

 Swansea University E-Theses ___

Structured specification with processes and data: Theory, tools and

applications.

O'Reilly, Liam

 How to cite: ___
O'Reilly, Liam (2012) Structured specification with processes and data: Theory, tools and applications.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42898

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42898
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Structured Specification
with Processes and Data

Theory, Tools and Applications

Liam O ’Reilly

S ubm itted to S w ansea U niversity in fu lfilm ent
o f the req u irem en ts fo r the D egree o f D octo r o f P h ilosophy

. e s 4v®/
Swansea University
Prifysgol Abertawe

Department o f Com puter Science
Swansea University

2012

ProQuest Number: 10821288

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821288

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

° s
LIBRARY

Declaration
This work has not been previously accepted in substance for any degree and is not being con
currently submitted in candidature for any degree.

Signed (candidate)

Date I..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other sources
are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed (candidate)

Date

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside organisations.

Signed (candidate)

Date

Abstract

The integration of processes and data is a long standing research topic. In this thesis, we
study this integration in the context of the language C sp-Ca s l , where C sp is used to describe
processes aspects and C a sl is used to describe data aspects.

Our specific questions are: Is it possible to make structuring operations available for build
ing up complex specifications in a compositional way? What is an appropriate notion of re
finement in such a setting? Finally, is it possible to reason on such specifications in a modular
way? Based on institution theory, we develop a framework for C sp -C a sl in which all three
questions have positive answers.

We develop C sp-C a sl as various institutions (one for each of the main C sp semantics) and
a notion of refinement which we show to be healthy and useful. Furthermore, we develop sev
eral proof calculi, supporting refinement and deadlock analysis, which allow for compositional
reasoning over structured C sp -C a sl specifications. An example together with a prototypical
implementation demonstrate the practicality of our approach.

Our work has implications beyond the specific setting of Csp -C a s l : The equivalences
studied are independent of the specific choice of process algebra, and thus can be applied to
other settings, for instance, state machine diagrams in UML.

Acknowledgements

I would like to thank my family for supporting me throughout my doctorate. They often en
dured long periods of time without my company.

I would like to gratefully acknowledge the contributions of my supervisor Dr. Markus
Roggenbach for his continuous guidance, support and mentoring throughout my time as his
student. He has always been optimistic and helpful. I would also like to thank my second
supervisor, Dr. Monika Seisenberger, and her family for their kind support. Their opinions and
guidance have been extremely valuable.

I wish to gratefully acknowledge my examiners, Prof. John V. Tucker and Dr. Grant Mal
colm, for devoting their valuable time examining my thesis and providing me with valuable
feedback and advice. I also like to extend my sincere thanks to the H ets development team,
particularly Christian Maeder, for their support in implementing C sp -C a sl in H e t s .

I extend my gratitude to the entire Processes and Data Group (past and present) and the
department’s theory group. They have always been enormously supportive and been ready to
help out when required. Several special friends must be acknowledged here:

• Phillip James and Matt Gwynne for their ongoing help and encouragement during this
work, which often involved frequent recreational activities;

• Fredrik Nordvall Forsberg for checking many proofs in this thesis. Often, he worked as
an automated theorem checker;

• Mark New for his time and effort in fighting the odd ‘battle of with me; and

• Helen Dodd and Emma Thom (along with the individuals already mentioned above) for
their kind efforts in proof reading this thesis.

Thanks must be given to Swansea University’s Department of Computer Science for the
opportunity to pursue this Ph.D. I also thank both Swansea University and the department for
the financial support I have received. I would like to thank all the computer science staff and
postgraduate students for making this an extremely enjoyable phase of my life.

Finally, I would like to thank Erwin R. Catesbeiana (jr) for his help in structuring my
inconsistent thought processes.

Table of Contents

1 Introduction 1
1.1 Critical Systems and Formal M e th o d s .. 1
1.2 Development of Critical S y stem s.. 3
1.3 Project Aims .. 10
1.4 P ub lications... 10
1.5 Thesis Overview ... 11

1 Background 13

2 Csp 15
2.1 The Syntax of C s p .. 16
2.2 Syntax Extensions... 20
2.3 Typical L a w s ..22
2.4 The Semantics of CSP ... 23
2.5 R e fin e m e n t... 29
2.6 Tool Support ... 31

3 Ca sl 33
3.1 The Syntax and Semantics of Basic C a sl S p ecifica tio n s...34
3.2 Sub-sorting in C asl .. 36
3.3 Structuring and Parametrisation .. 39
3.4 Instan tiation ...41
3.5 Tool su p p o rt...44

4 A Common Framework: Institutions 49
4.1 The Formal Definition of Institu tions... 50
4.2 The Institution P C F O L r ... 52
4.3 The Institution S u b P C F O L r ...56
4.4 The Restricted SubPC F O lr Institution ...58

4.5 Data-Logic ... 63
4.6 C sp Institu tions... 66
4.7 Institution Independent S tructuring ..70

5 Original C sp -C asl (2006) 77
5.1 The Design of C sp -Ca s l .. 77
5.2 Cs p -C a s l ’s Semantics and R efin em en t... 80
5.3 Tool Support .. 82
5.4 Towards a Verification of EP2 .. 83
5.5 Current Limitations of C s p -C a s l ... 86

6 Related Work 89
6.1 Approaches using Initial Semantics for D a ta .. 90
6.2 Approaches using Loose Semantics for D a ta .. 92
6.3 An Object Orientated Approach: C S P -O Z ... 93
6.4 A Deep Integration: C i r c u s ...93
6.5 A Structured Approach to CSP: Wright ... 95
6.6 An Institutional Approach: Z aw locki..96
6.7 M eta-Form alism s... 97

II C ontributions 101

7 Cs p -Ca sl Alphabet Construction 103
7.1 Construction 1: Lifting Alphabet Translations to C sp D om ains............................ 103
7.2 Construction 2: Lifting Reducts and Flattening Many-Sorted A lg eb ras 120

8 The Cs p -C a sl Institutions 131
8.1 Construction of the C sp-C a sl Institutions... 132
8.2 Parametrisation: Pushouts and A m algam ation ... 150
8.3 C sp -C a sl with C hannels..156
8.4 Possible E x tensions.. 158

9 Refinement and Compositional Proof Calculi Over Structured Csp-Casl 165
9.1 From Csp -Ca sl to Structured C sp-C a s l ... 166
9.2 C sp -C a sl Refinement for Loose Process S e m a n tic s .. 167
9.3 Compositional Refinement A n a ly s is ..171
9.4 Compositional Deadlock A n a ly s is ...175
9.5 A Complete Refinement Calculus ...181

10 Application 189
10.1 Specifying an Online S h o p ..190
10.2 Establishing Well Formed In stan tia tio n s..194
10.3 Verification of Deadlock F re e d o m .. 197

11 Implementation and Tool Support 199
11.1 H ets and Existing Support for C sp-C a s l ...199
11.2 Extending H ets for Structured C sp -C a s l .. 200
11.3 Static Semantics of Structured C sp-Ca s l .. 204
11.4 H ets in A c t io n .. 204

III Conclusion 209

12 Summary 211

13 Future Work 213

IV Appendices 215

A Deferred Proofs 217
A.l From Chapter 7 ...217

B C sp Domain Clauses 227
B.l Traces S e m a n tic s ..227
B.2 Failures/Divergences Semantics ... 229
B.3 Stable-Failures Sem antics.. 230

C ATM Full Specifications 233
C.l Specifications of ATM with Shrinking A lp h ab e t.. 233
C.2 Specifications of ATM without Shrinking A lp h a b e t ..236

D Online Shop Full Specifications 239
D .l Generic Shop Specification and In stan tia tio n s..239
D.2 Architectural Components ... 240
D.3 Abstract Component Level C o m p o n en ts ..243

Bibliography 249

Chapter 1

Introduction

Contents__
1.1 Critical Systems and Formal M ethods... 1
1.2 Development of Critical S y s te m s .. 3
1.3 Project A im s .. 10
1.4 Publications .. 10
1.5 Thesis O verview ... 11

The specification and formal development of computer systems is noted as an important and
rapidly developing area of computer science [JOW06]. This thesis advances the current state of
the art with respect to formal specifications, development and verification of critical systems, in
particular reactive systems. This chapter introduces the fields of critical and reactive systems,
and the development and verification of such systems. It also illustrates the limitations of
current formal development techniques. Finally, we discuss the aims and contributions of this
thesis.

1.1 Critical Systems and Formal Methods

The field of formal methods has grown out of the need for verification of critical systems. Here,
we provide an overview of critical systems and formal methods.

1.1.1 Critical Systems

Critical systems are systems for which failure or malfunction is not acceptable [Sto96, Fow09,
Som07]. Often these are control systems, also known as reactive systems, which manage and
maintain conditions in some environment. For instance, electronic payment systems such as
those that implement the EP2 standard (short for ‘EFT/POS 2000’ or more fully ‘Electronic
Fund Transfer/Point Of Service 2000’) [EP208]. EP2 is an industrial standard of an electronic
payment system mainly developed by financial organisations. The goal of this specification

1

7. Introduction

is to set the standard for all electronic payment systems, including debit and credit cards and
electronic purses in Switzerland. An implementation of EP2 can be considered as a critical
system as failure is unacceptable.

Examples of such unacceptable failures include transferring money to wrong bank ac
counts, transferring incorrect amounts, losing money during transfers, and so on. Each of
these is an example of a failure which could have disastrous effects for customers, businesses
and countries. EP2 is a running example that we use throughout this thesis and will be covered
in more detail later in this introduction. Generally, the failure of a critical system may have
serious consequences including substantial financial losses, environmental damage, injury or
even loss of life. Critical systems can be classified into three main groups [Som07], namely:

Business critical where the failure of the system could jeopardise the stability of the busi
ness [Som07], for example, EP2 and control systems for the stock market.

Mission critical where the malfunction could lead to the failure of a mission (or goal orien
tated project) [Fow09] for example, the navigation system on a space probe.

Safety critical where the failure or malfunction could lead to the loss of life or large scale
environmental damage [Sto96, Fow09], for example, flight control systems of an aircraft
and medial devices such as automated infusion pumps.

Formal methods can be used during the design and development of such systems in order
to reduce the risk of failure. In this thesis we aim to advance formal methods and broaden
their application. We focus within the area of safety critical systems, although the work applies
equally to all types of critical systems.

1.1.2 Formal Methods

Formal methods are the application of mathematical techniques to software engineering pro
cesses with the aim of improving the quality of produced software. There are estimated to be
3.3 software errors per thousand lines of code in large software systems [BS93]. Furthermore
there are as many as 1020 unique end-to-end paths in a moderate-sized program [BS93]. Find
ing and correcting errors in such systems is a hard task. Systematic testing can help, but in
order to be able to test a system we first need something to test against. That is, we need a
specification of the system.

Creation of a specification is itself a challenging and often error prone task. Formal meth
ods can help with this and can give us confidence that what we specify is of a certain quality
(i.e., consistent). Formal methods allow us to write specifications and model systems using no
tions with a firm and well understood mathematical basis. Once a system has been formalised
in a formal specification language we can try to verify its correctness and prove that it exhibits
desirable properties. An example of a desirable property is deadlock freedom: a reactive sys
tem should not stop working, which would usually be seen as a failure. Thus, formal methods
can help us create specifications of systems, which we can be certain are of a good quality.
This in turn helps to increase our confidence that what we have specified is exactly what we
intended to specify.

2

1.2. Development o f Critical Systems

One downside of formal methods is that they are expensive. Verification of any system is
usually a lengthy and costly task. Abrial [ACM 10] estimates, using the specification language
Event-B, that for a generated program with 100,000 lines of code, it would take 3.12 man-
months of work to prove its correctness assuming that 97.5% of the proof obligations are
automatically discharged. The man-months rise to 12.5 when only 90% of proof obligations
are discharged automatically. Typically between 90% and 97.5% of proof obligations will be
discharged automatically on such a program. These statistics clearly show that formal methods
require tool support if they are to be practically useful and used in real world applications.
Unfortunately, the costs are too high for most systems and as a result most systems are not
verified. Critical systems however, due to their nature, require such verification. In certain
industries verification is a legal requirement.

New developments and scientific results are enhancing verification techniques, as well as
producing new ones. This is slowly reducing the burden of formal verification often making
it easier, cheaper and more accessible to industry. In this thesis we develop such techniques
further.

1.2 Development of Critical Systems
The development of critical systems usually follows an augmented version of the classical life
cycle models, for example, the waterfall or spiral models [Boe88]. The first step is usually
the specification of what the system should do. Such a specification itself needs to be de
veloped. There are three complementary themes in such a development, namely: structure,
vertical development and horizontal development. A system is an entity which is composed
of other entities and thus has a structure. The first aspect is the identification of this struc
ture. This is modelled and adapted throughout the development process. The second is vertical
development. We usually think and develop systems in stages, starting from high levels of
abstraction and then filling in details as we produce more concrete designs. This is vertical
development. The third aspect is horizontal development, also known as enhancement, where
instead of changing the abstraction level, we add, or more unusually remove, features of a sys
tem. For instance, Kahsai et al. [KRS08] describes enhancement for C sp-C asl [Rog06] with
an example of extending a remote control unit by adding new buttons.

These three aspects overlap in parts, with horizontal development being captured partially
by structuring and partially by vertical development (where we just choose not to change the
abstraction level). Throughout this thesis we refer to vertical development as its other common
name, namely refinement. We explore both o f the concepts o f structuring and refinement in
the next two sub-sections. Following this, we look at the current verification techniques with
C sp -C a sl for reactive systems.

1.2.1 Systems as a Composition

A system is an entity which is composed of other entities. Understanding the structure of a sys
tem (or real world problem) and being able to break it down and identify its component parts is
the first step in developing a well structured computer system. This structure is somehow nat
ural for the problem being solved and is usually explorable during development. Systems are

3

1. Introduction

not developed as one large monolithic entity, but are instead developed as smaller components
which are combined to form the overall system.

As an example consider EP2. The system specified by the EP2 standard consists of eight
components: a terminal, a cardholder, a point of service (POS), an attendant, a POS manage
ment system, an acquirer, a service center and a card. All these components work in parallel
to form the overall system, with the terminal having a slightly special focus as the central
component. Each component is described in isolation (as much as is possible) and developed
individually (we discuss development within specifications in Section 1.2.2). This separation
helps focus the specifier and the reader of the documents and aids understanding. The system
is also naturally split into such components. It is natural for a retailer to have a Terminal and
Chip and Pin machines, whilst the banks have back-end systems.

However, there is a significant downside to describing all components in isolation. That is,
data needs to be duplicated. For instance, the interface between components needs to be de
scribed once for each component in each component’s specification. Data types shared between
components will also need to be described multiple times. Without doing this duplication each
component can not be specified in isolation. This causes several specification issues. The most
prevalent here is that data may be specified differently and inconsistently in each place it is
described. Another problem is that the interfaces may not be compatible with each other. In
formal specifications usually make a compromise between specifying components in isolation
and data duplication. This is far from ideal, but probably the best that can be achieved with
informal specifications.

Formal specifications, and thus formal methods, can hope to achieve both of these simul
taneously. Specifications can be imported and reused. Thus, data types and interfaces can be
specified in isolation and imported into the components that utilise them. This eliminates the
risk that data types will be specified inconsistently in multiple places as there is no duplication.
Rigorous mathematics can also be used to prove that the interfaces are compatible. Overall
such use of formal specifications can increase our confidence that what we build is of a high
quality.

Each component usually has both a reactive and a computational aspect. This is true for
all the components in EP2. The reactive part captures how the component behaves and in
teracts with the world and other components around it. The computational part is important
for making choices and transforming data, possibly obtained through prior interactions. Such
decisions and computations can affect the behaviour of a component. For example, consider
the following C sp [Hoa78, Hoa85, Ros98, Sch99, AJS05, Ros05, Hoa06] process (C sp will
be introduced in Chapter 2)

□ x :: I n t -» if x > 0 then P else Q .

This is a C sp process which first receives a value out of the set I n t (representing the set of
integers) and binds it to the variable x. Following this, the behaviour of the process depends
on whether or not x is at least zero. If this condition is true then the process behaves like the
process P otherwise it behaves like the process Q. This illustrates that data computations can
affect the reactive behaviour of systems and that data properties can affect process properties.
By splitting a system into its components we avoid trying to describe and understand, in one
huge effort, the entire system and all its reactive and computational aspects.

4

1.2. Development o f Critical Systems

Formal methods should be able mirror this natural composition of systems and modu
lar development within formal specifications. The advantages of this are three-fold. Firstly,
for methodological reasons, it is far easier to concentrate on and understand smaller compo
nents than a large monolithic system. Once all components are understood we are then able
to understand the entire system and how the components operate together. Secondly, smaller
components can be reused more easily and more often than larger ones and thus, structured
specifications lend themselves more easily to code reuse. Finally, the structure of specifica
tions can be used in the verification process to actually help establish the correctness of such
specifications.

Formal specification languages which support structuring usually have a kernel structuring
language [Mos02] which supports importation and union of specifications, renaming and hid
ing of symbols, and other more exotic features. These can be used as building blocks in formal
specifications languages to create well structured system specifications with the advantages
discussed above. The choice of structuring operations by Mossakowski is based upon work by
Sannella and Tarlecki [ST88] who study structuring mechanisms for specification languages,
and work by Bergstra et al. [BHK90] who study modularisation in the context of programming
languages.

1.2.2 Refinement Based Development of Processes and Data

The first step in developing any system is to have an idea, usually at a high level of abstraction,
of what properties the system should have. We then add details and develop the idea further
until we have a fuller view of the system.

Figure 1.1 shows this process for EP2 and how this can be mirrored using formal methods.
The left hand vertical chain shows the informal development process. Usually, we start the
whole development process with an informal specification at a high level of abstraction, where
the intricate details of the system are not considered. Instead the specifier focuses on the
system architecture and large scale design, for EP2 we call this the architectural level. These
specifications (or requirements) can then be enhanced and developed to include further detail,
represented as the vertical chain. This process can be repeated until all details have been
specified in full and the description of the final system has been reached, that is, the lowest
abstraction level, which we call the concrete component level in Figure 1.1.

EP2 is specified informally in several documents which contain images, tables, text and
UML-like diagrams. It was developed from high level descriptions down to very precise levels
of detail. The development of EP2 includes the development of both the underlying data and
the dynamics of the system. For example, on the data side, abstract communication messages
are developed down to XML messages that contain prescribed data, for instance, payment
details. On the process side, the behaviour of sub-systems and protocols are refined to more
concrete versions. The specifications at all abstraction levels should split the system into its
components as discussed in Section 1.2.1. Each component can be developed individually and
their interactions adapted accordingly at each abstraction level. This is done largely in EP2 by
focusing each document on one component.

Such development comes in two variations, which cannot be considered in isolation. The
first is data development. At high levels of abstraction data is only vaguely described (i.e., the

5

/. In trodu ction

Architectural
Level

Abstract
Component

Level

Concrete
Component

Level

Informal
Development

Process

Modelling /
Formalisation

▼

i
▼

Form al
Specification

C s p - C a s l

Spec Spo

C s p - C a s l

Spec Spi

M odelling / Formalisation
Formal Refinement

C s p - C a s l

Spec Sp2

Informal Refinement

Figure 1.1: Illustration o f the informal and formal development processes for EP2.

data is loose). This means that there can be many interpretations that fit with what has been
specified. EP2 uses loose data in its high levels o f abstraction in this way to specify data types
o f communication messages that pass between components. At the highest level of abstraction.
EP2 only specifies that such messages exist. As systems are developed, the level o f abstraction
becomes lower (i.e., more concrete), with the lowest levels often explicitly stating the exact
representation of the data. The second development variation is that of process (or behaviour)
development. At high levels o f abstraction the behaviour of systems usually involve areas
which are vaguely described, they are black boxes, where the exact details o f how they function
is o f no interest at such a high level. As the system and its components are developed down to
lower levels, the design of such black boxes is filled in and made more precise. As we have
noted in Section 1.2.1, data properties can influence process properties, thus it is impossible to
develop solely the data of a specification and only then consider the process development (and
also vice versa). One must do both intermixed and constantly consider how development of
data influences the behaviour of components. Such development, in both data and processes,
is a natural process: we start with high level ideas of what a system should achieve and slowly
develop these ideas by filling in the details until we have a fully working system in mind.

The separation of such abstraction levels can have benefits not only for methodological

6

1.2. Development o f Critical Systems

reasons, but also for formal verification. For instance, EP2 specifies a sub-sort structure of the
communication messages at a fairly high level of abstraction, nothing else about the messages
is specified. This has allowed us to prove, at a high level of abstraction, that the protocols
that EP2 uses are actually deadlock free [GKOR09]. This can also be proven at lower levels of
abstraction, but requires a greater effort as there are many more details to consider. Generally it
is easier to establish properties at the higher levels of abstraction, where there are less specified
details.

Between each level in the informal development chain is an informal refinement relation.
This means that in an intuitive sense, the development step from the previous to the next level
is a reasonable one (e.g„ that the development does not introduce inconsistencies).

Formal methods should be able to mirror this informal development process. This entails
being able to model systems, such as EP2, at a range of abstraction levels from very high levels
to the most concrete levels. The right hand chain in Figure 1.1 captures this formal develop
ment. We mirror each informal abstraction level with formal specifications of the system and
its components.

At high levels of abstraction one should be able to formally specify both data and behaviour
in a loose way. That is, many types of data and behaviour may fit the specification and there
may be multiple ways to fulfil the requirements. This is exactly what is done informally at
such abstraction levels where the intricate details are of no interest. For instance, EP2 specifies
an architectural level where the architecture of the system is outlined and what types of data
are used. At no point in this level is the data further detailed. Formal specification languages
should be capable of capturing such abstract notions.

Finally, as we have formal specifications, we can establish formal refinements between
each abstraction level. Whilst this has the same nature as the informal refinements, these for
mal refinements are part of formal methods and are founded in mathematics. We can prove
they exist and that each development step is a “correct” and reasonable one within the partic
ular formal framework in which we are working. Establishing the existence of such formal
refinements is a form of verification which we cover next.

1.2.3 Verification

Once we have various abstraction levels of a system specified formally, we are able to perform
verification. Verification comes in two forms. The first is checking that the development from
one level to the next is a reasonable one. The designers of the system obviously intend for these
to be reasonable development steps, but mistakes can be made. For instance, it is possible to
describe either data or processes in a way which contradicts the same aspects described at a
higher level of abstraction. With informal specifications the detection of such mistakes can
only be done manually by humans, as informal specifications are not based in mathematics and
thus may contain ambiguities. Formally checking development steps (i.e., establishing formal
refinement relations) can bring to light such modelling errors.

The second form of verification is that properties can be established on formal specifica
tions. For instance, it is possible to prove that such a specification is deadlock free or func
tionally correct. The benefits of this are two-fold. Firstly, it increases our confidence that the
specifications are “correct”, that is, that we are specifying the system that we intend to specify.

7

1. Introduction

If it is not possible to prove that the specified system has some property that we expect it to
have, then this may indicate that we have made a modelling error. Secondly, any “real” imple
mentation of such a specification will then also be guaranteed to have such properties. Such
verification is not possible with informal specifications.

Both these forms of verification can be achieved by establishing certain refinement rela
tions. For instance, in C sp one can prove deadlock freedom of a process P by showing that
the most abstract deadlock free process refines to the process P in the Stable-Failures seman
tics of Csp [Ros05]. As a data example, consider the specification of generic specifications
and instantiation in Ca sl [Mos04, BM04]. In order to specify a generic specification (i.e., a
parametrised specification), one specifies a formal parameter and uses this in the specification
of the body of the generic specification. One can then specify an actual parameter and use
this in the instantiation of the generic specification. However, the instantiation is only well
formed if the formal parameter refines to the actual parameter. This is a healthiness check that
the actual parameter’s implementations are already contained within the formal parameter’s
implementations. If this is not the case then the construction does not make sense and indi
cates that the specifier has made an error. Hence, refinement is a central notion that tools must
support in order for formal methods to be applicable and useful to real world problems.

Thus, ideally, formal development should allow for multiple levels of abstraction, from
abstract levels to concrete ones, whilst also allowing for component based design. Such devel
opment steps should be able to develop both the data and the behaviour of components of the
system. Loose data and processes should be able to be specified as well as concrete instances.
Finally, we should be able to establish properties on such specifications, ideally at high abstrac
tion levels and be guaranteed that such properties are inherited by the more developed lower
levels.

1.2.4 C s p -C a s l

Current formal specification languages, which integrate the specification of both processes and
data, achieve the above (structuring, refinement and verification) to a certain degree, but not
fully. Ca sl [Mos04, BM04], for instance, is tailored to the specification and development of
data at various abstraction levels. Whilst it does lend itself to the development of components,
it is not able to describe complex dynamic behaviour in an elegant and concise way. In contrast,
C sp [Hoa78, Hoa85, Ros98, Sch99, AJS05, Ros05, Hoa06] is a formalism for the description
of reactive systems. Whilst C sp can describe such dynamics of systems, also at various levels
of abstraction, it neglects the development o f data. C sp assumes that data is fixed the mo
ment the system is first described. Therefore, data cannot be developed from abstract levels to
concrete levels using traditional C s p .

These two languages were coupled with the creation of Cs p -C asl [Rog06] which allows
one to specify systems via a data part and a process part. In the data part one specifies using
C a sl all the data that is used in the system, whilst in the process part one uses this data and
C sp to specify the behaviour of the system.

While development of both data and processes is possible in Csp-Casl , it only allows
for limited compositional specifications as structuring is not available in the process part of a
specification. Consider briefly Figure 1.2 which shows part of a C sp-Casl specification of

1.2. Development o f Critical Systems

spec A rc h_Init =
d a t a . . .
c h a n n e l . . .
process let Acquirer = . . .

Terminal — . . .
in Terminal [| . . . |] Acquirer

end

Figure 1.2: Excerpt o f the C sp-C a sl specification o f EP2 [GKOR09].

EP2 [GKOR09]. This C s p -Ca s l specification describes two components of EP2, namely the
acquirer and the terminal. These are two components (out of eight) that form the EP2 system
and run in parallel with each other to form part of the overall system. A C sp-Ca sl spec
ification represents one system, whose behaviour is given by one nameless process, possibly
using a let construction to allow for sub-processes. For example, the Acquirer and Terminal are
two named sub-processes that run in parallel to form some overall unnamed system (i.e., the
process Terminal [| . . . |] Acquirer). Thus, in C sp -Ca s l , it is impossible to specify these two
components (and their data) separately and later refer to them when constructing the overall
system (i.e., the parallel composition). It is possible to do this with data in C sp -Ca s l , but
currently not with processes. The behaviour of all components must be specified in a mono
lithic C sp -Ca sl specification. One approach to dealing with this is to specify components
separately and to then “cut and paste” the specifications together. This is cumbersome and
causes the loss of structure. As there is no structure in the resulting specification, it cannot
be exploited in the verification effort. As C sp-Ca sl is limited in its compositional abilities,
compositional reasoning is also limited and in most cases is impossible.

A second weakness of the original C sp -Ca sl is that one is forced to write a process equa
tion for the unnamed process and all sub-processes. Thus, it is not possible to leave the in
terpretation loose. This means that you cannot specify your system as a black box where you
do not restrict its behaviour. This ability is particular useful and in some cases required to
capture systems at their very highest levels of abstraction. This is a limitation of the seman
tic construction: in C sp -C a s l each data model gives rise to exactly one process denotation.
While loose process semantics is nice for methodological reasons, is is a necessity for generic
(or parametrised) specifications involving processes and data. Thus C sp-Ca s l , even if it had
more comprehensive structuring mechanisms, would not be able to support generic specifica
tions.

C sp -Ca s l , despite its limitations, does have tool support for dealing with specifications
that capture both data and processes. The tool H ets [MML07] allows for parsing, static anal
ysis and proof support by utilising CSP-CASL-Prover [O’R08]. These tools have been used
extensively in the formal modelling of EP2 [KahlO]. Therefore it is possible to use C sp -Casl
in its current form for industrial projects. However, such efforts have to work around the limi
tations discussed above.

We wish to address the limitations of C sp -Ca sl within this thesis and bring compositional

9

1. Introduction

reasoning to C sp-C a sl specifications involving processes and data.

1.3 Project Aims
We aim to improve and extend the specification language C sp-C a sl and address its weak
nesses. Specifically we aim to:

• Adapt the semantics of C sp -Casl to support loose process semantics. This will make it
possible for C sp-Ca sl to support generic (or parametrised) specifications and will also
allow Csp-C a sl to capture the very highest levels of abstraction where processes are
only declared to exist and are treated as black boxes.

• Extend C sp-C a sl to support full structuring in the process part. Full structuring is
currently only available in the data part. This enhancement will allow compositional
descriptions of reactive systems at various levels of abstraction.

• Develop a new refinement notion which deals with the new loose process semantics.
This will allow for full rigorous system development with refinement chains that can be
proven to hold.

• Develop proof calculi which allow C sp-C a sl refinements to be proven in a way which
can utilise the structure of the specifications involved. We believe that by exploiting the
structure of the specifications we can ease the proof burden of establishing refinement
relations.

• Implement the enhancement of C sp-Ca s l , the new refinement notion and the proof
calculi in a prototypical way.

Achieving the above aims will also demonstrate that it is possible to combine data and
process specification in a common formalism and utilise the structure of a specification in the
verification effort at all levels of abstraction.

1.4 Publications
Material from the following published papers contribute to this thesis:

Compositional modelling and reasoning in an institution for processes and data
(with Mossakowski and Roggenbach), WADT 2010 [OMR12] outlines the details of
loose process semantics and the new institution for C sp -C a sl. It also includes the new
refinement notion and proof calculi dedicated to deadlock analysis (which have been
refined and developed in this thesis). I contributed to the development of the institution
and refinement notion and was responsible for the deadlock and refinement calculi.

On the whereabouts of C s p - C a s l - A Survey (with Gimblett, Kahsai and Roggen
bach), BKB Festschrift 2011 [GKOR09] provides a comprehensive but concise over
view o f C sp -C a sl, from its original design and refinement notion, though modelling

10

1.5. Thesis Overview

EP2 and the design and implementation of tool support, to specification based testing.
My contributions to this paper were the construction of CSP-CASL-Prover and work
on the verification of EP2. The work I contributed to this paper was based upon my
M.Phil [O’R08].

Compositional reasoning for processes and data (with Mossakowski and Roggen-
bach), ARW 2011 [MOR11] was a workshop where a brief overview of this work, in
cluding the addition of loose process to C sp -C a s l was presented. The work presented
focused on structured specifications, in particular parametrised specifications. I was the
main contributor to this work.

1.5 Thesis Overview

We begin this thesis by introducing the languages involved in the specification language CSP-
C a s l . Chapter 2 introduces the process algebra C sp and presents its syntax, various semantics,
and refinement notions which allow for development o f processes. Tool support is also briefly
discussed.

Chapter 3 introduces C asl via an example of specifying a track plan in the railway do
main. The syntax and semantics of Ca sl is presented in an informal way which covers both
sub-sorting and partiality. The example makes extended use of structuring, generic specifica
tions and instantiations, and also demonstrates formal verification. Tool support is also briefly
discussed.

Chapter 4 introduces the formal framework of institutions along with various examples.
The institutions PCFOLr (partial first order logic with sort generation constraints and equal
ity) and SubPC FO lr (sub-sorted partial first order logic with sort generation constraints and
equality) are presented, the latter being the underlying institution of Ca s l . The data-logic
for Csp-C asl is also presented as an institution, along with some institutions capturing CSP.
Finally, institution independent structuring mechanisms are described.

Chapter 5 introduces the original C sp-C a s l , where we sketch the semantics and its refine
ment notion. We present an example of using C sp-C a sl to specify and partially verify EP2.
We also discuss the limitations of the original C sp-C a sl and how we intend to overcome
them.

Chapter 6 discusses related work. Various different approaches of integrating the specifi
cation of data and processes are presented, along with discussions of the degree of structuring
available with each approach.

Chapter 7 presents various constructions required to construct the C sp -C a sl institutions.
We first present how to lift alphabet translations to covariant C sp domain translations and, in
the case of injective alphabet translations, to contravariant CSP domain translations. Follow
ing this we describe how to flatten C a sl models to alphabets and lift model morphisms and
reducts to alphabet translations. We prove various proprieties of these translations which will
be required for the construction of the C sp -Ca sl institutions.

Chapter 8 presents the construction o f the three C sp -C a sl institutions, one for each o f the
CSP semantics. Each institution shares the same constructions for signatures and sentences,

11

1. Introduction

but differs in their models and satisfaction relations. The models and satisfaction relations,
however, follow a common construction scheme.

In Chapter 9 we develop a new refinement notion for C sp -Ca sl that supports named pro
cesses and loose process semantics. We provide several proof calculi supporting compositional
refinement and deadlock analysis over Structured C sp-C a s l . Following this, we provide a
method for deadlock analysis of networks [RSR04]. Finally, we show that a complete re
finement calculus for Stmctured C sp-C a sl is possible, provided structured specifications are
restricted to certain forms.

Chapter 10 presents an example showing the use of the compositional proof calculi. We
model an online shopping system with four components, namely, a customer, coordinator,
payment system and a warehouse. These four components are specified separately and are
combined via structuring to form the final specification. We specify the system and components
on various levels of abstraction. Furthermore, we prove deadlock freedom of the system.

Chapter 11 discusses the implementation of the C sp -C a sl institutions. We extend the
tool H ets with the new notions for Structured C sp-C a s l . This gives us the ability to parse,
statically analyse and pretty print Structured C sp -C a sl specifications. The static analysis
checks various conditions are meet, such as the conditions on C sp -C a sl signature morphisms.

Chapter 12 presents a summary, while Chapter 13 discusses various future works. Ap
pendix A presents various proofs which are deferred in the main text. Appendix B presents the
C sp semantical clauses deferred from Chapter 2, while Appendix C presents specifications of
an example ATM system used in Chapter 8. Finally, Appendix D presents full specifications
for the example presented in Chapter 10.

12

Part I

Background

13

Chapter 2

C s p

C ontents___
2.1 The Syntax of Cs p .. 16

2.2 Syntax Extensions.. 20

2.3 Typical L aw s... 22

2.4 The Semantics of Cs p ... 23

2.5 Refinement.. 29

2.6 Tool Support... 31

C sp (Communicating Sequential Processes) [Hoa78, Hoa85, Ros98, Sch99, AJS05, Ros05,
Hoa06] is a process algebra, and is one of many formalisms developed for the description of
reactive systems. It was first developed by Hoare in 1978 [Hoa78] and allows for the descrip
tion of processes by specifying their behaviour via their communications.

A process in Csp can be seen as a black box which can communicate with its environment
(or other processes) using a set of fixed communication events, usually called an alphabet. The
idea of Csp is to observe what a process does; in this way an observer can look at a process
and simply record the communications of the black box by writing them down in a list.

A process in C sp is built using a number of building blocks which will be introduced in
Section 2.1 and Section 2.2. C sp has a variety of semantics, described in Section 2.4, which
give meaning to processes. Each of the semantics is tailored to capture different aspects of the
behaviour of processes and comes equipped with a refinement notion which relates processes
with each other and allows for process development. The refinement notions perverse selected
properties, usually the properties that the semantics focus on. This allows for development
which can preserve such properties.

Today, CSP has many flavours where most of the differences are in the available syntax.
In this chapter we present CSP’s syntax, semantics and refinement notions closely following
Roscoe [Ros05], which we will use later on when defining the C sp-Ca sl institutions in Chap
ter 8.

15

2. C sp

SKIP %% terminating process
STOP %% deadlock process
DIV %% diverging process
a —> Proc %% action prefix process
r \x :: X Proc %% internal prefix choice
\2 x :: X -» Proc %% external prefix choice
Proc § Proc %% sequential composition
Proc n Proc %% internal choice
Proc □ Proc %% external choice
Proc || Proc %% synchronous parallel
Proc 111 Proc %% interleaving
Proc \ [X] \ Proc %% generalised parallel
Proc j [X | Y] | Proc %% alphabetised parallel
Proc \ X %% hiding
Proc[R] %% relational renaming
if ip then Proc else Proc %% conditional

where a is an action in the Alphabet A , the sets X , Y C A are synchronisation sets, x is a
variable, is a formula, and R C A x A is a renaming relation.

Figure 2.1: The basic syntax of Csp processes [Rog06J.

2.1 The Syntax of Csp

Here, we describe Cs p ’s syntax and explain its intuitive meaning using examples. C sp pro
cesses are built over a fixed alphabet (i.e., a set) of actions or events. Figure 2.1 shows the basic
syntax of C sp processes over such a fixed alphabet A. Processes are constructed from basic
processes (SKIP, STOP, and DIV), various prefix operators, sequential composition, various
choice operators, parallel composition, hiding, renaming and a conditional construct.

We will now describe the idea behind each of the operators with examples. For these
examples we will think of the semantics (for now) as the Trace semantics, which will be made
precise in Section 2.4. The traces of a process are simply sequences of actions which the
processes can engage in.

There are three basic processes: STOP, SKIP and DIV. STOP is the process which does
nothing. It does not communicate and refuses to do so. It represents deadlock. SKIP on the
other hand represents successful termination (by communicating the special action / and then
deadlocking, see Section 2.4). DIV is the process which continually engages in internal (also
called hidden) actions.

The action prefix operator is the heart of C s p : a —» P is the process that first communicates
the action a and then behaves like the process P. With this operator it is possible to build up

16

2.1. The Syntax o f CSV

chains of communications. For instance, consider a light switch modelled as the process:1

Light JSwitch — on —>■ off —>■ Light-Switch .

This light switch can first communicate an on action (representing the unit being turned on)
followed by an o ff action (which represents the unit being turned off). CSP does not state
that the light switch turns itself on and off, but simply that it can be turned on and off. After
having been turned on and then off the process simply repeats and acts once again as a light
switch. Hence, we have modelled a light switch which has the ability to be toggled on and off
forever. This is achieved using recursion, which is the means by which CSP describes infinite
behaviour.2

The sequential composition operator allows two processes to be composed together in se
ries. The second process takes over only when and if the first process terminates successfully.
For instance, the process

Seqi = a —> SKIP § b STOP

is the process which communicates an a action followed by a b action and then deadlocks,
while the process

Seq2 = a -y STOP § b —» STOP

communicates an a action and then deadlocks. The process Seq2 only communicates an a
action as the first sub-process (i.e., a —> STOP) never terminates successfully and thus the
second sub-process (b —> STOP) never takes over.

CSP has two binary choice operators, namely, internal choice (i.e., Proc n Proc) and exter
nal choice (i.e., Proc □ Proc), which allow us to make a choice between the behaviour of two
processes. For instance, consider a mover person who wishes to move pianos and tables (based
on examples taken from Schneider [Sch99]):

Mover — movejyiano —>■ Mover □ moveJable —>■ Mover .

Here, the action prefix operator binds tighter than the both the internal and external choice
operators. Mover is the process which can first perform one of two actions namely move-piano
or moveJable, where the choice is given to the environment as we have used the external
choice operator. This offer of choice to the environment allows the environment to influence
the behaviour of the process. Once a choice has been made the process continues down that
branch. We can also consider a stubborn mover person who will not be influenced in such a
decision and instead chooses non-deterministically:

Stubborn-Mover = move-piano —> StubbornM over (“1 moveJable —> StubbornM over .

Here, the process chooses non-deterministically which branch to use and offers only one action:
either a m ovejy ian o action or a m oveJab le action, but not both. This offer of choice (to the

1 We write P = Q for syntactic equality o f P and Q, and P =x> Q for semantical equality in the Csp semantics
V. We drop the subscript V if the equality holds in the three main semantics, that is, T , Af and T. However, we
use = when defining recursive processes.

2In the standard denotational semantics o f C sp , fixed point theorems are used for recursion. C sp has two de-
notational approaches to recursion namely: Banach’s fixed point theorem with complete metric spaces and Tarski’s
fixed point theorem with complete partial orders.

17

2. C sp

environment) is the difference between the internal and external choice operators in Csp (other
variations will be discussed shortly). The external choice operators allow the environment
to make the choice while the internal choice operators do not. The offer of choice becomes
particularly important when combining processes using the parallel operators (which again will
be discussed shortly).

Csp has two types of prefix choice operators, namely, internal prefix choice (i.e., H x ::
X —> Proc) and external prefix choice (i.e., □ x :: X —>■ Proc). These allow the choosing of a
communication from a set of values. For instance, the process

n x :: {a ,b ,c } -» x —> STOP

is the process which first communicates one of the actions a, b or c, then re-communicates
this action, and finally deadlocks. The action is bound to the variable x for use later on as a
valid action. The choice of the action in this instance is non-deterministic as this is the internal
choice operator. In contrast, the process

□ x :: {a, b, c] —>■ x —> STOP

is willing to engage in any of the actions a, b or c and allows the environment to choose.
Now we approach the more complex operators, namely the parallel composition opera

tors. These come in four variations, the two simplest are the interleaving operator and the
synchronous parallel operator.

We can use the synchronous parallel operator to force two processes to work together and
synchronise on all events. As pianos and tables are usually heavy, they normally require two
people (in this example) to move them. The synchronous parallel operator allows us to model
this very easily. Consider the process

Movers = Mover || Mover

where we have put two mover people together and require they work together. As they both
allow the environment (in this case the other person) to make the choice between moving
pianos and tables, they end up agreeing and actually moving furniture around. When they both
synchronise on either a m ove^iano or a moveJable action, only one action is communicated
to the outside world (as in real life only one table would be moved by two people).

If instead we used two stubborn movers, as in

Stubborn-Movers = Stubborn JAover || Stubborn-Mover

then it is possible that no furniture will ever get moved, as one of the stubborn movers may
choose to move a piano and the other to move a table. They each choose independently and
non-deterministically as they have both been defined using an internal choice operator. As they
must agree on all actions (dictated by the use of the synchronous parallel operator) and assum
ing pianos are not tables then they may not agree and will become deadlocked. This shows
how the different choice operators can be used to achieve quite subtly different behaviours.

The other parallel operators work in similar ways but with different notions of cooperation.
The interleaving operator allows two processes to proceed independently of each other: they

18

2.1. The Syntax o f CSP

do not synchronise on any events, while the generalised parallel operator specifies a set upon
which the processes must synchronise and outside of this set they can proceed independently.
Finally, the alphabetised parallel operator specifies two sets for synchronisation where only
actions in the intersection need to be synchronised. For example, the process

P \ [X \ Y \ \ Q

is the process which combines the process P and Q where P synchronises over X and Q syn
chronises over Y. Thus, overall each can proceed independently with actions outside of X fl Y
but any actions in the intersection must be agreed upon and synchronised. The alphabetised
parallel operator becomes important when creating networks, discussed in Section 2.2.

The hiding operator hides a set of events in a process. When combining processes in a
system, say with the synchronous parallel operator, some events may be intended to be internal
communications between the sub-systems involved. However, these events are still visible after
the parallel compositions. This is intended by the design of CSP and is the mechanism that al
lows multi-way synchronisation to work [Sch99]. The hiding operator allows us to encapsulate
such communications within the process. The process

P \ X

is a C sp process where none o f the events in X can be observed. The process P however, can
use these events as normal.

As an example consider a stop-and-wait protocol implementing a one-place buffer (as pre
sented in [Sch99]). This example uses channels which will be introduced in the next section,
however channels are very intuitive and allow the sending of values though “pipes”. The idea
here is to build two sub-systems {Receiver and Sender) which when combined form a one-place
buffer. The one sub-system {Receiver) receives input and places the input in the buffer. The
other sub-system {Sender) reads from the buffer and outputs the information. The two systems
are specified as:

Receiver = in ? x ::T —> m id \x —)■ ack —»■ Receiver

Sender = mid ?y ::T —> out \y —> ack —> Sender

The Receiver process reads a value of type T (i.e., out of the set T), over the channel in and
binds it to the variable x. It then sends this value on the channel mid. After this it communicates
an acknowledgement and repeats. The sender reads a value from the channel mid and outputs
it on the channel out. After this it communicates an acknowledgement and repeats. In this
way the channel mid can hold a single value which will be communicated between the two
sub-processes. These two sub-processes are to synchronise using the internal message ack in
order to know when the buffer is free again. Thus, the system is:

Sys = (.Receiver || Sender) \ (mid .T U {ack})

Here, we put the Receiver and Sender in parallel and hide all communications over the channel
mid and the action ack. Overall the two-sub processes communicate values over the channel
mid and synchronise on the communication ack. However, none of these communications can

19

2. C sp

R un(X) = R unx = \3 x :: X —> R unx % run operator
Chaos(X) = Chaosx = STOPfl (D x :: X Chaosx) % chaos operator
P > Q = (P n STOP) □ Q % untimed timeout operator

Figure 2.2: Basic extensions for C sp processes.

be seen. To the outside world this is a black box which receives values on the channel in and
repeats them on the channel out.

The hiding operator can be tricky to use correctly as its use can introduce non-determinism
in an otherwise deterministic process, by hiding events which control the flow of a process.
When the events offered by an external choice are hidden, the environment no longer has any
control over how the choice is resolved: it is resolved internally [Sch99].

The renaming operator allows a process to be renamed. For instance, returning to our
piano and table movers example, we can create a new mover person who moves tables and
bookshelves by renaming the action piano to bookshelf, that is, the process

Mover[R]

where R = {(piano, bookshelf)} C A x A. This allows us to reuse processes in the creation
of new ones just by renaming the communications.

The final operator is the conditional operator that allows a choice based on some formula
over a suitable logic that deals with variables over the alphabet.

This concludes the syntax for basic process in C sp . In the next section we discuss some of
the many extensions of this basic syntax.

2.2 Syntax Extensions

We now introduce extra convenient syntax which is shorthand for expressions that can already
be expressed in the original syntax of C sp in Figure 2.1. These extensions include basic exten
sions, networks and channels.

2.2.1 Basic Extensions

Figure 2.2 shows some basic syntactic sugar for Csp. R un(X) is the process which continu
ously offers all actions from X . As it offers an external choice it allows the environment to
choose the particular action out of X . C haos(X), on the other hand, can always choose to
communicate or reject any member of X . Its behaviour cannot be predicted, hence its name.

The expansion for P > Q is the only non-intuitive expansion of the three. This operator
models an untimed timeout. Hence, P > Q intuitively states P will start within a given time
frame, otherwise Q will take over. As we do not have time in our vocabulary we model this
timeout as a non-deterministic choice, that is, the timeout may occur at anytime. Pt> Q will
behave like P whenever P starts, that is, a visible action from P occurs. However, this may not
happen in time and then a timeout occurs and it behaves like Q. This is a non-deterministic
choice, but once the choice between behaving like P or Q is made, then it is stuck to. For
further detail see [Ros05],

20

2.2. Syntax Extensions

2.2.2 Networks

Another extension of C sp is that of networks which will be utilised in Chapter 9 and Chap
ter 10. Networks are built from the alphabetised parallel operator (i.e., Proc \[X \ Y] \ Proc).
For instance, consider four processes: a customer, a coordinator, a payment system and a ware
house, with individual alphabets A c , A c o > ^ p s and A w respectively. These processes work
together to provide an online shopping system, that is, they form a network. The network of
these processes would be the process:

((Customer | [A c \ A c o] \ Coordinator)
| [A c U A c o I A p s}\ Payment System)

| [A c U A c o U A p s | A w] | Warehouse

This is a common way to build networks [Ros05]. We place each process in parallel over its
own alphabet. Thus, the components must only cooperate on the intersection of their alpha
bets. They are free to proceed independently outside of this set. When placing an alphabetised
parallel component (say, Customer | [A c \ A c o] I Coordinator) in parallel with another com
ponent (say, Payment System), the alphabet of the alphabetised parallel component is taken to
be the union of its sub-components (i.e., A c U A co)- 1° this way we can build up any finite
network from just using the alphabetised parallel operator and union on sets.

These network expressions quickly become large and tedious to write out as more parallel
processes are added. Hence, it makes sense to introduce a concise notation for networks. The
fundamental observation that makes this possible is that the alphabetised parallel operator is
associative and symmetric, i.e., the following equations hold:

. (P \ \ X \ Y } \ Q) \ [X U Y \ Z] \ R = P \ [X \ Y U Z \ \ (Q \ [Y \ Z] \ R) .

. P \ \ X \ Y \ \ Q = Q \ [Y \ X) \ P .

The proofs of these equivalences are presented by Roscoe [Ros05]. This means that the order
of processes combined with the alphabetised parallel operator does not matter.

With these properties in place we are able to define a network construction for a finite
collection of processes. A network N is a finite set of pairs {(Pi, A{) | i E I } , where I is a
non-empty, finite index set, Pi is a CSP process, and Ai C A is the set of communications
which Pi can engage in, for all i € I . The process defined by such a network N is

Network(N) = ||ie/ (P i,A i)

where \\ie i (Pi, A^) is the replicated alphabetised parallel operator which can be expanded in
the finite case (which networks are by definition) to multiple applications of the alphabetised
parallel operator [Ros05], that is,

l l * e { i . . . n } (P 2 ,A 2), (P 3 , A 3) , . . . , (P n _ i , A n _ i) , (Pn ,A n) =

((/>! \[A i I A 2]\ P 2)
|[A \ U A 2 I As]| Ps)

\[A 1 u A 2 U A 3 U . . . U A n_i | A n }\ Pn .

21

2. C sp

c ! v —y P = c.v —»■ P %% channel sending
c ? x :: T —» P(x) = □ y :: c.T —* P(:c)[s?np(y)/x] %% channel receiving
c l x ::T —* P(x) = n y :: c .T —> P{x)[strip{y)/ x] %% non-deterministic channel

%% sending
where the strip operation removes the channel label from the variable, i.e., strip(c.v) = v.

Figure 2.3: Channel extensions for Csp processes.

2.2.3 Channels

When modelling systems in Csp one is often interested in sending and receiving values from
certain sets but where synchronisation can be controlled. Channels [Ros05] are syntactic sugar
and provide a convenient way to do this. Channels can (usually) be thought of as “pipes” which
allow values to be communicated to other processes. In order to use channels you must allow
your alphabet A to have compound names composed of several parts, each separated by a dot.
Let c be the name of a channel and T be the type of the channel (a set of values which can be
used with the channel) then we have the set

c.T = {c.x \ x e T } C A

which consists of all values in T with a prefix of c added as a “label”. This notion of “labelling”
forms the basis for channels.

There are three main channel operations: sending values over channels, non-deterministic
sending of values over channels and receiving on channels. Figure 2.3 shows the expansions
for each of these operators. The first, c i v —>• P, allows us to send a value v 6 T over the
channel c (which is typed as T). This is expanded to the communication of the value v tagged
with the channel c. The second, c ? x : : T —> P{x), allows us to receive any value in T over the
channel c and bind the value to x. This is expanded to the external prefix choice operator. One
complication that arises here is that a value from the set c.T is tagged with c. In the channel
version we want the variable x to be bound to the untagged value. Thus, we use a strip operator
to remove the tag when substituting the value for the variable x in the process P(x). Finally,
c l x : :T —> P(x), allows us to non-deterministically choose a value from the set T and send
it down channel c. This is similar to receiving, but we use the internal prefix choice operator
instead.

This concludes our discussions about some of the various extensions to the basic syntax of
Csp. We now look at some typical equivalences between processes.

2.3 Typical Laws

We now present a selection of laws which have been proven to hold for all the main Csp
semantics (discussed in the next section) [Ros05, IR06].

Below are several representative example of laws from various ‘categories’:

Unit law STOP □ P = P

22

2.4. The Semantics o f CSP

Commutativity law P U Q = Q U P

Associativity law (PDQ) □ R = P U {Q □ R)

Distributivity law (P n Q) □ R — (P □ R) n (Q □ R)

Step law (□ x :: X —> P) □ (□ y :: Y —> Q) =
□ x : : l u y —> (if x € X C\Y then P n Q else if x G X then P else Q)

These laws allow us to rewrite processes into equivalent ones, thus providing the foundation
for reasoning about processes without delving into the denotational semantics. The axiomatic
semantics use rules of a similar nature to these. The step laws provide the basis for the rewrit
ing. Most other rules allow us to rewrite processes into the form needed to apply a step law. It
is these step laws that actually make progress with the rewriting.

The above step law states that if we have an external choice of two sets X and Y, then
this is equivalent to externally choosing an action out o f X u T then if the action comes from
X D Y we behave as an internal choice of P and Q else we behave like P or Q depending on
whether the action is in the set X or the set Y , respectively.

In a another sense, the fact that these equivalences hold provide confidence that the seman
tics make sense. We would expect that external choice is symmetric, if this was not the case in
a particular semantics then it would indicate that there is something odd going one inside the
semantics.

2.4 The Semantics of Csp

We now study the various semantics for Csp. The main purpose of a semantics V is to provide
answers to the following questions:

• Are two processes P and Q are equal (with respect to semantics V), written as P —x> Q2

• Does process P refine to process Q (with respect to semantics V), written as P C p <2?

These two questions are in fact equivalent, in that each question can be formulated in terms of
the other. Hence, if a semantics can answer one question then it can also answer the other.

We show this equivalence in the denotational setting of CSP which assigns mathematical
objects called denotations to processes, these represent the meaning of a process. Denotational
semantics will be discussed in detail shortly.

Let A be some fixed alphabet. Any denotational semantics V of Csp defines a function
[_Jp : Proc —> V(A) , which assigns a denotation in T>(A) (i.e., a meaning over alphabet A) to
each process. We write P = p Q for [P jp = [<2]p.

Theorem 2.1 Let V be some semantics for CSP with the following properties (which all the
main denotational semantics exhibit):

. p co e iff leio c [p]„.
• [pneio = iP|ouieio.

23

2. C sp

then the following equations hold:

• P = v Q iff P Q v Q A Q Q v P .

• p n v Q iff p n Q = v p.

Proof. We first prove the former equivalence. By unfolding the definition of —p in P = p Q
and taking equality to be subset inclusion in both directions, we get |P]p C \Q\x> and \Q \v Q
[P]p . Thus by definition of refinement we know P C p Q and Q C p P. The other direction is
analogous.

We now prove the latter equation.
P C p Q iff \Q \v Q M p by definition of Cp>

iff [<2 | p U | P \v = \P \v by the definition of subset inclusion
iff |P n QIt> = [f j p by given property o f V .
iff P n Q —p P by definition of =p.. □

The first equivalence in Lemma 2.1 shows the relationship between semantical equality
and refinement, while the second shows the relationship between refinement and the internal
choice operator. The second equivalence is also used as a typical law similar to those discussed
in Section 2.3.

Now that we know the purpose of semantics for CSP, we describe the typical semantics.
The semantics for Csp come in three different forms, namely:

Axiomatic semantics which allow for derivation of facts from derivation rules. Syntactic pro
cesses are transformed via rules into other equivalent syntactic processes. Two processes
are equivalent if they can be derived from each other via the rules. Such rules are similar
to the ones presented in Section 2.3. The Stable-Failures semantics (discussed in the de
notational setting in the following sections) has a complete axiomatic semantics [IR06],
whilst it is unknown whether the traces semantics and the Failures/Divergences seman
tics also have a complete axiomatic semantics.

Denotational semantics where mathematical objects denote the meaning of processes. We
will see denotation semantics later in this chapter.

Operational semantics where transition systems are created using structural operational se
mantics that represent the behaviour of processes. Equivalence notions on the underlying
transition systems allow processes to be related to each other in various ways. The op
erational semantics of Csp are in fact equivalent to the denotational semantics, that is,
they are congruent [Ros05].

We will only be concerned with denotational semantics throughout this thesis. Csp has three
main denotational semantics namely:

Traces semantics T : generally used for safety analysis,

Failures/Divergences semantics J\f: generally used for live lock analysis, and

Stable-Failures semantics T \ generally used for deadlock analysis.

24

2.4. The Semantics o f C SP

Each semantics comes equipped with a domain and a set of clauses that produce a math
ematical denotation (in the domain) for a C sp process. In the following sections let A be an
alphabet and let an / A be an element denoting successful termination. Let A ^ := A U { / }
and A */ := A* U { s ~ (/) | s G A*}, where A* is the set of all finite strings over A , ~ is
the string concatenation operator and (x) is the singleton string containing x. Furthermore,
let V (X) be the power set of X . We now present each of the domains as they are defined by
Roscoe [Ros05].

2.4.1 The Traces Semantics T

The Traces semantics (as presented by Roscoe [Ros05]) captures the notion of observing what
a process can do, that is, its traces. We simply observe and record all the actions that a process
may perform. For instance

(,move-piano, moveJable)

is a single trace where we first observe the moving of a piano followed by the moving of a
table. Processes have multiple traces and the Traces semantics records all possible traces of a
process. The domain T (A) of the Traces semantics is the set of all subsets T of A*/ for which
the following healthiness condition holds:

T1 T is non-empty and prefix closed.

The semantics (or denotation) for a process P in the Traces semantics is simply the traces
of the process, i.e.,

[PJt := traces (P) .

The clauses for the traces function can be found in Appendix B .l.

Example 2.2 Consider the Mover person as defined earlier in Section 2.1. The set of traces
for the process Mover is

{(), (movejpiano), (moveJable) , (move jyiano, move jyiano), (movejpiano, moveJable) ,
(;moveJable, movejyiano), (moveJable, moveJable) , . . .}

or more precisely {move-piano, moveJable}*. The Stubbom M over process also has the same
traces, thus the Mover and Stubbom M over processes are equivalent in the Traces semantics.
This is because the Traces semantics is focused only on what traces a process can engage in
and not on the distinction of internal and external choice.

Refinement in the Traces semantics is simply defined as reversed trace inclusion, that is,

P C.qr Q iff traces(Q) C traces(P)

The notation P C 7- Q is to be read as “the process P refines to the process <2” or “Q refines P ”.
This notion of refinement is well suited for safety properties. If Q is a refinement of P, then we
know that 0 ’s behaviour was already included in P ’s and thus Q can do nothing new. Thus, if
P is safe (i.e., only performs sequences of actions deemed to be safe) then Q is also safe.

25

2. C sp

The definition of refinement causes the process STOP, which has only the empty trace,
to be a refinement of all processes. This fits with the notion that safety means nothing “bad”
can happen. STOP is the safest process as it does nothing, thus it should be the most refined
process.

2.4.2 The Failures/Divergences Semantics Af

The Failures/Divergences semantics (as presented by Roscoe [Ros05]) records two sets. The
first set, referred to as the failures ± set, consists of pairs (s, X), called failures, where s is a
trace and X is a refusal set for the trace s. These pairs represent that a process after executing
the trace s can refuse all the actions in the set X . The second component, the divergences,
records all traces after which the process may diverge, that is, the process can perform an
infinite sequence of internal actions. The subscript _L on the failures component represents that
these failures include ones generated by unstable states, that is, states that can diverge. The
Stable-Failures semantics, discussed next, does not record such failures.

The domain Af{A) of the Failures/Divergences semantics consists of those pairs

(F, D) , where F C x V (A /) and D C A * ^ ,

satisfying the following healthiness conditions (where s ,t range over A*'/ and X , Y over
v { A /)y.

FI tr± (F, D) is non-empty and prefix closed,

F2 (s , X) e F A Y C X = > (s , Y) E F,

F3 (s , X) e F A V x e Y * s ~ (x) (£ t r ± (F, D) = > (s , X U Y) e F ,

F4 8 ~ (S) E tr± (F ,D) = > (s , A) E F,

D i s e D n A* A t e A*^ = > s ^ t e D ,

D2 s E D = > (s, X) E F, and

D3 s ~ (/) E D = > s E D,

where tr ± (F ,D) = {s | 3 (s ,0) E F }. Roscoe [Ros05] provides extensive discussion on the
development of these conditions and all the main Csp denotational semantics.

The semantics (or denotation) for a process P in the Failures/Divergences semantics is the
pair consisting of P ’s failures and divergences, that is,

[PjjV' := (failures 1 (P),divergences(P)) .

The clauses for the f a i l u r e s and divergences functions can be found in Appendix B.2.

26

2.4. The Semantics o f C SP

Example 2.3 Let A — {a} be an alphabet and P = (a —» STOP) n DIV be a process The
semantics of this process (i.e., |[P].v) are (failures ± (P) , divergences(P)) where

divergences(P) = {(), (a), (/) , (a, a), (a, /) , . . . } =
failures ±(P) = {((>,0), ((), {a}), «) , { / }) , «) , {a, / }) ,

«a>, 0), ((a), {a}), ((a), { /}) ,« a > , { a , / }) ,
« / > , 0) , « / > , { a }) ,« /) , { / }) , « /) , { a , / }) ,
« a , a) , 0), ((a ,a) , {a}), ((a ,a) , { / }) , ((a ,a), { a , / }) ,
((a, /) , 0), ((a, /) , {a}), ((a, /) , { / }) , « a , /) , {a, / }) ,
. . .} = A * 7 x P (A /)

Here, the divergence causes all possible traces to be included in the divergences, which are
in turn recorded with all possible refusals in the failures± component. The failures of the
sub-process a —> STOP are over-shadowed in the failures of the divergence.

Refinement in the Failures/Divergences semantics is reverse inclusion of failures and di
vergences, that is,

P Q v Q iff failures±(Q) Q failures^(P) A divergences(Q) C divergences(P) .

The idea for this notion of refinement can be captured with the phrase “Q has less inter
nal non-deterministic choice than P ”. This means for instance, that during development (i.e.,
refinement) an internal choice in a system can be changed in to a deterministic one (say via a
conditional construct).

The Failures/Divergences semantics allows for the analysis of deadlock and livelock free
dom, both of which can be captured by this semantics. Furthermore, as deadlock and livelock
freedom are preserved by the refinement notion [Ros05], we can establish such properties over
development steps. For instance, if P refines to Q and we know P is deadlock free then we can
assert that Q is also deadlock free. This will form the basis for deadlock analysis of C sp -C as l
specifications in Chapter 9.

2.4.3 The Stable-Failures Semantics T
The Stable-Failures semantics (as presented by Roscoe [Ros05]) also records two sets. The first
set, the traces, is a trace set as in the Traces semantics T and just records all possible traces
of a process. The second set, the failures set, works similar to that of the Failures/Divergences
semantics, but only records stable failures. A stable failure is one in which the trace component
is not a divergence. This semantics does not concern itself with recording the details of any
divergences of processes. The domain 2F(A) of the Stable-Failures semantics consists of those
pairs

(T, F) , where T C and F C Aw x F (A /),

satisfying the following healthiness conditions (where s ranges over A and X , Y range over
v (A /)y.

T1 T is non-empty and prefix closed,

27

2. C sp

T2 (s , X) E F = > s E T ,

T3 s ~ (/) G T = > (s ~ (/) , X) G F for all X C ^4/ ,

F2 (s , X) e F a Y C X = > (s ,Y) G F,

F3 (s , X) e F a Vx g 7 * s » g r = > (s , X u y) G F , and

F4 s ~ (/) E T (s ,A) E F .

The semantics (or denotation) for a process P in the Stable-Failures semantics is the pair
consisting of P ’s traces and failures, that is,

[Pflj- := (traces(P),failures(P)) .

The clauses for the traces function can be found in Appendix B .l, while the clauses for the
failures function can be found in Appendix B.3.

Exam ple 2.4 Let A = {a} be an alphabet and P = (a —> STOP) n DIV be a process. The
semantics of this process (i.e., [Pflj-) are (traces(P),failures(P)) where

traces(P) = { (),(a)}
failures(P) = {((), 0), «) , { /}) ,

« a) , 0) , « a) ,{ a }) , ((a) ,{ / }) , ((a) ,{ a , /}) }

Here, the divergences are not considered and are ignored as only stable failures are recorded in
the failures component. If we compare this to Example 2.3, we see that only considering stable
states makes the denotation much smaller and in this case finite. The process a —> STOP yields
the same denotation in this model. This shows that the divergence in P is not represented in
this model and we only have a partial representation of P.

Exam ple 2.5 As a second example, consider the processes:

P = a —> P

Q = (a Q) n DIV

over the alphabet A — {a}. These both have the same denotation (T, F) where

T = { () , (a) , {a , a) , . . . } = A '
F = « > ,0), «> ,{✓ }),

« o > ,0) ,« a > ,{ /}) ,
(< a ,a> ,0),((a , a) ,{ / }) ,
. . . } = { (s , X) s e i ' A l C { / } }

This is an example where the Stable-Failures semantics cannot distinguish between a process
which has a livelock and one without a livelock. In general the Stable-Failures semantics can
not distinguish between a process P and the process P fl DIV [Ros05].

28

2.5. Refinement

Refinement in the Stable-Failures semantics is reverse inclusion of traces and failures, that
is,

P C jr Q iff traces(Q) C traces{P) Afailures(Q) C failures{P) .

The Stable-Failures semantics coincides with the Failures/Divergences semantics for all
processes that are divergence free [Ros05]. Thus, we usually work in this simpler semantics
when we are restricting ourselves to such divergence free processes. The normal work flow to
show say deadlock freedom of a process P would be first to show that P is livelock free (i.e., it
has no divergences) in the Failures/Divergences semantics and then show it has no deadlocks
in the Stable-Failures semantics.

This concludes the discussion about the various CSP semantics that are used throughout
this thesis. We now briefly look at how verification can be performed using refinement.

2.5 Refinement

Each of the denotational semantics presented in Section 2.4 comes equipped with a refinement
notion. All of these refinement notions obey a number of laws including

P Q P (reflexivity)
P Q Q A Q Q R = > P Q R (transitivity)
P E Q A Q Q P =4> P = Q (anti-symmetry)

In the context of this thesis we write P □ Q for P C p Q if the specific choice of V e
(T , fif, J-} does not matter. Furthermore, refinement is compositional such that it is preserved
by all operations of CSP. This means for any Csp context F(.) where a process can be substi
tuted,

p E Q = > F(P) C F(Q) .

Roscoe [RoslO] presents some relationships between these notions of refinement, specifically
that C ^ C C t-, C j -CCt-, and

We now present a short example, closely following [CRS+ ar], which demonstrates how
refinement can be used in verification. In this example we specify a general buffer as the Csp
process Buffer. We then specify a two element buffer B. Following this, we prove that B is a
valid buffer by showing that B is a refinement of Buffer.

A buffer generally consists of two channels, namely a read channel and a w rite channel,
and satisfies the following three properties:

1. Messages can be input on the read channel and output on the w rite channel without
loss or reordering,

2. Available input of any messages on the read channel when the buffer is empty.

3. Available output of some message on the w rite channel when it is non-empty.

29

2. C sp

The following CSP process defines the most general buffer which satisfies these properties.

Buffer(()) = r e a d ? m :: M -> Buffer({m))
Buffer((x) ^ 5) =

(read ? m :: M —>■ Buffer((x) ^ q ^ (m)) n STOP)
□ turzte ! 2: —>■ Buffer(q)

The buffer process Buffer(J) has one parameter, which is the sequence of messages cur
rently in the queue. Variables m and x range over the set of allowable messages M , while q
ranges over all finite sequences over M .

