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Abstract

In chapter 1 I begin by discussing the basic ideas of quantum field theory 
(QFT). I provide a review of symmetries in physics and then move on to 
discuss the quark model. Chapter 2 is a review of lattice gauge theory with 
particular attention paid to lattice QCD. I begin by introducing lattice QCD, 
I then discuss some of the associated problems. I move on to discuss gauge 
fields on the lattice along with free lattice fermions. I then use this to define 
the lattice QCD action. I conclude this chapter by discussing how to repro­
duce the correct continuum physics. Chapter 3 discusses the basic numerical 
techniques employed in lattice simulations. I review methods for putting 
particles onto the lattice and conclude with a discussion of how to fit the re­
sulting data. Chapter 4 reviews symmetries of the QCD Lagrangian, various 
forms of symmetry breaking in physics, the PCAC relation, the Goldberger- 
Treiman relation and the spontaneous breakdown of the axial symmetry. I 
move on to discuss sigma models and finally arrive at a basic chiral pertur­
bation theory. I present research completed with my supervisor C. Allton 
and collaborators A.W. Thomas, D.B. Leinweber and R. Young in chapters 
5 &; 6. This work involves making lattice predictions for the hadronic mass 
spectrum using extrapolation techniques based on the predictions of chiral 
perturbation theory which have been developed by the Adelaide group.
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Chapter 1

Introduction

1.1 W hy Quantum Field Theory?

Although quantum mechanics was a pioneering theory, it was apparent to 
all that it failed on many different levels. The most basic failure of quantum 
mechanics is its inability to account for a relativistic system of particles. In 
such a system the number of particles is not conserved. Dirac knew that 
this inconsistency had to be resolved in order to correctly account for a 
real particle process. In 1927 he published a paper The quantum theory 
of the emission and absorption of radiation which was a first attem pt at 
unifying the theory of special relativity with quantum mechanics. It was this 
paper that laid the foundations for a quantum theory of fields, all modern 
theories have their roots based in this. Quantum field theory has proved to be 
an amazingly successful framework for building theories of the fundamental 
forces of nature. Its predictions for the interactions between electrons and 
photons have proved to be correct to one part in 108. Moreover in the 
form of the standard model, it explains three of the four fundamental forces 
of nature, electromagnetism and the strong and weak nuclear forces. The 
standard model only fails to explain the fourth fundamental force, gravity.

1



2 CHAPTER 1. INTRODUCTION

1.2 The path integral

The path integral is a very powerful method of quantisation and is of great use 
in QFTs. Here we review a simple example by considering the Hamiltonian 
for a quantum mechanical particle in one space dimension

H  = f -  + V{x) = H0 + V  (1.1)
Am

In the Heisenberg representation we may write the transition amplitude as

(x',t'\x, t) =  (x'\e~h^'~^\x)  ( 1.2)

If we use the fact tha t ea+b = eaeb and insert a complete set of co-ordinate 
eigenstates,

J  dxi\x i) (x i \  = 1 (1.3)

between the exponentials, let T  =  (tf — t)  and A t  =  (t i  — t),  we then have

(x ' , t ' \x, t )  =  J  dxi(x' \e~lH T̂~At^\xi)(xi\e~tHAt\x) ( 1-4 )

Dividing T  into n  equal parts (T = n A t)  and inserting (n — 1) states in this 
way we have

(x ' , t ' \x, t )  — J  d x \ . . .  dxn-i(x'\e~'lHAt\xn- i )

(xn- i \ e ~ lHAt\xn^2) • • • (xi\e~%HAt\x) (1.5)

For small A t  the exponentials can be well approximated using only the first 
term of the Baker-Campbell-Hausdorff formula (eq. 2.19) allowing us to 
rewrite the matrix elements as

(a:*+1|e-,HA<|x*) as {zk+i|e- 'a °A<e- , '/A<|£jt) =  (xk+1\e~,H°At\xk)e~,VAt

(1.6 )
where we have used the fact that V  only depends on space co-ordinates. We 
can calculate the remaining matrix element by introducing a complete set of
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momentum eigenstates,

J  M p){p \ = 1 (L7)
and making use of the fact that

<*b) =  (1-8)

By combining the remaining exponentials and completing the square we are 
left with a simple Gaussian integral, performing this gives

(xk+1\e-iH°At\xk)e~iVAt =  y C g Z expiA t{ ™

(1.9)
Hence our amplitude takes the form

{Ae-iHT\x) = j  ̂ f r 1
J v m ) k= 0

(1.10)

If we now consider the limit of n —► oo we see that the exponent becomes 
the classical action for the path x(t) from x to x f.

s ^ i k t P ) ' - ^ )k=0 
• T

as n —> oo

Finally we note that the integrations over the Xk can be interpreted as an 
integration over all possible paths x(t).  To describe this we introduce the 
notation

n

i h 2A t )  2 d X l ' ' '  d X n ~ 1 ~ *  c o n s t ■ I I =  ^ x  ( I - 1 2 )
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Hence we may now write our quantum mechanical amplitude in the path 
integral representation as

To make the transition to classical mechanics we simply take the limit h —> 0. 
To make the transition to a three dimensional theory we simply generalise 
to paths xi(t)

1.2 we derived the path integral for a simple one dimensional quantum me­
chanical system. To move to a quantum field theory we must introduce the 
functional integral representation of quantum field theory. Although this can 
be derived rigorously, here I will motivate it by analogy. The key concept is 
to promote the basic variables, Xi(t), of our quantum mechanical example to 
fields, ip(x, t). Our rules for the transition are then:

Here L  is the Lagrange function and C is the Lagrangian density, which 
from here on will be referred to the Lagrangian. The objects of interest in 
quantum field theory are the vacuum expectation values of field operators, 
also known as correlation functions or Green’s functions. These Green’s

our quantum mechanical path integral we can write a representation of the

(1.13)

V x  —> n n  dxi(t) (1.14)

1.3 Quantum Field Theory

As discussed at the beginning of this chapter quantum field theory is the 
most successful frame work for describing the sub-atomic world. In section

dty(x, t) = Vip
t,i t,x

(1.15)

functions contain all physical information about the system. In analogy with
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Green’s functions in terms of functional integrals:

<0|O|0) =  J  V 4> 0e f

with Z  =  J  T>ipe~i' (116)

We interpret this as an integration over all classical field configurations.

1.4 Sym m etries

One of the major advantages of the Lagrangian formalism of QFT is that sym­
metries of the Lagrangian lead to conserved currents, also known as Noether 
currents. To exemplify this we consider a Lagrangian that is symmetric under 
some given transformation of the fields:

ip —* ip +  5ip 

d^ip —> dpip +  5{d^ip) (1.17)

For a symmetric Lagrangian we have:

C(ip,d^ip) = C(tp + 6 ^ , 8 ^  + 6 ( 6 ^ ) )  

Hence 5C = C(xp +  5tp, d^ip +  5 ( 8 ^ ) )  — C(ip,dpip) = 0
dC r , dC 
dip + d(d̂ ip)Sip+ ^ S(d^ip) (1.18)

where we have Taylor expanded the first term to leading order in 5ip. Using 
5(d^ip) = d^(ip +  5ip) — d^ip =  dfi(8ip)1 the equations of motion for a field1 
and the rule for differentiating a product we have:

0  =

=

=  d ^  (1.19)

^ o r  example see chapter 1 of Quantum Field Theory by Michio Kaku.
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Here is the conserved current. With this their is an associated conserved 
charge. To calculate this we integrate the conservation equation over all 
space:

Assuming tha t our field (xJj) vanishes at infinity, the surface term can be 
neglected. Hence a conserved current leads to a conserved charge. We will 
see the importance of these ideas in chapter 4.

Oppenheimer once quipped “The Nobel Prize should be given to the physi­
cist who does not discover a new particle” . He was referring to the seemingly 
endless discovery of new particles that was taking place during the 1960’s. 
Theoretical understanding of elementary particles during this period was a 
mess. Although Yukawa proposed a theory describing the strong interaction, 
it had a coupling constant that was very large and hence perturbation theory 
was unreliable. One important observation was th a t the existence of reso­
nances usually indicated the presence of bound states. This lead Sakata [1] to 
postulate that the hadrons2 were composed of states built out of proton (p), 
neutron (n) and lambda (A) particles. Ikeda, Ogawa and Ohnuki took this 
idea further by proposing that these particles transformed in the fundamen­
tal representation (3) of SU(3). They also stated tha t mesons could be built 
out of bound states of 3 and 3 [2], Unfortunately some of their assignments

2The name hadrons comes from the Greek word hadros meaning strong.

0

— Q +  surface term 
d t *

( 1.20)

1.5 The Quark m odel

1.5.1 The Eightfold Way
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were incorrect though. The correct SU(3) assignments were discovered by 
Gell-Mann and Ne’eman. They postulated that baryons and mesons could 
be arranged in what they called the “Eightfold way” [3]. Gell-Mann went on 
to propose (with Zweig) th a t the SU(3) assignments could be generated by 
introducing new constituent particles called “quarks” which transformed as 
a triplet 3.

1.5.2 Strangeness

It had been observed that a new quantum number, in addition to the isospin 
quantum number, was also conserved by strong interactions. This was called 
strangeness, and could be explained in terms of the S U (3) flavour group. This 
group has representations labelled by two numbers, the third component 
of isospin (13 ) and a new quantum number called hypercharge (T). The 
strangeness quantum number and hypercharge can be related to each other 
via the Gell-Mann-Nishijima formula [4], [5]:

with Y  =  5  +  5, where B  is the baryon number, S  is the strangeness, and 
Q is the charge.

1.5.3 A global SU{3) sym m etry

To fit the known hadronic spectrum of particles, it was proposed that mesons 
were formed from a quark and anti-quark, while baryons were formed from 
three quarks. Hence it was expected that mesons and baryons would be 
arranged according to the following tensor decompositions:

I ° ° \
Q = h  + — 0 -4  0

\ 0  0  -A )

(1.21)

Meson
Baryon 3 (8) 3 0  3

3 0 3 8 0 1
1 0 0 8  0 8  0  1

( 1.22 )



8 CH APTER 1. INTRODUCTION

To see how the bound states are constructed for the mesons we arrange the 
meson matrix according to their quark wave functions:

(  uu ud us
M 3(8)3 = du dd ds 

\  su sd ss

(  (2uu — dd — ss)/3 ud us
du (2dd — uu — ss) /  3 ds
su sd (2ss — uu — dd)/3

+  (1/3)1 (uu + dd + ss) (1.23)
V

Using this we can write the meson matrix for the pseudoscalar mesons as:

M  =
V2‘(  ^=7T° +  T) 7T+ K + \

1 *-0 . 1

V

^ " 7 2 ^ + 7 6 ^
K~ K°

K°

- f a  J

(1.24)

This octet may be represented graphically by plotting isospin against hyper­
charge. Figure 1.1 depicts this.

1.5.4 QCD

After many decades of confusion QCD emerged as the best candidate to 
describe the strong interaction. It has six flavours of quark in the funda­
mental representation, these can be arranged into three families (u, d), (c, s) 
and (t ,b ). Leptons can similarly be grouped into three SU(2) doublets in 
electro-weak theory. It is unclear why there should only by three families in 
the standard model. QCD is based on the SU(3) colour symmetry group. 
The eight generators of the group are represented by the Gell-Mann matri­
ces3 Aa, (a =  1, . . . ,  8). The gauge fields (gluon fields) are denoted by 
We express the gluon field strength tensor as:

G%, = dtLK ~ d vA l  + g fabcA bllAl} (1.25)

3For example see Quarks Leptons & Gauge Fields by Kerson Huang
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- l

K° K+ Y
—i—  1

— 0

- L - l

Figure 1.1: A graphical representation of the pseudoscalar meson octet. / 3 
represents the third component of isospin and Y  is the hypercharge.

The quarks are coupled to the gluon fields via the covariant derivative:

Dll = dr + i g \ aA l  (1.26)

Putting this together we have the QCD Lagrangian:

1 6 
C q c d  =  - T G % G a^  +  Y .  M i #  -  m jh W h (1.27)

f,h=1

where the Yang-Mills field carries the S U (3) colour force. The gauge group is 
unbroken and hence the force mediators (gluons), are massless. The quarks 
('ipfj0 carry a flavour index (/, h) along with a colour index and Dirac index 
which I have suppressed.
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1.6 A note on units and notation

Throughout this document we choose the natural system of units4 in which 
h = c = 1. We do this to simplify formulae and calculations. We may move 
back to conventional units via the following:

h = 6.58 x 10-22 [MeV sec]

he = 1.97 x 10-11 [MeV cm] (1.28)

Another useful conversion factor is:

he = 197 [MeV fm] (1.29)

Which we shall employ when setting the scale in our simulations. Throughout 
this document we will frequently employ “slash notation” this is used because 
the product of the Dirac matrices with a four vector occurs so frequently. In 
the Minkowski metric it is defined by:

7 =  7°ao +  ^ (1.30)

4This is a system where one unit of velocity is c and one unit of action is h
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Lattice QCD

In this chapter I review some of the fundamentals of lattice QCD. Detailed 
accounts of this subject can be found in [6 ] h  [7].

2.1 An introduction to lattice gauge theory

Quantum Chromodynamics (QCD) is the leading candidate for a theory of 
the strong interaction. Unfortunately perturbation theory fails to reproduce 
nearly all of the low energy features of the hadronic world, an example of 
this would be the spectrum of the low lying hadron states. Perturbation the­
ory only seems to be effective in the asymptotic region where comparisons 
between theory and experiment can be made. Non perturbative methods 
have proved to be very difficult in Quantum Field Theories (QFTs). One of 
the most powerful and elegant non-perturbative methods is Wilson’s Lattice 
Gauge Theory. In principle lattice gauge theory allows us to put QCD on 
a computer and calculate the basic features of the low energy strong inter­
action spectrum. This approach is only limited by available computational 
power. Monte-Carlo methods have proved very effective in producing pre­
dictions that roughly match experiment, and with computational power on 
average doubling every eighteen months the discrepancy between theory and 
experiment is ever decreasing.

11
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2.2 The price we must pay

Putting QCD on a lattice comes with a price,

1 . The metric is Euclidean. This means that lattice gauge theory calcu­
lations are limited to the static properties of QCD.

2. Lattice gauge theory explicitly breaks continuous and rotational invari­
ance because space-time is discretised.

3. Lattice gauge theory is limited by available computational power, so we 
must work with quark masses that are far greater than actual physical 
masses. This also puts constraints on the volume of space-time that 
we can work in.

Some of these problems can be overcome by taking the continuum limit, 
this is where we let the lattice spacing (a) —► 0. We must also take an 
infinite volume limit. However the limitation of computational power means 
that currently lattice sizes are modest.

2.3 The path integral on a lattice

We begin by making a Wick rotation. Put simply if (x°, x 1, x2, x3) are co­
ordinates in Minkowski space-time (with x° being the time coordinate) then 
we set:

x 4 — ix° (2 .1 )

This can be thought of as a rotation in the complex time plane and gives 
us a imaginary value for our time coordinate. The new set of coordinates 
(x1, x2, x 3, x4) now have a Euclidean metric. The main benefit of doing this 
is that the action (S) is now a real positive quantity and our phase factor (see 
eq. 1.16 becomes a real weighting and so can be interpreted as a probability.
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2.4 Space-tim e discretisation

Lattice QCD relies on a discrete space-time. Discretising space-time removes 
the infinite number of degrees of freedom available to the fields and replaces 
them with a finite number. This allows the path integral (sec. 1.2) to be given 
an exact definition. We formulate our theory on a hyper-cubic lattice using 
the Euclidean coordinates (x1, x 2, x3, x*). Our lattice is typically defined by 
all of the points th a t obey:

= a nl
where n* e Z
with 0 < nl < L
and 0 < n4 < T

The spacing between lattice sites is known as the lattice spacing, (a), and has 
dimensions of length. L is defined to be the length of the lattice measured 
in lattice units and is a dimensionless number. We apply periodic boundary 
conditions to the spatial dimensions and anti-periodic boundary conditions 
to the time dimension. This ensures Fermi-Dirac statistics. In doing so the 
momentum space is discretised, we have:

pl = % ni 
Pi = % (n 4 + \ )

Here the have the same constraints as before. The beauty of discretising 
space-time is that there is now a maximum allowable momentum. This means 
that lattice gauge theory has an ultra-violet cutoff and hence gauge theories 
on the lattice are naturally regularised.

2.5 Gauge fields on the lattice

We begin by defining a link between two neighbouring sites on our hyper- 
cubic lattice. We allow each link to have a dynamical degree of freedom which 
we denote by U(n, n  +  //) =  Uij where \i is the unit vector in the fi direction.
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The dynamical degree of freedom Uij belongs to the compact group1 G, for 
example:

(2 .2)

■ Uu = ± 1

U( 1): u tj =  e'9
SU(N)  : Uij = N  x N  matrix with det U = 1 & W  = U~l

We note that the link has an orientation:

4  =  t / y 1 =  U„ (2.3)

Hence taking the inverse reverses its direction.
At lattice point n we define the simplest closed path on the lattice, this 

is the plaquette. It is illustrated in fig 2 .1 .

n +  v n + jl + v

n n  +  ft

Figure 2.1: The plaquette is the simplest closed path on the lattice.

Mathematically we have

Up = U(n, n +  p,)U(n +  £i, n +  jl +  i>)U(n +  ft +  n +  v)U(n +  n) (2.4)

Using this we may now define the Wilson action for the gauge fields. This is 
just the sum over all distinct plaquettes, P.

Sg — 0  — Re Tr Up) (2.5)

^ h e  local gauge symmetry group for QCD is S U ( 3)
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For lattice gauge theory to predict properties of QFTs we must perform 
functional integrals (eq. 1.16) for example;

(0)  = \ \ V U O e - s* 
where Z  =  J  V U  e~Sg

Here V U  is analogous to V A  in eq 1.16. V U  is called the Haar measure, it 
is defined as the product over all links:

v u = n  dUii  (2 6 )
hj

The Haar measure is a way to assign an invariant volume to subsets of locally 
compact topological groups. It has the following properties

f  dUf ( U)  =  J d U f ( n U )  =  J d Uf { UQ)  with Q e  G
=4> left-right invariant.

f  dU = 1 => Normalisable.

f  dU U = 0 => Expectation value of
a gauge non-invariant 
object is zero.

One important point to note is that on the lattice the volume of the gauge 
group is unity hence no gauge fixing is needed.

2.6 Free lattice fermions

I will now discuss the discretisation of the fermion fields. As we shall see 
this must be performed carefully to avoid the dreaded “fermion doubling 
problem” . We begin by considering a naive discretisation of the free fermion 
action:
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We note tha t the four dimensional integral may be represented as a sum as 
follows,

[  —> a4 ^ 2  (2 -8 )
n

A symmetric difference approximation for dtl'ip(x) is:

W W  =  (2.9)

Using eq 2.8 and substituting eq 2.9 into the free fermion action (eq 2.7) 
leads us to the lattice action for free fermions.

3 ^
S f  =  ^ 2  [ y  -  ^n-A) +  (2-!0)

n //=1

To calculate the lattice propagator we use a Fourier transform to move to
momentum space. We find the lattice propagator in momentum space is
given by:

Propagator-1  ~  -  sin(aA;M) +  m  (2.11)

This propagator has bad behaviour as we take the continuum limit (a —> 
0 ). As we expect, the lattice propagator has a node at k = 0 , but it also 
has a node at the edge of the Brillouin zone (kM =  J) for each ji. Hence 
the naive discretisation prescription has an unphysical doubling problem for 
each space-time dimension. Wilson proposed a convenient solution to this 
problem. He suggested that the lattice fermion action should be modified by 
hand. We may do this as long as the correct continuum limit is obtained. 
We add the following Wilson term to our previous naive action:

VVi(V̂ n+A T ”071—a 2VVi)

Calculating the momentum space contribution by Fourier transforming the 
fermion fields (ip) for this term and adding it to our previous naive action
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s * / - J  {2w)im  * 5 ^
r s i n ^ ) + m _ ^ c o s ( a M - l l (fc) (2 J3)

The new cosine term  preserves the minimum at k = 0 but eliminates the 
unwanted minimum at the edge of the Brillouin zone. This solution to the 
doubling problem does come with a price, and that is the Wilson term breaks 
chiral symmetry at finite lattice spacing.

The lattice QCD Lagrangian contains the following fields:

n ) =  [V^qKn ) Quark fields having flavor: f  = 1 , . . . ,  Nf
Colour: c =  1 , 2 , 3 & Dirac index: a = 1 , . . . , 4

U{n, n +  /}) 6  SU (3) link variables: fi =  1 , . . . ,  4

It is constructed to be invariant under an SU(3) gauge transformation. The 
gauge transformations for the fields are as follows

The gauge action (S^fE/]) is given by equation 2.5 and the quark action 
(S9 [E/,^, $ )  is given by

2.7 The lattice QCD action

U'(n , n  +  ft) = Ll(n) U(n,n  + (T) +  £l)

^ '(n) = D(n) 'ipin)

^ '(n)  =  ijj(n) r^(n) (2.14)

where the Q(n) are SU (3) matrices. The Wilson action for QCD is

SQCD = St [U] + Sq[Ut ll>,Tj>] (2.15)

Sq[U,1p,1p\ = 1pXKXy1py (2.16)

2Where we now use the hash ( # )  notation to represent lattice quantities
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where Kxy[U] is the quark matrix. The x, y indices represent space-time, 
colour, spin and flavour. The quark matrix is given by equations 2.10 & 
2 .1 2 , and introducing a gauge interaction.

