
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

Grothendieck categories of enriched functors.
   

Al Hwaeer, Hassan Jiad Suadi
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Al Hwaeer, Hassan Jiad Suadi (2014)  Grothendieck categories of enriched functors..  thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42873

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42873
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

Grothendieck Categories of Enriched Functors

Hassan Jiad Suadi A1 Hwaeer

Submitted to Swansea University in fulfilment of the requirements for the
Degree of Doctor of Philosophy

Swansea University 
2014



ProQuest Number: 10821263

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te  manuscript 
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te  will ind icate the deletion .

uest
ProQuest 10821263

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 4 8 1 0 6 -  1346



2



3

D eclaration

This work has not previously been accepted in substance for any degree and is 
not being concurrently submitted in candidature for any degree.

Signed . (candidate)

Date ..3.-..VU.2.0C*/.........

S tatem ent 1

This thesis is the result of my own investigations, except where otherwise stated. 
Other sources are acknowledged by explicit references. A bibliography is ap
pended.

Signed . (candidate)

Date . .'T?̂  \.\ «. .Q-Ca. 1 ............

S tatem ent 2

I hereby give consent for my thesis, if accepted, to be available for photocopying 
and inter-library loan, and for the title and summary to be made available to 
outside organisations.

Signed . (candidate)

Date O .................



C ontents

C o n te n ts  4

A cknow ledgem ents 6

A b s tra c t 7

1 In tro d u c tio n  8

2  P re lim in a rie s  13
2.1 Category T h e o r y ....................................................................................  13

2.1.1 F u n c to rs ........................................................................................  15
2.1.2 Limits and C olim its..................................................................... 16

2 .2  Abelian C a te g o rie s .................................................................................  17
2.3 Grothendieck C a teg o rie s .......................................................................  2 2

2.4 The category of generalized modules Cr .............................................  26
2.5 Triangulated Categories .......................................................................  27
2.6 Derived categories....................................................................................  30

3 E n rich ed  C a teg o ry  T h eo ry  38
3.1 Enriched ca teg o ries .................................................................................  38
3.2 Ends and C o e n d s ....................................................................................  44
3.3 Categories of enriched functors.............................................................. 48

4 M odel C ateg o ries  51
4.1 Model s t r u c tu r e s ....................................................................................  52
4.2 The homotopy category .......................................................................  53

4



CO NTENTS 5

4.3 Cofibrantly generated model ca teg o rie s ............................................... 57
4.4 Monoidal model ca tego ries .....................................................................  61
4.5 The monoid a x io m ..................................................................................  64
4.6 Weakly finitely generated model ca teg o ries ........................................ 64

5 G ro th en d ieck  ca teg o ries  o f en rich ed  fu n c to rs  a n d  localiza tions 6 6

5.1 Grothendieck categories of enriched fu n c to rs ..................................... 6 6

5.2 Localizations ............................................................................................  72

6  C h a in  com plexes o f g en era lized  m od u les  79
6 .1  Generalized modules as enriched fu n c to rs ...........................................  79
6.2 Chain complexes of generalized modules as enriched functors . . .  82

7 A lm ost s tab le  h o m o to p y  c a te g o ry  s tru c tu re  for T>(Cr ) 90

Bibliography 98



A cknow ledgem ents

I would like to express my deepest gratitude to my supervisor, Dr Grigory 
Garkusha, for his patient advice and his encouragements during my study time as 
a Ph.D. student. I enjoyed doing mathematics with his beautiful mathematical 
thinking guidance. I would also like to thank my co-supervisor Professor Tomasz 
Brzezinski for his support and motivation. I would also like to thank the Iraqi 
Ministry of Higher Education and Scientific Research and University of Kufa for 
sponsorship. I would also like to thank all staff members of the Mathematics 
Department at Swansea University.

Special thanks to my family. Words cannot express how grateful I am to my 
mother, my wife, my brothers and sisters for their help and support.

6



A bstract

It is shown that the category of enriched functors [C, V] is Grothendieck when
ever V is a closed symmetric monoidal Grothendieck category and C is a category 
enriched over V. Localizations in [C, V] associated to collections of objects of 
C are studied. Also, the category of chain complexes of generalized modules 
ChfC#) is shown to be identified with the Grothendieck category of enriched 
functors [mod i?, Ch(M od R )] over a commutative ring R , where the category 
of finitely presented i?-modules m odi? is enriched over the closed symmetric 
monoidal Grothendieck category C h(M odi?) as complexes concentrated in ze
roth degree. As an application, it is proved that CIi(Cr) is a closed symmetric 
monoidal Grothendieck model category with explicit formulas for tensor product 
and internal Hom-objects. Furthermore, the class of unital algebraic almost sta
ble homotopy categories generalizing unital algebraic stable homotopy categories 
of Hovey-Palmieri-Strickland [29] is introduced. It is shown that the derived 
category of generalized modules V(Cr ) over commutative rings is a unital alge
braic almost stable homotopy category which is not an algebraic stable homotopy 
category.
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Chapter 1 

Introduction

In category theory, an enriched category generalizes the idea of a category by 
replacing Hom-sets with objects from a general monoidal category. It is motivated 
by the observation that, in many practical applications, the Hom-set often has 
additional structure that should be respected, e.g., tha t of being a vector space 
of morphisms, or a chain complex of morphisms.

Enriched categories have a multitude of uses and applications, tha t makes 
studying their general theory quite worthwhile. For example, Bondal-Kapranov [3] 
construct enrichments of some triangulated categories over chain complexes ( “DG- 
categories”) to study exceptional collections of coherent sheaves on projective va
rieties. Today DG-categories have become an important tool in many branches of 
algebraic geometry, non-commutative algebraic geometry, representation theory, 
and mathematical physics (see a survey by Keller [34]). Garkusha-Panin [19, 
2 0 , 2 1 ] enrich smooth algebraic varieties over symmetric spectra in order to de
velop the theory of “A-motives” and solve some problems for the motivic spectral 
sequence.

In the present project we study categories of enriched functors

[C,V],

where V is a closed symmetric monoidal Grothendieck category and C is a category 
enriched over V (i.e. a V-category). The main result here states that the category 
[C,V] is Grothendieck with an explicit collection of generators. Namely, the 
following theorem is true.



9

T h eo rem . Let V be a closed symmetric monoidal Grothendieck category with 
a set of generators {#*}/. I f  C is a small V-category, then the category of en
riched functors [C, V] is a Grothendieck V-category with the set of generators 
{V(c, —) 0  gi | c G O bC,i G I} . Moreover, i f  C is a small symmetric monoidal 
V-category, then [C,V] is closed symmetric monoidal with explicit formulas for  
monoidal product and internal Horn -object.

Taking into account this theorem, we refer to [C, V] as a Grothendieck category 
of enriched functors. The usual Grothendieck category of additive functors

(13, Ab)

from a pre-additive category B  to abelian groups Ab is recovered from the pre
ceding theorem in the case when V = Ab (B is a V-category). Further examples 
on how the category [C, V] recovers some Grothendieck categories are given in 
Chapter 5.

Another virtue of this theorem is tha t V can have homological or homotopical 
information and this information is carried over enriched functors [C, V]. This 
will be used later when discussing model categories, but now let us discuss some 
localizations in Grothendieck category of enriched functors.

In [14, 17, 18] Garkusha and Generalov study localizations in Grothendieck 
categories with respect to projective objects. They apply the results to the study 
of absolutely pure rings, /p-flat and fp - injective modules (see [16, 17] for details). 
Some of these results have recently been used by Hovey-Lockridge-Puninski [28] 
for the Freyd Generating Hypothesis.

Garkusha-Generalov’s results [14, 17, 18] for localizations can be generalized 
to enriched categories as follows.

T h eo rem . Suppose V is a closed symmetric monoidal Grothendieck category. Let 
C be a V-category and let V  consist of a collection of objects ofC. Let S<p = {G e  
[C, V] | G(p) = 0 for all p G V }. Then Sp  is a localizing subcategory of [C, V] and 
[P,V] is equivalent to the quotient category [C,V\/S-p.

We apply Grothendieck categories of enriched functors to study homological 
algebra for generalized modules. The category of generalized modules

Cr =  (mod R, Ab)
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consists of the additive functors from the category of finitely presented i?-modules, 
m odi?, to the category of abelian groups, Ab. Its morphisms are the natural 
transformations of functors. It is called the category of generalized i?-modules 
for the reason that there is a fully faithful, right exact functor

Ad  i—  ̂ — C)r  Ad

from the category of all R -modules to Cr .

The category Cr  has a number of remarkable properties which led to powerful 
applications in ring and module theory and representation theory (see, e.g., the 
books by Prest [45, 46]). After the work of Herzog [25] in the the early 90’s, the 
category Cr  provides a natural connecting langauge between algebra and model 
theory of modules. Also, in Cr  one of fundamental model-theoretic concepts 
is realized: the Ziegler spectrum of a ring. This is a topological space which 
was first constructed by Ziegler [53] using model theory. Later Herzog [25] and 
Krause [35, 36] gave a purely algebraic approach for the Ziegler spectrum by 
using properties of Cr . There are further applications in algebraic geometry (see 
Garkusha and Prest [15, 22]), where properties of Cr , model theory of modules 
and the Ziegler spectrum are of great utility.

The following theorem states th a t the category Ch(C^) of chain complexes 
of Cr  over a commutative ring can be regarded as a Grothendieck category of 
enriched functors.

T h eo rem . Suppose R  is a commutative ring. Then the category of chain com
plexes o f generalized R-modules Ch(C#) can naturally be identified with the Gro
thendieck category of enriched functors [modi?, Ch(M odi?)], where the category 
of finitely presented modules m odi? is naturally enriched over C h(M odi?) as 
complexes concentrated in zeroth degree.

A Grothendieck category of enriched functors [C,V] can also contain a ho
motopy information whenever V is a reasonable model category in the sense of 
Quillen [47]. As an application of the preceding theorem, we show the following

T h eo rem . Let R  be a commutative ring, then C h (Cr ) is a left and right proper 
closed symmetric monoidal V-model category, where V = Ch(M od i?). The tensor
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product of two complexes F., G. G Ch(C^) is given by

p(M,N)£mod  i?<g>mod RIF .O G .= F .(M ) G .{N ) ®R H o i u r ( M  N, - ) .

Here Hom^(M  N , —) is regarded as a complex concentrated in zeroth degree. 
The internal Horn-object is defined as

There are various ways to construct closed symmetric monoidal structures on 
the derived category of a reasonable closed symmetric abelian category (see [26, 
52] for some examples). For the case of the derived category T>(Cr ) of generalized 
modules with R  a commutative ring we apply the preceding theorem as well 
as some facts for compactly generated triangulated categories to establish the 
following

T h eo rem . Let R  be a commutative ring. Then the derived category V ( C r ) of the 
Grothendieck category Cr  is a compactly generated triangulated closed symmetric 
monoidal category, where the above formulas yield the derived tensor product 
F . ©L Gm and derived internal Horn-object RH om jF ., Gm). The compact objects 
ofV{CR) are the complexes isomorphic to bounded complexes of coherent functors

In the classical stable homotopy theory (see, for example, Hovey-Palmieri- 
Strickland [29]) the category of compact objects of a stable homotopy category 
possesses a duality, which in some cases is also known as the Spanier-W hitehead 
Duality. In order to find a duality on the category of compact objects V ( C r ) c 

of V ( C r ), we use the Auslander-Gruson-Jensen Duality [1, 23, 25] for coherent 
objects coIi C r . In the model theory of modules, this duality corresponds to 
elementary duality, introduced by Prest [45, Chapter 8 ] and developed by Herzog 
in [24], for positive-primitive formulas. We show that the Auslander-Gruson- 
Jensen Duality makes sense for compact objects of V { C r ) .  More precisely, the 
following result is true.

Horn (F .,G m)(M )=  [  
J n

:Ch(Mod R)
N £  mod R

in cohCr .

T h eo rem  (Auslander-Gruson-Jensen Duality for compact objects). LetV(C R)c 
be the full triangulated subcategory ofV(CR) of compact objects. Then there is a
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duality
D  : CV{CR)cr  V(CR)C

that takes a compact object C. to

DC. := i?Hom(C#, — <S>r  R).

Basing on the above results for T>(Cr ),  we introduce the class of unital al
gebraic almost stable homotopy categories. These essentially the same with 
unital algebraic stable homotopy categories in the sense of Hovey-Palmieri- 
Strickland [29] except tha t the compact objects do not have to be strongly dual- 
izable, but must have a duality. We finish the project by proving the following

T h eo rem . Let R  be a commutative ring. Then D ( C r ) is a unital algebraic almost 
stable homotopy category, which is not an algebraic stable homotopy category in 
the sense of Hovey-Palmieri-Strickland.

This thesis is organized as follows. It consists of seven chapters. In Chapters 
2, 3 and 4 we collect all the information which is necessary for the results of the 
project. More precisely, Chapter 2  is devoted to basic facts and constructions from 
category theory. In Chapter 3 we collect necessary facts from enriched category 
theory. In Chapter 4, we recall necessary facts from model categories used in 
the project. In Chapter 5 we prove our main results for Grothendieck categories 
of enriched functors. In Chapter 6  we apply results of Chapter 5 to construct 
a closed symmetric monoidal model category structure on the category of chain 
complexes of generalized modules over commutative rings. Other applications are 
given in Chapter 7, in which we introduce unital algebraic almost stable homotopy 
categories. The main result of this chapter states tha t the derived category of 
generalized modules is such a category.