An empty buffer always allows a new message to be read in. A non-empty buffer either
accepts a new message on r e a d or stops working, however, it is not able to refuse to output on
w r i t e . Requirement (2) does not require a non-empty buffer to be able to read an input. Hence
the use of non-deterministic choice between accepting a fresh input or refusing it.

Initially, the queue of stored messages is empty:

Buffer = Buffer{()) .

This process can be seen as a specification, in that only the behaviour defined by this process, in
terms of the traces and failures that it exhibits, should be allowed in any implementation. Such
a specification can then be used to check whether typically larger or more complicated systems
have the same behaviour. We can verify that an implementation, say a two element buffer B ,
is in fact an actual implementation of the specification by showing that the implementation
refines the specification, that is

Buffer tZjrB .

This is the general idea underlying the notion of refinement.
We now specify a concrete two element buffer B.

B — read? x :: M B o n e (x)
Bone{x) — r e a d ? y :: M -> B t Wo(x , y) □ w r i t e ! x —» B
B t w o (x , y) = w r i t e ! x B 0ne(y)

This buffer can read and store up to two values and output them in the order they were read.
While it is intuitively clear that B is a two element buffer, the question is “is B a valid buffer?”,
that is, do we have Buffer Cjr B ?

In order to answer this question, we state two algebraic laws of C sp , which both are imme
diate consequences of the semantic clauses and the definition of refinement. Over the model
}r, the following laws hold for refinement:

1. P r\Q C jr Q (int-choice refinement)

2. P □ STOP Qjr P (stop refinement)

30

2.6. Tool Support

Unfolding the equations of Buffer(_), we obtain:

Buffer (()) = r e a d ? m :: M —>• Buffer ((m))
B uffer((x)) =

(r e a d ? m :: M —> Buffer((x) ^ (m)) n STOP)
□ w r i t e ! x —>• Buffer(Q)

Buffer((x) ^ (y)) =
(r e a d ? m :: M Buffer((x) (y) ^ (m)) n STOP)

□ w r i t e ! x Buffer((y))
Buffer((x) ^ q) = (for l e n g t h (q) > 1)

(r e a d ? nn :: M —> Buffer((x) ^ q ^ (m)) n STOP)
□ w r i t e ! 2 : —>• Buffer(q)

Starting with the R.H.S of Buffer((x)), we prove:

(r e a d ? m :: M —»• B uffer((x) ^ (m)) n STOP)
□ w r i t e ! 2 ; —>■ Buffer(Q)

Qj? (r e a d ? m :: M —>■ Buffer((x) ^ (m)))
□ w r i t e ! 2 —» Buffer(()) by (int choice refinement)

Starting with the R.H.S o f Buffer((x) ^ (y)), we argue:

(r e a d ? m :: M —̂ Buffer((x) ^ (y) ^ (m)) n STOP)
□ w r i t e ! 2 : —> Buffer((y))

Cj- STOP [H(i(;n£e ! 2; —>■ Buffer((y))) by (int choice refinement)
C jr w r i t e ! 2 : —>■ Buffer((y)) by (stop refinement)

Thus,
f t # ? r (0) E .F * .

Via the above refinement we have shown that B is indeed a valid buffer and satisfies the
specification.

This example has shown briefly how refinement can be used to verify that implementations
(expressed in C sp) meet their specifications (also expressed in CSP).

2.6 Tool Support

C sp has various tools that support exploration and refinement proofs. Here, we briefly describe
three o f these tools, namely ProBE, Fdr and CSP-Prover.

P roBE [Pro03] is an animator for Csp which allows the user to explore the behaviour of
processes interactively. ProBE allows CSP processes to be written in a variant of Csp known
as CsPm (machine readable Csp) [Ros05]. This variant of CSP has a light-weight functional
programming language for specifying concrete data types which are used with channels as Csp
communications. C sPm is describe in [FDR06] and presented in detail in [Sca98].

31

2. C sp

F d r (Failures Divergences Refinement) [FDR06] is a tool for checking refinement proper
ties of Csp processes in the Traces, Failures/Divergences and Stable-Failures semantics. It is
also capable of checking that processes are deadlock and livelock free. This is an automated
tool which displays counter models (traces) for checks that fail. F d r uses the same input
language as P roB E , namely Cspm-

Csp-Prover [IR, IR05] is an interactive theorem prover built upon the well established the
orem prover Isabelle/HOL [Pau94, NPW02]. Isabelle/HOL is a generic interactive theorem
prover based on ML [MTH90]. Csp-Prover provides support for interactively proving refine
ment relations between Csp processes. It is generic in the CSP semantics that is used: currently
it supports the Traces and the Stable-Failures semantics. There has also been work to support
the use of the Stable Revivals semantics [Sam08].

In this chapter we have introduced the process algebra Csp along with its syntax and se
mantics which will be used within this thesis. We have presented the three main denotational
semantics, namely the Trace semantics, the Failures/Divergences semantics and the Stable-
Failures semantics. Finally, we briefly discussed how refinement can be used for verification
and the available tool support for Csp.

32

Chapter 3

C a s l

Contents___
3.1 The Syntax and Semantics of Basic Casl Specifications............................... 34

3.2 Sub-sorting in Ca s l ... 36

3.3 Structuring and Parametrisation.. 39

3.4 Instantiation.. 41

3.5 Tool support.. 44

C a s l (Common Algebraic Specification Language) [Mos04, BM04] is a specification formal
ism developed by the COFI initiative [Mos97], through the late 1990s, as a common platform
for integrating classical features of algebraic specification languages. The algebraic specifica
tion community has adopted C a s l as the de facto specification language for the description of
data.

Within the C a s l language data can be described at high levels of abstraction (via loose
semantics) and also at concrete levels of abstraction (using initial semantics). C a s l also has
the ability to work with partial functions, sub-sorting and sort generation constraints. Here, we
describe only informally, mainly using a running example, the essence of C a s l and defer the
formal description of C a s l until Chapter 4.

C a s l allows one to specify data by providing a signature and axioms, that is, first order
logic formulae with sort generation constrains. The signature declares what symbols are avail
able, while axioms constrain the possible interpretations of the symbols. An interpretation
(usually called a model) of a C a s l specification is a many-sorted algebra. One C a s l speci
fication gives rise to a class of models. Each model gives an interpretation to the symbols of
the specification’s signature whilst satisfying the axioms of the specification. We will see full
details of this in Chapter 4.

This chapter demonstrates the use of C a s l for system modelling and how one can rea
son about C a s l using automated theorem pro vers. Throughout this chapter we work with
an intuitive understanding of PFO Lr (Partial First Order Logic), including its signatures, for

33

3. C asl

mulae, models and satisfaction relation |= - formally PCFOL~ (PFOTr with sort generation
constrains) will be introduced in Section 4.2.

3.1 The Syntax and Semantics of Basic C a s l Specifications

We illustrate CASL using example specifications of the railway domain. These examples are
based on work presented in ATE [JR11] and by Sze [Szell]. They utilise many features
of C a s l , although not all. The following examples follow the domain model proposed by
Bj0 mer [Bj0O9, Bj0 OO] which was developed in order to model the railway domain. Once the
necessary components of the railway domain are specified in C a s l , we construct a concrete
track plan containing two routes and a platform in Section 3.4.

We start with the specification of time, which is an essential element of railway systems.
We model time in the following specification:

spec Tim e —
sort Time
ops 0 : Time’,

sue : Time —> Time’,
pre : Time —>? Time

pred : Time x Time
V n : Time • 0 < = n
V n , m: Time • suc(m) < = suc(n) <=> m < = n

end

Above is a C a s l specification with the name Tim e. The specification contains declarations
for sort symbols, function symbols and predicate symbols along with some axioms. We have
declared: a single sort symbol Time, a constant (a function symbol with no arguments) 0, a
total function symbol sue from sort Time to Time , a partial function symbol pre from sort
Time to Time, and finally a predicate named which is a binary predicate over Time x
Time and uses infix notation (where the double underscores represent the parameter positions).
The intention of the declared symbols are for sue to increment time by a single unit, pre to
decrement time and to relate two times. Even though the names of the symbols have
an intuitive meaning, they are just symbols and have no formal meaning. We can control their
formal meaning by axioms. Here, we have specified two axioms: the first states that 0 is the
smallest time, while the second states that sue must be monotonic with respect to the predicate

Each specification has an associated signature. Such a signature in C a s l is a five-tuple
E = (5, T F , P F , P, < s) where S is a set of sort symbols, T F and P F are families of sets
of total and partial function symbols respectively, indexed by the argument and target sorts, P
is a family of predicate symbols and < s is a reflexive and transitive sub-sort relation. For the

34

3.1. The Syntax and Semantics o f Basic C a s l Specifications

above specification we have the signature Etime = (S, T F , P F , P, < s) where

S = {Time}
T F — {0, sue}
P F = {pre}
p = < =
< s — {{Time,Time)}

Here, we have simplified the notation of CASL signatures and have omitted the index on the
families of sets and instead write them as flat sets as there is no overloading on the names.
Further details of signatures will be presented in Chapter 4.

Models are used to give a formal meaning to CASL specifications. Each C a s l signature E
gives rise to a class of many-sorted algebras (also called models), denoted as mod(E). Each
model gives interpretations to the symbols of a signature by assigning a non-empty carrier set
to each sort symbol, a type correct element to the constant symbols and appropriate functions
to the function symbols. Predicates are interpreted as sets of elements for which the predicate
holds.

One possible model M for the signature Etime is the one point model where:

Here, we use the notation Mnme for the carrier set of the sort Time in model M and f M for
the interpretation of the function symbol / in model M (similar for predicates). We have
ignored and omitted the interpretation of the sub-sort relation, this is covered in Section 3.2.
We defer all further notation to Chapter 4. This model interprets the sort Time with the singleton
carrier set containing the element *. As there is only one element there is no choice for the
interpretation of the symbol 0 and also the function symbol sue which must map * to *, as both
are total functions. There is choice however for the interpretation of the partial function symbol
pre. It can either have the same interpretation as that of sue, as we are allowed to interpret
partial function symbols as total functions, or we could instead state that interpretation of the
previous time of * is undefined. Here we choose the former. We finally interpret the predicate

as the set {(*, *)}, which states * is related with *.
Another, possibly more natural, model N would be:

Mnme
(0) m

{*}

(swc)m (*)
(pre)M{*)
(_ < = —)m

F̂ Time
(0) n
(,suc)n (ti)

M
0

n + 1

(_ < = —)m

(pre)N {n) f n — 1if n > 0

[undefined otherwise
{(n, m) 6 N x IN | n < m }

where we interpret time as natural numbers, the constant zero as the natural number zero,
the successor function as incrementation of natural numbers, the previous time function using

3 . C a s l

the minus operator on natural numbers and finally the predicate by mirroring the ^
predicate of natural numbers. Other interpretations for the sort Time include the integers, real
numbers and rational numbers. There are infinitely many more possible models.

As we have discussed above, (basic) specifications have two parts: a signature E and a set
of axioms $. Each specification S P = (E, $), like signatures, gives rise to a class of models,
namely all the models of its signature which satisfy all its axioms, that is,

M od(SP) = { M G | mod(E)| | M |= $ }

where M f= <f> if and only if M (= ip for all <p £
The models M and N above both satisfy the two axioms in the specification Time, and thus

are models of it. This shows how axioms in specifications can be used to restricted the models
to a reasonable class that the specifier wants to allow. We could restrict the amount of models
further by adding further axioms to the specification Time, say to control the interpretation of
the sort Time or for forcing the function pre to be the partial inverse of sue. For now we really
only need that the sort Time exists and do not make any further restrictions.

In this example we have specified time in a loose fashion, where we only restricted the
interpretation of the constant 0, the function sue and the predicate < = . This means that we
do not pin down the model to a single model, but instead allow many models. We could
fully specify time so that there is only a single model (up to isomorphism), however this loose
specification of time is enough for us to demonstrate several features of Casl and to carry out
some proof. The ability to specify using loose semantics in this way will be an important topic
throughout this thesis.

Now that we have seen a basic Casl specification and some models, we commence with
specifying our railway example which utilises, among other features, Casl sub-sorting.

3.2 Sub-sorting in C a sl

We use an example from the railway domain (following the style of the domain model pro
posed by Bjpmer [Bj0O9, BjpOO]) for our presentation of further features of Casl . To this
end, we describe aspects of railways using the sub-sorting features of Casl . We capture ba
sic concepts and features of the railway domain. Concretely, we capture the notion of linear
units (i.e., tracks), switches (also called points), junctions and the ability to join these together
using so called connectors. We explain each of these elements as we describe the following
specification:

spec RailwayElements =
Time

then sorts Connector,
Linear, Switch < Unit

pred —has-connector— : Unit x Connector
ops c l, c2 : Unit —> Connector;

’mod is a functor which produces a category of models for each signature. The function |_| projects out the
objects of a category and forgets about the morphisms. This is described in Chapter 4.

36

3.2. Sub-sorting in C asl

c3 : Switch —> Connector
free type State occ | unocc
free type Position reverse | normal \ move
ops s t a t e j i t — : Unit x Time —> State;

-position-at— : Switch x Time —> Position
V s : Switch; I : Linear • -i s = I
V u : Unit • -> cl(u) = c2(u)
V 5 : Switch • -< c3(s) = c7(s) A -i c i(s) = c2(s)
V I : Linear; c : Connector • I has-connector c c — c l(l) V c = c2(/)
V 5 : Switch; c : Connector • s hasjconnector c

c — cl(s) V c = c2(s) V c =
end

This specification, named RailwayElem ents, captures all the elements (that we are inter
ested in) of the railway domain. It first imports the specification o f time that we declared earlier
(keyword then). This import is one of the most basic forms of compositional modelling and
has the obvious meaning of importing the symbols and axioms available in the specification
Tim e. We then declare four sorts namely, Connector, Linear, Switch and Unit. Linear and
Switch are sub-sorts of Unit (indicated by the < symbol).

Units are a basic element of the railway. Units can either be linear units (represented by
the sort Linear) or switches. A linear unit can be considered as a simple piece of track that has
two ends with a connector on each end. A linear unit can be depicted as:

where the small bars represent the connectors.
A switch is a mechanism on the railway to move trains between tracks, also known as a

point. Switches have three ends, each of which has an attached connector. A switch can be
depicted as:

Linear units can be placed and connected together along with switches to form so called
track plans. The sort Connector represents connectors that allow linear units and switches to
be connected together. There must be a single connector between any linear units or switches
that are connected, that is, connected units share their connectors.

Sub-sorting allows one sort to be “included” as part of another. On the semantical level,
however, this is not done via subset inclusion, but instead by explicit embedding and projection
functions. By declaring that one sort s is a sub-sort of another sort t, we actually declare three
symbols:

1 . an injection function from sort s to sort t,

2. a partial projection function from sort t to sort s, and

37

3. C asl

3. a membership predicate that tests whether elements of sort t have a counterpart in sort s.

As Switch is a sub-sort of Unit, we have an injection function which can cast a switch to a unit.
Explicit casting is usually not required in formulae as the Casl framework (and associated
tools) deal with it automatically. We can simply consider a switch to be a specialised unit
when writing formulae and axioms.

Next, we declare a predicate —has-connector— which allows units and connectors to be
related: each unit has a number of connectors (linear units will have two, while switches will
have three). Furthermore, we declare five total functions. The first two functions, c l and c2,
allow us access to the two connectors that a linear unit has. The next function c3 allows us
access to the third connector only present on switches. As switches are also units (i.e., the sort
Switch is a sub-sort of Unit) we can also apply the functions c l and c2 to switches.

Following this, we define some additional sorts, however to do this we use a free type.
The first free type is State which is going to be used to record the state of a unit. A unit
can either be occupied by a train or unoccupied. There are two constants occ and unocc,
representing occupied and unoccupied respectively, that are declared at the same time as State
using a free type. The free type also forces all interpretations of State to have exactly two carrier
set elements, one for occupied and one for unoccupied. Thus, the free type is just short hand
(in this case) for expressing that there are two constants, all carrier set elements are accessible
via these two constants and finally, that these two constants must have different values.

Next, we define another free type that captures the different positions of a switch. A switch
can either be in the normal position where a train can continue on in a straight line or the
reverse position where the train is diverted off the straight track, or finally in a move state
where it is currently moving between the previous two states.

We then define two further operations, _jstateMt__ and —position j i t —, which allow us to
observe the state of a unit and the position of a switch at certain points in time.

We now add axioms to control these interpretations and forbid unreasonable ones. The first
axiom states that a linear units is never a switch and vice versa. There still may be units which
are neither linear units nor switches - we do not forbid this here which is why we did not use
a free type. This allows us to, if we wished, import this specification and add more types of
units as sub-sorts. We do not do this in this example. The next two axioms state that the all the
connectors on a linear unit or switch are unique. This prevents us from connecting a unit or
switch to itself.

Next we couple the predicate symbol —has-connector— with the connector symbols c l, c2
and c3. We require —has-connector— to only be true for connectors that are actually attached
to the units according to the observation functions cl, c2 and c3. This forces linear units to
have two connectors and switches to have three connectors.

This completes the specification of our railway elements. There are many more restrictions
and elements that we can model, but this is all that is required for the intended verification
demonstrated by this example.

38

3.3. Structuring and Parametrisation

3.3 Structuring and Parametrisation

In the railway domain it is quite common to find units laid out in what is called a junction. That
is a switch with three connected linear units, depicted as:

where s is the switch and lu l, lu2 and lu3 are the associated linear units.
This construction is so common that it is useful to model this as a separate specification

both for methodological reasons (i.e., reuse of code) and theorem proving support (see work
by James et al. [JR11]). To do this, we make use of compositional modelling via parametrised
(also called generic) Casl specifications. We first form a parametrised junction specifica
tion, followed by, instantiating it multiple times to form many junctions which may then be
interconnected.

The following is a generic Casl specification that models a junction.

spec Junction

[ops lu l , lu2, lu3 : Linear,
s : Switch

• -i lul — lu2
• -i lu2 = lu3
• -i lul = lu3]

given RailwayElements =
preds route .normal MvailableMt— : Time]

route-reverse MvailableMt— : Time
• c 2 (lu l) = c l (s)
• c 2 (s) = c l (lu 2)
• c3(s) = cl(lu3)
V t : Tim e • rou te -n o rm a l-a v a ila b le M t t

^ s ta te M t t = u n occ A 5 p o s itio n M t t — n o rm a l
A lu l s ta te M t t = u n occ A lu2 s ta te M t t — unocc

V t : Tim e • ro u te -reverse M v a ila b le M t t
<=> 5 s ta te M t t = unocc A s p o s itio n M t t — reverse

This generic specification, with the name JUN CTIO N, has two main parts, namely, its formal
parameter and its body. We describe each in turn. The idea is that an actual parameter can

lu3

lul s lu2

A lu l stateMt t = unocc A lu3 stateMt t = unocc
then % implies

V t : Time • -> (route-normalMvailableMt t A route-reverseMvailableMt t)
% (safety .property _two_routes_are_not_enabled_at_the_same_time) %

end

39

3. C asl

later be used in an instantiation to fill in the formal parameter and thus create a specific instance
of a junction.

Formal parameters are Casl specifications. They are written within square brackets and
are commonly specified inline without naming them (as is done here). This specification de
clared the elements needed for a junction. We state that there are three linear units {lul, lu2
and lu3) and a switch (s). There are also three axioms which ensure that the linear units are all
unique. These axioms must be implied by any actual parameter during instantiation. There
fore, the axioms can be thought of as assumptions which the formal parameter makes that the
junction is built relatively to. Any actual parameter must guarantee these conditions in order
to construct a specific instance of a junction. The keyword given allows the formal parame
ter to make use of the symbols available in RailwayElements and is similar to an import
(keyword then).

The next part of the specification is the body. We can use any symbols in the formal
parameter and in the specification RailwayElements which has been essentially imported.
Here, we declare two predicates. The first predicate route JiormalM vailableM t— is true when
a train can travel in either direction from linear unit lul to linear unit lu2 (see the depiction
above). The second predicate route-reverse MvailableMt— is true when trains can travel from
linear unit lu l to linear unit lu3, again in either direction. The first three axioms connect the
linear units and switch in the required way (mirroring the depiction above). The next two
axioms state when the two routes are enabled. The first route from lu l to lu2 (i.e., the normal
route) is only enabled when the bottom tracks {lul and lu2) and the switch s are all unoccupied
and when the switch s is in its normal position. Similarly, the second route from linear unit lu l
to lu3 (i.e., the reverse route) is only enabled when the linear units lu l and lu3 and the switch
s are all unoccupied and when the switch s is in its reverse position.

Now that we have specified our generic junction, we provide a property (i.e., a lemma)
which shall hold for the whole model class, that is, it should hold for all possible instantiated
junctions. The property we provide is a safety property that says that both routes are not
available at the same time, that is, there are no conflicting routes available simultaneously. If
there were then this would be an unsafe situation that could possibly lead to the collision of
trains. If this property did not hold then it would either indicate that we have an inherent flaw in
the specification or that we made a mistake in the specification. It is also possible that we have
not provided enough information (axioms) to prove this. Such properties can be expressed in
Ca sl specifications via the keywords then %implies. This allows us to make an extension
of the specification where we do not add any new signature elements but instead only add
new axioms. Whilst these axioms still constrain the model class of a specification, they are
intended to be implied by the earlier axiom base, that is, it is intended that the previous axioms
already constrain the model class in such a way as all models actually fulfil this axiom. The
keyword %implies is a special comment that indicates to tools that the axioms in the extension
should be implied by the existing axioms, that is, it sets up proof obligations in tools. The
%(safety-property_two_routes_are_not_enabled_at_the_same_time)% text is a special comment
that allows us to label the axiom with a name, which is useful for identifying axioms in tools.
We discuss tool support for proving such an implication in Section 3.5.

This concludes the first part of our Casl specification of the railway. We have specified all
the necessary components and created a generic specification for railway junctions. We have

40

3.4. In stan tia tion

also added an axiom which acts as a validation check that our specification is meaningful. Next
we will instantiate this generic junction specification twice to form our track plan.

3.4 Instantiation

We now instantiate the junction specification twice to form two junctions which we intercon
nect to form a small track plan as shown below:

platform 1

platform!

The idea here is that we have two major routes, where both routes enter at the far left and exit
at the far right (or vice versa, as we do not consider direction) and go through either platform I
or platform2. We do not actually model the platforms and consider them only as linear units,
although we could have an explicit sort for platforms and predicates which link platforms to
linear units etc. Trains should be able to use both routes, however both routes should not be
available simultaneously as this again would constitute an unsafe situation.

The first step in accomplishing this is to form our parameter specifications (i.e., our actual
parameters):

spec J u n c t i o n O n e P a r a m =

R a i l w a y E l e m e n t s

then ops lul , lu2, lu3 : Linear;
s i : Switch

• lu l = lu2
• -i lu l — lu3
• -> lu2 = lu3

end

spec J u n c t i o n T w o P a r a m =

R a i l w a y E l e m e n t s

then ops lu4, lu5, lu6 : L inear;
s2 : Switch

• -i lu4 = lu5
• -i lu4 = lu6
• -i lu5 = lu6

end

Here, we have specified two junction parameter specifications each with a switch and three
linear units. The instantiation will make sure these units are connected in the correct way and

41

3 . C a s l

place the appropriate routes over them. The actual parameter specifications must capture all the
symbols in the formal parameter specification JunctionParam (from Section 3.3) although
with possibly different names for the symbols. Thus, we must have a switch and three linear
units. We also have three axioms which state that the linear units are unique, these will play a
role shortly. We now have the required signature elements for the instantiation.

The linear units, switches and predicates used in both parameter specifications must use
different names as all symbols later on will be imported (via instantiation) into a single specifi
cation. Casl uses the notion of “same name, same thing”. Thus, if the elements had the same
name in each of the specifications, then after the import we would not have different entities
and would not be able to form our intended track plan with two separate junctions.

We form the overall track plan as a structured specification with multiple extensions as
follows:

spec TrackPlan =
RailwayElements

then Junction[JunctionOneParam fit s s i]
with ro u te-n o rm a l M v a ila b le M t— ha rou te s i -n orm al M v a ila b le M t—,

ro u te -reverse M v a ila b le M t— ha rou te m1 -reverse M v a ila b le M t—
and Junction [JunctionTw oParam fit lu l ha lu4, lu2 ha lu5 , lu 3 ha lu6, s ha s2]

with ro u te -n o rm a l M v a ila b le M t— ha rou te m 2-n orm al M v a ila b le M t—,
ro u te -reverse M v a ila b le M t— ha rou te m 2 -reverse M v a ila b le M t—

then ops p la tfo r m l, p la tfo rm 2 : L in ea r
• c2(lu3) — c l (platforml)
• c2(platforml) = cl(lu6)
• c2(lu2) = cl(platform2)
• c 2 (p la tfo rm 2) = c2 (lu 5)

then preds route platform ! MvailableMt— : Time;
route p la tform l MvailableMt— : Time

V t : Tim e • route platform ! MvailableMt t
platforml stateMt t = unocc
A rou te M l-re v e r se M va ila b leM t t A route m 2-reverse M va ila b leM t t

V t : Tim e • ro u te p la tfo rm 2 M v a ila b le M t t
<=> p la tfo rm 2 s ta te M t t = unocc

A rou te M l -n o rm a l-a v a ila b le M t t A route m 2-n orm al M va ila b leM t t
then % implies

V t : Tim e • - 1 (r o u te p la t fo r m l M v a ila b le M t t A r o u te p la tfo rm 2 M v a ila b le M t t)
% (safety.property) %

end

Here, we have used a variety of structuring mechanisms namely, importation of specifications
(keyword then), union of specifications (keyword and), renaming of specifications (keyword
with) and instantiation. We start by importing the railway elements and then instantiating
the junction with our first parameter specification. When instantiating generic specifications
we must provide a signature morphism (keyword fit) from the formal parameter (i.e., Junc
tionPa ram) to the actual parameter (i.e., JunctionOneParam). Specifying full signature

42

3.4. Instantiation

morphisms would quickly become tedious, however Casl alleviates this with the use of sym
bol maps. Such symbol maps are shorthand for full signature morphisms where the tools are
expected to try to deduce the missing pieces. Casl states that a symbol map is only well
formed when it uniquely induces a signature morphism, if this is not the case then there is
an error in the specification (see [Mos04] for full details). Thus, we only need to map the
switch s from the formal parameter to the switch s i in the actual parameter (via the text s
si). The linear units have the same names (in the formal parameter and the actual parameter
JunctionOn eParam), thus this part of the signature morphism regarding these symbols is
trivially deduced and does not need to be explicitly defined.

The instantiation comes with a proof obligation that the model class of the actual parameter
is contained within the model class of the formal parameter. Formally, we have to prove that
the formal parameter refines to the actual parameter over the signature morphism induced by
the symbol map. This amounts to checking that the axioms of the formal parameter are implied
by the actual parameter (after translation along the signature morphism). Thus, if we did not
specify in JunctionOneParam that the linear units were unique we could not fulfil this duty
and would have unprovable proof obligations and thus an ill-formed instantiation. This proof
obligation can be once again be discharged via tool support discussed in Section 3.5.

This first instantiation creates two new routes over the instantiated junction, that is, the
predicates routejiormaLavailable-at— and route-reverseavailableMt However, when we
instantiate our second junction we will also get two new routes with the same name. As Casl
uses the notion of “same name same thing”, we must be careful to rename these predicates in
order to keep them separate. To this end, we rename these predicates to names that reflect that
they are routes over the switch s i using the keyword with.

Next, we instantiate the junction a second time however this time with the second junction
parameter specification. In this specification our linear units names do not match and thus must
also be explicitly mapped over, for example, lu l is mapped to lu4. After this we again rename
the produced routes such that their names reflect that they run over the switch s2. At this point
we have the following track plan:

lu3 lu6

with four routes, two for each switch.
We now need to link the junctions together. We do this again by extending the specification

and provide two new linear units (i.e., the platforms) and connect them in the appropriate way.
Finally, we define two routes over the new track plan, one route for each platform. Each route
requires the sub-routes over the junctions to be available as well as the respective platform. We
have now completed our specification of our track plan with two routes.

Similarly to how we added a simple safety property at the junction level, we now add an
implication which will verify that a safety property holds at the track plan level. Here, we
check that both platforms are not accessible at the same time. This implication can be checked
with tool support discussed in Section 3.5.

43

3. C asl

' We could now continue extending the specifications above and add dynamic elements. For
instance, we could add trains, signals, signalling rules: for when signals should show certain
aspects (colours), etc. However, we are moving out of the area o f data specification and are
moving into the area of behaviour or processes specification. Whilst this can be done in Casl,
the resulting specifications are not necessarily succinct or elegant and can be hard to read and
understand. Process algebras such as Csp (discussed in Chapter 2) are much better equipped
to capture these types of dynamics. This is why C sp-Casl was created: to capture the best
parts of both Casl and Csp and to unite them. Csp-Casl is discussed in Chapter 5.

3.5 Tool support

As a conclusion to this chapter, we briefly discuss tool support for Casl . Hets (Hetero
geneous Tool Set) [MML07] is a proof management tool centred around Casl. It supports
parsing and static analysis of specifications written in Casl and related languages. Proof
obligations in Hets may be discharged by utilising several external theorem provers with
which Hets interfaces.

Hets uses development graphs to track the structural information within specifications,
for instance, importation and renaming. Figure 3.1 shows the development graph after the
specifications have been loaded. The nodes represent the specifications while the coloured
arrows represent relationships between them. The black arrows are imports, the red arrows
are proof obligations (either resulting from instantiations or implied axioms) and the purple
arrows represent non-interesting chains of imports which have been collapsed into a single
arrow (these may be expanded). Such chains have been formed via our use of renaming and
union, each operation creates new unnamed nodes and arrows between them. We have four red
arrows resulting from the two instantiations and two implications.

Figure 3.2 shows Hets after we have localised the proof obligations. The localisation of
proof obligations (red arrows) in Hets is a necessary step before external theorem provers can
be used. This step localises all the axioms and proof obligations into single specifications so
that they can be translated into the input language of a number of theorem provers. In the figure
we have already discharged the proof obligations for the instantiations and the proof obligation
from the implication in the generic junction, thus we have only our overall safety property left
open. The red node (ellipse) in the deepest window of Figure 3.2 represents a specification
with this open proof obligation.

The foreground window is Hets’ theorem prover interface. This allows us to attempt to
discharge the remaining proof obligation via various theorem provers. The open proof goals
are shown in the upper left area, here we see that we only have the safety property resulting
from our axiom safety .property left open. The lower left portion of the window shows us the
available axioms to use as a base for the proof (most are unnamed as we did not label them
in the previous specifications). One however is named, that is, safety .property .two _routes_are_
not_enabled_at_the_same_time. As we have already proven this property we can use it to help
us discharge the remaining proof obligation. This is one instance of compositional reasoning
that is possible in Ca sl . The right area displays various choices including the choice of which
theorem prover to use.

44

3.5. Tool su p p o rt

uDraw (C rap h) 3.1.1 - D e v e l o p m e n t Graph for c o m p s c i / p a r t i t i o n 3 /c s l ia m /D o c u m e n t s / s v n _ c o *

File Edit View Navigation Abstraction Layout Options Help

Tim e

(^^ailw ayElem ente^)

Junction JunctionT w oParam JunctionO neP aram

T rackP lan

Development Graph initialized.

Figure 3.1: A screen-shot of H e t s , after specifications have been loaded, showing the resulting
development graph.

We choose to use the automated first order logic theorem prover SPASS [W BH + 02]. H e ts
translates the axiom base and the proof obligation into SPASS' input language and then pass
them onto SPASS. SPASS is capable of proving such an implication automatically and almost
instantly. After SPASS proves the implication, the red specification node turns green repre
senting that there are no further open proof obligations. Automated theorem provers, such
as SPASS, can provide proof scripts for successfully proofs. These scripts can be difficult to
read and understand as they are encoded and not written as a mathematician would write one.
Figure 3.3 shows part of the proof script produced for the proof of the safety property.

This chapter has introduced various aspects o f C a s l . We have shown multiple examples
of its syntax and discussed the meaning without looking too deeply at the formal semantics.
We have outlined how C a s l specifications give rise to model classes and how such classes can
be restricted via axioms. We have briefly seen some compositional modelling features, such as
the structuring m echanisms of C a s l , including: importation, union, renaming, parametrisation
and instantiation. Finally, we briefly looked at tool support and compositional reasoning, for
the verification o f CASL specifications.

45

3. C a s l

(Graph) 3.1.1 - D evelopm ent Graph for compsci/p^titi®3/cliiari(i/Documents

File Edit View Navigation A bstraction Layout Options

Sal
■

M

n

Help
 IT

Prove: eompsci/partition3/csliam/Documents/svn_cos/Llam/F
Coals:

[] safety_property

Ju n c t io n Ju n c t io n T

Track Plan

Selected goal(s):

Proof details Display Prove

Sublogic of currently selected theory
CASL SutPeCF (X*

Pick theorem prover

MathServe Broker
QuickCheck
SPASS
VSE

Selected comorphtsm path:
Id CASl_SutPeCf<X*XASL2SUt>C r

All None

Select open goals

Fine grained composition of theory
Axioms to include: Theorems to include if proven;
AX/- '!1 ,* safetyproperty
safety_property_two _routes_are_

All None Invert

Deselect former theorems

Show theory Show selected theory Close

Figure 3.2: A screen-shot of H ets after specifications have been loaded, proof goals localised,
all but one proof obligation discharged, and an open proof obligation selected.

46

3.5. Tool su p p o r t

SPASS O u tp u t for Coal sa f e t y _ p r o p e r t y

S P A S S V 3.7
SPA S S b e i s e l t e : Proof found.
Pr oblem: R e a d from stdin.
S P A S S d e r i v e d 58 clauses, b a c k t r a c k e d 0 clauses, p e r f o r m e d 0 spli
S P A S S a l l o c a t e d 52521 KByt es .
S P A S S sp ent 0 : 0 0 : 0 0 . 0 5 on the pro ble m.

0 : 0 0 : 0 0 . 0 2 for the input.
0 : 0 0 : 0 0 . 0 1 for the F L O T T E R CNF tran s l a t i o n .
0 : 0 0 : 0 0 . 0 0 for in fer ences.
0 : 0 0 : 0 0 . 0 0 for the b a c k t r a c k i n g .
0 : 0 0 : 0 0 . 0 0 for the reductio n.

Here is a p r o o f wi t h d e p t h 2, leng t h 21 :
3[0:Inp] || -> r o u t e _ p l a t f o r m l _ a v a i l a b l e _ a t (skcll)*.
4[0:Inp] || - > r o u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t (skcll)*.
65[0:Inp] r o u t e _ s l _ r e v e r s e _ a v a i l a b l e _ a t (U) | | -> tim e (U)*.
66[0:Inp] r o u t e _ s l _ n o r m a l _ a v a i l a b l e _ a t ___ (U) || -> time(U)*.
67[0:Inp] r o u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t ___ (U) || -> time(U> *.
68[0:Inp] r o u t e _ p l a t f o r m l _ a v a i l a b l e _ a t ___ (U) || -> t i m e (U) *.
97[0:I np] time(U) r o u t e _ p l a t f o r m l _ a v a i l a b l e _ a t ___ (U) || -> gn_def
98[0:Inp] time(U) r o u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t ___ (U) || -> gn_ def
99I0:Inp] time(U) r o u t e _ s l _ n o r m a l _ a v a l l a b l e _ a t___ (U) || -> gn_def
115[0:I np] r o u t e _ p l a t f o r m l _ a v a i 1a b l e _ a t (U) time(O) g n _ d e f i n e d (U
117fO:I np] r o u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t (U)| time(U) g n _ a e f i n e d (U
123[0:I np] time(U) gn_def i n e d (U) r o u t e _ s l _ n o r m a l _ a v a i l a b l e _ a t (U
1 6 7 [0 : M R R :9 9.0,66.1]___ r o u t e _ s l _ n o r m a l _ a v a i l a b l e _ a t _(U) || -> gn_
1 6 8 [0 : M R R :9 8.0,67.1]___ r o u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t _(U) || -> gn_
1 6 9 [0 : M R R :97.0,68.1]___ r o u t e _ p l a t f o r m l _ a v a i l a b l e _ a t _(U) || -> gn_
17 6[0 : M R R :117.1, 11 7.2 , 67.1,168 .1] ro u t e _ p l a t f o r m 2 _ a v a i l a b l e _ a t (
1 7 8 [0 : M R R : 1 1 5 . 1 , 1 1 5 . 2 , 6 8 . 1 , 1 6 9 . 1] r o u t e _ p l a t f o r m l _ a v a i l a b l e _ a t (
1 7 9 [0 : M R R : 1 2 3 . 0 , 1 2 3 . 1 , 6 5 . 1 , 1 6 7 . 1] r o u t e _ s l _ r e v e r s e _ a v a i 1 a b l e _ a t__
2 1 4 t0:R e s :4.0,176.0] || -> r o u t e _ s l _ n o r m a l _ a v a i l a b l e _ a t (skcll)
2 1 9 [0 : R e s :3.0,178.0] || -> r o u t e _ s l _ r e v e r s e _ a v a i 1a b 1e _ a t (skcll
2 6 9 [0 : E m S : 1 7 9 . 0 , 1 7 9 . 1 , 2 1 9 . 0 , 2 1 4 . 0] || -> .
F o r m u l a e u s e d in the p r o o f : s a f e t y _ p r o p e r t y arg_ re str iction_rout|

Save Close

Figure 3.3: A screen-shot of H e t s showing the SPASS proof script for the safety property.

47

Chapter 4

A Common Framework:
Institutions

C ontents___
4.1 The Formal Definition of Institutions... 50

4.2 The Institution P C F O L r .. 52

4.3 The Institution SubPCFOLr.. 56

4.4 The Restricted SubPCFOLr Institution.. 58

4.5 Data-Logic.. 63

4.6 Csp Institutions... 66

4.7 Institution Independent Structuring... 70

Logical systems share common features, including the notion of symbols or atomic elements
which make up sentences or formulae. Models or interpretations assign meanings to such sym
bols. Finally, logics state which formulae hold in which models. All logical systems have these
notions in one form or another. Institutions capture these notions in a formal framework based
on category theory. The tool H ets [MML07] (see Chapter 3) is heavily based on institutions
and implements various logics (centred around C a sl).

This chapter first introduces institutions [GB92], followed by presenting two standard in
stitutions relating to CASL, namely, PCFOLr and SubPCFOLr (as presented in [O’R08]), the
last being the logical system underlying C a s l . Following this we present a restricted version
of PCFOLr, followed by the data-logic of C sp -C a s l. This data-logic will be used in our
formalisation of C sp -C a s l as institutions in Chapter 8 . We then present CSP as institutions,
illustrating that institutions are not restricted to algebraic specification. Finally, we conclude
by presenting a kernel language for structuring which is institution independent.

49

4. A Common Framework: Institutions

4.1 The Formal Definition of Institutions

Institutions [GB92] are a theoretical framework based on category theory for the description
of logics. They were first presented by Goguen and Burstall in the late 1970’s as a response
to the growing number of logical systems that were being developed. Institutions capture the
very essence of logical systems and make it possible to create specification languages, proof
calculi and tools which are completely independent of the underlying logical system. H ets ,
for instance, is constructed in this way. Even though it is currently centred around Ca sl , any
institution can be plugged in.

Institutions can be related to one another by so called institution representations [Mos02].
These allow signatures, sentences and models to be translated between institutions. This makes
it possible to borrow the satisfaction relations from related institutions. This has the practical
effect that we can use theorem provers (say Isabelle/HOL) for any institution (say the Casl
family) which have a chain of institutions representations in to the underlying logic of the
theorem prover [CM97, Mos02].

Goguen and Burstall sum up the idea and essence of an institution in the following slogan

“Truth is invariant under change of notation” [GB92].

That is, truth is independent of the symbols we use to express our reasoning. Hence, if we have
a logical statement and replace all occurrences of symbols (such as variables, function symbols
and relation symbols) with different symbols (in a consistent manner) then our new statement
has the same meaning as the original.

The formal definition of institutions relies on category theory (see, for example, [ML98,
Fia05]), although only basic concepts are used. Informally, an institution consists of a collec
tion of signatures with signature morphisms and for each signature a collection of sentences,
models and a satisfaction relation between the sentences and models such that the satisfaction
condition holds. The satisfaction condition formally captures the above slogan.

We follow here [Mos02] where Mossakowski defines an institution I as a quadruple
(SIGN7, sen7 ,m o d 7, |=7) where:

• SIGN 7 is the signature category.

• sen7 : SIG N 7 SET is the sentence functor, where SET is the category where objects
are sets and morphisms are total functions between sets.

• m od7 : (SIGN7)op —> CAT is the model functor, where CAT is the category where
objects are categories and morphisms are functors between categories. 1

• 1 = 2 C | m od7 (E)| x sen7 (E) is the satisfaction relation, for each E : SIGN7,

such that the satisfaction condition holds: for every signature morphism a : E —> E ' in SIGN7,

m od7 (<t)(M') [= 2 ip <*=> M ' 1= 2 , sen7 (cr)((/?)

1 Some authors have concerns over the size o f the category CAT. We do not consider such concerns within this
thesis.

50

4.1. The F orm al D efin ition o f Institu tions

SIGN SET

sen(E)
sen

sen(E ')

mod CAT

mod (E 'm od(E)

M i

Figure 4.1: Diagram of the notion of an institution [0 ‘R()8],

holds for every sentence ip G sen 7 (E) and for every E '-m odel M ' G m od7 (S ') . The op
eration |_| when applied to a category results in the class of objects o f that category, where
the morphisms o f the category are simply forgotten. For example SIG N 7 | is the class of
signatures within the institution I. The operation _|op when applied to a category gives the
duel category which has the same objects and morphisms. but where the morphisms have been
reversed. That is, if cr : E —> E ' is a morphism in SIGN, then a : E ; —» S is a morphism in
SIGNop. Figure 4.1 shows a diagram representation o f an institution.

The idea here is to have a collection of signatures and signature morphisms which map
symbols in a compatible way. This collection is the category SIG N 7. Nothing else about the
structure o f the category SIGN is assumed. The top left o f Figure 4.1 depicts the category
SIGN with two signatures E and E ' along with a signature morphism <r between them.

The functor sen 7 : SIG N 7 —» SET gives for each signature E G |S IG N 7 |, the set of
sentences sen 7 (E) over the signature E, and for each signature morphism a : E —> E \ the
sentence translation function sen 7 (a) : sen 7 (E) -* sen 7 (E ') which translates sentences built
over E to sentences built over E'. The top right o f Figure 4.1 depicts the category SET with
two sets o f sentences sen(E) and sen(E ') along with a sentence morphism sen(cr) between
them.

The functor m od 7 : (SIGN7)op —> CAT gives for each signature E G (SIGN 7 | the
category m od 7 (E) of E-m odels and model morphisms, and for each signature morphism

51

4. A Common Framework: Institutions

a : E —> E' the reduct functor mod7 (cr) : mod7(E') —» mod7(S). The reduct functor
mod7(<r) reduces models over the signature E' to models over the signature E. Similarly,
model morphisms are reduced to model morphisms between reduced models. Morphism com
position is reversed within this category as mod7 is a contravariant functor.

The lower half of Figure 4.1 depicts the category CAT. Depicted within this category are
two categories of models, namely mod(E) and mod(E'). Within the category mod (S') there
are two models M[and M'2 along with a model morphism h! between them. The reducts
of these models and the reduct model morphism are depicted within the category mod(E) as
M [\a, M'2\cr and b!\a respectively.

The satisfaction condition ensures that satisfaction with respect to the satisfaction relation,
is preserved across translation of sentences and reducts of models.

We introduce some shorthand notations that are often used when dealing with institutions.
We write o(ip) for sen7(cr)(y?) and M '\a for mod7(cr)(M'). Also the subscript on the satis
faction relation and the superscript I may be omitted when it is clear from the context and no
confusion arises. These are the most common shorthand notations as defined by Mossakowski
in [Mos02], which are slightly different to those defined by Goguen and Burstall in [GB92].

With these shorthands the satisfaction condition becomes: for each signature morphism
< 7 : E —>■ E ' in SIGN,

M'\<J |=£ ip <=> M ' (=£/ cr(ip)

for each E'-model M ' G | mod7(E')| and E-sentence p> G sen7(S).
Given an arbitrary fixed institution, we can define the usual notion of logical consequence

or semantical entailment. Given a set of E-sentences T C sen(E) and a E-sentence p G
sen(E), we say T models p (written T |= s <p) iff

for all E-models M G | m od(E)|, if M T then M f=£ ip

where M (=s T means M |= s for every sentence ^ g T .

4.2 The Institution PCFOLr
We now outline the institution of partial first order logic with sort generation constraints and
equality as it is defined in [Mos02]. While this stands as its own institution, this also forms the
basis for the institution SubPCFOLr which underlies C a s l .

4.2.1 Signatures

A many-sorted signature E — (S ,T F , P F , P) consists of

• a set S of sort symbols,

• two S* x 5-sorted families, T F = (T F w>s)wes*,seS of total function symbols and
P F = (P F WtB) wes*,seS ° f partial function symbols, such that T F ŴS n P F WS — 0 for
each (w, s) G S* x 5, and

• a family P = (Pw)weS* o f predicate symbols.

52

4.2. The Institution PCFOL

Given a function / : A —>> B , let /* : A* —>■ B* be its component-wise extension to finite
strings. Given a finite string w — (s i , . . . , sn) and sets M Sl, . . . , M Sn, we write M w for the
Cartesian product M Sl x . . . x M Sn.

Given two signatures £ = (S ,T F , P F , P) and £ ' = { S ' ,T F ',P F ',P ') , a many-sorted
signature morphism a : £ —> £ ' consists of

• a map a s : S —y S ',

• a map a p s : T F W,SU P F W)S -> T F ' ^ ^ s ^ U P F ' ^ ^ s ^ preserving totality, for
each w £ S*, s £ S , and

• a map o p : Pw -> Pas*{w).

Identities and composition are defined in the obvious way. This gives us the category of
PCFOLr -signatures.

4.2.2 Models

Given a many-sorted signature £ = (S, T F , P F , P), a many-sorted H-model M consists of

• a non-empty carrier set M s for each sort symbol s G S,

• a partial function {Jw,s)m from M w to M s (also written just /m) for each function
symbol / € T F W>S U P F WiS, the function being total for / € T F WtS, and

• a relation (p w)m Q M w (also written just p m) for each predicate symbol p G Pw .

A many-sorted Tl-homomorphism h : M —> N is a family of functions h = (hs : M s —>
N s)seS with the property that for all / € T F WjS U P F W:S and [a \ , . . . ,a n) € M w with
(fw ,s)M (a 1 , •. •, an) defined, where w = (s i , . . . , sn), we have

^s((/u>,s)m (&1 > • • • ? ®n)) = {fw,s^)N{hsi (®l)? • • • 5 h Sn (fln))>

and for all p £ Pw and (a i , . . . , an) G M w, where w = (s \ , . . . , sn), we have

(a i , . . . , an) G {Pw)m implies (h81 (a i) , . . . , hSn{an)) G {p w)n -

Let a : E -> E ' be a a many-sorted signature morphism and M ' be a £ '-model. Then the
reduct M '\a of M ' is the £-model M with

• M s := for all sort symbols s G S,

• (fw,s)M := for a11 function symbols / G T F WjS U P F W,S, and

• {Pw)m {°w {p))m ' for all predicate sym bolsp G Pw.

Given a many-sorted E'-homomorphism h! : M ' —>• iV', its reduct h '\a : M '\a —>• is
defined by (A'|CT)S := f°r each s £ S .

Identities and composition are defined in the obvious way, for full details see [Mos02].
This gives us the functor mod.

53

4. A Common Framework: Institutions

4.2.3 Sentences

Given a many-sorted signature E = (S ,T F , PF , P), a variable system over E is an S-sorted,
pairwise disjoint family of variables X — (X s)s£s- The sets T z (X) s of many-sorted Y>-terms
of sort s £ S, with variables in X is the least set satisfying

• x £ T z { X) s , if x £ X s, and

• fw ,s{h , . . . , t n) £ T s (X)a,
if U £ T -z{X)Si (i = l . . . n) , f £ T F W>S U P F W>S, andw = (s i , . . . , s n).

The set A F y (X) of many-sorted atomic H-formulae with variables in X is the least set
satisfying the following rules:

1. pw(ti, . . . t n) £ A F x (X) , if ti £ Ty, { X)Si, pw e p w, W = (si, . . . , s n) £ S* (predi
cates),

2 . t \ = t2 £ A F y (X) , if t \ , t2 G T y (X) s, s £ S (existential equations),

3. h = t 2 £ A F y (X) if t \ , t 2 G T y (X) s, s £ S (strong equations),

4. d e ft £ A F y {X), if t £ T y {X) (definedness assertions),

The set F O y (X) of many-sorted first-order formulae with variables in X is the least set
satisfying the following rules:

1. A F y (X) C F O y (X) ,

2. F £ F O y (X) (read: false),

3. <p Aip £ F O y {X), \ f ip , ip £ F O s (X) ,

4. ip £ F O z (X) , i f <p,ip £ F O s (X) ,

5. \/x : s • v? € F O y (X) , if (p £ F O y (X U { x : s}), s £ S,

We omit brackets whenever this is unambiguous and use the usual abbreviations: ~^p for
(p => F , <p V ip for A -np), T for ->F and 3x : 5 • ip for -N x : s • <p.

A sort generation constraint states that some set of sorts is generated by some set of func
tions. Technically, sort generation constraints also contain a signature morphism component;
this is needed to be able to translate them along signature morphisms without sacrificing the
satisfaction condition.

• •
Formally, a sort generation constraint over a signature S is a triple (S ,F ,0), where 6 :

E ^ E for some E = (S ,T F ,~ P F ,P), S C S and F C T F U ~PF.
A many-sorted T,-sentence is a closed many-sorted first order formula over E or a sort

generation constraint over E.

54

4.2. The Institution PCFOL

Given a signature morphism a : E —> S ' and variable system X over E, we can obtain the
variable system o (X) over E ' by

<t (X) s, := U .
crs (s)=s/

For an individual variable x : s this translation yields cr(x : s) = x : cr(s).
We extend this translation to terms by

• o U w A h i • • • ’ tn)) — cr̂ ,s(/u;,s)0-5*(^);CTS(s)(cr(^i), • • •, cr(tn))

and to formulae by

• a(pw(t i , . . . t n)) = a%(pw)as*{w)((T (t i) , . . .(j(tn)),

• o (t\ = t 2) = a (t \) = a (t2),

• cr{ti = t 2) = a (t i) - cr(t2),

• a (d e f t) = d e f a (t) ,

• (7(F) - F ,

• <r(<£ A x p) = cr(ip) A (J (i p) ,

• = > i p) = a (p) => (t(^),

• cr(Vx : s • p) — Vx : o s (s) • cr(p).
• • • •

The translation of a E-constraint (S , F ,6) along cr is the E'-constraint (S ,F ,a o 0). It
is easy to see that the sentence translation along the identity signature morphism is the iden
tity, and that the sentence translation along a composition of two signature morphisms is the
composition of the sentence translations along the individual signature morphisms. Hence,
sentence translation is functorial. This gives us the functor sen.

4.2.4 Satisfaction Relation

In order to define satisfaction of sentences we first must define term evaluation. Variable val
uations are total, but the value of a term w.r.t. a variable valuation may be undefined, due to
the application of a partial function during the evaluation of the term. Given a total variable
valuation (i.e., a function assigning values to variables) v : X —>• M , the term evaluation

: T 's (X) —»?M is inductively defined by

• u t(x) := v (x) for all x G X s and all s G S.

• 1? ■ • • 5 ^n))
((fw ,8)M (v s i(t i) , . . . ,v ln (tn)) if VsiiU) is defined (i = 1 . . . n) and
\ (fw ,s)At(vJi (*i), • • •, z 'J n (U) is defined
(undefined otherwise

for all / G T F W,S U P F Wf8 and U G T ^ (X) Si (i = 1 . . . n), where w = (s i , . . . , s„).

55

4. A Common Framework: Institutions

The satisfiability of a many sorted first-order formula p £ F O ^ (X) relative to a valuation
v : X —»■ M is defined inductively over the structure of p :

• v f= • • ,^n) iff is defined (z = 1 . . . n) and (^ (f i) , . . . € {Pw) m -

• ^ |= £i = h iff and ^ (£ 2) are both defined and equal.

• v |= t i= t 2 iff z^(£i) and ^ (£ 2) are either both undefined, or both are defined and equal.

• v |= d e ft iff z^(£) is defined.

• not v \= F .

• v \ ^ p A i p i f f v \ = p and v f= ■j/’-

• o \ = p ^ ' i p i f f u \ = p implies v (= z/>.

• y |= \/x : s • p iff for all extended valuations (: X U {x : 5 } M (i.e., valuations
where it holds that £(z/) = u (y) for all y £ X \ {x : 5 }) we have C (= P-

M \= p holds for a many-sorted E-model M and a many-sorted formula p, iff v f= p for all
variable valuations v into M .

• •
A E-constraint (5 , F , 6) is satisfied in a E-model M , if the carriers of M\g of the sorts in

• • •
5 are generated by the function symbols in F , that is, for every sort s € S and every value

 «
a E (M \ff)s, there is a E-term t containing only function symbols from F and variables of

sorts not in S such that v \ t) = a for some assignment v into M\&.
• •

For a sort generation constraint (5 , F , 6) we can assume, without loss of generality, that
• • •

all the result sorts of function symbols in F occur in S. If not, we can just leave out from F
those function symbols not satisfying this requirement. The satisfaction of the sort generation
constraint in any model will not be affected by this: In the E-term t witnessing the satisfaction

of the constraint, any application of a function symbol with result sort outside S can just be
replaced by a variable of that sort, which is assigned the value resulting from the evaluation of
the function application.

This concludes the presentation of PCFOLr. For further details including the proof of
the satisfaction condition for PCFOLr we refer the reader to [Mos02]. Next, we look at an
extension which has sub-sorting.

4.3 The Institution SubPCFOLr

We now introduce the institution SubPCFOLr (sub-sorted partial first order logic with sort
generation constraints and equality), which extends PCFOLr with sub-sorting. It is this insti
tution which underlies C a s l .

56

4.3. The Institution SubPCFOL

4.3.1 Signatures

A sub-sorted signature £ = (S, T F , P F , P, < s) consists of a many-sorted signature (S, T F ,
P F , P) together with a reflexive and transitive sub-sort relation < s C S x 5. The relation < s
extends pointwise to sequences of sorts. We drop the subscript S when it is obvious from the
context. For a sub-sorted signature £ = (S , T F , P F , P, < s) we define overloading relations
~ F and ~ p for function and predicate symbols, respectively. Let / : w \ —> s \ , f : W2 —>
S2 G T F U P F . Then / : w \ —> si ~ p / : W2 —> S2 iff there exist w G S*, s G S such that
w < s w \ ,w < s W2 , s i < s s, and S2 < s s. Let p : w \,p : W2 G P. Then p : w\ ~ p p : W2 iff
there exists w G 5* such that w < s w \ and w < s W2 -

A sub-sorted signature morphism o : £ —>■ £ ' is a many-sorted signature morphism that
preserves the sub-sort relation and the overloading relations2, that is, the following hold:

P i Si < s S2 implies crs (s i) <s> crs (s2) for all s i , S 2 G S (preservation of the sub-sort
relation),

p2 / : w i -> s i / \w 2 ^ s 2 implies <r£1)Sl(/) = ^ 2,S2(/)
for all / G T F U P F (preservation of the overloading relation for functions), and

p3 p : w \ ~ p p : W2 implies (p) = <r̂ 2 (p) for all p G P (preservation of the overloading
relation for predicates).

With each sub-sorted signature £ = (S , T F , P F , P, < s) we associate a many-sorted signature
£ = (S ,T F , P F , P), which extends the underlying many-sorted signature (S ,T F , P F , P)
with

• a total injection function symbol i n j s s/ : s —)• s' for each pair of sorts s < s s',

• a partial projection function symbol p r s/ s : s' —>-?s for each pair of sorts s < s s', and

• an unary membership predicate symbol G^: s' for each pair of sorts s < s s'.

We assume that the symbols used for injection, projection and membership are not used
otherwise in £ . We write t G s instead of G®, (t) if s' is clear from the context. We also drop
the subscripts on the injection and projection functions when they are clear from the context.

Given a signature morphism o : £ —>• £ ', we can extend it to a signature morphism
(j : £ —> £ ' by mapping the injections, projections and memberships in £ to the corresponding
injections, projections and memberships in £ '.

4.3.2 Models

Sub-sorted 13-models are many-sorted PCFOLr £-models satisfying (in PC FO Lr) the follow
ing set of axioms J (£) (all variables are universally quantified):

1. i n j S;S(a:) = x for s G S.

2Note that, thanks to preservation o f sub-sorting, the preservation o f the overloading relations can be simplified.

57

4. A Common Framework: Institutions

2 . i n j s>s/(a;) = i n j 6>8,(y) =» x = y for s <s s'.

3. i n j s/ s/ / (in j s s/(x)) = i n j s>a«(a:) for s < 5 s' < 5 s''.

4. p r s/)S(in j s s/(x)) = x for s < 5 s'.

5- p r s/)S(x) = p r 8/jfl(y) =>> z = j/ for s < 5 s'.

6 . E*/ (z) 43- d e fp r s> s(x) for s < 5 s'.

7- i n j s/)S(/w',s/ (i n j SljS/ (z i) , . . . , i n (ar„))) =
i n j s")S(/u;",s"(i n j Sl;S''(^ i), • • • > i n js n)s''(^n))) for fw',s'
where w < s w ', w", w = (s i , . . . , sn), u;' = (s i , . . . , s^), w" = (s' / , . . . , s"), and
s ', s " < 5 s.

8 . pw/ (i n j Siyi (£ i) , . . . , i n j Sn)^ (z n))
P io"(in j 5 l)S' ' (x i) , . . . , i n j Sn,s" (z n)) for j v ~ p ?V ',
where w < 5 it;', it;" , w — (s i , . . . , sn), w’ = (s (, . . . , s'n), and it;" = (s' / , . . . , s").

Sub-sorted H-model morphisms are many-sorted E-model morphisms.

4.3.3 Sentences

The Sub-sorted sentences over E are the many-sorted sentences over E. Sentence translation
along a sub-sorted signature morphism o is just sentence translation along the many-sorted
signature morphism <r.

4.3.4 Satisfaction

The satisfaction relation is inherited from PCFO Lr, as models and sentences are taken from
there too. Therefore, the satisfaction condition is also inherited from PCFOLr. For further
details see [Mos02].

This concludes our presentation of SubPCFOLr which is the underlying institution of
C a s l . In order to use this institution for C sp -C as l we need to make some restrictions to the
signature category. We discuss this next.

4.4 The Restricted SubPCFOLr Institution

To be able to define a well behaved equivalence relation on our alphabet construction, in Sec
tion 7.2.1, we need to restrict the signatures of SubPCFOLr. Without this restriction we
would later fail to prove transitivity of said relation. To this end, we form a sub-institution
of SubPCFOLr, which we call ResSubPCFOLr (restricted sub-sorted partial first order logic
with sort generation constraints and equality). ResSubPCFOLr is the same as the SubPCFOLr
institution but with a restricted signature category.

58

4.4. The Restricted SubPCFOLr Institution

Signatures A restricted sub-sorted signature E = (5, T F , P F , P, <) is a SubPCFOLr sig
nature which satisfies the following additional properties [Rog06]:

• the set of sorts is finite, and

• the sub-sort relation has local top sorts, that is, if s < u, u ' then there exists t E S with
u, u' < t.

These restrictions are not as harsh as they may seem at first sight. The first restriction is
hardly restrictive at all, as all specifications will be of finite length and there is no construction
to introduce an infinite number of sort symbols. Roggenbach [Rog06] states that the second
restriction holds in a large number of the standard C a sl libraries. We verify this claim using
the following specification to test the standard C a sl libraries.

from B a sic /A l g e b r a _I get M o n o id , Com m utativ eM o n o id , . . .

logic C spC A SL

spec T e st_ M o n o id =
data M o n o id
process P : {};

end

spec T e s t_ C o m m u ta tiv e M o n o id =
data C o m m u ta tiv e M o n o id
process P : {};

end

Here, we import each C a sl specification from the standard libraries in turn and use them as
the data part for a C sp-C a sl specification. The tool H ets requires all C sp-C a sl specifica
tions to contain at least one process name, thus we specify a process name P which has the
empty communication set. The tool H ets throws errors when the data part of a C s p -Ca sl
specification lacks local top sorts. The above text was successfully parsed and statically anal
ysed. As no errors were thrown, we can conclude that all specifications in the standard Ca sl
libraries have local top sorts. As these C a sl libraries capture almost all common data types,
we strongly believe that all reasonable specifications will have local top sorts.

A restricted sub-sorted signature morphism cr : (S ,T F, P F , P, <) —> (S ', T F ' , P F ' , P ' ,
<’) is a SubPCFOLr signature morphism which satisfies the additional properties:

refl cr(si) < ' <j(s2) implies s\ < S2 for all s i , S2 E S (reflection of the sub-sort relation), and

weak non-extension <j(si) <' v! A cr(s2) <' u' implies that there exists a sort t E S with
s i < t , S2 < t and a(t) <' u ' for all s i , S2 G S and u' E S ' . 3

3Further note that for Si = S2 , the condition trivially holds.

59

4. A Common Framework: Institutions

Composition of restricted sub-sorted signature morphisms and the definition of identity
morphisms are inherited from SubPCFO Lr.

The construction in [Rog06] works with the condition non-e:xtension in place of weak non-
extension:

non-extension cr(si) <' u' Acr(s2) u' implies that there exists a sort u £ S with o(u) = u'
for all S \,S 2 £ S and u' £ S '.

One can show however that the results of [Rog06] can also be achieved with the more liberal
notion (weak non-extension) that we use here. The difference from the original version (non
extension) is the more liberal choice of sort t (originally, we have required o(t) = u').

Lem m a 4.1 The properties non-extension and refl imply weak non-extension.

Proof. Assume that the property non-extension holds. Let s \ , £ S and u' £ S' be sorts,
such that cr(si) <' u', and cr(s2) <' u f. We must show that there exists a sort t £ S such
that s i < t, S2 < t, and cr(t) <' u'. By non-extension we know there exists a sort t £ S
such that <r(f) = u'. As we know cr(si) < ' u' = <r(£), by the property refl we know si < t.
Similarly we can conclude S2 < t. Finally, as the sub-sort relation is reflexive we know
o (t) <’ u' = o (t). □

As an example of a signature morphism that is allowed by weak-non-extension, but disal
lowed by the original non-extension property, consider the following. Let E be a specification
with sorts s j, S2 , and t such that si and S2 are sub-sorts of t. Let E 7 be a specification with
sorts s'j, s '2, t1 and u' such that s[and s'2 are sub-sorts of t' and t' is a sub-sort of u1. Finally,
let cr : E -> E ' be the signature morphism that maps: si to s'1? s2 tc> s2, and t to t'. C learly
(j satisfies the property weak-non-extension but not non-extension. This is a simple signature
morphism which we would not like to disallow.

We now illustrate how new sorts can be introduced via restricted sub-sorted signature mor
phisms.

Exam ple 4.2 The following are two examples of valid ResSubPCFOLr specifications.

spec E x a m p l e S p e c I = spec E x a m p l e Spec2 =
sorts c ,d < a ’, sorts a < /;

b = c\ n ,d < a\
e c < n\

end b = c; d = h\
f g < c; g < d\
j , k < l\
e < j\ e < k;
m

end

Let E and E ' be the signatures of Ex a m p l e S p e c I and Ex a m p l e Spec2 respectively. Below
are diagrams of the underlying sub-sort relations.

60

4.4. The Restricted SubPCFOLr Institution

There is a signature morphism between the signatures S and S ' where the morphism preserves
the identity of the sorts. This signature morphism shows it is possible to:

• introduce new sorts on top of existing sub-sort relations (e.g., sort i on top of the join
(sort a) between sorts c and d),

• introduce new sorts that are isomorphic to existing sorts (e.g., sort h),

• introduce new sorts that are sub-sorts of existing sorts (e.g., sort /) ,

• introduce new sorts that are inline with the existing sub-sort relation (e.g., sort n),

• join multiple existing sorts using new sub-sorts (e.g., sort g),

• introduce new super-sorts in different connected components (e.g., sort j) , and

• introduce new independent sorts (e.g., sort m).

This shows that there are many situations in which new sort symbols can be introduced
using signature morphisms. Therefore, we feel the restrictions are not too harsh and still allow
for liberal use of signature morphisms.

The following is a more concrete example of how these signature morphisms are useful in
practice.

Example 4.3 Consider an abstract specification of an online shopping system. There are sev
eral distributed components: a customer, a warehouse, a payment system, etc. These entities
communicate with one another with the goal of allowing the customer to purchase some goods.
Here, we only consider the customer.

At the most abstract level, we may only wish to specify that the customer has a set of
messages which it is able to send and receive. We may also wish to specify that there exist
login and logout messages in the set of messages. This can be captured by the following
specification (which has a restricted sub-sort signature).

spec A b s t r a c t _Custo m er =
sorts LoginReq, LoginRes, LogoutReq, LogoutRes < Customer-Data;

end

m

61

4. A Common Framework: Institutions

The customer has the following message types available for use: Login request messages,
login response messages, logout request messages, and logout response messages. The idea is
that the customer can send a request message and then wait for a response message (although
we do not specify this behaviour here). Any other messages are abstract and are covered by the
super sort C ustom er-D a ta .

Later in the specification process, probably at a more concrete level of abstraction, the
specifier may wish to define what further messages could additionally be communicated. The
following concrete customer specification allows for this extension.

spec CONCRETE.CUSTOMER =
sorts LoginReq, LoginRes, LogoutReq, LogoutRes,

ViewBasketReq, ViewBasketRes,
AddltemReq, AddltemRes, RemoveltemReq, RemoveltemRes,
CheckoutReq, CheckoutRes, CancelReq, CancelRes < Customer-Data',

end

Here, we have added extra message types (sub-sorts of C ustom er-D ata). These allow the
customer to view their basket, add and remove items from their basket, check out their basket
and cancel their entire basket.

There is the obvious signature embedding from the signature of the abstract customer to the
signature of the concrete customer. This signature embedding is a valid restricted sub-sorted
signature morphism and shows how our notion of signature morphism can be useful in practice.

Lem m a 4.4 The restricted sub-sorted signatures and signature morphisms form a sub-category
of the SubPCFOLr signature category.

Proof. Identity morphisms and composition are inherited from the SubPCFOLr signature cat
egory. It is straightforward to check that the identity morphisms satisfy the refl and weak non
extension properties. We now prove that composition of signature morphisms also preserves
these proprieties.

