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Summary

This thesis is concerned with the numerical prediction of two-dimensional 
viscoelastic flows through channels, contractions and contraction/expansion 
geometries. In this study, a hybrid finite element/finite volume (fe/fv) scheme has 
been employed to solve the governing equations (mass and momentum conservation 
and constitutive model). The fe/fv algorithm employs a time-stepping procedure to 
evolve to steady-state.

A number of rheological models have been used to stimulate desired rheological 
behaviour. Amongst these are the recent Pom-Pom type models (in particular the 
extended or XPP variants), which are considered as a breakthrough due to their 
strong physical background and their ability to reproduce qualitatively the response 
of polymer melts in rheometrical flows. The Phan-Thien/Tanner (PTT) class of 
models is also employed to compare simulation results for concentrated systems with 
other models. In addition, for Oldroyd-B, PTT and XPP models, Boger-like response 
has been represented under increasing levels of solvent within the systems. This has 
addressed the issue capturing enhanced excess pressure-drops iepd) in contraction- 
type flows, phenomena that appear only in axisymmetric geometries not planar and 
has constituted a major challenge for to date numerical simulations. A further chapter 
is included where the recently introduced Bautista-Manero (BM) class of models is 
considered, to simulate worm-like micellar systems, this is, surfactants solutions. The 
worm-like micelles can provoke highly viscoelastic effects, similar to those apparent 
with polymer systems.

Vortex intensity decline is observed for fluids displaying extension softening in 
4:1 contraction flows, in sharp and rounded comer. The suppressive effect of inertia 
in vortex cell-size is also gathered. Through a parameter adjustment in the SXPP 
model, larger stress and stretch values are observed for fluids with higher degree of 
extension-hardening and consequently, a reduction in numerical convergence has 
been found. Similar vortex dynamics trends are followed for fluids (PPT and XPP) 
with similar rheological properties. Excess pressure-drop over the corresponding 
Newtonian fluid is observed in small extent in contraction/expansion flows. 
Axisymmetric flows display much larger stress values than planar flows, which 
ultimately causes the increasing trend in epd. The response of the BM models in 
planar and contraction flows is gathered and an analytical solution for the steady 
Poiseuille flow is presented.
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CHAPTER 1

Introduction

Computer modelling has been one of the most effective tools to predict fluid 

response in simple and complex flows. It has also been invaluable to realize 

phenomena occurring in these flows that otherwise would be difficult to observe. 

Computer Fluid Dynamics (CFD) has emerged as a fast evolving branch of physical 

science. Computational rheology may be considered as the part of CFD which deals 

with non-Newtonian (complex) fluids. However, there is still a serious need for 

improvement in numerical methods and simulation tools, in general.

On the other hand, new constitutive models are currently emerging to represent 

more complex systems, or those whose adequate description has been elusive. 

Among these, are polymer melts and micellar (surfactant) systems. The 

representation of branched polymer melt behaviour in both extensional and shear 

flows has been improved with the introduction of Pom-Pom models. In contrast the 

Bautista-Manero class of models are intended to predict the diverse phenomena 

typically exhibited by worm-like micellar systems.

Simulation of polymer melt flow is an issue that needs continuous attention. The 

relatively new Pom-Pom type of models, derived mostly from theoretical analysis,
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are considered as a breakthrough in rheology, due to their capacity to represent 

qualitatively some monodisperse polymeric systems. Polymer solutions and melts are 

essential in industry involving materials such as plastics, paint and ink.

Surfactant solutions, capable of grouping in extremely large worm-like micelles, 

can reproduce rheometrical response similar to that exhibited by polymeric systems. 

These micellar solutions are capable of rapid change in structure, and hence, in 

rheological behaviour [21]. One of their most important uses is in oil-recovery, 

where they serve as a transporting mechanism for ceramic particle packs, into the 

sand of the well to keep fractures open. Worm-like micellar solutions, presenting 

high viscosity, can deliver the particles and once in contact with oil, the surfactant 

agglomerates into different, much smaller, types of micelles. This produces a 

considerable decrease in viscosity and avoids blockage of the ceramic packing, 

allowing an easier flow of oil. To model these types of solutions, an equation that 

takes into consideration structure formation and destruction must be included within 

the analysis. Recently, the Bautista-Manero models have been introduced for this 

purpose. They are based on the Oldroyd-B model coupled with an additional 

equation for viscosity, containing parameters that govern structure formation.

For some problems, improvement in both directions of constitutive modelling 

and numerical methods, is more than vital. The proper representation of excess 

pressure-drop is one such problem. Such excessive drop in pressure is observed in 

axisymmetric contraction and contraction/expansion flows, for highly viscoelastic 

constant shear viscosity (Boger) fluids over that presented by an equivalent 

Newtonian fluid of similar viscosity. Interestingly in planar contraction flows no 

departure between Boger and Newtonian flows is gathered. As discussed in chapter 

7, the modelling of such phenomena requires suitable rheological models, capable of 

predicting extremely large values of extensional viscosity, whilst keeping constant 

values of shear-viscosity. The Oldroyd-B model, one of the simplest [101], exhibits 

constant shear-viscosity, though the levels of extensional viscosity are without limit. 

Even if other models with severe, but bounded, strain-hardening are employed,

2
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attaining high levels of viscoelasticity may prove difficult. This drawbacks is 

commonly referred to as the “high-Weissenberg number” problem. That is, the 

simulation procedure, when starting from low levels of elasticity, cannot continue 

due to loss of numerical convergence. Failure often occurs at viscoelastic flow- 

settings which are not sufficiently high.

This study is concerned with the simulation of viscoelastic fluid flows in 

channel, contraction and contraction/expansion settings, for both planar and 

axisymmetric configurations. Emphasize is given to relate the flow response of the 

constitutive models employed to their behaviour in simple rheometrical flows. 

Material functions such as shear and extensional viscosity can help to gain some 

insight into the nature of the deformation occurring in complex flows, and this 

information may be used as a guide to select the material functions required to 

stimulate certain desired response. Contraction and contraction/expansion flows are 

present in many industrial processes, such as injection moulding. They have also 

become a standard benchmark for testing numerical procedures. In this area, vortex 

dynamics, pressure-drop and centreline velocity are common features reported in the 

literature (see for example references [2,3,41,74]). They are also subject of 

theoretical analysis such as that performed by Binding, which is one of the most 

important analysis in contraction flows that under certain conditions, can 

approximate extensional viscosity through pressure-drop data ([14,15,59,60]).

Finite element and finite volume algorithms are some of the most powerful tools 

in numerical simulation. They have proven their capability in a number of complex 

geometries in many areas, such as aircraft design, noise minimization in acoustics, 

chemical reactor engineering and computational rheology. Here, a method consisting 

in a hybrid formulation of finite element and finite volume analysis is employed to 

solve the range of flow-settings and configurations investigated.

In chapter 2, the basic equations of fluid mechanics and rheology are introduced. 

Rheometrical flows are explained, providing the basis for a large part of the analysis 

presented in this study. Focus is given to Pom-Pom models and their material
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functions, describing some of the numerous modifications proposed for this type 

model. Note that, further rheological plots are included in other chapters when more 

relevant. For example, the Bautista-Manero model is discussed in chapter 8.

Chapter 3 deals with the numerical procedure employed, the hybrid finite 

element/finite volume (fe/fv) method, explaining its basic equations. This method has 

been configured to well represent viscoelastic flow in complex geometries. The fe/fv 

algorithm has been generated upon considering the different mathematical nature of 

the momentum equation (balance of forces) and the constitutive models. It has 

proven its capability in solving problems with Oldroyd-B and Phan-Thien/Tanner 

models, amongst others (see [2,3,7,105]).

Planar flows are considered in chapter 4 for the Pom-Pom model. Pressure 

driven channel (Poiseuille) are simple flows that present no geometrical singularities. 

They represent pipe/channel sections in an extremely large number of fluid flow 

processes. In numerical studies, the solution of Poiseuille flow yields the necessary 

inlet boundary conditions for contraction configurations.

Flow through sharp-comer planar 4:1 contractions is analysed in chapter 5, for 

the single extended Pom-Pom model. Polymeric stress, stretch, deformation-rates 

and vortex dynamics are reported and related to the corresponding rheometrical 

functions. A comparison between two contrasting finite volume procedures is also 

included in chapters 4 and 5.

The effect of extensional viscosity in planar 4:1 contraction flows is observed in 

chapter 6, where different levels of viscosity are stimulated by adjusting molecular 

configuration parameters. To allow for higher Weissenberg numbers, the geometry is 

changed to rounded-comer instead of abrupt entry. Again, stress, vortex growth, 

deformation rates and stretch are reported and interpreted in terms of the material 

functional response. The effect of constitutive model singularities on the flow is also 

studied. A comparison between Pom-Pom and Phan-Thien/Tanner model solutions in

4
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contraction flows is provided, for model versions with similar rheometrical 

properties.

In chapter 7, the excess pressure-drop problem for Boger fluids is considered in 

detail, that is for strongly strain-hardening, constant shear-viscosity fluids of various 

solvent fractions. An analysis of flow through both planar and axisymmetric 

configurations of contraction and contraction/expansion geometries is presented. 

This study covers the relationship between the pressure-drop and material functions, 

stress and deformation-rates. Chapter 7 also shows the necessity to adopt other points 

of view in the flow-field. Centreline data does not provide clues of the complex 

phenomena that take place in the vicinity of the boundary walls, phenomena that 

relate the excess pressure-drop to stress development. Additionally, the necessary 

conditions are specified to obtain effective excess pressure-drops in terms of entry 

pressure and rate-of-dissipation.

The Bautista-Manero model is studied in chapter 8, including a sensitivity 

analysis over its rheological parameterisation. Vortex dynamics in 4:1 contractions 

are reported for two sets of parameters, matching corresponding Phan-Thien/Tanner 

fluids. A finite difference procedure is implemented to obtain pressure-drop values in 

steady Poiseuille flows. The analytical solution for this problem is also deducted, 

proving to be in excellent agreement with the finite differences procedure. Some 

transient results in planar channel are also provided.
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CHAPTER 2

Governing Equations and Rheology

The basic equations of fluid mechanics are presented that allow the description 

of motion and conservation of mass. In addition, rheological models are considered, 

which relate surrounding forces with the internal response from the fluid. This fluid 

response is studied first for some simple flows, giving the tools to analyse more 

complex flow-settings. Models such as Maxwell, Oldroyd-B, Phan-Thien/Tanner, are 

briefly explained. A more recent type of constitutive equation, the Pom-Pom fluid 

and its response in rheometrical flows, is also considered in some detail.

2.1 Introduction

Rheology is part of physical science and is primarily concerned with the 

description of the flow of matter. Normally rheologists are interested in the flow of 

complex fluids. The term non-simple refers, here, to any fluid whose viscosity can 

vary even at fixed temperature and pressure. Water is the classical example of a 

simple fluid, and paint, which requires to be stirred before application to a surface, is 

one of the most common liquids with variable viscosity.

6
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A special case of non-Newtonian fluids is that of viscoelastic materials. To 

explain the term viscoelastic, it is appropriate to define terms of what is called solids 

and liquids. If a material does not change its shape continuously when subjected to a 

given stress, it is referred to as a solid; whilst, if the change in shape is continuous 

(flow) with the applied stress, without consideration of how small the stress is, the 

material is termed a liquid (definitions from Barnes et al. [13]). Solid-like elasticity 

can often be modelled with Hooke’s law and liquid-like viscous behaviour through 

Newton’s law. Viscoelastic materials are those which exhibit both solid-like and 

liquid-like response. A material presents viscoelastic properties if, when after 

cessation of applied stress, the time of the fluid to adopt a rest state can be observed 

(measured).

All the research conducted in the present study uses continuum theory. This is an 

idealization of the description of matter, where distances between molecules and the 

change in properties due to these lengths are ignored, by looking at an arbitrary large 

number of molecules to average properties, and adequately represent the fluid 

element. To obtain the response of the element under deformation, energy, mass and 

force balances (conservation laws) are applied via differential and integral operators 

over small volumes, yet sufficiently large to satisfy the continuum assumption. This 

formulation is referred as continuum mechanics. Approximating the response of real 

materials in flow lies across the fields of both, rheology and continuum mechanics. 

The use of constitutive relations is a fundamental connection between these two 

areas. A constitutive equation contains specific information (internal stress, pressure, 

molecular extension) that relates to the behaviour of idealized fluids.

2.2 Rheometrical flows

The study of fluid behaviour in simple flows is regarded as essential in 

correlating the response of a fluid in more complex flow-settings. Simple shear and 

extensional deformation are examples of such simple rheometrical flows.

7
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2.2.1 Simple shear flow

For a fluid contained between two (extremely large) parallel planes, separated by 

a gap h , with the upper-plate moving at constant velocity U , the force per unit area 

(stress a ) necessary to maintain the constant velocity of the plate is proportional to 

the velocity gradient (shear-rate y), i.e.

A Newtonian fluid presents a constant coefficient of proportionality rjs

(viscosity or resistance to flow). Under this type of flow, a volume of fluid is 

deformed, loosing its original shape. For example, if a cubic element of fluid is 

observed at any other time, the volume of fluid has internal angles that differ from 

90° (see Figure 2.1).

The velocity field u = (w,v,w) and deformation-rate tensor d under simple 

shear deformation are given by:

a  = r}s ( y ) y . (2.1)

L.

Figure 2.1. Schematic representation of simple shear flow.

u(y)  = yy

v = 0  and
w = 0

d = — y  0 0
2

0 0 0
(2.2)

Other properties that vary between Newtonian and non-Newtonian fluids are the 

first and second normal stress difference, N] and N 2, respectively. Their magnitudes
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are zero for Newtonian fluids, whilst for non-Newtonian fluids, their definitions are:

Ni(r )  = v „ - v „ = v t { r ) f ,  (2.3)

W2(f)  = <7„-o-K = V i { t ) ? \  (2-4)

normally leading to relations,

N , > 0 and TV,» |Af2| . (2.5)

2.2.2 Extensional flows

Considering in particular uniaxial deformation, in this flow the fluid volume is 

stretched in one particular direction, and due to incompressibility, compression takes 

place in the remaining axes. The fluid sample depicted in Figure 2.2 presents a cubic 

shape control volume at a chosen reference time (dotted line). After that and because 

of the stretching deformation, the fluid volume is extended in one (x )  direction,

whilst compression occurs along the remaining two ( y , z ) axes, to preserve the

original volume.

The constant deformation-rate in this elongational flow is called the strain-rate 

e . In this case, there is no shear deformation, the fluid volume maintain essentially 

the same internal angles, but with modified lengths. The velocity field and 

deformation-rate tensor can be expressed as:

m(jc) = e x

v(y)  = - j £ y  and d = 

w(z) = ~ ^ £ z

The resistance, or extensional viscosity is then expressed through the relationship,

°»-<Tyy = ° XX- CTzz = (2-7)

£ 0 0

0 —  — £  2 C 0

0 0 — - £  2 ,

(2.6)

9
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y /
z t-------

I— >u

Figure 2.2. Schematic representation of uniaxial flow.

For a Newtonian fluid, t]e is constant under all strain-rates, and the following 

relation is satisfied:

Additionally, it is expected that all fluids, including those with viscoelastic 

properties, satisfy (2.8) at low deformation-rates, that is,

Pure extensional deformation occurs in contraction and contraction/expansion 

flows along the centreline, while near the contraction a mix of shear and extension is 

present.

Trouton ratio (Tr)  is defined as the quotient of extensional and shear 

viscosities. In order to relate y  and e to evaluate shear and extensional viscosities, 

Jones et al. [52] proposed the following definition for the Trouton ratio:

For inelastic fluids Tr is three for all values of £ and for viscoelastic this ratio 

is anticipated to satisfy

(2 .8)

J7e ( £ - » 0 )  =  3 7 7 , ( r - > 0 ) . (2.9)

(2 .10)

Tr(e  —» 0) = 3. (2.11)

10
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In contraction flows, pure extension takes place along the centreline. In 

axisymmetric configurations this elongation is uniaxial, whilst in 2D planar flows, 

such deformation is that of planar extension, where the fluid sample is stretched in 

one direction and compressed in another, leaving one dimension without change. 

Equations governing planar extension are similar to those for uniaxial flow,

A detailed discussion of these types of rheometrical flows can be found in 

Barnes et al. [13]. For more reference on these subjects and in rheology in general 

see additionally references [56,58,91].

2.3 Constitutive models and basic equations

The basic principle of mass conservation must be satisfied at every instant in the 

type of flow problems considered. This principle is expressed mathematically 

through the continuity equation (see [30,55,65]),

In equation (2.16), p  is the fluid density, u the velocity vector and t , time. For 

incompressible flows, even if time-dependant, this reduces to

rje = 4 rjs CNewtonian), (2 .12)

rje (£ —> 0) = 4rjs ( y —> 0) (viscoelastic), (2.13)

(2.14)

Tr(e —» 0) = 4 (viscoelastic). (2.15)

^  + V-(pu) = 0. (2.16)

V-u = 0. (2.17)

11
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Newton’s second law of motion can be applied to a fluid element, this law states 

that the change of linear momentum in a system is equal to the sum of the forces 

acting upon it (also known as the principle of conservation of linear momentum). 

The forces acting on the system may be classified into two types: body forces acting 

on the volume of fluid, such as gravitational and electromagnetic forces, and internal 

forces, representing the friction between fluid molecules, affecting the fluid volume 

through its bounding surfaces. In differential form this is stated as [18]:

where p is the pressure, T is the stress without the hydrostatic contribution* and

accounts for viscous/viscoelastic phenomena. Body forces, F , are neglected since 

contributions from gravity are less significant than those from other forces such as 

pressure or stress.

As discussed above, Newtonian fluids present a constant viscosity in shear and 

elongational flows. Another characteristic is the instantaneous response to 

deformation. The general expression for the Newtonian (incompressible) model is,

Substitution of equation (2.19) into (2.18) produces the Navier-Stokes equations. All 

flow settings in this study are assuming isothermal conditions and laminar flow. In 

equation (2.19) the deformation-rate tensor for general flows is defined as,

Constitutive or rheological models must satisfy the following basic criteria to 

adequately represent fluid response from a mathematical point of view [65,88].

(2.18)

T = 2jud . (2.19)

(vu + [V uf) . (2.20)

* Tensor <T is called the Cauchy stress tensor and is related to the tensor T by <5 = — p i  + T , where 

I is the identity tensor.

12
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. Determination o f stress: stress for a viscoelastic fluid is determined by the 

history of the motion of that body.

. Local action: stress at any point in the fluid is determined by the history of the 

deformation of an arbitrarily small vicinity of fluid around that point.

. Frame invariance: The form of constitutive equations must be independent of the 

coordinate system.

. Invariance under superposed rigid body motion: the constitutive equations must 

reflect independence of absolute motion in space; that is, if the equations are 

correct, any rigid body motion imposed on the whole fluid must not affect the 

response of the material.

2.3.1 Maxwell and Oldroyd-B models

The Maxwell model [67] is considered as the first to model viscoelastic fluids 

via a differential system of equations. The one-dimensional form of this model is 

obtained by a combination of a Hookean spring and a Newtonian dashpot in series 

(see Barnes et al. [13]).

where G0 and are the elastic modulus and the viscosity, respectively. The 

relaxation time for a Maxwell fluid is defined by X = jU0/G 0 .

Applying the principles stated above, this equation (2.21) can be re-written as 

the upper-convected Maxwell (UCM) model,

(2 .21)

V

T + X T — 2 //0d , (2.22)

or the lower-convected (LCM) form

13
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T + A T  = 2ju0d , (2.23)

V A

where for an arbitrary tensor A , the upper- ( A ) and lower- ( A ) convected

derivatives are defined, respectively, as

A =-^-A  + u -V A -(V u )T - A - A - V u ,  (2.24)
at

A =-^-A + u-VA + (Vu)T ■ A +A-Vu. (2.25)
ot

The Maxwell model does not contain a term to account for solvent presence

(purely viscous component). To overcome this, a retardation time, A} , is introduced

in equation (2.22):

v (
T + A T  = 2 jllq d+/ iyd (2.26)

V J

Equation (2.26) is known as the Oldroyd-B model. However, numerical
v

(discretisation) difficulties arise when dealing with the term d , due to the presence 

of second-order derivatives of velocity and the model is split into two different 

equations, one for the polymeric component and other for the solvent, i.e.

t  + A t  = 2jupd , (2.27)

t  = 2jud , (2.28)

T = t  + t  , fJ0 =jUs +jUp , and Aj =— —— A.  (2.29)
Ms +Mp

In equations (2.27)-(2.29) t  and jup represent the stress and zero shear-rate viscosity 

contributions from the polymeric component, respectively; in a similar way, t s and

14
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jus are the contributions to the solvent part. The extensional viscosity predicted by 

Maxwell and Oldroyd-B models tends to infinity as the strain-rate approaches to 

l/(2 /i) ; additionally, the shear viscosity is constant at every shear-rate and the

second normal stress difference is zero (except for the lower-convected Maxwell 

model which excessively predicts N 2).

A more reasonable prediction of N 2 is achieved by using the lower-convected

operator mixed with the upper-convected derivative. The Johnson-Segalman model 

introduces an operator consisting of both convected derivatives. However, the 

extensional viscosity remains unbounded at low strain-rates. The model is:

T + A T  = 2//0d , (2.30)

where the new operator is defined on an arbitrary tensor by:

A = ( l - ^ f ) A + ^ f  A = A + f ( d - T  + T-d).  (2.31)

£  is the parameter controlling the proportion of the two derivatives, and generally 

its value lies within the interval 0 < £  < 2, where N1/ N ] = ~ \ £  and £  = 0.2 yields 

reasonable N 2 (see reference [88]).

2.3.2 Phan-Thien/Tanner models

This prediction of unphysical values of extensional viscosity by the Johnson- 

Segalman model is corrected with the Phan-Thien/Tanner (PTT) constitutive 

equations. This model considers the creation and destruction of network junctions. 

Shear-thinning and extension-hardening/softening are predicted by this class of 

models which is expressed as:

/ ( t )T + AT = 2//pd , (2.32)
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the extra function /  ( t ) is,

1 ""H 'p'j’T tr( t )  linear.

exponential,
(2.33)

The linear form is extracted from a Taylor series expansion of the exponential form. 

Both forms predict shear-thinning behaviour and extension-hardening; strain- 

softening is anticipated for the exponential form, whilst the linear form displays 

sustained hardening, although, for some extreme values ( eP7T —> 1) moderate 

softening is also observed.

2.3.3 Pom-Pom models

Rheological modelling of polymer melts has been proven to be a difficult task 

when the behaviour in both extensional and shear flows is sought. Constitutive 

models such as Phan-Thien/Tanner, Giesekus and Kaye-Bemstein-Kearsley-Zapas 

(K-BKZ) present difficulties to adequately model these polymer melt systems. 

Employing a modified multi-mode K-BKZ model, Mitsoulis et al. [70] were able to 

successfully predict vortex dynamics for low density polyethylene (LDPE) melts. 

Although PTT models can model a number of rheometrical responses in both shear 

and elongational flows, the parameter which governs the degree of extension- 

hardening, ePTT, controls simultaneously the shear-viscosity response (see 

Aboubacar et al. [2]).

The pom-pom model was introduced by McLeish and Larson [68] to represent 

the behaviour of idealized polymer molecules (see Figure 2.3), and as such, is 

considered as a major step forward. It takes into account the topological structure of 

the polymer chains, based on tube theory, in which polymer chains are represented 

by a backbone segment with the same number of dangling-arms ( q ) attached at both 

extremes of the backbone section. The drag that the melt exerts on these arms causes

16
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the backbone to stretch. The presence of branching points, slows down the reptation 

of the backbone. The ends of the arms are still able to move and the process of arm- 

retraction helps the molecule to free the polymer chain from the tube formed by its 

surroundings. This arm-retraction is triggered when the molecule reaches its 

maximum stretched state. The arms gradually free from the tube by diffusion. Once 

the arms have relaxed, the backbone can subsequently relax by moving the branch 

points. The extension of the polymer chain is represented by the parameter A , which 

is the actual extension of the molecule scaled by its equilibrium length, 

A = L /L ,
backbone /  u backbone

A key aspect of this new type of model is the separation of relaxation times, one 

for stretch and other for orientation. The model consists of two decoupled equations, 

one for each relaxation process. In the original formulation of the model, the 

maximum backbone stretch (finite extensibility constraint) introduces a discontinuity 

in the gradient of the steady-state extensional viscosity. Two drawbacks remain 

however, the prediction of a zero second normal stress difference and the 

unboundedness of the backbone orientation equation at large strain-rates.

For the multimode approach proposed by Inkson et al. [51], the deficiencies of 

the Pom-Pom model are detected. By modifying the evolution equation for stretch 

(A),  Blackwell et al. [20] allowed branch point displacement. This had the effect of 

attenuating the non-smooth peaks in r]e [75], though discontinuities can be detected

due to imposing a finite extension. To the same end Verbeeten et al. [96] introduced 

the extended Pom-Pom (XPP) model (see additionally [97]).

The evolution for the polymeric extra-stress in the single equation version of the 

XPP (SXPP) model is

T + / ( T) T + 7 r T ' T + Go [ / ( T) - l ] l  = 2^)iG0d , (2.34)
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Figure 2.3. Idealized Pom-Pom molecule.

where

/ (  t ) = 2 (2.35)

Here, Â b > A^s are the orientation and backbone stretch relaxation times,

respectively, and G0 is the linear relaxation modulus. To account for a non-zero

second normal stress difference ( N 2), Verbeeten et al. [96] incorporated a Giesekus-

type parameter, a . When the anisotropy parameter is set to zero, N2 is also zero,

and by increasing a ,  this stress difference becomes more significant. However, 

Clemeur et al. [37] have shown that ‘numerical defects’ appear for certain values of 

a  and q (see section 6.3.2 for further details).

With the SXPP model, the backbone stretch is directly coupled to the extra­

stress tensor

In equation (2.36), the absolute value functions is not included in the original 

SXPP formulations. Here, this modification is necessary to increase the levels of 

attainable elasticity by avoiding problems when fr(x) <0 in complex flows (which 

may only happen numerically). The parameter v in (2.35) was incorporated to

(2.36)
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remove the discontinuity in the derivative of the extensional viscosity. Its value is 

estimated by data-fitting and found to be inversely proportional to the number of 

arms ( q ). More precisely v  = 2/q . Finally, the extra-stress tensor can be written as 

the sum of polymeric and solvent contributions, T =  t  +  2 /^ d .

Note that in the XPP model (2.34), the stress component Tzz is not necessarily 

zero, even in 2D planar flows.

2.3.3a Alternative Pom-Pom models

- Double extended Pom-Pom model

The Double extended Pom-Pom (DXPP) model was introduced simultaneously 

with the SXPP version by Verbeeten et al. [96]. In this form, instead of the stress t , 

the solution lies in terms of the orientation tensor S . The model can be expressed as,

•t = G0(3/l2S - l ) ,  (2.37)

S + / ( S ) S  + : ^ - ^ - I  + ̂ - S - S = 0 ,  (2.38)
34m a 4m

—  + u • V i = A d:S -  ^  ~ ̂  el-('l~1), (2.39)
^ I 40 y

/  (S) = 2d:S + - 4 -  [l -  a  -  3cd*tr (S • S ) ] , (2.40)
1̂Ob̂

where I is the identity tensor and as in the SXPP model, v = 2jq .  In contrast to the 

SXPP model, here, the stretch is computed through a partial differential equation. 

Both single and double XPP models are expected to produce identical response as 

they adopt the same assumptions. The difference is that taking advantage of a 

traceless orientation tensor, the stretch equation may be obtained in a purely 

algebraic form through a single equation version of the Pom-Pom model.
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- A2XPP model

In order to implement the XPP models within a spectral element solver, van Os 

and Phillips [76] proposed a modification for the extended Pom-Pom version. The 

resulting model consists in a combination of the equation for stress evolution and 

extra function of the SXPP version, equations (2.53) and (2.54), respectively, with 

the stretch equation from the Double extended Pom-Pom model in terms of the 

polymeric stress r  instead of the orientation tensor S (see section 5.3.3 for further 

comments on this model).

M + u . v i  = - J — d : r - — e^ - 'K  (2.41)
9 1 3 AG0 ^

- Modified extended Pom-Pom model

Having implemented comments of van Meerveld [69] to improve the extended 

Pom-Pom version, Verbeeten et al. [98] presented a modification of the single XPP

model by replacing the term ( l - l / / t )  in equation (2.35) with ( l - l / / l 2). This

modified extended Pom-Pom (mXPP) model is anticipated to avoid the non-physical 

values of stretch that may occur numerically. Stress evolution is given by equation 

(2.34), the absolute value in equation (2.36) for stretch is no longer necessary, and 

the extra function now becomes,

f ( r )  = 2 ^ h  * W - 0 +  1 f i _  «  ^ . r )
A)j v a,

\  i f  \' ..f, 1 I fY . . I
(2.42)

v 3 G 0

However, as mentioned above, the parameter a  can introduce analytical 

singularities into the solution for sufficiently large a  and enough number of arms q . 

This singularities are present in both SXPP and mXPP models and is a direct 

consequence of the incorporation of the Giesekus-type parameter, a . In section 6.3.2 

this issue is considered for the SXPP model and its influence on contraction flows; 

the same abnormal response is present also with the mXPP model as observed in
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Figure 2.4, where a sudden increase in shear viscosity appears around a non- 

dimensional shear-rate of \ by  ~ 13 .

- Semi-linear SXPP variation

In order to simplify the analysis, the anisotropy parameter, a , is set to zero. In 

doing so, the extra function for the SXPP model becomes a function of stretch (A )  

alone, and indirectly, of the stress. Moreover, the terms eliminated by the zero de­

value allow the extra function to be dependant on the trace of stress, ^ ( t ) ,  which 

then, can be considered as a single variable.

By means of the chain rule of differentiation:

For notational simplicity, tr is taken to denote ?r(x) and an expansion in Taylor 

series provides,

d / ( T) = d / ( T) dA  
dtr(  t )  dA d tr(r )

(2.43)

rr->0

(2.44)

Obtaining the required derivatives:

d f  _ 2 - I (2.45)
dA A3

V

and

dA 1 (2.46)
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note that //* ( t  ) —> 0 => A —> 1, so that,

i l
d A

= 2 Kb and
dA
dt r lr—*0 6G0

(2.47)

Finally, the linearised extra function is gathered as:

, W ' " H J
t r (  t ) (2.48)

If equation (2.48) is used instead of (2.35), a semi-linear approximation for 

SXPP is obtained (where A is still non-linear). It is unfortunate that the dependence 

on the number of arms ( q )  has been lost through the linearisation procedure. Here,

the only parameter that controls the degree of extension hardening is A^bfA^s -  \ / s . 

Yet, this version can be used to emulate the response of the linear Phan- 

Thien/Tanner (LPTT) model.
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If the same procedure is applied to the mXPP model, the resulting extra function 

is similar, being

2.4 Non-dimensional form

The governing equations are expressed in non-dimensional terms via length 

scale L (unit length), velocity scale U (twice the mean velocity1 - taking a unit

of jliU/ L . The parameter g  = jus + g p is the total viscosity, made up from consistent 

viscosity fractions for solvent and solute.

In order to preserve similarity between the form of the non-dimensional 

Oldroyd-B and SXPP models, the relaxation time for the Pom-Pom model is chosen 

as Ayb, with the polymeric viscosity defined as jup = Gq̂  .

With these definitions, the group numbers and dimensionless parameters R e , 

We , /? and e are given by,

(2.49)

flowrate over half the channel), time scale L/U , and pressure and extra-stress scale

Re = p  — , 
M

£ - (2.50)

the governing equations may be expressed in non-dimensional form*

V u  = 0, (2.51)

(2.52)

f A unit flowrate would correspond naturally to a channel flow of one unit cross-width.
* Equation (2.52) is the non-dimensional form of (2.18), see also equation (2.56).

23



Governing Equations and Rheoiogy

We x + / ( x ) x  + - j ^ x - x  + ̂ ^ [ / ( x ) - l ] l  = 2 ( l - / ? ) d ,  (2.53)

where /  (x) and X are given by

and

, [, i f  We \
i = | + f e J M T) i ’ (2-55)

respectively. The extra-stress tensor, T , is given by

T = x + 2/?d. (2.56)

Note, that the Oldroyd-B model corresponds to setting a  = 0 and / ( x )  = l in 

equation (2.53). If in addition, /? = 0 then the UCM model is obtained.

The solvent viscosity ratio, /?, is an indirect measure of the concentration of 

polymer particles in the system. These polymer molecules are responsible for the 

viscoelastic nature of the system. As /? tends to unity, the system is more diluted, 

while P = 0 is the limiting state for polymer melts, where no solvent is present.

