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Abstract

In this work we proved that M,(k) # 0 for n < p* +--- +p+ 1 — k as well as the
first M,(k) = 0 occurs when n = p* +--- + p+ 1 — k. We calculated the dimension of
M,,(3) for all odd prime where n < p?, and provided a basis elements for M, (3) for the
degrees n < 2p — 1. For p = 3 we described the formula of the the elements of M,(3)
in a higher degrees and proved some result concerning this case. We considered L. (k)
and constructed a general formula for its generators in case k < p, and calculated the
dimension and the basis elements for L,(3) in some cases.



Chapter 1

Introduction

” We do not know even the dimension of the vector space QP = (Fo®4(p) Fi)" for k = 47
Kameko said 1998 [12].

In algebraic topology the problem which asks for the minimal set of generators for
H*(BVj;F,) as an A(p)-module is known by the hit problem® where BV is the classi-
fying space of an elementary abelian p-group Vj of rank k, in other word; the underlying
group of a k-dimensional vector space over a field I, of characteristic p. Alternatively, the
aim of this problem is to calculate the basis of the vector space QP = (Fp ®4¢p) Px)" =
PP/ AT (p)Pf where Pl (the set of all homogeneous polynomials of degree n) is the subset
of a polynomial algebra in k-variables over [, which is isomorphic to the cohomology of
the classifying space of Vi with coeflicients in I, if p = 2 and each variable of degree 1.
While when p is an odd prime and each variable of degree 2, then it is isomorphic to the
cohomology of the k-fold of infinite complex projective spaces with coefficients in F,,.

That was the Peterson’s observation in 1987 in his paper [14] and in the same work,
he found the basis of QP and QPy where p = 2. At odd primes it was Crossley who
addressed this problem for the same values of k in [10]. Peterson in the same article had
a conjecture which asked about in what degree of n we do not need to look for generators
for QPP ie. PP = At (p)PP. In 1988 R. M. Wood answered this conjecture in [30], see
theorem 4.2.4, and that answer was generalised by Singer [21] . The same question may
be asked at odd prime (Peterson conjecture), but the situation here is more complicated
than in case of p = 2. Chen and Shen in [20] and Crossley [8] gave some pointers to
address this question. In chapter four of this thesis we prove that in the degrees less than
pF 4+ .- 4+ p+1—k at least there is a generator.

Kameko in 1990 in his Ph.D. thesis [11] and after that in [12] solved the hit problem
for kK = 3 where p = 2, and he had a conjecture about the maximum number of the
generators in QP which states that:

'Hit problem was termed by W. Singer
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Conjecture 1.0.1 (Kameko). For every non-negative integer n,

dim(Fs ® a0y Pe)™ < | (28 - 1).

.
Il B
—_ :

Kameko’s conjecture is true for k = 1, 2, 3, 4 according to the results of Peterson [14]
Kameko [11] and Kameko [13] and Nguyen Sum in [25]2. After 20 years in 2010 Nguyén
Sum [26] gave a counter example for the Kameko’s conjecture for k > 5. Crossley in [8]
formulated an analogous conjecture for all odd primes. Additionally, he showed that the
number of generators for H*(BVj; F,) as A(p)- module has to be bounded and this bound
depends on the rank of V; and certainly on p. Similarly, this bound exists in the case of
p = 2 see [4]. The hit problem particularly when p = 2 has been considered from several
mathematical areas in many and different aspects.

Turning to the dual case, the dual form of the hit problem is the problem of determining
the subring M, (k) of the Pontrjagin ring H,.(BVj;F,) that consists of all elements that
annihilated by the right action of A(p) on H,(BVj;F,) which is defined by

(€0, ¢) = (£,60)

such that 6 € A(p), ¢ € H*(BVj;F,) and § € H,(BVy;F,), i.e. calculate the intersection
of Kerf for all 6 € At (p) where AT (p) is the set of elements of positive degree of Steenrod
algebra A(p) see [17].

The dual approach has been established in 1990 by Alghamdi[l], Crabb and Hubbuck
in [2]. In previous work the authors calculated the basis of M,.(k) where k = 1,2,3 by
utilising the generators of the subring L.(k) of M, (k) which is known as subring of lines.
The significant observation in their work was that M, (k) = L,(k) for k = 1,2,3 except
in the degrees n = 23 4 2141 4 2t — 3 such that ¢ > 0, where the divergence between
the dimension of M,(3) and L,(3) is 1. Later the subring of lines L.(k) has been studied
extensively by Crabb and Hubbuck in [5] and Repka and Selick in [19]. The results of [5]
are extended by Tran Ngoc Nam in [18]. Walker and Wood in their work [27] based on
[5] and they used the Schubert cell decomposition of the flags to give the dimension of
L, (k) for some n, and so a lower bound for M, (k). All the aforementioned works have
performed with p = 2.

At odd prime the only study that we see in the dual case was achieved by Crossley
in 1995 in his Ph.D. thesis [6] and later in [7]. He gave a complete description for M, (1)
and M,(2) provided with an explicit formula for the basis elements of them.

This thesis involves two parts, the first part consists of two chapters, and there are
four chapters in the second one. The first and the second chapters in the first part are

2T~his work consists of 240 pages manuscript. On behalf Dr. Martin the author would like to thank
Nguyén Sum for sending the description for some cases of calculation QPf.



dedicated for the necessary background that is needed during the current study. In the
first one (chapter two), many definitions are stated to introduce the definition of Steenrod
algebra and some of its properties.

While the second one (chapter 3) concentrates on the projective spaces from many
different points of view, the infinite complex projective space, its cohomology and homol-
ogy and the action of Steenrod operations and their dual on them respectively.

In the second part of the thesis, the objects M*(k) and M, (k) are considered in chapter
4 which involves two section. In the first one we introduce the main objects of this work
M, (k) with the motivations behind the study of this objects. While the second one begins
with definition of a spike in H,(k) and its properties which led us to say that there is
at least a spike in H, (k) for n < p*+---4+p+1—k, and hence M, (k) # 0 for those degrees.

Chapter five is divided into two sections. In the first section we calculate the dimen-
sion of M,(3) where n < p?, and giving a basis for M,(3) where n < 2p — 1. The second
section is devoted to the specific case of M,(3) where the odd prime is p = 3. The results
in this section extend the results in the previous one for p = 3 and they indicate some
pointers to compute whole A£,(3) in a future study for p = 3.

The subring of lines L.(k) is considered in chapter six which consists of two sections.
We exploit the right action of GL(k,F,) on H,.(k) which commutes with the right action
of dual Steenrod operations to construct a general formula for the generators of this ring
such that k¥ < p. Motivated by the results in first section, in the second one some cases
of L,(3) are computed.

Ultimately, chapter seven is devoted for general discussion on M, (3)/L,(3) with com-
paring with a achievement works and the difficulties in our case, this chapter is ended by
Crossley’s conjecture and our computer calculations.

” While much has been written about this problem for p = 2 , there seems to be little
known about the odd primary case. We attempt to redress this imbalance.” Crossley said
1995 [7].
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Basic concepts of Algebra, and
Projective Spaces



Chapter 2

Algebraic concepts

2.1 Algebras

Definition 2.1.1 (R-algebra). Let R be a commutative ring with a unit. An R-algebra
A is a ring A together with a ring morphism h : R — A, such that

(rxzx)ey=zxe(r+xy)=rx*x(rey), r€Randz,ye A (2.1)

where the operation e is the multiplication of A and the action * : R x A — A is defined
to be x(r,x) = h(r) e z. An R-algebra A is called a commutative R-algebra if A is
a commutative ring, and if it provides an identity element then it is said to be unital
R-algebra.

There are other languages are used to define the R-algebra, one of them is by com-
mutative diagrams. This definition arises from the fact that any algebraic structure !
represents a map(s) from the Cartesian product of the underlying set(s) to itself.

According to the previous definition of R-algebra, someone easily can regarded A
as R-module by defining the structure map ¢ : R x A — A by ¢(r,x) = h(r) e x.
While, if A is considered as an R-module, relation (2.1) turns the multiplication map
(ring multiplication) e : A x A — A to be R-bilinear map, and the last one determined
uniquely R-module homomorphism, namely

HA - A X R A— A.
Hence, now we can redefine R-algebra A by the following way.

An R-module A with an R-module homomorphism us : A ®g A — A is called
nonassociative R-algebra, and u, is often said to be the multiplication map. The
commutativity of the following diagram

! Sometimes this term refers to the underlying set(s) together with the operation(s), here we mean
just the operation(s).
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AQrA
e AN
pa ®id KA
- ~
ARrARRrA A,
id i’
® A
' 'uA\ e
ARp A

makes A an associative R-algebra. Furthermore, the existence of the R-module homo-
morphism 74 : R — A and the commutativity of the following diagram

A®r R
|
|
AQrA—HA— A
T
7
R®R A,

provide A with a unit; n4 is called the unit map, if such a map is given, then it will
be unique. The structure maps of an R-algebra A are the multiplication and the unit
maps. Finally, the commutativity of A is determined by the existence of the twisting
map which is defined by 7(a ® b) = b ® a and the following diagram to be commute

ARr A
RN

T HA

! N
ARQrA—Ha— A.

Clearly, any ring R is itself R-algebra.
Remark 2.1.2. Tt is often denoted to a unital R-algebra A by the triple (A, ga,na)-

Definition 2.1.3 (Opposite R-algebra). Let A be an R-algebra with multiplication map
ta, and 7 be the twisting map. The module A over R togather with multiplication map
defined by pa o 7 is said to be the opposite R-algebra of A and denoted AP.

Note that A = A if and only if, A is a commutative R-algebra since pgq o7 = ug
see the definition of commutative R-algebra .

Definition 2.1.4 (Homomorphism of R-algebra). A map h: A — B between a given
R-algebras is said to be a homomorphism of R-algebra if it satisfies:

1) h(z +y) = h(z) + h(y),
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2) h(zy) = h(z)h(y),
3) h(rz) = rh(z).
It is clear that the first and the second conditions make A to be a ring homomorphism.
On the other hand, it is an R-module homomorphism or a linear map according to the

conditions (1) and (3). The definition of R-algebra homomorphism forces the following
diagrams to be commute if, and only if, h is an R-algebra homomorphism

NA/A\ }A\
e h\ /77A h\.
ARrA B R B
~ e N Ve
h®h HB id nB
~ v N /
B ®r B, R

In that case the necessary and sufficient condition that turns A to a homomorphism
of R-algebra is hopus = ppoh® h and hong = np.

2.2 Graded algebras

Definition 2.2.1 (Graded module?). A graded (positively graded)® R-module M is a
family of R-modules {Mp}vren such that M = @, .y My. Every member in M is said to
be a component, and if  an element in the component M, then it is called a homogeneous
element of degree (dimension) [, which is usually written by |z| = [.

Remark 2.2.2. We say M has trivial grading (trivially graded R-module M) when M = M
and My = 0 for k > 0. Hence, any underlying ring R is trivially graded R-module (put
R = Ro)

Definition 2.2.3 (Graded R-module homomorphism). A homomorphism of graded
R-module of degree d between a given graded R-modules M and N is defined to be
the following family of R-module homomorphisms

h’n:Mn_>Nn+da n=>0

Remark 2.2.4. If we do not indicate the degree of a homomorphism that means a homo-
morphism has degree 0, i.e. hi(M;) C N,.

Definition 2.2.5. We define the tensor product of two graded R-modules M and N
which is also a graded R-module by (M ®g N), = >, ,_, M, ®r N,. Thus, the degree
of a homogeneous element m ® n will be deg m+deg n.

2 We will consider graded module over a graded algebra, later, in definition 2.2.13.

3The generalisation of the terminology positively graded R-module is Z-graded R-module that is
defined by M = {M, }vrez, so the case of graded R-module will be the subsequence of the positive part
of Z-graded R-module, see [16] page 175 for more details in this case. While, the general definition can
be found in [3].
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Definition 2.2.6 (Graded R-algebra). A graded R-module A that is equipped with an
R-module homomorphism p4 : A ®zg A — A that preserves the grading, i.e. ps((A ®g
A)p) C A, is said to be graded R-algebra and p, is known as a multiplication or
product of A.

In the graded case, A is associative if pus o (14 ®r pa) = pao (ua ®rls) : A®g
A®rA — A. While, the commutativity property is satisfied by existence the twisting
map of graded version which is defined by 7(r ® y) = (—1)F¥ly ® 2, and the property
paoT = pa: AQr A —> A. Finally, the unit element in a graded algebra A has to be
homogeneous of degree 0 if the unit is exist.

Remark 2.2.7. 1. According to definitions 2.2.6 and 2.2.2, R itself is a graded R-algebra
with the trivial grading and the natural isomorphism pgr : R®r R — R as a
product. Clearly, it is unital with unit given by nr = idg.

2. The definition of a homomorphism of graded R-algebra can be deduced from the
definitions 2.1.4 and 2.2.3.

Definition 2.2.8 (Augmented algebra). An R-algebra homomorhpism ¢ : A — R is
said to be augmentation of A, while A in such case is called augmented graded
R-algebra.

Note that if A is an augmented unital graded R-algebra, then for any augmentation &
we have € o = idg.

Definition 2.2.9 (Connected R-algebra). A graded R-algebra A is called a connected
if there is an isomorphism ¢ : R — Aj.

Remark 2.2.10. Any connected graded R-algebra is augmented graded R-algebra by the
augmentation ¢! : A — R.

We define the structure maps pag,s and nag,p for A ® B where (A, pa,n4), and
(B, up,ns) are graded R-algebras by the following way.

Definition 2.2.11 (A ®g B R-algebra). For a given graded R-algebras (A, pa,m4) and
(B,ug,nB). Let A® B be the graded R-module that is defined in 2.2.5. Now, defining
the multiplication map pagp to be the following composition

idys QTR d ®
(A®n B) @r (A ®n B) —2 B A9nA®rBorB—2"F2 | AenB,

while; define n45,5 to be the following composition

~
~

®
R RopR -2, A s B
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Example 2.2.12 (Graded algebra). An example of a connected unital graded algebra is
the polynomial algebra over a field F in k variables z1,--- ,x; which is usually denoted
by
P(k) = Flzq,- -, zx).

If we consider P%(k) to be the vector space of homogeneous polynomials of degree d,
then P(k) = > 40 P?%(k), and P(k) is graded by d. The monomials ... 2% where
dy+---+dir =dand d; >0 for 1 < i< k will be the basis of P4(k), if for all 7 in that
range d; = 0, then this is the unit 1 of P(k), clearly; 1 € P°(k). Identifying P°(k) with F
enable us to define the identity map I : F — P°(k), and hence P(k) is a connected. In
the case when k£ = 0, we set P(0) = F.

Definition 2.2.13 (Graded module over graded algebra A). Let A be a graded R-algebra
and M an A-module. M is called graded A-module if there exists a sequence { M, } ez
of R-submodules of M such that M = ®&,M,, and A,, - M,, C M,,,, for all m,n.

2.3 Coalgebras

Definition 2.3.1 (R-coalgebra). An R-module C that is provided with an R-linear map
e : C — C ®pg C is said to be R-coalgebra. The map ¢ is often called the comul-
tiplication map, coproduct or diagonal map.

Firstly, an R-coalgebra C' is a coassociative if the following diagram

C®rC
- \Q/)
;ﬂc@ld C\
C CRrC®grC,
\'d@w —
i
Q /1/)0
C®grC

commutes. Alternatively, (¢ ®g idc) o Yc = (idc ®g Yc) © Ye-
Furthermore, it is a cocommutative R-coalgebra if the twisting map exist, and sat-
isfies 7 o Yo = V¢, i.e. the following digram has to be commutative;

C®gC

o

Yo T

S l
C—~vYc—- C®prC.

Finally, if there is a linear form ec : C — R such that the following diagrams
commute individually,
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C C
¢| \N ¢| \N
lC \ lC \

CRrC —ec®id— R®gC, CRrC —i1d®ec— CQgrR.

In other word, if C ® g R and R®pg C are identified, then we should have (ec ® id) oyc =
idc = (ec ®id) o 1pc. In the case of existence e¢, then it has to be unique which is called
counit map, and C is said to be counital R-coalgebra.

The term of structure maps of R-coalgebra C usually refers to the maps ¢, and
EC-
Remark 2.3.2. Often the triple (C, ¢, ec) use as a notation for the unital R-coalgebra.

Definition 2.3.3 (Homomorphism of R-coalgebra). An R-module homomorphism h :
C — D between a given coalgebras C and D, such that the following diagrams commute

S b
AN
/h, ¢D\ _h 2:4
C D®grD C R
N - AN 2
Yo h®h Ec id
N - N /
C®gC. R

is called homomorphism of R-coalgebra. That is, h is an R-coalgebra homomorphism
if, and only if, it satisfies ypoh = (h® h) o¢yp and epo h = ec.

Definition 2.3.4 (Graded R-coalgebra). An graded R-module C with comultiplication
that satisfies 1c(Cn) C ,,,_, Cr ®r Cs, is called a graded R-coalgebra, i.e. 1)c has to
preserve the gradation of C.

Remark 2.3.5. One can regard R itself as the graded R-coalgebra with gradation given
by Ro = R, R; = 0 for £ > 0, such that the diagonal map is the natural isomorphism
Yr: R — R®pg R, and the counit map is eg = idp : R — R.

Definition 2.3.6 (Augmented R-coalgebra). An R-coalgebra C is said to be augmented
R-coalgebra, if there exist an R-coalgebra homomorphism ¢ : R — C, which is called
augmentation of C.

Notice that for any augmentation of C, ecop=1dr: R — R

Definition 2.3.7 (Connected R-coalgebra). An augmented R-coalgebra C is said to be
connected R-coalgebra, if its augmentation is isomorphism.

By the same way as we have regarded the tensor product of two given R-algebras as
R-algebra (definition 2.2.11), we may construct the structure maps of the tensor product
of a given R-coalgebras from their structure maps as follows
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Definition 2.3.8 (C®gD R-coalgebra). Let (C,¢¢,ec) and (D, ¥p, ep) are R-coalgebras,
then 2.2.5 implies that C®g D is graded R-module. The comultiplication map ¥cgp might
be defined by the following composition

Va®Y dg @ TR id
A®gpB A  A®rRA®RB®RB— . (A®r B) ®r (A®r B),

and the counit map ecgp is given by

0

EcRVeE N
C D R®rR

C®rD R.

2.4 Hopf algebra

Definition 2.4.1 (R-Hopf algebra). * A graded R-module H that is provided by a struc-
ture maps of graded algebra, that is; (H, uy,ng) is graded R-algebra, as well as a struc-
ture maps of a graded R-coalgebra i.e. (H,¥q,cy) is graded R-coalgebra such that the
following diagram

HrH HH H Q/JH He@rH
l |
Y @ Yu uH@qu
|
H®rH®r H®r H dRTRid—— HOpHQr HR®r H

commutes , is said to be Hopf algebra over R, and it is denoted by (H, g, Vs, M5, 1)

Remark 2.4.2. The maps uy,¥y,ng and €y are said to be multiplication or product,
comultiplication or coproduct, unit and counit of R-Hopf algebra respectively, and
together the are called structure maps.

On examining the above diagram we have that ¢y is a homomorphism of R-algebra
or py is homomorphism of R-coalgebra. Regarding the definition, it is clear to see that
(H, pg,np) is augmented R-algebra by e, while; ngy can be viewed as coaugmentation

Of (H, 'ng,EH).

An R-Hopf algebra is called associative or coassociative if the underlying R-algebra
is associative or if the underlying R-coalgebra is coassociative respectively, and when both
properties are satisfied it is said to be biassociative.

Similarly, if the underlying R-algebra or R-coalgebra is a commutative or cocommuta-
tive, then we say there R-Hopf algebra is commutative or cocommutative respectively,
and by bicommutative if it is commutative and cocommutative. While, for the connec-
tivity property we need either the underlying R-algebra or R-coalgebra to be connected,
since they are equivalence.

4 We follow Milnor and Moore in their work [15] to give the definition of R-Hopf algebra.
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Definition 2.4.3 (Homomorphism of R-Hopf algebra). Let H and G are Hopf algebras
over R. A linear map h: H — G is called a Hopf algebra homomorphism or Hopf
map, if h is an R-algebra homomorphism as well as it is a homomorphism of R-coalgebra.

Remark 2.4.4. The tensor product H ® G of a given R-Hopf algebras A and B is, as
expected, an Hopf algebra over R whose structure maps is given in definitions 2.2.11 and
2.3.8.

Example 2.4.5 ( H*(X; R) and H.(X; R) as R-Hopf algebra). In many literatures see
[23], a H-space is defined to be a pointed topological space (X, e) where e is a basis point,
that is equipped with a continuous map p : X x X — X which satisfies po4; ~ idx and
po iy ~ idx, where i;(z) = (c(z),z) : X — X x X, iz(z) = (z,¢(z)) : X — X x X
and ¢: X — X is the constant map ¢(X) = {e}.

The map p is called a multiplication, and is said to be homotopy associative if
po (idx X u) homotopic to po (1 X idx). A continuous map 7 : X — X is said to
be a homotopy inverse if u o (id,n) and po (n,id) are homotopic to c¢. A multiplication u
is called homotopy commutative if 4 ~ p o 7 where 7(x1, z3) = (22, 21).

Recall that H*(X x X;R) ~ H*(X;R) ® H*(X;R), and that H,(X x X;R) =
H.(X;R) ® H,(X;R) from Kinneth formula for cohomology and homology when R
is given to be a field. Assume that is the case. Now, consider the continuous maps

)~ x “fa  ad x2xxxtx

where A(x) = (x,z), Vz € X which are induce the following homomorphisms

*

R H(X;R) - R, H'(X:R) 2l H'(X:R)® H*(X;R) £— H'(X;R),
and
i* C* A* ,u*

A straightforward calculation shows that (H,(X; R), i, A, i4, ¢) and (H*(X; R), A*, u*, c*, i*)
are Hopf algebras over the field R.

2.5 The mod 2 Steenrod algebra

The natural transformation
Sqi : Hn(X, Fg) — Hn+i(X; IFQ)

where i,n > 0 and H*(X;F,) is the cohomology of the topological space X with coeffi-
cients in a field of characteristic 2, that satisfies the following axioms:
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1) S¢° = id,
2) If |z| = n, then Sq™(x) = 22,

3) If i > |z|, then S¢i(z) = 0,

4) S¢*(z-y) = Y orieek 94" (z) - Sg°(y), (Cartan formula),
5) SqaSqb = Zg‘i_/g] (b;_lgjj)Sq“"‘b"quj, (Adem relation),  where 0 < a < 2b,

6) Sq! is the Bockstein homomorphism /3 of the coefficient sequence

0 7 2id 2, —— 7, 0,

is called Steenrod square.

Let R = Fy and M; = {0,Sq'}, so it is clear that M; is Fa-module for all ¢ > 0,
My, = {0,id} =~ F, and M = @,., M, is graded Fy-module. Now, define the tensor
algebra of M which is denoted by I'(M) for a fixed k by the following way, set IT°(M) = F,,
I''(M)=M and T*(M) =M ® --- ® M, k-times. Then,

(M) = él“"(M) = é( é M, ®~-~®Mik> .

k=0 k=0 \i1,,ixg=0

Definition 2.5.1 (Steenrod algebra mod 2). The Steenrod algebra mod 2, is the
connected graded associative Fs-algebra I'( M), subject to Adem relations which is denoted
by A(2). Formally, A(2) = I'(M)/Q, where @ is the ideal generated by Adem relation.

Definition 2.5.2 (Admissible monomial). A given vector I = (iy,--- , %) whose entries
are the non-negative integers, is said to be admissible if its entries satisfy the conditions
is—1 > 2i,, for 2 < s < k, and i, > 1. The corresponding monomial S¢' = Sq¢*Sg* - - - Sq*
is called admissible monomial. By convention S¢° is admissible.

Theorem 2.5.3. The set of all monomials Sq" such that I is admissible, form a basis
for A(2) as Fa-module.

Definition 2.5.4 (Decomposable and indecomposable Steenrod square). A Steenrod square
Sg¢' is called decomposable if S¢* = >~ _, d:S¢", such that d, is a sequence of Steenrod
squares. Otherwise, Sq' is indecomposable.

Hence, S¢' is decomposable if it can be written as a linear combination of monomials
such that at least one of them contains S¢t, and ¢ < 1.

Lemma 2.5.5. Sq' is indecomposable if, and only if, i is a power of 2.

Theorem 2.5.6. Sq* for allt > 0 generate A(2) as an Fy-algebra.
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Note that the indecomposable elements do not freely generate .A(2); for instance,
Sq*Sq¢t =0 and Sq2Sq® = S¢3Sq¢* = Sq*Sq¢?Sq .

We have introduced .A(2) as an algebra over the field F,, now we consider it as a
Fo-Hopf algebra by defining the map on generators

k

P(Sg*) =S¢ @ ¢,

that is extended to be a homomorphism of algebras which is considered as a coproduct
of A(2). Hence,
¥ A(2) — A(2) ® A(2)

Theorem 2.5.7. A(2) is a connected, biassociative and cocommutative graded Hopf
algebra over [Fy.

2.6 The Steenrod algebra mod p
The natural transformation
Pt H™(X;F,) — HY20-D(X;F,),

for all integers i,n > 0 where H*(X;F,) is the cohomology of the topological space X
with coefficients in a field of characteristic p is said to be Steenrod reduced power, if
the following axioms are hold:

1) P'=id
2) PM(z) = 2P, if |z| = 2n,
3) P*(z) =0, if |z| < 2n,

4) Pz -y) = Ziﬂ:n Sq(z) - S¢’ (y), (Cartan formula),

5) (Adem relations).
A1) papb — Z[a/p]( 1)ati ((p 1)(_]—;) 1)pa+b ipi if a < pb,
A—2) 'Paﬂ'Pb — Zga__lg] (_1)a+j ((P‘allgl;)—]))ﬂpa-Fb—ij_*_

Zﬁ-(fa”/”] (=1)ati- 1((;0 1)(b—j)— l)fpa-}—b—j/BP] if g < b.

a—jp—1

Now, let
B: H"(X;F,) — H"(X;F,),

be the Bockstein coboundary operator with coeflicient sequence
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Then, B is natural for mappings of spaces, 52 = 0 and B(zy) = B(z)y + (—1)FzB(y).
By the same techniques that have been used in mod 2 case can be used for this case as
the following.

Definition 2.6.1 (The mod p Steenrod algebra). The Steenrod algebra mod p which
is denoted by A(p) is the graded associative algebra over F, generated by 8 of degree 1
and the Steenrod reduced power P, Vi > 0 of degree 2i(p— 1), with respect to the 32 = 0,
PO = id and Adem relations.

Then, according to the construction of A(p), each monomial in A(p) might be given
by the form

IBjO’Pil le .. ,’pikﬂjk,
such that j,, = 0,1 and ¢, = 1,2,---, where 0 < m < k and 1 < n < k. We need the
following definitions and facts to show how the generators of A(p) are.

Definition 2.6.2 (Admissible monomial). A vector I = (jo, 1,1, " , ik, jk) is called
admissible if its entries are non-negative integers and i, — j, > ippp for 1 <n < k—1.
If I is an admissible vector, P! = ploph i ... Pik ik is called admissible monomial.
P is an admissible monomial by convention.

Proposition 2.6.3. A(p) is spanned by the admissible monomials, i.e. if € A(p), then
0 is written as a linear combination of admissible monomials.

Proposition 2.6.4. The set of all admissible monomials is linearly independent.
Obviously, the last two propositions implies the following theorem.

Theorem 2.6.5. The admissible monomials form a basis for A(p) as a vector space over
F

p-

As expected, the definition of decomposable and indecomposable are as same as in the
mod 2 case.

Definition 2.6.6 (Decomposable and indecomposable Steenrod reduce power). Any P*
is said to be indecomposable, if it cannot be written as linear combination from factors
Le. P # >, , dP! where d; is a sequence of Steenrod reduce power. Otherwise, P* is
called decomposable.

Lemma 2.6.7. P? is indecomposable if, and only if, i = p* for k=10,1,---.
Theorem 2.6.8. A(p) as algebra over F,, is generated by 8, P° and PP vk > 0.

Now, consider the map on generators

Y(B) =B ®id+id® B,
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and
Y(P¥) = Y Pigp
0<i<k
extends to a homomorphism of algebras which is represented the comultiplication map of
F,-coalgebra A(p). Thus
¥+ Alp) — Alp) ® A(p)-

Theorem 2.6.9. A(p) is a connected, biassociative and cocommutative graded F,-Hopf
algebra.



Chapter 3

Projective Spaces FP"

3.1 RP", CP" and HP"

3.1.1 Topological viewpoint

Let F = Fy to be one of topological fields R,C or H (not necessary commutative). We
denote by dr to the dimension of the R-algebra F, and since R = (1),C = (1,4) and
H = (1,4, 7, k); thus dp = d = 1,2 or 4 respectively according as R, C or H. Define F™ to be
the right vector space of n-tuples over F, with the usual inner product (x,y) = >, z:%,
where x = (21, ,Z5), Y = (Y1, , Yn); s, ¥ € F and g; is the conjugate of y;, then F”
an inner product space, i.e. for x;,Xs,y1,y2 € F*, and A € F.,

Lo (A y1) = (x,ynh  (x,y10) = (X1, ¥,
2. (x1 4+ x2,y1) = (X1,¥1) + (X2, ¥1),
3. (x1,y1+y2) = (x1,¥1) + (X1, ¥2),
4. (x1,y1) = (y1,%1)-

Consider the following subspace from F:

Gr = {u € Flua = 1},

so that; Gg = S°, G¢c = S* and Gy = S3, moreover; Gy is a topological group. Consider
also S9! the unit sphere that is contained in F” i.e.

