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Su m m a r y

The work presented in this thesis constitutes the first phase in the development 

of a solver to handle the highly non-linear systems that describe the flow of fluids 

through porous media. Aspects researched are the mathematical description, 

discretization as well as the computer code implementations. W ith regards to the 

spatial discretization, a computational efficient edge-based vertex-centred finite 

volume scheme is proposed, with the application of a ‘compact stencil’ to 

calculate second derivative terms. With regards to the software implementation, 

a novel label based approach was employed using FORTRAN that greatly 

improved the flexibility of the code. The modelling capabilities of the proposed 

numerical scheme were validated successfully through the simulation of problems 

for which benchmark numerical solutions or analytic solutions exist.
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N o m e n c l a t u r e

r  Surface [L2].

Tmn Control volume bounding surface associated with the edge connecting 

nodes m and n [L2].

Tb Control volume bounding surface of the edge connecting nodes m  and n

which coincides with the computational domain boundary [L2].

Bmjl Boundary edge coefficient of edge connecting nodes m  and n [L2].

Cmn Internal edge coefficient of edge connecting nodes m  and n [L2].

n Unit normal vector.

t Time [T].

Q Volume [L3].

Qm Discrete control volume associated with node m [L3].

T mn Edge connecting nodes m  and n.
x. Cartesian spatial coordinate component j  [L].

x Cartesian spatial coordinate in the x direction [L].

y Cartesian spatial coordinate in the y direction [L].

Sw Saturation of water (dimensionless).

Sg Saturation of gas (dimensionless).

Ss Specific storage of the soil [L'1].

h Pressure head of water [L].

a  Thickness of the flow domain [L].

k Intrinsic conductivity tensor [LT'1].

kr Relative permeability to water (dimensionless).

C Specific moisture capacity [L1].

$ Moisture content of the soil (dimensionless).

q Source/sink term [L3T_1].

pa Air pressure [ML^T"2].

pw Water pressure [ML^T'2].

7W Specific weight of water.

pc Capillary pressure between air and water [ML'^T'2].



<t> Porosity (dimensionless).

c Concentration of pollutant [ML'3].

D Dispersion coefficient tensor [L2T_1].

y Velocity [LT'1].

9 Function that incorporates chemical reactions [T'1

X Decay rate coefficient [M^T^L3].

Mathematical operators

• Vector inner product.

M Norm of • (absolute value in case of a scalar).

dm Partial derivative of • .

d* •
3

Finite volume approximation of the spatial partial derivative of • with 

respect to x ..

V # Gradient operator of • .

A . Increment in • .

Dimensionless Numbers

Pe Peclet number: vxA x jD

Cr Courant number: vxA t j  A x
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C hapter 1

In t r o d u c t io n

1.1 BACKGROUND

The origins of this project lie in the work done in Swansea over the last two 

decades by research students under the supervision of Prof. R.W. Lewis on the 

numerical modelling of fluid flow through porous media. More recently, research 

activities within the group have been targeted towards the simulation of the 

behaviour of producing petroleum reservoirs. The development of a capacity to 

predict the exploitation of structurally complicated and fractured oil reservoirs is 

essential for the rational use of investment capital. A poor understanding of how 

the reservoir behaves during production may lead to inept, costly and inefficient 

development schemes. The area of reservoir simulation applies the concepts and 

techniques of mathematical modelling to the analysis of the behaviour of 

petroleum reservoir systems. The basic flow model consists of the partial 

differential equations which govern the unsteady-state flow of all fluid phases in 

the reservoir medium.

Traditionally, these reservoir simulators consisted only of a flow model to 

simulate the three-phase flow (water, oil, gas) through the porous reservoir 

system. These models contained no geomechanical effects, and were 

predominantly solved using the finite difference method as described by Aziz and 

Settari [1] and Crichlow [7]. Although acceptable results are obtainable using the 

finite difference scheme, it is severely restricted when the geometric flexibility of 

the method is considered. Geometrically complex geological features, such as 

faults, cross stratified beds and large scale inclined strata, can have very 

significant effects on the flow of reservoir fluids. In two dimensions, only regular 

quadrilateral elements, and regular brick elements in three dimensions are 

available to the finite difference practitioner. Standard finite difference
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methodology lacks the geometric flexibility required for modeling flow through or 

around such structures. Triangle based discretization methods, by contrast, offer 

an attractive means to discretize and simulate flow through geometrically 

complex features accurately. Multi phase fluid systems have been successfully 

simulated using the triangle based finite element method by numerous 

researchers e.g. ([18]-[26]).

As deeper hydrocarbon bearing formations were being detected and 

explored, Gutierrez and Lewis [14] recognised that the role of geomechanics in 

petroleum reservoir engineering was becoming increasingly important. The 

increasing power, and extensive use of computers, in addition to the concurrent 

development of numerical techniques made possible much more precise analyses, 

with the eventual aim of developing the capability for making predictive field 

scale simulations. The stress, fluid pressure and temperature conditions 

encountered at large depth give rise to strange situations where conventional 

reservoir modelling fails to provide an accurate analysis [6]. Since comprehensive 

coupling between the stresses and pore fluid pressures was first rationalised by 

Biot [4], many advances have been made by various researchers, notably Lewis 

and Schreffler [21], on the development of a fully coupled fluid flow and 

geomechanics model. This model has been successfully extended and utilised by 

Sukirman [37] and Lewis and Sukirman ([24],[22],[23]) to model the subsidence 

bowl above a compacting saturated oil reservoir.

A major departure from the traditional reservoir modelling approach was 

made by Barenblatt et al. [3], who utilised an overlapping continuum technique 

(double porosity model) to simulate fluid flow in fractured porous media. This 

work was followed closely by Warren and Root [38], who presented an analytical 

solution for single-phase, unsteady-state flow in naturally fractured reservoirs. 

Ghafouri [13], Ghafouri and Lewis [12], and Lewis and Ghafouri [19] included the 

double-porosity model into the coupled system of Sukirman [37], and it was 

concluded that the reservoir behaviour was highly affected by both fissure 

permeability and the fissure intervals. The double porosity model provided more 

realistic results than those with a conventional single average porosity.
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The effects of temperature on the reservoir system were introduced to the 

coupled reservoir simulator (CORES), and a temperature-dependent double 

porosity model in a deforming fissured reservoir was presented by Pao [31], 

Masters et al. [29] and Pao et al. [32]. By neglecting the temperature effects, Pao 

and Lewis ([30],[20]) presented a mathematical formulation of a three-phase, 

three-dimensional fluid flow and rock deformation in fractured reservoirs, and a 

field scale numerical example was employed to show the applicability of the 

scheme. In addition, Lewis et al. [25] worked on the inclusion of an elasto-plastic 

model into CORES to attempt to simulate the effect of deformation of a 

structurally weak reservoir rock such as chalk.

During the 1990’s, several researchers, including Fung et al. [11] and 

Sonier and Eymard [34], began working with the Control Volume Finite Element 

(CVFE) method for the solution of multi-phase flow problems in porous media. 

The CVFE method was proposed in the area of computational fluid dynamics for 

solving the Navier-Stokes Equations ([2],[33]) where flexible gridding as well as 

local mass, moment run, and energy conservation are achieved. The control- 

volume approach enforces local mass conservation and permits a direct physical 

interpretation of the resulting discrete equations without losing the flexible grid 

geometry. As reported by Fung et al. [11], these are significant advantages over 

the classical Galerkin or variational finite-element methods. At this time, 

problems were being encountered with CORES due to the program architecture 

preventing the easy modification of the governing equations. It was decided that 

a substantial re-write was necessary, and knowing the deficiencies of the Galerkin 

finite element scheme in calculating fluid flow, an alternate scheme was sought. 

Several researchers modelling fluid flow in the computational fluid dynamics 

community were praising the novel edge-based vertex-centred finite volume 

scheme (as per Malan et al. [28], Sorensen [35]). The scheme was conservative, 

and the edge-based representation of the domain facilitated computational and 

storage efficiency. Work commenced in the Spring of 2001 to write from new an 

edge-based finite volume source code, with good program architecture to facilitate 

easy modification, to solve porous media flow problems. This scheme had not
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been used previously in simulating the highly non-linear flow of fluid through 

porous media. The modeling of the fluid flow through porous media is complex on 

a number of levels. The development of such capabilities is subdivided into three 

main tasks viz. formulation of the governing partial differential equations to 

describe the physics of the problem, the discretization and solution of these 

equations and, last but not least, the translation of the resulting numerical 

scheme into efficient computer code.

1.2 SCOPE OF WORK AND RESEARCH CONTRIBUTIONS

The work documented in this thesis constituted the first phase in the 

development of a simulator for modelling fluid flow through porous media. The 

main research activities were:

• Suitable discretization and solution procedures were selected and refined. 

Discretization should support structured and unstructured computational 

meshes to ensure applicability to complex geometries.

• On a computational level, memory efficiency and a clean program 

architecture were paramount.

• The transcription of the algorithm to computer code was achieved by 

building on the latest in programming science. Here, techniques were 

developed for furnishing computationally efficient code.

A summary of the research contributions made during the above activities 

follows:

• A purely edge-based spatial discretization technique was employed for the 

discretization of the governing equations describing the physical system. 

This is, to the author's knowledge, the first instance in which an edge- 

based finite volume scheme has been applied to strongly non-linear 

diffusion dominated equations describing the multi-phase flow of fluid 

through a porous continua. This technique offers significant computational 

cost savings as compared to element based methods (Luo et al. [27]) while 

being naturally applicable to unstructured and hybrid grids.
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• The edge-based technique was enhanced by an alternative calculation 

procedure, utilizing a more compact stencil (Crumpton et al. [8]) for the 

case of the non-linear diffusion type partial differentials.

• W ith regards to the software implementation, a novel label based 

approach was employed. In the interest of computational performance, a 

data structure was proposed such that the modification of code at all 

levels was possible with the minimum of labour.

A number of publications were, as a result, forthcoming from the research, and 

are listed next.

1.3 PUBLICATION LIST

The following publications were produced during the course of the research 

project:

• . W.K.S. Pao, R.W. Lewis, X. Yang, I. Masters, I. Rees, The Effects of

Cross Coupling Terms in Double Porosity Model and its Significant in 

Fluid Transport, In proceedings: IMA Conference on Modelling Flow in 

Oil Reservoirs, BP Institute, University of Cambridge (2002).

• I. Rees, R.W. Lewis, I. Masters and A.G. Malan, Material Variation Using 

A Compact Stencil Vertex-Centred Edge-Based Finite Volume Scheme, In 

proceedings: The 11th Annual Conference of the Association for 

Computational Mechanics in Engineering (ed. M.A. Wheel), pp. 5-9, 

Glasgow, 2003.

• I. Rees, I. Masters, A.G. Malan and R.W. Lewis, An Edge-Based Finite 

Volume Scheme For Saturated-Unsaturated Groundwater Flow, Computer 

Methods in Applied Mechanics and Engineering, to appear (2004).

• I. Masters, I. Rees and R.W. Lewis, Advanced programming methods and 

data structures for computational modelling using edge based finite 

volume methods, Submitted for review to International Journal for 

Numerical and Analytical Methods in Geomechanics.
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• I. Masters, I. Rees, R.W. Lewis and A.G. Malan, Modelling Aquifer 

Contaminant Transport Via An Edge Based Algorithm, In proceedings: 

The 12th Annual Conference of the Association for Computational 

Mechanics in Engineering (ed. H.R. Thomas), pp. 7-10, Cardiff, 2004.

1.4 THESIS OUTLINE

The thesis is split into eight chapters, including an introduction and conclusion.

The following is a synopsis of each chapter.

• Chapter One: Introduction. In addition to giving an outline of the thesis,

this chapter contains an overview of the work background, scope and 

research contributions made.

• Chapter Two: Spatial Discretization Procedures. The chosen spatial

discretization algorithm is described in detail. Enhancements made to the 

scheme by the application of a more compact stencil in the interest of 

improved accuracy are discussed and presented. Finally, derivative 

calculations on homogeneous and non-homogeneous domains are presented 

and compared against analytic solutions for accuracy.

• Chapter Three: Advanced Programming Methods And Data Structures For

Computational Modelling. This chapter focuses on the chosen programming 

methodology. Novel program architecture is proposed which goes beyond 

conventional numerical programming practices.

• Chapter Four: Phase Transformation. The highly non-linear one­

dimensional problem of solidification and melting of metal ingots is 

presented. This problem is chosen as its mathematical description is very 

similar to the groundwater flow problems that need to be modelled, and 

analytic solutions exist for the test case. This work is the initial building 

blocks of the groundwater flow solver, and proves that highly non-linear 

diffusion dominated problems are solved successfully using the chosen 

scheme.
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• Chapter Five: Saturated-Unsaturated Groundwater Flow. Tests were 

conducted to evaluate the ability of the proposed algorithm as well as the 

efficacy of the technology for highly non-linear flow problems on two- 

dimensional domains. The infiltration of water into a vertical soil column, 

and across a homogeneous and zoned earth dam section is considered. The 

spatial and temporal accuracy was assessed by comparing with published 

numerical solutions where available, and the enhancements made to the 

scheme by application of the compact stencil is demonstrated.

• Chapter Six: Modelling Aquifer Contaminant Transport. This chapter 

discusses the numerical tests conducted to evaluate the accuracy of the 

numerical formulation as well as the model's ability to describe the flow of 

a contaminant through a domain saturated with water using only the 

contaminant flow equation. Varying rates of advection/diffusion on the 

equation system is considered, and the effect of contaminant decay on the 

system is investigated. The spatial and temporal accuracy of the solution 

was assessed by comparing with published and analytic solutions where 

available. The enhancements made to the scheme in the interest of 

improved accuracy by application of the compact stencil are demonstrated.

• Chapter Seven: Fully Coupled Contaminant Transport Through a 

Saturated Porous Medium. In this chapter, tests were conducted to 

evaluate the ability of the proposed algorithm to model the fully coupled 

system of flow equations describing the flow of a contaminant through a 

domain saturated with water. The flow equation, and the transport 

equation are fully coupled by the Darcy velocity term. The test case 

considered examines the injection and subsequent extraction of a 

contaminant from the same well, and the effect of the dispersion and 

decay terms on the system are investigated.

• Chapter Eight: Conclusion. The original research contributions are 

summarized and recommendations made for the continuation of the work 

through future research.
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C hapter 2

Spa t ia l  D isc r e t iz a t io n  P r o c e d u r e s

2.1 INTRODUCTION

This chapter focuses on the spatial discretization aspect of the chosen numerical 

procedure. The governing equations describing groundwater flow problems which 

are the main focus of this work are strongly non-linear, and in the case of 

contaminant transport problems, are highly coupled. Hence, an analytical 

solution of the problem is impossible. A numerical technique is therefore sought, 

which will enable subdivision of the system of equations into a number of discrete 

expressions that are solvable. Here, this construction is performed by an edge- 

based vertex-centred finite volume approach. A short discussion comparing this 

method with alternative discretisation approaches is presented. This method is 

formulated for unstructured and structured meshes, and the dual mesh definitions 

of these meshes are described in detail. Moreover, the purely edge-based 

technique is enhanced by utilizing an alternative calculation procedure, and it is 

demonstrated that this results in a significant improvement in accuracy when 

calculating derivative terms. Finally, the calculation of derivative terms on a non- 

homogeneous domain using the standard and alternative calculation procedure is 

considered.

2.2 WEIGHTED RESIDUAL METHODS

Problems concerning the flow of fluid through porous media are complex from a 

numerical point of view as the governing equations contain widely varying 

mathematical characteristics and measured non-linearity. Most numerical 

schemes in use today, which are applicable to such problems where the governing 

equations are of a differential type, can be considered a member of the Weighted
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Residual Method (WRM) family of discretisation procedures. Well known 

examples of this technique are the finite element and finite volume procedures.

In WRM, a system of n differential equations of the form

/m(Qm(x^)»x^ ) =  ° > m  G [1, n] (2.1)

is considered, with initial and boundary conditions Qm (x, 0) and fm = gm (Qm ( 0 )  

is solved. Here Qm (x) denote the dependent and x and t the independent 

variables, Q, designates the spatial extent of the domain, and T is the bounding 

surface. By subdividing the domain Q into discrete volumes Qm and integrating 

over each, the system of weak forms is introduced in the manner

/  L  (Qm (x> *) >M ) w (x) dQ = 0 (2.2)
nm

where w(x) is a vector of length N  of independent weighting functions. The 

result is a set of N  x n  discrete equations. The objective now is to obtain an 

approximation for the dependent variables or unknowns, Q , which satisfy the set 

of equations (2.1) and the initial and boundary conditions prescribed to the 

system.

2.3 FINITE ELEMENT METHODS

In finite element methods, the approximate solution is constructed by setting

q  = f 2 Q pSp Cx) (2.3)
p =1

where {Sp (x ), P  G [1, IV]} is a finite set of independent basis-functions and 

{Qp G Mn,F  G [l,Af]j is a set of unknowns and constants. The result is a system 

of equations with N  x n  unknowns. Different choices of weighting functions 

results in the construction of different families of discretisation schemes. Spectral

12
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schemes result from setting weighting and basis functions to global trigonometric 

functions, while applying the Dirac delta for the weighting functions yields finite 

difference schemes. The simplest and most commonly used finite element method 

is the Galerkin method which is constructed by setting the weighting and basis 

functions to be identical

The spatial domain is subdivided into discrete non-overlapping elements 

(Figure 2.1) from which the basis-functions are constructed over the elements. As 

shown the method is applicable to unstructured grids, making it suitable to 

complex geometries. Element borders are referred to as edges and nodes designate 

where the edges intersect. A dependent variable set Qp (of dimension n )  is 

associated with each node (of which there are N ).

E d g e

E l e m e n t

N o d e

Figure 2.1: Illustration of the nomenclature used for unstructured meshes; here demonstrated on a

2-D triangular mesh.
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F i n i t e  V o l u m e

-F i n i t e  V o l u m e

a) b)

Figure 2.2: Schematics of the two finite volume domain composition variants applied to unstructured 

grids, a) vertex-centred, and b) cell-centred. The filled circles denote the locations of nodes, and hence

the discrete unknowns.

2.4 FINITE VOLUME METHODS

The finite volume scheme results by choosing the weighting function in (2.2) as 

unity to split the computational domain into a set of subdomains

_ { ! .
Wm = {o, x ? n m

where Qm denotes the non-overlapping subdomain associated with wm such that 

{Qm C  0}. Each non-overlapping domain, , is constructed from meshes similar 

to the ones used in finite element schemes, and such finite volume schemes are 

divided into two families: element-based,/cell-centred and node-based/vertex-

centred. The difference between these two families of schemes is found in the way 

the subdomain sets, or control volumes, {^m} are constructed.

In vertex-centred methods, the dependent variables are stored at nodes, 

and the control volumes are constructed around each node in such a way that a 

node resides in one subdomain only. The set of connecting surfaces between these

(2.4)
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subdomains is referred to as the dual-mesh. An illustration of a vertex-centred 

control-volume definition of an unstructured triangular mesh is shown in Figure 

2.2a. Cell-centred methods do not require the creation of a dual mesh, but 

instead use the elements of the mesh themselves as control-volume definitions 

with unknowns being stored at the element centres. An illustration of a cell- 

centred control-volume definition of an unstructured triangular mesh is shown in 

Figure 2.2b.

In comparison, the cell-centred variant is significantly more memory 

intensive (a factor of two in 2-D) on unstructured grids (Foy and Dawes [5]) in 

part due to the ratio between the elements and nodes (also evident from Figure 

2.2b). In addition, the vertex-centred method allows for edge-based computation 

which offers a significant advantage in computational cost as compared to 

element based methods as pointed out by Luo et al. [8]. This is because looping 

over the elements (element based methods) requires the computation of the same 

edge contribution twice (in 2-D), and more than four times in 3-D. Another 

advantage of the vertex-centred scheme is that it is similar, and in some cases 

equivalent (e.g. Onate et al. [13]), to extensively used finite difference and finite 

element methods. Node-base schemes further avoid the complexities associated 

with cell-centred schemes when applying boundary conditions. Considering this in 

conjunction with the storage and computational advantages, the edge-based 

vertex-centred scheme is deemed to be the superior finite volume approach.

When considering vertex-based algorithms, variations exist in the method 

employed to calculate second order derivatives. These range from purely edge- 

based (as per Malan et al. [10], Sorensen [15]) to element-based techniques such 

as the method developed by Turner and Ferguson [18]. The former will be 

utilised as it lends naturally to the memory efficient edge-based storage structure. 

An edge-based representation of the domain is employed as it facilitates 

computational and storage efficiency. This discretisation scheme is naturally 

applicable to unstructured meshes and is thus suitable where complex geometries 

are prevalent. This further facilitates the use of solution-adapted grids which 

have been shown to be both accurate and computationally efficient (Lewis et al.
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[7] and Nithiarasu and Zienkiewicz [12]). Moreover, hybrid grids are also 

supported, with the benefits of increased accuracy and performance as 

demonstrated by Chen and Kallinderis [3] and Sorensen et al. [15].

2.5 DUAL-MESH CONSTRUCTION

The dual-mesh is constructed by connecting element geometric centres and edge 

midpoints, and in 3-D face-centroids, in such a way that only one node is present 

in each control volume as per Vahdati et al. [19], and the dependent variables are 

stored at these nodes. This is shown schematically for a boundary node m  on a 

2-D domain in Figure 2.3, where the black filled circles denote nodes, the white 

circles denote element geometric centres, the squares denote edge midpoints and 

the dual is denoted by dashed lines. We shall limit our interest to the 2-D case. 

The control volume (subdomain) associated with node m  is designated and 

the bounding surfaces by r m and Tbm respectively. The latter denote internal 

(dual) and computational boundary surfaces respectively. This method is suitable 

for use on unstructured meshes.

mp

m
mp

pm

Figure 2.3: Schematic of the construction of the median-dual-mesh (dashed lines) on an 

unstructured quadrilateral grid. Points shown within elements depict the element geometric

centres.
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Internal and boundary surfaces are constructed such that Tmp D Tbmp ^  0  

and |rmp nr^p| = 0, where M returns the length of its argument. The bounding 

surface Tm is composed of a number of surface segments which are defined in an 

edge-wise manner. For example, Tmn is the segment associated with the edge T mn 

which connects nodes m  and n . Tmn is constructed by summation of the surface 

segments attached to this edge i.e. Tmn = T'mn U T^n (as shown in Figure 2.3). 

Domain boundary surfaces are similarly composed of segments where Tbmp denotes 

the boundary surface sector associated with the boundary edge Ymp .

In order to exploit the computational advantages associated with edge- 

based matrix assembly, bounding surface information is stored in an edge-wise 

manner. These are termed as edge coefficients, and in the case of internal edges 

on a 2-D domain as shown in Figure 2.3 are defined as

Cm„ = |r l |  + n l  |r l |  if r m„ t  an  (2.5)

where, m and n denote the nodes attached by edge Y„,„, and n L ,, n '' and 11" */ o  m n 1 mn  / vnn mn

denote unit vectors orthogonal to Y'mn, T^n and Tmn respectively. For consistency 

sake these vectors are oriented from node m  to node n, and are outward pointing 

with respect to the control volume D . The domain boundary contributions are 

computed in a similar fashion where the associated boundary edge coefficient is 

given by

Bmn =  nV IrLl if  Tmn C d Q  (2.6)mp mp mp J J m n  V /

where, n^p denotes the outward pointing normal vector to boundary 

bounding surface segment Tbmp . From equation (2.5) it can be seen that the 

internal edge coefficients are antisymmetric, i.e.

=  -C nm (2.7)
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which means that the internal edge coefficients only need to be stored once for 

every edge. From equations (2.5) and (2.6) it follows that

Y C j + Y B 3. = 0 ,  (2.8)
/  -J m i /  -J mi 7 v '

i i

where i is the set of nodes directly connected to node m  by a single edge. Hence 

by (2.8), the scheme is consistent in the case that the surface integral of a 

constant flux is numerically zero. The identity,

B =  B (2.9)mp pm \  /

for the boundary coefficients is also true as long as the edge midpoints are used

in the dual mesh construction. This means that the boundary coefficients also 

need to be stored once only for each edge. Since the definitions of the internal 

and boundary edge coefficients are purely geometrical, they need only be 

calculated once, unless the mesh is deformed.

The governing partial differential equations to be solved exhibit a 

combination of two types of mathematical characteristics viz. hyperbolic and 

elliptic. The hyperbolic aspect is convective in nature while the elliptic is 

diffusive. Numerically each is to be treated appropriately in order to facilitate 

notionally second order accuracy and stability. This is considered next.

2.6 DEVELOPMENT OF THE EDGE-BASED ALGORITHM

Initially, the governing equations must be written in a weak form, and then each 

term in the weak form of the equation system is dealt with separately as given 

below.

2.6.1 First Derivative Terms

The spatial derivative terms in the weak form equation are discretised by 

application of Green’s theorem, and by the assumption that the spatial derivative

18
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is linear over the control volume Qm surrounding the node m , and equal to its 

approximated value at the midpoint of the edge. We implement the standard 

index notation but with no summation over indices.

For the purpose of describing the spatial discretization algorithm, a 

generic first derivative term is defined as

K
dx.

(2 .10)

where £ =  an arbitrary parameter. Equation (2.10) cast into a weak form follows

viz.:

=  f  c < „ < ir ra
xi rn

(2 .11)

An averaged gradient d^jdx. on the control volume associated with the vertex m 

is defined as the quantity satisfying:

dx.
&

K l  1 9xi
(2 .12)

where Kl = I . This is a first-order accurate discretization of the first-order

derivative of £ taken at the node m, namely dC,jdx\ . That is,
/  771

dx
dC
dx

+  0 (  Ax) (2.13)

assuming that (  is a twice continuously differentiable function, we obtain the 

correct estimate of the approximation error,
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K
dx

K
dx

f d n m < J

< maxienm

K - K
dx. dxI

d \ { x )

dCl.

dx2

(2.14)

A x  J" dQm =  0 (  A t3)

where i = x,y  and is the average £ across the control volume Qm. Applying 

the divergence theorem to d^jdx. we have:

dx*

(2.15)
no.77171 ' m

5a;.

where Tmn denotes the edge connecting nodes m  and n, and T bmn denotes the 

edge connecting boundary nodes m and n. The edge coefficients Cmn and Bmn 

are defined as per equations (2.5) and (2.6). Tm is the surface of the control 

volume and £mn is the average flux along the edge. The term d(/dx\ is the
' l \mn

partial contribution to the derivative associated with edgemn. The edge-based 

scheme is numerically equivalent to a vertex-centred scheme, however, it is this 

aspect of the formulation that enables a computationally efficient 

implementation. The standard method of calculating the average value of a 

quantity that contributes towards the flux calculation along an edge (Vahdati et 

al. [19], Crumpton et al. [4], Sorensen et al. [16] and Malan et al. [9]) is:

C „ = |( C . + C . )  (2-16)

Finally, the calculation of a surface integral for the spatial derivative over the 

control volume surface for node m  is then given by the formula

20
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r * L dn m = <9C
J dx. m dx.nm * 1m

= y  ; Cmrfimn +  ^ v Cn^mn
Tmn nom T L nnm

(2.17)

Thus, the last term only contributes if m is a boundary node. The boundary 

terms are here treated in the classic finite volume way, using a local midpoint 

rule. On a structured mesh this relation is thought of as second order accurate.

Note that expressions (2.7) and (2.8) guarantee the numerical scheme to 

be conservative, i.e. the sum of the numerical fluxes in the computational domain 

equals the flux over the computational domain boundary

£ r  c +  v  c b 1/  j  ^ m n  mn ' /  j  oro n
T° nfi„ m x° nn„

(2.18)

2.6.2 Second Derivative Terms

The elliptic terms are those containing second order spatial derivatives and are 

numerically far less problematic than hyperbolic terms. For the purpose of 

describing the spatial discretization algorithm, a generic second derivative term is 

defined as

21 =
d

dx.
a

dx
(2.19)

where a  is a scalar phenomenological coefficient and £ is an arbitrary 

parameter. In the case of some of the problems considered in this work, notably 

the equations that describe fluid flow in porous media, a  is a highly non-linear 

function of the material relative permeability. The scalar phenomenological 

coefficient a  is an edge-based term defined as follows
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^  ^ m n  2 ^ n )  > (2 .20)

where the term amn is the value of a  applied to edgemn. Malan [9] showed that 

handling these phenomenological coefficient in this way results in formal second 

order accuracy being reinstated while maintaining the edge-based nature of the 

scheme. This enhancement is expected to be of significance specifically where the 

terms are non-linear. A similar averaging technique has in principle been 

considered for finite element schemes but abandoned due to the computational 

costs involved (Fletcher [6]). In our case the edge-based nature of the scheme 

again serves to minimize the additional computational cost as it involves one 

additional addition and division per edge computation.

Equation (2.19) cast into a weak form follows viz.:

f —x dx
„  ^Q? ---------- =  f O ' ----------

77171 r\o x J .

m  J mn rvo x .
3 .

nL d r , (2.21)

Edge-based finite volume methods do not allow the calculation of second order 

derivatives with one loop over edges, which is a deficiency as compared to finite 

element methods. Elliptic terms are calculated by looping over all edges twice, 

whereby the first derivative is approximated in the first sweep. Along these lines 

the discretization of (2.21) starts by calculating the first derivative of the scalar 

field £ by application of equation (2.17), and dividing through by the control 

volume as follows;

dx. E  c „c l + E  Cns;
t L  no.mn 77i

(2 .22)

where d f1 denotes the finite volume approximation of a first derivative with 

respect to x.. Here, the midpoint rule has been applied for the volume integral.
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Setting =  amnd ^ Cm, the boundary integral of the gradient is now evaluated 

directly as

(2.23)

where the standard method employed to calculate the average term J vmn is 

described as per equation (2.16).

Note that in the first derivative loop, if the first derivative term (2.10) is 

proceeded by a phenomenological coefficient a , then we proceed in a similar 

manner as described here for second derivative terms, and equation (2.17) is 

amended to be

(2.24)

Equation (2.23) is second order accurate discretisation on smooth structured 

meshes, and simplex meshes, but in the case of non-mixed derivatives the 

computational stencil spans across five nodes in each direction. For a uniform 

structured mesh, this means that the nodes are decoupled from the closest 

neighbouring nodes in this term, hence the contribution from the nodes closest to 

the node at which the derivative is being calculated is effectively nullified. In 

such cases the discretization error is twice that obtained with a three-node stencil 

and an alternative is to be sought. Moreover, it is usually desirable from a 

discretisation point of view to employ schemes that are as compact as possible.

2.6.3 Compact Stencil

A disadvantage of the edge-based method is that when calculating non-mixed 

second-derivative terms via the standard finite volume approach, equation (2.23)

^ m n C m n ^ m n  " h  ^  y ^ r a n  Cm
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results in a two-layer (five-node) stencil. Hence, the contribution from the nodes 

adjacent to the node at which the derivative is calculated is not included in the 

calculation. The author has shown that this produces large spatial oscillations 

emanating from the discontinuous material boundaries in a non-homogeneous 

domain [14].

