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Abstract

The main intention of this thesis is to calculate the Gauss-Bonnet integral on the
moduli space of Yang-Mills instantons and in particular to test a conjecture of Dorey,
Hollowood and Khoze which relates the D-instanton partition function (a quantity
arising from string-theoretic considerations), and the Gauss-Bonnet integral on the
resolved moduli space of instantons. We shall present two main results. Firstly
we use the ADHM construction to determine the metric on the moduli space of a
single SU(3) instanton. The result obtained agrees with the previous result of [20].
From this metric we calculate the spin connection and the curvature. Ultimately
we were able to evaluate the Gauss-Bonnet integral over this resolved moduli space.
This involved a nontrivial integral over an eight dimensional hyper-kahler space. The
result obtained confirms the prediction of [17].

Secondly, I have also been able to verify explicitly that the D-instanton partition
function derived from string theory reduces to the Gauss-Bonnet integral on the
resolved instanton moduli space for the case of a single instanton in an arbitrary
gauge group.

In the introductory chapter we discuss in general terms the motivation for the
calculations presented in this thesis. In chapter two we discuss zero modes and col-
lective coordinates and introduce the notion of a moduli space. We also verify that
the instanton moduli space is hyper-Kahler. Chapter three discusses the ADHM
construction and we persue some of its consequences. Chapter 4 is devoted to ob-
taining the supersymmetric quantum mechanical sigma model on the moduli space

of instantons and the elucidation of its geometrical significance. Chapter 5 is where
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we illustrate the explicit implementation of the ADHM construction and calculate
the Gauss-Bonnet integral in the single instanton SU(3) case. The results of this
calculation are compared with those obtained by [17]. Their method is reviewed in

chapter 6. The results of both are in agreement.
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Chapter 1

Introduction

1.1 Solitons and instantons

Non-linear classical field theories generically possess extended solutions. If these
solutions are stable field configurations with a well defined energy and are nowhere
singular then they are termed solitons. Generally, the stability of these solutions
arises from (topological) classifications of the boundary conditions to the equations
of motion. In fact such solutions are typically characterized by topologically distinct
mappings between group space and coordinate space. A common feature of these
circumstances is the existence of degenerate vacuum states. The stability of the
soliton naturally implies the existence of a conservation law. However, the conserved
topological charge and its associated current do not follow from the invariance of the
Lagrangian under a symmetry transformation. That is to say a topological current
is not a Noether current-its divergencelessness is not a consequence of the equations
of motion. Thus topological currents differ from other conserved quantities such as
energy, momentum or electric charge. Topological charges arise due to boundary
conditions on the fields, conserved due to the requirement of finite energy.

There have been numerous attempts to understand the origin of charge itself in
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terms of geometry. For example, J. A. Wheeler has suggested a model in which
electric charge may be regarded as an artifact of the topology of space-time [7].
Although suffering from numerous drawbacks, such models hinted at the possible
importance of topological concepts when considering fundamental physical questions
such as the nature of charge. More recently, the discovery of magnetic monopole
solutions in Yang-Mills theories by t’Hooft and Polyakov has shown the essential
part played by topological considerations in the construction of magnetically charged
solutions. Furthermore, the existence of such solutions implies the existence of charge
quantization. The topological considerations in this case arise not from the geometry
of space-time but from the existence of topologically distinct classes of boundary
conditions on Higgs fields with degenerate vacua.

More recently, the conjecture of Montonen and Olive [32] has led to the considera-
tion of electromagnetic duality as a property of some field theories. This is an exciting
development, for it offers the possibility of understanding the previously intractable
strong coupling behavior of a theory by performing weak-coupling calculations in a
dual formulation of the theory. In going from a field theory to its dual, topological
and Noether charges are exchanged. One theory thought to possess an exact electro-
magnetic duality is N = 4 supersymmetric Yang-Mills theory. Thus there has been
considerable interest in attempting to understand the dynamics of this theory. In this
thesis we will consider the properties of finite action solutions or instantons in such
theories. Instantons represent yet another species of topological object in quantum
field theory. The object central to our considerations will be the moduli space of
these solutions. Following [12] we shall review its general properties.

The approach we shall follow will be to take our instantons of the 4-dimensional
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Euclidean gauge theory and embed them in a Minkowski space-time of (4 + 1)-
dimensions. The instanton solution, which had finite action in 4-dimensions, will
now become a soliton of finite energy for the 5-dimensional theory.

At very low energies the bosonic field theory in an instanton background reduces to
quantum mechanics on the moduli space, similar to the analogous monopole case, [15].
The full supersymmetric Yang-Mills theory correspondingly yields a supersymmetric
quantum mechanics on the moduli space.

In this thesis we shall be concerned with the calculation of the Gauss-Bonnet inte-
gral for non-compact hyper-Kahler spaces. Such spaces arise naturally as the moduli
spaces of both instantons and monopoles in supersymmetric gauge field theory, (see
chapter two and [33], [34]). The reason these quantities are of interest to physicists
relates to currently fashionable notions of duality. For example, the electromagnetic
duality conjecture of Montonen and Olive leads to predictions concerning the exis-
tence and properties of low energy monopole bound states. There exist similar duality
conjectures involving instanton solutions. One test of such conjectures is to attempt
to verify predictions for the number of bound states. Up to a sign, these are in
fact counted by the Euler character on the moduli space. This contention will be
elaborated later in this chapter.

The specific conjecture to which the calculation in this thesis is relevant is due
to Seiberg, ([35], [36]). The claim is that 5-dimensional gauge theory is related to a
theory in 6-dimensions called (2,0) super-conformal theory. The idea is to compactify
the 6-dimensional theory on a circle whose radius is related to the 5-dimensional
coupling constant, gs, like so

R¢ = 8m%gs (1.1)
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Given such a 6-dimensional theory one may Fourier expand the fields in the periodic

direction:

P(x,26) = D e%z_eﬁq&k(x) (1.2)

kez
where x is the 5-vector of position and zg is the position coordinate in the compactified

direction which has radius R¢. The free action then becomes

kz
Rg

This indicates that the compactification of a 6-dimensional theory yields a 5-dimensional

Bsd0°B;, + 0upk0" b = — o2 + Oudr0” 9} (1.3)

theory in which the field ¢, has acquired a mass. In fact there is a tower of these

massive states, one for each value of the integer £ with mass

k 812k
M. = — — 1.4
*“Re g2 (1.4

This represents the classical mass of an instanton when regarded as a soliton in six

dimensions.
In chapter 5 we shall explore gauge theory in 5-dimensions. We shall write the
gauge field as A, = A,(x, X;) where x € R* and X; represent the collective coordi-
nates of the instanton solution. Following [15] we shall develop an approximation in
which we allow these collective coordinates to depend on time. We shall also examine
supersymmetric gauge theory, so along-side the gauge field there will be scalar and
fermion fields. We will find that the low energy effective action will take the form
_ 8%k

L=
g2

1 .
+5 / dzg; XiX9 + - - (1.5)

where g;; is the metric on the moduli space of instantons, M. We have expanded
the Lagrangian around its instanton solutions. In the context of our discussion of the

compactified 6-dimensional theory this is highly suggestive. The implication seems to
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be to identify the Kaluza-Klein modes of (1.4) with the Yang-Mills instanton (bound)
states of the 5-dimensional theory.
The Hamiltonian corresponding to the above Lagrangian defines a supersymmetric

quantum mechanics on the moduli space,

82k
H= _% + Hsusy qm (16)
5

Thus we see that Sieberg’s conjecture of the existence of a set of (unique) states of
mass 8—’;? requires that there exist a unique (normalizable) zero-energy eigenstate of

the supersymmetric quantum mechanics on Mjy. Seiberg’s conjecture requires that

there exist a unique normalizable zero energy eigenstate of Hgysyem for each value of

k.

1.2 Supersymmetric quantum mechanics

Here we shall adumbrate the concept of a supersymmetric quantum mechanics men-
tioned above. The basic object of our attention will be supersymmetric quantum
mechanics with 2N supercharges @ and Q** and Hamiltonian H. (For details see

[19], [25]). The supersymmetry algebra in this case is
{@,QY}=26"H, i,j=1,---N (1.7)
{@.@}=1{@",@"}=0 (1.8)

The supersymmetry charges map bosons into fermions and fermions into bosons. The

fermion number operator (—1)F is defined by

(-1)FQ = -Q(-1)F (1.9)
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This operator commutes with all the bosonic fields of the theory and anti-commutes
with all the fermion fields. For a system with only one set of supersymmetric charges
we drop the index i. The supersymmetry generators represent the square root of the

Hamiltonian. In fact, if we define the combination of generators S as

1 *
§=75@+Q) (1.10)
Then we can write
=2 (QQ+QQ +QQ+QQ) =H (1.11)

We will label states by their energy eigenvalues E and a label f or b which will
designate fermionic or bosonic states respectively. Since the supersymmetry charges
commute with the Hamiltonian, the states S|E, f > and S|E,b > will each have
energy E. However, S|E, f > will have the opposite fermion number to |E, f >. Let
|E, b > be a normalized bosonic state of non-zero energy E. We may therefore define

the normalized fermionic state |E, f >= 71-;55' |E,b>, ie.

S|E,b>=VE|E, f > (1.12)
operating with S on both sides then yields

S|E,f >=VE|E,b> (1.13)

This establishes that all states with non zero energy appear in pairs exhibiting the
opposite spin statistics. However, for the zero energy states the number of bosonic
states may not necessarily equal the number of fermionic states. In this case the
supersymmetry generator annihilates the |b > and |f > states, so that they each

separately form 1 dimensional representations and are therefore not paired as in the
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E # 0 case. Let the number of bosonic zero-energy eigenstates be denoted by nf=?
and the fermionic ones be n;;:o' Now cosider the effect of changing the parameters
of the theory, such as the coupling constants or the masses. In general, for such
transformations that also preserve supersymmetry, we would expect the energy levels
to change, but of course the non zero energy states should still be arranged in bose
fermi pairs. It may be possible, under such a variation of parameters, for a non-zero
energy level to descend to a zero-energy eigenstate. Conversely, it may happen that
a zero-energy state may become a state of non-zero energy. However, in this case, it
is required that a supersymetric pair, one bose and one fermi state, must move up

E=0

together. In each case, nf=" changes by the same amount as nf=

0 consequently the

remains constant. It is straightforward to demonstrate that

difference ng=" — n7=°

E=0

ngy=" — n};=° is a constant by evaluating Tr(—1)Fe#H# where the trace is taken over

the Hilbert space of states, [25];
Tr(-1)Fe?# =< z|(-1)Fe?#|z > (1.14)

(The opperator Tr(—1)F ensures that the fermionic fields satisfy periodic boundary
conditions in the path integral representation). Expanding in eigenfunctions of the

Hamiltonian we have
Tr(-1)Fe P =3 5 < n|(~1)F|n > (1.15)
n

we can split this sum into a trace over zero energy states and one over non-zero energy
eigenstates. Since the states of non-zero energy come in bose-fermi pairs, we can split
these into their bose and fermi constituents

Tr(-1)Fe P = Y <n|(-1)F|n>
n(E=0)
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+ 3 e B (< nb|(-1)FIn,b > + < n, fI(=1)F|n, f >) (1.16)
n(E#0)
= Y <n|(-1)fln >=n=" — nf=° (1.17)
n(E=0)

Note that this is independent of the value of 3.

1.3 Supersymmetric quantum mechanics and dif-
ferential geometry

Supersymmetric quantum mechanics has many points of contact with concepts of
classical differential geometry. We now briefly elaborate these connections. Consider
a compact Riemannian manifold M of dimension 2n with coordinates X*. We denote
the exterior derivative by d and its adjoint by d*.

We expect bosonic wave-functions to resemble functions on the manifold.
f(x)lo> (1.18)

We introduce the supersymmetric fermionic partners, 1, to the bosonic coordinates.

These will have the canonical commutation relations,
{v', 9’1} = g¥ (1.19)
The 9! therefore act as creation operators and we have the spectrum of states
g™ 97110 > (1.20)

Since the 9’s anti-commute, the f;..; must be antisymmetric in its indices. So it would
seem natural to identify fermion states with antisymmetric tensors on M. Now recall
that the action of the exterior derivative d on forms maps r forms to 7+ 1 forms. One

can also define the adjoint exterior derivative d* that maps r forms to r — 1 forms.
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This resembles the action of the supersymmetry charges, which change the fermion
number of a state by +1. Pursuing this analogy, let us define the combination of
derivatives ; and @ by

Qi=d+d (1.21)

Q2 =1i(d—d) (1.22)

Since the Q; are to be identified as the supersymmetry charges, we know from their

algebra that the Hamiltonian is given by

Q=Q;=H (1.23)

Substituting the forms for the Q;’s given above, we see that the Hamiltonian is actu-

ally the Laplacian on M. For details on differential geometry see [3] and [30].
QR =Q;=dd*+d'd=H (1.24)

This is entirely consistent, for using the nilpotent property of the exterior derivatives

yields the remaining part of the supersymmetry algebra,

Q1Q2 — Q21 =0 (1.25)

We are to regard the p-forms on M as bosonic or fermionic, depending upon whether
p is even or odd.

A zero energy eigenfunction is therefore a solution of Laplace’s equation on the
manifold, otherwise known as a harmonic differential form. By Hodge’s theorem,
the number of such harmonic forms of degree r on a compact, smooth manifold is
equal to the dimension of the 7" cohomology group [3], [11]. But these are the Betti

numbers, so the number of linearly independent harmonic forms of degree r on a
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compact manifold is given by the r** Betti number, 5. The Euler character can be

represented in terms of these quantities as

x(M) =Y (-1)7% (1.26)

Thus in some sense, the Euler character can be said to count the number of zero
energy states in the supersymmetric quantum mechanics defined on a manifold. In the
supersymetric quantum mechanics r represents the fermion number of a wavefunction.
The Witten index of a supersymmetric quantum mechanics is therefore a topological

invariant of the moduli space and is in fact equal to the Euler character on M.

1.4 Evaluating the Witten index

Our expression for the regularized trace of (—1)F has a path integral representation,
[26],

Tr(~1)FePH = /P . Aot} (1.27)

where the fields are taken to satisfy periodic boundary conditions with period S and
Sk is the euclidean action.

As discussed in section 1.1 the effective action of a gauge theory instanton reduces
to a supersymmetric quantum mechanical sigma model on the instanton moduli space.
A generic feature of such supersymmetric sigma models is the appearance of the
curvature tensor in the fermionic part of the action. We now discus how we may
manipulate such models to yield an expression for the Gauss-Bonnet integral, which
as discussed above yields the Euler character of a compact space.

The archetypal bosonic ¢ model is defined by the Lagrangian

1 iy i d g
L= §9ij(¢)¢ ¢, ¢'= g7 (1.28)
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where ¢*(t) is to be considered as a map from R or S! onto a manifold M and g is
the metric on M which is of dimension d = 2n. The supersymmetric extension of this

Lagrangian (corresponding to the Hamiltonian of (1.24) can be written as [26]

L= 20(8)8'% + i Vibigy — TRiup™ gy (1.29)
where
. d . ..
Vit = —ut+ i iyt (1.30)

In the path integral, (1.27), we impose periodic boundary conditions on both the
bosons and fermions. As discussed previously, this is independent of 3. Thus we are

free to take the limit 8 — 0. The first stage is to Fourier expand the fields
o(t) = 3 pWe s (1.31)
k

Taking time derivatives yields exponential terms with coefficients proportional to %
In the limit 8 — 0 these may be discarded so we need only retain the Fourier-zero
mode quantities ¢°. Thus when we come to evaluate the path integral, we may
drop all the time derivative terms in the exponential and we are left with just the

fermion-field curvature term. Rescaling the fermions by a factor of ﬂ‘i we get
F_—BH B/2m 1 wi, wiik ol
Tr(~1)Fe P = / d(Vol) [[ dvrdipmezp /0 dt (‘Z) R yipkyt | (1.32)

Consider the functional integral above. This gives the Gauss-Bonnet formula for
the (volume contribution) to the Euler character, as we now show. Expanding the

exponential gives

£ (2) (L)'} (wrersroy

r=1

Tr(-1)FePH = (—2# / d(Vol) [] dvs,dvpm
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Note that the terms in the exponential series bring down 2r powers of the fermionic
Grassmann fields 1. Thus to saturate the d Grassmann integrations we should only

retain the r = n term. This leaves us with
Tr(-=1)"e " = [ d(Vol) [] dpndim (‘Tl)
1 %11 ,1.%51, k1,001 *in *In ) kn ) ln
‘(——)TRiljlklll"‘Rinjnknlnw "/) z/) ’d) "‘w w w w

_ (=1
(87f)"

1)
- (857 (n)‘/d VOl 11]1 'Laneklll knln‘R’lIJIklll Rln]nknln X(M) (1'33)

Thus we have arrived at a statement of the Gauss-Bonnet theorem which gives an

integral representation of the Euler character of a compact Reimannian manifold.

1.5 The ADHM construction

To calculate the Gauss-Bonnet integral it would seem that one requires knowledge
of the metric on M. Fortunately there exists a general procedure for determining
the metric on the moduli space of k instantons in any gauge group. This is the
ADHM procedure and will be outlined in chapter three. Starting with some initial
information, called the ADHM data, and a Euclidean space called the mother space,
one imposes certain constraints that restrict one to the moduli space of instantons
realized as a subspace of the mother space. In principle this procedure will yield the
metric on the moduli space. (However, note that it is not in general possible to solve
the ADHM constraints). Given the metric it is straightforward, if tedious, to compute
directly the curvature tensor and thence the Gauss-Bonnet integral, (1.33). This is

precisely what we shall do for the case of a single SU(3) instanton. In this case the

/d(Vol Hdw d"/)m-Rtl_hkﬂl Ri,.j,,k,.t,.fim"'i"j"fklll"'k"l“¢*1¢*2---¢m1/11¢2---¢"
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moduli space is an eight dimensional hyper-Kahler manifold. In chapter five we shall
use the ADHM construction to determine the metric on the resolved moduli space,
(5.102). The result obtained agrees with the result of Gibbons et al, (5.39), derived
in [20] using a different method.

From there on we use Cartan’s structure equations (appendix B) to calculate the
spin connection and then the curvature two-form. The calculation is cumbrous and
in order to simplify it to a manageable extent we shall change to a more convenient
coordinate system, (called the symplectic basis), in which we can then evaluate the
Gauss-Bonnet Integral.

Our aim will then be to compare this result with one obtained by the indirect,

conjectural but much more general method of [17].

1.6 Non-compact manifolds and singularities

The moduli space of instantons is non-compact. This reflects the fact that the col-
lective coordinate describing the instanton’s separation may take an arbitrarily large
value. Likewise, the collective coordinate corresponding to the instanton’s size may
vary in a range unbounded from above. This imposes certain amendments upon the
analysis above. Firstly note that the Witten index counts (up to a sign) the number
of supersymmetric ground states. Thus it counts the number of normalizable (i.e.
square integrable) solutions to Laplace’s equation. This is termed the L? index of the

Laplacian, Indr2(A). In general this is not equal to the Euler character,

X # Indgs(A) (1.34)
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In fact, in this case one may regard the Euler character as being composed of a bulk
term, Ipuk, and a boundary term. The bulk term is given by the familiar Gauss-
Bonnet integral and corresponds to the integral over the entire moduli space of an
index density. The boundary term represents an integral over a surface at infinity,
and therefore is not sensitive to the detailed interactions between instantons. This
thesis will concentrate on evaluating the bulk term Ig,, for details on the boundary
term see [36)].

A further technical point should be discussed. The instanton moduli space actually
possesses a singular point at which the instanton size shrinks to zero. This fact has
the potential to render invalid the arguments constructed above. However, it proves
possible to resolve this singularity by introducing a so-called non-commutativity pa-
rameter (. The practical difference that this will make to the calculations in this

thesis is that we shall amend the ADHM constraint equations to

7% (aPag) = T (@Pws + @ als) = ¢° (1.35)
(Strictly, the ADHM constraints, as outlined in chapter three, should be written with
¢ = 0). With ¢ in place we shall calculate the metric on the 1-instanton SU(3) moduli
space and we will find that it depends on (. However, both the curvature and the

Gauss-Bonnet integral will prove to be independent of (. Thus naively we may take

the limit { — 0 to arrive at a quantity pertaining to the true ADHM moduli space.

1.7 The D-instanton partition function

Except for certain cases, the ADHM constraints are prohibitively difficult to solve
so we cannot in general obtain the metric on M. Despite this difficulty, Dorey,

Hollowood and Khoze, [17], have proposed a means of calculating the Gauss-Bonnet
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integral for arbitrary instanton number in any gauge group. Their method does not
require knowledge of the metric since the ADHM constraints need not be explicitly
solved. Their contention is that the Gauss-Bonnet integral is equal to an entity derived
from string theoretic considerations called the D-instanton partition function, defined
thus;

Zy = 21y —6N- / AN Vo dy d®D d*N u d*N i dE A

exp [~ @R wua — iD(7° girbwua — C°) + 2V2mifit x appE + im(Bdwus + @aupil) NG
(1.36)

We shall evaluate this quantity in chapter six. These integrations may be evaluated

in a certain order to give an explicit numerical result, which in the 1-instanton sector

is
o (N+1)

T = —N_ 2]
TR

The values obtained from this formula can be compared with known results for the
cases N =1 and N = 2. For N = 1 the moduli space is simply a point, giving x = 1.
For N = 2 the resolved moduli space corresponds to the Eguchi-Hanson manifold.
The Gauss-Bonnet integral in this case yields the value 2, [30], again in agreement
with (1.37). Our direct calculation of the Gauss-Bonnet integral on the resolved
SU(3) single instanton moduli space, (chapter five), provides a further test of (1.37)
for a non-trivial case in which the moduli space is an eight-dimensional hyper-Kahler
manifold. In this case (1.37) yields the value £2. The values calculated by these two
methods are in agreement, offering some support for the validity of the approach of
[17].

We can test (1.37) in another way. We can evaluate the integrations in (1.36) in

a different order. We integrate first over x and then over the Lagrange multipliers
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D and A. We then obtain delta functions with the bosonic and fermionic ADHM
constraints as their arguments.

/d3D e—iDc(TCdBGJEUJud—Cc) — (27[')36 (TCdngwud _ Cc) (138)

/ B\ et (B una+oeanndN] = (2)85 (ﬁ':wud ¥ @4y Mf) (1.39)

In chapter six we show that the integration over x provides the correct Jacobian,
which along with the delta functions, restricts us to the instanton moduli space.
Likewise, the fermionic integrations are restricted to the symplectic tangent space.
If we can solve the ADHM constraints then we may implement a change of vari-
ables to a coordinate system in which the delta function constraints are trivial. There
will of course be another Jacobian associated with this transformation. The remain-
ing integrations will then run over the coordinates on the moduli space and yield the

Gauss-Bonnet formula (1.33) as we demonstrate in section 6.6.



Chapter 2

Zero modes and collective
coordinates

In this chapter we introduce several related concepts which are key to understanding
the instanton literature. These are the notions of a moduli space, collective coordi-
nates and zero modes. The moduli space of a system is simply the space of inequiv-
alent solutions of equal action to the equations of motion. The coordinates on this
space parameterise the different solutions and are called the collective coordinates of
a solution. When speaking of instantons, the most obvious classifcation of solutions
is provided by the instanton number k. This is a discrete quantity and so may not be
continuously deformed. Furthermore, £ is a gauge invariant quantity. This suggests
that there is a separate moduli space for each such topological charge, and these
spaces are denoted by My. Within each such space the collective coordinates will be
denoted by X* and the gauge fields can be labeled by their collective coordinates:
An(z; X). To labour the point, the label X in the argument of the gauge field refers to
the specification of a particular solution to the self-dual Yang-Mills equations. Since
instantons are essentially localized objects, there will exist collective coordinates that

designate the position of the instanton centre. Thus these solutions must necessarily

17
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break the translational symmetry of the gauge theory. Solutions with centre points at
different locations can then be obtained by acting on a given solution with the group
elements of the broken translational symmetry. More generally this example illus-
trates that one should normally expect to find a collective coordinate corresponding
to each symmetry of the gauge theory that is broken by a particular solution to the
equations of motion. However, there are also likely to be other collective coordinates
that do not directly arise from the breaking of a symmetry. Varying the collective
coordinates of a solution does not affect the value of the action, so such variations are
termed the zero modes of our system. Zero modes are conceived to be small changes
in the fields that leave the value of the action unaltered. Since an infinitesimal dis-
placement on a manifold roughly corresponds to a tangent vector, one should regard
the zero modes of our system as tangent vectors to the moduli space.

In this chapter we shall first explore the properties of fermionic fields propagating
in an instanton background. Next we shall verify that the moduli space of instantons

constitutes a hyper-Kahler manifold.

2.1 Deformations of the self-dual Yang-Mills sys-
tem

Instantons in SU(N) Yang-Mills theory are finite action configurations whose field

strength tensors are self-dual, [40], [8],
1 kl
Fom = Efnmle = *Fpm (2'1)

Let A, be a solution of the self-dual Yang-Mills equations. We may consider small
variations away from this solution, A, — Al = A, + JA,, such that the new field

is also a solution of the self dual equations. To linear order the constraint upon the
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field fluctuations is derived by substituting AJ, into the self-dual condition
Dm(SAn - Dn(SAm = fmnlek(SAl (22)

(See appendix H for details on the conventions employed here). We will now show
how (2.2) may be re-cast in quaternionic form. Multiplying throughout by &,,, and

using its anti-duality property gives
Fmn®5(Dm0An — DnbAm) = Gmn® s€mnin D0 Al = —261° ;Db A, (2.3)
= (62%0nas ~ 6mn0” &) Db A = 0 (2.4)
Multiplying throughout by the Pauli matrices,
Td,g&gf'anadDm(SAn = TdB@B“(SAad =0 (2.5)
where we have defined the usefull quaternionic quantities
PP = 52Dy, Dot = OnasDny $Aas = OnaslAn, 4P = 5864, (2.6)

Now consider a variation in the gauge field due to an infinitessimal gauge trasfor-

mation

§A, = DoQ (2.7)

Substituting this into the above we see that (2.2) is trivially satisfied. Thus it would
seem that any gauge transformation of our solution will yield a zero mode of the
system. However, gauge transformations do not represent physically distinct field
configurations and so are not to be regarded as true zero modes. We must there-
fore make a choice of gauge so that we may systematicaly elliminate non-physical
variations of the instanton solution. In the instanton literature this is conventionally

achieved by imposing the so-called covariant background gauge, which is defined thus

DA, (z;X) =0 (2.8)
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With this choice of gauge the quantum fluctuations 6 A,(z; X) are functionally or-
thogonal to gauge transformations. To see this we convolute (2.8) with an arbitrary

Lie algebra valued function (z),

/ dPz Tr [Q2) D6 An(z; X)] = 0 (2.9)
Integrating by parts gives

/ dPe Tr [§An(z; X) DEQ(z)] = 0 (2.10)

as required.

In quaternionic form the background gauge condition becomes
D5 Ane =0 (2.11)
Equations (2.5) and (2.11) may be combined into the single equation
Pie6A,; =0 (2.12)

The quaternionic notation affords more than an elegant concision. This is a useful
point of view for we can now recognize that these conditions amount to a covariant
Weyl equation for the spinor ¢, = 645 in an instanton background. The free index
B indicates that each gauge field zero mode corresponds to two independent solutions
of the Weyl equation. Furthermore, the problem of counting the number of bosonic
collective coordinates is now seen to be closely related to that of determining the

index of the Dirac opperator. This is defined by
Ind(lD) = Dim{kerP} — Dim{kerID} (2.13)

From the Atiyah-Singer index theorem one can show that this index has the value

2kN. Furthermore, it can be shown (see appendix E) that in the presence of an
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instanton there are no solutions to A = 0. Thus the Atiyah-Singer index theorem
[3] gives the number of solutions to DA = 0. Therefore the number of solutions to
(2.12) is 4k N, (see for example [22]).

Zero modes are related to collective coordinates since the derivative of the gauge
field with respect to a collective coordinate is certain to satisfy the zero mode equation

(2.2). Any general solution of (2.2) can therfore be written as

_ 0An(z; X)

buhn(a) = T2 (2.14)

Since we are dealing with a gauge theory we should be free to gauge transform this
solution to obtain another physically acceptable configuration. As discussed above,
an infinitesimal gauge transformation can be effected by adding a covariant derivative
term like so

0An(z; X)
6ﬂAn (IL‘) - aT -

However, to ensure that this is a physical zero mode we must impose the gauge

Da, (2.15)

condition (2.8). Thus we require

0A,(z; X)

Du8,An(z) = 0= D, ( X

) = D*Q, (2.16)

2.2 The moduli space as a hyper-Kahler manifold

We begin this section by outlining some concepts of the differential geometry of
complex manifolds, (for details see [3]). On a complex manifold of complex dimension
m each coordinate neighbourhood is homeomorhic to complex Euclidean space C™.
The transition functions from one coordinate system to another are analytic. An
almost complex structure, I, is a linear map of the tangent space onto itself such that

I? = —1. Thus acting on a tangent vector with the complex structure corresponds
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roughly to multiplication by z. A complex manifold necessarily has real dimension
2m.

We say that we have a complex structure if I is integrable. The condition for
integrability is given by the Newlander-Nirenberg theorem which states that I is a

complex structure if the Nijenhuis tensor N vanishes, [3], [16],
Ni(X,Y) = I[IX,IY] + [X,IY] + [IX,Y] - I[X,Y] = 0 (2.17)

Where X,Y are tangent vectors.

A holomorphic coordinate basis is one that diagonalizes the complex structure.
The complex structure partitions the tangent space into two disjoint vector spaces
called the holomorphic and the anti-holomorphic vector spaces. The holomorphic
vectors are eigenvectors of I with eigenvalue i. The anti-holomorphic vectors are
eigenvectors of I with eigenvalue —i. Indices of the anti-holomorphic space are written
with a bar (e.g. [i), to distinguish them from indices of the holomorphic variety
(written u).

A metric is said to be Hermitian if
g(IX, 1Y) = g(X,Y) (2.18)
For a Hermitian metric, g,, = gzs = 0 and so the metric takes the form
g = gupdz* ® dz° + gp,dz* ® d2” (2.19)

where 2,2 are the holomorphic and anti-holomorphic coordinate functions respec-
tively.
A complex manifold is said to be a Kahler manifold if the complex structure is

covariantly constant;

V=0 (2.20)
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Given a complex structure I and a hermitian metric g we can define a 2-form w as
follows.

w(X,Y) = g(X,IY) (2.21)

w is called the Kahler form. For a Kahler manifold the Kahler form is closed,
dw=20 (2.22)

A further property of Kahler manifolds is that the metric may be obtained by differ-

entiating a scalar function called the Kahler potential x

9ur = Banoz

(2.23)

Conversely, if the metric on a manifold can be written in the above form, then the
space is Kahler with a globally defined complex structure [11].
A hyper-Kahler space admits three independent complex structures, 1), ¢ =

1,2, 3 that satisfy the quaternion algebra
I°r% = 5 4 edege (2.24)

The metric is Hermitian with respect to all three complex structures.

In the rest of this chapter we aim to show that the moduli space of instantons is
in fact a hyper-Kahler manifold. The approach we take is perhaps a little indirect,
focussing on the construction of a hyper-Kahler potential function, [37]. This section
is necessarily abstract and follows closely the treatment of [12].