Chapter 2 

Prelim inaries

In this chapter we collect basic facts from the theory of categories. We mostly 
follow the books of Mac Lane [39], Neeman [43], Popescu [44], Stenstroem [50] 
and Weibel [52].

2.1 Category Theory

D efin itio n  2.1.1. A category C consists of the following data: 

o a class Ob(C) of objects of C\

o for any objects C,C", a set Hornc(C ,G ), whose elements are called mor
phisms from C  to C’\

o for any objects C, C ', C", a composition

Homc (C",C") x Homc (C,C") -> Hornc {C,C").

Before stating the axioms for categories we introduce a useful notation. To indi
cate tha t a  E Homc(C, C') we write a  : C  —> C '. The composition of a  : C  —»• C' 
and : C' —> C" is denoted Pa. The axioms for categories can now be given:

o if a  : C  —»• C',[3 : C' —> C" and 7  : C" —> C"' are morphisms, then
'y(fia) = ( 7  p)a\

13



14 CH APTER 2. PRELIM INARIES

o for each object C  there exists 1 c  £ Hornc(C, C) such tha t l c ol = a  and 
(31c = (3 for all a  : C' —»■ C  and j3 : C —> C '.

The identity morphism 1 c  is uniquely determined by C, for if also l'c  satisfies the 
last axiom, then lc  = lc  ' l'c  = l'c -

A subcategory V  of C, also written as V  C  C, can be defined simply as a 
category in itself inheriting its structure from C. So objects and morphisms of V  
are objects and morphisms in C and the identities and compositions of morphisms 
stay the same. Formally, V  is given by a subcollection O b V  of objects. A 
subcollection HomD of arrows is such tha t for all D  G T> the identity morphism 
1 d is in HomD. We also require for all morphisms in V  tha t both the source 
and target are in O b V  and for any pair of morphisms in the subcategory, the 
composite morphism is in the subcategory, too.

Here are some useful categories:

o The category Set: the objects are the sets, and the morphisms are the set 
maps;

o The category Ab: the objects are the abelian groups, and the morphisms 
are the group homomorphisms;

o The category of right i?-modules M odi? for an arbitrary ring R: the ob
jects are the right i?-modules, and the morphisms are the module homo
morphisms. This category will play a key role throughout the thesis. We 
can similarly write R  Mod for the category of left i?-modules;

o The category modi?: the objects are finitely presented right i?-modules, 
and the morphisms are i?-module homomorphisms.

The category M odi? has subcategories of finitely generated, finitely presented, 
and coherent i?-modules respectively.

For each category C there is a dual category Cop, whose objects are those of C 
but with

HomCoP(C', C') = Horn c (C", C)

and a  * (3 = (3 o a , where * denotes composition in Cop and o denotes composition 
in C. Every definition or theorem in C has a dual definition or theorem in Cop.
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2.1.1 Functors

D efin itio n  2 . 1 .2 . A functor T  : B  —> C between categories B  and C is defined 
as follows. T  assigns to each object B  in B  an object T (B )  in C, and assigns to 
each morphism a : B  —» B' in B  a morphism T(a) : T (B ) —¥ T (B ')  in C in such 
a way that:

o T(/3a) =  T(f3)T(a) for any morphisms a  : B  —* B',/3 : B ' —>■ B" in B\

o T(1b) =

A functor T  : B C thus defines a map

Hornb {B ,B ')  -> HornC{T (B ),T (B '))

for each pair B , B ' of objects in B. T  is said to be faithful if these are injective 
maps and it is full if they are surjective.

D efin itio n  2.1.3. A natural transformation [i : S  —> T  between two functors 
S ,T  : B  —»■ C is defined by associating to each object B  in B  a morphism /j,B : 
S (B ) —» T (B )  in C so tha t for every morphism a  : B  —> B ' in B  one gets a 
commutative diagram

S ( B ) - ^ T ( B )

S<*)'  T(a)

S { B ' ) ^ r T ( B ' )

H is an equivalence of functors if each fig is an isomorphism in C.

D efin itio n  2.1.4. Let C and V  be two categories and consider two functors 
S  : C —» V  and T  : V  —> C. We say tha t T  is a right adjoint of S  (and 
symmetrically S  is a left adjoint of T) if there is an equivalence

77 : Homc ( - ,T ( - ) )  ->> Homp ( 5 ( - ) ,  - )

of functors Cop x D - )  Set, i.e. for each pair of objects C  G C, D  E T) there is an 
isomorphism

77c ,D : Hornc{C,T{D)) -* HornV (S(C) , D)

which is natural in C and V.  A  right (left) adjoint is uniquely determined up to 
a natural equivalence of functors.
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E x am p le  2.1.5. Over a commutative ring R : in the category of i?-modules, we 
have an adjunction pair

(Hornr (M,  - ) ,  -  ®R M ),

tha t is Hom#(M, —) is right adjoint of — 0 # M  and — M  is left adjoint of 
Hom^(M, - ) .

2.1.2 L im its and C olim its

Let C be a category and let I  be a small category. We propose to define the 
notion of “limit” of a functor

F : I - > C .

If X  is an object of C and if we are given a morphism a* : X  —>• F(i)  for each 
i 6  O b(/), then the family (a*) is called compatible if for every A : i —> j  in I  one 
has otj = F(\)cti.

A limit or projective limit of the functor F  : I  —> C is an object îm F  in C 
together with a compatible family of morphisms 7r* : j im f  —>■ F(i)  such tha t for 
each other compatible family & : X  —> F(i)  there exists a unique £ : X  —> ^im F(i) 
with 7 =  &.

The limit of F  solves a universal problem and is therefore unique up to iso
morphism. The category C is called complete if the limit exists for every functor 
F  : I  —»■ C when I  is small.

Colimits are defined in a dual fashion. If we take /  as a directed set, the 
colimit of a direct system F  : I  —> C is called a direct limit, while the limit of an 
inverse system F  : / op —> C is an inverse limit.

The category C is called bicomplete if both limit and colimit exist for every 
functor F  : I  —► C whenever I  is small.

E x am p le  2.1.6. The simplest examples of limits and colimits are those of pushouts 
and pullbacks.

A pushout is a colimit (if it exists) of a diagram of the form

A < - C  B.

Similarly, a pullback is a limit (if it exists) of a diagram of the form

A ^ C < - B .
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E x am p le  2.1.7 ([50] IV. 3). Further important examples of limits and colimits 
are those of products and coproducts.

D efin itio n  2 .1 .8 . A product of a family (Ci)iei  of objects of C is an object C  
together with morphisms 7r* : C  —* C i,i £ / ,  such tha t for each object X  and 
morphisms rfi : X  —> Ci, i £ I, there is a unique morphism r) : X  —► C  with 
KiT) = rji for all i £ I.

Here we are facing a universal problem and so the product is unique up to 
isomorphism, and we denote it by C». The canonical morphisms 7q : r i j  Ct —> 
Ci are called projections. This definition gives rise to a canonical isomorphism

Hom(A, IF*) “II H om p^C i),
/ i

where the second product is taken in the category of sets.
We can dually define the coproduct, and it is denoted by ]J j Ci .  It yields a 

canonical isomorphism

H o m (]J  Ci, X )  SS j q  Hom(Cj, X) .
I I

2.2 A belian Categories

This section contains basic facts from the theory of abelian categories. We shall 
mostly follow [44] and [50].

D efin itio n  2 .2 . 1 . By a preadditive category we mean a category C together with 
an abelian group structure on each set Home (A, B) of morphisms, in such a way 
tha t the composition mappings

a a b c  : Homc (A, B) x Homc (H, C) ->• Homc (A, C), (/, g) g o /

are group homomorphisms in each variable. We shall write the group structure ad- 
ditively. Clearly, the category of abelian groups or, more generally, any category 
of modules over a ring is preadditive. As a consequence, every full subcategory 
of a category of modules is preadditive as well.
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E x am p le  2.2.2. Mod R  is a preadditive category. An abelian group structure on 
each Horn-set Hom#(M, N ), where M  and N  are two right R-modules, is defined 
as follows. Given two homomorphisms f ,g  G Hom^(M, N ),

( f  + 9) M  := f { m ) + g { m )

for any element m  £ M.

R e m a rk  2.2.3. If C is preadditive, then we shall also write ® 7 Ci to denote the 
coproduct, if it exists, and call it the direct sum  of the family (Ci)iej.

D efin itio n  2.2.4. If C is a preadditive category with zero object 0 , then the 
cokernel of an arrow f  : A —> B, denoted by C oker/, is a pushout (if it exists) of 
the diagram

o ^ a A b .

The canonical morphism B  —> Coker /  will also be denoted by coker/.
Similarly, the kernel of an arrow A  —»■ B, denoted by Ker / ,  is the pullback 

(if it exists) of the diagram
a A b < - o .

The canonical morphism K er/  —> A  will also be denoted by k e r /.
By definition, both kernels and cokernels satisfy natural universal properties, 

and therefore are unique up to canonical isomorphism.

Let C be a preadditive category with the property tha t every morphism has 
a kernel and a cokernel. For a morphism a : B  —>■ C  there is a canonical factor
ization as indicated by the commutative diagram

Ker a ----------- >■ B ---------- --------->■ C ------------► Coker a

A v

Coker(ker a) > Ker(coker a)

where a  is obtained as follows, coker a  • a  = 0 implies a = rjfi for some (3 : B  —> 
Ker (coker <a). Then r]/3 • ker a  =  a  • ker a  =  0, which implies /? • ker a  =  0 since 77 

is a monomorphism, and hence /3 factors as /? =  a  A.
Consider Ab as an example. Here Coker (ker a) = B /  Ker a  and Ker (coker a) =  

Im a , and a  is an isomorphism. This allows us to make the following definition:
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D efin itio n  2.2.5. A category C is abelian if 

o C is preadditive.

o Every finite family of objects has a product (and a coproduct), 

o Every morphism has a kernel and a cokernel.

o Either a  : Coker(kera) —* Ker(cokera) is an isomorphism for every mor
phism a,

o or every morphism a  has a factorization a = [i(3, where /3 is a cokernel and 
fi is a kernel.

For every morphism a  of an abelian category define the image of a  as Im a  := 
Ker(coker a).

Consider two preadditive categories C and T>. A functor F  : C —» V  is said to 
be additive if

F ( f  + g) = F( f )  + F(g) 

for any morphisms / ,  g G H om ^Y , Y)  and any objects X , Y  G C.

D efin itio n  2 .2 .6 . Let C be an abelian category. An object C  of C is a generator 
for C if Hom(C, —) is faithful, and is a cogenerator if Hom(—, C) is faithful.

E x am p le  2.2.7. A module M  is a generator for M odi? if and only if R  is a 
direct summand of some direct sum of copies of M  (see [50, Proposition IV.6 .2] 
for details).

Of particular interest are the functor categories (B, Ab), where B  is a preaddi
tive category. By definition, its objects are the covariant additive functors from 
B to Ab. The morphisms are the natural transformations of functors. A typical 
example of an object in (B, Ab) is the representable functor

hB := Hornb (B,  - )

associated with an object B  G B.
The following statement is also known as the Yoneda Lemma.
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P ro p o s itio n  2.2.8 (Yoneda Lemma). Let B be a small preadditive category. 
For every object B  of B and every additive functor T  : B  —> Ab there is an 
isomorphism

Horn lBAb)(hB, T ) ^ T ( B ) ,  

which is natural in T  and B.

We also collect some useful facts from Bucur-Deleanu [6 ].

D efin itio n  2.2.9. A sequence of morphisms of an abelian category C

A ^ B ^ C

is said to be exact, if Im u =  Keru. An arbitrary sequence of consecutive mor
phisms is said to be exact, if the subsequence formed by any couple of consecutive 
morphisms is an exact sequence.

The following propositions are straightforward.

P ro p o s itio n  2.2.10. The necessary and sufficient condition that the sequence

0 -> A  A b  A c

be exact is that the sequence of abelian groups and homomorphisms of abelian 
groups

0 -► Home (X , A) -> Homc (A, B) -> Home (A, C) 

be exact for any object X  ofC.

P ro p o s itio n  2.2.11. The necessary and sufficient condition that the sequence

be exact is that the sequence of abelian groups and homomorphisms of abelian 
groups

0 -> Homc (A, A ) Homc (B, A ) -> Home (C, A) 

be exact for any object X  of C.
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P ro p o s itio n  2.2.12. In order the sequence

0  -> A! A- A  A  A" -> 0

be exact it is necessary and sufficient that (A' ,u) be a kernel of v and (A",v) be 
a cokemel of u.

D efin itio n  2.2.13. If C and V  are abelian categories and if F  : C —> V  is an 
additive covariant functor, we say tha t F  is left exact if for any exact sequence

0 -► A' A  ^  A" -> 0

in the category C, the sequence

0  -> F(A' )  F ( A ) F( A")

is exact in the category V.  If for any exact sequence

0  -> A' A A" -> 0

the sequence,

0 -> F (A ’) F(A)  F(A")  -> 0

is exact, then we say tha t F  is exact.