Sin-1 = {x € F"|(x,x) = 1}.

Now, consider the scalar multiplication that is define by x-u = (zju, - -+ ,z,u), such that
x € §% ! and u € Gy. Note that from the first property of the inner product we have
(xu,xu) = (x,x)utt = 1. Thus, the previous scalar multiplication preserves the definition
of S9! for that reason we can define the following action;

@: 8M 1 x Gy — S, o(x,u) = xu.

18
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In this context, the group G acts on the right of S9! and since an action gives a

partition and so an equivalence relation. We say that x and y are equivalent if there is
an v € Gy such that y = x - u.

Definition 3.1.1 (Projective spaces). The quotient space S¥~!/ ~, where ~ is the
equivalence relation that has been defined above, is said to be (n-1)th real, complex
and quaternionic projective space according as the F is R, C or H. It is denoted by
FpPr1,

3.1.2 Algebraic definition

If we regard the equivalence relation ~ as a relation among F"s vectors, that is; v ~
u <= u = M, such that A € F and u, v are non-zero vector. Then the vectors of F" are
classified to a set of equivalence classes by this equivalence relation. We denoted by [v]
to the class of vectors containing vector v.

From the first glance we can see that the set of all vectors in [v] are just multiples of
v, that means; they are a vector space of dimension one with a single basis element v.
From this we can define FP"~! to be the set of all one dimensional vector subspaces from
F™. In fact this definition is just particular case for F". The general one is the following.

Definition 3.1.2 (Projective space of a vector space). The set of all one dimensional
vector subspaces of a vector space V of dimension n over an arbitrary field F is said to
be the projective space of V, and is denoted by P"}(V).

Let V be an n-dimensional vector space equipped with the complete flag, namely;
icV, C--- CV,, and suppose vy, vs,--- ,v, an adapted basis for V. Now, consider
the algebraic definition of the projective space, we denote to the elements of this space
by [v] and we called the non-zero vector v the representative vector for the element
[v] € P"1(V). Since V is an n-dimensional vector space, then v can be uniquely written
as

V=21V + -+ TrUy

where {vy,- - , v, } be a given basis for V. Therefore, the coefficients z; wherei = 1,2,---n
are uniquely determined, so we set [z1, 2, -+ ,Z,] = [v]. Note if Mv is given to be another
representative vector then [Av] = [v], similarly; [Az1, Axg, -+, Az,] = [21,292, -, Zn]-
The notation [z1,Zs, - ,Z,] are known a homogeneous coordinate. The reason be-
hind construction of the homogeneous coordinate is the following.

To describe P"~1(V), assume that W, is given to be the subset from P"~!(V) with
homogeneous coordinates [z1,Za, - -+ , Z,] such that z,, # 0, then each one of them can be
rewritten as

[xl,ﬁfg, T 7xn] :["El/xn71‘2/$na Ty 1]a
=[y17 Y2, yYn-1, 1] = Vn—-l-
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However, this gives a part of P*(V'), because we do not describe the vectors whose cor-
responding homogeneous coordinates having the form [z, %3, -+ ,Z,-1, 0], but these are
homogeneous coordinates to the corresponding vectors which are written by:

U= T1v1 + TV + - - + Tp_1Up—1,
it is clear that 9 is an element in P*~2(V). Consequently,

P (V) =V, UP (V).

3.1.3 Geometric description

Geometrically the previous equivalence relation can be regards as the equation of F-line
through the origin of F", in other word; [ = {\x|A € R,C or H, and x € R",C" or H"}.
Hence, we can define the projective space by the following way.

Definition 3.1.3 (Projective space). The n-th real, complex quaternionic projec-
tive space FP" is the set of all F-lines through the origin in the space F"*!. In that

case,
FP"=F""' -0/~ suchthat x~y<=x=)\y

where x,y € F**! and A € F.

3.2 Infinite complex projective space

As we have seen that CP™ = S?™*1/S1 Let (29,21, - , 2m) an element in CP™, then we
can define the inclusion map i : CP™ — CP™*! by

i([zmzla" : azm]) = [2'0,21,' o 7zm’0]'

The infinite complex projective space which is denoted by CP> is define to be the
union of all finite complex projective spaces

cp>=|Jcrm
=0
We denote by (CP*)* to the Cartesian product of k copies of infinite complex projective
spaces CP*® x --. x CP*.
The CW-complex structure of CP* is
CP®=¢e"Upe? Uy - Uspe®™ Uy - (3.1)

i.e a single cell in each dimension 2¢ for ¢ > 0 and no cells in odd dimension. This cell
structure can be obtained by induction and the following fact.
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Theorem 3.2.1. For each integer n > 0, CP™ = CP" ! U; e*™ such that the attaching
map f: St — CP™ ! is given by f(20, " ,2n_1) = [20, "+ » Zn_1]-

Proof.  Sketch of proof, define
h:CP" ' U; e — CP",

by h([20," -, zn-1]) = [20,* "+, 2n—1, 0] if [20," - - , Zn—1] € CP*" 1, and for (29, - ,2,_1) €
e take h(zo, -, 2n-1) = [20, " »2n-1, /1 — |20|> — - — |2n_1|?]. First, h is a well de-
fined map, the continuity of k is clear since it is a continuous on CP™! and e**. Fur-
thermore, because CP™! and " are both compact, implies CP"~! Uy €2" is a compact.
Finally, CP" is a Hausdorff topological space and h is a continuous bijective, then h is a
homeomorphism. O

Regarding the cohomology and the homology of CP*, according to 3.1 we can deduce
the n-dimensional celluar chains which are given by

je?™ =2 Z. if n is even, such that j € Z;

Cr(CP*®) =
( ) {0, if n is odd.

By the same way we can obtain the n-dimensional celluar cochains which are

0, if n is odd;
je*" = 7, if n is even, such that j € Z.

C™(CP®) = {

While, the boundary and the coboundary operators of such sequences are automatically
defined to be the zero maps, since they are homomorphisms from or to trivial.

Now, assume [ an arbitrary field or a commutative ring with unit, then the previous
chain complex and cochain complex of CP* implies the following sequences

dn dp dp- d d
0L 0 —HF — ... F—20—F
m+1 m n—1 2 1
.4___()d F d ()d ]F<__...<——]F<d—0+d—]p.
Thus
F, ifni ;
ty(cpep) = (B o
0, ifnisodd,
and
0, ifnisodd;
H"(CP“;IF)={’ Lo
, if n is even.
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Theorem 3.2.2. The ring H*(CP*;F,) = F,[z|, where x has degree 2.

Proof. Sketch of proof. If z is taken to be a generator for H*(CP*;F,), then
the non-zero element z° = z — z € H*(CP>;F,) can be chosen to be a generator for
H*(CP>;F,), and so 2" = z ~— -+ - — x (n-times) is the non-zero element that generates
H?"(CP>;F,). Thus as graded algebra over F,, H*(CP*;F,) & F,[z]. O

Recall that if F is a field or H*(X;F) is free module for F, then from the Kinneth
formula for cohomology we have H*(X x X;F) ~ H*(X;F) ® H*(X;F), so that

H*(CP* x CP™;F,) ~ H*(CP*;F,) @ H*(CP>;F,),

and from tensor product properties we have F,[z] ® Fply] = F,[z,y]. From that we can
deduce, the cohomology of the Cartesian product of k-folds of infinite complex projective
spaces with coefficients in a field of characteristic p is a polynomial algebra over that field
in k-variables, i.e.

H*(CP*® x --- x CP*;F,) ~ Fplz1, x2,- - - , Tk), (3.2)

such that each variable x; has dimension 2, where i = 1,--- | k.

Now, we wish to investigate the action of A(p) on H*((CP>)*;F,) which is easily
described when we know the action of Steenrod reduce power P* on the generators z; of
H*((CP>)*;F,). Then Cartan argument illustrates that if we have two or more generators
Ty, T2, T3, then P(zx023) = Y rtstti PT(21)P?(x2)P!(23). The following lemma shows
the action of P* and 3 on a generator z;.

Lemma 3.2.3. Let z; € H*((CP>)¥;F,), then for an integer k > 0,
a) B(z}) =0,

b) Pi(zh) = (’:)xfﬂ(p D where the binomial coefficient is reduced modp.

Proof.  a) From the definition of Bockstein homomorphism (chapter two section 6)
we have 8(z¥) = (8(z;))* and

B H"(X;Fp) — H'" (X, Fy),

so since |z;| = 2 this implies |8(z;)| = 3. But the construction of H*(CP*;F,) shows
that H3(CP*>;F,) = 0. Thus 8(z;) = 0 for any component j in the Cartesian product.

Hence 8(x%) = (B(z;))F = 0.

b) See [24] for the proof of this part of the lemma. An alternative proof for this fact
is, if ¢ > k then the result holds from axiom 3 (2.6). When ¢ < k, then applying Cartan
formula implies this

Piaf) = P&z, ) = D Phz) - P*(z):

J
ti4 =t
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since k > 1, in the string t; +t2 + - - - + tx = ¢ there are at least k¥ — ¢ of ¢, = 0 such that
n={1,2,---,k}, but we do not know which they are. Therefore, we need to pick out ¢
of t, (which are may be non-zero) from k, thus the previous expression can be reduced
and rearranged as follows

1 .
tny+ttn, =t

Now unless t,, =t,, = --- = t,, = 1, the right hand side of the previous relation is zero
according to axiom 3 (2.6), hence we get from axiom 2 (2.6) that

> Puay) o Prulay) =<,

tng +'“+tn,~=i

so the lemma is proven. O

As we have seen in above discussion that H*(CP>;F,) is an F,-algebra. To view this
algebra as an Hopf algebra we need to define a coproduct on H*(CP*;F,) which is given
by Alz) =z®1+1®«.

The homology H,(CP*;F,) may be regarded as a dual of the Hopf algebra H*(CP>;F,).
In this case the additional structure is carried, while the product in H,(CP*;F,) induces
from the coproduct of H*(CP*;Fp). In other word, if A is the comultiplication map,
then A : H*(CP>;F,) — H*(CP>;F,) ® H*(CP*>;F,). The dualisation of that map
gives the following one A* : H,(CP*;F,) @ H.(CP>;F,) — H,(CP>;F,), so our aim
is finding A*(x ® y) which is denoted by z - y, from the known one A.

We treat a basis {1,v;,vq, -} of H(CP>;F,) such that v, € Hy,(CP*>;F,) that
satisfies
1, ifm=n;
<Una$m> = .
0, otherwise.

where 2™ is a basis element in H*™(CP>;F,).

Assume that v; - v is dual to taking the coproduct in H*(CP*;F,) which is given by:
Alz)=z1+1®«x, (3.3)

and then
Alz™) = Z ™ol @ g
o \ 1 ,

s0 vj - U is the element in degree 2j + 2k (In fact Ho(jyx)(CP*;F,) = {€vjyk : € € Fp})
that satisfies
(v - v, 2™) = (v; @ v, A(™))
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since v; - vx has degree 2(j + k), this will be non-zero only if m = j + k in which case

(vj - vk, ™) =(vj ® vk, A(z™))
itk .

_ J+k\ i+h—i

=(v; ® vy, E_O ( ; )x Rz’ )

=(v; ® v, <] j k) 2! ® z*)

039

If j 4+ k < p, then (ij) # 0 mod p. Thus

i+ k
vj - vk = (J ; )vj+k, (3.4)

so easily someone can check that the multiplication which is derived in equation 3.4 is a
commutative and associative.

For that we can interpret the basis {1,v1, vs, - - - } of H,(CP>;F,) to other language as
follows. We denote by v9 = 1, v; = v; and by v] = v; -+ - --v; (r-times) where r < p, for ex-
ample; v? = v;-v; = 2vs, by using the induction and 3.4 we get; if v{'l = (r—1)v,_1, then
v] = rlv,. Then v; can be introduced as a generator for Hr, (CP>;F,) where T; < 2p—2.

The reason why we do not extend v; to be a generator for whole H,(CP>;F,) like
z in the cohomology case is because v} = plv, = 0 mod p. That is, we need to pick a
generator for Hy,(CP™;F,). Set v, to be a generator for Hy,(CP*;F,). Using the same
notations that have been used in previous paragraph, observe that according to Lucas’s
theorem we have v;, - vj, = (i?)v(iﬂ)p and so vy = rluy, implies that {v1,vp} can be
regarded as generators for Hr, (CP>;F,) if we exclude v} where Ty < 2(p? — 1).

Repeating the same argument inducts that the set {v1, vp, vp2,- - } such that Ug'n, =0
for all integer n > 0 generates H,(CP>;TF,), in other word; H,(CP>;F,) is a truncated
polynomial algebra over [F, that generates by vy», Vn > 0 which are truncated at power
p for each generator i.e.

H.(CP*;Fp) = Fplvr, v, ... ]/ 07,05, ... ].
Similarly, applying Kinneth formula for homology implies
H,((CP®)*;F,) = H,(CP®;F,) ® --- ® H,(CP®;F,)  (k-times)

and from the following property of tensor product

Fpley, zp, -1/ [0, 25, - 1@Fp[yn, vp, - V101, 95, - -1 = Folzn, v1, 2, 4 -1/, 97, 25, 95, -

]
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we deduce the [F-homology of the k-copies of infinite complex projective space

ook w \ _ Fpl()1, o (@)1, (T1)ps - -5 (Th)py ]
P S = T ol @l @] 35

3.3 The action of A(p) on H,((CP®)*:F,)

The same ideas that have been used to derive the multiplication map of H,(CP>;F,)
which is induced by the comultiplication of H*(CP*;F,), can be developed here. From
the left action of the opposite algebra A°(p) of Steenrod algebra A(p)

P H*(CP*;F,) — H*(CP™;F,).

We can determine the action of the operations dual, to be the right action of A(p) on
H,(CP>;F,) which is defined by

(@™, (vk)P") = (P'(z™), vi)

where 2™ € H*(CP>;F,),vx € H.(CP>;F,) and P* € A%(p). We denote to (vx)P* by
P;(vx) to keep in our mind this is the action of the dual operation of P. In this context,

P; : H,(CP®;F,) — H,(CP™;F,).

Furthermore, we can detect Cartan argument conduct for these new operations. Finally,
these two ideas enable us to describe the right action of the of Steenrod algebra over I,
on H,((CP>)k;F,)

The following lemma is the same as lemma 3.2.3 but in dual case, in this lemma we
will show the action of P; on the basis {1,v1,v2,---} of H,(CP*;F,). The proposition
that follows the lemma is devoted to the action of P; on the the generators vy, where
r>0and 0 <n < p—1of H(CP>®;F,).

Lemma 3.3.1. For any integers i,k > 0 and vy € Hop(CP*;F,) then

Pi(vx) = (k e 1)>Uk—i(p—1)-

i
where the binomial coefficient is reduced modp.

Proof. From the action of P* on an element z™ € H?*™(CP>;F,) (lemma 3.2.3), we
will find the action of its dual P; on vi. Recall (z™,vx) = 1 when k = m and 0 if k£ # m.
That is
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Thus

From the first glance for lemma 3.3.1 we see that if K <i(p — 1), then P;(vx) = 0.

Proposition 3.3.2. For t,r are non-negative integers and 0 <n <p— 1.

Py(vp) = nvop ifr=1;
p (_1)r—1nvlvljl.;—1 - vgr_—lfl)gr_l, ZfT‘ > 1.
01 'lft >Tr— ].,'
Pt (U;lr) = n'Upr—l’U;r_l, ift=r—1;
T W N

Before starting the proof of the proposition we need the following preliminaries:

Definition 3.3.3. Any positive integers n and m are said to be complement to each
other with respect to the p-adic expansion if Vi either a; = 0 or b; = 0, where a;, b; are the
coefficients of p* in the p-adic expansion of n and m respectively. We said m has p-adic
expansion complement to the p-adic expansion of m or conversely.

Lemma 3.3.4. Let ¢ and j are positive integers, such that © is complement to j with
respect to the p-adic expansion, then v; v; = viy;.

Proof. Assume that i = ag+a1p+---4+a,p” and j = bg+bip+ -+ + b,p™ are
the p-adic expansion for ¢ and j respectively. Take ¢ = maz(n,m) since 7 has p-adic
expansion complement to j, then easily we infer the p-adic expansion of ¢ + j which is
given by i + 7 = (ag + bo) + (a1 + b1)p+- - - + (as + by)p*. Now, applying Lucas’s theorem
to calculate the following binomial coefficient, if ¢ = n implies

(H—g) _ (a0+b0) <a1+b1>m (an—i-bn) — 1 mod p,
A ag ai an
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because each binomial coefficient in the right hand side is written by either (Z:) =1or
by (bg) = 1 where 0 < k < n. Thus, v;v; = (itj)viﬂ = vij. Similarly, if ¢ = m, then we
can use the same argument, so the lemma is proven. O

Corollary 3.3.5. For any positive integer i, v; = VaVa;pUagp? = * * Vanpn, Where ag,ar,--- ,an
are the coefficients of the p-adic expansion of i.

Proof.  From the assumption of the corollary we have v; = Vsq4q,ptasp?-+anpr- IM-
mediately, from the previous lemma we get the result, just we need to observe that each
component of any p-adic expansion is complement to the other components with respect
to the p-adic expansion. O

During the following proof we will use the corollary 3.3.5 without comment.

Proof. [proposition 3.3.2] In fact, lemma 3.3.1, the relation Upr = n'vnpr and Lucas’s
theorem are the keys of the proof of this proposition. Starting with Py (v};) when r = 1,
then

Pi(vy) = Pi(nlvnp) =n!P1(vnp)
np—(p-1)
:n!< 1 )”np—(p—l)

=nv v,

If r > 1, then Py (vy,) = n! ("pr_l(p_l))vnpr_(p_l), but the p-adic expansion of np"— (p—1)
is given by np” — (p — 1) =1+(@-Dp+{p-1p*+---+(p—-1)p" '+ (n—1)p", so that;

P(vn):n'l p—1\(p—1y (p—1 ?’L——lv ) o
1\ Ypr \1 0 0 0 0 4 (p=1)p+(p—1)p>+-+(p=1)p"" ' +(n—1)p

=n01Vp-1)pVp-1)p2 * * Up-1)pr=1 Un—1)pr
Now, using the fact vp_1)ps ),’Up Yfor 1 < s < r—1, and Wilson’s Theorem

(p—1)!=—1, gives

=(p1

Pi(vg) = (1) 'noged ol g

!(””r"i’:(”_ ) Unpr—pt (p— 1, Firstly, when ¢ > r—1, then

.} = 0. Secondly, if ¢ —pr 1” 2en

Turnmg to the case Ppt( ) =
—p'(p—1) <0, so that; Py (v
np” —p"Hp—1)

Ppt ('U;lr) = n!Ppr—l(Ugr) = ( p" 1 )Unpr—pr'l(p—l)

| I\ /n-1
=n: 1 0 Up”'1+(n~1)p’

=nuyr—1vp

":3;3
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Finally, when t < r — 1, so Pp(vy) = n!(””r_’;;(”_l))vnpr_pt(p_l), however; the p-adic
expansion of np” —pt(p—1) = p* + (p— V)p"*t' + (p— )p"*?+-- -+ (p—)p" " + (= 1)p",
implies

np” —p'(p—1)
Ppt (’U;‘r) =nl ( pt Unpr—pt(p—1)

'1 p—1\/p—1 p—1\/n—1
=y 0 o /7 o 0 )UPHE-DR e (=P (DT

=n! R
=N:Upt U(p—1)pt+1VU(p—1)pt+2 Y(p-1)pr-1V(n—-1)pr

_ r—t—1 p—1_ p—1 p—1 n— 1
=(-1) MUpt Ut 41 Uitz * * * Vo1 Upr

While, Cartan argument for the dual case is constructed by the following way:

(Pi(u®v),z®y) =(u®v P"(x ®Y))

=(u®w, ZP’ "(z) @ P™(y))

_Z '—n(u ®P )‘I®y>
ZP@ (1) @ Pr(v),z Qy),

therefore; Pi(u ® v) = S0 Pi_n(u) ® Po(v). Now, using the following isomorphism
on the generators a(u, ® vs) = u,vs, which have been used implicitly, we get P;(uv) =

Y o Picn (W) Pu(v).



Part 11

Annihilated Elements M(k) and the
Subring of Lines L. (k).
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Chapter 4

On M, (k) and M*(k)

4.1 Motivation

Let H.(k) be the graded truncated polynomial algebra over F, where p is an odd prime
number, which is defined in relation 3.5. That is to say, H.(k) = ®f=1 H(z;) where
H(z;) = Fp[(zi)1, (zi)p, - - - 1/[(2:)}, ()5, . . ], and from the previous chapter we have seen
that H.(k) = H,(CP* x --- x CP*™;F,). Moreover, Steenrod algebra mod p, which is

k—times

denoted by A(p) has an action on the right of H,((CP*>)¥;F,), thus on H.(k) given by
proposition 3.3.2] and Cartan formula. That is A*(p) ® H.(k) — H.(k), this action
allows us to view H,((CP*>)*;F,) as an algebra over Hopf algebra A*(p).

The main object in our study is the ring M, (k) which consists of the elements of
H.,(k) which are mapped to zero by all elements of strictly positive degree of A(p). In
other word, M, (k) is obtained from the intersection of Kerf for all § € A*(p). Ac-
cording to [6] we can reformulate this problem as follows. From Steenrod algebra A(p)
properties, we need to consider the action of (the dual operations) P; and 8* which are
defined in chapter 3.3 previously. Lemma 3.2.3.a shows that Bockstein homomorphism
acts trivially on H*((CP*)*;F,), by duality the right action of Bockstein homomorphism
B also trivial on H,(k), so Kerp* = H,.(k), thus we do not need to regard the action of 3*.

On the other hand, if 3 is disregarded then the remaining generators for A(p) are pr*
where k = 0,1,2,- -, in addition; P° = 1. Obviously, the reason why P° is excluded is
KerP® = 0 this implies M, (k) = 0. For that we need only to consider the right action of
PP" which we denote by Py for the same values of k. Therefore, the object M, (k) now
obviously means

Hy(k) 2 My(k) = (| KerPy.

t>0

The problem of calculating the subalgebra of H,(k), which is denoted by M, (k) that
contains the annihilated elements by the set of all Py, where k = 0,1,--- important
problem for many different aspects, for the following reasons:

31
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e It is the corresponding (dual) problem to what is known the hit problem. The
problem of finding M*(k) = P(k)/ A P(k), where P(k) is the polynomial algebra
in k-variables, A is the augmentation ideal in Steenrod algebra A(p), and A} P(k)
is the notation of the set of all elements in the image of A that are called hits.
However, M, (k) has stronger structure than M*(k) because the former is subalgebra
of H.(k) , the object M*(k) has various application in many mathematics subjects
such stable homotopy theory, representation theory, and in from where this problem
had been arisen, that is; finding the set of minimal generators for H*(BV,F,) as
A(p)-module [14]. For more details see [9)].

e The second reason emerges from Wood’s observation in [29] for the representation
of GL(k,F,) which states that all irreducible representations of GL(V)(GL(k,F,))
might be found in M, (k). That is to say, an enormous chunk will be disregarded
when M, (k) = 0, and for those where M, (k) # 0 the dimensions will be known. In
[6] and [7] Crossley gives a complete description in case of GL(2,T,).

Recall that P; : H,((CP*®)¥,F,) — Hp_ip-1)((CP®)¥,F,) and the previous discus-
sion admits ¢ = p' for ¢ > 0, where our aim is to calculate M. (k), so Pyt : H,((CP>)*,F,) —
H, iyt pi+1 ((CP®)k F,) gives a hint that is for a specific degree n we are not required to
find the KerP, for all ¢t > 0, but for some ¢.

The t’s that we need are those satisfy the inequality p!*! < n + p', while; otherwise
ie. p'*t > n 4+ p' the image of P, automatically will be zero. For instance, M, (k) =
H,((CP*®)*F,) for 1 <n < p— 1, because there is no ¢ > 0 satisfies n + p* > p'*1.

4.2 The Spikes in H,(k)

The first appearance of the term spike was in William M. Singer’s work in 1991, see [21].
In an analogous way, but in dual case we give the following definition of a spike.

Definition 4.2.1 (Spike). A monomial
S= (e} (z)p ™t ()i (@) ()7 ()32, - (@) (@) ()it € Ha(k),
such that ¢1,...,i > 0and 0 < aq,...,a;x < p— 1 is called spike.

Note, the degree of a spike (z1)? " (z2)? ™ ... (2 )2 . .. (z1)5 (22) 5, - - (xk)ka is given

by d = (a1+1)p" +(ag+1)p"+. .. (ax+1)p"* —k, and the permute of any (p**, a,), ("™, am)
between z, and z,, produces another spike in this degree, unless p'» = p'™ and a, = a,,,

thus the set of all such permutations gives all spikes in this degree which have the same

degree form. Particularly, a spike in H,(1) is given by xﬁ’_lxg‘l T

Theorem 4.2.2 (Crossley). The basis for My(1) where d = (a+1)p' — 1, such thati >0

and 1 <a <p-—1 is given by m’l’_lzg‘l ... mgi. Otherwise My(1) = 0.

Proposition 4.2.3. If there is a spike of degree d in H.(k), then it is in My(k).
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Proof. Assume
S = (:cl)’l’_l(asl)g‘l ce (1171)
in H,(k), then for t > 0

s (@) (z2)B L (x2 o (o) )Rt (zx) % @ spike

Ppi(S) = Py ((xl){’—l(asl)g-l O 00 N €2 el ) e €2 A 79 Sl 7Y Lo (:zzk);fk) :

Applying Cartan formula implies

Pe(S)= 3 Pu (@ @s @) Pa (@ @05 @)

n1+na+-+ng=p

according to theorem 4.2.2, we have Py, ((mj)’l’_l(xj)g‘l e (xj);{j) = 0, for n; > 0, so
each summand in the above expression will be zero, and this shows P (S) = 0 for any
integer t > 0. Hence, S € My(k). O

In addition to the previous proposition, if such spike exist in My(k), then it will be
a basis element (obviously, because it is a monomial). In fact, the significant difference
between the case when p = 2 and p is given to be odd prime is that in the former if
My(k) # 0, then there is at least a spike. By contrast, when p is odd it is not necessary
to see that. For instance, (see [6], [7]) for the annihilated elements Mps+2.q(;41)ps+14ps—2(2)
such that 0 < ¢ < 5 < p— 3 and s > 0, similarly; our calculations expose that the
annihilated elements in degree n = p**3 + 2p**2 4 ps+! 4+ 2p* — 3 does not involve a spike.

As we have seen one of the important application of M, (k) and M*(k) is to detect
whether My(k) = 0 ( M%(k) = 0) or not, that means; in which degree d all polynomials
will be hits, that is A*(p)P(k) = P(k). On the other side, in which degrees the Kerf are
disjoint sets V8 € A(p).

In fact, the answer of these questions states according as .A(2), or .A(p) where p > 2.
In the case of .A(2), the complete answer was the proof of Frank Peterson conjecture 1987
[14] by R.M.W Wood in 1988 [30] which states

Theorem 4.2.4 (Wood). M4(k) = 0 <= a(d + k) > k, where a(n) is the number of
digits in 2-adic expansion of n.

Turning to case A(p), here it seems to be there were many efforts to address this
problem, the first one was in the work of Chen and Shen in 1990 Barcelona conference
on algebraic topology [20]. Followed by Crossley in [8] with the following theorem:

Theorem 4.2.5 (Crossley). If d and k satisfy one of the following conditions, then
M4k) =0.

1 op(d+k) > k(k+1)(p—1)/2,
2. ap((d+k)(p—1)) > k(p—1).

where a,(n) = Zizo n;, such that n; be the digits in p-adic expansion of n.
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Theorem 4.2.6. Let d be an integer such that 0 < d < p¥+p* 1+ .-+ p—k then My(k)
is non-trivial. Moreover, the first My(k) = 0 occurs whend = p* +p* 1+ .- +p+1—k.

Proof. For 0 < d < p—1, it is clear that each d can be represented by d = (a+1) —1
such that 0 < a < p — 1, and theorem 4.2.2 implies that My(k) # 0. Now, assume
that p < d < p*+p* 1+ ...+ p— k. Then d lies in one of the following inequalities
p+p 4+ +p—i<d<pTl4+pi+---+p—(i+1); wherei=1,2,...,k— 1. That
is to say, for each 1

0<d—(p+p '+ -+p—1) <pt -1

s0, can be written as

d— (P +p '+ +p—i)=ap'+aiip T+ +ap+ag

i.e.
d=(a; +1)p'+ (aic1 + 1)p" '+ + (a1 + Dp+ag — i
=(a;+1)p =1+ (a1 +D)p P =1+ 4 (a1 +Dp—1+(ap+1) -1
such that 0 < agp,...a; < p—1, unlessa; = a; = ...a; = 0,then 1 < gy < p-—-1

since p"*! — 1 > 0, and 4 < k — 1. Theorem 4.2.2 reveals if d, = (a, + 1)p" — 1, then
My, (1) # 0. Thus, we get that My(k) contains at least one element for any d in that range
which comes from the multiplication of ¢ 4+ 1 different elements each one of them belongs
to Mg, 41)pi—1(1) fori = 0,1,--- ,k—1, in other word; any degree contains at least a spike.

