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ABSTRACT

With increasingly stringent demands regarding vehicle weight and coating 

compositions, there is obvious merit in the modelling of strain aging processes for 

the development of novel Bake Hardening grades. Additionally, there is indication 

from literature sources that the development of novel titanium-vanadium stabilised 

bake hardening products may provide benefits over more traditional titanium-niobium 

Ultra Low Carbon strip steel grades.

An experimental programme is developed exploring the effects of combined titanium 

and vanadium additions, regarding room temperature aging and bake hardening 

phenomena in specifically designed experimental ultra low carbon strip steel grades 

with controlled composition. This experimental programme is linked to the 

development of a novel variation of the Kinetic Monte Carlo technique presented for 

the purposes of modelling the formation of Cottrell atmospheres.

It is found that in the experimental Ultra Low Carbon Strip steels studies vanadium 

additions have a retarding effect on the rates of strain aging, without sacrificing bake 

hardening response, and that this effect may be tied to the formation of fine 

nanoscale coherent vanadium carbide precipitates in the steel matrix during 

annealing. The Kinetic Monte Carlo model presented is shown to predict rates of 

aging with a high level of accuracy within the limits of the experimental programme, 

and to have run times relevant to the requirements of a desktop pool when run using 

a modern personal computer.



It is anticipated that the results produced in this thesis could lead to the development 

of novel titanium-vanadium ultra low carbon bake hardenable grades, thus offering 

complementary bake hardenable products with longer shelf life and lower annealing 

temperature regimes to the traditional titanium-niobium existing grades.
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CHAPTER ONE 

INTRODUCTION



1. INTRODUCTION

Legislation passed within the EU requires a reduction of emissions and an 

improvement in fuel efficiency from future motor vehicles, along with an increased 

potential for recycling -  simultaneously a desire among consumers for improved 

passenger safety and comfort, and larger, more powerful engines, is driving up 

average vehicle weights [1]. This is causing large changes in the face of automobile 

manufacture; vehicle manufacturers are looking for new materials that can give 

higher strengths and improved impact properties, at lower weights, and without 

sacrificing formability.

I I  Others 
I I  Elastomers 

Plastics
Other non-iron metals 
Magnesium 

I04kg i-i7% »  Aluminium
S8kg (+ 8 % )  |  | Steel and iron

178kg ( +  19%)

40kg ( +  13%)
" ' - 2  3kg (+ 3 0 0 % )

138kg 1 +  38%)

810kg (-10% )

1970 2000 2010 Year

Figure 1.1 The Historical Development of materials used in the construction of a mid-sized car 

[2]

Materials used

2



Some of these materials are non-ferrous, with vehicle components being made from 

aluminium and magnesium alloys (figure 1.1) [1-4] with ongoing research into the 

use of reinforced composites for body panels (a technology already used in some 

high performance race cars, but uncommon in commercial vehicle manufacture [2, 5, 

6]). While the large scale usage of aluminium alloys and composites is so far 

reserved largely for high end or niche vehicles, the technology is well advanced; the 

body of the Jaguar XJ is comprised entirely of aluminium, the Audi A8 and Audi A2 

are both built using panels of aluminium-alloy over an aluminium-alloy space frame, 

providing weight savings of around 150kg compared to other vehicles in its class, 

and the new 5 series BMW uses an aluminium front section and suspension.

To combat competition, the steels industry has responded with programmes to 

develop and promote the use of High Strength Steels (HSS) (210MPa < Yield Stress 

(YS) < 550MPa), Ultra High Strength Steels (UHHS) (550MPa < YS) and advanced 

high strength steels such as Dual Phase, TRIP and complex phase grades in the 

automotive sector. Two notable projects are the Ultra Light Steel Auto Body program 

(ULSAB) in which British Steel played a part, and the more recent Advanced Vehicle 

Concept program (ULSAB-AVC), completed in 2001, in which Corns Pic. played an 

active roll.

The ULSAB-AVC [7] vehicle offered weight savings of around 25% over a traditional 

vehicle in its class, and was comprised entirely of high strength steels, with 80% 

being composed of advanced high strength varieties. While the majority of this usage 

was in varieties of dual phase grades, 10% of the body was still comprised of Bake
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Hardenable (BH) steel, much of this being in the door skins and body outer panels 

(Figure 1.2)

°  10% Bake Hardenable 
a 1% HSLA
■ 74% Dual Phase
°  4% High Strength IF
■ 4% Martens ite 
□ 3% TRIP
°  1% Complex Phase 
a 3% Other

Figure 1.2 - Proportions of High Stength steels used in ULSAB-AVC vehicle by mass [7]

BH grades are attractive for such applications, as they offer a high level of 

formability, with r  values of around 1.6 and elongation to failure of 30-40% [8] 

combined with a yield stress than can be improved following forming by 30MPA- 

60MPa (Figure 1.3) during a high temperature aging process (typically 170°C for 20 

minutes)

A range of BH grades currently exist within the market -  Corns produce a BH180 

and BH220 grade. Nippon steel already produces commercial BH270 and BH340 

grades [9] and POSCO produce a BH grade with a 185MPa yield and 340MPa 

tensile strength [10],
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The challenge with BH grades is to increase the bake hardening response that can 

be achieved on aging. The strengthening effect occurs in two stages -  firstly through 

the formation of solute atmospheres on dislocations, then through the nucleation and 

growth of nano-scale precipitates on the saturated atmospheres. The total 

strengthening effect achieved increases with increasing carbon content, but so does 

the propensity for room temperature aging and yield elongation effects. 

Commercially these must be kept below 0.2% yield point elongation following one 

hour at 100°C -  equivalent to six weeks storage at room temperature (Figure 1.3). If 

this is not possible there is a risk of the formation of unsightly stretcher strains at the 

material surface during forming rendering the material unusable in external 

applications where appearance is important.
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Figure 1.3 Evolution of yield point elongation as a function of maximum achievable bake 

hardening response, compared to the typical commercial guarantee of less than 0.2% return of 

YPE [9]
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Computer models play an increasingly important part in the competitive position of 

modern metals based companies. Whether the focus of the commercial operation is 

in production of materials, such as within Corns, component forming, or joining of 

formed parts into a finished product, a high level of capital expenditure is required to 

launch a new product or process.

Within the automotive sector crash and corrosion performance are of paramount 

importance, and must be tested extensively prior to the release of a vehicle; time 

spent at the design stage, using Finite Element Models to predict deformation 

patterns [11] and finite difference code to predict corrosion performance [12], has the 

potential to reduce the number of revisions required through the testing process and 

thus speed up development and cut costs. Similarly the modelling of press forming 

or drawing operations, incorporating material properties, can be used to generate 

blanks of appropriate dimension and mechanical specification to ensure successful 

pressings, reducing the risk of damage to the dies, and lost productivity due to 

downtime.

Within primary steel manufacture computer models are no less important. 

Commercial software packages such as MT-DATA already exist, allowing the 

prediction of factors such as variation in the Ar3 (the line denoting the upper bound 

of the ferrite-austenite region in the metastable iron-cementite phase diagram) and 

Ar1 (the line denoting the lower bound of the ferrite-austenite region in the 

metastable iron-carbon phase diagram) temperatures with composition, as well as 

the sequential formation and relative stabilities of precipitates. Recrystallization, 

grain growth, and transformation models exist, and can be coupled with these,
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providing information that is vital in the development of new grades, to give 

guidelines on processing temperatures and routes that will give optimum properties 

for a given application. Neural Networks have been derived to predict material 

properties as a product of chemistry and processing history [13], and finite difference 

models are commonly used to predict the solidification of castings and alloy 

segregation.

The aim of this body of work is to generate a novel model capable of predicting the 

strain aging behaviour of microalloyed steels as a function of their composition, 

improving understanding of the strain aging process, and allowing informed 

guarantees to be provided on the aging resistance and bake hardening response of 

strip steels.

A range of commercial Bake Hardening products already exist, so the challenge is to 

increase the bake hardening response that can be achieved through strain aging, 

while preventing room temperature aging for as long as possible. A body of evidence 

exists showing that vanadium has a retarding effect on strain aging [14-18], One 

drive for this project is to determine to what extent novel BH grades, designed 

around vanadium additions, can offer an improved response in terms of bake 

hardenability and resistance to room temperature aging. The second is to produce a 

computer model capable of predicting the temperature dependent aging of Bake 

Hardening grades as a function of aspects of their compositions.

An aging model, as a desktop tool, could be used in the development of future 

grades providing savings both in terms of both time and money. Once the interaction
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effects between free interstitial carbon atoms and substitutional alloying elements 

have been accounted for, chemistries could be tested rapidly to give a ballpark aging 

response before investing in the production of experimental casts. Models already 

exist describing recrystallization and precipitation phenomena, and, with the potential 

of models for modularisation using common outputs and variables, the addition of 

aging effects is a further step toward the through process modelling of a variety of 

steel compositions.

This project also serves to highlight the value of strong links between metallurgical 

knowledge and computational competency in the development of new models, in 

terms of generating relevant validation data over a range of scenarios and tailoring 

the model to the actual requirements of the end user.

1.1. Structure of the thesis 

Chapter two contains a review of related work in the field of strain aging, covering 

the phenomenological processes occurring during aging, previous attempts to model 

the process, and fundamental aspects of common alloy chemistries. A lack of 

exploitation of vanadium-based bake hardening chemistries is noted.

Chapter three provides the detail of the experimental techniques used in the 

production of validation data for the strain aging-model, covering laboratory 

annealing, the measurement of free interstitial carbon, tensile testing and the bake 

hardening test, and optical and transmission electron microscopy.
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Chapter four presents the background to the experimental program to produce 

validation data. The determination of the chemical compositions for the experimental 

steels, and development of annealing conditions using MT-DATA coupled with 

recrystallization considerations and the measurement of free carbon levels.

Chapter Five describes the experimental programme undertaken, covering the 

production of accelerated aging curves over the temperature range 50°C to 100°C 

with a range of carbon contents, both in the presence of, and without, a vanadium 

addition. Isochronal aging plots are developed to highlight the interaction of 

vanadium in retarding strain aging, and the Arrhenius aging kinetics are calculated.

Chapter Six presents a discussion of the experimental data, highlighting the 

retarding effect of vanadium additions beyond any expected grain size effects, and 

presenting TEM evidence of the existence of small, coherent precipitates in the 

annealed material, likely to be vanadium carbide.

Chapter Seven describes the authors work in reproducing an existing Kinetic Monte 

Carlo (KMC) model and adapting this model to use a different algorithm and 

framework, allowing the inclusion of features like secondary interacting species.

Chapter eight provides a discussion of the limitations and value of the computer 

models presented in this thesis.

Chapter nine summarizes the findings of this programme of work in a brief collection 

of conclusions.
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE



2. REVIEW OF RELATED LITERATURE

Bake hardening (BH) steels are currently used widely in the automotive sector, for 

example in formed body panels such as outer door skins and bonnets. For drawing 

applications it is desirable for the r-bar value to be as high as possible, this value 

describing the average ratio of the true strain in the width direction to the through 

thickness strain during forming. With r-bar values of typically 1.8, and low yield 

strengths, in the region of 200MPa prior to forming, bake hardening steels are cheap 

to process into components. Heat treatment then improves the component strength 

and dent resistance [19-22].

Modern bake hardening products can be produced on continuous annealing lines, 

either through the use of higher levels of free carbon with an overage section to 

promote the nucleation and growth of intragranular carbides, or as fully stabilised IF 

chemistries in which precipitate dissolution can be used to liberate a controlled 

population of free interstitial carbon atoms. Bake hardening steels can represent 

more than 2 0 % by mass of the body in white of a modern automobile [23] and this 

value could increased with the development of stronger bake hardening products, 

pushing up to 300MPa yield stress, or improved aging indexes or bake hardening 

responses, approaching the theoretical maximum of 90MPa [24].

In modern microalloyed bake hardenable sheet steels a yield stress increase is 

achieved through vacuum degassing and careful control of micro alloying additions 

(typically titanium and niobium) to leave 5-15wt.ppm of carbon in solution [25]; this 

level of carbon is not sufficient to be greatly detrimental to formability. During paint
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curing, in which an auto body is heated at 170°C for around twenty minutes to cause 

the paint layer to set, free interstitial carbon can diffuse to the cores of dislocations 

under a ‘drift velocity’ caused by an interaction of the strain fields around the 

dislocation and misfitting solute atoms. This carbon then ties up the dislocations, 

locking them in place, and increasing the applied stress that is required to initiate 

dislocation glide. Following this treatment the material will be fully aged, the finished 

part displaying a yield stress increase in the range 34-70MPa [26]. Bake hardening is 

considered to have occurred. As the yield strength increase is achieved after the 

components have been formed, the forces required for pressing and drawing are 

kept low, and thus costs are reduced.

It is necessary to model strain aging and bake hardening effects for two major 

reasons. Firstly, component manufacturers require guarantees with regard to the 

aging characteristic of bake hardening steels at ambient temperatures. At higher 

carbon levels the aging process can progress at ambient temperatures to some 

extent, resulting in localised discontinuous yielding in the strip during forming 

operations, and the formation of unsightly stretcher strains [27] that render the 

product unsuitable for external body applications. Secondly, with the drive to reduce 

solvent levels in paints [28] there may be a move toward dry powder or water based 

coating solutions. It is necessary to determine how bake hardening grades will 

respond to a range of heat treatments should the current regime of twenty minutes at 

170°C prove unsuitable.
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2.1. The Processes of Strain Aging

In order to accurately model any process it is necessary to have a complete 

understanding of those factors or phenomena that are likely to impact upon it. Only 

with a full understanding of these effects can reasonable decisions be made in terms 

of which modelling techniques are applicable to the problem, and what level of detail 

the model requires to produce a sufficiently accurate solution.

A thorough representation of the aging process was presented by Wilson and

Russell, who cited the typical changes in tensile properties over the aging cycle as 

determined experimentally for a high quality rimming steel [29]. Four separate stages 

in the aging process were identified (Figure 2.1):

i) In all samples an initial increase in yield stress occurred within two to four 

seconds at room temperature, related to the local ordering of interstitial 

atoms within dislocation stress fields, or Sndek rearrangement [30].

ii) Aged at 60°C, over 35 minutes, the samples then showed a simultaneous 

increase in their lower yield stress and Luders strain, with no significant 

change in other tensile properties. This is attributed to the formation of 

solute atmospheres around dislocations

iii) Further aging, 35 to 100 minutes at 60°C, caused an increase in lower

yield stress at a decreased rate, with little or no increase in Luders strain;

a change in the strengthening mechanism had occurred, moving to a

precipitation or solute clustering event around the saturated dislocation 

atmospheres.
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iv) Longer aging times gave a further increase in lower yield, accompanied by 

an increase in ultimate tensile strength and work hardening coefficient, 

with a reduced elongation to fracture. Eventually, after 10,000 minutes, 

this gave way to a reduction in tensile properties due to ‘overaging’. 

Observations of this nature are typical of traditional precipitation 

hardening, which suggests that pre-precipitate clusters coarsen to produce 

incoherent precipitates.

Cluster formation
PrecipitationCottrell

locking

Lower yield stress

05
Llider's strain

Ultimate tensile strength

Elongation to fracture

006 —  Grain size I 
Grain size 2

—  Grain size 3
004

s
^  0 02

Work hardening coefficient

10’10’10* 10*10
Aging time at 60°C (min)

Figure 2.1 Effect of grain size on changes in mechanical Properties due to strain aging. Grain 

size in grain per mm squared: 1) 50; 2)195; 3) 1850 [29]
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2.1.1. Snoek ordering

In body centered cubic (BCC) ferritic iron interstitial carbon and nitrogen atoms 

occupy the octahedral sites of the BCC unit cell. In an unstressed material the atoms 

are evenly distributed about these sites, and diffuse freely between them. In a 

stressed region of crystal some interstitial sites become enlarged, and as such it will 

be more energetically favourable for carbon atoms to occupy these due to the 

reduced level of lattice misfit. This causes a reordering of interstitial atoms to reduce 

strain energy [31]. Following this rearrangement the interstitial atoms are in 

energetically favourable positions, and slip will result in a small increase in the strain 

energy of the system, of the order of 1-2MPa [32].

Wilson and Russell observed this phenomenon as producing an instantaneous 

increase in yield stress at room temperature in a low carbon steel (0.038wt% C), and 

were able to confirm that the time scale was that for a single atomic jump of 

interstitial carbon [32]. This time scale was related to the relaxation times in elastic 

after-effect due to the ordering of carbon in iron. Similarly, Nakada and Keh [33] 

have studied this phenomenon in decarburised steels containing 0.0014wt.% carbon 

and between 0.013 and 0.023wt.% nitrogen, with similar results, supporting the 

theory that this initial strength increase results from Snoek ordering.

2.1.2. Atmosphere formation

In its currently accepted form, the theory of dislocation atmosphere formation was 

developed by Cottrell and Bilby in 1949 [34], Due to their lattice misfit solid solution 

atoms can act to relieve the stress around a dislocation by forming solute
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atmospheres, with large atoms gathering in the dilated portion of the dislocation field 

and small atoms in the compressed region. Application of a sufficiently large force 

will tear pinned dislocations free, allowing glide to occur at a lower applied stress. 

This produces the characteristic yield point phenomenon in strain-aged steels, which 

display an elevated yield stress, followed by a significant yield drop and the 

accumulation of Luders strain.[35]

Cottrell and Bilby predicted that interstitial carbon atoms would segregate to a 

dislocation until a saturation point was reached, at which the addition of further 

atoms to the solute atmosphere would cease to reduce the dislocation energy. The 

final atmosphere was predicted to take the form of a central row of carbon atoms 

running parallel to the dislocation line, and just below its centre, surrounded by a 

dilute Maxwell-Boltzman distribution of solute in the lower half of the crystal. [34]

2.1.3. Precipitate formation

Where sufficient carbon is present, bake hardening results in a two stage aging 

process. This has been observed in steel containing 5wt.ppm of carbon aged 

between 50°C and 180°C by Elsen and Hougardy [25]. While the first stage is due to 

atmosphere formation, the second stage was attributed to the formation of coherent 

carbides. Aging had little effect on the strain-hardening rate of the specimens 

investigated, where the formation of incoherent precipitates would be expected to 

cause an increase in the strain-hardening rate. Additionally, the maximum increase 

in yield stress on aging decreased with increasing prestrain. A higher prestrain would 

result in a larger number of nucleation sites, and hence smaller particles forming. 

The stress required to cut coherent precipitates increases with the square root of
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particle size; this was consistent with their observations [25]. No TEM lattice imaging 

was provided to support this theory in the paper.

An Ultra Low Carbon steel was studied by De et al., containing 21 ppm of carbon in 

solution [36], measured by internal friction methods using a torsional pendulum 

operating at a frequency of 1Hz. The kinetics were described using an Avrami 

transformation equation:

W = 1 -  exp
\ T /

= 1 -  exp[- (kt)" ] 2-1

In which n and t  are constants, and W is the fraction of carbon precipitated. This 

allowed the precipitation process to be studied through the change in the exponent, 

n, during aging, determined using a /n[-/n(1-W)] vs Ini plot (Figure 2.2) [36].
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Figure 2.2 Variation of the JMAK kinetic exponent, n, with aging temperature during 

accelerated aging experiments [36]
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Below 77°C a kinetic exponent of 0.58 to 0.70 was observed, in line with the value of 

2/3 expected for dislocation interactions following traditional theories [34]. In 

accordance with traditional theories, carbon atoms are drawn to dislocations forming 

solute atmospheres, which, upon saturation, can form clusters that subsequently 

grow via rapid transport of carbon atoms along the dislocation line [29].

Above 77°C, the kinetic exponent was found to be between 0.42 and 0.48, 

suggesting a growth controlled process as clusters rapidly attain a critical size 

resulting in epsilon-carbide formation. The activation energies for these processes 

were found to be in reasonable agreement with reported energies from Sherman et 

al. for carbon cluster formation prior to Martensite formation [37] and for the 

precipitation of E-carbide in low carbon steels. Sherman et al had performed their 

investigations on a range of Iron-Nickel-Carbon alloys, containing between 0.003 

and 0.6wt.% carbon, with a greater emphasis on higher carbon concentrations. It 

was concluded by De et al. that, in the case of ultra low carbon steels, precipitation 

occurs initially by the formation of carbon clusters on dislocations, which may then 

transform to 8-carbide precipitates at sufficiently high temperatures, for which De et 

al. placed the lower temperature bound in the range 70-77°C.

Given sufficient time, and a high enough carbon content, the precipitates forming in 

the third stage of aging will further coarsen, increasing in size and reducing in 

number. At this point their efficiency in pinning dislocations will reduce and the 

softening or ‘overaging’ observed by Wilson and Russell will occur [30].
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2.2. Numerical Modelling of Strain Aging

Historically many attempts have been made to model strain aging phenomena 

numerically. The majority of these describe the formation of carbon clusters on 

dislocations, without coupling this effect to a model of precipitate nucleation and 

growth. The value of such models is limited as, while they may reasonably describe 

the shape of the aging curve, they cannot be used to produce representative 

microstructures, nor confirm our understanding of the strain aging process as it 

occurs. Nonetheless they are included within this document for completeness, and 

as a source of data for a model; their derivations containing a number of interaction 

parameters that would otherwise be difficult to calculate.

The earliest numerical model of aging was produced by Cottrell and Bilby [34], taking 

the form of a rate law describing the degree of atmosphere formation after a time, t, 

assuming preferential drift of solute atoms under thermal agitation toward a 

stationary dislocation, as a result of the interaction energy between the two.

In which Ns is the number of carbon atoms required per unit length of dislocation to 

form an atmosphere, N(t) the number of carbon atoms diffusing to a dislocation in 

time t (s), n0 the average concentration of carbon atoms per unit volume of material 

(m'3), A is a parameter describing the magnitude of the interaction between the

2-2
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dislocation and carbon atoms (3x10'2Odyne.cm2, or 3x10‘19 Nm2), D is the coefficient 

of diffusion for carbon (m V ), k is the Boltzman constant (m2 kg s' 1 K'1), and T is the 

absolute temperature (K) [34].

This equation was found to be reasonable for up to 30% completion of aging [34]. 

However, the model neglects the effects of solute depletion, atmosphere saturation 

and the reduced effect of later solute atoms, with regard to reducing the stress field 

around the dislocation; it also only accounts for the first stage of dislocation locking.

A modification was proposed by Harper to account for the reduction of solute 

remaining in the matrix over time [38]:

In which W is the fraction solute that has segregated to dislocations and L the total 

length of dislocations per unit volume (m~1). All other terms are as described for the 

Cottrell-Bilby equation above.

This assumed that the rate of precipitation would vary in proportion with the fraction 

of solute precipitated, due to solute depletion in the lattice. This equation still ignored 

back diffusion and saturation of the dislocation atmosphere, and as such could only 

be applied in the initial stages of atmosphere formation. It has since been 

superseded by other models that more accurately describe the physical processes 

that occur.

2-3
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A subsequent numerical treatment by Bullough and Newman [39] accounted for 

dislocation saturation and back diffusion down the concentration gradient arising 

around the dislocation and, as with Cottrell and Bilby’s original work [34], was 

compared with the results of Davenport and Bain. This model found t273 kinetics to be 

reasonable to between 30 and 40% dislocation locking.