The parameter £ , the ratio of stretch to orientation relaxation times, is inversely 

proportional to the entanglement molecular weight of the backbone segments. Values 

of e approaching unity correspond to molecules with relatively short backbone 

lengths but long arms to slow down the dynamics, and small values of £ correspond 

to highly entangled backbones.

The number of dangling arms q , has an effect on the entanglement of the

system. A larger number of arms, is anticipated to cause an increase in backbone

1- 2 -

3
We \  

1- / ?
rr(x • x) (2.54)
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extension. In fact, for the original pom-pom formulation, the extensibility constraint 

is exactly equal to q .

2.5 Material functions

The Single extended Pom-Pom model represents a fluid displaying shear- 

thinning and extension-hardening/softening. The base set of parameters for the SXPP 

fluid used in this study are ft  - 1/9, e = 1/3, q = 2 and a  = 0.15, corresponding to 

shear-thinning properties with low (weak) strain-hardening followed by softening. 

Apart from the base case, some variation in the number of arms ( q ) is also 

considered. Figure 2.5 presents the rheometrical response for the SXPP model 

covering a range of dangling-arms; the base case can be identified from the (q = 2)~

line. At the selected solvent fraction, j3 = 1/9, increasing the number of arms has an 

insignificant impact upon the shear viscosity, and a major influence upon response in 

planar extensional flow. By increasing the number of arms from q -  2 to 15, the 

peak-value of the extensional viscosity rises about one decade in the log-log plot. 

This peak occurs at strain-rates between 10 to 20 units approximately for q>  5. 

Planar Trouton ratio (Figure 2.5b) reflects such an increase in the extensional 

viscosity, and combined with the shear-thinning response, this ratio (Tr)  increases 

one decade to its extrema. Non-significant influence of the branching-arms upon the 

first normal stress coefficient, y/ l , is detected up to moderate shear-rates ( y  < 5). For

higher deformation-rates, increasing q results in larger values of , that is, via a 

decrease in its rate-of-decline with f  (Figure 2.5c). The same adjustment in the 

number of arms (from 2 to 15) causes a significant increment in backbone stretch 

(A),  the parameter that governs molecular extension. This becomes apparent when 

deformation-rates exceed 0.5 units (Figure 2.5d).

Considering briefly the extensional response of the mXPP variant, some 

departure from the SXPP- rje response can be observed over the decade of extension
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a) Shear and p lanar viscosity b) P lanar Trouton ratio
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Figure 2.5. Shear and p lanar-ex tension  response varying q\ f -  1/9, e -  1/3, a -  0 .15.

rates [10u, 10* ]. For q — 2 ,  the strain-softening begins before its SXPP counterpart; 

although some change in the rate-of-decline in ?/(, is detected at larger strain-rates, 

both model versions soften in a similar manner. For an increasing in the number of 

branched-arms q , the mXPP version displays extension-softening at moderate strain- 

rates, followed by rapid hardening that ultimately, follows the hardening/softening 

behaviour of the single Pom-Pom model variant. Transient evolution of viscosity and 

backbone stretch in shear and planar-extensional flows is depicted in Figure 2.6. The
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solution is generated from rest to the establishment of steady-state. Time is scaled 

with A^b\ transient viscosities (planar and shear) are scaled with the steady-state

shear viscosity at zero shear-rate, t]0. These variables ( rje, rj5, A)§ reach their 

steady-state values more rapidly for larger fixed values of deformation-rate {£ or y). 

In addition, backbone stretch for e and y  at levels of 0.01 and 1, do not show any 

significant overshoot. Under increasing deformation-rate, the overshoot becomes 

more evident. This is also enhanced for systems with a larger number of arms to the 

molecule. Note that, in contraction and contraction/expansion flows, unsteady 

Lagrangian influences are not anticipated to be particularly significant in the 

contraction region, even if the fluid experiences large deformation-rates. This is due 

to the short residence times of fluid element/particles across the constriction region. 

In contrast, considering the exit channel in the contraction configuration, large shear- 

rates are developed above the boundary-wall and residence times are sufficient to 

allow steady-state values to be reached some units of length after the contraction. For 

example, in the case of the rounded comer 4:1 contraction with, the steady-state is 

reached at the wall around 3 units beyond the end of the comer (see Figure 6.9). 

These material functions were extracted from expressions for simple shear and planar 

extension transient flows, subject to initial condition rij= 0 at t = 0.

For transient shear flow:

(rw2 + V ) -  T - /  (T) - ^ [ / W  - ! ] '
(2.57)

i t  “ ^„G0 “ 4 , /  ' ' “ 4,

i t * * =Tyyf" T g0 + ^ ) ■ t ;  7  (T) ̂ + G<j-

§ In this study, extensional viscosity is represented by r)e in both planar and uniaxial extensional flows.
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a) Transient p lanar extensional viscosity b) Backbone stretch in p lanar extension
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And for transient planar elongation:

7̂ = 2f (r„ + G0)- - j t— r j  -  - j -  ( t ) r„ -  ( r )  - 1],
Ut Gjb A) b

^7 T„ = ~2i  (Tn + Co) " 7 % - V  -  T -  /  ('T) 0, " T 2- [ /  ( 'T ) " l ] ' (2'58)
\>b G)b

- r . . = - —  t . .2 - —  /( x)r. - A . r / ( T) - l l .
d' “ " 4 ,  W  * 4

28



Governing Equations and Rheoiogy

The dynamic response is the solution through time of systems (2.57) and (2.58) 

at any fixed deformation-rate y  or e . Standard numerical procedures such as Euler 

or Runge-Kutta methods can be employed to solve these systems of ordinary 

differential equations. Transient viscosity is gathered from the solution of (2.57) or 

(2.58), and applying equations (2.1) or (2.7) (depending upon whether under shear or 

elongational deformation). The steady-state at each deformation-rate is obtained by 

taking the transient solution at sufficiently large times.

To conclude this chapter, Table 2.1 displays the expression for material 

functions for some common models. The functions for the SXPP model were 

obtained by setting a  = 0 , to facilitate the analysis. Additionally, Table 2.2 and 

Figure 2.7 summaries the influence of the non-dimensional variables on SXPP 

rheoiogy, under the setting of zero anisotropy.

Table 2.1. Material function expressions of some common models

7r(r) Ve(e)

UCM Mo 2ju0A 2Mo | Mo 
\ - 2 Ae 1 + Ae

Oldroyd-
B Mo 2g0( A - A J)

l - 2 A e  1 + Ae 1

SXPP
G0^°b H b 2G0

/ M 3
3G» . 3u

t (  \2 Ms / ( T) [ 4 .  ^ + /  W l t - H b  ^ + /  (T)]

Table 2.2. Influence of increasing non-dimensional numbers in shear and extensional viscosity

Increasing in: Vs Ve

P=Ms/Mt • Declining of thinning level 
value of the second plateau 

increases

• Major drop in level of softening
• value of the second plateau increases

£ ~ ^Os! ^Ob • Slight increase in thinning 
region

• Visible effect in hardening region, 
not as significant as for q

q • No significant effect • Strong increase in the hardening level
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CHAPTER 3

Numerical Algorithms

The numerical procedure employed in this study is a hybrid method consisting 

of a finite element method (FEM) for the momentum and continuity equations and 

the finite volume method (FVM) for the constitutive law. Both methods had been 

applied separately with success for a wide variety of computational fluid dynamics 

(CFD) problems. This hybrid implementation takes advantages of features of both 

algorithms to produce a stable high-order finite element/finite volume (fe/fv) scheme.

3.1 Introduction

Numerical modelling has been improved extraordinary with modem 

developments in computer processors. Nowadays, systems consisting in very large 

number of equations can be solved within minutes. In CFD modelling, three 

numerical methodologies have been applied successfully to a range of flow-problems 

involving simple and complex flow domains. These methods are typically, finite 

difference, finite element and finite volume schemes (for viscoelastic flows refer to

* The basic numerical algorithms used in this thesis are those developed previously in the Institute of 
Non-Newtonian Fluid Mechanics (INNFM), Swansea group. These have been extended through 
incorporating the associated constitutive equations discussed in this study.
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[11,77,101]). In the field of computational rheoiogy, these three methods have been 

adapted to cope with a variety of constitutive law for stress, and have proven to be an 

invaluable tool for the analysis of flow-phenomena.

The finite difference method was the first to emerge, and although it is generally 

simple to implement, dealing with complex geometries and boundary conditions can 

lead to a lost in accuracy and a much more difficult discretisation scheme. This has 

given rise to the need for conformal mapping. FE and FV methods are commonly 

used for non-uniform grids, allowing simulation of non-simple flow geometries with 

a reduced number of equations when compared to standard finite differences 

schemes.

FEM and FVM are commonly referred to as the same type of algorithm. In both, 

the problem domain is divided into a non-overlapping finite number of sub-domains. 

The model equations are applied over each finite element or finite volume, and 

solution unknowns are approximated by ‘shape’ functions and nodal values over 

these sub-domains. Low order polynomials are commonly used for this purpose in 

FEM and FVM*. The equations describing the problem are producted with weighting 

functions and integrated over the domain, producing a system of algebraic equations 

where the nodal solution of unknowns is sought.

The hybrid scheme employed in this study consists in a combination of FEM and 

FVM procedures. The finite element approach is used to solve the momentum 

equation, with a time discretisation via a semi-implicit formulation on a Taylor- 

Galerkin procedure. Incompressibility is enforced through a fractional-staged 

procedure termed pressure-correction, producing a three-staged algorithm. A finite 

volume technique is used for spatial discretisation of the constitutive equation. The 

finite volume grid is formed via a partition of each finite element triangle by 

connecting the mid-side nodes of that element. Accuracy is achieved through a 

consistent treatment of the flux and source terms of the constitutive equation. Flux

f Using high-order polynomials introduces the complementary spectral element method.
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and source residuals are distributed to the vertices of each finite volume control cell 

through the use of fluctuation distribution (FD) schemes. Stability in terms of 

attainment of high Weissenberg number is improved via the use of a median-dual­

cell (MDC) approach for evaluation of flux and source terms.

The basis of the finite element implementation used is the Taylor- 

Galerkin/pressure-correction (TGPC) algorithm, proposed by Townsend and Webster 

[94] to simulate the flow of viscous and viscoelastic fluids. The main idea is to solve 

the hyperbolic-type constitutive equation with an algorithm suitable for this kind 

task. As the FVM has often been found superior to the FEM for this purpose, the 

present hybrid finite element/finite volume algorithm has appeared. Donea [43] was 

the first to work on Taylor-Galerkin schemes for convection-diffusion problems, 

with a discretisation based upon Euler, leapfrog and Crank-Nicolson time-stepping 

procedures. Temam [93] and Chorin [33] proposed the earliest forms of pressure- 

correction schemes for viscous incompressible flows. Second-order pressure- 

correction versions were introduced by van Kan [53], through a finite difference 

discretisation and Crank-Nicolson time-splitting. The combination of these ideas 

under a finite element discretisation is the basis of the algorithm proposed by 

Townsend and Webster [94]. Hawken et al. [47] improved upon the initial explicit 

time-discretisation proposed, advancing to a semi-implicit form for viscous flows. 

Carew et al. [28] and Baloch et al. [12] took these basic implementations forward to 

cover the viscoelastic case.

The main aspects of the Galerkin finite element (see [35,40,111] for example) 

are discussed below. Also, an outline of the finite volume [30,49] procedure is 

considered.

In chapters 4 and 5, solutions obtained through thefe/fv algorithm for the flow in 

channels and contractions are compared against data computed with a semi- 

Lagrangian finite volume (SLFV) method. This is a pure finite volume scheme 

implemented by the research group of fluid dynamics of Cardiff University. Detail of 

this method can be found in references [1,81].
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3.1.1 Brief description of the Galerkin finite element method

Briefly, the finite element method consists in the splitting of the domain 

(geometry) over which the problem is to be solved, into a set of finite elements 

(mesh). This geometry can be simple or complex. Consider for example the 

following time independent Poisson equation,

The unknown solution variables are interpolated by suitable functions, typically 

of polynomial type of first or second order. The resulting problem residuals are 

weighted and applied to each of the finite elements that contributes to the original 

domain.

where nt is the total number of nodes in an element, $ (x) the trial functions, w( , 

unknown solution nodal values. With w. (x) weighting functions, substitution of

(3.1)

nt

0i{x )ui ’ (3.2)

(3.2) in (3.1) yields

(3.3)

In the case of the Galerkin method, weighting functions are chosen from the same 

space of functions as the trial functions, that is w . (x) = ( x ) . Then, by integration
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Summing all such elemental contributions assembles the system over the domain 

(£2 = ££2e). The term evaluated on the boundary (T ) of the element cancels out on
e

interior elements and is set to zero when the solution values are known at the outer 

domain boundary. This is the case in the present study, where typically the velocity 

is imposed at the boundaries.

In matrix notation, the full system of equations emerging from (3.4) can be 

expressed as

which can be evaluated either analytically or numerically. The assembly of all single 

elements into a total system must take into account the specified boundary 

conditions. For instance, as known values of the solution are imposed in this 

example, nodal values at both sides of the domain (boundary T ) are then specified 

and can be substituted directly in the corresponding positions for K , b and 

eliminated from u. Solution of problem (3.5) requires algebraic procedures. 

Depending on the number of elements/nodes and the complexity of the shape 

functions, these procedures can be either of direct or iterative nature.

3.1.2 Brief description of the finite volume method

With the finite volume technique, instead of solving the differential expression 

for a conservation law, an integral form is considered instead. This is the case for the 

differential constitutive model, which is integrated over an/v-subdomain. This can be 

considered as a subclass of the finite element procedure with weighting functions set 

to unity, w(x) = 1. Considering a general conservation law

Ku = b, (3.5)

the column-matrix u contains the nodal values, K and b are defined as

(3.6)
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— |fd n + |fn d r =  Jqdn, (3.7)
n r q

where g is the quantity to ‘conserved’ such as mass, momentum or energy, f is the

flux that can be separated in convective and diffusive parts, n an outward unit vector

normal to the surface T that encloses the volume Q and q , the source terms or body 

forces. Mean values in a/v-cell are defined as

(3-8)P .  a

Then, applying (3.7) on a single finite volume, with mean values g{ and q{, one 

gathers

<3-9>
dt P i | * r.

where k is the number of ‘faces’ of the /v-subcell and Tk is the area of those faces.

One advantage of the FVM is that the variables in integral form are naturally

conserved over the entire domain and on each individual /v-cell.

Using numerical integration procedures, the mean values can be approximated,

nc

}s-(jc)d£2, =£$$■ ,.(*), (3.10)
Q, '= 0

where (pi >0  are weights, and nc is the number of nodes of the integration 

procedure. Surface integrals are computed as

J r n td r t - £ f l- (3.11)
r* k

In this expression, Fk is an approximation of f -n  ̂ and k is again the number of 

faces of the /v-cell.
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The use of all such approximations over each finite volume, with their assembly 

to represent the total domain, constitute the discretised form of equation (3.7). This 

generates the system of algebraic equations to be solved, as similar to that for the 

finite element approach, given in equation (3.5).

3.2 Problem specification

The model for the isothermal incompressible flow of a viscoelastic fluid with 

no volumetric forces is specified by the following expressions for continuity and 

momentum (non-dimensional form extracted from chapter 2)

V u  = 0, (2.51)

Re du—— + u Vu 
dt

= -Vp + V • t  + P  V2u . (2.52)

In addition, a constitutive equation must be included to account for the response of 

the particular fluid. The non-dimensional form of the Oldroyd-B model is

Wet  + t = 2 ( l - / ? ) d  . (3.12)

If other models are specified, then (3.12) is replaced by the selected model equations. 

For example, in the particular case of the Single extended Pom-Pom (SXPP) model, 

equations (2.53)-(2.55) are used instead.

Appropriate boundary and initial conditions must be applied in order to correctly 

specify the flow problem in question. In general, the boundary conditions may be of 

a mixed form,

«r, =&■ (t' ' n )rJ = 8 2 ' Tr, = 8 3 . (3 -13)

where r*=123 are non-overlapping subsection of the boundary T enclosing the 

domain £2, o is the Cauchy stress tensor (see section 2.3) and n is the outward unit
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normal vector to the boundary. In this study only 2D flows are considered, specifying 

no-slip conditions (vanishing velocity) at the boundary-walls. For domain inlet and 

exit, velocity profiles for the Oldroyd-B model are imposed, providing sufficiently 

large inlet/exit channel sections are established for fully-developed flow to apply. In 

addition, inlet stress conditions must be imposed.

Simulation at low elasticity (or Weissenberg) levels (typically W e -  0.1) starts 

from some initial state in all variables, typically rest. Then, continuation in We 

number is employed to evolve to higher levels of elasticity, using the solution at the 

previous level as the initial condition for the next We -step. These initial conditions 

can be expressed as

11, . = u V ■ u° = 0, T, , , = T °  (3.14)x,f0) (x)» ' (x,f0) (x) ’ V '

where the superscript “0” indicates evaluation at time t = t0.

3.3 Time discretisation

The basis of the time-stepping procedure is a Taylor series expansion. Improved 

accuracy may be gained through a two-step Lax-Wendroff approach, which may be 

explained assuming a one-dimensional problem of the form,

| -  + 3 L/ (« i )  = 0.  (3.15)
ot ox

Here, x and t are independent spatial/temporal variables, and u[x,t)  is a scalar 

field dependent solution variable.

The two-step Lax-Wendroff procedure, over time-step re and

38



Numerical A Igorithms

un+*=un+±At ~ ~ f ( u)d x J [ }
(3.16)

un+l = un+ \A t  f ( u )dx V '

n+i

(3.17)

In these equations and in the rest of the chapter, the terms with n indicate evaluation 

at a specific time step.

Following the ideas of van Kan [52], an approximation of O^Ar2) , may be derived

by applying these predictor-(3.16)/corrector-(3.17) equations to the momentum 

equation in non-dimensional form, see equation (2.52)*. This yields,

step 1: u n + 2 _ u « =  . (T + 2yffd)- / teu-Vu-V/?]\
2 Re

(3.18)

step 2: =^i[v-(T + 2 /?d )-fleu -V u -V p ]"+i. (3.19)

The pressure term ( Vp"+*) in equation (3.19) is approximated by

= ePn*'+(\-e)Pn, (3.20)

If in equation (3.20), the weighting parameter is set to 0 = \  (Crank-Nicolson) the 

temporal discretisation error is ; otherwise, the error is O(Ar). Equation

(3.19) can be re-written in the form,

At_
Re

(v • [t + 2jffd] -  Rea ■ Vu)”+i -  6 Vp"+1 -  (l -  6) Vp" (3.21)

(  9u \
* Equation (2.52) can also be expressed as Re I —  + u • Vu

\ d t
= -Vp + V- ( x  + 2/?d).
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In order to implement the incompressibility constraint of equation (2.51), an 

auxiliary variable u* may be introduced, which is non-divergence-free (non- 

solenoidal), satisfying

* „ A?u - u  = —  
Re

(v • [t + 2y9d] -  Reu • Vu)"+i -  Vp" (3.22)

Subtracting (3.22) from (3.21) and defining qn+l = p n+l -  p n, the velocity at the 

proceeding time-step becomes

u”+l -u* = 0 — Vqn*' . (3.23)
Re

Taking advantage of the fact that u”+1 obeys equation (2.51), the pressure increment 

on the time-step may be obtained through the divergence of equation (3.23),

V V H=— V-U*. (3.24)
<9 A t

where W2q = V- Vq .

Hawken et al. [47] presented a more stable approach by adopting a Crank-

Nicolson time-split on diffusion terms, whilst leaving an explicit form for other

terms. In this particular case, where boundary conditions are specified on the 

boundary, only the term V-d is affected. Then, the fractional stages of the temporal 

discretisation can be expressed as§:

• Stage la:

2 Re
A t

iT+" — iTI = (V-[T + 2^ d ]-^ u -V u )"  +y#[V -dl"+2 -
J (3.25)

v(p"+0l[ p " - p - 1]),

§ Stress equations are written for the Oldroyd-B model, see equation (3.12).
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2 We
A t

T n + 2 _ T« J _  ^-y/e u * V t  + 2[1 —y^]d —T +

We [(Vu)1 T +  T- VU

Stage lb:

•^ [u *  -  u” ] = ('V • x -  Re u ■ Vu)"+i + V 

V { p " +0 , [ p n-p"- ' ] ) ,

2 P d* +d"

We
At

[ t “+i - t " ] = (-We u • Vr + 2[1 - 0 \A  - t  + 

W e^Vu)7 t - t - Vu |

Stage 2:

02 At

Stage 3:

2 Re 
At

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

This three-stage structure must be solved over each time-step, [r",rn+1J until 

convergence to a limiting steady-state is secured.

3.4 Spatial discretisation

The numerical scheme employed in the present study is that from a class of 

hybrid methods. In particular, spatial discretisation for velocity and pressure is

41



Numerical Algorithms

performed through a Galerkin finite element method, whilst for the stress equation 

(3.26) and (3.28), a finite volume scheme is implemented.

3.4.1 Finite element scheme

In the finite element scheme, scalar velocity components and pressure fields are 

approximated by

where t / . ( r ) , P. (r) are nodal values of velocity and pressure; the set of functions 

</>i(x) is that of piecewise quadratic basis functions for velocity, and V j ( x ) are

linear basis functions for pressure. Triangular elements are employed in the fe- 

implementation, with velocity computed at vertex and midside nodes, and pressure 

only at vertex nodes. The exterior parent triangle in Figure 3.1a represents a typical 

finite element, indicating the information computed at each node. The problem 

statement in fully-discrete matrix-vector form may be expressed as,

u(x, t) = </)j (x) p(x, t )  = i//j(x) Pj(t) (3.31)

. Stage la

— M + ^ s ) r U " +i-U " l  = (-[jffS + ReN (U)]U-BT)"+LrP \  (3.32)
V A/ y L -I

. Stage lb

rRe_M + ^ s J [ U ' - U " ]  = ( - [ ^ S  + K<;N(U)]U-BT)"+i+LrP". (3.33)

. Stage 2

(3.34)
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/ \ (M D C )

(P.u.x)

(/>.

Figure 3.1. E lem ent grid; a) fe -  parent triang le  a n d /v -su b ce lls , b) m ed ian -d u a l-ce ll con figu ra tion .

Stage 3

M ( U',+l -  I F ) = \  Ly ( P"+l -  P  ) (3.35)

In equations (3.32) and (3.33) the weighting parameter 9{ has been set to zero. U , 

T ,  and P are solution nodal vectors for velocity, stress and pressure. The weighting 

shape functions may be manipulated to give the matrix-vector terms,

dy/ i di//J ■dfi d(pJ

d x  d x
d Q ,

■d<p:

Q U A Q U A k

(3.36)

N;
dtp, dtp dtp

( u ) = J * k u , ^ + AVt ^ + * d£2,
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3.4.2 Finite volume scheme

In order to consistently represent flow problems with the finite volume method, 

an appropriate split of the flux (R)  and source (Q) residuals must be made to the 

vertices of each /v-triangle. With cell-vertex methods, nodal variables are located at 

the vertices of the Jv-cell. Values at any other position must be obtained by 

interpolation. In contrast, rates-of-changes (or fluctuation) of flow variables are 

integrated over each Jv-cell (surface flux or volume integrals). This implies that 

fluctuation is cell-centered and must be adequately distributed to the Jv-cell vertices. 

The hybrid fe/Jv algorithm employed in this study, utilizes fluctuation distribution 

(FD) procedures to achieve this.

The FVM mesh is generated by partitioning, at the midside nodes of each finite 

element (parent) triangle, into four triangular/v-subcells (see Figure 3.1a). The type 

of/v-algorithm employed is a cell-vertex scheme, which is employed to obtain values 

for stress at each node, similar to the treatment for velocity in the/e-scheme.

The constitutive model such as equation (3.12) can be rewritten for the FVM 

implementation in terms of flux and source terms,

(3.37)

with expressions for the flux ( R ) and source ( Q ) of

R = u- V t , (3.38)

(3.39)

Integration of equations (3.37)-(3.39) for each scalar component of the stress r ,  

yields the associated residuals. These must be evaluated on the Jv-cells and/or on the 

median-dual-cell (MDC) associated (Figure 3.1b) with each given node /. The MDC
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for any node is formed by taking one third of each triangular cell containing that 

node,

Time discretisation is shown in equations (3.26) and (3.28), stages la  and lb, 

respectively. The proportion of contribution to the cell-vertex I for each Jv-cell ( T ) 

from the evaluation of source and flux integrals is controlled by fluctuation 

distribution coefficients ( a f  , see Chandio [30] and Chandio et al. [31]). The update 

for node / is constructed by summing contributions from its control volume

formed by all /v-triangles sharing that node. For this purpose, Aboubacar et al. [4,6] 

proposed a generalised area-weighting stencil for such schemes, of the form

where bT = (-R T +QT),  6,WDC = (~RMDC + Qmdc)1 • Here, £lT is the area of the Jv-

dual-cell. In formula (3.41), the parameter ST directs the balance taken between the

contributions from the median-dual-cell and the triangle T . This completes the 

necessary detail for the/e- and/v-discretisations used.

(3.40)

V7, M M D C , (3.41)

I  (1 -< W M D C

triangle T , whilst Qj is the area contribution of the same triangle to the median-
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CHAPTER 4 

Pom-Pom Modelling for Planar Channel Flows

This chapter is concerned with the numerical solution of steady-state viscoelastic 

flows using two different numerical schemes, a hybrid finite element/finite volume 

ife/fv) and a semi-Lagrangian finite volume procedure (SLFV). In particular, the 

Single extended form of the Pom-Pom model (SXPP) is considered here, making 

comparison between the results of these two different finite volume schemes. Time- 

stepping is employed within both numerical algorithms. The pure finite volume, 

which is based on area-weigh ting, is a staggered-grid cell-centred scheme. Together 

with a semi-Lagrangian formulation, this is employed particularly for unstructured 

rectangular grids, implementing backtracking along the solution characteristics as a 

function of time. The momentum and continuity equations are solved for the hybrid 

scheme via a fractional-staged Taylor-Galerkin/pressure-correction procedure (finite 

element part) and for the constitutive system a cell-vertex finite volume scheme is 

adopted. To achieve the above goal, a variety of combinations of 'flux' and 'median- 

dual-cell' spatial discretisations are made upon fluctuation distribution schemes

* Material of this chapter has been shaped in the paper “Modelling pom-pom type models with high- 
order finite volume schemes” by M. Aboubacar,.J. P. Aguayo, P. M. Phillips, H. R. Tamddon- 
Jahromi, B. A. Snigerev and M. F. Webster, and published in Journal of Non-Newtonian Fluid 
Mechanics 126 (2005) 207-220.
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(upwinding) and time-term treatments. Triangular-based grids may be used with this 

fe/fv implementation on both structured and unstructured meshes. Comparison of the 

two finite volume approaches is provided, emphasizing the new aspects posed by 

Pom-Pom above Oldroyd modelling.

4.1 Introduction

Two accurate and stable finite volume methods for solving viscoelastic flow, are 

compared for the Pom-Pom class of models: a hybrid finite element/finite volume 

scheme and a semi-Lagrangian finite volume procedure. Steady-state solution is 

achieved through evolution by a time-splitting procedure for both schemes. A semi- 

implicit Taylor-Galerkin formulation is employed for the cell-vertex hybrid fe/fv for 

discretisation of momentum equations; incompressibility is enforced via a pressure- 

correction step. The pure finite volume scheme is based upon a backward Euler 

procedure and convection terms, in momentum and constitutive equations, are 

treated with a semi-Lagrangian step.

Under the hybrid implementation, discretisation of conservation equations is 

performed through a finite element procedure and through finite volume for the 

constitutive equation system. The finite volume grid is constructed by dividing each 

(parent) triangular finite element using its mid-side nodes to generate four (child) 

triangular-cells. The resulting approximation is close in philosophy to the so-called 

4x4 stress subelements, introduced by Marchal and Crochet [63]. In order to prevent 

spurious oscillation in the velocity field, discretisation in the mixed finite element 

context requires compatible approximation spaces for velocity and extra-stress. Here, 

distribution of flux and source residuals to each of the vertices of a finite volume cell 

is enforced through Fluctuation-Distribution (FD) schemes. Conservation of 

convected terms is satisfied on each control volume; this is a convenient feature of 

all FD schemes. Linearity preserving (second-order accuracy in space for linear 

solutions) is another feature of the Low Diffusion B (LDB) scheme (linear FD-
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schemes class) used in this hybrid fe/fv context. A consistent treatment of flux and 

source terms in the constitutive equation is necessary to achieve high-order accuracy. 

Enhanced stability, with respect to large elasticity ( De or We) attainment, is 

improved by taking into account contributions from flux and source terms, based on 

the median-dual-cell construct (MDC). This is a fundamental step to develop a stable 

scheme and to obtain convergent solutions in complex flows. A generalised finite 

volume nodal-update has emerged that includes additional consideration for time- 

term discretisation.

A semi-Lagrangian treatment for convection terms and a staggered grid 

arrangement for variables are some key features of the pure finite volume scheme. 

The SIMPLER scheme, improved to include constitutive equations, is used to solve 

the resulting discrete system. Second-order area-weighting, developed by Phillips 

and Williams [81], is employed for the conservation equations. A variant of this 

scheme has been successfully applied in complex flows problems [82]. This 

conservative stable scheme eludes problems associated with high-order upwinding 

schemes.

By solving an Oldroyd-B model problem, Aboubacar and Webster [6] 

demonstrated second-order accuracy in space represented by the hybrid schemes. 

Stability for a range of Weissenberg (We)  numbers of both schemes has been shown 

for the transient start-up of an Oldroyd-B fluid in a planar channel and their temporal 

accuracy was established when compared to the analytical solution of Waters and 

King [104] for this problem.

Over the past several years, a new class of tractable differential constitutive 

models, capable of describing the behaviour of polymer melts, has emerged. These 

fluid models are based on the developments of Doi and Edwards [42] of the tube 

kinetic model for entangled melts. The double-convection-reptation (DCR) model of 

Ianniruberto and Marrucci [50], the Pom-Pom model introduced by McLeish and 

Larson [68] and the subsequent extended versions proposed by Verbeeten et al. [96] 

are all examples of models derived from the work of Doi and Edwards. Such models
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incorporate two important aspects that are non-existent in phenomenological 

equations. The first aspect is that via the proposing molecular relaxation 

mechanisms, the models include the fact that melt rheology depends on polymer 

molecular structure. The second aspect, is the introduction of a spectrum of 

relaxation times to be taken into account, leading to a system of two partial 

differential equations, one for orientation and another for stretch.

Chain stretch, reptation and Rouse friction have been included in the DCR 

model (a multi-mode convection-constraint release ‘CCR’-version). The introduction 

of the CCR-mechanism [64] is a major step forward, since it resolves the problem of 

excessive shear-thinning predicted by the Doi-Edwards model at high shear-rates. 

Nevertheless, a two-mode DCR model exhibits a narrow window of shear-thickening 

[103]. The Pom-Pom model emerged to represent an idealised polymer molecule, 

composed of a backbone with the same number of dangling arms ( q ) at both ends. In 

the original formulation, three dynamical variables appear in the differential 

approximation of the model: backbone orientation tensor (S), backbone stretch (A),  

and arms-withdrawal ( Sc). Arms-withdrawal takes place when the molecule reaches 

its maximum stretched state (number of arms, q ) provoking an abrupt finite 

extensibility constraint which results in a discontinuity in steady-state extensional 

viscosity (see [19,20,51,68]). The decouple nature of orientation and stretch 

relaxation times is a key feature in this class of models. It is significant that such a 

simple molecular topology, with only one mode, has been able to qualitatively 

predict transient viscosities (shear and elongational) of the IUPAC A LDPE (low 

density polyethylene) melt.

The original Pom-Pom model suffers from three major drawbacks: 

discontinuities in steady-state extensional viscosity, the equation for orientation is 

unbounded and the model predicts a zero second normal stress difference in shear 

flow. Despite a number of modifications (extension to multi-mode [51], drag-strain

1 A finite extensibility constraint is present in the DCR model too, but the switch is provided smoothly 
and automatically through the definition of chain-orientation relaxation-time.
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coupling [20], modification of the backbone orientation relaxation-time to allow for 

retraction as well as stretch [57]) these disadvantages remain still to be corrected. 

Verbeeten et al. [96] have proposed an extended version of the model with the 

following adjustments: first, the backbone orientation is not required to obey Doi and 

Edwards theory for linear polymers; second, although they retained the drag-strain 

coupling [20], the finite extensibility constraint is discarded. Following Inkson et al. 

[51], model parameters are determined by linear and nonlinear response, instead of 

linking them directly to molecular data. Additionally, for a nonzero second normal 

stress coefficient, the authors have introduced a Giesekus-like parameter, a ,  to 

account for some anisotropic relaxation. In this manner, the so-called extended Pom- 

Pom model (XPP) was able to quantitatively predict the rheology of a commercial 

LDPE melt. Hence, the SXPP model is considered in the present study.

