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To Maya and Rosanna

One thing only I know, and that is that I know nothing.
Socrates 

469 -  399 BC



A b stract

We study two models of topological solitons in which there exists a correspondence 
between static solitons and rational maps from C P 1 to C P 1. In both cases, the domain 
of the rational map can be identified as a two-sphere with the round metric.

The first of these is the C P 1 model on S 2 x M, in which lump configurations may 
be described directly in terms of a rational map. We parametrise the moduli space of 
static two-lumps using natural group actions and consider low energy dynamics using 
the geodesic approximation, identifying a number of geodesic submanifolds. The metric 
is found explicity for one of these submanifolds and the corresponding geodesics, which 
describe the “scattering” of lumps, are discussed. In particular there is a four dimensional 
submanifold which exhibits qualitatively similar features to the low energy scattering of 
monopoles, including right angle scattering.

The second model is the SU(2) Yang-Mills-Higgs model in the Prasad-Sommerfield 
limit in which static solutions are described by the Bogomol’nyi equations. We discuss the 
rational map and the metric introduced by Jarvis and show how solutions of the linear 
system corresponding to the Bogomol’nyi equations give rise to solutions of the Jarvis 
equation in a simple way. Since the linear system is covariant under the action of the 
Galilean group, this gives a procedure for finding the solution of the Jarvis equations 
corresponding to a translated monopole. We carry out this procedure explicitly for a 
single monopole to obtain solutions corresponding to a monopole with arbitrary position 
in the Jarvis gauge, from which the Jarvis rational map is obtained. We introduce the 
dual rational map and give an argument relating the spectral lines through the origin to 
the Jarvis rational map and its dual. A novel functional relation obeyed by the metric 
is presented. We show how the one-monopole solution to the linear system in the Jarvis 
gauge justifies the charge one inverse scattering ansatz and show that the seed solution 
depends on the Jarvis rational map and its dual. We also discuss the effect of infinitesimal 
translations on solutions to the Jarvis equation and the possible relationship between the 
Jarvis rational map and centre of a monopole.
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Chapter 1 

Introduction

Many physical theories of the natural world are described by non-linear differential equa­
tions. A surprising fact is that some of these theories admit solutions whose energy 
density is localised and which behave in many respects like smooth extended particles. 
Such solutions are known as solitons. Solitons have found a wide range of uses in de­
scribing phenomena in many branches of physics and have been observed, for example, in 
condensed m atter system and in fluids.

Solitons have appeared in many theories of high energy particle physics, and new 
uses for them and their parameter, or moduli spaces, continue to be found. In some 
supersymmetric quantum field theories, solitons occur as states of the theory which may 
be related by a duality to the fundamental fields. Such dualities have become a powerful 
tool for probing the strongly-coupled region of such theories. Perhaps more importantly 
for us, though, is the fact that the study of solitons has turned into an extremely rich 
field of research for mathematicians and physicists alike.

In this thesis, we will be interested in two models of solitons in particular; those 
describing magnetic monopoles and sigma model lumps. These are examples of topological 
solitons which occur in theories in which the space of vacua is a manifold with non-trivial 
topology. Solitons are solutions which interpolate between different vacua and thus pick 
up a topological classification.

The theories of SU(2 ) magnetic monopoles in Minkowski space and lumps in the C P 1 

model on R2 x R  and S 2 x R share a number of interesting characteristics. The first of 
these is the fact that the solitons of both theories fall into topological sectors classified 
by the second homotopy group of the two-sphere n2(S2). The second is that there are 
correspondences between static solitons and rational maps from C P 1 to C P 1. In the case 
of lumps, static configurations may be described directly as rational maps. For monopoles, 
the correspondence of the fields of the monopole with a rational map is much less explicit.

It should be pointed out that there is more than one correspondence of monopoles
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CHAPTER 1. INTRODUCTION 2

to rational maps. The first of these was found by Donaldson from a study of Nahm’s 
equations [41]. In this case, the rational map is defined in terms of a complex coordinate 
parametrising the plane orthogonal to a fixed direction. The second, the Jarvis rational 
map [34], was discovered relatively recently and is defined in terms of the complex coor­
dinate on the Riemann sphere describing the direction from a fixed point.

Given a monopole, the definition of a rational map is relatively straightforward and is 
defined in terms of solutions to a particular differential operator along straight lines. This 
is the scattering operator introduced by Hitchin [25] and used to define the spectral curve 
associated to a monopole. Hurtubise [42] showed that the Donaldson rational map can 
be defined in terms of scattering along lines in a fixed direction, while the Jarvis rational 
map can be defined in terms of scattering on half-lines emanating from a point in R3.

However, the construction of the fields of the monopole given a rational map is much 
less explicit. Jarvis has given an argument based on a heat flow for both the Donaldson 
[53,54] and the Jarvis rational maps [34], in which the asymptotic fields are given in 
terms of the rational map. The result of the heat flow is a solution to the Bogomol’nyi 
equations, unique up to gauge equivalence, which reproduces the required rational map, 
thus proving the correspondence in each case. So far, attempts to make this construction 
more explicit have been limited to trying to clarify the asymptotic conditions on the fields 
in terms of the Jarvis rational map [47], although we will have cause to question these 
results in Chapter 5. The heat flow method has also been used by Ioannidou and Sutcliffe 
to generate monopole solutions numerically using the Jarvis map as input [48].

The n-monopole moduli space has a group of isometries which includes the Galilean 
group of R3. However, choosing a fixed direction or a fixed point means that only that 
part of the Galilean group which fixes this acts in a simple way on the relevant rational 
map. If we choose a fixed direction, then this is preserved by translations and rotations 
about this axis, therefore this subgroup has a prescribed action on the Donaldson rational 
map [55], while the action of rotations which change the direction is, in general, unknown. 
On the other hand, a fixed point is preserved by rotations about this point but not by 
translations. Hence the action of rotations on the Jarvis map is well understood while the 
action of translations is not. This fact has been used to prove the existence of monopoles 
with certain discrete rotational symmetries [49].

Ioannidou and Sutcliffe suggest that the inverse scattering method may be useful in 
making the correspondence between a monopole and its Jarvis rational map more explicit. 
This method was first applied to monopoles by Forgacs, Horvath and Palla [44-46] who 
were able to generate the general two-monopole and axially symmetric n-monopoles in 
this way, obtaining solutions in singular gauges. The difficulty with this method is that 
there are a large number of arbitrary functions which are used as input and these must
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be chosen in such a way as to ensure the resulting solution is smooth. It would be nice 
to be able to determine these functions in terms of the Jarvis rational map, say.

The inverse scattering method makes use of the linear system for the Bogomol’nyi 
equations which corresponds to a zero curvature condition or “Lax pair” for two operators 
depending on an extra parameter. Solutions to the linear system may be translated 
or rotated to obtain other solutions, so the full Galilean group has a straightforward 
action. Additionally, we show that, given any solution to the linear system, the gauge 
transformation which takes us to a gauge in which the Jarvis equation holds is simply 
found by evaluating the solution at a value of the parameter depending on the complex 
coordinate z. If the solution also obeys a particular conjugate relation, then we can obtain 
a solution in the Jarvis gauge described by a unimodular Hermitian metric from which 
the Jarvis rational map may be obtained.

The moduli space approximation has become a useful tool for studying the low energy 
dynamics of theories of solitons. This was first proposed by Manton to describe the low- 
energy dynamics of magnetic monopoles [18]. Atiyah and Hitchin found the metric on 
the two-monopole moduli space [32] and used it to describe the scattering of monopoles. 
In general, the difficulty in applying this method to monopoles lies in the fact that it is 
very difficult to write down explicit multimonopole field configurations.

C P 1 sigma models in 2 + 1  dimensions have proven to be especially amenable to the 
moduli space approximation since static field configurations can be written down explic­
itly, hence the calculation of the metric is simply a matter of performing the kinetic energy 
integral. Furthermore, since, for the C P 1 model on R2 x R and S 2 x R, the static solutions 
are described explicitly as rational maps, the metrics we obtain depend explicitly on the 
parameters appearing in these maps. Thus we can think of this as a model for describing 
moduli space metrics directly in terms of rational maps which could perhaps be extended 
to monopole moduli spaces.

The metric has been found for one- and two-lumps in flat space [27,28] on which some 
components of the metric are unbounded. Recently, the focus has shifted to working on 
spacetimes where space is compact but time remains in R, which avoids this problem. 
So far two-lumps on a two-torus [30] and a single lump on the two-sphere [29] have been 
studied. We will extend this programme by considering two-lumps on the two-sphere. 
Rather than try to compute the metric on the full 10-dimensional moduli space of two- 
lumps and then discuss behaviour on some geodesic submanifolds, we take the simpler 
approach of first restricting to a geodesic submanifold on which it is possible to use 
isometries to find a metric dependent on a single parameter.

Whilst the analogy between the rational map description of monopoles and lumps has 
motivated our study of lumps, the metrics we obtain cannot be the same as those for
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monopoles. This is because the moduli space of C P 1 lumps on an arbitrary compact 
Riemann surface is not geodesically complete with respect to the metric obtained using 
the geodesic approximation [31], whereas monopole moduli spaces are [56-58]. In practice, 
this means that, in this approximation, lumps can shrink to zero size in finite time. So 
while the similarities may be qualitatively interesting, some modification of the C P 1 model 
must be necessary if we hope to reproduce monopole moduli space metrics in this way. 
Having said this, the “scattering” of lumps we find shows qualitatively similar behaviour to 
the scattering of monopoles, including right-angle scattering and “dyon” pair production.

The plan of the thesis is as follows. The following chapter gives an introduction to 
the models we study and the rational maps they have in common. Chapter 3 describes 
our work on two-lumps on S 2 x E, parametrising the space of static two-lumps in terms 
of group actions and identifying geodesic submanifolds. The metric is calculated on one 
of these submanifolds to describe the low-energy “scattering” of lumps. Plots showing 
the potential energy density of various two-lump configurations, including those of three 
interesting geodesic motions, are included. The MATHEMATICA code used to generate 
these plots is given in an appendix.

The rest of the thesis concerns BPS monopoles. In Chapter 4, we introduce the linear 
system for the Bogomol’nyi equations and show how a solution to the linear system gives 
rise to a solution of the Jarvis equation in the Jarvis gauge. We calculate the solution to 
the linear system corresponding to the BPS monopole at the origin and, by translating 
this solution, obtain a solution in the Jarvis gauge corresponding to a single monopole 
with arbitrary position from which the Higgs field and rational map are calculated.

In Chapter 5, we introduce the spectral curve of a monopole and give an argument re­
lating the spectral lines through the origin to the Jarvis rational map. We also tentatively 
introduce a functional condition on the metric. We discuss the asymptotic conditions on 
the metric and the Higgs field in the Jarvis gauge, finding some disagreement with the 
analysis of Ioannidou and Sutcliffe [47]. This chapter also contains some of our first work 
on the Jarvis rational map. Firstly, by considering translational zero modes of the Bo- 
gomol’nyi equations, we show how an infinitessimal translation acts on the solution to 
the Jarvis equation and give the example of translating the spherically symmetric one- 
monopole. Secondly, we discuss the centre of a monopole and how it may be related to 
the Jarvis rational map.

In Chapter 6 , we give the charge one inverse scattering argument of Forgacs, Horvath 
and Palla and show how the solution found in Chapter 4 reproduces the charge one ansatz. 
We use this to try and start a course on constructing higher charge monopoles with the 
inverse scattering ansatz using the Jarvis rational map as input. Lastly, we summarize 
our work and point to extensions in Chapter 7.



Chapter 2 

Lumps, Rational Maps and 
M onopoles

We said in the previous chapter that magnetic monopoles and sigma-model lumps are 
two examples of what may be called topological solitons. The models in which they occur 
are different in terms of the number of dimensions and the number or fields involved, 
but both share a classification in terms of the homotopy of maps from the two-sphere 
S 2 to itself. Both also share the fact that a bound on the energy can be found within a 
given topological sector, and static solutions which obtain, or saturate, this bound satisfy 
a first-order differential equation. In the case of monopoles this also involves taking a 
particular limit of the theory.

Our real interest lies in the fact that there is a correspondence with spaces of rational 
maps for both lumps and magnetic monopoles satisfying the first order equations. In the 
models considered, these rational maps are holomorphic maps from C P 1 to C P 1.

The purpose of this chapter is to introduce the models which we will study in the 
remainder of this thesis and the pertinent results on rational maps.

2.1 Lumps

We begin by describing the simpler of the two models, the C P 1 model in its guise as 
the 0(3) model on I 2 x l  A discussion of the degree of a map leads us to recast the 
0(3) model in terms of a complex field living in C P 1, thereby obtaining the C P 1 model 
on R2 x R. Using the natural metric on S 2 x R, we can obtain the Lagrangian for the 
C P 1 model on the sphere which is the model studied in Chapter 3. We also discuss the 
geodesic approximation which will be our tool for studying the low-energy dynamics of 
lumps in this model.

5
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2.1 .1  T h e 0 (3 ) M od el

The 0(3) model can be considered the continuum limit of a model of a planar isotropic 
ferromagnet where the field represents the direction of the magnetic domain at a given 
point, all domains being of the same magnetic strength. Our general reference for the 
study of lumps is the book by Rajaraman [1].

The model consists of three real scalar fields (f>a, a = 1 . . .  3, which we write as a vector 
0 , subject to the constraint

4>-cj>= 1 . (2 .1 )

In other words, 0  is constrained to take values in the unit two-sphere, in sigma-model 
terms, the target space of the model.

The fields live in a 2+1-dimensional spacetime with the action

S = dt d2x +  \ ( x ,  * ) ( < / > •  <j>- 1 ) (2 .2)

This action is clearly invariant under the global 0(3) transformation

0 - > M 0 ,  M e  0(3).  (2.3)

The constraint (2.1) is imposed by means of the Lagrange multiplier A which can be 
thought of as an auxiliary field. Varying 0  gives the equation of motion

aM̂ 0  +  A0 =  O, (2.4)

whilst demanding that the action is stationary under a variation of A recovers the con­
straint (2 .1 ). We can eliminate A by taking the scalar product of 0  with the equation of 
motion (2.4) obtaining

A =  - 0  • < 9 ^ 0 . (2.5)

Thus the equation of motion is finally

<9m<9m0  -  ( 0  • <9MdM0 )0  =  0 . (2 .6 )

We now look for finite-energy static solutions. These will be the lumps, the name 
given to the solitons of this theory. The energy of a static solution is
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For this to be finite we require

di4> ~  o(r *) as r —► oo (2 .8)

so that

l i m  < £ ( x )  =  <t>o , (2.9)

independent of the direction. Since 0  is single-valued at infinity, we can consider the fields 
to be defined on R2 U {oo} which we can identify with S 2 via stereographic projection. 
Thus, just from the constraint of finite energy, we find that static configurations can be 
identified with continuous maps from S 2 to S 2.

a constant unit-length vector, is a zero-energy solution to the equations 
of motion. Thus the space of vacua form the two-sphere S 2, which we can also identify 
with the coset space 0 (3 )/0 (2 ).

Just as continuous maps from S 1 to S 1 are characterised by an integer winding number, 
continuous maps from S 2 to S 2 fall into different homotopy classes, each labelled by a 
integer which is the degree of the map. These integers are properly seen to be elements of 
the homotopy groups n ^ S 11) and n 2 (S'2) respectively, both of which are isomorphic to Z.

The degree of the map 0  can be written as follows

To show that this is an integer we will introduce some new coordinates. We can define 
a complex field from <fi E S 2 using stereographic projection.

(2 .10)

(2.11)

We will also introduce a complex coordinate on R2 U {oo}

Z =  X \  +  1X2- (2 .12)

For reference we list the derivatives of 0  with respect to u and u and their properties
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dcp d(j)
du du 
dcp dcp 
du du 
dtp d(f> 
du du

Using these the integrand in (2.10) is

2  i
4>

(1  +  uu)2 
2

( 1  +  uu)2 
dcp_ < 90  =  
du du

(2.13)

6ij<t> • (di(f) x dj4>) =  - 4 icp • (dzcp x dzcp)
. . .  dcp d(f>. _ _ .

- 4 icp • —  x —  (dzw <9zu -  5zii) 
aw du

„d7ud?u — d?ud?u
( 1  +  uu)2

Hence we obtain

Q — ——  / 2 i d z d z
1

47T
1

47T
1

47T

( 1  +  uu)2

(2.14)

(2.15)

(2.16)

2  i
dzu dzu — dzu dzu 

( 1  +  uu)2 
2 % du A du 
( 1  +  uu)2

dz A dz

where * denotes the pullback under the map z -* u(z, z). The integrand is the pullback of 
the volume form on the target space so evaluating the integral gives 47t times the number 
of times u covers the target space S 2 as x covers 5 2 =  R2 U {oo}. Thus the topological 
charge Q is an integer.

2 .1 .2  T h e C P 1 M od el

We can rewrite the 0(3) model action in terms of the stereographic field u to obtain the 
C P 1 model action. Since (p given by (2 .1 1 ) automatically satisfies <p • <p = 1 , we can 
reformulate the constrained dynamics of (p in terms of the unconstrained dynamics of u. 

The action is

S  = - 2  / dt

= 2 dt

d»Ud“a
( 1  +  uu)2 

uu
- d z d z  .
2  ( 1  +  uu)

— / i d z dz
dzu dzu +  dzu dzu 

( 1  +  uu)2
(2.17)

w here' denotes d/dt.
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The equations of motion (2.6) for the field 0  in terms of the field u and its conjugate 
u are

2  u
d ^ u  —   -d^ud^u  =  0 , (2 .18)

1 p  U U

and its complex conjugate. These are the same as the Euler-Lagrange equations of motion 
for the action (2.17). Thus the equation governing a static solution is

2  u
dxd?u

The energy of a static solution is

—dzu dzu = 0  
1 +  uu

t-, f  n . , ,_dzu d zu + d zu d zu 
E  = / 2i dz dz -

( 1  +  uu)2

Following Belavin and Polyakov [2] we obtain a bound on the energy by writing

(2.19)

(2.20)

E — J  i d z d z  

= i d z d z

2  dzu
1 +  uu 

2  d?u
1 + uu +

I 2-

f 2'

dz dz
d,u dzu — d,u dzu

( 1  +  uu)2
. 7_ dzu dzu — dzu dzu 

dz dz -
( !  +  „«)= ' (M 1 1

The integrals on the far right are ± 47tQ where Q is the degree (2.16), giving the bound

E>4ir\Q\.  (2 .2 2 )

Thus the energy of static lumps within a given topological sector has a minimum. 
Solutions which saturate the bound must satisfy

dzu =  0

8 y U  =  0

Q >  0

Q < 0. (2.23)

It is straightforward to see that solutions satisfying (2.23) are solutions to the full sec­
ond order equation (2.19). In the case of the C P 1 model, these are all the finite-energy 
solutions of (2.19) [3]. However, in models where the target space is CP N or a higher di­
mensional Grassmannian manifold, there are static solutions to the second order equation
(2.19) which are not solutions of the first order equations [5].

Restricting our attention to the solutions of (2.23) with negative Q , we see that con­
figurations saturating the bound are holomorphic maps from C P 1 to C P 1. These are 
rational maps, which are maps of the form

p(z)
u(z) =

« ( * ) ’
(2.24)
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where p and q are polynomials in z. These will be described in more detail below.
A general nonlinear sigma model describes fields al (xM) defined on some spacetime 

manifold M  of dimension D  with metric g^v, taking values in a target space manifold N  
with metric 7 ^ . The action of the sigma model is constructed in a natural way from the 
metrics on the spacetime and target space manifolds as follows

S = — J  V — det ga/3 dDx d^aldua ^ i jg ^ u. (2.25)

We are assuming that the spacetime metric is Minkowskian with signature (—1,1,1 , . . .  ,1) 
so that y/— det gap dDx is the spacetime measure.

We illustrate the construction in the case of the C P 1 model on M2 x R. The metric 
on I 2 x 1  is

g = dz dz — dt2, (2.26)

with measure i d td z d z / 2 . The metric on C P 1 is

2
7  =  7 —dudu. (2.27)
1 (1 + uu)2 K }

Substituting this into (2.25) recovers the action (2.17).
One straightforward consequence of the form of the action (2.25) is that symmetries

of the manifolds M  and TV, in other words isometries of the metrics on these manifolds,
are symmetries of the action.

2.1 .3  T h e C P 1 M od el on  th e  Sphere

To obtain the action for the C P 1 model on S 2 x R, we simply use the metric on this space

9 =  ft 2 -\2dzd* ~ df2i (2‘28)(1 +  zz)z

where now z is identified with the coordinate on the Riemann sphere. The corresponding 
measure is

idtdz  dz
y/— det gap dz dz dt = (2.29)

The action we obtain from (2.25) is

f  i d td z  dzJ (1  + zz)2
uu 2 ®zu dzU + dzu dzu

-  (1 +  zz)(1 + uu)2 v ' ' (1 + uu)2
(2.30)
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Therefore the Lagrangian of the model is

L = T  — V
dzudzU + dzu d Eu

V  = /  l d z d z ---- n  -w------J  (1  +  UUY

m I  i d z d z  uu
J (l + ^ )2(l+ « u )2' ( J

It is interesting to note that the potential energy functional is the same as that for
flat space. This can be understood as follows. For a 2+1 dimensional spacetime metric
of the form g = gi jdx1 dxJ — dt2, the potential energy is

V =  f  V det gKL d2x  ^  djU gIJ, (2.32)
J (1 +  uu)1

and this is invariant under a conformal transformation which rescales the metric

9 u  -  0 r } (2.33)

The metrics on M2 U {oo} and S 2 are conformally equivalent
, 2  dz dz

g = d z d z ^  (2.34)
( 1  +  zz)z

Since the potential energy term is exactly the same as that in flat space, the argument 
that allowed us to put a bound on the energy of static configurations again tells us 
that such configurations are described by rational maps. However, the kinetic energy 
functional is clearly different and therefore we expect the low-energy dynamics of lumps 
to be markedly different to that in flat space. It is also important to note that, while the 
potential energy of a rational map configuration is the same, the potential energy density 
is not because the measure on the two sphere is

2  i d z d z
( T 7 H +  (2 '35)

Therefore the potential energy density is
c dzu dzU + dzu d2u ( ^
£ =  (1 + zz)  -----   . (2.36)

( 1  +  uu)z

There is also a conceptual difference in the way that maps from C P 1 to C P 1 occur in 
the model in flat space and on the two-sphere. In flat space, finiteness of energy forces 
the field to tend to a constant value asymptotically which we can identify with the value 
of the field at infinity. During evolution, this constant asymptotic value must be imposed 
as a boundary condition on the field. On the two-sphere, configurations are maps from
S 2 =  C P 1 to C P 1 and the energy is finite because space is compact. Since S 2 is closed,
there are no boundary conditions on the field.
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2 .1 .4  T h e G eod esic  A pp roxim ation

The idea of approximating the low-energy dynamics of solitons by dynamics on the moduli 
space of static solitons was introduced by Manton in the context of monopoles [18]. The 
idea is that, since static solutions minimise the potential energy in a given topological 
sector, they form a “valley floor” in the space of configurations. If we consider slowly 
moving solitons whose initial motion is tangential to the valley floor, then the oscillations 
up the sides of the valley will be small, and it is hoped that ignoring these oscillations by 
restricting to motion along the valley floor will be a valid approximation to the true low- 
energy dynamics. The validity of the approximation has now been proved for monopoles 
[19], and although this is not yet the case for C P 1 lumps, it provides hope that this is 
simply a m atter of providing the correct mathematical analysis.

In the case of lumps, the static solutions are the holomorphic (or anti-holomorphic) 
configurations described by rational maps which depend on parameters, or moduli, a1. 
Letting these moduli depend on time a1 =  al(t), we approximate the configuration at a 
given time by u = u(al(t)). Substituting this into the Lagrangian (2.31), we obtain

where is the metric on the moduli space and, since the potential energy is constant in 
this approximation, the low-energy dynamics we obtain from this effective Lagrangian is 
that of geodesic motion with respect to the metric g.

We have seen that configurations in the C P 1 model which minimise the energy in a 
topological sector correspond to holomorphic maps from C P 1 to C P 1. We will see below 
that, for monopoles which obey first order equations, there is also a correspondence with 
such maps, although the correspondence between the fields of the monopole and the map 
is much less direct.

As we stated above, holomorphic maps from C P 1 to C P 1 are rational maps

9ij ald3 — 47m, (2.37)

2.2 Rational Maps

(2.38)

where p and q are polynomials with no non-constant common factor.
Rational maps have a degree which is the number of times u covers C P 1 as z covers 

it once. To calculate this we find the number of times u equals some constant value c.
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Setting u = c in (2.38) leads to the equation

p(z) — cq(z) = 0. (2.39)

so the number of solutions, and hence the degree of the map, is equal to the maximum of 
the degrees of the polynomials p and q. For a rational map of degree n, the topological 
charge Q is

^  1 ,  dzudzu n f  2 i d u d u  . .
Q = /  2  i d z d z . 2 * =  /--------- —  =  - n .  2.40

4 7 T J ( 1  +  UU) 2  4 7 T  J (1 +  uu ) 2

The degree of the map is related to the number of zeros of the potential energy density 
by the Riemann-Hurwitz relation. The general form of this relation concerns holomorphic 
maps between compact Riemann surfaces and is as follows.

Consider a holomorphic map f  : M  N  where M  has genus g and N  has genus 7 . 
The degree of the map, n, is defined as the number of times /  covers N  over the domain 
M.  Branch points, or ramification points, are those points around which the map looks 
like (z — a)m where m  > 1 , and the branching number at a ramification point, bf(p), is 
defined to be m  — 1 .

Define the total branching number

B = ' £ b f ( p ) ,  (2.41)
p(zM

then the Riemann-Hurwitz relation states that

g = n ( 7  -  1) +  1 +  y .  (2.42)

For a rational map from C P 1 to C P 1 which has genus zero we therefore have

B = 2(n — 1). (2.43)

The potential energy density on the sphere for a holomorphic map u(z) is

„  , 9  dzu d zu .  j  j \

£ - ( 1 + " > ( T W  ( ! " >

At points where dzu has a zero of multiplicity m, the energy density has a zero of
multiplicity 2m. Points where dzu — 0 are the ramification points of the map since
£ ( z  — a)m =  m(z — a ) m _ 1  is zero at z = a. Hence the relation (2.43) tells us that a 
one-lump has nowhere vanishing potential energy density, whereas a two-lump has two 
points (counted with multiplicity) where it vanishes. Of course, since the factor ( 1  +  zz)2 
is always positive, the same is true for the flat-space potential energy density.
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We can specify an arbitrary rational map of degree n by giving the 2n +  2 complex 
coefficients of the polynomials p and q. Since the rational map is unchanged if we multiply 
p and q by some factor, a rational map of degree n depends on 2 n + l  complex parameters. 
We have to be careful if we just write down a map by choosing these coefficients since 
there may be a non-constant common factor between p and q, in which case the degree 
of the rational map is less than the maximum of the degrees of p and q.

The condition that p and q have no non-constant common factor can be expressed in 
terms of their resultant R(p , q), which is zero if and only if they have one or more roots 
in common. We can obtain the resultant in terms of p and q as follows: Suppose that p 
and q have a common factor

p(z) = { z -  a)p(z) q(z) = (z -  a)q(z), 

where p and q have degree at most n — 1 . Then

(z -  a)p(z)q(z) = q(z)p(z) =  p(z)q(z).

If we write
n—1 n—1

q(z) =  £  bV  p(z) = b'.
i= 0 i= 0

then (2.46) becomes

71 — 1 71—1
Y / aiz ' p ( z ) - Y , b iziq(z) = 0.
i= 0 t= 0

In other words, the polynomials

p(z), zp(z), , zn~1p{z), q(z), zq(z),

are linearly dependent.
Thus the resultant is given by the following determinant

R{p, q) =

„n—1
«(*) .

Po p i P2 • • Pn 0 0
0 Po Pi • Pn—l Pn 0
0 0 Po • ■ P n - 2 P n - 1 Pn
qo Qi qi • qn 0 0
0 Qo q\ • • qn- 1 qn 0
0 0 qo • • qn - 2 qn—1 qn

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

which vanishes precisely when the polynomials (2.49) are linearly dependent and therefore 
p and q have a common factor.
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Knowing the resultant provides a natural way of parametrising the space of degree n 
rational maps, up to some discrete degeneracy. The freedom to multiply p  and q by a 
non-zero constant allows us to set the resultant to a non-zero constant value. Under a 
scaling p —>■ cp, q —» cq the resultant is multiplied by c2n, and so this fixes the freedom up 
to a residual Z 2n. Thus the set of polynomials p and q of degree n such that the resultant 
is a constant is a 2 n-fold cover of the set of rational maps of degree n.

2.3 M agnetic Monopoles

The magnetic monopoles we study occur in S U (2) Yang-Mills-Higgs theory in a limit in 
which solutions obey a first order differential equation. These are so-called BPS monopoles 
and it is these monopoles for which the correspondence with rational maps holds. The 
natural place to start, though, is with the Dirac monopole which occurs in a U( 1) elec­
tromagnetic theory. Since the asymptotic Higgs field breaks SU(2) down to U( 1), the 
asymptotic behaviour of SU( 2 ) monopoles may be related to that of the Dirac monopole.

2.3 .1  T h e D irac M on op ole

A discussion of magnetic monopoles naturally begins with the Dirac monopole [9,10]. 
These are the simplest example of magnetic monopoles occuring in a U(l) gauge theory. 
In addition, they will turn out to be a good long-range approximation to 577(2) monopoles. 
The main reference for this section is the review by Goddard and Olive [7], as well as 
Rajaraman [1 ], Coleman [6 ] and Figueroa-O’Farrill [20].