Turner and Ferguson [18] proposed a more compact scheme whereby nodes 

not attached to an edge but belonging to the attached elements are brought into 

the calculation, resulting in a three-node stencil. The drawback is however that it 

is not purely edge-based with potential storage penalties. Swanson and Turkel 

[17] developed an alternative compact scheme whereby the first derivatives are 

calculated using equation (2.22) at edge midpoints using an additional edge-based 

control volume. However, an additional set of edge coefficients are required for 

this formulation. In addition, the computation of the boundary integrals become 

more complicated in the sense that the contribution of the integral associated 

with the edge becomes dependent on all of the nodes in the elements sharing the 

edge. This results in the loss of the purely edge-based nature of the scheme.

In addressing this issue, a more compact stencil as proposed by Crumpton 

et al. [4] is implemented. This results in a one-layer (three-node) stencil, and the 

increase in accuracy observed when calculating elliptic terms using the compact 

stencil as compared to the standard edge-based finite volume scheme is 

significant as shown by Malan [9]. The compact stencil scheme is put into effect 

by splitting derivatives calculated at edge midpoints ( J ij mn) into components 

tangential and normal to the edge, as:

p3 _  TV
m n m n  I m n +  J

tang

y
mn C L  (2-25)

A new tangential component is calculated as
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which constitutes the directional derivative along the edge with tmn designating 

the unit vector tangential to the edge. The term |xn — xm| describes the length of 

the edge between nodes m  and n .  This tangential component is second order 

accurate at the edge midpoint but only requires two nodes in its evaluation.

The normal component is calculated by averaging the flux in the normal 

fashion and subtracting the tangential component.

jd
mn norm <2-27)

Equation (2.23) now becomes:

f n ,  9 <a  ----- n % d r
J

77171 r\

O X

m n m

[  0 J
/ * ___ \

m n +  J i n
C >  +  V  f b 3

m n  * /  j  m  ^ n

T m„ n n m \ tang norm J
r 6mn n n m

(2.28)

In the case where m  is an internal node and the basis vector of the implicated 

edge coefficients are reasonably aligned with the associated edge, the normal

component is small and a three-node stencil results. The additional

computational cost compared to the standard method is marginal and this 

technique is viewed as an elegant method of improving accuracy while conserving 

the edge-based nature of the scheme.

Sorensen [15] reports that the five-node stencil of the standard second 

derivative calculation did not show itself to be a problem when solving 

Computational Fluid Dynamics (CFD) problems on unstructured hybrid meshes. 

However, it shall be seen that when considering non-homogeneous domains, and 

point sources such as injection/producing wells, the difference obtained in the 

solution using the standard scheme and the compact stencil scheme is great (see 

sections 2.9.1.2, 6.4 and 7.4.2).
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2.6.4 Point Source Term

The integration of the point source term, q, within a governing equation yields 

the following:

(2.29)

The above relation is notionally second order accurate.

2.6.5 Time Derivative Term

Finally we consider a time derivative term within a governing equation. 

Integration, and the application of the Euler backward difference scheme yields:

(2.30)

Depending on which second derivative scheme is used, by combining equations 

(2.17), (2.23), (2.28), (2.29) and (2.30) we form the discretised scheme for a 

governing equation using the standard vertex-centred edge-based finite volume 

scheme.

2.7 COMPARISON WITH AN ANALYTICAL SOLUTION -  DIFFUSION

EQUATION

In order to ensure that the derivative routines had been coded correctly and were 

free from programming errors, it was decided that the code should be compared 

against the analytical solution for the linear diffusion equation, as presented by 

Mills [11]. The two-dimensional heat conduction equation considered in this test 

case is shown here,

f  Q d Q m  ~  QrrS^mi
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_d_
dx

d T )a +
d

dy
d T

v d y )

d T
dt

(2.31)

where the following dimensionless constants were applied; k = 2.0 , p =  2050.0,

c =  945.36586 and <x. =  a„ = y nr . The subroutine used to calculate theP X y y  fJCp

analytical solution for this problem is included in Appendix A. The equation was

solved for T  using the standard vertex-centred edge-based finite volume scheme 

described.

This governing equation was chosen as it represents a linear, diffusion- 

dominated flow problem, which is very similar to the porous media fluid flow 

equations the solver will ultimately be handling. The domain over which the 

equation was applied was a rectangle of dimension (0 .1x0.01) metres and is 

illustrated in Figure 2.4a. This domain was discretised using 594 regular 

triangular elements, and the computational mesh is shown in Figure 2.4b.

The initial and boundary conditions used for this test case were;

T(®,y,0) =  625 (2.32)

T (x ,y : t) = 125 on side A-D (2.33)

on sides A-B & C-D (2.34)

on side B-C (2.35)

D C

A B
a)

b )

Figure 2.4: Illustration of a) the domain boundary with boundary labels, and b) the computational 

domain with triangular elements used for the analytical comparison problem.
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Figure 2.5 shows contour plots of the front propagating through the domain at 

t =100, 2000, 5000 and 10000 seconds respectively. The illustration clearly 

displays the gradual cooling of the bar originating from side D-A, which is as 

expected. Also of note is tha t the cooling front is uniform along the width of the 

domain.

A graph of the calculated values of T  along the line 

y — 0.005 m, x  G [0,0.l]m  through the domain at t =100, 2000, 5000 and 10000 

seconds respectively are shown in Figure 2.6, along with the analytical solution 

for each time. This line runs through the centre of the domain and along its 

whole length.

There is a very close correlation between the numerical solution and the 

analytical solution for the two-dimensional heat conduction problem considered 

here. In conclusion, it is assumed that the standard derivative routines within the 

solver are working correctly for linear problems.

T
601.19
577.381
553.571
529.762
505.952
482.143
458.333
434.524
410.714
386.905
363.095
339.286
315.476
291.667
267.857
244.048
220.238
196.429
172.619
148.81

, c) 5000Figure 2.5: Contour plots of the front propagating through the domain at a) 100, b) 'i

and d) 10000 seconds respectively.
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600

500

400

300

200

100
0.05

X
0.0750.025

100 sec 
2000 sec

---------------  5000 sec
—  —  — 10000 sec 

X  lOOsec-A.S.
•  2000 sec-A.S.
□ 5000 sec - A.S.
A 10000 sec - A.S.

Figure 2.6: Comparison between numerical results and the corresponding analytical solution 

along the line y — 0.005 through the domain at t = 100, 2000, 5000 and 10000 seconds

respectively.

2.8 NUMERICAL SOLUTION ACCURACIES USING STANDARD AND 

COMPACT STENCIL FINITE VOLUME SCHEMES

In order to determine the improvement in accuracy obtained by utilising the 

compact stencil scheme, and to verify the precision of the derivative calculation 

routines the following tests were conducted. A primitive variable field defined by 

the function;

/(#, y) = cos(47ra;) • cos(47vy) (2.36)

was applied to a domain of side 1 unit. Harmonic functions, like the one 

described in equation (2.36) above are known to be difficult to capture due to the 

infinite series of Taylor terms required to describe them [9]. For this comparison
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both standard and compact stencil flux-averaging methods are employed. Figure 

‘2.7 illustrates an unstructured mesh tha t has been distorted to depict the 

harmonic field.

Figure '2.7: The unstructured mesh distorted to depict the harmonic field.

In order to verify the accuracy of the standard vertex-centred edge-based finite 

volume scheme and the compact stencil finite volume scheme in second 

calculating derivative terms, the following test was conducted. The primitive 

variable defined by equation (2.36) was applied to the computational domain, 

and the second derivative with respect to x  (i.e. d 2f j d x 2) calculated across the

domain using the standard and compact stencil schemes on unstructured and 

structured meshes of varying densities. The results obtained for the derivative 

calculation using the two schemes each mesh along the poly-line with equation y 

=  0.1 across the domain were then compared to the analytical solution.

Note tha t for the function described by equation (2.36), the following hold

true,

d f
—  =  — 47 r  c o s ( 4 7 xy) sin(47nr), (2.37)
dx
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d f
—  =  —47r cos(47ra;) sin(47n/), 
dy

and,

<97 <97=  — - =  — 167r cos(47n/)cos(47nr)
dx dy

(2.38)

(2.39)

Also, the value for the constant t t  was taken to be t t  = 3.1415926535897932.

2.8.1 Unstructured Grids

The square domain of side 1 unit was discretised using unstructured triangular 

elements and is shown in Figure 2.8. The mesh has 35 nodes per boundary, 2356 

computational nodes and 6929 elements.

Figure 2.8: Computational domain of side 1 discretised into 6929 unstructured triangular 

elements with 2356 computational nodes and 35 nodes per boundary.

The calculated results for the second derivative with respect to x obtained for 

each mesh along the poly line y = 0.1 m, x E [0,1.0]m across the domain using 

the standard and compact stencil schemes are shown in Figure 2.9, along with 

the analytical solution for the problem. The analytical solution for the second 

derivative of the primitive variable field with respect to x is described by 

equation (2.39).
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x  Compact Stencil
Standard F. V. 
Analytic

dx2
-10

-20

-30

-40

-50

-60
0.25 0.5 0.75

X

Figure 2.9: Comparison of the predicted values along y =  0.1, using the standard and compact 

stencil edge-based flux averaging algorithms for the second derivative w.r.t. x, to the exact 

solution on an unstructured mesh with 35 nodes on each boundary.

As can be seen from Figure 2.9, the compact stencil solution captures the peak of 

the oscillatory solution much more accurately than the standard edge-based 

scheme. Moreover, in the regions between these peaks the standard scheme 

produces a solution that lags slightly behind the analytical. This lag is not 

present in the compact stencil plot. The solution using both schemes diverges 

from the analytical on the boundaries of the domain. This is a defect inherent to 

the scheme and cannot be avoided, and is due to the accuracy of the scheme 

reducing from second order at internal nodes, to first order at, or on adjacent 

nodes, to the boundary. This anomaly is explained in detail by Malan [9].

In conclusion, the compact stencil finite volume scheme provides a marked 

improvement over the accuracy obtained by the standard vertex-centred edge- 

based finite volume scheme when calculating second derivative terms.
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2.8.2 Structured Grids

The improvement in solution accuracy using the compact stencil scheme as 

opposed to the standard finite volume scheme has already been established. The 

following test was considered in order to compare the solutions obtained for 

derivative calculations using the standard vertex-centred edge-based finite volume 

scheme, and the compact stencil finite volume scheme on structured and 

unstructured grids.

The same domain as considered for the unstructured test above was used, 

however the domain was now discretised using structured quadrilateral elements. 

The mesh considered for the test has the same boundary node density as the 

unstructured mesh shown in Figure 2.8, that is 35 nodes per boundary; and is 

shown in Figure 2.10.

The same primitive variable field as defined by equation (2.36) was 

applied to the structured domain. The first derivative with respect to x (i.e. 

d f j d x )  of the primitive variable field was calculated using the standard vertex-

centred edge-based finite volume scheme, and the second derivative with respect 

to x (i.e. d2f j d x 2) calculated across the domain using the standard and compact

stencil schemes on the mesh illustrated in Figure 2.10. The results obtained for 

these derivative calculations on the structured meshes along the line 

y = 0.1 m, x G [0,1.0]m through the domain were compared to the solution 

obtained on an unstructured mesh of the same boundary node density.

The results obtained for the first derivative comparison using the 

structured mesh is shown in Figure 2.11. The results obtained for the second 

derivative comparison using the compact stencil scheme and the standard finite 

volume scheme on the structured mesh are shown in Figure 2.12 and Figure 2.13 

respectively.
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Figure 2.10: Computational domain of side 1 discretised into unstructured quadrilateral 

elements with 35 nodes per boundary, 1225 computational nodes and 1156 elements.

—  Unstructured
—  Quad.
—  Analytic

4

3

2

1

0

1

■2

■3

-4

0 0.25 0.5 0.75 1
X

Figure 2.11: Comparison of the solutions obtained for the first derivative w.r.t. recalculation 

along y — 0.1 using the standard F.V. scheme on a structured and an unstructured mesh with

35 nodes on each to the exact solution.
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As is evident from Figure 2.11, the solution obtained for the first derivative of 

the primitive variable with respect to x is very similar for both structured and 

unstructured meshes. However, the unstructured mesh provides a better solution 

at the peak of the solution cycle. This is probably due to the large difference in 

the number of computational nodes between structured and unstructured meshes 

with the same boundary node density. The unstructured mesh contained 2356 

nodes (see Figure 2.8) while the structured mesh contained 1225 nodes.

The solution obtained for the second derivative of the primitive variable 

with respect to x using the compact stencil scheme is very similar for both 

structured and unstructured meshes as shown in Figure 2.12. The solutions 

obtained compares well with the analytical solution for the problem. However, 

there is a slight improvement in the solution when using the unstructured grids 

for the same reason as described for the first derivative case.

The solution obtained using the standard finite volume scheme is shown in 

Figure 2.13. For this case, the structured grid provides a much better solution to 

the derivative calculation than the unstructured. This is due to inability of the 

standard scheme to handle the irregular orientation of the edges within an 

unstructured grid as compared to the structured grid, whose edges are always in 

line with the coordinate axis in this case. This happens as the standard scheme 

calculates derivative contributions along the length of the edge. As the compact 

scheme calculates a contribution to the derivative at a node normal and tangent 

to an edge, it is independent of edge orientation.

In conclusion, there is little difference in the accuracy of first derivative 

calculations carried out on structured and unstructured grids of comparable 

boundary node density. As regards the calculation of second derivatives, as long 

as the compact stencil scheme is employed then again there is little difference 

between the two mesh types. However, if the standard second derivative 

algorithm is applied, then structured grids prove to be superior.
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Figure 2.12: Comparison of the solutions obtained for the second derivative w.r.t. x calculation 

along y — 0.1 using the compact stencil scheme on a structured and an unstructured mesh with

35 nodes on each to the exact solution.
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Figure 2.13: Comparison of the solutions obtained for the second derivative w.r.t. x calculation 

along y = 0.1 using the standard F.V. scheme on a structured and an unstructured mesh with 35

nodes on each to the exact solution.

36



C h a p t e r  2  -  S p a t i a l  D i s c r e t i z a t i o n  P r o c e d u r e s

2.9 DERIVATIVE CALCULATIONS ON NON-HOMOGENEOUS DOMAINS

The overall objective of the project is to model fluid flow through porous media. 

In most instances, this is a purely diffusive, although highly non-linear problem, 

and is described by diffusion equations such as equation (2.31). From a 

mathematical perspective, similar equations are seen in petroleum reservoir 

problems [1], and groundwater flow problems [2]. Here, a linear version of 

equation (2.31) will be solved on non-homogeneous, isotropic domains using the 

edge-based finite volume scheme as already described. Although this problem is 

trivial when considering other more widely used computational schemes, edge- 

based schemes originate in the Computational Fluid Dynamics community, and 

thus far, to the authors’ knowledge, they have only been applied to homogeneous- 

isotropic domains. Hence, this section describes how to apply a vertex-centred 

edge-based finite volume scheme to a non-homogeneous domain.

The domain, of side 1 unit, is shown in Figure 2.14a along with markers to 

distinguish between each boundary. Markers A to D lie on the corners of the 

domain, while markers E to H lie on the geometric mid points of the boundaries. 

The domain has been discretised using 100 regular quadrilateral elements of equal 

edge length, and the computational grid is shown in Figure 2.14b.

E B
a) b)

Figure 2.14: Illustration of a) the domain boundary of side 1 unit with boundary labels, and b)

the computational domain with quadrilateral elements used for the non-homogeneous domain

problem.
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In order to establish the correct procedure and formulation for handling 

derivatives over non-homogeneous domains, the following simple test case was 

considered.

2.9.1 Test 1 -  Vertical Zones

The domain was partitioned into two isotropic zones: 1 and 2, with the boundary 

between the two zones lying on the line with equation x = 0.5 (that is the line 

connecting points E and G in Figure 2.14a). This partitioned domain is shown in 

Figure 2.15 below.

ZONE 1 ZONE 2

Figure 2.15: The vertically partitioned domain used for the non-homogeneous Test 1.

Each zone was prescribed a different set of dimensionless parameter values as 

shown in Table 2.1 below.

Zone 1 Zone 2

10.0 50.0

10.0 50.0

Table 2.1: Values for the dimensionless parameter O i  applied to the non-homogeneous domain in

Test 1.

Note, for the purpose of this illustration, the parameters in ax, a  and T  in 

equation (2.31) are regarded as having no unit or physical meaning. The
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objective being to formulate and successfully solve a simple diffusion problem on 

a non-homogeneous, isotropic domain.

The initial and boundary conditions used for this test case were;

T(x,y,  0) =  0.0 (2.40)

T(x,y, t) = 1.0 on side A-D (2-41)

T(x ,y ,t)  = 0.0 on side B-C (2.42)

on sides A-B & D-C (2.43)

2.9.1.1 Analytical Solution For Non-Homogeneous Case

The analytical solution for the variable T  along the zone boundary E-G is derived 

in the following manner. Assuming that the flux across the domain is constant, 

then,

d TQ = a S -  (2.44)
O X

where Q is the flux. Let the value of T  on the left hand vertical boundary be 

defined as Tt, the value of T  on the right hand vertical boundary be defined as 

Tg, and the value of T  on the boundary between the two zones (that is along the 

line x — 0.5) be defined as Tc. In addition, let the value of a  in zone 1 be , the 

value of a  in zone 2 be a2, and the length of boundary A-B be dx. Hence, by the 

assumption that the flux is constant in both zones, we have,

(2-“ >

which simplifies to,

Ctr.Tr. T  CK-iT
Tc = 2 2 1 1 (2.46)
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By substituting known values for the terms in (2.46); that is = 10.0, a2 = 

50.0, Tx =  1.0 and T2 = 0.0, we get,

Tc =  1  (2.47)
6

This is the analytical solution for the value of T  along the line x = 0.5 through 

the domain for this particular case. This will be used to compare the accuracies of 

the solutions obtained using the various derivative calculation algorithms.

The problem, equation (2.31), was solved numerically using a timestep 

length of dt = 0.0001 seconds by calculating the required derivatives using the 

standard and compact stencil edge-based finite volume scheme. Profiles of the 

calculated parameter T  along the line y = 0.5 m, x G [0,1.0]m through the 

domain at t = 0.025 sec using the standard and compact stencil schemes are 

illustrated in Figure 2.16 and Figure 2.17 respectively, and the calculated value of 

T  at the zone boundary compared against the analytical solution for accuracy.

2.9.1.2 Results - Test 1

The inherent disadvantage of standard edge-based finite volume schemes due to 

the ‘leapfrog’ manner in which derivatives are calculated using the five-node 

stencil has already been discussed. This impediment is obvious when the results 

shown in Figure 2.16 are considered. The large spatial oscillations emanating 

from the discontinuous material boundaries in the non-homogeneous domain are 

a direct result of the de-coupling of the solution when implementing the standard 

edge-based scheme. However, the solution obtained using the compact stencil 

formulation (Figure 2.17) contains no spatial oscillations, and agrees well with 

the analytical solution. Hence, the compact stencil formulation is consistent for 

inhomogeneous isotropic domains, and should be used wherever possible for 

increased accuracy across the material boundary.
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The problem discussed in this section (Test 1 -Vertical Zones) was re-run 

with different boundary conditions applied to boundary B-C. The condition now 

applied to this boundary was

ax d T (x’y’t) =  10.0 on side B -C . (2.48)
dx

All other parameters remained the same as above. The results obtained are 

shown in Figure 2.18, where plots of the calculated parameter T  along the line 

y = 0.5 m, xG[0,1.0]m through the domain at t = 0.01, 0.02, 0.03, 0.05, 0.07,

0.1, 0.2 and 0.4 seconds are illustrated.

It can be seen that the solution curve obtained by plotting along the line 

y = 0.5 on the domain at various time steps from 0.01 seconds to 0.4 seconds, 

when a steady state solution has been reached. At t = 0.4 seconds a steady state 

solution is reached, and it is noted that the plot for this time has a gradient of 

ax d T /d x  , which is exactly the analytical solution for this case.

0.9

Standard F. V. 
Analytic

0:7

0.6

^  0.5

0.4

0.3

0.2

0.2 0.3 0.4 0.5 0.6 0.7
x

0.9

Figure 2.16: A profile of the calculated parameter T  along the line y = 0.5 m, i6 [0 ,l,0 ]m  

through the domain at t = 0.025 sec. using the standard edge-based FV scheme.
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Figure 2.17: A profile of the calculated parameter T  along the line y — 0.5 m, x E [0,1.0]m 

through the domain at t — 0.025 sec. using the compact stencil edge-based FV scheme.
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Figure 2.18: Plots of the calculated parameter T  along the line y = 0.5 m, x E [0,1.0]m 

through the domain at t = 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2 and 0.4 sec. using the compact

stencil edge-based FV scheme.
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2.9.2 Test 2 -  Narrow Zone of Preferential Flow

This test was conducted to simulate flow through a narrow zone of preferential 

flow, and the same domain as shown in Figure 2.14a was used. The domain was 

partitioned into two zones, with a thin diagonal band (Zone 2) used to represent 

the narrow zone of preferential flow as shown in Figure 2.19a. The domain was 

discretised using an unstructured grid of 1606 triangular elements (see Figure 

2.19b).

ZONE 1

ZONE 2

ZONE 1

( 1 . 0 , 0 . 8 ) 

( 1 . 0 , 0 . 7 )

a) b)

Figure 2.19: Illustration of a) the domain with simulated fracture, and b) the unstructured grid 

used for the non-homogeneous problem Test 2.

Although the domain is inhomogeneous, each zone is isotropic and was prescribed 

a different set of dimensionless parameter values as shown in Table 2.2 below.

Zone 1 Zone 2

1.0 10.0

1.0 10.0

Table 2.2: Values for the dimensionless parameter a  applied to the non-homogeneous domain in

Test 2.
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Note that the narrow zone of preferential flow has a  values ten times greater 

than the remainder of the domain. The initial and boundary conditions used for 

this test case were;

T(x,y,0) = 0.0 (2.49)

T(x, y, t) =  1.0 on side A-D (2.50)

T (x ,y ,t)  = 0.0 on side B-C (2.51)

~  0-0 on sides A-B & D-C (2.52)

Contours of the calculated parameter T  at various times are shown in Figure

2.20. As expected, the front movement is accelerated in the path of preferential 

flow; that is through Zone 2.

Hence, it can be concluded that the compact stencil scheme, unlike the 

standard finite volume scheme, successfully calculates second derivative terms 

across material boundaries.

2.10 CLOSURE

In this chapter the spatial discretization aspect of the work was discussed with 

the chosen scheme being the finite volume vertex-centred dual-cell method. 

Further, an edge-based solution procedure was employed which offers significant 

performance benefits as compared to element-based methods. As a benchmarking 

exercise, the standard derivative routines were utilised to solve a linear case of 

the two-dimensional heat conduction equation, and a close correlation between 

the numerical and analytical solution for this problem was achieved.

Enhancements to the chosen scheme involved the use of a compact stencil 

algorithm for the discretization of diffusive second derivative terms. The 

increased accuracy of the compact scheme over the standard scheme was 

demonstrated by the calculation of second derivatives of a harmonic function on 

structured and unstructured grids. When calculating second derivative terms of a 

harmonic function on unstructured grids, it was shown that the solution obtained
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using the compact stencil scheme provided a marked improvement over standard 

finite volume scheme. Moreover, it was shown that there was little difference 

between the solutions obtained using the compact scheme on structured and 

unstructured grids with an equal boundary node density.

Finally, the numerical solution to simple diffusion problems on two 

different inhomogeneous domains using the chosen scheme was considered. It is 

believed that this is the first documented case of the application of the edge- 

based finite volume scheme on problems over inhomogeneous domains. It is 

shown that the application of the standard scheme results in large spatial 

oscillations emanating from the discontinuous material boundaries within the 

domain. This problem was overcome by the utilisation of the compact stencil, 

and accurate solutions to the test cases were presented. Hence, the compact 

stencil formulation is consistent for inhomogeneous domains, and should be used 

wherever possible for increased accuracy across the material boundary.
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a) 0.001 sec

c) 0.01 sec

e) 0.03 sec

b) 0.005 sec

d) 0.02 sec

f) 0.04 sec

0.9375
0.875
0.8125
0.75
0.6875
0.625
0.5625
0.5
0.4375
0.375
0.3125
0.25
0.1875
0.125
0.0625

g) 0.045 sec h) 0.05 sec

Figure 2.20: Contours of the calculated param eter T  a t t =  0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.045

and 0.05 sec. for Test 2.
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C hapter 3 

A d v a n c e d  P r o g r a m m in g  M e t h o d s  A n d  D ata  

St r u c t u r e s  F o r  C o m p u t a t io n a l  M o d ellin g

3.1 INTRODUCTION

This chapter describes the author’s efforts in producing a new type of computer 

program for the solution of numerical models. This work is based upon an earlier 

study of the use of an object-oriented language, C + + , for the implementation of 

a finite element model [13]. An alternative title for this chapter would be ‘Beyond 

Object-Oriented Finite Elements’ as one has carefully considered all aspects of 

the code, including the programming style, the data structure and the underlying 

mathematics of the numerical scheme. In all of these areas, improvements have 

been made over and above the object-oriented approach reported in earlier work 

by Masters et al. [13], Lewis et al. [10], and Cross et al. [2]. The generation of a 

numerical model must consider the separate issues of the governing equations, the 

numerical representation of those equations, the data structure that describes the 

model, the choice of programming language and finally the implementation and 

code management issues. A discussion regarding the computational speed and 

optimisation issues relating to the main programming languages is presented. 

Then the optimal data structures for the most common numerical schemes are 

proposed, with the data structure for the implemented scheme described in detail. 

These issues are considered as a whole in this chapter, and as a consequence ten 

golden rules for numerical modelling are proposed. The implementation of an 

explicit edge-based scheme using a novel data structure is introduced, and this is 

shown to have over 91% code re-use. Hence, code written with the architecture 

described here is highly flexible and applicable to many different problems.

When the finite element method was developed in the 1960’s computing 

facilities were very different to those available today. Programming languages
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were still in their infancy and the compilers available did not necessarily produce 

fast code. The scientific community was interested in using the computer as a 

tool, using simple programs to obtain the results they required. The programming 

language had to have instructions that were simple to use, suited to the 

programming of relatively short codes and that had an efficient compiler to make 

the most of the limited computer hardware. Given these criteria, there was only 

one programming option available, FORTRAN, and implementation of numerical 

schemes in this language was described in many books and papers. The textbooks 

that came to be regarded as key works, such as Hinton and Owen [7] or Smith 

and Griffiths [18] are still used by many people and the program structures used 

in those example programs forms the underlying style of many finite element 

codes.

Most code developers have taken advantage of new techniques for reducing 

CPU time, including vector and parallel computing and the use of advanced 

matrix vector routines. One example is the very good performance in both speed 

and memory use available through preconditioned iterative matrix solvers [3]. 

However, one area that has seen little change is the underlying structure and 

style of programs. The reluctance to change follows the very good argument that 

“if it ain’t broke, don’t fix it” , and hence a very stable programming environment 

results. However, this argument breaks down with the sheer size of finite element 

codes; current research codes are large, complex pieces of software designed to 

deal with a physically accurate, highly non-linear engineering problems. Large 

software has code maintenance issues and therefore can be difficult to change, 

especially where a team of programmers are involved. For this reason, several 

researchers have turned to more structured programming languages, for example, 

FORTRAN 95 or C. C + +  has also been used where code reuse and protection of 

data is required.

C + +  is a good programming language that forces the user into good 

practice. Code produced this way is very compact, easy to read and the data is 

hidden. There is a high level of flexibility in the code and sections of code can 

easily be re-used in future development. Previous work by Cross et al. [2] and
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Masters et al. [12] reports progress made in this area. It is sufficient to say that 

object-oriented methods have been used to generate numerical code for a wide 

range of application areas including stress analysis ([5],[4]), hypersonic shock 

waves [1], structural dynamics [16], shell structures [15], plasticity [14], 

electromagnetics [IT] and contact problems [6]. However, there are some 

disadvantages of the object-oriented approach, which are covered in more detail 

in the data structures section below.

This chapter sets out to deal with the conflict between development time, 

structured data and CPU time. Can we still get the code re-use of C + +  with the 

computational speed of raw FORTRAN or C operations based on pointers1? Can 

our data structures be as clear and understandable as C, without the hidden data 

of C + +  and the unnecessary complexity of a legacy FORTRAN code?

In the next section a more detailed look is taken at each of the key areas 

of numerical programming: the data structures employed, computational speed 

and the numerical schemes. The author’s own strategy designed to overcome 

these problems is then presented. Finally, conclusions are drawn from the work.

3.2 DATA STRUCTURES

A data structure is the way in which information is stored within the model. A 

good data structure is quick to access when running and has meaningful variable 

names that relate easily to each other. In this section we discuss several data 

structures and the way in which they are used within a numerical model.

One of the problems with numerical modelling is where a code is still in 

use but has been around for a long time. This ‘legacy code’ contains some very 

powerful modelling capability, but modifying it for a new application is a 

daunting project. As an illustrative example, one code that previous researchers 

within the group have worked on has been derived from the PLASCON code

1 For those unfamiliar with C, pointer based operations are where the loop variable is the actual 

location in memory of the data and compilers can turn this into fast arithmetic. FORTRAN 

compiliers with the - O f a s t  flag can achieve the same arithmetic speed in the majority of cases.
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supplied with the first edition of Lewis and Schrefler [9] published in 1987. 

Fragments of this code are even earlier and can be traced back to the late 

seventies. Over the last 15 years, this code has had at least five programmers 

working on it and has grown to over 8000 lines of FORTRAN and a further 3000 

lines of library routines from three external sources. Over that period there have 

been additions to the data structure but no fundamental re-write. For example, 

the code required to form the Jacobian matrix for an iso-parametric finite 

element is one of the oldest sections of this program. The data structure that 

holds the input data for that calculation (the nodal co-ordinates and the element 

connectivity data) is therefore over 25 years old. It would be impossible to modify 

the way in which this data was stored and used without unseen implications in 

other areas of the program. Part of this organically grown data structure is 

shown in Figure 3.1 below.