4.2 Plane Poiseuille flow

Adequate imposition of time-dependent boundary conditions at inflow sections 

of simple and complex geometries is required when solving transient flow problems. 

Analytical solution for velocity and stress in transient Poiseuille flow of 

Maxwell/Oldroyd-B model fluids was obtained by Waters and King [104]. However, 

for Pom-Pom models an analytical solution for Poiseuille flow is not readily 

available, and transient inflow boundary conditions and fully-developed steady-state 

solution must be determined numerically. Influence of the model parameters on 

steady-state velocity profiles, polymeric stress and backbone stretch is described.

Given a flowrate, a steady-state solution for the SXPP model is obtained 

utilising an Oldroyd-B solution as inflow boundary conditions (velocity and extra­

stress) at the selected flowrate. No-slip conditions are imposed at walls and natural 

boundary conditions at exit for velocity. Solutions at high Weissenberg number are 

obtained through parameter continuation in elasticity number. Once velocity and 

stress profiles have developed away from the inlet, desired SXPP profiles are
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obtained at the domain exit, providing that significantly long computational domains 

are employed.

Structured 20x60 meshes with computational domains of [0,16]x[0,2] are 

employed for both fe/fv and SLFV schemes; a typical time-step is At = 10~3. There 

are no geometric singularities in the flow and the problem is solved for half of the 

channel, imposing symmetry about the centreline. Computations were also 

performed on a structured 40x60 mesh, to ensure that mesh convergence was 

achieved. The maximum run time for computations on the 20x60 mesh was of the 

order of 10 minutes, performed on (single-user/single-job basis) several computing 

platforms PC/Unix, including an Intel Pentium 4 (2.5GHz, 512MB) and a Compaq 

XP1000 (500MHz, 256MB) workstation.

4.2.1 Influence of increasing Weissenberg number

In order to observe the influence of the Weissenberg number, on velocity, extra­

stress and backbone stretch, the other SXPP parameters are fixed and taken to be 

P - 1/9, e —1/3 , q = 2 and a  = 0.15. Some inertia is imposed through the Reynolds 

number, setting Re = 1. Figure 4.1 demonstrates the influence of We on solutions 

obtained separately with both finite volume schemes.

For this shear-thinning fluid, the velocity attains a lower maximum value than 

for the Oldroyd-B fluid (0.75) at the same flowrate. Maximum values of velocity 

(centreline) at We = 1 are 0.725 for the fe/fv scheme and 0.727 for the SLFV scheme. 

These values lower to 0.663 and 0.660, at We = 10. On the refined mesh maximum 

velocity values for the two methods are 0.663 and 0.660, respectively, at W e - 10. 

The difference in maxima between both schemes is less than 0.5%. For the present 

case, mesh refinement reduces this difference by less than 0.1%.

As the shear-rate (velocity gradient) at the centreline is zero, the stretch assumes 

its equilibrium value (A = 1) along this symmetry line. Its maximum value occurs at 

the wall, the position where the shear-rate reaches its largest value. This maximum
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stretch rises as Weissenberg number increases (stretch maxima are 1.436 for fe/fv and 

1.432 for SLFV at the level of We = 10).

The polymeric contribution to the extra-stress tensor starts to grow before

relaxing at higher values of W e . The extra stress t is almost linear at We = 1, and

for the three elasticity levels shown, this stress component maintains its linear form 

next to the centreline, where the backbone stretch is close to unity (value of 

equilibrium). Both numerical scheme solutions lie in excellent agreement (see Figure

4.1).
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Figure 4.1. Channel flow; SLFV vs. fe/fv, R e=  1, /?= 1/9, £=  1/3, q = 2, a =  0.15.
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4.2.2 Influence of viscosity ratio

Figure 4.2 illustrates the influence of the viscosity ratio f l  (solvent/total) on 

velocity, stretch and polymeric stress and t ) profiles. Systems with high

polymer content correspond to low values of f i , whilst dilute or less-entangled 

solutions correspond to high fl  - values.
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Figure 4.2. Channel flow; SLFV vs .fe/fv, Re = 1, We = 3, £=  1/3, q = 2, a -  0.15.

The smallest value of fl  that ensures a monotonically increasing shear-stress as 

a function of shear-rate for the Johnson-Segalman model is 1/9. Although this lower
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bound of P  is not strictly necessary for the Oldroyd-B model, which is a particular 

instance of the Johnson-Segalman model, /? = 1/9 is the value commonly adopted in 

benchmark numerical simulations. It is important to note that, in order to reflect 

quantitative comparisons with the so-called Boger fluids in experiments, the value of 

P  should be taken of at least 0.9. Values of P  ranging from 0.1 to 0.5 have been 

used here.

For a decrease in P , the velocity profile becomes flatter. This behaviour may be 

anticipated, if we associate the decrease of P  with an increase of the relaxation time 

of the backbone orientation, according to the definitions of P  and jup used here. As 

high P  - values represent more dilute systems, the magnitude of the polymeric 

stresses is expected, in general, to be less when the solvent contribution becomes 

more important. Therefore, for larger values of p , reduction in stress and stretch is 

observed. Agreement between both numerical schemes (fe/fv and SLFV) is excellent, 

as can be gathered from Figure 4.2.

4.2.3 Influence of relaxation times ratio

The ratio of relaxation times through backbone stretch/orientation, e , is related 

to the degree of entanglement of the system, where high e  -values correspond to 

more dilute, or less entangled, polymer systems. For this less entangled case, £ —»1, 

orientation and stretch relax almost simultaneously, whilst for low e -values 

(£  —> 0), the relaxation time for orientation is much slower than that of the backbone 

stretch; then, the system can be considered as highly entangled. The influence of £ 

on profiles of velocity, stretch, and polymeric contributions to the extra-stress 

components z^  and z' is presented in Figure 4.3. It can be observed that a decrease

in £ flattens the velocity profile. However, from £ = 0.6 to 0.2 this effect is almost 

unnoticeable, as shown in the figure. Stretch and polymeric components of the stress 

reflect a significant increase in magnitude as £ increases, an effect that becomes 

more pronounced close to the wall.
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The agreement between the fe/fv and SLFV schemes is good, with minor 

differences observed near the boundary wall for £ = 0.6.
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Figure 4.3. Channel flow; SLFV vs .fe/fv, Re = 1, We = 3 ,13= 1/9, q = 2, a=  0.15.

4.2.4 Influence of the number of dangling arms

The influence of the number of arms on the profiles of velocity, stretch, and 

polymeric contributions to the extra-stress components and is shown in

Figure 4.4.
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Figure 4.4. Channel flow; SLFV vs. fe/fv, Re=  1, We = 3, f3= 1/9, e = 1/3, a=  0.15.

Varying the number of arms (q )  at each end of the Pom-Pom molecule should 

affect the level of entanglement of the system. However, for shear flow with fixed 

relaxation time ratio ( e ) and solvent to total viscosity ratio (/?), a variation of q is 

not anticipated to provoke significant differences in flow response. For the field- 

variables presented in Figure 4.4, a variation from q = 2 to 5 produces minor 

differences in their solution. Stretch for q = 5 is slightly larger, for both fe/fv and 

SLFV schemes. No tangible effect of q on the velocity profile is detected. 

Differences near the boundary wall for stress and stretch can be appreciated, still
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these are not significant in magnitude. The SLFV scheme exhibits slightly larger 

values of stretch, t^  and r  over those for tht  fe/fv scheme.

4.2.5 Influence of anisotropy

The influence of a  on velocity, stretch and stress profiles is presented in Figure 

4.5. As explained earlier, this parameter was included in the extended versions of the 

Pom-Pom models to account for anisotropy of the material.
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Figure 4.5. Channel flow; SLFV vs .fe/fv, Re = 1, We = 3, (3= 1/9, e= 1/3, q = 2.
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A vanishing a  produces a vanishing second normal stress difference ( N 2) in 

shear flow. In all sets of model parameters where a  = 0 , second and third normal 

stress components are equal ( Tyy=Tzz). This is confirmed in the numerical

computations. Here, the fe/fv and SLFV schemes provide barely any differences for 

the chosen values of this parameter ( a  = 0 and 0.15).

Figure 4.6 exhibits the effect or varying the anisotropy of the material through 

the fe/fv solution. As this is planar channel flow, second normal stress difference is 

expected to be small and the influence of a  is negligible. Nevertheless, it is 

important to note that stress components z  and za are nonzero (in contrast to the

response of an Oldroyd-B fluid in Poiseuille flow, where z^  is the only non-zero

normal stress component). As mentioned above, with no anisotropy, the z  -profile

is exactly the same as that of z^ (see curve for a -  0 in Figure 4.6). Whilst the

effect of anisotropy at a  = 0.15 is insignificant for r  , for r a , a slight decrease in

magnitude can be appreciated.
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Figure 4.6. Polymeric stress t zz profiles: a  variation; We = 3, (3= 1/9, £= 1/3, q = 2.

58



Pom-Pom Modelling for Planar Channel nows

4.2.6 Pressure gradient and shear-rate

Pressure gradient*, Vp, as a function of Weissenberg number is charted in 

Figure 4.7, with selected parameter values of: Re = 1, q = 2, e = 1/3, /? = 1/9 and 

a  = 0.15. Due to the shear-thinning behaviour of the SXPP fluid model, the pressure 

gradient decreases with increasing elasticity, throughout the We range considered. 

Any differences between scheme solutions are practically undetectable.

0.3
SLFV

FE/FV

0.2

0.1

We

Figure 4.7. Dependence of pressure gradient on elasticity. Re = 1, /?= 1/9, £= 1/3, q = 2, a -  0.15.

Figure 4.8 displays the effect on shear-rate (y )  under these steady-state 

Poiseuille flow conditions when W e , f t , e and q are varied. Profiles against y  are 

displayed only for the fe/fv scheme. Shear-rate is a linear function of cross-stream 

position for Newtonian fluids. As such, this response is anticipated to match that at 

low We for the viscoelastic model used here. One needs to note that along the 

symmetry line;' is zero. As elasticity increases, shear-thinning reduces the viscosity, 

producing a zone of relatively low shear-rate values around the centreline. At large

* Equivalent to pressure drop/channel length for this problem.

59



Pom-Pom Modelling for Planar Channel rlows

W e, the -profile tends to recover linear shape, indicating that the second plateau in 

viscosity has been reached (see Figure 2.5).

The effect of ‘adding’ more solvent to the system (from p  = 1/9 to 1/2) results 

in a more linear profile at the same Weissenberg number level (We = 3). It was 

shown above that changes in € and q are hardly noticeable on velocity, and 

consequently, the impact upon shear-rate is insignificant.
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Figure 4.8. Shear-rate in Poiseuille flow: We = 3, /?= 1/9, f  = 1/3, q = 2 ,a  = 0.15.

4.3 Conclusions

In this chapter solutions for planar channel flow have been presented employing 

two contrasting finite volume schemes. The model used has been the Single 

extended Pom-Pom model for branched polymers. Generation of steady-state 

profiles (velocity, stretch and extra-stress), that can be used as inlet boundary
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conditions, is key in the simulation of complex flows. Typically, Poiseuille flow has 

been solved for a range of parameters relating to the polymer structure and 

concentration in the system.

The Pom-Pom class of models considers two relaxation times, one for 

orientation and another for backbone stretch. Unlike the corresponding situation for 

Maxwell/Oldroyd-B models, an analytical solution for the SXPP governing 

equations is unavailable. In previous studies [4], the performance of both schemes on 

plane Poiseuille flow of an Oldroyd-B fluid has been compared in terms of accuracy. 

As mentioned above, there is an analytical solution for the transient development of 

the Oldroyd-B model on this problem flow. The numerical schemes have been shown 

to be second-order accurate in space. Here, for this SXPP Poiseuille flow, both 

procedures (fe/fv and SLFV) have been compared over a range of material 

parameters and lie in excellent agreement.

61



CHAPTER 5 

Pom-Pom Modelling for Contraction Flows

Previously, steady Poiseuille flow for the Single extended Pom-Pom (SXPP) 

model was solved with two time-stepping finite volume schemes, a hybrid finite 

element/finite volume (fe/fv) and a semi-Lagrangian pure finite volume (SLFV) 

procedure. In this chapter, the scope is extended to planar 4:1 sharp contraction flows 

for the same fluid model. Vortex behaviour and field variable solutions are provided 

for two different inertia levels and for a range of elasticity numbers. Once more, a 

comparison of the two finite volume approaches is presented for this complex flow 

setting, concentrating upon the new features posed by the Pom-Pom class of models. 

An alternative double equation version of the Pom-Pom type model (X2XPP) is also 

tried against the single equation form.

5.1 Introduction

The prediction of polymer melts flow, using an extended Pom-Pom (XPP) 

model, though planar 4:1 sharp contractions is presented in this chapter. This class of 

models, proposed by McLeish and Larson [68], represents an extension of the Doi

* Material of this chapter has been shaped, submitted and accepted for publication to the Journal o f 
Computational Physics.
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and Edwards’ tube kinetic model for entangled melts. The original Pom-Pom 

formulation presents three major disadvantages: discontinuous extensional viscosity, 

unbounded orientation and does not predict a second normal stress difference, N2, in

shear. Verbeeten et al. [96] introduced two extended versions of the Pom-Pom model 

to overcome these drawbacks; namely, the Single and Double extended Pom-Pom 

models, (SXPP and DXPP, respectively). Their main difference lies in the equation 

for the stretch (A): for the DXPP model, A is computed through the evolution in 

time of a partial differential equation, whilst for the SXPP model, A is obtained 

through the evaluation of an algebraic equation. These new type of models recognize 

the dependency of the rheology on the internal structure of the polymer.

Significant differences can be appreciated between the flow response of diluted 

polymer solutions with constant shear viscosity (Boger fluids) and 

concentrated/melts systems; vortex behaviour and pressure-drop are examples where 

strong dependence of rheometrical properties may be observed.

Vortex growth dynamics in contraction flows has been extensively studied, for 

different contraction ratios (>§) in both axisymmetric and planar configurations. 

However, the link between vortex enhancement and rheometrical functions is still an 

open research area. The experimental work of Nguyen and Boger [72] showed that, 

for polyacrylamide (PAA) in a highly viscous glucose solvent with no shear-thinning 

effects (i.e. a Boger fluid), vortex cell-size grows with elasticity in a variety of 

contraction ratios for axisymmetric flows. These authors were able to correlate 

vortex cell-size with suitable definitions of elasticity, deformation-rates and 

contraction ratio. Boger et al. [26] concluded that information on shear flow is not 

sufficient to correlate vortex behaviour, when studying the contrasting response of 

two Boger-type solutions in circular contractions; the first system is a solution of 

polyacrylamide in com syrup and the other consists of polyisobutylene/polybutene 

(PIB/PB), both exhibiting similar shear properties.
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Cogswell [38,39] was the first to point out the necessity of taking into account 

the influence of extensional viscosity on vortex development. Having studied the 

flow of a low density polyethylene (LDPE), in comparison to the response of a 

polystyrene (PS) melt at two temperatures to provoke variation in the material 

functions, White and Baird [106,107] concluded that shear-thinning response must 

be considered along with extensional effects. Such a conclusion was reached from 

the fact that similar extensional viscosity (compared to that of LDPE) could be 

attained for the PS melt at higher flowrates and still no similar vortex growth was 

achieved. Raiford et al. [84] found a suppressive effect of inertia on vortex 

enhancement for a shear-thinning solution of polyisobutylene in tetradecane 

(PIB/C14) flowing through axisymmetric contractions. Byars et al. [27] pointed out 

that steady-state extensional viscosity in 4:1 axisymmetric contractions, is far from 

being attained due to the transient effects in a Lagrangian sense. Therefore, 

extensional stress growth at low deformation rates must be considered. On the other 

hand, a “Binding analysis” [14,15], based on the ideas of Cogswell, considered both 

steady-state shear and extensional viscosities (by means of power-law models) and 

their impact on vortex dynamics in contraction flows. This analysis has proven useful 

in providing extensional viscosities from entry pressure data (see reference [16]) for 

shear-thinning liquids (although not for Boger fluids) and in obtaining vortex 

attachment lengths [112]. However, Maia [59] and Maia and Binding [60] observed 

significant departures from experimental data when applying this analysis.

Rothstein and McKinley [85] studied the flow through axisymmetric 

contraction/expansion geometries. They associated the presence of lip vortices at
A

J3 — 2 with shear dominated flow in the case of a polystyrene PS/PS solution, and the 

presence of salient-comer vortices, at larger contraction ratios, with a dominant 

extensional effect. This transition was not detected for a PIB/PB Boger fluid, where 

lip-vortices were present for contraction ratios less than eight. In conclusion, 

Rothstein and McKinley proposed that transitions from lip to salient-comer vortices 

may be related to a normal stress ratio, X , (shear/extensional deformation, see [85]). 

These authors explained their results referring to the different values of the normal

64



Pom-Pom Modelling for Contraction Flows

stress ratio for the polymer solutions investigated. They found that higher values of 

X for a given polymer system and contraction ratio are related to lip-vortices.

Changing the geometry from circular to planar contractions has been found to 

suppress vortex enhancement for Boger fluids. This is not the case for shear-thinning 

polymer solutions/melts, where enhancement can be observed in both geometries 

[101]. Another important phenomenon present in contraction flows of viscoelastic 

fluids is the occurrence of enhanced pressure-drop, above that expected without 

considering elasticity. This would appear to be directly related to vortex growth 

[101]. Such behaviour has proved quite difficult to simulate, and in chapter 7, this 

problem is considered in depth.

A detailed review of experimental and computational work can be found in the 

text of Owens and Phillips [77] and the review paper of Walters and Webster [101]. 

The 4:1 contraction ratio has been widely used as a benchmark problem to asses the 

accuracy and stability of numerical schemes. Experimentally, for a Newtonian fluid, 

contraction ratios greater than 4:1 do not exhibit significant changes in flow 

characteristics. This statement does not hold for elastic liquids (see reference [101]).

Pumode and Crochet [83], via the numerical simulation of a single-mode of the 

Peterlin modification of the Finite Extensible Non-linear Elastic spring (FENE-P) 

model, were able to predict the planar contraction experimental results obtained by 

Evans and Walters [44,45] for polyacrylamide aqueous solutions with mild strain 

hardening and shear-thinning properties. In reference [83], streamlines are presented 

both from experiments and simulations, displaying in general, similar vortex 

characteristics (salient comer and lip vortices) although not matching on flowrate 

settings. This discrepancy in flowrates may be explained by appealing to three- 

dimensional effects, which are difficult to eliminate in experimental work, and the 

limited capability of the FENE-P model to represent adequately the rheology of PAA 

solutions. These numerical solutions were achieved with a finite element scheme 

proposed by Marchal and Crochet [62,63].
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With a finite volume scheme based on the SIMPLER methodology, Yoo and Na 

[109] observed lip-vortex growth for an Oldroyd-B fluid, both in size and intensity 

with increasing Deborah number ( D e), whilst changes in salient-comer vortices 

were difficult to detect. In their work, inertia was found to exert a suppressive effect 

on vortex growth, though lip-vortices could still be observed. Lip-vortex activity for 

two linear Phan-Thien/Tanner (LPTT) fluids was reported by Carew et al. [28] with 

the use of a finite element method. The degree of hardening was controlled by the 

parameter ePTT; ePTT -  0.02 corresponds to a strongly hardening fluid and

eprr =0.25 to a weakly hardening form. None of these fluids display extension- 

softening. A solvent to total viscosity ratio was chosen to be ft  = 1/9 (a low solvent 

content polymer solution) and the Reynolds number was set to unity. For the strongly 

hardening LPTT fluid, the lip vortex was observed to increase with Weissenberg 

number; this increase continued until it became the single established vortex. For the 

LPTT(£P7T =0.25)-case no lip-vortex activity was detected. Studies of Alves et al.

[10] for the Upper Convected Maxwell (UCM) model, Phillips and Williams [80], 

Aboubacar and Webster [6] and Xue et al. [108] for an Oldroyd-B fluid, all based on 

finite volume discrete systems, report similar conclusions on lip-vortex activity. 

However, the capability of a numerical scheme to detect such lip-vortices, depends 

on the refinement of the mesh; whilst coarse meshes capture this feature, refined 

grids are unable to do so (see [6]).

For the original differential Pom-Pom model, Bishko et al. [19] simulated the 

transient flow of a polymer melt in a planar 4:1 contraction, the numerical procedure 

was a Lagrangian finite element method. An increase in the salient-comer vortex was 

observed upon increasing the number of arms, q , and the level of elasticity. 

Verbeeten et al. [98] simulated the transient flow of an LDPE melt in a 3.29:1 

contraction using a multi-mode modified extended Pom-Pom (mXPP) and an 

exponential Phan-Thien/Tanner (EPTT) fluid model. The use of the mXPP was 

required in order to improve stability by modifying the stretch dynamics of the XPP 

model variants. Comparison against experimental data was also provided, showing
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excellent agreement in velocity profiles and stress related data. The method used is 

based on a finite element procedure with the Discrete Elastic Viscous Stress Splitting 

(DEVSS) technique, in combination with the Discontinuous Galerkin (DG) method. 

Sirakov et al. [87] studied the steady-state response of the XPP model for a 3D 

contraction geometry. The numerical results were tested against experimental 

information for a LDPE melt, finding errors within 15% for vortex cell-size 

measurements. Numerical deficiencies in the finite element study of Sirakov et al. 

were attenuated by setting a  = 0 and, additionally, modifying the square root term 

for stretch, A. This modification introduces a smoothing function which accepts 

negative values of the trace of r , and gives almost the same values of stretch as the 

original SXPP equation. Negative values of the trace of stress are unphysical; 

however, they may arise near the constriction plane in numerical simulations.

Numerical solutions in this chapter are obtained employing two finite volume 

schemes: a hybrid cell-vertex scheme (fe/Jv) and a pure cell-centred (SLFV) scheme. 

Aboubacar et al. [4] reported results demonstrating spatial and temporal accuracy for 

the start-up and steady-state planar Poiseuille flow of an Oldroyd-B model fluid. The 

fe/fv scheme is described in chapter 3 and in reference [6], and the SLFV in [1,82], 

respectively. Steady-state solutions for channel flows have been obtained and found 

in excellent agreement in the previous chapter 4. Here, both schemes are tested on a 

complex 4:1 contraction flow of a kinetic model representing a low solvent content 

polymer system; the comparison is in terms of the influence of Weissenberg on 

stress, stretch, pressure-drop and salient-comer vortex dynamics. Simulations are 

generated for two levels of inertia (Re = 0 and Re = 1 )f. A time-splitting procedure is 

applied within both methods to evolve the solution towards a steady-state.

5.2 Problem specification

Flow of a viscoelastic fluid through planar 4:1 sharp-comer contraction 

geometries is considered here. This type of complex flow, although not so complex

f Extremely low experimental levels of inertia are approximated here by setting Re = 0.
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in geometry, exhibits regions with mixed shear and extensional phenomena. Large 

shear-rates are expected at the boundary walls, while pure extensional deformation is 

attained along the centreline (or centreplane) near the constriction plane; see Figure

5.1 for a diagram of this 4:1 contraction flow. Vortex growth dynamics, pressure- 

drop across the contraction, velocity overshoot along the symmetry-line, the 

numerical high Weissenberg number problem and how these responses are 

influenced by material functions, such as shear and extensional viscosity, are all 

features of considerable interest in the literature of viscoelastic contraction flows (see 

[77] for further details). Under creeping flow conditions, vortices can assume 

different shapes (see the works of Boger [25] and Evans and Walters [44,45]). For 

shear-thinning fluids, the cell-size tends to increase with elasticity. In reference [44], 

for a 1% aqueous solution of polyacrylamide, no lip vortex was observed. This is in 

agreement with the numerical results of Alves et al. [9].

Figure 5.1. Schematic 4:1 contraction geometry: sharp-corner.

The velocity profile for the transient flow of an Oldroyd-B fluid in planar 

channel is imposed as an inlet boundary condition. Upstream channel distance is 

large enough for this Oldroyd-B model solution to evolve into the desired Pom-Pom 

profile. Natural boundary conditions are specified for velocity and extra-stress at the 

outflow of the domain, with no-slip boundary conditions imposed along the 

stationary walls.
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The two alternative finite volume procedures described before are used to solve 

this 4:1 contraction flow. Comparison between both schemes is provided in terms of 

vortex dynamics and field variable computation results. Spatial convergence is 

ensured through the use of a series of meshes, each of increasing degree of 

refinement (element size). Details on the number of elements (fe/jv) or volumes 

(SLFV), degrees of freedom and minimum size of element for the meshes used, are 

reported in Table 5.1. The SLFV scheme employs non-uniform structured 

rectangular meshes. Cell-volume size reduces in the plane of the constriction and 

increases via a geometric progression of grid point spacing, as position moves away 

from the re-entrant comer in the axis parallel to the symmetry line. Unstructured 

triangular elements/volumes are utilized in the fe/jv procedure with finer 

discretisation around the re-entrant comer. Figure 5.2 displays the finest meshes (m3 

for fe/fv and M4 for SLFV) used. The contraction is located at x = 0 in all meshes. 

Upstream and downstream channel lengths are 21.5Ld and 49Ld , respectively.

Table 5.1. Mesh characteristics parameters, fe/fv and SLFV schemes

Mesh Elements/  
volumes

Nodes Degrees o f  
freedom  
(u,p,x)

Emin

ml 980 2105 13193 0.0243
m2 1542 3279 20543 0.0190
m3 2987 6220 38937 0.0063
Ml 2240 26880 0.1000
M2 3200 38400 0.0900
M3 3600 43200 0.0800
M4 7200 86400 0.0400

Time-stepping procedure is stopped when the 1̂ -norm relative maximum

difference between two successive time steps falls below 10-7. Solutions at high 

Weissenberg numbers are derived via continuation in the elasticity parameter,
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starting from We = 0.1, followed typically by We = 0.5, 1, 3, 5, 10, 15, 20, ... until 

convergence is lost.

5.3 Numerical results

Results have been computed for a base set of SXPP parameters, namely: 

/? = l / 9 ,  £ = 1 /3 , q = 2 and a  = 0.15. This represents a low-hardening/ex tension 

softening fluid in uniaxial deformation with shear-thinning properties. Two levels of 

inertia are considered (Re = 0 and 1). Calculations have been performed for 

Weissenberg numbers in the range 0 < We < 60 *.

a) Unstructured (m3)

b) Structured (M4)

Figure 5.2. fe/fv mesh (m3) and SLFV (M4), in contraction zone.

Results beyond We = 20 are for fe/fv only.
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5.3.1 Mesh convergence and vortex dynamics

Figure 5.3 presents creeping flow centreline profiles of velocity (ux) component,

stretch (A),  normal stress component (Ta ) and pressure ( p ) for We = 0.1 and

We = 10. Centreline velocity displays a small overshoot at We = 10, which is 

difficult to detect for We = 0.1. The effect of increasing elasticity of the fluid, is 

reflected in the large increment of the required length for relaxation of the backbone 

stretch and stress t^ , once the contraction has been passed.

Note that for We = 10, normal stress has not recovered its fully-developed 

centreline value ( = 0) even 20 units after the contraction plane, while for

We = 0.1 this occurs before roughly 3 units after the constriction. This increase in 

elasticity reduces the pressure-drop from around 145 to 23 units due to shear- 

thinning (exit pressure is set to zero for both numerical procedures). The reduction in 

the peak value of t^  with increasing elasticity is due to strain-softening that 

becomes more prominent for We > 5. The fe/fv scheme predicts slightly larger and 

sharper overshoots in A and t^  than those computed with the SLFV scheme at 

We = 10, although simulation results for both schemes are in close agreement.

Contour lines for stream function are provided in Figure 5.4 for Re = 0 and 1, 

covering Weissenberg numbers in the range 0.\< W e< 60 . Here, focus is on the 

dimensionless salient-comer vortex size parallel to the symmetry line, X  (see Figure

5.1), which is normalised by the height of the inlet channel (2Lu).

For creeping flow, this vortex cell-size gradually grows with elasticity (see 

Figure 5.5a). This behaviour is also reported by Bishko et al. [19] for the differential 

approximation to the original Pom-Pom model. The opposite response is obtained for 

the (Re = 1 )-case.
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a) Centreline profiles, low We
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b) Centreline profiles, high We
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Figure 5.3. Symmetry line flow results at Re = 0: /?=  1/9, e =  1/3, q = 2, a =  0.15; a) We = 0.1,
b) We=  10.
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Re = 0 Re = 1
a) We = 1

b) We = 10

c) We = 20

d) We = 60

Figure 5.4. Stream function with increasing We: (3= 1/9, £ -  1/3, q = 2, a=  0.15; Re = 0 and 1.
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a) Cell-size
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Figure 5.5. Salient-comer vortex trends with increasing We: /?= 1/9, e= 1/3, q = 2, a =  0.15, 

Re = 0 and 1; a) cell-size, b) intensity.

A similar trend in this flow geometry, was obtained by Aboubacar et al. [2,3] for 

a PTT fluid with £ ^ = 0 .2 5  - a fluid with comparable extensional behaviour. 

Contrasting these moderate responses in uniaxial extension, Oldroyd-B model and 

EFTT(£P7r =0.02) both display severe strain-hardening, even at moderate extension 

rates, reducing critical We. No lip-vortex is detected with either of the schemes. This

74



Pom-Pom Modelling for Contraction Flows

is consistent with Carew et al. [28] for a Linear Phan-Thien/Tanner (LPTT) model at 

ePTT -  0.25 , and with Bishko et al. [19] for the original differential Pom-Pom model.

Contrary to the increase in vortex intensity and cell-size growth for Re = 0 , 

there is vortex reduction in both their magnitudes when elasticity increases and upon 

the introduction of inertia. Although a slight increase in intensity can be observed up 

to We = 0.5 a monotonic decrease occurs afterwards. Considering We = 20, for 

example, the suppressive vortex growth effect at Re = 1 reduces intensity by about 

90% from that of the { R e -  0 )-case.

The two finite volume schemes are in excellent agreement, with slight 

departures in intensity when inertia is absent. Information is provided to confirm 

satisfactory mesh convergence in Table 5.2 and Table 5.3, covering the salient- 

comer vortex cell-size in the range 0.1 < We < 20 for Re = 0 and Re = 1, 

respectively.

Table 5.2. Mesh convergence: salient-corner vortex cell-size (X), Re=0

fe/fv SLFV
We m l m2 m3 M3 M4
0.1 0.185 0.188 0.188 0.189 0.189
1 0.206 0.208 0.208 0.209 0.209
5 0.236 0.239 0.239 0.239 0.239
10 0.242 0.247 0.247 0.247 0.247
20 0.255 0.259 0.259 0.259 0.260

For the SXPP model, meshes must be sufficiently fine in order to obtain 

converged solutions for larger Weissenberg numbers. This lies in contrast to other 

models, such as Oldroyd-B, where convergence fails if the mesh is too fine for 

moderate values of We (typically ~ 3).
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Table 5.3. Mesh convergence: salient-corner vortex cell-size (X), Re = 1

fe/fv SLFV
We m l M2 m3 M l M2 M3 M4
0.1 0.163 0.160 0.160 0.162 0.161 0.161 0.160
1 0.153 0.151 0.151 0.153 0.152 0.151 0.151
5 0.133 0.130 0.130 0.134 0.133 0.131 0.131
10 0.122 0.119 0.119 - - 0.119 0.119
20 0.113 0.109 0.109 - - 0.110 0.110

5.3.2 Stretchy stress and deformation-rate fields

Following the work of Bishko et al. [19], the inflow section can be divided into 

two regions of relatively unstretched fluid, and a third of highly stretched material. 

These “unstretched” zones are located near the centreline and in the vortex region. 

The third region is a banded zone between the other two, in which the fluid moves to 

the downstream channel. It is possible to recognize this feature for creeping flow in 

Figure 5.6 for the We-range covered. Large stretch zones are detected near the re­

entrant comer and along the downstream wall.

Stretch increases in magnitude with We. Extensional effects dominate in the 

banded region (see Figure 2.5d). Note that for We -  20 and 60, in a small zone above 

the re-entrant comer, the stretch exceeds the number of dangling arms, breaking the 

extensibility constraint X < q , proposed in the original formulation of the Pom-Pom 

model. As mentioned earlier, this constraint has been removed in the XPP versions.

Contour field plots for polymeric stress z^  and z' are shown in Figure 5.7 and

Figure 5.8, respectively. In general, reduction in both normal and shear stress 

magnitudes can be seen in the flow field as elasticity increases. This is consistent 

with the planar channel flow simulation results obtained by van Os and Phillips [76] 

and those presented in the previous chapter. The decrease in z' is more noticeable in

the banded region, where extension dominates over shear deformation.
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The polymeric stress difference, Nx, follows similar trends to those exhibited by

za , with a net reduction in magnitude under increasing elasticity across the flow

domain. Such a response may be attributed to the strain softening of the extended 

Pom-Pom fluid modelled. Corresponding contour lines plots are displayed in Figure 

5.9.