We can extrapolate from this, by means of dualization, the notion of a left 
exact (or right exact) contravariant functor and tha t of an exact contravariant 
functor.

P ro p o s itio n  2.2.14. The necessary and sufficient condition that the functor 
F  : C —»• V  be exact is that it transforms any exact sequence in the category C 
into an exact sequence in the category V .

The proof of this statement can be found in [6 , Proposition 5.16].

P ro p o s itio n  2.2.15. I f  C and V  are abelian categories and i f  F  : C -> V , 
G : V  —>■ C are covariant functors such that G is an adjoint of the functor F, 
then G is left exact and F  is right exact.

Given a commutative ring R , recall tha t Hornr ( M ,  —) is adjoint to — <S)r  M . 
It follows from the preceding proposition tha t Hornr ( M ,  —) : M odR  —> M odi? is 
left exact and — M  : Mod R  —»■ Mod R  is right exact.
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2.3 G rothendieck Categories

We mostly follow Garkusha [14] and Herzog [25] to collect some basic facts on 
Grothendieck categories. Recall tha t an abelian category is cocomplete or an Ab3- 
category if it has arbitrary direct sums. The cocomplete abelian category C is 
said to be an Ab5-category if for any directed family {A i}ieI of subobjects of A  
and for any subobject B  of A, the relation

£ > )  n  B  =  n  B)
iei iei

holds.
The condition Ab3 is equivalent to the existance of arbitrary direct limits. Also 

Abb is equivalent to the fact tha t there exist inductive limits and the inductive 
limits over directed families of indices are exact, i.e. if I  is a directed set and

0 ---------------  Ai ^  Bi ^  Q  ►  0

is an exact sequence for any i G / ,  then

0 -----► linj A i  ► Unj Bi  ► linj Ci  ► 0

is an exact sequence.
Let C be a category and U = {Ui}i€i a family of objects of C. The family U 

is said to be a family of generators of the category C if for any object A  of C and 
any subobject B  of A  distinct from A  there exists an index i G I  and a morphism 
u : Ui —̂ A  which cannot be factorized through the canonical injection i : B  —* A 
of B  into A. An object U  of C is said to be a generator of the category C provided 
tha t the family { U }  is a family of generators of the category C.

Let C be a cocomplete abelian category; then U =  is a family of
generators for C if and only if the object Ui is a generator of C [6 ]. According 
to [6 , Prop. 5.35] the cocomplete abelian category C which possesses a family 
of generators U is locally small and it can be proved tha t any object of C is 
isomorphic to a quotient of an object where J  is some set of indices,
Uj  € U for any j  G J .

An abelian category which satisfies the condition Abb and which possesses a 
family of generators is called a Grothendieck category.
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Exam ple 2.3.1. Given any ring R  (associative with identity), the category 
Mod R  of i?-modules is a Grothendieck category, where R  is a generator.

We describe the subcategories consisting of finitely generated, finitely pre
sented and coherent objects respectively. These categories are ordered by inclu
sion as follows:

C D fgC D fpC D cohC.

Recall an object A £ C is finitely generated if whenever there are subobjects 
Ai C A  for i £ I  satisfying A = ^2ie IAi, then there is a finite subset J  C I  
such tha t A = Ai- The category of finitely generated subobjects of C is 
denoted by fg C. The category is locally finitely generated provided tha t every 
object X  £ C is a directed sum X  = J2ie IX i of finitely generated subobjects Ah, 
or equivalently, C possesses a family of finitely generated generators.

T heorem  2.3.2. [50, V.3.2] An object C £ C is finitely generated if  and only if 
the canonical homomorphism

<P : colim Homc(C, D[) -> Homc(C, D[)

is an isomorphism for every object D £ C and every directed family { A } / of 
subobjects of D.

A finitely generated object B  £ C is finitely presented provided tha t every 
epimorphism 77 : A  —» B  with A  finitely generated has a finitely generated kernel 
Ker 77. The subcategory of finitely presented objects of C is denoted by fpC. The 
corresponding categories of finitely presented left and right R-modules over the 
ring R  are denoted by R  mod =  fp(R  Mod) and mod R = fp(Mod R ), respectively. 
Note that the subcategory fpC of C is closed under extensions. Moreover, if

O ^ A ^ B - ^ C ^ O

is a short exact sequence in C with B  finitely presented, then C  is finitely presented 
if and only if A  is finitely generated.

D efinition 2.3.3. An object P  of an abelian category A  is said to be projective 
if the functor

Hom^(P, —) : A  —> Ab

is exact.
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The most obvious example of a finitely presented object of C is a finitely gen
erated projective object P. We say tha t C has enough finitely generated projec- 
tives provided that every finitely presented object A  G C admits an epimorphism 
77 : P  A  with P  a finitely generated projective object. If C has enough finitely 
generated projectives, then by the previous remarks, every finitely presented ob
ject B  G C is isomorphic to the cokernel of a morphism between finitely generated 
projective objects. This is expressed by an exact sequence

P i  * P o   B  - 0

called a projective presentation of B.

Exam ple 2.3.4. The category Mod R  of right i^-modules has enough finitely 
generated projectives.

Exam ple 2.3.5. By [25], another example of a category having enough finitely 
generated projective objects is the category of additive functors (B, Ab) from a 
small preadditive category B  to the category of abelian groups Ab. This category 
is a Grothendieck category, in which limits and colimits of functors are defined 
objectwise. A family of projective generators for (B, Ab) is given by the collection 
of representable functors {hB}B£ObB• In what follows we shall also write (B , —) 
to denote the representable functor hB, B  E Ob B.

In this category every finitely generated projective object is a coproduct factor 
of a finite coproduct of representable objects 0 ”=1 ( A , —). In addition, if B is 
an additive category, tha t is B  is preadditive, has finite products/coproducts and 
idempotents split in B , then every finitely generated projective object in (B , Ab) 
is representable by [25, Proposition 2.1].

The category C is locally finitely presented provided tha t every object B  G C 
is a direct limit B = lir^Bj of finitely presented objects B i, or equivalently, C 
possesses a family of finitely presented generators. As an example (see [37]), any 
locally finitely generated Grothendieck category having enough finitely presented 
projectives {Pi}i£i is locally finitely presented. In this case, {Pi}iei are generators 
for C. For instance, the set of representable functors {(B,  —) } b e b  of the functor 
category (B, Ab) with B as a small preadditive category form a family of finitely 
generated projective generators for (B, Ab). Therefore (B, Ab) is a locally finitely 
presented Grothendieck category (see [25, Proposition 1.3]).
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D efin ition  2.3.6. A finitely presented object C  of a locally finitely presented 
Grothendieck categoy C is coherent if every finitely generated subobject B  of C  
is finitely presented. Equivalently, every epimorphism h : C —> A  with A  finitely 
presented has a finitely presented kernel. Evidently, a finitely generated subobject 
of coherent object is also coherent. The sub category of coherent objects of C is 
denoted by coh C.

D efin ition  2.3.7. By [35], a Grothendieck category C is said to be locally coherent 
Grothendieck provided that C has a generating set of finitely presented objects 
and the full subcategory fpC of finitely presented objects in C is abelian.

The main Grothendieck category we work with is the category of generalized 
i?-modules Cr , which we define below. It is a locally coherent Grothendieck 
category with enough finitely generated projectives.

Exam ple 2.3.8. M odi? is locally coherent if and only if R  is right coherent.
Recall from [50] that a ring R  is right coherent if it satisfies any of the below 

equivalent conditions:

o Every direct product of flat left-i? modules is flat.

o R 1 is a flat left i?-module for every set I.

o Every finitely presented right i?-module is coherent.

o R  is coherent as a right R-module.

T heorem  2.3.9 ([25, 48]). The following conditions on a locally finitely presented 
Grothendieck category C are equivalent:

o C is locally coherent;

o fpC =  cohC;

o fp C is an abelian category.

Proof. We refer to [25, Theorem 1.6]. □
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P roposition  2.3.10 ([1, 50]). Let B be a small additive category, that is, B is 
preadditive, has finite products/coproducts and idempotents split in B. Then every 
finitely generated projective object in (B, Ab) is representable. I f  B has cokernels, 
then (B , Ab) is locally coherent and coh(B, Ab) has projective global dimension at 
m ost 2.

Under the assumption of the preceding proposition this leads us to the fact 
that every finitely presented object B  G (B, Ab) is coherent, tha t is, B  is finitely 
presented and every finitely presented subobject of B  is also finitely presented.

2.4 The category o f generalized m odules Cr

Following Herzog [25], we define the category Cr  as

Cr  ■= (mod R , Ab),

whose objects are the additive functors F  : m odi? —> Ab from the category of 
right finitely presented i?-modules mod R  to the category of abelian groups Ab. 
Its morphisms are the natural transformations of functors. Similarly, the category 
r C consists of the additive functors from the category of left finitely presented 
i?-modules to Ab. Since the category mod R  has cokernels, it follows from Propo
sition 2.3.10 tha t Cr  is a locally coherent Grothendieck category. Moreover, the 
category of coherent objects coIiCr has projective global dimension at most two.

The latter fact means tha t every coherent object C  G coh Cr  has a resolution 
by representable functors

0 -)• (M, - )  -> (N, - )  -> (L, - )  C  ->> 0,

where M, N, L  are finitely presented right R -modules.
The category Cr  is also called the c a teg o ry  o f  gen era lized  m odules ,  for the 

reason tha t there is a fully faithful, right exact functor

M  i—y — &)r M

from the category of all R-modules to Cr . The category Cr  has a number of 
remarkable properties which led to powerful applications in ring and module 
theory and representation theory (see [14, 24, 25, 35, 36, 45, 46, 53]).
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2.5 Triangulated Categories

Triangulated categories are a convenient tool to describe the type of structure 
inherent in the derived category of an abelian category. We mostly follow the 
book of Neeman [43], Keller [33] and Weibel [52] for the following material.

D efin ition  2.5.1. Let C be an additive category and £  : C —► C be an additive 
endofunctor of C. Asssume thoughout that the endofunctor E is invertible. A 
candidate triangle in C (with respect to E) is a diagram of the form:

such tha t the composition v o u, w o v and Eu o w are the zero morphisms.

A morphism of candidate triangles is a commutative diagram

X  —E+ y  —2+ Z  -22-+ E X

f 9 h
X '  -22+ Y '  ^ 2 +  z '  -22+ E X ' 

where each row is a candidate triangle.

D efinition 2.5.2. A pre-triangulated category T  is an additive category, together 
an additive automorphism E, and a class of candidate triangles (with respect to 
E) called distinguished triangles. The following conditions must hold:

TRO: Any candidate triangle which is isomorphic to a distinguished triangle is a 
distinguished trinagle. The candidate triangle

X - ^ X — ►O— *Y .X

is distinguished.

TR1: For any morphism /  : X  —> Y  in T  there exists a distinguished triangle of 
the form

X ^ - ^ Y — ►Z---- ►EX
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TR2: Consider the two candidate triangles

X - ^ Y - ^ Z

and

E X

Y  —^  Z  —^  E X  E Y  

if one is distinguished triangle, then so is the other.

TR3: For any commutative diagram of the form

X  ^ ^ Y  Z  ^ ^ E X

f
X '/  W y ,  V   ̂ ryl WZ'

£/

E X '

where the rows are distinguished triangles, there is a morphim h : Z  —»■ Z', 
not necessarily unique, which makes the diagram

X

/

X

Y E X

/ u  ̂ y '  v - r7' w
£/
E X '

commutative.

D efin ition  2.5.3. Let T  be a pre-triangulated category. Suppose that we are 
given a morphism of candidate triangles

X Y

X 'r u' y > VT  *7/ w .

E X
£/

E X '

There is a way to form a new candidate triangle out of this data. It is the diagram

—w 0  |  /  —E u 0

h v' I [ E f  w'
----------- ^  EX  © Z '   E Y  0  EX '.

This new candidate triangle is called the mapping cone on a map of candidate 
triangles.
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D efin ition  2.5.4. Two maps of candidate triangles

EX

/
/  u' y ,  V   ̂ ry! W

and
y

r h'
X '/ U ' y f  1/  r y /  W

S /

- EX'  

■EX
E /'

EX '
are called homotopic if they differ by homotopy; tha t is, if there exist 0 , <£> and 

below
X  - IL + Y  z  -^L + E X

0 /  $> /  9

X ', W y ,  V \  ry/ W E X ’
with

f  -  f  = Ou + E - \ w ' y ) ,  g - g ’ = § v  + u’<d, h -  U = Vw  +  u'$.

D efin ition  2.5.5. Let T  be a pre-triangulated category. Then T  is triangulated 
if it satisfies the further hypothesis 

T R 4’: Given any diagram

y

/  U  ̂ v y r  VY ' Z / w

E X  
£/ 

EX '
where the rows are triangles, there is, by [TR3], a way to choose an h : Z  —>• Z' 
to make the diagram commutative. This h may be chosen so tha t the mapping 
cone

—w 0  \  / —Eu  0

h v' ) \ E f  w'
----------- ©■ n x  © Z'   ^  E Y  © E X '

is a triangle.
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D efin ition  2.5.6. Let T  be a triangulated category in which all set indexed 
direct sums exist. An object A  of T  is called compact if the canonical map

Hom(A, Ei) —>■ Hom(A, © * )  
iei iei

is an isomorphism for any set of objects Ei in T  and i £ I. A  triangulated 
category T  is compactly generated if there is a set S  of compact objects with the 
following property, if for every object E  £ T  we have

Hom(A, E) =  0 for all A  £  S  implies E  = 0.