K x y [£ /]  =  6 Xy — K  ^   ̂ p.{r  ~  +  ^ x —p.,y{r  P  ( 2 - 1 7 )

Wilson’s choice for r is one. and in this case there is no species doubling. 
The spinor indicies are carried by the gamma matrices, the colour indices by 
the link variables and there is a Kronecker delta in flavour space, all of which 
are suppressed. The hopping parameter (k) is related to the free quark mass

by

k = — —— (2.18)
2m 8

2.8 The continuum limit

For our formalism of lattice gauge theory to be correct it must reproduce 
the correct continuum physics when we take the continuum limit. Here we 
briefly outline this for the gauge part of the action (^[C/]). The first step in 
doing this for G =  SU(N)  is to use the fact that a unitary matrix may be 
written as the exponential of an imaginary matrix:

U^n) = exp (iag^-A*(n))

Where g = Coupling constant
Aa =  generators of the gauge group 

A^(n) = The gauge fields

We then use the Baker-Campbell-Hausdoff formula to rewrite our plaquatte, 
Up (eq 2.4), as a single exponential.

e A e B =  e A + B + \ [ A ,B } + . (2.19)
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We then use the fact tha t in continuum

[A„(x),An(x + £')\ = [Auip^.A^x)]

[Av(x ) ,A v{x + fi)] = [Av(x)1A„(x)]= 0  (2 .2 0 )

to identify the combined exponent with the Yang-Mills field strength tensor:

Fpvix) = dpAyix) -  d u A ^ x )  +  ig[A^{x), A v(x)] (2.21)

We then take the trace of the plaquette by expanding the exponential. Next 
we define the Lie algebra for G

[A“ , A**] =  2  i f  “f r y  
tr(A“ X13) =  26al3

(2.22)
and use it to  show

tr[F^{x)2} =  \ F ^ a (2.23)

We then use tr(Up) and equation 2.8 to rewrite the lattice action. Finally, 
it can be shown tha t the correct continuum physics expression is reproduced 
as we let a —> 0 .

2.9 Setting the scale

Throughout this chapter our discussion of lattice QCD has been in lattice 
units, i.e. we rescale the fields and masses by appropriate powers of the 
lattice spacing to render them dimensionless. This is of no real use if we 
wish to make physical predictions that we may compare with experimental 
values. To be able to do this we must give our lattice predictions their 
correct dimensions. This is called setting the scale. The continuum value of 
an observable (Ocont), is given by

0 #(a)
O cont =  l i m  — J—  a—*■ 0 a1 (2.24)
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where O# is our lattice observable and N  is the energy dimension of Ocont.
Massless lattice QCD contains one free parameter (/?), so we use one ob­

servable to determine the lattice spacing (a). We may then make physical 
predictions based on our lattice simulations. In massive lattice QCD addi­
tional observables are needed to set the quark mass. More generally addi­
tional parameters are needed as more parameters are introduced.
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Num erical M ethods

3.1 The effective gauge action

To compute observables in QCD we define the expectation value of an arbi­
trary operator O as:

(0) =  J  VUVipVTp O e - ^ - ^

Z  = J  VUVipVij} e~s<>-s" (3.1)

Grassmann variables cannot be modelled on a computer. Hence we cannot 
use any computational method which involves an action that contains Grass­
mann variables. We can however analytically integrate out the fermion fields 
from the functional integral (2).

(O) = ^  J  V U  O e~s‘ det K  

Z  = J  VUe~Sa det K  (3 .2 )

Doing this leaves us with a functional integral over the gauge fields which 
may be expressed as integrals over real numbers. These can be handled on 
a computer with relative ease.

We are now ready to introduce an effective action, Seff ,  by making use

21
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of the following identity:

det X  = e,ln det X T rln X (3.3)

S o  t h a t  w e  n o w  w r i t e  t h e  i n t e g r a n d  o f  e q u a t i o n s  3 .2  a s :

S eff =  5 ,  -  l n ( d e t  K)  =  Sg -  T r  I n  K (3.4)

3.2 The quark propagator

The quark propagator is a simple example of integrating out the fermion 
fields leaving us with an object that can be calculated on the lattice. The 
quark propagator is defined as the expectation value of the product of a ip

As before (sec 2.7) the x, y indices represent space-time, colour, spin and 
flavour. The Sg h  Sq represent the gluonic and quark parts of the lattice 
QCD action respectively. We note that the propagator is not gauge invariant 
because we may apply independent gauge transformations at each x, y point. 
Performing the fermion integration yields:

We may now define the quark propagator, G =  K  x, for a given gauge 
configuration U.

The Greek indices represent spin, the numbers represent colour and the ro­
man indices represent space-time co-ordinates. The flavour dependence of 
G is a Kronecker delta and so is suppressed. Repeated indices should be 
summed over. This equation (eq. 3.7) can be solved using a matrix inversion

and a ip field.

(3.5)

(3.6)

(3.7)
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algorithm such as the conjugate gradient method.

3.3 M onte Carlo simulations

Lattice gauge theory made a great leap forward when the Monte Carlo 
method was introduced. This is because a naive calculation of the path 
integral is prohibitive, since the sum contains a massive number of terms. To 
exemplify this consider the simplest group that we can define on the lattice, 
Z 2 with elements ±1. If our lattice had 8 4 sites then the path integral sum 
would contain the following number of terms:

2 214 =  216384 _  1()5460 (3  g)

Since the number of links is 4 x 8 4 =  2 14.
The Monte Carlo method is an example of importance sampling. It applies 

certain approximations to the path integral which alleviates this problem. 
Normally the path integral sums over an enormous amount of configurations 
that make an insignificant contribution to the integral. If we could ignore 
those configurations and only sum over the ones where the action is near its 
minimum, then our calculation would be much quicker. The Monte Carlo 
method does exactly this. We define a set of initial values for each link on the 
lattice (Si). Then the Monte Carlo method tells us to generate a sequence 
of configurations S 2, £ 3  . . .  such that when statistical equilibrium is reached 
the probability of encountering a particular configuration £j in the sequence 
is proportional to the corresponding Boltzmann weight, Wi =  e-5 ^ .  The 
smaller set of configurations that we now use {£*} are those that are near 
minimum action and hence contribute most to the path integral.

3.4 The M etropolis algorithm

A common method for generating the sequence of configurations {£*} is the 
Metropolis algorithm [6 ]. Consider generating a new configuration a[ from 
the configuration u\ by updating a single link using some random process.
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It is possible to calculate the change in the action via equation 3.9.

AS -  S V l) -  S(ffj) (3.9)

A random number r is now chosen between 0  and 1 . If e" A 5  > r  then the 
configuration is accepted, if not it is rejected. If A S  is negative then the 
change is always accepted because e~AS > 1 .  If however we only accepted 
negative values of A S  then the action would be constantly decreasing and 
hence would tend towards the classical equations of motion. Of course this 
is to be avoided because it neglects all quantum corrections.

By choosing a random number (r), we are actually allowing for positive 
AS, hence the action may increase as we change from G\ to &[. This al­
lows for quantum fluctuations around the classical equations of motion. The 
algorithm progresses by moving to the next lattice site and changing it in 
some random way. Hence another configuration is generated, we test this 
to see if it meets the proper criteria and move on. In this way we sweep 
through the entire lattice successively making small changes. After many 
sweeps through the lattice we begin to reach thermal equilibrium, this yields 
the set of link variables Ei. The process is then repeated and the second set 
of link variables £ 2  is obtained, and so on. Slowly a set of configurations is 
built up {£*}• The effect of the algorithm is that the new configuration a[ 
is accepted with the conditional probability of e~AS.

3.5 The quenched approximation

As seen in section 3.2, Sef f  is the correct action for lattice QCD. Unfor­
tunately the second term in equation 3.4 makes the action non-local. This 
means that generating a sequence of configurations (sec. 3.3 & 3.4) is far 
more computationally demanding than generating a sequence of configura­
tions for an action that is local. This is because we have to calculate the 
determinant of the quark matrix in the non-local case. By replacing the de­
terminant in equation 3.4 with a constant that is independent of the gauge 
fields we have a modified the action which is now local. This is called the
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quenched approximation. In practice we set det K  = 1 in equation 3.4 which 
modifies the effective action so that Sef f  = Sg. This corresponds to setting 
the hopping parameter (sec. 2.7) to zero. This leaves us with infinitely heavy 
quarks which do not contribute to the effective action. This effect is coun­
tered by adjusting the remaining parameters of the theory. Although this 
seems like a very crude thing to do, it works surprisingly well with most of 
the essential features of QCD remaining. Quenched results of calculations 
of the light hadron spectrum are within 1 0 % of experimental results.

3.6 Hadron correlators

Correlation functions are used to measure many physical observables on the 
lattice.

C(x,y)  = ( 0 ( x ) 0 \ y ) )  =  - |  f  V U O { x ) 0 \ y ) e- s (3.10)

Here 0 (x )  is an interpolating operator. Any gauge invariant combination of 
fermion fields and gauge links can be used as a interpolating operator. As 
above this multi-dimensional integral is well approximated by the Monte- 
Carlo method (sec. 3.3) allowing us to represent the correlation function as 
the average of the operator 0(x)0^(y )  evaluated on each of the independent 
configurations {£*}:

< 0 ( z ) 0 t ( y ) ) « ^  £ > ( £ * )  (3.11)
C *=1

Where A4(Xj) is the value of the operator 0 ( x ) 0 \ y )  calculated using the 
configuration £*, Nc is the number of configurations and % represents the ith 
configuration in the sequence of configurations X.

3.6.1 M esons

To place mesons on the lattice we use interpolation operators, O(x), which 
are used to create and annihilate mesons. An operator for the meson state



26 CHAPTER 3. NUMERICAL METHODS

\M)  must satisfy:

(0|O(a:)|7W) ±  0

( O lO ^ ) ^ ')  =  0 (3.12)

Where \M')  is any state that is lighter than state \M).  This ensures that 
the operator has a non-zero overlap with the state that it is intended to 
represent and has no overlap with any lighter states. For the operator to be 
gauge invariant we require:

0{x)% = (3-13)

With a  8z (3 being the Dirac index, a Sz b the colour index, /  &; g the flavour 
index and x  is the space-time co-ordinates. Since f  dPlxPtx =  0  it follows that 
the expectation value of a meson propagator is zero unless x = y. To define 
a particular type of meson (pseudoscalar or vector) we pick an interpolating 
operator with the same quantum numbers as that type of meson. It is conve­
nient to represent mesons in written form using the following combination of 
quantum numbers, J PC. Table 3.1 gives a description of these numbers and 
their corresponding formulae. Table 3.2 gives examples of the J PC numbers

Quantum number Description Formula

J Total angular momentum J  — (/ -(- S, I -|“ S — 1, . . ■ A i - s \ )
P Parity number P =  ( ~ l ) l+l
C Charge conjugation c  = ( - i y +s

Table 3.1: This table contains a description of the J PC quantum numbers. 
The orbital angular momentum eigenvalue is represented by I and the spin 
eigenvalue is represented by s.

for some well known pseudoscalar and vector mesons. As an example we
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Meson J PC

7r 0 -+
P 1—
a 0 ++
bi 1+-
ai 1++
3-2 2 ++

Table 3.2: Some of the well known mesons and their J pc  quantum numbers.

consider the following interpolation operator1:

0 ( x , t) = ipf(x, t ) ^ g(x, t) (3.14)

This operator (Eq. 3.14) has the same J pc  quantum numbers as the 7r- 
meson (pion). It is a local operator because the quark and anti-quark fields 
are at the same site (x,t).  It has been shown that for some mesons such as 
the p-meson an interpolation operator that also includes some form of wave 
function between the quark and anti-quark fields gives a better signal or over­
lap. This technique is known as smearing. Another technique involves the 
addition of bent paths to the original paths between quark and anti-quark, 
this is known as fuzzing. We can combine these interpolation operators to 
form mesons on the lattice. Substituting these operators into equation 3.10 
represents a physical process in which a pion is created at the space-time 
point (0 , 0 ), from there it propagates in space-time to the point (x, t) where 
it is destroyed. This is pictorially illustrated in figure 3.1.

The correlator can give us lots of information about the particle that we 
wish to study. As an example we will consider the local pion correlator. We 
begin by inserting our interpolation operator (Eq. 3.14) into the correlation

1The index on the quark fields is a flavor index.
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Space

Time
Quark propagators

0 (0, 0)

Lattice

0(x, t)

Figure 3.1: A pictorial representation of a meson correlator on the lattice. 
The meson is created at position and time (0, 0) and is destroyed at (x, t).

function (Eq. 3.10). We have:

Cn{x,t] 0 , 0 ) =  (0\T'ipf(x, t)ri5 'ipg(x, £)V>/(0 , 0 )7 5 ^ s (0 , 0 ) |0 ) (3.15)

Where we have set (y, t) = (0,0) and T  represents time ordering. Next we 
perform a Wick contraction,

Cff(a:,0 ; 0 , 0 ) =  J  VUe~SeffTr(Gf {0, x ) ^ G g(x, 0 )7 5 ) (3.16)

Here the sea quarks are contained in Seff and the valence quarks are con­
tained in the quark propagators Gf(  0 , x) & Gg(x, 0 ) (sec. 3.2). This is an 
example of a point to point correlator. As such its momentum is undefined. 
We may represent this integral using the Monte-Carlo approximation. If we
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treat quark flavors g and /  as degenerate we have:

n c

c v (x, 0) =  *)7 5 C(z, 0)75) (3.17)
1VC i

We will now use this to study the time slice correlator and show how to
extract an estimate for the effective mass of the pion. We begin by performing
a Fourier transform over the three spatial dimensions, x, (i.e. over a time 
slice). This fixes the momentum.

C„(t,p) = Y ,C*(x , t - ,0 ,0 )eVx (3.18)
X

Inserting a complete set of energy eigenstates that have the norm:

T ,  J  f ^ l n '9n)(«.?n| =  1 (3-19)

gives

d3qn
x,n

CALP) = J  - '}T (Q \0(x , t ) \n ,qn}{ri,qn\0 1(0,0)\0)etpx (3.20)

We now make use of the fact that a quantum operator O in the Heisen­
berg picture is time dependent O(x) = O(0')e~lEnt~iqn'x and the fact that 
(A\0\B) = ((B\0^\A))* inserting this in Eq. 3.20 gives:

C„(p,t) = f  (3-21)
x,n

We may now simplify this by noting e l Q̂n p '̂x — d{qn—p) and f  d3qn5(qn— 
p) implies p =  qn. We also rotate to Euclidean space it —> t. This leads to

C ,(p ,t)  =  E ® i ^ ^ ‘ (3.22)
n

Since we are in Euclidean space the correlator is exponentially damped in
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time so as t —> oo the lightest meson state dominates (n =  1).

To extract a mass prediction we work in the rest frame (i.e. we set p = 0). 
We define the effective mass as:

(3 2 3 )

Plotting this against time allows us to gain a lattice estimate for the pion 
mass by looking for a plateau in the data. To convert this into a physical 
value we must set the scale (sec. 2.9). In practice the hadron mass is obtained 
by fitting c(0, t) to an exponential over a time range where the ground state 
dominates.

3.6.2 Baryons

We place baryonic particles on to the lattice in much the same way as we did 
mesons. To define gauge invariant baryon fields we require:

0 { x )al^ h =  (3-24)

We can prove th a t this is gauge invariant by suppressing all but the colour 
indices, and applying a gauge transformation:

(3-25)

Gauge invariance follows from =  det(fi) =  1.

As for the mesonic case, we construct interpolation operators with the 
quantum numbers of the particle that we wish to study. An example for the 
A++ would be:

t) = eabc( C \ ) l3, r xaf^ / 9̂ h (3-26)

W ith C being the charge conjugation matrix ip^  =  — (C^rip)T. This is an 
antisymmetric unitary 4 x 4  matrix that relates to its transpose. Explicitly 
we set 'ipf = ip9 =  =  u wjth u being an up quark. As before (sec.
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3.6.1) we may use these interpolation functions to form baryon correlation 
functions and using similar techniques we can extract physical information 
about baryonic states.

3.7 F itting the data

In any lattice calculation a set of observables Oi are calculated on a number of 
configurations. To extract physical observables we fit the data to a particular 
function or model. This is done by the minimisation of the x 2 value. In our 
study we work with uncorrelated data. We define x 2 as:

Where Xi 

Vi

f { x u { a j } )

N

CTi

The x 2 is minimised by the set of independent variables that satisfy equation 
3.28

dx-7T- = 0 (3.28)daj

If the function f (x i)  is linear then equation 3.28 may be solved analytically, 
otherwise we must minimise x 2 numerically. In our study we quote values of 
reduced x 2 also known as x 2 per degree of freedom (x2/d .o ./). This can be 
defined as:

* ’ / * . . . /  -  <3 . » >
i=1 1

Where m  =  number of fit parameters

=  f ; p - / ( xi 'R } ) j 2 (3.27)
1= 1  a i  

= independent variable

=  dependent variable

=  fitting function /  model

=  number of data points

=  uncertainty of the i th data point

An acceptable fit should have a x 2/d .o . f  of about one.
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3.8 Statistical errors

We can associate an error with the fit parameters known as the statistical 
error. In the limit of an infinite number of gauge configurations we expect 
this to go to zero. Typically a lattice simulation has a small number of config­
urations (9 (few hundred) this is because configurations are computationally 
expensive to generate, especially dynamical ones (sec. 3.5). Consequently 
it is im portant to quantify any error due to this. To do this we use boot­
strap error analysis [8]. We begin by creating a bootstrap sub-ensemble by 
selecting n configurations at random. Next the fitting procedure is applied 
to this sub-ensemble, in the same way it is for the true sample. This gives 
a new estimate for the fit parameters. We repeat this procedure 7ib00t times. 
Doing this generates a bootstrap distribution for each of the fit parameters. 
Representing this as a histogram allows the central 67% region to be defined 
and hence the upper and lower error bars.



Chapter 4

An introduction to Chiral 
Perturbation Theory

In this section we will review the symmetries of the QCD Lagrangian. We 
will then show how these symmetries can be exploited so that we can build 
an effective Lagrangian th a t can be used to describe the low energy dynamics 
of QCD.

4.1 Sym m etries of the QCD Lagrangian

Along with the U{ 1) symmetries that give rise to the conservation of baryon 
number, charge and strangeness (eq. 4.1), there exist two other interesting 
symmetries of the QCD Lagrangian, namely the Vector and Axial-Vector 
symmetries.

- e~iaBip B is the baryon number of ip
ip - -» e~l̂ i p Q is the charge of 'ip

- -> e~ieSip S is the strangeness of 'ip
where a, j3 & e are arbitrary real numbers (4-1)

33
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4.1.1 The Vector sym m etry

We will begin by considering the case of massless QCD. Here we need only 
consider a Lagrangian of the form:

£ massless 'ijjlpllj (4.2)

I have suppressed all indices and ignored the gauge fields as they will not be
influenced by the transformations tha t we will consider.

The vector transformation (Ay) which belongs to the group SU{2)y  is 
defined by,

Where r°  are the Pauli iso-spin matrices. It is immediately obvious that our 
massless Lagrangian (eq. 4.2) will be invariant under this transformation 
since the transformation, Ay, has no space-time dependency. Hence our 
Lagrangian is SU{2) flavour (iso-spin) invariant.

As was demonstrated in section 1.4, symmetries of the Lagrangian lead 
to conserved currents. They can be calculated using equation 1.19. We find,

This is the vector current, its associated conserved charge is the isospin 
charge.

We will now consider adding a mass term. The up and down quarks have 
masses around 10 MeV. The next lightest quark is the strange quark and 
this has a mass of the order of 100 MeV. The lightest hadron is the pion 
with a mass of about 140 MeV. So in the low energy limit of QCD only the 
lightest quarks (up and down) need be considered. To do this we define a

(4.3)

(4.4)
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mass matrix (m ud), and write the fermion (ip) fields as an isospin doublet:

— ( ;  : )  - ( ; )  <“ »
We use this to write down a Lagrangian involving just the up and down 
quarks:

Cud = ~  -j(rnu +  m d)qq -  ~(mu -  m d)qr3q (4.6)

Now because of the Pauli matrix in the last term the Lagrangian is only 
invariant if we assume tha t the up and down quarks are degenerate in mass 
(mu =  m d). In this case the symmetry leads to three conserved currents 
corresponding to the three generators of SU(2) (the Pauli isospin matrices). 
The corresponding isospin charge operators obey the SU(2) relations:

\I%i Ij\ i^ijk^k ( ^ • ^ )

This is exactly the same case as for quantum mechanical spin and so we know 
that the eigenstates and eigenvalues must behave in the same way, hence:

i 2\i , i 3) =  / ( / + i ) | / , / 3)

h \ I , h )  = h \ I , h )  (4.8)

This is our first glimpse at an effective Lagrangian, this is a Lagrangian that 
describes physics in terms of experimental (hadronic) degrees of freedom 
rather than fundamental ones (quarks). However we know that in nature 
isospin invariance is broken due to a finite difference between the up and 
down quark masses. But as we shall see in the following section, if the 
breaking is small compared to the relevant energy scale of the theory, the 
symmetry may be treated as an approximate one.
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4.1.2 The Axial Sym m etry

As before we begin by considering the massless case. The axial-vector trans­
formation (A^) is defined by:

-> ^  exp ^ 7 5Ta0a^ (4.9)

This time it is not immediately obvious that the massless Lagrangian (eq. 
4.2) is invariant under this transformation. We must pay special attention 
to the derivative part of the Lagrangian. Since the transformation has no 
spatial dependency we can move the exponential through it.

ip  e x p  5r “ 0° )  7 "  e x p  Q 7 5T a 0° ) (4.10)

To deal with the problem of moving the exponential through 7 ^ we Taylor 
expand the exponential and re-express it in terms of trigonometric functions:

exp ^ - 7 5r a#a^ 7 M =  7 Mc o s ^ - r a0 a^ +  z7 57 Ms in ^ - r a0 a^

=  7 /iex p ^—̂ 7 5Ta#a^ (4-11)

Where we have made use of the anti-commutation relation {7 /i, 7 5} =  0. 
Hence the massless Lagrangian is invariant under the axial transformation 
(A^). Again using equation 1.19 we can calculate the associated axial current, 
we find:

(4.12)

We now consider the case of adding an arbitrary mass term (m). As in the 
massless case the covariant derivative is symmetric under the axial transfor­
mation, but the mass term is not.

5C =  — m ^ / ; e x p ^ 7 5Ta#a^ e x p ^ - 7 5Ta#a^V;^
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=  — exp(i'y5Ta6a) (4.13)

As with the vector symmetry if the symmetry breaking term is small com­
pared to the relevant energy scale of the theory then we may regard the 
symmetry as an approximate one1.