Since for this study the anisotropy parameter is set at <2 = 0.15, a nonzero 

second normal stress difference, N2, is expected even in regions where shear 

deformation is the dominant effect (refer to Figure 5.10). There is some resemblance 

in N2 -fields with vortex growth and curvature structure as We increases for the two

different levels of inertia. This response has been detected likewise by Aboubacar et 

al. [2] working with EPTT fluids.

The extensional component of the rate of deformation tensor, d^ , exhibits two

regions of extreme values: a positive one located just before the contraction along the 

symmetry line, and another with negative (and larger in magnitude) values in the 

inflow section reaching the re-entrant comer. As can be observed in Figure 5.11, 

elasticity and inertia only slightly influence <7 -̂profiles, apart from in the

recirculation vortex region, where the magnitude of the rate of deformation is close 

to zero.

Peak values of d arise within a zone near to the sharp comer. For this shear

component, there are two regions where any influence of elasticity may be gathered. 

The first, is the negative d -region situated just before the re-entrant comer (see

between the two contour lines where drv=0 in Figure 5.12), which suffers axy

reduction in size but only for the zero inertia case. The other We -influenced zone lies 

above the downstream wall, where a reduction in the value of this shear component 

is also detected, but now for both values of the Reynolds number.
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Re = 0

a) We = 1

TooP

Re = l

b) We = 10

c) We = 20

d) We = 60

Figure 5.6. Backbone stretch /^-fields, increasing We\ f3= 1/9, e =  1/3, q = 2, a =  0.15,
Re = 0  and Re -  1.
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Re = 0 Re = 1
a) We = 1

— 0.05-

b) We -  10

c) We = 20

d) We = 60

Figure 5.7. Normal stress z^-fields, increasing We: /?=  1/9, £ =  1/3, q = 2, a =  0.15;
Re = 0 and Re = 1.
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Re = 0 Re =  1

a) We = 1

b) We = 10

c) We = 20

,005—

d) We = 60

Figure 5.8. Shear stress z^-fields, increasing We: (3=  1/9, e =  1/3, q = 2, a =  0.15; Re = 0 and Re = 1.
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Re = 0 Re - 1
a) We = 1

b) We = 10

c) We= 20

d) We = 60

Figure 5.9. First normal stress difference (polymeric): /Vr fields, increasing We: j3=  1/9, e =  1/3, q = 2,
a -  0.15; Re = 0 and Re = 1.
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Re = 0
a) W e -1

-0 .15-

Re = l

b) We = 10

c) We -  20

d) We = 60

Figure 5.10. Second normal stress difference A^-fields, increasing We: /?=  1/9, £ =  1/3, q  = 2,
a -  0.15; Re - 0  and Re = 1.
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Re = 0 Re = 1
a) We = 1

'■Of
"0.1.

b) We = 10

c) We ~ 20

d ) We = 60

- 0 .2-

Figure 5.11. Rate o f strain ^ -f ie ld s , increasing We: f i =  1/9, £ =  1/3, q  = 2, a =  0.15;
Re = 0 and Re = 1.
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Re = 0 Re = 1
a) W e -1

b) We = 10

4 °<£

c) We = 20

d) We = 60

V

Figure 5.12. Rate o f strain rf^-fields, increasing We: (3=  1/9, £ -  1/3, q =  2, a =  0.15;
Re -  0 and Re = 1.
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Note that, the regions of largest backbone stretch A in the inflow section of the 

contraction, are located where peak values of occur (the negative peak in the

sharp comer). Values of stretch and polymeric first normal stress difference at 

selected points (see Figure 5.13) are reported in Table 5.4 to allow for further 

detailed comparison between the performance of the two numerical schemes 

employed.

x l
O  •  B

D • -------------------------------------------------

Figure 5.13. Sample points used in the 4:1 contraction domain.

Table 5.4. Values of stretch (A) and first normal stress difference (N}) at sample points, Re=0
(contraction point at x=0.0, y=3.0 )

fe/fv SLFV
Sample-points We 1 10 20 1 10 20

A A 1.01 1.16 1.35 1.01 1.18 1.35
( JC = 19.9, y = 3.78) 0.13 0.22 0.2 0.14 0.23 0.2

B A 1.05 1.5 1.72 1.06 1.55 1.7
( jc = 19.9, y = 3.50) 0.76 0.53 0.37 0.81 0.58 0.37

c A 1.05 1.49 1.65 1.06 1.55 1.71
(jc = 9.99, y  = 3.78) 0.76 0.52 0.34 0.8 0.57 0.37

D A 1.01 1.26 1.45 1.01 1.36 1.55
(*  = -1.94, v = 3.07) 0.24 0.21 0.18 0.25 0.27 0.2

E /I 1.01 1.23 1.41 1.01 1.26 1.39
(x  = -2 .0 0 ,y  = 2.07 ) -0.23 0.04 0.02 -0.19 0.03 0.05
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5.3.3 Pressure-drop and an alternative Pom-Pom model

Pressure drop as function o f  We is plotted for the two inertia levels set in this 

study. This quantity  is norm alised  through the corresponden t pressure-d rop  for a 

N ew ton ian  fluid with the sam e zero shear-rate viscosity  rj0 o f  the v iscoelastic  fluid

and set at equal flowrate. As the S X P P  fluid selected  is shear-th inn ing , Ap/ApNewl 

decreases  m onotonica lly  with increasing elasticity, seem ing  to reach a p lateau at 

We = 2 0 .  This decrease is less sharp for Re = 1 . N o  d ifferences can be detected  

betw een  solutions with fe/fv and SLFV (see Figure 5.14).

1.0 r t 1----- .----- 1----- t-----1----- t-----1----- .----- 1----- .-----

a * SLFV, Re=l
b e FE'FV. Re=l

0 8  T t---- r SLFV. Re=0
» o FE/FV, Re=0

1  0.6 r
2  CX 

<
a .  0.4 %
<

\  Re = 1

a 2 _  * , ‘V . .
\ R e  = 0 j '

Q Q  I__I I I I I____I I____I___I___ I__
■ 0 10 20 30 40 50 60

We
Figure 5.14. Pressure-drop vs. We: /3 = 1/9, e -  1/3, q -  2, a -  0.15; SLFV and fe/fv schemes,

Re = 0 and 1.

A m odification  o f  the D X P P  model was perfo rm ed  to well-suit im plem enta tion  

in a coup led  solver o f  a spectral e lem ent technique, im p lem en ted  by van O s and 

Phillips [76J. In the double  ex tended  Pom -Pom  model, the stretch, X, is g overned  by 

a partial differential equation and, instead o f  solving for  the extra-stress, this

form ulation should  be solved for the orientation tensor S .  Then, an explic it  equation

m ust be evaluated  in order to extract t . W ith a change o f  variable  ( A  = / ^ 2S )  m ade

- a------- *  S L F V .  R e = l

o ------- o  F E /F V .  R e = l

t ------- ▼ S L F V .  R e = 0

r* o  F E F V .  R e = 0

Re = 1

\R e ^ 0
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in Lhe double extended model, the resulting modification can be considered as a 

hybrid of SXPP and DXPP models (see section 2.3.3). This alternative formulation 

was implemented in reference [76]. In the present work, the new modification is 

termed the X2XPP model (section 2.3.3a).

A comparison between predictions of velocity and stretch profiles in planar 

Poiseuille flow is provided in Figure 5.15. This comparison is at a high elasticity 

level (VW = 10) and no departure between the two steady-state model solutions can 

be appreciated.

a) b)

2.0

SXPP
-  rxpp

0.25 0.50 0.75

2.0

SXPP
-  rxpp

0.0

X

Figure 5.15. SX PP vs. X2X PP profiles in p lanar channel flow  w ith thc fe /fv  schem e: We = 10, Re  = 1, 
/? =  1/9, e  = 1/3, q = 2, a -  0 .15; a) velocity , b) stretch .

For 4:1 planar contraction flow, centreline results are presented in Figure 5.16. 

Again, no discrepancy can be observed between either model, even in peak values. 

The numerical technique used for the Poiseuille and 4:1 contraction flow of the two 

XPP models is tht  fe/fv scheme.

5.4 Conclusions

The problem studied here is the flow through a 4:1 sharp contraction geometry 

of a fluid exhibiting low-strain-hardening/softening in uniaxial deformation and
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b)
2.0

  SXPP
- rxpp

2.0

X —  SX PP
- rxpp

0.0
- 1 0 ■5 0 5 10 15

X X

Figure 5.16. SX PP  vs. X2X PP cen treline  results in p lanar 4:1 sharp  co n tractio n  flow  w ith the fe/fv  
schem e: We = 10, Re = 0, ( 5 -  1/9, e  = 1/3, q = 5, a -  0 .15; a) velocity , b) stretch .

thinning in shear flow. Fluid response under such complex flow is explained in terms 

of the rheometrical properties exhibited by the particular XPP fluid selected here.

Two contrasting finite volume schemes have been tested for this benchmark 

complex flow. The first is a cell vertex hybrid finite element/finite volume procedure 

with consistent treatment of flux and source terms. The second is a pure finite 

volume method with a semi-Lagrangian treatment on convection terms; contributions 

from previous time-step are evaluated with a second-order area-weighting procedure. 

Data qualifying mesh convergence has been reported in terms of vortex growth. Both 

schemes are in excellent agreement over a range of Weissenberg numbers for the 

chosen XPP fluid.

For the {Re-  0)-case, vortex cell-size has been found to increase with 

increasing Weissenberg number. Correspondingly, vortex intensity also increases up 

to We-  3; after this stage, a decrease in intensity is observed for further increments 

in elasticity. Inertia has the opposite influence on the cell-size o f the vortex 

(monotonic decrease for Re-  1). Initially, vortex intensity has grown slightly, from 

W£> = 0 .1 to 0.5, followed by a steady decline thereafter. Qualitative agreement has

88



Pom-Pom Modelling for Contraction Flows

been achieved between the XPP model and the exponential VTT(ePTr =0.25) model,

both fluids exhibit similar extensional viscosity and the same levels of shear-thinning 

under rheometrical flows. As reported by Bishko et al. [19], the entry flow section 

has been identified as a zone where extensional deformation dominates over shear 

flow. Therefore, large backbone stretch is observed in this region. The fluid lying 

above the downstream wall is subjected to shear and practically zero extensional 

deformation.
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CHAPTER 6

Influence of Extensional Viscosity on Pom-Pom 

Modelling*

The Pom-Pom class of models present the advantage that by increasing the 

dangling arms at each end of the Pom-Pom molecule, the extensional viscosity (rje) 

may be increased considerably without provoking significant variation in the 

correspondent shear viscosity ( rjs). This is so for a range of deformation rates, at a 

given viscosity ratio (/?). In this chapter, the influence of extensional viscosity is 

studied in a complex flow setting, involving shear and extensional deformation. The 

problem chosen is flow through a 4:1 rounded-comer contraction geometry. 

Additionally, a comparison with the exponential Phan-Thien/Tanner (EPTT) 

phenomenological network-based model is provided for fluid parameters with similar 

response in rheometrical flows. The stability of a hybrid finite element/finite volume 

(fe/fv) scheme for the Single extended Pom-Pom (SXPP) model is investigated for a 

range of Weissenberg (We) numbers. Considering the deformation-rates attained for

* Material of this chapter has been shaped in the paper “Extensional response of the pom-pom model 
through planar contraction flows for branched polymer melts” by J. P. Aguayo, H. R. Tamddon- 
Jahromi and M. F. Webster, and published in Journal o f Non-Newtonian Fluid Mechanics 134 (2006) 
105-126.
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this particular complex flow setting, distinction may be drawn between fluids that 

display either extension softening or extension-hardening properties. This may be 

gathered through observation of vortex behaviour, stretch, stress and pressure-drop. 

Special attention is given to the anisotropy parameter introduced in the XPP model to 

account for non-vanishing second normal stress difference in simple shear flow.

6.1 Introduction

In Chapter 5 the flow of a SXPP fluid was considered through a planar 4:1 sharp 

contraction geometry. In this chapter, the scope is extended to consider the influence 

of variation in the extensional viscosity in such a complex flow situation. With the 

objective of improving the maximum level of elasticity attainable (Wecrit), the sharp 

contraction is replaced by a rounded re-entrant comer. By doing so, the influence of 

extensional response may be studied for a wider range of W e .

The finite element/finite volume (fe/fv) scheme used here has been successfully 

applied to simulate phenomenological models, in particular, the constant shear 

viscosity Oldroyd-B and a variety of Phan-Thien/Tanner (PTT) versions, for 

transient Poiseuille [4] and planar/axisymmetric 4:1 contraction flows [2,3]. 

Numerical results show qualitative agreement when predicting experimental features 

of contraction flows, such as vortex inhibition for Boger fluids in planar contractions 

and vortex growth in its axisymmetric counterpart [2]\ This applies also to vortex 

dynamical trends in terms of cell-size and structure for shear-thinning fluids, with 

comparable response as observed for linear low density polyethylene (LLDPE) and 

low density polyethylene (LDPE) blends [95].

In order to obtain quantitative agreement with experimental data, models capable 

of representing well the rheometrical response of real fluids must be considered.

+ Boger fluids are solution systems with sufficiently low content of viscoelastic component to detect 
any variation in the shear viscosity of the solvent; however, models such as Oldroyd-B and FENE-CR, 
which predict constant shear viscosity, can behave similarly to Boger fluids even with the high 
viscoelastic content employed in reference [2].
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PTT, Giesekus, and the Kaye-Bemstein-Kearsley-Zapas (K-BKZ) models are 

phenomenological constitutive equations commonly used to model polymer melt 

behaviour. Giesekus models in extensional deformation sustain hardening with 

increase in strain-rates; yet ultimately, a plateau is reached. Mitsoulis et al. [70] 

employed a modified multi-mode K-BKZ to simulate the contraction flow of LDPE 

melts. There, vortex cell-size was successfully predicted. These authors considered 

both extension and shear stress to make the comparison. Moreover, PTT models can 

reproduce a variety of rheological responses (see sections 2.3.2 and 6.3.3) in both 

planar and uniaxial extensions, though the parameter controlling the degree of 

extension, ePTT, also affects the shear-viscosity (see Matallah et al. [66]).

The extended Pom-Pom (XPP) models, proposed by Verbeeten et al. [96], are 

capable of reproducing the response of polymeric systems in rheometrical flows. 

These versions are derived from the kinetic-based Pom-Pom model introduced by 

McLeish and Larson [68] and is based on reptation dynamics of an idealized linear 

molecule with an equal number of branched arms at both ends (see Figure 2.3). An 

important aspect of the SXPP model is the capability of increasing the extensional 

viscosity levels with minor variation of shear-viscosity for a range of deformation 

rates and solvent to total viscosity ratios, /3 (see Figure 2.5).

Inkson et al. [51] found that a multi-mode Pom-Pom model with a physically 

reasonable distribution of branching is able to reproduce the material functions of a 

LDPE melt, covering four decades in deformation-rates. In general, an excellent fit 

of steady-state shear and extensional viscosity was obtained by Zatloukal [110], for 

three polymer melts being, LDPE, metallocene-catalyzed LLDPE (mLLDPE) and 

Polyvinyl butyral (PVB). The performance of the XPP model was tested against a 

modified White-Metzner and Leonov models. Bogaerds et al. [23] found that setting 

low values of the anisotropy parameter a , i.e. having some second normal stress 

difference ( N2) contribution, produces a stabilizing effect on Couette and Poiseuille

flows. Significant differences in the dynamic response between the material 

functions of the Exponential PTT (EPTT) and the XPP model were also found.
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Tanner and Nasseri [92] proposed a new modification to the XPP model. This 

modification reproduces the steady elongational behaviour of the extended Pom-Pom 

of Verbeeten et al. [96], The authors neglect the anisotropy of the material by setting

a -  0 , and ignore the [ / ( t ) - 1 ] I  term in the evolution equation for stress. The

new model is considered as a new type of Phan-Thien/Tanner models and is called 

the PTT-XPP model. One important feature of this new model is the slower thinning 

of shear viscosity ( rjs), compared with the original XPP shear response.

Bishko et al. [19] simulated the transient flow through a 4:1 planar contraction, 

using the original differential Pom-Pom model. These authors concluded that 

incrementing the branching (controlled by the number of arms, q ) produces larger 

vortices at any given Weissenberg number. This conclusion is in agreement with 

experimental observations of vortex growth of branched (represented by higher q - 

values) and linear polyethylene melts, where smaller vortices were found for the 

linear melt. Clemeur et al. [37] presented an alternative Pom-Pom version called the 

Double-Convected Pom-Pom (DCPP) model. In a subsequent study, Clemeur et al. 

[36] compared the numerical solutions of planar contraction flows in terms of 

birefringence measurements of a LDPE melt, obtaining good quantitative agreement. 

Excellent comparisons with experimental observations were also reported by 

Verbeeten et al. for a LDPE melt, covering flow through a cross-slot device, 

confined flow around a cylinder [99] and for a 3.29:1 planar contraction flow [98]. 

Numerical results in references [98,99] were obtained with a discrete elastic viscous 

stress splitting technique, in combination with a discontinuous Galerkin 

(DEVSS/DG) method. Unrealistic values of stretch, A , were detected at stagnation 

point stations in flow around a cylinder and close to the sharp re-entrant comer in the 

contraction flow. The numerical convergence was improved by introducing a 

modified extended Pom-Pom (mXPP) model, which differs from the original only in 

the extra function, /  ( t ) , see equation (2.42).
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Steady-state solutions for a multi-mode Pom-Pom model in a three-dimensional 

contraction geometry have been presented by Sirakov et al. [87]. A comparison of 

vortex size observed for the flow of a LDPE melt is also provided showing good 

agreement. Sirakov et al. [87] modified the SXPP model in order to improve 

stability, by setting the anisotropy equal to zero and proposed a suitable equation of 

stretch which handles the negative (unphysical) values ^ ( t ) that may occur

numerically. Wapperom and Keunings [102] solved the flow through a planar 4:1:4 

rounded-comer contraction/expansion for the integral and differential Pom-Pom fluid 

model. In their work, non-physical stretch values ( A < 1 ) were detected near the 

constriction.

6.2 Problem specification

The benchmark flow problem considered here is the creeping flow through a 4:1 

planar, rounded-comer contraction geometry. Figure 6.1 displays a schematic 

representation of this choice of complex flow. Zoomed sections of the three 

unstructured triangular meshes employed, with different degrees of refinement, are 

shown in Figure 6.2.

Figure 6.1. Schematic 4:1 contraction geometry: rounded-corner.
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Mesh characteristics data is provided in Table 6.1. Upstream and downstream 

channel lengths are 21.5Ld and 49Ld, respectively; Lu - 4 Ld (see Figure 6.1) and

the curvature of the re-entrant comer is -J Ld . The contraction is located at

x = 21.5 units.

a) Coarse

b) Medium

c) Refined

KM
iW&W
iVdVi'j

Figure 6.2. Unstructured/e-triangular meshing in contraction zone.

Transient Oldroyd-B solutions in Poiseuille flow have been imposed as inlet 

boundary conditions, employing the analytical solution for velocity ( ux) of Waters

and King [104], The upstream channel length is large enough to have fully developed 

SXPP profiles before the fluid reaches the entry section. No equivalent analytical 

solution for transient or steady-state Poiseuille flows has been obtained for the XPP 

class models. An alternative way to set boundary condition at the inlet is to use the 

numerical fully-developed solution for a channel of the same height (see chapter 4 

for details). Additionally, no-slip boundary conditions are realised along the
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stationary walls. The stress at the inlet is computed by solving in weak-form the 

equivalent ordinary differential channel flow problem.

As mentioned earlier, the precise form of the extensional viscosity is varied by 

adjusting the number of dangling-arms attached at both ends of the Pom-Pom 

molecule. Solutions are computed at four different g-settings, with the notation

Fluid- q. where i = {2,5,10,15}. Other fluid parameters are Re = 0 , /? = 1/9, £ = 1/3

and a  = 0.15. Note that Fluid- q2 is the default setting used throughout this study.

Results for a parameterisation study in a  -setting are also analysed and a comparison 

between Pom-Pom and EPTT solutions for fluids displaying equivalent levels of 

extension hardening is provided. This match in hardening is achieved by adjusting 

{ q , £ }-parameters.

Table 6.1. Mesh characteristics parameters

Mesh Elements/  
volumes

Nodes Degrees o f  
freedom 
(u ,p ,x )

Rmin

(4:1) a 1086 2325 14570 0.0296

(4:l)b 1626 3433 21502 0.0170
(4:l)c 2693 5652 35392 0.0097

Solutions at high elasticity levels are obtained through continuation in 

Weissenberg number. Simulations are initiated from solution at We = 0.1, 

subsequently incrementing and advancing solutions through steps of We = 0.5 , 1, 3, 

5, 10, 15, 20, ... until convergence is lost at a critical level, Wecrit. Vortex cell-size is 

reported, measured parallel to the symmetry line ( X ) and at right-angles (L). The 

Lj -norm relative maximum difference over two successive time steps is employed as

a criteria for time-step termination with the selected threshold of (10-7).
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6.3 Numerical results

In this chapter, the analysis of the results obtained from simulation is divided 

into three sub-sections. The first, deals with the influence of increasing extensional 

viscosity by increasing the number of dangling-arms ( q ) for the SXPP model, 

commenting on the vortex, stretch and stress responses. The second sub-section 

considers the variation of anisotropy, and in the third, a comparison with predictions 

for two different EPTT model fluids is provided. These models present similar levels 

of extension hardening and peak values of Trouton ratio. The influence of q on 

SXPP rheology may be observed in section 2.5.

6.3.1 Pom-Pom solutions with q-variation (a =  0.15)

The scope of this section covers on variation in flow field structure reflecting the 

influence exerted by rheological material functions. For each setting of arms-g, 

vortex patterns and their variation with elasticity (We)  are reported up to a stage 

close to Wecrit, where numerical convergence is lost.

6.3.1a Critical Weissenberg number and vortex dynamics

It has been found that an increase in the degree of hardening displayed by the 

extensional viscosity may produce a decline in the elasticity level attainable (see for 

example references [28,54,83]). A decrease in Wecrit when ‘adding’ more arms to the 

Pom-Pom molecule may be expected. For the selected number of arms chosen here, 

g = {2,5,10,15}, the correspondent critical We -levels are approximately

Wecrit ={60,25,13,12}. In the case of Fluid- q2, the degree of hardening is practically

zero, although the softening regime is ‘delayed’ up to a non-dimensional strain-rate 

of 0.2 units. It is for this fluid, where the largest Wecril of 60 is obtained. Fluid- q5 

displays an increment of about 50% in extensional viscosity peak-value, when 

compared with the q2-case. The critical level of elasticity is reduced to Wecril = 25.
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As the extensional viscosity continues to rise, further decline is detected in Wecrit 

with q - 10 and q - 15, reducing to Wecrit- 13 and Wecrit- 12, respectively, 

confirming earlier observations.

Vortex cell-size, measured at right angle with respect to the symmetry-line (L), 

and parallel to the symmetry line ( X  ), are plotted as function of We in Figure 6.3a. 

However, in this figure, X  and L are calibrated in a different manner from that 

proposed in chapter 5. Here, cell-size is zoomed by twice the upstream channel half­

width for ready interpretation of data. Vortex lengths units follow those of the 

geometry specification, and vortex data is obtained from the streamlines patterns.

It can be observed that X  and L follow similar increasing trends with 

increasing elasticity. At any given W e , L is always larger than X  . Growth patterns 

in L are similar for elasticity levels up to We = 8, a stage at which departure (decline 

in rate of increase) in trends is detected for Fluid- q2 with respect to other strongly- 

hardening fluids (q>  5). Figure 6.4 presents streamline patterns for q = 2 and q = 5 , 

whilst Figure 6.5 equates to data for q = 5 and q = 15 . In general, the linear shape of 

the separation-line is gathered across all instances, where the calibration of section

5.3.1 is employed.

Salient-comer vortex intensity y/sal is shown in Figure 6.3b. The response for 

q = 5 ,10 and 15 follows the same continuous enhancement with W e . The same trend 

is followed in the (q = 2)-case with We< 5; beyond this level of elasticity, a 

monotonic decline in intensity is produced. Such decline may be attributed to the 

softening regime of Fluid-q2, that is not expected when q>  5 (see arguments 

below). Shear viscosity cannot be responsible for such different behaviour as that 

exhibited by Fluid-q2, due to the fact that rjs is essentially the same for the various

cases selected here (see Figure 2.5). The possibility of modifying extensional 

response with a non- substantial variation in shear viscosity is an important feature of
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the Pom-Pom class models that is absent in other models, such as the PTT network 

variants.

a)

2.4 —  o
=  10

2.2

2.0

1.8
L [vertica l w a ll]

1.6
q =  10

1.4

X [horizon tal w all]
1.2

1. 0 101 10'
W e

b)

8

7

6

15-
5

=  10

4
10210° 1 0 '

W e

Figure 6.3. S a lien t-co rn er vortex, increasing  We: Re  = 0, f -  1/9, e -  1/3, a -  0 .15 ; q  = 2, 5, 10, 15,
a) cell-size , b) intensity .
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Fluid-q2

a) We = 1

L = 0.191 

X =  0.161 

^  = 6.87

Fluid-qs

e ) W e -  1

L = 0.191 

X =  0.163 

^ = 5 .8 0

f) We = 5

L = 0.211 

X =  0.184 

1^6.07

b ) W e -  5

L = 0.211 

X =  0.184

V s a l = 6 -2 3

c) We -  10

L = 0.211 

X =  0.184

Vsal =  6 ' 2 3

g) We = 10

L = 0.231 

X =  0.194 

V*, = 6.29

d) We = 60 h) We = 25

Figure 6.4. Stream function and vortex data (L, X, \f/sai x[-104]), increasing We: Re = 0, J3= 1/9,
£ -  1/3, cc- 0.15; q = 2 and 5.
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Fluid-qio
a)We = 1

L = 0.191 

X =  0.161

V s a r S - 7 9

Fluid-qi5

e) We = 1

L = 0.191 

X =  0.161 

^  = 5-78

f) We = 5

L = 0.209 

X =  0.175 

^  = *82

b) We = 5

L = 0.210 
X =  0.176
^sar^.89

c) We = 10

L = 0.233 
X =  0.189

V s a l  =  6 - 2 0

g) We = 10

L = 0.230 

X =  0.188 

= 6.09

d) We = 13

L = 0.243 

X =  0.193
^sal-647

h) We =  12

L = 0.238 

X =  0.190 

Vsa,=6.27

Figure 6.5. Stream function and vortex data (L, X, y/sal x[-104]), increasing We: Re = 0, /3= 1/9,
£ — 1/3, a =  0.15; <7=10 and 15.
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The extensional component of the deformation-rate tensor, d ^ ,  conveys some

insight to explain the departure of Fluid- q2 from other settings. Figure 6.6 (left

column) shows d ^  at an elasticity level of We = 10. Two -maxima can be

detected, one on the symmetry line, just before the fluid enters the downstream 

channel (entry-flow region); the other is almost at the end of the rounded-comer, in 

contact with the boundary of the contraction. As can be observed from Figure 6.6, 

d^  -fields are very similar for the selected fluids analysed here. Additionally, as

minor variation in d -fields (Figure 6.6-right column) with respect to increase in the

number of arms is gathered, it can be concluded that the four fluids are exposed to 

essentially the same deformation rates. However, even at similar deformations rates, 

the extensional viscosity experienced by each fluid is quite different. For q = 2, the

extension-softening regime starts at Â be ~ 0.2, a regime not reached by the (q > 5)-

fluids until strain-rates of \ be > 9 .

It is now convenient to show regions in the flow field where extension-softening 

is ‘expected’. For q = 2, a large area of expected softening is anticipated. Fluid-q5

may have this area reduced considerably because of the fact that softening starts at 

much larger strain-rates (see Figure 2.5). Figure 6.7 shows the expected extension- 

softening regions (shaded zones) for Fluid- q2 and Fluid- q5. These regions are

obtained by taking (d u /d x )  as the strain-rate in Figure 6.7a,b and the generalized 

flow invariant (T)* in Figure 6.7c,d. The values indicated in the zones from the 

rheology at the given elasticity. That is, strain-softening of Fluid- q2 starts at

\ be ~ 0.2. Then, for the selected elasticity level (We = 10), it is necessary to extract 

the correspondent orientation relaxation time Â b, following the definitions of non- 

dimensional numbers and values of the characteristics quantities (see section 2.4). 

The result for Fluid- q2 is that softening starts at a strain-rate of e ~ 0.02 time units.

* F low  invariants, T  =  2 ^ / 2" and 2  =  3 / 3 / / 2 .where / 2 —  and / 3 =  d e t ( d )  , see [63].
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dxx

a) q = 2 ' ^ ^

Max = 0.43

— Max = -1.18

L- Max — 0.45

L  Mec = -1.21

L- Max -  0.46

>— Max = -1.27

L Max = 0.46

Max = -1.30

Figure 6.6. Rate-of-strain and dxy fields, We

dxy

_ Max = 2.03

L Max = 1.95

_ Max = 1.96

10: Re = 0, (3=  1/9, £ =  1/3, a =  0.15; increasing q.
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Following the same procedure for F lu id-q5, the extension softening starts at

£■ = 0.9 time units, meaning a difference of more than one order in magnitude when 

compared with the (q = 2)-case.

Figure 6.7. R a te -o f-stra in  {dxx and / )  fields, We- = 10: Re  = 0, j3 =  1/9, £ -  1/3, a -  0 .15 ; q = 2 and  5.

Bearing in mind that pure extensional flow only occurs along the centreplane 

(near the constriction), hence, du/dx  and T simply provide a guidance when 

applied to the complex 4:1 contraction flow. Applying the above criteria, it can be 

observed that the ‘expected’ softening region for {q = 2 )  is considerably larger than

that for (<7 = 5 ) ,  with both approximations of strain-rates ( du/ dx  and T). Note that 

T -fields also identify shear deformation as well§.

M esh convergence data is provided in terms of the salient-corner vortex cell- 

size, X , in Table 6.2. The selected fluid for this table is Fluid- q5, covering the range

* In v arian t X, c o m m o n ly  associated  w ith ex tensional d efo rm ation , is not defined  in 2 D -p lan ar flow s.

a) du/dx contourline, q = 2 b) du/dx contourline, q = 5

ZOOM

c) rcontour line, q = 2 d) rcontour line, q = 5
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0.1 < We < 25 for the three meshes employed. Mesh convergence is evident through 

the refinement and allows higher elasticity level solutions to be attained.

Table 6.2. Mesh convergence for salient-corner vortex cell-size (X): 0.1 < We < 25, q = 5

Mesh
0.1 1 5

We
10 15 20 25

(4:l)a 0.151 0.162 0.182 0.190 - - -
(4:1) b 0.152 0.163 0.184 0.194 0.205 - -
(4:l)c 0.152 0.163 0.184 0.194 0.205 0.212 0.218

6.3.1b Centreline and downstream wall profiles

Polymeric first normal stress difference, Nx, stretch X , stress component, r

and pressure p are plotted along the symmetry-line in Figure 6.8 for W e - 10. From

q -  2 to 15 the increase in Nx- and X -peak values are around 20% and 10%,

respectively. The increment in both variables may be attributed to the larger 

extensional viscosity, caused by ‘adding’ more g-arms to the molecule. No

significant effect is provoked by such a change in q , as can be seen in r  compared

to that in other variables. Pressure and pressure-drop increases with q by 9% from

Fluid- q2 to Fluid- ql5.

Downstream wall profiles ( y = 3) for We = 10 are shown in Figure 6.9 for Nx, 

X, t' and t . Here, large dependency of q over Nx and X is detected. From 

Fluid- q2 to Fluid- ql5 downstream values increase by around 135% for the normal 

stress difference and about 50% for stretch. Polymeric t' -component also shows an 

increase with q in peak and downstream wall values. The t -component shows 

similar increment though is less evident.
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Figure 6.8. Profiles along plane o f sym m etry , We = 10: Re  = 0, /3 =  1/9, e -  1/3, < 2=0.15;
increasing  q.

