.

(i) The natural numbers are perhaps the most familiar example of an inductively 
defined set. They are defined by the rule set (on R, say)

{ - } u { - ^ -  | n e N }  .
1 0 / n  + 1  ‘

(ii) Let C be a category and let X  be a set of morphisms from C. There is a smallest 
subcategory Cx of C which contains the morphisms in X. The objects of Cx are 
the domains and codomains of the m orphism s in X ,  and the morphisms are 
inductively defined by the rule set (on morphisms from C)

{-7  I /  e X}u{ ~~~ | A object in Cx }u{ | / ,  g composable morphisms in C} .
/  i a a f ° 9

(iii) Well-formed arithmetical terms built up from constants 0 ,1, a unary operator -  
and binary operators + and x are inductively defined by the rule set (on the set S  
of finite strings on the alphabet {0 , 1 , +, x, (,)})

We see here an im portant distinction between inductive definitions in set theory 
and inductive definitions in Type Theory (see Section 1.2.1). In Type Theory, we think 
of inductive definitions as a method for generating new types. In contrast, in set 
theory all sets already exist. To form the rule set which defines the natural numbers 
in Examples 1.2(i), we already need the natural numbers! In this sense, rule sets are 
more like predicates defined as inductive families in Type Theory. Kleene [1952] makes 
the distinction between fundamental and non-fundamental inductive definitions, where 
rule sets give rise to the latter. For our purposes, this is not a problem, since we are 
interested in set theory (and inductive definitions therein) mostly as a model for Type 
Theory, and not as a foundational theory in itself.

There is an alternative presentation of rule sets on A  as monotone operators on 
V(A) ,  i.e. functions <p : V{A)  -»• V{A)  such that if I c y  then <p(X) c ip(Y). Given a 
monotone operator p :V(A)  ^  T(A) ,  there is a corresponding rule set

%  = { - \ X c A , y e lp(X)}  ,
y

and we then have that Y  c A  is ^ -c lo se d  if and only if p( Y )  c Y.  Conversely, given a 
rule set $  on A,  we define a monotone operator <p$ :V(A)  V(A)  by

P$(Y)  = {x e A | — e $  for some X  c Y)  .
x

Then Y  c A is ^-closed if and only if <p${Y) c y . Hence the set inductively defined by 
$  can equivalently be described as the least set Y  such that p<s>(Y) c Y. This suggests 
the following transfinite construction of J ( $ )  "from below":

9
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Proposition 1.3 Let $  be a rule set on A. Define by transfinite recursion

ip° = 0

<^Q + 1  =

= U  ^ limit
/3<A

Then there is some k < |A| such that X(4>) = </?*, and X($) is the least fixed point of

Proof. Let k be the least ordinal such that <pK+1 = </?*. Such a k < \A\ must exist, since </?$ 
is monotone; hence, if we have not reached a fixed point yet, we are adding at least one 
new element at each iteration. Since <pQ £ A for all a, we can do this at most |A| times. 
We then have = <fK, in particular </?$(<£>*) c <pK and hence X(4>) c ^  since X(4>)
is the least ^-closed set. In the other direction, we can easily prove c X(<F) for all a  
by transfinite induction, since <p$ is monotone. Hence X(<3>) = </?*, and <pK is the least 
fixed point of by construction. □

From a categorical perspective, <pQ is the initial sequence of the functor : V{A)  -► 
V{A),  and the proposition says that the sequence stabilises. The bound k < \A\ is fine 
if we already know that we are dealing w ith a rule set on A. However, we often do 
not know a base set beforehand, but only have some large set V  with the appropriate 
closure properties which we hope will contain all the types of the model. A bound < |V| 
is then not good enough, as iterating \V\ times might make us end up with a set which 
is too large to be contained in V.  Thankfully, we can often give more precise bounds.

Definition 1.4 Let k be a cardinal. An operator is n-based if x e <p(X )  implies x e <p(Y) 
for some Y  c X  of cardinality < k. ■

Examples 1.5

(i) If <p(X) = A -*■ X  for some set A, then is K-based for all k > \A\.

(ii) Monotone operators corresponding to a finitary rule sets, i.e. rule sets where 
each set of premises is finite, are u;-based. ■

Proposition 1.6 Let be a K-based monotone operator for a regular cardinal k. Then 
X($) = <pK.

Proof We need to show = <pK. The direction 2  <pK is clear by monotonic
ity of For the other direction, let x 6 <p$(<fK). Then x € <p<f>(Y) for some Y  ^ (pK of 
cardinality < n. But by the regularity of n, then already Y  for some /3 < k  and
x c <p$(Y) £ = <pP+1 2  ipK. □

1.3 Overview

The rest of the thesis is structured in the following way:

10
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• Chapter 2 introduces Martin-Lof type theory, including the notation and conven
tions we will use for the rest of the thesis. The content is entirely standard.

• In Chapter 3, we give several examples of inductive-inductive definitions. We 
then present a general finite axiomatisation of such definitions which extends the 
type theory introduced in Chapter 2. There are no deep theorems in this chapter, 
instead we introduce the object of study for the chapters to come.

• Chapter 4 gives an alternative, categorical characterisation of the elimination 
rules for inductive-inductive definitions. Along the way, we develop a theory 
of generic eliminators, using the concept of a Category with Families. The main 
result is an equivalence between the elimination rules and the existence of an 
initial object in a certain category (Theorem 4.43).

• In Chapter 5, the semantics of inductive-inductive definitions is considered. We 
give two different models: a set-theoretic one (Theorem 5.14), and an interpre
tation of inductive-inductive definitions as indexed inductive definitions (The
orem 5.39). The latter translation is simplified by first giving an "inductive- 
inductive container" semantics (Corollaries 5.19 and 5.25) for inductive-inductive 
definitions.

• The theory as presented in Chapter 3 is not strong enough to cover all the exam
ples of inductive-inductive definitions that have appeared in the literature. In 
Chapter 6, we consider several extensions that makes it possible to handle the 
other examples, and prove that the set-theoretic model from Chapter 5 can be 
extended to handle the extended theory (Theorem 6.15).

• Chapter 7 puts the theory to use and considers two larger examples of uses of 
inductive-inductive definitions: Conway's surreal numbers and another variant 
of inductive-recursive definitions which is attractive from a categorical point of 
view.

• Finally, Chapter 8  concludes and outlines plans for future research.

Publications

Parts of this thesis have been published in peer-reviewed conferences:

(i) Inductive-inductive definitions. With Anton Setzer. In Anuj Dawar and Helmut 
Veith, editors, Computer Science Logic, volume 6247 of Lecture Notes in Computer 
Science, pages 454-468. Springer, 2010. [Nordvall Forsberg and Setzer, 2010].

(ii) A categorical semantics for inductive-inductive definitions. With Thorsten Al- 
tenkirch, Peter Morris, and Anton Setzer. In Andrea Corradini, Bartek Klin, and 
Corina Cirstea, editors, Conference on Algebra and Coalgebra in Computer Science, 
volume 6859 of Lecture Notes in Computer Science, pages 70 -  84. Springer, 2011. 
[Altenkirch et al., 2011].
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(iii) A finite axiomatisation of inductive-inductive definitions. With Anton Setzer. 
In Ulrich Berger, Hannes Diener, Peter Schuster, and Monika Seisenberger, editors, 
Logic, Construction, Computation, volume 3 of Ontos mathematical logic, pages 259 -  
287. Ontos Verlag, 2012. [Nordvall Forsberg and Setzer, 2012].

(iv) Positive inductive-recursive definitions. With Neil Ghani and Lorenzo Malat- 
esta. In Reiko Heckel, and Stefan Milius, editors, invited paper Conference on 
Algebra and Coalgebra in Computer Science, volume 8089 of Lecture Notes in Computer 
Science, pages 19 -  33. Springer, 2013. [Ghani et al., 2013a].

My contributions to the publications are:

(i) I wrote the entire article, and did most of he work for it (in collaboration with 
Anton Setzer). Most of the material has been superceded by Article (iii), but traces 
can still be found in Chapters 3 and 5.

(ii) I wrote the entire article. The initial idea came from Thorsten Altenkirch and 
Peter Morris, and was then developed by me. Parts of Chapter 4 is based on this 
article.

(iii) I wrote the entire article. This is a refinement of Article (i), taking ideas from 
Article (ii) into account. Chapter 3 is based on this article.

(iv) The article is jointly written by Lorenzo Malatesta and me (except for Section 4, 
which is written by Neil Ghani), and is truly joint work, after an initial idea from 
Lorenzo Malatesta and Neil Ghani. The material developed in the article makes 
up the first half of Chapter 7.
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C h a p t e r 2
Martin-Lof Type Theory

Contents________________________________________________________
2.1 An intuitionistic theory of t y p e s ................................................................... 13
2.2 The dependently typed programming language and proof assistant

A g d a .................................................................................................................... 28
2.3 Category theory in Type T h e o r y ................................................................... 30

This chapter contains the necessary background material for the rest of the thesis. We 
introduce Martin-Lof Type Theory, the system we will be working in and extending. 
As a large part of the thesis applies categorical methods, we also discuss the status of 
category theory in and for Type Theory.

2.1 An intuitionistic theory of types
We present the monomorphic version of Martin-Lof's Type Theory, presented using the 
Logical Framework. This corresponds to the presentation in Nordstrom et al. [1990, Part 
III]. As is usually done, we formulate the rules in the style of natural deduction [Prawitz, 
1965]. To make the presentation easier to digest, we split it up into several definitions. 
The rules of Type Theory are all the rules presented in Axioms 2.1 to 2.5 and 2.7 in this 
section.

Martin-Lof Type Theory is a theory about types and their elements. We can think of 
types and terms in many ways: as sets and elements, spaces and points, propositions 
and proofs, or specifications and programs, for instance. As a formal theory, Type 
Theory contains rules for making judgements of the following forms:

• A is a type, written A  type .

• A and B  are equal types, written A = B

a is a term of the type A, written a : A \.
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2. Martin-Lof Type Theory

a and b are equal terms of the type A, written a = b: A .

We will later introduce a type Set which we think of as containing small sets, which 
will lead to further (derived) judgements such as A : Set and a: A for A : Set.

In general, a judgement is made under assumptions, which are collected in a context 
T. Hence we will also need a fifth judgement, namely that a given context T is well-
formed, i.e. consists of distinct variables of well-formed types, written T context [. We 
w rite the context in front of the other judgements, and separate the context and the 
judgement with a turnstile, like so:

T \ - A  type r  i— A — B T \- a, '■ A T a, — b • A

Following Troelstra [1987], w hen the context T is unchanged from the hypothesis 
to the conclusion in a rule, we will omit both T and the turnstile h. We will take 
similar notational shortcuts in the running text, so that for instance a sentence "let 
x : A . .."  should be understood in an arbitrary context T. A  context consists of a 
telescope [de Bruijn, 1991] of typing judgements

X \  : A i , X 2  : A 2 ( x i ) , . .  ■ ,Z n  : A n ( X i , X 2 , . .  . , X n - i )

i.e. we require that each Aj is a type in the smaller context x\ : A \ , . . . ,  X{-\ : A - i ‘

1-  A 1 type 
X \  : A\ 1— A 2 ( x i )  type

X\ • A 1 ,  x 2  ■ A 2 , . . . ,  x n —\  . An~\ A n ( x j ,  X2 j ■ 5 ^n—i ) type .

As a notational aid, we have indicated the free variables of the types in the context in 
brackets. Formally, we can inductively define context validity by the following two 
rules, where we write o for the empty context (we will omit o in judgements 01- J  and 
simply write 1-  J )\

Axiom 2.1 (Valid contexts) Valid contexts are inductively generated by the following 
two rules:

T context I V A ty p e  ( x ^ y ( r ) )
o context (r, x : A) context

Here, the side condition x $. FV(T)  means that x is not among the free variables 
declared in T. In a fully formalised account, one could use for instance de Bruijn 
indices [de Bruijn, 1972] to get rid of this side condition. ■

Note how this definition refers to the definition of A  type, which in turn refers to the 
definition of contexts. As we will see in Section 3.1, this means that the very definition 
of Type Theory has a flavour of the kind of definitions that this thesis is studying.

Given a type B  depending on x : A  (i.e. x : A \- B(x)  type) and a term a : A, we write 
B[x  ^  a] for B  where we have substituted every free occurrence of x by a, and similarly
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2.1. An intuitionistic theory of types

for a term x : A b{x) : B{x).  We can extend this to the simultaneous substitution of n 
terms

into a type x\ : A 1}x2 : A 2(x i), . . . , x n : An(x i , . . . , x n-\)  i- B ( x i , . . . ,  x n) type. After we 
have introduced function types in Section 2.1.2, we can relax the notation a bit and 
simply write T h B ( a i , . . . , an) type for T h 5 [x i a i , . . . , x n »-*• an] type. We identify 
types and terms up to a-conversion, i.e. up to renaming of variables. In general, we 
employ the Barendregt convention [Barendregt, 1984] and make sure that we always 
choose free variable names distinct from bound ones.

We now present the rest of the rules. The rules can be divided into four m ain 
groups: general rules for equality and substitution, rules for the function type, rules 
for set formation and rules for some basic set formers. The other set formers will be 
introduced via the principle of inductive-inductive definitions in Chapter 3. The rules 
for the different type and set formers follow a common pattern. They can be further 
categorised to be of one of the following forms:

• The formation rule for A describes when we may infer that A is a type or a set.

• The introduction rules for A  describe how to introduce canonical elements of type 
A. This corresponds to listing the constructors for A.

• The elimination rules for A  describe how to prove a proposition about an arbitrary 
element of type A. This corresponds to primitive recursion or proof by induction. 
The "target type" P  : A -»• Set of the elimination rule is called the motive of the 
rule.

• The computation rules describe the computational behaviour of the eliminators.

2.1.1 General equality and substitution rules

The following rules form the equality, substitution and variable assumption rules of 
Type Theory. They are entirely standard.

Axioms 2 .2  Equality of types is an equivalence relation:

T i— cl\ . A\
T  i -  a 2 ■ A 2 [ x i  i-)- a i ]

T i— o,n . An[x\ cl\ , . . . ,  x n-\ a,n~i ]

A type
a T a

A = B  
B  = A

A = B  B = C  
A = C

Equality of elements is an equivalence relation:

a = a: A
a : A a = b: A 

b = a: A
a = 6 : A b = c: A 

a = c : A
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Typing and equality is well-behaved:

a: A A - B  a -  b: A A = B
a :B  a = b :B

Substitution interacts well with equality:

F , x : A\ -  B(x)  type T h a : A F,x : Ah- B(x)  -  D(x)  F a = c : A 
T i- B[x a] type T h- B[x a] = D[x  c]

F,x : A\ -  b(x) : B(x)  T I- a : .A T,x : A I- b(x) = d(x)  : 5 (x )  T h- a = c : A 
T  i- 6[a: a ] : 5 (a )  F  h  6[a: a] = d[x c] : 5 (a )

Assumption:
r ,x  : A, A context
r ,x  : A, A h x : A  ■

Notice in the assumption rule that for T, x : A, A context to be valid, we need T t - i  type.

2.1.2 Set and function types

We now introduce a type (universe) Set of small types. Most of the time, we will 
work w ith small types only, and only use the large types of the logical framework to 
simplify the description of e.g. the elimination rules for sets. Notable exceptions are 
the universes SPa and SPb of codes for inductive-inductive definitions that we will 
introduce in Chapter 3. Since certain codes quantify over arbitrary small sets, and we 
want a predicative theory, we cannot make the universe of codes itself a small type.

Axioms 2.3 (The type of sets) Formation rule for Set:

T context 
T i- Set type

The elements of a set form a type:

A : Set 
EI(A) type

Congruence for El:
A - B :  Set

EI(A) = El(5) ■

Since no confusion is possible, we will allow ourselves to write a : A  as a shorthand 
for a : El (A) if A : Set. In a way, we are treating the large universe k la Tarski (Set, El) 
as a universe k la Russel [Martin-Lof, 1984]. Morally, we are employing a particularly 
simple form of coercive subtyping [Luo et al., 2012] Set < e i  type, were it not for the fact 
that type is not an object in our theory (see also Luo [2012]).

16



2.1. An intuitionistic theory of types

Next we introduce the rules for function types and function sets, also called II-types. 
We deliberately use the same notation for both, so that we can get away w ith stating 
most rules only once. Of course, officially there are two sets of rules, one for function 
types and one for function sets. Function types are essential for describing families of 
sets in the theory.

Axioms 2.4 (Function types and dependent functions) Function type formation:

T i- A  type T, x : A h B ( x ) type T h A  : Set T, x : A B {x ) : Set
T h ((x  : A) -* B(x) )  type F ((x  ; A)  -> B ( x ) ) : Set

Function type introduction:

r ,x  : A  i- b (x ) : B(x)
T I- X(x : A).b(x)  : (x : A)  -*• B(x)

Function application:

/  : (x : A) -*■ B(x)  a : A 
f ( a ) : B[x a]

Computation (/3 equality):

T,x : A b(x) : B(x)  Ti- a - A
r  t- (A(x:A).  b(x))(a) = b[x >-*■ a] : B[x *-*■ a]

Equalities with and under binders (rj and £ equality):

_/  : (x : A) -» B (x )____________________   r ,x  : A \- f ( x )  = g(x) : B(x)_______
A(ar: A). f ( x )  = f  : (x : A)  -»• B(x)  T I- A(a:: A). f { x )  -  A(a:: A).g(x)  : (x : A)  -»■ -B(a:)

Function type congruences:

r  h A = C r,a ::A h- B(x) = D(x)  f  = g : (x : A) -+ B(x)  a = b: A  
r  I- ((a:: A)  -> B(x) )  = ((x : C ) -> D(x))  f ( a ) = ^(6) : ^  a] B

We write A -> B  for (x : A) -> B  if a: does not occur in B.  Furthermore, we will 
sometimes write Xx. e for X(x : A), e if the type A of x can be inferred from context, 
and we write repeated application as f ( x i , ... ,Xk). Now that we have introduced 
function types and the type Set, we can introduce sets by defining different constants, 
and asserting equalities between elements in the sets. Note first that with the rules for 
function introduction and application, there is no essential difference between a family 
of sets Y  : (x : X ) -> Set and a set Y(x)  w ith a free variable x : X  anymore: Given 
Y  : (x : X )  Set, we can derive

r, X : X  I- Y  : {x : X )  -  Set T , x : X \ - x : X  
r , x : X \ - Y ( x ) : S e t
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using application, and given T,x X  \ - Y { x ) : Set, we derive

r ,  a;: X  \ -Y(x)  : Set 
r i- A( x : X ) . Y ( x )  = Y : { x : X ) ^  Set 

r  i- y  : (x : X )  -»• Set

using introduction and the 77-rule.
Thus, instead of introducing the function sets as we just did, we could have intro

duced constants

n ( X Set) - (y X -> Set) -> Set
A (X Set) ->(y X -> Set) -+y(z))^n(x,y)

apply ( X Set) -+(Y X -»• Set) -n(x,y) -> (x : X )  Y(x)

and asserted the equality

apply(X, y, A(X, Y,b),a) = b(a) : B(a)

The formation, introduction, application, computation and congruence rules above 
would then be derivable. We would still have to assert the 77 and £ rules. Even if we 
continue to present the rest of the rules in natural deduction style, we officially consider 
this to be a shorthand for the constant approach above. This way, there is no further 
need to state any more congruence rules, as they are included in the congruence rules 
for function types.

2.1.3 Sets as type constants

We now introduce some further sets by postulating the existence of certain constants. 
We can get away w ith quite a small collection of sets: the empty set, the unit set, the 
Booleans and E-types. In particular, at this stage we do not need to introduce any 
infinite or "properly inductive sets", since we will get them via inductive-inductive 
definitions in Chapter 3.

Axioms 2.5 (The sets 0 ,1  and 2 ) Formation rules:

T context T context T context
T 1-  0  : Set T 1-  1 : Set T h 2  : Set

Introduction rules:
^TT ttT2 ¥ 7 2

The elimination rule for 0  and the 77 rule for 1 :

P  : 0 -> Set X  : 0 X  : 1
!p(x) : P{x) x = * : 1

Elimination rule for 2:
r ,  x : 2  1-  P(x)  type T 1-  a : P (tt)  T b : P{ ff) y : 2

T \-\fp y then a else b : P(y)
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Computation rules for 2 :

ifp tt then a else b = a : P (tt)
ifp ff then a else b = b- -P(ff) ■

We will write ! and if • then • else •for !p and ifp • then • else • respectively if P  can
be inferred from the context.

Proposition 2 .6  We can define a constant elimi such that the elimination rule

P : 1 -> Set 771 :P (* )  x : 1 

elim i(P,77i ,x) : P{x)

with computation rule
elim i(P,77i, *) = m  : P (*)

is derivable.

Proof. Since x = * by the 77 rule, the computation rule determines elimi uniquely and 
can be taken as a definition. □

We would now like to draw attention to the only perhaps unusual feature of the 
type theory presented here: we have large elimination for Booleans. This will make it 
possible to simplify the axiomatisation in Chapter 3 slightly (see Section 3.2.3.5). For 
the same reason, we added the 77 rule for the unit type. We stress that these features are 
not required for the development to come; we could work in a type theory w ithout 77 
equality and large elimination for Booleans, if we pay the higher price of adding the 
rules we now can derive to our axiomatisation.

We now introduce the last set former we need, the set of dependent pairs, also called 
E-types:

Axioms 2.7 (Dependent pairs) Formation rule:

T 1-  A : Set T, x  : A  1-  B ( x ) : Set 
T 1-  (Ex : A ) B ( x ) : Set

Introduction rule:
a : A b: B{a)

(a, b) : (Ex : A)B(x)  

Elimination rules (projections):

p : (Ex : A)B(x )  p : (Ex : A)B(x)
fst(p) : A snd(p): B(fct(p))

Surjective pairing (77 equality):

p : (Ex : A)B(x )  
p = (fst(p),snd(p)); (Ex : A)B(x )
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Computation rules:

fst((a, 6 )) = a : A
snd((a, b)) = b: B(a)  ■

If B ( x ) does not depend on x, we write A x B  for (Ex : A)B(x) .  We have presented 
both II-types and E-types in a negative way (see e.g. Zeilberger [2009]), i.e. characterised 
by their observations -  applications and projections. However, since we also included r] 
rules, we can actually recover the positive point of view as well:

Proposition 2.8 We can define a constant split such that the elimination rule

P  : (Ex : A)B(x )  ^  Set m : ( a : A ) - * ( b :  B(a )) -» P((a,b)) y : (Ex : A)B(x)
split(P,m,y)  : P(y)

with computation rule

split(P, m, (a , b)) = m(a, 6) : P ((a, 6))

is derivable.

Proof. We define split(P,m,y)  := m(fst(y),snd(?/)) : P((fst(?/),snd(7/))). This is type- 
correct since (fst(y), snd(j/)) = y by surjective pairing, and the computation rule holds 
by the computation rules for fst and snd. □

We can of course also define fst and snd in terms of split, had we chosen to introduce 
split as the basic notion. We can also prove the 77 rule up to propositional equality 
(see Section 2.1.6). In fact, such a propositional 77 rule and projections are equivalent 
to the general elimination rule. Garner [2009] shows the same result for II-types, i.e. 
propositional 77 and application is equivalent to elimination. Garner also shows that 
application without 77 does not entail the general elimination rule.

2.1.4 Derived rules and meta-theoretical properties

One set former that seems to be missing from the previous section is the sum, or disjoint 
union, of two sets A  + B.  This is not a problem, since large elimination for Booleans, 
which we need for other reasons, allows us to also construct sums in the following way:

Proposition 2.9 We can define the disjoint union of two sets A  and B  satisfying the 
following rules.

Formation rule:
A : Set B  : Set 

A + B  : Set

Introduction rules:

a : A b : B
in l(a):A  + P  in r(b):A + B
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Elimination rule:

f  : (x :A)^> P(inl(x))
P  : (x : A  + B)  -> Set g : (y : B)  -* P(\nr(y)) c : A  + B

[ f , 9]p(c) :P(c)

Computation rules:

[f ,9]p( inl(a)) = / ( a )  : P(inl(a))
[ f 1 9 ]pOnr(b)) = g(b) : P(inr(6)) .

Proof. We can define A + B  := (Ex : 2 ) (if x then A  else B ) and then

inl(a)
inr(6)

U , 9 ] p ( c )

= (tt,a)

=  < M >

= split(.P, Ax. if\ z (y. (jf z  th e n  A  else B ) ) - * P ( { z , y )) % then f  else g , c)

We easily check that e.g.

[/, 5f]p(inl(a)) = sp!it(P, Ax. if x then /  else g, (tt, a))
= (if tt then /  else g)(a)

= / ( a)

and similarly for [ / , 5f]p(inr(6 )) = g{b). □

In the presence of extensional identity types (see Section 2.1.6), large elimination 
is not needed. In this setting, Troelstra [1983] encodes sums using E-types, function 
types, identity types and Booleans (without large elimination). Note also that Booleans 
can be encoded using sums: 2  = 1 + 1 , but w ithout large elimination.

We now give the main meta-theoretical results about the Type Theory presented. 
The proofs are standard, and can be found in e.g. Goguen [1994]; Luo [1994]; Werner 
[1994]. Some of them serve as sanity checks for the Type Theory, others will be implicitly 
used in the rest of this thesis. It is not such a bold conjecture that these properties will 
continue to hold when we extend the theory in the coming chapters.

We write T J  for an arbitrary judgement of the form F context, F h A  type or
r I- t :  A.

Proposition 2.10 (Weakening) Let T, A be a valid context such that T i- A  type, and 
assume x i F V (r). If F, A i- J  is derivable then so is F, x : A, A h J .  □

Proposition 2.11 (Substitution) Let T, x : A, A be a valid context and F h t : A. If the 
judgement T, x : A,  A i- J  is derivable, then so is T, A[x ■-»> t] J [ x  ■-> t]. □

Proposition 2 .1 2  (Sanity checks)

(i) If T i- J , then F context.
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(ii) If T i- a : A or T i- A = B,  then T A type.

(iii) If T i- a = b : A,  then T a . A. □

Proposition 2.13 (Unicity of typing) If T h a : A and T i- a : B  then T v- A = B.  □

Theorem 2.14 (Strong normalisation) By directing the computation rules from left to 
right, one obtains a strongly normalising rewrite system. □

Theorem 2.15 (Decidable type checking) Given a judgement T J , it is decidable if 
there is a derivation of T h J  or not. □

2.1.5 The Curry-Howard isomorphism: propositions-as-types

Martin-Lof Type Theory is "intended to be a full scale system for formalising intuition
istic mathematics" [Martin-Lof, 1972], but so far, we have introduced something more 
along the lines of a programming language. Logic and reasoning is reintroduced via 
the Curry-Howard isomorphism [Curry, 1934; Curry and Feys, 1958; Howard, 1969] 
(see also Scott [1970]). Propositions are identified with types consisting of their proofs, 
as can be seen in Table 2.1.

Table 2.1: Propositions as types.

Proposition Type

1 0
T e.g. 1

A a B A x  B
A y  B A + B
A=> B A -*■ B

(3a;: A)B(x ) (E x : A ) B { x )
(Vx : A)B(x ) (x : A) -> B(x)

This is in accordance w ith the Brouwer-Heyting-Kolmogorov interpretation (see e.g. 
Troelstra and van Dalen [1988]) of intuitionistic logic:

• There is no proof of l ,  since there is no element of type 0 .

• A proof p = (q,r) of A  a  B  consists of a proof q of A and a proof r  of B.

• A proof p of A v B  is either of the form ini(q) where q is a proof of A, or of the 
form inr(r) where r  is a proof of B.  Hence a proof of A v B  is either a proof of A 
or a proof of B , and we can tell which one it is.

• A proof of A  => B  is a function that transforms proofs of A  into proofs of B.

• A  proof p = (a, q) of (3x : A)B(x )  is a witness a : A, together with a proof q of 
B(a).
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2.1. An intuitionistic theory of types

• A  proof p of (Vx : A)B(x )  is a function which given a : A produces a proof of 
B(a).

The only thing lacking are atomic propositions, except for T and i. We will intro
duce equality in the next section, and a lot more data types corresponding to atomic 
propositions in Chapter 3.

Remark 2.16 The correspondence between propositions and types, and proofs and 
programs is called an isomorphism, and not just a bijection, since it also preserves 
reductions: the computation rules we have specified correspond exactly to proof nor
malisation from proof theory [Girard et al., 1989].

Example 2.17 For types A  : Set and B  : Set, and a predicate P : A  -> B  -+ Set, let us 
prove the proposition

(3x : A)(Vy  : B)P(x , y )  => (Vy : P )(3x  : A)P(x ,y)

in Type Theory. By the propositions-as-types principle, this corresponds to constructing 
a term of type

(Ex : A)((y  : B ) -> P ( x , y )) -*• (y : B)  -» (Ex : A)P(x ,y)

Here is the typing derivation for such a term:

_________ V_________
______________V ________________ T i-p : (E x: A ) ( ( y : B )  -> P (x ,y )) %)
T\ - p :  (Ex : A)((y  : B ) -» P (x ,y )) snd(p) : (y : B)  -» P(fet(p),y) T h b : B

T i- fst(p) : A  T h  snd(p)(b) : P (fst(p ),6)
T i- (fst(p),snd(p)(6) ) : (Ex : A)P(x,b)  

p : (Ex : A)((y : B ) -» P{x,y))  h- Ab. (fst(p),snd(p)(b)) : (y : B)  -» (Ex : i4)P(x,y) 
i- Ap. Ab. (fst(p),snd(p)(6) ) : (Ex : A)((y  : B)  P ( x , y )) -+(y : B)  ^  (Ex : i4)P(x,j/)

where we have written T := [p : (Ex : A)( (y  : B)  P(x,  y)),b: B] and V  is the following 
derivation of T context:

x ■ A B ■ Set x ■ A, y  : B  h- P ( x , y ) : Set 
i- A : Set x : A  i- (y : B)  -> P (x , y ) : Set

o context i- (Ex : A)((y  : P ) -► P ( x , y )) : Set
p : (Ex : A)((y : B)  P (x, y))  context . . .  i-  B  : Set

T context

By Theorem 2.15, the whole derivation can be reconstructed from the proof term 

A p. \b.  (fst(p),snd(p)(6) ) : (Ex : A)((y : B)  P (x ,p )) -»• (y : B ) -* (Ex : A)P(x , y )  , 

and so, we will not display the derivation trees in the rest of this thesis. ■
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2.1.6 Equality and identity types

We now introduce another type former, namely the identity type x =a y whose in
habitants are proofs that x and y are equal elements of type A. Actually, this is not 
necessary: the identity type is an indexed inductive definition, and can hence be defined 
using the principle of inductive-inductive definitions in Chapter 3. When giving the 
axiomatisation of inductive-inductive definitions, we will be careful not to make use of 
the identity type, so that we do not need to add it to our theory Nevertheless, we still 
need to develop some standard infrastructure for making use of identity types, and will 
in certain parts go beyond the inductively defined identity type and use extensional 
equality, and so, we introduce the type former now.

2.1.6.1 Intensional and extensional Type Theory

We introduce the (intensional) identity type with the following rules:

Axiom 2.18 Formation rule:
A type x ,y -  A  

x =a V

Introduction rule:
refl: x =a x

Elimination rule:

x,y : A
P  : (x,y ■ A) -*■ x =a y ^  Set stepref| : (x : A)  -»• P(x,  x , refl) p: x =a V

T h- elim=(P,steprefl,a:, j/,p) : P{x,y,p)

Computation rule:

elim=(P,steprefl,a:,a:, refl) = stepref|(a;) : P(x,x,refl) ■

We see that by applying structural rules, we can make the rule

x  = y : A 
refl : x= A y

admissible. The converse of this rule

refl : x=A y . .
  -------- -r—  ( e q u a l i t y  r e f l e c t i o n )x = y : A

is called equality reflection and is not derivable in general [Hofmann and Streicher, 1998]. 
If equality reflection is added to the theory, then whenever p: x=Ay  also refl: x =a y- 
Hence we might as well add a coherence rule

 J7— —  ( e q u a l i t y  c o h e r e n c e )
p = refl: x =a y
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2.1. An intuitionistic theory of types

The theory we get if we add these two rules is called extensional Type Theory. It is 
consistent (in fact, most known models for Type Theory validates equality reflection), 
bu t has some less than ideal properties: type checking is undecidable (intuitively 
because the the type checker might need to make up arbitrarily complex equality proofs 
to see that a term is well-typed) and the theory is not strongly normalising (intuitively 
because in an inconsistent context, we can e.g. fool the system to believe that A = A A  
for some non-trivial set A, and then embed the untyped lambda calculus). We will use 
extensional Type Theory in some parts of this thesis, but will always point out when 
we do so.

There is a related concept of function extensionality, which says that extensionally 
equal functions are equal. In other words, function extensionality is the statement that 
there is a term ext/ 5 for f , g : ( x : A ) - +  B ( x ) of type

extft9 : ((x : A) f {x )  = B ( x )  g(x))  - *  f  = ( x : A ) - > B ( x )  9

Function extensionality follows from extensional Type Theory (hence the name!), but 
is also available in more well-behaved type theories such as Observational Type The
ory [Altenkirch et al., 2007] and Homotopy Type Theory1 [The Univalent Foundations 
Program, 2013]. For this reason, we consider function extensionality acceptable, but 
will (not always successfully) try to avoid using it.

2.1.6.2 Properties of the intensional identity type

The identity type has all the structure one might expect:

Lemma 2.19 Propositional equality is symmetric, transitive and substitutive, i.e. there 
are terms

(i) sym : x =A y -* y =a x  with sym(refl) = refl,

(ii) trans : x =A y -> y =A z  -> x =A z w ith trans(refl,p) = p, and

(iii) subst: (P  : A -*■ Set) -> x =A y -> P(x)  -»> P(y)  w ith subst(P, refl, x) = x.

Proof. See e.g. Nordstrom et al. [1990, Chapter 8 ]. □

The next property of propositional equality is also standard, but we include its proof 
since it is similar to the proof of the next lemma, which is more technical.

Lemma 2.20 Propositional equality is a congruence with respect to every function, i.e. 
there is a term

con6 A£ : ( /  : A -► B)  (x : A) -> (y : A)  -  x =A y -»• f ( x )  =B f {y)

which further satisfies cong(/, x, x, refl) = refl: / (x )  =b f (x) .

1 At the time of writing, it is an open question if Homotopy Type Theory is a well-behaved theory or
not.
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2. Martin-Lof Type Theory

Proof. Given / ,  x, y and p: x =A y, apply the substitution principle for the identity type 
with motive P(x' )  := f ( x )  =B f ( x ') to p. We need a term of type P(x)  = f ( x )  =B f (x) ,  
for which clearly refl suffices. Hence we can define

cong A,B( f , x , y ,p)  ■= subst ( \ (x ' :A) . f (x)  =B f(x' ) ,P,  refl)

and we have

congA B (f,x,y,rei\)  = subst(X(xf : A ) . f ( x ) =B f (x ' ) ,  refl, refl) = refl . □

We will usually suppress the types A and B  and the arguments x and y to cong^ B, 
as they can be inferred from the type of /  and p: x=A y respectively.

Lemma 2.21 For all A  : Set, B  : A  -» Set and C  : Set, there is a term

cong2 : ( /  : {x : A)  -» Bx  -► C) -*■ (x : 4̂) -> (y : 4̂) -> (u : 5 (x ))  ->• (v : B(y))  ->
(p : x y) -»> (g : subst(5 ,p ,u )  =B(y) v) -* f {x , u )  =c  f ( y , v )

such that cong2(/, x,x,  u,u, refl, refl) = refl: f ( x , u ) =c f (x ,u) .

Proof Given / ,  x, y, u, v, p and q, apply the elimination principle for the identity type 
with motive

P( x ' , y ' , p )  :=
(u' : B(x' ) )  -> (v ' : B(y' ) )  -+ subst ( B , p \ u )  = B ( y ' )  v' f ( x \ u') =C f ( y \ v ' )  •

We need to give a term of type P(x, x, refl), i.e. of type

(u : B{x))  -► {v' : P (x )) u = B { x )  v '  -»> f ( x , u ' )  =c f { x , v )  .

But that is exactly the type of congB(x)tc ( f ( x )) from Lemma 2.20. Furthermore,

cong2( / , r e f l ,  refl) = cong B(x ) c ( / ( a : ) , ,u,'U, refl) = refl . □

In particular, if we choose /  = (-, - ) :  (x : A) -*■ B(x)  -*■ (Sx : A)B(x) ,  Lemma 2.21 
gives us a way to deconstruct a goal of equality at a E type; there is a term

=—pair: (p : x =A y) ^  subst(P ,p , it) =B(y) v -* {x,u) =(Xx:A)B(x) (y,v )

such that =-p3u(x,x,u,u,  refl, refl) = refl. On the other hand, if we have such a term, 
we can also define cong2:

Proposition 2.22 The terms cong2 and =—pair are interderivable.

Proof We have already seen how =—pair can be defined as =—pair := cong2((-, -)). If 
we have =—pair, we can construct cong2( / )  by packing up the arguments to /  in a E 
type and applying the non-dependent cong from Lemma 2.20: we define

cong2( / ,x ,2 / ,w ,u ,p ,g )  :=cong(A iy ./( fs t( iu ) ,snd (u;)),(a ; , it ) ,(p ,v ) ,  E - p a i r (p,q)) . □
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Since cong is defined in terms of subst, not the general elimination rule elim=, also 
cong2 can be defined using subst and =-pair only. This is important in case we want to 
use cong2 in the framework of Observational Type Theory, where the general elim= is 
not available ( =—pair, on the other hand, is more or less the definition of equality of 
dependent pairs in Observational Type Theory).

2.1.7 Propositional types

We call a type propositional if it has at most one inhabitant, up to definitional equality. 
Formally, the type A  is propositional if the following rule is admissible:

x , V ' A  
x = y : A

This can be compared to the concept of a mere proposition or h-proposition in Homo
topy Type Theory [The Univalent Foundations Program, 2013]. The type A  is a mere 
proposition if

(x : A)  -> (y : A)  -> x =A y

is inhabited. In other words, a mere proposition is a type with at most one inhabitant 
up to propositional equality. Thus, this property can be internalised in Type Theory, in 
contrast to the property of being propositional, which lives one level higher. Note that 
in extensional type theory, a type is propositional if and only if it is an mere proposition 
by the equality reflection rule. We will not pursue this connection further.

Proposition 2.23

(i) The unit type 1 is propositional.

(ii) In extensional Type Theory, the identity type x =a y is propositional.

(iii) Let A, B  : Set. If B  is propositional, then so is A -> B.

(iv) Let A : Set and B  : A  -> Set. If A  is propositional, and B(x)  is propositional for 
each x : A,  then both (T,x : A)B(x )  and (x : A)  -»■ B(x)  are propositional.

Proof. This all follows from rj-rules for the corresponding types, and is straightforward, 
except possibly the function types in items (iii) and (iv). Let / ,  g : A -* B. By the 77-rules 
for functions, /  = A (z : A). f ( x )  and g = X(y: A) . g(y ) for fresh variables x and y. But B  
is propositional, and f { x ) , g { y ) : B,  so f ( x )  = g(y).  Hence by the £-rule,

/  = X(x : A) . f ( x )  = \ ( y :A) .g (y )  = g .

In item (iv), we m ust also ask that A  is propositional, so that x -  y and thus B(x)  = 
B(y).  □
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Note that the empty type 0 is not propositional, since we have no rule that says 
that two variables x, y :  0 are definitionally equal. In the same way, we cannot expect 
(x : A) -+ B{x)  to be propositional for all propositional B(x)  if A  is non-propositional, 
even if this seems semantically justified. An alternative, used by Altenkirch [1999] to 
build a model of extensional Type Theory in an intensional setting, is to introduce a 
subuniverse Prop of propositional types, together with a "proof-irrelevance" rule

A  : Prop x,y  A  
--------------------------  ( p r o o f - i r r )x = y: A

We can safely add 0 : Prop and (ILr : A ) B ( x ) : Prop for A : Set and B  : A -*■ Prop, since 
these types will be propositional for instance in the standard set-theoretical model (see 
Section 5.1). In general, we could consider to at least add the class of Harrop formulas 
from first-order predicate logic [Harrop, 1960; Troelstra, 1973] to Prop. In particular, 
this includes the propositional types from Proposition 2.23, which will be propositional 
in all models. Altenkirch proves that the addition of a universe of propositional types 
does not destroy any nice properties of the theory; it is still decidable, consistent and 
adequate.

We will find no need to introduce such a universe Prop. Instead, we will mostly 
be interested in propositional types as a means to improve notation and readability, 
by introducing "a poor man's subset types": if P(x)  is propositional, we will write 
{x : A | P(x)} for the dependent sum Ex : A.P(x),  and treat y : {x : A \ P(x)} as 
fst y. If we need to give a term of type {x : A \ P(x)},  we will simply give a term 
y : A  and then separately check that there is a term q : P(y)  instead of giving the pair 
(y,q) ■. {x : A \ P(x)}.  Since P{y)  is propositional, any q is as good as any other (they 
are all the same!), and there is no danger of confusion.

Salvesen and Smith [1988] studied the notion of proper subset types (x : A \ P(x)}  
in both intensional and extensional type theory. They find that the notion is hard to 
use in intensional type theory, but usable for -.-.-stable types P 2 in extensional type 
theory. In particular, all Harrop formulas are -.-.-stable, which supports our modest 
use of subset types in this thesis.

2.2 The dependently typed programming language and proof 
assistant Agda

Agda [Norell, 2007] is a dependently typed programming language, and, through the 
Curry-Howard isomorphism, also a proof assistant. The meta-theory of Agda is not 
very well understood -  indeed, one goal of this thesis is to justify the data types that 
Agda permits -  but Agda implements at least Martin-Lof Type Theory (in a Logical 
Framework formulation) w ith a tower of universes k la Russel Seto = Seti : Set2 ... 
and inductive-recursive and inductive-inductive definitions. Section 7.1 is written 
completely in Agda, and Appendix A contains Agda formalisations of other parts of

That is, types P  : A Set for which (Vx : A)( ->^P(x)  -»■ P(x)) is derivable.
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the thesis, but knowledge of Agda is not a prerequisite for understanding this thesis. 
We quickly mention some features of Agda, and how we deal with similar problems in 
the text:

• Dependent function types are written (x : A) -> B x. Agda also supports implicit 
arguments, w ritten (x : A} -> B x, i.e. the argum ent x  : A does not need to be 
specified when the function is applied. This is a very useful feature, but sometimes 
already the types can be quite cluttered and hard to read, even if the arguments 
are implicit. In this thesis, we will trust that the reader is able to fill in implicit 
arguments herself w ithout declaring them as such first -  a luxury an actual 
computer implementation of course cannot afford.

• Data types are declared in Agda using the data keyword, for instance

data N : Set where 
zero : N 
sue : N -> N

In this thesis, we will not introduce many data types "by hand"; most data types 
will be represented by codes in some universe. In an actual implementation, 
the user could of course be allowed to w rite data declarations which are then 
desugared to the underlying codes [Dagand and McBride, 2013].

• M utual definitions can be introduced by first giving the type of all objects to be 
defined, then later their definitions, w ithout types:

data Even : N -> Set
data Odd : N -»• Set

data Even where 
ez : Even zero
o + l  : {n : N} -> Odd n -► Even (sue n)

data Odd where
e+1 : {n : N} -»• Even n -* Odd (sue n)

This way, both inductive-recursive and inductive-inductive definitions are sup
ported in Agda.

• Agda supports dependent pattern matching [Coquand, 1992], instead of using 
the elimination rules directly. A termination checker checks that all recursive 
calls are on structurally decreasing arguments. For instance, Agda accepts the 
following proof that every natural number is either even or odd:

evenOdd : (n : N) -»• Even n +  Odd n
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even Odd zero = ini ez
evenOdd (sue n) = [ inr o e+1 , ini o o + l  ] (evenOdd n)

We will often use pattern matching notation as an abbreviation for the correspond
ing eliminator. We emphasise that this is a harmless shorthand, and that we are 
not using the general reduction of pattern matching to eliminators plus Streicher's 
Axiom K [Goguen et al., 2006].

2.3 Category theory in Type Theory

We will use well-known concepts from category theory w ithout comment. A good 
introduction can be found in Mac Lane [1998]. However, a few words should perhaps 
be said about meta-theoretical issues. We are often working in category theory inside 
Type Theory. When doing so, we usually work in extensional Type Theory. With a little 
bit of more care, it should be possible to follow Huet and Saibi [1998] and work with 
setoids instead (see also Wilander [2012]).

We are also purposefully blurring the distinction between the category of sets and 
the category generated from the objects of type Set in the Type Theory described in this 
chapter -  who are we to say w hat the "real" category of sets look like? We only have 
to be careful that it still has the properties we expect, e.g. that it is complete, locally 
Cartesian closed, well-pointed,... (see also Palmgren [2012]).
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We start by giving some informal examples of inductive-inductive definitions that 
will also serve as running examples for the rest of the chapter. We then present a 
finite axiomatisation of a type theory with inductive-inductive definitions, including 
formation, introduction and elimination rules.

Parts of this chapter have previously been published in the proceedings of CSL 
2010 [Nordvall Forsberg and Setzer, 2010] and the Schwichtenberg Festschrift [Nord- 
vall Forsberg and Setzer, 2012].

3.1 Examples of inductive-inductive definitions

In this section, we give some examples of inductive-inductive definitions, starting with 
the perhaps most important one:

Example 3.1 (Contexts and types) Danielsson [2007] and Chapman [2009] model the 
syntax of dependent type theory in the theory itself by inductively defining contexts, 
types (in a given context) and terms (of a given type). To see the inductive-inductive 
nature of the construction, it is enough to concentrate on contexts and types.

Informally, we have an empty context e, and if we have any context F and a valid 
type a in that context, then we can extend the context with a fresh variable x  : a to get 
a new context F,x : a. This is the only way contexts are formed. We end up  with the 
following inductive definition of the set of contexts (with F > a meaning T, x  : a since
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3. A finite axiomatisation of inductive-inductive definitions

we are using de Bruijn indices):

  r :C tx t a:Ty(T)
£ : Ctxt r > a : Ctxt

Moving on to types, we have a base type t (valid in any context) and dependent 
function types: if a is a type in context T, and r  is a type in T, x : a {x is the variable 
from the domain), then II (cr, r )  is a type in the original context. This leads us to the 
following inductive definition of Ty : Ctxt -»■ Set:

T: Ctxt r :C tx t cr:Ty(r) r : Ty(r > g)
‘■r '■ Ty(r) n r(<7,r):Ty(r)

Note that the definition of Ctxt refers to Ty, so both sets have to be defined simul
taneously. Note also how the introduction rule for II explicitly focuses on a specific 
constructor in the index of the type of r. ■

Often, one wishes to define a set A  where all elements of A satisfy some property 
P  : A  -*■ Set. If P  is inductively defined, one can define A  and P  simultaneously and 
achieve that every element of A satisfies P  by construction. One example of such a data 
type is the type of sorted lists:

Example 3.2 (Sorted lists) Let us define a data type consisting of sorted lists (of nat
ural numbers, say). With induction-induction, we can simultaneously define the set 
Sorted List of sorted lists and the predicate <]_■■ (N x Sorted List) -* Set with n <l £ true if 
n is less than or equal to every element of £.

The empty list is certainly sorted, and if we have a proof p that n is less than or 
equal to every element of the list £, we can put n in front of £ to get a new sorted list 
cons(n,£,p). Translated into introduction rules, this becomes:

n : N £ : SortedList p: n< ^£  
nil: SortedList cons(n,£,p) : SortedList

For < l ,  we have that every m  : N is trivially smaller than every element of the empty 
list, and if m < n and inductively m  <l £, then m  <l cons(n, £,p):

q : m < n  pmj  :m<^£  
trivm : m  <l nil «  q,pm,£ »  - m<  l  cons (n, £,p)

This makes sense even if the order < is not transitive. If it is (as the standard order 
on the natural numbers is, for example), the argument pm ■ m  <l £ can be dropped 
from the constructor «  • » ,  since we already have q : m  <n  and p : n <l £, hence by 
transitivity we must have m  <l £.

Of course, there are also many alternative ways to define such a data type using ordi
nary induction (or using e.g. induction-recursion, similarly to C. Coquand's definition 
of fresh lists as reported by Dybjer [2000]). ■
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3.1. Examples of inductive-inductive definitions

Finally, let us consider an example of more mathematical flavour.

Example 3.3 Recall that an order < on a set A (i.e. a binary relation < : A  -> A  -»> Set) 
is called dense if there is a point between any two comparable points, i.e. if x < y then 
there exists a z in A  such that x < z <y. The standard order on the rationals is dense, 
but the standard order on the integers is not.

Given an ordered set (A ,<), the dense completion (A*, <*) of {A, <) is the "least" 
ordered set in which (A,  <) embeds: There is an order-preserving map rj : (A , <) ->• 
(A* , <*), and any order-preserving /  : (A,  <) -► (B,  <), where (B,<)  is a densely ordered 
set, factors through 77 in an order-preserving way:

The dense completion of (A, <) can be defined as an inductive-inductive definition. 
An ordinary inductive definition is not enough, since we need to define the set A* 
simultaneously with the order relation <*: A  -> A -*■ Set.

The first constructor of A* embeds A,  while the second adds midpoints:

a : A x , y : A*  p : x < * y
77(a): A* m\d(x , y ,p) : A*

The order relation <* is designed to make 77 order-preserving, and put mid(2:, 77, _) 
between x and y.

a,b: A q : a <b 
r)<{.a,b,q) : 77(a) <* 77(6)

x , y : A*  p : x < * y  x , y : A*  p : x < * y
midp(x,2/ ,p ) : x <* mid(x,j/,p) midt ( x , y , p ) : m\6(x,y,p) <* y

Notice that this would have been quite hard to express as a recursive definition, as we 
are not giving c(x) <* d(y) for all constructors c and d. This concludes the definition of 
(A*,<*). It is clear that <* is dense:

\ { x :A*) . \ {y - .A*) . \ (p:x  <* y). (mid(x,y,p),  (m id^x,p ,p), m id^x ,y,p)))

is a proof of
(x , y  : A*) -> x <* y -*■ (Y>z : A*){x < z x z <y) .

Furthermore, 77 is an order-preserving embedding of (A, <) into (A*, <*).
We can use the elimination rules for (A*, <*) to factor /  : (A, <) -> (B,  <) (with < 

dense, witnessed by dense<, say) through 77. Let us keep the notation informal, in a 
pattern-matching style, for now. We want to define /  : A* B,  and prove that it is
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3. A finite axiomatisation of inductive-inductive definitions

order-preserving. As is typical for inductive-inductive definitions, we need to do this 
at the same time. Thus, we simultaneously define

T  ■ ( x , y  : A*)  x <* y  -* J ( x )  < / (y)

For z  of the form 2 = 77(a), we do not have any choice in how to define / ;  if we want /  
to factor through it, we must have

7fa(a))  = /(<*)

For 2 of the form 2 = mid(x, y ,p ) ,  we know the value of / ( x)  and f ( y )  by the induction 
hypothesis, and we might hope to use the denseness of < to define / (m id (x ,  y,p)) ’, we 
have a proof dense< of

dense* : (x , y  :B)  -> x < y  -> (E 2 : B)(x  < z x z < y )

To use this, we need a proof that f ( x )  < f  (y) .  But we have a proof p  : x  <* y,  so since 
we are simultaneously proving that /  is order-preserving, we can define

7 (mid(x,T/,p)) = fst(der\se<( f ( x ) J ( y ) J <( x , y , p ) ) )  .

It remains to define / < : ( x , y  : A*)  -> x <* y  -> / (x )  < /(p ) ,  which we are also 
allowed to do by structural recursion, this time over x <* y. We have a case for each 
constructor, and they can be taken care of in the following way, where / < : ( x , y  : A)  -»• 
x < y -* f ( x )  < f ( y )  is the proof that /  is order-preserving:

7 <(-, - , ^ ( 0 , 6 , 9 )) = / <(a, b, q)

7 <(-, _,midR(x,y,p)) = fst(snd(dense<(7(a:),7(2/),7<(a:,2/,p))))

7 <(-,- ,m idL (p ,2/ ,p ) )  = snd(snd(dense<(7 ( x ) , 7 (?/),7 <(x ,? / ,p )) ) )

We are using a variant of the (in Type Theory provable) Axiom of Choice when we 
extract a witness from dense*. It should also be remarked that /  is not unique, as one 
might perhaps expect. A counterexample is given by A = {a < 6} and B  consisting 
of a < b, together w ith two incomparable chains a < . . . < c _ i < c o < c i < . . . < 6  and 
a < ...  < d-i < do < d\ < ...  < b between them. The dense completion A* will consist 
of one dense chain 77(a) < ...  < e_i < eo < e\ < ... < 77(b), but now there are two order- 
preserving choices for the extension id : A* -* B  of the function id : A ^  B: we can 
either map e* to c* or to d{. ■

Note that these examples strictly speaking refer to extensions of inductive-inductive 
definitions as presented in this chapter. Example 3.1 in full would be an example of 
defining a telescope A : Set, B  : A  -»• Set, C : (x ■ A)  -»■ B(x)  -*■ Set, ... inductive- 
inductively. In Example 3.2, A  : Set and B  : (A  x  I)  -> Set for some previously defined 
set /  is defined, and Example 3.3 gives an inductive-inductive definition of A : Set, 
B  : (Ax A) -»■ Set. In Section 6.2, we explore extensions which capture all these examples 
in full. For pedagogical reasons, we first treat the simpler case A : Set, B  : A -»• Set.
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3.2. A finite axiomatisation

3.2 A finite axiomatisation

We now give a finite axiomatisation of a type theory with inductive-inductive definitions. 
This axiomatisation has been published in Nordvall Forsberg and Setzer [2012]. It differs 
slightly from the axiomatisation given in Nordvall Forsberg and Setzer [2010], which 
was not finite. However, the definable sets should be the same for both axiomatisations.

The main idea, following Dybjer and Setzer's axiomatisation of inductive-recursive 
definitions [Dybjer and Setzer, 1999], is to construct a universe consisting of codes for 
inductive-inductive definitions, together with a decoding function, which maps a code 
(f to the domain of the constructor for the inductively defined set represented by <p. 
We will actually use two universes: one to describe the constructors for the index set 
A,  and one to describe the constructors of the second component B  : A-+ Set. Just as 
the constructors for B  : A -+ Set can depend on the constructors for the first set A,  the 
codes in the universe SPg(7 )o f  codes for the second component will depend on codes 
7  : SP^ for the first component.

3.2.1 Dissecting an inductive-inductive definition

We w ant to formalise and internalise an inductive-inductive definition given by con
structors

introA : 3>a(^4>-B) -»■ A

and
introe : (x : 3>b(A B,  introA)) -*■ B(9(x))

for some $ a (A, B)  : Set, 3>b(^4, B,  introA) : Set and 6 : $&{A,B,  introA) A.  Here, 
6{x) is the index of introB(x), i.e. the element a : A  such that introB(a;): B(a).

Not all expressions $ a  and $b give rise to acceptable inductive-inductive definitions. 
It is well known, for example, that the theory easily becomes inconsistent if A  or B  
occur in negative positions in 3>a or $b respectively. Thus, we restrict our attention to 
a class of strictly positive functors.