M is a space of dimension 4kN. It is a Riemannian manifold endowed with a
natural metric defined as the functional inner product of the zero modes (in singular
gauge).

v = —2° / d*z Try6, An(z; X)0, An(z; X) (2.25)
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We shall show that Mj is a hyper-Kahler space. Euclidean space is itself hyper-

Kahler. The three complex structures on R* can be chosen to be
Lo = —Tinn
where 7, are the t’"Hooft n-symbols. In the quaternionic basis we have
(I°T)aa = ’il‘aBTCBd (2.26)

and

(I°z)% = —i 7% ;5P (2.27)

These complex structures on R* decend to give complex structures on M. First
note that in the zero mode equation, (2.12), 8 is a free index. Thus if 0uAag is a zero

mode then so is §,4 5 G# for any constant matrix G,
PP (0uAasGl) = (P20, A,5)Gh = 0
In particular we could have,
(196, A) a6 = i0,A057%5 (2.28)

Since the zero modes form a complete set of vectors on the moduli space, the RHS
must be some linear combination of zero modes, so there must exist a matrix 1(©”,
such that

(I°04A)as = 8y Aaal®, (2.29)

Comparing equations (2.28) and (2.28) gives

16, A05™% 5 = 6, Aaal® (2.30)
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This is an intertwining relation; the algebraic relations obeyed by the I(© will also
be satisfied by the I©®”,. This includes equation (2.24). At this stage, the I,
remain almost complex structures. To show that they are indeed complex structures
we shall examine an explicit construction for the hyper-kahler potential on My. The

expression for the potential given in [37], [12] is
e
x =% [d's & Try(FpnF™) (2.31)

We will not derive this expression, but simply confirm that it is the correct hyper-
Kahler potential for our manifold. To show this we first choose one of the complex
structures I© of R?, say I®. We will also need to choose holomorphic coordinates.

The holomorphic coordinates with respect to I are

2 =ixd + 2t 2 =izt — 2?

We can confirm that these are indeed the holomorphic coordinates for I®). Recall

the definition of the coordinates in quaternionic language,
i+ a2t it 4?20 -7
izt — 22 —ir® + ot 22 7
The action of the complex structure on these coordinates is
(I'2)as = iTo577a = | s s
—iz
thus we may write
I®(21) =izt
I®(2?) = iz?

I®(—zY) = iz! = 133! = —iz!
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I¥(z%) = —iz?

as is required for a complex structure acting on its holomorphic coordinates. The com-
plex structure I1® can be associated to a complex structure on M; with a matching
set of holomorphic coordinates (Z*, Z*), with ¢ = 1,2, ..., 2dim(My) for which the

complex structure on the moduli space is

. it 0
I(3)1]_ — J .
0 —id}

From our previous discussion we know that the derivative of A, with respect to a col-
lective coordinate automatically provides a zero mode and so satisfies the zero mode
equation, (although such derivatives do not in general satisfy the gauge condition).
However, we will demonstrate that when we work in a holomorphic basis the deriva-
tives of the gauge fields are in fact zero modes without the need for a compensating
gauge transformation. With an eye on this result, we first concentrate on the zero

modes, 6;A,, generated by differentiating the gauge fields,

04,
-z

86iAn YA (2.32)

and substitute these into the zero mode equation, (2.5)

: —aa [ OA - s —aa [OA
el negil ch . ny—
TP 3D (aziéz)—0=>7' ), (6Z") 0 (2.33)

Likewise, differentiating with respect to the anti-holomorphic coordinates yields

04,
A

§Z¢; 1B p*° gé?

6iA, 62 =0 (2.34)

Equation (2.29) then implies that

0A 0Acé a4
3 _ O4as r3i
(I aZi>ad aZi ! !
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9zt 0zt ¢ | aan o4y

dA;; A
O0Aos aAaﬂ' 38 _ ( azi ozt )
=
821 FYA

This gives the following two relations

0Ap _3A12 N 0A;2
azi 97 YA
O0Ay  0An  0Axn
0zi =~ ozt 9zt 0

These can be combined into

=0

0As2

57 0 (2.35)
Simmilarly, the anti-holomorphic coordinates yield
0A 0Aus 0A
aﬂ ad _al —
57 ——=£3 Yy = 35 0 (2.36)

Using this information we will write out the zero mode equations in full

w12 E) (D

a0Ayi
Ny & s (2.37)
The equation for ¢ = 2 reproduces that above. For ¢ = 3 we have
—ia0A,i _
D 57 = 0 (2.38)

The zero mode equations for the anti-holomorphic coordinates are

—ia0A,; _
e %AZ";? 0 (2.40)

We now analyse the gauge conditions, (2.11), which under the above restrictions

become

aa aAad = 'aaAa'
P =P =0 (2.41)
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and
— aa 0Ags _ -éaaAaQ _
V oz =P oz =

(2.42)

Here we see that the the gauge conditions are automatically satisfied by the zero
modes for they correspond to a subset of the zero mode equations themselves. Conse-
quently, the derivatives with respect to the holomorphic coordinates are zero modes
directly without the need for compensating gauge transformations.

Equations (2.35) and (2.36) imply that the mixed derivative of the gauge field

must vanish,
A,
CYAL YA

=0 (2.43)

We will marshal this information to calculate the mixed derivative of the proposed
hyper-Kahler potential x. Since the derivative only acts on the moduli space variables
contained in the specification of the A fields and has no effect on the space coordinates
z, we get

2

62X — 92 4 2 4 mn
o707 = 1 | ' 7 sz T FeF™)

Taking into account the cyclic nature of the trace, the derivative in the integrand
becomes

82
0Zi0Zi

OF o, OF, 0% Fun
Try(FunF™) = 2Try ( EYZ a;in + mnw)

Recalling the form of F,, we may calculate the various derivatives required,

an = amAn - anAm + g[Am’ An]

OFmn

6Zi am(sifln - andiAm + g[aiAm, An] + g[Am’ 611An]

= Dpd;Ap — DpdiAm = €mniiDidi A
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Frun = - _ _
PPy )
EYALYA] = g[(sjAm, 61'-411] + g[6,-Am, 6jAn]

Using these equations we get,

1 & - _ _ _
282077 Trn(FmnF™) =Ty [améjAnaméiAn — 00 An0n0; A + 900, An[6i A, An]

+90m0; An[Am, 0 An] — 8n5jAm8m6,-An + 0,0 Am0nbiAm
—90n0;Am[0; Am, An) — 9008, Am[Am, 6 Ar] + 9[6;Am, An]OmiAn
—9[0;Am, An)0nbi Am + %16, Am, Anl[Am, 6 An] + 9[Am0; An)OmbiAn

~9[Am, 8;An)0nbi Am + §°[Am, 6;40)(0; Am, An] + 9°[Am, 8;An)[Am, 8 An]

+90mAn[8i Am, 8:An] + 90mAn[6iAm, 8;An] — 90nAm[6;Am, 8; An)
— 900 Am[8iAm, 8 An] + 9°[Am, Anl[8iAm, 8 An] + ¢°[Am, An][6:Am, 5;Au]

The constraint that we must impose is
DA, =0= 0,04, = —g[An,0A,)

Taking derivatives

OmOmbAn = G[6An, O Am] + 9[Om6AnAm]

0nOmdA, = g[‘sAm anAm] + g[an‘SAm Am]

Using the above together with the trace property and re-labelling dummy indices

gives

1 0 mn =
§WTTNanF = 2gTrN [(8mAn - BnAm)[J.iAm, (5]'An]
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+g[6iAma Am] [ngna An] - g[(szAmy An] [SjAm Am]]
= 29T [OmOm (8 And; An) — 20Bn(6i Am; An) |

Where the last line follows by expanding it out and using the same relations as

previously. This result will allow us to calculate the mixed derivative of x
0?x
02077

We wish to integrate by parts, so consider the following

2
— _572_ / A2 22Tr [(OmOim(0:An8; An) — 20m0n (6:Amb;An)|

TryOm (22 [0 (6:And; An) — 20,(6:Amd; An)| )
= 2*T7y [OmOm(0iAnd;jAn) — 20m0n(6:Amd; An)| =
Trn0m (2% [0m(8iAndiAn) — 200(0:Amd;An)| ) =22m Ty [Om(8:Andj An) — 200 (8 Am; An)]
Upon integration over all space we may ignore the total divergence, for by Gauss’

theorem this gives a surface integral at infinity and zero modes decay as O(z?).

Likewise, we integrate by parts again, using the identity
EmTTN [Om(0:And; An)| — 28 Try [Om(8iAndjAm)| =
OnTTN [TmbiAnd; An — 2208;An; Am| — 26i A Am

Again we dispose of the total divergence, leaving us with
_Ox_
07Zi07i

Observe that the above expression is a component of the metric on the space of zero

= —2g2 /d4$ TTN(‘siAmSjAm)

modes;
62
9X) = 57055
This proves that y is the Kahler potential for the complex structure I(®. Evidently x

dZ'dZ’

does not depend on the choice of index ¢ = 1, 2,3. Therefore it serves as a potential

function for each of the three complex structures, so My, is a hyper-Kahler space.
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2.3 Summary

We have discussed the meaning of the terms zero mode and collective coordinate.
The moduli space of solutions was also introduced. We have been able to relate the
number of zero modes of the instanton solution to the index of the Dirac operator
on the moduli space. Finally, we verified that the instanton moduli space is a hyper-

Kahler manifold.



Chapter 3

The ADHM construction of
instantons

The ADHM construction ([38], [12]), provides a general method by which one may
construct the multi-instanton moduli space in terms of an over-complete set of vari-
ables and a set of constraints placed thereon. We shall briefly review this construction,
obtaining the ADHM constraint equations and demonstrating that they do indeed
yield field configurations with self-dual field strength tensors. We shall determine the
asymptotic form of the ADHM gauge field in the so-called singular gauge and recover
the well known expression for the gauge field of a single instanton and briefly discuss
some simplifications that occur for the one instanton case. We will then briefly review
the connection between the ADHM construction and the hyper-Kahler quotient. Fi-
nally we shall explore some properties of the ADHM moduli space that will be needed

later, namely its Killing vector fields.

3.1 The ADHM field strength

The ADHM construction starts with the definition of the matrices A and A
AAid($) = Qpig + bﬁixndgd (31)

32
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AP = g + b}, 2,07, (3.2)

where A=1,...,N+2k,i=1,...,k and as usual « is a spinor index covering the
values 1 and 2. Note that A is linear in z,. Conjugation is defined to raise both the
spinor and ADHM indices, but does not change & to . Since A has N fewer rows
than columns, its null space is at least N dimensional. It is useful to arrange these
(N + 2k) dimensional N vectors into a matrix Uy,, u = 1,..., N. This matrix will

then be annihilated by the A :
AP Uy, = 0 = U} Axia (3.3)
We can orthonormalize these matrices:
U2.Us = bus (3-4)

We now propose to write the gauge field of a multi-instanton solution as a general-

ization of the pure gauge form of the one instanton solution.

(Ap)ww = =U2.0,Ux, (3.5)

Q|+

Note, A, is an (VN x N) matrix as required. Note also that in the case k = 0, U
is also an (N x N) matrix, and we have the usual pure gauge solution. We shall
demonstrate that for the case of non-zero k£ the ADHM ansatz for the gauge field still
gives a self-dual field tensor and therefore an instanton solution. However, to make

this true we shall also require the following, sometimes called the ADHM condition,
AP Ays = 0%(F )y (3.6)

Where we can take f to be an arbitrary z-dependent k£ x k Hermitian matrix. This

relation is required to ensure that the field-strength tensor F,, is self-dual and from
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this equation we shall obtain the ADHM constraint equations. One can show that

the above considerations lead to the following completeness relation:

P)\”’ = U)‘u.lzlf = (53‘ - A/\idfijA?u

(3.7)

Using all this information we may now find an expression for the field strength tensor

and confirm that it is self dual and therefore an instanton.

(an)uv - am(An)uv - an(Am)m: + g[Am» An]uv

1

= < (8- Uu02) (0nD20U, — 0,020,U,)
- é(AW, £5B%).(0mU0,Upy — 0,T2.0mUpn)
Differentiating the null space conditions, (3.3), gives
= 0nU> Axia = —U20m0%ia & AP 0,Usy = —0,A Uy,
Applying these relations to the F,,, (3.1) gives
(Fon)uw = é(UﬁamAm. fi50085° Upy — U8nDiig-fi.0mA5*Up)
Recalling the definitions of A and A and differentiating we have,
OmAxia = b%i0m ai
OmBP = 5,78,
Substituting all these results into (3.9) we obtain our final result,

(Frn)uww = 4g_lU::\bgi0mnﬂafijB€ﬂUpv

(3.8)

= (Om(T28xUns) — Bn(T20mUs) + U2 0mUna U0nUpy — U20nUsus-U50mUpn)

(3.9)

(3.10)

The self duality of the field strength is thus manifest due to the self duality of o,.
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3.2 The ADHM constraint equations

We will next analyze the restrictions that the ADHM condition (3.6) imposes on the

A’s. We can substitute in the given form of A (3.1, 3.2) into (3.6) to get
5dﬁ(f_1)ij = A?AAA]'B = (a8 + z°°B}, (ayjg + bgjxﬂﬁ)

= aira, 5 + 8P 08,3 + T9B)0, 5 + Z2BL05 345 (3.11)

We can now Taylor expand (f~!);; around z" = 0:
(F71)i = Aij + Blxn + O tnTm + . . .
Where A, B and C are constants. We can then equate coefficients on each side of
(3.11). For the constant term we get
aPay; = 05A; (3.12)

Taking the trace over the spinor indices:

1 .
— _=GA
A,'j = Ea,- a)\jd

Substituting this expression for A back into equation (4.97) yields
9\ 1 &
a; Gyip = §(aa)ij53 (3.13)

This is the first of the so-called ADHM equations. Equating coefficients for the linear

and quadratic terms gives two further equations:

a g, = b*a; (3.14)

)

I_’Z\ubfj = % (Ebij) & (3.15)

These are the ADHM constraint equations.
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3.3 Symmetries of the ADHM variables

We will now show that the ADHM field strength admits the following symmetries.

Axia = APDis Y5 Usu = AU, fij = T fuLh; (3.16)

ji

With A € U(N + 2k) and T € GI(k,C). Suppressing indices, the field strength
becomes

Fon — 4gTTATABY 10, TFTH (Y1) BATAT
= 4g—lbamnf5U = Fin

as required. These symmetries are convenient for they allow us to write b in a simple
canonical form. By splitting the index A in the following fashion, A = u + i@, we may

write

0

Bhi = Yuriayj = ( m..) (3.17)
a”t]

B =05 = (0 56 ) (3.18)

We then decompose the content of the a variables in the same way:

w .

Aja = O(utia)ja = ( ’uJO‘ ) (319)
a’ad)ij

EL?A _ a;(uﬂa) - ( ‘I’;:lu (@*);; ) (3.20)

Having written b in this form, the third ADHM constraint, (3.15) is immediately
satisfied. We now show what the other two constraint equations become. Multiplying

(3.13) by the Pauli matrices gives

1,_ .
‘ﬂaa ayjp = §(aa),-j'r°°‘d =0
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Turning our attention to the second ADHM equation and using the above decompo-

sition of the ADHM variables we have, (setting A = u + kv),

. . o 0 ’
i = (@8 @M ) ( ) = (@)

6,‘3 Ok
Similarly we have

I_Jf)‘aj\“j = eﬂ"ed‘él_)gial\jﬂ = eﬂ“ed’é(a;B)U
Let us now define a quaternionic expansion for the (a/ B)if’
(a:,,g)ij = nij00p (3.21)
= (a’aB)f =g = a}:&’é"‘
Inputting this into (3.14) gives
a;‘,éé‘ﬂ = eB"‘edﬁanamﬁ = anc‘rf;‘ﬁ
=a} =a, (3.22)
We can now find the form of the ADHM matrix f:
(f‘l),;jédﬁ = Af"\A,\jﬁ (3.23)
= 2(f )y = AP Axja
= @ + %8}, ) (arja + b5z
= D% wuja + ((ah)ik(ah) ks + (ah)ijTm + Tn(al,)ij + xnxmdij)é;‘;‘“.am od
Now recall the identity &g“"am aé = Onm, using this gives

2(f71)ij = Dpwuja + (an)ik(an)kj + 2(an)ijzn + 726%;
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= f = 2(@%ws + (al, + Tnlpxk)?) ™! (3.24)

We now show that the canonical form for b is preserved by a U(k) subgroup of the
U(N + 2k) x Gl(k,c) symmetry group. The specific group transformations involved

are

1 0
A=( NN ),’I‘:E,EeU(k)

Recall the transformation law for b,

@y AT (3.25)

Py~ Ji

With b in its canonical form, the above quantity becomes (setting A = u + [ and

p=v+ky),

bw O 0 . 0 N
gi_’( — )( o )(3 l)ji=( a)szi
0 (5/37:“, 675kj (Sljéﬂ

Thus this transformation leaves b in its canonical form as claimed. This U(k) trans-

formation acts on the remaining variables thus:
Wuid —> Wujasiji

(@6a)is = (ENirlabs)u (3.26)

As stated before, restricting b to take its canonical form renders the a, Hermitian.

We shall define the k¥ x k matrices to be Hermitian from the outset. This leaves the

first ADHM constraint still to be satisfied. Written in terms of the variables w and
@’ this becomes

(7%)? (@ aa) = () p(@Pwe + @ aly) = 0 (3.27)

This is the equation that we will later refer to as the ADHM constraint.
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3.4 The instanton number k&

A Yang-Mills instanton is a solution to the euclidean equations of motion of the pure
gauge theory with finite action. Such solutions should have zero action at infinity
which requires that the field strength also tend to zero. However, this does not imply
that the gauge field tend to zero. Rather the gauge field is required to approach a
pure gauge configuration,

A, » UT0,U

Fields which satisfy this boundary condition may be classified according to their
Pontryagin class which assigns each sector an integer number as follows

1

k=—Tom

/ d'z TryF,,, F™

we would like to calculate this quantity for the generalized field strength arising from

the ADHM construction. In this we are greatly aided by Osborn’s identity, H.33,
TryFpn F™ = —g?(8%)*Trilog(f) (3.28)

Using this we can write

1
1672

1 4 mn __ 1 4 2\2 _ 4 212
T6n2 /d TryFpn F™ = T67 /d z (0°)*Trilog(f) = /d z (0°)*log|det(f)]

(3.29)
To proceed we shall require an expression for the f matrix, (3.23). This equation

involves the product of A and A. Asymptotically, as £ — oo this becomes,
APA, 5 — x”mm6g“amgd5;\ab§j
With b in its canonical form we have

A?/\A)‘jﬂ- - x"xmﬁg“amﬂdégéﬁ = 227"-’171"61:]'
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Therefore we can find an expression for f by substituting into (3.6),

f—1 — x”x,,é,-j = f — (5.,;]'

"z,
= Trilog(f) = log[det(f)] —» —klog(z"z,)

Returning to equation (3.29), applying Gauss’ theorem, taking the surface integral
over a sphere whose radius is large, and then substituting in the above asymptotic

form yields
__k_
1672

f do™00'9log(z"x,,)

Where do™ is the element of surface area. Carrying out the differentiations gives

koo 1
ﬁfda xm(z"xn)"’

The vector element of area is perpendicular to the surface over which we integrate,

therefore we can write

do™ = —w—m—da = —mda
|z™| Vil

Using this gives

k sk
Eﬁfda(a: Tn) 72 = 2m2r3 fda

Where r = /z"z,, is the radius of the 3-sphere over whose surface we are integrating.

The volume of a 3-sphere is a standard result and is given by 27%r3. Thus our final

result is
1

_ 4 mn _
—— [ o Ty FoF™ = k

So the ADHM field-strength reproduces the conventional instanton number, as re-

quired.
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3.5 The shape of the moduli space

One may use single SU(2) instantons to obtain instantons of SU(N). This is achieved
by simply embedding the SU(2) solution in one of the SU(2) subgroups of SU(N).

One such embedding we could choose is

SU(N) _
-

Taubes has shown that all SU(N) single instantons may be obtained in this way [41]

ASU(2) 0
u ) (3.30)

0 0

One can act on this solution with a global gauge transformation like so:

ASU(2)
ASUN) gt | T# "\ v (3.31)
g 0 0

In general, such an action could act non-trivially on the embedded A5U(?), yielding
a different embedded solution. However, one can show that our embedded solution
possesses a stability group, a subgroup of SU(NN) under which (3.30) is invariant.

In terms of the ADHM variables, the SU(N) gauge group of our theory acts
only on the w4, since only these carry an SU(N) index, u. One can envisage these
quantities as constituting a set of 2k complex N-vectors. If we have N > 2k then there
will exist a subgroup of SU(N) that will not affect the instanton solution. We shall
embed the & instanton solution in an SU(2k) subgroup of the gauge group. Essential

to this argument is the fact that we may always choose to arrange the N x 2k matrix
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w in upper-triangular form;

(1 &2 o G )

0 &2 - &
wir -t Wiz R
=U.| : Eak 2k (3.32)
WIN ' Wigk o o0 --- 0

K 0 0 -~ 0 )
The &, are complex except for those on the diagonal. Note that all elements in the

lower (N — 2k) x (N — 2k) corner of the SU(N) matrix leave £ unchanged. Thus at

least schematically we have
c SU(N)
SU(N - 2k)

In quaternionic language where the vector z, is represented as a 2 X 2 matrix, the

U (3.33)

action of the conformal group can be written as
z+ 1’ = (Az+ B)(Cz + D)™! (3.34)

where A, B,C and D are quaternions. There are 15 variables in this transformation,
corresponding to the dimension of the conformal group. Acting on the ADHM variable

A(z) with the conformal group we get
A(z;a,b) — Al(z;a,b) (3.35)
=a+bz' = A(z;aD + bB,aC + bA)(Cz + D)™} (3.36)

The gauge field depends on the matrices U and U, defined in (3.3). Thus we may
ignore the factor (Cz + D)~! and write the action of the conformal group on the
ADHM variables as

a—aD+bB, b+ aC+bA (3.37)
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However, it may be necessary in general to return the quantities so obtained to their
canonical forms. This is achieved using the symmetries of (3.16). Specifically, for b

we require the existence of transformations such that
AT = A(aC +bA) YT  =b (3.38)

where b has been placed back in the canonical form (3.17). The corresponding

transformation on a then takes the form
a— A(aD +bB)Y™! (3.39)
We shall examine the effect of space-time translations;
Tn > T+ & = Tag M Thy = Zag + Lo (3.40)
Thus the effect on A is as follows,
A(z;a,b) = a+b(z + &) = A(z; a + bE, b) (3.41)
ie. A(z+&;a,b) » A(z;a + b€, b). Including the index structure, we have
Autiayja = Autia)ja + VP utia)i€Ba (3.42)
Recalling that b is in its canonical form, we can write
o = ( “uge ) (3.43)
(ahg)ij + 0ijéaa
= Wyja F Wujas  (Bog)ij > (60g)ij + 0ijéaa (3.44)
From equation (3.21) we can put
A, > @y + Elgxk (3.45)

This looks likes the transformation of the coordinates themselves and allows us to
identify the components of the a,’s proportional to the identity matrix as representing

the coordinates of the instanton centre.
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3.6 k-instantons in singular gauge

In the usual l-instanton calculations it often proves fruitful to define the so-called
singular gauge. The main advantage to this viewpoint comes from the fact that the
gauge fields decrease swiftly with distance from the instanton centre so that they
asymptotically approach zero as x — oo.

It is possible to define the singular gauge for the generalized k-instanton gauge
field of the ADHM construction. We begin by defining the following decompositions
of the ADHM variables;

Va
Uy = U(u+ia)v = ( ) (346)
(U!x)iv
U} = 0,8+ = ( Vow (0)ui ) (3.47)
Waig
Airja = Autia)ja = ( ) e ) (3.48)
( ao‘z)ij
A?'\ _ A;&(uﬂ'a) _ ( w;‘,u (A'da)ﬁ ) (3.49)

Thus in this basis we have, for the LHS of the completeness relation, (3.7);

U Uv* = Ulpia)p UL TP = ( Ve Vow Vo (U)o )
(Ucfx)lv vw (U&)l'v(U’ﬁ)uk

The RHS becomes

bwu — Wuia fij @5, —Wuia fis (D) jk )

OH — Ayia fi A = ( . .
T —(Aha)ifii@%,  Okdh — (Ala)ifis (A"%P)

Comparing first entries in the above gives the equation

% —é
Vuu‘/'uw = 6wu - wuidfijij
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If V is real then we can write
= (Inxn — waf@®)} (3.50)
Having determined V' we can then calculate U’ using
Ua)iVow = =(D4a)ifi @5 (3.51)

Having found U’ we may proceed to the gauge field via (3.5). Using these results we

may calculate the asymptotic form of the ADHM quantities in the singular gauge.

Axia = b3iTag ; AP — x‘mb’\ (3.52)
1
f,'j — EJ,-J- (3”53)
1 Laa _ a o jda . t =
UL)i — ——2 Wi 3 0"%),; = — g Woid (since o' = &) (3.54)
1z™
Apuw = — 9 T wuzao'mn 8 (355)

Taylor expanding (3.50) and retaining the next-to-leading order term, we have

1 1

1
&

~Wyia—50i W5 = Oyy —
2 g2 I

53 Wuialh (3.56)

‘/u'u — 6uv -

For completeness and ease of reference we also write down the asymptotic form of the

ADHM matrices Uy, and U);

UAv = U(u+ia)v — ( “ 2a* mo.tww ) (357)

1 —Q
— 2 TaaWyy

U) = Of#tie) - ( bou — rWivalf, — 3L Wia ) (3.58)
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3.7 Recovery of the t’Hooft expression for kt =1

We use the canonical form of (3.17), (3.18), (3.19) and (3.20). Setting k = 1 we
may omit the %, j indices. Thus the a], becomes a 4-vector. From the discussion of
the moduli-space we know that we should identify this vector with the centre of the

instanton.

We now examine the form of the ADHM constraint equation, (3.27), in this case.

Multiplying (3.27) throughout by 7¢ gives

T 7 ﬂ(wﬁ‘wum e ) =0

But
57 = 2 (5'5‘56""5 - -;-5755%)
Therefore
Dw, i — ;w wued's + @ "%al; — ;"a"‘ 1ad’;=0 (3.59)

Consider the third term above. Decomposing this in terms of the Pauli matrices gives

~tya !

8% 5 = AnAmB )"0 g

Let n,m # 4, then,
apacTT s = ayac(6%°675 + €°47%5) = ayayd’;

If n = m = 4 then we get

a4a4573

If m = 4,n # 4 then we have

1apas T
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Whilst n = 4, m # 4 gives

—1apa47"7

Putting these results together,

Now we consider the fourth term in equation (3.59)

1_,. . 1 . .
_Ea,aaa’;d675 = _'éanamagaamad(s’y&
If n, m # 4, then the above becomes,
1 breygH 5
—iabacTT(T 7687 = —apapd”;
If m =n =4 then
1 : :
——2-a4a4Tr(12x2)6g = —a40407;

Whilst if m =4,n# 4 or n =4, m # 4 then
—-2—a4abTr('r )(575 =0
Thus altogether the fourth term becomes

47

Using these results in the ADHM equations we notice that the a, variables cancel

out so the £ =1 ADHM constraint becomes

. 1. . :
Wy Wy = 5wlwua,6°‘ﬁ = P25a,§

o 2 1
Where we have defined the quantity p* = 5

(3.60)
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For the 1-instanton case we solve this constraint by writing

1
wya = pPUNxN ( 2x2 )
0(N—2)x2

For k =1, f is a scalar given by (3.24) as

1

f N )02 + (mn "—Xn)2

(3.61)

(where we have made a minor simplification to the standard form of f). We now
follow the procedure outlined above, calculating first V' via (3.50), which will allow

us to find U using (3.51).

N

1 .
Vo = (5,,,,, R )2wmw§‘) (3.62)

Let us define V' by an expansion in w.

Vo = Abuy + Bugu@?
Squaring and using (3.59) gives
(V) o = A%0yy + 2ABwg, @8 + B%duwgw,éw@f
= A%,, + (2AB + B2p2) Weu @
Comparing this with equation (3.62) we have

A2=1

1
—P2 + (Tn — Xn)?

The solution to this quadratic equation is given by

2AB + B?p* =

Ai 1 |z, — Xy

PGt e p Xy
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So our result for V is

1 |Zn — Xal _é
‘/;Av - Aduv + — ( A \/p2 n (x = X)2) auwv (363)

If we want the ’positive square root’ of the matrix V2 then we can set A = +1 to give

Vi = 6,0+ = 2= Xl 4 Weu@E (3.64)
PP \J/e? + (z — X)?

Turning now to equation (3.51) for U, we have, (with a and b in thier canonical
forms),
Abs = Gog + Taa = (Tn — Xn)og,

Therefore we have

n ~a

(Xn_mn) o
7+ (@ = x) e

To complete the expression for U we must find V~!. Recall that V2 = F = V =
FV~1(= V2V~1). Since we now know both V2 and V we can find V-1, which we

—~AL fad =

shall write in the form

Therefore we have,

C DP2 — G
Vo = Cous (D‘ P+ @-X)? p2+(x—X)2) Wty

Comparing coefficients with equation (3.64) gives C =1 and

1 p*+(z— X)?
D‘F(* [E=57] ‘1)

Substituting these results into equation (3.51) yields an expression for U’,

. (Xa—a) VP A+ (= X) i
Uua - 2p2+(.7:—X)2 naaw ((svu+ p ( |(.'L'—'X)I 1) wc'wwu)
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=+ L (Xn - xn)anadwg
|z — X1[y/(z — X)? + p?

Finally we wish to calculate the gauge field. Using 3.5

(An)uv = VauOnViw + U208, UL,

- uwavy

(z - X)*((z — X)? + 0?)

3.8 The ADHM construction for £k =1

Note from (3.60) that the a, variables cancel out of the ADHM constraint equations.
Since the ADHM equations thus have nothing to say about these quantities, we can

drop them altogether and consider the moduli space metric to be
§ = 2d@Sdwys (3.65)

In this case our coordinates on the moduli space become

z§d=( d‘;’" ) (3.66)
€ w,z

and so the moduli space has dimension 4(N — 1).

3.9 The ADHM construction and the hyper-Kahler
quotient

In the previous chapter we demonstrated that the instanton moduli space is an exam-
ple of a hyper-Kahler manifold. So far in this chapter we have developed the ADHM
construction. We now discuss how the ADHM construction is an example of a more

general procedure called the hyper-Kahler quotient construction [39]. We start with
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some larger dimensional hyper-Kahler manifold called the mother space, M, the met-
ric and complex structure of which are preserved by a group of isometries G. The
hyper-Kahler quotient procedure then yields another hyper-Kahler space called the
daughter space M. The fact that G preserves g and I is written as the vanishing of
the Lie derivatives

ang=LXaI=0 (367)

This further implies that the Lie derivative of the Kahler form w must also vanish.
This can be written as

Lx,w=(dix, +ix,d)w=0

Because we have dw = 0 (closed), the condition Lx,w = 0 is equivalent to the 1-form
tx,w being closed. We shall assume that this form is also exact, so that there exists
a function u, such that

oW = dfig

(This would be true if M were simply connected and had a trivial first cohomology
group or if g were semi-simple). Such a function is called a Hamiltonian function and

allows us to define the so-called moment mapping, u: M — g*.

p=> pu T (3.68)
a

where the T* are the generators of the group G. On a hyper-Kahler space there
are three such moment maps, one for each of the complex structures. The quotient
manifold is then

#~(0)

m=E2 (3.69)

Thus the daughter space is the subspace of M on which the moment map (4 vanishes,

quotiented by the group G.
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3.9.1 Moment maps of the ADHM construction

We shall consider the one-instanton moduli space (k = 1). The metric in this case is
given as

g= 2dwf;’dwud
Thus the mother space M is Euclidean. The three Kahler forms are
wt = i(Tc)d‘Bdwud A dd)f

Now consider a U(1) symmetry acting on the coordinates of the manifold. Such an
action is evidently an isometry ( symmetry of the metric)
Wya ewwud

- —if ~a
w e Vg

For infinitesimal transformations we then have
Odwys = 10wys
S0 = —ifad
Thus the required Killing vector is

o 0

— W,
Bwud u awg

szud

We can now find the contraction of the Kahler form with this vector,

=i(7)% <dwua, wwa—f—_ P > dab —i(m9)%; <dw§, ‘””"ai — ] ?ﬁ> daof

v
Wyg awu
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= i(T”)dBwuddwf + i(TC)dBwfdwud
=d (i(rc)dﬂwmwf)
This in turn yields the moment maps
(Tc)dﬂwgwud =&
Thus we have reproduced the ADHM constraint equation, (3.27). The group G by

which we quotient the level set is then the U(1) symmetry group of the canonical

ADHM variables.