2.6 D erived categories

D efin ition  2.6.1. Let A  be an additive category. A graded A-object is a family 
X  =  (X n; n £  Z) of objects of A .  the object X n is called the homogeneous 
component of degree n of A .

Let X  and Y  be two graded A-objects and n £ Z. We denote by Homp(X, Y )  
the set of all graded morphisms of degree p.

D efin ition  2.6.2. A chain complex of A-objects is a pair (X ,d x )  consisting 
of a graded A-object X  and a graded morphism dx £ Homi(A, X )  such that 
dx ° dx  =  0. The morphism dx  is called the differential of the complex. We can 
view the complex as a diagram

j r  ^ n + 1  - y  d n  <^71— 1

• • • - -̂n+1 -A-n -A-n—1 • • • ■

If (X , dx)  and (Y , dy) are two complexes of .4-objects, a morphism of complexes 
/ ■ { X ,  dx) —> (T, dy) is a graded morphism /  £ Hom0 (A, Y)  such that

/  o dx  = dY o / ,

i.e., the diagram
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commutes.
The category of complexes of A-objects  is the category Ch(*4) with complexes 

of .A-objects as objects and morphisms of complexes as morphisms.

D efin ition  2.6.3. Let /  : X  —> Y  be a morphism in Ch(^4). Then /  is homotopic 
to zero if there exist h G Homi(X, Y )  such that

/  =  d y o / i  +  h o  dx-

Let Ht(A, Y )  be the set of all morphisms in H om ch^)(T , Y )  which are homotopic 
to zero. We say that the morphisms f  : X  —* Y  and g : X  —»• Y  are homotopic if
f - g e H t ( X , Y ) .

Lem m a 2.6.4. The subset Ht(A, Y )  is a subgroup of Homch(.A) (A", Y ) .

D efin ition  2.6.5. Let A  be an abelian category, and consider the category 
Ch(v4) of chain complexes in A .  The quotient category K(A.) of Ch(A) is de
fined as follows. The objects of K(A.) are chain complexes (objects of Ch(A)) 
and the morphisms of K(A) are the chain homotopy equivalence classes of maps 
in Ch(^4).

D efin ition  2.6.6. Let A  be an abelian category. For n  G Z  and any complex X  
in Ch(A.) we define the n th  homology of X  as follows

Hn(X) =  K erdn/ I m d n+i.

If /  : X  —> Y  is a morphism of complexes in Ch(A), /  induces a morphism 
Hn(/) : Hn(A) -> Hn(y). Therefore, Hn is a functor from the category Ch(A.) 
into the category A.

D efin ition  2.6.7. A morphism /  : X  —> Y  in Ch(A.) is a quasi-isomorphism  if 
Hn(/) : Hn(X) —> Hn(y) are isomorphisms for all n  G Z .

D efin ition  2.6.8. (Triangles in K(A.)) Let u : A  —>■ B  be a morphism in Ch(A). 
Recall tha t the mapping cone of u fits into an exact sequence

0 ---- ► B  v > cone(u) 6 > EA  ► 0
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in  C h(^) (see [52, 1.52]). The degree n part of cone(u) is A n+1 ® B n and A n+1 
is the degree n  part of E A  The strict triangle on u is the triple (w, v , S) of maps 
in K M ); this data is usually written in the form

cone(u)

A B.

Now consider three fixed chain complexes A, B  and C. Suppose we are given 
three maps u : A  —► B ,v  : B  —>• C, and w : C EA  in K(A). We say that 
(u ,v ,w )  is an exact triangle (A ,B ,C )  if it is ”isomorphic” to a strict triangle 
(it', v \  S) on u' : A' —> B' in the sense tha t there is a diagram of chain complexes,

A B C

A' —̂  B' — cone(w/)

■ EA  ,

wS /

E A

commuting in K(A) (i.e., commuting in Ch(A) up to chain homotopy equiva
lences) and such tha t maps / ,  g, h are isomorphisms in K(A) (i.e., chain homotopy 
equivalences). If we replace w, v and w by chain homotopy equivalent maps, we 
get the same diagram in K(A). This allows us to think of (u ,v ,w )  as a triangle 
in the category K(A). A triangle is usually written as follows:

C

A  2----- >- B.

P roposition  2.6.9. K(A) is a triangulated category.

D efin ition  2.6.10. The derived category D(A) is defined to be the localization 
(5-1K(A) of the category K(A) at the collection Q of quasi-isomorphisms.

R em ark 2.6.11. In what follows we shall not discuss set theoretical issues related 
to the existence of S ~ lC. In all our results such issues will not occur.

In order to describe morphisms of D(A) explicitly, we need some facts from 
Gabriel-Zisman localization theory [13]
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D efin ition  2 .6.12. Let S' be a collection of morphisms in a category C. A  
localization of C with respect to S  is a category S - 1C, together with a functor 
q : C —> S -1C such that

1. q(s) is a isomorphism in S ~ l C for every s £  S.

2 . Any functor F  : C —>■ V  such tha t F (s)  is an isomorphism for all s £ S  
factors in a unique way through q. (It follows tha t S ~ lC is unique up to 
equivalence).

E xam ple 2.6.13. 1. Let S  be the collection of chain homotopy equivalences
in Ch(^4). The universal property for Ch(^4) —► K(*4) shows tha t K(^4) is 
the localization S'-1 Ch(^4).

2. Let Q be the collection of all quasi-isomorphism in Ch(A). Since Q contains 
S  of part (1 ), it follows that

Q - 1 C h(^) =  Ch(.A)) =  Q - ' K i A )  =  D(^4).

Therefore we could have defined the derived category to be the localization 
Q~1 Ch(*4). However, in order to prove tha t Q~l Ch(^4) exists we must first 
prove tha t Q~lK (A )  exists, by giving an explicit description of morphisms.

D efin ition  2 .6.14. A collection S  of morphisms in a category C is called a 
multiplicative system  in C if it satisfies the following three self-dual axioms:

1 . S' is closed under composition (if s , t  £ S  are composable, then s t  £ S) and 
contains all identity morphisms (id* £ S  for all objects X  in C).

2 . (Ore condition) If t  : Z  —» Y  is in S, then for every g : X  —» Y  in C there 
is a commutative diagram ”gs = t f  ” in C with s in S.

V - ^ Z  .

t

X - X + Y

(The slogan is =  / s - 1  for some /  and s” .) Moreover, the symmetric 
statem ent (whose slogan is ” / 5_ 1  — t _1g for some t and g") is also valid.
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3. (Cancellation) If / ,  g  : X  —>■ Y  are parallel morphisms in C, then the fol
lowing two conditions are equivalent:

(a) s f  = s g  for some s  e S  with source Y .

(b) f t  =  g t  for some t  G S  with target X .

E xam ple 2.6.15. The collection Q of quasi-isomorphisms is a multiplicative 
system in K(^4).

D efin ition  2.6.16. Let A  be a category and let S' be a multiplicative system in 
A. We call a chain in A  of the form

f  s—1 : X  <-?- X i  X  Y

a ( le ft)  f r a c t io n  if s  is in S. Call / s _1 equ iva len t  to X  ^ — X 2 Y  if there is a 
fraction X  <— X 3 —> Y  fitting into a commutative diagram in A:

X 1

X -  X 3  > Y

X 2

D efin ition  2.6.17. A multiplicative system S is called locally small (on the left) 
if for each X  there exists a set S x  of morphisms in S, all having target X , such 
tha t for every X i  —>• X  in S there is a map X 2 —»• X \  in A  so tha t the composite 
X 2 -> X 1 -> X  in S x .

T heorem  2.6.18 (Gabriel-Zisman [13]). Let S  be a locally small multiplicative 
system  of morphisms in a category C. Then the category S ~ lC constructed above 
exists and is a localization of C with respect to S . The universal functor q : C —» 
S ~ lC sends f  : X  —>• Y to the sequence
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Now let B  C  C be a full subcategory. Denote by S f ) B  the class of morphisms 
of B  lying in S. We say tha t B is right cofinal in C with respect to S, if for each 
morphism s : X '  —> X  of S with X '  G B , there is a morphism m  : X  —>• X "  such 
tha t the composition m s  belongs to S D B. The left variant of this property is 
defined dually.

Lem m a 2.6.19 ([33]). Suppose B is right (respectively left) cofinal in C with 
respect to S. Then the class S  fl B admits a calculus of left (respectively right) 
fractions. I f  B is right (respectively left) cofinal in C with respect to S, then the 
canonical functor

( S c B ) ~ lB S~ XC

is fully faithful.

D efin ition  2.6.20. A chain complex X  is called bounded if almost all X n are 
zero; if X n = 0 unless a ^  n  ^  b. A chain complex X  called bounded above 
(respectively bounded below) if there is a bound b (respectively a) such that X n =  0 
for all n > b (respectively n < a). The bounded (respectively bounded above, 
respectively bounded below) chain complexes form full subcategories of Ch(.A) 
that are denoted Ch6(*4), C h- (.4) and C h+ (̂ 4) respectively.

We write K 6(^4), K “ (*4) and K +(̂ 4) for the full subcategories of K(.A) cor
responding to the full subcategories Chb(^4), Ch~(^4) and C h+(,4) of bounded, 
bounded above, and bounded below chain complexes.

Exam ple 2.6.21. By using Lemma 2.6.19, localizations of the full subcategories 
Kb(A), K +(A) and K _ (̂ 4) of K(^4) with respect to Q exist and are the full sub
categories D 6(^4), D +(.4), D “ (*4) ofD(.A) whose objects are the chain complexes 
which are bounded, bounded below, and bounded above respectively (also see [52, 
10.3.15]).

T heorem  2.6.22. D(^4),D6(^4),D+ (̂ 4) and D _ (̂ 4) are all triangulated cate
gories, where triangles are those isomorphic to strict triangles (see 2.6.8).

Corollary 2.6.23. I f  I  is a bounded below chain complex of injectives, then

HomD(>A)(X ,/)  =  Horn K(A){X,I) 

for every X .  Dually, i f  P  is a bounded above cochain complex of projectives,

HomDM)(P, X )  = Horn K{A)(P ,X ).
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Below we shall need the following useful fact:

P roposition  2 .6.24. The category of unbounded chain complexes Ch(^4) of a 
Grothendieck category A  is again a Grothendieck category.

Sketch o f proof. Colimits and limits are taken dimensionwise, filtered colimits 
are obviously exact. Following notation of Hovey [26], denote by D nX , n  £ Z 
and X  £ A ,  the complex which is X  in degree n and n  — 1 and 0 elsewhere, with 
interesting differential being the identity map. If U is a generator of A , then 
{D nU}n<zz are generators of Ch(.A). To see tha t these generate Ch(*4), use the 
adjunction relation Homch(A)(DnU ,X )  =  Horna (U ,X u).

Rem ark 2.6.25. This remark is to warn the reader tha t one should not confuse 
generators in abelian and triangulated categories. Precisely, we shall also work 
with the derived category D(*4) of unbounded complexes of a Grothendieck cat
egory A. Then generators for D(*4) cannot be generators for Ch(^4) and vice 
versa in general. Indeed, the generators {D nU}nez of Ch(^4) are contractible 
complexes, and hence zero in D(^4).

On the other hand, suppose U is a generator for A. Denote by S nU, n  £ Z, 
the complex which is U in degree n and 0  elsewhere. Then {S nU}nEz is a family 
of generators for the derived category D(*4) in the sense tha t for every non-zero 
object X  £ D(*4) there is a non-zero morphism in D(^4) from some S nU to X .  
But these cannot generate Ch(A) as the following example shows.

Suppose K  is a field, and

is a commutative diagram in ChfM odiT), where do(x,y) =  f ( x ,y )  = y. We 
suppose the middle complex is concentrated in degrees 0 and —1. Clearly a (l)  £ 
Kerdo implies <a(l) =  (x',0) for some x' £ K .  But f a (  1) — f{x ',  0) =  0, so 
f a  =  0. Thus there is no non-zero map from S ° K  to the middle complex such 
that the composite f a  ^  0. Since there is no non-zero morphism from S nK  to
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the middle complex for any n ^  0 , we see tha t {S nK } n£z are not generators for 
Ch(M od K).



Chapter 3 

Enriched C ategory Theory

In an enriched category, the set of morphisms (the Hom-set) associated with 
every pair of objects is replaced by an object in some fixed monoidal category 
of “Hom-objects” in such a way tha t Hom-objects can be composed in the same 
fashion as Hom-sets in the usual category. Since enriched categories are of great 
utility in this project, we should collect some basic facts about them. We refer 
the reader to [4, 39] for details.