The previous discussion show that My(k) # 0 for any d < p* +--- +p — k. Now
consider,
d=p-+ - +p+1—k
So,
ap((d+k)(p—1)=(k+1)(p—1)

according to the second condition in theorem (5.2.5) we get M%(k) = 0 in this degree or
correspondingly, My(k) = 0. O



Chapter 5

Some results On M ,(3)

5.1 Calculation of M,(3).

For the rest of this chapter we will deal with H,(3), unless otherwise it will mentioned. As
we defined H (k) with slightly difference in the notation, we define H,(3), and use z,¥, 2
instead of z1, x5, x3, i.e.,

H(3) :]Fp[xla Y1, zl,wp, ypa Zp) e ]/[mzl)a y;f, zjzl), .TI;, ygv z;’, .. ]

~[],(CP® x CP® x CP™,F,).

The following theorem and the next one are the main results in this section. We use
the same techniques used in [2] and [6].

Theorem 5.1.1. The dimension of M,(3) for 1 < n < p? is given according to the
following table:

Table 5.1:  Dim M,(3)
Degree,n Dim M,(3)

1 S n S p— 1 (n+l)2(n+2)

n=a+p, (a+2)(p—1)+p(pT_1) ifa#tp—1
0<a<p-—1.
p2+2+@ ifa=p-—1
bp(p — 1) + b(b—a)(a+2)—(g—a—2)(P—a—3) ifa<bd
n = a+ bp,
0<a<p-1, bplp—1)+ (a+2)(GH)_(’;G_Z)(”"Q_& ifa>banda#p—1
l<b<p-—1.
bp(p— 1) + ————p(pﬂ);b(bH) ifa=p—1

35
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Proof. As we have observed in the last paragraph of section 4.1 that M, (3) = H,(3)
for 1 <n <p-—1,soit is easy to detect the basis here since each element of degree n in
this range can be written as a linear combination from the monomials z7*y¥~™ 27 * where

0<k<nand0<m<k,so that; dimension M,(3) = %‘ﬁ)

In general we consider only the homogeneous polynomial in H,(3) because the image
of homogeneous terms under Py for ¢ > 0 is either zero or homogeneous terms, so if there
is a cancellation between these images, then it comes from those homogeneous terms.
Furthermore, for p < n < p? calculation of M,(3) requires to find only KerP; since the
argument in section 4.1 indicates that the only values of t that satisfy n + pt > pt*! are
t = 0,1 for the degrees (p — 1)p < n < p?, otherwise only ¢ = 0. On the other hand,
proposition 3.3.2 tell us; the operation P, send any monomial of degree less than p? to
zero, so the only consideration operation in this case will be P;.

In fact, any polynomial of degree n where p < n < p? consists of {z1, y1, 21, Zp, Yp, 2}
and because it is a homogeneous, the sum of the exponent of 1, y;, 27 must be a constant
modp. Let a to be that constant, then the total power of x1,¥;,2; will be a, p+ a or
2p + a. Now, observe that if we apply P; on a monomial whose total power of z1,y;, 21
is a, then the image (if it does not equal zero) it will be monomial(s) each one has total
power of z1,y1,21 a + 1.

Similarly, for the remaining cases we will get p+a+1 and 2p+a + 1 as a total power
respectively. Evidently, the image of the first case does not cancel the other cases image,
and the same for the other cases, therefore; these cases are disjoint. Consequently, we
exploit this property to deal with these cases individually, moreover M,(3) is written as
a direct sum from the kernel of these cases.

Case 1: Total power = a, we will consider two separated cases in this case according
to either a # p — 1 or a = p — 1. In both, the general formula of an arbitrary polynomial
is given by

a k b i
k,m k— k b— k,m
0= ZZ a” e T yz Jz ¢ for ;" € Fy (5.1)
k=0 m=0 i=0 j=

Now, when a < p — 1 applying P; implies

a k b i
1 _ -kmmkma+1k i—j b—i—1
P(H) - §:§ :E :E :(b_l i 1Y y ]Z
k=0 m=0 i=0 j=0
k b %
kmmk+1mak z]lbz
D 3D 3D D) DU P
k=0 m=0 i=0 j=0
k b 1

+ Zzzzjakm m+1yic mzla kiC] lyp

k=0 m=0 i=0 j=0



5.1. CALCULATION OF M;(3). 37

Assuming 6 belongs to M, (3) gives P16 = 0, and substituting 2 = ¥ = 2
previous expression and rewriting it produces

ZZ(b+1—z)at 1 lzfﬂxj 1y},] b—i

i= 1] 1

+ZZ i+ 1= f)afy el Y b
=1 j=1

+ZZ]aaa a+1xg lyp b—1
1—13 1

+ZZZ(b+1—z)af+11]k+ll+]a ) AR S T
k=0 i=1 j=1

+ZZZ 2+1 am-{—l_i_jaam) m+1y;z mxj lyz sz i

a—1 b 1
+ ZZ{b_’_l_z ic+11101+(2~+1_') ” 1}yk+1akl._7 lyp bz
k=0 i=1 j=1
a—1 k— b
+) ZZ ((b+1 -l + (i +1 - fafyt! + joky)
=1 m=0 i=1 j=1
m+lyic m ;l kZL'J 1y’L ]Zb z=0
On examining the previous expression we find that the terms are independent and
this implies each one of them is equal to zero. Likewise, it is very noticeable that the
monomials of each term also linearly independent. Hence, we get, if a # p — 1, the
following relations:

1) a?’_ol’j_1=0forlgigbandlgjgi,

2) o™ =0for1<i<band1<j<i,

6=

3) aZf:OforlgigbandISjSi,

4) jolf=—(b+1-i)af " for 1<i<band1<j<iwhere0<k<a-—1,
5) jaz’j —(i4+1—7) f]m'lHforlgigbandlgjgiwhereOSmSa—l,
6) (1+1—j) fjol— (b+1—i)afflly’jo_1 fori1<i<bandl<j<iwhere0<k<a-—1,

7) jaf,’jm —((b+1-9)a f+1ljm’f1+(z+1—]) meJ{l) for 1 <7 <band 1< j<iwhere
1<k<ag—-land0<m<k-1.
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According to the above system of linear equations we have @ linear equations from
relation (1). Examining the subscript indices of these equations shows they are indepen-
dent because each value of ¢ or j describes different variable. Obviously, similar thing
could be seen when one considers the equations in relations (2) and (3).

On the other hand, the superscript indices reveals that these equations together are
independent since a # 0 (if a = 0, then the relations from (4) to (7) will be finished and
the equations in relations (1) to (3) will be given by a2 y=0for0<i<band 0<j<q,
that means # = 0 and this contradict with the assumptlon since p < d < p?).

Turning to relation (4) that involves @ linear equations which are also indepen-
dent, because of for a fixed & = c the equations jo;; = —(b+ 1 — j)a et Jc+i involve
new variable o for each one such that 1 <i <b and 1 < j <1, so they are indepen-

dent,likewise; for any value of £ such that 0 <k <a— 1.

In addition, these new variables could not seen in (1), (2) and ( ) except in two cases.
The first one, if k = 0, then (4) is given by ja?”](-) = —(b+1—1)o, ” ,but b+1—1¢ %0 for
1 < ¢ < b implies these equations are independent of the equations in relatlons (1). The
second one, when k = a — 1, so (4) becomes jag; Lol — _(b+1—14)a *1.j—1, similarly;
since j # 0 for 1 < j < i illustrates why (4) mdependent of (3). Consequently, the

equations in (1), (2), (3) and (4) are independent.

The same arguments can be used to shows that the equations in (5) are independent
and they are independent of what are in (1), (2) and (3). To check the independence of
equations (4) and (5), we need to consider only the case when k=a—1and m=a -1,
so we get respectively from (4) and (5) the following

Jafjla ! =—(b+1-i)g o 1] D
and

ja;l;ll (z—'—l_j)zl]l

Clearly, the equations in the above two systems are independent. Hence, the equation of
(5) are independent of (1), (2) ,(3) and (4).

By the same way, we can show that the equations of relation (6) are independent and
independent of the equations in previous relations. Finally, in (7) the following equations

k+1,m+1 .k, k,m+1
(b+1—]) z+1]m-{_ - ]ai,]m (Z+1 ]) 'L]T-T{L-T

for1 <t <band1<j<isuchthat ]l <k <a—-1and1<m <k —1, introduce
for each value of k or m a new variable(the left side of each equation), that is to say;
these equations are independent. For 1 < ¢ <band 1 < j<iwherel <k<a—2and
1 < m < k — 1 these new variables do not appear in any equation of previous relations,
so the equations with these value of ¢, j, £ and m are independent of what are in previous
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relations.

Whilst, if k =a — 1 we get

(b+1—affily = —jof; ™ = (141 = j)af ™,

where 1 <1 <b,1<j<iand 0 <m < a—2. The equations in this case may be give a
sense they are dependent on some equations in relation (5), but we will see this is not the
case when we look at the left superscript index of the right variables in both formulas.
Moreover, in (7) if the one of right variables dose not free variables, then it depends on
variables in relation (7) and so on until we stop at the free one. Therefore, the equations
of relation (7) are independent of the equation in (1) to (6). Hence, all the equations in
that system are independent.

Thus, we have b(bz—“) linearly independent equations from relation (1), (2) and (3), so

3b(b+1) ab(b+1)
—2 2

equations. Now relation (4), (5) and (6) gives linearly

3ab(b+1)
2

adding these we get

independent equations, this time adding gives . Finally, the number of linearly

independent equations in relation (7) is w. Hence, the total number of linearly
independent equations we get is EW——%'B—)(“—*&.

On the other hand, the number of variables aﬁ 7 oof 8 is (“+1)(a+221(b+1)(b+2). Conse-
quently, the dimension in this case is given by:
1 2)b+1D)(b+2 b 1 2
pim 0, = @+ DD+ DE+2) _ Yo+ )t e+
b+1 2 1-b
2
If a = p — 1, then similar previous argument gives the equations below:
1) joyf = —(b+1—i)of f for 1<i<band 1 <j<iwhere0<k<p-—2.
2) jozz;":—(i-}-l—j)a;l”;ﬁl for1<i<band1<j<iwhere0<m<p-2.
3) (i—!—l—j)af’f_l = —(b—}-l—z’)affll”f_l forl<i<band1<j<iwhere0<k<p-2.

4) jol = —((b+1— ) + (i +1—j)af!) for 1 <i < band 1 < j < where

1<k<p—2and0<m<k—-1

The independence of the equations of the above system can be deduced from the case
where a < p — 1, so the last relations from (1) to (4) give w linearly inde-
pendent equations, whilst; there are &il—)(i:m variables in the formula (5.1) when
a =p— 1. Hence, we have

(b+1)
2

Dim C, = (p(p+1) — b(p— 2)) (5.3)
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Case 2: Total power = a + p. In this case we will deal with two separate cases
according to a, the first one when a < p — 1 and the second one is if a = p — 1. For both
we will use the same technique that has been done to proof case (1) to find the dimension.
Now, if a < p — 1, then an arbitrary polynomial should be written by

p-1 k b-1 i
0= Z ZzzﬁkmeTyf " p+a “z yp b i
k=a+1m=0 =0 j=0
a p-1 b-1 i

+Z Z ZZﬁkm mp+km ak yz szz 1 (54)

k=0 m=k+1 i=0 j=0
Applying P! implies
p—1 k b-2 i
. kmmkmp+a+1k i b—i—-2
ZZE:E:(Z)—Z—I z]"rlyl yfz
k=a+1m=0 i=0 ;=0
p—1 k b-1 1-1
kmmk+1mp+ak % 1, b—i-1
D0 DD D =By T ey
k= a+1m—0 i=1 j=0

2

+ Z Zzzjﬁkm m+1 k mzp+a k:rj 1y1 sz i—-1

ka+1m011]1

a p—1 b— i
+kma+1k b12
+ > Z —i= DB Y 2y
k=0 m=k+1 i=0 j=0
a p—1 b-1 i-1

+ Z Z Zzz_-?)ﬂkmmm-k-ﬂ msz y;)lgzl

k= Om-—k+1 i=1 j=0

a p—1 - i

+ Z Z Z]B +1yzl»+k m ya- kx;) ly;—jZZ—i—I,

k=0 m=k+1 i=1 j=1

rewriting the previous equation subject to the relations 2} = ¢ = 27 = 0 gives,

p—2 b-1 i

PG—ZZZ] kk k+1 p+a k.’l)] 1yp b—i—1

k=a+1 i=1 j=1
p—2 b-1 1

k+1k+1k+1p+akglz]bzl
+E Egb—zzljlxl 2 Ty Yy 2
k=a+1 i=1 j=1
p—2 b-1 i-1

k0k+1p+ak z]lbzl
DDy Ay
k=a+1 i1=1 j=0
p—2 b-1 i-1

z:z:z: k+10k+1p+ak z]lbll
+ _le]yl yp

k=a+1 i=1 j=0

\
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p—2 b-1 1
+1, pta—m_j—1 bzl
+ E]ammyl xy
b4
m=a+1 i=1 j=1
p—2 b-1 i

+
P’J

am+1 m+1, pta—m_j-—1_ i—j b—i—1
E (i+1—3j /3 121 YN J Yp " %p
m=a+1 i=1 j=1

p—1 b—1
k,m m+1 k —m pta—k 1 b—i—1
+ 2 ZZZJﬁ S T

k=a+1m
1 )
z :z:j: k,m+1 m+1kmp+ak ~1, 4—3 b—i~1
+ § Z+1_]/81]1 yl zl :EJ y Jz
k=a+1m=0 i=1 j=1
p—1 k-1 b-1 1
2 : z :E :z : k+1 m+1 m+1 k—m p+a -k,_j-1,1i—j b—i—1
+ (b z 1,5—-1 yl :E yp zp
k=a+1m=0 i=1 j=1
a—1 p—-2 b-1 ¢
kmm+1p+kmak 1, i—3  b—i—1
DI e T
k=0 m=k+1 i=1 j=1
a—1 p—-2 b-1 1
km+1_m+1, p+k-m a—k, .j—1 bzl
+§ § E § 7’+1_.7/81,_71‘r1 n 21 x yp

kOmk—Hzl]l

a—1 p-2 — i
k+1 m+1 m+1 +k—m 1,i—j b—i—
+§ E E E b— )BT Yy 27" 55] Up Jz

k=0 m=k+1 i=1 j=1
If 6 € M,(3) that is, § € KerPs,

p—2 b-1 1
k N k -
= > DD B+ o OB Yl A e Ty
k=a+1 i=1 j=1
p—2 b-1 1
. . k k,_j
+ Z ZZ{(z_*_l_])ﬁu 1+(b ):szllyol yk+12f+a x] lyp b —i—1
k=a+1 i=1 j=1

p—2 i

2 :z : a,m am+1 m+1 p+a m,_j-1,i—j b—i—1
+ {]OB +Z+]‘ )2]1}x x yp Zp
m=a+1 i=1 j=1
p—1 k-1 b-1 i

+ Z ZZZ{]ﬁkm-F 1+ 1 —J)ﬁfﬂ’ffl (b— Z)Bk—i-lljm-li-l}

k=a+1m=0 i=1 j=1

m+1yic m p+a k.’l?j ly;) ]zb i—1
a—1l p-2 b-1 1
k, k +1 k+1,m+1
+ {]5 m+ Z+1_])Bz]ml (b_l)ﬁz ljml }
k=0 m=k+1 i=1 j=1

m+1 p+k—m _a—k

P 28 1‘] 1yz ]Zb i—1 =0
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Looking at the last expression we see that each constitute summand is independent,
like; the monomials in these summands. For these reasons,the following relations are
follow

1) jﬁff:—(b—i)ﬁffl{f_ﬁl fori1<i<b—1land1<j<iwherea+1<k<p-—2.

2) j623m=—(i+1—j)ﬁa’m+lforlgigb—land1§j§iwherea+1§m§p—2.

1,7—1
3) (i+1-5)B5, = —(b—i)B ) for1<i<b-land1<j<iwhereat+l <k <p-2.

4) JBE = —((i+1—HBEMT + (b — )BT ) for 1<i<b—1and 1< j<iwhere

a+1<k<p—land0<m<k-1.

5) ]Bf]m =—((i+1 —j)Bikjffl + (b— z)ﬁf_ﬁl;ﬁl) for1<i<b-—1and 1< j<1iwhere

0<k<a—-landk+1<m<p-—2.

Note that in relation (4) ﬁfﬂ'ﬁl = ﬂf;"f}'il for 1 <i<b—1and 1l < j < i where
0<m<p-—2.

The equations in relation (1) are independent since each value for ¢, 7 and k gives new
variable. Similarly, for relations (2) and (3). Moreover, the equations in each relation are
independent of the others because the variables in equations of relation (1) are different
on the variables in equations of (2) and (3). Likewise, the variables of relation (2) can
not seen in (3)(we need to looking at the superscript to see that easily).

On the other hand, the right side of the equations of relation (5) introduces new vari-
ables for each value of 4, 7, kK and m in that range. On examining the equations in relations
from (1) to (3) we can not see these new variables since the left superscript index run
through the value 0 to a—1, while; in (1) and (3) are taken the values a+1 < k < p—2, and
in (2) is a, so that the equations in (5) are independent of the equations in these relations.

Finally, the equations of the relation (4) are independent, and they are independent
of the equations in relation (5) for the same reason why equations (5) are independent
of equations (1) to (3). In the same way, they are independent of the equations in (1)
because m < k — 1, that is; it is impossible to find superscript with equating indices.
Because of, in (4) a+ 1 < k < p—1, so we can not see a variable with left superscript
equal to a, and since if m = 0 the right side of each equation can not involves variable such
that the right superscript of this variable could be zero. For these reasons the equations
in (4) independent of the equations in (2) and (3). Thus, the equations of the relations
(1) to (5) are linearly independent.

Now, according to €’s formula, it is clear to see that the first summation contains
((p —a—1)p— (”_“_1)2(” _“—2)) b(b;“ U variables, however; the total number of variables

in the second one are ((a+ Hp-1) - “(GTH)) @ While, the total number of the
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equations in the first three relations (1),(2) and (3) is 3(p—a —2) , whereas; relation

(4) gives ((p —a—-1)(p-1)— (p_a_l)z(p"a_z)) bt-1) Jinearly equations, and from (5) we

b(b—1)
2

have (a(p -2)— “—(az_—l)) bo—1) equations. Hence, the degree of freedom is given by

Dim Cy = ( —a_1p+(a+1)(p 1)_(p—a—1)2(p—a—2)_a(a;—l))b(b;—l)
- (3 —a—2 (p—a—l)(p—l)—(p—a_l);?’—“—@)b(b2—1)
ala—1)\ b(b—1)
- (p -3 ) 2
b
2

b
(p —a—1)(P+b+a+1)+§(p+bp+2ap—a2—3a—b—1)

— g(3p+6b+3ab—3bp—3a—6)

- w+b(a+2)(p+b—a—2) (5.5)

Let a = p — 1, for this case an arbitrary polynomial is given by the form below

p—2 p-1

Z Z ZZ zkjmljlnyf-}—k m i) k— 1 yp b i—1 (56)

k=0 m=k+1 i=0 j=0

such that ﬂkm € F,. If b =1, then 5.6 becomes

p—2 p-1
_ E : § : m, p+k—-m p k—1
0 — Bk,m:rl Y1 )

k=0 m=k+1
where By, € Fp. Apparently, § which is given in previous formula belongs to KerP;, so
each constituent monomial represents a basis element, hence; we get

Dim C; = @. (5.7)

Returning to equation 5.6, now we will deal with the case when b > 2, so applying the
operation P; yields

_ k+1m+1m+1p+kmpk1 -1 b12
P8 = (b—14)B;_ 15-1 1 N 33] yp
k=0 m=k+1 i=1 j=1
p—3 p—-2 b-1 i
E : k;m+1,_ m+1, pt+k— m, —k-1_3j-1 b i-2

+ (Z+1—J):Bz] 1 I Y 1 xp yp

k=0 m=k+1 i=1 j=1

p—3 p—2 b-1 1

kmm+1p+kmpk1 1 b12

+ ]/Bz] yl Zl mj yp
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so, equating the image of # under P; to zero, and the independence of the monomials
a:{”“ny“k Ml k= 1:1:j_1y;‘jz;’,‘i_2 where 0 < k < p-3andk+1<m < p-—2 for
1<i<b-—1and 1< j<iprovides

I8 = =i+ 1= B - (b - )BT (5:8)
such that ¢, 7,k and m in those given ranges.
Obviously, the number of the linearly independent equations in 5.8 is 2 _1)2(” 2. b(b; D

P(P 1) bb“) variables, so that;

plp—1bb+1) (p—1)(p—2)b(b—1)
2 2 2 2
bp—1L(p+b-1)
2

whilst; formula 5.6 includes

Dim Cz =

(5.9)

Case 3: Total power = a+ 2p. The most striking feature in this case is0 < a < p—3,
because the greatest total power of z1,y; and z; is 3p — 3 = 2p+ (p — 3), when the power
of each variable be p— 1, that automatically forces a < p—3. An example of this is, when
p = 3, then a have to be taken the value zero. Hence, any polynomial in this case will be
given by

0= Z Z Xi iyt Tyt b (5.10)
i=0 j=0

where \; ; € F,, but b = 2 because we deal with polynomial of degree less than p*( notice
that if b < 2, then formula 5.10 will be zero), then

2.2.9
0 = Aziyi29,

such that A € F,, and without any effort we can see that P;(#) = 0 ,hence; when p = 3

the dimension is one, and the basis of this case is z3y?22.

Now, in general any arbitrary polynomial satisfy the condition of case (3) is given by

Zz/\km m+k —1-m f+a+1 -k yp b i— 2, (511)

k=a+2 m=0 =0 j=0

p—1 p-1-kb

and
p—1 p—1-k b-2 i
. k 1— 2—k
Pib= 3 D0 DD (b—i - 2Ny e gy
k=a+2 m=0 i=0 j=0
p—1 p—-1-kb-2 i
. .k,mm+kpmp+a+1k zglbz2
+ E (i — A ="y yp
k=a+2 m=0 =0 j=0
p—1 p—-1-kb-2 i
km m+k+1 —1-m _p+a+l-k _j-1 b i—2
+ I w4 )y, e
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If P16 = 0, that means

[\

%
S {b—i— DA+ G+ 1= AT+ AT

J=1

p—2 p—k-2b—

o

.
It

-

k=a+2 m=

m+k+1, p—1-m _pt+a+l—k_j—1 b i—2
Iy vy 21 Ty yp Zp =0

So, the linearity independence of the monomials of the previous expression and since
P1(0) = 0, we infer

.ﬂﬁ":-@—z—nﬁﬁﬁl (i 41— j)Aemtt (5.12)

4,5 —1
for1<i<b—2and 1 <j<iwherea+2<k<p—-2and0<m<p—Fk—2

The relation 5.12 shows that there are (p»—a73)2(p—a—-2) (b_z)z(b"l) linearly independent
equations. On the other hand, the number of variables in 5.11 is (p_a_z)z(p_a_l) b(bz_l).

Therefore, we have

bob—N)(p—a-1)(p-—a—-2) (b-1)(b-2)(p—a-2)(p—a—3)
4 4

_ o lxg 9=t b—a-3) (5.13)

According to the previous cases and degree formn = a+ bp such that 0 <a <p-—-1
and 1 < b < p— 1, we should discuss the following possibilities. Firstly, If b = 1, then
for degree reason we can not get an elements satisfy case (3) condition because if b = 1,
then p < n < 2p — 1, whilst the elements in case (3) have to be in degrees n such that
n > 2p. Thus, we infer the dimension of this case from the dimension of case (1) and (2)
according asa < p—1lora=p—1. For a < p— 1, substituting b = 1 in both 5.2 and
5.5, and adding the result gives the dimension in this case as

Dim C3 =

-1
Dim M,(3)=(a+2)(p—1)+ p(pT)
In the same way, when a = p — 1 we substitute b =1 in 5.3, and add this to 5.7 to get
-1

Secondly, when b > 2, if a < b then automatically a # p — 1 and we calculate the
dimension in this case from 5.5 and 5.13 which is given by

b(b—a)(a+2)—(p—a—2)(p—a—3)-

Dim M,(3) =bp(p—1) + 5

Ifa>band a <p-—1, then we should add equation 5.2 to previous case and this yields

(a+2)(a+1)—(p—a—2)(p—a—3)
5 )

Dim M,(3) =bp(p — 1) +
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Finally, when b > 2 and a = p — 1 as we have shown in case (3) a has to be restricted
between 0 and p — 3, hence; there are no elements from case (3) and we need only to
consider 5.3 and 5.9 to deduce the dimension in this case which is

p(p+1)+b(b+3)'

Dim M,(3) =bp(p—1) + 5

The rest of this section is devoted to determining the basis elements of a given degree
in theorem 5.1.1. We need the following notations Cyy = (21yp—¥12p), Coz = (T12p—21%p)
and Cy, = (Y12, — 21Yp), we call these elements Crossley brackets according to the first
appearance of these elements in [6] and [7]. In fact, the Crossley bracket Cy, and its powers
played the essential role in describing the basis of M, (2) where p*—1 < n < p**24p*+t1-2.
Similarly, these brackets describe the basis of M, (3) where n < p?+(p—1)p—3, according
to our calculation.

Theorem 5.1.2. For the degrees n such that n < 2p—1, the basis elements of M, (3) are
given by

Table 5.2:  Basis of M,(3)
Degree,n  Basis of M,(3)
1<n<p-—-1 {ziyl2F|i+j+k=n},

{yk2o=F- 1Cyz|0<k<a—1}u

{xly F10L 0<k<a—1,0<m < kU
n=a+p, {zPyF ™ “lezyIOSkSa—l,OSmgk}U
0<a<p—1 {zPyrmP*atr1<k<p-1,0<m<klU

{zmyPth- m AF0<k<ak+1<m<p-—1},

{371_13717} U{yl "y} U {z{’_lzp}u
e _kCy2|0<k§p—2}U
n=a+p, {aF LT 1<E<p-1,0<m<k—1}U
a=p—1, {xlykmlzl1kCzy|1§k§p—1,O§m§k—l}U
{amypthm P R o< k< p—2k+1<m<p-—1}.

Proof. Case 1: When 1 < n < p— 1. We have mentioned at the beginning of proof
of theorem 5.1.1 that each element in this range of n is written as a linear combination
of monomials in the form z7 yl 4 "'where 0 < I < nand 0 < m < L That is to
say, if § € H,(3), then 8 = > Zm:O §l,mm’f‘yll mant = Ditith=n & jkTiyl 2y, where
&m-&ije € Fpo Obviously, from the degree con51deration there is no condition to be
6 € M,(3), thus the basis is given as in the first row of the above table.
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Case 2: If n =a+pand 0 < a < p— 1. First, if the total exponent=a, then from
equation 5.1 we have
a 1 A

k
_Z:E:E:E:kmmkmak i—j
- aljxlyl 2] y Z a

k=0 m=0 =0 j

where akm € Fp, but if § € M,(3), then the coefficients «; ’m have to be satisfy the
relations from 1to 7 (the proof of 5.1. 1 first case where 0 < a < p—1). Starting with the
equations 1,2 and 3, we get aoo =ay 0 =ay) =0, s0

a—1 a—-1 a—1 k-1
_ kk_k_a—k a,m_m,k a—m k,mmkmak
9—5:0‘11351% $p+§:0111$1y1 xp+§:§:a1‘1:c1yl 21 Tp
m=0 k=1

=1 m=0
a—1 k-1
am+1 m+1 k m—1 kO k_a—k km+1 m+1 k —-m—1 a -k
+ E oy’ Yp + E o701 21 Yp + E E oy’ Yp
k=1 m=0
a—1 a—1 k-1
k+1,k+1_ k41 P k-1 k+10 k+1 a—k—1 k+1 m+1 m+] k—m a k—1
+ Qg Ty 2 zp+ E Qp, 2] Zp + g (o' Yy 2p.
k=0 k=1 m=0

Moving to the substitutions of the relations 4, 5,6 and 7, that implies

a—1
k+1k+1kak1 am+1mam1
0= E ap, x7 2 (z12p — 212p) + E ary  TyY) (Z1Yp — Y1 Tp)
m=0
a-1 k-1
k+10 k_a-k-1 km+1 k-m—1_a—k
+ E Qoo Y12y (Y12p — 219p) + § E Q10 'y 217 (T1Yp — Y1 Tp)
k=1 m=0
a—1 k-1
k+1m+1mkmak1
+E g Qg o AT (T12p — 21Zp).
k=1 m=0
Therefore,
a—-1 k
k+10kak1 k+1m+1mkmak1
0= E Qgo Y121 (Y12p — 219p) +§ E :0‘ T1Y; (z12p — 21Tp)
k=0 m=0
km+1 m k m . a—k—1
+E E Q| U 2 (-’131yp_y1573p);
k=0 m=0

and that gives the basis elements in the third, fourth and fifth row in previous table.

Second, when the total exponent= a + p, then 8 will given by,

p—1 k b-1 i

km_m, k—-m p+a k b —i—1
E:E:E:)‘m 1 ¥ 21 yp
k=a+1 m=0 i=0 j=0

a p— 1

_'_Z iZAimxTyzlﬂ-k m il k yp b i— 1,

1
k=0 m=k+1 i=0 j=0
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such that )\f”’;" for all 7, 7,k and m in that range are elements in F,, since b = 1 then
k, —k k, k—
Z Z Moo Tyt AT + Z Z Aoy ey A,
k=a+1m=0 k=0 m=k+1

Hence, the basis elements are

(a7 a4 1<k <p—1,0<m < kJU
{xlyp+k m a k|0<k<ak+1<m<p_1}
={%y{zﬂl+]+k:a+psuchthat i,J,k < p},

which are corresponding to the sixth and seventh rows in that table.