4.1.3 Chiral sym m etry

Chiral symmetry is often referred to by its group structure SU( Nf ) A® SU( Nf ) v  
where the subscript A(V) refers to the axial(vector) symmetry. We have con­
sidered the case of Nf  = 2 but the case with Nf  = 3 is equally valid. We 
begin our discussion of chiral symmetry by introducing the idea of chirality. 
We define operators to project out the left and right handed components of 
the isospin doublet introduced in section 4.1.1.

r t  =  | ( i  -  t 5) 

r *  =  1 ( i  +  75)

(4.14)

Applying these projection operators to the isospin doublet gives:

— T l q qR = LR q (4.15)

where q = qL + Qr - We can use these chirality states to rewrite the massless 
Lagrangian (eq. 4.2).

m assless qR^0qR (4.16)

C onsider a circle in 2D. This is invariant under rotations in the plane. Now imagine 
a flat on the circle. This breaks the rotational invariance, but if the flat is small the circle 
will still look very similar under a rotation. Hence the symmetry is approximate.
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This Lagrangian is invariant under the independent symmetry transforma­
tions:

La : qL > exp{iTaa a)qL

R a : qR -> exp(ira(3a)qR (4.17)

Again we apply Noether’s theorem (using equation 1.19) to find the associ­
ated conserved chiral currents:

L ^ a = qLl ) ^ r aqL

R ^ a = qRl J j T aqR (4.18)

Taking linear combinations of the chiral currents allows us to express the
conserved currents in vector and axial-vector form:

V« = + =

A l  = n r *  -  w -  =  $ v y » y 9  (4.19)

These are the conserved currents from sections 4.1.1 & 4.1.2 respectively.

4.2 The chiral transformation of mesons

Before we construct a chirally invariant model we must first investigate the 
chiral transformation of mesons. We first define quark operators that have 
the same quantum numbers as those mesons that we wish to study.

Pion: 7Ta =  i'0 ra75,0
Sigma: a = ^
Rho: p® =  xpra 7^-0

a i : =  ^Ta7M75̂

We note that the Sigma particle is not observed in the mesonic spectrum. 
Here we define it to be a particle that carries the quantum numbers of the
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vacuum. We now individually apply the vector (eq. 4.3) and axial-vector 
(eq. 4.9) transformations, for infinitesimal rotations2 to the pion and rho 
mesons.

Vector transformation:

7ra 7Ta + ea X 7Ta (4.21)

Pi -  Pl + ea x p l  (4.22)

where, for the pion, we have made use of the commutation relations for the 
Pauli matrices [ra, r fe] =  2ieabcTc. These transformations are just isospin 
rotations by an amount 6a.

Axial transformation:

7ra -> 7r° +  0 V  (4.23)

Pl -* +  (4-24)

this time we have made use of the anti-commutation relations for the Pauli 
matrices { ra, r 6} =  25ab and the fact (7 s ) 2 =  1. These results indicate that 
the axial symmetry is a symmetry of the QCD Lagrangian, and that particles 
rotated into each other should have the same eigenvalues. This is clearly not 
the case since the rho and ai have very different masses. This cannot be 
accounted for by the explicit symmetry breaking due to the mass of the light 
quarks because they have a small mass. This problem is resolved by the 
introduction of the spontaneous breakdown of the axial symmetry.

4.3 Sym m etry breaking in physics

We will be concerned with two types of symmetry breaking, explicit and 
spontaneous symmetry breaking.

2If we consider infinitesimal rotations we may Taylor expand the exponential to leading
order in 9.
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4.3.1 Explicit sym m etry breaking

Explicit symmetry breaking occurs when a Lagrangian has a symmetry that 
is broken by the addition of some term. Section 4.1.2 exemplifies this, the 
massless Lagrangian (eq. 4.2) is invariant under the axial transforms (eq. 
4.9). But we see that the addition of a mass term (eq. 4.13) breaks this 
symmetry.

4.3.2 Spontaneous sym m etry breaking

A symmetry is said to be spontaneously broken if the Lagrangian of a system 
possesses a symmetry which its ground state does not. An example this is 
the spontaneous breakdown of a rotational symmetry in a ferromagnet. The 
Hamiltonian for such a system has the form:

H  ~  \  Oi.Gjfij (4.25)

where (T* represents the spins and fa  represents the coupling between them. 
This is invariant under rotations, yet in the ground state the spins are aligned 
giving rise to a magnetic field. So clearly in the ground state the symmetry 
of the Hamiltonian is spontaneously broken.

4.4 G oldstone’s Theorem

Goldstone’s theorem states that for a spontaneous breakdown of a symmetry 
there is an associated massless mode the Goldstone boson. In the case of 
QCD the axial symmetry is spontaneously broken. In this case Goldstone’s 
theorem tells us that there should be a massless boson with the same quantum 
numbers as the as the generator of the broken symmetry.
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4.5 The relevant energy scale of QCD.

In QCD the light quarks (up and down) have masses of approximately 5 
and 10 MeV. The relevant energy scale of the theory is given by Aqcd which 
is approximately 200 MeV. This is far greater than the light quark masses. 
Hence it would be reasonable to assume that the axial symmetry would be an 
approximate symmetry of QCD and so the axial current should be partially 
conserved.

4.6 The PCAC relation

Following on from the previous section we now investigate the current asso­
ciated with the axial transformation in QCD. To do this we begin by consid­
ering the weak decay of the pion. This is described by the matrix element of 
the axial current between the vacuum and pion states, i.e.

(0|i4;(0) !*»(</)> (4-26)

as before A* is the axial current and |7rb) is a pion state. By Lorentz symmetry 
this matrix element must be proportional to the pion momentum (q^):

(01^2(0) lA ? ) )  =  iU % 8 *

where (O|0 a(O)|7rb(^)) =  5ab (4.27)

fn is a constant of proportionality (the pion decay constant) and is deter­
mined experimentally. 5ab is used to normalise the states, and (f>a represents 
the pion fields. We take the divergence of the above equation and make use 
of integration by parts, we find:

<0|3M ;(0)|7r*fa)> =  UmlS*

=  /7 r^ (O |0 a(O)|7T6(g)) (4.28)
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This motivates the effective relation:

=  / , m ^ “ (4.29)

In the limit of vanishing pion mass the axial symmetry is exact. Since the 
pion mass is small compared to other hadronic masses we conclude the ax­
ial current is approximately conserved and that the axial symmetry is an 
approximate symmetry of QCD. This is the PC AC relation.

4.7 The Goldberger-Treiman relation

We begin our discussion of the Goldberger-Treiman relation by considering 
the axial current for a nucleon:

T a
A l,N = g a 'p N l n l S ^ N  (4-30)

Here ^jv is an isospinor representing the proton and neutron, ga = 1.25 is a 
constant that arises from the fact that the axial current is renormalised by 
25% as seen in the weak (3—decay of the neutron. Since the nucleon3 has a
relatively large mass we do not expect its axial current to be conserved. If
we use the free-Dirac equation we can show:

^ a I,n  = igaMN'ijjN'y5Ta"ipN % 0 (4.31)

Since the nucleon interacts strongly with the pion we assume that the total 
axial current is the sum of the pion and neutron contribution.

q~a

A l  =  ga$ N l i x l $ ^ N  +  U d , r  (4.32)

3We use the term nucleon to refer to either the proton or neutron.
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Where we have used the PCAC relation (sec: 4.6). This current is only 
conserved if d^A^ = 0 so using equation 4.31, we find:

= - g a ^ f - ^ N l h ^ N  (4-33)
J 7T

This is simply the Klein-Gordon equation for a massless boson coupled to a 
nucleon. Hence if we require the conservation of the total axial current (eq. 
4.32) for our system the pion must be massless. This is exactly what PCAC 
(sec. 4.6) predicts. By allowing for a pion mass we arrive at the modified 
Klein-Gordon equation:

+  ml)(f)a = - g ai ^ r - ^ N l b T a^N  (4.34)
J 7T

By re-writing the coupling we have arrive at the Goldberger-Treiman relation:

(4.35)

The experimental value of the pion-nucleon coupling, which we will denote 
gn from here on, is gexp ~  13.2. This agreement is quite remarkable when we 
consider that we are relating the strong interaction of pions and nucleons to 
the pion decay constant and the nucleon renormalisation constant which are 
taken from the weak interactions. This relation will become important when 
we attem pt to construct a chirally invariant Lagrangian.

4.8 The spontaneous breakdown of the axial 
sym m etry

We appear to have found a contradiction, the mesonic spectrum does not 
appear to reflect the axial symmetry because of the mass differences between 
mesons (sec. 4.2). However, as we have seen (sec. 4.6) the weak pion decay 
indicates that the axial current is partially conserved (PCAC). As previously 
hinted at this problem can be resolved if the axial symmetry is spontaneously

N 10 Qg*NN — ga—r~  ~  12.9
J 7T
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broken. To see how this can occur we will consider the simple example of 
the Lagrangian (Ccsf ) for a complex scalar field (</>).

Cess = i m 2 -  n m  (4 .3 6 )

If we express the field in terms of its modulus ( A )  and phase (9)

*  =  - j = A e ie ( 4 . 3 7 )

it is easy to see th a t the potential (V^d^D) in the Lagrangian only depends 
on the modulus of the field. This can give rise to the classic Mexican hat or 
wine bottle potential. For such a potential, each point along the minimum 
has the same modulus but corresponds to a different value for the phase (6). 
If we assume th a t the ground state selects the value 6 = 0 for its phase, and 
if A  =  A 0 we can expand about the ground state point. Using A  =  Aq +  a, 
we find the Lagrangian reduces to:

£ , /  =  +  l ^ e )2 -  v ( ^ | ) - i a V " ( ^ | )  +  . . .  ( 4 . 3 8 )

Hence

2 1 2t/// f  ^ 0  \
m ° = 2a V  ( 7 5 )
ml  =  0 (4.39)

So we see rotations in the 9 direction correspond to massless excitations.
The idea presented here will be useful when we study sigma models in the
following section.
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4.9 Sigma m odels and chiral invariance

4.9.1 The linear sigm a m odel

In this section we will study a very simple Lagrangian involving pions and 
nucleons known as the linear sigma model. This was first introduced in 
1960 by Gell-Mann & Levy [9]. Previously we introduced the idea of chiral 
transformations of the quark fields tha t correspond to the pion (7r) (sec: 
4.2). We can also perform these transformations on the scalar meson (<r). 
Altogether we find:

A y  : 7Ta 

A a  : 7r a  

: a
A  a  : cf

7Ta +  e abc9 b 7TC

tra _|_ Qa(j

a

a  -  0 a 7ra

(4.40)

We see that although these may not be individually invariant under a chiral 
transformation the sum of their squares is:

Hence,

Ay
A a

A v

A a

7r
7r
a
a

(7r2 +  a2)

7r
7T2 -  2 a 0 a7ra

a
a 2 +  2 a O a n a

2 , Av.Â  / 2 , _2\ -> (7T +  <7 j

(4.41)

(4.42)

We will use this to guide us while constructing our model.

• We begin by considering the pion-nucleon interaction, this is described 
by a pseudo-scalar combination of the nucleon field multiplied by the 
pion field:

g ^ i ^ T 0"^) 7r° (4.43)

where we have introduced the nucleon field 'ip- Under a chiral transfor­
mation this transforms exactly as it2 because the nucleon term has the 
same quantum numbers as the pion. For our condition for chiral in-
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variance to be satisfied (eq. 4.42) we must have a term that transforms 
as cr2. The simplest choice for this is:

gv{iiip)cr (4.44)

The sum of these terms (eqs. 4.43 &; 4.44) gives the interaction term.

• We must account for the kinetic energy of the particles. For nucleons 
this is just the Lagrangian for free massless fermions and for the mesons 
we introduce an average for the cr and 7r—fields:

Nucleons :

Mesons: : i  +  daird^cr) (4.45)

• We now need to introduce a nucleon mass term. Previously we showed 
that an explicit mass term breaks chiral invariance (sec: 4.1.2). The 
easiest way to introduce a nucleon mass term is via the coupling of 
the nucleon to the a —field (eq. 4.44). To do this we give the cr—field 
a finite expectation value. Using the Goldberger-Treiman relation we 
find that the expectation value of the cr—field has to be:

(a) = U  (4-46)

This causes chiral symmetry to be spontaneously broken (see sec. 4.8). 
To give the cr—field this expectation value we have to introduce a po­
tential which has a minimum at cr =

• Up until this point we have chosen terms that satisfy our chiral con­
dition. But we have shown in section 4.1.2 that quark mass explicitly 
breaks chiral symmetry. So for our model to be consistent with na­
ture we should include a small symmetry breaking term. We first write 
down a potential that is chirally invariant. A simple choice would be:

V = Vtw2 + o 2) = ^ ( * 2 + <j2 - i l ) 2 (4.47)
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To add a symmetry breaking term to this we recall that in QCD the

so it would be sensible to introduce a similar term, SCsb — ecr, with e 
being the symmetry breaking parameter. Doing this gives a modified 
potential:

Here we have introduced a general parameter Uq. The only constraint 
that we place on this is that in the limit of e —> 0  then i/0 —s► f v .

Putting these terms together we find the Lagrangian for the linear sigma 
model:

4.9.2 Properties o f the linear sigm a m odel

We will now briefly review the properties of our linear sigma model.

• To preserve the Goldberger-Treiman relation our potential must have 
its minimum at for this to be the case the parameter i/0 to leading 
order in e is:

axial symmetry is broken by a term which has the form 6Cg^D = —mqq

(4.48)

£ ls = +  ^{d^Trd^n +  d^nd^a)
— — \  f  \ 2

—9 Tr{'i'lP'y5Ta,lp'Ka +  Ip'lpcr) — — ^7T2 + cr2 — 1/q J —€<T (4.49)

(4.50)

• We can calculate the mass of the a particle by comparing our La­
grangian with the Lagrangian for the Klein-Gordon equation, and re­
calling (L = T  -  V).
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So for our Lagrangian we have:

(4.52)

Our pion acquires a mass even though we have not explicitly written 
one into our model as we did for the cr particle.

We see that this fixes the symmetry breaking parameter (e) via e =  f nm l  
and hence we note that the pion mass-squared is directly proportional 
to the symmetry breaking parameter.

Since <7o =  fn the nucleon mass has a contribution from the explicit 
symmetry breaking. To see this we must split the nucleon mass into 
a contribution from the symmetric part of the potential and one from 
the symmetry breaking term:

The contribution from the symmetry breaking term is often referred to 
as the pion-nucleon sigma term Using equations 4.52 & 4.53 we
may express this in terms of the pion and sigma masses:

This term can be determined via the extrapolation of low energy pion- 
nucleon scattering data and is believed to be approximately 40 MeV.

In section 4.9.1 we discussed adding a symmetry breaking parameter (e) 
to a chirally invariant Lagrangian. We required that this parameter had 
the same axial symmetry breaking properties as a mass term in QCD. 
W ith this in mind we can adjust its strength so that it reproduces the 
ground state properties of QCD, i.e. the pion mass. Hence it would be

(4.53)

(4.54)
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reasonable to expect the vacuum expectation value of these symmetry 
breaking terms to be equal:

If we recall th a t e =  rn^f^ and that (a) = (0|<r|0) =  and also write 
out the average quark mass explicitly we arrive at the Gell-Mann- 
Oakes-Renner relation:

4.9.3 The Non-linear sigma m odel

The linear sigma model has one fundamental flaw, and that is that the 
cr—field cannot be identified with any physical particle. We can however 
remove the dynamical effects of this particle by sending its mass to infinity. 
This is done by assuming th a t the coupling (A) in our linear sigma model is 
infinitely large. The effect of this is to give the potential an infinitely steep 
gradient in the sigma direction. This causes the dynamics of our model to 
be confined to the minimum for the potential. This is a circle and is often 
referred to as the chiral circle it is defined by:

(0|ecr|0) =  —(0 [mq<7|0) (4.56)

(0 |uu +  dd\0) (4.57)

(4.58)

We may now express the a and n fields in terms of angles (4>):

Where
/-----  - <f>a

$  =  =  —
$

(4.59)

Hence to leading order the angles, 4>, can be identified as the pion fields. We 
immediately see tha t this satisfies the constraint of equation 4.58. The fields
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may also be expressed using a complex notation: 

U(x) — exp I i
u

( $ ( z ) \  . „ * . /  $(:c)=  cosf —-— 1 + z r  $sm*
fir J \  fir J

=  — (a  +  i r a7ra) (4.60)
Jir

Here U{x) can be identified as a unitary (n j  x rif) matrix (in our case U(x) 
is a 2 x 2 matrix) and is often referred to as the chiral field. Taking the trace
of a combination of these matrices meets the constraint imposed by equation
4.58:

^ tr (Uj U) = yj(<72 +  7T2) =  1 (4.61)

Because chiral symmetry corresponds to a symmetry with respect to a rota­
tion around the chiral circle all structures of the following form are invariant:

tr{U'U) t r i d ^ U ^ U )  (4.62)

As we shall see this has non-trivial implications.

4.10 The Weinberg Lagrangian

To write down a Lagrangian for the non-linear sigma model in Weinberg’s 
form we must use our findings from the previous section and redefine the 
nucleon fields:

ipw =  ipw = (4.63)

With A =  exp ^ 2 7 5 - ^ —-^ (4.64)

This can be visualised as a dressing of the nucleon fields. We now have 
nucleon quasi-particles surrounded by a cloud of interacting mesons.



4.10. THE WEINBERG LAG RANGIAN 51

• The pion-nucleon interaction term is now given by:

- g ^ ^ a +  ^ r a^ a) =

= - 9 * M

cos( T" ) + i75 ,r a^ sin ^ -5 -^
$

u .
Ta$ a(x)

exp I z7 5
u

— —g i x f ^ w ^ w

= - M n 'iPw 'i/jw (4.65)

Where in the last line we have used the Goldberger-Treiman relation 
(eq. 4.35). Notice that using the redefined fields we have reduced the 
interaction term to the nucleon mass term.

The kinetic energy term now becomes:

Nucleons : =  ixj}w A^0A^'ipw
Mesons : \  (d^Trd^ir +  d^ad^a)  =  t ftrid^U^d^U)

The A parameter has a spatial dependency through the <E> fields and 
consequently the derivative in the nucleon term also acts on A giving 
rise to additional terms. We re-express this term as:

i ' i p w A ^ A ^ w  =  iw { i $  +  7*%  +  l ^ l b A ^ w  (4-67)

Where:

and £ 2 =  U(x) (4.68)

An and Vn are the axial and vector quantities respectively.

• We need not consider the transformation of the chirally symmetric 
potential (eq. 4.47) because here dynamics are constrained to the chiral 
circle and on it the potential vanishes.
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Using the above we can now write a complete Lagrangian for the non­
linear sigma model in the Weinberg form:

Cw = t}w (i$ +  +  7 'i7 5 >lf, -  M n ) ^ w  + ^ t r i d ^ d ^ U )  (4.69)

It will prove instructive to expand the Lagrangian for small $//„- <C 1 fluc­
tuations around the ground state.

Cw = 4>w(i0 ~  MN) ^ W +  \ { d ^ a)2 +  ^ ( W 7 M7 5TaTM^<l>a “

^ r 2b i > w l ^ w ) W a x “)) (4.70)
J 7T

4.11 Properties of the non-linear sigma model

Here we briefly review the important properties of the Weinberg Lagrangian.

• We clearly see the Lagrangian has a non-linear dependence on the 
<f>—fields.

• We have removed the unphysical cr—field.

• The coupling between the pions and nucleons now has a pseudo-vector 
form. It involves the derivatives of the n —field, which we associate 
with the momentum of the 7r—field. Along with this we now have an 
iso-vector coupling term.

• We recall that at the expanded level the <1>—field can be identified with 
the 7T—field (eq. 4.59). Hence explicit chiral symmetry breaking is 
introduced into our expanded Lagrangian (eq. 4.70) by an explicit 
pion mass term.

The final point to make in this section is that expanding the full La­
grangian (eq. 4.69) to higher orders in the fields gives rise to extra terms 
which correspond to higher order corrections. These can be identified with 
trees, loops etc.
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How to deal with these corrections in an ordered fashion will be the 
subject of our next section.

4.12 Chiral Perturbation Theory

4.12.1 T he philosophy__

The underpinning of chiral perturbation theory lies in a theorem of Wein­
berg’s. Generally speaking his theorem states th a t the most general effective 
Lagrangian will contain an infinite number of terms that satisfy the symme­
try of the theory with an infinite number of free parameters. To make this 
a practical proposition we must have a scheme tha t tells us how to organise 
the terms and then assess the importance of the diagrams that are generated 
by the interaction terms from a given Lagrangian. This is the job of Chiral 
Perturbation Theory (ChiPT). The essential idea behind ChiPT is is to re­
alise that at low energies the dynamics of the strong interaction should be 
dominated by the lightest particles of the theory (the pions) and the sym­
metries of the theory (chiral symmetry). Hence physical processes should 
be expandable in terms of the pion’s mass and momentum in a way that is 
consistent with chiral symmetry. Our goal therefore is to build a effective 
Lagrangian of the form

^e f f  = ^ 2  +  £ 4  +  Tq +  . . .
00

=  (4.71)
71= 1

the subscripts refer to the order in momentum (i.e. the number of derivative 
terms) or the level of chiral symmetry breaking (i.e. £ 2  has one power of 
chiral symmetry breaking, raj). We note that to a given order the effective 
Lagrangian obtained from ChiPT should be consistent with QCD. We also 
note that ChiPT is not a perturbation theory in the usual sense, we do not 
expand in powers of a coupling constant.
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4.12.2 Counting schemes

To begin with we consider only the pion-pion interaction. A chirally invariant 
Lagrangian must be constructed using structures of the form:

i f l u
t r { d ^ U )
t r { d ^ d ^ U ) t r { d ^ d ^ U )  V '
trKd^Wd^U)2]

Also each chiral field (U) contains any power of the <E>—field, which can 
give rise to higher order diagrams. So to identify which structures we should 
include in our effective Lagrangian and by how much to expand each structure 
we count the powers of pion momentum that contribute to the process that 
we wish to study.

4.12.3 Building a counting rule

We will consider an arbitrary Feynman diagram tha t contributes to a scat­
tering amplitude.

• The diagram will contain a certain number of loops, which we will call 
L.

• It will have a number of vertexes, call these V2n-

• Each vertex will involve derivatives of the pion fields which we will call 
2  n.

