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A b s tra c t

In this thesis, we aim to  study param etric and nonparam etric estim ation with stochastic 

differential equations of mean-reversion type and their applications, we have done two lines 

of research works in this thesis. F irst, we apply mean reversion feature to the problem of 

param eter estim ation for stochastic differential equation with small noise on discrete obser­

vations. Girsanov Transformation and least squares method are applied to  get an estim ator 

of the drift param eter. Then we begin to study the consistency and the rate of convergence 

of the least squares estim ator and establish the asym ptotic distribution of the least squares 

estimator. Moreover, an illustrative example with linear case and an application to  a credit 

risk modeling is given. After tha t, we focus our study on nonlinear mean functional param ­

eter estimation. W ith similar method, we give proof on the consistency and the asymptotic 

distribution. For the second line of this thesis, we focus on the nonparam etric drift esti­

mation for inhomogeneous stochastic differential equation driven by Brownian motion with 

sampling data. Kernel density function is applied to  get the estim ator of the drift param eter. 

Meanwhile the consistency and rate of convergence of the drift estim ator are proved. Then 

the asymptotic distribution of the least squares estim ator is established. Finally, we study 

an example case.

K ey w o rd s: Girsanov transform ation; least squares method; discrete observation; mean- 

reverting processes; Brownian motion; consistency of least squares estimator; asymptotic 

distribution of LSE; nonparametric; inhomogeneous; rating process; zero coupon bond; non­

param etric



Chapter 1

Introduction

This thesis is mainly concerned with param etric and nonparam etric estim ation for mean 

reversion feature stochastic differential equations driven by Brownian motion with sampling 

data  and their applications.

In the past, for the param etric estimation method, when the driving noise is Brownian 

motion, with small white noise based on continuous-time observations, Prakasa Rao [41], 

Liptser and Shiryaev [29], Kutoyants [26] use maximum likelihood estim ator method based 

on the Girsanov density with the continuous observation. Meanwhile, Sorensen [48] gave 

a survey of existing estimation techniques for stationary and ergodic diffusion processes 

observed at discrete points in time. For the least squares estim ate method, Dorogoveev [6] 

and Le Breton [27] proved the convergence in probability and in Kasonga [21], they defined 

the least squares estim ator and show the strong consistency under some regularity conditions. 

Moreover, Prakasa Rao [39] gave a study on the asymptotic distribution. Further, Shimizu 

and Yoshida [45] considered a multidimensional diffusion process with jum ps whose jum p 

term  is driven by a compound poisson process. They let a ( x , 0 ) be the drift part and 

b(x,cr) be the diffusion coefficient and study estim ation of the param eter a(x ,6)  = (0 ,cr). 

Under certain assumptions, the consistency and asym ptotic normality of an estim ator were 

shown. Shimizu [46] considered a similar case and proposed an estim ating function under 

complicated situation.
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The asym ptotic theory of param etric estim ation for diffusion processes with small white 

noise, based on continuous-time observations is well developed (see, e.g., Kutoyants [25], Ku- 

toyants [24], Uchida and Yoshida [56], Yoshida [60] and Yoshida [59]). For instance, Yoshida 

[56] considered the evaluation problem of statistical models for diffusion processes with small 

noise. There were many applications of small noise asymptotic to m athem atical finance,(see, 

e.g.,Kunitomo and Takahashi [23], Long [31], Takahashi [49], Takahashi and Yoshida [50], 

Uchida and Yoshida [55], and Yoshida [58]). For example, Kunitomo and Takahashi [23] 

proposed a new methodology for the valuation problem of financial contingent claims when 

the underlying asset prices follow a general class of continuous ltd  processes. And then they 

gave two examples on the valuation problems of average options for interest rates. However, 

estim ation for diffusion processes with small noise based on discretely observations is used 

more frequently, since the actual data  may be obtained discretely. So, we begin with our 

study on this direction. Long [30] gave a study on the param eter estim ation for discretely 

observed one dimensional Ornstein-Uhlenbeck processes with small Levy noises. It assumed 

th a t the drift function b(x , 0) =  —9x was linear for both  x  and 9. Meanwhile the driving Levy 

process was L t = a B t + bZt , where a and b were known constants, {B t , t > 0} was a standard 

Brownian motion and Z t was a a —stable Levy motion independent of { B t , t  >  0}. Under 

this framework, he established the consistency and asymptotic normality for the proposed 

estimators. In Long [31], he investigated the param eter estim ation problem for discrete ob­

servations with small Levy noises. In Long [31], he gave a discussion on a case of the drift 

function b(x , 9) = 9b(x). Under some regularity conditions, he obtained the consistency and 

rate of convergence of the least squares estim ator when a small dispersion param eter e —> 0 

and n  —> oo simultaneously. Meanwhile, they gave the result of asym ptotic distribution 

which was shown to be the convolution of a stable distribution. In a similar framework, Ma 

[33] extended the results of Long [31] to  the case where the driving noise was a general Levy 

process. After th a t, in Hu and Long [16], least squares estim ator for Ornstein-Uhlenbeck 

processes driven by a-stable motions was studied. The main focus of Hu and Long [16] was 

to study the strong consistency and asym ptotic distributions of the least squares estim a­

tor for generalized O-U processes. After using least squares m ethod to get a least squares
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estim ator, they gave a proof on the strong consistency and the rate of convergence of the 

estimator. Finally they got an asym ptotic distribution. In Hu and Long [17], results in [16] 

was extended for the case th a t the drift function b(x, 6) = ao — 6qX. W hen a 0 — 0> the 

mean-reverting ct-stable motion becomes O-U process. Under certain conditions, by using 

least squares method, they proved the consistency and asym ptotic distribution.

On the other side, when the drift function is unknown, nonparam etric estim ation method 

was used. The problem of nonparam etric estim ation of a density function has received exten­

sive attention since Nadaraya [35] and W atson [57] introduced the Nadaraya-W atson estima­

tor of the regression function. In these papers they extended the methods for estim ation of 

probability densities to regression functions. After th a t consistency and rate of convergence 

were established by Hardle [14]. A growing body of literature exists on the related problem 

of nonparam etric estimation of unknown regression functions (see Collomb [5]). Most of the 

literature on nonparam etric regression function estim ation deals w ith the kernel method and 

its variants. W hen the stochastic process is stationary, Robinson [42], Roussas [44], Tran 

[51], Kim and Cox [22], Nze and Rios [36], Liebscher [28] derived the strong convergence and 

central limit theorem of the kernel density estimator. For instance, in Roussas [44], they 

considered the nonparam etric estimation in mixing sequences of random variables. Under 

some conditions, they showed the strongly consistent estimates. Moreover, Hall, Peng and 

Yao [13] gave the nonparam etric regression estim ation for tim e series with heavy tail. To 

the extension of the discrete time series w ith heavy tail, a regression type of estim ation for 

stochastic processes driven by Levy motion was discussed by Long and Qian [32].

Meanwhile, in the financial field, stochastic differential equations with mean reversion 

type play an im portant role. The phenomenon of mean reversion is a tendency generally for 

a stochastic process to remain near, or return  over time to a long-run average. Specifically, 

mean reversion in credit risk means th a t good credits today tend to become somewhat worse 

credits over tim e and bad credits tend to  become better credits over time. Hodges and 

Carver hill [15] characterized the behavior of the drift function in an equilibrium economy.
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They assumed the stock price follows a mean reversion type stochastic differential equation

dJK
~rr~ = (r + a a ( X t} t))dt +  adW t

where the risk free interest rate r  and volatility a  are constants, W t is a Brownian motion, 

the correction term  a ( X t, t)  with a  : R  x [0, oo) —► R is a C2,1-fucn tion . They used a 

binomial tree argument in the discrete time setting and Taylor expansion to  prove th a t the 

the instantaneous reward per unit of risk a  follows the Burgers Equation

d  1 2 d2 , . d  . .
— a(x,  t) = - - a  t) -  a a { x , t).

In addition, Stein and Stein [47] proved a similar result for their stochastically varying 

volatility, which was driven by an arithm etic Ornstein-Uhlenbeck process.

M otivated by the above research, we have done two lines of research works in this thesis. 

First, we apply mean reversion SDEs to the problem of param eter estim ation for stochastic 

differential equations with small noise on discrete observations. Then we study the consis­

tency and the rate of convergence of the estim ator and establish the asym ptotic distribution 

of the least squares estim ator with nonlinear mean param eter. Second, we focus on the 

nonparam etric drift estimation for inhomogeneous stochastic differential equations driven 

by Brownian motion with sampling data. Kernel density function is applied to get the es­

tim ator of the drift parameter. Then the consistency and rate of convergence of the drift 

estim ator are proved. After th a t the asym ptotic distribution of the estim ator is established.

The rest of this thesis is organized as follow:

C hapter 2 prepares some preliminaries, which will be used in later derivations and proofs. 

F irst, we give a brief introduction on SDEs, especially on the existence and uniqueness of 

the solutions to SDEs. Then we discuss the Girsanov theorem. Finally, we show some useful 

estimates, limits and inequalities.

In C hapter 3, we consider the mean-reversion type SDE, for which the drift function is 

[r+a(Xt , t ,e )]b(Xt, t ) ,  and diffusion coefficient is e a ( X t, t), where b(x, t) :R x [ 0 ,1] —► K \{ 0} 

and <r(x,t) : R x [0, 1] —> K are continuous w ith respect to f; e € (0 , 1] is a parameter; 

a ( x , t ,e)  : IR x [0,1] x (0,1] —* R is twice differentiable with respect to x  and differentiable
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with respect to t. Due to the complexity of the drift item  a ( X t , t, e), we utilize the Girsanov 

Transformation to get rid of this part, which changes measure P  to  measure Qe. Then 

we provide an explicit least squares estim ator from which we can make a proof for the 

convergence from least squares estim ator to  the true value with certain conditions. Moreover, 

we also give a proof on the asymptotic of the least squares estimator. Then, the asymptotic 

distribution is proved under probability measure Q. After th a t, we give an illustrative 

example. Finally, as an application, we apply our mean-reversion approach to a rating 

process in the range of zero coupon bond.

In C hapter 4, we extend the mean reversion stochastic differential equation to  the situa­

tion where the mean param eter is nonlinear. We change the drift part to [r(6)+a(Xt , t , e ) \X t . 

W ith the similar method, after using Girsanov Transformation, we have a new SDE under 

measure Qe. Then we prove the consistency of least square estim ator and illustrate the 

asym ptotic distribution.

In C hapter 5, we extend the situation to  nonparam etric approach. We give a study on 

the problem of nonparam etric estimation for inhomogeneous stochastic differential equations 

driven by Brownian motion as following

d X t =  n(Xt,  t)dt +  cr(Xt, t )dBt 0 <  t < T

where fi(x, t) : M x [0, T] —> K is a measurable function which is continuous with respect 

to  t and a(x,  t) : R x [0, T] —► R+ is a positive function which is continuous with respect 

to t. Then we prove the the consistency and the asymptotic distribution of least squares 

estim ator. Finally, an example is given for i i (X t ,t)  =  [a(Xt, t)  +  br(Xt}t)] and a ( X t ,t) =  b.

In summary, in this thesis, we address three topics from m athem atical modeling for 

finance. At the very beginning of our topics, we will outline some preliminaries in Chapter 

2 .
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Chapter 2

Prelim inaries

In this chapter, we introduce some notations and preliminaries. In the whole thesis, we 

use notation >q” to denote ”convergence in probability Q” ; notation >p” to denote 

’’convergence in probability P ” and notation ”=>” to denote ’’convergence in distribution” . 

Moreover, 0p (l)  denotes a sequence of random variables converging to zero in probability; 

O p(l) means a sequence of random variables converging to  a finite constant in probability. 

All the contents in this chapter is mainly based on the books by 0kesenda [37], Ikeda and 

W atanabe [19] and Mao [34].

2.1 Introduction to Stochastic Differential Equations

Let (Q, T , P ) be a complete probability space with right-continuous increasing family {Pt}t>o 

of sub cr-fields of P.  Let W  =  (W t)t>o be a one-dimensional complete {Ji}-Brownian 

motion, i.e., a stochastic process starting at 0 with independent and stationary increments 

and normally distributed with mean 0 and variance t.

Let A  denote the collection of all B (R  x [0, oo))/#(lR)-m easurable functions a : R  x 

[0, oo) —> IR. Given a,b G A,  we consider a stochastic differential equation(SDE) of the form

d X t = a (X t , t )d t  + b(Xu t)dWt, t > 0. (2.1)
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Here, a ( X t j t) is called the drift coefficient and b(Xt, t)  the diffusion coefficient.

A solution of the equation (2.1) is a continuous stochastic process X  = ( X t)t>Q on the 

given probability setting P)  w ith a {J^}-Brownian motion W  = (W t)t>0 such th a t

X  = {X t)t>o is {J^}-adapted and, with probability one

[ t b(Xs, s )d W s, * > 0  (2.2)
Jo

where X q E R is a given initial data. This solution X  = {X t)t>o is called an Ito diffusion. If 

the coefficients a and b are only functions of variable x, th a t is

X t =  Xq +  [  a ( X s)ds +
Jo

we call (Xt)t>o a time-homogeneous ltd  diffusion process.

The existence and uniqueness of a solution of (2.1) can be verified by the local Lipshcitz 

condition and the linear growth condition. Let a : R x [0, oo) —> R and b : R x [0, oo) —> R 

continue with respect to t. For the local Lipschitz condition, we assume th a t there exists a 

constant D n > 0 and x, y G R with |a;| V \y\ < n  for every integer n  > 1 such th a t

|a(x, t)  -  a(y,t)\  V |b(x, t)  -  b(y,t)\ < Dn\x -  y\ t >  0.

For the linear growth condition, there exists a constant C > 0 such tha t,

\a{x,t)\ + \b(x, t)\ < C(  1 +  |ar|) t > 0.

One can refer to  a solution in a strong sense or in a weak sense. A strong solution means 

th a t the solution is constructed on a given probability space, e.g. ( f i ,^ ,  P)  with respect 

to a given filtration {Ft}t>o and a given Brownian motion Wt on it. In contrast, a weak 

solution is to say tha t, given the two functions a (x , t ) and b(x , t), we can find a pair (X t , W t) 

on (Q, .F, {Ft}t>o, P)  which satisfy equation (2.2).

Throughout the thesis, we mean a solution to a SDE in the unique strong sense.

/  b{Xs)dWs, 
Jo

X t = X Q + / a (X s,s)d s  +  
J o

7



2.2 Girsanov Theorem

A part from the general theory on existence and uniqueness for SDEs, there is a power-

where T  < oo is a given constant and B(t )  is a one dimensional Brownian motion. Let

Assume th a t M t is a martingale with respect to  Tt  and P.  Define the measure Q on T t  by

Q is a probability measure on T t  and (Y  (t))te[o,T] is a Brownian motion w.r.t. Q.

R e m a rk  2 .2 .1 .

(1) The transformation P  —> Q given by (2.3) is called the Girsanov transformation of 

measures.

(2) The following Novikov condition is sufficient to guarantee that { M t } t < T  is a martingale 

(w.r.t. Tt  and P):

ful probabilistic tool called the Girsanov Transformation. It solves SDEs by changing the 

underlying probability measure. We state  the result according to  0ksendal [37].

The Girsanov Theorem 1

Let Y ( t )  G M solve the ltd  SDE

d Y ( t )  = a(uj,t)dt +  dB{t)\ t < T , Yq = 0,

I ^ r) I
Jo z Jo

dQ(jj) — Mr(u})dP(uj). (2.3)

where E  = Ep  is the expectation w.r.t. P.