3.10 The ADHM construction and the metric on
M

The mother space M; is the Euclidean space R**+¥). With coordinates ay;s the

metric § on M can be written as
f] = (QdGJf:tdwuid + d(&’d"‘)ijd(a;d)j,-) = 2T7‘k (d(:)d + da;da;) (370)

We can realize a symplectic structure on My by introducing the coordinates z‘d,% =

1,...,2k(N + k). We choose the real set of coordinates;

— G -G
Wiy Wiy
Flél Flal
@)y (@)
2" = iy ’ = - (3.71)
Q . «a
€W,z W
aB( Y. &
€ (‘113)11 Ajj
Where for convenience and clarity we sometimes use w,;; = €3,W.% and Ag =

&b (a} B)"J" Using this notation we can write the metric as

§ = (ye5d7d2P (3.72)
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Where the symplectic matrix § is given by

~ 0 0 0  dimd;
Oy = mot (3.73)
_6i16uv 0 0 0

0 —6,-,,,,6]-, 0 0

The indices ¢ and j take the values {4u, 47, ui, 45} and {lv,Im,vl,Iim} respectively.
3.10.1 Killing vector fields

Here we develop some results involving the Killing vector fields on My, for use in the
next chapter. A tensor field T is invariant under a vector field V if its Lie derivative
vanishes, LyT = 0. A Killing vector field is one under which the metric remains
invariant. Let X be a vector field on a manifold M. If an infinitesimal displacement,
&X generates an isometry of the metric then X is a Killing vector field. Under such a
displacement the coordinates become z* — z* + £X*. For an isometry we must then

have
O(z" + £X*) O(z* + £X?)
oz ozv

gz +£€X) = gu(2) (3.74)

If the group parameters do not depend on the coordinates (i.e. the symmetry is not

gauged) then we get

K A
(546500 ) (8 + €5 ) 9o + ) = g0 (3.79)

Expanding to first order in &,

X,\Bgu,, N ox* ox-

kv — 0 3.76
ar* | azv I + ozn I (3.76)

All the Killing vectors of a manifold form a Lie algebra of the symmetric operations

on the manifold. Consider now a group action on the coordinates of a manifold. The
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coordinates transform as,
o = (e T ), 2"
~ (08 +€"T™,)z”
Comparing with the above we see that we have r Killing vectors, X", one for each

generator of the group, and their components are
X =T,z (3.77)

Since the group generators are not functions of the coordinates we have the Killing
equation

T 380 g + T gur + T gy = 0
And the Killing vector fields are

Xr = mﬂ,xua% (3.78)

For a complex manifold there are two types of coordinate, z# and z*. For the real

coordinates we proceed as before to get
X" =iT",2" (3.79)
whilst the complex conjugate coordinate transforms as
24 =2 (e (3.80)
~ 200 — i€(T™,)")
= X™ = —iz"(T™,)* (3.81)

Where we have assumed that the group parameters £ are real. For Hermitian gener-

ators we get

X = —iz"T" (3.82)



CHAPTER 3. THE ADHM CONSTRUCTION OF INSTANTONS 56

In this case the Killing vector fields become

0 _. 0
X" = XTH XTh
OzH + ozt
0 0
=g TT™H ¥ __gFVTT B ____
T,z Eym 12°T", ErT (3.83)

3.10.2 SU(N) Killing vector fields on My

Since the mother space is Euclidean we need maintain no distinction between upper

and lower indices. Thus we may re-write (3.83) as

Using the normalization of the generators we can multiply throughout by the group

generator, giving an object independent of the Lie algebra label r.

0 0
rr o b _ sV
X'T,, =1 (z a7 z 02“)

The SU(N) gauge symmetry of the theory acts as a global symmetry on (part

of) the moduli space. The w variables carry an SU(N) index and transform under

infinitesimal transformations as follows,

w, == (61“; + ZfT:‘.v)w”zd => X:; = i uvwvia'

uice
‘D"d = a’gi(‘suv - zS(TJv)*) = XZ = —i(D,{gT;u

%

The Killing vectors associated with these SU(NN) transformations are therefore

X = Z'T;:vwmd——a— - ’L(I)a T 9

wTvu ~0
OWyia owg,

(3.84)
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3.10.3 U(k) Killing vector fields on My

There are also Killing vector fields on M) corresponding to the U(k) subgroup of
Gl(k,C) that leaves invariant the canonical form of the ADHM quantity b. Up to an

infinitesimal factor, the action of a Killing vector X, is defined by

=0 (X“)aXu

In the case of the ADHM U(k) group we will then have

_& a 6 ! 6
Xk = ér(w,-u)%g + 5r(wm'a)ﬁ + o, (a‘nzg)a 7
i ure nz]

The group action on these variables was given in equation (3.26). Writing this group

element in terms of the exponentiated generators, we have

B = (™)

For infinitesimal parameters §” we can approximate the exponential by the first term
in its power series expansion.

I — ..
Wyia = qua(e

—i0TTT )ji ~ wuja( ’I,OTTT)
= (5wm'd = —i0’wude}'i (385)

Taking the Hermitian conjugate of the above equation gives

Sl = 0" TTas (3.86)

ij Ju

Where we have used the fact that the generators are hermitian and we have assumed
that the group parameters 6" are real. Finally, we consider how the a/ ;. transform

nij

under an infinitesimal group transformation.

a i = (€77 )inal (€T
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~ (ba + 07T ) ay, 1, (85 — i67TY)

= 8al,,; = 0" [T, a. ) (3.87)

nzg

Removing the infinitesimal factor of 67, the Killing vector field associated to the rtt

U(k) generator is

&? — twyjalj; 7 9 +i[T",a

X T‘I’ —
" j I awma

3]
) n]Ua [; (388)

an
Note that this expression is not written in terms of the coordinate basis of -5 a —. To
do this we must express the derivatives in above in terms of derivatives with respect

to the coordinate functions. Let

& _ 6B, . WG — ik
Wi =¢€ Wyip = €Wy = Wiy

Therefore
(9 _ awv:’ﬂ 3 — e 6
6W$ - ows awva - ﬂdawv,iﬁ
= o _ 63&_36_ (3.89)
Wyig BWm.

Next we wish to express % in terms of the coordinate basis for the tangent vectors,

st and 32- Aa To do this we introduce
A; = ea ( lﬂ)"d = faﬂa'ngafé (390)
Since @' and AY each have an index set equal to 1, they each account for half

of the degrees of freedom in a],. Our particular choice of coordinates ensures that
the coordinates and the associated tangent vector basis are real. Evaluating the

derivative;

8 oas' 8  9AY B
= +

= 91
dal,;;  Oay; 0agt  Oay,,; 0AY (3.91)
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Where
) 3ald1
—1al — ~al — 5 (5
Gy = U piOp = adl,,, ki01;0.
and from (3.90)
F) Ad s
da, k.l. = e¥oudj0, 18
nij
Substituting this into (3.91) gives
0 a1 O
5y =% g < omipag (392)
Using these results the Killing vector becomes
XT =iT"@ a T —— 0 Tr — Gl &Br 0
(237 Jua a u_yﬂ ]laWa +1 [ ]1,_]8 lal + i€ [T 1‘3]ij_6Af‘j (3.93)

For later use we shall also require the Killing vector written in the standard form

r e i j& 0
X =1 H (ZJ az;é‘) (3.94)

It is a simple matter to re-write X" in this form:

X" = ’L:Z—:rl(suv (U.lea ) W;’aw‘z)
0 0
(Tz m — m'éil) (ahrlnl a ) ( % 10 jm Trrn 61!) ( m_d> (395)
iVJ 7 1 oa 1l ilY; ¥ 1 aAU

From here we can read off the components of T3

Th0uy 0 0 0
c_| O Tibim-—Tpda O 0 (3.96)
Y 0 0 ~TTbus 0

0 0 0 Thbjm—Th;ba

Where as before, the indices 7 and j take on the values {iu, 35, u3,45} and {lv,Im, vl,Ilm}

respectively.



Chapter 4

Supersymmetric instanton branes

4.1 Introduction

Classical Yang-Mils instantons are field configurations of finite action which solve the
self-dual Yang-Mills equation. Here we develop the approximation discussed in the
introduction whereby we allow the collective coordinates of our solution to depend
on other variables, such as time. In fact a useful trick inspired by string theory is to
embed these objects in a Minkowski space-time of higher dimension. The instanton
can then be allowed to live on any four-dimensional Euclidean subspace. We intend
to examine the status of such solutions in supersymmetric field theory. This will
necessitate the introduction of additional terms into the action to include fermionic
fields. Therefore the equations of motion will themselves be altered to accommodate
these new fields. We will find that the pure gauge instanton solution will cease
to be an exact solution of the fully coupled equations of motion. However, it will
remain an approximate solution at lowest order in the coupling constant g. We
then obtain a refinement of this solution by pursuing an expansion in powers of
the coupling constant. The effective action we obtain will resemble (1.29). The

terminology developed to describe these cases is part of the language of branes. For

60
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an instanton embedded in a D-dimensional Minkowski space, the solution will have
no dependence on D — 5 of the space-time coordinates, (one of them being the time
coordinate). Thus it will represent an object which is extended in those (D — 5)
directions. These are called (D — 5)-branes.

This chapter follows the analysis of [12].

4.2 Pure gauge instanton branes

We now intend to embed four dimensional instanton solutions in gauge theories of
higher dimensions. For simplicity our first consideration will be pure gauge theory.
Consider a gauge theory in a D dimensional Minkowski space. Let the space-time

coordinates be denoted by y¥, N = 0,1, ..., D — 1. The pure gauge action is,
1
S = Z—‘QE/dDy TTN(FMNFMN)

To achieve the embedding we shall break up the D-dimensional Minkowski space
into two parts. Firstly we will require a four-dimensional Euclidean space in which
the conventional instanton solution must live. The remaining sub-space will be a
(D — 4) dimensional Minkowski space. We denote this decomposition with an index
deconstruction as follows, let y™ = (£2,2™) where m = 1,2, 3,4, and a = 0, ..., p with

p= D — 5. We can then write the D-dimensional gauge field as
Apm(y) = (Aq, Am(z; X)) (4.1)

The Euler-Lagrange equations for this system are DM Fyy = 0;
D"F,p+ D%Fy, =0 = D™F,, + D*(0,An — D, A,) =0 (4.2)

D"Fny+ D°Fyy =0. = D™(D,A, — 0,A;) + D°Fu =0 (4.3)
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To embed the four-dimensional instanton in this space we set A, = 0 and let A,, be
given by the usual instanton solution in Euclidean space. In this case the field tensor

becomes,

an = amAn - anAm + [Ama An]
Fopn=Fy=0, ab=0,1,..,D—5.

Thus the D-dimensional field tensor collapses to its 4-dimensional part. The equations
of motion also reduce to the 4-dimensional equations D™F;,,, = 0. Since A,, is already
‘assumed to satisfy these equations it is obvious that (0, A,,) will satisfy the Euler-
Lagrange equations on R'”. Since this solution contains no dependence on the £°
coordinates, it represents an object which is static and extended in the remaining

p-dimensional (Minkowski) space-time.

4.3 The moduli space approximation

The pure gauge instantons are static solutions to the equations of motion. However,
we may consider instantons that move extremely slowly. In this case, provided the
motion starts out tangent to the moduli space we may construct an approximate de-
scription of slow moving instantons in terms of trajectories on the instanton moduli
space. Any oscillations transverse to the moduli space will therefore be suppressed
and motion is effectively constrained to the moduli space of static solutions. That is
to say that at each instant we may envisage our slowly moving instanton to closely
resemble a static solution, and time evolution simply picks out a series of static instan-
tons. Furthermore, such motion along the moduli space can usually be shown to be
geodesic [15]. The time evolution of slowly moving instantons is therefore represented

by (geodesic) curves on the moduli space where time provides the parameterization
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along these curves. The points along these curves have (collective) coordinates on the
moduli space, and as time progresses, we move along these curves and so the mod-
uli space coordinates of our solution change. Thus we have effectively allowed the
collective coordinates of the slow moving solution to depend on the time coordinate,
£°. We can generalize this approach further and investigate the effect of allowing the
collective coordinates to depend upon several additional variables which we identify
as coordinates in an enlarged space-time.

We then allow the collective coordinates of the instanton solution to have a depen-
dence on these extra space-time coordinates £, i.e. we shall investigate the properties

of a solution of the form

An(Aay A5 X(6))), Aa~O (%) .

Of course this new object will not in general solve the Euler-Lagrange equations
for the system. Our task at the moment is to determine the form of A, that will
compensate for the extra space-time dependence of the collective coordinates such
that Ay is still an approximate solution to the full equations of motion. In fact, if the
derivatives of X (§) are sufficiently small then this expression will be an approximate
solution to the equations of motion. We can regard this type of approximation as
an expansion in powers of the derivatives of the extra space-time coordinates. We
substitute this expression into the equations of motion, proceeding to linear order
in derivatives with respect to £*. Recalling that D™F,,, = 0, the first equation of

motion, (4.2) becomes,

D*(8,An — DpAy) =0 (4.4)

To linear order in the derivatives with respect to £ we may ignore this expression.
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For the same reason we may neglect F,; in equation (4.3), which now becomes

o [9A, X+
b (aXu o

- DnAa) =0 (4.5)

Recall the background gauge condition for an instanton zero mode given in (2.8).

This comparison suggests that we should set
Ay = 0,0, X" (4.6)

where Dy, is the compensating gauge transformation associated to the collective

coordinate X#. Making this substitution yields

(04,
D ( s 0aX* — Dy (QM&,X“)) =0

o [ OAn n _
o (07(2) - 20.0,) oo

where we have used D, (9,X*) = 0,(9,X*) = 0. The case 9,X* = 0 would correspond

to A, = 0, which we have already considered, so it is safe to ignore this solution and

our solution to the equations of motion to first order in 9, X* is
AN = (u0.X*(£), An(z; X (£))) (4.7)

We can now substitute these results into the action obtaining a result valid up to

quadratic order in derivatives.
S=50 450 = 1 [ &Py Tra(FpnF™) + < [ &Py Tra(FpaF™)
29p 9p

Using equation (4.6) we get

0A™

1 a vV m
S(z) = g /d”+1§d4x 6aX"c'9 X TTN |:6mﬂp,a Qy - Qamﬂu'g}(_;
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0Am DA™ . ) i}
6Xu aXV + 26 Q#[A '/] [A ] [Ama Qu][A aQu]
= = [ PEd Trnld,dn(e; X (€6, An(z X (€)0:X"0°X"
D
1
_ p+1 nAaa yv
29%) /d fguuaax 0°X (48)

where we have first used the cyclic property of the trace and then the equation defining

the metric on the moduli space,

g = =2 [ d'2Try(6,Am(@ X (€)3, An(z; X ()]

Note the absence of the factor of g® at the front of this equation. This is due to our
normalization of the A-fields in this section. S(® has the form of an integral over a
(p+ 1)-dimensional Minkowski space of a Lagrangian density L = g,,0,X*3*X". We
can investigate the consequences of regarding the X*’s as (dynamical) fields in R?,

The Euler-Lagrange equations for these fields are:
oL oL
oxr % (a(a,,Xu)) =0

Thus we have;

a agc’ a [
20u0a0°X* + 230 XP0,X7 = 0

= 0a0°X* + 3 ey ggp" 8 X°0,X" =0
For p = 0, these equations describe a (D — 5) brane and we recover the geodesic

equation on M;.

4.4 Supersymmetric instanton branes

The action for theories with N = 1 supersymmetry in D = 6 and D = 10 dimensions

may be written in a unified notation as [12]

1 _
S = gi Py Try (EFMNFMN - i\I!FMDM\I!) (4.9)
D
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(For supersymmetry refferences see [9] and [16]). The supersymmetry transformations

are (see appendix H for details about Gamma matrices),
ANy = —Eln¥ (4.10)
80 = iTr'MNEFy N (4.11)
In both cases we can decompose the gamma matrices as
Ty = {Ta® 75,1 ® W} = {T5, 1} (4.12)
and in both cases we can write the I',’s in terms of the ¥ matrices;

0 3,
(%) »

We may also write the Weyl spinors as

()

Adopting a 4 x 4 matrix notation in which each element is a square matrix of the

same dimension as the ¥’s the Weyl spinors become

/\A
0
U = (4.15)
0
Y
And the I'’s are
0 £, 0
0 X, 1, 0 ¥, 0 0
I =T, @v=| _ 2 - @ (4.16)
£, 0 0 -1, 0 0 0 -X%,
0o 0 -%£, O
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0 —to, O 0
10 0 —io, i0. 0 0 0
' =T, ® = ® i = " (4.17)
01 g, O 0 0 0 —io,
0 0 i, O
We now wish to assemble all the parts of the fermiomic action but to do this we need

an expression for ¥:

0 Sous O 0

_ - > 0 0 0

T=0'To=( (4 0 0 (A§)) "OAB ) ) .
— 40 AB

0 0 —3oaB 0
=(0 OO)'Coas ~(A9)1oan 0) (4.18)
However, in both cases, the Weyl spinors satisfy the following,
(M)t = E54pxE, A = =4 X (4.19)

(For N = 2 this equation amounts to a pseudo reality condition in D = 6. In the
D = 10 case this equation represents the Majorana condition. For further details see

[12]). Using this result gives

U= ( 0 £4cACSoap —E%%AscToas 0 )

Following the matrix multiplication through we get

—iUT,D,¥ = —i (£55X*P0 4550 BeDaAS + £° AP Xa 0o 48Za BeDarl) (4.20)
We would like to remove the awkward factors of £o¥y. From appendix F we know
that o and ¥, take the following forms,

Z:0 = "73 3 20 = —”73
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We can use this information to remove the factors of £yX, appearing in (4.20)

2?41320 AB = (—iz)ﬂioﬂia

3 .3 3 3
'aplaB + MapTaB

e i1

€3ap€3aB + 03pdsp
A

I
-

= 0330pB — 03803p + 03pd3B
=dps

So we can write 1) as
~iOT! DU = —iA*4 %) 4D AS — iAs aZaanDa)S
Similarly, the other part of the fermionic action is
—iWT!, D, ¥ = 2D" 445, A4
Assembling all these pieces, we may re-write the action, (4.9), as

S = % / dPyTry [%FMNFMN + 2D X345, 3% — iX* 4804 Do AB — iXs aXaan DS
d

(4.21)
The equations of motion are;
D™Fp, + D°F,, = 25%°{)\2, )¢} (4.22)
gD \A = —ix*4BD XS (4.23)
TnaaD" NG = —iZ4 5 DAy (4.24)

D"Foy + DPFyy = 154 4pA*4NB +iX4B )4 408 (4.25)
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Previously for the pure gauge theory we described the moduli space dynamics with
an expansion in &, derivatives. However, in the supersymmetric version of the instan-
ton action one is compelled to introduce fermion fields. To these will be associated
Grassmann collective coordinates, which we shall also take to have an &, dependence.
The moduli space approximation then becomes an expansion in n = ng+ %n 7. Where
nys is the number of Grassmann collective coordinates. Such an expansion correctly
takes into account the powers of the coupling constant that might otherwize appear
in front of the fermion fields. We have already determined the lowest order solution,
n = 0, during our discussion of the pure gauge case. We require the action to order
n = 2, so we must solve the equations of motion to order n = 1. To this order, the

fermionic equations of motion are

D™Fpp =0 (4.26)
géeD"\4 =0 (4.27)
OaaD™" XS =0 (4.28)
D"Fy = —iZ,agAAAB +iTAB) 408 (4.29)

Equations (4.27) and (4.28) are the covariant Weyl equations encountered previously.
In chapter two we demonstrated that in the self-dual instanton background we have
the solution \* = 0, so we need only consider the ) field. To order n = 1 equation

(4.29) becomes

o [(0As -
D ( o0 X" — D,,A,,) = —iZ,4p 428

We have already found the complementary function for this linear differential equa-

tion, (4.7). To proceed we note that this equation is linear in A,. The particular
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integral will be denoted by i¢, and is therefore a solution of
D%¢ = EaapX*AAE (4.30)

This gauge-covariant Laplace equation has been solved elsewhere, [12]. Note that i,
must be a Hermitian field since multiplied by 7 it is part of the (anti-Hermitian) gauge

field A,, and we have

Aq (7 X (), MA©)) = R (5 X ()8 XH(€) + idalm X(6), MA©) (431

This is our solution to the fully coupled supersymmetric equations of motion for the

gauge field up to order one in the derivative expansion.

4.5 Grassmann collective coordinates and symplec-
tic tangent vectors

Here we consider how fermionic fields behave when a (bosonic) instanton is present.
To the lowest non-trivial order in our approximation, the fermions satisfy the gauge-
covariant Weyl equations, (4.27), (4.28), where the gauge field takes its classical
instanton value. We will show that the fermionic collective coordinates may be as-
sembled into a Grassmann-valued symplectic tangent vector to the moduli space M.

The solution to the linear differential equation J)A = 0 is given by, [12]

Aaw = Aa(M)uy = (UM fBoU — Uba f MU) (4.32)

uv

Since A represents a fermion field this is a Grassmann quantity. The quantities M),
and M} are constant matrices of Grassmann collective coordinates, of dimensions

(N + 2k) x k and k x (N + 2k) respectively. Note that the spinnor index « is not
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attached to the Grassmann collective coordinates. If the Grassmann matrices are to

parameterize solutions of the Weyl equation then they must be constrained thus
ASM + MA% =0 (4.33)
Recalling the form for A and A given earlier we may write the more explicit expression
M}ayjse = —a}, My, (4.34)
Mi’\bgj = —b* M), (4.35)

Writing the ADHM index as A = (u + i) we decompose the Grassmann matrices as

Huj

My; = Mu+ia); = ( IJ ) (4.36)
Maij

MJA = Mj(utia) = ( Bju  (M'®); ) (4.37)

If we assume that b has been placed in its canonical form (3.17) then (4.35) becomes

— ViAW 0 = *70; o
( Biw (M ﬂ)lk ) ( 8%56; ) ( 0 b ) ( Mékj )

= MZ =’ My, = M3 (4.38)

We use this information to re-write equation (4.34) as,
( P Ml ) ( (‘:Z;kj ) B —( a0 ) ( ( MZ;kj )
= BiuWuja + Qiaulluj + [M'*,a4)i; =0 (4.39)
Therefore the fermion fields are described by the collective coordinates {u, iz, M.}
These number k(N +2k)+kN = 2k(N +k). However, (4.39) contains the free indices
a, i and j and so represents 2k? equations. Thus the number of independent zero

modes is 2kN.
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4.5.1 Relation to the hyper-Kahler quotient construction

Recall our definition of the symplectic variables zi¢, (3.71). We may write the Grass-
mann collective coordinates in an analogous form

ﬁiu

; (M"™);;

M = (4.40)

Hi
(M7)i
Where i = {iu, ij,ui,45}. Unlike the (bosonic) coordinates on the moduli space, these
objects only have a single index, ¢. In this form the Grassmann collective coordinates
resemble symplectic tangent vectors to the mother space. We will now show that
the fermionic ADHM constraints given above are equivalent to the condition that
the M indeed be symplectic tangent vectors to the quotient space. Since a basis of
vectors orthogonal to the quotient space is given by the Killing vectors X,, it will be
sufficient to prove that the X, are orthogonal to the M i with respect to the metric

on the mother space, (3.70). Thus it will suffice to show that
M QX" =0 (4.41)

Setting 7 = {4u, ik, i, ik} and j = {4jv, jl,vj, jl} we have,

Piu ' 0 0  dudi; O iTh,w8,
Mg X3 = (M™)ix 0 0 0 0l i[.T', ai,]zjé,‘i‘.l.
Pui —Guv0i; 0 0 0 — T, iWyms€*?
(M) 0  —0io O 0 i[T7, a) )10, 56%°

= i (= o Tp@y — (M AlT", 611555 = fiju T gtympe™ + (M™)A[T", 11501 6*)

jm
Now recall that

—mdza_dﬂaﬂ m, —md2_d/§2ﬂ m'_d,é21 m__d,ém
ag =€ "€ 0[9,3:}0- =€ € Uﬂﬂ_e € 01;3_ € alﬂ
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and

Mo = eg5MP = My = M*

Using these results gives
M;QX;?Q = (Trm-?r‘wl‘l"v] + Tmy'm'uwfu] + (M,)JI[TT ]lj6gl + (Mé)ﬂ[Tra a;z]lja-gz)

(T m@mtioj + T, ml‘mvww +[T",a ]lj(M,,é)jl)
Finally, we may use the cyclic property of the trace to alter the commutator term,
producing
MQXTS = —iT7, (@8, g + Bmow; + [(M}), @) ;) (4.42)
Thus the condition that the M® be symplectic tangent vectors to the quotient space
(4.41) is equivalent to the fermionic ADHM constraints (4.39). In summary here
we have shown that the Grassmann collective coordinates may be assembled into
Grassmann-valued symplectic tangent vectors to the moduli space.
One can define a functional inner product of fermionic zero modes. The relevant

formula is given in an appendix as (H.42)
/ d*z TryA(M)A(N) = —%2:% [M (P + 1)N + N(Py + 1) M] (4.43)
Using equations (3.73) and (4.40) we can show that
/ &'z Try A(M)MN) = —12C(M, N) (4.44)

Thus the functional inner of fermionic zero modes coincides with the inner product
of symplectic tangent vectors on M.
We now define Grassmann valued symplectic tangent vectors to the moduli space

M. Firstly we must solve the fermionic ADHM constraints, (4.39), obtaining a
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solution M = M (9, X). Just as the X’s represent intrinsic coordinates on the moduli
space, so are the 1*, i = 1,---,2kN to represent intrinsic Grassmann coordinates.
The symplectic tensor on the mother space, Qg; induces a symplectic tensor on the
moduli space, denoted €2;;, in terms of which the symplectic inner product of fermionic

zero modes can be written as

QM (¥, X), N(8, X)) = Q467 (4.45)
4.6 Effective action

Having solved the equations of motion to order n = 1 we can write down the action
to order n = 2,

S® — ;? dPyTry [FpaF™ — ix* 454D, )8 (4.46)
D
Consider the first term in the above, it includes F,,, where

0A,

Foo = Dy Ay — 0, Ap = Dp(,0, X" + i¢) — X5 g, X*
Recalling the gauge condition,
0A,
0uAn = X8 D,},
we can write
Fro = iDp¢pg — 6, An0, X" (4.47)

Therefore
FpoF™ = —D"¢*Dppg + 0, A", Ap0, X#0° XY — 2iD™¢%0, A0, X* (4.48)
We can integrate the last term by parts using the identity

On(0°0, An0s X*) = 0,00, An0s X" + ¢°0,5, Ands X" (4.49)
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Therefore

/ dPy Dp®0, And, X* = — / dPy $° Db, AndaX* =0 (4.50)

since D", A, = 0, giving
/dDy TryFpoF™ = /dDy Trn(—D"¢*Dpoo + 6,A"6,An0, X*3°X”)  (4.51)
Turning to the fermionic term,

DB = 0,08 + [A,, \B]

ONB oXH
— B o _ B B
= Ay(OuM )+6Xﬂ o¢a Aa(BuM7) + [As, Ay ]
B B
= Aa(8uMP) + (gj;u —A (%) + [Qu,)\f]> QX" +i[¢% \B]  (452)

Putting all this together gives

5(2) = g—]é_ ./ dDy TTN [_Dn¢aDn¢a + 6uAn6uAnaaX”aaXV —iA® Ai‘:lBAa(aaMB)
D

= ONB oMB
ya Ava o3
—iA* X% <_6Xl‘ - A, (OXI‘

)+ 0008) 2. 4 A 4S50 08| (459)
Breaking this up into parts, the second term we recognize as

57 / dPHE g, (X)B, X 02 X" (4.54)

We now concentrate on the third term, using the formula for the fermionic inner

product, (H.42),
1 D ya Av B D a A\va B
g/d yTry [~iX*A54 pAa(8.MP)] = /d yTry [~iA®(M#)54 5 Aa(0.M5)]

2
i Sa _ _
= oo [ V€ S (M (P + D0 ME + BHE(Pro + DM (055)
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with A = (u + ka) and p = (v + j8) we have

im? 204y 0 aalllB'
dp+1 f 2 =A M, Aa vt
265 s/ [( M) 0 o508 ) \ OME,

20y O a
+ (0B B, 01 ) g
0 oo ) \ My,

/ PHE £ 5 (2ABaE + 20,a8 uls + M8, MB, + 8, M!B= M,

aji aji

29D ) (4.56)

Using the fact that M’ = M’ and the fact that M’ is Grassmann and changing the

positions of the a’s we can re-write the last term above to get;
/dp+1§ EAB (uwaa:um + 6a/*”wll‘m + MIAaa Mfyz) (457)

By Gauss we have
[ @tie au(But) =0
= [@*¢ ol = - [ V¢ Qunid (4.58)

Using this result with the antisymmetry of £4 5 and the Grassmann property gives

aji

/ e (26m2E A Bu B + im?EY p M0, M5, (4.59)

The fourth term in the action can be re-written with the aid of an identity ((H.43)
and H.44)) as
/ dPHE @iz Try M 0,0, D" 08 (4.60)

Since 0pea D" A4 = 0 w can write,
A2 005 D"0E = Opnaa D" (A 2F) (4.61)

giving

/ d'z TryGnas (M 5P / 4% TryOnasdn(AA25) (4.62)
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since

/ d'z Try[An, Mog8] = 0 (4.63)

ie. Tr[A,B) = Tr(AB — BA) = Tr(AB) — Tr(BA) = 0. Equation (4.62) can be
written as a surface integral at infinity and therefore vanishes due to the asymptotic
forms of A and &.