Rather than begin with a Lagrangian, we start with the equations of motion, which 
are, of course, Maxwell’s equations

V - E  = p V x B - E = j

V • B = cr V x E +  B =  k. (2.51)

It will be noticed that as well as the relativistic electric current (p, j), we have introduced 
the corresponding magnetic current (cr, k). There is a good reason that we didn’t derive 
these equations from a Lagrangian, which is that the the electric and magnetic currents 
couple to gauge potentials which are non-local with respect to one another.

Instead, the introduction of a magnetic current may be motivated by noticing that 
the sourceless equations are invariant under the duality transformation

B -> - E . (2.52)
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This is a symmetry of the equations with sources if they also transform as

f  -> P  h? -> - f  (2.53)

This simple example of electromagnetic duality has motivated the search for examples of 
dualities in non-abelian gauge theories. These dualities occur in the quantum field theory 
and allow strongly coupled regions to be explored since the dual theory is often weakly 
coupled.

A magnetic monopole of charge g sitting at the origin has (cr, k) =  (47r#£3 (x), 0 ) and 
gives rise to the magnetic field

B  =  f r -  (2 -54)

We would like to write B in terms of a real vector potential Ai

Bi  =  - t i i kd j A k . (2 .55)

In general, it is possible to find a gauge field or vector potential that gives rise to a par­
ticular magnetic field only in a contractible region. Since the magnetic field is not defined
at the origin, we have to remove this point which results in space being non-contractible.
The remedy is to find different gauge fields in different contractible regions. Since they 
must give rise to the same magnetic field, they must differ by a gauge transformation on 
the overlap.

It will be useful here to introduce a set of spherical polar coordinates

x  =  r ( l ± L t - i l ^ L t ? E z ± ) .  (2 .56)
\ l  +  Z Z  1 + Z Z  1 +  Z Z  J  V '

It should be recognised from (2.11) that z is a complex coordinate obtained by stereo­
graphic projection. In terms of conventional spherical polar coordinates, z — e2̂ / tan | .  

We will work with gauge fields in these coordinates defined by

dxi . dx2 , dx3 . /n
Ar = -77— A\  +  — A 2 +  ~^—A 3, (2.57)

or or Or
with similar expressions for A z and A s.

We will define two gauges, one, A f , defined everywhere apart from the half-line z = oo
and the other, A f  defined everywhere apart from the half-line z = 0. These lines are what
may be referred to as “Dirac strings” , which to us are just gauge singularities. Explicitly
we have
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Using erzz =  z(l +  zz )2/2 r2, the only non-zero component of the magnetic field is found 
to be

= (2-59)

On the overlap A f  and A f  are related by the gauge transformation

a.
Yz

2 =  (2.60)

This gauge transformation is only well-defined if g is an integer, which means that the 
magnetic charge is quantised.

2.4 The ’t Hooft-Polyakov Monopole
We now come to the model which is the home of the monopoles we will study: the S U (2 ) 
Yang-Mills-Higgs or Georgi-Glashow model [11]. Here we will use more modern notation, 
taking Lie-algebra valued, anti-Hermitian fields.

2.4 .1  T h e S U { 2) Y ang-M ills-H iggs M od el

The theory consists of gauge fields A M and an adjoint Higgs field <L, both taking values in 
the Lie algebra su{2 ). The norm of an element of the Lie algebra T  is given by

|| T  ||2=  - J t r ( T 2) (2.61)

Taking an orthonormal basis T a with the commutation relations

[Ta, T b] =  -2eabcT c, (2.62)

we can write, for instance, =  4>aT a.
As usual we have the covariant derivative

D ^  = d ^  + [ A ^ \ -  (2-63)

The field strength tensor is defined in terms of the commutator of covariant derivatives

E^v = [Dp, Du\ = dnAu — dvA^ +  [A^, A v\ (2.64)
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Under a gauge transformation g , the Higgs and gauge fields transform as follows

$  ->
A„ -> g~lAu.g + g^d^g ,  (2.65)

so the covariant derivative and field strength are conjugated by g

-> 9~lD f i g

Fpu/ -  ̂g 1̂ 'iu>g- (2.66)
The Lagrangian density consists of a Lorentz-invariant gauge self-coupling, a minimal 

coupling to the Higgs field and a symmetry breaking potential

C =  ± tr( F ^ F n  -  i t r ( D ^ D ^ )  -  | a ( | |  $  | | 2 - l ) 2 . (2.67)

This is clearly invariant under the gauge transformation (2.65), (2.66).
The equations of motion are found by varying the action S  =  f  C (Px with respect to 

the fields A M and <£> to obtain

DVF ^  =  [$, D ^ \  (2 .6 8 )
=  -A $(|| $  | | 2 -1 ) . (2.69)

We can also define the non-abelian electric and magnetic fields

E i =  _ F 0ij B i = _ \ tijkFjk (2.70)

2.4 .2  T h e Y ang-M ills-H iggs E n ergy-M om en tu m  T ensor

The best way to derive a symmetric gauge-invariant energy-momentum tensor is to write 
the action on a general curved spacetime manifold, explicitly in terms of the metric tensor 

and its inverse. We will take the metric to have signature (—1, +1, +1, +1). Note that 
it is not necessary to introduce a connection on spacetime in this case, since the non- 
abelian field strength is a two-form and hence independent of the metric while the Higgs 
field is a spacetime scalar. Varying the action with respect to the metric gives us the 
energy-momentum tensor on this curved manifold, and evaluating this when g ^  is the
Minkowski metric = diag(—1, +1, +1, +1), gives the energy-momentum tensor for our
model.

The action is
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where

C = -Mg*?g*sF ^ F f t )  -  h r ^ D a9 D p9)  -  L ( | |  $  | | 2 - l ) 2 (2.72)

The variation in S  comes from the variation of the inverse of the metric ga& and the 
variation of the measure y /— det g ^  d4x.

The energy-momentum tensor T a/3 is defined (see [24]) by

dS
9ga{3

j  T Q/3 y / -  det g ^ d Ax = J —  + \ c g afidgap 2

where we have used the standard result that
d

dga/3
det g ^  =  det gap.

y / -  det d4x, (2.73)

(2.74)

Plugging in (2.72) gives us the energy-momentum tensor for the model 

T ae =  - I t r  ( ^ g ^ F ^ F y s  -  F ^ F ^  + Da^ D ^  -  ^gal!

+ |A (|| <E> | | 2 - l f g aP. (2.75)

Evaluating this when ĝ w =  we obtain the energy

Tm = - l- j t i ( D i$ D i$  + BiB i + EiEi + D0$ D 0<!>) +  V ($) d3x. (2.76)

where E(4>) is the potential |A(|| | | 2 —l) 2.
For finite energy we require that each of these terms decays at least as fast as r -2 . 

In particular the condition that Vr(4>) —> 0 implies that the asymptotic Higgs field 4>°° 
satisfies

$  ll2=  1 . (2.77)

Choosing an orthonormal basis for the Lie algebra T a with $  =  (f)aT a, this means that 
(f)acf)a = l 5 so the Higgs field lives on a two-sphere.

In terms of symmetry breaking, the fact that the Higgs has a non-zero value means 
that the full symmetry group S U (2 ) is broken to the exact subgroup which fixes the Higgs 
field at each point which is simply the group U( 1) generated by the Higgs field itself. We 
can think of this residual U( 1) as being electromagnetic and define the electromagnetic 
field strength as

(2.78)
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Similarly we can define the electric and magnetic charges, q and g , of a solution as 
follows. The electric charge is

q =  f  E T d S i
oo

= - \ [  t r { m ) d S i  
2  Js*,= J  dit i($Ei)d?x.  (2.79)

For a static solution, ie. one for which D0$  = 0 and D0Ei = 0, the equation of motion 
(2 .6 8 ) implies

DiFoi = DiEi =  [$, L>0$] =  0 , (2.80)

and hence we can write the electric charge as

Q - ~ \ J  H(Di^Ei) d3x. (2.81)

Similarly, using the Bianchi identity DiBi =  0, the magnetic charge is

(2.82) 

(2.83)

2 .4 .3  T h e T op o logy  o f M agn etic  C harge

The condition of finite energy (2.76) implies that asymptotically the Higgs field and its 
covariant derivative must satisfy

— i t r ( $ 2) ->> 1 (2.84)

D &  -¥ 0 . (2.85)

We will refer to fields satisfying these conditions as being in the Higgs vacuum.
The magnetic charge of a monopole is given in (2.82) by an integral over the sphere 

at infinity, on which the fields are in the Higgs vacuum. We will use this fact to compute 
the magnetic charge of the monopole in two different ways. The first of these shows that 
the magnetic charge is proportional to the degree of the map from S 2 to S 2 defined by 
the Higgs field. The expression for the degree is just the same as the expression (2.10)

g = [  B™dSi  
Jsi,= J t r (Di$Bi)d3x.
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obtained for the 0(3) model field 0. The degree of this map corresponds to an element 
of the homotopy group H2(S2).

The second method of calculating the degree uses the fact that there are gauges in 
which the Higgs field looks like a Dirac monopole (2.58). In such a gauge, the topology 
is no longer contained in the Higgs field, but in the overlap between different gauges, 
which is an element of the residual symmetry subgroup H  corresponding to an element of 
ni(iif). This is an example of the isomorphism between the homotopy groups n 2(G/H)  
and n ^ t f )  when G is simply-connected.

Initially we will work in a gauge in which the Higgs and gauge fields, and therefore 
their Cartesian derivatives, are smooth. We will take the liberty of writing them as real 
vectors 0 , A* where

T a are the orthonormal basis of su(2) generators satisfying (2.62). Thus we can rewrite 
the Higgs vacuum conditions (2.84), (2.85) in terms of standard M3 vector algebra

Decomposing A* into parts orthogonal and parallel to 0  and using the above equations 
gives

$  -  <f)aT a Ai = A “T a. (2 .86)

0 - 0 = 1  
di<j> = 2 A i x 0

(2.87)

(2 .88 )

A* =  - 0  x di(f) +  0 ai}

where a* is a smooth field defined by this equation. 
Computing the non-abelian field strength we find

(2.89)

F ij = diAj  — djAi -  2Ai x A j

=  di4> x dj(j> -  ~ 0  • ( < % 0  x dj(f>) 0  +  (diCtj -  djdi) 0 .

The corresponding electromagnetic field strength is

(2.90)

F?P - 0  • F ^ -  ^ 0  • (< % 0  x dj(t>) +  didj -  djdi. (2.91)

Now the magnetic charge (2.83) is

g =  [  B TdSi .
J s 2ôo

(2.92)
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Putting in the field strength (2.91) we obtain

g — — j ' (^ '0  x T  2eijkdjdk) dSi. (2.93)
z J s2u oo

The term involving a vanishes using Stokes’ theorem since djd* is smooth and S^  is 
closed. We recognise the term involving (f> to be —An times the degree of the map from 
S 2 to S 2 defined for the 0(3) model (2.10), and therefore the magnetic charge is An times 
an integer. We have therefore shown that the magnetic charge of a monopole is governed 
by the homotopy class, n2(S2) =  Z, of the asymptotic Higgs field.

Now we can use (2.85) in another way. Denote the value of the Higgs field at the north 
pole of the sphere <&N. We return to Lie algebra-valued fields from now on. Consider a 
path C from the north pole to a point and define the following path ordered exponential 
along this path

g =  Pexp j  A-d l .  (2.94)
Jc

From the properties of the path ordered exponential we know that this is a unitary gauge 
transformation and that it obeys

dig = Mg- (2-95)
If we gauge transform by this group element we obtain a new Higgs field =  g~l$g 
which obeys

= g - \ D i$)g = 0. (2.96)

In other words takes the constant value A>N along the path.
It is not possible to define a gauge transformation in this way that covers the whole 

sphere, since a sphere is not contractible, so we will define two gauge transformations, one 
valid on the “northern” hemisphere, gN, and the other on the “southern” , gs . We obtain 
these gauge transformations by specifying the path along which we integrate to get to a 
particular point.

To get gN we take paths from the north pole along great circles. Clearly this will be 
well-defined everywhere apart from the south pole. To obtain gs we firstly take a fixed 
great circle (corresponding to a fixed group element) from the north pole to the south 
pole, then to reach a particular point we take the great circle from the south pole.

We can consider the overlap of these gauge transformations on the equator. Since the 
transformed Higgs is &N in both cases it must be that gN and gs differ by an element in 
the Cartan subalgebra that preserves <&N. ie.

9s =  gNh. (2.97)
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Furthermore, since the original gauge field Ai and the paths vary smoothly, gN and gs are

The expression for the magnetic charge is gauge invariant, hence we can work it out 
in the gauges just described by splitting up the integration into northern and southern 
hemispheres.

The gauge fields on the two hemispheres are

E  denotes the equator of the sphere in an anticlockwise direction. The last expression 
is the Jacobian of the map h from the equator to U(l). In other words the result is the 
winding number of this map which is an element of the homotopy class IIi(iS'i).

To sum up, we can either work in a smooth gauge in which the topological information 
is contained in the Higgs field and the gauge fields are topologically trivial, or we can work 
in gauges on patches in which the Higgs field is constant and the topological information 
is contained in the gauge transformation between the patches.

2 .4 .4  T h e H ed g eh o g  A n satz

The vacuum solution

continuous and equal at the point on the equator which lies along the fixed path. Hence 
h is a continuous function from the equator to the stabiliser of $ N, ie. a map from S 1 to

with field strengths

(2.98)

F $  =  -  d t f )
Ffj = -  3 ,af). (2.99)

Now we use Stokes’ theorem to compute the magnetic charge

/,h ldihdli. (2 .100)

$  =  n  A^ = 0 (2 .101)

where n is a constant unit vector, is symmetric under Galilean transformations. In par­
ticular, since it is constant on the sphere at infinity, the degree of the Higgs field, and
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hence the magnetic charge, is zero. In order to find a solution with magnetic charge one, 
’t Hooft [12] and Polyakov [13] (independently) looked for a solution with the maximum 
amount of symmetry for the Higgs field at infinity to have degree 1. This is given by a 
map where the Higgs field points in the same direction in internal space as the direction 
of the point from the centre of the monopole, so the field is visualised as pointing directly 
outwards. The ansatz is

For the resulting monopole to be well-defined at the origin and be in the Higgs vacuum 
at spatial infinity we require that

It is easily verified using (2.93) that this gives rise to a monopole with magnetic charge 
± 47t when H(r)  —» ± 2 r respectively.

We will rewrite the ansatz in terms of the coordinates (2.56), representing the su(2) 
generators T l in terms of the Pauli matrices as i t 1. We obtain

We will use the ansatz in this form to find a one-monopole solution below.
The hedgehog ansatz is spherically symmetric in the sense that a spatial rotation of 

the fields can be undone by an equivalent gauge rotation, ie. the fields are invariant under

(2 .102)

K  — 1 =  o(r) H  =  o(r) as r —> 0

K  —¥ 0 \H\ —> 2r as r —> oo. (2.103)

A r = 0

Az = - ( l - / C ( r ) ) c y P  
A ,  =  ( 1  -  K(r)) (2.104)

where

(2.105)

a diagonal subgroup of SO(3 )spatlal x SO (3)gauge.
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2.4 .5  B P S  M o n o p o les

An interesting limit of the SU (2) Yang-Mills-Higgs model was proposed by Prasad and 
Sommerfield [14]. They suggested sending the coupling constant A to zero whilst retaining 
the condition that (/>°°a lives on the unit two-sphere. In this limit we find solutions 
satisfying first order differential equations that minimise the energy in a given topological 
sector in an analogous way to lumps, following the famous argument of Bogomol’nyi [15] 
From now on, it is assumed that we have taken the Prasad-Sommerfield limit.

The energy (2.76) of a solution in this limit is

£  =  - 1  f  t r ( A * A $  +  B iB i  +  EiEi +  D 0$ D 0$ )  d3x. (2.106)

We will consider the energy of a static solution for which the fields A M and are inde­
pendent of time. Introducing an arbitrary angle 0, we can write

E  = — -  J t r (Ei — (D{$) sin 0)2 d3x — -  J t r (Bi — (D$ )  cos 9)2 d3x

-  ^ 2  J  t r ( E iD ^ )  -  ̂  J  t r ( A A ^ ) .  (2.107)

Clearly the first two terms are positive whilst the last two terms are the electric and 
magnetic charges (2.81) and (2.83), therefore we have

E  > qsin6  +  gcos6.  (2.108)

The most stringent bound is obtained by choosing tan#  =  q/g so that

E > (q2 + g2) ^  (2.109)

Of course, we may identify the energy in the rest frame with the mass of the monopole 
and so we have arrived at the Bogomol’nyi bound on the mass of a monopole or dyon.

A purely magnetic solution which saturates the bound M  > \g\ must satisfy the 
BogomoVnyi equations

Bi = ± D i$  for g ^  0 . (2 .1 1 0 )

It can be checked that solutions to the Bogomol’nyi equation satisfy the full second- 
order equations of motion (2.68) and (2.69). Monopoles which satisfy the Bogomol’nyi 
equations in the Prasad-Sommerfield limit are now referred to as BPS monopoles, although 
in fact Prasad and Sommerfield found their solution using the second order equations 
of motion. The solution they found, the BPS monopole, corresponds to a spherically 
symmetric monopole of charge 1 sitting at the origin and will be described below.
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The Bogomol’nyi equations Bi = D rewritten in terms of the coordinates (2.56), 
take on a special form [34]

[Dr - i $ , D z] = 0 (2.111)

[Dr +  Dz\ = 0 (2.112)

2iDr$  =  (I+rf )2[C „ ft] . (2.113)

Of course, in a unitary gauge, (2 .1 1 2 ) is just the Hermitian conjugate of (2 .1 1 1 ).
It is the appearance of the commutators (2.111) and (2.112) which enable us to define

a rational map associated to a monopole. Before we do this, however, we will present the
explicit one-monopole solution first discovered by Prasad and Sommerfield.

2 .4 .6  T h e B P S  M on op ole

We will find an explicit, smooth, one-monopole solution of the Bogomol’nyi equations 
(2 .1 1 1 ), (2.112), (2.113) using the hedgehog ansatz (2.104). Firstly we need the following 
properties of the projector IP and its derivatives:

d-zdzw =  1 , 2(II -  2IP)
( 1  +  z z y

[ ( n - 2 i p ) , 0 2ip] =  2dzjp 

[(n -2F),cyp] = - 2cyp
PJP.ftlP] =  1 (I -  2F) (2.114)

( i  +  z z y

If we think of 2IP — II as being an element of the Cartan subalgebra of su(2), then dzIP 
and dzIP are proportional to the step operators.

Now plugging in the ansatz (2.104), the equations (2.111) and (2.113) give the following 
equations for H(r)  and K(r)

(rdrK  -  H K )  dzIP = 0 
{rdrH  -  H  +  1 -  K 2)(H -  2P) =  0. (2.115)

If we substitute

we obtain

H(r) — 1 P rh(r) K(r) = rk(r ), (2.116)

drk — hk = 0  drh — k2 = 0 , (2.117)
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which implies that hdrh — kdrk = 0 and hence dr(h2 — k2) =  0. The solution with the 
correct boundary conditions is

h(r) =  —2 co th 2 r  k(r) = 2 cosech2 r. (2.118)

We have thus obtained a smooth monopole solution

4? =  i  coth 2 (H — 2P)

A r = 0

A z = — (1  — 2 r  cosech 2 r) dzIP
A z = (1  — 2r cosech 2 r) dzIP. (2.119)

2.5 The Jarvis Rational Map
There are two crucial properties of BPS monopoles that allow us to define the Jarvis 
correspondence of n-monopoles with rational maps from C P 1 to C P 1 of degree n. These 
are the Bogomol’nyi equations (2.111), (2.113) and the finite energy boundary conditions, 
which we will write in a more precise form. In fact, all we need to define the Jarvis 
rational map corresponding to a monopole is the zero curvature condition (2 .1 1 1 )

[Dr -  i $ , D z] = 0, (2.120)

and the finite energy boundary conditions. It is only necessary to consider the other 
equation (2.113) to show that a rational map uniquely specifies a monopole up to gauge 
transformations.

Another way of looking at the zero curvature condition (2.120) is that it means that 
is possible to find a gauge in which this commutator is trivialised, in other words, a gauge 
in which Ar — = A z = 0 so that

[Dr - i $ , D 2] = [dr td2 ] =  0. (2 .1 2 1 )

Since these combinations of fields are not anti-Hermitian, the gauge transformation which 
achieves this trivialisation is necessarily non-unitary.

To define the Jarvis rational map [34], we start in a unitary gauge in which the Higgs 
and Cartesian gauge fields are smooth and well-defined on the whole of M3. We will specify 
the finite energy boundary conditions by stating the asymptotic behaviour of the fields in 
unitary gauges in which the Higgs field points in a fixed direction. These gauges are not 
well-defined on the whole of R3. This is essentially a corollary to the expression of the
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magnetic charge in terms of Ui(U(l))  (2.100), when the monopole obeys the Bogomol’nyi 
equations. We found gauge transformations gs (z /  oo) and gN (z ^  0) which take us to 
gauges in which the Higgs field points in a fixed direction. The gauge fields in the Higgs 
vacuum are then proportional to the Higgs field and therefore also point in this direction. 
From the radial magnetic field

71
Brm ~  ̂ T3> (2.1.22)

we deduce that A z and A z are the same as those of the Dirac monopole (2.58). By 
performing an r-dependent gauge transformation in the fixed direction to set A r =  0 and 
using the radial Bogomol’nyi equation B r — Dr&, we deduce that

i ( l  -  J )  T3. (2.123)

Thus we have asymptotic expressions for the fields in which the degree of the map 
appears explicitly

* s =  ' ( 1 - J ) r 3  +  o (i )

Ar = O ( ^ )
c nz m _, 1 .

A‘ = 2 ( 1 + z i f * + 0 ( ; }

^  = - 2 ( l f i i ) T3 + 0 ^  ^

and

^  = l (1- £ ) r3 + 0^
A r =  O ( ^ )

^  =  - r i t ^ ) T 3 + 0 ^
71 1

A f =  r 3 +  O (-), (2.125)
2 z(l +  zz) r

where T3 =  . We will refer to these as the southern and northern gauges. Asymp­

totically they are related by the gauge transformation
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To define the rational map, we consider the scattering equation introduced by Hitchin 
[25] along half-lines from the origin

(DT -  i$)s =  0 , (2.127)

for a complex doublet s. In the southern gauge this equation is of the form

{ ^ + ( l - ^ ) ( ; _ ° 1 ) + C ( r ) } s  =  0 , (2.128)

where C(r) is an integrable matrix satisfying
poo

/ |C (r)|d r < oo. (2.129)
Jo

The idea is to show that there is a basis of solutions Si, s2, which, as r —> oo, satisfy

r~%erSi ->• ^  r%e~Ts2 -» . (2.130)

We follow the method of Coddington and Levinson [26]. The first step is to regard
—C (r)s as a forcing term. We find the Green function G(u,r)  satisfying

^ T “ (  1 Q 2 r i ° _ n ^ G (u H) = S ( r - u), (2.131)

together with certain boundary conditions. In the case given above we have

G(u,r) = -  ( 6 Qr  ̂ qJ u > r

0  0  \  ,
, . n )  u < r. (2.132)

0  eu~r (J ) 2 /  “  v '

The solution is then given by
poo

sj( r ) =  y j ( r ) +  /  G(u,r)C(u)sj(u)du,  (2.133)
J ro

where y j(r) is a solution to the scattering equation without the forcing term, in this case

yi (r)=r%e~T or y 2 (r) =  r~*er. (2.134)

The constant ro is chosen so that



CHAPTER 2. LUMPS, RATIONAL MAPS AND MONOPOLES 30

We will write (2.133) in the form of a mapping T

Sj{r) =y>(r)  +  (Tsj)(r).

We can obtain a solution to this iteratively as follows : 
Given a trial solution define y^+1  ̂ by

y<’+1)(r) =  yj(r) + ( T y f )  (r ).

Choosing y f \ r )  = 0 gives y \L)(r) =  yj(r) so clearly_

y f \ r )  - y f ’(r) = |y 3-(r)|.

Now (2.137) gives us the formula

y^+1)(r) -  y {- \ r )  = T  (y *-0  -  y ( r ) .

Writing out the right-hand side in full we have

y . i , + 1 ) ( r )  -  y ' T )  =  [  e « - r ° ( r ) ? )  c ( u ) ( y ^ ( “ ) -  y l , _ 1 ) ( “ ) ) du

.(0)

^0
•oo

0  0

Taking the norm of both sides we use either

/  (6 0r) l)̂ )  du-

~r—u I “ V  <  1 <  eu -r (3
to give us two inequalities

y ? 2+1) ( r ) - y ) l)(r )(0 ,
poo

<  /  \C(n)\e'
J ro

U \  2

u < r 

r < u,

y {i \ u) ~ y {r l)(u)

and

/
OO ri

\C(u)\eu~r ( 0  2 y f ’(u) -  y ^_ 1)(n)

The claim is that

du.

y j ' + 1 V ) - y < ’V )  ^  ^  I y j ( r ) .
Mi

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)
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where yj(r)  is either yi(r)  =  r%e~r or y 2(r) = r~%eT, and hence the series tends to 
a unique solution with the given asymptotic properties. For y i(r) the proof follows by 
induction using (2.143), and for y 2 the proof follows similarly using (2.144).

Further analysis shows that, as r oo

roo

r~%er j  G(u, r)C(u)si(u)du  —► 0

G(u, r)C(u)s2(u)du —► 0, (2.146)

'r0
roo

r o

so the solutions defined by (2.133) have the claimed asymptotic behaviour (2.130).
We can write the solutions (2.130) Si and s2 in the form of a matrix

S = ( s 1 s2V  (2.147)

The Wronskian of Si and s2 is the determinant of this matrix which is independent of r 
since

dr det S  =  t r (S-'drS)  = - t r ( 5 _1 (Tr -  i$)S)  = 0 . (2.148)

The asymptotic behaviour (2.130) therefore implies that det S  = 1 .
In the S U (2) case we can write the Wronskian as

W (si,s2) =  s[Js2 where J  =  ^  . (2.149)

Now the commutator [Dr — z<£, Dg] = 0 implies that D2s are also solutions of the
scattering equation and therefore

o ,  : £ ; ! ) ■  <™°>

If we take a different basis of solutions

S' = S M (z ,z ) ,  (2.151)

then we find

D-ZS' = S'A!{z,z) = S ' i M ^ A M  +  

so A  transforms like a gauge field.

(2.152)
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In the southern gauge we can take the following basis of solutions to the scattering 
equation

5 s =  (s?  s f )  =  ( Bl s2)  ( ( 1  \ ZZ) ’ ( 1  +  °_}_ , )  . (2.153)

Then, using the aymptotic form of A z in the southern gauge (2.124), we find that

DzS s = S s A s =  Ss O Q .  (2.154)

Since A s is independent of r, and si decays faster than S2 , it must be that

4 s =  ( J  f )  ■ (2-155)

In particular

D-z sf =  0. (2.156)

Similarly, in the northern gauge the scattering equation is also of the form (2.128) but
with a different integrable matrix C(r). The same argument gives us solutions Si and S2

satisfying

r~%ersi ->• ^  r ^ e _rs2 ->• ^  . (2.157)

Now defining the basis

=  ( s f  s f )  =  ( Sl s2)  (<X + (i + 0̂ _ }^ ) (2.158)

we find similarly

d _s n  = s n a n where a n =  of2\   ̂ ^  15^

and DzSi = 0 .
If the unitary gauge transformations which take us from the original, smooth gauge to 

the southern and northern gauges are gs and gN then we have solutions gss f  and gNs± 
in the original smooth gauge which satisfy

(Dr -  i$)gssf =  D-Zgs sf =  0 (Dr -  i$ ) < A f  = D-zgNs f  =  0. (2.160)

Since both solutions decay as r —> oo, this implies that gNs± = f{z )gs s f .
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We can find f ( z )  from the Wronskian W(sf , s^ )  which is again independent of r. 
Asymptotically we have

2 - ' l \  m „ /  rzz
"  ' I ,  : ' : : )  ( 2 '1 6 1 )

Now, using the fact that, for a matrix M  in SX(2,C), J~1M tJ  = M _1, we find 

f ( z )  = W (s f , s $ )  = (s(y js%

=  (zz)-5 ( 1  0 ) Jg ^- 'g Z  ( ^ )  

=  (z z )- t  ( 0  1 ) ( (*}‘ (f°) t )

1

yn (2.162)

The original gauge is one in which the Euclidean gauge fields are well-defined and the 
gauge field A 2 = ^ Ai is zero at the origin. Given that D2gs sf =  0, this means that gs sf 
is holomorphic at the origin.

Writing

gss f _  ( p (z ) 
. « ( * )

(2.163)
r=0

which is defined for z ^  oo, the Jarvis rational map is defined to be

(2.165)

q(z)/p(z). (2.164)

Similarly

„N N _  ( P ( l / z ) \  _  J _  (P(z)'
3 1 r = 0  ■ w  / z ) )  -  z» U w .

is defined for z /  0 and gives the same rational map on the overlap. If p and q are 
polynomials in z, and p and q are polynomials in 1/z, then it must be that the maximum
of the degrees of p(z) and q(z) is n. Therefore q(z)/p(z) =  q ( l / z ) /p ( l / z )  is a rational
map of degree n.

We can characterize g5sf and gNs f  as being solutions of the scattering equation which 
decay as r —> oo. Any decaying solution of the scattering equation will be of the form 
si =  f ( z i z )9Ssi and thus evaluating this at the origin and taking the ratio gives the same 
rational map:
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In general, such a solution will satisfy Dzs[ =  dz log f ( z ,  z)s'v
If we begin in a different smooth unitary gauge, related to the first by a gauge trans­

formation u , then the solutions to the scattering equation will be ugssf and ugs sf. 
Evaluating the decaying solution at the origin gives

« ( 0 ) ( ®  =  ( “* £ )  f ® .  (2-167)
M z ))  \ ~ P  a )

which results in the S U (2 ) Mobius action on the rational map

q{z) Qiq(z) -  Pp(z)
p{z) fiq(z) +  ap{z) '

(2.168)

Thus the correspondence between a monopole and a rational map is defined modulo 
constant SU( 2 ) transformations which correspond to the choice of unitary gauge at the 
origin.