Case 3: If n=a+ p and a = p — 1, then from relation 5.1

p—1 k p—1 k
_ km_m, k-m _a—k kmmkmak
= E :aooxﬁh 2y “zp+ _S_ oy Ty Ypt
k=0 m=0 k=0 m=0
p—1 k
km_m, k—-m _a—k
11 Y1 7 Tp

k=0 m=0

using the same techniques that are used in case 2. Substituting the relations from 1 to 4
(the relations in the proof of theorem 5.1.1 case 1 where a = p— 1) in previous expression
and rearranging it implies,

__ 00 p—1,0_p Lp=1,p~ k+1,0 k
0 =y, 0% Zp +t a5, Y- !/p +af; 1 xp + E :0‘ Y1 21 (ylzp - Z1yp)+
p—1 k-1 p—1 k—1
k+1,m+1 m_ k— m —2—k m+1_m, k-m—1_p—1-k
Q0 T (T12p — 21%p) + a 10 IT1Y: z (Z1Yp — 11Tp)-
k=1 m=0 k=1 m=0

Hence, any @ in this case can be written as a linear combination from the basis in table
5.2 from first till the fourth row from the third group.

The final case, immediately from 5.4 we have

p—1

—2
k +k— 1-k
ﬂmmyp mp Z 1 )

Bkm m, ptk—m p 1-k
k=0 m=k+1 k=0 m=k+1

then we get the last row in the table of basis. O
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5.2 Some properties of M,(3)

In this section we will introduce some properties and facts on M,(3) for a specific case
where p = 3. We will give a description of the formula of the elements of My(3) of higher
degrees, precisely for n > p?. From one hand, these properties enable us to extend the
results of theorem 5.1.1 in case the odd prime p = 3. On the other hand, it may help to
calculate whole M, (3) for this prime in a future work.

Before stating these properties, we will make use of the following preliminaries which
can be found in [6]. We define the iterated operator e as an algebra homomorphism acting

on the generators by e(zZyn) = Zyn+1, similarly for e(yyn) = ypn+1 and e(2pn) = 2t While,

the action of the linear map f on an element § € H,(3) is given by f(8) = 2?7 4P~ 2P ' ef.

The following lemmas and the corollary are a special case for three variables from the
general one of k-variables, which are stated.

Lemma 5.2.1 (Crossley). For any arbitrary 6 € H.(CP*® x CP* x CP*;F,), and a
non-negative integer q,

fP(8), if ¢ =tp;
0, Otherwise.

P ) = {
Corollary 5.2.2 (Crossley).
f(0) € Minis)p-3(3) <= 6 € M,(3)
Lemma 5.2.3 (Crossley). For any polynomial 6 € H,(3), then
Pi(ef) = x1ed + yre + z1ew,
for some ¢, v, w € H,(3).

Corollary 5.2.4. For any polynomial 8 € H,(3) such that deg(8) > 0. 6 does not involve
a factor of x, a factor of y or z-factor if and only if $ =0, ¥ =0, or w = 0 respectively,
where ¢,¢ and w are those given in lemma 5.2.3.

Proof. Let 6 to be an arbitrary polynomial in H,(3), then we have to consider the
following cases:

Case 1: If 0 contains only the 2- factor, that is ef consists of monomials in the form

z;}] --~z]‘j‘r{°,c, where a;,n; are integers for 1 < ¢ < k satisfy 1 < a; < p—1, n; # 0, for
1=2,--,k0<; <p—1land n; <--- < n,. But,
-1 -1 -1
Pz, ---zgﬁk) = (=D)" a2 ---z;‘#k.

Extending the action of P; linearly on each monomial in ef, we get

Pi(ef) = zrew. (5.14)
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Notice that ew # 0 this is implied by, first; for each monomial n; # 0 so when we apply
P the monomial does not vanished, the second reason; there is no cancellations between
the image of P;.

Comparing the relation in lemma 5.2.3 with relation 5.14 we get z,e¢ + y1eyp = 0,
thus from the independence of z,e¢ and y,ey, then e¢p = eyp = 0. Hence, ¢ = ¢p = 0.
Precisely, by the same way we can show that ¥ = w = 0 and that ¢ = w = 0 if 8 involves
only z-factor or only y-factor respectively.

Case 2: If 6 involves a factor of y, 2 and it does not contain an z-factor. Then, there
is at least one of the constituent monomials is given by the form y3, - - y;"#,c zf#l e zﬁ%s,
such that the integers n;, m;, @; and B; where 1 < ¢ < kand 1 < j < ssatisfy n; # m; # 0,
1<o,Bi<p—1m<---<n,m<---<mpand 0 <, 8 <p—1where2< ¢ <k

and 2 < 5 <s.

Acting by P; on such monomial, and applying Cartan formula gives

o g B Bs \ _ ni—1 p—1 a1 —1 ap B1 Bs
Pl (yp"] o ypnk zpml o mes) _(_1) alylyp e yp”l e yp”k zpml o mes
mi—1 a1 o p—1 A1 B
(_1) ,Blyp"] e ypnkzlzp . zpml e zp;;s

extending the action of P; linearly on each monomial in ef and grouping the terms which
contain y; and the terms involve z; individually, implies

Pi(ed) = yrey) + ziew, (5.15)

for some ¥, w € H.(3) such that ¢ # w # 0 for the same reasons that have been stated
in the previous case. According to relation 5.15 and the relation in lemma 5.2.3, we have
that z;e¢ = 0, thus ¢ = 0. By the same way one can show if § does not involve only
y-factor, then ¢ = 0 and ¢ # w # 0, or if it is not involving only z-factor, then w = 0 and

¢+ 0.

In fact there is a possible case to write the polynomial ef without the monomial
Yo -~-y§7’fk Zgrlnl e zgfns, when ef = e, + ey, where 8; and 6, as same as 6 that is con-
sidered in the first case, such that 6, is a polynomial only contains y-factor and the other

only for z. Obviously, the argument in that case implies the result here.

Case 3: If z,y and z are all appear in 8, then 6 is given by one of the following case.
First ed = ef; + efy + ef3 such that e, efy and ef3 as in the case 1, but each one for a
one factor. Then, immediately, from case 1 we get

P1(ef) = z164 + yreth + z1ew (5.16)

such that ¢ # 9 # w # 0. Second, efl = ef; + el such that ef; as in the case 1 for a
factor and ef; as in the case 2 for the other factors. Hence, from case 1 and case 2 we get
the same result as we have gotten in the first case (of case 3).
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Finally, if ef contains a monomial in the form x4, - - - % yfﬁnl e yﬁfns z;}l e z;’ft where
the integers «;, 5;, Vi, ns, m; and ~y; for appropriate 7 in that range, satisfy some conditions
can be deduced from the previous cases. The same techniques that used in previous cases
implies the same result as above ( first and second case of case 3).

Conversely, suppose that § € H,(3) such that ¢ = ¢ = 0, if 6 contains a factor of y
(if it does not contain any factor of z), then from 5.15 we have P;(ef) = yiev) + z ew,
where ¥ # w # 0, and this is contradiction with our assumption ¢y = 0, thus 6 must
not involve any y-factor. Similarly, if it contains a factor of z and there is no y-factor,
we will get contradiction, so that; 6 is written by z only. By using same argument we
can show if ¢ = w = 0 or ¥ = w = 0, then 0 consists of only y or only z-factor respectively.

Regarding the case when ¢ = 0. If 8 contains any factor of x, then from 5.16 we have
Pi(ef) = z1ed + y1ey) + z1ew such that ¢ # 1 # w # 0, contrary to hypothesis that
¢ = 0, thus € does not involve any factor of z. Similarly, one can show that if » = 0 or
w = 0 then 6 does not contain y-factor or a factor of z respectively. Hence, the corollary
is proven. O

Lemma 5.2.5. For any polynomial 6 € H,.(3), then
731(629) = I1$§'1€2¢ + ylyﬁ"1€2¢ + zlzg_le%
for some ¢, 1, w € H.(3).

Proof.  Assume that 8 € H,(3), acting twice by the homomorphism e on 6, we
get a polynomial such that each constituent monomial have to be given by the form
Ty Tpns ~-~x§£,y5#1y£%2 . ~-y£,isz;,§l zg,ﬁz --«z;’,ﬁt such that n; < --- < n,, my < --- < mg,
ky <--- < ky and ny,my, k; > 2. Recall that Py (z,) = (—1)"1nx1zg_1z”71 --zp7t, and

p2
similarly; for y7. and 2.

The linearity of P; and Cartan argument implies that, applying P; on 2@ produces
sum of monomials of the form a:lccg‘leZAl or ylyg_le2A2 or zlzﬁ_lezAg, i.e. each one

contains precisely one and only one factor of a:la:g‘l or ylyg‘l or zlzg‘l. For instance,

2 _ (_1\yn1—-1,p-1 a1—1, a2 ar , B, B2 Bs 1 72 Yt
e Al — ( ].) a:pz M xpnl xpnz M xp;;r ypml yme ce ypms Zpkl Zpk2 M zpkt .

Now, just gathering the terms that contain the same factor we obtain the result. O

Corollary 5.2.6. In previous lemma ¢ = 0 if and only if 8 does not involve z-factor.
Similarly, the necessary and sufficient condition for ¢ =0 or w = 0, is 8 does not contain
y-factor or z-factor respectively.

Proof. By the same argument that has been used in the proof of 5.2.4, we can prove
this corollary. O

The following lemmas describe the elements of M, (3) where p = 3 in higher degrees.
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Lemma 5.2.7. When p =3, if § € M,(3), such that n > p* and n = 1 mod p, then 8 is
given by .
0= Z Tiyl el ;i x

i+j+k=p+1

for some 0, jx € My, (3), such that m = "—;1 -1

Proof. Assume that 6 € H,(3) and n = 1 mod p, this implies

0 = x1e6, + y1e6s + z1e05 + Z xiy{zfe&i,jyk
i+j+h=p+1
0<i,j k<p—1
for arbitrary polynomials 6;,6,,63 and 6; ;. Now, since § € M,(3), then § € KerP;.
Recall from lemma 5.2.1 that P;(ef;) = z1e¢; + yiew; + z1ew;, where i = 1,2, 3, and that;
Pr(€b;jk) = T1€h; 5k + y1¥ijk + 216w, i thus

P1(0) =22edy + yieys + ziews + 71y1 (s + eda) + 1121 (ewy + ed3)+

Y121 (ewy + eys) + Z iyl 2f (zregi sk + i€tk + ziew; ) = 0.
i+j+k=p+1
0<i,5,k<p—1
From the independence of the previous linear terms we get the following. Firstly, e¢; = 0,
so ¢; = 0, and that means #; does not contain a factor of x, this implied by corollary
5.2.4. Similarly, there is no y factor and z factor in 6, and 63 respectively.

Secondly, the relation ey; = —e¢, reveals that ef; = y,.eg(z), and ey = xp.eg(2)
where g(z) is a polynomial for z, because if we suppose ef; = eg*(yz) which is not in the
form y, - eg(2), then applying P; produces y;e; + z1ew; such that ey; have to be involve
a factor of y, but #; does not contain a factor of y, so ¢ also does not involve a y-factor
and since ey = —e¢p, we get contradiction, thus; e = y,.eg(z).

The same argument can be applied to show that from relation ew; = —e¢3 we
have e, = zpeh(y). These two relations suggest that ef; = Aypz,. If A # 0, then
deg(ef1) = 2p = deg(f) = 2p+ 1, contrary to hypothesis that deg(f) > p®. Hence, A = 0,
i.e. 6; = 0. By the same way we can show 6, = 63 = 0.

According to the previous argument we get that

6= Z iyl 2Fed; ;.
i+j+k=p+1
0<i,5,k<p—1
Now, 2871719 P=17kg — g~ Lyp=1,071eg, . € My (3) where 0 < 4,7, k < p—1 because
in the left hand side § € M,(3) and P,(z} " "y? ™ 2P717%) = 0 for all ¢ > 0 so we see
that 6, ;4 € Mnle_l(3) from 5.2.2. O
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Lemma 5.2.8. When p = 3, if 6 € M,(3), where n > p? and n = 0 mod p, then 0 is
given by one of the following forms:

_ 1. 7.k
a) 0= Y aiyizfed; i,
it+j+k=p
0<i jk<p1

b) 0= zlyizle(d")
c) 0= Z riylzfed; ;x + 2lyieie(6™)
i+j+k=p
0<igk<p-1

for some 0, ; € M%_l(S), 0" € Mz_»(3), and 6™ & M= _5(3).

Proof.  Suppose § € M,(3) such that n = 0 mod p, so by degree consideration we
have _
0 = eb, + Z ziy{zfe&i,j,k + 2292 2%(67)
i+j+k=p
0<i,j,k<p—1
for arbitrary polynomials 61,6;;x and 6* in H,(3). According to our assumption 6 €
M,(3), so

P1(8) =z16¢1 + Y1y + z1ews + z il 21 (T16¢i 5k + Y1 gk + 216w 5k) = 0.
i+j+k=p
0<i,j,k<p—1
Since the terms in previous expression are linearly independent, immediately we see
that ¢; = ¥; = wy; = 0. That is, 8; does not involve any z,y, z factors, in other word
6, = 0. Thus, 8 should be given by the following form, if it belongs to M, (3)

6 = Z iyl 2¥e; ;1 + 2y222e(0%).
i+j+k=p
0<i,j,k<p—1
Now, if 6* € Mz_5(3), then according to 5.2.2; the second term A; = ziyizfe(¢*) =
f(6%) is an element of M, (3), so Py-(Az) = 0 for r > 0. Consequently, the first expression

AL =3 itjtk=p Tiyizfed; jr must be an element in M, (3) since 6 belongs to it. Multi-
plying Ay by 28178172271 7¥ {llustrates why 6, ;, has to be an element in M= _2(3). In
this case 6 is given to be a sum of two elements each one of them in M, (3) i.e. § = A;j+As.

Hence, (a) and (b) from the lemma are proven.

Turning to the case when 6* ¢ Mx_, , since § € My(3) then gh Iy P kg
ziyizlel; ;. = f(0ijx) is an element of My yop—(itjrk)(3), thus 6; ;% € ]\4%_1(3) for 0 <

We have not been able to establish formulas for § € M,(3) such that |8] > p* and
n = 2 mod p.
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According to the definition of f we can deduce that if § € H,(3) such that n =
ap® + - -- + Ip* — 3, then my = ap®** + - - - 4 Ip**+* — 3 will be the degree for f°(6). The
following theorem serves to determine the dimension and the basis elements of M,,,(3),
if they are known for M, (3) for s > 1.

Theorem 5.2.9. Let p = 3 and n > 3 be an integer such that n = 0 mod p, then the
linear injection f : My (3) — Mny2), 15 an isomorphism.

Proof. In the following proof we will applying the lemma 5.2.5 without comment. Ac-
cording to the definition of f and 6 € M,(3) <= f(0) € M(n42)p(3), we deduce that f is
injective homomorphism. That is, we need to show that if n = 0 mod p, and M,42),(3) #

0, then there is no element 6 € M,19), such that 8 = 3 i1jk=p ziyl2bel; ;i or
0<4,5,k<p—1

0 =3 irjrkep Tiylzle;p+alyizle(6) for some 6;;, € Ma_1(3), and 6** ¢ M=a_o(3).
0<i,5,k<p-1 p P

Assume that f in these degrees is not one-to-one correspondence, that means; there
is an element 6 € M, 9),(3) such that § # f(A*) where A* € M,(3), then lemma 5.2.8
implies that

0= Z Thylzted; jx + Tl 2ie(67),
i+j+k=p
0<i,j,k<p—1

for some 0; jx € Mpy1(3) where 0 < 4,5,k < p—1and 6" ¢ M,(3). Applying 5.2.1 gives

Pi(z2yizie(60**)) = 0, then A = Y ijik=p Tiyi2Feb; ;i belongs to KerP, and it is
0<4,j,k<p—1
clear that deg(6; ;) = 1 mod p for all 4, j, k in that range because deg(e; jx) = (n + 1)p.
Therefore, from lemma 5.2.7 6; jx = 3 14m+n=pt1 T Y270, m n such that 6, , € M(3).
o<l,m,n<p—1

Avoiding the same notations, we write 6; ;x by the following way
0 —2 22 \BIK 2,2, AUk 2 NLTk 2,20 ALIK 2, eALIk 2 N
ik =Y121€ATT + T121eNTT + TayizieAgT + T Y el + TiyizeNsT + TiizielgT,

and hence;
2,22 ALk 2,,2,2 A bk 2,2 ALJik 2,2,2 A LIk 2, o2 \LIK
e0i ik =Ypz,€° A7 + 15 20e" N7 + zpyp 2o e A + oyt et AR 4 mpynzpe AT+

2 2 pAGJK
T,Ypzpe A"

Recall that P1(A) = Py (Z tk=p xﬁy{zfe@i,j,k> = 0 and Cartan formula, implies
0<i,j,k<p—1
that Py (z?A) = 0, and since z2A = ziy?21e6021 + 22y12%€0) 1 2, SO
2AY 2,2,2(0, 2, 2A021 2, 27021 20021 , 22 22 021
Pi(z1A) =27y 27 (2yp2pe° Ay7" + 22,25€" Ay + 23,yp2pe° Ay + Ty, 2z e w0, 7 +
2 240,21 2 24021 2,22 2,2201,2 2,222,012
TpYpe As™ + Type Ag ) + 27127 (20p2pe” AT + Ty e 0y
2,270,1,2 2, 270,12 240,1,2 2 24012y _
Tpzye“ Ny ™" + 2xype Ay + 22pyp2pe” Ay + T zpe"Ag ) = 0.

By the linear independence of the terms of the previous expression we infer (and if one
considers P;(y?A) = 0 and P, (22A) = 0)
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1) AP A0, A= AMZo0,  13)A120 = AL =0,
2) A0,1,2 A0,1,2 0, S)Ag,o,l — Ag,O,l — O, 14)A2,1,0 Ag,l,O — 0,
3) Ag 2,1 — Ag,l 27 9) 1,0,2 — _wzo 1, 15)¢1 20 3,1,07

4) Ag,2,1 — _Ag 1,2’ 10)/\}1’0’2 — Ag,O,l’ 16)Aé,2,0 — A?,I,O,

5) Ag,Z,l — AZ,I,Z’ ll)Aé,O,Z — A%O’l, 17)A1 2,0 Ag,l,O,

6) w2,2,l _ _wg,m’ 12)A(1)-’0’2 _ _A§,0,1, 18)/\(15’2’0 _ _A§,1,0’

Now, substituting the zero’s components in A, and considering z;y; A = z2y,22e6, o2+
z2y3z1€0) 11 + T1y?22€b 1 2 which has Py (z,y;A) = 0, gives

P21y A) :a:fy1~12(2ypz262A102 i 2xpypezA102 I 2xpypppezA102+xp pe2A102)+

xfylzf(2ypzpe21\1’l’l + 212 2pe Ay 4 22,yp2,€% Ay

2 11,1
xpyp A5 +1:p P

L1y

1 1,1 2A0’1’2

)+ atfyfzf(%pz e

2, ,270,12 240,12
Yp2pe A5+ 2:cpypzpe Ag™)

2,22

=211y} ypz e

2222

1y121$pyp( A102+A111)

2,22 2

241,02 222222211]
AT+ iy TpYn2p€ Wy

2,22, 2

—+ 2:Izpyp

2,2,2,2 1,11
pyp e“wy "+

012
2A4

0,1,2
+ meyfzfa:pz e? Ay +

+1'1?J12133 zp( 2A102+2 2A111)

Ai“)-l'ﬂv%yfzfmpyp( 2A212+262A;11)
_’_Aé,l,l Agl2) =0

012
mlylzlypZP(AS

2.2 2 1,0,2
227Y1 21 TpYp2p(As

so the linearity and the independece of the terms of P;(z1y;A), implies the following

1) A102 A012 Wb —
= S =0,

2) A 102 11,1

3) A 102 A111

4) A012 A“l

5) A012 A111

)A102+A1,1,1+A012 0.

By the same argument if we consider z;2;A and y;2;A we get

1) A}’ZO A021 %1 1 _ 0, 7)/\3’1‘0 _ Ai,o,l _ ¢i,1,1 —0,
) Al ,2,0 Al 1, 1’ 8)Af’1’0 _ Aé,l,l’
3) g™ =A™, 9NATH" =A™,
4) A0,2,1 . A1,1,1 10)A2’0 1 Al A, 1
3 e T 1
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5) A = A3, 1)A;™ = Ay,
6) Ay*°+ APV + AP =0, 12)A3M0 + At + AP =0,

On the other hand, 9,] € M, (3) for 0 < 14,5,k <p—1, that is; P1(6; ;) = 0, denote
to Py(eA*) = z1ed™F 4 yreF 4+ 2107, so we will deal with two cases of 9;.;% and
see what they produce, and by using same argument someone can deal with the other
cases. Firstly, after substituting the zero’s components that we get from the last relations
we have

P1(6o21) =P1(z323 eAO 1y 19124 eA02 T4 Ty zlAO 2 1

—$1y121 elbg Ay xlylzl e¢3 2y $1y1z1 ewg’z’l + 55%91 Zle'(pﬁ oy ‘lelzl ewg 2
=0
The independence of the summands of ’P1(902 1) glveq 1[)02 1= Ag’m = 0, and 1!)02 1

921 4 02?1 = 0, so that; neither AY*! nor AJ*' involve y-factor. While; ¢1'™' = 0
and A;"' = A3*! implies that AS®' does not contain z-factor. Thus, A3® ! is a poly-
nomial which involves only z-factor, and because of AJ*' € M,(3) see lemma 5.2.7,
A 12”"1 - 2%, for appropriate 4,7 see chapter 4, theorem 4.2.2.

Secondly,
0 1,2 9 0,1,2 2 0,1,2
P1(60.12) =P1(22yieAy " + 2195 21eAg ™ + 2y z1Ag %)
~0,1,2 2 0,1, 2 ~0,1,2 2 ~0,1,2 2 ~0,1,2
—zlyl zlew4 + Ty Z1€¢5 + Jflyl Ziews" " + 3713/1216’% + xlylzl €Wg’
2 2 012 0,1,2 £0,1,2 20,1,2y _
—xlylzleWG 2+ T1Yi 2 ews " + 3719121(6‘”4 +eps ey ) =0

Similarly, from the independence of the terms of the previous expression we get the fol-
lowing relations W' = &M% = 0, and &M% 4 ¢21% 4+ 1g* = 0. The first relation shows
that there is no 2- factor in Ag"?, but that contrast Agh? = —Ag>! = €27 271 2

b
unless € = 0 and if it is; then we get AP"? = AY®! = APM! = 0 (from Agh? = AP,

Therefore, the second relation is given alternatively by w012 = —1/)2’1’2, likewise;
5 ~0,2,1 ~0,2,1 70,2,1
= — 2 . Now, since A021 does not contain y-factor, so that we>' and P92

do not involve y-factor, that is; either A2’2’1 =0, or Ag’z’l = y; - g(z,z) where g(z, z)
an arbitrary polynomial in z and 2. On the other hand, Ag’2’1 = Ag’l’Q, and Ag’1’2 does
not involve z-factor implies that AS*' = y; - h(z), and since AS*! € M, (3), then AY*! =
AS? = ylx’f—lxg_l -+~ z},. By same argument we get AP = AP = —zlx’l’_lxg‘l Y 2

Using same techniques show that from 6 o 0, and 6,0 we get the followmg A1 20 —
A210 _Alll =0 (A2,1,0 Alll) A120 A ,1,0 = -y Zl Zg 1, ZT, and A120 —
Aflo = xlzl_lzg‘l -2, Whereas, 6195 and 6y, gives Ag™? = /\201 AP 3 =0

201 _ ALL1y 21,02 2,0,1 -1 5 ; 102 _ A201 _ - ;
(A7 = Ay ), Ay =A™ = 2yl 2t g, and AT = AY —ry) yg,’ Loy

: 0,1,2 1,1,1 2,1,0 1,1,1 c s - 01,2 2,1,0
First, Ay = Ay and A7 = A7, but this is contradiction unless A, = A

1,1,1 o 21 2120 0,2,1 11,1 2,0,1

Ay =0, and this implies Ag“" = A3®" = 0. Furthermore, Ay®" = A3 and A" =
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Aé’l’l gives Ag’2’1 = A:f’o’l = Aé’l’l = 0, so that; A‘;“ = Aé’o’z = 0. Finally, A;’Q’O = Aé’l’l
and Ay®? = A}M provides Ay*° = A} = Ap™! = 0 and AZM0 = A% = 0. Thus,
ti5c = 0 for all 4,7 and k such that 0 < 4,5,k < p — 1 since all their components are
vanished. Hence, A =Y i4jtkep TiylzFed; ;x =0, that is
0<i,5,k<p-1
0 = ziyizie(0™)

Precisely, by the same argument we can show there is no element 6 € M,42),(3) such

that 0 =) itjtk=p xﬁy{zfs@id-,k. Hence, the proof is completed. O
0<i,jk<p—1



Chapter 6

The subring of lines Ly(k).

6.1 Comments and the construction of gf,fz-(ozl, ey Q)

IR

Let us consider the right action of GL(k,F,) = GL(V) on Hopf algebra Fy[zy,- - z]
H*((CP>)* F,) where |z;| = 2 for i = 1,-- - , k, using linear substitutions, that means: if
9=1(9:;) € GL(V) and z; € Fy[zy,--- , xg], then

k
zi<4g = g(z;) = Zgi,jIj,
j=1

for 1 < i <k, which is extended to all # € Fp[z,--- ,zx] by the action,
(B<g)(xy, @, ,xn) =0(x14g, - , 2 <g).
So that, we can view F,[z1, ...,z as a right GL(k, F,)-module.

In fact, this action has been derived from the action of GL(V) on V via a linear
transformation, this reveals that each g € GL(V') induces a Hopf algebra homomorphism
on H*(BV)/HY(BV). Thus, if one thinks of g as a matrix and H*(BV)/H(BV) =
Fplz1,- - , 2], then

k k
g9(z) = g1z, and g(ze) = Y ge;;s.
j=1 j=1

Since g is an algebra homomorphism,
gzt - x*) = g(z1)* - - - g(wg)**,  for a; € Ny, i € {1,--- , k},
and using the linearity of g gives the action of GL(n, F,) on any polynomial § € Fy[zy,--- , zk].

Motivated by the definition of total Steenrod square Sq in [28], and see also [22] we
define the total Steenrod mod p as follows.

o8
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Definition 6.1.1 (Total Steenrod mod p). The algebra map P : P(k) — P(k) that is
defined by P(1) = 1 and P(z,) = =, + zF, is called total Steenrod mod p, where p is an
odd prime, and P(k) is the graded polynomial algebra in k variables over F,,.

Proposition 6.1.2. The right GL(k,Fp) action on P(k) commutes with the action of P
on P(k), i.e. P(0ag)="P(0) g, whered € P(k) and g € GL(k,F,).

Proof.  Using the fact that both P and g are maps of algebra implies that we need
to consider 6 as a variable. Thus,

P(@<g) =P(z,<g),

k
=P(Z 9§ T5)s
=1
k
= Z gnJ'P(.r]),
=1

k k
= 9niti+ ) g7}
j=1 j=1
On the other hand,

p! tr .t te tk
Th Ag = (Gn1Z1 + - + Gu )’ = > P17 9ma T kT
tittottte=p LK

but each summand in the right previous expression is zero since t]—,p't—k, = 0 mod p, unless
t; = p for s = 1,---k and when this happen, we get g,’;i = gn, because g,; € F, and

p—1 _ _ Tk P
Ini = 1, s0 (9n,1a€1 + -+ gn,kxk)p = ijl Gn,jT;- Hence,

k k
P(G < g) = Z Gn;Tj + Z gn,jxg.’,
j=1

j=1
=z,4g9+12h g,
= (z, + x}) 9y,
=P(zs) 9 g.

0O

Turning to the dual case H,((CP®)* F,) = H,(k), where H,(k) is a Divided Power
Algebra of k variables over F, (the product of divided power algebra has been induced
from the coproduct of H*(BV') which is A(z) = 2 ®1+ 1 ® x, as we have seen in chapter
3.2). Similarly, for each g € GL(k,F,), g'" acts on the right of H,(BV)/H,(BV) by linear
substitutions and this action commutes with the dual Steenrod operations. In other word,

k k
yi 99" =g"(v) =Y giivi = Y _ 95y,
j=1 j=1
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Oy, yn) 99" =0(y1 99", ,yn<g")
and
Pq(e <Jgtr) = Pq(e) qgtr’

where 6 € H,(k). The last property shows that

g7 M, (1) — M, (k).

The main idea here is finding the image of the spike x’l’_lxg‘l e :cg:_ll ke € Miq1ypr—1(1)
under ¢'" where ¢"" € GL(k,F,). We denoted to g"(:z:’l’_lmg‘l - xhe) by g¥i(on, -, o)
where o; € F, for i = 1,--- , k are the entries of the first column in ¢*", and L.(k) for the
graded ring that is generated by {g7; (a1, - ,0ox)|(a1, -+ ,ax) € Ff, and 4,7 > 0}. L.(k)
is said to be the subring of lines.