These are based on the following analysis of w hat kind of premises can occur in 
a definition. A premise is either inductive or non-inductive. A  non-inductive premise 
consists of a previously constructed set K,  on which later premises can depend. An 
inductive premise is inductive in A or B. If it is inductive in A, it is of the form 
K  A  for some previously constructed set K.  Premises inductive in B  are of the form 
(x : K ) -»■ B(i (x) )  for some i \ K - * A .

If K  -  1, we have the special case of a single inductive premise. In the case of 
B-inductive arguments, the choice of i : 1 -> A  is then just a choice of a single element 
a = *(★): A so that the premise is of the form B(a).  This is called an ordinary inductive 
premise, w ith the general case called a generalised inductive premise.

3.2.2 Dybjer and Setzer's axiomatisation of inductive-recursive definitions

To get used to the style of axiomatisation we are going to use, and the idea of us
ing universes of codes to represent inductively defined types, we recall Dybjer and
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3. A finite axiomatisation of inductive-inductive definitions

Setzer's [1999] axiomatisation of a type theory with inductive-recursive definitions. 
Even though inductive-recursive definitions are proof-theoretically much stronger than 
inductive-inductive definitions (see Section 5.3 for a partial result), they admit a simpler 
axiomatisation. This is not as paradoxical as it sounds; it is simply the case that we can 
give a more uniform and straight-forward description of the universe of codes used to 
describe inductive-recursive types. The introduction and elimination rules, which is 
where the formal power comes from, are equally simple to state for both theories, but 
have very different consequences.

An inductive-recursive definition consists of an inductively defined set U, and a 
recursively defined function T  : U -> D for some (possibly large) type D. That U is 
inductively defined means that it is given by a constructor

intro : <£([/,T) -> U

and that T  is recursively defined means that the value of T  on a canonical element 
intro(5) of U is given in terms of the value of T  on the subterms of x.

Dybjer and Setzer's idea was to describe the domain $(U,T)  of intro -  but for 
arbitrary U : Set, T  : U -* D. This domain is basically a list (telescope) of arguments, as 
in Section 3.2.1, where later arguments can depend on earlier ones. If the argument is 
non-inductive, this dependency is direct, whereas for an inductive argument u : U , w e  
can only depend on T ( u ) :  D. This intuitively makes sense, as we do know what the 
elements of D are, but not the elements of U -  we are in the middle of the process of 
defining them!

Dybjer and Setzer made the above observations formal by defining a large type IR D 
of codes for $(£/, T ), together with decoding functions

ArgIR(7 ) : (U : Set) -  (T  : U -> D)  -> Set

Fun,R(7 ) : (U : Set) -*■ ( T : U  -* D) -* ArgIR(7 , U,T) -  D

for each code 7  : IR D. Here Arg)R(7 , U, T)  should be thought of as the domain of the 
constructor intro7 : Arg)R(7 , U,T) ->■ U, and Fun|R(7 , U,T, x) asthevalueofT(intro7 (5)). 
The type IR D needs to be large, since it is referring to to arbitrary sets. The codes in 
IR D,  and their decodings, are inductively defined by the following clauses:

The code t(d) represents a trivial constructor intro^) : 1 -> U (a base case):

d : D
i (d) : \RD  ArgIR(i(d ),t/,T ) = l

The code cr(A, / )  represents a noninductive argument a : A, followed by the rest 
of the arguments, which are represented by /(a ) . The name a stands for the E type, 
which is used in its decoding:

A :  Set / : A - I R D
a ( A J )  : I RD Argm(o(A, f ) , U, T)  = (Ea : A)ArgIR( / ( a ) ,  U,T)

Note that the remaining arguments f (a)  can depend on a.

36



3.2. A finite axiomatisation

The code 5(A, F ) represents an inductive argument g : A  -»• Ur followed by the rest 
of the arguments, which are represented by F(Tog).  The name 8 stands for "dependent 
E":

A: Set F : ( A - * D ) - > \ R D  
<5(A,F):IRD

Argir (*(A , F ) ,  17, T )  = (Ep : A -  t/)ArgIR( F ( T  o p), C/,T)

Note that the rest of the arguments, which are represented by F ( T  o g)f do not depend 
on the argument g : A -*■ U directly, but only on T  o g}

For completeness, we also give the definition of FuniR, although the details will not 
interest us very much until Section 6.1.

FuniR(t(d), C/,T, *) = d 
Fun|R(<7(A, / ) ,  U, T, (a, x )) = Fun,R( / ( a ) ,  U, T, x ) 
FunIR(6(A, F ) ,  U, T, (p, x))  = Fun,r (F (T  o g),U,T,  x)

The principle of inductive-recursive definitions now states that there is a family 
(C/7, T7) "closed under" Arg|R(7 ) and Fun|R(7 ) for each code 7  : IR D. Formally, this is 
expressed using the following rules:

Axioms 3.4 (Rules for inductive-recursive definitions) Formation rules:

D type 7 :IRZ> D type j  : \RD
Uy : Set T7 : U-y -> Set

For the rest of the rules, we suppress the premises D type and 7  : IR D.
Introduction rule for C/7:

a: Arg|R(7 , f /7,T7 ) 

intro7(a )  : U1

Computation rule for T7:

T7(intro7(a ) )  = Fun|R(7 , f/7 ,T7,a )  ■

We do not assume that these axioms are part of our type theory in general. Let us 
now look at an example of how the theory is meant to be used.

Example 3.5 (A universe closed under W-types) The code

7 W := 5(1, \ X . 5 ( X ( * ) ,  \Y.  l(W (s : X ( * ) ) Y ( x ) ) ) )  

describes a universe (U,T)  closed under W-types. If we decode it, we get

Arg|R(7w , t f ,T )  = (E a : 1 U)(E 6 : T ( a ( * ) )  -* U) 1 = (E a  : f / ) ( F ( a )  -  t / )

’For inductive-inductive definitions, we have no recursively defined function T  : C/ -> D, and hence 
no such general dependency on inductive arguments.
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3. A  finite axiomatisation of inductive-inductive definitions

so that the constructor of the universe has type isomorphic to

intro^  : (a : U) -*■ (6 : T(a ) ^  U ) U

after uncurrying, and we have

T(intr07w( a ,b)) = W(z : r ( a ) )T ( 6(*)) .

This shows that inductive-recursive definitions can be used for proof-theoretically 
strong constructions [Setzer, 1998]. Dybjer and Setzer go considerable further and 
show that e.g. Palmgren's superuniverse [Palmgren, 1998] and Setzer's external Mahlo 
universe [Setzer, 2008] are subsumed by the theory of (indexed) inductive-recursive 
definitions. ■

When it comes to elimination rules for inductive-recursive definitions, Martin-Lof 
[1972] writes about a universe V:

It is not natural although possible to add the principle of (transfinite) in
duction over V,  expressing the idea that V is the least type which is closed 
w ith respect to the above inductive clauses, because we want to keep our 
universe open so as to be free to throw new types into it or require it to be 
closed with respect to new type forming operations.

These considerations are not so important w ith the principle of inductive-recursive 
definitions at our disposal, as we can just construct a second universe, should we need 
it to contain more types. Furthermore, if we use inductive-recursive definitions to 
construct structures that are not universes (e.g. balanced binary trees [Ek et al., 2009]), 
it is crucial to have an elimination principle for those structures. Hence Dybjer and 
Setzer also define elimination rules for inductive-recursively defined sets. They define 
a set of induction hypothesis2 for a given element x : Arg)R( 7 ,17, T)

U : Set
7 : I R D  T . U - + D  P  : U -*■ Set x : Arg|R(7, U, T)

IH|r(7, U,T,P,x ) : Set

by induction over 7 , together w ith a function map)H which takes care of the recursive 
calls:

. . .  g : (x : U) -> P(x)  x : Arg,R(7, £/,T)  

map,H(7 ,U,T,P,g,x)  : IH|R(7 , U,T,p,x)

Given these operations, we can define the elimination rule for U1 to be

x : L7y i- P{x)  type g : (x : Arg[R(7, f/7,T7)) -» IH|R(7, C/7,T7 , P,x) -» P(intro7(a:)) u : U1
elim7(P, g, u) : P(x)

2Actually, since the codomain D  of the recursive function T  can be large, it makes sense for the 
elimination rules to support large elimination as well. This forces also the collection of induction hypothesis 
to be large, and complicates the construction slightly [Dybjer and Setzer, 2006, Section 5.4]. For our 
purposes, small elimination will be enough.
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with computation rule

elim7 (P,p, intro7 (:r)) = g(x,  map|H(7 , £/7 ,T7 ,P, elim7 (P,p),a:) : P(intro7 (:r)) .

Another option, explored in Dybjer and Setzer [2003], and whose analogue for 
inductive-inductive definitions we will pursue in Chapter 4, starts with the observation 
that Arg|R(7 ) together with Furi|R(7 ) can be extended to an endofunctor on a category 
FamB:

Definition 3.6 Let B be a category. The category FamB of families of objects of B has as 
objects pairs (A, B),  where A is a set and B  : A -> B is an A-indexed family of objects of 
B. A morphism from (A, B)  to (A', B ') is a pair ( / ,  g) consisting of a function /  : A -> A' 
and a natural transformation g : B -* B'  o / ,  i.e. g- { x :  A)  -  B(x)  -  B'U(x) ) .  «

Given a (possibly large) type D,  we can regard it as a discrete category. Note that 
in this case, a morphism from (A, B)  to (A', B')  is just a function /  : A -»■ A' such that 
B  = B'  o f  : A -+ D  since the only morphisms in the category D are identity morphisms. 
The operations Arg|R(7 ) and Furi|R(7 ) gives rise to an endofunctor on Fam D which 
maps (U,T)  to the family (Arg(R(7 , U,T), Fun|R(7 , U,T )). To extend this to an action 
on morphisms, Dybjer and Setzer use extensional equality in an essential way.

Now that every code 7  in IR D gives rise to a functor, we can use the machinery of 
initial algebra semantics [Goguen et al., 1977] to express elimination rules for U1. Dybjer 
and Setzer [2003] show that initiality of (C/7, T7, intro7) is equivalent to the elimination 
rules we have formulated above.

3.2.3 The axiom atisation o f inductive-inductive definitions

We now give the formal rules for inductive-inductive definitions. These consists of a set 
of rules for the universe SPa of descriptions of the set A and its decoding function ArgA, 
a set of rules for the universe SPb and its decoding function ArgB, and formation and 
introduction rules for A : Set, B  : A -*■ Set defined inductive-inductively by a pair of 
codes 7 a : SPa, 7 b : SPb(7 a)- The elimination rules will be dealt with in Section 3.2.5. 
The concepts involved in the axiomatisation are summarised in Table 3.1.

We first define the universe SPa of codes for A : Set and its decoding function ArgA 
in Section 3.2.3.I. Important will be the concept of "referable" elements in the process 
of constructing a code 7 a  : SPA. For instance, after an inductive argument a : X,  all later 
arguments can refer to a. We collect all such referable elements in a set Xref, together 
with a function repx : ^ ref -* X  which makes Aref a "subset" of X.

W hen we get to codes for the second family B  : A -»■ Set, we see that there is a slight 
complication: since we w ant the constructor for B  to be able to refer to the constructor 
introA : ArgA(7A, A, B)  -» A, we m ust also m ake it possible to refer to elem ents of the 
form introA(x) or even i ntroA (introA (5 ), £/) etc. The necessary m achinery is developed 
in Section 3.2.3.2, w here a set A-Term(7A, Xref, Tref), consisting of term s constructed 
from X Tef, and  introA, is defined. We also define a function repA w hich m akes 
A-Term(7A, A ref,y^ef) a "subset" of A .
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3. A finite axiomatisation of inductive-inductive definitions

Table 3.1: Concepts involved in the axiomatisation.

Name Meaning Section

SPA universe of codes 7 A for first set A 3.2.3.1
ArgA decoding function
* ref current referable terms from first set
rePx function witnessing X ref 9 X
kref current referable terms from second family 3.23.2
rePindex/ reP v functions witnessing (x  : Yief ) c y  (repindex(x))
A-Term terms built from referable terms and constructor
rePA function witnessing A-Term(7 , X ref , k"ref)  £ X
SPb (7a ) universe of codes 7 b for second family B  : A -+ Set 3.23.3
ArgB decoding function
IndexB targeted index function
A Ft'rl7A,7B' 7A ,7B the inductive-inductively defined family 3.23.4
introA, intros constructors

In Section 3.2.33, we then make use of the machinery developed in Section 3.2.3.2 to 
define a universe SPb of codes f o r B: A - +  Set, together with a decoding function ArgB. 
We also define a function lndexB which we intend to pick out the index of the constructed 
element, i.e. given x : ArgB(7B, A, B),  the function Indexe picks out a = IndexB(x) : A 
such that introB(x) : B{a).

Finally, in Section 3.2.3.4, the formation and introduction rules are introduced.

3.23.1 The universe SP^ of descriptions of A

We introduce the universe of codes for the index set with the formation rule

Aref • Set 
SPA(Xref) type

The set X re{ should be thought of as the elements of A that we can refer to in the code 
that we are defining. To start with, we cannot refer to any elements in A, and so we 
define SPA := SPA(0 ). After introducing an inductive argument a : A, we can refer to a 
in later arguments, so that X Te{ will be extended to include a as well for the construction 
of the rest of the code.

The introduction rules for SPA reflects the informal discussion in Section 3.2.1. The 
rules are as follows (we suppress the global premise X Tef : Set):

The code nil represents a trivial constructor c : 1 -> A (a base case):

n il:S P A( X ref)
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The code non-ind(X, 7)  represents a non-inductive argum ent x : K,  w ith the rest of 
the argum ents given by 7(2):

K  : Set 7  : i f  -> SPA(Xref)
non-ind(/ir,7) : SPA(^ref)

The code A-ind(K, 7 ) represents an inductive argum ent of type K  -> A,  w ith the 
rest of the arguments given by 7 :

AT: Set 7 : S P A ( X ref + * :)

A-ind(X,7 ) :S P A(Xref)

Notice that 7  : SPA(^ref + K),  so that the remaining arguments can refer to more 
elements in A  (namely those introduced by the inductive argument).

Finally, the code B-ind(K, hm(iex, 7 ) represents an inductive argument of type (x : 
K )  -* B{i{x)),  where the index i(x)  is determined by h-m(iexr and the rest of the argu
ments are given by 7 :

K  • Set ^index • X  X re{ 7  • SPA(-'^ref)
B-ind(iT, /lindexj T) • SPA(2^ref)

Example 3.7 Returning to the contexts and types of Example 3.1, the constructor

> : ((ST  : Ctxt)Ty(r)) Ctxt

is represented by the code

7t> = A-ind(l,  B-ind(l,  A(* : 1 ). T, nil)) ,

where T = inr(*) is the representation of T in X Tef = 0 + 1. ■

We now define the decoding function ArgA, which maps a code to the domain of the 
constructor it represents. In addition to a set X Te{ and a code 7  : SPA(2Cref), ArgA will 
take a set X  and a family Y  : X  -*■ Set as arguments to use as A and B  in the inductive 
arguments. These will later be instantiated by the sets defined inductive-inductively 
("tying the knot"). We also require a function repx  : X Tef -> X  which we think of as 
m apping a "referable" element to the element it represents in X.  Thus, via repx , we 
can see X ref as a "subset" of X.  ArgA has the following formation rule:

X Te{ : Set 7  : SPA(Xref) X  : Set Y  : X  -> Set repx  : X ref -> X
ArgA( X ref, 7 , X,  Y, repx ) : Set

Notice that if 7  : SPA, i.e. if X Tef = 0, then we can choose repx  = !x  : 0  -*■ X  (indeed, 
extensionally, this is the only choice), so that we can define

ArgA : SPa -  ( X  : Set) -> ( Y  : X  -  Set) -  Set

by  ArgA(7, X , Y)  = ArgA(0 , 7, X,  Y, \x ).
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The definition of ArgA follows the informal description of w hat the different codes 
represent above3:

ArgA(-, nil, = 1
ArgA(-, non-ind(Ar, 7 ), _) = (Err : /sT)ArgA(_, j ( x ) ,

ArgA(X ref , A-ind(A, 7 ), X,  repx ) =
(E j . K  X)ArgA(Xref + K , 7, [repx , j ] )

ArgA(_, B-ind(A, h index,7), Y, repx ) =
( (x  : K )  -+ Y((repx o h mdex) ( x ) ) )  x ArgA(_, 7 , _)

Example 3.8 Recall the code 7  > = A-ind(l, B-ind(l, A(*: 1). inr(*), nil)) for the construc
tor [> : ((ET : Ctxt)Ty(T)) -> Ctxt. We have

Arg^(7> ,Ctxt,Ty) = (5T : 1 -» C tx t)(l -  Ty(r(*))) x 1 

which, thanks to the 77-rules for 1, E and -7  is isomorphic to the dom ain of >. ■

3.2 .3.2 Towards descriptions of B

As we have seen in Example 3.1, it is im portant that the constructor introe for the second 
set B  : A  -»■ Set can refer to the constructor introA for the first set A. This m eans that 
inductive argum ents might be of type B(introA(a)) for some a : ArgA(7A, A, B)  or even 
B ( introA( . .. introA . . .  (a ))) for som e a  : ArgA(7A, . . .  ArgA(7A, A , B ) . . . ,  B').  Thus, we 
need to be able to represent such indices in the descriptions of the constructor introe.

It is no longer enough to only keep track of the referable elements X ref of X  -  we need 
to be able to refer to elements of B ( x ) as well, since they could be used as arguments to 
introA. How can we represent elem ents of a family Y ( x ) ,  where Y  : X  -> Set?

• The most direct option is to use another family Yr'e f : X ref -> Set. W here y : Yr'ef (a;) 
m ight represent b : Y ( a )  for som e x  : X Tef representing a  : X.  However, this 
quickly becomes unwieldy, since e.g. enlarging X ref means modifying Yr'ef as well.

• Instead, we take a m ore "fibred" approach and represent elements of the family
Y by a set Yref, together w ith  functions repindex : Yref -> X  and  repY • ( x  : Yref)
Y ( rePindex(;E) )  / the function repindex gives the index of the represented element, 
and repY the actual element. There is no need to factor repindex through X Te{ and 
repx (in fact, it w ould make things m ore complicated).

We w ant to represent elem ents in  ArgA(7A, X,  Y). We claim that the elem ents in 
ArgA(7A, X Te{ + Yref, [As. 0 , X x .  1]) are suitable for this purpose. To see this, first observe 
that we can define functions

/ : X ref + Yref- X  ,

3For readability, we have replaced arguments which are simply passed on with in the recursive
call, and likewise on the left hand side if the argument is not used otherwise. This is different from Agda's 
use of
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g: (x : X Tef + Yref) -> [Xx. 0, \ x .  l](x )  -+Y( f ( x ) )

by /  = [repx, repj^ex] and g = [Ax.!, Ax. A * . repY(x)]. These are morphisms between 
families of sets in the sense of Definition 3.6. Then, we can lift these functions to a 
function

ArgA(7A J , g )  ■ ArgA(7A,^ref + ^ref, [Ax.O, Ax. 1])  -► Arg^(7A , X , Y )  

by observing that Arg^(7 A) is functorial:

Lemma 3.9 For each 7  : SP^, Arg^(7 ) extends to a functor from families of sets to 
sets, i.e. given /  : X  -»• X '  and g : (x  : X )  -*■ Y{x)  -* Y ' ( f ( x ) ) ,  one can define 
A r g i ( 7  , f , 9) ■■ Arg °a ( j , X , Y )  -  Arg° (7 , X ' , y ' ) .

Remark. In extensional type theory, one can also prove that Arg^(7 , / ,  g) actually is a 
functor, i.e. that identities and compositions are preserved, but that will not be needed 
for the current development.

Proof. This is straightforward in extensional type theory. In intensional type theory 
without propositional identity types, we have to be more careful. We define the function 
Arg^ (7 » /> 9 ) by induction over 7 . In order to do this, we need to refer inductively to 
the case w hen X Te{ is no longer 0. Hence, we need to consider the more general case 
where X,  Y,  X' ,  Y' ,  f  and g have types as above, and X ref ,: Set, repx  : X ref -»• X,  
repx  : X ref -»■ X 1. One expects the equality / (r e p x ( x ) )  = repx (x )  to hold for all x : X ref. 
In order to avoid the use of identity types, we state this in a form of Leibniz equality, 
specialised to the instance we actually need; we ask also for a term

p : (x  : X ref) y ' ( / ( r e p x ( x ) ) )  -* y ' (r e p x ( x ) )  .

If X Te{ = 0 , we can trivially use p =!Ax.r'(/(rePx(x)))-y'(reP̂ (x))- We define

ArgA( 7 5/ ^ , P )  : ArgA( X ref,7 , X , y , r e p x ) ArgA( X ref , 7 , ^ / ,W ,rep x )

by induction over 7 :

ArgA( n i l , / , £ ,p ,* )  = *

ArgA(n o n - in d (K ,7 ) , / ,  g ,p , (k,y)) = (k, ArgA(7 (*0 , / ,  y))
ArgA(A-ind(X, 7 ) ,  / ,  g,p, (j, y)) = ( /  o j, ArgA(7, / ,  9, [p, Ax. id], y)) 

ArgA(B-\n6(K,hindex^ ) J , g , p ,  {j , y )) =
{\k.  p(hindex(k),g(repx (hindex(k)) , j (k) ) ) ,  Arg A( i , f , g ,p , y ) )

Notice the use of the specialised Leibniz equality p in the last line. Finally, we can 
define Arg^(7, / ,  g) : A rgJ(7 , A, B)  ArgJ(7, A', B' )  by

ArgA.(7>/>  S') := ArgA( 7 , / ,  <7,!) • □
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3. A finite axiomatisation of inductive-inductive definitions

Recall that we want to use Lemma 3.9 to represent elements in Arg^(7 A, A, Y ) by 
elements in Arg^TA, Aref + Lref, [Ax. 0, Ax. 1 ]). We can actually do better, and represent 
arbitrarily terms built from elements in A  and Y  with the use of a constructor introA : 
Arg^(7a , Y)  -* X.  For this, define the set A-Term(7 A, Aref,y ref) of terms "built from 
introA, Aref and Fref" with introduction rules

x • ATref
aref( x ) : A-Term(7A,Arref, y ref)

 X • Lref__________
bref(^) : A-Term(7 A,Xref,Fref)

x  : Arg^ (7a  , A-Term ( 7 a , A ref, YTei), B-Term (7A, A ref, Yie{)) 

a r g ( x ) : A-Term(7A ,X ref ,y rref)

Here, B-Term(7 A, A ref, Yref ) : A-Term(7 A, A ref , y ref) -»• Set is defined by

B-Term (7a , X ref, Yief, aref ( x ) )  = 0
B-Term (7A,-^ref, ^ref, bref ( x ) )  = 1
B-Term (7a , Aref, Yre{, arg(x)) = 0

Note that this is formally an inductive-recursive definition. The intuition behind the 
definition of B-Term is that all elements of Y  we know are represented in Fref, and only 
fo Fref-

All elements in A-Term (7A, Aref, yref) represents elements in X,  given that we have 
a function introA : Arg^(7 A, X , Y )  -»• X  and the elements of Aref and yref represents 
elements of X  and Y  respectively (i.e. we have repx  : Aref ->• X,  repindex : yref -> X  
and repY : (x  : yref) -»• Y (repindex(x ) ) ) .  We think of Aref as containing elements of X  
constructed without introA, and of A-Term (7 a, Aref, yref) as containing elements of X  
constructed with an arbitrary number of applications of introA (possibly zero). Formally, 
we can simultaneously define the following two functions:

repx : A ref X
I^Pindex ' ^ref A

7 A : SPA introA : Arg^(7 A, A, Y )  -> A  repY : (x : Yref) -» Y (repindex(x)) 
repX(.. . ) :  A-Term(7 a , Aref, yref) A

r e p i ( . . . ) : (x : A-Term(7 A,Aref,y ref)) -> B-Term(7 A, A ref,y ref,z) -> y ( r e p l ( . . . , x) )

The definition of repA is straightforward. The interesting case is arg(x ) ,  where we make 
use of the constructor introA, the functoriality of Arg a and the mutually defined repj :̂

repX(7A, introA, repx , repindex, repY, aref( x ) )  = repx (x)  

repX(7A, introA, repx , repindex, repY, bref( x ) )  = repindex(x )  

repX(7A, introA, repx , repindex, repY, arg(x)) =

introA(Arg^(7A,repX(.. ) , f e p i ( -  • -),x))
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The simultaneously defined repB is very simple:

r e p i(7A, introA, repx , repindex, repY, aref(aO, y) = !(y) 

r e p i(7A, introA, repx , repindex, repY , bref(x ) ,  *) = repY(y)  

r e p i(7A, introA, repx ,repindex,repY, arg ( x ) ,y )  = !(y)

Example 3.10 We define some terms in A-Term(7 [>,Xref, Yref), where

7t> = A-ind(l,  B-ind(l,  A (* : 1). inr(*), nil))

is the code for the constructor

> : ((ET : 1 -  A)( 1 -> B(r(*))) X l )  -* A .

Suppose that we have a : Xref w ith repx (a)  = a:  A and b : Yref w ith repindex(8) = a and 
repY (&) = b : B(a).  We then have

• aref ( a ) : A-Term(7>, Xref, Yref) with repA(7 o, a) = a (so elements from X Te{
are terms).

• bref(fe): A-Term(7 >,X ref, Yref) withrepX(7 >, bref (b)) = a (so elements from
Yref are terms, representing the index of the element in B  they represent). Fur
thermore repi(7 t>, bref(6), *) = b.

• <T>fc:=arg((( A *. bref (&)),{( A* ■*),*))) : A-Term(7 t>, X re{, Yref) with

repX(7n>, o T & )  = (repindex(6))  > (repY (6))  = a > b . ■

3.2.3.3 The universe SPB of descriptions of B

We now introduce the universe SPb of descriptions for B.  It has formation rule

X ref, ^ref : S e t  7 a  : S P ^

SPB( X ref, Yref, 7A) type

Again, we are interested in codes which initially do not refer to any elements and define 
7a ■ SPa i-  SPb (7a) type by SPb (7a) := SPB(0 , 0 , 7 A).

The introduction rules for SPB are similar to the ones for SPa- However, we now 
need to specify an index for the codomain of the constructor, and indices for arguments 
inductive in B  can be arbitrary terms built up from introA and elements we can refer to.

<2 . A-Term(7A, X ref , I'ref)
nil(a) • S P B (Xref,Yref , 7 A)

The code nil (a) represents a trivial constructor c : 1 -> B(a)  (a base case), where the 
index a is encoded by a: A-Term (7 a, Xref, Yref).

K  : Set 7  : K  -> SPB(Xref, Yref,7 a )  
n o n - i n d ( X , 7 ) : SPB(Xref, Yref,7 A))
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3. A finite axiomatisation of inductive-inductive definitions

The code non-ind(/f, 7) represents a non-inductive argum ent x  : K,  w ith the rest of the 
argum ents given by 7(2).

K  : Set 7 : SPB(X ref + K, Yief, 7 a )
A-ind(K, 7) : SPB(X ref ,y ref,7A)

The code A-ind(/f, 7) represents an inductive argum ent w ith type K  ^  A, w ith the rest 
of the argum ents given by 7.

K  ' Set ^index • K  —*■ A -T e rm (^ ref , T̂ -ef , 7 a )  1  • SPB(-<^ref> ^ref + -^"jTa)
B -in d (/^ , /iindexjT) ' S P b (-^ ref ? ^ref ? Ta )

The code B-ind(Ar, /ijndex,7) represents an inductive argum ent of type (x : K )  -> 
B(i (x) ) ,  w here the index i(x)  is determ ined  by hmdex, and  the rest of the argum ents 
are given by 7. Notice how  the index of the argum ent is now  encoded by arbitrary 
term s in A-Term (Xref, Tref , 7a ) •

Example 3.11 The constructor

n  : ((E T  : Ctxt)(E<r : T y (r ) )T y (r  0  cr)) -» Ty(T)

is represented by the code

7n = A-ind(l,  B -ind(l,  A * . T, B-ind(l, A * . in(T, cr), nil(T))))

w here T = aref(inr(*)) is the elem ent representing the first argum ent T : Ctxt and 
in(T, cr) = arg(((A * . bref (inr(★))), (A * . *, *))) is the elem ent representing T > cr. ■

The definition of ArgB should now not come as a surprise. First, we have a formation 
rule:

7A : S P ^  % . 5 e t  re P x  : -^ref X
-^refjF^ef • S e t  Y  X  —*• S e t  *^Pindex ' T-ef X

7  : S P B ( X re f , y re f ,7 A )  in tr o A : ArgA( 7 A,X ,Y )  -»  X  repY : (x  : y ref) -»  E ( r e p index( x ) )

A r g B ( X ref, Tref , 7 A , ^ ,  Y, in tr o A , repx , rep index, rep Y , 7 ) : S e t  

The definition can be simplified for codes in SPb (7a):

ArgB(7A, X,  y , introA, 7 ) := ArgB( 0 , 0, 7a , X,  Y, introA, lx, ]-x, Wo\, 7 )

We define4:

ArgB nil ( a ) )  = 1

ArgB(_, n o n - in d ^ ,  7)) = (E x  : i f )A rgB(_,_, 7 (a ))
ArgB( X ref, X , repx , A-ind(AT, 7))

= (E j  : K  ^  X)ArgB( XTef + K,- , - ,  [repx , j ] ,  7 )

ArgB(_, Tref, 7A, y , introA, repx , repindex, repY, B-ind(AT, hindex, 7 ))

= (E j  : { x : K ) ^  y ( (r e p X ( 7 A, introA, repx , repindex, repY) o hindex)(x)))
ArgB (_, y ref + K ,  [repindex, repX(- • •) 0 ^index], [repY , j ] , 7 )

4For readability, we have once again replaced arguments which are simply passed on with in the 
recursive call, and likewise on the left hand side if the argument is not used otherwise.
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Finally, we need the function lndexB( . ..) : ArgB(7A, 7b , X ,Y ,  introA) -> X  which 
to each b : ArgB(7A, 7b, X,  y, introA) assigns an index a : X  such that the element 
constructed from b is in Y(a).

7a : SP^ % : Set re^x : ^ ref ^
XrefiYref • Set Y '• X  Set index ’ ^ref “* X

7  : SPsCXref.yref^A) in*rQA = ArgA(7A, IQ -» X  repY : (x : Y ^) -» y(repindex(a;)) 
lndexB(Xref, Yief, 7A, X, Y, introA, repx , repindex, repY, 7 ) : ArgB(. . ^  X

For codes in SPb (7a), we define lndexB : ArgB(7 A, X,  Y, introA, 7b) -*■ X  by

lndex^(7 A,X,  Y, introA, 7 b) := lndexB(0 ,0 ,7 A, X , Y, introA, be, !*, !yoi, 7 b) •

The equations by necessity follows the same pattern as the equations for ArgB. For 
the base case 7 b = nil(a), we use repx ( . .. ,a), and for the other cases, we just do a 
recursive call5

lndexB(_, 7a , introA, repx , repindex, repY, nil (a), *)
= repI(7A, introA, repx , repindex, repY, a) 

lndexB(_, n o n -in d ^ ,7 ), (k, y ))
= lndexB (-, l { k ) , y )

lndexB(2fref, - ,X,  _, repx , A-ind(AT,7 ), (j, y))
= lndexB(Xref + K,  _, [repx , j], _, -,7»y)

lndexB(_, Yvef, 7 A, Y, introA, repx , repindex, repY, B-ind(#, hindex, 7 ), (j, y))
= lndexB(-, YIe{ + K,  _, [repindex, repX(...) o hindex], [repy, j] ,7 , v)

Example 3.12 Recall from Example 3.11 that the constructor II : ((ET : Ctxt)(E<r : 
T y(r))T y(r > a)) -* Ty(T) from Example 3.1 is represented by the code

7 n = A-ind(l,B-ind(l,(A* . f ), B-ind(l, (A * . rl><7 ,nil(F))))) :SPb(7 >) > 

where T = aref(inr(*)) : A-Term( 0  + 1 ,0 ,7 >) and

T > a = arg(((A * . bref (inr(*))), (A * . *, *))) : A-Term(0 + 1,0 + l , 7 i>) .

We have

ArgB(7 >,Ctxt,Ty, > ,7n) =
(E r  : 1 Ctxt)(Ecr: 1 T y (r(* )))(l -  Ty(T(*) > <r(*))) x 1

and lndexB(7 [>, Ctxt,Ty, > ,7 n, (r,o-,r, *)) = T(*). ■

5Simply passed on and otherwise not used arguments have been replaced with for readability.
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3.2 .3A  Formation and introduction rules

We are now  ready to give the form ation and introduction rules for A  and B.  They all 
have the comm on prem ises 7 a  : S P a /  7 b  : S P b ( 7 a ) /  which will be omitted.

Axioms 3.13 (Form ation and in troduction rules for inductive-inductive definitions) 
Formation rules:

■^7A.7B ‘ ^ 7 A ,7 B  ‘ -^7Ai7B

Introduction rule for A 1a ;7b :

Q> • A r g A ( 7 A  j -^7a  ,7b > -^7a  ,7b )

in tr ° ^ A , 7 B ( 0 ) : ^ A , 7 B

Introduction rule for B 1A i7b :

b ■ A r g B ( 7 A ,  -A7a , 7B j -®7a , 7b ’ ' ^ ^ - ^ a - t b  ’ 7B )

in t r ° S 7 A .7B ( 6 )  : 5 7 A ,T B (ln d e X B ( 7 A ,  A A , 7 B > 5 7A,7B>i n t r 0 ^ A .7B ’ ^ B , & ) )  H

3.2.3.5 Derived rules for convenience

Encoding multiple constructors into one The theory we have presented assum es 
tha t both  A  and B  have exactly one constructor each. This is no  lim itation, as m ulti
ple constructors can always be encoded into one by using non-inductive argum ents. 
Suppose that i n t r o o  : F0(A,  B )  -> A  and  i n t r o i  : F\ (A,  B )  -► A  are two constructors for 
A.  Then we can combine them  into one constructor

i n t r o o + i  : ( ( E z : 2 ) F i ( A , B ) )  -*  A

by defining i n t r o o + i ( i ,  x)  = i n t r o j ( x ) .  Of course, this is only possible because we have 
dependent types at our disposal.

If i n t r o o  is described by the code 70  and i n t r o i  by 7 1 ,  then  i n t ro o + i  is described by 
the code

7o  + s p  7 i  := n o n - i n d ( 2 , A x .  if  x  t h e n  70  e ls e  7 1 )  .

Notice tha t this m akes use of large elim ination for Booleans 2 in an essential way, as 
S P A ( ^ r e f )  is a large type.

Single inductive arguments A n inductive argum ents is always of the form  K  -*■ A  
or ( x  : K)  -*■ B ( i ( x )) for some set K  of prem ises (and index function i : K  -*■ A).  If 
we only w ant a single inductive argum ent, we choose K  -  1. For convenience, we can 
define

A-indi : SP A (A ref + 1) -* SPA(A'ref)

B-indi : A ref -*• SPA(A'ref) -> SP A (A ref)
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and the SPb variants

A-indi : S P e C ^ f  + l , Y ref,7A ) -* SPB(2Cref, Yref , 7 A)

B-indi . A-Term(2Cref , l^ef , 7a) SPb (2fref , l^ ef + 1 ,7 a ) ~̂  SPB(-^ref)^ref?7 A)

by

A-indi(7 ) = A - in d ( l ,7 )

B -indi(z ,7 ) = B-ind(l,  A_. 7 , 7 )

This is possible since we have 77-rules for 1, so that the index i : A-Term (Xref, Yref > 7a) 
cannot depend on x : 1 in any way different from * : 1 . By using this abbreviation, we 
can make the codes slightly more readable.

Non-dependent non-inductive arguments Later argum ents m ay depend on non- 
inductive argum ents. In case they do not, we introduce the abbreviations

non-ind': (K  : Set) -»• SPaCAW ) -*• S P A (A ref)

non-ind . (AT . Set) —► SPsC^ref ? Yef > 7a) SPB(2fref , Lj-ef > 7a)

for
non-ind/(A',7 ) = non-ind (AT, A_.7 ) .

3.2.4 The examples revisited

We show  how  to find 7a, 7b for som e w ell-know n sets, including the exam ples in 
Section 3.1.

3.2.4.1 Well-orderings

O rdinary  inductive definitions can be in terp re ted  as inductive-inductive definitions 
w here we only care about the index set A  and  not about the family B : A  -► Set. A
canonical choice is to let B  have constructor introB ■ {x: A) B{x),  which is described
by the code 7 dummy := A-ind(l, nil(aref ( in r (* ) ) ) )6.

For every A  : Set, B  : A  -> Set, let

7 w ( A , B )  := non-ind(A,Xx. A-ind(5(cc),nil))  

and define W(A,  B)  := A1w{a B),7dummy. Then W(A,  B)  has constructor

introw(A,s) : ( (^ x  : A)(B(x )  -> W { A , B )) x l ) - >  W ( A , B )  .

6Another choice is 7dummy = non-ind(0, !SPo (7A)), which makes B ( x )  an empty type.
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3.2.4.2 Finite sets

Also indexed inductive definitions can be interpreted as inductive-inductive definitions.
We sim ply let the index set A  be an isom orphic copy of the fixed index set I  from the 
indexed inductive definition (i.e. A  is given by the constructor introA : I  -> A).

For the family Fin : N -»• Set of finite sets, the index set is N, so we define

7 a  '■= non-ind^N, n i l ) : SP^

and
TFin := 7z +SP 7s : SPb(7a )

w here

7 Z := non-ind(N, An. nil(arg((n + 1 , * ) ) ) )  ,

7S := non-ind(N, An. B-indi(arg((n, *)), nil(arg((n + 1, * ))))) .

Then the constructor introA7A( : (N x 1) -* A7j4i7Fin is one p a rt of an isom orphism
N = N x l  = ^7,4,7Fin' and if WG define Fin : N ->> Set by

Fin(n) = B1AnFm(\ntroA^ Fn ((n, *))) ,

then we can define constructors

n  ; n  : N m  : Fin(n)
zn : Fin(n + 1) sn (m) : Fin(n + 1)

by z„, = introB7Ai7Rn ((tt, (n, *))) and

Sn(m) = introB7yl>7Fin((ff,(n ,((A * .m),*)))  .

3.2.4.3 Contexts and types

The codes for the contexts and  types from Example 3.1 are as follows:

7Ctxt = nil+sp A -indi(B-indi(inr(*),n il))  :SP a

7t = A-indi (nil(aref (inr(*) ) ) )
7 n = A -indi(B-indi(aref(inr(*)),B-indi(arg((ff ,  ((A * . bref(inr(*))) ,  (A* .* ,* ) ) ) ) ,

nil(aref ( in r (* ) ) ) ) ) )

TTy = 7t +SP 7n : SPB(7Qxt) •
We have Ctxt = A7Ctxt)7Ty and Ty = B7Ctxti7Ty and we can define the usual constructors by

£ : Ctxt l : (T : Ctxt) -> Ty(T)
e = introA7ctxt>7Ty((tt, *)) , t r  = introB7Ctxti7Ty( ( t t , ( ( A * .r ) ,* ) ) )  ,

> : (T : Ctxt) -> Ty(T) -*■ Ctxt 
r  > cr = introA7Ctxt,7Ty ((ff, ((A * . T), ((A * . <r), *)))) ,

n  : (T : Ctxt) -  (a : Ty(T)) -  Ty(T > a)  -  Ty(T)
n (T ,(7 ,r) = intros7ctxti7Ty((ff,((A * .T ),((A *  .<r),((A* . r ) ,  *))))) .
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3.2.5 Elimination rules

The fact that the sets just introduced are inductive is encoded in the elim ination rules. 
Intuitively, they state that a function from an inductive-inductive definition A : Set, B  : 
A -»• Set is determ ined by its values on constructors. Since functions can be dependent, 
this also gives a way to do  proofs by induction for inductive-inductive definitions. 
How dependent should these functions be? The first thought that comes to m ind is to 
consider motives of the form

P : A Set
Q : (x : A)  -> B ( x ) -»■ Set

so that the elim ination rules give rise to functions

elim^ : ... (x : A)  -> P(x)
elim'B : . . .  -»• (x : A)  -*> (y : B{x) )  Q(x,y)

We call these elim ination rules simple (not to be confused w ith  sim ply typed, or non 
dependent elim ination rules!), and formalise them  in Section 3.2.5 .2. Sometimes, how 
ever, w e need  a m ore general notion of elim ination rules w here the m otive has the 
form

P  : A  -* Set
Q : (x : A)  -»• B(x)  -»■ P(x)  -*■ Set

(notice the dependency  of Q on P). In this case, the elim ination ru les gives rise to 
functions

elim^ (x : A) -»• P(x)
elimB (x : A) -+ (y : B{x))  -> Q{x,y , elim ^(... ,x))

w here elim^ appears in  the  type of elim#. We could sum m arise the situation  in  the  
following slogan:

The elimination principle for inductive-inductive definitions is recursive-recursive.

We call these elim ination rules the general rules. A closed axiomatisation of these rules 
seem to require at least function extensionality (on the other hand, for closed inductive- 
inductive definitions defined in the em pty context, no  such further assum ptions are 
necessary). Instead of giving these m ore involved rules, we will retu rn  to the general 
elim ination rules in Chapter 4, bu t from a high-level, categorical point of view.

3.2.5.1 Examples of elimination rules

Consider the data  type of sorted lists7 from  Example 3.2 .

7The inductive-inductive definition of the data type of sorted lists falls outside the axiomatisation 
presented in this chapter, as remarked at the end of Section 3.1. This will be justified in Section 6.2.1.
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3. A finite axiomatisation of inductive-inductive definitions

Example 3.14 (Simple elimination rules for sorted lists)

elim SortedList: (p  : SortedList -* Set)
(Q : (n : N) -»> {£ : SortedList) -»• n <l £ -»■ Set) -»•
(stepni| : P(nil)) -»■

(stepcons: (n : N) -*• (£ : SortedList) -*■ (p : n <l £) -»• P(£)

-* Q(nJ,P)  -*• P(cons(n,^,p))) ->
(steptriv : (m : N) Q(m, nil, trivn))
(step^.^ : (m : N) -*■ {n : N) -> : SortedList) -»• (p : n <l 0

( g  : m  <  n )  ( p  : m  < l  f )  ->

-> Q(n,^,p) -♦ Q(m,£ ,p)  -> Q (m ,cons(n,^,p),«  g,p' » ) )  -»■
: SortedList) -» P(£) , 

elim<L : (P  : SortedList Set) -►
(Q : (n : N) -*■ {£ : SortedList) -► n <l  ̂-* Set) -»■
(stepni| : . . . ) -*

(stePcons : • • • ) -*■

(steptriv
(step«.»
(n : N) ->> : SortedList) -*• (p : n <l ^) -»■ Q(n,£,p)

with computation rules

elimsortedList(-p>Q>stePnihstePcons>stePtriv»step<K.ss>,nil) = stepni, : P(nil)

and

®^^SortedListQ > ^®Pnil’ ^®Pcons> ^®Ptriv ’ ®^®P«-»’ COns(?T, £,p'))
= stepcons(n,^p,elim sortedList(. ..,^),elim<L(.. .,n ,^ ,p ))  : P(cons(n,£,p))

for elim^ortedList/ and

elim<L(P,Q ,stepni|,stepcons,steptriv,step<<.>>,m,nil,trivm) = steptriv(m ) : Q(m,  nil, trivm) 

and

elim<L(P,Q ,stepnihstepcons,steptriv, s t e p ^ ,  m ,cons(n ,^p ),«  g,p' » )

= step<<>;> (m, n, p, p', elimSortedList (• • ■,£),
elim<L( . .. ,n,£,p),elim<L( . .. ,m,£,p' ))

forelim<L. ■
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Example 3.15 (General elimination rules for sorted lists)

elimSortedList: (P '■ SortedList -> Set) ->
(Q : (n : N) -> (£: SortedList) -*■ n  < l  £ -*■ P{£) -»• Set) -> 

(stepni| : P (n il) )  -►

(stepcons: {n : N) -*■ (£ : SortedList) -* ( p : n <̂  £) ^  (£: P(£)) 

-> Q(n,£,pJ)  -> P(cons(ra,£,p))) -►

(steptriv : (m : N) -> Q(m , nil, triv„, stepnM)) -*>

(step<<i;>> : ( m  : N) -*  ( n  : N) -»• ( £  : SortedList) -»• ( p  : n  < l  £ )

-> ( 5  : m  < n )  -»• {p : m  < l  £) -+ (£ '• P(£))
-»• (p : Q{n,£,p,£))  -> {p' : Q(m, £ ,p , I ) )

-»• Q (m ,co n s(n ,£ ,p ),«  » ,s te p cons(n ,^ ,p ,^ p ) ) )  -> 

(f : SortedList) -»■ P (f’) ,

elim<L : (P  : SortedList -»• Set) ->
(Q : ( n  : N) : SortedList) -► n  <l £ -»• P(^) -»■ Set) -»•
(stepni, : . . .) ->
(stepcons

(steptriv
(step«.»
( n  : N) : SortedList) -»• (p : n <l £) 

- > Q ( n , ^ p , e l i m Sor t e d L i s t ( - - - ^ ) )  •

The com putation rules are the same for both the simple and general elimination rules, 
except th a t com putation rules for the general elim inator elim<L are w ell-typed only 
because of the com putation rules for elimsortedList- ■

Suppose that we want to define a function insert: SortedList -* N -> SortedList which 
inserts a num ber m  into its appropriate place in a sorted list £ to create a new sorted list 
insert^, m ) .  From a high-level perspective, this is easy: the elimination rules allows us 
to m ake case distinctions betw een em pty and non-em pty lists, so it suffices to handle 
these two cases separately. The empty list is easy to handle, and for non-empty lists, we 
com pare m  w ith  the first elem ent n  of the list £ = [ n , . . .], w hich is possible since < on 
natu ral num bers is decidable. If m < n, the result should  be [ m ,  n , . . .], otherw ise we 
recursively insert m  into the tail of the list.

In detail, we choose the m otive P(£) ■= N -> SortedList and, in our first attem pt, 
we also choose the motive Q{n, £,p, £) := 1, since we are only interested in getting a 
function elimsortec|List(-• •) : SortedList -> N -»• SortedList. We need to give functions
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3. A finite axiomatisation of inductive-inductive definitions

stepni| : (m : N) -»■ SortedList and  stepcons(n ,^ ,p ) : (£ : N -*■ SortedList) -► Q(n,£,p ,£) -»• 
(m : N) -> SortedList to use w hen inserting into the em pty list or the list cons(n, £,p) 
respectively. The argum ent £ : N -* SortedList gives the result of a recursive call on £. 

The function stepnM is easy to define: it should be

stepni|(m ) = cons(m, nil,trivm)

For stepcons/ the decidability of < (com bined w ith  the fact th a t < is total) allows us to 
d istinguish betw een the cases w hen m < n  and  n <m,  and  we are entitled to a proof
q : m < n o r  q : n < m o f  this fact. We try:

Stepans (n,£,p,£,*,m)

{cons(m ,cons(n ,^ ,p ),«  g,trans<L(g,p) » )  w here q : m < n  
cons(n, £{m) , | j j § t ) where q : n < m

Here, trans<L : m  < n n £ -> m £ w itnesses a k ind of transitivity  of < and  <l- 
It can be straightforw ardly  defined w ith  the elim ination rules. The question is w hat 
we should fill the hole [ | f | l  w ith. We need to provide a proof th a t n < l l(m),  i.e. that 
n  <l insert (I, m),  if we rem em ber that I is the result of the recursive call on £. We need 
to prove this sim ultaneously as we define insert! Fortunately, th is is exactly w hat the 
general elimination rules allow us to do if we choose a m ore m eaningful Q.

Thus, we try  again, bu t this time w ith

Q(n,£,p ,£) := (m  : N) -»• n < rn -*■ n  <l l(m)  .

Note that th is w ould  not have been possible w ith  the sim ple elim ination rules. The 
argum ent ★ : 1 to stepcons in our first attempt has now been replaced w ith the argum ent 
p : (m : N) -»• n < m -* n  <l l(m),  and we can define

. . |cons(m, cons(n ,^ ,» ),«  o,trans<. (q,p) » )  w here q : m < n
stepcons( n ,^ p ,^ p ,m )  = { ~  "L

Icons{n,£{m),p{m,q))  w here q : n < m

Now we m ust also define steptrjv : (n : N) -*• Q(n, nil, trivn , stepni|) and step^.;^ w ith type 
as above for ou r choice of P  and  Q. This presents us w ith  no  further difficulties. For 
steptriv, expanding Q(n,  nil,triv„, stepni|) and replacing stepni| w ith  its definition, we see 
that we should give a function of type

steptriv : (n  : N) -*■ (m : N) -»■ n < m  -*■ n <l cons(m, nil, trivm) ,

so we can define steptriv(n, m ,p) = «  p, trivn » .  The definition of step^.^ follows the
pattern of stepcons above. Rather than trying to explain it, we just give the definition:

/ „ / -r ~  n I «  r , «  qf, p ' » »  where s : m < n
step«.»{m,n,£,p,q,p ,£,p,p' ,x,r) = \ ~

I «  q,p'(x,r) »  w here s : n < m

W ith all pieces in  place, we can now  define insert : SortedList -»> N -*• SortedList as 
insert = elimsortedList(-P, Q , stepni,, stepcons, steptriv, step^.^).
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Table 3 .2: Concepts involved in the elimination rules.

Nam e M eaning

ihA/ ihb sets of inductive hypotheses
map,HA, map|HB recursive calls

eliminators

3.2.5.2 Sim ple elim ination  ru les

We now  present the axiom atisation of the simple elim ination rules, which follows the 
presentation in Section 3.2.2 closely. The concepts involved are summ arised in Table 3 .2. 

We first define 

v  c x :  SetX ief : Set Y  ; X  -» Set P  : X  Set
7 : SPA(X ref) repx : X ref -> X  Q : (x : X )  -> Y(x )  -» Set x : ArgA(X ref ,7 ,X , Y,repx )

lHA( Xref, 7 ,X ,Y , rePx, P , Q , x ) : Set

and
P  : X  Set

. . .  Q : ( x : X ) - > Y ( x )  ^  Set x:  ArgB(2Cref ,y ref,7A ,X ,y,repx,repindex,repY,7B) 
IHB(Xref , Yref, 7, X , Y, introA, repx , repindex, repY, P, Q , z) : Set

by induction over 7 and tb respectively8:

IHA(- • • > nil, P,Q,  *) = 1 
IHA( . . . ,  non-\r\d(K, 7 ) , P, Q , (k,x)) = IHA(7 ( k) ,P,Q,x)

IHA( . . . ,  A-ind(i^,7 ) , . . .  ,P,Q, ( j , x})  = ((k : K )  -> P( j (k) ) )  x IHA( . .. ,7 , . . . ,  P,Q,x)  
IHA( . . . ,  B-ind(X, h, 7), • • •, P, Q, (j ,x))  =

((k : K ) -► Q(repx (h(k)),  j ( k ) ) )  x IHA( . .. , 7 , . . .  ,P,Q,x)

IHB( . . . , n i l (a ) ,P ,Q ,  *) = 1 
IHB(. • •, non-ind(X, 7), P, Q, {k, x)) = IHB(7 (k),P,  Q, x)

IHB( . .. ,A-\nti(K,7) , . . .  ,P,Q, ( j , x) )  = ((k : K)  -> P( j (k ) ) )  x IHB( . .. , 7 , ... ,P,Q,#) 
IHB( . . . ,  B-ind(/C,h,7 ) , ... ,P,Q, ( j , x) )  =

((k : K ) -► Q(rep^(. • •, h (k) ) ,j ( k ) ) )  x IHB( . .. , 7 , . . .  ,P,Q,x)

Note that these two sets are com pletely independen t of one another. We now  define 
functions map)HA and map|Hs w hich take care of the recursive calls. The first function 
map|HA has the following type:

f : ( x : X ) ^ P ( x )
...  g : ( x : X ) - + ( y : Y ( x ) ) - > Q ( x , y )  x : ArgA( XTe{,7 ,X,  Y, repx ) 

map,HA (X ref, 7, X, Y, repx , P, Q, / ,  g, x)  : IHA(Xref, 7, X,  Y, repx , P, Q, x)
8We have suppressed arguments that are handled in the same way as for ArgA and ArgB respectively.
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3. A finite axiomatisation of inductive-inductive definitions

while map|HB is of type

f : ( x : X ) - P ( x )
. . .  g  : ( x  : X )  -> ( y  : Y ( x ) )  -> Q ( x , y )  X : ArgB ( A ref, Fref, 7 a ,  A -, V, repx , repindex, repY , 7 b )  

m ap,HB ( A ref, Fref, 7 a ,  X ,  Y,  introA , repx , repindex, repY , P,  Q,  7 b , / ,  9 , x ) : IHB ( X ref, 7 , X ,  Y,  repx , P,  Q ,  x )

The defining equations are:

maPiHA(---’nil>/’2’*) = * 
maP,HA(- • •> non-ind( A, 7 ), / ,  g, {k, x)) = map,HA(7 (& ),/,g, x) 

maPlHA (• • •, A-ind{K, 7 ) , . . . , / ,  g, (j , x)) = {f  o j, map,HA ( . . . ,  7, g, x))
maPiHA (- ■ •, B-ind( A, h , i ) , . . . , f , g ,  (j, x))  =

(\k.g(repx (h(k)) , j (k)) ,  map,HA( . .. , 7 , . . .  J , g , x ) )

map|HB( ...,n il(a ) ,/ ,# ,* )  = * 
map,HB( . .. ,non-ind(A,7 ) ,/ ,# ,  (k,x)) = map,HB( 7  (k) , f , g , x)  

maPmB(- • • , A-ind(A,7 ) , . . . , / , g, (j ,x))  = ( /  o j, map,HB(.. • ,7 , • • •, / , 9,x)) 
maPiHB(■ • ■ > B-ind(A, h, 7 ) , . . . , / , g, (j , x)) =

(Afc.y(repX(...  ,/i(fc)),j(fc))>mapiHB( . .. ,7 , ...  J , g , x ) )

We define

IH«(7 a ,P ,Q ) : ArgSL(7 A,X , r )  -  Set 

IHb (7a , 7b , P, Q) ■ Argg (7 A, 7 b , X, Y, introA) -> Set 
maP°HA(7A ,/,s) : (x : ArgA(7 A, A", F ))  -» IH^(7 a, P, Q, x ) 

maPiHB(7A,7B,/,p) : (x : Arg^(7A,7B, A ,y,introA)) -* IHb(7a, 7b, P, Q, x )

for 7 a : SPA and 7 b : SPb(7 a ) by

IHa(7 a ,P ,Q ) = IHa (0 ,7 , A ,y ,!(),P ,Q )

IH^(7 A,7 B,P,Q) :=IHb (0, 0 , 7 , A, y, introA, !,!,!,P,Q) 
maP?HA(7A ,/,s) := map|HA(0 ,7 , A, y, \ ,P,Q, f , g , x )  

map|HB (7 a, 7b, / ,  9) •= map,HB (0 , 0 , 7 A, A, Y, introA, !,!,!, P, Q, 7 b, / ,  9 )

as usual. We can now present the simple elimination principle for the inductive- 
inductive definition given by the codes 7 a, 7 b- We suppress the common premises 
7 a :S P ^ 7 b :S P ^ (7a).