Elsen and Hougardy [25] have developed a relationship describing the increase in 

yield stress during aging as a function of the maximum strength increase obtained, 

which is purported to also account for the reduced effect of later solute atoms in 

reducing the dislocation stress field, and covers both the locking and precipitation 

aspects of strain aging

A O "BH(t) ~  ^ M A X - 1  ,  -v • + A ct. K k P J

1 +
1c\ KcJ

1 +
f \

t
2-4

\ kpj

In the above kc and kp are temperature dependant parameters following an Arrhenius 

type relationship, is the maximum strength that can be achieved through

Cottrell locking and nc a constant (roughly 0.9); both of these parameters are 

independent of both temperature and prestrain. A cr^.,, is the maximum yield 

strength increase attributable to the precipitation event for the steel composition in 

question, and is independent of aging temperature, but varies with prestrain, and np 

is a constant that varies with temperature. It is stated [25] that relationships have 

been developed to determine these parameters from the temperature and prestrain 

used, but these relationships were not included in the published work.
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More recently a predictive kinetic model specific to ultra low carbon steels has been 

presented, based on Cottrell’s theory, taking into account remaining carbon in 

solution, atmosphere saturation and segregation of carbon atoms to grain 

boundaries [40]. The final rate equation reached was:

N ( t )  1 — e 3 L̂° ~n°x }Vdist̂ 12

N.
1 - 2-5

nf

Here N(t) is the number of carbon atoms having arrived at a dislocation after time t 

(s), Ns the number of atoms required to lock that dislocation, N0 the dislocation 

density (nrf1), no the initial concentration of solute carbon atoms, X is the dislocation 

slip distance, L0 the dislocation distance per unit volume (m), t the time that has 

elapsed (s) and Vdis is a parameter describing the magnitude and range of interaction 

of a dislocation. This model was tested against experimental data for steels 

containing 6.4wt.ppm carbon, post-processing, as determined by internal friction 

methods. The samples were aged under a range of temperature regimes and the 

results, displayed in Figure 2.3, show a good agreement between the model and 

empirical data.
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Figure 2.3 Fraction increase in yield stress and theoretical predications of the dislocation 

saturation level for 2% prestrain specimens aged at 140 (crosses), 100 (triangles) 75 (circles) 

and 50°C (squares). The dashed lines are predicted with Cottrell’s formula, the solid lines 

predicted using the model presented.[40]

A different approach to the modelling of bake hardening effects has been taken by 

Berbenni et al [41], who have produced mathematical treatment of the aging process 

from first principles, based upon micro-mechanical considerations accounting for the 

hardening effects resulting from dislocation atmospheres forming, and from the 

subsequent formation of carbon rich clusters and nano-scale precipitates (these 

latter considered to be rod like in nature). This model has been used to simulate both 

the yield stress increase on bake hardening, and strain hardening curves following 

accelerated aging at 2% and 5% prestrain. The modelled curves after aging were 

around 50MPa above the experimental values, above 0.05 strain, but the modelled 

curve shape displayed the same trends as the experimental data.
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2.2.1. Analytical Treatment on Precipitation

Attempts have been made to model the nucleation and growth of precipitates on 

dislocations following atmosphere formation. Cahn considered the nucleation of a 

roughly cylindrical incoherent precipitate on a dislocation [42], the precipitate having 

a circular radius, and this radius changing with position along the dislocation line. 

From the free energy per unit volume the critical radius was determined as:

In the above r is the radius of the precipitate (m), gp and ga the bulk free energy of 

the respective nucleating and parent phases (Jm-3), upthe atomic volume of p (m3), B 

a constant describing the extent to which the dislocation is mixed (varying from Be to 

Bs for pure edge and pure screw dislocations respectively), b the burgers vector of 

the dislocation and y«p energy per unit length of the a-p interface (Jm‘1). [42]. If the 

release of bulk free energy and the dislocation energy terms are sufficiently large

difference between the positive and negative solutions to the equation. According to 

[43] the formation of Cottrell atmospheres by segregation corresponds to the latter 

scenario, with the saturated atmosphere corresponding to the metastable local

2-6

there will be no free energy barrier to nucleation

— R 2 ~ < 1  there will be an energy barrier, with a magnitude equal to the
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minimum energy configuration. Significant nucleation occurring where

Cahn went on to show that for an incoherent cylindrical precipitate forming on a 

dislocation the nucleation rate per unit volume on dislocations could be expressed 

as:

Where lD is the nucleation rate per volume, N° the total number of atoms on 

dislocations k the Boltzman constant (m2 kg s"1 1C1), h Planck’s constant, AGC° the 

free energy barrier to nucleation on a dislocation (Jmol'1) and AGaD the free energy 

of activation (Jmol'1).

There is evidence to suggest that the forming precipitates may be coherent in nature 

[25], and it has been proposed that these precipitates are cylindrical, lying along the 

dislocation line. The nucleation of coherent precipitates on edge dislocations has 

been considered by Dollins [44] for a spherical or disk like precipitate, which 

derivation and results were subsequently examined by Barnett [45] in light of the 

work of Eshelby.

These works determined the free energy change caused by such nucleation 

occurring, this being (for a spherical nucleus):

2-7
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AF = ^ m , 3{a f ;  + &Fvs)+4na 2y ^ + W l +W1 2-8

In which AF is the free energy change on nucleation, a  is the radius of the forming 

precipitate, AFVT is the chemical free energy change per unit volume of precipitate 

(Jm‘3), AFvs is the total strain energy per unit volume of precipitate caused by the 

precipitate(Jm'3), ^oh is the surface free energy of the coherent boundary(Jm'1), W\ is 

the interaction energy resulting from displacement at the precipitate surface and W2 

is the modulus interaction energy caused by the precipitate increasing the strain 

energy of the dislocation interaction field. [44]

The nucleation of a coherent spherical precipitate on a dislocation, including the 

chemical driving force resultant from local changes in solute content, was more 

recently examined for a nickel aluminium system by Xiao and Haasen [46]. Xiao and 

Haasen show that the free energy change on forming a small coherent precipitate 

near a dislocation can be expressed as [46]:

Ayr
AF d = —  r 3(Agdv + Agdp + Ag % ) + 4w 2crd 2-9

in which AF** is the free energy change on formation of a nucleus of radius r in the 

strain field of a dislocation(J), Agvd the chemical driving force within a dislocation 

strain field, Agpd the misfit strain energy per unit volume of precipitate, AgpJ* the 

interaction energy per unit volume due to solute redistribution within the strain field of 

an edge dislocation and crd the the interfacial energy precipitate per unit length.
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The constants above were derived in terms of species concentrations in the vicinity 

of a dislocation at which a Cottrell atmosphere has formed and the critical radius for 

successful nucleation calculated. It was shown that, in that region in which the misfit 

strain serves to minimise the strain energy of the dislocation, the critical radius for 

nucleation is decreased, while in that region where misfit strain is increased, the 

critical radius increases and nucleation will be heavily retarded. [46]

2.2.2. Diffusion controlled growth

One of the earliest models of diffusion controlled growth is the ‘Zener model’, which 

describes the radial growth of a plate like or cylindrical precipitate in a single linear 

direction [47].

Figure 2.4 - Diagram accompanying Zener diffusion controlled growth derivation. Left: Phase 

diagram portion. Right: schematic of concentration field at advancing interface.
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From Figure 2.4, assume an alloy of composition C0 has been cooled to the 

temperature T sufficiently rapidly to prevent formation of the p phase. As particles of 

p form, the composition of a at the interface must be Ce.

For the interface to advance by a distance 8 x, (Cb -  Ce)5x mols of solute are required 

to diffuse down the concentration gradient e.g.

The solute uptake in the forming precipitate must be equal to the solute depletion in 

the matrix adjacent to the interface. The change in composition over distance 

(assumed to be linear) is also easily calculated:

Sc _ A C0 
Sx L

Substituting into equation (2-10)

Sx DAC02
2(C„-CjCb-C0)x

Assuming the undercooling is low e.g. (Cb -  C0) *  (Cb -  Ce),

2-10

(Cb-Ce)x = ±AC0L 2-11
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Six DAC02_________ DAC02    v ^  v
&  2(0> — CeXQ — C0)x 2(Cb — Cg) x

2-14

2-15

2-16

2-17

2-18

Therefore precipitate growth will be parabolic with respect to time where growth is 

diffusion controlled, the growth rate decreasing as the solute depleted region 

becomes longer and solute must diffuse further to supply the interface.

For diffusion controlled growth the kinetic exponent would thus be expected as 0.5; 

however, the Zener model cannot reasonably be expected to accurately describe the 

growth of precipitates nucleated on dislocations as it ignores capillarity effects and 

as such is unsuitable for situations where the radius of curvature is small, or where 

the precipitate radius is similar to the critical radius for nucleation. [43]

If a particle is sufficiently small the work done to increase the interface area during 

growth is not negligible and capillarity effects must be taken into account; the 

assumption of an equilibrium matrix composition as described by the phase diagram 

at the precipitate interface is not valid due to the influence of surface energy.
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Additionally, in the case of epsilon carbide growth on dislocations during aging, 

expected to occur in ULC strip steels, there is a possibility of carbon being supplied 

to the growing precipitate by rapid transport along the dislocation. Love [48] presents 

a model of dislocation pipe diffusion in which self-interstitial atoms and vacancies are 

produced in pairs as a single atom moves across the dislocation core, and pipe 

diffusion occurs where a tracer atom diffuses to a vacancy along the core other than 

that which was created with it [48].

Miller et al [49]. have shown by atomistic computer simulation that the presence of 

edge dislocations serves to decrease the energy required for vacancy formation in 

BCC metals, giving a lower potential barrier to vacancy diffusion in spite of a higher 

migration energy. The energy barrier to vacancy formation can be as low as 60 to 

80% of that in the bulk material; it is expected that this will be qualitatively true for 

solutes where the controlling mechanism for movement through the bulk material is 

vacancy diffusion [49]. This work also states that, with regard to interstitials, as these 

solute atoms are bound to the tension side of the dislocation where both formation 

energy of an interstitial and the migration energy are likely to be lower, pipe diffusion 

will be especially favoured.
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2.3. Modelling Techniques

2.3.1. Introduction to modelling techniques

The realm of materials includes phenomena that cover a wide range of time and 

length scales; while at one extreme it is necessary to understand the stress strain 

characteristics and gross deformation response of large structures and components, 

at the other extreme atomic interactions affect the formation and behaviour of 

dislocations and nano-scale precipitates. Over the years models have been derived 

to describe and predict the way in which materials will behave, and while some of 

these may be solved analytically for simple cases, numerical solution using 

computers is common for large or complex problems. A range of modelling 

techniques now exists, each of which is applicable to a characteristic time and length 

scale. As such they can rapidly be assessed regarding their suitability for the 

problem at hand -  the modelling of dislocation locking phenomena, and subsequent 

formation of nano precipitates.

Strain aging occurs over a number of processes, and across varying time and length 

scales. Dislocation locking, as considered by Cottrell and Bilby [34] occurs through 

the diffusion of interstitial atoms to dislocation sites as a result of a ‘drift force’ due to 

strain field interactions, with a time scale ranging from 103 to 105 seconds. This is 

followed by the formation of rod-like ‘nanoprecipitates’, that are likely to consist of e -  

carbide (Fe2.4-3.0C), and form along the dislocation network [25, 50].

Numerical models of the processes that occur during aging have been developed 

over the years [25, 34, 38, 51], these being able to predict the extent to which aging
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will have progressed as a function of time and temperature; similarly, the maximum 

yield stress that can be achieved as a function of carbon content, and the propensity 

for room temperature aging have been investigated for a range of grades. It is hoped 

that, through the production of a kinetic computer simulation, other factors such as 

the kinetic influence of solid solution alloying elements [16], can be incorporated to 

give a more complete picture of bake hardening.

2.3.2. Monte Carlo

The range of techniques that fall under the purlieu of Monte Carlo Modelling are all 

related by the attempt to mimic stochastic processes by breaking them down into 

isolated events and performing a statistical analysis using an uncorrelated chain of 

pseudo-random numbers [52]. This involves either ‘naive sampling’, in which values 

are drawn with equal probability from the entire available phase space, or 

‘importance sampling’, in which values are drawn with varying probability over a 

discrete region of phase space, which maps to a function roughly describing the 

process being considered. Importance sampling can be more efficient, and give a 

result that is more ‘true’ to the process being modelled; in atmosphere formation 

atoms are diffusing under a ‘drift force’, and, as such, diffusive jumps in the direction 

of the vector are statistically more likely. However, this is only the case if the chosen 

function is correct, and it is necessary to qualify any results produced in terms of the 

assumptions that have been made.

Among the earliest recorded uses of computational Monte Carlo techniques is Ulam 

and Von Neumann’s ‘random walk’ simulation of Neutron diffusion in a fissile 

material, in which a diffusing neutron was assumed to be deflected in a random
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direction on each successive collision as it passed through the material. Other uses 

have involved the solution of high dimensional integrals, using a ‘hit-or-miss’ 

technique’, and solving Hamiltonian energy expressions [52]. The Hamiltonian 

describes the kinetic and potential energy of every atom considered in a system, and 

thus can be used to predict molecular interactions at the atomic level The original 

algorithm for use with such models was developed by Metropolis et ai [53] to solve 

the state equation for a many body problem.

In this model every atom in the ensemble was assigned an initial position, and the 

energy of the system determined through solution of the Hamiltonian; the position of 

a single atom was then randomly altered, and the energy recalculated. Any move 

that resulted in a decrease in energy was accepted unconditionally. If the energy 

increased, a move might be accepted subject to the Boltzman Factor, which 

describes ‘the non-normalised statistical weight with which the canonical phase 

space configuration occurs in thermal equilibrium’ [52]; essentially the probability of a 

move occurring that would produce a configuration resulting in a quantifiable 

increase in net energy. Over a number of iterations such a model should eventually 

converge on the condition of minimum energy, but the moves taken in producing this 

state will not represent the kinetic evolution of a true system.

The problem of dislocation pinning represents a combination of the above 

applications of Monte Carlo processes. A modified ‘random walk’ would need to be 

produced for migrating interstitial atoms, accounting for changes in energy due to 

chemical interactions with other solutes and the change in elastic strain energy. A 

kinetic operator describing jump frequency would also be required, scaling with time,
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to allow the study of microstructural evolution; traditional Monte Carlo techniques are 

frequently used for static studies, and may not give the actual configurations by 

which an equilibrium state is achieved. In dynamic studies the configurations 

generated are meant to simulate the temporal evolution of the system [54] and it is 

necessary to be able to convert ts (the simulation time) to tr (real time), and ensure 

that these two scale linearly.

Cao [55] reviewed two methods for incorporating real time into Monte Carlo 

simulations and presented a new algorithm of his own devising, supported by a 

computational experiment, through which this can be achieved. [55] For the first of 

these the real time is determined as

/r = — Y — 7-!----- i 2-19
N^w,(C„Cf)

Where we is the transition rate from a site Cj to a site Cf,(s'1) and N is the number of 

particle that are diffusing. The factor 1/N arises because the diffusing particles 

(which each serve as a clock) are all counting time in parallel. Alternatively a Monte 

Carlo Time Step (MCTS) can be used to define the length of time required for an 

isolated particle to make a single jump; within each MCTS every particle under 

consideration is given the opportunity to make a single jump, allowing evolution of 

the microstructure over time.

Cao then considered a number of particles (N), able to make a number (M) of 

possible transitions, each having a defined transition rate Wj. It is shown that
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where r® is the average waiting time between transitions occurring(s). Through the

computational solution of a surface diffusion problem this new algorithm was found 

to be equally valid to the pre-existing forms.

It has been suggested that processor use can be optimised in Lattice Kinetic Monte 

Carlo by only simulating the ‘defect’ atoms, and adopting an event driven time step 

that constantly adjusts to suit the fastest process that is occurring [56]. These 

methods have already been used to model point defect diffusion and ion implantation 

in silicon-based semiconductors for microelectronic applications using the 

commercial software DADOS (Diffusion of Atomistic Defects, Object-oriented 

Simulator), developed at the University of Valladolid.

The Locally Activated Kinetic Monte Carlo algorithm proceeds by always adjusting 

the feature that is lagging the most in terms of time, and calculating a time step 

based on the frequencies with which that feature will change it’s state, and is 

demonstrated in [57]. By comparison the Bortz-Kalos-Lebowitz (BKL) algorithm 

chooses a single state change from all the changes that are possible within the 

simulation, and generates a time step based on the cumulative frequency with which 

all events can occur. Both algorithms are discussed in more depth later in this thesis.



2.3.3. Computer simulation

A Kinetic Monte Carlo simulation of strain aging has been published by Soenen et al, 

accounting for both diffusion of carbon atoms to dislocations during aging, and grain 

boundary segregation during the annealing process, and the results of this group 

have shown a strong correlation with their experimental data (Figure 2.5) [57].
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Figure 2.5 Comparison of calculated and experimental dislocation saturation evolutions with 

aging time (Steel containing 11wtppm carbon in solution, aged at 50°C, prestrain of 5%) as a 

function of grain size. [57]

The kinetics are controlled by a set of Arrhenius type equations controlling jump 

frequency, relating to; jumps between positions of equivalent energy within the bulk 

material; jumps to sites of higher or lower energy, within a critical radius around 

dislocations; jumps from the bulk material into the grain boundary sites, and vice 

versa.
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Following each atom jump, the cumulative jump time of every atom is determined, 

the atoms are sorted, and the one that lags behind the most in time is selected for 

the next occurring move. The total simulation time can be taken as the cumulative 

jump time of the leading atom. [57]

Finally, A phase field model of solute segregation and coherent nucleation has been 

developed by Hu and Chen [58], and has been successful in reproducing solute 

segregation in the presence of a dislocation strain field, and coherent nucleation and 

growth of precipitates near to a dislocation, including barrierless coherent nucleation 

resulting from strain field interactions.
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2.4. Metallurgical considerations in strain aging

Various strip steels have been found to exhibit strain aging phenomena over the 

years, but modern grades designed to show a favourable bake hardening response 

and high level of formability often have ultra low carbon levels (to the order of 

30wt.ppm total carbon), with microalloyed chemistries based on titanium and 

niobium additions. As the focus of this project is the development of novel grades 

based around vanadium additions, it is these microalloyed chemistries that will form 

the focus of the initial stages of this review.

2.4.1. Titanium based chemistries

Assuming Mn levels are sufficiently low to suppress MnS formation, titanium 

microalloyed ultra low carbon steels can be considered to follow a precipitation 

sequence resulting in carbon being stabilised through the formation of TiC [59] i.e.

Ti + N TiN 

Ti + S -> TiS 

Ti + C -» TiC

2-21

2-22

2-23

This results in full stabilisation of carbon occurring with the stoichiometry:

Ti = 4 C + 3.42 N + 1.5 S 2-24
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An alternative scheme has been suggested [59-61] on the grounds of the differing 

C:N:S ratios between IF and HSLA steel grades, and experimental evidence. It is 

argued that for current commercial IF grades having higher sulphur contents, carbon 

is principally removed from solid solution through the formation of Ti4C2S2l and that 

the role of free carbide precipitates have previously been overestimated.

During processing TiN nucleates while the steel is still liquid [62]; the titanium nitride 

acts as a nucleation site for epitaxial growth of TiS or Ti4C2S2 during solidification. At 

temperatures above 1260°C (eg. slab reheating) the carbosulphide is dissolved 

leaving a range of TixS polytypes [61]. On cooling, the carbosulphide reforms in the 

temperature range 1260°C > T > 950°C, although it has been shown that formation is 

strongly suppressed by rapid cooling and in situations where complete dissolution 

has previously occurred, resulting in preferential formation of TiC in spite of the 

higher thermodynamic stability of the carbosulphide phase [63] In the range 930°C > 

T > 800°C TiC was found to form through epitaxial growth.

Given sufficient titanium to tie up all the nitrogen and sulphur in solution, and low 

enough manganese levels to suppress the formation of MnS over TiS the titanium 

levels required for full stabilisation of an IF steel should be:

Ti = 3.42 N + 2(1.5 S) 2-25
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2.4.2. Niobium based BH grades

In niobium based bake hardenable grades nitrogen and sulphur are removed by the 

formation of AIN and MnS, while carbon is scavenged by niobium to form NbC, [64]

Al + N -> AIN 2-26

Mn + S -> MnS 2-27

Nb + C -» NbC 2-28

Complete stabilisation of carbon to form an IF grade requires the addition of Nb in a 

1:1 atomic ratio (a weight ratio of 7.74:1). Where a Bake Hardening response is 

desired this can be achieved through a high temperature continuous annealing 

sequence (>800°C) resulting in partial dissolution of the NbC precipitates that have 

formed, followed by sufficiently rapid cooling to prevent re-precipitation of NbC 

(>20Ks‘1 [35]), leaving a controlled level of carbon in solution.
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Figure 2.6 -  The effect of annealing temperature on the bake-hardenability of Ultra low carbon 

titanium and or niobium added steels [65]
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This has the disadvantage that the BH response achieved is dependant on the soak 

temperature used (Figure 2.6), and the use of exceptionally high temperatures can 

result in heat buckling during continuous annealing of sheet [65]. However, 

technique limits the level of free carbon in solution during recrystallization, which can 

improve the mean r vale of the steel produced. Free carbon will tend to delay the 

nucleation of the preferred ‘cube on corner1 texture during annealing, reducing the 

strength of this texture component and thus reducing the deep drawing quality of the 

steel.

Alternatively, a steel with bake hardening properties can be produced by under 

stabilising the carbon content, and the BH response has been found to improve 

using a substoichiometric Nb:C ratio [66]

2.4.3. Titanium -  Niobium dual stabilised BH grades

Where dual stabilised grades contain low levels of manganese and sufficient titanium 

to stabilise the carbon content of the alloy (eg. Ti >3.42 N + 2 (1.5 S) ) the 

mechanism of stabilisation can be considered to be that present in Ti only grades, 

with sequential precipitation of AIN/TIN, TiS, and Ti4C2S2. It has been shown [59] 

that the formation of TiC and NbC occur epitaxially on Ti4C2S2, and represent a small 

proportion of the carbon bearing precipitates. The majority of the niobium content 

remains in solid solution; if Niobium is retained in solid solution at concentrations 

above 0.025wt.% it can have a beneficial effect on texture development, increasing 

the strength of the {112} <110> component in hot rolled and annealed strip, and 

developing a stronger <110> partial fibre texture in the end cold rolled product, when
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compared to a traditional aluminium killed steel. This serves to improve the rm value 

of the steel [67]

Dual stabilised grades with a favourable aging response can be achieved in one of 

two ways.

1) It is possible to fully stabilise the nitrogen and sulphur content using titanium, then 

add a substoichiometric level of niobium, to leave the desired carbon level in 

solution.

2) A Bake Hardening response can be evolved during a high temperature anneal, 

which serves to partially dissolve the NbC precipitates. The annealing temperatures 

required for this process (800-850°C) can make production impractical using many 

galvannealing lines [35]

2.4.4. Vanadium based BH grades

As with Ti-Nb steels, Ti-V ULC grades can be expected to follow a similar 

precipitation scheme to those steels that are based solely on Ti additions. The 

precipitation effects in an experimental Ti-V ULC (Table 2-1) grade were recently 

examined by Ooi and Fourlaris [68].

Table 2-1- Grade composition used by Ooi and Fourlaris[68]

c N S Al Mn Si P Ti Nb V Fe

0.0033 0.0029 0.0030 0.0360 0.1700 0.0140 0.0120 0.0200 0.0040 0.0810 Balance
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Analysis using SEM revealed the expected precipitates of TiN (formed during 

solidification or slab reheating), TiS and MnS, with a size distribution from 0.5pm to 

2pm. Further analysis, performed using TEM, revealed several other features, in the 

20-1 OOnm size range. In combination with Energy Dispersive X-Ray spectroscopy 

(EDX) results it was shown that VC/Vo.asC precipitates formed on existing TiN 

particles in the matrix; this is a favourable precipitation event due to the incoherent 

interface between the FCC TiN and BCC low temperature ferrite, and the semi- 

coherent/coherent interface between the two FCC species TiN and VC.

This work found better properties for the Ti-V grade, in terms of formability, when 

compared to a grade of similar composition, but based solely on titanium 

stabilisation, at annealing conditions from 780°C to 820°C. The Ti-V grade displayed 

higher r  and n values, with total elongation in the range of 45%. The elongation of 

the Ti-V steel was found to drop off with increasing annealing temperature in spite of 

increasing grain size, and it was suggested this occurred due to a dissolution of VC 

precipitates (expected to be dissolved under equilibrium conditions at 655°C) 

releasing carbon into solution.[68]

Interphase precipitation of TiC particles with diameters in the region of 20nm was 

identified in both steels, and further fine precipitates (<10nm) were discovered on 

dislocations. It was surmised that these were also likely to be TiC. Precipitation 

hardening as a result of TiC was found to be lower in the Ti-V dual stabilised steel; it 

was stated that lower Ti levels resulted in a reduced mobility of Ti atoms in the 

formation of TiC, retarding the precipitation and coarsening rates. As TiC precipitates 

hinder the formation of grain structures with a desirable texture during

43



recrystallization the reduced level of TiC in the dual stabilised grade was deemed to 

be favourable.[68]

The demonstrable ability to dissolve VC precipitates at temperatures typical for 

continuous annealing supports the concept of a vanadium based bake hardening 

product, utilising a controlled dissolution event. However, for this to be practicable 

slow cooling rates are required during coiling due to the low formation temperature of 

VC precipitates.