•  The number of internal lines associated with the vertex will be called 
I

We now need to determine the power (D) of the pion momentum (q) that 
the diagram will have (qD). We must consider three points:

1. Each loop involves a integration over loop momentum ~  q4
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2. Each internal line corresponds to a pion propagator and hence carries 
momentum ~  \

3. Each vertex involving derivatives of the pion field will contribute ~  q2n

Using these points we can now write down the total power (D ) of the 
momentum for the diagram under consideration:

D =  4 L - 2 /  +  ^ 2 n V 2 „  (4.73)
71=1

This can be further simplified by using a relationship between the number of 
Loops and internal lines and vertices of a diagram:

L = I - J 2 y 2n + 1 (4.74)
n = l

Giving the simplified result:

D = 2 + 2L + V2n(2n — 2) (4.75)
71=1

We now have a scheme that tells us to which order of the expansion a given 
diagram will contribute.

4.12.4 Obtaining an effective Lagrangian

We now use the results from our previous section, where we considered the 
simple case of pion-pion scattering to write down an effective Lagrangian 
for this process. We begin by noting that the simplest chirally invariant 
combination of the chiral fields W U  does not make any contribution to the
dynamics because U W  =  1. Hence the most simple contribution is given by:

c 2 = & t r { d ^ d ^ U )  (4.76)

note the subscript denotes the number of derivatives involved. Because we 
are considering pion-pion scattering we must expand to fourth order in the
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pion fields:

C2 =  \ { d ^ f  +  ^ [ ( $ d „ 3 >)2 -  $ 2 (*0(1$ d ',$)] +  0 ($ 6) (4.77)
^  J  7T

The first term can be identified with a free pion in the chiral limit and so 
it is the second term that describes the interaction and although it has two 
parts both contributions have the same number of derivatives and so in terms 
of our power counting scheme should be considered as one vertex, hence at 
lowest order we only have one diagram which is the simple pole diagram. 
Using the counting scheme developed in the last section (eq. 4.75) we can 
determine the order of the pole diagram. We note th a t the vertex function 
involves two derivatives of the pion field and so is equal to one for n =  1 

and is zero for all other n , and there are no loops. W ith this information we 
calculate that the chiral dimension of the pole diagram is D = 2.

4.12.5 M oving away from the chiral lim it

Until this point we have been working in the chiral limit. For our theory 
to be a realistic one we must introduce chiral symmetry breaking into our 
Lagrangian. This is done by including terms of the form:

tr(U + t / f) (4.78)

The simplest symmetry breaking term that we can include is:

5C = f- ^ - t r ( U ] + U)

= 4 -  ^m 2 $ 2 +  0(4>4) (4.79)
Ld

We see that to leading order this can be identified with a pion mass term 
(we again note that the constant term makes no contribution to the dynam­
ics). As previously seen with the chirally invariant terms we can include 
many different terms involving the above symmetry breaking term into our
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Lagrangian, e.g.

tr(W  +  U) 
tr{d,lU'&lU)tr(lfl +  U) 
t r i d ^ W d ^ t r i d ^ W d ^ t r i W  +  U) 
tr[{d»Wd»U)2]tr{W +  U)

(4.80)

Hence again a counting scheme is called for. This time we must not only 
consider derivative terms but also pion masses. To do this we simply modify 
our previous scheme (eq. 4.75) so that the parameter 2n  now counts not 
only the derivatives of the pion fields at a given vertex V2n but also the pion 
masses. The lowest order effective Lagrangian is now given by:

Now the subscript tells us we are working at two derivative order or one 
power of chiral symmetry breaking (raj). Expanding to the lowest order in 
the pion fields reproduces the Lagrangian for a free pion:

For the case of pion-pion scattering we expand to fourth order in the pion

The adjustable parameters in the Lagrangian are the pion’s mass and its 
decay constant. These should be fixed by experiment. This Lagrangian 
could then be used to calculate pion-pion scattering lengths [13].

c2 =  +  U) (4.81)

(4.82)

fields. The lowest order effective Lagrangian (£ 2) that includes chiral sym­
metry breaking reduces to
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4.13 The Adelaide M ethod

4.13.1 Introduction

In the following two chapters (5 Sz 6 ) we employ and expand the Adelaide 
method [1 2 , 24, 28, 29, 30, 32] for chiral extrapolations. The Adelaide fitting 
anzatz has been designed to take into account the non-analytic behaviour 
that arises due to the spontaneous breaking of chiral symmetry in QCD. 
This spontaneous breaking of chiral symmetry ensures tha t there is no simple 
extrapolation of hadron masses in terms of quark masses. This prompts us 
to use an effective field theory (Chiral Perturbation Theory) to guide our 
extrapolations.

4.13.2 The Adelaide Anzatz

In QED when placing an electron in the vacuum we must account for a 
cloud of virtual positrons that will surround the electron. This process oc­
curs because the vacuum is a polarisable medium, electron-positron pairs are 
constantly being created and destroyed. This process is known as screening.
A similar process occurs in QCD due to pion loops. This process means that 
hadron interactions cannot be treated as point-like in effective field theories 
that model QCD. The Adelaide anzatz introduces a new parameter to Chiral 
Perturbation Theory (A) that takes account of the finite size of a hadron and 
its surrounding pion cloud.

Dimensionally regulated Chiral Perturbation Theory allows hadronic masses 
to be expressed as expansions in powers of the pion mass, known as Chiral 
expansions. These expansions prove to be very poorly convergent. This is 
because Chiral Perturbation Theory is effective up to about 47r/^ «  1 [GeV] 
[1 1 ]. The pion mass terms in the chiral expansion arise from integrating to 
infinite momentum. Hence we are integrating past the cut off of the effective 
theory. This leads to a divergent series in m j.

Another way of viewing this is to note that Chiral Perturbation Theory is 
an effective theory and is valid only when the mass terms are not too large. 
When the pion mass becomes too large, their Compton wavelength decreases
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so that the pions begin to probe the internal structure of quarks and gluons 
inside the hadrons. Since (dimensionally regularised) Chiral Perturbation 
theory assumes these hadronic fields to be fundamental, an increasing (and 
ultimately infinite) number of counter terms are needed to mop up for this 
discrepancy.

The Adelaide anzatz states tha t the expansion is more naturally expressed 
in terms of the size of the extended source (A) divided by the pion mass (777.7,-). 
Hence

If m 1r > A

• The Compton wavelength (A =  h /m c ) is smaller than the extended 
source.

• Pion loops are suppressed by A /m

•  Hadron masses vary slowly and smoothly with quark mass.

But if < A

• The Compton wavelength is greater than the extended source.

• This is equivalent to trapping a particle in a box. Causing multi-particle
systems to arise.

• Gives rise to rapid non-linear variations with pion mass.

• The uncertainty in energy gives rise to pair production.

=$> This causes particles to undergo self interactions.

4.13.3 Interaction Lagrangians

The self interactions that particles experience give rise to a self-energy. To 
understand where the equations describing self-energy come from we will 
consider the lowest-order effective n N  Lagrangian C^n [10]. Using an ef­
fective field theory allows us to remove some of the complications of QCD.



60 CHAPTER 4. A N  INTRODUCTION TO CHIPT

An effective Lagrangian that is consistent with the symmetries of QCD can 
(in the low energy regime) have all high momentum interactions integrated 
out, leaving behind nucleons and Goldstone bosons as the only degrees of 
freedom.

CnN = & (ilP ~ m N + ^  (4.84)

Here 4/ is the nucleon doublet, Ip represents the covariant derivative, is 
the nucleon mass taken in the chiral limit and gA is the axial-vector coupling 
constant again taken in the chiral limit. is a Hermitian quantity known
as the vielbein and it is given by

= i[u^d^u -  u d ^ ]  (4.85)

With u representing the square root of the chiral fields (see eq. 4.60). To
find the interaction term for this Lagrangian we must expand the chiral fields.
We recall the complex notation for the chiral fields (eq. 4.60) since for that 
representation u(x ) is simply given by

u(x) = exp ( )  (4-86)

On expanding u and v) and substituting into the vielbein we find

r a8  o
%  =  f +  0(3>3) (4.87)

/  7T

When this is inserted into the Lagrangian C^n  we find the interaction La­
grangian -i

An < =  - ■ ~ y i ll*radlA>a*  (4.88)z r  o

In chapter 6  we use a SU(3) Lagrangian as our starting point. For full QCD 
this would be4

CBn = • V B )  +  2D t i (B S»{u^  B})  +  2Ftr(BS»[ufl, B})

+symmetry breaking terms due to quark masses (4.89)

4Note the explicit symmetry breaking terms due to quark masses have been dropped.
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Here B  = B aXa with A° being the Gell-Mann matrices, v  represents the 
velocity of the baryon in heavy baryon chiral perturbation theory, V B  give 
the covariant derivatives of the baryon fields and S M define the spin operators 
[15]. W hat should be noted is that for an SU{3) flavour symmetry two 
independent interaction terms appear. In equation 4.89 these interaction 
terms have the coefficients D  and F. The full QCD Lagrangian that is the 
starting point for the derivation of the self energy equations of chapter 6 

can be found in [17]. From here we make the appropriate extensions to 
partially-quenched QCD. The full QCD Lagrangian of [17] also includes a 
clear outline of the symmetry breaking terms which arise from the quark 
masses. Although here I have only sketched a brief outline, a very good and 
detailed review of this can be found in [16] along with example calculations.

It should be noted th a t similar effective Lagrangians can be derived for 
vector mesons. An example for the partially quenched case can be found in 
[18]. It is the interaction terms from the Lagrangian in [18] that subsequent 
calculations for the vector meson self energies in chapter 5 are made from.

4.13.4 Self energy integrals

As an example of how the self energy integrals are arrived at, we will consider 
the pion loop contribution to the nucleon self energy.

For the sake of simplicity we will work in the chiral limit. The free 
propagator Sp(p) is modified by the self energy £(p) described by figure 4.1

K

P P -k  P

Figure 4.1: Pion loop contribution to the nucleon self energy.
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The propagator is given by

(4.90)

Here 0+ represents the usual Feynman prescription for a relativistic Greens 
function. We now read off5 the Feynman rule for the vertex of an incoming
pion with four momentum q and isospin index a noting tha t this is exactly 
the term that appears in our interaction Lagrangian

Integrating over the loop momentum leaves an integral that describes the 
pion loop contribution to the nucleon self energy.

The self energy integrals in chapters (5 & 6 ) are expressed in a three dimen-

4.13.5 Regularisation and Renorm alisation

In order to perform a calculation within the frame work of a Quantum Field 
theory we must regularise and renormalise divergent loop integrals. Reg­
ularisation and renormalisation is the two step process of the removal of 
infinite divergences. Regularisation describes the process of quantifying the 
asymptotically divergent components of loop integrals. Renormalisation is 
the subsequent removal of these divergences such that the results are rendered 
finite and any dependence on the regularisation procedure is removed.

There are numerous schemes for renormalisation, in this section we will 
prove an equivalence between the minimal subtraction (MS) scheme and

5For a complete list of Feynman terms see Appendix A of [19] or for Feynman rules see 
section 4.4 of [16].

*(_5§07,,75rl''5°^~^ = - 5 i^ 75T<l 4̂91^

% (4.92)

(4.93)

sional form where the time component has been integrated out.
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the finite range regularisation (FRR) scheme that is central to the Adelaide 
method.

FRR is a central reason for the Adelaide methods success. It allows us to 
replace the poorly convergent Chiral expansions that dimensional regulari­
sation gives us with a highly convergent series [12].

We continue by considering the leading order non-analytic (LNA) be­
haviour of the nucleon in the heavy baryon limit. In this limit the four- 
momentum is factored into a velocity dependent part and a residual momen­
tum part. A projection operator is then used to split the baryon field into 
large and small fields. We begin by noting the formal chiral expansion for 
the nucleon mass

m N =  a0 +  a2m l  -1- EN (4.94)

The coefficients ao and a2 come from the bare nucleon propagator and 
its leading quark mass dependence. In the heavy baryon limit the pion loop 
contribution to the self-energy at LNA, is given by (see eq. 6.7)

7T________ ___ A/  T
a N N  ~  X.'ir1 '*

3  2Xtt — 3A32tr /

' •  -  U d h ¥ T S f  14 851

The k °  integration has been done in the relative integral ( / „ . ) .  I t’s in­
frared behaviour gives the leading non-analytic correction to the nucleon 
mass. Isolating the pole from the divergent part of the integral (7^) gives

J„ = I f  dk(k> - m l )  + U  d k (4.96)

Here the second integral is simply equal to m j. In the minimal subtrac­
tion scheme we absorb the infinite contributions from the first integral into
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renormalised coefficients in our chiral expansion

m N =  Co +  C2m l  +

Co =  do + Xir~ I k2 dk
7T J

C2 = a2 ~  Xk~ J  dk  (4.97)

We now consider the finite range regularisation method. Here we use the 
nucleon’s finite size and physical form factor to motivate the introduction 
of a regulator function, u{k), that vanishes sufficiently fast as k —» oo. The 
relative integral now becomes

^  /  d k U2 2 " 2W  (4-98)7t J k2 + m~

We will set our regulator function to the simplest function that we can
imagine, a sharp cutoff that is defined by some scale (A). Our regulator
becomes

u2{k) = ©(A -  k) (4.99)

Our integral now has the upper bound of A rather that infinity. We may 
integrate this explicitly to find

2 A3 2A 2 2 o i /  A \
C  = -z-----------+  —m  tan ( —  ) (4.100)

37T 7r 7r \m n/

Taylor expanding about the chiral limit gives

2 A3 2 A 9 o 2 4 .

We absorb these contributions from the integral into renormalised coefficients 
to give (eq. 4.102).
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C2 =  0 2 - X * —  (4-102)
7r

This demonstrates a mathematical equivalence between the finite range reg­
ularisation scheme and minimal subtraction since by sending the scale (A) 
to infinity we recover the minimal subtraction equations. Further discussion 
of this equivalence can be found in [2 0 ] Sz [1 2 ].
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Chapter 5

An analysis of the vector m eson  
spectrum

5.1 Introduction

In this chapter we apply the chiral extrapolation technique developed by 
the Adelaide group. It is designed to extrapolate lattice Monte-Carlo data 
using a finite range regulator prescription [1 2 , 24, 29]. The following section 
lists the finite-range regulator forms for the self-energy of the p meson in 
the pseudo-quenched case. The derivation of this can be found in [32]. We 
use the Adelaide expressions for the self energy to fit data generated by the 
CP-PACS Collaboration [2 2 ] in section 5.3. Section 5.4 then gives details of 
the chiral fits. We then discuss varying the quantity used to set the lattice 
spacing in section 5.5.1. Finally we make predictions for the p, K* and <j> 
masses along with predictions for the J  quantity [21] and compare these with 
experimental results.

5.2 The partially quenched ansatz

In this section we study the form for the self energies EJ^ and EJ^ corre­
sponding to Eqs. (3 & 4) in [24]. The processes responsible for these self 
energies are depicted in figure 5.1.

67
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71

P

(0

K

P

K

v'

P

D

Figure 5.1: The first diagram gives rise to the leading non-analytic contribu­
tion to the p self energy. The second diagram gives rise to the next-to-leading 
non-analytic contribution to the p self energy. The last diagram discribes the 
rf contribution to the p self energy. These diagrams give rise to equations 
5.3, 5.2 & 5.4 respectivly.
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Here though we consider the “pseudo-quenched” case, where valence and 
sea quarks are not necessarily degenerate. In [24] the case of full QCD was 
considered. We also consider the self energy contributions due to the double 
hairpin (DHP) diagrams. Our analysis is restricted to the case where the 
valence quarks in the vector meson are degenerate, i.e. /t*al =

Throughout this chapter we will use the following notation.

Mps(v)(Pi ^seaj «vai) refers to the pseudoscalar (vector) meson mass where 
the first two arguments refer to the sea parameters and the last two refer to 
the valence quark masses. We will also use the following shorthand notation:

M non -deg =  M ({3, K sea; Ksea , K ^ )

M  9 — M  (/?, Ksea? ^valj ^val)
M unit = M { p , «sea 5 Ksea, Ksea) •

where the superscript unit refers to the unitary data where =  K,sea;
deg refers to the “degenerate” data where and these are not
necessarily equal to «sea; non-deg refers to the non-degenerate case where 

^vai 7̂  ^vai and in our case one these is equal to Ksea.

The total self energy is given by:

Z t o t  =  Z * M M % r des) 2 ) +  2 L ( ( A ^ _<fe9) 2 ) +

(5.1)

where the individual terms are given by:

™  =  r —
6 tt2 J0 u.<Jk){iol(k) -  / - tp /4 )

™  =  dk
™ 12x2 J0 ujn(k)(wn(k) +  AM ^P)

,P =  r  k W j k )  dk__________
D H P  3 tr 2 / 2 Jo ( k2 +  (M ™ ~ de9)2W  +  { M f D 2)

x((Mp™~deg)2 -  ( M f D 2)
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Vp92 f ° °  k*u2(k) dk
3v 2f 2 Jo (k 2 +

x ( ( M £ f ) 2 -  (M p °Y )  (5.4)

with w2n(k) = k2 +  (Mp^ 1 -* 9 ) 2

and AM„„ =  M^ " " - * 9 -  M * 9

We note that ( u ^ k )  +  AM^p) > 0 for all quark masses and nontrivial mo­
mentum considered in the lattice analysis. The constants in these equations 
are given by g^p* = 16 [GeV-1], = 6.028. p p & p,  ̂ are the (physical) p
and 7r masses respectively. We take g2 = 0.75 which is the preferred value of 
[18] and /„  =  3/32 [GeV].

We use a standard dipole form factor, which takes the form

“ ^  (A2 +  k2Y
'U,iruj{k') t i ( f c )

u ^ { k )  =  u{k)u~l {yjp2p/ 4 - / 4 )

The self-energy equations are discretised using:

(5.5)

We would like the finite range regulator to regulate the effective field 
theory when kx, ky, kz tend to infinity. Of course, once any one of the kx, 
ky, kz are greater than, say, 1 0 A the contribution to the integral is negligible. 
Hence, we would like the highest momentum in each direction to be just over 
1 0 A. So we use the following to calculate the maximum and minimum for i, 
j, k above:

47r
\ ' L* k I?rvnr. , r t - j v

with
2 tt( z, j , A:)

%,y,z aN :
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/• . 7 \ r 1 0 A a AT .
UiJi k )rnax [ 7v(a.  ̂ J +  1

/■ • 7 \ a at l
U 1 J  •) L )  m in  [ 1

where [...] is the integer part. We study a range of values of A which are 
chosen based on the value of AnuJ = 630 [MeV] used in [24]. The value of A 
is highly constrained by the lightest data point in the My  versus MPS plot, 
and since the data used in [24] includes a much lighter point than in this 
study, we use its value of A to guide our choice.

Figure 5.2 shows the various self-energy contributions, and TfDHP
as a function of Mp°g~deg (see Eqs. 5.2, 5.3 &; 5.4) for the representa­
tive (/?, ttgea) — (2.10,0.1382) dataset (sec. 5.3) with our preferred value 
of A = 650 [MeV]

-o.oi

>  -0.02

-0.03

-0.04

-0.05
0.2 0.3 0.4 0.5

non-deg.2
(M ) [GeV ]

0.6

Figure 5.2: The self-energy contributions (see Eqs. 5.2, 5.3 & 5.4) versus 
Mncm-deg for ensemble (/?, «sea) =  (2.10,0.1382).

In section 5.4.3 we perform a highly constrained fit to the complete de-
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generate dataset. We use this method to determine an estimate of the correct 
value of the A parameter.

5.2.1 Double Hairpin Diagrams

In eq. 5.4, EPDHP, the double hairpin contribution to the vector meson masses 
self-energy is defined. This section sketches the derivation of this term [28, 
32].

The 7f  can occur as an intermediate state in the vector meson’s self-energy. 
However, because of the special nature of the 77', care must be taken in order 
to correctly account for its propagator. In figure 5.3 the 7/  intermediate state 
in the vector meson’s self-energy diagram is represented. These diagrams are 
known as the “double hairpin (DHP) diagrams” .1 The left-hand diagram 
has no sea-quark loop insertions in the 7/  propagator, whereas the right-hand 
diagram has one such loop. In quenched QCD, only the left-hand diagram is 
present, and in full (unitary) QCD, both are present, together with diagrams 
including an arbitrary number of sea-quark loops. In the pseudo-quenched 
case, the same diagrams are allowed as in the full QCD case, except that 
the quarks in the loops have a mass, m qsea, which is not equal to the valence 
quark mass, m lal.

Concentrating on the pseudo-quenched case, the 77' contribution to the 
DHP can be written as

 ^ _____  n2 ( 1 _________ I_________   ̂ (5  6)
(k2 + (Mpeg )2)2 V A:2 +  (Mp7̂ 1)2 (A;2 +  (M j^*)2)2 { }

where k is the momentum carried by the 77', and //q the coupling of the 
quark bilinears to eachother via the gluons in the sea. Note that the first 
term in eq. 5.6 corresponds to the case of no sea quark loop insertion (i.e. 
the quenched case), the second term to one sea quark loop insertion, etc. 

Resumming the series in eq. 5.6 and sending —> 0 0  (since it corresponds

JIt turns out that the “single hairpin diagram ” does not contribute to  the vector m eson’s 
self-energy.
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to a mass scale which is much larger than the pion mass) gives

k2 +  ( M p g 1)2 

~ (k2 + (Mpg)2)2
(5.7)

There is a second diagram where the rj enters which involves neither a 
single nor double hairpin. Its contribution is

1
k2 +

Combining eqs. 5.7 & 5.8, and rearranging gives

(5.8)

( M p D 2 -  + ( M p j f  -  ( M i f f  (5 g)
(k2 + (M np^ - ie9)2)(k2 +  (M * |)2) (k2 +  (M * |)2)2

which leads to the DHP self-energy term in eq. 5.4. Written in this way it 
is trivial to see that in the full QCD case, where = Mp™~deg = Mpg,  
the DHP contribution gives zero as expected, i.e. it only gives a non-zero 
contribution for the pseudo-quenched case.

o

Figure 5.3: The first of these quark flow diagrams shows the double hairpin 
and the second shows the double hairpin with one sea quark loop insertions. 
In each case the rf is the meson propagating along the top of the diagram.