2.5 .1  T h e Jarv is G auge and th e  M etric

A consequence of the equation [Dr — i$,  D z\ = 0 is that we can transform to a non-unitary 
gauge in which Ar — z<f> =  A z = 0 and the other fields A r +  and A z can be written 
in terms of a Hermitian matrix. In particular, there is a gauge, unique up to constant 
SU{2) gauge transformations, in which this Hermitian matrix is well-defined on R3 and 
equals the identity at the origin. This gauge is referred to as the Jarvis gauge and the 
Hermitian matrix function % from which the non-zero components of the fields may be 
obtained is termed the metric associated to the monopole.

In the previous section we found a basis of solutions to the scattering equation s f , sf 
satisfying

D-zS s =  S s ( °  where S s =  ( s f  s f )  . (2.169)

If we change to a new basis

S s = Ssv s V s =  L  vS(*’ A  , (2.170)

then, using (2.152), we find

D t S s  =  5 s  ( j j  a ' 2 +  ^ S ) (2.171)
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So, by taking

vs (z,z) = -  j  dza f2( z , z ), (2.172)

we obtain a basis S s defined for z /  oo satisfying

(Dr -  i $ )S s = D zS s =  0 . (2.173)

The same carries through for S N to obtain a basis defined for z /  0 satisfying

(Dr -  i$ )S N = D-zS n  = 0. (2.174)

As before, if we evaluate gs S s and gNS N at the origin we obtain matrices which are
holomorphic on z oo and z 0  respectively.

S  q S9 S N  c N= F b(z) g S
r —0

=  F N(z).
r=0

Defining

S  q S  Tp S —1ab = g*SbF aN = gNS NF N-\,

(2.175)

(2.176)

corresponds to a change of basis. It is easy to see that aN las is independent of r  and z 
and is equal to the identity at the origin, therefore we can define

a"
a ~ <  aN

z ^  oo 
z ±  0  ’ (2.177)

which is well-defined on the whole of R3.
The matrix a also corresponds to a basis which satisfies (Dr — i$)a = Dza =  0. 

Therefore the fields in the original unitary gauge are

Ar — = —{dra)a~l A z -- —{dza)a~l .

Since the fields are anti-Hermitian in this gauge the other fields are

A r +  i$> = at - 1 (<9rat) A z = a^- 1 (52a^).

Now if we gauge transform by a we end up in a non-unitary gauge in which

A r -  = 0 A z = 0

A r + i $  = U - 'd rU  A z =  U ~ldzU.

(2.178)

(2.179)

(2.180)
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where PL =  a) a. This is the metric, a unimodular, Hermitian matrix function defined on 
R3 and satisfying PL(0 ) =  H. Note that PL is independent of the unitary gauge in which 
the monopole is originally defined. The condition that PL(0) = II and that PL is Hermitian 
means that this gauge is defined up to conjugation by a constant S U ( 2 ) matrix. It is 
continuous at the origin and smooth away from the origin.

In this gauge, the Bogomol’nyi equations (2.111) and (2.112) are trivially true and the 
third equation (2.113) is equivalent to the Jarvis equation for the metric Pi

As pointed out in [47], following a suggestion of Manton, we can determine the rational 
map from the metric as follows. In the original unitary gauge we have a decaying solution

gauge in which D r — z4> = dr and D2 =  dE. In a non-unitary gauge, it doesn’t make sense 
to talk about the decaying solution so instead we recognise that this is the solution which

solution to the scattering equation in the Jarvis gauge, or equivalently an eigenvector of 
—z4>°° in this gauge with eigenvalue +1. Since a-1 (r =  0) =  II, evaluating this at the 
origin gives the rational map as before.

It will be instructive to go through the procedure that gives rise to the Jarvis rational 
map and the function PL for the BPS monopole.

We found the fields of the BPS monopole situated at the origin above

(2.181)

to the scattering equation gNs f  and a gauge transformation a which takes us to the Jarvis

tends to an eigenvector of —i$°° with eigenvalue +1. Hence a 1gNs± is the r-independent

2 .5 .2  A n  E xam ple: T h e B P S  M on op ole

4? =  i \  c
\ 2 r

(  2  r

sinh 2  r

sinh 2  r 
2  r

A r = 0. (2.182)

This corresponds to a smooth Cartesian gauge.
The eigenvectors of 4> are (1 , - 2 )* and (z, 1)* so the gauge transformation gs which 

takes us to the Dirac string gauge excluding the line 2  =  oo is
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In this gauge we have

5 i f  „ 1 \ f l  0$  =  -  coth 2 r — — . . _ 1
2 V 2 ry/ V° _ 1

. 5  z A  0 \  2 r /  0  0A b =
2 ( 1  +  zz) \ 0  —1 J sinh 2 r ( l  +  zz) \ 1  0

As - _  * A 2r * > 1
2 ( 1  + zz) \ 0  — 1 /  sinh 2 r ( l  +  zz) \ 0  0 y 

A sr =  0. (2.184)

The solutions to the scattering equation (Dr — i$ )s =  0 with the prescribed asymptotic 
behaviour are

,s _  i%r(l + zz) / l \  S — sinh 2 r  / 0

sinh2 r \ 0 y * V 2 r ( l  + zz) \ 1
so6 =  \ i  l : : : '  ( )  *>? =  i ; ) ,  (2 .1 8 5 )

and these satisfy

0

2 r ( l + z z ) 
sinh 2 r

D , ( s f  sf J =  ( s f  s f  J (0 <1+“ >2J , (2.186)

so clearly D 2 (si -  yf—s„) =  0 .
In other words, starting from a smooth gauge, the gauge transformation which trivi- 

alises the commutator [Dr — z4>, D2\ is

"  7 T P 3  ( 1  f l  I * —  H .  n -  w w

Evaluating this at the origin we obtain a holomorphic representative of the rational 
map in this patch

F s (z) =  gs (0) =  J )  , (2.188)

corresponding to the rational map —1/z. It should be noted that this is a coset rep­
resentative in the coset space SL(2 ,C) /B ,  where B  is the group of unimodular upper
triangular matrices. This space is isomorphic to C P 1, but it can also be identified with a 
complex flag manifold [21-23].

If we work on the other hemisphere we take the gauge transformation
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so the fields are

$ N =  § s 

A "  =
N 1 / 1  0  \  2 rz  ( 0  0

2z(l + zz) \0  - 1 J 2: sinh 2 r ( l  +  zz) \ 1  0

a» = , 1 A l ° \ + 2rz / 0 1
2z(l +  zz) \ 0  — 1 /  2: sinh 2 r ( l  +  zz) \ 0  0 y

A ?  = 0. (2.190)

The solutions to the scattering equation in this gauge are

N i2r(l  + zz) f l \  N zzsinh.2r f 0

and

S° zzs in h 2 r  (oj Sl V 2 r ( l  +  zz)  ( l j  ’ ^ ' 19^

0
D,  ( s f  s f  ) =  ( s f  s f  ) ( " ) , (2.192)

ie. D-z (Sl +  ^ s o )  =  0.
Therefore the whole gauge transformation is

I  i \  / , / M u g L  Q \ i \
g* =  2 V 22' sinh2r ---------- 1+22 . (2.193)

\ h  + z z { - l l )  ^  0  \ 0  1 J

This gives us a holomorphic representative on the northern hemisphere

F n (z) = gN(0) =  (  ^  U  . (2.194)

The difference between the two final results is a holomorphic function on the overlap

g ^ ' g 3 = , (2 .1 9 5 )

which is related to the degree of the rational map.
We calculate % from gN or gs as follows

a5  =  gs F s (z)~1 aN = gNF N( z ) - \  (2.196)

finding
2  r ^  sinh 2 r /w

i S h 2 f  “ 2 ^ ( “  (
where IP is the projector introduced in the hedgehog ansatz (2.104)

1 / - ! '
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2.6 Summary
We have given a basic introduction to the two models studied in the remainder of this 
thesis. In particular we described static C P 1 lumps on the sphere as rational maps and 
defined the metric on the moduli space which we can use to approximate low energy soliton 
dynamics. We derived the Bogomol’nyi equations which describe static monopoles in the 
Prasad-Sommerfield limit and saw that they take on a special form in spherical polar 
coordinates involving the complex coordinate on the Riemann sphere. This allowed us to 
define the Jarvis rational map and a metric from which the fields may be calculated in the 
non-unitary Jarvis gauge. The metric satisfies the Jarvis equation, which is equivalent to 
the Bogomol’nyi equations in this gauge. We tried to make the definition of the Jarvis 
rational map as explicit as possible and have provided the detailed example of the one- 
monopole. Thus we have now layed the foundations for the work which follows.



Chapter 3 

Two-Lum ps on the Sphere

In this chapter we will use the geodesic approximation introduced in Chapter 2 to study 
the low energy dynamics of two-lumps on S 2 x R. The low energy dynamics of a single 
lump on S 2 x M has already been studied by Speight [29] and yields some non-trivial 
geodesic motion. One interesting feature of the scattering of two solitons in many models 
is tha t solitons which collide head-on emerge at right angles to the initial direction of 
motion. We will find that this is the case here too, and in fact we can find a submanifold 
on which geodesic motion is remarkably similar to that of two monopoles.

Since the space on which the lumps live is compact, we are using the term scattering 
loosely. Instead of a motion in which the solitons move in from spatial infinity, interact, 
and return to spatial infinity, our lumps start from localised, “zero size” lumps, interact, 
and return to zero size lumps. Thus our asymptotic states may be identified with zero 
size lumps. We will also find that such a process takes place within a finite time, which 
is a consequence of the compactness of space.

The work in section 3.5 was carried out in collaboration with Sanjeev Shukla.

3.1 Degree Two Rational Maps
We begin by describing the space of degree two rational maps, which is a ten-dimensional 
manifold isomorphic to the moduli space of two-lumps. Six of these dimensions can be 
identified with the rotational symmetries of the target space and spatial two-spheres, 
leaving four non-trivial parameters. By studying the potential energy density we can see 
how these parameters affect the solution.

Our aim is to use the two natural S L ( 2 , C) actions on rational maps which preserve the 
degree, one on the spatial variable z and the other on the target space u, to parametrise 
degree 2  maps. We will denote them S L ( 2 , C)s and S L (2, C)T respectively. These group 
actions contain the S U (2 ) rotational isometries of the spatial and target space two-spheres.

40
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We can represent a general degree two rational map as a 3 x 2  matrix

f p 1 p1 p3\  p(z) p 1l1( z ) + p 2l2( z ) + p 3l3(z)
W  <?2 9 7  q(z) qH,(z) + qH2(z) +  q % (z ) ' { ' 1

where k(z), i = 1 . . .  3 are a basis of degree two polynomials. Multiplying M  by a non-zero
constant

(3.2)

leaves the rational map invariant so we must identify matrices which differ in this way.
A convenient basis of polynomials is found by considering the generators of spatial 

S L ( 2,C) transformations

L 2 =  > 2 +  1 ) ±  L,  =  - i z ± ,  (3.3)

which obey the commutation relations

[Z/i,Z/2] tijkLk- (^’4)

Under an S L (2,C)S transformation

A 7 i— R
z ^  ^  with AD  — B C  =  1, (3.5)

Cz + D  v

these operators transform under the adjoint action

/^(A2-B2-C2+D2) —^(A2+B2-C2-D2) CD-AB \  /  L i \
= [ |(A2-B2+C2-D2) \{A2+B2+C2+D2) —i(AB+CD) I L 2 I , (3.6)

y BD-AC i(AC+BD) AD+BC J \ L 3 /

defining S', a matrix in 50(3 , C) =  {S  G SL(3,C) |5*5 =  II}.
We therefore take the following basis of degree two polynomials

h(z)  =  ^(z2 -  1) h{z) = - i ( z 2 + 1)  h(z) = - i z .  (3.7)

The polynomials transform like the operators Li up to a factor of {Cz +  D)2 which 
appears on the denominator. However, we can cancel this factor from the top and bottom 
of the rational map and therefore represent the SL(2,C)s action (3.5) on the matrix M  
as right multiplication by S

M  ^  MS. (3.8)
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The S L ( 2,C)T action on the target space

44 -*• 44 11 441 with E H - F G  =  1, (3.9)q(z) Gp(z) +  Hq(z)

acts simply as left multiplication on M

M  - » T M  where T =  ( g h )  ' 3̂'10^

There is an SO (3,C)S vector which we can associate to the matrix M  which occurs 
naturally when we consider the zeros of the potential energy density (2.36)

<• /-i . ..=a2 (qdzp -  pdzq)(qdzp -  pd2q) lo
£ =  ( 1  +  z z )  W T W 2 • ( 1

Using the commutation relations (3.4) we find

qdzp -  pdzq = - t ijkqlpPlk =  vklk, (3.12)

defining v% =  €ijkP*qk, which is a vector under the 50(3 , C)s action (3.8) and a scalar
under the S L ( 2 , C)T action (3.10). The zeros of the potential energy density occur at the
points (u3 ±  y/vU)/{vl +  iv2).

We will partially fix the freedom (3.2) by fixing the resultant of the map p(z)/q(z).  In 
the process this ensures that M  really does correspond to a degree two map. For the map 
(3.1), it turns out that the resultant can be written in terms of the vector v. Plugging 
the map into the formula (2.50) we find

R ( p , q) =  - w > 7 4 > (3 -13)

which is invariant under both S L ( 2, C)T and 50(3 , C)s . We will fix R(p,q)  to be 1, so
that v lives in the set 5£ =  {v G C3 |uu* =  —4}. This fixes the matrix M  up to a Z4

freedom.
We can identify 5£ with the action of 50(3) on a vector depending on a real parameter. 

Let us write v = x  +  iy where x  and y are real vectors. Then the condition vvl = —4 
implies

\y\2 ~ \x \2 — 4
x ' y = 0 . (3-14)

So x  and y are orthogonal vectors and thus using an 50(3) transformation we can choose

x = (0 , 2  tan (, 0 )

y = (0,0,2 secC), (3.15)



CHAPTER 3. TWO-LUMPS ON THE SPHERE 43

where £ G [0, |] .
When £ 7  ̂ 0, 50 (3 ) acts transitively on v and we have an identification of 5£ with

(0, 2 tan£,  2zsec£).R 12 G 50(3). (3.16)

When £ =  0 there is an 50 (2 ) subgroup of 50(3 ) which fixes v, and the space becomes 
isomorphic to 5 0 (3 ) /5 0 (2 )  =  5 2.

A matrix which gives rise to the vector v =  (0, 2 tan£, 2zsec£) is of the form T Z (Q  
where T  G S L ( 2, C) and

^ ( T l s e c C - S ) -  ( 3 '1 7 )

Thus the target space S L ( 2 , C) is precisely the group of transformations of M  which fixes 
a given v. An element of 5L(2,C) can be uniquely decomposed into the product of a 
unitary matrix U G 5/7(2) and a positive definite unimodular Hermitian matrix H, so we 
arrive at the parametrisation

M  = UHZ(C)R.  (3.18)

U and R  correspond to rotations of the target space and spatial two-spheres, leaving four 
non-trivial parameters contained in the matrix H  and £.

There is a remaining Z4 freedom in M, generated by M  —► zM, which corresponds to 
the fact that

( - i  oO ^  (3-19)

If we wish, we can remove this freedom by identifying

^ ( V o O  o ) -  ( 3 -2 o )

Note that this identifies v and —v so u G S ^ / Z 2. When £ =  0, S^/Zi2 = S 2/Z 2 =  RP(2).
When £ =  0, the subgroup of 50(3 ) which fixes the vector v =  (0,0, 2z) is

/  cos# sin# 0 \
R =  I — sin # cos # 0 1 . (3.21)

V 0 0 1 /

Since this fixes v, it must coincide with a target space transformation. In this case, we 
find that right multiplication by R  is equivalent to left multiplication by a 27(1) matrix
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Therefore this action is equivalent to

u  ( e~'e 0  A H A *  0
ewJ y 0  e~is

U ^ U ( ‘0 e°ie)  ■ (3’23)

If H  is not diagonal, we can fix this freedom by choosing H  to be real. If H  is diago­
nal, then the configuration is axially symmetric and a spatial rotation about the axis of 
symmetry is equivalent to a target space rotation.

3.2 Some Features of Two-Lumps
We will plot the potential energy density (3.11) for various ranges of the four non-trivial 
parameters. In the figures, which were generated using M a t h e m a t i c a , the potential 
energy density of a two-lump configuration is represented as the height of a point above 
a sphere of fixed radius.

As noted in the previous section, the numerator of the potential energy density is 
invariant under a target space S L ( 2 , C)T transformation and therefore depends only on 
£. The denominator is only invariant under a target space SU( 2 ) transformation, and so 
depends on £ and the Hermitian matrix H.

We consider the map described by M  in (3.18) when U and R  are the identity. The 
corresponding vector v = (0 , 2  tan £, 2i sec £) gives rise to zeros of the potential energy 
density at tan (C/2) and cot (C/2). We will describe the potential energy density for three 
directions in the space of unimodular Hermitian matrices.

We begin by choosing,

( cosh \  sinh \  \

( 3 -2 < l

Firstly we discuss the energy density when £ =  0 and the zeros are at z =  0 and z — oo, 
which describes an interesting one-dimensional space of configurations. When A is large 
and negative, the lumps are localised opposite one another on the l-axis. As A tends to 
zero, the configuration approaches the map u = z2 which describes a particularly sym­
metric two-lump configuration which is axially symmetric about the 3-axis and symmetric 
under reflection in the 1 - 2  plane. The energy density is concentrated in a ring around the 
equator of the two-sphere, imagining the points z = 0  and z = oo as the poles.

As A increases from 0 , the lumps become more and more localised opposite each other 
on the 2-axis. We will find geodesics in this submanifold later on which give an analogue
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of the right-angle scattering found in the plane. Increasing £ moves the zeros tow ards 
the point z = 1 and in the process squashes the energy density so that it becomes m ore 
concentrated near z =  1 and less concentrated around the opposite point z = —1. T h is  is 
shown in figure 3.1 for £ = 0 and £ = 7r / 8 .

Now consider

to obtain the same configuration as given by (3.24). For non-zero £ this is not thie case 
and the configurations cannot be related by an isometry. These configurations are ishiown

ring around the equator discussed above. As A increases, the ring moves up the sphere, 
similarily decreasing A moves the ring down the sphere as illustrated in figure 3.3. Ilf we 
think of this as a ring moving up and down an axis, then giving £ a positive value hiasi the 
effect of “bending” the axis towards z = 1 .

(31.25)

When £ =  0 we can perform a rotation 2  —> e m!4z and unitary transformation m —>• iu

in figure 3.2. Again the effect of increasing £ is seen to be to squash the density tow;ards 
2  =  1 .

Lastly, when £ =  0

(31.26)

describes the axially symmetric maps u =  exz2. When A =  0, this is the axially sym m etric
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Figure 3.1: The potential energy density for H given by (3.24) with A running from —1.2 to 
+ 1.2. The plots on the left are when (  =  0 and the energy density has zeros at 9 =  0 and 6 = i t . 

Those on the right have C =  7t/8 and corresponding zeros at 6 = 7r/8 and 0 = 77t/8.
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Figure 3.2: The potential energy density for H given by (3.25) with A running from -1 .2  to 
+ 1.2. Again, the plots on the left are when the zeros are at 0 = 0 and 6 — n and those on the 
right at 0 = 7r/8 and 6 — 7-k/8.
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Figure 3.3: The potential energy density for H defined by (3.26) with A running from —2 to +2. 
The plots on the left are for £ =  0 and those on the right for £ =  7r/8.
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3.3 Isom etries of the Moduli Space M etric
As pointed out in [29], isometries of the spatial and target space two-spheres induce 
isometries of the moduli space metric. We can see this by writing the moduli space 
metric (2.37) in a coordinate independent way

f  dzdz  dudu .
(3.27)

J  ( 1  +  zz)2 ( 1  +  uu ) 2

Since the metric is constructed from the product of the measure on the spatial and target 
space two-spheres, it is invariant under isometries of the underlying spaces.

Isometries of the spatial two-sphere are of the form

^ = a z ± l _  Qr *» =  _?£ +  £ .  where a a  +  M  =  l .  (3.28)
-(dz + a  —fiz +  a  v 7

It is convenient to envisage this two-sphere as being the unit two-sphere centred at the 
origin of R3 , in which case these transformations correspond to rotations about some axis 
composed with reflections in some plane. We will talk about the 1-, 2- and 3-axes, the 
1 - 2  plane etc., where the 1 -axis is the line through z = ±  1 , the 2 -axis is the line through 
z = ± i  and the 3-axis is the line through z = 0 and 2: =  0 0 .

Similarly, target space isometries are transformations of the form

. 7 u + 5 # 7 u + 5 . . r-= /n
u — —= r  or u =  —=3 — 3  with 7 7  +  85 =  1. (3.29)

—5n +  7 —Su +  7

We must be slightly careful in that isometries correspond to involutions of the moduli 
space which consists of holomorphic functions of a particular degree. Therefore isometries 
which take z to a function of z must be composed with a target space isometry which 
takes u to a function of u.

As an example, consider sending z —»■ — 1 / z  composed with u —>• 1/u  so that

u(al,z) —> =  =  u(bl,z)  (3.30)
u(a\  —1 /z)

This is clearly a holomorphic function of z  and so defines an isometric map in the param­
eter space a1 —¥ bl(aj ).

3.4 Geodesic Submanifolds
Finding the metric on the full 10-dimensional space of two-lumps would be a daunting 
task, since there are 4 parameters which are not accounted for by the spatial and target
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space isometries. To make life easier, we look for geodesic submanifolds on which the 
metric can be written in terms of functions of a fewer number of parameters.

The essential feature of a geodesic submanifold is that geodesic motion with respect 
to the metric on the full moduli space which starts from a point in the submanifold and 
is initially tangential to it, remains within this submanifold. In this case the motion is 
simply geodesic motion within the submanifold with respect to the metric restricted to 
the submanifold.

A simple way to find geodesic submanifolds is to look for fixed point sets of discrete 
isometries. If the initial motion is tangential to the fixed point set, then by the uniqueness 
of solutions to the geodesic equation, motion must remain within the fixed point set. If 
it were to leave this space, we could use the isometry to find two solutions corresponding 
to geodesic motion.

If an isometry fixes a configuration, it must map the zeros of the potential energy 
density into each other. By rotating our configuration we can take the zeros to be at 
z = tan (C/2) and z = cot (C/2). When C 7  ̂ 0 , the isometries which map the zeros into 
one another are generated by reflections in the 1-2 and 1-3 planes. This group is therefore 
isomorphic to Z2 x Z2, the other non-trivial element being a rotation through 7r about 
the 1-axis. When C = 0, the zeros are diametrically opposite one another at z = 0 and 
z = 0 0 , and the group of isometries is enlarged to include composition with arbitrary 
rotations about the 3-axis.

We will enumerate the different submanifolds that may be found as fixed point sets 
of a discrete isometry which fixes the configuration u = z2. It would be nice to prove 
that any isometry which fixes a configuration fixes one which can be obtained by rotating 
this configuration in the target space and spatial two-spheres, for then we would have an 
exhaustive list of submanifolds which are fixed point sets of a single discrete isometry. 
Of course, we can also look for sets of configurations which are fixed by more than one 
discrete isometry and these will also be geodesic submanifolds.

We consider the four cases corresponding to the group of Z 2 x Z2 isometries which are 
symetries of the points z =  tan (C/2 ) and z =  cot (C/2) composed with a rotation through 
a fixed angle 9 about the 3-axis. Thus, when 0 = 0 we expect to find submanifolds on 
which C is arbitrary, and when 9 ^  0  we must have C =  0  so that the zeros are diametrically 
opposite.

(1). R otation through 9 about the 3-axis

Consider a rotation through a fixed angle 9 about the 3-axis
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If the rational map corresponding to the matrix M  = TZ(C))R  is fixed by this then

/ . - «  n \  /  cosd siaS ° \
T Z ( Q R  = c y  Q "9J T Z ( Q R  I - s i n 0  cos<9 0 j  , (3.32)

for some non-zero constant c. We can use (3.22) to rewrite Z ( 0) as

f t \  / c o s e - s in  
m  = (  o e-i0) Z(0) I sine cose 0 I , (3.33)

and then look for subgroups of SU(2)T and SO(3) 5  satisfying

_  (e~ie 0 \  ( e ie 0  \
VO eid)  Vo e~iQ)
/ cos 6 — sin 9 0 \  /  cos 0 sin 0 0 \

R  =  [ sin0 cos0 0 I R  I — sin 6 cos 6 0 j . (3.34)
\  o o 1/  V 0 0 v

There are three cases:

(a) 6 = 0
The isometry is the identity and we get the whole space of degree 2 maps with 
arbitrary £.

(b) 6  =  7T

C =  0, T  = UH e SL(2, C), R  G 93(0, oo)
We can fix H  to be real so this space depends on 2 non-isometric parameters.

(c) 0 ±  0,7T 

c =  0, U e i l (0 ,oo ) ,  H =  I 62 \  ), R  e  iR(0,oo)
V 0  e 2 I

These configurations are axially symmetric about the 3-axis.

Here 93(0, oo) is the 50(2) subgroup which fixes the points z =  0, oo, ie. rotations 
about the axis through these points. Similarly 11(0, oo) is the U{ 1) subgroup which 
fixes u = 0 , oo.

(2). R otation  through n about the 1-axis com posed w ith  (1)

This isometry is of the form
ei0 e~2i9

z -)■ —  u ------ . (3.35)
z u
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For arbitrary £ we use

/ n  -  \  ( l  0 0
<*«) -  U  o) z«» (; ->»

and for 9 ^  0 and £ =  0 additionally (3.33) to impose 

T  _  (  0  T  (  0  e- 's\
o )  0  /

— cos 9 — sin 6 0 \  / — cos 6 — sin 6 0N
R =  I — sin 9 cos 9 0 I R  ( — sin 9 cos 9 0

0  0  1 /  V 0  0  1 ,

The isometries fix the points z = ± e ^ , u = ±e~ld so for a given 9, U G lt(ez6
and R  G ^(eV , —eV). H  must be of the form

cosh |  e~%6 sinh |

el° sinh |  cosh |

There are two cases

(a) 9 = 0
£ G [0, |] ,  so this space depends on two non-isometric parameters

(b) 6 > / 0

£ =  0 , so there is only one non-isometric parameter.

(3). R eflection in the 1-3 plane com posed w ith  (1)

The isometry is

z -» el6z u -¥ e~2l6u.

Under z —» z, u —> u, the polynomials transform as follows

l\ —>■ — /i U “  ̂U 3̂  ̂ ~ 3̂-

We can use

- 1 0  0

2 ( 0  =  2 (C) | 0  1 0  

0 0 - 1

(3.36)

(3.37) 

, - e ~ u )

(3.38)

(3.39)

(3.40)

(3.41)
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and, for # /  0, (3.33) so that, in terms of M  = TZ{C)R  satisfying

/ . - »  n \    / - c o s 0 - s i n 0  0  \
TZ(C)i? =  c ^ e 0  e« j f Z ( C ) i ? l - s i n 0  cosS O l ,  (3.42)

there are subgroups satisfying
' , ~ i 0  o

— cos 9 — sin 9 0 \  / — cos 9 — sin 9 0
R  = | — sin# cos# 0 J R  [ — sin# cos# 0 ] . (3.43)

0 0 - 1 /  \ 0  0 - 1

We use the fact that

to find that U £ I t(ie~ld, —ie~td): whilst R  £ 9 t(zeU —zet). These are just the 
rotations about the axes fixed by the target space and spatial isometries. H  must 
now be of the form

f  e t cosh |  sinh |  e l9\  

ysinh |  e10 e~ * cosh

Again there are two cases

(a) # =  0

C £ [0 , |]  and there are three non-isometric parameters.

(b) # /  0

C =  0  and there are two non-isometric parameters.

(4). R eflection in the 1-2 plane com posed w ith  (1)

This isometry is

(3.45)

eid e~2id
z -* —  u ->> (3.46)

2: u
Using (3.41), (3.19) and (3.33) we need

x 0  e~ie\  0 e~ir
T (e if) 0 J T ̂  0

— cos# sin# 0 \  / —cos# —sin# 0 "
R  =  ( — sin# — cos# 0 I R  [ sin# —cos# 0 ) . (3.47)

0 0 1 /  V 0 0 1
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There are four cases to consider:

(a) 9 = 0

C E [0, |] ,  U E 11(0, oo), R  E 04(0, oo). H  is of the form

/  cosh 1  e t  sinh 

ye- 2 sinh |  cosh |  J (3.48)

(b) e =  7r 37T
2 ’ 2 5

c =  0. In this case U E 577(2) but H  = I . i? E 04(0, oo).

(c) 9 = 7T

This corresponds to the antipodal map z —> — 1 / z  which sends a point on the 
spatial two-sphere to the point diametrically opposite. (  = 0, U E 11(0, oo), 
R  E 50(3). H  is as in case (a) except now we can rotate so that fi = 0.

(d) Otherwise

C =  0, U E 11(0, oo), H  =  I ,  R  E 04(0, oo).
This is the most trivial case depending only on parameters which correspond 
to isometries.

The antipodally symmetric space found in case (4c) above is special since it includes 
the action of the full group of spatial rotations. It is a five-dimensional submanifold 
depending on one non-isometric parameter. In the picture in which the lumps live on 
a spatial two-sphere embedded at the origin of R3, the antipodal symmetry means that 
these configurations have their centre of mass at the origin. We will think of geodesic 
motion on this space as being analogous to scattering of particles in their centre of mass 
frame.