(3) Since M t is a martingale, we have

M Td P \ T t =  M tdP. (2.4)

The Girsanov Theorem 2

Let Y( t )  g R  be an ltd  process of the form

dY( t )  = (3{u,t)dt +  9{uj,t)dB{t)\ t < T

8



where B(t )  G R, P{u,t )  G R and Q{u,t) G R. Suppose there exist processes u (u , t )  G A  and 

a(uj, t) G A,  such th a t

0(u , t )u (u , t )  =  P(uj,t) — a(u , t ) .

Let

M t =  exp (  _  y 5)dJ3s — ^w2(o;, s )d s^ ; t < T  (2.5)

and

dQ(uj) = MT{<jj)dP(uj) on T t - (2.6)

Assume th a t M t is a martingale (w.r.t. Tt  and P).  Then Q is a probability measure on T t , 

the process

^ ( 0  [  u (u , s )d s  + B(t); t < T  (2.7)
Jo

is a Brownian motion w.r.t. Q and in term s of B(t)  the process Y ( t )  solves the equation

d Y (t ) = a(uj, t)dt  +  6dB(t).

Remark 2.2.2.

1. We note that the following Novikov condition is sufficient to guarantee that M t  is a 

martingale:

E  exp <  oo.

2. In most applications, the process a (u , t )  is chosen to be 0. Then the process Y ( t )  becomes

dY{t)  = 9(u, t )dB(t) ,

which implies that Y ( t )  is a local martingale w.r.t. Q. In this case Q is called an equivalent 

local martingale measure.

The Girsanov Theorem 3

Let X ( t )  G R and Y ( t )  G R be an ltd  diffusion and an ltd  process, respectively, 

dX( t )  = b(X(t))dt  +  a(X(t) )dB{t )-  t < T , X (0) =  x  

d Y( t )  = [7 (w, t) +  b(Y(t))]dt +  a(Y( t))dB(t)]  t < T, T(0) =  x



where the functions b : R  —► R, c r : R —* R satisfy the lipschiz condition and linear growth 

condition and 7 G A ,  x  G R. Suppose there exists a process u(u,  t) G A  such th a t

a (Y ( t ) )u (u , t )  = 7 (u,t) .

Then, define M t, Q and B(t)  as in (2.5), (2.6) and (2.7). Assume th a t M t is a martingale 

w.r.t. T t and P. Then Q is a probability measure on T t  and

dY{t )  = b(Y(t))dt  +  a(Y( t) )dB(t) .

Therefore, the Q-law of Y( t)  is the same as the P-law  of X(t ) .

2.3 Some Useful Estim ates, Limits and Inequalities

Lemma 2.3.1. (Burkholder-Davis-Gundy Inequality) Let g 6 £ 2(M+;M). Define, for  0 < 

t < T ,

x(t)  =  [  g(s)dB(s)
J  0

and

M i )  = [  \g(s)\2ds-
J o

Then for every p > 0, there exist universal positive constants cp, Cp(depending only on p), 

such that

CpE\A(t)\* < E  (  sup |x (s) |p ] <  CpE\A(t)\$
\ 0< s < i  J

for all t > 0. In particular, one may take cp = (p/2)p,Cp = (32/p )p^2, i f  0 < p < 2;

C , =  1, c p = 4 , i f p  =  2; Cp = (2p)~p/2, Cp = [p^+1/ 2(p -  1 )',-']p/2, i f p  >  2.

Lemma 2.3.2. (GronwalVs Inequality) Let f ( t ) ,  g(t) and h(t) be continuous function on 

some interval [a, b] and h(t) > 0. I f

f ( t ) < g { t ) +  j  h { s ) f ( s )d s , f o r  t€ [ a , b \ ,
J  a

then

f ( t )  < g(t) +  f  g (s )h (s )e t ih{a)dads a  G [a, b]. 
J  a
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L em m a  2 .3 .3 . (Markov Inequality) For each constant c > 0, any non-negative integrable 

random variable Y  satisfies the inequalities

Y
P[Y  >  c] <  £ ( - ) •

L em m a 2 .3 .4 . (Cauchy-Schwarz Inequality) Let (a\, <22,... an) and (b\, 62,..., bn) be two 

sequences of real numbers, then

( Y a? )(Y b?) -  { i2 aib)  ■

i —\ i = 1 i =  1

L em m a 2 .3 .5 . (Lebesgue Dominated Convergence Theorem) Suppose f n : 1R —> [—00, 00] are 

measurable functions such that the pointwise limit f ( x )  = lim f n(x ) exists. Assume there is
n —>00

an integrable g : R —> [0,00] with \fn(x )\ < g(x) for each i g R .  Then f  is integrable as is 

f n for each n, and

lim /  f ndfjL = /  lim f nd\L =  /  fdfi.  
n_>0° J R J R n“*°° J R

L em m a 2 .3 .6 . (Holder’s Inequality) Let a\, (22,..., an, bi, 62, . . . , ^  6e nonnegative numbers.

Let p > 1, q > 1 be real number with

1 1 i-  +  -  — 1,
V Q

then
n n 1 n  1

< (X > JP) P ■

j = 1 j = i  j = 1

L em m a 2 .3 .7 . (Slutsky’s Theorem) Suppose that X n —>d X  and Yn — constant). Then

(a)Xn +  yn X  +  6.

(b)XnYn ->d 0 X

L em m a 2 .3 .8 . (Taylor’s Expansion) I f  a function f ( x )  has continuous derivatives up to

(■n  +  l ) th order, then this function can be expanded in the following fashion:

\ t t  \ an \t \ f " ( a)ix  ~  ° ) 2 f ( n\ a ) ( x  -  a)n
f ( x ) — f i a) +  f  ia)(x ~  a) H 2 }---------- *"   *" n

11



where Rn is called the remainder after n  +  1 terms and Rn is given by:

« . . / > ■ >  w f e r g d . . '  ,<0 l * : , * r ' . < « < .
A  ™ (n +  1)!

this expansion converges over a certain range of x, that is, lim Rn = 0 , then the
n —* oo

expansion is called the Taylor Series of f ( x )  expanded about a.

R e m a rk  2 .3 .1 . Formally, let {Xn} be a sequence of random variables defined on the prob­

ability space Q). We say that {Xn} is convergent in probability to a random variable

X  defined on (ft, T ,  Q ) i f  and only if

lim Q (\X n - X \  > e )  = 0
n —>oo

where e > 0 .

R e m a rk  2 .3 .2 . A sequence of random variables, X \ ,  X 2 ,..., converge in distribution to a 

random variable X  if

lim FXn(x) =  Fx (x)
n —> 00

at all points x  where Fx (x) is continuous.

12



Chapter 3

Drift Param eter Estim ates For SDEs 

w ith D iscrete Observations

3.1 Introduction

First, we let { f t,P , P }  be a complete probability space with a filtration {P*}*>o i.e.Pt C P i 

for 0 < t <  1. Then the stochastic process X  = ( X t ,0 < t < 1) with a given initial value 

X 0 =  x  G M, is determined by the following mean reversion stochastic differential equation 

(SDE)

d X t = [r +  a ( X t, t ,£)]b(Xt , t )dt  +  e a ( X t , t ) d B t} 0 < t < l .  (3.1)

W here b : R x [0,1] —> R  \  {0} and cr : R  x [0,1] —► E  are continuous with respect to t\ 

e G (0,1] is a param eter; a  : I x  [0,1] x (0,1] —> M is twice differentiable with respect 

to x  and differentiable with respect to t\ B t is a one dimensional {P*}—Brownian motion 

defined on the probability space {ft, P ,  P , {P*}o<*<i}- We assume th a t it meets the following 

condition:

(1) |b(xyt) — b(y , t ) | <  L\x  — y|, where L  >  0 is a constant,

(2) \a{x, t , e)6(x, £) — a(y , t , £)&(?/, J)| <  L;/|a; — j/|, where L" >  0 is a constant, x, y  G M.

(3) |cr(a:,i) — a(y, t) \  < L'\x — y |, where V  >  0 is a constant, a :,j/G K ;

(4) a~2(x , £) <  F f^ l +  l^l771) where K '  >  0, m  > 0 and i G R .

13



The purpose of this chapter is to  investigate the least squares estim ator for the true value 

of r  based on the sampling da ta  ( X ti)f=1.

In this chapter, we consider a general class of stochastic process with a mean reverting 

feature satisfying (3.1). The main difficulty in such a case is the stochastic item a ( X t ,t)  on

(3.1). We use Girsanov Transformation to get rid of the item a ( X t ,t).

By (3.1), we consider the discrete-time system

where A ti = ti — We want to obtain the true value of r  based on the sampling data

where M f  is an { F t } —martingale. Let Qe be a probability measure on F\ ,  satisfying

Assume th a t the process X t is observed a t regularly spaced time points {U = ± f i = 

1,2, ...,n}. We represent the true value of the param eter r  by tq and least square estimator

( X ti)^=l. We define

(3.2)

which satisfies the condition

t >  0 . (3.3)

Then, we define

M f  — exp f -  f  ue( X 3, s )dBa — f  u2e( X s, s ) d s \  ,
\  Jo * Jo

t > 0 (3.4)

dQe := M ‘dP. (3.5)

Then define

where B f  is an F t — Brownian motion with respect to Qt . Then we have

(3.6)

d X  t =  rb (X t, t )dt + e a ( X t, t)dB\•t- (3.7)

14



of r  by r. As mentioned before we focus on investigation of the least squares estim ator for 

the true value r0 based on the sampling data  {Xti)^=l determined by

n  n

X t i = X  +  + g ̂
i = l  i = l

Let us s ta rt with the use of the least squares m ethod to  get a consistent estimator. F irst of 

all, we discretize (4.1)

Xt, — X ti_1 = rb(Xti_1, t i - i ) / \ t i  +  £a (X ti_1, t i - i )A B f .

where A ti = U — U-\ = A J3® =  B* — B* is the increment of Brownian motion. Then

Xtj ~  X t i_j — rb(Xti_1, t j - i )A t j  ^  -

Since A Bf  is a normal distribution with zero mean on {fi,,?7, Qe} , we obtain the variance 

of A Bf. and denote it by the following contrast function

n

PnAr)  =  5 3  
1 = 1

In order to get the least square estim ator f„ )£, let

dPn,e(?~)
dr

Then we get the solution, denoted by r ni£ which is given as

2  K X t i - n U - i ) ( X ti -  X ti_1)a~2( X ti_1}t i- 1)

Tn,e =  ----- -------------n------------------------------------------------------------------------ • ( 3 -8 )
n - 1 Y , b 2(Xti_l ,ti-i)<T-2( X ti_l , t i„l )

i = 1

In the following sections, we focus on the asymptotic of the least square estim ator r n)£ 

with high frequency n —» oo and small dispersion e —* 0. In Section 3.2, we aim to prove 

th a t f n)£ —>q£ r 0 in probability. In Section 3.3 we establish the rate of convergence and the 

asymptotic distribution, after th a t we give an illustrative example in Section 3.4. Finally a 

further application will be discussed in Section 3.5.

ea(X t i_11U -1)
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3.2 Consistency of The Least Squares Estim ator

At the beginning of this part, we give two lemmas as follows.

Let be the solution of the following ordinary differential equation under the true value

of the drift param eter,

dX? = r0b{X° , t)dt, X °  = x 0.

where r0 be the real value of r.

Lemma 3 .2 .1 . Under conditions (1),(2),(3), we have

\ x t -  X,°| <  eei|ro|t sup f  a (X „  s)dB
<5€[0,t] JO

Proof. We have

X? = x 0 + r0 [  b(X°3,s)ds.
Jo

From (3.7) we have

X t i - X tl_, = r 0 f  b(Xs,s)ds  + e f  a ( X s, s ) d B £s .
J  t%~\ J  ti  — l

Together with (3.11) and (3.12), we obtain

X t — X ^  = r0 [  (b(Xs,s) -b (X ° ,s ) )d s  +  e [  a ( X s, s ) d B £s . 
Jo Jo

By the condition (1), we get

\X, -  X°t \ < L\r0\ f  \X.  -  X°t \ ds + e f  a(X„, s )d B  
Jo Jo

By the Gronwall’s Inequality, we get

\X t — X t°| <  eeL^ t sup f  a ( X 3,s )dB
<5e[0,i] Jo

Lemma 3 .2 .2 . Under conditions (1),(2),(3), we have

sup | X t -  X ^  | ->Qe 0 as e
o<t<i

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

□

(3.15)
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Proof. By Lemma 3.2.1, it yields th a t

r6
sup \X t — X f \  < eeL\r°\ sup / a ( X s, s ) d B £t 

£€[0,1] <5e[0,t] Jo

Let 77 > 0, by Lemma 2.3.1, Markov Inequality and condition (4), we have

f s
Qe(eeL^  sup /  a ( X s, s ) d B £s > rj) < r]~leL^ £ E Q £ sup /  a ( X s, s )d B  

5e[o,t] Jo L (5€[o,£] J o

(3.16)

<  4\/277 l eL^ s E Qe (  /  \a{Xs,s) \2ds

(3.17)

Since a (x , t )  satisfies the Lipshcitz condition and continues with respect to  t, so th a t <j(x,t) 

meets following linear growth condition.

t ) |2 < K (  1 +  \x \2)

where K  > 0 is a constant. Then we have

Q £ ( £ e L \r ° \  sup [  a ( X s, s )d B es > 77) <  A \ f 2 T f ] ~ l e L ^ e (  f  K ( 1  +  EQ£\X 3\2) d s ) 2. (3.18) 
$e[o,t] Jo 'Jo  '

By Holder’s Inequality, Ito isometry and Gronwall’s Inequality, we can obtain E q e \ X 3 \2 <  C , 

where C  > 0 is a constant. Then we have

n8
<3e(ee£|ro1 sup /  a ( X a, s ) d B ‘ > r i )< A V 2T ]-1eL M £[K{l + C)5}i. (3.19)

<5e[o,t] Jo

The above equation implies tha t

sup \X t — X (°| — 0 as e —> 0.
0<K1

□

At the beginning, we set To be the true value of r , note from (3.7) th a t

X ti -  X ti_, = r0 f  b (Xs,s)ds + £ f  o ( X s, s ) d B £s . (3.20)
J  t%— i  J t i —i
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This, together w ith (3.8), (3.12), yields tha t

- . I Z ' A X u - n U - i K X u - X ^ c r - ' l X ^ U - i )
™_1 E?=i b2(X t i-n U - l ) v ~ 2( ^ - 1 , t i - i )

_ r0 EiLl *̂-1 V_2(̂ «i-1. *i-l) /itx s)^s
n ~l E ?= i » ^ - i ) ^ -2 ^ - !  , U-1) +

g S ?= i b(x u~i, ^ - i K 2^ , *<-i) a (X s, a )dS ,

n_1 E H i

ro E t i  f t - , , i i - i ) ^ - 2^ - . > fc-i) (&(**, 5) -  b(Xu_x, fc.jjcte

“  r° + «-> E?=, b ^ X ^ t ^ a - ^ X u ^ U . , )

g ET-. 6(^ _ ,, tj-i)<7-2(Xt,_,, fr.Q /,*•_, g(X„ s)rfB8
+ ™_1 E .ll

. =  I M n >r ) , 03(n ,r) 
r ° 0 i(n ,r )  0 i ( n , r ) ’

Theorem 3.2.1. We have rnt£ —»q£ tq, as n —> c© and e —> 0 with sn* —► 0.

Lemma 3.2.3. Le£ n —> oo and e —> 0 with ens —> 0, under conditions (l)-(4),  we have 

0 i(n ,e )  -+Qe f*cr-2(X?,t)b2(X?,t)dt.