Axioms 3.16 (Simple elimination rules) Simple elimination rule for A1a i7b :

p  : X- *Se t  f  : (^ :Arg^(7 A.A7Ai7B,B 7A,7B)) -  IH ^ a , P, Q, t) -  P(intro^A.7B (.r))
Q :(x : X) - +Y( x ) - >  Set g : (y : Arg^(7A, 7 B,A7A 7B;g 7A,TB,introA^ ,,B)) -> IH%(7B: P, Q, v) -  Q(lndex%(7 B, y). introB̂  (y))

e|imA1A.-,B ( p < Q'  f> 9 ) : ( x : A7Al7B) p (x )



3.3. Summary and discussion

Simple elimination rule for P 7a i7B:

p  . x  _> Set f  - (* : Arg^(7Al >17A,7B. £ 7Ai7b)) -» IHa(7a- P, Q , a-) -  P(introAlA7B (*))
Q : (a. :X )  -> y (.r)  ->Set ff : (y : Arg^(7 Al 7 b M 7a,tb, £ 7a,tb ' intr<M-,A.7B )) -» IH&(7b. P, Q, y)  -> QQndex%(7 B, y), i n t r o ^  ^  (y))

elimfl1A.,B o .  / . 9) ■ (* : A7Ai7b) -► (y : B( x ) )  -  Q ( x , y)

Com putation rules:

elim^7A.7B (P ’ intr°^7A.7B (*)) =
/ ( x ,  map{)HA ( 7 A ,  elimA7A 7B (P, Q, f ,  g),e\\mBlAnB (P, Q, / ,  p), x)) 

elim^7A.7B (P ’ lndexB(7B,2/), i n t r o s  7B (y)) =
y(y, map{)HB(7a ,7 b ,elirru7A 7b (P ,Q , / ,  y),elimB7A 7r (P, Q, / , y), y)) a

3.3 Summary and discussion
By extending the type theory given in Chapter 2, we have given a finite axiomatisation 
of inductive-inductive definitions. The axiomatisation is given as a schema of inductive- 
inductive definitions, represented by the type of their constructors, b u t internalised in 
Type Theory; we introduce a universe of codes for sets defined inductive-inductively, 
together with their decoding. The power of the theory then lies in the rules which says 
that each code has an associated constructor, and satisfies an elimination rule.

Equality, and how  to avoid it In the proof of Lemma 3.9, we constructed a function 
of type

ArgA(. • •, repx, ArgA( . . . ,  repx, . . . )  , (3.1)
given that rep^ = /  0 repx . Why d id  we not simply construct a function of type 

ArgA( . . . ,  repx, ArgA(. . . J o  repx , . . . )

instead? The reason is that rep^ = /  0 repx is actually too strong a requirem ent -  we only 
needed rep^ and /  o repx to be pointwise equal, which is lucky, since this is all they are 
in certain recursive calls. Thus, we can define a function like in (3.1), as long as we can 
m aintain the invariant that repx(x) = / ( r epx (x)) for all x  : X Te{, even as X ref grows.

In im predicative Type Theory, equality  can be defined as Leibniz equality: two 
elements x, y : A  are equal if they satisfy the same properties, i.e. if

(P  : A -*■ Set) -  P (x )  -> P(y)

is inhabited. This is not possible in predicative Martin-Lof Type Theory, as quantification 
over all P : A  -► Set as a small type is not possible. However, if we already know  that 
we only want to use x  and y in a finite num ber of ways, we can instantiate P  w ith those 
specific properties tha t we w ant to use, and  elim inate a use of the identity  type. In 
other words, instead of proving p: x =a V and later using subst(P,p,  x),  we can prove 
Pb : B(x)  -*■ B(y)  directly (if the proof of p was by ref I, pB will be the identity function). 
This is w hat we do in the proof of Lemma 3.9, so that the identity type can become an 
instance of our theory instead of a prerequisite.
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Implementing inductive-inductive definitions The theory we have presented should 
lend itself quite well for implementation; on top of a "normal" type theory, certain 
constants are postulated with a certain reduction behaviour, but always in a type-safe 
and sensible way. Indeed, we have not done so, but S P a  and S P b  can be considered to 
be (large) inductive definitions, in which case ArgA, ArgB etc can be considered to be 
defined by recursion over the codes. This way, the theory can be formalised in Agda 
(see Appendix A).

Of course, for an actual implementation, the user would not work directly with the 
codes in SPA and SP b , but would rather write data type declarations that w ould be 
elaborated to codes in the core Type Theory [Dagand and McBride, 2013]. It would be 
interesting to see how far this idea can be taken.
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In this chapter, we seek a more abstract characterisation of inductive-inductive defini
tions. In the spirit of initial algebra semantics, we will characterise inductive-inductive 
definitions as initial objects in a category of "algebras". First we develop a generic 
framework for elimination rules which makes it possible to abstract away from the 
details w hen proving the equivalence of initiality in the category and the standard 
elimination rules. We then instantiate the framework to inductive-inductive definitions 
(with the general elimination rules) by considering an appropriate category. Because of 
the categorical setting, we work in extensional type theory in this chapter.

Parts of this chapter have appeared in the proceedings of CALCO 2011 [Altenkirch, 
Morris, Nordvall Forsberg, and Setzer, 2011].

4.1 Inductive-inductive definitions as dialgebras

Within the paradigm  of initial algebra semantics [Goguen et al., 1977], a data type is 
modelled as the carrier of the initial algebra of a functor F. In more detail, let C be a 
category whose objects we think of as data types, and let F  : C ^  C be an endofunctor 
on C. An F-algebra is a pair (X, / )  where X is an object of C and /  : F (X ) -»• X . We 
call X  the carrier of the algebra.

For any endofunctor F , the collection of F-algebras itself forms a category AlgF of 
F-algebras. A m orphism  from (X, / )  to (Y , g) is a map h : X  -»■ Y  in C such that the 
following diagram commutes:
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F { X ) ^ —^ X  

F(h)

F { Y ) - r ^ Y

The initial F-algebra (pF, \np) is the initial object in this category. As all initial objects, 
w hen it exists, it is unique up to isomorphism. The object f iF  is the interpretation of 
the data type described by F,  while the morphism \np : F(pF)  -► pF  interprets its 
constructors. We call F  the pattern functor for the data type pF. Initiality ensures that, 
given any F-algebra g : F ( X )  -> X,  there is a unique F-algebra homomorphism foldp g 
from the initial algebra (pF, in/r) to that algebra. This is the semantic counterpart of 
the elimination rule for pF.

This gives a principled and expressive formalism for dealing with the semantics 
of simply typed data types. However, when trying to use initial algebra semantics to 
model inductive-inductive definitions, we run into two problems: (i) it is not enough to 
consider endofunctors F  : C -* C, and (ii) we need to talk about dependent function 
spaces. The first problem is particular for inductive-inductive definitions. We will 
see how it arises, and discuss a solution to it in Section 4.1.1. The second problem 
is common to initial algebra approaches for dependent type theory in general, and a 
solution has been rediscovered in slightly different settings multiple times for many 
different systems; Closest to our own is Dybjer and Setzer's solution for induction- 
recursion [Dybjer and Setzer, 2003]. We develop a framework that can be instantiated 
to yield these different instances in Section 4.2, also taking the first problem (i) into 
account.

4.1.1 D ia lgeb ras

One could imagine that inductive-inductive definitions could be described by functors 
m apping families of sets to families of sets (similar to the situation for induction- 
recursion [Dybjer and Setzer, 2003]), but this fails to take into account that the construc
tors for B  should be able to refer to the constructors for A. We have seen in Chapter 3 
that the constructor for B  can be described by an operation

ArgB : ( A  : Set)( 5  : A  -* S et)(c : ArgA(A, B ) -* A ) -* Arga (A, B )  -> Set

where c : ArgA(A, B) -*■ A  refers to the already defined constructor for A. However, 
(ArgA, ArgB) is then no longer an endofunctor. We will model the constructor for B  as 
(the second component of) a morphism (c, d) : Arg(A, B, c) -> (A, B)  between families 
of sets. Recall from Definition 3.6 that if D is a category, then Fam B is the category 
which has as objects pairs (A, B),  where A  : Set and B  : A -* B. A morphism from 
(A, B)  to (A', B ') is a pair ( /,  g) where /  : A -»• A' and g : (x : A) -> B ( x ) -> B' ( f (x ) ) .

Note that there is a forgetful functor U : Fam ED ->• Set sending (A, B)  to A and ( f ,g)  
to / ,  which we call the index set functor. We are interested in the situation where O = Set. 
Now, c : ArgA(A, B) -> A is not an ArgA-algebra, since ArgA : Fam (Set) -> Set is not
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an endofunctor. However, we have c : ArgA(A, B) -*■ U(A,  B).  This means that c is a 
(ArgA, t/)-dialgebra [Hagino, 1987]:

Definition 4.1 Let F, G : C -»■ B be functors. The category Dialg(F, G) has as objects 
pairs (X,  f ) where X  is an object in C and /  : F ( X )  -+ G(X) .  A  morphism from (X, / )  
to (Y, g) is a morphism h : X  -> Y  in C such that the following diagram in B commutes:

F ( X ) —^ G ( X )

F(h) G(h)  (4.1)

F ( Y ) — + G { Y )

Let F, G : C -> B. There is a forgetful functor V : Dialg(F, G) -> C defined by 
V ( A , f )  = A. Dialgebras are called subequalisers by Lambek [1970], and are a special 
case of inserters [Kelly, 1989] in the 2-category of categories. If we choose G to be the 
identity functor Id : C -> C, we recover the concept of an F-algebra.

Putting things together, we will model the constructor for A  as a m orphism  c : 
ArgA(v4, B)  -+U(A , B)  in Set, i.e. as a function c : ArgA(A, B ) -* A,  and the constructor 
for B  as the second component of a morphism  (c, d) : A r g (A ,F ,c )  -»■ V ( A , B , c ) in 
Fam(Set), i.e. as the second component of a morphism (c,d) : Arg(A, F , c )  -> (A, F ) .  
Thus, we see that the data needed to describe (A, B)  as inductively generated with 
constructors c, d are the functors ArgA and Arg. However, we must also make sure that 
the first component of Arg coincides with ArgA, i.e. that U o Arg = ArgA o V.  Each code 
in the axiomatisation in Chapter 3 gives rise to such functors:

Proposition 4.2 Each code 7  = (7 ,4 , 7 5 ) for an inductive-inductive definition induces 
two functors

ArgA : Fam(Set) -* Set Arg : Dialg(ArgA, U) -»• Fam(Set)

defined by
ArgA( A ,B)  := ArgA(7 A, ^4,B)

and

Arg(A,B,c)  :=

(ArgA( ^ , F ) ,  Ax. (7/:Arg^(7j4,7B,A ,F ,c ) | c(x) = lndex£(7 A, A,B,c,- /B,y)})  . 

Note that U o Arg = ArgA o V.

Proof. We have already seen that ArgA is functorial in Lemma 3.9. Similarly, Arg can be 
proven to be functorial by induction over 7 b, making crucial use of extensionality and the 
fact that morphisms in Dialg(ArgA, U) make diagrams of the form (4.1) commute. □
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Remark 4.3 If we have two functors ArgA/ Arg as in Proposition 4.2, that is

ArgA : Fam (Set) -> Set 

Arg : Dialg(ArgA, U) -> Fam(Set)

with U o Arg = ArgA o V, then the first functor is determined as the first component of 
the second, and we often write such a pair as Arg = (ArgA, ArgB) where

ArgB : (A : Set) (B  : A -*■ Set)(c : ArgA(A, B)  -> A)  -> ArgA(A, B ) -»• Set .

Example 4.4 (Contexts and types) The inductive-inductive definition of C txt: Set and 
Ty : Ctxt -► Set is given by

ArgCtxt(A, 5 )  = 1 + ET: A. B(T)
ArgTy(A, B,c , x )  = 1 + T>a:B(c(x)).  B (c ( in r(c(x ) ,cr)))  .

For ArgCtxt, the left summand 1 corresponds to the constructor e taking no arguments, 
and the right summand E T: A. B(T)  corresponds to D>'s two arguments T : Ctxt and 
cr: Ty(T). Similar considerations apply to ArgTy. ■

Example 4.5 (Sorted lists) The sorted list example does not fit into our framework, 
since <l: (N x SortedList) ->■ Set is indexed by N x SortedList and not simply SortedList. 
It is however straightforward to generalise the construction to include this example 
as well: instead of considering ordinary families, consider "Nx A-indexed" families 
(A , B)  w here A is a set and B  : (N x A)  -*• Set. The inductive-inductive definition of 
SortedList: Set and <l= (N x SortedList) -*■ Set is then given by

ArgSList(^>£) = 1 + (E n :N .E ^ :A .B (n ,0 )
Arg<L (A, 5 ,  c ,m , ini (* ) )  = 1 

Arg<L( A , 5 , c , m,\nr((n,£,p)))  = E m  < n . B ( m ,£ ) .

For ease of presentation, we will only consider ordinary families of sets in this chapter, 
but will extend the theory to cover this example as well in Section 6.2. ■

4.1.2 A category  for in d u c tive-inductive  defin itions

Given Arg = (ArgA, ArgB) representing an inductive-inductive definition, we will now 
construct a category EArg whose initial object (if it exists) is the intended interpretation 
of the inductive-inductive definition. Figure 4.1 summarises the functors and categories 
involved (U, V  and W  are all forgetful functors).

One m ight think that the category we are looking for is Dialg(Arg, V), where 
V  : Dialg(ArgA, JJ) -*■ Fam(Set) is the forgetful functor. Dialg(Arg, V ) has objects 
(A, B, c, (do, d\)),  where A : Set, B  : A -> Set, c : Arga (A,B)  -> A and (do, di) : 
Arg(A,J3,c) -> (A, B).  The function do : ArgA(A, B)  -*■ A  looks like the constructor for 
A that we want, but

di : (x  : Arga (A, B ))  ArgB(A, B, c, x ) -► B(d0(x))
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ArgA Arg (V,U)

Set Fam(Set) Dialg(ArgA, U) Dialg(Arg, V)  ^ 3 E Arg

U V w

Figure 4.1: The functors and categories involved.

does not have the type we expect of the constructor for B ; it would, if only c and do 
were the same! To this end, we will consider the equaliser of the forgetful functor

W  : Dialg(Arg, V) -> Dialg(ArgA, U)

defined by W ( A , B,  c, (do, d i)) = (A, B,  c), and the functor (V, U) defined by

(V’>C/)(A1fl,c ,(d 0ld1)) = (V(A, B, c ) ,U(d0,d1)) = ( A , B, d0)
(V,U)( f ,g)  := (f , g )

Note that U(do,di)  : U(Axg(A,B,c))  -> U ( V( A , B , c )) bu t U o Arg = ArgA o V,  so that 
U(do,di)  : Arga ( V ( A , B , c ) )  -  U(V(A,  B,c)) .  In other words, (V(A, B, c ) ,U(d0,d1)) 
is an object in Dialg(ArgA, U). Hence (V, U) really is a functor from Dialg(Arg, V)  to 
Dialg(ArgA, [ / ) .

Definition 4.6 For Arg = (ArgA, ArgB) representing an inductive-inductive definition, 
let EArg be the underlying category of the equaliser of (V, U) and the forgetful functor 
W  : Dialg(Arg, V)  -*■ Dialg(ArgA, U). 0

Explicitly, the category EArg has

• Objects (A , B , c , d ), where A  : Set, B  : A  -> Set, c : ArgA(A,Z?) A, d : (x : 
Arga ( A , B ) )  -► Argb( A , B , c , x )  5(c(ar)).

• Morphisms from (A, i?, c, d) to (A', B ' , c', d') are morphisms 
( /,  0 ) :  (A, B, c) =>Diaig(ArgA,t/) <0 such that in addition

g(c(x) ,d(x,y))  = d'(ArgA( f , g) (x) ,ArgB( f , g) (x , y ) )  .

Example 4.7 Consider the functors ArgCtxt, ArgTy from Example 4.4:

ArgCtxt(A, B)  = 1 + T,T:A. B(T)
ArgTy(A, B,c , x )  = 1 + Y,cr :B(c(x)).  B(c(\nr(c(x), a)))  .

An object in E(ArgCtxt ArgTy) consists of A : Set, B : A -* Set and morphisms c = [£a ,b , >a ,b ] 
and d = XT. [z-A ^ ( r ) ,  n A)Jg (r)]  which can be split up into1

£ a , b  

l a ,b  

n  a,b

l ^ A ,  >A,B : ( ( r : A ) x B ( r ) ) - > A  ,
( r : ArgCtxt( A . B ) ) - l - B ( c ( r ) )  ,

( r  : ArgCtxt(.4, B))  -» ((cr : B (c (r))) x (t : B(  >A,S(c(r), <7»)) -  B ( c ( r »  .

’Notice that l a , b  '■ (r  : ArgCtxt(A, B ) )  . and not l a , b  : (T : A) . as one would maybe expect.
There is no difference for initial A,  as we have ArgCtxt(A, B )  = A  by (a variant of) Lambek's Lemma.
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In Section 6.2, we will generalise the current construction to the simultaneous 
definition of A  : Set, B  : A  -> Set, C  : (x : A)  -> f?(x) -»• Set, ...by  extending the 
construction hinted at in Figure 4.1.

The intended interpretation of the inductive-inductive definition given by Arg = 
(ArgA , ArgB) is the initial object in EArg. Depending on the meta-theory, this might of 
course not exist. We will show that it does if and only if an eliminator for the inductive- 
inductive definition exists. To avoid the messy details, we will prove the statement for 
a more abstract notion of data types in Section 4.2.

Remark 4.8 We need to pass from Dialg(Arg, V)  to the equaliser category EArg since 
the objects in Dialg(Arg,  V)  are not quite of the right shape for inductive-inductive 
definitions, which we intend to interpret as initial objects in the appropriate category. 
However, since EArg is a subcategory of Dialg(Arg, V),  we could hope to prove that the 
initial object of Dialg(Arg, V)  already lives in EArg, in order to simplify the construction. 
I have not succeeded in doing so.

4.1.2.1 How to exploit initiality: an example

Let us consider an example of how to use initiality to derive a program dealing with the 
contexts and types from Example 4.7. Suppose that we want to define a concatenation 
-H- : Ctxt -*• Ctxt -*■ Ctxt of contexts -  such an operation could be useful to formulate 
more general formation rules, such as:

°  '■ Ty(T) T  : Ty(A) 
a x  r  : Ty(T -h- A)

Such an operation should satisfy the equations

A -H- £ = A
A h+ ( r> < r)  = (A -H- T) >(wkr (cr, A)) ,

where wk : (T : Ctxt) -*■ (a : Ty(T)) (A : Ctxt) -> Ty(A-H-T) is a weakening operation,
i.e. if <r : Ty(T), then wkr(<r, A ) : Ty(A -h- T). A moment's thought should convince us
that we want wk to satisfy

w kp(tr, A) = tA-H-r 
w k r(n r (cr,r), A) = n A r f (wkr (cT, A ),w kr> a (r, A)) .

Our hope is now to exploit the initiality of (Ctxt, Ty) to get such operations. Recall 
from Example 4.4 that Ctxt, Ty are the underlying sets for the inductive-inductive 
definition given by the functors

ArgCtxt(A,  Z?) = 1 + ET .A. B(T)
ArgTy(A, B,c , x )  = 1 + (E c r :B (c (x ) ) .r :5 (c ( in r (c (x ) ,c r ) ) ) )  .
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From the types of

+i-: Ctxt -»• Ctxt -»■ Ctxt 
w k : ( r  : Ctxt) ->• T y(r) -»• (A : Ctxt) -»■ Ty(A 4+- T) ,

we see that if we can equip (A , B)  where A  := Ctxt -> Ctxt and B { f )  := (A : Ctxt) -»■ 
T y(/(A )) with an (ArgCtxt, ArgTy) structure, initiality will give us functions of the right 
type. Of course, we m ust choose the right structure so that our equations will be 
satisfied:

in>i: ArgCtxt(y4, B)  -> A
in,4 ( i n l (* ) )  = A A . A
iny4( i n r ( ( / , p ) ) )  = AA.  ( / ( A )  >  g( A) )  ,

inB ■■ (x : ArgCtxt(yl, B))  -> ArgTy(A,B, \nA,x)  -» B ( i n A (a:))
ins ( A , i n l ( * ) )  = A r . i ilM(A)(r)
i n e ( A , i n r ( ( ^ , h)))  = XT.UinA{A)(r)(g(T) ,h{T))  .

Since (*-4, B,  in^, in#) is an object in EArg, initiality gives us a m orphism  (-H-,wk) : 
(Ctxt,Ty) -»• (A, B)  such that

( # , w k ) o ( [ e ,  >],[i,n]) = (inj4, ins ) o  (ArgCtxt,ArgTy)(-H-,wk) .

In particular, this means that

-h-(e) = inA(ArgCtxt( -n - , w k ) ( i n l ( * ) ) )  = in>i(inl(*)) = A A . A  

-H-(r >cr )  = inA(ArgCtxt( 4 + , w k ) ( i n r ( ( r , ( j ) ) ) )  = i n ^ ( i n r ( < - H - ( r ) , w k ( r , a ) ) ) )

= AA. 4+ ( r ,  A) >wk(r,<r, A) .

Thus, we see that A 44 e = A and A 44 (T > <r) = (A 44 T) > wkr(<r, A) as required.2 In 
the same way, the equations for the weakening operation hold.

4.2 A framework for generic elimination rules

We now prove the equivalence between being initial and having an eliminator. To make 
the size of the equations we have to juggle around bearable, we will abstract away 
from the particular instance of inductive-inductive definitions and consider a general 
framework of elimination rules for different kinds of "inductive-like" definitions. Our 
concrete result can then be reconstructed by instantiating the framework with the 
category introduced in Section 4.1.2.

2Actually, the order of the arguments is reversed, so we would have to define A -h-' T := T -h- A.
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4.2.1 Categories with Families

In order to come up w ith a framework for generic elimination rules, we try to isolate 
the different concepts involved in a dependent eliminator, in contrast to an iterator such 
as foldi?.

(i) We can model data types and non-dependent functions as objects and morphisms 
in a category C. For instance, inductive definitions X  : Set can be modelled as 
objects in Set, and I- indexed inductive families X  : I  -*■ Set as objects in Set7.

(ii) We need to be able to talk about predicates on X  (for instance, for an inductive 
definition X  : Set, we would like to talk about P  : X  -»• Set, and for an inductive 
family X  : I  -»• Set, a predicate P  on X  should have type P  : ( i : I)  ->■ X( i )  -> Set).

(iii) Given a predicate P  on X,  we want to be able to form a "sigma type" or compre
hension E a 'P  of the same standing as X  -  in other words, should also be 
an object in C (for instance, an ordinary sigma type Ex :X.P(x)  for an inductive 
definition X  : Set, and an "indexed sigma type" i Ex : X( i ) .P( i , x )  for an 
inductive family X  : I  -> Set).

(iv) Given a predicate P , we want to consider "dependent functions" /  : ITaP. Just as 
hom-sets in a category need not be represented internally by an exponential object, 
we do not need to demand that the collection of all such dependent functions is 
represented in C. (For instance, an ordinary dependent function /  : (x : X )  -*■ 
P{x)  for an inductive definition X  : Set, and "indexed dependant functions" 
f  : ( i : I)  (x : X ( i ) )  -»• P( i , x ) for an inductive family X  : I  -»• Set).

This looks like the structure of a Category with Families [Dybjer, 1996; Hofmann, 1997]. 
Categories w ith Families were introduced by Dybjer [1996] as "uncategorical cate
gorical models of Type Theory" with the aim of being a syntax-free presentation of 
Type Theory as close to the syntax as possible. Many similar models have been pro
posed, e.g. CartmelTs categories with attributes [Cartmell, 1978], Jacobs' comprehension 
categories [Jacobs, 1993] and Taylor's display map categories [Taylor, 1999].

Definition 4.9 A Category with Families (CwF) is given by

• A category C with a terminal object 1,

• A functor F  : Cop -*■ Fam(Set). We write P(T) = (Ty(T), AA. (T i- A)) for the two 
components of P. For the morphism part, we introduce the notation - [ - ]  for 
both types and terms, i.e. if /  : A -» T then - [ / ]  : Ty(T) -> Ty(A) and for every 
A e Ty(T) we have - [ / ] :  (T h- A) -> (A h A [/]).

• For each object T in C and A e Ty(T) an object T • A in C, the context comprehension 
of T and A, together with a morphism p (A ) : T • A -»• T (thefirst projection) and a 
term  e (T • A i- A[p(A)]) (the second projection) w ith the following universal 
property: for each /  : A -> T and M e (A i-A [ /] )  there exists a unique morphism
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6 = (/, M )a '• A -*■ T • A such that p(^4) o 0 = f  and q,J0] = M. We w rite p and q 
for p(A) and qA respectively if A  can be inferred from context. ■

We note in passing that Type Theory can be interpreted in a Category with Families 
by interpreting contexts as objects in C, types in context T as elements of Ty(r) and 
terms of type a in context T as elements of (T h cr). That F : Cop -> Fam(Set) is 
a functor corresponds to substitution in types and terms. The comprehension T • a 
models the extension of the context T w ith a fresh variable of type a, w ith weakening 
- [ p ] : Ty(r) -»• Ty( 7  • a). The fresh variable is available as the term q e (r • a \- cr[p(cr)]) 
in the extended context, w ith (weakened) type a.

Example 4.10 (Set as a CwF) The category of sets becomes a Category with Families if 
we define3

iy(r) = {A |J4 :r -S e t}  ( ivyi)  = n ^ M
7*r

For /  : A -* T, A : Ty(T), h : (F A), we define

A [ f ] : Ty(A) = {£  | £  : A -  Set} : (A H A W ) =
A[f] = A o f  h[f] = h o f

We define the context comprehension of F : Set and A  : F -»• Set as F • A = Z 7er ^ ( t ) -  
There are projections

p ( A ) : £ > ( 7 ) - r  qy4€( r . 4 h ^ [ P (^ ) ] )=  n  M i )
7er <7,«)€r-i4

p ( i 4 ) « 7 , s ) )  =  7  q i4 « 7 >s ) )  =  s

Finally, given /  : A -»■ F and M  e (A i- A[f])  = FltfeA we define

6 = ( f , M ) A : A ^ F - A

by 6(6) = (f ( 6 ) , M( 6 )). We then have p(^4) o 6 = f  and qA[d] = M,  and any other 
function satisfying these equations must be extensionally equal to 6, hence 6 is unique.

■

Comparing our list of requirements from the beginning of the Section with Defini
tion 4.9, we think of a Category w ith Families C in the following way:

(i) We model data types and non-dependent functions as objects and morphisms in 
C.

(ii) We model predicates on X  as elements of Ty(X).

3 For size reasons, we should restrict Ty(r) to T-indexed families of small sets, that is, type-theoretically, 
use a universe (U, T )  and define Ty(r) = { A  \ A  :T  -> U},  and accordingly (T i— >1) = n 7er F(A( 'y) )) .
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(iii) We model predicate comprehension £ x P  as context comprehension X  • P.

(iv) We model dependent functions /  : IIx P  as elements f  : ( X  \- P).

Note that we are not working in the model of type theory that the Category with 
Families describes. Instead we are shifting everything one level: contexts become types, 
types become type families. The terminal object in C (normally representing the empty 
context) plays less of a role for our purposes. In Example 4.10, we see how this perfectly 
matches the setting of ordinary inductive definitions. This is true also for e.g. indexed 
inductive definitions and, of course, inductive-inductive definitions.

We will repeatedly use the following lemma when working with Categories with 
Families.

Lemma 4.11

(i) L e t / : 4 - > r , M s ( i h  A[f]),  h : 0  -  A. Then (/, M ) A ° h  = ( f o  htM[h})A[I].

(ii) For every M  e (F i -  A),  there is M  : T T • A  such that p(A)  o  M  -  id and 
q a [M] = M.

Proof.

(i) (/, M ) a o h satisfies the universal property for f  o h and M[h\.

(ii) There is no choice but to define M  := (id, M ) a - □

4.2.2 A generic induction hypothesis type

In the axiomatisation of the elimination rules in Section 3.2.5, we defined types I Ha, 
IHb of induction hypothesis for the step functions of the eliminators. Our goal in this 
section is to come up with an abstract counterpart of the induction hypothesis type in 
the Categories w ith Families framework. In fact, the elimination rules we model will 
turn out to be the general elimination rules, and not just the simple ones discussed 
in Section 3.2.5.2. But first, let us take a step back and consider an eliminator for an 
inductive definition, i.e. for an F-algebra (A , / )  where F  : Set -» Set. Such an eliminator 
is of the form

P  : Set stepc : (x : F(A))  -»• Df (P, x ) -*■ P(c(x ))
elimf’(P,stepc) : (x : A)  -»• P{x)

where we have written Of (P) : F(A)  -+ Set for the type of inductive hypothesis with 
respect to P; we have used the notation □ from modal logic, since □ f (P,x ) consists 
of proofs that P  holds at all F-substructures of x. The rule says that if we can prove 
that P{y)  holds for elements y = c(x) constructed with the constructor c (given that it 
already holds for the subelements of x by the induction hypothesis), then it holds for 
all elements of A.
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We also expect a corresponding computation rule which tells us how elimF (P, stepc) 
behaves when applied to canonical elements:

elimF (P,stepc, c(x)) = stepc(x, F(P,elim (P,stepc),x )) .

Here, F ( P ) : ( f  : (x : A)  -*■ P ( x )) -*■ (x : F(A) )  -* np(P,  x)  takes care of recursive calls. 
We will discuss F  in more detail in Section 4.2.3.

Example 4.12 Let F ( X )  = 1 + X ,  i.e. F  is the functor whose initial algebra is (N, [0, sue]). 
The type of induction hypothesis \3\x. i +x  should then satisfy

□Ax.i+x(^,inl(*)) = 1 nxx.i+x (P, i n r ( n ) )  = P(n)

so that the eliminator for (N, [0,sue]) becomes

step0 :1 -*■ P( 0)
P  : N -»• Set stepsuc : (n : N) -*> P(n) -* P(suc(n))

elimi+x (P, step0, stepsuc) : (x : N) -*• P(x)  ■

For polynomial fimctors F,Up  can be defined inductively over the structure of F  as 
is given in e.g. Dybjer and Setzer [2003]; Hermida and Jacobs [1998]. However, np  and 
F  can be defined for any functor P  : Set -► Set by defining

□F (P ,x) := {y : F ( Z z : A . P ( z ) )  \ F(n0)(y) =
P(P ,stepc,x) := (F(stepc)(x), refl) ,

where we have used the notation stepc := Ay. {y, stepc(y)). Returning to Example 4.12, 
we see that indeed □ a a m + jk(F,  inl(*)) = 1 and D\x. .1 +x(F, inr(n)) = P(n).

Lemma 4.13 Let F  : Set -> Set and let d f  and F  be defined as in (4.2).

(i) There is an isomorphism <p : F (£  A B)  F(A)  (□ f {B))  w ith tt0 o ip = P (tt0).

(ii) For g : (x : A) ^  B{x),  we have F{g) = ip o F(g).

Proof.

(i) Define <p with type as above and if) : £  (FA)  (□ f B))  -*■ P (£  A B ) by

V(y) = ( P ( 7 r 0 ) ( j / ) , ( 3 / , r e f l ) )  , ^((x, (y,p)))  = y.

Then ̂ ( y ( y ) )  = tP((F(tc0) y, (y, ref I))) = y and for every (x, (y,p)) : E ( FA )  (□ FP )), 
we have x  = F(7ro)(y) by p and p = ref I by proof irrelevance, so that

(y,P)))) = <p(y) = (F(ir0)(y), (y, refl)) = (x, (y,p)) .

Hence F ( £  A B )  = Z (FA)  (□ FB)).
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(ii) By definition, F(g)(x)  = (x , (F(g) (x ), refl)), and also

<p(F(g)(x)) = (F(n0)(F(g)(x)),(F(g)(x),ref\))  
= (F(id)(x),  (F(g)(x),  refl))
= (x , {F(g)(x),  refl))

since iro o g = id. Hence F( g )  - p  o F(g) .  □

In fact, this property determines Dp up to natural isomorphism:

Proposition 4.14 Let X p  : (P  : A  -*■ Set) ->> F ( A )  -»■ Set. Then X p ( P ) = □ f ( P )  if and 
only if there is

p  : F ( £  A P) ^  E ( F A )  {XpP)  (*D)

such that
n0 °<p = F(7r0) . (**D)

Proof. (=>) Let tfjx : Bp(P, x ) A  Xp(P,  x). From Lemma 4.13, we know that there is an
isomorphism p$ : F (£  A P ) -» E ( F A )  (df P)  satisfying (**□). Define p  := [id, V>] ° <po-
Then <p is an isomorphism (with inverse p Q 1 o [id,?/;-1]) and the following diagram 
commutes:

F (E A  P)  S  ( F  A)  (□ FP) E (F  >4) (X P )

which shows that (**□) holds.
(<=) Assume (*D) and (**□) holds. Then

X( P , x )  = {z 

= {2/ 
= { y

E F (A ) (X(P) )  | 7Tq(z ) = x}
F ( Y . A P ) \ M p ( y ) )  = x }
F (E A P ) | F(7r0)(y) = x} = nF (P ,x) . □

Thus, in the general framework, we will define D f  to be any type having this property, 
after having done the necessary translation to the language of Categories with Families:

Definition 4.15 Let F  : C -*■ D be a functor between Categories w ith Families. We 
say that Dp exists, if there for each object X  in C and P  e Tyc (X) exists D f ( X ,  P ) g 

TyD(F (X )) such that there is an isomorphism

p  : F (X  ■ P ) -» F ( X)  ■ n F(X,  P)

with p o p  = F (p ). ■

Remark 4.16 (CwF pseudo morphisms) Dybjer [1996] defines a morphism (F , cr) be
tween Categories with Families C and D to be a functor F  : C -» O together with a
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natural transformation a : (Tyc , (i-)c) -*■ (TyD, (i—)o) ° F  such that the terminal object 
and context comprehensions are preserved. Dybjer [1996] requires preservation on 
the nose, whereas Clairambault and Dybjer [2011] introduces pseudo CwF morphisms 
where the structure is preserved only up to isomorphism.

In a sense, Definition 4.15 is a generalisation of this concept: If (F, a) is a pseudo CwF 
m orphism , then Dp exists, and is given by the first component of a. Our perspective 
is slightly different: we consider F  : C -+ B to be fixed (as the pattern functor for 
the data type we are interested in), and ask that there is a natural transformation 
□ f  : Tyc -* TyD o F  such that context comprehensions are preserved. Many functors F  
that we will consider will not preserve terminal objects, and we do not need them to. 
We will also see no need to require Dp to act on (T ^4).

If Dp exists, then □ p is unique up to isomorphism also in the general framework; for 
this to make sense, we need to make a category out of Ty(r). The following construction 
is due to Clairambault [2006, Section 4.1].

Definition 4.17 Let T be an object in the Category with Families C. The category Ty(T) 
has as objects the elements from Ty(T), and

Homxy(r)(J4, B) = (T • A -B[p]) .

Composition is given by g o f  := g[(p, /) ]  (with identity q). a

We can easily check that composition is associative 

( g o  f ) o h  = g [ ( p , f ) ] [ ( p , h ) ]

= 9 [ { p ° ( P , h ) J { { p , h ) ] ) ]

= 9 [ { p J [ ( P ^ ) ] ) ] = g o ( f o h )

and q really is an identity:

q ° /  = q[(p>/}] = /  s ° q  = p[<p,q>] = 9[m] = 9
Proposition 4.18 Suppose that Df(F, A) and n ^ ( r ,  A) with isomorphisms <p and <p' as 
in Definition 4.15 are given. Then they are isomorphic as objects in Ty(F(T)).

Proof Define
/ e (F(r) • ̂ (r, A) i- (r,4)[p])

and
9 £ ( F ( r ) - DF( r , J4 ) i-n i.( r .A )[p ])

by /  = q[<̂> o -1] and g = q[< '̂ o <p~l \  Both terms have the right type since po</?o tp~l = 
F(  p )°< ^ _1 = p (and similarly for g). We calculate

f ° 9  = /[(p,  g)] = q W  ° ° <p» q[</ ° ^_1])]
= q[<  ̂<np ~l o (jp o tp o _1, q \tp' o v?-1])] since p = p o ^ o ^ _1

= q[<̂  ° / _1 ° (p> q) ° <p' ° v~ l ]
-  qf'd] = q  = idTy(F(r))
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4. A categorical characterisation

and similarly for g o  f .  Thus A)  and m^(r, A)  are isomorphic. □

We can give an alternative proof by noting that there is another characterisation of 
the morphisms of Tyc (T), which is due to Clairambault and Dybjer [2011]:

Lemma 4.19 Tyc ( r )  is isomorphic to the category Ty^(T) w ith the same objects, but 
where the morphisms from A  to B  are morphisms f : T A - * T B m C  such that 
P ° /  = P-

Proof. Define F  : Tyc (T) -»■ Ty^(T) and G : Ty^(T) Tyc ( r )  to be the identities on 
objects. For a morphisms M  e (T -A  h P [p]) and /  : T A -* T • B, let F( M)  = (p, M)  
and G( f )  = q [ / ] .  Note that p o F ( M)  = p o (p, M)  = p. We calculate:

F( G( f ) )  = F(q[f])  = (p, q [/])  = ( P ° / .  q[/]> = <P, q) ° /  = /

G(F(M) )  = G « p ,M »  = v[(p ,M )] = M  □

Thus, ip o cp'~l : F (T) • n'F(r, A)  -> F(T) ■ Df(F, A)  is obviously an isomorphism in 
Ty^(F(T)) (in the proof of Proposition 4.18, we proved that p o ^ o y ? '1 = p). Hence 
□f(T , A)  and Df(F, 4̂) are isomorphic also in TyC(F(T)).

We will soon see in Section 4.2.2.1 that Dp often exists for general reasons. But first, 
let us define a generic elimination rule for a data type in the general Categories w ith 
Families framework, given that □ p exists.

Definition 4.20 (Generic elimination rule) Let F, G ■ C -*■ O be functors between 
Categories with Families such that Op and Dg exists. Let (X, in) be an (F, G)-dialgebra. 
The generic elimination rule for (X, in) says that there is a term elim as follows:

P  i  Ty(X) stepin € (F (X ) ■ □ F (P) h PG(P)[in o p]) m
elim(P, stepjn) e ( X  \-  P)

Note that (X,  in) need not be an initial object in Dialg(F, G) for this definition to 
make sense -  just as it makes sense to ask if e.g. R satisfies the induction principle for 
natural numbers (the answer is of course no). We will show in Section 4.3 that in fact 
the elimination rule is valid if and only if (X, in) is initial.

The reader might be puzzled by the fact that G and Uq appear in the type of stepin, 
instead of e.g. (warning: this is wrong!)

"step?n e ( F W - D F(P )K P [in o p ])”

which would be the Categories with Families representation of a dependent function 
(warning: still wrong!)

/ step[n : ((* ,*) : E F ( X )  Dp (P )) -> P(in(x))"  .

Looking closer at the types, we see that this does not make sense. The predicate 
P  : Tyc (A') lives in the Category with Families C, but Op(P) : TyD(F (X )) lives in the
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4.2. A framework for generic elimination rules

Category with Families B -  we cannot have a "function" whose domain and codomain 
live in different categories. We need a way to lift P  from C to B, but that is exactly what 
the predicate lifting nG does. Hence

stepjn € (F ( X ) • □/r(P ) I- DG(P)[in o p])

i.e., in type-theoretical notation,

stepin : ( (x,x)  : S F ( X ) dj? (P))  ->• nG(P)(\n(x)) .

The type oG(P)  can be seen as a lifting of P  from types to predicates; in fact, this is 
what n G is usually called in the fibrational setting [Hermida and Jacobs, 1998]. In our 
applications, G will "morally" be the identity, which implies that aG will be so as well.

Lemma 4.21 If G : C -»• B is the identity on objects and G preserves context compre
hensions and projections, i.e. G(T -c A )  = T •© A  and G(p) = p, then nG exists, and 
oG(P)  = P  (with tp -  id).

Proof. Note that we have □<?(P)  e Ty(T) = Ty(G (r)). Since G(T A)  = T A  and 
G(T) = T, the identity morphism is an isomorphism between G(T • A )  and G^T) ■ A.  
Furthermore, since G(p) = p, we trivially have p o id = G(p). □

In particular, if we choose G = Id : C -»• C and consider ordinary F-algebras for an 
endofunctor F  : C -»• C, the elimination rule becomes

P t Ty(X)  stepin 6 (F (X ) ■ □ F (P ) h- P[in o p])
elim(P, stepin) e ( X  i- P)

4.2.2.1 Sufficient conditions for Dp to exist

We now investigate conditions for Dp to exist. As we will see, mild conditions on the 
Categories w ith Families involved will suffice. A Category with Families is said to 
support (extensional) identity types and E-types if it is closed under the following 
constructions respectively:

Definition 4.22 Let C be a Category w ith Families.

(i) C supports (extensional) identity types if

• A  € Ty(T) and a, a' € (T i- A )  implies that there is /^ (a , a') c Ty(T).

• a e (T i- A)  implies that there is rA,a '• (T, I a ( a *- a ) ) -

• c : (T, Ia (o i- a')) implies that a = a' and c = rA,a-
• these constructions are stable under substitution, i.e.

IA(a,a')[f] = IA[f](a[f],a'[f]) 

r A , a [ f ] = r A[f] ,a[f]
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(ii) C supports E-types if

• A  e Ty(r) and B  e Ty(r • A )  implies that there is E(A, B) e Ty(r).
• a g (r i- A )  and be (T B[a]) implies that there is p(a,b) : (r h E(A, B )).
• c : (I\E (A  i- B )) implies that there are n i (c) e (r i- A )  and tt2 {c) e (r i- 

B[tti(c)]) such that

?ri(p(a,6)) = a 7r2(p(a,b)) = b p(tti(c), tt2 ( c) )  = c

• these constructions are stable under substitution, i.e.

E (A ,B )[/] = E (A [/] ,B [( / o p ,q )])
P(a,b)[f] = p(a[f],b[f])
M c ) [ f ]  = 7Ti(c[/])
7r2 ( c ) [ / ]  = 7T2 ( c [ / ] )  B

Both identity types and E-types are of course well-known from Type Theory. Hof
mann [1997] shows how they can be interpreted in Categories with Families that support 
them. We are interested in slightly less well-known constructions, namely constant 
families and inverse image types.

Definition 4.23 A CwF C supports constant family types if the following data are given:

• For each T in C, there is a type f  a  e Ty(A) for all A in C such that f  a[<?] = f #  
whenever g : B  -> A. (We will usually omit the subscript A.)

• There is an isomorphism : (B  f )  -> H om (S,r) with inverse T : Hom(T?, T) -»• 
(B i- T) such that o g = M[g]K ■

In the CwF Set (see Example 4.10), constant family types are simply constant families 
r(x) = T. The isomorphism (B  1- f) = H om (5,r) relates "non-dependant dependant" 
functions and ordinary (non-dependent) morphisms. Note that the equation M l o g = 
M \gY  equivalently can be written

/ ° 5 f = f [ g ]

by considering /  = and applying to both sides of the equation.
Clairambault and Dybjer [2011] defines a similar notion of democracy for a CwF; a 

CwF is democratic if each context is represented by a type. In detail:

Definition 4.24 (Clairambault and Dybjer [2011, Def. 6]) A CwF C is democratic if for 
each object T of C there is T e Ty(l<c) and an isomorphism 7 r : r -> ic  • r. ■

Reassuringly, constant families and democracy are interderivable.

Proposition 4.25 A CwF C supports constant families if and only if it is democratic.
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Proof (=>) Assume C supports constant families. Define T := f  i c and 7 7  = Or, idT): T -*■ 
l c  • r  with inverse 7 f1 = q l : l c  • T -> T. Of course, we have to check that 7 r  and 7 r 2 are 
really inverse to each other:

7 f 1 o 7r = q* o (!r , idf) = (q[(!r , id1) ] ) 1 = (idT)j = id

In the other direction, we have

7 r  0 7 f 1 = Or, idT) o q l = (!r  o q f  idt [qi]> = (!lc .f , (id o q*)1) = (p, (q; )T) = id

Here, we use that p ( f ) : l c  • f  -► lc  must be equal to !2 j ; : l c  ■ T -► lc  by the unique
ness of !j p.

(<=) Assume C is democratic. Define Fa := T[!a ]- Then

f A [p] = r [ ! A ° p ]  = r [ i B ] = f B 

by the uniqueness of \B- Define := 7 P1 o (!#, M)  and f  := q[7 r  0 /]• Then 

(A/1)’ = q[7r o 7 f> o (\B, M)]  = q [<!s , M)] = M  

and using that p o 7^ o /  : i? -► l c is equal to ! B for every /  : B -*■ T, we have

{ f Y  = Tr* 0 (-B, q[7r 0 /])
= 7 r 1 ° ( p o 7 r ° / , q [ 7 r 0 / ] )  

= 7 r l o ( p > q ) 0 7 r ° /  = /  •

Finally, we have

o g  =  7r X o (

= I r 1 0 (
= 7P1 o (

B , M )  o g  

B ° g , M [ g ] )

A ,M[g])

= M [ g Y  . □
The second "type former" we need are inverse image types. These correspond to 

an indexed inductive definition in Type Theory; for /  : A -* B,  the inverse image type 
Invlm /  ■ B  -> Set is given by the constructor

im : (x : A)  -> lnvlm/(/(a:)) ,

i.e. if x  : lnvlm/(6) then f ( x )  = b. Alternatively, the inverse image of f  : A-> B  can be 
defined as

lnvlm/(6) = (Ex : A ) ( f ( x )  =B b) . 

if we translate this to CwF combinators, we can define the inverse image /* of /  as

r := S ( 7 / &( / f[q '] ,p 7 )  .
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This makes sense whenever the CwF has E-types, identity types and constant families. 
We can define the "constructor" im / : A -> B  ■ f* by im / := ( f , p ( \6 \ r^ ^ )) since 
(checking that r g -  ̂  has the right type)

(-4 ^ pf) [< /°  P. q>][<id. id1)]) = ( 4 i - / g ( / t [qt] ,p , )[( / , id t)])

= ( 4  k ^ ( / T[qA ° ( / ’ idT)LpT[(/* idT)]))

=  ̂ / ^ ( / t [(idtV ],p t[</, id^]))

We are interested in inverse image types, since they give us a way to construct a jr. 
Let us first prove a preliminary lemma:

Lemma 4.26 (Clairambault and Dybjer [2011, Lemma 25]) Let C be a CwF with inverse 
image types. For all /  : A -> B  in C, we have an isomorphism <p : B ■ f* -»• A in C such 
that the following diagram commutes:

B - f

Proof. The isomorphism can be defined as ip := 7ri(q)J' w ith inverse </? 1 := im / = 
</,p(idT, r g /t )). We then immediately have

i fOif-1 = 7n(q)i o (/,p (idT, r ^ / t )) =7Ti(q[(/,p(idt , rg J t ))])i = (idT)j = id 

In the other direction, we have

V?_1 ° ^  = </,P(idT, r g / t ))o7ri(q)i

= ( / o?r i(q ) i5p(idt>rs ,/ t) [7ri(q ) i ])

= ( / ° 7 r i ( q ) i ,p(7ri (q) ,0)

If we can prove /  o 7ri (q)^ = p and r = ^ ( q ) ,  we are done, since then

</r l  o t P  =  (p>p(^i(q),7T2(q))) = (p ,q) = id

by surjective pairing for E-types. But 7r2(q) € ( B - f*  / ^ ( / W L p O K P ^ iC q ) ) ] ) /
hence by the extensionality of identity types

/ T[7ri(q);] = p T

or equivalently /  ° ^ (q)* = p. Furthermore, indeed ^ (q )  = r by the uniqueness of 
identity proofs.

Finally, po^p * = p o (/,p (id t , rg J t )) = / ,  so the diagram commutes. □
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Proposition 4.27 Let F  : C -► D w ith ID) a CwF w ith inverse image types. Then

Proof. By Lemma 4.26, F( p)* satisfies the universal property of Dp(T, a). □

By reformulating a theorem due to Hofmann [1994], who in tu rn  adapted a con
struction due to Benabou [1985], Clairambault and Dybjer [2011] proves:

Theorem 4.28 (Clairambault and Dybjer [2011, Lemma 18]) Let C be a category w ith 
finite limits. Then C can be extended to a CwF w ith constant families, extensional 
identity types and E-types. □

Hence, in order to see if a category C is a Category w ith Families or not, we only 
need to check if it has finite limits. For example, we immediately see that all Set7 for a 
fixed set I  is are CwFs, since limits in functor categories are calculated pointwise. Set7 
is the Category with Families which correspond to indexed inductive definitions. 

Putting together the results from this section, we get:

Corollary 4.29 Let D be a category w ith finite limits, C a CwF. Then Dp exists for any
F : C -»• B. □

4.2.3 Generic computation rules

So far, we have treated the induction hypothesis involved in the elimination rules. This 
is enough for a static view of data types and induction, but not for us: we want our 
proofs to compute. As briefly touched on at the beginning of Section 4.2.2, in the case 
of ordinary inductive types, modelled as initial algebras of endofunctors on Set, we 
expect a computation rule of the form

elimir(P,stepc,c(x)) = stepc(x, F(e\ \mp(P,stepc),a:)) .

where F  : ( f  : (x : X )  -+ P{ x )) -> (x : F ( X ) )  -* Op(P, x) is a kind of "dependent map 
function" that takes care of recursive calls by applying its input /  in a way compatible 
with the structure dictated by F. The function F  is like the action of F  on morphisms, 
were it not for the fact that the input /  : (x : X )  -*■ P(x)  and output F ( f ) : (x : F ( X ) )  -> 
□f(-P, x )  are dependent functions, hence not morphisms in Set. However, if we make /  
non-dependent by considering /  = Ax . ( x , f ( x ) )  ■ X  -»• E X  P,  then use F ( f )  and the 
isomorphism <p : F (E  X  P) ^  E F ( X )  Op(P),  and take the second component, we end 
up w ith a dependent function of the right type. Since no o ip = F(no) by Lemma 4.13, 
nooipo F ( f )  = F(n0 o / )  = F(id) = id, and we can define

F ( f )  := 7T! o <p o F ( f ) : (x : F(A))  -  DF(P, (tTq o <p o F( f ) ) ( x ) )  . (4.3)

Example 4.30 (Computation rules for the type of natural numbers) Recall from Exam
ple 4.12 that the induction hypothesis type n \x .  l+x  for the natural numbers satisfy

□ A X . i + x ( ^ , i n l ( * ) )  =  1  nxx . i+x  ( P , i n r ( n ) )  = P(n)  .
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By the definition above, XX.  1 + X ( P ) :  ((x : Y)  -»• P{x )) -»■ (x : 1 + F ) -> ciax. i+x(P)£) 
satisfies

A X l + X (/,in l(* )) = *

X O T X ( / , i n r ( n ) )  = / ( n )

Indeed, we then end up with the usual computation rules, after we have decomposed 
s t e P[o,suc] : ( a r : 1 + N) D\x. i+x(P,x)  -*• P (z ) into step[0suc] = [step0,stepsuc] where 
stepo : 1 -> P(0) and stepsuc : (n : N) -» P (n ) -> P(suc(n)):

elimAX.i+ x (P , [step0,stepsuc] ,0 )  = step0(* )  

elirriAx i+ x (P , [step0,stepsuc] ,su c (n ))  = stepsuc(n, elimAA:. i +x ( P ,  [stepo,stepsuc] ,n ) )  ■

We now generalise F(P)  ■ ( f  ■ (x : X )  -> P(x))  -> (x : F ( X) )  -»• to the
generic setting, by replacing predicates with types and dependent function spaces with 
terms from the category with families.

Definition 4.31 Let F  : C -»• D be a functor between Categories with Families such that 
Dp exists. For each object X  in C and P  e Ty(X) we define

F : ( I h ? ) - , ( F ( I ) h D F(P ))

by _
F ( f )  = q['PF°F(f )]  ■

We see that F  indeed coincides with the definition in (4.3) for the CwF Set.

Lemma 4.32 Let F  : C -» B be a functor between Categories w ith Families such that 
□ p exists.

(i) Id = Id.

(ii) f ( / )  = ipF o F ( f )  for all f € ( X  i- P ).

Proof.

(i) ld (/) = q[v?id o ld(7)] = q[7] = /•

(ii) We calculate

f ( 7 )  = q[V?jFoF (7)]

= < 'd ,q [^F °P (7 )])

= W p < > 7 ) ,q [^ o P (7 ) ] )
H p o ^ f O  F(f),q[<pF ° F ( f )])
= <PF°F(f)  □
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We now state the generic computation rule:

Definition 4.33 Let F, G : C -> B be functors between Categories w ith Families such 
that Df and Dg exist. Let (X , in) be an (F, G) -dialgebra. The computation rule associated 
with an elimination rule

P  6 Ty(X) stepin € ( F ( X )  • □ F(P)  i- nG(P)[in ° p])
elim(F, stepin) € (X  P )

says that
C (elim (F , stepin))  [in] = stepin[F (e lim (F ,step in))]  ■

Notice the similarity w ith a morphism h : (X , in) -> (F , step) in Dialg(F, G), which 
is a morphism h: X  -> P  such that G(h) o in = step o F ( / i ) .4

Example 4.34 (The elimination rule for F-algebras on Set) Let F  : Set -> Set be an 
endofunctor and Id : Set -> Set the identity functor. For (F, ld)-dialgebras (i.e. ordinary 
F-algebras) the elimination rule becomes (after currying stepin)

P  : X  -► Set stepin : (x : F ( X ) )  -> Op(P,x) -*■ F(in(a:)) 
elim (F, stepin) : (x  : X ) -> F ( x )

as we are used to. The computation rule becomes

elim (P, stepin, in(®)) = stepin(a :,F (F ,e lim (F ,s tep in) ,x ) )  

for x  : F( X) .  ■

4.2.4 The generic elim inator for an inductive-inductive definition

Recall from Section 4.1.1 that inductive-inductive definitions are represented by functors 
Arg : Dialg(ArgA, U) -*■ Fam(Set). We want to show that ciArg exists. In order to apply 
Corollary 4.29, we need to check that Dialg(ArgA, U) is a Category with Families and 
that Fam (Set) has finite limits. The second requirement is easily taken care of since Set 
is complete:

Proposition 4.35 If C has finite limits, then so does Fam C and the index set functor 
U : Fam C -> Set preserves them.