A programming language that allows structured data goes some way to 

removing some of the issues of code flexibility and clarity. A simple example of 

this is storing the dimensions of a matrix alongside the data within the same data 

structure. In this instance C is used, but an identical structure is possible in 

FORTRAN 95.

struct matrix { int rows; int columns; double *values; }; 
struct matrix a;

This sets up a matrix called a  of size row s by colum ns containing an array of 

v a lu e s .  The size of the data will be set up later in the code. This reduces 

dramatically the number of individual items of data and is now common practice 

for numerical programmers using C or FORTRAN 95. Another way of looking at 

this concept is that the type of data called m a t r ix  contains three other types of 

data and those types of data could also contain other data in a nested fashion.
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COMMON
COMMON

/INPOUT/
/SPACE1/

COMMON /SPACE2/
1
COMMON /CONTRl/

1
2
3
COMMON 
COMMON 
COMMON

2 N15,
3
5 N36,
COMMON

/PRINT/

UN, I OUT, IOUTl, IOUT2, IOUT3, IOUT4
NB, NSK, BUF, KSIZE, KSIZE1,KSIZE2,NRHS, 
ND, NR, NW, NSFR, NGNG, NARRAY,NSMITP,
NSMITT,NINSCH,NTPLOT,NNTV,IPRINT 
NRAD, NPSR, NTET, NPST,RlW, IELEM, INODE,
IELMAT,NROW, NLAYER, NCOL, ISTOP, ISTORE 
ISTR, ISTRES,IPSTR, ICS1, NSTEP, INDP,
MAT, IVELOC,JIG, IPP, LPL, ISTRl, IN,
IDISP, IBOUND,INIT, ILL, NS1, ICALC, ISYMM,
NCOUNT,ISTEP, IBO, ITER, NBAND, NEL, IGJG, 
IWRIT,IWRITT, INTAP, IOUTAP 

/OLDPRSS/ OLDOPR(NUEL,8),OLDWPR(NUEL,8),OLDGPR(NUEL,8) 
/DIM/ Nl, N2, N3, N4, N5, N6, N7, N8, N9, N10, Nil,

N16, N17, N18, N19, N20, N21, N22, N23, N24, N25,
N26, N27, N28, N29, N30, N31, N32, N33, N34, N35,

N37, N38, N39, N40, N41, N42
/VAR/ TIMA,TIN, TFRAC, PLATK,DENS, ELHFLW,ELFLOW

COMMON /PVTQX/ TKRW,TKRO,FVFW,FVFO,SPCG,OFVF(NUEL,8)
1 ,SFO,FVFOO(NUEL,8),TKW,TKROG,VFWO(NUEL,8),SFVFW,OFVFW(NUEL,8) 
COMMON /COMLTY/ VCOG,COMPO,VCOO,VCOW,DVCOW
COMMON /DINIT/ PREOI(NUEL) ,PREWI(NUEL) ,PREGI(NUEL),SOM(NUEL) ,
1 FVFOI,RSOI,PCWOI,PCGOI,PCONV,TKRGI,TKROI,TKROGI,TKROWI,
2 TKRWI,FVFWI,TKROCW,PCWIN(NUNO),PCGIN(NUNO),FACTW,FACTO,FACTG 
COMMON /CMBE/ CPOM(8,8),CODO(8,8),COSO(8,24),TOLO(8,8)
1 ,GMBE(8,8),OLDOP(NUNO) ,TOM(8,8)
COMMON /PHASE/ COSC(8,24),SATRSW,SWOLD(NUEL,8),SWI,SGI,SWCO
COMMON /ZON / JMODEL,IPVT,IZONE(NUEL),INDPT(NUNO)
COMMON /GAS/ SATRGO(NUEL,8),PCGOO(NUEL,8),
1 S PCGAS,PCGO,SATRG,FVFGO(NUEL,8) ,TKRG,
2 OFVFG(NUEL,8) ,SFVFS,PGAS, FVFG,RSOO(NUEL,8) ,SRSO,RSN(NUEL,8) ,
3 TOWCUT(12 0,30),PGOR(120,30)
COMMON /COGAS/ GDE(24,8),GWE(8,8),GOE(8,8),GG1(8,8),GG2(8,8),
1 GG3(8,8),GG4(8,8),GG5(8,24),GG6(8,8),GG0(8,8)
DIMENSION GASHTD(MDFl,MNTV), NNT(MNTV)
DIMENSION NFIX(MP), CORD(MP,NDIM),NOP(ME,8), IMAT(ME),
1 NBC(MP),R1(MRHS), BIT4Q(MP),STMOV(JN),NSTEPT(NSTPP)
DIMENSION GASHT(IGS,MDFl,MP),IONARY(MP),NODEL(NSIZE2)
DIMENSION A(MTOT), BB(MTOTB)
DIMENSION NLT(NLO),TFACEL(NSTEP2), TFAC(NSTEP1,NLOl) 
DIMENSION PLK(NSIZEl,NSIZEl),COC(NSIZEl,NSIZE2),

3 LH(NSIZE2,NSIZE2), FLG(NSIZE2,NSIZE2), QLAD(NSIZE2),
5 SLOAD(NSIZEl), STLOAD(NSIZEl), QHLOD(NSIZE2),
8 COM(NSIZE2,NSIZEl), COTU(NSIZEl,NSIZE2), TLH(NSIZE2,NSIZE2),
B TLL(NSIZE2,NSIZE2), TLG(NSIZE2,NSIZE2), TSL(NSIZE2,NSIZE2)

Figure 3.1: FORTRAN 77 legacy data structure example.
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A global data structure for a finite element model using this approach could be 

structured in the following way:

Mesh
Contains

Elements
Contains

Gauss points 
Nodes

Contains
Co-ordintates
Data

In order to understand the issues of an object-oriented approach, the first stage is 

to clarify how the data structure described above could be extended to a set of 

objects. The fundamental difference between a structured programming language 

and an object-oriented one is the ability to attach functions to a structure in the 

same way as data. This significantly improves the flexibility of the code. For 

example, if our C m atrix data structure given above was extended to C + +  and a 

function called d e te r m in a n t  () was attached to that data structure then the 

simple line

D= a .determinant();

would return the determinant of a. However, this approach becomes very 

powerful if more than one data structure has the same functions attached. If we 

now define a banded m atrix structure

struct bandedMatrix { ... ; double determinant () ; }; 

and define a as this type, 

struct bandedMatrix a;

then d = a . d e te r m in a n t  () ; still works and the code requires no changes.
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The overall concept behind object-oriented programming is that objects 

ask each other for data and do not know (and do not need to know) how that 

data is stored or manipulated. An example would be making a telephone call. By 

dialling the number you ask the exchange to connect you to another telephone. 

You do not want to know about cables and data transmission, but are interested 

in the results of the application of that technology. The process is hidden behind 

a wall and communication through the wall is carefully controlled.

We now return to numerical computation. The two fundamental stages of 

a finite element operation are: 1.) generation of a global matrix, and 2.) solution 

of a global matrix. This is where there is a conceptual problem with the mesh 

data structure above. If we wish to have distinct, separate data structures for the 

mesh and the matrix then the mesh object asks each element object for a local 

stiffness matrix Ke, which is then passed over the wall to the matrix object to put 

into the correct locations in the global matrix. In theory, a fully object based 

system has a range of mesh objects for different physical problems, for example, 

stress analysis, groundwater flow, heat transfer, etc. These mesh objects 

communicate with a range of matrix objects, which have different compact 

storage methods such as banded, skyline, or sparse. To keep the strict data 

structure then some very disciplined programming is required. The same 

discipline is also required for the solution stage, the implementation of a matrix 

inverse routine that works with various matrix formats is fairly time consuming. 

Finally, the result for that step is handed, back over the wall to the mesh object 

and distributed back to the nodes.

A rational evaluation of this whole process shows that the disciplined finite 

element programmer, who is writing a highly structured and flexible finite 

element system in an object-oriented style, spends most of the time rearranging 

data from one form to another (element to mesh to matrix). After lengthy 

discussions with other software developers, it is the authors’ conclusion that the 

programmer is never rigorous enough in testing to trust the system completely. 

Therefore, when a change is made to the model (perhaps an extra term in the 

system equation) the program still works, but because the point where the
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change is made (a function associated with an element) is so far removed from 

the point at which it makes a difference (during the inversion of the global 

matrix) then debugging is very difficult. Consequently, the issues of the data 

structure are such that organising the structure takes up the developers thinking 

and time, rather than dealing with issues related directly to the underlying 

numerical model.

One will discuss later how the choice of numerical scheme influences the 

complexity of the data structure. However, for all numerical models in all 

languages, a strong recommendation is to split pre-processing from the main 

solver routines into a separate program. The pre-processor takes mesh data 

together with initial and boundary conditions and forms all of the help arrays 

needed for solution. In the finite element context, for example, these would 

include the gauss point co-ordinates, shape function derivatives, and other data 

required for each element. This data should be output to files, thus allowing 

external checking before being read into the main solver program.

3.3 COMPUTATIONAL SPEED

The issue of computational speed for numerical models dominates discussion at 

all levels. It is generally accepted that there will never be enough computing 

power and that models continue to grow in size. However, the reality is that a 

modest desktop PC has far higher performance than yesterday’s mainframe 

machines and a realistic solution of many problems can be achieved in a matter 

of hours if not minutes. Much has been written about loop unrolling, use of 

temporary variables, reduction of floating-point calculations and removing i f  

statements from loops, and one does not intend to repeat that here. Rather, we 

consider two important questions: 1.) Which programming language gives the 

fastest compiled code? 2.) On balance, how much effort should go into 

optimisation of code for speedup?
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3.3.1 Choice of Programming Language and the Resulting Computational Speed 

If we limit our discussion to FORTRAN, C and C + +  then each of these 

languages can be used to produce fast code. FORTRAN compilers are excellent, 

the data structures are simple and fast code often results from using appropriate 

compiler options. Manipulation of memory is left to the compiler and in most 

cases the fastest code results. In C it is possible to carry out pointer-based 

arithmetic and it is guaranteed that this is the fastest code (the same as 

FORTRAN). C programmers tend to use a larger number of short functions than 

FORTRAN programmers so this adds an overhead, but if the number of floating 

point operations is ‘large’ compared to the number of function calls then this is 

negligible.

One observation of code speed comparison is that a problem needs to be 

‘large’ compared to both the speed of the processor and the size of cache for the 

comparison to be valid. Under these conditions, perceived differences between 

languages rapidly disappear.

In C ++ , one of the most powerful functions is dynamic data using 

templates, where the type of data is not specified. For example, it is perfectly 

possible to write a template for a matrix object that would carry out operations 

on float, double and complex data without requiring code changes and the code is 

then very compact and flexible. However, the type of data is determined at run 

time (not compile time) and the computational overhead is huge. If this dynamic 

type allocation is removed then it can be proved [11] that operations are much 

faster and equivalent to FORTRAN.

Therefore, recognising that optimisation for small problems is not really 

necessary, the choice of programming language does not significantly affect 

runtime. If the problem to be solved is sufficiently large and if dynamic type 

allocation is avoided, then there is no real performance difference between these 

three languages.
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3.3.2 Optimisation of Code for Speedup

Before optimisation for speed is attempted, code profiling is normally carried out. 

For most numerical schemes, it is found that the majority of computational effort 

is included in the matrix operations. Matrix/vector libraries such as BLAS are 

available for most programming languages and optimised compiled versions are 

often included with Unix systems. Provided that matrix operations are optimised, 

the developer’s efforts in speeding up the rest of the code will only produce small 

improvements in speed and should not be given a high priority.

The computational resources available grow daily. In a paper published in 

1997, Masters et al. [12] reported on efforts to build the first generation of 

sustained Teraflop computer. The current Top 500 [8] computer has a speed of 36 

Teraflops and 58 machines on this list have over a Teraflop capability. This 

shows that the processing capability at the top end has doubled five times in the 

last six years. On this basis there is a valid argument not to carry out any speed 

optimisation at all and to simply replace hardware every year to halve the 

computation time.

In conclusion, provided that matrix operations are optimised, the choice of 

data structure and numerical scheme has more influence on runtime than the 

choice of programming language and the developer’s efforts in optimisation.

3.4 NUMERICAL SCHEMES

Most numerical programmers have a particular physical problem to solve before 

they start writing a code. In the planning stage, it is best to consider all schemes 

available and to use the simplest system that is capable of solving the target 

problem. Table 3.1 below gives the most common numerical schemes and 

suggests the most efficient way of dealing with the data in each case. Knowledge 

of the data structure required should inform the choice of programming language 

used to implement the scheme.
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S ch em e A p p ro x im a tio n B e s t  D a ta  S truc ture

Finite Element
Mesh of elements and 

nodes

Multi-level structured 

data

Finite Difference Grid of difference points Matrix

Meshless (fixed nodes) Unconnected nodes
Tree structure and node 

list

Meshless (moving nodes)
Unconnected points Dynamically changing

interacting locally Tree structure

Finite Volume (edge 

based)
Edges List and Matrix

Table 3.1: Data structures required for various numerical methods.

Obviously, not all schemes are applicable to all problems and there are many 

variations on the above. The appropriateness of a scheme should always be 

considered before a final decision is made.

Ten golden rules of developing a numerical code follow from this 

discussion, and are listed in Figure 3.2.
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1. The data structure used in the program should match the data 

structure of the numerical scheme employed.

2. The management of data and data structures should not 

dominate the development of a program.

3. Code should be re-used wherever possible.

4. Pre-processing of data should be separated from the main solver 

routines, preferably into separate programs that communicate via 

data files.

5. Mesh generation and visualisation should be taken care of by 

readily available software.

6. Good comments and in-code documentation is essential.

7. Make good use of library routines, especially for matrix/vector 

operations and m atrix solution.

8. A good programmer can write, on average, 20 lines of validated, 

documented code in a day.

9. The time take to validate code is proportional to the square of 

the number of lines to be checked.

10. Reducing development time is more important than reducing 

CPU time.

Figure 3.2: Ten golden rules for the successful development of a numerical code.
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3.5 A STRATEGY FOR CODE DEVELOPMENT

It is beneficial to establish exactly what numerical programming is attempting to 

do. The underlying motivation for modelling is to interpret/understand some 

form of physical problem. The first approximation is that the physics is 

interpreted as a set of equations, normally in differential form. This is then 

approximated again into a pointwise (discretised) approximation of the integral 

over the domain via the application of some local trial solutions (e.g. shape 

functions). The primary variables follow from the minimisation of that integral.

The first stage in our proposal for a numerical scheme is to, remove part of 

this complication. Consider a set of parameters P  in a domain Q that are 

approximated by a set of discrete point values P ,  such that,

P (x,y) «  P (x,y) , Vx,y(Et t  (3.1)

The pointwise values are stored in a matrix P such that,

P(x,y)  C P  , V x , y e Q  (3.2)

Observing that for a set of discrete points i, the point co-ordinates (xi} y*) are of 

an equivalent structure (length) to the primary variables. Hence, they can also be 

stored within the matrix P .

^ y t C P  (3.3)

If ip is one of our variables, then two further variables can be formed, namely,

I

Therefore, all node-based variables, derivatives of variables and non-linear

relationships can be stored within P .
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In order to implement this strategy, all that is required is a simple data 

structure (a matrix) and a set of numerical processes to find the dependent 

variables (0 and the derivatives. With the ability to find all of these

relationships, it should be possible to solve any differential equation by 

performing operations on variables within P to form new variables to add to P . 

A similar arrangement is constructed for edge-based data storage. Hence, all data 

within the solver is stored inside two large matrices of length NNODES and 

NEDGES respectively; where NNODES is the number of nodes in the domain, and 

NEDGES is the number of edges in the domain.

The second stage of our strategy is the numerical scheme chosen to form 

the derivatives. The elegant and robust vertex-centred edge-based finite volume 

approximation, discussed at length in chapter 2, is implemented. This is a 

relatively short procedure to implement and works with two simple data 

structures; a list of edges and a discretised field variable. The data associated 

with an edge is the node numbers for the two ends and the edge coefficient in 

each co-ordinate direction.

The third stage of the strategy is the use of an explicit formulation. All 

operations can then be undertaken quickly on a local level. Although the number 

of time steps in an analysis may be larger than an implicit method, memory use 

is orders of magnitude smaller and the code will make good use of cache and 

vector/parallel hardware if available.

From this conceptually simple approach, implementation is easy and the 

developer can concentrate on the differential equation that describes the 

underlying continuous function, rather than implementation issues.

3.6 IMPLEMENTATION OF PROGRAMMING STRATEGY

In this section, we describe the implementation of a computer program that uses 

the advanced programming methods and data structures proposed so far in this 

chapter to solve problems concerning the flow of fluids through a porous medium. 

If the resulting program is clear, reliable and flexible with lots of code reuse, then
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it can be concluded that the method is a success. This section describes the 

implementation choices and describes the final structure of the code.

The first decision required is the choice of a programming language. At the 

start of the project a number of library routines were available. C + +  was 

considered as there were matrix operation routines, iterative solvers and various 

checking and I/O  utilities in existence. However, the simple matrix structure of 

the data does not require the complexity of C + +  and with the overall philosophy 

of simplicity this is not the best option. In FORTRAN, there were available 

routines for matrix operations, iterative solvers, curve lookup routines and 

interaction with TecPlot [19]. TecPlot is a visualisation package, which was used 

in this project to generate meshes and to interpret results. The decision was 

taken to use a FORTRAN 95 compiler, however, most coding used a more 

traditional FORTRAN 77 style for clarity of the code. Data management is 

avoided by the use of a header file. Each subroutine has an in c lu d e  

" h e a d e r . f i "  statement where all data is managed. This is actually quite a 

simple structure due to the fact that most data is contained within the single 

matrix P. By implication, this means that data is stored in a common format, 

but by careful use of parameter statements to dimension the common block, this 

is not a real issue. The structure of the code is as follows:

1. The TecPlot program is used interactively to generate a mesh file.

2. A small data file is written to describe initial and boundary conditions 

attached to the mesh

3. A pre-processor program reads the files, checks them, breaks the mesh 

into edges and generates a simple file format containing only the data 

necessary to complete a solution.

4. A second small data file is written that contains the solver parameters 

such as time step length, convergence criteria, etc.

5. The solver reads in the pre-processor file and generates output.

6. TecPlot is used for visualisation.
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The pre-processor has three main components, which are stored in separate 

FORTRAN files for clarity. A header file (127 lines) as discussed earlier is used 

to set out all of the data structures required. The utilities (888 lines) are used for 

file I/O  and the checking of input data. The main routine (1678 lines) generates 

the data required for solution, in particular the edge coefficients, the boundary 

coefficients, the control volume sizes and the material property data attached to 

each edge. The advantage of this pre-processor is that it can operate on any 

number of nodes per element and is completely independent of the governing 

equations. Therefore, the 2693 lines of this code should not require modification 

at all in the future.

The main program has 5309 lines in total (excluding the BLAS library, 

but including comment lines) and is split up as follows:

• A header file (300 lines) used in the same way as described above.

• A main program (745 lines). This contains a number of routines that 

implement the numerical algorithm, including the main time step loop. All 

other routines are called from here.

• Utilities (2278 lines) for file I/O , initialisation of data and the 

implementation of a restart function. File interaction is a laborious process 

in any language and requires lots of lines. To ensure clarity a large number 

of comments are also required, hence this section is the longest in the 

program.

• Boundary condition routines (119 lines). A self-contained section, so hence 

a self-contained file.

• Numerical error checking (360 lines). Mass and energy balance calculations 

can be carried out on the solution to check the numerical accuracy.

• Derivative routines (404 lines). Due to the large amount of effort in the 

pre-processing and data structures, the most important routines, where 

most of the computational effort takes place, are actually quite short.

• Curve handling routines (934 lines) together with a header file (28 lines). 

These self-contained curve routines contain their own I/O  and error
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checking. They are mainly used to generate non-linear variables 

within the code. To enable these routines to be integrated with the main 

code, a set of wrapper routines (141 lines) are used to convert data from 

the program structure to the utilities structure. No data manipulation is 

carried out in the wrapper; the objective is to achieve clear code at the 

expense of one additional function call.

This is quite a large implementation and at first glance does not appear to be 

well written. However, to implement a completely different governing equation 

would only require a rewrite to the main routine. There may be some minor 

changes in the output routines but the only significant change is to the 

algorithm, which is concentrated in one place. Therefore out of 8002 lines of code, 

only 745 need to be considered, or alternatively, 91% of the code is reusable 

without modification.

3.7 CLOSURE

This chapter has shown that the implementation of a numerical method requires 

thought and should not be seen as an inconsequential part of the process of 

research into numerical modelling techniques. If chosen with care, and some 

ground rules are carefully considered, the implementation will aid rather than 

hinder the development.

A discussion of data structures showed that data should be as simple as 

possible and only as complex as is necessary. Getting the data right is much more 

important than an over-emphasis on the computational speed. However, for the 

chosen implementation and because the data structure is simple, the 

computationally expensive routines are a small part of the code and have been 

easy to optimise. Also, the author concludes that an edge-based scheme brings 

together good computational simplicity with good numerical results. A strategy of 

making no distinction between variables and treating each in the same way leads 

to a conceptually elegant matrix structure and a straightforward implementation.
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As a result of this strategy, 91% of the code can be re-used. Moreover, the code 

can be easily amended to handle additional terms in the governing equations, or 

to solve a new numerical problem with little effort. Hence, the proposed 

methodology has resulted in a highly flexible numerical tool.

It is estimated that code development based on the innovative techniques 

described here will require 30% less effort than the traditional methods in general 

use. When the method is applied more generally to other engineering problems, 

this novel program architecture will significantly reduce the time consuming 

issues that arise from code development and code alteration which emerge when 

using large finite element packages. In conclusion, therefore, if the ten golden 

rules are accepted and the methodology implemented, this approach will 

significantly accelerate the development of numerical methods in all areas of 

engineering.
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C hapter 4

P h a se  T r a n s f o r m a t io n

4.1 INTRODUCTION

The goal of this work is to develop a vertex-centred edge-based finite volume 

solver for problems involving fluid flow in porous media. The governing equations 

for such systems are diffusive in nature [1]. However, these diffusion-based 

equations contain highly non-linear terms. As this was the first attem pt at 

solving a realistic engineering problem governed by a highly non-linear equation 

system using the proposed scheme, it was deemed necessary to compare the 

accuracy of the numerical solution against a verified and accepted result. Hence, 

the search for a one-dimensional problem involving fluid flow in porous media 

with an analytic solution was conducted. Finding such a test case proved 

difficult, and an alternate, yet mathematically similar problem was considered. 

The problem considered involves the phase transformation of a one-component 

material on a fixed grid using the enthalpy method. This example has been used 

for such comparisons in several papers ([14],[17],[18]), and contains all the 

relevant components required from the one-dimensional initial test case.

Phase transformations take place in familiar ways such as solidification, 

melting, vaporisation and condensation. Furthermore, the processes considered 

here have been restricted to melting and solidification, involving only the solid 

and liquid phases of materials. The most familiar phase change process is 

undoubtedly the melting of ice and the solidification of water. Other applications 

for the modelling of phase change includes glass forming, the freezing and freeze- 

drying of food products, semiconductor crystal growth, and the analysis of fire 

resisting containers [11]. In addition, the modelling of phase change has been used 

for geotechnical applications including soil freezing for excavations and 

construction over permafrost ([5],[6]). However, the single most important
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application of phase change modelling involves metal processing. These 

applications include the solidification of castings and ingots, welding and electro 

slag melting.

Melting and solidification are phase transformation processes which are 

accompanied by either absorption or release of thermal energy. A moving 

boundary exists that separates the two phases of different thermo-physical 

properties and at which thermal energy is adsorbed or liberated. When 

considering the solidification of binary and multi-component alloys, the physical 

phenomena become more complicated due to the phase transformations taking 

place over a range of temperatures corresponding to each component of the alloy. 

The lowest temperature corresponding to the fully liquid phase is called the 

‘liquidus’ and the highest temperature corresponding to the solid phase is called 

the ‘solidus’. The material between the solidus and the liquidus temperatures is 

partly solid and partly liquid and resembles a porous medium; therefore it is 

referred to as the mushy zone.

A complete understanding of the phase change phenomenon involves the 

analysis of the various processes that accompany it. From a macroscopic point of 

view, the most important of these processes is heat transfer. This process is 

complicated by the release or absorption of the latent heat of fusion at the 

liquid/solid interface. Several methods have been used by researchers to take 

account of the latent heat, which are divided into fixed and moving mesh 

methods. These methods are referred to as the 1-domain and the 2-domain 

methods respectively. As the names suggest, 1-domain methods involve the 

solutions of a continuous system with an implicit representation of phase change, 

while in the 2-domain or ‘front tracking’ methods, the solid and the liquid regions 

are treated separately and the phase change interface is explicitly determined as a 

moving boundary. A comprehensive treatment of the subject of moving boundary 

problems in general appears in a book by John Crank [2], while a good account of 

the early effort in the numerical modelling of phase change is given by Samonds 

[19]. The finite difference scheme has been utilised extensively in solving 

solidification problems by many researchers, for example Henzel and Kevarian
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([8],[9],[10]), Weatherwax and Riegger [23] and Hansen [7]. While the first use of 

the finite element method was by Soliman and Fakhroo [20] in the analysis of 

ingot casting. A useful review of the methods used in a finite element context can 

be found in a paper by Dalhuijsen and Segal [4].

The classical solidification problem involves considering the conservation 

of energy in the domain Q by dividing it into two distinct domains and Qs, 

where f l l +  Qs = Q . The energy conservation is written as,

in (4-1)

in n s (4.2)

and

d Tp.c —— — V • & V T
Hl 1 dt 1

d T
ftC* ^ r =  *v r

where, T  is the temperature, c is the specific heat, p is the density and k the 

thermal conductivity of the material; and the subscripts I and s denote liquid and 

solid phase respectively. In addition to the initial and boundary conditions, the 

complete description of the problem involves the interface conditions on the 

phase change boundary r  , which are,

T = Tr, /

\ d T ] - K \ d T1 , d x ,
s

I , d x ,
= PL <1$

dt
on T

(4.3)

where, 'd represents the position of the interface, ddjdt the interface velocity, L 

the latent heat, and T  the phase change temperature. The main problem in 

solving the classical problem lies in tracking the interface boundary position d .

4.2 MODELLING PHASE TRANSFORMATION

As mentioned earlier, front tracking methods have been used to solve the classical 

problem by the use of moving meshes, or the transformation of coordinates
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([3],[16],[24]), to explicitly satisfy the interface conditions. These methods can be 

used to solve isothermal phase change problems with good accuracy but become 

too complicated, even impossible, when faced with complex interface shapes 

which vary non-monotonically with time. Furthermore, front tracking methods 

cannot be readily used in the case of freezing over a range of temperatures [12]. 

Due to the limitations of the 2-domain methods, the subsequent discussions will 

be limited to the 1-domain methods. The 1-domain or fixed grid methods offer a 

more general solution as they account for the phase change conditions implicitly 

without attempting to a priori establish the position of the front. These methods 

are based on a weak formulation of the classical problem, which is commonly 

referred to as the enthalpy formulation. A single energy conservation equation is 

written for the whole domain as,

f) H
—— =  V • &V T  inQ  (4.4)
dt

where H  is the enthalpy function, and is fully defined in Appendix B.

4.3 EFFECTIVE HEAT CAPACITY

Among the fixed mesh methods, one of the most commonly used methods has 

been the effective heat capacity method. This method was derived from writing 

equation (4.4) as;

— —  =  V -feV r in fi (4.5)
dT dt '

Comparing with the standard heat conduction equations such as equations (4.1) 

and (4.2), one can write,

dH (ac „ = ----  (4.6)
eff d T
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where ceff is the effective heat capacity, which can be evaluated directly from 

equations (B.2) in Appendix B, as shown in reference [4] as,

cc„ =  p°, (T  <  T.)

iT^ T ^ T,) (4-7)
l s

°,tf =  p°l iT  > Tl)

The typical variation of the effective heat capacity and enthalpy with

temperature is illustrated in Figure 4.1. Huang and Usmani [12] state that if this 

directly evaluated specific heat is used, it will be necessary to maintain an 

interval of temperatures for the evolution of latent heat; otherwise the effective 

heat capacity will become infinite. Therefore, this method cannot accurately 

model an iso-thermal change of phase due to the requirement of a temperature 

range. Due to the step like behaviour of ceff around the phase change interval, 

numerical oscillations may occur, making the achievement of a convergent

solution difficult [15].

H( T )

H (T )

T,
T e m p e r a t u r e

Figure 4.1: Variation of the effective heat capacity and enthalpy with temperature.
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4.4 ENTHALPY METHOD

In order to overcome the difficulties encountered in using a directly evaluated 

effective capacity, the use of an averaging technique is advocated. These 

techniques are generally referred to as the enthalpy method. The enthalpy method 

enables the heat capacity to be defined as a smooth function of temperature [15]. 

Morgan et al. [14] and Lemmon [13] suggest an approximation which is reported 

to work satisfactorily,

dH
dT d T )

(4.8)

This will be averaging technique implemented into the scheme. However, several 

researchers have used different averaging techniques with varying rates of 

success. Some of the more commonly encountered techniques are listed in 

Appendix C. In using the above techniques in a finite element analysis it is 

common practice to interpolate H  from the nodal values using the same basis 

function as for T  thus obtaining a smoothing effect. The appearance of space 

derivatives in the above equations ensures the inclusion of a phase change.

The enthalpy method, although reasonably accurate and simple to 

implement in any heat transfer code, suffers from a number of deficiencies some 

of which have been discussed in ([21],[22]). The main drawbacks can be listed as 

follows,

• Isothermal phase changes cannot be modelled correctly due to the 

necessity of a temperature range for the evolution of latent heat.

• The method requires small spatial and temporal step sizes; otherwise 

convergence becomes difficult. Hence this does not allow for quick 

computer runs.
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• Due to the requirements of small mesh size and timesteps an analysis can 

become prohibitively expensive if a difficult problem is encountered, such 

as that with a narrow heating range and large latent heat.

Another method used in the calculation of phase change problems is the heat 

source method first suggested in the finite element context by Rolph and Bathe 

[17] and then by Roose and Storrer [18]. However, this method lacks the 

mathematical theory that supports the enthalpy method so well, and unlike the 

enthalpy method is difficult to implement. In spite of these drawbacks it offers an 

attractive alternative to the enthalpy method, as it does not suffer from any of 

the deficiencies of the enthalpy method listed above. The heat source method has 

not been implemented in this work. For details regarding the implementation of 

the scheme the reader should refer to Rolph and Bathe [17].

4.5 BENCHMARK EXAMPLES

A one-dimensional benchmark example of solidification as shown in Figure 4.2 is 

solved by the enthalpy method discussed above and compared with the analytic 

solution. The material properties, dimensions, boundary and initial conditions are 

as shown in the same figure. T0 and T} refer to the initial and freezing 

temperatures respectively. No particular units are necessary. This example has 

been used for such comparisons in several papers ([14],[17],[18]). The temperature 

vs. time curve at a chosen point {x — 1.0 here) in the domain is used for the 

comparisons. Dalhuijsen and Segal [4] claim that this method is more reliable 

than the normally used interface position vs. time curves. The same example with 

reversed temperatures as shown in Figure 4.3 will be used to solve a melting 

example.
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L = 70.26
T  =  -45.0 T0 = 0.0 T = -0.15 pc = 1.0

k = 1.08
1

x =  1.0 x = 4.0
Figure 4.2: Solidification example.

L = 70.26
T = 45.0 T0 = 0.0 • Tf = 0.15 pc =  1.0

k = 1.08
1

x =  1.0 x == 4.0
Figure 4.3: Melting example.

The analytical solutions for 1-D solidification and melting were taken from [12] 

and were implemented into the solver to generate temperature time curves at 

specified points in the domain, and are included in Appendix D and E 

respectively.