Assuming that (z1)p:, (T2)pi, - -+, (Tk)p are generators of H.(k) which are dual to the
o} ab -,z in P(k) respectively for i > 0. According to (z:)n - (Zi)m = ("7™)(%:)nsm,

those generators are the indecomposable elements in H,(k). Then < 6 < g¢"" A >=<
6,A<g >, where § € H,(k) and A € P(k). Therefore,

(x1)n g™, 2 - 2F) =((21)n, (1Z1 + - K1 Tk) - -+ (gTy + -+ - Kgezp) ™)

_{aﬁla?---afj, if by +ty+ -+t =m

O, ift1+t2+---+tk7én.
where ¢, - ,t; € Ng. Consequently,
9" ((z1)n) = Z oo az;k("rl)tl (Z2)tz * - (@)1, (6.1)

t1tta+-+Htp=n

. . . . —1 ; .
Since ¢*" is a homomorphism as we have seen, thus finding ¢*"(z} zh .. - Zpr) will

be required to calculate ¢'"(x,) such that 0 < s < r that we denoted by u,, so by 6.1
Ups = E 04310552 .. .aik (1)t (x2)gy -+ - ($k)tk- (6.2)
t1+ta+ -+t =p°

From the first glance and basing on the results in [6, 7], we may be expect that up =
e*uy = (a1(z1)ps +2(22)ps +- - - +0u(2k)pe ), but the following discussion shows otherwise.

Now, assume p > k, and take the p-adic expansion of t; for ¢ = 1,--- |k to be
i =ti0+tp+- - +t1sD°%
to =top+to1p+ -+ t2sD%

ty =tgo +tkap+ - + Lk sp®,
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where 0 <t;,; <p—-1for1<:i<kand0<j< s Set b0=2§=1tj,0,--- ,bk:Z;c:ltj)k.

Hence, p° = by + bip + --- + bsp® such that 0 < b; < k(p—1) for i = 0,1,--- ;s — 2,
whilst 0 < bs_; < p, and b; = 0,1. In fact we can find b; by the following. Since p/p*,
so by = ngp such that ng = 0,1,---k — 1(because (k — 1)p < k(p — 1) iff p > k). While,
b, = nyp if bg = 0, otherwise; b; = n1p — ng, so that

b o= P if ng =0;
! mp —ng, if ng# 0.

such that 0 < n; < k — 1. likewise;

b — 3 TP if n;_; =0;
‘ n;p —n;_1, otherwise.

where 0 < n; <k —1for 2 <¢ < s—2. In the case of b,_; there is slightly different from
the other, like bs; because bs_; = p — ns_o, and

b, — ]., if bs—l = O;

0, ifbeq 0.
Note if b; = 0, then b; = 0 for 0 < j < 7 otherwise we get a contradiction. In contrast,
when bs; = 0 it has to be at least b,_; # 0, and if by = 1, then by = --- = b;_; = 0.

Definition 6.1.3. For each value of by, by, - - - ,bs which are defined as above, the string
p’=bo+bip+---+bp’,
is called a type of p°.

Proposition 6.1.4. If k < p , then the number of all types of p® is given by

s—1

14 ) (k- 1)

1=0

Proof. The proof will be achieved by induction on s. The first step when s = 0, so it
is clearly that by = 1, and we have not other cases, so the number of type is 1. Assume if
s =m— 1, then the number of types of p™~!is given by 1+ 1+ (k—1)+--- 4 (k—1)™"2
Now, when s = m, then each type of p™™! = by +b1p+- - +b,,_1p™ ! can be regarded as
a type of p™ by multiplying this type by p. Therefore, a large chunk of types of p™ have
been already known, and we need only to account the types such that by # 0.

But, if by # 0, then b; = n1p —ngy # 0, and so on until b,,_5 = 1, _op — Nyy—3 # 0, and
bpn—1 =P — Nym—2 # 0,p. On the other hand, we have k — 1 choice for by since by = ngp,
and ng = 1,---k— 1, and for each one of these choices also we have k — 1 choice for by, so
we get (k — 1)? types from by and b, thus up to by,_, there are (k — 1)™~! types.finally,
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bn_1 is determined totally by n,,_s, so we still have (k — 1)™~! types, and in this case
by, = 0.

Hence, from induction step and this case we conclude there are 1 + 70" (k — 1)
types of p™. Thus, the proposition is proven. O

Returning to our task which is the calculation of ups for s > 0 in relation 6.2. If s = 0,
then according to previous proposition we have one type for this value of s, and from 6.2
we get

Uy = a1($1)1 + Otg(l‘g)l + -+ ozk(xk)l.

We need to consider u; as an element belongs to Z{(z1)y, - , (z)1]/[(@)f. - (2],
so u} = (o1 (x1)1 + aa(xa)1 + - - - + ax(xk)1)P is divisible by p. Let w; be the unique with
pwy = (o (x1)1+as(xe) 1+ - +ar(xk)1)?. Infact w; € Fp[($1)1, co (] (@)E - (xe)E),
precisely

w; = ' Z m@l -..akk(zl)l ...(:L'k)lk
it i =p
i1 g £p

According to the previous construction of w;, we conclude the following lemma which
will be useful in the next theorem.

Lemma 6.1.5. Let k,n are a positive integers such that 2 < k < p, then

a) WP =0, ifn >k,

b) U1_(n_1) ~wh 1 =0, when 2 < n < k.

Proof. Both parts of the lemma can be proven by the same idea which is if
0 € Fpl(z1)1,-- -, (@e)1]/[(x)], -+, (zx)], then 0 < deg(f) < k(p — 1) (see the proof
of theorem 5.1.1 case 3'). Otherwise, i.e. when deg(f) > k(p — 1), implies § = 0 because
the truncation property.

Immediately, from the construction of w; we have deg(w;) = p, thus deg(w}) = np,

so when n > k we get w = 0. By the same way, deg(u?™ "™V . wb1) = kp+ 1 — n, but
for any value of 2<n < k wesee kp+1—n>kp—k, sou? "V .wh1=0.0

Theorem 6.1.6. If k < p, then u,s can be written in terms of uy,w; and e. In fact,
s
(-1 uduge
Ups = e"

summands over all by, by, - ,bs where p* = by+ bip+---+bsp® is a type of p°, such that
bp=cip+d, and0< cp,d, <p—1, for0 <n <s.

Tn that case we have dealt with three variables, but one can easily generalise this fact for any &
variables.
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Proof. For a fixed type of p* = by + byp + - - - + bsp®, relation 6.2 shows

Ups = Z a?at?z e a?ck (ml)tl (xQ)tz e (xk)tka
t1+"'+tk=p5
= Z ail at22 T a?ck (Il)tl (IQ)tz e (xk)tk
t1+-Htp=p®

1,0+ +tk,0=bo
t1,1++tg,1=bh

t1,5+ 4tk s=bs

and the right summation can be factorized as

t t t
Ups = Z O‘Itll'o e O‘kkyo (xl)tl,o Tt (xk)tk,o Z O‘ll,1 T a’kk,l(zl)tl,lp Tt (xk)ik,lp
t1,0t - +tk,0=bo t14 etk 1=b

> (@) (T

ts o+ +te,s=bs

12 t
= Z atll'o (@) (Th) o8 Z ail‘l o (@), (T,

t1.0t+tk.o=bo t1,1+ -+t 1=b1

i
e Z ail,s - akk's(xl)tl,s . (‘Tk)tk,s ,

— H e'n Z atljv" e a;j’" (xl)tj,n N (xk)tj_n

For all types of p* we get

S
tA .
D S 1 Gl D R G R e

bobr - bsn=0  \ Sk ¢, b,

So, we just need to show that for a fixed n, let n = m the following holds:

(—1)mumwi™ Z tim

t'v
ledm' Qq ".akjm(xl)tj,m - (:L‘k)tj,m-

Zf:] tj,m=bm

Now consider the right hand side of previous relation

_ {au(m)1 + o)1+ + ak(mk)l)bm.

" .
Z Qfljym e azj‘m (xl)tj,m e (xk)tj,m B

tl,m+"'+tk,'m=bm m
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We need to work in Z[(z1)1,- -+, (zk)1)/[(z1)},- - -, (zx)]], and since 0 < b, < k(p —1) for
0 <m < s, recall that k < p, so b,, = cup + d,,, this implies
(a1(z1)1 + ao(m2)y + - -+ + ar(xr)1)om _ P tam _ pemapmydm
bp! (cmp +dm)!  (Cmp +dm)!

Finally, we have to show that (¢,p + d,,)! is divisible by p and % mod p =
(—=1)mcpldy,!

(emp+dp)=1-2---(p=1)-plp+1)---(p+(p—1))-2p-2p+1)---(2p+ (p— 1))
((em=Lp+1)---((em = Vp+(p—1)) - cmp- (mp+ 1) -+ - (cmp + dm),
=cnp (- {p+1)p+2)---(p+ -1} A{(lem —p+1)--
((em=p+(@—=1)} - (cmp+1) - (cmp + dm),
and so
[ﬁc_m%;ninﬁ}p =cp!((p = 1)N)d,! = (=1)"cp!d!
as required. O

Theorem 6.1.7. For some integer 2 < k<plIlfr>0and1<i<p-—1,

p

ul r—l(

-1 p-1 i _,p-1 p—1 i
ub™ e =ug (euy —wy )P - €™ (eug — wn)',

~1/,, p-1 —2 —(k=1), k- _ ;
=P (et ub w4 -+ el F TR e ey — wy)’

We will argue by induction to prove this theorem, and the induction begins when
r = 1, because the case r = 0 is an trivial case as we have already seen.

Proof. If r =1, then p = by + b1p so we have two types. The first one by = 0 and
by = 1, that is; ¢g = 0,dp = 0,¢; = 0,d; = 1, where by = cop + dy and b; = ¢1p + d;. The
second one is by = p, while b = 0, so ¢g = 1,dy = 0,¢; = 0,d; = 0, applying theorem
6.1.6 gives

Up = €U; — Wy,

S0
wb Tl = w7 euy — wr),

wheni=p—1,s0ud™! = ;’;(1) (=1)P"1=3 (=1 ew? "l but lemma 6.1.5 shows w) = 0,

for k <j<p-1,thusub™ = Zf;é (—1)P"Yeu? 74! and because v’ 'wk! = 0 (the

second part of the same lemma substitute n = 2), we conclude
p-1 p-1 _ p-1/ p-1 p—2 p—(k-1), k-2
uy b =y (e teuf Twy 4o +eup w; )

Now, assume that the statement is true when r = ¢ — 1 for 1 < ¢ < p — 1, that is to
say;

t—2(

L= ewy — wi )P e R ey — wy )Y,

2

Pl p=1 0
Ul Up upt

-1 -1 - —(k=1), k- - '
a7 (el Py el V) 2 ewy —w )
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If r=1¢t weneed toshow for 1 <i<p-—1

1,L’1’71u£_1 et =u§’_1(eu1 —aw )P et_z(eul - wl)i

P
1, p-1 —2 k=) k2 t—1 ;
=P et Pwy + - 4 eu?” k) et (euy — wy)

Firstly, from the induction assumption we have

p—1 p—1 p—1 __ p-1 —1 t—2 —1
up T ud =t (ewn —w)PT e (ewn —wh ),
-1, p-1 —2 ~(k=1), k-2 t-3(,, p-1 -2
=P e + P Pwy + - 4 el FTUWE) B (e 4w P +
p—1
—(k=1)  k—2\ _t—2 —1—j j . p—1—j j
el F k) E (=P (=1 el P w]
7=0

the same reason in the first induction step implies that the last summation is cut up to
k — 1. whilst, et=3(esd ™ + 1P 2wy + - - + eud” ¥V 2)et =2 (euPFuk 1) = 0 since

e e+ ulwy + - + erd " F k) et 2 (e Ry b )

=e " (udH)et 3 (e(u’l’"lw{"“l)Jre( 2wk Dwy + - 4 e(ud” (k= l)wf Dawh= )

and from 6.1.5.b and e is an ring homomorphism so the last expression will be finished.
Hence,
2 Pkl k=2y L =3 (eyp! -I-u1 2w+

el F TR et 2 (e B Py e enf BT h2)

-1, p-1_, P
u Al =l el R+ e

1 p—
pt

Secondly, to complete this proof is enough to show

p—1, p— _
uy ub e ul g =l

1 p—1 p=l,p=1  p-1 t-1
P 4

ug el (eur — wi),

cnldn!

.. . N t n [ (—1)enudnyin
that means the only surviving terms from expression uye =37, o, [T,—o€ (————

after multiplying it by uf_lug‘l --~u§t__1, are just the cases when we substitute b, =
1,byy=---=by=0and b, =0,b;_1 = p,b;_o = --- = by = 0 as will be shown.

Starting with the types such that by # 0, then by = nop where ng = 1,--- ,k—1, while
by = cop + do (theorem 6.1.6), so ¢y = ng and dy = 0 for each ¢y. But, by = c;p+d; =
nip —co = (ny — 1)p + p — co, this gives that ¢; =n; — 1 where ¢; = 0,1,--- ,k— 2 and
that d; = p — ¢o. Applying theorem 6.1.6 we get

k-1 k-2

Poupt—ZZNul,wl,e) e(ul " Pw) - w

co= 161 0

(=D rugrwit )

cnldpn!

We mean by Pyu, the parts of upe such that by # 0, and N(u;,wy,€) = H:L=2 en (

Hence,

Pouyt = E M (uy,wn,e) - eud” ®wi,
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where M (uy,wq,e) = ch_ON(ul,wl, e)ews!.

On the other hand,

k-1 k-1
ub™ Pyuge = Z eu) ™ w? Z M (uq,wn, e)eu)” Cwi®
j=1 co=1
k-1 k-1 _
_Z Z M (uy,wy, e)eu’? (J+°°)w{+c°
j=1 co=1
2k—2

2p—t_ ¢t
= E M (uy,wy, e)eul” "wj
t=2

according to lemma 6.1.5 the last expression equal to zero. Thus, ug‘lPoupz = 0.

Hence, for the set of all types such that by # 0 we get the corresponding part of wy,
when multiplied by u}~ lu” 1. upt ! the result will be zero. By the same way we can
prove there is no remaining if by = 0 and b; # 0, similarly; for the other types until
bp = by = ---b_o # 0. Consequently, we remaining with the only two types which are
bt= 17bt—1 =---=b0=0and thO,bt_l :p,bt_2="':b0:0.

Hence, from theorem 6.1.6 we get
p—1, p—1 p— -1 p—1 t—1
uy ub Ui ,up: =ul" ug S Upi€ (eu; — wy),

and

— — -1 1, pltl )
u? ~~ut1upt—u1 ub™ - U € (eu; — wy)

O

Now, if we consider k = 3, then k satisfies k < p for any odd prime number p, and
this implies the following

Corollary 6.1.8. If k = 3 and p any odd prime number, then

u’l’"lug‘l Ul =ul " (euy —wi )P " euy — wy ),

=uP e + el wy) - e ewd — deui T wy)

Proof. From theorem 6.1.7 substitute £k = 3. O

6.2 Calculation of L,.(3).

Now we restrict our attention on the case of three variables where corollary 6.1.8 works
perfectly. The motivation behind finding L,(3) is to determined a large part of M, (3)
since L.(k) C M,(k) for k > 1, this can easily be deduced from the construction of the
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generators of L,(k) and Cartan formula.

We define the spaces W1(3), W2(3) and W3(3) to be the subspaces from the space
Ln(3) which are spanned by ¢77;(v1), g7i(v1) - g5 (v2) and g77(v1) - 957 (v2) - g (vs) respec-
tively, where vy, v3, v3 € F3. It turns out we use the z,:, Yy, 2, instead of (1), (22) and
(x3),: for i > 0 as a generators, and we denote by F 2 for the F, ®FF, © F,,. Before starting
our calculation, we need to show the following fact about the generators of L.(3).

Lemma 6.2.1. Forv € IF;;, Ee€lFpandl1 <i<p—1,7r>0,
gri(€v) = €'g7(v).
Proof. Let v = (q1,42,93), SO
gri(€v) =(€qz1 + Egamn + §q321‘)”"1{(§q1$p +&q2yp + Egazp) +
> (Ea1)" (€02 (€5)" 2Pyl 0P {(EqTpr + EQaypr + Egazpr )+

10170'ko!
ig+jo+ko=p 0*Jo*Fo
an]Owk0<p
T (€q1)"1 (€go)m Eqs)’“' iy o)
' Ik P r 1 r—l
Z'r'—l-.]'r—l- 7'—1-

ir.—l+_7:r—1 +kr—1=p
ir—1,Jr—1,kr—1<p

since, €771 = 1, we have &” = £ and this implies (£q1)% (£g2)% (Eg3)* = €qi*q ¢¥ where
is+Jjs+ ks =p,and 0 < s < r. Thus,

g¥(Eu) = (&) € gl (v) = €'l (v),

as required. [
Lemma 6.2.2. If v1,v5,v3 € F3, then

-1, p-1_p-1 : -
Exi i if v1, V2, and v are linearly independent;

7

tr v ir v tir v —
90,;;—1( l)go,p—l( 2)90,;;—1( 3) 0, otherwise.

where § € Fp.

Proof.  Assume that v; = (q1, ¢2, q3), v2 = (t1,t2,t3) and vs = (I3, ls,13), then

961 (V1)1 (V2)ghp_1 (v3) =(q121 + Goyr + g321)P ™ (tr21 + tays + tz21)P

(Lhxy + Ly + Lz )P

In fact, each monomial in each bracket has degree p — 1, so that such multiplication

produces a polynomial of degree 3p — 3 which consists only of the factors z;,y; and z;.
However, this is impossible, unless it is a monomial that is given by x5~ '¢y# ' 281,
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Now if v; and v, are linearly dependent, then there is ¢ € F,, such that v, = cv; (or
vy = ¢vp where ¢ € Fp) so,

95?;;—1(”1)931:;;—1(”2) =(q11 + G2y1 + g3z1)P " (tr21 + toys + ta21)P
=(q121 + Gay1 + g321)P " (cq121 + cgoyn + g3z )P
=" Hqz1 + @1 + ¢320)P 7 (@21 + aun + gsz)P
=" Nq1z1 + @231 + g321)P 72,

but (g1 + goy1 + ¢321)™ = 0 if n > p. Hence,

g(t)t‘p—l (Ul)gg,'p—l (v2) =0

Likewise, when v; and w3 or if v, and v; are linearly dependent.
If v3 = c1v1 + cous for ¢y, ¢y € Fy, then

g(t)fp—1(1’1)9ctfp-1(1’2)937,‘,)_1(113) =(qZ1 + goy1 + g321)" (b1 + oyr + tzz1)P

(l].’)?l + l2y1 + lgzl)p_l

=(q1z1 + G211 + Q3Z1)p—1(t1$1 + toy + tgzl)p_l
{(c1q1 + cot1)x1 + (c1q2 + coto)ys + (13 + cots)z }P°

=(q121 + gay1 + @321)7 (0121 + toys + t321)P
{(a1qiz1 + 19291 + c1g321) + (catay + catoyy + catazy) }P
p-1

= (—1)1011012)_1—1(%301 + goyn + q321)PTU Nty + toyy + tazg) P
=0

=0

Similarly, if v; or vy are written as a linear combinations of vy and v3, or v; and w3
respectively. Consequently, if v1,vy and vz are linearly dependent vectors in ]Ff;, then

96 p-1(01) 9851 (v2) 98,1 (v3) = 0, otherwise we get Ex? ' yP 71207 such that £ € Fy,. O

Thus the last lemma illustrates that the product of more than three generators will
be zero because the dimension of IF?, is 3. Hence, for any four vectors vy, vg, v3,v4 € IF?, at
least one of them have to be written as a linear combination from the others.

Therefore, we need to consider only the case of single generator, the product of two
generators and the product of three generators to find L,(3). In other words, our calcula-
tions of L,(3) will be based on the degree’s form n, recall g;(v) has degree n = (i+1)p"—1
where v € lFf; where 2,7 are integers such that 0 <7 <p—1and r > 0.

Proposition 6.2.3. Ifn=(i+1)p" — 1, where 1 <i<p—1andr > 1, then

Dim W(3) =p* +p + 1.
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and the basis is given by

{952(0’07 ]‘) Ug‘rz(o 1 ql) Ugrz(l q2, (]3)}

such that qi1,q2,q3 € Fp.

Proof. From the definition of W;(3) we have to deal with a single generator, that is;
we need to show that in g7;(, B, 7) there are only p?+p+1 linearly independent elements
for o, 8,7 € Fp. In fact, lemma 6.2.1 will reduce the choices of the representative lines
(a, B,7) to the following cases (0,0,1),(0,1,¢;) and (1, g2, g3), since any line (a, 3,7) can
be written in the form (1, ¢, g3) such that g = 8/ and g3 = y/a. Likewise, in the case
(0,8,7) = B(0,1,q1) where ; = 8/ for q1, g, g3 € F,..

According to this discussion, we infer that W} (3) is spanned by elements

{977:(0,0,1) U g7(0,1,¢) U g73(1, g1, g2)}

and we need just to check the independency of these elements.

Case 1: g/7(1, g2, g3) Consider

Jjo ko
r - q ’q _
9L 2, 08) =(o1+ @ + @21} H{(@p + @+ aoz) + D S eyl
io+jo+ko=p 0-J0

%0,Jo,ko<p

q]r 1q§r 1 k
lr 1 r—1 r— 1
~A(zpr + qoypr + qazpr) + E TN G157 11/;,
ir—1+jr—l+kr—1— r—1+Jr—1 r—1
ir—l»jr—l7kr-l<p
_ —1,.p-1 7
=(T1 + qath + gzz1)" 2T - T

jo . ko
-1 E BB jo ko ,.p—2 i
@+ gy + g ) 0! 70 ko 15”1091 20T Ty
. __ %9 Jo:
io+jo+ko=p
10,J0,k0<p

+R(z,y, 2),

such that R(z,y,z) is sum of terms which are not divisible by neither arg_l -o-xt, nor

9 p
.’l:p "-T;)r

Firstly, let

p—1
Ri=(21+ @y +ga)l bt a = Y (1 gy (e + gl e
j=0

There are @ linearly independent elements in R;, to show that it is enough to show
for each j such that 0 < j < p — 1 there are p — j linearly independent elements, and
those linearly independent sets are disjoint, because each of them involves the factor yi.
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Let j = k and R (g2, gs) = g5y (21 4+qs21)? " FaB~1 - . ad, for 0 < gy, ¢3 < p—1. Then

p—

—k
1k ;
Ri(g2,q3) = (—1)*q5yt Z ( )qul Tepab gl

Now, put ¢, = (—l)k(p":l_k)x’l’_l_k_"yfz{‘xg'l -2k, 50 Rp(qr,q2) = SP R gkgrg,. Tt
is clear that the Ry(q1,qo) is spanned by ¢, to find the dimension, let

p—1 p-1 p—1—k p—1-k p—1 p-1 p—1-k p—1 p-—1

n —_
_S_ : § :fql,qz E q 9 n = E bn § : E :fql qz‘h‘h = E E , E :£Qqu2q1q2 =0
q1=0g2=0 n=0 q1=0g2=0 n=0 ¢1=0g2=0

the last relation is exposed a homogeneous system of equations multiply by ¢¥, so it can
be reduced to the following system Z 42=0 f;h_k 95€q.0 = 0.

Therefore,
(11 1 ... (p=1°%) €0 ) (0\
01 2 ... (p—1)* i 0
0 12 22 (p—1)2

éql .2 0

01m 2 . . (p-1" ) \Enpr ) \0O)
such that m = p— 1 —k. The largest (m+ 1, m + 1) submatrix contains the top left entry
of the coeflicient matrix is a Vandermonde matrix which reveals it is an invertible matrix,
so the only solution of that system is the zero solution, and this implies that there are
m + 1 = p — k linearly independent elements.

We conclude that, for each j such that 0 < 5 < p — 1 there are p — j linearly inde-
pendent elements and for any two different values of j, they give distinct sets of linearly
independent elements, thus we have

p
1
Dim Ry =3 s = @.
s=1

Secondly, we consider
R, = )p—l Q{qg zy] k,p—2 i
2= (21 + quy1 + @221 E i!j!k!xl Jzfal 2. gl

i+j+k=p
i,5,k<p

that will show, It is a subspace of dimension p(p — 1)/2. Simplify of R, yields
Ry = (2, + + z)p—lzq{Q2yjkp2”i (%)
2= \T1 T qQ1Y1 T G221 k! 12 Ty

jtk=p
J.k<p
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relation (*) exposes if either ¢ = 0 or gz = 0, then Ry = 0; so in this case 1 < ¢q;,¢2 < p—1,
and such multiplication produces monomials each of them of degree (2p — 1).
That means we can rewrite Ry by the following form

5 qqu 2 i—k—1 7 k
Ry = xP_J— - P mpf2“.xir,
: j=1 kgj (2p—7—k— 1)K Y12 D v
put j =n(l <n <p—1)and
S qé 2 k-1 )
Rn(QDQZ) ZQ? . (2p —n— kI — ]_)!n!klxlp n-— yllzicmp~2 . .T;T
=p-n
n n p+k—n—1
) k k—n— _ .
Let ¢ = = k)unl(p+k O YR i 50 Ro(qu,go) = Yn_, qRE T ™

Obviously, ¢k s span the subspace R,(q1, ¢2) of the space R», to find the dimension of this
subspace, let

-1 p-1 n p—1

p—
)‘ql qzq?q5+k " Z Z Ag: qz‘h Z Z Agi, qz(I2 =

k= g2=1 k=1

3
=

..m

1 k=

ey

1

so we have from the last system the following coeflicient matrix

1 2 ... (p=1t
12022 ... (p—1)?
™2t ... (p—1)"

The matrix which involves the first n columns admits it is an Vandermonde matrix,
and its determinant not zero. Hence, there are n linearly independent rows in that matrix.
Consequently, we have n linearly independent elements forming a basis for R, (q1,g2). So
that, for a fixed j = n is gotten a subspace of dimension n and these subspaces are
disjoint, and since 1 < 7 < p — 1, implies

Dim Ry = Zs_p(p_—l

On examining the elements of R; we see that they are divisible by P~ ! --x;,r. By
contrast , an element in R, is multiplied by zb~ —2.. z,r. Thus, these subspaces from the
space gm(l g2, qs3) are disjoint, and hence g* i (1 qz,qg) involves p? linearly independent
elements where g9, g3 € I,
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Case 2: ¢%7,(0,0,1) U g{7(0,1, q1)
We have from [6] that the dimension of v7i(0,1)Uv, (1, q) is p+1 if the degree is given by
n=(i+1)p" —1such that 1 <¢<p—1andr > 1, where ¢ € F, which is corresponding
to this case, that means;

UT,i(O, 1) U /Ur,i(la Q) = gf',rz(o’ 0, 1) U grz(Oa 17 Q1)

where q; € F,. Moreover, there is no x factor in this case because a = 0 in g;(a, 3, 7).
Therefore, the basis elements of Case 1 and Case 2 are distinct, so we get

Dzm{gtr 0 0 1) Ugrz((),l,(ll)u.grz(l Q2aq3)} p +p+ L.

and the basis is given by

grz(o O 1) U g:,rz(ov 1, 01) U Qf‘f‘z(l’ 42, Q3)

Proposition 6.2.4. Ifn=(i+ 1)p"+ (j+1)p° —2, where 1 <4, <p—-1,7>1,8>0
and r > s, then

- 2 ) = > .
Dim W2(3) = (J+1)(P2+p+ 1), z'fs 0 and r > 2,
(p+1)(P*+p+1), ifs>1landr>s+2.

In the following proof We have eight essential cases. we calculate the dimension of the
cases from (1) to (7) for all possibilities of 7, s,% and j, but unfortunately we cannot find
that for case (8) unless in two cases which are stated in the context of above proposition.

Proof.  According to definition of W2(3) (the space that is spanned by g¥;(v1)- g7, (v2)
where v1, vy € F3), the degree n of space W2(3) is given by n = (i + 1)p" + (j+1)p —2,
where (a + 1)p® — 1 for each generator. Avoiding to the repetition and misconception we
will take 7 > s and when r = s then ¢ > j where 1 <4, <p—1landrT >35> 1.

Assume that v; = (q1,42,¢3) and vy = (t1,t2,t3) such that g;,t; € Fp, for i = 1,2,3,
then W2(3) is spanned by
ggi(qla 92,93) - gﬁ,rj(tl, to, t3),
and because of,

gf':rz(qla qz, q3) = g:rt(oﬂ 07 61_3) U gf«Z(O» g2, q3) U g:;(q_l? q2, Q3),

where 1 < ¢1,¢1,¢s < p—1and 0 < ¢1,¢2,93 < p — 1. Likewise, when one considers
gi7:(t1, t2, t3). Therefore, the following sets span the space W2(3).

1) ¢¥7,(0,0,43) - g7;(0,0,t3) = ¢/7,(0,0,1) - g¥7,(0,0, 1),
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2) g7,(0,0,¢3) - 957;(0, t2, t3) = 97(0,0,1) - g7:(0, 1, ¢3),

3) 973(0,0,43) - g¢7;(f1, 12, 13) = 9753(0,0, 1) - g7y (1, 82, Ls),
4) g7.(0, 42, g3) - 947;(0,0,3) = g¥;(0,1,¢3) - 6¥7(0,0, 1),
5) gin(0, 2, 93) - 9i75(0, 2, t3) = 9770, 1, g3) - g7(0, 1, 23),
6) g7(0,q2,q3) - g7 (1,12, t3) = g75(0,1, g3) - g7 (1, 22, t3),
7) 9(q1, 92, 93) - 9575(0,0,t3) = gih(1, g2, 93) - 9¢75(0,0,1),

8) gf';rz(qvla q27 QB) : QZ‘J(O, tA27 t3) = gf‘;rz(la q2, QB) ‘ ggz(ou 17 t3)7
9) 93,2((]—1,(12’%) : g‘tst‘](t_latQat3) = 952(17(127 C]3) : gzrj(17t27t3)'

The next step will be the investigation of the independency of these sets and consider
whether there exists any overlapping among them in order to sum up the dimension of
W3(3).