At present little data exists on the production of vanadium based BH grades, and 

there is some disagreement between authors in the field. In 1976 Rashid [14, 15] 

investigated the effect of titanium and vanadium on aging response using two 

commercially available HSLA grades, to determine the cause of reduced rates of 

strain aging, previously identified in comparison with plain carbon grades

The formation of Cottrell atmospheres was described using an Arrhenious 

relationship, and the activation energy for atmosphere formation was determined for 

each of the alloy chemistries, giving values in the range 33.6 to 35kcal/mole. These 

values were significantly in excess of those required for the diffusion of interstitial 

carbon and nitrogen. Rashid proposed a kinetic barrier to diffusion existed within 

HSLA steels, either in the form of an interaction between interstitial and substitutional 

solutes, or as an elastic effect resulting from the presence of coherent carbides in 

the steel lattice. This in turn resulted in aging proceeding at a reduced rate.
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The aging response of dual stabilised Ti-V ULC grades was later assessed by Taylor 

and Speer, focussing primarily on continuously annealed products, annealed in the 

temperature range 788-871 °C. It was proposed that suitable levels of solute carbon 

may be evolved in vanadium stabilised grades through continuous annealing at a 

significantly lower temperature than is the case with Titanium or Niobium [16]. The 

temperatures required to produce 20ppm of free carbon in equilibrium are of the 

order 750°C, 850°C and 950°C respectively for these. (Figure 2.7)
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Figure 2.7 - Equilibrium carbon solubility in pure iron ferrite, as well as Fe-0.05V, Fe-0.05TI, and 

Fe-0.02Nb [16]

The steels were 1%, temper rolled then prestrained by 2% prior to aging in an oil 

bath for 30 minutes at 176°C. In theory full stabilisation should be possible at a V/C =

4.2, but it is stated that higher levels of vanadium may be required, as vanadium is 

only a moderate carbide former.
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The Ti-V dual stabilised steel showed an increasing Bake Hardening Index with 

increasing carbon content, exceeding 40MPa above 0.002wt.%C. Under accelerated 

aging experimental results suggested a reduced susceptibility to yield point 

elongation in the dual stabilised steel, with acceptable resistance at carbon levels as 

high as 0.005%C (Figure 2.8), this corresponding to a BHI of around 70MPa. By 

comparison Ti stabilised steels show unacceptable yield point elongation above 

0.003%C, with a yield point elongation greater than 0.2% following accelerated 

aging.
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Figure 2.8 - Accelerated aging response of Ti and Ti-V bake hardenable steels [16]
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It is suggested that, due to its high carbon affinity, vanadium may exert a kinetic 

influence on carbon in solution, reducing solute mobility; the role of the V/C ratio is 

also discussed, and it is shown, within the limits of their investigation, that as the V/C 

ratio increases from 0 to 41 the yield point elongation subsequent to accelerated 

aging drops from 0.8% to 0%. This effect is related to the affect of the V/C ratio on 

the equilibrium solubility of VC. While the relationship is not fully developed, it is 

demonstrated that the level of carbon existing in equilibrium with a known level of 

vanadium should be lower for increasingly higher V/C ratios.

While this appears to be in line with Rashid’s earlier results, a subsequent study [69] 

found that during coiling VC did not form due to kinetic factors, and found no 

evidence of vanadium or the V/C ratio affecting yield strength, tensile strength or 

bake hardening index. However, the work of Taylor and Speer relied on controlled 

dissolution of VC precipitates during continuous annealing, while Girina and 

Bhattacharya[69] did not observe any precipitation to occur without hot band 

annealing, which is likely to account for the discrepancy. The absence of VC 

precipitates in the hot band is surprising, however, as in the manufacture of HSLA 

steels it is necessary to reduce the temperature on the run out table to around 600°C 

to prevent the precipitation of coarse carbides. While a lack of carbide formation was 

observed in both hot-band and continuously annealed product, it is noted that hot 

band annealing served to tie up the existent free carbon, showing that VC will form 

given suitable kinetic parameters. [69]

A review on strain aging literature by Baird [18] has reported vanadium contents of 

0.03 to 0.05wt.% as being sufficient to totally suppress low temperature strain aging
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in rimming steels, and a reduced aging rate at elevated temperatures with increasing 

vanadium composition.

While the potential of bake hardening grades using titanium and niobium additions 

has long been exploited [35, 70], less work has been performed with regard to bake 

hardening products using combined additions of titanium and vanadium [16, 69, 71]. 

Historically vanadium has been found to have a retarding affect on strain aging as 

noted by Baird with reference to rimming steels and Rashid working with HSLA 

grades [14, 15, 18]. More recent attempts to prove this effect conclusively with 

reference to BH steels have disagreed [16, 69], but there is an existing patent held 

with regard to a non aging batch annealed grade using vanadium additions for this 

purpose [17]. Further work is clearly necessary to assess the retarding effect of 

vanadium additions with regard to the strain aging of ultra low carbon strip steel.
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2.5. Factors effecting bake hardening response

2.5.1. The effect of varying carbon content

The increase in yield stress, commercially, occurs in two steps during paint curing; 

an initial strength increase due to dislocation locking, and a subsequent increase 

resulting from the formation of non-equilibrium carbides.

The increase in yield stress produced in bake hardenable steels is attributable to free 

interstitial carbon alone, as, to reduce the risk of room temperature aging, nitrogen is 

removed through the addition of strong nitride formers such as titanium. It has been 

shown that dislocation pinning requires approximately one atom of carbon per atomic 

plane threaded by a dislocation [30]. This corresponds to a carbon concentration of 

only 0.25 to 1.2ppm of free carbon in solution, for a tensile specimen pre-strained by 

10% [72], Accepting this, within the range over which aging is limited to atmosphere 

formation alone, additional carbon does not appear to increase the maximum tensile 

stress achieved during atmosphere formation, but rather decreases the time taken 

for saturation to occur.

Recent studies performed on ultra low carbon steels have placed the maximum 

strength increase attributable to dislocation locking alone in the region of 30MPa [36, 

72, 73]. This is in agreement with the work of previous investigators [25, 30, 74].

The carbon level required in solution for nano scale precipitation to occur, giving a 

further increase in yield strength, has found less agreement between authors; De et 

al. found no evidence of a second stage strength increase when using a grade
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containing 6wt.ppm of carbon in solution, but a mild rise in yield stress increase, to 

35MPa, was obtained on increasing this level to 9wt.ppm [73]. By comparison Elsen 

and Hougardy, using a grade containing 5wt.ppm of carbon in solution, found clear 

two-stage aging to occur, with an initial rise in yield stress of 20MPa due to 

dislocation locking, and a further increase of up to 40MPa, depending on the degree 

of prestrain [25]. Rubianes and Zimmer similarly identified three aging regimes, in 

the range 0-12wt.ppm of carbon, with 5-6wt.ppm of carbon in solution giving a total 

increase in yield stress of around 60MPa, and adequate resistance to aging at room 

temperature [75].

The effect of free carbon concentration on aging response was investigated by Van 

Snick et al. [76], covering a range up to 114wt.ppm (Figure 2.9). The increase in 

yield stress on aging was seen to rise rapidly over the range 5-15wt.ppm of free 

carbon, beyond which the rate of increase dropped off, attaining a maximum value of 

about 72MPa beyond 40wt.ppm.
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Figure 2.9 -  The influence of free carbon content on bake hardening response (grain size 

17um) [76]
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In a study on bake hardening performed using Thermo Electric Power 

measurements (TEP) (Table 2-2) Massadier et al [24] reported a rapid rise in yield 

stress increase of 70MPa in the range 0-30wt.ppm of carbon, again levelling off at 

40wt.ppm. The maximum yield stress increase obtained in their experiments was 

between 80 and 90MPa. [24]

Table 2-2 - Steel compositions used by Massadier at al in TEP study

C 10-3 wt.% 
(ppm)

N 10-3 wt.% 
(ppm)

Mn wt.% Al wt.%

Pure iron 0.5 or 1.5 (5 or 15) 02  (20) £  Al, S i . . .^ 0.050
Steel ULC, 6.0 (60) 4.0 (40) 0.125 0.015
Steel ULC2 7.0 (70) 5.0 (50) 0.250 0.016
Steel LC, 23.0 (230) 5-3 (53) 0.200 0.050
Steel LC2 59.0 (590) 4.8 (48) 0.400 0.048

While it is difficult to draw any definitive conclusions from the above, it is clear that 

bake hardening response is very sensitive to carbon content in the range 0-30 

wt.ppm. A lower threshold appears to exist, below which nano-precipitation does not 

occur, limiting BH response to 20-30MPa. Similarly there is an upper threshold, 

above which aging is primarily controlled by the matrix precipitation event, and 

maximum bake hardening responses appear to be in the region of 80MPa. There is 

also evidence to suggest that bake hardening response increases with decreasing 

grain size [30, 76-79]. Elsen and Hougardy [25] state the ideal carbon range for BH 

grades as between 5 and 15wt.ppm to ensure a significant increase in yield stress, 

without too high a propensity for room temperature aging. Based on the 

investigations of R. Pradhan [80], carbon content should be controlled below 

10wt.ppm to avoid room temperature aging.
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2.5.2. The effect of varying Grain size on bake hardening response

A positive effect on bake hardenability with decreasing grain size has been reported 

by a number of sources,([77], [78], [79] [76],). Hanai et al. found that that the 

increase in yield stress was increasingly dependant on grain size where carbon and 

nitrogen in solution were above 10ppm, and cluster and precipitate formation could 

occur. For a given grain size there was a maximum yield stress that could be 

achieved by increasing solute carbon. Conversely, they reported grain size to have 

little effect where combined solute levels were below 5ppm, and Cottrell locking was 

the dominant mechanism of dislocation pinning.

Possible explanations were discussed by Van Snick et al., citing work by Obara and 

Yamazaki [76, 78, 81]. Obara et al. suggested that in larger grains there is an 

increased tendency for intragranular cementite precipitation. This is due to a higher 

degree of carbon supersaturation on cooling, as the diffusion path to grain boundary 

precipitation sites is longer. Where intragranular cementite is present during aging 

carbon will diffuse both to pre-existing precipitates and to dislocations, reducing the 

extent of dislocation pinning. Yamazaki et al. suggested the influence of grain size 

resulted from the location of dissolved carbon, as free carbon lying at grain 

boundaries cannot be observed using internal friction methods. During paint curing 

free carbon in the grain boundaries could diffuse into the grains and contribute to 

dislocation pinning. Van Snick et al. measured no change in measured free carbon 

with grain size, which tends to support the former of the two theories. In either case 

the Yield strength increase is typically related to d*°5 where d is the grain diameter.
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2.6. Accelerated aging and room temperature aging resistance

The room temperature aging characteristics of bake hardenable grades are of vital 

importance, as these determine the length of time for which steel sheet may be 

stored prior to pressing operations, without necessitating an additional temper roll to 

avoid the formation of stretcher strains. While at elevated temperatures the onset of 

aging, and the return of yield point phenomena, occurs within minutes, at room 

temperature these processes are far more gradual. For the sake of experimentation 

it is useful to have a known correlation between the rate of room temperature aging, 

and aging at some higher temperature; without such a relationship the time scales 

involved in any kind of comparative study would be prohibitive.

Based on the theories of Cottrell and Bilby [34] Hundy derived equations, relating 

rates of aging to one another over a range of temperatures [82]. In the following 

carbon and nitrogen are considered to be the primary agents of aging in the former 

and latter respectively:

log]0- j  = 4400 _L_i
T T\ J r  1  ,

1 T - lQg 2-29

log10 — = 4000 1 T  
“ to g io  — 2-30

These equations are based on the assumption that the rate of aging can be

considered in terms of the rate of diffusion of the interstitial species, and the
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activation energy values used in their derivation are very similar to those for diffusion 

of carbon and nitrogen [83]. In the above tr (s) is the strain aging time at room 

temperature, Tr (K). t (s) is the corresponding aging time at an elevated temperature 

T(K). All temperatures are expressed in Kelvin.

These equations were shown to be reasonable using experimental data produced by 

Hundy, and by comparison with the results of other investigators, subject to the 

limitation that the amount of solute in solution does not vary as a function of 

temperature. This assumption should hold well in dealing with stabilised IF grades, 

due to the high stability of the carbides that could form. Typical paint baking cycles 

are of the order of 170°C, while the annealing temperatures required to dissolve 

carbon into solution are around 800°C. [82].

Accelerated aging tests tend to be performed at 100°C, in specimens that have 

undergone an artificially high temper roll. This over-rolling is performed to delay the 

onset of aging, and thus make for easier comparison of results. As shown in table 2, 

the temperature of 100°C is sufficient to give three months of room temperature 

aging over the course of one hour, and it has been stated that, if the LUders strain 

remains absent after such a test, the steel should be stable in storage for as long as 

six weeks [26]. For comparative studies it has been suggested that lower 

temperatures should be used, to better highlight any differences that might arise in 

aging rate. Accelerated aging tends to be performed in either a hot oil or hot mineral 

bath, depending on the temperatures required. Tests at 100°C may also be 

performed in boiling water.
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3. EXPERIMENTAL PROCEDURES

The purpose of the experimental work performed herein is to generate validation 

data for a novel Kinetic Monte Carlo model of strain aging that has been developed 

through the course of this research. The model has the capacity to recreate changes 

in the level of prestrain test coupons are subjected to, free interstitial carbon content, 

and aging temperature. The potential has also been included for expansion of the 

model to cover a range of secondary interaction effects, such as the known retarding 

effect of vanadium additions on rates of ambient temperature strain aging 

phenomena, and the addition of vanadium has been included as a test case for this 

capability.

3.1. Laboratory Annealling

Simulated annealing has been performed using the RHESCA Hot Dip Simulator 

owned by Corns RD&T Figure 3.1 [84]. This is an infrared furnace capable of heating 

rates of 35°C/s using 0.7mm sheet. The HDS is capable of annealing samples 

200mm x 110mm in size with gauges from 0.6mm to 3mm, allowing each test piece 

to generate three 30mmx180mm blanks for 50mm tensile specimens, as per 

BSEN10002-2001 annex B [85]. Tensile coupons having a 50mm parallel gauge 

length were adopted for this body of work to cover the maximum possible number of 

conditions using a limited quantity of laboratory cast and processed material.
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RHESCA HOT DIP GALVANISING SIMULATOR
.2Figure 3.1 -  A Schematic of the Rhesca Hot Dip Simulator at ECM , Port Talbot Steel Works, 

used for simulated annealing studies in this programmed of work. [84]

The infrared furnace elements are positioned within the furnace box alongside a 

quartz tube that contains the test strip, parallel to the width of the strip; there are 9 

furnace elements on either side of the tube, these extending both above and below 

the limits of the sample. Prior to use the furnace was sealed and evacuated to a 

pressure of 0.2 Tor. The system was then flooded with nitrogen to atmospheric 

pressure. The use of a nitrogen atmosphere removes any risk of surface
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decarburisation of the sheet -  a critical factor when working with such low carbon 

compositions.

Temperature of the samples was computer controlled using a spot welded k-type 

thermocouple, positioned at the centre of the strip adjacent to the region that 

corresponds to the tensile test gauge, using a PID controller. Temperature control is 

possible to within +/-5°C at operational temperatures of up to 1000°C. The annealing 

cycle was controlled using a notepad based scripting language in which heating 

rates, cooling rates, temperatures and soak times were explicitly stated.

Under normal operating conditions cooling rates of 30°C/s can be achieved from a 

soak temperature of 800°C on 0.7mm sheet, using a flow of nitrogen gas over the 

sample at 400l/min to remove heat. The maximum achievable cooling rate is 

~80°C/sec using a manually operated gas flow of 300l/min. with a 0.7mm panel, this 

rate decreasing as steel gauge increases. This cooling methodology was adopted in 

this programme of the work, the nominal steel gauge of 1mm giving initial cooling 

rates in excess of 60°C/s
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3.2. Interstitial Carbon Measurement

Internal friction analysis has been carried out using a Vibran forced torsional 

pendulum operating in the frequency range 0.001-10Hz (Figure 3.2).

MAGNET

MIRROR

SPECIMEN-^-

LASER H ill PHOTO DETECTOR

Figure 3.2 Schematic of the Vibran torsional pendulum used for interstitial carbon 

measurement via internal friction.

In the function of the torsional pendulum the test piece is held in tension between 

two vertical rods, the upper of which is free to rotate while the lower is fixed in place. 

An alternating current is applied through a coil surrounding a magnet attached to the 

upper rod, producing a deflection that in turn produces a torque in the test piece. 

Damping is measured by way of a laser and photocell; a laser beam is transmitted to
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the photocell via a mirror attached to the upper rod, and the displacement of the 

beam can be measured. Torque-displacement pairs are then used to calculate the 

level of damping, and a plot of damping against frequency is produced [35]. A 

previous investigation [35] reports this set-up as being capable of resolving to 

Iwt.ppm, and having a high level of repeatability (ten successive tests on a single 

sample showed a variation of less than Iwt.ppm in carbon content)

Specimens were machined by spark erosion from 110mmx20mm blanks to a ‘dog 

bone’ shaped test piece with a parallel gauge length of 40mm and parallel gauge 

width of 4mm (Figure 3.3).

5mm 50  mm
4 - X  ►

11mm

4mm
12.7

Figure 3.3 - A Schematic of ‘dog bone’ type internal friction test piece used with the Vibran 

Torsional pendulum for free interstitial carbon measurement.

Spark erosion was used to minimise deformation and avoid any risk of carbon 

pickup; following machining test pieces were kept in a freezer below -20°C to prevent 

ambient aging.
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Following testing the damping vs. frequency data was de-convoluted using the solver 

feature of Microsoft Excel, assuming the data to take the form of the sum of multiple 

Debye type curves [86]

In the above 1/Q is the instantaneous measurement of damping, Freq. the 

instantaneous frequency, B  ̂ and B2 the heights of the observed peaks, F  ̂ and F2 

their positions, Q0 the background damping at 1Hz and S0 the slope of the 

background damping (assumed to be linear). A two peak curve fit was used, 

allowing for the existence of a peak for carbon (expected at 0.1 Hz) and a potential 

peak for nitrogen (expected at 1 Hz).

Curve fitting to the data was achieved via a minimisation of the root mean squared 

error. A linear background was removed across the data set, subject to the condition 

that the minimum adjusted point was greater than or equal to zero. The raw data was 

then subtracted from the fitted data, and the sum of the squared error calculated. 

This value was then minimised using solver, with the peak heights and positions, and 

the gradient and intercept for the linear background used as variables.
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3.3. Tensile Testing

Tensile testing has been performed in accordance with BSEN 10002 [87] using a 

calibrated Zwick 1474 tensile testing machine containing a 100kN load cell. Type 2 

samples having a 50mm parallel gauge length, as described in BSEN 10002, annex 

B, were taken parallel to the rolling direction of the strip and mechanical properties 

determined in accordance with BSEN 10002 part one.

The test consists of straining a test piece in tension to fracture for the determination 

of mechanical properties; for a controlled test under ambient conditions the 

temperature must be within the range 18°C<T<28°C. Over the course of the test load 

extension data is collected; this data is then converted to stresses and strains, given 

that:

Where o is the instantaneous stress (Pa), F the instantaneous force (N), a the initial 

cross sectional area (m2), s the strain, L the instantaneous gauge length of the test 

piece and L0 the initial gauge length of the test piece. The determination of the 

original cross section must be accurate to within 2%, with the error in the width being 

measured to an accuracy of 0.2%. As such width and thickness measurements are 

taken as an average of three micrometer readings taken along the length of the test 

gauge [21].
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Specimens were loaded against a backstop to ensure that they were strained 

parallel to the gauge length, and changes in width and length measured using built in 

extensometers. Data from the tests was logged automatically by an attached 

personal computer, and subsequent data analysis performed in Microsoft Excel. 

Tensile prestrains were performed with a constant strain rate of 25mm/min. Tensile 

tests were performed with an initial strain rate of 10mm/min up to the end of any 

yield point elongation, increasing then to 25mm/min. The end of yield point 

elongation was identified by the nominal stress varying by more than 2% from the 

0.2% proof stress for a given specimen. Young’s Modulus was calculated between 

one third of the nominal proof stress, to a minimum of 110MPa, and two thirds of the 

nominal proof stress.
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3.4. Determination of aging response

Bake hardening and aging responses have been determined by performing an 

interrupted tensile test on a given specimen. The specimen cross section was 

determined by taking an average of three micrometer readings of the sample 

thickness and width along the 50mm parallel gauge section. A 5% tensile prestrain 

was then performed, ensuring the sample had been pulled fully through any yield 

point elongation. A note of the maximum flow stress attained during the 5% prestrain 

was made.

The sample was then subjected to a furnace heat treatment in a calibrated fan 

assisted Carbolite Oven, controlled by an internal platinum-rhodium k type 

thermocouple, having temperature control within 1°C excepting the recovery time 

required after opening the door to introduce samples To mitigate this problem the 

oven was heated to the desired temperature a minimum of an hour before any aging 

treatments were under taken to increase the amount of heat stored in the furnace 

body and reduce the recovery times as far as possible.

For bake hardening response this treatment was twenty minutes at 170°C to 

simulate industrial paint curing operations in the automotive sector. Where an 

accelerated aging response was required the time and temperature of the heat 

treatment varied with the requirements of the experiment, in the temperature range 

50°C to 100°C and time scales from 2 minutes to 1000 minutes.
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Following heat treatment the sample was then strained, to failure, and the lower yield 

point following aging compared to the maximum flow stress achieved during the 

prestrain:

^BH  = LYP{baked) R PX %(unbaked) ^  ^

Where ABH is the yield strength increase resulting from aging treatment (MPa), 

LYP(baked) (MPa) is the observed lower yield point following the baking treatment and 

Rpx%(unbaked) is the flow stress observed at x% strain during a tensile prestrain prior to 

baking. The adopted measure of ABH was the BH5 value, in which the 5% flow 

stress is used; while less common than the BH2% value, this was necessary due to 

the high level of yield point elongation in the
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3.5. Metallographic preparation and grain size determination

Metallographic samples were cleaned using isopropanol to ensure the sample 

surface was free of grease or other contaminants, and provide the closest surface 

adhesion possible with the mounting resin.

Samples were then hot compression mounted in Type E Vynylec, using a Struers 

Predopress. The samples are placed in a cylindrical chamber within the Predopress 

and the mounting compound introduced as a powder. The chamber is then sealed, 

and the compound heated to 190°C for four minutes to ensure that it is fully liquefied. 

A pneumatic ram then applies a pressure of 20kN to the sample for 15 minutes, prior 

to a ten minute water cool.

Following mounting samples were subjected to mechanical preparation, in which the 

surface was abraded using progressively finer grits to produce a polished surface 

suitable for analysis using optical microscopy. Firstly a pre-grind was performed 

using a 120 grit SiC and 300 grit SiC papers on a manual wheel to flatten the 

specimen and remove excess material which may have been deformed during the 

cutting operation. Fine grinding was then performed using a 500 and 1000 grit SiC 

paper with a Rotopol automatic grinder, to remove the deep scratches produced 

during coarse grinding and leave a surface suitable for polishing.

The surface was then automatically polished using polishing wheels, with 6pm and 1 

pm diamond paste and water based lubricant.
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Mounted samples were examined using a Polyvar microscope at 500x magnification. 

For each specimen three randomly spaced micrographs were taken using a digital 

camera with image resolution 1.8 Megapixels to give a representative image of the 

microstructure. These were then used for grain size determination using the Heyn’s 

Linear Intercept technique as described in ASTM E112 -96 (2004).[88]

On each sample eight straight lines of length 150pm were drawn, with two lines each 

at 0°, 45°, 90° and 135° to vertical respectively (Figure 3.4). In excess of 100 total 

intercepts were measured on each sample, the average grain diameter being 

determined as the length of the line, divided by the number of intercepts with grain 

boundaries.