6.3.1c Stretch, stress and deformation-rate fields and pressure-drop

Maximum values of components of the rate of deformation tensor ( r /u and d xv) 

are located in the boundary of the re-entrant corner (Figure 6.6). d u exhibits a peak 

value at the centreline while the fluid lying above the downstream boundary wall is 

exposed to large values of shear deformation ( d xv). In addition, deformation rates are

also significant in the entry zone. Far from the contraction, shear deformation is 

dominant, although it is strongest in the downstream channel. Hence, influence of the 

number of arms will be stimulated principally in these zones. Note that the influence 

o f q is reflected in the significant differences of the large values of stress ( Tct) and 

stretch (A)  along the downstream wall. These differences are related to the 

coefficient of the first normal stress difference, i//{, not to shear viscosity, which 

remains relatively unaffected by the choice of q .  It is important to note, that the
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influence of the constriction upon downstream wall profiles is short. This is due to 

the low residence time of the flow across the contraction region.
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0.0
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Figure 6.9. P ro files along dow n stream  wall, y  = 3, We = 10: Re =  0, f  -  1/9, e -  1/3, a -  0.15,
increasing  q.

- Trends in A

Backbone stretch is plotted in Figure 6.10 (left column). Regions of relatively 

low stretch fluid can be identified in the inflow (upstream channel before entry zone) 

and along/near the centreline far upstream/downstream from the constriction, see 

Bishko et al. [19]. The dominant deformation in these zones of low stretch is shear. 

In addition, low values of stretch are found in the recirculation region. A ‘banded 

entry-flow> zone of stretched material (termed as in [19]) can also be identified, 

corresponding to a dominate effect of extensional viscosity over shear deformation.

Two zones lying above the re-entrant corner with large stretch values can be 

appreciated from Figure 6.1U. The first is part of the entry zone, and another smaller
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a) q = 2

L Max = 1.79local 

—  Max = 1.82

b)q  = 5

L _ Max = 2.15looat 

—  Max =2.11local

c) q -  10
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Figure 6.10. Stretch and firs normal stress difference (polymeric) fields, We = 10: Re = 0, (3=  1/9,
£ =  1/3, a =  0.15; increasing q.
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in size, is situated just below the first one, in contact with the boundary wall at the 

end of the rounded-comer.

Additionally, large backbone stretch is observed on the centreline just above the 

constriction (Figure 6.8) and along the downstream wall (Figure 6.9). Rise in peak 

values when increasing q for We = 10, can be discerned from Figure 6.10, from

^max =1-82 for q = 2 to A k =2.32 in the entry-flow zone and Apeak =2.61 in the 

small area touching the wall for q = 15 . Note that stretch along the downstream-wall 

is comparable in magnitude to the peak-values in the small area discussed above. In 

order to detect the role of rje on this complex flow, contour lines at a larger level of

elasticity are presented in Figure 6.11 for A and N] at We = 25 . However, solutions 

are available only for Fluid- q2 and Fluid- q5 at this high level of elasticity. The

proposed increment in the number of arms stimulates more visible differences at this 

elasticity stage, when compared to the (We = 10 )-response. Relative increase in 

backbone stretch over the contraction zone, is around 25% for We = 25 from q = 2 

to q = 5 , as opposed to only 10% at We = 10 .

- Trends in Nj, tyy and rxy

Contour lines for the polymeric stress difference, ( t^ - t ) are presented in

Figure 6.10 (right column). Increment in the number of arms results in a general 

increase in Nx over the contraction zone and along the downstream wall. Influence

of q on -response is amplified at the elasticity level of We = 25 . An increase of

around 65% is detected for the positive A^-peak value, when the branching varies

from q = 2 to 5. The increase in Nx -peak observed at We = 10 is about 34%, for the

same variation in the number of arms (see Figure 6.11). No noticeable differences 

occur far upstream of the contraction.
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X Nj
a) q = 2

Max = 2.73

 Max = 2.39,

■0.3—

-0.4-

L  Min = -0.58

—  Max = 0.56

b)q = 5

L  Max = 7.44

 Max = 3.07,

Min = -5.99

Max = 0.93

Figure 6.11. Stretch and firs normal stress difference (polymeric) fields, We = 25: Re = 0, /?= 1/9,
E -  1/3, a -  0.15; q = 2 and 5.

The polymeric ryy stress component maxima is located in the rounded-comer,

near the constriction plane. Values in the centreline are about one order in magnitude 

less than peak-values. The banded entry-flow zone for stretch is also visible for ryy

(Figure 6.12-left column). Negative ryy-values are found in the fluid lying close to

the downstream-wall, showing a decline in magnitude with increasing q . In general,

polymeric stress shear component ( r  ) increases slightly with increment in arms-g

in the flow field. It is possible to also identify a banded-zone for this stress 

component (Figure 6.12-right column).

- Trends in dxx, dxy and pressure-drop

Components of the deformation-rate tensor, and d , display minor 

influence with an increase in the number of arms of the Pom-Pom molecule. There is
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only slight increase in peak-values for da on the centreline and above the re-entrant 

comer (Figure 6.6).

As mentioned in the beginning of this section (6.3.1c), regions in the flow 

subjected to high deformation rates are zones where influence in variation of the 

number of arms is anticipated to produce the most significant differences in the 4:1 

contraction flow. The reason is that rheometrical functions are expected to reach 

extreme values in the high deformation regions mentioned above. Hence, extensional 

viscosity is stimulated in large strain-rate zones while shear viscosity and first 

normal stress difference coefficient are stimulated in regions dominated by large 

shear-rates. Figure 2.5d shows that backbone stretch depends on both, shear- and 

strain-rates, though stretch is larger in extensional deformation than in shear for a 

given deformation-rate. Therefore, stretch patterns in the entry section resemble - 

fields and in the downstream channel, just beyond the re-entrant comer, stretch 

patterns follow the trends in d contour lines (see Figure 6.10).

By further observation, similarity in stress and stretch behaviour can be 

appreciated, leaving clear evidence that molecular stretch and stress responds to the 

complex deformation experienced by the fluid. However, due to the fact that in the 

zone covering from the entry-flow section to past the re-entrant comer, there is a 

complex mix of shear and extensional phenomena, viscometric functions may be 

taken as a guidance only in anticipating any response.

Figure 6.13 presents the pressure-drop, Ap , normalized by the predicted for a 

Newtonian fluid (A p Newt) with same flowrate and same viscosity as the zero shear- 

rate viscosity for the SXPP model, %(;>—>0). This normalized pressure-drop

suffers a significant monotonic decline with increasing elasticity. For We < 2 , this 

decline is of the order of 70% (for all Fluid- q .) from the Newtonian reference line 

(A p /A p Newt =1). After this elasticity stage, the rate-of-declines is reduced 

considerably, to eventually reach a plateau well established at We = 10 .
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fyy %cy
a) q = 2

L  Max = 0.30 Max = 0.34

b) q = 5

•-G.06-

Max = 0.36 Max = 0.43

c) q = 10

*— Max = 0.42 Max = 0.53

d) q = 15

Max = 0.59

Figure 6.12. Normal stress ( ^ )  and shear stress fields, We = 10: Re = 0, /?= 1/9, e =  1/3, a =  0.15;
increasing q.
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Minor differences for the q -values simulated here can be observed, producing 

just a slight reduction in Ap for systems with more branched-arms. The large 

pressure-drop detected for all fluids is due to the shear-thinning properties of the 

particular choice of parameters in this study. However, the slight reduction in 

Ap/ApNewl with q may be attributed to the minor differences in shear-viscosity 

between fluids.

o.y

ox

0  7

1 “
t  0.5 
CL 

< 1
0 .4

0 3

0.2

W e

Figure 6.13. N orm alised  p ressu re-d rop  vs. We: R e - 0 , / 3  =  1/9, e -  1/3, a - 0.15; q = 2, 5, 10, 15.

6.3.2 Pom-Pom solutions with a-variatiou {0.15, 0.25, 0.5}

Rheometrical functions response for an adjustment in the anisotropy parameter 

a  are presented in Figure 6.14 for q = 15. Clemeur et al. [37J have reported 

‘numerical defects’ for the XPF class models. These authors gave particular attention 

to instabilities in material functions provoked by some values of a . For sufficiently 

low values of the anisotropy parameter, singularities in shear-viscosity and first 

normal stress difference coefficient are not evident, though an increase in a  and/or 

in q may bring these about. In extensional viscosity, the instability is reflected as an
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unphysical flattening effect. Trouton ratio and stretch in rheometrical flows are also 

affected by such numerical defects.

a) Shear and planar viscosity b) n o rm a lised  Trouton ratio (p lanar)

H

1 n m n  ' i 1 l ju u b  : 1 iLniinj— r m m q — r~i m m ;— I I n m i

  — u=0.0
. --------U=0.15 /
1 " ■ -  u=0.25
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Shear

:
: --  — a=0.0

a=0.15
-------------  a=0.25
  — u-0.5

c) Firs norm al stress coefficient d) Backbone stretch

10-
  -----  u = 0 .U

-  a = a i5
--------------  a=0.25
  —  u-<).S

Extensional

10‘

Shear

Haul
10°
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y Kb  or s
F igure  6.14. R heological p roperties o f  SX PP  m odel, varia tion  in oc, /? =  1/9, e -  1/3 and q = 15.

With the objective of ‘capture’ the effect of the instabilities upon flow response, 

solutions for a number o f anisotropy parameters have been generated, namely:
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a  = {0.15,0.25,0.5}. The number o f arms is set to q = 15 , the reason being that, for 

the selected values of q simulated here, this is the fluid where instabilities are more 

evident. Downstream-wall profiles are given in Figure 6.15 for /V,, A , t xv and N2.
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0.0
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3.0

2.5
*- a  = 0.15 

—  a  =0.25 
 a  =0.5^  2 .0 -

X
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0.3

H
0.2

0.0

-0.1,
X

0.3

0.2

a  =  0.50

0.0

Z
-0.2

-0.3

- 0.4

-0 .5 ,

X

Figure 6.15. Profiles along dow nstream  w all, y  = 3, increasing  or. Re  = 0, J3= 1/9, £ -  1/3;
c /=  15, 1 ^ =  10.

For a  = 0.15 and 0.25, no significant effect is observed in these profiles. Note 

that N2 practically vanishes before and after the constriction. Further increment in

anisotropy (<2 = 0.5) renders reduction in polymeric first normal stress difference, 

stretch and in polymeric shear stress, once the fluid has passed the constriction. The 

most significant of these variations is for /V,, where the reduction (from <2 = 0.15 to

<2 = 0.5) is around 30%. The polymeric second normal stress difference, N2, 

exhibits an increase of more than one order in magnitude from the reference line at 

a  = 0.15. Additionally, decay in peak-values near the constriction plane is detected.
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The flattening effect on extensionai viscosity may account for this response. Such 

reduction in peak-values is more prominent in N] and A (both variables show 

dependence on extensionai fields in the constriction zone) than in shear stress.

The decline in N] and A along the wall of the exit channel at a  = 0.5 may be 

the consequence of the reduction in yfx (compared to the case for a  <0.25) prior to 

the onset of instability (see the zoomed box in Figure 6.14c).

As the solutions obtained for the various values of anisotropy display no 

discontinuity or abnormal behaviour, it must be assumed that the deformation-rates 

suffered by the fluid are not large enough to enter the regimes where singularities are 

anticipated, especially in the downstream channel section. In the constriction, the 

simulated deformation-rates may be sufficient in magnitude. However, the residence 

time across this region is relatively short and may prevent the fluid from reaching the 

fully steady-state regime (in a Lagrangian time sense).

6.3.3 Extensionai response across models: Pom-Pom and PTT

Predicted vortex growth is compared in this section for the planar rounded- 

comer 4:1 contraction flow of two types of models: a kinetic-based form (single 

extended Pom-Pom) and a network type (exponential Phan-Thien/Tanner).

Aboubacar et al. [2,3] reported vortex data for two EPTT fluids, with different 

strain-hardening response. The EPTT(£‘/>7T =0.02)-fluid accounts for severe strain-

hardening properties, whilst the EPTT(£prr = 0 .25)-fluid displays relatively low

strain-hardening form. The objective is to perform the simulation of SXPP fluids 

with similar response in extensionai flow to that exhibited by the two EPTT fluids 

employed in references [2,3]. For each EPTT fluid, two different sets of SXPP- 

parameters are provided, one, giving an equivalent peak in extensionai viscosity ( rje)

and the other in Trouton ratio (Tr). This assists to associate flow response with 

either the extensionai properties, or otherwise, those moderated by the influence of
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shear. To approximate peaks in extensionai viscosity and Trouton ratio, the same 

viscosity ratio, /?, of references [2,3] is also employed here. This equates shear and 

extensionai viscosity values at both, low and extremely high deformation rates for 

each EPTT and SXPP fluids. Once the viscosity ratio is fixed (i.e. the solvent 

content), two parameters exert influence on the strain-hardening properties of the 

SXPP model**, the relaxation times ratio, e ,  and the number of arms, q. An 

increment in either of these two variables increases the degree of strain-hardening. 

Additionally, for the selected f t  ratio, only £ has an effect upon shear response, 

with increasing 8 delaying the onset of shear-thinning. Fine adjustment to match the 

EPTT material functions is sought through variation in both parameters q and £. 

Four fluids that match EPTT response are enumerated as (I)a, (II), (III), (IV). An 

adjustment in a  for the fluid with the strongest strain-hardening behaviour, Fluid-

(I)a, is also included, named Fluid-(I)&. The SXPP-parameters used are reported in 

Table 6.3, whilst Figure 6.16 displays the graphical corresponding comparison 

against the EPTT rheometrical functions.

Table 6.3. SXPP and corresponding EPTT parameters; P = 1/9

Corresponding PTT q £ a Comment

Fluid-(I)a T]e: EPTT(£p7T = 0 .0 2 ) 8 0.999999 0.15 Severe-hardening

Fluid-(I)b T)e:E V n (£prr = 0 .0 2 ) 8 0.999999 0.05 Severe-hardening

Fluid-(II) T r ; EPTT(£"P7T = 0 .0 2 ) 5 0.5 0.15 Strong-hardening

Fluid-(III) T]e : EPTT(£P7T = 0 .2 5 ) 2 0.333333 0.15 Delayed-softening

Fluid-(IV) 7V:EPTT(£-p7T = 0 .2 5 ) 2 0.075 0.15 Softening

The SXPP Fluid-(I)a approximates the extensionai viscosity maximum of 

EPTT(£P7T =0.02) and exhibits the highest level of hardening amongst these SXPP

** Extensionai viscosity is also influenced by the parameter a, however this also introduces numerical 
defects to the model, as discussed in section 6.3.2.
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fluids. However, this SXPP fluid exceeds the Trouton ratio of the same EPTT fluid, 

even though the shear behaviour between both models is close. In contrast, Fluid-(II), 

exhibits high levels of hardening, though lower than Fluid-(I)«, and matches Tr for 

E P T T (£ />7T = 0 .0 2 ) .

a) Shear and planar viscosity, £ n r  -  0.02 b) Shear and p lanar viscosity, E prr- 0.25

Fluiit-( 1)

Extensionai Extensa

. T-m nq~- i-i'mtTT|— rrnnnj t-

F l u i i l - ( l ) b — ^
O EPTTe=0.25--  —  HiwKI)

-----A- — llu d -(ll)

F lu id - ( I ) U ^

10'2 10° 102 104 
^ P IT  y  ^PTT ^  ’ \ )  b y  \ )  b ^

10‘2 10° 102 io4
^PTTy ^PTT  ̂’ K by ^  b ̂

EI’IT e=o.uj HuhH I) 
H u id -(  I I ) 
lliid-(lll) 
H u id - ( IV )

c) N orm alised Trouton ratio, £ p n -  0.02 d) N orm alised Trouton ratio, £ p rr -  0.25

nTTTJ-

Fluiit-( I )a

H

or L i

oiiiL

8 or X ' z

Figure 6.16. R heolog ical p roperlies o f SX PP and E PT T  m odels: varia tion  in q, f a n d  £PTT\ /3=  1/9,
a -  0.15.
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Little hardening is represented by Fluid-(III) which closely approximates rje for

EPTT(f/>7T =0.25), whilst Fluid-(IV) matches the Tr for this low hardening EPTT-

fluid. Note that, Fluid-(IV) softens directly without exhibiting any prior hardening in 

extensionai flows. Fluid-(III) is the base-case in previous simulations produced here.

Elasticity influence on vortex cell-size (L along upstream-wall and X  along 

contraction-plane wall) and intensity ( y/ sal) is reported for the five fluids simulated.

Phan-Thien/Tanner vortex growth is reported by Aboubacar et al. [2], information 

that is measured and interpreted graphically.

The following sections comment upon the severe and modest strain-hardening 

instances separately, taking the match over rje and Tr in turn. As explained in

section 6.3.1a, for ready interpretation of data, X  and L are calibrated by zooming 

values by twice the upstream channel half-width. Streamline patterns for the severe 

and low hardening scenarios are shown in Figure 6.17 and Figure 6.18, respectively. 

Figure 6.19 displays the trends of cell-size and intensity along with the predictions 

for the two EPTT fluids reported by Aboubacar et al. [2].

6.3.3a Match on severe strain-hardening: EPTT(eptt = 0.02), rje and Tr

A Comparable 7/e-peak value for the severe hardening EPTT(£‘/,7T =0.02) 

choice is obtained by Fluid-(I)a. In general, larger vortices are found for Fluid-(I)a 

than for Fluid-(II). For all cases, vortex intensity ( \j/sal) is greater for the more

strongly-hardening fluid. Trends in intensity and cell-size for both Pom-Pom fluids 

are very similar under increasing elasticity (see Figure 6.17 and Figure 6.19). Two 

features are particularly noticeable: first, lower Wecrit is attained for fluids with 

higher degree of strain-hardening. For Pom-Pom Fluid-(II) with less hardening 

response, W e ~ \ l , a value that almost doubles Wecrit ~9  of Fluid-(I)a. The second 

feature is that vortex cell-size and intensity are fairly similar for both fluids at their 

corresponding Wecrit.
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EPPTXfp^ =0.02) exhibits slight vortex inhibition at low elasticity levels

(We < 3); this is followed by a significant enhancement in cell-size and intensity. For 

this fluid the reported maximum elasticity attainable is We = 30 (see original Figure 

6 in Aboubacar et al. [2]). Although, no inhibition in vortex growth is observed with 

increasing elasticity for either SXPP fluids (I)a and (II), trends are similar though not 

in magnitude. The curvature of the separation-line differs between EPTT and SXPP 

fluids. The EPTT(f/>7T =0.02) model shows linear structure at low elasticity and

gradually becomes slightly concave; as elasticity approaches critical level, convex 

shape and very large vortex cell-size are observed. In contrast, SXPP fluids, of 

matching rje and T r , display insignificant change in orientation or shape of the 

vortex separation-line (linear shape) as the level of elasticity increases.

6.3.3b Match on modest strain-hardening: EPTT(eptt = 0.25), rje and Tr

The extensionai viscosity peak-value of EPTT(£P7T =0.25)-setting is

approximated closely by Fluid-(III), a material representing slight hardening only, 

followed by strain-softening. Fluid-(IV), a setting without hardening, equates to the 

peak of EPTT(f/,7T =0.25) in Trouton ratio. A decline in the level of hardening,

compared with the strongly-hardening scenario, is reflected in the prediction of 

smaller vortices for both SXPP and EPTT models. The same decline also gives as a 

result higher levels of attainable elasticity, being Wecrit « 60 for both Fluids (III) and

(IV). Fluid-(III) exhibits some slight enhancement in vortex intensity, although this is 

difficult to detect from Figure 6.19. Such growth occurs up to an elasticity level 

around W e -  5. Beyond this stage, intensity slightly declines in a monotonic fashion. 

When Fluid-(III) response is compared against that exhibited for EPTT(£prr = 0.25), 

similar trends are extracted, though variations are easier to observe with the network 

model. The largest intensity for both Fluid-(III) and EPTT(f/,7T =0.25) is located 

around the same Weissenberg number of We ~ 5.
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Fluid-Ia: matching rje-£ p tt  -  0.02 

a) We = 1

Fluid-II: matching Tr-eprr = 0.02

d)We = l

L = 1.46 
X= 1.26 
^  = 5-77

e)We -  5b) We = 5

g)W e = 17

Figure 6.17. Streamlines and vortex data (L , X, y/sai x[-104]), Fluids Ia and II, strong hardening.
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Fluid-Ill: matching r j e - £ p T T  = 0.25 Fluid-IV: matching Tr-eprr -  0. 25

a )W e -  1 e)We -  1

b) We = 10

L =  1.23 
X= 1.15

= 1-M

c) We = 20

m

L = 1.85 
X= 1.61

Vsal=5-07

g) We = 20

L = 1.23 
X= 1.15 

V«, = 092

d) We = 60

L = 2.07 
X= 1.73

h) We = 60

L = 1.53 
X= 1.26

Figure 6.18. Streamlines and vortex data (L, X, y/sal x[-104]), Fluids III and IV, low hardening.

122



L 
Ce

ll-
Si

ze
 

X 
C

el
l-

Si
ze

Influence of Extensionai Viscosity in Pom-Pom modelling

Strong-hardening fluids

103 

102
*T
o

S i o 1
f

10°

10'1 0 1
10°  101 102

We

EPTTb=0.02  
Fluiil-( 1) 
FluiU-( II)

Moderate-hardening fluids

E P T Ite= 0.25  
FluiU-( III) 
FluiU-( IV )

10 -

o

r 1
1

------ 0 -------E P T T e= 0.02
-----  F lu id -( l)

. ----------------  FluicJ-(U )

rA
r'

_____ ^  ^  ^  — L  ^  ^>y

-------------  V—.— - . i

10u 1 0 '

We
10-

4

3

2

102

3 -

■e— EFrre=o.o2
 F lu id -( l)
  F lu id -(II )

Of

2 -

j 6

10u 101
We

10-
We

Figure 6.19. S a lien t-co rner voriex in tensity  and cell-size , in creasing  We\ s trong and m oderate
harden ing  fluids.

123



Influence o f  Extensionai viscosity m Pom-Pom modelling

There is no vortex enhancement predicted for Fluid-(IV), either in intensity or 

cell-size, up to a level of W e-  30, beyond which a slight increase in these 

magnitudes takes place. This trend followed by Fluid-(IV) lies in opposition to that 

displayed for EPTT(^/,7T =0.25). However, at We = 100 the EPTT model shows a 

similar limiting intensity with that exhibited by Fluid-(IV) at We = 60.

Reduction in vortex intensity and cell-size may be linked to a consequence of 

strain-softening behaviour and associated levels of Trouton ratio. The higher 

elasticity levels reached for the EPTT models, may be attributed to the fact that the 

extensionai viscosity for E P T IX f^  =0.25) is lower than that for its matching

counterpart, Fluid-(III), and strain rates larger than 0 (2 )  units, see Figure 6.16. The

shape of the vortex separation-line is practically linear for Fluid-(III), similar to that 

predicted for Fluid-(I)a and (II). Alternatively, Fluid-(IV) presents a relatively 

convex structure. For the corresponding EPTT-setting, separation-line shape changes 

from linear (We = 1) to convex (We = 5), recovering linear shape at elasticity levels 

greater than We -  20 (see [2]).

6.3.3c Fluid-(I)a and Fluid-(l)b: similarities and differences

In this section, the influence of a  is studied for the SXPP fluid exhibiting the 

largest strain-hardening behaviour. Field contour plots for the polymeric first and 

second normal stress difference are shown in Figure 6.20 for Fluid-(I)a and Fluid-(I)^. 

The only difference between these fluids is the level of anisotropy, governed by 

or = 0.15 and a  = 0.05, respectively.

The effect of varying anisotropy on N{ is mainly observed in two regions. One 

is just above the re-entrant comer, a small zone where a decline in Nx may be related 

to the reduction in extensionai viscosity by increasing a .  The second region 

corresponds to the fluid lying on the downstream wall, where difference in y/x at the
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chosen anisotropy levels, produces a decrease in Nx from a  = 0.05 to 0.15. A similar 

response is discussed in section 6.3.2.

Fluid-Ia Fluid-Ib

-2 5.

-0.5

-0.25
N .  Unr = 3 .3 6 ,

■15-

-2.5—

•-0.1

- 0 .2 - ---------

•0.3-

> 05-

Figure 6.20. First and second normal stress difference (Nj, N2) fields: a =  0.05 (Fluid-Ib) and
0.15 (Fluid-Ia); We = 8.

The influence of a  -variation is expected to have a larger effect on N2 than on

N{. As the fluid passes across the stretch ‘banded-zone’ reaching the re-entrant

comer, a general, though slight, decline in N2 values can be observed with decrease

in a .  The most substantial variation in N2 is along the downstream wall, just

beyond the end of the rounded-comer, a region of strong shear-flow. There, an 

increase in magnitude of the polymeric stress difference is predicted, from 0.07 units 

at a  -  0.05 to 1.5 units at a -  0.15. Near the centreline in the entry flow section, a  -
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adjustment has had barely any impact on N2. Such findings lend themselves to the 

conclusion that variation in a  is related primarily to a shear-flow response.

There is a decrease in strain-hardening provoked by increasing the anisotropy 

parameter from a  = 0.05 to a  = 0.15. This decrease, as anticipated, allows 

simulations to reach a higher level of critical elasticity, although here this increment 

in Wecrit is only minor, from Wecrit = 8 to Wecril = 9 , for Fluid-(I)a and Fluid-(I)^, 

respectively.

6.4 Conclusions

The influence on a complex flow of variation in the number of side branched- 

arms, q , dangling from the ends of a molecular chain segment, has been studied in 

this chapter. Extensionai viscosity is largely affected by such parameterisation. The 

selected geometry is a planar rounded-comer 4:1 contraction. With g-variation from 

2 to 15, the fluids display levels of hardening varying from slight (sometimes 

referred to here as ‘delayed’ softening) to severe, respectively. Note that, over the 

prevailing kinematic flow conditions, strain-softening is not anticipated for Fluids- 

g]0and q]5 (10 and 15 arms); for Fluid- q5 softening may occur in a minuscule region

around the comer. There is significant impact upon the extensionai viscosity and 

normal stress difference to take into account with change in q. The shear viscosity 

for the selected set of parameters is barely affected by this proposed variation in the 

number of branched-arms.

There is only relatively slight influence detected on d^  and d -fields by such

variation in the number of arms. Zones with expected softening are presented in 

order to explain the differences between Fluid- q2 from the other selected fluids 

( q > 5). Due to the differences in extensionai viscosity, these zones are found to 

decrease significantly, and to even disappear for more severe hardening 

configurations. The onset of extension softening seems to have a strong impact on
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vortex behaviour, producing suppression of intensity. In addition, lower levels of 

strain-hardening may account for larger levels of attainable elasticity, as seen on 

[28,54,83]. Vortex cell-size follows similar trends across all Fluid- qt studied, noting

that for fluids where low or zero strain-softening is anticipated, cell-size follows 

essentially the same patterns.

Variables directed related to shear viscosity ( r  and Ap )  exhibit minor

departure between solutions for these variations in the number of arms. Pure 

extensionai deformation applies along the centreline, whilst strong shear flow is 

developed in the exit-channel. In the entry-flow section, reaching the re-entrant 

comer, there is superposition of these two types of defoimation.

In regions dominated by extensionai deformation, increase in the magnitude of 

stress and stretch may be observed. Backbone stretch continually increases (even 

doubles) across the entry flow region. Such increase is more evident from Fluid- q2

to Fluid- q5. In the exit channel (a strong shear-flow zone), significant increase is 

detected in V, and X with increasing q ; these differences are sustained along the 

downstream section. Again, this change is more rapid from q = 2 to q = 5 than 

above. As mentioned earlier, the coefficient of the first normal stress difference is the 

cause of these variations.

Large values of the anisotropy parameter, a , may produce the onset of 

singularities in rheometrical flows. Discontinuities in shear functions are not 

captured for the kinematic conditions exhibited by the cases analysed here.

Reported vortex trends for two contrasting EPTT fluids are compared with Pom- 

Pom fluids, with similar degrees of hardening and peak-values in Trouton ratios. 

Adjustment in peak-values for both models is obtained by first, fixing the viscosity 

ratio (/?) to that used by Aboubacar et al. [2], and then, varying the number of arms 

( q ) and relaxation times ratio ( e ) in the SXPP model. Differences in rate-of-change 

for shear-thinning and in extension hardening/softening, imply that even when the

127



Influence o f Extensionai viscosity m Pom-rom modelling

extensionai viscosity is equivalent between EPTT and SXPP models, Trouton ratios 

are larger for the Pom-Pom model than for the corresponding network-type fluid. For 

this reason, two SXPP sets of parameters are produced, matching rje and Tr in turn, 

for each PTT fluid studied.

For the strongly-hardening/softening EPTT(fP7T =0.02)-setting, fluids (I)a and

(II) approximate rje and Tr respectively. In this scenario, growth in cell-size and

intensity follow similar trends in all three fluids (except for a small inhibition at low 

We for the EPTT case). Larger vortices are gathered for the severe hardening case 

over the slightly hardening behaviour. Switching to this moderate hardening case, 

EPTT( ePTT = 0.25) and Pom-Pom Fluid-(III) display similar peak-values in

extensionai viscosity; vortex intensity grows up to W e-  5. After this stage a decline 

is gathered. However, changes are much more dramatic for the PTT model. Pom- 

Pom Fluid-(IV) exhibits no hardening at all, it softens even at low strain-rates and its 

trend in intensity is opposite to that for the corresponding PTT fluid. This is the only 

SXPP-setting where vortex reduction in cell-size has been observed. Therefore, it can 

be concluded that larger strain-hardening is related to the generation of large 

vortices.

In this study, vortex trends are better approximated by fluids showing equivalent 

extensionai viscosity than Trouton ratio (for moderate hardening cases). For all the 

different sections in the present chapter, lowering strain-hardening peak-values has 

produced an increase in the attainable elasticity number.
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CHAPTER 7

Excess Pressure-Drop in Contraction and 

Expansion Flows for Boger Fluids

Estimation of pressure-drop (Ap )  for constant viscosity highly elastic (Boger) 

fluids in contraction and contraction/expansion flows is considered in this chapter. 

Experimentally, significant enhancement above that corresponding to Newtonian 

fluids with same viscosity and flowrate (Q),  can be observed in axisymmetric 

contractions. In contrast, for planar configurations, pressure-drop is practically 

equivalent for both Newtonian and Boger fluids. Numerical analysis has failed to 

predict successfully such phenomena for Oldroyd-B models. Changing from a 4:1 

contraction to a 4:1:4 contraction/expansion geometry helps to determinate the 

factors that contribute to such enhancement in pressure-drop. Amongst these factors, 

the extensionai viscosity ( rje) of the fluid and the viscosity ratio play an extremely

important role in the enhancement of pressure-drop. Alternative models capable of 

reproducing severe hardening response in extensionai flows are investigated. A

* Material of this chapter has been shaped and submitted for publication to the Journal o f Non- 
Newtonian Fluid Mechanics.
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hybrid finite element/volume algorithm with a time-stepping procedure is employed 

to obtain numerical solutions.

7.1 Introduction

Enhancement in excess pressure-dropt (epd) observed for Boger fluids in 

axisymmetric contractions but not in planar flows is a phenomenon that has proved 

to be a challenge for numerical algorithms to date. The importance of these Boger 

fluids is that they adequately represent the response of diluted polymeric systems. 

Here, the addition of small quantities of polymer may produce highly elastic 

properties while the shear viscosity remains practically unaffected [24],

Nigen and Walters [73] compared experimental pressure-drops under increasing 

flowrates for two polyacrylamide/water-glucose Boger fluids (B1 and B2 [24]) and 

for glucose-water Newtonian liquids (NS1 and NS2) in contraction geometries. The

trial contraction ratios were in the range 2<y§<32 for axisymmetric and planar 

configurations; both long and short-die exit-lengths were also considered. Analysing 

the axisymmetric instance, no difference was detected at low flowrates between 

pressure-drops for Boger and Newtonian fluids at low flowrates. Incrementing values 

of Q (around one order of magnitude) discrepancies became clearly apparent in both 

short and long exit dies, although more pronounced for the short-die case. No 

difference could be detected between Boger and Newtonian fluids in the planar 

configuration.

In their experiments, Maia and Binding [60] considered the flow of the so-called 

SI (polyisobutylene in a mixed solvent of polybutene and Dekalin) fluid trough 

axisymmetric contraction geometries. The SI fluid is a system exhibiting shear- 

tinning and severe extension-hardening properties. The contraction ratios considered

were in the range 24.4:1 124.3:1. Maia and Binding [60] observed that the

f In this chapter, epd is to identify pressure-drop of a non-Newtonian fluid, even if the trend against 
elasticity or flowrate is decreasing. Enhancement in epd is for an increasing trend.
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relation between the pressure-drop and the wall shear-rate is independent of the 

contraction ratio and identified three different regions of Ap on wall shear-rate. 

Using the ‘Binding analysis’, these authors, reported qualitatively agreement for 

extensionai viscosity computations with the observed pressure-drops at low strain- 

rates. Maia [59] tested the capability of two integral constitutive equations, the 

Wagner and its modification by Papanastasiou-Scriven-Macosko (PSM) models. 