Proof.
n

0 ! (n, e) =  n _1 ^  62(Xt._1, i*-i)cr_2( ^ . _ 1, «f_i)
2=1

= n~l ] T  b2(X L i  > W i_i > ^ -0
2=1

+  n - 1 ^ ( 62(X ti_!, ti_i) -  62(Xt°._1, U - i ^ a ^ i X t ^ , ti_i)
2 = 1

+  n_1 X I  W i -1 ’ ^ - l ) ^ " 2^ - !  , *i-l) -  O-"2 , t»-l)
2 = 1

:= 0 i,i(n ,e ) +  0 i f2(n ,e) +  ^ i,3(n ,e).

For 0 i,i(n ,e ), according to the definition of Riemann Integral, we obtain

0i,i (rc,e) —>q£ fo b2( X ° , s ) a - 2(X ° , s )d s  as n  oo.

18



For 01,2^ ,  e), we have
n

|0 i,2(n ,e )| <  n _1 ^  |^2(ATti_1, ^_ j) -  62(Xt°._I , t i_i)|o-"2(X ii_1, ^_ i)
1=1

n

< n - 1 J 2  A "(l +  !*«<-, D IK * .* - , . *i-i) -  6(* °_ , • ^ - 1 ) 1 1 ^ . - .  - t i - i )  + b { X l , , t,_
2 = 1

n

< n - ' ^ K ' i  1 +  I* !,., |m) , ii- 0  -  > t ^ ) \ 2
2 = 1

+  2|6(X °_1, *,_,)!\b(Xt>_, , 2 ,.,)  -  6( * t .  - ‘f - i) l)
n

< n ~ 'K '  \b(Xt , <( _! ) -  &(*£_,, t i - i ) |2
2 = 1

n

+ 2n~l K '  Y ,  !&(*£_,- - 4>-i) -  b( * L -
i = l
n

+ n - ' K '  £  l* « - , \m\b(Xti_l t U - i ) ~  6(X £_,. U -i ) |2
Z = 1

n

2=1
:= 0}|2(n, g) + 01,2(n> £) + 01,2 (n> g) + 01,2 g)-

By condition (1), we have

0 i>2(n ,e) <  n~l L 2K ' Y  I* * -, -  * £ . , 1*
z—1

< l 2k ’(  sup |x , -  a:,°|)2.
' 0< t < l  7

By Lemma 3.2.2, we get 0 ii2(ft>e) ~*Qe 0 as e —* 0.

^ i2(n ,e) <  2 n ' L K ' Y \ b ( X l _ iyt i^ ) \ \ X u_l -  * ° _ J  
2=1

< 2 L K ’ sup | * ( - * , ° |  f  \b{X?,t)\dt.
0 < t < l  J o

By Lemma 3.2.2, we have 02t2(ro,e) —>ge 0 as n  —► oo and e —> 0.

For 0i 2(n 2£:)» since

i * (, j m j  + 1*«° j r  (321)

< 2'" ( i ^ i_1 - x toi_1r + i * i°i_1r )
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where m  > 1. By condition (1), we have

< 2(n, e) < n ' K ' t f V *  Y  I* * -, -  T +2
2 = 1

+  n - ' K ' L 22m Y  -  K - >  I2-
2 = 1

By Lemma 3.2.2, we obtain 0^ 2(n >£) ~*Qe 0 as n  —» oo and e —» 0. And by the same way, we 

can get 0 t i2(n >£:) —>q£ 0 as n  —> oo and e —> 0. So tha t, we get 0 i l2(ft,e) —>q£ 0 as n  —► oo.

For 0 i,3(n ,e), by condition (1), (4) and (3.21), we have

n

|0 i,3(n, e)| <  n _1 ^  |cr~2( ^ i_1, tj_i) — cr_2(A'°_l , t i_1) |62(A't°_1, «i_i)
Z=1

n

<  n _1 Y ^  a ~2(Xt i_1, , 2i_j)|(r2(* i(_1, 2i_i) -  a 2(X °_1, t j_1) |62(*i>_1, t f_1)
1=1

n

< n~l 2 K ' L K Y (  1 +  l ^ - . r )!*«,-, -  X l J < j - 2( X l _ l , t i^ { X l _ l , t i_1)
2=1

<  n~l 2 K ’L K Y  I**.-. -
2=1

+  n - 12/s:'L /f2' " ^ | X li_1 - * (01. i r +1<7-2( * “. 1,<i_1)62( * (°(_1, t j- i )
2=1

2=1
n

< 2 K ' L K (  sup \X t -  X f \  +  2m sup \X t -  X ^ 1) ^ 1 ' T a - 2(X (°_1, t <_1)i>2( * (0i_11t<
v 0< t < l  0 < t < l  '  “

n

+ 2 K 'L K 2 m sup \X t -  X ° \ n ' 1 V  r ^ 2^ , , , U-i).
0<t<l *—?  2 = 1

We get 0 ],3(n ,e) —»q£ 0 as n —► 00 and e —> 0. □

L e m m a  3 .2 .4 . We have 02(n ,e) —>q£ 0 as n —> 00 and e —► 0.

Proof. From (3.12), we have

\x t ~  X h-i I <  \ro\ (  {\KX s^s) — b(Xti_1, t i- i) \  + + e (  a ( X s, s )dB f  .
J ti — \ Jti— 1

|r0|L f  \X8 - X t ^ d s  + n - ' l r o W b i X t ^ t U - i ^ + E  sup f  a ( X s, s )d B
Jti—\ ti — l^t^ti J t% — \
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By Gronwall’s Inequality, we obtain

\X t -  X ti_x\ < eroL{t k - l) n  ^ ro W b iX t^ ^U - i^  + £  sup
i  j  — J ^  t  t  j

o ( X s, s ) d B £s
t i - l

It yields th a t

sup \X t — X ti_x\ < er°Ln 1 n 1\rQ\\b(Xti_1, t i - i ) \ e  sup [  a { X S)s )dB ea
t i — i  ^ t ^ t i  " t i — l ^ t ^ t i  *J t%_j

By conditions (1), (4), we have 

<t>2 (n,e)  < |r0| K ’(l  +  \X U-> , ti-OI I f '  (b(X„ s) -  b(Xu_ ,, U . ^ d s
i = i  J t i - i

n rti
< K 'L \r0\ y ^ ( l  +  \X ti_I \m)\b(Xti_I, t i-1)\ /

i = l  J t i - l
n

< X 'L |r 0| V ( l  +  |X(,_ir)|6(X(,_,,ti_1)|n-1 sup \X t -  X tl_,\
i = l  U - i < t < t i

< K ' L ^ e ^ n - 2^  +
i- 1

n  p t

+ K % \r a\ e ^ n - ' e y ' ( \  + \X ti_i r ) \ b ( X u_ , , t i- l )\ sup /  o ( X s, s )d B ‘3
t i ~ i < t < u  J t i - i

:=  02,i(rc,e) +  02,2(rc,e).

(3.22)
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For 02,i (n,e),  by condition (1) and (3.21), we have

n

<h,i(n,e) < K 'L \r0\2ê n 2 ^  +  2m|* i° J m +  2”*|X(i_, - X g J ”*)
i =  1

*2 J ) 2

i =  1 

i = 1

+  K 'L \ r 0\2e ^ n - 2 £  |2(1 +  2m|X°_, |" )
1 = 1

+  K 'L \r0\2e ,s¥ n - 2 £  1 ^ - .  "  K - ,  T +2
i = 1

< / f 'L | r 0|2e^ n - 2 ^ | 6( ^ 1, t i_1) |2( l  +  2"*|Xt°j_i n
t=l

+ i f ' i lr o ^ e ^  sup |X(i. 1 - X (°j. i r n - 2X ;|6 (X “_1,t<_1)|s
0 < t < l  . .  1=1

+ K 'L \rQ\2e tâ  sup +  2”, | * “_1p )
0 < t < l i = l

K 'L \raf e ^  sup \X u_t -  X l J ^ n ' 1,
0<*<1

By Lemma 3.2.2, it is easy to  see th a t 02,i(n, e) —*Qe 0 as n —» oo and £ —*• 0.

(3.23)
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For 0 2,2(72, e)> we have

i = l

<r{Xa,s)dB\

< /C 'L l r o le ^ e n  1^ | 6 ( X t° , i i_ i) |( l  +  2m|X t° |m) sup 

+ /r'I|ro|et^ e n - i y '|6 (A -“ J ”  sup /  a(X.,s)dB*.

+ tf'L lro le^ en -1 V  -  X “ ,|(1 + 2m|Xt° J ’n sup t  a(X.,s)dB>
“  Jti-i

a(Xs,s)dBes

7 7 1 + 1

i = l

sup f  <r(Xs,s)dB‘,
Ju-i

< K 'L l r o l e ^ s n - 1 V | 6 ( ^ _ 1. + i ) l ( l  +  2ro| ^ i0i_ , r )  sup
£j—1 ̂ £^£i

cr(Xa,s)dB£s
i =  1

+ / ^ 'L l r o l e ^ e n -1 sup -  X? |m V  |6(^°,_l?^ _ i) | sup /  a { X a, s ) d B
0<t<l “  ti-i<t<ti Jti-i

+ K 'L \ r 0\ e ^ e n ~ l sup I* ,,.,  -  X°_, |m Y >  +  2“ |X “_, D  sup P  a ( X „  s )dB0<t<l ti—i<t<ti 1
n pti

+ /C 'L l r o le ^ e n -1 sup -  Xj),_l |m+1 V ]  sup /  a { X a,s)dB%
o<k i  ~Y ti-i<^<«i

:= 02,2(n, 5) + 02,2(^’ e ) + 02,2(n» £ ) + 02,2 (n> £)-
(3.24) 

For 02,2 (n,e) , by Markov Inequality, Holder’s Inequality, Gronwall’s Inequality and Lemma
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2.3.1, for any given 7 > 0, we have

Qc( \ ^ ( n , e ) \ > 7 ) < r 1K 'L \r0\et ^ e n - 1' £ l H K - 1’t i - M 1 + 2m\ X l i r )
1 = 1

Eq, sup
nti 

t i - 1

IrnU.

a ( X s, s ) d B £s

< 7 ' 1 K ’ L\ra\e ^ r  e n l £  ti-OK1 + 2ml*JL,H
i —\

4  V 2 E ,Q,
ti — 1

\a (X a,s) \2ds^j

n

< r ' K ' L l r o l e ^ e n - 1 £  !&(*“_,, ^ 01(1 +  2’" |X °_ 1P )
i = 1

4v/2( r  E QM X s , s ) \ 2dSy

< r ' K ' L f o l e ^ e n - '  £  |6( ^ _ . , +  2m|X °_ Jm)
Z=1

4v/2 (  r  K ( l  + E Qe\Xs\2)dsy

< r ' K ' L ^ e ^ e n - 1 £  +  ^ K - T )
i=l

4 \ / 2 K ^ ( l  +  C)^n~^

It implies th a t 02,2in i £) ~*Qe 0 as n  —> oo and e —> 0. By the same way, through using 

Lemma 3.2.2, we can get 02i2(ft,£), 02,2(n >£:)> 0 2 ,2 (n i £) ~*Qe 0 as n  —» oo and e —» 0. □

L em m a  3 .2 .5 . Under conditions (l)-(4), We have (j)z(n,e) —>q£ 0 as n  —> oo and e —> 0.
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Proof. By condition (1), (4), and (3.21), we have

71 fti
\Mn,e)\  < e X ) Ar' ( 1 + lX‘*-*r)l6( ^ - - t<-1)l| /  ^(Xs,s)dB

i - 1 J t i - \
n

< + 2mlAT°_j r  +  2"*|X(j_1 -  X t . n
i — 1

(IIO S., , 4,-01 +  L \ X U_, -  X l ,  I) /'■ *(X„ s)dBS
J t i - 1

< £/ f X ( l  +  2m|X i0i_ ,P ) |6(Xi0i_l , ( j_1)| r  ^ X „ a ) d B .
i= 1 ti — i

+  e K ’ 2 m f ^ \ X t^ - X “ . i r | 6 ( X “ . 1 , 4,-01  r  < X * , s ) d B \
4 = 1  ^ - l

n /*̂i
+  e K V £ ( l  +  2p X ° J m ) | X t j _ 1 - X ° _ 1 | /  < j { X „ , s ) d B i

i = 1 " t i  —i

+ eK'2mL Y j \X ti^ - X l _ l \m»  / “’ a (X s,s )d B ‘
1 = 1  ^ i - l

< £ i < ' ^ ( l  +  2 ' " | X (0j _ i r ) | 6 ( X (0i _ 1 , t i _ 1 ) |  /  c t ( X s , s ) d B |

4 = 1

n /*£i
+  £ ^ '2m sup | ^ _ 1 - X “. i r y ' | 6 ( X » . 1,4,_OI /  <T(X8,s)dB ;

0 < t < l  J t i - 1

+  eA"L sup - X (°i_1| ^ ( l  +  2m|X(°i_in  r o ( X a, s )d B f
0 < t < l  “  J t i . j

n pti
+ eK'2mL  sup r +1 £  I /  * ( * . ,  s )dB‘s

4 = 1  ^ * * - 1
0<t< l

:= 03,1 (n,e) + 03,2(n,e) + 03.3(n,£) + 03,4(n,e).

For 03,i(n,e), Markov Inequality and Lemma 2.3.1, for any given 7 > 0, we have

sup
t"i — J ^  t ̂  i<i

a ( X s, s ) d B es
'ti- 1

(  J  W X .  s ) |2d s)  2

Qc(\hAn,e)\ > 7) < 7 _I^ £ ( l  + 2m| . ^ J m)|&(X2_1,4^0l$)
4 =  1

n

< r l K ' e ^  + 2m\ X l J m) \ b { X l ^ t i- l ) \ 4 j 2 E Q
4 = 1

< r l K ' e j y .  + 2 m \ X l i n \ b ( X l _ I , t i . 1 ) \  4 V 2 K i ( l  +  C)ln-1
4 =  1

It implies th a t 03^ (n, e) —>q£ 0 as n  —> 00 and ens —► 0. In the same way, we can obtain
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<i>3,2(n,e) —>ge 0 as n —> oo and e n 2 —> 0; 03,3(77,e) —>g£ 0 as 77, —> 00 and £77,2 —► 0;

03,i(n»e) 0 as n  —► 00 and £77̂  —> 0. □

Proof. Proof of Theorem 3.2.1, let n  —> 00 and e —» 0 with £772 —► 0. By using Lemma 

3.2.4, Lemma 3.2.5 and Lemma 3.2.6, we have

^ _ _  1 M n , r )  <t>3{n,r)  _
Tn,e — r0 +  XT \ ■*” T 7  T Qe r°‘01 (n ,r)  0 i(77,r )

□
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3.3 A sym ptotic of the Least Squares Estimator

In this section, we assume th a t a ( x , t , e )  = e a ( x , t ), so th a t Qe = Q is independent of g.

T h e o re m  3.3 .1 . There exist two independent Q-random variables U\ and t/2 with distribu­

tion N ( 0,1) such that

=  $ 2(n,g) ^ 3(yt,g)
0 i ( n , g )  0 i ( n , g ) '

L e m m a  3 .3 .1 . Under condition (l)-(4), we have $ 2(n, g) —>q 0 as n  —» 00, g —> 0 and

Proof. From Lemma 3.2.5, by (3.22), we have

|$ 2(n,g)| =  g_1|02(n,g)|

<  £“ V 2,l(n ,g) + g _102,2(n,g)

:= ^2,1 (n, e) + $2.2(71, g).
By (3.23), it is easy to see th a t $ 2)i(n ,g ) —>q 0 as n  —> 00, e —> 0 and ng —> 00. Similarly, 

$ 2,2(71, e) —>q 0 as n  —> 00 and g —> 0. □

L em m a  3.3 .2 . Under condition(l)-(4), we have

as n —* 00, g —» 0, ne  —> 00, and gna —> 0. By theorem 3.2.1, we have

$3(«, <0 -+0 kCX,0, S) |- 4[(6(X “, a )a(X®, s ))+]2ds £/,

ff(X s°, s ) |- 4[(6(X.°, s ) ) - ]2d« U2

00 and g —> 0, gna —> 0 .
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Proof.