Case 1: ¢/,(0,0,1) - gi7:(0,0, 1).
This is the tr1v1al case, smce

-1 ; -1 ;
Cir=2" 2,4 -2 =0.

Case 2: g,(0,0,1) - g¢7;(0,1,23).

Cs _21 T i (y + t321)p_1 e (yps + tgzps)j
{yl yps A7 "Z;,r, if r > s;
Y y;)S—ll 21_1 - ps—l ps(yps +t3zps )7, ifr=s.
_ {f;(y’{’_l)f’( A7), ifr > s,
T T ) 2 (g tazpe), BT = s,

From to the above relation if r > s, then the dimension will be one. If r = s, then we
need to look at 2 (ypr + t32pr ), Where t3 € Fp. According to [6], we have two separated
cases, the first one if i + j < p — 1, then 2}, (yyr + tazyr)) = i:o( )t3zz+ky] ok
hence each summand in the last expression represents a basis element since they are
independent, so in this case there are j + 1 linearly independent elements. While, the
second case when i +j > p — 1, then 2}, (ypr + tazpr)) = D h_ ot (Dthait oyl * and for
the same reason as in the first case, we have p — ¢ independent elements see [6] for more
details about the proof. Hence,

J+1, ifi+j<p—1andr=s;
DimCy=<p—i, ifi+j>p, andr=s;
1, ifr > s.
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Case 3: ¢7,(0,0,1) - gi7:(1,t2,t3). (we have to investigate s = 0)

Cs =Z{J_1 <o Z; (.’L‘1 + oy + t321)p_1{(111p + toyp + tgzp)p_l + (p - 1)(£Cp + toyp + tgzp)p_2

tiotko . a
Z ,——Ox’f’y{ozf"} o {(Tps + taYpe + tazps )T 4 J(Tps + taYps + tazps)? !

t9+jo+ko=p
i9,J0,ko<p

js—1 ks
t’élt31 151.731"551
Z i"—'k’x”s 1Y ps-12p5— 1}
is—1+js—1tks—1=p s=1Ja=1:Rs-1"
Is—1,Js—1,ks—1<p
To simplify C3 we need to consider the following part and by induction we can deduced
the simple form of C3, s0 for 0 <n < s—1suchthat s> 1landfor1 <i,j7<p-—1we
have

Q =2pn  Zmir {(Tpn + totpn + tazn )P+ (p— 1) (Zpn + boypn + tazpn )P~

tJn ltkn 1 k
in— 1 -1 j
E ; 1|] ) k‘ ' p':, 1 p’,ﬁ 12 : 1}{($pn+1 + tgypn+1 + tgzpn“)J
in—1+]:n—1+kn-l=p n "
in—1Jn-1.kn—1<p

. t]nt n
. -1 3 n kn
+ J(@pr+1 4 toypnir + tazpnir )’ - Z W pnyf,
tn+Jjntkn=p
in,jnakn<p

= gn_lZ;nH (17pn + tgypn)p_1($pn+l + tgypn+1 + tgzpn-H )j + ngn—IZliﬂwl (xpn + tgypn)phl'

) t]nt 20
j—1 3 Jn kn
(@pnt1 + toypntr + tgzpner)) 7 - E ; '] k] pnyp
__tn-Jn-
’Ln+]n+kn =p
in,Jn,kn<p
p—2 J
+2 2 n+1(Ipn + toypn + tgzpn) (l‘pn+1 + taYpn+1 + tgzpn+1) .

Jn—14kn-1
t t in—1, Jn-1 _kn-1

T n—1 n— ]z n—1
Z i i k1 et
iv}—l'i‘].n—l‘{‘kn—l'—p n-12Jn-1"n-1"

in—1,Jn—-1,kn—1<p

+jZ£n—IZ;n+1 (IL‘pn + toypn + tgzpn)p_2 . (.’L‘pn+1 + toypntr + L3zpn+1 )j_l'

n—1 kn 1 n4hn
E t] t l."'n 1, Jn— lzkn 1 tj t3 in kn
1 n-—1 n—1 . n ‘n.,
ine1in_1lkn_q! P" 7P P Z llkIPP
ip— 1+]n 1+kn—1=p n-1 .771, 1 'L1z.+]:n+kn—17 J
in—1,Jn—1,kn-1<p in,Jn,kn<p
tJnt k
Clearly, Zpn (tla:pn +t2ypn)p (.Tpn+1 +loypntr +t3an+1) E%n‘wn‘zkn—l’ ;—%xpnyf,ﬁz n =

znv]nw n<P

While, from induction steps we have each term in C3 involves an_l (Tpn-1 +toypn— Lo
so the third and the fourth terms in the previous expression will be vanished. Conse-
quently, if r = s; then

Cg = Z{)_l st Z;)s (xl + tzyl)p—l ttt (.Tps—l + tgyps—l)p_l(mps + tzyps + tszps )'7,
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and if r > s; then
Cs =212 - (@1 + )" - (o1 + bagpo1 )P (s + o)
Now, when r = s, we get

Cs :zf_l e z;s (z1 + toy )Pt - (@ps-1 + t2yps-1)p_l(xps + toyps + tgzps)j,

Jj .
= Z tg (]> Zf_l . H_n(l'l + tgyl) s (xps—l + tgyps—l )p—l(xps + tzyps)]—n,
n=0 n
but for a fixed n = ¢ the expression 20" -+ 25°(z1 +tay1)PL -+ (Tpe-1 + baype—1 )P (Tps +

tayps )¢ contains p linearly independent elements since the last part (z14+t2y1)P7 - - - (Tps-1+
boYps—1)P 1 (s + tayps )’ ¢ involves these elements by [6]. On the other hand, Cs consists
of j + 1 expression like the above one if : + 7 < p — 1 and when ¢ + j7 > p there are p — i
expressions since

p—i—1 .
Cz = Z tg (T]l) Zf_l .- z+n($1 + tgyl) . (l'ps‘l + tgyps-l)p_l(acps + tgyps)J_"
n=0

Obviously, those expressions in both cases are distinct because each of them involves zs
of different power. Hence, we get (j+1)p linearly independent elements when i+; < p—1,
and if i + j > p then we have (p — i)p elements.

Turning to the case when r > s,
Cg = Z{}_l s Z;r . (331 + tzyl)p_l s (Z'ps—l + tzyps—l)p_l(l'ps + tzyp.s )j,

similarly the part (@1 + toy1)P -+ - (Tps-1 + taYps-1)P  (Zps + tayps )’ contains p linearly
independent elements, so the dimension of this case p. Therefore,

G+ 1p, ifi+j<p—1,and r=s;

DimCs=< (p—1i)p, ifi+j>p,andr=s;
P, ifr>s.

Case 4: ¢17,(0,1,q3) - 92;(0,0,1).(check the overlapping if s = 0 with C)

Cr=(y1 + @21)P 7"+ (Ype + G32p0 )P+ (Ypr + @32pr)" - A7 Zi;s

U B A
= ysz l(yf zf ) ) zf;s (yps + qzps ) Lo (yp’ + qur)t'
Finding the linearly independent elements in Cj required only examining the part

Z‘:Z;s (Yps +q2ps P71 - (ypr +q2pr)'. As we have mentioned in proof of proposition 6.2.3 that
(0, 1) Uwy(1,q) ~ gi7(0,0,1) U gﬁg(o, 1,q1), where ¢,q1 € FF,, so from [6] we have to
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deal with the following cases.

The first case, if r = s, then we get 20 (yps + ga2pe)t = Zi:o( )q3y;,skz£j] In fact,
we have dealt with this in Case 2, just we need to swap ¢ and 7. Thus, there are ¢ + 1
basis elements when i + j < p— 1 and if ¢ + j > p, then the number of basis elements is
p — j elements.

The second case, if r = s+1, s0 2 s(yp + q32ps )P (yps+1 + g32ps+1)* by rearranging this
expression and using Vandermonde’s determinant someone can infer that if ¢ < j, then
there are p + ¢ — j basis elements, while; we get p independent elements when ¢ > j.

The final case, when 7 > s + 2, then 2, (yps + q2ps )P~ - - (ypr + q2pr)* and hence the
same technique that used in the previous case can be used for this case to show that the
dimension of Cy is p, see [6] for complete proof of these cases. Therefore,

(i +1, ifi+j<p—1andr=s;

D— 7, ifi+72>p, and r =s;
DimCy=<{p+i—j ifi<j andr=s+1,

D, ifi>j, and r =s+1;

V2 ifr>s+2.

Case 5: gf:z(o) 1, q3) : gét‘] (Ov 1, tS)
Cs =(y1 +q321)" "+ (Ypr + 32pr)" - (Y1 + t321)P - (Yo + t32p0 )

recall that v,;(1,q3) - vs5(1,t3) =~ g:(0,1,q3) - gv7;(0,1,t3), where g3,t3 € F, via the
homomorphism A(zpn) = ypn, and h(ypn) = 2pn for n > 0. Hence, from [6] we have

S WP 2T (e + 3200 ) (Y + G32p) ifr=s;
Cs =< fr.(y1™ 12{’ D) (Y + tazpe ) (Ype + G325 )P (Ypr + @32pr)’, ifr >sandj<p—1;
fs‘Irl y~ zf 1)(yps+1 + qazps+1) P (Ypr + @327 )Y ifr>sandj=p—1.

so, we need to investigate these three cases establish how many linearly independent ele-
ments appear in this case.

Starting w1th the case when r = s, then we need to consider (yYps +t32ps )7 (ypr +¢32pr)t =

o DT S o (D)ah ypsm zps. Set k = n +m, so last expression could be

written by (yps + tgzps)j (Ypr + @azr)t = 300 & “LJ kz;fs. Now, if 1 +j < p — 1, then
clearly each summand in the previous expression represents a basis element, thus there
are ¢ + 7 + 1 basis elements. In the case when ¢ + j > p, recall y;’s = z;,’s = 0, this
impliesst+j—k <p—1sok > Z+j—( —1) On the other hand, k¥ < p — 1, thus
(Yps + ta2ps ) (Ypr + Ga2r)' = S 0_s i (p—1) §kyl+] 5. Similarly, as previous case we can
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obtain the dimension in this case; which is 2p — 1 —1¢ — j.

Turning to the case such that r > sand j <p—1

. p—1
j 1- 1-
(yps + t32ps )’ (Yps + q32p5 )" Z( ) - "y;szjan( 1)p-1-m e my]r)rsz ,fs m
n=0 m=0
p—l j .
= Z D m( )Q3 Ty
ps 8
m=0 n=

Setk=m+n,then0<k<p+j—landm=%k—nso

ptj-1 j ;
; 1 —1—k J —1—k+n,j k ptj—k-1
(yps + tszps )J (yps + qszps )p = Z ; (_1)p +TL (n) qg nté nyp ZI;S J

p—1 7 .
-k p—1—-k kK 1-k I\ n,j-n
= 3 P g o ()
=0 n=

=(t3 — g3)’2} Zps (?/ps + g32ps )P

Hence, dealing with this case means we deal exactly with C4 second and third cases,
therefore; this case will be disregarded.

Similarly, the last case s“(yl 27 (ypstr +gazps+1 )P+ - (ypr +q32,r)* can be viewed
as a special case from Cy when someone taken j = p — 1 in Cy , consequently; this case
also will be disregarded.

Case 6 : g'l:":.z(ov 1:‘13) : gzj(latZatB)'

Co =(y1 + q321)P "+ (Ypr + @327 ) (21 + toy1 + t321)P 7 {(2p + oy, + t32,)P '+

B t]O ko ; ]
(= Dy +tagp + 132" > il 'k l TPYP 2} - {(pe 4 taype + tazps )+
io+jo+ko=p 0-Jo
10,J0,k0<p
. j—1 tgs_ltgs_l is— 1 Js 1 ks—1
j(xps + tgyps + tgzps) . Z m ps—1Yps— lzps 1}

tg—1+js—1+ks—1=p
1s—1,Js—1,ks—1<p

Jn t’;n

But (yp"+q3zp")p_1(‘rp"+t2yp"+t3zp ) Ztn+1n+kn—p in'in'kn l‘r y]" k'? = 0 for all n such

. in,Jjn.kn<p
that 0 <n < s —1 implies

Co =(y1 + g321)" " -+ (ypr + qazpr )" (T1 + toys + t321)P 7 -+ - (Tps + Loype + tazps ).
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Now, consider @, = (1 + taypy + t32,)7 (Ypt + q32,2)P~', where 0 < I < s we have

J . o1
.] i—m p _ 1
Qu :Z (m)x;l (t2ypt +t3zpz)m2( . )Q3 1- nyg P 1—n

m=0 £
J j m o
2 : . dym—d —d Mmoo L
- (m> Iﬁ)l ; Z ( d ) t2tgn ypl Zpl ( ) E yp P -n
m=0 s g
! J ) m p—1 -
= E: (m) .'L‘;l_m Z (_ 1)" ( d ) qg“l—ntgtgn—dy;dj—nz;)l—l-f-m—d-n’
m=0 R

put k=d+4+n,s00<k<p—1+mandn=%k—dthus

J . m p—1l+m
Ql:z(:ﬂ)x;lmz (—1)F d<d>q§ 1- k+dtgtm dyslz;; 1+m—k

m=0 d=0 k=0
J ] m m p—1
j— d d dym—d k 1-k_k p—1-k

=3 (D) v () )t X (0t

m=0 d=0 k=0

J ] )
- Z < )x;l_m(i@ - t2Q)ngll . (yp‘ + qu‘)p !

m=0

=(zp + (t3 — t2q3) 25t ) (Yot + 207~
for fixed g3. We have 0 < t3 — gsta < p— 1, set t = t3 — gsta, we get
Q= (zp + t2,0) (Yt + g3z)P~! where t, €T,

Hence,

C: = (g1 + @321)P 7 - (ype + Gazps)' - (T +t20)P 71 o (Tpe + Loy +t32pe)!, i 7 =5,
6 - y .
(Y1 + @21)P - (Ypr + @azpr)t - (21 4+ t21)P 7 e (T + t2pe )7, if r > s;

When s =0, and 7 = 1 then

j .
Ce =(z1 +t21)7 (y1 + q21)P " (yp + q2,)"° Z ( )tkfj 2+ q2)" (Y + q2p)

If i > j, then consider the following expression R,(q) = i "2¥(y; + ¢21)* (v, + ¢2,)",
for 0 < n < j— 1 The case when n = j is excluded because it gives R;(q) =
2 (y1 + ¢21)P " H(yp + qzp)* = Cy such that r = 1 and s = 0. It is clear that for all n
in that range we still have ¢ > n since ¢ > j.

But we have a complete description for the expression 27 (y1 +¢21)P ' (yp+¢2,)", see Cy
second case such that s = 0. Thus for 2](y; +¢21)” ' (yp + q2p)" there are p linearly inde-
pendent elements, and hence R,(q) = =3 "2F(y1 +¢21)P " (y, +gz,)}, where 0 < n < j — 1.
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Moreover, these sets are linearly independent because each set involves z; of different
exponent according as n. Therefore, there are jp basis elements.

If s=0,r=1and i< j, so we can split to the following forms

i—1 . J .
Ce = Z <]> th 2] F 2R (g1 + 2P (yp + q2p) + Z <2) t*2] 7 28 (g + q21)P  (yp + q2p)"

k=0 k k=i

Similarly, let R,(q) = 23 ™27 (y1 + g21)" (3, + q2,)?, such that 0 <n < j — 1. Note that
the case where n = j is disregarded for the same reason in previous case. Obviously, for
0 <n <i—1, we have i > n, so precisely by using the same argument as in previous case
we get ¢p linearly independent elements.

Now, for ¢ < n < j — 1, then also C4 the second case exposes that the expres-
sion 27 (y1 + g21)P " (yp + g2,)* involves p + i — n linearly independent elements, and
so Rn(q) = 27 %28(y1 + q21)P Yy, + qz,)°. For the same reason these sets of linearly in-

J—i-1 _ G=9?-(=9)
3 .

dependent elements are distinct. Thus, we have (j—i)p—>_2_ " a = (j—i)p

On the other hand, the basis elements of R,(q) such that 0 < n < ¢ — 1 for those
where i < n < j — 1 are disjoint according as n, hence the total dimension of R,(q) is

. . . —i)2—(j—i . j—3)2—(j—t
ip+ (j —i)p— (J )2(1 )=]p— 6] )2(1 )
Ifs=0andr>2 so
Co = (z1+tz1) (y1 +q21)P '+ (Upr + @2 )’

then the same techniques that has been used in previous case where 7 > j can be used to
show that there are jp basis elements.

Ifr>s>1,then
Co = (y1+g321)" - (Ypr + Gazpr) (21 +120)P 71+ (Tps +E2p5)7.

It is clear according to g3 and ¢ which are in F,, then Cp in this case is spanned by p?
elements, so we need to check the linearly independent elements. To make the proof easy
to follow we will rearrange Cg by the following

1

Cs =(z1 + tzl)P‘lr,’;‘l e 1‘;5 (y1 4+ @321)P - (Ypr + @32 )* + Rao(t) - (Y1 + qa21)P -

(yp’ + q32pr )i

where Ry, (t) = (1 4+121)P1 -+ (Tps +t2pe )] — (21 +t20)P 2Bz = (@1 +129)P 7 -
SP 2 (—1yprimapizags 2PT L (s + t2), such that 1 < m < s — 1. Then, we
choose the first summand in Cg which is denoted by Q(t,q3) to investigate how many
independent elements in Cg, however; there can be little concerned about this choosing.
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Apparently, Q(t,q3) ¢ M,(3) unless t = 0, so in fact it is not an element in L,(3),
but each element in Cg which is automatically in L,(3) C M,(3) involves this expression.
Thus, there is no problem with this choosing. While the second concern, the number of
independent elements in that part does not determine the dimension of Cg, but it exposes
how many at least linearly independent elements are there.

Now, let us consider

Q(t,q3) =(z1 + tzl)p_lxz_l - 'l}jzs (y1 + gzz1 )P (ypr + QszT)i
p—1
= (—1)ktk$713_1_k175_1 - 'fﬁfaszf(yl +g321)P 7 (Y + @32 )"
k=0

Let R,(g3) = xf‘l_":ﬂg‘l e xf,sz{‘(yl +q321)P71 -+ (ypr + g32pr)t such that 0 <n < p—1.
From Cj we have that 27(y1 + ¢s21)P™' -+ - (ypr + g32,r)* involves p linearly independent
elements which are determined by g3, and so R,(q3). Moreover, there are p expressions
like R,(g3) in Q(t,¢3) and those expression are different according as the power on z,

then @4, contains p? linearly independent elements.

Thus, Cg is spanned by p? elements, furthermore; these elements are independent.
Hence,

Jps ifi>j,s=0andr=1;
Dim Cs = gp— U0 if i< j s=0andr =1

Jp, if s=0and r > 2

P, ifr>s2>1.

Case 7 : g'f‘rz(l:q% Q3) ) 9273(0707 1)

—1 i
Cr =207 2, ~gﬁ?(1,Q2,Q3)

=20 2 (T + @+ G321)P T (T Qe + @32 )P {(Tpr + G F Q32 )

qu—lqkr—l . . k
. i—1 2 3 ir—1 -1 -1
Z(xpr + QY + QSzp") E —i 'j % 'Cvp’r_lyf;_l zp:—l
tr—1+jr—14kr—1=p, Tl o=l
ir—1,Jr—1,kr—1<p

= Zf,)s_—ll (@1 oy )P (Zpet Qoo )P 2 (e + Qape + a2 )PT
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{(:Eps+1 + QoYps+1 + q32ps+1 )p_l + (p— 1)(:13ps+1 + GoYps+1 + Q3Zps+1)p_2

qéqg Js K .
Z 1675 ks! psypi s}{(%s+2 + q2Yps+2 + q32p3+2)
ls+]3+k3=p7
is,Js,ks <P
q]s+1 kst1
E s 1o z3+1 Js41 k5+1

— b
(p 1)(33ps+2 + GoYps+2 + q32ps+2) RS Zpst1Yps+12ps+1

is+1+is+1+ks+1=D,
is+1,Js+1,ks+1<p

{(IpT + @2Ypr + q32pr )i + i(mp’ + QYpr + q3sz)z L

Z &y k
3 I y]r z:il

1 r—1
1 14 Ik pr P D
ir—1+Jjr—1tkr—1=p, r-1Jr-1
Ir—1,Jr—1,kr—1<p
If r = s, then
_ p1 J -1 i
Cr=2""zZ(x1 4+ @)’ - (Tp + Ga¥ps + G32p5)",

let wzn = (zpn +q2ypn)k, for0<n<sand0<k<p-—1,s0
Cr=wP 1207w 2P 2} ' (wys + )!
7 =W 1 ps—1%ps— 1 ps T 432ps

but Cr = £5, (2] (w1 + g321)?), where fo,, = w}™ 27 "¢(d). Thus, we need only to examine
the independency of the expression Q(gs) = 2}s (wps + gazps)".

Now, if ¢ +j < p—1, then
Q) =3 () )eduss
n=0

Obviously, each monomial in Q(g3) represents a basis element, so that; there are ¢ + 1

linearly independent elements, namely, (s (wP™ 2P~ l)wl " "+~7 : 0 < n < i}. Taken
any one of them which is B, = f5~!(w{”~ lz{’ l)w’ lz"’s“, and replacmg the part wp =

(zpn + g2y )* implies

B, = Zf_l = n+l($1 + @y )Pt (2 + Q2yp5)ivl

but B; is spanned by p linearly independent elements are determined by ¢, such that
q2 € Fp, and the Bjs are distinct. Consequently, we have (i + 1)p basis elements in this
case.

If i + 7 > p, then using the same techniques as above gives

Q=Y ( )s"qz:w;,s" i

n=0
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since n+ j < p— 1, otherwise; Q(g3) =0, s0n < p—1—j, and that is;

p=1-j
Q(gs) = Z ( )5” Jwh "2

n=0

Then, we infer the dimension in this range of ¢ and j is (p — j)p.

Turning to, Cs in case r = s. Precisely, same argument as in case C; establishes that
the basis is given by {z7'.. 2t (@1 + )Pt - (Tpe + taype)? " such that 0 < n <
j where t; € F,}, but these elements are subsets from the basis elements of C7 because in
this case @ > j. Therefore, C3 C C;. Similarly, if ¢ + j > p same reason implies C3 C C7,

so C3 will be disregarded when someone considers this case.

If r=s+1, then
Cr =271 -2,’,’3__11 (14 @y )P (Tpe-1 + qoype-1)PTL
2o (Tps + Qalpe + 0325 )P H{(Tpor1 + QoYpert + Gazper )i+
'S kS
{(ZTpot1 + QoYps+1 + gazper1) - Z % 93 T y{;zﬁ?}

igli k)P
ls+]s+ks—p UsJs
is,Js,ks<p

We need only to consider the expression

R(qy,q2) =z1{s(xps + qoyps + qups)p‘l{(xpm + qoypsr + Q3Zps+1)i+

. - q’ g5’ :
Z(CL‘ps+1 + GaYps+ -I-(]gzpshtl)z t. Z 2 '2 ] ;%yf,szks}

isj-j§+ks=p
is,Js,ks<p

Now, if j = p — 1, then
C7 :(Z'ps + QQyps )p—lzgs_l(fﬂps+1 + qzyps+l + q3zps+1)i

i

1 i
((L'ps + q2yps) g 1 Z <n> qg(l'ps+l + qups+1 )Z nz;)ls+1.
n=0

Again Vandermonde matrix produces i+ 1 basis elements determined by gs. On the other
hand, each of them can be written by p basis elements, so the dimension in this case
(1 + 1)p, but when n = i for this value C7; = (3. Thus, the dimension becomes ip.

If 7 #p—1, then; let

Ry =z£s (Zps + Golps + q32ps )7 (Tpor1 + Qaypot1 + qazpet1)’

and

js ks
- -1 i—1 Z 92 q3° s ks
R2 :Zg)s (.'L'ps + q2Yps =+ q3zps)p (xps+1 + q2Yps+1 + q32ps+1 )z ZS'J ‘k ' p y‘f;

ts+jst+ks=p,
(ZIVE] vks <p
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So,

M

p—1 n i k .
i\ [k
< >qg mqp o "zyg " P:'J . IZZ (k) <l>q§ lQé kwiﬂﬂypsﬂz;,si

n=0m 0 k=0 1=0

since,p+j—n—1<p—1=n2>j, thus;

p—j—1 ntj oy
R, = Z (—1)"+J( )q”+3 mqg n—j-1 ;rzygjj mzp n-1
n=0 m=0 m
l : t k i—k
ZZ k l (]2 q3 xp3+1y s+12 s+1

ik . .
n+j n+.,7 ¢ k n m— 1—)]—n-—
_ )IDIDINED +]( * )(k)<l>q2+k+3 Lpti=i-n-k=

n=0 k=0 m=0 [=0
m, n+j—m p~n—1 ! i—k
Cl'ps ypa Zps ps+l yps+1 zps+1

Set @k, = (~1)(%29) () (Ve " adghhi, a =tk and b=m +1

p+i—j—1 a+j

a+j—b p—H—] a—1
=2 2w Pas
a=0 b=

Turning to,

pt+i—j—3 p+2(i—1)—j—a—2

i—1 pt+a—j—
p+a —b-1 p+z j—a—2 p+i—2—-b _p+i—j—a—2
- Z Z Wap + Z Z ds q3 Wap

a=0 b=0

Now, if i > j, then

ptiej—1 atj
a+j—b _pt+i—j—a—1
> E 9" g3 Do
a=0 b=0
-1 a+j p+i—j—1 a+j
a+j—b p+z j—a— 1 a+j—b p+z j—a—1
E > g5 Dop + % g3 Dap
a=0 b=0 a=i—j b=0
i—j—1 a+j p+i—ji—1 a+j
_ a+j—b z—] a a+j—b _p+i—j—a—1
=q5 E E 42 cI’ab"’ E E D) e Dap
a=0 b=0 a=i—j b=0

Since, qg_l =1 for g3 € IF,, and clearly the power of g3 is between 0 and p—1 in the second
summation, while in the first summation q3s exponent has therange 1,---i—j—1 < p—1.
On the other hand, the power of g, depends on the values of a, and it is clear that a’s
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values in the second summation are greater than the corresponding one in the first sum-
mation.

Hence,
pti—j—1 atj
2: z:a+]bp+zjal
q Aa,b,
a=i—j b=0

where Agp = @a,b + @, 5 such that g5qd that relates with ®,p and gyq%* that is linked with
®,, are identical, otherwise; Agp = Pgp or Agp = Pop. Agp # 0 because @, # P, for
all values of a,b in both, thus;

p—1 a+i
§ :E : a+i—b p l-a
qdo Aab (63)
a=0 b=0
Turning to,
i—-1 pta—j— p+i—j—3 p+2(i—1)—a—j-2
p+ab1p+zga2 p+i—b—2 pt+i—j—a—2
Z Wep + g Wap
=0 b=0 a=i b=0
i—j—2pta—j—-2 i~-1  pta—j-2
_ p+a—b—1 p+i-j—a—2 +a b-1 p+1 j—a-2
= 92 43 Wap + Wap
a=0 b=0 a=i—j~1 b=0
p+i—j—3p+2(i—1)—a—3-2
p+i—b-2 p+i—j—a—2
E § 4q; VE Wa bs
a=i b=0

same argument that is used in case R, can be used here, so

i—1  pta—j—2 p+i—j—3 p+2(i-1)—a—j—2

_ z : p+a—b—1 p—H j—a—2 p+z —-b—2 p+z j—a—2
a=i—j—1 b=0
j pta+i—2j-3 pti—j—3p+2( ’—1)‘0”.7—2

_ p+a+i—j—b—2 p—a—1y1 p+i—-b—2 p+i—j—a—2

=) s G Wap+ > D AR Wap
a=0 b=0 1 =

When a =0

R, = ngg—lf\o,o + qé‘lqé’_le,l +--- 4+ Cqug_le,i—1 + qé"l/\o,i,

and
R qp+z—] -2 IW +qP+1 Jj—3 p 1W01 + - +q;+1q§_lw0p+i—2j—3’

since i > j, then p+i—j—2>p—1. If p+i—j—2>p, then 7%~ lWo,pH_J k=
a5 lqg 7= k+1q3 IWO,pﬂ_J k, SO rearranging R, and adding it to R2

Ri+Ry= q§_1q§_190,p_1 + q§_2q§_190,p_2 +--+ Q§_190,0~
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Note, because of; A;; # W;;, and A;; # 0 and W;; # 0, 6;; # 0. Similarly, when one

considers a = 1,--- ,p — 1. Hence,

Y
—
]
|
—_
N‘d

R(q2,43) = T 0,

)
Il
o
o
I
=)

For a fixed b = ¢ consider

p—1
R(go,q5) =57 7> g™ 0
a=0

let
p—1 p—1 p—1 p-—-1
—1-c -1- ae 0 p—1—c p—1-—a =0
a5 Qgs,93 (12 a.c a.c q3 a3 Qgags = U
q2=0 g3=0 g3=0g2=0

since @, .s are distinct, we get

p—1 p—1

p—1l—c p l-a _
§ E a5 Ogygs = 0 for each a,

g3=0¢2=0

the above homogeneous systems can be reduced to the following system

E : p—l-a —
a3 O‘4124]3_0'

g2=0

Using Vandermonde determinant shows that there are p basis elements, for 0 < a < p—1,
but an alternative choice of b gives p different linearly independent elements, so we con-

clude the dimension in this case is p?.