3.1 Enriched categories

D efin ition  3.1.1. A monoidal category V consists of the following data: 

o a category V;

o a bifunctor 8  : V x V —> V, called the tensor product. We write a 8  b for 
the image under 8  of the pair (a, b);

o an object e £ V, called the unit;

o for every triple a, b, c of objects, an associativity isomorphism

ciabc • (a 0  b) 0  c —y a (g) (b 0  c);

o for every object a, a left unit isomorphism

la '■ c 8  a —y uj

38
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o for every object a, a right unit isomorphism

ra : a 0  e —»■ a.

These data must satisfy the following requirements: 

o the morphisms aabc are natural in a, 6, c; 

o the morphisms la are natural in a; 

o the morphisms r a are natural in a;

o diagram (3.1) below is commutative for every quadruple of objects a, b, c, d 
(associativity coherence)

((a 0  6) 0  c) 0  d —°aC5b'c-’d > (a 0  6) 0  (c 0  d) (3.1)

(a 0  (6 0  c)) 0  d
&a,b®c,d

a 0  ((ft 0  c) 0  d)

a a ,b ,c® d

a 0  (6 0  (c 0  d)))

o diagram (3.2) below is commutative for every pair a, 6 of objects (unit co
herence)

(a 0  e) 0  b -a-a->- a 0  (e 0  6) 

ra®l
a 0  b

(3.2)

D efin itio n  3.1.2. W ith the notation of 3.1.1, a monoidal category is symmetric 
when, moreover, an isomorphism

sab : a 0  b —> b 0  a

is given for every pair a, b of objects. These isomorphisms must be such that: 

o the morphisms sab are natural in a, 6;
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o diagram (3.3) below is commutative for every triple a,b,c  of objects (asso
ciativity coherence);

o diagram (3.4) below is commutative for every object a (unit coherence);

o diagram (3.5) below is commutative (symmetry axiom) for every pair a, b 
of objects.

(a 0  b) 0  c Sab®l (6 0  a) (g> c

âbc abac

a 0  (b 0  c) 6 0  (a 0  c)

so6®c l(S>Sac

(6 0  c) 0  a _ > b 0  (c 0  a)

a 0  e Sae> e 0  a

ra

(3.3)

(3.4)

a 0  6 Sab> 6 0 a
b̂a

(3.5)

a 0  b

D efin ition  3.1.3. W ith the notation of 3.1.1, a monoidal category V is biclosed 
when, for each object b E V, both functors

— 0  6 : V —» V, 6 0  — : V V

have a right adjoint. A biclosed symmetric monoidal category is called a symmet
ric monoidal closed category. The adjoint to the functor — 0  b will be denoted 
by Hom(6, —) or [6, —].

D efin ition  3.1.4. Let V be a closed symmetric monoidal category. A V-category 
C, or a category enriched over V, consists of the following data:

1. a class Ob (C) of objects;

2. for every pair a, b G Ob (C) of objects, an object Vc(a, b) of V;
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3. for every triple a, b, c £ Ob (C) of objects, a composition morphism in V,

Cabc ■ Vc (a, b) 0  Vc {b, c) ->• Vc (a, c);

4. for every object a £ C, a unit morphism in V,

ua : e->  Vc (o,a).

These data must satisfy the following conditions:

o given objects a, b, c, d £ C, diagram (3.6) below is commutative (asso
ciativity axiom);

o given objects a,b £ C, diagram (3.7) below is commutative (unit ax
iom).

( V c M ) g v c( M ) g V c M )
a y c (a ,6 )Vc (6,c)Vc (c,d)

Vc(a, 6) 0  (Vc(6, c) 0  Vc(c, d))

Vc (a, 6 ) ® V c ( M ) -------

Vc (a,c) 0  Vc (c, d)

Cacd

Cabd Vc (a,d)

(3.6)

e 0  Vc (a, b) Vc- ’b) > Vc (a, 6) < Vc(a’b) Vc (a, 6) 0  e

ua<8>l Vc (a,6)

(3.7)

Vc (o, a) ® Vc(a, b) ^  Vc (a, b) ^  Vc (a, b) ® Vc(b, b)

When ObC is a set, the V-category C is called a small V-category.

D efin itio n  3.1.5. Let V be a monoidal category. Given V-categories A, B, a 
V-functor or an enriched functor F  : A  —> B consists in giving:

1. for every object a £ A,  an object F(a) £ B\



42 CH APTER 3. ENRICHED CATEG O RY TH EO RY

2. for every pair a, b G A  of objects, a morphism in V,

Fab: VA( a , b ) ^  VB(F(a),F(b))

in such a way that the following axioms hold:

o for all objects a, a', a" G A , diagram (3.8) below commutes (composi
tion axiom);

o for every object a e  A ,  diagram (3.9) below commutes (unit axiom).

VA (a,a!) <g> VU(a',a") VA (a,a”)

Faa'®Fa'a"

VB(Fa, Fa1) 0  VB(Fa', Fa") ;r— — ~ Ve(Fa, Fa")r Cl,I* d ,r Q,

(3.8)

ua

UFa

VU(a,a)

Faa

VB(Fa,Fa)

(3.9)

D efin ition  3.1.6. Let V be a monoidal category. Let A ,B  be two V-categories 
and F ,G  : A  —> B  two V-functors. A V-natural transformation a  : F  => G 
consists in giving, for every object a G A,  a morphism

cta : e —> VB(F(a),G(a))
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in V such tha t diagram (3.10) below commutes, for all objects a, a' e  A.

VU(a, a')

VA(a,a')

e 0  V^(a, a')

aa®Gaa/

VB(F a ,G a )® V B{Ga, GV)

Faa'®aa'

VB(Fa,Fa!) ® V B{Fa!,Ga!)

cFaGaGa' -FaFa1 Ga'

VB(Fa , Ga')
(3.10)

We also observe that we can define the closed symmetric monoidal category 
S et as the category consisting of sets with arrows, the maps between them, and 
tha t categories in the usual sense are Set-categories (categories enriched over 
Set).

If C is a category, let Setc(a, b) denote the set of maps in C from a to b. A 
closed symmetric monoidal category V is a V-category due to its internal Hom- 
objects. Let V(a, b) denote the V-object Homv(a, 6) of maps in V. Any V-category 
C defines a Set-category UC. Its class of objects is ObC, the morphism sets are 
S e tuc(a,b) = S e tv (e, Vc (a, b)) (see [4, p. 316]).

D efin ition  3.1.7. A V-category C is a right V-module if there is a V-functor 
act : C 0  V —> C, denoted (c, A) (->> c 0  A  and a V-natural unit isomorphism 
rc : act(c, e) —» c subject to the following conditions:

1. there are natural associativity isomorphisms c 0 ( 4 ® 5 )  —)> ( c 0 d ) 0  5 ;

2. the isomorphisms c 0  (e 0  4 ) = t c 0 A  coincide.

A right V-module is closed if there is a V-functor

coact : Vop 0  C —>• C
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such th a t for all A  E Ob V, and c E ObC, the V-functor act(—, A) : C —> C is left 
V-adjoint to coact(A, —) and act(c, —) : V —>• C is left V-adjoint to Vc(c, —).

3.2 Ends and Coends

In this section we introduce the notions of ends and coends. They play an impor
tan t role in constructing a closed symmetric monoidal structure for the category 
of enriched functors. We follow the work of Mac Lane [39] in this section.

D efin ition  3.2.1. Let X , C  be two categories. We define a dinatural transfor
mation, a  : S  —> T,  between two functors S  and T

S ,T  : Cop x C  -> X

as a function which associates to every object c E C  an arrow

a c : S(c, c) —>• T(c, c)

of X  and satisfies the coherence axiom, i.e. tha t the following diagram commutes 
for all arrows /  : c —> c' in C

S ( c ,c ) - ^ - ~ T ( c ,c )

An end is a special type of limit, defined by the universal wedges in place of 
universal cones.

D efin ition  3.2.2. An end of a functor

S  :C op x C  -> X

is a universal dinatural transformaton from a constant e to S. In other words, 
an end of S' is a pair <  e,oj >, where e is an object of X  and uj : e —» S is a 
dinatural transformation with the property th a t to every dinatural transformation 
fd : x  —»• S there is a unique arrow h : x  —» e of X  with (3a =  u ah for all a E C.
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Thus for each arrow /  : b —> c of C  there is a diagram

x 5(6,6) (3.11)

5(6, c)

Y
e 5(c, c)

such tha t both quadrilaterals commute (these are the dinatural conditions); the 
universal property of u  states tha t there is a unique h such that both triangles 
(at the left) commute.

The uniqueness property which applies to any universal states in this case 
tha t if < e,uj > and < e',uj' > are two ends for 5, then there exists a unique 
isomorphism u : e —»• e' with uj' - u = uj (i.e., with uj'c 'U  =  ujc for each c G C). We 
call uj the ending wedge or the universal wedge, with components ujc , while the 
object e itself, by abuse of language, is called the “end” of S  and is written with 
the integral notation as

Note that the variable of integration c appears twice under the integral sign 
(once covariant and once contravariant) and is bound by the integral sign, in that 
the result no longer depends on c and so is unchanged if c is replaced by any 
other letter standing for an object of the category C. These properties are like 
those of the letter x  is the usual integral

of the calculus.
Natural transformations provide an example of ends. Two functors E/, V  : 

C  —>■ X  define a functor Hornx {U —) V —) : Cop x C —> Set, and if Y  is any set, a 
wedge (=dinatural transformation) r  : Y  —»■ Homx(E/—, V —), with components

rc : Y  —> Hornx {Uc,Vc), c G C ,
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assigns to each y e  Y  and to each c G C  an arrow rc>y : Uc —> Vc  of X  such that 
for every arrow /  : b —> c one has the wedge coondition V  f  • 7&)y =  rCty • U f .  But 
this condition is just the commutativity of the square

U b - ^ V b  (3.12)

uf Vf

U c—^ V c

which asserts that r_ i3/, for fixed ?/, is a natural transformation r_ )2/ : U —> V. 
Thus, if we write Nat(U , V ) for the set of all such natural transformations, the 
assignment y i—>• r_ ;2/ is the unique function Y  —* Nat(U, V ) which makes the 
following diagram commute.

Y — r̂ U o m ( U c ,V c )

1

U c - ^ K o m ( U c ,V c ) ,

where ujc assigns to each natural A : U —>• V  its component Ac : Uc Vc. This 
states exactly that a; is a universal wedge. Hence

Nat(U, V ) = J Horn((7c, Vc), U ,V  :C  -> X.

The definition of the coend of a functor

S  : C o p x C - + X

is dual to tha t of an end.

D efinition 3.2.3. A coend of S  is a pair, < d, £ : S  -* d >, consisting of an object 
d £ X  and a dinatural transformation £ (a wedge), universal among dinatural 
transformations from 5  to a constant. The object d (when it exists, unique up to 
isomorphism) will usually be written with an integral sign and with the bound 
variable c as superscript. Thus,

S(c,c) h  J  S(c, c) =  d.

The formal properties of coends are dual to those of ends.



3.2. ENDS AND COENDS 47

Coends are familiar under other names. For example, the tensor product of 
modules over a ring R  is a coend. Specifically, a ring R  is a preadditive category 
with one object (which we call R  again) and with arrows the elements r E R, 
composition of arrows being their product in R. A left i?-module B  is an additive 
functor R  —» Ab which sends the (one) object R  to the abelian group B  and each 
arrow r in R  to the scalar multiplication r* : b i—> rb in B. Similarly, a right 
i?-module A  is an additive functor R op —> Ab (contravariant on R  to Ab). If <g> is 
the usual tensor product in Ab, then R  ^  A  0  B  is a bifunctor R op x R  —»• Ab. 
Moreover, the coend

J  a ® b  =  a ® r b

is exactly the usual tensor product over R. Indeed, a wedge £ from the bifunctor 
A <S> B  to an abelian group M  is precisely a (single) morphism g : A ® B  —»• M  of 
abelian groups such tha t the diagram

r*<8 >1 b  Q

A ® B — — ► M

commutes for every arrow r  E R. W ith the above interpretation of modules as 
functors, this means for elements a £ A  and b G B  that

g(ar <g> b) = g(a (8) rb).

We see tha t M  is a coend precisely when M  is A<S>B modulo all ar(&b — a®rb, 
and this is precisely the usual despcription of the tensor product M  = A  <S)r B.

The point of these observations is not the reduction of the familiar to the 
unfamiliar (tensor products to coends) but the extension of the familiar to recover 
many more cases. If B  is any monoidal category with monoidal product □, then 
any two functors T  : P op —> B  and S  : P  -> B  have a “tensor product”

T D PS  = J  (Tp)n(Sp),

an object of B.
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By abusing language, we can often refer to the end of the functor S  by the 
object e alone, and write

e = J S ( c , c )  or just J S  

We dually define the coend using the same approach by

/
c pc

5(c, c) or just / S.

If we consider a functor F  : Cop x C  —> X ,  where C  is a category and assume 
our target category X  for the functor F  is complete, we can more formally describe 
this end as the equalizer in the diagram

f  F(c,c) J ] > ( c ,c )  Y l  F (c' , c)-
J C ncr__________ r*_cGC c —>c'

There is again a dual definition for coends as a coequalizer of the dual diagram.