Figure 3.4 -A  graphical representation of the Heyn’s Linear Intercept Technique. Red lines are 

150pm in length, and taken at 0°, 45°, 90° and 135° to the rolling direction of the strip.
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Transmission Electron Microscopy

Transmission Electron Microscopy has been carried out by an expert operator at the 

Swinden Technology Centre, run by Corns RD&T at Rotherham. Images were taken 

using a calibrated Phillips EM400T TEM with a magnifying factor of up to 170,000 

times (the calibrated factor being 173,300 times). Precipitates were viewed using 

bright field imaging, allowing the presence of small coherent precipitates to be 

inferred using strain field contrast. Precipitate compositions were determined using 

Energy Dispersive X-Ray Spectrometry, and precipitate sizes determined using the 

free UTHSCSA ImageTool program [89]

The TEM technique is used to examine the internal structure of thin (<200nm) 

samples of an investigated material. The image is formed by passing a beam of 

electrons through the sample, this beam being produced via thermionic emission, 

typically from a heated tungsten filament.

The electrons produced are accelerated toward the sample using an applied 

potential difference, typically in the range of 50-1 OOkV [90] with higher accelerating 

voltages used for high resolution work. The image is produced as a result of electron 

diffraction by the atomic structure of the sample. Strong diffraction will only occur 

where regular features are spaced with a similar frequency to that of the incident 

radiation falling upon them. In order for the result of electron diffraction through a 

crystal to be visible it is necessary that the diffracted rays interfere constructively, for 

which they must obey Bragg’s law
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nA = 2d sin# 3-5

Where X is the wavelength of the incident radiation, d the spacing between atomic 

planes and 0 the angle that the incident beam makes with the sample surface.

If the objective aperture is positioned for those electrons that pass directly through 

the specimen without being strongly diffracted a 'bright field’ image is produced. In 

such an image defects may be revealed as darker regions on a light background due 

to 'diffraction contrast’ [90], as the local strain field produces variations in the 

diffraction conditions for the periodic lattice. Precipitates may also be visible due to 

differences in atomic mass or crystal structure.

If the objective aperture is positioned to collect diffracted electrons then a ‘dark field’ 

image is produced. Here defects that are correctly aligned to diffract strongly will be 

resolved as light areas on a dark background.

3.5.1. Precipitate Imaging 

Strain Field Contrast

A coherent precipitate with a differing lattice parameter to the matrix will produce an 

elastic distortion in the matrix surrounding it; the crystal will have different diffraction 

properties locally. If the electron beam is angled such that the regular lattice planes 

are in the Bragg condition, precipitates will appear as darker regions in a bright field 

image, broken by a central ‘line of no contrast’ (assuming the particle displays 

spherical symmetry). [91] Particles near to the sample surface will appear
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asymmetric due to local relaxation of the strain field. This asymmetry can be used to 

determine the nature of the lattice misfit (tensile or compressive).

Matrix Displacement Fringe Contrast

Thin planar precipitates displace the matrix planes adjacent to them on either side 

producing a phase change in the diffracted beam. This produces an image 

containing a series of bright and dark fringes, denoting contours of constant depth in 

the foil and running parallel to the plane containing the precipitate and the foil 

surface [91].

Orientation Contrast

Where a precipitate has a crystal structure that differs significantly from that of the 

lattice it will diffract differently. This is the most common form of viewed contrast, and 

can be used in high resolution dark-field TEM to analyse precipitate size and shape 

distributions without the added factor of matrix strain effects.[91]
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4. EXPERIMENTAL BACKGROUND

4.1. Experimental Composition

Given the high solubility of vanadium carbide in ferrite, relative to niobium and 

titanium carbides [16], steel grades were developed for this project with the intention 

of producing a controlled population of free interstitial carbon atoms via annealing. 

The steel compositions were designed by Dr. Fourlaris of the Physical Metallurgy 

and Phase Transformation group at Swansea University, to contain the lowest 

possible levels of any elements that might result in a significant interaction with free 

carbon atoms aside from the titanium and vanadium central to the project (table 4.1).

Table 4-1 Steel compositions used in the experimental program

C SI Mn S P Ti Nb V Al N
Steel 1 
Steel 2

0.0039
0.004

<0.005
0.007

0.07
0.094

0.003
0.004

0.006
0.008

0.028
0.025

<0.001
<0.001

<0.001
0.085

0.004
0.009

0.0025
0.0036

Steel one was designed to be fully stabilised with respect to carbon, via the 

sequential formation of TiN, TiS and TiC. Accepting this precipitation sequence the 

weight percentage of titanium required can be calculated as Ti* = 4 C + 3.42 N + 1.5 

S [59]

Ti* = (4 x 0.0039) + (3.42 x 0.0025) + (1.5 x 0.003) 4-1

Ti* = 0.02865 wt.% 4-2

Ti* — Ti = 0.00065 wt.% 4-3
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The steel is sub-stoichiometric with respect to titanium by 0.00065 weight percent. 

Given the 1:1 stoichiometry of titanium and carbon in TiC, and their relative atomic 

masses, this results in 1.65wt.ppm of free carbon in solution under equilibrium 

conditions.

Steel two has been designed to be sub-stoichiometric with regard to carbon 

stabilization via titanium, the remainder of the free carbon being tied up by the large 

excess of vanadium as VC or Vo.ssC.

Ti* = (4 x 0.004) + (3.42 x 0.0036) + (1.5 x 0.004) 4-4

Ti* = 0.0343 wt.% 4-5

Ti* - Ti = 0.0343 -  0.025 = 0.009312 wt.% 4-6

Under equilibrium conditions steel two should have 23wt.ppm of free carbon

remaining to form vanadium carbide following TiC formation, assuming no mixed 

precipitation.
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4.2. Experimental Processing

All experimental grades used have followed the same processing route following 

casting. Casts were made up as 25Kg ingots and processed under laboratory 

conditions by the Centre Researche de Mettalurgie (CRM) in Belgium. The casts 

were then reheated to 1250°C, sufficient to dissolve all sulphides present in the steel 

[92], and forged down to 50mm flats. The slabs have then been reheated to 1175°C 

and laboratory hot rolled down to 5mm strip, with a finishing temperature of 920°C to 

ensure that finishing occurs above the Ar3 and recrystallization is complete 

throughout the strip.

Laminar water-cooling has then been performed to rapidly cool the steel to the 

coiling temperature of 700°C. Titanium steels are robust to variations in coiling 

temperature due to the high stability of TiC within this temperature range, but rapid 

cooling and a relatively low coiling temperature suppress grain growth in the hot 

band, improving formability in the finished product. The strip was then furnace cooled 

to room temperature at 28°C/hr to simulate industrial coil cooling; this slow cooling 

rate is vital for the development of the dual stabilized titanium-vanadium steels due 

to the low formation temperatures of vanadium carbides [68].

Following coiling a multi-pass cold rolling reduction of 80% was applied to the strip, 

giving a nominal gauge of 1mm. A high level of cold reduction was preferred to 

increase the level of stored energy in the strip, providing a driving force for 

recrystallization during subsequent annealing.
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4.3. Determination of annealing conditions

MT-DATA has been used to predict the weight fraction of precipitates in the alloy as 

a function of temperature, and the equilibrium weight percentage of species in 

solution in ferrite as a function of temperature, as a tool to aid in deriving annealing 

conditions. Consideration was also given to expected times for full recrystallization 

predicted using the Larson-Miller parameter.

4.3.1. MT-DATA Studies

The masses of various precipitate species in solution under equilibrium conditions 

have been predicted using MT-DATA thermodynamic modelling software. Figure 4.1 

shows the equilibrium precipitation scheme for steel one based on the actual 

composition received. Stabilisation would proceed initially by the formation of TiN 

followed by MnS, and finally the stabilisation of the free carbon population by the 

formation of TiC. Similarly steel two is initially stabilised via TiN, MnS and TiC 

(Figure 4.2). Steel two can be seen to follow the same stabilisation, with the 

remaining carbon being taken up through VCo.88-formation.
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Weight Percentage of Precipitates in Steel One Under
Equilibrium Conditions as a Function of Temperature
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Figure 4.1 An MT-DATA plot of the weight percentage of precipitate species in Steel One (Ti 

Only) under equilibrium conditions, as a function of varying temperature.

Weight Percentage of Precipitates in Steel Two Under 
Equilibrium Conditions as a Function of Temperature
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Figure 4.2 An MT-DATA plot of the weight percentage of precipitate species in Steel Two (Ti-V 

dual stabilised) under equilibrium conditions, as a function of varying temperature
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Further plots have been made of the weight percentage of free carbon in solution 

under equilibrium conditions for the two steels to determine appropriate annealing 

conditions. The aim of the annealing exercise is to liberate a population of free 

interstitial carbon atoms in the range of 5-15wt.ppm (0.0005-0.0015wt.%) while 

ensuring complete recrystallization of the samples and comparable grain sizes. 

Figure 4.3 shows the level of free carbon in steel one to increase exponentially with 

increasing temperature as TiC is dissolved. From a fully stabilised condition the free 

carbon population rises to 14wt.ppm at 900°C.

Free Interstitial Carbon In Steel One Under Equllbrlum 
Conditions as a Function of Temperature
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Figure 4.3 An MT-DATA plot of the variation in carbon in solution in ferrite in Steel One (Ti 

only) under equilibrium conditions as a function of varying temperature.
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Free Interstitial Carbon in Steel Two Under Equllbrlum
Conditions as a Function of Temperature
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Figure 4.4 An MT-DATA plot of the variation in carbon in solution in ferrite in Steel Two (Ti-V 

dual stabilised) under equilibrium conditions as a function of varying temperature.

For steel two there is an initial rapid rise in free carbon population at relatively low 

temperatures due to the high solubility of vanadium carbide in ferrite relative to 

titanium carbide (Figure 4.4). By 720°C the VC088 is expected to have fully dissolved, 

liberating 9wt.ppm of free carbon in solution; this value differs from that calculated 

numerically in section 4.1.1 as the numerical calculation assumes the preferential 

formation of TiS over MnS at low manganese levels, while MT-DATA assumes that 

manganese sulphide will form, resulting in a higher volume fraction of titanium 

carbide.

These plots have been used alongside the following recrystallization considerations 

to determine a suitable range of annealing conditions for the processing of the two 

experimental grades
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4.3.2. Recrystallization considerations

The Larson-Miller parameter is usually used to extrapolate creep rupture data 

beyond the limits of practical laboratory testing, and takes the form:

P = T[C + logt] 4-7

Where T is the absolute temperature (K) t the time (hrs), and C a constant. Creep is 

a thermally activated process, and the Larson Miller parameter is used to correlate 

the time to failure with absolute temperature at a constant engineering stress. As 

recrystallization is also a thermally activated process it can be treated similarly [93].

Work done by Gladman and Mitchell [93] has identified the Larson-Miller parameter 

(P) for a range of microalloyed steels, and specifically P*, the Larson Miller 

parameter at which recrystallization is complete. The alloy compositions used in this 

work are shown below. P* has also been determined for an ULC Ti-V chemistry in a 

more recent work by Ooi and Fourlaris [94].

The compositions used by Ooi and Fourlaris [94] and Gladman and Mitchel [93] are 

compared below with Steel Two (Table 2-1).

Table 4-2 Steel compositions used in experimental work by Ooi [16], Gladman[15] and the 

titanium vanadium composition to be used in the proposed work.

C Si Mn S P Ti Nb V Al N P*
Gladman 0.007 0.01 0.21 0.003 0.005 0.019 0.08 0.028 0.0023 17800

Ooi 0.003 0.003 0.02 0.004 0.08 0.003 18300
Steel Two 0.004 0.007 0.094 0.004 0.008 0.025 0.001 0.085 0.009 0.0036
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The P* value for Mitchell’s steel was 17800, and Ooi reported a value of around 

18300. Given the strong similarity between Steel Two and the composition used by 

Ooi and Fourlaris it seems reasonable to assume that the P* value for this chemistry 

will be in the range 17000 to 19000, over which complete recrystallization is 

expected in under a minute at all temperatures above 750°C.

4.3.3. Validation of annealing conditions

Combining the results of the MT-DATA study with the recrystallization data a range 

of annealing conditions from 800°C to 880°C for steel one (Ti only) and 740°C to 

860°C for steel two (Ti-V) were selected. For steel one this should give, under 

equilbrium conditions, a range of free carbon in solution varying from 4-12wt.ppm. 

For steel two the lower bound gives a higher than ideal free carbon value under 

equilibrium conditions (around 9wt.ppm). However, the recrystallization study 

suggests that a temperature of around 750°C is required to guaranteed complete 

recrystallization of the steel samples within a one minute soak period. This problem 

may be mitigated as, if there is trace niobium present in the steel (0.001wt.%), MT- 

DATA predicts a mixed vanadium rich vanadium/niobium carbide may form this 

having a reduced solubility (Figure 4.5). In this instance the equilibrium carbon in 

solution following annealing at 740°C would only be 6wt.ppm, the range of annealing 

conditions from 740°C to 860°C giving a range of free interstitial carbon populations 

from 6wt.ppm to 12wt.ppm, comparable with both steel one and the target range.
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Wt% Of Cartoon In Species In Steel Two Assuming 
Mixed Precipitate FormaOonAnd 0.001 Wt.% Niobium 

Un<ier Equilibrium condition* A* A Function or soak Temperature
D0D1D T

OOCOB

0 OCO-1

Temperature (°C)

Figure 4.5 An MT-DATA plot of the weight percent of carbon contained in a mixed vanadium- 

niobium carbide, and in solution in ferrite, under equilibrium conditions as a function of 

temperature.

The annealing cycle was kept to a constant for both steels under all annealing 

conditions. The infrared furnace was ramped up to the soak temperature at a 

constant rate, sufficient to achieve the soak temperature within 30 seconds. The 

samples were then held at the soak temperature for one minute, and quenched with 

a 2000 litre/min stream of cold nitrogen gas. This gas quench gives initial cooling 

rates of 70°C/s, and was chosen to retain, as far as possible, the free carbon 

population in solution.
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Following annealing it was necessary to determine the free interstitial carbon levels 

in the annealed steels by direct analysis using internal friction techniques as 

described in section 3.2. Duplicate tests were run on each sample, covering the full 

frequency spectrum from 0.001Hz through 10Hz.

Annealed samples were then mounted in resin, polished and etched in 2% nital. 

Grain size analysis was performed on the annealed samples using the Heyn’s Linear 

intercept technique as described in section 3.5. Tensile and bake hardening 

properties were determined by pulling samples in triplicate.
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The titanium only steel shows a decreasing yield stress (204MPa-197MPa) and 

increasing grain size (10.3|im-11.5pm) as the annealing temperature is increased 

from 800°C to 880°C. The grain structure was equiaxed, showing full recrystallization 

to have occurred (Figure 4.6 Figure 4.7).

The dual stabilised steel also shows a decreasing yield stress (182MPa-173MPa) 

and increasing grain size (9.4pm-13.5pm) as the annealing temperature is increased 

from 740°C to 860°C. The grain structure is, again, equiaxed, showing full 

recrystallization to have occurred.(Figure 4.8 Figure 4.9)

Additional calibration of the inverse torsional pendulum was required for the 

generation of the free carbon results. Figure 4.10 and Figure 4.11 show the 

deconvolution of the Sndek peak. A linear background damping was removed from 

the raw data set, passing through the minimum points at the extreme ends of the 

trace, away from any expected peaks. A double Debye curve was then fitted to the 

data set using a least squares error formulation and the solver function in Microsoft 

Excel.

The double peak, described in section 3.1.2, was produced as the summation of two 

single peaks. The height and frequency of each of these peaks were fitted freely 

using the solving algorithm and a clear peak can be seen to have occurred in the 

vicinity of 0.1 Hz in Figure 4.11 (the expected jump frequency for free carbon atoms 

in ferrite at room temperature)
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Deconvolution of Internal Friction Data for Steel One Annealed at 800°C

1 0E-03 ♦ Raw Data

Linear Background 

 Fitted Curve
9 0E-04

8 0E-04 o Raw Data less

:urve less
7 0E-04

6 0E-04

2  5 0E-04

4 0E-04

3 0E-04

2 0E-04

1 0E-04

0 0E+00
1.0E-03 1 0E-02 1.0E-01 1 0E+00 1.0E+01

Frequency (Hz)

Figure 4.10 The deconvolution of internal friction data for the measurement of free interstitial 

carbon by fitting a double peak Debye curve and removal of linear background damping.

Deconvolution of Internal Friction Data for Steel One Annealed at 800°C

2.5E-04
^ — Fitted Curve 

Peak One 

 Peak Two

2 0E-04

1 5E-04

2

1 0E-04

5.0E-05

1 E-01 1 E+001 E-03 1 E-02 1 E+01

Frequency (Hz)

Figure 4.11 An illustration of how the double peak data produced during an internal friction 

test can be broken down into two discrete peaks to identify their height and frequency.
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An additional peak, not found in the literature, was located in the vicinity of 0.02Hz in 

all samples tested within this programme of work. In order to isolate this peak as 

either an artefact produced by the torsional pendulum, or a feature of these samples, 

previous test data generated from ten tests covering a range of commercial Corus 

steel chemistries were refitted (Figure 4.13). Additionally the samples used in this 

investigation were sent to the Centre Research de Mettallurgie (CRM) in Belgium for 

retesting using an equivalent Vibran torsional pendulum under the same testing 

regime.

if
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{•M O *Ii ,mB
A

lah

• 0005

I£•••»«
I

• ONI

Figure 4.12 A direct comparison of normalised internal friction data produced at CRM in 

Holland (red) and ECM2 in South Wales (Green) on equivalent Vibran torsional pendulums,

highlighting the presence of a double peak in the ECM data.

The retests at CRM (Figure 4.12) do not show any peak in the region of 0.02Hz. 

Data from previous Corus tests containing 5-100wt.ppm of free carbon in solution
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were refitted using a double Debye type curve, and the location of this secondary 

peak detected in all instances with a similar frequency and intensity (Table 4-3). It 

was concluded that a secondary peak, occurring in the vicinity of 0.02Hz with an 

intensity of approximately 4x1 O'4 is an artefact produced by the in house Vibran 

Torsional pendulum and can safely be ignored.

8.E-04 T
♦ 8ppm 

— fitted
♦ 20ppm 

— fitted
♦ 30ppm 

— fitted
♦ 35ppm 

—  fitted

7.E-04 -

6.E-04 -

5 E-04 -

c  4 E-04 -

3 E-04 -

2 E-04 -

1.E-04 -

1 E-02 _ 1 E - 0 1 v 1 E+00
Frequency (Hz)

1.E+011.E-03

Figure 4.13 Double peak curve fits from Corus commercial steel chemistries showing the 

presence of the 2x1 O'2 Hz peak across a range of compositions and free carbon levels.
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Table 4-3 Internal friction results for various steels tested at the ECM2 RD&T facility in Port

Talbot

Sample Peak
Designation Position (Hz) Peak Height

6062601 1.67E-02 1.69E-04
6022704 1.78E-02 2.92E-04
6062804 2.19E-02 2.39E-04
6062703 3.38E-02 1.47E-04
6062702 4.40E-02 1.80E-04
6070302 2.11E-02 1.99E-04
6070303 1.95E-02 2.78E-04
6070402 1.62E-02 2.39E-04
6070301 1.75E-02 1.28E-04
6070401 2.00 E-02 1.67E-04
6063002 1.75E-02 1.19E-04

Average 2.24E-02 1.96E-04

The final levels of free interstitial carbon detected via internal friction testing (table) 

cover a range for the titanium only steel of 5.5wt.ppm to 9.8wt.ppm, and for the 

titanium vanadium dual stabilised steel 4.7wt.ppm to 8.0wt.ppm. For both steels 

these ranges are similar to those predicted using MT-DATA thermodynamic 

modelling software, though the value of 8wt.ppm for the titanium-vanadium dual 

stabilised steel is somewhat lower than 12wt.ppm predicted. It seems that MT-DATA 

can be used as a useful tool in developing processing programmes for 

experimentation, if the processing conditions are designed to approach equilibrium 

conditions in the test coupons.
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CHAPTER FIVE

EXPERIMENTAL PROGRAM



5. GENERATION OF MODEL VALIDATION DATA

For a model to have real value, beyond an academic demonstration of a technique, it 

is necessary that it be rigorously validated. The initial stages of the modelling work 

performed within this doctorate have been validated against published data from 

several other authors’ papers [25, 40, 95]. In addition to this a targeted programme 

of experimentation has been developed to generate validation data covering a range 

of temperatures, carbon contents, and the effect of secondary alloying species on 

the rates of strain aging.

This experimental programme also serves to highlight and quantify the retarding 

effect of vanadium microalloying additions on rates of strain aging in ultra low carbon 

steels.

Experiment one generates 100°C aging curves for the two experimental 

steels under investigation, and provides isochronal comparisons of the aging 

response to show the retarding effect of vanadium. Two annealing conditions are 

covered for each grade, allowing variations in carbon content to be considered.

Experiment two serves to generate activation energies and aging kinetics for 

the dislocation locking process in the two steels. In achieving this partial aging 

curves are developed at temperatures of 50, 60, 70,80 and 90°C allowing the 

functionality of the computer model to be assessed over a range of aging 

temperatures thus ensuring its robustness.
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5.1. Experiment one: Comparison of accelerated aging profiles

Accepting that vanadium has a retarding effect on rates of strain aging in ultra low 

carbon strip steels, it would be expected that accelerated aging profiles for two steels 

with otherwise equivalent compositions would differ given a significant alloy addition 

of vanadium to one of them.

A direct comparison of accelerated aging profiles would require that the two grades 

under consideration contain the same amount of free interstitial carbon atoms. 

Modelling alloy stabilisation in terms of composition is relatively rapid, and easy, 

using thermodynamic modelling software such as MT-DATA. However, such 

predictions describe the equilibrium composition and precipitate weight fractions. 

While these can be used as a guideline in developing annealing cycles, they cannot 

be used to guarantee quantities of species in solution or precipitates. As such it is 

necessary to use an indirect method of comparison for the accelerated aging 

profiles.

By varying the annealing cycle, different levels of free carbon can be released into 

solution for a given fully stabilised steel composition, through the dissolution of 

carbides. If the steel samples containing differing carbon levels are then subjected to 

the same aging treatment (for instance furnace aging at 100°C) they will exhibit 

different aging responses as a result of the free carbon levels.

By considering the aging response developed over a given time scale it is possible to 

develop isochronal plots, that show the aging response of a given steel at a set soak
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time and temperature as a function of its carbon composition. If two steels exhibit the 

same aging properties, their isochronal plots would be expected to share a common 

line; if the aging response of one of the two steels is retarded due to alloying 

additions or treatment, the isochronal plots for the two would be expected to deviate 

from one another.

The aim of this experiment was to develop isochronal aging plots for Steel One (Ti 

only) and Steel Two (Ti-V dual stabilised) over similar levels of free carbon, and 

highlight any retarding effect that exists.

5.1.1. Derivation of isochronal aging plots

Following annealing and the validation of the selected annealing conditions 

accelerated aging profiles were developed for the two steels. Annealed samples 

were prestrained by 5% as described in section 3.3 then aged in a furnace at 100°C 

for 2,5,10,50,100 and 500 minutes. Triplicate samples were aged and plots made of 

aging response as a function of time. Three curve fits were applied to the data sets 

and fitted to minimise the root mean squared error.