If i <, then

R(q2,q3) =R1 + R,

pti—j—1atj i—1 pta—j-2
Z:E: p+i—j—a—1 z:z: +ab1p+'Lga2
Qa+j—b43 CI) b+ W
=0 a=0
pHi—j— 3p+2(z 1)—j—a—2

p+i—b—2 p+i—j—a—2
E : E : 43 d3 Wap

J pti—j—2a+j+1

_Zq% ’ p+z—3 1(1) b+ Z Z Qa+j+1 bqp-H—J o 2‘I)a-i-l,b‘i‘
=0

i—1 p+a—j—2 p+i—j—3p+2(i—1)—j—a-2

Z Z qg+a —b— 1qp+z—1 a— 2Wab+ Z Z q2+z ~b— 2qp+z j—a— 2W

a=0 b=0
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Excluding the first summation from previous expression then the remaining parts can be
gathered ( as we have done in previous case ) and we get

pt+i—j—2 p—1

J
R(QQ,Qg) _ qu—bqéﬂ-z—y—lq)qb_'_ q —1-b p+1—j a— 20
b=0 a=0 b=0

The first summation gives j + 1 basis elements, while; the second one provides (p +
i—j—1)p linearly independent elements. Hence, the dimension is (p+i—j)p— (p—1—j).

If r > s+ 2, then ( from the case where r = s+ 1, and ¢ > j(from relation 6.3) we
infer the dimension of this case which is p?>. To sum up,

(i + 1p, ifi+j<p—-1,andr=s;
(p—7)p, ifi4+7>p,and r = s;

Dz’mC7:<(i+1,)p’, | %fj:zj?——l,andr:s+1;
(p+i—Jp—(p—1-7), ifj>i,andr =s+1;
P2, ifi>j,andr=s+1;
Lp?, if r>s+42.

Case 8: g!".(q1, g2, q3) - 9;(0, %2, t3).

Ifr>s+2and s >1, then

Cs =g.:(0,1,t3) - 971, G2, g3)
=(y1+ )P (ype ) (21 + qayr +g32)7 7 (T + Qo + Q32 )7
{(@pst1 + qoyps+1 + ga32pe P+ (p— 1) (zps+1 + Qoyps+1 + qa2pet1 )P~
> q|§%§ aiayls2h}
iglgslkg! POPP

is."‘j's +ks=p,
13,]s aks <p

-1

{(zps+2 + Gayporz + Gazper2)P " + (p — 1) (Tpsr2 + Qalpotz + gazpe+2)?”

q]s+1 ks+1 .
S 1s+1 Js+1 Ks+1 i
Z 7 |‘7 'k 1 p3+1yp8+lzps+1 } T {(xpr + Q2Ypr + Q3Zp7‘) +
ts41+is+1+tks+1=p, s+17Js+1 R+l

is4+1:Js+1,ks+1<P

q]'r lqkr 1 k
. i—1 3 ir—1 1 1
Z(mp’ + G2Ypr +q3sz) : E | I N p:' 1 p: 1Zp: 1
7'r—l-]'r—l-k;
Tp— 1+_7'r 1+kr_1=p,
ir—1,Jr—1,kr—1<p
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Let us consider

R(t, qo, q3) :(yl + tzl)”‘l . {(xpr—] —+ q2Ypr-1 + q32pr-1 )p—l + (p — 1)(Ipr—1 + q2Ypr-1 —+ qupr-l)p_2

jr—2 kr—2
Z q; q3 z7‘ 2 Jr 2 kr—2

r= — T— r 1 r 4+ r ‘L+
Tp_ 2']7‘ Z'kr 2I p 2'!/ 2zp 2}{(!1,‘;0 P2Yp qup)

z.r.—2‘*‘.7'_1‘—2“"‘37'—2=p
ir—2,Jr—2,kr—2<p

r—1 kr 1
§ q] q3 xir—l 'r—-l kr—l

. i—1
i(Zpr + G2¥pr + qa2pr)* . Y VAN
br—1lfra ke P TPTP

ir—1+jr—1+kr—1=p,
ir—l;jr-—l;kr—1<p

We looking at the following part from R(t, g2, ¢3) to investigate the dimension of Cg
for values of r and s.

Q(t,q2,q3) =(y1 +t21)"" 1 - Q(ga, g3),

where
Q(q2: g3) =(Tpr-1 + qoypr-1 + @a2pr-1)" H{(@pr + G2ypr + G320 )"+

q]r ]qkr 1 k
. i—1 j : 3 ir— 1 1
'L(.’L’pr + qupT + qupr) —Z ‘] % |(L‘prr 1 r— }
i1 jro1+kr_1=p, r—1-Jr—1-hr—1

ir—1,Jr—1,kr—1<p

Same technique that have been used in Proposition 1 can be applied for Q(g2,¢3)(
replacing z1,y1,21 by Tyr-1,Ypr-1, 21 ) to showing it provides p? linearly independent
elements. On the other hand,

p—1

Q(t,QZa%) :Z( l)ntnyl - TL Q(%a%)

n=0

Set ¢ = (—1)"5" ' 7"27Q(gg, g3), and assume that

p—1 p—-1
DO s = Z bn Z t"¢ =0
t=0 n=0
the linearly independence of ¢, s gives t"{t =0for0 <n <p—1,and Vandermonde S

determinant shows that the only solutlon for the homogeneous system » ;_ t”ft =0 will
be the zero solution. Hence, we have p basis elements. Consequently, the d1mens1on in
this case is p®.

If s=0and r > 2, then

Cs =(y1 + t21)" - Q(g2, q3)
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where (g2, ¢3) as in previous case, which involves p? basis elements, and same argument
gives Cyg is written by (j + 1)p? linearly independent elements. Note C; C Cg in this case.

Case 9 gf",rz(q_l’ g2, Q3) ’ QZJ (t_la ta, tB)
The following calculation just shows this case will be disregarded because either Cy = C5
or Cy = Cg. Firstly, we simplify such product, so consider

Q =(z1 + qoyr + @321)P 7 H{(Tp + @yp + 32,)° " + (p — 1) (Tp + @2Yp + G32p)" 2

o ko
Z 7'%° y]° 0} (z1 +tayn + t321)p_1{($p + tayp + t3zp)p—1

l
1017, lk; |
io+jotko=p, 00
i0,J0,ko<p
2 Z 1otk k
_ p— 'Lo JO o]
+(p 1)(xp+t2yp+t3zp) 14 |h' Ty Yy 21 }
. ~ 190
io+jo+ko=p,
i0,J0,ko<p

=(z1 + @ay1 + ¢321)P " (@1 + toyr + 8320)7 71 - {(@p + 2yp + 4325)7 (@ + boyp + E32p)P

B B t]Otk
+(p - 1)(‘/‘EP + QZyp + QSZp)p 1(2:]7 + tzyp + t3zp)p ? E 'l 14 'k ' l y70 o
io+jo+ko=p, 0-Jo
i0,J0.ko<p

_ _ 5 g5°
+(p — 1)(zp + toyp + t32,)P " (zp + G2yp + G32p)P 2 Z 273 _gloylozko

101701 k0!
io+jo+ko=p, 0-Jo-Fo:
i9,j0,ko<p

b K
-2 -2 2 43 10, Jo ko
+(xp + bayp + t32p)" " (@p + G21p + 37p)° E iojo ko (frina
io+jo+ko=p, 070
101]07k0<p
Jo 1ko
Z y't3° ym ko}
L i0!70!ko! =
io+Jjo+ko=p,
10,J0,k0<p

=(x1 + a1 + g321)P (21 + toyn + tSZl)p_l(xp + qyp + q32p)p_1 (zp + tayp + t3zp)p_1~
Continuing the same procedure by replacing z1,y1,21 by Tpn,Ypr, 2pn and z,,yp, 2p by
Tpnt1, Yprt1, Zgnt1 for 1 <n < s — 1 yields
Co =9/(q1, 02, 43) - 95 (f1, L2, t3)

=(21 + toyr + t321)P (1 + Qo1 + g321)P - (Tpe + Lalpe + tazps ) (Tps + QoYps + G3zps )P

+{($ps+1 + QQyps+1 + Q3Zps+1)p_1 +(p—1)(z Tps+1 + QoYps+1 + q32ps+1 )P 2

GG i, . - g
2 '21 '2 Yt b {(@r + Qo + @azp )" + 6Ty + Dol + Gazp)' T
'Ls+Js+k?s_P,
is,Js:ks<p

qér—lqkr-l . i &
ir— - -
> —2 gy
7"r—l!]7‘~1!kr—l! P P P
tr—1+jr—1+kr~1=D,
ir—1,Jr—1,kr—1<p
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Now, consider

Ry =(x1 + toy1 +t321)"™" (1 + qoy1 + @321)P 7"

p—1 p—1
S (=D" T Mty +taz)™ Y (1)) T (goys + gz2n)”
m=0 n=0
p—1 p-1
= Z Z (=)™ ™22 by + taz1)™ (govn + g32)”
m=0 n=0

put k=m+n=0<k<2p—2andn=%k—m

2p—2 p-1
Ry = Z Z (—1)*22P 72  (tagn + t321) ™ (qoyn + g3z1)F ™
k=0 m=

But, the total power of z; have tobe 2p—2—k <p—1= k > p—1; otherwise R; = 0,
SO

2p—-2 p-1
Ry = Z Z( DF2P 2 (s + taz)™(gays + g3z1) ™
k=p—1m=0
p—1 p-1
= Z (—1)Pitk ﬁ"l'k(tm + t321)™(qayr + gzzy )P IR

k=0 m=0

p—1 p—1

Z (bayn +to21)" (ot + q3z1)p_l_m Z (—l)kle)_l_k((hyl + (]3»21)]c
=0 k=0

{(Q2yl + qz21) — (tays + t321) P (@1 + qoyr + gaz )P
={(g2 — t2)y1 + (g3 — t3)20)}’ " (@1 + @otn + q321)""}

for a fixed g5 and g3, we have 0 < gs —to < p—1and 0 < g3 —t3 < p—1 unless gz = 15
and g3 = t3 in this case R; will be zero. Thus

Ry = (bayr + t3210)P (21 + qoyn + g321)P

where &y, 13, q2,q3 € F,. Repeating the same process by replacing 1, y1, 21 by Tpn, Ypn, 2pn
for 1 < n < s provides the following

Co =(t1y1 +t221)P -+ (B1yps + tazps ) - (T1 + qoy1 + q321)P 71 (Tps + Qalps + Gazpe )P

A (zpr + qoypr + Q3ZpT)i +i(Zpr + Gaypr + Qszr)i_l

qu—l k'r—l

E 2 q3 :L_'Lr 1 ]r 1 kr 1}
. l r l r—1

b1 Jro VP P

Ir— 1+]r 1+kr-1=p, r—1-Jr—1-fr—1

Ty 1,]7‘ lkr 1<p

So, if t; =0, then Cy = Cr, otherwise; Cy = Cg. O



Chapter 7

General comments on M (k)/Ly(k)

7.1 Background and Existing Results

Between the space M, (k) and L, (k) there is a space that can be provided some informa-
tion, and complete the following sequence to be exact
0 —— Ly(k) —— My(k) —— My (k)/Ln(k) —— 0,

where i is the inclusion of L, (k) into M, (k) and 7 the canonical projection. In case when
p = 2, Alghamdi in [1] showed that this space is almost trivial for £ = 1, 2,3. Although for
k = 1,2 the space M, (k) is identical with L, (k) for all n, when k = 3 we see the deviation
in the degrees n = 273 42571 425 — 3 for s > 0. In those degrees dim M, (3)/L,(3) = 1,
such that dim M, (3) = 15 and L,(3) has dimension 14 according to the following theorem
that can be found in [2],

Theorem 7.1.1 (Alghamdi, Crabb and Hubbuck). M,(3)/L,(3) = 0 unless n = 2573 +
251 425 — 3 for, s > 0 when L,(3) has dimension 14, while; M, (3) has dimension 15.

Thus the minimal degree where the divergence between M, (3) and L,(3) isn=8. In
[2] the element 6 = y121Z2y222 + T121 (Y224 + 22Ys) + T1Y12024 s elected to be the element
that is in M;g(3), but we can not see it in Lg(3).

The picture is totally different when we look at the case where p is an odd prime.
The space M, (k)/Ly(k) described in [6] as follows. When k = 1, M,(1) = L,(1) and
M,(1)/L,(1) = 0. While, the elements of M,(2) which are not in L,(2) are those in
the image of the linear injection f in the higher degrees, in the degrees p+1 < n <
‘ P>+ (i+1)p+j—1 are just 27y for some n, m multiplies by Crossley bracket Cy, or its
i power. For more details see [6].

7.2 The three variables case

In this case we will see a different pattern from what we have seen in the previous sec-
tion, however; there are some similarities in some situations. Like in the case of two

90
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variables, the first non-zero dimension of M,(3)/L,(3) occurs when n = p + 1, with the
Crossley brackets Cyy, C,, and Cy, as basis elements, so dim Mpy1/Lyy; = 3 for an
odd prime p. Similarly, according to the computer calculations the basis of M, /L, can be
given as ziy] 2¥ multiplies by C,, Cy, and Cy, or their powers such that n < p?+2p+2-3.

On the other hand, for degree n > p?>+2p+2—3, M,, and L, diverge further according
as pis 3,5, - -, with elements we call them the criminals. When n = p?> +2p+2—3 and
p = 3, then n = 14 we have M4 = 16 and L;4 = 15, the following basis element can not
be seen in Ly

D =z12,293 7} + Tiyiype2; + T2 + DT Yp2s + T1TpY2212p + Toy1YpZ1 Zpt
xfyf,zi + xf)yfzi + :L‘f,yﬁzf + xfylypzfzz + xfyfyf)zlzp + a:fxf,ylezp.
In the same degree form n, if p = 5, then n = 34, so we get dim L3y = 90 and dim
Ms; = 96, so dim M34/L3y = 6. A choice for the basis elements which are just in Ms, is
the following:

3 4.2, 4.2.2.2 3. 3.2 2.2 4.2 4.3 .2 4.4 4 4 3
1)TyTasy) 21 + T5Y1Ys21 + T1T5Y1Y527 + T1T5Ys21 + T1Y Y2521 + T1T5Y) 2125 + 3T5Y1Ys 2125+

3,2 2 2 2 3 3.4 4.4 4 4, 4.2 3.3 .2
32125y Y5 2125 + 3TIT5Y1Ys 2125 + 3TIT5Y52125 + T1Y1Ys2125 + TeY1 25 + T125Y1Ys25+
2,22 2 2 3 3.2 4,42 4. 342 4,2.2 3.3 4,3 2.4
TIT5Y1Y525 + T1TsY1Ys25 + T1Ys525 + T1Y1Ys2125 — T1Y1Ys52125 + 3T1Y Y527 25+

4.4
3T1Y) 21295,

2)z3Tasyiz; + 3ziyryi 2t — TiTdysal + 221y yes 2t + wlwhyi et as — Tiyiys2ias + mzdyiyial st
3xlrlydeles + 20iyRyazies + 3ziyizi 22 + madylysz2f — wlalyiyia 2?4+ 2riTsysz 22+
Tyyiyizzk — ;adyiad + 3xialylys 2 + 2xdwsyiylad + 2yl + alyiyi ol s+
2z ys 23zt + 22lyd 2l s,

3. .24 4,24 4 4, 4,423 4 3 3,2,3 4,2 4.3
3)TTasYi 21 + TsYs 2] + 3x1Y1Yesz) + T1T5Y125 25 + 3TsY1Ys21 25 + T1T5Y5 21 25 + 3T1Y1Ys 21 25+

4222 3 2.2, ,2,2.2.2.2 4.3 322 392 .3 2 2 3
T5y121%25 + 3T1T5Y1Ys21 25 + T1T5Y52125 — T1Y1Ys2125 + T1T5Y1 2125 + 3T{T5Y1Ys2125+

3. .2 .3 4.4.2_ .3 2.2 92 4 3 4 4.2.4 4 4.4 4,23
TITsY52125 + T1Y1Y52125 + TIT5Y1 25 + 3T1T5Y1Ys25 + T1Y525 + T1Y1Y521 25 + T1Y1 21 225,

2 4.3 3, 3.3 2. 4.3 3.3 3 3.4 4.2 3,22 92 2. 3.2
4)T Tyl 21 + 2TEY1Y5 2, — T1T5Ys525 + STIY Y2521 + TIT5Y1 2725 — TsYi Y5225 + 3T1T501 Y521 25+

2., 4.2 3,4,4.2 4.3 4, .2 | .33 2 2,22, 2 2 3, ,2
2T7T5Y5 2725 + 3TY Y5 2125 + T TRY 2125 + TrY1Ys2125 + 2T1T5Y1Y52125 + 3TIT5Y1Y5 2125 —

wiyaz12s + 3adyi 2 + madylys 2l — alwsylyiad + 2alyiyiad + 3atyluialZ+
Ty Y2 2 + 23y 21 2,

5) T3 Tosyr 21 + 3T3YS2L + 1Y Yes2l + TITZY A 25 + T3V 25 + T12ZY3 2 25 + TRYTY5 21 25t
3aiedyi 2 — wdytys el + 2maiyiysalal — alusyizlzl + 3aiyiydatal + 2udyi i+

2.2 3 2 2. .3 3,3, .3 2,3 4 2. 92 4 3, 2.4
3T1ZT5Y1Ys 2125 + 3TIT5Y1Y52125 + 2T Y5215 — T1T5Y1 25 + 2T1T5Y Y525 — T1Y1Y525+

3,2, 4.4 3,3,3
4.4 2,4,4 2,3, .4 2443 2. 23,3 4.3 2,4,4.3
6)L1Z25Y; 27 + 2T5Y5 21 + 2X1Y Y2527 + T1T5Y; 2125 + 2T5Y1Y5 21 25 + T1T5Y5 21 25 + 2X7Y Y52 25+
3,3 4,22 2,222 2 3,22 2,4,2,2 42,4, .3 2,3 3
3T1T5Yr 2125 + 2T5Y1Y5 2125 + T1TsY1Y521 25 + 2T1Y5 21 25 + 2105y 2125 + 2T5Y1Ys 2125+

2.2 .3 2. 3. .3 2 4.4 3, .4 2.2 9.4 2.3 4.4
T1T5Y1Ys2125 + 2T1Y1Y5 2125 + 2T5Y1 25 + T1T5Y1Ys2s + 2XTY1Y525 + 2XT1Y Y521 25+

2,43
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and so on for any odd prime dim Mp2o,10_3(3)/Lp21op42-3(3) = @_1)2&.

The similarities between the criminals D and 6 where p = 3 and p = 2 respectively are
both the only elements in M, /L,, and they are non-symmetric elements, unlike; Crossley
brackets. That is, there are another versions of those elements can be chosen to be the
| basis elements for M,,/L,. For example, we can chose 6= T1Y1ZoY222+T121(ToyYs+y2xs) +
Y121 2T OF 0 = Y121 Toyn 2y + T1Y1 (Y224 + 22Y4) + T12192y4 instead of §. While, D could be
replaced by

A 2,2 2 2 2,2 2 2 2

D =z 109727 + T1Y1Yp2 2] + T1Y1212p2 + T1TpY1Yp2, + T1TpYp212p + TpY1Yp21 2pt
2,22 2,2,2 2,22 2,2 2 2,22 2,22
TiYp2p + TpY12p + TpYp2i + TITpY1Yp27 + T1ZpY1Yp21 + T1TpY1 21 2p,s

- or by

D =Z1Tp2 nyf + x%yly,,z z12 + :cfyle Zp2 + xla:pylyng + :rlxpyf,zlzp + m?,ylypzl Zp+
x%yf,zf, + xﬁyfzf, + xﬁyf,zf + xlxpylezzf, + xf:rf,yi?zlzp + xfyfyf,zlzp.

Turning to n = 15 and p = 3, in this case we see a new pattern that is not in any of
the previous cases. From [1] where p = 2 in some degrees M,(3) could be calculated by
i Afn = Ln (&} f(]\[(n_:g)/g) s but in this degree A{15 = f(Alg) &) ]\115/[/15 where L15 = f(]\d:g)
which has dimension 7 and with basis elements given by {z2x}yylz?2}i+j+k =p,0 <
i,j,k < p—1}. Whilst the criminals are the following linearly independent elements:

1)xfyfzfzpz — (z1yp — yla:p)zlzf, + (xlccpyi + :E,z,ylyp)zfzp.

Z)ZU%ny%y;ﬂ — (z12p — lep)ylyﬁ + (xlxpzf, + zizlzp)yfyp.

3)yf2%x%xp2 - (ylzp - zlyp)xlmlz, + (ylypzzzy + yizlzp)x%xp'
)

4)(z1yp — ylct:p)zfzpz + {(:rlwf,yl + ziayy) — (Tpyiyp + xlyly;%)}zlzz — (T1yp2 — mpylyf;"‘
xle,yp — Y1Tp2) 25 2.

5) (2125 — 212p)y1Ype + (217521 + 21p2p) — (Tp212p + T1212) b1y — (T12p2 — Tp212,+
:Cle,zp — 21252 )Y1 Y.

6)(y12p — 219p)T1Tp2 + {(ylyf,zl + 1Y) — (Yp2i2p + ylzlzg)}xlxg — (y12p2 — yp212,2,+
Y15 2p — 21Yp2) 1T,

T)x1y1 (T1Yp — Y1%p) 22 — (33%3/;2; - xf)y%)zlzz - (wlxpy;% - xf»ylyp)zfzp_

(Z3Y1p2 + T1TYTYs — TITINYp — T1T2Y1) 2p + (T1Tp01Yp2 + TAYTYE — TIT2Y — T1T211Yp) 21

8)x121(212p — 212p)Yp2 — (xfzf, - xﬁzf)ylyf, — (xlmpzzf - mf,zlzp)yfyp—

2 2.2 2,2 2 2.2.2 2,22
(T1212p2 + T1Tp21 2, — T{TH212p — 17227 )Yp + (T1Tp212p2 + TpR12p — L1Tp2, — T1Zp2212p)Y1.-
2.2 .22 2 2 .2 2
Nv1z21(Y12p — 21Yp)Tp2 — (Y12, — Yp21) 2125 — (Y1Yp2p — Yp212p)T1Tp—

(Yiz12,2 + ylypzfzf) — yfyf)zlzp — Y1Yp222)Tp + (N1Yp212p2 + yf,zfz,z, — yfyzzf, — Y1Yp2212p) 21

Although the previous list of elements show that how M,(3) in the higher degrees looks
complicated, they are very nice example to see the prospective formula of those elements
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according to lemma 5.2.8 point of view.

The same situation can be seen in degrees of the form n = ap® + 2p — 3 where L,
calculates from the product of three generators, applying lemma 6.2.2 implies that each
element in L, has to be in the image of f. While, dim M, (3) = dim f(Mgps-149-3) + 13,
see appendix A.

Finally, in [8] Crossley had a conjecture to determine the upper bound of dimensions
of M,(k)! which is

Conjecture 7.2.1 (Crossley). A set of generators for P(k) as a module over A(p) can
be chosen with at most

members in each degree.

According to the appendices A and B this conjecture is true for M,(3), and it seems
to be in a higher degrees the dimensions of A, (3) become more stable than what it was
in the lower degrees.

! In fact the conjecture is to determine the maximum number of generators that we need for the
polynomial algebra in k-variables over a field I, as a module over Steenrod algebra A(p).
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Appendix A

Tables of computer calculations for

p=3

~ In this appendix we list the dimensions of the spaces M,(3), L,(3) and M, (3)/L,(3)
~ for p = 3 that are gotten via computer calculations the code is written by Mathematica

help to write this code.

program (the code is given in appendix C). I would like to thank Dr. Crossley for his
|
\

Table A.1:  Dimensions of M,(3), L,(3) and M, (3)/L,(3) where 1 <n < 21

| Deg n | n=ap*+bp®+cp’ — 3 | Dim M,(3) Dim L,(3) | M,(3)/L.(3)
I n=1 [1=p+1-3 3 3 0
n=2 [2=p+2-3 6 6 0
n=23 3=2p-3 7 7 0
n=4 |4=2p+1-3 9 6 3
n=5 |[5=2p+2-3 14 13 1
n=6 |6=p*>—3 16 16 0
n=7 [7T=p*+1-3 15 15 0
n=8 [8=p*+2-3 23 17 6
n=9 [9=p°+p—3 27 26 1
n=10 [10=p*+p+1-3 27 27 0
n=11 |11=p*+p+2-3 15 15 0
n=12 [12=p*+2p—-3 19 6 13
n=13 [13=p*+2p+1-3 24 23 1
n=14 [14=p°+2p+2-3 16 15 1
n=15 | 15=2p* -3 16 = f(Deg(3))+9 |7 9
n=16 |[16=2p*+1-3 25 12 13
| n=17 [17=2p2+2-3 30 20 10
| n=18 [18=2p2+p—3 35 = f(Deg(4)) +26 | 29 6
Tn=19 [19=2+p+1-3 |42 39 3
| n=20 20=2p°+p+2-3 27 26 1
| n=21 |21=2p*+2p—3 26 = f(Deg(5)) +12 | 13 13

96
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Table A.2: Dimensions of M,(3), Ln(3) and M, (3)/L,(3) where 22 <n < 61

Deg n [n=ap*+bp +cp’—3 | Dim M,(3) Dim L,(3) | M,(3)/L.(3)
n=22 [22=2p>+2p+1-3 39 39 0
n=23 [23=2p2+2p+2-3 27 27 0
n=24 |24=p%-3 16 = f(Deg(6)) 16 0
n=25 [25=p>+1—3 32 26 6
n=26 [26=p3+2-3 36 36 0
n=27 [27T=p*+p—3 42 = f(Deg(7)) +27 | 41 1
n=28 [28=p+p+1-3 60 39 21
n=29 [29=p3+p+2-3 41 26 15
n=30 [30=p°+2p—3 36 = f(Deg(8))+13 |17 19
n=31 [31=p+2p+1-3 58 52 6
n=32 [32=p>+2p+2-3 42 39 3
n=33 [33=p*+p*-3 27 = f(Deg(9)) 26 1
n=34 [34=p+p*+1-3 52 39 13
n=35 [35=p>+p*+2-3 39 39 0
n=36 [36=p>+p°+p—3 27 = f(Deg(10)) 27 0
n=37 [37T=p+p*+p+1-3 |0 0 0
n=38 [38=p’+p’+p+2-3 |10 0 10
n=39 [39=p>+p*+2p—3 16 = f(Deg(11)) +1 |15 1
n=40 [40=p+p°+2p+1-3 |14 0 14
n=41 [41=p’+p*+2p+2-3 |15 0 15
n=42 |42=p>+2p*° -3 19 = f(Deg(12)) 6 13
n=43 (43=p>+2p*+1-3 33 26 7
n=44 |44=p>+2p*+2-3 29 26 3
n=45 [45=p>+2p°+p—3 24 = f(Deg(13)) 23 1
n=46 |[46=p>+2p°+p+1-3 [0 0 0
n=47 |47=p>+2p°+p+2-3 |6 0 6
n=48 |[48=p3+2p>+2p—3 16 = f(Deg(14)) 15 1
n=49 |49=p*+2p°+2p+1-3 |0 0 0
n=>50 [50=p3+2p°+2p+2-3 |0 0 0
n=>51 |51l=2p%—3 16 = f(Deg(15)) 7 9
n=>52 [52=2p°+1-3 26 13 13
n=>53 |[53=2p3+2—-3 39

n=>54 [54=2p3+p—3 51 = f(Deg(16)) + 26

n=>55 |55=2p°+p+1—3 39

n=>5 |56=2p°+p+2—3 29 26 3
n=>57 [57=2p°+2p—3 43 = f(Deg(17)) + 13

n=>58 [58=2p°+2p+1-3 52 52 0
n=>59 [59=2p>+2p+2-3 39 39 0
n=60 |[60=2p°+p’—3 35 = f(Deg(18)) 29 6
n=61 [61=2p3+p*+1-3 65 52 13
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APPENDIX A. TABLES OF COMPUTER CALCULATIONS FOR P =3