5.3 Overview of CP-PACS Data

In [22], the CP-PACS collaboration published meson spectrum data from dy­
namical simulations for mean-field improved Wilson fermions with improved 
gluons at four different (3 values. For each different (3 value there are four 
different ftsea values giving 16 independent ensembles. We summarise the 
lattice parameters used in table 5.1.
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In figure 5.4 we plot the unitary (i.e. Kyal =  = «sea) pseudoscalar
mass against the lattice spacing, aro for the 16 ensembles in table 5.1 (Note 
tha t (M'pg1)2 is a direct measure of the sea quark mass as outlined in section 
4.9.2). Also included (for reference) are the mass values of the physical 
pseudo-scalar mesons 7r, K , “7/3” . Note the large range of both a and m |ea in 
the simulations, and that the lattice spacing, a, is primarily determined by 
the (3 value rather than the m |ea value.

The physical volume of the lattice was held fixed at La «  2.5 fm for the 
j3 = 1.80,1.95 and 2.10, but the (3 = 2.20 ensemble had a slightly smaller 
physical volume. A study of finite volume effects due to this is beyond the 
scope of this work, and we treat all 16 ensembles on an equal footing. The 
mass ratio M p s / M y  is related to the mass of the sea quarks used and varies 
from 0.55 to 0.8. The lattice spacing a varies from around 0.09 to 0.28 fm.
In our study we consider the two cases where the scale is set using 7*0 [21] 
and the string tension a.

For each of the 16 ensembles we consider five ACyai values. Hence a global 
treatment of the data set yields a total of 80 ( M y 9, M p g )  data points in the 
analysis.

We generate 1000 bootstrap clusters for all M p s  and M y  data using a 
Gaussian distribution whose central value and FWHM are the same as the 
central values and errors published in the table XXI of [22].

Our errors are totally uncorrelated throughout - i.e. each My((3, Ksea; ^ al, /<tjal) 
bootstrap cluster is uncorrelated with the corresponding Mps((3, «sea; ^ iai, ^vai) 
bootstrap cluster. Also the M(/?, Ksea; «Ja], /^al) data is uncorrelated with the 
M(f3', K,'seaJ /^al, / 4 J  data, and, furthermore, M(P,  Ksea; /^al, «4i) data is un" 
correlated with the M({3, ^sea; ^ a], Kya]) data.

Hence we expect the statistical errors in our final results to be overesti­
mates of the true error because we have not benefited from any cancellation 
of statistical errors which should occur when combining correlated data. It is 
possible to estimate the increase in our errors due to the fact that we do not 
maintain correlations as follows. The ratio Mp™1 / M y nit listed in table 5.1 
is obtained from our bootstrap data. Comparing this with the Mp™1 / Mymt 
data in table XXI of [22] (which benefits from the cancellation of correla-
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tions), we can see that ignoring correlations increases the errors very roughly 
by 20%. It is reasonable to expect a similar increase in errors for other 
quantities we study.

The lattice spacings aro>c are found from table XII of [22] using tq = 0.49 
fm and \f~o =  440 MeV. As in the case of the meson mass data we generated 
1000 bootstrap clusters with a Gaussian distribution.

The action used in [22] is tree-level, rather than non-perturbatively im­
proved and thus is presumed to have some residual lattice systematics of 
0(a).  We fit the data assuming both O(a) and 0 ( a 2) effects in sections. 
5.4.2 & 5.4.3, and are thus able to obtain continuum predictions.

0.2

0.05 0.2 0.250.15 

a [fm]

Figure 5.4: A plot showing the range of sea quark mass (Mp™t)2 and lat­
tice spacing, aro), covered by the CP-PACS data as displayed in Table 5.1. 
(Mp™1)2 is the pseudo-scalar meson mass squared at the unitary point, i.e. 
where Kvai =  Ksea). The experimental points for the 7r, K  and ur)sv mesons 
are also shown for reference.
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p ^sea Volume M p^/M y™ 1 aro [fm] aa [fm]

1.80 0.1409 123 x 24 0.8067^ 0.28612 0.28812
1.80
1.80

0.1430
0.1445

123
123

x 24 
x 24

0.75261H
0.6941^

0.27212
0.25812

0.28012
0.26912

1.80 0.1464 123 x 24 0.54712 0.23712 0.24812

1.95
1.95
1.95
1.95

0.1375
0.1390
0.1400
0.1410

163
163
163
163

x 32 
x 32 
x 32 
x 32

0.80451H
0.75212
0.69012
0.58212

0.19612
0.18512
0.17412
0.16312

0.2044122
0.1934112
0.1812112
0.1699112

2.10 0.1357 243 x 48 0.80612 0.127512 0.134212
2.10 0.1367 243 x 48 0.75512 0.120312 0.125412
2.10 0.1374 243 x 48 0.6911* 0.115712 0.120312
2.10 0.1382 243 x 48 0.57612 0.109312 0.112912

2.20
2.20

0.1351
0.1358

243
243

x 48 
x 48

0.79912
0.75312

0.099712
0.096612

0.10503111
0.101312

2.20 0.1363 243 x 48 0.70511 0.093612 0.097812
2.20 0.1368 243 x 48 0.6321| 0.090612 0.094912

Table 5.1: The lattice parameters of the CP-PACS simulation used in this 
data analysis taken from[22]. The superscript unit refers to the unitary data, 
i.e. where /c*al =  K%al = Ksea,. Note that the errors reported in this table are 
obtained with our bootstrap ensembles (see sec.5.4.1).
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5.4 F itting Analysis

5.4.1 Sum mary o f Analysis Techniques

Our method is centred on converting all masses into physical units prior to 
performing any extrapolations. An alternative to this would be to extrapolate 
dimensionless masses (i.e. values in lattice units) as in [22]. We believe that 
our method has the following advantages:

• We can combine the data from different ensembles and treat it in a 
global manner. If we left the masses in dimensionless units, we could 
not combine data from different ensembles due to differing lattice spac- 
ings.

•  Dimensionful mass predictions from lattice simulations are effectively 
mass ratios, and so we expect some of the systematic (and statistical) 
errors to cancel, e.g. M dirn̂ ul =  M #  x a -1 =  M # / M *  x M ^ pt where 
fI is the quantity used to set the lattice spacing, a, the superscripts # , 
expt refer to the dimensionless lattice mass estimate and experimental 
value respectively.

We consider two different methods for setting the scale. These are deter­
mining the lattice spacing from the string tension (a) and from the Sommer 
scale (r0). We find one method is better than the other. This is outlined 
in section 5.4.3. Table 5.1 lists values for aro and aa. We also consider the 
effects of using other quantities to set the scale.

We compare the Adelaide method with a naive polynomial fit. Our fitting 
functions take the following form, for the Adelaide fits

\ j  ( M y 9)2 — E Tot — )4 +  ae(Mpg )6 (5.10)

where Etot is from Eq.(5.1), and for the naive polynomial fit

M y 9 = a0 + a2(Mpeg )2 +  a4{ M ^ ) 4 +  a6(M^e| ) 6 (5.11)
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We divide these fits into two further subcategories. The first category 
includes the above fits and is referred to as “cubic” since they include cubic 
terms in the chiral expansion of m 9ea oc (Mpg)2. The second category is 
formed from fits with the coefficient a6 set to zero in equations 5.10 & 5.11. 
We call this category “quadratic” .

We note that the dominant functional form of M y  with ( M p 9)2 is linear 
for example see figure 5.5. This fact is exploited in the above fitting functions. 

This is why the Adelaide fit uses y j ( M y 9)2 — E to t  on the left hand side 
rather than (M y 9)2 — Y,TOT which would be an equally valid chiral expansion. 
It follows for the above argument that we can expect the an coefficients to be 
small for n > 4, and this is in fact what we find. In the following subsection 
we fit to equations 5.10 h  5.11 for the 16 ensembles in Table 5.1 separately. 
We then consider a holistic approach where we combine the data from all 16 
ensembles and perform a single global fit.

5.4.2 Individual ensemble fits

We first consider an individual analysis of the meson spectrum. This is done 
by treating the 16 ensembles listed in table 5.1 separately. We perform fits to 
the five ( M y 9, Mpg)  data points available from each ensemble. The fitting 
functions used are the Adelaide (eq. 5.10) and the naive (eq. 5.11) fitting 
functions. We restrict our attention to quadratic (oq =  0) chiral fits because 
there are only five data points available for each analysis. We use r 0 to set 
the scale and the A parameter for the Adelaide fits is set to A =  650 [MeV] 
which is our preferred value (see Sec.5.4.3).

The results for the coefficients ao,2,4 which are obtained by fitting My  
against Mps  using both the naive (eq. 5.11) and Adelaide (eq. 5.10) fitting 
functions are listed in table 5.2. The fact that the a4 coefficients are small and 
in most cases poorly determined supports our decision to fit to the quadratic, 
rather than the cubic chiral extrapolation form.

Another important point to note is that there is a level of agreement 
between the naive and Adelaide ao,2 coefficients, although their variation 
with Ksea tends to be different.
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0 ^ sea
^naiveao

[GeV]
adeZao

[GeV]
« naive (Z2

[GeV"1]

~adelii2

[G eV '1]
„ naive 

4
[GeV"3]

n adel
4

[GeV"3]

1.80
1.80
1.80
1.80

0.1409
0.1430
0.1445
0.1464

0.7011}}
0.7121}}
0.731*
0.721*

0.701*
0.7241“
0.7561“
0.7691“

0.461}
0.481}
0.431}
0.491}

0.541}
0.511}
0.441}
0.431}

-0.011}
-0.041}
0.011}
-0.021}

-0.091}
-0.081}
-0.011}
0.0071}}

1.95
1.95
1.95
1.95

0.1375
0.1390
0.1400
0.1410

0.761*
0.761*
0.7851}*
0.76611;!

0.751*
0.7721“
0.8031H
0.7991“

0.491}
0.471}
0.431}
0.481}

0.531}
0.491}
0.441}
0.451}

-0.051}
-0.031}
-0.011}
-0.031}

-0.081}
-0.051}
-0.021}
-0.031}

2.10
2.10
2.10
2.10

0.1357
0.1367
0.1374
0.1382

0.8291}}
0.7941“
0.8071H
0.7811“

0.8201“
0.7971“
0.8221“
0.8141“

0.421}
0.501}
0.481}
0.531}

0.461}
0.531}
0.491}
0.501}

-0.021}
-0.061}
-0.051}
-0.081}

-0.051}
-0.081}
-0.061}
-0.071*

2.20
2.20
2.20
2.20

0.1351
0.1358
0.1363
0.1368

0.841}
0.831*
0.801"
0.781*

0.841}
0.841*
0.8111
0.801*

0.431}
0.441}
0.511}
0.521}

0.461}
0.461}
0.521}
0.511}

-0.021}
-0.031}
-0.071}
-0.061}

-0.041}
-0.051}
-0.081}
-0.061}

Table 5.2: The coefficients obtained from fitting My  data against MpS using 
both the naive and Adelaide fits (i.e. eqs.(5.11 & 5.10)) for each of the 16 
ensembles listed in Table 5.1. As discussed in the text we restrict these fits 
to quadratic rather than cubic chiral functions (i.e. a6 =  0). The scale was 
set from Tq.
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We give a representative example of these fits in figure 5.5 using the 
ensemble (0, Ksea) =  (2.10,0.1382). This ensemble’s (a, m^ea) coordinates 
are closest to the physical point (a, ra*Jea) =  (0, m u^)  for ensembles with 
La «  2.5 [fm] (see fig.5.4). In figures 5.6 & 5.7 we investigate the correlation

XI=
>

O  Adelaide data 
Adelaide fit 

x  naive data 
naive fit

0.9

0 0.2 0.4 0.6 0.8

M^ 2 [GeV2]

Figure 5.5: A plot of M yub versus Mps  data for the ensemble (0, Ksea) =  
(2.10,0.1382) together with the results of the quadratic Adelaide (Eq.5.10)

and naive (Eq.5.11) fits. M y ub is defined as M yub =  y j ( M y 9)2 — Epor  for
the Adelaide fit (i.e. the L.H.S. of Eq.5.10 - note Epop is negative).

of the (a0, a.2) coefficients for both the Adelaide and naive fits. As expected, 
as ao increases, a 2 decreases. Both methods show this trend to some extent. 
The figures also indicate that there might be a systematic variation of ao,2 

with aro. To investigate this further we plot ao and a2 against aro (for both 
the linear and Adelaide fits) in figures 5.8 & 5.9. We use these figures to 
motivate a continuum extrapolation of the form

__________ „con t 1 \r in d iv id u a l „  / r  in \

^0,2 — «o,2 +  A 0,2 aro

We list the results of these fits in table 5.3.
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0.6

0.56

0.52

><u
o k «!!.---- 1

0.48

0.44

0.4

0.36
0.7 0.80.75 0.850.75 0.8

aQ [GeV]

Figure 5.6: A scatter plot of a2 against a0 for the Adelaide fit showing their 
mutual correlation.

0.6

0.56

0.52

0.48

*  0.44

0.4

0.36

0.7 0.75 0.8 0.85
a0 [GeV]

Figure 5.7: A scatter plot of a2 against a0 for the naive fit showing their 
mutual correlation.
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O  A delaide data 
A delaide fit 

x  naive data 
naive fit0.84

P  0.76

0.72

0.68

0 0.05 0.1 0.20.15 0.25

a [fm ]0

Figure 5.8: A continuum extrapolation of the ao coefficient obtained from 
both the Adelaide and naive fits Eq.(5.12).

The values of X™2 imdual in table 5.3 confirms a statistically significant 
O(a) effect in the ao coefficient but is absent from the a 2 coefficient. (Note 
we could have also performed a fit which involves for example a 0 (a 2) term. 
We investigate these fitting forms in more detail in the following section.)

We now investigate the possibility of the lattice meson spectrum having 
a sea quark dependency. This is done by plotting the coefficients a0 ,2 — 
Xindividual^ agaiIlst (l/Mp™1)2. The results of this are shown in figures

5.10 & 5.11. (Recall the superscript unit refers to the unitary data =  
Kvai — ^sea-) This is done because from the usual PC AC relation, (Mp™1)2 oc 
msea- We chose to plot (1 / M p g 1)2 as the x —coordinate rather than (M p Tg t )2 

because this allows us to plot the quenched point at (1 /Mp™1)2 = 0 rather 
than at infinity. It should be pointed out that the physical point corresponds 
to (1 /Mpglt)2 ~  50, consequently it is some way from our data. We subtract 
Xindividual^ jn ^—coordinate of figures 5.10 & 5.11 in a hope that we 

will be left with the residual m |ea effects. This is done because, as we have
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0.6

0.55
-- KH

0.5
>0)
o H H

„  0.45
-  N

0.4
O  A delaide data 

A delaide Fit 
x  naive data 

naive fit0.35

0 0.1 0.2 0.250.05 0.15

a [fm]*0

Figure 5.9: A continuum extrapolation of the a2 coefficient obtained from 
both the Adelaide and naive fits Eq.(5.12).

n con t. 
a0
[GeV]

V  individual 0
[GeV/fm]

X o / d . o . f . ..cont..2
[GeV-1]

ind ividual

[GeV_1/fm]
x l  /d.o

Naive-fit 0.8611J1 -0.531? 21 /  14 0.513 -0.2133 8 / 1 4

Adelaide-fit

o 
o

+ 7C
O

e-00o

-0.5111 16 /  14 0.503 -0.0631 10 /  14

Table 5.3: The coefficients obtained from the continuum extrapolation of 
both the naive and Adelaide ao,2 values from Table 5.2 using eq.(5.12).
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seen, variations in lattice spacing dominate those in m^ea.
Figures 5.10 k, 5.11 show that there are little if any significant mfea depen­

dencies in ao,2 - Moreover linear fits to (1 /Mpg1)2 produces a gradient which 
is almost zero within errors for the ci2  term. We conclude this subsection by 
noting that we have not observed any evidence of unquenching effects in the 
the data.

0.92

0.9

<uO
o  - -

0.86CT3O
X

O 0.84cd

0.82
O  Adelaide data 

Adelaide fit 
x  naive data 

naive fit 
♦  Quenched data

0.78

Figure 5.10: A chiral extrapolation of the a0 — XQndimduala coefficient obtained 
from both the linear and Adelaide fits. Also plotted is the quenched data 
point, see sec. 5.4.4. The scale was taken from r0.

5.4.3 Global fits

In this section we treat the degenerate data from the 16 different ensembles 
as a whole data set. Doing this produces a data set containing 80 points 
(16 ensembles with five (Mv 5, MPg) values in each). Our hope is that this 
larger data set will constrain the fits allowing us to fit to more complicated 
functional forms and also produce a highly constrained set of fit parameters 
(io,2,... • Figure 5.12 is a graphical representation of the 80 degenerate CP- 
PACS data points where we have set the scale from ro-
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O  Adelaide data 
Adelaide fit 

x  naive data 
—  naive fit 
+  Quenched data

0.6

0.55

><uO
0.5

P
X

N

'cN 045

0.4

0.35
0 2 3 5

( l / Mp ^ ) 2 [GeV2]

Figure 5.11: A chiral extrapolation of the <22 — X™dimduala coefficient obtained 
from both the linear and Adelaide fits. Also plotted is the quenched data 
point, see sec. 5.4.4. The scale was taken from r0.

If we are to treat the data as a whole data set it is very important to 
model the lattice artefacts correctly. Table 5.2 along with the discussion in 
the previous section indicates a variation amongst the a0 values with lattice
spacing, but the a2 coefficient is approximately constant with lattice spacing.
Also recall that the a4 coefficient was undetermined. Hence we believe that 
allowing for variation in the ao coefficient due to the lattice spacing will be 
sufficient to correct any significant lattice artifacts.

We use the above to motivate the following fitting functions. We define a 
modified version of the Adelaide and naive fitting function based on equations
5.10 & 5.11.

\J(My9)2 -  Ej-ot =  (a<Smt + X  (M *9)2

+ a4(M p^)4 +  a6(M p^)6 (5.13)

M ^ 9 = (ag"* +  X xa +  X 2a2) +  a2{M ^9)2

+ a4(M p |)4 +  ae(Mpg)6 (5-14)
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><Da
>

n n r

0.9

O P = 2.20

0.7
0.2 0.4

Figure 5.12: A plot of the degenerate CP-PACS data set. We have set the 
scale using a^.
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As in the individual analysis (sec 5.4.2) we refer to the above fits as 
“cubic” , since they include the a6 term oc m?q. As above we also perform fits 
with a6 set to zero, referring to these as “quadratic” .

We include corrections for G(a) and 0 ( a 2) lattice spacing effects in the 
fitting functions 5.13 &; 5.14. This is because the lattice action used is tree- 
level improved, and so we expect it to contain 0 ( a 2) errors, but as shown in 
section 5.4.2 there is also some residual 0(a)  errors.

We have studied fitting functions that include 0 (a , a2) terms in the a2 

(and even a4 ) coefficients to try  to uncover lattice spacing effects in the 
higher order coefficients but we have found that these fits are unstable. This 
confirms the findings of our individual analysis reinforcing our belief that the 
discernible lattice spacing effects are contained in the a0 coefficient.

In this section we study two different methods for setting the scale. We 
use both the Sommer scale (r0) and the string tension, (cr). We summarise 
these different fits in table 5.4. In total we study 24 fitting procedures, any 
one of these fitting procedures can be built by moving from left to right across 
table 5.4 and making a choice from the available options in each column.

Approach Chiral Extrapolation Treatment of Lattice 
Spacing Artefact’s in a0

Lattice Spacing 
set from

Adelaide 
i.e. eq.5.13

Cubic
i.e. 0 ( M p S) included

ao term has
0 (a  +  a2) corrections

r0

Naive 
i.e. eq.5.14

Quadratic
i.e. no G (M pS) term

ao term has
only 0 ( a 2) corrections

a

Table 5.4: The different fit types used in the global analysis. Fits for each of 
the 2 4 choices depicted above were performed.

We expect these fits to be highly constrained since they are performed 
using a data set containing 80 data points and the largest number of free 
parameters studied is six (ao, X\,  X 2, a2 , a4 and a§).

When performing the Adelaide fits we must determine the correct value
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of the A parameter (sec 5.2). This parameter is introduced in the Adelaide 
approach to model the size of the quasi-particle under consideration. It is 
this length scale that controls the chiral physics. Although it is not possible 
to allow A to be a free parameter in our fits we can derive the best value for 
A as follows. We manually vary the value of A and then plot the x 2/d.o.f.  
as a function of A. Figure 5.13 is a graphical representation of this. When 
the scale is set from ro the x 2 value as a function of A exhibits the same 
functional form for all fits and they share a distinct minimum at A «  650 
[MeV]. Explicitly this means that the A parameter has no dependence on 
the order of the chiral expansion of our fits (i.e. expanding to 0 ( M p S) or 
G(MpS) has no effect on the correct value of A) also there is no dependence 
on our modelling of the lattice systematics in the ao coefficient (i.e. we can 
choose to use either G(a + a2) or O (a2)).

When the scale is set using the string tension (cr) figure 5.13 again shows 
that the x 2 all exhibit the same functional form. Now though we see that 
all fits share a distinct minimum at A «  550 [MeV]. The discrepancy in the 
correct value of A which arises when using different methods to set the scale 
will be addressed in section 5.5.1. However we see that now the 0 (a  +  a2) 
fits give a far better x 2 that the 0 ( a 2) fits. To investigate this further we 
have fitted the data using a fitting function with only 0(a)  correction in the 
ao coefficient (i.e. eq. 5.13 with X 2 = 0). The results showed near identical 
X2 values as for the 0 (a  +  a2) fits. This is indicative of a dominant 0(a)  
lattice-spacing systematic in the cases where the string tension is used to set 
the scale. We offer no explanation why this should be the case.

These preferred values of A (550 [MeV] & 650 [MeV] for the aa and a^  
cases respectively) are used to perform the 16 global fits that are outlined in 
table 5.4. We list the results of these different fits along with the x 2/d.o.f.  
in table 5.5.

We now summarise the results of these of these fits (tb 5.5 and fig 5.13).