Two differential-type models were also studied, the exponential Phan-Thine/Tanner 

(EPTT) and Giesekus model, to represent the response of the SI fluid in steady 

shear, uniaxial extension and flow through axisymmetric contractions. The EPTT 

model was found to give better agreement with experimental data; moreover, using 

Binding analysis with this model, good agreement with predicted pressure-drop (in 

terms of the Couette correction) was gathered for low and high values of the 

downstream wall shear-rate. In the intermediate zone, the analysis overpredicts the 

experimental values.

The flow through axisymmetric contraction/expansion geometries (2 < 0  < 8) 

was considered by Rothstein and McKinley [85] (see also [86]). These authors 

studied the pressure-drop response of a dilute monodisperse polystyrene/polystyrene 

Boger fluid (with estimated solvent ratio of /? = 0.92) under creeping flow 

conditions. Large epd (over the correspondent Newtonian case) was observed for all 

trials, varying contraction ratios and curvature of the re-entrant comer.

Szabo et al. [90] simulated the flow of the Chilcott-Rallison version of the Finite 

Extensible Non-linear Elastic spring (FENE-CR) model - a constant shear- 

viscosity/strain-hardening fluid [32] - through a rounded 4:1:4 axisymmetric 

contraction/expansion geometry. These authors observed that, setting the 

extensibility parameter to L = 5, resulted in an initial decrease in epd with increasing 

elasticity, until a Deborah* ( D e) number of ~ 3 was reached and an increase in epd 

was gathered thereafter. For further increments in elasticity, pressure-drop for Boger 

fluids rose above the correspondent Newtonian value until convergence was lost

* With identical definition to the used in the present study.
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(Decrit~ 9.5). Setting L - 3.26, increase in epd was also computed, although 

convergence was lost before crossing the Newtonian reference line whilst setting 

L —> °o (equivalent rheometrical response to Oldroyd-B model) results in a 

monotonic decrease in epd for increasing elasticity. The L -parameter controls the 

maximum extension attainable by the polymer molecules. The degree of extension 

hardening for the FENE-CR model was larger for increments in L. The viscosity 

ratio used in reference [90] was§ /? = 1/9.

For L = 3.26, the minimum peak -  upturn -  in Ap is at D e~  1.2, although the 

resulted enhancement was not sufficiently large to cross the Newtonian reference line 

due to loss in numerical convergence. Switching to L = 5, Ap minimum was at 

D e~  3 and in this case cross-over appeared. Finally, for a polymer-molecule without 

limiting extension, L —> , no upturn was gathered (and therefore no cross-over) in

Ap . The behaviour of pressure-drop for this case was similar to that reported for an 

Oldroyd-B fluid in Aboubacar et al. [2,3,5]. The occurrence of the upturn and cross­

over are highly significant phenomena, where the balance between elastic and 

viscous effects plays a key role. The numerical procedure employed was a finite 

element scheme. Szabo et al. [90] could claim to be the first to numerically simulate 

such increase in epd and its exceeding over the Newtonian value.

In the 4:1:4 contraction/expansion, the required downstream lengths for stress to 

relax are significantly shorter than those of the 4:1 contraction. Except for pressure, 

no difference between downstream and upstream values is detected at any position 

far from the constriction zone, in the 4:1:4 geometry. Therefore, the rate of 

dissipation ( Z) ) over the domain may be equated to the flowrate times the actual 

pressure-drop. A similar relationship cannot be established for the contraction flow 

case. This important feature was pointed out by Cartalos and Piau [29]. In section 

7.3.3e, this equivalence between dissipation and the product of pressure drop and

§ As mentioned in chapter 5, /?= 1/9 represents a system with high polymeric content, not 
representative of Boger fluids; however, shear viscosity for the FENE-CR model is constant, giving 
then, similar response to diluted systems in some instances.
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flowrate helps to recognize the conditions required to obtain pressure loss ( Ap Boger) 

values larger than those of the corresponding Newtonian fluid.

A monotonic decrease with elasticity was observed for the response of a shear- 

thinning Pom-Pom fluid in a planar rounded-comer 4:1:4 geometry, investigated by 

Wapperom and Keunings [102], In a more recent study, Binding et al. [17] predicted 

the upturn in both planar and axisymmetric 4:1:4 configurations setting the solvent 

ratio P  = 1/9. The cross-over was detected for the planar configuration at the same 

P . Results for a highly polymeric content system ( P  - 1/9) provided a continuous 

decreasing trend in pressure-drop with increase in D e . The finite element package 

POLYFLOW was employed in reference [17].

Perera and Walters [78] investigated the flow of a 4-constant shear-thinning 

Oldroyd fluid through expansion/contraction/expansion geometries. The main 

interest was on the influence of rheometrical functions on vortex growth. Keiller [54] 

predicted pressure-drops through an orifice into a tube for both Oldroyd-B and 

FENE-CR models. For these viscoelastic fluids, A p -values were lower than the 

Newtonian case with equivalent shear viscosity and flowrate. Keiller [54] associated 

this reduction in pressure-drop with the development of a Poiseuille flow in the long 

exit-tube. The extra pressure-drop** for Oldroyd-B and FENE-CR models followed 

the same monotonic decrease with increasing Weissenberg (We) numbers. That is 

until elasticity is large enough and the molecules have attained their maximum 

extension in the FENE-CR fluid, producing a slight increase before reaching a 

plateau in pressure-drop. Additionally, Keiller [54] found negative values of extra 

pressure-drop for both axisymmetric and planar geometries.

Aboubacar et al. [2,3] compared pressure-drop for the flow through 4:1 sharp 

and rounded-comer axisymmetric and planar geometries for five viscoelastic fluids: 

an Oldroyd-B, two low-hardening and two severe-hardening PTT (linear and

** Definition: extra pressure-drop ^ goger— ^ . . ewt .

133



Excess pressure-drop in contraction and expansion flows for Boger fluids

exponential) fluids. The reported pressure-drop was normalized against the 

corresponding Newtonian fluid. The solvent ratio was set to /? = 1/9. Incrementing 

elasticity, simulation results for all fluids showed a monotonic decrease in the 

normalized pressure-drop when compared with the Newtonian case. Trends were 

relatively unaffected by the two comer shapes studied there and fluid type (either 

shear-thinning PTT or constant viscosity Oldroyd-B). In particular, this finding raises 

the question - when and what conditions are required to reproduce enhanced epd in 

axisymmetric contractions for the highly-elastic constant shear-viscosity Oldroyd-B 

model, a model capable of reproduce Boger-fluid type response.

The numerical simulations reported in this chapter are obtained with the hybrid 

finite element/finite volume (fe/fv) scheme. The creeping flow through rounded- 

comer 4:1 contraction and 4:1:4 contraction/expansion geometries, both 

axisymmetric and planar, is considered here. The 4:1:4 geometry follows the 

specifications used in Rothstein and McKinley [85,86], Szabo et al. [90] and 

Wapperom and Keunings [102]. The Oldroyd-B model is employed to match Boger- 

type behaviour due to its constant viscosity and severe hardening. Alternative 

representation of Boger fluids is made via Phan-Thien/Tanner and Single extended 

Pom-Pom (SXPP) models. To this effect, shear-thinning properties exhibited by 

these two classes of models is removed almost completely, by adjustments in the 

level of solvent content and additionally, severe extension-hardening is achieved by 

the proper choice of parameter.

7.2 Problem specification

Upstream channel radius (half-height in planar case) is Ru; the radius in the 

mid-plane is given by Rc =Ru/ 4; the rounding of the comer is determined by 

fractions of Rc, see Figure 7.1 for a schematic representation of these geometries. 

Specifications for the contraction/expansion are the same as in reference [102]. Inlet 

and exit regions of the computational domain are given by 19.5L , where L = Ru/ 4.
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a) 4:1:4 Contraction/expansion b)4:l Contraction

n'=*—

ihuH-face \ ltd-plane Jlnckrfnct

F igure  7.1. Schem atic  d iag ram  for a) 4 :1 :4 co n tractio n /ex p an sio n , b) 4:1 con traction .

4:1:4 4:1
a) Coarse

b) Medium

c) Refined

Figure  7.2. Z o o m ed  m esh sections o f 4: i :4 con trac tio n /ex p an sio n  and  4:1 con trac tio n ; a) coarse ,
b) m edium , c) refined.

135



Excess pressure-drop in contraction and expansion flows for Boger fluids

Dimensions for the contraction flow are the same as those used in chapter 6. Three 

meshes with different degrees of refinement (see Figure 7.2) are employed for each 

geometry. Element density increases especially in the vicinity of the boundary wall 

of the contraction. Detailed information on mesh characteristics is provided in Table 

7.1.

Table 7.1. Mesh characteristics

Mesh Elements Nodes Degrees o f  
freedom  
( u , p , x )

Rmin

(4:1:4) a 1080 2289 14339 0.0099
(4:l:4)b 1672 3519 22038 0.0074
(4:l:4)c 2112 4439 27798 0.0058
(4:1) a 1086 2325 14570 0.0296
(4:l)b 1626 3433 21502 0.0170
(4:l)c 2693 5652 35392 0.0097

In this study, comparison between planar and axisymmetric geometries has been 

made by imposing the same average velocity through the constriction zone, similarly 

to Binding et al. [17] and Phillips [79]. Flow response is analysed with increasing 

elasticity, in terms of the Weissenberg number. The increase in We can be achieved 

through a variation in the relaxation time of the fluid or in the velocity scale, (see 

equation (2.50)), rendering similar results. Here, Weissenberg is increased by means 

of the relaxation time scale.

Inlet boundary conditions are imposed through the solution of Poiseuille flow 

reported by Waters and King [104]. The velocity at the boundary walls is set to zero 

(no-slip at boundary). Upstream channel length is sufficiently large to ensure fully- 

developed flow is established before the contraction. Stress is determined pointwise 

through the derived ODE system of the particular choice of model. Continuation in 

elasticity is employed to obtain converged steady-state solutions; incrementation in
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We is typically {0.1, 0.5, 1.0, 1.5, 2.0, 2.1, 2.2, ..., Wecrit }. At We = 0.1, initial

conditions for stress and velocity are those from rest. Criteria to terminate the time- 

stepping procedure is when the L  ̂-norm relative maximum difference between two

consecutive time steps fall below a set threshold (10~7 in the present study).

7.2.1 Pressure-drop calibration

The total pressure-drop observed in a contraction flow is the sum of the 

corresponding Ap for fully-developed (fd) Poiseuille flow of the upstream and 

downstream channels plus an additional loss due to the presence of the contraction. 

This additional loss is referred to here as ‘entry correction’ (Apen). If the tested fluid

is Boger-type, significant differences are expected to occur in axisymmetric 

geometries but not in planar; this, when compared to a Newtonian fluid of same 

viscosity and same flowrate. Excess pressure-drop (epd) is reported here in terms of 

a normalized entry correction (see for example [2,17,85,86]) and is defined as

where the Poiseuille flow contribution is Apfd = Apup„rMm + Apdowpslream and as 

mentioned above, the flowrate and the shear viscosity are set to be the same for both 

viscoelastic and Newtonian fluids. Total pressure-drop (Ap = p inlet -  p exu) is sampled 

at centreline positions, between inlet to exit, where fully-developed flow in t  , Vu 

or Vp (say within 1%) can be assumed. Solvent/total viscosity ratio /? is varied in 

order to approximate Boger-type response. Values of this ratio are {1/9, 0.9, 0.95, 

0.99, 0.999}; highly polymeric content is represented by /? = l/9 , whilst /?>0.9 

represents very diluted systems. For the non-constant shear viscosity models (PTT 

and XPP) P  controls the level of the variation in t]s . In fact, for the normalised shear

viscosity (Tjs/r]s0) the relation I7s/t7s0^> fi is satisfied for extremely large shear-

{Ap~ Apfd)Nem (Apa )Newl
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rates ( y —>°°). This means that for /? = 0.9, the maximum deviation from Boger- 

like behaviour is anticipated to be 10%. Therefore, for both PTT and XPP models, 

the viscosity ratio studied here is /? > 0.9.

7.3 Results and discussion

Excess pressure-drop for the Oldroyd-B model is studied under increasing 

values of elasticity. The cause of the differences observed in epd is analysed for two 

different levels of solvent content: /? = 0.9, where the upturn is more noticeable and 

P = 0.99, for the analysing the cross-over phenomena. Then, a comparison between 

the flow across both 4:1:4 and 4:1 geometries in terms of internal pressure ( p ) 

values is presented. Alternative constitutive equations as Phan-Thien/Tanner and 

Single extended Pom-Pom models are adjusted to represent constant shear-viscosity 

fluids, with large levels of extension-hardening, in order to stimulate epd 

enhancement for bounded extensionai viscosity fluids. The influence of the location 

of sampling points is examined and comments are included on the conditions 

necessary to obtain larger pressure-drop values than those exhibited by Newtonian 

fluids.

7.3.1 Excess pressure-drop in 4:1:4 and 4:1 geometries: Oldroyd-B model

Response of excess pressure-drop (epd) to a variation in elasticity (We)  for 4:1:4 

axisymmetric and planar geometries is displayed in Figure 7.3. Considering first the 

solvent ratio fi  = 0.9 in the circular geometry, a decline with increasing We is 

observed until a minimum is reached at We = 2.  Thereafter, an increasing epd-trend 

takes place until the simulation diverges at Wecrit = 5, a stage that ‘touches’ the 

Newtonian reference line (epd = 1). This upturn in epd is the first important feature 

to be analysed. Same behaviour is gathered for the axisymmetric case with /? = 0.99.
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Figure 7.3. P ressure-drop  {epd) vs. We (O ldroyd-B ): ( 5 -  0 .9 and 0 .99 , 4 :1 :4  con trac tio n /ex p an sio n ;
a) ax isym m etric , b) planar.

The upturn occurs at the same elasticity value as that for (5 = 0 .9 ,  although for this 

more diluted system, epd crosses the reference line at We = 4.2 and the growth 

continues up to the critical stage around Wecnl = 6 .4 .  Hence, the cross-over appears, 

the second feature to be studied here. Note that even when the rate-of-increase 

(slope) in epd is lower for [3 = 0.99 when compared to the slope for /? = 0 .9 ,  two 

factors account for the cross-over: the larger attainable elasticity and the fact that at
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P -  0.99, epd-trend is closer to the Newtonian reference line due to the effect of 

having ‘more’ solvent in the solution. In the planar case, monotonic decrease 

(concave curvature) in epd is observed for both levels of solvent content. Critical 

levels are Wecrit ~ 3 and Wecrit ~ 4 for /? = 0.9 and ft  = 0.99, respectively. Switching

to the 4:1 contraction setting (Figure 7.4), only monotonic decrease with We is 

gathered. This decline is more substantial for the axisymmetric scenario than for the 

planar situation, and curiously, the epd-trend shows some convex shape, i.e. no 

tendency to reach a plateau is expected for the circular contraction flow. Critical 

levels of elasticity are We ~ 3.5 ( ft  = 0.9), We ~ 6 ( f t  -  0.99) for the axisymmetric 

case and We ~ 4.5 ( f i  = 0.9), We ~ 8 ( ft  = 0.99) for the planar. Note that epd values 

for the contraction case are significantly larger than those for the 

contraction/expansion scenario. In fact, pressure-drops can be about twenty time 

greater for the 4:1 case.

In all these simulations, larger values of attainable elasticity are obtained for 

larger values of the solvent ratio. Decline in excess pressure-drop has been frequently 

reported in the simulation literature for planar and axisymmetric, rounded-comer and 

abrupt contraction flows [2,3,8,54].

7.3.1a Solution data -  4:1:4 flow

Figure 7.5 displays contour lines for pressure in the 4:1:4 axisymmetric instance, 

at W e-  2 and We = 3 and setting /? = 0.99, with the objective to demonstrate that 

mesh convergence has been achieved. By observing these contour patterns, two 

aspects are detected: from the coarsest to the finest mesh, a smoothing effect in the 

segments of the curves takes place; additionally, contour lines for any given (non- 

dimensional) pressure are located in the same position for each mesh employed. 

Therefore, predictions obtained for all meshes are adequate.
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Figure 7.4. P ressu re-d rop  {epcl) vs. We (O ldroyd-B ): / f c 0.9 and 0 .99 , 4:1 co n trac tio n ; a) ax isym m etric ,
b) planar.

-  Axisym m etric contraction/expansion flow ; ( 5 - 0 .9

Special attention is given to the turn-up  displayed in this case. Contour lines for 

pressure around the constriction are presented in Figure 7.6. Apart from the pressure 

levels, differences between planar and axisymmetric configurations arise in a small 

area in touching the front-face of the constriction. In this zone a peak in pressure is 

detected, and for the axisymmetric setting, a decrease in the area of this zone, from
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Figure 7.5. P ressure Held plots around the con tractio n /ex p an sio n  (O ld royd-B ): /? =  0 .99, We -  2 and 3, 
4 :1 :4  ax isym m etric , coarse, m edium  and re fin ed  m eshes.

We = 1 and We -  2 . After the decline, when elasticity reaches W e -  3, an increase is 

gathered. Such behaviour is not reproduced by the planar situation, where only a 

decrease in area occurs, as it can be seen in the shaded zones presented in Figure 7.6. 

Note that the response in these regions for the circular contraction emulates the 

behaviour of the upturn.

- Pressure profiles at centreline and along the wall; axisym metric, f -  0.9

For the axisymmetric 4:1:4 geometry, centreline plots are shown in Figure 7.7, 

there, the lower-left plot is for the full geometry and zoomed sections are included. 

Top-left plot is a zoom of the entry section, a zone in which a flip-over in p  is 

exposed. As the flow advances through the constriction (top-right plot), pressure 

adjusts linearly; that is, p  increases with We . For the exit section of the constriction 

(lower-right plot) no visible differences are gathered; the selected We -levels become
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Figure 7.6. Pressure  field plots a round ihe co n trac tion /expansion : increasing  We (O ld royd-B ): /? = 0.9,
ax isym m etric  vs. planar.

coincident and gradually reach the fixed-exit value. Note that as a consequence of 

fixing the exit pressure reference to p = 0 ,  comments made here for pressure apply 

also for pressure-drop

- Pressure profiles at boundary wall; axisymmetric and planar, (d- 0.9

Though the centreline is commonly used to report field variables, in this case, 

the information offers no obvious interpretation of the reason of the upturn. 

Therefore, p -profiles along the downstream wall are provided in Figure 7.8. A 

generalized curvilinear coordinate (<f) is introduced to take into account the front- 

and back-faces and the curvature of the constriction. This is defined in incremental
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Figure 7.7. Pressure profile along centreline-, increasing We (Oldroyd-B): /?= 0.9. 4:1:4 axisymmetric.

form as = ylSr2 + S z 2 , where r and z are the radial/vertical and axial 

coordinates, respectively, and the operator S  is the difference operator.

The flip over in pressure is also observed with increasing We in the entry 

section (top-left plot), that is, the level at W e- 3 becomes larger than that for 

We = 2 ,  being close (slightly lower) to that for We = 1. Lower-right plot in Figure 

7.8 is a zoom of the geometry zones before and after the constriction, where minor 

differences in p-lines may be gathered and no discrepancy is detected as the fluid 

Hows away from the constriction. It is the zone after the mid-plane where important 

differences can be discerned. The top-right plot is a further amplification of the 

constriction region, covering exactly from the front- to the back-face, the mid-plane 

is located at £ = 0 .  Some differences for the three We -levels are detected ‘before’ 

the mid-plane (minimum-gap, see also Figure 7.1). There, the small gap between

Zooming "around" the corner

------------------[1] We =  1
[2] We =  2 

---------------  [3] We - 3

.5 0  -0 .2 5  0 .0 0  0 .2 5  0 .5 0
Z

Zooming the "exit" o f the constriction
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Figure 7.8. P ressure p rofile  along wall: increasing  We (O ldroyd-B ): /? = 0.9, 4 :1 :4  axisym m etric .

We = 3 and We = 2 is slightly larger than that for W e- 2 and We = 1. The 

magnitude of the differences on the back-section of the contraction (third/fourth 

quadrants in Figure 7.1) is larger. Increasing We is reflected in higher levels of 

pressure through the third and fourth quadrants; the gap between We = 3 and We = 2 

is now significantly larger.

A comparison between the 4; 1:4 planar and axisymmetric pressure response at 

the boundary wall is provided in Figure 7.9. The region plotted lies within the front- 

to back-face of the constriction. For the planar case, departure in pressure values 

before the mid-plane is difficult to detect, whilst this is just moderate across the 

fourth quadrant. The 4:1:4 axisymmetric solutions provide major shifts with 

increment in elasticity levels throughout the rounded-constriction. The maximum gap
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Figure 7.9. P ressure  profile  along wall o f  constriction  zone (O ld royd-B ): /? =  0.9, 4 :1 :4 , ax isym m etric

vs. planar.

between We -solution from axisymmetric to planar cases is reduced by a factor 

around three. Additionally, note that departures in p -trends are ‘localized’ mostly to 

the fourth quadrant, in contrast to the circular contraction where substantial increase 

in pressure starts immediately after the mid-plane.

- Planar and Axisymmetric stress and deformation-rate field data, P -  0.9

Three-dimensional surface plots for the polymeric first normal stress difference, 

defined b y 1' A, =zTu - t21, are presented in Figure 7.10. Contour-line plots for r n 

and r 22 are also provided in Figure 7 11 and Figure 7.12, respectively. As mentioned 

earlier, these plots are for the half-channel due to symmetry considerations, zoomed 

in the constriction zone. The perspective in Figure 7.10 and in all figures is that How 

direction is from left to right.

For the both planar and axisymmetric scenarios, polymeric normal stress 

difference and stress component r M , maxima are located just  beyond the constriction

Planar ( r u , T —> T,,, r22); ax isym m etric  ( Tn., T„ —> r22, r , , )•
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Figure  7.10. Po lym eric  first norm al stress d ifference , N/ fields (O ld royd-B ): (3- 0.9, 4 :1:4,
ax isym m etric  vs. planar.

plane in the third and fourth quadrants, in contact with the constriction wall. r n -

fields show that this maxima-region is relatively small in area though with large 

stress ‘concentration’ (extreme in the axisymmetric setting).

In the circular contraction case, the Nr peak increases from 5.7 to 45.9 units

(around eight times larger) when elasticity varies from We = 1 to W e-  3 , with a 

gradual but minor downstream shift in location of stress-maxima. A cross-stream 

diffusion o f these stress-peaks is detected at the centreline, which increases with 

elasticity*1; however, with considerably lower values.

”  C en tre lin e  stress m ax im um  lie about the constric tion  m id-plane.

Min = -0.5
Max = 3.1
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Figure 7.11. r,i Field con iours (O ldroyd-B ): (3=  0.9, 4 :1 :4 , ax isy m m etric  vs. planar.

Considering now planar configurations and as mention previously, stress-peaks 

are located in the same regions. The gradual shift of r,, -maxima is still present.

Differences with respect to the axisymmetric case are that there is no substantial 

increase in stress (<  7 units) with elasticity and that the diffusion to the centreline is 

considerably lower, for further details refer to Figure 7.10 and Figure 7.11.

The secondary component o f  normal-stress, r 22, (p lan a r-rvv or axisymmetric- 

Trr) presented in Figure 7.12 displays maximum values both before and after the 

constriction ‘touching’ the boundary wall. Although r 22-peaks are larger after the 

mid-plane than before this position, both maxima are of the same order of magnitude. 

Incrementation through the levels of elasticity provokes a rise in r 22-maxima (larger

Tij-Planar
|He - 21 ) H r  .?
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Figure 7.12. t 72 Field con tours (O ldroyd-B ): ( 5 -  4 :1 :4 , ax isy m m etric  vs. planar.

for the axisymmetric than for the planar case). However, the magnitude of this stress 

component is considerately lower when compared to those exhibited by r n (or /V,)

at any given We. The r 22-component shows influence on the structure and strength 

of the vortex regions.

Contour-lines for the polymeric shear stress component ( r 12) are depicted in 

Figure 7.13. Peak values are detected both before (maxima) and after (minima) the 

constriction mid-plane. Even though in the axisymmetric configuration both extrema 

suffer increase with elasticity, this effect is more significant for the minima (from - 

1.5 to -11.7 units), located just after the mid-plane. In the planar configuration, such 

an increasing trend is not consistently noted, the magnitude of exit-peak grows just
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Figure 7 . 13. Tj2 field con tours (O ldroyd-B ): /? =  0.9, 4 :1 :4 , ax isy m m etric  vs. planar.

initially. At an elasticity level o f  W e- 3, the magnitude of this r 12 -component is 

around one quarter of that for r M .

Contour field plots of du are illustrated in Figure 7.14, which uncovers little

variation with We in both axisymmetric and planar flows. Four peaks of this 

deformation-rate component can be observed in the flow field near the constriction. 

Maximum values in contact with the boundary wall are of about 0 ( 2 )  units and

there are no significant differences noted in the magnitude between the axisymmetric 

and planar configurations. Centreline peaks in the circular contraction double those 

exhibited by their planar counterparts. Furthermore, the regions of increasing
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Figure 7.14. d n  field con tours (O ldroyd-B ): (5 = 0.9, 4 :1 :4 , ax isy m m etric  vs. planar.

deformation rate (in absolute value sense) are more localized in axisymmetric flows. 

Extension-hardening response is influenced by such deformation rates.

Polymeric stress r M (or Nx) displays only one peak in the constriction zone near

the boundary wall where du -maxima occur. Note that some cross-stream influence

from the main peak in normal stress is detected at the centreline, a manifestation of 

elastic phenomena.

As mentioned in chapter 6, du is only a guidance to extensional deformation 

rates when computed in such complex flow settings. In an attempt to relate zu (or 

N{) with the deformation rate behaviour, standard forms o f flow invariants (see 

section 6.3.1a for definitions), F and I  are presented in Figure 7.15 and only for the
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Figure  7.15. 2 'u iid  /" fie ld  con tours (O ldroyd-B ,): /? = 0.9, 4 :1 :4  ax isy m m etric .

axisymmetric configuration X-peaks are located at the centreline, presenting a 

m axim um  before the mid-plane and a minimum of equal magnitude after this 

position. In general, no influence of We is noticed. These two zones o f large values 

o f X are extended up to the constriction wall, showing larger cross-stream 

penetration than in dn ; however, no extreme values are found in contact with the 

boundary wall o f  the contraction. It is T representation of the deformation rate that 

displays a single peak at the constriction wall in the mid-plane position resembling 

that exhibited by rn . T-fields also show local maxima at the centreline with 

symmetry about the peak before and after the mid-plane.

It can be concluded that there is correlation between peaks in stress r n (or Nx) 

and deformation rates of the fluid lying above the constriction wall at the mid-plane
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position. Cross-stream influence is detected in these variables. In the planar 

counterpart such a conclusion cannot be reached. As a result, the expected degree of 

strain-hardening in both configurations can be quite different, being larger for 

axisymmetric flows. Larger (fast response) viscous influences in the converging flow 

into the constriction region and in the decelerating flow out of the constriction are 

stimulated in the axisymmetric case (see comments of Szabo et al. [90]).

- Axisymmetric contraction/expansion flow; ft  -  0.99

Adjusting the solvent ratio to /? = 0.99 in the axisymmetric 4:1:4 

contraction/expansion, the enhancement in normalized epd is sufficiently large for 

the cross-over phenomena to emerge. It was mentioned previously, that increasing 

the solvent ratio produces epd-trends that are closer to the Newtonian reference line, 

through increasing the solvent contribution to the total viscosity to 99%. With this 

change, the extensional viscosity becomes sharper as strain-rates approach the limit 

A £ = 1/2; to appreciate the effect of /? on rje, see Figure 7.16a (further comments

on this figure are given in section 7.3.3). In this study the extensional response of the 

fluid is adjusted by modifying the solvent content, whilst Szabo et al. [90] adjusted 

the finite extensibility parameter ( L ) of the FENE-CR model to influence pressure- 

drops. For this solvent contribution ratio, focus lies on the axisymmetric 

configuration alone, the one that presents the cross-over.

- Pressure profiles at boundary wall; axisymmetric and planar, p -0 .9 9

Figure 7.17 displays the pressure-profile at the wall for the axisymmetric 4:1:4 

flow. Again, the flip-over is present in the entry section, where the pressure at 

W e-  5 is larger than for We = 1 and We = 2. In the exit region, the three selected 

levels of elasticity produce the same levels of pressure. Differences between the 

P = 0.9 and /3 = 0.99 cases are that the gap in pressure profiles, generated by 

increasing elasticity, is contained almost completely in the fourth quadrant (not in the 

third/fourth as for f t  -  0.9) and that this gap in We = 1 and We = 2 solutions is not
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apparent until elasticity reaches W e-  5. At this Weissenberg number, epd has 

crossed the Newtonian reference line; through interpolation, the excess pressure-drop 

of the Boger fluid intercepts the reference line at a level of W e-  4 .2 .  The critical 

level is then Wecril = 6.4 .

- Stress and deformation-rate field data; (d- 0.99

The normal stress component r M and the deformation-rate du are plotted in

Figure 7.18. This plot is for the axisymmetric flow of the Oldroyd-B model with a 

solvent contribution to the total viscosity o f  99%. Similar response to that for setting 

13 = 0.9 is obtained. Significant increase in rM maximum after the constriction mid­

plane is observed under increasing levels of We. These maxima are in contact with 

the boundary wall and they increment from 0.6 {We = 1) to 20.8 {We = 5), around
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thirty times (for [5 = 0.9 this increase is around eight times). However, peak-values 

(/?  = 0 .99) are lower than those observed for (3 = 0.9 at any given We .

The elevation of (3 from 0.9 to 0.99, produces a reduction in the contribution of the 

polymeric viscosity, which is associated with the initial decline in epd-trends. That 

is, for larger polymeric viscosity contribution (lower (3), this initial decrease of 

pressure-drop is larger. The fact that the upturn in epd is less visible for (3 = 0.99 

than for J3 = 0.9 is regarded as a consequence of the larger contribution from the 

solvent, with its associated reduction in the decline of epd at low elasticity levels 

(Figure 7.3a).

dn-Planar

|»g - 2\
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Rothstein and McKinley [86] explain such initial decline in epd at any given 

polymer content level with molecular arguments. These authors interpret the 

decrease in pressure-drop as a result of an energy storage process, which takes place 

as the polymer chains are being extended. For further increments in We (flowrate or 

elasticity), the molecules reach their full extension and start behaving like rigid rods, 

increasing the pressure-drop (tending to an up-turn) via an additional viscous drag 

due to the presence of such rods. Part of the stress generated in the constriction is 

recoverable once, the contraction has been passed and the polymer chains return to 

their original length.

Increasing /? (which is a measure of the concentration of polymer in the 

system), can be seen as a decrease in the number of polymer chains in the fluid. This 

accounts for lower decline in initial epd, confirming the observations obtained in the 

present study (Figure 7.3a). Note that with the Oldroyd-B model, there is no limiting 

extension of molecules and yet the up-turn is detected. Such response may indicate 

that the additional viscous drag is present when the polymer chains reach a certain 

length (clearly not critical), even if they can be extended further.

The deformation-rate component dn is shown in Figure 7.18 for /? = 0.99. It 

exhibits almost identical contour-lines patterns as those for J3 = 0.9 (Figure 7.14), 

with only minor differences in peak-values. Therefore, for both solvent ratios, higher 

deformation zones are expected near the mid-plane of the contraction and at the 

centreline zone, though of lower magnitude.

- Comments on pressure-gradient: planar and axisymmetric, fd -  1/9, 0.9, 0.99

Centreline pressure-gradient are presented in Figure 7.19 for both axisymmetric 

and planar 4:1:4 configurations and for systems representing highly polymeric 

(/? = 1/9, Fluid-A) to highly solvent content (/? = 0.9, Fluid-B and /? = 0.99, Fluid- 

C). Peak-values of pressure-gradients (absolute value) are located near the mid­

plane. These maxima in the axisymmetric configuration double those of the planar
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case. Pressure-gradient for Fluid-A exhibits a downstream shift (in direction to the 

back-face of the constriction) when elasticity varies from W e-  0.5 to 1.5. A minor 

reduction in peak-value is also noted. As a consequence of this shift, Vp values are 

reduced in the upstream when compared to the downstream section, provoking a net 

reduction. With increasing elasticity, pressure-gradients require longer downstream 

distances to relax to fully-developed conditions. In the planar case, these distances 

are slightly larger than for the axisymmetric configuration. For Fluid-B and Fluid-C 

little effect is gathered for increasing We and larger downstream lengths would not 

be necessary. See Binding et al. [17] for similar comments to the initial epd-decline.

7.3.1b Comparison with 4:1 contraction flow results: [p-pNewt] -data

One goes on to study the benchmark 4:1 contraction flow in this section, see 

Figure 7.4. A monotonic decline of epd with increasing elasticity is observed; for 

J3 = 1/9 similar decay in pressure-drop is .reported in literature (see for example 

references [2,3]). No tendency in trends to reach an upturn is detected in Figure 7.4. 