To compute the metric on this space, it is convenient to reparametrise u as follows

3.5 The Scattering M etric

(3.49)

Here z = R O  z' where © denotes the Mobius action of the SU{2 ) matrix R  on z ' . The 
configuration has 1-, 2- and 3-body axes defined through the points z' = ±1, z' = ±z and 
z' = 0 , oo respectively.
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We can write R  in terms of Euler angles f3 E [0,47r], 7  E [0, 27r], a  E [0,7r]

R  = &  0 \  ( cos f
a — ̂  1 1  * Ot OlU e 2 / \ — sm -  cos ~

cos |  el 2 sin |  e* 2
>  ̂ ——3L (y —■? P— sin ^ e x 2 cos -  e 2

(3.50)

so that
. . 2; — ez/3 tan f

* =  e“ Z7 z 4 , 3.51
2; tan |

where we identify R and — R  so that (3 E [0, 27r].
We can describe this configuration as follows: The parameter 0 controls the size of 

the lumps which are diametrically opposite one another. As 0 tends to — 7t / 2 , the lumps 
shrink to become infinitely tall, zero-size lumps on the 1 -body axis. As 0 approaches 
-f7r/2, the configuration similarly tends to infinitely tall, zero-size lumps on the 2-body 
axis. In general the configuration does not have an axis of symmetry but, when 0 =  0, 
the two lumps form an axially symmetric ring localised around the plane containing the 1 - 
and 2-body axes. In this case there is a coordinate singularity, since rotating around the 
axis of symmetry is equivalent to a target space 17(1) transformation, so the coordinates 
X and —2 y are identified.

Recall that a component of the moduli space metric gab is of the form

_  f  i d z d z  daudbu +  dbudau fo ^

% b ~  J 2( l + 2 f ) 2  2 ( 1  +  U S ) 2  '  (  ’

Since the measure is invariant under the rotation z —» z' = R~ l © 2:, we can evaluate the 
integrals at z' =  2:.

Taking an infinitesimal rotation

so that

we find

2 ' = 0  2 = (1 -  7 - j ) e z = fulc\z:l+:a l (3.54)
2 ' 2 /  \ — %CL)Z “t~ (2  %C)

daz' |a=6= c = 0  =  ~{z2 -  1 ) 

dbz |a= =̂c=o —{z T 1)

dbz' \ a = b = c= o  = - i z .  (3.55)
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For the calculation we will use the chain rule dau = dz>udaz'. The other derivatives 
we require are

iS (! -  z ' 4 ) s e c 2  2

2 ( 1  +  z'2 tan ^ ) 2

dr'U = e
is 2 z ' ( l -  tan 2 f )

( 1  +  z'2 tan ^ ) 2

z'A tan t  +  z’2 sec +  tan %
± \ 2

d§u = iet6  --------------- - .  (3.56)
( 1  +  z' tan | ) 2 V ;

The metric we obtain can be written in terms of the left-invariant one-forms defined
by

R~ldR  =  Oi r - L )  , (3.57)

where r 1 are the Pauli matrices, obtaining

o\ — — sin 7  da +  cos 7  sin a d(3 

(T2 = cos 7  d a p  sin 7  sin a d/3
0 3  =  cos ad(3 +  d'y. (3.58)

Comparing with (3.53) when z1 = z, we identify a 1 = da, a2 = db and cr3 =  dc.
All off-diagonal components of the metric apart from gc$ can be seen to vanish using

simple symmetry arguments. For example, consider

f  i d z d z  dipudau +  daud^u 
Qipa

2 ( 1  +  zz)2 2 ( 1  + uu)2 
i dz dz z(l — z2)( 1 — z)2(z — z)(zz  — 1 ) cos xp 

2(1 +  zz)2 4(1 +  (z2 +  z2) sin xp +  z2z2)2
(3.59)

The measure i dz dz / ( 1  +  zz)2 is symmetric under z —¥ —z, while the rest of the integrand 
is antisymmetric, and so this integral vanishes.

Similarly

f  i d z d z  i(z2 — z2)(l  +  z2z2) cos'ip . .
9ipc J  2 ( 1  _|_ 2 ( 1  _}_ ( z 2 +  z2) s in ^  -f z2z2)2 ’

vanishes because the integrand is antisymmetric under z -7 iz.
We will present the calculation of the component of the metric in detail. The 

calculations for the other non-zero components are given in outline.
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f  i d z d z  d^u d^u
pip

(3.61)

J 2 ( 1  +  zz)2 ( 1  +  uu)2 
f  i d z d z  ( 1  — z4)(l — z4)J 2 ( 1  +  zz)2 4(1 +  (z2 +  z2) sin ip +  z2z2)

The integrand is a function of z2, z2 and zz so we can substitute

z2 =  (tan ^ ) x  z2 =  (tan ^ ) / x , (3.62)

where a; is a complex variable living on the unit circle. The integral is now over

f  id z d z 1 r  r dx 63
2 J0 1 +  sin (p J  2i xJ 2 ( 1  +  zz ) 2

We have taken into account that x  goes twice around the unit circle as arg z goes around 
once, so the contour integral is performed once around the unit circle.

Firstly we use partial fractions to obtain

_  1 f*  d(f> /  dx f  1 1
Qipip 2 J0 1 +  sin (f) J 2i \  4 sin ip2 x

1 1

sin -0 3 sin 6 (x2 +  . 2. , x +  1 )r ” v sin</>sini/) >

COS i p 2 X

sin t/j4 sin 62 (x2 +  . 2 . , x  +  1 ):”  t \  ' smcpsmip >

Now we evaluate the three contour integrals. The first is simply

(3.64)

= ( 3 -6 5 )

The quadratic +  2 .'r/(sin (psm'ip) +  1 has roots

1
x =  — :— — - (1 ±  \ / l  — sin2 cp sin2 ip ] , (3.66)

sin 0  sin ip \

so we find
1 £  dx it sin 'ip sin (p

(3.67)
2 z  J X<1 +  sin / s in  +  1 2 \ / l  — sin2 (p sin2 ip

The residue of f ( x ) / ( x  — a)2 at x = a  is f ' (a),  assuming that f { x )  is well-defined at 
this point. For the function f (x)  =  x / ( x  — /3) 2 we find
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Therefore the third contour integral is

I f  x d x  7r sin2 if sin2 (p

2 i J Or2 +  sin/sin./,:E + 1)2 4(1 — sin ^ sin ip)2

Therefore the result of the contour integration for is

(3.69)

7v f* dd) I 9 , 2  cosec2 ip cot2 ip i . w .
g , , =  -    z —  -  cosec2 ip + -  ■ --------------------------------— —   3- . (3.70)

8 Jo 1 + sm (p y \J 1 — sin2 (p sin2 ip (1 — sin (p sin VO2

Since the integrand depends on (p only through sin <p, we can take twice the value of the 
integral from 0 to 7r/2 . We are then in a position to express in terms of complete 
elliptic integrals.

In this case, the results we require are

I' ^   ̂ — i _ (B(sin0) — 1) tan2 ip
Jo 1 +  sin cp y f — sin2 (p sin2 ip

d(p 1 1 — (E(sinV0 +  B(sin tp) — 2) tan2 ip
J0 1 +  sin 0 (i — sin2 0 sin2-0)1 cos2'ip

where E and B are the standard elliptic integrals [35]

, (3.71)

E(sin^) = / dcp y l  — sin2 (p sin2 ip (3.72)
Jo

B(sinV’) =  f  d<j> C°S  ̂ (3.73)
Jo y l  —sin 0sm  ip

It will be useful to define

efip) = E (sin^) — 1 (3(ip) = B(sin^) — 1. (3.74)

Expressing (3.70) in terms of these functions gives us the result

*■(<#) -  P W )  , ,  ye,
=  4 cos2 'ip ■ (3-75)

The calculation of the other components of the metric follows the same method. In
each case the integrand is a function of z2, z 2 and zz, so we can use the substitution
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(3.63). We list the following integrals: 

7  2 sin (f)d(f)
Jo ( 1  +  sin 0 ) y / l  — sin2 0  sin2 0  

f* sin (f)d(j)
Jo ( 1  +  sin 0 ) ( 1  — sin2 0 sin2 0 ) 1  

f  2 sin2(pd(p
Jo ( 1  +  sin 0 ) ( 1  — sin2 0 sin2 0 )i

f  2 COS2 0 ^ 0

Jo ( 1  +  sin 0 ) ( 1  — sin2 0 sin2 0 ) i  

The calculations are as follows:

COS2 0

e(0 ) +  /?(0 ) sin2 0  

cos4 0

1 e(0 ) + /3(0) sin2 0

cos2 ip

COS2 Ip

COS4 'Ip

i d z d z  zz ( l  — z )(1 — z ) cos ip 
2 ( 1  +  zz)2 ( 1  +  (z2z2) sin ip +  z2z2)2 

cot2 0  M d(p
o 1 +  sin 0

1 2 ( 1  +  sin ip)
4

dx
Yi

x
X 2 + sin <p sin ip

cot2 Ip (' 2 d(p
0

2 x +  1 sin 0  sin 0  (a;2 +  ^ 2 

sin 0

+ I)1

2  ,/n  1 + sin 0

7r Z'e(0) +  (3(ip) sin2 0  
cos2 0

sin <£sin i p'

sin 0 ( 1  +  sin 0 ) sin 0  

a/ 1  — sin2 0  sin2 0  ( 1  — sin2 0 sin2 0 )§
/?(0) + e(0)

+ sin 0
cos2 0

Qbb —
r i dz dz  zz( l  +  2 2 ) ( 1  +  z2) cos2 0  J  2(1 + zz)2 (1 + (z2z2) sinip + z2z2)2 

cot2 0  d<p

dx
Yi

COt2 0

f0 1 +  sin 0

2 ( 1  — sin 0 ) £

sin cp sin ip

d(p

X  +  1 sin 0  sin 0  (x2 +  ^ 2 

sin 0

;X +  1);

2  , / 0 1 +  sin 0

7r e(0) +  j3(ip) sin2 0  
cos2 0

sin (p sin ip

sin 0 ( 1  — sin 0 ) sin 0  

a/ 1  -  sin2 0  sin2 0  ( 1  -  sin2 0  sin2 0 )f
/5(0) +  e(0 )

— sin 0-
cos2 0

(3.76)

(3.77)

(3.78)
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9xx

9cx ~

/ % dz dz 4z2z2 cos2 0
2 ( 1  +  zz)2 ( 1  +  (z2z2) sin 0  +  z2 z2 ) 2 

cot2 0  f n d(p /  dx 4x
Jo 1 +  Sin</>/ 2i (x2 +  sin<tsin̂  +  1); 

d(j) cos2 0  sin2 0

f0 1 +  sin 0  (i _  sin 2 0 sin2 0 ) 2

e(0 ) +  /3(0) sin2 0

' I 1 -  c ^ >  I- (3-79>

z dz dz (2z2 +  ( 1  +  z4) sin 0 ) ( 2 z2 +  ( 1  +  z4) sin 0 )
J  2 (1 +  zz ) 2

i  r  d(p
4 JQ 1 +  sin 0  

0 2  d0

dx
Yi

4(1 +  (z2z 2) sin 0  +  z2z2 ) 2 

x  cot2 ip cot2 01

4x

f0 l  +  sin 0

1

4(x2 +' sin (p sin ip

COS2 0 COS2 0

X +  1)'

4 4(1 — sin2 0 sin2 0 ) 2

7T
- ( 1 - 6(0 )). (3.80)

z dz dz cos 0(4z2z2 +  (z2 +  z2) (1 +  z2z2) sin 0)
J 2 ( 1  +  zz ) 2

cot 0  (“* d(p
'0 1 +  sin 0

2 ( 1  +  (z2z2) sin 0  +  z2z2 ) 2

4 j

COS2 0

dx
27

cosec 0 2 x cosec 0  cot2 0

d0

f0 1 +  sin 0

(x2 +  . . .  . x +  1 ) (x2 +  . 2 .v sin 0  sin ip > v sin<psm̂

1 COS2 0

X +  1 0

^ /l — sin2 0  sin2 0  ( 1  — sin2 0 sin2 0 ) 2

7r cos 0  0 e(0 ) 4 - /3(0) sin2 0  

cos2 0
(3.81)

So finally we obtain the metric 

g = F(ip) dip2 +  A(0) a 2 +  B(0) ^  +  C(0) +  2D (0) a 3 dx  +  £ (0 )  dx2 (3.82)
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where

(3.83)

There is a coordinate singularity when -0 =  0, corresponding to axially symmetric config­
urations, in which case we have the identification x  — —2 7 .

We can check that the metric has sensible limits as ip —> ± 7r / 2 , in which case the lumps 
shrink to zero size, and ip ► 0 , in which case the lumps describe an axially symmetric 
ring. We use the following formulae for the elliptic integrals F^sin^) and B(sin,ip) in 
these limits [36]. For k 2 =  sin2 ip m I there is an expansion in terms of 1 — k2 = cos2 ip:

E(sin ip) =  1 + ^

B (sin ip) = 1 -  i

where A =  log (4/ cos ip).

Near ip =  0 we have sin2 ip <C 1 and

.E(sin ip) = ^  ^  sin2 ip +  0 (sin4 ip)
2 8

B(sinip) = ^  + -̂  sin2 ip -f O (sin4 ip). (3.85)
2 8

The limits of the functions A  through to F  are tabulated below.

- J  cos2 ip +  0(cos4 ip) 

^ ) cos2 ip +  Ofcos4 ip) (3.84)

F(xp)

A(ip)

B(ip)

c m

D W

e w

=  7T

* ' 2

VP) ~  P{i>)
4 cos2 ip
1 e(ip) + j3(ip) sin2 ip sin ip j3(ip) +  e(ip)

cos2 ip + cos2 ip
1 e(ip) + /3(ip) sin2 ip sin ip (3(ip) 4-e(ip) 

71 * 2 cos2 ip 2 cos2 ip
e(ip) + /3(ip) sin2 ip 

cos2 ip
cos ip (  e(ip) + 13(ip) sin2 ip

=  7T 1 —

=  7T

= 7r

2 \  cos2 ip
1 -  e(ip)

-  1
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Ip 7T
2

7r 
2 0

A 0 1
2 H i  - 1 )

B 1
2 0 H l - i )

C 1
2

1
2 to 1

D 0 0 f - 1

E 1
4

1
4

1

1—11 ^

F i ( A - i ) i ( A - i )
7T
16

In the zero-size limit we obtain the moments of inertia corresponding to two antipodally 
opposite point particles on the 1 -body axis for ip = —7t / 2  and on the 2 -body axis for 
ip = 7r / 2 . When ip =  0 the moments of inertia about the 1- and 2-body axes are equal 
as expected for a ring. Note that A is divergent in the limit cos ip 0 but by choosing a 
different coordinate, for instance by setting s in ^  =  tan h r, we can see that this is just a 
coordinate singularity.

3.6 Low Energy Dynamics
Here we will describe the dynamics associated to geodesics on this submanifold. The 
effective Lagrangian describing low-energy dynamics is

L =  dt F(ip)i>2 + A{ip)L\ + +  C(4>)Ll + 2D(tP)L3x  + £ ^ ) x 2 , (3.86)

where L*, are the angular velocities about the body axes

Li = — sin 7  a  +  cos 7  sin a (3 
1/2 =  cos 7  a  +  sin 7  sin a (3

Ls = co sa /j +  7  (3.87)

The equation of motion for ip is found straightforwardly.

= F 'W iP 2 + A!(ip)L\ +  B'{ij))L2 + C'(4>)L\ +  2 B 'W O^X +  £ 'M x 2.

(3.88)

The 7  equation is also straightforward using =  — Li  and =  L\,  and is

j t \C{i>)L3 + D(,p)x] =  L i L2{B{iP) -  A i m  (3.89)
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We find the other two equations of motion by choosing different Euler angles

, cos^ zsin f e f  0 W  cos£ i s in f  .
R = \  . \  72 n \  ;  • (3.90)% sin 77 cos o / \ 0  e 2 / \ z sin ? cos £2  ' - ' v y u  2  /  \  /  \  0  u l i l  2  V ' U u  2

In this case the angular velocities are

Li — cos a /3 + 7
L2 =  — sin 7  a  + cos 7  sin a $
Z/3 = cos7 a + sin7  sin a/3, (3.91)

and the 7  equation of motion is

j ^ A W L , }  =  L2L3( C W  -  +  D{^)L2x - (3.92)

Similarly for

* = (  . 1  : n . . t  ; n  . %  « i - >  ( 3 9 3 )

cos 77 sin i  \ I cos ^ 1 sin % \ / cos |  sin £

sin  ̂ cos 2 /  \ l sin 2 cos 2 / \ — sm 2 cos 2

we have angular velocities

L\ — cos 7  a  + sin 7  sin a (3
L2 =  cos a /3 + 7
L3 = — sin 7 0 ; + cos 7  sin a/?, (3.94)

and the 7  equation is

| [BW )L2] = L s L r i A W  -  C(i>)) -  D (tf)L i*. (3.95)

The x equation gives us the conserved quantity corresponding to the global U(l)  
transformation

f t [D(i,)L3 +  E M x ]  =  0. (3.96)

It is consistent to fix our attention on geodesics that are orthogonal to this isometry, ie. 
those for which + E(ip)x = 0 , since this equation implies that geodesics which
begin orthogonal to this “vertical” direction remain orthogonal throughout their motion.
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If we substitute x  = into (3.88), (3.89), (3.92) and (3.95), we obtain the equa­
tions of motion on the space orthogonal to the target space isometry

| [ 2  F ( ^ ]  =  F'(ip)ip2 + A ' W L l  + B ' W L 2 +  C ' ^ L j  (3.97)

j t [ C W L 3] = L i L t ( B W  ~ Mi>)) (3-98)

j^A(il>)Li\ =  L2L3(C(i>) -  B(i,)) (3.99)

j t [B (W 2 ]  =  L 3Li(A(ip) -  C ^ ) ) ,  (3-100)

where CN>) = C{$) — D N ) 2/E(ip). These may be obtained as the equations of motion 
of the reduced Lagrangian

L =  dt F W t f  + A W L l  + B W L j  + C W L l  , (3.101)

which comes from the four dimensional metric g = F(ip)dr2 + B(ip)a2 +  C(,0)cr|.
This way of reducing to a four dimensional metric was suggested to us by Conor Houghton.

We will concentrate on the dynamics on this space, following analysis similar to that of 
Gibbons and Manton in the case of monopoles [33]. Lagrangians of this form are familiar 
from the dynamics of rigid bodies, except that here the mass and principal moments of 
inertia are functions of 7/1.

3.6 .1  R o ta tio n  ab ou t th e  1 -B od y  A xis

There are three special cases of motion which we will consider, corresponding to non-zero 
angular momentum about one of the body axes of the configuration. The first case we 
will take is when there is angular momentum about the 1-body axis. The equations of 
motion (3.98) and (3.100) imply that if L2 = L3 =  0  initially, then they remain zero 
throughout the motion. Equation (3.99) implies that =  Mi is the conserved
angular momentum about the first body axis.

Integrating (3.97) gives us the conserved energy of the motion

(3.102)

This system is that of a particle with position-dependent mass moving in a potential 
1/A(ip). As such, the qualitative features of the dynamics depend on the shape of the 
functions F(ip) and l / A f y )  which are shown in figures 3.4 and 3.5.

T  = F { ^ 2 +
Mi
ANA
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Figure 3.4: F(0) Figure 3.5: 1/A(ip)

Since 1/A(ip) is monotonically decreasing, a configuration starting off with a negative 
value of -0 , corresponding to lumps on the 1 -body axis, necessarily passes through the 
axially symmetric configuration -0 =  0  and results in lumps on the 2 -body axis.

Using the Euler angles (3.90) with a  =  /3 =  0 we have

z =
z — i tan 2  

—iz tan f  +  1
Li = 7-

To find the geodesic motion, the equations

2F(ip)i> + F'{ip)i>2 =  Ml A  ^ 7 =
Mi

(3.103)

(3.104)
A f y ) 2 1 A(ipy  

w ere so lv e d  n u m e r ic a lly  u s in g  M a t h e m a t i c a  for ip(t) an d  y ( t )  w ith  in it ia l  d a t a

-0(0) =0.08 ^(0) =  - t t /2  +  0.4 7 (0 ) =  0. (3.105)

The constant Mi was taken to have the value 0.04. The resulting functions ip(t) and 7 (t) 
are shown in figures 3.6 and 3.7.

1
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Figure 3.6: 0(t) Figure 3.7: 7 (t)

The evolution of the potential energy density and the body axes of the configuration 
during this geodesic motion is shown in figure 3.8. We can see that it corresponds to 
a form of right-angle scattering in which lumps starting on the 1-body axis <end up on 
the 2-body axis. If the angular momentum Mi is zero then planar right-angle scattering 
results.
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Figure 3.8: Geodesic motion w ith non-zero angular momentum about the 1-body axis.
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3 .6 .2  R o ta tio n  a b o u t th e  2 -B o d y  A x is

The next case we consider is when there is angular momentum about the second body 
axis. In this case, Li = L3 =  0, and the conserved energy and angular momentum are

T  -  F ^ 2 +
M2 2

B{ iP)L2 = M 2. (3.106)

The potential 1/B(ip) is shown in figure 3.9 below. We recognise that B(ip) = A(-'ip) 
and so the geodesics we obtain are just rotations through |  of those considered above.

In this case, if we start with ip negative we must also end up with ip negative. If the 
initial energy is less than M 22/A(0) then the motion does not pass through the axially 
symmetric configuration. If it is greater than this and ip is positive, then the configuration 
passes through the axially symmetric ring to become lumps on the 2 -body axis before 
passing back through the ring and reverting to lumps on the 1 -body axis.

Using the Euler angles (3.93) with a  = (3 =  0 we have

z —
z — tan |  

tan 2 ^ +  1
L 2 =  7-

The equations

2  F(ip)ip +  F'{ip)ip2 =
M-,

7 =B(i>)2 ’ B(i>y
were solved numerically for ip(t) and 7 (f) with initial data

-0(0) =  0.2 ^(0) =  —tt/2  +  0.4 7(0) =  0.

(3.107)

(3.108)

(3.109)

The constant M, was taken to have the value 0.19. Figures 3.10 and 3.11 show the result 
of this integration.
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Figure 3.9: 1 /B(ip) Figure 3.10: ^(t) Figure 3.11: 7 (t)

Plots of the potential energy density during this motion are shown in figure 3.12 below. 
In this case the lumps pass through the axially symmetric configuration to become lumps 
on the 2-body axis before returning to lumps on the 1-body axis. This motion is analagous 
to the dyon “pair production” seen in two-monopole scattering.
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Figure 3.12: Geodesic motion with non-zero angular momentum about the 2-body axis.
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3 .6 .3  R o ta tio n  ab ou t th e  3 -B o d y  A x is

The last case we consider is when there is angular momentum about the third body axis. 
The conserved energy and angular momentum are

M  2
T =  F(vp)ip2 +  C(ip)L3 =  M3, (3.110)

C(i>)

where the potential l / C t y )  is shown in figure 3.13 below.
In this case we can see that the configuration cannot pass through ip = 0 and so the

lumps lie on the 1 -body axis throughout the motion, this axis rotating about the spatial
3-axis.

Using the Euler angles (3.90) with a = (3 = 0 we have

z — e~%1 z L3 =  7 . (3.111)

The equations

C W 2 C(ip)

were solved numerically for ?/;(t) and 7 (t) with initial data

^'(0) =  0.1 ^(0) =  - t t /2  +  0.4 7 (0 ) =  0. (3.113)

The constant M\ was taken to have the value 0 .0 2 . The functions ip(t) and 7 (t) are shown 
in figures 3.14 and 3.15 below.
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Figure 3.13: l/C '(/0) Figure 3.14: ip(t) Figure 3.15: 7 (£)

The motion is shown on the following page in figure 3.16.
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Figure 3.16: Geodesic motion w ith 11011-zero angular momentum about the 3-body axis.
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3.7 Comments
The scattering of two monopoles described by the Atiyah-Hitchin metric shows qualita­
tively similar behaviour to that of two-lumps on the sphere described above. It is tempting 
to think that a modification of the model may be possible so that the moduli space met­
rics coincide. This would be equivalent to directly relating the monopole moduli space 
metrics with the Jarvis rational map. Of course, to do this, one would somehow have to 
ensure hyper-Kahlerity of the resulting metric.

One feature of dynamics of lumps in the geodesic approximation that would have 
to be overcome is that they can shrink to zero size in finite time. This is equivalent 
to the statement that the moduli space is geodesically incomplete with respect to the 
moduli space metric. Sadun and Speight have shown that this is the case for lumps on 
any compact Riemann surface [31]. They do this by constructing a Cauchy sequence of 
maps which does not converge. Geodesic completeness is equivalent to completeness with 
respect to the metric given by the geodesic distance between two configurations.

There are two other submanifolds which depend on a single non-isometric parameter, 
found in cases (lc) and (2b) above. It would be interesting to compute the metric on 
these spaces and thus describe some different features of the low energy dynamics of two- 
lumps. It may also be possible to compute the metric on some spaces depending on two 
non-trivial parameters, obtaining a result in terms of complete elliptic integrals of the 
third kind.



Chapter 4 

One M onopole in th e  Jarvis Gauge

We discussed in the introduction the fact th<at the definition of the Jarvis rational map 
“breaks” the Galilean group down to the grtouip of rotations around the origin which have 
a well-defined action on the map. Similarly, the Jarvis equation, introduced in Chapter 
2, is defined in a gauge in which A r — i$  =  A s — 0, and again translations do not have 
a simple action on solutions to this equatiom. Recall that we dubbed a solution to the 
Jarvis equation 'H(x) satisfying 77(0) =  E a  metric , following Jarvis, and we refer to the 
gauge in which A r +  =  7i~1dr'H and A z = 'H~ldz'H as the Jarvis gauge.

By introducing an extra parameter it is; pjossible to write the Bogomol’nyi equations 
as a pair of commuting operators. That these two operators commute is equivalent to the 
statement that they have a simultaneous solution. These two equations and their solution 
form the linear system for the Bogomol’nyi equations.

We will show that the linear system is covairiant under Galiliean transformations in the 
sense that, given a solution, we can define tramslated and rotated solutions corresponding 
to a linear system in which the Higgs and gaiuge fields are translated or rotated. The linear 
system also has the property that the gauge; transformation which takes us to a gauge 
in which Ar — i& = A z = 0 is obtained by evaluating the solution when the parameter 
A takes the value —1/z.  Therefore, once w*e Ihave a solution in any gauge, it is a simple 
matter to translate it and then gauge transform  to the Jarvis gauge, thus obtaining a 
solution to the Jarvis equation.

Using the explicit solution to the Jarvis equation for the BPS monopole at the origin, 
we can find the corresponding solution to tth<e linear system, which therefore enables us 
to find the translated one monopole solution in the Jarvis gauge and the corresponding 
Jarvis rational map.

72!
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4.1 The Linear System  for the Bogom ol’nyi Equa­
tions

Here we will present the linear system for the Bogomol’nyi equations. The starting point 
is the observation that the Bogomol’nyi equations

Bi =  - ^ e ijkFjk - Di$ i = 1 . . .  3, (4.1)

are equivalent to the equations

[D3 -  z$, Di -  iD2\ = 0 

[D3 +  D 1 iD2] = 0
[D3 — z<F, D 3 +  +  [D\ — iD2, D\ +  iD2\ = 0. (4-2)

Introducing the spectral parameter A we can write these equations as a zero curvature 
condition or “Lax pair”

[A(Z?3 +  z4>) +  — iD2), —\(D \  +  iD2) +  [D3 — z$)] =  0. (4-3)

Thus the Bogomolny equations can be thought of as the condition that the following 
linear system has a solution

(X(DS +  i$)  +  (Di -  iD2)) ^(A, x) — 0 
(-A (Di +  iD2) +  (D3 -  z$)) 4>(A, x) =  0. (4.4)

We will take T(A,x) to be a 2 x 2 matrix so that the gauge and Higgs field are in the
fundamental representation of su(2) and act on 4/ by left multiplication.

This is the linear system used by Forgacs, Horvath and Palla [44-46] in their inverse 
scattering approach, and related to that originally found by Belavin and Zakharov in the 
context of the self-duality equations on R4 [43]. The Bogomol’nyi equations on R3 are 
equivalent to the Euclidean self-duality equations on R4 if the fourth component of the 
gauge field is identified with the Higgs field, and all the fields are taken to be independent 
of the fourth Euclidean direction [39,40]. In this case, the linear system of Belavin and 
Zakharov reduces to the linear system (4.4).