• Fit approach
The smallest x 2/d.o.f.  (and hence the best fit) is given by the Adelaide 
method. Moreover we see consistently smaller x 2 for a given fit using
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Q —©  Cubic, 0 (a  + a") 

i { ] Cubic, O (a')

O — O  Quadratic, 0 (a  + a ')  

□ —ED Quadratic, 0 (a 2) 

i" Cubic, 0 (a  + a2)

X  X  Cubic, 0 (a ‘ )

X  X  Quadratic, 0 (a  + a‘)

A A Quadratic, Ofa2)

Scale set from r.

1.2

Scale set from a

-a

0.8

0.6

700400 500 600 800

Lambda [MeV]

Figure 5.13: A plot of \ 2/d.o.f  against A. The dashed horizontal line repre­
sents increasing y 2 from its minimum value by unity for the ro data (i.e. it 
represents one standard deviation), see sec. 5.5. The intercept of this dashed 
line with the y 2 curves (at A =630 and 690 MeV) is used to derive upper 
and lower bounds for the preferred A value.
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the Adelaide method compared to the corresponding fit derived from 
our naive approach. This confirms that the Adelaide approach is the 
preferred chiral extrapolation procedure.

• Chiral extrapolation
In all cases the cubic chiral extrapolation (i.e. including a 0 ( M p S) 
term) leads to a undetermined a§ coefficient. We also observe the a± 
coefficient in the cubic fits becomes poorly determined compared to its 
quadratic chiral extrapolation counterpart.

• Treatment of the lattice spacing systematics
Studying the coefficients ao and 0 2  in table 5.5, we see that in the case 
where r*o is used to set the scale, the coefficients have little dependence 
on the type of lattice spacing correction used (i.e whether 0 (a +  a2) 
or 0 ( a 2) is used in the ao coefficient). We do see a reduction in the 
error of the ao coefficient when only a 0 (a2) correction is used, this is 
most likely due to reducing the number of degrees of freedom. When 
the scale is set using cr, we see that this is no longer true and that the 
coefficients ao and 0 2  do depend on the treatment of the lattice spacing 
systematics. This supports the conjecture that setting the scale using 
the string tension leads to 0 (a) systematics.

• Setting the scale
We see that in the Adelaide approach the x 2 is drastically reduced 
compared to when a is used to set the scale (fig 5.13). This along with 
the discussion regarding probable O(a) systematics in the a data, give 
us reason to favour setting the scale using ro- In the case of the naive 
fits there is no clear preference between setting the scale from either ro 
or a.

Using the above to guide our choice we select the quadratic chiral ex­
trapolation method with G{a2) corrections in the ao coefficient where the 
scale is set from r 0 to define the central value of both the Adelaide and naive 
fitting procedure. The spread from the other fitting types is used to define
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the error. We make predictions for physical meson masses in section 5.5 for 
these fitting types.

5.4.4 Quenched data.

Along with the dynamical case, we have studied quenched data from [22]. 
This data was produced from simulations that use the same (gauge) lattice 
action as the dynamical case. We use values listed in table XIII of [22] for the 
string tension and ro to determine the lattice spacing where we take ro =  0.49 
[fm] and y/a = 440 [MeV].

As in our dynamical analysis we represent the quenched data in [22] by a 
Gaussian distribution of 1000 bootstrap samples. We ensure the distribution 
has its mean equal to central value of the original data and its FWHM is 
equal to the error of the original data in [22]. Table 5.6 gives an overview of 
the parameters of these simulations.

In [22] the quenched data was fitted with a linear fitting function of the 
following form (see eq.(59) and table XIV of [22])

aMv = A v + B v (aMPS)2. (5.15)

This linear chiral fit is a simplified version of our naive fitting functions. It 
contains no a4 or a6 coefficients (hence is linear in m^ea). To analyse this 
data we use the values of the coefficients A v  and B v  (table XIV of [22]) of 
the fits performed in [22]. We do this because no individual masses for the 
quenched data are published. We convert these coefficients into dimensionful 
values via ao =  A v /a  and a2 =  B v a. We study both cases where the scale is 
set using r0 and the string tension. Table 5.6 lists the resulting dimensionful 
ao,2 coefficients.

We investigate the dependency of these coefficients on lattice spacing by 
plotting the coefficients ao and a2 against lattice spacing a. Figures 5.14 and 
5.15 represent the case where the scale is set from r0. We see a clear lattice 
spacing dependency for the ao coefficient; the a2 coefficient also appears to 
exhibit a dependency on the lattice spacing. We model the lattice spacing
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Continuum fit
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Figure 5.14: An G(a2) continuum extrapolation of the quenched ao coeffi­
cients (i.e. using eq.(5.16) with X j0) =  0). r0 was used to set the scale.

artefacts by assuming the same two a —dependencies in ao,2 as in sec. 5.4.3

O ( o , 2)  =  a g g  +  x f  X f V . ( 5 . 1 6 )

We perform the above 0(a  +  a2) continuum extrapolation, along with an 
0(a2) extrapolation (i.e. we set X{0,2̂ =  0 in eq 5.16). We choose an 
0(a2) extrapolation rather than O(a) because we expect the action to be 
dominated by 0(a2) lattice spacing artifacts. Hence a linear extrapolation 
in the lattice spacing (achieved by setting X = 0 in eq 5.16) would not be 
appropriate2. Our results from these fits show that the 0(a  +  a2) fit leads to 
poorly determined coefficients X [° f \  A point of inflection can also be seen 
in the fit which is located between the data and the continuum point (a =  0).

We list our results for the values of ag^1* and A^0,2̂ from the 0(a 2) ex­
trapolations in table 5.7. Graphically these fits are depicted in figures 5.14

P relim inary investigations into a linear continuum extrapolation lead to unreasonable 
continuum estimates for aq™1
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Figure 5.15: An 0 (a 2) continuum extrapolation of the quenched <22 coeffi- 
cients (i.e. using eq.(5.16) with X\ = 0). r 0 was used to set the scale.

and 5.15. The fact that the X^0,2̂ coefficients are significantly different from 
zero provide clear evidence for lattice spacing effects in the a0j2 coefficients 
for the quenched case. The continuum values, ag°J*, are plotted in figs. 5.10 
& 5.11 and are surprisingly consistent with the dynamical data.

In the following section we produce continuum estimates for the masses of 
the vector meson spectrum. We use these quenched values of a ^ 1 to include 
estimates of continuum quenched values of the vector meson spectrum

5.5 Physical Predictions

In this section we make physical predictions for the continuum masses of the 
p, K* & (j) (Mp, Mk * & M<p). We do this for both the Adelaide and naive 
methods (eqs 5.10 & 5.11) that have previously been explored (sec 5.4.3).

All mass predictions in this section are produced using our global fitting 
method rather than the individual analysis introduced in section 5.4.2. We



96 CHAPTER 5. THE VECTOR MESON SPECTRUM

~ cant. a0
[GeV]

x f
[GeV/fm]

x l /d .o . f ^cont.
2

[GeV"1] [GeV_1/fm]
Xl/d .o .f

From aro 
From a0

0.8951?
0.8531®

-3.11?
-2.91?

6.7 /  8  

6 .6  /  8

0.3651?
0.38111

1.5±| 
1 .611

9.9 /  8 

9.3 /  8

Table 5.7: The coefficients obtained from performing a continuum extrapola­
tion (eq. 5.16) to the ao,2 quenched coefficients. (Note we have set X { =  0
-  see text.)

choose the global method because we expect the coefficients produced to be 
more accurate than those from section 5.4.2 since the global fits are highly 
constrained.

In this section we also study the Mp prediction as a function of A. We 
choose to study the variation of the />-mass because it will be more sensitive 
to a changing value of A because T>tot is largest for smallest meson mass.

The mass predictions for Mp, M k * & M$ are obtained by setting M 7̂ ' ~ deg, 
Mps Sz Mp™1 in equations 5.10 Sz 5.11 to the values outlined in table 5.8.

Vector Meson M P S
njnon—deg

P S M p g 1

P P it Pn P it

K* P k P k / \ / 2 P it

Pr]s P k P it

Table 5.8: Values for MjS?, Mp°/f~deg and Mp™1 used in equations 5.1 - 5.4, 
5.10, 5.11 to calculate estimates of Mp, M^* and M^. The symbol ji is used 
to represent the physical masses of the mesons. Note that the values for 
M™s~deg are obtained by recalling that the non-degenerate meson contains 
one “valence” and one sea quark and that Mj>s oc m q.
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We assume an SU(3) flavour symmetry and so we expect the K  and K* 
mesons to have valence quarks with a mass equal to half that of the strange 
quark. To calculate the self energy terms in the continuum a fourth order 
Runge-Kutta method is employed to calculate the integrals. We set Mp™t to 
Mv throughout (because a unitary meson will comprise two sea quarks) and 
we assume that A M^p = 0. Physical predictions are made using all of the 24 

fitting types that were discussed in section 5.4.3 (table 5.4). To do this the 
coefficients, a^nth a 2,Afit from these fits (i.e. those in table 5.5), are used. We 
also make a prediction for the quenched vector meson spectrum as discussed 
in the previous section. Here we use the coefficients from section 5.4.4 listed 
in table 5.6. For all of the above cases we study both methods of setting the 
scale, using r 0 and the string tension.

We list results for all of our mass predictions in table 5.9. We have used 
our preferred values of A, A =  650(550) [MeV] (for the cases when the scale 
is set from r o ( c r )  respectively).

Figure 5.16 graphically represents our investigations into how the Mp 
prediction varies with the value of A for each of the eight Adelaide fits. To 
estimate an acceptable range for the A parameter we use the x 2 plot of section 
5.4.3 (figure 5.13). Using this plot we can estimate the range of acceptable 
A values defined by increasing x 2 by unity from its minimum, this represents 
one standard deviation.

The horizontal dashed line in figure 5.13 lies along x 2 values which are 
increased by one standard deviation (for our preferred method of setting the 
scale i.e the ro case). Hence we find that an acceptable range of values for A 
lies between 630 [MeV] < A < 690 [MeV].

We represent this range in figure 5.16 by plotting two vertical dashed 
lines at the acceptable maximum and minimum values of A.

We summarise the information in table 5.9 and figure 5.16 below.

• The statistical errors in the mass estimates are typically about 1%.

• We see disagreement in the Adelaide fits when we choose to set the 
scale using different methods. The Adelaide procedure is very stable 
when we set the scale using r0. But when setting the scale using the
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Source Fit Scale Mp Mk * j discrete

Procedure from [GeV] [GeV] [GeV]

Experiment 0.770 0.892 1.0194 0.487

Quenched Naive ro 0.902+s 0.9841® 1.0661® 0.35911
33 Naive a 0.861+| 0.94711 1.0331® 0.3611®

Cubic chiral extrapolation ao contains G(a + a2)

Dynamical Adelaide ro 0.7921“ 0.8891“ 1.0291“ 0.381®
33 Adelaide a 0.810:* 0.8861® 1.0261® 0.291®
33 Naive ro 0.8291“ 0.9471“ 1.0511“ 0.491®
33 Naive a 0.8151i2 0.9361® 1.0421® 0.501®

Cubic chiral extrapolation ao contains G(a2) only

Dynamical Adelaide ro 0.782±1 0.87912 1.01981“ 0.3811
33 Adelaide a 0.7811® 0.85311 0.99461“ 0.271®
33 Naive ro 0.8171J 0.93511 1.03911 0.491®
33 Naive a 0.7861® 0.90511 1.01091“ 0.481®

Quadratic chiral extrapolation ao contains G(a +  a2)

Dynamical Adelaide ro 0.7891“ 0.8891“ 1.0291“ 0.3921“
33 Adelaide o 0.8051® 0.8861® 1.02611 0.3161“
33 Naive ro 0.8371“ 0.9481“ 1.0511“ 0.4621“
33 Naive a 0.8221® 0.93511 1.04111 0.4711“

Quadratic chiral extrapolation ao contains 0 ( a2) only

Dynamical Adelaide ro 0.77914 0.87911 1 .0 2 0 0 1 “ 0.38911
33 Adelaide <7 0.7741® 0.85311 0.99501“ 0.2991®
33 Naive ro 0.8251^ 0.93511 1.03811“ 0.45611
33 Naive a 0.7911® 0.90511 1.01061“ 0.45311

Table 5.9: Estimates of Mp, M#*, and J obtained from the global fits.
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0.86

0.84

0.82

|  0.8

CL
0.78

0.76

0.74

Figure 5.16: A plot of Mp as a function of A from the Adelaide approach. 
Recall that the best A value when the scale is set from r0(a) is A =  650(550) 
MeV. The two vertical dashed lines define the range of acceptable A values 
(630 MeV < A < 690 MeV) obtained by increasing \ 2 by unity in fig. 5.13.
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string tension, we see that the four Adelaide fits do not agree and so 
appear to be unstable. We believe that this is most likely due to there 
being residual 0 ( a ) errors when the scale is set using the string tension 
(sec 5.4.3).

•  The results obtained from the Adelaide fitting procedure are very ac­
curate. At most they are twice the statistical standard error from the 
experimental value. For the Adelaide method to reproduce exactly the 
experimental Mp value, a re-adjustment of only around 1-2% in ro, and 
around 2 -6 % in y/a would be required.

• Notice (fig 5.16) that the variation of Mp with A is very small, it is 
about the same order as the other uncertainties.

• The Adelaide method has central values that are far closer to the ex­
perimental values than the naive method has. Furthermore the naive 
fitting method has larger spread of values than the Adelaide procedure.

• The quenched results significantly overestimate Mp. The quenched 
value of the J-param eter is also significantly underestimated. (These 
two facts mean that the quenched prediction is more accurate than 
the Mp value.)

All of these points are in favour of the Adelaide method. Consequently 
we believe that the Adelaide method should be the favoured method when 
performing chiral extrapolations and we note that Adelaide method is a sig­
nificant improvement over the naive approach.

To give a final value for Mp for both the Adelaide method and the naive 
method, we use our preferred fitting function (the quadratic fit with 0 ( a 2) 
corrections in the ao coefficient) and our preferred method for setting the 
scale (from ro). Our error for the different fitting methods is obtained from 
the spread in the mass predictions (for the r 0 case). We also include an 
estimate of the error associated with the A parameter. We determine this by 
varying x 2 by unity (as described above). We can then simply read off this 
error from the vertical dashed lines in figure 5.16.
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Hence Our final estimates are:

M  Adelaide =  779(4)i»if0[MeV] (5.17)

M Naive =  825(4)t>2[MeV] (5.18)

(5.19)

where the first error is statistical and the second is from the fit procedure. 
In the Adelaide case the third error is that associated with A. We do not 
make explicit any error that is associated with the determination of ro- 

We finally include a study of the J-param eter. This is normally defined 
as [2 1 ]

(5.20)dMvJ  = M v
dMpS K ,K

Here though we study the “discrete” version of this which we define as

rdiscrete -\/r f  AT K * A lp

J “  =  )  (521)

We use this discrete version of J  (J dlscrete) because it can be easily determined 
from experimental data, but J  itself cannot. These two definitions coincide 
if M y  is a strict linear function of MpS.

Table 5.9 lists values for J dlscrete. We see that the value of J dxscrete is 
a severe underestimate of the experimental value. This is a well known 
phenomena and is no surprise. We also note that the estimates of J dlscrete 

for the dynamical cases do increase toward the experimental value.

5.5.1 Setting the lattice spacing

In this section we investigate the differences in our results that occur when 
setting the scale using different methods. As previously mentioned we have 
studied two methods used for setting the scale. These are from the Sommer 
scale (r0) and from the string tension (a). We investigate the ratio of these 
scales by plotting aa/aro against r0 for each of the 16 ensembles in table 5.1. 
We see that this ratio is almost constant for the 16 ensembles and that there
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is almost no evidence of G(a) or m q dependencies. The ratio is always greater 
than one and a rough estimate of its value would be around 5% above unity. 
We believe that this can be explained if the product \for§ =  440 MeV x 0.49 
[fm] is approximately 5 % below its real value. It is this that presumably 
explains why, when setting the scale using ro, the estimates of the vector 
meson mass are larger than those found from using the string tension. Since 
the Adelaide method has a highly non-linear relationship between the lattice 
scale («_1), and estimates of the vector meson mass (M y ) due to the self 
energy (E tot) there is no corresponding simple relationship for the estimates 
of the vector meson mass made using different methods to set the scale.

1.08

1.06

o  1.04

1.02

h>H

O  P = 2.200.98

0.96
0.15

a [fm]
0

0.20.05 0.25

Figure 5.17: A plot showing the ratio aa/a ro against aro for the ensembles in 
table 5.1.

This non-unit ratio must be responsible for the difference in the predicted 
best value of A that can be observed when using different methods to set the 
scale (fig. 5.17). It follows therefore if aG/a ro were unity, then we would see 
identical Adelaide predictions when using r 0 and a to set the scale.

We also investigate one final method for setting the scale. This is the 
method of [25]. This method fixes the lattice spacing (and the strange quark
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mass) from the (K, K*) mass point, i.e. using the J-parameter. The results 
of this method are graphically represented in figure 5.18. As in our global 
analysis we plot the full degenerate CP-PACS data set (80 degenerate points 
from [2 2 ]). Figure 5.18 also includes the unitary UKQCD points from [26]. 
It is quite remarkable that when this method is used, our data lies on an 
almost universal straight line. Compare this with the case where ro is used 
to set the scale (fig. 5.12) and note that this is exactly the same data set.

1 2

' "■ T" ■ ' i  1 r........... ' i 1 1
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Figure 5.18: The vector meson masses, My  versus MpS from the CP-PACS 
collaboration [22]. The scale is set from the (K,K*)  point using the method 
in [25]. Also shown are the unitary UKQCD points from [26].

The method of [25] seems to be an ideal way of setting the scale since the 
data would be well modelled by a simple linear fit. This is because the data 
is forced to go through the (Mk ,M k *) point, leaving the gradient as the 
only free parameter. But in doing this we are normalising away the expected 
non-linear behaviour as the chiral limit is approached, and it is exactly this 
behaviour that we try to describe using the self-energy term Etot in eq. . It 
is for this reason that we believe, despite the universal behaviour of the data 
when the scale is set using the J-parameter (fig. 5.12), it would be incorrect 
to use this method to set the scale in this work.
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5.6 Conclusions

We conclude this chapter by listing the results of our study.

•  We have shown that the Adelaide method is a valid chiral extrapola­
tion procedure and we have generalised the Adelaide chiral ansatz to 
“pseudo-quenched” case (i.e. when Ksea ^  «vai)-

•  We have quantified the residual 0(a)  effects in the CP-PACS data. 
(See e.g. figs.5.8 & 5.9.)

• We have studied different fitting methods and found our global proce­
dure to be the better method.

• We have demonstrated that the Adelaide method can predict a pre­
ferred value for the A parameter.

• We have indicated tha t small errors in the values of ro and a might 
be the cause of the slight inaccuracy in the central values of our mass 
estimates.

•  We have obtained estimates of the p, K* & <j> masses with tiny (statis­
tical) error bars. (See table 5.9.)

•  We have estimated systematic errors in the p mass from the fitting 
procedure (both chiral and continuum fitting procedure).

Note that we have not modelled finite-size effects - see Sec. 5.3. This is 
because we do not have enough different volumes to undertake such a study. 
Finite volume effects are considered by the Adelaide method (eq 5.5) since 
the momentum integral is replaced by the appropriate kinetic sum.



Chapter 6

A n analysis of the N ucleon  
mass from lattice QCD

6.1 Introduction

In this chapter we again use the chiral extrapolation technique developed by 
the Adelaide group to estimate the mass of the nucleon from lattice QCD. 
We will employ a dipole form factor as we did in chapter 5 and we will 
also study a Gaussian form factor in an attem pt to prove that the Adelaide 
method is not dependent on the finite-range regulator that is employed. In 
the next section we list the finite-range regulator form for the self-energy of 
the nucleon in the pseudo-quenched case. We again use the data generated by 
the CP-PACS group in [2 2 ]. We provided a comprehensive review of this data 
in 5.3 for the p case and also, for the nucleon data, in 6.3. In section 6.4 we 
outline the various fitting methods that we employ. Section 6.4.4 investigates 
the differences between the Gaussian and dipole finite-range regulators. The 
section following this contains our physical predictions for the nucleon mass. 
We then discuss the different methods of setting the scale. Finally in section 
6.7 we draw our conclusions.

105
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6.2 The partially quenched ansatz

In this analysis we restrict our attention to the case where the valence quarks 
are degenerate ( ^ al =  n2vaX = /^al =  Kvai).

We begin by defining the following shorthand notation

M rum-deg _  Ksea; «sea> Kval, Kval)

M p  =  M p s ((3,Kseai ^vah ^vah ^val)

M ^ - ^ 9  =  M p S (/? ,K sea; « se a .K v a ,) ( 6 .1 )

M p  = MPS(/3,«sea; ^val) ^val)

M p g H =  M p S (/3, ^seaj ^sea? ^sea)

where M b (p s ) is the Baryon(pseudo-scalar) mass with B  =  N  h  A .  The first 
two arguments of M B(p s ) refer to the sea structure (i.e. the gauge coupling 
and sea quark hopping parameter) and the last three (two) arguments refer 
to the valence quark hopping parameters.

We also define the following integrals

Tt*, ^  2 f°° k4u2(k)dkI ( M p S , S M )  =  -  /  ' J
7r J o (jjyu +  o M )

, , , ,  N 2  [°° k4u2(k)dk , „ „ N
h (M p s)  = -  /  -------y —  (6 .2 )

T1" JO ^

Where we have used:

u;(fc) =  J k 2 + M ^ s (6.3)

Here Mps  can be Mpg or M p^_de5. We define this along with values for 
5M  explicitly in the individual self energy terms below.

We use a standard dipole form factor, which takes the form

U^  (A2 +  k2)2
(6.4)
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We also study a Gaussian form factor

u(k) exp A*'
k2

(6.5)

The self energy (£ v ) is the total contribution from those pion loops which 
give rise to the LNA and NLNA terms in the self energy of the baryon, and 
also the contributions th a t arise from the rj' diagrams. Explicitly we write 
the processes as N  —> N tt —*■ AT, N  —* A7r N, N  —> Nrf  —> N  and
N  —> Nrj' —> N  (figure 6 .1 ).