Let a : £ —> £ ' and o' : £ ' —> £ " be ResSubPCFOLr signature morphisms with S, S ',
S" and < , < ' and <" being the sets of sort symbols and sub-sort relations of £ , £ ' and £ " ,
respectively.

refl Let s \ ,S 2 £ S such that {o' o cr)(si) <" {o' o o){s2). We must prove si < S2 . By refl of
o', we know cr(sx) <' o {s 2) and by refl of o, we can conclude s\ < S2 .

weak non-extension Let s i , S 2 £ S and u" G S" such that {o' o cr)(si) <" u", and {o' o
&) (^2) <" u". We must find a sort t G S such that si < t ,S 2 < t, and {o’ o o){t) < u " .
By weak non-extension of o', we know there exists a sort t' G S' such that cr(si) <' t',
^ (^ 2) < ’ t', and o '{ t') <" u " . By weak non-extension of o, we know there exists a
sort t G S such that si < t, S2 < t, and o{t) <’ t'. By the property p i of o (see
Section 4.3.1) we also know that o '{o{t)) <" o '{t'). Thus, by transitivity of <" we
obtain o '{o { t)) <" u " . □

The models, sentences and satisfaction relation of ResSubPCFOLr are the same as in the
institution SubPCFO Lr.

62

4.5. Data-Logic

Theorem 4.5 ResSubPCFOLr is an institution.

Proof. As we have only restricted the signature category, the satisfaction condition is inherited.
Therefore, ResSubPCFOL= forms an institution and is a sub-institution of SubPCFOLr (the

4.5 Data-Logic

The data-logic (formulated in [Rog06]) is the logic used within the process part of Csp -Ca s l .
The purpose of this institution is to provide a way of dealing with partiality in the models as
well as allowing within sentences the ability to (1) test the equality of terms of different sorts,
and (2) test whether a term is of a certain sort. Both of these ‘features’ are needed to be able
to use Ca sl terms as communications and formulae as conditions in C sp processes. This
data-logic can be thought of as a specialisation of ResSubPCFOLr.

We briefly sketch this institution, for full details see [Rog06]. The signature category is the
same as for ResSubPCFOLr. However, sentences, models and satisfaction are different.

M odels A data-logic 55-model M ± is the strict extension of a ResSubPCFOLr E-model
M [Rog06]. Let E = (S, T F , P F , P, <) be a ResSubPCFOLr signature with the associated
signature E = (S , T F , P F , P), as defined in Section 4.3.1. Given a ResSubPCFOLr E-model
M , its strict extension is defined by4:

• (M_l)s M s U {_!_} for all s G S (we assume _L ^ M s),

This construction leads to a one-one correspondence between ordinary many-sorted models
in ResSubPCFOLr and their totalised counter parts in the data-logic. Given a ResSubPCFOLr
model M , its extension M ± is uniquely determined. Forgetting the strict extension results
again in M .

Data-logic E -morphisms are many-sorted ResSubPCFOLr E-morphisms which are ex
tended to ± . Given a many-sorted morphism h : M —> M ' between two many-sorted
ResSubPCFOLr E-models M and M ', we can strictly extend h to a totalised morphism
h± : M ± Mj_ by

underlying institution of C a s l). □

• (f w , s) M ± (^ 1 j • ■ • j :— <

, -L

for all / in T F W,S U P F W,S, and

• (Pw) m ± := {Pw)m for all p <E Pw.

{ fw ,s)A t(x i , - . . ,x n) i f x i e M Si{i = l . . . n) a n d
(/ u ; , s) m (^ ' 1 i • • • i % n) IS

defined
otherwise

4In the model definition we use the same ± symbol for all carrier sets. Later, the construction o f the alphabet
of communications (see Chapter 7) will differentiate some of them based upon the sub-sort relation.

63

4. A Common Framework: Institutions

As this extension is again uniquely determined, there is also a one-one correspondence between
the many-sorted ResSubPCFOLr E-model morphisms and data-logic E-model morphisms.
Given a ResSubPCFOLr model morphism h : M M ' , its extension h± : M ± —> M'j_ is
uniquely determined. Forgetting the strict extension results again in h : M —> M ' .

Sentences Sentences are similar to those in ResSubPCFOLr, however we allow equality
tests over different sorts and a membership test. To this end, Let E = (S, TF, PF, P, < s) be
a signature and X be a variable system over E. We inherit the set of E-terms T z (X) from
ResSubPCFOLr and define the set A F ^ (X) of atomic E-formulae with variables in X as the
least set satisfying the following rules:

1 • Pw(^i)••■£«) ^ AF^iX), if G Tj](X)Si, pw G P-wi 1 5 • • • 5 ^n) ^ S (predi
cates),

2. t\ = t 2 G A F z (X) , if h , t 2 G T z (X) (existential equations),

3. t\ = t 2 G A F z (X) , e T z (X) (strong equations),

4. d e f t G A F e(A), if f g T’s(A ') (definedness assertions),

5. t in s' G A F x (X) , if t G X e (X)s , s, s' G S' (element relation).

These are the same rules as for PCFOLr, however, we have dropped the requirements on
Points 2 and 3 that the terms t \ and t 2 must be from the same sort. Furthermore, we have
added a test for membership which allows a term of any sort to be tested for membership in
any other sort. We then construct formulae and sentences as is done in ResSubPCFOL=.

The translation of sentences across a signature morphism is the same as the translation of
ResSubPCFOLr but extended with the rules:

• v (t i = t 2) := a (t i) = o (t2),

• a {t\ = t 2) := a (t i) = <r(t2), and

• a{t in s') := a(t) in crs (s').

which translate our additional atomic formulae.

Satisfaction We inherit the evaluation of terms from ResSubPCFOLr, however we totalise
it, that is, the evaluation returns _L whenever the ResSubPCFOLr evaluation of a term yields
undefined. Let E = (S , T F , P F , P, <) be a signature. We define the evaluation of a formula
(p, relative to a valuation v : X —> M ±, inductively over the structure of ip as:

• v \= Pw(t i , . . . , t n) iff . . . , J (t n)) G (Pw)m±■

• v \= t \ = t2 iff

- ^ -L, v l2(t2) ± _L,

- there exists u G S such that s\ < u and s2 < u, and

64

4.5. Data-Logic

- for all u G S such that S\ < u and S2 < u holds:

* 4 (i n j Sl,u(fi)) = z4(in j S2,ufe))-

• v |= h — t2 iff
either

- vli (*1) = -L, ^ 2 (^2) = -L. and

- there exists u G S such that Si < u and S2 < u,

or

- i 'h (t i) ± -L, *4 (*2) 7- -L.
- there exists u G S such that s\ < u and S2 < u, and

- for all u G S such that s\ < u and S2 < u holds:

j ai>u(ti)) = ^ (i n j S2,u (t2)).

• v (= d e ft iff v^{t) 7^ _L.

• v \— t in s' iff there exists a 6 Mj_s/ such that
either

- v l(t) = a = _L, and

- there exists u £ S such that s < u and s' < u,

or

- i/{(t)

- there exists u £ S such that s < u and s' < u, and

- for all u G S such that s < u and s' < u holds:

j a>u(f)) = (i n j 8/>u)M(a).

• not v (= F.

• (= A -0 iff)= (/? and v f= ip.

• is \= ip =$■ ip iff 1/ \= implies v \= ip.

• v |= \/x : s • p iff for all extended valuations £ : X U {x : s} —> M ± (i.e., valuations
where it holds that (p(y) = v(y) for all y G X \ { x : 5 }) such that £(2 : : s) ^ _L we have
C h v -

65

4. A Common Framework: Institutions

f= holds for a S-model and a formula <p, iff v [= <p for all variable valuations v into
M ± .

The proof that the data-logic forms an institution can be found in [Rog06], An institution
representation - see [Rog06] for details - allows us to map ResSubPCFOL= models to data-
logic models.

This data-logic will form the basis for the description of data in C sp-Casl . We have
extended the syntax of ResSubPCFOLr to include tests for equality between terms of different
sorts and a sort membership predicate. These ‘features’ are necessary to use Casl terms as
communications and formulae in CSP processes.

4.6 Csp Institutions

We now show that institutions are not only applicable to the area of algebraic specification,
but also apply to other settings, for example, process algebra. C sp can also be formalised as
various institutions. Here, we sketch the construction as it is presented in [MR07].

4.6.1 What is an Appropriate Notion of a Signature Morphism?

Before we define C sp signatures we illustrate with an example from [MR07] why we require
C sp signature morphisms to be injective.

When analysing Csp specifications, it becomes clear that there are two types of symbols
that change from specification to specification, namely, communications and process names.
Pairs consisting of an alphabet A of communication symbols and of process names N (together
with some type information) will form Csp signatures, see Section 4.6.2. The notion of a
signature morphism, however, is not as easy to determine. An institution captures how truth
can be preserved under change of symbols. In this sense, wre want to come up with a notion of a
signature morphism that is as liberal as possible but still respects fundamental CSP properties.
In this section, we discuss why this requires us to restrict alphabet translations to injective
functions.

The process algebra CSP itself offers an operator that changes the communications of a
process P, namely, functional renaming /[P].5 Here, / : A ~r? A is a (partial) function such
that d o m(f) includes all communications occurring in P (see Chapter 2). The Csp literature
(e.g., [Ros98]), classifies functional renaming as follows:

1. Functional renaming with an injective function / preserves all process properties.

2. Functional renaming with a non-injective function / is mainly used for process ab
straction. Non-injective renaming can introduce unbounded non-determinism and thus
change fundamental process properties.

5 Note that the so-called relational renaming, which is included in our CSP dialect, subsumes functional re
naming.

66

4.6. C sp Institutions

As a process algebra, C sp exhibits a number of fundamental algebraic laws (see Section 2.3
for a selection). One such law is the step law:

(O x :: X P) n (U y " Y -> Q)
= H x :: X \ J Y if x E X f) Y then (P n Q) else (if x E X then P else Q)

The step laws hold in all the main Csp semantics and are essential for the definition of complete
axiomatic semantics for Csp, see [Ros98, IR06]. The CSP step laws show that, for example, the
behaviour of the external choice □, generalised parallel \ [X]\ and hiding \ operators crucially
depend on the equality relation in the alphabet of communications. We demonstrate this here
for the external choice operator □ :

• Assume a ^ b. Then

(□ x :: {a} P) □ (□*/ :: {6} -* Q)
= O x :: {a, b} —> if x G {a} fl {&} then (P n Q) else (if x G {a} then P else Q)
= □ x :: {a, b} —» if x G {a} then P else Q

• Mapping a and b with a non-injective function / to the same element c has the effect:

f [(D x : : { a } -+ />)□ (□ < /: : {&}—>£)]
= ((D x :: {c} f[P}) □ (□ < /: : {c} -> f [Q]))
= O x :: {c} —y if x G {c} H {c} then (f [P] n f[Q]) else

(if x G {c} then f[P\ else f[Q])
= O x : : { c } - + (f [P } n f [Q])

Here, we can see that the use of a non-injective renaming has changed the semantics of the
process. Before the translation, the environment controlled which one of the two processes
P and Q is executed - after the translation this control has been lost: the process makes an
internal choice between f [P] and f[Q]. Similar examples can be extracted from the step laws
for the alphabetised parallel \[X]\ and hiding \ operators.

This example demonstrates that the use of non-injective renamings can change the seman
tics of a process. As institutions are concerned with preservation of truth, and in particular the
satisfaction condition states that truth is preserved under change of notation, we are forced to
conclude that such non-injective renamings are not compatible with institutions. Therefore, we
require alphabet translations, which will be a constituent of C sp signature morphisms, to be
injective functions.

4.6.2 Csp Signatures

A Csp signature is a pair (A, N) where

• A is an alphabet of communications, and

• N — (N, com m s , param) collects information on process names; TV is a set of process
names, where each process name n G N has

67

4. A Common Framework: Institutions

- a parameter type param (n) = (A^ , . . . , X^), X i C A for 1 < i < k, k > 0. A
process name without parameters has the empty sequence () as its parameter type.

- a type com m s{n) C A , which collects all possible communications in which the
process name n can engage in.

By abuse of notation, we will write n G N instead of n E N and (a i , . . . , a^) G param (n)
instead of (a i , . . . , a^) € X \ x • • • x X ^ , where param(n) = {X \ , . . . , X^).

A Csp signature morphism a — (a , v) : (A , N) —>• (A N ') consists of two maps:

• a : A —»■ A ', an injective alphabet translation, and

• v \ N ^ N ', a translation of process names, which has the following two properties:

- param '(u(n)) = a*(param (n)) : preservation of parameter types, where a * de
notes the extension of a to sequences of sets.

- com m s'{u{n)) C (com m s(n)) : non-expansion of types, that is, the translated
process v(n) is restricted to those events which are obtained by translation of its
type com m s(n).

The non-expansion of types principle is crucial for ensuring the satisfaction condition of
the Csp institutions. It ensures that the semantics of a process is frozen when translated
to a larger context, that is, even when moving to a larger alphabet, up to renaming,
models for “old” names may only use “old” alphabet letters. This corresponds to a
black-box view on processes that are imported from other specification modules.

4.6 .3 C s p Sentences

Sentences in C sp are formed relative to a signature, a global variable system, a local variable
systems, and a logic. Global variables are used as parameters for process names while local
variables are introduced by bindings in some of the CSP operators (see Section 2.1). The logic
is left open and only assumed to exhibit certain properties, for instance, that it comes with a
substitution operator that works in the usual way. The logic defines the syntax of formulae that
are used in the C sp conditional operator. Here, we sketch the construction of sentences, for
full details see [MR07].

The set o f process terms T(a ,n) {G, L) is defined over a signature (A, N) and relative to
global and local variable systems G and L, respectively. These process terms are similar to
those in Section 2.1 where the variable systems control the availability and binding of variables.

A process definition over a signature (A , N) is an equation

p (x 1, . . . , x k) = p t

where p is a process name in N, the X{ are variables with X{ : Xi , where X i is the i-th com
ponent of param(p), andpf is a Csp process term. Finally, a process definition is a sentence if
p t G T(comms{p),N)({x i : X \ , . . . , Xfc : X &}, 0), that is, pt is a process term of the correct type
which contains only appropriate global variables.

68

4.6. Csp Institutions

4.6.4 CSP M odels and R educts

Let T>(A) be a C s p domain constructed relatively to a set of communications A, that is, an
alphabet (see Chapter 2). A model M over a signature (A, N) assigns to each process name
n and for all (a i , . . . , a&) G param (n) a type correct element of the semantic domain V(A) ,
that is,

M (n (a i , . . . , afc)) G V (co m m s(n)) C 27(A) .

We define model categories to be partial orders (i.e., CSP refinements), that is, there is a
morphism between models M \ and M 2 , iff M \ C p M 2 . Here C p is the pointwise extension
of the partial order used in the denotational CSP semantics for the chosen domain V.

Given an injective (total) alphabet translation a : A —> A ' we define its partial inverse as

a : A ' -*? A
, (a if a G A is such that a (a) = a '

(undefined otherwise

Let cP : V (A ') — 27(A) be the extension of a to semantic domains - to be defined for any
domain individually.

The reduct of a model M ' along the signature morphism o is defined as

M '\a (n (a i , . . . , a*;)) = a D{ M' (i s { n) { a{ a i) , . . . , a (ak)))) .

On the level of domains, we define the following reduct condition on a and oP :

V l C i . a v (V (a (X))) C V (X) .

This condition controls the relationship between the underlying translation a and the domain
translation o P . This condition is essential for proving the for the satisfaction condition to hold.
The C s p - C a s l institutions will impose a similar condition on model morphisms in Chapter 8.

4.6.5 Satisfaction

We now sketch the construction of the satisfaction relation as it is presented in [MR07].
Given a map denotation : M x T(a ,n){$i 0) ~^ 'D(A), which - given a model M - maps

a closed process term pt G T(Ajiv)(0 ,0) to its denotation in V(A) , we define the satisfaction
relation of our institution:

M \ = p (x i , . . . , x k) = p t
if and only if

V(a i , . . . , ak) G param(p)•
denotation m (p(ai, - CLk)) = denotation m {pt[a\/ x 1 , . . . , afc/xfc])

The map denotation is similar to the CSP semantic functions [_]p defined in Chapter 2 but
takes into account the model M for giving interpretations to the process names.

If the chosen CSP semantics has the reduct property and the extension of a and a are
inverse functions on V (A) and V(a (A)) , then the satisfaction condition holds (see [MR07] for
full details).

69

4. A Common Framework: Institutions

This concludes our sketch of the Csp institutions as presented in [MR07]. Each Csp se
mantics V can be catered for by plugging in the appropriate function for the denotation func
tion above. This section has illustrated that institutions are not solely applicable to algebraic
specification and also that Csp is well behaved, as it can be formalised as various institutions.

4.7 Institution Independent Structuring

We conclude this chapter by presenting a kernel structuring language which is institution inde
pendent, following Mossakowski [Mos02]. This structuring language provides a construction
for basic specifications (also known as presentations) and several operations to build specifica
tions in a composed manner. Such an approach has many advantages, for example, it allows
code re-use and allows the specifier to focus on smaller contexts, see Section 1.2.1. We have
already seen use of the structuring mechanisms throughout Chapter 3. However, we previ
ously presented only informal ideas about their meanings. We now formally introduce such a
structuring language.

For the remainder of this chapter let I = (SIGN, sen, mod, f=) be some fixed institution.

4.7.1 A K ernel Structuring L anguage

Structured specifications are formed from three structuring operators and basic presentations.
These operators and presentations are formulated in a model theoretic approach using the

functions Sig for the signature of a specification and Mod for the models of a specification.6
This means that only the specifications are structured and not the models.

Presentations: Presentations form the basis of specifications. A presentation consists of a
signature coupled with a set of formulae (axioms).

For any signature E £ | SIGN | and finite set T C sen(E) of E-sentences, the presentation
(E, T) is a specification with:

S ig«£ ,r» := e
M o d ((E ,F)) := { M e |mod(E)| | M |= r}

where M \= T iff M \= (p for all £ T.

Union: Specifications can be joined using the union operator, which takes two specifications
with the same signature and restricts the models to only those models which satisfy both spec
ifications.

For any two E-specifications S P \ and S P 2 , their union SP \ a n d SP 2 is a specification
with:

Sig (S'Pi a n d S P 2) := E
Mod(SPi and SP2) := Mod(SPi) n Mod(SP2)

Specifications with different signatures can be joined by first translating them such that they
share the same signature.

6The function Mod for the models o f a specification should not be confused with the functor mod from the
underlying institution I which produces the category of models for a signature.

70

4.7. Institution Independent Structuring

Renaming: Specifications can be translated along signature morphisms. This allows, for
instance, the expansion of a signature to include new symbols or even the collapsing of symbols
(assuming such signature morphisms are included in signature category SIGN).

For any signature morphism a : E —> E ' and E-specification S P , S P r e n a m e a is a
specification with:

S ig (5P r e n a m e a) := E '
M od(ST r e n a m e a) := { M f £ | mod(E/)| | M '\a £ M od(SP)}

Hiding: Symbols of a specification can be hidden by “translating” them against signature
morphisms using the hiding operator. This allows symbols to be hidden in the signature of a
specification while they still have an effect on the models, that is, any axioms involving the
hidden symbols still hold true in all models of the hidden specification.

For any signature morphism a : E —> S ' and E'-specification S P ', S P 1 h id e a is a
specification with:

Sig(SP' h id e a) := E
Mod (S P ' h id e o) := {M '\a £ | mod(E)| j M ' £ Mo d (S P ') }

These building operators form a kernel structuring language for specifications. Although
they are quite simple, they allow for composing specifications in a flexible manner [Mos02].

Structured specifications constructed of only presentations, unions and renamings can be
flattened into presentations as follows:

fla tten ((E ,T)) := (E,T)
flatten(SP \ a n d S P 2) (E, Ti u r 2)

wherefla tten(SP i) — (E,Tj) (i — 1,2)
^flt/e/z(lS,P r e n a m e (j) := (E/ ,cr(r))

where fla tten (SP) = (E, T) and a : E —> E '
The flattening operation preserves the signature and models of specifications [Mos02].

4.7 .2 A n E xtended Structuring L anguage

Here, we present an extension of the kernel structuring language presented in Section 4.7.1,
which C a s l uses to offer more elaborate and complex operators. These extended operators
can all be expressed in terms of the kernel specification language.

Union of arbitrary specifications: We define the union of specifications of different sig
natures following [MosOO]. The union operator is only allowed under the condition that the
underlying institution allows for union of signatures. This means that there is an additional
partial function which takes two signatures and produces their union. For any Ei-specification
S P \ and E 2 -specification S P 2 the union

S P i a n d S P 2

is a specification which is equivalent to

(S P \ r e n a m e <ti) a n d (S P 2 r e n a m e 0 2)

where a\ : E i —> E ', 0 2 : £ 2 —> E \ and S ' is the union of the signatures E i and E 2 . This
construction is only defined when E ' is defined.

71

4. A Common Framework: Institutions

Extension of specifications We allow a specification S P to be extended with new symbols
and axioms contained within a specification fragment S P ' following the intuitive explanations
in [Mos04]. A specification fragment S P ' is not a complete specification, but a partial one
that relies on symbols declared in another specification S P (a complete specification must be
obtained by combining S P and S P '). For any E-specification S P and specification fragment
S P ' the specification

S P t h e n S P '

can be replaced by the specification

(S P rename a) and S P "

where S P " is the specification which is the same as that of S P ' but with all the symbols from
E added to its signature £ " . The signature morphism a : E -* E" is the inclusion of £ into

Generic specifications We now introduce further constructions, following [Mos04], to al
low for named specifications possibly with parameters (i.e., generic specifications). Named
specifications can be referenced by later specifications where all parameters, if any, must be
instantiated.

We first illustrate the use of generic specifications and instantiations with the following
example [EBK+02]:

spec L ist [sort Elem] given N at =
free type List ::= nil \ cons(Elem\ List)
op length : List —)■ Nat

end

Here, we wish to specify lists with the typical constant nil and com operation. We also specify
a length operation that will return the length of a list as a natural number. The sort Nat is
imported via the given construct. The motivation for using this construct instead of a standard
import will be made clear shortly. We do not specify arbitrary7 lists, but heterogeneous lists.
Here, we parametrise heterogeneous lists with the parameter specification sort Elem. Thus,
we specify lists relatively to the sort Elem with the goal of instantiating Elem to give lists of
specific types. For instance,

L ist [B o o lean fit Elem (->• Boolean]

would be the instantiation of lists with the sort Boolean from the standard Casl library speci
fication B o o l e a n . We provide a fitting morphism mapping the sort Elem to Boolean, this too
will be explained shortly. This specification could now be extended where we can use our new
sort of lists of type Boolean in further constructions.

Generic specifications and instantiations are supported in institutions with the amalgama
tion property. An institution has the so called amalgamation property, if the signature category
has pushouts and if for any pushout of signatures

72

4.7. Institution Independent Structuring

E

E i H2

the following hold:

• for any two models M \ G | m o d (E i)| and M 2 G | m od(E 2)| such that M i]^ = M 2 |CT2,
there exists a unique model M ' G | mod (S ') | such that M ' |CT/ = M i and M '\a>2 = M 2

(we call M ' the amalgamation of M i and M 2); and

• for any two model morphisms h\ : M A —>• Mj8 in m od(E i) and h,2 : M ^ —>• M 8 in
m o d (S 2) such that / i i l ^ = ^ 2 |<x2 » there exists a unique model morphism h! : M ,A —>
M '8 in mod (S ') such that = h,i and h! |a/ = J12 (we call /i' the amalgamation of
/ii and h 2).

A generic specification is of the form

S P [S P i] . . . [SPn] given 5 P " , . . . , S P ^ = B ody

where S P is a fresh name for the specification, each SPi is a formal parameter specification,
each S P " is an import specification and B ody is the body of the specification. Each formal
parameter SPi can either be a reference to an earlier named specification or a specification
itself. Each import specification S P " must be a reference to an earlier named specification.
The parameter specifications are used to indicate which parts of the generic specification are
intended to vary with each reference to it. The imports in contrast are fixed and are shared
between all the parameters, the body and also any instantiated parameters. We write

S P [S P i l . . . [SPn\ = B ody

when the list of imports is empty, and

S P = B ody

when there are also no parameters. The above generic specification is equivalent to the speci
fication

S P — {S P " a n d . . . a n d SP,^) t h e n (5 P i a n d . . . a n d S P n) t h e n Body .

Instantiations Now that we allow generic specifications, all that is left to allow is instantiated
specifications. Instantiated specifications are not as simple to formulate and require several side
conditions in order to be well-formed and defined.

An instantiation of the generic specification S P (above) is a specification

5 P | ^ i] . . . [FAn]

73

4. A Common Framework: Institutions

where each FAi is an appropriate fitting argument. A fitting argument

S P ' fit SM i

is a specification S P ' (the actual parameter) along with a fitting morphism SM i. The fitting
argument FAi is well-formed only if it uniquely determines a signature morphism from the
signature of the formal parameter SPi to the actual parameter specification SP[. Furthermore,
when there is more than one parameter, the separate fitting argument morphisms have to be
compatible, that is, their union has to yield a single morphism from the union of the formal
parameters to the union of the actual parameters.

Each fitting argument FAi is regarded as an extension of the union of the imports. The
fitting argument morphism has to be the identity on all symbols declared by the imports S P ",
. . . , SP.m of the generic specification S P . Any symbol declared explicitly in the parameter
(and not only in the import) must be mapped to a symbol declared explicitly in the actual
parameter specification. If these conditions are meet then the above instantiation is equivalent
to the specification

((SP" a n d . . . a n d S P ^) t h e n (SP \ a n d . . . a n d SP n) th e n Body re n a m e FM)

and .S P ^ a n d . . . a n d SP'n

where FM is the signature morphism yielded by the union of the fitting arguments FA \ , . . . ,
FAn and each 5 P / is the specification associated with the fitting argument FAi.

The instantiation is only defined when the models of S'P/ reduced by the signature mor
phism determined by S M i are models of the formal parameter specification SPi. The in
stantiation is only well-formed when the result signature is a pushout of the body and formal
parameter signatures. That is, if the translated body

((SP" a n d . . . a n d S P .^) th e n (SP \ a n d . . . a n d S P n) th e n Body re n a m e FM)

and the union of the actual parameter specifications

SP[a n d . . . a n d SP,'n

share any symbols, then these symbols have to be translations (along FM) of symbols that
share in the extension of the imports by the formal parameters

(5 P X" a n d . . . a n d S P ") th e n (SP i a n d . . . a n d SP n) .

In Ca sl , two sorts share if they are identical, and two function or predicate symbols share if
they are in the overloading relation. For further details see [MosOO],

The imports are necessary in order to share information between the body of the generic
specification and the actual parameters used within instantiations. For example, consider again
the generic specification of lists:

spec L is t [sort Elem] given N a t =
free type List ::= nil | cons(Elem\ List)
op length : List —> Nat

end

74

4 .7. Institution Independent Structuring

The sort Nat (provided by the specification N at) is required in the body in order to specify the
length operation. One would like to be able to instantiate this specification with the specifica
tion N at to form lists of natural numbers, that is

LiSt [N at fit Elem Nat] .

This instantiation is perfectly legal and well formed. However, had the generic specification
referenced N a t within the body (i.e., imported it) instead of using the given construct then the
instantiation would be ill-formed as it would violate the previous pushout condition. Thus, the
given construct was introduced with the condition that the body and actual parameters can only
share symbols which have originated from given specifications. This construction then makes
instantiations such as the one above possible.

This concludes our presentation of the institution independent structuring mechanisms. In
this chapter we have presented the formal notion of institutions and presented several exam
ples. We have presented the institution PCFOLr and its extension SubPCFOLr, which is the
underlying institution of C a s l . We then presented ResSubPCFOLr which is a sub-institution
of SubPCFOLr where the signature category has been restricted. This restriction will be used
in Chapter 7 to create alphabets out of many-sorted algebras. Following this, we defined the so
called data-logic, which provides the ability to ask the right types of “questions” required by
the C sp semantics. The models and models morphisms of the data logic are in one-one cor
respondence to the models and model morphisms of ResSubPCFOLr. We use the data-logic
in Chapter 8 when we formalise C sp-Ca sl as institutions. Following the presentation of the
data-logic, we showed the process algebra C sp also forms institutions, thus demonstrating that
institutions are not restricted to the setting of algebraic specification. Finally, we presented
an institution independent kernel structuring language and some extensions which allow for
basic specifications, unions of specifications, translations, hidings, generic specifications and
instantiated specifications. This structuring language will be made available to Csp-Casl once
we formalise C sp-Ca sl as institutions in Chapter 8 and prove that C sp-C a sl has a suitable
amalgamation property.

75

ChapterS

Original C s p - C a s l (2006)

Contents___
5.1 The Design of Csp-Ca s l ... 77
5.2 Csp-Casl’s Semantics and Refinement ... 80
5.3 Tool Support... 82
5.4 Towards a Verification of E P 2 .. 83
5.5 Current Limitations of Csp-Ca s l .. 86

The aim of C sp-Ca sl [Rog06] was to develop a specification language, integrating the de
scription of processes and data, which was suitable for the description of reactive systems.
C sp-Ca sl would allow expressive data to be specified in Ca sl allowing the use of loose
semantics, sub-sorting and partiality. One could then specify a C sp process which uses the
specified data as communications.

The integration was to be deliberately lightweight so that tools could be reused. The tools
H ets [MML07] and Isabelle/HOL [Pau94, NPW02] would be used to deal with the C asl
aspects and the interactive theorem prover Csp-Prover [IR, IR05] for the C sp aspects.

In this chapter we describe C sp -Ca sl as it was originally designed, closely following
[GKOR09]. We discuss tool support and present an example capturing part of the electronic
payment standard EP2 (introduced in Chapter 1). We also show how C sp -C a sl refinements
can be used, not only to validate development steps, but also to verify properties such as dead
lock freedom. Finally, we discuss the current limitations of C sp -C a sl and how we intend to
overcome them.

5.1 The Design of C s p -C a sl

C sp-C a sl was initially presented by Roggenbach in 2006 and was the starting point for the
integration of the languages C sp and Ca s l . The general idea of C sp -C a sl is to use C sp to
describe the dynamics of a system as processes where the communications are values of data

77

5. Original C S P -C A SL (2006)

types loosely specified in O a s l . In this way it is possible to describe data in a rich setting
which can then be used in an intuitive formalism for describing processes.

By using Ca s l , data can be easily described at all levels of abstraction, from high levels
where loose semantics plays a role, to concrete levels where initial semantics are necessary.
The full language of Ca sl can be used in the specification of data, namely sub-sorted partial
first order logic with sort generation constraints and equality. C sp provides a convenient way to
describe the behaviour of systems (see Chapter 2). Whilst reactive behaviour can be described
in Ca sl alone, CSP provides a more elegant and well suited environment for the task. All
standard C sp operators are available, such as multiple prefix choice, various parallel operators,
operators for non-deterministic choice, hiding, renaming and communication over channels
(see Chapter 2).

Syntactically, a C sp -C a s l specification with name N consists three distinct parts, namely,
a data part, an optional channel part and a process part:

ccspec SP = data D channel C process P end

The data part D is a structured Ca sl specification which is used to* describe all the data that is
necessary in the channel and process parts. The channel part C allows the optional declaration
of channels (see Section 2.2.3) typed according to the data part. Finally, the process part P
allows the description of an unnamed process (possibly with sub-processes using a let notation)
written in C sp . Within the C sp process C a sl terms are used as communications, Casl sorts
denote sets of communications, relational renaming is described by binary Casl predicates
and unary functions, and the C sp conditional construct uses C asl formulae as conditions.

Semantically C sp -C a s l follows the traditional process algebra approach. Each specifica
tion defines a family o f process denotations, where each model o f the data part D gives rise
to exactly one process denotation (built relatively to the data model) for the process part P.
C sp -C a s l is generic in the Csp semantics that can be used.

The various Csp semantics are built relative to a fixed set o f communications (see Chap
ter 2), where the semantic clauses involve various test functions over this set. To this end,
C s p -C a s l’s semantical construction provides what we call a data type of communications,
which, besides an alphabet o f communications, defines the following functions:

• test on equality for arbitrary C a sl terms
(can two communications synchronise?),

• test on membership for a Ca sl term concerning a C asl sort
(does a communication belong to a certain subset of the alphabet of communications?),

• test whether a binary predicate holds between two C asl terms
(are the terms in a renaming relation?), and

• satisfaction of a Ca sl first order formula
(is the formula of the conditional construct true?).

These test functions, living on the alphabet, can be lifted to formulae in Ca sl . This data type
of communications makes the language Cs p -C asl generic in the choice of a specific Csp se
mantics. A C sp semantics can be used with C sp -C a sl if the only operations it requires are

78

5.1. The Design o f C sp-Casl

C a s l specification S P

| has as semantics

Sub-sorted signature (S , TF, PF, P, <)
Class of E-models M; (Ms)s&s family of carrier sets

$ Interface: Alphabet construction

Set of communications A

| is parameter for

CSP process P
I , f Tests over A :
| denotes j a = b?,a e X ? ,a R b ? ,p ?

denotations (e.g., set of traces) over A

Figure 5.1: Translating data into an alphabet of communications [GKOR09].

covered by the above data type. The above listed, seemingly small set of test operations, allows
for all denotational semantics described in [Ros05], namely the Traces semantics, Failures/Di
vergences semantics and Stable-Failures semantics.

The data types specified by algebraic specification consist of many-sorted algebras. The
data type of communications required by the process algebraic semantics is a one-sorted alge
bra. Thus, in order to integrate data into processes, we need to turn a many-sorted algebra into
one set of values such that the above described tests are closely connected with the original data
type. Figure 5.1 depicts the construction. We illustrate our construction here for the example
of many-sorted total algebras.

There are two natural ways to define the alphabet of communications in terms of the carrier
sets of a Ca sl model: union and disjoint union of all carrier sets. To illustrate the effect of
both possibilities, consider the following C sp-Ca sl specification (presented in [Rog06]):

ccspec SP =
data sorts S, T

ops c : S ; d : T
process c —> SKIP || d —> SKIP

end

Its data part, written in C a s l , provides two constants c and d of sort S and T, respectively.
The process part, written in CSP with C a sl terms denoting communications, combines two
processes using the synchronous parallel operator, that is, they have to agree on all actions.

The question is, may c and d synchronise or not? In all the various Csp semantics, c and d
synchronise if and only if they are equal. Now consider two isomorphic Ca sl models M and

79

5. Original C sp -C a s l (2006)

N of the data part:

M s = { * } > M r = { + } , (c) m = * , (d) M = +

N s = N T = m , (c)N = {d)N = \1

Choosing the union of all carrier sets as the alphabet has the effect, that c and d do not syn
chronise for algebra M while they synchronise for algebra N . Thus, isomorphic algebras give
rise to different behaviour. Therefore, we define the alphabet to be the disjoint union - with the
consequence that c and d do not synchronise.

Similar ‘experiments’ for partiality, sub-sorting, and the combination of both - see [Rog06]
- finally lead to an alphabet construction

A lph(M) = (|+)(M S U { ± }))/~ M .
sGS

Here, M is a C a sl model (actually a ResSubPCFOLr model) and S is the set of all sorts
declared in the data part. The special element _L is added to each carrier set and encodes
partiality, while ~ a / is an equivalence relation which - on the alphabet level - deals with sub
sorting. We do not discuss the alphabet construction or the equivalence relation further here,
but simply note that the alphabet construction flattens a many-sorted model to a flat set of
communications in a reasonable way. The alphabet construction and the equivalence relation
will be presented in depth in Chapter 7.

5.2 C s p - C a s l ’s Semantics and Refinement

The channel part of a C sp -C a s l specification can be encoded in the data part, thus every
C sp -C a s l specification (D , C , P) can be written in a form (D P ') - see [KahlO] for details.
From this point onwards we assume such a step has taken place and do not discuss channels
directly.

Let T> be a fixed C sp semantics, that is, the Traces semantics, the Failures/Divergences
semantics or the Stable-Failures semantics. A C sp-Casl specification (D , P) leads to a family
of C sp denotations indexed by Ca sl models, that is,

(^M)MeMod(D)

where every data model M E M od(D) gives rise to a single Csp denotation in the chosen Csp
semantics, that is dM £ V {A lph(M)).

Refinement [Rog06, KR09, KahlO] in C sp-Casl allows for the development of specifi
cations and is naturally based upon refinement for C sp and Ca s l . During development of a
specification one might extend the specification with new symbols and functionality (horizon
tal development) or reduce the level of abstraction (vertical development). Both of these types
of development are handled by C sp-C a s l ’s refinement notion. Intuitively, a refinement step,
which we write here as reduces the number of possible implementations. Concerning
data, this means a reduced model class; concerning processes this means less non-deterministic
choice.

80

5.2. C s p -C a s l ’s Semantics and Refinement

Let a : E —»■ S ' be & ResSubPCFOLr signature morphism. Let (^) M e / an^ (d'Mt)M 'er
be families of process denotations (indexed by classes of E- and E'-models) over signatures E
and E ' respectively. Then,

^x > ^lo- C / A VM7 G I ' • !=x>

where / ' | CT = {M 'l^ | M ' G / '} . We drop the superscript a when it is the identity signature
morphism. The function : V {A lph{M ')) —> V (A lp h (M '\a)) takes denotations over
the alphabet produced by M 1 and translates them to appropriate denotations in the reduced
alphabet produced by the model M '\a. This function will be described in detail in Chapter 7,
but for now it is enough to know that it has a reasonable definition and suitable properties, such
as preserving Csp refinements. Given C sp -C a s l specifications S P = (D , P) and S P ' =
(D P ') , by abuse of notation we also write

(D ,P) ^ (D \ P /)

if the above refinement notion holds for the denotations of S P and S P ', respectively. Again
we drop the superscript a when it is the identity signature morphism.

Deadlock analysis can also be performed using refinement. First we describe what dead
lock freedom means. A C sp-C a sl specification is deadlock free, if all its possible models are
deadlock free. On the semantical level, we capture this as follows.

Let be a family of process denotations over the Stable-Failures semantics, that
is, dM — (Tm ,F m) £ P (A lp h (M)) for all M e l .

• A denotation dM is deadlock free if (s , X) G F m implies that X A lp h (M) ^ . That is,
at any point in the execution of a process, we may not refuse the entire alphabet.

• (^m)M el is deadlock free if for all M e l it holds that dM is deadlock free.

The most abstract deadlock free C sp -C a s l specification over a C a s l signature E with a
set of sort symbols S is defined as:

ccspec D F s =
data . . . declaration of E . . .
process DF = n s :: S (n jc :: s —> DF) n SKIP

end

We observe that D F^ is deadlock free (see [KahlO] for details). This result on D F s extends to
a complete proof method for C sp -C asl deadlock analysis:

Theorem 5.1 A C s p -C a s l specification (D , P) is deadlock free if and only if D F s
(D , P) where E is the signature of D.

This result shows that C sp-C a s l ’s refinement notion is not only useful in the context of spec
ification development, but can also be used to analyse specifications and establish properties
about them.

Shortly, we present an example of using C sp-C asl to model the electronic payment stan
dard EP2. However, we first discuss tool support as our example uses tools in order to establish
formal C sp-C asl refinements.

81

5. Original C s p -Casl (2006)

5.3 Tool Support

Here, we discuss the tool support available for C sp-Casl which allows one to establish refine
ment relations between C sp-Casl specifications. Csp-CASL-Prover [O’R.08] is an interactive
theorem prover based upon Hets [MML07] and Csp-Prover [IR, IR05] (which itself is based
upon the interactive theorem prover Isabelle/HOL [Pau94, NPW02]). Csp-CASL-Prover is a
tool dedicated to proving refinement statements between Csp-Casl specifications. Here, we
briefly present how C sp-Casl refinements can be proven using H ets and Csp-CASL-Prover.

Kahsai presents the following decomposition rule [KR09] for C sp-Casl specifications.

M od(D ')\a C M od(D) (D ',a { P)) (D ’, P ')
(D , P) - f , (D>,P')

where a : E —> E ' is a C sp -C a s l signature morphism, D and D ' are C a s l specifications
with signature E and E ' respectively, and cr(P) is the translation of the C sp -C asl process P
along the signature morphism a.

This result shows that a C sp -C a s l refinement can always be broken down into a data only
refinement (i.e., Mod(Z9')|a C Mod (D) , "also written D D ') and a separate process only
refinement (i.e., (D < r(P)) x> (D ', P'))- This is the basis for tool support that allows one to
establish refinement relations on C sp -C a s l specifications.

Data only proof obligations of the form Mod(Z9')|CT C Mod(D) (i.e., a C a s l refinement)
can be discharged with H e ts , see Section 3.5 for details. Process refinements of the form
(D ',< j(P)) ^ p (D ',P ') (where the data part remains constant) can be proven with Csp-
CASL-Prover (see [O’R08] for details).

CSP-CASL-Prover takes C sp-Ca sl specifications and refinement statements as input and
translates these into Isabelle theory files suitable for use with the interactive theorem prover
Csp-Prover. One can then interactively prove within Csp-Prover whether the refinement state
ments hold or not. There are two main ways to use Csp-Prover, the first way is to rewrite
processes using rules like those discussed in Section 2.3 until syntactic equality of processes
is reached. The second way, is to apply the semantics and show set inclusion of the denota
tions. Usually, the first method is preferred as Csp-Prover offers various Isabelle tactics which
automate this process to a large extent.

Together, the decomposition rule, H ets and Csp-CASL-Prover can be used to provide tool
support for establishing C sp-Casl refinements between specifications. In order to establish a
refinement, one can first break it down into a data only refinement and process only refinement.
Then, prove each of these refinements separately using H ets and Csp-CASL-Prover.

Deadlock analysis can also be performed by Csp-CASL-Prover. Refinements of the form
D F s (D ,P), as discussed in Section 5.2, can be decomposed into a data only refinement
and a process only refinement. Thus, Csp-CASL-Prover can be used for deadlock analysis of
C s p -C a s l specifications. See [O’R08] for full details of Csp-CASL-Prover.

82

5.4. Tow ards a V erification o f E P2

Architectural
Level

Abstract
Component

Level

Informal
Design Process

i
▼

Formal Design
Process

► A r c h J n i t

► A c l _In i t

=T

= T

R u n _ Ar c h

S e q J n i t

---------- ► M odelling

Figure 5.2: Refinement in EP2 [GKOR09]

Informal Refinement

Formal Refinement

5.4 Towards a Verification of EP2

We now present an example of specifying EP2 in C s p - C a s l closely following [GKOR09]. We
specify a dialogue o f the EP2 system introduced in Chapter 1. We establish formal refinements
between levels o f abstractions and prove deadlock freedom of the dialogue.

We consider two levels o f the EP2 specification, namely, the architectural level (A r c h)

and the abstract component level (A C L) . We choose a dialogue between the Terminal and the
Acquirer. In this dialogue, the terminal and the acquirer are supposed to exchange initialisation
information. For presentation purposes we study here only a nucleus o f the full dialogue, which
however, exhibits all technicalities present in the full version.

Our notion of C s p - C a s l refinement mimics the informal refinement step present in the
EP2 documents: there, the first system design sets up the interface between the components
(architectural level), then these components are developed further (abstract component level).
We now demonstrate how we can capture such an informal development in a formal way, see
Figure 5.2.

We first specify the data involved using C a s l only. The data specification of the architec
tural level (D _ A r c h _ G e t I n i t) requires only the existence of sets of values:

spec D _ A r c h _ G e t I n i t =

so rt D S U n i t
end

In the EP2 system, these values are communicated over channels. Data of sort D S I J n i t is
interchanged on a channel C S I J n i t linking the terminal and the acquirer. On the architectural
level, both these processes just ‘run’, that is, they are always prepared to communicate an event
from D S I J n i t or to terminate. We formalise this in C s p - C a s l :

83

5. Original C sp -Casl (2006)

ccspec A rch_In it =
data D_Ar c h _GetInit
channel C S I J n i t : D S IJ n it
process let EPIRun = (C S IJ n it ? x :: D S IJ n it —> EP2Run) □ SKIP

Acquirer = EP2Run
Terminal = EP2Run

in Terminal | [C S IJ n it] \ Acquirer
end

The overall unnamed process in this specification is Terminal | [C SIJnit]\ Acquirer which is
the parallel combination of Acquirer and Terminal where they must synchronise over the chan
nel C S IJn it.

On the abstract component level (D_Ac l_GetIn it), data is refined by introducing a type
system on messages. In C a s l , this is realised by introducing sub-sorts of D SIJnit. For our
nucleus, we restrict ourselves to four sub-sorts, the original dialogue involves twelve of them.

spec D_Ac l_GetInit =
sorts SesStart, SesEnd, DataRequest, DataResponse < D S IJ n it
ops r : DataRequest', e : SesEnd
• V x : DataRequest, y : SesEnd • ->x = y
• V x : DataRequest', y : SesStart • -> x = y
• V x : DataResponse', y : SesEnd • -i x = y
• V x \ DataResponse', y : SesStart • -i x = y

end

In the above specification, the axioms prevent confusion between the different sorts. The sorts
represent messages for starting a session, ending a session, requesting data and responding to
a request for data. Using this data, we can specify the EP2 system at the abstract component
level in C sp-C a s l . In the process part, the terminal (Terlnit) initiates the dialogue by sending
a message of type SesStart', on the other side, the acquirer (Acqlnit) receives this message.
In AcqConf, the acquirer takes the internal decision either to end the dialogue by sending the
message e of type SesEnd or to send another type of message. The terminal (TerConf), waits
for a message from the acquirer, and depending on the type of this message, the terminal
engages in a data exchange. The system as a whole consists of the parallel composition of
terminal and acquirer:

ccspec Acl_Init =
data D_Ac l _GetInit
channel C S I J n i t : D S IJ n it
process let Acqlnit = C S IJ n it ? session :: SesStart —> AcqConf

AcqConf = C S I J n i t ! e —> SKIP
n C S I J n i t ! r C S IJ n it ? resp :: DataResponse —>

AcqConf
Terlnit = C S I J n i t ! session :: SesStart —> TerConf
TerConf = C S IJ n it ? confMess :: D S IJ n it —>

84

5.4. Towards a Verification o f EP2

if (confMess : DataRequest)
then C S I J n i t ! resp :: DataResponse —> TerConf
else \i{confMess : SesEnd) then SKIP else STOP

in Terlnit | [C S IJ n it] \ Acqlnit
end

Here, we have made a development step in the specification of the dialogue. We have decreased
the level of abstraction and introduced more detail to the protocol. We can check that this is
a reasonable development step in C sp-C asl by showing a formal refinement between the
specifications.

Theorem 5.2 A r c h _ In it ^ j- A c l_ I n it

Proof Using tool support (described in Section 5.3), we establish this refinement by introduc
ing two intermediate specifications R u n _ A rch and S eq_In it:

ccspec Ru n _Arch =
data D_Ar c h_GetInit
channel C S I J n i t : D S IJ n it
process let EPIRun = (C S IJ n it ? x :: D S IJ n it —> EP2Run) □ SKIP

in EP2Run
end

ccspec S eq _In it =
data D_Ac l_GetInit
channel C S I J n i t : D S IJ n it
process let SeqStart — C S I J n i t ! session :: SesStart —> SeqConf

SeqConf = C S I J n i t ! e —> SKIP
n C S I J n i t ! r —»■ C S I J n i t ! resp : : D ataR esponse —>

SeqConf
in SeqStart

end

With Csp-CASL-Prover we proved: A r c h J n i t = t R u n _A rch . Now we want to prove that
R u n _ A rch S eq _ In it. Using H e ts we showed the C a s l refinement D _ A rch _ G etIn it

D _ A c l_ G e tIn it (i.e., Mod(D_ACL_GETlNiT)|cr C Mod(D_ARCH_GETlNn)). Now,
we formed the specification (D _ A c l_ G e tIn it , P s e q J nit) and showed in CSP-CASL-Prover
that, over the Traces semantics T , this specification refines to S eq _ In it. Here, P s e q j n i t de
notes the process part o f S eq _ In it. O’Reilly et al. [ORI09] proves A c l_ I n it S eq _In it.
As stable failure equivalence implies trace equivalence, we obtain A c l . I n i t —p S eq _In it.
Figure 5.2 summarises this proof structure. □

As A c l_ In it involves parallel composition, it is possible for this system to deadlock. Fur
thermore, the process TerConf includes the Csp process STOP within one branch of its con
ditional operator. Should this branch of TerConf be reached, the whole system will be in
deadlock. The dialogue between the terminal and the acquirer for the exchange of initialisation

85

5. Original CSP-CASL (2006)

messages has been proven to be deadlock free in [ORI09]. Specifically, it has been proven that
the following refinement holds: S eq_Init A clJ nit , where S eq_Init is a sequential
system. Sequential systems are regarded to be deadlock free. With our proof method from Sec
tion 5.2, we can strengthen this result by actually proving that Seq_Init is deadlock free. To
this end, we proved with Csp-CASL-Prover that D F s j S eq_In it , where D F s is the least
refined deadlock free specification where E is the signature of the data part of Seq_In it . A s
Stable-Failures refinement preserves deadlock freedom and as refinement is transitive, we con
clude that A clJ nit is deadlock free. Details of the various proofs can be found in [KahlO].

5.5 Current Limitations of C s p -C asl

C sp-Ca sl follows the traditional process algebra approach for its semantics. Typically in
process algebra each process defines a single system. In Csp-Ca sl , a specification defines
a single process denotation for each data model. One can use a let construction within a
specification to give the process part a little structure. However, the semantics forgets how the
process was constructed and simply represents it as a single denotation. This causes difficulties
for ideas such as code reuse, component based design and structured specifications.

Structuring is only supported within the data part. Within the process part one must specify
an unnamed system, possibly using a let construct to specify sub-systems. As there is no struc
turing it is impossible to specify processes in one specification and reuse or import them into
another specification. Thus, separate systems cannot be developed in isolation and combined
at a later stage. This makes code reuse impossible for processes and severely limits component
based design to only data aspects. The specification ACL_INIT in Section 5.4 is a good example
of this. We were forced to specify the behaviour of the terminal and the acquirer in the same
specification even though these are two separate components in EP2 design documents.

Furthermore, the semantics does not support loose processes. Loose process semantics
would assign to a specification a class of C sp denotations for each data model. As an example
of the use of such loose processes, consider the specification A rch_Init in Section 5.4. In
this specification we were forced to bind the sub-process names Acquirer and Terminal to C sp
processes. In this case we indeed wanted to bind them to the EP2Run process, however, if
instead we wanted to leave the behaviour of either process completely open, we could not. Not
only does the syntax of original C sp-Ca sl not support this, there is no way to support this in
the original semantics either.

Furthermore, the lack of loose process semantics forbids the use of generic specifications
and instantiations (see Section 4.7). This is because when using generic specifications the
formal parameters capture the class of models that can be used as the parameter. The actual
parameters then select suitable models out of the classes specified by the formal parameters.
The Cs p -C asl semantics does not use such model classes and thus generic specifications and
instantiations cannot be supported.

In this thesis we re-design the semantics of C sp-Ca sl , whilst building on the progress
made so far. We define the semantics using a model class approach that reconciles the process
algebra world of single denotations and the algebraic specification world of model classes.
Furthermore, we define a new refinement notion, which works with loose process semantics

86

5.5. Current Limitations of C sp -C as l

and is based upon model class inclusion. Finally, we allow full structuring in both the data
and process parts o f C sp-C a sl specifications, thus allowing for generic and instantiated CSP-
C a sl specifications. This in turn lends itself to component based design and compositional
reasoning.

In this chapter we have discussed the design and goals of C sp-C a s l . We have sketched
the original formalisation of C sp-C a sl and discussed the available tool support. We have
presented an example using C sp-C a sl where we modelled the electronic payment standard
EP2. We also established formal refinements and verified deadlock freedom of our example.
Finally, we considered the limitations of C sp-C a sl and how we intend to overcome these with
developments within this thesis.

87

Chapter 6

Related Work

C o n te n ts __
6.1 Approaches using Initial Semantics for D a t a ... 90
6.2 Approaches using Loose Semantics for D a t a ... 92
6.3 An Object Orientated Approach: Csp-OZ ... 93
6.4 A Deep Integration: C i r c u s ... 93
6.5 A Structured Approach to Csp: W right... 95
6.6 An Institutional Approach: Z aw lock i.. 96
6.7 Meta-Formalisms .. 97

The integration of processes and data has become an interesting and highly active research
area. This research area has partly risen due to the limitations of process algebras:

“Basic process algebras such as C cs, Csp, and ACP are well suited for the study
of elementary behavioural properties of communicating systems. However, when
it comes to the study of more realistic systems these languages turn out to be less
adequate. One main problem is that process algebras tend to lack the ability to
handle data.” [Lis]

Process algebras, such as A cp [BK84], C cs [Mil89], and C sp [Hoa78, Hoa85, Ros98,
Sch99, AJS05, Ros05, Hoa06] use algebraic specification as the meta level to describe com
munications and events. This algebraic specification is ad-hoc and usually invented as required.
Various extensions and combinations of algebraic specification and process algebra have been
studied which formalise such integration. In this chapter we will briefly describe several of
these extensions as well as other approaches to the integration of processes and data. Here, we
provide a survey of alternatives to C sp -C a s l and compare them to our approach. An in depth
survey can be found in [ABR99]. We also discuss structuring where it is present.

Like C sp -C a s l other reactive extensions to C a s l have been studied, for instance: C cs-
C a s l , C a s l - C h a r t s , C o -C a s l , and C a s l - L t l . C c s - C a s l [SAA01, SAA02] combines

89

6. Related Work

C a s l with the process algebra C cs. It offers only initial semantics and thus reformulates
ideas from LOTOS (discussed shortly). C a s l - C h a r t s [RROO] is another approach which
combines C a s l with state charts. C a s l - L t l [RACOO] and C o -C a s l [MRS03] extend C a s l
with reactive components, namely, C a s l - L t l extends C a s l with labelled transition systems,
while C o -C a s l adds co-types. Both of these can be seen as providing a meta language, for
instance, C cs has been formalised in both C a s l - L t l and C o -C a s l [RACOO, MSRR06].

6.1 Approaches using Initial Semantics for Data

The following languages combine data and processes using initial semantics for data. Whilst
this approach works, it forces data to be fixed the moment it is needed within the modelling.
This makes it difficult (if not impossible) to capture high abstraction levels of systems where
an overview of the system should be modelled and not the technical details.

6.1.1 L o t o s

L o to s (the Language of Temporal Ordering Specifications) [IS089, BSS87, BB8 8] was de
veloped within ISO (International Standards Organisation) specifically for the formal descrip
tion of the OSI (Open Systems Interconnection) architecture, although it is applicable to dis
tributed, concurrent systems in general. L o to s combines the algebraic specification language
A c t-O n e [EM85] with an extension of the process algebra C cs.

L o to s has been used in various practical applications and has an extensive tool set asso
ciated with it. E u c a ly p tu s [Gar96], which stands for European/Canadian L o to s Protocol
Tool Set, is one such tool set. The tool consists of: static analysers, a simulator, a model
generator, a model verifier, a C-code generator, a model viewer, a trace analyser, a test case
generator and several other components. The model verifier is capable of deadlock and livelock
detection.

A c t-O n e , which is the algebraic specification language used in L o to s , which allows
for the specification of data types using initial semantics and equational logic. A translation
from A c t-O n e to first order logic with equality (a sub-language of C a s l) has been defined
in [Mos02]. While A c t-O n e uses initial semantics, C a s l allows for both initial and loose
semantics and also supports partiality and sub-sorting.

6.1.2 E L o t o s

E L o to s (Enhanced L o to s) [JTC01, Ver99] is the successor of L o to s , the most significant
enhancements include the introduction of a notion of quantitative time, new data types (in
cluding Booleans, characters, bits and integers), composed types (including records, sets and
arrays), and a new module system. The module systems allows both data and processes to be
specified in separate modules and imported into further modules. Both Modules and interfaces
can be specified. The interfaces allow parts of the implementations to be hidden. Generic mod
ules are also supported. As E L o to s is based upon equivalence, as opposed to a refinement
notion, there is no direct support for stepwise development, unlike Csp, C a s l and C sp-C asl.

90

6.1. Approaches using Initial Semantics fo r Data

We now briefly present a short example by Verdejo [Ver99] to illustrate the syntax and
features of ELOTOS. We specify a register that takes two input values, stores them, and then
outputs them. First, we specify the following interface:

interface Register .Interface is
type data
process Register [ini'.data, in2:data, outl'.data, out2:data]

endint

Here, we have specified the register interface. This creates the names available in modules. We
have created a new type named data and a new process name Register. The process name Reg
ister takes four gates as parameters, namely in i, in2, outl and out2. The former are intended
to be used as input gates while the latter as output gates. All these gates communicate values
of type data. At this point these are simply names and have no meaning bound to them, this is
done in the following module:

module Register M od: [Register Jnterface renaming
(proc Register := RegisterJVat)] is

type data renames nat endtype
process Register JJat [in i .data, in2:data, outl '.data, out2:data] is

var xl.data , x2:data in
in i (1x1 :data)',

(in2 (1x2 .data)

o u tl(\x l));
out2(\x2)

endvar
endproc

endmod

This is a module named Register M o d which imports the register interface. During this import
the process Register is renamed to RegisterJNat to indicate that we wish to build a register
that is tailored to dealing with natural numbers. Next, we declare that our type data will be
a type synonym for the existing predefined type Nat. Following this, we give a definition to
the process register. The register will use two variables x l and x2 both of type data (i.e., Nat).
These variables will hold the incoming values. We first receive a value on gate ini and bind
this to variable x l , we then behave as the inner process. This inner process uses the interleaving
operator which in this case gives the choice between outputting the value stored in variable x l
on gate outl or receiving a second input on gate in2 and binding it to the variable x2. Once
both of these events happen, in either order, we finally output the variable x2 on gate out2.

This example demonstrates two structuring operators, namely importing and renaming, and
also how to specify processes that have some state information. Recursion within processes can
be used to specify infinite behaviour. Modules in ELOTOS are ultimately used in specification
blocks which are the top level structuring constructs.

91

6. Related Work

6 .1 .3 C SP M

CsPm (Machine Readable Csp) [Sca98, Ros05] is the input language for various tools in
cluding F d r (Failures Divergences Refinement) [FDR06] and P ro B E (Process Behaviour
Explorer) [Pro03]. F d r is a model checker for checking various refinement properties of
Csp processes and also deadlock and livelock freedom. P ro B E is a tool which allows one
to explorer the behaviour of Csp processes interactively. CsPm is describe in [FDR06] and
presented in detail in [Sca98].

C sPm provides a functional language which allows concrete data to be specified. This
data can then be used with channels to form communications used in Csp processes. F d r
does not provide sub-typing, but does allow some degree of partiality. Partial functions (such
as divide) are provided but the situation of using undefined results in Csp processes is not
properly catered for. C sp -C a s l allows both sub-sorting and partiality where undefined results
can be communicated in Csp.

6.1.4 PSF

P s f (Process Specification Formalism) [MV90] combines the process algebra ACP (Algebra of
Communicating Processes) [BK84] with algebraic specification of data using A sf (Algebraic
Specification Formalism) [BHK89]. PSF specifications consists of data modules and process
modules. Data modules allow for the formalisation of data using initial semantics and equa-
tional logic, while process modules allows for processes to be described using Acp where
actions may range over data types from the data part. The P s f toolkit provides several tools
for P s f [PSF97, MV92] including: a compiler, term rewriter, simulator and animator.

6.2 Approaches using Loose Semantics for Data

The following languages combine data and processes using loose semantics for data. This
allows systems to be captured at higher levels of abstraction than formalisms using initial
semantics for data.

6.2.1 //CRL

/ /C r l (micro C r l also written as M C rl) [GP95, AG09] - where C r l is an abbreviation for
Common Representation Language - allows data to be specified with loose semantics via equa-
tional logic with total functions. The Booleans are provided with a fixed interpretation. Pro
cesses are specified in a traditional algebraic style with syntax closely following ACP [BK84].
The semantics of / / C r l is defined in terms of labelled transition systems via structural oper
ational semantics. The states of the labelled transition systems correspond to process expres
sions while the transitions are labelled with actions. Branching simulation [vGW96] is used to
establish equivalence relations between states. Analysis of / /C r l specifications is supported
via the / /C r l toolset [Lis].

92

6.3. An Object Orientated Approach: CSP-OZ

p C RL2 extends pCRL by adding extra constructs including various higher order constructs,
predefined data types (including numbers, lists, sets, bags and higher order function types) and
A-calculus expressions.

6.3 An Object Orientated Approach: CSP-OZ

C s p -OZ [Fis97] is a combination of the object orientated state based formalism Object-
Z [SmiOO] for describing data with the process algebra Cs p . The specification language
Z [WD96, Spi92] uses a model-orientated approach where state is modelled via input and
output observations, where as C a sl uses a property-orientated approach where the algebras
consist of real functions. O bject-Z then adds object orientation to Z. The formal semantics
of C s p -OZ is based on C s p ’s Failures/Divergences semantics, where as C s p -C a sl is generic
in the underlying denotational semantics.

In C s p -OZ a collection of objects are specified that interact with each other over channels.
Each object has its own structure and behaviour. The objects are specified via paragraphs that
introduce classes, global variables, functions and types. The overall specified system is then
the collection of the inter-communicating objects.

6.4 A Deep Integration: C ir c u s

C ircus [WC01, WC02] provides a deeper integration of processes and data than the other
approaches seen so far and allows for development of state-rich reactive systems based on
refinement. This comes at the cost that tools need to be developed from scratch. Systems
can be captured at various levels of abstraction from abstract models and designs to concrete
programs. C ir cus combines the specification language Z with the process algebra C sp and
also provides a refinement notion for this setting.

C ir cus comes equipped with a rich tool set which includes: a parser, a static type checker,
a model checker, and a refinement checker. These tools are implemented as extensions o f the
Czt toolkit [MU05] for Z.

In general terms, data is specified via Z schemas, and processes via a combination of Z,
C sp , and Dijkstra’s command language. Z is used to define most o f the data aspects while CSP
is used to describe behaviour.

C ir c u s specifications consists of various paragraphs in series. Paragraphs come in a vari
ous variations: Z paragraphs, channel and channel set declarations, and process declarations. A
Process declaration consists of a process name and a process body which may be defined from
basic operations or using operators that combine other processes. In CIRCUS, CSP actions are
allowed to be the Z schemas themselves, guarded commands, invocation of another action or
a combination of these constructs using CSP operators. This is what gives C ircus the deeper
integration and differs from C sp -C a sl where the actions are simply values of data types de
fined by C a s l . This paragraph style of specification is what allows circus specification to be
structured. Process can be specified in one paragraph and used within later paragraphs.

C ir c u s also includes a refinement calculus, which allows stepwise development of spec
ifications and programs. The semantics of C ir c u s is based on the UTP (Unified Theories

93

6. Related Work

of Programming) [HJ98], a relational model that unifies programming theories across many
different paradigms.

We now present a brief example by Oliveira et al. [OGC08] which illustrates C irc u s
specifications. This example specifies a chronometer which counts the passing of seconds and
minutes.

RANGE = = 0 .. 59
channel tick, time
channel out: RANGE x RANGE

process Chrono =
begin state AState = = [sec, min: RANGE]
A ln i t [AState' \ sec' = min' A min' = 0]
IncSec = — [AAState | sec' — (sec + 1) mod 60

A min' — min]
IncMin - [AAState \ min' = (min + 1) mod 60

A sec' = sec]
Run = (tick —> IncSec; ((sec = 0) Sz IncMin)

□ ((sec j - 0) Sz Skip)))
□ (time —» out\(min, sec) —> Skip)

• (A lnit; (p X • (Run ; X)))
process Clock = begin • p X • tick —> X end
process TChrono = (Chrono | [{] tick [}] | Clock) \ {] tick 0

First, we specify some data, that is, the range of values that will be allowed for seconds and
minutes. Next, we define the channels tick and time. These carry no additional data and will
just be simple actions that occur in the behaviour of the system.

Following this, we define a process paragraph that defines the the process Chrono. This
process has a state AState which holds two values of type Range which records how many sec
onds and minutes have passed. We define the initial state as Ainit where both the seconds and
minutes are set to zero. Next, we define two actions that increment the seconds and minutes.
When the seconds are incremented to 60 they reset to zero, the same for the minutes. We next
define the heart of the system, the run process. This process can do two branches. The first
branch is when a tick event occurs. Following this tick event the chronometer increments the
seconds and upon completion there is a further choice. If the seconds happen to have been reset
back to zero then the minutes will be incremented, and if not then the process terminates via
the Csp Skip operator. The second branch occurs when a time event occurs. This indicates that
the user wishes for the device to output the current count of seconds and minutes. Upon this
action happening, the device indeed outputs on the channel out both the amount of seconds and
minutes that have elapsed. We now define the unnamed main process for the process paragraph
Chrono which first sets the initial state and the repeatedly calls the Run process via fixed point
recursion.

The Clock process is then defined which continuously counts time by outputting an infinite
sequence of tick events. Finally, the TChrono process is defined by putting the Clock and
Chrono processes parallel with the Tick event being hidden. From a users perspective (or

94

6.5. A Structured Approach to CSP: Wright

the environment) we can only interact with this TChrono process via the time action (which
represents the user asking for the time) and the channel out which the device uses to output its
data.

This example illustrates the differences with C sp-Ca s l . In Csp-Ca sl we communicate
data specified via Ca s l . In C ir c u s the actions are Z paragraphs which can alter the state of the
processes in complex ways. For instance, the IncSec action is not a simple action but involves
arithmetic and the mod operator which controls the range of values that can be recorded in the
state.

6.5 A Structured Approach to Csp: Wright

The Wright architectural description language [AG97] allows reasoning on typed processes for
a sub-language of C sp- the renaming and hiding operators are missing, to name just a few.
Semantically, Wright is restricted to a single C sp semantics, namely an early variant of the
Failures/Divergences semantics.

Wright prescribes a strict specification style: specifications are called “connectors”. Such
a connector is built from several C sp processes. The processes that shall interact which each
other are qualified with the keyword “role”; there is one process coordinating everything which
is the so-called “glue”. Here, we present an example from [AG97] which specifies a client and
a server process, which are connected via a glue process:

connector C-S-Connector =
role Client = (request! jc —> result ? y —> Client) n §
role Server = (invoke ? x —> return ! y —>• Server) □ §
glue = {Client, re quest ? jc —> Server.invoke \ x —> Server.return ? y —>

Client.resultly —> Glue) □ §

Here, we specify a “connector” named C-S-Connector which consists of a server and client.
The client sends a request message indicating that they wish for some action to be invoked,
they then wait to receive a result message indicating the invoked action has completed. Once
the result message is received the client repeats its behaviour. Instead of sending a request the
client can choose non-deterministically to terminate via the § process (i.e., SKIP). The server
process, on the other hand, sends an invoke message to start some action and then sends a
result message and repeats. The server also offers the ability to terminate instead of sending
an invoke message.

The glue process coordinates the the other two processes so that the server only sends
an invoke message when the client has requested so. The server and client processes do not
actually communicate with each other and instead go through the glue process. The glue
process receives a request message from the client, then instructs the server to send an invoke
message using the data received from the client. The glue then waits for the server to send a
result message and relays this on to the client process. The result - achieved by combining all
three processes with the synchronous parallel operator - is a process which only invokes an
action after a request has been made.