3.3 Categories o f enriched functors
In this section we mostly follow Borceux [4] and Dundas-Rondigs-0stvaer [10].

If C is a small V-category, V-functors from C to V and their V-natural trans
formations form the category [C, V] of V-functors from C to V. If V is complete, 
then [C, V] is also a V-category. We also denote this V-category by F(C), or T  if 
no confusion can arise. The morphism V-object Vjr(X ,Y)  is the end

[  V{X(c),Y(c)).  (3.13)
J ObC

Note that the underlying category U T  of the V-category T  is [C, V].
One can compare T  with C and V as follows. Given c £ ObC, X  i—y X(c)  

defines the V-functor Evc : T  —> V called evaluation at c. The assignment 
c h* Vc(c, —) from C to T  is again a V-functor Cop —> T ', called the V-Yoneda 
embedding. Vc(c, —) is a representable functor, represented by c.

L em m a 3.3.1 (Enriched Yoneda Lemma). Let V be a complete closed symmetric 
monoidal category and C a small V-category. For every V-functor X  : C —> V 
and every c £ ObC, there is a V-natural isomorphism X(c)  = V;r(Vc(c, —), X) .
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The isomorphism above is called the Yoneda isomorphism. It follows that 
every V-functor can be expressed as a colimit of representable functors.

L em m a  3.3.2. I f V  is a bicomplete closed symmetric monoidal category and C 
is a small V-category, then [C,V] is bicomplete. (Co)limits are formed pointwise.

C o ro lla ry  3.3.3. Assume V is bicomplete, and let C be a small V-category. Then 
any V-functor X  : C —>• V is V-naturally isomorphic to the coend

Ôb c
/

(J  D<_

Vc( c , - ) ® X ( c ) .

Let (C, o, it) be a small symmetric monoidal V-category, where V is bicomplete. 
The monoidal product C ®C  is the V-category, where

Ob(C(g>C) := ObC x ObC

and
Vc®c((a,:r), (b,y)) := Vc (a,b) ® V c (x,y).

In [9], a closed symmetric monoidal product was constructed on the category 
[C,V] of V-functors from C to V. For X,  Y  G Ob[C,V], the monoidal product 
X  0  Y  £ Ob[C, V] is the coend

/
Ob(C®C)

Vc ( c o d , - ) ® ( X ( c ) ® Y ( d ) )  : C V. (3.14)

The following theorem is due to Day [9] and plays an important role in our 
analysis.

T h e o re m  3.3.4 (Day [9]). Let (V, (8), e) be a bicomplete closed symmetric monoidal 
category and (C, o, u) a small symmetric monoidal V-category. Then the category 
([C,V] , (1)5 Vc(u, )) %s closed synxmetr%c monoidal ujzth respect to monoidal prod 
uct (3.14). The internal Hom-functor in [C, V] is given by the end

^ (X ,y ) (c )  =  V F ( A ' , y ( c o , - ) ) =  [  V( X( d) , Y( cod) ) .  (3.15)
J d e O b C

The next lemma computes the tensor product of representable V-functors.
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L em m a 3.3.5. The tensor product of representable functors is again representable. 
Precisely, there is a natural isomorphism

Vc(c, - )  © Vc(d, - )  =  Vc ( cOd,  - ) .

Below we shall need the following

P ro p o s itio n  3.3.6. Let V be a symmetric monoidal closed category. I f  A  is a 
V-category and F ,G  : A  =t V are V-functors, giving a V-natural transformation 
a  : F  => G is equivalent to giving a family of morphism a a : F(a)  —* G(a) in V, 
for a e  A , in such a way that the following diagram commutes for all a, a' G A

VA(a,a’) — ^ { F { a ) , F ( a ’)}

[G(a),G(a')]a [F(a),G(a') ]

Proof. See [4, 6.2.8]. □

Corollary 3.3.7. Let V be a symmetric monoidal closed category. I f  A is a V- 
category and F ,G  : A  =3  V are V-functors, giving a V-natural transformation 
a : F  G is equivalent to giving a family of morphism a a : F(a)  —)■ G(a) in V,  
for a G A, in such a way that the following diagram commutes for all a, a' € A

VA{a,a’) ® F ( a ) ^ ~ F { a ! )

<̂a/

VA (a, a') (8 ) G(a) G(a'),

where r)F,r]G are the maps corresponding to the structure maps Faa> and Gaa' 
respectively.

Corollary 3.3.8. Let V be a symmetric monoidal closed category, A a small 
V-category and F ,G  : A  = 4  V be V-functors. Suppose a  : F  => G is a V-natural 
transformation such that each a a : F(a)  —»■ G(a),  a G Ob^4; is an isomorphism 
in V. Then a  is an isomorphism in [A, V].

Proof This follows from the preceding corollary if we define o _1 : G => F  
by the collection of arrows a ” 1, a G Ob A. □
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M odel Categories

A model category (sometimes called a Quillen model category or a closed model 
category) is a context for doing homotopy theory. Quillen [47] developed the 
definition of a model category to formalize the similarities between homotopy 
theory and homological algebra: the key examples which motivated his definition 
were the category of topological spaces, the category of simplicial sets, and the 
category of chain complexes. In recent decades, the language of model categories 
has been used in some parts of algebraic A-theory and algebraic geometry, where 
homotopy-theoretic approaches led to deep results (see, for example, [32, 41, 51]).

In this project we deal with categories enriched over a closed symmetric 
monoidal Grothendieck category V. More precisely, we shall prove that the cat
egory of enriched functors

[C,V],

where C is a V-category, is Grothendieck. Moreover, if V is a reasonable model 
category, then so is [C,V]. The latter is a monoidal model category whenever 
V is. So Grothendieck categories of enriched functors can have a rich homotopy 
theory in the sense of Quillen. To show this, we need to collect basic facts about 
model categories.

We mostly follow Dundas-Rondigs-0stvaer [10], Hovey [26] and Schwede- 
Shipley [49] . All model structures we shall deal with in this project are cofibrantly 
generated.

51
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4.1 M odel structures

D efin ition  4.1.1. Suppose C is a category.

1. A map /  in C is a retract of a map g G C if /  is a retract of g as objects 
of Map C. That is, /  is a retract of g if and only if there is a commutative 
diagram of the following form,

where the horizontal composites are identities.

2. A functorial factorization is an ordered pair (a, ft) of functors Map C —> 
Map C such that /  =  /3(f) o a ( f )  for all /  G Map C. In particular, the 
domain of a ( f )  is the domain of / ,  the codomain of a ( f )  is the domain of 
/?(/), and the codomain of /3(f) is the codomain of / .

D efinition 4.1.2. Suppose i : A  —► B  and p : X  —> Y  are maps in a category
C. Then i has the left lifting property with respect to p and p has the right lifting 
property with respect to i if, for every commutative diagram of the following form,

A ---- -— >~X

i P

there is a lift h : B  —> X  such that hi = f  and ph = g.

D efinition 4.1.3. A model structure on a category C is three subcategories of C 
called weak equivalence, cofibratons, and fibrations, and two factorizations (a, (3) 
and (7 , <5) satisfying the following properties:

1 . (Two-out-of-three) If /  and g are morphisms of C such tha t g o f  is defined 
and two of f ,g  and go  f  are weak equivalence, then so is the third.
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2. (Retracts) If /  and g are morphisms of C such tha t /  is retract of g and g 
is a weak equivalence, cofibration, or fibration, then so is / .

3. (Lifting) Define a map to be a trivial cofibration if it is both a cofibration 
and a weak equivalence. Similarly, define a map to be a trivial fibration if 
it is both a fibration and a weak equivalence. Then trivial cofibrations have 
the left lifting property with respect to fibrations, and cofibrations have the 
left lifting property with respect to trivial fibrations.

4. (Factorization) For any morphism / ,  a ( f )  is a cofibrations, (3(f) is a trivial 
fibration y ( /)  is a trivial cofibration, and 6(f)  is a fibration.

D efin ition  4 .1 .4 . A model category is a category C with all limits and colimits 
together with a model structure on C.

E xam ple 4 .1 .5 . Suppose C is a category with all small colimits and limits. We 
can put three different model structures on C by choosing one of the distinguished 
subcategories to be the isomorphisms and the other two to be all maps of C. 
There are obvious choices for the functorial factorizations, and this gives a model 
structure on C. For example, we could define a map to be a weak equivalence if 
and only if it is an isomorphism, and define every map to be both a cofibration 
and a fibration. In this case, we define the functors a  and 6 to be the identity 
functor, and define (3(f) to be the identity of codomain of /  and y ( /)  to be the 
identity of the domain of / .

E xam ple 4 .1 .6 . Suppose A is a Grothendieck category. Let Ch^4 be the cate
gory of unbounded chain complexes on A. The injective model structure on Ch^4 
was first constructed by Joyal [31], and written down by Beck [2]. Its homotopy 
category is the derived category of A. In this model structure the cofibrations 
are the monomorphisms, the weak equivalences are the quasi-isomorphisms, and 
the fibrations are certain epimorphims.

4.2 The hom otopy category

D efinition 4 .2 .1 . Suppose C is a category with a subcategory of weak equiva
lences W. Define the homotopy category HoC as follows. Form the free category
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F(C,  W -1) on the arrows of C and the reversals of the arrows of W. An object 
of F{ C, W~l ) is an object of C, and a morphism is a finite string of composable 
arrows ( / i , / 2 , •••,/«) where /* is either an arrow of C or the reversal w of an 
arrow Wi of W. The empty string at a particular object is the identity at that 
object, and composition is defined by concatenation of strings. Now, define HoC 
to be quotient category of F(C,  W -1) by the relations 1 a = (1a) for all objects 
A  (f , 9 ) =  ( / ° 9) f°r composable arrows / , g of C, and ldom w — (rc, w_1) and 
Icodom w — (w_1,w)  for all w G W. Here dom w is the domain of w and codom w 
is the codomain of w.

Lem m a 4.2.2. Suppose C is a category with a subcategory W .

1. I f  F  : C —> V  is a functor that sends maps of W  to isomorphisms, then 
there is a unique functor HoC —>• V  such that (Ho F) 0 7  = F.

2. Suppose 5 : C —>• 8 is a functor that takes maps o fW  to isomorphisms and 
enjoys the universal property of part (1). Then there is a unique isomor-

F
phism  HoC —> 8 such that F 7  =  5.

3. The correspondence of part (1 ) induces an isomorphism of categories be
tween the category of functors HoC —> V  and natural transformations and 
the category of functors C —> V  that take maps o fW  to isomorphisms and 
natural transformations.

D efinition 4.2.3. Suppose C is a model category, and f ,g  : B  —>■ X  are two 
maps in C.

1. A cylinder object for B  is a factorization of the fold map : B \ J B  B

into a cofibration B  o  B  l° Zl> B ' followed by a weak equivalence B ' A  
B.

2 . A path object for X  is a factorization of the diagonal map X  -» X  x X  into 

a weak equivalence X  A  X '  followed by a fibration X ' X  x X .

3. A left homotopy from /  to g is a map H  : B ' —> X  for some cylinder object 
B' for B  such tha t H i0 = f  and H i\ =  g. We say that /  and g are left 
homotopic, written /  ~  g, if there is a left homotopy from /  to g.
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4. A right homotopy from /  to g is a map K  : B  —> X '  for some path object 
X '  for X  such tha t PqK  =  /  and p iK  = g. We say that /  and g are right 
homotopic, written f  ~  g, if there is a right homotopy from /  to g.

5. We say that /  and g are homotopic, written /  ~  g, if they are both left and 
right homotopic.

6 . /  is a homotopy equivalence if there is a map h : X  —* B  such that h f  ~  1# 
and f h  ~  lx -

P ro p o s itio n  4.2.4. Suppose C is a model category, and f ,g  : B  —> X  are two 
maps in C.

1. I f  f  ~  g and h : X  —>■ Y , then h f  ~  hg. Dually, if  f  ~  g and h : A  —» B, 
then f h  gh.

2. I f  X  is fibrant, f  ~  g, and h : A  —»• B , then f h  ~  gh. Dually, i f  B  is 
cofibrant, f  ~  g, and h : X  —» Y , then h f  ~  hg.

3. I f B  is cofibrant, then left homotopy is an equivalence relation on C(B , X) .  
Dually, if  X  is fibrant, then right homotopy is an equivalence relation in 
C{B, X) .

4. I f  B is cofibrant and h : X  —> Y  is a trivial fibration or a weak equivalence 
of fibrant objects, then h induces an isomorphism

C ( B , X ) /  l $ C { B , Y ) / ~ -

Dually, if  X  is fibrant and h : A  —» B  is a trivial cofibration or weak 
equivalence of cofibrant object, then h induces an isomorphism

C ( B , X ) /  ~ 4 C ( A ,X ) /  ~  .

5. If  B  is cofibrant, then f  ~  g implies f  ~  g. Furthermore, if  X ' is any path 
object for X , there is a right homotopy K  : B  —► X ' from f  to g. Dually, if

7* tX  is fibrant, then f  ~  g implies f  ~  g, and there is a left homotopy from  
f  to g using any cylinder object for B .
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P rop osition  4.2.5. Suppose C is a model category. Let Cc (respectively Cf,Ccf) 
denote the full subcategory of cofibrant (respectively fibrant, cofibrant and fibrant) 
objects ofC. Then the inclusion functors induce an equivalence of categories

Ho Ccf  —y Ho Cc —̂ Ho C

and
HoCcf  —>• H oCf —> HoC.