"ti
$ 3(n ,e) =  ] j r V  2(Xti_l i t i- i )b (X t i_1, t i- i )  /  cr{Xs, s )d B s

i=z 1 J t i -  1
n

=  ^ < 7 - 2(Xt°j. 11(<- 1) 6 ( ^ - , .< i - i )  ' <'(Xats)dB,
i= 1 «^i-i

Ti .
+  ^ (T-2(X i0j_1, ^ 1)K X “_1, i j. 1) /  (a ( X „ s ) - o ( X ° , s ) ) d B ,

i= 1 £i—1

+  ^ < 7- 2(X “. I ,( i. 1)[6(Xlj. 1>ti. 1) - 6(X|;_1, t i. 1)] f  a ( X „ s ) d B s
i=  1

+  , t ,- i)  /  <T(X»,s)dj53
*=1 1

71 /*£i

+  ^ [ (7- 2( ^ J,«i- 1) - a - 2(X (0(_1,«i-.1))[6(X(i_1,f j_ 1) - 6(X t0j_1, «,_,)] /  a ( X s, s )d B a
i = l  J  t i —i

■— $3,1 (^> s)  +  +  ^ 3 ,3 (^ ,£ )  +  ^>3,4(^)^) +  $3,5 (^b^)-

n

Define a deterministic process V (s) by V( s)  = J2 a ~2 W L i > ,  i<_i)cr(Xj, s ) ! ^  A](s).
Z=1

Let V+(s) and VL(s) denote the positive and negative part of K(s). By Theorem 4.1 of 

Kallenberg [20], there exist two independent Q-Brownian motions B B " , which have the 

same distribution of J5, such th a t

# 3, i ( n ,e ) =  f  V(s )d B 3 = B ' o  f  V$(s)ds -  B"  o [  V 2(s)ds.
J o  J o  J o

Note th a t

and

V* = ^ H A 2 .1,ti_1)|-4((6(A2.l.ti-i)MX.0,S))>l(tt. lA](«)
i = l

i =  1

Then we have

and

f  V+(s)ds —> f  |<7(Xs°,s)[ 4(6(X °,s)t7(Xs° ,s ) )5.ds 
70 ^0

/" K?(s)ds -* f  \ a ( X l S) \ - i ( b ( X ^ S) a ( X l s ) ) 2_ds 
0 Jo
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as n —> oo. Then,

&  O [ '  V 2(s)ds -* B'  o f  \a(X°„ s ) |- 4[(6(Xs°, s)a(X°„ s))+]2ds 
Jo Jo

and

So we get

B"  o /  V 2{ s ) d s ^ B "  o
J o

f  \a(X°, 5)|-4[(6( °̂, s)o(X°, s)) .]2ds. 
Jo

*3,i(n,<=)-+cj ( j |<T(X",5) | - 4[(6(Xs0,3)ffW , S))+]2dS ) [/,

\a(X°,  s ) |- 4[(6(Xs°, s )a (X° ,  s) )-]2ds U2

as n  —> oo.

For $ 3,2(n, e), by condition (3), Markov Inequality and Lemma 2.3.1, Lemma 3.2.1, for any 

given 7 > 0, we have

rti
<3(|$3l2(n,e)| > ! ) < i - l E Q \ ' £ ^ ( X l 1 , t i ^ ) \ b ( X l t > t i . 1)\ /  ( < r ( X . , s )  -  a ( X ° „ s ) ) d B .

i =  1 * ^ - 1

n  f t i

i  7 ' 1 /  M X . , s )  -  o(X°s ,s))dB
i = 1 •'**-!

^  r l E  a ~2(X L  - . *i-i)|4N/2J50 [ (  r  |a (X s, s) -  a(X°s , s)!2̂ )
»=1 ^ U ~ 1

<  7 - ‘£ 4 v ^ E <T“2(; f ° - 1. <i- i ) i6( ^ oj_ . .4i- i ) i£;<3[( r i* .  -
z=l *̂ -̂1

n

< y - 1u V 2 n - i y 2 < r - 2(X?i_,,t i. 1)\b(Xl_1, t i. 1)\EQ\ sup |XS -  X°.
“  L < t < t i

n

<  7 - 'L 4 V 2

f  a ( X s, s ) d Bs 
J o  J

/I
7 - 1z,32ei N n 4 £ e ^ - 2( 7 0(_, , [ (  /  M * s,s ) |2ds)

i = l  *^°

i = l

£reZ/lT’°lii sup
ti —1 f t̂<ti

(3.25)

which tend to zero as n  —> oo and e —> 0 with eni  —* 0.
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For $ 3i3(n ,e), we have

71 Pti
*3,3(n,e) = E cr' 2( ^ - 1.ti-i)[6(Xti. 1,ti- 1) - 6 ( ^ - 1,<i-i)] /  c(X„s)dB.

i = l  " t i —l

= ^ a - 2( X l IX - i M X ti_1, t i- 1) - b ( X l I, t i_1)] T  a{X°a,s)dBa
i=  1 J t i - \

n

+ E  <7~2( * L  - . t i - i)  -  *>(*L  > « -i)]
i = l

/"' (o(Xa, s ) -o (X° a,s))dBa
J t i - i

:=  $3,3(n ^ )  +  $3,3(^^)-

For $3 3(71, 6:), by condition (1), we have 

n
$ 3 > . e )  ^  I

Z=1

/ “' o(X°,s)dBa
i = 1 * ^ - 1

< L E ff"2(X*0. f '~'  o(Xa,s)dBa f '  u(X°,s)dBa
i= 1 ■'O

By Markov Inequality and Lemma 2.3.1, for any given 7 > 0 we get

Q ( |$ 3,2( n , e ) |> 7 ) < 7 ' 1̂ E ^ 2W i_,.< i-i)e iN I“- ‘£ ;<3 t ~ '  <r(Xa,s)dBa Eq f '  v ( X aa,s)dBa
i— 1 0 J t i - l

< 3 27 -1L £ E < r - 2(X “_1,«j_1)ei l'-‘>lt- ' £ (, [ (
Z=1 *'°

|<r(X“, S) |2dS) ^

< 32eL™n~l*K(l + C ) f l L e ^ a ^ i X ^ U - O t L
i=  1

=  32eL|ro|£ n ^ ( l  +  C ) i ~ l L n ~ l 'ŝ a ~ 2{ X l _ l , t i^i)t^_l
i = l

which tends to zero as n  —> 00 and £712 —> 0.

For $ 3)3(n,g:), by condition (1), Lemma 3.2.2 and the same arguments used in (3.25), we
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find

i=  1 
ti

ti — 1 
n

(<r(X„s)-a(X?,s))dB,

< L E > '2(*°-,.<i-i)l*«<-.- X auJ  / ’ {?{X. , s ) -o( .Xl s ) )dB.
i= 1 1

< L sup |X t -  ^ - 0  / fa (X „ s )  -  r ( X s0,s))dJ3fl
0<K1 Jti-x

which converges to zero as n  —> oo e —► 0 and £772 —> 0. So th a t it is easy to  see $ 3,3(71, e) —>q 

0 as n  —> 00, e —> 0 and £772 —> 0.

For $ 3 , 4 ( 7 7 , £), by condition ( l ) - ( 4 ) ,  and ( 3 . 21) ,  we have

l$3.4(n.e)| < f  ° ( X . , s ) d B ,
i= l

n

< Y1 a ~2(x ti-i ’ ^ - i ) cr_2(X °_1, i i- i ) |a 2(X ti_1, *j_i) -  (j2(Xf°f_1,
i= 1

/ <?(X*,s)dBs
t{ - 1

i = l

|f>(X°_,, <;_,)! T  < r(X ,s)dB .
Jt,-,

< 2 K K ' L j 2 ^ 2( X l t , U - l M X l , , t i- 1)\ \Xu_, - X ° J  <r(Xs,3 )d S s
Z=1

+  2X X 'L 2m E u - 2(Xi0i_1,<i_1)|K X (0(_1, t i_1) ||X (i_1 - X ° J m+1 T  <7(Xs,s )d S a
j_l Jti-i

+ 2 K K ’L 2 "  E  - f c - iM * ® ., > H * * - .  -
i = l

:=  $3 ,4fa> £ ) +  $ 3 , 4 £) +  $3 ,4fa) £ )-

<j(XS) s)dBs
U-1

From the method of the convergence of $ 3 , 3 ( 7 7 ,  e), we get $ 3 , 4 ( 7 7 ,  £) —>q 0 and $ 3 , 4 ( 7 7 ,  £) —>q 0 

as 7 7  —> 00 £ —> 0 and emh —> 0.
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For $ 2 4(n, e), we have

n

<E>2,4(n ,£) <  sup \X ti_l - X ° iJ m2 K K 'L 2 m J 2 ^ ~ 2( K _ 1, t i. 1)
0<7<1 i=l

/  a ( X s, s )d B s
Jti-i

which converges to  zero in probability, since m  >  1, sup \X ti_1 — X®_ \m converges to zero
0 < i < l

in probability as e —» 0. Hence, $ 3,4(72, e) —>q O a s n - > 00 £ —>0 and e m  —> 0.

For $ 3,5(71, e), to some G > 0 we have

14*3,5(71, s)| <  \<?~2(Xti_u ti - i)  — a '-2(X (Gj_1,ii_ i) ||6 (X li_1,2i_i) — 6(X(°i_1, t j_ i)| /  a ( X s, s )d B e
2=1 Jti-1

n

< E  C7-2( X ^ , , , ti-x) -  <72(X °_ , ,
Z—1

|6(X ti. 1, 2i_1) - 6(X 10i_1, 2i_1)| [  o ( X . , s ) d B .
J ii-i

< G E ff"a(Jf2-.>t‘-i)(l  +  l^<.-.lm)|X«4. 1- J f 2 . l |a r  o ( X s, s )d B .
i=i Jt>-i

< sup |X ^ 1- X “. 1|G ^ |< r-a(X®.1,ti_1)(l + |X((. i r ) |X fc. 1 - X ® .1| f  a ( X „ s ) d B .
o<t<i Jti- 1

which converges to zero in probability Q, since sup \X ti_1 — X t° | —>g 0 as £ —> 0 by Lemma
0<7<1 ’

3.2.2, and

GE|<T-2(Xf0(_1,ii. 1)(l +  |X(i_ir)|Xti_1-X ((>.1| f '  o ( X s, s )d B a
2=1 JU-l

0

as n —> 00 £ —> 0 and £72 ̂  —> 0 by the same arguments for the convergence of $ 3,4(72, £). □

Proof. Proof of Theorem 3.3.1, by using Lemma 3.2.3, Lemma 3.3.1 and Lemma 3.3.2, we 

have

^ (rn,e -  r0)
$ 2(72, £) , $ 3(72, e)

+

*Q

0 1  (72, ff) 0 3 ( t2 , £ )

( / 0‘ k (X s0,s ) |- 4[(6(Xs° ,S)£T(X“,s ))+]2dS) 2 {/, 

f 0'<r~2( X ° , s M X ° , s ) d s

(fo  K *.°>  *)l-4[ (6 W , s M X ° ,  s ) U 2d s ) 1 1/2 

Jo cr~2(X®, s)b2(X®, s)ds
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as n  —> oo, ne —► oo, enz —> 0 and e —» 0.
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3.4 An Illustrative Example

In this section, we are aiming to give a linear example for (3.1). We consider the following 

equation with initial value X q G (0,1]

d X t =  [r +  eka { X u t ) \X tdt +  e X tdBu 0 <  t <  1, (3.26)

W here e G (0,1] and k >  0 are constants; a (x , t )  : M x [0,1] —> R is a C2,1—function satisfy­

ing E  exp /J  \ek~1a ( X s, s ) |2ds^ < oo; B t is a one dimensional {E t}—Brownian motion

defined on the probability space {f2, T ,  V,  {^}o<t<i}- 

We assume equation (3.26) satisfies the following condition

|a (z , t )x  -  a ( y , t)y\ < D\x -  y\ (3.27)

where D  > 0 is a constant, r , | / G l .  By (3.26), we can get the system

n n

X ti = x + ^ [ r  -I- eka { X tt_x, t i - i ) ]X ti_xXti  +  e ^ ^ X ti_ 1 (B t% -  B ti_x)
i= 1 i = l

where A ti = U — U-\.

Under condition (3.3), (3.4), (3.5) and (3.6), we set

uc( X u t) = a { X „ t ) e k- 1 (3.28)

by (3.1),(3.6), (3.2), under measure Qe,

d X t =  r X tdt +  e X td B l  (3.29)

Assume th a t the process X t is observed a t regularly spaced time intervals {U = ±, i  =

1 ,2 ,..., n}. We represent the true value of the param eter r  by tq and least square estimator 

of r by r. As mentioned before we focus on investigation of the least squares estim ator for 

the true value r 0 based on the sampling d a ta  ( X ti)f=1 determined by

n i

Xu = x  +  y ^ r X t ^ A t j  + e' ŝ X ti_1(B £i. -  B £ti l ).
i = l  i=  1
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W here A L = U — U-\. We s tart with the use of the least squares m ethod to obtain an 

asymptotically consistent estimator. Then we get the following contrast function

PnAr) = 53
i = l eXu- i

In order to get the least square estim ator f n)£, let

dpn,e(r)
dr

0.

Then we have
s A  X,, - x u_, 

2 ^  x . (3.30)
! = 1

1
T h e o re m  3.4.1. Let n —> oo and e —> 0 with e m  —> 0. Then, we have r n,e —>q£ f'o-

T h e o re m  3.4.2. Let k = 1, so that Q is independent of e. Then let U be a Q-random 

variables with standard normal distribution N (0,1), we have

£ (rn,e -  rQ) U

as n —* oo and e —> 0 .
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3.5 Application to A Credit Risk Modeling

In this section, we consider the zero coupon bonds as an example to apply our mean-reversion 

approach, and discuss a defaultable zero-coupon bond in an rating based model.

A zero coupon bond is a special type bond of which can be bought at a price lower than 

its face value, with the face value repaid at the time of m aturity  T. A credit rating estimates 

the credit worthiness of an individual, corporation, or even a country. It is an evaluation 

made by credit bureaus of a borrower’s overall credit history. Although credit rating is not 

to  be a measure of a firm’s default probability over some tim e horizon, but, to some extent, 

a measure of relative credit quality among firms. Usually, the credit rating is assigned by 

credit rating agencies such as A.M. Best, Dun & Bredstreet, Standard & Poor’s, Moody’s or 

Fitch Ratings and have letter designations such as A, B, C. The standard & Poor’s rating 

scale is as follows, from excellent to poor: AAA, AA+, AA, AA-, A +, A, A-, BBB+, BBB, 

BBB-, B B +, BB, BB-, B + , B, B-, CCC+, CCC, CCC-, CC, C, D. Anything lower than a 

BBB- rating is considered a speculative or junk bond.