95

6. Related Work

There are strict naming rules which concern which actions the glue process can communi
cate in relation to the actions of the processes of type role. The glue process coordinates the
overall system behaviour. The role and glue processes are restricted in the Csp operators that
they can use, they must be sequential processes and must not make use of any parallel opera
tors. They are however, semantically, combined using the synchronous parallel operator. This
rather restricted scheme allows to provide an elegant, compositional proof rule for deadlock
freedom: provided that a connector is deadlock-free and has the property to be “conservative”,
then a newly formed connector in which the roles are refined, is deadlock free as well.

While this deadlock analysis is quite elegant, at least in the original paper, there is no notion
of development between Wright connectors: for example, a property such as deadlock freedom
is propagated, however, it is not clear in which semantic relation the original connector and the
newly gained connector are. Moreover, Wright does not cover data refinement. Csp-Casl ,
while allowing for the development of processes and data, also has elegant compositional proof
rules.

6.6 An Institutional Approach: Zawlocki

Zawlocki [Zaw04] provides a framework for describing processes and data in a structured way.
Zawlocki provides an institution for processes and data, where data is described using Ca sl ,
while reactive systems are described using the temporal logic C t l*. The aim is to provide
a means for describing system architecture by using the institution independent architecture
mechanism of C asl [Mos04], For reactive systems, the choice of Ctl* enables reasoning
about safety, liveness and fairness properties.

Zawlocki’s signatures are pairs 0 = (T, E), where

• T is a set of action symbols,

• E is a many-sorted first-order data signature.

The models are transition systems, where - given a signature © = (T, E) - a 0-system is a
triple S — (W , D , T) with

• W a non-empty set of system states,

• D : W —>■ 5 tr (E) is a mapping assigning a data structure to each state, and

• T C W x r x W is a set of transitions from states to states.

Inspired by CommUnity, Zawlocki’s signature morphisms use a contravariant partial map
ping for action symbols. Let 0 = (T, E) and 0 ' = (T', E ') be signatures. A signature
morphism d : 0 —> 0 ' is a pair (7 , cr), where

• 7 : T ' - * ? r is a partial mapping,

• o : E -» E ' is a first-order many-sorted signature morphism.

96

6.7. Meta-Formalisms

This contravariant construction forces Zawlocki to change the modal operators in the for
mula translation, for example,

t f (< / > l U 0 2) = t f (0 l) U d o m (7) ^ (0 2) .

The validity of a formula under translation is restricted to those actions, which are present in
the source signature. This leads to a logic where the modal operators need to be qualified by
the set of actions for which they can be considered.

Another observation is that Zawlocki’s framework fails to provide a mechanism which
describes actions in an easy way: the set of action symbols T needs to be written down directly
by the specifier. It is a flat set, without any algebraic properties.

Csp-Casl differs from Zawlocki’s approach in both these points. Firstly, data and pro
cesses are translated in a covariant way, this is possible thanks to the typing information at
tached to each process name. Secondly, the actions that a system can perform are specified
using Ca sl , that is, they usually carry a rich algebraic structure.

6.7 Meta-Formalisms
There are several approaches which can be perceived as kinds of “meta-formalisms” where it is
possible to specify whole process algebras within them, including their syntax and semantics.
Here, we present two of these approaches.

6.7.1 Co-CASL

Co-Casl [MRS03, MSRR06] extends Casl by providing so-called co-types - see Figure 6.1
for the idea of how to dualize algebraic types. The co-algebraic types represent process be
haviour, while the algebraic types cover data. Co-Casl is presented as an institution, where
all the Casl institution independent structuring mechanisms can be applied. Extending these,
there is also a structured co-free construct.

Csp-Casl differs from Co-Casl in that it is intended to be used as a concrete mod
elling language. That is, to specify real systems at various level of abstraction, as opposed
to Co-Casl which is more suited to the description of specification formalisms themselves.
Mossakowski et al. [MSRR06] formalise the process algebras CCS and Csp within Co-Ca sl .
This meta-formalism allows one to reason about such specification formalisms themselves.

6.7.2 Rewriting logic and Maude

Rewriting logic, and thus Maude, are able to capture various forms of concurrency. For exam
ple, Verdejo and Marti-Oliet [VMOOO] capture the process algebra C c s in Maude.

Figure 6.2 shows how to capture the syntax of C c s . The module ACTION establishes the
data for use in C c s . Sub-sorting is used to introduce the sorts Label and Action. They provide a
complement operation where they specify that double complement is identity. The module
PROCESS specifies the symbols needed to create processes. The sort Processld represents
process identifiers which is a sub-sort of Process. They then mimic the C c s operations of
prefix, summations, parallel composition and restriction.

97

6. Related Work

Algebra Coalgebra
type = (partial) algebra
constructor
generation
generated type

= nojunk
= induction principle

no confusion
free type

= absolutely initial data type
= no junk + no confusion

free { . . . } = initial data type

cotype = coalgebra
selector
observability
cogenerated (co)type

= full abstractness
= coinduction principle

all possible behaviours
cofree cotype

= absolutely final process type
= full abstractness + all possible behaviours

cofree { . . . } = final process type

Figure 6.1: Summary of dualities between C a s l and C o -C a s l [MSRR06].

The operational semantics of C c s is then captured by conditional rewrite rules. This results
in an effective simulator for C c s , however, without considering bisimilarity between processes
on the operational semantics. As rewriting logic is reflective, it is possible to analyse the
defined semantic setting.

Similarly to C o -C a s l , the rewriting approach provides a powerful meta-formalism for
analysing processes and data.

98

6.7. Meta-Formalisms

(f m o d A C T I O N i s

p r o t e c t i n g Q I D .

s o r t s L a b e l A c t .

s u b s o r t s Q i d < L a b e l < A c t .

o p t a u : - > A c t . * * * s i l e n t a c t i o n

o p : L a b e l - > L a b e l .

v a r N : L a b e l .

e q ~ N = N .

e n d f m)

(f m o d P R O C E S S i s

p r o t e c t i n g A C T I O N .

s o r t s P r o c e s s l d P r o c e s s .

s u b s o r t Q i d < P r o c e s s l d < P r o c e s s .

o p 0 : - > P r o c e s s . * * * i n a c t i o n

o p : A c t P r o c e s s - > P r o c e s s [p r e c 2 5] . * * * p r e f i x

o p _ + _ : P r o c e s s P r o c e s s - > P r o c e s s [p r e c 3 5] .

* * * s u m m a t i o n

o p _ | _ : P r o c e s s P r o c e s s - > P r o c e s s [p r e c 3 0] .

* * * c o m p o s i t i o n

o p [_ / _ '] : P r o c e s s L a b e l L a b e l - > P r o c e s s [p r e c 2 0]

* * * r e l a b e l l i n g : [b / a] r e l a b e l s " a " t o " b "

o p _ \ _ : P r o c e s s L a b e l - > P r o c e s s [p r e c 2 0] .

* * * r e s t r i c t i o n

e n d f m)

Figure 6.2: Maude module capturing the syntax of C cs [VMOOO].

99

Part II

Contributions

Chapter 7

C s p - C a s l Alphabet Construction

Contents___
7.1 Construction 1: Lifting Alphabet Translations to Csp D o m ain s................... 103
7.2 Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras . . 120

As we have seen in Chapter 2, Csp’s syntax and semantics are constructed relative to some
alphabet. In order to create Csp domains from Casl models, the Casl models first have to
be flattened to sets. This chapter describes this process and also how to transform Casl model
morphisms and Casl model reducts into appropriate functions between Csp domains. This
forms the foundation for the Csp-Casl institutions presented in Chapter 8.

Here, we present two constructions. The first construction, in Section 7.1, lifts alphabets
and alphabet translations to Csp domains and domain translations. We do this by forming
two functors, one covariant and one contravariant, from the category SET to itself. In the
second construction, in Section 7.2, we flatten many-sorted algebras and homomorphisms to
alphabets and alphabet translations. In addition to this we also lift the reduct functor on the
model categories to alphabets and alphabet translations.

These two constructions can then be composed, allowing the construction of Csp domains
from Casl models, and domain translations from Casl model morphisms and model reducts.
These constructions will then be used within the semantics of Csp-Casl in Chapter 8.

7.1 Construction 1: Lifting Alphabet Translations to Csp
Domains

In this section, we describe how to transform alphabets and alphabet translations to CSP do
mains and domain translations, respectively.

Ultimately, we construct two functors, one covariant and one contravariant, which map
from the category where objects are alphabets (i.e., sets) and morphisms are alphabet transla
tions (i.e., total functions) to the category where objects are Csp domains and morphisms are

103

7. CSP-CASL Alphabet Construction

SET

V (A) SET

Figure 7.1: Lifting alphabets to CSP domains and alphabet translations to covariant and con
travariant CSP domain translations.

Csp domain translations. Both of these categories are actually the category of SET, thus we
create two functors from SET to SET where we lift alphabets to Csp domains built over such
alphabets, and alphabet translations to translations between the respective Csp domains.

Figure 7.1 illustrates this construction. A and B are alphabets and a is an alphabet transla
tion from A to B . V {A) and T>{B) are the Csp domains built relative to the alphabets A and B
respectively. The alphabet translation alpha has been lifted to the covariant Csp domain trans
lation oP and to the contravariant Csp domain translation a 15. These functors are formed for
each of the Csp semantics, namely the Traces semantics T , the Failures/Divergences semantics
J\f and the Stable-Failures semantics T , that is, for each V e { T ,A f, J-}.

These functors are built up using multiple sub-constructions. Firstly, in Section 7.1.1,
we lift alphabets and alphabet translations to so called basic translations. Secondly, in Sec
tion 7.1.2, we lift basic translations to covariant CSP domain translations, which translate Csp
domains along the underlying alphabet translations. Thirdly, in Section 7.1.3, we again lift ba
sic translations, but this time, to form contravariant Csp domain translations, which translate
C sp domains against the underlying alphabet translations. In Section 7.1.4 we look at how
the covariant and contravariant Csp domain translations relate to each other. Section 7.1.5 de
fines the notion of the top element of a Csp domain and finally, Section 7.1.6 discusses what
deadlock preserving properties the contravariant translation exhibits.

7.1.1 L ifting A lphabet T ranslations to Basic Translations

An alphabet translation is a function between two sets, which we call alphabets. It is simply the
renaming of symbols from one alphabet to another, not necessarily injective nor surjective. In
categorical terms this is the category SET. Here, we introduce some basic translation functions
that will be used to define a lifting from alphabet translations to translations over the Csp
semantics T , M , and T . Technically, these are also functors from SET to SET.

Given an alphabet translation a : A —>■ B and constructions / , * , * / and V / on sets (see
Chapter 2), we extend the map a canonically to three maps as presented by Kahsai [KahlO]:

• To include the termination symbol / :

104

7.1. Construction 1: Lifting Alphabet Translations to Csp Domains

SET

SET

Figure 7.2: Illustration of the functor T V .

a / : A /
f a(x) \i x e A

X * { ✓ i f x = /

• To extend it to strings with the termination symbol / :
Q* / : A w ->

s !->• a*(s)
s ~ (/) a* (s)~(/>

where s £ A*.

• To extend it to the power domain:
av s . V (A ') -* P (B /)

X ^ {a/ (x) \ x e X }

These four basic translations (including a* introduced as the component-wise extension of a
to finite strings in Section 4.2.1) form functors from SET to SET (they can form more specific
functors, but this is not of interest to us here), for instance:

V S : SET SET
A i y V{A/)
a : A - * B ^ av / : V(A/) -+ V{B /)

Figure 7.2 illustrates this construction for the functor .

Lemma 7.1 The above basic translations (including a*) form valid functors from SET to SET
and preserve monomorphisms (i.e., the resulting lifted functions are injective when the under
lying translation is injective). In particular they are compatible with function composition:

• c*2 ° of = (<*2 ° & l Y ,

• a ^ o a l — (0:2 ° <*i)*,

• o S / o a Y = (a2 o o:i)*/ ,

• 0 2 ^ o = (a2 o Qi)'P / ,

105

7. C s p -C a s l Alphabet Construction

a n d * / preserves prefixes:

• s ^ t = > a w (s) ^ a w {t).

where we use the notation s ^ t for the string s being a prefix of the string t.

Proof. It is straightforward to form the functors and prove that the functors are valid. The
proof follows directly from the definitions of the functions above. Injectivity follows directly
from the definitions of the functions as a is applied point wise. □

Here, we have formed four basic liftings (including a*) which will form the basis for the
lifting of alphabet translations to the Csp domain translations presented in Section 7.1.2 and
Section 7.1.3.

7 .1 .2 C ovariant CSP D om ain Translations

We now lift the basic translations from the previous sub-section to the Csp semantical domains:
the Traces semantics T , the Failures/Divergences semantics AT and the Stable-Failures seman
tics JF. Kahsai presented a way to do this in [KahlO], however his definitions are not suitable
for our institutional approach as they fail to preserve composition. Thus, we have adapted his
definitions for our C sp -C a s l institutions.

Here, we construct, what we call, the covariant domain translations which translate Csp
domains in the same direction as the underlying alphabet translation. More precisely, we con
struct a covariant functor from the category where objects are alphabets and morphisms are
alphabet translations to the category where objects are Csp domains and morphisms are Csp
domain translations, that is, from SET to SET (see Figure 7.1).

We now define the lifting of alphabet translations to Csp domain translations for each of
the Csp semantics.1

• For the Csp Traces semantics T :
a r : T {A) -> T { B)

T i ̂ { a w (s) \ s £ T }

• For the Csp Failures/Divergences semantics Af:

: A f(A) A f(B)
(F ,D) i y ({ (s ',X ') G x V (B ' /) \ 3 (s , X) e F

• a*^ (s) = s' A W G B / • x ' G X 1 ==> (a /) (x ') C X }
U { (s ',X ') G B w x V { B ') | s ' G o ^ D(D)}, c ^ d (D))

c ^ D : A * ' B w
D ^ {s' G B w |

3s G D • 3t' G B w • a* / (s) ~ t' = s'
A if s ends in / then t' — ()})

’Throughout use the letter F as a variable to represent failures in both the Failures/Divergences semantics and
the Stable-Failures semantics, however, they represent different failure sets. While F in the Failures/Divergences
semantics represents all failures, in the Stable-Failures semantics it represents only the stable failures.

106

7.1. Construction 1: Lifting Alphabet Translations to CSP Domains

• For the CSP Stable-Failures semantics T \
a T : F (A) -► F { B)

c T ,F) (a r (T) ,{ (s ' ,X ') e B w x ? ^) | 3 (s ,X) G F
• a* / (s) = s' A Va/ G • x ’ G X ' ==> (a /) (V) C l })

where (a /) (a:') := {x G | o / {x) — x '} (i.e., the inverse image of x 1 under (a /)) and
T (_),A r(_) and F (-) are the CSP semantical domains as defined in Section 2.4.

The Traces translation is straightforward where we just translate each trace in turn over a.
The Failures/Divergences and Stable-Failures translations require some extra elements to be
added in order to preserve the healthiness conditions (see Section 2.4). In both cases failures
need to be added that extend the refusal sets for each subset of elements outside of the image
of A in order to satisfy the Csp domain condition F3. In the case of divergences we must add
all possible extensions of divergences that continue outside the image of A. This is to preserve
condition D1 which states if s a divergence then all possible extensions over the full alphabet
are also divergences. To satisfy condition D2 of the Failures/Divergences semantics we must
add all divergences as failures in the Failures/Divergences translation. It is for these reasons
that the translations seem at first more complex than they need to be.

We now show via an example how the Stable-Failures covariant translation can increase
the size of the refusal sets.

Exam ple 7.2 Let A = {a} and B = {a', b'} be alphabets. Let a : A —> B be an alphabet
translation such that o (a) = a'.

Let (T, F) G T7^) such that
T = {(>,<<*>}
F = {«>,{}) , « > . { / }) , « a) , { }) , « a > , { o })) «o>>{ / }) , « a > , { a , / }) }

This denotation represents the process a -» STOP.
By applying the covariant domain translation o f we get a r^ T , F) = (T ', F ') where
T = { < » ') }
F ’ = {« > ,{}),« > ,{✓ }), «a'>, {}), «a')> {a'}), ((a'), {✓}), ((a '), {a ', / }) ,

«>. W) , «>, {*>', /}) , «a'>, m) , «a'>, K &'}), «a'>, W , / }) , «a'>,
{a', 6 ', / }) }

This denotation represents the process a' —>• STOP.
The interesting aspect here is the increase in the size of the refusal sets, for instance,

the failure ((a), {a, / }) produces the following failures in the translation ((a '), {a', / }) and
((a '), {a', 6', / }) . In fact, in this example, each failure in F produces two failures in the co
variant translation F '.

Lemma 7.5 checks that our definitions are reasonable and do not violate the C sp domain
conditions. However, in order to prove that lemma we first establish two additional lemmas.
The first regards the preservation of prefix closure of a w , while the second concerns the
preservation of full refusal sets for the covariant domain translations.

Lem m a 7.3 (a +/ preserves prefix closure) Let a : A —»• B be an alphabet translation and
t ' G B w be a trace such that a * ^ (t) = t' for some trace t G A * ^ . If s' G B * ^ is a trace such
that s ' ^ t ' then there exists trace s G A such that s ^ t and a * ^(s) = s'.

107

7. C s p -Casl Alphabet Construction

Proof. This proof is by induction on the length of the trace s' and is straightforward. □

Lem m a 7.4 (Covariant domain translations preserve full refusals) Let a : A —> B be an
alphabet translation, then the following hold for the Failures/Divergences semantics Af:

• if (s, X) £ F for all X C A then (c**/ (s), X ') £ F ' for all X ' C B, and

• if (s, X) £ F for all X C then (a * '(s) , X ') e F ' for all X ' C B /

where (F ,D) £ A f(A) and c P (F ,D) — (F ',D '). Furthermore, the following hold for the
Stable-Failures semantics F:

• if (s, X) £ F for all X C A then (o*/ (s), X ') £ F ' for all X ' C B, and

• if (s, X) £ F for all X C A ^ then (a", / (a)J X ') e F ' for all X ' C B /

where (T, F) £ F (A) and c f (T , F) = (T , F ').

Proof. We prove only the first point for the Failures/Divergences semantics Af. The second
point and the proof for the Stable-Failures semantics F are similar.

Assume (s ,X) £ F for all X C A . Let X ' C 23, we show {s ',X ') £ F '. Choose
X = {x £ A | a (x) £ X '} . Clearly, X C A. By construction we know \/x' £ B ^ • x' £
X ' = > (o /) _ (x/) C X , thus (s ',X ') £ F '. □

We are now ready to prove that our covariant domain translations are reasonable and do
not violate the Csp domain conditions from Section 2 A.

Lem m a 7.5 For all alphabet translations <x : A ->■ B , the covariant domain translation oP is
healthy, that is, oP : V (A) -» V {B) for all T) £ F } .

Proof. We prove that the covariant domain translations c\r y o P , and oP preserve the health
iness conditions of the Traces semantics T , the Failures/Divergences semantics Af, and the
Stable-Failures semantics F , respectively.

Traces sem antics T We show that a T preserves the condition 77. Let T £ T (A) and T ' —
a T (T).

T1 We show that T ' is healthy, i.e., non-empty and prefix closed. As is total and T
is non-empty, it follows that T ' is also non-empty.
Let t' £ T ' and s' ^ t ' . As t! £ T ' there exists t £ T such that o*/ (2) = t ' . By
Lemma 7.3 we know there exists trace s £ A*/ such that o*/ (s) = s' and s ^ t.
As T is prefix closed we know 5 £ T , thus s' £ V .

Stable-Failures semantics F We show that oP preserves the conditions 77, T2, T3, F2, F3,
and F4. Let (T, F) £ F (A) and (T ', F ') = a T {T, F).

T1 Identical to the traces proof of condition 77.

108

7.1. Construction 1: Lifting Alphabet Translations to Csp Domains

T2 Let (s ',X ') £ F ', we show s' E T '. As (s', X ') E F ' then we know there exists
(s , X) G F such that = s'. As (T ,F) is healthy (and satisfies condition
72), we know that s G T and thus (s) G T ', hence s ' G T '.

T3 Let s '~ (/) G T', we show (s '~ (/) ,X ') G F ' for all X 1 C F* .̂ We know there
exists s '" '(/) G F such that a* / (s"N(/)) = s '~ (/) . As (T ,F) is healthy (and
satisfies condition 77), we know that (s X) G F for all X C . By
Lemma 7.4 we know (s', X ') G F ' for all X ' C .

F2 Let (s ', X ') G F ' and Y' C X ', then we must show (s', Y') G F '. As (s', X ') G F ',
there exists (s ,X) G F such that a* / (s) = s ' and W G • x ' G X ' ==>
(a /) (a:') C X . Define Y = {y G A ^ | c / (y) G y '} . Let y E Y , then
o / (y) G y ' C X ', thus (a /) (ot/ (y)) C X . As y G (a /) (a / (y)) , we obtain
y G X , thus y C X . As (T, F) is healthy (and satisfies condition F2), we know
that (s, y) G F . Thus, by construction we have (s', Y ') G F '.

F3 Let (s ',X ') G F ' and y ' C B ^ such that Vy' £ Y ' • s''~'(y') £ T ', we show
(s ', X'uy') G F '. As (s', X ') G F ' there exists (s, X) G F such that a + /(s) = s'
and W G B ^ • x 1 G X ' = > (a /) (#') C X . We can partition Y ' into Y R
containing the reachable elements from A / and Y ^ R containing the non-reachable
elements from A / , i.e., let YR = {y' G Y ' \ 3y G A ^ • a / (y) = y'} and
Y n r = to ' e I - (3 y e V • a / (y) — y')} . We can now construct the inverse
image of YR over a / , i.e., let Y r := {y G A / | a ^ y) G YR}. As YR C y', we
also know V?/' G YR • s' ~(y') £ T '.
Now assume ->(Vy G Yr • s ~ (y) £ T). Then we know there exists y G Yr
such that s ~ (y) G T. By construction o f T ' we have (s ~ (y)) G F ', i.e.,
s'^ (a '* '(y)) G T'. However, as y E Yr we know that (y) E YR, and thus
s' '''(a/ (y)) <£ T ' . Thus we have a contradiction and are forced to conclude Vy G
Yr • s ~(y) T. With this fact and the fact that (T, F) is healthy (and satisfies
condition F3), we know (s, X U Yr) £ F. Finally, by construction o f (T', F ') we
can conclude (s ' ,X ' U Y') E F' by showing W G B / • x ' g X ' U ^ U Y ^ = >
(a /) (x') C X U Yft. To this end, let x ' E X ' U Y R U Y ^ R. We must show

(<o/) (x ') C X U Yr . Let x E (a /) (x '), we show x E X U Yr . We know
ot/ (x) — x '. We now make a case distinction on the source of x'.

Case x ' E X ' then (a /) (x') C X and thus x g X U Y r .

Case z ' G YR then x E Y r by construction, thus x g X U Y r .

Case x ' E Y fjR then -<(3y E A * • ot/ (y) — x '). However, as we have a / (x) =
x', we have a contradiction and conclude that this case is impossible.

F4 Let s '~ (/) G T ', then we show (s', B) E F '. We know there exists s '" (/) G T
such that a* / (s " '(/)) = s ' ' ' (f) . As (T, F) is healthy (and satisfies conditions
F2 and F4), we know (s, X) G F for all X C A. Thus by Lemma 7.4 we know
(s ', F) G F '.

Failures/Divergences semantics A/" We show that oc^ preserves the conditions FI, F2, F3,
F4, D l, D2, and D3. Let (F, F) G A f(A) and (F ', D ') = o ^ (F , D).

109

7. CSP-CASL Alphabet Construction

FI As a is total and t r ± (F , F) is non-empty, non-emptiness is preserved.
Let t! G t r ± (F ' , D'), let s' < t'. We must show s' G t r ± (F ', F ') . As £' is a trace
in t r ± (F \ D ') we know (t ', 0) G F'. This can happen in two ways:

Case 1 The failure originates from F, that is, there exists (£, Y) G F such that
a*/ (£) = t!. As (F , D) is healthy (by condition F2), we know (£,0) G F ,
thus £ G t r± (F ,D) . By Lemma 7.3 we know there exists trace s such that
a* / (s) = s' ands ^ t. As £rj_(F, D) is prefix closed we have s G £rj_(F ,F),
thus (s, 0) G F. Applying oc^ we obtain (s', 0) G F', hence s' G tr± (F ', D ').

Case 2 The trace t' is a divergence, that is, t' G D ' . In this case there exists
t G D and u' G B w such that t' — (t) ~ u'. We consider two situations
concerning how the traces s', with s' ^ £', and a*^ (t) are related.
If s ' < (t) then by Lemma 7.3 we know there exists trace s such that

o;*/ (s) = s ' and s ^ t. As t G 77 we know (£,0) G F (by condition
D2), thus t G £rj_ (F ,F). By prefix closure of tr± (F ,D) we know s G
£rj_(F, D), thus (s, 0) G F and by definition of we know (s', 0) G F '.
Hence s ' G £rj_(F', F ') by construction.

Otherwise if s ' ^ o*/ (£), as we know s' ^ ^ u ', we can conclude
there exists v' G B *^ such that s ' = a*'/ { t) ^ v ' . Thus s' G D' by
construction, thus (s ',0) G F ', hence s' G t r± (F ' ,D ') .

F2 Identical to the stab!e-failures proof of condition F2 except for the extra failures we
add from the divergences. As all possible refusal sets for each divergence are added
as a failure, condition F2 is preserved.

F3 Identical to the stable-failures proof of condition F3 except for the extra failures we
add from the divergences. As all traces are possible after a divergence, there are no
“refused” initials events.

F4 Let s " V > £r -i_ (F ',F '), we show (s ' ,B) G F '. We know (s '~ (/) ,0) G F '.
This can happen in two cases:

Case 1 The failure originates from F , that is, there exists (s ^ (Y) , X) G F such
that a* / (s ~ { /)) = s '~ (/) . As (F ,D) is healthy (by condition F2), we
know (s '■ '(/) ,0) G F , thus s ~ (/) G tr± (F ,D) . By conditions F2 and
F4 we know (s, Y) G F for all Y C A. Finally by Lemma 7.4 we have
(s', F) G F '.

Case 2 The trace is a divergence, that is, s ' ~ (/) G F'. By the definition of or^,
we know there exists s G F and £' G F * / such that a + / (s) ~ t! — s' ~ (/)
and if s ends in / then £' = (). We now make a case distinction on s.
If s ends in / then £' = (} and a* / (s) = s ' ' ' (/) . Let = s (i.e., s

without /) . By condition D3 we know u e D. Thus, as a* / (u) = s', we
know s ' G F ' by construction. Hence (s', F) G F '.

Otherwise if s does not end in / then t! must end in / . Let u' ~ (/) = £'
(i.e., £' without /) , then o;*/ (s) ~ u' = s'. Thus s' G F ' by construction.
Hence (s', F) G F '.

110

7.7. Construction 1: Lifting Alphabet Translations to CSP Domains

D 1 Let s' G 77' n B * and t ' G B w , we show s ' ~ t ' G 7)'. We know there exists s G D
and u' G 7?*/ such that s ' = a* / (s) ~ u1 (where u' does not end in / as s ' does
not). Now s ' ~ t' = a*^ (s) ~ u' ~ t' which is in D' by construction.

D2 Let s ' G 77' and X ' C 7K . Then (s', X ') G F ' by definition of oc^.

D3 Let s ' ~ (/) G 77', we show s ' G 77'. There exists s G D and t' G 7?*^ such that
a* / (s) ~ t ' = s '~ (S) and if s ends in / then t' = ().

Case 1 The trace s ends in / . T h en i' = () an d a* / (s) = s ' ' ' ' (/) . Let ' ' ' (/) =
s (i.e., let u b e s without /) . As (F, 77) is healthy (and satisfies condition D3)
and s G 77, we know u G 77. As a* / (u) = s', then s ' G 77' by construction.

Case 2 The trace s does not end in / , then the extension t 1 must be non-empty
and end in / . As we take all possible extensions t', then one such extension
would make true a* / (s) = s ' (i.e, with no /) . Therefore s ' G 77' by
construction. □

Similar to how the basic translations in Section 7.1.1 form functors, the covariant domain
translation functions above form the following functors:

• Traces model T :
T : SET ->• SET

A ^ T { A)
a : A ^ B a T : T (A) T (B)

• Failures-divergences model Af:

A f : SET SET
A i ̂ AT (A)
a : A B ^ a * : Af (A) -► Af(7?)

• Stable-failures model JF\
T : SET ->• SET

A F (A)
a : A -» 7? ^ : F (A) -* F (F)

We normally do not use the functor notation 77(a) for mapping morphisms and instead use the
notation a 25 for the covariant CSP domain translation (for V G {T ,A f, F }) induced by the
alphabet translation a .

We now prove that these translations actually form valid functors. This is not obvious as
the extra failures and divergences we add during the Failures/Divergences and Stable-Failures
translations might disrupt functional composition.

Lem m a 7.6 T , Af, and T are valid functors, that is, they preserve identity morphisms and
functional composition.

Proof See Appendix A for proof. □

7. C sp -C a s l Alphabet Construction

We now establish that the covariant domain translations preserve Csp refinements. This
will be required when establishing the satisfaction conditions of the Csp-Casl institutions in
Chapter 8 .

Lemma 7.7 The covariant domain translations a v are monotonic with respect to refinement
for all V E { T , A f , J - } , that is, given an alphabet translation a : A —>• B and semantic elements
d\ , <̂ 2 £ ^ (^)» such that d\ cfo then a v {di) Qt> ocv {d2).

Proof. This follows directly from the definitions of o P . □

It is also the case that the covariant domain translations preserve injectivity. Again it is not
obvious as the extra failures and divergences that we add during the translations might disrupt
such a property.

Lemma 7.8 If an alphabet translation a : A -> B is injective then the induced covariant
domain translations a T , oc^, and a ? are also injective.

Proof See Appendix A for proof. □

This concludes our construction of the covariant domain translations which are induced
from alphabet translations. These allow us to lift alphabets translations to CSP domains. Next,
we construct a similar lifting but in a contravariant style which maps against the underlying
alphabet translation.

7.1.3 C ontravariant CSP D om ain Translations

Here, we present the lifting of injective alphabet translations to what we call contravariant CSP
domain translations. This lifting was originally developed by Kahsai [KahlO]. We reformulate
this lifting in a categorical setting which is required for our C sp-Ca sl institutional construc
tions (described in Chapter 8). These contravariant domain translations map in the opposite
direction to the covariant domain translations, and therefore go against the underlying alphabet
translation. More precisely, they are contravariant functors from SET to SET.

The contravariant translation will play a central role in C sp-Ca sl ’s model reducts in Sec
tion 8.1.3: when looking up an interpretation of a process name in a reduced Csp-Casl model,
we take the process name’s interpretation in the non-reduced model and translate the resulting
denotation back to the correct alphabet using the contravariant translation.

We now discuss a short example which illustrates how such a contravariant translation will
work with the CSP Traces semantics.

Example 7.9 We illustrate the idea of translating CSP domains against an alphabet translation
using the traditional example of a vending machine. Let o ; : B a s i c —» E n h a n c e d be an injec
tive alphabet translation from a basic alphabet that can only talk about tea (i.e., B a s i c = {tea})
to an enhanced alphabet that can talk about tea and coffee (i.e., E n h a n c e d = {tea, coffee})
such that a(tea) tea. Both of these alphabets can be thought of as representing the actions
of pressing various buttons on vending machines.

112

7.7. Construction 1: Lifting Alphabet Translations to CSP Domains

Let us focus on the C sp Traces semantics T , and allow T ' to be some trace set over the
enhanced alphabet. T ' can be seen as a set of use cases: each trace is a sequence of possible
actions that can be carried out on the machine. The contravariant translations allow us to map
this sequence back onto the basic machine, as far as we can.

For instance, a trace (tea, tea, coffee, tea) would be mapped back to the trace (tea, tea).
We simply map the trace back against the alphabet translation as far as we can, until we find
an action that cannot be represented in the basic system. When this happens we stop our
translation of the trace. This indicates why we require injective alphabet translations: if the
underlying alphabet translation was not injective, then we would not be able to map the action
back across the translation in a unique way.

We stop the translation of a trace set once we encounter an action outside the basic alphabet
because we are interpreting the trace set on the basic machine. While the traces remain within
the basic alphabet, the behaviour remains the same. However, once the traces use actions
not represented in the basic alphabet, then the behaviour remains the same only up to the
occurrence of the first such action. After this action the traces of the basic machine cannot tell
us anything about the behaviour of the exchanged machine.

Our definitions differ from the C sp hiding operator and both concepts of lazy abstraction
and eager abstraction [Ros05]. The C sp hiding operator removes elements from traces. Lazy
abstraction, which is defined in terms of hiding, and eager abstraction also change the trace
and failure sets by hiding events. However, we do not want to modify the traces or failures via
the translation as this would change the meaning of the process. Instead, we want to capture as
much behaviour as possible with the smaller alphabet.

Kahsai et al. [KRS08] describe the same notion on the C sp Traces and Stable-Failures
semantics. There it is used as a notion of enhancement of processes, guaranteeing preservation
of behaviour up to the first communication that lies outside the original alphabet. Kahsai et al.
use enhancement as a development notion, for the purpose of re-using test cases for C sp-C asl
specifications.

We now define the contravariant domain translations, following the idea in the example
above of stopping when we cannot translate backwards any further. This idea also works with
failures and refusals: if we have an action that we can refuse in the larger alphabet and have no
corresponding action in the smaller alphabet, then we simply forget about it. This makes sense
as all actions outside the alphabet are not part of the behaviour of the process.

Given an injective alphabet translation a : A B , we define the contravariant domain
translation functions c P to be:

• For the C sp Traces semantics T :
a r : F (B) F (A)

V i ̂ { s e A w |a * / (s)G T '}

• For the C sp Failures/Divergences semantics ftf:

o P : f t f (B) -+ ft f(A)
(F', D ') ({(s, X) G A w x V (A ') | 3(s', X ') G F ’

• o ^ s) = s' A X ' D a p / (A'/) = a v / (X)} ,
{s G | a*/ (s) G D '})

113

7. C sp-Ca sl Alphabet Construction

• For the Csp Stable-Failures semantics T \

o f : ;F(B) F {A)
{ T ' ,F ') ^ { o f { T ') , { { s , X) e A * / x V { A ') \ ^ { s \ X ') e F l

• a ^ i s) ^ s' A X ' n a p / (A /) = a r / {X)})

Traces and divergences are translated in an obvious way, while the failures have to have
their refusal sets restricted to elements from the alphabet A. This is achieved by selecting only
those refusal sets which after forward translation match refusal sets F ' but only after the refusal
sets in F 1 have been restricted to the reachable elements in A.

Discussion: The condition X ' fl a v / (A ^) = o f ^ (X) actually coincides with our earlier
condition W £ B / • x' £ X ' = > (o:/) (x ') C X (used in the covariant domain trans
lations) when the underlying function is injective and the domain healthiness conditions
are considered. We could replace the condition above in the contravariant translations
with the condition in the covariant translation without causing any further changes in our
constructions other than proof details. However, we choose to use Kahsai’s original (and
somewhat simpler) definitions. It is the healthiness conditions and the injectivity con
straint that allow for a simple contravariant translation compared to the more complex
covariant translations (particularly in the Failures/Divergences semantics).

We now present an example illustrating the Stable-Failures contravariant translation.

Example 7.10 Let A — {a} and B = {a' , b'} be alphabets. Let a : A —>■ B be an alphabet
translation such that a (a) = a 1. As ot is injective, we can form the contravariant domain
translation o f .

Let (T ', F ') £ F { B) such that
r = «)>'>, (o', 6'>}
f 1 = {((>,{}), «) , m) , «) , K }) , « > , r / }) ,

{«a'> , {}), « o ') , {o'}), «a'>, {✓ }), «a'>, {o', / }) ,
{}), ««',*>'), {«'}), ((«', 6'), {&'})■ ((o', 6'), { / }) ,

« a ' , 6 '> ,{ a ',6 ' }) ,« a ' ,y > ,{ o ' , / }) ,« a ' , i > ') , { 6 ' , ^ }) , ((a ' , 6 ') , { a ' , 6 ' , / }) }
This denotation represents the process a' —> b' —> STOP.

By applying the contravariant domain translation a * we get o f (T ' , F ') = (T, F) where
T = {<),<o'>}
F = {((), {}), (0 , { ^ }) , ((o), {}), ((o), {a }), ((o), { / }) , ((o), {a , / })

This denotation represents the process a —> STOP.
The interesting aspect here is the shrinking effect, for instance, the failures ((), { /}) and

((), {&', / }) in F ' both yield only the single failure ((), { / }) in F. These two failures are
“collapsed” during the contravariant translation.

This makes sense in that we are trying to convert the sequence of interactions of pressing
the a' button, followed by the b' button back across the alphabet translation and we end up with
the sequence of only pressing the a button as there was no corresponding button for b' in the
smaller alphabet.

114

7.7. Construction 1: Lifting Alphabet Translations to Csp Domains

Example 7.11 If we now consider Example 7.10 above along with that of Example 7.2, we
see that the covariant and contravariant translations are not the inverse of each other. If we start
with the process a' -» b' —>• STOP and translate backwards using the contravariant translation,
we end up with the process a STOP. If we now go forwards with the covariant translation
we do not get back to where we started with the process a' —> b' —» STOP, but instead we get
the process a' —> STOP.

The following lemma (presented in [KahlO]) checks that our definitions are reasonable and
do not violate the C sp domain conditions.

Lemma 7.12 For all injective alphabet translations a : A —> B , the contravariant domain
translation c P is healthy, that is, a v : V { B) —>• V {A) for all V € {7~, Af, J-}.

Proof See Appendix A for proof. □

Just like the covariant domain translations form functors, the contravariant domain transla
tions form the following contravariant functors:2

• Traces semantics T :

7"op: SETJNJ SET
A i y T { A)
a : A ^ B ^ a T : T { B) -► T (A)

• Failures/Divergences semantics M:

Af°P : SETJN J -+ SET
A i—̂ Af (A)
a : A ^ B ^ o P : M { B) Af{A)

• Stable-Failures semantics T \
: SETJN J SET

A h-> T { A)
a : A ^ B ^ o f : T { B) -> T { A)

The fact that these actually form functors is not obvious from the definitions. The con
travariant definitions use set intersections to select refusal sets from failures which may hinder
the composition of the translations.

Lemma 7.13 T ^ , A f010, and T ° v are valid functors, that is, they preserve identity morphisms
and functional composition.

Proof See Appendix A for proof. □

Finally, we guarantee that the construction of the contravariant domain translations above
preserve C sp refinements.

2We use SE T JN J to denote the category SET where we restrict the morphisms to injective functions.

115

7. C sp -C a s l Alphabet Construction

Lemma 7.14 The functions cP are monotonic with respect to refinement for all Csp semantics
T> G {T , Af,fF}, that is, given an injective alphabet translation a : A —» B and semantic
elements dp d '2 G V {B), such that d\ d'2 then cP(d\) C p cP(d2).

Proof. This follows directly from the definitions of cP. □

Corollary 7.15 Thanks to the monotonicity of the domain translations (lemmas 7.7 and 7.14),
both the covariant and contravariant domain translations preserve Csp refinement for the Csp
Traces semantics, Failures/Divergences semantics and the Stable-Failures semantics.

7.1.4 R elationship B etw een C ovariant and C ontravariant D om ain Translations

We now study how the covariant and contravariant domain translations interact. It turns out
that going forwards then backwards has no effect, while the converse is not true in general.

These results give us confidence that our construction makes sense, as one would expect
such results to hold.

Lemma 7.16 Given an injective alphabet translation a : A —» B then aP o oP is the identity
function. Note: We are not claiming oP o cP is the identity function, this is not true in general,
see Example 7.11.

Proof We prove this for each semantics T , Af, and T separately.

Traces semantics T This proof follows directly from definitions.

Stable-Failures semantics fF Let (T ,F) G P (A) , we show g P (g P (P ,F)) = (T ,F) by
showing equality between each component. Equality between the traces component is
the same as for the Traces model above. We now show snd{oP{oP{T, F))) — F by
subset inclusion in both directions.

‘C ’ direction Let (s, X) G snd{oP{aP{T, F))) then we know by definition that there
exists (s ' ,X ') G snd(ajr(T, F)) such that a*/ (s) = s' and X 1 D a :p /(A/) =
c P ^ (X) . Furthermore we know there exists (t, Y) G F such that a*^ {t) = s' and
Vx' g B ^ i ' g ! ' ^ (o / H O C Y . By the injectivity of a we know s — t
and X C Y . By the healthiness conditions of (T, F) we know (s, X) G F.

O ’ direction Let (s ,X) G F, then by construction we know {a*S(s) , a v / {X)) G
snd(a'F(T ,F)) . As o P ^ { X) Pi a 7V (A/) = c P ^ { X) we know by construction
that (s ,X) G snd{oP {oP {T ,F))) .

Failures/Divergences semantics A f Let (F, D) G Af(A), we show o P (c P (F , D)) = (F, D)
by showing equality between each component by subset inclusion in both directions.

Divergences ‘C ’ direction Let s G sn d (c P (c P (F ,D))) , then we know by definition
that a* / (s) G snd(oP(F , D)). Furthermore we know there exists u G D and
t' G B w such that a*^(u) ~ t — a* / (s). From this we can deduce there must
exist t G A with a* / (£) = t ' , thus by the healthiness condition of {F,D) we

116

7.1. Construction 1: Lifting Alphabet Translations to Csp Domains

know u t G D. By the injectivity of a and the fact that a*^ (u ~ t) = a w (s), we
know u ^ t — s, thus s G D.

Divergences O ’ direction This proof follows directly from definitions.

Failures‘C ’ direction Let (s , X) G f s t (a ^ ’(a ^ (F ,D))) , then we know by defini
tion that there exists (s ' ,X ') G fs t{oc^(F, D)) such that a* / (s) = s ' and X ' fl
oiF^ (A /) = (X). The failure (s ', X ') can originate from either a failure in F
or from a divergence.

The proof for the case where (s ', X ') originates from a failure in F is the same as
in the Stable-Failures semantics for the ‘C ’ direction on the failures component.
We now consider the case where (s ' , X ') originates from from a divergence, that
is, s ' G sn d {a ft(F , D)) . In this case we know, by definition of orA/", that s G
s n d (a ^ (F , D))). By the above proof that the divergences are equal we know
s G D. Furthermore, as we know (F, D) is healthy we can conclude (s, X) G F.

Failures O ’ direction The proof for this case is the same as in the Stable-Failures se
mantics for the O ’ direction on the failures component. □

The above lemma will be critical in establishing the C sp-Ca sl institutions in Chapter 8 .
Next, we introduce the notion of controlled traces. If we restrict the domains of the covariant
and contravariant translations appropriately using this notion of controlled traces, we find that
they are actually inverse to each other. However, first we need the notion of controlled traces.

We now form “projection” functions from Csp denotations of T , Af, and T into the Traces
semantics. These functions “project” out of a Csp denotations the controlled traces. The
controlled traces of a process P are the traces of P which are under its control, that is, they are
not divergent.

• For the Traces semantics T :

c T r T : T (A) T { A)
T i-» T

• For the Failures/Divergences semantics Af:
c T r * : A f(A) -» T (A)

(F, D) {s | s G t r ± (F , D) A V£ G A *^ • £ < s =$■ t £ D }

Here, we take all traces of (F, D) which are not extensions of a divergence. If a trace
s is in D then all extensions of s are also in D by healthiness condition D l. Thanks
to the healthiness conditions F2 and D2 all these divergences and their extensions are
within the failures and thus in tr± (F , D). We only wish to take the traces which are not
an extension of a divergence (we do not mind if the traces are the start of a divergence),
hence we use the strict prefix operator < .

• For the Stable-Failures semantics fF\
cT rT : F (A) T (A)

(T, F) i ̂ T

117

7. C sp-Ca sl Alphabet Construction

We usually drop the superscript T , AT, and F when the particular Csp semantics is clear
from the context.

The next lemma considers what happens to the controlled traces under contravariant trans
lation.

Lemma 7.17 Let a : A —» B be an injective alphabet translation. Let A' C A and B ' C B
such that B ' C a v / {A'). If d! G T>(B) with c T r v {d!) G T (B ') then c T r D{dP{d!)) G T (A ') .

Proof. We prove this for each Csp semantics T,, AT, and F individually.

Traces semantics T This follows directly from definitions.

Failures-divergences model Af Let (F ', D ') G Af (B) such that c T r ^ (F ' , D ') G T (B ') . We
must show cTr Ĵ (o ^ (F ' , D ')) G T (A ') , that is, for all traces s G c T r ^ (F ' , D '))
that s G A!w . Let s G cTr-^(oc^r(F ' ,D ')) . Then we know s G t r ± (a ^ (F ' , D))
and Vt G A w » t < s ==> t snd(c t^(F ', D')). Furthermore, we know (5 ,0) G
f s t (a f^ (F ' , D ')), therefore there exists (s', X ') G F ' such that (s) = s'. From these
facts we can deduce s ' G c T r ^ (F ' , D ’) G T (B f), thus s' G (B ')*^ . As B 1 C qF^A ') ,
we know s ' G (a :p / (A '))*/ , thus s G (A ')*^.

Stable-Failures semantics T As the controlled traces is the projection on the traces compo
nent, the proof is the same as for the Traces semantics. □

If we consider only C sp denotations which have their controlled traces in the translation
of the original alphabet, then we find out that going backwards over the contravariant domain
translation and then forwards over the covariant domain translation yields the original deno
tation, that is, in this restricted setting the covariant and contravariant domain translations are
bijections.

Lemma 7.18 Given an injective alphabet translation a : A —>■ B and a denotation d! in V {B)
such that c T r D(d') G T{olv / (A)) then (aP (a D(dr))) = d' for all V G { T ,A f , F } .

Proof. This proof is straightforward and follows from definitions. □

This concludes our study of the relationship between the covariant and contravariant do
main translations. These results will be used in Chapter 8 to establish the C sp -C asl institu
tions.

7.1.5 Top E lem ents

We now define a notion, related to controlled traces, that will be used later in this thesis during
various proofs. We define the notion of the “top” element of each semantical domain (restricted
to a subset of the alphabet) which is the least refined element, relative to the subset of the
alphabet. The “top” element will have its controlled traces constrained to the subset.

Given an alphabet A and a subset of the alphabet C C A, we define the “top” element
Topq as:

• Topi ■= c W *

118

7.1. Construction 1: Lifting Alphabet Translations to CSP Domains

• Top% := (C w , { (s , X) £ A w x V i A ') \ s e C * ' }) , and

• Topg := (A x V { A /), A*/), that is, the denotation for the process DIV

f o r D e {r,A T ,7-}.

Lem m a 7.19 Given an alphabet A and a subset of the alphabet C C A , Top^ exhibits the
following properties:

1- TopQ £ V {A),

2. cT rv (Topc) £ T (C) , and

3. for all d £ V {A) with c T r v (d) £ T (C) we have that Top^ C p d

fo r V £ { T ,A f ,F } . .

Proof. We prove each property in turn for each semantics.

Property 1 It is straight forward to show Top^ £ D (A) for each semantics V £ {T, Af, J } .

Property 2 As cT r is a simple projection function for the Traces and Stable-Failures seman
tics, we have cTr{TopJ,) — cTr{Top^) — C w £ T (C) .

We now show cTr(Top^) £ T (C) , that is, we must show for all traces s £ cTr(Topq)
that s £ C*/ . Let Top^ = (F , D) and s £ cTr{Top^). We know (s ,0) £ F and
Vf £ A • £ < s ==> t £ D. Assume s / {) then we have () < s and () £ D, which is
a contradiction. Thus we know s = () £ C * ^ .

Property 3 It is straight forward to show that Top® £ V {A) refines to all other elements which
have their controlled traces contained within C. □

7.1.6 Deadlock Proprieties of the Contravariant Translation

In order to perform deadlock analysis in Section 9.4 it is required that the contravariant Stable-
Failures domain translation interacts nicely with refusal sets. The following lemma states that
deadlocks are preserved after translation and also that there is a strong link with failures in the
translation.

Lem m a 7.20 Given an injective alphabet translation a : A -» B, and domain elements
(T ,F) £ F {A) and (T ' , F ') £ J -(B) such that a ^ i T ' ^ F ’) = (T , F) then the following
hold:

• (s , X) £ F «=> £ F ’.

• (a w (s) , B ^) £ F ' =>• (s, A ^) £ F , that is, deadlocks are preserved during con
travariant translation,

• Let T ' £ {A)). Then (s, A /) £ F = > £ F '. That is, under the
condition that the traces are in the image of A, deadlocks only occur after a contravariant
translation when there was a deadlock in the source.

119

7. C sp-Ca sl Alphabet Construction

Proof. The first two implications follow directly from definitions and the Stable-Failures do
main condition F2. We now establish the third.

Let (s,^4/) E F, then we know {ot*/ (s) ,a v / {A^)) E F ' . Let Y ' — B / — otp / (A /).
Thanks to the assumption on the traces component we know W G Y ' • a* / (s) r'{x') ^ T ' .
Thus, by healthiness condition F3 we know that (a*/ (s) ,a v , / (A /) U Y ') E F ' , that is,

e F f. □

This concludes our presentation and discussions of the C sp domain translation functions
that we require for constructing the C sp-Casl institution. Given an alphabet translation
(i.e., a function) a : A —>• B , we can create the covariant domain translation functions
oP : V {A) —>• V {B). Furthermore, if a is injective then we can also create the contravari
ant domain translation functions oP : T>(A) —>• V (B) for each of the CSP semantics, that is,
T> G {T , AF, F} . These covariant and contravariant domain translations behave in a reasonable
and expected way and exhibit all the necessary properties for us to establish our C sp-Ca sl in
stitutions.

Next, we look at flattening C a sl models to alphabets and transforming Casl model mor
phisms and model reducts to alphabet translations. The results of these transformations can
then be lifted, as we have done in this section, to form C sp domains, covariant domain trans
lations and contravariant domain translations.

7.2 Construction 2: Lifting Reducts and Flattening Many-Sorted
Algebras

The ultimate goal of this chapter is to lift many-sorted algebras, morphisms between them and
reducts to the C sp context. Construction 1 in Section 7.1 described how to lift alphabets and
alphabet translations to Cs p . We now describe how to flatten C asl models to alphabets and
how to lift model morphisms and model reducts to alphabet translations. The constructions
described here can then be composed with those from Construction 1 to achieve our ultimate
goal of lifting the notions of C a sl models, model morphisms and reducts to the C sp context.

To this end, Section 7.2.1 and Section 7.2.2 construct a functor Alph : mod(E) —» SET
which maps many-sorted-E-algebras and morphisms to alphabets and alphabet translations,
respectively. This is illustrated in Figure 7.3. Section 7.2.3 then lifts, in a similar manner,
model reducts (which are induced by signature morphisms) to also form alphabet translations.

7.2.1 Alphabet Construction

The alphabet construction allows us to transform a Casl model, or more precisely, its carrier
sets into a flat set whilst taking the sub-sort structure into account. We can then use this alphabet
with C sp to create C sp domains over the alphabet.

Before we give the formal definition of this, we introduce some useful shorthand notation.
Given a ResSubPCFOLr model M , we use the shorthand M ± for the totalised version of M ,
that is, carrier sets include a bottom element M ± (s) = M(s) U {_LS} and the interpretation of
function and predicate symbols is strictly extended (see the data-logic, Section 4.5). We also
sometimes write M ± s in place of M ± (s) for the carrier set of sort s in the totalised version

120

7.2. Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras

mod(E)

SET

Figure 7.3: Lifting many-sorted-E-algebras and morphisms to alphabets and alphabet transla
tions. Here is shorthand for Alph(h).

of the model M . Given a sort symbol s, a ResSubPCFOLr model M , and x £ M ± (s) we
write x sM to denote the alphabet element [(s, x)]~M (presented shortly). Furthermore, we
lift this notation to sorts, namely % = {%m I x ^ ^ Alph(M) for the set of
communications that can arise from the sort s in the model M . Finally, given a set of sorts X ,
we write X m — U se x ^ ^ roP subscripts M and superscripts s when clear from the
context.

Given a ResSubPCFOLr model M (see Section 4.4) for signature E with sort set S we
define the alphabet o f communications A lph(M) (as is done in [Rog06]) as:

Alph(M) = (t y (M a U { L })) / „ M
ses

where (s, x) (t , y) if and only if either

• x = y = _L and

• there exists u E S such that s < u and t < u,

or

• x f t ± , y ^ ± ,

• there exists u 6 S such that s < u and t < u , and

• for all u G S such that s < u and t < u the following holds:

(i n j a, u) M W = (i n j t,u)M(y)
for s , t £ S, x G M ± s, and y £ M ± t .

The alphabet o f communications is constructed by disjointly uniting all the carrier sets ex
tended by a bottom element J_, but identifying carriers along sub-sort injections (this is cap
tured by the equivalence relation ~m)- Roggenbach [Rog06] proves that is an equivalence
relation. This alphabet construction is used in the construction of C sp-Ca sl models in Sec
tion 8 .1 .2 .

121

7. C sp-Casl Alphabet Construction

Exam ple 7.21 Let S be the signature of the specification Ex a m pl eS p e c I in Example 4.2
(on Page 60). Let M be a S-model with:

• M a := { a i ,a 2,a 3},

• M b := {6i,62},

• Mc := {ci,c2},

• M d := { d i , d 2},
• M e := {ex},

• (i n j c,a)M (ci) := a i,

• (i n j c>a) A f (C 2) : = 0,2, .

A diagram of these carrier sets follows where equal elements (according to the injections)
have been connected:

M a = { a i ,a 2,o3}

M c = {Ci,c2} Md = { d i,d 2} M e — (e i}

I I
M b = { 6 1 ,6 2 }

The alphabet construction takes into account any carrier set elements of different sorts, that
are united through injections into a common super sort. Such elements are collected together
into the same equivalence classes. The alphabet o f communications for this example turns out
to be:

Alph(M) = { {(a, a i) , (6 , 6 1), (c, ci)},
{ (a ,a 2) ,(6 ,6 2),(c , c2),(d , di)},
{ (a ,a 3) ,(d , d2)},

6 1)},
{ (a ,±) ,(6 ,±) ,(c ,±) ,(d ,_ L)} ,
{ (c , ±) } }

Now that we have flattened Casl models to alphabets we can construct the Csp domains
from these alphabets (see Section 7.1), thus lifting Casl models to Csp domains.

Next, we look at lifting Casl model morphisms to alphabet translations, and following
this, how to lift Casl model reducts to alphabet translations. These alphabet translations can
then be further lifted to Csp domain translations.

7.2.2 L ifting o f CASL M odel M orphism s to A lphabet Translations

Now that we know how to construct alphabets from Casl models, the question arises of how
to construct appropriate alphabet translations (between the flattened models) from Casl model
morphisms. We answer this here.

• (in jdia)Af(di) := 0 2 ,
• (i n j d)0)A/(d2) := 0 3 ,

• (i n j & , c) M (6 i) : = c i ,

• (i n j 6)C) M (6 2) := c2,

• (i n j c 6)M (ci) := 6 1 , and

• (i n j C)6)M (c2) := 6 2.

122

7.2. Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras

We lift a ResSubPCFOLr model morphism (see Section 4.4) to form a translation on the
level of the alphabet of communications. Given two restricted sub-sorted models M \ and M 2
over a restricted sub-sorted signature £ and a restricted sub-sorted model morphism h : M \ —>
M 2 , which is a mapping between carrier sets of M i and M 2 , we define the alphabet translation
ah : Alph(Mi) —> Alph(M 2) as

Here, we do not modify the sort and only map the underlying carrier set element across the
underlying alphabet translation whilst also preserving the bottom elements. This make sense
as the models are based on the same signature, thus they have the same sorts and only differ
in the carrier set elements. The underlying model morphism maps carrier set elements from
one model to another, thus we use this map , but additionally map bottom to bottom (see
Section 4.5).

Exam ple 7.22 Let £ be the signature of the specification Ex a m pl eS p e c I in Example 4.2
(on Page 60) and M be the £-model in Example 7.21 (on Page 122). Let N be the £-model
which is the same as M except for the carrier set of sorts a and e and the injections in to a
which are defined as:

• Na : = { a 4 , a 5) , • (i n j c,a) j v (c 2) : = a5,

• N e := { e i , e 2}, • (i n 3d,a)N(di) := a 5, and

• (i n j c>a) 7v (c i) : = a 4 , • (i n : =

A diagram of these carrier sets follows where equal elements (according to the injections)
have been connected:

a h([(s,x)]^Mi) := [(s,M *))]~m 2 •

N a — {^4 5^ 5 }

N c — { c\,C2} Nd — {d1}d2} ^e = {ei,e2}

N b = {bi,b2}

The alphabet o f communications of N is:

Alph(N) = { {(a, a4), (6 , 6 1), (c, ci), (d, d2)j
{ (a ,a 5),(b ,b2),(c , c2),(d , dx)}

(e ,e i)} ,
(e ,e2)},
(a ,± j,(6 ,_ L) ,(c ,-L) ,(d ,±)} ,
(e,-L)} }

Let h : M —> N be a model morphism such that:

123

7. CSP-CASL Alphabet Construction

• ha(p, i) 0,4 , • ^ 0 (^ 3) —

• M a 2) = &5 > and

where all other mappings are the identity. Here we have chosen to collapse the elements a\ and
<23 in c lm onto the element 0,4 in d j y . Thus, the alphabet translation turns out to be the map:

Alph(M) -* Alph(N)
{(a,ai),(6, bi), (c, ci)} I-)- {(a,a4),(&, h),(c , ci), (d, d2)}
{(a,a2),(6,62),(c, c2),(d, rfi)} i-)- {(a,a5),(6, 62) , (c, c2),(d, rfi)>
{(a,a3),(d, d2)} {(a,a4),(b, 6 1), (c, ci) ,(d , d2)}
{(e ,e i)} H-> {(e ,e i)}
{(a,_L),(6,_L),(c,±),(d,±)} {(a, _L), (6, _L), (c, _L), (g?, _L)}

{(e.-L)}

The interesting aspect here is that the equivalence classes {(a, a i) , (b,b\), (c, ci)} and {(0 , 0 3),
(d, c?2)} from Alph(M) are mapped onto the same equivalence class in Alph(N). Hence,
changes to super-sort carrier sets can have effects on sub-sort carrier sets. Also notice that
this is an example of an alphabet translation which is neither injective nor surjective.

We now check that our lifting of ResSubPCFOLr model morphisms to alphabet transla
tions is reasonable.

Lem m a 7.23 For all ResSubPCFOLr model morphisms h : M \ -* M 2, the alphabet transla
tion function is well defined.

Proof. Let h : M \ - r M 2 be a ResSubPCFOL~ model morphism for a ResSubPCFOLr
signature E with sort set S and sub-sort relation < . We show that if (s , x) ~Mj (t , y) then
(s ,h ± (x)) ~ m 2 (t ,h ± (y)) for all s , t £ S , x £ M \ ± a, and y £ M \± t .

Let s , t £ S, x £ Mij_s, and y £ M \ ± t such that (s ,x) (t,y)- By the definition of
(defined in Section 7.2.1), there are two cases to consider:

Case 1: x = y = _L. As (s , x) ~ a /i (t , y) holds, there exists u £ S such that s < u and
t < u. We know that h±(x) = h±(y) = ± and as we have a top sort u we know that
(s ,h ± (x)) ~ m 2 (t ,h± (y)) .

Case 2: x ^ ± and y / .L. We need to show that the following two conditions hold:

1 . 3u £ S such that s < u and t < u.

2 . Vw £ S such that s < u and t < u the following holds:

(i n j 8,u)M2(h±(x)) = { i n j t!U)M2{h±{y))

For Condition 1, the proof is identical to the proof in Case 1. For Condition 2, let
u £ S such that s < u and t < u. As (s ,x) ~M] (f y) holds, then for this u
we know that (i n j s , J Ml (z) = (i n j t>u)Afl(2/). By applying h_L, we know that
h ± ({ in j s>u)Mi W) = h ± ((± n j ttU)M l(y)) holds.
By the homomorphism condition (which h± fulfils) we have:

124

7.2. Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras

M i M 2

Alph Alph

Alph(h) (written ah)
A l p h (M l) ------—-------------------------> Alph{M2)

V V

V (Alph(h)) (written a V)
V { A lp h { M l)) ------------------------------------ » V(Alph(M 2))

Figure 7.4: Illustration of lifting ResSubPCFOL~ model morphisms to CSP domain transla
tions.

• h ± ((i n j SjU)Ml (x)) = (i n 3s ,u) M 2 (h ± (x)) and
• h± ((± n j t û)M l(y)) = (i n j ttU)M2{h±_(y)),

thus, we can conclude (i n i s,u)M2{h±(x)) = (i n j t,u)M2(hj_(y)). □

We can now form the following functor from the model category (over signature £) to the
category SET.

Alph : mod(£) —y SET
M >->■ Alph(M)
h : —y M 2 1—y aji : Alphi^AIi) —y Alph{^M2)

We usually use the notation ah in place of Alph(h).

Lemma 7.24 Alph is a valid functor, that is, Alph preserves identity morphisms and composi
tion of functions.

Proof. This follows directly from the definition of Alph and the strict extension of morphisms
(see Section 4.5). □

We can now form the CSP covariant domain translations from model morphisms via functor
composition of Alph and V (see Section 7.1.2). For any model morphism h : M \ — M 2, we
let be shorthand for V(Alph(h)). This lifts the model morphism h to the alphabet level and
then further to the CSP context. This composition is illustrated in Figure 7.4.

As ah is not necessarily injective for all model morphisms h : M i —y M 2, we can only
form the covariant domain translations and not the contravariant domain translations as defined
in Section 7.1.3. Formally, this restriction is realised by the functor Alph mapping into the
category SET as opposed to SETJNJ where morphisms are injective functions between sets.

This concludes the lifting of C asl model morphisms to alphabet translations, and further
to CSP covariant domain translations. These notions will be used when defining C sp-C asl
model morphisms in Section 8.1.2.

125

7. CSP-CASL Alphabet Construction

7.2.3 Lifting o f ResSubPCFOL~ Reducts to Alphabet Translations

Another type of morphism that is interesting in the context of alphabet translations and C sp
domain translations is that of Casl model reducts, which are induced by C asl signature mor
phisms. These can also be lifted to alphabet translations and thus, further lifted to C sp domain
translations (both covariant and contravariant in this case). Such a lifting will be necessary, in
Section 8.1.3, for defining an appropriate notion of model reduct for C sp-Casl models.

We now lift a ResSubPCFOLr reduct (see Section 4.4) to form an appropriate alphabet
translation, which matches the alphabet construction of the model and its reduct.

Given two ResSubPCFOLr signatures E and E ', a signature morphism <r : E —> E ', and a
E '—model M ', we define the alphabet translation over the signature morphism a with respect
to the E'-model M ' as OLa ,M ' : Alph(M '\a) —>• Alph(M') by:

aa,M'([(s,z)]~M,|<r) := [((j(s),x)]^M/ .

Here, we preserve the underlying carrier set element and only map the sort over the signature
morphism, thus undoing the behaviour of the reduct. This gives us an appropriate alphabet
translation from the alphabet of the reduced E-model to the alphabet of the original E'-model.

Example 7.25 Let E be the signature of Ex a m pl eSp e c 3 and E ' be the signature of E x a m -
pleSpec4 below.

spec E x a m pleS pec3 = spec E x a m pl eSpec4 =
sort s sorts u < t;

end v
end

Below are diagrams of the underlying sub-sort relations.

T
u v

Let a : E —» E ' be a signature morphism such that cr(s) = u. Let M 1 be a E'-model such that

• M ’u := { u u u 2}, • (i n j u>*)Af/(ui) := h , and

• M t := • (i n j uj) M>(u2) := t 2,

• M ’v := {vi},

A diagram of these carrier sets follows where equal elements (according to the injections)
have been connected:

- { t i M f e }

\ \
M'u - {uuu2} M'v = { v i }

126

7.2. Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras

The alphabet o f communications of M ' and M ’\a are:

Alph(M '\a) = { [(s , u i)] , Alph(M ') = { [(M i) , (u , u i)] ,

i(s,u2)i, i(t,t2),(u,u2)\,
[(s,-L)] } [(M 3)],

i(v ,v i)],
[(* , ±) , (u , _ L)] ,

The alphabet translation turns out to be the map:

Oia,M' '• A lph(M '\a) Alph(M ')
[(M i) , (t i , u i)]

[(S,U2)} [(t,f2) ,(u ,U 2)j
[(«,-*-)] (-)• [(*,_!_), (u,_L)]

This example illustrates the construction of alphabet translations from model reducts which
are induced by signature morphisms.

We now check that our lifting of ResSubPCFOLr reducts to alphabet translations is rea
sonable and, furthermore, always yields injective alphabet translations.

Lem m a 7.26 For all ResSubPCFOLr signature morphisms o : E —> S ', and all E'-models
M ', a a>m > is well defined and injective. This lemma is presented from [KahlO].

Proof See Appendix A for proof. □

As the alphabet translation a a^ j ' is injective we can form the partial inverse (denoted as
ota This will be needed to transport process parameters to reduced signatures in certain
proofs from Chapter 8 onwards.

This lifting also forms a functor, but to define this as a functor we first need to introduce
a new category, which will be the source category of the functor. We define M od_Reduct as
the category where objects are pairs (E, M) consisting of a ResSubPCFOLr signature E and
a E-model M . Morphisms are signature morphisms with the constraint that the source model
is the reduct of the target model. More precisely, a : (E, M) —> (E ', M ') is a morphism from
(E, M) to (S ', M ') if cr : E —>• E ' is a ResSubPCFOLr signature morphism and M — M '\a .

Lem m a 7.27 M od_Reduct is a category.

Proof Identity morphisms are inherited from ResSubPCFOLr as the reduct along the iden
tity signature morphism is the identity function. Composition of morphisms follows from the
composition of reducts and associativity of composition of morphisms is also inherited. □

We can now form the following functor from M od_Reduct to the category of sets with
injective functions.

Alph-Reduct: Mod_Reduct —> S E T JN J
(E ,M) A lph(M)
0 : (E, M %) (S ', M ') 1 y ocaM > : Alph{M '\a) Alph(M ')

127

7. C sp -C a s l Alphabet Construction

Here, the application to objects coincides with the application of the Alph functor from Sec
tion 7.2.2. We usually use the notation a ^M ' in place of Alph-Reduct(cr).

Lem m a 7.28 Alph-Reduct is a valid functor, that is, AlphJReduct preserves identity morphisms
and composition of functions.