Proof. It is enough for Fam C to have a terminal object and pullbacks [Mac Lane, 1998]. 
The terminal object in Fam C is (1, A_. lc ) . We construct the pullback of ( f , g ) : ( A , B ) ->  
(<C, D) and ( f ' , g ' ) : (A ' , B ') ^  (C,D)  as in

( A , B ) x^ d) (A ' , B ' ) -----^ ( A ' , B ' )
j

(/V )

( A’B ) — U ^ (C’D)
4We have used the unorthodox variable names (P , step) for a dialgebra here to show the similarity 

with the situation above.
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by (A , B ) x(CD) (A ' , B ') := (A xc  A \ \ ( x , y ) . B ( x )  * d ( / ( x ) )  b '(v)) where A xc  A'  =  

{(x, 7/): 4̂ x | / ( x) = / '(y )}  is the usual construction of the pullback of /  and / '  in 
Set, and B{x)  xd ( / ( x )) B '(y) is the pullback of : F (x ) -► D{f {x )) and y' : F '(y ) -»• 
D( f ' {y )) (with common codomain, since /(x )  = /'(y ))  in C. The projections are 
constructed from the projections in Set and C. □

In particular, by Theorem 4.28, this shows that Fam (Set) can be extended to a 
Category w ith Families. For later reference, we can give a Categories with Families 
structure for Fam (Set) explicitly:

Example 4.36 (Fam(Set) as a CwF) The category Fam(Set) can be made into a Category 
with Families if we define

Ty(X, Y)  = { ( A , B ) \ A - . X ~ *  Set, B  : (x : X )  -* Y(x)  -* A(x)  -> Set} 
{ ( X , Y ) ^ ( A , B ) )  = { (h , k ) \ h :  Y\A(x) , k - .  [ I  B(x,y ,h(x) )}

x t X  x £ X , y € Y ( x )

For ( f ,g)  ■ (X , Y)  -  ( X ’, Y ’), we define

( A , B ) [ f , g ] : Ty(X,  Y)  = { (A, B)  | A : X  -  Set, B ■■ (x ■ X )  -> Y(x)  -  ^ ( i )  -  Set} 
( ^ ,B ) [ / , 9 ] = ( A , B ) o ( f , g )  = (Ao f , Xx . Xy . B( f ( x ) , g(x , y ) )  
(h , k ) [ f , g] : { (X,Y)<- (A, B)[ f , g] )
(ft, fc)[/, 9 ] = (h , k) O ( /, g) = (ho / ,  Xx. Xy. k ( f ( x ) ,  g(x, y)))

The context comprehension can be given by

( X , Y )  (A, B)  = C £ A( x ) , X ( x , a ) .  £  B(x,y,a))
x t X  y e Y ( x )

p (A, B)  = (fst, Xx. fst) 

q AB ~ (snd, Ax. snd)

Given ( / , y ) : (X ' , Y ' )  -> ( X , Y )  and ( M )  e {{X’X )  v- (A, B)[f ,  g]), we have

( M )  = ((/,<?), ( M )  W ) : ( * ' , y ')  -  (X ,y ) • (a , b )

defined as 6{x) = (/(x ),/i(x )) and = (y(x,y),fc(x,y)). ■

We now show that Dialg(ArgA, U) is a category with families. In fact, we show that 
if C has finite limits and G : C -> D preserves them, then also Dialg(F, G) has finite 
limits, and hence is a Category w ith Families by Theorem 4.28. The following is a 
straightforward generalisation of the well-known corresponding folklore theorem for 
the category of F-algebras, i.e. the case of G = Id : C -*■ C.

Theorem 4.37 Let F, G : C -> B. The category Dialg(F, G) has finite limits if C does, 
and G preserves them. The forgetful functor V : Dialg(F, G) -*■ C preserves finite limits.



4.2. A framework for generic elimination rules

Proof Define l Diaig(F,G) := (be, !f ( i c ) )  where !F(lc) is the unique map F ( l c ) -*> 1 d - For 
any object (X , f ) ,  the unique m orphism  (X , / )  -> ( lc , ! f ( i c ) )  is given by the unique 
arrow \x from X  to l c  in C, and the diagram

F X G X

F ( ' x ) GOx)

F(1 c )  \--- ► G(1C) = Id

commutes since both paths are arrows into I d, hence equal.
We now construct the pullback of /  : (A , a) -> (C, c) and g  : (B , b) -»• (C , c). Let 

-0 : C'(yl) xG(C) G (5 ) -> G ( A x c  B)  be the isomorphism that witnesses that G preserves 
pullbacks. The carrier and the projections of the pullback of /  and g  are inherited from 
C. In detail, we construct the pullback as ( A x c  B , /ipo(aoF(p),boF(q)))  where A x c B  
is the pullback of /  and g  in C, with projections p : A xc  B  -*■ A  and q : A x c  B  -* B,  and 
(-, - )  is the mediating morphism given by the universal property of G(A) *g{C) G{B).  
An easy diagram chase shows that all morphisms involved also are m orphism s in 
Dialg (F,G):

F(A x c B ) ^ ^ F ( B )
ip° (a°F(p) ,boF(q) )

G ( A xc B)

F(p)

G( p)

0(9) |
F{A)~

G(B)
F(f)

F(g)

F(C)

G(A)
G ( f )

G{C)

□
Since Fam(Set) has finite limits and the index set functor U : Fam(Set) -»■ Set 

preserves them by Proposition 4.35, we can apply Theorem 4.37 in conjunction w ith 
Theorem 4.28 to conclude that Dialg(ArgA, U) is a Category with Families.

Furthermore, by Corollary 4.29, the induction hypothesis type DArg exists for all 
Arg : Dialg(ArgA, U) -> Fam(Set). Explicitly, it can be defined as follows.

Example 4.38 (DArg exist) We can decompose DArg = (DArgA, DArgB) into two components 
with the following types:

DArgA(P,Q) ■ Arga {A,B)  -»• Set ,
□ A r g : (s tep c : (x : Arga (A, B) )  -> nArgA(P,Q,x)  P(c(x)))  ^

(x:  ArgA(A, B) )  {y : ArgB(A, J5, c, x))  ^

( x : n Arga (P,Q, x )) ->• Set
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with the following definitions

n ArgA( P , Q , x )  := { j / :  A rgA((i4,J5)-Fam(Set) (P ,Q )) IArgA(tt0 , tt'0) ( y )  = x j  , 

^ArgB (Pi Q, stepc, X ,  y, x)  :=
{^ : ArggCCSoiaig(A,B,c)  (P,Q,  stepc)),x ) \ArgB('K0,n'0, x , z ) =y }  ,

Here,
( A , B )  -Fam(Set) (P, Q)  = ( S  A  P, A (a ,p ) .  E 6 : P ( a ) .  Q ( a , b , p ) )

and

(A ,P ,c) ‘Diaig(ArgA,t/) (P> Q, stepc) -  ((A, B )  'Fam(set) (P> Q)> [c, stepc] ° <pArgA)

We know that Dialg(Arg, V)  is a Category with Families by Theorem 4.37. However, 
it is easy to see that EArg as a subcategory is closed under context comprehension
 and substitution - [ - ] ,  i.e. if T : EArg and a : Ty(PArg(r)) / where pArg : EArg ^
Dialg(Arg, V) is the embedding given by the equaliser, then also T - <7 is in EArg, and 
similarly for substitution. Hence, EArg inherits a category with families structure from 
Dialg(Arg, V):

Corollary 4.39 The category EArg is a Category with Families. □

In general, an eliminator for (A, B, c, d) in EArg is a term of the form

P  : A  -  Set 
Q : (x : A) -+ B(x)  P(x)  -»■ Set 

stepc : (x : ArgA(A, B) )  -> nArgA(P,Q,x)  -> P(c(x))  
stepd : (x : ArgA(A ,P )) -+ (y : Argb { A , B , c , x ) )  (x : oArgA(P, Q, x ) )

-»• n A r g B (-P, Q, c, stepc,x,y,  x) Q(c(x),d(x,y),  stepc(x,x))  
elimArgA(P,Q,stepc,stepd) : (x : A)  -+ P(x)  

elimArgB(P,Q ,stepc,stepd) : { x : A ) ^  (y : B{x))  Q{x,y,e\\™ArgA(P,Q,stepc,stepd,x))

with

e l i m Arg A  (P, Q, stepc, stepd, c(x)) = stepc(z, A rg /) 

e l im ^ ( P ,  Q, stepc, step^, c(x), d(x, y)) = stepd(x, y, A rg /, A rg /)

where

A rg / = ArgA(elimArgA(P, Q, stepc, stepd), elimArgB(P, Q, stepc, stepd), x)

A rg / = ArgB(stepc,elimArgA(P, Q , stepc,stepd), elimArgB (P,Q ,stepc,stepd) ,x ,3/) .
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Example 4.40 (The eliminator for sorted lists) Recall from Example 4.5 that sorted lists 
were given by the functors ArgSList, Arg<L, where

ArgSL is t(A £ )  = 1 + ( S n : N . S f : A 5 (n ,£ ))

Thus, we see that e.g.

□ a ^ P ,  « > ! (< ) )  = { y  '■ 1  + ■ • • I (id + ■ • . ) ( y )  = inl(*)} = 1

° A r g s l M ( P , < ? , i n r « M , P » )  =

{y ■.Xn':N.Z(e',7):(ZAP).-Ep'-.B(n,e).Q(n',e' ,p’,7) | E ( id ,E (;ro ,^ ))( j/ )  = {n,£,p)}

s T i : P ( i ) . Q ( n , e , p , I j 

and similarly for ^Arg^/ so that the eliminators are equivalent to

elimsortedList: ( P  '■ SortedList -> Set)

(Q : (n ; N ) -*■ (£ : SortedList) -> n  < l £ -*■ P{£) -* Set) -* 

(stepni| : P ( n i l ) ) ^

(stepcons: (n : N ) -> (£ : SortedList) -»■ (p : n  <l £) -*■ (£ : P(£))
-> Q(n,£,p,I) -+ P(cons(n,^,p)))

(steptriv : (n :N ) -> Q(n,  nil, triv„, stepni,))  -»
(step<<;>> : (m : N ) -*■ (n  : N ) -> {£ • SortedList) -> (p : n  < l £)

-> (q ■ m < n) -*■ (p : m  < l £) -*■ {£ '• P{£))
-► (p : Q(n,£,p,£))  -* ( p ': Q(m,£,p ' J) )
-► Q(m, cons(n, £ , p ) , «  q,p’ » ,s tep cons(n,^,p,F ,p))) -»

: SortedList) -> P (f') ,

elim<L

(n  : N ) -► {£ : SortedList) (p : n < l £)
-► Q (n , £, p, e lim so r te d L is t(P , Q, stepnM, stepcons, steptriv, s t e p ^ , £ )) .

■

4.3 The equivalence between having an eliminator and being 
initial

We now show that a dialgebra is an initial object if and only if it has an eliminator. Thus, 
in particular, we give a categorical characterisation of inductive-inductive definitions by 
instantiating the framework in an appropriate way. The result also applies to many other 
concrete classes of data types such as e.g. indexed inductive definitions. By working in 
this abstract setting, the proofs become more transparent as only the relevant details 
remain. We emphasise again that we are working in extensional Type Theory in this 
chapter.
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4.3.1 Initiality im plies the elim ination  rules

Theorem 4.41 Let F, G : C -* D with C and ED Categories w ith Families such that 
and Dq exist. If (A, in) is initial in Dialg(F, G) then the elimination principle holds for 
(A  in).

Proof. Let P  g Ty(X) and g e (F { X ) • Ojp( P)  i- □ c(i:>)[in o p]) be given. Then h := 
(p~Q o (in o p,g) o ipF : F ( X  • P)  -> G ( X  • P),  so by initiality, we have a morphism 
fold(/t) : X  X  ■ P  such that h o F(fold(/i)) = G(fo\d(h)) o in. Hence the following 
diagram commutes:

F ( X ) -----------------------------------------------------^ G(X)
F(fold(/i))J |G(fold(/i))

F ( X P )  VG G ( X - P )

F(  P) F (X ) • n F(P<T S ? b ( X )  ■ aG( P y ^ G(P)

F ( X ) --------------------------     G{X)

This means that p o fold(/i): X  -*■ X  is a morphism in Dialg(F, G), so by initiality, we 
must have p o fold(h) = id. We now define elim(P,p) := q[fold(/i)]. We then have

elim(P,p) g ( X  h P[p o fold(fc)]) = ( X  P[id]) = ( X  t -P)

as required.
We must check that the computation rule G(elim(P, # ))[in] = <?[F(elim(P,#))] holds. 

Note first that since p o fold (/i) = id, we have

fold(/i) = (p o fold(/i), q[fold(^)]) = (id, q[fold(/i)]) = q[fold(/i)] = elim(P, g)  

Using this, we have

G(elim(P, <?))[in] = q [ipc ° G(fold(/i)) o in]

= q W g ° <Pg ° (in ° P - 9 ) ° ^ °  F(fo\6(h))]
= 9W f  ° F(fold(/i))]

= g[<PF°F(e\ \m(P. ,g) ) ]

= g[F(e\\m(P,g))]

where we have used Lemma 4.32 in the last line. □

4.3.2 The elim ination rules im ply in itiality

In Type Theory, one can show that inductive types are weakly initial by using the 
elimination rules with a non-dependent, constant motive. This proof also carries over 
to the generic setting, as long as the Categories with Families involved have constant 
families that interact well with □£.
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Theorem 4.42 Let F, G : C -* D w ith C and D CwFs w ith constant families, such that 
G(A )  = Qg(A) and G ( M ) = G ( M^ y  (the second equation type checks because of the 
first). Let (X,  in) be an (F ,  G)-dialgebra. If the elimination principle holds for (X,  in),  
then (X,  in) is weakly initial in Dialg(F , G).

Proof. Let (F , / )  be an (F, G) -dialgebra. We have to construct fold(/) : X  -*■ B  such 
that G (fold(/)) o in = /  o F (fo ld (/p .

Notice that qg- e ( X  • B x  i- # x [p ])  = {X • B x  i- so that q* : X  ■ B  -»> B.
Hence we have ip := /  o F ( q T) o y f f  : F ( X )  • D f ( F )  -> G(B).  Since g ( b ) f X̂ ) .df ( b )  = 

G ( B ) G(X j[ in o p ]  = DG(F)[in o p], we then have ^  e (F ( X ) • □ f ( F )  i- DG(F)[in o p])

so that e lim (F ,^ )  i- F ). Hence we define fold(/) := elim(F,'01)t : X  -*■ B.  We 
now check that the diagram commutes:

G ( f o l d ( / ) )  o in = G ( e l im ( F ,  V'*)1') ° 'n 

= G ( e l im ( F , '0 '*'))[in]t 

= i/^ [F(e lim  ( B , ip l ) ) f  

= ip o F (e l im (F ,T /^ ) )

= /  o F (q ^ )  o <p~p otpF o F ( e l i m ( F ,  ip^) )

= f  o F (q ^  o e l im (F ,  i/>*))

= /  o F (q [e l im (F , '0 'l ) ] T)

= /  o F ( e l i m ( F , ^ ) T) = /  ° F ( f o l d ( / ) )  □

For G = Id : C -»• C, Lemma 4.21 (Did = Id) and Lemma 4.32 (Id = Id) ensures that 
the conditions on the constant families are satisfied, since ld (A )  = A  = nid(A) and 
Id(Af) = M  = = l d ( M T) j .

For the functors arising from the axiomatisation in Chapter 3, we can show that we 
in fact have strong initiality, since we can do induction over the codes. The proof relies 
on extensional equality, as we are working in extensional Type Theory in this chapter.

Theorem 4.43 Let Arg7 : Dialg(ArgA, U) -► Fam(Set) be a functor representing an 
inductive-inductive definition. Let (A, B,  inA, in#) e EArg7. The general elimination 
principle holds for (A, B,  iru, ins) if and only if {A, B,  inA, ins) is initial in EArg7.

Proof. After applying Theorem 4.41 and Theorem 4.42, and discharging the extra as
sumptions on V  : Dialg(ArgA , U) -> Fam(Set), all that is left to be proven is that if the 
elimination principle holds, not only is (A , F ,  inA , in # )  weakly initial, but fo ld ( / ,  / ' )  := 
( f o l d ( / ) , f o l d ( / ' ) )  is in fact unique, where ( / , / ' )  : Arg7 ( A ' , F ' )  -»• ( A ' , F ' )  is the mor
phism of another dialgebra. Let (/i, g) :  (A , F ,  inA , in # )  (A F ' ,  / ,  / ' )  be another mor
phism that makes the diagram commute. We prove h(x)  = fo ld ( / )o (a ; )  and g(x,y) = 
f0l d ( / ) !  (x , y ) for all x : A  and y : B(x)  by applying the elimination principle w ith 
P(x)  = h(x) =A> fo\4(f)0(x) and Q(x,y , x)  = g(x,y) =B'(h(x)) f o l d ( / ) i (a:,j/). Notice
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that this is type correct because of the argument x : h(x) =A> f o l d ( / ) o ( x )  and exten
sional equality: fo\d(f) i (x,y)  is of type B'(fo\d(f)o(x)).

Thus, it is enough to prove P  and Q for canonical inhabitants, given that the 
equations hold for subterms. We need to find stepiru(:r,o f)  : P ( i n ^ ( x ) ) ,  i.e. prove 
/i( in^(a;))  =A, f o l d ( / ) 0(ini4(a:)) given x : DArgA(P,x),  and similarly find stepiflB( . ..) : 
(5 (inA(a:), \nB(x,y),stepiriA(x,x)) .  But this is now straightforward by induction over 
the codes: in the base case nil, the result follows from the fact that (h,g) makes the dia
gram commute, and in the step cases, the result follows immediately by the induction 
hypothesis. □

4.4 Summary and discussion

In this chapter, we have introduced a general categorical framework for describing 
elimination rules, and then instantiated it for inductive-inductive definitions by mod
elling them as certain dialgebras. This gives a less syntactic view of inductive-inductive 
definitions. Next, we have proven that the elimination rules in this general setting, 
of which the elimination rules for inductive-inductive definitions are an instance, are 
equivalent to a more categorical notion: that a certain object is initial in a category of 
dialgebras.

Why so general? There are two reasons for adopting the abstract framework as we 
have done in this chapter. First and foremost, it is for our own sanity; by keeping things 
abstract, we can work with shorter equations and get away with keeping track of less 
details. However, there is also a technical reason for proving say Theorem 4.37 at the 
level of generality that we did. In Chapter 6, we will extend the current theory in order 
to handle more complex situations such as e.g. adding a third simultaneously defined 
data type C  : ( a  : A)  ->• B( a ) -»■ Set. The theorems of this chapter will immediately scale 
and apply also in this setting.

Initial algebras for degenerate inductive-inductive definitions The need to intro
duce the more complicated machinery of dialgebras comes from the fact that type of the 
constructor introe f o r B . A - *  Set can contain the constructor introA for the index set A. 
If this does not occur, we can get away with using ordinary algebras for endofunctors 
on Fam (Set). More or less by definition, if the constructor introA is never used by a 
functor Arg : Dialg(ArgA, U) -> Fam(Set), then this functor is really an endofunctor 
Arg : Fam (Set) -»• Fam (Set) and the usual, well-known theory of initial algebras apply. 
Moreover, one can check that the elimination principle one gets coincides w ith the 
expected one.

Instantiating the framework The dialgebraic framework presented in this chapter 
can be instantiated to many known classes of data types, some of which are collected 
in Table 4.1. The functor F  : C -»■ D is used to describe the concrete data type, while 
the parameters C, O and G : C -> D are fixed. We have already hinted at that Set and
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Table 4.1: Instances of the dialgebraic framework.

Data types C B G

Inductive definitions Set Set id
Indexed inductive definitions Set7 Set7 id
Inductive-recursive definitions0 type/D typ e/D id
inductive-inductive definitions6 Dialg(ArgA, U) Fam(Set) V
“ Modulo size issues. 6 In a subcategory.

Set7 can be used for inductive and indexed inductive definitions respectively. Dybjer 
and Setzer [2003] give an initial algebra semantics for inductive-recursive definitions, 
using slice categories, which coincides with our dialgebraic semantics presented here 
w hen instantiated to the same slice category. Finally, we see that inductive-inductive 
definitions are the only example to date where dialgebras are used instead of ordinary 
F-algebras.

Related work Another closely related framework for generic induction/elimination 
rules is the framework described by Hermida and Jacobs [1998], later extended by 
Ghani et al. [2010,2011] (see also Fumex [2012]). Their idea is to model types by objects 
in a category B, and properties by the total category of a fibration p : E -> ®; the functor 
p maps each property to the type it is a property of. By asking for some extra structure, 
namely a comprehension category w ith unit, induction principles can be given an 
elegant characterisation in terms of liftings of functors and adjoint equivalences.

Given a Category with Families with constant families, one can construct a split full 
comprehension category w ith unit (see Jacobs [1999, Exercise 10.4.6]), and conversely, 
given a split comprehension category w ith units, one can construct a Category with 
Families. We see that there is a slight gap: constant families are needed to get a unit, 
but a unit does not necessarily give constant families. Furthermore, starting from a 
comprehension category, one might not get a Dp type in general.

The fibrational approach is hence in one sense more general. On the other hand, 
it also tries to do less. First of all, only endofunctors and ordinary algebras are con
sidered, not arbitrary functors and dialgebras, so the framework is not suitable for 
inductive-inductive definitions. Furthermore, no equivalence between induction princi
ples and initiality is shown, only that if an initial algebra exists in a certain category, then 
the induction principle is valid. Another advantage of our Categories w ith Families 
framework is that we can also talk about the computation rules associated w ith the 
eliminators, something that is missing in the fibrational setting.
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So far, we have given an axiomatisation of a type theory with inductive-inductive defi
nitions, together with a more streamlined categorical characterisation using extensional 
Type Theory. In this chapter, we first prove that our theory is consistent by constructing 
a "standard" set-theoretic model in Section 5.1. We then give a second consistency proof 
by interpreting the theory in the (extensional) theory of indexed inductive definitions 
in Section 5.3, making use of a kind of "container normal form" for inductive-inductive 
definitions, which is developed in Section 5.2. This also provides a tighter bound for 
the proof-theoretic strength of the theory.

A shorter description of the model described in Section 5.1 has previously appeared 
in the proceedings of CSL 2010 [Nordvall Forsberg and Setzer, 2010] and the Schwicht- 
enberg Festschrift [Nordvall Forsberg and Setzer, 2012].

5.1 A set-theoretic model

We will develop a model in ZFC set theory, extended by two inaccessible cardinals 
in order to interpret Set and large types. The main feature of the model is that it is 
natural and straightforward: types are interpreted as sets, terms as elements, the typing 
relation x  : A  as the membership relation x g A  etc. Inductive-inductive definitions 
are interpreted by iterating a monotone operator until a fixed point is reached. Our 
model is a simpler version of those developed by Dybjer and Setzer [1999, 2006] for 
induction-recursion. See Aczel [1999] for a more detailed treatment of interpreting 
Type Theory in set theory.
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5.1.1 D ialgebras versus F-algebras

A priori, we need to construct a model which validates the dependent (general) elimi
nation rules from Section 3.2.5. However, by Theorem 4.43, it is enough to construct 
an initial dialgebra, i.e. validate non-dependent elimination. We now make a simple 
observation that will make life even easier for us: if we happen to be so lucky that the 
functor G has a left adjoint L hG , then we can equivalently consider (L o F)-algebras 
instead of (F , G)-dialgebras.

Lemma 5.1 Let F, G : C -> B be functors, such that G has a left adjoint L  : D -*■ C. The 
categories AlgLoF and Dialg(F,G) are isomorphic.

Proof. The natural isomorphisms <t>x,A '■ Hom(L(X),A) -> Hom(X, G(A))  between 
hom-sets induce an isomorphism between AlgLoF and Dialg(F, G), which sends (X , h : 
L { F { X )) -  X )  in AlgLoF to (X, (f>F{X),x(h))  and (X, k : F (X ) -  G(X) )  in Dialg(F, G) 
to (X, (f>~F\ X) x (/c)). The functors are identities on morphisms. The required squares 
commute because of the naturality of 4>x ,a - For any /  : X ' -*■ X  and g : A -*■ A!, we have

<t>x',A'{g ° h o  L ( f )) = G{g) o <f>x,A(h) ° f

In detail, if g : (X, h ) {Y, h') in AlgioF, we need to check that also g : (X, 4>{h)) -+
(y, cf>(h'))  in Dialg(F, G). In other words, we need to check that the right hand side 
diagram commutes given that the left hand side does:

L (F (X )) — X F (X ) G(X)

L ( F ( g ) ) F ( g ) G(g)

L ( F ( Y ) )  Y  F { Y ) ^ G { Y )

But this is straightforward:

G(g)  o (f>(h) = (f>(g o h) = <f)(ti o L ( F ( g ) ) )  = <f>(ti) o F(g)

The other direction works in exactly the same way, using the naturality of (j>~x  X

9 ° 4>xAk) ° L( / )  = ^ x \ a ' (G(9) ° k ° f )  ■

Finally, since (f>F(x),x is an isomorphism, the induced functor obviously is too. □

In particular, in the situation of the proposition, AlgLoF has an initial object if and 
only if Dialg(F, G)  does. Inspecting the proof, we see that the carriers of the algebras 
are preserved by the isomorphism, so that the carrier of the initial algebra in AlgLoF is 
the carrier of the initial dialgebra in Dialg(F, G).

When describing inductive-inductive definitions, dialgebras crop up in two places: 
first when describing the domain of the functor Arg : Dialg(ArgA, U) -* Fam (Set), and 
secondly in the supercategory Dialg(Arg, F ) o f  the category we are interested in. We 
will now see that both U : Fam (Set) -»• Set and V  : Dialg(ArgA, U) -»■ Fam (Set) in fact 
have left adjoints.
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5.1. A  set-theoretic model

Proposition 5.2 The index set functor U : Fam(Set) -»• Set has a left adjoint L : Set -*■ 
Fam(Set) given by L ( X )  = (A, Az.O) and L ( f )  = ( / ,  Arc.id).

Proof. It is easy to see that we have a bijective correspondence between the hom-sets 
Hom(L(X), (A, B )) and Hom(X, U(A, B ))):

i f i 9) : L ( X )  -» (A,B)  
f  : X  -* A gx ■ 0 -> B { x ) 

f - X ^ A  
f . X - + U ( A , B )

Naturality is also easily dealt with. □

We now show that also V : Dialg(ArgA, U) -*■ Fam(Set) (or, equivalently, V : 
AlgLoArgA “*■ Fam(Set)) has a left adjoint, which will be a free algebra in the follow
ing sense:

Definition 5.3 Let F  : C -► C be an endofunctor and Y  an object in € . A free F-algebra 
on Y  is an F-algebra (X , h) together with a morphism rjy : Y  -*■ X  in C such that for any 
F-algebra (A, a) and morphism f  : Y  A,  there exists a unique F-algebra morphism 
/ + : (X,  h) -*■ (A , a) such that the following diagram commutes:

F(A)  ——>- A

El

Lemma 5.4 (Addmek [1974]) The carrier of the initial algebra for the functor F ( - )  + Y  
is the carrier of a free F-algebra on Y  and vice versa. In particular, the free F-algebra 
on Y  is unique up to isomorphism.

Proof. By the universal property of coproducts, a morphism F ( X )  + Y  -*■ X  corresponds 
exactly to a m orphism  F ( X )  -► X  and a morphism Y  -* X.  An easy diagram chase 
then confirms that all the necessary diagrams commute.

In detail, let (X , in) be the initial F ( - )  + Y-algebra. Then (X,  in o ini) is an F-algebra, 
and we can define r)y •= in o inr. Given any F-algebra (A, a) and morphism  /  : Y  -* A,  
we can construct an algebra (A , [a, / ] )  for the functor F ( - )  + Y,  and we can define / + as 
/ + := fold ([a, / ] ) .  The necessary diagram commutes since the corresponding diagram 
for fold ([a, / ] )  does, and also uniqueness follows from uniqueness of fold ([a, / ] )  and 
the universal property of coproducts. The other direction follows in the same way. □

This gives us a way to compute the free F-algebra on Y ; we consider the initial 
sequence

0 -> F (0 ) + Y  -> F (F (0 ) + Y)  + Y  -> ...  
of F ( - )  + Y  and show that it converges at some stage a.
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Definition 5.5 (Free //-algebra functor) Let H  : C -»■ C be a functor such that free 
//-algebras exist on every object. The free H-algebra functor F  : C -*■ A\gH sends Y  in C 
to the free //-algebra on Y. The action on morphisms is induced by the freeness of the 
algebra: If f  :Y  -> Y ' is a morphism in C, F ( f )  = fq y  ° / ) +. B

Proposition 5.6 The free //-algebra functor F  : C Alg# is left adjoint to the forgetful 
functor U : Alg# -+ C.

Proof We have to check that morphisms /  : F( Y)  -> (X, h) in Alg# are in bijective 
correspondence w ith morphisms g ■ Y  -*■ X  in C. Let us write F( Y)  = ((Y,k),rjy).  
Given /  : F( Y)  -> (X, h ), we have f  orjy - Y  -> X ,  and given g : Y  -> X, by definition 

: y  -► X. We check that these constructions are inverse to each other. That gf o gY = g 
is exactly the fact that the right hand triangle in Definition 5.3 commutes. The fact that 
( /  ° rjy)f = /  is less immediate, but follows from the uniqueness of ( /  o rjy)* and the 
fact that f  ok = ho H ( f ) as a morphism in AlgF. A routine verification shows naturality 
in Y  and (X, h ). □

Thus, in particular the forgetful functor V  : AlgLoArgA -* Fam(Set) has a left adjoint 
M  : Fam(Set) AlgLoArgA and, by Lemma 5.1, the category Dialg(Arg, V) is isomorphic 
to AlgMoArg. Hence the subcategory EArg is isomorphic to a subcategory of AlgMoArg.

Theorem 5.7 For each functor Arg = (ArgA, ArgB) representing an inductive-inductive 
definition, EArg has an initial object.

Proof By the results from this section, we need to find an initial (M o Arg)-algebra, 
where M  : Fam(Set) -»• AlgLoArgA is the free L o ArgA-algebra functor. The functor M  is 
well-defined since ArgA is "strictly positive" by construction: arguments X  never occur 
to the left of a function arrow in ArgA(X). Hence the size k of all premises of inductive 
arguments is independent of X ,  and the initial sequence for the functor L(ArgA(- )  + X  
(hence for M ( X )  by Proposition 5.6) will converge after k+ iterations by a generalisation 
of Proposition 1.6, where n+ is the least regular cardinal above n.

In the same way, also ArgB is also strictly positive, and hence the initial sequence

0 M(Arg(0)) M(Arg(M(Arg(0)))) .

will converge, again by an argument similar to Proposition 1.6. Hence an initial (MoArg)- 
algebra exists [Addmek et al., 2010, Thm 3.1.4]. □

5.1.2 A concrete model

For completeness, we now use Theorem 5.7 to give a concrete model in ZFC set theory, 
extended with two inaccessible cardinals to interpret Set and large types.

5.1.2.1 Preliminaries set theory

We recall some standard definitions and properties that we will use in the model 
construction. We employ classical logic in this section.
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5.1. A  set-theoretic model

Definition 5.8 (Regular and inaccessible) Let k be a cardinal.

(i) k is regular if the cofinality of k is k, i.e. if sup f  < k for all strictly increasing 
functions /  : a  -> k with a  < k.

(ii) k is inaccessible if it is regular and a strong limit cardinal (i.e. if /3 < n then 2^ < k). 
It is weakly inaccessible if it is regular and a limit cardinal (i.e. if f3 < n then f3+ < k, 
where fi+ is the least cardinal larger than /?). ■

Note that all regular cardinals are limit ordinals, but not necessarily limit cardinals. 
For simplicity, we will assume the generalised continuum hypothesis, which states that 
P+ = 2@. Thus, under this hypothesis, weak and strong inaccessibility coincides.

Definition 5.9 (The cumulative hierarchy) The cumulative hierarchy Va is a collection 
of sets indexed by ordinals a, defined by transfmite recursion as follows:

V0 = 0  
V0+1 = P(Vfl)

Vx = y j Vp  for A limit H
P< A

One can check that Va = U/3<a T’(Va) for every ordinal a. We will often make use of 
the following:

Proposition 5.10

(i) Va is transitive: if x  e Va then x c Va.

(ii) Va is closed under subsets: if x c Va and y c x then y € VQ.

(iii) Va is monotone: if a < (3, then VQ c Vp.

(iv) If x c VK w ith k inaccessible then |x| < k. □

5.1.2.2 Interpretation of expressions

We will be working informally in ZFC extended w ith the existence of two strongly 
inaccessible cardinals io < ii> We use standard set theoretic constructions, e.g.

( a ,  b) := { { a } ,  ( a ,  b}} ,
Xx € a.b(x) := {(x,b(x)) \x 6 a} ,

n Xeab(x) := { /  : a -► (J  b(x) \ Vx e a. f (x)  e b(x)} ,
x e a

'Exeab(x) := {(c,d) \ c e a A d €  b(c)} ,
0  := 0 , 1  := {0 }, 2 := {0 , 1 } , 

ao + ... + an :=
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Whenever we introduce sets Aa indexed by ordinals a, let

A <a := U  •
0<a

For every expression A  of our type theory, we will give an interpretation \A \P, re
gardless of whether A type or A : B  or not. Interpretations might however be undefined, 
written [,4]p f. If [,4]p is defined, we write [yl]p |. We write A a B  for partial equality, 
i.e. A ^ B  if and only if A  j<=> B  1 and ii A  I, then A = B. We write A B  if we define 
A such that A ^  B.

Open terms will be interpreted relative to an environment p, i.e. a function m ap
ping variables to terms. Write P[x» a] f°r the environment p extended w ith x ^  a, i.e. 
P[x»a](y) = a if y = x  and p{y) otherwise. The interpretation [£]p of closed terms t will 
not depend on the environment, and we omit the subscript p.

The interpretation of the logical framework is as in Dybjer and Setzer [1999]:

[Set] := yio [type] := Vh
1(X : A)  -> B \ p n y6[̂ jplB\P[y„x] [A(x:4). e]p := Ay e [Ajp . |e]P[yMx]

[(Sx : A)B]P Xy4Ajpl B\P[y„x] l(a,b)}P (W P, [% )
[0 ]  := 0 [1 ]  := 1 [2 ]  := 2 [* ]  := 0 [t t]  =  0 [ff] := 1

( [a]p if [s]p = 0
[if x then a else 6]p j [6]p if [x]p = 1

[undefined otherwise 

[U]p 0  (the unique inclusion 0  -»■ {Ajp )

Note that we interpret large elimination for 2 (at no extra cost). The rj rules are easily 
proved.

To interpret terms containing S P a , S P b , ArgA, ArgB, Indexe, and the codes nil, 
non-ind, A-ind and B-ind, we first define [SPA], [SP b ] ,  [ArgA], [nil], [non-ind], ...an d  
interpret

[SPA(Xref)]p := [SPA]([X ref]p)

[ArgA(^fref, 1,X ,Y ,  repx )]p := [ArgA] ( [ X ref] p, [ t ] p, M U  Hy ]U  ttreP x W

[non-ind(AT,7)]p := [non-ind]([AT]p, [7 ]p) 

i etc.

In all future definitions, if we are currently defining [F ]p where F  : D -> E,  say, let
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5.1. A  set-theoretic model

[SPaJ (^ref) is defined as the least set such that

[SPA](A:ref) = 1 + £  (^-[SPA](xref))+ £  [SPA](xref + jf)
/fe [S e t]  A-e [Set]

+ £  T,  IsPA ](xref) .
K e[Set] h - K —*XTef

Such a set exists by the inaccessibility of io- The constructors are then interpreted as

[nil] := (0 ,0 )  [B -ind](K,h ,  7 )  a  <3 , (AT, ( A ,7 » >

[non-ind](AT, 7 )  := ( 1, (A ’, 7 >) [A -in d ](A ' ,7 )  (2 , (AT,7 ) )

[SPb] and its constructors are defined analogously. The functions |ArgAJ, [ArgBJ and 
[lndexB] are defined according to their equations, e.g.

[ArgAl(X ref,[nil],X ,y,repx ) : ^ l
[ArgAl(Xref,[non-ind]](A',7 ),X ,y ,repx ) £  |ArgA](X ref ,7 (* 0 ,^ ,^ re p x )

k z K

[ArgAJ(*ref, |A-indJ(A', 7 ), A", Y, repx ) £  [ArgAl(X ref + K , ^ , X , Y ,  [repx , j])
j : K - * A

[ArgA] (Xj-ef, [B-indJ(AT, h, 7 ), X, Y, repx ) ^  J][ArgA|(X ref, 7 , X,  Y, repx ).
j e n keKB(repx ( h ( k ) ) )

Finally, we have to interpret A 7At7B, B 7Aj7b, introA7a 7b and intro£7A , for which 
we use Theorem 5.7. Concretely, this means that we iterate ArgA until a fixed point 
is reached, then apply ArgB once, and repeat. This is intuitively necessary since ArgB 
expects an argument introA : ArgA(7 A, A, B) -> A, which can be chosen to be the identity 
if A is a fixed point of ArgA(7 A, A, B ) (with B  fixed). In more detail, let

[A>a,tb] :^ i0 , [5 7Aj7Bl ( a ) : ^ i0 (a) ,
[introA7A 7B](a) a , [ in t ro ^  7J(& ) := b ,

where A a and B a are simultaneously defined by recursion on a  as

A a := least fixed point containing A <a of XX. [ArgA| ( 7 A, X , B <Q) ,

BQ(o) := {b I i>€ [Arg^](7 A>>l“ ,B <“ )id,7 B)
a [ ln d ex g ](7 A , Aa, B <a, id ,7 # ,  6) = a}  .

The (graph of the) eliminators can then be built up in the same stages.
Having interpreted all terms, we finally interpret contexts as sets of environments:

[0] :* 0  [T, Z : A \ {/>[„„„] | p € [P] A a € [A],}.
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5.1.2.3 Soundness of the rules

The verification of most of the rules is routine. The main difficulty lies in proving that 
[SPa] and [SPb] are well-defined, and that [ A ^ ^ ]  e [Set] and \B1AtlB\ : [A ^ t7B] -> 
[Set].

[SPa] is obtained by iterating the appropriate operator T : ([Set] [Set]) -*■ 
([Set] -> [Set]) up to io times. Since X Te{ e [Set], we have (Xref + K ), (K  -*■ X Tef) 
e [Set] for all K  e [Set] = V{0 by the inaccessibility of io- Hence all "premises" have 
cardinality at most io, which is regular, so that the operator has a fixed point after io 
iterations by Proposition 1.6. The fixed point must be an element of [type] = by the 
inaccessibility of ii.

To see that \A1AnB\ € [Set] and {B1Ar/B\ : [^ 7i4)7B] -► [Set], one first verifies that 
[ArgA]/ [Arge]/ [Indexg] are monotone in the following sense:

Lemma 5.11 For all 7a e [SPa] and 7 b e [SPb] (7a):

(i) If A c  A ' and B(x)  c B' (x)  then [A r g ^ ](7 A, A, B)  c [A rg^ ](7 A, A ,B ') .

(ii) If in addition introA(a:) = intro^(x) for all x e Arg^(7A> A, B ), then

[ArgB](7A> A  B,  introA, 7b) £ [Arg^](7A, A ,  B', introA, 7b)

and

[lndexB](7A, A, B ,  introA, 7B ,^) = [lndex^](7A,A 7,B',introA,7B,a:)  

for alia: € [Arg^](7A, A ,B ,in tro A, 7B)- □

We can then adapt the standard results [Aczel, 1977] about monotone operators. 
First, we note that one application of [Arg^J and [Argg] is not enough to take us outside 
of [Set]:

Lemma 5.12 For all 7A € [SPj] and 7b e [SPb](7a):

(i) If X  e [Set] and Y( x )  e [Set] for each x e X,  then [Arg^](7A) X, Y )  e [Set].

(ii) If X  e [Set] and Y{x)  e [Set] for each a: e X ,  [Argg](7A, X,  Y, intro*,7 b )  € [Set].
□

We then iterate, using AQ and BQ, in order to reach a fixed point. This uses that fact 
that both [Arg^] and [Argg] are ^-continuous for large enough ac:

Lemma 5.13

(i) For a < io, Aa € [Set] and BQ : AQ -> [Set].

(ii) For a < /3, Aa c A& and BQ(a) c B^(a) for all a e AQ.

(iii) There is k < io such that for all a  > k, A a = A K and B a(a) = B K(a) for all a € A*. □
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Now we are done, since [A7A)7b] = A'0 = A K e [Set], and similarly for We
have proved:

Theorem 5.14 There exists a model of the theory of inductive-inductive definitions that 
can be constructed using ZFC and the existence of two inaccessible cardinals. □

5.2 Container semantics: an extensional normal form

Our axiomatisation of inductive-inductive definitions is based on the idea that inductive 
types are given by their constructors, which in turn are given by a list of arguments (the 
codes in SPa and SPb). Thus, we are lead to consider a theory which is quite syntactic 
in nature. Furthermore, since lists (the codes) are inductively defined, it is necessary 
to use recursion when proving properties about them or constructing functions on 
them, as we have seen many times already in Chapter 3. This sometimes complicates 
an intuitively clear idea.

Containers [Abbott, 2003; Abbott et al., 2003,2005] provide a more semantic notion of 
data types, where the main mental notion is that of shapes and positions: each value of a 
data type has a certain shape, and for each shape, there is a set of positions where data is 
stored. For instance, a list t : List( A) is completely determined by its length n (the shape 
of t) and the function /  : Fin(n) -»> A  which maps each m  : Fin(n) to the value at position 
m  in L Thus the set of positions for a list of length n  is Fin(n), and we can see ( n ,  / )  as 
a semantic representation of L On the other hand, each such pair ( n ,  / )  determines a 
list, and we have a bijection (actually isomorphism) List(A) = ( E n  : N )(F in (n ) -»• A).

A container S  < P  consists of a family (S , P ), where S  : Set are the shapes and 
P : S  -*■ Set are the positions. The extension of a container S<\P is the functor {S<\ P ] c o n t : 
Set -»• Set defined by [5 <1 ■Plcont(A’) = (Es : S)(P(s)  -* X) .  Hence List is the extension 
of the container N <1 Fin, or, in other words, the container N < Fin is an induction free 
representation of the inductive type former List.

We now set out to find a corresponding representation for the functors representing 
inductive-inductive definitions described in Chapter 4. Containers can be interpreted 
in any locally Cartesian closed category, so one possible approach would be to prove 
that the categories involved indeed are locally Cartesian closed. Altenkirch and Morris 
[2009] follow this approach to construct indexed containers, which represent indexed 
inductive definitions. However, since we w ant to represent functors which are not 
necessarily endofunctors, it is not so clear if this approach would work. Instead, we start 
w ith a different observation: every strictly positive inductive type can be represented 
as the extension of a container, using extensional Type Theory [Dybjer, 1997; Abbott 
et al., 2004]. Thus, we will look for such a Container Normal Form1 also for inductive- 
inductive definitions, and this will tell us what an inductive-inductive container should 
be.

lrThorsten Altenkirch (private communication) once suggested using the abbreviation CNF in order to 
maximise confusion.

97



5. Semantics

5.2.1 C om m u tin g  codes

The idea behind the normal form is quite simple: since noninductive arguments cannot 
depend on inductive arguments, and ,4-inductive arguments cannot depend on B-  
inductive arguments, we can push these arguments to the front, and then combine 
multiple occurrences into a single occurrence. To show that the meaning of the code 
is preserved, we need the following isomorphisms, some of them only valid in type 
theories w ith function extensionality:

Lemma 5.15 In extensional Type Theory, we have the following isomorphisms:

(i) (1  A) = 1 x A = A.

(ii) (0 -+A) = l.

(iii) (Ex : A)(T,y : B{x))C{x,y)  = (Ep : (Ex : yl)5(x))C '(fst(p),snd(p))

(iv) (x : A) (y : B(x) )  -»• C(x,y)  = (z : (Ex : A)B(x) )  -*■ C (fst(;z ),sn d (z))

(v) ( x : A ) - >  ((E y : B(x) )C(x,  y)) = (E/  : (x : A) -► 5 (x ))((x  : A)  -* C (x ,/(x )) )
□

5.2.1.1 Commuting codes in SPa

We start with the codes in SPa-

Lemma 5.16 SPa is functorial, i.e. if /  : X ref -»■ X 'e{/ then there is a map S P a (/)  : 
SPA(^ref) -*• SPA(^ref), which lifts to a map

SPArgA(7 , / ) : ArgA( ^ ref, y , X , Y ,  repx  o / )  -> ArgA(X r'ef,S P A( / , 7 ) , ^ ^ r e p x ) .

Proof. The map S P a (/)  is straightforward to define:

SPa(/> nil) = nil 
S P a(/, non-ind(jK', 7 )) = non-ind(if, Ak. S P a(/, 7(*0))

SPa ( / ,  A-ind(iT 7 ) )  = A -ind(tf, SPA( /  + id, 7 ))
SPA(/, B-ind(Ar, hindex, 7 )) = B-ind(AT, /  o ^index,SPA( / , 7 ))

The only interesting point is perhaps how we have to make a recursive call with /  + id = 
[ini o / ,  in r]: (Xref + K ) -> (A"'ef + K )  in the A-ind case.

The map SPArgA (7 , / )  is extensionally the identity function, but can be defined also 
in intensional Type Theory. □

In particular, if /  is an isomorphism, so is SPArgA (7 , /)•  We will use S P a (/)  as a 
glue when we have codes <p, <// which are "the Scime", except that their sets of referable 
elements Xref, X 'e{ are not equal on the nose, but only isomorphic.
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Definition 5.17 We call two codes 7 ,4> : SP^ equivalent, and we write 7  ^ <f, if they 
decode to (naturally) isomorphic sets, i.e.

Arg°A^ , X , Y )  = A , g ° M ,X , Y )

naturally in (X,  Y ). h

The relation ^ can be naturally extended to open contexts, i.e. codes 7 ,4>: SP a (-^ref)/ 
as well. It is obviously an equivalence relation, and we can substitute "equals" for 
"equals": if 7  ^ <j>, then e.g. A -ind(if, 7 ) ^ A-ind(Ar, </>).

Lemma 5.18 The code non-ind can be pushed to the front, and B-ind to the back:

(i) For all K  : Set, S  : Set and : S  -»• SPA(2fref + K ),

A-ind(AT, non-ind(5 , </?)) ^ non-ind(5 , As. A-ind(AT, <p(s)))

(ii) For all K  : Set, h\ndex : K  -*■ X re{, S  : Set and <p : S  -»• SPA(2fref),

B-ind(A', h[ndex, non-ind(S, <p)) -  non-ind(5 , As. B - in d ^ , hmdex, <p(s ) ) )

(iii) For all i f i  : Set, hmdex : K 1 -> ALref, K 2 : Set and <p : SPA(2fref + K 2),

B-ind(A'i, /ijndex, A-ind(K2,<p)) ^ A-ind(K2, B-ind(iCi, ini o /iindex, </?)) 

Multiple occurrences of the same code can be combined:

(iv) For all K\  : Set, K 2 : K\  Set and 7  : {x : K\)  -»• K 2(x) -*• Set,

non-ind(ATi, Ax. non-ind(AT2(x), Ay. 7 (x, y)))  =

non-ind((Ex : i f i ) / ^ # ) ,  Ap. 7 (fs t(p ) ,sn d (p )))

(v) For all K\  : Set, i f 2 : Set and <p: SPA((^ref + ^ 1) + X 2),

A-ind(A'i, A-\nd(K2,<p)) = A-ind(Ari + Ar2,S P A (o ,(p )) , 

where a  : (Xref + A i) + K 2 -»■ Xref + (ATi + K 2) is the isomorphism witnessing the 
associativity of +.

(vi) For all K\  : Set, K 2 : Set, hi : Ki  ^  X ref, h2 : K 2 >̂ X ie{ and 7  : SPA(2fref),

B -in d (i^ i,/ii, B-ind(AT2,^2,V?))  -  B -ind(A i + K 2, [hi,h2],<p)

We have the following base case:

(vii) nil ^ non-ind(l, A-ind(0 , B-ind(0 , !o, nil))) □ 

Corollary 5.19 Each code 7  : SP^ is equivalent to a code of the form

non-ind(S, As. A -ind(PA (s), B -in d (F h (s), inr o h \ ndex( s ) ,  nil))) (5.1)

where S  : Set, P a ' S - *  Set, P q  ■ S  -► Set and /iindex ■ ( s :  S) -* P b ( s ) -> P a ( s ) .

99
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Proof. Given a code 7 , start by replacing all subcodes nil in 7  using Lemma 5.18(vii). 
Now push non-ind to the front and B-ind to the back using (i) to (iii), combining codes 
of the same type using (iv) to (vi) as we go along. □

Remark 5.20 Inductive definitions can be seen as a special case of inductive-inductive 
definitions where the second family B  : A -*■ Set is arbitrary and the code for first the 
first set does not use any B-ind codes (see Section 3.2.4.1). Hence, applying Corollary 5.19 
to such a code, we will end up with Pb (s) = 0  for all s : S. Equivalently, we get a code 
of the form

non-ind(iS, As. A-ind(PA(5), nil)) .

But this is the code for the W-type W(s : S)Pa (s) from Section 3.2.4.I. Hence we 
recover Dybjer's [1997] result that inductive definitions can be reduced to W-types in 
extensional Type Theory.

5.2.1.2 Commuting codes in SPb

We now repeat the exercise for codes in SPb- We would like to prove that also SPb is 
functorial, but first, we need to know that A-Term is:

Lemma 5.21 A-Term is functorial, i.e. if /  : X Tef -> X 'ef and g : Yref -»■ Yr'ef/ then 
there is a function A-Term ( 7 a , / , # )  : A-Term(7A, Xref, Yref) -+ A-Term(7A, X 'ref, Yr'ef). 
Furthermore,

repX(7A, introA, repx  o / ,  repindex o g, repY <>g,x) =
repX (7A, introA, repx , repindex, repY , A-Term(7A, / , g)(x))

for all x  : A-Term (7 a , X Te{, Yref) . □

Proof. This follows immediately from the functoriality of Arg^, if we simultaneously 
prove that also B-Term is functorial, i.e. that given /  : X ie{ -> X 'ef and g : Yref -> Yr'ef, 
there is a map

B-Term(7 A J , g ) ( x ) : B-Term(7 A, X Te{, Yref,x)
-+ B-Term (7A, Xr'ef, Yr'ef, A-Term (7A, / ,  g)(x))

for each  x : A-Term(7A, X re{, Yref ). □

Lemma 5.22 SPb is functorial, i.e. if /  : Xref ->• X'vei and g : Yref Y/ef, then there is a 
map SPB(/,  g) : SPb (7 a, X Tef, Yref) -> SPb (7 a, X 'rei, Y/ef), which lifts to a map

SPArgB(7 , / ,  9) : ArgB(7A, x ie{, Yref, 7 » X,  Y, repx  o / ,  repindex o g, repY o g)

ArgB(7A, ̂ ref. ^ref»SPB(/, 9 , l ) , X ,  Y, repx , repindex, repY) .

100



5.2. Container semantics: an extensional normal form

Proof. The map SPb( / , g) is defined like S P a(/):

S P B ( / , 2 , n i l ( a ) )  = nil(A-Term(7A, / , y ) ( a ) )

S P b ( / , S, non-ind(X, 7 ) )  = n o n - in d ( i f , Ak. SPB( / , g, 7 (*0 ) )

S P b ( / ,  <?, A-ind ( i f  7 ) )  = A-ind(K,  S P B ( /  + id, y , 7 ) )

SPb(/, g , B-ind(AT, /iindex, 7 )) = B-ind ( i f ,  A-Term(7A, / ,  0 ) o Jiindex, SPB(/ ,  g + id, 7 ) )  □

Definition 5.23 We call two codes 7 , 4>: SPb(7a) equivalent, written 7  -  0 , if

(i) they decode to (naturally) isomorphic sets, i.e. there is an isomorphism

fx ,Y , intro a : Argg(7 , X,Y,  introA) = Arg^(0,X, Y,introA) 

natural in (X , Y, introA), and

(ii) they target the same index, i.e.

I n d e x g (7 ,x )  = lndex^(<£, fx,YMroA(x))  

for all x : Argg(7 , X , Y, introA). B

Lemma 5.24 The code non-ind can be pushed to the front, and B-ind to the back:

(i) For all K  : Set, S  : Set and ip: S  -»• SPB(2fref + K,  Yref, 7 a)/

A-ind (AT, non-ind(5 , <p)) ^ non-ind(5 , As. A-ind(Ar, p( s ) ) )

(ii) For all K , S  : Set, h : K  -+ A-Term(7 A,2£ref, Yref) and : 5  -»• SPB(2Cref, Yref + 
* , 7 a ) ,

B-ind(A', /i, non-ind(5 , <p)) -  non-ind(5 , As. B-ind (A", h, <p(s)))

(iii) For all Ki  : Set, /iindex : K\  -> A-Term (7 A,X ref, Yref), # 2  : Set and : S P B ( A ref + 
K 2, Yref + -^1,7a)/

B-ind(ATi, /i index, A -in d (A 2, <p)) -  A-ind(K2, B -in d (A i ,  A -Term(7A , ini, id)o/iindex, y>)) 

Multiple occurrences of non-ind and A-ind can be combined:

(iv) For all K\  : Set, K 2  '• K\  -* Set and 7  : (x : A i) -> K 2(x) -* SPB(Aref,y .̂ef ,7 A),

n o n - in d (A i ,  Ax. n on -in d (/^ (rr) ,  Ay. 7(2:, y ) ) )  =

n o n - in d ((S a :: ) / < " 2 , Ap. 7 ( f s t ( p ) , s n d ( p ) ) )

(v) For all K\  : Set, K 2 ■ Set and <p : SPB((X ref + K\ )  + A2, Yref, 7 a),

A-ind(Ai, A-ind(A2 , <p)) -  A-ind(Ai + A 2 ,SPB(o,id,y?)) , 
where a  : (Xref + A i) + K 2 -*■ X Tef + {K\ + K 2) is the isomorphism witnessing the 
associativity of +.
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We have the following base case:

(vi) nil(a) = non-ind(l, A-ind(0, B-ind(0, !o, nil(A-Term(inl, ini, a)))))  □

Note how the combining of multiple B-ind codes into one is missing from the lemma 
-  later arguments might now depend on earlier ones by including them in their index via 
the constructor introA- For instance, let 7 a  = A-ind(l, B-ind(l, inr, nil)). In other words,
7 a represents a data type A with constructor introA : (a : A) -*■ B(a) -*■ A  for some as of 
yet unspecified data type B  : A -> Set. Now consider e.g. the code

7 b = A-indi(B-indi(aref(inr(*)), B-indi(arg(bref(inr(*)), *, *), nil(aref(inr(*))))))

which represents a constructor

introB : ( cl : A)  -»■ (b : B(a )) -»• P(introA(u, b)) -»• B(a)  .