4.6 SOLUTION PROCEDURE

The expansion of the heat conduction equations (4.5) on a one-dimensional 

domain Q gives;

dH d T  
dT dt

d_
dx

d T )
(4.9)

The spatial derivative terms in equation (4.9) are discretised by application of 

Green’s theorem, and by the assumption that the spatial derivative is linear over 

the control volume Q . Integration over the control volume gives;

M d T  dn =  r ± f k dT)

n n
I

d Q (4 .10)
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The application of the Euler backward difference scheme, and the edge-based 

discretisation procedures discussed in chapter 2 gives for all nodes m  in the 

domain;

dH
dT

r p n + 1   r p n  o

im----- =2-. Q =  —
A t  m dx

d T n)
dx  ,

a (4.11)

where T™ =  temperature at node m  at time n, and T™+1 =  temperature at node 

m  at time n+1. The term kmn is the value of k applied to edgemn, as this 

problem an isotropic, homogeneous domain, k = 1.08 everywhere. The enthalpy H  

is obtained directly from the enthalpy curves (see Figure 4.6 and Figure 4.12) 

and is evaluated using a linear interpolation of the value at T = T n. The 

enthalpy term dHjdT  is calculated using the approximation reported by Morgan

et al. [14] and Lemmon [13] (see equation (4.8)), but reduced to a one­

dimensional case, that is;

dH
dT

/
(dH) 2' 2

\dH
K d x , , dx ,

\dT]
2

\dT)
\ , d x , , d x ,

(4.12)

where in this case T = T£,  and Hm = /(7JJJ). By introducing the terms $  and 

H defined as;

3> =

dH
dH dx m  ^

dT dTnm
5 1—'m

dx m

d_
dx

d T : \
dx ,

a (4.13)

Equation (4.11) simplifies to;
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r n n + 1 r p n

$  - 2— — 2-.Q = S  (4.14)
A t

Re-arranging equation (4.14), gives the linear update for the primary variable T  

as:

r ;+1= # 4 i +J’;  (4.i5)$ nm m

Due to the highly non-linear nature of the problem a more efficient non-linear 

explicit primary update algorithm was successfully introduced. The primary 

variable update is performed in the following manner. Defining T*'k as a value of 

T  for timestep n, iteration k and node m, we initiate each timestep with 

T*+1,1 =  T™ for all nodes. Then, a variable T  is proposed;

Tm = / ? C +1'* + ( l - /3 ) T "  (4.16)

where {/? G R : (3 G [0,1]}. Derivatives and non-linear variables that are functions 

of T  in equation (4.15) are discretized using values of T , to form the left hand 

side of the equation. Hence, equation (4.15) becomes,

T"+1 = 5 2 ^ i  +  T” (4.17)
m 77i

where,
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and Hm — f ( T ^ j .  If the system has converged, then the following relationship 

holds true.

in + l , f c + l  ^ in + l , f c < £ (4.19)

Where {e G M : s «  1} is a user defined convergence criterion. Once convergence 

is achieved the cycle begins for the next time step with T ” = T^+1'k+1. However, if 

equation (4.19) is not satisfied, then the non-linear loop is repeated until a 

satisfactory outcome is achieved, or the non-linear counter exceeds a specified 

value.

A flowchart of the solution procedure is given in Figure 4.5, where the 

symbols correspond to those used in equations (4.9) to (4.19). If we define the 

primary variable of the problem as T  £ {T^,Tm}, then let the set of secondary 

variables calculated or derived from the primary set be § (T ) , where;

=  . (4.20)

Hence in Figure 4.5, the term CALCULATE S(T)  implies the calculation of the 

set of secondary variables using the primary variable T. The terms Hm and H m 

are values from the enthalpy curve specific to each problem (see Figure 4.6 and 

Figure 4.12), where Hm = f ( T ”) and H m = f { T m)\ and, Hm and H m lie on the 

same curve. These terms are calculated through linear interpolation of the 

tabulated values of the functions.

4.7 PHASE TRANSFORMATION RESULTS -  1-D

The mesh used in both the 1-D solidification and melting examples considered in 

this chapter is a one-dimensional grid with equally spaced nodes. The necessary 

input data required to generate the mesh and run the problem are shown in 

Table 4.1.
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No. of nodes 1001

No. of edges 1000

No. time steps 400000

A t 0.00001

A x 0.004

k 1.08

(3 0.667

£ 0.000001

Table 4.1: Input data for the 1-D solidification and melting problems.

4-7.1 Solidification -  1-D

The solidification problem was solved using the vertex-centred edge-based finite 

volume scheme developed here. The initial and boundary conditions applied to 

the domain are shown in Figure 4.4, and the enthalpy curve used is shown in 

Figure 4.6 and tabulated in Table 4.2.

T = -45.0 T = 0.0 d T
dx

d T
dx

Figure 4.4: Initial and boundary condition applied for the solidification problem.
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PREPROCESSOR

CALCULATE

fm = p T ^ k + ( i -p)r„
SET INITIAL 
CONDITIONS

START TIHESTEP CURVES
Hm =  f (Tm)

APPLY
B C 'S

dT’CALCULATE k
CALCULATE

CALCULATE— i k d T " 
. d x  \  ' CALCULATE

'd x B C 'S

CURVES
Hm = j(t: CALCULATE
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N O N - L I N E A R
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_
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Figure 4.5: Program flow chart for the 1-D phase transformation problem.
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200

100

-50 -25 100
Temperature (°C)

Figure 4.6: The enthalpy curve used for the solidification test case.

T e m p . (°C) H (T )

-50 1.0

-1.15 49.85

-0.15 121.11

5.0 126.26

100 221.26

Table 4.2: The tabulated enthalpy curve used for the solidification test case.

As can be seen from Figure 4.7, the solution for the calculated temperature using 

the enthalpy method, obtained using the finite volume scheme closely matches 

the analytic solution for the solidification problem at the point x =  1 in the 

domain over time. The plot in Figure 4.8 shows a comparison between the 

calculated finite volume solution and the solution obtained for the same problem 

by Huang and Usmani [12] using the finite element method on a mesh with 20-9 

noded elements. Again, there is a very good comparison between the results, with 

the finite volume solution being a smoother plot than the finite element solution.
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This is probably due to the greater mesh density used in the simulation, thus the 

zone of transition between the liquid and solid material is captured without loss 

of accuracy. Also, Figure 4.9 shows that the finite volume solution is closer to the 

analytic solution than Huang and Usmani finite element solution for the same 

problem.

Let the calculated solution at the point x — 1.0 in the domain at time t 

seconds using the finite volume scheme and the Huang and Usmani finite element 

solution [12] be defined as FV and FE respectively. We define the analytic 

solution for the problem at the same point and time as AS. An absolute error 

term, dT , is introduced, which is defined as the modulus of the difference between 

either the calculated finite volume solution or the finite element solution, and the 

analytic solution at that particular point in time, that is;

dT = |(-) — AS| (4.21)

where (•) =  FV or FE. This error term will determine the extent in which the 

solutions differ from the analytic, and hence the more accurate solution 

established. A plot of the absolute error, dT , against time for both the calculated 

finite volume solution and the Huang and Usmani finite element solution for the 

solidification test case is shown in Figure 4.10. This error plot indicates that 

there is little difference in the accuracy of both schemes between t = 0 and 2 

seconds, however, the finite volume scheme calculates the temperature at the 

zone of transition between the liquid and solid material with much less error than 

the finite element method. This is evident from the peaks on the graph at t =  1 

second. Between t — 2 and 4 seconds, the error observed in the finite volume 

solution as compared to the finite element solution is less. The major difference in 

the two error plots is the smoothness of the finite volume plot compared to the 

finite element plot. This confirms the comments already made regarding the 

smoothness of the two solutions (see Figure 4.8).
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\

FV
Analytic Solution

Oo

-20

-25

Time (s)
Figure 4.7: The calculated FV solution compared against the analytic solution for 

solidification over time at the point x — 1 on the 1-D domain.

FV
FE - Huang and Usmani

oo
!ka -10

I
I £  -15

-20

-25

Time (s)

Figure 4.8: The calculated FV solution compared against the Huang and Usmani FE solution 

[12] for solidification over time at the point x — 1 on the 1-D domain.
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FV
FE - Huang and Usmani 
Analytic Solution

h -10

-20

-25

Time (s)
Figure 4.9: The calculated FV solution, the Huang and Usmani FE solution [12], and the 

analytic solution for solidification over time at the point x =  1 on the 1-D domain.

FV Solution 
FE Solution

0.6
O'o
E-<"a

0.4

0.2

Time (s)

Figure 4.10: Calculated absolute error in the FV solution and the Huang and Usmani FE 

solution [12] for solidification over time at the point x =  1 on the 1-D domain.
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4.7.2 Melting -  1-D

The melting problem was solved using the vertex-centred edge-based finite 

volume scheme developed here. The initial and boundary conditions applied to 

the domain are shown in Figure 4.11, and the enthalpy curve used is shown in 

Figure 4.12 and tabulated in Table 4.3.

T - 45.0 T  =  0.0 ;_d T  d T  Q 
dx dx

Figure 4.11: Initial and boundary conditions applied for the melting problem.

100

-50 -25 50 100
Temperature (°C)

Figure 4.12: The enthalpy curve used for the melting test case.

T em p . (°C) H (T )

-50 1.0

0.15 49.85

1.15 121.11

5.0 126.26

100 221.26

Table 4.3: The tabulated enthalpy curve used for the melting test case.
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Again, similar trends are observed with the solution to the melting case as 

already seen with the solidification problem above. The calculated temperature at 

the point x = 1 using the finite volume scheme almost exactly matches the 

analytic solution as shown in Figure 4.13. The only discrepancy is in the last 1 

second, when the calculated solution differs slightly from the analytic. However, 

the calculated solution is everywhere smooth, and is free from temporal 

oscillations. It is noted that the calculated solution captures the zone of transition 

almost exactly. The solution obtained by Huang and Usmani [12] for the same 

problem using the finite element method encounters difficulty in this area, as seen 

from Figure 4.14 and Figure 4.15. Moreover, the finite element solution does not 

display the smoothness of plot as obtained using the finite volume scheme, 

however as discussed above, this may be due to the different mesh densities used.

Figure 4.16 presents the calculated absolute error in the finite volume 

solution and the Huang and Usmani [12] finite element solution for this case at 

the point x = 1 on the 1-D domain. The absolute error is calculated as per 

equation (4.21). In terms of accuracy between t =  0 and 3 seconds, the finite 

volume solution is superior to the finite element solution in this case. Moreover, 

this plot only reinforces what has already been said, that is that the improvement 

in accuracy at the zone of transition between solid and liquid material 

(approximately t = 1 second) gained by employing the finite volume scheme over 

the Huang and Usmani finite element scheme is great. However, at t > 3 seconds, 

the finite element solution displays improved accuracy over the finite volume 

scheme. This is evident from inspection of Figure 4.15, where the finite volume is 

seen to diverge from the analytic solution in this region.

As perceived in the error plot for the solidification test case in Figure 4.10, 

the melting error plots show similar trends as regards smoothness of solution; 

where the finite element error plot displays increased noise as compared to the 

finite volume case. Again, this only underlines the comments made on the 

smoothness of the solutions obtained using the two schemes (see Figure 4.14).

87



C h a p t e r  4  -  P h a s e  T r a n s f o r m a t i o n

O'

aa

S
£

25

20

10

FV
Analytic Solution

5

0

0 1 2 3 4

Time (s)
Figure 4.13: The calculated FV solution compared against the analytic solution for melting 

over time at the point x — 1 on the 1-D domain.
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Figure 4.14: The calculated FV solution compared against the Huang and Usmani FE solution 

[12] for melting over time at the point x =  1 on the 1-D domain.
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Figure 4.15: The calculated FV solution, the Huang and Usmani FE solution [12], and the 

analytic solution for melting over time at the point x =  1 on the 1-D domain.
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Figure 4.16: Calculated absolute error in the FV solution and the Huang and Usmani FE 

solution [12] for melting over time at the point x — 1 on the 1-D domain.
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4.8 SOLIDIFICATION -  2-D

The solidification problem described and solved above in one dimension is here 

considered on a two-dimensional domain. The computational domain has 

dimensions 4 x 1  units as shown in Figure 4.17a. The domain was discretised 

using structured quadrilateral elements, with 200 nodes in the x direction and 20 

nodes in the y direction, as illustrated in Figure 4.17b. In the x direction, the 

nodes have an exponential distribution with initial spacing of 0.01. In all the 

mesh contains 4000 nodes and 3781 elements.

The expansion of the heat conduction equations (4.5) on a two- 

dimensional domain Q gives;

dH d T  
dT dt

d_
dx

d T
d x , +fdy

d T (4.22)

The solution procedure is identical to that of the one-dimensional case, with the 

exception of a second dimension. The input parameters tabulated in Table 4.1, 

and the enthalpy curve used for the 1-D solidification problem shown in Figure 

4.6 were used in this case also. The initial and boundary conditions applied to the 

domain are as shown in Figure 4.18.

1 -

y
0-

b )

Figure 4.17: a) boundary of the computational domain, and b) the structured quadrilateral mesh

used in the 2-D solidification problem.
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;_dT d T  
dy dy

T = -45.0 T. = 0.0 j_ d T  d T  
dx dx

k d T  =  d T = Q  
dy  dy

Figure 4.18: Initial and boundary condition applied for the 2-D solidification problem.

The only difference in the formulation is that the enthalpy term dHjdT is 

calculated using the approximation reported by Morgan et al. [14] and Lemmon 

[13] (see equation (4.8)), that is;

/
\dH]

2
+

dH
2'

dH , d x , , dv ,
dT

\
fd T )
, d x ,

2
+

'dT
, dy ,

2

The plot of the calculated temperature at the node with coordinates (1, 0.5) 

obtained using the finite volume scheme over time is shown in Figure 4.19, along 

with the same analytic solution as was used in 1-D. The calculated values closely 

match the analytic solution for the solidification problem.
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Figure 4.19: The calculated FV solution compared against the analytic solution for solidification 

over time at the point x = 1 on the 2-D domain.

4.9 CLOSURE

The phase transformation problem considered here is not related to the field of 

study, tha t being fluid flow in porous media. However, the governing equations 

are diffusive in nature, and are mathematically very similar to the equations that 

govern the flow of fluids through porous materials. The problem considered here 

also contain highly non-linear properties as will be encountered when considering 

the material property curves of fluids, such as permeability and capillary pressure 

curves. Hence, this problem was considered as it contained many aspects that are 

necessary in the development of a solver for fluid flow in porous media.

The proposed edge-based finite volume scheme is shown to have accurately 

solved the phase change problem, both for solidification and melting on a one­

dimensional domain. The calculated solution was compared to the analytic and 

published numerical solutions for the same problem with excellent 

correspondence. Further, the solidification problem was solved on a two­
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dimensional domain using a structured quadrilateral element mesh. This also 

converged to the analytical solution.

This chapter has proved that the chosen edge-based finite volume scheme 

handles problems whose discretised form contains a highly non-linear capacity 

(mass) matrix M (u) in equations of the following type;

M ( u ) | |  =  Ku . (4.24)

where, u is a vector of some arbitrary parameter, and K is a stiffness matrix. In 

order to solve the governing equation for fluid flow in porous media, the scheme 

must be able to handle the above equation system, but with the added 

complication of the addition of a highly non-linear term K =  K(u) .  In this 

chapter, K was simply a constant. This added complication will be considered in 

Chapter 5 - Saturated-Unsaturated Groundwater Flow.

In conclusion, we can be assured that the building blocks of the solver are 

in place, and significant progress towards a porous media fluid flow code has been 

achieved.
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C hapter 5

Sa t u r a t e d -U n sa t u r a t e d  G r o u n d w a t e r  

F low

5.1 INTRODUCTION

This chapter is concerned with the application of the developed vertex-centred 

edge-based finite volume scheme in solving problems involving saturated- 

unsaturated fluid flow in porous media. The governing equation for the flow of 

water in a slightly compressible and partly saturated soil is described by the 

Richards equation [28] which contains highly non-linear material property terms. 

Numerical modelling of water flow in variably saturated soils is needed in a wide 

range of applications, and the Richards equation model is typically used to 

describe variably saturated flows [14]. Richards equation is defined by coupling a 

statement of flow continuity with the Darcy equation and is commonly cast into 

one of three forms: 1) moisture based form, 2) pressure head based form, or 3) a 

mixed or coupled form. A full description of each equation form is presented in 

Kavetski et al. [15]. Dozens of papers have been published on numerical solutions 

to the Richards equation, and Tocci et al. [32] reports that Richards equation is 

considered a state-of-the-art treatment of groundwater flow problems in an air- 

water system. The most common approaches currently use low-order finite 

difference or finite element methods in space to solve the governing equations. 

For stability consideration, most of the existing approaches solve the equation 

with a fully implicit approach and use pressure head, which is continuous in both 

saturated and unsaturated zones, as the primary variable. This requires estimates 

of soil hydraulic properties at the new time level, giving a non-linear system that 

has to be solved by iteration. The application of Richards equation presents one 

of the most significant challenges in numerical solution of variably saturated flow, 

and considerable effort has been expended over the last few decades in solving it
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(e.g.[6],[29],[36],[23],[10],[32],[12]). It has been shown that such formulations are 

capable of solving fluid flow problems through vertical soil columns and earth 

dam sections ([12],[35],[37] etc.). However, due to certain simplifications made to 

the equation system (outlined below), the full analysis of multi-phase problems 

cannot be modelled using the Richards equation. In these situations, such as the 

simulation of the three-phase system that occurs in petroleum reservoirs (oil- 

water-gas), a coupled system of flow equations for each phase must be solved (see 

Chrichlow [5] and Aziz and Settari [2]).

The flow of fluid through an unsaturated soil is predominantly an 

immiscible two-phase flow problem. Using this two-phase formulation it is 

necessary to consider the mass balance of the air and fluid phases. Hence, the 

flow model is composed of two material balance equations for water and air (gas) 

respectively, plus an algebraic equation of fluid saturation continuity,

S .+ S ,= 1 .0  (5.1)

where Sw is the saturation of the fluid phase and Sg the saturation of the gas 

phase in the system. In addition, to fully describe the problem Forsyth et. al 

([10],[9]) proposed an algebraic equation expressing the link between water 

saturation and the capillary pressure between air and water.

A simplification to this approach may be effected by assuming that the air 

mass flow through the system is negligible as compared to the liquid mass flow, 

and may therefore be ignored. In this case, the problem reduces to a single-phase 

formulation as shown by Gottardi and Venutelli [11]. Gottardi and Venutelli 

showed that the partially saturated flow model may then be described by the 

water mass balance equation, and the equations expressing the initial and 

boundary conditions [12]. Valid numerical solutions of this equation are also 

difficult to obtain due to the strong non-linearity of the soil relative permeability 

against water moisture content and of the capillary pressure versus the water 

moisture content relationship ([11],[3]).
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The application of the edge-based finite volume method for modelling 

groundwater flow in saturated-unsaturated soils is presented, and the flow 

equation is solved by applying a vertex-centred edge-based finite volume scheme. 

The flexibility of the scheme is demonstrated by its ability to handle both 

structured and unstructured grids (comprising both triangular and quadrilateral 

elements), and the ability to deal with highly non-linear material properties on 

homogeneous, and inhomogeneous domains. An acceleration algorithm is 

employed which utilises an explicit non-linear loop for the primary variable 

update. In order to evaluate the performance of the edge-based scheme in solving 

groundwater flow problems, three test cases are presented. The first two cases 

model the vertical infiltration of water into an initially dry soil column by 

applying a prefixed pressure head and a prefixed flow rate at the top of the 

column respectively analysed by Gottardi and Venutelli [12]. The third case 

models the infiltration flow of water across an initially dry earth dam. An 

optimisation exercise was conducted to determine the optimum input values for 

the parameters within the non-linear iterative loop for the pressure head update, 

and these values then applied to the above-mentioned test cases. Finally, 

conclusions are drawn on the efficiency and accuracy of the scheme.

5.2 GOVERNING EQUATIONS

Under the hypothesis that Darcy’s law holds true, Bear [3] showed that the 

pressure head form of the Richards equation, written for the flow domain Q , can 

be written using indicial notation as:

d ak.k dh d y )
dxI

ij r dx.  \ 0 dx.0 )
- a q m = a { C  +  S j S , ) ^ on Q (5.2)

where h is the pressure head [L], x. (i = 1,2) are the Cartesian coordinates ( x3 is 

in the vertical direction and positive upward) [L], y is the distance from the 

datum plane measured in the vertical direction positive upward [L], a  is the
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thickness of the flow domain [L], k is the intrinsic conductivity tensor 

(conductivity of the completely saturated porous medium) [LT"1], and kr is the 

relative permeability to water (0 < kr < 1), which is a function of the water 

saturation. The specific moisture capacity C, [L'1], is defined by;

C =  ^  (5.3)
ah

where 0 (dimensionless) is the moisture content of the soil. Ss is the specific 

storage [L'1] and Sw is the water saturation { 0 < S W<1)  (dimensionless). Ss 

reflects the combined elastic behaviour of the porous medium and the water. This 

represents the volume of water instantaneously released from storage per unit 

bulk volume of saturated soil when h is lowered by a unit. qw is a source/sink 

term (positive for sources and negative for sinks), that is, the volume of water per 

unit bulk volume of soil that enters or leaves the system in a unit time.

In this context the air pressure in the unsaturated soil is considered to be 

constant, and equal to the atmospheric pressure. By definition, we have

h = h(6) = ~  =  ^£ 'Se\  (5.4)
7 . 7 ,

where pa and pw are, respectively, the air and water pressures [ML"1T‘2], and /yw 

is the specific weight of water. pc is the capillary pressure between air and water 

[ML_1T ‘2] and is a function, for each soil, of its moisture content 6 . From 

equation (5.4) we have;

Pa = Pw +  Pc (d) = Pa = COnSt (5-5)

where pa is the discretised from of pa , and hence is a volume averaged quantity. 

From this equation, assuming the hypothesis that the air pressure is constant, 

the water pressure is directly proportional to the capillary pressure
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( pw = c°nst — pc) . Therefore, in the partially saturated zones, pw and h are 

functions of the water moisture.

In the absence of hysteresis, the water relative permeability is a single 

value function of 0 , i.e.,

K = K %  (5.6)

where the specific function is determined by the type of soil.

The water moisture content 6 and the water saturation Sw are linked by 

the relationship

0 =  *S„ =  0(k) (5.7)

where </> is the soil porosity.

As seen from Eq. (5.4), the pressure head h is positive in the saturated

zones (where pw > pa) and negative in the unsaturated ones (where pw < pa).

Equations (5.3),(5.6) and (5.7) characterize the soil.

The initial conditions for the pressure head and moisture content are:

/&(z.,0) =  h0(x.) on Q, (5.8)

d(xi,Q) = 60(x.) on Q, (5.9)

The Dirichlet boundary condition for the fixed pressure head is denoted,

h(x0 £) = h(x.,t} on r  (5.10)

where h is a specified function and T is the boundary of the computational 

domain.

The Neuman boundary condition describing the fixed water rate flux is

-ak.ki] r
dh dy
dx dx

J 3 )
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where n. is the ith component of the outward pointing unit normal to the 

boundary on which the fixed water rate condition is to be applied, and qb is a 

fixed water flow rate [L2T _1].

5.3 SOLUTION PROCEDURE

By implying that the second mixed derivatives are zero, the expansion of the 

Richards equation (5.2) on a two dimensional domain Q gives;

d_
dx

a k k ' dh d y ' 
,dx dx

+ d_
dy

& k k ryy r
dh dy  
dy d y t - “ 9.

= a(C  + SwS , ) ^

(5.12)

Using the fact that;

dh dy d , , d ( 1 -  =  (h + y) = —
dx dx dx dx

(5.13)

Equation (5.12) simplifies to:

d otkJkr [ 3 0 +  A Oikk [3Cj
dx xx r ,dx, dy yy r

dy  I
-<*qv

= a(C  + SwS , ) ^

(5.14)

The spatial derivative terms in equation (5.14) are discretised by application of 

Green’s theorem, and by the assumption that the spatial derivative is linear over 

the control volume Qm. Integration over the control volume, and the application 

of the Euler backward difference scheme as discussed in chapter 2 gives for all 

nodes m  in the domain;



C h a p t e r  5  -  S a t u r a t e d - U n s a t u r a t e d  G r o u n d w a t e r  F l o w

d_
dx (ak= K \

{dt
Kd x t

n  + —m  * r\dy
d<

\dy) [«9.L
(5.15)

where = pressure head at node m  at time n, and ft”+1 =  pressure head at node

m at time n+1. The term \ak..kr ) is the value of ak..kr applied to edgem .
V v r Imn v r 6 mn

Inside this bracket lies the non-linear relative water permeability term (kr ) , 

which is calculated as follows;

W m n  =  / ( O  =  f { K n )
(5.16)

where;

2 ^n) (5.17)

The specific moisture capacity C at node m, is defined as;

c ro =  /(/> ;) (5.18)

and the calculated water saturation Sw at node m, is given by;

= (5.19)

where the moisture content 0 is defined as:

(5.20)
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Within the solver, the water moisture, moisture content and moisture capacity 

for each soil are described by a table of values. These sets of discrete values are 

then manipulated through linear interpolation.

By equation (5.13), the first derivative terms are described as:

dx. r\ 1 r\ r\ \ HI ' &m)OX ox ox.
(5.21)

Re-arranging equation (5.15), gives the linear update for the primary variable h 

as:

hl+1 = d
dx

r * )
,dx,

n m

- m

d
'

K a L *11
171 L * U )  j j j i  Tfl

m

A t  1
dy d y)\

1
<*m(C + S„Ss)m '

(5.22)

+ fC

In previous work [27], it has been shown that a linear update for the primary 

variable has a limited timestep length. Hence a more efficient non-linear explicit 

primary update algorithm was successfully developed.

The primary variable update, which is the pressure head h in this work, is 

performed in the following manner. Defining h^k as a value of h for timestep n, 

iteration k and node m, we initiate each timestep with =  /i” for all nodes.

Then, a variable h is proposed;

hm = p h l +1-k + ( l - l 3 ) h l  (5.23)

where {(3 E R : (3 £ [0,1]}. Derivatives and non-linear variables that are functions 

of h in equation (5.22) are discretized using values of h , to form the left hand 

side of the equation.
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where,

d

d_
dy

dx

(akmkT(hm))

( a k xrK  {hm )\
9C

+dx

a

dC dh , dy
dx % dx.

m 1 dx.
771 1

d  ( h + y )dx

(5.24)

(5.25)

Similarly, the variables preceding the discretized time derivative term in equation 

(5.22) are calculated.

=
A t

am (G(h) + Sw(h)Ss) a
(5.26)

The primary variable update is then performed by employing equations (5.24) 

and (5.26) in the following manner.

K+ Kk+1 =  +  K.  (5.27)

If the system has converged, then one of the following relationships holds true.

(5.28)

(5.29)

\h71+1,fc +  1 7 71+1, k-  hn+l'K\\ < e

or,
7 i+ l , f c + l | | < £

Where (e G K : £ <  1} is a user defined convergence criterion. The reader should 

note that (5.28) is more usual, however, in practice, results obtained using (5.29) 

are sufficiently similar for the problem under consideration that use of it is
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acceptable. Implementation of this norm also requires less memory and is 

computationally more efficient. Once convergence is achieved the cycle begins for 

the next time step with = h^+1,k+1. However, if equation (5.29) is not satisfied, 

then we apply a successive over relaxation (SOR) parameter {7 G M : 7 G [0,1]} 

such that [1]:

a * * = c w l = 7  (n a + h i )+( 1  -  7 ) e 1'*
(5.30)

=  7 C M+1 + ( l - 7 ) C 1'*

The value of h^ +1,k+1 calculated from equation (5.30) is then used to calculate 

hm in equation (5.23) on the next iteration, and the process is repeated until 

convergence is achieved. The values for the non-linear parameters used were 

(3 = 0.5, 7 =  1.0 and e = 1.0 x 10-05. These values were decided upon after 

numerical experiments to determine the optimal values (see section 5.4.2.2). 

These were used for the analyses in section 5.4.

A flowchart of the solution procedure is given in Figure 5.1, where the 

symbols correspond to those used in equations (5.12) to (5.30). If we define the 

primary variable of the problem as h G , then let the set of secondary

variables calculated or derived from the primary set be § (h), where;

S(ft) =  {C,0,fcr,5m} (5.31)

Hence in Figure 5.1, the term CALCULATE S(h) implies the calculation of the 

set of secondary variables using the primary variable h. The terms C, 9 and kT 

are dependant on the soils used in each test case, where C = f  (h), 9 = f  (h) and 

kr = f  (9). These terms are calculated through linear interpolation of the 

tabulated values of the functions (see Figure 5.4, Figure 5.10 and Figure 5.21). 

The water saturation Sw is calculated directly from equation (5.7).
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set hZ+l = K

CALCULATE Sfi
RETURN TO 
BEG IN NEW 
TIM ESTEP

NO N-LINEAR
ITERATION

CALCULATE fcn+ I'*+1

YES NO

SET h i  =  h l + lM l CALCULATE h .

Figure 5.1: Program flow chart for saturated-unsaturated fluid flow in porous media.

106



C h a p t e r  5  -  S a t u r a t e d - U n s a t u r a t e d  G r o u n d w a t e r  F l o w

5.4 COMPARISON WITH PREVIOUS NUMERICAL SOLUTIONS

In order to evaluate the performance of the edge-based scheme in solving 

groundwater flow problems, three test cases are presented. In the first test case, 

the infiltration of water into an initially dry soil column is achieved using a 

prefixed pressure head at the top of the column. The second test case simulates 

groundwater flow through a different soil using a prefixed flow rate (see equation 

(5.11)) at the top of the column. Finally, the third test case models the 

infiltration flow of water across an initially dry earth dam. The specific material 

functions kr = kr (9), 6 = 6 (h) and C = C (h) for each soil are given for each test 

case.

5.4-1 Test Case 1 - Prefixed Pressure Head

This test case models the infiltration flow of water across an isotropic- 

homogeneous silt column 75 m in depth, and 10 m in width shown in Figure 5.2 

along with the labels A, B, C, and D to distinguish between boundaries. Initially, 

a mesh independent solution study was done. The domain was discretised using 

three meshes of varying densities as shown in Figure 5.3. Mesh 1 was discretised 

using structured triangular elements, with 3 nodes along boundary A-B, and 19 

nodes along boundary C-D. Mesh 2 was discretised using unstructured triangular 

elements, with 5 nodes along boundary A-B, and 40 nodes along boundary C-D. 

Mesh 3 was discretised using unstructured triangular elements, with 10 nodes 

along boundary A-B, and 60 nodes along boundary C-D. A comparison of the 

number of nodes and elements present in each mesh is tabulated in Table 5.1.

N°. Nodes N°. Elements

Mesh 1 57 72

Mesh 2 450 812

Mesh 3 1010 1882

Table 5.1: D ata concerning the meshes used in the mesh independent solution study for

Test Case 1.
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A ___________ B

y

x c  D

Figure 5.2: The soil column 75 m in depth, and 10 m in width along with the labels A, B, C, and 

D to distinguish between boundaries used in Test Case 1.