We will rewrite the linear system in terms of the spherical polar coordinates r, z and 
z introduced in Chapter 2. For reference, we list the following covariant derivatives in
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these coordinates

z z  1 z  z
D 3 - i ®  = z - — (Dr -  z<h) -  ——  (A- +  i$) +  - D z +  -D-z

1 +  z z  1 +  z z  r  r
^  1 /T-X . * N ^ Z  / n  . ,  v Z ^  Z  _D 3 +  z<h =  — -—■— - (Dr — z4>) +  -—■— - (D r +  z4>) H— Dz H— Dz 

1 +  2:2; 1 +  2:2: r  r

Di + iD2 =  N — {Dr -  & )  + r r ^ — iDr +  *$) -  — Dz + ~Di
1 +  2:2: 1 +  2:2: r  r

D\ — iD<i =  ~ _(Dr — z<h) +  ~ _(Dr +  z4>) H— Dz — — Dz. (4.5)
1 +  2:2: 1 +  2:2: r  r

The zero curvature condition (4.3) is

{ z - X ) ( T4 - z { D r ~ i<S>) -  - D z )  + (Az +  1) ( z r ^ i D r  +  *$) +  ^ z )  ,
\  1 +  2:2: T )  \  1 +  2:2: r  )

(z -  A) ( - J —-(Dr -  »$) +  V - )  +  (Az +  1) ( - z r 4 - z ( D r +  t$ ) +  - D
\  1 +  2:2: r  )  \  1 +  2:2: r

and expanding this out we obtain

=  0 ,

(4.6)

(z — A)2 (A2: +  1)2Ft_
-[Dr — z4?, Dz] +   [Dr +  z4?, Dz] +

(z — A)(Az +  l) (l +  2:z)2 r _  _  A
[.Dr — z4>, Dr +  z4>] H  ----- [.D*, 7)z] ) =  0, (4-7)

1 + 2+

which is equivalent to the Jarvis equations

[Dr -  z$, Dz\ = 0 

\Dr +  z$, Dz) — 0 
(1 +  z z ) 2

[Dr -  i$ , Dr + i$] +  v 1 [D-z, Dz] =  0. (4.8)

Taking linear combinations of the operators in (4.6) we obtain the linear system

1 +  ZZ  \
(z -  A)(Dt -  i$ ) +  (Az +  1 )— — Dz j  *(A, x) =  0

T>z- - ( A z  +  l)(D r +  j$ ) )$ (A ,x )  =  0 (4.9)^(z -  A)1^ - D z  -  (Az +  l) (Dr + i $ ) )

Note that, since we have taken linear combinations depending on z and z, these operators 
no longer commute. However, the algebra they define closes and this is sufficient to be 
able to find a simultaneous solution to the linear system.
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There is a freedom in the solution ^(A ,x). The function

7 (A, x) =  — ^ (A2(xi +  ix2) -  2Xx3 -  (2 7  -  ix2)) (4.10)
+  zz) I

satisfies

^(z -  X)dr +  (Az  +  T y -^ ^ -d ^ j 7 ( A , x )  =  0

^(z -  ty — ^ —dz ~  (Az +  7(A, x )  =  0 . (4.11)

It follows that multiplying d/(A,x) on the right by a matrix depending on A and 7 (A, x)
leaves the fields appearing in the linear system unchanged. It will be important to us
later to note that

7 (A, 0) =  y(z, x) =  7 ( - l / z ,  x) =  0, (4.12)

and that 7  is linear in x so that a translation x —> x  — A, where A is a constant vector
in R3, results in the addition of a function of A to 7

7 (A, x ) - »  7 (A, x ) +  7 (A, A). (4.13)

4.2 Galilean Covariance of the Linear System
The Galilean group has a well-defined action on a solution of the linear system, and it is 
in this sense that we will talk about the covariance of the linear system under Galilean 
transformations. To show how translations act on the linear system we use the linear 
system in the form (4.4)

(A(£>3 +  i$)  +  {D1 -  iD2)) tt(A, x) =  0 
(—X(Di +  %D2) +  (7 )3  — z$)) \k(A, x) =  0. (4.14)

Clearly \k'(A,x) =  T(A,x — A) is a solution to the linear system corresponding to the 
translated fields A*(x — A) and <h(x — A).

Writing the linear system in the form (4.9)

((rG ^) + {Dt+*$))^(a-x) = ° <4-15)

((A - -  i$) -  ( y r j )  ^-7— D^j * 0 . x ) =  0. (4-16)
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allows us to define the action of a rotation about the origin. 
The operators

A j =  +  zz)d,  A j =  I T ^ -(1  +  zz)ds, (4.17)

are invariant under the simultaneous rotation

Z ^ Z’ = ^ ± A  =  (4.18)
- P z  + a  ~(3\ + a K J

therefore 4/'(A, r, z, z) = T(A', r, z ', z') is a solution to the linear system corresponding to 
the rotated fields A{(r, z \  z1) and 4>(r, z \  z').

These transformations generate the Galilean group and therefore define the full action 
on solutions of the linear system.

4.3 The Conjugate Solution
There is a sense in which the operators appearing in the linear system are conjugates of 
each other. Suppose we are in a unitary gauge in which the fields Ai and $  are anti- 
Hermitian, and we have a solution ^(A,x) to the linear system (4.4). For the time being 
we will concentrate on the first equation in the linear system and for clarity write it as

(A<93 +  (di -  id2))il){A,x) =  -  (A(i43 +  i<f>) +  (Ai -  iA2))ijj(A,x). (4.19)

Multiplying on the left and right by '0-1(A, x) we obtain

-  (Ad3 +  (di -  id2)) V>-1(A, x) =  - ^ -1 (A, x) (X(A3 +  i$)  +  (Ax -  iA2)) (4.20)

Now defining A' =  —1/A and taking the Hermitian conjugate we have

-  ( “ ^ 3  +  ( # 1  +  ^ 2 ) ^  X ) f =

^ -  — (A3 — i$) + (Ai- \- iA2) SjTp *(—1/A ',x)t, (4.21)

which implies that

( -A '(A  + iD2) + (Dz -  »$)) 1/A ',x)f =  0. (4.22)

A similar manipulation of the second equation implies that i/i-1 (—1/A, x)t is a solution 
of the first. Therefore, given a solution A, x) in a unitary gauge, we can define a 
conjugate solution 1/A, x)t which is a solution of the same linear system.
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Given two solutions to the same linear system ^i(A ,x) and ^ 2 (A,x), it is straightfor­
ward to show that G = ^ ^ (A , x)-0i(A, x) must satisfy

(A^ 3  +  (<9i — ^ 2 )) G = 0 

(—A(5i +  id2 ) +  ds) G — 0 , (4.23)

implying G =  6 ?(7 (A,x), A), where 7 (A,x) was introduced in (4.10) above. Thus the 
solution -0(A, x) and its conjugate are related by

ip(\, x) =  '0- 1(—1 /A, x )tG(7 (A, x) A). (4.24)

Now suppose that a(x) is a gauge transformation that takes us to a non-unitary gauge,
so that \k(A,x) =  a~1('x)'ip(A,x) is the solution to the linear system in this gauge. Then
(4.24) gives

\t(A,x) =  flr- 1( x ) ^ - 1( - l /A ,x ) tG(7 (A,x)A), (4.25)

where H(x)  =  a(x)a(x)h Therefore the conjugate solution in a non-unitary gauge is of 
the form 1 /A, x)t where H(x)  is a Hermitian matrix.

4.4 Solutions in the Jarvis Gauge
In this section we will show how any solution to the linear system satisfying a conjugate
relation of the form (4.25) gives rise to a to a unimodular Hermitian m atrix % with
TL{0 ) =  II satisfying the Jarvis equation

(I 4- z z ) 2
dr('H~1dr'H) +  v 1 d-z( U - ldzH) =  0. (4.26)

Suppose we have a solution to the linear system

( (z -  A)(Dr -  z4>) +  (Az +  1)1 +  Z*"D ^\ ip(A,x) =  0

satisfying the conjugate relation

v>(A,x) =  Hr_1 (x )^_1 ( - l /A ,x ) tG(7 (A,x) A), (4.28)

where H(x)  is some Hermitian matrix. Any such solution corresponds to fields 4?, A r, A z, 
A z which are independent of A but may be in any (possibly non-unitary) gauge.
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Assuming that ^(A, 0 ) is well-defined, we can define a new solution

^(A,x) =  V>(A,x)V>_1 (A,0 )TV, (4.29)

where N  is a constant 2 x 2  matrix. Since this corresponds to multiplying on the right 
by a matrix depending on A, it is a solution to the same linear system but now satisfying

V>(A, 0 ) =  TV, (4.30)

and the conjugate relation

4>(A,x) =  F " 1 (x )^ " 1 ( - l /A ,x ) tG,(7 (A,x), A), (4.31)

where H ~l is the same as in (4.28). Evaluating this at the origin implies that
G(0, A) =  TVif(0 )TVb Writing i7 - 1 (0) =  B^B,  where B  is unique up to left multipli­
cation by an element of U(2 ), we can take TV =  B  so that

G(0,A) =  n. (4.32)

The determinant of “0(A,x) is the Wronskian of two vector solutions to the linear 
system and satisfies

^(z — \ ) d r +  (Az +  1 )———<9*̂  det ^(A, x) =  0  

( ( i - A ) l ± i i 9 , - ( A «  + l ) a , ) d . t «(A>X) = 0, (4.J3)

which implies that

det t/>(A, x ) =  / ( y(A,x), A). (4.34)

Equation (4.30) then tells us that /(0 , A) =  det TV.
If we evaluate the linear system when A =  —1 jz,  we find that l /z ,  x) satisfies

(Dr — 1 /z , x) =  0 Dzip(—1 / 2 , x) =  0, (4.35)

which means that ip{—1 / 2 , x) is a gauge transformation taking us to a gauge in which 
A r — = Az = 0. Therefore \k(A,x) =  ^ - 1 (—1/z, x)-0(A, x) is a solution of the linear
system
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We will refer to this as the Jarvis linear system. (We are being sloppy in that the gauge 
fields A z and A r + i§  are gauge transforms of those appearing in the linear system (4.27)). 

Now evaluating 4/(A, x) when A =  z we find

A r +  =  — drty(z, x) • \I/_1(z, x) A z — — dzty(z, x) • T -1 (z, x), (4.37)

so %(x) =  T _1(z, x) =  x )^ (—l/z ,  x) is a solution of the Jarvis equation (4.26).
Using the properties of ?/>(A, x), (4.30) and (4.34), and the properties (4.12) of 7 (A,x), we 
find

H { 0 ) =  ,0 ~ 1 (^,  O ) ,0 ( —1/ z,  0 )

= N~*N
= n (4.38)

detTf(x) =  det (,0 _1(z, x)) det ^ ( —1 /z,  x)

=  / ( 7 ( ^ x ) ,^ ) _1/(7 ( - l /z ,x ) ,-3 ./2 ;)

= /(o,z)_1/(o,-i/z)
= (det TV)-1 det TV

=  1. (4.39)

We can calculate TO using (4.32) and the relation (4.31)

7/(x)t =  ^ ( —l/z jx )* ^ -1 ^ ,  x )t

=  G(0, — 1 / x)t/>(—1/ z, x)G _1(0, —1 /z)
= ft(x). (4.40)

Thus PL{x) is a solution to the Jarvis equation in the Jarvis gauge, unique up to the 
freedom in choosing B  which amounts to a constant SU(2) transformation PL —»■ U~lPiU.

4.5 The Translated Solution in the Jarvis Gauge
We now have all the tools necessary to find solutions to the Jarvis equation corresponding 
to monopoles which have undergone a translation. Given a solution to the linear system 
-0(A,x), covariance of the linear system under a translation means that ^ ( ^ jx  — A) is 
also a solution to the linear system corresponding to translating the monopole by A. The 
conjugate relation is just obtained by translating (4.28)

V>(A,x —A ) = H  x(x —A ) i J j  1(—1/A,x — A)^G(7 (A,x) — y(A,A),A). (4-41)
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Defining ^(A,x) =  — A)-0 X(A, — A ) N  we simply follow the procedure detailed
above to obtain the solution in the Jarvis gauge:

\&(A, x) =  iV 1ip(—1/z, — A)ip 1(—1/z, x — A)'0(A, x — A)ip 1(A, —A )N,  (4.42)

where N ^ N  — H ~l (—A).

4.6 The Vacuum Solution
We begin by finding the solution to the Jarvis linear system corresponding to the vacuum 
solution of the Jarvis equation. In the process we will find variables which will be of use 
to us later.

The simplest vacuum solution is

(4.43)

The Jarvis linear system in this case is

(4.45)

(4.44)

We solve this by setting

(4.46)

where /  is taken to be a function of z, z, A and A. This ansatz is motivated by the 
desire to have no worse than e2r behaviour asymptotically and to have TofA, 0) =  I .  The 
equations (4.44) and (4.45) reduce to

(4.47)

(4.48)

The solution is now straightforward. (4.48) implies

(4.49)
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and plugging this in to (4.47) gives

d2g + = T~—--■ (4-50)A — z A — z

A particular solution for this is clearly given by g = 1 while the general solution to the
homogeneous part is g = h(A, A)(A — z), so we have

/  =  +  ( 4 .5 1 )
1 + ZZ 1 + zz

This general solution satisfies \k0(—l / z , x )  = II and \kofex ) — %o1 as required.
Two choices of the function h(A, A) will be of use to us in the following work. The

first is the simplest choice h(A, A) =  0, which gives us the variable

a =  (4.52)
1 + zz  v '

The second is given by h(A, A) =  — A/(l +  AA), giving the variable

(1 +  Az)(l +  A*)
P (1 +  zz)(l +  AA) V 1

This is the cross ratio of the points z, — 1/A, A and — 1 / z  which is invariant under the 
rotation (4.18) and is well-defined for 2  and A taking values in the whole of the Riemann 
sphere. We will also defined the variables t = 1 — s and q = 1 — p. The relationship 
between T and its conjugate (4.25) is especially simple for /  =  p since p(—1/A) =  q(A), 
namely

*„(A,x) =  e_02r„ )  =  Ho ^ 0 ' ( - l /A ) 1- (4.54)

4.7 The Spherically Symmetric One-M onopole

In this section we will construct solutions to the linear system corresponding to the spher­
ically symmetric BPS monopole. We will do this in two ways: firstly, by exploiting the 
spherical symmetry of the Jarvis linear system to find a solution which also has “hedgehog” 
symmetry, and secondly, following similar reasoning, a solution which is meromorphic in 
A (and independent of A). We then show how these solutions are related by a matrix 
function of 7  and A.
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4 .7 .1  T h e  H ed geh og  So lu tion

We write the spherically symmetric one-monopole solution in the Jarvis gauge in the form 
given by Ioannidou and Sutcliffe [47]

U = e* F  +  e“ t(n  -  IP), (4.55)

where g is a function of r and IP is a Hermitian projector

5 = 2 log ( ^ )  F = r b  C ) (1 2) ■ (4-56)
This is a gauge transformation of the solution found at the end of Chapter 2.

The corresponding non-zero fields are
r\

Ar + i$  = U - ldrH  =  -~-(2W  - 1)
Z

A z =  U~ldzH = (es -  l )dzJP, (4.57)

and the linear system, in terms of the operators introduced in (4.17), is

£>Jr^ (A ,x )=  (A j  +  rdT +  r^p(2IP — I ) )  $(A,x) =  0 (4.58)

Dxz<i(A,x) =  (rdT -  A* — (es -  l)IPi) tf(A,x) =  0. (4.59)

Here

p >_. ( - * ) ( , * ) .  ( « » )

The operators D\r and D^z are invariant under the simultaneous rotation of z  and A 
(4.18) together with the gauge rotation

D* =  ( “  - / b  Dx I  a P
(3 a J zr \ —(3 a

= (? ~a) D-  i-p  a) ■ <4-61>
therefore we can look for a solution vp with the same symmetry.

A basis for 4/ which is invariant under these simultaneous rotations is given by

£>!= 1 +  A2 i) (> A)

^ = „ ,  i u " ,  ^  f 1. )  ( - x  i)

(1 + z z )(1 + AA)
z — A

(1 + zz)(  1 + AA)
A — z

(1 + zz){ 1 + AA)
1 +  Az

*3 =  , , ,  ; : t , ^ ( T K 1 a )i
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Writing

4/ =  clBi -|- bB2 ~t- cB% +  dB/±) (4.63)

the coefficient functions must be functions of the invariant quantities r, p and q =  1 — p 
where

=  (1 +  Az)(l +  Az) =  ( A - z ) ( A - z )  , .
1 (1 +  zz)(l +  AA) q (1 +  zz)(l +  AA) ’

We list the following derivatives with respect to the operators (4.17)

A xzp =  p A \p  =  q

A U  = ~P =  ~Q
A XZB3 = -̂B3 A *Bx = -B i

q p
A XZB2 =  - B i  A XB2 = - B 2

A xzB3 = ~^B3 A xB 3 =
q p

A XB4 =  Bi A \Bi  =  B2. (4.65)

We also need

IPS! =  Bi =  - B 3
g

P  B2 =  B2 Ŵ _B2 = —Bi
p # 3 =  0 p * £ 3 =  0

WBi =  0 =  0. (4.66)

Substituting (4.63) into the first equation of the linear system (4.58) and expanding 
out the result in the basis (4.62) gives us the equations

A^a +  —(a — c) +  rdra +  r^^ -a  = 0 
p  2

(4.67)

A \b — b + d + rdrb +  r -^ -b  = 0
2

(4.68)

\ drQ 
A 2c +  rdrc — r ——c =  0

Z
(4.69)

A  zd + rdTd — ’'N r d  =  0- (4.70)
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Similarly, the second equation (4.59) becomes

rdra — A xa — 0 

rdrb - A xzb = 0 

rdTc — A \c  4- - (a  — c) — - ( e 9 — 1 )a = 0
q q

rdrd — A xd — b 4 - d +  (eg — 1)6 =  0.

Equations (4.71) and (4.72) immediately imply that a = a(rp) and 6 =  
(4.69) and (4.70) imply that c = (rq) and d = e*5(rq).

Using (4.67) we have

^ g ^
rpa'(rp) +  rpN—a(rp) 4 - q(a(rp) — e 2 y (rq)).

When p =  1, q = 0 this is

ra'(r) 4- r*^-a (r) =  0 ,
2

which implies that a(r) = ke~ 2 . Using the explicit form of g (4.56) we have

, . sinh 2  rp
airp) = k -----------.

v 2 rp

Now when p =  0, q = 1 we get

k — e 2 y(r) =  0

sinh 2 r(?
=" 7(n?) =  k ~ 2 ^ ~ -

To find P and 7  we use (4.68):

rP'(rp) — 2 rp{rp) coth 2 r +  2 r5(rq) cosech2 r — 0 . 

Evaluating this when p = 1 , q = 0 implies that

P(rp) = 6 (0 ) cosh 2 rp 4 - ki sinh 2 rp, 

and then evaluating when p = 0 , q = 1 gives us

S(rq) = 6 (0 ) cosh 2 rq — k\ sinh 2 rq.

(4.71)
(4.72)

(4.73)

(4.74) 

f3 (rp), while

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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We determine the values of the constants £(0), k and k\ by requiring that
4/(—l/z ,x )  =  E, and we should then have ^ ( z ,  x) =  %~l . Recall tha t 4/ =  aB\ -f
bB2 4- cBs +  (IB4 . When A =  — 1/ z  we have

4/ =  bP +  c(l — P) p = 0 q = 1, (4.82)

implying that b — 5(0) =  1 and c = k = 1. When A =  z we have

T =  aP +  d( 1 — P) p = 1 q — 0, (4.83)

which gives a =  sm2hr2r and d = -in2I[-2-- as required.
We are free to set Aq =  0 and so we have, finally

sinh 2 rp
a{r' p) =  ~ ^ r
b(r, p) =  cosh 2rp 

, . 2r sinh 2rg
C(r’9) =  sinh2r 2 rq 

2 T
d(r, q) = . .  ̂ cosh 2rq. (4.84)

smh 2r

4 .7 .2  T h e C onju gate R ela tion

We can now discuss the relationship with the conjugate solution as per (4.25). To do this 
we will have to calculate the inverse of 4̂  which will also allow us to confirm that the 
solution found above has determinant 1.

It is useful to define another basis as follows

t _
9  c •)

■ (irigrnj) (‘.x) ('')
c ' w  -  ’  ( , - ^ - ) ( , V a) ( j )

C4(A) =  ^ ( A ) 1 =  aTa ( ”/ )  H  4  • (4-85)

These are related under A —»• — 1 /A by C\{—1 /A) =  6 2 (A) and 6 3 (—1 /A) =  6 4 (A). In 
terms of this basis it can be shown that the inverse of 4/ =  aB\  +  bB2 +  cB3 +  dB^ is

1 t (dCi +  cC2 + bC3 +  0 C4 ). (4.86)
aap  +  bcq
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For the solution above we have

sinh 2rp cosh 2rq +  cosh 2rp sinh 2rq . .
adpPbcq — -------------------- — -—-----------------------=  1. (4.87)

sinh 2r v ’

To find the conjugate relationship we first calculate 4/_1(—l/A)*

T(A) =  a(r,p)Bi  +  b(r,p)B2 +  c(r,q)B3 +  d(r,q)B4

T _1(A) =  d(r, q)Ci +  c(r, q)C2 +  b(r,p)C3 +  a(r,p)CA
T _1( - l /A )  =  d(r,p)C2 +  c(r,p)Ci +  b(r, q)CA +  a(r, q)C3

(—l/A )1 =  d(r,p)B2 +  c(r,p)B1 +  b(r,q)BA +  a(r,q)B3. (4.88)

Now

i /A)t  =  ( e _ t P  +  e t ( n - P ) )  ^ “ ' ( - l / A ) 1
_£‘=  e 2c (r ,p )B i+ e  2d(r,p)B2 e 2a(r,q)B3 + e 2b(r,q)BA. (4.89) 

For the solution (4.84) we have

a(r:p) = e 2 c(r,p)
b(r:p) =  e~2d(r,p) 

c(r,p) = e 2a(r, <7)

d(r,q) = e 2b(r,q), (4.90)

and so the conjugate relation is

T(A,x) =  %-1\I/-1(—1/A, x )f. (4.91)

4 .7 .3  T h e M erom orp h ic So lu tion

The solution found above has explicit hedgehog behaviour which required that the solution 
depended on A as well as A. In general we want to deal with solutions depending only 
on A, so in this section we will present a solution which is meromorphic in A. To do this, 
it will be necessary to relax the rotational invariance of the hedgehog solution by using 
coefficient functions which are no longer rotationally invariant.
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We can use a basis for 4/ which is spherically symmetric, but now independent of A

h= z 0 (1
F  =

1 +

■  + +  0  
" • - - + ?  T + ( " + * > ■  (4M)

The price we pay is that P*  and P* are singular when A =  —1 j z  and A — z  respectively,
so we will have to check that the solution we obtain is defined at these points.

The variables s and t

1 “I- A z ,  ̂ .
s = - t = 1 — s, (4.93)

1 + zz  v '

are analogues of p and q and similarly satisfy

A *s = s A^s  =  t
A xzt = - s  A \ t  =  - t .  (4.94)

We therefore anticipate that we can find a solution

=  a P  +  5P* +  cP* +  d(I  -  F ) ,  (4.95)

where the coefficient functions are functions of r, s and t.
We list the derivatives of the basis (4.92)

A *P =  IP* A *P =  P *

A*P* =  - P *  -  (2P  -  H) A*P* =  - P *

A*P* =  P *  A*P* = P *  -  ( 2 P - I ) .  (4.96)

Plugging (4.95) into (4.59) gives

rdra — A *a +  5 =  0 (4.97)

vdrb -  A xzb +  b = 0 (4.98)

rdrc — A *c — c +  d — ega =  0 (4.99)

rdrd — A *d — e9b =  0. (4.100)
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Multiplying (4.98) by r we obtain the equation

(rdr -  A i)(r i)  =  0, 

which implies that b = /3(rs)/2r. Subtracting (4.98) from (4.97) implies

(rdr — A*) (a — b) = 0,

so a — b = a(rs)  and therefore

/ \ P ( r s )a =  a(rs) H— -— .
2  r

Now if we substitute T into (4.58) we obtain

d
A — c +  rdra +  r - ^ a  = 0 

2r\
A \b — b +  a — d +  rdrb +  r -^ -b  = 0

2
d

A \c  +  c +  rdrc — r-L^-c =  0  
2

A*d + c +  r<9rd — r -^ -d  =  0

Using =  1 — 2rco th2r and multiplying (4.106) by sinh2r we obtain

(A* +  rdr)(sinh2 rc) =  0,

implying that c =  7 (r£)/sinh2r. Now subtracting (4.106) from (4.107) and 
by e- 2 gives the equation

(A * +  rdr)(e“ 2 ( d - c ) )  = 0 ,

which implies that

d — c =  e^5(rt) =  — p — <5(rt).
v '  smh 2 r v '

Now subtracting (4.99) from (4.100), we obtain the equation

rdr(d — c) — A *(d — c) — (d — c) + eg(a — b) = 0, 

and substituting the formulae for a — b and d — c into this implies

5'(rt) sinh 2 r — 25(rt) cosh 2 r  +  2 a(rs) = 0,

88

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108) 

multiplying

(4.109)

(4.110)

(4.111)

(4.112)
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with solution

S(rt) = ki cosh 2 rt  -f k2 sinh 2 rt
a(rs) = ki cosh 2rs — k2 sinh 2rs. (4.113)

We now turn to (4.100) with

d =  2,r  (fci cosh 2rt + /c2 sinh2rt) +  - M L  b =  (4.114)
sinh 2 r ’ sinh 2 r  2  r y '

Plugging this in and multiplying by sm ^ 2 2r we obtain

2ki sinh 2 r cosh 2 rt — 4rk\ cosh 2 r  cosh 2 rt +  4rk\ sinh 2 r sinh 2 rt —
2j(rt)  cosh 2r +  7 /(rt) sinh 2r — 26(rs) = 0. (4.115)

Evaluating this when t = 1 and s = 0 gives

7 '(r) sinh 2 r — 2 7 (r) cosh2 r =  2/5(0) +  2A:i(2r — cosh 2r sinh 2r). (4.116)

A particular solution is seen to be given by 7 (7") =  — (/5(0) +  2rA:i) cosh 2 r while the general
solution to the homogeneous equation is 7 (7") =  k$ sinh 2r. Hence

7 (7 7 ) =  &3 sinh 2rt — (/5(0) +  2rt&i) cosh 2rt. (4.117)

Substituting this back into (4.115) gives us

fJ(rs) = &3 sinh 2rs +  (/5(0) — 2rsk\) cosh 2rs. (4.118)

We will set /5(0) to 0. The conditions that det (\k) =  1 and \k(—1 Jz) =  1 fix k\ = ks = 1 
so finally we have

. sinh2rs
a = t cosh 2rs H------------

2 r
. . sinh 2 rs
b = —s cosh 2rs H------------

2 r
2 r f  sinh 2 rt

c — ----  —tcosh2rt +
sinh 2r \  2r

2r (  , sinh2rt . /, .
d =  —  ----  I scosh2rtH----- ------ ) . (4.119)

sinh 2r \  2r 1 y J

 ̂ n /4 /> I L) ̂It can be checked that 5IPi and cP _  are nonsingular.



CHAPTER 4. ONE MONOPOLE IN THE JARVIS GAUGE 90

4 .7 .4  T h e R ela tion sh ip  B etw een  th e  S o lu tion s

Since both the spherically symmetric and the meromorphic solution give rise to the same 
gauge fields, they must differ by multiplication on the right by a matrix depending on 
y(A, x) and A. We will compare the solutions and, in the process, rewrite them in a form 
which will be convenient for finding the translated solution.

We rewrite the hedgehog solution as follows:

* s (A,x) =  1

+

^ J 2 r(l +  A z)
- z \  1

2-y
sinh 2rp (l A) — cosh 2rp  ̂ (—A l)

2ry
- , . sinh2rg (l A) +  cosh 2rq  = A l)
1 J (A- 2 ) sinh 2r [ yv ' H 1 +  AA v

0 \  / sinh 2rp — cosh 2rp \  /  1 A

(A—2) sinh2r J  \sinh 2rq cosh 2rq J

Similarly the meromorphic solution can be written as

2r(l+A2 (4.120)

,, . 1 —z \  ( „ -A,. . 0 \  /s in h 2 rs  — cosh2rs
«“(a,x)- 12 j J y r  „»h2rt <“ 2i>

Noting that p = s — we find

sinh 2rp — cosh 2rp \  / sinh 2rs — cosh 2r s \  f  cosh sinh
sinh 2rq cosh 2rq J  I sinh 2rt cosh 2rt J  I sinh cosh

(4.122)

Since the hedgehog solution satisfies \I/5(A,x) =  TL ^ x ) ^  x(—1/A,x)t, the meromorphic 
solution satisfies a conjugate relation of the form

4>m(A, x ) =  x )tGM(7 (A, x), A), (4.123)

where GM(0, A) =  I.

4.8 The Translated Solution
In this section, we will apply the method for finding a translated solution of the Jarvis 
equation to the one-monopole solution of the linear system. We begin by rewriting the 
expression for the meromorphic solution (4.121) given in the previous section as

\£m (A, r, 2 , z) = A(r, 2 , z )V (A, 2 , z)B{A, r, 2 , 2 )C(7 (A, x), A), (4.124)



CHAPTER 4. ONE MONOPOLE IN THE JARVIS GAUGE 91

where

•A(r,z,z) =
sinh 2 r

sinh 2r

V(X , 2, 2) =

1 P zz
B(X,r ,z ,z)  =

C( 7,A = (4.125)

/  sinh 2  rs — cosh 2  rs 
2 r s in h 2 r  ysinh 2 r^ cosh2 r£

0 27)  ■

Here, again, s = (1 +  Az)/( 1 +  zz) =  1 — t. As already discussed, C{7 , A) does not 
contribute to the fields in the linear system, so we will actually begin with the solution

4/m(A, r, 2 , 2 ) =  A(r, 2 , z)V(A, 2 , z)B(A, r, z, 2 ). (4.126)

Recall that the coordinates r, 2  and 2  are polar coordinates from the origin. When 
we translate the solution it will be useful to use two systems of polar coordinates, one 
defined from the origin and the other defined from the position of the monopole. Let x be 
the coordinate vector from the origin and X  be the coordinate vector from the monopole, 
so that X =  x +  A defines the position of the monopole for some constant vector A. The 
corresponding polar coordinates are defined by writing

-y- — r  (  _Z +  Z j p  Z  
y 1 +  2 2 ’ 1 +  2 2  ’

X  =  R (  Z  + Z_ Z - Z  Z Z ~ \  (4.127)
v  l  +  Z Z ’ l  +  Z Z '  l  +  Z Z  K }

A = A (  ^  +  ^  j W - W _  W W - J .  ^
v 1 + W W '  1 + W W '  1 + W W  J

To obtain the translated solution in the Jarvis gauge we follow the procedure described 
in section 4.4. Translating the solution (4.126), ie. taking \kM(A, R, Z, Z),  gives us a 
solution to the linear system corresponding to a monopole at —A, although not now in a 
gauge satisfying the Jarvis equation. The conjugate relation is

R, Z, Z) = U~l {R, Z, Z ) ^ - ^ -  1/A, R, Z, Z) fg( 7 (A, x), A), (4.128)

for some matrix function Q. At the origin r  =  0, R = A, Z  — W  and Z  =  W  are constants
and

=  A(A, W, W ) ]A(A,  W, W).  (4.129)
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Therefore we take N  = A(A, W, W)  and define

^(A, r, z, z) =  ^(A, R, Z, A, 4 , W, W ) N
= A ( R , Z, Z)X>(A, Z, Z)8(A, R, Z, Z )£ _1(A, 4 , W, W, W).