Table A.3: Dimensions of M, (3), Ln(3) and M, (3)/L,(3) where 62 < n < 102

Deg n |n=ap*+bp®+cp’ -3 Dim M,,(3) Dim L,(3) | M,(3)/L.(3)
n=62 [62=2p°+p*+2-3 52 52 0
n=63 [63=2p°+p*+p—3 42 = f(Deg(19)) 39 3
n=64 |64=2p+p°+p+1-3 [0 0 0
n=65 |65=2p"+p*+p+2-3 |13 0 13
n=66 |66=2p°+p°+2p—3 27 = f(Deg(20)) 26 1
n=67 |67T=2p°+p°+2p+1-3 |0 0 0
n=68 [68=2p°+p°+2p+2—-3 |0 0 0
n==69 |69=2p°+2p>—-3 26 = f(Deg(21)) 13 13
n=70 |[70=2p+2p*+1-3 39 39 0
n="71 |T1=2p"+2p>+2-3 39 39 0
n=72 |712=2p"+2p°+p—-3 39 = f(Deg(22)) 39 0
n="73 |13=22"+2p +p+1-3 |0 0 0
n=T74 |[74=20°+2p>+p+2-3 |0 0 0
n="7 |75=2p"+2p°+2p—3 27 = f(Deg(23)) 27 0
n="76 |76=2p>+2p°+2p+1-3][0 0 0
n="77 |[7T7T=2p>+2p>+2p+2-3|0 0 0
n=78 |78=p"—3 16 = f(Deg(24)) 16 0
n=79 [719=p"+1-3 26 26 0
n=80 [80=p*+2-3 39

n=28l |[8l=p*+p-3 58 = f(Deg(25)) + 26

n=82 |[82=p'+p+1-3 39 39 0
n=283 |8 =p'+p+2-3 26 26 0
n=84 [84=p'+2p-3 49 = f(Deg(26)) + 13

n=85 |8 =p'+2p+1-3 52 52 0
n=286 |86 =p"+2p+2-3 39 39 0
n=87 |87T=p'+p?-3 42 = f(Deg(27)) 41 1
n==88 [88=p'+p*+1-3 78 52 26
n=289 [89=p'+p*+2-3 65 52 13
n=90 [90=p*+p°+p-3 60 = f(Deg(28)) 39 21
n=91 [91=p*+p’+p+1-3 0 0 0
n=92 [92=p*+p’+p+2-3 13 0 13
n=93 [93=p'+p°+2p-3 41 = f(Deg(29)) 26 15
n=94 [94=p*+p*+2p+1-3 |0 0 0
n=95 [95=p'+p’+2p+2-3 |0 0 0
n=96 |96 =p*+2p*—3 36 = f(Deg(30)) 17 19
n=97 [97T=p*"+2p>°+1-3 52

n=98 |[98=p'+2p*+2-3 52

n=99 [99=p*+2p>+p-3 58 = f(Deg(31)) 52 6
n=100 | 100=p*+2p°+p+1-3 |0 0 0
n=101 [101=p*+2p>+p+2—-3 |0 0 0
n=102 [102=p*+2p>+2p—3 42 = f(Deg(32)) 39 3
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Table A.4: Dimensions of M, (3), Ln(3) and M, (3)/L,(3) where 103 < n < 141

Deg n |n=ap*+bpf +cp” -3 Dim M,(3) Dim L,(3) | M,(3)/L,(3)
n=103 [103=p*+2p*+2p+1-3 0 0 0
n=104 | 104 =p*+2p°+2p+2—-3 0 0 0
n =105 | 105 =p*+p>—3 27 = f(Deg(33)) | 26 1
n=106 | 106 =p* +p>+1-3 39

n=107 | 107T=p*+p>+2-3 39

n=108 [108=p*+p*+p—3 52 = f(Deg(34)) | 39 13
n=109 [109=p*+p*+p+1-3 0 0 0
n=110 [110=p* +p>+p+2-3 0 0 0
n=111 [ 111 =p*+p>+2p—3 39 = f(Deg(35)) | 39 0
n=112 | 112=p* +p®+2p+1-3 0 0 0
n=113 [ 113=p"+p3+2p+2-3 0 0 0
n=114 [114=p* +p* +p* -3 27 = f(Deg(36)) | 27 0
n=115 [115=p*+p*+p*+1-3 0 0 0
n=116 [116 =p* +p>+p*+2-3 0 0 0
n=117 [ 117=p* +p* +p* +p—3 0= f(Deg(37)) |0 0
n=118 118 =p* +p*+p*+p+1-3 |0 0 0
n=119 [119=p'+p°+p*+p+2-3 |0 0 0
n=120 [120=p*+p*+p* +2p— 3 10 = f(Deg(38)) | 0 10
n=121 |[121=p"+p*+p*+2p+1-3 |0 0 0
n=122 [122=p*+p3+p*+2p+2-3 |0 0 0
n=123 | 123 =p* +p>+2p* -3 16 = f(Deg(39)) | 15 1
n=124 |124=p"+p*+2p*+1-3 13 0 13
n=125 |125=p* +p*+2p* +2 -3 13 0 13
n=126 [ 126 =p1+p*+2p> +p—3 14 = f(Deg(40)) | 0 14
n=127 | 127=p*+p*+2p° +p+1-3 |0 0 0
n=128 [ 128=p'+p>+2p> +p+2-3 |0 0 0
n=129 [129=p*+p*+2p°+2p—3 15 = f(Deg(41)) | O 15
n=130 |130=p*+p*+2p°+2p+1-3|0 0 0
n=131 [ 131=p*+p*+2p*+2p+2-3 |0 0 0
n=132 | 132 =p* +2p5 -3 19 = f(Deg(42)) | 6

n=133 [133=p*+2p3+1-3 26

n=134 [ 134 =p*+2p3+2-3 26

n=135 [135=p*+2p°+p—3 33 = f(Deg(43))

n=136 [136 =p*+2p3+p+1-3 0

n=137 |137=p*+2p>+p+2-3 0

n=138 |138=p"+2p>+2p—3 29 = f(Deg(44))

n=139 [139=p*+2p3+2p+1-3 0

n=140 [140=p" +2p° +2p+2 -3 0

n=141 | 141 =p* +2p> +p? -3 24 = f(Deg(45))
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APPENDIX A. TABLES OF COMPUTER CALCULATIONS FOR P =3

Table A.5:  Dimensions of My,(3), L,(3) and M, (3)/L,(3) where 142 < n < 160

Deg n [n=ap*+bp®+cp’—3 Dim M,(3) Dim L,(3) | M,(3)/L,(3)
n=142 [142=p* +2p> +p*+1-3 0

n=143 [ 143 =p* +2p3 +p*+2 -3 0

n=144 [ 144 =p* +2p3 +p’+p -3 0 = f(Deg(46))
n=145 | 145=p"+2p0° +p? +p+1-3 |0

n=146 | 146 =p* +2p3 +p*+p+2-3 |0

n=147 [ 147=p"+2p° +p* +2p—3 6 = f(Deg(47))
n=148 [ 1488 =p* + 208 + p* +2p+1-3 |0

n=149 [1499=p*+ 202 +p*+2p+2—-3 [0

n =150 | 150 = p* + 2p® + 2p%* -3 16 = f(Deg(48))
n=151 [ 151 =p*+2p° +2p*+1-3

n=152 [ 152 =p*+2p> +2p* +2 -3

n=153 | 153 =p*+2p3 +2p* +p—3 0 = f(Deg(49))
n=154 |154=p*+2p° +2p> +p+1-3

n=155 | 155=p*+2p> +2p° +p+2—3

n =156 | 156 = p* + 2p® + 2p* +2p — 3 0 = f(Deg(50))
n=157 | 157=p*+2p®+2p° +2p+1-3

n=158 | 158 =p* +2p°> +2p* +2p+2 -3

n =159 | 159 = 2p* — 3 16 = f(Deg(51))
n=160 |160=2p*+1-3




Appendix B

Tables of computer calculations for
p=73

The following tables are for p =5

Table B.1: Dimensions of M, (3) where 1 <n <21

Deg n |n=ap*+bp® +cp”—3 | Dim M,(3)
n=1 1=4-3 3
n=2 2=p-3 6
n=3 |3=p+1-3 10
n=4 |4d=p+2-3 15
n=5 |5=p+3-3 18
n=6 [6=p+4—3 22
n=7 |7=2p—3 26
n=8 [8=2p+1-3 30
n=9 [9=2p+2-3 37
n=10 |10=2p+3-3 41
n=11 |1l=2p+4-3 42
n=12 [ 12=3p—-3 46
n=13 |13=3p+1-3 50
n=14 |14=3p+2-3 60
n=15 |[15=3p+3—-3 66
n=16 |16=3p+4—-3 68
n=17 | 17=4p—3 66
n=18 |18=4p+1-3 70
n=19 |19=4p+2-3 84
n=20 |20=4p+3-3 93
n=21 |21=4p+4-3 97
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Table B.2: Dimensions of M,,(3) where 22 < n <61
Deg n | n=ap®+bp® +cp?”— 3| Dim M,(3)

n=22 [22=p°-3 96
n=23 [23=p>+1-3 90
n=24 [24=p>+2-3 109
n=25 {25=p°+3-3 122
n=26 |[26=p>+4—3 129
n=27 [27T=p*+p—-3 130
n=28 |28=p°+p+1-3 125
n=29 |29=p°4+p+2—3 90
n=30 [30=p*+p+3-3 99
n=31 [3l=p’+p+4-3 107
n=32 |32=p°+2p—3 114

n=33 |33=p’+2p+1-3 120
n=34 |34=p"+2p+2-3 96
n=35 |35=p*+2p+3-3 93
n=36 |36=p°+2p+4-3 102
n=37 |37T=p*+3p—3 112
n=38 [38=p*+3p+1-3 126
n=39 [39=p*+3p+2-3 100
n=40 [40=p*+3p+3—3 96
n=41 [41=p*+3p+4-3 95
n=42 |[42=p*+4p—3 106
n=43 [43=p’+4p+1-3 128
n=44 |44=p*>+4p+2-3 102
n=45 [45=p*+4p+3 -3 97
n=46 |[46=p°+4p+4-3 96

n=47 |[47=2p* -3 96
n=48 [48=2p?4+1-3 126
n=49 [49=2p"+2-3 133
n=>50 |50=2p°+3—3 140
n=51 |51=2p+4-3 147
n=>52 |52=2p*+p—3 154

n=53 [53=2p+p+1-3 165
n=>54 |54=2p>+p+2—3 130
n=>55 |55=2p2+p+3-3 127
n=5 |5 =2p°+p+4—3 125
n=>57 |57T=2p°+2p—3 124
n=53 |58=2p°+2p+1-3 155
n=>59 [59=2p°+2p+2—3 125
n=60 |60=2p*+2p+3—-3 |96
n=61 |61=2p*+2p+4-3 |96




Table B.3: Dimensions of M,(3) where 62 <n < 102

Deg n | n=ap®+bpf +cp”—3 | Dim M,(3)
n=62 |62=2p>+3p—3 96
n=63 [63=2p*+3p+1—-3 139
n=64 |64=2p°+3p+2-3 |[114
n=65 [65=2p°+3p+3—-3 |96
n=66 [66=2p°+3p+4-—3 |96
n==67 |67=2p°>+4p—3 96
n=68 |68=2p°+4p+1-3 142
n=69 [69=2p°+4p+2—-3 |118
n="70 |70=2p*+4p+3-3 97
n="71 |[7T1=2p>+4p+4—-3 |96
n="72 [72=3p*-3 96
n=73 |73=3p*+1-3 146
n="74 |74=3p*+2-3 153
n="75 |75=3p*+3-3 161
n="76 |76=23p*+4—3 170
n="77 | 7T7T=3p*+p—3 180
n=78 |78=3p*+p+1-3 210
n=79 [79=3p°+p+2-3 169
n=80 [80=3p’+p+3-3 160
n=28l [81=3p’+p+4—-3 155
n=282 [82=3p°+2p—3 153
n=283 [83=3p’+2p+1—-3 |[201
n=8 |84 =3p>+2p+2-3 | 165
n=28 |8 =3p*+2p+3-3 130
n=8 |8 =3p>+2p+4—-3 |127
n=87 [87=3p>+3p—3 125
n=288 |88 =3p’+3p+1-3 186
n=289 |89=3p*+3p+2-3 [155
n=90 |90=3p°+3p+3-3 125
n=91 [91=3p°+3p+4-3 96
n=92 |92=23p*+4p—3 96
n=93 [93=3p’+4p+1-3 165
n=94 |94=3p*+4p+2-3 139
n=95 |[95=3p’+4p+3-3 |[114
n=96 |[96=3p°+4p+4—-3 |96
n=97 |97=4p*> -3 96
n=98 |98=4p*’+1-3 166
n=99 [99=4p?+2-3 173
n =100 | 100 = 4p* +3 -3 180
n=101 [101=4p*+4-3 190
n=102 | 102=4p’+p—-3 202
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Table B.4:  Dimensions of M,(3) where 103 < n < 141

APPENDIX B. TABLES OF COMPUTER CALCULATIONS FOR P =5

Deg n | n=ap®+bpf+cp” —3 | Dim M,(3)
n=103 [103=4p’+p+1-—-3 |260
n=104 | 104 =4p> +p+2-3 |213
n=105 | 105 =4p’ +p+3—3 198
n=106 | 106 =4p°+p+4—3 | 185
n=107 | 107=4p*> +2p—3 180
n=108 | 108 =4p?>+2p+1—3 | 252
n=109 | 109 =4p’+2p+2-3 | 210
n=110 | 110 =4p* +2p+3 -3 | 169
n=111 [ 111 =4p* +2p+4-3 | 160
n=112 [ 112=4p* +3p—3 155
n=113 |113=4p*+3p+1—-3 | 238
n=114 | 114 =4p’ +3p+2-3 | 201
n=115 [ 115=4p> +3p+3—3 | 165
n=116 [116 =4p*> +3p+4—-3 | 130
n=117 | 117 =4p> +4p—3 127
n=118 [ 118 =4p®> +4p+1—-3 | 218
n=119 | 119=4p*+4p+2—-3 | 186
n=120 | 120=4p* +4p+3—3 | 155
n=121 | 121=4p?> +4p+4-3 | 125
n=122 | 122=7p°—3 96
n=123 |123=p>+1-3 192
n=124 [124=p>+2-3 196
n=125 [ 125=p>+3 -3 201
n=126 | 126 =p>+4—3 207
n=127 [127=p3+p—3 220
n=128 [128=p*+p+1-3 315
n=129 [129=p*+p+2-3 262
n=130 [130=p3+p+3-3 241
n=131 [131=p*+p+4-3 221
n=132 [ 132=p3+2p-3 205
n=133 [133=p*+2p+1-3 | 308
n=134 [ 134=p>+2p+2-3 |260
n=135 | 135=p>+2p+3-3 |213
n=136 |136=p>+2p+4—3 | 198
n=137 | 137=p*+3p-3 185
n=138 [138=p*+3p+1-3 |29
n=139 | 139=p>+3p+2—3 252
n=140 | 140=p*+3p+3 -3 210
n=141 |141=p*+3p+4-3 | 169




Table B.5: Dimensions of M,(3) where 142 < n < 165
Deg n |n=ap*+bpf+cp”—3 Dim M, (3)
n=142 [ 142=p3+4p—3 160
n=143 | 143=p°+4p+1-3 276
n=144 |144=p*+4p+2-3 238
n=145 [ 145=p>+4p+3 -3 201
n=146 (146 =p>+4p+4-3 165
n=147 | 147=p34+p*> -3 130
n=148 | 148 =p*+p*+1-3 251
n=149 [149=p>+p*+2-3 218
n=150 [ 150 =p*+p?*+3 -3 186
n=151 |1561=p°+p*+4—3 155
n=152 [ 152=p>+p*+p—3 125
n=153 [153=p*+p’+p+1-3 |0
n=154 | 154=p3+p’+p+2-3 |36
n=155 | 155 =p*+p’+p+3—-3 |64
n=15 [156=p*+p*+p+4—-3 |84
n=157 | 157=p>+p*+2p—3 96
n=158 | 158 =p*+p*+2p+1-3 |37
n=159 [159=p>+p?*+2p+2—-3 |45
n=160 | 160=p>+p*+2p+3—3 |67
n=161 |[161=p>+p>+2p+4—3 |88
n=162 [ 162=p>+p*+3p—3 107
n=163 |163=p°+p°+3p+1—-3 |81
n=164 | 164=p>+p*+3p+2—-3|80
n=165 | 165=p>+p*+3p+3—3 |80
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Appendix C

Mathematica code

This appendix is devoted to represent Mathematica code to compute the dimension and

basis elements for M,(3), W:(3) and M, (3)/W¢(3) where i = 1,2,3.

p=3r=s=;t=;
d=r+s+t;
x1:=Subscript|z, 1]
yl:=Subscript[y, 1]
z1:=Subscript|[z, 1]
xp:=Subscript|z, p|
yp:=Subscript|y, p]
zp:=Subscript|z, p]
xp2:=Subscript[z, p"2]
yp2:=Subscript[y, p"2]
zp2:=Subscript|z, p"2]
xp3:=Subscript|z, p"3]
yp3:=Subscript[y, p"3]
zp3:=Subscript[z, p"3]
xp4:=Subscript|z, p"4]
yp4:=Subscript[y, p"4]
zp4:=Subscript[z, p*4]
ml = 15

Czy = (zlyp — ylzp);
Czz = (zlzp — zlzp);
Cyz = (ylzp — 21yp);
Needs[Combinatorical
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ConvTab = Table[{0, 0,0,0,0}, {7, 0, 100}];

For[i = 0,7 < 100, i++,

ID = IntegerDigits[i, p|; I = Length[ID];

ConvTab[[i + 1, 1]] = Mod[Product[Mod[Factorial[ID], p|([q]], {q,}], p];
ConvTabl[i + 1, 2]] = Mod[(—Factorial[p — 1]/ConvTabl[i + 1, 1]]), pl;
ConvTab([i + 1, 3]] = Product[Subscript[z, p"(I — ¢)]*(ID[[q]]), {g, 1}];
ConvTab[[i + 1,4]] = Product[Subscript[y, p" (I — ¢)]"(ID[[q]]), {¢, }];
ConvTabl[i + 1, 5]] = Product[Subscript|z, p" (I — ¢)]*(ID[[q]]), {q,}];];
Cosets = Table[{{0,0,0},{0,0,0},{0,0,0}},{i,1,(p+ 1) x (p"2+ p+ 1)}];
n = 1; Cosets[[n]] = {{1,0,0}, {0,1,0},{0,0,1}}; n++;

For[q = 0,¢ < p, ¢g++, Cosets[[n]] = {{1,0,0},{0,q,1},{0,1,0}}; n++];
For[g = 0,¢ < p, g++, Cosets|[n]] = {{g,1,0},{1,0,0},{0,0, 1} }; n++];
For[g = 0,9 < p,g++,For[a = 0,a < p,a++,

Cosets{[n]] = {{a 1,0}, {g,0, 1}, {1,0,0} }; n-++];];

Forlg = 0,9 < p, q++,

Forla = 0,a < p, a++,

Cosets|[n]] = {{a,q,1},{1,0,0},{0,1,0}}; n++]; ];

For[g = 0,9 < p, g++,

Forla = 0,a < p,a++,

For[b = 0,b < p, b++,

Cosets{fn]] = {{a,b, 1}, {g, 1,0}, {1,0,0}}; n+-+] ;]

Cosets;

Gpaction[xexp_, yexp-, zexp_, gmx_|:=

Module[{4, j, outco, CL, entry, gm = gmx}, outco = {};

If[xexp == 0, gm[[1, 1]] = 0; gm([[2, 1]] = 0; gm[[3, 1]] = 0];

If[yexp == 0,gm([1,2]] = 0; gm([[2, 2]] = 0; gm|[3, 2]] = 0J;

If[zexp == 0, gm([1, 3]] = 0; gm[[2, 3]] = 0; gm[[3, 3]] = 0;

Fx = (gm[[1, 1]} * z + gm][[1, 2] * y + gm[[1, 3]] * 2);

Fy = (g2, 1]) x 2 + gm[[2, 2] + y + gm([2, 3] % 2);

Fz = (gm[[3, 1]] * z + gm[[3, 2]] * y + gm[[3, 3]] * 2);

Fxi = 1;Fzk = Table[1, {k, 1 + xexp + yexp + zexp});

If[gm([3, 1]] # Ollgm([3, 2]] # Ollgm([3, 3]] # O,

For[k = 1,k < xexp + yexp + zexp, k++,

Fzk[[k + 1]] = Fzk[[k] » Fz; |;];

For[i = 0,7 < xexp + yexp + zexp, i++,Fyj = 1;

For[j = 0,7 < xexp + yexp + zexp — i, j++,

CL = CoefficientList[z" (xexp + 2) * y" (yexp + 2) * 2" (zexp + 2) + Fxi * Fyj*

Fzk[[(xexp + yexp + zexp — i — j) + 1], {z, v, 2 }];
entry = Mod[CL[[xexp + 1,yexp + 1, zexp + 1]], p|; If[entry > 0, outco =
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Append[outco, {i, 7, entry}]];

Fyj = Fyj * Fy; |; Fxi = Fxi % Fx; |; outco]

CohoBasisList = Compositions|r + s + ¢, 3]; degdim = Length{CohoBasisList|;

flaglst = {}; flagmtx = {}; For[f = 1, f < 52, f++, Print[Calculatingflag, f, outof52];
OCL = Gpaction|[r, s, t, Cosets[[f]]]; Outlm = 0; NewRow = Table[0, {g, 1, degdim}];
For[g = 1,q < Length[OCL}, g++,7 = OCL([g, 1]];7 = OCL][[q, 2]; k =r + s+t —i— j;
OutIm+ =Mod[OCL[[g, 3]] * ConvTab[[r + 1, 2]] * ConvTab[[s + 1, 2]]x

ConvTabl[t + 1, 2]] * ConvTab[[i + 1, 1]] x ConvTab[[j + 1,1]] * ConvTabl[[k + 1, 1]], p]*
ConvTab[[i + 1, 3]] * ConvTab][[j + 1, 4]] * ConvTabl[[k + 1, 5]];
NewRow/[[Flatten[Position[CohoBasisList, {, 7, k}]]]]+ =

Mod[OCL[[g, 3]] * ConvTab|[r + 1,2]] * ConvTab|[s + 1, 2]] * ConvTab][t + 1, 2]]*
ConvTab[[i + 1, 1]] * ConvTab[[j + 1, 1]] * ConvTab[[k + 1,1]], p]; ];

flaglst = Append[flaglst, { Cosets[[f]], OutIm}];

flagmtx = Append|flagmtx, NewRow]; |;

flaglst//TableForm,;

flagmtx//TableForm;

Steenrod[power_, exponents_|:=Module[{t, 7, k, input, coeff, outexp, output},

output = {};

For[i = 0,7 < power, i++,

For[j = 0,75 < power — i, j++,

k = power — i — j; coeff = Mod[Binomial[exponents|[1]], 7], p]*
Mod|[Binomial[exponents[[2]], j], p] * Mod[Binomial[exponents[[3]], k], p|;

outexp = exponents + (p — 1) * {4, j, k}; If[coeff # 0, output =

Append[output, {coeff, outexp}]];];|; output];

Explist = Compositions|d, 3]; L = Length[Explist]; ElementList = Explist;

ExponentList = Explist; TopDegCoeff = Table[1, {4, L}];

For[i = 1,7 < L, i++, ElementList[[i]] = ConvTab[[Explist[z, 1]] + 1, 3]]*
ConvTab|[[Explist[[¢, 2]] + 1, 4]] * ConvTab][[Explist[¢, 3]] + 1, 5]]; ExponentList[[¢]] =
Flatten[Transpose[{Reverse[IntegerDigits[Explist|[, 1]], p, m1/3]],
Reverse[IntegerDigits|Explist([, 2]], p, m1/3]], Reverse[IntegerDigits[Explist|[[z, 3]], p, m1/3]]}]];
TopDegCoeft[[i]] = Mod|[ConvTab[[Explist[[s, 1]] + 1, 1]] * ConvTab[[Explist[[z, 2]] + 1, 1]]*
ConvTab[[Explist|[i, 3]] + 1, 1]], p]; |; Explist; ElementList; ExponentList; Length[ExponentList]
Explistlower = Compositions[d — (p — 1), 3|; Length[Explistlower]

P1Matrix = Table[0, {7, Length[Explistlower] }, {7, Length[Explist] };

For[i = 1,7 < Length[Explistlower|, i++, output = Steenrod[1, Explistlower|[7]]];

For[j = 1,j < Length[output], j++, P1Matrix[[¢, Position[Explist, output|[7, 2]]][[1, 1]]]]+ =
output([7, 1]; ;|;

P1Matrix//TableForm;
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HomologyP1Matrix = P1Matrix; If[Length[P1Matrix] > 0, HomologyP1Matrix =
Transpose[HomologyP1Matrix|;

For[i = 1,7 < Length[ExponentList], i++, HomologyP1Matrix|[[i]] =
Mod|[TopDegCoeft[[4]] * HomologyP1Matrix[[4]], p]; |; HomologyP1Matrix =
Transpose[HomologyP1Matrix|; ]; HomologyP1Matrix/ / TableForm;
Length[HomologyP1Matrix]

power = p; Explistlower = Compositions[d — power * (p — 1), 3]; PpMatrix =
Table[0, {j, Length[Explistlower] }, {7, Length[Explist| }|;

For[i = 1,4 < Length[Explistlower], i++, output = Steenrod[power, Explistlower|[3]]];
For[j = 1,7 < Length[output], j++, PpMatrix[[z, Position[Explist, output|[7, 2]]][[1, 1]]]]+ =
output([4, 1]];]; ]; HomologyPpMatrix = PpMatrix; If[Length[PpMatrix] > 0,
HomologyPpMatrix = Transpose[HomologyPpMatrix];

For[i = 1,7 < Length[ExponentList], i++, HomologyPpMatrix[[¢]] =
Mod[TopDegCoeff[[i]] * HomologyPpMatrix|[[i]], p|; |; HomologyPpMatrix =
Transpose[HomologyPpMatrix]; |; HomologyPpMatrix//TableForm;
Length[HomologyPpMatrix]

power = p”2; Explistlower = Compositions|d — power * (p — 1), 3];

Pp2Matrix = Table[0, {j, Length[Explistlower|}, {7, Length[Explist} }];

For[i = 1,7 < Length[Explistlower], i++, output = Steenrod[power, Explistlower([i]]];
For[j = 1, j < Length[output], j++, Pp2Matrix][[¢, Position[Explist, output[[7, 2]]])[[1, 1]]]]+ =
output|[7, 1]];];]; HomologyPp2Matrix = Pp2Matrix; If[Length[Pp2Matrix] > 0,
HomologyPp2Matrix = Transpose[HomologyPp2Matrix]|;

For[i = 1,7 < Length[ExponentList], i++, HomologyPp2Matrix[[i]] =
Mod[TopDegCoeft[[:]] * HomologyPp2Matrix[[s]], p]; |; HomologyPp2Matrix =
Transpose|HomologyPp2Matrix]; |;

HomologyPp2Matrix//TableForm; Length[HomologyPp2Matrix]|

power = p”3; Explistlower = Compositions[d — power * (p — 1), 3];

Pp3Matrix = Table[0, {j, Length[Explistlower]}, {7, Length[Explist]}];

For[i = 1,7 < Length[Explistlower], i++, output = Steenrod[power, Explistlower|[4]]];
For[j = 1,j < Length[output], j++, Pp3Matrix[[z, Position[Explist, output[[7, 2]]][[1, 1]]]]+ =
output{[7, 1]];];]; HomologyPp3Matrix = Pp3Matrix; If[Length[Pp3Matrix] > 0,
HomologyPp3Matrix = Transpose[HomologyPp3Matrix];

For[i = 1,¢ < Length[ExponentList], i++, HomologyPp3Matrix|[[i]] =
Mod[TopDegCoeff|[[i]] * HomologyPp3Matrix|[i]], p]; ]; HomologyPp3Matrix =
Transpose[HomologyPp3Matrix]; ];

HomologyPp3Matrix//TableForm; Length[HomologyPp3Matrix]
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CombinedMatrix = Join[HomologyP1Matrix, HomologyPpMatrix, HomologyPp2Matrix,
HomologyPp3Matrix];

TimedAnn = AbsoluteTiming[NullSpace[CombinedMatrix, Modulus — p]];

Ann = TimedAnn[[2]]; TimedAnn[[1]]Annlist = {};

For[i = 1,7 < Length[Ann], i4++, newkerelement = 0;

For[j = 1,j < Length[ElementList], j++, newkerelement+ =(Mod[1 + Ann[[¢, j]], p] — 1)x*
ElementList([[7]]]; Annlist = Append[Annlist, newkerelement]; |;
Print[Theannihilatedelementsindegree, d, formaspaceofdimension, Length[Annlist], withbasis :|;
Print[Annlist//TableForm];

Length[Annlist]

Combi = Join[flagmtx, Ann];

Redundancy = NullSpace[Transpose[Combi], Modulus — pJ;

Print[Degree =, d, .Spike =, flaglst[[1, 2]]]; (*Thelstcosetmxis], sothelstflagisthespikex)
diml = 52 — Length[NullSpace[Transpose[flagmtx]|, Modulus — p];

Print[Dim(flags) =, diml]; dimm = Length[Ann];

Print[Dim(M) =, dimm]; If[Length[Redundancy] == 52,

Print[Dim(M/L) =, dimm — diml],

Print[LdoesnotappeartobecontainedinM!]];

Redundancy//TableForm;

Essentials = {}; j = Length[Redundancy/[[1]]];

For[i = 1,7 < Length|[Redundancy], i++, If[Redundancy|[s, j]] == 0,

Essentials = Append|Essentials, j]; i——;]; 7——;]; While[j > 0, Essentials =
Append|Essentials, j]; j——]; EssentialsEssentialFlagList = {}; NonFlagAnnList = {};
For[i = 1,7 < Length[Essentials|, i++, If[Essentials{[i]] > 52, NonFlagAnnList =
Append[NonFlagAnnList, Annlist[[Essentials[[i]] — 52]]], EssentialFlagList =
Append[EssentialFlagList, flaglst[[Essentials([7]]]]]]; ];
Print[Abasisfortheflagsgeneratedbythespike, flaglst[[1, 2]], indegree, d, is :,
EssentialFlaglList//TableForm];

Print[Column[{ ThequotientofMbythissubspaceisspannedby :, NonFlagAnnList//TableForm}]];
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