We need the argument b : B (a ) before we can describe the index introA (a, b), hence these 
two arguments cannot be combined. The best we can do when it comes to normal forms 
is the following:

Corollary 5.25 Each code 7 b : SPb(7 a) is equivalent to a code of the form

non-ind(S, As. A-ind(PA(s),
B-ind(PB)o(s), h0(s) , ...  B-ind(PB>n(a)(s), hn(s)(s), nil(a(s)))))) (5.2)V . _ - _ ■ _ _■ V

n ( s )  m a n y

where S  : Set, Pa : 5  -»• Set, n : <5 -»■ N,

Ffe.i : *5 -* Set
hi : ( s : S)  -* PbA 8) h - T e r A, PA(s), PB,o(s) + ...  PB,i-i(s)) 

for 0  <i< n(s) and a : ( s : S )  ^  A-Term(7 A, Pa(s), Ffe.o(s) + • • • -PB,n(s)(s))-

Proo/. As before, push non-ind to the front and B-ind to the end. As multiple occurrences 
all codes but B-ind can be combined, we will end up with a code as described above. □

5.2.2 Inductive-inductive containers

We now reap the benefits of the work of the last section by reading off the definition of 
an inductive-inductive container from Corollaries 5.19 and 5.25.

Definition 5.26 (inductive-inductive container) An inductive-inductive container (Ca ,Cb ) 
is given by the following data, and decoded as follows:

• CA = ( SA, P£ , P£, hfndeJ ,  where

-  S A : Set,
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5.2. Container semantics: an extensional normal form

-  P £ : S A ^  Set,

-  jPg : S A -*• Set, and

• The extension of = (SA, P A, P ^ , h ^ dex) is the functor [CyJ : Fam(Set) ->• Set 
defined by

l (SA, P £ , P A , h L e * M X , Y )  =
(Ss : S^KII/ : (a) -  X)(nx : P i { s ) ) Y { f ( h ^ { s , x ) ) )  •

This extends to an action on morphisms in the obvious way.

• Given CA = (SA, P£,  Pg,  hAdeJ  and sets X Tef, Yre{/ the set A-TermC/1 (Xref, Yve{) 
is inductively generated by the constructors

3ref • 2fref -* A-Termc^ (-X"ref, Tref)
bref • ^ref ~> A-Term c^ ( X ref , YTe{)

arg : [CUfl(A-TermcA (Xref, yref), B -Term ^) -> A-TermcA(A'ref,y ref)

where B-Term^ (aref(^)) = B-Term^ (arg(x)) = 0  and B-Termc'A(bref(x)) = 1 .

Given repx : X xei -* X ,  repindex : Yie{ -+ X  and repY : (y ■ ^ref) -  Y (repindex(^)), 
the functions

rep lc .4 (rePx> rePindex. ^Py) : A-Termc^(Xref, Yre{) -► X
*®Pbca (rePx>rePindex»rePY) : (* : A -Term ^(XTef,Tref)) -* Y(repXCA( . . . , x))

are defined by

rePAcA( reP x 5repindex,repY ,a ref( x ) )  = repx ( x )

^ c A(rePx>rePindex>repY,bref(z)) = repindex(z)
fePAcA(rePx, rePindex, repY, arg(x)) = \CAl(repXCj4( . . .), repiC/i( . . . ) ,x)

™Pbca ( rePx> rePindex > rePY, aref (x ), y) =! (y) 
rePlcA(rePx> repindex, repY, bref(x), *) = repY(:r) 

rePlcA (rePx> iindex* rePv> arg(x),y) =\(y)

• CB = (SB, P B, nB, P g , h B,aB), where

-  S B : Set,

-  P f  : S  -* Set,

-  nB : S  -* N,
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-  P£  : (s : S)  -»> Fin(n(s)) -> Set,

-  hB : (s : S) ^  ( i : Fin(n(s))) -»• Pjf (s,i)

-► A-TermcA(fA (s) i -Pb (s>°) + • • • + (s^  -  !)) / and

-  a B : ( s  : 5 )  -► A-TermcA(PA ( s ) ’ P B ( s > ° )  + • ■ • + P B ( s > n ( s ) ) ) /

The extension of the inductive-inductive container (C a , Cb)  is a functor

ICA,CBl:D ialg(|C A ]l,t/)-Fam (Set) ,

where U : Fam(Set) -»• Set is the index set functor U(X , F ) = X. The functor \Ca , C#] 
is defined by

introA) = ( [ C a I P W ,  [C B] ( X ,  F, introA))

where [C#] : [Ca] -* Set is defined by

\ ( SB, P £ , n B, P i , h B,aB) \ ( X , Y M r o A)(z)
= (ES :S B) ( ( n / : P f ( S) - X )

(n 9o: ( n x : Pg(s ,0) )Y(h(s ,0 , x) ) )

(n 9„(s) : (nx  : Pg(s ,n( s ) ) )Y(h(s ,n( s ) , x ) ) ) )  

fePAc A (f< [ M « ,0 ) , . .  . , h ( s , i ) ] ,  [90, • ■ ■ , 9 i ]> a (» ) )  = x  introA( z ) )

where

h(s, 0 ) = repXCA ( /,! ,!)  °/*6(s ,0 )
7i(s,« + l) = repX<7A( / ,p (s ,0 ) , . . . ,7 i ( s , i ) ] , [p o , . . . ,^ ] )o / i6(s,i + l) . n

By construction, Corollaries 5.19 and 5.25 together now say that each inductive- 
inductive definition can be interpreted as an inductive-inductive container.

The "number" n : S  -»• N is reminiscent of n-ary containers S< P,  where P  has type 
P  : S  -> Fin(n) -> Set [Abbott et al., 2003], except that our n  is allowed to vary with 
the shape. Of course, if the num ber of shapes is finite, we can just choose a uniform 
n' = maxs:s(n(s) )  and pad out the extra positions with empty ones:

*%(«,<) = = i ( i i n { s )
10  otherwise l! otherwise

We then have that [C a , (S , P a , w, P b , h ,«)] = [C a , (£, P a , n', Pg, hr, «)]. However, in 
general, n: S  -*■ N can be unbounded.

Example 5.27 (Context and types as an inductive-inductive container) We express the 
contexts and types from Example 3.1 as an inductive-inductive container (Cctxt, Cyy).



5.2. Container semantics: an extensional normal form

Let us start w ith Cctxt = (5'Ctxt, PAtxt, Pgtxt, The data type Ctxt has two con
structors, thus we set 5 Ctxt = 2. The first constructor e has no inductive arguments at all, 
thus we choose PAtxt(ff) = Pgtxt(ff) = 0 with x ) =\(x). The second constructor

> : (T : Ctxt) -»• Ty(T) -> Ctxt

has one Ctxt -inductive and one Ty-inductive argument respectively, thus we choose 
Pj\txt(tt) = Pgtxt(tt) = 1 with *) = *. This concludes the definition of Cctxt =
/  cC tx t p C tx t p C tx t l Ctxt \
V ’ A ’ B ’ in d ex /'

We now move on to Cjy = (STy:P j f , n Ty,P^y,hTy,aTy). Since also Ty has two 
constructors, we let S Ty = 2 as well. The first constructor i : (T : Ctxt) -»■ Ty(T) 
has one Ctxt-inductive and no Ty-inductive arguments, so we let P jy(ff) = 1 and 
nTy (ff) = 0  (with PgV(ff) and hTy (ff) trivially given by ex falso quod libet), and finally, 
since the index is the only Ctxt-inductive argument, we let aTy(ff) = aref (*). The second 
constructor

n  : (T : Ctxt) -  (a : Ty(T)) -  Ty(T > a) -+ Ty(T)

has one Ctxt-inductive and two Ty-inductive arguments, so we let PAy(tt) = 1 and 
nTy(tt) = 2 w ith Pgy(tt,0) = P j y(tt, 1) = 1. The index for the first Ty-inductive argu
ment <j  is the Ctxt-inductive argument T, so we let hTy(tt, 0, *) = aref (★), while the index 
of the second one should be T > a. Hence we let /iTy(tt, 1, *) = arg((tt, A_. *, A_. *)) since 
arg((tt, A_. *, A_. *)) represents the constructor > applied to the only elements T and a 
we have access to. Finally, the index targeted by the constructor is T, so we again define 
flTy(tt) = aref (*). ■

Remark 5.28 The container literature also defines morphisms between containers, 
which represent natural transformations between the corresponding functors. Hence 
containers and container morphisms form a category Cont, and the embedding Cont -+ 
SetSet is in fact full and faithful. Thus, we can use the locally small category Cont to 
represent objects in the (even locally) large functor category SetSet. It is not hard to 
define morphisms also between inductive-inductive containers. It would be interesting 
to see if there is a corresponding full and faithfulness result also in this case.

The definition of inductive-inductive containers stands on its own; no reference was 
made to the axiomatisation in Chapter 3. The price we paid for this was repeating the 
definition of A-Term and repA, specialised to the normal form code in Corollary 5.19. 
Even though there are no inductively presented codes present in the definition anymore, 
the situation is not completely satisfactory, as A-Term is still inductively defined. This 
means that constructions on inductive-inductive containers still need to use a small 
amount of recursion.

5.2.3 Graded inductive-inductive containers

We now present a subset of inductive-inductive containers, which we call graded 
inductive-inductive containers, and which are presented in an induction-free way.
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This makes them very easy to reason about. I chose the nam e graded, since these 
inductive-inductive containers correspond to data types where the generalised argu
ments g : (x : PB(s)) -*■ B{i{x)) in the constructor for the second set B  : A -> Set can be 
decomposed into arguments which use respectively 0 , 1 , 2  constructors for the 
first set A  respectively. Not all inductive-inductive containers are of this form, but we 
will see that all examples we have considered so far are.

The first part Ca of a graded inductive-inductive container is the same as for a 
general inductive-inductive container. We give the full definition for completeness (the 
reader with a good memory of general inductive-inductive containers can skip straight 
to the third bullet point):

Definition 5.29 (Graded inductive-inductive container) A graded inductive-inductive 
container (Ca ,Cb ) is given by the following data, and decoded the following way:

• CA = (SA, P A, P A, hAdex), where

-  S A : Set,

-  P £ ’-S-+ Set,

-  Pg : S  -»• Set, and

-  hAdex: ( s : S ) ^ P B( s ) ^ P A(s).

• The extension of Ca = (£ j4, P^S PB i ^index) functor [CU] : Fam(Set) -> Set 
defined by

l (SA, P ^ , P j i , h ^ ) ] ( X , Y )  =
(Es : S M) ( n /  : P*(s)  X) (Ux  : P £ ( s ) ) Y U ( h £ dex(s ,x) ) )  .

This extends to an action on morphisms in the obvious way.

• Cb  = {SB, P B, nB, Pg , a B), where

-  S B : Set,

-  P f  : S' -> Set,

-  nB : S  -> N,

-  P B : (s : S)  -  ( i : Fin(n(s)))  -  [CAf  (PB(s), P B(s, 0 ) , . . . ,  P B(i -1 ) )  -  Set,

-  aB : (s : S) -  Z^IC ^K Pf (s),p /(s)),

where = X  and

[CUli+1(X,yi,...,yi+1) =
ICa K IC a I°(x ) + ■■■*ICa Y ( x , y , . . . , y ) , [ y , . . . , y +1] )  .
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The extension of the graded inductive-inductive container (C a , C b )  is a functor

lCA,CB}:D\a\g(lCAl U) ^ Fa r n( S e t )  ,

where U : Fam(Set) -> Set is the index set functor U(X, Y)  = X.  The functor | C a , C b \  

is defined by

ICa , C b \ { X ,Y ,  introA) =

([CA] (X ,r ) ,  Ax. (Sy : [CflK-Y.y, in t ro A ) )^ ! ,n d e x B ( y )  =x introA(a:))

where \CB J is defined by

[ ( S B , P g ,n B,P i ,  aB) \ (X,  Y, introA)

= (S S :SB) ( ( n / : P f ( s ) - X )

(n So: ( n x : p B(s ) )Pi ( s ,  o,x) -  r ( / ( x ) ) )
(n 9 l : ( n x : ic aH pJ* ( « ) , i f  (s ,o)))p#(« ,i,x ) -  y (7(«,i,®)))

(n Sn(s): (nx : |CAr< s>(PIf ( s ) ,P | ( s , 0 ) , . . . , F i ;(s,n(S) -  1)))
Pv( s , n ( s ) , x )  -+Y(J(s ,n( s) , x) ) ) )  

an d  IC slindexeCX , Y, introA) : ICB\{X,  Y, introA) -»> X  is  d e fin e d  b y

[<?BjindexB( ^ ^  introA) (s , f ,go , ... ,y „ (a)) = [ /(« ,0 ) , . ..  , / ( s ,n (s ) ) ] (a (s ) )

where

70>,o) = /
7(s,* + l)  = introAo[CA]([7(s,0),...,7(s,i)],[So,- -,Pi]) • ■

Example 5.30 (Contexts and types as a graded inductive-inductive container) We recast 
the contexts and types from Example 5.27 as a graded inductive-inductive container. 
The first component Cctxt stays exactly the same. For the second component Cry = 
(ST̂ y,n T>',Pjy, aTy), the shapes, Ctxt-positions and number of Ty-positions are the 
same as before: the shapes are 5 Ty = 2 , we have P^y(ff) = -PAy(tt) = 1 and nTy(ff) = 0 , 
nTy(tt) = 2. The difference compared to Example 5.27 is how we describe the Ty- 
positions. With a graded container, we describe how many inductive arguments of a 
given constructor-shape we have:

P p ( t t , 0 ,x) = l  (5.3)

P ^ ( t t , l ,( f f ,y ) )  = 0 (5.4)

P jy( t t , l , ( t t , 3/)) = 1 (5.5)

Equation (5.3) says that we have one inductive argument not using a constructor, Equa
tion (5.4) that we have no inductive argum ent targeting e (which is represented by
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a tuple of the form (ff, y)) and Equation (5.5) that we have one inductive argument 
targetting the constructor > (which is represented by a tuple of the form (tt, y)).

Finally the index of the constructed element should be the only Ctxt-inductive 
argument in both constructors for Ty, i.e. no constructor involved in the index, so we 
define aTy(ff) = inl(*) and aTy(tt) = inl(*). ■

Not every inductive-inductive container has a gradation. Consider for instance the 
container which represents the following inductive-inductive definition of (^4, B): the 
set A  has two constructors base : A and introA : A -> A, and B  has one constructor

in troe  • (a : A) -+ ( f  : (n : N) -> B(elim^(a, Am. Am. intrc>A(m),n))) -* B(a)

In other words, introe has arguments a : A  and f ( n )  : Z?(intro^(a)) for each n : N. As a 
container, this data type can be represented by (CA,CB) where CA = ( 2 ,P ^ ,  A_. 0,!)
with = ® and P ^ ) ( t t)  = 1 , and

CB = ( 1 , 1 ,  l ,N ,e l i m N(aref (*), Am. Am. arg(tt, m)), aref ( * ) )

i.e. we have one shape, one ^-position and a imposition for each natural number 
n, whose index is a r g ( t t ,a r g ( t t ,a r g ( . . .  , a ref ( l ) ) ) )  (n occurrences of arg). There is no 
corresponding graded container, as this would need an infinite number of arguments

/(0 )  : B(a)
/ ( l )  : P ( in tro A( a ) )

/ ( 2 ): B(\ntro2A(a))

since a graded container always groups together the arguments that use the same depth 
of constructors.

Note that this counterexample is only possible because the inductive-inductive 
definition is degenerate: the constructor for A  does not refer to B.  For proper inductive- 
inductive definitions, one could expect a gradation always to exist, since arguments 
must be introduced in a certain order: b : B(a)  before b' : P(introA(a, b)), for instance. 
However, definitions that syntactically seem proper might in fact be degenerate by e.g. 
including arguments such as (x : 0 ) -► B(Ia (x )). Even worse, to detect such "false" 
arguments, we would need to check if a type is empty or not, which is well-known to 
be undecidable (by reduction from the Halting Problem, for instance).

Finitary inductive-inductive definitions, i.e. definitions where the premises of 
inductive arguments are isomorphic to Fin(m) for some m : N, are graded. Note that all 
examples of proper inductive-inductive definitions we have considered so far indeed 
have been finitary.

Proposition 5.31 Every finitary inductive-inductive definition (7 a, 7 b) gives rise to a 
graded inductive-inductive container (Ca, Cb ) whose extension \(Ca, Cb )\ is naturally 
isomorphic to Arg7A 7B, i.e.

l (CA,CB)}(X,Y,\ntroA) = Arg7A ^ (X ,F ,  introA) ,
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for all (X , y, introA) in DialgdC^], U) (naturally in (X , Y, introA)).

Proo/. We know by Corollaries 5.19 and 5.25 that (7 a, 7 b) can be w ritten in the form 
(5.1) and (5.2), e.g.

7 a = non-ind(5'"4, As. A-ind(PA (s )> B-ind(Pg (s), inr o /iindex(s), nil)))

and

7 b = non-ind(5'B, As. A-ind(PA (s)»
B -ind(P |0 (s), /i0 ( s ) , . ..  B-ind(P^n(a)(s), hn(s)(s), n il(a(s)))))) .
v , '

n ( s )  m a n y

We now define a rank function r : A-Term (7 ^, Xref, Yref) -> N by

r(aiei(x)) = 0 

r(b ref(z)) = 0  

r(*rg((s,{jA, ( jB, *))))) = suc( max r ( jA(i)))
i :P£(s )

This maximum is only well-defined because we know PA (s) is finite. Intuitively, r(x)  
is the number of constructors used in the index encoded by x.

We now define
ngB(s):= max r(hB( s , i , x ))

i :Fin(n(s) ) ,x:P^i (s)

which once again is well-defined because (7 ^, 7 g) is finitary. As an abbreviation, let us 
write P B(s) := P ^ 0 (s) + . . .  + PgMs)(s). Let

fo : {x: A-Term(7 A ,P f (S)5PB (s)) kC^) =0} -► P B(s) + 1

be the function which m aps aref(x) to ini(z) and everything else to inr(*). We define 
P |S (s,0) : P B(s) -> Set by

PbB(s 0̂^ )  := i x : PB (s ) I r([ho(s) , . . . ,  hnis)(s)](x)) = 0  a f 0(x) = inl(?/)} .

Similarly, we can define

f i : {x : A-Term(7 A, Pa (s), P # (s)) | r(x) = i j  -+ [7aF (^a  (s) ,P^b (s , 0 ) , . . . ,  P f { s ,  i - l ) ) + l  

and

P | s (s ,2,y) := {x  : P B (s) I r([/i0 ( s ) , . ..  ,hn(s)(s)](x))  = i a f {(x)  = inl(y)} .

We finally define agB(s) := / r(a(s))(a (s))- It should be clear that the decoding of 
7 b, which is isomorphic to the decoding of 7 b, is isomorphic to the decoding of
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5.3 Reduction to extensional indexed inductive definitions

How strong is the theory of inductive-inductive definitions? Indexed inductive defi
nitions naturally embed into inductive-inductive definitions: The indexed inductive 
definition X  : I  -»• Set can be regarded as an inductive-inductive definition of I ' : Set 
and X  : I '  -*■ Set where I'  is an isomorphic copy of I, i.e. given by one constructor 
intro// : I  -*■ / '  (see Section 3.2.4.2). Hence inductive-inductive definitions are at least as 
strong as the theory of indexed inductive definitions. We will now sharpen this result by 
showing that the theory of inductive-inductive definitions, with the simple elimination 
rules from Section 3.2.5.2, can be interpreted in the extensional theory of indexed induc
tive definitions. Thus, if there is any difference in proof-theoretical strength between 
the two theories, it is either because of extensionality (which is unlikely, as models of 
Type Theory which gives upper bounds for its proof theoretical strength usually also 
interpret the the equality reflection rule [Setzer, 1996]), or the general elimination rules 
presented in Chapter 4.

The general idea of the reduction is to first define "pre-sets" p r e A : Set and preB : Set 
without index information. This makes it possible to define p reA and pr eB  using an 
ordinary mutual definition (hence a 2 -indexed definition), but the lack of precision 
means that we have also included junk into our sets. We thus define "goodness pred
icates" good A  : preA -*■ Set and g o o d #  : preA -* pr eB -> Set which singles out the 
well-formed elements that respect the original index information. We can then define 
A := ( S a : : preA)goodA(:r) and B({x ,g )) := (’Ey : preB)goodB(x, y) and prove that the 
introduction and (simple) elimination rules are sound.

Before we prove the general theorem, let us consider an example. In fact, the 
reader is advised to understand this example (and the following Example 5.36) to get a 
general idea of the reduction before tackling the general case, which does not offer any 
additional technical difficulty.

Example 5.32 (Contexts and types as an indexed inductive definition) How would 
we represent the contexts and types from Example 3.1 if we did not have dependent 
types? A reasonable approach is to include possibly non-wellformed types, and then 
afterwards check that the types in question are well-formed. For this check to be 
possible, we still need to store the context, that we believe the type is well-formed in, in 
the type, and so, the definition of contexts and types is still simultaneous, although the 
typically inductive-inductive phenomenon of contexts appearing as indices of types 
has disappeared.

Thus, we take the original definition of contexts and types

  r  : Ctxt a  : Ty(T)
£ : Ctxt r  >  <7 : Ctxt

T : Ctxt T : Ctxt <J:Ty(T) r  : Ty(T >  a) 
Lr  : T y(T ) nr(<T,r): Ty(T)
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and drop all index information, so that we end up with

T : preCtxt a : preTy 
£pre : preCtxt r  D>pre cr : preCtxt

r  : preCtxt T : preCtxt a : preTy r  : preTy 
tpre(r) : preTy npre(r, (7, r )  : preTy

Given a context T : Ctxt or type o : Ty( A), we can always erase all "type information" 
to get a corresponding precontext pre(T): preCtxt and pretype pre(cr): preTy. It should 
be clear that there are plenty of precontexts and pretypes that are not the erasure of any 
proper contexts or types, though. Hence, we cannot expect preCtxt and preTy to satisfy 
the same induction principle as Ctxt and Ty, and interpreting the latter as the former 
would make the elimination principle unsound. We now define predicates good C txt: 
preCtxt -* Set and goodTy : preCtxt -»• preTy -* Set that are true exactly for those 
precontexts and pretypes that are actually well-formed; the proposition goodCtxt(r) is 
true if T is a well-formed context, i.e. it is the erasure of some Ff : Ctxt, and goodTy(r, cr) 
is true if a is a well-formed type in context T, i.e. it is the erasure of some a ' : Ty(T') 
where T is the erasure of T'. We do this by reintroducing the index information, using 
a simultaneous indexed inductive definition:

£good : good Ctxt (epre)

T : preCtxt T : good Ctxt (T) a  : preTy o  : g o o d T y (r ,  cr)

(r,r) > good : g o o d C tx t (r  > pre a)

r  : preCtxt V : good Ctxt (T) 
tgood(r,r) : goodTy(r,ipre(r))

^  r  : preCtxt a : preTy r  : preTy
T : g o o d C tx t (r )  a  : g o o d T y (r ,  a) t  : good T y(T  > pre cr)

Ilgood (r, f , a, o r ,  T, r ) : goodTy(T, npre(r, a, r ))

For instance, n good(r, r , r )  says that if T is a well-formed context, cr is a well-
formed type in context T and r  is a well-formed type in context T t>precr, then npre(r, a, r )  
is a well-formed type in the original context T.

We now define the interpretation of Ctxt and Ty to be

[[Ctxt]] := (ET : preCtxt)goodCtxt(T)

[ T y ] « r , f »  := ( E a  : Pr e T y )g o o d T y (r , a )

which shows that the formation rules are sound with respect to the translation. Fur
thermore, we can validate the introduction rules by pairing up the goodness proofs we 
have asked for:

[ej : [Ctxt]
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[s] -  (^pre?£good)

[>] : ( r :  [Ctxt]) - [ T y ] ( r ) -  [Ctxt]

(r,r)[>|(<7,or) = (r  >pre<r,(r,f) >g00d (orf))

14 : ( r  : Ctxt) -  [Ty](r)
M ((r , f ) )  = (tpre(r),igood(r,r))

[II] ■■ (r : [Ctxt]) -  (a : [Ty](r)) -  |[Ty](r|[>J^) -  [Ty](r) 
plj ({r, f ), {a, J ) , (r, r )) = (npre(r, (7, r ), IIgood (r, f , <7, or, r, r ))

We will get back to the elimination rules in Example 5.36. ■

We now consider a general inductive-inductive definition. In order to reduce com
plexity, we work with graded inductive-inductive containers from Section 5.2.3. Recall 
that extensionally, all finitary inductive-inductive definitions can be reduced to this 
form (and many non-finitary ones too). It should however be stressed that this normal 
form only is a convenience for the proof, and not a necessity -  we simply choose to 
prove this particular version of the theorem in order to avoid induction over codes and 
syntactical clutter that obscures the idea behind the proof. Since the general version 
of the soundness theorem will require extensional equality anyway, we do not lose 
anything by immediately switching to the normal form.

Definition 5.33 Given a graded inductive-inductive container (C 4 , Cb ) where CA = 
(SA,P£,  Pg , fo^dex) and Cb = ( SB, P B,nB, P# ,aB), the mutually inductive data types 
preA: Set, preP : Set are given by the following constructors:

inpre.A : (s : S A) -►

( /  : Pa (s ) Pre^ )
(g -Pg(s )  preP) preA

î preJS '• (s '■ S  ) —►

( /  : p a ( s ) -* P ^A ) -*

(go : (x : P B(s)) -  Pg (s,0 ,x) -► preP) -►

(9i ■■ (x : ICA}( P£( s ) , PB(s))) -  P#(s, l,x ) -  preP) -

(9nB(s) : (X ■ lCAr B{s)(PA (s) ,pb ( s))) pi ( s , n B(s),x)  preP) -* preP 

Furthermore, the mutually indexed inductive data types goodA : preA -> Set and
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goodB : preA -»■ preB -»• Set are given by the following constructors:

*ngoodj4 • (5 : S  ) ->

( /  : P A («) Prê ) -
( / :  (x : PA (s)) goodA (/(x))) ->

( 9  : P-B (s ) -»■ Pre^ )
(g : (P ^ (s))  -^goodP (/(/i^dex(s ,x )),p (x ))) ->goodA(inpreA (s,/,p ))

iflgoodB • (s • S  ) —*

U' -Pa (s) -+ preA) -

( / :  (x ; P f  (s)) -* goodA (/(x))) ->

(p0 : (z : Pa (5 )) -»> Pb (5 , 0 .x) preP) -►
(go : ( x :P a ( s ) )  -> ( y : Pg( s ,  0 ,x)) -► goodP(7(s,0 ,x),p0(x,2/)))

(91 ' (x: ICa](P%(s ) , P i (5))) -  i f  (5,1.x) -  preP) -
(£1 : (x : [CU](Pa (5), Pb (5 ))) ( y  '• Pq (s, 1,x)) -► goodP(7(s, 1,x ) ,# i(x ,y ) ) )  -►

(9nB(s) : (x : lc A r B{s)(PA ( s) , PB ( s ))) -  PB ( s , n B(s),x)  -* preP)

(<£*(*) : (x : lc A r B{sHPA ( s) , PB ( s ))) -  (y- p i ( s , n B(s) ,x))  
goodP(7(5,ns (s), x ),^nB(s)(x,y))) 

goodP([7(s,0),.. . ,7 (s ,n (s ))](a (s )) ,in preB(s,f,go, • • -,9nB(a))

where

7(s,0) = f
J ( s , i  + l )  = inpreAolCAU[f ( s , 0) , . . . J ( s , i ) ] , [go , . . . , g i ] )  . ■

The idea is the same as in Example 5.32: The sets preA and preP drops all index infor
mation, and goodA and goodP restore it (it might be helpful to compare Definition 5.33 
and Definition 5.29).

We have presented the indexed inductive definitions as mutual inductively defined 
data types, but it should be clear that they can be presented straightforwardly as indexed 
containers or as codes in a system of indexed inductive definitions, with index set 2 (for 
a choice between preA and preP). Before we can prove the soundness of the formation 
and introduction rules, we need a technical lemma:

Lemma 5.34 Let s, f , gx and /  be as in the arguments to ingoociB in Definition 5.33. Then 

fsto [7 (s ,0 ) ,.. .,7 (s ,n (s ) ) ]  = [ f s to / ( s ,0 ) , . . . , f s to / ( s ,n (s))] .

□
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Lemma 5.35 (Soundness of the formation and introduction rules) Let (CA, CB) be a 
graded container. If we define

[.A] := (Ex : pre>l)good.4(x)
[BJ((a;,x&)) := (Ey : pre£)good£(x, y) ,

then constants introA and introB can be defined so that the introduction rules

x : |[CU]|(M,1[£]) x:  [Cg|(|[i4], IB}, introA)
introA(x) : [i4J introB(x) : ( [Os]indexB(%))

are valid.

Proof. We begin by defining introA : [CaJ(|[A], |P J) -> {A}. By the definition of |C AJ 
and the rj rules for E types, any x  : [Ca ]([A]|, {B}) is of the form x = (s, (/, g)) where

S :

f  : PA (s) -> (Ex : pre>l)good^4(x)

g : ( x :  PB (s)) ->• (Ey : preP)goodP(fst(/(h(x))),?/) ,

where we have expanded the definition of {A} and [P ] . Thus we can define

introA((s, ( /, g))) := (inpreA(s, fst o / ,  fst o g), ingoodA(s, fst o / ,  snd o / ,  fst o g, snd o g))

We can now do almost the same thing for introB: given x = (s , (/, (go, (■ . .,  gnB(s)))))f 
we can use

inpreB(s,fsto / ,  Ax.fstop0(x ) , . . . ,  Ax.fsto^nB(s)(x)) 

as the first component of introB((s, (/, (po> (• • •, 9nB(s))))))/ and we would like to use 

ingoods(s,fsto/, Ax.fstopo(x), Ax.sndop0(x ) , . . . ,  Ax.fstopnB(s)(x), Ax.sndopnB(s)(x)) 

as the second component, but the type is not obviously right: ingoodP(...) has type 

goodP([fst o / ( s , 0 ) ,...  ,fst o f (s ,n(s))](a(s)) ,  inpreB( . ..)) , 

but needs to have type

goodP(fst([CB]|ndeXB(x)),inpreB( . ..)) =

goodP (fst([/(s ,0 ),...  ,7 (s ,n (s))](a (s))) ,in preS (- • •))

By Lemma 5.34 and the equality reflection principle, these two types are equal and we 
can define

introB((s, (/, (g0, .. . ,gnB(s))))) :=
(inPres(s,fst O / ,  Ax. fst o go(x) , . . . ,  Ax. fst o 0nB(s)(x)), 
ing0ods(5,fst o / , Ax. fst o 0O(x), Ax. snd o go(x),

Ax. fst o pnB(s)(x), Ax. snd o ynB(s)(x))) . □
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We would also like to show that the elimination rules are valid for [A] and [£]. We 
do this for the simple elimination rules from Section 3.2.5.2. Let us once again start 
with a concrete example.

Example 5.36 (Elimination rules for contexts and types) For the contexts and types 
from Example 5.32, we would like to define elimination constants elim|Ctxtj and elirri|Tyj 
of type

elimctxt: (P ■■ [Ctxt] -* Set) -> ( Q : ( r : [Ctxt]) -> fTy](T) -> Set) -»
(step, : P([e])) -
(steP> : ( r : [Ctxt]) -  ( a : [Ty](r)) -  P(r) -  Q ( I »  -  P(r[>l<r)) -  
(stepn : (r : [Ctxt]) -  (a : [Ty](r)) -  (r : [Ty](r[>]<7)) -  P(r)

-  < ? ( r »  -  a (r[> l< T ,r) -  Q (r,[n ](r,< 7 ,T ))) -  
(step,: (r : [Ctxt)) -  P(T)  -  Q (I\ [t](r))) -
(r : [Ctxt]) -  P(T)

elimjy : ( P : [Ctxt] -> Set) (Q : (T : [Ctxt]) -» [T y](r) Set) ->
(step, : P([e])) ->
(steP> : (r:  [Ctxt]) {a : [Ty](r)) -  P(r) -  Q( I »  -  P(r[t>]a)) -  
(stepn : ( r : [Ctxt]) -  (<7 : [Ty](r)) -  ( r  : p y](r[> ]a )) -  P (r)

-  Q(r, a )  -  Q(r[ >[<7, t )  -  Q(r, [n](r, a, t))) -  
(s te p ,: (r : [Ctxt]) -  P(r) -  Q(r, M(r))) -
(r : [Ctxt]) -  (<7 : [T y](r)) -  Q ( I »

The high-level idea is to use the elimination principle for good Ctxt and goodTy for this -  
indeed, the way we have defined the interpretation of the constructors [t], fn j etc., the 
step functions for elimctxt and elimjy above are basically uncurried versions of the step 
functions for elimg00£ictxt and elimgoodjy. We will face and overcome two problems.

The first problem we meet almost directly. We would like to implement elimctxt and 
elimjy in terms of elimgoodCtxt and elimgoodTy respectively. Let us focus on elimctxt- Let 
all the arguments to elimctxt be given, in particular P  and Q of types

P  : ( ( IT  : preCtxt)goodCtxt(T)) -> Set
Q : «r,rff) : ( IT  : preCtxt)goodCtxt(T)) -> ((Her: preTy)goodTy(T, a))  -»• Set

The motives for elimgoodctxt/ on the other hand, are of the form

P ' : ( r  : preCtxt) -> goodCtxt(T) -> Set
Q' ■ (T : preCtxt) -> (a : preTy) -> goodTy(T, a) -> Set

We can choose P '(T , T5) = P(  (T, Vg ) ), but for Q' , we have what appears to be a problem: 
we have no Tg : goodCtxt(T) to give to Q\ Luckily, we can extract such a goodness proof
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from (Tg : goodTy(r, a),  which we do have. Inspecting the constructors igood(r. T) 
and ngood (r, T, cr, a, r, r ) ,  they both contain a goodness proof T : goodCtxt(r) for the 
current context. Hence, by the induction principle for goodTy, we get such a proof 
extractGoodj (cr9) : goodCtxt(r) for all ag : goodTy(r, cr). Thus, we can choose

p'( r,rff):= P((r,rG))
Q'(Y, ( j ,Og)  := Q((r,extractGoodr((79)), { a , c r g ) )

The step functions we have are now curried versions of the step functions we need, but 
there is a second problem: with the motive we have chosen, for T, Tg, cr and ag of appro
priate type we get recursive calls of type Q((T,  ext ractGoodj (cr9)), (cr, crg)), but the elimi
nation principle we want to implement expects recursive calls of type Q ( ( r , r g),(a,crg)), 
i.e. using the given goodness proof Tg instead of the reconstructed goodness proof 
extractGoodr(<xg). Also this problem can be overcome, this time by noticing that in 
fact, all goodness proof of a given type are equal, hence also extractGoodp(crg) and Tg. 
Also this can be proven using the elimination principle for goodTy and good Ctxt; this 
time, a simultaneous induction is necessary. By the equality reflection principle, the 
uncurried step functions have the right type and we have succeeded in defining elimctxt 
and e l im j y .

The computation rules for e l im c tx t  and e l im jy  follow from the computation rules for 
e l im goodCtxt and e l im g0odTy and the equality reflection rule again. ■

Armed with the experiences from the example, we can prove in general:

Lemma 5.37 (Extracted, unique goodness)

(i) Ii y 9 : goodP(a;, y ) then there is a term extractGoodx(?/5) : goodA(:r).

(ii) If xg, x'g : good A (x) then there is p : xg =goodA(x) x '9-

Proof Both statements follow by an easy application of the elimination rules for goodA 
and goodP. For (i), we use the motive P(x, x9) = 1, Q(x, y,yg) -  goodA(:r), i.e. we only 
do induction on goodP. For (ii), we use the motive P(x,  xg) = (x'g : goodA(a:)) -* xg = x'g 
and Q(x,y ,yg) = (yg : goodB(x , y ) )  ^ y g = yg. □

Using this, we can prove the soundness of the elimination rules for a general graded 
inductive-inductive container exactly as in Example 5.36.

Lemma 5.38 (Soundness of the simple elimination rules) Let (Ca ,Cb ) be a graded 
container, and define [A], [P], introA and introe as in Lemma 5.35. Also constants elim^ 
and elimb can be defined which validates the elimination and computation rules. □

Since the data types preA, preP, goodA and goodP are constructed using indexed 
inductive definitions only, we have, in proof-theoretical terms, (almost) constructed a 
reduction from the theory of inductive-inductive definitions to the theory of indexed 
inductive definitions. It is not quite a reduction, since we have not interpreted the 
rules dealing with the large types SPa and SPb- It is very possible that these could be
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coded in the large type I ID somehow. However, from a practical or implementation 
point of view, this is irrelevant, as we have successfully dealt with the hard part of the 
theory, namely the introduction and elimination rules for A7Ai7b and -B7A)7b -  there is 
no harm in having a large type of codes around if decoding them takes no extra effort. 
We summarise the development of this section in a theorem:

Theorem 5.39 The (extensional) theory of inductive-inductive definitions w ith simple 
elimination rules can be interpreted in the extensional theory of indexed inductive 
definitions combined with the formation and introduction rules for S P a  and S P b - □

5.4 Summary and discussion

In this chapter, we have justified the existence of inductive-inductive definitions in 
two different ways: first by constructing a model in classical set theory, and then by a 
translation to a more well-known type theory.

The set-theoretical model is quite standard. The inductive-inductive definitions are 
modelled as inductive definitions are usually modelled in set theory, i.e. by iterating a 
monotone operator until a fixed point is reached. Both A  and B  : A  Set are generated 
at the same time, and since set theory is untyped, it does not matter that A appears in 
the "type" of B.

The second justification is more satisfying from a constructive point of view. It 
can also, if one so wishes, be seen as a model construction, or alternatively as a proof- 
theoretical reduction.

Constructive models The set-theoretical model we have constructed lives in ZFC set 
theory + the existence of two inaccessible cardinals. This is mostly for convenience, 
as it allows us to reuse results from set theory w ithout worrying if they apply in 
our setting or not. It should be clear that a considerably weaker theory is enough to 
interpret inductive-inductive definitions set-theoretically, with a reasonable guess being 
CZF + REA [Aczel and Rathjen, 2010]. Since we are going to extend the model presented 
here to cover also inductive-recursive definitions in Section 6.1, and this will require 
considerable more strength, we do not feel so bad about the currently far too strong 
theory used.

Translating codes not in container form The reduction to indexed inductive defi
nitions was only given for codes in "container norm al form". This is not a technical 
restriction, but rather a pedagogical one; a general treatment would necessarily do 
induction over the codes (as indeed the reduction to the normal form does), which 
would make the interpretation of especially the elimination rules unnecessarily hard to 
follow. As Examples 5.32 and 5.36 shows, it is perfectly possible to translate definitions 
not in normal form using the same recipe.
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The need for extensionality The translation of inductive-inductive definitions to 
indexed inductive definitions takes place in extensional Type Theory, and we have 
made full use of this by applying the equality reflection rule in the interpretation of 
both the introduction and the elimination rules. It is not hard to replace these uses 
with explicit coercions using subst instead. This way, the introduction and elimination 
rules can be interpreted in intensional Type Theory with indexed inductive definitions. 
However, the computation rules are still only valid up to propositional equality, even 
for closed codes. One possible solution to this problem, suggested by Conor McBride 
(private communication) is to use a propositional universe as discussed in 2.1.7 for the 
goodness proofs.

Interpreting the general elimination rules The translation from inductive-inductive 
definitions to indexed inductive definitions only worked for the simple elimination 
rules from 3.2.5.2, and not the general elimination rules. The reason is simple: the 
elimination rules of the target theory does not support the "recursive-recursive" nature 
of the inductive-inductive elimination rules, where the second component of the motive

Q : (x : A)  -> B { x ) -> P(x)  -*■ Set

depends on the first component P  : A -*■ Set. If one were to add these kind of elimination 
rules to indexed inductive definitions, then the correspondence between the two theories 
would be exact.
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Extensions

C on ten ts
6.1 Inductive-inductive-recursive definitions........... ................................120
6.2 Telescopic inductive definitions and generalised families...................136
6.3 S u m m ary ............................................................. ................................144

In this chapter, we consider two orthogonal extensions of the theory of inductive- 
inductive definitions. Both are natural from a user perspective, and have indeed been 
used together by e.g. Danielsson [2007]. In Section 6.1, we combine the theory of 
inductive-inductive definitions and the theory of inductive-recursive definitions into 
the theory of inductive-inductive-recursive definitions. We extend Dybjer and Set- 
zer's [1999] model construction and combine it w ith the model construction in Sec
tion 5.1 to show that the combined theory is sound. Finally, in Section 6.2 we explore 
how we can allow an inductive-inductive definition of telescopes

A : Set,
B : A  -> Set,
C  : (x : A)  -> B ( x ) -> Set

of more than two levels, as well as more general "families" such as

A : Set,
B  : {A x A)  -> Set

or
B  : (N x A)  Set

These extensions are justified via the categorical semantics in Chapter 4. This chapter 
gets us closer to a formalisation of all the kinds of definitions used by e.g. Danielsson 
[2007], but not all the way there. For instance, yet another extension would be needed 
to allow later constructors to depend on earlier ones for the same data type.
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6. Extensions

6.1 Inductive-inductive-recursive definitions
In inductive-inductive definitions, a set A is defined inductively simultaneously with an 
inductive family B : A -*■ Set. In inductive-recursive definitions, B : A ^  Set is instead 
defined recursively. But what if we need both an inductively defined B\  : A  -»• Set and 
a recursively defined B 2  • A  -»> Set the same time? We now present an axiomatisation of 
inductive-inductive-recursive definitions, which allow the simultaneous definition of

Such definitions were used by Danielsson [2007] to formalise the well-typed syntax of 
Type Theory (defined inductively), together w ith a hereditary substitution operation 
(defined recursively).

Example 6.1 (Danielsson [2007]) We informally present a simplified account of the 
first few levels of Danielsson's construction, extending Example 3.1. The contexts and 
the types are as in Example 3.1, i.e. we have a an empty context e, a context extension 
operation t>, a base type tr  in each context T and dependent function types IIr(cr, r) . 
On top of this, we add inductively defined substitutions Sub : Ctxt -* Ctxt -» Set; their 
exact form is not important for our purposes, except that we will need them to include 
a "lifting" operation

often w ritten infix, which lifts a substitution p to an extended context with a new 
variable by acting like p on the old variables and mapping the new variable to itself. In 
the type of t / the function /  is the application of a substitution that we now will define. 
Notice that this makes the definition very simultaneous indeed.

The function /r ,a  : Ty(T) -* Sub(T, A) -»• Ty(A) is defined b y  recursion over Ty(T), 
written infix and with T, A implicit:

We will not be able to support this example fully w ith our axiomatisation, partly 
because we need more than two levels (such an extension will be given in Section 6.2), 
but mostly because the codomain of /r ,A  is Ty( A), which is defined at the same time 
as /r ,A / whereas we require the codomain D of recursive functions to be a previously 
introduced type. Since constructors are m apped to constructors, this does not seem 
to offer any foundational difficulties. This development should be seen as a first step 
towards a theory that can justify Danielsson's construction completely. ■

We will use MR as an abbreviation for inductive-inductive-recursive definitions. 
Unfortunately, this abbreviation is also used for indexed inductive-recursive definitions, 
but we hope that no confusion will arise, as no such definitions occur in this thesis.

A : Set 
B  : A  -*■ Set 
T - . A ^ D

(inductively)
(inductively)
(recursively)

T r,A  : ( p : Sub(T, A)) -»■ (<7 : Ty(T)) Sub(T t> <r, A t> (a/p))

tr/p = tA 
IIr (<7,r)/p = UA(a/p, r / (p  ! a))
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6.1. Inductive-inductive-recursive definitions

6.1.1 The axiom atisation of inductive-inductive-recursive defin itions

The idea behind the axiomatisation is to combine the universe of codes for inductive- 
inductive definitions presented in Section 3.2.3 w ith Dybjer and Setzer's universe of 
codes for inductive-recursive definitions presented in Section 3.2.2. We will follow the 
main design of the system for inductive-inductive definitions, while at the same time 
incorporate parts of the system for inductive-recursive definitions. The reader is invited 
to keep the development in Section 3.2.3 in mind, as there will be many similarities. 
The whole construction is parameterised by a (possible large) type D,  the codomain of 
the recursively defined T  : A -*■ D. We will suppress the premise D type from the rules 
that follow.

Looking back at the axiomatisation of inductive-inductive definitions, we see that 
we make use the functorial action of ArgA on morphisms. This will cause us some 
trouble, as we mentioned in Section 3.2.2 that the functorial action of Arg!R requires 
extensional equality. Luckily, we can get away w ith function extensionality only and 
will thus require that we have it for the rest of this section. In Section 6.1.2, we will 
define subsystems of our system corresponding to "normal" inductive-inductive and 
inductive-recursive definitions, and both these subsystems will not require even func
tion extensionality.

6.1.1.1 The universe SP{{R A of descriptions of A

The universe of codes SP||RtA is quite similar to the universe SPA. The formation rule is 
the same:

- r̂ef • Set 
S P ||R ,A (^ ref) type

and we have the same codes, w ith only nil and A-ind different:

______ d : D________  K  : Set 7  : K  -> S P ||R ;A (^ r e f)

n il(d )  : S P | |R)A(2^ref ) n o n - i n d ( / r ,7) : S P | |R|A( ^ r e f )

K :  Set 7  : ( K  -» D) -+ SP,,R,A (* r e f  + K)
A -in d ( if ,7 )  : SPuR.A^ref)

K  • Set îndex ■ K  -^ref T • SPnR^C-^ref)
B-ind(X, /iindex?T) ' SPllR^C-^ref)

Compared to A-ind from SPA(^ref)/ the difference is that the rest of the arguments, 
represented by 7  : (K ^  D) ^  SPiiR^C^ref + K) ,  now can depend on T  applied to the 
inductive argument as well. Just like for inductive-recursive definitions, the base case 
nil also needs to contain an element d . D  to be used as the value of T  applied to the 
constructor.
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6. Extensions

For the decoding, also A r g MR A has almost the same formation rule as A r g A , except 
we now also require a Q : X  -*■ D to use for the recursive family:

X  : S e t  
Y  : X  -> S e t

X ref : S e t  7  : S P | i R , A ( X ref )  Q ■ X  -»  D  r e p x  : X ref -> X  
A r g | | R , A ( ^ r e f , 7 ,  X,  Y, r e p x ) : S e t

Also the equations for A r g n R A are similar to the equations for A r g A ,  w ith the only 
interesting difference being in the A - i n d  case: we define

A r6iiR ,A ( ^ r e f , A-ind(K, 7 ) ,  A ,  Y, Q, r e p x )  =
(Zj  : K  ^  X)ArgIIRA( Xref + K , 7 (Qoj ) , X , Y , Q, [repx J] )

which can be compared with

A r S A ( ^ r e f > A-ind(K,y) ,X,Y,  r e p x )  = ( E j  : K  -► X ) A r g A ( X ref +  X,7)X,y, [ r e p x , j ] )

and
A r g IR(< 5 (X ,  7 ) , X , Q )  = (Eg : K  -> X ) A r g IR( 7 ( Q  o g) ,X ,Q)  .

The full definition of ArgMR A is as follows, where we have once again written arguments 
that only get passed on in the recursive call as

A r 6 iiR,A (-> n i l ( d ) ,  _ , _ )  = !

A r 6 i iR ,A ( - ’ n o n - i n d ( A , 7 ) ,  =  ( E x  : A ) A r g n R A (_ ,  7 ( x ) ,  _)

A r g | | R , A ( ^ r e f , A - ind (A T , 7 ), X,  Q, r e p x )  =

( E j  : K  X ) A r g , | R A ( X ref +  K , j (Q o j ) , _ ,  [ r e p x , j ] )

A rg | i r , a ( —»B - i n d ( X ,  h[ndex, 7 ) ,  Y, re p x ) =

( ( x : K) - >  Y ( ( r e p x  o hindex)(x)))  x A r g MR>A( _ , 7 , _)

Like before, we define

A rg?iR,A : S P j i p  A ( X  : S e t )  -> ( Y  : X  S e t )  -  (Q : X  -*  S e t )  ->  S e t

b y  A rg | |R )A ( 7 , X,  Y, Q) := A r g MR)A( 0 , 7 , X ,  Y, Q, ! * ) .

We also need to define the "recursive part" F u n n R , which corresponds to F u n | R for 
inductive-recursive definitions:

v  c  +. X : S e t
X ref : S e t  Y  : X  -»  S e t

7  • S P i i R ^ C X j - e f )  Q • X  —*■ D r e p x  . X ref —*■ X  x • A r g | | RjA( X ref , 7 5 '‘̂ > y ,> Q )  

F u n MR ( X ref , 7 , X ,  y ,  Q, r e p x , x ) :  D
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6.1. Inductive-inductive-recursive definitions

We have the following defining equations, where we have written for arguments 
handled in the same way as in the equations for ArgMR A:

FunnR(_, nil(d), =d
FunMR(_,non-ind(X ,7 ) ,  (k,x)) = Furi|R(_,7(/c),_,_, _,_x)

FunnR(_, A-ind(X, 7 ) ,  Q, (j , x)) = FunnR(_, 7 (Q o j ) ,  x)
FunnR(_, B-ind(X, hindex,7 ) ,  (j , x ) )  = FunnR(_,7, x )

We define

Fun|jR : ( 7  : SPf|R>A) ( X  : Set) -  ( Y  : X  -> Set) (Q : X  -+ D)
Arg°1R)A(7 ,X ,y ,Q )-L >

by Furij)|R(7 ,X ,y ,Q ,x )  := FunnR(0 ,7 ,X ,y ,Q ,!x ,z ) .

6.1.1.2 Towards descriptions of B

Following the axiomatisation in Section 3.2.3.2, we would next like to define an action 
of ArgMR A on morphisms. W hat category are we dealing with? After a moment's 
thought, we realise that we are working in the pullback of the index set functor Uset : 
Fam Set -»• Set along another index set functor Up : Fam D -»• Set: our objects are 
triples (A , B , T ) w here A : Set, B : A -+ Set and T  : A -*■ D. Hence, since D is 
discrete, a morphism from (A, B , T ) to ( A \  B' ,  T' )  is a pair ( / ,  g) such that /  : A -> A ’, 
g : {x ■ A) B(x )  -> B ' ( f ( x )) and T(x) = T ' ( f ( x )) : D for each x : A. Assuming 
function extensionality, the last equation is equivalent to the equation T  = T'  o f  : A -*■ D, 
and this is the formulation we are going to use.

Lemma 6.2 For each 7  : SPPjR A, Arg[|R A(7 ) extends to a functor, i.e. given /  : X  -> X '  
and g : (x : X )  -*■ Y{x)  Y ' ( f ( x ) )  such that p : Q Q’ 0 f ,  one can define
ArgMR,A(7,/,S,p) : Argj)|R A( 7 ,X ,y ,< 5 )  -> Arg[)|R A( 7 , X ' , y /,Q')-

Proof. The proof is the same as the proof of Lemma 3.9, except for one complication: in 
the A-ind case, we need to use the proof p : Q =a^ d Q ' 0  f  to make progress. We are 
given a pair (j, y)  where j  : K  -» X  and y : ArgMR A(Xref + K, j ( Q o j ) , X ,  Y, Q,  [repx , j ] ) .  
By composing w ith  /  : X  -> X' ,  we get a first component f  o j  : K  -* X' .  By the 
induction hypothesis, we have a second component

A rg ||R ,A (7 ( ^  0 j ) J ,  y ) ■ Arg||RiA(^ref + K,  7  {Q o j ) , X \  Y \  Q \  [repx , /  o j])  ,

but we need something of type ArgMRjA( X ref +K,  7 (Q '0 / ° j ) ,  X ',  Y' ,  Q',  [repx , fo j ] ) ,  i.e. 
7 (Q °J)  should be 7 (Q'  o f o j ) .  For this reason, we asked for a proof p : Q =a ^ d Qf 0  / /  
which gives rise to a proof p' := cong(Xw. j  (wo j ) , p ) : j ( Qo j )  =SPllRA(xTef+K) l{ Q '09°j)- 
We can now transport the term arising from the induction hypothesis along this proof, 
giving

Arg||R,A(A_ind( ^  t ) ,  /> 9 ,P, (h y)) = ( f °  f  subst(p,p', ArgMR)A( 7 ( T  o j ) ,  / ,  p,p, y)))
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6. Extensions

where P ( z ) := ArgMR A(Xref + K, z, X' ,  Y' ,  Q', [rep^, /  ° j ]). The other cases are unprob
lematic. □

We also need a kind of coherence property of FunnR and ArgMR A: given /  : X  -* X' ,  
g : (x : X )  -  Y{x)  Y ' ( f ( x ) ) , p  : Q =A^ D Q’ o f  and x  : Argf,R A(7 , A ,y ,Q ,repx ), 
we can either use FunnR(7 , X,  Y,Q)  to map x to D directly, or we can first use the 
functoriality of Arg{jR>A to first send x to A rg^ A(7 ,/ ,p ,p ,x )  : Argj]r a (j , X ' , Y ' , Q ' )  
and then use FunnR(7 , X' ,  Y' ,  Q'). The following lemma says that the result is the same:

Lemma 6.3 For each 7  : SPjlR|A/ /  : X  X ' , g : (x : X )  -> Y(x )  Y ’( f ( x ) )  , p : 
Q =a~*d Q ' 0  f  and x ■ Arg{jR>A(7 , X,  Y, Q),  there is a term

Fun[jR- c o h ( 7 ,x )  : Fun°,R(7, X ,y ,< 2 , x )  =D Eun^R( j , X ' ,Y ' , T f, Arg{jRtA(y , f , g , p , x ) )  .