( 1 ) ( 2 )

Figure 5.3: Three meshes of various densities used in the mesh independent solution study for Test

Case 1.
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The initial and boundary conditions for the simulation were the initial pressure

head corresponding to the residual water saturation (hr = —1000 m ) for all nodes

at time zero, a prefixed pressure head (fy =  — 1 m )  on side A-B and a residual 

water saturation (hr = —1000 m ) on side C-D, that is;

1000 m (5.32)

—1 m (5.33)

1000 m (5.34)

K (m s  x) ky (ms *) 0 ^ K 1)

1.515 xlO '05 1.515 xlO '05 0.46 1.0 xlO '05

Table 5.2: Material properties for silt used in Test Case 1.

The highly non-linear specific material functions kr = kr (9), 9 = 6 (h) and

C = C (h) for the material used in this test are shown in Figure 5.4, while the 

other material properties are given in Table 5.2. Within the solver, each soil 

property shown in Figure 5.4 is described by a table of published values [12]. 

These sets of discrete values are then manipulated through linear interpolation.

The compact stencil scheme was employed to solve the governing 

equations of the problem and the solution obtained for the front position at 5 

days was calculated for the three meshes. The results of the mesh independent 

solution study is shown in Figure 5.5. This shows profile of the calculated 

pressure head h along the line x = 5.0 m, y G [0,75.0] m through the domain at 5 

days using mesh 1, 2 and 3. As expected, it is evident from the solution that the 

finer the mesh density, the water front position is calculated more efficiently and 

accurately. The front calculated using the coarse mesh 1 is spread across a 

vertical distance of 9.4 metres. Mesh 2 displays a front position at 5 days which 

is much sharper and more defined than that seen with mesh 1. Here, the front is 

captured within a vertical distance of 2.3 metres. The front position calculated on 

mesh 3 is sharper still, and is captured within a vertical distance of 0.9 metres. 

The simulation time for this 5-day run on all thee meshes was relatively short,

h(x:y, 0) =  -  

h(x,0,t) = 

h(x,75,t) = —
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with the longest time (9 minutes) being taken to calculate the solution on the 

denser mesh 3. This simulation time is acceptable, and hence it was decided to 

use mesh 3 for the validation of the scheme.

0 .9

0.8

0.7

0 6

0.5

0.4

0.3

0.2

0.1

0
0.50 .40.1 0.2 0.3

0.5

0 .4

0.3

0.2

0.1

0
• 1000 -750 -500 -250 0

a) b)

c)

Figure 5.4: Graphs of the material property non-linear variation of a) pressure head h against 

moisture content 9 , b) moisture content 9 against the relative permeability to water kr , and 

c) pressure head h against moisture capacity C for the material silt used in Test Case 1.
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70

60

50 5 days - Mesh 1 
5 days - Mesh 2 
5 days - Mesh 3

40
-1000 -750 -500 -250 0

h

Figure 5.5: A profile of the calculated pressure head h along the line x =  5.0 m, y € [0,75.0]m 

through the domain at 5 days for Test Case 1, using mesh 1, 2 and 3.

For Test Case 1, the compact stencil scheme was employed to solve the 

governing equations of the problem and the solution obtained for the front 

position at 5, 10 and 15 days against the solution obtained using the FE method 

obtained by Gottardi [12]. The total simulation time for this test case was 15 

days. The results obtained for the moisture content 6 , water saturation Sw and 

the pressure head h along the line x = 5.0 m, y G [0,75.0] m through the domain 

at 5, 10 and 15 days are shown in Figure 5.6, Figure 5.7 and Figure 5.8.

Figure 5.6 displays the profile of the water saturation Sw together with the 

solution obtained by Gottardi [12] using the FE method. It is clearly shown that 

the computed solution captures the front much more sharply than the FE 

solution. The FE mesh used by Gottardi was much coarser than the mesh used 

(mesh 3 in Figure 5.3), containing 120 triangular elements and 78 nodes, and so 

this result is expected.
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 X~      —̂--
   "  JT— -  x —

r "

“ i
----------------  5 day
— — — 10 day
----------------15 day
 ■*-........ 5 day - Gottardi
 x   10 day - Gottardi
 o-  15 day - Gottardi

0 0.2 0.4
Sw

0.6 0.8

Figure 5.6: A profile of the calculated water saturation Sw along the line x = 5.0 m , 

y E [0,75.0]m through the domain at 5, 10 and 15 days using mesh 3, compared to Gottardi’s

solution for Test Case 1.

Figure 5.7 shows the profile of the pressure head h, and Figure 5.8 shows the 

profile of the moisture content 9 along the line x = 5.0 m through the domain at 

5, 10 and 15 days. Again, the front is sharp, and the transition between the 

totally saturated and partially saturated regions is well defined as is expected 

from the saturation plot in Figure 5.6. However, no published solutions were 

available to compare against for these two plots.
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Figure 5.7: A profile of the calculated pressure head h along the line x =  5.0 m, y G [0,75.0]m 

through the domain at 5, 10 and 15 days using mesh 3 for Test Case 1.
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Figure 5.8: A profile of the moisture content 9 along the line x — 5.0 m, y E [0,75.0]m 

through the domain at 5, 10 and 15 days using mesh 3 for Test Case 1.
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5-4-2 Test Case 2 - Prefixed Flow Rate

This test case considers a prefixed flow rate applied to the top of the soil column 

to model the infiltration of surface water into the ground. An investigation is 

undertaken in section 5.4.2.2 to determine the optimal values of the non-linear 

parameters (/?,7 ,s )  to be used in equations (5.23), (5.29) and (5.30). Once these 

values are determined, a 10-day simulation was undertaken using both the 

standard and compact stencil finite volume schemes.

The infiltration flow of water across an isotropic-homogeneous sand 

column 75 m in depth, and 10 m in width is modelled by applying a boundary 

condition of constant prefixed specific water rate ( q ) along boundary A-B. The 

domain was discretised using a structured quadrilateral element mesh (891 

elements and 1000 nodes), and is shown in Figure 5.9 along with the labels A, B, 

C, and D to distinguish between boundaries. For this test case, the standard 

finite volume and the compact stencil scheme were employed to solve the 

governing equations, and the solutions obtained from each scheme compared 

against a FE solution obtained by Gottardi [13]. The initial and boundary 

conditions for the simulation were,

h(x,y,0) = —1.0 m (5.35)

q(x,0,t) = 10 m3/day  (5.36)

h(x,0,t) = —1.0 m (5.37)

that is, the initial pressure head corresponding to the residual water saturation 

for all nodes at time t = 0 , a Neuman boundary condition of constant prefixed 

specific water rate applied to side A-B to simulate the infiltration of water into 

the soil and finally a Dirichlet boundary condition of prefixed pressure head is 

applied to side C-D. For consistency of units, the domain is assumed to have unit 

thickness. The material properties for sand were applied to the soil column in 

question. These properties are shown in Table 5.3 and the non-linear variation of 

kr , 9 and C are shown in Figure 5.10.

114



C h a p t e r  5  -  S a t u r a t e d - U n s a t u r a t e d  G r o u n d w a t e r  F l o w

kx {ms *) ky {ms *) <t> (m_1)
9.4398 x 10'05 9.4398 x 10'05 0.43 1.0 xlO '05

Table 5.3: Material properties for sand used in Test Case 2.

A ______ B

y

x  c D

Figure 5.9: The structured grid used for the groundwater flow problem described in Test 

Case 2 with boundary labels A, B, C and D included.

Firstly, numerical experiments are conducted in sections 5.4.2.1 to 5.4.2.4 to 

determine the optimal values of the non-linear parameters to be used in

equations (5.23), (5.29) and (5.30).
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Figure 5.10: Graphs of the material property non-linear variation of a) pressure head h against 

moisture content 6 , b) moisture content 9 against the relative permeability to water kr , and 

c) pressure head h against moisture capacity C for the material sand used in Test Case 2.
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54.2.1 Reference Solution

Initially, the primary variable update for the pressure head h was performed in a 

simple linear fashion using equation (5.22) only. The maximum timestep length 

which produced a stable solution using this linear update model was 

dt = 1.0 second. In Figure 5.11, the profile of the water saturation along the soil 

column (Sand) for t =  50,000 seconds using a timestep of 1.0 second is shown. 

This graph was obtained by plotting the water saturations along the line 

x =  5.0 m, yG[0,75.0]m running through the domain at the above-mentioned 

time. As this solution was obtained using a small timestep with a linear variable 

update, this was used as the reference solution for the numerical experiments that 

followed.

70

60

50

40

30

20

10

Reference Solution

0 0.2 0.4 0.6
Sw

0.8 1

Figure 5.11: Water saturation profile at t = 50,000 seconds along the line x = 0.5 with dt = 1.0

second.

54.2.2 Investigation Of Non-Linear Parameters A t  Small Timestep Lengths 

Having established a reference solution in the above work, variation in the non­

linear parameters can be investigated. The objective of this part of the study is to 

establish optimal values for the non-linear parameters without causing 

degradation in the solution. Three values of (3, 7 and e were chosen and all

117



C h a p t e r  5  -  S a t u r a t e d - U n s a t u r a t e d  G r o u n d w a t e r  F l o w

possible combinations (27 runs) were investigated. The test case was identical to 

that given above, with an analysis time of 50,000 seconds and a timestep of 1.0 

second. The parameters and the corresponding total iteration count are given in 

Table 5.4. Note that in the table, the set of non-linear parameters that results in 

both the maximum and minimum iteration counts are highlighted.

The level of error in each of these solutions has to be established, and in 

all cases the final front position at time t =50,000 seconds is identical. From the 

results shown, it appears that the optimal values, that is the non-linear 

parameters which produce a good solution with the lowest iteration count, are 

given by Run 7. These non-linear parameters are =  0.5 , 7 =  1.0 and 

£ =  1.0 x 10-05.

5.4-2.3 Effect Of Time Step Length On Iteration Count

The objective of this stage is to retain the optimal non-linear parameters given 

above, and extend the time step length to find a maximum value for dt which 

gives an acceptable solution to the problem. The runs attempted, and the final 

iteration count for each, are given in Table 5.5. Speedup is defined as the ratio of 

the total number of iterations for an analysis to the iteration count for the 

smallest timestep size.

It can be clearly seen that as the timestep length increases the total 

iterations required decreases. However, beyond a particular step length, the 

solutions are not stable and a solution cannot be reached. Figure 5.12 shows the 

number of iterations per step for the dt =  50.0 second case, and it can be seen 

that although a few steps require a significant number of iterations, most 

converge in less than ten iterations.

Figure 5.13 shows the change in convergence criteria between iterations 

(see equation (5.29)). In most cases convergence is fast; however some timesteps 

require a few more steps before a suitable solution is reached. Trends are visible 

in this type of plot but do not appear to be conclusive.
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Run # 0 7 £
Total No. 

Iterations

1 0.5 0.8 1.0E-05 127802

2 0.5 0.8 1.0E-08 342912

3 0.5 0.8 1.0E-12 629759

4 0.5 0.9 1.0E-05 114516

5 0.5 0.9 1.0E-08 264142

6 0.5 0.9 1.0E-12 464635

7 0.5 1 .0 1 .0E -05 97307

8 0.5 1.0 1.0E-08 136637

9 0.5 1.0 1.0E-12 208029

10 0.666 0.8 1.0E-05 127826

11 0.666 0.8 1.0E-08 342968

12 0.666 0.8 1.0E-12 629835

13 0.666 0.9 1.0E-05 114526

14 0.666 0.9 1.0E-08 264102

15 0.666 0.9 1.0E-12 464857

16 0.666 1.0 1.0E-05 97327

17 0.666 1.0 1.0E-08 138565

18 0.666 1.0 1.0E-12 215008

19 1.0 0.8 1.0E-05 127865

20 1.0 0.8 1.0E-08 342904

21 1.0 0.8 1 .0E -12 630282

22 1.0 0.9 1.0E-05 114530

23 1.0 0.9 1.0E-08 263873

24 1.0 0.9 1.0E-12 465448

25 1.0 1.0 1.0E-05 97365

26 1.0 1.0 1.0E-08 142459

27 1.0 1.0 1.0E-12 227899

Table 5.4: Investigation of non-linear parameters at dt — 1.0 second.
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dt (s) No. Time Steps Did Code Run? Total No. Iterations Speedup

1 50,000 YES 97,307 1.0

10 5,000 YES 11,103 8.8

50 1,000 YES 3,623 26.9

80 625 STOP STEP 370 N/A N /A

100 500 STOP STEP 130 N/A N /A

Table 5.5: Effect of time step length on iteration count and speedup.

In order to check the accuracy of the solution obtained, values along the 

centre vertical line of the domain (:r =  5 m) at t =50,000 seconds for the three 

time step lengths which produced a suitable solution is shown in Figure 5.14. It 

can be clearly seen that for the stable solutions the results are also accurate, and 

the increase in timestep length has no effect on the quality of the solution 

obtained.

5.4- 2.4 Investigation Into The Influence Of Gamma

Careful consideration of Table 5.4 shows that the value of 7 has the largest

influence on the stability of the scheme and the number of non-linear iterations 

required to obtain a solution. Therefore, for large timesteps it is relevant to

investigate changes in 7 . W ith a timestep length of 50 seconds, seven runs were

undertaken with 7 values from 0.4 to 0.9. For these runs (3 = 0.5 and 

e =  1.0 x 10-05 were used. A graph showing the total iteration count for this case 

is given in Figure 5.15. As expected, iteration count decreases with increasing 

gamma until an unstable point is reached for 7 values greater than 0.8. This 

shows that a trial and error approach can give a stable solution for large 

timesteps.

For a timestep length of 50 seconds, a maximum speedup of 4.83 was 

achieved when 7 =  0.8 (as compared to the reference solution). However, careful 

reference to Table 5.5 shows that more improvement in runtime can be achieved 

by a slight reduction in the timestep length and the use of standard values of the 

non-linear parameters rather than searching for optimal 7 at the largest possible 

value of d t .
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i n n  m i

Time Step No.

Figure 5.12: A plot of the number of iterations per timestep required for dt = 50.0 second, using

the non-linear variables of Run 7.
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Figure 5.13: A plot showing the relationship between abs(|/in+1’*+1| — ||^n+1'fc||) and the total 

iteration number between 2300 and 2400, using the non-linear variables of Run 7 and dt =50.0

second.
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Figure 5.14: Water saturation profile at t = 50,000 seconds along the line x = 0.5 with dt = 1, 

10, 50 second compared to the reference solution, using the non-linear variables of Run 7.
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5.4-2.5 Investigation of the accuracy of the optimal non-linear parameters on a 

full solution.

The results shown in Figure 5.16, Figure 5.17 and Figure 5.18 are plots along the 

line x = 5.0 m through the domain at 2, 5 and 10 days respectively. Figure 5.16 

displays the profile of the pressure head h along this line at the above mentioned 

times calculated using the standard finite volume scheme and the compact stencil 

scheme along with the solution obtained by Gottardi [13] using the FE method. 

Again, as was evident from Test Case 1, there is considerably less smearing of the 

front with the finite volume methods as compared to the FE solution. However, 

Figure 5.16 shows that the compact stencil method captures the pressure head 

front more efficiently than the standard finite volume method, and thus 

demonstrates the benefit of applying the three-node stencil to capture non-linear 

variations in the primary variable as compared to the standard five-node stencil.

Similar results are shown in Figure 5.17 and Figure 5.18. Figure 5.17 

shows a comparison of the solution obtained for the water saturation Sw along the 

line x = 5.0 m through the domain obtained using the compact stencil scheme 

and the standard finite volume scheme at 5, 10 and 15 days compared to 

Gottardi’s FE solution. The compact stencil solution again produces a sharper 

front than the standard finite volume solution, with the compact stencil solution 

in advance of the standard finite volume solution by 1.5 - 2 metres. Similarly for 

Figure 5.18, which shows a comparison of the solution obtained for the moisture 

content 6 along the line x =  5.0 m through the domain obtained using the 

compact stencil scheme and the standard finite volume scheme at 2, 5 and 10 

days compared to G ottardi’s solution.
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Figure 5.16: A comparison of the solution obtained for the pressure head h along the line 

x =  5.0 m, y 6 [0,75.0]m through the domain obtained using the compact stencil scheme and 

the standard finite volume scheme at 2, 5 and 10 days compared to Gottardi’s solution for 

Test Case 2. Solutions obtained using the non-linear variables of Run 7 and dt =  50.0 second.

70 — _ _ _ _ _ _ _ _ _ J 1

- ......... ...............*

60 -

r  .............. ...

50 - ...........

40 -

--------

30 - --------------  2 day - Compact Stencil
--------------5 day - Compact Stencil

- 10 day - Compact Stencil
7,0 _ — — — 2 day - Standard F. V.

-------------- 5 day - Standard F. V.
- ................... 10 day - Standard F. V.

------jr------ 2  jay  _ Gottardi
10 -------x-........ 5 day - Gottardi

- ....... a-........ 10 day - Gottardi

0 ____1___ 1 , 1 , 1 . 1 , 1 . 1 , 1 1o 1 1 ■__i__i__i__■ ' ■__i__i__i ■
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sw

Figure 5.17: A comparison of the solution obtained for the water saturation Sw along the line 

x = 5.0 m, y 6 [0,75.0]m through the domain obtained using the compact stencil scheme and 

the standard finite volume scheme at 2, 5 and 10 days compared to Gottardi’s solution for 

Test Case 2. Solutions obtained using the non-linear variables of Run 7 and dt — 50.0 second.
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Figure 5.18: A comparison of the solution obtained for the moisture content 0 along the line 

x =  5.0 m, y 6 [0,75.0]m through the domain obtained using the compact stencil scheme and 

the standard finite volume scheme at 2, 5 and 10 days compared to G ottardi’s solution for 

Test Case 2. Solutions obtained using the non-linear variables of Run 7 and dt = 50.0 second.

5.4-3 Test Case 3 -  Infiltration Flow Across An Earth Dam

This test case models the infiltration flow of water across an initially dry earth 

dam. Earthfill dams for the storage of water have been used since the early days 

of civilisation. Today, as in the past, the earthfill dam continues to be the most 

common type of small dam, principally because its construction involves 

utilisation of materials in their natural state with a minimum of processing. Soils 

placed in earth dams should be sufficiently impervious in order to reduce seepage 

to a manageable rate, and be sufficiently stable to provide sturdy side batters to 

the structure. The type of dam embankment will depend on the quantities of 

suitable soils available. Generally there are two types of small dam embankments;

1) homogeneous, and,

2) zoned.

A purely homogeneous type of dam is composed of a single kind of 

material. However, the most common type of earth dam section is that in which
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an impervious core is flanked by zones of materials considerably more pervious. 

The pervious zones enclose, support and protect the impervious core; the 

upstream pervious zone affords stability against rapid drawdown; and the 

downstream pervious zone acts as a drain to control the line of seepage. The 

zoned embankment consists of a central clay core with more pervious material 

forming a shell on each side. Some of the benefits of a zoned dam can also be 

obtained structurally when the soil is placed selectively or when different 

construction methods are employed in different portions of the embankment. In 

the first case, a central clay core with more pervious material forming a shell on 

each side is constructed. In the second case, zones of lower permeability are 

created in otherwise homogeneous embankments by using either more compaction 

or a higher construction water content such as the Tres Marias Dam in Brazil 

([33],[24]). Using more compaction will make a considerable difference in the 

permeability of some materials, especially of residual soils and other materials 

that break down as they are being rolled. Using a higher content of construction 

water to create zones of lower permeability is a method chosen most frequently 

when the embankment materials are clayey soils. Additional water during 

compaction makes these soils considerably more impervious than they are when 

compacted on the dry side of optimum water content (at the same dry density), 

and the difference persists with time. The difference in permeability, which may 

be 10 to 100 times, is due to an actual difference in the structure of the 

compacted soil ([16],[17]). The saturated-unsaturated non-linear model developed 

in this work is able to model easily these changes in construction methods and 

permeability and this section sets out to investigate these phenomena. The 

following test case simulates the transient infiltration flow of water across the 

earth dam whose boundary is shown in Figure 5.19, for a sudden rising of the 

water level to point B.
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C D

FA H

Figure 5.19 : The boundary of the earth dam used in Test Case 3 along with the positions of

markers.

The coordinates of the eight points indicated in Figure 5.19 lying on the dam 

boundary are shown in Table 5.6.

C oord ina tes (m )

X y
A 0.0 0.0
B 6.0 9.0

C 8.0 12.0
D 12.0 12.0
E 19.0 1.5

F 20.0 0.5

G 13.0 0.5

H 13.0 0.0

Table 5.6: Coordinates of boundary markers for the earth dam boundary.

An internal drain is an essential feature of all but the smallest dams unless the 

downstream is so pervious that it acts as a drain. The purpose is firstly to carry 

away any seepage that goes through the core or the cut-off and secondly to 

prevent the saturation of the upper part of the downstream shell by rain or spray 

falling on the dam [31]. A horizontal drainage blanket is applied to the dam 

cross-section along the boundary connecting points G and F in Figure 5.19. This 

type of drain is widely used in dams of moderate height.
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The initial and boundary conditions used for this test case were;

h(x,y,0) = —3000.0m (5.38)

h(x,y,t)  = —y/yw on side A-B (5.39)

h(x,y,t)  = 0 if qw > 0 on side F-G (5.40)

qw = 0 on sides B-C, C-D, D-E, E-F, G-H and A-H (5.41)

In these equations /yw is the specific weight of water, and qw is the specific flow 

rate of water on the seepage surface F-G of the dam drain. The water level (point 

B) was taken as being the datum for y. The flow domain was discretised in an 

unstructured manner using triangular elements by using 398 nodes and 730 

elements as shown in Figure 5.20.

Figure 5.20 : The unstructured grid of 398 nodes and 730 elements.

The material properties for clay loam [12] were applied to the discretised earth 

dam in Figure 5.20. These properties axe shown in Table 5.7 and the specific 

material functions kT = kr (0), 0 = 0 (h) and C = C(h) for the material are given 

in Figure 5.21.

kx(ms ') ky(ms 7) <t> Ss(m X)

1.2303 xlO-07 1.2303 x 10'07 0.41 1.0 xlO'05

Table 5.7: Material properties for clay loam.
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Figure 5.21: Graphs of the material property non-linear variation of a) pressure head h against 

moisture content 6 , b) moisture content 6 against the relative permeability to water kr , and c) 

pressure head h against moisture capacity C for the material clay loam used in Test Case 3.
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5.4-3.1 Homogeneous Section

The first model presented here is of the dam with a homogeneous section of clay 

loam. Contour plots of the water saturation, Sw, and the pressure head, h, 

through the section after 100, 200, 300, 400, 500 and 600 days are shown in 

Figure 5.22 and Figure 5.23 respectively. While Figure 5.24 shows the pressure 

head and water saturation profiles along the line ?/ =  6.0 m through a 

homogeneous dam section at 100, 200, 300, 400, 500 and 600 days.

As can be seen from the water saturation profiles in Figure 5.22, the 

homogeneous clay loam dam provides little resistance to the seepage water. 

Hence, a purely homogeneous clay-loam earthfill dam is of little practical use. 

However, a steady state solution is reached after approximately 500 days. This 

shows that the seepage water is being drained from the system proving that the 

horizontal drainage blanket has been effectively modelled. Thus the saturation 

front is unable to reach the downstream dam boundary. This observation is 

supported by the pressure head contours shown in Figure 5.23.

The water saturation plot shown in Figure 5.24b illustrate the front 

position at each specified time. As can be seen, there is little smearing of the 

front, and is most cases the front is captured within a distance of less than 1 

metre. The front position is equally spaced for the first 400 days, with the front 

position at 500 and 600 days lying close together. Again, this is directly due to 

the influence of the downstream drain at later times. Similar deductions can be 

made concerning the pressure head front shown in Figure 5.24a. As the 

unstructured mesh used for this problem was relatively coarse, the ability of the 

scheme to capture such sharp fronts on coarse meshes is undoubtedly a positive 

outcome. As already shown in the mesh density investigation of section 5.4.1, the 

sharpness of the front increases with the density of the mesh.
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1.0

a) 100 days b) 200 days

1.0 0 . 3

c) 300 days d) 400 days

1.0

e) 500 days f) 600 days

Figure 5.22: Water saturation, Sw, contours (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) across a

homogeneous clay loam dam after a) 100, b)200, c)300, d)400, e)500 and f)600 days respectively.
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Figure 5.23: Pressure head, h, contours (-3000, -2500, -2000, -1500, -1000, -500 and -100m) across a

homogeneous clay loam dam after a) 100, b)200, c)300, d)400, e)500 and f)600 days respectively.
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Figure 5.24: a) pressure head, h, and b) water saturation, Sw , profiles along the line 

y =  6.0 m, x G [4,16]m through a homogeneous clay loam dam using the compact stencil scheme

at 100, 200, 300, 400, 500 and 600 days.
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5.4- 3.2 Non-Homogeneous Section - Sloped Clay Loam Core 

The simulation discussed in the previous section where a homogeneous dam was 

considered was repeated using a zoned embankment type dam constructed of clay 

loam with a core permeability of a) 1 /10th, and b) 1/100th, that of clay loam. The 

core is flanked by clay loam with material properties as tabulated in Table 5.7 

and Figure 5.22. Other than the permeability, the core had material properties 

identical to that of clay loam. Contour plots of the water saturation, Sw, through 

the zoned dam section after 100, 200, 300, 400, 500 and 600 days are shown in 

Figure 5.25 and Figure 5.28, while pressure head, h, contours at the same times 

through the dam section are shown in Figure 5.26 and Figure 5.29. Figure 5.25 

and Figure 5.26 shows the results obtained with a core permeability 1 /  10th that of 

clay loam, while Figure 5.28 and Figure 5.29 show the results obtained with a 

core permeability 1 /  100th that of clay loam. A dashed line has been superimposed 

onto the contour plots to indicate the boundary of the sloping core of the earthfill 

dam. Figure 5.27 and Figure 5.30 shows the pressure head and water saturation 

profiles along the line y = 6.0 m through the zoned dam section with core 

permeability 1 /  10th and 1 /  100th that of the remainder of the dam material 

respectively, at 100, 200, 300, 400, 500 and 600 days.

When comparing the results obtained for the water saturation and 

pressure head contours on both zoned dam sections (in Figure 5.25, Figure 5.28, 

Figure 5.26 and Figure 5.29) to the homogeneous dam results (Figure 5.22 and 

Figure 5.23), the benefit of the former is evident. By compacting the core 

material, thus reducing its permeability, the resistance to the flow of seepage 

water through the dam embankment is beyond question. For the case shown in 

Figure 5.25, where the core has a permeability 1 /  10th that of clay loam, the result 

after 600 days shows clearly that the water saturation front has yet to emerge 

through the downstream boundary of the core. Compare this with the result 

obtained for the same time but on a homogeneous dam (Figure 5.22), where the 

saturation front had reached the far side of the horizontal drainage blanket by 

the same time. While the results shown in Figure 5.28, where the core had a 

permeability 1 / 100th that of clay loam, shows that the front position after 100,
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200, 300, 400, 500 and 600 days is similar. The front position at 100 days is at 

the dam core, and after 600 days the front has shown little movement from this 

position. The core is virtually impenetrable to the seepage, thus holding the front 

back to a greater degree than the other two cases presented in Test Case 3.

The effect of the compacted core on the ease of travel of the seepage water 

is evident from inspection of Figure 5.24, Figure 5.27 and Figure 5.30 which show 

the water saturation and pressure head profiles along the line y = 6.0 m through 

the dam section. For all cases, the water saturation and pressure head front 

position at 100 days is approximately 9 metres. However; this is where the 

similarity in the results end. For the homogeneous section (Figure 5.24), the 

water saturation and pressure head front at 600 days is at 14 metres. The zoned 

dam section with core permeability 1/10th that of the remainder (Figure 5.27) has 

a water saturation and pressure head front position at 600 days of 12 and 11 m 

respectively. Finally, the zoned dam section with core permeability 1 /100th that 

of the remainder (Figure 5.30) has a water saturation and pressure head front 

position at 600 days of 10 and 9.5 metres respectively. These plots clearly 

illustrate the benefits of the zoned section dams in preventing the flow of water 

as compared to the homogeneous dams.

Plots of the pressure head, h, and water saturation, Sw, at the centre point 

of the dam section (coordinate (10,6) metres) against time for the three dam 

sections considered are shown in Figure 5.31. The chosen point lies along the 

centre line of the dam section, and hence along the centre line of the dam core. 

The calculated solution for the pressure head at this point is considered first (see 

Figure 5.31a). The plot for the homogeneous dam section shows a rapid increase 

in the pressure head at this point, with the calculated value increasing by 3000m 

within t = 100 and 200 days. While the plot at the same point for the zoned dam 

section with core permeability 1/ 100th that of the remainder shows no increase in 

the pressure head until t =  450 days, then a gradual increase is observed over the 

remainder of the simulation time. These two results are as expected, however, the 

results obtained for the pressure head for the zoned dam section with core 

permeability 1 /  10th that of the remainder is curious. It would not be unreasonable
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to assume that this plot would display a trend lying between the two mentioned 

plots, however, this is not the case. For approximately the first 200 days, the plot 

closely follows the homogeneous section solution, however, the onset of the 

pressure increase is delayed somewhat. Between 200 and 400 days, the solution 

contains a temporal oscillation, before once more agreeing with the homogenous 

section solution for t > 400 days. This under-prediction of the solution is most 

probably due to slight spatial oscillations in the solution at this point. This is 

evident on inspection of Figure 5.26a and b, where there exists oscillations in the 

front position at 200 days (Figure 5.26a) which are not present at 30 days 

(Figure 5.26b). Inspection of the unstructured mesh used for this test case 

(Figure 5.20) shows a definite coarseness of the mesh in the core region as 

compared to the flanks, and in all probability this oscillation is mesh dependent.

The water saturation plot for the three dam sections at the coordinate 

(10,6) metres is illustrated in Figure 5.31b. Here, the plots for the homogeneous 

section and the less permeable zoned dam show similar trends to the pressure 

head curves in Figure 5.31a, with the zoned dam showing little change from the 

initial conditions hence the front has not passed the point plotted here. In this 

case, the plot for the zoned dam section with core permeability 1 / 10th that of the 

remainder shows a gradual increases in the water saturation between t = 150 and 

600 days as compared to the homogeneous case. This is an indication of the ease 

with which the front passes through the point in the two cases in question; the 

zoned dam offering considerably more resistance to the flow. In this plot, the 

large temporal oscillation in the pressure head solution shows itself to a lesser 

degree.