The solution to the linear system in the Jarvis gauge is therefore

tf(A ,r,z ,z) =  '0_1( - l / z , r , z , ^ ( A , r , z , £ )

=  B - \ - l / z ) V { X ) B { X ) ,

where

0(A) = 0(A,/?,Z ,Z)0-1(A,^,T^,W7)I>-1(A,iy,T?)
Z>(A) =  V - x( - l l z , Z , Z ) V { \ Z , Z ) ,

and the solution to the Jarvis equation % is given by

■H~l = V(z)  = B ~ \ - l l z )T ) ( z )B { z ) .

Explicity,

1 I  ( l + A W ) s i n h  ( A + i ? + r ( 2s — 1) )  ( W - A ) s i n h  ( A - t f - r ( 2s - l ) )

-  i (V -» )
/  l  s i n h  ( A+R+r)  1 ,  .

K~l ( — 1 —  Z I  s i n h 2 i ?  z _ w s i n h ( A  ^ + r )

/ ~ : u  o  / I I  1 s i n h  (A—R—r) 1  .

v sm h 2/1 V ~ i+zvk sinh2R ; - I w s,nh(yl+* -r),

Rewriting zV(z)  as follows

( f f ' h  0 \  ^ ( l  +  W W ) ( 0 ^
^ 0 - l ± $ )  A(1 +  ZZ)  ^  0

we obtain the following explicit form of the solution

y R(  1 +  W W )  /  t a
A(  1 +  sinh (2/1) sinh (2/2) V 1 1 V ’

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)
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where
z - Z

v . z ~ wv i -  z - Z
1 + z W

sinh (A — R  — r)

sinh {A — R  + r ) \
v 2 =  J - f  • (4-137)

V r f i w sinh ( A + R  ~ r) /

The vectors vi and v 2 are related in an interesting way. Suppose we send r to — r 
and z  to its antipodal point — 1/z. Then this describes the same position vector x G R3. 
The coordinates i?, Z  and Z  depend only on the Cartesian coordinates and so remain 
unchanged under this transformation. We find that

v i ( r ,z ,z) = ^  v 2(—r, —1/z, —1 /z). (4.138)

This corresponds to the condition that

Ji{r, z, z) =  —1/z, —1/z).  (4.139)

Interestingly, this relates exponentially growing terms in %~l to exponentially decaying 
ones.

The metric is required to be smooth away from the origin and continuous at the origin.
Examining the solution, we see that there is one particular line on which smoothness of
the solution (4.136) is not obvious. This is the line z = W, — 1 / W  shown in figure 4.1. To 
check that the solution is well-defined around this line, we investigated the solution for 
the following five cases to leading order in e using M a t h e m a t i c a

1. z ^ W  +  e V i R t t A  + r

2. z «  — \ j W  +  e v, R  zz A — r

3. z «  — 1 /W  +  e v, R  ~  r — A

4. r «  eu

5. R  zz eu

The result is that on this line

r 2 A  sinh2,R rj \
sinh 2A  2 R  tU \  7 —  W

sinh 2A  2R  I Z VV
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R  = 0

r = 0

w

i  R = A - r

Figure 4.1: Coordinates on the line through the monopole and the origin.

This is smooth away from the origin and continuous at the origin as required.
Although H r 1 no longer has explicit spherical symmetry in the Jarvis gauge, it retains 

a manifest axially symmetry about the line through the origin and the centre of the 
monopole. By using the freedom to rotate the solution to set W  = W  = 0, we can exhibit 
this axial symmetry

R - 1
(i +  zz) sinh 2  A  sinh 2 R  

R  + r - A x  3 ( -z s in h ^ A  - R - r ) )  ( Sinh ^  +  R  +  r )’ sinh (A ~ R ~ r»

+ R - r  + A x ,  ( - ' “ kiM A + R - r ) )  b inh (A ~ R  + r )■ - 2sinh (A + R ~  ^
(4.141)

where R  =  ^ /x \  +  x\ + (.7:3 — A)2. For z' =  e'^z we have

'H~l (r , z , z ,R )  =  ( '6 2 ^  z ' ,z ' ,R )  H  * °^  ] . (4.142)
V 0 e 2 / V 0 e 2 /

We plot 71-̂ 2 and Ti22 around the origin for a monopole at x 3 = 1 in figure 4.2. The 
results appear to be consistent with the required properties of %.
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Figure 4.2: The components R v\  and close to the origin for a monopole at £3 =  
coordinate X2 here takes the value zero.

. The
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4.9 The Higgs Field and Jarvis Rational Map
In this section we will compute the Higgs field in the Jarvis gauge corresponding to the
solution to the Jarvis equation found in the previous section. The Jarvis rational map is
then found straightforwardly in terms of the eigenvector of — i$>°° with eigenvalue +1 as 
explained in Chapter 2.

Recall that the Higgs field is given by — where

H r 1 = B ~ \ - l l z ) V { z ) B { z ) ,  (4.143)

in terms of the functions defined in (4.134). To perform the computation it is convenient 
to write the matrix functions B(—l/z ) ,  B(z) and V(z)  in a slightly more restrictive way
as functions of r, z, z and R , where R  =  y/r2 +  2r x • A +  A 2. The vectors A and x =  x / r
are defined by (4.127). The form of the functions we take is

1 / \  1 (  s in h A + i?—r sinh A —R + r   ̂ f  z —W  0
0 {  — l / Z )  — =  I sinh A —R —r  sinh A + R + r  I I  n  =7

V S i n h  2 A  V  t i n h2 R --------------s inh2R  J V U 1 + z W

1 (  sinh A + R + r  sinh A —R —r   ̂ (  1 + z W  0

W  = V s t i h 2 A  V 0
V(z) =  ____ 1 + WW__ 1 ± H  (tt-r-t-A  0 \  , .

( > A( l  + z W ) ( z - W )  2 V 0 -(R+r+*-A)J ' ’

We compute

-  ( v ( z ) d rB(z) • B~l ( z )V~l (z) +  drV(z)  • V _1(^) — drB (—l / z )  • B~l {—1/z)^  , (4.145)

the terms being explicitly
/  r + x - A + R  r + x - A - R  \_  /   R -------------------------------- R  \V{z)drB(z) • B - ^ z J V - ' i z )  = r + x - A + R  1 r+ x -A + .R5 . , 5n n  5 coth 2RR  sinh"12 R R  ,

r + x - A - R  „ „n r + x - A - i ?----------------c o th2i? ---------------- l (  1 t „ \  — I R  R
■A+R  1 r + x - A - J .  fV,nD
R  sinh2 2R  R  coth 2 R ,

drB ( - l / z ) - B  ( -1  /z)  =  , r+..A+fl t r+jt.A_R

drV ( z ) - V ~ 1(z) = - U l  ° ) .  (4.146)
R  VO -1

Thus we obtain

- t *  =  (coth (2R) -  T )  B - ' i - l / z )  ( j  ^

= ( c o t h ( 2 i ? ) - ^ ) ( 2 P - n ) ,  (4.147)
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where

P  = B - ^ - l / z )  ( j  J )  B ( - l / z )

  1 f  (l+^W)sinh ( A + i J + r ) \  / sinh ( A + R —r) sinh ( A —R + r )  \  / j

sinh 2A  sinh 2R V ( w - z ) s m h ( A - R - r )  I V 1+zW *-w J

Clearly the Higgs field satisfies ||4>|| =  coth2i? — 1/(2R) which corresponds to that of a 
translated one-monopole.

As r —» oo we have R —> r +  x • A +  0 ( r -1) and

poo _  1 ( (l+zW)eA-*-A ^  ̂sinh (A+x-A) sinh(A-x-A)  ̂ ^
sinh 2A  \(z-w)e- A-* A/

Therefore the eigenvector of —i$°° = 2P°° — II with eigenvalue +1 is

(1+zW)eA 
(z—W)e~A

and the Jarvis rational map of the translated monopole is

z - W

(4.150)

1 + z W
= e ~ 2A. (4.151)

4.10 Comments
We have succeeded in finding the action of translations on the Jarvis rational map of 
the one-monopole by explicitly constructing a metric corresponding to a monopole with 
arbitrary position. This has turned out to be an extremely natural procedure using the 
linear system for the Bogomol’nyi equations, which tallies with the fact that the solution 
to the linear system is a more fundamental object than a solution to the Bogomol’nyi 
equations. We will continue the study of solutions to the linear system in Chapter 6 when 
we discuss the inverse scattering method.



Chapter 5

R esults on the M etric and Jarvis 
R ational Map

In this chapter, we will present a menagerie of results relating to the Jarvis rational map 
and metric % valid, we believe, for a general multimonopole. The first of these concerns 
the relationship between the Jarvis rational map and spectral lines which pass through 
the origin, so we begin by introducing the concepts of spectral lines and the spectral 
curve associated to a monopole. By defining a dual rational map, we find the spectral 
lines through the origin in terms of the Jarvis map and its dual.

In the previous chapter, we noted that the one-monopole solution in the Jarvis gauge 
has an interesting property under (r, z, z) —»• (—r, —l /z ,  —1/z). In this chapter we will 
give an argument to show that this is a general property of the metric in the Jarvis gauge, 
although some care seems necessary to interpret this result.

We will also discuss the asymptotic behaviour of the Higgs field in the Jarvis gauge 
and the boundary conditions on the metric. We find disagreement with the analysis of 
Ioannidou and Sutcliffe [47]. We will suggest relating the boundary conditions to the 
functional property of the metric found and the dual rational map.

Also included is some work which chronologically precedes the work of the previous 
chapter. The first idea is to consider the effect of an infinitesimal translation on a solution 
to the Jarvis equation. We find that we can find a new solution involving an integral of 
the fields of the initial solution, and this allows us to perform this translation on the BPS 
monopole at the origin and calculate the change in the rational map. The other work 
concerns the relation between the centre of a monopole and the Jarvis rational map. This 
is an idea which is close to fruition.
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5.1 The Spectral Curve Associated to a M onopole
Underlying the linear system is the mini-twistor space "IT introduced by Hitchin [25] and 
the fact that the Galilean group acts on this space in a nice way. Mini-twistor space 
is the space of oriented straight lines in R3, which is isomorphic to T C P 1, the tangent 
bundle to C P 1. We can specify a given straight line by a point in the base space A and 
a holomorphic tangent vector 7 ^ ,  where A specifies the direction of the line and 7  is a 
complex coordinate specifying the intersection of the line with the plane orthogonal to 
this direction. We will represent this line as the point (7 , A). This can be understood in 
terms of simple geometry of R3 if we relate A to a unit normal vector n  G R3 as follows

/A  + A i(A -A ) A A - 1 \
l l  +  AA’ 1 +  AA ’ 1 +  AA / ( ' ’

The vectors

l  = ( i r n p <1- A V i ,1 + A ! , -2 J ) ' ( 5 - 2 )

are orthogonal to n, so we can specify a straight line in R3 as

dn _dn . .
x =  ca A + 7 l  +  “ n ’ (5-3)

where u is the parameter along the line. In mini-twistor space, this corresponds to the 
point (c, A). We can find c from the equation of the straight line by taking the dot product
with |S:

oX

c = 0  +  A A ^ g . x = _ l 7(A;X)) (54)

where 7 (A,x) is the function introduced in Chapter 4. This is the twistor transform 
which relates a point (c, A) in T C P 1 to a straight line in R3. (Note that our conventions 
concerning the definition of A and 7 (A,x) are not those normally used.)

Following Hitchin [25], we can consider the spectrum of the scattering operator Du— 
along a given straight line in "IT. As in the case of the scattering operator Dr — i$  used 
to define the Jarvis rational map along half-lines from the origin, there are solutions Si 
and s2 satisfying
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in some unitary gauge. Similarly, there are solutions and S2 satisfying

e~uu%s[ —> euu~^s '2 -> as u —> —0 0 . (5.6)

Lines on which there is a solution which decays as both u —>■ ± 0 0  are called spectral lines. 
The set of spectral lines for a given monopole is described by a curve in "IT called the 
spectral curve.

Hitchin shows that the spectral curve of an n-monopole is a curve of genus (n — l) 2 
in IT of the form

S  =  7 n +  j n 1ni(A) +  • • • +  ,y'lan-i(X) +  • ■ • +  7 an_i(A) -f an( A) =  0, (5-7)

where each aj( A) is a polynomial in A with maximum degree 2i. If a line in the A direction is 
spectral, then so is the same line considered in the opposite direction — 1/A which amounts 
to the following reality condition on the coefficient functions ar (A)

ar (A) =  (—1 )7'A ar (—1/A). (5.8)

There are also some non-singularity conditions which will not have cause to discuss here.
The spectral curve of a monopole centred at the origin is 7  =  0. By considering

7 (A, x +  A) =  y(A, x) +  y(A, A) =  0, (5.9)

one obtains the spectral curve of a monopole with position —A

J IA - W K J  +  W )
1 + W W

This describes the star of lines through the point —A.

5.1 .1  S p ectra l L ines T hrough  th e  O rigin

We can ask for all the spectral lines which pass through the origin. Since a line through 
the origin corresponds to 7  =  0 , such lines are solutions to the equation

an(X) = 0. (5.11)

We can look at this in terms of the solutions to the scattering operator Dr — along 
half-lines from the origin studied in the definition of the Jarvis rational map. We will 
work in a unitary gauge in which the Higgs and Euclidean gauge fields are anti-Hermitian. 
The variable u along a line in the direction A through the origin corresponds to

r = u z = A u >  0

r =  —u z = —1/A u < 0. (5.12)
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The solution which decays as u —> oo is

(Dr — z<h)si(r, A) =  (Du — z$)si(u, A) =  0, (5.13)

while the solution decaying as u —» —oo is

(.Dr -  z$)si(r, -1 /A ) =  { - D u -  z$ )s i(-ii, —1/A) =  0. (5.14)

Now using the fact that a traceless, anti-Hermitian matrix M  satisfies

J M J "* =  M  J  =  ( 0, 1 )  , (5.15)
, - 1  0 /  ’

we obtain the solution

(Du — i $ ) J  Sl(—u, —1/A). (5.16)

If the line z = A is a spectral line then the solutions Si(u, A), which decays as u —>
+oo, and «7si(—i t ,  — 1/A), which decays as u —>• —oo, are linearly dependent and their
Wronskian vanishes. Since the Wronskian is independent of u, we can evaluate it at the 
origin where S i ( t t ,  A) is of the form

s1(0,A) = a ( A , A ) ( ^ ) I (5.17)

where f ( z )  = q(z)/p(z) is the rational map of the monopole. Similarly

J Sl(0 ,- l/A )  =  «(A,A) I j V b fo I • (5-18)

This corresponds to a rational map

/ »  =  - = J =  =  (5.19)
/ ( -  1 /z)  , ( - 1 / 2 ) ’

which we will term the dual rational map.
Thus spectral lines through the origin are those lines z = A for which

p(A)p(—1/A) +  q(X)q(—l/X) = 0. (5.20)

Note that this condition is independent of the constant SU(2) Mobius gauge action on p 
and g, as we would hope since a spectral line is a gauge invariant object.
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This relates the Jarvis rational map to the function an(A) in the spectral curve which 
is a degree 2n polynomial. They must be related by

an(A) =  cAn (p(A)p(—1/A) +  g(A )g(-l/A )) , (5.21)

for some constant c.
We can test this for the Jarvis rational map of the one-monopole with position —A  

which was found to be f ( z )  = e~2A(z — W ) / ( I  +  zW).  The dual rational map in this case 
is f ( z )  =  e2A(z — W ) / (  1 +  zW)  which corresponds to the rational map of a monopole 
at the point A. In particular the one-monopole at the origin is seen to have a self-dual 
Jarvis map.

According to the analysis given above, the spectral lines through the origin are solu­
tions to the equation /(A) =  /(A) giving

(A -  W )( l  +  XW) = 0. (5.22)

This describes the line A =  W, — 1/W , which is the line on which the smoothness of the 
one-monopole metric (4.136) was unclear, and coincides with the line through the origin 
desribed by the one-monopole spectral curve (5.10).

5.2 A Functional Condition on the M etric
We saw in the previous chapter that the one-monopole metric PC had the interesting 
property that PL(r, z, z) = Pt~l (—r , —1/z, —1/z).  In this section we will show that this is 
true in general. Normally we would only consider non-negative values of r since this is 
enough to cover M3, but, as a function of r, z and z, PL is equally well-defined when r is 
negative.

Recall from the definition of the metric in Chapter 2 that there is a solution a(r, z, z) 
to the equations

(Dr — i&)a(r, z, z) =  T)^a(r, z, z) =  0, (5.23)

in a smooth unitary gauge, which satisfies a(0, z, z) =  II. The metric is defined in terms 
of this by PL(r,z,z) = a(r, z, z)la(r, z, z). In this gauge the Cartesian gauge fields Ai 
and the Higgs field $  are well-defined functions of the Cartesian coordinates, so that, 
as functions of the spherical polar coordinates, A*(r, z, z) =  Aj(—r, —1/z, —1/z) and 
4>(r, z, z) =  <!>(—r, —1/z, —1/z). Under r —> —r, z -A —1/z
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therefore, as functions of r, z and z, A r =  ^ A i  and A z = ^=-Ai satisfy

Ar( - r , - l / z , - l / z )  =  - A r(r ,z ,z)
Az(—r, - 1 / z , - 1 /z)  = z2A z(r, z, z). (5.25)

Furthermore, in a unitary gauge Ar, A z, A z and $  are traceless matrices which obey

V  -  - A r  A zf =  - A z (5.26)

Therefore we deduce

A r(r, z, z) — z<F(r, z, z) = (A r(—r, —1/z,  —1/z)  — i&(—r, —1/ z ,  —1 / z ) Y  (5.27)

A z(r, z, z) = - ^ A z( - r , - 1/z,  - 1  /z ) f . (5.28)
z *

Now, using (5.23), we have A r(r, z, z) — i<&(r,z,z) = — (dra(r, z, z))a~l (r, z, z) and 
therefore (5.27) implies

{dra(r, z, z))a~l {r, z, z) =  a_1(—r, —1/z ,  — l/z)^d(-r)a(—r, —1 /z ,  — 1/z)*

=  (5ra_1(—r, — 1/z, — l/z)^)a{—r, — 1/z, — 1/z)*- (5.29)

Similarly, A z(r ,z ,z)  =  — (c^a(r, z, z))a_1(r, z, z) and (5.28) imply that

(dza(r, z, z))a~l (r, z, z) = - ^ a ~ l { - r , - 1/ z , - l / z y d ( - i / z)a ( - r , - 1 / z , - l / z ) f

= (dza~l (—r , - 1 / z ,  —1 /z)^)a(—r , - 1 / z , - 1  /z ) f . (5.30)

Therefore a(r,z,z)  and a_1(—r , —1/z, —l/z ) t  must differ by multiplication on the right 
by a matrix depending solely on z. Since a(0, z, z) =  I ,  it follows that

a(r, z, z) = a~l (—r, —1/z, —1/z)*, (5.31)

which implies that the metric PL satisfies

PL~l {—r, —1/z,  —1 /z)  =  cTl (—r, —1 /z ,  —l / z )a ~ 1(—r, —1/z, —1 /z)*

=  a(r, z, z)^a(r, z, z)
= R (r ,z , z ) .  (5.32)

We believe that this condition may find a use, for instance, in specifying asymptotic 
conditions on PL in which the Jarvis map and its dual appear explicitly. More work will 
have to be done to see if this is the case.
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5.3 The Asym ptotics of the M etric and Higgs Field
In this section, we will discuss the asymptotic boundary conditions on the metric and 
Higgs field in the Jarvis gauge. The argument is based on the definition of the metric 
presented in Chapter 2. We shall support our argument with the example of the one- 
monopole solution in the Jarvis gauge found in the previous chapter.

In [47], Ioannidou and Sutcliffe present an argument based on the assumption that 
the Higgs field has the following asymptotic expansion valid in the Jarvis gauge

*  =  * “ ( M ) ( l  - i ) + 0 ( I ) ,  (5.33)

where H^00!!2 =  1.
The asymptotic Higgs field of the solution that we found in Chapter 4 is of the form

( 2 P - I ) ,  (5.34)

where the precise form of the projector is

p    _________ f _________  f  ( l+ ^ W )  sinh ( A + i 2 + r ) \  / sinh (A + R —r ) sinh ( A —R + r )  \  / r  q c \

sinh 2A  sinh 2R \  (w-z) sinh (A-R-r) J V  1 + z W  z~w  )

This does not satisfy the boundary condition (5.33) since P  contains an 0 ( r _1) term 
which necessarily points in a different direction in the algebra to the 0(1) term. That 
this does not contradict the analysis presented in Chapter 2 which defines the metric will 
now be shown.

According to this analysis, 7i is of the form

H  =  K(z, z ) ^ S K ( z ,  z), (5.36)

where the matrix S  satisfies

S  ( 6 0 e - v t )  (o  l )  as r  ° ° ’ (5'37)

and K  is of the form

The matrix F(z)  is a holomorphic representative of the rational map viewed as an ele­
ment of the coset space SL(2,C)/B,  where B  is the group of complex unimodular upper 
triangular matrices. Given the Jarvis map f ( z )  = q(z)/p(z),  this takes the form
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where a(z) and b(z) are polynomials satisfying p(z)b(z) — q(z)a(z) = 1. That such poly­
nomials can be found is a consequence of Euclid’s algorithm since p and q have no non­
constant common factor.

The Higgs field is —^'H~1dr7i where

H ~ldrH  = K ~ 1( z , z ) (S^S) -1dr{StS)K{z ,z ) .  (5.40)

A unimodular matrix S  of the form

S ~ ( ‘ l U 7 r - V ) -

satisfies the asymptotic condition (5.37) and we find that

( S t S ) - ^ ( S t S )  =  ( - 2  +  5 )  ( j  +  (2  +  e - ^ b ’ i r )  ("*<r) " W ’)
(5.42)

Therefore, if b(r) = bo +  6 ir-1 +  0 ( r -2), then the asymptotic Higgs field is not of the 
form in (5.33) since the 0(1) and 0 ( r -1) terms do not point in the same direction. Note 
that the modulus of the asymptotic Higgs field is unaffected by the function b. It is easily 
verified that the eigenvector of — wi t h eigenvalue +1 is (p(z), q{z))t which reproduces 
the required Jarvis map.

The boundary condition on S  (5.37) implies that the leading order term in the metric
is

O reZT
( p W ) • (5-43)(r(l +  zz))n \  p(z)

However, it does not allow us to say much about the decaying part of the metric.
We can again illustrate the problems in determining the decaying terms in the metric 

using the parametrisation given in [47]. This consists of expressing a general unimodular 
Hermitian matrix PL in the form

-H = e i p  + e - i (B . -P) ,  (5.44)

where P  is a Hermitian projector. In this case the Higgs field is found to be

$ = ( ^ 2P “ _ e~g)p drP  + {e9 -  1)(I -  P)dTp j  ■ (5.45)

The claimed leading order behaviour of g and P  is

g = —4r +  2nlogr +  0(1) P ~ ' E >(z, z), (5.46)
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where F  is defined in terms of the rational map q(z)/p(z) as follows:

IP = 1 ( p (z )
p(z)p(z) +  q{z)q(z) ( $ * } )  (P(*) «(*)) ■ (5-47)

By comparing the exponentially growing term with (5.43), we see that this is consistent 
with our analysis so far. However, we will show that the conclusions drawn in [47] about 
the asymptotic Higgs field are too narrow.

We will introduce the traceless matrices IP+ and IP_ =  F +  given by

IP+ =

F _  =

+

p(z)

p(z)p(z) + q(z)q(z) V p(z)( v® )  ^  ^  ’ 5̂'48̂
and obeying

F F +  = IP+ F + F  0 F + F _  =  IP
IPIP_ = 0 F _ F  =  F _  F _ F +  =  II — P .  (5.49)

Now suppose that the projector P  has an expansion

P  =  F  +  e5(6F+ +  6F_) +  • • • , (5.50)

where 6 is a complex function and b its conjugate. It is easily verified that P 2 = P  to first 
order in e9 . This gives rise to a Higgs field

$  =  - l-  ( ^ ( 2 I P  -  II) +  (e9 -  l)((bdrg + drb)W+ + e9 (bdrg + 0r5)IP_)) . (5.51)

The analysis of [47] corresponds to taking 6 =  0, which leads to an asymptotic Higgs
field of the form

$ ~ i ( l  +  ^M(2IP-n). (5.52)

It seems unlikely that the asymptotic Higgs field of a generic multimonopole should be of 
this form since, in the non-unitary Jarvis gauge, there is no reason to expect that — z4>°° 
should be Hermitian. The spherically symmetric one monopole centred at the origin is a 
special case in which it is, but, as we have seen for the translated solution in the Jarvis 
gauge, this ceases to be the case as soon as we move the monopole. It would be interesting 
to see if there are any other cases where the asymptotic Higgs field is Hermitian. One 
possibility would be that this occurs for centred monopoles.
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We believe that the question of how to specify decaying terms in a boundary condition 
on the metric remains unaswered, and a better understanding of what it means for the 
metric to be close to some asymptotic form involving exponentially growing and decaying 
terms is necessary. To what extent the numerical analysis of [48] is dependent on the 
decaying term in the boundary condition on H is unclear.

5.4 Infinitesimal Translations of the M etric
It is possible to consider the effect of infinitesimal translations on solutions to the Jarvis 
equation without recourse to the linear system. Such translations are examples of zero 
modes of the Bogomol’nyi equations.

5.4 .1  Zero M od es o f th e  B o g o m o l’nyi E q u ation s

Consider a solution <f>, A{ of the Bogomol’nyi equations

A zero mode is an infinitesimal perturbation of a solution —> $  +  ££<!>, A{ A{ PeSAi,
which satisfies the linearised equation

Since we are interested in zero modes which correspond to physical perturbations of a 
solution, rather than infinitesimal gauge transformations, we can look for zero modes 
that are orthogonal to (5.56). From

(5.53)

Di5Q P  [SAi, 4>] +  eijkDj5Ak — 0. (5.54)

We can define a positive definite scalar product on the space of zero modes. For two 
infinitesimal perturbations 5 and 5' the scalar product is

(5.55)

Zero modes corresponding to gauge transformations are of the form

S&n&Ai = [A , A] £gauge$  =  [$, A]. (5.56)

0 =  (5,5gauge)

(5.57)
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we see that such zero modes satisfy the background gauge condition

A ^  +  [<M$] =  0. (5.58)

We can write the linearised Bogomol’nyi equations (5.54) and the background gauge 
condition (5.58) in the form of a Dirac equation [50,51]

(criDi -  zd>)^ =  0, (5.59)

where

V = 6 $ - ia jS A j .  (5.60)

Given a zero mode 4/, we can obtain other ones by multiplying on the right by the
quaternions z<7i, io2 , zcr3. We will be dealing with zero modes which are normalisable
with respect to the scalar product (5.55).

It is easily checked that =  iajDjQ is a solution of (5.59) for which

6 A 1 = - D i $
6A 2 —D2*&
6 A 3 — —D3Q

6d> =  0. (5.61)

Right-multiplying by gives us solutions corresponding to translation of the monopole 
in the z-direction. We will consider a translation in the x-$ direction for which

5Ai = - D 2$
5A2 = D i$
5 As = 0

6d> =  Ds$.  (5.62)

In terms of the spherical polar coordinates r, z and z, where z is the complex coordinate 
on the Riemann sphere, the Bogomol’nyi equations are

(5.63)
(5.64)

(5.65)

[Dr -  z$, Dz] 
[Dr +  zd>, Dz]

=
2 ir‘

(1 +  zz)2
Dr$.
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and zero modes of these equations satisfy

[.Dr — z<f>, 5AZ\ =  D z(5Ar — i5®) (5.66)
[Dr +  i®, 5AZ] =  Dz{6Ar +  i5®) (5.67)

DZ6A-Z -  DZ5AZ = - — — - ( D rS® -  [$, 5Ar}). (5.68)
(1 +  zz)z

We can write the translational zero mode (5.62) in these coordinates, obtaining

1 — zz z
SAr -  iS$ = i  - D r$  -  2i - D z<!> (5.69)

1 + zz r
z 1 — zz

SAz =  2 ir Dr$  +  i — —  D 2-$  (5.70)
(l +  z z y  l  +  zz
1 — ZZ Z

5Ar +  iS® = - i  z Dr® +  2 i - D z® (5.71)
1 +  2:2: r

z 1 — zz
8A Z =  —2 ir DrQ -  i— — D z®. (5.72)

(1 +  z z ) 1 1 +  2:2:

We will work in the Jarvis gauge in which A r — i® =  A z = 0, A r +  i® =  'H~ldr'H, and 
A z =  7i~1dz'H. The first thing to note is that equation (5.66) in this gauge becomes

dr8A z = dz(SAr -  i8 ®), (5.73)

which implies that we can find a matrix function 6Q(r, z, z) such that

SAr — id® =  dr5Q
SA-Z =  dz5Q. (5.74)

The infinitesimal gauge transformation which trivialises these gauge fields is (1 — SQ)

5Ar — id® —» (1 +  8Q)(8 A r — z5$)(l — 5Q) +  (1 +  6Q)dr( 1 — 5Q)
~  8 Ar -  id® -  dr5Q = 0. (5.75)

We require 5Q(r = 0) =  0 if we are to end up in the Jarvis gauge.
Using the fact that A r = i®, (5.64) gives

2 iDz® = drA z, (5.76)

so we have the following covariant derivatives of the Higgs field in this gauge:

Dr<I> = dr® 2iDz® = drA z Dz® = dz®. (5.77)
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Equation (5.65) also implies that

2 ir4
■dr® =  —d?Ax.