In the interests of clarity we shall gather all our results so far. The second order

contribution to the effective action is now given by

5@ = 5’+-gl7 / drti¢ (—%g,w(X)aaX“a“X" + 27258 A d, B + 7;7r2z‘:fwM,.';‘°a,,M,fﬁ)
D
(4.64)

where S is given by
a 1 D n_ia aAxa B
5=~ / dPyTry [~D"¢* Duda + A*AE% 5, AE]] (4.65)

We now wish to evaluate S. Recall that ¢® satisfies an inhomogeneous gauge covariant

Laplace equation, (4.30). Since D, is a linear derivation, we have
D™(¢"Dpe) = D"¢*Dnda + ¢°D*¢y = D"¢* Dppo + ¢°E0 ap A4 A2 (4.66)
We now investigate the behavior of this term under the trace.
Trn[D™(¢° Daga)] = Trn{0"¢"0nda + ¢°0°¢s

+0"¢"[An, $o] + ¢°[0nAn, $a] + 8°[An, Onda] + [An, 8°Onda] + [An, ¢°[An, da]]}
= Try (8"¢°Ouda + §°0°b) = 0" Trn(¢*Duga)
= —Trn(D"¢*Dnda) = Try [¢°Sa asA**AE — 0" (4*Dnba)] (4.67)

Next we treat the second term above in (4.66),

Try(¢°D*a) = Tra(¢°Eaap XA AE)
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=Try (l¢aSaAB/\aA/\aB + ;1;'¢a2a BAA® B/\ﬁ)

- TrN( 6°S0 an(ATANE — ,\aB,\;‘))

=% ( aAB AaA)\B(ba /\c/:¢a/\03))
= %Tm( aaB(ATANEG® — ATAgeAD))

= ETTN (ia AB/\GA[/\E, ¢a])

Where we have used the cyclic property of the trace together with the fact that the
A’s are Grassmann quantities. (Recall the behavior of Grassmann quantities under a
trace, Tr(AB) = A;;jBji = —BjiAij = —Tr(BA) ). Assembling these results gives

5 = é [ Py Trn [~0"(6*Dade) + 550 anA*416%, A2) (4.68)

The first term is a total derivative. By Gauss’ theorem, it may be written as a surface
integral over the 4-dimensional sphere at infinity. Recall Gauss’ theorem applied to

a spherical surface,
xn
/ "M, diz = / M, ds" = / LM, ds
Q a0 N x

Where dS is the surface element on the sphere and % is a unit vector normal to this
surface.
We evaluate this gauge invariant quantity in the singular gauge. The asymptotic
formulae for this gauge are given in chapter three, and ¢ is defined by, [12]
_ s wormag ey, on [ fee 0 )y 4.69
¢auv——z aABYy Aifij j v+ Uy 8 vu ( . )
0 Pa ,-j(Sa
where the compound indices A, p,, 4 and v are given by (s + k8), (t + hy), (s + i),

and (t+ j0B) respectively. We shall evaluate this to leading order in z. (Note that this
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will require that we consider the expansion of V' in (3.56) to next to leading order).

Substituting in the asymptotic forms for U and f gives

12 1 1
Pauw = 420 AB Qp'm/”l'w + ¢auv - 20 gwwaw,as gw
1 1
92 2uswzsaww + .Tm.’I?p(fm Op afWuicPa ijW; ﬂ (470)

Taking the derivative gives

" _ A B " s "
an¢auv — EFSGABIJ‘uzuzv + ;{wluéw1 a sv + ¢auswlsaw")

i 1 1
—4F$m$p0' ﬂwuza(paz]w]v+ xpo- Bwu&a(paz]w + IL'mO' O'n aﬂwuzawazj

Multiplying by -
xn

1 /1 2 .
m,.n=da -B
? n¢auv - ';5' (2EaABUme + wwawzs asv + ¢auswwaww - .’XI_m 0 o-naﬁwi“dso“ijwj”)

Recalling the identity 6520,,,5 + 05%0 05 = 20mn0% we can transform the last term
to give

z" 1 /1 -G
—OnPauw — e} (2Ea ABﬂml‘w + wzuawzs as'u + ¢auswzsaww 2WinePa ijWiy (4.71)
Since the asymptotic form of the gauge field is A, — 2™, we must have

due to the antisymmetry of the &,,,. Thus we must also have,

" Dpdpg — T"0na (4.73)

Multiplying by ¢2¢ and taking the trace over the U(k) indices ¢ and v gives

xn
?T""N(QﬁoaDn(ba) -
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1 /1 . . .
O0a, 6 A-B Oa — 0 Oa —a 10 O0a 10 —C
;{ (520 AB¢uu Huiliv — 2¢vuwiu&<paijwjv t Oyu WinaWisPg g0 + ¢vu auswisawiv) (4'74)

Using the antisymmetry of £, 4 and the fact that ) is a grassmann quantity yields,

" 1 /1 _ a _4 iy
?TTN(qboaDana) -3 (52msu{},¢2:}uﬂ -2 guwiud%ijwfv + 2wg, os guswisd>
(4.75)

The volume element on the sphere S® of radius R in polar coordinates is
dS = R%dr d¢ sinb, do, sin20, dfy, 0<R<00,0<¢<2m,0<6b; <7
Therefore

z | p i

}{dsn fTTN(¢OaDn¢a) — 4n’ Zza AB Dy Boe s + @ BOS DY o Wiss — ¢23wiua30aijwfu
(4.76)

We now go back to the expression for S and consider how we may manipulate the

second term in (4.65).

—;—/ dPtie /d%TrNiaABX"A[(b“,)\f] = %/ dPtie /d4xT7‘NA°‘(MA) (IDRZ'QA +Aa(NA))
(4.77)

Where we have used an identity.
LaanlVa, Aa(MP)] = Pos + Aa(Na) (4.78)
We know that the equations of motion to order n = 1 give JPA* = 0. Thus we have
GnaaDnX = 0= 45,50 Dy (€P25) =0 (4.79)
Recall that €£48%5,,5, = o8, Using this gives

—0% DM =0 (4.80)
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ie A4 =0 = P24 = 0. Using the cyclic property of the trace we may go on to

show that
TerDad (/\aAl/_)dA) = anadﬁn TTN ()\aA'QZdA) (4.81)

Thus the first term in (4.77) has reduced to a total divergence and may be evaluated
on the sphere at infinity. Due to the asymptotic forms of 1 and A this surface integral
vanishes. The second term in (4.77) may be evaluated with recourse to the fermionic
inner product formula, (H.42),

1 2 i
5 [ iz TraA (M4 Aa(Na) = =T M (Pro + 13" Nays + N (Poo + 13* Mo

(4.82)
= -2, 4T [ﬁA¢2uB - MAMB%] (4.83)

Assembling both pieces, (4.83) and (4.76) gives:

x 1. . . 1- _
S = —47f2/ PPHETT, (Ezawﬁ%ﬂu” + @ Padowa — W Pawawa — ZEaABMAMB(Pa)
(4.84)
The definition of L(¢p,) is, (H.39), [12]
1_ _ .
L(tpa) = ZEG ABMAMB + G)aqﬁgwd
= g = L7} Ei:,,ABMAMB + doq&gwd] (4.85)

we can recast the above as

- 1_- :
§ = —an? / dPtie Try, [52“3;1*‘ 0uB + 0% ¢liws — (L(%))soa]

1

22,1 4B ABOu® + @Bl ows

= —4n? / dP“gTrk[

- . 1. - .
- GE,,ABMAMB + w%gwd) L (ZngMCMD + w%"“wg)] (4.86)
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For the d = 6 case, the ¥ matrices are simply
Y148 = —i€AB ; S24B = €B

= 2% 5¥cp = eapecp((—1)? +1*) =0

Thus for the d = 6 case, when the fields ¢0 vanish then so does S. That is to say
that in the d = 10 case there is a four fermion interaction whilst in the d = 6 case

this interaction is absent. However, for d = 10 we have
5% 55acp = 2€aBcD (4.87)
Thus even when ¢2 = 0 there is a non-vanishing S;

S= %2/ dP € eapepTri[(MAMPE) (L™ (MC MP))] (4.88)

4.7 Geometric interpretation

From now on we shall only consider the case in which the vev’s vanish. We will show
that the expression for S, (4.88), is actually related to the symplectic curvature of

My, which is given by (see [12]).
it = 23 [(QT)5 LN QT g + Q)L QT + (QT7)5 L (QT);] (4.89)

i3rs

(For the definition of the symplectic curvature please see appendix B, specifically

equation(B.12) ). Therefore, using the fact that the M i’'s are Grassman quantities,
Ri}fcl'M;AMj BMI:: CMiD =9 Z [M;A(QTr);_,',Mj BL;’IME C(QTS)HMiD
T8

+M; A(ﬁTr);iMfDL;I M3 B(QTS).;EME C _ M; A (QTT);EME CL;IM_; B (QTS).;ZM{D]
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= eapcpRyM AMIBM*CM™P = 6 3" eapop M*A(0T7);; MI LI M*C(OT) ;M P
(4.90)

Using some results developed in the appendices to this chapter, (4.99) we have;

MEQETEMS = ~ T (M M5, — MP*M3}) (4.91)

ki*ij

Substituting (4.91) into (4.90);
€ABCDRi3‘iciMiAM3 BM’;CM[D =

mn nm y Pq qp

= 12eapcp(MAMB LY (M MP)) (4.92)

Where L)} = 377 L1 T¢. Thus our final result for S for the case of Nd = 6

mn—nm,pq qp

supersymmetric Yang-Mills with vanishing ¢ fields is,
/ &€ eapop RigM* A MIB M (TP (4.93)
Substituting this result into the expression for the effective action (4.64) yields

s<2>=— / dPHig ( = G (X)B, X XY + 2n?58 p A B, + i85 s MIA*9, M,

aji

7T2

—oz€48cnR; S MAMIBMEC D) (4.94)

We should like to write the entire effective action in terms of variables that are
intrinsic to the moduli space. To this end we introduce the intrinsic Grassmann-

valued symplectic tangent vectors to M;. These are denoted %4, i —1,2,---,2kN.
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The quadratic fermionic term may be written in terms of quantities intrinsic to
the moduli space. We shall not need this term in what follows so we shall not follow

its development explicitly. This term may be re-written as (see [12]),

o [ PP S8R0 () Oub s + 0T X )PP (4.95)
49p

Thus the second order contribution to the effective action becomes

1 1 o o
0= / g (ﬁg‘w(X)aaX“a"X”+ 258504 (X)W 4(Bu8's + 0,34 X )PP

+geABcDR;3,;,-M“M3‘BM'ECM'" D) (4.96)

This result represents the specialization of (1.29) to the hyper-Kahler case. Note
the appearance of the metric tensor defined as the functional inner product of zero
modes. We should sound a note of caution regarding the notation employed. In
the equation above the tensor R;;y represents the symplectic curvature tensor on

our hyper-Kahler manifold. However, the R;jx of (1.29) refers to the conventional

curvature tensor on the moduli space.

4.8 Summary

A conventional instanton is a finite action configuration in four dimensional Euclidean
space. We may embed these solutions in a five dimensional gauge theory in Minkowski
space by introducing a time coordinate of which the instanton solution is indepen-
dent. These instantons then represent static finite energy configurations of the five
dimensional theory. They are therefore particle like solitons in the higher dimensional
theory. Taking this hint we proceeded to embed the instanton solution in gauge theo-

ries of even higher dimensions. Thus we introduced the instanton as a (D — 5)-brane.
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Following the idea of Manton’s moduli space approximation, [15], we allowed the in-
stanton solution to depend on the extra space-time coordinates. We also introduce
the supersymmetric extension of pure gauge theory. The field configurations so ob-
tained are only approximate solutions to the full equations of motion and we proceed
order by order in the coupling constant. After a lengthy analysis we arrive at a su-
persymmetric quantum mechanical sigma model on the moduli space. The terms in
the action have natural interpretations in terms of intrinsic geometric quantities on
the moduli space. When the vev’s vanish, in the case of N = 4, there is a non-trivial
contribution to the action involving the curvature on the moduli space. This is the

most important term for us and we shall return to consider it in chapter six.

4.9 Appendices
4.9.1 Matrix maps

Consider a map of vectors onto vectors. These linear transformations may be effected

by matrix multiplication;

M:V VIV =MV

Or in components

I — .. .
Vi = MyV;
Likewise we may define a map of matrices onto matrices. Consider such a map, L

LaO=¢q

i.e.

0 = (L)
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We can write the action of L as follows,
(L(82))i = Lij, ki
What is the inverse, L=! ? Consider
(L70L(Q)i; =
= L' qL(Qu = Lij i Lik, maQnm = Qij

= L' wLik, mn = Ginbjm
Likewise,
Lij,ksz_kl,mn = 0indjm
4.9.2 Lie algebras

The generators of U(k) form a complete set of k¥ x k matrices. Thus any matrix, A

say, can be written as
Aij = Z AT
a
Where the A*’s are a set of numerical parameters and T* are the U(k) generators.

Using the orthogonality of the generators,
A* = AyTy;

= A;; = Z(AlmT%z)n‘; (4.97)

a
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If we choose A to be the matrix whose elements are all zero with the exception of one

element. A,, whose value is unity;

(0 ... 0 .- 0

\() e Q.. 0}
ie.
Aij = 0ipljq

Substituting the matrix into (4.97)
Oipjq = Z T, T
a

We can use this result to determine the inverse of the operator L, in the following

way. Recall the definition of L,
Lys = 2T (TTLT?)
= 2T Lji T
We can use these relations to show that L;! is given by

_ 1 1 s
Lrsl = iﬂerji,llkal (4-98)

4.9.3 Calculation of M4(QT)M?B

Recalling equations (3.73) and (3.96 ) we can calculate QT

0 0 ~ Tl 60 0
&g 0 0 0 T70km — Trdu
S I ¥ 0 0 0

0 Trbu—T0km O 0
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Where the indices 7,  and % are given by {iu, ij, ui, 5}, {lv,im, vl,lm} and {kw, kn, wk, kn}

respectively. Recall the forms for the Grassmann collective coordinates M;

Pw By
M/l’ A Mll'
Mi = kn and M® =
A J
Mok p’vl
M 1kn M 1lm

Using these we have

AD .. MB =71 (& 11’ A 11' A p rIB -B A n'B rl’B 1A
M Q =T, k(ukwuwm+MlklM M Mlnm Hiwlwm ™ Mlannm - MllmJ

ke z]
= T (MM, — M M) (4.99)

Where we have made use of the Grassmann nature of the M’s and we have used the

property,
M, = 1 = M 2 and M2 -M 1



Chapter 5

The SU(3)-1 instanton moduli space

The specific case we shall pursue is that of 1-instanton in the gauge group SU(3).
We know from general considerations that the angular variables on the moduli space
should correspond to the group manifold of SU(3)/U(1). We first discuss the group
space, defining its left invariant 1-forms and using the Maurer-Cartan equation to
obtain their exterior derivatives. We calculate these for the general case of SU(N +
2)/SU(N) and then specialize to N = 3 using the method outlined by [20]. We will
then have in place the necessary notation to quote the result of [20] for the metric
on the SU(3) single instanton moduli space. Our next step will be to derive the
metric on the moduli space using the ADHM procedure. Again, this will be given
in terms of the left-invariant 1-forms on the moduli space, facilitating comparison
with the result of [20]. Having obtained the metric, we will then attempt to calculate
the associated spin-connection. It should now be straight forward in principle to
calculate the curvature two form going via the spin-connection and Cartan’s equations
of structure. Thence we should be able to proceed to the Gauss-Bonnet integral using
(B.3). However, the scale of this computation proved prohibitively large, even for

Mathematica. To negotiate this impasse we made use of the simplification afforded by

89
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the hyper-Kahler nature of the moduli space. We were able to identify the coordinate
transformation to the so-called symplectic basis. In this basis our task is reduced to
manipulating the symplectic curvature. Since this object is only four-dimensional,
the problem simplifies to the extent that we are able to compute the Gauss-Bonnet

integral by hand.

5.1 The left invariant 1-forms of SU(3)/U(1)

5.1.1 The metric on a Lie group

We define a metric for raising and lowering the indices on the generators of the lie-

algebra of SU(N). Consider a Lie algebra with generators T,

[T°, T = if*.T* (5.1)
The metric for raising indices is

g% = Tr(T°T?) (5.2)

We wish to change to a basis in which the generators correspond to matrices with a
single non-zero unit element in the (A, B) position. To achieve this it will be necessary
to label the generators with two indices, so we have T% — T4 8. Here we are changing
the way in which we choose to label the generators. We exchange the label a which
runs from 1 to N2 — 1, to the index pair (A, B) each of which runs separately from
1 to N but upon which we place a tracelessness constraint so that the total number
of generators is again N2 — 1. The generators are traceless, so this unit element is
prohibited from lying on the diagonal, which implies T44 = 0. We will also have

(T4B)t = TA. The metric for raising and lowering the generator indices is now.

9% = 94% ¥ = Tr(TAPTcP) (5.3)
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This metric actually has the effect of swapping the position of the two indices, i.e.
T4Pga® P =TP¢ (5.4)
Likewise there will be a metric for the reverse swap,
TaPg*5°p =Tp (5.5)

Where
gAB,CD = T'I‘(TABTCD) (56)

In our new basis the components of the generators are
(TAB)ij = 5Ai53j (5.7)
Using this we write the metric as
948 o0 = Tr(TAPTcP) = 6468 6¢;6°: = 64°6%¢ (5.8)

We shall also require the inverse metric which we get as follows

ga? o = Tr(Ty® To™) (5.9)
=Tr(T*sTCp) ga® 4% 9c®c” (5.10)
=9*8°p 6} 65 08 66 = " P (5.11)
ie.
94% % =9%aPc =036 (5.12)

Turning to the Lie algebra commutation relation;

[Ta®, TcP) = TAP TP — TcP Ta® (56.13)
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= [Ta?, TcPlix = (Ta®)i;(TcP) ik — (TP)ii (Ta®) e (5.14)
= 64:67 6¢; 68 — 8ci6F 8aj0F (5.15)

= 06(TaP)ix — 0R(TcP)ar
= [T4B, TeP) = 6B TP — 62 TP (5.16)

But we must also have
[T4®, TcP) = ifa® ¢”FF TE" (5.17)
Comparison of these two expressions yields
FaB PP = —i(68 64r 6PF — 65 60k 65F) (5.18)

We wish to know how the Maurer-Cartan structure equation looks in this basis.
Recall that in terms of the left-invariant 1-forms £ on a manifold the Maurer-Cartan

structure equation is [3],
1
LA = 5 fAscLB A LC (5.19)
This now goes to

dL A8 = % faABCpBrLcP A LT (5.20)

9

Comparison with the form of the structure constants given above shows that we must
act on the middle pair of indices with the metric to get them in the required form,

i.e.

!

BC E_ _ ¢ B D.,E _C
fa D, F = JA ,© Fg

p D (5.21)
= —i(05 645 6P'F — 6% 6015 65F) 65, 65 (5.22)

= —i(68 6,5 67C — 65 6p 65F) (5.23)
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Substituting this into (5.20) gives
dL,5 = —%(5}; Sag 6FC — 6S 650 6BF) LcP A LT (5.24)

= —%(ccB A EAC - l:AD A L:DB)
= ’il:AC A ECB (525)

Like the generators, the left-invariant 1-forms are traceless and Hermitian.

5.1.2 Computation of the left-invariant 1-forms

We shall follow closely the discussion in [20]. We shall examine the case of SU(n +
2)/U(n). We divide the SU(n + 2) group indices A as follows, A = {1,2,a}. We
require

Y Lat=0, Tr(La*)=0 (5.26)
A
This leads us to write the 1-forms as

1

Ay, — 8,84 _ _—_
(CA )z] 6A15‘7 n+2

5 (5.27)

where there is no summation over the repeated index A. This satisfies both our

conditions since

1
Ay_s sA_ _ L o
Tr(Ca") = baidit = —— b (5.28)
And
Z[.AA =L+ L7+ .. =6 - : (n+2)6; =0 (5.30)
" n+2

We define the SU(n) generators

L2 =LP+ %Qdﬂa (5.31)
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Where Q is the U(1) generator

Q=L+ Lo° (5.32)
(1 ) (1 \]
_ 0 1 1
B Cn+2
0/ \ 1))
[ 0 ) (1
1 1 1
+ n+2
\ 0) \ 1)
1
( \ .
! 1
2
= 0 -— (5.33)
' 1
\ 0/
Taking £,! as an example we have, using (5.27), (5.31) and (5.32),
0 \
( 1
0 1
51 1
Ly = 1 —
' 1
\ 0
1
( \ .
! 1
1 2
+H 0 T n(n+2)
' 1
\ 0)
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\ 0

[ 0

\

1)

95

(5.34)

This is an SU(n) generator with the trace subtracted. The orthogonal linear combi-

nation gives another U(1) generator called .

/\=£11—£22=

[ 1

\

0)

(5.35)

Note that ) is real. The generators of the coset will then be the complement of £,?

and @, i.e. A and the following

a"‘=£1°‘,2°’=£2°‘,u=£12

(5.36)

Note that we have broken the left-invariant 1-form L into its components as follows

( [:11 £12 £13 £14
Lo} L2 L2 L
L= £31 £32 £33 £34
\ En+21 £n+22 £n+23 £n+24
[ 1Q+)) v ol o?
v lQ-n = %2
— (0,1)* (21)* £33 £34
\ (o") (Z")* Loy’ Lot

£1n+2 \
£2n+2

£3n+2

£n+2n+2 }
o \
n

L3n+2

£n+2n+2 )

(5.37)

(5.38)
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In terms of these quantities the metric on the SU(3) 1-instanton moduli space

may be written as [20]
ds® = h2dr® + a®(0} + 03) + (T} + Z2) + (v + v2) + f2\? (5.39)

where a,b,c, h and f are functions of r (the instanton scale size) only, given by

1

a® = E(r2 -1) (5.40)
b’ = %(r"’ +1) (5.41)
¢ =r? (5.42)

2 __ 1 2 -4
RP=(1-rH! (5.44)

Later when we come to use Cartan’s equations we will require the exterior derivatives

of these 1-forms. These are calculated using the Maurer-Cartan equation (5.19).

dLy%"? = do® = iL,° A L (5.45)

= i(L1P A L%+ L2 A L%+ LPPEA Lp40°72) (5.46)
=3 ((Q + A AT +Vv AT+ P A (L5 - %Q(Sg)) (5.47)
=%AAO“+iqua+iaﬂAﬁ~ﬂa+%(1+%)Q/\a°‘ (5.48)

Similarly we calculate the other exterior derivatives to be

: . 9 )
dZ":—%,\/\Z“+i17/\a"+%(1+H)Q/\E"+i25/\cﬂ" (5.49)
dv =iAAv+ioc®* AL, (5.50)

dA\ =2V AU+ 0% NGy — iZ* A Zq (5.51)
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dQ = i0® NG +i2% A Xq (5.52)
dloP =G5 +i5a A TP — i— (G, A"+, AEY) &0 +ila AL (5.53)

Specializing to the case N = 3 the coset space becomes the desired SU(3)/U(1).

Furthermore, the traceless SU(1) generators £,? vanish. We will also define real

one-forms;
o=0%= 013 + 1093 (554)
T=%=3, 4%, (5.55)
v=uv + 7:1/2 (556)

Following these changes through, the exterior derivatives become;

d01=—%)\/\02—1/1/\22—1/2/\21—%@/\02 (5.57)
d02=%)\/\01+V1/\21—1/2/\22+%Q/\01 (5.58)
d21=%/\/\22—V1/\0'2+V2/\0'1—:;’-Q/\22 (5.59)
d22=—%/\A21+yl/\ol+u2/\az+gQ/\21 (5.60)
dvi = -AANvy—0a AL +01 A, (5.61)

dvs = AN+ A1 +03 AN, (5.62)

d\ =201 Ao2 — 281 AN Xy + 4, A 1y (5.63)

dQ =201 Aoy +25, A X, (5.64)

This brief summary contains the results that we shall need to implement the Cartan

equations of structure, but first we must obtain the metric on M.
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5.2 Calculation of the metric using the ADHM
procedure

In terms of the w variables introduced in the ADHM construction, the metric on the

1-instanton moduli space is given by
g9 = 2d@%,.dwys (5.65)

Where

&

%, = (wua)" (5.66)

These variables are to be subject to the ADHM constraints:
7% 5.0 e = (° (5.67)

(Note the introduction of the non-commutativity parameter as discussed in the intro-
duction). This constraint can be satisfied for ¢ along the 3-direction, (setting ¢ = ¢*

in what follows), by writing w in the form,

PP+5 0
wyxn =U.S = Unxn 0 P-4 (5.68)
0 0

Where U is an N x N unitary matrix. To shorten the notation we introduce

b=\t o=yl (5.69)

Under a U(1) transformation, the w,; ’s behave thus:

why = ePwyg = €?U.S (5.70)

u

o =e "%, (5.71)
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We must also impose the so-called gauge condition. In terms of the quotient con-
struction this amounts to the requirement that one take a section to the level set
which is orthogonal to the integral curves generated by the Killing vector of the U(1)
group on M. That is to say, the implementation of the gauge condition implements
the U(1) quotient part of the ADHM construction. The components of the Killing
vector are given by

0

.0
XKilling = twyg=—— — 1@0°%
g ué -y
OWyé o,

(5.72)

The requirement of orthogonality on tangent vectors is arrived at by using the metric:
9(X, Xkitting) = 0 (5.73)

This can be converted to a condition on the one-forms by writing:

9(-, Xkitting) = 0 (5.74)
. _B a . _B — & a
= 1d”, ( dw,g  Wug g ) = @ dwl @ “55a dw,; =0 (5.75)

Which yields the required gauge condition,
A ywyg — @*udwyg = 0 (5.76)

We now differentiate (5.70) to give

dw' = €*(dU.S + U.dS + id¢ U.S) (5.77)
p+ O ;,p: 0 p+ O

=e?|dU | 0 p_ | +Udp| 0O 2 | +idgU. [ 0 p_ (5.78)
0 0 0 0 0 0

Similarly we define the conjugate quantity @2 :

| 0 0
o=SUl =& =stute® = ( ”0+ X ) (5.79)
p—
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Differentiating gives

da' = e~ (dST.Ut + ST.dU' — idg ST.UT) (5.80)
£ 0 0 0 0 0 0
— gt Utdp + | 7 dut —idg | Pt Ut
0 £ 0 0 p- O 0 p- 0
(5.81)

We can now calculate the parts of the expression for the gauge fixing condition.

Firstly we have:

do®ywus = Tr(do.w) (5.82)
£ 0 0 0
=Tr{ || 7 Utdp+ | 7 dut
0 ;”j 0 0 p_ O
0 p+ 0 )
—idg | P+ vtlu| o o (5.83)
0 p- O
0 0
P+s 00 \
= 2pdp — 2ip® ,dp — Tr 0 -5 0 |UldUu (5.84)
0 0 0)

Where we have made use of the cyclic property of the trace and the identity dUT.U =
—~UT.dU, which derives from the unitary condition on U, UT.U = 1. Likewise, for the

other part we get

0edwys = Tr(w.dw) (5.85)
p+ O ye p+ O
P+ 0 0 t .
=Tr 0 0 UMidu.l 0 p_ | +Udp| 0 +idoU.| 0 p_
P- 0 0 0 0 0

0
L
0
P+
= 2pdp + 2id¢ p* + Tr P-5 0 [UldU (5.86)
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Inputing these results to (5.76) yields an equation for the parameter ¢ appearing in

the U(1) transformation.

P+s 0
2ip* dp + Tr 0 -5 o0 |UdU| =0 (5.87)
0 0 0

i
= dp = 2—p2T1" 0 -5 0 |ULdU (5.88)
This expression for ¢ is not in its most useful form for our purposes. Ultimately
we should like to compare the metric derived by this quotient construction to that
deduced in [20]. To achieve this we shall need to give our expressions in terms of the

left invariant one-forms on the coset space SU(3)/U(1). Fortunately this is relatively

straight forward to do. We shall make use of the expression
Ul.dU =il (5.89)

Where £ is the matrix of left-invariant 1-forms given in the notation of [20] as

A+ Q) v o
L= v HQ-) T (5.90)
a* o7

As described in [20], @ is the U(1) generator which lies outside the coset. The question
mark denotes other 1-forms that lie outside the coset. We can now substitute this

into our expression for d¢ :

2 pPP+s 0 0 3@+ ) v o
d¢ = 27’-5Tr 0 p-50 v Q-2 = (5.91)
0 0 0 o* ¥ ?
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_1
4p?
We can now substitute (5.92) back into (5.78) and (5.81). This represents the imple-

(20°Q + X¢) (5.92)

mentation of the U(1) quotient.

p+ 0 £ 0 . p+ O
dw'=dU| 0 p_ |+Udp| 0 2 —4—p2()\§+2p2Q)U 0 p- | (5.93)
0 0 0 0 0 0
, £ 0 0 p+ 0 0 i 0 pr 0 0
da' = P+ Ut + dUT + — (X + 20°Q) Ut
4 2
0 ;,% 0 0 p_ O P 0 p- 0

(5.94)
The above are still not in a convenient form to calculate the metric. Ideally we should
like to pull out a pre-factor of U in dw,s and a post factor of U' from dw,s. This
would be convenient for then the unitary matrices will multiply to give the identity
and so remove themselves from our consideration. Taking the first term in (5.93) and

using the fact that U is unitary we may write

p+ 0 p+ 0
dU| 0 p_ |=UUNAU.| 0 o (5.95)
0 0 0 0
3@+ v o p+ O
=iU v Q-2 T {.] 0 p (5.96)
a* >* ? 0 O

—U| e b@-N) (.97
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Therefore dw,; becomes:

5P+ — - pdp p-v
dw' = 1e*U. oLV #p-pi)\ - pi_pdp (5.98)
p+0° p-x*

Performing similar manipulations upon di,; yields
- —io [ =P+PE + Epdp P4V ps0
da) = —ie™® | % P+ . . ) Ut (5.99)
p-v* o=pdp — 33p-p3A p-X
Note that the 1-form outside the coset, (), has obligingly canceled out of this expres-
sion and so it will not appear in the metric on the moduli space. Everything is now

set up in a convenient form to allow calculation of the metric.
g =2Tr(dd'.dw') = 2Tr(d@.dw) (5.100)

4 4 3 2 2
- Cé/;) vag 2 (f e g) o (f-§) o (2 ) Gao
—\2

Comparing the coefficients of the 1-forms with those given in [20] leads to;

ds = h%dr? + a®(0? 4 02) + b* (2 + X3) + 2 (V? + v3) + f2A? (5.102)
= _(r —1)=2 ( ) (5.103)

= —(r +1)=2 ( ) (5.104)

(5.105)

2= %rz(l -r )= ( 2 — f—;) (5.106)

R2=(1—-r )= }04_”—4(%)2 (5.107)

Which are in agreement if we set the noncomutivity parameter ¢ as follows

(=—-= (5.108)
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and

r? = 4p (5.109)
Thus from here on we shall set ( = —%. However, note that there is nothing physically
significant about the value of {. it merely depends upon the choice of scale for the
radial variable, rescalinig p will also rescale the value of {. We can hereby write down

the volume form for the 1-instanton moduli space,
1
d(Vol) = 2—37‘3(7'2 + 1) =1)drAciAos ASIAZs Ay Avg A X (56.110)

:25p3p'j’rp3 dpANoL Ao AL Ao AV Ava A A (5.111)

In summary, we have seen how to arrive at an explicit form for the metric on the

moduli space of a single SU(3) instanton by means of the A.D.H.M. construction.