If we put the rating provided by agencies into a rating process, together with unexpected 

changes of the credit quality, it is useful to give each issuer a continuous rating th a t follows 

a diffusion process[see Douady and Jeanblanc [7]]. In Douady and Jeanblanc [7], they assign 

each issuer with a continuous rating process R  = {Rt)t>o- Then a given agency rating 

corresponds to some sub-intervalfn*, n i+1) C [0, 1]. Rating migrations correspond to crossing 

one threshold rii £ (0 , 1). After th a t they let the continuous rating process R  =  {Rt)o<t<i £ 

[0 , 1] determined by the following SDE

dR t = htdt 4- a (R t , t )dWt, R q e  [0,1], 0 < t < l

where W t is a Brownian motion, ht is an integrable function of t  and cr(Rt , t) is a deterministic 

function of R t and t. W ith ht and cr(Rt, t), it can ensure th a t for each Rq and all 0 < t <  1, 

we have Rt  <  1; if R q = 1, it implies Rt = 1 for 0 < t <  1, and it is a nondefaultable bond; 

if R t = 0 , then default happens a.s..

In this part, we would like to investigate a rating process with a mean-reversion approach.
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Let {fi, .F jP }  be a complete probability space with a filtration {^}o<t<i i.e .^i C T \  for 

0 < t  < 1.First we define

n  := m /{ 0  < t <  1; x t = 1}, (3.31)

Then we define a killed diffusion process X  = ( X t)o<t<i by

X t : = X tAni V 0 < t <  1 (3.32)

where X  = ( X t) is the solution of (3.26).Then, we define

R t := 1 -  X t . (3.33)

where R t is the rating process with initial value R q = y £ [0,1] satisfies the following SDE:

dRt = — [r +  eka ( l  — R t , t)]( 1 — R()d£ — e (l — R t)dBt , 0 <  t < 1. (3.34)

W here e G (0,1]; r G R; /c >  0; a ( X t, t) is the mean correction with the function a ( l  — R t, t) : 

E  x [0, 1] —> R being twice differentiable with respect to £ and differentiable with respect to 

t\ B t is a one dimensional T t—Brownian motion on {D, T ,  V ,  {^}o<t<i}- 

W hen T\ < t and f?o 7̂  h  we have

Xt  — 1 — Rt — X T1 = 1

and Rt =  0 which implies default’s happen case.

W hen t  < r \  and R q ^  1, we have

X t = l - R t  = X t

then  by (3.33) and (3.34), for 0 <  t  < 1 we obtain

d X t =  [r +  eka { X t , t ) ]Xtdt +  £ X tdB t . (3.35)

We find th a t it is the same as our stochastic differential equation (3.26). According to our 

m ain results in Section 3.4, if we set ro and r n)£ be the true value and least square estimator

of r.  Let n  —* oo and e —> 0 with £rA —> 0, we have f n>e —>q£ ro. Moreover, when we replace

£ka  by ea, the asym ptotic distribution is

£_1( W  -  ro) ->q U.

37



As n —► oo and e —> 0, where U is a random variables with standard  normal distribution 

N(Q, 1). In Hodges and Carverhill [15], Hodges and Carverhill suggested a link of Burgers 

Equation for the mean-reversion type stochastic differential equation. By the proof, we can 

give the Burgers Equation of (3.35):

d I d 2 d
-Qt a{x,t) =  ~ 2 e f a 2 aix , t )  -  a(x,t )-^a(x, t) .

The m athem atical justification with multi-dimensional extension can be found in Truman, 

Wang, Wu and Yang [53].
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Chapter 4

Least Squares Estim ators For SDEs 

W ith  Nonlinear M ean Functional 

Param eter

4.1 Introduction

Let {f2, T ,  V )  be a complete probability space with a filtration {^t}o<t<i- The stochastic 

process X  = ( ^ , 0  < t < 1) with a given initial value Xq = x  G R, is determined by the 

following mean reversion stochastic differential equation (SDE)

d X t =  [r(0) +  Oi(Xt, t , £)\Xtdt +  sXtdBt,  0 < t <  1. (4*1)

W here e € (0,1] is a param eter; a : K x [ 0 , l ] x  (0,1] —* R is twice differentiable with respect 

to x  and differentiable with respect to t\ B t is a one dimensional {.T7*}—Brownian motion 

defined on the probability space {f2, T ,  V ,  {^t}o<i<i}; t(&) is a C2-function of param eter 6 

with r'(Q) 0, r"(6) ^  0 and inf |r '(0 )| >  0 for all 0 G 0  =  ©o(the closure of ©o) with

©o being an open bounded subset of ®L We assume equation (4.1) satisfies the following 

condition:

(1’) a ( x , t , e)x  — a ( y , e)y < H \x  — y\, where H  > 0 is a constant,
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It is well-known th a t the condition is enough to ensure the existence and uniqueness of 

solutions to (4.1).

So the only unknown quantity in (4.1) is 9. The purpose of this paper is to  investigate the 

least squares estim ator for the true value of 9 based on the sampling data  (X ti)”=1.

By (4.1), we can get the system

i n

X ti = x + ^ [ r ( 0 )  +  a { X t i _ l , t i - i , e ) } X t i _ l X t i  +  e ' Y 2 ^ t i- 1(Bti — B ti_x)
i = 1 i = l

where A U = U — U-\.  We want to obtain the true value of 9 based on the sampling data  

Since ( ! ’) implies th a t a  is bounded, we have

us( X t, t)  =  (4.2)

Let u satisfy

exp Q  y* |u£(A s,s ) |2ds^ < oo, t > 0. (4.3)E

Then, we define

M f =  exp J  ue( X s, s )d B 3 -  i  J  u2e( X S}s ) d s Sj  , t > 0 (4.4)

where M f is an { F t } — martingale. Let Qe be a probability measure on F\ ,  satisfying

dQe :=  M\dP.  (4.5)

Then, we say Qe is absolutely continuous with respect to T t and P. Moreover, we have

B \  :=  f  ue( X s,s)ds  + B t (4.6)
Jo

where B* is an T t — Brownian motion with respect to  Qe. So, X t solves the equation

d X t = r{0)Xtdt + e X td B et . (4.7)

Assume tha t the process X t is observed a t regularly spaced tim e intervals {U = =

1,2 ,..., n).  We represent the true value of the param eter r{6) by r(9o) and least square 

estim ator of r(0) by r(6). We focus on investigation of the least squares estim ator for the 

true value r(9o) based on the sampling da ta  (X ti)"_1 determined by
n  n

X t i = x  + r(ff) Y ,  * U - A U  + e Y  X u -A & u ~  K J
1 = 1  1 = 1
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where A U =  1. Let us s ta rt with the use of the least squares method to  get a consistent

estim ator. F irst of all, we consider the following contrast function

p n M  =  . L ------------- ^ x i M i ------------- '1=1 H-\ 1

Then the least square estim ator 6n>£ is defined as

0n,e :=  a r g m m p n}£(0).

Let 6q denote the true value of the param eter 9. The purpose of this chapter is to study 

the least squares estim ator for the true value Oo based on the sampling da ta  {X ti)™=1 with 

small dispersion e and large sample size n. This chapter is organized as follows. In Section 

4.2 we aim to establish the consistency of the LSE 0nj£. In Section 4.3 the rate of convergence 

and the asym ptotic distribution are established.
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4.2 Consistency of The Least Squares Estimator

Since minimizing pn,e{Q) is equivalent to  minimizing

0 n , e ( 0 )  : =  e2{pn,e(0) -  Pn,e{Q o ) ) -  ( 4 - 8 )

We have

<t>nAd) =  £2(pn,er(8) -  / v ( 0o))

A  \X ti -  X u_, -  Jfi,_ ,r(9 )A tj_ i|2 -  | * t, -  -  X ^ . r W A t j - , ! 2

?~1 X I  M i1=1
\Xti -  -  2X,i_1r(0 )A if_1(X ,i -  X ti_,) +  l ^ r ^ A t , ^ 2= E—  X I  At ii=z l ti_l 1

_ A  |Xt, -  X , „ |2 -  2 ^ . , r ( g 0)Ati- 1(Xt, -  X,_.) +  I X , . , ^ ^ . , ! 2 (4-9)
^  X? .A t,i=l 1

2(X„ -  X ^ J X ^ . A t , . , ^ )  -  r(fl)) +  * 2_,A«2_1(|r(0 ) |2 -  |r(0o) |2)

S
=  2(r(&0) -  r(6)) £  X t < ~ X t ‘- '  + (r 2(6) -  r 2(0o))-

A U-li = l

T h e o re m  4.2 .1 . Let n  —> oo and e —> 0 with s m  —> 0, we /mve 0n)£ —>q£ 0o- 

Proof. Let
n X , , - X

i = l

Since

»■*(») =  E  ‘V  (4' 10)
X i - l

X , -  X u_x =  r(0o) [  ’ X sds +  e f  1 X sd B es . (4 .11)
Jti-i

We have

r ( 8 o ) J L l X J s  + e f i _ l X . d d l

i = l
X t i  — l

A  ^ o U L  (X . -  X ,_,)<** +  ^(00) / ; : ,  X tl_,ds + s  X sdBl

^  X u . ,*=1

=  *■(«»)+ E  * ----------------- + E — —

*=1 t*“ 1 i = l  t l~ 1

:= r (^o) +  4>i(n, e) +  4>2(n, e).
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P ro p o s i t io n  4 .2 .1 . Let n  —> oo and e —> 0 with en* —► 0, we have <&n,e(0) K^o)-

Proof. This result follows from the following lemmas.

L e m m a  4 .2 .1 . We have 4>i(n,e)  —>q£ 0 as n  —> oo and £ —» 0.

Proof. Prom (4.11), we get

| * t I  <  ^  |r (0o) | |* s|d s + |e  f  X ,d £ J |
*J — 1 — 1— 1 «  1 

<\r(0o)\ f  \ X , - X ti_,\ +  \Xu_l \ds + \e f  X.dB*.\.
J  ti~~ ]  ^  — 1

By Gronwall’s Inequality

\ X t - X u„ \ < e '’-<9“>'(t- ,- ) ( n - 1|r(«0) ||X (i_1| +  e sup | /
\  t i - l < t < t i  J t i - i  '

It yields

sup \X t - X u^ \ +  e sup \ f  X sd B ‘, \ ) .  (4.12)
t i - i < t < U  '  t i - i < t < t i  J t i - i  '

On the other side, from 4>i(n,e), it is seen th a t

I* i( n ,e ) |  <  | r W l E  ‘ l y  i
i = i

*= 1

From (4.12), note th a t

n n  1 sup |X t -  X ti_,

<  K M  E  ‘" ’T y  I------------

„ n 1 |r(0o)l I +  e sup | J ^ X . d B 1,
|< î(n,e)| < |r(e0) l E ------------------------------- \ y  1 ----------------

ITT lA u-il

, (n \,2 MM » K M "  sup | / ‘ X , d B ‘a
|r(0o)| e “ + E

n t S '  I* * -. Ii = l

We set
|r(6n)|

* 0 >(n ,e)
n K 0 o ) |n  *e n e sup | / t _ X.,dBf |

$l.2)(re' £) :=  S --------------------ixC j 5" r ----------i = l

43



It is clear th a t e) —> 0, as n  —> oo. Then we consider ^ ^ ( n ,  e), by Holder’s Inequality,

Markov Inequality and Lemma 2.3.1, for 5 > 0, we have

<?£(i<i>'2W ) i  > s) <

1 n \r(6o)\n~1es^ ' £  sup \ f  X 8d B ea\

-  ‘ B “'  £ -------------------------- r a --------------------

= \ ^ E QtX ^ J \ r { e 0) \ n l e 1^ e  sup | f  X ad B
0 Jti-i

< I  [E Ql ( i r f f l o J I n - 'e ^ e ^  sup ( | £  X sdB\  |)

= ^ ^ { E Q, X t ^ \ \ r ( e Q)\2n - 2e Ŝ e 2E Q (  sup \ f  X ad B ea |)
6 L J t i - i  J

= j i > 2 x o le^ ti~1~rti~'\V(0Q)\2n - 2e 2̂ AE2E Q (  SUP I [  X ad B ea|) 
6 1 x t i - i < t < t i  J t i - i  J

A.

We set E Qe ( sup | / /  X sd B £J 2) = 0.
U-i<t<ti 1

It yields

t f < 4  E q, ( J  |X s |2ds)

< 4  r  E Q, \ X a\2ds (4 1 3 )
J t i - i

=  4n_1 X le x p (e 2 s +  2 r(8)s).

So tha t, we have

1 ^ o 2 1
A  < -  ^ 2  X o 1 exP ( - y -^-1 -  r (0)t i -1)  £2n_ ^X 0 exp +  r(0 )s)

Z=1

=  |r((9o)|? exp “  r(6)U-1 +  ^  ̂  +  ^ 2s +  r ( 0) s ^ n " ^

which imply A  —>Qe 0 as n  —» oo and £ —► 0. Then we have 4>f\n, e) —>q£ 0 as n —* oo and

£ —> 0. Finally, we get $ i(n , s) ~^qe 0 as n —> oo and e —> 0. □
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L e m m a  4 .2 .2 . Let n  —> oo and e —* 0 with an* —> 0, we have 4>2(n,e)  —>qc 0.
n  F r t i x  d R e

Proof. Since 4>2(n, g) =  S  x .  ' *•
i- i

Together with Holder’s Inequality, Markov Inequality and Lemma 2.3.1, we obtain, for <5

E Q£\($2(n,e))\
Qe{\$2(n,s)\ > 6) <

S

= \ i 2 E Q<x u - s \  r
0  i = 1 J U- 1

< ) * [ $ ) . SUP \ r  X , d 6 ‘)\t ] i

1 ^ 2^2 j ^
< £^> 2X Q le x p ^ - ^ - t i - i  -  r (9 ) t i - i ^2£n~ ^X 0exp(^-£2s r(9)s

i — 1
2 /3a2 ... 1 o \  1

=  -  exp y -^ -U - i  ~  r(9)U-1 +  - r s  +  r ( 0) s j e n 2

which implies th a t <3>2(n,£:) —>ge 0 as n  —> 00, e —> 0 and en* —> 0. □

Then by using Lemma 4 . 2.2 and 4 . 2 . 3 ,  we have

$(n,e) := r(90) + <t>i(n,a) + (j)2(n,a) ->Qc r(90)

1
as n —> 00 and e —► 0 with ens —> 0. □

Proof of Theorem 4.2.1.

Recall th a t 0n,e(0) =  2(r($o) — r W )  2  * tt~1 +  (f2(^) — r 2(^o))> by Proposition 4.2.1,
*=1 ti_1

a s n - >  00, £ —> 0 and a n 2 —► 0, we have

<£n,e(0) -* q£ (r(0) -  r(0o))2. (4-14)

Recall th a t our contrast function is

. V' \xu -  x u_t -  v{e)xu_AkI2 
P"A 9 )  =  L  e , X 2_iA i| '

In order to  obtain the least square estimator r(9n>e), we let

<9pn,e(r((9))
ae = r {e)■
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Since r'(6) ^  0, we get

dpny£{r 0 ) )  
dr (9)

So th a t

0

r ( M  =  £  ‘‘ y  ‘‘"1- (4-15)
1̂ 1 X t < - ‘

From Proposition 4.2.1, we know 4>ni£r(0) —>q£ r(9o), as n  —> oo, e —> 0 and e n ? —► 0. 

Together with (4.15) and (4.10) we get r(9n,e) —>q£ r(9o) as n —* oo, e —> 0 and e n i —> 0. 

I Since r{9) is a C2-function of 9 w ith r'(9) ^  0, we have

{|0n,e 0O| > V} C {k(^n,e)| > i//^n i }

0€0

for 77 > 0. This implies 0n,£ —»q£ 0q as n  -h► 00, e —> 0 and e n i —> 0. □
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4.3 Asym ptotic of The Least Squares Estimator

In this section we assume th a t a(x,  t , e) = e a {x , t) such th a t Q = Qe is independent of e. 