T heorem  4.2.6. Suppose C is a model category. Let 7 : C —> HoC denote the 
canonical functor, and let Q denote the cofibrant replacement functor of C and R  
denote the fibrant replacement functor.

1. The inclusion Ccf  —» C induces an equivalence of categories

Ccf /  ~  ~ > Ho Ccf  ^ Ho C .

2. There are natural isomorphisms

C ( Q R X , Q R Y ) /  HoC(7 X, j Y)  ^  C (R Q X , R Q Y )/  ~  .

In addition, there is a natural isomorphism  Ho C(7 X, 7 y )  =  C( QX , R Y ) /  
and, if  X  is cofibrant and Y  is fibrant, there is a natural isomorphism 
HoC(7 X ,7 y )  =  C ( X , Y ) /  ~  . in particular, HoC is a category without 
moving to a higher universe.

3. The functor 7  : C —> HoC identifies left or right homotopic maps.

4- I f  f  : A  —» B  is a map in C such that 7 /  is isomorphic in HoC, then f  is 
a weak equivalence.

Exam ple 4.2.7. Suppose R  is a ring, and let Ch(M od R) denote the category 
of unbounded chain complexes of i?-modules. The projective model structure on 
C h(M odi?) is written down in [26, Section 2.3] (see also Definition 4.3.15). Its 
homotopy category is also the derived category of 17-modules.
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4.3 Cofibrantly generated m odel categories

D efin ition  4.3.1. Suppose C is a category with all small colimits, and A is an 
ordinal. A A-sequence in C is a colimit-preserving functor X  : A —y C, commonly 
written as

X q —y X \  —y • • • —y Xp —y • • •

Since X  preserves colimits, for all limit ordinals 7  < A, the induced map

colim ^^ Xp  —y X 7

is an isomorphism. We refer to the map X 0 —y c o l in i^  Xp  as the composition of 
the A-sequence, though actually the composition is not unique, but only unique 
up to isomorphism under A, since the colimit is not unique. If V  is a collection 
of morphisms of C and every map Xp —y X p+ 1 for (3 +  1 < A is in £>, we refer to 
the composition X 0 —y colim/g<A Xp  as a transfinite composition of maps of V.

D efinition 4.3.2. Let 7  be a cardinal. An ordinal a  is 7 -filtered if it is a limit 
ordinal and, if A  C a  and |A| ^  7 , then sup A < a.

D efinition 4.3.3. Suppose C is a category with all small colimits, V  is a collection 
of morphisms of C, A  is an object of C and x  is a cardinal. We say tha t A  is 
x-sm all relative to V  if, for all x-filtered ordinals A and all A-sequences

X q —y X \  —v • •' —y Xp  —y • • •

such that each map Xp  —> X p+ 1 is in V  for (3 +  1 < A, the map of sets

colimp<\C(A, Xp) -y  C(A, colimp<x Xp)

is an isomorphism. We say that A  is small relative to V  if it is x-small relative 
to V  for some x. We say tha t A  is small if it is small relative to C itself.

D efinition 4.3.4. Suppose C is a category with all small colimits, V  is a collection 
of morphisms of C, and A  is an object of C. We say tha t A  is finite relative to V  
if A  is x-small relative to V  for finite cardinals x . We say A  is finite if it is finite 
relative to C itself. In this case, maps from A  commute with colimits of arbitrary 
A-sequences, as long as A is a limit ordinal.
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D efin ition  4.3.5. Let I  be a class of maps in a category C.

1 . A map is I-injective if it has the right lifting property with respect to every 
map in I. The class of I - injective maps is denoted I - inj.

2 . A map is I-projective if it has the left lifting property with respect to every 
map in I. The class of I-projective maps is denoted I-proj.

3. A map is an I-cofibration if it has the left lifting property with respect to 
every /-injective map. The class of /-cofibrations is the class (Z-inj)-proj 
and is denoted I-cof.

4. A map is an I-fibration if it has the right lifting property with respect to 
every /-projective map. The class of /-fibrations is the class (Z-proj)-inj 
and is denoted /-fib.

D efinition 4.3.6. Let I  be a set of maps in a category C containing all small 
colimits. A relative I-cell complex is a transfinite composition of pushouts of
elements of / .  That is, if /  : A —> B  is a relative /-cell complex, then there is
an ordinal A and A-sequence X  : A —> C such that /  is the composition of X  and 
such that, for each (3 such tha t (3 +  1 < A, there is a pushout square as follows,

C p  * X P

D p  ► Xp+i

such that gp E I. We denote the collection of relative /-cell complexes by /-cell. 
We say tha t A  E C is an I-cell complex if the map 0 —>■ A  is a relative /-cell 
complex.

D efinition 4.3.7. Suppose C is a model category. We say tha t C is cofibrantly 
generated if there are sets I  and J  of maps such that:

1. the domains of the maps of I  are small relative to /-cell;

2. the domains of the maps of J  are small relative to J-cell;

3. the class of fibrations is J-inj; and
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4. the class of trivial fibrations is /-inj.

We refer to I  as the set of generating cofibrations, and to J  as the set of generating 
trivial cofibrations. A cofibrantly generated model category C is called finitely 
generated if we can choose the sets I  and J  so tha t the domains and codomains 
of I  and J  are finite relative to I-cell.

T heorem  4.3.8. Suppose C is a category with all small colimits and limits. Sup
pose W  is a subcategory ofC, and I  and J  are sets of maps of C. Then there is a 
cofibrantly generated model structure on C with I  as the set of generating cofibra
tions, J  as the set of generating acyclic cofibrations, and W  as the subcategory of 
weak equivalences i f  and only if the following conditions are satisfied.

1. The subcategory o fW  has the two out of three property and is closed under 
retracts.

2. The domains of I  are small relative to I-cell.

3. The domains of J  are small relative to J-cell.

4 . J-cell C W fl /-cof.

5. I-in j C W  fl J-in j .

6. Either W  f l  I -cof C  J-cof or W  f 1 J-in j C  I-in j .

D efinition 4.3.9. A ring R  is a Frobenius ring if the projective and injective left 
or right R-modules coincide.

Exam ple 4.3.10. Every group ring of a finite group over a field is a Frobenius 
ring.

D efinition 4.3.11. Suppose R  is a ring. Given maps f ,g  : M  —>• N  of R- 
modules, define /  to be stably equivalent to g, written /  ~  g, if /  — g factors 
through a projective module.

D efinition 4.3.12. Let R  be a ring. The stable category of R-modules is the cat
egory whose objects are left .R-modules and whose morphisms are stable equiva
lence classes of R-module maps. A map /  of R-modules is a stable equivalence if 
it is an isomorphism in this category.
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D efin ition  4.3.13. Suppose R  is a Frobenius ring. Let I  denote the set of 
inclusions a —> R, where a is a left ideal in R. Let J  denote the set consisting 
of the inclusion 0 —» R. Define a map of .R-modules to be a fibration if it has 
the right lifting property with respect ot J , and define /  to be a cofibration if 
/  G /-cof.

T heorem  4.3.14. Suppose R  is a Frobenius ring. Then there is a cofibrantly 
generated model structure on Mod R where the cofibrations are injections, the fi
brations are the surjections, and the weak equivalences are the stable equivalences. 
The model structure is finitely generated.

D efin ition  4.3.15. Let R be a ring. The projective model category structure on 
chain complexes is defined as follows. Given an R-module M, define S n(M)  G 

C h(M odR ) by S n(M)n = M  and S n{M)k =  0 if k ^  n. Similarly, define Dn(M)  
by Dn(M)k = M  li k = n or k = n — 1 , and 0 otherwise. The differential dn in 
D n(M)  is the identity. We often denote S n(R) by simply S n, and D n(R ) by D n. 
There is an evident injection S n~1(M)  —>• D n(M).  Now define the set I  to consist 
of the maps S'71-1 —> Dn, and define the set J  to consist of the maps 0 —> D n. 
Define a map to be fibration if it is in J-inj, and define a map to be a cofibration 
if it is in I -co f. Define a map /  to be a weak equivalence if the induced map Hnf  
on homology is an isomorphism for all n.

Lem m a 4.3.16. Suppose R  is a ring. I f  A  is a cofibrant chain complex, then 
A n is a projective R-module for all n. Conversely, any bounded below complex of 
projective R-modules is cofibrant.

P roposition  4.3.17. Suppose R  is a ring. Then a map i : A  —»■ B  in Ch(Mod R) 
is a cofibration if and only if i is a dimensionwise split inclusion with cofibrant 
cokemel.

Theorem  4.3.18. The projective model structure on Ch(ModR) is a finitely 
generated model category with I  as its generating set of cofibrations, J  as its 
generating set of trivial cofibrations, and quasi-isomorphisms as its weak equiva
lences. The fibrations are surjections.
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4.4 M onoidal m odel categories

D efin ition  4.4.1. Given model categories C ,V  and £, an adjunction of two 
variables (0 , Homr Horn*, p r, ipf) : C x V  —> E is called a Quillen adjunction of 
two variables, if, given a cofibration f  : U —> V  in C and a cofibration g : W  —>• X  
in X>, the induced map

( U ® X ) ^ V ® X

is a cofibration in £  that is trivial if either /  or g is. We refer to the left adjoint 
F  of a Quillen adjunction of two variables as a Quillen bifunctor, and often abuse 
notation by using the term ” Quillen bifunctor 0 ” when we really mean ” Quillen 
adjunction of two variables (0 , Homr , Horn;, c'pr,<Pi)"

The map f Hg  occurring in Definition 4.4.1 is sometimes called the pushout 
product of /  and g.

P roposition  4.4.2. Suppose 0  : C 0  V  —> E is an adjunction of two variables 
between model categories. Suppose as well that C and V  are cofibrantly generated, 
with generating cofibratons I  and I ' respectively, and generating trivial cofibra
tions J  and J ' respectively. Then 0  is Quillen bifunctor if and only if  / □ / '  
consists of cofibrations and both /□  J' and «/□/' consists of trivial cofibrations.

D efin ition  4.4.3. A monoidal model category is a closed category C with a model 
structure making C into a model category, such that the following conditions hold.

1 . The monoidal structure 0 : C x C - > C  is a Quillen bifunctor.

2 . Let Q S S  be the cofibrant replacement for the unit S , obtained by using
the functorial factorizations to factor 0  —> S  into a cofibration followed by

g 0 1
a trivial fibration. Then the natural map Q S  0  X  > S  0  X  is a weak

1 0  gequivalence for all cofibrant X.  Similarly, the natural map X  0  Q S  >
X  0  S  is a weak equivalence for all cofibrant X.

Note tha t this second condition is automatic if S  is cofibrant.

Lem m a 4.4.4. Suppose 0  : C x D  -» S is an adjunction of two variables, I  is a 
set of maps in C, I ' is a set of maps in V , and K  is a set of maps in E. Suppose 
as well that / □ / '  C K . Then (/-cof)□ (/'-cof) C K-coi.
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E xam ple 4.4.5. Let R  be a commutative ring. Then C h(M odR), the category 
of unbounded chain complexes of .R-modules, given the projective model structure 
of Definition 4.3.15, is a symmetric monoidal model category.

First we recall tha t Ch(M odR) is indeed a closed symmetric monoidal cate
gory. Given chain complexes X  and Y , we define

(X 0  Y ) n = ©
k

where d(x <8>y) = dx <g>y +  (—l ) ^ x  0  dy. The unit is the complex S° consisting 
of R in the degree 0. The commutativity isomorphism is defined by T(x  ®y)  = 

for the homogeneous elements x  and y. To see tha t Ch(M odR) is 
in fact a closed symmetric monoidal category, we define

Hom(X, Y ) n =  J ]  Homfl(A*, Yn+k), (4.2)
k

with (df)(x) = df(x)  +  ( -1  )n+1f{dx)  for f  e  HornR(X k,Yn+k).
As the unit S° is cofibrant, it suffices to verify tha t the tensor product 

is a Quillen bifunctor. Recall that the generating cofibrations are the maps 
Rn_1 —»• D n, and the generating trivial cofibrations are the maps 0 —» Dn. The 
pushout product of two generating cofibrations is an injection with bounded be
low dimensionwise projective cokernel. Hence by Lemma 4.3.16, the cokernel is 
cofibrant. Proposition 4.3.17 then implies that the pushout product of two gener
ating cofibrations is a cofibration. Lemma 4.4.4 implies tha t the pushout product 
of any two cofibrations is cofibration. The pushout product of S'71-1 —» D n and 
0 -* D m is the map D m+n+l —> D m <g>Dn, which is a weak equivalence as required.