5.3 Computation of the spin-connection and cur-
vature 2-form

5.3.1 The spin-connection

We will use Cartan’s first structure equation to compute the spin-connection on the

moduli space. We will choose the obvious veilbien basis for the metric (5.102), namely

e’ = dt, ¢! = a0y, € = a0y, € = bL,, et = b%,, €5 = cuy, €8 = cin, " = f),
(56.112)
We will assume that the torsion tensor vanishes. One proceeds by writing out the
spin connection with undetermined coefficients and using the Cartan equation to give
a set of simultaneous equations which will fix these coefficients. The spin connection

is a matrix-valued 1-form that we shall write in the following manner:

wij = Aijdt‘i" Bij0'1 + Cij02 + DijEI + E%Zz + Fijlll + Gijl/g + Hij/\ + JZJQ (5113)
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where i=0,1,...,8. Note the inclusion of the one-form @ in the spin connection. This
is because the exterior derivatives of some of the e*’s include @, so Q must necessarily
appear in the spin connection. Due to the antisymmetry of the spin-connection we
must have w*; = 0, (no summation over 7). The detailed computation is presented in

the appendix. The results of the analysis are as follows;

—wY =Wl =why =W = 201 (5.114)
Wl =why = ws = —wls = —gaz (5.115)
W = whe = —w? = why = —gzl (5.116)
W =wls = w = —wi = —-222 (5.117)

—w’ =Wl = V1 —riy (5.118)
Wl = wb = V1 -1ty (5.119)
—w' = wh = %(1 +7r A (5.120)
W= —55h+ (g - gf) Q (5.121)
wy ——2—713/\ + (g - Z—z) Q (5.122)

5.3.2 The curvature 2-form

We use the spin connection to calculate the curvature 2-form from Cartan’s second
structure equation;

R'j = dw'j + W'y A wF; (5.123)
In the appendix we will proceed to calculate explicitly a sample of the linearly inde-

pendent components of the curvature. The results of this analysis are summarized
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below;

1
Rl =——(-e"ne'+eNe'+e NP +e* Aed)

r

1
Rg=—r—4(—e°/\ez—eI/\e7—e3/\65+e4/\eﬁ)

1
Rg=—r—4(e°/\e3+el/\e6—e2/\65+e4/\e7)

1
Rg=—r—4(e°/\e4+el/\65+ez/\es—e3/\e7)

2
Rg=—7‘—6(e°/\e5—eﬁ/\e7)
2
R2=—r—6(e°/\es+e5l\e7)
0 _ 40 T 56y 21 A2 3 A
R7=T—6(e Ne' —e /\e)+r—4(e ANe‘+e’ Ae?)
2 4
R;=T_4(e°/\e7—e5/\e6)+T—Z(el/\e?+e3/\e4)

2
1_ LA o3 _ 2 p ot
R3——r2(e Ae® —e” Ae)

2
R; —r—z(e1 A +e? Aed)

1
R;=—T—4(e°/\e4+el/\es+e2/\66—63/\67)

1
Ré=—F(eo/\63+el/\66-—62/\65+64/\67)

1
R;zr_4(e°/\ez+e1/\e7+e3/\e5—e4/\e6)

2
R§=—ﬁ(61/\€4+62/\63)
2 2 2, 4_ 1A.3
R4=—r—2(e ne* —e Ae’)
1
R} =——(—e"Aed —e' N’ +e? Ne® —e' AeT)
r

1
Rg—_——;Z(eOAe4+ell\e5+62/\eﬁ—e3/\e7)

1
R?,:;Z(—e"/\el+e2/\e7+ea/\e6+e4/\e5)

106

(5.124)
(5.125)
(5.126)
(5.127)
(5.128)
(5.129)
(5.130)
(5.131)
(5.132)
(5.133)
(5.134)
(5.135)
(5.136)
(5.137)
(5.138)
(5.139)
(5.140)

(5.141)
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2 4
Rizr—4(e°/\e7—e5/\e6)+—2(e1/\e2+e3/\e4)
r

1
Ri=—("Ae+e' Ne'+e ne® —e Aed)

,
1
Rg=—T—4(e°/\el—ez/\e7—e3/\eﬁ—e4/\e"’)
1
R?:r—4(e°/\e4+el/\e5+e2/\66—e3/\e7)

1
RgzT—4(—e°/\el+e2/\e7+e3/\66+e4/\65)
1
R‘é_—.—}—Z(eo/\e2+e1/\e7+e3/\e5—e4/\es)
1
Ri=——(Ae+e' AP —e*Ae® +e' Ae)
r
R5——E(el/\ez+e3/\e4)—i(e"/\e"—es/\es)

2
R = —;(e0 Aeb +e®Ae’)

2
R9,=T—6(e°Ae5—es/\e7)

107

(5.142)
(5.143)
(5.144)
(5.145)
(5.146)
(5.147)
(5.148)
(5.149)
(5.150)

(5.151)

Fortunately, unlike the spin connection, the curvature has no component propor-

tional to the 1-form Q.

We are now in a position to calculate the Gauss-Bonnet integral according to (B.3)

Unfortunately, the number of terms involved made the calculation of this integrand

prohibitively large, even for Mathematica. To make further progress a profound

simplification would have to be sought.

5.4 The symplectic curvature.

Having reached an impasse with the direct calculation of the Gauss-Bonnet integral

using the above calculated curvature 2-forms, it was realized that an important sim-

plification might result if we could obtain the coordinate change to a system in which
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the symplectic nature of the curvature tensor was explicitly realized. This should
always be possible for a hyper-Kahler manifold. To start with, we note that on a

hyper-Kahler manifold one can write the three complex structures as follows:
w® = iQy75. b A bV (5.152)

Where ng = €T 4> and T 5 are the usual (components of) the Pauli matrices.

And the curvature tensor in this basis may be expressed as

R(ilal Y(Gza2)(G181)(j2B2) = ‘Rilizjljz €a102€6,8, (5' 153)

We will look for a basis in which €2;; has the simple form

0 1 0
-1 0 0
(] = (5.154)
! 00 1
0 0 -1 0
We can then expand out the three complex structures as
wh =26 (W2 A B2 4+ B3 A h%2 — p1L A R2E — p31 A gty (5.155)
w? =2 (A A K2 4+ 12 A B2 4 B32 A B22 4 p3L A Bt (5.156)
w? = 26 (M2 AR+ BM A B2 4 B3 A B4 4 13U A RE) (5.157)

Fortunately for us, the work of finding the three complex structures on our space has
already been done and can be found in [20]. Next we form the two linear combinations
wt and w™

+

wt = w! +iw? (5.158)

= 4i(h*2 A B2 + h32 A B%2) (5.159)



CHAPTER 5. THE SU(3)-1 INSTANTON MODULI SPACE 109

w = w' —iw? (5.160)
= —4i(h' A B2 4 31 A B4 (5.161)

We shall then compare these with the combinations, K, and K_ given by [20] and

attempt to identify terms.

K, = Ne* +ie® A @ (5.162)
K =8Ae —i@@ N (5.163)
Where the €'s are given by
e = e +ie’ (5.164)
e =%+ ieb (5.165)
e = e! +ie? (5.166)
e = e® — iet (5.167)

Setting w* equal to twice K, gives
4 (W2 AR2 + B2 AR = 2 (& A e +ie* A e®) (5.168)
We now make the following identifications,
4ih'2 A B2 = 20 A €t (5.169)
4 B3 A B2 = 2i¢® A € (5.170)

Comparison of the two sides of this equation suggests that we should make the fol-

lowing identifications:

1 1

B2 = —25" = —(* +ie") (5.171)

[}
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; 1 1
h?? = %e# = —2(—2'65 + €%) (5.172)
i
Likewise, setting V2R3 = ¢ gives
= Lo = i(el + ie?) (5.173)
V2T V2 '
R = ied = L(e3 —ie?) (5.174)
=5¢=7% .
We proceed in a similar fashion for the other coordinates, giving:
2i _ _1_-0 _ i 0 _ .7
h* = 5€ = 2(6 ie') (5.175)
ol a 1 s 6
h' = SE = 2( e’ —e°) (5.176)
4i _ _l_—a _ L 1_ .2
h* = 56 = 2(6 ie®) (6.177)
TN P N 5.178
\/56 = \/5( e’ —ie*) (5.178)

This is our orthonormalised complex veilbien basis. We now wish to calculate the
metric and the components of the curvature in this basis. It will therefore be helpful
to study in general how one may express tensor components with respect to different

basis’.
5.5 Rules for the change of basis
Consider a (dual) vector V expressed in both coordinate systems:
V = Vjgh'® = Vet (5.179)
Writing this out in components we have,

Viih' + Vo b2+ Vi3 4 Vbt 4 Vish'2 4 Vigh?? + Vigh® + Vsh2 (5.180)
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= Ve + Vie! + Vae? + Vie® + Vet + Vie® + Vse® + Vze'

Using equations (5.171)-(5.178) then gives

1
V = —=(Vai +Vig)e' +

1

i .

V2 V2

Comparing coefficients of the e'’s yields

V2

1

Vo =
T V2

(Vai + V33)
1

W= %(V&é + Vii)
7

Vo= E(Vaé — Vi)

1
Vi= ﬁ(Vu ~ Vii)

7

Vi= —%(V:«xi“ﬂﬁé)
7

Vs = —ﬁ(VnJer@)
1

Ve = E(Vﬁ - Vi)
)

Vy = 75(‘/12 — Vai)

Solving these equations for the V;,’s gives

1 ..
Vii = ﬁ(Ws - Ve)
1 .
Vis = E(VO —iVy)
1 .
Voi = ﬁ(VbHVﬁ

)
+Vii)e! + E(V’sé ~Vii)e +

) 1 7
——=(Vsi + Viz)et — —=(Vyi + Vg )e® + —=(Vao — Vi1)e® + —2(V12 — Var)e'

111

(5.181)

(5.182)

(5.183)

(5.184)

(5.185)
(5.186)
(5.187)
(5.188)
(5.189)
(5.190)

(5.191)

(5.192)

(5.193)

(5.194)
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1

Voy = ﬁ(% +iVs) (5.195)
Vo = (Vi = 14) (5.196)
Vo = (Vi — i%2) (5.197)
Vi = 250+ %) (5.198)
Vi = %(V?, +iva) (5.199)

We can now give a set of rules for finding the components of a tensor in this new

basis. For example, given a 2-form, T, we can write
T = Tupe® A€ = Ty 4 h'% A BP (5.200)

where, for example, our particular coordinate change would provide the correspon-

dence
Ty = Tﬁ(ﬁ—ﬁ) 5(0-47) (5.201)
= 5 ({Ts0 — Ty + Too + iTi7) (5.202)
= %(—iTos + Ts7 + Tos + iT67) (5.203)

We can check that we can recover our original metric using these rules. The non-zero

components are as follows:

9(1i) (22) = 9d(i5-6) L(6+i5) = —1 (5.204)
9013) 21) = 9L (0-17) Z5(0+i1) = 1 (5.205)
9(3i) (43) = 93 (i4-3) J5(3+ia) = -1 (5.206)

9(2) (41) = 9L (1-i2) L(14i2) = 1 (5.207)



CHAPTER 5. THE SU(3)-1 INSTANTON MODULI SPACE 113

Using these gives:
g= 2 (h1?h2i _ hlih2i + h3ih4i _ h3ih4é) (5208)
= (%)% + (e1)2 + (e?)% + (€®)® + (e*)2 + (€%)% + (%)% + (") (5.209)

as required. As an aside it will be convenient for later use to calculate the determinant

of the metric in this symplectic basis. Written as a matrix, the metric looks like

(0 0 0 00 10 0
00 0 01 0 0 0
00 0 00 0 0 -1
000 00O 1 0
g= (5.210)
01 0000 0 O
10 0 00 0 0 0
000 1000 O
\ 0 0-100 0 0 0 )

and so det(g) = 1. (Incidentally, one could transform the metric above to a diagonal
form simply by changing the order in which the basis vectors are labeled).
Using the same coordinate change methods we may calculate the components of

the curvature in this basis. The non-zero results are:

4 . .
R(]l)(lZ) = —ﬁhzl A h22 (5211)
R(li) (23) = %(h32 A h41 _ h31 A h42) + F(hu A h21 _ hll A h22) (5212)
92 .. . . . 4 . . . .
R(12) (21) = ,,._4(h’31 A h42 — h32 A h4l) + '7,—6(’7’11 N RN h21) (5213)

2 . . . .
Riyiy(s3) = r—4(h22 A R — B? A R12) (5.214)
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Ryiy s = %(h2é AR — 2 A B32) (5.215)

Rys) iy = %(h"’i A R12 — 2 A 4 (5.216)

Rusyui) = T2—4(h2i A B3 — 22 A B3Y) (5.217)
Rmﬂﬂy=—%hﬂAhm (5.218)
Rme=%mﬁAMLJNAh% (5.219)
Rmmm=%mﬂAmt4ﬁAm% (5.220)

R siy = 7‘2—4(17,Ii AR — B2 A pt) (5.221)

R aiy = 7‘2—4(11li A R3Z — p12 A p3y (5.222)
Rme=—%MUmQ (5.223)

Rigiy a3 = %(hlﬁ AR — B A B2 4 %(h” A R4 — B3 A p22) (5.224)
Rigsy iy = %(hli A B2 — 112 A B2 + %(h3i A B4 — h32 A bt (5.225)
Rmez—%mUm” (5.226)

Where use has been made of the multiplication table for the h*¢’s which is given at
the end of this chapter. We are now in a position to calculate the components of the
symplectic curvature, (5.153). As an example of the method we calculate the three
linearly independent non-zero components below, the rest being either zero or are

related by symmetry.

4
Riyas) iy = Rir22€i3¢€i5 = —%
4
= =g (5.227)

R(li)(zé) (32)(4i) = R334 €365 = r_4
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2
7 fhzse == (5.228)
4
R(3i)(3?) (4i)(42) = Rs3s44€i5€i5 = -3
4
Z s =0 (5.229)

This is our result for the symplectic curvature. We are now in a position to calculate

the Gauss-Bonnet integral.

5.6 The calculation of the Gauss-Bonnet integral

Written in terms of an orthonormal non-coordinate vielbien basis, the volume-contribution

to the Euler character of a 2n-dimensional manifold is given by

—1)" L
Xbulk = (Elﬂ)znl /61’”2."12" &n'z A R'isi4 Al A -Rizn—u'zn (5230)
(—]_ n L , ) .
= (81r)'2n! /EnmmmnR“ilizjszR'iai«ijaﬁ'”R’izn—liznjzn-ljzn AN e AN (5.231)
(="

1122...92n cJ1J2+-J2n 2 2
= (87r)"n! /61”2 Vi gl Iz R’ixizjljzRiaiatjaj«i'"Rizn-liznjzn-ljzn O'NP*A... A" (5'232)

where the 67 are the basis of non-coordinate one-forms. In the case in hand these are
given by
§7 — b (5.233)

In a vielbein basis the volume element is given simply by
dV = h'l A h12 A B2 A RZ2 A R3E A B3E A RY A B2 (5.234)
In terms of the left-invariant 1-forms of SU(3)/U(1) this becomes;
dV =("Ae' A2 A Ane A’ Aeb A€T) (5.235)

3
= (—) Bt —1)(drAoi Aoa ASIAS; Avy Ay A D) (5.236)
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Firstly we note that the curvature is a function of r only, so the integral over the

coset elements separates out, giving the volume of the coset SU(3)/U(1).
VOl(SU(?))/U(].)) = /O’l ANog A 21 A 22 AviAva A A= 7!'4 (5237)

This result is arrived at in appendix G by comparing the ADHM measure with that
obtained from the metric of [20].

The remaining integration is only over the radial coordinate.

1 /1\3
Xbulk = W (5) /dr"'a(r4 - 1)6p1 Ps gnmas Ry psa192 Bpspagsqs Rpspeasas Rprpsaras

(5.238)
Now we make the change to the double index notation. In this notation the tensorial

part of the integrand above becomes:

. . - . @ P! - o ﬁ . . . .
lindn)-(iads) (1)) Ry o o) () Giade) + - - Rline) (inde) Ginbr) (i) (9-239)

Now recall that on a hyper-Kahler manifold we may write the curvature as in equation

(5.153). Using this gives an expression in which all the spinor indices are contracted:

gi10n-isds ¢1P1--dsPs €&16 €asda €ande €dras €4, 8, €BaBs €BsBe €B1Bs R'ixizjljz Ri3i4j3j4 R’isiejsjs R’i7isj7js
(5.240)
By laboriously expanding out the terms and using the symmetry of the symplectic

curvature, one can show, (see appendix B).
ellal...tsas 6&1('!2

€a364 €asae €aras Ri1i2j1j2 Riai41'31'4 R{siejsje Ri7isj7.'ia

= 166z11315z7612z41618&1i2j1j2 Ri3i4.7'3j4 R‘isisjsje R'i7is.1'7:is (5'241)

With a similar result holding for the terms involving the j;’'s. We can now write an
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expression for x in which all the spinor indices have been removed.

1

oo
3(.4 i19213%4 L J1J27374 K1kakaks _l1lalgl
Xoulk = W /1 drr (T —1) gl1aiate g Inise gritafiste gniisha &11110111 -Rizjzkzlz Rdsjakala R'i4j4.

(5.242)
Using the fact that there are only three linearly independent non-zero components
to the symplectic curvature, together with the combinatoric arguments given in the

appendix we may write the above as

1 34
sza‘/l dT’I’(T 1)

(216 (Ri122)? (R3344)* + 1152 Ryy99 Razaq (Ri23e)? + 576 (R1234)4) (5.243)

© 1 1
=45 /1 dr (;3 - 773) (5.244)
15
=2 (5.245)

This is our final result for the volume contribution to the Euler character of the
moduli space for a single SU(3) instanton. This is the result that we shall compare

with that given in [17].

5.7 Summary

We started this chapter with an explicit implementation of the ADHM construction
for the SU(3) 1-instanton case. We were able to obtain the metric on the moduli
space and compare it with that previously obtained in [20]. Note that we have
introduced the non-commutativity parameter, ¢, as discussed in the introduction. We
have written the metric in terms of the left-invariant 1-forms of the quotient group
SU(3)/U(1). We then proceeded to use the Maurer-Cartan equation to obtain the

exterior derivatives of these basis forms. This allowed us to use the Cartan structure
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equations to determine the spin connection and the curvature 2-form on the moduli
space. Having obtained these results we transformed to a coordinate system called
the symplectic basis that exploits the hyper-Kahler nature of our space. We were
able to ascertain the components of the symplectic curvature tensor and use this
simplification to calculate the Gauss-Bonnet integral over the moduli space. Since
the Gauss-Bonnet integral represents a topological invariant, we expect its value to be
independent of deformations of the moduli space induced by varying ¢. Thus naively
we suspect that this value also pertains to the true instanton moduli space where we

take the limit ¢ — 0.

5.8 Multiplication table

RiAR? = %(—ies — e A %(e" +i€") (5.246)

= %(ie0 ANeP+eSne’ +ePAef —ief AeT) (5.247)

R A R2E = %(ie0 ANe®—e®Ae” +e® Ae® +ief Ae) (5.248)
RIAR2E = —jeB A b (5.249)

RIARL = %(—iee' ANe+et Ae® — e Aeb —iet Aef) (5.250)
RIARSE = %(iel ANe® —e2 Aed +e' Aeb +ie? Ae) (5.251)
RHEA R = %(iel ANed+e2 ne® + et Aeb —ie® Aeb) (5.252)
REA B2 = %(ies AP +et Ae®+ed Aeb —iet Aed) (5.253)
R2AR = —jed AeT (5.254)

. . 1
h'?2 A W22 = 5(—7:60 ANeS+e®Neb —e® Ae” —ief AeT) (5.255)
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R12 A RS = %(—e0 ANed—ie® Net +ied Ae” —et AeT) (5.256)
K2 AR = %(e0 Net +ie® Ae2 —iel AeT +e? Ae”) (5.257)
A2 AR = %(e0 Ae —ie® Ae? —iel Ae” — e’ A€ (5.258)
RZARA2 = %(e0 ANed —ie® net —ied Ael — et NeT) (5.259)

R21 A R22 = %(— " Ne’+ e Aeb+ePne’ +ief Ae) (5.260)

R21 A R3T = %(— Oned—ie® Aet—ied Ae” +etAe) (5.261)
R A R3Z = %(e0 ANe'+ie® Ae® +ie' Ae” —e? Ae) (5.262)
R2IA R = %(e0 Ae' —ie® Ae? +iet Ae" + et Ae) (5.263)
Rl A 42 = %(e0 ANed—ie® Aet +ied Ae + et Ae) (5.264)

R A B3 = %(—2'63 Ae® + et Aed+ed Aef +iet A ef) (5.265)
R22 A R3Z = %(ie1 ANed —e? Ae® —e' Aeb —ie? Aef) (5.266)
K22 AR = i(z’e1 ANed+e? Ae® —el Aeb +ie? Aeb) (5.267)
R22 A B42 = %(ie?’ ANeS+etne® —eB el +iet Aeb) (5.268)
RLA B2 = %(e1 ANet+ie? Ned +iet Aet —e2 net) (5.269)
R3LA R = %(e1 ANed—ie? Ned +ie' Aet + e Aet) (5.270)

K31 AR = jed A €t (5.271)
R3IARY = —je! A€? (5.272)
h32 A pA2 = —;—(el A —ie' Aet +ie Aed + e Ae?) (5.273)

R AR = 5(61 Aed —iel Aet —ie? A3 —e? Net) (5.274)
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5.9 Combinatorial argument

We need to examine the possible combinations of index values appearing in (5.242).
The € symbols require that all the ¢’s assume different values, and the same goes for
all the j’s, k’s and I’s. Thus there will only be contributions from the following terms
Ri122 Roo11 R3344 Raa3s , Ri122Ra3aa Roa31 Raz1s and Rigzq Ro341 R3q12 Ra123. Our task is to
determine how these three terms contribute to the Gauss-Bonnet integral.

Let the index set (1122) be denoted by A, and let (1234) and (3344) be denoted

by B and C respectively.

5.9.1 Case 1, AACC

If we fix the first index set to be A = (1122), and if we then fix the second index
set to be (2211) then there are 6 possibilities for the third configuration of indices,
namely (3344), (4433), (3434), (3443), (4343), and (4334). This leaves the last set of
indices completely determined. We can work out the sign of each such contribution

using the e symbols which appear in (5.242).
A A C C Sign
iwikily t2j2kaly i3jaksls  iajakals

1122 2211 3344 4433 +
4433 3344 +
3434 4343 +
3443 4334 +
4343 3434 +
4334 3443 +

Note that there are 6 ways to arrange the numbers (1122) within the set A and
there are a further six ways of arranging the index sets AACC. Thus the total number

of contributions from the AACC term is 6 X 6 x 6 = 216.
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5.9.2 Case 2, ACBB

Again we fix the first index set to be (1122) € A. The next index set is fixed as C .

We must then work through the possible configurations of these index sets.

A C B B Sign
wirkily t2g2kaly  i3jsksls t4dakaly
1122 3344 2431 4213 +
2413 4231 +
4213 2431 +
4231 2413 +
4433 2314 3241 +
2341 3214 +
3214 2341 +
3241 2314 +
3434 2341 4213 +
4213 2341 +
3443 2314 4213 +
4213 2314 +
4343 2431 3214 +
3214 2431 +
4334 2413 3241 +
32241 2413 +

Above we have 16 index sets of allowed index values. But we fixed the first index
set to be precisely (1122). However, there are 6 ways of arranging this configuration.
There are a further 12 choices for the arrangement of the letters ACBB. Thus
altogether there are 16 x 12 x 6 = 1152 allowed terms whose indices are ACBB or

some permutation thereof.
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5.9.3 Case 3, BBBB

122

We fix the first index set to be (1234) € B and proceed to work out the other allowed

values of the indices,

B

111kl
1234

B B B
tofokaly 13jaksls 14jakals
2341 3412 4123

4123 3412
2413 3142 4321
4321 3142
2143 3412 4321
3421 4312
4312 3421
4321 3412
3412 2143 4321
2341 4123
4123 2341
4321 2143
3142 2413 4321
4321 2413
3421 2143 4312
4312 2143
4123 2341 3412
3412 2341
4321 2143 3412
2413 3142
3142 2413
3412 2143
4312 2143 3421
3421 2143

Sign

+ 4+ + + F A+ A+ A+ A+ o+
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There are 24 terms represented in this table. Furthermore, there are a possible 4!
similar tables which may be drawn. This is because there are 4! ways of arranging our
initial indices, i.e. there are 4! ways of arranging (1234). Thus the total contribution

from terms of this type is 24 x 4! = 576.



Chapter 6

Integration over the mother space
and the D-instanton partition
function

In this chapter we shall discuss how we might calculate the Gauss-Bonnet integral of
the single instanton moduli space M by integrating over the mother space M and
imposing the ADHM constraints as delta functions on M.

To restrict the domain of integration one cannot simply introduce these delta
functions. They must be accompanied by a suitable Jacobian. In section 6.1 we
explore the general form of this Jacobian J for a set of unspecified constraints. We
demonstrate that by solving the constraints we may introduce a coordinate system in
which the argument of the delta function corresponds to a subset of the coordinates
themselves. Associated with this coordinate transformation will be another Jacobian,
J’. The integrations over the delta functions are then trivial and one is left with an
integration over the remaining coordinates, which correspond to the coordinates on
the reduced space M. In section 6.3 we follow this procedure explicitly for the SU(3)
1-instanton moduli space. We solve the ADHM constraints thereby introducing a

coordinate system that trivializes the ADHM delta functions. We also determine the

124
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appropriate Jacobian factors and thereby identify the volume form on the moduli
space M. We adopt the same procedure with the fermionic ADHM constraints. As
detailed in chapter four, the fermionic collective coordinates of an instanton solution
correspond to Grassmann-valued symplectic tangent vectors to the moduli space.
Thus solving the fermionic ADHM constraints corresponds to identifying those sym-
plectic tangent vectors in M that are also symplectic tangent vectors to M. We find
the coordinate change that trivializes the fermionic ADHM delta function constraints.
Having identified such a symplectic basis we are then able to use equation (H.32) to
obtain the components of the symplectic curvature on M. This demonstrates how the
fermionic ADHM constraints restrict the symplectic curvature of the mother space to
that of the moduli space and allows us to confirm our previous expressions for these
quantities.

In section 6.6 we introduce the D-instanton partition function. This is an integral
over the mother space upon which Lagrange multipliers impose the ADHM constraints
as delta functions. We can then assemble all the results of the previous sections
to evaluate this integral. We show that in the 1l-instanton sector the D-instanton
partition function reproduces the conventional Gauss-Bonnet integral on the instanton
moduli space. The remaining section is then devoted to developing the result of
[17]. We perform the integrations in the D-instanton partition function in a different
order and obtain a numerical result providing a general formula for the Gauss-Bonnet
integral of a class of manifolds. We use this expression to calculate the Gauss-Bonnet

integral for the SU(3) case and compare this value with that obtained in chapter five.
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6.1 Restricting the domain of integration to a sub-
surface of a manifold defined by constraints.

Let us start with a general situation in which one is given a manifold M (called the
mother space) with Dim(M) = m, and coordinates w’. Consider n non-degenerate

constraint equations, which are schematically of the form
ffw)=0 ¢=0,1,---,n. (6.1)

The imposition of these constraints will restrict us to a subsurface of M, called N,
which will be of dimension Dim(N) = m —n. Analogous to the procedure for finding
the metric, we first find the volume form on the mother space and then impose the
constraints that will limit us to the embedded subspace. Now consider the embedded
sub-surfaces of M defined by the n constraint equations f¢ =0, ¢ = 1,...,n. Since the
f¢’s have the constant value zero over the surface, variations in the value of f¢ must
take one out of these surfaces and thus be in a direction normal to them. Thus for
each ¢, ggr| ~ must be a vector normal to IN. Generically, given constraint equations,
f¢ =0 then the volume form on the reduced space, €2, will be related to that on the

mother space, £, in the following way:
Q=[ Q " N =[d"w ’ o(f)J 6.2

The delta function imposes the n constraints f¢ = 0 that limit us to the space N,

and J is a Jacobian factor, given by

B dfcafd
J= \|det (&.ui Bw‘) (6.3)
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We can confirm that this is the correct choice for the Jacobian by investigating the

consequences of a change of variables. Let f'° be defined thus:

o= Med pé (6.4)
= 169 = [ 6%) = det(m ) T 8() (6.5)

And the Jacobian transforms as;

J J = Jdet [% (%)T] = \jdet [M (g{—). (%)T) MT] = det(M).J (6.6)

Thus the integral is invariant under the above reparameterisation, so the Jacobian

serves its required function. Having restricted the domain of integration to the sub-
space, we will next like to make a change of variables that will simplify the integral by
allowing us to integrate out the delta function constraints. The key idea is to change
to a set of coordinates in which the f¢ parameterize the directions in the mother space
perpendicular to the embedded subspace, i.e. we aim to realize the the f¢ as coordi-
nates on the manifold M. The remaining coordinates will then naturally parameterize
the sub-manifold N. We shall denote these coordinates by 0*,u = 1,...,m — n. In
short we wish to make the following coordinate change: {w} — {f,0} . We therefore

envisage that the 6*’s be a set of parameters that satisfy the constraint equation. i.e.:

fow) =0, w=uw(f",0") = f(w(f0)f(0) =0 (6.7)

There will be another Jacobian,J', associated to this change of variables, giving the

volume element as:

d™w = J'(f,8)d" f.d™ "9 (6.8)

And schematically, the overall integration becomes

[ aw=[r0, G)d"f-dm‘"Gﬂ)é(fc)-J(w(f, 0) (6.9)
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- / J'(0,0)d™ "8 (w(0, §)) (6.10)

Notice that the delta function constraints have allowed us to eliminate n of the inte-
grations, leaving an integration over the coordinates of N and an appropriate Jacobian

factor. We now wish to find the Jacobian J. Writing this out in full gives:

ofroft  af2afr .. 9f2afn

J2 - Ow* dw*  Ouwt dw? duwt Buw? (6 11)
afroft of~ofr . Ofrof"
Ow* dw*  Owt dwt owt duwt

Note that this is just the determinant of the matrix of the inner products of vectors

that are orthogonal to the constrained sub-surface.

6.2 Quotienting a Space by a Group Action.

Consider the case where a group G acts on a space M. We wish to determine the
volume form, €2, on the quotient space M/G. Somewhat schematically this may

simply be written as

./M 2= /M 0 Voli;(:z:) (6.12)

Where Volg(z) is the volume of the G-orbit through the point 2 € M
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6.3 Solution of the ADHM constraints

We have already found the form of w which satisfies the case f¢ = 0. (We did this

when calculating the metric). For the case f¢ # 0 we make the following ansatz:

( p+ \
0 p-
w=U] 0 0 (6.13)
\ 0 0/
0 --- 0
o= " Ut (6.14)
o* p— 0
Where p_, p+ € R;a € C. Using this ansatz we get;
0% apy
QW = (6.15)
a*p, aa* + p*

Setting ¢ = 1,2, 3 and defining f'® = f°¢ + (° gives,

f1="Tr. ( 01 ) ( pi P ) = pr(a+a’) (6.16)

10 a*py ook + p*

f?="Tr. ( : (z) ) ( & ¥ ) =ipy(a—a*) (6.17)

a*py ook +pt
1 0 2 a
f®="1r. P+ P+ =pi - p2 —ac* (6.18)
0 -1 a*p, aa*+ p*
To clarify the situation we decompose « into its real and imaginary parts. Let a =
a + ib, a* = a — ib. This gives;

f"=2pa = a= /! (6.19)
2p4
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2 =-2pb I i (6.20)
PB=p2 —p* —a® ¥ (6.21)

To simplify the structure of these equations a little further we shall introduce the

complex quantity F where F' = f' —if"? and so;

F 1 11 . P12
a=—=— —1 6.22
5o 2p+(f ) (6.22)
The equation for f3 becomes;
F.F*
B_ 2 2

This is an equation for p, and p_ which is to be solved in terms of f, f2 and f".

To find a solution to this equation, let us set

=p°— = - 6.24
Substituting this into the equation for f* gives,
F F* f/3 FF* fl3
3 2 2 2 2
— _ L _ =p? — — 6.25
2 s  f?
= pL=p"+ 5 (6.26)
F F*
= o= —_,_ y a* = ————-,— (6.27)
2/p% + L 2v/p2 + L2
Thus w is now;
(P 7 )
0 p-

w=U| 0 0 (6.28)

\ 0 0 )
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Our aim is to find the volume element on the quotient space. To do this we shall

need to calculate dw and wedge together all its constituents like so;
dw, i Adait Adw s Add2 A -+ A dwy s A dwi? (6.29)

Our strategy for making this somewhat easier is to change to a coordinate system
that explicitly involves the f'“’s. The volume element will then include the factor
df'* A df"? A df"® as well as wedge products of other one-forms which correspond to
the df’s mentioned above. The function which sits outside this wedge product will be
the Jacobian J'(f, ) of the transformation from {w} to {f,6}. We take derivatives

of the coordinates on the manifold to yield the basis one-forms;

(P+ %\ (dp+ da
0 p_ 0 dp_

dw=dU.| 0 0 [+U]| 0 0 (6.30)

\66/ \66)

We now calculate the exterior derivatives appearing above;

P 1 s
dp, = Ldo+ —df 6.31
P+ P P ip, ( )
1 F
do= —dF — ——dp 6.32
2p4 208 (6.52)
1 Fp F
=~ dF - Lap_ g 6.33
20, 207" " 803 (6:33)

1 FF* 1 /FF* F I
= — _— - -1 dla'— i .
dp-= - (” 4,,1)” % +4(4pi ) " =g —gmdf| (634

We must find the various component one-forms contained in the dU term in (6.30).