T h e o re m  4 .3 .1 . Let n  —> oo and e —> 0 with e n 5 —> 0, we have

e - \ e n , c - 6 o )  — >q  ( r ' ( 0 o ) ) ~ V

where U is a Q-random variable with standard normal distribution A/"(0,1).

Proof. Before we give a proof, we introduce

m  =  (r 'l

and

D(0) =  - ( r ' ( 0 ) ) 2. (4.16)

Since

We have

< M 0) =  2(r(fl») -  r ( 0)) £  +  (r2(0) -  r 2(0o)).
i=l At2-»

< , ( 9 )  =  - 2  j r  X l ' ~  X t ‘ r'(9) +  2r ( 0) r '(0).
i = l

Set

and

/»* W  = E ^ - V (9) -  r{e)r‘{6)
1=1 A , < - >

A w  (9) =  C W

= E  X“ ~ ^ ‘- ‘r"(9) -  (r'(9))2 -  r(9)r"(9).
i = l  t i “ 1

Let B{6q\p) =  {0 : |0 — 90\ < p} for p >  0. Then, by the consistency of 0n>£, there exists 

a sequence r]nt£ —> 0 as n  —► oo and e —> 0 such th a t B ( 9o\rjn>£) C 0o, and PoQ[9n,e € 

-> 1- W hen 0n,£ G B ( 90\r)nt£), we have

£_1{/n,e(^n,£) -  / n,e(^o)}

—£ 10 n,£ ~  Oo) f  D n ê{9o + u ( 9nt£ — 9o))du.
J o
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But

f'o
Dn,e{00 +  U(dnie ~  O0))du -  £>n,e(0o) {9n,e€B(9 Ol̂ n.e)}

< sup |A i,e(0) -  Ai,e(0o)|
0£ B ( e 0\r)n<£)

< sup |D nte(0) -  D(0)| +  sup |D(0) -  £>(0O)| +  sup |A i,£(0o) -  D(60)\
deB{QQ\r}n,e) O e B ( 9o\r]n,e) 0€B{Qo\r)n<e)

•=Ai +  A 2 +  A3.

Since

D«M = £ -  (r'(0))2 - r(9)r*(e).
i = l  ‘fc- 1

According to  Proposition 4.2.1 and (4.16), let n  —> 00 and e —> 0 with e n 5 —* 0, then, we 

obtain

DnM  -><, £>(0).

Consequently, we have Ai —► 0, A 2 —*■ 0 and A3 —> 0 as n  —> 00 and e —> 0 with enh —> 0.

So tha t, we get

[  Dn,e(0Q +  u(0n,£ -  60))du D(0O)
Jo

It is easy to see

£~l fn,e{6n,e) =  0

as

£~l fn,e0 n,e) = ^  X t i~l r ' (0n>e) -  E~l T(0n,e)r'(Qn,e)
fc=1

= e~ l r(dnte ) y ( d n,e) ~  £_1r (0n,ey ( 0n,e)

=  0

by (4.15).

Proposition 4.3.1. We have

£ ~ ' fn A 6 o) ->q r'(90)U

as n  —> oo and e —> 0 .
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Proof. Note th a t from (4.10)

X t .  -  X f

k~ 1
£ 1fn ,e{°o )=e  1 (  X' 'k 1 T>̂  ~  r ^ T'

i._1 t k - l

We set

_ 1 , ^ r ( e a ) $ _ l ( X . - X l t _ l ) d s
= E I L  3 ^ --------------- +  — ) r{$o)■H— 1 , _ i  ti —12=1 t't”A 2=1

C M  -  e - ( ±  + £  ! t « 4 )
\ .XV 1 Xf . /i = l  i = l

_J ^  r W ) )  ( X .  -  X ti_ J d 5  ( ^ J ^ X ' d B ,
~ £ 2 ^  v  h v

i=i <=i A t‘-»

:= C i(n , e) +  C2(n,e).

L em m a 4 .3 .1 . We have Ci(n ,e)  —>q 0 as n oo and £ —> 0.

(4.17)

Proof. From C i(n ,e ), we have

" /I*- i X V - X V J d s  
|C,1(n ,e )| <  |e t_1------- — ;--------

n n ~ l sup i X t - X t i - i l

<  r ' i K M  x  ‘’~lS‘V  i------------

From (4.12), we have

_j KMi / -1| //j mi V I I I rte n (n +  £ sup | f U i  X sd B s\)

\Ci(n,e)\  <  k _1||r(^o)| ^ ---------------------------------H7---- ■ --------------------

l  j - ( g Q ) l  , r ti - 1 a ~ m / /.
M2 (fln)l n ^  ^ n SUp | X sdB&

1̂ -

:=  C\(n ,e )  +  Cf(n ,e ) .

It is easy to  see th a t C\(n ,  e) —>q 0, as n  —» oo.
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Then we consider C l(n , s ) ,  by Holder’s Inequality, Markov Inequality, Lemma 2.3.1, we have 

Eq\Cfi(n,e)\
Q d C jW ) !  >  5) <

p(9n)l

< 1  
~  5

_  1 
~~ 6

1
“  6

_ 1 
“  6

_ 1 
“  5

=  L.

n 1e n

r(0o) 

r(60) 

r{6o) 

r(d0) 

r(6 0)

E q E

svip | t X adB,

i—\

sup I [ ‘ x ‘d^ \ )^ 7  u-i<t<u Jti-x

j 2 { E QX ^ \ E Q( n - le ^  sup | [ ‘ X sd B s |)2]*

sup I f  X adB, \)2}i

^ X 0-1e ^ li- ‘- r(e<J) '- ' [ n - 2e l̂ E Q( sup | f  X „ dB , |)2]s
J  I *J t i —l

We recall th a t E q ( sup | J? X sdJ5s|2) =  d .
U-i <t<u 1-1

By equation (4.13), we have

l 1 exp ( ^ - t i _ i - r ( 6 ) t i - i ) n  1eU^ 2  n  %X0 exp(^e2s +  r(60)s)
i= 1

=  tl^(^o)I exP(~7r U - \  — t{Q)U- i  +  +  r(0)s)n 2d l  n z

which implies l —>q 0 as n  —> oo. Then we have C7i(n,e) —>q 0 as n  —» oo and £ —* 0. 

Finally, we get C\(n, e) —>q 0 as n —> oo and e —> 0. □

Let X ° be the solution of the underlying ordinary differential equation under the true 

value of the drift parameter:

d X ° =  r(e0)X?dt,  XS  = x 0. (4.18)

L e m m a  4 .3 .2 . We have C2 (n,e)  —>q U as n  —> oo and e —> 0, w/iere U is a Q-random 

variable with standard normal distribution iV(0,1).
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Proof. Since

" r  X sd B s
C2(n,e)  = J 2 - h -~'y- - -  ■

iTi A(<->
" ru

=  E A <7-, /  x *dB>i=i Jti-i

=  E ( * 2 - . ) _1 r  +  f '  (X a - X ° , ) d B s
i=1 J ti—i j=1 *^i-l

h- E P ^ - P O ' 1) r  * .< » .
* = 1  1

:= (^ (n , e) +  e) +  C |(n ,£ ).

n
Define a deterministic process V'(s) by V(s) =  Ji](s )- Let V+(s) and

i=l
V~(s) denote the positive and negative part of V (s). By Theorem 4.1 of Kallenberg [20], 

there exist two independent Q-Brownian motions B ', B",  which have the same distribution 

of B , such th a t

C\(n ,e )  =  [  V{s)dBs = B ' o  [  V*{s)ds -  B"  o [  V*(s)ds.
Jo Jo Jo

Note tha t

and

Then we have

and

as n  —> oo. Then,

and

v+ =  E W . J - 2(A s°)2+l e , -,«.!(*)
i =  1

y _2 =  E P ^ J " 2^ 0)2- ^ , -,*)(«)•
i=1

f 1 V2(s)da -  /V » ° ) - !( X : ) >
JO Jo

f v l { s ) d s - *  / ’(X ° y 2(X°)lds  
Jo Jo

Bf O / '  V?(a)* -  &  o [ \x°s)-2{ X X ds
Jo Jo

"o f v 2 ( s ) d s ^ B ” o [ \ x ° s ) - 2( xy_ds .  
Jo Jo

B
Jo
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We get

C l2{n,e) U ,[  j \ x ° af ~ 2\ x X d s ) h -  U2{ j \ x 0ar 2ix X - d s f

where U\ and U2 are two random variables w ith standard normal distribution iV (0,1) as 

n —> 00. Since

X ° + = ma.x(X°s ,0)

and

X l = m a x ( - X l2,0).

i u'' x °-° 
{~ ' 2 \ n i e ) ~ * Q  \ U 2, X ° < 0

as n  —> 00.

So it can be summarized by 

as n  —* 00.

C\{n,  e) —>q U

Now, let us consider C%{n,e). By using Holder’s Inequality, Markov Inequality, Lemma

2.3.1, we get

Q ( |C |(n ,£ ) | >  (5) < 5_ i^ q [ E ( A ’°_ )_1 sup \ ( X a - X ° a)dBa)|
“  t i - i < t < t i  J t i - i

<1  sup \ t  (Xa -  X°)dBa)\2}*
°  t i - i < t < U  J t i - i

< r  \Xs -  X?\2ds)]'i
d i=1 Jti-l

< l y > 0 [ ( * ^ - 2] * [ 2 t ^  sup |Xs - X “|ds]
. j  ~~ 1 ̂  ̂  ̂  "t1

which tends to zero as n  —> 00 and £ —> 0. For C f ^ e ) ,  we have



By Lemma 3.2.2, we have C |(n , e) — 0 as n  —> oo. □

Proof of Proposition 4.3.1, Combining Lemma 4.3.1 and Lemma 4.3.2, we have

C(n,e)  = C\(n ,e )  4 - C2{n,£)

- q U

as n  —> oo and e —> 0.

By (4.17),

£~lfn,e{Qo) r#(0O)C/

as Ti —► oo and e —> 0. □

Proof of Theorem 4.3.1. W ith previous proof, we have

e - \ k , c -  Oo) = - (  /  DnAOo + u{0n,e -  00̂ dey'e-'fnASo)

- » 9  ( r ' ( 0 o ) Y ' u

as 7i —> oo and e —* 0 with eTii —> 0. □
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Chapter 5

Nonparam etric Drift Estim ation For 

Inhom ogeneous Stochastic Differential 

Equations

5.1 Introduction

Let {f2, T ,  V }  be a complete probability space with a filtration {^}t>o- The stochastic 

process X  = (X t,0 < t < T)  with a given initial value X q =  x  £ M, is determined by the 

following ltd  stochastic differential equation (SDE)

d X t = f i (X t , t)dt +  cr(Xt , t )d B t , 0 < t < T .  (5.1)

where fi : R x [0 ,T] —» R is a measurable function which is continuous with respect 

to  t; a  : R  x [0, T] —> R+ is a positive function which is continuous with respect to t\ 

B t(0 < t < T)  is a one dimensional j^-Brow nian motion defined on the probability space 

{Q, T ,  P ,  {Pjo<*<:r}- We assume the following conditions Vt £ [0, T]:

(1*) \fj,(xi,t) — n ( x 2 ,t)\ +  \a(x\ , t )  — cr(x2 , £)| <  L\x\  — ^ l ,  V £ 1, 2:2 £ where L > 0 is a 

constant.

(2*) There exist positive constants cr0 and o\ such th a t 0 < a0 < a (x , t )  <
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(3*) Dissipative condition: V £ l5£2 £ R, where G  < 0 is a constant.

R e m a rk  5 .1 .1 . Condition (1*) guarantees that the equation (5.1) has an unique solution 

and the solution does not explode; condition (2*) means that a ( t , x )  is uniformly elliptic; 

under condition (3*), the solution of  (5.1) is stationary.

We assume th a t the process X t is observed at discrete time intervals {U =  zA,z =  

0 ,1 ,2 , ...,n} , where A is the time frequency for observation and n is the sample size. By 

(5.1), we can get the system

n—1 n—1
Xti =  x  +  ^ ^ p ( X ti, t i )Ati  +  cr(Xti, t i )(Bti+i — B ti),

i= 0  i = 0

where A U =  tj+i — ti. We represent the estim ator of n n(x-> t) by £in(x , t ). To get the expression 

of /ln(£ ,t) , first we minimize an object function given below with certain weights:

n-1 

i= 0

where Y{ :=  X ti+1 — X ti and A := U+1 — ti, i = 0 ,1 ,2 ,..., n  — 1. The weight function is given 

by i

Z W X t ' - x )
Wn,i(x,t) =  ^ ------------------ , i  = 0, 1 , 2 , . . . , TI -  1

± , K h( X t l - x )
i=0

where Kh(.)  =  K ( . / h ) / h , K is a kernel density function with mean zero and finite variance, 

and h is the bandw idth for the kernel. Then, we get the expression of £in(x, t)  by

YiKh(X ti — x)
M x , t i) = 2=^=i------------------ . (5.2)

A E  Kh(Xu ~ x)
i—0

In this chapter, we focus on the asymptotic of the estim ator jj,n{x, t ) with high frequency 

n —» oo. In Section 5.2, we aim to prove th a t jj,n(x , t )  —>p n(x , t )  in probability as n  —► 0. 

And Section 5.3 we establish the rate of convergence and the asym ptotic distribution, after 

th a t we give an example in Section 5.4.
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5.2 Consistency of The Nonparam etric Drift Estim a­

tor

Before this section, we give two propositions. Prom Theorem 5.3 of Ikeda and W atanabe,

[19], we have the following propositions:

P ro p o s i t io n  5 .2 .1 . Let F  : Ll x [0, oo) —* R be such that

for every a  >  0 and t > 0. Let B s be a Brownian motion. Then for every A € R

is a complex-valued {^}-m artingale.

P ro p o s i t io n  5 .2 .2 . Let F  : Q x [0, oo) —> R \  {0} be such that t ( u ) = \Ft \2dt —► oo as

t  1 ( t )  =  inf{u : t ( u )  >  t }  and A t  = F T-i(t), 

Then the time-changed stochastic integral

B ( t ) =  /  F3d B s 
Jo

is an { A }  -Brownian motion. Consequently, for each t > 0

L em m a  5.2 .1 . we assume that there is a non-negative adapted process <p(t) satisfying

(5.3)

u oo. Let

So M 2d< < oo for T  < oo. For any given £ > 0 and p > 0, there is some constant

b > 0 such that

(  sup [  <p(s)dBs >^  +  p (  [  \<p(t)\2dt > p )
0 < t < T  J o  ' K X J o  J
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Proof. Let S t = / 0* |y?(s)|2<is. Then by Proposition 5.2.2, there exists a Brownian motion 

B'  w ith the same distribution as B  such th a t f* cp(s)dBs = B ' ( S t). By the classical maximal 

inequality(see Proposition 10.2 of Fristedt [11]), we find th a t

p (  sup f  <p{s)dBs > { ) < p (  sup [  (p(s)dBs >  f , ST < p)  +  P ( S T > p) 
0 < t < T  Jo '  0<i<T Jq J

< p (  sup |j5'(St)l >  £, S T < p)  + P ( S T > p)' 0< t < T  '

< p (  sup \B'{s)\ > +  P ( S T > p)
' 0 < s < p  '

< ^  + p (Jo  \<p{t)\2d t >  p ) .

□
L e m m a  5.2.2. Suppose that there is a deterministic and nonnegative function And we 

assume that there is a adapted process <p(t) satisfying JQ \<p\2dt < oo for T'  < oo and 

p{T')  =  x -1^ )  on the interval (T \ T ' +  1]. I f

X2(T') /  \p(t)\2dt —>p 1 as T f —» oo.
J o

Then, we have

X(T') /  <p(t)dBt =» N ( 0,1) (5.4)
Jo

where B t is a one dimensional Brownian Motion.