Figure 6.1: The four diagrams that give rise to the leading and
next-to-leading non-analytic contributions to the nucleon mass along with 
the DHP contributions from the vf. This diagrams give rise to equations 6.7.

In the limit of full QCD these 77' contributions vanish. For partially
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QQCD in the heavy baryon limit this may be expressed as [28]:

s iv =  Vnn  + Vn n  + Vn a  + Vn a  (6-6)

Explicitly we have:

3 {F + D)2
<r* 0 )

NN  3 2 t r / 2

+ a{I (M ’̂ ~ deg, -  M + )  -  0 ) ) )

NN ~  -  (<(M^  -  W f ) 2)I2( M p g)

+P(I(M%?-de9, M ^ n~de> -  Af*9) -  I {M p § , 0 ) ) i

a" -

aN  A

M2°n~deg -  M * 9))

1 1

3 2 ^

—M ^ 9) -  M&9 -  M + ) \  ( 6 . 7 )

u' _  1 ^ , 2 /  T / M non-deg  M non-deg
NA ~  32% f 2 3 V ^ r s  ’ a

The parameters a, (3 $z 7  are derived from the standard SU(6) couplings1

[29] explicitly we take

loops
a -

(3 =

2 {F + D)2 
loops

2(3F -  D)2 
7  =  - 2 D

foops =  \ ( 3 F  + D)2 + 3(D -  F ) 2 (6 .8 )
o

We use the constants F  — 0.51 and D  =  0.76 which are determined from

^ o r  a full discussion see [31].
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fitting semi-leptonic decays at tree level e.g. [14].

Our fitting function takes the following form

M * 9 =  a0 + a2{ M f l f  + ai { M f l Y  + < H { M f l f  + T.N (6.9)

This equation is based on the chiral expansion in [29] and previous work in
[30]. It also enjoyed considerable success in [32].

The self energy integrals are discretized using the same method outlined 
in section 5.2 of chapter 5.

A value for the A parameter is determined by varying A and looking for 
a mimima in the /d.o.f .

Figure 6 .2  graphically represents the different contributions to the nucleon 
self-energy, along with the physical continuum values for pion processes. We 
note that there are no continuum values for the rf since these processes 
disappear for physical values of the parameters (as required).

6.3 The CP-PACS Nucleon data

In this chapter we again use data published in [2 2 ]. Here we use the baryon 
data though. As before this data comes from dynamical simulations for 
mean-held improved Wilson fermions with improved gluons. We again study 
four different (3 values which each have four different Ksea values, giving 16 
independent ensembles. The lattice parameters used have been summarised 
in table 5.1. Figure 5.4 is a graphical representation of the unitary pseudo­
scalar masses plotted against the lattice spacing arQ and we again recall that 
(Mpg1)2 is a direct measure of the sea quark mass (sec. 4.9.2). In this chapter 
we consider the same two methods of setting the scale as in chapter 5, namely 
from the string tension (cr), and from the Sommer scale ( r o ) .  The degenerate 
data set contains 80 data points (five ttva 1 values for each (/?, Avsea) point), 
and as before we generate a 1 0 0 0  bootstrap clusters for all Mps  and M n  
data. The data has a Gaussian distribution with a central value equal the 
Mps(Mu)  value published in table XXI(XXII - for the degenerate nucleon,
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-o.i

“  - 0.2
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a* Continuum [GeVlnn L 1
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Figure 6.2: Here we plot the self-energy contributions (Eqs. 6.7) versus 
(Mp°g~deg)2 for the entire degenerate data set (dashed lines are a guide for 
the eye only). We use the dipole form factor and choose an arbitrary value for 
the Lambda parameter, A =  1 [GeV]. We also include continuum data (the 
straight lines) for the pion processes (the eta case vanishes in the physical 
limit) which is obtained by solving the self energy equations using a fourth 
order Runge-Kutta algorithm.
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XXIII - for the non-degenerate nucleon2) of [2 2 ] and has a FWHM equal to 
the published error. As before (sec. 5.3) we use totally uncorrelated data 
throughout, hence we expect our statistical errors to be overestimates of the 
true error in our results. As before the lattice spacings aa and aro are taken 
from table XII of [22]. We generate 1000 bootstrap clusters with the correct 
Gaussian and FWHM distribution. The values r*o =  0.49 and y/a =  440 MeV 
are used. Again we assume tha t the data has both O(a) and 0 ( a 2) lattice 
systematics which we investigate in section 6.4.

6.4 Fitting analysis

6.4.1 Summary o f analysis techniques

The philosophy behind our fitting method remains the same as for our inves­
tigation of the meson spectrum (chap. 5), i.e. we work in physical units when 
performing our extrapolations. We do this because it allows us to combine 
data from different ensembles; this cannot be done for the dimensionless data 
because of differing lattice spacings. Also we expect that we will benefit from 
some cancellation of the systematic (and statistical) errors. This is because 
dimensionful mass predictions from lattice simulations are effectively mass 
ratios (sec. 5.4.1).

As mentioned previously we study two methods for setting the scale, using 
the string tension (a) and the Sommer scale ( r o ) .  As with the meson analysis 
(chap. 5) we find a preferred method for setting the scale which we discuss 
in section 6.4.3.

We compare the Adelaide fitting procedure to the corresponding naive 
fitting function. After trying many different ways of fitting the data and 
allowing the error in the coefficients and the x 2 for these fits to guide us, we 
find that the data is best fitted by the following

2We take the values of in table XXIII to be the mass values for the non-degenerate 
nucleon. We can do this since the interpolation operator for N  and £  have the same 
quantum numbers
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M n - E n  = a0 +  a2(M^ | ) 2 +  a4 (M ^ f ) 4 +  a6 (M^ ) 6 (6.10)

The corresponding naive fitting function is

M n  =  do +  d2(Mpg)2 +  -f- (6 -1 1 )

Again we divide these fits into two categories. These are referred to as 
“cubic” and “quadratic” . We remind the reader tha t this is because “cubic” 
fits include cubic terms in the chiral expansion of m^ea oc ( M ^ ) 2. The 
“quadratic” fits have the a& term set to zero and so have terms that are 
quadratic in mfe3L. We choose to use a subtracted fit for convenience. A 
fit that has the self-energy added to the RHS of equation 6 .1 1  would be 
equally valid. In figure 6.3 we plot the dimensionful nucleon data and also 
the subtracted nucleon data. We see th a t the original data for the nucleon 
has some curvature but this is mostly corrected by subtracting the self-energy 
from it. So for high values of A we expect the higher order coefficients in the 
cubic fits to be poorly determined or approximately zero for the Adelaide 
case. Although this is the case, we will see that the data is better fitted by 
a moderate value of A.

In the next subsection we fit to equations 6.10 and 6.11 for the sixteen 
individual ensembles (table 5.1). Following this we fit to 6.10 and 6.11 for 
the entire degenerate data set (as in sec 5.4.3).

6.4.2 Individual ensemble fits

In this section we treat the sixteen ensembles separately. We do this by fitting 
to the five degenerate data points ( M ^ 9, AfjS?) in each A  ^sea ensemble. We 
use our preferred form factor which is the dipole form factor (sec 6.4.3 & sec 
6.4.4) and we only consider the case where r 0 is used to set the scale. For 
the dipole form factor we choose a preferred value for A (when setting the 
scale from r0) of 600 [MeV]. Section 6.4.3 shows that the preferred value of A
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Figure 6.3: The nucleon mass and the subtracted nucleon mass versus 
(Mp£g)2 for the entire degenerate data set. Again we use the dipole form 
factor and we use the same arbitrary value for the Lambda parameter, A =  1 
[GeV]. The scale is set using the string tension (cr).
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has a slight dependency on the modelling of the lattice systematics, but this 
is a very small variation of approximately 1%. The fits considered in this 
section are quadratic, i.e. we set a6 =  0. This is done because cubic fits for 
the individual case all have 100% error in the a4 and a6 coefficients. Table 
6 .1  lists the coefficients for both the Adelaide fits and also the naive fits.

n  ^ n naive n adel n naive n adel n naive „ adelfj K'sea uo uo a2 a2 aA u 4
[GeV] [GeV] [GeV-1] [GeV-1] [GeV-3] [GeV-3]

1.80
1.80
1.80
1.80

1.95
1.95
1.95
1.95

2.10
2.10
2.10
2.10

2.20
2.20
2.20
2.20

0.1409
0.1430
0.1445
0.1464

0.1375
0.1390
0.1400
0.1410

0.1357
0.1367
0.1374
0.1382

0.1351
0.1358
0.1363
0.1368

0.9742
0.9842
0.9643
0.934!

1.0042
1.0042 
0.9942 
1.0142

1.0442 
1.0542
1.0442 
1.0042

1.044|
1.1042
1.0442
1.0142

0342
0442
0342
0142

0542
0642
0542
0742

0842
1042
1042
0642

0842
1442
0842
0642

1.11412
1.11412 
1.2141? 
1.27412

1.08412
1.04+2

1.084J

1.0642
1.0142
1.0342
1.1342

1.042
0.87412
1.03412
1.084H

1.09412
1.08412
1.18412
1.23412

1-07412
1.0241

1.1142 1.0842
1.0545

1.0542
0.9942
1.0142
1.10+5

1-042
0.86412
1.01412
1.054H

-0.3041! -0.2941!
-0.29412 -0.2941!
-0.37412 -0.3741!
-0.42412 -0.4141!

-0.2542° -0.2542°
-0.2142 -0.2042
-0.264! -0.254!
-0.244! -0.2342

-0.234! -0.234!
-0.194! -0.194!
-0.194! -0.194!
-0.254^ -0.2541

-0.21412 -0.2141!
-0.0942° -0.0842°
-0.2042 -0.1942
-0.2342 -0.2241

Table 6.1: The coefficients obtained from fitting M ^  data against MpS. We 
list results for both the naive and Adelaide fits (eqs. 6 .1 1  & 6.10 respectively) 
for each of the 16 ensembles listed in Table 5.1. A dipole form factor was 
employed for the Adelaide fits using A =  600 [MeV] and the scale was set 
from r0.

As expected the leading Adelaide coefficient is always greater than the
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corresponding coefficient from the naive fits (aQdel > a jawe). In nearly all 
cases the a2 coefficient is smaller for the Adelaide fits (a%del < a jmve). The a4 

coefficients are approximately the same for both fits (a4del ~  a4aive), but the 
error in this coefficient is very large, typically 50%. We see only a few cases 
where the a4 coefficient is zero within errors though, indicating its presence 
is needed. Importantly nearly all of these coefficients are equal within errors.

There appears to be no overall trend with the sea quark mass for any of 
the coefficients. This indicates that unquenching effects are minimal.

Figure 6.4 is representative of all fits. It comes from the (/3, KseSL) =  
(2.10,0.1382) ensemble. This data set is one of the closest to the physical 
point (fig 5.4).

2

1.8

1.6

1.4
O  Mn - ZN Adelaide data 

Adelaide fitN N
x  Mn naive data 

—  M., naive fit
1.2

0 0.2 0.4 0.80.6

Mre2 [GeV2]

Figure 6.4: A plot of M jv versus Mj>s for the ensemble (/?, ftsea) =
(2.10,0.1382). Included are the results of the quadratic naive (Eq. 6.11) 
and the quadratic Adelaide (Eq. 6.10) fits. The scale is set from ro, we use 
a dipole form factor and our preferred value for A (A =  600 [MeV]).

We now go on to investigate the correlation between the coefficients a0 

and a2. As can be observed in figures 6.5 and 6 .6  there is a clear and well 
defined correlation between the a0 and a2 coefficients. As expected, when
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the value of ao increases, the value of ci2 decreases. The correlation here is 
far better than that observed in section 5.4.2 for the meson data.

1 .3

1.2

r-l

0 . 9
P = 1.95 
P = 2.10

0.8

1 .0 5 1 .1 5

a„ [GeV]

Figure 6.5: A scatter plot of a2 against a0 for the Adelaide fit investigating 
their mutual correlation.

We now investigate the variation of the ao,2 coefficients with the lattice 
spacing aro. As in section 5.4.2 we plot a o , 2  against aro and use these plots 
(figs. 6.7 & 6 .8 ) to motivate the following continuum extrapolation

„  „con t i \r in d iv id u a l _
GO,2 — ®o,2 +  A 0,2 a ro ( O .iZ j

Interestingly we investigated a continuum extrapolation of the form 
ao =  ao°n* +  XQndlvldual a^o but found that the data wras better fitted3 by equa­
tion 6.12. This is the case for both the Adelaide and naive data. It is at odds 
with section 6.4.3. The results of the fits corresponding to equation 6.12 are 
listed in table 6 .2 .

We see that although errors are high for all values of x indimdual the better

3A reduction in the y 2 of about 5% was observed for the naive fit, and of around 6% 
for the Adelaide fit.
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Figure 6 .6 : A scatter plot of a2 against a0 for the naive fit investigating their 
mutual correlation.

o A delaide data 
A delaide fit 
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naive fit

1 .1 5

S  1 .0 5

0 . 9 5

0 . 9
0 0 . 0 5 0.1 0 . 1 5 0.2 0 . 2 5
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*0

Figure 6.7: A continuum extrapolation of the ao coefficient obtained from 
both the Adelaide and naive fits Eq.(6.12).
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1 .4
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A delaide fit 
* naive data 
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HH

1.2

0.8
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Figure 6 .8 : A continuum extrapolation of the a2 coefficient obtained from 
both the Adelaide and naive fits Eq.(6.12).

..COTlt.
a 0
[GeV]

individual
[GeV/fm]

Xo/d-o.f. n COTlt. U2
[G e V 1]

individual
[GeV-'/fm]

Xl/d .o.f

Naive-fit 1.0811 -0.441“ 13 /  14 0.9716 0.7« 7 / 1 4

Adelaide-fit 1 .1 2 1 1 -0.371“ 8 / 1 4 0.961^ 0 .6 1 J 6 / 1 4

Table 6.2: The coefficients obtained from the continuum extrapolation of 
both the naive and Adelaide ao,2 values from Table 6.1 using eq. 6 .1 2 .
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determined lattice spacing effect appears to be present in the leading coef­
ficient (a0). Because errors are so high in these coefficients we believe that 
this is a sign of there being minimal O(a) effects in the lattice data when the 
scale is set using arQ. We investigate this further in section 6.4.3.

To close this section we provide a brief investigation of the lattice nucleon 
data having a sea quark dependency. To do this we use the same method 
as in 5.4.2 i.e. we plot a0j2 — X™dimdual aro against (MpJ1*)2. We remind the 
reader that we subtract X™dimdualaro in the ?/—coordinate in an attem pt to 
leave the residual m |ea effects. The results of this can be seen in figures 6.9 
& 6.10. We observe no discernible trend with the sea quark mass (from the 
PCAC relation, (Mp™1)2 oc mfea) for either of the coefficients. It can be 
seen however that as the mass of the pseudo-scalar decreases, the difference 
between the Adelaide and naive data points increases.

1 .2 5

°  Adelaide data 
A delaide fit 

* naive data 
naive fit

><oO

MT

1 .0 5 H i

0.2 0 . 4

Figure 6.9: A chiral extrapolation of the ao — X™dimduala coefficient obtained 
from both the linear and Adelaide fits. The scale was taken from r0.

We conclude by noting that we have seen no strong evidence for un- 
quenching effects in the data.
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>uo i r
eo

X

°  Adelaide data 
A delaide fit 

* naive data 
—  naive fit

0.6
0.2 0.4

Figure 6.10: A chiral extrapolation of the a2 —X™dimdual a coefficient obtained 
from both the linear and Adelaide fits. The scale was taken from Tq.
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6.4.3 Global fits

We now analyse the complete degenerate data set by treating the 16 ensem­
bles of section 6.4.2 in a global manner. This gives us 80 data points to 
work with. The larger data set should produce highly constrained fits (as 
seen in section 5.4.3). It is our hope that this larger data set will allow us to 
determine the higher order coefficients in our fitting functions (Eqs. 6.10 & 
6.11). We give a graphical representation of the degenerate (80 data points) 
CP-PACS nucleon data in figures 6 .1 1  and 6 .1 2  where the scale has been set 
using the Sommer scale (r0) and the string tension (a) respectively. As can

2

1.8

1.6

z
1.4

= 1.80

(3 = 2.10
1.2

0 0.2 0.4 0.80.6
M ps2 [G eV 2]

Figure 6 .1 1 : A plot of the degenerate CP-PACS nucleon data set. Here the 
scale is set using ro-

be seen the data in these plots has clear curvature, moreover the agreement 
between data from different (/?, Ksea) values is quite remarkable when we con­
sider that these plots are representative of the degenerate data set and have 
had nothing done to them to correct for lattice artefacts. When treating the 
data in a global manner it is very important to ensure that the lattice spac­
ing artefacts are modelled correctly. To this end we use the investigations



122 CHAPTER 6. A N  ANALYSIS OF THE NUCLEON MASS

1.8

1.6

1.4

1.2
=  2.10 
=  2.20

0 0.2 0.4 0.6 0.8
M ps2 [G eV 2]

Figure 6 .1 2 : A plot of the degenerate CP-PACS nucleon data set. Here the 
scale is set using a.

of the previous section and all we have learnt from the mesonic data (chap. 
5) to guide us when trying to account for lattice spacing effects. We have 
studied many different fitting functions where we try fitting forms that in­
clude (9(a, a2) terms in the a2 and higher coefficients. We have found though 
that these fits are unstable. Hence we conclude that for the global method 
lattice spacing artifacts are dominant in the leading coefficient (a0). Hence 
we believe that accounting for O(a) and 0 ( a 2) errors in the a0 coefficient 
will be enough to correct for any significant lattice spacing effects present in 
the data. We choose O(a) and 0 ( a 2) corrections because the lattice action is 
tree-level improved and so should contain 0 ( a 2) errors together with a small 
amount of 0(a)  errors but as seen in chapter 5, when the scale is set using 
the string tension, O(a) errors seem to dominate. Therefore our preferred 
fits, which are modified versions of equations 6 .1 0  and 6 .1 1 , are

M n -  Ejv =  {a0 + X nan) + a2( M ^ ) 2 + + a6{(6.13)
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and the corresponding naive fitting function for the global case is

Mn = (a0 +  X na") +  a2(M *s9)2 +  a4( M * !) 4 +  a6( M * !) 6 (6.14)

As discussed in the summery of our fitting analysis (sec 6.4.1) we divide these 
fits into two categories. These are referred to as “cubic” and “quadratic” . As 
before this is because “cubic” fits include cubic terms in the chiral expansion 
of mfea oc (M pg)2. The “quadratic” fits have the a6 term set to zero and 
so have terms th a t are at most quadratic in mfea. These two categories are 
divided into two further sub-categories. The first sub-category contains the 
fitting functions th a t have corrections for G(a) lattice spacing effects in the 
ao coefficient, i.e. we have n = 1 in equations 6.13 and 6.14. The second 
sub-category contains the fitting functions that have 0 (a 2) corrections for 
lattice spacing effects in the ao coefficient, i.e. we have n = 2 in equations
6.13 and 6.14. Hence for the global fit analysis the maximum number of fit 
parameters in any one fitting function is five. Our data set contains 80 points 
so we hope that this method will provide highly constrained fit parameters 
compared to those from the individual fitting method (sec 6.4.2). This is 
because for the individual fitting method the number of fit parameters was 
three, but the number of data points in each (/?, Ksea) ensemble was only five.

In this subsection we study two different methods for setting the scale. 
We remind the reader the previous section only studied one method of setting 
the scale. Here we set the scale using the Sommer scale (r0), and from the 
string tension, (cr). Finally for the Adelaide method we have two different 
form factors to study (as outlined in sections 6.1 & 6.2). These are the 
dipole and Gaussian form factors given by equations 6.4 and 6.5 respectively. 
Hence for the naive fitting method we have 23 different fitting procedures, 
and for the Adelaide method we have 24 different fitting methods. These 
fitting methods are summarised in table 6.3. As in section 5.4.3, any one of 
these fits can be built by moving from left to right in table 6.3 and making 
a choice in each column4.

As demonstrated in section 5.4.3 of chapter 5, when performing the Ade-

4N.B. The Form Factor column is not applicable to the naive fits.
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laide fits we have to determine a best value for the A parameter. We remind 
the reader that A is a length scale and it is this parameter that models the 
size of the quasi-particle that we are studying. Hence it is this that controls 
the chiral physics. Again because we use a subtracted style of fit it is not 
possible to allow A to be a free parameter in the fit. We have, in our early 
works, studied fitting functions that allow A to be a free parameter in the fit 
but found that these fits were highly unstable. Instead we use the method 
outlined in section 5.4.3. This is where we manually vary the lambda pa­
rameter then plot the x 2/d .o .f  for each different fitting function against A. 
Figures 6.13 and 6.14 represent this for the dipole and Gaussian form factors 
respectively.

0 - 0  Cubic. 0(a)

□ — E ] Cubic. 0 (a 2)
<̂ >—£> Quadratic. CXa) 

A —A  Quadratic. ()(a ' ) 
-(— -f- Cubic, 0 (a)

X  X  Cubic. 0 ( a2)
( y  Quadratic. 0(a) 

Quadratic, CXa")

Scale set from r,

Scale set from a  ■*

~o
+-

0.6

Q _ ©— r ----

4 0 0 5 0 0 7 0 06 0 0

A [MeV]

Figure 6.13: A plot of x 2/d .o .f  against A for the dipole form factor. The 
dashed horizontal line represents increasing \ 2 from its minimum value by 
unity for the tq data (i.e. it represents one standard deviation). The intercept 
of this dashed line with the \ 2 curves (at A =535 and 626 MeV) is used to 
derive upper and lower bounds for the preferred A value for the dipole case.