(1 +  z z ) 2

Using these expressions we find that, in the Jarvis gauge,

1 — zz

(5.78)

6A r — id® -- i 1 -d r® drA z 
l  +  zz r
1 — ZZ n  ̂z  n t

dAz = 1— — Zdz® ---- dzA z.
1 +  2:2: r

(5.79)

Now we can find the function Q defined in (5.74). Integrating the first equation with 
the boundary condition dQ(r = 0) =  0 we obtain

SQ =
1 — 2:2: z  .

 A 2
1 +  2:2: r 0 JofJo

dr A z. (5.80)

Differentiating with respect to z  and using (5.78) gives 

1 — 2+  ̂ ,  2iz
dzdQ =

1 +  zz d*® - (1 +  z z ) 2
® -  - d , A ,

2 iz
0 +  Jo r (1 +  z^)2

1 — 2:2:

l + zz zds® -  -dsA, (5.81)
0.

The fact that 7/(0) =  II means that ^^ (O ) =  0 and A z(0) =  0. In other words, ® and 
A z are well-defined at the origin. Thus dzdQ = dAz as required.

The metric corresponding to the translated monopole is

H  =  ( I -  SQ')-H{ 1 -  SQ), 

from which we obtain the Higgs field

$  =  - - n ~ 1dT'H
Li

(5.82)

(5.83)

In principle, this can be used to find the Jarvis rational map of the translated monopole. 
The square of the modulus of the Higgs field is
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(5.85)

A z = H~ldzU = f — 7 ^ -  -  1 ) dzTP. (5.86)

5 .4 .2  A n  E xam p le

We will apply the above technique to the case of the one monopole centred at the origin 
and find the infinitesimal change in the rational map corresponding to translation in the 
£ 3  direction. We find that the answer is in agreement with the rational map found in 
Chapter 4.

We work in the Jarvis gauge with the metric in the form

U  =  +  ^ ( n  -  IP) where P  =  - J -  f 1)  ( l  z)
sinh 2r 2 r 1 + zz  \ z )  y '

The Higgs field and gauge field A z are

$  =  - ^ H - ldrn  =  ~  (i -  2 co th 2 r) (2P  -  I )

4r2 

sinh2 2 r
The infinitesimal gauge transformation which trivialises SAr — i5$ and 6A Z is found 

to be

6 Q = -  | i  -  2 coth 2 r  ) ^ ( 2 P  - I I )  +  ( — % 2 co th 2 r  ) z d zW. (5.87)
2  \ r  ) l  + z z y ’ \s in h  2 r  )  v ’

Note that SQ(O) =  0  so R  = H — e{5Q^'H — 7i5Q) satisfies H(0 ) = II and is in the Jarvis 
gauge.

As r —> oo we have
1 — z z

SQ  (2TP -  H) -  2 z d zIP drSQ = 5Ar -  i5<f> -> 0. (5.88)
l  +  z z

Therefore

(5<h°o =  -[$°°,(5Q°°] =  2iz[21P -  -  - 4 i z d zJP. (5.89)

Recall that the rational map is determined by the eigenvector of — z<h°° with eigenvalue 
+1. Now (—2 ,1)* is an eigenvector with eigenvalue —1 and the eigenvector with eigenvalue 
+ 1  is

‘) + I T 3 ( 7 ) -  (5JC)
Thus the rational map is

2 + i f i )  (: + r S )  ~ z{1+2e)- (5-91)
The Jarvis rational map of a monopole with position (0 , 0 , A) is in the SU ( 2 ) orbit of
e2Az. Therefore (1  +  2 e)z corresponds to the rational map of a monopole with position
(0 , 0 , e) as hoped.
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5 .4 .3  C om m en ts

We have shown that it is possible to perform an infinitesimal translation on a solution 
to the Jarvis equation without recourse to the linear system. Interestingly, Belavin and 
Zahkarov’s derivation of the linear system [43] makes use of the Dirac equation (5.59), so 
presumably there is a direct way to relate zero modes to solutions of the linear system.

5.5 The Centre of a Monopole
Every multi-monopole has a well-defined centre, which is a vector in R3 [32]. The centre 
of a monopole is defined from the asymptotic expansion of the length of the Higgs field 
which was shown by Hurtubise to be harmonic [42] and is therefore of the form

II* H= 1 -  Yr + 7? +° (r'3)- (5-92)
By comparing with the harmonic function

n n nA lx l  ̂ .
+  0 ( r~ 3), (5.93)

2|x — A| 2 r 2 r 3

we are led to define the centre as

A 1 =  -  —  . (5.94)
77-

Rotations have a well-defined action on the Jarvis rational map and so it is possible 
to look for quantities defined in terms of this map which are real 3-vectors under rota­
tions of the coordinate z. Furthermore, this vector should be a scalar under the residual 
Mobius gauge action, since this corresponds to a gauge transformation of the fields of 
the monopole. A real 3-vector satisfying this will be a candidate for the centre of the 
monopole. There will also be real scalar quantities which we can associate to the Jarvis 
map, and the length of the 3-vector will be a function of these.

Recall that a rational map from C P 1 to C P 1 is a map of the form

/(* ) =  ^  (5.95)

where p and q are polynomials and z  is an inhomogeneous complex coordinate on C P 1. If 
p and q have no common (non-constant) factor then the degree of the map is the maximum 
of the degrees of p and q. What we mean by the degree of a polynomial p(z) is rather 
ambiguous since the polynomial 1 can be thought of as a root at infinity, therefore to avoid
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this ambiguity we will work with homogeneous coordinates x  and y such that z =  x/y .  
Multiplying the top and bottom by yn where n is the degree gives us the rational map in 
terms of homogeneous polynomials

where the degrees of p and q are now explicitly both n.
Suppose we have a homogeneous polynomial p{x , y) of degree n. Then we can define 

an action of

In terms of the coefficients of the polynomial this gives us an irreducible n  +  1-dimensional 
representation of SL{2 , C) [52].

The generators of this action are

(5.97)

as follows

p(x, y) ->■ p(x', y') =  p(ax + by,cx + dy) (5.98)

(5.99)

obeying the usual algebra

[T 3,T + ] =  T+ 

[T3,T~]  =  —T~ 
[T+,T~]  =  2 T 3. (5.100)

The eigenfunctions of T 3 are the polynomials p" =  xmyn m which satisfy
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The degree is given by the eigenvalue of the operator x-^ +  y-^ which commutes with the
rj~ li

xL +%) p™ (5-i02)
Given two homogeneous polynomials p(x, y) and q(x, 2/), we can construct the SL(2, C) 

tensor f ( x i, 2/1, £2,2/2) = p(£i, 2/1) q{%2 , 2/2)- To decompose this into vector representations, 
we use the operator

O12 =  -  j - j - ,  (5.103)ox 1 dy2 oy\ dx2

which is invariant under simultaneous SL(2,C) transformations of (£1,2/1) and (£2,2/2)- 
Setting

/nfai, 2/i, £2, 2/2) =  (-Di2)np(£i,2/i)^(£2,2/2), (5.104)

we obtain vectors by taking f n(x,y) = f n(x,y,x,y) .  Notice that each application of D\2 
reduces the degree of the resulting polynomial by 2 so we see that we obtain the standard 
decomposition in this way.

In addition to considering holomorphic polynomials p(x, y), we can also consider anti- 
holomorphic polynomials q(x,y). These correspond to vectors transforming in the conju­
gate representation. In general we can consider polynomials which are functions of both 
x, y and x, y and we will denote the degree by (m, n) where m and n are the holomorphic 
and antiholomorphic degrees respectively. The basic tool for decomposing products of 
holomorphic and antiholomorphic polynomials is the S U (2) invariant operator

d d d d . .
15 — o— o— (5.105) ox 1 0 x2 oyi oy2

The 577(2) gauge action on the polynomials p(x, y) and q(x,y) is

( K ) -
There are two quadratic quantities we can consider that are invariant under this trans­
formation

Q12 = p(xuyi)q(x2l 2/2) -  q(xi,yi)p(x2, y2) (5.107)
Qn = P{xu 2/i)p(£2, 2/2) + q(xu yi)q(x2, y2) (5.108)

The first is actually invariant under an 5L(2, C) transformation and the second is the 
Hermitian scalar product preserved by 51/(2). We obtain vector quantities by taking
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(Di2)mQi2 and (Di2)mQi2 and then setting x\ =  x 2 =  x  etc. Note that the antisymmetric 
nature of Q i2 and Di2 means that only odd powers of Di2 give us non-zero vectors.

A real 577(2) 3-vector is related to a vector in R3 by

( * , .* „ * , ) =  • (5.109)\  xx  +  yy xx  + yy xx  + yy )

We shall look at rational maps of degree 1 and 2 as examples. This will also tie in 
with the work on two-lumps in Chapter 3.

5 .5 .1  D egree  1 M aps

A degree 1 rational map is of the form

P(x,y) _  ax + by 
q(x,y) cx + dy'

The two gauge invariant quantities (5.107) and (5.108) are

(5.110)

{ a d  -  b c ) { x l y 2 -  y xx 2)

(ad +  cc)a:i^2 +  (ab  +  c d ) x \ y 2 +  (ba  +  d c ) y \ X 2 +  (bb +  d d ) y i y 2 . (5.111)

Applying D i2 once to the first quantity, we obtain the S L (2, C) invariant 2( a d  — be).  The 
second quantity is reducible and we can decompose it into a vector

a d  — bb +  cc — dd _ ab + ba + cd + dc, _ . ab — ba + cd — dc
-----------------   (xx -  yy) + -----   (xy +  yx) + -----------------------(xy -  yx),

(5.112)

and a scalar \ ( a a  +  bb +  cc +  d d ) ( x x  -I- y y ) .  Dividing through by this scalar, we obtain 
the 50(3 ) vector

ab +  ba +  cd +  dc i ( a b  — ba-\ - cd — dc) a d  — bb +  cc — d d \  ^
ad +  bb +  cc +  dcT ad +  bb +  cc +  dd ’ ad +  bb +  cc +  dd J

This vector is invariant under a rescaling of the polynomials p and q which leaves the 
rational map unchanged.

Using this, the rational map of a monopole at A, f ( z )  = e~2A(z — W ) / ( l  +  zW)  gives 
rise to the vector

tanh2 A ( W  + W  . W - W  W W  -  1 \
2 \ 1  + W W  1 + W W  1 + W W

which correctly describes the line on which the centre of the monopole lies.

I , (5.114)
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We can also define the scalar

(a d  +  bb +  cc  +  dd)
(5.115)

( a d  — b c ) ( a d  — be)

which is invariant under a rescaling of the numerator and denominator of the rational 
map.

If we write a degree 1 map as an S L (2, C) matrix which we decompose as the product 
of a unitary and a Hermitian unimodular matrix

a b\ _  f  a (3\ (  A +  A3 A1 — zA2 
c d)  I — p a )  I A1 +  zA2 A — A3 (5.116)

where a a  +  (3(3 = 1 and A =  v l  +  AhV, then we obtain the scalar

s = 1 +  2A*A‘, (5.117)

and the vector

v = —  (A1, A2, A3) . (5.118)
s

5 .5 .2  D egree  2 M aps

We can take the general form of a degree two map given in Chapter 3.

where U G 377(2), H  is a unimodular Hermitian matrix of the same form as above, f  is
a real parameter, and R  G 30(3).

This describes the map with respect to the basis of degree two homogeneous polyno­
mials

h = ^ ( x 2 ~  V2) k  =  ~ \ ( x2  +  V2) k  = - ix y .  (5.120)

Writing

p — A u k  +  -^12^2 +  A13/3 q = A 21I1 +  A 22I2 +  A23/3 , (5.121)

we decompose pp +  qq using D 12 to obtain a vector

 ̂ /  AizA .12 — A12A13 +  A23A22 — A 22^ 23\
=  -  I A 11A 13 — A 13A.U +  A21A23 — A23A21 I , (5.122)

\ A 1 2 A n  — A 1 1 A 1 2  +  A 2 2 A 2 1  — A 2 1 A 2 2 J
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where we divide through by the scalar quantity

A \ \A n  +  A 12A 12 +  A 13A 13 +  ^-2 1 ^ 2 1  +  ^-2 2 ^ 2 2  +  A23A2 3 , (5.123)

in order to obtain a vector which is invariant under a rescaling of p and q.
Substituting in A  given by (5.119) gives the vector

4 sec2C
 ( ( 1  +  2A*A* +  2 AA1) sin £, — 2 AA2 sin £ cos £, 2 AA3 cos £) R 1, (5.124)

where

s = 4 sec2 £ ( 1  +  2XlXl +  2AA1 sin2 £). (5.125)

The parameter space of two-lumps describing configurations fixed by an antipodal 
map studied in Chapter 3 had £ = 0 and

which corresponds to (Ai, A2 , A3 ) =  (sinh ct/2, 0, 0). In this case, v = 0 , which suggests 
that such Jarvis rational maps describe monopoles whose centre is at the origin. These 
are known as centred monopoles.

We can also obtain the complex SL{2, C) vector

from this map. By taking i times the vector product with its complex conjugate we obtain 
the real 50(3 ) vector

which is a scalar under a “gauge” S L (2, C) Mobius action. This vector cannot describe 
the centre of the monopole since it would imply a space of centred monopoles with too 
many dimensions.

5 .5 .3  C om m en ts

In general, there will be many real 50(3) 3-vectors which we can associate to a given 
rational map. However, we can impose the restriction that the space of centred monopoles 
has the correct dimension. Whether this will uniquely specify a 3-vector is not yet clear. 
In any case, without an argument fixing the length of the vector, the best we can do is to 
determine the line through the origin on which the centre of the monopole lies.

(5.126)

(0, 2 tan C, 2i sec £)Rt, (5.127)

(4 sec £ tan £, 0 ,0)Rt, (5.128)



Chapter 6 

One M onopole Inverse Scattering

In Chapter 4 we succeeded in finding the solution to the linear system in the Jarvis gauge 
corresponding to a single monopole with arbitrary position in R3. To do this, we required 
the solution to the linear system corresponding to a monopole at some position, which we 
obtained from the explicit BPS monopole solution in the Jarvis gauge. It is difficult to 
see how this method could be generalised to multi-monopoles, since explicit descriptions 
of the fields of multi-monopoles are few and far between. However, there is a method 
for generating solutions of the linear system which has been successfully used to find 
multi-monopole solutions, the inverse scattering method [44-46].

This method consists of generating new solutions starting from a “seed” solution of 
the linear system which corresponds to a vacuum solution of the Bogomol’nyi equations. 
Viewing a solution as a meromorphic function of the parameter A, solutions with higher 
topological charge are obtained by multiplying the seed solution by factors involving poles 
which are functions of the spatial variables, and projectors which may be related to the 
seed solution. The difficulty in using the method lies in the fact that there is considerable 
arbitrariness in choosing the seed solution, the poles, and the projectors, before imposing 
the restriction that the solution be regular.

W hat we would like to be able to do is to find a solution to the linear system, and 
hence a solution to the Jarvis equation, given the Jarvis rational map as initial data. 
The aim of this chapter, then, is to make a start on this programme by comparing the 
inverse scattering method for a single monopole with the solution to the linear system 
obtained in Chapter 4. We can “derive” the one-monopole inverse scattering ansatz from 
this solution and, in this way, find the data needed to obtain a smooth solution in terms 
of the rational map. Interestingly, it turns out that the Jarvis rational map and the dual 
rational map introduced in the previous chapter will make an explicit appearance in the 
seed solution.

118
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6.1 The One-Monopole Inverse Scattering Ansatz
We shall begin by describing the one monopole inverse scattering ansatz in some detail, 
expanding on the argument presented by Forgacs, Horvath and Palla in [46].

Let

P = ^ ( x i A i x 2) t = x 3. (6.1)

The linear system (4.4) is then

{X(Dt +  i<F) +  Dp) \k(A, x) =  0 

(-XDp  +  (A  -  i$)) (A, x) =  0. (6.2)

We can transform to a gauge in which the commutator [Dt +  z<F, Dp] is trivialised, and 
rewrite the linear system in this gauge as follows

(Adt + d„)V • * - 1 = -A„
(~\dp  +  dt)V ■ t f - 1 =  - A t +  i$ . (6.3)

This is what we might call the Donaldson linear system. We will present the argument in 
this gauge and then use it to obtain the ansatz for the Jarvis linear system.

If we define

<7 =  tt(A =  0), (6.4)

then evaluating (6.3) when A =  0 gives

A  = ~dpg • g - 1 (6.5)
At -  = - d tg • g~l (6.6)

The method of Forgacs et al. requires a known “seed” solution to the linear system,
which is a solution \k0 satisfying

(Aat +  a „ ) 'iv 'i 'o 1 =  ~ K
( ~ \ d p +  9()4>o • ^ o 1 =  - A ? +  (6-7)

The seed solution normally corresponds to a vacuum solution of the Bogomol’nyi equa­
tions. We then look for a new solution of the form

t f (A)  =  x ( A ) * o ( A ) . (6 .8)
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Substituting this into (6.3) gives

(Adt +  dp)x  • X~l ~ xA°px~ l = - A p 
(-A dp +  dt)x  • X-1 -  x{A°t +  ^ ° ) x _1 =  ~ A t +  i$.  (6.9)

A priori the left hand side of this system is meromorphic in the complex variable A while 
the right hand side is required to be independent of A. Therefore the method consists of
choosing x(A) in such a way that the left hand side is independent of A, giving rise to a
new solution for A p and A t -F

For a charge one monopole we make the following choice for x(A), the so-called one 
pole ansatz

x(A) =  n +  — (6.10)
A —  jl

where R  is a matrix depending on p, p and t but independent of A. In addition we assume 
that x -1 has a similar form

X(A)"1 = n  + - ^ —, (6.11)
A —  11

where, again, S  is a matrix function independent of A. This implies that R  and S  are 
proportional to a projector as we will now see.

By Liouville’s theorem it is sufficient to check that x (^ )x (^ )_1 =  H has no poles. 
Taking residues of x M x M -1 =  ^ at A =  p, v gives

v — /i

S =  — , (6.12)
jl — V

from which we see that S = —R  and
D 2

R = — — . (6.13)
v — jl

Defining

P =  — , (6.14)
jl — V

we see that P  is a projector and therefore x and x -1 are of the form

x(A) = i +  - p  =  (n -  p)  + M ^ p
A —  jl A —  jl

x(A )-1 =  1 +  ' A £ P  =  (n -  P) + (6.15)
A —  V A —  V
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In the SU(2) case, P  is a rank 1 projector so we can write it in the form

P — nrm) where m)n  =  1. (6.16)

Defining mj_ and n±_ as orthogonal vectors satisfying =  r)Ln =  0 and normalised
so that n)±m± =  1, we have the following basis for 2 x 2 matrices

P  — nm) J L - P  = m±n\_
P+ = n n \  P_ =  m±m ). (6-17)

They satisfy the following relations

PP+ =  P+ P+P  = 0 P+P_ =  P

PP_ = 0 =  P_ P_P+ =  I  - P .  (6.18)

If we think of (2P  — H) as being the Cartan subalgebra generator then p + and P-  are 
step operators.

Using these relations and the fact that P  and ( I  — P) have unit trace, whilst p + and 
P.-  are traceless, we can expand out an arbitary matrix M  in this basis as follows

M  = t r (P M )P  +  tr((II -  P)M)(JL -  P) +  tr(P_M )P+ +  tr(P +M )P_

=  {m)Mn)P  +  (n)± M m  j_)(E — P) +  (m) Mm±)P+ +  (^ M n )P _ . (6.19)

We can use this to find an expression for a derivative of P  in this basis. Using the fact
that d(m)n) = 0 we find

dP = (dm))m_]_P+ -f n\_(dn)P._. (6.20)

We are now in a position to evaluate the left hand side of (6.9) for x  given by equation 
(6.15). Firstly

3AX(A) =  +  [(dm])mj_P+ +  nj±(dn)P^J , (6.21)

where dx denotes \ d t + dp or —Adp + dt- Now using (6.19) we expand A 0 = A°p or A° +  z<3>° 
as

A 0 =  (m^A°n)P +  (n)LA°m_l) (H — P) +  A°m±)P+ +  (v)LA Qn)P_. (6.22)

The left hand side of equation (6.9) becomes

A i l p  _ A ĵ p + i n - u ) (  A A A ± P + A A A p _
A — fi \  — v \  A — n + A — v

— (m^A°n)P — (r)_LA°m±_)( II — P)  — ^— -(m* A°m±)P+ — ^— —(n\_A°n)P._. (6.23)
A — fi A — v
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The requirement that this has no poles at A = p and A =  v, or equivalently that the 
residues vanish at these points, for the different coefficients of P,  P+, P_ gives us 4 
equations

3 V  =  0 (6.24)

dvv =  0 (6.25)

(d^m) — m U °) m_i = 0  (6.26)

n{  (9"n +  A°n) =  0. (6.27)

We begin with the first equation (6.24) which, written out in full, is

pdtp  +  dPT = 0  

-pdpp  +  dtp = 0 . (6.28)

We solve these equations using the idea of characteristic curves. Taking a linear 
combination of these equations

((a/i +  b)dt +  adp — bfidp) fi = 0 (6.29)

where a and b are arbitrary functions of t, p, p we define a curve with parameter s as
follows

d t  . 7 d P d P ,— =  a/i +  b —  = a —  = —bp. (o.oUj
as as as

Equation (6.29) then implies that

| . 0 , (0 3 .)

so p  is constant along the curve. By taking a linear combination of the equations in (6.30) 
we can also show that

^ 7 (/i,x ) =  0, (6.32)

where 7 (/i, x) =  2 (p2p — pt — p) is again the function introduced in Chapter 4. Hence 
7 (/i, x) is also constant along the curve. Surfaces on which 7 (p, x) and p  are constant are 
simply straight lines in R3, corresponding to points (7 (p), p) in the mini-twistor space IT. 
The general solution to the equations (6.28) is

M t G ^ x ) , / / )  =  °> (6.33)
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where h is any sufficiently nice function. Similarly, the general solution to the second 
equation (6.25) is h(7 (1'), v) =  0 for some function h.

To solve (6.26) and (6.27) for the vectors m) and n  we substitute

777,1 _  1(h) n = V0(v)N

m ± = ^ 0(fi)M± n^  = N [ % 1(u), (6.34)

obtaining the equations

• M± = 0 N [ - & ' N  =  0. (6.35)

These imply that

=  flikft dvN  =  bN, (6.36)

for some functions a and b. Given a solution to (6.36), we can rescale Aft which will have
the effect of changing the function a. Therefore we can take Aft =  ( i f ) ,  which must 
then satisfy

=  0, (6.37)

and this implies that /  =  /(y(/u),//).
Similarly, we can write

N  = c Q )  , (6.38)

and equation (6.27) then implies that g =  g{^(v), v)- Requiring m)n  to equal 1 then gives

c = — — T — . (6.39)

So far the solution has not been required to have unit determinant, and therefore the
gauge fields obtained are not necessarily traceless. Here we will show that we can scale
x(A) so that it has unit determinant. From (6.15) we see that

d e t x = y — -• (6.40)A — fl
Now we can show that

and therefore

X — fj, ®(A), (6.42)
A — v

is a solution of the linear system with determinant equal to that of \ko(A).
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6 .1 .1  T h e O n e-M on op ole  A n satz  for th e  Jarvis L inear S y stem

We can easily obtain an ansatz for the Jarvis linear system from that for the Donaldson 
linear system using the technique of Chapter 4. The ansatz for the Donaldson system 
(6.3) is of the form

* ( A ) = x (A)*0(A) =
A — fJL 
A — v

(6.43)

To obtain an ansatz for the Jarvis linear system (4.36) we simply compute 4/(A) =  
\I/_1(—l / 2:)\]/(A), obtaining

* ( A ) = x (A)*o(A) =
(1 +  vz ){A -  n) \  2 
(1 +  fjtz)(X -  v ) 1 ; (l +  i/z )(A -/t) 'j'o(A),

(6.44)

where

P = <S’o 1( - l / z ) P * 0( - l / z )  #o(A) =  ^ ' ( - l / ^ o O ) .  (6.45)

Here P  is again a projector and ^o(A) is a seed solution for the Jarvis linear system.

6.2 Comparison with the One-Monopole Solution
We will compare the solution we found in Chapter 4 with the ansatz given above and use 
it to determine the seed solution, the functions /i and v and the vectors M  and N  which 
give rise to the general one-monopole.

Recall that the solution (4.131) was of the form 4/(A) =  B~l (—1/z )V ( \ ) B ( \ )  where

1 /  ( l + X W ) s i n h ( A + R + r ( 2 s - l ) )  (W -A )s inh  ( A - R - r ( 2 s - l ) )

1 (  Z~z ■ 0 
V { \ )  =  -  1 1+0AZ _ 1+, 2-

X—Z

/  l sinh (A+R+r)  1 . . . .

t 3 - \ (  i  / \  2  (  z - W  sinh2R  z _ w s in h (^  R + r  ̂ \ ( a  A a \
B  ( _ 1 / Z ) =  1 sinh ( A —R —r)  1 ( 6 '4 6 )

V  sinh 2 A  V- 1+ z w  sinh2R — T + 7 W  (A + K - r ) /

To compare this with the one-monopole ansatz, we rewrite the solution as follows

*(A) =  B - H - l / z ) !  C f  B( - l / z )  ■ B~1(- l / z)B(X)  (6.47)

mP_±tiLoi-p)
_z(l+A Z ) z ( X - Z )

*o(A), (6.48)



CHAPTER 6. ONE MONOPOLE INVERSE SCATTERING 125

obtaining it in terms of the projector

P = (6.49)

and the seed solution

tf0(A) =  B - l ( - l / z ) B ( \ ) .  (6.50)

6.2 .1  T h e Seed  S o lu tion

Substituting the explicit expression for J3(—l/z ) ,  we find that 'Fo can t>e written in the 
form

*  (A) =  * ( A v  f A )  ( e 2rs 0 \  /  eA(l + AW) e~A(A -  j f ) \  . .
* o(A) 2sinh2/l (  0 - e - ^ ) { e - A(l + \ W )  eA( \ - W ) ) ’ ( ' }

where s =  (1 +  Az)/(1 +  zz). Defining H0 = 4/q 1(̂ )> the corresponding Higgs field is

,  i r, TT ,,_i i /cosh 2A  \  EOv
$ 0  -  - d rHo ■ H 0 -  -  cosh 2AJ ’ (6'52)

satisfying || <F0 ||=  1- Note that H0 is not hermitian. Now — i<f>o has eigenvectors

‘ T T ’)  ( T +/* >). '6“»
with eigenvalues +1 and —1 respectively, which correspond to the Jarvis rational map of 
the one-monopole f ( z )  = e~2A(z — W) / ( l  +  Wz)  and its dual.

Thus the seed solution for the one-monopole depends explicitly on the Jarvis rational 
map and its dual. Furthermore, since on the spectral line through the origin, the Jarvis 
map and the dual map are proportional, it degenerates on the lines z — W,  — 1 / W  and 
A =  W,  — 1 / W.  The functions fi and v and the projector P  must be chosen in such a way 
as to ensure that \F is well-defined when z and A take these values.

6 .2 .2  T h e P o les

Comparing (6.48) with (6.44) we see that the functions /i and v are

/i =  - 1  v = Z.  (6.54)



CHAPTER 6. ONE MONOPOLE INVERSE SCATTERING 126

Now /i =  — 1j  z and fi = z are solutions to the equation

=  r ( l  + / » ) ( / , - * )  =
v ' 1 +  z z

and similarly, —1/Z  and Z  are the solutions to

Kl{v),v) =  7(M) +  A^ +i^ w W  W  ̂=  ° ’ 6̂'5^

which we recognise as the spectral curve of the one-monopole at —A described in the 
previous chapter.

6 .2 .3  T h e P ro jecto r

Above, we described the projector in terms of vectors mn) and n. Our solution satisfies
\I/(A, 0) =  II, independent of A. At the origin we find

/ z ( l + \ W )  Q \

*o(A,0) = (6.57)
\  1 + W z  )  ,

so comparing with x  we see that the projector must satisfy

(6.58)
0 0,

We can now calculate the vectors M t and N  defined in (6.34). Using

P  = ^ o ( - l / Z ) N M ^ 1(Z) =  B ~ \ - l / z )  ( j  J )  B ( - l / z ) ,  (6.59)

and comparing with (6.49) we find

M ] = (1 0) B(—l / Z )  N  = B~l {Z) ( J ) (6.60)

We use

r(2s(A) — 1) =  —z (1 — zz  +  2A z)

^  —(1 — Z Z  + 2 \ Z ) --------—= { 1 - W W  + 2 \W ) ,  (6.61)
l  + Z Z ' 7 1 + W W
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giving

A (  —  VIA
r ( 2 s ( - l / Z )  -  1) =  - R ------------=  1 -  W W  -  2—

V 7 ' 1 +  W W  V Z )

r ( 2 s ( Z ) - l )  = R  - = ( 1 - W W  + 2ZW).  (6.62)
l  + W W

Thus

Mt = z v ima ((Z “ ̂ sinh + zW>sinh I S )  • (6-63>
6.3 Comments
The standard way of finding solutions with higher topological charge is to multiply the 
ansatz on the left by terms of the form x ( A  each involving a projector and a simple pole 
in A. The explicit solution to the linear system has allowed us to begin to put together 
the necessary ingredients for doing this, although clearly more work is necessary. The 
crucial starting point seems to be the fact that the rational map and its dual appear in 
the seed solution, so that it degenerates on spectral lines through the origin. It ought to 
be possible to determine the poles and the projector by demanding that the solution is 
well-defined on these lines, although we have not yet been able to do so.