5.1.1.1. Johnson-Mehl-Avrami-Kolmogorov

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation can be used to model a 

number of kinetic phenomena, but is traditionally applied to data sets relating to 

nucleation and recrystallization studies [96-98] It takes the general form:

/= l - e x p ( fa ”) 5-1
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Where ft (%) is the fraction recrystallized/transformed after a time t (s), k a 

temperature dependant parameter describing the process and n constant, typically in 

the range 1-4. Considering the formation of Cottrell atmospheres as a nucleation 

type event, a logarithmic decrease in locking rate would be expected, as with 

nucleation, as available sites are expended and the bulk of the material is 

transformed, or the bulk of dislocations have been locked. Normalising the result to 

the maximum increase in yield stress attributable to dislocation locking (the lesser of 

35MPa, and the maximum yield stress increase achieved during an accelerated 

aging) gives the equation:

<t = a  m(1 -  exp(fa" )) 5-2

Where cr is the yield stress increase (Mpa) after a time, t (s), am the maximum yield 

stress increase achievable (Mpa), k an arrhenius variable and n the kinetic exponent, 

assumed to be 0.66 in line with locking theory and results produced by De et al for 

the formation of Cottrell atmospheres [36].

5.1.1.2. Elsen and Hougardy

Aging curves were also modelled using the descriptive equation produced by Elsen 

and Hougardy [25]

' i '
k

BH(t)  =  MAX-1 Z 7 T ~  ^ “ 3

1 + lr
\ K C y
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In which kc is a temperature dependant parameter following an Arrhenius type 

relationship, is the maximum strength that can be achieved through Cottrell

locking and nc a constant (roughly 0.9); both of these parameters are independent of 

both temperature and prestrain.

The maximum aging response for each grade attributable to dislocation locking, 

rather than precipitate nucleation, was again taken as the lesser of 35MPa and of the 

aging response following 500 minutes of isothermal aging at 100°C.

The logistic function can be used to model the sigmoidal growth curve of self-limiting 

populations through special cases such as the Verhulst equation for population 

dynamics [99]. It was used as a comparative basis for the other functions in this 

exercise as it makes no assumptions about the meaning or values of the data, and 

will merely provide a best-fit sigmoid curve through the data presented. Within this 

fitting exercise a,m,n and r were fitted as dimensionless constants, to produce a 

value as a function of t, the aging time in seconds.

These characteristics were compared to determine whether any retarding effect from 

the vanadium addition could be observed.

5.1.1.3. The Logistic Equation

5-4
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5.1.2. Experiment one results

Accelerated aging data for Ti steel annealed at 800C

45 T

♦  Raw Data

 ELSEN

 JMAK

LOGISTIC

10 100 10001

Log Time (mins)

Figure 5.1 Accelerated aging data for steel one (Ti only) aged at 100°C following 800°C 

annealing to contain 5.5wt.ppm free interstitial carbon. Fitted using Elsen and Hougardy’s 

equations (black), the JMAK equation (Grey) and the logistic equation (light grey)

Figure 5.1 shows fits of the Elsen and Hougardy, Johnson-Mehl-Avrami-Kolmogorov 

and Logistic equation to raw aging data produced for the titanium only steel following 

annealing at 800°C, and containing 5.5wt.ppm of free carbon. All three curve fits 

match the data well in the range 5MPa-20MPa. The JMAK equation begins to 

plateau after 60 minutes, achieving the maximum value of 30MPa after 100 minutes. 

The logistic equation and Elsen and Hougardy’s equation show a more gradual rise, 

only achieving the maximum value of 30MPa after 500 minutes and, at this point, 

having yet to stabilise. The maximum aging response in the raw data is 32MPa
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Accelerated aging data for Ti only steel annealed at 880C

45 -r

«■ 25

♦  Raw Data

 ELSEN

 JMAK

LOGISTIC

10 1001 1000
Log Time (mins)

Figure 5.2 Accelerated aging data for steel one (Ti only) aged at 100°C following 880°C 

annealing to contain 9.8wt.ppm free interstitial carbon. Fitted using Elsen and Hougardy’s 

equations (black), the JMAK equation (Grey) and the logistic equation (light grey)

Figure 5.2 shows fits of the Elsen and Hougardy, JMAK and Logistic equations to raw 

aging data produced for the titanium only steel following annealing at 880°C, and 

containing 9.8wt.ppm of free carbon. All three curve fits over predict the data set in 

the initial minutes of aging and under predict the data set in the range 20MPa- 

35MPa. The JMAK equation begins to plateau after 60 minutes, achieving a 

maximum value of 35MPa after 80 minutes. The logistic equation over predicts the 

final aging, and both the Elsen and Hougardy equation and logistic equation have yet 

to plateau after 500 minutes. The scatter in the raw data increases with increasing 

time, maximum aging responses after 500 minutes varying between 28 and 42MPa.
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Accelerated aging data for Ti-V steel annealed at 740C

45 T

to

<

♦  Raw Data

 ELSEN

 JMAK

LOGISTIC

1 10 100 1000
Log Time (mins)

Figure 5.3 Accelerated aging data for steel two (Ti-V dual stabilised) aged at 100°C following 

740°C annealing to contain 4wt.ppm free interstitial carbon. Fitted using Elsen and Hougardy’s 

equations (black), the JMAK equation (Grey) and the logistic equation (light grey)

Figure 5.3 shows fits of the Elsen and Hougardy, Johnson-Mehl-Avrami-Kolmogorov 

and Logistic equation to raw aging data produced for the titanium-vanadium dual 

stabilised steel following annealing at 740°C, and containing 4.7wt.ppm of free 

carbon. The Elsen and Hougardy equation appears to under predict the aging toward 

longer times, following the bottom set of the raw aging data. The JMAK equation 

begins to plateau after 60 minutes, achieving the maximum value of 24MPa after 100 

minutes. The logistic equation over predicts the final aging, and both the Elsen and 

Hougardy equation and logistic equation have yet to plateau after 500 minutes.
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Accelerated aging data for Ti-V steel annealed at 860C
45 !

"S' 25
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Figure 5.4 Accelerated aging data for steel two (Ti-V dual stabilised) aged at 100°C following 

860°C annealing to contain 8wt.ppm free interstitial carbon. Fitted using Elsen and Hougardy’s 

equations (black), the JMAK equation (Grey) and the logistic equation (light grey)

Figure 5.4 shows fits of the Elsen and Hougardy, Johnson-Mehl-Avrami-Kolmogorov 

and Logistic equation to raw aging data produced for the titanium-vanadium dual 

stabilised steel following annealing at 860°C, and containing 8wt.ppm of free carbon. 

The Elsen and Hougardy equation appears to under predict the aging toward longer 

times, following the bottom set of the raw aging data. The JMAK equation has 

reached a plateau by 100 minutes achieving the maximum value of 32MPa. The 

Elsen and Hougardy equation and logistic equation both have yet to plateau after 

1000 minutes.



Table 5-1 Root Mean Squared error for the Elsen and Hougardy equation, JMAK equation and 

logistic equation fitted to experimental aging data

Ti Ti-V Mean RMS Error in
800 880 740 860 Curve Fits

ELSEN 1.18 3.64 1.88 2.88 2.395
JMAK 1.27 3.21 1.38 3.28 2.285

LOGISTIC 0.82 2.77 1 2.31 1.725

Table 5-1 shows the sum of the root mean square error of the curve fits performed 

for each of the annealing conditions, when compared to the mean of the raw aging 

data. In all three instances the RMS error is significantly higher for the titanium only 

steel annealed at 880°C and the titanium-vanadium dual stabilised steel annealed at 

860°C, where the scatter in the raw data was greatest. The logistic equation, used as 

a control, gives the best-fit to the raw data. The quality of fits produced by the Elsen 

and Hougardy equation and JMAK equation are numerically comparable, but from 

Figure 5.1 to Figure 5.4 the JMAK equation produces a more well defined plateau.
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Accelerated aging responses for Steel One and Steel Two aged at 100°C
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Figure 5.5 Johnson-Mehl-Avrami-Kolmogorov fits of the 100°C aging response of steels one 

and two across a range of annealing conditions, used in the derivation of isochronal aging 

plots.

Figure 5.5 shows the construction used for the derivation of the isochronal plots, 

used in the direct comparison of the two steel grades. The plotted lines are fits of the 

JMAK equation to the mean aging data presented in Figure 5.1 to Figure 5.4, 

adjusted for the maximum aging response obtained experimentally.

Fitted Using the JMAK Equation

One annealed at 
(5 5wt ppm C) 
One annealed at 
(9 8wt ppm C) 
Two annealed at 
(4 7wt ppm C) 
Two Annealed 
(8wt ppm C)
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Two Minute Isochronal Aging Plot

Steel One aged at 100C 
Steel Two aged at 100C

4 5 6 7 8 9 10

Free Interstitial Carbon (wt.ppm)

Figure 5.6 A comparison of the isochronal aging response, after two minutes, of Steel One (Ti 

Only) and Steel Two (Ti-V dual stabilised) as a function of varying carbon content.

Figure 5.6 shows a constructed isochronal plot comparing the aging response of the 

titanium only steel chemistry with the titanium-vanadium steel chemistry as a 

function of free interstitial carbon content after an aging treatment of two minutes at

100°C.

The aging response of the Ti only steel, taken from a JMAK fit to the mean aging 

response, increases from 8.4MPa to 12.2MPa as the carbon FICA content increases 

from 5.5wt.ppm to 9.8wt.ppm.

The aging response of the Ti-V steel, similarly derived, increases from 6.8MPa to 

10.5MPa as the FICA content increases from 4.7wt.ppm to 8wt.ppm. A linear
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variation in aging response has been assumed with increasing carbon content for 

both grades, and the line representing the Ti-V steel is below that for the Ti only steel 

up to approximately 8wt.ppm free carbon, at which level the lines meet. The 

difference in aging response is greater at lower carbon levels reaching a maximum 

value of around 10% at 5.5wt.ppm free carbon; an extrapolation of the two lines 

would lead to a greater difference at even lower carbon levels.

Five Minute Isochronal Aging Plot
30 T

S  15

Steel One Aged at 100C 
Steel Two Aged at 100C

4 5 6 7 8 9 10

Free Interstitial Carbon (Wt.ppm)

Figure 5.7 A comparison of the isochronal aging response, after five minutes, of Steel One (Ti 

Only) and Steel Two (Ti-V dual stabilised) as a function of varying carbon content.

Figure 5.7 shows a constructed isochronal plot comparing the aging response of the 

titanium only steel chemistry with the titanium-vanadium steel chemistry as a 

function of free interstitial carbon content after an aging treatment of five minutes at 

100°C.
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The aging response of the Ti only steel, taken from a JMAK fit to the mean aging 

response, increases from 14.8MPa to 19.2MPa as the carbon FICA content 

increases from 5.5wt.ppm to 9.8wt.ppm.

The aging response of the Ti-V steel, similarly derived, increases from 10.9MPa to 

15.5MPa as the FICA content increases from 4.7wt.ppm to 8wt.ppm. The linear fits 

predicting aging response with free carbon would be expected to converge at 

8.5wt.ppm free carbon. The difference in aging response is again greater at lower 

carbon levels, reaching a maximum value of around 10% at 5.5wt.ppm free carbon; 

an extrapolation of the two lines would lead to a greater difference at even lower 

carbon levels.

Ten Minute Isochronal Aging Plot
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Steel One Aged at 100C 

Steel Two Aged at 100C

5 6 104 7 8 9
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Figure 5.8 A comparison of the isochronal aging response, after ten minutes, of Steel One (Ti 

Only) and Steel Two (Ti-V dual stabilised) as a function of varying carbon content.
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Figure 5.8 shows a constructed isochronal plot comparing the aging response of the 

titanium only steel chemistry with the titanium-vanadium steel chemistry as a 

function of free interstitial carbon content after an aging treatment of ten minutes at 

100°C.

The aging response of the Ti only steel, taken from a JMAK fit to the mean aging 

response, increases from 18.5MPa to 25MPa as the carbon FICA content increases 

from 5.5wt.ppm to 9.8wt.ppm.

The aging response of the Ti-V steel, similarly derived, increases from 14.9MPa to 

22MPa as the FICA content increases from 4.7wt.ppm to 8wt.ppm. The linear fits 

predicting aging response with free carbon would be expected to converge at 

8.5wt.ppm free carbon. The difference in aging response is again greater at lower 

carbon levels, reaching a maximum value of around 10% at 5.5wt.ppm free carbon; 

an extrapolation of the two lines would lead to a greater difference at even lower 

carbon levels.
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5.2. Experiment two: Determination of activation energies for aging

Following the work of Rashid in 1970s using HSLA steels [14, 15], it is possible to 

model strain aging using an Arrhenius equation, and thus derive the activation 

energy for the process. As strain aging is diffusion dependant, it is a thermally 

activated process, and would be expected to follow an equation of the type:

Where Ui (s) is the time required to attain the aging response Al (MPa) at a 

temperature T(K), Q is the activation energy of the process (kJmor1), A a constant 

and R the gas constant (8.3145JK'1 mol'1) . Equation [5-6] can be rearranged as:

5-6

—  = exp —  
A  \ R T )

5-7

5-8
\ A )  R T

5-9
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It follows that accelerated aging trials can be performed over a range of 

temperatures, and the time required to achieve an equivalent aging response 

compared on a plot of ln(tAi) vs 1/RT, for which the result should be a straight line of 

gradient Q and Y axis intercept ln(A).

Approximate times that could be expected to yield an equivalent aging response 

were calculated using Hundy’s equation for equivalency, with an assumed activation 

energy of 82kJmol'1 [57]

The aging data was fitted using both unconstrained fits, with no imposed conditions 

on the parameters, and constrained fits of the JMAK equation, in which it was 

assumed that the activation energy values were the same across the process, and 

all temperature related effects were accounted for in the Arrhenious type parameter.

Samples of the Ti only steel were annealed at 880°C to liberate a controlled free 

carbon population of 9.8wt.ppm into solution. Samples of the TiV steel were 

annealed at 860°C to liberate a population of free interstitial carbon atoms of 

8wt.ppm. Accelerated aging was then performed at temperatures of 50°C, 60°C, 

70°C, 80°C and 90°C for comparison with the existing 100°C data. Tensiles were 

initially pulled in duplicate, with additional samples added to populate the graph 

where scatter was high. Curve fitting was attained using a least squares minimisation 

of error.
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5.2.1. Experiment two results

Unconstrained JMAK fits of accelerated aging data

30 T
100c ti

25 -

------- 60c ti

I  15

3 3.5 4 5  5 5 5 6 65 7 75 8 5 9 9 5 10 10 5 114 8
ln(t)

Figure 5.9 Partial aging plots developed for steel one (Ti only) following annealing at 880°C, 

aged over the temperature range 50°C to 100°C and fitted using the JMAK equation

Figure 5.9 shows a good match between the JMAK plots produced assuming a 

kinetic exponent of 0.66 with an unconstrained activation energy, and the raw data 

produced by accelerated aging over the temperature range 50°C to 100°C of the Ti 

only steel annealed at 880°C, containing 9.8wt.ppm free interstitial carbon. In all 

instances the fitted curves fall within the level of scatter observed within the actual 

experimental data. The aging response achieved is greatest at 100°C, reaching a 

maximum of 30MPa; the aging response is lower at lower temperatures, for times 

assumed equivalent by Hundy’s equation, with aging responses of 23MPa, 20MPa, 

23.5MPa, 21 MPa and 20.5MPa at 90°C, 80°C, 70°C, 60°C and 50°C respectively.
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The fits displaying the largest difference between the measured data and the applied 

curve fits are achieved at temperatures of 80°C and 100°C, and the greatest degree 

of scatter is found in the raw data at 80°C, coincident with the poor fit.

Unconstrained JMAK fits of accelerated aging data

100 tiv

90c TiV
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Figure 5.10 Partial aging plots developed for steel two (Ti-V dual stabilised) following 

annealing at 860°C, aged over the temperature range 50°C to 100°C fitted using the JMAK 

equation

Figure 5.10 shows a close match between the JMAK plots produced assuming a 

kinetic exponent of 0.66 with an unconstrained activation energy, and the raw data 

produced by accelerated aging over the temperature range 50°C to 100°C of the Ti-V 

steel following annealing at 860°C and containing 8wt.ppm free interstitial carbon. 

The aging response achieved is greatest at 100°C, reaching a maximum of 25MPa; 

the aging response is lower at lower temperatures, for times assumed equivalent by
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Hundy’s equation, with aging responses of 19MPa, 19MPa, 18MPa, 20MPa and 

20MPa at 90°C, 80°C, 70°C, 60°C and 50°C respectively.

The worst fits are achieved at temperatures of 60°C and 100°C, and the greatest 

degree of scatter is found in the raw data at 60°C, coincident with the poor fit.

Activation Energy Plot for TI only Steel based on unconstrained 
JMAK curve fits
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Figure 5.11 Derived Arrhenius activation energy for Steel One (Ti Only). Data taken from Figure 

5.9
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Figure 5.11 shows the derivation of the Arrhenius constants describing thermally 

activated strain aging for the Ti only steel, using data from fitted curves in

Accelerated aging responses for Steel One and Steel Two aged at 100°C 
Fitted Using the JMAK Equation

Log Time (mine)

—— Steel One annealed at 
880C (9 8wt ppm C)

■ ■ ■ Steel Two annealed at 
740C (4 7wt ppm C) 

—  Steel Two Annealed 
860C (8wt ppm C)

Figure 5.5 Best-fit straight lines show a good match to the experimental results for 

data taken at 10MPa, 15MPa and 20MPa. The average activation energy for the 

process is approximately 94.5kJmor1, with a pre-exponential coefficient of 1 e-11. No 

inflection point is observed at 77°C (1/RT=0.000343)



Activation Energy Plot for TiV Steel based on unconstrained 
JMAK curve fits
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Figure 5.12 Derived Arrhenius activation energy for Steel One (Ti Only).

Figure 5.12 shows the derivation of the Arrhenius constants describing thermally 

activated strain aging for the Ti-V dual stabilised steel, using data from fitted curves 

in . Best-fit straight lines show a good match to the experimental results for data 

taken at 10MPa, 15MPa and 20MPa. The average activation energy for the process 

is approximately 89.9kJmor1, with a pre-exponential coefficient of 7.5e-11. No 

inflection point is observed at 77°C (1/RT=0.000343)
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5.2.2. Determination of the JMAK aging kinetics

Following activation energy determination, aging kinetics were calculated from the 

raw data assuming the JMAK equation gives a representative fit of the raw data. The 

JMAK equation can be re-arranged as follows:

o- = o-M(l-exp  (*/")) 

\ - - ^ —  =  exp(^r")

5-10

5-11

In
f  ^
1 - ^ = ktn 5-12

- In
/  A
i - ^

V\ m /
= -k tn 5-13

In
f f  ^
-  ln fl — —

V V a mJ)
= n\n t- \nk 5-14

It follows that a plot of ln(-ln(1 )) vs. In(time) will give a straight line having a
cr„

gradient equal to the kinetic exponent of the process.

Figure 5.l3shows the aging kinetics for the Ti only steel annealed at 880°C and aged 

over the temperature range 50°C to 100°C, as determined from the JMAK equation. 

Discounting the 100°C measurement the average kinetic exponent is 0.614.
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JMAK Kinetics of accelerated aging of Ti only steel
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Figure 5.13 Determination of the JMAK kinetic exponent for aging of steel one (Ti-Only) only 

the temperature range 50°C to 100°C, based on partial aging responses developed in figure 5.9

Figure 5.14 shows the aging kinetics for the TiV only steel annealed at 860°C and 

aged over the temperature range 50°C to 100°C, as determined from the JMAK 

equation. Discounting the 100°C measurement the average kinetic exponent is 

0 .688 .
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JMAK aging Kinetics of Ti-V dual stabilised steel
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Figure 5.14 Determination of the JMAK kinetic exponent for aging of steel two (Ti-V dual 

stabilised) only the temperature range 50°C to 100°C, based on partial aging responses 

developed in figure 5.10

Figure 5.15 shows a plot of the kinetic exponents for aging of the Ti only steel 

annealed at 880°C and TiV steel annealed at 860°C, aged over the temperature 

range 50°C to 90°C. The green line shows the average exponent for the TiV steel, 

the blue the average exponent for the Ti only steel. Three out of five points for the 

TiV steel lie above the mean, and three for the Ti only lie below the mean, both 

averages having been altered by outliers at 60°C and 70°C respectively.
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Variation in aging exponent with aging temperature
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Figure 5.15 A comparison of the JMAK aging kinetics of steel one (Ti-Only) annealed at 880°C 

and Steel two (Ti-V dual stabilised) developed from the partial aging traces in Figure 5.9
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5.3.Transmission Electron Microscopy

Transmission Electron Microscopy has been used for two purposes in this 

investigation -  to support the proposed precipitation route for stabilisation of the 

steel, as predicted using MT-DATA, and to try and locate nano-scale vanadium 

carbide particles capable of acting as carbon sinks in the lattice through strain field 

interaction with free interstitial carbon atoms.

A sample of the titanium-vanadium dual stabilised steel was annealed using the 

cycle described in section 4.3.3, to induce recrystallization and release a population 

of free carbon atoms into solution. Following annealing 15mmx15mm samples were 

manually cut from the annealed panel using a Discotom disc cutter to avoid 

introducing deformation into the sample. The square samples were then ground 

down from 1mm nominal thickness to 25pm using static strips of 120, 240 and 500 

grit silicon carbide paper, the sample being supported throughout within a stainless 

steel holder that prevented any bending of the sample. [100] 3mm diameter discs 

were machined from the sample, and chemically thinned to 200nm for examination.

5.3.1. Transmission Electron Microscopy Results

Three main types of precipitates were identified through transmission electron 

microscopy in the titanium-vanadium dual stabilised steel. EDX results uniformly 

contained high levels of copper that were not present in the steel chemistry, and 

these are considered to be artefacts due to the use of a brass sample holder TEM 

EDX analysis rather than the recommended beryllium sample holders.
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Figure 5.16 Bright field TEM micrograph taken from steel two (Ti-V dual stabilised) following 

annealing at 860°C. The micrograph shows two TiS precipitates, SP1 and SP2.

Figure 5.16 is a bright field image displaying two particles with a composition that 

matches closely that of TiS, identified through Energy Dispersive X-Ray 

spectrometry. SP1 has a composition containing 68.9wt.% Ti and 31.1wt.% S, 

somewhat in excess of the expected 3:2 stoichiometry for TiS. SP2 was found to 

contain 40.2wt.% Ti, 35.9 Wt% S with 23.9wt.% Cu displayed in the EDX results 

dues to scattering of X-Rays on the brass holder.. SP1 has a mean diameter of 

86nm and SP2 a mean diameter of 118nm.
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Figure 5.17 Bright field TEM micrograph taken from steel two (Ti-V dual stabilised) following 

annealing at 860°C. The micrograph shows a cubic precipitate (SP4) with EDX spectra 

displaying titanium, vanadium, carbon and nitrogen, and a larger precipitate with spectra 

displaying titanium, sulphur and copper.

Figure 5.17 is a bright field TEM image containing two identified precipitates; SP4 is 

a small cubic precipitate with EDX spectra containing Titanium and vanadium 

(87.3wt.% and 12.7wt.% respectively) and an edge length of 40nm. SP5 is a larger 

TiS precipitate for which the EDX trace contains 40wt.% each of titanium and sulphur 

with 20wt.% Cu displayed in the EDX results due to X-Ray scattering.
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Figure 5.18 Bright field TEM micrograph taken from steel two (Ti<V dual stabilised) following 

annealing at 860°C. The micrograph shows two overlapping precipitates, a larger cubic 

precipitate, and smaller spherical precipitate.

Figure 5.18 is a bright field image showing the co-precipitation of a 60nm cubic 

precipitate and smaller 25nm spherical precipitate. EDX analysis shows the 

composition to be 62.3wt.% copper, 35wt.% titanium and 2.7wt.% vanadium.
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Figure 5.19 Bright field TEM micrograph taken from steel two (Ti-V dual stabilised) following 

annealing at 860°C. The micrograph shows strain field contrast caused by precipitates too 

small to analyse through EDX.

Figure 5.19 shows, via strain field contrast, the presence of a number of small 

coherent precipitates in the lattice. These precipitates were too small to identify using 

the EDX capability of the Phillips TEM, but two dark lobes separated by a region of 

no contrast are clearly visible.
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CHAPTER 6

EXPERIMENTAL DISCUSSION



6. EXPERIMENTAL DISCUSSION

6.1. The retarding effect of vanadium on rates of strain aging

The Isochronal plots developed in section 5.1 show a definite retarding effect of 

vanadium on the rates of strain aging between the two steels. As stated in section

5.1.1, if vanadium had no effect on the rate of strain aging, it would be expected that 

a steel stabilised using only titanium, and a steel stabilised using titanium and 

vanadium would share a common aging curve as a function of carbon content, at a 

given time.