It must be noted that this section does not consider the dam material 

stability issues relating to the different construction methods, and the build up of 

water in front of the dam core.
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a) 100 days b) 200 days

c) 300 days d) 400 days

e) 500 days f) 600 days

Figure 5.25: Water saturation, Sw, profiles (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) across a zoned

clay loam dam with a compacted core after a)100, b)200, c)300, d)400, e)500 and f)600 days

respectively. Core permeability is 1 /10th that of the remainder of the dam material.
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Figure 5.26: Pressure head, h, contours (-3000, -2500, -2000, -1500, -1000, -500 and -100m) across a

zoned clay loam dam with a compacted core after a) 100, b)200, c)300, d)400, e)500 and f)600 days

respectively. Core permeability is 1 /10th that of the remainder of the dam material.
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Figure 5.27: a) pressure head, h, and b) water saturation, Sw , profiles along the line 

y =  6.0 m, x G [4,16]m through a zoned clay loam dam using the compact stencil scheme at 100, 

200, 300, 400, 500 and 600 days. Core permeability is 1 / 10th that of the remainder of the dam

material.
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Figure 5.28: W ater saturation, Sw, profiles (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) across a zoned

clay loam dam with a compacted core after a)100, b)200, c)300, d)400, e)500 and f)600 days

respectively. Core permeability is l/100th that of the remainder of the dam material.
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Figure 5.29: Pressure head, h, contours (-3000, -2500, -2000, -1500, -1000, -500 and -100m) across a

zoned clay loam dam with a compacted core after a) 100, b)200, c)300, d)400, e)500 and f)600 days

respectively. Core permeability is l/100th that of the remainder of the dam material.
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Figure 5.30: a) pressure head, h, and b) water saturation, Sw , profiles along the line 

y =  6.0 m, x E [4,16]m through a zoned clay loam dam using the compact stencil scheme at 100, 

200, 300, 400, 500 and 600 days. Core permeability is l / 100th that of the remainder of the dam

material.
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Figure 5.31: Plots of, a) pressure head, h, and b) water saturation, Sw at the point (10,6) m 

against time for the three dam sections considered.
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5.5 CLOSURE

This chapter has presented a vertex-centred edge-based finite volume formulation 

for groundwater flow problems. The scheme is capable of handling highly non­

linear material parameters and is made more accurate by employing the compact 

stencil discretisation approach. The scheme is edge-based and is highly scalable 

between small and large meshes, both structured and unstructured, of an 

arbitrary number of vertices per element.

Using a successive over relaxation non-linear iteration loop, the analysis 

time for the solution of the given problem was accelerated by an order of 

magnitude. By applying specific values of j3, 7 , and e to the non-linear update 

loop, much larger timesteps were achievable as compared to the linear update 

solution. In general, the scheme has been shown to be robust with respect to the 

non-linear parameters. For a very large timestep length, the stability of the 

solution is highly dependent on the non-linear loop parameters. If this problem is 

experienced, then a slight reduction in the step length will, in general, produce a 

stable solution and good speedup.

The test cases show that the standard finite volume method and compact 

stencil formulations have been successfully implemented for solving problems 

concerning two-dimensional flow in unsaturated soils. The first and second test 

case presents the infiltration of water into an initially dry soil column using a 

prefixed pressure head at the top of the column, and a prefixed flow rate at the 

top of the column respectively. For both test cases, the finite volume scheme 

captured the saturation front much more accurately than the finite element 

solution published by Gottardi ([12],[13]). Moreover, the results show that the 

compact stencil scheme produces less smearing of the non-linear front as 

compared to the standard scheme. Finally, the third test case models the 

infiltration flow of water across an initially dry compacted clay dam. Both 

homogeneous and inhomogeneous dam sections were considered, and the scheme 

produced excellent solutions for each case.

To the authors’ knowledge, this is the first instance in which the 

application of the elegant edge-based finite volume scheme has been used to solve
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the case of highly non-linear saturated-unsaturated groundwater flow through a 

porous medium.
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C h apter 6 

M o d e l l in g  A q u if e r  C o n t a m in a n t  

T r a n s p o r t

6.1 INTRODUCTION

In this chapter, the modelling of contaminant transport through aquifers over a 

horizontal plane by the application of the vertex-centred edge-based finite volume 

scheme is presented. De Wiest [4] defines an aquifer as a geologic formation, or a 

group of formations, which (i) contains water and (ii) permits significant amounts 

of water to move through it under ordinary field conditions. These aquifers may 

be classed as confined or unconfined. A confined aquifer is one bounded from 

above and below by impervious formations, where an unconfined aquifer has one 

or more pervious boundaries allowing the recharge and leakage of the 

groundwater contained within it. As aquifers are comprised of layers of rock or 

unconsolidated deposits, generally their dimensions along the horizontal plane 

(that is along the x and y coordinate axes) are an order of magnitude greater 

than their dimensions in the vertical direction. Hence, representing an aquifer as 

a two-dimensional domain is justified in simplified cases as considered in this 

chapter.

Today, our environment suffers more and more from the by-products of man’s 

industrial activities, and hence water quality is a major concern in any 

development and management of a water resources system. Bear [2] states that as 

the quality of both surface and groundwater resources deteriorate els a result of 

pollution, special attention should be devoted to the pollution of groundwater in 

aquifers due to their very slow velocity. Therefore, the study and simulation of 

contaminant transport in groundwater is of major importance, and in the 1970s 

the main aim of numerical models changed from the study of groundwater flow to 

problems of spreading of various substances in porous media [10]. Bear [2] defines 

term ‘pollutant’ to denote dissolved m atter carried with the water and
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accumulating in the aquifer, without inferring that concentrations have 

necessarily reached dangerous levels. Groundwater pollution is usually traced 

back to four sources:

• Environmental This type of pollution is due to the environment through 

which the flow of groundwater takes place. For example, in flow through 

carbonate rocks, water dissolves small, yet sometimes significant amounts 

of the rock. Seawater intrusion, or the pollution of good quality aquifers by 

invading brackish groundwater from adjacent aquifers as a result of 

disturbing an equilibrium that existed between the two bodied of water, 

are also examples of environmental pollution.

• Domestic. Domestic pollution may be caused by accidental breaking of 

sewers, by percolation from septic tanks, by rain infiltrating through 

sanitary landfills, or by artificial recharge of aquifers by sewage water after 

being treated to different levels. Biological contaminants (e.g. bacteria and 

viruses) are also related to this source.

• Industrial In many cases, a single sewage disposal system serves both 

industrial and residential areas. In this case, one cannot separate between 

industrial and domestic pollution, although their compositions -  and hence 

the type of treatment they require and the pollution they cause -  are 

completely different. Heavy metals, for example, constitute a major 

problem in industrial waste. Industrial waste may also contain specially 

non-deteriorating toxic compounds and radioactive materials.

• Agriculture. This is due to irrigation water and rainwater dissolving and 

carrying fertilisers, salts, herbicides, etc., as they infiltrate through the 

ground surface and replenish the aquifer.

Hence, the simulation of mass transport in porous media is dealt with in this 

chapter, where the considered mass is that of some solute (pollutant) moving 

with the solvent (water) in the interstices of a porous medium. The transport of 

pollutants in porous media can be divided into two main groups; miscible 

displacement -  pollutants are soluble in water, and immiscible displacement -  

pollutants are insoluble in water.
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• Transport of Miscible Pollutants.

Consider saturated flow through a porous medium, and let a portion of the 

flow domain contain a certain mass of solute (pollutant). The quantity of 

a solute in groundwater is represented by its concentration, and is defined 

as the substance’s quantity per unit of water volume. The solute will be 

referred to as a tracer. Bear [2] states that as flow take place, the tracer 

gradually spreads and occupies an ever-increasing portion of the flow 

domain, beyond the region it is expected to occupy according to the 

average flow alone. The spreading phenomenon is called hydrodynamic 

dispersion in a porous medium, and it is a macroscopic reflection of a real 

movement of particles in pores. It is a non-steady, irreversible process (in 

the sense that the initial tracer distribution cannot be obtained by 

reversing the flow) that creates a transition zone where the concentration 

continuously changes from the minimal to the maximal value.

De Wiest [4] reports that one of the earliest observations of these 

phenomena is presented by Slichter [18], who used an electrolyte as a 

tracer in studying the movement of groundwater. Slichter observed that at 

an observation well downstream of a continuous injection point, the 

tracer’s concentration increases gradually, and that even in a uniform 

(average) flow field the tracer advances in the direction of the flow in a 

pear-like shape that becomes longer and wider as it advances.

The Galerkin finite element method has been extensively used to 

solve miscible contaminant transport problems as reported by Pinder and 

Gray [16]. In Gray and Pinder [6], the effects of various finite difference 

and finite element methods for solving the one-dimensional convective- 

dispersive equation are investigated. Numerical solutions to such problems 

characteristically exhibit either oscillations in concentration in the 

neighbourhood of a sharp front or a smearing of the front, and the relative 

merits of certain finite difference and finite element schemes for solving 

such problems are considered in terms of frontal smearing and 

concentration overshoot. Results show that both finite difference and finite
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element schemes generate numerical solutions which exhibit an oscillatory 

behaviour behind, and in some cases in front of the concentration front. 

Procedures to correct such oscillations are presented, and they conclude 

that the finite element method was found to be superior to the finite 

difference method for solution of the convective-dispersive equation.

Selim and Mansell [17] present mathematical solutions of the 

differential equations governing reactive solute transport in a finite soil 

column for a continuous solute input, and a pulse-type, or slug input at 

the soil surface. These solutions incorporated reversible linear adsorption 

as well as irreversible solute adsorbtion. Comparisons were made with the 

mathematical solutions developed by Cleary and Adrian [3] and Lindstrom 

et al. [12], and it was concluded that for high velocity flow all three 

solutions are in agreement, but the Selim and Mansell solution is superior 

for flows with a Peclet number of Pe < 20.

Transport of Immiscible Pollutants

This part of the transport of pollutants was developed mainly by solving 

problems connected with oil exploration. Oils are a typical group that are 

almost insoluble, and hence they occupy an entire area in a porous 

medium, called a phase. As a result this is often called a multi phase flow. 

The most frequently consideed cases of multi phase flows is two phase flow 

(e.g. oil-water, water-air) and three-phase flow (e.g. oil-water-gas) systems. 

Multi phase fluid systems have been successfully simulated using various 

numerical techniques by numerous researchers e.g. ([9],[11],[20],[24]).
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The developed edge-based finite volume scheme will be applied to solve a 

contaminant transport problem where the contaminant is released into the 

aquifer from a strip source at the upstream end of a homogeneous and isotropic 

domain. The problem will be run on structured quadrilateral element meshes of 

different densities using the standard and compact stencil finite volume schemes, 

and the solution compared against an analytic solution and a published finite 

element solution. Numerical experiments will be conducted to find the optimal 

timestep length for these problems. The modelling of pollutant slugs entering the 

domain at the upstream boundary will then be considered, and the exponential 

decay of the pollutant in the slug and continuous injector boundary investigated. 

A pollutant slug can be defined as the introduction of a pollutant into an aquifer 

for a finite time, after which no further release occurs. This could be due to an 

accidental breaking of sewers or such pollutant carrying vessels, which would 

release pollutant into the groundwater until the problem was resolved. For all 

cases, varying levels of diffusion and advection in the equation system will be 

taken into account, and highly diffusion dominant, diffusion and advection 

equally dominant, and advection dominant problems will be considered. Finally, 

conclusions will be drawn from the work undertaken.

6.2 GOVERNING EQUATIONS

The governing equation for contaminant transport through aquifers over a 

horizontal plane can be obtained by vertically integrating the three-dimensional 

equation [2]. A simplified form of this equation is shown in (6.1), and it will be 

used to describe the aquifer contaminant transport problem considered here.

dc
V.(DVc) -  V.(vc) + g = —  (6.1)

dt

where V is the dell operator; c is the concentration; t is time; v is velocity; D is 

the dispersion coefficient tensor and g incorporates chemical reactions. Note that 

v =  (v ,v ).\  XX 5 y y  J
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For problems where the exponential decay (radioactive decay) of the 

contaminant species over time is considered, then the chemical reaction term in 

equation (6.1) is defined as follows,

g =  -Ac (6.2)

where A =  decay rate coefficient. By substituting equation (6.2) into (6.1), and

making the assumption that c is constant with respect to x, then the decay term

can be described as follows,

—  =  -Ac (6.3)
dt v '

It can be seen that,

c = e~M (6.4)

is a solution to (6.3) and hence proves that the decay term (6.2) used is indeed 

exponential decay.

6.3 SOLUTION PROCEDURE

The solution procedure employed to solve the contaminant transport problem 

using the edge-based finite volume scheme defined in chapter 2 is presented in 

this section. By implying that the second mixed derivatives are zero, the 

expansion of the transport equation (6.1) on a two dimensional domain Q gives;

d_
dx

dc
d x t + l k

D. dc
dy,

dc dc \ c _  
~ V" ~ d ^ ~ Vyy~d^~ °~ ~ d t

(6.5)

Integration over the control volume gives:
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r A ( ^ a c ] dn+ f A
J dx{  dx)  J  dy

- I

DS d n

v_ —  dQ -  f v  —  dQ -  f  Ac dQ =  f —  dQ
u &  {  "  9y {  {  9t

(6 .6)

The spatial derivative terms in equation (6.6) are discretised by application of 

Green’s theorem, and by the assumption that the spatial derivative is linear over 

the control volume . The application of the edge-based discretisation 

procedures and the Euler backward difference scheme as discussed in chapter 2 

gives for all nodes m  in the domain;

d_
dx (A,)

— {v )\  XX /

(dcn)
K dx  , n m + —771 r \dy (Ad

dcn
a

(dcn) Qm — (vm) dc" )
K dx  , \ yy / m n

771 . 9 V J

d y )

-  Ac” n m
cn+1 -  cnm  m

(6.7)

A t
a

The term (V) and \D.) are the velocity and dispersion coefficient
V l 'mn  \ l 'mn

components respectively applied to edgemn.

The diffusion terms in equation (6.7) are grouped into one term <£m as 

shown in (6.8), and the advection terms grouped into the term ©m as shown in 

(6.9);

9K = - z ~dx
( D J
\ /  77171 

©m = -(«=),

fac")
dx  , 

(dcnx

Q  +  —
771 1 r \dy (Ad

dcn)
a

Q — ( v )™ \ yy }T
dc”

( d y  j
Q.

(6.8)

(6.9)

As we assume that the flow is to be unidirectional along the aj-axis, the advection 

term in equation (6.9) simplifies to,
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/Q #\dc
( dx ) 

(dcn'

n -  (v )m \ yy Jz
(dc"J
( d p )

n.
(6.10)

a

Substituting equations (6.8) and (6.10) in (6.7) results in the following 

expression.

rn+1 _  rn
$  +  0  -  ACnQ =  ^2--------XL . Qm ' in m m At

(6 .11)

Rearranging (6.11) gives the explicit linear update for the pollutant concentration 

as:

c"+I =  [($„ +  e j  -  —  +  clm  |_\ m  771/ 771 777. J / - \  1 73

m

=  (»„ + 0 m) —  -A c “A« +  c"\  771 1 771

(6.12)

A flowchart of the solution procedure is given in Figure 6.1, where the 

symbols correspond to those used in equations (6.5) to (6.12).

6.4 TEST CASE - CONTAMINANT TRANSPORT FROM AN UPSTREAM

STRIP SOURCE

This test case will consider the common problem of two-dimensional transport 

from a strip source at the upstream end of the domain. Similar problems have 

been considered by a number of researchers ([5],[21],[6]), and the test case 

considered here is taken from a publication by Yeh [23]. The flow through the 

domain is assumed to be unidirectional along the x direction having a velocity 

equal to 1.0 m/s. The medium is homogeneous and isotropic, and the longitudinal 

dispersivity is assumed equal to the lateral dispersivity hence Dx = Dy.
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Standard
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Figure 6.1: Program flow chart for the pollutant transport problem.
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The dimensions of the domain to be considered is 5 x 10 metres (5 m in the y 

direction, 10 m in the x direction) and is shown in Figure 6.2, along with markers 

to enable the identification of each boundary.

y

Figure 6.2: The boundary of the domain considered in the contaminant transport test case,

along with boundary labels.

The initial and boundary conditions for this problem are;

cQ =  0.0 at t = 0, 

c = 1.0 on side B-C 

c =  0.0 on side A-B and C-D, 

dcjdy — 0.0 on side D-E and A-F, 

dC jdx  = 0.0 on side E-F.

In contrast to the groundwater flow models, the models of miscible pollutant 

transport have to deal with the effects of an advective transport. This makes the 

solution difficult, and, as we shall see later, a new error emerges, which causes an 

instability of the front of a transition zone by high velocities (that is when the 

advective term has a great influence). To assess the influence, the Peclet number 

(Pe) and Courant number ( Cr) is introduced as;

P e =  (6.13)

158



C h a p t e r  6  -  M o d e l l i n g  A q u i f e r  C o n t a m i n a n t  T r a n s p o r t

and,

< 7 , = ^  (6 ,4 )

respectively, where A x  is the minimum edge length for the mesh, and A t  the 

timestep length. It is apparent that the higher the velocity, the larger the Peclet 

number. When the velocity equals zero, only a molecular diffusion comes into 

play and Pe = 0. The other limit case is a pure advective transport when D = 0 

and Pe =  oo. Three cases, with Peclet numbers of 0.05, 1.0 and 50.0 are 

considered. They represent three distinct cases of contaminant transport 

problems: 1) highly dispersion dominant, 2) dispersion and advection equally 

dominant, and 3) highly advection dominant respectively. These Peclet numbers 

are made up by varying the dispersion coefficient from 10.0 to 0.5 and 0.01 

respectively.

For the numerical simulation, the domain is discretised into two distinct 

meshes, Mesh 1 and 2 which are illustrated in Figure 6.3. Mesh 1 contains 10 x 

20 quadrilateral (square) elements, resulting in 11 x 21 =  231 nodes, and has an 

edge length ( A x ) of 0.5 m. Mesh 2 contains 21 x 41 quadrilateral (square) 

elements, resulting in 22 x 42 =  924 nodes, and has an edge length of 0.2439024 

m.

The three cases, with Peclet numbers of 0.05, 1.0 and 50.0 are solved and 

the results obtained are discussed in subsequent sections. The numerical results 

are displayed graphically and are compared to the analytical solution to the 

problem, and the solution obtained by Yeh [23] using a finite element scheme.

6-4-1 Dispersion Dominant System - Pe = 0.05

The results for the contaminant transport test case with a Peclet number of 0.05, 

using the standard and compact stencil finite volume scheme on Mesh 1 and 2 

are shown in Figure 6.4 to Figure 6.6. The chosen Peclet number represents a 

highly dispersion dominant system, and the solutions were obtained using a time 

step length of dt = 0.001 seconds.
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Mesh 1

y

Mesh 2
Figure 6.3: The coarse mesh (Mesh 1) and the finer mesh (Mesh 2) used for the contaminant

transport problem.

l -
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Figure 6.4: Concentration profiles using Mesh 1 along y =  2.5 m at t =  4.0 sec. for Pe =  0.05, 

using the standard and compact finite volume schemes compared to the analytical solution.
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Figure 6.5: Concentration profiles using Mesh 2 along y =  2.5 m a t  t = 4.0 sec. for Pe =  0.05, 

using the standard and compact finite volume schemes compared to the analytical solution.
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Figure 6.6: A comparison of the concentration profiles using Mesh 1 along )/ =  2.5 m at i =  

4.0 sec. for Pe — 0.05, using the compact stencil scheme compared to the analytical solution

and the solution obtained by Yeh [23].
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Figure 6.4 to Figure 6.6 show the concentration profiles along the horizontal 

centre line of domain at t = 4.0 seconds. The profiles were calculated using the 

standard finite volume scheme and the compact stencil scheme, and are compared 

to the analytic solution for the set problem. Using the coarser Mesh 1, Figure 6.4 

shows that the standard scheme captures the exact solution for approximately 

the first 0.5 metres of the domain. This solution then diverges away from the 

analytic, and the plot is not smooth. Although the solution obtained using the 

compact scheme is smooth, it nowhere matches the analytic solution. However, it 

is much closer to the profile of the analytic solution than the standard scheme 

solution. When the finer Mesh 2 is used, the difference in the solution obtained 

using the standard and compact schemes along the horizontal centre line is 

negligible, as shown in Figure 6.5. However, it is encouraging that the result 

obtained using the compact scheme is almost identical to the finite element result 

of Yeh [23] (see Figure 6.6). The mesh is the same in both cases but the analysis 

very different. Yeh [23] used an upstream weighted implicit method with 

successive over relaxation for this problem; whereas finite volume solution is a 

linear explicit method.

The main benefit of the compact scheme is displayed in the contour plots 

shown in Figure 6.7 and Figure 6.8, which show the concentration contours at t 

=  4.0 seconds for Mesh 1 and 2 respectively using; a) the compact stencil scheme, 

and b) the standard second derivative scheme. The disadvantage of the standard 

five-node stencil second derivative calculation as compared to the compact stencil 

scheme is clearly evident. Figure 6.7b shows the concentration obtained on the 

coarse Mesh 1 at 4.0 seconds. At the edges of the concentration front, where 

there are regions with large differentials, the leapfrog nature of the standard 

scheme has clearly introduced a spatial oscillation into the solution. For an 

identical case with the compact stencil (Figure 6.7a) these oscillations are not 

present. Similar observations can be made regarding Figure 6.8, where the 

concentration contour plots calculated using both schemes on the finer Mesh 2 

are shown. Again, the standard scheme results in spatial oscillations, and the 

compact scheme solution is everywhere smooth.
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By considering the plots along the designated centre line and the contour 

plots of the domain, it can be concluded tha t the compact scheme produces a 

more accurate solution than the standard scheme for diffusion dominant flow 

problems.

c
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b)

Figure 6.7: Concentration contours a t t = 4.0 sec. for Pe =  0.05 for Mesh 1 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.
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Figure 6.8: Concentration contours a t t — 4.0 sec. for Pe = 0.05 for Mesh 2 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.

6.4-2 Dispersion And Advection Equally Dominant System - Pe — 1.0 

A Peclet number of 1.0 represents a dispersion and advection equally dominant 

system, and in this case the results obtained for the contam inant transport 

problem using the standard and compact stencil finite volume scheme are shown 

in Figure 6.9 to Figure 6.11. Results obtained using both Mesh 1 and 2 are 

illustrated, and the solutions were obtained using a time step length of dt = 0.001 

seconds.
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Figure 6.9: Concentration profiles using Mesh 1 along y =  2.5 m at t — 4.0 sec. for Pe =  1.0, 

using the standard and compact finite volume schemes compared to the analytical solution.
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Figure 6.10: A comparison of the concentration profiles using Mesh 1 along y =  2.5 m at t =  

4.0 sec. for Pe =  1.0, using the compact stencil scheme compared to the analytical solution

and the solution obtained by Yeh [23].

165



C h a p t e r  6  -  M o d e l l i n g  A q u i f e r  C o n t a m i n a n t  T r a n s p o r t

1 -
Analytic Solution 
Compact Stencil 
Std. FV

% 0.6

0.4

0.2

x in m

Figure 6.11: Concentration profiles using Mesh 2 along y =  2.5 m at < =  4.0 sec. for Pe =  1.0, 

using the standard and compact finite volume schemes compared to the analytical solution.

Using the coarser Mesh 1, it is evident from Figure 6.9 that the standard scheme 

produces a solution which is much closer to the analytic than the compact stencil 

solution. However, on inspection of the concentration contours for Mesh 1, 

illustrated in Figure 6.12, it can be seen that the compact scheme produces 

markedly smoother contours along the whole domain when compared to the 

standard scheme contours. As the plot in Figure 6.9 only takes the values of the 

concentration along the horizontal centre line through the domain, it can be 

hypothesised that the values obtained for the standard scheme were fortunate to 

be close to the analytic solution as the concentration front oscillates in space as 

shown in Figure 6.12. However, as we are now considering a dispersion and 

advection equally dominant system, the benefit of the compact scheme, which is 

only used to calculate. second derivative terms, is reduced. The advection terms 

are now beginning to affect the solution, and may be the cause of the difference 

between the accuracy of the compact and standard solutions in Figure 6.9. 

However, when the finer Mesh 2 is used, the difference in the calculated solution
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between the standard and compact schemes is negligible, as shown in Figure 6.11. 

Once more, the compact scheme result is almost identical to the computationally 

expensive finite element method result of Yeh [23], as shown by Figure 6.10.

Again, the advantage of the compact scheme as compared to the standard 

scheme is incontestable from the concentration contour plots shown in Figure 

6.12 and Figure 6.13. The solution across the entire domain obtained using the 

compact scheme is smooth for both meshes, while the standard scheme solution 

has large spatial oscillations.
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Figure 6.1'2: Concentration contours at t = 4.0 sec. for Pe — 1.0 for Mesh 1 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.
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Figure 6.13: Concentration contours a t t — 4.0 sec. for Pe — 1.0 for Mesh 2 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.

6-4-3 Highly Advection Dominant System - Pe =  50.0

A Peclet number of 50.0 represents a highly advection dominant system, and the 

results obtained using the standard and compact stencil finite volume scheme for 

the contam inant transport problem are shown in Figure 6.14 to Figure 6.16, 

where they are also compared to the analytical solution. The solutions were 

obtained using a time step length of dt =  0.001 second, and Figure 6.14 to Figure 

6.16 show the concentration profiles along the line y =  2.5 m through the domain 

at t = 4.0 seconds. Results for both Mesh 1 and Mesh 2 are illustrated.
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Figure 6.14: Concentration profiles using Mesh 1 along y =  2.5 m at t — 4.0 sec. for Pe =

50.0, using the standard and compact finite volume schemes compared to the analytical

solution.
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Figure 6.15: Concentration profiles using Mesh 2 along y =  2.5 m at t = 4.0 sec. for Pe =

50.0, using the standard and compact finite volume schemes compared to the analytical

solution.
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Figure 6.16: A comparison of the concentration profiles using Mesh 1 along y =  2.5 m at t =

4.0 sec. for Pe =  50.0, using the compact stencil scheme compared to the analytical solution

and the solution obtained by Yeh [23].

The front tracking capability of the scheme is shown by this set of results. This 

problem is dominated by the first order advection term and diffusion is minimal. 

Consequently the elliptic terms calculated by the more accurate compact stencil 

play a diminished role in the algorithm. Using the coarser Mesh 1, Figure 6.14 

shows that both the standard and compact schemes produce comparable 

solutions. The same can be deduced from Figure 6.15, which shows the solutions 

obtained on the finer Mesh 2. Due to the highly advection dominant system, the 

elliptic terms calculated by the more accurate compact stencil play a diminished 

role in the algorithm. Hence, both solution schemes produce similar results. This 

is also shown by the concentration contour plots obtained using both schemes on 

both computational domains, shown in Figure 6.17 and Figure 6.18. Furthermore, 

it can be deduced from both Figure 6.14 and Figure 6.15 that the finite volume 

scheme closely captures the concentration front, with the sharper front obtained 

using the denser Mesh 2. In comparison to Yeh’s solution [23] obtained on Mesh 1
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(Figure 6.16), the front capturing capability of the edge-based finite volume 

scheme is superior to the front smearing of the finite element scheme employed in 

his work. Moreover, the solution obtained in the vicinity of the front is much 

closer to the analytic solution for the problem. The only drawback to the scheme 

is the oscillations observed in the solution behind the front. This is due to the 

way in which derivatives are calculated within the scheme. If the nodes 

contributing terms to the derivative calculated at node m  span across the front, 

then oscillations will be generated, and will propagate. The numerical 

discretisation described using the edge-based finite volume scheme described in 

section 2.6.1 (First derivative terms) is a typical central-difference approach, 

which is known to be unstable for hyperbolic-type equations. Over the history of 

the use of such schemes in CFD related problems, stabilising such schemes while 

retaining second order accuracy has been one of the main concerns [7]. It was 

soon found that the addition of dissipation would make the scheme stable by 

damping the oscillations originating from the advection terms. The stabilising 

dissipation can be thought of as adding a simplified discrete harmonic term to the 

governing equations. This led to first order upwind schemes which are, although 

stable, too dissipative to produce accurate solutions for reasonable mesh sizes. 

The need for improved accuracy resulted in the discovery of several second order 

accurate approaches ([1],[8],[13],[22]). One class of such schemes are the artificial 

dissipation schemes where a third order biharmonic operator is added to the 

equations and has been successfully implemented by Malan [14], Malan et al. [15] 

and Sorensen [19]. However, as the problems we are interested in generally have 

low Peclet numbers, these schemes have not been implemented into the solution 

algorithm.
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Figure 6.17: Concentration contours a t t =  4.0 sec. for Pe =  50.0 for Mesh 1 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.
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Figure 6.18: Concentration contours a t t — 4.0 sec. for Pe = 50.0 for Mesh 2 using a) the 

compact stencil scheme, and b) the standard second derivative scheme.
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6.5 TIME STEP LENGTH EXERCISE

Numerical experiments have shown that for Peclet numbers of 0.05 and 1.0, using 

both standard and compact stencil finite volume schemes on Mesh 1 and 2, the 

maximum allowable timestep size for the problem was dt = 0.001 seconds. 

Timesteps smaller than this produced exactly the same result, while larger 

timesteps cause the solution to become unstable, and convergence did not occur. 

Table 6.1 summarises the results of a similar numerical experiment run for a 

Peclet number of 50.0 carried out using the compact stencil finite volume scheme 

on Mesh 2 only, using timesteps of 1.0, 0.5, 0.1, 0.01, 0.001 and 0.00001 seconds. 

If the simulation produced a suitable solution then ‘OK’ is seen in the table, 

otherwise, if the solution did not converge the corresponding cell contains ’. In 

addition the Courant number (equation (6.14)) for the mesh using the designated 

timestep length is shown.

A t (sec.)
C om pact

S ten c il c r

1.0 - 4.1

0.5 - 2.05

0.1 OK 0.41

0.01 OK 0.041

0.001 OK 0.41 x 10-02
0.00001 OK 0.41 x 10"04

Table 6.1: Timestep length exercise using the compact stencil finite volume scheme on Mesh 2

with Pe =  50.0

Figure 6.19 shows the calculated concentration profile along the horizontal centre 

line through the domain using Mesh 2 at t — 4 seconds with timesteps of 0.5, 0.1, 

0.01, 0.001 and 0.00001 seconds. The solution was obtained using the compact 

stencil finite volume scheme.
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Figure 6.19: Concentration profiles on Mesh 2 along y = 2.5 m at t =  4 sec. for Pe — 50.0, 

using the compact stencil scheme, and timesteps of 0.1, 0.01, 0.001 and 0.00001 seconds.

The general trend seen from the result is that the larger timesteps greatly 

amplify the oscillations seen in the region behind the front. For the results 

obtained using a timestep of dt = 1.0 and 0.5 seconds, such large oscillations were 

produced behind the front that these results could not be included on the plot in 

Figure 6.19. However, the front position for both omitted plots was similar to 

that seen with a timestep of 0.1 seconds.