Proof. We define

R t  =  X 2 ( T ' )  f  | ^ ) | 2 < f e  

Jo
and

tt> =  inf{£ > 0, R t > 1}.

Then we have tt> G [0, T'  +  1]. Then by proposition 5.2.2, there is a Brownian motion B'  

w ith the same distribution as B  such th a t x ( T f) /g \(p(s)\dBs =  B'Rt. We have

X {T') r  p ( t )dB t = B [ ~ N ( 0,1).
Jo

Then by using Lemma 5.2.1 and following the same arguments as in the proof of Theorem 

1.19 in [26], we can see th a t the characteristic function of x(T ' )  f 0 <p{t)dBt converges to
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the characteristic function of x i T 1) f J T' p ( t )dB t as T'  —> oo. By the continuity theorem (see 

Theorem 26.3 of Billingsley [3]), we have

*T'
X(T') f  p ( t )dB t =>N(0,1). 

Jo

□
Under Condition (1*), (2*) and (3*), there exists a unique invariant distribution i f  of the 

solution X t . Let f { x , t )  be the density function of i f .  Then we define the kernel estim ator 

f n ( x , t )  of f { x , t )  by

71— 1

n . „7=0
fn(x,  = -  * )’ 0 <  * <  r  (5-5)

and gn(x, tf) by

77— ( T —

n A

1 71— 1

gn(x, t)  =  —  ^ T Y i K h( X tt -  x), 0 < t < T .  (5.6)
71 7 =  0

From (5.2), we obtain

£nO r,0 =  f r 4 .  0 < t < T .  (5.7)

Define the strong mixing coefficient of X  by

a x (t) =  sup sup £ [A ^ X s)Afl(Xs+*)] -  E ( \ A( X a) ) E ( \ B{Xa+t)), 0 <  t < T  (5.8)
sGK+ i4,B€B(R)

where A, B are measurable sets in the cr-algebras.

We need specify some new conditions as follows:

(4*) The kernel function K(. )  satisfies

/oo

u2K(u)du  <  oo

•oo

and

/oo

K 2(u)du <  oo.

■oo

(5*) As n —» oo, h —► 0, A —> 0 and n A h  —» oo.

(6*) The solution X t adm its a unique invariant distribution i f  and is geometrically strong 

mixing(GSM), i.e. there exist cq > 0 and p  G (0 ,1) such th a t o l x ( J ) < c o p *, t  > 0 .

(7*) The density function f ( x )  of the stationary distribution i f  is continuous.
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T h e o re m  5 .2 .1 . Assume that condition (l*)-(3*) hold, and f { x , t )  > 0, then jin(x, t)  —>p 

p(x, t )  as n  —> oo.

L em m a  5.2 .3 . Under conditions (l*)-(3*), we have

f n( x , t ) - * P f ( x , t )  as n  —> oo. (5.9)

Proof. Recall th a t f n(x , t )  —>p f ( x , t )  as n  —> oo means th a t Vv > 0, lim P ( | / n(a:,t) —
ti—> oo

/(z,£)l > u) = 0.

And note th a t

f n(x, t) -  f { x ,  t ) =  / n(z, t) -  E [ fn( x , £)] +  £ [ / n(z, £)] -  / ( x ,  t).

For E [ fn(x,t)] — f ( x , t ) ,  by the stationarity of the process X t , we have

E [ fn(x,t)] = E [K h( X  o - x ) ]
poo

= I  K h ( y - x ) f ( y , t ) d y  

K ( u ) f ( x  4- uh, t)du

- o o
7*00

which converges to f ( x , £) for each x  as n —> oo by Lebesgue Dominated Convergence 

Theorem.

For f n(x, t)  -  P [ /n(x ,t)], we have

n —1 .. n —1

f„(x,  t) -  E[f„(x,  t)] = - J 2  K h{Xt i - i ) - i y  E [K h{Xu -  *)]
7 = 0  7= 0

1 77— 1

=  -  £ [ * * ( * „  -  *) -  E[Kh{Xti -  *)]].
7 = 0

Let 7 n . i ( a ; ,£ )  =  K h(X ti_1- x ) - E K h(X ti_1- x ) ,  i= l,2 ,...,n . Note th a t sup \^n,i{x, t)\ < D h~ l
1 < 7 < 7 7

for some positive constant D < oo. By applying Theorem 1.3 of Bosq [ 4 ] ,  we have for each 

integer q E [1, | ]  and any 5 > 0

P ( l |  1 > S ) <  4exp (  -  ^  ^

+  2 2 ^ 1  +  ^ — )  2 q a x { \ p ] & U ) ,
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where
2, , 2 D h r 'S

V (?) =  ^ 2S(?) +  — J -

with p = ^  and

s ( q } =  i +  1 ~  i P ) 7 n , [ j P] + i ( ^ >  0  +  7 n ,[ jP] + 2 ( z ,  t )

+  -  +7n.[(j+ l)p]0M ) +  (O' +  1 ) P “  [ 0  +  l)p])7n,[0+l)P]+l(2(,t)]2.

We set 7n,n+iOM) — 0 f°r the s(q). By using Cauchy-Schwarz Inequality and stationarity  of 

7n'i(x,t),  it is easy to find th a t s(q) = 0 ( p 2h~1). Then let q = and P — ^  — 0 (^ tJ)>  

we have

=  S20{qh) = 0 ( 8 2V nK h) .  (5.11)

By the GSM property of X t and some basic calculations, we find

22^1 +   ̂2qax (\p]&) <  C ( 8 ) e x p ( - 0 ( V n A h ) ) . (5.12)

This, together with (5.10), and(5.11), we have

n
p ( - |  ^ 7n,z((c,t)  ̂ <  C(5)exp(-0(<52VnA/i)). (5.13)

i=1

By the above proof, we have

lim P ( \ f n(x, t)  -  f ( x , t )| >  v) =  0.
n —* oo

Therefore f n(x, t) —>p f ( x ,  t) as n  —► oo. □

L e m m a  5.2.4.

gn(x, t)  —>p f ( x , t ) n ( x , t )  as n  —> oo. (5.14)

Proof. Since

y, =  * ti+1 -  X u =  I 1'*1 fJL(Xst s)ds +  f ' +1 a ( X s, s )d £ s
>/ ̂  */ ti

= f i (X ti, t i ) X +  [  (n ( X 8is) -  n ( X t . , t i ) )ds+  [  a { X s, s )d B s.
J  ti J  ti
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This together w ith (5.6), we have

n —1

n
1 1 t

gn(x}t) = -  (ti,U)Kh( X t i - x )
71 1 = 0

+  -  * )  f ' +\ r i X s , s )  -  n ( X u , t i ) ) d i
i = 0 ^

1 Wi+i
+  ^  ^ 2 K h( X ti -  z) /  a ( X s, s )d B s

o —n tii = 0

:=  0n }(M )  +  fl£2)(z >0 +  Pn}(M )-

For p n \a : ,t ) ,  we have

n —1 - n —1

0 n }OM) =  / i ( : M ) ^ X ^ / i ( ^  -  z) +  ^ ^ ( A t( * i i ,* i )  -  f i ( x , t ) )K h( X ti -  x)
i= 0  i= 0

=  : ^ 1}( l) (x ,t)  + g%){2)(x,t).

For pn^(l)(a?,t), by Lemma 5.2.3, it is clear th a t g n \ l ) ( x , t )  —>p f ( x , t ) / i ( x , t )  as n  

For gn \%)(x,  t), by condition (1*), we have

n —1

|g ’ (2)0M )l < \ Y j L \ X u - x \Kh{Xu - x )
2 =  0  

-. n — 1

<  -  ^ L ( \ X ti -  x \ K h( X ti - x ) -  E[ \Xti -  x \ K h{X ti -  a)])
i= 0

+  L E [ \X a -  x \ K h( X 0 -  z)] 

By the proof of Lemma 5.2.3, we can prove th a t

n — 1

- Y , L { \ X t i - x \ K h{X u - x ) - E [ \ X u - x \ K h{X u - x ) } ) ^ P 0 as n  -> oo.
TX _

2 = 0

By the continuity of f ( x , t )  and Lebesgue Dominated Convergence Theorem, we get 

,. E[\X0 -  x \ K h( X 0 -  x)\ ,  1 f°°  , lr, ,&  - — — -h---------= s J  ^  I y  ~  x \K i>(y -  x ) f ( v ) d y

/ oo

\ u \K (u ) f ( x  +  uh)du

/
OO

\u\K(u)du.
■oo
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By (5.17), (5.18) and (5.19), we gain g n \ 2 ) ( x , t )  — 0 as n  —* 0. Then we 

g {n \ x , t )  ->P f ( x , t ) n { x , t ) ,  as n  —> 0.

For g n \ x , t ) ,  by condition (1*), we obtain

1 f li+l

i= 0

1 i  7ti+1
< t F

nZA z=0 J t i

1 n —1

< ~ Y , L K h { X t , - x )  sup \X t - X ti\
1= 0

Since

X t - X t i = (  i i{X3,s)ds + f  a ( X s, s )d B s.
J t i  J u

By condition (1*), we get

\X t - X u \ =  r | / i ( X a,5 ) |d a +  f  ci{Xs, s )d B s 
J u  J u

< [  (\f i(Xs,s)  -  n ( X ti,ti)\ +  \fjL(Xti, t i ) \ )ds+  [  a { X s, s )d B s 
J u  J u

< \ n ( X ti, t i ) \& +  sup f  cr(Xs, s )d B s + l [  \XS -  X u \ds
+ 1 J t i  J t i

According to  Gronwall’s Inequality, we have

\xt -  X ti\ < (\fj,(Xti,ti)\& + sup [  a ( X s, s )d B s ) e L{t~ti).
v t i < t < t i + , ,/*< 7

Then we get

sup \X t -  X ti\ < eLA(\f i (Xti, t i ) \X  +  sup [  a ( X s, s ) d B s ) .
t i < t < t i + 1 '  t i < t < t i + 1 J t i  '

By (5.20) and (5.21), we obtain

|#i2)(M )l <  -  x )eLA(\f i{Xti, t i ) \ X +  sup [  cr{Xs, s )d B s )

1 71—1

<  A etA - X  L K h( X u -  x)\iJ.(Xti, t ()| 
n  _

2= 0

1 71-1
+  eLA-  y  L K h{Xti -  x)  sup /  a ( X a,s)dB,

n  t i < t < t i + 1 Aj—Q
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For g n \ l ) ( x , t ) ,  it is clear th a t

j  n —1

-  x ) \n (X ti,ti)\ ->P \n ( x , t ) \ f ( x , t )  as n  —> oo.
i=0

This implies th a t gi2\ l ) ( x , t )  —>p 0 as n  —► oo.

For g n \ 2 ) ( x , t ) ,  by Markov Inequality and Lemma 2.3.1, we have

n — 1

p ( ^ Y ' L K k( X u - x )  sup f  a { X „ s ) d B ,  > d
i=0

71— 1

i= 0  
n —1

sup K h( X ti -  x ) a { X s, s )d B s

T  Y , L E \ f  K hix u ~  x ) a 2( X s, s)ds
n<5 i=0 ^

n —1

^ i= 0

So it is clear th a t g n \ 2 )(z ,t)  —>p 0 as n  —> oo. And we get £) —>p 0 as n

Now for g n \ x , t ) ,  we define an adapted process <pn(x, t)  by

< P n ( x , t )  =  ^ 2 z t K ( X i \  X ) v ( X i , t ' ) Z ( U , U + i ] ( t ) >
f e o h * K h ’

Then we have

0n JOM) =  —^TT [  ipn{x , t )dB t. 
nAh* Jo

By Markov Inequality and Lemma 2.3.1, we get

C Jo
P ( \ 9 n ] ( x ^ ) \  >  0  <  ~ ~ T 7 E  [  < P n ( x , t ) d B t

nAh^C Jo

(  J  \ ( f n ( z ,  t ) \ 2 d t j  2 j

% ( * [ %  r

< j 4 - e
n A h * (

<

<

nAh^C,

A s / 2

z=0 17 H

'1 ,o / X t . - I M \ I
nAh^C

which goes to zero under condition (5*).

(5.23)

oo.

(5.24)

(5.25)
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5.3 A sym ptotic of The Nonparam etric Drift Estim ator

We will impose some new conditions for this section:

(8*) n ( . , .) is C2,1-function with bounded first and second order derivatives.

(9*) The density function / (x ,  t) of the stationary distribution ip is continuously differen­

tiable.

Since the set of new conditions is stronger than  the set of condition in Section 5.2, all the

results in Section 5.2 are valid under new conditions.

T h e o re m  5.3 .1 . Let
T-T/ \n(z, t) J y '

° ( x >t ) ( f ? 00K 2 (u )du)

and

=Ln(x,t)= +  ^ " ( x , t )  J  u2K ( u ) d u .

Assume that f ( x , t )  > 0, under conditions (l*)-(6*) and (8*)-(9*), we have

(1) I f  ( n A h ) *h2 = o(l) and (nAh)?A*  =  0 (1 ) for some k > 2, then

(nAh)^H(x ,  t)(£in (x, t) — /j , ( x , t)) => N ( 0,1). (5.26)

(2) I f  (nA h)*h2 = 0 (1 ) and (nAh)?A *  = 0 (1 ) for some k > 2, then

(nAh)^U(x , t) (£in(x, t)  — f i{x,t )  — h ^ E ^ x . t ) )  => N ( 0,1). (5-27)

Before we give a proof of Theorem 5.3.1, we should consider some conditions on the 

bandw idth h and the time frequency A. First, we consider the (1) of Theorem 5.3.1, when 

0 <  6 <  4, with the condition (5*), to  ensure satisfying (n A h )^ h 2 =  o (l) and condition 

(5*), we should have h =  (nA log(nA ))~s or h = (nA )-1^  for any 0 < 8 < 4. After the 

calculation, we find if A =  O ̂ (log n)(3n~ 2̂ +5 ̂ , where

0 = 4k  + 10 

or A =  0 ( n -7 ) w ith
40k — 105k

7 = 40k + 100- 105k’ 
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then the condition (nAh)?A *  =  0 (1 ) is satisfied. If 5 =  0, we get the condition of h and A 

for (2) of Theorem of 5.3.1.

Proof. Proof of Theorem 5.3.1-(1). Since

(nAh)  3II(x, t)[gn{x, t ) -  fi(x, t ) f n (x , t)]
(nAh)*U(x,t)(fjLn(x,t) -  fi{x,t )) =

f n { x , t )

T  n(x, t)

f n ( x , t )

By (5.15), we get

T n(x , t )  = (nAh)^I l( x ,  t ) [g£ \x ,  t) -  n ( x , t ) f n(x,t)}

+  ( n A h ) l*Tl(x, i)g{2)(x, t)

+ (nA/i)2lI(r,f)^3)(i,f)

: = Y ^ \ x , t )  + Y W { x , t )  + Y ^ \ x , t ) .