For Oldroyd-B fluids with j3 = 0.9 and short-dies, Aboubacar et al. [5] reported 

pressure-drops in planar flows similar to those for corresponding Newtonian fluids.

Considering the axisymmetric 4:1 contraction, Figure 7.20 displays the pressure 

(or pressure-drop due to the setting that p -  0 at the exit) along the boundary wall. 

No flip-over is observed between pressure values in the entry section (top-left plot); 

therefore, no upturn in epd can be detected. Increasing We produces a decrease in 

pressure-level at any point along the wall (see full geometry, lower-left plot). This 

decrease is reduced as the fluid approaches the channel-exit (lower-right plot); again, 

this is because of imposing vanishing pressure reference at flow-exit. Even in the 

entry of the contraction, no flip-over arises in pressure-trend. The response of the 

fluid in the axisymmetric 4:1 contraction is extremely different to that exhibited in 

the 4:1:4 contraction/expansion flow (Figure 7.8). Note that in the contraction, 

pressure-drops are around 400 units, whilst for the 4:1:4 setting, this reduces to ~ 15 

(increments in Ap -values correspond to greater dissipation in the flow).
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Figure 7.20. P ressure profile  along  wall increasing  We (O ldroyd-B ): f3 -  0 .9 , 4:1 ax isym m etric .

An alternative calibration, [ p -  pNewl J, for this Boger fluid pressure-profiles is 

illustrated in Figure 7.21. This new variable is defined as the pressure for the 

Oldroyd-B fluid where an equivalent Newtonian part (the zero-reference line) has 

been subtracted at each point in the domain. The equivalence between both fluids lies 

in terms of flowrate and total shear viscosity. Figure 7.21 displays [ p - p Nt.wl} data 

along the boundary wall for 4:1 contraction (left) and 4:1:4 contraction/expansion 

(right), with the corresponding stress component r u for both cases plotted below. In 

the generalized coordinate sense, both mid-plane (4:1:4 case) and ‘end of rounded- 

corner’ of the constriction (4:1) are located at £  = 0 .

Note in Figure 7.21, that peaks in stress and pressure occur at the same location. 

For the 4:1 geometry these peaks are located almost exactly at the end of the 

rounded-corner ( £  = 0.04 units), whilst in the 4:1:4 setting maxima take place
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between the mid-plane and the back-face ( £  = 0.2 units). Note that even when stress- 

peaks are similar in magnitude between geometries at every We-level, [ p  ~  p Newt J 

data is significantly different.

In the 4:1:4 case (right plots), stress and this pressure calibration have a constant 

value with respect to the £ -position except in the constriction region, whilst in the

4:1 contraction, a relaxation in stress and [ p -  pNewl ] takes place throughout the exit

channel. Due to the 4:1 flow-geometry configuration, Tu recovers to the constricted-

channel level away from its inlet-value.

Another aspect to observe is that in the 4:1 contraction instance, [ p j -d a ta  is 

lower than the corresponding Newtonian case at any £ coordinate. Contrasting
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response is obtained from the contraction/expansion flow, where positive [ p -  pNewt ]

is gathered in the third and fourth quadrants, and this difference increases with W e . 

The upturn in pressure-drop is associated with this positive and increasing trend in 

[ p -  p Newt ]. Note that the excessive decay in this pressure calibration with elasticity 

increments in the 4:1 contraction prevents the increasing peaks from crossing the 

Newtonian reference line. One may speculate that for positive [ p  -  p Newt ]-data in this

4:1 flow, significantly larger elastic effects will be required, perhaps of one to two 

orders larger. However, this cannot be achieved with the Oldroyd-B model and 

available numerical methods. For the 4:1:4 instance, the upturn in epd is explained in 

terms of these [ p ~ p Newt] peaks observed in pressure, themselves provoked by 

stress.

In Figure 7.22, one focuses on the 4:1:4 configuration alone, contrasting 

[P ~ PNewt ] anc* stress data between planar (left plots) and axisymmetric (right plots)

instances under increasing W e . Here, stress generation across the constriction in the 

planar case is considerably reduced over that for the axisymmetric case. Pressure 

differentials are correspondingly suppressed in the planar case, so that no flip-over in 

entry [ p -  pNewl ] -data is substantiated, and hence, no upturn is apparent.

7.3.2 Vortex development and structure (4:1:4 and 4:1)

Streamline patterns for both 4:1:4 and 4:1 axisymmetric geometries are shown in 

Figure 7.23 and Figure 7.24. Contour values are within 0 < ^ < 0 .5  outside the 

vortex region, over which equal increments are used (Ay/  = 0.05). For the streamline 

patterns in the vortex region, six contour values are chosen [10"4 < ^ < 1 0 -3] in

increments of 0.15-3. Figure 7.23 presents streamline patterns for two solvent 

fraction values, 0  = 0.99 and /? = l/9 , corresponding to highly-solvent to highly- 

polymeric systems, respectively. For the ( 0  = l/9)-case, strong vortex enhancement 

in cell-size and intensity is observed in the upstream channel from We = 0.1 to 1.5,
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Figure 7.22. Pressure [p-pNewl] and stress Tu profiles along wall increasing We (Oldroyd-B): /?= 0.9,
4:1:4 axisymmetric and planar.

with suppression in the downstream section (almost disappearing). At the other 

extreme (/? = 0.99), vortex variation is less visible. In terms of cell-size, minor 

increase can be detected in the downstream vortex for We = 5. Looking at intensity, 

the upstream vortex increases slightly and more noticeable variation is observed in 

the vortex after the constriction. A decay from We = 1 to 2 is gathered, followed by 

an increase from We = 2 to 5. The decay and increase is in direct correspondence 

with, and hence a signal of, the epd response for this beta ratio = 0.99. As noted 

earlier, large stress arises over the third and fourth quadrants (after the mid-plane), 

where the more visible and larger vortices are detected for this highly-solvent content 

system.

Figure 7.24 presents the streamline patterns for /? = 0.9 across the two distinct 

axisymmetric configurations: the 4:1:4 expansion/contraction and 4:1 contraction.
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Now, the upstream vortex increases in intensity with elasticity increase under both 

geometric configurations. In contrast with the 4:1:4 geometry and in the downstream 

flow section, vortex intensity is observed to decrease from We = 1 to We = 2, and to 

increase thereafter by W e-  3 (as with /? = 0.99 data above). It is precisely under 

these circumstances that an upturn in epd is observed.

7.3.3 Alternative model representations: 4:1:4 axisymmetric

To this point, all predictions have been for the Oldroyd-B model, a fluid with 

strong and unbounded strain-hardening response, now some alternative models 

capable of strong-hardening behaviour are considered. Constant shear viscosity is 

achieved through high solvent fractions, i.e. -»1 . The particular models selected 

are the linear and exponential Phan-Thien/Tanner (LPTT and EPTT) and the single­

equation pom-pom fluid (SXPP). A comparison of epd-data between these models, 

including that for the Oldroyd-B fluid is provided for the interesting case of the 4:1:4 

axisymmetric flow.

Model parameters to stimulate large values of extensional viscosity are 

LPTT( PyEpjj), SXPP(/?,£,4 ) and 01droyd-B(/?). With PTT and SXPP models, the 

viscosity ratio (3 -parameter is used to control the degree of departure from the 

Newtonian reference base to the second plateau value. That is, the approximation to 

constant shear-viscosity for these shear-thinning fluids, PTT and SXPP, is within 

10% for P = 0.9 and 1% for /? = 0.99 (see comments on Figure 7.16 in Section 

7.3.1a). Note that the network-based LPTT-fluid is purely strain-hardening to a 

limiting finite plateau (unlike Oldroyd), and so, does not support any degree of 

strain-softening (Figure 7.16). This fluid can be made to replicate the FENE-CR 

steady extensional response with its finite-extensibility control parameter (L), 

through the adjustment of the eprr -parameter: L = 50 approximately equates to

£P7T=0.02 response, whilst L = 5 more closely matches £prr=0.1 [48].

Alternatively, the kinetic-based SXPP-fluid displays strain-hardening/softening
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properties, with the rise and peak of hardening controlled by both SXPP(£,q).  Here, 

£ controls the degree of system entanglement (molecular weight, M w ) and q the 

number of dangling-end side-branches to the molecular backbone chain. The 

alternative forms of extensional viscosity data for each model used here allows one 

to assess the impact of both, bounded strain-hardening over the unbounded Oldroyd 

response, and to distinguish between excessive and mild strain-hardening.

7.3.3a epd for Old-B, LPTT(epTT=0.15xlO'4), LPTT(Sprr=0.75xia4): fi=0.9

Viewing Figure 7.25a for j3-variation in Oldroyd-B and LPTT models, each of 

the LPTT-variants track the Oldroyd-B epd-data in trend. The match is close, up to 

the local minima (upturn) of W e - 2. After this stage, the LPTT-fluid with greater 

hardening response, LPTT(£P7T =0.15x10”4), more closely follows the rising trend

(steepness) of Oldroyd-B. Once the upturn (We = 2) has been reached, the relative 

rate-of-rise of epd with increasing elasticity across fluids is larger for fluids with 

more severe strain-hardening properties, where the Oldroyd-B model is the upper 

limit. In this case, if it were possible to advance elasticity from Wecrit ~5  to 9, the

significant epd enhancement observed by Szabo et al. [90] with the FENE-CR model 

would be realised.

7.3.3b epdforLPTT(ePrr=0.15xlff4): P=0.95

The trends are all replicated for LPTT(/? = 0.95), with lower epd decline than 

for /? = 0.9, and slight lessening of subsequent rise. The intercept with the 

Newtonian reference-line thus occurs earlier at We = 4.4, rising to a critical level 

Wecrit ~ 5. Thus, the importance of -adjustment is clear.

7.3.3c epd for Old-B, LPTT, EPTT and SXPP models: high f3=0.99

Switching from j3 = 0.9 to a higher solvent fraction, /? = 0.99, a major impact 

on the level of epd-data is observed, both in initial decay rate and minima attained,
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a) /3-variation

1.00

0.99

S .  0.98

» *> [I] Old-B. M  9
O O [2] Old-B. M -9 9
»— ■ [3] Old-B. 
o o [4] LPTT(0.9.1.5E-5)
o -o  [5] LPTT(0 V5,1.5B-5)
<>— e [6] LPTT(0.9,7.5E-5)

0.97

0.96

0.95,

We

b) (3-0.99

0.98 L
» -O [1] LP ITO 5E-S)
» -o [2] LPTT(7 5E-5)

0.97 - ®—® [3] I.PTTl 1 5F.-4»
♦--- * [4) EPTTl I 5E-51

|5|SXPP„
0.96 - 16] SXPP,W

We

F igure  7.25. P ressu re-d rop  {epd) vs. We: 4 :1 :4 ax isym m etric ; a) /^-variation, b ) J3= 0.99.

see Figure 7.25b where solutions at j3 = 0.99 are presented. This is due to the 

relative proportions o f solvent to polymeric components within each system and the 

impact this has, in particular, via decreasing polymeric stress levels. As illustrated in 

Figure 7.16, prior to the critical deformation rate o f  0.5 units, an increase in [3 has 

the effect of lowering extensional viscosity. Table 7.2 reflects the parameters used 

here to investigate ^ / - r e s p o n s e  for the selected models in order to appreciate the 

effect of the material functions on the flow setting. The Oldroyd model displays an 

unbounded degree of hardening under extensional deformation and is therefore not 

listed.
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For (/? = 0.99)-data alone, once again all model variants provide similar 

initial decay in epd-data up to We = 2. This is a statement about common peak 

strain-rates experienced within the flow field, independent of /? and for We up to 

two. Beyond the level of W e-  2 , the departure in fluid properties segregates the 

various types of response. The LPTT(/? = 0.99)-models approximate the Oldroyd-B 

trend-line, displaying upturn to various degrees and even a tendency to intercept the 

Newtonian reference-line. As may be expected, the fluid with the larger degree of 

hardening, LPTT(fP7T =1.5x10-5), follows the Oldroyd-B trend-line more closely

and has the faster rate-of-rise in epd. This particular version of the PTT model 

supports sustained hardening properties at large deformation-rates, with similar rates 

of hardening uptake as for Oldroyd, and larger plateau levels as £prr —> 0 . The

instance, with ePTr = 1.5xl0-5, is so close to Oldroyd in hardening, that it succeeds 

in clearing the Newtonian reference-line, unlike the slightly larger values of 

£ptt ^{O.TSxlO^T.SxlO-4} , lines [2] and [3] in Figure 7.25b. In contrast, the SXPP-

model certainly plateaus out beyond We = 2, confirming limiting expectations, as 

above. For S X P P 1 5 , there is no local minimum, and hence, no enhancement above the

Strong
hardening

Low
hardening

§§ Anisotropy parameter (a ) is set to zero for both SXPP fluids.

Table 7.2. Fluid parameters for the p  = 0.99 solvent fraction

LPTT EPTT SXPPa

e = 0.15xl(T* e = 0.15xl0-4 £ = 0.99 ...,q = 500

e = 0.75xl0-4

e  = 1.5x10"*

£ = 0.99... ,q = 15 
SXPP15
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Newtonian reference-line encountered. This fluid has reached its limiting plateau in 

extensional viscosity (constant level in Trouton ratio) for this range of We within the 

constriction zone, the flow-area of greatest impact upon epd. Any effect of softening 

is negligible for this SXPP option. SXPP500 fluid displays severe strain-hardening at 

moderate strain-rates, to a peak level equivalent to that for the 

LPTT(f/,7T =0.15xl0"4) fluid, with a decline thereafter at larger strain-rates. Here,

for the SXPP500 fluid, an epd minimum appears at W e - 5, though is not as 

prominent as for PTT and Oldroyd cases. The trend in this epd-curve appears more to 

asymptote out than to cross the Newtonian reference line. This can be associated 

with much lower stress maxima beyond the constriction when compared against 

Oldroyd and PTT solutions (see Figure 7.26, /? = 0.99). What is essential here is the 

delay in the extension-hardening regime observed with the SXPP500 model. Then, 

increase in stress substantially depreciates; for example, at ^ £ - 0 . 7 ,

LPTT(6*/,7T = 0 .15xl0-4) and EPTT(£P7T = 0.15xl(T4) extensional viscosities are 

greater than 300 units, whilst SXPP500 lies only around 3 units (see Figure 7.16c). 

Not until a deformation rate, \ be ~ 2.0, does the SXPP500 fluid reach such elevated

order in extensional viscosity. The upturn in epd for the PTT models can be 

correlated with the similarity to Oldroyd response of sharp rise in extensional 

viscosity (hardening) around the 0.5 unit strain-rate level. Beyond such strain-rates, 

the LPTT models reach a plateau, with levels of extensional viscosity of {103, 250,

150} units for ePTT = |0 .15x l0 -4,0.75xl0-4,1.5xl0-4} . The tendency in epd-trends

towards the asymptotic limits at elevated elasticity levels may be related to realising 

these -plateau displayed by the LPTT models. For the two fluids,

e PTT = | 0 . 7 5 x 1 0 _4, 1 . 5 x 1 0 “4} , their trend-lines ([2], [3]) lie in close proximity to the

Newtonian reference-line. Note that for £prr = 1.5xl0~4, with lowest level of

extensional viscosity plateau for the LPTT model, this leads to a trend-line 

practically parallel to the Newtonian reference-line. In the regions of deformation 

where extensional viscosity (and Trouton Ratio) is constant and dominates,
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4:1:4 Contraction/expansion, x n  ut boundary wall

-------------[1 ] We = 1, Old-B
[2] We = 2, Old-B

------------- [3] We = 3, Old-B
-------------[4] We = 5, LPTT(1. 5E-5)

-------------  [1] We =5, Old-B
 •------ [2] We = 6, LPTT(1 5E-5)

• [3] We = 6, EPTT( 1. 5E-5)
— •------  [4] We = 3, SXPP^,

--------------- [5] We = 10, SXPP^

IP =  0 .9 9

r40
 13J [I] [2] [3]

—  UJ

[4]J2-10 -10

1 % T

Figure 7.26. S tress profile  along  w all increasing  We\ (5 -  0.9 and 0 .99; 4 :1 :4  ax isym m etric .

e-pcZ-response is closer to that for an equivalent Newtonian fluid. The ratio of the 

resultant epd to the original Newtonian flow will be directly related to the

enhancement in extensional viscosity

A further com parison  betw een  the tw o s trong-harden ing /so f ten ing  fluids, 

EPTT(£’/Jrr = 0 . 15X10-4) and SXPPsuu, provides a better unders tand ing  o f  the

influence of delayed hardening upon epd-trends. The delay in onset of the hardening 

regime provokes the lower stress values developed by SXPP500. This can be observed 

in Figure 7.26 for [d -  0.99 -setting, where stress-peak at the wall for SXPP500 and

VPe = 10 is about five times lower than for LPTT(£'P7T = 0 . 15X10-4) or Oldroyd-B

models at W e-  6 or less. The rise in SXPPsoo-stress as elasticity increases, indicates 

that the softening regime has yet to be reached. In Figure 7.26, it can be observed 

that the peak for We = 10 is about six times larger than for W e-  3 .  The rise in stress 

may be reduced by an additional suppressive effect, identified via the more gradual 

increase in extension-hardening exhibited by this particular pom-pom model 

(SXPP500) compared to its PTT counterparts. Observing the epd-curve for

E P T T (£P7T = 0 .15x10 4) of Figure 7.25b. only a slight departure from the
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LPTT(f/>7T = 0.15xl0~4) response is noted (lines [1] and [4]). Such departure may be 

related to the lower t]e -maxima displayed by the EPTT model, associated also with 

reduction in the rate of hardening prior to the softening regime.

7.3.3 d Very high /3=0.999 predictions for Old-B

Considering now a system with the least departure from the Newtonian 

reference-line (compared to 0  = 0.9 and 0  = 0.99), due to an extremely large 

solvent presence, corresponding to 99.9% of the total viscosity. This case is defined 

by setting the viscosity ratio to 0  = 0.999. Even with this extremely low polymer 

concentration, the upturn in epd and the cross-over with the Newtonian reference- 

line can still be detected. The position of the local minima has not changed, simply 

rates of decay and rise up, to and beyond this stage. Trends here, are consistent with 

the arguments presented above.

7.3.3e Location o f upstream pressure sampling point -  experimental epd

Further comments are presented in this section on [ p -  pNewt ] -data and its 

impact on epd in the 4:1:4 axisymmetric configuration, whilst varying the 0 -  

parameter via {1/9, 0.9, 0.99} (see Figure 7.27). Recalling that for 0  = 1/9, there is 

no flip-over observed in [p — pNewt ] -entry with increasing elasticity, and hence, no 

upturn. This is the instance with only monotonic decrease in epd. The { 0  = 0.9 )-case 

produces upturn in epd, whilst 0  = 0.99 gives both upturn and enhanced epd, as 

noted in the figure. By identifying p for Oldroyd-B as pBoger for clarity, data is 

expressed in the form,

( en ) Boger en ) Newt  _  ^  ^ \_ P Boger P N e w t H
(Ap ) ~ (Ap ) ' ( }\  tr en j N ewt V * en /M ew l

171



bxcess pressure-drop m contraction and expansion flows tor Boqer fluids

4:1:4 Contraction/expansion

a) Schematic representation of the sampling-point

I

upstream
or

dow stream

4
X b ff bottom front-face

b)/3= 1/9

 We — 0.5
  W e =  1.5

— Newtonian

r  10

C,

-18 -16 -14 -12 -10

c)/3= 0.9

15
upturn epdWe =  1

W e = 2 
W e =  3 
Newtonian

10

5

-5 -18 -16 -12 -1 0

d) P -  0.99

15
W e =  1 
W e =  2 
W e =  5 
Newtonian

10

u p -sp

^  0
-5 -18 -16 -12 -1 0

Figure 7.27. P ressure  [p-pNew,\ profiles along w all increasing  We (O ld royd-B ): 4 :1 :4  ax isym m etric ; 
a) Schem atic  represen ta tion , b ) 1/9, c) J3= 0.9, d) j3= 0.99.
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From Figure 7.27, it may be gathered that in fully-developed inlet/exit 

conditions (fd), that A\_pBoger- p Newt~\fd ~ 0• Theoretically, under same flowrate and

same shear viscosity setting for both Boger and Newtonian fluids, this statement is 

exact. Hence,

A  [  P B o g e r  P N e w t ] en _  A  [  P B o g e r  ~  P N e w t ]  _  ^  ^  ( 7 3 )

(  ̂ P e n  ) Newt (  ̂ P  en )  Newt

For enhanced epd, ( P  - 1) must be positive and it is known that in general, 

( A P e n ) N e w t  > ^ ’ With the calibration in the numerical scheme of p eBdger ~ Pn'Li -0>

/  \  r *1 up~spthis implies that (P  -1) > 0 if and only if I pBoger -  pNewt I > 0 . Here, an upstream

pressure sampling point (up-sp) can be defined (see Figure 7.27a), set at the

minimum distance upstream from the mid-plane of the constriction to satisfy fully-

developed flow conditions beyond the vortex region, so that

( \  inlet / \  up-sp

P B o g e r  P N e w t /  \P B o g e r  P N e w t J

Specifically, with Ap = p inlet -  p ex,t,

A  [  P B o g e r  P N e w t ]  _  ( P  BoSer P Newt )  ^ P ^ e f  P * N e w t ) ^

( A P e n  ) Newt (  ^ P e n  ) Newt

0

(7.4)

then,

( \in le t / \u p - s p

P B o g e r  P N e w t )   ^  ^ _ \ P B o g e r  P N e w t )

( A P e n  ) Newt ( ^ P e n  )  Newt

(7.5)

This is a statement about the location of the upstream pressure sampling point (up- 

sp), which is satisfied for { J3 = 0.99, We = 5 } far upstream (say at some 14 units), a 

stage where enhanced epd is detected. With j3 = 0.9, this same condition may be 

satisfied with a short centreline upstream distance ~0.5 units, just beyond the front-
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face. Thus, the centreline upstream sampling distances, £, and the dependency of 

practical experimental epd measurement on this distance can be re-examined, noting 

that I  is measured upstream from the mid-plane (see Figure 7.27a). Influence on 

epd-w alues for a range of different upstream sampling points,

i  = {0.5,1.0,y/up ~ 1.5,2.0,14-base}***, is depicted in Figure 7.28 for J3 = 0.9. By

suitable sampling, it is possible to extract enhancement even for Oldroyd-(/? = 0.9). 

That is with I  > 0.5 + a , We > 2 for some positive constant a , the minimum such per 

case considered. One recognises that in practice, valid -epd, should be taken at a 

fully-developed upstream stress location beyond the vortex regime, when falling 

below a set level (say 1% of stress maximat++, t ), see Figure 7.26.

Data is included in Figure 7.28a for the equivalent LPTT-(/? = 0.9) fluid, where 

it can be discerned that the trend is towards larger enhanced epd for larger We ( —» 5) 

and for £ > 1.5 units.

In Figure 7.28b, each We -solution is re-considered and plotted as corresponding 

epd against upstream sampling distance £. This identifies the scale and rapidity of 

the rise in epd at each We -state as t?—>0.5 units (constriction front-face). Clearly, 

this state of rise is most rapid and assists in determining the constant a per We- 

level***. So, for example, with We0ld_B of {1, 2, 3}, a is {0.0, 0.5, 1.5} units, rising

to W e ^  of 5 and a of about 3.5 units. For LPTT(/? = 0.9 ,£F7T = 0 .15xl0-4),

We = 5 and £ = A, the sampling distance is outside the vortex region (delimited on 

the upstream wall by yr ) and which satisfies the fully-developed stress

establishment criteria. If higher elasticity levels could have been reached 

(Wecrit >5.6) for the LPTT(/? = 0 .9 ,eprr =0 .15xl0-4), enhanced epd would have

*** i  = 0.5 corresponds to the front-face, y/up is the minimum valid -6.
tt+ Field variables in the centreline require longer distances to relax than those along the wall, for 
example, upstream pressure-gradient reach 1% of its peak-value at z ~ -1.7 units (see Figure 7.19c).
*** Clearly, it would not be difficult to provide misleading invalid epd-values from € (or a) taken too 
small (too close to the constriction). There is also a / max beyond which all epd-data are valid and 
equivalent.
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a) epd 
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0.90,

0 0 1 %  I

Figure 7.28. P ressu re-d rop  {epd) ui d ifferen t sam plm g-po in ts and e la s tic ity  le v e ls : j3 =  0 .9 , 4 :1 :4
ax isym m etric .

been achieved way-upstream. The importance of this analysis is to assist in guidance 

for pressure transducer positioning in order to obtain enhanced valid-epd 

measurements. With respect to the ( /?  = 0.9 )-solutions of Figure 7.28b, epd-minima 

is established by £~A  units, with sharp upturn for £ - 2  units. This is certainly 

beyond the yf -measure indicated o f £ ~ 1.5. The subsequent sudden rise as £ —> 0.5

units is common across all cases. For the LPTT(/7 = 0 . 9 9 , ^  = 6 .4),  a slightly less

vs. We

,-0  1 0  unit

1 > units.

, 0  2 0  u n its

14 0  u n its

G - - 0  O ld -B ,/=0.5 
n— □ Old-B./  = 1.0 
□ o  O ld -B ./= 2.0 
0- G Old-B. /=  14.0 
O  O  LPTT(1.5E-5),/= 0.5 
G - - G  LPTT(1 5E -5)./=  1.0 
G— G LPTT(1 5E -5)./=  1.5 
G  --O  LPTTd 5E -5)./=  2.0 
O— O LPTT(1 5E -5)./=  14.0
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significant variation can be observed from the epd-minima ( t  ~ 2.5 units) towards its 

limit ^ —>0.5 units, when compared to (/? = 0.9)-cases. The terminating epd-value 

(£ —> 0.5) is considerably reduced over that for LPTT(/? = 0.9,We = 5.0). This may 

be associated with Tn -maxima across cases which reduce from 89.5 units for 

LPTT(0  = 0.9,We = 5.0) to 23.7 units for LPTT(/? = 0.99,Wecrit = 6.4). Here, again 

the strong influence on epd is from stress reduction, lowering the extensional 

viscosity through increase in /?.

Combining the information gathered in Figure 7.28b with Figure 7.28a and 

selecting  ̂= 1.5 units, a prediction line following the epd-trend (We,j3 = 0.9) has 

been included in Figure 7.28a drawn for We> 5. This aids in identifying that an 

elasticity level of We = 0 (  10) may be necessary to gather an enhancement of

0 ( 20% ) .

Following the observations of Szabo et al. [90] and Cartalos and Piau [29], 

relating the dissipation-rate to the product of pressure-drop and flowrate, assuming 

equitable upstream and downstream stress distributions, a functional relationship 

between dissipation-rate and [ p -  pNewt ] is now sought. One may begin with§§§,

ApQ  = &  where Ap = p inlet -  p exit, (7.6)

recognizing &  = j^o:VudV over the inlet to exit flow region in question, where a is 

the total stress and V is the fluid volume. Defining

(ApQ = V ) Bos„ and (ApQ = Z>)NM, (7.7)

and assuming a constant flowrate configuration across the different fluid settings for 

simplicity, this yields,

§§§ Equation (7.6) is satisfied at every instant under inertialess conditions.

176



excess pressure-arop m  conrracTion ana expansion t i o w s  ror tsoger r/u/as

(7.8)

r  nexit
and since by calibration, [ pBoger -  p Newl J = 0, then

P B oger P  N  ewt J = L  P b  oger P N ew t J (7.9)

where the entry-station may be taken as the upstream pressure sampling point 

( up-sp) ,  provided fully-developed flow conditions apply (in stress). This identifies 

the relationship between dissipation difference per unit flowrate, the upstream 

pressure differential and epd from equation (7.5). Since identical arguments may be 

applied for the separate 4:1:4 fully-developed flow sections, both upstream and

downstream, where the relation &\_PBoger-  PNewt~\fd = 0 is satisfied, then, it can be

concluded that there is no difference in dissipation-rate between these Boger and 

Newtonian fluids across such fully-developed regions. Considering the geometric 

complement, that is only the constriction and the upstream and downstream sections 

(near the constriction), where the flow is not fully-developed, the following identity 

may be established,

equates to establishing a positive dissipation difference across the constriction zone 

alone. This is so, independent of profile views along centreline or walls. Thus for the 

4:1:4 flow, entry and exit channel lengths become irrelevant within the problem, 

beyond the establishment of fully-developed stress/flow sections.

]
constriction

Q
(7.10)

t ~| up-sp
PBoger ” Pncwi to attain positive ( P - I ) ,  also
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r  “| up-sp
It can also be observed empirically that I pBoger -  p Newt I corresponds to a

minimum entry-flow value, that is sustained as constant for each (We, /3)-case 

through the inlet channel; this confirms the independence of 4:1:4 entry-zone length. 

Such a statement cannot be made for the 4:1 instance since stress values at the inlet 

are completely different from those at the exit.

To corroborate and validate present findings, Figure 7.29 displays epd-data 

obtained through various alternative numerical predictions in the literature for the 

4:1:4 axisymmetric flow. This figure displays results from the studies of Szabo et al. 

[90], Binding et al. [17] and the present work. In general the agreement is most 

satisfactory at the two selected solvent ratios (/? = 1/9 and 0.9).

7.4 Conclusions

The focus in this chapter has been to obtain physically representative pressure- 

drop predictions for constant shear-viscosity strain-hardening (Boger) fluids in 

contraction and contraction/expansion flows. The major findings of this chapter may 

be summarised as follows:

(0 Significant differences in epd- data have been identified between 

axisymmetric and planar configurations for Oldroyd-B fluids in 4:1:4 

contraction/expansion flows. There and for axisymmetric settings only, enhancement 

above Newtonian epd is identified under certain circumstances. Adjusting the 

viscosity split ratio parameter j3 strongly influences the level of epd, with high 

solvent contributions providing local minima/upturn. This can be viewed as similar 

to the adjustment of the FENE-CR( L -parameter) in Szabo et al. [90], where large 

though finite rje were stimulated. Some settings of Old-B (/?) have been found to 

provide the desired enhancement in epd. It is reasonable to argue that /? -adjustment 

for FENE-CR fluids is not necessary in cases where extension of the molecular

178



excess pressure-arop m conTracTion ana expansion tiows ror boger riuias

0.8

- -  [1] Szabo et al 1997. (5=1/9 
12] Binding e tn l 2006. |5= 1/9 
|3 ] Presenr snidy. (5=1/9 

— * ( I] Buiduig el al 2006. (1=0.9 
— •  [1] Present study. (1=0.9

0.7

0.6

0.5,

We
Figure 7.29. P ressu re-d rop  (epd) vs. We (O ldroyd-B ): 4 :1 :4  ax isy m m etric ; schem e variation.

chains is short (low values of L - the finite extensibility parameter). Under such 

circumstances (with finite extension) there is decrease in the stored energy within the 

system. Hence, the initial decay in pressure-drop may be reduced from that for the 

Oldroyd-B model with unbounded extensibility In addition, it is essential to note 

that the FENE-CR model shows a constant shear viscosity, whilst for PTT and SXPP 

simulations, a high-solvent contribution is necessary in order to represent Boger-like 

fluids. Recall that Oldroyd-B results for [17,90J and the present work are in excellent 

agreement at the level of /? -  1/9 (see Figure 7.29).

(//) Another important feature is that neither local m inima nor upturn in epd 

have been observed under planar configurations, or for 4:1 contraction flows.

(Hi) In the axisymmetric 4:1:4 contraction/expansion flow of an Oldroyd-B 

fluid, and when an upturn in epd is observed, this is accompanied by larger vortex 

intensity and cell-size in the downstream flow section, above that arising in the 

upstream section.

(iv) LPTT models follow the epd-trends of Oldroyd-B; adjusting the £Prr- 

parameter identifies the role of severe strain-hardening, and the impact of limiting 

the i)e-response. The larger degree of strain-hardening may be associated with the 

greater increase in the rise of epd, once an upturn has been captured. The pom-pom
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representation, with only relatively mild-hardening response, reinforces this 

observation. This also points to the fact that once a plateau has been reached in 

extensional viscosity****, epd is anticipated to asymptote out to an equivalent 

Newtonian fluid level. The relative levels of epd will be related to the ratio of 

extensional viscosities (or Trouton ratios) involved.