Examining Figure 5.6 to Figure 5.8 there is a clear reduction in the aging response of 

the Ti-V dual stabilised steels at lower carbon contents, with this effect dropping off 

as carbon content rises from 5 to 10wt.ppm. There has been some argument, 

historically, over the role that grain size plays in the magnitude of bake hardening 

response, with Messien and Leeroy and Okamoto [79, 101] providing evidence that, 

at smaller grain sizes bake hardening response would be expected to increase for an 

equivalent level of free carbon

Considering the low free carbon case (5wt.ppm) where the difference in aging 

response was greatest, the titanium-vanadium dual stabilised steel was found to 

have a smaller grain size of 9.4pm microns compared to 10.3 pm (figures 4.1 and 

4.3). Accepting that, in the formation of Cottrell atmospheres, the increase in yield 

strength is proportional to the extent of atmosphere formation, a steel having a finer 

grain size would then be expected to show an increased aging response as a 

function of time when compared to one with a coarser grain structure; this is not the
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case, with the finer grained Ti-V steel showing an aging response that is roughly 

10% lower at all considered times.

With reference to the higher carbon case, where the Ti only and Ti-V isochronal plots 

intercept, it is the Ti-V steel that has the larger grain size of 13.5 microns compared 

to 10.5 microns for the Ti only.

Effect of Grain Size of variation on change in yield stress after baking for steel 
prestrained 2% containing 10wLppm free interstitial carbon
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Figure 6.1 Variation in bake hardening response with grain size in microns plotted after [79]

Comparing these grain sizes to fits of Messien and Okomoto’s data (Figure 6.1), one 

would expect a 6% increase in the aging response of the Ti only steel compared to 

the Ti-V. The data produced in this work, however, shows the Ti-V steel to age as 

rapidly as the Ti only steel at carbon contents above about 8wt.ppm free carbon.
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This suggests that, at higher carbon contents, the vanadium addition has in fact 

accelerated the rate of aging in the steel.

A study of the effect of grain size on aging rates has not formed a part of this body of 

work, the focus here being more on modelling the atomistic process of dislocation 

locking over the macroscopic process of bake hardening in steels, however, 

conclusions can be drawn from the isochronal plots produced in combination with 

reported literature.

At low free interstitial carbon levels (ca.5wt.ppm) vanadium additions can be seen to 

have a clear retarding effect on rates of strain aging at 100°C, irrespective of grain 

size effects (which would have been expected to accelerate the rate of strength 

increase in the dual stabilised steel).

At higher free interstitial carbon levels the retarding effect of the vanadium additions 

is non-existent, and, if grain size effects do in fact play a part in the overall 

magnitude of the aging response, rates of strain aging may, when measured as a 

function of the increase of yield stress, in fact increase.

With regard to the two common hypotheses for retardation of strain aging in steels, 

these results would seem to support an interaction between free interstitial carbon 

atoms and coherent vanadium carbide precipitates over a direct dipole interaction 

between free interstitial carbon atoms and substitiutionally present vanadium. The 

alloy investigated contains a large quantity of vanadium relative to the free carbon
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population, approximately twenty times the level required to fully stabilise the carbon 

population as VC0.88-

The reduction of the retarding effect of vanadium at higher carbon levels suggests 

there is a saturation level, beyond which the vanadium addition is no longer able to 

tie up further carbon atoms; if the interaction were occurring directly between carbon 

and vanadium atoms this saturation level would be expected to be high (approaching 

stoichiometry) rather than the rapid drop off in retardation at relatively low free 

carbon levels. If, however, the retarding effect were caused by an interaction with the 

strain fields around coherent precipitates this effect is more readily explicable. From 

a kinetic and stand point, there is a limit to the amount of vanadium carbide that 

would be able to form on a quench from 860°C, and the ability of this population of 

precipitates to act as a carbon sink would be more limited than that of solute 

vanadium.

To summarise, the isochronal plots show vanadium to have a limited retarding effect 

on rates of strain aging, which may combine with grain size affecting the overall 

aging response of the steel. The drop off in retarding effect at higher carbon contents 

tends to support an interaction effect between free carbon atoms and vanadium 

precipitates over a direct interaction between free carbon and free vanadium atoms.
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6.2. Variation in strain aging kinetics in the presence of vanadium

The method adopted in this body of work for the back derivation of the aging kinetics 

and activation energies has previously been used with reference to strain aging by 

Tanikawa, and Rashid [15, 102]. However, in previous works it has not been stated 

how the initial curve fits to the aging data have been performed. For the sake of 

transparency, and accuracy, a comparison was made between the quality of the fits 

produced to the raw aging data when using the logistic equation, a descriptive 

equation derived by Elsen and Hougardy, and the Johnson-Mehl-Avrami- 

Kolmogorov equation, frequently used to fit sigmoid processes like transformation 

kinetics and grain growth.

In Figure 5.1 to Figure 5.4 the three curves used to fit the data can all be seen to 

give a close match when fitted with no constraints; of the three equations the Logistic 

equation would be expected to give the best-fit through the presented data, but it’s 

general shape is not guaranteed to pass through the 0,0 intercept. The Elsen and 

Hougardy equation and the JMAK equation are both guaranteed to pass through the 

0,0 intercept and produce sigmoid type curves. As shown in

Table 5-1, the difference in the RMS error from the mean for the two fits is small 

(0.11 MPa), with the JMAK equation giving the better result compared with Elsen and 

Hougardy’s equation using an exponent of 0.9 as suggested in their paper [25].
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The JMAK equation shows the greater tendency to level off at the later stages of 

aging, showing a distinct end to the formation of Cottrell atmospheres, while the 

Elsen and Hougardy equation still possesses a positive gradient at the highest 

measured aging responses. For this reason the JMAK equation has been adopted 

for the fitting of aging curves in this exercise

Activation energies have then been determined as a function of the time required to 

achieve an equivalent aging response with varying temperature, fitted for a linear 

function using least squares error. It is necessary at this point to state that the 

activation energies generated in this study are produced using a fitted curve, which 

has itself been fitted to data produced from fitted aging curves. It is accepted by the 

author that this method may result in some inaccuracies in the final numerical result, 

however, the aging response has been determined from discrete aging tests at times 

assumed equivalent using Hundy’s equation. As such, the test data describes 

discrete points on the aging curve rather than the continuum of aging behaviour. It is 

not possible to perform this operation without making some assumptions, and 

performing some manner of curve fitting operation. As such it has been attempted in 

this work to perform the fits as accurately as possible, and in any event with 

complete transparency regarding the method, for future researchers. Tests have 

been performed in duplicate, at multiple conditions, and over a range of 

temperatures and, while the final numerical values might differ with a larger 

programme of testing, there is strong evidence within this body of work to support 

the observed trends.
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The curve fits showing the greatest deviation from the experimental data are seen at 

100°C in the case of both tested steels. This result is not unexpected, as following 

aging the tensile coupons were air-cooled and, as at 100°C the aging process is very 

rapid, aging is likely to have continued to some extent after the tensile coupons were 

removed from the aging furnace.

In previous investigations Tanikawa [102] and De et al [36] have both observed 

dogleg type curves containing an inflection point when deriving activation energies 

for strain aging. Tanikawa located this inflection point above 100°C ( in which event it 

would not be expected to be evident within the data produced for this study) while De 

et al located an inflection point at 77°C, with the a JMAK kinetic exponent of roughly 

0.7 below 77°C and 0.5 above. In addition the activation energy for the process was 

found to vary above and below 77°C, with the energy below being that expected for 

carbon diffusion in ferrite, and that above for the formation of pre-precipitate clusters 

in bainite formation.

No inflection point was evident in the derived activation energies for this study. 

However, it was the goal of De et al to look at precipitation effects in Ultra Low 

Carbon steels -  as such their composition contained 21wt.ppm of free interstitial 

carbon. The aging studies performed in this programme of work have focussed on 

far lower levels of free interstitial carbon (<10.wt.ppm) and, while Elsen and 

Hougardy have observed two stage aging kinetics in steels containing carbon levels 

as low as 5wt.ppm [25] the second stage of aging (the formation of carbon atom 

clusters at dislocations and formation of cylindrical epsilon-carbides) may not have 

occurred in this study -  the measured aging responses in the activation energy
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study, over which the aging temperature was varied, were of the order of 20-30MPa, 

consist ant with the expected yield strength increase from Cottrell Locking alone.

Accepting the inherent errors in the manner in which the activation energies have 

been derived the difference in activation energy for the aging processes with and 

without vanadium present may not be significant. The titanium-vanadium dual 

stabilised steel was found to have an activation energy for strain-aging 5kJMol'1 

lower than the titanium only steel, 90kJMol"1 compared to 95kJMof1. Both are 

significantly in excess of the activation energy for carbon diffusion in ferrite, taken in 

this work from Soenen et al. [57] as 82kJmol"1.

The possibility of performing an EBSD study of the lattice parameter was discussed 

with an expert [103] to see whether vanadium additions at the studied level were 

sufficient to produce an overall increase in the lattice parameter of the BCC ferrite 

matrix, and thus a reduction in the energy barrier to carbon diffusion and associated 

decrease in activation energy. It was the opinion of the operator that the probability 

of observing any effect at the alloying levels used was negligible when compared to 

the accuracy of the process, without processing a number of samples that would 

have been prohibitively expensive. For this reason EBSD was not pursued.

The activation energy study also found the pre-exponential Arrhenius coefficient to 

be an order of magnitude lower for the Ti-V steel when compared to the Ti only steel 

which, accepting similar activation energies, would result in longer required times to 

evolve an equivalent strength increase in the Ti-V steel.

132



To summarise the activation energy study, there is insufficient evidence to state 

whether the activation energy for the process of strain aging differs between the two 

grades being studied when considered as a thermally activated Arrhenius type 

process. There is however a difference in the process kinetics highlighted in the pre

exponential Arrhenius coefficient and JMAK aging exponent showing that the two 

processes are not the same; this serves to support the evidence generated through 

the derived isochronal plots, that the retarding effect of vanadium and its effect on 

process kinetics is a measurable phenomenon.
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6.3. TEM evidence of coherent vanadium carbide nucleation

Some aspects of the Transmission Electron Microscopy results are open to 

interpretation due to the erroneous copper trace displayed in the EDX results as a 

result of the use of a brass specimen holder.

Figure 5.16 and Figure 5.17 strongly suggest titanium sulphide to have formed in the 

matrix during pre-processing, as expected using traditional stabilisation 

considerations, rather than the manganese sulphide predicted by MT-DATA, based 

solely on equilibrium considerations of the composition. Particular credence can be 

given to Figure 5.16 in which SP1 did not display the copper trace resulting from the 

brass sample holder. This precipitate, however, has a titanium:sulphur ratio of 3:1 -  

stoichiometrically high for pure titanium sulphide. The particles under discussion, 

considered to be TiS, are of a similar size to those identified by Ooi and Fourlaris in 

a previous study of Ti-V dual stabilised ultra low carbon strip which, given the 

similarity between compositions and processing parameters, is not unexpected [68]

This highlights one of the limitations in the use of thermodynamic software like MT- 

DATA in planning experimental procedures. Hot rolling processes involve reasonably 

rapid cooling from the furnace temperature (1250°C) to the finishing temperature 

(920°C) then water quenching down to the coiling temperature of 700°C. Equilibrium 

microstructures may not result from such a cooling regime due to kinetic factors.
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While carbon and nitrogen cannot be detected directly using EDX, the cubic 

precipitates containing a significant weight fraction of titanium are likely to be 

titanium nitride, as titanium nitride and titanium carbide can be distinguished by their 

shape, the nitrides tending to be coarser than carbides and cubic rather than 

spherical[104].

The traces of vanadium in the cubic precipitates may represent one of two effects. 

Ooi and Fourlaris found TiN to provide a favourable location for precipitation of 

vanadium carbide precipitates due to the semi coherent interface between the face 

centred cubic (FCC) TiN and VC [68]. Figure 5.18 shows the co precipitation of a 

small spherical precipitate and larger cubic precipitate with a high titanium and low 

vanadium composition, and this may be an example of this heterogeneous 

nucleation effect.

Alternatively, FCC titanium, niobium and vanadium carbides and nitrides are known 

to be soluble in one another and the EDX results for precipitates SP4 and SP14 may 

be a representation of this effect, with carbo-nitride complexes forming. The 

evidence produced within this TEM study is not sufficient to choose between the two 

hypotheses.

Finally, while the precipitates shown in Figure 5.19 were too small to image directly 

or obtain EDX spectra, they do show a strain field interaction with the lattice which 

could, potentially, act as a carbon sink removing free interstitial carbon atoms from 

solution in a similar fashion to the interaction zone around dislocation cores. Given 

the extended soak of the steels before hot rolling at 1250°C to dissolve existing
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precipitates it seems unlikely that these precipitates would be residual from prior 

processing. The annealing treatment applied to Steel Two, with a soak of 860°C, 

should have been sufficient to dissolve any vanadium carbide present in the lattice. 

Given the quench rate of 60°C/s it seems likely that any precipitates reforming during 

cooling would be VC, rather than the more stable TiC which forms at higher 

temperatures.

Location of these coherent precipitates through TEM adds weight to the hypothesis 

that the retardation of strain aging phenomena in ultra low carbon steels may be due 

to a direct interaction between free interstitial carbon atoms in solution, and strain 

fields generated by the misfit of nano-scale precipitates in the ferritic lattice.
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6.4. Experimental summary

For the purposes of generating validation data for a subsequent computer modelling 

exercise the experimental results generated cover a range of carbon contents and 

aging temperatures, both with, and without, the presence of vanadium as an 

interacting secondary element.

Strong identifiable trends are visible in these data sets with higher aging 

temperatures and higher carbon contents resulting in aging phenomena progressing 

more rapidly, and vanadium having a variable effect depending on the level of free 

carbon. These process variables provide a wide base for model validation, which will 

serve to support the effectiveness of the technique developed through this body of 

work.

In addition to this key conclusions can be drawn from the experimental results as 

they stand. Vanadium has a measurable retarding effect on the rate of strain aging in 

ultra low carbon steels. This effect is largest at low free interstitial carbon levels and 

decreases to become negligible as the free carbon content approaches 10wt.ppm. 

While there is insufficient data to state categorically whether the vanadium addition 

alters the activation energy for the aging process, it does result in an order of 

magnitude decrease in the pre-exponential coefficient when the aging data is 

considered as an Arrhenius type event. It is likely that this effect is caused by an 

interaction between free interstitial carbon atoms and the strain fields associated with 

coherent vanadium carbide precipitates in the lattice, these strain fields having been 

imaged using strain field contrast in bright field TEM imaging
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CHAPTER SEVEN

COMPUTER MODELLING



7. MODELLING

This section describes the generation of three Kinetic Monte Carlo models for the 

purpose of simulating strain-aging phenomena. The first model discussed is a 

published technique produced by Soenen et al [57], and has been reproduced using 

in house code to determine its robustness technique. The second and third models 

discussed represent attempts to produce a Kinetic Monte Carlo model having shorter 

run times, without sacrificing accuracy, through the application of the Bortz-Kalos- 

Liebwitz algorithm in what the author believes to be a novel application. Additional 

modelling work is also presented showing the potential of the Kinetic Monte Carlo 

technique to reproduce retarding effects observed in the experimental data.

All computer code has been produced by the author using Compaq Visual 

FORTRAN 6, programmed using Fortran90 and compiled using the Compaq 

Developer Studio.

7.1. The requirement for modelling of strain aging

A bake hardening product can only be viable if guarantees can be given in terms of 

its aging behaviour, describing expected returns of yield point elongation and 

strength increase both in storage, and in service.

Numerous attempts, detailed in section 1.4, have been made to numerically predict 

rates of aging in terms of percentage completion of Cottrell atmosphere formation 

and the formation of dislocation precipitates. Attempts to produce computer models
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of the process appear to be less common, with in roads having been made using 

phase field modelling and Kinetic Monte Carlo. As a technique phase field modelling 

is heavily dependant upon certain constants, such as interfacial boundary energies 

and bulk phase energies that are difficult to measure in terms of processes occurring 

on an atomic scale and. While intrinsically free of any scale, phase field simulations 

are typically implemented where bulk diffusional properties can be used as a driving 

energy for the simulation.

Kinetic Monte Carlo simulations offer several advantages in the model of strain 

aging; KMC is essentially an atomistic technique however, by relating atomic 

behaviour to bulk material properties, and only modelling structural defects, it is 

possible to model physical processes that occur over large volumes of time. The 

frequency of atomic vibrations is ignored, and an attempt frequency and jump 

frequency are inferred from the bulk properties.

Additionally, the nature of KMC is such that the act of modelling a process confirms 

or refutes our understanding of it. It is widely held that Cottrell atmospheres form by 

the bulk diffusional movement of carbon atoms to dislocation cores to minimise strain 

energy in the lattice; a model that proceeds on the basis that this is true will test this 

assumption. If it is possible to reproduce the aging response of materials with the 

appropriate observed kinetics and activation energies, it can be inferred that the 

understanding of the model is in fact correct.

Finally, computer models have significant capacity to evolve and encompass a range 

of other techniques, or more complicated scenarios. An existing model can be
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modularised and ported into a larger frame, or expanded to include additional 

processes or interaction effects. Computer models can also grow to include existing 

numerical models, allowing for more rapid solution and incorporation into a chain of 

calculations that would prove laborious to pursue manually. In the case of the KMC 

modelling of strain aging, once the interaction behaviour between an interstitial and 

substitutional species has been reproduced, other species can be modelled by 

adapting existing parameters and applying the same algorithm -  for instance the 

generic modelling of dipole interactions as a carbon sink.

The computer modelling of strain aging is an important step in confirming and 

improving our understanding of aging processes, and Kinetic Monte Carlo is a highly 

versatile technique with a history of use in studying atomic interactions in 

semiconductors. It also provides a technique capable of producing long-term 

simulations (months of simulated time) within a real time frame that is appropriate for 

a desktop tool with industrial relevance, and as such has been adopted for this 

investigation.

7.2. Locally activated Kinetic Metropolis Monte Carlo algorithm

A Kinetic Monte Carlo simulation of strain aging has been published by Soenen et al, 

accounting for both diffusion of carbon atoms to dislocations during aging, and grain 

boundary segregation during the annealing process, and the results of this group 

have shown a strong correlation with their experimental data [57].
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The model developed in that paper has been reproduced during this study. The 

kinetics are controlled by a set of Arrhenius type equations controlling jump 

frequency, relating to jumps between positions of equivalent energy within the bulk 

material, and jumps to sites of higher or lower energy, within a critical radius around 

dislocations.

The frequency of jumps between equivalent sites, is controlled by an attempt 

frequency, v, and l/d, the energy barrier to diffusion, which was taken as 82000J/mol, 

approximately equal to the activation energy for carbon diffusion. [57]

Here R is the gas constant (8.3145JIC1mor1), T the absolute temperature(K), D0 the 

coefficient of diffusivity for carbon in ferrite (2x1 O'6 m2s'1) and a the lattice parameter 

of a bcc ferrite unit cell (2.87A).

Where a diffusive jump moves an atom between two sites, i and j, with respective 

energies Uj and Uj the jump frequency fd is again observed if the energy of the target 

site is lower; if a jump takes an atom to a higher energy site the frequency is related 

exponentially to the energy difference between the two positions [57]

The program records the co-ordinates of all solute atoms and dislocations, and 

interaction energies are read from energy ‘templates’ if carbon atoms are within the

7-1

f(i-+j) = fd U,>Uj 7-2

7-3
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calculated radius of interaction (rc). The critical radius of interaction allows for a 

minimum variation of 10% from the normal jump frequency and is calculated as [57]:

The interaction energy of each site is calculated using:

TT A s in 0
U  = -------------------------------------------------  7-5

r

Where (r, 6) is the polar co-ordinate of the solute atom with respect to the dislocation 

line and A is the solute dislocation interaction parameter (taken as 7.5x1 O'6), T is the 

absolute temperature of the system and R is the gas constant.

At the beginning of the program, carbon atoms are randomly placed throughout the 

mesh at the cell centres, and dislocations at the edges of unit cells. Each carbon 

atom has a local clock that keeps track of its location in time, this clock being 

updated every time the atom makes a diffusive jump. The algorithm proceeds as 

follows (Figure 7.1):

1) Select that carbon atom for which the least amount of time has passed.

2) Set the simulation time to the local time of the selected atom.

3) Using a random number generator determine in which of the four possible 

directions the carbon atom will jump, based on the relative jump frequencies.

4) Check whether the destination site is vacant; if so, perform the diffusive jump, 

if not, the selected atom remains stationary.

5) Calculate the jump frequencies for the atom in its new position.

7-4
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6) Update the atoms’ local clock by the amount of time that will be required for it 

to perform its next diffusive jump.

7) Re-sort atoms by their local clocks.

A periodic boundary condition has used in all cases.

adjacent site energies

Calculate jump probabilities

in new position from

Perform atomic jump

Determine jump direction

from probabilities

Check whether target

site is vacant

Simulation time = atom time

Choose lagging atom 99 9 
9 9 9
919 9

9 *?

9|9 9
7

9 9 99  <0
99 9
9 9a9
9  d  d
9 9 ^  
9 9t9

Figure 7.1 A graphical representation of the locally activated Kinetic Monte Carlo Algorithm
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7.2.1. Sensitivity analysis

Trials of this model were aimed at assessing the effect of mesh size and shape on 

the accuracy of the Kinetic Monte Carlo technique, and on the ability of the model to 

assess a range of temperatures and carbon contents (

Table 7-1). To this end, experimental plots have been reproduced from papers by 

Elsen and Hougardy [25], De et al. [73]and Zhao et al. [40] to represent a range of 

experimental carbon contents and aging temperatures.

Table 7-1 Run details for the sensitivity analysis performed using the locally activated Kinetic

Monte Carlo Modell

Mesh 
dimensions 

fOOO elements!

Mesh Elements 
(‘000,000 elements)

Temperature
(K)

Carbon
(wt.ppm)

Ca ride former 
(wt.ppm)

SIZE
10 x 10 100 323 5 -

15x15 225 323 5 -

22x22 484 323 5 -

35x35 1225 323 5 -

SHAPE
15x15 225 323 5 -

19x12 228 323 5 -

28x8 224 323 5 -

56x4 224 323 5 -

112x2 224 323 5 -

TEMPERATURE/CARBON
15x15 225 323 5 -

15 x 15 225 323 6 -

15 x 15 225 323 6.4 -

15x15 225 373 5 -

15x15 225 373 6 -

15x15 225 373 6.4 -

Carbon Stabiliser
15x15 225 323 5 225
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Further runs were then performed to include the impact of a strongly carbide forming 

element in solid solution. In these simulations 225 wt.ppm of solute with an atomic 

weight of 51 (vanadium) were dispersed randomly over the area simulated on a

15,000 by 15,000 element grid, containing 5wt.ppm of carbon and aged at 323K. The 

substitutional atoms were placed in BCC ferrite lattice sites and an interaction was 

assumed with carbon atoms situated at the nearest neighbour octahedral sites, with 

a magnitude of 20kJ/Mol. Jumps to and from these sites were controlled by the jump 

equation as detailed previously for sites of non-equivalent energy. Where the 

placement of such a substitutional atom coincided with the interaction energy field 

resultant from a dislocation, the effects were considered to be cumulative.

7.2.2. Optimisation of the Locally Activated Kinetic Monte Carlo 

Algorithm

To reduce run times and improve the efficiency of the simulation a divide and 

conquer methodology was adopted. To calculate the jump frequencies for the atom 

of interest on each time step, it is necessary that its position be compared to the 

positions of all dislocations and atoms of substitutionally present species that could 

result in an interaction in terms of lattice site energy.

In the case of the secondary species simulation shown here, this amounts to 55600 

vanadium atoms, and 277 dislocations. Initial simulations attempted under these 

conditions were found to have unfeasible run times, potentially running into weeks. 