We do this by writing dU in terms of the left invariant one forms arranged in the
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matrix £, as discussed earlier.

(1Q+)N v o o - on)
v* %(Q /\) 21 22 Zn

dU = U.U.dU = iU.L = iU, o} ¥ (6.35)
\ o 2 )

Thus we have

(18(Q+X) i (@Q+N) +ipv )
oVt i%u* +i8(Q — N)
dU.w = U. ipy0} iﬁo{ +ip %} (6.36)

\ ipso} ison +ip-55 )
We are now in a position to write out all the components of dw in terms of our new

coordinate system. The results are as follows;

1
dw,j = s (Q +A) + ——dp+ i —df? (6.37)
+
1 F
duny = 5 ~dF - 2p‘3’ dp — df3 z—(Q +A) +ip_v (6.38)
dwyi = ip4V (6.39)
F _ F.F*
duyy = i "+ i%(Q A+ l—fj (1 + 4 ) dp (6.40)
1 (F.F* F F*
+— == -1]df* - dF* — dF 6.41
4p- ( 4p} ) d 8p_p% 8p_p% (641)
dwyi = ipyo”* (6.42)
CF
dwys = i—0" +ip_L (6.43)
2p4

Where we have used the fact that df’® = df*.
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6.4 The volume form on the SU(N) one instanton
moduli space

In the case of a single instanton the mother space of the ADHM construction is R*".
This space is trivially hyper-Kahler. The moduli space is obtained by applying the
ADHM constraint equations and then performing a quotient by the group U(1). In
terms of an integration over the mother space this may be achieved by introducing
the ADHM constraints as delta functions with an appropriate Jacobian, as discussed
above. The Jacobian we need to introduce is the determinant of inner products of
those vectors in M which are orthogonal to the surfaces defined by f¢ = constant.
Since we know the constraint equations we could directly calculate the determinant
in (6.11). However, in the case of a single instanton the level set possesses a U(1)

isometry, (so the U(1) Killing vector X must be tangent to the level set), so we have
§I°X, X) =X, X) =0 (6.44)

Where g is the metric and @ the Kahler form on the manifold M. Consequently a
basis of vectors normal to the level set is provided by the vectors 7°X which number

3dim(G) = 3. Thus, using the Hermiticity of the metric, their inner products are
gIeX, I*X) = 65(X, X) — e*g(X, I°X) = 6*5(X, X) (6.45)

This quantity is often denoted in the literature by L and we calculate it below for the
general k instanton case and then set k = 1. Firstly we shall require the U(k) Killing

vector fields in the notation established in chapter three (see equation (3.94)),

-, j6 o
X =152 o
X, = iT% iB_0_

kl azfcﬂ
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g = Qmﬁe,-ysdz'h"’dzﬁs

Therefore we have

r s r . Jjars m 6 7id a
I(X", X°) = Qe T - 4T 80P <dz ¥ az;d><dz s W>

= ane,ﬂ, JC'Ts 2B5m 67, & 56
Q~keaﬂ zJ"‘Ts i8

Setting £ = 1 we have
9(X,X) = —edﬁszTQTzB

_ 2 03 —13 A, 03 —13 2
13 03 13 03

Recall that for k£ = 1 the coordinates z are given by, (3.66),

. % - @l - @?
zaz( o )=>z1=( )z( )
Q . . .
€T Wys Wy —Wyi

Substituting this into the above gives (see equations (6.15),(6.24),(6.26) and (6.27))

_éu 0 -1 lm _iu 0 -1 2u.
—Wyi 1; 0 Wy Wy 1; 03 —Wyi
= _QQduwud = —4p2

The Jacobian, being the square root of the determinant of inner products of basis

vectors normal to the level set therefore becomes

J = |y/det(—4p?15)| = (2p)° = 8p°

In the case at hand, which we will treat explicitly, there are three A.D.H.M. con-

straints and one gauge fixing term. We shall attempt to define the coordinates f¢

-
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which parameterize those directions that are orthogonal to the (embedded) M, so
that a point which satisfies the ADHM constraints has f¢ = 0. Thus we define the
f’s as

fo= 1% wus — C° (6.46)

To complete the ADHM construction we must also impose the further condition of
gauge-fixing, which for us amounts to performing the U(1) quotient. Although this

condition may be written in differential form as
df’ = dvfwys — @S dwyg = 0 (6.47)

we were not able to integrate this equation, so could not find a coordinate that could
be used to parameterize this direction. In this respect we note that the action of G
on M is free, so the U(1) orbit through each point should be proportional to the
volume of the U(1) group space. The scale factor is |det(L)|z, (see [12]), giving the

volume of the orbit through a point on the level set is
Volg(z) = |det(L)|*Volg

Which in our case gives the factor 2pVolg. Thus, at least schematically, the overall

result for the volume form is

4 .3
0= [ POT[6(r" 6.48
/M Volg J &1 p c=1—[1 (F) (6.48)
Where w is the volume form on M and @ is that on M. In our case this is just U(1),
so Volg = Volyuy =27
2 _ 3
a==[ POTLe(" 6.49
[.0=7 [ 1160 (6.49)
It is now straightforward to calculate the volume form on M. We first calculate the

wedge product of all the forms given in equations (6.37) to (6.43). As a preliminary



CHAPTER 6. THE D-INSTANTON PARTITION FUNCTION 136
we note that the one forms o and ¥ only occur in dw,; and dw,;. Thus the only
product involving o and ¥ is;
duwni A d@y! A dwny A dan? = 2 p2 o Ao* AS A S (6.50)
Wedging all these one-forms together gives
dw, i A Dt Adwys Ad@EA -+ Adwys A do, (6.51)

1
=Z(p+p_)2pQ/\dp/\0/\a*/\EAE*AI/AV*/\)\/\dF/\dF*/\df3

=4p(p4+p-)?QAdp AL AT AT AZo AV Ae AXAAFEAdfEAdf? (6.52)

where we have used o A 0% = —2i0; A 02 etc. Now recall that from equation (5.88)
we have,
¢
= —=2d¢ — == .
Q ¢ 5 2)\ (6.53)

Substituting this into the wedge product gives
= 8p(pyp_V2ddANdpATI AT ASIASy Avy Avg AAAAFE AdfFP Adf2 (6.54)
Here we can read off the Jacobian factor, J'(f, ) of (6.8).

J' = 8(psp-)’p (6.55)

Thus have we changed coordinates to a form which will trivialize the action of the
delta function constraints. In so doing we have determined the Jacobian factor J'.
Note that J' is independent of the f coordinates, despite of the action of the delta
function.

Thus, including the Jacobian factor from (6.49),replacing the f’s with the f¢’s

and integrating over the one form d¢ (which yields a factor of 27) gives the volume
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factor
3
=2°0%(p1p=)? [[ 6(fC = CO)dpA a1 AO2 AE1 A, Avy Aus AXAAST Adf? Adf? (6.56)
c=1
Fortunately, this agrees with that obtained from the explicit implementation of the

hyper-Kahler quotient given previously, (5.111).

6.5 The Fermionic ADHM constraints

The components of the fermionic instanton solution can be arranged into a vector
¥ = (i, 1) that can be shown to correspond to Grassmann valued symplectic tangent
vectors to the mother space. For the 1-instanton case these fields are constrained to

satisfy the following two equations, labeled by the index &,
Pauuic + Waiufty = 0 (6.57)

where @aiy = €, Bwﬁ, and the w’s are already known from equation (6.28). The above
equation is actually the requirement that the vector ¢ = (@, u) be a symplectic
tangent vector to My, as shown in chapter five. Now consider an integral over the
symplectic tangent vectors to the mother space. If we wish to restrict this integration
to tangent vectors to the reduced space, we shall need to introduce the two delta

function constraints with the appropriate Jacobian factors ,

/T,,M w = /TpM dpJ I14(%) (6.58)

One should recall that for anti-commuting numbers the Jacobian is the inverse of
what one would ordinarily expect.
Following the strategy of the previous section we shall attempt to change to a

coordinate system which trivializes these constraints. The first stage is to again write
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the constraint equations as f; = 0 where

fd = PuWuic + Waiulbu (659)

Taking the complex conjugate of this gives

(Fa) = @8t + Pt = f& = e £, (6.60)
=W =Ff=f, B =r=-A (6.61)
We set i to be
231
b= po =>ﬂz(ﬁl P2 ﬂn) (6.62)
Hn

Substituting this into (6.57) gives an explicit expression for the f’s

fi=psb—p_pa , f3= fap— + pyina (6.63)

The Jacobian J required to implement the coordinate change is calculated as previ-

ously prescribed,

aff oft | dff off OfLaf | oft f2
J—2 — | Op®ouc ope dps  Jus us ope dpe (6 6 4)
ot oft | offoft 9f of? | 9f2 of2 '
Aus dus ap® ope  Bus ous ops dus
2
+ pZ 0
_ [t = 45 (6.65)
0 A+
Implementing the constraints f; = 0 gives the results
==, =2t (6.66)

P+ p-
As per the prescription in chapter four, we can assemble the fermionic fields that

satisfy f¢ = 0 into a symplectic tangent vector on the reduced space, which we
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denote by 1,
(i) om )
—Nlﬁf U2
¢=U( ):U s . fL”p___ (6.67)
251 —H2 7
J15) 171,%'_t
\ Hn } \ Hn )

This is a symplectic tangent vector to the moduli space, but is explicitly written in
terms of the tangent basis to the mother space in which M is embedded. The vector

1 above leads to the following choice for the 4-dimensional symplectic tangent vectors

to A;l.
(1) (0 ) (0) (o)
0 1 0 0
eIl _ 0 2 — 0 el3 — el4 — (6.68)
o -4
B 0
\ 0 \ 0/ \ 0 \1)
Where for brevity we have set
P+
B=— 6.69
o (6.69)

In terms of the basis vectors on the mother space, e’ we can write the above as

e =e! + Be (6.70)

e?=e’ - —l—e (6.71)
B

B =e (6.72)

e’ =e® (6.73)
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However, these are not unit vectors, so we must divide these by their magnitude to

yield an orthonormal basis on M. We have the following unit vectors,

_ 1
&=L (el 4 Be®) = — (p_e! + p,e® 6.74
> ( ) 75 (p-€' + pye®) (6.74)

1 1
a2 = Pt (e2 - ——e“) = —(pse* — p_e* 6.75
&% = 3 (6.76)
8% = b (6.77)

It is straightforward to determine the orthonormal complement to these vectors in

M,

&t = —\/—]3%—___“ (e2 + Be4) = _p—lﬁ (,o_e2 + p+e4) (6.78)
&% = \/%H (Be' - ¢°) = ﬁ (pse! — p-e°) (6.79)

Using the method of images we may write down the matrix which implements this

transformation of the basis

(oo 0 0 0 p. 0 )
0 p4 0 —p- 0
0 0 5 0 0
M= pV2 (6.80)
V2l 0 —p. 0 —p, 0
0

p+ 0 0 0 -—p_
\00000p\/§)
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Applying this transformation to an arbitrary symplectic tangent vector of M gives

[ fup +mpy ) ((p_+mpy \ (B
fi2p+ — p1p- 2P+ — p1p— 0
s b = M= L finpV/2 _ 1 finpV'2 A
PV2 | —ppy — fap- pV2 —f2 v
H1p4 — H2p— h ,‘,{}5
\ wpV2 \ mov2 )\ )
(6.81)

Imposing the delta function constraints, f; = 0 we see that a general vector under
these constraints has no components in the 4 or 5 directions. An immediate conse-
quence of this is that all tensor components which mention the 4 or 5 direction will
also vanish (in this particular coordinate system). The Jacobian of the transformation
from (ufi) to (u'f') is just the determinant of M~!. Since M maps one orthonormal
basis to another it is an orthogonal matrix, thus its determinant is unity. However,
the Jacobian for the transformation from (@', ') to (i, f, #) will not be unity since
we are changing to a basis to include f; and f; and these are not unit vectors. In fact
we will have J' = 2p?. (Where we have used the result dy' = du (‘—3‘:7')_1 which is valid
for a change of variables in a Grassmann integration.) The remaining vectors may be
assembled into a 4 component object representing a symplectic tangent vector to the

reduced space M.

P! I

BEany

W= s 1= x (6.82)
Pt P

The product of basis one-forms on this space becomes

i Ay, dp dpydity, = dfndiiadiindp dpadpy, = 20°djty dfiydfin dfdfzdy,  (6.83)
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Since the Jacobian determinant factors cancel, the volume element on the tangent

space becomes

_ a\ J=f 31 31 _ —1 3=t 31 3.0 __
Jrs ™ oy LU sl = [ didmdmdst, = [ dtcndindi

1pm vipM : vipM Jipm

(6.84)

We can use this information to compute the restriction of the symplectic curvature

of M to the reduced space M.

6.6 The symplectic curvature

Using the expression for the symplectic curvature given in the appendix, (H.32),
[12], we may re-derive the components of the symplectic curvature for the SU(3)
l-instanton moduli space. To start with, for £ = 1, the ADHM gauge group is just
U(1) and there is only one group generator. Thus we may ignore the indices ¢, j and

r,s in (4.89). The quantity L7 becomes an ordinary number and we have

R-

1,

i = 207 (D)5 + QD)D) + QT)z(@T);)  (6.85)

We have already calculated the general form of the matrices  and T appearing

above, (3.73) and (3.96). Specializing to the k£ = 1 case we have

. 0; 1
g=( ° ° (6.86)
~13 0

1; 0
T="?% 7 (6.87)
03 —13

We are therefore in a position to find the explicit form of QT and thus of the symplectic

curvature. For brevity we shall denote QT by A, where

. 05 -1
A=0r=| °* 7 (6.88)
~1; 05
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A is a 6 x 6 matrix in terms of which the symplectic curvature becomes

Ry = 207" (A5 Ay + AgAzi + Az Az) (6.89)

17k

=~ 557 (ODGET)5 + @DOD) + @T)R(OT)z) (6.90)

We shall now write down the results for the components of the symplectic curvature

on the mother space;

Rijz = %(AiiA&fx + A Az + AuaAy) = —;12- (6.91)
Rygss = 2L = —5% (6.92)

Rigs =2L7' = —217 (6.93)

Ry = 4L = —p—12 (6.94)

Rgses =4L7' = —% (6.95)

Rgzes = 2L7" — 217 (6.96)

All other components are zero. We can use these results to calculate the components

of the symplectic curvature of the reduced space

_ PP+( 14135 2_14)
Rizs = R(e",e? e, e?) = 1 R(e' + Be’,e? Be,e+ e’ e’ — pe

2 2 1

- p;/? R(e',e’,e',e”) - ZR(e!, e’ ¢',e') + BR(e', e, €%, ¢”) — R(e', e%, €", &)
! 1

——R(e e',e’,e”) + 7 R(e' e’ el ef) — R(e', e, €%, %) + T R(e!, ¢, %, &)

+BR(e,e%,e!,e?) — R(e%, €% e, e*) + B2R(e’, €%, €%, e?) — AR(e®, €%, €%, e?)

1
—R(e%, e, el e?) + ER(e5,e4, el,e?) — BR(e’, e, e e?) + R(e%, e, €% e?)| (6.97)
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[ 1 )
=~ |+ prfiun + B Rags (6.98)
2 2
—_ p—p+ -1 1 2
=g Limp+8-2 (6.99)
L——l
= =) (6.100)
¢ & 4
Rygp = A = Wy =-% (6.101)
Next we have
R(&°,6",8°,&") = R, &°,&,&°) = Rygys (6.102)
=217 (Ass + Ags + Agz Ags) (6.103)
1 4
= 4L_1 = —_——= —— .
p A (6.104)
And
R(e",&%,8% &%) = £ R ['1 + B&®, 8 — =44, & é“] (6.105)
! ’ ’ 2p2 ) B ’ H
- ~ 1 - ~ ~
= p2;;+ R(él, é2’ é3, éﬁ) _ _B_R(él’ é4, é3, é6) + BR(és, é2, é3, éG) _ R(és, é4, é3, és)]
(6.106)
_ PP+ (p_ l)
= I (B B (6.107)

§ § 2
=iF= =t (6.108)

These results compare favorably with those obtained by direct methods, given in
equations (5.227)-(5.229). Having obtained the correct symplectic curvature, one may

proceed to calculate the Gauss-Bonnet integral directly, as in the previous chapter.
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6.7 The D-instanton partition function

In [17] it was shown that the so called D-instanton partition function Z provides a
means of determining the volume contribution to the Euler character of the instanton
moduli space. The D-instanton partition function consists of a series of integrations.
We will evaluate these integrations in two different orders. First we will choose an
appropriate order of integration to show that Z does indeed equal the Gauss-Bonnet
expression. In this case the ADHM constraints appear directly as delta functions,
which along with the appropriate Jacobian factors calculated previously in this chap-
ter, restrict the final integration to the moduli space M. However, if one evaluates
these integrals in a different order, then one can obtain a general formula for the
Gauss-Bonnet integral for a single instanton in any SU(N) gauge group. This calcu-
lation will be reproduced in full in the next section.

The D-instanton partition function is given by;
7 = 2—2N—1,n_—6N—9 / d2Nw d2NL:J dﬁx d3D d4Nud4Nﬂd8A

exp [—a:;f;z?wm — iD°(T% B(I)Ewud -+ 2\/§7riﬁ,‘:‘x,43uf + ivr(ﬁ;‘fwud + wduuf)/\ﬁ]
(6.109)
where, (see[23]),

1 -
XAB = %EGABXG ) a= 1, ...,6; A,B = 1, .-.,4 (6.110)

Before worrying about any of the other terms we propose to proceed with the inte-

gration over . This is a Gaussian, so we recall the general formula, given below;

+o0 n
/ dy;...dyzexp —%YTAY + pTY] = (27r)7det(A)‘%ea:p [%pTA_lp] (6.111)

—00
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Setting
A = 202wy l6xe (6.112)

p° = iy Shphe (6.113)

we have the result

3 2
~G. 2 A§ B _ n T A, B-C,D
/dﬁx exp [_wztx Wyg + 2\/_71'1,#‘1;, ABX /‘l'u,] - (wgw“d)aexp [ 2&)3(.&)“ €EABCD oy [y Py Hoy ]
(6.114)
Substituting this into the expression for Z gives
7 — 9-2N-1_—6N-6 / NG dN o dD d*N u d*V i d® A
c c & m A B-C,D
mexp —1D%(1T%¢ ﬂw wua £°) + zw(uu Wua + wauuu)/\ 2Fma €EABCD I Ly fly Ly
(6.115)

The next stage is to recall the integral representation of the Dirac delta function,

6(z — ) ip(z-2') (6.116)

Similarly the fermionic delta function may be represented as

ad(u) = / €20 4 (6.117)

With this in mind we recognize immediately that the integrations over D and A yield
delta functions. Furthermore, the argument of these delta functions are the ADHM
constraints themselves, so these terms act to impose the ADHM constraints on the

rest of the integrand. Our expression for Z now becomes

4 2 )

T

(waw ) L Hé(r Buwns—€) [1 11 J(Muwm—f—wa“uu)expl eapcpituBECuP
uc

A=l a=1
(6.118)

7 — 9-2N+2,-6N+5 / N i o / N Vg
M T(M

2uua
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Also, it is convenient to note that for the 1-instanton case with which we are dealing,

when the ADHM constraints are imposed, we may write
Wy = 2p° (6.119)
This gives Z to be

7 — 9-2N—-1_-6N+5 /

dzNwdchD / ) d4Nud4Nﬂ
M T(M)

13 4 2
Ty H 7° ﬂw wua H H 6(ﬂﬁwua + wauﬂu,) exrp [ —5€ABCDl, ﬂf/”fﬂ’f
P” ¢ A=1a=1 4p?
(6.120)
In equation (6.49) we gave the volume form on the moduli space in terms of
variables defined on the mother space but constrained to lie on the moduli space by

a delta function constraint as well as the condition of gauge fixing. We can use that

result to write the integration above as an integration over the moduli space;

7= 2—2N—2W—6N+6/ 2N-1), 2N-1) Y dN dWN g

M T(M
1 4 2 € fAuB s ub
= I TI 0(alwus + @aupl) € reanopntulnSul (6.121)

A=1a=1
where we have used the same symbol, w, to denote the coordinates on the moduli-

space and those on the mother space. From equation (6.65) we know that the

fermionic Jacobian required to correctly implement the delta function constraint is

L

57 In our case we have four such fermions, each labeled by the index A. Thus we

need four powers of this Jacobian, giving

7 — 9-2N+2, —6N+6 / 2N-1) , 2(N-1) H dN=D) yAGIN=1) A mmacuuéu.‘?u.‘?

M T(M) 3=,
From our previous analysis we know that we may rewrite the quantity in the

exponent, expressing it in terms of the symplectic curvature tensor. Recall equation
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(6.26), which we reproduce below,

1 3 ~ 7 7 — -
T76ABCD M AMIEMECM'P = eppep(MAMPL™(MC MP)) (6.122)

We can identify the M#4’s with the y4’s and L = 2p®. As in the last chapter, we can
assemble the u#’s into a (real) symplectic tangent vector, 94 = (a4 u?). These are

what we called the M*4 above. Using this information, Z now takes the form

7 — 9=2N-1) ~6(N-1) /M gUN-1), /T » Af:Il PN-DA g 21_47r2 €ABCD ;3’_61,‘/}2A¢3'B¢Ec¢i1:
(6.123)

From equation (B.16) we know that this expression is going to be proportional to

the Gauss-Bonnet integral. Looking at equation (B.17) we should set A = 2x3.

Expanding the exponential above, only the 2(N — 1)** term contributes (since M is

of dimension 4(N — 1)). Thus the prefactors of 2 and 7 cancel exactly, yielding the

result that Z; is precisely equal to the Gauss-Bonnet integral over the moduli space

of instantons.

4
_ _ l - ~ z H
7= /M d*M-1y /T I &M VypAexp [48—7reABCD T A B¢kc¢'0] = XBulk

(M) A=1
(6.124)

6.8 The D-instanton partition function integrated
in a different order

Here we reiterate in some detail a calculation first performed in [17]. Although moti-
vated by physical arguments, their result encapsulates the value for the Gauss-Bonnet
integral for a class of manifolds in one simple expression. We begin with the so-called
D-instanton partition function with vanishing vevs, equation (6.109).We shall per-

form these integrations in well defined stages and in the interests of clarity we shall
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summarize our progress at the end of each stage.

6.8.1 Integration over u
After completing the square, the uf integrations become
[ = /‘ AN v 62\/51'76' [ﬁ5+z,17/\dAGJdu(>2'l)AB] XBc [#9+ﬁ§(fc_1)CDw,,g)\%] —ﬁim\dwﬁ'u(i“)”wuakﬁ
=
(6.125)
Shifting the integration variable gives

G fem RV . 1B~
I,, — e—#fzm\a,;w“u(x I)ABwuBAB /d4N[_l,I d4Nﬂ’ 62\/57"./.1.:‘3)(30#:9 (6-126)

Considering just the integral above we have

4
/ dN ) @AV i VR RBoS [ / I1 dui dat ei’ﬁ"iﬂi‘?iscuaC]
A=1

4 4
[ J 11 aus dit em""f"f*”"'zc] [ J 11 duit dig, e”"""""f?*w“’h‘f’]
A=1 A=1
= det4x4(2\/—2—70”().det4x4(2\/§7r>~()...det4x4(2\/§7r)"()
N
= (det4x4(2\/§7r)2)) = 28V 1N (detyna i)

The quantity detsx4X can be determined to be

detyxaX = detsxq (‘\}—gEaABXa) = §1g|X|4
Thus the p i integrations yield

I = 71_4N|XI4N6—ﬁ;iﬂAaAwd‘u(i'l)AB%B)‘g (6.127)
And our partition function becomes;

Z = 9 2N-17-2N-9 / PN V5 dx d*Dd*™N 1 d*V i &8 A (6.128)

G . y - f 1 . & fem 3
Ix|*Vexp |~y Xaywna — iD*(T° g — €°) — a5 M Aaa (X APw,5 X5

(6.129)
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6.8.2 Changing to U(N) invariant coordinates

To evaluate the remaining integrals we shall find it helpful to first effectuate a change

of variables to U(N)-invariant coordinates defined by;
Wi = @%uwaja » W5 = ()% 30  nwnja (6.130)
In terms of these quantities the ADHM constraints become linear in the W¢’s,
W = = (am)in(@n)ri (T)* 305 Ona (6.131)

We shall regard the w’s as (N x K)-dimensional matrices where K = 2k, (k being
the instanton number), and a is the composite index a = i& so we write wy,. An
appropriate SU(N) transformation will yield an w in upper triangular form. Explicitly

the W variables are given in matrix form as

(&1 &2 ... &k )

0
&1 0O ... 0 0 .. 0 ) G
& _ & 5* 522 : . '
(We)ij = @%uw,jp = ?2 : 0 0 0 0 ... 0 ¢&kk
0 ... 0
&k &x - €kx 0 ... 0 :
\ 0 0 ... 0 )
(6.132)
Note that the elements on the diagonal are real and that
K 2
det(W) = det(w).det(w) = (H Eaa) (6.133)
a=1

We shall first effect a transitional change of variables to the &’s, the Jacobian for
which is given by
K
/ AW = 2K / di’e [ g2k (6.134)
a=1
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To motivate this assertion we will consider explicitly the cases K = 2 and K = 3.

For K =2, W is

W= ( &n O ) ( & &2 ) _ ( ¢ &11é2 )
€2 &2 0 & Eul, &2+ &,

(6.135)
Calculating the various partial derivatives;

10Wn _ Wi, Wy OWy —¢

206n  Obn O&n O
oWy, _ oWn _ oW _ oW1y _ oWy, _ W _ oWy, _ OWa —0

02 08y 08 0y 0  Ofn 012 O
oWy, _ OWas _ 0Wsy — £
0&n  0&n  0&,
8W21 — 8W22 _ g*
&1 012 12
OWapo
=2
9 €22
The Jacobian for this change of variables is thus
oWy OWy AWy AW
O 06 o o | |2u 00 0 e 0 o
J = %vaﬁz 63‘211122 %lez aavazl: — 512 611 0 0 — 2€ 0 E 0 — 4{-3 €

OWa Wo W 3Wo f* 0 E 0 1 1 11622
T B R & o %
Woy OWay Wy OW. *
Pin i Pu CFn 0 &2 &2 2% 6.136

For the case K = 3 we have

&n 0 O &1 &2 &3

W= & 0 0 &2 &
§is &3 a3 0 0 &s
& &11é12 €113

Enll, &b+ &, 19613 + £22623
Enéls &iobls + €263 E13lls + E3bss + €3
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We again calculate the various partial derivatives required for the Jacobian

lawu _OW,  OWi3  OWy  OWs
2 0 0612 013 0én 063
oW _ oWn _ oW _ oWy, _ oWy _ oWy _ oWn _ oWy -0

B2 Obm  Ofy Bz Oy O O Ofsz
oW,  OWx OWsx

&

O O O "
Wiy Wy  OWs
0t O0&xn O = i
Wa Wy Wy
O B BEm oV
16W22 _ 6W23 _ OWss _
20 . Ofm Ok

Wy Wiy

T T

*

W3, _ OWs3y _ O0Wss _
0én 0612 0613 13

Wer _ .
Bn B
ow.
6.533;3 = 2{33
The Jacobian is therefore
26, 0 0 0 0 0 0 0 0
&2 &1 0 0 O 0 0 0 O
&3 0 & 0 0 0O 0 0 0
En 0 0 & 0 0 0 0 0
J=| 0 & 0 &2 26 0 0 0 0 |=2% 8,63
0 0 &, &3 &3 26 0 0 O
&% 0 0 0 O 0 & 0 O
0 & 0 0 & 0 &2 &n O
0 0 & 0 0 & &is &3 26
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Notice that the Jacobian matrix is taking a lower diagonal form. Thus the determi-

nant is the product of the diagonal entries. For K = 2 the diagonal entries were

aWu 8W12 6W21 3W22

= 4¢3
ey Ofrs Ofm Ofm e

and for K = 3 we had

OW11 OWyo OWi3 OWy; OWag OWo3 OW31 OW32 OWss
0611 0&a 0&13 0y O 0&s 0& 0&32 03

= 235?1532533

Thus we can speculate that the Jacobian for a general K will be
K
J = 2K [ g2k -2+ (6.137)
a=1

And in going from K = 2 to K = 3 we required the extra terms

<3W13 3W31) (3W23 3W32) O0Ws3s3
0613 0&31 0823 0€3z ) O&a3

In general, in going from K = n — 1 to K = n the extra terms required will be

("I'Il OWan BWna) OWan
a=1 aé-an afna agnn

And thus the Jacobian for the case K = n is related to that for K =n — 1 by

nt aWan aWna) aWnn
Jg=n = Jr—n—
K (131 Oban Ona ) Obnn 7

Using (6.137) for K =n — 1 gives

1 OW,. OW, ) oW, n-1
J = = an na nn gn—1 2‘1:—20,—1
“ (aI=Il aéﬂn aéna 6§nn 01;[1

However, we can calculate the partial derivatives;

6W,m _ 6Wan _ aW.’in
aénn - 2€nn and 65«171 - 66311 B
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which finally yields
n—1 n—1 n—1 n
Jr=n = 2nn (H 5«3&) 2nt H 2:_20_1 = 2n§nn H 22_2‘”-1 = 2" H 62:_2a+1
B - - T (6139)
as required.

We need to go further to calculate the change of variables from w to {&,U}.

Consider how w is defined

( Un Ui, Us ... U ) (611 &2 &3 ... fl,2k\
Ua Uz U ... U 0 &2 &3 ... L
w= Uak1 Uwxae Unsz ... Uxn 0 0 0 ... &
Usk+11 Usgy12 U1z ... Uppin 0o 0 o ... O
\ Um#i Unvae Uxs ... Uw J\ O 0 0 ... 0 )

Carrying out the matrix multiplication we can see that the only block in U to con-
tribute to w is the first N x 2k block. Note that w is an N x 2k matrix whose first

column is given by

([ Unén
Uaién
Wy1 = Uak €11
Uzk+1,1611
\ Umé&un )

Which we can write as

Wyl = Uulfu (6139)
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Likewise the next column in w is given by

wuz = Un1&12 + Uyabaz (6.140)
And in general we have
Wua = Y Uubbpa (6.141)
b=1

It is useful to consider the columns of the matrix U as vectors, u, defined by u® = Uy,.

Since U € SU(N) we have
Ul Uwp = (uh)ul = §°

Thus the vectors u are orthonormal. Selecting 2k such vectors, one can show that
they furnish a representation of the coset in terms of a product of spheres. u! is
a unit vector in an /N-dimensional complex space and consequently parameterizes
S2N-1_ The second vector u? is also a unit vector and is orthogonal to u!. Thus u?
parameterizes an S?~3 which is orthogonal to the S?~1. That is to say, the vector
u! parameterizes a (2n — 1)-sphere. At every point p on this sphere, there will be a
unit vector, namely u? that will be orthogonal to u! and will therefore parameterize
a (2N — 3)-sphere at p. There will then also be a unit vector u® orthogonal to both

of these that will describe a (2n — 5)-sphere, and so on. Thus we have

SU(N)

n G2N-1 5 G2N-3 o o G2N-2K+1 .
SUN — K) S x S X ...X S (6.142)

From (6.139) we see that w,;, parameterizes a sphere of radius &;; in a complex N-
dimensional space. We may therefore write the volume element associated with the

wy1’s in polar coordinates as follows,

N
/ I] duwnr dety = 2V / £N-14¢,, 2N-1Q), (6.143)
u=1
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where d?V~1Q, is the standard angular solid angle measure in 2N — 1 dimensions.