On reducing the timestep down to 0.1, 0.01, 0.001 and 0.00001 seconds, it 

is seen that the solution obtained converge towards the solution for the problem 

using this scheme. As the timestep is reduced, the amplitude of the oscillations in 

the plot is also reduced, and the front becomes sharper. This trend is observed for 

all cases, until exactly the same solutions are achieved with a timestep of 0.001 

and 0.00001 seconds. It is interesting to note that both the compact stencil and 

the standard finite volume schemes display the same general trend when different 

timestep lengths are considered.
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6.6 TEST CASE - CONTAMINANT TRANSPORT FROM AN UPSTREAM  

STRIP SOURCE WITH DECAY

In the previous sections we considered the transport of pollutants when they do 

not react with the porous medium’s skeleton, or degrade over time. This is only 

the simplest case and in real situations these phenomena can be neglected only on 

some occasions. The derivation and application of terms to describe the sorption 

and adsorption of the dissolved pollutant by the porous media is described in 

detail by Kovraik [10]. By making the assumption that the pollutant does not 

react with the porous medium, thus the processes of sorption and adsorption do 

not occur, the radioactive decay of this ideal tracer is described by equation (6.2) 

as per Bear [2], De Wiest [4] and Kovraik [10]. The problem discussed in the 

previous section is repeated here using and a range of levels of contaminant decay 

to investigate the effect of decay on the concentration of pollutant. The rate of 

decay of the contaminant species is determined by the coefficient A in equation 

(6.2). This decay coefficient represents the rate of decay of the contaminant 

species per second (i.e. the reciprocal of the solute’s mean half life). Other 

degrading processes (of chemical or microbiological manner) can be represented 

by different values of the constant A. The decay coefficient values chosen for this 

investigation and the corresponding levels of decay associated with each value at 

the end of the simulation time is shown in Table 6.2.

A D eca y %

0.0 0.0
0.05 18.13

0.1 32.97

0.2 55.07

0.5 86.47

Table 6.2: Decay coefficient values and the corresponding levels of decay at t = 4 sec.

The calculated concentration profiles using Mesh 2 along the horizontal 

centre line through the domain at time t — 4.0 seconds using decay coefficients
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(A) of 0.0, 0.05, 0.1, 0.2 and 0.5, for Pe =  0.05, 1.0 and 50.0 are shown in Figure 

6.20, Figure 6.21 and Figure 6.22 respectively.

Analytic Solution, X = 0.0 
X = 0.0 
X = 0.05 
X = 0 .1  
X = 0 .2  
X = 0 .5

4 0.6

0.4
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xinm
Figure 6.20: Concentration profiles using Mesh 2 along y =  2.5 m at t — 4.0 sec. for Pe =  

0.05, using decay coefficients (A) of 0.0, 0.05, 0.1, 0.2 and 0.5.
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Figure 6.21: Concentration profiles using Mesh 2 along y — 2.5 m at t = 4.0 sec. for Pe = 1.0, 

using decay coefficients (A) of 0.0, 0.05, 0.1, 0.2 and 0.5.
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Figure 6.22: Concentration profiles using Mesh 2 along y =  2.5 m at t =  4.0 sec. for Pe =

50.0, using decay coefficients (A) of 0.0, 0.05, 0.1, 0.2 and 0.5.

For the three cases shown, the required level of decay after 4 seconds is achieved. 

The first two cases, Figure 6.20 and Figure 6.21, show decay plots that are 

smooth, and in general are of the same shape, but with decreased concentration 

levels, as the numerical solution achieved with no decay. In the advection 

dominant case shown in Figure 6.22, as the rates of decay increase, the sharpness 

of the front reduces and the spatial oscillations behind the front position are 

damped as compared to the numerical solution with no decay. It is of note that 

at high rates of decay (A =  0.2,0.5), the pollutant is decaying faster than the 

travel of the front across the domain, and for the case of A =  0.5 , the pollutant 

species is virtually extinct except at the upstream inflow boundary where x = 0.
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6.7 TEST CASE - TRANSPORT OF A CONTAMINANT SLUG FROM AN 

UPSTREAM STRIP SOURCE

In this case, we consider a problem of two-dimensional transport from a strip 

source at the upstream end. Previously, the pollutant is injected at a constant 

rate throughout the simulation by application of a fixed concentration boundary 

condition along boundary B-C (see Figure 6.2). Here, we wish to model the 

situation where a pollutant slug injected into the domain for 1 second, and then 

the injection of pollutant is ceased. This is achieved by applying the following 

boundary conditions to the domain:

cQ = 0.0 at t =  0,

1.0 , when t < 1.0 sec,
c — on side B-C 

0.0 , when t>1.0 sec,

c — 0.0 on side A-B and C-D, 

dcjdy  =  0.0 on side D-E and A-F, 

dcjdx  =  0.0 on side E-F.

Once more, the flow is assumed to be unidirectional along the x - axis having a 

velocity equal to 1.0 m/s. The medium is homogeneous and isotropic, and the 

longitudinal dispersivity is assumed equal to the lateral dispersivity. Three cases 

with Peclet numbers of 0.05, 1.0 and 50.0 were considered, and the results 

obtained for each case are shown below. All numerical simulations in this section 

were run on the finer Mesh 2 (see Figure 6.3).

6.7.1 Contaminant Slug in a Dispersion Dominant System - Pe = 0.05 

The results obtained for the numerical simulation of a contaminant slug in a 

highly dispersion dominant system with a Peclet number of 0.05 using the 

compact stencil scheme are shown in Figure 6.23, Figure 6.24 and Figure 6.25. 

The solutions were obtained using a time step length of dt — 0.001 seconds. 

Figure 6.23 and Figure 6.24 show the concentration profiles along the horizontal 

centre line of the domain (i.e. y = 2.5) at various times in the simulation, while
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Figure 6.25 shows the concentration contours at t = 0.1, 1.1, 1.2, 1.3 and 1.5 

seconds.
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1.1 sec
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0.4

0.3
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x  in m

Figure 6.23: Concentration profiles using Mesh 2 along y — 2.5 at t — 1.0 and t =  1.1 sec. for 

Pe — 0.05, using the compact stencil scheme.
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O0o
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Figure 6.24: Concentration profiles using Mesh 2 along y — 2.5 at various times between 1.0 

and 8.0 sec. for Pe =  0.05 using the compact stencil scheme.
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The plot of the concentration profiles using along the horizontal centre line of the 

domain at t = 1.0 and t = 1.1 seconds for a Peclet number of Pe = 0.05 is 

illustrated in Figure 6.23. This clearly shows the situation along this line at the 

end of the period of injection of the pollutant slug (t = 1.0 seconds), and 

immediately after it (t = 1.1 seconds) when the injection of pollutant has ceased. 

The pollutant concentration at the point i = 0 , 0 m  drops from c — 1.0 at t — 1.0 

seconds, to c =  0.0 at t = 1.1 seconds. This is as described by the boundary 

conditions above, and hence one is assured that the slug injection condition is 

correct.

Figure 6.24 shows concentration profiles along the same line as shown in 

Figure 6.23, but for times between 1.0 and 8.0 seconds. It is seen that for the 

solution obtained at t = 1.1 seconds, the concentration profile has a sharp narrow 

peak. Solutions at increasing times show increasing rounding of the peak, the 

maximum concentration is reduced, and the slug is seen to diffuse throughout the 

whole domain. This outcome is supported by considering the pollutant 

concentration contours show in Figure 6.25. The high Peclet number enforced on 

this problem ensures that the equation system is diffusion dominant. Once the 

slug is released from boundary B-C at t >1.0 second, it diffuses quickly into the 

domain. After 1.5 seconds, using the contour scale shown, no variability in 

pollutant concentration is visible in the domain.

6.7.2 Contaminant Slug in a Dispersion And Advection Equally Dominant 

System  - Pe =  1.0

A Peclet number of 1.0 represents a dispersion and advection equally dominant 

system. The results modelling a contaminant slug through the domain under 

these conditions using the compact stencil scheme are shown in Figure 6.26 

through to Figure 6.28. The solutions were obtained using a time step length of 

dt =  0.001 seconds. Figure 6.26 show the concentration profiles along y =  2.5 at 

various times in the simulation, while Figure 6.27 shows the concentration 

contours at t = 1.0, 1.1, 2.0, 4.0, 6.0 and 8.0 seconds. Figure 6.28 illustrates a
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three dimensional representation of the concentration contours, with pollutant 

concentration on the vertical axis, at t =  1.1, 1.5, 2.0 and 3.0 seconds.

) )

a) 0.1 sec. b) 1.0 sec.

e) 1.3 sec.

i I
0.9375
0.875
0.8125
0.75
0.6875
0.625
0.5625
0.5
0.4375
0.375
0.3125
0.25
0.1875
0.125
0.114024
0.105486
0.0919321
0.0760766
0.0625
0

f) 1.5 sec.

Figure 6.25: Concentration contours a t various times for Pe =  0.05 on Mesh 2 using the compact

stencil scheme.
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By comparing Figure 6.24 and Figure 6.26, it is evident that the there is 

far less diffusion in the latter case. This is a direct result of the choice of Peclet 

number. The concentration plots of Figure 6.26 shows that the pollutant slug has 

not diffused through the domain as quickly as the previous case. The slug 

remains as an entity until it approaches the far side boundary at t = 5.0 seconds. 

Then there occurs a build up of concentration in this region due to the no-flow 

condition applied to boundary E-F. Similar conclusions can be made concerning 

the results obtained using Pe = 0.05. However, in this case the slug approaches 

the far side boundary almost immediately after the slug injection has come to an 

end (see Figure 6.26).

Figure 6.27 reinforces what has already been said, and it is clear that the 

reduced rate of diffusion causes the slug to remain as a region of high 

concentration for an extended period as compared to the previous case (see 

Figure 6.25). The 3-D concentration plots of Figure 6.28 clearly illustrate the 

path of the pollutant slug. It is seen that the centre point of the slug loses 

concentration as the slug diffuses out towards the horizontal boundaries of the 

domain (boundaries A-F and D-E).
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Figure 6.26: Concentration profiles using Mesh 2 along y =  2.5 at various times between 1.5 

and 8.0 sec. for Pe =  1.0 using the compact stencil scheme.
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a) 1.0 sec

c) ‘2.0 sec

e) 6.0 sec

b) 1.1 sec

d) 4.0 sec
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Figure 6.27: Concentration contours at various times for Pe =  1.0 on Mesh 2 using the compact

stencil scheme.
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c) '2.0 sec. d) 3.0 sec.

Figure 6.28: 3-D Concentration contours with pollutant concentration on the vertical axis a t t 

=  1.1, 1.5, 2.0 and 3.0 sec., and Pe =  1.0 for Mesh 2 using the compact stencil scheme. (The 

contour legend is the same as th a t in Figure 6.27).
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6.7.3 Contaminant Slug in a Highly Advection Dominant System - Pe = 50.0 

The results for a highly advection dominant system, a result of the chosen Peclet 

number of 50.0, using the compact stencil scheme are shown in Figure 6.29 and 

Figure 6.30. The solutions were obtained using a time step length of dt = 0.001 

second. Figure 6.29 show the concentration profiles along y = 2.5 at various times 

in the simulation, while Figure 6.30 shows the concentration contours at t = 0.5, 

1.1, 2.0, 4.0, 6.0 and 8.0 second.

From Figure 6.29, it is evident that as the maximum concentration at the 

centre of the slug reduces slightly as time increases, and the width of the slug 

increases accordingly due to the small rate of diffusion. However, on comparison 

with the other two cases considered, the rate of diffusion of the pollutant slug is 

miniscule, and the slug remains as a body of high concentration throughout the 

simulation time as clearly illustrated by Figure 6.30, Moreover, the slug does not 

make contact with the far side boundary at all, again as a result of the small 

diffusion rates. The oscillations caused by the advection terms, as discussed in 

section 6.4.3, are visible in both the concentration profile and contours (Figure 

6.29 and Figure 6.30 respectively). Suitable approaches to correct this have been 

mentioned, but have not been implemented into the scheme at this time.

  2.0 sec
-*------  3.0 sec
-b  4.0 sec
■m  5.0sec

  6.0 sec
  7.0 sec

  5.0 sec
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0.5

0.3

0.2

- 0.1

0 2 4 6 8 10

x in m

Figure 6.29: Concentration profiles using Mesh 2 along y =  2.5 at t =  1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0 and 8.0 sec. for Pe =  50.0 using the compact stencil scheme.
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) □

a) 0.5 sec. b) 1.1 sec.
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Figure 6.30: Concentration contours a t various times for Pe — 50.0 on Mesh 2 using the

compact stencil scheme.
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6.8 TEST CASE - TRANSPORT OF A CONTAMINANT SLUG FROM AN 

UPSTREAM STRIP SOURCE WITH DECAY

In this case, we consider a problem of two-dimensional transport of a pollutant 

slug from a strip source at the upstream end of the domain, with the effect of 

exponential decay on the pollutant over time. The initial and boundary 

conditions, and the domain size and mesh used are identical to those used in 

section 6.4. The problem is solved for the three Peclet numbers considered 

throughout this chapter (0.05, 1.0 and 50.0), and a range of levels of contaminant 

decay to investigate the effect of decay on the concentration of the pollutant slug. 

The values for the decay coefficient A chosen for this investigation, and the 

corresponding levels of decay associated with each value at the end of the 

simulation time as used in section 6.6 are shown in Table 6.2. The results 

obtained are shown in Figure 6.31, Figure 6.32 and Figure 6.33 respectively. The 

plots show the concentration profiles along the horizontal centre line of the 

domain at various times in the simulation. The solutions were obtained using a 

time step length of dt = 0.001 second on Mesh 2.

In all cases the plots are smooth, and show the required rates of decay for 

each decay coefficient as listed in Table 6.2.

6.9 CLOSURE

In this chapter the modelling of contaminant transport through aquifers over a 

horizontal plane by the application of the vertex-centred edge-based finite volume 

scheme has been presented. To the authors’ knowledge, this is the first 

application of this scheme in solving contaminant transport problems.

Firstly, the contaminant transport from a strip source at the upstream end 

of a homogeneous and isotropic domain was considered. The flow was assumed to 

be unidirectional. The standard and compact stencil finite volume schemes were 

successfully utilised to solve the problem for varying Peclet number and mesh 

density. The numerical solutions were compared to the analytical solution for the 

problem and a close correlation was achieved. The solutions also compared well
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to a published numerical solution obtained using the more computationally 

expensive finite element method.

The disadvantage of the standard five-node stencil was clearly evident 

from a spatial oscillation in the contour plots of the solutions. However, the 

excellent compact scheme was comparable to the analytical solution. The front 

tracking capability of the scheme is shown by the solution to the highly advection 

dominant system. In addition, by adding non-zero values of the decay coefficient 

into the governing equation, the decay of the pollutant species over time was 

successfully modelled. Finally, the simulation of the injection of a pollutant slug 

into the system for a set time was successfully dealt with, and the same problem 

was considered with decay of the contaminant species.

Therefore, this efficient and elegant numerical method can provide 

accurate solutions for a wide range of contaminant transport problems.
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 •--- 1.1 sec, X -  0.0
— — a 1.5 sec, X = 0.0

x in m
Figure 6.31: Concentration profiles using Mesh 2 along y =  2.5, at t = 1.1, 1.5 and 8.0 sec., 

for Pe =  0.05, using the compact stencil scheme, and A =0.0, 0.05, 0.1, 0.2 and 0.5.
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Figure 6.32: Concentration profiles using Mesh 2 along y =  2.5, at t — 1.5, 3.0 and 8.0 sec.,

for Pe — 1.0, using the compact stencil scheme, and A =0 .0 , 0.05, 0.1, 0.2 and 0.5.
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Figure 6.33: Concentration profiles using Mesh 2 along y =  2.5, at t = 3.0, 5.0 and 8.0 sec., 

for Pe = 50.0 using the compact stencil scheme, and A =0 .0 , 0.05, 0.1, 0.2 and 0.5.
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C hapter 7 

C o u pl e d  C o n t a m in a n t  T r a n s p o r t  T h r o u g h  

a  Sa t u r a t e d  P o r o u s  M e d iu m

7.1 INTRODUCTION

In this chapter the coupled model of miscible contaminant transport through a 

saturated porous medium, such as an aquifer, is presented. The aquifer is 

represented by a horizontal plane and the governing equations are discretised by 

the application of the vertex-centred edge-based finite volume scheme. The 

presented model solves Richards equation for flow and a transport equation for 

each contaminant species, the two being coupled by the Darcy velocity term. 

This is an extension to the problem stated in chapter 6, which considered the 

solution of the transport equation for the contaminant species only, and a 

constant flow velocity was assumed.

The numerical solution of transport problems with sharp transition or high 

advection are surprisingly difficult to solve using traditional finite element and 

finite difference schemes ([3]-[11]). When the advective term becomes dominant, 

the transport equation tends to become hyperbolic and the solutions based on 

traditional finite element and finite difference methods are always plagued with 

either spurious oscillations (overshoot) or excessive slope of the concentration 

front (smearing), due to numerical dispersion. Yeh and Ward [9] and McDonald 

and Harbaugh [6] have presented coupled flow and contaminant transport 

models, called FEMWATER and MODFLOW respectively. The flow models used 

are based on a standard Galerkin finite element approximation for the calculation 

of the pressure head. Holder et al. [4] states that this approach is not element 

wise conservative, and velocities are at best first-order accurate. Holder et al. [4] 

present a three-dimensional groundwater model called FLOTRAN, which solves 

the governing equations for flow and contaminant transport using the finite
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element method. They claim that the model provides excellent mass balance 

characteristics, fast solution times, and flexibility in choosing modelling 

conditions, such as grid definition boundary conditions, and wells. In addition, 

FLOTRAN incorporates linear sorption, bio-degradation and first-order decay 

into its solution of the ground water contaminant transport equations, and can 

model multiple components, allowing the user to simulate several contaminants 

in one model run.

Gottardi [2] presents a finite element program for modeling two- 

dimensional pollutant transport in confined and unconfined aquifers, where the 

flow and pollutant transport equations are solved by using either a Galerkin 

finite element or a control-volume finite element formulation. The absorption and 

biological decay of the pollutant are integrated into the governing equations used. 

The solution obtained using the two schemes for two problems of which the 

analytical solution is known are compared. The two schemes produced similar 

results. For definitions and a brief literature review dealing with similar 

problems, please refer back to section 6.1.

The coupled miscible contaminant transport resulting from the injection 

and subsequent extraction of a contaminant into an aquifer from the same well 

on a homogeneous and isotropic domain will be considered. The problem will be 

run on a structured quadrilateral element using the standard and compact stencil 

finite volume schemes for a range of Peclet numbers. Numerical experiments are 

then conducted to investigate the effect of the rate of dispersion on the numerical 

solution. The effect of radioactive decay on the solution is then investigated, and 

finally, conclusions will be drawn from the work undertaken.
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7.2 GOVERNING EQUATIONS

The equations that describe the coupled flow and contaminant transport are set 

out in this section. The flow equation is described by Holder et al. [4] and is of 

the form,

« f i  + s , f  +  v , . f  ( , , )

where v is the Darcy velocity, q represents sources and sinks, Ss the specific 

storage, 6 the moisture content, h the hydraulic head, and ip = h — z . The Darcy 

velocity is defined by;

v --
V Vxx xy

V Vxy yy
(7.2)

By making the same assumption as in chapter 5 concerning the relationship 

between the water saturation and moisture content, we have,

0

where 0 is the material porosity. Assuming that the domain is fully saturated 

with water at time t = t0, the flow equation (7.1) simplifies to;

5'« It + v -v =  9 (7-4)a t

and this is the form of the equation that is considered. The simplification is 

justified due to the water saturation Sw = 1 .0 , which implies that the moisture 

content 6 is constant from equation (7.3). By Darcy's law,

v =  —K ( 0 )  V /i (7.5)
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where the hydraulic conductivity tensor K is defined as,

K
^XX ^xy

k kxy yy
(7.6)

The Darcy velocities and moisture content computed from the flow are 

used in the system of transport equations for each contaminant species. These 

equations model the advection, diffusion, and chemical reactions of species in the 

system. Each equation is of the form

dec
dt

-f V. (vc — D V c) = qc-\- g (7.7)

where c is the contaminant concentration, D the diffusion/dispersion tensor, and 

g incorporates chemical reactions, and/or decay of the contaminant species, g 

may be a function of several species in the system. At sources c = 1.0 , while at 

sinks c = c. Consequently, c is defined as a dimensionless ratio of contaminant 

present compared to initial or source concentration. The dispersion tensor is 

defined by;

D =
TL D.
D Dxy yy

(7.8)

Due to the fact that the mixed derivative terms will be omitted from the 

formulation, the off diagonal terms in tensors (7.2), (7.6) and (7.8) are zero.

7.3 SOLUTION PROCEDURE

The solution procedure utilised to solve the described problem is discussed here. 

By implying that the second mixed derivatives are zero, the expansion of the flow 

equation (7.4) gives;
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g dh d 
dt dx

dh
dx,

d_
dy

dh
dy,

=  q (7.9)

The spatial derivative terms in the equation are discretised by application of 

Green’s theorem, and by the assumption that the spatial derivative is linear over 

the control volume £lm. Integration over the control volume gives,

J s nt J dx{  "  dx, J a*dy
. dh k ----
” dy)

dQ = J q  dQ (7.10)

and the application of the edge based discretisation and the Euler backward 

difference scheme as discussed in chapter 2 gives for all nodes m  in the domain;

(K +l -  K  ^771 771

A t
a

d_
dx

dh")
dx ,

Q +  —771 r\dy ( U
dh11
dy ,

(7.11)
Q T771 1 ^771 771

where h^ =  pressure head at node m  at time n, and h^+1 = pressure head at node 

m  at time n+1. Hence, rearranging results in the pressure head update which is 

given by equation (7.12).

hl+l = d
dx xx)r

dhn)
dx

n  + —771 1 dy ( U
dhn
dy ,

A t
s.

■f KL

— A . in
m 0 .5 .1  ra

(7.12)

where,



C h a p t e r  7  -  C o u p l e d  C o n t a m i n a n t  T r a n s p o r t

Once the pressure head is updated for timestep n+1, the contaminant transport 

equation can then be considered. The transport equation, that is equation (7.7), 

is coupled to the flow equation (equation (7.1)) through the Darcy velocity terms 

and vyy, defined by equation (7.14) below. This coupling is clearly shown on 

the program flow chart illustrated in Figure 7.1.

=  f c ) ,
d h ’
dx =  ( U

dhn
dy

(7.14)

Again, by implying that the second mixed derivatives are zero, expansion of the 

contaminant transport equation (7.7) gives;

dOc d ( N d i \ — v c )  v c ) T
dt d x V '  d y ' w '
d_

dx
D —XX r \ox) +fd y

D„ dc
dy,

(7.15)
+  qc +  g

Again, the spatial derivative terms in the equation are discretised by application 

of Green’s theorem. Integrating over the control volume produces,

r A L  dQ+  r A f c J i ]  dQ +
J dx[  “  dx) {  dy{  vy dy

j* qc dQ + J  g dQ,

(7.16)

and the application of the edge based discretisation procedure and the Euler 

backward difference scheme gives for all nodes m in the domain;
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( n + l  _  n  
m  m

A t
=  - — (v„cl)m Qx

dft — — tv cn)
m dy ym

fl +  —m  1 r\ox ( D A
dcn)
d x ,

a

d_ 
+  dy K 1

dcn
dy

flrn +  qmcmflm — Ac"Qm77i 1 j-m m m  m m (7.17)

=  E -  Ac“fi77i m m

where.

^  =  — — (v cn )
m  \  xx m  }

dQ  c»\
m dy

fl +  —771 1 r\
O X

( D A dx  ,
fl.

+
d_

dy i DA
dc11 ] 
%

(7.18)
Q +  qmcmflm — Ac"Qm77i 1 i77i m m  m m

Note that the term g which governs the chemical reactions within the system has 

been substituted with equation (6.2). Rearranging equation (7.17) results in the 

contaminant concentration update given here.

»+i =  _  K A i  +  c» (7.19)
n e e

The problem is now fully discretised, and all variables calculated at the given 

timestep. A flowchart of the processes undertaken within the source code in 

generating a solution to this problem is described in Figure 7.1.
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UPD A TE h

Figure 7.1: Program flow chart for the coupled flow problem.
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7.4 RADIAL FLOW: INJECTION AND SUBSEQUENT EXTRACTION

FROM THE SAME WELL

The test case considers the injection and subsequent extraction of a contaminant 

into an aquifer from the same well described by the governing equations (7.1) and

(7.7). The problem is based around the test case presented by Holder et. al [4]. 

However, due to insufficient information in the publication, their results could 

not be replicated exactly.

In this test case, contaminated water is injected into an aquifer for a time 

t =  t , then the flow is reversed, and water is removed from the aquifer. The 

aquifer is modelled as a two-dimensional square domain of side 9000 metres, and 

is illustrated in Figure 7.2 along with labels to distinguish between boundaries. 

The domain was discretised into 2304 structured quadrilateral elements as shown 

in Figure 7.3. The total run time for the simulation is set at t = 250 days. The 

well flow reversal time tt is defined as t} = 100 days, where t is the time since the 

beginning of the injection cycle, and the well is applied to node number 1201 at 

coordinate (4500, 4500) m. The well flow rate, q [M3T_1] is assumed to be the 

same in injection and recovery and is defined as follows;

1.0 m V 1, t < t
(7-2°)—1.0 m s  , t > ^

The initial and boundary conditions for this problem are;

h(x,y,  0) =  0.0

c(x,y,t) = 0.0 for all nodes except the well, 

c (4500,4500, t) = 1.0 for t < tv

dcjdx — 0.0 on sides A-B and C-D, 

dcjdy = 0.0 on sides A-D and B-C.

Other parameters necessary to run the problem are listed in Table 7.1 below.

q (4500,4500, t) =
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P a r a m e te r Sym bol Value

Hydraulic conductivity K 5.0 x 10_6ms'1
Specific storage s s l.O x lO ^m '1
Porosity <t> 0.30

Ratio of longitudinal to transverse 

dispersivity
V 1.0

Domain size in x direction ~ 9000 m

Domain size in y direction — 9000 m

Edge length in x direction A x 187.5 m

Edge length in y direction A y 187.5 m

Number of nodes in x direction K 49

Number of nodes in y direction 49

Number of nodes in mesh — 2401

Number of elements in mesh — 2304

Number of edges in mesh — 4704

Concentration of contaminant in 

injected water Co 100%

Table 7.1: Parameters for coupled pollutant transport problem.
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y

9000

6000

3000

0 3000 6000 9000

Figure 7.2: Square domain of side 9000 metres used for the test case, along with boundary

markers.

y

x

Figure 7.3: Domain discretised into 2304 structured quadrilateral elements.
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7-4-1 Varying Dispersion Coefficient Test

In order to investigate the effect of increasing diffusion rates on the contaminant 

transport equation (7.7), several cases were considered with Peclet numbers of 

1.0, 2.0, 4.0, 5.0, 10.0, 20.0 and 40.0. The extremities of this scale represent 

highly diffusion dominated, and highly advection dominated systems. Yeh [10] 

and Sun and Yeh [8] describe the mesh Peclet number as;

Pe =  A l  (7.21)
D

where Pe = Peclet number, A x  = edge length, D = dispersion coefficient, and vx 

=  Darcy velocity in the x direction.

Equations (7.4) and (7.7) are coupled by the Darcy velocity term (7.5). 

This coupling acts in one way only, that is from the flow equation (7.4) to the 

transport equation (7.7). By uncoupling the system and solving the flow equation 

only for the given problem, the following solution was obtained for the Darcy 

velocity in the x direction, vx, along the horizontal centre line of the domain (see 

Figure 7.4). From this graph it can be seen that the calculated Darcy velocities 

lie approximately within the range [-0.0008, 0.0008] ms'1. Of note is the behaviour 

of the plot near the well during the injection and extraction cycles. During the 

injection cycle (t  < 100 days) the pressure head at the well is large compared to 

the surrounding nodes. Hence, theoretically, the gradient of the velocity plot 

(Figure 7.4) will be positive in the region (0 < x < 4500) m , and negative in the 

region (4500 > x > 9000) m . Relatively speaking, this is what is seen in Figure 

7.4a, with the only discrepancy being the transition from a positive to a negative 

gradient is not instantaneous. However, this transition seems to have been 

handled well by the scheme, and is captured in a relatively short spatial distance. 

During the extraction cycle (t  >100 days) the pressure head at the well is now 

small compared to the surrounding nodes, and hence the gradient of the velocity 

graph in the regions either side of the well is reversed when compared to the 

injection phase as shown in Figure 7.4b.
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0.001
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—  50 days 
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Figure 7.4: Calculated velocity (vx) profiles along the line x 6 [0,4500]m, y =  4500m through the 

domain at a) 10, 50 and 100 days, and b) 102, 110, 150 and 250 days.
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By applying the maximum calculated Darcy velocity of 0.0008 ms'1, and the 

chosen Peclet numbers, the theoretical maximum dispersion for each set can be 

calculated from equation (7.21). The chosen Peclet numbers along with the 

corresponding calculated dispersion rates and an assigned label for recognition of 

results are shown in Table 7.2, where D„  =  D = D .
’ XX yy I

P e A Label

1.0 0.15 A
2.0 0.075 d 2

4.0 0.0375 D3
5.0 0.03 D4
10.0 0.015 A
20.0 0.0075 d 6
40.0 0.00375 d 7

Table 7.2: Chosen Peclet numbers and calculated maximum dispersion values.

The calculated Peclet numbers should provide a wide range of solutions. Case D 

with Pe = 1.0, will have a rate of diffusion 40 times greater than case D7, which 

has Pe = 40.0. Results were obtained using an explicit scheme with a timestep of 

dt = 10.0 seconds, with the calculated variables h and c plotted for the following 

nodes over the 250 day simulation:

N o d e N u m b er
S p a tia l Coo

X

rd ina te  (m )

y

1201 4500.00 4500.00

1198 3937.50 4500.00

1195 3375.00 4500.00

1189 2250.00 4500.00

1185 1500.00 4500.00

1179 375.00 4500.00

Table 7.3: Coordinates of nodes at which result plots are given for the varying dispersion

coefficient test.
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The results obtained by running the simulation as described above but using 

dispersion value Dj are considered first. This dispersion value equals 0.15 and 

corresponds to a maximum Peclet number of 1.0, as shown in Table 7.2. Hence, 

this run has the maximum diffusion rate of all dispersion values that are to be 

considered. The results obtained using this dispersion rate are described fully 

here, and are then used as the benchmark with which results from using different 

dispersion rates are compared against. Figure 7.5 shows the pressure head and 

concentration profiles along a line through the centre of the domain, which 

intersects the well, at various times throughout the simulation. It is of note that 

differing dispersion rates have no effect on the pressure head plot shown in Figure 

7.5a. This plot is the same no matter which dispersion value is used; hence it is 

only shown here. Both plots are smooth, and they seem to handle the reversal in 

the well condition from injection to subsequent extraction at time t} =  100 days 

very well. As the diffusion rates from this case are high, it is clearly seen from 

Figure 7.5b that the pollutant fills the whole domain after 250 days.

Figure 7.6 and Figure 7.7 shows the pressure head and concentration 

values at the nodes whose coordinates are tabulated in Table 7.3 against time, 

respectively. Again, differing dispersion rates (D) have no effect on the nodal 

pressure head plot shown in Figure 7.6; hence it is shown here once only.