For Tji1\ x ,  t )

1 n —1

T n }( ^ , t) = ( n A h ) ^ U ( x , t ) - y 2 { f i ( X ti,ti) ~  n ( x , t ) ) K h( X ti -  x).
77 * ^

7=0

By Taylor’s Expansion, we have

n ( X ti,U) -  /i(z, t) =  //(x , t)(X ti -  x)  +  ^ / / '( z  +  O i ( X ti -  x ) , t ) ( X t . -  x ) : 

where 0* is some random variable satisfying 0* G [0,1], So tha t, we have

Y {n ] ( x , t )  =  ( n A h ) ^ U { x , t ) - f M ' { x , t ) Y ^ ( ^ t i  -  x ) K h{ X ti -  x )

n— 1

n . nz=0
.. n— 1

+  (nAh)^U(x ,  t) —
2 n 1=0

71 — 1

2 n

(5.28)

(5.29)

+  (nA/^IIOr, t ) ^  £ > " ( *  +  0((Xt( -  x), <) -  / r " ( x , -  x)2X<.(*<, -  *)
7=0

:=T<«(l)(s,t)  +  Ti»(2)(x,i) +  T « ( 3 )(x,7).

(5.30)

For Tn^(l)(x,t), for i =  we set

£n,((x, J) =  (nA /i)5((X (i_, -  x W u i X ^  -  x)  -  E [(X t(_, -  x J X ^ X ,,.,  -  x)]).
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By the stationary  of Xt,  we have

T^lXM ) = n ( x , t ) p ! ( x , t ) - Y ] ^ nti(x, t )n < *4n ■  ̂7=1

+  n(aj, t)n(x,  t ) (n A h )* E [ (X q -  x ) K h( X 0 -  a?)]

:= A l ( x , t )  +  A 2(x, t) .

For A„(x, t), note th a t

sup |£n,*(M)l <  M 0(nAh)5 a.s.
1 < 7 < 7 7

where Mo < oo is some positive constant. Then we apply Theorem 1.3 of Bosq [4], for each 

integer q G [1, §] and 5 >  0, we have

P ( i | g ^ , i ) | > ^ ) < 4 e x p ( - i ^ )

+  2 2 (1 +  4^ (f ^ ^ ) W ( b l A ) ,

where
2 2  M o { n A h ) U

V (?) =  J2S^ )  + ------- --------

with p = ^  and

=  n J W 1 i E K\jP] +  1 “  j P ) U m + i ( x ’l ) +  fn,l7P]+2(z> 0u < j < z q —l

+ ••• + € n , [ { j + l ) p ] ( x , t )  + (O’ + 1)P ~ [0 + l)p])̂ n,[(j+l)p]+l(2)>0]2-

By Billingsley’s Inequality (see Corollary 1.1 of Bosq [ 4 ] )  and stationary of £n,i(x 0) i  we 

th a t

s(q) = 0(pnh) .

Under the GSM condition on X t, we have

Ip]
J ^ a x i k A )  =
k = 0

Then, we get
52q S2n

8 v2(q) 0 (n h )  + 0 (6 p (nA h)z )
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which goes to oo by choosing q = and p =  ^  By GSM property of X t: we

have
22( 1 + 4 m n A h ) i y a x { m ^ 0

Then we get
1 n
— ^   ̂£n,i(x i t) — °p(l)- 

7=1

For An(x,  t ), since

/
OO

v̂ K^ ~ ir ) f{y's)dv

/
OO

u K  (u ) f ( x  +  u h , s)duh
■oo / oo poo

u K (u)du + h2 K (u)u2f ( x  +  Quh, s)du
■oo J — OO

/oo
u 2K{u)duh2{\ +  o (l)).

■oo

Then we have

/oo
u 2K ( u ) d u ( n A h ) ^ h 2(l + o ( l ) ) .

■oo

By the proof of A ln(x, t)  and A2 (x, t), we get

/oo
u 2K ( u ) d u ( n A h ) ^ h 2(l +  o(l)).

■OO

Then, for Tn^(2)(a:,£), we set

Cn.<+i(x,t) =  ( n A h ) H ( X ti -  x )2K h( X ti - x ) -  E [ (X ti -  x )2K h( X u -  a:)]), 

where i =  0, ...,n  — 1. By the stationary of Xt,  we have

Tjl1)(2)(x ,t) =  ^I i(x , t )pL"(x , t ) -Y^Cn, i+ i(x , t)

7 =  0

+  ^ U (x , t ) f i ' ( x , t ) { n A h )2E[{X0 -  x )2K h( X 0 -  a;)]

\ = A zn{x, t) + A An{x,t).

Note th a t

sup |Cn,*0M)l <  M \ ( n A h ) 2h
\ < i < n
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for some positive constant M\  < oo. Then we apply Theorem 1.3 of Bosq [4], for each integer 

q E [1, §] and 8 > 0

71 — 1

A t f  } <T 4  p y t + —

8v 2(q)p ( ^ |  £ c » . i ( * , o |  >  s ) <  4exp ( - g J 4 )
7 =  0

+ 22(1 +

where

4M i ( n A t i h ) 2h \ 2  /r , A N
 u  ; j  9a x ([p]At,),

>9/ N 2 , Mi (nAh)  2 (5/i
+ ? )  =  ^ ( « )  +  2

with P = Yq and

= n J W  , +  1 “  irtCn,[j>] + l(^ , t) +  Cn,ljp]+2(Z, *)

+  ••• +  Cn,[(.7+l)p ]i.X'> t)  d" ( 0  d" l ) p  — [( j  +  l ) p ] )C nt[ ( j+ i)p ]+ i (x ,  t) ]  . 

By Billingsley’s Inequality and stationary of £«,*(:£,£), we find tha t

s(q) = 0 ( p n h 3).

Then, we get
82q 82n

8 v2(q) 0 ( n h 3) +  0(5p{nAh)*h)

which goes to  oo by choosing q =  and p = ^  By GSM property of X t , we

have
22( 1 +  4M 1( n M ) U ) g a x (M A )^ 0

Therefore, we obtain A„(x, t)  =  0p (l) .

For i4j(a;, t), we have

/ oo

u2K(u)du  • /i2(l +  o(l)).

■OO

Then, we have

i r°°
A^{x , t )  =  -U (x , t )p ' ( x ,  t ) f ( x ,  t) /  u2K(u)du  • (n A /i)U 2(l +  o(l)).

^ 4  —oo

So th a t we obtain

1 roo
T ^ ( 2 ) ( x , t )  =  op (l) +  -T l{x , t )p ! ' ( x , t ) f ( x , t )  /  u2K(u)du  • (n A /i)U 2(l +  o(l)).

^  V  — OO
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For T n^(3)(x ,t), by the uniform continuity of //'(•) and the bounded support of the kernel 

function K(-),  we assume th a t K (x )  = 0 if |x| >  M  for some finite positive number M.  

Then we have

lT n } ( 3 ) ( M ) |  < sup \fj."{x,t) -  n " ( y , t ) \ { n A h ) * - ^ 2 ( X ti -  x ) K h{Xti -  x)
| 1 ^ * * | 77.\x—y \ < M h

1 77—1

=  o(l) • ( n A h ) h 2-  V  K k( X ti -  x)
n U

=  oP(l)  • (n A h ^ h *

77—1

since ^ Kh(Xu — x) —* f ( x )  in probability. Then we get
7= 0

T W(3)(x, t)  = oP{ 1) • 0 { ( n A h ) ^ h 2).

So by (5.30), we get

T {n \ x , t )  = Op(l) +  Op(l) • 0 ( { n A h ) ^ h 2)
1 f°°

+  n(aj, t)[n'(x, t ) f ' ( x ,  t) +  -p! '(x,  t ) f ( x ,  £)] /  u2K(u)du  • (n A /i)U 2(l +  o(l)).
" J  — OO

(5.31)

For Tn^(a;, t)> we have

T n \ x >0 =  (n A /i)5 n (M )^ 2}(z ,t)
77—1

< ( n A h ) ^ n ( x , t )  L A e ™  ■ - T K h ( X ti -  x ^ f X ^ t , ) !  

L
77—1

+  t f e * AA« • - + - y ' / 0 lp c (j - z )  sup I a ( X s, t s)dB,
nA« ti<f<^+i Ju

We use the same method in the proof of T n \ x ,  t), under the given conditions, we get

1 77—1

- J 2 K h(Xti -  x ) \n (X ti, t i )| ^ p  |/x (M )|/0 M )-T)
i=0

By the proof of gi2̂ (:r,t) and Lemma 2.3.1, we can get



Then we obtain th a t

T ^ ( a ; , t) = Op(  1) • (n A / i )» A  +  o p ( l )  • (n A / i )s A * .

For Tn^(a;,i), we define

Xtn =  ( t na 2( x , t ) f ( x , t )  J  K 2(u)duj

and recall th a t i

V n ( x , t )  a?) ° ' ( x * ^ )3L(ti,<i+i]W»
t = 0

Then we have

f  =  Xu ■ (  Y i  T j ‘' ' ( : < h ' i - " 1’- : ' . ' 1 .....

i= 0

t = 0

n - 1  1 /  V "  _  ~ x  /* * i +  l

i= 0  J t i

- . B  + D.

For J3, by Lemma 5.2.3, we can prove th a t

-1 ^  1 -i y 1 p O O

~ Y l ] l K 2 { \  X) v 2{x ti,U) ° 2( x , t ) f ( x , t )  J  K 2(u)du.
i=0 00

Then we have

For D, by condition (1*), (5.21) and inequality ||u  +  v\q — |u ('1 <  \u\q for u , v  (

(5.32)

(5.33)

(5.34) 

R and
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q G (0,1], we have

i n 1 1 / X  — r\ P ti+1

\°\ = x l \E / ^ 2( - ^ )  j  -  A X u M #
i=0 

n—1
< xSL E 1 K

i=0 
n-1

i=0 
n — 1

 ̂ /l

* u - x \
h J

X u ~ x \
h )

X u - x \

|(72(Xf,0  -  C72(Xti, ^ ) |^

n j; 1 / V _ f t i + l

2  x t E ^ 2( ~ V ~ )  I  \ ^ X ^ ) - ^ X u M  2dt

^ E i ^ ( - i r £ ) L’ A  sup“  /i \  h J ti<t<ti+1
n—1

< L 2e2LsAA 3
a 2( x , t ) f ( x , t )  f ^ K ^ d u  .. ,=0 

L2 A e2LsA
+ 1 V"^ 1 r>-2 ^ t i  ~  X\

sup<J2{ x , t ) f ( x , t )  f ^ K ^ d u  n j ^  

:= D l 4- D 2

f  a ( X s, s )dBs 
Ju

(5.35)

For D j, since

^e (5-36)
i= 0

by the method of proof Lemma 5.2.3, it is clear D\ —>p 0.
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For D 2, by Lemma 2.3.1, Markov Inequality and condition (3*), we have

P ( - E t 4 2( ^ V ^ )  sup f  v { X „ s ) d B s 2 > d  v h J u<t<u+l Ju '1= 0  

n —1

<
^ i = 0

X u - xLi

h
sup

tj  f- 1

t 2
(t {X s, s )dB .

'U
1= 0

71—1

2i

=0 
n — 1

(5.37)

X., -  x
< _ E D [ K 2( ^ r 1 ) ^ A

4cj2A

:" T ~
4af A

E

h - ' K 2(V X ) f ( y ) d y
C J—oo ^ ^

which goes to zero as A —> 0. Then by (5.33), (5.34), (5.35), (5.36) and (5.37), we have

Xtn /  <Pn(x , t )d t^> p  1. 
'0

(5.38)

Since

T n }( M )  =  (n A /i)^ n (:r ,0 2 i3)(M )

i l /,*i+l
=  (nA/i) 2 n(x, 1) E  Kh{Xti — x)  /  a (X s,s )d B a

1 = 0 ^
p i n

=  f ( x , t ) - X t n  < P n { x , t ) d B t .
Jo

By (5.38) and Lemma 5.2.2, we have

T (̂ { x , t )  => /(z ,£ )W (0, 1).

By (5.29), we get

T n(x , t )  => f { x , t ) N ( Q , 1), 

this, together with (5.28), Lemma 5.2.3 and Slutsky’s Theorem, we obtain

(nXh)^U(x ,  t)(fin(x , t) — f i (x , £)) =£► iV (0,1)
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where we complete the proof of Theorem 5.3.1-(1).

Proof. Proof of Theorem 5.3.1-(2). If (n A /i)U 2 =  0 (1 ), with (5.31), we have 

Tj^x, t) =  (nA/i)U2n(x, t ) E ^ x ,  t ) f ( x ,  t ) +  oP(l).

By (5.32) and (5.39), we also get

T n }( ^ 0  =  M 1)

and

T {n \ x , t )  => f ( x , t ) N ( Q , l ) .

Then by (5.29), we have

T n(x, t)  -  ( n A / i ) ^ 2II(x ,t)E M( x ,t ) / ( x , t )  => f ( x , t )N (Q ,  1).

By Lemma 5.2.3 and Slutsky’s Theorem we have 

(nAh)^Tl(x, t )( f in(x , t )  -  -  h2E^(x, t))

= ~ fT ^~ T  ~  (n A h )^ h 2U(x, t)Ef ,(x , t )
f n [ X , t )

=  T w( x , Q - ( n A / i ) ^ n ( a:>0 HM(a>0 / ( a:>0  +  t )- ^ t) f  f M
f n { x , t )  ' f n ( x , t )

=>N  (0, 1).

Where we complete the proof of Theorem 5.3.1-(2).
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5.4 Exam ple

In this section, we are aiming to give a mean-reversion type example for (5.1). Let f i (X t , t) = 

[a(Xt ,t)  +  br(Xt,t)\ and a ( X t, t )  = b in (5.1). Consider the following equation:

d X t = [a(Xt, t) +  br(Xt, t)\dt +  bdBt. (5.40)

where r (x , t )  : M x [0, T] —» R and a(x, t)  : R x [0, T] —> K are C2,1— func tion ,  and b is a 

positive constant. Then we make some consumptions: for 0 < t < T ,  let

( i )

\a(x, t)  - a ( y , t ) \  < L ^ x - y l

and

for L\  >  0 and L 2 > 0, x, y G 

(2 )

and

\r(x, t ) -  r(y, t )\  < L 2\x -  y\

a(x, t) -  a(y, t)  
x - y

r(x,  t) -  r(y, t) 
x - y

< Q!i

where aq G R, a 2 € R.

Now we will prove th a t the equation (5.40) satisfies Lipschitz condition. We have

[a(x, t) +  br(x, *)] -  [a(y} t) +  br(y, £)]

[a(x, t) -  a(y , *)] +  [6(r(z , t) -  r(y,  *))]

< a(x, t) -  a{y, t) +  |6| r(x,  t) -  r ( y } t)

<Li( t) \x  -  y\ +  \b\L2(t)\x -  y\

= {L\(t)  +  \b\L2(t))\x — y\

which satisfies Lipschitz condition. Then, we will verify the dissipative condition. We get
[a(x, t) +  br{x, t)] -  [a(y, t) +  br(y, t)] 

x - y
__ [a{x, t) -  a{y , t)\ b[r(x,t) - r ( y , t ) \

x - y  

<ck:i(t) +  boi2{t).

x - y
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Since [ai(t) +  6a 2(£)] < 0 , it satisfies the dissipative condition. So th a t the equation (5.40) 

meets the overall conditions mentioned in previous parts and obeys our main results in 

Section 5.2 and Section 5.3. T hat is, if we let rn(x, t)  express the estim ator of r (x , t ) ,  under 

the conditions and notations in previous sections in this chapter, we formulate f n(x, t)  —>p 

r(x , t) as n  —> 0 and

(1) If (n A h ) ^ h 2 = o (l) and (nA /i)sA « =  0 (1 ) for some k > 2, then

(n A /i)^ Il(i, t ) ( fn(x, t) — r ( x , t)) => 7V(0,1).

(2) If (nA /i)^/i2 =  0 (1 ) and (nA/i)5A* =  0 (1 ) for some k > 2, then

(nA /i)2fI(x, t )(rn(x } t) — r(x,  t) — h2Er(x , t)) => iV(0, 1).
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