When the scale is set from r0 we see that the x 2/d .o .f  as a function of 
A has a similar functional form for all fitting functions. The plots also show
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Q —0  Cubic, CXa)

□ — E] Cubic. CXa2)
Quadratic. O(a) 

^ —Z i  Quadratic. 0 (a ”) 
+ -  +  Cubic, CXa)

X  " X  Cubic, Ofa2) 
y  y  Quadratic, 0(a) 

•)|C ‘ X  Quadratic, Q(a“)

X
Scale set from r,

Scale set from a

0.6

700400 500 600

A [MeV]

Figure 6.14: A plot of \ 2/d .o .f against A for the Gaussian form factor. The 
dashed horizontal line represents increasing y 2 from its minimum value by 
unity for the r0 data (i.e. it represents one standard deviation). The intercept 
of this dashed line with the \ 2 curves (at A =486 and 562 MeV) is used to 
derive upper and lower bounds for the preferred A value for the Gaussian 
case.
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that the preferred value of A has a small dependency on the order of the chiral 
expansion. For the dipole case this is very small of the order of 1% and for 
the Gaussian case it is nearer 5%. Note though the change in x 2/d .o .f  as 
A is varied is less for the Gaussian case. We observe no dependence of the 
preferred value of A on the modelling of the lattice systematics. We also see 
that the better x 2/d .o . f  is given when the dipole form factor is used. As 
expected we see that the preferred value of A is dependent on the type of 
form factor used. When setting the scale from r 0 our preferred values of A 
are

f A dipoie = 600
Quadratic \ "° . [MeV]I A G aussian  = 5 5 0

C u b i c  (  A f  -  (M e V ]  (6. 15)
 ̂ A G aussian  _  5 2 5

When the scale is set from a the plots again show a similar functional 
form for the x 2/ d.o.f for all fitting functions. We see that the preferred value 
of A again has a dependence on the order of the chiral expansion which is 
about 5%. As in the case where the scale is set from r0 the preferred value of 
A has no dependence on the modelling of the lattice artifacts. When setting 
the scale from o our preferred values of A are5

{ A1dipole _  c c n
a [MeV]

aussian  _  5QQ

f  \  dipole _  c o o
Cubic < * . [MeV] (6.16)I A i ./11/cc'lrt'n  ̂rrr L J > /

Figures 6.13 and 6.14 show that as expected the preferred value of A is 
dependent on the form factor used, but it is also dependent on the method 
used to set the scale. This discrepancy was discussed in section 5.5.1 of 
chapter 5 in terms of the mesonic data. We will address the case for the

5N.B. We do not quote errors for the preferred values of A for the quadratic case or 
when a  is used to set the scale because our final prediction for the nucleon mass will come 
from the cubic ro case. This is because the lowest x 2/ d.o. f  is found when ro is used to set 
the scale.
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nucleons in section 6.6.
We see that (as with the mesonic data in chapter 5), when the scale is 

set from ro, 0 ( a 2) errors dominate. But when the scale is set from cr, 0(a)  
errors dominate. This is further evidence supporting the idea tha t in cases 
where the scale is set using a  the dominant lattice spacing systematics will be 
0 ( a ) and in cases where the scale is set from r 0 the dominant lattice spacing 
systematics will be G(a2). As in chapter 5 we have no explanation as to why 
this should be the case.

We use these preferred values of A to perform the 16 Adelaide fits outlined 
in table 6.3 and the 8 naive fits that are also listed in table 6.3. The results 
of these fits along with the x 2/d .o . f  for each fit are listed in tables 6.4 and
6.5 for the cases where the scale is set from ro and a respectively.

As with our global study of the mesonic data (sec 5.4.3) we conclude this 
section by summarising the results of the global fitting analysis (tables 6.4 
& 6.5 and figs 6.13 & 6.14).

•  Fit approach
We see that the best x 2/d.o.f. (indicating the best fitting procedure) is 
given by the Adelaide method which uses a dipole form factor. This has 
the best x 2/d .o . f . in every case. This is further supporting evidence for 
the Adelaide method being a valid chiral extrapolation procedure. This 
is true for both methods of setting the scale. When a Gaussian form 
factor is employed we see that the x 2/d.o.f. for the Adelaide method 
is roughly equal to that of the naive fit when the scale is set from ro- 
When the scale is set from a we see that the naive method performs 
slightly better than the Adelaide method when a Gaussian form factor 
is used. We believe that this indicates that the Gaussian form factor 
does not represent the continuum behaviour of the pions in the quasi- 
particle correctly.

•  Chiral extrapolation
Errors in the higher order coefficients are large for the cubic fits com­
pared to their quadratic counterparts. This said, the cubic fits always 
produce a non-zero a& coefficient indicating the need for a cubic term
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in m qsea. (Note that the quadratic fits were preferred in the mesonic 
case.)

• Treatment of the lattice spacing systematics and the fit coefficients 
We note the remarkable agreement between the coefficients of the Ade­
laide dipole and Adelaide Gaussian fits for each fitting procedure. More­
over the coefficients of the Adelaide fits agree for the same order of the 
chiral expansion (cubic and quadratic fits). We see that the X n coeffi­
cients differ between the various fitting methods. We believe this is an 
indication that the lattice spacing error contained in the ao coefficient 
is more complicated that a simple 0(a)  or 0 (a 2) error. Though we 
still believe that 0{a) errors dominate when the scale is set from a and 
O (a2) errors are dominant when the scale is set from ro-

• Setting the scale
As seen in our study of the mesonic data (sec 5.4.3), the x 2/d.o.f. is 
almost halved when the scale is set from r0 compared to when the 
scale is set from a (figs 6.13 &; 6.14). This, along with strong evidence 
for O(a) lattice systematics in the a data, gives us reason to favour 
setting the scale from ro- We also note that in this study the naive 
method seems to prefer setting the scale from r 0, whereas in our study 
of the mesonic data (sec 5.4.3) the naive method seemed to have no 
preference.

Using our results from this section we select the cubic chiral extrapolation 
method with an 0 (a 2) correction in the ao coefficient with the scale set from 
ro to define the central values of the Adelaide and naive methods. We favour a 
dipole form factor for the Adelaide method. The spread from the other fitting 
types is used to define the error. Section 6.5 contains physical predictions 
from the nucleon mass.

6.4.4 Analysis of the different form factors

In this subsection we include a brief study of the two form factors that are 
employed in this chapter (dipole eq 6.4 & Gaussian eq 6.5). We do this in an
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attem pt to prove that the Adelaide method can employ different functional 
forms for the form factor u(k) and still produce similar results (within errors). 
We note though that the results from the previous subsection (sec 6.4.3) 
indicate a preference for the dipole form factor. Figure 6.15 shows a 2D plot 
of the two form factors with A set equal to the preferred values for each form 
factor (eqs 6.15 & 6.16).

di[wle = 594  [MeV]

gaussian
= 525 [MeV]

= 475 [MeV]0.6

3

0.4

0.2

0.2 0.4 0.6
k2 [GeV]

Figure 6.15: A plot of the dipole and Gaussian form factors. Calculated at 
the preferred values of A for each form factor.

The plot shows for the preferred values of A the functional forms of the 
dipole and Gaussian form factors are similar. It is clear though the dipole 
provides a sharper cut-off compared to the Gaussian. For a more intuitive 
view of how the form factors behave we include 3D plots for the dipole and 
Gaussian form factors (figs 6.16 & 6.17) showing how their functional form 
behaves as A and k2 change.

We see that while the two plots show similar behaviour for smaller values 
of A, their behaviour changes as A increases. For large values of A the dipole 
provides a far sharper cut-off compared to the Gaussian form factor. It would
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Figure 6.16: A 3D plot of the dipole form factor. The plot shows how the 
form factor behaves as A and k2 change.
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Figure 6.17: A 3D plot of the Gaussian form factor. The plot shows how the 
form factor behaves as A and k2 change.
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be reasonable to assume that this is why the preferred values of A are smaller 
in the Gaussian case compared to the dipole case. This provides evidence 
for the data selecting a form factor which has a functional form that most 
closely represents the continuum behaviour of the chiral physics. Since the 
data cannot alter the function which is used as the form factor it changes the 
A parameter to suit. We offer further evidence for this in the form of figures 
6.18 and 6.19. Here we see the behaviour of the self energy when the scale 
is set from ro- Figure 6.18 represents the self energy data for a dipole form 
factor with the A parameter set to our preferred value for this case which is 
594 [MeV]. Figure 6.19 represents the self energy data for a Gaussian form 
factor with the A parameter set to our preferred value for this case which is 
525 [MeV],

o.oi

M' ♦ 9

- 0.01  -

>
5Jo
e>

- 0.02
Qfi

-0.03 o - - «  a

-0.04
0.2 0.4

non-deg 2 M o c

Figure 6.18: This plot shows how the self energy behaves when a dipole form 
factor is used and the scale is set from ro- We use our preferred value of A 
in this case which is 594 [MeV].

Although different form factors have been used, the resulting functional 
form of the self energy appears to be very similar. Importantly the energy 
scale that the self energy covers is almost identical. We see that the data for
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-0.04
0.2 0.4■ 0.6 

[nonKiV  [GeV2]

Figure 6.19: This plot shows how the self energy behaves when a Gaussian 
form factor is used and the scale is set from r0. We use our preferred value 
of A in this case which is 525 [MeV].
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the dipole case has a smaller spread and this may contribute to the reduction 
in the x 2 jd .o . f  in our fits.

We conclude this section by noting that the Adelaide method seems to 
prefer a value for the A parameter that causes the form factor to represent 
the chiral physics in the continuum.

6.5 Physical predictions

In this section we make a physical prediction for the continuum nucleon mass 
(Mn ). This is done for the Adelaide method (for both types of form factor) 
and also for the naive method (eqs 6.13 Sz 6.14). All of our predictions in 
this section will come from our global approach (studied in section 6.4.3) 
rather than the individual approach that was employed in section 6.4.2. We 
choose to use the global method because we expect the coefficients from this 
method to be more accurate than those from the individual approach since 
these fits should be highly constrained. Here we also include a study of the 
nucleon mass prediction (M at) as a function of A. We obtain our continuum 
predictions by setting Mptj =  =  M pg1 = fin in equations 6.13,
6.14 and 6.7 with \lv being the physical pion mass which we take to be 138 
[MeV], We also set M%g = M%m~de9 and M * 9 =  M^ - * 9 in equation 6.7. 
In doing this we see that the rf contributions to the total self energy (eqs
6 .6  & 6.7) disappear in the continuum as required. The only remaining term 
involving M ^  and Ma is the aJjA self energy term. We set this equal to the 
physical mass splitting of the nucleon and A which we take to be 293 [MeV] 
[33]. To calculate the self-energy terms in the continuum we use the same 
fourth order Runge-Kutta method that we employed in chapter 5. To make 
a physical prediction for each different fitting method (table 6.3) we use the 
coefficients (a^0711, <22, a4 & a§) listed in tables 6.4 and 6.5 for the cases where 
r 0 and a are used to set the scale respectively. We list the results for our 
physical predictions in table 6 .6 . We use the relevant preferred value of A for 
each Adelaide fit (taken from equations 6.15 Sz 6.16 for the scale set from r 0 

and a respectively).
In figures 6.20 and 6.21 we present a graphical representation of our study
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Estimate Form M n  [GeV] M n  [GeV]
Approach Factor (Scale from ro) (Scale from a)

Experimental - 0.939 0.939

Cubic chiral extrapolation olq contains 0{a)

Adelaide dipole 0.98411® 0.9501H
Adelaide Gaussian 0.973±li 0.9381H

Naive 1.046±1| 0.9921H

Cubic chiral extrapolation do contains G(a2)

Adelaide dipole 0.9651H 0.9341H
Adelaide Gaussian 0.9561H 0.9231H

Naive - 1.0231H 0.9741H

Quadratic chiral extrapolation ao contains 0(a)

Adelaide dipole 1.00611 0.9741®
Adelaide Gaussian 0.98611 0.9591®

Naive - 1.07611 1.0271®

Quadratic chiral extrapolation ao contains 0 (a 2)

Adelaide dipole 0.9881® 0.9581J
Adelaide Gaussian 0.969167 0.9451®

Naive - 1.0541? 1.0081®

Table 6.6: Estimates of M ^  obtained from the global fits. Our experimental 
estimate comes from a simple average of the proton and neutron masses.
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into the variation of M n  with the A parameter for the dipole and Gaussian 
form factors respectively. Each figure contains eight data sets corresponding 
to the four different types of Adelaide fit and the two ways to set the scale. 
For each of these plots we include an acceptable range for the A parameter 
which is represented by two vertical dashed lines. To find this range we use 
our plots of x 2/d .o . f  against A (figs 6.13 & 6.14). We define the range of 
acceptable values of A by increasing x 2 from its minimum by unity. This 
represents one standard deviation. For our preferred fitting method6 we 
recall from 6.15 the acceptable range for A

A ̂ Pole = 594+ 32

^ G au ssian  =  5 3 5 + 3 7

We summarise the results of this section which are outlined in table 6.6 
and figures 6.20 and 6.21 below.

• The statistical errors in the mass estimates are typically less than 1% 
for the quadratic extrapolations and less than 2% for the cubic extrap­
olations.

•  We see disagreement between all types of fit when different methods are 
used to set the scale. When the scale is set from ro the mass predictions 
are always higher than when the scale is set from a. We observed a 
similar effect in the case of the of the mesons (5.9), although it is less 
pronounced.

•  We also see that the mass predictions for a particular method (i.e. the 
Adelaide dipole, Adelaide Gaussian or naive method) have a variation 
in the results of between 3% and 5%, with the largest variation in 
the naive mass predictions. This disagreement suggests instability in 
the fits. We believe this is because the lattice systematics are more 
complicated than those we have uncovered.

6We remind the reader that this is the cubic chiral extrapolation method with an 0 ( a 2) 
correction in the ao coefficient with the scale set from ro (sec 6.4.3).
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Figure 6.20: A plot of M/v as a function of A from the Adelaide approach 
using a dipole form factor. Recall that the best A value when the scale is set 
from r0(cr) for the dipole form factor is A =  594(523) MeV. The two vertical 
dashed lines define the range of acceptable A values (535 MeV < A < 626 
MeV) obtained by increasing y 2 by unity in fig. 6.13.
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Figure 6.21: A plot of M n  as a function of A from the Adelaide approach 
using a Gaussian form factor. Recall that the best A value when the scale 
is set from r0(<7) for the Gaussian form factor is A =  525(475) MeV. The 
two vertical dashed lines define the range of acceptable A values (486 MeV 
< A < 562 MeV) obtained by increasing y 2 by unity in fig. 6.14.

Scale set from r() <

>
CT <

Q —0  Cubic. CHa) 

□ - Q  Cubic, 0 (a 2)
^ —£> Quadratic, CHa) 

A  Quadratic, CHa2) 
-f-—-f- Cubic, O(a)

X  X Cubic. 0 (a2) 
y  -y Quadratic, CHa) 

Afc Quadratic, 0 (a2)



142 CHAPTER 6. A N  ANALYSIS OF THE NUCLEON MASS

• The Adelaide method always produces the mass prediction closest to 
the physical nucleon mass. For the cubic fits the Adelaide mass pre­
dictions are very accurate compared to their naive counterparts, they 
are typically within two statistical errors of the experimental mass. For 
the Adelaide method to reproduce the experimental mass prediction a 
rescaling of around 3% in r0 and 1% in y/a is needed.

• The variation of M n  in the region of allowed values of A is very small 
for each different fit. Typically of the order of the other uncertainties.

As with the results of the meson study (chap 5) we conclude by noting 
all of these points favour the Adelaide approach over the naive method. 
We believe that the Adelaide method should be the preferred method when 
performing chiral extrapolations and is a significant improvement over the 
naive method. To give the final value for M n  for both the Adelaide method 
and the naive method, we use our preferred fitting function (the cubic with 
0 (a 2) corrections in ao) and our preferred method for setting the scale (from 
r0). For the Adelaide method we use our preferred form factor which is the 
dipole form factor. We quote an error that is based on the spread in the 
mass predictions (for the r0 case only). We also (for the Adelaide method) 
include an estimate of the error associated with the A parameter which is 
taken from the vertical dashed lines in figure 6.20.

Hence our final mass estimate for the nucleon is

M Adelaide =  965(l5)+«+«[MeV] (6.18)

M $ aive = 1023(15)t?[MeV] (6.19)

where the first error is statistical and the second is taken from the fit pro­
cedure. The third error in the Adelaide case is that associated with the A 
parameter. We have not considered any error that may be associated with 
the determination of r0. We see that although the Adelaide prediction has a 
slightly wider error range, at its lower limit it comes within 3 [MeV] of the
experimental value confirming the Adelaide method to be the better chiral
extrapolation procedure.
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6.6 Setting the scale

In this chapter we have studied two methods of setting the scale, from r0 
and from a. We remind the reader of the results of section 5.5.1 where we 
investigated the ratio of these scales. When plotting aa/a rQ against aro we 
found that the plot had a roughly constant value of 5% above unity (fig 5.17). 
We suggested that an explanation for this could be if the ratio y/ar0 = 440 
[MeV] x 0.49 [fm] is about 5% below its true value. This would explain why, 
when setting the scale from ro, the estimates of the nucleon mass (M n ) are 
always larger than those where the scale if set from a (table 6.6) for the naive 
case. For the Adelaide method the relationship between the lattice scale a~l 
and M n is a highly non-linear one due to the functional form of E to t-  So we 
cannot imfere a similar relationship between mass estimates from different 
methods used to set the scale as in the naive case. We also believe that this 
non-unit ratio is the cause of the difference in preferred values of A that is 
observed when different methods are used to set the scale (figs 6.13 & 6.14).

6.7 Conclusions

We conclude by listing the results of our study.

• We have shown the Adelaide method to be a valid method for chiral 
extrapolations.

• We have applied the generalised Adelaide chiral ansatz for the nucleon 
to the “pseudo-quenched” case (i.e. when Ksea ^  ftVai)-

• We have tried to uncover unquenching effects in the data but found 
little evidence of this and have not managed to quantify them.

• We have tried to quantify the residual O(a) effects, but feel that we 
have not uncovered the full lattice spacing systematics.

• We have studied different fitting approaches (secs 6.4.2 Sz 6.4.3) and 
found that our global procedure to be the more robust method.
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• We have demonstrated the Adelaide method can predict a preferred 
value of the A parameter with resulting errors approximately equal to 
other statistical errors in the procedure.

• We have shown the Adelaide method can predict a preferred functional 
form. By altering the A parameter the Adelaide method causes the 
form factor to describe continuum physics as best it can.

• We have listed 24 different predictions for the nucleon mass (sec 6.6). 
We find the Adelaide method with a dipole form factor using a cubic 
fit with 0 ( a 2) corrections in the ao coefficient to be the best fitting 
procedure.

• We have indicated that small errors in ro and a  may cause incorrect 
central values for our mass estimates (sec 6.6).

• Finally we note that theoretically our fit procedure could be improved 
if A and the physical mass splitting between the A and nucleon were 
allowed to be free parameters in our fit procedure. This would (in 
theory) give a accurate A parameter and also allow the A mass to 
be determined. It may also be possible to use an iterative procedure 
whereby the results of a fit are used as the physical mass splitting in an 
attem pt to produce a more accurate determination of the nucleon mass, 
this in turn would be used to produce a more accurate determination 
of the A mass, ad infinitum.

As in the mesonic case we haven’t modelled finite-size effects because we 
don’t have enough different volumes to do this. Also although we haven’t per­
formed an infinite volume extrapolation finite volume effects are considered 
by the Adelaide method (eq 5.5) since the momentum integral is replaced by 
the appropriate kinetic sum.



Chapter 7 

Conclusions

This thesis describes the results of investigations into chiral extrapolation 
procedures. Our research focused on two types of extrapolation procedure, 
namely the Adelaide method and a standard polynomial extrapolation pro­
cedure which we refer to as the naive method. These methods were used to 
produce physical mass predictions which were then compared to experimental 
results. In the mesonic case we also studied the J-param eter [21]

To do this we simulated data which was first produced by the CP-PACS 
collaboration [22]. In the case of the Adelaide method self energy values 
corresponding to the CP-PACS data set were calculated. Our research has 
been restricted to the “pseudo-quenched” case (i.e. when Ksea ftVai)-

During our investigations we have

• quantified the residual O(a) effects in the CP-PACS data.

• introduced a global fitting method which allows us to treat data gen­
erated on lattices which have different lattice spacings as a single data 
set (for example sec 5.4.3).

• demonstrated how the Adelaide method can predict a preferred value 
for the A parameter.

• indicated that small errors in the values of ro and a might be the cause 
of the slight inaccuracy in the central values of our mass estimates.

145
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• studied different form factors and shown how the Adelaide method can 
pick a preferred function.

We now list our final results for studies of the p-mass, the nucleon mass 
and discuss the results for the J-param eter.

Our final result for the p-mass was obtained from the Adelaide method 
using our preferred fitting function (the quadratic fit with 0 (a 2) corrections 
in the ao coefficient) and our preferred method for setting the scale (from 
r 0). We find

M Adelaide =  7 7 9 ( 4 ) + 1 3 + ^  [M e V ] ( 7 . 1 )

We remind the reader that the first error is a statistical error, the second is 
associated with the choice of fitting function and the third is that which is 
related to the determination of the A parameter. The central value of our 
final estimate is just 9 [MeV] away from the experimental value (770 [MeV]) 
and is equal to the experimental value within errors.

Our final result for the nucleon mass comes from the Adelaide method 
where we employ a dipole form factor, we use our preferred fitting func­
tion (for the nucleon this is the cubic with 0 ( a 2) corrections in ao) and our 
preferred method for setting the scale (which is again from from r0).

M Adeiaide = 965 (15);^ I*3 [MeV] (7.2)

As with the p-mass prediction the first error is statistical, the second is 
taken from the fit procedure and the third error is that associated with the 
A parameter. The nucleon mass prediction at its lower limit it comes within 
3 [MeV] of the experimental value (939 [MeV])

In both cases we do not consider any error that may be associated with 
the determination of ro-

For the J-param eter we study J dlscrete. This is because J dlscrete can be 
easily be determined from experimental data, but J  itself cannot. We remind 
the reader that table 5.9 lists values for J dlscrete_ These values of J dlscrete are 
underestimates of the experimental value. This is a well known phenomena
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and is of no surprise.
We conclude this work by reiterating that the Adelaide method appears 

to be a valid chiral extrapolation procedure and should be favoured over 
standard polynomial fitting methods. We believe that for the foreseeable 
future the Adelaide method will prove to be a valuable tool for the extrap­
olation of lattice data. This is because it will be many years before high 
performance computers can run lattice simulations with quark masses near 
the chiral limit.
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