Proof. As usual, we define a more general

FunMR- c o h ( 7 , x ) : FunMR(7, X , Y , Q , x )  =D FunMR(7, X ' , Y f,T' ,  ArgiiR A('y, f , g ,p , x) )

for 7  : SP||R A(A'ref) and x : ArgnR A(Xref ,7 ,  X , Y, Q) by induction on 7. The base case 
nil(d) is trivial (refI: d=o d), and the only case which does not follow immediately from 
the induction hypothesis is A-ind. After unfolding the definitions, we are looking for a 
term of type

FunMR(7 (Q  o j ) ,  x ) =D FunMR(7(Q ' 0 / 0  j ) , s u b s t ( . . . ,  ArgMR A( 7 (Q o j ) ,  / , p , p , x ) ) )

By the induction hypothesis, we have a term FunnR-coh(7(<2 o j ) ,  x)  of type

FunMR( 7 ( Q o  j ) , x ) =D FuniiR( 7 ( Q o j ) ,A r g MR A( 7 ( g o j ) , / , 5 ,p ,x ) )

and we also have a term

p' := cong(Aw;. ^{w o j ) ,p)  : 7 (Q o j )  =SPHRtA(Xret+K) 7 ( Q ' 0  9 0  j )

derived from p : Q =a^ d Q ' 0 /• If we apply cong2(FunnR) from Lemma 2.21 to p'f we 
are left with the goal

su b st( . . . ,  ArgMR iA(7 (Qo j ) , f , g , p , x ) )  = su b st( . . . ,  ArgMRA(7 (Q  o j ) , f , g , p , x ) )

which is inhabited by ref I. Hence by transitivity, we are done. □

We now generalise the construction of A-Term(7, X ref, Yref ) and B-Term(7, X ref, l^ef ) 
from Section 3.2.3.2. It will be necessary to also include a function FunA-TermnR( . . .): 
A-TermnR( . . .) -»■ D  which is a syntactic representation of the recursive function T  : 
A  -»■ D.  To be able to define this, we m ust ask for functions TXre{ ■ X Te{ D and 
7yref : Fref -► D. Thus, for 7  : SPjjR>A, X Tef : Set, Yref : Set, TXref ■ X Tei D and 
Tyref : Yre{ -> D, we have formation rules

A-Term||R(7 ,X ref,y ref,Txref,Ty;ef) : Set
B-Term 11R(7 , A ref , Fref , TXie{, T yref) : A-Termi|R( 7 , X re f ,y ref , r Xref,Tyref) -»• Set 

FunA-TermMR(7, A ref , Fref , TXref, Tyref) : A-TermnR(7, X Tet, yref ,T x ref,Tyref) -*■ D
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6.1. Inductive-inductive-recursive definitions

T h e  i n t r o d u c t i o n  r u l e s  f o r  A-TermnR a r e  t h e  s a m e  a s  t h e  r u l e s  f o r  A-Term, e x c e p t  t h e  

n e e d  f o r  FunA-TermnR i n  t h e  a r g MR c o n s t r u c t o r :

X  • X ref
a r e f , M R ( ^ )  : A - T e r m i i r ( 7 a , X r e f ,  T r e f , TXie{, T y r e f )

 X • I r e f __________________
b r e f , M R ( ^ )  : A - T e r m i | R ( 7 a , X r e f ,  Yref, TxTe{, Tyr e { )  

x  : A r g M R i A ( 7A ,  A - T e r m ( . . . ) ,  B - T e r m ( . . . ) ,  F u n A - T e r m n R ( . . . ) )  

a r g M R ( a : )  : A - T e r m n R ( 7 A , X r e f , Y r e f , T x r e f , T y r e f )

T h e  f u n c t i o n s  B - T e r r r i | | R  a n d  F u n A - T e r m n R  a r e  d e f i n e d  b y

B - T e r m  h r  ( 7 A ,  X r e f ,  Y r e f ,  TX i e f ,  Tyr e f ,  a r e f  ( x ) )  =  0
B - T e r m  h r  ( 7 a ,  X r e f , y r e f ,  T x r e f ,  T y r e f ,  b r e f ( x ) )  =  1
B - T e r m | | R ( 7 A ,  X r e f , T ^ e f > T x r e f  , T V r e f , a r g ( a r ) )  =  0

F u n A - T e r m n R ( 7 A ,  X r e f ,  Y r e f ,  TXref,  TYtc{ ,  a  r e f  ( x ) )  =  TXref(x)
F u n A - T e r n r i | | R ( 7 A , - ^ r e f  > ^ r e f  > T | x r e f ,  T y j . e f , b r e f  ( j j ) )  — X y reJ. ( x )

F u n  A - T e r m n R ( 7 A ,  X r e f ,  T r e f , T x r e f  , T y r e f  , a r g ( x ) )  =  F u n n R ( 7 , z )

W e  m o v e  o n  t o  t h e  i n t e r p r e t a t i o n  o f  A - T e r m u R  a n d  B - T e r m u R  b y  d e f i n i n g  f u n c t i o n s

r e P A , I I R ( - )  

r e P B , I I R ( -  • )  

F u n A - T e r m n R - c o h ( . . . )

A - T e r m n R ( . . . )  -+X
( x  : A - T e r m MR ( . . . ) )  - *  B - T e r m MR ( . .. ,x)  -> Y(repA llR( . .. ,x))

(x : A - T e r m MR ( . . . ) )  -  F u n A - T e r m n R ^ ,  z )  =D Q ( r e p A i i i R ( - ■ ■ , z ) )

where quite a lot goes where we have w ritten we have collected these omitted 
arguments in Figure 6.1. For obvious reasons, we will suppress as many of these as 
possible. Notice that we have included coherence proofs for Q, TXref and T y r e f .

Given all these arguments, we can define

r e P A , l i R ( • • • .  r e P x ,  ■ • • 1 a r e f , N R ( z ) )  =  r e p x ( x )  

r e P A , M R ( •  • • ,  r e P i n d e x .  • • • ,  b r e f j i R ^ ) )  =  r e p i n d e x ( x )

r e p A ) i i R (  - • , r - c o h , r x r e f - c o h , T y r e f - c o h , a r g M R ( a : ) )  =

i n t r o A ( A r g f i p j A ( 7 a ,  r e p I j i R C -  • - ) ,  r e p B , n R (  • . ) , e x t ( F u n A - T e r m MR - c o h ( . . . ) ) , x ) )

Note how we used function extensionality ext for the argMR case. The simultaneously 
defined repB rr stays the same as rep i1

r e P B , n R ( -  • • } a r e f , M R ( ^ ) ,  y)  =  K ? / )  

repB,i iR(-• • ,  r e p Y , bref ,HR(x),  * )  = r e p Y ( y )  

r e P B , i i R  ( •  • ■ ,  a r g | | R ( x ) ,  I / )  =  \(y)
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7 A
c p O
^ H ir .a

X ref S e t

X ref S e t

Tx ief X r e f  -*■ D

TYre f Yref -  D
X S e t

Y X  -+ S e t

Q X ^ D

i n t r o A A rg?,R)A( 7  , X , Y , Q ) - + X

r e P x X r e f  -  X

^ P in d e x Xref -  X

r e p Y ( 6 : Y ref ) - X ( r e p index( 6 ) )

T - c o h (x : A r g ^  a ( 7 , X , Y , Q) )  -* Q ( i n t r o A ( 7 , x ) )  =D F u n i)IR( 7 , x)

-CO01£

(x : X r e f )  -*• TXref(x) =D Q ( r e p x ( x ) )

T y ref-  c o h ( X  : X ref)  -  Tyie{(x ) =D Q(repMex(x))

Figure 6.1: Omitted arguments for repA MR, repB MR, FunA-TermnR-coh, ArgMR B and 
lndex||RB.

Finally, F u n A - T e r m u R- c o h  is defined by case distinction on x : A - T e r m n R ( . ..); if x = 
aref.MR(y) or x = b ref j i r ( ^ ) ,  then TxTef-coh(y)  or T y ref- c o h ( z )  respectively gives us what 
we need, while Lemma 6.3 together with T-coh takes care of the last case:

F u n A - T e r m | | R- c o h ( . . . ,  aref,iiR( y ) )  = T x ref- c o h ( y )

F u n A - T e r m MR- c o h ( . . . ,  b ref , i iR ( ^ ) )  = T y ref- c o h ( z )

FunA-TermnR-coh(...  ,arg„R(u;)) = trans(FunMR-coh(7,it;) ,sym (T-coh(A rg{)|R A( . . . ,  w ) ) ) )  . 

There is no recursion involved.

6.1.1.3 The universe SP[jR B of descriptions of B

We introduce the universe S P mr )B of descriptions for B. It will look a lot like SPB, but 
we also need syntactic representations TXref : X ref -> D  and Tyref : YTef -> D for the value 
of the recursive function Q on the elements of X  we know. Hence we have formation 
rule

X ref , Xref : Set T xief ■ X Tef -> D Tyref : Xref -> D 7A : SP„R,A
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6.1. Inductive-inductive-recursive definitions

We define a 7 A : SPfip A i- SPfip>B(7 A) type by SPfip b(7 a) := SPmrjB(0 , 0 , \d , !D-7 a) as 
usual.

The codes in SPhr)B are very similar to the codes in SPB/ except we now also need 
to keep track of TAref and Tyref.

a : A-TerfTl||R(7 A, Xref, r̂ef, r Aref, Tyref) 
nil(a) : SP11rjB( X ref , YTef , T xref, Tyref, 7 a )

The code nil (a) represents a trivial constructor c: 1 -> B (a ) (a base case), where the 
index a is encoded by a : A-Te r m 11R (7 A, A:ref, y ref , TXre{, Tyref).

K  : Set 'y : K  -* SP||RiB(Xref, yref,TAref,Tyref, 7 A) 
non-ind(if ,7 ) : SP||RjB(Xref ,Ti-ef,7x ref,Tyref,7 A))

The code non-ind(A', 7 ) represents a non-inductive argument x : K , with the rest of the 
arguments given by 7 (2 ).

K  : Set 7  : (t : K  ^  D)  -+ SP||R)B(Xref + K, Yref, [Txref ,t], Tyrei , 7 a ) 

A-ind(Ar,7 )  : SP||R)B(A're f ,y ref?7 x ref,7Vref>7A)

The code A-ind (A", 7 ) represents an inductive argument j  . K  ^  A, with the rest of the 
arguments given by j ( T  o j) .  Notice how T xre{ is extended.

i f :  Set
frjndex : K  -» A-Term||R(. . .) 7  : (t : K  ^  D) -+ SP||R|B(Xref,yref + K) Txref, [Tyref,t] , 7 a )

B-ind(/ir, /ijndex) 7 )  • ^P|IR,B(^ref i Yref ) 7A)

The code B-ind(/^, /iindex>7 ) represents an inductive argument with type (x : K)  -> 
B(i (x)) ,  where the index i(x)  is determined by /lindex, and the rest of the arguments 
are given by 7 (T o j).

We now define the decoding function ArgMR B. It has formation rule

Arg||R)B(. • •) : SP||RiB(Xref,yref,^Xref,Tyref,7A) Set

where ". . ."  contains the arguments from Figure 6.1. The defining equations are the 
same as for ArgB from Section 3.2.3.3, except that we now also have to build up the 
coherence proofs Txref-coh and Tyref-coh as we go along.

A r g | i R ,B(—1 nil ( ’S ’) )  =  1

Arg||RiB ( - , non-ind(A ’, 7 ) )  = : K )  x ArgMR B(__, 7 ( x ) )

Arg|iR,B(^ref, -, X,  Q,  repx , T x ref-coh , A-ind (AT, 7 ) )

= (j • K  -+ X )  x Arg|,R B( X ref + K , [repx , j],  [ r Aref-coh , (Ak. refl)], 7 (Q o j ) )  

Arg||R,B(-» y ref, 7a ,  Y, introA, repx , repindex, repY, B-ind(X, h, 7 ) )

= ( j : ( x : K ) ^ Y ( ( r e p X ( . ..) o h)(x)))  x

Arg||R,B(->y ref + K,  [repindex, repX(.. . )  o h], [repY, j ] ,

-> -»[^Vref-coh, (Ak. refl)] ,7(Q  o repX(.. . )  o h))
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Finally, we need to define the function lndexnRB which picks out the index which is 
targeted by the constructor. The definition is exactly the same as for Indexe, but with 
the extra book keeping as in the definition of ArgMR B. For this reason, we omit the 
definition here, confident that the reader will go back to Section 3.2.3.3 if necessary As 
usual, we define Argj^ B and Index^p B by supplying 0 for X Tef and Yref, and ! for all 
functions with domain X Te{ or Yref. (In particular, this means that the proof obligations

^Xef-coh : (x  : 0) -»!(x) =D Q ( K X))
7Vref - c°h : (x : 0) - d ( x )  =D Q(!(x))

disappear, but

T-coh : (a;: Arg^p A(-/, X, Y, Q)) -► Q(introA(7 ,z )) =D Fun?1R(7 ,x) 

still needs to be discharged.)

6.1.1.4 Formation and introduction rules

We are now ready to give the formation and introduction rules for A, B  : A -> Set and 
T : A  -> D. They all have the common premises 7a : SP^R A' 7b : SP°|R B(7a), which 
will be omitted.

Formation rules:

-̂ 7a.7b ' ^Gt -̂ 7A,7B ' A -̂ 7a.7b • A -»• Z)

Introduction rule for A7a j7b :

a  ■ A  rg | | R ta  ( 7 a  > A 7a )7b , B y A j7b , T7a i7b ) 

i n t r o  a 7a>7b ( a )  : A 7 A j7 b

Computation rule for T7a )7b :

-̂ 7A.7B(introA7A 7B (a)) -  Fun[)|R(7A, A 7A ,7B ’ B j a  ,7B > -̂ 7A,7B ’ a )

Introduction rule for BlA )7b :

 b ■ Arg°|R|B(7A, -47a,tb■ g 7A , - r o■ t ta,7b■ in tr 0 ^ A,^B ■X x - r e f l> 7 b ) ___________

i n t r o B ^ . 7 B ( 6 )  ' -®7A ,7B 0 n ^ e x I I R , B ( 7 A ?  A 7 A ) 7 b  , 5 7 A j7 b  , T 7 A ; 7 b  , i n t r o A 7A i7B , A x . r e f l , 7B ) )

Notice how we can discharge the assumption

T-coh : (x : ArgflR a (7A » 7̂A,7B5 ■̂ 7a,7B’^7A,7b))

r 7A,7B(introA A,7B(a:)) =D FunI I r ( 7 Ai -̂ 7a,7b ’ -®7A,7B ’ -̂ 7A,7B ’ x )

by Ax. refl thanks to the computation rule for T7a;7b.
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6.1. Inductive-inductive-recursive definitions

6.1.2 Em bedding inductive-recursive and inductive-inductive defin itions

Hopefully it is clear how both inductive-recursive and ordinary inductive-inductive 
definitions can be seen as subsystems of the system we have just defined. Inductive- 
inductive definitions correspond to inductive-inductive-recursive definitions where we 
haven chosen D = 1, and inductive-recursive definitions correspond to definitions where 
we never make use of the code B-ind. We make this precise by defining translations 
between the different universes of codes.

6.1.2.1 Embedding inductive-recursive definitions

We define a translation function 4> : IR D -> SPnR^yA ^ref) for any Xref : Set.

3>(t(d)) = nil(d)

4>(cr(A, / ) )  = non-ind(A, o / )

$ ( < 5 ( i 4 , F ) )  =  A - i n d ( i 4 , $ o F )

As a code for the inductive family B,  one can for instance use one of the dummy 
codes A -ind(l,  A_. nil(inr(aref ( * ) ) ) )  or non-ind(0 , !SPo ($(7)))- The following proposition 
is using function extensionality, since it is proven by induction over codes, and dealing 
w ith equality of higher order objects. It should however be pointed out that no such 
assumptions are needed for concrete codes -  we really do have a correspondence on 
the nose.

Proposition 6.4 The translation : IR D -> SP||R(£>),A(^ref) is correct, i.e. for all 
X Tef : Set, U : Set, T  : U -* D,  repx : X Te{ -> U and B : A  -»■ Set, there is a term

$-correctArg|R(7 ) : Arg|R( 7 ,U,T)  =Set ArgMR A(Xref, $ ( 7 ),U. B,T,  repx )

giving rise to a function $ Arg|R(7) : Arg,R(7, U,T) -* Arg„R̂ (^ r e f ,  B ,T , repx )-
Furthermore, there is a term

4>-correctFuniR(7»x ) : Fun|R(7 , U,T,x)  =D FuniiR(Xref, $ ( 7 ), U, B,T,  repx , $ Arg|R(7 ,»)) 

for each x : Arg)R(7 , U, T).

Proof. Both terms are straightforwardly defined by induction on 7 . The function 
$Arg,R(7 ) can be constructed as $ Arg|R(7 ) := subst(id, $-correctArg|R(7 )) (or simply by 
induction on 7 ). □

6.1.2.2 Embedding inductive-inductive definitions

The translation of inductive-inductive definitions to (degenerate) inductive-inductive- 
recursive definitions is a little bit more involved, as there are more concepts to translate. 
The main idea is to consider inductive-inductive-recursive definitions where the recur
sive function has codomain D = 1 . By Proposition 2.23, all functions T : A -> 1 are then 
definitionally equal, e.g. to Xx. *. We will write for any function w ith codomain 1.
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We first define a translation function ^ A : SPA(^ref) SP|iR(i),A(^ref) for any 
- r̂ef • Set.

^ A ( n i l )  =  n i l ( * )  

\ I j A ( n o n - i n d ( l f ,  7 ) )  =  n o n - i n d ( J f ,  tyA 0  7 )  

^ A  ( A - i n d  ( I f ,  7 ) )  =  A - i n d  ( i f ,  A _ .  A ( 7 »  

^ A ( B - i n d ( i f ,  h, 7 ) )  =  B - i n d ( i f ,  h, * A( l ) )

In order to define the translation function for codes in SPb(7 ), we must first prove the 
first translation correct:

Proposition 6.5 The translation ^ A : SPA(^ref) -* SPiiRCiyA^ref) is correct, i.e. there 
is a term

^ - c o r r e c t A r g A  ( 7 ) : A r g A ( X r e f ,  7 ,  A, B,  r e p x )  = S e t  A r g „ R >A( Xref, $ ( 7 ) ,  A, B , r e p x )  

w h i c h  g i v e s  r i s e  t o  a  f u n c t i o n

* A r g A ( 7 , / , 9 ) : A r g i ( 7 , A S )  -  ArgSRiA($ (7 ) ,^ ',B ', . )  

for /  : A -> A'  and g : {x : A) -+ B ( x ) -* B' ( f (x) ) .

Proof. The proof ^-correctArgA(7 ) is defined by induction on 7 , using function exten
sionality by necessity. The function ^ArgA (7 , / ,  9) can be constructed as

^ArgA( 7 , / , 2 ) := A r g { 3, R  A( ^ A( 7 ) , / , p ) refl)osubst(id,^-correctArgA( 7 ) )  •

Note how we are using that A -+ 1 is propositional in order to use refl as a proof that 
T  = T ' o f  for any T  : A -> D and V  : A ' -> D. □

W e  n o w  s i m u l t a n e o u s l y  d e f i n e  

^ A - T e r m ( 7 )  : A - T e r m ( 7 ,  X Te{,  Y r e f )  - >  A - T e r m M R ( $ A ( 7 ) ,  ^ r e f ,  ^ r e f ,

and

^ B - T e r m ( 7 )  : (x  : A - T e r m ( 7 , X T e f ,  Y r e f ) )  - >

B - T e r m ( 7 ,  X r e f ,  Y r e f ,  X)  - »  B - T e r m | , R ( ^ A ( 7 ) ,  ^ r e f ,  ^ A - T e r m ( 7 ,  x) )

in a very straightforward way:

^rA-Term(75 ^ref(^)) = 3ref,IIR( '̂)
^A-Term(7? ^ref(•*")) = brefJIR^)
^ fA-Term (7 5a ' ' g ( x ) )  =  a r g | |R ( ^ ArgA ( 7 » ^ A -T erm (7 )» ^ B - T e r m f r ) ,® ) )
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6.1. Inductive-inductive-recursive definitions

and

^B-Term(7,aref(^),2/) = V 
^B-Term (7? ^ref (%), 2/) —y 
^B-Term(7>arg(x),i/) = y

(we need to do the case distinction, as B-Term(...) and B-TermnR(...) are not equal for 
neutral terms). Notice how the definition of 'I 'A-Term is making use of the correctness 
proof $ -correctArgA (via #ArgA)-

Finally, we can define # B : SPB(Xref, ^ref,7A) -»• SP||R(i)iB(Xref, Yref, ^ b (7a )) 
for any Xref, Yref : Set and 7a : SP^.

$ B ( n i l ( a ) )  =  n i l ( ^ A- T e r m ( 7 A , a ) )

^ B(non-ind(A',7 ) )  = non-ind(K, \FB o 7 ) 
tfB(A-ind(if, 7 ) )  = A-ind ( i f ,  A_. ¥ B(7 ))

^ B(B-ind(if,/i,7 )) = B-ind(if, ^ A-Term(7 A) 0 h, A_. ^ B(7 ))

We can also prove that the translation \FB is correct, after proving that repA )|R and repA 
agree, but as this is not very enlightening, we shall skip doing so.

6.1.3 E xtend ing  th e  m odel

We now recall Dybjer and Setzer's [1999] model construction for inductive-recursive def
initions, with the goal of merging it with the model from Section 5.1 to cover inductive- 
inductive-recursive definitions as well. As we will see, this will not present much 
additional difficulty.

6.1.3.1 Dybjer and Setzer's model for inductive-recursive definitions

Dybjer and Setzer [1999] constructs a set-theoretical model for inductive-recursive 
definitions. The Logical Framework and the standard type formers are interpreted 
as in Section 5.1. The inductive-recursive definition described by code 7  : IR (D)  is 
modelled as the result of iterating (ArgiR, Fun|R) a suitably large number of times as in 
the sequence

O c ArgIR(7 , 0 , !D) c Arg|R(7 ,Arg|R(7 , 0 ,!D ),Fun|R(7 , 0 ,!£>)) c  . . .

with corresponding decoding functions

\D, Furi|R(7 , 0 , !D), Arg|R(7 ,Arg|R(7 , 0 ,!£>),Fun|R(7 , 0 , !D),

Flow large is suitably large? Dybjer and Setzer assume that a Mahlo cardinal M exists, 
and do M iterations.

Definition 6.6 (Mahlo) A cardinal n is a (strong) Mahlo cardinal if it is inaccessible and 
every normal function /  : n -> k has an inaccessible fixed point. ■
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Recall that a function /  is normal if it is strictly increasing and continuous at limits 
(i.e. /(A) = sup/9<A /(/3)). A Mahlo cardinal is large in the technical sense: ZFC cannot 
prove its existence1, since if M is a Mahlo cardinal, then Vm is a model of ZFC. Hence, if 
ZFC could prove that a Mahlo cardinal exists, it would prove its own consistency, which 
contradicts Godel's second incompleteness theorem. Hence, the consistency proof is 
necessarily a relative one, but this is of course always the case.

The constant Set is interpreted as [Set] := Vm, and as hinted above, we define 
|C/7] := and |T7](a:) := T™(x) where

U° = ArgIR(7 , u  U T*) T “ = FunIR(7 , (J tff, U T$)
f i< a  /3<a {3<a P < a

The tricky part is to show that this sequence converges after k  steps for some k < M, s o  

that [C/7] e [Set] = Vm- The proof proceeds in two stages; First, we prove that if we can 
find an inaccessible bound n for cardinality of the premises (index sets) of inductive 
arguments as we iterate the initial sequence, then we will find a fixed point after k  

iterations [Dybjer and Setzer, 1999, Lemma 2]. This proof does not use anything beyond 
ZFC (and the assumption that the inaccessible bound exists). Using the Mahlo property, 
we then find such a bound [Dybjer and Setzer, 1999, Lemma 3], and can then conclude 
the proof using the standard argument. Whenever we mention sets or families in the 
rest of this section, we mean sets inside the model, i.e. elements of Vm-

Before we can start, we need some more technical facts. Recall that the rank rk(x) 
of x  is the least a  such that x eVa+i.

Lemma 6.7

(i) Va = {x | rk(x) < a}.

(ii) If x  € y  then rk(a:) < rk(?/), and if x c y ,  then rk(x) < rk(y).

(iii) For all y ,  rk ( y )  = sup{rk(a:) + 1 | x z y } .

(iv) Let k be regular. If A e VK then U A e VK. □

The functor fl/yj := (Arg(R(7 ), Furi|R(7 )) is monotone in the following sense:

Lemma 6.8 Let tp be an IR code and ([/, T), (U\  T' )  objects of Fam |C|. Assume U c(7 ' 
and T ' \ U  = T.  Then

(i) ArgIR(<p, U, T)  £ Arg^v?, U', T'),  and

(ii) FunIR(¥.,i / ',T ')  f Argm(<p,U,T) = FunIR(V,!7,T). □

1 Assuming that ZFC is consistent, of course.

132



6.1. Inductive-inductive-recursive definitions

Definition 6.9 Given an IR code ip and an object (C/, T)  of Fam |C|, the set A u x (^ > ,  U, T ) £ 
Vm of premises of inductive arguments of 4> with respect to U, T  is defined by induction 
over <p:

A u x ( t ( d ) ,  C / , T )  =  0  

A u x(a(A,<p),U,T) = | J  A u x ( ^ ( x ) ,  t / , T )

A u x ( 6 ( A , ^ ) , C / , r )  =  { A } u  | J  A u x ( ^ ( T o / ) , [ / , T )  □
f-.A-*U

Remark 6.10 We define Aux differently compared to Dybjer and Setzer [1999]: We 
collect all the sets we are interested in, whereas they use products and coproducts to 
build one big set that "contain" all interesting sets.

Lemma 6.11 Let k  be inaccessible and (Ua , T Q )Q<K be a monotone ^-sequence of objects 
of Fam |C|, i.e. if a < (3 then Ua £ and \ Ua = T a. Assume for some ao < k that

Aux(<p,Ua, T a) £ VK (6.1)

for all qo ^ ot < Then Arg|R(( ,̂ U, T)  is ^-continuous in (U, T),  i.e.

A r g IR( v ,  U  U°,  U n = U  A r g IR(¥>,C ;“ , T “ )  .
a < K  a < K

Notation. For readability, let us write Ua<K(Ua, T a) for (UQ<K Ua, Ua<« T a).

Proof. The direction 2  follows immediately from Lemma 6 .8 . We prove £ by induction 
over ip:

• I f  ip = t(d), then

ArgIR(t ( d ) , U ( ^ , T “ ) = l =  (J  1 = U A rg |RW d ),t/“ ,T “ ) .
a<K ct<K a<K

• I f  <p = a(A,<p'), then first note that since Aux(cr (A,(p'),Uot, T Q) £ VK/ we have 
Aux(<p'(a;), £/a , T a) £ VK for all ao < a < k and a: € A by the definition of Aux. Now

ArgI R | J  (Ua, T a) = E ^ A r g , , , ^ * ) ,  U  ( ^ “ ,3” )
Ot<K Oc<K

c Z x(A \J A r g m(<p'(x),Ua, T a)
a<K

= (J  Y.xiAkr&m(V'(x) ,U a,T a)
a<K

= U A r g  IR(<7(X,v.'),C/a , T a )
a<K

where the inclusion follows from the induction hypothesis.
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• If ip = <5(A, ip'), then assume a e Arg|R(<5(A, p>'), Uq<k Ua,\Ja<K T a). We want to 
find ot < ac such that o c Arg| R( 5 ( j 4 , W e  know q — (f^y) for some 
f  ’-A-*  Ua<« u a and

2/eA rgIR( / ( U T a o / ) , U ( t / a ,T Q).
a<« a<«

Claim: /  : A -> Ua</3 for some P < k.
Proof of claim. Assume not, i.e. for all p < k there exists x e A such that /(x )  $ 
Ua </3 ^ Q- By (6.1), we have A e VK, i.e. rk(A) < k by Lemma 6.7(i). We define a 
strictly increasing function <?: rk( A) -> k by transfinite recursion:

p(7 ) = min{/3 | (V7 ' < 7 )(^ (7 ') < P) a /[A  nV7]c  (J  JJa }
a</3

By assumption, sup <? = «; which contradicts the regularity of k. Hence /  : A -> 
Ua <)3 Ua for some ft < k. □
Since Ua </3 Ua £ U&, we particularly have /  : A -> 17̂ , and w.l.o.g. we can assume 
oco < P (if not, choose P' := oo; we still have f  : A -* U& since (3 < ft', hence 
f//3 g [/£'). For P < a < k we have /  : A -> C/a and thus

A u x ( / ( r a o / ) , [ / Q,T a ) c

by (6.1). Hence by the induction hypothesis, there exists a ' such that

V e  A r g I R ( < / / (  U  T a o / ) ,  UQ' ,Ta') = A r g }R(<p'(T«' o  / ) ,  t / ^ T * ' )
a</t

and with a  = max{/5, o '} , we have a = (/, y) e A r g i^ ^ A ,^ ) ,^ " , ! ^ )  as required.

□
The proof of the following lemma is the only place where we use the existence of a 

Mahlo cardinal:

Lemma 6.12 Let <p be an IR code and (Ua, T a)a the initial sequence of the associated 
functor. There exists an inaccessible k such that

Aux(y?,t/Q, r Q) c VK

for all a < k.

Proof. The strategy for the proof is as follows: we define an increasing function 
/  : Ord -> Ord, which tells you how much further up the cumulative hierarchy you need 
to go to contain one iteration of Arg(R(7 ). The important property of /  will be

if U0, £ Vp then Up'+l u Aux(7 , U ^ , T 0') £ Vm  (6.2)

for all P' < M. We then show that /  : M -»■ M and use the Mahlo property to find a fixed 
point k of / .  Finally we show Aux(< ,̂ C/a , Ta ) c VK by induction on a.

134



6.1. Inductive-inductive-recursive definitions

The function /  : Ord -»• Ord is defined by transfinite recursion:

f (P )  = m i n { a  |(V0' < P)(f(P ')  < a )  a

(V/3' <M)(uP'  C Vp = >  C//3,+1 uAux(7 , f / /3' , r ^ ' ) c  v^)}

The first conjunct makes sure that /  is increasing, and the second makes (6.2) true. 
Claim: /  : M -* M.
Proof of claim. Let p < M and note that

further that B  := {P'  e M | g V^} e Vg+1 g Vm s o  that \B\ < M b y  Proposi
tion 5.10(iv). For each P' e B,  we have U^’+1 u  Aux(7, U13' , T @') c Vm and hence 
U@'+1 u  Aux(7, ,T@‘') g Va&, for some apt < M since M is a limit. Thus f (P )  <

So /  is an increasing function on M, however f  need not be continuous at limits, 
hence not normal and the Mahlo property might not apply. To fix this, we define a new 
function 9: let for a < M 0(a) = / a (0).
Claim: 0 : M -* M, and 9 is normal.
Proof of claim. We prove that 9(a) < M for a  < M by transfinite induction over a. The 
base case and successor case are clear, since / :M -> -M .I fA < M is a  limit, then 9 : A -* M 
is a normal function so that 0(A) = s u p ^  9(P) < M by the regularity of M. Finally 9 is 
increasing since /  is, and continuous at limits by definition. □

Hence by the Mahlo property, 9 has an inaccessible fixed point k < M.
Claim: f  : K -*> K.
Proof of claim. Assume a < k. Since n is a limit, a < P for some P < n, and P <9(P) since 
9 is increasing. Thus

for all P < k (since f (P)  < k, hence V/(p) ^ VK).
Finally, we prove that Ua g VK for all a < n by induction on a. By (6.2'), it then 

immediately follows that Aux(</?, Ua, T a) g VK.

• If a  = 0, then C/° = 0  g VK.

• If a = P + 1, then U& g VK by the induction hypothesis, and we are done by (6.2').

• If a = A limit, then Ux = U/3<a £ VK by the induction hypothesis. □

f ( 0 )  = m in {a  |(V/3' < 0 ) ( f (0 ' )  < a)  a

(V/8 'e  {/?' € M | V ff  c V p } ) ^ * 1 u  A u x ( 7 . ^ ' , T ^ ' )  S  Va )} ,

su pp, apt < M by the regularity of M. □

f ( a )  < / ( / ? ) < / v m  = 0 ( 0  + i)<e(K)

i.e. /  : k -* k.
This combined with (6.2) gives us a very useful fact:

□

if Ufi' c Vp then U^ ' + 1 u  Aux(7 , U0 ' ,T^')  g (6 .2')
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Remark 6.13 At a glance, it might seem that the proof is independent of the particular 
definition of Ua and Aux(<,p, Ua, T Q). However, we are making use of the particular 
definition of U° and Ux, and that Aux(< ,̂ Ua, T a c yM.

Theorem 6.14 Let ip be an IR code. Then fly?] has an initial algebra.

Proof. Feeding Lemma 6 .8  and Lemma 6.12 into Lemma 6.11, we get that

ArgIR(v>, U Va, U n = U  Arg|R(Y,,l/“,r“)
a < K  a < n  a<K

= u  ua"
a < K

= U ua .
a < n

By Lemma 6 .8 , FuniR(y>, Uq<k F Q,Ua<« T a) = Ua<« T a, so that the initial sequence con
verges after n steps. By Addmek et al. [2010, Thm 3.1.4], [<p] has an initial algebra. □

6.1.3.2 A model for inductive-inductive-recursive definitions

We can now reap the benefits of Dybjer and Setzer's labour, and combine their model 
with our from Section 5.1. As mentioned in Remark 6.13, there are not many things that 
need to be rechecked when we try to deploy the proof in the new setting. The proof of 
Theorem 6.14 is the same, mutatis mutandis. This shows that the judgements A1a i7b : 
Set and T7A)7B : A1a i7b -> Set indeed are soundly interpreted in the model. Finally, 
^ 7a,tb : ^ 7a,tb "*■ Set is taken care of as before by (a slight variation of) Theorem 5.7.

Theorem 6.15 There is a model of the theory of inductive-inductive-recursive defini
tions that can be constructed using ZFC and the existence of a Mahlo cardinal. □

6.2 Telescopic inductive definitions and generalised families

In this section, we extend the theory to accommodate some more liberal uses of 
inductive-inductive like definitions. We saw the need for this already in Section 3.1, 
where the second set B  often was indexed not only by A, but by e.g. A x A or N x A. 
We cover such generalised families in Section 6.2.1. In Section 6.2.2, we explore another 
extension which is needed for Danielsson's [2007] and Chapman's [2009] formalisations 
of Type Theory inside Type Theory: an inductive-inductive definition of not just A and 
B,  but of a whole telescope

A : Set,
B  : A  -> Set,
C : (x : A)  -»• B ( x ) -»■ Set
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6.2.1 Generalised families

In this section, we seek to replace families of the form

A : Set , B  : A -»• Set

with more general families

A : Set , B :  F(A)  -» Set (6.3)

for some type former F  : Set -»• Set, for instance F ( X )  = 1 x 1  (Example 3.3) or 
F ( X )  = N x X  (Example 3.2). As is often the case, it will not be enough that F  only acts 
on types, instead we need F  : Set -»• Set to be a functor. In this situation, pairs (A, B ) as 
in (6.3) naturally form a category:

Definition 6.16 Let F  : Set -> Set be a functor. The category Fam ^C ) has objects pairs 
(A, B)  where A : Set and B  : F(A)  -*■ C. A morphism from (A, B)  to (A', B')  is a pair 
i f ,  9) where /  : A -► A' is a function and a : B  B'  o F ( f )  is a natural transformation, 
i.e. g : ( x :  F(A))  -> B{x)  -  B '(F { f ) (x ) ) .  ■

We recover Fam C as Fam ^C ). Note that it is crucial that F  preserves identities 
and composition to be able to define them in Famjp(C). Alternatively, Fam/?(C) can be 
described as the lax comma category F  |  Kc  where Kc  : Set -* Cat is the constantly 
C-valued functor and the set F ( X )  is considered as a discrete category. It is not clear if 
this is helpful for our purposes, and so, we will not develop this view further.

The goal is now to show that Fam/r (Set) is a Category with Families for well-behaved 
functors F,  so that the development in Chapter 4 can be repeated, but with F a ( S e t )  
in the place of Fam Set. By Theorem 4.28, it is enough to show that Fam^(Set) has finite 
limits, which it does if F  preserves pullbacks:

Lemma 6.17 If F  : Set -> Set preserves pullbacks and C has finite limits, then also 
Famfr(C) has finite limits.

Proof. We show that Fam/r(C) has a terminal object and pullbacks. The terminal object 
in Famir(C) is 1 = ( ls et> A_. l<c)- The pullback of (f , g ) : (A, B ) -> (C, D ) and i f  ,g') '■ 
(A', B ' ) -> (C ,D ) is (A x c  A', B")  where A xc  A'  is the pullback of /  and / ' ,  and 
B"  can be defined since F  preserves pullbacks: it is enough to define B"{x)  for x : 
F(A) x F(A')  = F(A  x c  A'), but we can assume that this is the standard pullback 
of sets, i.e. x = (y , z ) w ith F ( f ) ( y )  = F { f ) { z ) .  Thus we can define B " ( ( y , z )) = 
B ( y ) x D( F(f)(y)) The unique mediating morphism is inherited from the pullbacks
in Set and C. □

Note that Proposition 4.35 (and its proof) is generalised by this lemma. Let us 
quickly check that the functors F  : Set -► Set involved in Examples 3.2 and 3.3 satisfy 
the condition of preserving pullbacks. In Example 3.3, the functor in question was 
defined by F ( X )  = X  x X.  It can easily be checked that F  is right adjoint to the functor 
G defined by G(Y)  = Y  + Y,  hence since right adjoints preserve limits, F  preserves
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pullbacks. In Example 3.2, we are instead using the functor defined by F ' (X )  = N x X ,  
which cannot be a right adjoint, since it does not preserve terminal objects. It does, 
however, preserve pullbacks: Let /  : A -+ C and g : B C be given and consider their 
pullback object

A x c  B  = { {x , y ) : A x  B \  f ( x )  = g(y)} .

Recall that F ( f )  = idx /  : N x i ^ N x C , s o

F(A)  xF(c) F(B )  = {({n,x),{m,y))  : ( N x i ) x ( N x B ) |  (n , f ( x )) = (m,g(y))}
= {(n,x,y) : N x A x B \  ( n j ( x ) )  = (n,g(y ))}
= Nx ( A x c B)  = F ( A x c B)  .

6.2.1.1 Inductive-inductive definitions of generalised families

By Theorem 4.28, we know that FamF (Set) is a Category with Families, and inspecting 
the construction of finite limits in FamF (C), we see that the index set functor U : 
FamF (C) -»• Set defined by U{A, B)  = A)  preserves finite limits. Hence, by Theorem 4.37 
also D i a l g ( A r g A , U) is a Category with Families for any functor A r g A : Famp(Set) -* Set, 
where we of course should think of A r g A as a suitable strictly positive functor which 
describes the domain of the constructor for the first set A. The rest of the construction 
from Section 4.1.2 is exactly the same, and we end up with a generalised notion of an 
inductive-inductive definition of A : Set, B  : F(A) -*■ Set for each pullback-preserving 
functor F  : Set -»> Set, which can be represented by two functors

A r g A : F a m F ( S e t )  -*  S e t  A r g  : D i a l g ( A r g A , U) -> F a m F ( C )

w ith U o A r g  = A r g A o V , where U : F a m / ? ( C )  -> Set is the index set functor and 
V  : D i a l g ( A r g A , U) -> F a m F ( C )  is the forgetful functor V(A,  / )  = A.

Each such pair of functors give rise to a Category with Families EArg, and Theo
rems 4.41 and 4.42 apply: if this category has an initial object, we have a reasonable 
notion of elimination rules, and if we have elimination rules, then EArg has a weakly 
initial object. If we were to design a syntactical system of codes for such functors, like 
in Chapter 3, it seems reasonable to think that we could also get a strongly initial object 
from the elimination rules like in Theorem 4.43.

6.2.2 Towers of inductive-inductive definitions

We now extend the theory in another direction, namely to the simultaneous definition of 
a whole telescope (of fixed length) of sets. Let us first see that this is useful by considering 
an extension of Example 3.1, closer to what is actually presented in Danielsson [2007]:

Example 6.18 We extend the contexts and types from Example 3.1 with terms as well. 
The contexts stay the same:

  T : Ctxt <7 : Ty(T)
e : Ctxt T t> cr: Ctxt
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For types, we keep the base type t and function types Ilr(cr, r ) ,  but anticipating the 
definition of the terms, we also add a weakening operation: if r  is a type in context 
T, then r  should also be a type in context T > cr for all types cr. We encode this w ith a 
constructor W k r^ r ) :

T : Ctxt F : Ctxt c r : Ty(r) r  : Ty(r > cr) T : Ctxt c r : Ty(r) r  : Ty(r)
*r : Ty(r) n r ( a , r ) :T y ( r )  Wkr , a ( r ) : Ty(r > a)

To see that the definition of terms can also depend on the definition of types, so that 
an inductive-inductive definition is really necessary, we could also consider to add a 
universe set w ith a decoding function el. We should then say that for each term  t of 
type set, el (t) is a type, which we can do in the following way:

T : Ctxt T:Ctxt t :T m (r ,s e t r ) 
setr  : Ty(T) elr («) = Ty(r)

However, this would require yet another extension (with no particular technical difficul
ties), namely that later constructors for the same set can depend on earlier constructors, 
and so we leave out the universe and its decoding from our example.

Finally, we introduce some terms. First, we always have a term in context T, x : A, 
namely the variable x. In our nameless de Bruijn representation, we will write top
for this variable. We also add a weakening wk of terms as well, so that we can reach
variables further into our context, and not just the outermost one. Finally, we add 
lambda abstractions, written lam(t).

r : Ctxt a:  Ty(r) T : Ctxt o  : Ty(r) r  : Ty(r) t : T m ( r , r )
topr ,<7 : T m (r > ff ,W k r iff(ff)) wkr>a>T( f ) : Tm (r > a, Wkr><T( r ) )

T : Ctxt a  : Ty(T) r  : Ty(T > cr) t : Tm(r >  cr, r )
\amr,a,T(t) ■Tm(r,nr ((T,T)) ■

The strategy is the same as in the last section: we will generalise F a m ( S e t )  to a 
category F a m n ( S e t )  consisting of telescopes of length n, and show that this category is 
still a Category with Families.

Definition 6 . 1 9  The category F a m n ( C )  is defined by recursion over n  : N  as follows:

F a m ° ( C )  := C

F a m n + 1 ( C )  := F a m  ( F a m n ( C ) )  o

Thus, Fam1(C) is just Fam C, and Famn(C) can be explicitly described as having
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objects (n + l)-tuples (A, B \ , . . . ,  B n), where 

A : Set
B \ : A  -* Set ,
B 2 ■ (rr0 : A)  -» B i (x 0) -» Set ,
B3 : (x0 : A) {x\ : i?i(:co)) -* B2{x0 ,Xi) -»• Set ,

Bn : (x0 : A)  -► (xi : B 1(x0)) B n- i{xQ, ... , xn-2) -* Set .

We see that Fam2 (Set) indeed has the right structure to model the contexts, types and 
terms from Example 6.18. There is a chain of projection functors

C •*—— Fam1(C) -  Fam2 (C) Fam3 (C)  ------. ..  ■*-—  Famn(C)
Uq U\ U2  Un-1

defined by Uk(A, B \ , . . . ,  B^, B^+i) = (A, B \ , . . . ,  B^). Let us write Uitk for the composite 

Ui,k ■■= Ui O O . . .  O Uk : Famt+1(C) -  Famf(C) .

By iterating Proposition 4.35 (Fam C has finite limits if C does) n times, we can prove:

Lemma 6.20 The category Famn(Set) has all finite limits, and all projection functors 
Ui^ preserve them. □

6.2.2.1 Inductive-inductive definitions of telescopic families

We construct a Category w ith Families that represent telescopic inductive-inductive 
definitions, generalising the construction in Section 4.1.2. Before we carry out the 
construction for an arbitrary telescope {A, B \ , . . . ,  B n), let us do the concrete case n -  3; 
the pattern should be clear from this example already. See Figure 6.2 for an overview 
of what is now to come.

The first piece of data needed to give an inductive-inductive definition of the tele
scope (A  B 2, B 3) is a functor

ArgA : Fam3 (Set) -> Set

which we should think of as describing the domain of the constructor for the first set A. 
The constructor for the family B \ : A  -> Set can make use of the constructor for A, and 
is thus represented by a functor

ArgBl : Dialg(ArgA,[/0>2) -> Fam(Set)

such that Uq o ArgBl = ArgA o Vq where Vq : Dialg(ArgA, t/o,n) Fam3 (Set) is the for
getful functor Vo(X, f )  = X ,  i.e. the first component of ArgBl agrees w ith ArgA. Just 
like in Section 4.1.2, we m ust now make sure that the dialgebra that represents the 
constructor for J3i, but also contains a morphism for the constructor for A, actually
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contains the "right" constructor for A. Once again, we do so by equalising appropriate 
functors: the forgetful functor V\ : Dialg(ArgB l , U\,2 ° Vo) -*■ Dialg(ArgA , C/0,2 ), arid the 
functor (Vb, U0) : Dialg(ArgB l , C/i,2 o V0) -»• Dialg(ArgA, C/0,2) defined by (Vb, U0)(X,  f )  = 
(Vo(X), Uo(f)).  This is well-defined since

Uo(f) : Uo(ArgBl(X ) )  -> U0(Uh2(V0(X) ) )

but U0 o ArgBl = ArgA o Vo and Uq o U\>2 = C/0,2, hence

U o U ) : ArgA ( V b ( X ) )  -  U0,2(V0(X) )

and (Vo(X),[/o(f))  is indeed an (ArgA, C/0,2)-dialgebra. Write Eq(Vi, (Vo, U,0)) for the 
equaliser category and Ei : Eq(Vi, (Vo, C/o)) *-»• Dialg(ArgB l , C/i,2 ° Vo) for the embedding. 
Explicitly, Eq(Vi, (Vo, C/o)) has objects (A, B \ , # 2 , B$, c, d) where

c :  ArgA( A , B i , B 2,B 3) -> A
d : (x : ArgA( A ,B 1,B 2, B 3)) -» Arg<Bl( A ,B 1,B 2lB 3,c,x)  ->Ei(c(x))

where ArgBl is the second component of ArgB l . By passing to the equaliser category, 
we have made sure that the c occurring in ArgBl and the c occurring in B\  are the same. 
Thus, this is the domain of the functor representing the constructor for B 2; we require 
a functor

ArgB2 : E q (V i ,(V 0 ) £/b)) -  Fam2(S e t)

such that U\ °ArgBa = ArgBl oV\ oE\ -  once again, the first component of ArgB2 must agree 
with the earlier functors. Again, we pass to the equaliser category, this time of the functor 
E\ o V2 composed of the embedding E\  : Eq(Vi, ( V o ,  C / o ) )  -»• Dialg(ArgB l , C / ^2 o V o )  and 
the forgetful functor V2 : Dialg(ArgBa, U2 o V o  0  V i  o E{)  -> Eq(Vi, ( V o , U q ) ) ,  and the 
functor ( V i  o E i ,  C / i )  defined by ^  o El ,Ul ) { X J )  = ( W ( E i ( X ) ) ,  C / j ( / ) ) .  The final 
piece of data we require to describe our telescopic inductive-inductive definition is a 
functor

ArgB3 : E q (E i  o V"2 , ( W  ° E i , C / i ) )  -► Fam3(S et)

such that U2 o ArgBa = ArgBz o V2 o E 2, which describes the constructor for E 3 . The 
category EArgA ,ArgBi ,ArgB2 ,ArgB3 whose initial object is our intended inductive-inductive 
definition, finally, is the equaliser of the functor E 2 ° V3 : Dialg(ArgB3, Vo oV \o  E \o  
V2 o E2) Dialg(ArgB2, U2 o Vo ° Vi o E i) and the functor (V2 ° E2,U2) defined by 
(V2 o E 2 , C/2) (A, / )  = (V2{E2{X)) , U2{f)) .  All functors involved are summarised in a 
diagram in Figure 6.2.

Example 6.21 The contexts, types and terms from Example 6.18 are represented by the 
three functors

Argctxt : Fam2(S et)  ^  Set  

ArgTy : Dialg(ArgCtxt,C/0)i )  Fam (Set)  

ArgT m :Eq(Ki,(V'0,C/0) ) - F a m 2(S e t)  ,
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Set Fam3 (Set)

A rgBl
Fam (Set)  ^---------------Dialg(ArgA, C/0,2 )

Fam2(S et)  ^— — —  Eq(V"i, (Vb, U0))'------------------------^ uia ig(A rgB l , C/i>2 °  Vb)

A rgB h .

Fam (S e t)  — -2- E q ^ j  o V2, (V) ° E 1,U1))<-  Dialg(ArgBl,U2 o V o o V jc  Erf

Eq(E2 o Vs , (V2 o E 2, U2) )< - ^ *  Dialg(ArgB3, V0 o V2 o Ej. o V2 o £ 2 )

Figure 6.2: Functors for telescopic inductive-inductive definitions of length n -  3.

defined by (we leave out the universe, as it is not covered by the current formalisation, 
as discussed in Example 6.18)

ArgCtxt(C tx t .T y ,T m )  = 1 + ( £ T  : Ctxt)Ty(T)

Argjy(Ctxt, Ty, Tm , introctxt) = (ArgCtxt(C tx t ,T y ,T m ) ,  A rgjy)

ArgTm(Ctxt, Ty, Tm , introCtxt, introTy) = (ArgTy(Ctxt, Ty, Tm, introCtxt ) ,  ArgVm)

where (writing T := introctxt(aO)

x ( x  = inr((T , a ) ) x y  = inr(inr((r, tr, r ) ) ) )

+ (E T  : C t x t ) ( £ c r : T y ( r ) ) ( £ r  : Ty(introCtxt ( i n r ( ( r ,a))) ) )  (lam)

Tm (introCtxt ( in r ( ( r ,< j ) ) ) , r )  x (introCtxt(^ )  ^ T x j / e  in r ( in l ( ( r ,o ,T ) ) ) )  ■

The general construction Hopefully the pattern should be clear from the specific 
instance just considered, especially from Figure 6.2. Just in case, we give the general

ArgVy( z )  = 1

+ (£<r : T y (r ) )T y ( in tr o Ctxt ( in r ( (r ,  cr))))

+ ( E A  : Ctxt)(E<7 : T y ( A ) ) T y ( T )  x (x = in r«A ,< r )) )

( 0

(n)
(W k)

and

ArgVm (*»y) =
(E T  : C tx t ) (E c r : Ty(T))(a:  = inr((r ,<j))  x y  = inr(inr((r, a,a) ) ) )  

+ ( E r  : C tx t ) ( S o - : T y ( T ) ) ( E r  : T y ( r ) ) T m ( r , r )

(top )

(wk)
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construction of an inductive-inductive definition of a telescope of length n + 1 . Such a 
definition is given by a functor

ArgA : Famn (Set) -> Set

and n  functors (Et, Vi and {Vx o Ei: Uf) will be defined below)

ArgBl : Dialg(ArgA,C/0)n - i)  -> Fam (Set)

ArgBk+2: Eq(£* o  VM , (Vk ° Ek, Uk)) -  Famfc+2 (Set)

such that Uk ° ArgBk+l = ArgBk o l ^ o ^  (for the purpose of this condition, let ArgBo := 
ArgA). Let us write dom( ArgBk) for the domain of the functor ArgBk. We now introduce 
the rest if the functors occurring in the specification of ArgBk:

• The functor Vo is the forgetful functor Vo : Dialg(ArgA, C/o,n) Famn(Set) defined 
by Vq(X, / )  = X ,  and Vk+i is the forgetful functor

14+i : Dialg(ArgBk+l, C/fc+i in_i o V0 o E0 o . . . Vk o Ek) -> dom(ArgBk+l)

once again defined by Vk+\ ( X , f )  - X .

• Let Eq ;= Id : Dialg(ArgA,C/0,n -i)  -»• Dialg(ArgA, C/0)n - i) ,  and let

Ek+1 : Eq(Ek o Vk+1,(VK o E k,Uk)) ^  Dialg(ArgBk+1, Uk+\ tn-\ ° Vo,k)

(where we have written Votk := Vo o Eq ° . . .  Vk o Ek) be the embedding given by 
the equaliser.

• Finally, the functor

(VK o E k,Uk) : Dialg(ArgBk+i,[ / fc+i jn_i o Vb,jt) -> Dialg(ArgBk, Uk,n-\ ° Vo,k-i)

is defined by (Vk  ° E k,Uk)(X,  f )  = (VK (Ek(X) ) ,U k(f )) .  This is well-defined, 
since

Uk( f ) : Uk(ArgBk+1( X ) )  ^ ( t / fc+i >n_i(Vb,fc( X ) ) )

b u t Uk o ArgBk+i = ArgBk o Vk o Ek/ hence

UkU )  ■■ ArgBk(Vk(Ek(X ) ) )  -  U k ^ V o t - ^ V k i E k i X ) ) ) )  

and (VK (Ek(X ) ) ,U k( f ) )  is an object in Dialg(ArgBk, Uk,n-i ° V0tk-i).

The reader so inclined can check that none of these definitions are circular -  e.g. Ek/ Vk 
are only defined in terms of E{ and Vx for i < k.
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Given such a sequence of functors ArgA, ArgBl, ... ,  ArgBn, we define the category 
EArgA,AriBi to be the equaliser category EArgA>Ar̂  := Eq(£n_i o Vn, (V^-i o En. 1} C/„_i)). 
It has as objects n + 1-tuples (A, i?i, . . . ,  B n) where

A : Set 
B\  : A  -> Set
B 2 - ( x : A ) ^  B i ( x ) ->■ Set

together with appropriate "constructors" 

introA : ArgA(A, B iy. . . ,  B n) -*• A
introBl : (x : ArgA(A, B l t . . . ,  Bn)) -> ArgBl (A, B i , . . . ,  B n, introA,a;) -> 5i(introA(x))

By applying first Lemma 6.20, and then Theorem 4.37 and a variant of Corollary 4.39 
repeatedly, we know that EArgA ArgB is a category with families, and that Theorems 4.41 
and 4.42 apply. The initial object in EArgA ArgB (if it exists, this of course depends on 
the functors ArgA, ArgB. chosen being suitably strictly positive etc) is thus the data type 
we want.

Remark 6.22 Dybjer and Setzer [2006] extended the theory of inductive-recursive 
definitions to indexed inductive-recursive definitions, where a family U : I  -* Set of 
universes together w ith decoding functions T  : (i : I) -*■ U(i) -»• D are defined all 
at once for some fixed index set I  : Set. With this extension, we have in particular 
achieved the same thing for inductive-inductive definitions: just let the first set A be an 
isomorphic copy of the index set I  in question, i.e. be given by a constructor

introA : I  -*■ A .

The inverse I  -*■ A  can be defined via the elimination principle for A, and (after applying 
the isomorphism) we now have

B  : /  -  Set
C : ( » : / )  -> B(i)  Set 

i.e. an indexed inductive-inductive definition.

6.3 Summary

We have explored two different extensions to the theory of inductive-inductive defini
tions. The first combines inductive-inductive and inductive-recursive definitions into 
one theory. This is closer to what is actually possible in Agda today. By adapting Dybjer
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and Setzer's set-theoretical model for inductive-recursive definitions, we could show 
that also the combined theory is consistent.

Secondly, we extended the theory to cope w ith the examples we have already 
informally introduced. We first generalised the way B  can be indexed over A from 
B  : A -+ Set to B  : F(A)  -*■ Set for any pullback-preserving functor F  : Set -> Set (with, 
of course, F  = Id being a special case). In an orthogonal direction, we then generalised 
the number of simultaneously defined sets and families of sets from two to arbitrarily 
many. Both these generalisations made essential use of the categorical framework 
developed in Chapter 4.
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C h a p t e r

Case studies

Contents
7.1 Conway's surreal numbers............................ ....................................147
7.2 Positive inductive-recursive definitions . . . . ....................................160

In this chapter, we carry out two larger developments making essential use of inductive- 
inductive definitions. We hope to demonstrate that inductive-inductive definitions 
play a natural r61e in everyday mathematical practise. The first case study investigates 
Conway's surreal numbers in type theory. The second case study develops a theory of 
positive inductive-recursive definitions, invented by Lorenzo Malatesta and Neil Ghani.

The work on positive inductive-recursive definitions has been published in the 
proceedings of CALCO 2013 [Ghani, Malatesta, and Nordvall Forsberg, 2013a]. Here 
we concentrate on the use of inductive-inductive definitions to develop the theory of 
positive induction-recursion. See Malatesta's thesis [2013] for a treatment of the theory 
as a whole.

7.1 Conway's surreal numbers

In this section, we give a larger example of how inductive-inductive definitions can be 
naturally used to develop ordinary mathematics in type theory.