Proof. This follows directly from definitions and the fact that ResSubPCFOLr model reducts
preserve composition of signature morphisms (see Section 4.4). □

For each signature morphism o : E —> E ' and E'-model M ', we now have an alphabet
translation ota%M' '• A lph(M '\a) —» Alph(M '). We can lift this alphabet translation as is done
in Section 7.1.2 to covariant C sp domain translations V o ol^m1 which we write as:

. o £ M, : T (A lp h (M ’\c)) -> T (A lph (M ')) ,

• r . M ' '■ Af(Alph(M'\„)) Af(Alph(M ')) , and

• a l M , : F (A lph (M '\a)) -> F{Alph(M ')) .

Also as a atM' is injective we can also lift the alphabet translation as is done in Section 7.1.3 to
contravariant domain translations V op o a a M̂> which we write as:

. & lM, : T (A lph(M ')) -> T (A lp h (M 'D) ,

• r , M r '■ A f(AIph(M ’)) A f(A lph(M '\cr)), and

. : T (A lph (M ')) -> T(Alph(M '\„)).

These liftings are illustrated in Figure 7.5. We can lift a model reduct (induced by a signature
morphism cr) to form an alphabet translation a a,M'’ which we can then lift further to both
covariant and contravariant C sp domain translations o ^ M, and respectively. Finally,
we can also form the partial inverse of the lifted alphabet translation we cannot,
and need not, lift this to the CSP context as this is not a total function.

This concludes all the necessary constructions required to build the C sp-Ca sl institutions
in Chapter 8 . We now present some commutativity properties of the lifted translations.

7.2.4 C om m utativity Properties o f L ifted T ranslations

The lifted model morphisms and lifted reducts to alphabet translations and domain translations
interact well with each other, that is, they have reasonable commutativity properties. These
properties are shown in the next two lemmas.

Lem m a 7.29 Let E and E ' be ResSubPCFOLr signatures and a : E —»• E ' be a signature
morphism. Let M[and M ’2 be E'-models and h! : M[—> M'2 be a ResSubPCFOLr model
morphism. Then the following diagram commutes:

128

7.2. Construction 2: Lifting Reducts and Flattening Many-Sorted Algebras

E --------

M % <-----

Alph

Alph(M '\a)

V

V{Alph{M '\a))

- 1

° (written a £ M,)

E '

h M 1

Alph

Alph(M ')

V

V (A lp h (M ’))

V op o a a M > (written a £ M,)

Figure 7.5: Illustration of lifting ResSubPCFOLr reducts to C sp domain translations.

Alph(M[\a)

a h'\

Alph(M^\a)

that is, OLfi' o °

P roo/ Let [(s ,z)] ~ M , |<7 G Alph{M[\a).

= a^ ([(^ (s),a r)]~ M,)

— [(<7(S)) (^J_)cr(s)(*J'))]~M /
= [(<T W ,((/l '|a)x)a(*))]~“

a a,Mo

Alph(M[)

oth'

Alph(MI)

Definition of a a^ [■

Definition of ah1 ■

By definition of morphism reduct.

= «a,M '([(s5 ((t i \a)±)s{x))]~M, la) Definition of a CT)M/.
□

If we consider only C sp denotations which have suitable controlled traces then we obtain
a commutativity property on the CSP domain level.

129

7. CSP-CASL Alphabet Construction

Lem m a 7.30 Let £ and £ ' be ResSubPCFOLr signatures and a : £ —>•£' be a signature
morphism. Let M[and M 2 be £ ' -models and h! : M[-> M 2 be a ResSubPCFOLr model
morphism. Let A C Alph(M[\a) and B C A lph(M [) such that o P ^ f A) C B. Finally, let

d G V(A lph(M [)) with cT rv {d') G T (B) . Then

« S i .

Proof, and follows from Lemma 7.29. □

This concludes all the preliminary notations, functions and functors that we require to
build the C sp-Ca sl institutions in Chapter 8. Ultimately, we have shown how to construct
C sp domains from C asl models and how to lift C asl model morphisms and reducts to Csp
domain translations. We have also established several properties which will be used in future
chapters.

130

Chapter 8

The C s p - C a s l Institutions

C ontents
8 .1 Construction of the C s p -C a s l Institutions........................ 132

8 .2 Parametrisation: Pushouts and Amalgamation 150

8.3 C s p -C a s l with C hannels.. 156

8.4 Possible E xtensions... 158

This chapter aims to establish C s p -C a sl in a standard framework which allows for structured
C sp -C a sl specifications (that is, C sp -C asl specifications which use the structuring language
presented in Section 4.7), generic C sp-C a sl specifications and instantiations of such specifi
cations. To this end, we formalise C sp -C a sl in the framework of institutions (see Chapter 4).
Generic specifications and instantiations further require that the C sp -C a sl institutions have
an additional property, namely amalgamation. By establishing C sp -C a sl as institutions, we
not only place Cs p -Ca sl in a well understood and developed framework, but also demonstrate
the framework’s generality.

In this chapter we present the formal syntax and semantics of C sp -C a s l . We formalise
C sp -C a sl as three institutions, one for each of the main C sp semantics, namely the Traces
semantics T , the Failures/Divergences semantics M and the Stable-Failures semantics T .
The institutions for C sp-C a sl are naturally based on institutions for C a sl [Mos04] and for
C sp [MR07], using the ideas for the original C sp-C a sl semantics [Rog06] for the combi
nation. These three institutions share the same notions of signatures and sentences and only
vary in the models and satisfaction relations. However, their respective model categories and
satisfaction relations are defined following a common scheme. Thus, C sp -Ca sl specifications
can be interpreted in any of the main C sp semantics.

Our formalisation of C sp-C a sl also allows for loose process semantics, which not only
make sense in the methodological sense, but are also required for generic specifications (see
Chapter 3). We prove that our C sp-C a sl institutions exhibit a suitable amalgamation property,
allowing us to form generic and instantiated C sp -Ca sl specifications. Following this, we then

131

8. The C s p - C a s l Institutions

discuss how C sp-Ca sl can be extended to support Cs p ’s notion of channels. Finally, we
discuss some attractive, possible extensions of Csp-Ca sl .

8 . 1 Construction of the C s p - C a s l Institutions

Here, we first present C sp-Casl signatures, followed by models, model reducts and finally,
the C s p -Ca sl satisfaction relation and the proof of the satisfaction condition.

8.1.1 Signatures

We now formally introduce the category of C sp-Casl signatures C spC a slS ig . A signa
ture in C s p -Ca sl captures the same elements as a Casl signature, that is, sort, operation
and predicate symbols, but in addition also captures process names and their associated type
information.

Formally, a C sp-Ca sl signature is a pair E c c — (£ Data, 'Eproc) where:

• £ Data is a restricted sub-sorted (i.e., ResSubPCFOLr) signature (see Section 4.4), and

• Zproc = (Nw,C(miTns)weS*,commsesi is a family of finite sets of process names. Such a
process name n is typed in the sort symbols S of the data signature part (EData)'-

- a string w = (s i , . . . , Sk), s; £ S for 1 < i < k, k > 0, which is n ’s param
eter type. A process name without parameters has the empty sequence () as its
parameter type.

- a set com m s C S which collects all types of events in which the process n can pos
sibly engage in (when not diverging). We require the set com m s to be downward
closed under the sub-sort relation, that is, com m s £ = { X C S \ X — i X] ,
where 4, X — {y £ S \ 3x £ X • y < x} for X C S.

Following C a s l , process names are always fully qualified when used, for example, in
sentences. We write nWjComrns for a fully qualified process name n € N WjComms when using
mathematics, and n : w, com m s when writing fully qualified process names in specifications.
We drop the subscripts when the parameters and communications of the process names are
clear from the context.

An interesting point is why we chose to have the communication sorts com m s as part of
the identity of a process name. Take the simple example below

spec SP =
data

sorts s, t
process

P : s ;
P : t

end

132

8.1. Construction o f the C s p -C a s l Institutions

There are two sorts s and t and two processes both named P, one that communicates over s
and one that communicates over t. As the alphabet construction makes communications from
different sorts which are not in a sub-sort relation disjoint, then these two process names P can
be distinguished using their communications (i.e., we can observe that they are different). It
makes sense to distinguish these two process names but allow them to share the same under
lying name. We therefore include the communication sorts as part of the identity of a process
name.

Now that we have defined Csp-C a sl signatures, we can define C sp -C a sl signature mor
phisms. C sp -C a sl signature morphisms work in a similar way to C a sl signature morphisms,
but in addition also map process names between the corresponding signatures.

Given C sp -C a s l signatures E Cc = (E Data, £ p roc) and E 'c c = (Ejr,ato, E'Proc), with S
being the sort set of E Data, a C sp -C a s l signature morphism is a pair 6 = (<r, v) : E c c —>■
E 'c c where:

• <t : E Data -* ^Data *s a restricted sub-sorted (i.e., ResSubPCFOLr) signature mor
phism (see Section 4.4).

• v — (vw^cornms)w€.s* ,comms€.Si is a family of functions such that

^ w ,co m m s '■ ^ w ,c o m m s ^ a (w) ,i (o (c o m m s))

is a mapping of process names. Another way to express this is that a process name
n G N w ,c o m m s is mapped to v w ^ c o m m sip) ~ , where n G N We also

write v (n w,co m m s) = n 'a {w) ^ { a (co m m s)Y

The type of process name translations ensure that both the parameter types, as well as
the communication set, are translated with the signature morphism a of the data part. The
translation of the type of process names ensures that the satisfaction condition holds for C sp-
C a s l , see Section 8.1.5.

Example 8.1 As an example of a C sp-C a sl signature morphism consider the following two
specifications:

spec SP1 = spec SP2 -
data data

sorts s < u sorts s , t < u
process = process =

P : s", P : s;
P : s,u; P : s ,t , u\
Q (s) : s, u; R (5) : s, t, u\

end end
Specification SP1 contains two sorts s and u, with s being a sub-sort of u\ and three process
names, namely, P q ,{s}> P q ,{*,«} and u}- Specification SP2 contains three sorts s , t and
«, with s and t being sub-sorts of u; and three process names, namely, P(),{j}, P(),{s, t, k} and
(2 (s) ,{ s , t, U}•

There is a signature morphism between the signatures of SP1 and SP2, where s g s . u g
p (),{*} ^ P(Us}, P(),{s,u} P{),{s,t,u}’ and <2(j),{s, „} R(s),{s,t,u}- As the parameter

133

8. The CSP-CASL Institutions

sorts and communication set of a process name are translated in accordance with the data part
of a signature morphism, once the data part of a signature morphism is fixed, there is only a
choice in the mapping of process names and and not their types.

We now define composition of C sp -C a s l signature morphisms. Let 9 = (cr, v) : Ecc
E 'c c and 9* = (cr*, v') : E*c c —» E ^c be two C sp -C a sl signature morphisms with S being
the sort set of E cc and N , N*, and N " the families of process names of E cc, £ 'cc» an^ ^ cc
respectively. The composition of these two signature morphisms is defined component wise
as:

9* o 9 = (cr7, v*) o (cr, v) := ((V o cr), (v ' o i/))

where v* o v — ((v* o v)w,comms) weS*,commsESi is a family of functions defined as

(v* o v) w ,com m s '■ N W)COrnms —> ^ { o 'o o) { w) , \ r{o '{ i{o {c o m m s))))

n ^ l 'o(w)>i(o(comms))(l/w^comms(n))
C s p -C a s l’s identity signatures morphisms are defined in the obvious way. Given a Csp-

C a s l signature Ecc = Ô Data, £ Proc)> with sort set S and family of process names Eproc =
(N w ,c o m m s)w E S * ,c o m m sE S i’ I d j } c c = D a ta j proc) ' ^ C C ̂ ^ C C ^ 0 t h e C SP-
Ca sl signature morphism defined by

• Id-zData : Tli)ata —>• X Data is the identity morphism of the restricted sub-sorted signature
E Data from ResSubPCFOLr, and

• I d z Proc — ((Id Y !lp r0C) w ,c o m m s)w £ S * ,c o m m s£ S i • ^ P r o c ̂ ^ P r o c is a family of iden
tity functions, that is, (d d ^ 2 p roc)w ,c o m m s(P w ,c o m m s) '= U rn,com m s for any process name
Pw, comms £ ^w,comms-

Note that the C sp-Ca sl identity signature morphism is type correct as it fits into the type
N W)comms -> N id^Data{w)Mid^Data{comms)) as given any com m s e 5 ;, we know by con
struction that]r(IdzData (comms)) — com ms.

Theorem 8.2 C sp-C a sl signatures and signature morphisms form a category.

Proof. The proofs that identity morphisms exist, signature morphisms compose, and that com
position of signature morphisms is associative are straightforward and follow directly from
definitions. □

This concludes the construction of the signature category for C sp-C a s l . Next, we present
Csp-C a sl models and model morphisms.

8.1.2 M odels

Each C sp -C a s l signature Ecc induces a category of models m od-p(E cc) (for a particu
lar Csp semantics V e {T,Jf, J 7}) . We define this category for a given signature Ecc =

Data5 ^ Proc) > with sort set S and process part Eproc = (^w,comms)weS*,commsCzSii for a
particular Csp semantics V £ [T, N,F}.

The models for the category modp(Ec'C') are defined to be pairs (M , I) (called E re
models) where

134

8.1. Construction o f the C s p -C a s l Institutions

• M is a restricted sub-sorted (i.e., ResSubPCFOLr) model in m o d (S Joata).

• I = (Iw,comms)weS*,commseS± is a family of process interpretation functions, such that

1. each function I w,comms '■ Nw,comms x x . . . x s k M -* V (A lph(M)) , where
w = (s i , . . . , sjt), is type correct, and

2 . for each function Iw>Comms ■ N Wfiamms x~sTM x . . . x s£M -»• V (A lph(M)), where
w = (s \ , . . . , Sk), it holds that

c T r D(IV)tComma(n , a i , . . . , a k)) E T (c o m m s M)

for all process names n E N WtComrns and all parameter values a \ , . . . , ak E s f x
. . . x s k . Here, com m s M = LUcomms (see Section 7.2.1).

We drop the subscripts w and com m s when this type information is clear from the
context.

Each process interpretation map Iw,comms is a function which takes a process name and
suitable parameters, and yields a Csp denotation for the particular CSP semantics V . We
usually write I (n (a i , . . . , ajt)) in place of J (n , a i , . . . , a*). The second condition then
constrains these denotations to ones where the controlled traces do not stray outside of
the declared communications.

We also drop the subscript T> when the Csp semantics is clear.
The controlled traces condition is used to restrict the process interpretations to only those

which communicate in the declared set of communications. In the Traces and Stable-Failures
semantics this is just the trace component of the denotations. Thus, we ensure all traces are
contained within the declared set. The Failures/Divergences semantics however, requires the
set of divergences to be extension closed over the entire alphabet (this includes extensions that
stray outside the declared communications set). Thus, in the Failures/Divergences semantics
we only require the traces which are not extensions of divergences to be in the declared set of
communications, see the definition of controlled traces in Section 7.1.4.

We now define C sp -C a s l model morphisms, which naturally use restricted sub-sorted
model morphisms. Each restricted sub-sorted model morphism h : M \ —> M 2 induces the
alphabet translation function : A lph (M \) —> Alph(M 2) and the domain translation func
tions OLfo : V (A lph(M i)) —> V(Alph(M 2)) (defined in Section 7.2.2). A C sp -C a s l model
morphism h : (M i, I f) —> (M 2 , h) (also called a E cc-m odel morphism) between two CSP-
C a s l models (M \ , I \) and (M 2 , h) is a restricted sub-sorted (i.e., ResSubPCFOLr) model
morphism h : M i —> M 2 such that

w,comms (n(ai , . . . ,aj fc))) ix -^2 w,comms (n(ah(a i) , . . . , a h(ak)))

for all w = (s i , . . . , sk) E S*, com m s E S±, process names n E N w>COmms and all parameters
a i , . . . , a*, E s i x . . . x s*r where tx is □ j- for V = T , Ea/" for F) — M , and E jr for V = T .

Here, we require that the forward (covariant) translations of the resulting denotations from
the process interpretation map I \ are in an appropriate refinement relation with the denotations

135

8. The CSP-CASL Institutions

produced by I 2 . Instead of using the covariant translation on I\ we could have used the con
travariant translation on I 2 , but this would have added an unnecessary injectivity constraint on
the model morphism h : M \ —>■ M 2 .

Here, we choose the direction of the refinements to match the fixed point theory in each
of the C sp semantics. We conjecture that the limit in the model category will correspond to
the least fixed point in terms of CSP. For there to be any hope of this working out, we must
choose the refinement directions as we have. For the Traces and Stable-Failures semantics, we
choose the □ direction as, DIV is the most refined process, and thus can be the initial object.
We choose the opposite direction for the Failures/Divergences semantics as there is no most
refined process. However, there is a least refined process, that is, DIV. Thus, DIV becomes the
initial object when using each of the semantics.

Example 8.3 Consider the following specification

logic CspCA SL

spec I n i t i a l =
data free type s ::= a
process n : s;

end

The data part has a single model M up to isomorphism. The process name n is loose and can
be interpreted in any legal way.

Let (M , I) be a model in the Traces semantics such that I interprets n as DIV, that is,
I {n) = {()}. Our choice of refinement direction causes (M, I) to be the initial object in
the model category. Similarly (M, J) would be initial in the Stable-Failures semantics where
J interprets n as DIV, that is, J (n) = ({()},0). Finally, (M , K) would be initial with the
Failures/Divergences semantics where K interprets n as DIV, that is, K(n) = (A lp ^ M)* ^ x
V { A lp h { M y) ,A lp h { M)* /).

C sp -C a s l inherits its notion of model morphism composition from the model category of
ResSubPCFOLr . Given a Ecc-m odel (M , I) , the identity morphism for the C sp -C a s l model
(M , I) (written as Id(M,i)) defined to be the identity model morphism M m ■ M —» M for
the restricted sub-sorted model M from the model category of ResSubPCFOLr .

Lemma 8.4 C sp -C a s l models and model morphisms form a category, that is, m odx^E cc)
is a category.

Proof. We prove that identity morphisms exist, model morphisms compose, and that compo
sition of model morphisms is associative.

Identity Let (M , I) be a Ecc-m odel. We show that M m is the identity morphism for the
model (M , I) . This is the case if

°? d M (I (n (a i , • • •, a k))) m I (n (a TdM (ai) , . . . , a IdM (ak)))

holds for each process name n and all appropriate parameters a i , . . . , a k . As M m is
the identity function on carrier sets we know aidM and ctfdM are also identity functions

136

8.1. Construction o f the C sp -C a s l Institutions

(Lemmas 7.24 and 7.6). Furthermore, as process refinement is reflexive (see Section 2.5),
we conclude that this equation holds, hence M m is a valid C sp -C a s l model morphism.
The fact that M m is both the left and right unit is inherited from ResSubPCFOLr.

Composition Let h\ : (M i , / i) —> (M 2 , h) and /12 : (M 2 , 1 2) —> (M 3 , 7 3) be E cc-m odel
morphisms. We must show that /12 0 h\ is a Ecc-m odel morphism between (M i,7 i)
and (M 3 , If) . To this end, we must show

a (h2ohi) (^1 t • • • ’ a k))) ^ -^3(P,(^(h2oh1) (^ 1) 5 • • • ■> (a fc)))

for each process name n and all appropriate parameters . . . , a/-. This equation fol
lows from the facts that both the alphabet liftings and the domain liftings preserve
composition (Lemmas 7.24 and 7.6), domain translations preserve refinement (Corol
lary 7.15) and Csp refinements are transitive (see Section 2.5).

Associativity Associativity of composition is inherited from ResSubPCFOLr as C sp -C a s l
model morphisms are ResSubPCFOLr model morphisms. □

This concludes our construction of C s p -C a s l models and model morphisms, that is,
the category m o d p (E c c) for each C sp -C a s l signature E c c and each Csp semantics V E
{ r ,

This completes the definition of the object map of C sp-C a sl ’s m odp functor. Next, we
define the morphism map, that is, reducts.

8.1.3 M odel R educts

We now define the reducts of C s p -C a s l models and C sp -C a s l model morphisms for a fixed
Csp semantics V E {T , Af, T } . To this end, we make use of restricted sub-sorted model and
model morphism reducts. Each restricted sub-sorted signature morphism o : E —>• E ' and
restricted sub-sorted E'-model M ' induces the contravariant Csp domain translation function
qP M' : 'D(Alph(M')) -» V (A lp h (M ' \a)) (defined in Section 7.2.3).

Given a C s p -C a s l signature morphism 9 = (<j, v) : E cc —>• E ^ and a E£.c-model (M ', / ') ,
we define the E cc-model m od(0)(M ', I ') (usually written (M ',I ')\e) as:

(M ' , / % := (M ^ , I ' \q)

where

{I \e)w,comrris{n (a \-> • • • >a fc)) ^a,M, {^a(w),i(a(c(mims))(n • • • ! a u,M'(a fc))))

and vw cornms{nW)Comms) = n>a(w),i(<r(comms)) for each Process name n w,comms and appropri
ate parameters a \ , . . . , a^.

On the data side we just define the reduct to be the ResSubPCFOLr model reduct. On the
process side we define the notion of a reduct on the process interpretation map A reduced
process interpretation map works in a similar way to many-sorted algebra reducts. In order
to interpret a process name with parameters in the “smaller” signature, we first translate the

137

8. The C sp -C a s l Institutions

process name and parameters to the “larger” signature and then take the interpretation using
the original process interpretation map. However, unlike with reduced many-sorted algebras,
we have to translate the resulting C sp denotation back to the reduced alphabet using the con
travariant translation function

Now that we have defined C sp-Ca sl model reducts we turn our attention to reducts of
model morphisms. Given a C sp-Ca sl signature morphism 9 = (a, v) : £ cc -> E'cc and a £J,C-
model morphism h' : {M [, I[) {M2, I'2), we define the £ cc-model morphism mod(0)(fi') :

\q —>• {M2,I'2)\q (usually written h ' |g) as:

t i \ e : = h ' \ a

that is, h'\e is the ResSubPCFOLr model morphism reduct h'\a .

Lemma 8.5 Csp-C a sl model reducts and model morphism reducts form a functor, that is,
given a C sp-C a sl signature morphism 6 : £ cc —>■ 'T/cc, mod(0) : mod(£'c c) ->• mod(Sc'c)
is a functor.

Proof. We prove that model reducts as well as model morphism reducts are well defined, model
morphism reducts preserve identity model morphisms, and model morphism reducts preserve
composition of model morphisms. Let £ cc = (E ^ a , T,proc) be a Csp-Casl signature (with
sort set S) and 6 = (cr, v) : £ cc -> ££c be a Csp-C a sl signature morphism.

Model reducts are well defined Let { M \ I ') be a S^-m odel. We must show that (M I ') \ q
is a Scc-model. We have that (M \ I ') \ e = (M '\a , I f \o) by definition. As o is a
ResSubPCFOL= signature morphism, it follows that M '\a E mod(Epata)- We also
know that I'd is type correct thanks to its construction. Thus, we just have to show that
the controlled traces are contained within the allowed set.

To this end, let w = (s i , . . . , Sk) E S*, com m s E S±, and n WjCom m s be a process
name in £ p roc. Furthermore, let v { n w cornm s) = t i (J ŵ ̂^ a.̂ cornrns^ and f l] , . . . , E
siM'\a x . . . x SkM%‘ We must show

cT rv ((I 'M w ,com m s (n (a i , . . . , ak))) E T {co m m sM>^).

Unfolding the reduct definition we must establish

c r r p (d ^ M,(7 ;(w))i(CT(comms))(n , (a CT)M'(a l) , • • • > a a M >{ak))))) E T {com m sM %).

As (M 1,1') is a -model, we know

c T r V (K(w)M<r(c0mms))(ri(a <r,M'(a l)» ■ ■ • C T{±{(T(comms))A//) .

From this combined with the facts that controlled traces are preserved after translation
(Lemma 7.17) and that \,{o {comms)) M, = M̂,{comms M>\a) we obtain our goal.

Model morphism reducts are well defined We prove that reducing a E ^ -m o d e l morphism
yields a valid Ecc-m odel morphism. To this end, let h' : {M[, / () —>■ {M2, I 2) be a £'cc-
model morphism. We show h!\q is £ cc-model morphism from {M[,I[)\q to {M2,12)\q.
This is illustrated below:

138

8.1. Construction o f the C sp -C a s l Institutions

(M [, i[) \e < h (m ; , / ;)
-\e

h'\e <------------- 1 h f
-\o

(M ' , / ') \0 <---------------------
-I o

As h'\o = h'\a by definition, we know h'\a : M [\a —> M'2\a is a ResSubPCFOLr model
morphism. Thus, we just need to show that h'\a respects the refinement condition of
model morphisms.

To this end, let w = (s \ , . . . , sk) € S*, com m s E S±, n w ĉomms he a process name in
^ Proc- Furthermore, let a i , . . . , a k E siM'\a x . . . x \a he alphabet elements. We
must show

a h% V ' M n f a i , ■ ■ •,<**))) x l 2 \e(n{ah% (a i) , . . . , a h% (ak)))

where m is □ x for V = T , for T> = f f , and □ j- for V = T . If we expand the
definition of model reduct in the above refinement equation, we must show:

trtM[(^ k))))) x

l))» • • • > <X*,M^a h '\Aak)))))-

As h/ is a valid E ^ -m o d e l morphism we know specifically that

l) ’ • • • ’a a ,M 'K)))) X

l2{v{n){ah>{aa,M[(a i))> • • • > a h'(<*<?,m [(ak))))

holds. As ah> ° a a>M[— a a,Mh ° a h'\(T (Lemma 7.29) we therefore know

l), • • • ><*<7,M '(«*)))) x

(ai))» ■ • ■ > <X*,M^a h '\Aak))))-

By applying o P M' to both sides of the above refinement equation and thanks to preser
vation of refinement (Corollary 7.15), we obtain

(a ? '(7iM rc) (a a ,M '(a i) , . . . , a^M 'fafc))))) »«

■ • •, Oia M >2{ah % {ak))))).

Finally, as c P M, o = afi,^ o o P M, (Lemma 7.30), we arrive at our goal.

139

8. The CSP-CASL Institutions

Model morphism reducts preserve identity model morphisms Given C sp -C a sl signature
morphism 9 = (cr, v) : Ecc —>■ Y/cc and a E(.c-model (M ' , 1 1), we show (Id^M',r))\e =
i d {{M',r)\ey

{Id(M’, r)) \e = (IdM')\o By definition of
= (IdM')\a By definition of model morphism reduct.
= Id ^ M /^ As (M m ')\<t is an identity model

morphism in ResSubPCFOLr.
— By definition of 7d(M/|CTi//|e).
= Id((M ',r)|e) By definition of model reduct.

Model morphism reducts preserve composition of model morphisms This fact follows di
rectly from the fact that ResSubPCFOLr reducts preserve composition of model mor
phisms. □

We have just proven that m od(0) is a functor for each C sp-C asl signature morphism 9.
We still have to prove that mod is itself a functor, as required by the institutional framework.

Theorem 8.6 mod is a contravariant functor from C spCa s l S ig op to CAT.

Proof. We prove that mod preserves identity morphisms and composition of signature mor
phisms.

Identity morphisms Let Idj:cc = (IdEData, I d z Proc) be the identity signature morphism for
the signature Ecc* We must show mod(Id z c c) — 7dmo{j(£c c). This has two sub
proofs, one for models and one for model morphisms:

1. (M , I) \idT:cc = (M , I) for all Ecc-m odels (M, 7), and

2. ^|/dECC — h f°r all Ecc'-model morphisms h : (M \ , I \) —> (M 2 ,72).

The first point follows from definitions and the facts that our contravariant domain
translations and the lifting of reducts to alphabet translations preserve identities (Lem
mas 7.13 and 7.28). The second point follows directly from definitions and the fact that
ResSubPCFOLr model morphisms preserves identities (Theorem 4.5).

Composition of signature morphisms Let 9 = (cr, 1/) : T>cc —>■ £ 'c c and 9' — (o ', v') :
E^c —> "L!qC be C sp -C a s l signature morphisms. We must show mod(0' o 8) =
mod(0) o mod(0'). This has two sub-proofs, one for models and one for model mor
phisms:

1. (M ", 7 ")Ip ,*) = ((M ", I")\e')\e for all E " c -models (M ", I"), and

2. h"\(Qi0Q} = (h"\ei)\o for all E ^ -m o d e l morphisms h" : (M ",7") (M ’f , Hf).

With regards to the first point, we know from the fact that ResSubPCFOLr is an insti
tution (Theorem 4.5) that M " |(CT/00.) = M "\a>\a, thus we just have to show I n \^'oe) —
(I" \q>)\q. This follows from our definitions and the facts that our contravariant domain
translations and the lifting of reducts to alphabet translations preserve composition of

140

8. I . Construction o f the C sp -C a s l Institutions

signature morphisms (Lemmas 7.13 and 7.28). The second point follows directly from
definitions and the fact that the ResSubPCFOLr model functor preserves composition
of signature morphisms (Theorem 4.5). □

This concludes the construction of the models and various reducts for each of the three
C sp-C a sl institutions. Next, we focus on sentences followed by the satisfaction relation.

8.1.4 Sentences

We now define the set of sentences sen(E cc') for each C sp -C a sl signature T,cc and the
sentence translation function sen(0) : sen(Ec'C') —>■ sen (^ c c) induced by the C sp -Ca sl
signature morphism 6 : E c c —•> that is, the functor sen. Throughout this section, let
£ cc = Data, ^Proc) be a C sp -C a s l signature with sort set S and process part E proc —
{Nw,comms)weS*,commseSy Finally, let 6 = {a,v) : E Cc - » £ 'cc be a C sp -C a s l signature
morphism.

In order to define C sp -C a sl sentences over the signature E c c , we first define the notion
of C sp-C asl process terms. C sp -C a sl Process terms are C sp terms which are built rela
tive to a C sp-C a sl signature and two variable systems (see Section 4.2.3): global variables
(represented as X q) and local variables (represented as X l) - Global variables are used as
parameters to process names, whereas local variables are formed within a process term via cer
tain C sp operators. For example, C s p ’s internal prefix choice operator introduces a new local
variable.

The set of process terms P r o c T e r m s ^ c c ^xG,xL) ° f the C sp -C a sl signature E c c ° ver
variable systems X g and X l is defined first using a grammar, then static semantics to deal
with bindings, finally, natural semantics [Kah87] to ensure that all variables are bound appro
priately. This construction is detailed in [Gim08]. In short, process terms are normal C sp
processes (see Section 2.1) with recursion where communications are valid ResSubPCFOLr
terms over signature E Data with variables X q U X l . Formulae (occurring in a conditional
process expression) are data-logic formulae over signature E Data with variables X q U X l ?

Here, we sketch the construction of process terms. In the following we extend the original
notion of process terms (from C sp-C a sl in 2006) by additional constructions allowing com
munications to range over only the defined values of sorts. We use the syntax s^ef as a variation
on certain constructions which when evaluated with the semantics will yield only the defined
elements of sort s (after embedding into the alphabet), s^ef represents the restriction of sort s
to defined elements only, and is only allowed when s is a sort in the signature. Sdef is not a sort
itself. The set of process terms P r o c T e r m s ^ c c ^xG,xL) *s inductively defined using only the
following rules:

• SKIP, STOP and DIV are process terms.

• t —>■ pt is a process term if t is a ResSubPCFOLr term over signature E Data using
variables X q U X l and pt is a process term in ProcTerm s-£c c (xG,xL)•

'Note: Where X G and X l both contain the same variable name, the union X G U X l takes the local version
in X l- This allows us to locally overwrite global variables.

141

8. The CSP-CASL Institutions

• n x :: s —> pt, n x :: Sdef —> pt, □ x :: s —> pt and □ x :: sjef —> pt are process terms if
s is a sort in Y>cc and pt is a process term in P r o c T e r m s ^ c c ^xG,x Lu{x:s})-

• p t \ $pt2 , p t\ n p t2 , p t \ □ p t2 , p t \ || p t2 , and pt\ HI p t 2 are process terms if pt\ and pt2

are process terms in ProcTerms-£c c (xG ,xL)-

• p t \ | [« i , . . . , Sfc] | p t2 is a process term if for each s* either s* = t for some sort t E S
or Si — tdef for some sort t E S (i = 1 . . . k) and pt E ProcTerm s-zc c (xG,x L) is a
process term.

• pt\ | [s i , . . . , Sk | t \ , . . . , ti] | p t 2 is a process term if for each Si either S{ = u for some
sort u E S or S{ = Udef for some sort u E S (i = 1 . . . k), and for each t j either t j — u
for some sort u E S or tj = Udef for some sort u E S (j = 1 . . . I), and pti (i — 1,2) is
a process term in P r o c T e r m s ^ c c ^xG,xL)-

• pt \ s i , . . . , Sfc is a process term if for each Sj either Si = t for some sort t E S or
Si = tdef for some sort t E S (i = 1 . . . k), and pt E ProcTermsY,c c (xG,xL) is a
process term.

• pt[R] is a process term if R is a renaming (that is, a list of freely mixed binary pred
icate symbols and unary function symbols from T^Data) and pt is a process term in
P r o c T e r m s Ecc{x G,xL)-

• if (p then pt\ else p t 2 is a process term if is a formula in the data-logic over sig
nature P>Data using variable system X q U X i and pt\ and p t2 are process terms in
P r o c T e r m s Ecc{XG,x L)-

• tiw ĉornrns{t\ , . . . , tk) is a process term if n is a process name in N WjComrns for some
w = (s i , . . . , Sk) E S* and com m s E S i and where ti is a ResSubPCFOLr term of
sort Si over signature using variables X q U X i (i = 1 . . . k).

Above we only sketched the construction and omitted some required restrictions. For example,
one such restriction is for the process term pt\ \ [s i , . . . , Sk \ t \ , . . . , ti] \ p t2 to be well formed
we require { s i , . . . , s^} Q I sorts{pt \) and { t i , . . . , C j sorts(pt2), where sorts(p t) is
the constituent alphabet of the process term p t , that is, the set consisting of all the possible
communication sorts of pt. This is defined recursively of the structure of the process term pt
and simply collects all the sort symbols that are used. Full details can be found in [Gim08].

We now define process sentences by building upon the notion of process terms. A process
sentence over E c c is an equation of the form

'flu),comms\i • • • ? %k) = pt

where n WjComms is a process name in N WjCamms, pt E P r o c T e r m s ^ c c ^xG,<D) is a process
term, w — (s i , . . . , s &), and X q — {^l : s i , . . . , : s /J under the conditions that the
constituent alphabet of pt is contained within the set com m s (i.e., sor ts (p t) C comms), and
Xi ^ Xj for 1 ^ i, j < k such that i ^ j .

142

8.1. Construction o f the C s p -Ca s l Institutions

Finally, we define the set of C sp -Ca sl sentences over signature E c c to be the set con
taining all process sentences over E c c and ad ResSubPCFOLr formulae over S Data (data
sentences). In terms of the institution framework this is the set sen (E cc)-

Data sentence translation is inherited from ResSubPCFOLr. In order to define the trans
lation of process sentences along a signature morphism, we first define translation of process
terms as presented by Kahsai [KahlO]. Given a process term over the C sp -Ca sl signature
E c c we inductively define the translated process term along the signature morphism 9 as:

0(SKIP)
0(STOP)
0(DIV)
6(t —>• pt)
9(C\x :: s —>■ pt)
6 (n x :: s —> pt)
0{pti%pt2)
6(pti r \p t2)
6(pti □ p t2)
0(pti II Pt2)
0(pti \ Wpt2)
0(pti | [s i , . . . , s k]\pt2)
6{pti | [si , . . . , sj fe | h , . . . , t i] \p t2)

6{pt \ s i , . .. ,sk)
0(pt[ru . . . , r k})
9{if <p then pt\ else p t2)

SKIP
STOP
DIV
a(t) —> 6(pt)
na; :: o(s) —> 9(pt)
\Z\x :: cr(s) —> 9{pt)
9{pti)$9(pt2)
9 (p t i) n 9 (p t2)
9(ph) □ 9{pt2)
9{pt1) || 9(pt2)
0(ph) III 0{pt2)
9{pt\) |[cr(si),. . . , a (s k)]| 9(pt2)
9(pti) | j a (s i) , . . . , o (s k) |

a (t i) , . . . , (r (t i)] \9 (p t2)
9{pt) \ < j { s i a (s k)
9 (p t) [o (r i) , . . . ,o (r k)}
if a(p) then 9{jpt\) else 9{pt2)

w ,com m s (jhu , com m s) (o (t i) , . . . , (j (t k))9 { n w%Co m m s { t \ 1 • • • 5 t k))

where a{sdef) := <r(s)def.
Finally, we define C sp -C a sl sentence translation along the C sp -Ca sl signature mor

phism 9 as

sen(0)(</?) := <

cr(ip) if ip is a ResSubPCFOL sentence.
n ' (a (x i) , . . . , cr(xk)) = 9{pt) if <p is a process sentence of the form

n.w, com m s

w ,com m s

(x i,
iP"w,c

, x k) — pt and
.m s) = t l •

As is common when working with institutions we write sen(0)(</?) simply as 9(ip).

Theorem 8.7 C sp -C asl sentences and sentence translation forms a functor, that is, sen(0) :
sen (E c c) —> sen(^ c c) *s a functor.

Proof. This follows from definitions and the fact that the CASL sentence translation is a func
tor. □

This concludes the construction of C sp -Ca sl sentences and sentence translations. Next,
we define the C sp-C a sl satisfaction relation.

143

8. The C sp -C a s l Institutions

Pt

Evaluation according to C asl
C sp-Casl process term evaluation

,, Csp semantics V '* ^ /A , , / , f »p t ' > d £ V (A lph(M))

Figure 8.1: Overview of the two phase evaluation of Csp-C asl process terms.

8.1.5 Satisfaction

We now define what it means for C sp -C a s l models to satisfy C sp -C a sl sentences. Through
out this section let E c c — (£ Data, £ p roc) be a C sp -C a sl signature with data part E Data =
(S, TF , P F , P ,<) and process part E p roc = {NWtCOmms)wes*,amim3eSi- Furthermore, let
T> £ {T ,J \f , J7} be a fixed Csp semantics, and let (M , I) be E c c - model.

For data sentences we will inherit satisfaction from the ResSubPCFOLr institution (this
will be described in Section 8.1.5.3). For process sentences we define satisfaction via a two
phase evaluation. Figure 8.1 illustrates the phases. We first evaluate process terms in process
sentences according to the Ca sl semantics where we slightly modify the standard definition
of “concatenating a substitution to a valuation”. This evaluation effectively replaces all Casl
elements in process terms by their evaluations, that is, elements of the alphabet. The resulting
process terms (pt' in Figure 8.1) are normal CSP process terms over the alphabet Alph(M).
Once this first phase is completed, we can apply the normal CSP semantics.

We now describe these phases in detail and give the formal definition of satisfaction.

8.1.5.1 Phase 1: Evaluation According to Casl

The goal of this phase (originally described by Roggenbach [Rog061) is to replace CASL ele
ments in the process term of process sentences with elements of the alphabet Alph(M). This
evaluation replaces:

• sort symbols in internal and external prefix choice operators, various parallel operators
and hiding operators with the embeddings of their carrier sets into the alphabet.

• unary function and binary predicate symbols in renamings with sets of pairs of alphabet
elements that are mapped to each other via the function and predicate symbols.

• Ca sl terms in action prefix operators and process names with their evaluation after
embedding into the alphabet.

• Ca sl formulae in conditional statements with their evaluated truth values.

Let X q and X l be global and local variable systems respectively. Furthermore, let p c '■
X g —> M ± and p l '■ X l —> M ± be global and local variable valuations, respectively, for the
ResSubPCFOL= model M . The evaluation of Casl elements occurring in process terms in
ProcTermS'£c c (XG,XL)’ with respect to ResSubPCFOLr model M and valuations p c and
PL, is defined as :

144

8.1. Construction o f the C sp -C a s l Institutions

\s \ m ,hg,hl SM for all sort symbols s e S.

{sdeflM^G^L := SM \ {-I-m} for all sort symbols s e S.

IP(sus2) Im ,h g ,h l := I (x iV) e (P(Si ,s2)) m l } for all binary predicate sym
bols P(S1|S2) e P , s i , s 2 e S.

lf{si),s2\ M ^ G^ L := { (x ŝ , y ŝ) | (/(Si),S2)m± (^) = y} for all unary function symbols
f (s i),82 C T F U P F , S i , s 2 e S .

M m ,hg,hl : = (m g U m l) ? (t)M for all ResSubPCFOL~ terms t G T ^ Data (X G U X L)S.

IT , _ / true if Mg U ml H
fa l s e if not mg U Ml 1=

for all formulae ip over E D a t a { ^ G U X l)-

Here, the variable valuation p l deals with local variable bindings generated by the Csp eval
uation in Phase 2. p G U Ml is the variable valuation from X q U X l —» Mj_, where we take
priority to local variables both in the union of the valuations and the union of the variable sys
tems. (y e U m l)^ is the extension of p c U / i l to terms. As variable valuations map into the
carrier sets of the totalised C a s l models, this evaluation yields either carrier set elements or _L
for undefined elements. In either case, the result can be embedded into the alphabet Alph(M).

Figure 8.2 defines the C a sl evaluation of process terms according to ResSubPCFOLr
model M and valuations (iq and p l - Substitutions are the way in which the various CSP
semantics model the binding concept within the C sp prefix operators. Therefore we require
a local variable valuation to model the CSP binding concept, which is used in Phase 2 (Sec
tion 8.1.5.2). The C sp semantics will bind alphabet elements to variable names. This is done
by appending a substitution to a variable valuation. However, our valuations map into the to
talised carrier sets and not the alphabet. Thus, when the C sp semantics tries to bind a variable
to an alphabet element, we first need to unpack the alphabet element to produce a totalised
carrier set element, and then bind this totalised carrier set element to the variable instead. This
binding of local variables occurs only in the C sp internal and external prefix choice operators.
Thus, the clauses (in Figure 8.2) for these operators take a substitution as the argument:

\ - \ m ,h g , (^ z .h l) [Q'/2'] • ff-1 M,fj ,G,(fJ'L[unpacks (a) / x])

where a; is a variable of sort s. Here, p l W / x] { y) ’• = Ml(m) for y ^ x and p l [a'/x] (y) a'
for y = x. The unpack function reverses the alphabet construction and produces a carrier set
element (or _L) of the correct sort. For instance, let E qq be the signature with two sorts s and
t such that s < t , let x : s be a variable and let a — [(t , y t) \ ~ M — {(s, a/s), (t , y t) } be an
alphabet element. If we bind a to the variable x : s, then unpacks (a) would yield the carrier
set element ys . It is this ys that is bound to the variable x.

8.1.5.2 Phase 2: Evaluation according to the Csp Semantics

The process term pt' (see Figure 8.1) is produced from the process term pt by applying the
evaluation according to the Ca sl semantics. This process term pt' is an ordinary C sp process

145

8. The C s p -C a s l Institutions

[SKIPIm , ^
[ST0PjM,/io ,fii

M , l l G ,ML

[£ —> pt^M,HG,HL
[n® :: s - ^ p t l M ^ a ^ L
[□a; :: s ^ p i \ M^ G^L
\pt\%pt2\M,HG^L
{ptl r \p t2]M,»G,»L
Iptl □ P ^ W g .m l
Iptl II p t2\M,HG,HL
M ||M1m,mg,ML
Iptl \ [s i , . . . , S k]\pt2}M,VG,»L

Iptl | [s i , . . . ,Sfc I t i , . . . , t i] \p t2}M,

| pt \ S i , . . . , S/cJm,mg,ML

Ip t [r i , . . . , r k}jM,nG,»L : =

[if (p then p t i else P*21m,mg,ml :=

\p * w ,c a m m s(t 1? • • • •> ffc)lM,MG,ML '

Figure 8.2: Evaluation according to CASL. M is a
and fiL : X l —> M ± are global and local variable
evaluation is a standard Csp process over Alph(M)

SKIP
STOP
DIV
MM,mg,ML IIPt\M,HG,HL
\~\x .. [s]M,mg,ML ̂ b ^ l M,MG, -ML)
□ x .. [sJm.mgiMl Ip ^ m ^ g A ^ - î l)

M l M,MG,ML 5 ax -jjM,/1G,0
b̂ llM,MG,ML ^ IP̂ 2lM,/iG,ML
M l -M,MG,Ml ^ b^2 1m,mg >ML
M W o M l II M J m ,MG,ML
M l M,MG,ML III M 1m,mg,M l
i p t i i M,mg,Ml l[IIs ! \ m ,mg,Ml U • • • u
l_s k\M,[j,G,UL II (IP^Im^GiML
M l l[IIs i]m,mg,Ml 0 . . . U
tt5fc]M,MG,ML I ibl-M’,MG>ML U . . . U
M m .mc,Ml II M I m ,MG,ML
M m ,MG,ML \ Is i 1m ,MG,ML U . . . U
bfclM,MG,ML
b^lM,MG,ML IbllM,MG,ML 0 . . . U
M I m ^ g .Ml I
if M m ,MG,ML then M W c , ML
else M Im ,mg,m l

,com m s (M M,Mg ,ML ’ • • • ’
Î A:1m ,mg,Ml)

ResSubPCFOLr model, p c : X q —> Mj_
valuations, respectively. The result of this

over the alphabet of communications Alph(M). We can now apply our chosen Csp semantics
V to it, that is, we apply the the function

tt -]x>,7

to the process term pt ' . The function [_]x>,i is defined as:

M r , / := traces /(p t)
M a /- ,/ := (failures ± J (pt) , divergences j (pt))
b ^ b , / := (traces i (pt), failures j(pt))

where pf is a process term and traces j, failures , failures j, and divergencesj are the normal
Csp clauses (see Appendix B) augmented with the process interpretation map I . The augmen
tation with the process interpretation map I is required to give interpretations to process names

146

^

8.1. Construction o f the C s p -C a s l Institutions

occurring within process expressions. We sketch this construction for the tracesi function.

traces j (SKIP)
traces j (STOP)
traces i (DYV)
traces i (a —>■ P)
traces j (f ix :: X P)

{<},</>}
{()}
{()}
{()}U{<a)
{()}U{<a)

s G tracesi(P)}
s G tracesi(P[a/x\), a G X }

tracesi (D x :: X —»• P)

traces/ (if ip then P else Q) :

tracesi (nWjCarnrns)

= { ()} U {(a) ~ s | s G tracesi(P[a/x\), a G X }

traces j (P)
traces / (Q)

if p evaluates to true
if p evaluates to fa l s e

= Lw ,co m m s

The additional clauses for the other functions are:

failures (nw jCornms)
failures j (riw,c o m m s)

divergences j (Tiw ĈOmms)

i^ w ,c o m m s)

f s t (I (nw ĉornms))
Snd(I (riw,c o m m s))

snd(I (nw ĉomms))

Here, we need the projection functions/?? and snd, as the process interpretation map I produces
process denotations (i.e., pairs for the Failures/Divergences and Stable-Failures semantics).

The result of this second phase is a denotation within the Csp domain V over the alphabet
of the ResSubPCFOLr model M , that is, a denotation d G T>(Alph(M)).

8.1.5.3 Satisfaction of C s p -C a sl Sentences

We are now ready to define satisfaction of C sp-C asl sentences with respect to C sp-Ca sl
models. Satisfaction of data sentences with respect to E cc-m odels is inherited from the
ResSubPCFOLr institution (see Section 4.4), that is,

(M , I) (=Scc p i f f M h=sData <p

for all Ecc-m odels (M , I) and ResSubPCFOLr sentences p, where E c c = (£ Data , E p r0c)•
Satisfaction of a process sentence n (x i , . . . ,Xk) = pt over signature E c c (where n :

w , com ms, and w = (s i , . . . , s^)) and global variable system X q with respect to Ecc-m odel
(M , I) is defined as follows:

(M , I) ^=Scc n (x i , . . . , x k) = pt
if and only if

for all variable valuations p c '■ X q —> M ± it holds that
Iw ,c o m m s (ti (p g (x i) m , . . . , F g (x Ic) m)) = [M m , Mg,01p , 7 •

The interpretation of the process name n, after variables have been evaluated and embedded
into the alphabet, must equal the evaluation of the process term pt with respect to the model
and variable valuations.

This concludes the definition of the satisfaction relation for C sp-Ca s l . We will now es
tablish the reduct property that will be the key fact in order to prove the satisfaction condition.

147

8. The CS P-C A SL Institutions

To this end, we first establish the relationship between variable valuations and model
reducts (presented from [Rog06]).

Let (M ',7 ') be a E ^ -m o d e l and fi : a (X) —>■ M'± be a valuation, where cr(X) is the
translation of the variable system X as presented in Section 4.2.3. We define the valuation

fi\a : X (M 'U)±
X : s M- Has {s)(x : a s (s))

Lemma 8.8 Let (M ', I ') be a E ^ -m o d e l and /i : cr{X) —> M ’L be a valuation. Then /i and
fi |a are in a one-one correspondence.

Proof. See Lemma 5 in [Rog06]. The proof is straightforward and involves induction over the
structure of terms. □

We now prove two lemmas which will shortly be used to extend Kahsai’s proof [KahlO] of
the reduct property to cover our construction for C sp-Ca sl .

The following lemma states that the translation of defined sort symbols interacts well with
the C a sl evaluation phase and model reducts.

Lemma 8.9 Let o : E —> E ' be a ResSubPCFOLr signature morphism, M ' be a E'-model
and X q and X l be global and local variable systems respectively. Let /ig : &{Xg) -» M'±
and h l : (t { X l) -» M'± be valuations. Then the following holds

a a ,M '^Sdef ^ M'\<x,^G\a,U'L\a) = l? (s)deflM',fiG ,VL

where ot^M, is the direct image of a ^ M ' applied pointwise to sets).

Proof. We show subset inclusion in both directions. First, we show the ‘C ’ direction. Let a' G

then there eXiStS a e \.Sdef\M'\a ,Hg\o such that a v,M'(a) =
a'. Therefore, there exists x G ({M ' \ a)±)s such that x ^ _L and a — [(s, ^)]~Af/[o. - As
o! = a CTjM'([(s ,z)]~ M/|(T) = [(<t(s),x)]^m/ and x 1 we know d G The
other direction is similar. □

Lemma 8.10 (Reduct Property for process names) Let X q and X l be global and local vari
able systems respectively. Let (M ',7 7) be a E ^ c -model and /iq : ct(Xg) M'± and
fiL : <j(Xl) —> M f be valuations. Finally, let n (t \ , . . . , tk) G ProcTermsY,c c (xG,XL)
be a process term where n is a process name and t \ , . . . , tk are appropriate ResSubPCFOLr
terms. Then

| |n(t i , . . . , f fc)

for all V G { T ,A f , JF}.

Proof. We show the equality by unfolding definitions. We start with the left hand side. By
unfolding C s p -C a s l’s semantics this is equal to

I > • • • > P/cIIm'Ict./xgIct.MlIct)) •

148

8.1. Construction o f the C sp -C a s l Institutions

By the definition of C sp-C a sl model reducts this is then equal to

• • • 5 a cr,M'{l^kjM'\cT,HG\cr,tJ'L\<T)))) •

As J = hy substitution this is equal to

^ m K A K ™) (H * i) 1 m v g > / xl , • • • , K * f c) Im 'm m))) •

By the definition of C sp-C a s l ’s semantics this is equal to

a ? M ' (l M w) M * l) . • • • . v(tk))jM',»G,vLb ,I ') •

Finally, by the definition of C sp-C a sl sentence translation this is equal to

< ^ m ' (,

that is, the right hand side. □

Lemma 8.11 (Reduct Property) Let X q and X l be global and local variable systems respec
tively. Let (M ' , r) be a £ ^ c -model and /.lq : ct{Xg) —>■ Mj_ and t l l : c t{X l) —> M'± be
valuations. Finally, let p i be a process term in ProcTermS'Lc c (xG,xL)• Then

llP t lM'\a,nG\o,HL\J'D,I'\e = a £ M/(|[[0(pf)jM ',AtG),z j 2 V /)

for all V G {T , Af, X } .

Proof. Kahsai’s proof of the reduct property [KahlO] can be extended to this setting in a
straightforward way. An extra base case is required (Lemma 8.10) to deal with process names
and Lemma 8.9, which relates the C asl evaluation and the sentence translation of defined sort
sym bols. □

The reduct property allows us to establish the satisfaction condition.

Theorem 8.12 (Satisfaction Condition) Let (M ',17) be a £'c c ,-model and let <p be a Ecc~
sentence, then the following holds:

b=E^c 0(<p) (M ' , / % h s GG V •

Proof. The proof is the same as Kahsai’s proof [KahlO] except that we apply our reduct prop
erty (Lemma 8.11) instead of Kahsai’s. This change covers our extended setting with process
names. □

This concludes our presentation of C sp-C a sl as three institutions, one for each of the
main Csp semantics. Next, we discuss how to allow generic and parametrised C sp -C asl
specifications.

149

8. The C s p - C a s l Institutions

8.2 Parametrisation: Pushouts and Amalgamation

We now present results concerning pushouts and amalgamation of C sp-Casl closely follow
ing [OMR12], The existence of pushouts and amalgamation properties shows that an institution
has good modularity properties. Amalgamation is a major technical assumption in the study of
specification semantics [DGS93, ST88].

We will shortly show that C sp-C asl fails to have the amalgamation property (see Sec
tion 4.7.2). In order to give C sp-C asl an amalgamation property which enables parametrisa
tion and instantiation of C sp -Casl specifications (see Section 4.7.2), we weaken the original
definition of amalgamation. What is actually required for parametrisation and instantiation of
specifications is

1. a unique construction of a signature from existing signatures (obviously related via mor-
phisms), and

2. a suitable amalgamation of models and model morphism s.

We now show that C sp-C a sl ’s signature category fails to have pushouts and thus, C sp-
C asl fails to have the amalgamation property (see Section 4.7.2). To do this, we first establish
a lemma regarding C sp-Casl signature morphisms.

Lem m a 8.13 C sp-C asl signature morphisms between signatures with acyclic sub-sort rela
tions are injective on sorts.

Proof. Let a (s) = cr(t). By reflexivity, o(s) < a(t) and <j (s) > a(t). By reflection, s < t
and s > t. By acyclicity, s — t. □

Lem m a 8.14 C spC a slS ig does not have pushouts.

Proof. As shown in Propositions 9 and 10 of [MR07], pushouts of injective sort maps (in the
category of sets) exist and are injective, but pushouts in the category of sets and injective maps
do not exist (even if signatures are restricted to those with discrete sub-sort relations). This
is because mediating morphisms can be non-injective on sorts. By Lemma 8.13, this negative
result also carries over to C sp-C a sl . □

Even though C sp -C a s l does not have the standard amalgamation property, we can en
able parametrisation and instantiation of specifications with a weaker property, namely, quasi
amalgamation.

An institution (SIGN, sen, mod,)=) has quasi-amalgamation, if there exists a category
SlG N Rich such that

1. SIGN is a wide sub-category2 of S IG N ^ c/l.

2. SIGNfi*c/l has pushouts. Furthermore, any pushout

2 A category C is a wide sub-category of D if and only if C is a sub-category o f D, and | C | = | D | (i.e., C and
D contain the same collection of objects).

150

8.2. Parametrisation: Pushouts and Amalgamation

S i £ 2

in SIGN7̂ , such that (£ , 0 1 , 0 2) is a span in SIGN, leads to a commuting square in
SIGN, that is, a[and a'2 are morphisms in SIGN and cr* o 0 1 = a'2 ° 0 2 .

3. given any pushout

£ 1 £ 2

in SIGNfilc/\ such that (£ , a \ , 0 2) is a span in SIGN, the following two conditions hold:

• for any two models M \ £ | m o d (£ i) | and M 2 £ [mod (£ 2)! such that M \\ai =
M 2|CT2, there exists a unique model M ' £ | m o d (£ ') | such that M '\ai = M \ and
M '\at - M 2 (we call M ' the amalgamation of M \ and M 2); and

• for any two model morphisms h\ : M A —> M f in m o d (£ i) and h2 : M £
M;P in m o d (£ 2) such that h i \ai = /z-2 |<r2»there exists a unique model morphism
h> . m ,a —> M 'b in m o d (£ ') such that h! |CT/ = h\ and h'\a>2 — h2 (we call h! the
amalgamation of hi and M2).

Quasi-amalgamation is enough to allow for instantiations of structured specifications. We
outline this for the case of a generic specification with a single parameter.

Given a named specification SP[FP] — B ody with signature inclusion a : S ig(F P) —>■
Sig(Body), an actual parameter specification A P , and a fitting morphism 8 : Sig(F P) —>
Sig(AP), S P [A P fit 8) is a specification with

S ig(S P [A P fit0]) := £ '
M o d (S P [A P fit0]) :=

{ M f £ | m o d (£ ') | | M '|CT/ £ Mod {Body) A M > G M o d (A P)}
where

151

8. The C s p - C a s l Institutions

Sig (F P)

Sig (Body) Sig (AP)

is the pushout in SIG N Rlch of the span (S ig(F P), cr, 6) in SIGN (and thus, by the property
quasi-amalgamation, the above square is a commuting square in SIGN).

To establish that C sp-C a sl has quasi-amalgamation we first establish several lemmas.

Lemma 8.15 Let the following be a pushout of C asl signatures:

with o\ and o 2 sub-sort-reflecting, and let < , < 1 , < 2 and <' be the sub-sort relations of E, E i,
E 2 and E ', respectively. Then

<' = cr'(<a) LJ cr'(<2)
u {(ctj(^ i) , ^ 2 (^2)) | 3 s G E : si < 1 < Ji(s),a2(s) < 2 s2}
u {(cr2(s 2),cr/i (s i)) | 3 s <E E : s2 < 2 <t2(s),c ri(s) < 1 s i}

Proof. The inclusion from right to left is clear. For the converse inclusion, by the pushout
property it suffices to show that the union is reflexive and transitive. Reflexivity is clear. Con
cerning transitivity, note that by construction of the pushout, any chaining of < 1 and < 2 must
go through E. With this, we show that any alternating chain of < 1- and < 2-pairs of length
more than two can be reduced. Indeed, let s < 1 cri(u), cr2(u) < 2 cr2(?;) and u\{v) < 1 t. By
reflection of cr2, u < v, hence a \(u) < o\{v) and by transitivity of < 1 , s < 1 t. A < 2-< i - < 2
chain is treated dually. □

As is done in [MR07], w e now form the super-category CSPCASLSiG^am of signatures
for C sp-Ca sl required for quasi-amalgamation (that is, SIG N ^c/l).

Let CspCASLSlG^am be C spCa s l S ig with the reflection and weak non-extension re
strictions (from ResSubPCFOLr) dropped. Then we have:

Lemma 8.16 The category C spCa s l S ig^ ” has pushouts. Furthermore, any pushout in
C spC a s l S ig^ 0*” of a span in C spCa s l S ig leads to a commuting square in C spCa s l S ig
(although not a pushout in C spC a s l S ig).

152

8.2. Parametrisation: Pushouts and Amalgamation

Proof. The category of C a s l signatures has pushouts [Mos98]. We need to extend this to pro
cess names in CspCASLSlGpiam. This is done by considering fully qualified process names,
and taking their pushout in SET. Let N ' be constructed as is done in the standard C a s l
pushout construction (e.g., for function symbols).

Now let a pushout square be given as above, and assume that g\ and 0 2 are reflecting and
weakly non-extending. We show that o\ has these properties as well (the argument for a 2 is
the same).

Let < , < 1 , < 2 and < ' be the sub-sort relations of £ , £ 1 , £ 2 and £ ' respectively. Con
cerning reflection, assume that 0"i(s) <' Lemma 8.15 tells us how pairs in the <'
relation look. Since both endpoints of our pair are in the image of a'v with the method of the
proof of Lemma 8.15, we can eliminate any g'2{<2) relation pair from the representation of
<7i(s) 0i(O- Hence, we arrive at <Ji(s)(7i(<i)(Ji(f) and thus s < 1 t.

Concerning weak non-extension, let ^ (s i) <' v! >' We need to show that there
exists some u\ E £ 1 with 81 < 1 U\ > 1 ti and g[(u i) <' v!. By construction of the pushout,
there is either some u\ E £ 1 with <j'i{u{) — v! (in this case, we are done), or some U2 E £ 2

with 0 2 (^ 2) = u'. In the latter case, since cr'^si) < ' cr2(u2) >' by Lemma 8.15
we obtain E £ with si < 1 a\{v), 0 2 (v) < 2 U2 > 2 0 2 (w) and cr\{w) > 1 t \ . By
weak non-extension of 0 2 , we obtain u E £ with v < u > w and 0 2 (u) < 2 U2 - Choose
u\ = o i (u), then we have <Ji(v) < 1 u\ > 1 By commutativity of the pushout and as
cr2(o2 (u)) <f <j2(u2) = u ' , we obtain <' u'. □

The following lemma is required in order to show that C sp-Casl has quasi-amalgamation.

Lem m a 8.17 In C a sl , pushouts of reflecting and weakly non-extensive signature morphisms
exhibit the amalgamation property.

Proof. Using notation as above, we consider the pushout signature in enriched C a s l (for
details see [SMT+05]), which differs from C a s l in that sub-sort pre-orders are generalised to
sub-sort categories. The amalgamation exists if the sub-sort category in the pushout is thin, that
is, a pre-order. In order to show this, we must show that any two paths of sub-sort injections
with same start and end point in the pushout are equal, otherwise we would violate the ‘thin’
condition on the category, that is, we would not have a pre-order. Lemma 8.15 tells us the
possible shapes of such paths. In cases where one of the endpoints is in the intersection of the
images of <j [and a2, it must originate in £ , and we are done by reflection. Otherwise, both
paths live in the same summand w.r.t. the union in the statement of Lemma 8.15. For the first
two summands, the result is clear. Now consider the third summand (the fourth one is treated
similarly), that is, we have two paths

1 . S i < 1 C T i (s) , 0-2 (s) < 2 S 2

2. Si < 1 a i (t) , a 2{t) < 2 S2

By weak non-extension of 0 2 , there is some u E £ with s < u > t and 0 2 (u) < S2 . But then
the paths can be rewritten as

1. Si < 1 0-i(s) < 1 O i (u) , < T 2 (u) < 2 s2

153

8. The C s p -Ca s l Institutions

2 . S i < 1 <Ti(t) < 1 0 1(u) ,0 2(u) <2 S2

and since S i is thin (i.e., has a sub-sort pre-order), both paths are equal. □
With the super-category CspCa slS ig^®*” and the previous lemmas, we can now establish

that Csp-Casl has quasi-amalgamation.

Theorem 8.18 Csp-Casl has the quasi-amalgamation property for the Traces, Failures/Di
vergences and Stable-Failures semantics.

Proof. CspCa slS ig^®*” is a wide sub-category of CspCa slSig , as CspCaslS ig ®̂*” is the
same as CspCa slS ig , but with relaxed conditions on signature morphisms. Lemma 8.16 es
tablishes that CspCa slSig^®*” has pushouts and any such pushout of a span in CspCa slSig
leads to a commuting square in CspCa slS ig .

We now show that models and model morphisms can be amalgamated. Let

be the CspCASLSlG^®*” -pushout of the span ((£ , A7"), 6\, Of) in CspCaslS ig. Further
more, let (Mi, If) be a (Y ,i ,N f)-model (i — 1,2) w.r.t. the Traces, Failures/Divergences or
Stable-Failures semantics such that (M i, I \) \e1 = (M 2 , If)\o2 - We construct a (£ ', iV^-model
(M ', I ') as follows. Let M ' be the amalgamation of M i and M 2 in Casl . It exists due to
Lemma 8.17.

It remains to amalgamate the process parts. Let

for all process names n'w, comrns, £ N ' and alphabet elements a[, . . . , a'k £ s[M, x . . . x s'kM,
where w' = (s\,

This construction is well-defined because (M i, h) ^ = (M 2 , h)\o 2’ as commutativity of
signature morphisms in the pushout lifts to the alphabet and domain levels and the fact that
the covariant and contravariant domain translations are inverse (Lemmas 7.16 and 7.18). The
partial inverses of parameters are defined thanks to the strict translation of parameter sorts of
process names. As (Mi, If) is a C sp-Ca sl model (i = 1,2) and thus satisfies the controlled
traces condition (a requirement of Csp-C a sl models), it follows that / ' also satisfies the con
trolled traces condition, and therefore (M ' , I ') is a C sp-C asl model. It follows from the

(S,JV)

(£ 2 , N 2)

(S ', N ')

/ ' (n'(ai , . . . ,<4)) ==

154

8.2. Parametrisation: Pushouts and Amalgamation

construction of I ' that (M ' , I')\g> = (Mi, I i) (i — 1,2). Due to the typing of process names
in signature morphisms and the facts that I'\qi = I \ and I'\qi = I 2 , I ' is unique (and M ' is
unique since amalgamation in C a s l is unique).

Left to show is that model morphisms can be amalgamated in a similar way. We use
the notation (M i, J i) © (M 2 , h) for the amalgamation of C sp -C a s l models (M \ , I \) and
(M 2 , 1 2), yielding the amalgamated C sp -C a s l model (M i © M 2 , I \ © I 2) — (M ;, I ') where
M ' is the amalgamation of C a s l models M i and M 2 , and I ' is the amalgamation of the process
interpretation map I \ and I 2 as constructed above.

Let hi : (M /4,/-4) —> (M f , I ?) be (£*, Ni)-mode\ morphisms (i — 1,2) such that
hi\ex = ^ 2 1$2 • By the definition of C sp -C a s l model morphisms (see Section 8.1.2), we know
h\ : M j4 —>• M i and ^ 2 • M £ —> M<f are C a s l model morphisms. As the C a s l institution
has the amalgamation property, we can form the unique amalgamated C a s l model morphism
h' : M i © M 2 -> M i © M 2 . Furthermore, we know h ' |CT/ = h\ and h'\a> = h 2 -

By the definition of C sp -C a s l model morphisms, we know h' : (M i , l f) © (M ^ ,
(M f , i f) © (M 2 , 1 2) is a C sp -C a s l model morphism if

a% (I? 8 / 2> V))) X 1 ? ® I ? (n ' (a h,(a’)))

—y
for all process names n' £ N ' and all suitable parameters a' where m is □ j- for V = T , Ea/-
for V — J\f, and □ j- for V = T. We now show this property always holds for h ' .