To combat this the total modelled area was subdivided into a grid, each section of 

which measured 1000 x 1000 mesh elements. Each potentially interacting feature in 

the simulation was possessed of two sets of locating coordinates; absolute
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coordinates, relative to the origin of the large mesh, and local coordinates, describing 

the grid sector in which the feature was located, and its coordinates relative to the 

origin of that sector Figure 7.2.

FULL ARRAY SEARCH DIVIDE AND CONQUER

•  Schematic position of carbon atom 
□  Region searched for interacting atoms 

|  Region not searched for interacting atoms

Figure 7.2 Schematic of the function of divide and conquer techniques in speed optimisation.

The carbon atom selected for a move would then be checked only against those 

features in the grid that it occupied and in those grids that were its four nearest 

neighbours, to account for any dislocations with an interaction zone that overlapped 

their containing grid. By comparison this represents a check against an average of 

1235 vanadium atoms and 6 dislocations on each time step, or 2% of the initial 

number.

The relevant atomic move was then completed, and the global coordinate system 

updated to reflect changes that had occurred. While this represents a simplistic
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application of divide and conquer techniques, when compared with other 

optimisation techniques such as the use multi-grid solvers for solution of partial 

differential equations, it does offer significant improvements in the run time of this 

programme and is relatively simple to implement.

The effect of dislocations in next nearest neighbour grid sectors was assumed to be 

negligible to preserve run times. At 50°C the radius of interaction for a dislocation 

core assumed by the model covers 28 mesh units, giving an interaction area of 7740 

mesh elements in total. Assuming a dislocation core was placed at the corner of a 

sector, giving the maximum potential overlap, this would represent 1934 mesh 

elements, or a little under 0.2% of the sites in the sector of interest. Coupled with the 

fact that only 900 such corner sites exist in a total modelled volume of 225 million 

elements it seemed reasonable to discount them when searching for interaction 

effects.

7.2.3. Locally Activated Kinetic Monte Carlo Results

Figure 7.3 shows the effect of changing mesh size on the accuracy of the Monte 

Carlo simulation. The quality of the fit appears to improve from 100 million to 225 

million elements, then degrades again as the mesh becomes larger. Figure 7.4 

shows the effect of changing the mesh shape from a thin strip simulation (128,000 x

2,000 elements) through to a square simulation of equivalent area (15,000 x 15,000 

elements). In these simulations the effect of changing mesh shape appears 

negligible.
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iSfci 15* tun 1 
15k * 15* run 2 
15k 115k run 310k* 10k run 3

Dislocation site locking vs. time; 484.000.000 elements, square mesh

72k i TTkiui 1 
22k » 22k run 2 
22k*22krui3

Dislocation site locking vs. time: 1.000.000,000 ♦ elements, square mesh

Figure 7.3 - Simulated strain aging for steel containing 5wt.ppm of carbon at 5% prestrain vs. 

experimental data taken from De et al. [15] on meshes of dimensions 10.0002, 15,0002, 22,0002, 

32.0002

Effect of mesh shape on model accuracy
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Figure 7.4 - The effect of mesh shape on simulated strain aging for a steel containing 5wt.ppm 

of carbon at 5% prestrain vs. experimental data taken from De et al. [15] on a 15.0002 mesh.
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Figure 7.5 shows the ability of the technique to handle changing carbon content and 

temperature. The simulation runs are close to the reported data for experiments at 

323K and follow the same trend, producing sigmoid curves that are displaced to 

shorter times as the carbon concentration increases.

100E*«1 10C€*OJ
Tkm (mlns)

Figure 7.5 Simulated strain aging for steels containing 5wt.ppm, 6wt.ppm and 6.4wt.ppm of 

carbon at 5% prestrain at 323K and 373K vs. experimental data taken from De et al. [15], Zhao 

et al [16] and Elsen and Hougardy [6] on a 15,0002 element mesh

Figure 7.5 shows poorer match to experimentally reported data for 373K, and the 

curves no longer have a sigmoid shape. The general trend of shorter aging times for 

higher carbon contents is repeated, but the overlap between simulated curves is 

greater than at 323K.

Dislocation site locking vs. tana at 323K. Simulated and reported results

I
}
i
I
i

— ES«*i txrtporo 323K
 De 6\* ppm 323K

flop 8 <vrt ppm 323k

In Figure 7.6 the addition of a substitutional element that forms strong dipoles with 

carbon can be seen to reduce the rate at which aging occurs. The sigmoid curve is 

displaced to longer times, this effect being least pronounced at the start and end of 

the simulation
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Simulated ffects of a strong carbide forming solid solution element on strain 
aging at 323k
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Figure 7.6 Simulated strain aging for a steels containing 5wt.ppm of carbon, and 5wt.ppm of 

carbon with 225wt.ppm of a strong carbide former with atomic weight 51 at 5% prestrain and 

323K on a 15.0002 element mesh.
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7.3. Application of the Bortz-Kalos-Liebowitz Algorithm using Average 

Expected Conditions

Following on from the successful reproduction of aging behaviour using a locally 

activated Kinetic Monte Carlo algorithm, an attempt was made to produce a novel 

simulation of the aging process by applying the Bortz-Kalos-Liebowitz algorithm to 

the Kinetic Monte Carlo framework, and working on a smaller grid to reproduce bulk 

aging behaviour from the local state of the lattice.

The aging of the titanium stabilised experimental steel (steel one) has been modelled 

using a two dimensional application of the Bortz-Kalos-Lebowitz (BKL) algorithm 

[105], modified from the Kinetic Monte Carlo technique presented by Soenen et al 

[57].

The evolution of the system was modelled using a single dislocation at the centre of 

a grid having a variable edge length; the initial grid size was 900x900 elements of 

length 1.435x10'10m, equivalent to the dislocation density of 6x1013m'2, or 5% 

prestrain[41]. This dislocation was then locked repeatedly to effectively model a 

region 20,000x20,000 mesh elements.

Accepting the initial dislocation spacing in the mesh of 900 mesh elements this 

region of material would be expected to contain 494 ( (20000/900)2) dislocations. 

The condition of the titanium stabilised steel being modelled was that following 

annealing at 880°C for a 60 second soak, this having been shown to liberate 9.8
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wt.ppm of free carbon into solution. This gives an initial free interstitial carbon 

population of 37 carbon atoms.

Locking of a dislocation was considered to have occurred once a free interstitial 

carbon atom reached the site of maximum interaction energy directly adjacent to the 

dislocation core. The maximum aging response of the steel was considered to have 

been reached when 90% of available sites in the total modelled volume had been 

occupied in line with the expected locking ratio of 0.9 atoms per atom plane threaded 

by dislocation [29]

The atom arriving at the dislocation core was annihilated from the simulation 

between successive locking events as were all carbon atoms in the interacting 

volume (assumed to be that region around the dislocation core within which the 

variation in jump frequency is greater than 10% from the normal), leaving the 

dislocation free for repeated locking. The locations of all other carbon atoms were 

conserved relative to the dislocation core, and new atoms were introduced at 

random locations along the edges of the simulated volume.

This methodology was designed to allow the region surrounding the dislocation to 

continuously simulate the evolution of a local area of the microstructure. In the early 

locking events those carbon atoms that are close to the dislocation core would be 

rapidly consumed, leaving a larger population of carbon atoms at an intermediate 

distance from the dislocation.
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Between locking events the grid size was increased incrementally to reproduce the 

change in the unlocked dislocation density, and the carbon population varied to 

account for increases due to the increasing modelled area, and decreases due to the 

reduction in the mean population of free carbon atoms (wt.ppm) as a result of locking 

events having occurred.

Assuming a total modelled volume of 20,000x20,000 mesh elements the number of 

unlocked dislocations on initialisation of the simulation would be 494; the total 

number of simulated carbon atoms would be 18,293. On locking of one dislocation 

this number would decrease to 493. Given a square volume, 493 dislocations would 

require a square of edge length equal to 22.2 times the equilibrium dislocation 

spacing. Maintaining the volume of 20,000x20,000 mesh units this gives a 

dislocation spacing of 901 mesh elements. In this way the grid size is incrementally 

increased over the length of the simulation to maintain the correct average 

dislocation density.

The number of modelled carbon atoms was then decreased with the fractional 

change in carbon content due to the annihilated atoms considered to be tied to the 

locked dislocation core. Simultaneously the number of modelled atoms is increased 

due to the increasing mesh area included in the run.

The BKL algorithm, as used to control the atomic jumps of free interstitial carbon 

atoms, proceeds as follows:
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1) Sort all the possible diffusional events into four classes, describing the 

possible directions of an occurring atomic jump.

2) Calculate the frequency with which every possible diffusional event can occur.

3) Sum the jump frequencies, and normalise the resulting value to one, to give a 

relative frequency for each event.

4) Sum the normalised frequencies for each class of event giving the relative 

frequency for each event class.

5) Generate a random number in the interval 0<R<1, and use this to determine

which class of diffusional event will occur.

6) Generate a random number in the interval 0<R<1, and use this to determine

which event in the selected class will occur.

7) Perform the selected atomic move.

8) Update the simulation time.

The event frequencies and site interaction energies are determined as per the event 

frequencies in the locally activated simulation described in section 7.2. At has been 

calculated on each iteration of the program as 

A( = J n ( f ia n d )

where Rand is a random number generated in the interval 0<Rand<1 and f  the 

frequency (Hz) of a given diffusional event in the set of diffusional events having 

class m.

The initial time at the start of each locking event was calculated as the locking ratio, 

in terms of atoms per atom plane threaded by dislocation, multiplied by the maximum
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time achieved in the simulation; at the end of each locking event, the maximum time 

for the simulation is updated if it has been exceeded. At the end of the simulation all 

locking events are sorted by ascending numerical value in terms of time, and the 

time required for percentages of the total aging response to be achieved outputted.

7.3.1. Accelerated Aging Results for the Bortz-Kalos-Liebwitz Algorithm 

Using Expected Average Conditions

The modelled accelerated aging data () matches the mid-portion of the actual aging 

data produced through the aging of the experimental Ti only steel, annealed at 

880°C to contain a FICA population of 9.8wt.ppm. The match between the modelled 

and experimental data is poorer during the early and late stages of aging, over 

predicting the required time for a given level of aging in the initial stages, and under- 

predicting toward completion.

Bortz Kalos Uebwltz modelling of accelerated aging data
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Figure 7.7. Modelled accelerated aging data compared with partial aging traces produced for 

steel one (Ti only) over the temperature range 50°C to 100°C generated by a variant of the BKL- 

KMC algorithm based on average expected behaviour in the modelled volume.
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7.3.2. Aging Kinetics developed by the BKL algorithm

The aging kinetics displayed by the BKL model (Figure 7.8), based on predicted 

average behaviour, are significantly higher than those for the observed behaviour at 

all temperatures save 100°C, and are internally consistent.

Ti only aging kinetics modelled using the BKL algorithm JMAK Kinetics of accelerated aging of TI only steel
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Figure 7.8 A comparison of the aging kinetics developed during accelerated aging of steel one 

(Ti-Only) aged in the temperature range 50°C to 100°C and the aging kinetics developed by a 

variant of the BKL algorithm based on expected average behaviour in the modelled volume.
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7.4. Application of The Bortz-Kalos-Liebowtiz Algorithm Using The Initial

Material Configuration

A further attempt has been made to apply the BKL algorithm on a small grid to the 

simulation of strain aging effects in Ultra Low Carbon steels. This model used the 

simulation developed in section 7.3 as an initial framework, with altered assumptions 

regarding the initial state of the model locally with respect to each dislocation

The evolution of the system was again modelled using a single dislocation at the 

centre of a grid having a variable edge length; this dislocation being locked 

repeatedly to model a region 20,000x20,000 mesh elements of unit length 1.435x1 O' 

10m, or half the BCC unit cell in ferrite. Rather than calculate and apply the assumed 

average condition of the lattice on each successive locking event to produce a 

continuum, this attempt at simulation assumed that all locking events occur 

concurrently, starting simultaneously at a point of zero time (essentially the moment 

directly following the application of a prestrain, or temper rolling).

Variations in the pre-strain prior to aging were modelled using an equation back 

derived from a fit of data taken from Amiot and Despujols [106] with an iterative 

solver. On initiation of the simulation a 20,000 x 20,000 mesh element grid was set 

up and populated with five dislocations. The average spacing between each 

dislocation and its nearest neighbour was then calculated, and compared to the 

spacing required by the relationship.
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If the mean dislocation spacing was returned as greater than the spacing required, 

the number of dislocations in the 20,000 x 20,000 element grid was increased by five 

and the calculation repeated; in this way it was ensured that the initial configuration 

of dislocations in each run of the simulation gave a dislocation spacing appropriate to 

the desired level of prestrain [41]. The lattice was then populated with carbon atoms 

up to a maximum population determined as a function of the desired wt.ppm free 

carbon population.

For each dislocation the distance between itself and each of its four nearest 

neighbouring dislocations was then calculated, and a mean spacing determined from 

these. The number of carbon atoms falling within the locus of this distance was then 

counted and stored with the grid spacing in a reference array. As the simulation 

progressed each of the dislocations in the model was locked in sequence, on a grid 

having an edge length equivalent to the mean spacing for that dislocation, and 

randomly populated with the counted number of atoms. In this way the variation in 

the initial positions of features in the lattice was retained, without the necessity of 

modelling the whole mesh as a single unit, which is both slow and processor 

intensive.

The BKL algorithm, as used to control the atomic jumps of free interstitial carbon 

atoms, proceeds as follows:

1) Sort all the possible diffusional events that can occur events into four classes, 

these describing the possible directions of an occurring atomic jump.

2) Calculate the frequency with which every possible diffusional event can occur.
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3) Sum the calculated jump frequencies, and normalise the resulting value to 

one, to give a relative frequency for each event.

4) Sum the normalised frequencies for each class of event giving the relative 

frequency for each event class.

5) Generate a random number in the interval 0<R<1, and use this to determine

which class of diffusional event will occur.

6) Generate a random number in the interval 0<R<1, and use this to determine

which event in the selected class will occur.

7) Perform the selected atomic move.

8) Update the simulation time.

The event frequencies were again determined from a ‘normal’ jump frequency, 

modified for interactions, as described in section 7.1, and the time step determined 

as in section 7.3.

7.4.1. Secondary interacting species

The presence of a secondary interacting species has been added into the model 

assuming a nearest neighbour interaction effect to occur. As with the carbon atoms, 

for each dislocation the distance between itself and each of its four nearest 

neighbouring dislocations was calculated, and a mean spacing determined. The 

number of atoms of the substitutional secondary species falling within the locus of 

this distance was then counted and stored with the grid spacing in a reference array.

The interaction effect was included in the algorithm by, on each iteration, checking 

the position of each carbon atom in the simulated volume relative to each of the
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substitutional atoms being modelled. If the distance between any carbon atom and a 

substitutional atom in the lattice was less than 1.5 mesh units (eg 1.414 mesh units, 

or root two) then the absolute coordinates of the two were compared, and atomic 

jumps that would result in the carbon atom moving away from the vanadium atom 

penalised with an increment to the activation energy of 10kJmol'1; this does not bind 

the carbon atoms permanently to the simulated secondary species, but significantly 

increase the likelihood that a carbon atom, having reached an atom of a the 

secondary species, will remain in the locus of its nearest neighbour points rather 

than resuming a random walk diffusional path.

This has the net effect of lowering the free carbon population by some fraction, as 

well as reducing carbon mobility within the bulk lattice. Interaction energies of 

2.5kJmol'1, 5kJmor1, 7.5kJmol‘1 and lOkJmol'1 have been simulated to see how this 

affects the behaviour of the aging model. In these runs, at 5wt.ppm the maximum the 

achievable yield stress has been normalised to 32MPa, and in the runs at 10wt.ppm 

free carbon the maximum achievable yield stress has been normalised to 35MPa to 

isolate the retarding effect to the secondary species rather than differences in the 

bake hardening response of the grade. The interaction energy giving the most similar 

match in behaviour to the observed effect of the secondary interacting species has 

then been re-plotted with the maximum achievable yield stress equal to the bake 

hardening response of steel two in the appropriate annealed condition.
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7.4.2. Accelerated Aging Results for the Bortz-Kalos-Liebwitz Algorithm

Using the Initial Material Configuration

Modelled and Experimental Accelerated aging of Ti 
stabilised ULC steel containing 9.8wt.ppm free carbon
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Figure 7.9 Modelled accelerated aging data compared with partial aging traces produced for 

steel one (Ti only) over the temperature range 50°C to 100°C generated by a variant of the BKL- 

KMC algorithm based on the initial configuration of significant features in the modelled 

volume.

Figure 7.9 shows a good match between the predicted and measured aging 

response of the steel grade between the temperatures 50°C and 80°C, with the 

simulation accuracy dropping off at higher temperatures.
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Accelerated aging data for Ti only steel annealed at 880C
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Figure 7.10 A comparison of raw accelerated aging data for steel one (Ti-Only) annealed at 

880°C to contain 9.8wtppm free interstitial carbon, aged at 100°C, and modelled data for the 

same aging condition generated by a variant of the BKL-KMC algorithm based on the initial 

configuration of significant features in the modelled volume.

Figure 7.1 Oand Figure 7.11 show the quality of the fit of the predicted aging curves at 

100°C to the raw data produced by performing accelerated aging tests on steel one 

(Ti-Only) following annealing cycles liberating 5.5wt.ppm and 9.8wt.ppm of free 

interstitial carbon.
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Accelerated aging data for Ti steel annealed at 800C
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Figure 7.11 A comparison of raw accelerated aging data for steel one (Ti-Only) annealed at 

880°C to contain 5.5wt.ppm free interstitial carbon, aged at 100°C, and modelled data for the 

same aging condition generated by a variant of the BKL-KMC algorithm based on the initial 

configuration of significant features in the modelled volume.

Figure 7.12 to Figure 7.14 show the match between the isochronal aging behaviour 

of Steel one as measured during accelerated aging at 100°C and as modelled using 

the novel BKL program. The difference between the predicted and modelled result is 

of the order of 10%, with the modelled result being consistently higher
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Comparison of Actual and Modelled Two Minute
Isochronal Aging Plots for Steel One
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Figure 7.12 A comparison of the two minute isochronal aging behaviour of steel one (Ti-only) 

aged at 100°C and the modelled behaviour generated using a variant of the BKL-KMC 

algorithm based on the initial configuration of significant features in the modelled volume.
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Comparison of Actual and Modelled Five Minute
Isochronal Aging Plots for Steel One
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Figure 7.13 A comparison of the five minute isochronal aging behaviour of steel one (Ti-only) 

aged at 100°C and the modelled behaviour generated using a variant of the BKL-KMC 

algorithm based on the initial configuration of significant features in the modelled volume.
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Comparison of Actual and Modelled Ten Minute
Isochronal Aging Plots for Steel One
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Figure 7.14 A comparison of the ten minute isochronal aging behaviour of steel one (Ti-only) 

aged at 100°C and the modelled behaviour of the same condition generated using a variant of 

the BKL-KMC algorithm based on the initial configuration of significant features in the 

modelled volume.
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Activation Energy for Modelled Strain Aging
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Figure 7.15 Determination of the modelled Arrhenious activation energy for a variant of the 

BKL-KMC algorithm based on the initial configuration of significant features in the modelled 

volume, using data taken from Figure 7.9

Figure 7.15 shows the calculated activation energy for the strain aging process, as 

predicted by the computer model, to be in the region of 75-80kJ/mol, and to follow a 

straight line relationship described by an Arrhenius type equations.
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Aging Kinetics of Modelled Strain Aging
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Figure 7.16 A demonstration of the aging kinetics of BKL-KMC algorithm simulating strain 

aging in the temperature range 50°C to 100°C.

Figure 7.16 shows the model to obey t273 aging kinetics at all aging temperatures in 

the range 50°C to 100°C up to 60% dislocation locking.

Figs to 7.17-7.19 .show the effect of the secondary retarding species on the aging 

kinetics of the modelled steel using 850wt.ppm of secondary interacting species at 

an aging temperature of 100°C. There is a clear reduction in the isochronal aging
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response of the modelled material as a result of the addition of the secondary 

species when using a 10kJmol'1 interaction energy

Two Minute isochronal Plot for Modelled Aging Data
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Figure 7.17 A comparison of the modelled isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after two minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude 10kJmol'1
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Five Minute Isochronal Plot for Modelled Aging Data
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Figure 7.18 A comparison of the modelled isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after five minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude iOkJmol'1
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Ten Minute Isochronal Plot for Modelled Aging Data
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Figure 7.19 A comparison of the modelled Isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after ten minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude lOkJmol*1

For the two minute and ten minute isochronal aging data the aging responses of the 

two modelled steels appear convergent with increasing levels of free carbon. The 

aging responses of the steel modelled with and without 850wt.ppm of a secondary 

interacting species vary by 52% at 5wt.ppm free carbon, and by only 27% at 

10wt.ppm free carbon. After five minutes of simulated aging the difference in 

response is 33% at 5wt.%free carbon and 26% at 10wt.% free carbon. Similarly, at
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ten minutes the aging responses vary by 30% at 5wt.ppm free carbon, and by only 

15% at 10wt.ppm free carbon.

Two Minute isochronal Plot Showing the Effect of 
Varying Secondary Species Interaction Energy
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Figure 7.20 A comparison of the modelled isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after two minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude 2.5kJmoi*1,5kJmol'1,7.5kJmol"1 and lOkJmol'1
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Five Minute Isochronal Plot Showing the Effect of
Varying Secondary Species Interaction Energy
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Figure 7.21 A comparison of the modelled isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after five minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude 2.5kJmol*1, 5k Jmol'1, 7.5k Jmol'1 and 10kJmol'1
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Ten Minute Isochronal Plot Showing the Effect of
Varying Secondary Species Interaction Energy
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Figure 7.22 A comparison of the modelled isochronal aging behaviour of Steel one (Ti-only) 

and steel two (Ti-V dual stabilised) after ten minutes, assuming stabilisation occurs by a direct 

nearest neighbour interaction of magnitude 2.5kJmol'1,5kJmol'1,7.5kJmol'1 and lOkJmol*1

Figure 7.20-Figure 7.22 show the effect of variation of the nearest neighbour 

interaction energy assumed by the model. As the interaction energy falls from 

lOkJmol'1 to 2.5kJmol~1 the level of the retarding effect shown in the isochronal plots 

is reduced. At all interaction energies the retarding effect is more pronounced for 

runs performed modelling 5wt.ppm free carbon and decreases, in percentage terms, 

with increasing carbon levels.
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Accelerated aging data for Ti-V steel annealed at 740C
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Figure 7.23 A comparison of raw accelerated aging data for steel two (Ti-V-Only) annealed at 

740°C to contain 4.8wtppm free interstitial carbon, aged at 100°C, and modelled data for the 

same aging condition generated by a variant of the BKL-KMC algorithm based on the initial 

configuration of significant features in the modelled volume, with 850wt.pmm secondary 

interacting species and an assumed interaction energy of 5kJmol'1, normalised to the bake 

hardening response of the steel
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Accelerated aging data for Ti-V steel annealed at 860C
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Figure 7.24A comparison of raw accelerated aging data for steel two (Ti-V-Only) annealed at 

860°C to contain 8wt.ppm free interstitial carbon, aged at 100°C, and modelled data for the 

same aging condition generated by a variant of the BKL-KMC algorithm based on the initial 

configuration of significant features in the modelled volume, with 850wt.pmm secondary 

interacting species and an assumed interaction energy of SkJmol'1, normalised to the bake 

hardening response of the steel
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Figure 7.23 and Figure 7.24 show a comparison between raw aging data produced 

by aging steel two at 100°C following annealing to liberate 4.8wt.ppm and 8wt.ppm 

of free interstitial carbon respectively, and modelled data that has been normalised 

to the bake hardening response of the grade thus encompassing both retarding 

effects of secondary alloying species and the reduction observed in the maximum 

achievable yield stress increase in section 4.4. Figure 7.23 and Figure 7.24 show a 

agree with the raw aging data up to 80% of completion, falling entirely within the 

scatter band of the raw data, but in both instances the maximum aging response 

produced through bake hardening under predicts the maximum aging response 

attained in the 100°C accelerated aging experiments.