7.1.1 Introduction

The surreal numbers [Conway, 2001; Knuth, 1974] classically form a totally ordered 
Field1 which contains the real numbers as an ordered subfield and the ordinals as an 
ordered substructure. The usual route of constructing the real numbers goes N Z 

Q R, with four different sets of arithmetical operations and order relations that 
must be proven to coincide, and the natural numbers are "reconstructed" three times

h.e. a field whose domain is a proper class.
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as certain integers, rationals and real numbers. Conway, on the other hand, constructs 
all of the surreal numbers -  which include all of the number classes mentioned above, 
and more -  with just one definition!

Conway is working in set theory w ith unrestricted use of the law of excluded 
middle and the Axiom of Choice. We will instead explore the surreal numbers from a 
constructive and type-theoretic point of view, and we will see that they together with 
their order relation naturally form an inductive-inductive definition. We are not the 
first to do so: Rosemeier [2001] investigates the surreal numbers from a constructive 
point of view, working in Bishop's tradition in informal set theory, and Mamane [2006] 
develops the theory of surreal numbers in the proof assistant Coq (with postulated 
classical axioms). Both Rosemeier and Mamane follow Conway and work w ith an 
encoding of surreal numbers along the lines of Section 5.3, whereas we will make use 
of inductive-inductive definitions and consider a more faithful representation. The 
Homotopy Type Theory book [The Univalent Foundations Program, 2013] gives a higher 
inductive-inductive definition of the surreal numbers, taking inspiration from our 
example in Nordvall Forsberg and Setzer [2012].

We also take the opportunity to show how inductive-inductive definitions can be 
used in real world formal developments in the proof assistant and functional program
ming language Agda (see Section 2.2). Agda is not based on any formal theory of data 
types -  in particular, there is no formal proof that Agda implements a consistent theory 
-  but we will see that Agda actually works quite well for this purpose. In fact, this entire 
section is a literate Agda file2. We declare the start of the module:

module surreal where

and we include some standard definitions from the standard library, making sure to 
hide definitions whose names will clash:

open import Data.Product hiding (3) —  sigma types
open import Data.Empty — empty type
open import Data.Unit hiding (_<_) — unit type
open import Data.Bool hiding (T) —  Booleans
open import Data.Nat hiding _>_) — natural numbers
open import Data.Integer hiding -_) — integers
open import Data.Sum — disjoint sum

7.1.2 Surreal numbers, informally

Before we dive into the type theory, let us take a step back and appreciate Conway's set- 
theoretical definition. As a starting point, let us consider the definition of a Dedekind 
cut, used as one possible way to construct M from Q:

2The code in this section type checks with Agda 2.3.2.2 and version 0.7 of the standard library.
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Definition 7.1 A Dedekind cut (L, R)  consists of two non-empty sets L , R ^ Q  such that 
L  u R  = Q,  all elements of L are less than all elements of R  and L contains no greatest 
element. ■

We now change the definition so that it makes sense w ithout having constructed 
the rational numbers Q first. The resulting defined object will be called a surreal number.

• According to our policy of avoiding Q, L and R  should not be sets of rational 
numbers. Instead, we make them sets of already constructed surreal numbers.

• If L and R  are not subsets of Q, it makes no sense to demand that L u R  = Q, hence 
we remove that condition.

• Now that L  and R  are sets of already constructed numbers, we better have a way 
to start the construction, which is hard if we demand that all sets are non-empty, 
or L infinite. Hence we remove these two conditions as well.

We end up with the following definition of the surreal numbers, where we have changed 
the notation from (L, R)  to {L \ R}  (following Conway [2001]) to avoid confusing surreal 
numbers and Dedekind cuts:

D efinition 7.2 A surreal number {L | R)  consists of two sets L, R  of surreal numbers 
such that all elements of L are less than all elements of R. The class of all surreal 
numbers is denoted No. e

For a surreal number X ,  we write X  = { X l \ X r }, and we will write x L for a typical 
element oi X l (called a left option of A) and x R for a typical element of X r (called a right 
option). With this notation, the condition on a surreal number {L | R} can be written

{VxL zL){MxR t R ) x L < xR . (7.1)

The intuition is that X  = { X l \ X r } is the "simplest" number above all the numbers in 
X l and below all the numbers in X r :

X l  v  X r

This explains condition (7.1): if A- is to lie in between X l and X r , there cannot be an 
element xL € X l which is larger or equal to an element xR e X r , or we would have 
xR < x L < X  < x R, i.e. xR < x R, which should be a contradiction.

The attentive reader might have noticed that something is not right: equation (7.1) 
made sense for Dedekind cuts, because in that situation, the elements xL and x R were 
rational numbers for which we know what the order relation < is. However, since we 
just defined the surreal numbers, we also need to define what it means for one surreal 
num ber to be smaller than another, and this has to be done simultaneously w ith the 
original definition, since it refers to <; this is an inductive-inductive definition!

Conway prefers to define < instead of <. In a classical setting, this is harmless, as 
we expect x < y  o  - . ( y  <  x),  but we will get to this point in Section 7.1.4. The intuition
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once again comes from seeing X  as the simplest number between X r and X r : if X  < Y,  
then it cannot be the case that X  is greater than or equal to any y R e Yr , and it also 
cannot be the case that any x L e X r is greater than or equal to Y :

Xl ^  Xr

Yl y _________ Yr_

Formally, Conway defines:

Definition 7.3 Let X  = { X r \ X r }  and Y  = { Y r | Y}?} be surreal numbers. We have 
X < Y  if

(Vyfl € Y r H /  £ X )  and (VxL € X L) ^ (Y  < x L) . ■

7.1.2.1 Examples of surreal numbers

We present some examples of surreal numbers in set-theoretical notation. We will write 
{... ,a,6,  c , ...  | . . . , d , e , / , . . . }  instead of {{..., a, 6, c, ...} | { . . . ,  d, e, / , . . .}}.

Examples 7.4

(i) The simplest surreal number of them all, and the one needed to get off the ground, 
is Ono := { 0  | 0 }. It is trivially a surreal number, since it is certainly true that

( V xL e 0 ) ( V x /? € 0 )  x L < x R .

(ii) Having constructed 0no, we can now construct 1n0 := {0no I 0} and -1n0 := 
{0 I Ono}/ both again trivially satisfying (7.1).

(iii) In general, we can define ( - )n 0 : Z -> No by

Ono 
(n + 1 ) no 

(n~  1 ) no

= { 0 |0 }
= {h n o  | 0 }  n >  0

= { 0 | n No} n <  0

(iv) We do not have to stop at finite numbers: we can define uj := { 0n o , 1n 05 2N o , . . .  | 0 }. 
In general, ordinals can be identified with surreal numbers of the form [L | 0 }.

(v) Real numbers can be identified with surreal numbers x such that -n<  x <n  for 
some integer n  (i.e. x  is finite), and a: = { x - l , x - ^ , x - ^ , ...  | x + l , a : + | , x + | , ...} (i.e. 
x is equivalent to a "rational cut") where we have written X  = Y  for X  < Y  a Y  < X  
(we will return to this relation in Section 7.1.6). ■
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7.1.3 Set theory in  Type Theory

In order to define surreal numbers in Type Theory similar to the way they are defined in 
Definitions 7.2 and 7.3, we need to be able to talk about subsets of surreal numbers. We 
will follow Azcel's interpretation of CZF in Type Theory [Aczel, 1978], and represent a 
subset X  of the set A as an index set I x  and a function f x - I x ^  A,  which we think of 
as picking out the elements of X.  In other words, we model subsets of A  as objects of 
Fam A. Since we want to keep things small, we cannot use arbitrary sets as index sets. 
Instead, we localise the definition to a universe

data U : Set 
T : U -  Set

in the style of Hancock [Ghani and Hancock, 2012]. The exact details of the universe U 
can be left open, but it should at least contain 0 , 1 , 2  and the natural numbers, and be 
closed under disjoint unions -  we also close it under dependent pairs and functions:

data U where
N’ r  T‘ Bool’ : U
IT S ’ : (a : U) -* (b : T a -> U) -> U
Jii’_ : U -» U -  U

T N’ = N
T r  = i
T T’ = T
T Bool’ = Bool
T (IT a b) = { x : T a ) ^ T ( b x )
T (£ ’ a b) = E (T a) (X x -> T (b x))
T (a i±i’ b) = T a i±j T b

A subset X of A is represented by an (U, T)-localised family of As, i.e. a U-small 
index set X ind : U and an element function X e l : X ind -> A:

record V  (A : S e t ) : Set where 
constructor subset 
field 

Jnd : U
_el_ : T Jnd -> A

infix 6 _el_ 
open V

For example, we can define the empty subset of any set by
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0  : { A  : Set} - + V  A  
0  = subset l '  i-elim

and singletons and disjoint unions of subsets by

( . ) :  {A : Set} ^  A ^ 7? A 
( x  } = subset T' (X _ x)

_u_ : { A  : Set} -> 'P A - > 'P A - » 'P A
(subset I Xi) u (subset /  Yi) = subset (/ tu’ /) [ X i , Yi ]

Remark 7.5 Unfortunately, Agda has already reserved the symbols { and } for implicit 
arguments. We will squint and use the similar looking ( and ) instead, both for the 
singleton subset above, and for the surreal number {L \ B.} later.

We also define quantifiers for elements of a subset X of A. We say that V[x e X]tp 
holds for a property <p : A-*Set if <p(X el i) holds for all i : T (X  ind), and similarly for 
3[x e X](f.

V’ : { A  : Set} (X : V  A)  -  (^ : A  -  Set) -  Set 
V' {A } Xip = { x \ J { X  ind)) if (X el x)

record 3 {A : Set} (X : V  A) (ip : A -*■ Set) : Set where 
cons truc to r  exists 
field

witness : T (X ind) 
proof: <j> (X el witness)

By using Agda's syntax  facility (which should be read from right to left), we can get a 
nice notation for the quantifiers:

syntax  V  X (X x -> <j>) =  V[ x e X  ] <j> 
syntax  3 X (X x -» < j> )  = 3 [A :€X ]4>

7.1.4 Surreal numbers as an inductive-inductive definition

We now translate Conway's definition of the surreal numbers into Type Theory. We 
already observed that this will need to be an inductive-inductive definition and not a 
simple inductive definition, since the set of surreal numbers No and the order relation 
<: No -*■ No -*■ Set are mutually defined.

However, there is a second complication: we would like to define also < inductively, 
but looking at Definition 7.3 again, we see that < appears negatively (literally!) in its
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defining formula

( V /  e YR)^(yR < X )  and (VxL 6 X L)^{Y  < x L) .

Following Rosemeier [2001] (and also Mamane [2006]), we instead simultaneously 
define > and its negation, which we write <. This makes sense from a constructive point 
of view anyway, as we would like to define < using positive information (compare with 
the notion of apartness relation in constructive real analysis [Bishop and Bridges, 1985]). 
Thus, we simultaneously define

da ta  No : Set
da ta  _>_ : No -> No -> S et
da ta  _<_ : No -> No -> S et

using inductive-inductive definitions in the following way:

da ta  No where
: (XL : V  No) -*• (XR : V  No) ->

V[ xl  e XL ] (V[ xr  e XR ] (xl < xr))
-» No

da ta  _>_ where
geq : {XL : V  No} -* {XR : V  N o)  -*

{p : V[ xl  g XL ] (V[ xr  e XR ] (xl < x r )) )
{YL : P N o } ^  { YR : V  No}
{q : V [ y / €  YL]  ( V[ yr  e Y R ]  (yl < yr))}
(let X  = ( X L  \ X R ) p  

Y  = ( Y L \ Y R )  q
in

(V[ xr  e X R  ] Y < xr) ->
( H y U Y L ] y l < X )  -  

X >  Y)

da ta  _<_ where
I t r : {XL : V  No} {XR : P N o } ^

{ p : V[ xl  € XL ] (V[ xr  e X R  ] (xl < xr))} -*■
{ Y :  No}
(let X  =  ( XL | X R  ) p 

in
3[ x r  € XR ] Y > x r  ->

X <  Y)
Itl : {X : No}

{YL : V  No} { YR : V  No}
{q : V[ y/ € YL ] (V [ y r  € YR ] (yl < yr))}  ->
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(let Y = \ Y L \ Y R )  q 
in

3 [ y U Y L ) y l > X ^
X <Y)

Notice that X<Y is just the positive version of -.(Y>X). Indeed, if we have positive 
information that X< Y, then we know that it cannot be the case that X> Y -  the negative 
statement of X< Y.

Lemma 7.6 If X<Y, then ->(X>Y).

Proof. We prove the statement by induction on X<Y and X>Y. Assume X>Y, i.e. Y<xR 
for all x R € X r  and y L<X for all yL e Y/,. Also assume X<Y, which can happen for two 
possible reasons:

If X<Y because Y>xR for some x R e X/?, then both Ycr^ and Y>x/f for that x R € X/*, 
which is a contradiction by the induction hypothesis. Similarly, if X< Y because y L>X for 
some y L z Yl , then this and yL<X once again leads to a contradiction by the induction 
hypothesis.

The Agda proof of the lemma is short and sweet:

< - t o - > - ^ l  : { X  Y  : N o }  - > X < Y - > X > Y - » - l

< - t o - > - + i  (Itr ( e x i s t s  xri  y>xr)) ( g e q  y<xr yl<x) =  <-to->-*± ( y<xr xri) y>xr  
< - t o - > - + i  (Itl ( e x i s t s  yli yl>x ) )  ( g e q  y<xr yl<x) =  < - t o - > - + l  (yl<x yli) yl>x

□
In the following, we will often only give Agda proofs, as they are quite readable on 
their own. We do not expect the converse of the lemma to hold without classical logic, 
of course. For convenience, we define

_<_ : N o  -> N o  -> S e t

x < y  = y  > x

_>_ : N o  -> N o  -> S e t

x > y  = y  < x

infix 4 _<_ _>_ 
infix 5 _>_ _<_

as well as projection functions

_L : N o  V  N o  

« X L | _ } _ ) L  =  XL

_R : N o  -»• V  N o
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«  _ | XR ) _) R = XR

7.1.4.1 Examples of surreal numbers in Type Theory

Let us take a look at the type theoretical versions of the examples of surreal numbers 
from Section 7.I.2.I.

Examples 7.7

(i) The surreal number 0no = { 0  | 0 } becomes

zeroS : No
zeroS = ( 0  | 0  ) (X x e -> l-elim  e)

in the type-theoretical setting, where the empty subset 0  := subset l ’ i-elim  was 
defined in Section 7.1.3. Notice how the trivial proof that

(VxL c 0 )(Vrri? e 0 ) x L < x R

is just an application of ex falso quod libet.

(ii) In the same straightforward way, we can define

oneS : No
oneS = ( ( zeroS ) | 0  ) ( \  x  e -> i-elim  e)

-oneS : No
-oneS = ( 0  | ( zeroS ) ) (X e x -* i-elim  e)

(iii) We can also represent the integers as type-theoretic surreal numbers. This is most 
conveniently presented as an embedding of Z into No, defined by recursion over 
the integer:

: Z —> No 
iz -[1+  zero ] = -oneS
iz -[1+  N.suc n] = { 0 \ ( i z  -[1+  n ] ) ) (X e x i-elim  e) 
iz (+  zero) = zeroS
iz (+  N.suc n) = ( ( iz (+  n ) )  | 0  ) (X x e -> i-elim  e)

(iv) As a special case of the embedding iz of the integers, we get an embedding of the 
natural numbers
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: N -> No 

ln«  = iz (+ n)

which we can use to define the first infinite ordinal

t o : No
a) =  { subse t  N' in | 0  ) (X x e -> i-e l im  e)

In general, remember that Conway defined the ordinals to be surreal numbers of 
the form {L | 0 }. We can define the corresponding predicate

is -o rd ina l: No -> Set 
is-ordinal X = V [ x e X R ] _ L

and indeed, the identity function is a proof that co is an ordinal. This is is most 
likely not a constructively useful notion of an ordinal.

(v) The corresponding predicate for being a real number can also be defined, but 
requires some more infrastructure dealing with rational numbers and addition of 
surreal numbers. We omit it here. ■

7.1.5 P roperties  and  o pera tions

Let us now demonstrate that our definition of the surreal numbers is useful by proving 
some (expected) properties about them and defining arithmetical operations on them; 
both activities will have a distinct inductive-inductive flavour. To do so, we will of 
course use the elimination rules, but this time in the form of Agda's built in support for 
dependent pattern matching [Coquand, 1992].

In short, Agda allows us to define a function f from an inductively defined data 
type by giving its value on the constructors of the data type. Furthermore, f may be 
used for recursive calls on structurally smaller arguments. If f is a function of multiple 
arguments, it is not necessary for all arguments to decrease [Abel and Altenkirch, 2002], 
which will often be useful for our purposes. Conway [2001, p. 5] writes

In general when we wish to establish a proposition P{x)  for all numbers 
x,  we will prove it inductively by deducing P(x)  from the truth of all the 
propositions P ( xL) and P ( xR). [...] When proving propositions P(x,y)  
involving two variables, we may use double induction, deducing P ( x , y) 
from the truth of all propositions of the form P( xL, y), P ( xR, y), P ( x , yL), 
P( x , yR) (and, if necessary, P{xL,yL), P ( x L,yR), P ( xL,yR), P ( x R,yL)).
Such multiple inductions can be justified in the usual way in terms of re
peated single inductions.
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The point is that these kind of inductive arguments, including double induction, is 
exactly what Agda's pattern matching gives us. Goguen et al. [2006] show how depen
dent pattern matching can be translated into standard eliminators (plus 'uniqueness of 
identity proofs') for inductive families; in particular, this includes the justification in 
terms of repeated single inductions that Conway alludes to.

As a warm-up, and sanity check that our definition is not completely wrong, let us 
prove Conway's [2001] Theorem 0, which says that the order of the surreal num bers 
behave as we intuitively described it in Section 7.1.2:

Lemma 7.8 (Conway's Theorem 0) For all surreal numbers X  = { X l  \ X r }  we have

(i) X  > X,

(ii) X  <xR for all x R e X r ,

(iii) xL < X  for all x L e X l ,  and

(iv) not X  < X.

Proof. We simply prove the lemma by giving Agda definitions of the right type: 

refl-> : (X : N o }  X > X
refl-> {( XL | XR ) p} = geq (X xri -> Itr (exists xri refl->))

(X xli -»• Itl (exists xli refl->))

ThmOii: {X : N o }  -* V[ xr e X R ] (X < xr)
ThmOii {( XL \ XR ) p} xri = Itr (exists xri refl->)

ThmOiii : {X : N o }  -> V[ xl e X L  ] {xl < X)
ThmOiii {( XL \ XR ) p] xli = Itl (exists xli refl->)

irrefl-< : {X : N o }  -  (X < X) -  l
irrefl-< (Itr (exists xri x>xr)) = <-to->->± (ThmOii xri) x>xr
irrefl-< (Itl (exists yli y b y )) = <-to->->-l (ThmOiii yli) yl>y

In the proof irrefl-< of (iv), we used <-to->->i, the proof of Lemma 7.6. □

Let us now see that we can also define operations on the surreal numbers, such as 
e.g. negation. Conway usually defines the operation first, and then later verifies that e.g. 
if X  is a surreal number -  i.e. satisfies the order condition (7.1) -  then so is - X .  Since we 
have baked in the order condition in our inductive-inductive definition of the surreal 
numbers, we cannot allow ourselves to do the same. Instead, we m ust prove that the 
order condition is satisfied simultaneously as we the define the operation. Thankfully, 
this is exactly what the (general) elimination rule for inductive-inductive definitions 
allow us to do.
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Proposition 7.9 Conway's construction of the negation of a surreal number

~{ XL \ X R} := {~XL I - X R}

where - X i  = {-z* :x l e Xi}  can be carried out in Type Theory, and we have

X  < Y  implies -  Y  < - X
X  < Y  implies -  Y  < - X

Proof. We define 

- : No -»• No
lemma-< : {X Y : No} X < Y  -  - Y < - X
lemma-< : {X Y : No} X < Y  -> - Y  < - X

simultaneously -  note how - appears already in the type of lemma-< and lemma-<. The 
defining equations are

- (( XL | XR ) p) = let
-XL = subset (XL ind) ( \  xli -* - (XL el xli))
-XR = subset (XR ind) (X xri -»• - (XR el xri)) 
in
{ -XR | -XL ) (X xri xli -> lemma-< (p xli xri))

lemma-< (geq y-*>xr yl->>x) = geq (X yli -+ lemma-< (yl-^>x yli))
(X xri -> lemma-< (y^>xr xri))

lemma-< (Itr (exists xri xr<y)) = Itl (exists xri (lemma-< xr<y)) 
lemma-< (Itl (exists yli x<yl)) = Itr (exists yli (lemma-< x<yl))

□
We see that indeed -(i^rc) = lz (-zx )* at least morally -  the formal statement requires 

function extensionality because of our higher-order representation of subsets.
We have already seen that < is reflexive in Lemma 7.8. Let us now prove that it is 

also transitive. Also Conway proved this, of course, but using classical logic. Since we 
are working constructively, we have to do a little more work.

Lemma 7.10 (Conway's Theorem 1) < is transitive, i.e. if X< Y  and Y<Z  then X<Z.

Proof. In order to be able to handle recursive calls, we define

trans-< : { X Y  Z  : No} -> X < Y  -> Y < Z -  X  < Z
trans-<-< : { X Y Z  : No} X < Y  -  Y < Z  -  X < Z
trans-<-< : { X Y Z :  No} ^ X < Y ^ Y < Z ^ X < Z
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simultaneously by

trans-< (geq X<yr xl<Y) (geq Y<zryl<Z)
= geq (X zri -» trans-<-< (geq X<yr xl<Y) (Y<zr zri))
(X xli -> trans-<-< (xl<Y xli) (geq Y<zryl<Z))

trans-<-< (geq X<yr xl<Y) (Itr (exists yri Z>yr)) = trans-<-< (X<yr yri) Z>yr 
trans-<-< p (Itl (exists zli zl>Y)) = Itl (exists zli (trans-< p zl>Y))

trans-<-< (Itr (exists xri Y>xr)) q = Itr (exists xri (trans-< Y>xr q)) 
trans-<-< (Itl (exists yli yl>X)) (geq Y<zr yl<Z) = trans-<-< yl>X {yl<Z yli)

□

We could go on and define addition, multiplication and division, but hopefully, we 
have already been given a taste of what working with inductive-inductive definitions in 
Agda is like. We are also fast approaching the limits of what Agda and its termination 
checker can handle. It is nevertheless quite pleasing that so much is possible to do in 
Agda even today, without the developers giving any special care to inductive-inductive 
definitions.

7.1.6 D iscussion

Numbers and games Conway [2001] first defines the surreal num bers as we have 
indicated above. It is then anticipated that numbers being defined simultaneously with 
their ordering relation might make certain people uncomfortable, and the "formal" 
development of surreal numbers is divided into three stages:

(i) Games are defined as numbers without an order condition, i.e. a game is given by 
two sets of games. (Games are called games, as they are used in the second half 
of the book to analyse strategies for mathematical games such as Nim).

(ii) The order relation is then defined on games, using the same formula as before.

(iii) Finally surreal numbers are defined to be those games that satisfy the order 
condition.

Mamane [2006] follows the same route, since inductive-inductive definitions are not 
available in Coq. There are interesting parallels w ith the translation of inductive- 
inductive definitions into indexed inductive definitions in Section 5.3, bu t here the 
"prenumbers" (i.e. games) are of a particularly simple form where there is no mutual 
dependency at all. It should be clear that there is no need to jump through such hoops 
to justify the theory -  inductive-inductive definitions are justified in their own right.
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Proving properties of surreal num bers The attentive reader has noticed that we have 
not proven many properties about surreal numbers not involving the order relation on 
them. This stems from the fact that we have represented subsets as functions. To prove 
equalities between surreal numbers, we need to prove equalities between functions, 
and for that we usually need function extensionality. Even a simple statement such as 
- ( - X ) = X ,  which has the following informal one-liner proof

- ( - { x L | x fi}) = - { - X R  I - x L] = { - ( - x L) I -  ( - * * ) }  = {xL I * * }

fails because we need function extensionality to apply the induction hypothesis in the 
last step. Thus, Agda (or our representation of subsets) is not quite adequate for a 
complete treatment of the surreal numbers.

Equality of surreal num bers We proved that < is reflexive and transitive, so a natural 
question is if the relation is also anti-symmetric (i.e. X<Y  and Y<X  implies X  = Y), as 
that would make < into a partial order. The answer is both no and yes. No, because it 
is not true, and yes, because Conway declares that two surreal numbers X  and Y  are 
actually equal if X<Y  and Y<X,  thus forcing < to be a partial order (in fact, the order 
is total if and only if the law of excluded middle holds [Rosemeier, 2001, Prop. 1.9]). 
This is also needed to validate certain arithmetical laws; for instance, the equation 
X  + (- X ) = 0 does not hold up to propositional equality, but only up to the equivalence 
relation mentioned above.

The traditional type theoretical solution is thus to form a setoid of surreal numbers, 
with equivalence relation X  ~ Y  iff X<Y  and Y<X.  By switching to a setoid of surreal 
numbers, we also get function extensionality, but it remains to be seen how much extra 
book keeping is needed.

The Homotopy Type Theory book [The Univalent Foundations Program, 2013] 
instead advocates the use of a higher inductive-inductive definition, where the set 
of surreal numbers and the order relation is constructed simultaneously with new 
(non-canonical) constructors for the identity type, which forces the relation ~ above to 
be logically equivalent to equality. At the time of writing, there is no computational 
interpretation of such higher inductive definitions.

7.2 Positive inductive-recursive definitions
As yet another example of how inductive-inductive definitions are useful, we return to 
Dybjer and Setzer's theory IR of inductive-recursive definitions. In Section 3.2.2, the 
syntax of inductive-recursive definitions was presented as an inductive definition. The 
definitions were then given semantics as initial algebras of endofunctors on Fam | C | ,  

i.e. endofunctors on the category of families of objects from some discrete category |C | .  

We will see that if we upgrade the inductive definition of the syntax to an inductive- 
inductive one, then the discreteness condition can be lifted, i.e. we get a theory of data 
types, which we call positive inductive-recursive definitions, whose semantics are given 
as initial algebras of endofunctors on Fam C  for an arbitrary category C .  We recover
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ordinary inductive-recursive definitions as the special case when C  is discrete. We also 
extend Dybjer and Setzer's model construction to our setting.

7.2.1 The sem antics o f IR, revisited

In Section 3.2.2, we recalled Dybjer and Setzer's system of codes for inductive-recursive 
definitions. We then gave a semantics by defining two functions

A r g , R ( 7 ) : (U : Set) -> (T : U -> D)  -  Set
F u n , R ( 7 ) : (U : Set) -  (T : U - + D ) - *  A r g I R ( 7 ,  U, T)  -  D

for each code 7  : IR(D). We also remarked that, using extensional type theory, A r g j R ( 7 )  

and F u r i | R ( 7 )  can be combined and extended to a functor F a m  D  -> F a m  D.  Since we are 
going to generalise it in a moment, we now present this functor in full. In doing so, we 
make use of the following folklore lemma:

Lemma 7.11 F a m  C  is the free completion of C  under set-indexed coproducts, i.e. F a m  C  

has set-indexed coproducts, given by

a:A a -A

and there is a functor rj : C  -»■ F a m C ,  such that every functor F  : C -»• B where B  
is a category w ith set-indexed coproducts has a unique (up to natural isomorphism) 
coproduct-preserving extension F  : F a m  C  -»• B.

Proof The embedding rj : C  -> Fam C  is given by t j(Y) = (1 , A_. Y ), and the extension 
F  of F  : C  -*■ B by F( X,  P )  = Z x - . x  F ( P ( X ) ) -  have F o rj =  F  (up to natural isomor
phism) since a unary coproduct of A is nothing but the object A itself. Furthermore, F  
preserves coproducts since

Z F([P0]«a,s»)= Z P(f«(*)) = Z Z P(P.0r)) = Z 3?(*«.'P«)
(a ,x) :Za:AX A { a , x ) : £a:AX A a : A x : X A a: A

and the same isomorphism also shows uniqueness. □

Remark 7.12 The category F a m  C  has rich structure in other ways as well, for any 
category C :

(i) F a m  C  is fibred over Set via the split fibration n(X,  P)  = X . For later use, we note 
that a m orphism  (h, k ) : (X , P)  -> (Y, Q ) is a split Cartesian morphism if k is a 
family of identity morphisms, i.e. if Q = P  ° h.

(ii) F a m  C  is cocomplete if and only if €  has all small connected colimits [Carboni 
and Johnstone, 1995, dual of Prop. 2 .1].

(iii) Fam is a functor Cat -> Cat; given F  : C  -> B,  we get a functor Fam ( F ) : Fam C -> 
Fam B by composition: Fam (F) (X,  P ) -  (X , F  o P ).
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When C is a discrete category every morphism between families (X , P)  and (Y, Q) 
consists only of functions h : X  -> Y such that P{x) = Q{h{x))  for all x in X.  From a 
fibrational perspective, this amounts to the restriction to the split Cartesian fragment 
Fam | C | of the fibration n : Fam C  -> Set, for C  an arbitrary category. By restricting to 
this fragment, we can extend Arg)R(7 ) and Furi|R(7 ) to an action also on morphisms. 
From now on, let us write [7 ] (U, T ) for (Arg)R(7 , t/, T), Fun|R(7 , C7, T)). The action of 
[7 J on objects was defined in Section 3.2.2. Making use of coproducts in Fam | C | ,  this 
action can be written

[tC](X ,P)  = (l,A_.c)
[<rA f ] ( X , P ) =  £ [ f a l ( X , P )

a: A

16A F} ( X , P) =  £  l F ( P o g ) l ( X , P )
g :A-*X

We now give the action on morphisms. Let (h , i d ) : (X , P)  -> (Y, Q) be a morphism in 
Fam D,  i.e. h: X  -»• Y and Q o h = P.  We can then define

[ t c J ( J i , i d )  =  ( i d i ,  i d )

{ a A f i ( h ,  i d )  = [ i n a o [ / a j ( / i , i d ) ] a : ^

| ^ F ] ( / i , i d )  = [\nhog o { F ( Q  o h o g ) } ( h , \ d ) ] g :A^x

Here, the last line type checks since Q o h = P, hence Q o h o g  = P o g  and we can apply 
the induction hypothesis.

Hancock et al. [2013] introduce morphisms between IR codes. This makes IR(-D) 
into a category, and the decoding fl-J : IR(D)  -»• [Fam D, Fam D] can be shown to be a 
full and faithful functor. We will draw inspiration from this in Section 7.2.2 when we 
generalise the semantics to endofunctors on Fam C for possibly non-discrete categories 
C .  But first, let us look at some examples.

Example 7.13 (A universe closed under dependent sums) In Example 3.5, we saw an 
example of an inductive-recursive definition of a universe closed under W-types. As a 
variation of this example, let us consider a more modest universe containing the natural 
numbers and closed under E-types. This can also be defined using inductive-recursive 
definitions. Indeed, one can easily write down a code tn,e : IR(Set) for a functor that 
will have such a universe as its initial algebra:

7 N,s := *N +,R h ( X X .  Sx{it)(XY. l £ (* (* ) )  Y)) : IR(Set)

Here we have used 7  +|R 7 ' := cr2 (Ax. if x then 7  else 7 ') to encode a binary coproduct 
as a 2-indexed coproduct. The set A  (*) is simply X  : 1 -> Set applied to the canonical 
element * : 1 . If we decode tn .s , we get a functor which satisfies

[7n ,eK ^ T)  = (1 , A_. N) + (Six:U . T{u) -  U, A(u, /) .  E x : T ( u ) . T ( f ( x ) ) )
= ( l  + Zu-.U ,T(u)  -> U, inL N; inr(w, / )  ^  E x:T(u)  . T ( f ( x ) ) )
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7.2. Positive inductive-recursive definitions

so that the initial algebra (t/,T ) of [tn.e]/ which satisfies (U,T ) = I tn .e K ^ ^ 1) by 
Lambek's Lemma, satisfies the the following equations:

U = 1 + (Eu:U) (T(u) ->U)
T(inl *) =N

T(inr ( « , / ) )  = (Ex : T ( u ) ) T ( f ( x ) )  ■

Example 7.14 (A universe closed under dependent function spaces) In the same way, 
we can easily write a down a code for a universe closed under II-types:

7N ,n : ^ N +,R<5i(A X <5x (*)(A y ..n (A (* ))y ))  : IR(Set)

Even though this looks extremely similar to the code in the previous example, we will 
see in the next section that there is a big semantic difference between them. ■

7.2.2 Syntax and sem antics of positive inductive-recursive definitions

We know from the last section that IR codes can be interpreted as functors on families 
built over a discrete category. W hat happens if we try to interpret IR codes on the 
category Fam C, and not just on the subcategory Fam |C|? The problem is that if we allow 
for more general morphisms, we can not prove functoriality of the semantics of a 8 code 
as it stands anymore: it is essential to have an actual equality on the second component 
of a m orphism in Fam C in order to have a sound semantics (see Example 7.18 below). 
We now introduce a new axiomatisation of positive inductive-recursive definitions IR+ 
which enables us to solve this problem: By generalising inductive-recursive definitions, 
we can interpret codes as functors on FamC for an arbitrary, possibly non-discrete 
category C.

The basic idea is to deploy proper functors in the S codes. This enables us to remove 
the restriction on morphisms within inductive-recursive definitions; indeed, if we know 
that F  : ( A -*■ C) -»■ IR+(C) is a functor, and not just a function, we do not have to rely 
on the equality P o g  = Q o h o g  between objects in CA, bu t we can use the second 
component of a morphism (h, k)  in Fam C to get a map P o g  ^  Qohog-,  then we can use 
the fact that F  is a functor to get a morphism between codes F ( P  o g) F( Q oho  g).

However, w hat does it m ean for F  : (A -> C) -> IR+(C) to be a functor? To start 
with, we need both A  -»• C and IR+(C) to be categories. It is clear that A -*■ C is just a 
functor category (with A  a discrete category), but what about IR+? Following Hancock 
et al. [2013], we can define the morphisms between IR+ codes inductively. For ordinary 
inductive-recursive definitions, the morphisms can be defined after the definition of 
the codes themselves, but this time, the definitions needs to be done simultaneously, 
as we w ant the 5 code to refer to morphisms. In other words, we are dealing w ith an 
inductive-inductive definition!

The codes will be interpreted as functors [7 ] : Fam C -> Fam C, and the morphisms 
as natural transformations between them. This should also give an intuition for the 
definition of the morphisms: a m orphism  between codes 7  and 7 ' contains the data 
necessary to construct a natural transformation from [7 ] to [7 ']. The actual choice of

163



7. Case studies

morphisms is not so important, as long as they contain identities, are closed under 
composition and can be decoded as natural transformations. We have made one such 
choice, but many others are possible.

Definition 7.15 Given a category C we simultaneously define the type IR+(C) of pos
itive inductive-recursive codes on and the type of morphism s between these codes 
Honi|R+(C)(_, _): IR+(C) -*■ IR+(C) -> type as follows:

• IR+(C) codes:
c : C  

l c : IR+(C)

A : Set f  : A -*■ IR+(C)
^ / : I R +(C)

A : Set F  : (A -> C) -*■ IR+(C) (F  functor)
Sa F:  IR+(C)

• IR + (C) morphisms:

-  identity morphisms:
id7 : Honri|R+(c)( 7 , 7 )

-  morphisms from l c :

f  : Homc (c, c')
I \ lt( / )  : Hom|R+(C)(iC ,tc')

a : A  p: Hom|R+(c)( t c , / ( a ) )  

rL,a(a,p) ■■ Hom,R+(C)(cc,aAf )

g : A ^ O  p: Hom|R+(c)( t c , F ( ! o p ) )  

r t,s(g,p) : Hom|R+(C)( t c , ^ F )

-  morphisms from a a f-

7 , : IR+(C) p : (a : A)  -> Hom,R+(c)( / ( a ) , 7 )  

rffi7(p): Horri|R+( c ) (<j>i / ,  7 )

-  morphisms from 5a F

7 , : IR+(C) p :N a t (F ,^ )  
rd-i7(p): Horri|R+( c ) (8a F , 7 )
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7.2. Positive inductive-recursive definitions

b : B  p : N a t ( F ,  Kfb)

T s A b i  P) '■ HomiR+(c ){6AF , o Af )

g . B ^ A  p:  N a t ( F , G ( - o p ) )

r<5,j(£f,p) : Honri|R+(C)(6a F , Sb G)

In the clauses Ts^  and T ^ ,  we have written ac7 : CA -*■ IR+(C) for the constant functor 
with value 7 . ■

This is a (large) inductive-inductive definition of

IR+(C ) : type 
Honri|R+(C)(_,_) : IR+(C) ->■ IR+(C) -> type

Since Hom|R+(C)(_, _) is indexed over two copies of IR+(C), it is an instance of the ex
tended theory from Section 6.2. The simultaneousness is hidden in the demand that F 
should be a functor in the 6 code. Indeed, this can be spelt out as two operations

F : ( A - + C ) - +  IR+(C)
F _  : ( f , g  : A  - *  C )  - +  H o m ^ c ( / , s )  H o m I R + ( C ) ( F ( / ) ,  F(g))

plus the functor laws, which we can leave out of the initial definition. Note how the 
type of F _ >  indeed is strictly positive in Horri|R+(C).

We now explain how each code 7  : IR+(C) is interpreted as an endofunctor

[7 ] : F a m  C -»■ F a m  C

Let us call a functor which is isomorphic to a functor induced by an IR+ code an IR+ 
functor. The semantics of IR+ closely follows the one given in Section 7.2.1; as before 
we make essential use of coproducts in Fam C. However, since codes and morphisms 
were defined simultaneously, they also need to be decoded simultaneously as functors 
and natural transformations respectively. This is exactly what the inductive-inductive 
elimination principle allows us to do!

Theorem 7.16 (IR+ functors) Let C be an arbitrary category.

(i) Every code 7  : IR+(C) induces a functor [7 J : F a m  €  F a m  C.

(ii) Every morphism p : Flom|R+(C) (7 , 7 ') for codes 7 , 7 ' : IR+ (C) gives rise to a natural 
transformation [pj : [7 ] — ► [7 '].

Proof. While the action on objects is the same for both IR+ and IR functors, the action 
on morphism s is different w hen interpreting a code of type 6aF: in the semantics of 
IR+ we exploit the fact that F : (A -*■ C) IR+(C) is now a functor by using its action
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on morphism (which we, for the sake of clarity, indicate with FL). We give the action 
of IR+ functors on morphisms only.

The action on morphisms is given as follows. Let (h,k)  : (X,  P)  -► (Y, Q) be a 
morphism in F a m  C .  We define [ 7 K / 1 ,  k ): [ 7 j ( X ,  P ) I 7 I C K ,  Q) by recursion on 7 :

[tcj(/i, k) = (idi,idc)
l v A f l ( h , k )  = [ina o l f a l ( h , k ) ] a :A

l6AF}(h,k)  = [\nhogo l F( Qohog) ] ( h , k )  o {F^(g* (k))}(x,P)]g:A^x

In the last clause, g*(k) ■ Pog  — > Qohogis  the natural transformation with component 
g*(k)a = kga : P(ga)  -> Q(k(ga)).

We now explain how a IR+ morphism p : 7  -> 7 ' is interpreted as natural transfor
mation |[pj: [7 J —> [7 '] between IR+ functors by specifying the component |p](x,p) at 
(X , P ) : Fam C .  Naturality of these transformations can be proved by a routine diagram 
chase.

tt'd7l(X,P) = id|l7l(*,.P)

ttrt,t( / ) l (x ,p )  = 0 di> / )

[ r t)Cr(a,p)l(X,P) = ina° lpl(X,P)
[rt-,<j(p)P)l(X,P) = in!x°5 0 H ( X ' .P )  

ttr* <7-,-Y (p)I (JV,P) = [ |p (a)l(x,p)]a:^i 

[r 5,7 (p)l(X,P) = [ l P( Po h) } ( X, P) ] h : A- +X  

P V (& ,p )](x ,P )  = in^o [ l p ( P o g ) } ( X , P ) ] g : A ^ X

P W . p ) ] ( * , p )  = [irV /  0 lP(P°g)l(x,p)]g--A->x □

Formally, we are applying the elimination principle to the motive

P ( 7 )  =  F a m C  - >  F a m C  

Q( 7 , 7 ,  P ,  7 , 1 ') =  ( X  : F a m  C )  -  y ( X)  -  Y ( X )

Note how it is once again crucial that Q can depend on 7  and 7 ', since we need to define 
functors mutually with natural transformations between them.

Example 7.17 (A universe closed under dependent sums in Fam Setop) In Example 7.13, 
we defined an ordinary IR code tn,s : IR(Set) for a universe closed under E-types. We 
can extend this code to an IR+ code

7 N,S = iN  +,R 61 (X ~  8x*(Y  ~  *E(X*) Y ) ) : IR+(Setop)

where now G := Y  t Y , {X*) Y  and F := X  ^  SX *G needs to be functors. Given 
/  : Y  -> Y'  in X  -> Setop, i.e. f x : Y(x)  -> Y'{x)  in Setop, we have Err : (X*) . f x : 
E(X*) Y  -+ l E(X*) Y '  in Setop so that we can define

G( f )  : lE ( X * ) Y  ^  iY , (X*)Y '
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7.2. Positive inductive-recursive definitions

b y G ( / )  = r lft(Ea;:(X*)./«).
We also need F  to be a functor. Given /  : X  -> X ' in 1 -»• Setop, we need to define 

F ( f ) : 8x(*) G £*-'(*) According to Definition 7.15, such a morphism consists of 
a map g : X '(* ) -> X (*) and a natural transformation p from G to G{-  o g). We can 
choose g = /* : A '(* ) -► X (*) and p = Notice that working in Setop made
sure that /* was going in the right direction. ■

Example 7.18 (A universe closed under dependent function spaces in F a m  Set") In 
Example 7.14, we saw how we could use induction-recursion to define a universe closed 
under Il-types in F a m  |Set|, using the following code:

7N , n  = tN  +|R 6x{X  ~  8X *(Y ~  tII(X *) Y) )  : IR(Set)

If we try to extend this to an IR+ code in Fam Set or Fam Setop, we run into problems. 
Basically, given a morphism /  : X '  -»• X,  we need to construct a morphism I IX '  ( Y  of )  -> 
I I X Y ,  which of course is impossible if e.g. X '  = 0, X  = 1 , and Y  * = 0.

Hence the inherent contravariance in the II-type means that t ^ j i  does not extend 
to a IR+(Set) or IR+(Setop) code. However, if we move to the groupoid Set", which is 
the subcategory of Set with only isomorphisms as morphisms, we do get an IR+(Set") 
code describing the universe in question, which is still living in a category beyond the 
strict category F a m  |Set|. ■

7.2.3 Com parison to plain  IR

We now investigate the relationship between IR+ and IR. Note that every type D  can be 
regarded as a discrete category, which we by abuse of notation denote \D\. In the other 
direction, every category C gives rise to a type |C| whose elements are the objects of C.

Proposition 7.19 There is a function tp : IR(-D) -»• IR+(|D|) s.t.

l 7 l l R ( D )  =  I M 7 ) ! l R + ( | £ > D

Proof The only interesting case is the 8 code. Since \D\ is a discrete category, also 
A \D\ is discrete. Hence a m apping on objects (A  -»• |D|) -> IR(D) can trivially be 
extended to a functor (A  -»• |Z)|) -* IR+(|D|). □

This proposition shows that the theory of IR can be embedded in the theory of IR+. 
In the next proposition we slightly sharpen this result. We use the functoriality of the 
Fam construction (Remark 7.12) to show that forgetting about the extra structure in IR+ 
simply gets us back to plain IR.

Proposition 7.20 Let | -  | : Cat -»• Set be the functor assigning to each category the 
collection of its objects. There is a function tf; : IR+C -> IR |C| such that

F a m  | -  | o [7 ] |R+c = [ ^ ( 7 )1ir|C| 0 F a m  | -  | 

for all 7  : IR+C. Furthermore, ^  o <p = id. □
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7.2.4 Existence o f in itial algebras

We now generalise Dybjer and Setzer's model construction from 6.I.3.I. Inspecting the 
proof, we see that it indeed is possible to adapt it also for the more general setting of 
positive inductive-recursive definitions by making the appropriate adjustments.

We call a morphism (h, k ) : (17, T ) -»■ (17, T ')  in Fam C a splitting morphism if k = idp, 
i.e. T'oh  = T, since these are the chosen morphisms in the split subfibration tt : Fam |C| -> 
Set. In other words, we write Fam |C| for the category with the same objects as Fam C, 
but with splitting morphisms only.

Inspecting the proofs in Section 6.1.3.1, we see that they crucially depend on mor
phisms being splitting in several places. Luckily, the morphisms involved in the cor
responding proofs for IR+ actually are! We show that the initial chain of a IR+ functor 
actually lives in Fam |C|, which will allow us to modify Dybjer and Setzer's proof ac
cordingly.

Lemma 7.21 For every code 7  : IR+ C the induced functor [7 ] :  Fam C ->■ Fam C preserves 
splitting morphisms, i.e. if ( /, g) is splitting, then so is [7 ] ( /,  g).

Proof. By induction on the structure of the code. The interesting case is 7  = 6AF. Let 
(h, id) : (X , (y, P)  be a splitting morphism. We have

[<^F](h,id) = [\nhogo lF(Pohog) j (h , \d)  o [F_(p*(id))](XtP)]9: ^ x

= [inhog o {F(P o h o g)l(h,\d)]g:A-+x

where |F(^*id)]](XiP) = id since both g*, F and [_] are functors. By the induction 
hypothesis, each |F ( P  oho  g)l(h,  id) is splitting. Furthermore injections are splitting 
in Fam C. Since composition of splitting morphisms is still splitting and the cotuple 
of splitting morphisms is also splitting in FamC we conclude that {6a F](/i, id) is a 
splitting morphism. □

Lemma 7.22 For each 7  : IR+ C, the initial chain

0 ^  M ( 0 ) ^ [ 7 l 2( 0 ) - . . .

consists of splitting morphisms only.

Proof Recall that the connecting morphisms '■ l7 p ( 0 ) -> |7 j fc(0 ) are uniquely 
determined as follows:

• wo,i = ![7j(0) is unique.

• ĵ+i.fc+i is [7l(^,/c) : [7l([7F(0)) -»• tt7l([7lfc(0)).

• cujjt is the colimit cocone for j  a limit ordinal.

We prove the statement by induction on j. It is certainly true that ![7j(o) : (0 ,!) -> [7 ! (0 ) 
is an identity at each component -  there are none. Thus cuo,i is a splitting morphism. 
At successor stages, we can directly apply Lemma 7.21 and the induction hypothesis.
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Finally, at limit stages, we use the fact that the colimit lives in Fam |C| and hence coincides 
with the colimit in that category on splitting morphisms, so that the colimit cocone is 
splitting. □

Inspecting Dybjer and Setzer's original proof, we see that it now goes through also 
for IR+ if we insert appeals to Lemma 7.22 where necessary. To finish the proof, we also 
need to ensure that Fam C has /t-filtered colimits; this is automatically true if C has all 
small connected colimits (compare Remark 7.12), since Fam C then is cocomplete. Note 
that discrete categories have all small connected colimits for trivial reasons.

Theorem 7.23 Assume that a Mahlo cardinal exists in the meta-theory. If C has con
nected colimits, then every functor [7 ] for 7  : IR+ C has an initial algebra. □

7.2.5 C onclusion

We have introduced the theory IR+ of positive inductive-recursive definitions as a 
generalisation of inductive-recursive definitions IR. Crucial for the definition of IR+, 
where codes and morphisms between codes are defined simultaneously, is having 
access to inductive-inductive definitions in the metatheory. We saw further examples 
of this w hen we defined the semantics of IR+, where the general elimination rules 
of inductive-inductive definitions were needed to simultaneously interpret codes as 
functors and morphisms between codes as natural transformations. The theory IR+, with 
IR as a subtheory, hints at the possibility of a more sophisticated analysis of inductive- 
recursive data types, where not only a type U and a decoding function T  :U -> D are 
introduced, but also the intrinsic structure between objects in the target type D is taken 
into account. Such structure exists for example when D is a setoid, the category Set or 
Setop, a groupoid or, in general, an arbitrary category C.
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In this final chapter, we summarise the content of the thesis and discuss future work.

8.1 Summary and discussion

This thesis claims that

Advanced forms of inductive definitions are important both for programming and 
proving in Martin-LdfType Theory.

In support of this claim, we have studied the class of inductive-inductive definitions, 
mostly from a theoretical perspective, but also by concretely exploring problems where 
such definitions play a crucial r61e. In more detail, we have:

• Given a finite axiomatisation of inductive-inductive definitions, which generalises 
axiomatisations of ordinary inductive definitions and indexed inductive defini
tions. We argue that this is a natural way to extend a base type theory w ith a 
universe of data types.

• Shown how inductive-inductive definitions can be characterised categorically 
as initial objects in a certain category of dialgebras. This shows that inductive- 
inductive definitions have an interesting, mathematically well-behaved structure. 
This is im portant for establishing meta-theoretical properties of the system of 
data types.

• Modelled inductive-inductive definitions in a straightforward way in set theory. 
The model is proof-theoretically wasteful, but conceptually fitting, as it shows
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that a "naive" mental understanding of inductive-inductive definitions (types are 
sets, terms of function type are set-theoretical functions,...) is possible.

• Translated a version of inductive-inductive definitions with restricted elimination 
rules into the theory of indexed inductive definitions. This shows that the proof- 
theoretical strength of this version of inductive-inductive definitions coincides 
w ith the strength of indexed inductive definitions, while the general theory has 
the same strength as indexed inductive definitions w ith "recursive-recursive" 
elimination rules.

• Investigated various extensions of inductive-inductive definitions, such as the 
definition of generalised families A : Set and B  : F(A)  -*■ Set, higher towers of 
inductive-inductive definitions

A : Set B  : A -> Set C  : (x : A) -* B { x ) -*■ Set

and a proof-theoretically strong combination of inductive-inductive and inductive- 
recursive definitions. This shows that the theory is adaptable, and also able to 
accommodate to the forms of inductive-inductive definitions that actually occur 
in the literature.

• Finally, we explored two larger case studies where inductive-inductive definitions 
were used to develop actual mathematics, supporting the thesis that advanced 
data types can be very helpful for mathematics in a type-theoretical setting.

8.2 Further work
Let discuss some interesting topics for further research:

Internal fixed points Our axiomatisation only allows direct inductive arguments, i.e. 
arguments of the form K  -+ A, and not of the form K  -> List(^4). Following Morris et al. 
[2009], we could hope to support the latter by adding internal fixed points to our theory. 
Morris et al. do this for indexed inductive definitions; it is unclear how easy it would 
be to extend their system to cover also inductive-inductive definitions. For the case 
of such nested definitions in the proof assistant Minlog (working with simple types 
and ordinary first order logic), see Miyamoto, Nordvall Forsberg, and Schwichtenberg 
[2013].

Coinductive-coinductive definitions In this thesis, we have focused exclusively on 
inductive definitions, initial algebras and least fixed points. It is natural to ask how 
much of the current work carries over to coinductive definitions, terminal algebras and 
greatest fixed points. Is there a theory of coinductive-coinductive definitions? What 
about letting the index set A be inductive, but the family B : A -> Set coinductive or 
vice versa, leading to inductive-coinductive or coinductive-inductive definitions? Are 
such theories useful? It seems easier to make sense of these questions compared to
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the corresponding questions for inductive-recursive definition, where there is a tighter 
interplay between the definition of the two components. Recently Capretta [2013] has 
made progress in this direction for small inductive-recursive definitions.

An abstract framework Is there a uniform framework which allows general combi
nations of inductive-inductive and inductive-recursive definitions? Our recent work 
on fibrational presentations of inductive-recursive definitions [Ghani, Malatesta, Nord- 
vall Forsberg, and Setzer, 2013b] seems to be a promising starting point. This might 
make it possible to e.g. allow also a second recursively defined function

T ' : (x : A) B(x)  -* T(x)  D , 

while at the same time reduce the syntactical complexity of the theory.

Implementations It would be interesting to see what it would take to actually imple
ment the theories presented in this thesis, especially the extensions from Chapter 6 . I 
conjecture that the axiomatisation in Chapter 3 would be relatively simple to implement 
-  all that is needed is the addition of some constants and some reductions to a standard 
implementation of Type Theory. One would probably end up with something similar 
to the implementation of data types in Epigram 2 [Chapman et al., 2010]. It remains to 
be seen if it is possible to make the codes for inductive-inductive definitions levitate as 
well.

Going beyond inductive-inductive and inductive-recursive definitions Finally, in 
the proof-theoretical landscape, inductive-inductive, and even inductive-recursive def
initions are quite tame. Anton Setzer has invented several universes that go beyond 
inductive-recursive definitions [Setzer, 2008; Kahle and Setzer, 2010], but are still consis
tent and (arguably) constructively justified. Is there a theory of data types that contain 
these wilder examples?
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A p p e n d ix

Agda formalisations

This appendix contains examples of inductive-inductive data types in Agda, as well as 
Agda formalisations of the axiomatisations of inductive-inductive definitions (from Sec
tion 3.2.3), inductive-recursive definitions (from Section 3.2.2) and inductive-inductive- 
recursive definitions (from Section 6.1).

All code type check with Agda 2.3.2.2 and the standard library version 0.7.

A.l Examples
We give Agda implementations of some inductive-inductive definitions considered in 
this thesis.