—y
Let n ' be a process name in N ' and a' be suitable parameters. Thanks to the pushout we

know names in N ' either originate from N i or N 2 . Assume without loss of generality that n f
originates from N i, that is, there exists n \ £ TVi such that v [(n i) = n ' . Thanks to our above
definition of C sp -C a s l model amalgamation we must show

—y
1 (a))))) 1X1

—y
(77'1(a cri,A/1B©M^ (a h' (a))))) •

As h\ is a C sp -C a s l model morphism, we know that for this particular n i and parameters
—y

a a[1 (a') that

— ¥ — ^

a Z V i f a i f a ^ M A Q M A - 1^ ')))) ex I i M a h ^ a ^ M A ^ A - ^ a '))))

holds. By applying a Z m b <s>m b to both sides, as it preserves refinement (Corollary 7.15), we
obtain

—̂
a a[,MP@Mf(a hi(Il (n l (0ca'1,Mf®M£ (a))))) 1X1

— y
(a))))) •

155

8. The C s p - C a s l Institutions

As a a[,M?©M2B ° a hi = a h' ° (this follows from Lemma 7.29 and the fact V is
a functor, Lemma 7.6), we obtain

—y
1 (77'1(Q;<TLMfl®M^ (a))))) 1X1

—y

By Lemma 7.29, we know a /ll o _1 ° ^ us we obtain

—̂
(a))))) 1X1

—y
1 (n t (Q:(7j,M1B®M2B {^h'i0')))))

and conclude that h! is a C sp-C a sl model morphism in m od((E', TV')).
As h! |CT/ = h\ and h'\at = hi, we know that h ' = /ii and h ’ = hi. That is,

the amalgamated C sp-C a sl model morphism reduces to its component parts. Uniqueness is
guaranteed as h' is the unique amalgamation of the C a sl model morphisms h\ and hi. This
completes the proof of amalgamation. □

As C sp-Ca sl now forms institutions we can use the institution independent structuring
mechanisms presented in Section 4.7 to create structured Csp-Ca sl . This allows specifi
cations to be constructed using the specification building operators an d , th e n , h id e , and
re n a m e . Generic C sp-C a sl specifications and instantiations can now be formed as we have
established quasi-amalgamation and met the required pre-requisites of the institution indepen
dent structuring mechanisms, namely, we have given a unique construction of signatures and
a suitable amalgamation of models and model morphisms. Formalising Csp-Casl as institu
tions and establishing quasi-amalgamation has established Csp-Casl as a proper structured
specification language.

8.3 C s p -C a sl with Channels

In order for C sp-C asl to be of practical use we need to extend it with the notion of channels
(see Section 2.2.3). This extension leads to further C sp-C asl institutions built on top of the
institutions presented in Section 8.1, with extended notions of signatures and sentences. Most
prominently, the notion of a signature is extended by a third component C . Thus, a signature
becomes a triple:

(S D a t a , C , roc)

where C is a finite set of names typed by non-empty lists over S . We require C to be closed
under the sub-sort relation3 <*, that is, if C(Si,...,sk) e C an<̂ (u i> • • • > uk) (s i> ■ • • ■> sk)>
then c<ulr,| t t t)6 C .

3<* stands for the pointwise extension of the sub-sort relation < to strings of sorts.

156

8.3. C sp -C a s l with Channels

C sp-C asl with channels can be reduced to Csp -C a sl (without channels) as follows:
each Csp -C asl signature with a channel component is translated to a C sp -C a sl theory
$ (£) , where each channel is coded as a new sort (with new inverse functions relating the
new sort with the original one) and each C sp-C asl E-sentence <p is translated to a C sp-C asl
<h(E)-sentence a(p) by reducing channel communication to ordinary communication using
the new channel sorts. Models and satisfaction can then be easily borrowed from C sp-C asl
by letting m odCCM/c(£ Cc) := modc c ($ (E c c)) and (M, I) (=%c w c ip iff (M , I)
a((p) where the superscripts C C W C indicate C sp-C a sl with channels and C C indicates
C sp -C a sl without channels. This is an instance of borrowing logical structure in the sense
of [CM97].

We now present an example which illustrates this construction. Consider the following
C sp-C a sl specification of a simple vending machine.

spec VM_W ith_Ch a n n e l s =
data sorts Coin, Item

ops tea, coffee : Item
channels Payment : Coin', Dispense : Item
process VM : Payment, Dispense;

VM — Payment ? coin : : Coin —»
{Dispense ! tea —» VM □ Dispense ! coffee —> VM)

end

Here, there are two sorts: Coin representing coins taken as payment and Item representing
dispensable items. There are two constants tea and coffee of sort Item, representing the only
two items that this vending machine offers. There are two channels: Payment which runs over
sort Coin and Dispense which runs over sort Item. The Payment channel is to be used when
a customer is inputting coins into the machine and the Dispense channel when the machine is
providing items to the customer. The process part contains a single process name VM which
can communicate over both channels. There is a single axiom constraining the behaviour of
VM such that it takes a coin on the channel Payment and then delivers a choice of tea or coffee
on the channel Dispense. After completion of the delivery, the machine starts over.

The specification VM _W ith_Ch a n n els is encoded in Csp-C a sl without channels as
the following specification:

spec VM_W it h o u t_Ch a n n e l s =
data sorts Coin, Item, Payment-Coin, Dispense J tem

ops tea, coffee : Item',
pack.Payment-Coin : Coin —> Payment-Coin',
unpack-Payment-Coin : Payment-Coin —> Coin;
pack -Dispense J tem : Item —>• Dispense Jtem;
unpack-Dispense J tem : Dispense J tem —> Item

V jc : Coin • unpack-Payment-Coin(pack-Payment-Coin{x)) = jc

V jc : Payment-Coin • pack -Payment-Coin{unpack-Payment-Coin{x)) = jc

V jc : Item • unpack -Dispense Jtem(pack-DispenseJtem{x)) = x
V jc : Dispense J tem • packS>ispenseJtem{unpackJ)ispenseJtem{x)) = jc

157

8. The C s p - C a s l Institutions

process VM : Payment-Coin, Dispense Jtem',
VM = □ packedCoin :: Payment-Coin —>

(packJDispenseJtem{tea) —> VM □ packJ)ispenseJtem(cojfee) -y VM)
end

Here, we still have the sorts Coin and Item, but we also have the additional sorts Payment-Coin
and Dispense Jtem, which are used to model the two channels. In the process part a com
munication of sort Payment-Coin would represent a communication of Coin over the chan
nel Payment. We also have four additional operation symbols, namely: pack-Payment-Coin,
unpack-Payment-Coin, pack-DispenseJtem, and unpack-DispenseJtem. These are used to
“pack” and “unpack” raw values into and out of the sorts representing the channels. The
axioms state that the “pack” and corresponding “unpack” functions are inverse. With these
symbols now available we can construct the process part. The VM process now communicates
over the sort version of the channels. It now receives a value of sort Payment-Coin instead
of receiving an element of sort Coin on the channel Payment. We simulate the sending of
values down channels by “packing” them into the relevant sort and then communicating the re
sult, for example, to send the value tea down the channel Dispense we communicate the value
pack-DispenseJtem(tea).

This construction allows us to translate any C sp-Ca sl specification into an equivalent
specification which does not use channels.

In the rest of the thesis when we refer to C sp-Casl we are actually referring to Structured
C sp-C a sl with channels.

8.4 Possible Extensions
There are several possible extensions to Csp-Casl that can be studied. Here, we outline three
of them, namely signature morphisms which allow for the shrinking of communication sets,
overloading on process names, and signature morphisms with ground terms.

8.4.1 S ignature m orphism s w hich allow for shrinking o f com m unication sets

Following the ideas from the Csp institutions (see Section 4.6) one could allow C sp-C a sl
signature morphisms to shrink the communication sets of process names. We demonstrate
this idea here by temporally changing the definition of Csp-C asl signature morphisms and
showing via an example how such a notion is useful. Unfortunately, this definition fails to give
us good amalgamation properties. We discuss this via a counter example.

For the rest o f this section, assume that the notion of C sp-C asl signature morphisms is
defined as follows.

Given C sp -C a s l signatures £ c c = (£ Data, S p r0c) and E'c c — (S Da£a’ S Proc)> with S
being the sort set of £p>ata> a C sp -C a s l signature morphism is a pair 6 = (a, u) : E c c —>
E'c c where:

• a : E]jata —> £ fData 1S a restricted sub-sorted (i.e., ResSubPCFOLr) signature mor
phism (see Section 4.4).

158

8.4. Possible Extensions

• V = (iyw,camms)weS*,cammsesi is a family of functions such that

V-w,comms '• N w,comms ^comms'e(i(a(comms)))i ^ a(w),comms'

is a mapping of process names. Another way to express this is that a process name
n E Nw^comms is mapped to uWyComms(n) = n', where r i G N 'a(w),comms' and G
com m s' • 3x £ com m s • y < o(x) (“the target is dominated by the source”). We also
write v (n WtComms) — n ,(r̂ tComms,.

This definition allows, for example, a process name n with communication set {s, t , u} to
be mapped to a process name n' with communication set {s}, where the data part of the sig
nature morphism is the identity map. We now illustrate why such a feature would be desirable
from the modelling perspective.

We develop a single user ATM (cash dispensing machine) in C sp -C a sl. We develop
this system via three levels of abstraction: starting from the most abstract architectural level
(A rch), via the abstract component level (ACL), to the concrete component level (CCL). We
first develop the system utilising shrinking communication sets. Following this, we show an
alternative development which does not utilise shrinking communication sets. This alternative
development can be adopted instead of the original design without affecting the methodology
or modelling too much, but at the cost of taking design decisions earlier.

8.4.1.1 Using Shrinking Communication Sets

The system consists of two components: A user and an ATM. The user can request an amount
of money to withdraw from their account via the ATM, after which the ATM will either decide
to allow the withdrawal or refuse it. Full specifications are in Appendix C . l .

We first model the system, on the architectural level, by stating there are two sorts Number
and Decision. Each component is specified in a separate specification where the component is
modelled as a loose process which can communicate both sorts Number and Decision. We then
combine these components via the C sp synchronous parallel operator in a system specification.

At the abstract component level, we model numbers using integers via the Ca sl data type
Int provided by the standard CASL libraries. Casl also provides sorts Pos (of positive natural
numbers) which are a sub-sort of Nat (natural numbers), which in turn are a sub-sort of Int.
As our communication sets must be sub-sort closed, both the ATM and user processes now
communicate over the set {Int, Nat, Pos, Decision}. We model the User process as:

User : Int, Nat, Pos, Decision’,
User = (FI x :: Int —> User) (“I (□ y :: Decision —> User)

Here, the user internally decides to either send an integer (i.e., a withdrawal request) or receive
a decision, and then start over. We do not model the protocol at this level, only the fact that
these are the only two possible actions which can happen repeatedly. The ATM is modelled in
a similar fashion.

Finally, we model the system at the concrete component level. Here, we decide that the user
should only be able to request a positive amount to withdraw. We decide that the ATM shall

159

8. The C s p - C a s l Institu tions

uDraw(Craph) 3.1.1 - D evelopm ent Graph for ATM_System_Shrlr*klrvg

File Edit View Navigation A bstraction Layout O ptions

Arch_User ACL Co//Imu n Data

ACL_User CCL.Cons no D«t •.

CCL_U*erACL_System

- a - -- r :
D evelopm ent Graph initialized. _______ 1

Figure 8.3: Possible development graph of the ATM system if shrinking was implemented in
H e t s .

still be open to the possibility o f receiving non-positive amounts (possibly for the purposes of
interacting with other administrative systems). We also model the protocol at this level: the
user requests a withdrawal and then the ATM sends a decision message. Following this the
user is free to request further withdrawals. To this end. we model the user as

User : Pos, Decision',
User — n a m o u n t:: Pos —> □ decision :: Decision —> User

Here, we require the user to only communicate using the sorts Pos and Decision, thus disal
lowing them to send non-positive withdrawal requests.

Furthermore, at this level we add state to the ATM for recording the users balance. The
ATM has a starting balance for the user modelled by the constant startingBalance. We provide
an auxiliary process ATM Aux which has as a parameter an integer recording the user balance.
Negative values of this parameter indicate that the user is debit (possibly utilising overdraft
facilities).

Finally, we specify several views which establish the formal refinements between the spec
ifications at the three abstraction levels. The so called development graph of these specifi
cations can be seen in Figure 8.3, under the assumption that such shrinking is implemented
within H e t s . The purple double lined arrows represent C a s l imports into C s p - C a s l . the

160

8.4. Possible Extensions

black arrows represent imports, and the red arrows represent views (or refinements) between
specifications.

The view

view A C L 2C C L _U ser : A C L .U se r to C C L _U ser =
User : {Int, Nat, Pos, Decision} User : {Pos, Decision}

illustrates a signature morphism with a shrinking communication set. We must specify the
process name mapping in the view as we change (shrink) the communication set of the User
process.

In summary we have modelled a simple ATM system at three levels of abstraction while
utilising shrinking communication sets.

8.4.1.2 Without using Shrinking Communication Sets

We now discuss how it is possible to have a similar but alternative development, whilst avoid
ing the use of signature morphisms which shrink communication sets. Thus, this example
fits into the notion of C sp-Ca sl defined in Section 8.1, which does not allow for shrinking
communication sets.

In an alternative development, see Appendix C.2, we make design decisions at higher levels
of abstraction in order to avoid shrinking the communication sets of processes. Already at the
architectural levels we decide to use two sorts to represent numbers, one for the user and one
for the ATM, where the ATM’s number include the user’s numbers. This is done by the Casl
specification:

sort Decision
sort UserNumber < ATMNumber

We are then able to develop these two sorts independently for the ATM and user. To this
end, we develop ATMNumber to Int, while we develop UserNumber to Pos at the ACL level.
This allows us to already have appropriate communications sets in place at this level and avoid
shrinking communication alphabets between the ACL to the CCL levels. The downside of this
is that already at the ACL level we have had to make the design decision that the user will
communicate over positive natural numbers:

User : Pos, Decision;
User — (n x :: Pos —> User) n (□ y :: Decision —» User)

This example illustrates that while signature morphisms which allow communication sets
to be shrunk can be somewhat useful in modelling, there are alternative developments, which
can be adopted instead. These alternative developments are similar to the original develop
ment, but take design decisions at higher levels of abstraction. Hence, forbidding signature
morphisms with shrinking communications sets does not severely restrict modelling. It comes,
however, at the cost of less flexibility should a “wrong” design decision be discovered later in
the design process.

161

8. The C s p - C a s l Institutions

We conclude this extension with a counter example that shows our notion of C sp-Casl
signature morphisms, which allow for shrinking of communication sets, fails to have good
amalgamation properties.

8.4.1.3 A Counter Example for Amalgamation

Here, we demonstrate the problems of creating an amalgamated model when using shrinking
alphabets.

We keep the data part constant throughout this example and work in the Csp Traces se
mantics.

Consider the following pushout in C spC a s l S ig7̂ *™

such that ((Ezjato, £ p w) , #i, #2) is a span in CSPCASLSIG, where the signatures are as fol
lows:

• £ Data is given by the following C a sl specification:

spec D
sorts t ,u < s
ops a : t ;

b : u
• a = b

end

• E Proc contains a single process name riQ^sj)Uy

• S Proci contains a single process name

• £ proc2 contains a single process name ^(),{u}-

• £ Proc2 contains a single process name riQ$.

The signature morphisms are as follows:

Datai S P roc)

• a — Idx' Da t a '

162

8.4. Possible Extensions

• Ul (n Q,{s,t,u}) = n (),{t}'

• { « ,* ,« }) = ™ <),{u }-

• ^ i(n 0,0}) = n <>,0-

• ^ (n 0 ,M) = n (),0-

This choice of signatures and signature morphisms results in a pushout.
Now let M be some data model satisfying the above axiom a — b. Let (M , / i) and

(M , I 2) be C sp-Ca sl models of (E^ata, E proci) and (E ^ a , E p roC2) respectively, such that
h\oi — h |e2» an(i (^> ^1) satisfies the process sentence n — a —>• STOP and (M , 1 2) satisfies
the process sentence n = b -» STOP, that is, / i (n) = {() , (a)} and = {()5(fr)}-
Thanks to the sub-sort relation, the axiom a — b and C sp -C a s l ’s definition of reduct, we have
fi| fli(n) = h \d 2(n) — {()? (&)}• Thus, any amalgamated model / ' of I \ and I 2 will need to
contain this common trace. This would cause cTr(I '(r iQ$)) to contain at least the trace (a)
and thus, fall outside the declared communication set (which in this case is the empty set).
Thus, it violates the C sp-Ca sl model definition.

This problem has occurred because we have shrunk the communication sets in two incom
patible ways. Once to the sub-sort t, and once to the sub-sort u, where the axiom a — b ensures
that these sub-sorts share at least one element. There is no way for the pushout signature to
capture just these shared elements via sort symbols, thus we must settle for the intersection
m n w = 0 of the sort sets. This in turn means the controlled traces of amalgamated models
are outside the declared communication set.

This example shows that sort “s n f ’ would be needed in the pushout signature in order to
make amalgamation work. This is problematic as:

• Adding it to C asl would increase the CASL type system. Baumeister [Bau99] has
studied and disregarded disjunction of data types in algebraic specification.

• Allowing “s n t” only in the communication sets o f the process part, would mean that we
are unable to reason about it in the C a s l part. This goes against the design o f C sp -C a s l
where data in the process part shall be analysable in C a s l .

Here, we have considered a possible alternative version of C sp-C a sl which allows signature
morphisms to shrink the communication sets of process names. We have discussed why this
would be a desirable feature from the modelling perspective. This particular approach however,
fails to provide good amalgamation properties, which we have discussed via a counter example.

The next extension might allow for the benefits o f shrinking communication sets without
changing the definition o f C sp-C a sl signature morphisms.

8.4.2 O verloaded Process N am es

Further research could introduce a notion of overloading on process names which mimics
overloading on Ca sl functions and predicate symbols. We surmise that a suitable overload
ing relation might be PWucommSl ~ N Pw2,comms2 if and only there exists w G S*,

163

8. The CSP-CASL Institutions

com m s' E such that w ^ w\, w ^ W2 , com m s\ ^ comms', and comms2 ^ comms'.
Signature morphisms would then have to preserve overloaded process names. It is not obvious
that this construction will work out, as the signature morphism restrictions of Csp-Ca sl might
interfere with the preservation of the overloading relation.

Assuming this did work out, the models would need to then agree when they are “cast” into
the common larger communication sets. This would then force process names with the same
underlying name to agree on behaviour that falls in the common parts of their communication
sets.

A suitable notion of overloading might be able to simulate the desired behaviour of shrink
ing communication sets outlined in Section 8.4.1, whilst preserving quasi-amalgamation.

8.4.3 S ignature M orphism s W ith G round Terms

Another extension that could be studied would be to allow process maps such as P g Q(0)
where we fill in the parameters with ground terms. We can currently simulate this by introduc
ing new process names that keep the existing parameter types and introduce additional axioms
to specify the ground terms, for example, P i-> Q, where we have the axiom Q = Q'(0). This
workaround would get tedious as specifications get larger. This could also be formalised as
syntactic sugar which would not require any changes to the Csp-C asl construction described
within this thesis.

Within this chapter we have presented the construction of C sp -C a sl as three institutions,
one for each of the main Csp semantics. As C sp -C a s l now forms various institutions, we are
able to use all the structuring mechanisms of C a s l presented in Section 4.7. We have presented
results on pushouts and amalgamation properties which are essential for using generic and
instantiated C sp -C a s l specifications. We have also extended C sp -C a sl with channels, thus
forming three additional institutions: C sp -C a s l with channels for each of the Csp semantics.
We concluded this chapter with a discussion about various extensions of C sp -C a sl which
could be studied.

164

Chapter 9

Refinement and Compositional
Proof Calculi Over Structured

C s p - C a s l

C ontents___
9.1 From C s p -C a s l to Structured C s p -C a s l ..166

9.2 C s p -C a s l Refinement for Loose Process Semantics..167

9.3 Compositional Refinement Analysis . ..171

9.4 Compositional Deadlock Analysis..175

9.5 A Complete Refinement C alculus..181

Our overall aim in formalising C sp -Ca sl as institutions (in Chapter 8) was to allow system
development using C sp-C a s l . A s a result of this formalisation, we can use the structuring
mechanisms presented in Section 4.7 to obtain Structured C sp -C a s l . This allows us to write
Structured C sp-C a sl specifications that can capture systems in a compositional way. Our
next task is to understand how we can develop such specifications and reason about them.
The first step in enabling the development of specifications is to develop a suitable refinement
notion for C sp-Ca s l . Once a suitable refinement notion has been developed, we may study
if it is possible to develop C sp-Ca sl specifications and reason about them in a compositional
manner.

In this chapter, we first discuss the new features of C sp-Ca s l . We then develop a new
refinement notion that supports multiple process names and loose process semantics. Follow
ing this, we design a compositional calculus that allow us to establish refinements over struc
tured Cs p -C a sl specifications. We then develop a calculus dedicated to deadlock analysis of
structured specifications and a specialised rule for deadlock analysis of networks. Finally, we
develop a refinement calculus for Structured C sp-C a sl that we show is complete provided
structured specifications are restricted to certain forms.

165

9. Refinement and Compositional Proof Calculi Over Structured C sp -C a s l

ccspec C spC a s l S pec =
data sorts s

ops a, b : s
process let P (jc:s) = jc STOP

Q = b ~ * STOP
in P (a) || Q

end

logic C spCASL
spec M ultiCspC a s l S pec =

data sorts s
ops a , b : s

process P (s) \ s \ Q : s\ System : s;
P (x) = x —y STOP
Q = b STOP
System = P (a) || Q

end

Figure 9.1: Introduction of process names in Structured C sp-C a s l .

9.1 From C s p -C a sl to Structured Cs p -C a sl

Before we start to study development in C sp -Ca sl , we first illustrate the new features of
Csp-Ca s l , that is, process names and loose process semantics.

To a wide extent, specification in the large concerns the control over namespaces. C sp-
C a sl as designed in [Rog06] (see Chapter 5), however, neglected the aspect of process names:
one specification, take for example the specification CspC a s l S pec in Figure 9.1, which de
notes one (unnamed) system. Consequently, the semantics of this specification is given as one
family of process denotations. Over the C sp Traces semantics T , this family has the follow
ing structure: in Ca sl models M with M |= a = 6, the terms a and b can synchronise, and
we obtain the denotation {(), (a jy)}. Here, om is the communication corresponding to the
interpretation of the constant a in the model M (see Section 7.2.1). In Ca sl models N with
N \= ->a = b, the terms a and b do not synchronise, thus the process part is in deadlock and we
obtain the denotation {()}. Overall, the semantics (i.e., the model class) of the C spC a s l S pec
is the family

({ ()> <«M >}) M e {X€Mod(L»csPCAs..s p e c) I x\=a=b}
U ({()})iV G {X € M o d (D cSPCASi.sPEc) I X\=^a=b}-

Here, -D c s p C a s l s p e c denotes the data part of C sp C a s lS p e c . Clearly, the process names P and
Q are used only to determine how the system behaves, they do not appear on the semantical
level.

In contrast to this, Structured C sp-Ca s l , as we develop it in this thesis, offers the possi
bility to bind denotations to process names. Rather than representing one system, a Structured
C sp-Casl specification provides a collection of components. The specification M ultiCsp
Ca s l S pec in Figure 9.1, written in Structured C sp-Ca s l , is ‘semantically equivalent’ to the
specification C spC a s l S p e c .

Over the Traces semantics T , we obtain as semantics for M ultiC spCa s l S pec: for Casl
models M with M |= a = b, the process interpretation function I where

I{P {x)) = {(), (x)} for all x e s M
HQ) = {(MM)
I (S y s te m) = {(),(<im)}

166

9.2. C sp -C a s l Refinement fo r Loose Process Semantics

Here, % is the set of communications that is obtained from the carrier set of s in model M ±
(see Section 7.2.1). For C a sl models N with N \= ->a = b, the process interpretation function
J where

J (P (x)) = {(), (x)} for all x G

J (Q) = {<MM }
J(System) = {()}

The overall model class of M ultiC spC a s l S pec is finally

{(M , I) | M E Mod(.DMuLTiCspCASLSPEc)> M (= a = b}
U { (N , J) \ N € Mod(Z7MuLTiCspCASLSPEc)) N \= —>a = b}.

In this example, Structured C s p -Ca sl simply adds process name information: hiding the
information concerning the system’s components, in our example the process names P and Q,
leads back to the original semantics of C sp -Ca s l . Structured C sp -Ca sl however also extends
the original Csp-Ca sl language design by introducing the possibility of loose processes:

logic CspCA SL
spec Lo o s ePr ocesses =

data sorts s
ops a, b : s

process P : s\ Q : s\ R : s;
Q — a ^ P
R = P%b-+ SKIP

end

The above specification Lo o sePro c esses leaves the behaviour or the process name P un
specified. However, it does state that the interpretations of Q and R depend on P. Q commu
nicates a and then behaves like P. R behaves like P, and, should P successfully terminate,
communicates b and terminates successfully. On the semantical level, looseness in the process
part means that one C a sl model M is paired with various functions I within the model class
of the specification. Let, for instance, O be a C a sl model with 0 (s) = {*, + } , 0 (a) = *,
and 0{b) = + . Let I \ and I 2 be process interpretation maps (relative to O) with

H P) = {(>} H P) = {<>,</»
H Q) = {<>.<*>} H Q) = {<>.<*>-(*■/>}
H R) = {(>} H R) = {<>,<+)(+, ✓>}

Then (O , I \) and (O, I 2) are both models of the specification LO O SEPR O C ESSES. This exam
ple illustrates that the process part of C s p - C a s l specifications can also have loose semantics.

9.2 C s p - C a s l Refinement for Loose Process Semantics

We now turn our attention to defining a new notion of C s p - C a s l refinement that supports
process names and loose process semantics. Refinement is essential in the development of
specifications from high levels of abstractions to lower more concrete levels of abstraction. By

167

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

establishing formal refinements one can be sure such development steps are reasonable (see
Chapters 3 and 5 for examples). Refinement also allows fundamental properties like deadlock
freedom to be established (see Chapter 5 for an example).

In the original C sp -C a s l (see Chapter 5), the notion o f refinement was straightforward:
(D , P) ^ (D ' , P) if

/ ' |„ C / A VM ' € / ' . dM% & % -(d 'M>)

where (dM)Me/ ar|d are the families of denotations for the specifications (D , P)
and (D ' , P ') , respectively. Essentially, two points are compared for each data model. This idea
is not directly applicable to our new setting and needs to be extended to cover loose process
semantics.

To this end, we define a new refinement relation for C sp -C a sl as presented in [OMR 12].
The main challenge with defining a refinement notion for C sp -C a sl is that C sp -C a sl com
bines two different worlds, namely, algebraic specification in the form of C a s l and process
algebra in the form of Csp. These two settings each have a notion of refinement, but the notions
differ in their underlying ideas. Csp has a notion of refinement between individual processes,
for example, in the Traces semantics, pt Qj- pt' means that pt' has fewer traces than p t , that is,
traces{pt') C traces{pt). On the other hand, the C a s l family of languages uses model class
inclusion as the simplest notion of refinement [Mos04]: SP\ ^ S P 2 if S P 2 has fewer models
than S P \ , that is, M od(5P2) C M od(S 'Pi). To cater for renaming, this notion can be extended
by a signature morphism a. In this case one defines SP i ^ a S P 2 if the reduced model class
of S P 2 is contained within the model class of SP \, that is, M od(S'P2) |cr ^ M od(SPi). When
combining these worlds through institution theory, one has to recognise that these two refine
ment notions follow different ideas: While Csp refinement talks about refinement of individual
models, C a s l refinement talks about refinement of model classes.

This should become clear with the following notion: a Structured Csp-Casl specification
S P is single-valued (written as Single-valued(SP)), if there is no looseness in the processes,
that is, any two 5P-m odels with the same data part coincide. Traditional CSP refinement is
about refinement between different single-valued process specifications - reducing the amount
of internal non-determinism - whereas algebraic specification uses model class inclusion which
mainly captures different degrees of looseness of specifications.

How to reconcile these two worlds is not clear. We want refinement in Csp-Casl to cap
ture different degrees of looseness not only for data, but also for processes. Hence, we adopt
a model class inclusion notion for Csp-Casl refinement. However, model class inclusion is
not enough as we also want to capture CSP refinement between different single-valued specifi
cations. Model class inclusion alone would obviously never lead to such refinements between
single-valued specifications. Thus, we introduce the notion of refinement closure (and here,
“refinement” is meant in the CSP sense, not in the model class inclusion sense) which will
form part of the definition of Csp-Casl refinement.

Given a Csp-Casl specification S P with signature (£ i)a*a, Eproc), its refinement closure
RefCl(SP) is defined as follows:

• the signature of RefCl(SP) is that of S P ,

168

9.2. C s p -C a s l Refinement fo r Loose Process Semantics

Process Denotations
over Alph(M)m o d (£ Dat a)

ProjData(Mod(SP))
Pro jM(Mod(SP))

Pro j M (Mod (RefCl(SP)))

C a s l Model M

/ '

Figure 9.2: Diagram illustrating refinement closure o f C sp-C a sl specifications.

• the model class of RefCl(SP) (i.e., M od j) (RefCl (S P))) consists of those C sp-Ca sl
models (M f, I ') for which there exists a model (M , I) of S P such that

- M = M ', that is, they have the same data part, and

- I that is, for each n G S p roc and all suitable alphabet elements a i , . . . , ajt,

I (n (a i , . . . ,a k)) C p I ' (n (a x, . . . , ak))

for each C sp semantics V e { T ,A f ,P } .

The refinement closure of a specification adds all models which are C sp refinements of existing
models to the model class.

Alternatively, the semantics of RefCl(SP) can be expressed as a structured specification

S P th e n pi C p q i , . . . ,p n C p qn h id e p i , . . . ,p„ w i th qi ^ p u . . . , qn i-> pn

where p i , . . . ,p n are the process names of S P (we assume here that all of them are un
parametrised), qi , . . . , qn are new process names, and p C p q can be expressed as p = p n q
(see Section 2.4).

Figure 9.2 depicts the notion of refinement closure. Given a model M of the data part of
specification S P , we consider all of its possible process interpretation “partners” relative to
S P : P ro jM (M o d (S P)) = { I \ (M , I) G M od(S P)} - this is represented by the rectangle.
The refinement closure (represented by the half-dashed trapezium) includes all / ' such that
there exists some I G P r o jM (M od(S 'P)) that refines to I'.

With this notion, we are ready to define a notion of refinement that is suitable for CSP-
C a s l :

S P i 9V S P 2 i f fM o d v (S P 2)\e C M odv (RefCl(SPl))

for V G T) . We omit V if it is clear from the context and we also omit 9 if it is
the identity signature morphism. This notion reconciles Ca sl refinement based on model
class inclusion with C sp refinement based on inclusion of trace sets, failure sets, etc. Two
specifications SP\ and S P 2 are equivalent with respect to C sp semantics V, written SP \ =t>

169

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

S P 2 , if their signatures and model classes with respect to V coincide. We drop the subscript T>
when the particular Csp semantics is clear from the context.

The following properties show that our refinement notion is well behaved and has the prop
erties one would expect from any refinement notion.

Lemma 9.1 (Basic Refinement Properties) The following basic properties are sound.

1. RefCl is monotonic, that is: ifM o d (S P i) C M od(5P 2),
then Mod {RefCl (S P i)) C Mod (RefCl(SP2)).

2. RefCl is idempotent, that is RefCl(SP) = RefCl(RefCl(SP)).

3. ^ is reflexive and transitive.

4. If S'Pi S P 2 and S P 2 S P i , then RefCl(SPi) = RefCl{SP2).

5. If S P \ S P 2, S P 2 ^ S P \ , and both are single-valued, then S P i = SP 2.

Proof We prove each property individually below.

1. follows easily from the definition of RefCl.

2. this follows from reflexivity and transitivity of Csp refinement (i.e., C).

3. follows from 1 and 2.

4. follows from 1 and 2.

5. By 4, R efC l(SP l) = RefCl(SP2). Since different single-valued processes have differ
ent refinement closures, S P I = SP2. □

Following ideas given in [KR09] we obtain a decomposition theorem for refinements of
basic C sp -C asl specifications (i.e., C sp -C asl presentations). A basic C sp-C asl specifica
tion S P can be expressed as a pair (D , P) where D is the data part and a P is the process part.
Each part contains the respective signature and axioms (where P is dependent on D). This
allows us to (syntactically) decompose a refinement between basic C sp -C asl specifications
into a data refinement and a process refinement.

Lemma 9.2 (Decomposition Rule) The following rule is sound.

M od(D 7) ^ C M o d (P) (D ',0{P)) (D f,P ')
(D , P) (D ’, P ’)

where 6 — (cr, v) is a C sp -C asl signature morphism, and V e { T ,M , J-}. Here, 6(P) is the
translation of the process part P along 0 and has the same signature as P'.

170

9.3. Compositional Refinement Analysis

Proof. W e sh o w M o d (D ',P /)l0 £ M od (RefCl(D, P)) . Let (M ,J) G Mod(P>', P ')\e. We
show (M , /) G Mod(/te/C/(.D, P)) . We know there exists (M ', I') G Mod(P)', P ') such that
(M ' , I ') \ q = (M ,I) . From the first assumption we know M G M od(P). By the second
assumption we know there exists J' such that (M', J ') G Mod(Z)', 0 (P)) with J ' C P.
Thanks to & f M, preserving CSP refinement (Corollary 7.15), we know J' \ q C I ' \ q = I.
If we can show (M, J'l#) G Mod(Z), P), then we will have found a witness for (M, /) G
Mod(/te/C7(D, P)) . As we already know M G M od(P), it is sufficient to show

(M , J ' | 0) |= (fp for all p p G P .

By the satisfaction condition (Lemma 8.12), this is equivalent to showing

(A/7, J ') |= 9((fp) for all ipp G P

which holds as (M ', J ') G Mod(Z)', 0(P)). Thus, (M , J 'l#) G M od(D , P) and we conclude
(M , I) G Mod(/te/C/(P>, P)) . □

The above lemma allows us to decompose a C sp -C asl refinement (between basic spec
ifications) into a C a s l refinement (i.e., M o d (P ') |cr C M o d (P)) and a process refinement

(P /, P')- The former proof obligation can be discharged using C a s l ’s proof
tool, H ets [MML07]. The latter can be proven using the tool CSP-CASL-Prover [ORI09].

9.3 Compositional Refinement Analysis

As Csp-Casl now forms institutions we can use the structuring mechanisms presented in
Section 4.7 to create Structured Csp-Ca sl . This allows us to use the operations a n d , r e n a m e
and h id e on Csp-Casl specifications. With such structured specifications, the question arises
if and how we can reason over such specifications in a compositional way.

In order to establish refinements between structured Csp-Casl specifications using Csp-
CASL-Prover it is first necessary to reduce the refinement goal to a refinement between basic
Csp-Casl specifications. The decomposition rule (see Section 9.2) can then applied so that
tools such as CSP-CASL-Prover can be utilised. We show that it is possible to reduce specifi
cations over structured C sp-Casl specifications to refinement over basic Csp-Casl specifi
cations in many useful cases.

As a first proof of concept, we show that the specification building operators are monotonic
w.r.t. the structuring operations, cf. [BCH99]. This requires, in our case, certain side conditions,
most prominently for the structured union operation on specifications. Here, the conditions deal
with the following non-monotonic situation of CSP-CASL refinement: there exist Csp-Casl
specifications S P \ , SP[and S P 2 w ith1

M o d (5 P 1/) C M od(S P i), M od(S P i a n d S P 2) = 0, M o d (5 P 1' a n d S P 2) ± 0 .

’Consider over the Traces semantics SPi = (D , P = a —» Stop), SP 2 = (D , P = Stop), and SP{ =
(D , P = Stop) where D is a consistent C a s l specification that declares a constant a. Then SPi a n d SP 2 is
inconsistent, SPi 7- SP{, and SP{ a n d SP 2 has model (M , I) with I(P) = { () } and M G M od(D).

171

9. Refinement and Compositional Proof Calculi Over Structured C s p -Casl

To avoid such situations we introduce a notion of process consistency on Csp-Casl spec
ifications. Two C sp-C a sl specifications 5 P i and S P 2 are process consistent, written as
ProcConst(5Pi, S P 2), if for all M £ (P r o j o ata(M od(SP \)) D Projoata (M od(SP 2))) such
that there exists (M, I{) £ M o d (5 P i) and (M , I 2) £ M od(5P2), it is the case that there exists
(M , J) £ M od(S P i) D M od(SP2).

Furthermore, we occasionally require that Csp-Ca sl signature morphisms are injective
on process names, that is, process names are not collapsed. A C sp -Casl signature morphism
6 — (cr, v) : Yjcc ► ^ c c *s injective on process names if for all process names n WnjCommsn
and m Wm,COTnrnSm in S e c it is the case that

v{nWn,commsn) — commsm) implies n Wn ĉomrnSn = m WmiCornrnSm .

Note that 6 being injective on process names can have restrictions on the data part o of the
signature morphism as data forms part of the identity of process names.

Lemma 9.3 The following proof rules are sound over T, M , and T \

S P \ ^ SP{ P rocC onst(5Pi, S P f) Single-valued(S'Pi) for i = 1 V i = 2
(S P 1 an d S P 2) (SP{ and S P 2)

S P i ^ SP{ SP i = RefCl(SP\)
(SP \ and S P 2) (SP[and S P 2)

S P ^ S P ' 9 is injective on process names
(S P ren am e 9) (S P ' renam e 9)

_________ S P ^ > S P '_________
(S P h id e 9) ^ (S P ' hide 9)

where 9 : S e c -> ^ 'c c is a C sp -Ca sl signature morphism.

Proof Let 9 — (cr, v) : S e c ^ 'c c a C sp-Casl signature morphism. We prove each
proof rule individually.

Structured and rule 1 We show M od(SP[and S P 2) C Mod(RefCl(SP\ and 5P 2)). Let
(M ' J ') £ M od(5Pj an d S P 2), then we know (M ', / ') £ Mod(SP[) and (M ', / ') £
M od(SP2). By the first assumption we know (M ', I ') £ Mod(RefCl(SP\)), that is,
there exists I such that (M ',7) £ M od(5Pi) with I C We also know M 1 £
P r o j D ata (Mod (S P i)) n FrojDflta(Mod(*Srf^)) , thus by assumption we know there
exists (M ', J ') £ M od(SPi an d 5 P 2). It is the case that either SPi or S P 2 is single
valued.

Case 1: S P \ is single valued As (M ', I) £ M od(SPi) and (M ', J') £ M od(SPi) we
know I — J 1. Finally, we can conclude (M \ P) £ Mod(RefCl(SP\ and S P 2))
as J C V.

172

9.3. Compositional Refinement Analysis

Case 2: SP2 is single valued As (M ', / ') G M od(SP 2) and (M ', J ') G M od(5P2)
we know I ' — J ' . Finally, as I ' C I ' we can conclude (M ', 7') G Mod(RefCl(SP\
an d S P 2)).

Structured an d rule 2 We show M od(5P[an d S P 2) C Mod(RefCl(S P\ an d S P 2)). Let
(M ',7 ') G Mod(S7?[and S P 2). We know (M ',7 ') G M od(SP{) and (M ',7 ') G
Mod(5P2)- By the first assumption we know that there exists I such that (M ',7) G
M od(5P i) with 7 C 7'. As SP \ is refinement closed, we know (M ', 7') G M od(5Pi),
thus (M ',7 ') G M od(5Pi and SP 2). Finally as 7' C 7', we can conclude (M ',7 ') G
Mod {RefCl (S Pi and S P 2)).

Structured ren a m e rule We show M od(5P ' ren am e 6) C M od(RefC l(SP renam e
6)). Let (M ', 7') G M od(5P' ren a m e 6), then we know (M ', V)\q G M od(5P'). By
assumption we know there exists 7 such that (M '|CT, 7) G Mod(S'P) with 7 C 7'|#.

We now construct J ' relative to M ' as:

J ' (n ' (a i , . . . , 4)) :=

f Q;? M '(/ (n (Q!ff,M '-1(a/i) , - - - >Q!<7,M'_1(a/fc)))) if n G ECc with i/(n) = n'
I ToPcomms' otherwise

for all process names comms/ G and alphabet elements a \ , . . . , a'k G s'1Af, x
. . . x s'kM, where w ' = (s [, . . . , s'k).

This definition is well formed as 6 is injective on process names, thus there is no am
biguity in the choice of denotations. The partial inverses of parameters are defined
thanks to the strict translation of the parameter sorts of process names. As (M '|CT, 7)
satisfies the controlled traces condition (a requirement of C s p -C a s l models) and as
c T rx>(ro/7^)mms/) G T (co m m s ') (Lemma 7.19), it follows that J ' also satisfies the
controlled traces condition, and is thus a C sp -C a s l model.

By the construction of J ' we know that J ' C 7'. This is the case because for names in
E ccs we know J ' ’s denotation matches 7 ’s denotation (after translation by M,) which
refines to 7 '’s reduced denotation. For all other names not in Tice we know that J ' de
notation is Top^ommgt for which 7' denotation will be a refinement (see Lemma 7.19).
We also know from the construction and Lemma 7.16 that J ' \ q = 7. We now have
(M '|ct, J ' \e) = (M ', J')\e e Mod(S'P), thus (M ', J ') g M od (5P ren am e 9). Fi
nally as J ' C 7' we know (M ', 7 ') G M od(RefCl(SP ren a m e $)).

Structured h id e rule We show M od(5P' h id e 6) C M od(RefC l(SP h id e 6)). Let
(M ,7) G M od(5P' h id e 6) then we know there exists (M ',7 ') G M od(SP') such
that (M , 7) = (M ', 7')|fl. By assumption we know there exists J ' such that (M ', J ') G
Mod(S'P) with J ' C 7'. Therefore (M , J '|^) G M od(5P h id e 6). As J ' □ 7' then we
also know J '|^ C 7'|^ = 7, thus we can conclude that (M , 7) G Mod(/?e/C7(5P h id e
«)) • n

173

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

The rules for a n d involve rather strong preconditions, where we hope that it will be possi
ble to obtain better results in the future.

Renaming and refinement involving the same signature morphism can be exchanged. Fur
thermore, compositional translations can be collapsed into one, and the specification union
operator distributes over translation.

Lem m a 9.4 The following statements hold:

1. (S P r e n a m e 9) S P ' implies S P ^ 6 SP '. Furthermore, the converse is not true in
general.

2. Provided that 9 is injective on process names, we also have:
S P ^ S P ' implies (S P r e n a m e 9) ^ S P ' .

3. (S P r e n a m e 9\) r e n a m e 92 = S P r e n a m e (92 ° #i).

4. (SP \ a n d S P 2) r e n a m e 9 = (SP \ r e n a m e 9) a n d (SP 2 re n a m e 9).

Proof. Let 9 — (cr,v) : S e e S 'c c be a C sp-C a sl signature morphism and let S P and
S P ' be S e e - and S ^ c -specifications respectively. We show each implication separately

Statement 1 We show S P 6 S P ' , that is, M od(SP ') \o C Mod(RefCl(SP)). Let (M, I) G
Mod(5P/)|0, then there exists (M ' , I ') G Mod (SP ') such that (M ' ,I')\o = (M, I).
By assumption we know (M ', I ') G Mod(RefCl(SP r e n a m e 9)), thus we know there
exists J ' such that (M \ J ') g Mod (S P rename 9) and J' c I', By the definition of
the structured re n a m e operator we know (M, J'\q) G Mod(S'P). As J'\q C I, we can
conclude (M , I) G Mod(RefCl(SP)).

We now show the converse, S P S P ' implies (S P re n a m e 9) SP ', is not
true in general. In particular signature morphisms which are non-injective on pro
cess names are problematic. Consider the following two C sp-Casl specifications:

spec SP = spec SP/ =
data free type s ::= a \ b data free type v ::= a \ t
process P : s , Q : s ’, process P ' : s\

P = a - > STOP; P' = a ^ STOP
Q = a STOP n STOP end

end

There is a signature morphism from the signature of S P to the signature of S P ' where
the process names P and Q are both mapped to P'. Each specification has a single
model. It is easy to show S P S P ' . However, (S P r e n a m e 9) S P ' does
not hold as M od (5P re n a m e 9) = 0. Thanks to the signature morphism, any model
(M f, I ') G M od (5P r e n a m e 9) would have to give an interpretation to P' such that
I '\o(P) = I'\e(Q), which is impossible due to the process equations in SP.

174

9.4. Compositional Deadlock Analysis

Statement 2 We show (S P r e n a m e 6) S P ' , That is, by definition, Mod(iS'P/) C
M od(RefCl(SP r e n a m e 6)). Let (A/7, / ') £ M od (5P /), then we know by assump
tion that (M ',I ') \q £ M od(RefCl(SP)). Thus, we know there exists / such that

I) £ M od(SP) and I C / ' | 0.

We now construct J ' (relative to M ') as is done in the proof of the structured re n a m e
rule of Lemma 9.3, that is,

J '(n '(a [, . . . , a'k)) :=

f if 71 G E <?C with v(n) = 7l'
I T°PZmm>> otherwise

for all process names n'w, cornms> G £ 'c c and alphabet elements a[, . . . , a'k £ s'1M, x

• • • x s kM' w h e r e w> = <s i ’ • • • > s 'k)•

By the construction of J ' we know that (M ', J') is a C sp -C a s l model, J ' C I '
and J'\q = I . Finally, we have (M '\a ,J '\e) = (M ',J ') \q £ M od(5P). There
fore (M ' , J ') £ M od (5P re n a m e 9). As J ' C I ' , we can conclude (M ',P) £
M od(RefC l(SP r e n a m e 6)).

Statements 3 and 4 Follows from the definition of the structuring operator and are institution
independent. □

9.4 Compositional Deadlock Analysis
The deadlock analysis presented in [KR09] is practically limited to dealing with a small number
of processes in parallel. It involves the construction of a so-called sequential process - which
has a size that is exponential in the number of parallel components involved (this method was
used in the deadlock analysis of the EP2 dialogue in Section 5.4). Here, we prove deadlock
freedom in a far more elegant way.

For the rest of this section, as usual for deadlock analysis in the context of Csp, we work in
the Stable-Failures semantics T only. Furthermore, we assume all processes and process terms
to be divergence free.

Within this section we use the notation of fa ilures(J) in place of s/rd([[_Jj-). Thus, we
often write fa i lu re s (lp i l (M j) ^ G tiL) to mean the failures of the process term resulting from
the C a s l evaluation of the process term pt with respect to model (M , I) and valuations fie
and p L, that is, f a i l u r e s (l p t \ Mj) ^ G^ L) = -In this respect we also
write a a>M(fa i lu r e s (lp t ^ MJ)^ GillL)) for sn d (a ^ M (l lp t jM^ G,f,L}T,i)) (similarly for the
contravariant translation) to ease notation.

9.4.1 D eadlock Freedom in Structured C s p -C a s l Specifications

We first define what it means for a process term to be deadlock free in the context of a CSP-
C a sl specification (be it basic or structured). We then present a collection of proof rules for
deadlock analysis over the structuring operators.

175

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

Let S P be a C sp -C a s l specification with signature E ccs X q and X l be global and local
variable systems respectively over T,cc , and let pt be a process term over signature E c c with
variable systems X q and X l . We say: pt is deadlock free in specification S P , written as

pt i s D F in S P

if for all models (M , I) G M od(S P), for all variable valuations p c '• X q —>• M ± and p l '•
X l —>• M ± , and for all traces s G Alph(M)* it holds

(.s ,A lp h { M y) $ fa i lu r e s (lp t j {M>I)^ G^ L) .

We now show that deadlock freedom is compatible with the structuring operations:

Lem m a 9.5 The following proof rules are sound:

S P S P ' pt i s D F in S P pt i s D F in SP \
6{pt) i s D F in S P ' pt i s D F in (SP \ a n d SP f)

pt i s D F in S P 0{pt) i s D F in S P '
9(pt) i s D F in (S P r e n a m e 6) p t i s D F in (SP ' h id e 9)

where 9 : Y>cc —>• ^'cc *s a C s p -C a s l signature morphism.

Proof Let 9 = (a ,v) : E c c —>■ ^ c c a C sp -C a s l signature morphism, X q and X l be
global and local variable systems respectively, and let pt be a process term over Ec c with X q
and X l - We prove each proof rule individually.

Refinement rule Let S P be a Ecc-specification and S P ' be a E^-specification. Assume
9(pt) has a deadlock in S P ', then we know there exists a model (M ' , I ') G M od(5'P/),
valuations p c '• & (X g) —> M'± and p l : c t (X l) —> M'± , and a trace s' G Alph(M')*
such that

(s ' ,A lp h (M 'Y) G fa i lu re s (l9 (p t) j iMfJ/)^ G^ L) .

As S P refines to S P ' we know that (M ', I ') G M od(RefCl(SP)), thus there exists I
such that (M \a , I) G M od(5P) with I C I'\g.

By the reduct property (Lemma 8.11) we know

fa i lu r e s (\p t \ MIJI)| , l/iG|CT)ML|CT) = oca,M>(failures(\9(pt)\{M^r) ^ G^ L)) .

Thanks to the controlled traces we know a a>M' preserves deadlocks (Lemma 7.20), thus
we obtain

(.s,A lph(M '\a y) G fa i lu r e s (lp t j iM>j>)le^ GlcT̂ Ll(7)

where s' — ot^/M,(s) for some s (as pt is a process term over Y,qc there must be a
corresponding s for s').

176

9.4. Compositional Deadlock Analysis

As I C I ' \q, and the given refinement is monotonic with respect to the CSP opera
tors [Ros05], it follows that

fa ilures{ \p t\(M ',r) \6,nG\a,nL\a) Q fa i lu r e s (lp t j {M%J)yflG]a!flLla) ,

thus
(s ,A lph(M '\ay) G fa i lu r e s (\p t \ {M> J ■

This is a witness that pt has a deadlock in S P . This is a contradiction and we conclude
that 6{pt) is deadlock free in SP '.

Structured a n d rule As pt is deadlock free in S'Pi and the structured a n d operator only
restricts model classes (and thus cannot introduce a model with a deadlock), it follows
that pt is deadlock free in S P \ a n d S P 2 .

Structured r e n a m e rule Let S P be a E c c -specification. Assume the process term 6(pt)
has a deadlock in (S P r e n a m e 9), the we know there exists a model (M ', I ') G
M od(5P r e n a m e 6), valuations p c ■ cf(Xg) M'± and p l '• & (X l) —■► M'± ,
and a trace s' G Alph(M')* such that

(s ' ,A lp h (M 'Y) G / a ilu res(\9 (p t) \(m ' ,I'),hg ,hl) ■

As we have a renaming we also know (M ', I')\q g M od(5P). By the reduct property
(Lemma 8.11) we know

f a i lu r e s ([p t](M,,i>)\0^ G\a^ L\a) = a * ,M '(fa ilures(l6(p t)} iM, j ,) ^ G^ L)) .

As a a,M' preserves deadlocks (Lemma 7.20) we obtain

(s ,A lph(M '\ay) G f a i lu r e s (lp t j {M> j^ eit,Gla^ L\ J

where s' = <Y/mi(s) for some s (as pt is a process term over E c c there must be a
corresponding s for s'). This is a witness that pt has a deadlock in S P . This is a
contradiction and we conclude that 9(pt) is deadlock free in (S P r e n a m e 6).

Structured h id e rule Let S P ' be a C sp -C a s l specification with signature E 'c c * Assume
pt has a deadlock in (S P 1 h id e 6), then we know there exists a model (M , I) G
Mod(S'P' h id e 0), valuations p c \a ' X c —>■ M ± and p l \ g '• X l —> Mj_, and a
trace s G Alph(M)* such that

(.s ,A lp h (M Y) G fa i lu r e s (lp t j{MJ)>flG|aiML|CT) .

By the definition of the h id e operator we know there exists (M ', / ') G M od(5P ') such
that (M ', J ') | 0 = (M , /) . By the reduct property (Lemma 8.11) we know

fa i lu r e s (lp t} {MJ)yfIGla^ L\a) - dL(TM' { f a^lures({e(pt)'\{M>,I ')^G,HL)) ■

As do- M' preserves deadlocks (Lemma 7.20), thus we obtain

(.s ' ,A l p h (M 'y) G /ai/ures([6>(pf)J(M/)70;MG;ML) .

where s' = o;*'yl7 ,(s). This is a witness that #(p£) has a deadlock in 5 P '. This is a
contradiction and we conclude that pt is deadlock free in (S P ' h id e 9). □

177

9. Refinement and Compositional Proof Calculi Over Structured C s p -C a s l

The above proof rules allow one to show deadlock freedom by decomposing structured
specifications. However, it may still be a difficult task to prove deadlock freedom for complex
systems involving parallel processes. We describe a technique for dealing with this situation in
the following section.

9.4.2 D eadlock A nalysis o f Netw orks

In order to study deadlock analysis of networks of processes, we lift a definition originally
formulated over Csp in [RSR04] to C sp -C as l. This captures the notion of processes being
responsive to one another. For example, a server Q is responsive to a client P if whenever the
client needs participation from the server, the server is prepared to engage in it. That is, the
sever does not introduce a new deadlock.

We first define what it means for one process to be responsive to another. Let P and
Q be process terms over signature 'Pec with global and local variable systems X q and X l
respectively. Let A p and A q be downward and upward closed super sets of the constituent
alphabets of the process terms P and Q respectively (i.e., sorts(P) C A p , \ .A p = A p, and
t A p = A p , similar for A q)2, and let J = A p Pl A q be the set of all shared communications
sorts. Finally, let J ' e Jj, and X = J ' U { /} . Then, we define the responds to live property
as:

Q :: A q R e sT o L iv e ^ P :: A p on J ' in S P

if for all models (M , I) 6 M od(S 'P), all variable valuations p e '■ and p l : X l —)■
M_l, and for all traces s € A lp h { M Y it holds that

{ s ,X) e f a i lu r e s { \P \ [J] \Q \{m j)^ g ^ l) =s> (s ,X) € f a i l u r e s (l P \ MJ)tilGttlL)

A server Q is responsive to a client P if any deadlock occurring in the parallel combination
of the server and client originates from the client alone.

With this notion it is possible to establish deadlock freedom of networks in a compositional
way (lifted from the Csp level [RSR04] to C sp -C asl). We can start with a deadlock free
network and add on responsive processes without adding deadlocks.

Lem m a 9.6 Let S P be a C sp -C a s l specification with signature P e c • Moreover, let Pi (for
1 < i < k) and Q be process terms over P e c with global and local variable systems X q and
X l respectively. Finally, let Ai and A q be downward and upwards closed super-sets of the
constituent alphabet of the process terms Pi for 1 < i < k and Q respectively.3 If

• A{ Pl A j n A q = 0 for all i and j where 1 < i j < k and i j ,

• Ai n A q 0 for at least one i where 1 < i < k,

• N e tw o rk ({ (P \ , A \) , . . . , (P k, A &)}) i s D F in S P , and

2Upward closure is defined in the obvious way: ‘f X = {y E S \ 3x G X • x < y}. The condition “upward
and downward closed” is required due to CASL sub-sorting. It ensures that the sort set J comprises all shared
communications.

3In the original publication by Roscoe [RSR04] they use J as the alphabet of Q. We use A q here for clarity to
avoid a clash in the previous section with J representing shared events.

178

9.4. Compositional Deadlock Analysis

• Q :: A q R e s T o L iv e / Pi :: Ai on (Ai fl A q) in S P for each i where 1 < i < k and
Ai n A q ^ 0

then N etw o rk ({ (P i , A \) , . . . , (P^, A^), (Q, A q)}) i s D F in SP .

Proof. We first introduce some convenient shorthands for this proof. Let N ' be shorthand for
N etw o rk ({ (P \ , A \) , . . . , (P^, A&), (Q ,A q)}), N be shorthand for N e tw o r k ({ (P i, A \) , . . . ,
(P/c, Af~)}), and A = Uf=i ^ be shorthand for the combined alphabet of each process term’s
alphabet A*.

Now assume TV' has a deadlock, then we know there exists a model (M , I) , valuations
PG : X g —>• M ± and p l ■ X l M ± and a trace s £ Alph(M)* such that

(s ,A lp h (M Y) £ f a i l u r e s (l N \ MJ)^ GtflL) .

We can decompose this failure into failures contributed by the components of the net
work. That is, there exists two failures (s ' , X) £ ^ and (s " ,Y) £
failures(lQ}(M,i),ij,G,ij,L) such that s' = s \ A and s" = s \ A q and where X and Y are
maximal refusal sets. We can further decompose the failure (s ' , X) into failures (S i ,X i) £
failures(lPij^M,i),nG,fj.L) such that Si = s' \ Ai = s \ A i and where X i are maximal
refusals.

We know that X U Y — A lp h (M Y as we decomposed a deadlocked failure. From this
we can derive the fact (X D A''') U (Y fl A q /) = (A U A q Y . As a consequence of the
maximality of the failures, we know that each of them is either Alph(M) or contains / . As
N is deadlock free in S P , we also know that X ^ A l p h (M Y . This leaves us with two cases,
either X = Alph(M) and no Pi can refuse / (i.e., / ^ X i for all 1 < i < k), or / £ X and
0 7 ̂ (A / — X) C A q . We now consider these two cases separately.

Consider the first case. By assumption we know there exists i such that Ai fl A q ^ 0, thus
for this i we know Ai fl A q ^ 0. We also know / e Y X U Y = A l p h (M Y . From these
facts it follows that

(s i ,(A i n A q Y) £ fa ilures({P i \[At D A q]|

and
(si} (Ai D A q Y) £ fa i lu r e s (lP i l {MJ)>flG^ L) .

This contradicts our assumption that Q is responsive to P , thus this case is impossible.
In the second case we know there exists i such that (Ai — X i) fl A q 0. Furthermore we

can establish that / £ X i. From these facts we can establish Ai — X i C Y , which leads us to
the fact (Ai fl A q Y Q X i U Y . This leads us to the same contradiction as in the first case and
we conclude that TV' is indeed deadlock free in S P . □

This lemma provides an elegant proof technique: we start with a network we want to show
is deadlock free, we identify a responsive process and pull it out. It remains to show that the
sub-network is deadlock free. This can be repeated until the network consists o f a single com
ponent, at which point deadlock freedom is easy to prove (as there is no parallel combination).
The property responds to live has a characterisation in terms of refinement [RSR04] and thus,

179

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

can be proven, for example, by Csp-CASL-Prover; the conditions concerning communication
alphabets can be proven algorithmically.

In order to use this proof technique, one must establish responsiveness of processes with
respect to structured specifications. To ease this burden we provide a proof calculus tailored
for the property responds to live:

Lem m a 9.7 The following proof rules are sound:

Q :: A q R esT o L iv e ^ P :: A p on J ' in SP \

Q :: A q R e s T o L iv e / P :: A p on J ' in (SP \ a n d SPf)

Q :: A q R e s T o L iv e ^ P :: A p on J ' in S P

0(Q) :: c t (A q) R e s T o L iv e ^ 0(P) :: cr(Ap) on cr(J') in (S P re n a m e 6)

0(Q) :: c f (A q) R e s T o L iv e / 9 (P) :: cr(Ap) on cr(J') in S P '

Q :: A q R e sT o L iv e / P :. A p on J ' in (SP ' h id e 6)

where 6 — (cr, v) : E c c £ 'cc •

Proof Let 6 = (<j, v) : E c c —> £ c c be a C sp -C a s l signature morphism, X g and X l be
global and local variable systems respectively, and let pt be a process term over E c c with X q
and X l . We prove each proof rule individually. In the following let J = A p Pi A q .

S tructured a n d rule As Q is responsive to P on J ' in SP\ and the structured a n d operator
only restricts model classes, it follows that Q is responsive to P on J ' in SP\ a n d SP 2 .

S tructured re n a m e rule Let S P be a Ecc-specification and (M ',7 ') be a E ^ -m o d e l in
M o d (5 P r e n a m e 6). Furthermore, let p c ■ <?(Xc) -» T17j_ and p l '■ &(Xl) TV/̂
be valuations, and s' £ be a trace such that

(s ',(t (J /)m ' u { ^ }) e fa i lu re s (\6 (P) \ \< T (J)} \d (Q)\M^ p)^ G^ L) .

As we have a renaming we also know (M ', I ') \q £ M od(5'P). By the reduct property,
(Lemma 8.11) we know

f a i l u r e s (\ P \ \ J] \Q \ { m >,i >)\6p g \o p l \o) =

oca,M'(failures(\e(P)\[o{'\]\ •

By applying Lemma 7.20, and the fact that a (J ') M, U { / } = o ^ /m>(J'M'\a u { / }) ,
we obtain

U { /}) G f a i lu r e s (\P |[J] | Q l(M/,7')|e,/zG|a>ML|a)

where s' — assumption we know

(sYPM% U { / }) £ f a i l u r e s d P j ^ ^ ^ ^ J .

^

9.5. A Complete Refinement Calculus

Finally, by applying the reduct property (Lemma 8.11) and Lemma 7.20 in reverse, we
obtain

(s \ a (J ') M, U { / }) € fai lures{ lO(P)] {MIJ/)^ G^ L) .

We conclude that 0 { Q) is responsive to 6 {P) on J ' in (S P ren a m e 6).

Structured h id e rule Let S P ' be a C sp -C a s l specification with signature and let
(M, I) G M od(5P' h id e 6) be a model. Furthermore, let p c \ a '• X q —>■ Mj_ and
MlU : X l -* M ± be valuations, and s G A l p h (M)*/ be a trace such that

(s^ m U { / }) G f a i l u r e s d P W J ^ Q l ^ M ^ Q ^ ^) .

We know there exists a model (M 7, 1') G M od(5P') such that (M f , I')\g = (M , I) . By
the reduct property (Lemma 8.11) we know

f a i l u r e s (I P | [J] \ Q \ m j),hg*,ulO =

&cr,M ' (f a i l u r e s (\ 6 (P) \ [a (J)] \ e (Q) j {WJ/)^ G^ L)) .

By applying Lemma 7.20, and the fact that o (J')M> U { / } = a £ ^ , (J ' m U { / }) , we
obtain

(s',<j (J')m, U { / }) G f a i l u r e s (\ 6 (P) \ [o (J)]| 0 (Q) j {M^n i i G ^ L)

where s' — assumption we know

(s ' , o (J ') M, U { / }) G f a i l u r e s (i e (P) j {M/Jf) ,h g ,u l) •

Finally, by applying the reduct property (Lemma 8.11) and Lemma 7.20 in reverse, we
obtain

(s, J V U { / }) G f a i l u r e s (l P \ {MtJ)tliG\0^ L\0) .

We conclude that Q is responsive to P on J' in (S P ' h id e 6). □

This proof technique allows deadlock freedom of processes to be established relatively
to structured C sp-Ca sl specifications in an elegant and compositional manner. We show an
example of using this technique in Chapter 10.

The above network lemma (Lemma 9.6) and calculi illustrate the successful application of
techniques from CSP to C sp-C a sl and the institution independent structuring mechanisms.
We expect other techniques from CSP to also lift successfully to C sp-Ca sl .

9.5 A Complete Refinement Calculus

Here, we develop a proof calculus which allows for the compositional reasoning of refinements
in Structured C sp-Ca sl , following the style of Bidoit et al. [BCH99]. We show not only
soundness of this calculus, but also completeness provided that the structured specifications
are restricted to certain (mostly) reasonable constructions principles.

181

9. Refinement and Compositional Proof Calculi Over Structured CSP-CASL

First, we define the notion of conservative extension. A C sp -C a s l Specification S P '
is a conservative extension of a specification S P (written S P ' ConsExt S P) if Sig(5P) C
Sig(5P') and for all models (M , I) G Mod(S'P) there exists a model (M ',1 ') G Mod(5P')
such that (M ' , I')\q = (M , 7), where 9 is the embedding signature morphism from Sig(S'P)
to Sig(S'P').

In the following lemmas we assume a proof system which defines a relation S P I b p
between structured C sp -C a s l specifications and formulae.

Lemma 9.8 The following proof rules are sound over T, Af, and T relative to a sound calculus
for S P I b ip.

S P I b p for all p G A x(D , P)
(D , P) ^ S P I

where 9 is
S P ' ^ t S f J ' S P I ' ConsExt SPJ the embedding from

S P h id e 9 ^ S P I S ig(SP7) to S ig (5P ')

S P S P I ' h id e 9 9 is injective on process names
S P r e n a m e 9 S P I '

SP i S P I ' h id e 91 S P 2 S P I ' h id e 92
9\ and 92 are injective on process names image (vi) n image(v2) = 0 9\ = (cr], z/i),

(5Pi r e n a m e 9\) a n d (S P 2 re n a m e 92) S P I ' 92 = (a2, v2)

S P 1 S P I S P 2 ^ S P I
ProcConst(5'Pi, S P 2) Single-valued(5Pj) for i = 1 V % = 2

SP i a n d S P 2 ^ S P I

Note that in the 2nd rule, the signature of S P ' must be equal to the signature of S P I ' as the
refinement does not involve a signature morphism.

Proof. We prove each rule individually.

Proof of rule 1 Assume S P I b <p for all c/? G Ax (D ,P) , we show (D ,P) ^ S P I , that
is, M od(5P7) C Mod(RefCl(D , P)). Let (M ,I) G Mod(5P7). We claim (M ,7) G
Mod(T),P) C Mod(RefCl(D, P)). To this end, let p G A x (D ,P) . We show (M , 7) |= p.
Since S P I b p and by the soundness of b we can conclude (M, 7) |= p.

Proof of rule 2 Assume S P ' S P I ' and S P I ' ConsExt S P I . We show Mod(5'P7) C
Mod(RefCl(SP' h id e 9)). Let (M , 7) G Mod(5P7). By conservative extension we know
there exists (M ',7 7) G M od(5P77) such that (M ',I ') \o = (M ,7). By assumption we know
(M 7,7 7) G Mod(/te/C/(S'P7)). Therefore there exists (M 7, J ') G Mod(5'P/) such that J ' C
I'. By the definition of hiding we know (M , J'l#) G Mod(S'P/ h id e 9). As J ' C I ' we know

E I'\o = 7, thus (M , 7) G Mod(/te/C/(SP' h id e 0)).

182

9.5. A Complete Refinement Calculus

Proof of ru le 3 Assume S P ^ S P I ' h id e 6 and 9 is injective on process names. We show
Mod { S P I ') C M od (RefCl(SP r e n a m e 6)). Let (M ',7 ') E M od (S P I ') . By definition
of hiding we have (M ',I ') \g E M o d (5 P 7 ' h id e 6). By assumption we know (M ', I ') \g E
M od(/?e/C /(5P)). Let 6 = (cr, v) : T>cc —■► l^en t îere exists (M '\a , I) G M o d (5 P)
such that / C I ' \q.

We now constmct a witness J ' which allows us to show (M ',7 ') G M od (RefCl(SP
r e n a m e 0)). To this end construct J ' (relative to M ') as is done in the proof of the struc
tured r e n a m e rule of Lemma 9.3, that is,

. . . , a'k))

f • • • ,cv ,M '_1«)))) if n G E CC with i/(n) = n'
I T°PZmms' otherwise

for all process names n'w, carnrns, G and alphabet elements a [, . . . ,a'k £ s[M, x . . . x s'kM,
where w' = {s[, . . . , s'k).

By the construction of J ' we know that (M ', J ') is a C sp-C a sl model, J ' C I ' and
J'\q — I. Finally, we have (M '\a , J'\g) = (M ' ,J ') \g G Mod(iS'P). Therefore (M ', J ') E
M o d (5 P re n a m e 9). As J ' C I ' we know (M ', 7 ') G M od(/te/C 7(5P re n a m e 9)).