Figure 7.6a and Figure 7.7a show the pressure head and concentration 

values at the well against time. The well reversal at time t} = 100 days is clearly 

captured on both plots. The reduction in pressure head for times t > t l is 

gradual, whereas the pollutant concentration reduces by approximately 90% 

between t = tt and t — tj+dt. This is as expected, as the pollutant injected at the 

source at t < t is instantaneously removed at the same rate at t > t , hence 

causing large differences in the concentration levels at injection and extraction 

periods.
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Figure 7.5: a) pressure head (h), and b) pollutant concentration (c) profiles along the line 

x E [0,4500]m, y — 4500m through the domain at 10, 100, 102, 110, 150 and 250 days using

dispersion Dv
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Figure 7.6: Nodal pressure head (h) profiles over time at a) the well, node 1201, and b) nodes 

1198, 1195, 1189 and 1179, using dispersion Dv
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Figure 7.6b and Figure 7.7b show the pressure head and concentration values at 

nodes 1198, 1195, 1189 and 1179 against time. These nodes occupy positions on 

the line y = 4500m, but at increasing distances away from the well node as 

shown in Table 7.3. The nearest, node 1198, is 562.5 m from the well, while the 

furthest, node 1179, is 4125 m from the well.

As can be seen from Figure 7.6b and Figure 7.7b, the transition point 

between a positive and a negative gradient on a nodal plot gets further away 

from time tt = 100 days as the position of the node becomes further away from 

the well. This is expected, due to the time taken for information to propagate 

through the domain. As the well condition is reversed at time t} = 100 days on 

node 1201, by the time this information has propagated to nodes lying further 

away from this position time has passed. The pressure head plot for node 1179 on 

Figure 7.6b shows no change over time. This corresponds to what is shown in 

Figure 7.5 as this node lies in the area showing no change in h. The pollutant 

concentration plot, Figure 7.7b, shows that the further the node is from the well, 

for times t < t  , the greater the concentration of pollutant compared to closer 

lying nodes. This is directly associated with the propagation of information 

through the domain and the diffusion rate inherent in the equations.

Figure 7.8 shows pollutant concentration (c) contours at 10, 100, 102, 110, 

150 and 250 days using dispersion Dt. The contours clearly display radial flow 

surrounding an injecting/producing well, and the plots are symmetrical about the 

a;-and y axes. Reversal in the well at time t1 = 100 days is evident from the 

contour plots, with the peak at the well at time t = 100 days becoming inverted 

at the same point at t = 102 days. This is shown more cleary in Figure 7.9, where 

three-dimensional pollutant concentration (c) contours at 102, 150, 200 and 250 

days ( t > t 1) are shown. The inverted peak due to the injection and subsequent 

extraction from the same well is evident in all the plots. Of interest is the 

continued diffusion of the pollutant concentration out towards the domain 

boundaries during this well reversal period. Note that the contour legend for 

Figure 7.9 (not shown) is the same as that for Figure 7.8.

210



C h a p t e r  7  -  C o u p l e d  C o n t a m i n a n t  T r a n s p o r t

0.9

0.7

0.6

u 0.5

0.4

0.3

0.2

100 150 250200
Time (days)

Node 1198 
Node 1195 
Node 1189 
Node 1185 
Node 1179

0.4

0.3

0.2

100 150 200 250
Time (days)

b)

Figure 7.7: Nodal pollutant concentration (c) profiles over time at a) the well, node 1201, and b) 

nodes 1198, 1195, 1189 and 1179, using dispersion Dt.
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a) 10 days b) 100 days

c) 102 days d) 110 days

C
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Figure 7.8: Pollu tant concentration (c) contours a t 10, 100, 102, 110, 150 and 250 days using

dispersion D,.
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The results obtained for the problem using the benchmark dispersion value Dt 

have been described in the previous section. Here, the results obtained by using 

the other six dispersion values described in Table 7.2 are discussed and compared 

against the benchmark solution.

Once all simulations using the different dispersion coefficients were 

completed, it was necessary to compare the effect that this coefficient had on the 

solution. The calculated value of the pollutant concentration at particular nodes 

using the seven dispersion rates at specific times were compared. This is 

displayed in Figure 7.10, which shows plots of the chosen dispersion coefficient 

(D) against the calculated pollutant concentration (c) at t = 10, 100, 102, 110, 

150 and 250 days for nodes 1201, 1198, 1195, 1189, 1185 and 1179. The six 

graphs in Figure 7.10 can be separated into two distinct types of behaviour. The 

first three plots will be dealt with first.

Figure 7.10a, b and c are of data related to nodes 1201, 1198, 1195 which 

have an x coordinate of 4500.00, 3937.50 and 3375.00 metres respectfully (see 

Table 7.3). The dispersion against concentration plots for each node are shown 

for 10, 100, 102, 110, 150 and 250 days. Note that the plot at t = 10 days was 

omitted from the node 1201 plot (Figure 7.10a), as the scale of the graph with 

the plot included prevents the easy recognition of the separate plots for each 

time. These three plots show that the dispersion coefficient produce very little 

difference with respect to the calculated concentration in this region of the 

domain. Hence, the primary change in the pollutant concentration is due to other 

factors. Therefore, the advective terms in equation (7.7) must drive the process. 

A significant contributor to these terms is the Darcy velocity (equation (7.5)), 

which is the coupling term between the flow and the transport equations.

Figure 7.10d, e and f These plots are of data related to nodes 1189, 1185 

and 1179 which have an x coordinate of 2250.00, 1500.00 and 375.00 metres 

respectfully (see Table 7.3). The dispersion against concentration plots for each 

node are shown for 10, 100, 102, 110, 150 and 250 days. Here, the dispersion 

coefficient produces a significant difference with respect to the calculated 

concentration in this region of the domain. Hence, the primary change in the
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pollutant concentration is due to the diffusive terms in equation (7.7). By 

studying the Darcy velocity plot through the domain (Figure 7.4), it is seen that 

the calculated velocity in the region occupied by these nodes is zero, hence 

nullifying the effect of the advective terms in equation (7.5). In conclusion, in the 

outer regions of the domain, the change in the pollutant concentration is 

dominated by dispersion/diffusion terms, and the small change in the x 

coordinate between nodes 1195 and 1189 produces a large influence in results due 

to the effect of the coupling term.

Figure 7.11 shows plots of the pollutant concentration profiles along the 

line x  G [0,4500]m, y = 4500m through the domain at 10, 100, 102, 110, 150 and 

250 days using the seven chosen dispersion values. It has been concluded from 

Figure 7.10 that in the vicinity of the well, the dispersion coefficient produces 

very little difference with respect to the calculated pollutant concentration, and 

the primary change in the concentration is due to the advective terms in equation

(7.7). Additionally, beyond a radial distance of approximately 2000 metres from 

the well, the dispersion coefficient produces a significant difference with respect 

to the calculated concentration, and the primary change in the pollutant 

concentration is due to the diffusive terms in equation (7.7). These facts are 

supported by Figure 7.11, where for the same time, differences in the dispersion 

coefficient produces little difference to the result near to the well. This can be 

seen from all the plots in Figure 7.11, where for the first 1000 metres or so 

around the well the solutions obtained at a particular time using all dispersion 

coefficients are similar. Increasing the radial distance further reduces the 

magnitude of the Darcy velocity (see Figure 7.4) until it becomes insignificant at 

approximately 2000 metres. This transition from an advective dominant system, 

to a diffusion dominant system occurs in the region between 1000 and 2000 

metres away from the well. Exceeding a radial distance of 2000 metres, the 

diffusion terms in the transport equation become dominant, resulting in large 

differences in results using different dispersion coefficients. As the dispersion 

coefficient decreases, hence the rate of diffusion encountered decreases, resulting 

in the pollutant having a restricted flow to the domain boundaries. This is
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evident from all plots, but especially clear in Figure 7.l id ,  e and f. Considering 

Figure 7.I l f  for illustrative purposes which shows the results obtained at 250 

days, we have that for dispersion Dt, the pollutant fills the entire domain to a 

concentration of 0.0725 at the x =  0.0 metre boundary. However, a dispersion of 

D7 (the smallest rate considered), the pollutant only occupies a region of 

approximately 2500 metres radially from the well at the same time.

Plots of the nodal pollutant concentration against time at nodes 1201, 

1198, 1195, 1189, 1185 and 1179 using the seven chosen dispersion values are 

displayed in Figure 7.12. Again, it is evident from these plots the effect of the 

dispersion coefficient and the Darcy velocity coupling term has on the pollutant 

concentration at different locations within the domain. It is observed that for the 

plot for node 1198 (Figure 7.12b), the concentration using each dispersion 

coefficient tend towards the same solution at t > t}. This is a direct consequence 

of the dominance of the advective terms in this region of the domain, as already 

discussed. However, the diffusive terms, which include the effect of the dispersion 

coefficient, causes the range of results seen for t < tv This trend is repeated, but 

the increase in the effect of the diffusion terms, and the decrease in the advective 

terms is apparent as the distance from the well increases. At node 1189 (Figure 

7.12d), where the coupling velocity term is now small (see Figure 7.4), the 

different dispersion coefficients utilised has a much greater effect on the solution. 

The range in results, resulting from the different dispersion coefficients, is now 

apparent at t > tu with the result using the minimum dispersion value, D7, 

showing no change over the simulation.
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Figure 7.10: Plots of the chosen dispersion value (D) against pollutant concentration (c) at 10, 

100, 102, 110, 150 and 250 days for nodes 1201, 1198, 1195, 1189, 1185 and 1179.
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Figure 7.11: Pollutant concentration (c) profiles along the line x € [0,4500]m, y =  4500m through 

the domain at 10, 100, 102, 110, 150 and 250 days using the seven chosen dispersion values.
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Figure 7.12: Nodal pollutant concentration (c) profiles over time at nodes 1201, 1198, 1195, 1189, 

1185 and 1179 using the seven chosen dispersion values.
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Results -  Standard Finite Volume Scheme 

All second derivative terms in the discretised equations (7.12) and (7.17) were 

calculated using the compact stencil scheme. As already discussed in earlier 

chapters, this scheme produces an improvement in the result, but also handles 

the calculation of derivatives on non-homogeneous domains much better than the 

standard finite volume scheme. In the authors’ opinion, nothing demonstrates the 

superiority of the compact scheme over the standard scheme than using the 

scheme to solve a problem that has a point source such as the one considered 

here.

The results obtained by running the problem as described above using the 

standard finite volume scheme to calculate second derivatives are shown here. 

The dispersion value used equals Dt and corresponds to a maximum Peclet 

number of 1.0, as shown in Table 7.2. The problem considered here is exactly the 

same as the problem in the previous section, where the compact scheme was 

utilised. As already shown in Figure 7.5b, the compact scheme produces smooth 

solutions for this problem. Figure 7.13 shows the comparison between the contour 

plots obtained using the standard and compact schemes at 10, 100 and 102 days. 

The plots are displayed on a three-dimensional axis with pollutant concentration 

on the vertical axis, and the contour legend for this diagram is the same as that 

used for Figure 7.8. It is evident from Figure 7.13 that the standard edge-based 

finite volume scheme produces large spatial oscillations emanating from the well 

at coordinate (4500, 4500) m. If it were not for the oscillations, it is undeniable 

that both schemes produce similar results. These spatial oscillations are a direct 

result of the five-node stencil which is the basis of the second derivative 

calculation using the standard scheme. A consequence of this is the decoupling of 

the odd and even nodes within the domain. Moreover, if a node behaves as a 

point source - as in this case - the nodes adjacent to it do not ‘see’ it when 

calculating second derivative terms, hence the spatial oscillations. This problem is 

eradicated when the three-node stencil of the compact scheme is used. In previous 

simulations, the improvement in the solution obtained when using the compact
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scheme over the standard scheme has been notable, but not to the extent shown 

in this case where the increased versatility of the compact stencil is apparent.

7.4-3 Pollutant Decay

When the exponential decay of the contaminant species is taken into account, the 

variable g in the contaminant species flow equation (7.7) is substituted by ( —Ac), 

as has already been seen in equation (6.2). The rate of decay of the contaminant 

species is determined by the decay coefficient A, which represents the rate of 

decay of the contaminant species with time.

The problem discussed above is repeated here using dispersion coefficient 

Ds, and a range of decay levels. The decay coefficient values chosen for this 

investigation and the corresponding levels of decay at the end of the simulation 

associated with each value at the end of the simulation time are shown in Table 

7.4.

A D ecay %

0.00000001 19.5

0.00000002 35.1

0.00000003 47.7

0.00000004 57.9

0.00000005 66.1

0.00000006 72.7

Table 7.4: Decay coefficient values and the corresponding levels of decay at t =  250 days.
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a) 10 days -  Compact Stencil b) 10 days -  Standard F.V.

c

d) 100 days -  Standard F.V.c) 100 days -  Compact Stencil

e) 102 days -  Compact Stencil f) 102 days -  Standard F.V.

Figure 7.13: A comparison between the solutions obtained using the standard and compact stencil 

for the pollutant concentration (c) contours a t 10, 100 and 102 days using dispersion D,.
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Figure 7.14 shows the pollutant concentration profiles against time at nodes 1201, 

1198, 1195, 1189, 1185 and 1179 using the decay coefficients listed in Table 7.4. 

As can be seen, the pollutant decay function is acting as expected, with 

increasing levels of decay experienced as the simulation time increases until the 

percentage decay specified in Table 7.4 is achieved at t = 250 days. Similar 

observations can be made about Figure 7.15, which shows the pollutant 

concentration profiles along the line x G [0,4500]m, y = 4500m through the 

domain at 120, 150, 200 and 250 days and varying levels of decay coefficient X . 

It is noted that as time progresses, the plot lines for the different decay 

coefficients used become more fanned out due to the increasing rate of decay.

Plots of the decay coefficient against pollutant concentration at 102, 110, 

150 and 250 days for nodes 1201, 1198, 1195, 1189, 1185 and 1179, are shown in 

Figure 7.16. The plots for nodes 1201, 1198 and 1195 lie within the region of 

dominant advection as already discussed. In this region, the pollution decay is 

masked by the predominant advection terms in equation (7.7), and the varying 

levels of decay have little effect on the pollutant concentration. However, nodes 

1189, 1185 and 1179 lie within the region of dominant diffusion, and here the 

effect of the pollutant decay term is apparent. The further the point is away from 

the well, and the later the time, the greater the effect of the decay term is on the 

pollution concentration.

7.5 CLOSURE

A coupled model for pollutant transport through a porous medium has been 

presented in this chapter, where the flow and transport equations are coupled via 

the Darcy velocity term. The governing equations were discretised using the 

edge-based finite volume scheme, and the problem solved on structured 

quadrilateral element meshes.

The initial test case considered the injection of a contaminant species into 

a homogeneous, isotropic aquifer for 100 days; then the flow was reversed 

denoting the extraction of the contaminant from the same well for the subsequent

223



C h a p t e r  7  -  C o u p l e d  C o n t a m i n a n t  T r a n s p o r t

150 days. The injection and extraction rates were set at equal, but opposite rates. 

The calculated pressure head for this problem was a smooth curve, and the 

scheme successfully handled the reversal in the well condition from injection to 

extraction. An investigation into the effect of the dispersion coefficient on the 

contaminant concentration was undertaken, and seven different dispersion rates 

were considered. These ranged from highly diffusion dominated to highly 

advection dominated systems. It is evident from the results that due to the 

strong effect of the coupling Darcy velocity term, the domain was partitioned 

into zones of advection and diffusion dominant flow. This transition from an 

advective dominant system, to a diffusion dominant system occurred at 

approximately a radial distance of 1500 metres from the well. Exceeding this 

point, the diffusion terms in the transport equation became dominant, resulting 

in large differences in results from different dispersion coefficients. This is directly 

due to the high Darcy velocity encountered in the vicinity of the well dominating 

the diffusion terms in favour of the advective processes. Finally, a decay term 

was added to the governing equations, and the effect of pollutant decay was 

simulated for several decay rate coefficient values.

The superiority of the compact stencil formulation over the standard finite 

volume scheme was clearly demonstrated by comparing their solutions. As the 

test case contained a point source (i.e. a well), the standard scheme’s five-node 

stencil produced large spatial oscillations emanating from the well. This is an 

inherent disadvantage of the scheme due to the decoupling of the odd and even 

nodes within the domain. The application of the three-node compact stencil was 

shown to overcome this difficulty; proving the versatility and power of the 

scheme.

Although the edge-based finite volume scheme has been employed in 

solving coupled systems of equations in the past (see Lewis and Malan [5]), the 

author classifies the utilisation of the scheme in a coupled pollutant transport 

problems as being an original contribution.
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Figure 7.14: Nodal pollutant concentration (c) profiles over time at nodes 1201, 1198, 1195, 1189, 1185 

and 1179 using dispersion D5, and varying levels of decay A .
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Figure 7.15: Pollutant concentration (c) profiles along the line x E [0,4500]m, y =  4500m through the 

domain at 120, 150, 200 and 250 days using dispersion D5, and varying levels of decay X .
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C hapter 8

C o n c l u sio n

8.1 ACHIEVEMENTS

The work presented in this thesis constitutes the first phase in the development 

of a simulator for modelling fluid flow through porous media. The main research 

activities were:

• Suitable discretization and solution procedures were investigated, and the 

edge-based finite volume technique chosen.

• The edge-based technique was enhanced by an alternative calculation 

procedure, utilizing a more compact stencil for the case of the non-linear 

diffusion type partial differentials.

• W ith regards to the software implementation, a novel label based 

approach was employed.

The chosen discretization procedures were successfully applied to model:

• The highly non-linear process of phase transformation of a one-component 

material using the enthalpy method.

• Saturated-unsaturated fluid flow in porous media described by the highly 

non-linear Richards equation.

• Miscible contaminant transport through aquifers over a horizontal plane.

• A coupled miscible contaminant transport and fluid flow through a 

saturated porous medium.
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8.2 CONCLUSIONS

The vertex-centred edge-based finite volume scheme is a recently developed

technique that has been proven to be accurate, while also being superior to

traditional element based methods in terms of computational efficiency. The 

chosen scheme was enhanced by the application of a compact stencil algorithm 

for the discretization of diffusive second derivative terms, and the increased 

accuracy of this chosen scheme was demonstrated many times against the 

standard finite volume algorithm. Moreover, it was shown that the compact 

stencil scheme was the only available option when calculating second derivative 

terms on non-homogeneous domains.

For implementation into a computer code, a novel label based approach 

was employed in the interest of computational performance. A data structure was 

presented such that the modification of code at all levels was possible with the

minimum of labour. As a result of this chosen data structure, the

computationally expensive routines were a small part of the code and were easily 

optimised. The strategy of making no distinction between variables and treating 

each in the same way lead to a conceptually elegant matrix structure and a 

straightforward implementation. Consequently, a highly flexible software package 

is developed which had 91% code re-use, that can be modified to solve 

engineering problems in a variety of fields with little alteration to the source 

code, and no alteration to the data structure.

The edge-based finite volume scheme accurately solved the highly non­

linear phase change problem, for both solidification and melting. This problem 

was considered due to it being very similar mathematically to the equations that 

govern the flow of fluids through porous media, and analytic solutions were 

available for comparison. The solution was shown to be superior to published 

numerical solutions obtained using the finite element method.

The next validation considered was a groundwater flow problem described 

by the Richards equation. The test cases showed that the standard finite volume 

method and compact stencil, formulations presented were successfully 

implemented for solving problems concerning two-dimensional flow in
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unsaturated soils using both structured and unstructured meshes. The test cases 

considered consisted of the infiltration of water into an initially dry soil column, 

and the infiltration of groundwater across an earth dam of homogeneous and non- 

homogeneous cross sections. Results showed that the compact stencil scheme 

produced less smearing of the saturation front as compared to the standard 

scheme. Also, a successive over relaxation non-linear iteration loop was 

implemented with the effect that the analysis time for the solution of the given 

problem was accelerated by an order of magnitude.

A large number of test cases for contaminant transport were analysed and 

where analytical solutions were available, good correlations were achieved. The 

superiority of the compact stencil scheme over the standard finite volume 

formulation was clearly evident from these test cases, with the standard scheme 

introducing a spatial oscillation. Decay of the pollutant species over time was 

investigated, and the injection of a pollutant slug into the system for a set time 

was successfully modelled.

Finally, a coupled model for pollutant transport through a porous medium 

was presented. The flow and transport equations were coupled via the Darcy 

velocity term, and discretised using the edge-based finite Volume scheme. The 

problem solved on a structured quadrilateral element mesh. The test case 

considered the injection and subsequent extraction of a contaminant species into 

a homogeneous, isotropic aquifer. The scheme successfully handled the reversal in 

the well condition from injection to extraction, and the numerical solution for 

both the pressure head and pollutant concentration was everywhere smooth. It 

was shown that the Darcy velocity term had an overwhelming effect on the 

contaminant transport system in the vicinity of the well. In this region the Darcy 

velocities were large, resulting in an advection dominant system.

To the authors’ knowledge, this was the first instance for the vertex- 

centred edge-based finite volume scheme has been utilised in solving highly non­

linear groundwater flow and contaminant transport problems.
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8.3 RECOMMENDATIONS

The foundation has been laid for a robust model capable of handling the 

governing equations of fluid flow through porous media. Further work is required 

to furnish a comprehensive simulator for petroleum reservoir applications, which 

is the long-term aim of the project. The issues involved are,

• The extension of the model to consider two-phase, and multi-phase 

immiscible flow problems, such as is encountered in petroleum reservoir 

systems (oil, water, gas). All the required elements for this phase in the 

development are in place.

• Extension of the code to include a third spatial dimension. This is deemed 

of importance, as geological formations are often highly three-dimensional. 

This would mainly involve the extension of the pre-processor to handle 

three-dimensional domains. Extending the solver into three-dimensions 

would not pose a great difficulty due to the edge-based nature of the 

scheme.

• The coupling of a stress analysis module needs to be realised if the solver 

is to be applied to solve complex problems of fluid flow in deformable 

porous media. One course of action would be to couple the already 

developed finite volume fluid flow model to the existing finite element 

stress model in CORES (see chapter 1). W ith the computational 

advantages of the edge-based finite volume scheme over finite element 

schemes, a more attractive alternative would be to write an edge-based 

finite volume stress model and couple this to the existing edge-based fluid 

flow model. Finite volume schemes have recently emerged as a viable 

numerical method for stress analysis in solid structures, and fluid-structure 

interaction has been successfully modelled using the finite volume scheme 

by Greenshields et al. [1], and Maneeratana and Ivankovic [2]. Hence, the 

re-writing of the existing stress model in an edge wise manner could prove 

to be the way forward. This development will be based on the innovative 

programming techniques described in chapter 3. It is estimated that code
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development will require 30% less effort due to this approach, significantly 

accelerating the development process.
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A p p en d ix  A

subroutine analytical(xcoord, tempra) 
include 'explicit.fi'
K = 2 . 0
rho = 2050.0
Cp = 9.4536586E+02
alpha = K/(rho*Cp)
L = 0.1 
A1 = 1.273
lambdal = sqrt(2.467)
Fo = alpha*(dt*i_time_steps)/(L*L)
TO = 6.2 500000E+02 
Te = 125.0
11a = 1.5707963 
12a = 4.7123890 
13a = 7.8539816 
14a = 10.995574 
15a = 14.137167 
16a = 17.278760 
17a = 20.420352 
18a = 23.561945 
19a = 26.703538 
110a = 29.84513021 
111a = 32.98672286 
112a = 36.12831552 
113a = 39.26990817
Ala = 
A2a = 
A3a = 
A4a = 
A5a = 
A6a = 
A7a = 
A8a = 
A9a = 
AlOa 
Alla 
A12a 
A13a

2.0*sin(11a)/ 
2.0*sin(12a)/ 
2.0*sin(13a)/ 
2.0*sin(14a)/ 
2.0*sin(15a)/ 
2.0*sin(16a)/ 
2.0*sin(17a)/ 
2.0*sin(18a)/ 
2.0*sin(19a)/ 
= 2.0*sin(110a 
= 2.0*sin(llla 
= 2.0*sin(112a 
= 2.0*sin(113a

11a 
12a 
13a 
14a 
15a 
16a 
17a 
18a 
19a 
/ (110a

sin(lla)*cos 
sin(12a)*cos 
sin(13a)*cos 
sin(14a)*cos 
sin(15a)*cos 
sin(16a)*cos 
sin(17a)*cos 
sin(18a)*cos 
sin(19a)‘cos 

sin(110a)
/(111a + sin(111a) 
/(112a + sin,(112a) 
/(113a + sin(113a)

(11a))
(12a))
(13a))
(14a))
(15a))
(16a) )
(17a) )
(18a))
(19a))
*cos(110a)) 
‘cos(111a) ) 
*cos(112a)) 
*cos(113a))

f la = cos 11a* (xcoord-L)/L)
f 2a = C O S 12a* (xcoord-L) / D
f 3a = C O S 13a* (xcoord-L)/L)
f4a = C O S 14a* (xcoord-L)/L)
f 5a = C O S 15a* (xcoord-L)/L)
f 6a = C O S 16a* (xcoord-L)/L)
f 7a = C O S 17a* (xcoord-L)/L)
f 8a = C O S 18a* (xcoord-L)/L)
f 9a = C O S 19a* (xcoord-L)/L)
flOa = cos(110a*(xcoord-L)/L) 
flla = cos(111a*(xcoord-L)/L) 
fl2a = cos(112a*(xcoord-L)/L) 
fl3a = cos(113a*(xcoord-L)/L)
tempra = Te + (T0-Te)*( Ala*exp(-lla*lla*Fo)*fla +

A2a*exp(-12a*12a*Fo)*f2a + A3a*exp (-13a*13a*Fo)*f3a 
A4a*exp(-14a*14a*Fo)*f4a + A5a*exp(-15a*15a*Fo)*f5a 
A6a*exp(-16a*16a*Fo)*f6a + A7a*exp(-17a*17a*Fo)*f7a 
A8a*exp(-18a*18a*Fo)*f8a + A9a*exp(-19a*19a*Fo)*f9a 
A10a*exp(-110a*110a*Fo)*fl0a + 
Alla*exp(-llla*llla*Fo)*flla + 
A12a*exp(-112a*112a*Fo)*fl2a +
A13a*exp(-113a*113a*Fo)*fl3a )

return
end

FORTRAN subroutine to calculate the analytical solution for the diffusion equation (2.31).
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Appendix B

D e f in it io n  of t h e  E n t h a l p y  F u n c t io n

The enthalpy function, H, is defined by Lewis et al. [2] for isothermal phase 

change as,

1
H( T)  = J p c , ( T ) d T  (T < T /)

I  T (B.l)
H( T)  = f  pc, (T) dT + pL + f  pc, (T) dT { T > T f )

and for phase change over an interval of temperatures Ts to Tb which are the 

solidus and the liquidus respectively, we have,

T

H(T)  = f p c , ( T ) d T  , ( T < T f )
Tr

H( T)  =  J p c , ( T )  d r  + / [ p j l p j  +  p c / r ) ]  dT  , ( T , < T < T , )

I  T'  T , (B.2)
H( T)  = j p c , ( T )  dT + pL + J p c f (T)dT

Tr T,

T

+ J p c , ( T ) d T  , ( T > T , )

where, cf is the specific heat in the freezing interval, L is the latent heat and Tr 

is a reference temperature lower than Ts. The mathematical validity of this 

formulation is discussed in detail by Crank [1], who has proved the equivalence of 

the classical and weak formulations and the existence and uniqueness of the 

solution for the weak formulation.
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A p p en d ix  C 

E n t h a l p y  M e t h o d  Av e r a g in g  T e c h n iq u e s

Some of the commonly used averaging techniques mentioned in the relevant 

references ([1],[5]) are listed below. The simplest approximation used (for 2-D) is;

dH
dT

'dH d H '
dx dy
dT dT

k dx d y ,

(C.l)

This method has been reported to cause oscillations in certain circumstances [5]. 

Another method, reported by DelGuidice et al. [2] is,

dH
dT

'(dH) (dT \
+

/
' dH ' d r l '

dx , , dx J y )

\\

dT)
d x ,

I
+

' dT  
, d y ,

2

/

(C.2)

Morgan et al. [5] presented the use of a simple backward difference 

approximation,

<dH\  ( g . - g ,  J
dT)

(C.3)

where n represents the timestep number, where n represents the timestep 

number. This scheme restricts the timestep severely according to reference [1] if a 

correct heat balance is to be maintained. Lewis and Roberts [4] claim that the 

last scheme is computationally quicker than the abovementioned averaging 

techniques.
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Appendix D

A n a l y t ic a l  S o l u t io n  - S o l id ific a t io n

The analytical solution for a semi-infinite 1-D domain at a temperature X^, 

subject to a surface temperature of zero degrees, is calculated according to the 

following formulae:

The position of the solidification front X  is obtained from,

X  = 2 \  ( k f f (D.l)

The temperature in the solid zone \x < X  or T  < Tf j , is given by,

T  =  — — erf X

erfX 2 (kst f 2
(D.2)

The temperature in the liquid zone ^  > X  or T > Tf j , is given by,

T —T
T = T _    ‘— erf X

erfcX
\Y2

i

2{k,t)y2
(D.3)

where, A in the above equations is obtained from,

-A

erf X

y2 -  T. -x-t e 1
T.

erfcX

XLtt*  

% ~  c.T.
(D.4)

Here, erf is the error function and erfc(x) = l — erf(x) .  The values of the error 

function were approximated from the formula below:
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erf (rr) =  1 — (afb +  a2b2 +  aj)3 -f a4&4 +  a5&5) e l2 +  £ (a:)

where,

6 =  — - —

1 + px
p  = 0.3275911 

ax =  0.254829529 

a2 =  -0.284496736 

a3 =  1.421413741 

a = —1.4531520274

a5 =  1.061405429 

£(£) < 1.5 x 10-7

(D.5)
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Appendix E

A n a l y t ic a l  S o l u t io n  - M elting

The analytical solution for a semi-infinite 1-D domain at a temperature of zero 

degrees, subject to a surface temperature of T0, is calculated according to the 

following formulae:

The position of the melting front X  is obtained from,

X  = 2 \ (E.l)

The temperature in the liquid zone {x < X  or T > Tf \ , is given by,

T -  T,
T  = T -  . ' erf-

erJcX 2 (kf)
(E.2)

The temperature in the solid zone (x > X  or T < , is given by,

Tt x
T =  J- ^ y 2 erfc

erfcX k
k\ ,  6 j

K (E.3)

where, A in the above equations is obtained from,

—A

erf A

% A Lit*
T - T .

erfcX
>2

(E.4)

Here, erf is the error function and erfc (x) = 1 — erf (x ). The values of the error 

function were approximated from the formula below:
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erf (x) =  1 — (ajb +  ajf1 +  ajjz +  aJ)A +  a5&5) e l2 +  e (x)

where,

b = — -—
1 +  px

p = 0.3275911 

ax =  0.254829529 

a2 =  -0.284496736 

a3 = 1.421413741 

a =  -1.453152027
4

a5 =  1.061405429 

six)  < 1.5 x 10-7

(E.5)
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