7.5. Variable Strain Fields

There are two phenomena regarding strain aging that potentially require the use of a 

variable strain field around key features for accurate modelling. Firstly there is the 

formation of pre-precipitate clusters prior to the nucleation of small coherent 

precipitates following Cottrell locking. The current mechanism for dislocation locking, 

in the BKL and LAKMC models, makes use of a fixed template for dislocation 

interaction energy. In the BKL algorithm this does not represent a significant problem 

as, upon arrival of the first carbon atom at the core of the simulated dislocation it is 

considered to be ‘locked’ and the next dislocation in the simulation initiated. In the 

LAKMC model, however, the use of this fixed template essentially makes the 

dislocation interaction fields an unlimited carbon sink -  if several hundred 

dislocations are being modelled simultaneously there will naturally be a significant 

body of simulated time between the locking of the first and last. During this time the
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only limit to the number of carbon atoms the strain field around the dislocation can 

take up is the inability of the atoms to co-inhabit sites, and the limited number of sites 

in which the variation in interaction energy is significant.

Secondly, the evidence provided through this programme of work is not sufficient to 

state categorically whether the retardation of strain aging is caused by direct dipole 

interactions with a secondary substitutional species, or through an interaction with 

coherent precipitates in the lattice. Evidence has been generated supporting both 

standpoints in the form of TEM data and modelled results. In order to model the 

retarding effect as a function of the strain fields around coherent precipitates it is 

necessary that these precipitates act as limited carbon sinks.

Carbon atoms have a diameter of approx 80pm. Given the cell parameter for BCC 

ferrite (287pm), the size of the octahedral site can be calculated. The most closely 

packed direction in the BCC unit cell lies along the body diagonal; using Pythagoras 

theorem (that the square of the length of the hypotenuse of a right angled triangle is 

equal to the sum of the squares of its other two sides) it can be easily determined 

that the body diagonal of a cubic unit cell has a length of V3 times the cell 

parameter, or 497pm. This can be used to calculate the atomic radius of ferrite as 

the close packed direction {1,1,1} contains two complete iron atoms. This gives an 

atomic diameter of 2.485A,. Returning to the cell parameter of 2.87A, this gives an 

octahedral site diameter of 0.38A, or a misfit of around 50%.
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Figure 7.25 - Construction for octahedral site size in BCC ferrite

It is this misfit that results in an interaction between free interstitial carbon atoms and 

dislocations, and potentially coherent precipitates -  the atoms fit into those sites 

having lower misfit strain energy than elsewhere in the BCC lattice, as these sites 

are enlarged. However, due to their lattice misfit, the presence of carbon atoms can 

be expected to change shape of the potential field around a dislocation. The aim of 

this stage in the modelling was to account for those interactions, and establish 

whether, in the simulation, they would result in regular ordering of carbon atoms 

around the dislocation core, and the eventual negation of the field.

An attempt has been made to model a dynamic dislocation using a Laplace equation 

to describe the potential field. The BKL simulation described in section 7.3 was
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applied, but the kinetics of locking ignored, the model output describing only the 

shape of the potential field throughout the dislocation locking event.

The precise rate of energy drop differs between the KMC dislocation model and a 

Laplace or Poisson equation potential field. However, the general shape of the 

interaction field is the same. The BKL KMC model was allowed to progress, but on 

each iteration a comparison was made between the location of all carbon atoms in 

the simulation and the position of the core of the strain field, limited by Soenen et al’s 

criteria (equation 7-4) [57] allowing a minimum 10% variation in jump frequency.from 

the normal jump frequency.

Carbon atoms were given a misfit strain energy of 10kJmol‘1 with reference to the 

strain field. If the location check determined that a carbon atom fell within the 

interaction region a subroutine was launched using an iterative finite difference 

solver to find the equilibrium energy values in the field, taking into account the 

additive term for the carbon atom. The finite difference solver used central difference 

theorem including the effect of nearest and next nearest neighbour cells, and the 

iterative solver was driven by reducing the maximum change in value occurring at 

any location in the lattice between successive sweeps of the central difference 

solution.
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On any iteration of the BKL algorithm on which a carbon atom changed its location 

within the strain field the shape of the field was recalculated, and a text file output 

that could be processed by a post processor to generate a graphical representation 

of its shape was produced.

7.5.1. Variable strain field results

Figure 7.26 shows the correlation between the between the strain field produced 

using the static model applied in the KMC algorithm. While the Poisson potential field 

does not exactly match the rate of drop off in interaction energy around the 

dislocation from the KMC model the shape of the strain fields around the dislocation 

cores match in terms of shape.

Figure 7.27 shows the effect of interacting carbon atoms with the variable strain field 

around the Poisson dislocation. In the top left of the figure the effect of two carbon 

atoms interacting with the strain field in the tensile region below the interaction 

feature can clearly be seen. As the locking model progresses there is a significant 

reduction in the magnitude of the variable strain field as the first carbon atom is 

drawn into the site of maximum interaction energy directly below the strain field core 

(centre right). At the bottom of the figure the arrival of a second carbon atom below 

the core can be observed, this atom lying directly beneath the first. The strain field is, 

at this point, essentially negated and no further carbon atoms were drawn to the core 

of the interaction field.
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Figure 7.26 - Laplace Potential Field (left) against existing KMC model (right)
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figure 7.27 a qualitative demonstration of the use of poisson fields to simulate a variable strain 

field, with free carbon atoms during kmc simulation
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CHAPTER EIGHT 

MODELLING DISCUSSION



8. MODEL DISCUSSION

8.1. Locally activated Kinetic Monte Carlo Algorithm discussion

Figure 7.3 shows the simulated aging curves to fall within 10%, in terms of total 

aging response as a function of time, of those generated in the experimental work of 

other authors [25, 40, 73], and suggests that mesh size has an observable effect on 

the performance of the simulation technique. However, because the carbon atoms 

are placed randomly at the start of the simulation run it may be that averaging the 

predicted aging behaviour over a large number of runs at one condition may reduce 

or eliminate this effect; on a larger grid there is more scope for rogue results where 

large areas of the simulation are relatively over, or under, populated. This type of 

effect may also account for the increased scatter observed on the 22.0002 element 

result when compared to the 15,0002 element result.

Figure 7.4 shows mesh shape to have no discernable effect on the technique in the 

range over which simulations were run. The minimum mesh width used was 2,000 

elements, with an average dislocation spacing of around 1000 mesh elements in all 

trials; as a periodic boundary condition was used it is unsurprising that the mesh 

shape had little effect on the simulation result, and it seems likely that the effect will 

be negligible provided the mesh width is larger than the average dislocation spacing; 

if this condition is not met, the dislocation density would be artificially increased as 

the distance between each dislocation and itself would be shorter than the average 

dislocation spacing. In the region of 1% to 5% prestrain it has been shown that
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dislocation density, p, varies between roughly 1x1013and 6x1013m'2 (Fig. 9) [106]; 

accepting that average dislocation spacing can be taken as p-05 [57] this 

corresponds to a range from 1100 to 500 unit cells. It is therefore suggested that thin 

strip simulations should be performed with a mesh width in excess of this upper 

value (2200 mesh elements in the current model).

From Figure 7.5, the technique seems suited for the simulation of changing carbon 

content, though the range covered in this investigation was limited. The accuracy of 

the model seems sensitive to temperature, performing significantly less well at 373K 

than in trials at 323K. This effect, and model alterations with which it can be 

prevented, are the subject of ongoing simulations.

The demonstration shown in Figure 7.6, while highly simplified, illustrates that this 

technique may have potential for modelling the effects of carbide formers such as 

Vanadium in solution, which have been suggested as having a delaying effect on low 

temperature strain aging when added in sufficiently large quantities [107].

Locally activated Kinetic Monte Carlo seems to be a tool well suited to the modelling 

of aging processes; however, the necessity of modelling the entire of the area of 

interest simultaneously to capture the extremes of behaviour leads to very large 

meshes and long simulation times. The increase in run time does not vary linearly 

with mesh size, as each additional carbon atom introduced to the simulation must be 

checked against each dislocation present.
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At 10,000 elements squared this equates to 278 dislocations (assuming 5% 

prestrain) and 1167 carbon atoms at 10wt.ppm concentration, or 325,000 location 

checks at each time step of the simulation. At 20,000 elements squared this equates 

to 493 dislocations and 4667 carbon atoms, or 2,300,000 location checks, seven 

times as many. While this effect is mitigated through the use of the divide and 

conquer method described in section 7.2.2, a more efficient algorithm is clearly 

beneficial, especially considering the poor performance of the algorithm with regard 

to variations in temperature
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8.2. Average Condition BKL Discussion

The Bortz Kalos Liebowitz simulation presented in section 8.2 was intended to get 

around the time constraints presented by the Locally Activated Kinetic Monte Carlo 

model in section 8.1. An attempt was made to reduce run times by modelling a 

significantly smaller grid, whilst taking into account those factors that would affect the 

aging response, essentially the dislocation density and population of free carbon 

atoms remaining in solution.

The aging response in this simulation was derived entirely from the average 

properties of the material following a given period of time; once one dislocation had 

been locked the average dislocation density was assumed to have changed, and this 

was applied as an incremental change to the size of the grid for all subsequent 

locking events. Similarly, annihilated carbon atoms were reintroduced at the 

simulation boundary between locking events to retain the average population of free 

carbon atoms as expected, accepting that those carbon atoms that had been drawn 

into the dislocation interaction zone were essentially tightly bonded as pre-precipitate 

clusters.

Figure 7.7 shows a match between the observed and modelled behaviour during the 

middle stages of aging. A much poorer fit between the two data sets is found at the 

beginning and end of aging, where extremes of behaviour are observed; the model 

does not allow for extreme variations in carbon population or in the initial placement 

of carbon atoms, as the locations of carbon atoms are conserved between simulation
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runs. As such the model tends to over predict the time required to achieve a given 

level of aging in the initial stages (below 50% completion) and under predict the 

required time in the latter stages.

The JMAK aging kinetics, shown in Figure 7.8, clearly show that the process being 

modelled in this simulation is not the observed process. However, the JMAK kinetic 

response at 50% completion of aging is very similar between the simulated and 

measured aging data (the point at which the value of ln(-ln(1-W) is approximately -  

0.37). This can also been seen in the accelerated aging data through a comparison 

of the times required to achieve an aging response of roughly 16MPa.

Following this work a further simulation trial was warranted. A model based on the 

average expected behaviour of the model well reproduced the behaviour during the 

middle stages of aging, but tended to over predict early aging times, and under 

predict the time required for the full formation of Cottrell atmospheres to occur.

The nature of the time step, with the zero time point being redefined at the onset of 

locking of each dislocation as a fraction of the number of locking events occurring, 

should have served to push early iterations of the algorithm toward very short times 

as the zero time was near to the zero time of the overall simulation, Later iterations 

should similarly have been pushed toward the extreme end of the full aging time, as 

the initial time at the onset of the algorithm would have been near to the maximum 

time achieved for all the locking events to that point. For the bulk of results to fall 

within a narrow time frame, focussed around the middle of atmosphere formation, it 

would be necessary for all locking events to have taken essentially the same length
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of time -  maintaining the locations of the carbon atoms relative to the dislocation 

core while varying the mesh size and carbon population does not generate extremes 

of condition, but rather serves to maintain the average condition for the duration of 

the simulation.
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8.3. Initial Condition BKL Discussion

From Figure 7.9, the model appears to predict rates of strain aging in Ti stabilised 

Ultra Low Carbon steel with a high level of accuracy. This accuracy drops off with 

increasing temperature. However, as samples were not quenched on removal from 

the aging furnace it is likely that aging will have continued to some extent following 

their removal, this effect being more marked at higher temperatures where 

diffusional processes are considerably faster.

Accepting the tendency of the model to under predict the aging response at higher 

temperatures where there is no quench in place, the trend of increasing time to 

achieve a given aging response with decreasing carbon content is well reproduced in 

Figure 7.10 and Figure 7.11. In the case of the 9.8wt.ppm free carbon steel the 

extent to which the aging response is under predicted is more severe (*7MPa). The 

maximum yield stress increase typically attributed to the formation of Cottrell 

atmospheres alone is in the region of 30MPa. The raw aging data for the steel 

containing 9.8wt.ppm of free carbon shows individual points with aging responses as 

high as 40MPa suggesting a secondary aging process, precipitate formation, is also 

taking place. As the model only accounts for the formation, by diffusion, of Cottrell 

atmospheres, any additional strength increase due to a secondary process will not 

be represented.

Figure 7.12 to Figure 7.14 show a strong correlation between the isochronal aging 

plots produced using the accelerated aging data generated through the experimental

192



programme and the modelled data at the same conditions; additionally in the initial 

stages of aging, up to around 50% completion, t273 kinetics are produced by the 

model as described by Cottrell and Bilby [34](Figure 7.16). Additionally, the aging 

behaviour can be described using an Arrhenius type relationship producing a straight 

line plot, with an activation energy in the range 75kJ/mol -  80kJ/mol (Figure 7.15). 

The process is thermally activated, as strain aging has been shown to be by Rashid 

[15] and Tanikawa et al [102], though the activation energy displayed by the model is 

lower than that predicted for low temperature aging by Tanikawa et al (83kJ/mol) and 

significantly lower than the 90kJmol'1 found in the kinetic study performed in the 

generation of validation data.

With regard to the validation data generated the model can be seen to match the 

experimental data for aging conditions ranging in free carbon composition from 5- 

10wt.ppm free interstitial carbon, and over the temperature range 50°C to 100°C. 

Without the addition of a secondary interacting species typical run times were of the 

order of thirty minutes.

The difference in behaviour on the addition of a secondary interaction species at a 

high level of concentration is clear, with a significant retarding effect visible in the 

two, five and ten minute isochronal aging plots (Figure 7.17 to Figure 7.19). With 

increasing free carbon the ability of the secondary species to act as an efficient 

carbon sink is reduced, and the percentage difference in the isochronal aging 

response with and without the secondary interacting species drops off as the carbon 

level increases from 5-10wt.ppm, similar to the behaviour of the experimental grade.
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The retarding effect of the secondary interaction is in fact two fold. Firstly, the 

reduced probability of atomic jumps that result in a free carbon atom jumping away 

from a secondary atom effectively reduces the effective free carbon population that 

is available to move to the dislocation core. Secondly, as the BKL time step is tied to 

the sum of the frequencies of all events occurring within a given subset of 

possibilities, the presence of these low frequency results within the subset of 

probabilities relating to a given set of moves will increase the overall time step of the 

simulation, having an additional retarding effect alongside the reduction in the carbon 

population; there are fewer carbon atoms able to move freely following a random 

walk diffusional path, and the average time required for a diffusional event to occur is 

increased.

Varying the interaction energy has had a distinct effect on the simulated aging 

results; as the interaction energy for nearest neighbour interactions with the 

secondary species drops from lOkJmof1 to 2.5kJmol'1 the retarding effect of the 

secondary species can been seen to drop off, and the retarding effect at higher free 

interstitial carbon contents becomes negligible (Figure 7.20 to Figure 7.22) As the 

interaction energy drops the likelihood that carbon atoms will remain tightly bound as 

dipoles decreases; at 10kJmol'1 the frequency of atomic jumps moving a carbon 

atoms away from a secondary interacting atom is 4% of the normal jump frequency. 

At 2.5kJmol'1 this value has risen to 45% of the normal jump frequency. As the 

likelihood of a particular event occurring within the BKL algorithm is proportional to 

its frequency, it is obvious that at higher interaction energies the efficiency of the 

secondary species in tying up the carbon population is greatly reduced.
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Comparing Figure 7.20 to Figure 7.22 the results produced for the secondary 

interaction potential of 5kJmol~1 closely match the trends displayed in the validation 

data for the actual behaviour of steel two (Ti-V dual stabilised) upon which the 

condition of 850wt.ppm of secondary interacting species with an atomic weight of 52 

was based. Carrying these results through to the accelerated aging traces for steel 

two Figure 7.23 and Figure 7.24, the predicted curves show a close match with the 

actual aging data up to 80% of dislocation locking.

The BKL model based on initial conditions in the steel follows the expected t273 

kinetics for strain aging of carbon steels. Simulations reproducing the condition of the 

titanium only steel samples following annealing show a very strong correlation with 

actual test data produced for the purposes of validation, when the model is initialise 

using the actual diffusional coefficients and lattice parameter for the iron carbon 

system and dislocation pressure field.

From this stand point the model serves as a validation of the current understanding 

of dislocation locking phenomena and provides a useful tool for predicting strain 

aging of ultra low carbon steel with an equivalent level of accuracy to existent 

techniques.

The extension of the model to include a secondary species of substitutional atoms in 

solution shows a novel use of the KMC technique. While the experimental 

programme has not identified with certainty the mechanism by which the retardation 

of strain aging occurs, the demonstration in figures 7.17 to 7.24 shows that a system 

relying on direct dipole interactions between free interstitial carbon atoms and
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substitutional atomic species can be simulated using the Bortz-Kalos-Liebwitz 

algorithm as described in section 7.4.1
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8.4. Modelling results summary

The modelling work performed has shown the existing KMC technique, previously 

published by Soenen et al [57] to be effective in predicting rates of strain aging in 

ultra low carbon steels, and robust to changes in carbon content and grid size. The 

existing KMC model displayed a much lower level of accuracy in predicting 

accelerated aging curves at 100°C than at 50°C, and was found to be very processor 

intensive with run times running from several hours, to several days, on a computer 

having a 3GHz processer and 1 Gigabyte of RAM, running no other applications 

simultaneously aside from the operating system (Microsoft Windows XP).

A further attempt to model the initial stages of strain aging, culminating in the 

formation of Cottrell atmospheres, was produced using the Bortz Kalos Liebwitz 

algorithm, and focussing on both the average expected features of the structure as 

aging progressed, and as a result of the initial configuration of these features. It is 

the understanding of the author that this approach to modelling of strain aging 

phenomena is novel.

It was found that a BKL KMC algorithm, modelling subsections of a large global 

array, these subsections being defined by the initial configuration of the material, 

was able to reproduce aging behaviour of ultra low carbon steels in the free 

interstitial carbon range 4 to 10wt.ppm free carbon at all temperatures between 50°C 

and 100°C with solution times of the order of twenty minutes (compared to several 

hours for the locally activated algorithm).
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Furthermore, by the retarding effect of vanadium on rates of strain aging was 

successfully integrated into the model through the assumption of a nearest 

neighbour interaction potential

198



CHAPTER NINE 

SUMMARY OF FINDINGS



9. SUMMARY

An experimental programme has been presented displaying the retarding effect of 

vanadium on rates of strain aging in ultra low carbon steels. With reference to the 

two current theories regarding such retarding effects, there is evidence within this 

thesis to defend either proposition -  a direct interaction between atomic carbon and 

vanadium, or an interaction with the strain fields around coherent precipitates.

It has been possible to image strain fields within a heavily vanadium microalloyed 

steel (0.08wt.% vanadium) produced by nano-scale precipitates following a high 

temperature anneal and quench. There is also a body of modelled data, produced 

through a novel application of the Bortz-Kalos-Liebwitz algorithm for Kinetic Monte 

Carlo simulation, which shows it is possible to reproduce the effect of the vanadium 

in the validation data through the modelling of a direct atomic interaction.

The model has been presented that seems to reproduce the process of strain aging 

with a useful level of accuracy as a predictive tool. The kinetics of the model suggest 

that, functionally, the processes of Cottrell atmosphere formation are being 

reproduced within current understanding of the processes, and the ability to 

qualitatively reproducing carbon atom clustering behaviour shows that the model has 

potential to be extended to include precipitate nucleation effects.

Importantly, simulation times for a complete run of the model take only around 

twenty minutes with no secondary interacting species, compared to run times of over
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six hours in the Locally Activated Kinetic Monte Carlo simulation previously 

presented [108], and only hours for simulations with secondary interacting species 

compared to days for the previous model. These times are sufficiently low for the 

model to have industrial value in the assessment of existing cast chemistries or 

development of future steel grades; additionally, given the ease with which 

secondary species can be introduced there is the potential to build up a volume of 

data on the interaction effects of a number of elements and model the combined 

effects of more complex alloy systems, and, while the results produced in section 7.5 

are purely qualitative, they show the potential of the Poisson equation to be used to 

model variable strain fields around interacting features such as dislocations or 

coherent precipitates, as imaged in Figure 5.19, which, coupled to a model of 

precipitate nucleation and growth could allow the technique to be extended to cover 

the full process of strain aging.
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10. CONCLUSIONS AND RECOMMENDATIONS

This body of work has resulted in a number of significant conclusions, detailed 

below.

• Vanadium has been found to have a measurable retarding effect on rates of 

strain aging in ultra low carbon steels, with free interstitial carbon in the range 

4wt.ppm to 10wt.ppm. Combined with the low stability of vanadium carbide 

relative to titanium and niobium carbides, this finding allows for the 

development of a family of titanium-vanadium dual stabilised bake hardening 

steels, in which carbon is liberated through the dissolution of vanadium 

carbide during annealing. The lower temperatures required for vanadium- 

carbide dissolution, compared to existing carbides in existing titanium-niobium 

products, would allow colder annealing cycles, requiring less energy, and 

hence offering a cost saving. In addition, retarding of aging at ambient 

temperatures offers a product with an improved shelf life without sacrificing 

the bake hardening response.

• Evidence has been provided of the existence of coherent vanadium carbide 

precipitates in titanium-vanadium dual stabilised steel following an anneal and 

quench. The extent of retardation of strain aging by vanadium appears 

consistent with an interaction between free interstitial carbon atoms and the 

strain fields around these coherent precipitates, due to a saturation effect 

occurring at higher free carbon contents, that would not be expected given a
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vanadium-carbon S-l interaction, where the secondary species is present in a 

heavily super stoichiometric ratio.

• It has been found that Kinetic Monte Carlo, and particularly a novel application 

of the Bortz-Kalos-Liebowitz algorithm, can be used to simulate the processes 

occurring during the early stages of strain aging, up to the complete formation 

of Cottrell atmospheres. The technique developed is able to predict the times 

required for partial and complete aging, proven over a temperature range from 

50°C to 100°C in steels containing from 4wt.ppm free carbon to 10wt.ppm free 

carbon, with simulation times that are consistent with usage as a desktop tool 

(tens of minutes).

• It has been shown that the retarding effect of vanadium can be modelled 

assuming a direct substitutional-interstitial interaction between vanadium and 

carbon by tailoring the interaction energy, and it is put forward that the 

retarding effect observed may be produced by a combination of two effects -  

strain field interaction and dipole formation. Additionally a mechanism is 

provided by which variable strain fields can be modelled within the KMC 

framework allowing for future exploitation of this model in reproducing both 

the retarding phenomenon observed herein, and carbon atom clustering and 

precipitate nucleation events.

Four experimental compositions were cast and processed for this programme of 

work, the two discussed herein and a further two, having 0.04wt.%V and 0.12wt.%V 

respectively, based upon the findings in this thesis. Due to time constraints, it was
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not possible to progress the experimental programme on the final two casts, and it is 

the recommendation of this author that further trials be performed on these to 

accurately establish the interaction energy values that simulate real behaviour 

across all feasible compositions. Additionally further work using other substitutional 

species known to interact with free carbon, such as manganese, could produce a 

framework in which more complex and industrially relevant steel compositions could 

be simulated and developed.

Limited trials of a titanium-vanadium steel with a commercial chemistry may be 

warranted, using annealing cycles that mirror those employed on the Llanwern 

ZODIAC line and Port Talbot CAPL facility to determine the commercial viability of 

such a bake hardening product, and its performance in terms of room temperature 

strain aging when additional complexities are introduced to the chemistry.

Finally, the KMC framework presented has the potential to be extended to cover 

precipitate nucleation and growth events, that would expand its relevance both to 

bake hardening, and as a tool for predicting rates of carbon stabilisation in the 

overaging sections of modern annealing lines. The further development of KMC as a 

modelling technique to improve the prediction and understanding of kinetic 

processes reliant on diffusion is recommended to aid in the development of new 

steel compositions, and suitable processing parameters for these.
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