(v) A unique feature of this study is the identification of influences from the 

boundary wall, and particularly so in stress. An explanation for the upturn in 

axisymmetric 4:1:4 epd, the single most important outcome from this work, may be 

found in the correlation of the extreme changes observed in the extensional stress 

fields, located about the constriction in the third and fourth quadrants. This 

stimulates some cross-stream response through stress and deformation-rate within 

axisymmetric 4:1:4 flows, that conveys its influence to the flow centreline, 

influencing the local pressure-drop accordingly. Predictions indicate that this does 

not happen in the planar or the 4:1 flow-settings, at least at the levels of deformation 

and elasticity explored. Under the comparison between the contraction/expansion 

and the contraction problems, one may speculate that it would be necessary to 

elevate deformation-rates and attainable elasticity levels by one to two orders of 

magnitude to stimulate epd enhancement in the 4:1 contraction flow. However, it is 

necessary to take into account that the pressure-drop (and also dissipation) for the 

contraction is of an order of magnitude larger than that for the contraction/expansion 

flow. That is, seeking larger attainable elasticity levels to stimulate larger stress 

peaks with greater influence on pressure, produces entry-pressure levels that fall 

away from the corresponding Newtonian fluid. These two influences are in conflict 

for the 4:1 contraction flow, which leads to the above speculation. Unfortunately, to 

date, it has not proven possible to attain such large elasticity levels through current 

numerical procedures.

**** Equivalently, Trouton ratio for shear-thinning fluids, see pressure-drop results of Aboubacar et al. 
[1,2] Wapperom and Keunings [102], Alves et al. [8], Szabo et al. [90].
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(vi) Through analysis of 4:1:4 data, the link between [ p -  pNewt ]-data, epd and

dissipation-rate differences across the constriction zone has been identified. This 

leads one to appreciate the importance of the need to generate a positive reading of 

entry-flow [ p ~ p Newt]~minima at the upstream sampling point to extract enhanced 

epd, which equates to a positive dissipation-rate differential across the constriction. 

Also, the [p -  pNewt JP sp data may be employed directly to estimate epd ( P ). In this

manner and considering LPTT as the more physically representative constitutive 

model for strongly strain-hardening Boger fluids, it can be appreciated how enhanced 

epd may be measured.

The implication from these finding is that if enhanced epd is sought, strong 

strain-hardening properties are crucial to raise levels of stress across the constriction. 

The fluid constitution and rheological properties are key. A high degree of 

solvent:polymeric constitution may achieve such ends, though proves a delicate 

matter to balance.
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CHAPTER 8

Bautista-Manero Models in Planar Flows

This chapter is motivated by the need to model worm-like micellar systems that 

arise in oil-recovery situations. Typically, such systems exhibit Maxwellian-type 

behaviour in small-amplitude oscillatory shear and the saturation of shear stress in 

steady simple shear flow. Nevertheless, according to Manero and co-workers [61], 

their adequate representation through suitable rheological constitutive equations 

remains short of that desired. Good representation of the extensional properties of 

such viscoelastic fluid systems is also a necessity if one is to sensibly predict some 

important phenomena that arise in porous-media flow. Here the objective is the 

prediction and understanding of enhanced pressure-drop in viscoelastic shear- 

thinning systems for planar channel flows.

8.1 Introduction

Colloidal and polymeric liquid systems exhibit a variety of rheological 

responses, some of them with direct applications in the food, oil-extraction, 

cosmetics and coating industries. Particularly in oil-recovery processes, there is a 

need for fluids capable of transforming from low viscosity, Newtonian type to highly
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viscoelastic gels, and returning to low viscosity liquid form. These changes can be 

induced at different stages of the oil-recovery procedure. Viscoelastic surfactants 

systems (VES), with worm-like micellar formation, fall into this category and are 

being increasingly used as reservoir stimulation fluids, due to their assembly and 

disassembly properties.

Hydraulic stimulation of oil-wells is a technique to increase well-productivity 

when reservoir permeability is low. Fracturing treatment using viscoelastic gels is 

one such technique. This consists of transmitting hydraulic pressure to the rock to 

provoke fractures in the formation. Such a gel also contains particles (proppant), 

ceramic or sand, the whole constituting a porous proppant pack. The aim is for the 

gel to transport the pack into place and for the proppant to keep the fractures open 

upon removal of fluid pressure, via gel degradation. Polymeric fluids, used as 

fracturing liquids, present the inconvenience that they cannot be totally degraded and 

their particle size is sufficient to block the pores of the fracture, limiting the 

hydraulic conductivity of the pack. The use of viscoelastic surfactants systems as 

fracturing fluids, displaying worm-like micelles, has been a relatively new 

innovation. Once the proppant pack, armed with these fluids, comes into contact with 

hydrocarbon produced from the fracture, the internal structure reverts into small 

spherical micelles or microemulsions. As a consequence, the viscosity and elasticity 

of the fluid residues fall dramatically and they are able to easily flow from the pack. 

Very little pore blockage is therefore encountered, so that practically full fracture 

flow-back efficiency is achieved (see Boek et al. [21]).

Investigating the rheological response of wormlike micelle systems, Manero et 

al. [61] proposed a model similar in structure to the Oldroyd-B constitutive equation 

for the evolution of stress, coupled with the Fredrickson (kinetic) equation [46]*. 

Such a model accounted for construction and destruction of micelles in solution, 

which resulted in a constitutive system capable of reproducing shear-thinning and 

strain-hardening/softening phenomena. The model is reported to be in excellent

* Moore [71] and Chung and Evans [34] are some examples of similar equations to that proposed by 
Fredrickson that accounts for structure formation and destruction.
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agreement with experimental data from steady shear and small amplitude oscillatory 

measurements for the erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) 

surfactant. Nevertheless, the extensional viscosity of the model gives rise to 

unbounded response (discontinuous structure) at finite deformation rates, and as 

such, presents some abnormal behaviour. Since the typical extension-rates 

experienced in porous-media flow can enter within this range of uncertainty, it is 

important to rectify this position. The original Bautista-Manero (BM) model may be 

represented through the following system of equations:

Extra-stress evolution,

T + ^ -T  = 2 »/^d + A, dJ ,  (8.1)

kinetic equation,

d t L J k
_1_

% 11
+ k 1

construction

 _1

77- rl.
destruction

T:d,
(8 .2)

where the relevant parameters represent the following quantities,

A j: retardation time (related to the solvent viscosity),

A, k : structural parameters for relaxation time and breakdown, respectively,

rj: viscosity,

rjp tjus : polymeric (variable) and solvent (constant) viscosities, respectively,

t]o, T]°o\ viscosity at zero and very high shear-rates, respectively.

Go: elastic modulus,

8.2 Modified Bautista Manero model

In order to overcome the unbounded extensional viscosity response of the 

original BM model, Boek et al. (see reference [22]), proposed a modified Bautista-
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Manero (MBM) model, where the solvent and polymeric contributions are split. In 

this reformulation, the coefficient is treated as a single parameter. The MBM

constitutive equation provides a continuous extensional viscosity response, which 

yields the possibility of supporting physically realistic strain-hardening/softening 

properties, see equations (8.3)-(8.5). The reformulated system now becomes:

Viscoelastic stress evolution,

77n v
T + - f  t = 2tj d , (8.3)

kinetic equation ,

_d_
d t

\ 1

%  nPJ
+

( k \

<n-j
x:d , (8.4)

solvent contribution,

= 2//,d (8.5)

In order to include this model within the local finite element/volume software 

library, capable of 2D/3D and transient computations, it is necessary to express the 

system of equations in dimensionless form. This defines group numbers of Reynolds 

and Weissenberg number, and the following non-dimensional parameters:

JJL R e - p  ,
M

M

G0 L

, u  e u
5 L

-Vo

(8 .6)

+ Note that in the BM model, rj0 is the total zero shear-rate viscosity, whilst in the modified version, it 
only accounts for the viscoelastic contribution. Then, in equations (8.6), jU= r}0 for the BM model and 
for the modified version, j j , = 7]0 + A-
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In this manner, the MBM model may be expressed in equivalent non- 

dimensional form:

Momentum equation,

stress evolution,

kinetic equation,

Re
3 t

u + u- Vu = -Vp + V • t  + /? V2u , (8.7)

t  + We(/>r = 2 ^ d , (8.8)

d t 0) <l>
+ ( I )

[fi)
T.d (8.9)

8.3 Discussion on results

Preliminary predictions have been obtained for the MBM model in a 4:1 

rounded-comer planar contraction flow, under inertialess conditions ( Re = 0), with 

solvent/total viscosity ratio of /? = 1/9 (as a benchmark), and zero shear viscosity of 

(f)Q =8/9. This involved two separate cases, matching peaks in extensional viscosity

corresponding to instances of strong-hardening and moderate-hardening, 

respectively. The comparable data (see Figure 8.1 for material functions*) was drawn 

from that exhibited by an exponential Phan-Thien/Tanner (EPTT) fluid with 

ePTT =0.02 (strong strain-hardening) and ePTT =0.25 (moderate hardening), which

have been discussed earlier in chapter 6. It can be observed that both models display 

the same response at low shear-rates. In shear viscosity, the agreement of fit is

* The deformation rates are made non-dimensional by Aq = rjo/Go in the MBM model.
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excellent throughout a wide range of deformation rates. Under moderate 

deformations rates, the MBiVl model softens more rapidly, reaching its plateau earlier 

than that for the corresponding EPTT fluid.

For the two sets of parameters chosen, vortex reduction is observed in cell-size and 

intensity, as displayed in Figure 8.2. The fluid with less degree of hardening reaches

187



tsauTiSTa-manero mo  a e  is m nanar nows

a slightly larger critical elasticity number (Wecrit ~ 1 ) when compared to that for the

strongly hardening scenario (Wecrit ~5). This reduction in critical elasticity level

attainable is a common feature observed when increasing strain-hardening inclusion, 

see Aboubacar et al. [3]. Under similar circumstances, the corresponding EPTT 

models provided vortex enhancement with increase of We whilst sustaining 

strongly-hardening properties, and only vortex reduction for the moderate hardening 

equivalent. This departure in response may be associated therefore with the more 

rapid strain-softening behaviour of the MBM model (which is reflected also in 

Trouton Ratio).

8.3.1 Material functions fo r  the M BM  model

In order to establish the influence of the various model parameters in 

viscometric flows, plots are presented varying rj0 (Figure 8.3), k / t (Figure 8.4), 

and A (Figure 8.5).

Shear viscosity shifts from an almost constant level (rj0 = 0.01), approaching the 

Oldroyd-B response, to a case with extreme shear-thinning where the second plateau 

is reached at very high shear-rates. There is no visible effect on A, when the plot is

presented in dimensionless form (Figure 8.3). Increasing the zero shear-rate viscosity 

produces an increment in the degree of strain-hardening and reduction in the level of 

the second plateau of extensional viscosity.

The influence of variation in k/rj^ can be gathered from Figure 8.4. For shear

viscosity, an increase in this parameter is reflected in a decrease of the shear-raite, 

affecting where the thinning starts and the second plateau is reached. The levels of 

asymptotic plateaux are independent of k / r j . From k/rj^ =0.001 to 100, the final 

limiting value of the first normal stress difference decreases by more than five 

decades ( N jG 0 ~ 7 x l0 4 to 7 x l0 -2) and is attained at much lower shear-rates. A

similar increment in k/rj^ lowers the degree of strain-hardening from 3 x l0 3 to zero,
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Figure 8.2. Streamlines for MBM model in 4:1 contraction flow.
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Figure 8.3. Shear and uniaxial response varying )]0: G 0 = 1, £/>/» =  0 .01, fls = 1/9, A = 0.28.

so that for the fluid with k/?]  ̂ = 100, i]e decreases monotonically, softening even at 

very low deformation rates.

Referring to Figure 8.5, the response of the model to a change in A somewhat 

replicates that dealt with under k/j]^ . It can be appreciated that the shear viscosity 

enters the thinning regime at lower deformations rates, and /V, is decreased by about

four decades when A varies from 0.01 to 100. As above, an increase in A produces a 

considerable increase in the degree of strain-hardening. Once the strain-rate 

transcends that associated with the peak in Trouton ratio ( Tr), the second plateau in 

extensional viscosity is approached as strain-rates elevate further. Lower values of A 

are observed to generate larger peaks in extensional viscosity and steeper softening
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a) Shear viscosity
10'

[6] k„ 100

10 ’10 1 )0:
y \

b) First normal stress difference
10-

10’

10°10 1 101 lu’

y \

c) Uniaxial Trouton ratio d) Uniaxial viscosity
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regimes. Note that for A > 1 0  no strain-hardening is observed, and so no peak in 

extensional viscosity prevails.

8.3.2 Pressure-drop estimation in planar channels

A finite differences lD-solution has been extracted to construct steady-state 

pressure-drop data for the MBM fluid in a planar channel flow. The system of 

equations is solved for velocity and shear-rate in the cross-stream direction 

(dimension H ), having specified the viscosity function and a characteristic pressure- 

drop per unit length ( L )  (pressure loss within the system -  see below for the 

equivalent analytical solution in section 8.3.3). Figure 8.6 illustrates the division of 

the cross-stream domain into discrete segments and nodal points, and in general, 

consistency and convergence under mesh refinement has been guaranteed.
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Position in the cross-stream direction lies within - l < y < l ,  concisely 

represented as y = y / [ i # ] .

The momentum equation for the MBM model in a planar channel ( - l < y  <1) 

reduces to:

where the parameter {k/rj^) is represented by km for convenience.

Assuming a given pressure-drop per unit length to conduct the parameterisation, 

the solution of equation (8.10) at a series of y -values ( y(-positions) covering the

half-channel width, yields the necessary deformation-rate profile. This profile may 

then be integrated by means of a Taylor series (Euler or similar scheme) to yield the 

corresponding velocity profile:

(8.10)

which satisfies the mid-channel condition,

y =  0  =>  y  =  0 . (8.11)

The MBM viscosity in shear is given by:

(8.12)

u, =HM +Ay y,-,- (8.13)

The boundary condition at the wall is no-slip,

y = ±1 => u = 0 , (8.14)
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application of which realises:

wQ — 0. (8.15)

Equation (8.15) is necessary as a starting point for the forward numerical 

integration procedure of equation (8.13). This procedure may be terminated at the 

half-length of the channel. By definition, Ay is the mesh-segment distance between 

two successive points into which the domain has been divided, see Figure 8.6.

Finally, it is necessary to compute the resulting flowrate ( Q ), which is

accomplished through quadrature applied to the integral:

Q = 2 W H  ( u ( y ) d y .  (8.16)

In order to prove that algorithmic consistency and convergence upon mesh 

refinement with sufficient number of discrete points has been achieved, Figure 8.7 

presents the solution profile using 11, 101 and 1001 points across the domain. It is 

evident that the three solutions are in excellent agreement.

Once the solution has been validated, the next step to meet requirements is to 

produce the Q vs. Ap curves for the three channels of different gap-widths ( H )  

covering the variation of fluid parameters supplied. Table 8.1 contains the 

corresponding data for the fluid SF1 and Figure 8.8 is a plot covering the flowrate vs. 

pressure-drop calculations. Here, data is presented in dimensional form for ease of 

physical reference.

From Figure 8.8, monotonic increasing relationship between flowrate and 

pressure-drop can be observed. The curves can be superimposed almost perfectly 

upon each other, implying that they have exactly the same trend. However, a 

constant shift factor is difficult to extract as the zones where the flowrate increases 

faster do not start at the same level of pressure-drop. Still, one can establish a 

mapping as a function of H , of the start and end points of the
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non-linear region in pressure-drop. Linearity is upheld for low pressure-drop values 

(< 5 0 0  Pa) and is recovered at high values ( > 1 0 4 Pa). For intermediate values of 

Ap (5 0 0 <  Ap<\0A Pa), non-linear response is observed, so that the flowrate picks 

up a sudden spurt.

This non-linear response can be associated with the variation in shear-rate over 

the regions of parameters specified. The evidence for this is supplied below in Figure 

8.9, which displays how the steady deformation-rate and velocity profiles evolve

T able 8.1. SF1 param eters

Ms [Pa s ] 0.0264

tjo [Pa sj 11

k/?]oo [Pa‘2 s ' 1] 0.33019

A [sj 13.6284

Gp [Pa] 0.44
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Figure 8.8. Q vs. Ap  curves for chan n e ls  gaps ( / /) .

when Ap/L increases. At Ap/L = 300 Pa/m (point 1), a linear shear-rate profile 

emerges (parabolic velocity distribution). Upon increase to Ap/L = 100 Pa/m (point 

2), both shear-rate and velocity profiles depart from the earlier Newtonian-like 

pattern. The fluid near the wall is exposed to significant variation in shear-rate, in 

stark opposition to the conditions approaching the centreline, where shear-rates and 

their variation are low. Note correspondingly, that the velocity profile is practically 

flat in the low shear-rate centreline zone. It is precisely in this zone where the 

flowrate increases more rapidly with respect to incrementation in pressure-drop. 

Proceeding further to the next elevation station of Ap/L = 2000 Pa/m (point 3), the 

Q vs. Ap curve recovers its linear relationship, so that the shear-rate profile and 

flowrate reform the linear and parabolic trend, respectively. It is only when the 

significantly larger level of Ap/L = 50000 Pa/m (point 4) is reached that such trend 

are effectively fully recovered. The square of the Pearson coefficient4 ( r )  through all

u ( I A T ) - ( I A ' ) ( I } / )
D efin ition  o f  the Pearson c o e lh c ie n t lo r it (X, Y) data  is: r =

- ( z x ) 2] [ / i z r 2 - ( i f ) 2]
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Figure 8.9. Evolution of deformation-rate and velocity profiles as Ap increases.
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Y -data points (linear regression) is a measure of proximity to linearity, an r -value of 

unity providing a constant slope relationship. To estimate the recovery of the linear 

(Newtonian) y -profile in cases 3 and 4, the Pearson coefficients are reported, being 

r = 0.97 for point 3 (Ap/L = 2000 Pa/m), and for point 4 (Ap/L = 50000 Pa/m), the 

r -value lies within the interval [0.99,1]. The point 4 r - value clearly exhibits a closer 

position to a constant slope-line than that for point 3.

8.3.3 An analytical solution

It has been possible to cross-check the numerical computation above for the 

MBM model in planar channels by appealing to a direct procedure, and thereby, 

extracting an analytic solution to the problem. This is accomplished by appealing to 

analysis for a related class of shear-thinning fluids (Oldroyd-4 constant) and shear 

flow in pipes performed by Walters [100]. The procedure consists in a change of 

variables that provides the velocity as a function of shear-rate alone.

From equation (8.10) - ‘balance of forces’, the cross-stream y -position as a 

function of the deformation-rate, expressed as:

(8.17)

Following the chain rule of differentiation, function 0(y)  satisfies:

1 _ d y  _ d d  d y  
y du d y  du

(8.18)

Upon integrating this relationship the velocity is extracted as:

(8.19)
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With the knowledge of rjp of equation (8.12), the velocity, as a function of the 

shear-rate, is given analytically by the derived equation (8.20):

MW = ^ T [ r , 2 - r 2] +

2 { t )

i

2 k_t]0A Ap
Ln

l + yjl + 4k_ij02 A rx 

l + ̂ /l + 4 * .% 2A f
, (8.20)

where yx is the solution of the boundary equation at the wall ( y = ±1).

Knowing rjp , an expansion of equation (8.17) results in a cubic polynomial for^ 

as a function of y , of the form,

f  + a]y2 + a2y + a3 =0 (8.21)

The respective coefficients are given by:

H  Az?_ 
«i = — — y

jus l

- { v„+f i s) + i H 2k,
a. =

Ap 
L

—2

k-VoMs A
(8.22)

I  H y
a 3 =  t  . .  . . 2

Ap

where the real root (numerically or analytically) at any particular y -position across 

the channel is required. In the present instance, the real root has been extracted 

analytically using the method of Cardano [89]:
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The quantities, { 5 c ,7 c }, necessary to evaluate these sets of solutions (roots) are 

defined through additional derived quantities { Q c , R c , Dc }:

Qc = ?. a 2. ai.2
9

_  ^ a ]a 2 ~ 27q 3 - 2a , : 

54

Dc = 0 c 3 + /?c2 5c = yjRc + yjDc , (8.24)

Tc = y]Rc-y/~Dc

The discriminant, Dc reveals the nature of solutions. For the case where 

D c< 0, all three solutions are real and the following formula may be used to 

simplify the computation:



a) toon = 2yF~Qc cos [ i <p\ -  ~  a, ,

b) r,root2 = zJ -Q c C O S
(p + l7t

(8.25)

C )  t o o n  =  c o s

(p + 4 n

appealing to

(p = cos'
Rc

^ Q c 3
(8.26)

Armed with these definitions, it is the third solution root (y root3), given by

equations (8.23)c or (8.25)c, that is equivalent to the numerical solution extracted 

via the proposed ID-finite difference approximation. The deformation-rate at the 

wall, yx, required by equation (8.20) is:

a) yx = iroo,3 at y = - 1, b) Yx =-f,oon at > '=1- (8.27)

For a physical solution, that smoothly varies from y = -1 to the centreline 

( y = 0), the appropriate maximum shear rate is given by identity (8.27)a.

Similar procedures may be applied to many other common model viscosity 

functions (e.g. PTT and Pom-Pom), that possess a solvent viscosity component and 

can be expressed essentially through polynomial form in shear-rate, of integral power 

not greater than two (for cubics) and three for quartics. This is valid for stress 

evolution equations say as Oldroyd-type - see equation (8.3), where only first order 

terms of d (or y )  appear. If the constitutive model requires second order terms of d ,
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numerical solutions may be required for the equivalent to equation (8.21), as quintics 

may appear. Third-order terms are not anticipated in the constitutive equation due to 

the representation theorem (see [56]) for tensors (Cayley-Hamilton theorem), which 

indicates that terms functionally related to d3, or higher, collapse to a function of d2, 

d and its invariants.

8.3.4 Pressure distributions

As the geometry does not present any constriction or change in direction for the 

flow, the steady pressure-drop is constant along the channel length, this results in a 

linear decay in pressure from inlet to exit. Figure 8.10 reflects this state of decay for 

two cases: the first is for a flowrate of ~ 5 x l 0 -6 m3/s, and the second is for 

~ 5xlO~10 m3/s. As anticipated, for channels with smaller heights ( H ), larger values 

of pressure are required to drive the flow at the same level of flowrate.

8.3.5 Transient solutions

Starting from rest, evolution field states through time are obtained by imposing a 

transient Oldroyd-B solution in a channel [104], at the inlet boundary (flowrate Q 

controlled temporal build-up). For this dynamical situation, the chosen fluid is SF2 

(see Table 8.2) and the flowrate is 1.6xl0-9 m3/s.

Pressure-drop, velocity (centreline) and stress (boundary wall) are presented in 

non-dimensional terms in Figure 8.11. Pressure-drop response exhibits oscillations 

and is seen to reach its steady-state value faster than in velocity and stress. All 

evolution profiles display an overshoot. In velocity and stress, a minor undershoot is 

also observed before a steady-state is established.

A desirable next step would be to compute transient solutions for such fluids 

within a complex contraction-expansion setting, either via a flowrate controlled or a 

constant-force (Zip-fixed) form.
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Figure 8.11. Transient results for the channel flow, fluid SF2.

8.4 Conclusions

Adequate representation of worm-like micellar systems was proposed via the 

original Bautista-Manero (BM) model. However, this model was found to exhibit 

unphysical extensional viscosity response. Here, the response for a modified model 

(MBM), introduced by Boek et al. [22] has been studied, a model that allows for a 

continuous viscosity in uniaxial flow.

Material functions for this new MBM version have been fitted to match two 

different configurations of the exponential version of the Phan-Thien/Tanner model. 

In contrast to the situation for pom-pom models, both extensional and shear peak 

viscosities of PTT models can be approximated with one set of parameters alone for
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each different level of hardening scenario. In rheometrical flows, a variation in k/riM 

and X produces almost an identical response in both viscosity and stress.

Following the procedure proposed by Walters, an analytical solution { u , y  } ( y ) 

has been derived for the MBM model in Poiseuille channel flow. The method 

consists in a change of variable, leaving the cross-stream position ( y ) as a function 

of shear rate (y).  This yields an integral that gives the velocity (w) in terms of the 

shear rate and its value at the wall. To obtain the deformation-rate at the wall, the 

roots of a cubic polynomial must be extracted. Finally, and for confirmation of 

validity, the finite difference approximation is in excellent agreement with the results 

obtained by the analytical solution.

Two linear trends for ( Q vs. Ap)-variation have been detected in the 

corresponding solutions. These trends occur at low and high pressure-drops. There is 

a region where the flowrate increases faster, displaying a sudden spurt. The 

behaviour in this region has been recognized to be a result of the prevailing strong 

shear-thinning displayed by all such fluids studied here. As such corresponding y-  

profiles display a significant departure from the linear-form anticipated over regions 

of nearly constant shear viscosity. Transient solutions for channel flow have also 

been probed, revealing their characteristic form.
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CHAPTER 9

Concluding Remarks

Simulation of planar and axisymmetric flows through channel, contraction and 

contraction/expansion geometries has been presented in this study. Some effort has 

been placed upon relating fluid response to background rheometrical properties, such 

as extensional and shear viscosity. In particular, vortex intensity behaviour in 

contraction flows exhibits a dependence on the degree of hardening. That is, for 

fluids displaying strain-softening under prevailing flow conditions, vortex intensity 

decreases in magnitude. Stress and stretch fields are also dependant on the material 

functions. In some instances, it is possible to discern dominant deformation regimes 

within a specific region. For example in contraction flows, fluid along the centreline 

near the contraction experiences pure elongational flow, whilst in the downstream 

channel, large shear rates are observed near to boundary walls (practically zero 

strain-rate). In the contraction comer near the wall, important shear and extensional 

effects are anticipated. Hence, in extension-dominated zones, extensional viscosity 

becomes an important parameter, and in regions of strong shear, first normal stress 

difference and shear viscosity govern the fluid response.

The numerical scheme employed through this study is one of hybrid finite 

element/finite volume (fe/fv) form, developed by the computational rheology
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(INNFM) group at the University of Wales Swansea. In chapters 4 and 5, solutions 

are validated against predictions from a semi-Lagrangian pure finite volume scheme, 

implemented by the fluid dynamics (INNFM) group at of Cardiff University.

First, the Single extended Pom-Pom (SXPP) constitutive equation [96] flowing 

in a planar channel has been considered. This model is of a relatively new class of 

constitutive equations, developed mainly from physical arguments. Several 

modifications have been proposed since the introduction of the original model by 

McLeish and Larson [68]. In the planar channel, influence of the non-dimensional 

quantities on the flow is gathered. These quantities control the degree of hardening, 

the onset of shear-thinning and the viscoelastic contribution via the solvent fraction. 

The next step was to provide corresponding predictions for flow in planar 4:1 

contraction geometries, where vortex growth, stress and stretch fields are reported for 

two different levels of inertia (Re = 0 and 1). An alternative version of the pom-pom 

model was also implemented, that is the X2XPP [76]. This gave practically identical 

results to those for the SXPP version.

The SXPP model presents the advantage of varying the strain-hardening 

response with just a minuscule variation in shear-thinning viscosity. Upon this basis, 

the influence of extensional viscosity was investigated for shear-thinning fluids in 

4:1 contraction flows. In addition, the influence of anisotropy and the numerical 

difficulties introduced by this factor are observed. It was concluded that the 

instabilities provoked by the anisotropy parameter occur at larger deformation rates 

than those supported by such flows. A comparison has been included with the 

exponential Phan-Thien/Tanner model at two different levels of strain hardening, this 

has shown similar trends for fluids of comparable elongational viscosities, although 

for moderate hardening, a match on extensional viscosity instead of Trouton ratio 

provides better qualitatively agreement between both types of fluids.

The occurrence of excessive pressure-drops has been studied that arise for Boger 

fluids in axisymmetric contraction and contraction/expansion flows. In this work, the 

constitutive equation employed has been mainly the Oldroyd-B form, due to its
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constant shear viscosity and highly viscoelastic properties (Boger-type behaviour). In 

order to approximate Boger-like response with other rheological models (SXPP and 

PTT variants), the solvent fraction has been adjusted (excessive solvent contribution) 

and extremely high levels of extensional viscosity have been stimulated. Results 

indicate that in the case of the axisymmetric contraction/expansion, a large stress 

developed around the constriction is responsible for an increase in pressure when 

compared to its corresponding Newtonian fluid. This peak in pressure, in certain 

conditions, can be sufficiently large to account for an increasing trend in excess 

pressure-drop (epd). In addition, under increasing solvent fractions, the epd-trend 

crosses the Newtonian reference line, meaning that enhanced pressure-drop is 

derived. Stress peaks in planar contraction/expansion flows are much lower in 

magnitude and do not increase noticeable with elasticity. Enhanced epd has proven 

quite difficult to capture accurately through simulation; Szabo et al. [90] were the 

first to report enhanced epd, Binding et al. [17] also reported this phenomena. An 

original contribution from this study has been to track the pressure trend at the 

boundary wall, not only at the centreline. It is near the boundary-wall where the most 

important effects occur; some diffusion is observed at the centreline but is 

considerably reduced. A further contribution has been to look at an alternative 

calibration for pressure, [p — p Newt]- This resembles the viscoelastic stress response

and indicates the 'correlation between both magnitudes. Furthermore, this new 

calibration is useful to identify the necessary conditions to obtain enhanced epd. For 

this, the difference in dissipation rate (from [29,90]) between Boger and Newtonian 

fluids is compared. If the dissipation rate in the constriction zone (not in the whole 

geometry) is larger for the Boger fluid, then enhanced epd may result.

The Bautista-Manero (BM) models has been recently introduced to represent 

worm-like micellar systems. These systems may show highly viscoelastic properties, 

and in contact to oil, any viscoelastic nature can be eliminated, making them 

important fluids in extraction techniques. However, the original formulation of the 

BM model presents a deformation interval of unphysical (or undefined) extensional 

viscosity. This was corrected through the introduction of a modified Bautista-Manero
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(MBM) model [22]. Results for the MBM model have been presented in 2D-planar 

channel and contraction flows. Pressure-drop for Poiseuille flow have been validated 

through two methods, providing essentially the same result; through a finite 

differences scheme and an analytical solution. The analytical solution was obtained 

following a procedure from Walters [100]. The trends followed by the Q vs. Ap 

curve are explained in terms of various zones of shear-rate covered.

The inclusion of the semi-linear version of the SXPP model may be considered, 

with the objective of further studies on the influence exerted through the extensional 

viscosity. To this end, it is possible to specify parameters for the semi-linear SXPP 

and linear PTT models with very weak hardening/softening properties. Hence, 

viscoelastic fluids can be derived with extensional viscosities close to constant, and 

on the other hand, both linear models can reproduce extremely high viscosity. The 

fluids with little variation in extensional viscosity are not expected to represent 

actual fluids. They may prove helpful in establishing the influence of elongational 

viscosity on results reported from numerical predictions.
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APPENDIX I

SXPP model: additional detail

This appendix provides expressions for stress and related variables relevant to 

2D-planar flow, proving useful under analysis when shear-rate ( y )  is known. As 

expressions for the constitutive model under prevailing Couette and Poiseuille flow- 

type conditions are the same, this functionality can be employed under both types of 

flow. The difference lies in -profiles, linear for Couette and parabolic-type for 

Poiseuille flow. In addition, the fully-expanded equations for the Single extended 

Pom-Pom (SXPP) model in planar and axisymmetric flows are also included.

1.1 Non-dimensional stress relations for steady state for channel flow

The following equations are for the 2D-planar flow of the SXPP model 

(Cartesian frame-of-reference). They describe stress profiles for Couette and 

Poiseuille flow depending on the specification of shear-rate (y) .  One may adopt the 

following governing assumptions:

v = uy =0, a  = 0,
(Al. 1)

—— = 0 except for p. 
o x
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Then, stress profiles and related variables may be expressed in the form:

r  = -
V We , / M  / ( t ) 3

1 - P  .
r*

T” =~\ We / W  ’
r  = -

/ W  ’

N,=T„-T„.= 2We±—1 xx yy

/ W

t r ( t ) = - 3 ( T - ! - V h )  ;
V We J  / ( t )  / ( t ) 3 / ( t ) -

1 1 1 »r

(AI.2)
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APPENDIX II

Streamlines

Some of the simulation results for contraction flows in this study have been 

presented graphically by streamline plots. Streamlines coincide with the trajectory 

followed by fluid elements for steady flows. For an incompressible flow, in cartesian 

coordinates, continuity equation is,

f % | ^  = 0. (AII.l)
d x  d y

Defining the “stream function” as

u = ^ - ,  and v = - — . (AII.2)
d y  d x

Obtaining the only non-zero component of the vorticity vector in 2D-flows [65],

d x  d y
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orrearn lines

Solution of equation (AII.3) gives the stream function at a position [x, y). This

function y/ has the property of being constant along a streamline. It can be calculated

by a finite element procedure. In addition, vortex intensity ( y/ sal) is the maximum iff -

value observed inside the vortex region, and it is related to the ratio of flowrates 

between the recirculation region and flowrate through the contraction (see Pumode 

and Crochet [83]).
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