Chapter 7 

Conclusions

In this thesis we have studied two different models whose topological solitons can be 
parametrised in terms of a rational map. Our study of two C P 1 lumps on the sphere 
found some superficially similar behavour to that of monopoles. It would be interesting 
if there were a deeper relationship between these two models.

We succeeded in making the Jarvis correspondence between BPS monopoles and ratio­
nal maps explicit in the simplest case of a single BPS monopole, achieving this by means 
of the linear system for the Bogomol’nyi equations. Solutions to the linear system could 
equally be used to find the Donaldson rational map of a monopole, and therefore to see 
how the Donaldson and Jarvis rational maps are related.

The most promising method we have for finding explicit multi-monopole solutions of 
the linear system is the inverse scattering method. We have seen, at least for the one- 
monopole, that the seed solution of the inverse scattering ansatz depends explicitly on 
the Jarvis map and its dual. Once the choice of the poles and the projectors has been 
clarified, it should be possible to find monopoles with higher topological charge starting 
from a seed solution involving a rational map of higher degree.

We would like to understand better the relationship between the solution to the linear 
system, the spectral curve and the rational map. Hidden in the solution to the linear 
system must be the spectral curve of the monopole. That a monopole can be specified in 
terms of a rational map means that, in principle, the spectral curve can be determined 
from the Jarvis map. This seems a rather contradictory statement, since the rational map 
is directly related to one term in the spectral curve.

An extension of our methods using the linear system to monopoles in higher gauge 
groups would be possible. In this case the Jarvis map is a map from C P 1 into a flag 
manifold isomorphic to the orbit of the asymptotic Higgs field. Perhaps the study of the 
analogous sigma model where the static field is a holomorphic map from the two-sphere 
to this flag manifold would also be interesting.

128
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We would like to find some use for the functional condition on the metric found in 
Chapter 5. We suspect that the solution to the problem of determining the asymptotic 
boundary condition on the decaying part of the metric will involve this condition and the 
dual rational map.

It is hoped that our work will find applications in high energy physics, where monopole 
moduli spaces in particular have come to play an important role.



A ppendix A

M a t h e m a t i c a  Code

A .l  The Code for Figures 3.1, 3.2 and 3.3

<< Graphics‘ParametricPlotSD* 
pi = 1/2(z~2 - 1); 
p2 = -1/2(z~2 + 1); 
p3 = -I z;
pld = -1/2 (zcT2 - 1) ; 
p2d = -1/2 (zd'‘2 + 1) ; 
p3d = I zd;
Clear[z, zd]
Simplify[Solve[Tan[A]p2 + I Sec[A]p3 == 0, z]]
(* HI *)
H = {{Cosh [L/2], Sinh [L/2]}, {Sinh[L/2], Cosh[-L/2]}};
HD = {{Cosh[L/2], Sinh[L/2]>, {Sinh[L/2], Cosh[-L/2]}};
M = H . {{-I, -Sec [A], -I Tan [A]}, {I, -Sec [A], -I Tan [A]}};
MD = HD.{{I, -Sec[A], I Tan[A]}, {-I, -Sec[A], I Tan[A]}};
Clear[z, zd]
kahler = (M[[l, l]]pl + M[[l, 2]]p2 + M[[l, 3]]p3)(MD[[1, l]]pld +

MD[[1, 2]]p2d + MD[[1, 3]]p3d) + (M[[2, l]]pl + M[[2, 2]]p2 + 
M [[2, 3]]p3) (MD[[2, l]]pld + MD[[2, 2]]p2d + MD[[2, 3]]p3d);

Clear[x, y]
twopot = Together[(1 + z zd)~2D[D[Log[kahler], z], zd]]; 
z = x + I y; 
zd = x - I y; 
twoplot :=

Expand[Numerator[Together[twopot]]]/

130
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Expand[Denominator[Together[twopot]]]; 
x = Cos[\[Phi]]Tan[\[Theta]/2] ; 
y = Sin[\[Phi]]Tan[\[Theta]/2] ;
H10 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> 0})/3], {\[Theta], 0, Pi}, {\[Phi], 0, 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -1.2, 1.2, 0.6}]
H18 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> Pi/8})/3], {\ [Theta], 0, Pi}, {\[Phi], 0, 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -1.2, 1.2, 0.6}]
(* H2 *)
H = {{Cosh[L/2], -I Sinh[L/2]}, {I Sinh[L/2], Cosh[-L/2]}};
HD = {{Cosh[L/2], I Sinh[L/2]}, {-I Sinh[L/2], Cosh[-L/2]}};
M = H .{{-I, -Sec[A], -I Tan[A]}, {I, -Sec[A], -I Tan[A]}};
MD = HD.{{I, -Sec[A], I Tan[A]}, {-I, -Sec[A], I Tan[A]}};
Clear[z, zd]
kahler = (M[[l, l]]pl + M[[l, 2]]p2 + M[[l, 3]]p3)(MD[[1, l]]pld +

MD[[ 1, 2]]p2d + MD[[1, 3]]p3d) + (M[[2, l]]pl + M[[2, 2]]p2 +
M [[2, 3]]p3)(MD[[2, l]]pld + MD[[2, 2]]p2d + MD[[2, 3]]p3d);

Clear[x, y]
twopot = Together[(1 + z zd)~2D[D[Log[kahler], z], zd]]; 
z = x + I y; 
zd = x - I y; 
twoplot :=

Expand[Numerator[Together[twopot] ] ] /
Expand[Denominator[Together[twopot]]]; 

x = Cos[\[Phi]]Tan[\[Theta]/2] ; 
y = Sin[\[Phi]]Tan[\[Theta]/2];
H20 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> 0})/3], {\[Theta], 0, Pi}, {\[Phi], 0, 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -1.2, 1.2, 0.6}]
H28 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> Pi/8})/3], {\[Theta], 0, Pi}, {\[Phi], 0, 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -1.2, 1.2, 0.6}]
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(* H3 *)
H = {{Exp[L/2], 0}, {0, Exp[-L/2]}};
HD = {{Exp[L/2], 0}, {0, Exp[-L/2]}};
M = H . {{-I, -Sec [A], -I Tan [A]}, {I, -Sec [A], -I Tan [A]}};
MD = HD. {{I, -Sec [A], I Tan [A]}, {-I, -Sec [A], I Tan[A]»;
Clear[z, zd]
kahler = (M[[l, l]]pl + M[[l, 2]]p2 + M[[l, 3]]p3)(MD[[1, l]]pld +

MD[[ 1, 2]]p2d + MD[[1, 3]]p3d) + (M[[2, l]]pl + M[[2, 2]]p2 + 
M[[2, 3]]p3) (MD[[2, l]]pld + MD[[2, 2]]p2d + MD[[2, 3]]p3d) ;

Clear[x, y]
twopot = Together[(1 + z zd)~2D[D[Log[kahler] , z], zd]]; 
z = x + I y; 
zd = x - I y; 
twoplot :=

Expand[Numerator[Together[twopot] ] ] /
Expand[Denominator[Together[twopot]]]; 

x = Cos[\[Phi]]Tan[\[Theta]/2]; 
y = Sin[\[Phi]]Tan[\[Theta]/2] ;
H30 = Table [

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> 0})/3], {\[Theta], 0, Pi}, {\[Phi], 0 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -2, 2, 1}]
H38 = Table [

SphericalPlot3D[
Evaluate[5 + (twoplot /. {A -> Pi/8})/3], {\[Theta], 0, Pi}, {\[Phi] 

2Pi}, Compiled -> True, PlotPoints -> 70], {L, -2, 2, 1}]
(* Generate plots *)
Table[Show[

Graphics3D[
Prepend[Part[H10, i, 1], EdgeForm[]], {SphericalRegion -> True, 

PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}],

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line [{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}],
Line[{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}],
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

Table[Show [



APPENDIX A. M A TH EM A TICA  CODE

Graphics3D[
Prepend [Part [H18, i, 1], EdgeFormG], {SphericalRegion -> True, 

PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line[{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}]
Line [{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}]
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

Table[Show[
Graphics3D[

Prepend [Part [H20, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line[{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}]
Line[{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}]
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

Table[Show[
Graphics3D[

Prepend[Part[H28, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line[{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}]
Line [{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}]
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

Table[Show[
Graphics3D[

Prepend [Part [H30, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line[{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}]
Line[{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}]
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

Table[Show[
Graphics3D[
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Prepend [Part [H38, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-10, 10}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Graphics3D[{Line[{{-10, 0, 0}, {-5, 0, 0}}],
Line [{{5, 0, 0}, {10, 0, 0}}], Line[{{0, -10, 0}, {0, -5, 0}}],
Line[{{0, 5, 0}, {0, 10, 0}}], Line[{{0, 0, -10}, {0, 0, -5}}],
Line[{{0, 0, 5}, {0, 0, 10}}]}]], {i, 1, 5}]

A .2 The Code for Figures 3.8, 3.12 and 3.16

<< Graphics‘ParametricPlotSD*
CA = Cos[\[Psi][t]];
SA = Sin[\ [Psi] [t]] ;
EE = EllipticE[SA''2] ;
EB = (EllipticE[SA"2] - CA~2EllipticK[SA~2])/SA~2;
EE1 = EE - 1;
EB1 = EB - 1;
f = Pi (EE1 - EB1)/(4 CA~2);
a = Pi(l/2(EE1 + SA~2 EB1)/CA~2 + SA/2(EB1 + EE1)/CA~2);
b = Pi(1/2(EE1 + SA~2 EB1)/CA~2 - SA/2(EB1 + EE1)/CA~2);
c = Pi(1 - (EE1 + SA~2 EB1)/CA~2);
d = Pi CA/2((EE1 + SA~2 EB1)/CA~2 - 1);
e = Pi(1 - EEl)/4;
g = Simplify[c e - d~2]/e;
fp = Simplify [D[f , \[Psi][t]]];
ap = Simplify[D[a, \[Psi][t]]];
bp = Simplify[D[b, \[Psi][t]]];
gp = Simplify[D[g, \[Psi][t]]];
(* Momentum about x - axis *)
eqnl = 2f \[Psi]J,[t] + fp(\[Psi] ’ [t]) ~2 == ap Ml~2/a~2; 
eqn2 = \[Gamma]*[t] == Ml/a;
Ml = 0.04; 
sol = First[

NDSolve[{eqnl,
eqn2, \[Psi]5[0] == 0.08, \[Psi][0] == -Pi/2 + 0.4, \[Gamma] [0] 

0}, {\[Psi], \[Gamma]}, {t, 0, 20}]]
Plot[Evaluate[\[Psi][t] /. sol], {t, 0, 20}, AxesLabel -> {t, psit}]
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Plot[Evaluate[\[Gamma][t] /. sol], {t, 0, 20}, AxesLabel -> {t, git}]
Clear[z, zd, Z, ZD, x, y] 
twopot = Together[(1 + z zd)~2D[

D[Log[l + (z zd)~2 + (z~2 + zd~2)Sin[\[Psi] [t]]] , z] , zd]]; 
z = (Z - I Tan[\[Gamma][t]/2])/(-1 Tan[\[Gamma][t]/2] Z + 1); 
zd = (ZD + I Tan[\ [Gamma] [t]/2] )/(I Tan[\ [Gamma] [t]/2] ZD + 1);
Z = x + I y;
ZD = x - I y; 
twoplot :=

Expand[Numerator[Together[twopot]]]/
Expand[Denominator[Together[twopot] ] ]; 

x = Cos [\ [Phi]]Tan[\[Theta]/2] ; 
y = Sin[\[Phi]]Tan[\[Theta]/2] ;
Ml = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. sol)/3], {\[Theta], 0, Pi}, {\[Phi], 0, 2Pi}, 
Compiled -> True, PlotPoints -> 70], {t, 0, 17.5, 2.5}] 

zl = Simplify[(W - I Tan[\[Gamma][t]/2])/(-1 Tan[\[Gamma][t]/2]W + 1) /.
{W -> 1}];

z2 = Simplify[(W - I Tan[\[Gamma][t]/2])/(-1 Tan[\[Gamma][t]/2]W + 1) /.
{W -> I}];

z3 = Simplify[(W - I Tan[\[Gamma] [t]/2] )/(-I Tan[\[Gamma] [t]/2]W + 1) /.
{W -> 0}];

zdl = Simplify[(WD + I Tan[\[Gamma] [t]/2])/(I Tan[\[Gamma][t]/2]WD +
1) /. {WD -> 1}];

zd2 = Simplify[(WD + I Tan[\[Gamma][t]/2] )/(I Tan[\[Gamma][t]/2]WD +
1) /. {WD -> -I}]; 

zd3 = Simplify[(WD + I Tan[\[Gamma][t]/2])/(I Tan[\[Gamma][t]/2]WD +
1) /. {WD -> 0}];

vl = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> zl, wd -> zdl}]

v2 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> z2, wd -> zd2}]

v3 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> z3, wd -> zd3}]

Mlaxes = Table[
Graphics3D[{Line[{5(vl /. sol), 10(vl /. sol)}],
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Line[{-5(vl /. sol), -10(vl /. sol)}],
Line[{5(v2 /. sol), 10(v2 /. sol)}],
Line[{-5(v2 /. sol), -10(v2 /. sol)}],
Line[{5(v3 /. sol), 10(v3 /. sol)}],
Line[{-5(v3 /. sol), -10(v3 /. sol)}]}], {t, 0, 17.5, 2.5}]

Table[Show[
Graphics3D[

Prepend [Part [Ml, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-40, 40}}, Axes -> False,
Boxed -> False, RenderAll -> False, ImageSize -> 500}],

Part[Mlaxes, i]], {i, 1, 8}]
(* Momentum about y - axis *)
eqnl = 2f \[Psi],,[t] + fp(\[Psi]’[t])~2 == bp M2~2/b~2; 
eqn2 = \[Gamma]’[t] == M2/b;
M2 = 0.19; 
sol = First[

NDSolve[{eqnl,
eqn2, \[Psi]’[0] == 0.2, \[Psi][0] == -Pi/2 + 0.4, \ [Gamma] [0] ==

0}, {\[Psi], \[Gamma]}, {t, 0, 20}]]
Plot[Evaluate[\[Psi][t] /. sol], {t, 0, 20}, AxesLabel -> {t, psit}]
Plot[Evaluate[\[Gamma][t] /. sol], {t, 0, 20}, AxesLabel -> {t, git}]
Clear[z, zd, Z, ZD, x, y] 
twopot = Together[(1 + z zd)~2D[

D[Log[l + (z zd)~2 + (z~2 + zd~2) Sin[\ [Psi] [t] ] ] , z] , zd]]; 
z = (Z - Tan[\ [Gamma] [t]/2] )/( Tan[\ [Gamma] [t]/2] Z + 1); 
zd = (ZD - Tan [\ [Gamma] [t]/2])/ (Tan [\ [Gamma] [t]/2] ZD + 1);
Z = x + I y;
ZD = x - I y; 
twoplot :=

Expand[Numerator[Together[twopot]]]/
Expand[Denominator[Together[twopot]]]; 

x = Cos[\[Phi]]Tan[\[Theta]/2]; 
y = Sin[\[Phi]]Tan[\[Theta]/2] ;
M2 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. sol)/3], {\ [Theta], 0, Pi}, {\[Phi], 0, 2Pi}, 
Compiled -> True, PlotPoints -> 70], {t, 0, 20, 10/3}]
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zl = Simplify [(W - Tan[\ [Gamma] [t]/2])/ (Tan[\ [Gamma] [t]/2]W + 1) /.
{W -> 1}];

z2 = Simplify[(W - Tan[\[Gamma][t]/2])/(Tan[\[Gamma][t]/2]W + 1) /.
{W -> I}];

z3 = Simplify[(W - Tan[\[Gamma][t]/2])/(Tan[\[Gamma][t]/2]W + 1) /.
{W -> 0>];

zdl = Simplify[(WD - Tan[\[Gamma][t]/2])/(Tan[\[Gamma][t]/2]WD + 1) /. 
{WD -> 1}];

zd2 = Simplify[(WD - Tan[\[Gamma][t]/2])/(Tan[\[Gamma][t]/2]WD + 1) /. 
{WD -> -I}];

zd3 = Simplify[(WD - Tan[\[Gamma][t]/2])/(Tan[\[Gamma][t]/2]WD + 1) /. 
{WD -> 0}];

vl = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> zl, wd -> zdl}]

v2 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> z2, wd -> zd2}]

v3 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/
(1 + w wd)} /. {w -> z3, wd -> zd3}]

M2axes = Table[
Graphics3D[{Line[{5(vl /. sol), 10(vl /. sol)}],

Line[{-5(vl /. sol), -10(vl /. sol)}],
Line[{5(v2 /. sol), 10(v2 /. sol)}],
Line[{-5(v2 /. sol), -10(v2 /. sol)}],
Line[{5(v3 /. sol), 10(v3 /. sol)}],
Line[{-5(v3 /. sol), -10(v3 /. sol)}]}], {t, 0, 20, 10/3}] 

Table[Show[
Graphics3D[

Prepend [Part [M2, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-40, 40}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Part[M2axes, i]], {i, 1, 7}]
(* Momentum about z - axis *)
eqnl = 2f \[Psi]J,[t] + fp(\[Psi];[t])~2 == gp M3~2/g~2; 
eqn2 = \ [Gamma]'[t] == M3/g;
M3 = 0.02; 
sol = First[

NDSolve[{eqnl,
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eqn2, \[Psi];[0] == 0.1, \[Psi] [0] == -Pi/2 + 0.4, \[Gamma] [0] ==
0>, {\[Psi], \[Gamma]}, {t, 0, 20}]]

Plot[Evaluate[\[Psi][t] /. sol], {t, 0, 20}, AxesLabel -> {t, psit}]
Plot[Evaluate[\[Gamma][t] /. sol], {t, 0, 20}, AxesLabel -> {t, git}]
Clear[z, zd, Z, ZD, x, y] 
twopot = Together[(1 + z zd)~2D[

D[Log[l + (z zd)~2 + (z~2 + zd~2)Sin[\[Psi][t]]], z] , zd]]; 
z = (Cos[\[Gamma] [t]] - I Sin[\[Gamma] [t]])Z; 
zd = (Cos[\[Gamma][t]] + I Sin[\[Gamma][t]])ZD;;
Z = x + I y;
ZD = x - I y; 
twoplot :=

Expand[Numerator[Together [twopot]]]/
Expand[Denominator[Together[twopot] ] ]; 

x = Cos[\[Phi]]Tan[\[Theta]/2] ; 
y = Sin[\[Phi]]Tan[\[Theta]/2];
M3 = Table[

SphericalPlot3D[
Evaluate[5 + (twoplot /. sol)/3], {\[Theta], 0, Pi}, {\[Phi], 0, 2Pi}, 
Compiled -> True, PlotPoints -> 70], {t, 0, 17.5, 2.5}] 

zl = Simplify[(Cos[\[Gamma][t]] - I Sin[\[Gamma][t]])W /. {W -> 1}]; 
z2 = Simplify [(Cos[\[Gamma][t]] - I Sin[\[Gamma][t]])W /. {W -> I}]; 
z3 = Simplify[(Cos[\[Gamma][t]] - I Sin[\[Gamma][t]])W /. {W -> 0}]; 
zdl = Simplify [(Cos[\[Gamma][t]] + I Sin[\[Gamma][t]])WD /. {WD -> 1}];
zd2 = Simplify[(Cos [\[Gamma][t]] + I Sin[\[Gamma][t]])WD /. {WD -> -I}];
zd3 = Simplify[(Cos[\[Gamma][t]] + I Sin[\[Gamma][t]])WD /. {WD -> 0}];
vl = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/

(1 + w wd)} /. {w -> zl, wd -> zdl}] 
v2 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/

(1 + w wd)} /. {w -> z2, wd -> zd2}] 
v3 = Simplify[{(w + wd)/(l + w wd), -I(w - wd)/(l + w wd), (w wd - 1)/

(1 + w wd)} /. {w -> z3, wd -> zd3}]
M3axes = Table[

Graphics3D[{Line[{5(vl /. sol), 10(vl /. sol)}],
Line[{-5(vl /. sol), -10(vl /. sol)}],
Line[{5(v2 /. sol), 10(v2 /. sol)}],
Line[{-5(v2 /. sol), -10(v2 /. sol)}],
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Line[{5(v3 /. sol), 10(v3 /. sol)}],
Line[{-5(v3 /. sol), -10(v3 /. sol)}]}], {t, 0, 17.5, 2.5}] 

Table[Show[
Graphics3D[

Prepend [Part [M3, i, 1], EdgeFormG], {SphericalRegion -> True, 
PlotRange -> {{-40, 40}, {-40, 40}, {-40, 40}}, Axes -> False, 
Boxed -> False, RenderAll -> False, ImageSize -> 500}], 

Part[M3axes, i]], {i, 1, 8}]



Bibliography

[1] R. Rajaraman, “Solitons and Instantons An Introduction to Solitons and Instantons 
in Quantum Field Theory” North-Holland Personal Library, North-Holland, 1982.

[2] A. A. Belavin and A. M. Polyakov, “Metastable States of Two-Dimensional 
Isotropic Ferromagnets,” JETP Lett. 22 (1975) 245-247.

[3] G. Woo, “Pseudoparticle Configurations in Two-Dimensional Ferromagnets,”
J. Math. Phys. 18 (1977) 1264-1266.

[4] M. Nakahara, “Geometry, Topology and Physics,” Graduate Student Series in 
Physics, Institute of Physics Publishing, 1990.

[5] W. J. Zakrzewski, “Low Dimensional Sigma Models,” Adam Hilger, Institute of 
Physics Publishing, 1989.

[6] S. Coleman, “Aspects of Symmetry Selected Erice lectures” Cambridge University 
Press, 1985.

[7] P. Goddard and D. I. Olive, “Magnetic Monopoles in Gauge Field Theories,”
Rep. Prog. Phys. 41 (1978) 1357-1437.

[8] P. M. Sutcliffe, “BPS Monopoles,” Int. J. Mod. Phys. A 12 (1997) 4663-4706, 
hep-th/9707009.

[9] P. A. M. Dirac, “Quantised Singularities in The Electromagnetic Field,”
Proc. Roy. Soc. Lond. A 133 (1931) 60-72.

[10] P. A. M. Dirac, “The Theory of Magnetic Poles,” Phys. Rev. 74 (1948) 817-30.

[11] H. Georgi and S. L. Glashow, “Spontaneously Broken Gauge Symmetry and 
Elementary Particle Masses,” Phys. Rev. D 6 (1972) 2977-82.

[12] G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl. Phys. B 79 
(1974) 276-284.

140



BIBLIOGRAPHY 141

13] A. M. Polyakov, “Particle Spectrum in Quantum Field Theory,” JETP Lett. 20 
(1974) 194-5.

14] M. K. Prasad and C. M. Sommerfield, “An Exact Classical Solution for t h e ’t Hooft 
Monopole and the Julia-Zee Dyon,” Phys. Rev. Lett. 35 (1975) 760-2.

15] E. B. Bogomol’nyi, “The Stability of Classical Solutions,” Sov. J. Nucl. Phys. 24 
(1976) 449-454.

16] A. Jaffe and C. Taubes, “Vortices and Monopoles Structure of Static Gauge 
Theories,” PPh2 Progress in Physics, Birkhauser, 1980.

17] J. Harris, “Algebraic Geometry A First Course,” Graduate Texts in Mathematics, 
Springer-Verlag, 1992.

18] N. S. Manton, “A Remark on the Scattering of BPS Monopoles,”
Phys. Lett. B 110 (1982) 54-56.

19] D. Stuart, “The Geodesic Approximation for the Yang-Mills-Higgs Equations,” 
Comm. Math. Phys. 166 (1994) 149-190.

20] J. M. Figueroa-O’Farrill, “Electromagnetic Duality for Children,” Lecture Notes.

21] R. S. Ward and R. O. Wells Jr, “Twistor Geometry and Field Theory,”
Cambridge Monographs on Mathematical Physics, Cambridge University Press, 
1990.

22] W. Fulton and J. Harris, “Representation Theory A First Course,” Graduate Texts 
in Mathematics Readings in Mathematics, Springer-Verlag, 1991.

23] S. Helgason, “Differential Geometry, Lie Groups, and Symmetric Spaces,” Pure and 
Applied Mathematics, Academic Press, 1978.

24] S. W. Hawking and G. F. R. Ellis, “The Large Scale Structure of Space-Time,” 
Cambridge Monographs on Mathematical Physics, Cambridge University Press, 
1973.

25] N. J. Hitchin, “Monopoles and Geodesics,” Commun. Math. Phys. 83 (1982) 
579-602.

26] E. A. Coddington and N. Levinson, “Theory of Ordinary Differential Equations,” 
International Series in Pure and Applied Mathematics, McGraw-Hill, 1955.



BIBLIOGRAPHY 142

[27] R. S. Ward, “Slowly Moving Lumps in the CP(1) Model In (2dT)-Dimensions,” 
Phys. Lett. B 158 (1985) 424-8.

[28] R. Leese, “Low-Energy Scattering of Solitons in the CP(1) Model,”
Nucl. Phys. B 344 (1990) 33-72.

[29] J. M. Speight, “Low-Energy Dynamics of a CP(1) Lump on the Sphere,”
J. Math. Phys. 36 (1995) 796, hep-th/9712089.

[30] J. M. Speight, “Lump Dynamics in the CP(1) Model on the Torus,”
Comm. Math. Phys. 194 (1998) 513-539, hep-th/9707101.

[31] L. A. Sadun and J. M. Speight, “Geodesic Incompleteness in the CP(1) Model on a 
Compact Riemann Surface,” Lett. Math. Phys. 43 (1998) 329-334, 
hep -th /9707169.

[32] M. Atiyah and N. Hitchin, “The Geometry and Dynamics of Magnetic Monopoles,” 
Princeton University Press, 1988.

[33] G. W. Gibbons and N. S. Manton, “Classical and Quantum Dynamics of BPS 
Monopoles,” Nucl.Phys. B 274 (1986) 183.

[34] S. Jarvis, “A Rational Map for Euclidean Monopoles via Radial Scattering,”
Oxford preprint, 1996.

[35] H. Bateman (Bateman Manuscript Project), “Higher Transcendental Functions 
Volume 2 ” McGraw-Hill, 1953.

[36] E. Jahnke and F. Emde, “Funktionentafeln : mit Formeln und Kurven,”
B. G. Teubner, 1933.

[37] H. Goldstein, “Classical Mechanics,” Addison-Wesley World Student Series, 1950.

[38] J. Hurtubise, “The Asymptotic Higgs Field of a Monopole,”
Comm. Math. Phys. 97 (1985) 381-389.

[39] N. S. Manton, “Complex Structure of Monopoles,” Nucl. Phys. B 135 (1978) 319.

[40] J. M. Cervero, ‘Exact Monopole Solution and Euclidean Yang-Mills Field,”
Harvard University preprint HUTP-77/A011 (1977).

[41] S. K. Donaldson, “Nahm’s Equations and the Classification of Monopoles,”
Comm. Math. Phys. 96 (1984) 387-407.



BIBLIOGRAPHY 143

[42] J. Hurtubise, “Monopoles and Rational Maps: A Note on a Theorem of 
Donaldson,” Comm. Math. Phys. 100 (1985) 191-196.

[43] A. A. Belavin, V. E. Zakharov, “Yang-Mills Equations as Inverse Scattering 
Problem,” Phys. Lett. B 73 (1978) 53-57.

[44] P. Forgacs, Z. Horvath and L. Palla, “Towards Complete Integrability in 
Four-Dimensions,” Phys. Rev. D 23 (1981) 1876-79.

[45] P. Forgacs, Z. Horvath and L. Palla, “Finitely Separated Multimonopoles 
Generated as Solitons,” Phys. Lett. B 109 (1982) 200-4.

[46] P. Forgacs, Z. Horvath and L. Palla, “Solution-Generating Technique for Self-Dual 
Monopoles,” Nucl. Phys. B 229 (1983) 77-104.

[47] T. Ioannidou and P. M. Sutcliffe, “Monopoles and Harmonic Maps,”
J. Math. Phys. 40 (1999) 5440-5455, hep-th/9903183.

[48] T. Ioannidou and P. M. Sutcliffe, “Monopoles from Rational Maps,”
Phys. Lett. B 457 (1999) 133-138, hep-th/9905066.

[49] C. J. Houghton, N. S. Manton and P. M. Sutcliffe, “Rational Maps, Monopoles and 
Skyrmions,” Nucl. Phys. B 510 (1998) 507-537, hep-th/9705151.

[50] L. S. Brown, R. D. Carlitz and C. Lee, “Massless Excitations in Pseudoparticle 
Fields,” Phys. Rev. D 16 (1977) 417-422.

[51] E. Mottola, “Zero Modes of t h e ’t Hooft-Polyakov Monopole,” Phys. Lett. B 79 
(1978) 242-4.

[52] M. Hamermesh, “Group Theory and its Application to Physical Problems,” 
Addison-Wesley Series in Physics, Addison-Wesley, 1962.

[53] S. Jarvis, “Euclidean Monopoles and Rational Maps,” Proc. London Math. Soc. 77 
(1998) 170-192.

[54] S. Jarvis, “Construction of Euclidean Monopoles,” Proc. London Math. Soc. 77 
(1998) 193-214.

[55] N. J. Hitchin, N. S. Manton and M. K. Murray, “Symmetric Monopoles,” 
Nonlinearity 8 (1995) 661-692.

[56] C. H. Taubes, “Stability in Yang-Mills theories,” Comm. Math. Phys. 91 (1983) 
235-263.



BIBLIOGRAPHY

[57] C. H. Taubes, “Min-Max Theory for the Yang-Mills-Higgs Equations,” 
Comm. Math. Phys. 97 (1985) 473-540.

[58] K. K. Uhlenbeck, “Connections with IP Bounds on Curvature,” 
Comm. Math. Phys. 83 (1982) 31-42.