As G M od(S 'P) and J'\g = 7, we have (M ', J')\g E M o d (5 P). By definition
o f renaming we have (M ' , J ') G M o d (5 P r e n a m e 9). As J ' C I ' , we know (M ',7 ') G
M od (RefCl(SP r e n a m e 9)).

Proof of rule 4 Assume S P \ S P 7 ' h id e 9\, S P 2 ^ S P I ' h id e 92, signature mor-
phisms 9\ and 92 are injective on process names, and image (ui) D im a g e d) — 0- We
show M o d (5 P 7 ') C M od {RefCl {{SP\ r e n a m e 9\) a n d (S P 2 r e n a m e #2)))- Let
(M ',7 ') G M o d (5 P 7 '). By definition of hiding we have (M ',7 ') ^ G M o d (5 P 7 ' h id e
0i) and (M ',7 ') |02 G Mod(<S'P7' h id e 02). By assumption we know that (M ', I ') \o 1 G
M od {RefCl {SP\)) and {M ',I ') \q 2 G M od (RefCl (S P 2)). Therefore, we know there exists
model (M '\a i , I i) G M o d (5 P i) such that 7i □ I '\q1 and (M '|CT2 , 7 2) G M od(5 P 2) such that
h E I'\d2 - L61 type of 0 * be U c c i —>► for i = 1 , 2 .

We now construct J ' (relative to M ') similarly to the construction in the proof of the struc
tured r e n a m e rule of Lemma 9.3, that is,

J '(n '(a \ , . . . , a'k)) :=

(«ai,M '_ 1 (a i) ,.-- ,Q ;a i,M '_ 1 K)))) i f n i e S c c i w ith i/i(n i) = n'
°? 2 • • • ^ a 2 ,M'_ 1 K)))) if ^ 2 G S c C 2 with v2{n2) = n'
T°Pcamms' otherwise

for all process names n'w, camrns, E N ' and alphabet elements a[, . . . , a'k G s'1M, x . . . x s'fcM,
where w' = (s i , . . . , s ' k).

J ' is well formed since 9\ and 02 are injective on process names and their images do not
overlap. Furthermore, by the construction o f J ' we know that, (M ', J ') is a C sp -C a s l model,

= h , J'\e2 = 7 2,and J ' Q I ' .

183

9. Refinement and Compositional Proof Calculi Over Structured C sp -C a s l

As (M 'lo -^ /i) G M od(S 'Pi) and J ' = I\ , we have (A7', J ') l 0 i G M od(5P i). As
(M '|CT2 ,72) G M od(5P2) and J ' l ^ = I 2 , we also have (M ', J')\e2 £ M oc^SP^). By defi
nition of renaming, we have (A7', J ') G M od(S'Pi r e n a m e 9i) and (M ', J ') G M od(5p2
r e n a m e Of). Thus, (M ', J ') G M od((5 'P i re n a m e 6{) a n d (S P 2 r e n a m e #2)). Finally,
as J ' C we know (M ', I') G M od(/te/C /((5P i re n a m e #i) a n d (S P 2 r e n a m e 92))).

Proof of rule 5 Assume S P \ 5 P 7 , S P 2 ^ S P I , ProcConst(S'Pi, S P 2), and either
S P \ is single-valued or S P 2 is single-valued. We show M o d (5 P 7) C M o d (R e fC l (S P \ a n d
S P 2)). Let (M, I) G M o d (S P I) . By assumption we know (M , I) G M o d (R e f C l (S P \)) and
(M , I) G M od(Pe/C7(5P2)). Thus, we know there exists (M , I \) G M o d (5 P i) such that
/ 1 C / and there exists (M ,/ 2) G M od(5P2) such that I 2 Q I. By process consistency we
know there exists (M , J) G M od(P P i) Pl M od(5P2) = M od(5P i a n d S P 2). Let w.l.o.g.
S P i be single-valued. As (M , J) G M od(S 'Pi) and (M , 7i) G M od(S 'Pi) then J = I \ .
As (M , J) G M od(5P i a n d P P 2) and J C 7, we have (M , 7) G M od(/te/C /(5Pi a n d
S P 2)). □

Provided that the structured specifications are restricted to certain (mostly) reasonable con
structions principles, we obtain completeness as well.

Lem m a 9.9 The proof rules in Lemma 9.8 are complete relative to a complete calculus h and
where all structured specifications satisfy the following restrictions:

• Each basic specification (D , P) is either

- refinement closed (i.e., (D , P) = R e fC l (D , P)); or

- have all formulae preserved by Csp refinement, that is, for any models (M , 7) and
(M , J) of (79, P) such that 7 C J , it holds that (M , 7) (= iff (M , J) |= p for all
p G Ax(79, P).

• All renamings are injective.

• Any specification union is either of the form

- (S P \ r e n a m e 0\) a n d (S P 2 r e n a m e 6 2) where signature morphisms 9\ and O2

are injective on process nam es and image(ui) fl image(v 2) = 0; or

- S P i a n d S P 2 where ProcConst(5Pi, S P 2) and either S P \ is single-valued or
S P 2 is.

P ro o f We prove that if S P ^ S P I then there exists a derivation tree concluding with S P ^
S P I . We do this by induction over the structure of S P . Note: In the following we use S P and
S P I and the primed variants (S P ' and S P I ' , respectively) according to which signature they
have.

184

9.5. A Complete Refinement Calculus

Base Case: 1st Rule Let S P = (D ,P) . We know by assumption that M o d (S P I) C
M od(RefCl(D: P)) . We find a derivation tree concluding with (D ,P) ^ S P I . It is enough
to show S P I b ip for all <P € Ax(D , P) as we can then use the first rule to create our full tree
concluding in (D, P) S P I . Furthermore, by the completeness of b, it is enough to show
S P I \= p for all (p G Ax(D , P).

To this end, let <p G A x (D ,P) . Let (M , I) G Mod (S P I) . By assumption we know
(M , I) G M od (RefCl(D, P)) . By assumption we know either (D ,P) is refinement closed
or CSP refinement preserves the axioms of (D , P). If (D , P) is refinement closed, then we
know (M , I) G M od(Z),P). Therefore (M , I) |= <p. We now consider the case of CSP
refinement preserving the axioms of {D ,P) . As (M , I) G M od (RefCl(D ,P)), there exists
(M , J) G M od(D , P) such that J C I . We know (M , J) |= ip. As Csp refinement preserves
ip we know (M , I) |= ip.

Induction Step: 2nd Rule Let S P = S P ' h id e 6. We know by assumption M od (S P I) C
M od (RefCl(SP' h id e 0)). We must find a derivation tree concluding with S P ' h id e 9
S P I . It is enough to show S P ' ^ S P I ' and S P I ' ConsExt S P I thanks to rule 2 and the
induction hypothesis for some C s p -C a s l specification S P I ' .

To this end, choose S P I ' = RefCl(SP '). Note that RefCl(SP') is a specification as
refinement closure can be expressed as a structured specification, see Section 9.2. Then we
have S P ' S P I ' . We show S P I ' ConsExt S P I , that is, for all models (M , I) G M od (S P I)
we must find a model (M ', I ') G M o d (S P I ') such that (M ', I ') \q = (M , I) . To this end, let
(M , I) G M o d (S P I) . Then we know (M , I) G M od (RefCl(SP' h id e 9)), that is, there
exists model (M , J) G M o d (5 P ' h id e 9) such that J C I . By the definition of hiding we
know there exists (M ', J ') G M o d (5 P ') such that (M ', J ') \q = (M , J).

Let 9 = (<r, u) : E c c —> now construct I ' (relative to M ') similarly to the
construction of J ' in the proof of the structured r e n a m e rule of Lemma 9.3, that is,

I'{n'{a'1:. . . , a ' k)) :=

{ (I —1 (a i) j • • • , a a M ~l {a!k)))) if n G E Cc with v{n) = n'
\ J'in'fa'-L, . . . , a 'k)) otherwise

for all process names n(u/jComma/ € E'c c and alphabet elements a [, . . . , a'k G s'1M, x . . . x s'kM,
where w' = (s i , . . . , s'k).

I ' is well defined since v is assumed to be injective. By the construction of I ' we know
that, (M ', I ') is a C sp -C a s l model, I'\o — I,

We now show J ' C I ' . Let n' be a process name and a [, . . . , a'k be appropriate alphabet
parameters. We show . . . , a 'k)) C . . . , a'k)). We make a case distinction on
whether there exists n G S e c such that v{n) = n '.

Case i/(n) = n' Let = ai for 1 ^ i ^ k. We show J '{n '(a [, . . . , a'k)) □
a ^ M,(/ (n (a i , . . . ,afc))). As J C / and J = J ; |e we know J ' | 0(n (a i , . . . , ak)) □
7 (n (a i , . . . , a fe)), that is, d ^ M/(. . . , a'k))) C / (n (o i , . . . , a fc)). As
preserves refinement (Corollary 7.15), we obtain o t % M,{J'{n'{a'-y,. . . ,a'k)))) C

185

9. Refinement and Compositional Proof Calculi Over Structured C sp -C as l

M,{I{n{a \ , . . . , a*.))). As ol% M , o a%M, is identity (thanks to the controlled traces
and Lemma 7.18), we arrive at J '(n '(a 'l : . . . ,a'k)) C a ^ M,(I{n (a i , . . . ,afc))).

Case otherwise As , a^)) = , a'fc)), by reflexivity of Csp refine
ment, we have . . . , a 'k)) C . . . , a'k)).

As (M ', J ') 6 M o d (S P ') and J ' C we know (M ', / ') G M od(/te/C7(SP')) =
M o d (5 P / /).

Induction Step: 3 rd Rule Let S P = SP \ re n a m e 6. We know by assumption that
M od (S P i7) C Mod (RefCl (SP \ r e n a m e 9)). We must find a derivation tree that concludes
with the statement S P i r e n a m e 6 S P I ' . It is enough to show SP \ ^ S P I ' h id e 6
thanks to rule 3 and the induction hypothesis, i.e., Mod {S P I ' h id e 9) C Mod(RefCl(S P \)) .

To this end, let (M , I) G M o d (S P /' h id e 9), then there exists (M ',77) G Mod (S P i7)
such that (AP, I ') |q = (M, I) . By assumption we know (Ai7, I ') G Mod(RefCl(SPi re n a m e
9)), i.e. there exists J ' such that (Ai7, J') G M od(SPi r e n a m e 9) and J ' Q I'. By definition
of renaming we know (M ',J ') \o = (M , J \ q) G M od(SP i). As J ' Q I ' we know J '\q C
I ' \e = I ' , thus (M , J) G M od (RefCl(SPi)).

Induction Step: 4th Rule Let S P = (S P i re n a m e 9{) a n d (S P 2 re n a m e #2)- We
know by assumption M o d (S P I ') C M od(Pe/C /((SPi re n a m e 9\) a n d (SP 2 r e n a m e
#2)))- We must find a derivation tree concluding with (SP\ r e n a m e 9\) a n d (SP 2 r e n a m e
^2) 'N-» S P I ' . Thanks to rule 4, the induction hypothesis and our assumptions it is enough
to show S P i S P I ' h id e 9\ and S P 2 ^ S P I ' h id e 92, where 9\ = (cti,pi) and
92 = {a2,V2)-

We show SP \ ^ S P I ' h id e 9\, that is, M o d (S P /' h id e $i) C M od(SPi). Let
(M, I) G M o d (S P /' h id e 9\). We know there exists (M ', / ') G M o d (S P I ') such that
{ M ' , I ') \01 = (M , I) . By assumption we know (M ' , I ') G Mod(RefCl((S P\ r e n a m e
$i) a n d (SP 2 r e n a m e #2)))- By definition of RefCl we know there exists (M ' , J ') G
M od((S P i r e n a m e 9\) a n d (S P 2 r e n a m e $2)) such that J ' C I '. Therefore (Ai7, J') G
M od(5P i r e n a m e 9\), thus, (Ai7, J')|6>i = {M, J ' \ 0f) G M od(S P i). As J C I we know
J ' \01 C 1 % = I, thus (M ,/) G M od {RefCl (S P i)). Showing S P 2 S P I ' h id e 92 is
analogous.

Induction Step: 5th Rule Let S P = SP \ a n d S P 2 . We know by assumption that
M od(S P 7) C Mod (RefCl (SP \ a n d S P 2)). We must find a derivation tree concluding with
SP \ a n d S P 2 ^ S P I . Thanks to rule 5, the induction hypothesis and our assumptions it is
enough to show SP \ S P I and S P 2 S P I .

We show S P \ S P I . Let (M , I) G M od(S'PZ), then by assumption we know (M, I) G
Mod(RefCl(S P\ a n d S P 2)). There exists (M , J) in M o d (S P \ a n d S P 2) such that J C / ,
As (M , I) G M od(S P i) and J C I , we have (M, J) G Mod(RefCl(S P \)) . Showing S P 2

S P I is analogous. □

We have shown that a complete refinement calculus is possible with our notion of C sp-
Ca sl refinement, provided Structured C sp -C asl specifications are restricted to certain forms.

186

9.5. A Complete Refinement Calculus

The less reasonable restrictions are necessary to deal with the structured a n d operator. This
result indicates that the structured a n d operator from algebraic specification might not be the
correct operator to join specifications when dealing with process algebras.

In this chapter we have introduced a new refinement notion for C sp -Ca sl which recon
ciles the algebraic specification world of Ca sl and the process algebra world of CSP. The
refinement notion is based upon model class inclusion and takes C sp refinement closure into
account. We have shown that this notion of refinement is well suited for system develop
ment and behaves well with respect to the structuring mechanisms introduced in Section 4.7.
We have shown several calculi that allow compositional reasoning over structured C sp-Ca sl
specifications. We have also lifted a proof technique for establishing deadlock freedom of
networks [RSR04] from CSP to C sp-C a s l . This proof technique makes it possible to prove
deadlock freedom of networks in an elegant and compositional manner. We surmise that it
is possible to lift other properties and techniques from C sp to C sp-Ca sl in a similar way.
Finally, we provided a complete refinement calculus for Cs p -C a sl refinement.

187

Chapter 1 0

Application

C o n ten ts
10.1 Specifying an Online Shop... 190

10.2 Establishing Well Formed Instantiations......................................194

10.3 Verification of Deadlock Freedom.. 197

C sp-Ca sl aims to support the modelling and verification of critical systems such as EP2 (see
Section 1.1 for details). Here we demonstrate, closely following [OMR12], our results on a
simpler system that nonetheless exhibits the same typical challenges as EP2.

The system we use is that of an online shopping system, which allows a customer to buy
goods. The online shopping system exhibits the same dialogue patterns and architectural struc
ture as EP2. However, for simplicity, it features fewer message types. The online shopping
system is composed of four distinct components: a customer, coordinator, warehouse and pay
ment system. The coordinator takes a central role much like the terminal in EP2: all other
components only communicate directly with the coordinator.

In this chapter we discuss how to model and verify this online shopping system. To this
end, we model the system in C sp -C a sl where we make use of loose processes and structuring
in a natural way. We then prove deadlock freedom of the system using our deadlock analysis
method for networks and our compositional deadlock freedom calculus from Section 9.4. This
example shows that Structured C sp-Ca sl is useful in practice for the modelling and verifica
tion of large critical systems.

As briefly discussed in Section 8.4, our signature morphisms do not allow for the map
ping of unparametrised process names to parametrised process names instantiated with ground
terms. This can be simulated by introducing auxiliary process names. For the sake of readabil
ity we present the following example where signature morphisms map unparametrised process
names to parametrised process names instantiated with ground terms.

189

10. Application

Customer

W 3T

C_C

Warehouse
C_W

< ► Coordinator

C_PS
Payment System

Figure 10.1: Architecture of the online shop example.

10.1 Specifying an Online Shop

The online shop is a typical distributed system. It comprises of several components: a cus
tomer, a warehouse, a payment system, and a coordinator. We describe each component of
the system at various levels of abstraction, mirroring the abstraction levels used in EP2. We
consider three levels of abstraction, each one increasing in detail. These are:

Architectural Level (Arch) This level describes the static system architecture and does not
prescribe any other details of the components or their interactions.

Abstract Component Level (ACL) At this level we describe the protocols between each of
the components. That is, we describe the message types and sequences of messages that
may be sent to and from each component.

Concrete Component Level (CCL) This level adds state and computational requirements to
each of the components.

10.1.1 N atural L anguage System O verview

The online shop consists of four components: a customer, a warehouse, a payment system, and
a coordinator. The communication structure is pointwise only: the coordinator communicates
with the three other components in a star like network. The customer, warehouse and payment
system only communicate with the coordinator, see Figure 10.1.

The customer may ask the coordinator to perform actions such as: to login, to add an
item to the basket, to remove an item from the basket, to checkout, etc. The coordinator
then responds to the customer with an appropriate response message. All communication (on
a channel) follows this pattern of a request message followed by a response message. The
coordinator may ask the warehouse to reserve an item, to release an item that has previously
been reserved, and to dispatch the reserved items. The payment system allows the coordinator
to take payments for goods. Before the customer performs any of the above actions, they are
required to login. A customer may also choose to logout after which they must login again in
order to use the service.

190

10.1. Specifying an Online Shop

spec G en er ic_Shop [RefCl(A r ch_Cu sto m er)] [RefCl(A r c h_Wa r e h o u se)]
[RefCl(A r c h_Pa y m en tS y st e m)] [RefCl(A rc h _Co o rdinator)] =

process System : C_C, C-W, CJPS\
System = Coordinator [C_C, C-W, C-PS || C_C, C-W, C-PS]

(Customer [C_C || C-W, C-PS]
(Warehouse [C-W || C-PS] PaymentSystem))

end

Figure 10.2: Generic specification of the online shop example.

10.1.2 C s p -C a s l Specification

We now formalise the natural language specification in C sp-C a sl where we make use o f loose
processes and structuring. This demonstrates the ability of C sp -C a sl to elegantly model such
systems.

We follow the abstraction levels described above and create three shop specifications. One
for each level of abstraction. Below, we discuss in detail the specification of the architectural
and abstract component levels. Appendix D provides full specifications of these levels.

The architecture of the shop does not change and only components are developed from one
level to another. We wish to mirror this formally. To this end, we use generic and instantiated
specifications. These allow us to develop the components and instantiate a generic shop speci
fication with the developed components. The generic shop will establish the architecture of the
system with respect to the instantiated parameters.

The generic shop specification shown in Figure 10.2 (full specifications are included in
Appendix D) describes the network layout, which remains unchanged at all levels of abstrac
tion. The generic shop takes as formal parameters the refinement closure of the architectural
components. Each component declares a channel and a ‘main’ process which communicates
over that channel. The generic specification then uses these channels and main processes to
form the overall System process as a network of the components’ main processes.

We take refinement closures as formal parameters because the formal parameters represent
all possible models. Thus, we use the refinement closure to capture all possible CSP refine
ments. Without this, instantiations would not be well defined as we would not have model class
inclusion. We are able use refinement closures within specifications, such as formal parame
ters, as there is a syntactic characterisation of refinement closure expressible in C sp-C a s l , see
Section 9.2 for details.

Once we have specified the components at the other two levels of abstraction, we can form
all three shop specifications. We do this by instantiating the generic shop specification with
the appropriate components (see Figure 10.3). We are able to use instantiated C sp -C a s l spec
ifications as we have proven that our C sp -C a s l institutions exhibit a suitable amalgamation
property (see Theorem 8.18), which in turn defines the model class of such instantiated spec
ifications. In order for these instantiations to be well formed, the model classes of the actual
parameters must be included in the model classes of the formal parameters. Thanks to the re
finement closures of the formal parameters (and the definition of C sp -C a s l refinement), this

191

10. Application

spec A rch_Shop = Gen er ic_Shop [A rc h_Cu sto m er] [ArchJWa r e h o u se]
[A rc h_Pa y m en tS y stem] [A rch_Co o rdinato r]

end

spec ACL_Shop = G en er ic_Shop [ACL_Cu sto m er] [ACL_Wa r e h o u se]
[ACL_Pa y m e n tS ystem] [ACL_Co o rdinato r]

end

spec CCL_Shop = G en er ic_Shop [C C L.C u sto m er] [CCL_Wa r e h o u se]
[CCL_Pa y m e n tS y stem] [CCL_Coordin ato r]

end

Figure 10.3: Instantiations of the generic online shop specification.

is equivalent to showing that the architectural components refine to each of the instantiated
components.

We now focus on specifying the individual components in C sp-Ca s l . Figure 10.4 shows
the development graph after Hets has successfully parsed and analysed the online shop speci
fications. The black arrows show the import structure of the specifications, while the red arrows
show open proof obligations resulting from the instantiations.

We have decided that the logging in and logging out behaviour is important enough to be
captured already at the architectural level, although we do this in a loose way. Figure 10.5
shows the architectural customer specification. We specify that the main Customer process
should only communicate with the coordinator over the channel C_C. The channel is declared
to communicate values of the sort D_C which is loosely specified and represents all data that
can be communicated between the coordinator and the customer. We specify that there are
several sub-processes which are intended to be specialised during development. All the sub
process are loosely specified except for the body process which specifies how the sub-processes
are connected, and the main and logout processes which dictate when login and logout request
messages are sent. We leave loose the behaviour that should happen upon successful and failed
logins and logouts. The body process uses internal non-deterministic choice to join the sub
processes as the customer will make the choice of how to use the shop.

The coordinator shown in Figure 10.6 is similar. However, instead of sending login and
logout requests, it instead sends login and logout responses. We also join the sub-process using
the external choice operator as the coordinator should offer all services to the customer. The
coordinator processes are also declared to communicate over the three channels connecting the
coordinator to the customer, warehouse and payment system. The other two components are
similar and declare sub-processes which are left open (see Appendix D.2).

The Cs p -C a sl specifications of the components at the abstract component level add more
detail to that of their counterparts at the architectural level. Appendix D.3 presents the specifi
cations of the components at the abstract component level.

Figure 10.7 shows part of the Ca sl specification of the data used as communications be-

192

10.1. S pecify in g an O n line Shop

G eneric .Shop

CCL_Shop

uDraw(Graph) 3.1.1 - D evelopm ent Graph for hom e/liam /D ocum ents/U ni_csliam /D ocum ents/svn_cos/U am /Shop/Shop

File Edit View N avigation A bstraction L ayout O ptions

[Arch_(Arch_Coordinator J

Arch_W arehouse Arch_ Payme ntSyste m

_____ k »
| ACL_Customefj J | ACL_Coordinator]

 £ £___
[CCL_Customer | | CCL_Coordinator

\

A
| ACL_WarehousB j 1 A CL_ Payme ntSyste m |

*
CCL_Ware house J CCL_ Payme ntSyste m |

Figure 10.4: Screen-shot showing H e t s ' development graph of the online shop specifications
after instantiation.

tween the customer and coordinator at the abstract component level. Here, we have refined (in
an informal sense) the sort D .C and added many sub-sorts using the C a s l free type construct.
We add a new sub-sort for each type of communication message, for example, a view basket
request message (ViewBaskelReq) and an associated view basket response message (ViewBas-
ketRes). The free type ensures there are no other message types available and also that the
message types do not overlap.

Figure 10.8 shows part o f the specification of the abstract component level customer. Here,
each of the sub-processes, which were left loose at the architectural level, are ‘filled in’ and
have an associated process equation. For instance, the process CustomerJViewBasket is now
specified to have the behaviour of non-deterministically sending a defined view basket request
message to the coordinator, followed by receiving a corresponding response message. Follow
ing this interaction the sub-process behaves like the custom er’s body process. Note that we do
not specify precise messages, instead we only specify message types.

The coordinator at the abstract component level is specified in a similar manner, but instead
of sending requests and receiving responses, it waits for requests and sends responses of the
correct sort. The other components are specified similarly.

193

10. Application

spec A r c h_Custom er =
data A rch_Cu sto m er_Data
channel C -C : D J C
process Customer: C-C;

CustomerSuccessfulLogin : C-C;
Customer-FailedLogin : C-C;
Customer JBody : C-C;
Customer .View Catalogue : C_C;
Customer-ViewBasket: C_C;
Customer-Addltem : C_C;
Customer-Removeltem : C_C;
Customer.Checkout: C_C;
Customer-Logout: C_C;
Customer Successfully g o u t : C_C;
Customer-FailedLogout: C_C;
Customer = C-C ! jc :: LoginReq

{CustomerSuccessfulLogin ; CustomerSody
□ CustomerJFailedLogin ; Customer)',

Customer .Logout = C-C ! * :: LogoutReq —»■
{CustomerSuccessfulLogout; Customer
□ Customer-FailedLogout; Customer .Body)',

Customer .Body = Customer.ViewCatalogue n Customer-ViewBasket
n Customer .Addltem n Customer-Removeltem
n Customer-Checkout fl Customer-Logout

end

Figure 10.5: The architectural customer specification.

10.2 Establishing Well Formed Instantiations

Refinements obligations originate from two sources: instantiations and development steps.
Here, we focus on the former. For instantiations to be well formed we must show that the
models of the actual parameters are contained within the models of the formal parameters, see
Section 4.7.2. The instantiations we create in Figure 10.3 generate twelve individual refinement
obligations. Four are proven trivially, while the other eight require a little effort. Within the rest
of this chapter we use C to denote customer, Co to denote coordinator, W to denote warehouse
and PS to denote payment system. We also drop the communications sets within the network
construction

The first four proof obligations come from the instantiation of the generic shop with the
architectural components themselves. Thus, in order for the architectural instantiation (i.e., the
C sp-C a sl specification A r c h_Shop in Figure 10.3) to be well formed we must show

Mod(ARCH_COMP) C Mod(R^/C/(ARCH_COMP))

194

10.2. Establishing Well Formed Instantiations

spec A r c h_Coo rdinator =

process Coordinator : C-C, C-W, C-PS',
Coordinator SuccessfulLogin : C-C;
Coordinator-FailedLogin : C-C;
Coordinator-Body : C-C, C-W, C-PS;

Coordinator = C-C ? x : : LoginReq —>
(CoordinatorSuccessfulLogin ; Coordinator-Body
n Coordinator-FailedLogin ; Coordinator);

Coordinator-Logout — C-C ? x :: LogoutReq —>
{CoordinatorSuccessfulLogout; Coordinator
n Coordinator-FailedLogout; Coordinator-Body);

Coordinator-Body = Coordinator-ViewCatalogue □ Coordinator-ViewBasket
□ Coordinator-Addltem □ Coordinator-Removeltem
□ Coordinator-Checkout □ Coordinator-Logout

Figure 10.6: The architectural coordinator specification.

spec A C L _ C o m m _ C o o rd in a to r_ C u sto m er_ D a ta = ACL_C om m on_D ata
then sorts LoginReq, SuccessfulLoginRes, FailedLoginRes,...

ViewBasketReq, ViewBasketRes, AddltemReq,. . .
free type D-C ::= sort LoginReq . . . \ sort ViewBasketReq

| sort SuccessfulLoginRes | sort FailedLoginRes . . .
| sort ViewBasketRes . . .

Figure 10.7: C a s l specification o f communications between the customer and coordinator at
the abstract component level.

195

10. Application

spec ACL_Cu sto m er =
data A C L _C u stom er_D ata
channel C - C : D JC
process Customer : C-C,...

Customer-Body : C-C;
Customer-ViewBasket: C -C,...
Customer — C-C ! x :: LoginReq —>

{Customer SuccessfulLogin ; Customer-Body
□ Customer-FailedLogin ; Customer)',...

Customer-ViewBasket = C-C ! x :: ViewBasketReq de f —>
C-C ? y :: ViewBasketRes —>• Customer-Body,...

Customer -Body = Customer -ViewCatalogue n Customer-ViewBasket...

Figure 10.8: Excerpt of the abstract component level customer specification.

for each component. Thanks to the refinement closure included in each formal parameter of
the generic shop specification, this goal is actually the C sp-C asl refinement A rch_Comp ^
A rch_Co m p . A s C sp-C a sl refinement is reflexive (Lemma 9.1), we know this holds.

By the same logic, for the ACL and CCL instantiations to be well formed, we must show
the following two C sp-Ca sl refinements:

• ARCH_COMP ~~>e A r c h 2 A C L -C o m p ACL_COMP, and

• ARCH_COMP ^ 0 A r c h 2 C C L -C o m p CCL_Co m p .

for each component, where the signature morphisms are the embeddings between the signa
tures o f the components of the respective abstraction levels. As the components involved in
these refinements are structured specifications which only utilise the structured union and re
naming operations, and not the hiding operation, we can flatten them into basic specifications
(see Section 4.7.1). Refinements between such basic specifications can be proven with C sp-
CASL-Prover as discussed in Section 9.2.

Such refinements hold as the architectural level components specify a set o f process names
(the main process, the body process and sub-processes) and only give equations to the main
and body process names, that is, they only bind the main and body process names’ behaviour
to C sp processes. All sub-processes are left loosely specified. The abstract component level
components, on the other hand, specify the same set o f process names and additionally define
the behaviour for most o f the sub-processes. The equations of the main and body processes
remain the same as they were at the architectural level.

As only the sub-processes are additionally constrained, and as these are loosely specified
at the architectural level, the models of the components at the abstract component level are
included in the models of the (CSP) refinement closures of the architectural components.

196

10.3. Verification o f Deadlock Freedom

10.3 Verification of Deadlock Freedom

Trying to prove deadlock freedom of the system at the ACL level in a naive way is infeasible.
The traditional method would involve blowing up the network to an equivalent totally sequen
tial process and then proving deadlock freedom on this sequential process. Unfortunately this
sequential process grows exponentially with respect to the number of communications of each
component.

We illustrate how to prove deadlock freedom using the technique presented in Section 9.4.
We discuss the core part of the proof, and explain how to scale it up for the whole system. The
proof rule from Lemma 9.6 reduces the network of processes step by step. We start at the point
where the network has been reduced to two processes only:

spec R ed u ced _ A rch _ S h o p [RefCl(A rch_C)] [/te/C/(ARCH_Co)] =
process System ': C-C ;

System' = Coordinator |[C-C \ \ C-C]| Customer
end

The specification Re d u c e d _Arc h_Shop instantiated with ACL components is semantically
equivalent to the following specification (without parametrisation):

Re d u c e d _ACL_Shop =
(((RefCl(A rc h .C) re n a m e O f a n d

(RefCl(A r c h _Co) re n a m e Of) a n d B ody
) r e n a m e Of) a n d (ACL_C r e n a m e $4) a n d (ACL_Co r e n a m e #5)

Here, all signature morphisms involved are embeddings and the specification B ody is a basic
specification with the signature equal to the union of the signatures o f the ACL customer and
coordinator along with the new process name S y s te m ! , and where the only axiom is that o f

System! — Coordinator |[C-C 11 C-C]| Customer .

Our aim is to prove that the process term bound to S ys tem ' is deadlock free within the
specification Re d u c e d _ACL_Sh o p . To this end, we apply Lemma 9.6 and obtain:

N etw o rk ({C u s to m er , Coordinator}) i s D F in R e d u c e d _ACL_Shop
if (a) C i s D F in Re d u c e d _ACL_Shop and

(b) Co :: C -C R e s T o L iv e / C :: C -C on C -C in R ed u ced ^ \C L _ S h o p

To discharge obligation (a), we apply the a n d rule from Lemma 9.5 several times and reduce
it to (C i s D F in ACL_C r e n a m e 6 4). Applying the renaming rule (also from Lemma 9.5)
results in (C i s D F in ACL_C). As ACL_C is a basic specification and the customer process
does not involve any parallel operator we can easily discharge this obligation with C sp-C a sl -
Prover.

Concerning obligation (b), we apply the a n d rule from Lemma 9.7 several times and re
duce it to:

Co :: C -C R e s T o L iv e / C :: C -C on C -C in
((ACL_C re n a m e O4) a n d (ACL_Co r e n a m e #5)) .

197

10. Application

As ACL_C and ACL_Co are essentially basic Csp-Ca sl specifications we can discharge the
proof obligation by applying the flattening operation and then using CsP-CASL-Prover. This
obligation holds because the coordinator allows the customer to choose the initial action (a
request message) and then provides a response message to the customer for this particular type
o f request (possibly after further communications with other components).

The full proof of deadlock freedom has the same structure. Lemma 9.6 reduces

N e tw o r k ({ C u s to m e r , Coordinator , P a ym en t Sys tem , W arehouse})

down to N etw o rk^{C u s to m er}) by removing first Warehouse, then P a ym en tS ys tem ,
and - as shown above - C u s to m er from the network. The resulting obligations can then be
reduced to a format where they can be discharged with CsP-CASL-Prover.

In this chapter, we have demonstrated how to model a complex system using Structured
Csp -C a s l . We have shown that parametrised specifications can be utilised to provide an
elegant formalisation. We have demonstrated the use of compositional proof calculi by proving
deadlock freedom of the abstract component level of our online shopping system. This has
illustrated the importance of compositional reasoning when working with processes and data
within complex systems.

198

Chapter 11

Implementation and Tool Support

Contents
1 1 . 1 Hets and Existing Support for Csp-Ca s l 199

1 1 . 2 Extending Hets for Structured Csp-Ca s l 2 0 0

11.3 Static Semantics of Structured Csp-Ca s l 204

11.4 Hets in Action 204

In this chapter we discuss the available tool support for Cs p -C a sl , namely H ets (Heterogen
eous Tool Set) [MML07]. H ets is a proof management tool centred around Ca s l . It supports
parsing and static analysis of specifications written in C a sl and related languages. It also
has the ability to pretty-print specifications in various forms including support for outputting
HTgX code. Proof obligations in H ets may be discharged by utilising several external theorem
provers with which H ets interfaces.

Existing work has been carried out which enables H ets to support parsing and static anal
ysis of original C sp-C a sl specifications [Gim08]. Here, we discuss the extent of the support
for C sp-Ca sl within H ets and our additions to support Structured Csp-C a s l .

11.1 H e t s and Existing Support for C s p -C a s l

H ets is written in the functional programming language Haskell [Jon03, HHJW07]. Haskell
is a genera] purpose programming language based on the lambda calculus. It features lazy
evaluation, higher order functions, polymorphism and type classes. Hets makes extended use
of type classes to provide a framework which captures institutions and various other concepts
such institutions representations.

Gimblett [Gim08] previously implemented support within H ets for C sp-C a s l . This al
lowed H ets to parse, statically analyse and pretty-print C s p -C a sl specifications. Structured
C a sl specifications could be used within the data part of C sp-C a sl specifications, but no
structuring was available within the process part. The original restriction on signatures, namely,

199

11. Implementation and Tool Support

local top sorts (see Section 4.4), was implemented as a static analysis check that was carried
out on all C sp-Ca sl specifications after parsing had taken place. Some initial efforts had been
made to support multiple process names within C sp-Ca sl specifications. However, only basic
functionality was available, and features such as signature morphisms were beyond the scope
of the project.

11.2 Extending H e t s for Structured C s p -C a s l

Here, we discuss how we extend the existing support to cover the new features of Structured
Csp -C a s l . These include signature morphisms and multiple process names.

H ets utilises type classes to capture various notions such as signatures, sentences, parsers,
and static analysers. To implement a new logic (or institution) in He t s , one provides new types
and functions for the new logic and instantiates the various type classes in appropriate ways.
The high level machinery of H ets then uses these instantiated type classes to support the new
logic. You can choose to implement a minimum set of classes, which allows for parsing, basic
static analysis, and pretty printing of specifications; or to implement additional classes which
allow features such as signature morphisms and full structured specifications.

As an example of such a type class, consider the following Haskell code.

c l a s s (L a n g u a g e l i d , C a t e g o r y s i g n m o r p h i s m , O rd s e n t e n c e ,

= > S e n t e n c e s l i d s e n t e n c e s i g n m o r p h i s m s y m b o l
w h e r e
— I Sentence trans lation along a signature morphism
m a p _ s e n : : l i d - > m o r p h i s m - > s e n t e n c e - > R e s u l t s e n t e n c e

— I Signature pr in t ing
p r i n t _ s i g n : : l i d - > s i g n - > D o c

This is the H ETS type class for sentences. This code defines the class named S e n t e n c e s which
takes as parameters five types: the logic identifier (l i d) , a type for sentences (s e n t e n c e) , a
type for signatures s i g n , a type for signature morphisms m o r p h i s m and finally, a type for sym
bols (s y m b o l) . Symbols are a mechanisms which allows the specifier to write symbol maps in
place of full signature morphisms (see [MosOO]). The code before the => symbol are various
restrictions on the instantiations of the types, for instance, it is required that the language iden
tifier (l i d) is already an instantiation of the L a n g u a g e type class that H e t s provides. There
are also various functions which must be provided. The function m a p _ s e n (short for map sen
tence) takes the logic identifier, a signature morphism and a sentence, and maps the sentence
across the signature morphism. This captures part of the sen functor from institutions (see
Chapter 4). The type R e s u l t s e n t e n c e is a monadic type that captures a sentence which
has been produced, but where an error may have occurred in its production. This encodes par
tial functions in Haskell, however the type contains additionally diagnosis information when
errors occur. Such errors usually originate from specification errors. Diagnostic information
is provided to help the user track down the mistake. The function p r i n t _ s i g n pretty-prints

200

77.2. Extending H ets fo r Structured C sp-Casl

a signature by transforming it into a D o c , which is a type to represent plain text in an efficient
manner. In order to implement sentences for a new logic, it is necessary to provide new types
and functions and to instantiate this type class. Gimblett08 [Gim08] already instantiated this
type classes (along with many more), but several functions such as m a p _ s e n were stubs as
C sp -C a s l signatures morphisms were not originally considered.

In order to extend the implementation to cover the new C sp -C a s l , as presented in this
thesis, it was necessary to adapt several types and provide real implementation in the stub
functions of the instantiated type classes. The main types that changed were types capturing
C sp-C a sl signatures and signature morphisms.

We now briefly discuss the types used to capture C sp -C a s l signatures and signature mor
phisms. The type that captures C a s l signatures is parametrised with ‘holes’ for extensions.
This was done with foresight to allow C a s l extensions to be easily implemented. One simply
fills in the holes with the extra information needed for the C a s l extension. Here, we define a
new type C s p S i g n which is the Csp part of C sp -C a s l signature. This is then inserted in the
hole in the type of C a s l signatures to form the type capturing C sp -C a s l signatures.

t y p e C h a n N a m e M a p = M a p S e t . M a p S e t CHA NNEL _NAME SORT
t y p e P r o c N a m e M a p = M a p S e t . M a p S e t PROCESS_NAME P r o c P r o f i l e
d a t a C s p S i g n = C s p S i g n

{ c h a n s : : C h a n N a m e M a p
, p r o c S e t : : P r o c N a m e M a p
} d e r i v i n g (E q , O rd , Show)

t y p e C s p C A S L S i g n = S i g n C s p S e n C s p S i g n

Our Csp signature extension is a record with two components, namely a channel map named
c h a n s and a process map named p r o c S e t . The type p r o c S e t is a mapping of process names
to sets of process profiles. This allows us to bind a set o f profiles (i.e., the type information of
the process parameters and communication sets) to a name (i.e., the name of a process). For
example, to capture three process names PWUCOmmsi , Pw2,ctmms2, QwucommSl, the map would
be

P {(wi,commsi),(w2->comms2)}
Q { (w i ,c o m m s i)}

That is, there are two profiles available for the name P and one available for the name Q. This
type was modified from the original implementation which mapped process names to profiles,
that is, it assigned a single profile to each name and thus did not allow for overloaded process
names. Channels work in a similar way.

The C s p S i g n record type allows us to capture process names and channel names along
with all the type information associated with them. We then use our record type as a parameter
to the C a s l signature type (S i g n) . The C a s l signature type already stores sort symbols, func
tion symbols, predicate symbols and the sub-sort relation. We augment this type with process
and channel names to form the new type capturing C sp -C a s l signatures (C s p C A S L S i g n) .

A similar setup is required for signature morphisms. We define a C sp extension which
contains channel name mappings and process name mappings between the source and target
signatures. We use this extension with the Ca sl signature morphism type to form the type of
C sp-C asl signature morphisms.

201

11. Implementation and Tool Support

ty p e ChanMap = Map.Map (CHANNEL_NAME, SORT) CHANNEL_NAME
ty p e ProcessM ap = Map.Map (PROCESS_NAME, P r o c P r o f i le) PROCESS_NAME
d a ta CspAddMorphism = CspAddMorphism

{ channelM ap :: ChanMap
, processM ap :: P rocessM ap
} d e r iv in g (Eq, Ord, Show)

ty p e CspCASLMorphism =
CASL_Morphism.Morphism CspSen C spSign CspAddMorphism

The type ProcessM ap is a map from process names (with profiles) to new process names.
Process profiles capture both the parameter type of process names and their communication
sets. In accordance with the definition of C sp-C asl signature morphisms from Section 8.1.1,
the target profile o f a process name in a signature morphism is uniquely determined from
the data part: there is no choice, both the list o f parameter sorts and the communication set
must be mapped in accordance with the Casl sort map. This is the reason why we map to
process names only and not to pairs of process names and profiles. We choose to record only
what is necessary and compute the target profile when it is required. Thus, the theoretical
type information o f C sp-C a sl signature morphisms is captured in Haskell partly by the type
system and partly in functions which check whether certain conditions are meet, for example,
downward closure. This is inline with how Hets implements Casl signature morphisms. The
channel mapping works in a similar way.

Many more implementation details have been coded within Hets which now allow the
parsing and static analysis o f Structured Csp-Ca s l . Once the various type classes, signature
morphisms and supporting functions were implemented within H ets, the H ets framework
gave us the ability to parse and statically analyse Structured C sp-Casl specifications. This
was possible as the structuring operators (see Section 4.7) are institution independent and have
been implemented as such.

Further functions allow H e ts to check that C sp -C a sl signature morphisms obey the re
flection and weak non-extension conditions described in Section 4.4. Here, we present the code
that performs the weak non-extension check.

checkW NECondition :: Morphism f C spSign CspAddMorphism -> R e s u lt ()
checkW NECondition M orphism

{ m source = s i g
, m ta rg e t = s i g '
, sort_m ap = sm } = do
l e t r e l ' = s o r t R e l s i g '

su p e r s s s ig n a t u r e = S e t . i n s e r t s $ su p e r s o r ts O f s s ig n a t u r e
a l lP a ir s I n S o u r c e = L T . c a r t e s ia n $ s o r t S e t s i g
com m on S u p erS ortsIn T arget s i s2 = S e t . in t e r s e c t i o n

(su p ers (mapSort sm s i) s i g ')
(s upers (mapSort sm s2) s i g ')

{- Candidates are t r ip l e s (s i , s2 , u') such that
sigma (s i) , sigma (s2) < u' -}
c r e a te C a n d id a te T r ip p le s (s i , s2) =

S et.m a p (\ u' -> (s i , s 2 , u '))

202

11.2. Extending H ets fo r Structured C sp-Casl

(c o m m o n S u p e r S o r t s I n T a r g e t s i s 2)
a l l C a n d i d a t e T r i p p l e s =

S e t . u n i o n s $ S e t . t o L i s t $ S e t .m ap c r e a t e C a n d i d a t e T r i p p l e s
a l l P a i r s I n S o u r c e

t e s t C a n d i d a t e (s i , s 2 , u ') =
l e t p o s s i b l e W i t n e s s e s = S e t . i n t e r s e c t i o n (s u p e r s s i s i g)

(s u p e r s s 2 s i g)
t e s t t = R e l . p a t h (m a p S o r t sm t) u ' r e l ' | |

m a p S o r t sm t = = u '
i n o r $ S e t . t o L i s t $ S e t . map t e s t p o s s i b l e W i t n e s s e s

f a i l u r e s = S e t . f i l t e r (n o t . t e s t C a n d i d a t e)
a l l C a n d i d a t e T r i p p l e s

p r o d u c e D i a g (s i , s 2 , u ') =

l e t x = (m a p S o r t sm s i)
y = (m a p S o r t sm s 2)

i n D i a g E r r o r
(" C S P - C A S L S i g n a t u r e M o r p h i s m W e a k N o n - E x t e n s i o n P r o p e r t y "
++ " V i o l a t e d : \ n ' "
++ s h o w D o c

(S u b s o r t _ d e c l [x , y] u ' n u l l R a n g e : : S O R T _ I T E M ())
" ' i n t a r g e t \ n b u t n o c o m m o n s u p e r s o r t f o r t h e s o r t s \ n ' "

++ s h o w D o c
(S o r t _ d e c l [s i , s 2] n u l l R a n g e : : S O R T _ I T E M ())

i n s o u r c e ")
n u l l R a n g e

a l l D i a g s = map p r o d u c e D i a g $ S e t . t o L i s t f a i l u r e s
u n l e s s (S e t . n u l l f a i l u r e s)

(R e s u l t a l l D i a g s N o t h in g) — fa i lure with error messages

This code takes a C sp-C a sl signature morphism (o, v) (technically this may not be a C sp-
C a sl morphism as it may fail the weak-non-extension condition) and produces a verdict, pass
or fail, but where extra diagnosis information, such as warnings or error messages, may also
be returned. This code uses monads and can been seeri as largely procedural. The goal here
is to produce a set of all candidates and then check each passes a test. The ones that do not
are failures. If there are any failures then we create error messages for each and return a failed
verdict.

A candidate is a triple (s \ ,S 2 , u ') such that <r(si) < ' u ' and cr(s2) u'. We produce
all candidates by starting with all pairs (s i ,S 2) of sorts in the source signature and adding
all common super-sorts u' (after translating s\ and S2 with cr) to create the triples. We then
test each triple by taking all common super sorts t of s i and S2 and checking that o(t) <' u'
(actually we check cr(t) <’ u ' or cr{t) = u'). If there is at least one super sort that passes this
test then this is a witness for the candidate and the candidate passes the test. We then take all
candidates which fail the test, we call these failures, and produce a meaningful error message
from them. Assuming there is at least one failure, we return a failed verdict with the error
messages. Otherwise we return a passed verdict with no error messages.

The run-time of this check seems reasonable. H ets requires only a few seconds to parse
and statically analyse our online shop example, most of this time is spent loading and parsing

203

11. Implementation and Tool Support

standard C a sl libraries.

11.3 Static Semantics o f Structured C s p -C asl

Here, we summarise the static semantics and the static analysis of Structured Csp-Ca sl spec
ifications.

Gimblett [Gim08] programmed the original static analysis for basic Csp-Ca sl specifi
cations. We had to slightly modify this in the implementation of Structured C sp-C a sl . In
essence we just added support for extracting the symbols of a specifications. This is a technical
detail to support the use of C sp -Ca sl signature morphisms.

In order for H ets to support Structured Csp-Ca sl it was necessary to code C sp-Casl
signature morphisms within H e t s . This involved extending the parser to support symbol maps
of process names and channel names. Further to this, analysis of signature morphisms had to
be implemented, for example, the weak-non-extension check discussed in Section 11.2. With
these features implemented, the H ets machinery allowed for static analysis of Structured C sp-
C a sl automatically with one problem. The local top sorts check was not ran on signatures
created via union of specifications (i.e., the structured a n d operator on specifications with dif
ferent signatures). This allowed one to take the union of two specification with local top sorts
and create an invalid C sp-Ca sl specification which violated the condition. Through commu
nication with the H ets development team at the University of Bremen, the Hets framework
was modified to allow this extra check to be carried out for such unions. This corrected the
problem and now H ets correctly reports problematic C sp-Casl specifications. An example
demonstrates this new check in the next section.

11.4 H e t s in Action

In this section we demonstrate the abilities of Hets on selected sample specifications. We run
H ets on the online shop specifications (see Chapter 10 and Appendix D) to check that they are
indeed valid C sp -Ca sl specifications. H ets has checked that the syntax is valid and that they
pass static analysis. The static analyser checks all the original Ca sl conditions. For instance,
it checks that each symbol is declared before it is used in sentences. The extra signature
morphism conditions reflection and weak non-extension conditions as described in Section 4.4
are also enforced. We are able to use all the structuring mechanisms presented in Section 4.7
within Structured Csp-C a sl specifications. All implicit signature morphisms, such as those
introduced by extensions using the t h e n construct, are checked that they also satisfy these
conditions. It would be easy to falsely assume a Structured C sp-Casl specification meets
these requirements without tool support.

We first use H ets to check that the online shop specifications are correct. Figure 10.4
shows the development graph after H ets has successfully parsed and analysed the online shop
specifications. The black arrows show the import structure of the specifications, while the
red arrows show open proof obligations resulting from the instantiations. H ets produced the
development graph with no errors reported from the specifications.

204

11.4. H e ts in Action

Further to this, all Structured C sp-C a sl specifications in this thesis have been checked
with H ets to make sure they are valid Structured C sp-C a sl specifications.

We now focus on showing invalid examples where H ets reports meaningful error mes
sages to the user. Consider the specification:

logic C spC A SL

spec H ugo

data sort s < t
end

spec Erna =
data sort s < u

end

spec U nio n =
H ugo and Erna

end

Both specifications H ugo and E rna are valid C sp -C a sl specifications as they have local top
sorts. However when we take the union using the structured a n d operator, we violate the local
top sorts condition of C sp-C a sl signatures (see Section 4.4). The target signature with three
sorts (s), (t) and (u) with (s) being a sub-sort o f (t) and (u) violates this property. Thus, the
specifications are invalid. H ets produces the following error message:

A n a l y z i n g f i l e E x a m p l e l . h e t a s l i b r a r y E x a m p l e l

l o g i c C s p C A S L

A n a l y z i n g s p e c H u g o

A n a l y z i n g s p e c E r n a

A n a l y z i n g s p e c U n i o n

* * * E r r o r / h o m e / l i a m / D e s k t o p / C C / E x a m p l e l . h e t : 1 2 . 8 ,

l o c a l t o p e l e m e n t o b l i g a t i o n (s < u , t) u n f u l f i l l e d

h e t s - s v n : u s e r e r r o r (S t o p p e d d u e t o e r r o r s)

H ets reports clear information to the user about the error. This check was originally imple
mented by Gimblett [Gim08] but had to be additionally performed each time a new specifica
tion was created via the various structuring operators.

A similar example shows that H e ts checks for the reflection property o f C sp -C a s l sig
nature morphisms.

logic C spC A SL

spec H ugo

data sorts s, t
end

205

11. Implementation and Tool Support

spec Erna =
H ugo

then data sort s < t
end

Here, H ugo and Erna are a valid C sp-C a sl specifications, however the signature morphism
induced by the t h e n operator violates the reflection condition as s is a sub-sort of t in Erna
but not in H u g o . H ets reports the following message:

A n a l y z i n g f i l e E x a m p l e 2 . h e t a s l i b r a r y E x a m p l e 2

l o g i c C s p C A S L

A n a l y z i n g s p e c H u g o

A n a l y z i n g s p e c E r n a

* * * E r r o r / h o m e / l i a m / D e s k t o p / C C / E x a m p l e 2 . h e t : 8 . 3 - 9 . 1 ,

C S P - C A S L S i g n a t u r e M o r p h i s m R e f l P r o p e r t y V i o l a t e d :

f s o r t s < t ' i n t a r g e t b u t n o t i n s o u r c e

' s o r t s < t '

h e t s - s v n : u s e r e r r o r (S t o p p e d d u e t o e r r o r s)

Using the reported line numbers the user is quickly able to track down the problem.
Finally, we show H ets reporting violations of the weak-non-extension property.

logic C spC ASL

spec H ugo —
data sorts 5, T

end

spec E rna —
H ugo

then data sorts S , T < U
end

Similar to the previous example, both H ugo and Erna are a valid C sp-Casl specifications.
However, the induced signature morphism violates the weak-non-extension property. H ets
reports this as:

A n a l y z i n g f i l e E x a m p l e 3 . h e t a s l i b r a r y E x a m p l e 3

l o g i c C s p C A S L

A n a l y z i n g s p e c H u g o

A n a l y z i n g s p e c E r n a

* * * E r r o r / h o m e / l i a m / D e s k t o p / C C / E x a m p l e 3 . h e t : 8 . 3 - 9 . 1 ,

C S P - C A S L S i g n a t u r e M o r p h i s m W e a k N o n - E x t e n s i o n P r o p e r t y

V i o l a t e d :

' s , t < u ' i n t a r g e t

b u t n o c o m m o n s u p e r s o r t f o r t h e s o r t s

206

11.4. H e ts in Action

' s , t ' i n s o u r c e

* * * E r r o r / h o m e / l i a m / D e s k t o p / C C / E x a m p l e 3 . h e t : 8 . 3 - 9 . 1 ,

C S P - C A S L S i g n a t u r e M o r p h i s m W e a k N o n - E x t e n s i o n P r o p e r t y

V i o l a t e d :

' t , s < u ' i n t a r g e t

b u t n o c o m m o n s u p e r s o r t f o r t h e s o r t s

' t , s ' i n s o u r c e

h e t s - s v n : u s e r e r r o r (S t o p p e d d u e t o e r r o r s)

There are two errors here as the property is violated in two symmetric ways.
In this chapter we have discussed the existing implementation of H ets and how we have

extended it using the theoretical notions developed within this thesis. Specifically, we have
provided a prototypical implementation of the C sp -C a sl institutions. This shows that the
constructions within this thesis have a practical effect and allow H ets to parse and statically
analyse Structured C sp-C a sl specifications. This level of tool support is of critical assistance
to any user wishing to write such specifications, as errors can be easily over looked.

207

Part III

Conclusion

209

Chapter 12

Summary

In this thesis, we have defined:

1. the first fully institutional semantics for C sp -C a sl relative to the three main C sp se
mantics, namely, the Traces semantics T , the Failures/Divergences semantics Af, and
the Stable-Failures semantics J7,

2 . (to the best of our knowledge) the first setting of dealing with loose processes, and

3. a set o f proof calculi for modular reasoning along the structure of C sp -C a sl specifica
tions.

An example demonstrates that our concepts are useful in specification practice: not only could
we separate concerns while developing our shop example by using suitable structuring mecha
nisms, we also could use this very same structure for modular reasoning. Finally, a prototypical
implementation of the C sp-C a sl institutions shows that our concepts are suited for tools.

We have extended C sp-Ca sl to include so called loose process semantics. This allows
processes to be specified without pinning them down to particular instances. It is this looseness
in processes (C sp-C a sl already supported loose data) which enhances C sp-Ca s l ’s expressive
power and allows for the capture of systems at high levels of abstraction. This allows an
integrated approach to dealing with processes and data in a model theoretic way where systems
can be developed in both their data and behavioural aspects.

We have enabled full structuring in C s p -C a s l , thus complementing the existing ability of
structuring the data part of a specification with the ability to also structure the process part. This
allows for real component based development. This structuring includes the ability to create
and instantiate generic specifications in C sp-C a s l . These enhancements have been achieved
by formulating C sp -C a sl as various institutions. Full structuring support, which includes
parametrisation and instantiation, would not be possible without the extension of loose process
semantics addressed above.

As a consequence of this new construction we found that the original refinement notion for
C sp-C asl needed updating as it did not cater for loose processes. This is a result of merging

211

12. Summary

the model theoretic approach of Ca sl with the denotational approach of C sp . To this end,
we developed a new refinement notion to support the development of Structured C sp-C asl
specifications with loose process semantics. Our new refinement notion reconciles these two
opposing worlds from Ca sl and CSP. It is this notion of refinement that allows for the formal
development of Structured C sp-C a sl specifications.

To aid reasoning and proof efforts on Structured Csp-Casl specifications we have devel
oped several proof calculi. These proof calculi allow for properties to be established on struc
tured specifications by establishing related properties on their constituent parts. This means
that verification of such structured specifications can be supported by the existing theorem
prover Csp-CASL-Prover without any changes, as our refinement calculi can break down proof
obligations on structured specifications until only proof obligations on basic specifications re
main. At this point the existing tools can discharge such proof obligations on basic Csp-C asl
specifications.

Whilst the underlying theorem prover did not need any modifications, we have extended
the tool H ets [MML07] with the new version of Csp-Ca s l .1 This extension allows H ets to
support, among other features, parsing and static analysis o f Structured C sp-C asl specifica
tions.

We illustrated compositional modelling in Structured C sp-C asl with an example of an
online shopping system. Additionally, we demonstrated our compositional calculi by proving
deadlock freedom whilst utilising a specialised rule for networks.

In summary, we have have developed the first structured specification approach for dealing
with reactive systems in process algebra, where:

• We present the first integrated specification language for processes and data, where both
processes and data are fully and equally supported in a refinement based paradigm.

• Systems can be specified in a compositional manner.

• Systems can be specified at various levels of abstraction, from the high architectural
levels to concrete implementation levels.

• Various sound calculi allow for compositional reasoning and verification.

• A completeness result rounds off our study of compositional reasoning.

• We demonstrate our approach with an example of real life quality.

1 We have extended H e t s in cooperation with the H E T S development team at Bremen University.

212

Chapter 1 3

Future Work

Whilst this thesis has shown how to formalise C sp-C a sl as various institutions and how
compositional reasoning can be performed over Structured C sp-C a sl specifications, there
are many more areas that can be studied. In the closer context o f C sp-C a s l , the following
points could be explored: C sp replicated operators, overloading on process names, a method
o f allowing the communication sets o f process names to be shrunk, improved a n d rule within
the calculi, structuring supporting the use of the structured fr e e operator, more examples of
industrial strength, and implementation of the calculi so that reasoning is automated as far as
possible.

In the context of integrating process algebra and algebraic specification, one has the impres
sion that the current constructions have a general categorical nature, which should be explored
further. For instance, one would like to see a 7T-CASL “automatically” constructed by proving
that the 7r-calculus has a certain set of properties.

Finally, in industrial practice, for example by Rolls-Royce in avionics, reactive systems are
often specified in UML. Here, composite structure diagrams “glue” together state machines,
which communicate data specified in OCL (a first order logic). In this context, the same funda
mental questions arise that we treated in an exemplary way in this thesis. Namely: what kind
of structuring operations are “compositional”? Is there an appropriate development relation
available, for example, relating UML diagrams? Can one reason in a modular way over the
specifications? The semantic setup given in this thesis might provide pointers for solving these
questions in the UML context.

213

Part IV

Appendices

215

Appendix A

Deferred Proofs

This appendix contains full proofs which were deferred from earlier in the thesis.

A.l From Chapter 7

Lem m a 7.6 T , N , and T are valid functors, that is, they preserve identity morphisms and
functional composition.

Proof. We prove that identity morphisms and functional composition are preserved separately
for each C sp semantics T, M , and J7.

T, J\f, and T preserve identity morphisms This follows from the definitions, the healthiness
conditions on the domains and the fact functions c / , a * 7 and a?'* preserve identity.

T preserves composition of functions Let 0 1 : A —»■ B and a 2 : B -» C be two alphabet
translations and let T G T (A) .

(a f o a [) (T) = a j ({orj^ (t) | t G T}) By definition of a f
— {{a Y ° Q:i /)(^) By definition of a f
= { (a 2 o a \) w {t) \ t e T } By Lemma 7.1
= (a 2 o a i) T (T) By definition of (a 2 o a j) 7"

T preserves composition of functions Let a \ : A —>• B and a 2 : B —> C be two alphabet
translations and let (T, F) G F {A) . We show:

1. f s t ((a f o a f) (T ,F)) —fs t ((a 2 o a - i^ p T , F)), and

2. s n d ((a f ° a f) (T , F)) = snd{{a.2 ° c * i^ (T , F)).

The first point follows directly from the traces proof of this lemma. We now show the
second point via subset inclusions.

‘C ’ direction that is, s n d ((a f ° o t f)(T, F)) C snd((a 2 o « i) “r (T, F)). Let (s", X ") G
s n d ((a f ° a f) (T , F)) . We show must (s " ,X ") G snd((a 2 o q;1)-77(T, F)) , that

217

A. Deferred Proofs

is, we must find a failure (t, Y) G F such that (0:2 0 = s" and Vx" G

• x " G X " = > ((0 : 2 0 Qii) /) (a:") C y .
As (s" ,X ") G snd((oi2 ° a f) (T , F)), we know there exists failures (s', A ') G
snd{ai (T , F)) and (s, X) £ F such that the following hold

• (s ') = s ">
• a*/ (s) = s',
• Vx" G • x" G A " = » (a f) “ (x") C X ', and

• Vx' G i x ' g I ' ==> (a f)_ (x') C X .

Choose (£ ,y) := (s, X), then we have (£ ,y) G F and (0 2 o a i)* / (t) = s" by
Lemma 7.1. Left to show is Vx" G • x" G X " = > ((0:2 o a 1) /) (x") C

y . Let x" G X " and x G ((a 2 o o:i)/) (x"), then we show x G y . As x G

((a 2 o a i) ^) (x"), we know (0:2 o a 1) / (x) = x" and by Lemma 7.1 we get
(a f (a f (x))) = x". Thus we know a f (x) G (a f) (x"), thus a f (x) G X '. As
x G (a f) (x '), we know x G X , thus x e Y .

O ’ direction that is, s m i((a f o a f)(T, F)) D snd((ct2 o a i ^ T , F)). Let (s", X ") G
sn J ((a 2 o a i) ^ ^ , F)) . We must show (s" ,X ") G S7id ((a f 0 a f) (F , F)), that
is, we must find failures (£', y ') G s?i<7(af (F, F)) and (t, Y) G F such that the
following hold

• = s",
• a^ (f) = £',
• Vx" G C/ • x" G X" =*> (a f)~(x") C y', and

• Vx' G F 7 • x ' G y ' = » (a f)" (x ') C y .

As (s", X ") G snd{{ot2 0 a i)- 7̂ !"1, F)), we know there exists (s, X) G F such that
(a 2 o a i)* / (s) = s" and Vx" G C / • x" G X " ==> ((a 2 o a i) /) (x") C X .
Choose

(t ,Y) := (s ,X)
(t',y') := | 4 (x')€X"})

Then we have (t ,Y) G F , a*/ (t) = £'. As we know a ^ f (a*/ (s)) = s", by
Lemma 7.1 and substitution of £' we get (tf) — s". It is also the case that
Vx" G • x " G X " = > (a f) (x") C y ' follows directly from the construction
of y '. Left to show is Vx' G • x ' e Y ' ==> (a f) (x') C y . Let x ' G y ' and
x ' G (a f) (x '), then we know a f (a f (x)) G X ". Thus by Lemma 7.1 we get
(a 2 o a i) / (x)) G X ", which gives us x G Y .

M preserves composition of functions Let a i : A —> B and a 2 : B -» C be two alphabet
translations and let (F, D) G Af{A). We show:

1. f s t ({ a $ o a f) (F ,D)) = / t f ((a 2 o a i) ^ (F , F)) , and

2. snd{{(X2 o o f)(F, F>)) = W ((a 2 o a i) ^ (F , D)).

218

A .L From Chapter 7

We first show the divergences are equal (i.e., Point 1) and then we show the failures are
equal (i.e., Point 2). We show both of these by showing subset inclusions.

Divergences ‘C ’ direction i.e., s n d ((a ^ o a ^) (F , D)) C snd({a2 ° a i) jV"(F, D)). Let
s" G snd{(ct2 ° a f) (f , D)) . We must show s" G snd((a2 ° a i) ^ (F, D)) , that is,
we must find a trace u G Z) and extension u" G such that

• (a 2 o a 1)*/ (w) v" = s", and
• if u ends in / then v" = ().

We know there exists traces s' G sn d (a ^ (F , D)) and s G D and extensions t" G
C w and t! G i?*/ such that the following hold

• a * / (s ') ~ t " = s",
• aq / (s) ~ t' = s',
• if s' ends in / then t" = (), and
• if s ends in / then t' = ().

Choose u := s and v" := it!) ^ t ' ' . As and a are functorial (see
Lemma 7.1), we know (s)) (t') ~ t" = s". By Lemma 7.1 and
substitution of u and v", we get we get (0:2 0 ~ v" — s" . Left to show is
that if u ends in / then v" = (). Assume u does end in / , then we know £' = ().
As ol̂ preserves / , then s' also ends in / , thus we have t" — (). Finally, we can
conclude v" — (t') ~ t" — () ~() = ().

Divergences O ’ direction i.e., s n d ((o o a ^) (F ,D)) D snd((a2 o a i) ^ (F ,D)) .
Let (s " ,X ") G snd((a2 o a \) ^ { F ,D)) . We must show (s " ,X ") G snd({a§f o
qtj^) (F ,D)) , that is, We must find traces u' G s n d (a ^ (F ,D)) and u G D and
extensions v" G C w and v' G B *^ such that the following hold

• a * / (u ') ~ v " = s",
• a Y (u) v ' = u',
• if u' ends in / then v" = (), and
• if u ends in / then v' = ().

We know there exists a trace s G D and extension t" g C ^ such that

• {a.2 o o;1)*/ (s) t" = s" , and
• if s ends in / then t" = ().

Choose u := s, u' := (s), 1/ := (), and u" := t". As u = s by application
of we obtain a | / (u) := (^ (s) . Hence we know a*/ (w) ~() = a ^ s) . By
substitution of w' and v' we get (u) ~ v' — u'.
As u' (^ (s) by application of a we obtain (u') := (0 ^''' (s)). By
Lemma 7.1 and concatenation of t" we get (u') ~ t" := (0:2 o a 1)*/ (s) ~ t" .
By substitution of s" and v" we get (u') ~ v" := s".
The statement ‘if u ends in / then v' = ()’ holds trivially as v' = (). Left to show
is that if u' ends in / then v" — (). Assume u 1 ends in / , then < (S) ends in / .
As preserves / , we know s ends in / . Thus v" = t" = () .

219

A. Deferred Proofs

Failures‘C ’ direction that is, f s t ((o ^ o c t^){F ,D)) C fst((ot2 ° D)). Let
(s" ,X ") £ f s t ((o # o c ^ r)(F ,D)) , we show (s" ,X ") £ fs t ((a 2 o a i)u (F ,D)).
We know either (s", X ") originated from a failure or a divergence.

Case 1 (s", X") originated from a failure, that is, we know there exists (s', X ') £
f s t (o t f (F, D)) such that

• (s') = s", and

• Vx" £ • x" £ X " = > (a f)~ (x ") C X '.
This can also happen in two cases.
Case 1.1 (s', X ') originated from a failure, i.e., we know there exists (s, X) £

F such that
• a ^ s) = s', and

• Vx' £ B / • x' £ X ' = > (a f) (x') C X .
Then this case is identical to the Stable-Failures proof of failures subset in
‘C ’ direction.

Case 1.2 (s', X ') originated from a divergence, that is, s' £ snd(otf(F , D)).
Then we know s" E snd((ctrf o o^)(.F , F)) by construction. As we
have shown divergences are equal already, we know s" E snd((a2 o
a i y ^ F , F)) . Then (s " ,X ") G f s t ((a 2 ° a \) ^ (F ,D)) by construction.

Case 2 (s", X ") originated from a divergence, i.e., s" E s n d ((a ^ o ar^)(F , F)) .
As we have shown divergences are equal already, we know s" G s/w/((a2 0

a i) Â (F, D)). Then (s " ,X ") £ f s t ((a 2 o a i f ^ F , F)) by construction.