The next vector in the series is w9, (6.140). We can therefore write

(wuz - Uu1§12)(wu2 - Uu1§12)* = 5%2 (6-144)

Recalling the standard complex representation, (z — a)(z — a)* = r? for a circle of
radius r, center a, we conclude that the w,s coordinates parameterize a sphere of
radius &2 in (2N — 3) dimensions, centre Uy;&;12. Thus in polar coordinates we may

write

/ 1‘[ dug dust, = 2N / de g det, €N -3dE, iV 3, (6.145)

Continuing this iterative process, in general we have,
N
/ T] dwua dwly = gN-a+1 / [H s dfba] 2N-20+1ge  geN-20+10) (6.146)
u=l1
where €2, is parameterized by u®. Multiplying these terms together we have
N 2k
/ H dwyedw?, = 22kN—k(2k—1)/ LH 525—2a+1d€aad2N—2a+1Qa H deé,der, (6.147)
u=1 =1 a<b
Using equations (6.133) and (6.134) we may now finally write the integrations over

the SU(3)invariant coordinates as

/H dwyedw?, = 92kN— k(2k+1)/d4k2W ldet(W)IN —2k H d2N- 2a+IQ (6.148)

a=1
For the one-instanton case this becomes
N
/ I] dwyadest, = 22¥-3 / W |det(W)|N-2d2N-10, 2V -3Q), (6.149)
u=1
From (6.130), we may write
. _ 1 B We 1 88 . WO
Wh, = 5( W+ 6 W°) (6.150)
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Taking the determinant gives

det(W)| = 7 |(W°)? ~ WP

(6.151)

We also wish to change variables in the integration from an integration over the
components W*; to an integration over the W¢ and W°. The Jacobian for this

transformation is

1o 0 4
a . a 01—10 —-2 1
_ | W aw _ 2 2 N Rl
J=|20e 28 | = e e b (6.152)
2 2
Lo o

Finally, we may calculate the angular factor with recourse to the general result for

the measure on SV-1,

/dQN _27r]ﬁ2/ sin*0, = 27(y/m)N" 2h E:_;g (6.153)

Which gives
/ d2N-1Q, = o NE&)) (6.154)
/ d2N-3Q), = 27rN—lf(%(1_)—1) (6.155)

Substituting (6.151), (6.152), (6.154), (6.155) into (6.149) gives the result

2N-1

[ &% / o = N)I‘(N

Thus the partition function integration becomes

/ AWOBW[(WO)? — [We?]N-2  (6.156)

2= —2N —10
2= 5T / AW W dx D A [(WO)? — W]V 2N (6.157)

e_Woxz —iDS(We—£°)— - Wered 5 (x~1)AB AaaXg (6.158)
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6.8.3 Integration over )

The A integral is

in CrCG , (= . 8 .
IA — ‘/dS/\e—mW 7% 4(x l)AB/\&A)‘B - Jdet8x8 [ 4l TcaBWc(X_l)AB] (6159)

2v2
4 .
= ;r—ﬁ\/detz;xs [WcTcd’.y(SCB.(X—l)A05/’§Y] (6.160)
4
= 5\/ det (WeT® ® laxa) det (X' ® lax2) (6.161)
7{4 cC\2 -1
= e det(Wr°) det(x ) (6.162)

Where we have used

Wwere 0 0 0

0 Were 0 0

det (WT ® 14xs) = " = (det(W°r®))*  (6.163)
0 0 Were 0

0 0 0 Wwere

We can now determine det(W°r¢)

W3 Wl _ 'W2
det(Wer) = T = Cqwep? (6.164)
Wliw? W3

Therefore
4 cl|4 Wc 4
P L Y
26 det(x) x|

(6.165)

Thus Z is now

2—2Nﬂ.—6

2= STV =)

/dWo d3W dﬁx d3D d8/\ X4(N—1)|wcl4[(w0)2 _ |Wc|2]N—2
(6.166)
¢~ WOX DS (W) (6.167)
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6.8.4 Integration over x

We proceed to the x integral;
I = / Ay MV =1 = WOx?
We will write this in terms of polar coordinates where

d®x = |x|°d|x|dSs

Therefore
L= [ s [ Pdixlx*¥-De %
_ /dQS/dlxlxmﬂe—WOx?
Let
t=W'*=x= %
= dt = 2Wxdx = dx = in’VO dt

Substituting this into the integral gives

N 3

A t2 _ ™
L= [ [ diret = saoE TN +1)

where we have used the standard results
[o ]
['(z) = /0 e 't*"ldt

/ng; = 73

159

(6.168)

(6.169)

(6.170)

(6.171)

(6.172)

(6.173)

(6.174)

(6.175)

(6.176)

This last equation follows from the general result for the angular measure given in

equation (6.153), which for N = 6 gives

I'(1)T(3) I(
ré)ri r(

)
)

(
(

3

/dfl5 = 27 (y/m)* g ; =

4 s
2 2
ASNE
2 2

(6.177)
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Again, we substitute our progress so far into Z to get

g 2 02N 11
- T T(MI(N 1)

e_w0X2_iDc(Wc_€c)_ﬁ;wc,rcdﬁ(x—l)AB/\dAAg

6.8.5 Integration over W?°
We now proceed with the W integral.
Lo = /dWO[(W0)2 WV (W) 2N -1
This integral is of the general form
Iy = /:O(Xz —@)N-2x-W-lgx
To evaluate this let A= N —2and B =2N + 1.
I = / “(X? — @?)AXBdX
Now we integrate by parts,

up = (X2 - a®)V 2 = duy = A(X? — a®)A712XdX

B X—B+1
d’U1=X— dX=‘>’01=1_B
Using these results gives
_ [ 2A o Biy2_ a1y _ 24 2B
Io—a —BX (X*—a*) dX-l_BX L

Next we integrate by parts again, setting

uy = (X% = a®)A ! = duy = (A - 1)(X? — a?)422XdX

160

) /dWO d3W dOx d*D d®A X4(N—1)|Wcl4[(wo)2 — W2

(6.178)
(6.179)

(6.180)

(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

(6.186)
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3—-B

3—B

dvy = 2 BdX = vy =
Therefore
L = 2/00 A__l_X4—B(X2 _ a2)A—2dX
e« B-3
Proceeding just one more step gives
I =2 / X"' B(X? — a?)A-3dX
If we had A = 3 then our final result would be

2331 © o p
(3-1)(3—3)(3—5)[, X*Pax

Io =

Generally after A iterations we would get

24 A!
(B—1)(B-3)..(B+1—24) Ja

Setting A= N — 2 and B = 2N + 1 gives

2N-2(N — 2)! o o
(2N)(2N—2)...(2N+2_2N+4)/a X7dX =

I =

I =

Thus the W9 integral becomes

1
SN(N — D)W

Iwo =

and Z is now

9-2N-27-3D(2N + 1)

2= "TFNTIN+ D

6.8.6 Integration over D and W°

[ x¥-Bax

2N(N —1)a*

/d3Wd3D —iDe(We—£°)

161

(6.187)

(6.188)

(6.189)

(6.190)

(6.191)

(6.192)

(6.193)

(6.194)

There are now only two remaining integrals to be done, namely that over D¢ and W*°.

In fact, from equation (6.116) we should recognize the remaining integration as one

over a delta function,

/dBDe—iDC(Wc—ﬁc) — (27T)36(WC _ gc)

(6.195)
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Integrating this over all W then yields
9373 / BWe s (W — £°) = 273 (6.196)
6.8.7 The final result

We may now assemble these results to give a remarkable result;

272N+1T(2N +1)

2= TN T 1)

(6.197)

There is just one final trick to perform to put this result in its final polished form.
We expand the gamma functions so that we may perform some cancellations. This

will also remove the ugly prefactors of two.

272N+H(2N) x (2N —1) x (2N —2) x ... x (2) x (1)

Z= F(N)Nx(N—-1)x...x2x1 (6.198)
27NN —1) x (2N - 3) x ... x (3) x (1)
= T (6.199)
2IN-)x(N=3)x...x (&) x(3)T(3)
- . (2N : 2 ) (6.200)
_ AN+ (6.201)
T (3)T(N)

At the beginning of this chapter we demonstrated that this integral for the D-
instanton partition function should yield the (volume contribution to) the Euler char-
acter on the 1-instanton moduli space.
We can now recover the result for the Euler character of the SU(3) 1-instanton
moduli space by setting N = 3 in the above. This gives
o (3+13)

213 = W (6.202)
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(3]
X
SY13]
X
i
X
ol

= r(3) (6.203)

-x()

(3]

®| & —

(6.204)

which fortunately is in agreement with the result obtained by brute force computation.

6.9 Summary

We started this chapter with a discussion of the machinery necessary to implement the
construction of [17]. We explored how one might restrict the domain of integration
to a sub-surface of a manifold by imposing constraints in the form of Dirac delta
functions. We also reviewed the problem of quotienting a space by a group action as
discussed in [12]. We were able to take the mother space of our SU(3) l-instanton
moduli space and change to a coordinate system in which the ADHM delta functions
were trivialized. In this way we were able to determine an explicit expression for the
volume form on this moduli space, in agreement with the result obtained in chapter
five. Furthermore, we were able to solve the fermionic ADHM constraints and so
arrive at the Jacobian necessary to implement the fermionic ADHM constraints as
delta functions. We then verified that such a method does actually yield the same
symplectic curvature components as we found previously, (chapter five). With this
apparatus in place we then showed that the D-instanton partition function of [17]
reduces, in the l-instanton sector, to the Gauss-Bonnet integral over the moduli
space. The D-instanton partition function consists of a series of integrations and one
is free to choose the order in which they are implemented. Following [17] we chose an
order of integration that yielded a general numerical result covering all the SU(N)

l-instanton moduli spaces. The result obtained for the Gauss-Bonnet integral for
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the case N = 3 agrees with that calculated earlier in chapter five. This offers some

support for the validity of the result of [17].



Appendix A

Cartan’s equations of structure

In a non-coordinate basis the tangent space is spanned by a linear combination of
coordinate basis vectors e,

e, =ele,
With e € Gl(m.R) and dete > 0 The {e,} is the frame of basis vectors obtained by
a Gl(m,R) rotation of the coordinate basis e,. If we require the e, to be orthonormal
then we have

g(em eb) = eauebuguu = Oab

We define the inverse of the matrixe/

v,a __ SV
eae“—éu
u b _ ga
eaeu—éb

Using these expressions we may now invert the equation involving the metric tensor
to give

a b
g[l,l/ =€ ue V(Sab

— a
Guv = €ap€,

165
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Where d,, has been used to lower the tangent space index. Since a vector V is
independent of the basis chosen, we may equate the expressions for V in these two
basis.

V =Vte, =V, =V%/le,
= Vi =V, and V* = e v*
We now introduce the dual basis such that (e?, ;) = ¢ Since the dual basis transforms
oppositely to the tangent-space basis, so we must have:
e’ = e’ dz*
In this non-coordinate basis the metric becomes
9 = gudz’ @ dz”
= %eh, Bun(ee) ® (elef)
=6, ® e’
The coefficients e }* are called vielbeins. The non-coordinate basis has a non-vanishing
Lie bracket:
[ea, es]lp = ledeu €€y
= efOu(ey enlp — €00 (e eu)lp
= (e, 0ve) — eb”a,,ea“)ecueclp
ie.
[ea, €s]lp = a5’ (P)eclp

Where

Cap (P) = ecu(eauaveb“ —¢,’9,¢.)(p)
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Consider a non-coordinate basis of one forms e, and vectors e where
[ea? eb] = cabcec
We define the connection coefficients with respect to the basis e, by
Veer = Ve, 05 = W€
If we now write e, = e}‘e,, then we have
Ve = el'V ,(e;"e,)
= el (Ouey e + €.V, e,)
=el(0,e) e, + e,,”I‘,’),,e)\)
= e/ (Ouey + ebAFZA)eu
However, we also have the following:
Vaey = wipe. = wee e,
Equating these two expressions gives
w = €, el (Ouey + 6bAF2u)

We will now calculate the components of the torsion T and the curvature R in this

basis.
be = (€%, T'(es, €0))
= (€%, Vec — Vee, — [ens €c])
= (e%, wdbced - wdcbed - cbcded)

a a a
Whe — Wep — Cpe
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And
Rpy = (€%, V. Vae, — VaV ey — V[ec,edeb>

= (¢%, Ve(wines) — Va(wiser) — c.d V ses)
= (e*, ec{w{ib]ef + w):ibwgcfey - ed[wfcb]ef - wfcbwgdfey - ccdfwgfbeg>

— a f  a a f  a [

= ec[w] + waw's — ealw] — wowy — i W
We now define a matrix-valued one-form w¢ called the connection one-form or spin
connection,

wh = whye’

The spin connection satisfies Cartan’s equations of structure:

de® +wh A et =T°

dwl + Wi Awy = Ry

Where we have introduced the Torsion two-form

1
T = 3 e Ne

and the curvature two-form

1
Rab = §Rabcdec A ed

To verify Cartan’s structure equations we let them act on the basis vectors e, , the

L.H.S. of the first Cartan equation then gives
de®(ec, €a) + [ ec) (€*, ea) — (€°, ec) (W, €a)]

= de®(ec, eq) + [(w%, 6«:)5'31 - 5’;<w";,, eq)

= de’(ec, eq) + why, — wh,
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To proceed we make use of the following identity
dw(X,Y) = X[(w,Y)] = Y[(w, X)] - w([X, Y])
Using this gives
de® (ec, eq) = ec[(€”, €a)] — eal(e®, €c)] — €*([ec, €d])

= ec[0%] — eald2] — (€%, c.d ey)

Substituting this into eqn? gives
—Cod W — Wy =Ty

Simmilarly, we now consider the R.H.S. of the first Cartan equation acting on the
basis vectors.
1
Ta(ec’ ed) = §T?1feb A ef(ew ed)

- %T%f“eb, ec) (ef, ed) - (eb’ ed>(ef’ ec))

T4 (8567 — 6%467)

[

=T?:d

as required. Next we consider the L.H.S. of the second structure equation acting on
the e®

dwab(ec’ ed) + (waf A w{;)(eca ed)
= dwy(ec, €a) + (W, ec)(Wh eq) — (W, ea)(wh, ec)

= dwab(ec, ed) + w‘tlbwfdb - w“dfwfcb
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As before, we use the coordinate independent expression for the exterior derivative

of a form, which gives
dwy(ec, eq) = ec[{wh, ea)] — eal{wh, ec)] — whlec, ed]
= eolwy] — ealw’] — (Wi cod )
eclwip] — ealwty] — cedfwafb

Thus the L.H.S. of Cartan’s second structure equation becomes

ecwy] — edlw’y] — cof why + wiywh, — whew?

clW gp dlW e ed W fb db% db dfWeh
= Ryeq

As required. The R.H.S. follows easily

1
R"’b(ec, ed) = ERabgf (C‘f A eg)(ec, ed)

= %Rabnyef’ ec) (eg, ed) - <ef’ ed) <eg, ec)]

RS,,;(616% — 616%)

(SR

=R%,

Thus are the two equations verified.



Appendix B

The Gauss-Bonnet integral for a
hyperkahler manifold

The purpose of this section is to demonstrate the different ways in which one may
write down the Gauss-Bonnet formula for the (volume contribution) to the Euler
character for a hyper-Kahler manifold. Usually we shall find it convenient to work
in an orthonormal vielbein basis. The Gauss-Bonnet theorem states that the volume

contribution to the Euler character of a 2n-dimensional manifold M is given by

-1" i
X = __(Elw)zn' /eznz... ™ Riyig AN Rigig A oo A Riy i (B.1)
—1)" i162...8 . . ,
= ((871-)71”! /6 122... 2n‘Rili2jlj2‘Ri3i4j3j4""R’iZn—liznjzn_ljgn 0.71 A 0.72 A A 0]2,, (B2)
(="

— i112...8 1172+ 1 2 2
= (87r)"n' /61112 P el Jan’iliZjljZR’i3i4j3j4"'Ri2n—1'i2nj2u—1j2n0 ANOZA . AGT (B3)

where the 67 are the basis of non-coordinate one-forms. In a non-coordinate basis the

invariant volume element is given simply as
AV =0"APA..NO (B.4)

We can express x in terms of a coordinate basis by introducing the vielbien matri-

ces e;* which allow us to transform tensor components back and forth between the

171
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orthonormal non-coordinate basis and the coordinate basis with metric g,,. The co-
ordinate basis indices are u,v and those of the vielbein basis are ¢, j. The matrices

e;* have the following properties,

eit'e;” g = 0ij (B.5)
Guv = eiueju(sij (BG)
eiue_,-“' = dij (B?)

We can find the components of an object in the coordinate basis from its components

expressed in the non-coordinate basis as follows
VHE = Vie# (B.8)
We can use this information to rewrite B.3 as follows

kan 6], 151
1

(=) [
_ t2...4 k {
/Eu 2tan gl1d2 nﬂéil L., "'5j2n 2nRk1k2lll2Rk2n—1k2nl2n—ll2n dv

"~ (8m)mn! “2n

(_1)" / L L

— 1122...12n K1 H2n 71]2.-:J2n v Van

= € €; - € € "...€;
(8m)"n! ! 2 n J2n

k1 k2 Lo b kan-1 k2 lon—1 l2
Rk1k211126 1€ " p2€ 1 € V2Rk2n—1k2nl2n-1lzne " U2n—1€  uan€ " van_1€ van dv

-1)" i viva...:
= ((87r)_3n' /emm'"mn(det(ezu))26 2 R paviva - Bl s ponvan—1v20 AV (B.9)

We can evaluate the determinant of e in terms of the metric by taking the determinant

of B.5

det(€',)? = ﬁ(g) (B.10)

Recalling that the invariant volume element expressed in terms of a coordinate basis

is dV = [, \/det(g)dX*, we have

(—1)n H dX“ wofi2n V1V2...V2n
= (87)mn! / \/l;et(g) ghibabm Ve Vin R s Rygn 1 panvan—1van (B.11)
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On a hyper-Kahler manifold it is possible to split each index into a pair and

express the curvature in terms of the so called symplectic curvature,
Rabed = By ipyks)as) = €aptas ikt (B.12)

Naively we could just replace each index in the integrand above with an index
pair. However, this would yield € symbols with the unusual double index structure;
¢(i161)(G181)--(inén)(GnBn) | How are we to interpret these objects? One method is to use

a trick involving Grassmann quantities. Consider the integral
/ A dp2dip phipde . qphn

Clearly the result will yield a tensor like quantity involving the A;’s, call it BAt142--An,
Furthermore, B should be totally antisymmetric in the A;’s since Grassmann quan-
tities anti-commute. In fact, using the rules of Grassmann integration we can see
that B123" = 1. These results suffice to fix B as it has the same properties as the
Levi-Civitta tensor in n-dimensions, i.e. we have BA142:+4n — ¢A142.-4n  (We should
note that there are at present no subtleties involving factors of the determinant of the
metric when considering levi-civitta symbols with upper indices as we have chosen
a vielbein basis in which the metric is Euclidean.) This result therefore allows us
to express the totally antisymmetric tensor in terms of Grassmann integrations. It
is this form that we will use to explore the meaning of the double index structure.
Labeling our Grassmann quantities with two indices now gives ( at least formally),

n
21001 ...n0n __
611 nn_/H

i=1a=

2

d,(piawiltn .“winan
1

For definiteness we will concentrate on the two cases, n = 2 and also that which is

most relevant to us, namely n = 4, although the results we derive may be extended
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to cases involving €’s with arbitrary n. We illustrate the method first for n = 2. The

entity we require is
ealﬂlea2ﬂ2€(ilal)(jlﬂl)(i2a2)(j2ﬂ2) = /d¢ ealﬂlea2ﬁ2wilal,(/)jlﬂlwizazd;jz‘az

= /d’l/) (¢i11¢112¢i21¢jz2 + ¢i11¢jl2¢jzl¢i22 + wjllwiﬂd)izleﬂ + wjllwiﬂwjzlwiz?)
Our convention is to define the element dv as diy*2dy*' dip'?di)!l. Notice that all v

term with the same numerical index in the second place, must all differ in their first

index entry. Thus we may write

€018, 6mﬂze(il0u)(J'1/31)(izt’tz)(J'zﬂz) = /dw (eilheju'z 4 eiagitia | iz ginge eju'zeiliz) P 2y?ey?
= 3 (cinghin 4 chinghia)

Pursuing a similar method for the case n = 4 gives the result

€arB - -€asf li101)(5181)(i202)(72B2) (i3 3 ) (33 B3) (iaa) (G4 Ba)

-9 (611121314 ehiadsis | cirizisjaciijadaia y cirizisis gt aisia
+€t112037a cI1721304 4 (11720304 (J1020304 | (11721374 (J1120304 | (P102]3%4 cJ1%2]3% 4 611.721314611121314)

Note that when we substitute this result into the expression for x it will be contracted
with the symplectic curvature, which is symmetric in i, and j, for a = 1,...,n . Thus,
upon this contraction, the above can be written simply as 16¢ 2% /1425354 Qur final

result for D = 4 then becomes,

X(M) = W:ﬁ/dv 6“mauf]”ﬂa“fklkzksh61112!3[4Ri1j1k1h--«&4j4k4l4 (B.13)
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B.1 The Gauss-Bonnet integral re-written

The Gauss-Bonnet integral may be written in a convenient form involving integrations
over Grassmann valued symplectic tangent vectors. We will require 4 types of these
objects, labeled by the index A . We start with the integral

d 4 X ,
/H H dw;A eﬁeABcnRijkM"'AWB'/’w’/’m (B.14)
i=1 A=1

Where d is related to the dimension D of the manifold by D = 2d. Expanding the

exponential in a power series yields

d 4 . 1 1 \" ‘ . .
/ H I1 ay* 27:, o ( ) [CABCDRijszAW BykCytD ]

i=1 A=1 487
To saturate the fermionic integrals we need only retain the term in the expansion
which contributes exactly 4d Grassmann fields, i.e. we require 4n = 4d = n = d,

leaving us with

d 4 d
a1 1
/H H dsz J (m) 6AIBICID1"'eAdBdCdDdRiljlklll'“‘R’:djdkdld

i=1 A=1

i Ay it B ¢k1 (o)} ¢11D1 m,(pidAd ¢,de4 ¢ded¢ZdDd (B.15)

Consider the quantity e4gcp¥t41BykCeH!P. There are 4! permutations of the indices
ABCD. Since this is contracted with an entity which is symmetric in ¢jkl, a moments
thought should convince the reader that, subject to such a symmetric contraction on

these indices, we must have,
CABCDwiijBwkC¢lD — 4!wi1¢j2¢k3,¢14

Using this result we may write (subject to the symmetric contraction mentioned

above)

i1A j1B1,,,k1C1,,L1 D tq A, iaBd ,/kdCd 1 laD,
EAlBlClDl---GAanCnDn'd)n 1,¢Jx 1,¢) 1 1¢1 1.",(/)% d,d)Jd d,‘/) d dwd d
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— (4!)d1/)i1leIZQ/)kl3wll4“.¢id1¢jd2wkd3,¢ld4
— (4|)d (¢i1l¢izlmwid1) (wj12,‘/)j22”'wjd2) (wk13wk23‘"wkd3) (,‘/)114,(/)124”.¢ld4)
— (4!)d6i1i2...idejljg...jdeklkz...kdelllz...ld,l/)H.w?l."¢d1¢12.”¢d2'"wd4

Substituting this into B.15,

1 /71N\% .. . ..
1112...8 woJd ki1ka...kq lila...0
(—) €1itdgliinddghifa-d s dRilJ'lklh"'Ridjdkdld

~d \2r
Which is precisely the Euler density, giving the Gauss-Bonnet expression for the
Euler character when integrated over the manifold. Using this result we may write
the Gauss-Bonnet integral for a hyper-Kahler manifold M as
d 4
x(M) = [ d(Volyy) [ ] TT du#* edreanooRumstw2ureuio (B.16)
i=1 A=1
As an aside, note what would happen had we started with a different numerical coef-
ficient in the exponent. Following through the analysis above, but with an arbitrary
numerical coefficient A gives;

d 4 A
[ Vol [ ] TT du edreavorRisuv twi2viovts _ (4t (B.17)

i=1 A=1



Appendix C

Calculation of the spin connection

Recall the basis 1-forms of our metric,
e = dt, e! = a0y, €2 = aoy, €3 = bYy, e = bX,, © =1y, €S =cup, € = f),

One can use Cartan’s first equation of structure to calculate the spin connection given
that the torsion tensor vanishes. One proceeds by writing out the spin connection with
undetermined coefficients and using Cartan’s equation to give a set of simultaneous
equations which will fix these coeflicients. The spin connection is a matrix-valued

1-form which we shall write in the following manner:
wij = Aijdt + Bij0'1 + Ci,-ag + Dijzl + Eijzz + Fijlll + Gijllz + Hij)\ + JijQ (Cl)

where i = 0,1, ..., 8. Note the inclusion of the one-form @ in the spin connection. This
is because the exterior derivatives of some of the e'’s include @, so Q must necessarily
appear in the spin connection. Due to the antisymmetry of the spin-connection we

must have w’; = 0, (no summation over i). Thus we have,
AOO = All = A22 = A33 = A44 - A55 = A66 - A77 == A88 == (CZ)
B%=B'=B=B%=B=B%=B%=B7=B%=0  (C3)

177



APPENDIX C. CALCULATION OF THE SPIN CONNECTION

Ch=C1=CHh=C%=C%=C%=C%=C",=C%=0
D% =DY=D%=D%=D%=D%=D%=D",=D%=0
E% =E“=E%=F%=F4=FE%=E%=E",=E%=0
FlO=FY=F%=F3=F4=F%=F%=F7;=F%=0
Gh=G1=G"»=G%=G"=G%=G%=G"1=G%=0
H% =H'=H*=H%=H'=H =HS=H"; = H% =0

J00=J11 =J22—_—-]33=J44=J55=J66=J77=J88=0
C.1 1° Cartan equation, (i = 0)

Since €® = d?t = 0 we have, for the first of these expressions,

U)Oj/\ej=0

178

(C.4)
(C.5)
(C.6)
(c.7)
(C.8)
(C.9)

(C.10)

(C.11)

= W’ Aaoy+wlAao+WOsAAE +wO s ADE g +wls Ac +wle Acve+wOr A FA+WPsAQ = 0

Substituting in from equation (C.1) gives

(C.12)

0= a(Aoldt+ 3010'1 +0010'2 + DolEl + E°122 + F011/1 + G011/2 + H01/\ + JolQ) Aoy

+a(A%dt + B%0; + C%04 + D% %1 + E%%5 + FOu; + G%us + H%A + J%Q) A oy

+b(A03dt + +BO30'1 + 0030'2 + D0321 + E0322 + F031/1 + G03V2 + H03/\ + JoaQ) A 21

+b(A04dt + +BO40'1 + 0040'2 + D0421 + E0422 + F04l/1 + G04V2 =+ H04/\ —+ J04Q) A 22

+C(A05dt + +30501 + 0050'2 + D0521 + E°522 <+ F05I/1 + G05V2 + H05/\ + JosQ) A

+C(A06dt + +BOGO’1 + 00602 + D°621 + E°622 =+ F06V1 + G05V2 + HOG/\ + JOGQ) A vy
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+f(A07dt + +BO70'1 + 0070'2 + D0721 + E0722 + F071/1 + G07V2 + H07/\ + J07Q) AA
+(A%dt + +B%01 + C%02 + D%Z1 + E%E, + FOu1 + G + H%A + J%Q) A gQ

Setting the coeflicients of each of the 2-forms to zero yields the following set of

equations.
A =0i=1,2,..,7 (C.13)
A% =0 (C.14)
B% =(CY% (C.15)
bB°; = aD°, (C.16)
bB% = aE°; (C.17)
cB% = aF", (C.18)
¢BY% = aG%; (C.19)
fB% =aH" (C.20)
bC% = aD% (C.21)
bC°, = aE° (C.22)
cC% = aF% (C.23)
cC% = aG% (C.24)
fC% = aHY (C.25)
D% = E% (C.26)
cD% = bF° (C.27)

CDOG = bGO3 (028)
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fD% = bH' (C.29)
cE% = bF°, (C.30)
cE% = bG°, (C.31)
fE% = bH®, (C.32)

F% = G% (C.33)
fF% = cH’% (C.34)
fG% = cH'% (C.35)

C.2 2" Cartan equation (i = 1)

Passing now to the second torsion-free equation and recalling previous expressions for

the exterior derivatives, we have
de' +whiAe+wsAQ=0 (C.36)

where

da

de! =da Aoy +adoy = 5%

1 3
dt/\al+a(—§)\/\02—1/1/\22—1/2/\21—§Q/\0'2)
(C.37)

Therefore

Oa 1 3
0=5t—dt/\01+a(—§/\/\02—Vl/\ZZ_VZAEl_§QA02)

+(A10dt + B10010100'2 + Dlozl + E1022 + Flolll + Glon + Hlo)\ + JloQ) Adt
+G(A12dt + 3120'1 + 0120'2 + D1221 + EIQEQ + Flgl/l + Glzl/g + lez\ + leQ) N\ oo

+b(A13dt + Bl30'1 + 0130'2 + D1321 + E1322 + F13I/1 =+ G13V2 + H13/\ + JlaQ) A Zl
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+b(Al4dt + B4oy + Clyo0 + D431 + EVyEo + Flyvy + Gravg + HY4A + JHQ) A D,
+c(Alsdt + Blsoy + C500 + D'sX) + BNy + Flsvy + Glsvp + HsA 4+ J'5Q) Ay
+c(Algdt + Blgoy + Clg0oy + DY6X) + E'6Zo + Flovy + Glovo + Hlg ) + JQ) A 1y
+f(AY7dt + Blroy + Clr09 + DY) 4+ ENEg + Flovy 4+ Gy + HU A 4+ JHQ) A X
+(A'gdt + B'go, + Clgoy + D'sZ; + E's%5 + Flgvy + Glavy + HgA + J55Q) A gQ

Proceeding as before, the exhaustive list of conditions following from the above is as

follows,
aAly = C% (C.38)
bAl3 = D1, (C.39)
bA'y = E'y (C.40)
cAly = F1 (C.41)
cAlg = Gl (C.42)
fAY, = HY, (C.43)
By = % (C.44)
Bl,=0 i=1,..,7 (C.45)
bC'3 = aD, (C.46)
bC'y = aE', (C.47)
cC's = aF'y (C.48)
cC'¢ = aG', (C.49)
fO, =aHY — 2 (C.50)
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D'y =E'; (C.51)
cD's = bF, (C.52)
c¢D's = bG'5 — a (C.53)
fD'; = bH'; (C.54)
CE15 = bF14 —a (055)
cEls = bG'4 (C.56)
fE'; = bHY, (C.57)
F's = G's (C.58)
fFl'( = CH15 (059)
fGl7 = CH15 (060)

C.3 3™ Cartan equation (i = 2)

de? = w?e* =0 (C.61)
Where
2 Oa 1
de” = d(aag) = adt ANog+a (5/\ Nop+ 11 A 21 el 2 XA 22) (062)
Therefore
da 1
0='a—tdt/\0'2+a(§/\/\0'1+1/1/\21—1/2)/\22 (063)

+(A20dt + 3200'1 + 02002 -+ D2021 + E2022 + F20V1 + Gzon + H20/\ + Jon) A dt
+a(A21dt + B210'1 + 0210'2 + D2121 + E2122 + F21V1 + G21V2 + HzlA + J21Q) Aoy