A.1.1 Contexts and types and terms

The contexts and types and terms from Examples 3.1 and 6.1.

module contexts-types-terms where

mutual
data Ctxt : Set where 
e : Ctxt

: (r : Ctxt) -> Ty T -> Ctxt

data Ty : Ctxt -> Set where
(r Ctxt) -> Ty T

‘Set cr Ctxt) -> Ty T
El cr Ctxt) -> Tm T (‘Set n -> Ty T
Pi (r Ctxt) -> (A : Ty D -> Ty (r :: A) -> Ty T
Wk (r Ctxt) -> (A : Ty D -> Ty T -> Ty (T :: A)

data Tm : (r : Ctxt) -> Ty T -> Set where
top : (r : Ctxt) -> (A : Ty D  -> Tm (r : : A) (Wk T A A)
wk : ( r  : Ctxt) -> (A : Ty D  -> (B : Ty D  -> Tm T B

175



A. Agda formalisations

-> Tm (r : : A) (Wk T A B) 
lam : (r : Ctxt) -> (A : Ty D  -> (B : Ty O ’ :: A)) -> Tm (r : : A) B

-> Tm r (Pi T A B)

A.1.2 Sorted lists

Sorted lists from Example 3.2, together with the insert function from Section 3.2.5.I. 

module sortedList where

open import Data.Nat
open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Data.Unit using (T)

—  Introduction rules

mutual
data SList : Set where 

[] : SList
: (x : N) -> (ys : SList) -> x <L ys -» SList

data _<L_ : (n : N) -> SList -> Set where
triv : {n : N} -> n <L []
cons : {m : N} -> {n : N} -> {ys : SList} -> {p : n <L ys} ->

(m < n) -> m <L ys -> m <L (n : : ys ( p)

—  An example sorted list

private 
ex : SList
ex = 0 : : 1 : : 2 : : 3 : : [] ( triv

( cons (s<s (s<s z<n)) triv 
( cons (s<s z<n) (cons (s<s z<n) triv) 
( cons z<n (cons z<n (cons z<n triv))

—  Elimination rules

mutual
elimSList : (P : SList -> Set)

(Q : (n : N)  -> (ys : SList) -> n <L ys -> P ys -> Set) ->
(step [] : P [])
(step:: : (n : N) -> (ys : SList) -> (p : n <L ys) ->
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(pp : P ys) -> Q n ys p pp -> P (n :: ys ( p)) ->
(steptriv : (n : N) -> Q n [] triv step[])
(stepcons : (m : N) -> {n : N> -> {ys : SList} ->

{p : n <L ys} -> (m<n : m < n) -> (p* : m <L ys) ->
(pp : P ys) -> (qq : Q n ys p pp) ->
(qqq : Q m ys p} pp)
-> Q m (n :: ys ( p) (cons m<n p’)

(step:: n ys p pp qq))
(ys : SList) -> P ys 

elimSList P Q step[] step:: steptriv stepcons [] = step[]
elimSList P Q step[] step:: steptriv stepcons (n :: ys ( p)

= step:: n ys p (elimSList P Q step[] step:: steptriv stepcons ys)
(elim< P Q step[] step:: steptriv stepcons n ys p)

elim< : (P : SList -> Set)
(Q : (n : N) -> (ys : SList) -> n <L ys -> P ys -> Set) ->
(step [] : P [])
(step:: : (n : N) -> (ys : SList) -> (p : n <L ys) ->

(pp : P ys) -> Q n ys p pp -> P (n :: ys ( p)) ->
(steptriv : (n : N) -> Q n [] triv step[])
(stepcons : (m : N) -> {n : N} -> {ys : SList} ->

{p : n <L ys} -> (m<n : m < n) -> (p’ : m <L ys) ->
(pp : P ys) -> (qq : Q n ys p pp) ->
(qqq : Q m ys p’ pp)
-> Q m (n :: ys ( p) (cons m<n p’)

(step:: n ys p pp qq))
(n : N) -> (ys : SList) -> (p : n <L ys)
-> Q n ys p (elimSList P Q step[] step:: steptriv stepcons ys) 

elim< P Q step[] step:: steptriv stepcons m [] triv = steptriv m 
elim< P Q step[] step:: steptriv stepcons m (n :: ys ( p) (cons q p’)
= stepcons m q p’ (elimSList P Q step[] step:: steptriv stepcons ys) 

(elim< P Q step[] step:: steptriv stepcons n ys p) 
(elim< P Q step[] step:: steptriv stepcons m ys p’)

—  Some lemmas about < and <L

trans-< : V {k m n} -> k < m -> m < n -> k < n 
trans-< = IsDecTotalOrder.trans

(DecTotalOrder.isDecTotalOrder Data.Nat.decTotalOrder)

<L-trans : V {x y} -> (zs : SList) -> x < y -> y <L zs -> x <L zs
<L-trans [] x<y all = triv
<L-trans (y’ :: ys ( p) x<y (cons y<y’ y<ys)
= cons (trans-< x<y y<y*) (<L-trans ys x<y y<ys)

-nx<y^y<x : {x y : N} -> (x < y -> l) -> y < x
-.x<y->y<x {zero} p = l-elim (p z<n)
->x<y-̂ y<x {y = zero} p = z<n
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-oc<y-»-y<x {sue n> {sue m> p = s<s (->x<y-»-y<x (X x -*• p (s<s x)))

—  Insert (defined using pattern matching for simplicity)

mutual
insert : (m : N) -> SList -> SList 
insert m [] = m : : [] ( triv 
insert m (n :: ys ( p) with m <? n
... I yes q = m : : (n : : ys ( p) ( (cons q (<L-trans ys q p))
... I no -iq = n :: (insert m ys) ( lemma (->x<y-*y<x -.q) p

lemma : V {x y ys} -> y < x -> y <L ys -> y <L (insert x ys) 
lemma {ys = []} y<x y<ys = cons y<x y<ys
lemma {x} {y} {y* :: ys ( p} y<x (cons y < y ’ y<ys) with x <? y’ 
... I yes q = cons y<x (cons y < y ’ y<ys)
... I no -»q = cons y<y’ (lemma {x} {y} {ys} y<x y<ys)

—  We can also forget that a sorted list is sorted

open import Data.List

forget : SList -> List N 
forget [] = []
forget (x :: ys ( y) = x :: (forget ys)

Insertion sort

We can use in s e r t  to define in s e r ts o r t ,  and then define a data type of list permuta
tions as alluded to in the introduction and prove in s e r t s o r t  correct:

open import Data.Product
open import Relation.Binary.PropositionalEquality 
renaming (trans to trans-E; sym to sym-=) 

open import Data.List.Any hiding (tail) 
open Membership-=

—  Permutations of lists

data Permutation {A : Set} : List A -> List A -> Set where 
refl : {ys : List A} -> Permutation ys ys 
head : {x y : A}{xs ys : List A} -> Permutation xs ys

-> Permutation (x :: y :: xs) (y :: x :: ys) 
tail : {x : A}{xs ys : List A} -> Permutation xs ys

-> Permutation (x :: xs) (x :: ys)
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trans : {xs ys zs : List A} -> Permutation xs ys -> Permutation ys zs
-> Permutation xs zs

—  Permutations are equivalence relations
sym : {A : Set} -> {xs ys : List A} -> Permutation xs ys -> Permutation ys xs
sym refl = refl
sym (head p) = head (sym p)
sym (tail p) = tail (sym p)
sym (trans p q) = trans (sym q) (sym p)

perm-setoid : {A : Set} -> Setoid _ _ 
perm-setoid {A} = record { Carrier = List A;

= Permutation; 
isEquivalence = record { refl = refl;

sym = sym; 
trans = trans } }

—  Sanity check: the definition makes sense

perm-correct : {A : Set}{xs ys : List A} -> Permutation xs ys -> xs c ys 
perm-correct refl q = q
perm-correct (head p) (here px) = there (here px) 
perm-correct (head p) (there (here px)) = here px
perm-correct (head p) (there (there r)) = there (there (perm-correct p r)) 
perm-correct (tail p) (here px) = here px 
perm-correct (tail p) (there r) = there (perm-correct p r) 
perm-correct (trans p q) r = perm-correct q (perm-correct p r)

lemma-perm-length : {A : Set}{xs ys : List A} -> Permutation xs ys
-> length xs = length ys

lemma-perm-length refl = refl
lemma-perm-length (head p) rewrite lemma-perm-length p = refl 
lemma-perm-length (tail p) rewrite lemma-perm-length p = refl 
lemma-perm-length (trans p q) rewrite lemma-perm-length p

| lemma-perm-length q = refl

—  Permutations of an ordinary and a sorted list 
Permutation’ : List N -> SList -> Set 
Permutation’ xs ys = Permutation xs (forget ys)

—  Peano’s fourth axiom, needed below to rule out the possibility of a
—  permutation between an empty and a non-empty list (not obvious because
—  of trans)
Peano-four : {n : N} -> zero = sue n -> l
Peano-four q = subst (X { zero -> N ; (sue n) -> ±}) q 0
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—  Inserting an element preserves permutations

lemma-insert : V fx} xs ys -> Permutation’ xs ys
-> Permutation’ (x :: xs) (insert x ys) 

lemma-insert [] [] p = refl
lemma-insert [] (y :: ys ( p) q = l-elim (Peano-four (lemma-perm-length q)) 
lemma-insert (x :: xs) [] q = l-elim (Peano-four (sym-= (lemma-perm-length q))) 
lemma-insert {z} (x :: xs) (y :: ys ( p) w with z <? y 
... I yes _ = tail w 
... I no _ = begin

z :: x :: xs 
«( tail w )
z :: y :: forget ys 

«( head refl )
y :: z :: forget ys 

»( tail (lemma-insert (forget ys) ys refl) ) 
y : : forget (insert z ys)

■
where open import Relation.Binary.EqReasoning (perm-setoid {N})

—  Insertion sort, with correctness proof

insertsort : (xs : List N) -> £[ ys e SList ] Permutation’ xs ys 
insertsort [] = [] , refl
insertsort (x :: xs) = insert x (projj (insertsort xs)) ,

lemma-insert xs _ (proj2 (insertsort xs))

A.1.3 D ense com pletion o f an ordered set

The dense completion of an ordered set from Example 3.3.

module dense (S : Set) (_<_ : S -> S -> Set) where

open import Data.Product

mutual
data S* : Set where 
77 : S -> S*
mid : (s t : S*) -> s <* t -> S*

data _<*_ : S* -> S* -> Set where
r)< : {s t : S} -> s < t -> 77 s <* 77 t
midi : {s t : S*> -> (p : s <* t) -> mid s t p <* t
midr : {s t : S*> -> (p : s <* t) -> s <* mid s t p

module universal-property
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(S’ : S e t ) : S’ -> S’ -> Set)
(<’-dense : { x y  : S’} -> x <’ y -> E [  z e S’ ] x <’ z  x z  <’ y)
(f : S -> S’)(f< : {x y : S> -> x < y -> f x <’ f y) where

mutual
h : S* -> S’
h (77 s) = f s
h (mid s t  p) = proji (<’-dense {h s} {h t} (h< p))

h< : {s t  : S*} -> s <* t -> h s <’ h t
h< (?]< p) = f< p
h< (midr {x> {y> p) = proji (proj2 (<’-dense (h< p)))
h< (midi p) = proj'2 (proj2 (<’-dense (h< p)))

A.2 Axiomatisations
We give Agda implementations of the axiomatisations of inductive-inductive, inductive- 
recursive and inductive-inductive-recursive definitions respectively, together with some 
example codes.

We will use the following options:

{-# OPTIONS —without-K #-}
{-# OPTIONS —no-positivity-check #-}
{-# OPTIONS —sized-types #-}

We use —without-K to show that we can, and hence that we should be compatible 
with homotopy Type Theory. The option —no-p ositiv ity -ch eck  is needed since 
Agda is not clever enough to see that ArgA and ArgB only use their arguments in 
strictly positive position. We use sized types (i.e. —sized-types) to convince Agda 
that repAbar below is terminating. At some points, we will also turn off the termination 
checker, since Agda cannot see that recursive calls are only done at smaller arguments.

A.2.1 Prelude

We start by introducing some basic definitions. Most of these can be found in the 
standard library 0.7, sometimes with less preferable names chosen, sometimes without 
universe polymorphism. For these reasons, we prefer to define our own versions.

open import Function
open import Relation.Binary.PropositionalEquality hiding ([_]) 
open Relation.Binary.PropositionalEquality.E-Reasoning 
open import Data.Product
open import Level renaming (zero to zeroL ; sue to sucL) 
open import Size

record T {a : Level} : Set a where 

data _+_ (A B : Set) : Set where
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ini : A -> A + B
inr : B -> A + B

infixr 40 _+_

: V {a} -► {A B : SetHC : A + B -> Set a} ->
((a : A) -> C (ini a)) ->
((b : B) -> C (inr b))
-> (c : (A + B)) -> C c

[ f , g ] (ini a) = f a
[ f , g ] (inr b) = g b

data 1 : Set where

l-elim : V {a} -*■ {A : 1 -> Set a} -> (x : l) -> A x 
l-elim ()

data N2 : Set where 
tt : N2 
ff : N2

J : {a b : LevelMA : Set a} -> (P : (x y : A) -> x = y -> Set b) ->
(x : A) -> P x x refl -> (y : A) -> (p : x = y) -> P x y p

J P x px .x refl = px

cong2’ : {a b c : Level} {A : Set a} {B : A -> Set b} {C : Set c}
(f : (x : A) -*■ B x -* C) {x y : A} {u : B x}{v : B y} ->
(p : x = y) -> subst B p u  = v - * f x u  = f y v

cong2’ f refl refl = refl

A.2.2 Inductive-inductive definitions

module indind where

data SPA (Xref : Set) : Setl where 
nilA : SPA Xref
nonind : (K : Set) -> (y : K -> SPA Xref) -> SPA Xref
A-ind : (K : Set) -> (y : SPA (Xref + K)) -> SPA Xref
B-ind : (K : Set) -> (h : K -> Xref) -> (y : SPA Xref) -> SPA Xref

SPA’ : Setl 
SPA’ = SPA 1

ArgA : (Xref : Set) ->
(yA : SPA Xref) ->
(X : Set)(Y : X -> Set) ->
(repX : Xref -> X) -> Set
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ArgA Xref nilA X Y repX = T
ArgA Xref (nonind K y) X Y repX = £[ e e K ] ArgA Xref (y e) X Y repX 
ArgA Xref (A-ind K y) X Y repX

= £[ j € (K -> X) ] ArgA (Xref + K) y X Y [ repX , j ]
ArgA Xref (B-ind K h y) X Y repX

= E[ j € ((e : K) -> Y (repX (he))) ] ArgA Xref y X Y repX

ArgA’ : (yA : SPA’) -> (X : Set) -> (Y : X -> Set) -> Set
ArgA’ yA X Y = ArgA 1 yA X Y l-elim

—  morphism paxt of the functor ArgA 
ArgAfun : {Xref : Set} ->

(y : SPA Xref) ->
{X : SetMY : X -> Set}
{repX : Xref -> X} ->
{X* : Set}{Y* : X* -> Set} ->
{repX* : Xref -> X*} ->
(g : X -> X*)(g’ : (a : X) -> Y a -> Y* (g a)) ->
(p : (e : Xref) -> Y* (g (repX e)) -> Y* (repX* e)) ->
ArgA Xref y X Y repX -> ArgA Xref y X* Y* repX*

ArgAfun nilA g g’ p _ = _
ArgAfun (nonind K y) g g’ p (k , y)
= (k , ArgAfun (y k) g g’ p y)

ArgAfun (A-ind K y) g g’ p (j , y)
= (g o j , ArgAfun y g g’ ([ p , (X k -> id) ]) y)

ArgAfun (B-ind K h y) {repX = repX} g g’ p (j , y)
= ((X k -> p (h k) (g’ (repX (h k)) (j k))) , ArgAfun y g g’ p y)

ArgAfun’ : (yA : SPA’) ->
{X : SetHY : X -> Set} ->
{X* : SetHY* : X* -> Set} ->
(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) -> 
ArgA’ yA X Y -> ArgA’ yA X* Y*

ArgAfun’ yA f g = ArgAfun yA f g l-elim

mutual
data Aterm (y : SPA’ ) (Xref : Set) (Yref : Set) : {i : Size} -> Set where
aref V {i} -> Xref -> Aterm y Xref Yref {f i}
bref V {i} -> Yref -> Aterm y Xref Yref {f i}
arg V {i} -> ArgA’ y (Aterm y Xref Yref {i})

(Bterm y {Xref} {Yref})
-> Aterm y Xref Yref {f i}
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Bterm : V {i} -> (y : SPA’) -> {Xref Yref : Set} ->
Aterm y Xref Yref {i} -> Set

Bterm y (aref y) = 1
Bterm y (bref y) = T
Bterm y (arg y) = 1

mutual
repAbar : V {i} -> (y : SPA’) ->

{Xref : Set} -> {Yref : Set} ->
{X : Set} -> {Y : X -> Set} ->
(introA : ArgA’ y X Y -> X) ->
(repX : Xref -> X) ->
(repindex : Yref -> X) ->
(repY : (b : Yref) -> Y (repindex b)) ->
Aterm y Xref Yref {i} -> X 

repAbar y introA repX repindex repY (aref y) = repX y
repAbar y introA repX repindex repY (bref y) = repindex y
repAbar y introA repX repindex repY (arg {i} y)

= introA 
(ArgAfun’ y
(repAbar {i} y introA repX repindex repY)
(repBbar y introA repX repindex repY)
y)

repBbar : V {i} -> (y : SPA’) ->
{Xref : Set} -> {Yref : Set} ->
{X : Set} -> {Y : X -> Set} ->
(introA : ArgA’ y X Y -> X) ->
(repX : Xref -> X) ->
(repindex : Yref -> X) ->
(repY : (b : Yref) -> Y (repindex b)) ->
(t : Aterm y Xref Yref {i})

-> Bterm y t -> Y (repAbar y introA repX repindex repY t)
repBbar y introA repX repindex repY (aref a) = l-elim
repBbar y introA repX repindex repY (bref b) = X _ -> repY b
repBbar y introA repX repindex repY (arg y) = l-elim

data SPB (Xref : Set)(Yref : Set)(yA : SPA’) : Setl where 
nilB : Aterm yA Xref Yref -> SPB Xref Yref yA
nonind : (K : Set) -> (y : K -> SPB Xref Yref yA) -> SPB Xref Yref yA 
A-ind : (K : Set) -> (y : SPB (Xref + K) Yref yA) -> SPB Xref Yref yA
B-ind : (K : Set) -> (h : (k : K) -> Aterm yA Xref Yref) ->

(y : SPB Xref (Yref + K) yA) -> SPB Xref Yref yA

SPB’ : (yA : SPA’) -> Setl
SPB’ = SPB 1 1

ArgB : (yA : SPA’) ->
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(Xref : Set)(Yref : Set) ->
(yB : SPB Xref Yref yA) ->
(X : Set)(Y : X -> Set)(inA : ArgA’ yA X Y -> X)
(repX : Xref -> X) ->
(repindex : Yref -> X) ->
(repY : (x : Yref) -> Y (repindex x))
-> Set

ArgB yA Xref Yref (nilB a) X Y inA repX repindex repY = T 
ArgB yA Xref Yref (nonind K y) X Y inA repX repindex repY
= S[ e € K ] ArgB yA Xref Yref (ye) X Y inA repX repindex repY 

ArgB yA Xref Yref (A-ind K y) X Y inA repX repindex repY 
= S[ j € (K -> X) ]

ArgB yA (Xref + K) Yref y X Y inA [ repX , j ] repindex repY 
ArgB yA Xref Yref (B-ind K h y) X Y inA repX repindex repY
= £[ j € ((e : K) -> Y (repAbar yA inA repX repindex repY (h e))) ]

ArgB yA Xref (Yref + K) y X Y inA repX
[ repindex , ((repAbar yA inA repX repindex repY) oh)] 
[ repY , j ]

ArgB’ : (yA : SPA’) ->
(yB : SPB’ yA) ->
(X : Set)(Y : X -> Set)(inA : ArgA’ yA X Y -> X) -> Set

ArgB’ yA yB X Y inA = ArgB yA 1 1 yB X Y inA l-elim l-elim l-elim

Index : {yA : SPA’} ->
{Xref : SetHYref : Set} ->
(yB : SPB Xref Yref yA) ->
{X : SetHY : X -> SetMinA : ArgA’ yA X Y -> X} ->
{repX : Xref -> X} ->
{repindex : Yref -> X} ->
{repY : (x : Yref) -> Y (repindex x)} ->
ArgB yA Xref Yref yB X Y inA repX repindex repY -> X

Index {yA = yA} (nilB a) {inA = inA} {repX} {repindex} {repY} _ 
= repAbar yA inA repX repindex repY a 

Index (nonind K y)(k , y) = Index (y k) y
Index (A-ind K y) (j , y) = Index y y
Index (B-ind K h y) (j , y) = Index y y

—  Introduction rules

mutual

data A (yA : SPA’HyB : SPB’ yA) : Set where
introA : ArgA’ yA (A yA yB) (B yA yB) -> (A yA yB)

data B (yA : SPA’HyB : SPB’ yA) : (A yA yB) -> Set where
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introB : (b : ArgB’ yA yB (A yA yB) (B yA yB) introA)
-> (B yA yB) (Index yB b)

A.2.2.1 Examples

module examples-indind where

open indind

—  Encoding multiple constructors into one
_++_ : {Aref : Set} -> SPA Aref -> SPA Aref -> SPA Aref
y ++ -0 = nonind N2 (X { tt -> y ; ff -► 0  })

_+++_ : {Aref Bref : SetMyA : SPA’} ->
SPB Aref Bref yA -> SPB Aref Bref yA -> SPB Aref Bref yA

y +++ 0 = nonind N2 (X { tt ->■ y ; ff -> 0 })

infixr 40 _++_
infixr 40 _+++_

—  Single inductive arguments
A-indl : {Aref : Set} -> SPA (Aref + T) -> SPA Aref
A-indl y = A-ind T y

A-indBl : {yA : SPA’MAref Bref : Set} -> SPB (Aref + T) Bref yA 
-> SPB Aref Bref yA 

A-indBl y = A-ind T y

B-indl : {Aref : Set} -> Aref -> SPA Aref -> SPA Aref 
B-indl i y = B-ind T (X _ -*■ i) y

B-indBl : {yA : SPA’MAref Bref : Set} -> Aterm yA Aref Bref 
-> SPB Aref (Bref + T) yA -> SPB Aref Bref yA

B-indBl i y = B-ind T (X _ -»■ i) y

—  Non-dependent non-inductive arguments
nonind’ : {Aref : Set} -> (K : Set) -> (y : SPA Aref) -> SPA Aref
nonind’ K y = nonind K (X _ -»■ y)

nonindB’ : V {Aref Bref yA} -> (K : Set) -> (y : SPB Aref Bref yA)
-> SPB Aref Bref yA 

nonindB’ K y = nonind K (X _ y)

—  Examples

------------------- Ctxt and Types
yCtxt : SPA’
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yCtxt = nilA ++ A-indl (B-indl (inr _) nilA) 

yTy : SPB’ yCtxt
yTy = A-indBl (nilB (aref (inr _)))

+++ A-indBl
(B-indBl (aref (inr _))

(B-indBl
(arg (ff , ((X _ —*■ bref (inr _)) , ((X _ -> _) , _)))) 
(nilB (aref (inr _)))))

Ctxt : Set
Ctxt = A yCtxt yTy

Ty : Ctxt -> Set 
Ty = B yCtxt yTy

e : Ctxt
e = introA (tt , _)

cons : (r : Ctxt) -> Ty T -> Ctxt
cons T a = introA ((ff , (X _ -*■ D  , (X _ -»• cr) , _))

\  : {r : Ctxt} -> Ty T
i- {r> = introB (tt , ((X _ -*■ D  , _))

II : (r : Ctxt) -> (A : Ty D  -> (B : Ty (cons T A)) -> Ty T
n r A B = introB (ff , ((X _ D  , ((X _ A) , ((X _ B) ,_))))

------------------- Natural numbers--------------
yNat : SPA’
yNat = nilA ++ A-ind T nilA 

yDummy : SPB’ yNat
yDummy = A-indBl (nilB (aref (inr _)))

N : Set
N = A yNat yDummy 

zero : N
zero = introA (tt , _) 

sue : N -> N
sue n = introA (ff , ((X _ n) , _))

------------------- Finite sets-------------------

yN’ : SPA’
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yN’ = nonind N (X n -* nilA) 

yFin : SPB’ yN’
yFin = nonind N (X n -> nilB (arg (sue n , _)))

+++ nonind N (X n -*■ B-indBl (arg (n , _)) (nilB (arg ((sue n) , _))))

N ’ : Set
N ’ = A yN’ yFin

i : N -> N* 
i n = introA (n , _)

Fin : N -> Set
Fin n = B yN’ yFin (i n)

fz : (n : N) -> Fin (sue n) 
fz n = introB (tt , (n , _))

fsuc : (n : N) -> Fin n -> Fin (sue n)
fsuc n m = introB (ff , n , ((X _ -»■ m) , _))

A.2.2.2 Simple elimination rules

module elim-indind-simple where

open indind

IHA : {Aref : SetXyA : SPA Aref) ->
{A : SetMB : A -> Set} ->
{repA : Aref -► A} ->
(P : A -> Set) (Q : (a : A) -> B a -> Set) ->
ArgA Aref yA A B repA -> Set 

IHA nilA P Q _ = T
IHA (nonind K y) P Q (k , y) = IHA (y k) P Q y
IHA (A-ind K y) P Q (j , y) = ((k : K) -> P (j k)) x IHA y P Q y
IHA (B-ind K h y) {repA = repA} P Q (j , y)
= ((k : K) -> Q (repA (h k)) (j k)) x IHA y P Q y

IHA’ : (yA : SPA’) ->
{A : SetMB : A -> Set} ->
(P : A -> Set) (Q : (a : A) -> B a -> Set) ->
ArgA’ yA A B -> Set 

IHA’ yA = IHA yA {repA = 1-elim}

IHB : (yA : SPA’){Aref Bref : Set} -> (yB : SPB Aref Bref yA) ->
{A : SetMB : A -> SetHinA : ArgA’ yA A B -> A} ->
{repA : Aref -*■ A} ->
{replndex : Bref -> A} ->
{repB : (x : Bref) -> B (replndex x)} ->
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(P : A -> Set)(Q : (a : A) -> B a -> Set) ->
ArgB yA Aref Bref yB A B inA repA replndex repB -> Set

IHB yA (nilB _) P Q _ = T
IHB yA (nonind K y) P Q (k , y) = IHB yA (y k) P Q y
IHB yA (A-ind K y) P Q (j , y) = ((k : K) -> P (j k)) x IHB yA y P Q y
IHB yA (B-ind K h y) {inA = inA} {repA} {replndex} {repB} P Q (j , y)
= C(k : K) -> Q (repAbar yA inA repA replndex repB (h. k)) (j k))

x IHB yA y P Q y

IHB’ : (yA : SPA’)(yB : SPB’ yA) ->
{A : Set}{B : A -> Set}{inA : ArgA’ yA A B -> A} ->
(P : A -> Set) (Q : (a : A) -> B a -> Set) ->
ArgB’ yA yB A B inA -> Set

IHB’ yA yB P Q y = IHB yA yB P Q y

mapIHA : {Aref : Set}(yA : SPA Aref) ->
{A : SetHB : A -> Set} ->
{repA : Aref -> A} ->
{P : A -> Set}{Q : (a : A) -> B a -> Set} ->
(f : (a : A) -> P a) (g : (a : A) -> (b : B a) -> Q a b) ->
(a : ArgA Aref yA A B repA) -> IHA yA P Q a

mapIHA nilA f g _ = _
mapIHA (nonind K y) f g (k , y) = mapIHA (y k) f g y
mapIHA (A-ind K y) f g (j , y) = (f o j , mapIHA y f g y)
mapIHA (B-ind K h y) {repA = repA} f g (j , y)
= ((X k -> g (repA (h k)) (j k)) , mapIHA y f g y)

mapIHA’ : (yA : SPA’) ->
{A : Set}{B : A -> Set} ->
{P : A -> Set}{Q : (a : A) -> B a -> Set} ->
(f : (a : A) -> P a) (g : (a : A) -> (b : B a) -> Q a b) ->
(a : ArgA’ yA A B) -> IHA’ yA P Q a

mapIHA’ yA = mapIHA yA

mapIHB : (yA : SPA’){Aref Bref : Set} -> (yB : SPB Aref Bref yA) ->
{A : Set}{B : A -> Set}{inA : ArgA’ yA A B -> A} ->
{repA : Aref -»• A} ->
{replndex : Bref -> A} ->
{repB : (x : Bref) -> B (replndex x)} ->
{P : A -> Set}{Q : (a : A) -> B a -> Set} ->
(f : (a : A) -> P a) (g : (a : A) -> (b : B a) -> Q a b) ->
(y : ArgB yA Aref Bref yB A B inA repA replndex repB)

-> IHB yA yB P Q y
mapIHB yA (nilB _) f g _ =
mapIHB yA (nonind K y) f g (k , y) = mapIHB yA (y k) f g y
mapIHB yA (A-ind K y) f g (j , y) = (f o j , mapIHB yA y f g y)
mapIHB yA (B-ind K h y) {inA = inA} {repA} {replndex} {repB} f g (j , y)
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= ((X k -*■ g (repAbar yA inA repA replndex repB (h k)) (j k)) , 
mapIHB yA y f g y)

mapIHB’ : (yA : SPA’ )(yB : SPB' yA) ->
{A : SetMB : A -*■ SetHinA : ArgA’ yA A B -> A> ->
{P : A -> Set} ->
{Q : (a : A) -> B a -> Set} ->
(f : (a : A) -> P a) (g : (a : A) -> (b : B a) -> Q a b) ->
(y : ArgB’ yA yB A B inA) -> IHB’ yA yB P Q y 

mapIHB’ yA yB f g y = mapIHB yA yB f g y

{-# NO_TERMINATION_CHECK #-} 
mutual

elimA : (yA : SPA’MyB : SPB’ yA) ->
(P : (A yA yB) -> Set) ->
(Q : (a : (A yA yB)) -> (b : (B yA yB) a) -> Set) ->
(stepA : (x : ArgA’ yA (A yA yB) (B yA yB))

-> IHA’ yA P Q x -> P (introA x)) ->
(stepB : (y : ArgB’ yA yB (A yA yB) (B yA yB) introA) ->

(ybar : IHB’ yA yB P Q y) -> Q (Index yB y) (introB y)) -> 
(a : (A yA yB)) -> P a 

elimA yA yB P Q stepA stepB (introA a)
= stepA a (mapIHA’ yA (elimA yA yB P Q stepA stepB)

(elimB yA yB P Q stepA stepB) a)

elimB : (yA : SPA’)(yB : SPB’ yA) ->
(P : (A yA yB) -> Set) ->
(Q : (a : (A yA yB)) -> (b : (B yA yB) a) -> Set) ->
(stepA : (x : ArgA’ yA (A yA yB) (B yA yB))

-> IHA’ yA P Q x -> P (introA x)) ->
(stepB : (y : ArgB’ yA yB (A yA yB) (B yA yB) introA) ->

(ybar : IHB’ yA yB P Q y) -> Q (Index yB y) (introB y)) ->
(a : A yA yB) -> (b : B yA yB a) -> Q a b

elimB yA yB P Q stepA stepB .(Index yB b) (introB b)
= stepB b (mapIHB’ yA yB (elimA yA yB P Q stepA stepB)

(elimB yA yB P Q stepA stepB) b)

A.2.3 Inductive-recu rsive  defin itions

module IR (D : Setl) where

data OP : Setl where
t : D > OP
a : (A : Set) -> (f : A -> OP) -> OP
S : (A : Set) -> (F : (A -> D) -> OP) -> OP

[Jo : OP -> (U : Set)(T : U -> D) -> Set
[Jo (t d) U T = T
[Jo (<r A f) U T = £[ a € A ] [ f a ]0 U T
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[[_Jo (.6 A F) U T = E [  g e (A -> U) ] [ F (T o g) ]0 U T

|_li : (Y : OP) -> (U : Set) (T : U -> D) -> [ y ]0 U T -> D
[ji (i d) U T _ = d
[ji (<r A f) U T (a , x) = [ f a U T x
[_li (<5 A F) U T (g , x) = [ F (T o g) ]i U T x

A.2.4 Inductive-inductive-recursive definitions

open import Relation.Binary.PropositionalEquality.TrustMe

ext : {a b : Level} -> Extensionality a b 
ext p = trustMe

module H R  (D : Setl) where

data SPA (Xref : Set) : Setl where 
nilA : D -> SPA Xref
nonind : (K : Set) -> (y : K -> SPA Xref) -> SPA Xref
A-ind : (K : Set) -> (y : (K -> D) -> SPA (Xref + K)) -> SPA Xref
B-ind : (K : Set) -> (h : K -> Xref) -> (y : SPA Xref) -> SPA Xref

SPA’ : Setl 
SPA’ = SPA 1

ArgA : (Xref : Set) ->
(yA : SPA Xref) ->
(X : Set)(Y : X -> Set) ->
(T : X -> D) ->
(repX : Xref -> X) -> Set 

ArgA Xref (nilA _) X Y T repX = T
ArgA Xref (nonind K y) X Y T repX = E [  e € K ] ArgA Xref (y e) X Y T repX
ArgA Xref (A-ind K y) X Y T repX
= £[ j 6 (K -> X) ] ArgA (Xref + K) (y (T o j)) X Y T [ repX , j ]

ArgA Xref (B-ind K h y) X Y T repX
= £[ j € ((e : K) -> Y (repX (he))) ] ArgA Xref y X Y T  repX

ArgA’ : (yA : SPA’) -> (X : Set) -> (Y : X -> Set) -> (T : X -> D) -> Set
ArgA’ yA X Y T = ArgA 1 yA X Y T l-elim

{- morphism part of the functor ArgA -} 
ArgAfun : {Xref : Set} ->

(y : SPA Xref) ->
{X : SetMY : X -> Set}{T : X -> D} 
{repX : Xref -> X} ->
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{X* : SetHY* : X* -> SetHT* : X* -> D> ->
{repX* : Xref -> X*} ->
(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) ->
(coh : T = T* o f) ->
(p : (e : Xref) -> Y* (f (repX e)) -> Y* (repX* e)) ->
ArgA Xref y X Y T repX -> ArgA Xref y X* Y* T* repX*

ArgAfun (nilA _) f g coh p _ = _
ArgAfun (nonind K y) f g coh p (k , y)
= (k , ArgAfun (y k) f g coh p y)

ArgAfun {Xref} (A-ind K y) {T = T} {repX* = repX*} f g coh p (j , y)
= (f o j , subst (X z -> ArgA (Xref + K) z _ _ _ [ repX* , f o j ])

(cong (X w -> y (w o j)) coh)
(ArgAfun (y (T o j)) f g coh [ p , (X k -> id) ] y)) 

ArgAfun {Xref} (B-ind K h y) {repX = repX} f g coh p (j , y)
= ((X k -> p (h k) (g (repX (h k)) (j k))) , ArgAfun y f g coh p y)

ArgAfun’ : (yA : SPA’) ->
{X : SetHY : X -> Set}{T : X -> D} ->
{X* : Set}{Y* : X* -> Set}{T* : X* -> D} ->
(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) ->
(coh : T = T* o f) ->
ArgA’ yA X Y T -> ArgA’ yA X* Y* T*

ArgAfun’ yA f g coh = ArgAfun yA f g coh l-elim

{- "recursive part" -}
FunA : {Xref : Set} ->

(yA : SPA Xref) ->
{X : Set}{Y : X -> Set} ->
{T : X -> D} ->
{repX : Xref -> X} ->
ArgA Xref yA X Y T repX -> D

FunA (nilA o) _ = o
FunA (nonind K y) (k , x) = FunA (y k) x
FunA (A-ind K y) {T = T} (j , x) = FunA (y (T o j)) x
FunA (B-ind K h y) (j , x) = FunA y x

FunA’ : (yA : SPA’) -> (X : Set) -> (Y : X -> Set) -> (T : X -> D) ->
ArgA’ yA X Y T -> D 

FunA’ yA X Y T = FunA yA {X} {Y} {T}

FunA-coh : {Xref : Set} ->
(yA : SPA Xref) ->
{X : SetHY : X -> SetHT : X -> D}
{repX : Xref -> X} ->
{X* : SetHY* : X* -> SetHT* : X* -> D} ->
{repX* : Xref -> X*} ->
{f : X -> X*Hg : (a : X) -> Y a -> Y* (f a)} ->
{coh : T = T* o f} ->
{p : (e : Xref) -> Y* (f (repX e)) -> Y* (repX* e)} ->
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(x : ArgA Xref yA X Y T repX) ->
FunA yA x e FunA yA (ArgAfun yA {T* = T*> f g coh p x)

FunA-coh (nilA o) x = refl
FunA-coh (nonind K y) (k , x) = FunA-coh (y k) x
FunA-coh {Xref} (A-ind K y) {T = T} {repX = repX} {Y* = Y*} {T*}

{repX* = repX*} {f = f> {g = g} {coh = coh} {p = p} (j , x)
= begin

FunA (A-ind K y) (j , x)
=( refl )
FunA (y (T o j)) x 

=( FunA-coh (y (T « j)) x )
FunA (y (T o j)) (ArgAfun (y (T o j)) f g coh [ p , (X k -> id) ] x)

=( cong2’ (X a b -> FunA a b) (cong (X w -> y (w o j)) coh) refl )
FunA (y (T* o f o j))

(subst (X z -> ArgA (Xref + K) z _ _ _ [ repX* , (f o j) ])
(cong (X w -> y (w o j)) coh)
(ArgAfun (y (T o j)) f g coh [ p , (X k -> id) ] x))

=( refl )
FunA (A-ind K y)

(ArgAfun (A-ind K y) {Y* = Y*} {T* = T*} f g coh p (j , x))
■

FunA-coh (B-ind K h y) (j , x) = FunA-coh y x

mutual
data Aterm (y : SPA’ ) (Xref : Set)(Yref : Set)

(TrefA : Xref -> D)(TrefB : Yref -> D) : {i : Size} -> Set where 
aref : V {i} -> Xref -> Aterm y Xref Yref TrefA TrefB {| i}
bref : V {i} -> Yref -> Aterm y Xref Yref TrefA TrefB {| i}
arg : V {i} -> ArgA’ y (Aterm y Xref Yref TrefA TrefB {i})

(Bterm y) (Tterm y)
-> Aterm y Xref Yref TrefA TrefB {| i}

Bterm : V {i} -> (y : SPA’) ->
{Xref Yref : Set} ->
{TrefA : Xref -> D} -> {TrefB : Yref -> D} ->
Aterm y Xref Yref TrefA TrefB {i} -> Set 

Bterm y (aref y) = 1 
Bterm y (bref y) = T 
Bterm y (arg y) = 1

Tterm : V {i} -> (y : SPA’) ->
{Xref Yref : Set} ->
{TrefA : Xref -> D} -> {TrefB : Yref -> D} ->
Aterm y Xref Yref TrefA TrefB {i} -> D 

Tterm yA {TrefA = TrefA} (aref y) = TrefA y
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Tterm yA {TrefB = TrefB} (bref y) = TrefB y 
Tterm yA (arg x) - FunA’ yA _ _ _ x

mutual
repAbar : V {i} ->(y : SPA’) ->

{Xref : Set}{Yref : Set} ->
{TrefA : Xref -> D}{TrefB : Yref -> D} ->
{X : SetHY : X -> Set}{T : X -> D} ->
(introA : ArgA’ y X Y T -> X) ->
(repX : Xref -> X) ->
(repindex : Yref -> X) ->
(repY : (b : Yref) -> Y (repindex b)) ->
{T-sane : (x : ArgA’ y X Y T) -> T (introA x) = FunA y x} ->
{TrefA-sane : (x : Xref) -> TrefA x = T (repX x)} ->
{TrefB-sane : (x : Yref) -> TrefB x = T (repindex x)} ->
Aterm y Xref Yref TrefA TrefB {i}

-> X
repAbar y introA repX repindex repY (aref y) = repX y
repAbar y introA repX repindex repY (bref y) = repindex y
repAbar y {T = T} introA repX repindex repY {T-sane} {TrefA-sane} {TrefB-sane} (arg {i} y 

= introA 
(ArgAfun’ y

(repAbar {i} y introA repX repindex repY)
(repBbar y introA repX repindex repY)
(ext (coh y {T = T} T-sane TrefA-sane TrefB-sane))
y)

repBbar : V {i} ->(y : SPA’) ->
{Xref : SetMYref : Set} ->
{TrefA : Xref -> DMTrefB : Yref -> D} ->
{X : SetHY : X -> SetHT : X -> D} ->
(introA : ArgA’ y X Y T -> X) ->
(repX : Xref -> X) ->
(repindex : Yref -> X) ->
(repY : (b : Yref) -> Y (repindex b)) ->
{T-sane : (x : ArgA’ y X Y T) -> T (introA x) = FunA y x} -> 
{TrefA-sane : (x : Xref) -> TrefA x = T (repX x)} ->
{TrefB-sane : (x : Yref) -> TrefB x = T (repindex x)} ->
(t : Aterm y Xref Yref TrefA TrefB {i}) ->
Bterm y t -> Y (repAbar y introA repX repindex repY

{T-sane} {TrefA-sane} {TrefB-sane} t) 
repBbar y introA repX repindex repY (aref a) = l-elim
repBbar y introA repX repindex repY (bref b) = X _ -> repY b
repBbar y introA repX repindex repY (arg y) = l-elim
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coh : V {i} ->(y : SPA’) ->
{Xref : SetMYref : Set} ->
{TrefA : Xref -> D}{TrefB : Yref -> D} ->
{X : Set}{Y : X -> Set}{T : X -> D} ->
{introA : ArgA’ y X Y T -> X} ->
{repX : Xref -> X} ->
{repindex : Yref -> X} ->
{repY : (b : Yref) -> Y (repindex b)} ->
(T-sane : (x : ArgA’ y X Y T) -> T (introA x) = FunA y x) -> 
(TrefA-sane : (x : Xref) -> TrefA x = T (repX x)) ->
(TrefB-sane : (x : Yref) -> TrefB x = T (repindex x)) ->
(x : Aterm y Xref Yref TrefA TrefB {i}) ->
Tterm y x = T (repAbar y introA repX repindex repY

{T-sane} {TrefA-sane} {TrefB-sane} x) 
coh y _ TrefA-sane _ (aref x) = TrefA-sane x 
coh y _ _ TrefB-sane (bref x) = TrefB-sane x
coh y {T = T} {introA} {repX} {replndex} {repY} T-sane _ _(arg w)

= begin
Tterm y (arg w)

=( refl )
FunA y w 

=( FunA-coh y w )
FunA y (ArgAfun’ y _ _ _ w)

=( sym (T-sane (ArgAfun’ y _ _ _ w)) )
T (introA (ArgAfun’ y _ _ _ w))

=( refl )
T (repAbar y introA repX replndex repY (arg w))

data SPB (Xref : Set)(Yref : Set)
(TrefA : Xref -> D)(TrefB : Yref -> D)(yA : SPA’) : Setl where 

nilB : Aterm yA Xref Yref TrefA TrefB -> SPB Xref Yref TrefA TrefB yA
nonind : (K : Set) -> (y : K -> SPB Xref Yref TrefA TrefB yA)

-> SPB Xref Yref TrefA TrefB yA
A-ind : (K : Set) ->

(y : (t : K -> D) -> SPB (Xref + K) Yref [ TrefA , t ] TrefB yA)
-> SPB Xref Yref TrefA TrefB yA

B-ind : (K : Set) -> (h : (k : K) -> Aterm yA Xref Yref TrefA TrefB) ->
(y : (t : K -> D) -> SPB Xref (Yref + K) TrefA [ TrefB , t ] yA)

-> SPB Xref Yref TrefA TrefB yA

SPB’ : (yA : SPA’) -> Setl
SPB’ = SPB 1 i l-elim l-elim

ArgB : (yA : SPA’) ->
(Xref : Set)(Yref : Set) ->
{TrefA : Xref -> D}{TrefB : Yref -> D} ->
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(X : Set)(Y : X -> Set)(T : X -> D)(inA : ArgA’ yA X Y T -> X) ->
(repX : Xref -> X) ->
(replndex : Yref -> X) ->
(repY : (x : Yref) -> Y (replndex x)) ->
(yB : SPB Xref Yref TrefA TrefB yA) ->
(T-sane : (x : ArgA’ yA X Y T) -> T (inA x) = FunA yA x) ->
(TrefA-sane : (x : Xref) -> TrefA x = T (repX x)) ->
(TrefB-sane : (x : Yref) -> TrefB x = T (replndex x))
-> Set

ArgB yA Xref Yref X Y T inA repX replndex repY (nilB a)
T-sane TrefA-sane TrefB-sane = T 

ArgB yA Xref Yref X Y T inA repX replndex repY (nonind K y)
T-sane TrefA-sane TrefB-sane 

= E[ e 6 K ] ArgB yA Xref Yref X Y T inA repX replndex repY (y e)
T-sane TrefA-sane TrefB-sane 

ArgB yA Xref Yref X Y T inA repX replndex repY (A-ind K y)
T-sane TrefA-sane TrefB-sane

= E [  j 6 (K -> X) ]
ArgB yA (Xref + K) Yref X Y T inA [ repX , j ] replndex repY (y (T o j ))

T-sane [ TrefA-sane , (X k -> refl) ] TrefB-sane 
ArgB yA Xref Yref X Y T inA repX replndex repY (B-ind K h y)

T-sane TrefA-sane TrefB-sane 
= £[ j € ((e : K) -> Y (repAbar yA inA repX replndex repY (he))) ]

ArgB yA Xref (Yref + K) X Y T inA repX
[ replndex , ((repAbar yA inA repX replndex repY {T-sane}) oh)] 
[ repY , j ]
(y (T o (repAbar yA inA repX replndex repY

{T-sane} {TrefA-sane} {TrefB-sane}) oh))
T-sane TrefA-sane 
[ TrefB-sane , (X k -> refl) ]

ArgB’ : (yA : SPA’) ->
(yB : SPB’ yA) ->
(X : Set)(Y : X -> Set)(T : X -> D)(inA : ArgA’ yA X Y T -> X) -> 
(T-sane : (x : ArgA’ yA X Y T) -> T (inA x) = FunA yA x) -> Set 

ArgB’ yA yB X Y T inA T-sane
= ArgB yA 1 1 X Y T inA l-elim l-elim l-elim yB T-sane l-elim l-elim

Index : {yA : SPA’} ->
{Xref : Set}{Yref : Set}
{TrefA : Xref -> DHTrefB : Yref -> D} ->
{X : Set}{Y : X -> Set}{T : X -> DMinA : ArgA’ yA X Y T -> X} -> 
{repX : Xref -> X} ->
{replndex : Yref -> X} ->
{repY : (x : Yref) -> Y (replndex x)} ->
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(yB : SPB Xref Yref TrefA TrefB yA) ->
{T-sane : (x : ArgA’ yA X Y T) -> T (inA x) = FunA yA x> ->
{TrefA-sane : (x : Xref) -> TrefA x = T (repX x)} ->
{TrefB-sane : (x : Yref) -> TrefB x = T (replndex x)} ->
ArgB yA Xref Yref X Y T inA repX replndex repY yB

T-sane TrefA-sane TrefB-sane -> X 
Index {yA} {inA = inA} {repX} {replndex} {repY} (nilB a)

{T-sane = T-sane} {TrefA-sane} {TrefB-sane} _
= repAbar yA inA repX replndex repY

{T-sane = T-sane} {TrefA-sane} {TrefB-sane} a 
Index (nonind K y)(k , y) = Index (y k) y
Index {T = T} (A-ind K y) (j , y) = Index (y (T o j)) y
Index {yA} {T = T} {inA} {repX} {replndex} {repY} (B-ind K h y) (j , y) 
= Index (y (T o (repAbar yA inA repX replndex repY) o h)) y

mutual

data A (yA : SPA})(yB : SPB’ yA) : Set where
introA : ArgA’ yA (A yA yB) (B yA yB) (T yA yB) -> (A yA yB)

{-# NO_TERMINATION_CHECK #-}
T : (yA : SPA’MyB : SPB’ yA) -> A yA yB -> D
T yA yB (introA x) = FunA’ yA (A yA yB) (B yA yB) (T yA yB) x

data B (yA : SPA’)(yB : SPB’ yA) : (A yA yB) -> Set where 
introB : (b : ArgB’ yA yB (A yA yB) (B yA yB) (T yA yB)

introA (X x -> refl))
-> (B yA yB) (Index yB b)

A.2.4.1 Examples

_++_ : {Xref : Set} -> SPA Xref -> SPA Xref -> SPA Xref 
y ++ ip = nonind N2 (X { tt -> y ; ff -*■ ip })

_+++_ : V {Xref Yref TrefA TrefB yA} -> SPB Xref Yref TrefA TrefB yA -> SPB Xref Yref TreJ
y +++ ip = nonind N2 (X { tt -»■ y ; ff -*■ ip })

infixr 40 _++_ 
infixr 40 _+++_

module examples-indind-as-IIR where

open H R  T

------------------- Ctxt and-Types----------------
yCtxt : SPA’
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yCtxt = nilA _ ++ A-ind T (X _ -»■ B-ind T (X _ -»■ inr _) (nilA _)) 

yTy : SPB’ yCtxt
yTy = A-ind T (X _ -> nilB (axef (inr _)))

+++ A-ind T
(X _ —»• B-ind 

T
(X _ aref (inr _))
(X _ —* B-ind

T
(X _ —> arg (ff , ((X _ — *■ bref (inr _)) , ((X _ -»■ _) , _))))
(X _ nilB (aref (inr _)))))

Ctxt : Set
Ctxt = A yCtxt yTy

Ty : Ctxt -> Set
Ty = B yCtxt yTy

e : Ctxt
e = introA (tt , _)

cons : (r : Ctxt) -> Ty T -> Ctxt
cons r a = introA ((ff , (X _ -*■ D  , (X _ -*• cr) , _))

i/ : {r : Ctxt} -> Ty T
i, {r} = introB (tt , (X _ -»■ D  , _)

II : (r : Ctxt) -> (A : Ty D  -> (B : Ty (cons T A)) -> Ty T
II T A B = introB (ff , ((X _ -*• T ) , ((X _ -»■ A) , ((X _ -»■ B) ,_))))

 Natural numbers--------
yNat : SPA’
yNat = nilA _ ++ A-ind T (X _ -»■ nilA _)

yDummy : SPB’ yNat
yDummy = A-ind T (X _ -> nilB (aref (inr _))) 

N : Set
N = A yNat yDummy 

Nzero : N
Nzero = introA (tt , _)

Nsuc : N -> N
Nsuc n = introA (ff , ((X _ -*• n) , _))
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------------------- Finite sets-------------------

yN’ : SPA’
yN’ = nonind N (X n -*■ nilA _) 

yFin : SPB’ yN*
yFin = nonind N (X n -*■ nilB (arg (Nsuc n , _)))

+++ nonind N (X n -*• B-ind T (X _ -> arg (n , _))
(X _ nilB (arg ((Nsuc n) , _))))

N ’ : Set
N ’ = A yN’ yFin

i : N -> N* 
i n = introA (n , _)

Fin : N -> Set
Fin n = B yN’ yFin (i n)

fz : (n : N) -> Fin (Nsuc n) 
fz n = introB (tt , (n , _))

fsuc : (n : N) -> Fin n -> Fin (Nsuc n)
fsuc n m = introB (ff , n , ((X _ -> m) , _))

module examples-indrec-as-IIR where

open H R  Set

yNE : SPA’
yNE = nilA examples-indind-as-IIR.N

++ A-ind T (X X -> A-ind (X _) (X Y ->• nilA (E (X _) Y)))

yDummy : SPB * yNE
yDummy = A-ind T (X _ -*■ nilB (aref (inr _)))

UNE : Set
UNE = A yNE yDummy

TNE : UNE -> Set 
TNE = T yNE yDummy

n : UNE
n = introA (tt , _)

sigma : (a : UNE) -> (b : TNE a -> UNE) -> UNE 
sigma a b = introA (ff , (X _ -»■ a) , b , _)
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private
T-n : TNE n = examples-indind-as-IIR.N 
T-n = refl

T-sigma : V {a b} -> TNE (sigma a b) = E (TNE a) (TNE o b) 
T-sigma = refl

A.2.4.2 Em bedding inductive-inductive and inductive-recursive definitions

module IltoIIR where

open module indindrec = H R  T 

open indind

'PA : {Xref : Set} -> indind.SPA Xref -> indindrec.SPA Xref 
'PA nilA = nilA _
'PA (nonind K y) = nonind K (X x -> 'PA (y x))
'PA (A-ind K y) = A-ind K (X _ -»■ 'PA y)
'PA (B-ind K h y) = B-ind K h (\PA y)

'PA-correct : {Aref : Set} ->
(yA : indind.SPA Aref) ->
{A : Set}{B : A -*■ Set} ->
{repA : Aref -> A} -> 
indind.ArgA Aref yA A B repA

= indindrec .ArgA Aref ('PA yA) A B _ repA
'PA-correct nilA = refl
'PA-correct (nonind K y) = cong (X z -*■ E _ z) (ext (X k -*■ 'PA-correct (y k))) 
'PA-correct (A-ind K y) = cong (X z -»• E _ z) (ext (X j -*■ 'PA-correct y))
'PA-correct (B-ind K h y) = cong (X z -> E _ z) (ext (X j -» 'PA-correct y))

'PArgA : (yA : indind.SPA’) ->
{A : Set}{B : A -*■ Set} ->
{A* : SetMB* : A* Set} ->
(f : A -> A*)(g : (x : A) -> B x -> B* (f x)) ->
indind.ArgA’ yA A B -> indindrec.ArgA’ ('PA yA) A* B* _

'PArgA yA f g = indindrec .ArgAfun’ ('PA yA) f g refl
o (subst id ('PA-correct yA))

'PArgA-inv : (yA : indind.SPA’) ->
{A : SetMB : A -> Set} ->
indindrec .ArgA’ ('PA yA) A B _ -> indind. ArgA’ yA A B 

'PArgA-inv yA x = (subst id (sym ('PA-correct yA)) x)

mutual
'PATerm : V {Xref Yref yA i} ->

indind.Aterm yA Xref Yref {i}

200



A.2. Axiomatisations

-> indindrec .Aterm (\PA yA) Xref Yref _ _ {i}
\PATerm (aref x) = aref x 
\PATerm (bref x) = bref x
\PATerm {yA = yA> (arg x) = arg ('PArgA yA \PATerm \PBTerm x)

'PBTerm : V {Xref Yref yA i> -> (x : indind.Aterm yA Xref Yref {i}) ->
indind.Bterm yA x -> indindrec.Bterm (\PA yA) ('PATerm x) 

'PBTerm (aref x) y = y
'PBTerm (bref x) y = y
'I'BTerm (arg x) y = y

'PB : {Xref Yref : SetMyA : indind.SPA’} ->
indind.SPB Xref Yref yA -> indindrec.SPB Xref Yref _ _ ('PA yA)

'PB (nilB a) = nilB ('PATerm a)
'PB (nonind K y) = nonind K (X z -»■ 'PB (y z))
'PB (A-ind K y) = A-ind K (X _ -*■ ^B y)
'PB (B-ind K h y) = B-ind K ('PATerm oh) (X _ -* 'PB y)

module IRtoIIR (D : Setl) where

open H R  D

open IR D

$ : V {Xref} -> OP -> SPA Xref 
<P (l d) = nilA d
$ {a A f) = nonind A (X z -+ <P (f z))
$ {8 A F) = A-ind A (X z -> <P (F z))

<3>-correctU : {U : Set}{B : U -> SetHT : U -> D} ->
{Xref : SetMrepA : Xref -> U} ->
(y : OP) ~> | y lo U T = ArgA Xref ($ y) U B T repA

<P-correctU (i d) = refl
<P-correctU (a A f) = cong (X z -»■ E A z) (ext (X a -> 3>-correctU (f a)))
$-correctU {U = U} {T = T} (8 A F) = cong (X z ->• E (A -► U) z)

(ext (X g -> <P-correctU (F (T o g))))

$U : V {Xref U T B repA} -> (y : OP) -> [ y ]0 U T
-> ArgA Xref ($ y) U B T repA

$U (i d) _ = _
<PU ( a  A f) (a , x) = (a , <PU (f a) x)
$U {T = T} ( H  F) (g , x) = (g , $U (F (T o g)) x)

$-correctT : {U : Set}{B : U -> Set}{T : U -> D} ->
{Xref : SetMrepX : Xref -> U} ->
(y : OP) -> (x : [ y ]0 U T) ->
[ y ]i U T x = FunA (<P y) {Y = B} {repX = repX} ($U y x)

<P-correctT (t d) _ = refl
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$-correctT {a A f) (a , x) = $-correctT (f a) x 
$-correctT {T = T} (<5 A F) (g , x) = 3>-correctT (F (Tog)) x
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