Failures O ’ direction that is, f s t ^ a ^ o cx^)(F ,D)) D fs t ((a 2 ° cci)^(F , D)). Let
(s " ,X ") G f s t ((a 2 o a i) - ^ (F ,F)) , we show (s" ,X ") E f s t ((o # o o f) (F ,D)) .
We know either (s", X ") originated from a failure or a divergence.

Case 1 (s", X ") originated from a failure, that is, we know there exists (s, X) £ F
such that

• (0 2 o a i)* / (s) = s", and

• Vx" G • x" G X " = > ((0:2 0 <*1) /) (£w) ^
Then this case is identical to the Stable-Failures proof of failures subset in O ’
direction.

Case 2 (s", X ") originated from a divergence, i.e., s" G snd((a 2 o a \) ^ (F , D)).
As we have shown divergences are equal already, we know s" E s n d ((c $ 0

a f 'r)(F , F)) . Then (s " ,X ") £ fs t ((o J f o ar^")(F, F)) by construction. □

Lemma 7.8 If an alphabet translation a : A —> B is injective then the induced covariant
domain translations a T , or^, and are also injective.

Proof Let a : A B be an injective alphabet translation.

Traces translation Let T\ and X2 be trace sets in T (A) such that otT (T{) = a 7" ^) . We
show Xi C T2 . Let s be a trace in T\. We know a* / (s) G a 7"(Ti), therefore a* / (s) G

220

A.I. From Chapter 7

a T (T2). As a*^ is injective we know s G T2 . Showing T 2 C T\ is analogous. Thus
Ti = T2.

Failures-divergences translation Let (F \ ,D i) and (T’2 , D 2) be denotations of Af (A) such
that = c P { { F 2 , D 2)). We first show D \ = D 2 and then F\ = F 2 .

We show D \ C D 2 . Let s i G D \. We know a ^ ^ s i) G snd{oP { (F \ ,D \)) by construc
tion, thus a + / (s) G snd(or^((F2 , D 2)). Therefore we know there exists S2 G D 2 and
t '2 G B */ such that a* / (s2) ~ t '2 = o;*/ (s i) and if S2 ends in / then t r2 — ().

Case 1 Trace S2 ends in / . We know a* / (s2) = As is injective, we
know S2 — s i, thus s i G D 2 .

Case 2 Trace S2 does not end in / . As s \ only uses symbols from we know
a ,*t / (s i) G (a:7V (A))*/ . Furthermore, as Q'*/ (si) = a*'*'(S2) ~ t2, we know
a*'/ (s2) ' " t 2 G (a 7V (A))*/ . Now as S2 G D 2 and (T ^ T ^) is healthy (and sat
isfies condition D l) we know there exists divergence u G D 2 such that (u) =
Q!*/ (s2) ~ t 2 = a w (si). As a*^ is injective, we know u — s\, thus si G D 2 .

Showing D 2 C D \ is analogous. Thus D \ — D 2 .

We now prove Fi C F2 . Let (s i ,X i) G F\. As Vx' G TK • x ' G { X 1) = >
(a /) (x ') C X \ we know (a*/ (si), o;:p / (A i)) G fs t(ar^((F i, D \))) , thus we also
know (a*/ (s i) , o P ^ {X \)) £ f s t (c P ((F 2 ,D 2))). This can happen in two cases.

Case 1 There exists (S2 , X 2) G T2 such that = a*^ {s2) and Vx' G TK • x ' G
c P ^ (X \) ==> (a /) (x ') C X 2 . By the injectivity o f we know 81 = S2 -
If we can show X \ C X 2 , then as (F2 , D 2) is healthy and satisfies condition F2
then we know (s i ,X i) G F2 . Let x G X \ , then we know a / (x) G a ^ ’/ (A'i).
Therefore we know (a ^) (a ^ x)) C X 2 and as x G (a /) (a / (x)) we know
x G X 2 . Thus we can conclude (s i ,X i) G T2 .

Case 2 a*/ (si) G snd{oP {(F2 , D 2)). As si G by the same argument that D \ C
D 2 above, we know si G i? 2 - As (X2 , -D2) is healthy (and satisfies condition D2)
we know (s i, X \) G F2 .

Showing F2 C F\ is analogous. Thus F\ = F2 .

Stable-failures translation Let (Xi, Fi) and (X2 , F2) be two denotations of F (A) such that
a P {(T\, F i)) = a :F((T2 , F2)). We show T\ = T2 and T\ = F2 . As c P is injective we
know T\ — T2 . The proof of T\ = F2 follows the same argument as the proof in case 1
of T \ = T2 of the Failures-divergences translation above. □

Lemma 7.12 For all injective alphabet translations a : A -» B , the contravariant domain
translation c P is healthy, that is, o P : T>(B) —>■ T>(A) for all V G {T , Af, F } .

Proof. As presented in [KahlO] we prove that the contravariant domain translations a T , o P ,
and o P preserve the healthiness conditions of the Traces semantics T , the Failures/Divergences
semantics Af, and the Stable-Failures semantics JF, respectively.

221

A. Deferred Proofs

Traces sem antics T We show that o f preserves the condition T1. Let T ' £ T { B) and T —
&t (T).

T1 We show that T is healthy, that is, non-empty and prefix closed. We know that T ' is
non-empty and prefix closed, thus () £ T'. As a* / (()) = () we know that () E T.
Let t E T and s < t. We know a*/ (t) E T ' by definition and a* / (s) ^ a*^ (t).
As T ’ is prefix closed we know a*^(s) E T ', therefore s E T by construction.

Stable-Failures semantics T We show that o f preserves the conditions Tl, T2, T3, F2, F3,
and F4. Let (T ', F ') E F { B) and (T, F) = c f (T ' , F f).

T l See the proof for the Traces semantics condition Tl.

T2 Let (s ,X) E F , we show s E T. As (s ,X) E F then we know there exists
(s ', X ') E F ' such that a* / (s) = s'. As (T ', F ') is healthy (and satisfies condition
T2), we know that s ' E T '. Thus, we know there exists t E T such that a*^ (t) =
s ' = a* / (s). By injectivity of a we know t — s, hence s E T.

T3 Let s '" '(/) E T, we show (s ~ (/) , X) E F for all X C . Let X C We
know there exists s ' '" '(/) E T ' such that a P ^ s) = s'. As (T ', F ') is healthy (and
satisfies condition T3), we have that (s' ~ (/) , X ') E F ' for all X ' C , thus,
especially (s' a ^ / (X)) E F '. Therefore (s ~ (/) , X) E F .

F2 Let (s, X) £ F and Y C I , w e show (s, Y) £ F. We know there exists (s', X ') E
F ' such that a* / (s) = s ' and X 'f ia ^ '^ A '^) = (X) . Let Y ' = c f ' ' (Y), then
we know Y ' C X 1. As (T ', F ') is healthy (and satisfies condition F2), we know
that (s ' , r ') E F '. Therefore (s ,y) E F by construction as Y ' fl a v / (A /) =
a v / {Y).

F3 Let (s, X) E F and X C A ^ such that \/y £ Y • s ~ (y) £ T , we show (s, X U 7) E
F . As (s, X) E F then there exists (s', X ') E F ' such that a* / (s) = s ' and X ' Pi
^ ^ (A ^) = a v / (X). Let y ' = a 7V (y) , then we know Vy' E Y ' • s ' r'(y ') £ T ' .
As (F ',F ') is healthy (and satisfies condition F i) , we know (s ',X ' U Y ') £ F '.
Finally, as we also know (X ' U Y ') fi a v / (A/) = a 77/(X U y) , we can conclude
(s , X u y) E F .

F4 Let s ^ (/) E T, we show (s, A) E F . We know there exists s '~ (/) E T ' such
that a* / (s) = s'. As (F ', F ') is healthy (and satisfies condition F4), we know
(s', B) E F '. Therefore (s, A) E F by construction as B D a v / (A ^) — a v / (A).

Failures/Divergences semantics M We show that o f preserves the conditions Fl, F2, F3,
F4, D l , D2, and D3. Let (F ', D') £ N { B) and (F, D) = o f { F ' , D').

F l We show that t r± (F , D) is non-empty and prefix closed. We know that t r ± (F f, D ')
is non-empty and prefix closed, thus () E i r j_ (F ',F ') , therefore ((),0) E F '. By
definition of o f we know ((), 0) E F , thus () E £rj_(F, F) .
Let t £ trj_(F, D) and s ^ f, we show s E fr^ (F , F) . We know (t, 0) E F , there
fore we know, by definition of o f , there exists (£', X ') E F ' such that (t) = t ' .
As (T ', F ') is healthy (and satisfies condition F2, we know (£', 0) E F ', thus

222

A .I. From Chapter 7

t' G t r± (F ' , D'). As s ^ t we know q */(s) ̂ a*7 (t) = £', and by prefix closure
of £ r j_ (F ',F ') , we know a * 7 (s) G t r ± (F ' ,D ') . Therefore (a*/ (s), 0) G F ', thus
(s, 0) G F , hence we know s G trj_(F , D).

F2 and F3 The proofs are the same as for the conditions F2 and F3, however in the
case of F3 we replace the trace set T with tr±(F , D) (similar for T ') and use the
definition of tr± accordingly.

F4 L e t s ~ (/) G tr±(F , F) , we show (s, A) G F. We know (s ~ (/) , 0) G f and there
fore we know there exists (s ' X ') G F ' such that a* / (s ~ (/)) = s '
As (F ',F ') is healthy (and satisfies condition F2), we know (s ' ~ (/) , 0) G F ',
thus s ' '" '(/) G t r ± (F ' ,D ') . By condition F4 we know (s ' , B) G F ' and fur
thermore, by definition of or^, we can conclude (s, A) G F as B fl a V 7 (A 7) —
a v / (A).

D1 Let s G D fl A* and t G A*/ , we show s ~ t G D. We know a * 7 (5) G D ' . As
(F ', D') is healthy (and satisfies condition F 7) we know a + / (s) ~ Q;5|‘/ (f) G D',
therefore s ~ t G D.

D2 Let s G F and X G V (A /). We know by definition that a* / (s) G F '. As (F ', F ')
is healthy (and satisfies condition F 2) we know (a w (s) ,a v / (X)) G F '. As

(X) n (A 7) — a V 7 (X), we can conclude (s, X) G F .

D3 Let s ~ (/) G F , we show s G F . We know by definition that a* / (s) ' ' '{ /) G
F '. As (F ' , F ') is healthy (and satisfies condition F 3) we know a * 7 (s) G D'.
Therefore s G F b y construction. □

Lem m a 7.13 T 09, A/’0*’, and F 09 are valid functors, that is, they preserve identity morphisms
and functional composition.

Proof. We prove that identity morphisms and functional composition are preserved separately
for each Csp semantics T , Af, and F .

a T , c / 7, and a 7" preserve identity morphisms This follows from the definitions, the health
iness conditions on the domains and the fact functions a / , a * 7 and a V 7 preserve iden
tity.

d '7' preserves composition of functions Let : A —> B and (*2 : B —> C be two injective
alphabet translations and let T " G T (C) .

(c tf o a J) (T ") = a j ({s' | (s ') G T"}) By definition of a j
— {s | a{ / (s) G (s ' | ol̂ (s') G T "}} By definition of d c [
= { « ! < « («)) S T " }
= {s | (a 2 0 a i)* / (s) G T " } ByLem m a7.1

= (ai2 ° a \) T (T") By definition of

(0t2 O Q!l)

223

A. Deferred Proofs

orF preserves com position o f functions Let a \ : A —>• B and (*2 : B ► C be two injec
tive alphabet translations and let (T " , F ") G F (C). We show (a f o a f) (T " , F") =

(a joa^ C r.F ")
The proof for the traces component is the same as for the Traces semantics. For the

failures component we show s n d ((a f o a f) (T " , F")) = 5ai^((q!2 ° a i) ^ (T " , F")), by
subset inclusion in both directions.

‘C ’ direction Let (s, X) G s n d ((a f o a f) (T " , F ")). Thanks to the functor properties
of the basic functions (Lemma 7.1) and unfolding the definitions we know there
exists (s ' ,X ') G snd(aff (T " , F")) and (s " ,X ") G F " such that ^ ^ (s) = s',
a f (s') = s " , X ' n a T ' (A S) = a f / (X) , m d X " r \ a f ' / (B' /) = a f f X ') . Thus
we know a f (a f (s)) — s". It remains to show that X " D a f ^ (a f ^ (A^)) =
a f f a f f X)) . This follows from definitions and injectivity of a \ and a 2 . We
again establish this by showing subset inclusion in both directions.

‘C ’ direction Let x G X " fl a f ^ (a f ^ (A^)) , then we know x" G X " and there
exists x G A ^ such that a f (a f (x)) — x " ■ Therefore x" G a f and
thus x" G a f ^ (X') . By injectivity of 0:2 we then know a f (x) G X ' , thus
a f (x) G a f ^ (X) . Finally allowing us to establish x" G a f / (a f ' /' (X)) .

O ’ direction Let x" G a f ^ (a f ^ (X)) , then we know there exists x G X such
that a f (a f (a:)) = x " . As we know a f (x) G a f / (X) we also know
a f (x) G X ' fl a f ' / (A'/). As a f (a f (x)) G a f ^ (X') we know x" G
X " fl a f y (B^) . Thus we know x" G X " fl a f ' ^ (a f / (A'/')).

O ’ direction Let (s, X) G snd((a2 o a f f (T " , F")) . Thanks to the functor properties
of the basic functions (Lemma 7.1) and unfolding the definitions we know there
exists (s", X ") G F " such that ^ ^ (^ ^ (s)) = s" and X " fl a \V (a f / (A/)) =
a f f a f f X)) . Choose s' — ckj/ (s) and X ' = {x' G J5 / | a f (x') G X " } . We
must establish that X " D a f ^ (B ^) = a f / (X') and X ' fl a f ^ (A ^) — a f ' / (X)
hold. The first follows directly from the construction of X' . We establish the
second by showing subset inclusion in both directions.

‘C ’ direction Let x' G X ' n a^v (A/). Then we know x G X ' and there exists
x G A 7 such that a f (x) = x ' . By the construction of X ' we know a f (xr) G
X " . By assumption we therefore know a f (x') G a f ^ (a f ^ (X)) . Thus x' G

O ’ direction Let x' G a f / (X) , then there exists x G X such that a f (x) = x ' .
Therefore we know a f (a f (x)) G a f ^ (a f ^ (X)) and thus by assumption
that a f (a f (x)) G X " D a f ^ (a f ^ (A^)) . By the definition of X ' we know
a f (x) G X ' , thus x ' G l ' f l a f ' / (A /).

preserves com position o f functions Let a\ : A —> B and a 2 : B C be two injective
alphabet translations and let (F" , D") G M (C). We show (or^ o a f) (F " , D ") =

(a2 iai/V",L>")

224

A. 1. From Chapter 7

The proof for the divergences component is the same as for the Traces semantics. The
proof for the failures component is the same as for the Stable-Failures semantics. □

Lem m a 7.26 For all ResSubPCFOLr signature morphisms o : E -* S ', and all E'-models
M ', is well defined and injective. This lemma is presented from [KahlO].

Proof. Let o : E —> S ' be a restricted sub-sorted signature morphism, and M ' be a restricted
sub-sorted E'-model where 5 and S ' are the sort sets of the signatures E and S ' respectively.

Well definedness We show that if (s , x) (f y) then ~M ' (&(t),y) f°r ah
s : t £ S, x £ {M '\(7)± s, and y £ (M '\a)± t for all s, t £ S, x £ (M '|ct)_ls, and
y e (JW"U)xt-
Let s , t £ S, x £ (M' \ a)±s, and y £ (M '\a)± t such that (s , x) ~ M>\a 2/)- By the
definition of ~ m / |(7 (defined in Section 7.2.1), there are two cases to consider:

Case x = y — J_: As (s, x) ~ M '|a 2/) holds, there exists sort u £ S such that s < u
and t < u. By the property p i of o (see Section 4.3), we know <r(s) < <r(u) and
o(t) < o(u). Thus (o (s) ,x) ~ a / ' (cr(t), 2/) holds.

Case x 7 ̂ 1 and y ^ .L: We need to show that the following two conditions hold:

1 . 3u' £ S ' such that a (s) < u' and <r(£) < v! .
2 . W £ 5 ' such that a (s) < w' and <r(£) < it' the following holds:

(i n 3a(s),u')M' (%') jcr(t),u')M1 (y)

For Condition 1, the proof is identical to the proof in Case 1. We now focus
on Condition 2. Let u' £ S ' such that o(s) < u' and o(t) < u ’. By the
weak non-extension property of cr (see Section 4.4), we know there exists a
sort v £ S such that s < v, t < v, and cr(v) < u'. As (s,a:) (^>2/)
holds, we know (i n = (i n Thus by the definition
of reduet we know (i - n j a{s)ja{v))M' (x) = { x n j a{t^ a{v))M'(y)- By applying
the function (i n ,u')m ' to both sides of the previous equation and from the
transitivity of injections (third) axiom which our sub-sorted model M ' respects
(see Section 4.3), it follows that (i n j a (s),u) M' (x) =

Injectivity We show if [(a (s) ,x)]^ M/ = [(a(t) ,y)]~M, then [(s,a;)]~M,|jy -
that is,

(<t(s),x) ~M ' (v (t) , y) = > (s , x) ~ M/|cr (t ,y)

for all s , t £ S, x £ M'j_s, and y £ M'L v

Let s, t £ S, x £ M ^ s, and y £ Mj_f such that (cr(s),x) (°'(0>2/)- the
definition of ~ M, (defined in Section 7.2.1), there are two cases to consider:

Case a; = y — ± : As (a(s) , x) (^(Oi?/) holds, there exists sort u' £ S' such
that cr(s) < u' and o(t) < u'. By the weak non-extension property of a (see
Section 4.4), we know there exists sort v £ S such that s < v, t < v, and o(v) <
u'. Thus (s ,x) (£? y) holds.

225

A. Deferred Proofs

Case x _L and y _L: We need to show that the following two conditions hold:

1. 3u E S such that s < u and t < u.
2. \fu E S such that s < u and t < u the following holds:

(i n j s>u)M'|ffM = A v)

For Condition 1, the proof is identical to the proof in Case 1. Regarding Condition
2, as (<t(s), x) ~ a / / (cr(t),y), we know that for all sorts u' E S' such that o(s) <
u' and o(t) < u', we have (in j CT(s)y)M '(^) = (in j a{t),u')M'{y)- Let u E S
such that s < u and f < u. By property p i of o (see Section 4.3), we know cr(s) <
a{u) an d a(f) < o(u), thus we know (in = (i n j a{t),a{u))M>{y)-
By applying the definition of reduct (see Section 4.2.2), we get (in j s u)m '|(T(^) =

M'\a {y) • □

226

Appendix B

C s p Domain Clauses

Here, we present the clauses for the C sp Traces semantics, Failures/Divergences semantics and
Stable-Failures semantics as presented in [Ros98].

B.l Traces Semantics

Semantic clauses for the traces function used in the Traces and Stable-Failures semantics.

traces (SKIP) = {<>,<-0}
traces (STOP) = « > }

traces (DIV) = { < »
traces{a —> P) = {()} U {(a) ~ s | s G traces(P)}

traces(Hx : : X —> P) — { () } U {(a) ^ s | s G traces(P[a/x]),a G X }

traces(\Jx : : X P) = {()} U {(a) ~ s | s G traces(P[a/x]), a G X }
traces{P%Q) = (traces(P) H ^ 4 *)

U { s ^ t | s ~ (/) G traces(P),t G traces(Q)}

traces(P f l Q) = traces(P) U traces(Q)
traces(P □ Q) = traces(P) U traces(Q)

traces(P || Q) = traces(P) fl traces(Q)

traces(P | | | Q) — t J { s III ^ 1 s ^ traces(P) A t G traces(Q)}

traces{P | f X] \ Q) = (J { s \ [X] \ t | s G traces(P) A t G traces(Q)}

traces(P | [X \ Y] \ Q) = { s G (X u y) + / | 5 \ X U { / } G traces(P)A
s \ Y U { / } G traces(Q)}

traces(P \ X) = {s \ X | s G traces(P)}

traces(P[R]) = { £ | 3s G traces(P) • s R* t }

227

B. CSP Domain Clauses

i s~\\ [traces(P) if ip evaluates to truetraceslif ip then P else Q) := < .. , , .
 ̂ traces{Q) if cp evaluates to ja ls e

Clauses for operations on individual traces:

1. V s , t £ A * , a , b £ A

0 III s = w

*1110 = M
<“ > " * 111 (b) " t = { (° > " “ l “ e s | | | < 6) " t }

U {(b) ~ u | u £ (a) ~ s HI t }

s l l l t - £) = {}
= {}

< /) = { u ~ (S) | w G s | | | t}

Vs, t £ A*, x x' £ X , y, y' £ A \ X :
* i m t " (s) = {)

s ~ (/ > | [x] t = (}
s ~ < /) | [X] f ~ (/) = { u ~ (S) \ u £ s \ [X] \ t }

S | [X] t = t | [*] | s

O H *] 0 = {<>}

O i l *] (x) = {}
<>|[A-] {y) = { < y »

< * r * | [x] (y>~* = { (y)~u | u £ (z) ~ s | [X] | i)

<x>"S |[X] (x) ~ t = {(a;) ~ u \ u £ s \ [X] \ t}

(x> " s |[X] (x') ~ t = {} if x x'

(y ') ~t = { (y) ~ u 1 u £ s |[X] | (y ') ~t }

U { (y ') ~ u | u £ (? /)~ s |[X] |f}

3. s \ X i s defined to be s \ (A \ X) for any trace s.

4. If s £ A * and X C A then s \ A means the sequence s restricted to X : the sequence
whose members are those of s which are in X .
() C X = () and
(s ''(a)) \ X — (s \ X) ~ (a) if a £ X , s \ X otherwise.

5. Definition of the Relation s R* t:
(a i , . . . a n) R * {b \ , . . . bm) «=> n = m A \ / i < n • a,i R bi

228

B.2. Failures/Divergences Semantics

B.2 Failures/Divergences Semantics
Semantic clauses for divergences function used in the Failures/Divergences semantics.

divergences(SKIP) := 0

divergences(STOP) := 0

divergence s{DYW) := A*^

divergences(a —> P) := {(a) ~ s | s G divergences(P)}

divergences(n x :: X —>• P) := {(a) ~ s | s G divergences(P[a/ x]) A a G X }

divergences(P$Q) divergences(P) U {s~ t | s ~ (/) G £rj_(P)
A t G divergences(Q)}

divergences(P (“I Q) := divergences(P) U divergences(Q)

divergences(P □ Q) := divergences(P) U divergences(Q)

divergences(P \ [X] \ Q) := {u ~ | 3s G t r ± (P) ,t G £rj_(Q) •
jig (s | [A 'p) n 4 *
A (s G divergences(P) V t G

divergences(P \ X) := {(s \ X) ^ £ | sG divergences(P)}
U {(w \ X) ~ t | u G A (w \ X) is finite
A Vs < u • 5 G £rj_(P)}

d/vergenc£s(P[P]) := {s' ~ t | 3s G divergences(P) D A* • s R* s'}

f divergences (P) if x> evaluates to tru e
divergencesiif ip then P else Q) < , . .

[divergences{Q) if ip evaluates to ja ls e

Divergences of n x :: X —> P , P || Q, P \\\ Q, and P \ [X \ Y] \ Q can be calculated as standard
in the literature from the above clauses.

Semantic clauses for the failuresL function used in the Failures/Divergences semantics.

failures j_ (SKIP)

failures (STOP)

failures ± (DTV)

failuresj_ (a —> P)

= { « } » *) I X C y l} u { ((/> , X) { X C A ^ }

= {«> ,X) | X C V }

= A W x V { A /)

: = { « > ,*) | a £ X)
U { ((a) - s , X) | (s ,X) G failuresj_(P)}

failures ± {[J x :: X ^ P) : = { «) , Y) | X n 7 = 0}
^ {((a) ^ s 5 ^") I € failuresi_(P[a/ x])
A <2 G X }

failuresj_ (P %Q) := { (s ,X) | s G i * A (s , X u { / }) Gfailuresj_(P)}
U { (s ~ £ ,X) | s ~ (/) G tr ± (P)
A (t , X) e failures± (Q)}
U {(s ,X) | s G divergences(P%Q)}

fa ilu re s^ (P 13 Q) := failuresj_(P) Ufailures^{Q)

229

B. C sp Domain Clauses

fa ilures^{P U Q) := { (() ,X) | (() ,X) E failures ̂ { P) D fa ilures^(Q)}
U { (s , X) \ (s , X) E failuresj_ (P) U failuresj_ (Q)
A 8 ? () }
U {(() ,X) | () G divergences(P)
U divergences(Q))}
u { (0)-^) \ X C A A (/) G tr± (P) U tr± (Q)}

failures± { P \[X] \Q) := { (u ,Y U Z) \ Y - (I U { / }) = Z - (X U { /})
A 3s, t • (s, Y) G failures_l(P) A (t , Z) G failures± (Q)
A u G s |[X]| f}
U {(u, y) | it G divergences{P \ [X]\ Q) }

fa ilures^{P \ X) {(s \ X , Y) | (s ,X U y) G failuresj_(P)}
U { (s ,y) | s G divergences(P \ X)}

failuresj_{P[R]) := {(s ' ,X) | 3s • s R* s'
A (s, R ~ 1(X)) G fa ilures^{P)}
U {(s ,X) | s G divergences(P[R])}
where R ~ l (X) = {a | 3a ' G X • (a, a ') G X}

/.r f failures i (P) if evaluates to true
failures±(if <p then P else Q) := j (<j } if ̂ evaluates to fa ls e

failuresj_ of n x :: X —»■ P , P || Q, P 111 Q, and P | [X | y] | Q can be calculated as standard
in the literature from the above clauses.

B.3 Stable-Failures Semantics
Semantic clauses for the failures function used in the Stable-Failures semantics.

failures (SKIP) := {((), X) \ X C A } U { ((/) , X) \ X C A /)

fa ilu re s^ TOP) := { «) , *) | X C A ' }
failures(DIV) := 0

failures(a —> P) {((), X) \ a £ X }
U { ((a) ~ s ,X) | (s , X) E failures(P)}

fa ilures(D x :: X -> P) := { (() ,y) | X fl Y = 0}
U {((a) ~ s , Y) | (s, y) G failures(P[a/x]) A a G X]

failures(P%Q) := {(s ,X) | 5 G A* A (s , X U { /}) E failures(P)}
U { (s ~ t , X) | s '" '(/) G traces(P)
A (t , X) E failures(Q)}

failures(P n Q) failures(P) U failures(Q)

failures(P □ Q) { (() , X) | (() , X) E failures(P) C\failures(Q)}
U { (s ,X) | (s , X) E failures(P) Ufailures{Q)

U {(() ,X) | X C A A (/) G traces(P) U traces(Q)}

B.3. Stable-Failures Semantics

fa ilu re s{P \[X]\Q) := { (u ,Y U Z) \ Y - (Iu { /}) = Z - (X U { / })
A 3s, t • (s, Y) £ failures(P) A (£, Z) £ failures(Q)
A u £ s \ [X] \ t }

failures(P \ X) := {(s \ X , Y) | (s , X U Y) £ failures(P)}

failures(P[R]) := {(s ' ,X) | 3s • s R* s'
A (s,i?_1(X)) £ failures(P)}
where R ~ 1(X) = {a | 3af £ X • (a, a ') G X }

. „ i ^ f failures(P) if cz> evaluates to true
failures(if p then P else Q) := j faUures(Q) if ̂ eva,uates tQ fa U e

Failures of n x :: X -» P , P || Q, P \ \ \ Q, and P | [X \ Y] \ Q can be calculated as standard in
the literature from the above clauses.

231

Appendix C

ATM Full Specifications

This appendix contains full specification of the ATM system used as an example in Sec
tion 8.4.1.

C.l Specifications of ATM with Shrinking Alphabet

library ATM_Sy st e m _Sh r in k in g

from B a sic /N u m b e r s get Int

logic CASL

spec A rch_Co m m o n D ata =
sorts Number, Decision

end

logic CspCASL

spec A rc h .U ser =
data A r c h_Co m m o n D ata
process User : Number, Decision

end

spec A rc h_ATM =
data A rc h_Co m m o nD ata
process ATM : Number, Decision

end

spec A rc h_Sy stem = A rc h _User and A rc h_ATM then
process System : Number, Decision;

233

C. ATM Full Specifications

System = User || ATM
end

logic CASL

spec A C L X o m m o n D a ta = I n t then
sort Decision

end

logic CspCASL

spec A C L _U ser =
data A C L X o m m o n D a ta
process User : Int, Nat, Pos, Decision",

User = (n x :: Int —> User) n (□ y :: Decision —> User)
end

spec ACL_ATM
d ata A C L X o m m o n D a ta
process ATM : Int, Nat, Pos, Decision",

ATM = (□ x :: Int —> ATM) 11(11}':: Decision —»• ATM)
end

spec A C L _System = A C L .U ser and ACL_ATM then
process System : Int, Nat, Pos, Decision",

System — User || ATM
end

logic CASL

spec C C L X o m m o n D a ta = I n t then
free type Decision allowed | refused

end

logic CspCASL

spec C C L _U ser =
data C C L X o m m o n D a ta
process User : Pos, Decision",

User — n am ount:: Pos —> □ decision :: Decision —> User
end

spec CCL_ATM =
data C C L X o m m o n D a ta then op startingBalance : Int

234

C.l. Specifications o f ATM with Shrinking Alphabet

process ATM : Int, Nat, Pos, Decision-,
ATMAuxilnt): Int, Nat, Pos, Decision-,
ATM — ATMAux (startingBalance);
ATMAux(balance) = □ am ount:: Int —>■ n decision :: Decision —>

if decision = allowed
then ATMAux (startingBalance — amount)
else ATMAux (startingBalance)

end

spec CCL_System = CCL.U ser and CCL_ATM then
process System : Int, Nat, Pos, Decision-,

System = User || ATM
end

logic CASL

view A rch2ACL_Com monData : A rch_CommonData to A C L X ommonData =
Number i-> Int

end

view ACL2C C L X om m onD ata : A C L X ommonData to C C L X ommonD ata

logic CspCASL

view A rch2ACL_User : A rch_User to AC L.U ser =
Number i—>• Int

end

view ACL2CCL_User : ACL.U ser to CCL.U ser =
User : {Int, Nat, Pos, Decision} i—>■ User : {Pos,Decision}

end

view A rch2ACL_ATM : ARCH.ATM to ACL.ATM =
Number >-)• Int

end

view ACL2CCL.ATM : ACL.ATM to CCLJVTM =
ATM : {Int, Nat, Pos, Decision} ATM : {Int, Nat, Pos, Decision}

end

view A rch2ACL_System : Arch_System to AC L.System =
Number ^ Int

end

235

C. ATM Full Specifications

view ACL2CCL_System : ACL_System to CCL.System =
User : {Int, Nat, Pos, Decision} User : {Pos, Decision},
ATM : {Int, Nat, Pos, Decision} h->■ ATM : {Int, Nat, Pos, Decision},
System : {Int, Nat, Pos, Decision} System : {Int, Nat, Pos, Decision}

end

C.2 Specifications of ATM without Shrinking Alphabet

Here, mainly the architectural level is changed. We show only the changed specifications
and simply note that the other specifications are the same as the shrinking alphabet case (Ap
pendix C .l) but with the imports being the alternative version.

library Alternative_ATM_System

from Basic/N umbers get Int

logic CASL

spec A lt_Arch_CommonD ata =
sort Decision
sort UserNumber < ATMNumber

end

logic CspCASL

spec A lt_Arch_User =
data A lt_Arch_CommonData
process User : UserNumber, Decision

end

spec Alt_Arch_ATM =
data A lt_A rch_C om m onD ata
process ATM : ATMNumber, Decision

end

spec A lt_Arch_System = A lt_Arch_User and A lt_Arch_ATM then
process System : ATMNumber, UserNumber, Decision;

System — User || ATM
end

spec A lt^\CL_User =
data A lt_ACL_CommonData
process User : Pos, Decision;

User — (n x :: Pos —> User) fl (□ y :: Decision —> User)

236

C.2. Specifications o f ATM without Shrinking Alphabet

end
logic CASL

view A lt_Arch2ACL_Com monData :
A lt_ A rch _ C o m m o n D a ta to A lt_A C L _C om m onD ata =
UserNumber h* Pos, ATMNumber i—>• Int

end

view A lt_ACL2CCL_CommonD ata :
A lt_ACL_CommonData to A lt_CCL_CommonData

end

logic CspCASL

view A lt_Arch2ACL_User : A lt_Arch_User to A lt_ACL_User =
UserNumber h-> Pos, ATMNumber !-»■ Int

end

view A lt_ACL2CCL_User : A lt_ACL_User to Alt_CCL_User
end

view A lt_Arch2ACL_ATM : A lt_Arch_ATM to A lt_ACL_ATM =
UserNumber i-» Pos, ATMNumber i—>• Int

end

view A lt_ACL2CCL_ATM : A lt_ACL_ATM to Alt_CCL_ATM

view Alt_Arch2ACL_System : A lt_Arch_System to A lt_ACL_System =
UserNumber Pos, ATMNumber i->- Int,
System : {ATMNumber, UserNumber, Decision} System : {Int, Nat, Pos, Decision}

end

view A lt_ACL2CCL_System : A lt_ACL_System to A lt_CCL_System

237

Appendix D

Online Shop Full Specifications

This appendix contains full specification of the online shopping system presented in Chap
ter 10.

D.l Generic Shop Specification and Instantiations

library SHOP

from A rch_Co m po n en ts get A rch_Cu sto m er , A rch_Wa r e h o u se ,
A r c h_Pa y m e n tS y st e m , A rch_Co ordinator

from ACL_Co m po n en ts get ACL_Cu st o m e r , ACL_Wa r e h o u se ,
ACL_Pa y m e n tS y st e m , ACL_Coordinator

from C C L .C o m po n en ts get CCL_Cu st o m e r , CCL_Wa r e h o u se ,
CCL_Pa y m e n tS y st e m , CCL_Coordinator

logic CspCASL
spec GENERIC_SHOP [/fe/C/(ARCHXUSTOMER)] [RefCl(A r ch_Wa r e h o u se)]

[RefCl(A r c h_Pa y m e n tS y st e m)] [RefCl(A r ch -C o o r d in a to r)] =
process System : {C_C, C-W, C-PS}',

System — Coordinator [C_C, C-W, C-PS || C_C, C-W, C-PS]
(Customer [C_C || C-W, C-PS]
(Warehouse [C-W || C-PS] PaymentSystem))

end

spec A rch_Shop = G en er ic .S hop [A rch_Cu st o m e r] [A rchJWa r e h o u se]
[A rch_Pa y m e n tS y stem] [A r c h_Co o r d in a to r]

end

D. Online Shop Full Specifications

spec ACL_Shop = Generic_Shop [ACL_Customer] [ACL_Warehouse]
[ACL_PaymentSystem] [ACL_Coordinator]

end

spec CCL_Shop = Generic_Shop [CCL_Customer] [CCL_Warehouse]
[CCL_PaymentSystem] [CCL_Coordinator]

end

view A rch2ACL : A rch .S hop to ACL_Shop
end

view ACL2CCL : ACL.Shop to CCL_Shop
end

D.2 Architectural Components

library A rch_Components

logic CASL

spec A rch_Common_Data =
{}

end

spec A rch_Comm_Coordinator_Customer_Data =
A rch_Common_Data

then sorts LoginReq, LogoutReq < D .C
end

spec A rch_Comm_Coordinator_Warehouse_Data =
A rch_Common_Data

then sort D JV
end

spec A rch_Comm_Coordinator_PaymentSystem_Data =
A rch_Com mon_Data

then sort D_PS
end

spec A rch_Customer_Data =
A rch_Comm_Coordinator_Customer_Data

end

240

D.2. Architectural Components

spec A r c h_Wa r e h o u se_Data =
A r c h_Co m m _Co o r d in a to r_Wa r e h o u se_Data

end

spec A rch_Pa y m e n tS y st e m _Data =
A rc h_Co m m _Co o r d in a to r_Pa y m e n tS y st e m _Data

end

spec A r c h_Co o r d in a to r_Data =
A r c h_Co m m _Co o r d in a to r_Cu st o m e r _Data

and A r c h_Co m m _Co o r d in a to r_Wa r e h o u se_Data
and A r c h_Co m m _Co o r d in a to r_Pa y m en tS y st e m _Data
end

logic CspCASL

spec A r c h_Cu sto m er =
data A r c h_Cu sto m er_Data
channel C _C : D .C
process Custom er: C_C;

CustomerJSuccessfulLogin : C_C;
Customer JFailedLogin : C_C;
Customer JBody : C_C;
Customer .View Catalogue : C_C;
CustomerATiewBasket: C_C;
Customer j\d d ltem : C_C;
Customer JRemoveltem : C_C;
Customer .C heckout: C_C;
Customer JLogout: C_C;
Custom erSuccessfulLogout: C_C;
Customer JFailedLogout: C_C;
Customer — C.C ! jc :: LoginReq —>

(Customer JSuccessfulLogin ; Customer JSody
□ Customer.FailedLogin ; Customer);

Customer JLogout = C_C ! jc :: LogoutReq -y
(CustomerSuccessfulLogout; Customer
□ CustomerJFailedLogout; Customer .Body);

Customer JSody — Customer.View Catalogue n Customer.ViewBasket
n Customer Jiddltem n CustomerJRemoveltem
n Customer.Checkout n Customer JLogout

end

spec A r c h _Wa r e h o u se =
data A rc h_Wa r e h o u se _Data

241

D. Online Shop Full Specifications

channel C-W : DJW
process Warehouse : C-W;

Warehouse-Reserveltem : C-W;
Warehouse-Releaseltem : C-W;
Warehouse-Dispatch : C-W;
Warehouse — Warehouse-Reserveltem □ Warehouse-Releaseltem

□ Warehouse-Dispatch
end

spec A rch_Pa y m en tS ystem =
data A rch_Pa y m e n tS y st e m _Data
channel C -P S : D-PS
process PaymentSystem : C-PS

spec A rch_Coordinator =
d ata A rch_Co o r dina to r_Data
channels C -C : D-C;

C-W : D-W;
C -P S : D-PS

process Coordinator : {C_C, C-W, C-PS};
CoordinatorSuccessfulLogin : C-C;
Coordinator-FailedLogin : C-C;
Coordinator-Body : {C-C, C-W, C-PS};
Coordinator-View Catalogue : {C-C, C-W, C-PS};
Coordinator-ViewBasket: {C-C, C-W, C-PS};
Coordinator-Addltem : {C-C, C-W, C-PS};
Coordinator-Removeltem : {C-C, C-W, C-PS};
Coordinator-Checkout: {C-C, C-W, C-PS};
Coordinator-Logout: {C-C, C-W, C-PS};
CoordinatorJSuccessfulLogout: C-C;
Coordinator-FailedLogout: C-C;
Coordinator — C-C ? x :: LoginReq —»■

{CoordinatorSuccessfulLogin ; CoordinatorSody
n Coordinator-FailedLogin ; Coordinator);

Coordinator-Logout — C-C ? x :: LogoutReq —>•
{CoordinatorSuccessfulLogout; Coordinator
n Coordinator-FailedLogout; Coordinator-Body);

Coordinator-Body = Coordinator -ViewCatalogue □ Coordinator-ViewBasket
□ Coordinator-Addltem □ Coordinator-Removeltem
□ Coordinator-Checkout □ Coordinator-Logout

242

D.3. Abstract Component Level Components

D.3 Abstract Component Level Components

library ACL_Co m po nents

logic C A SL

spec ACL_Co m m o n_Data =

{}
end

spec ACL_Co m m _Co o r dina to r_Cu st o m e r _Data =
ACL_Co m m o n_Data

then sorts LoginReq, SuccessfulLoginRes, FailedLoginRes,
ViewCatalogueReq, ViewCatalogueRes,
ViewBasketReq, ViewBasketRes, AddltemReq,
AddltemRes, RemoveltemReq, RemoveltemRes,
CheckoutReq, CheckoutRes, CheckoutConfirmReq,
CheckoutConfirmRes, LogoutReq, SuccessfulLogoutRes,
FailedLogoutRes

free type
D .C ::= %% Requests

sort LoginReq
| sort ViewCatalogueReq
| sort ViewBasketReq
| sort AddltemReq
| sort RemoveltemReq
| sort CheckoutReq
| sort CheckoutConfirmReq
| sort LogoutReq

% % Responses
| sort SuccessfulLoginRes
| sort FailedLoginRes
| sort ViewCatalogueRes
| sort ViewBasketRes
| sort AddltemRes
| sort RemoveltemRes
| sort CheckoutRes
| sort CheckoutConfirmRes
| sort SuccessfulLogoutRes
| sort FailedLogoutRes

end

spec ACL_Com m _Co o rd inato r_Wa r e h o u se_Data =
ACL_Co m m o n_Data

243

D. Online Shop Full Specifications

then sorts ReserveltemReq, ReserveltemRes,
ReleaseltemReq, ReleaseltemRes, DispatchReq,
DispatchRes

free type
D-W : sort ReserveltemReq

| sort ReserveltemRes
| sort ReleaseltemReq
| sort ReleaseltemRes
| sort DispatchReq
| sort DispatchRes

end

spec ACL_Co m m _Co o r dina to r_Pa y m en tS y st e m _Data =
ACL_Co m m o n _Data

then sorts TakePaymentReq, Take Pay mentRes
free type
D-PS sort TakePaymentReq | sort TakePaymentRes

end

spec ACL X u s to m e r _D ata =
ACL_Co m m _Co o r dina to r_Cu sto m er_Data

end

spec ACL_Wa r e h o u se_Data =
ACL_Co m m _Co o r d in a to r_Wa r e h o u se_Data

end

spec ACL_Pa y m e n tS y st e m _Data =
ACL_Co m m _Co o r d in a to r_Pa y m en tS y st e m _Data

end

spec A C L X o o r d in a to rJData =
ACL_Co m m _Co o r dina to r_Cu sto m er _Data

and ACL_Co m m _Coo r d in a to r_Wa r e h o u se_Data
and ACL_Co m m _Coo r dina to r_Pa y m en tS y st e m _Data
end

logic CspCASL

spec A C L X usto m er =
data ACL_Cu st o m e r _Data
channel C _C : DJC
process Customer : C-C;

Customer SuccessfulLogin : C-C;

244

D.3. Abstract Component Level Components

Customer -FailedLogin : C-C;
Customer-Body: C-C;
Customer-ViewCatalogue : C-C;
Customer-ViewBasket: C_C;
Customer-Addltem : C_C;
Customer-Removeltem : C-C;
Customer-Checkout: C_C;
Customer-Logout: C_C;
CustomerSuccessfulLogout: C_C;
Customer-FailedLogout: C_C;
Customer = C_C ! j c :: LoginReq —>

{Customer SuccessfulLogin ; Customer-Body
□ Customer-FailedLogin ; Customer);

Customer SuccessfulLogin = C_C ? jc :: SuccessfulLoginRes —> SKIP ;
Customer .FailedLogin = C-C ? jc :: FailedLoginRes —» SKIP;
Customer-ViewCatalogue = C-C ! jc :: ViewCatalogueReq d e f —>

C-C ? _y :: ViewCatalogueRes —> Customer-Body;
Customer -ViewBasket = C_C ! jc :: ViewBasketReq def —>■

C_C ? : ViewBasketRes —>• Customer-Body;
Customer-Addltem = C-C ! jc :: AddltemReq d e f —»

C_C ? j :: AddltemRes —>■ CustomerSody;
Customer-Removeltem = C-C ! jc :: RemoveltemReq d e f —>

C-C 1 y :: RemoveltemRes —» Customer-Body;
Customer-Checkout = C_C ! jc :: CheckoutReq d e f —>

C_C ? ^ CheckoutConfirmReq —>
C-C ! jc :: CheckoutConfirmRes —>
C-C ? jc :: CheckoutRes Customer-Body;

Customer-Logout — C-C ! jc :: LogoutReq ->
{CustomerSuccessfulLogout; Customer
□ Customer -FailedLogout; Customer JBody);

Customer SuccessfulLogout = C-C ? jc :: SuccessfulLogoutRes —»■ SKIP;
Customer .FailedLogout = C-C ? jc :: FailedLogoutRes —> SKIP;
Customer -Body = Customer-ViewCatalogue n Customer-ViewBasket

n Customer-Addltem n Customer-Removeltem
n Customer-Checkout n Customer-Logout

end

spec ACL_Wa r eh o u se =
data ACL_Wa r e h o u se_Data

channel C_W :
process Warehouse : C_W;

Warehouse-Reserveltem : C_W;
Warehouse-Releaseltem : C_W;
Warehouse-Dispatch : C-W;

245

D. Online Shop Full Specifications

Warehouse-Reserveltem = C-W ? x :: ReserveltemReq —>
C-W ! y :: ReserveltemRes —> Warehouse-,

Warehouse-Releaseltem = C_W ? x :: ReleaseltemReq —>
C-W ! _y :: ReleaseltemRes —>• Warehouse-,

Warehouse-Dispatch = C_W ? x :: DispatchReq —>
C-W \ y :: DispatchRes —> Warehouse;

Warehouse = Warehouse-Reserveltem □ Warehouse .Releaseltem
□ Warehouse .Dispatch

end

spec ACL_Pa y m e n tS ystem =
data ACL_Pa y m e n tSy st e m _Data
channel C -P S : D_PS
process PaymentSystem : C-PS’,

PaymentSystem = C_PS ? x :: TakePaymentReq —>
C_P5 ! Y :: TakePaymentRes —> PaymentSystem

end

spec ACL_Coordinator =
data ACL_Co o r dina to r_Data
channels C _C : D_C;

C_W : D_W;
C-PS :

process Coordinator : {C_C, C_W, C-P5};
Coordinator SuccessfulLogin : C_C;
Coordinator-FailedLogin : C_C;
Coordinator .Body : {C_C, C_W, C-P5};
Coordinator .ViewCatalogue : {C_C, C_W, C_P5};
Coordinator -ViewBasket: {C_C, C_W, C-PS);
Coordinator-Addltem : {C_C, C_W, C-PS};
Coordinator .Removeltem : {C_C, C_W, C_PS};
Coordinator .C heckout: (C_C, C_W, C-PS};
Coordinator .Checkout-Cancel: {C_C, C_W, C_PS};
Coordinator-Checkout-Confirm : (C_C, C_W, C-PS};
Coordinator-Checkout-PaymentFailed : (C_C, C_W, C-PS};
Coordinator-Checkout-Pay mentSucessful: {C-C, C-W, CjPS};
Coordinator-Logout: {C_C, C_W, C-PS};
Coordinator SuccessfulLogout: C_C;
Coordinator .FailedLogout: C_C;
Coordinator = C_C ? x :: LoginReq —>

{Coordinator SuccessfulLogin ; Coordinator -Body
n Coordinator .FailedLogin ; Coordinator);

Coordinator SuccessfulLogin = C_C ! x :: SuccessfulLoginRes def —> SA7P;
Coordinator-FailedLogin — C-C ! x :: FailedLoginRes def —> SKIP-,

246

D.3. Abstract Component Level Components

Coordinator .ViewCatalogue — C-C ? x :: ViewCatalogueReq —>•
CjC ! y :: ViewCatalogueRes —»
Coordinator-Body;

Coordinator-ViewBasket = C_C ? jc :: ViewBasketReq —>
C-C ! ;y :: ViewBasketRes —> Coordinator-Body,

Coordinator-Addltem — C-C ? jc :: AddltemReq —>
C_W ! j :: ReserveltemReq d e f —»
C_W ? jc :: ReserveltemRes —>
C_C ! y :: AddltemRes —> Coordinator-Body',

% % Branch 1: Item can be removed
% % Branch 2: Item cannot be removed
Coordinator-Removeltem = C_C ? jc :: RemoveltemReq —>

(C_W ! jc :: ReleaseltemReq d e f —>
C_W ? _y :: ReleaseltemRes —>•
C-C ! jc :: RemoveltemRes —>• Coordinator -Body
n C_C ! jc :: RemoveltemRes —>

Coordinator-Body);
Coordinator-Checkout = C-C ? jc :: CheckoutReq —>•

C_C ! ;y :: CheckoutConfirmReq —>■
C_C ? jc :: CheckoutConfirmRes —>
{Coordinator-Checkout-Cancel
n Coordinator-Checkout-Confirm)',

Coordinator-Checkout-Cancel = C-C ! jc :: CheckoutRes —> Coordinator-Body,
Coordinator-Checkout-Confirm = C_PS ! jc :: TakePaymentReq —>■

C-PS ? y :: TakePaymentRes —>
{Coordinator-Checkout-PaymentFailed
n Coordinator-Checkout-PaymentSucessful) ;

Coordinator-Checkout-PaymentFailed = C_C ! jc :: CheckoutRes —>
Coordinator-Body;

Coordinator-Checkout-PaymentSucessful — C-W \ x :: DispatchReq d e f —>
C-W 1 y w DispatchRes —»
C_C ! jc :: CheckoutRes —>■
Coordinator-Body,

Coordinator-Logout = C_C ? jc :: LogoutReq —)■
{CoordinatorSuccessfulLogout; Coordinator
n Coordinator-FailedLogout; Coordinator-Body)',

Coordinator SuccessfulLogout = C_C ! jc :: SuccessfulLogoutRes d e f —> SKIP',
Coordinator-FailedLogout = C-C ! jc :: FailedLogoutRes d e f —> SKIP;
Coordinator-Body = Coordinator-ViewCatalogue □ Coordinator-ViewBasket

□ Coordinator-Addltem □ Coordinator-Removeltem
□ Coordinator-Checkout □ Coordinator-Logout

end

247

Bibliography

[ABR99]

[ACM 10]

[AG97]

[AG09]

[AJS05]

[Bau99]

[BB88]

[BCH99]

Egidio Astesiano, Manfred Broy, and Gianna Reggio. Algebraic specification of
concurrent systems. In Egidio Astesiano, Hans-Jorg Kreowski, and Bemd Krieg-
Briickner, editors, Algebraic Foundations o f Systems Specification. Springer,
1999.

Jean-Raymond Abrial, Dominique Cansell, and Christophe Metayer. Specifica
tion of the automatic prover P3. In Jens Bendispoto, Michael Leuschel, and
Markus Roggenbach, editors, AVoCS’10 - Proceedings o f the Tenth Interna
tional Workshop on Automated Verification o f Critical Systems. Heinrich-Heine-
Universitat Diisseldorf, 2010.

Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., 6:213-249, July 1997.

M. Alexander and W. Gardner. Process algebra fo r parallel and distributed pro
cessing. Chapman & Hall/CRC computational science series. CRC Press, 2009.

Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors. Communicating
Sequential Processes: The First 25 Years, Symposium on the Occasion o f 25 Years
o f CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume 3525 of
Lecture Notes in Computer Science. Springer, 2005.

Hubert Baumeister. Relations between Abstract Datatypes modeled as Abstract
Datatypes. PhD thesis, Universitat des Saarlandes, Saarbriicken, 1999.

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification lan
guage Lotos. Computer Networks, 14(1):25—59, January 1988.

Michel Bidoit, Maria Victoria Cengarle, and Rolf Hennicker. Proof systems for
structured specifications and their refinements. In Egidio Astesiano, Hans-Jorg
Kreowski, and Bemd Krieg-Brtickner, editors, Algebraic Foundations o f System
Specification. Springer, 1999.

249

Bibliography

[BHK89]

[BHK90]

[Bj0OO]

[Bj0O9]

[BK84]

[BM04]

[Boe88]

[BS93]

[BSS87]

[CM97]

[CRS+ar]

[DGS93]

[EBK+02]

[EM85]

[EP208]

J.A. Bergstra, J. Heering, and P. Klint. The algebraic specification formalism A s f .
Algebraic specification, 1989.

J. A. Bergstra, J. Heering, and P. Klint. Module algebra. J. ACM, 37:335-372,
April 1990.

Dines Bj0mer. Formal Software Techniques for Railway Systems. CTS2000: 9th
IFAC Symposium on Control in Transportation Systems, pages 1-12, 2000.

Dines Bj0mer. DOMAIN ENGINEERING Technology Management, Research
and Engineering. Japan Advanced Institute of Science and Technology, 2009.

Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous commu
nication. Information and Control, 60(1-3): 109-137, 1984.

Michel Bidoit and Peter D. Mosses. Casl User Manual: Introduction to Using
the Common Algebraic Specification Language. LNCS 2900. Springer, 2004.

Barry William Boehm. A spiral model of software development and enhancement.
Computer, 21 (5):61—72, 1988.

Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods
and standards. Software Engineering Journal, 8(4): 189-209, July 1993.

E. Brinksma, G. Scollo, and C. Steenbergen. Lotos Specifications, their Imple
mentations, and their Tests. In Protocol Specification, Testing and Verification,
pages 349-360. Elsevier, 1987.

M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical
structures along maps). Theoretical Computer Science, 173:311-347, 1997.

Antonio Cerone, Markus Roggenbach, Bemd-Holger Schlingloff, Gerardo
Schneider, and Siraj Ahmed Shaikh. Formal Methods fo r Software Engineering:
Languages, Methods, Application Domains. Springer, to appear.

R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularisation.
In Logical Environments, pages 83-130. Cambridge, 1993.

Egidio, Michel Bidoit, Helene Kirchner, Bemd Krieg-Briickner, Peter D. Mosses,
Donald Sannella, and Andrzej Tarlecki. C a s l : The Common Algebraic Specifi
cation Language. Theor. Comput. Sci., 286(2): 153-196, 2002.

Hartmut Ehrig and Bemd Mahr. Fundamentals o f Algebraic Specification I: Equa
tions and Initial Semantics. Springer, 1985.

EP2 Consortium. EFT/POS 2000 specification, version 4.0.0, 2008. Project
Overview available at h t t p : / /w w w . e f t p o s 2 0 0 0 . ch.

250

Bibliography

[FDR06]

[Fia05]

[Fis97]

[Fow09]

[Gar96]

[GB92]

[Gim08]

[GKOR09]

[GP95]

[HHJW07]

[HJ98]

[Hoa78]

[Hoa85]

[Hoa06]

Failures-Divergence Refinement - the FDR2 User Manual. Formal Systems (Eu
rope) Ltd., 2006.

Jose Luiz Fiadeiro. Categories fo r Software Engineering. Springer, 2005.

Clemens Fischer. Combining O bject-Z and CSP. In Adam Wolisz, Ina Schiefer-
decker, and Axel Rennoch, editors, FBT, volume 315 of GMD-Studien. GMD-
Forschungszentrum Informationstechnik GmbH, 1997.

Kim Fowler. Mission-Critical and Safety-Critical Systems Handbook: Design
and Development fo r Embedded Applications. Newnes, 2009.

Hubert Garavel. An Overview of the Eucalyptus Toolbox. In COST 247, pages
76-88. University of Maribor, 1996.

J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi
cation and programming. J. ACM, 39(1):95—146, 1992.

Andy Gimblett. Tool Support for C sp-Ca s l . MPhil Thesis, Swansea University,
2008.

Andy Gimblett, Temesghen Kahsai, Liam O ’Reilly, and Markus Roggenbach.
On the whereabouts of CSP-CASL - A Survey. In Bemd Gersdorf, Berthold
Hoffmann, Christoph Liith, Till Mossakowski, Sylvie Rauer, Markus Roggenbach
Thomas Rofer, Lutz Schroder, and Mattias Werner Shi Hui, editors, Specification,
Transformation, Navigation - Festschrift dedicated to B em d Krieg-Briickner,
pages 121-139, 2009.

J. F. Grote and A. Ponse. The syntax and semantics of //CRL. In A. Ponse, C. Ver-
hoef, and S. F. M. van Vlijmen, editors, Algebra o f Communicating Processes ’94,
Workshops in Computing. Springer, 1995.

P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A History of Haskell: Being Lazy
With Class. In HOPE 111: Proceedings o f the third ACM SIGPLAN conference
on History o f programming languages, pages 12-1-12-55, New York, NY, USA,
2007. ACM.

C. A. R. Hoare and He Jifeng. Unifying Theories o f Programming. Prentice Hall,
1998.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666-
677, August 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Tony Hoare. Why ever csp? Electr. Notes Theor. Comput. Sci., 162:209-215,
2006.

251

Bibliography

[IR]

[IR05]

[IR06]

[IS089]

[Jon03]

[JOW06]

[JR11]

[JTC01]

[Kah87]

[KahlO]

[KR09]

[KRS08]

[Lis]

[Mil89]

[ML98]

[MML07]

Y. Isobe and M. Roggenbach. Webpage on Csp-Prover. http://staff.
aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In
TACAS2005, LNCS 3440, pages 108-123. Springer, 2005.

Yoshinao Isobe and Markus Roggenbach. A complete axiomatic semantics for
the CSP stable-failures model. In Christel Baier and Holger Hermanns, editors,
CONCUR 2006, LNCS 4137, pages 158-172. Springer, 2006.

ISO 8807. Lotos - a formal description technique based on the temporal ordering
of observational behaviour, 1989.

S.P. Jones. Haskell 98 language and libraries: the revised report. Cambridge
Univ Pr, 2003.

Cliff Jones, Peter O’Heam, and Jim Woodcock. Verified Software: A Grand
Challenge. Computer, 39(4):93-95, 2006.

Phillip James and Markus Roggenbach. Designing domain specific languages for
verification: First steps. In Georg Struth Peter Hofner, Annabelle Mclver, editor,
ATE-2011 - Proceedings o f the First Workshop on Automated Theory Engineer
ing, volume 760 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

JTCI/CS7/WG14. The E-LOTOS Final Draft International Standard, 2001.

Gilles Kahn. Natural Semantics. In Franz-Josef Brandenburg, Guy VidaLNaquet,
and Martin Wirsing, editors, STACS, volume 247 of Lecture Notes in Computer
Science, pages 22-39. Springer, 1987.

Temesghen Kahsai. Property Preserving Development and Testing fo r C s p-Ca s l .
PhD thesis, Swansea University, 2010.

Temesghen Kahsai and Markus Roggenbach. Property preserving refinement for
CSP-CASL. In WADT2008, LNCS 5486. Springer, 2009.

Temesghen Kahsai, Markus Roggenbach, and Bemd-Holger Schlingloff.
Specification-based testing for software product lines. In Antonio Cerone and Ste
fan Gruner, editors, SEFM 2008, pages 149-159. IEEE Computer Society, 2008.

BertLisser. p-C RL homepage, http://www.cwi.nl/~mcrl.
Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

Saunders Mac Lane. Categories fo r the working mathematician. Graduate texts
in mathematics. Springer, 2nd edition, 1998.

T. Mossakowski, C. Maeder, and K. Luttich. The Heterogeneous Tool Set, H ets .
In O. Grumberg and M. Huth, editors, TACAS, volume 4424 of Lecture Notes in
Computer Science, pages 519-522. Springer, 2007.

252

Bibliography

[MORI 1]

[Mos97]

[Mos98]

[MosOO]

[Mos02]

[Mos04]

[MR07]

[MRS03]

[MSRR06]

[MTH90]

[MU05]

[MV90]

[MV92]

Till Mossakowski, Liam O ’Reilly, and Markus Roggenbach. Compositional rea
soning for processes and data. In Proceedings o f the 18th Workshop on Automated
Reasoning, volume TR-2011 -327 of Technical Report. Department of Computing
Science, University of Glasgow, 2011.

Peter D. Mosses. CoFI: The common framework initiative for algebraic specifica
tion and development. In Michel Bidoit and Max Dauchet, editors, TAPSOFT’97,
LNCS 1214, pages 115-137. Springer, 1997.

T. Mossakowski. Colimits of order-sorted specifications. In WADT, LNCS 1376.
Springer, 1998.

Till Mossakowski. Specifications in an arbitrary institution with symbols. In
WADT ’99: Selected papers from the 14th International Workshop on Recent
Trends in Algebraic Development Techniques, pages 252-270, London, UK, 2000.
Springer-Verlag.

Till Mossakowski. Relating C a s l with other specification languages: The insti
tution level. Theoretical Computer Science, 286(2):367—475, 2002.

Peter D. Mosses. C a sl Reference Manual: The Complete Documentation o f the
Common Algebraic Specification Language. LNCS 2960. Springer, 2004.

Till Mossakowski and Markus Roggenbach. Structured CSP - A Process Algebra
as an Institution. In WADT 2006, LNCS 4409, 2007.

Till Mossakowski, Markus Roggenbach, and Luth Schroder. CO-CASL at work
- Modelling Process Algebra. In Coalgebraic Methods in Computer Science,
volume 82 of Electronic Notes Theoretical Computer Science, 2003.

Till Mossakowski, Lutz Schroder, Markus Roggenbach, and Horst Reichel.
Algebraic-co-algebraic specification in C o -Ca s l . Journal o f Logic and Alge
braic Programming, 67(1-2):146-197, 2006. Extends (Mossakowski et al. 2003).

R. Milner, M. Tofte, and R. Harper. The Definition o f Standard ML. MIT Press,
Cambridge, MA, USA, 1990.

Petra Malik and Mark Utting. CZT: A framework for Z tools. In Helen Trehame,
Steve King, Martin C. Henson, and Steve A. Schneider, editors, ZB, volume 3455
of Lecture Notes in Computer Science, pages 65-84. Springer, 2005.

S. Mauw and G. J. Veltink. A process specification formalism. Fundam. Inf.,
13(2):85—139, 1990.

Sjouke Mauw and Gert J. Veltink. A proof assistant for PSF. In CAV ’91: Pro
ceedings o f the 3rd International Workshop on Computer Aided Verification, pages
158-168, London, UK, 1992. Springer-Verlag.

253

Bibliography

[NPW02]

[OGC08]

[OMR 12]

[O’R08]

[ORI09]

[Pau94]

[Pro03]

[PSF97]

[RACOO]

[Rog06]

[Ros98]

[Ros05]

[RoslO]

[RROO]

[RSR04]

T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL: a proof assistant fo r
higher-order logic. LNCS 2283. Springer-Verlag, London, UK, 2002.

M. V. M. Oliveira, A. C. Gurgel, and C. G. Castro. Crefine: Support for the
C ircus refinement calculus. In Proceedings o f the 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods, pages 281-290. IEEE
Computer Society, 2008.

Liam O ’Reilly, Till Mossakowski, and Markus Roggenbach. Compositional mod
elling and reasoning in an institution for processes and data. In Till Mossakowski
and Hans-Jorg Kreowski, editors, WADT 2010, volume 7137 o f Lecture Notes in
Computer Science, pages 251-269. Springer, 2012.

Liam O ’Reilly. Developing proof technology for C sp-Ca s l . MPhil Thesis,
Swansea University, 2008.

Liam O ’Reilly, Markus Roggenbach, and Yoshinao Isobe. CSP-CASL-Prover: A
generic tool for process and data refinement. ENTCS, 250(2):69-84, 2009.

L. C. Paulson. Isabelle: A generic theorem prover, volume 828. Springer, 1994.

Process Behaviour Explorer - the ProBE User Manual. Formal Systems (Europe)
Ltd., 2003.

PSF toolkit manual pages, 1997. h t t p : / / w w w . w i n s . u v a . n l / ~ b o b d /
w o r k / .

G. Reggio, E. Astesiano, and C. Choppy. C a s l -Ltl - a CASL extension for
dynamic Reactive Systems - Summary. Technical Report DISI-TR-99-34, Uni-
versita di Genova, 2000.

Markus Roggenbach. C sp-Casl - A new integration of process algebra and
algebraic specification. Theoretical Computer Science, 354(1):42-71, 2006.

A. W. Roscoe. The theory and practice o f concurrency. Prentice Hall, 1998.

A. W. Roscoe. The theory and practice o f concurrency. 2005. Revised edition.
Only available online.

A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

G. Reggio and L. Repetto. CASL-CHART: a combination of statecharts and of the
algebraic specification language CASL. In Algebraic Methodology and Software
Technology, volume 1816 of LNCS, pages 243-257. Springer, 2000.

J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoperating
components. Form. Asp. Comput., 16(4):394-411, 2004.

254

Bibliography

[SAA01]

[SAA02]

[Sam08]

[Sca98]

[Sch99]

[SmiOO]

[SMT+05]

[Som07]

[Spi92]

[ST88]

[Sto96]

[Szell]

[Ver99]

[vGW96]

[VMOOO]

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. A formalism combining
CCS and CASL. Technical Report 00.14, University of Nantes, 2001.

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. Specification of an ac
cess control system with a formalism combining CCS and CASL. In Parallel and
Distributed Processing, pages 211-219. IEEE, 2002.

D. Gift Samuel. Implementation of the Stable Revivals Model in C s p-Ca s l -
Prover. MPhil Thesis, Swansea University, 2008.

Bryan Scattergood. The Semantics and Implementation of Machine-Readable
CSP, 1998. DPhil thesis, University of Oxford.

Steve Schneider. Concurrent and Real Time Systems: The C sp Approach. Wiley,
1999.

Graeme Smith. The O bject-Z Specification Language. Kluwer Academic Pub
lishers, 2000.

Lutz Schroder, Till Mossakowski, Andrzej Tarlecki, Piotr Hoffman, and Bartek
Klin. Amalgamation in the semantics of CASL. Theoretical Computer Science,
331(1):215—247, 2005.

Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165-210, 1988.

Neil R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

Wai Leung Sze. Evaluation of a domain specific language for modelling and
verifying in the railway domain. BSc Dissertation, Swansea University, 2011.

Alberto Verdejo. E-LOTOS: Tutorial and semantics. M aster’s thesis, Departa-
mento de Sistemas Informaticos y Programacion, Universidad Complutense de
Madrid, 1999.

Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in
bisimulation semantics. J. ACM, 43(3):555-600, 1996.

Alberto Verdejo and Narciso Martf-Oliet. Executing and verifying CCS in Maude.
Technical Report 99-00, Departamento de Sistemas Informaticos y Programacion,
Universidad Complutense de Madrid, February 2000.

255

Bibliography

[WBH+ 02] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.
SPASS version 2.0. In A. Voronkov, editor, Automated Deduction - CADE-18,
volume 2392 of Lecture Notes in Computer Science, pages 275-279. Springer-
Verlag, July 27-30 2002.

[WC01] Jim Woodcock and Ana Cavalcanti. A concurrent language for refinement. In
Andrew Butterfield, Glenn Strong, and Claus Pahl, editors, IWFM, Workshops in
Computing. BCS, 2001.

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of Circus . In Didier Bert,
Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB, volume
2272 of Lecture Notes in Computer Science, pages 184-203. Springer, 2002.

[WD96] Jim Woodcock and Jim Davies. Using Z - Specification, Refinement, and Proof.
Prentice Hall, 1996.

[Zaw04] Artur Zawlocki. Architectural specifications for reactive systems. In Jose Luiz
Fiadeiro, Peter D. Mosses, and Fernando Orejas, editors, WADT, volume 3423 of
Lecture Notes in Computer Science, pages 252-269. Springer, 2004.

256