+b(A23dt + B230'1 + 02302 + D2321 + E2322 + F23V1 + G23V2 + H23/\ + J23Q) A 21
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+b(A2%4dt + B%401 + C%400 + D450 + E% 50 + F2n + GPyn + HE A + J24Q) A S,
+c(A%sdt + B%501 + C%500 4+ D%3, + E%X + F2suy + GPsvn + H2 A + J%5Q) A vy
+c(A%dt + B%601 + C%09 + D%X, + E%Zs + Feuy 4+ G2%vn + HEA + J%6Q) A vy
+f(A%dt + B%0, + C?705 + D5y + E*/ 50 + F2u1 + G*vp + H A + J3Q) A X
+(A%dt + B0y + C%0y + D%S) + E%50 + F2guy + G%vp + H2 A + J%Q) A gQ

Comparing coeflicients,

aA?, = B%, (C.64)
bA%; = D? (C.65)
bA%, = E%, (C.66)
cA%; = F?, (C.67)
cA%s = G (C.68)
fA% = H? (C.69)
bB%; = aD?%, (C.70)
bB%, = aE?*, (C.71)
c¢B% = aF?, (C.72)
cB% = aG?, (C.73)
fB% = aH? + g (C.74)
C?% = % (C.75)
c%=0 i=1,..8 (C.76)

D% = E?, (C.77)
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cD? = bF?%; + a

cD% = bG?,
fD?* =bH?,
cE?; = bF?,
cE%* =bG%* - a
fE* = bH%,
F2 = G2,
fF?% = cH?
fG?* = cH%

C.4 4% Cartan equation (i = 3)

de® + w3,e® =0

Where
. ab
de® = d(b%,) = adt A X + bdy,
ob 1
= —dt/\21+b(—/\/\22 —1/1/\0'2+V2/\0'1)
ot 2
Therefore
0b 1
0= 'a—tdt/\zl'i'b(EA/\Ez—Vl /\0’2+V2/\0’1)

184

(C.78)
(C.79)
(C.80)
(C.81)
(C.82)
(C.83)
(C.84)
(C.85)

(C.86)

(C.87)

+(A30dt + B300'1 + 0300'2 + D3021 + E3022 + F10V1 + G101/2 + Hlox\ + JloQ) A dt

+b(A31dt + B310’1 + 0310'2 + D3121 + E3122 + F311/1 + G31V2 + H31/\ + J31Q) A 21

+a(A32dt + 3320'1 + 0320'2 + D3221 + E3222 + F32V1 + G32V2 + Hsg)\ + J32Q) A 09

+b(A34dt + 3340'1 + 0340'2 + D3421 + E3422 + F341/1 + G34V2 + H34)\ + J34Q) A 22
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+C(A35dt + B350'1 <+ 03502 + D3521 + E3522 + F35l/1 + G35V2 + H35)\ + J35Q) AN N
+C(A36dt + 33601 + 03602 + D3621 + E3622 + F361/1 + G361/2 + Hasz\ + J36Q) AN 2
+f(A37dt + 33701 + 0370'2 + D3721 + E3722 + F37I/1 + G37I/2 + H37)\ + J37Q) A A

+(A38dt + 33801 + 03802 + D3821 + E3822 + F381/1 + G331/2 + H38/\ + J38Q) A gQ

Therefore

aA® = B, (C.88)
aA3; = C3 (C.89)
bA3, = B3, (C.90)
cA3s = F3, (C.91)
cA% = G3, (C.92)
fA3, = H3 (C.93)
B3, =C%; (C.94)
bB3, = aF* (C.95)
cB3; = aF3, (C.96)
cB3% =aG3 +b (C.97)
fB* = aH?, (C.98)
bC3, = aE3, (C.99)
cC3 = aF3 —b (C.100)
cC3 = aG3, (C.101)

fC% =aH? (C.102)
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D}%=0 i=1,2,3,4,5,6,7,8 (C.103)
D3 = % (C.104)

cE35 = bF3, (C.105)

cE% = bG3, (C.106)

fE = bH? + g (C.107)

F3 = G3 (C.108)

fF3; = cH?3; (C.109)

fG% =cH% (C.110)

C.5 5 Cartan equation (i = 4)

de* + whe® =0 (C.111)
Where
de* = d(b%3) = %dt ATy + bdE, (C.112)
ob 1

= adt/\22+b(—§A/\21+V1/\01+1/2/\02) (0113)

Therefore,

ob 1
0= adt/\22+b(—-2-)\/\21 + 1 /\01 +V2/\0'2)

+(A%dt + Byoy + Cloy + DY + B4 E + Fhovy + Ghovg + Hio + J4HQ) A dt
+a(A*dt + BYyoy + C*oy + DY E1 + BN Z0 + Fh + G + HUA+ JPQ) Aoy
+a(A%dt + B0, + C*0y + D51 + B4 50 + Fhouy + G + HOA + J3Q) Aoy
+b(A%dt + B30y + C*305 + DT 4+ ESEs + Fhav + Glavy + H A+ JHQ) A Y,

+C(A45dt + B450'1 + 0450'2 + D4521 + E4522 + F45l/1 + G451/2 + H45/\ + J45Q) A 141
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+C(A46dt + B4601 + 04602 + D4621 + E4622 + F46V1 + G46V2 + H46/\ + J46Q) Ay
+f(A47dt + B470'1 + 04702 + D4721 + E4722 + F47V1 + G47V2 + H47)\ + J47Q) A
+(A4gdt + B480’1 + 04802 + D4821 + E4822 + F481/1 + G43V2 + H48/\ + J48Q) A gQ

Therefore, comparing coeflicients gives,

aA*; = B%, (C.114)
aA'y = C*% (C.115)
bA*; = D4, (C.116)
cA's = F4, (C.117)
cAts = G4 (C.118)
fAY = HY (C.119)
B%, = C*% (C.120)
bB*; = aD*, (C.121)
cB's =aF* +b (C.122)
cB% = aG*; (C.123)
fB* =aHY, (C.124)
bC*3 = aD*, (C.125)
cC*s = aF*, (C.126)
cC* =aG* + b (C.127)

fC* = aH* (C.128)
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CD45=bF43
CD46=bG43
4 4 b
fD 7=bH 3—5
0b
EYy = —
°~ ot

EY%=0 i=1,2..,8

F46 = G45
fF47 = CH45
fG47 = CH46

C.6 6™ Cartan equation (i = 5)

de® + w’.e* =0

Where
5 dc
de’ = d(cv,) = det A vy + cdyy
oc
= -a—t—dt/\l/l +C(—/\/\I/2—0'2/\21+0'1 /\22)
Therefore

ac

0=%

dtAvi+c(=AArp— 02 AX; +01 A L))
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(C.129)
(C.130)
(C.131)
(C.132)
(C.133)
(C.134)
(C.135)

(C.136)

(C.137)

(C.138)

(C.139)

(C.140)

+(A50dt + B500'1 + 0500'2 4+ D5021 + E5022 + F50V1 + G501/2 + Hso)\ =+ JsoQ) A dt

+a(A51dt + 3510'1 + 05102 + D5121 + E5122 + F511/1 + G51V2 + H51)\ + Jle) Aoy

+a(A%dt + B®y0, + C%04 + D%,51 + E5%) + Fou; + GPup + Ho)A + J%2Q) Aoy

+b(A%sdt 4+ B30, 4+ CP300 + D% + E%35, + Fo3u; + GP3vp + Ho3A + J°3Q) ATy
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+b(A54dt 4+ BS401 4+ C3409 + D34 %1 + E5 Sy + Fouu + GP4vp + HO A+ JP4Q) AN E
+c(A%dt + BP0y + C%02 + D%y + E%Xs + Fosu1 + GPsva + H6A + J%6Q) A 1y
+f(A%dt + B%;01 + C%709 + D33 %1 + E% 55 + Fouy + Govy + H A + J%Q) A X
+(A%dt + B%s01 + C%303 + D%%) + E%Es + FSgvy + Gosvp + Ho%A + J%Q) A gQ

Therefore, comparing coefficients gives,

aA’; = B%, (C.141)
(ZA52 = 050 (0142)
bA%; = D° (C.143)
0 .

bA54 = E50 (0144)
cA’s = G% (C.145)
fAS;, = H% (C.146)
B52 - 051 (0.147)
st3 = G.D51 (0148)
st4 = aE51 —C (0149)
CBS(-; = aG51 (0150)
fB% = aH5 (C.151)
b053 = aD52 +c (C.152)
bC®; = aE®, (C.153)

CCSG = aG52 (0154)
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fC% = aH®
DS, = E5,
cD%s = bG°5
fD% =bH?%
cE®% = bG?,
fE® = bH®,
-

F5,=0 i=1,..,8
fG57 = CH56 —C

C.7 7" Cartan equation (i = 6)
de® + wb,e® =0

Where

de® = d(cp) = %dt/\ug+c(/\/\l/1 +o01 AT +03AE)

Therefore

0=d(cug)=%dt/\1/2+c(/\/\1/1+01/\21 + 02 A X))

190

(C.155)
(C.156)
(C.157)
(C.158)
(C.159)
(C.160)
(C.161)
(C.162)

(C.163)

(C.164)

(C.165)

+(A60dt + B600'1 + 0600'2 + D%El + E6022 + F60V1 + G601/2 + Hﬁo)\ + JGOQ) Adt

+a(A61dt + B610'1 + 0610'2 + D61E1 + E6122 + F611/1 + G61V2 + Hel)\ + J61Q) Aoy

+a(A62dt + B6201 -+ 0620’2 + D6221 + E6222 + F62V1 + G62V2 + H62A + JGQQ) Aoy

+b(A63dt + B630'1 + 0630'2 + D6321 + E6322 + F631/1 + G63V2 + H63/\ + J63Q) AN 21
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+b(A®4dt + B%40, + C®409 + D421 + E®4 %y + FOuuy + G8yvy + HO A + J84Q) A E,
+c(A%sdt + B%501 + C%509 + D% + E%5, + FOsuy + GOsvp + HSsA + J%Q) Ay
+f(AS7dt + B%01 + C%09 + D8/ %) + ES; 9 + FOuy + GOvp + HO N + J5Q) A X
+(A®%gdt + B0y + C%0y + D% + E®%s + FSguy + GSavy + HS A + J5%Q) A gQ

Therefore, comparing coefficients gives,

aA61 = BGO (0166)
GA62 = 060 (0167)
bA®; = DS (C.168)
bAS, = ES, (C.169)
cA%s = FS, (C.170)
fA% = HS (C.171)
B%, = C%, (C.172)
bB%; = aD% —c (C.173)
bBG4 = aE61 (0174)
6 __ 6

cB 5 = aF 1 (0175)
fB% = aHS, (C.176)
bC®; = a Db, (C.177)
b064 = aE62 —C (0178)

cC® = aF, (C.179)
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fC® = aHS, (C.180)
D%, = ES; (C.181)
cD%s = bF®, (C.182)
fD% = bHS, (C.183)
cE®s = bF*, (C.184)
fE®; = bH®, (C.185)
fF% =cHS + ¢ (C.186)
GS = %j— (C.187)

G =0 i=1,..,8 (C.188)

C.8 8™ Cartan equation (i = 7)

de” +wiee® =0 (C.189)
Where
7 of
de’ =d(f\) = 5 —dtA X+ fdA (C.190)
afdt AA + f (20‘1 A 09 — 221 A 22 + 41/1 A V2) (0191)
Therefore,
0= %tfthA+f(201/\02—221/\22‘{'41/1/\1/2)

+(A70dt + B700'1 + 0700'2 + D7021 + E7022 + F701/1 + G70V2 + H70)\ + J70Q) Adt
+a(A71dt + B7101 + C710'2 + D7121 + E7122 + F71V1 + G71V2 + H71)\ + J71Q) Aoy
+a(ATydt + BTy0, + CTy00 4+ D'3%1 + E'3S0 + Florn + GTavp + H'oA + J2Q) A oy

+b(A73dt + B"301 4+ C'305 + D'351 + E'350 + Flavy + GTavp + H'3 A+ J3Q) A T,
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+b(A74dt + B740'1 + 0740'2 + D7421 + E7422 + F74l/1 + G741/2 + H74)\ + J74Q) A 22

+c(ATsdt + B'501 + CT500 + D's51 + E'sS0 4+ Flsvy + GTsvo + H'sA+ J5Q) Ay

+c(ATdt + B0, + CTg00 + DT + E"6X0 + Flgvy + GTovo + H'sA+ J6Q) A s

+(A73dt + B730'1 + 07302 + D7821 + E7822 + F78V1 + G78V2 + H78)\ + J78Q) A gQ

Therefore, comparing coefficients gives,

aA’y = B,
ad’s =C"
bA"3 = D7,
bAy = E",
cA's = F7,
cAle =G

bB"; = aD7,
bB", = aE",
¢B7y = aF",
¢B’s = aG";
bC"3 = aD7,
bC"y = aE",
cC's = aF7,

(C.192)

(C.193)
(C.194)
(C.195)
(C.196)
(C.197)
(C.198)
(C.199)
(C.200)
(C.201)
(C.202)
(C.203)
(C.204)

(C.205)
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cC’g = aG', (C.206)
bD7, = bE"3 + 2f (C.207)
cD"s = bF; (C.208)
cD"¢ = bG3 (C.209)
cE"s =bF", (C.210)
cE"s = bG", (C.211)
cF'g = ¢G5 — 4f (C.212)
Hy = %{- (C.213)
H;=0 i=1,..,8 (C.214)

C.9 solutions

This set of simultaneous equations is straightforward to solve. We will also make use
of the antisymmetry of the spin connection w. This follows because in our vielbein

basis the metric is just the Kronecker delta
Wij = —Wj; = w,-jéj'“ = —wjiéj" (0215)

= w,;’“ = —wk,- (0216)

The non trivial simultaneous equations are presented below Adding C.50 to C.74
gives

C'; = -B% (C.217)

Substituting into C.198;
=Cly=—- (C.218)
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Substituting these results into C.50 gives

1

HY = ——
2 2r2

Adding a times C.53 to b times C.97 gives

ac
Substituting into C.173;
A+1 b
3 _ _0 1 _ @
Bs==% =D

Adding a times C.55 to b times C.122 gives

ac
Substituting into C.149;
2+1 b
B45=c+ =-=>E15=—E
2ch r r

Substituting these results into C.55 gives
F'y=0

Adding a times C.78 to b times C.100 gives

> ac
Substituting into C.152;
b
035=—;=>D25=—
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(C.219)

(C.220)

(C.221)

(C.222)

(C.223)

(C.224)

(C.225)

(C.226)

(C.227)
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Substituting these results into C.78 gives
F 23 . 0

Adding a times C.82 to b times C.127 gives

E26 _ 1- bCC46
ac
Substituting into C.178;
2
s C+1 b 2 a
= =2 E? =2
C'e 2bc r ndal r

Adding C.107 to C.131 gives

Substituting into C.207;
f a 3 @
D4 = — = —— = E —_ =
T b T T

Substituting these results into C.107 gives

1
3 _
Ha=—33
Adding C.163 to C.186 gives
F67 = —G57

Substituting into C.212;

Fo =V1-r4=G%=—-V1-r
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(C.228)

(C.229)

(C.230)

(C.231)

(C.232)

(C.233)

(C.234)

(C.235)

(C.236)
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Substituting these results into C.163 gives

22 1
HY¢=—"—=-(1+r"
6 . 2( +r7%)
Using ?? and 77 gives
3
J12 = 5
Adding ?? to ?? gives
B28 . —Clg =0
Adding ?? to ?? gives
D4g = —E38 = 0

Substituting these results into ?? gives

3
J34=§

C.10 Spin connection results

b
—w°1 =wl = w45 = w27 = -01

s
b

U.)02 =Wr7= w35 = —w“e = —’1:02
a

w = w's = —w?s =wh = -=5;
T
a

w°4 =Wy = w26 = —OJ37 = ——22

—UJO7 =W = 5(1 + ’l"_4)/\
1 3
1 — — —
w2 2r2/\+ (2) @

197

(C.237)

(C.238)

(C.239)

(C.240)

(C.241)

(C.242)
(C.243)
(C.244)
(C.245)
(C.246)
(C.247)
(C.248)

(C.249)

(C.250)
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Computation of the curvature
2-form

We use the spin connection to calculate the curvature 2-form from Cartan’s second
structure equation.

R = dw'; + w'y A wF;
Although I have calculated explicitly all the linearly independent components of the
curvature 2-form, necessary considerations of concision compel me to include only a

representative sample of this work as an illustration of the methods employed.

D.1 R%
R% = duw®; + % A Wk
Where
0%a Oa [ 1 3
dw°1 = —wdt/\ﬂ'l —52 (—5)\/\0'2—1/1/\22—112/\21 - 5Q/\0’2)
And

Ja 1 3
Panut = =Foun (530~ 39)
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b 3b
———03 AX+ —03 A
2r3"? 22 NG
WsAW, =Wl AWt =0
a
w°5 A w51 =——v1- 7'—41/1 N 22
T
a
woe A w61 = —;V 1- 7‘_41/2 A 21
0 7 1b -4
wrAw'i=—==14+1"%)AAo,
2r
We now collect terms. The dt A oy term is

a 1
T_4th01 = FGO/\el

The coefficient of the A A o, term is

b, 10 1by, o _af
2r  2r2r 27 T4
Therefore
1
(:.—{/\/\0'2=—F€2/\67

The coefficient of 1, A X5 is

T4

Therefore

bc 1

—4'1/1 A 22 = ——484 A 65

r r
The vy A ¥, term is

be

—41/2 A 21 = ——463 A 66

r

The coeflicient of Q A o is zero.

Collecting our results we have

1
Rol=—T—4(—60/\61+62/\67+63/\66+€4/\65)
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D.2 R%
R02 = dwoz + wok A wkg
Where
0%a da (1 3
dw°1 = —wdt/\d’g— E (5/\/\0'2+1/1/\21 —I/2/\22+§Q/\0'1)
And

b b
0 1
wiAwe=——=03 AX— fracd2-o; A
1 2= 5301 f ~01 Q
w°3 A w32 = w°4 /\w42 =0
a
UJ05 A wsz = ;Vl - 7”—41/1 A 21
a
w°6 A w62 = ——T-V 1— 7'—41/2 A 22
1b
WrAwy==—14+7r"HAA 0y
2r
We now collect terms. The dt A o, term is

a 1
'—4dt/\0’2 = —460 A 62
T T

The A Ao, term is

1b 16 10 af
i R | -4y = 2L
27 2r2r+2r( +r7) rt
Therefore
af)\/\01=lel/\e7

r4 rd

The coefficient of the v; A ; term is

b — b
T T T
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Therefore

be 1
-——41/1 A 21 = —63 A 65
r r

The coefficient of the vy A X9 term is

Therefore

The coefficient of Q A o, is zero.

Collecting all the results we have

1
R°2=——(—eo/\e2—el/\e7+e3/\es+e4/\66)

7-4
D.3 R%
R% = dw®s; + W A wks
Where
0%b ob /1 3
dw°3 = —a;dt/\zl - E (5/\/\22—1/1 /\0'2+V2/\0'1 - ’2-Q/\22)
And

W Awly = Wl /\w23 =0

1 b 3 0b
0 4 _ il
w4/\w3— 2T26t22/\/\+28t22/\Q

b
w°5/\w53=——v1—r—4ul/\0'2
T
b
U)os/\w63=;\/1—7'_41/2/\0'1
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1
Wy AW’y = —9(1 +r AN,
2r
The dt A X, term is

—wdt/\zl = —th/\El = —T—46 ANe

The coefficient of the A A ¥, term is

la la 1la bf
I+ —Z4+-2(1 -4y = 2L
2r+2r2r+2r( +r7) rd
Therefore
b—{—-—/\/\22= %64/\67
T r

The v; A 05 coeflicient is

Therefore
ac 1, 5
—'—41/1/\0'2 = —46 Ae
T T
The vy A 0, term is
¢ 11,6
—qu/\ol = ——e Ae
r r

The coefficient of the @ A X, is zero. Assembling these results

1
R03=_T—4(e°/\e3+e1/\66—62/\65+e4/\e7)

D.4 RY
R04 = dw°4 + wok A w’“4
Where
0%b ob 1 3
dw°4 = —ﬁdt/\zg — E (—5/\/\21 +uvy Ao+ Aoy + 5@/\21)
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And
w°1 /\(.4)14 = w°2 A w24 =0

1l a 3a
0 3
T 27" ¢

b

w05/\w54 = —V].—T—4l/1/\0'1
r
b

w°6/\w64= ;VI—T’_4V2/\0'2
la

UJ07 A w74 = ———(1 + 7'_4)/\ A 21
2r
The dt A X, term is

0%b b 1, 4
—Eé-dt/\zg = —th/\zg = —;ze Ae

The A A X coefficient is

1 1 1 b
la_la_aly o __Y

2r 2r2r r2 r4

Therefore

bf

1 3 7
—r—4A/\21=T—46 Ne

The v; A 07 coefficient is
LN s a—f
N r
Therefore
?"_401/1 Aoy = —%el A€’

The v, A 04 coefficient is

Therefore
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The coeflicient of Q A ¥, is zero.

Gathering results,

1
Ry=——(Aet+e' A+ N’ — ¥ Ae)
r



Appendix E

Fermionic zero modes in an
instanton background

We show that in an instanton background the operator J has no zero modes. Thus
there can be no left-handed Weyl fermions in an instanton background. Here we shall
consider a Dirac fermion, in an arbitrary representation of the gauge group. In the

presence of an instanton background the Dirac equation becomes
'y"foI/) =0

where fo involves the instanton gauge field A,. We decompose ¥ into its chiral and

anti-chiral parts,

_1 o _ 1o s
/\—2(1+75)¢, x=51-7)

A Euclidean representation for the Clifford algebra is given by

0 —io”, 1 0
=\ _ B, P =y =
ighaB 0 0 -1

The Dirac equation then splits into two independent equations for A and k.
af - = — et
"Dy =Px=0 & GhDIN=]P"A=0
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Where D is a 2 x 2 matrix of derivative operators. We aim to show that, in the
background of an instanton, the above has solutions for ¥ but not for A. (Obversely,
in the vicinity of an anti-instanton there exist solutions for A but not ¥). Let us

suppose that we are given a solution of Px = 0. Given any such ¥ we must also have
ppx =0
(Technically, we could write that ker]p C {]DI}). We proceed by evaluating PP,
pPp=s*¢"D,D, = (20" — 5“¢*)D,D, = 2D*D,, — 5°¢*D,D,

Now recall 6* = 7}:(6“0” —a”o*). Keeping this in mind we may write out expression

for I as

1 1
P= 55*0"DyDy + 559" DuD,

(26" — 5*o*)D, D, + %&“U”D“D,

DN | =

= D*D, + 25" D,D,
= D*D, + &"*(D,D, — D,D,,)
= D*D, + 5" F,,

The tensor ¢*” is anti-self dual whereas the instanton field-strength is self-dual.

Therefore the second term above vanishes leaving us with
DD, = PPx =0
We can use this result to show that ¥ = 0; consider the following manipulations,

D*(x*Dux) = 0*(X"Dux) = X*D*D,x + D*x*D,x



APPENDIX E. FERMIONIC ZERO MODES IN AN INSTANTON BACKGROUND207

Integrating over all space removes the divergence by Gauss’ theorem, giving
/d“x D*x*Dux =0 = /d“x |Dx|>=0
This implies that ¥ is covariantly constant, since
D,x*=0
= X*DuX" = X"(0uX" — f* ALX) = 0
= X"0ux* =0
= 9,(¢°%") = AulxI2 = 0

i.e. |x| is a constant. The only square-integrable solution which vanishes on the

boundary is therefore y = 0.

Similarly we may show that

Dp=D"D, + %a””F,w

This time the second term does not vanish in the presence of an instanton, so zero

modes are possible.



Appendix F

The ADHM constraint equations

We will now show that the ADHM constraint equations for one instanton, (5.67)

and (5.76) may be condensed into a single equation. The constraints that must be

satisfied by the w’s are
T Cd,;@fuwuia =(°
A% uwig — @iy wuic = 0
Now recall that the Pauli matrices satisfy
Py = 258 — 6136%)
Multiplying F.1 by 7¢ and substituting in the above,
2(8%;67; — %5%5%)@2,%,& =775(°

= 2(@ Wy — @ Wwuiad'5) = T 5C°

2

Taking the derivative gives

» iy 1, . 1. :
dw”iuwuis + w”’iudwm-(; b §dwa,-uwm~d5"’5 — §w°‘iudwm-d<575 =0

Using F.2 gives

i » e -
A iywy;5 + @ dwy; — 0% dwyied s =0

208

(F.1)

(F.2)

(F.3)

(F.4)
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= ¢1P dwg,, Wy + P Wi Qwyis — wﬁiuedﬁ dwyied” ;=0
Multiplying throughout by €5,
0 5(d0i0Woig + DpinBwig) — 452707 3055, dwnia = 0
AW pinWys5 + Dpindw,;5 — eﬁsedﬂ Wiy dwnia = 0
Now recall that the product of € tensors is given by

it = |28 O
58, &8,

S6€ = §%;0P; — 6%;6%;

This leads to the expression

AWpiuwy5 + Dpindw ;5 — ((5&35/3,-, — 5dﬁ5ﬂé)eﬁ56dﬂwﬁiudwuid =0

209

(F.5)

(F.6)

This is our final result. It unites the entire ADHM procedure, including the quotient,

into one equation for the case k£ = 1.

We have used the convention



Appendix G
The volume of SU(3)/U(1)

In chapter six we effected a change of variables from the ADHM coordinates to U(N)
invariant coordinates. In so doing we were able to integrate over the angular variables
in the measure. We shall exploit this result to determine the the contribution of the
left-invariant one forms of equation (5.39), which we interpret as the volume of the
coset SU(3)/U(1).

To start, recall equation (6.149), which we reproduce here of the case N = 3..
N
/ [] dwuadwly = 23 / AW |det(W)| > d3Q, (G.1)
u=1

The W'’s are defined by equation (6.135), which in the notation of chapter five becomes

W= ( ppﬁ- P+ ) (G.2)

Lot ao* + p*
The determinant of this matrix is p%p?. To complete the integral in (G.1) we will

also need to change variables as detailed in (6.134). Using the fact that &; = py,

&2 = p_ and &3 = a, we have

d*¢ =dp, ANdp_ Ada A dao* (G.3)
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Using equations (6.31)-(6.34) gives the result

al“§=4p3 dp A df* A df? A df? (G.4)
+_

Substituting this and (6.134) into (G.1) gives the result
/ dwdw® = 275 / p?. o dpdf Ldf?df? (G.5)

where we have used the results Vol.(S3) = 272 and Vol.(S%) = 73. However, we have
yet to perform the U(1) quotient. The relevant result is given in equation (6.49).
Using this result and imposing the delta function constraints 0(f¢) gives our result

for the volume form on the moduli space:
fﬂ—?4/fﬁﬁ (G.6)
Comparing this result with the volume element of (5.111) leads to the identification

/01/\02/\21/\22/\1/1/\1/2/\)\=7r4 (G.7)



Appendix H

Conventions and formulae

We follow [12] and normalize Lie group generators as

TT(TaTb) = Ogb

H.1 Index conventions

1,J,k : Multi-instanton indices
u,v,w: SU(N) gauge group indices
i, v : Moduli space coordinate indices
m,n,p: Minkowski or Euclidean space-time indices
i,}',k : ADHM composite index notation

a,fB,&,B : Spinor indices

H.2 Symbols

M: 1-instanton moduli space

M : 1-instanton mother space

212
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H.3 Formulae and results

Below is a list of formulae and results used in the main body of the text. For further

details on any of these points the reader is referred to the review of [12].

(1
(1)
S

H.3.1 Pauli matrix stuff

0

_ ) H3)
€21 = 6 (H4)
el =gy = —1 (H.5)
el=e?=0 (H.6)
[7%, 79] = 2ie'TkrF (H.7)

o 1
S rs =2 (578% = 55°87s) (H.8)
On = (iT%, 12x2) (H.9)
Gn = 0 = (=17, 1252) (H.10)
O = %(amén — 057) (H.11)

1
Tmn = Z(ama" — 0p0m) (H.12)
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1

Omn = Eemnklo'kl (H13)
1

Omn = —§€mnk15kt (H.14)

H.3.2 The t’Hooft  symbols

These form a basis for the self-dual and the anti-self-dual antisymmetric matrices in

4-dimensions.
1

Nap = 5€ABODTCD (H.15)

Map = €ABCcDTGp (H.16)

Nap = Tap = €.aB, A,Be€{1,2,3} (H.17)
MiaNas = Oca (H.18)

Mag =TMpa>  Tlas = —Tpa (H.19)

H.3.3 The ¥ matrices

In six-dimensional Euclidean space we define the 4 x 4 matrices

So = (1,4, 0%, 0%, 0", 4" (H.20)
Eo = (=0, i°, —*, 47", —n', i) (H.21)
Whilst in Minkowski space we define;

o = (in®, i7", 0%, i7", 0", i77') (H.22)
Sa = (=i, i7°, —n?, 47", —n', i7" (H.23)

The next two formulae are valid in both Euclidean and Minkowski space;

YeaBZacD = aaBZacD = 2€4BcD (H.24)
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YaaBZacp = —264c0p — 264p0BC (H.25)

H.4 A useful result

We shall prove a result used to derive (2.10) in the text above.
/ Pz Try(Dufud,Ap) = / Pz Try {(8a + [An, %] ) 6,40} (H.26)

- / 4Pz Try {02(QdyAn) — 000, An} + / Pz Try {[An, 0] 0,40} (H.27)

The total derivative gives rise to a surface term which vanishes due to the asymptotic

form of €2, and 6, A,, so we have
/ Pz Try {~,000, 4 + [An, ] 6,40} (H.28)
Using the cyclic property of the trace gives
/ Pz Try {~Q0u0,An + 6, AnAn]} (H.29)
= / Pz Try {Q,Dnb,An} = 0 (H.30)
H.4.1 The symplectic curvature

The components of the curvature tensor on the moduli space may be written in the

2** coordinate basis of the mother space as

R G on) 6) 2€ a4 ‘,4; [(QTT)5 L Q) + QT L7 QT + QT L (QT7)]
(H.31)

We can extract from this the symplectic curvature of the quotient

Ry =23 [QT7)5L7 Q1) + (QT)aL QT3 + (") Ly (QT7)s]
(H.32)
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H.5 Results that employ the ADHM algebra

H.5.1 Osborn’s formula

Try (FonF™) = —%(a"’)zwn(f) (H.33)

H.5.2 Zero modes of the Weyl equation

The quantity
Aq = UCfbU — Ubo fCU (H.34)

satisfies the covariant Weyl equation
DA, (H.35)

subject to the condition

A*C +CA% = (H.36)
i.e.
H.5.3 The covariant Laplace equation with bi-fermion source

The equation to be solved is

D% = A(C)A(C") (H.37)

subject to the boundary condition lim,_,.¢(z) = @° the solution is

le =2 ArirB [ 0
¢=—=SagUM*fM°U+U (H.38)
4 0 plaxe
where
o =L (w%"wd + %SGABMAMB) (H.39)
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H.5.4 Anti-fermion source
Laaslda, AMP)] = Daath + A(Na) (H.40)
H.5.5 The inner product formula
/ &'z TryA(C)A(C') = ——Trk [C(Po +1)C" = C'(Poo + 1)C] (H.41)
H.5.6 The fermionic inner product formula
/ d*z TryA(M)X(N) = —%2Trk [M(Poo +1)N + N(Ps + 1)M] (H.42)

H.5.7 Miscellaneous identities and definitions

BA(M)
BX#

+ 0 AOD)] = Do+ A (555 (142

where

& aa
%= 1V3xz fMu (H.44)
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