E xam ple 4.4.6. Another class of examples arises from modular representation 
theory. We let k be a field and G a finite group; the interesting cases will be 
those where the characteristic of k does divide the order of G. The group algebra 
kG  is a Frobenius ring, tha t is, the classes of its projective and injective modules 
coincide. The stable module category Stmod kG  has as objects all (left, say) kG- 
modules, and the group of morphisms in Stmod kG  is defined to be the quotient of 
the group of module homomorphisms by the subgroup of those homomorphisms 
which factor through a projective (equivalently, an injective) module; see for 
example [5, 7]. The stable module category is in fact the homotopy category
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associated to a model category structure on the category of all A;G-modules; see 
Theorem 4.3.14. The cofibrations are the monomorphisms, the fibrations are the 
epimorphisms, and the weak equivalences are maps which become isomorphisms 
in the stable module category. This model category is quite special because every 
object is both fibrant and cofibrant. The above model category structure exists 
over any Frobenius ring, but for the group algebra kG  there is a compatible 
monoidal structure. For two kG -modules M  and N , the tensor product over the 
ground field M  <g>kN becomes a A;G-module when endowed with the diagonal tr
action. Similarly, the group Hom*;(M, N )  of ft-linear maps supports a G-action 
by conjugation. This data makes the category of A;G-modules into a symmetric 
monoidal closed category with unit object the trivial module k.

Hovey [27] generalizes this model structure to A;G-modules, where A; is a prin
ciple ideal domain and G is finite. The model category is cofibrantly generated 
and is called the projective model structure of kG-modules.

Proposition  4.4.7. Suppose C ,V  and E are model categories, and

(<8 ), Homr , Horn*, iprjtfi) '■ C x V  —>• E

is a Quillen adjunction of two variables. Then the total derived functor defines 
an adjunction of two variables

(<g)L, R H o m r, RHomi, R(pr, R<pi) : HoC x HoD —► HoC

Proof. See [26, Proposition 4.3.1]. □

Theorem  4.4.8. Suppose C is a (symmetric) monoidal model category. Then 
HoC can be given the structure of a closed (symmetric) monoidal category. The 
adjunction of two variables (®L, RE.omr, RHomi)  that is part of the closed struc
ture of HoC is the total derived adjunction of (0 , Homr , Homj). The associativity 
and unit isomorphisms (and the commutativity isomorphism in case C is sym
metric on HoC) are derived from the corresponding isomorphisms ofC.

Proof. See [26, Theorem 4.3.2]. □
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4.5 The m onoid axiom

D efin ition  4.5.1. A monoidal model category C satisfies the monoid axiom if 
every map in

({trivial cofibrations} <g> C)- cof

is a weak equivalence.

Lem m a 4.5.2. Let C be a cofibrantly generated model category endowed with a 
closed symmetric monoidal structure.

1. I f  the pushout product axiom holds for a set of generating cofibrations and 
a set of generating trivial cofibrations, then it holds in general.

2. Let J  be a set of generating trivial cofibration. I f  every map in (J  ®C)-cof 
is a weak equivalence, then the monoid axiom holds.

Proof. See [49]. □

Theorem  4.5.3 (Hovey [27]). Suppose R  = k[G], where k is a principal ideal do
main and G is a finite group. Then the projective model structure on R-modules 
satisfies the monoid axiom, and so there is an induced model structure on the cat
egory of monoids and the category of modules over a given monoid. Furthermore, 
a weak equivalence of monoids induces a Quillen equivalence of the corresponding 
module categories.

4.6 W eakly finitely generated m odel categories

D efinition 4.6.1. An object a E Ob(C) is finitely presentable if the Hom-functor 
Setc(a, —) commutes with all filtered colimits. If C is a V-category, a E Ob(C) is 
V-finitely presentable if the functor Vc(a, —) commutes with all filtered colimits.

D efinition 4.6.2. A cofibrantly generated model category V is weakly finitely 
generated if I  and J  can be chosen such th a t the following conditions hold:

1. the domains and codomains of the maps in I  are finitely presentable;

2. domains of the maps J  are small;
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3. there exists a subset J' of J  of maps with finitely presentable domains and 
codomains, such that map /  : A —> B  in V with fibrant codomain B  is a 
fibration if and only if it is contained in J'-inj.

Our pointwise notions of weak equivalence, fibrations and cofibrations are as 
follows.

D efin ition  4.6.3. A morphism /  E [C, V] is a

• pointwise weak equivalence if /(c ) is a weak equivalence in V for all c E C;

• pointwise fibration if /(c) is fibration in V;

• cofibration if /  has the left lifting property with respect to all pointwise 
trivial fibrations.

T heorem  4.6.4. Let V be a weakly finitely generated monoidal model category, 
and let C be a small V-category. Suppose the monoid axiom holds in V. Then 
[C,V], with the classes of maps in 4-6-3, is a weakly finitely generated model 
category.

Proof. See [10, Theorem 4.2]. □

Theorem  4.6.5. Consider V and C as in 4-6-4- Then the pointwise model struc
ture gives [C, V] the structure of aV-model category. Likewise, [C, V] is a monoidal 
V-category provided C is a symmetric monoidal V-category and the monoid axiom 
in the sense of Schwede-Shipley [49] holds.

Proof. See [10, Theorem 4.4]. □



C hapter 5

G rothendieck categories of 
enriched functors and 
localizations

In this chapter we prove that the category of enriched functors [C, V] is a Grothen
dieck category whenever V is a closed symmetric monoidal Grothendieck category, 
giving us new Grothendieck categories in practice. An advantage of this result 
is tha t we can recover some well-known theorems for Grothendieck categories in 
the case V =  Ab. Another advantage is tha t V can also contain some rich homo- 
logical or homotopical information, which is extended to the category of enriched 
functors [C, V]. This homotopical information will be of great utility in the next 
chapters to study monoidal structures for the derived category of generalized 
modules. Also, this result implies tha t localization theory of Grothendieck cate
gories becomes available for [C, V]. Moreover, [C, V] is closed symmetric monoidal 
whenever C is a symmetric monoidal V-category.

5.1 G rothendieck categories o f enriched func
tors

Before proving the main result we want to collect some important examples of 
closed symmetric monoidal Grothendieck categories.

Exam ple 5.1.1. 1. Given any commutative ring i?, the triple (Mod i?, <S>r, R)

66
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is a closed symmetric monoidal Grothendieck category.

2. More generally, let X  be a quasi-compact quasi-separated scheme. Con
sider the category Qcoh(Ox) of quasi-coherent (9x-modules. By [30, 3.1] 
Qcoh(Ox) is a locally finitely presented Grothendieck category, where quasi- 
coherent Ox-modules of finite type form a family of finitely presented gen
erators. The tensor product on Ox-modules preserves quasi-coherence, and 
induces a closed symmetric monoidal structure on Qcoh(Ox)-

3. Let R  be any commutative ring. Let C' =  {C'n,d'n} and C" =  {C",<9"} 
be two chain complexes of .R-modules. Their tensor product C' 0 # C" — 
{{C' <S>r C")n, dn} is the chain complex defined by

(c'®Rc")n= 0(c;®*c$')-
i+ j  =n

and

=  a'(t')® s" + ( - i ) % » q ( s'j), for aii <; e  q, s"} e  q, (i+ j =  «),

where C\ <S>rC'■ denotes the tensor product of R-modules C[ and C”. Then 
the triple (Ch(M od R), (g)/?, R) is a closed symmetric monoidal Grothendieck 
category (see Proposition 2.6.24 ). Here R is regarded as a complex con
centrated in zeroth degree.

4. (Mod kG, ®fc, k) is a closed symmetric monoidal Grothendieck category, 
where k is a field and G is a finite group.

The main result of this Chapter is as follows.

T heorem  5.1.2. Let V be a closed symmetric monoidal Grothendieck category 
with a set of generators {gi}i- I f  C is a small V-category, then the category of 
enriched functors [C, V] is a Grothendieck V-category with the set of generators 
{V(c, —) 0  gi | c G O bC ,i £ I} . Moreover, i f  C is a small symmetric monoidal 
V-category, then [C, V] is closed symmetric monoidal with monoidal product and 
internal Horn-object computed by formulas of Day (3.14) and (3.15).
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Proof. If C is a small V-category, then [C, V] is a V-category by section 3.3. 
The internal Hom-object is given by (3.13). Let show tha t [C, V] is a preadditive 
category. Given V-functors X , Y  G [C, V], we have that

Horn[CM( X , Y )  = Homy(e, [  V (X (c),y(c))
J c e O b C

is an abelian group, because V is preadditive. We can also describe explicitly the 
abelian group structure as follows. The morphisms of [C, V] are, by definition, the 
V-functors from C to V. Using Corollary 3.3.7, for any V-natural transformations

a , a ' : X  -> Y

its sum a + a'  is determined by the arrows

a c + a'c :e ->V(X(c ) , Y{c ) ) .

Recall tha t Homy(X(c), Y(c)) = Homv(e, V(X(c), V(c))) and a c + a'c is addition 
of a c and olc in the abelian group Homy(X(c), Y(c)).

To show that the addition is bilinear, let

P 6  Homy(e, [ V(Y(c),  Z(c)) = f  Homv(e, V(Y(c),  Z{c)) 

Horn v (Y(c),Z(c)).

Using Corollary 3.3.7, we set

(f3a)c : =  (3c o a c.

Using the fact tha t V is preadditive, we have

(fl(a +  o/))c = (3c{ac +  a 'c)
=  (3C O olc +  p c O a 'c

= (fia  +  p a ’)c.

Similarly, (a +  a ' ) 7  =  0 :7  +  a '7 . We see tha t [C, V] is preadditive.
Since V is a bicomplete closed symmetric monoidal category and C is a small V- 

category, then by Lemma 3.3.2 the category [C, V] is bicomplete. Moreover, limits
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and colimits are formed objectwise. In particular, [C, V] has finite products. It 
follows from [39, VIII.2.2] tha t [C, V] is an additive category. Furthermore, [C, V] 
has kernels and cokernels which are defined objectwise.

Given a morphism a  in [C, V], the canonical map

a  : Coker(ker a) —» Ker(coker a)

is an isomorphism objectwise. Corollary 3.3.8 implies a  is an isomorphism. It 
follows that [C, V] is an abelian category.

Next, direct limits exist in [C, V] and are defined objectwise. They are exact
in [C, V], because so are direct limits in V (by assumption, V is a Grothendieck
category). So, [C, V] is an Ab5-category.

It remains to find generators for [C, V]. By [10, 2.4] [C, V] is a closed V-module, 
and hence there is an action

0  : [C, V] <8> V -> [C, V].

Now for any non zero functor X  E [C, V] we have natural isomorphisms

Hom[c>V](V(c, - )  0 g u X) )  ^  Homv (&, V[C)v](V(c, - ) ,  X) )
=  Horn v (gi,X(c)).

Let a  : X  —»■ Y  be a non-zero map in [C, V]. We want to show that there are 
i  G / ,  a map P : V(c, —) 0  ^  —> X  such that a/3 ^  0.

Since a  is non-zero, then a c : X(c)  —> Y(c)  is a non-zero map in V for some 
c E ObC. By assumption {gi}i are generators of V, and so there is a map
P : gi X(c)  such that a c(3 ^  0. By the above isomorphism we can find a
unique map p  : V(c, —) 0  gi —> X  corresponding to p. Now a c/3 ^  0 implies 
aP 7  ̂ 0 as required.

If C is a small symmetric monoidal V-category, then [C, V] is closed symmetric 
monoidal by Day’s theorem 3.3.4. Monoidal product and internal Hom-object 
are computed by formulas of Day (3.14) and (3.15). □

Below we give a couple of examples illustrating the preceding theorem.

Exam ple 5.1.3. Let R  be a commutative ring with unit. Consider the closed 
symmetric monoidal category V =  (Mod i?, 0 #, R). Consider a V-category C
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defined as follows. Its objects are integers ObC =  Z. Given two integers ra, n  G 

Ob C, we define a Hom-object as

product category H z M od//. By definition, Ob(J}z M od//) are tuples (Mi)i(Ez 
and morphisms are tuples of //-homomorphisms (/* : Mi —> Ni)iez-

Let Gr R  be the category of Z-graded //-modules and graded homomorphisms. 
It is easy to see that the functor

is an isomorphism of categories. It is well known that Gr R  is a closed symmetric 
monoidal Grothendieck category with tensor product

We want to show that this tensor product is recovered from Day’s theorem for 
[C,V]. Indeed, we define a symmetric monoidal product on C as follows. For 
every ra, n  G Ob C

m M n  := m  + n.

Given a G Vc(ra, ra) =  R  and b G Vc(n, n) = R , we set

Clearly, m  IEI n = n  IZI m. Since R  is commutative, it follows th a t E3 defines a 
strictly symmetric monoidal tensor product on C.

Now for every M ,N  G [C, V] =  Gr //, Day’s theorem implies

Clearly, C is a V-category and the category [C, V] of V-functors from C to V is the

z

(Af ®R N )k := 0  Mi ®R Nj for all M ,N  G Gr R. (5.1)
i+j=k

aM b = a • b ^ V c ijn  + n ,m  + ri) = R.
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Thus
(M  © N ) k = ©  Aim Nn

m + n = k

and

m

mGObC=ZmGObC=Z

Horni?(Mm,7Vm+n) =  Homerr (M, N (n))

So tensor product (5.1) as well as internal Hom-functor for graded modules are 
recovered from Day’s theorem.

By Theorem 5.1.2 [C, V] is Grothendieck with {R(n)}nez generators, where

It follows tha t Gr R  is Grothendieck. Moreover, [C, V] =  Gr R  is closed symmetric 
monoidal.

E x am p le  5.1.4. Let R  be a commutative ring. Recall tha t an R-linear DG- 
category C is just a category enriched over V =  C h(M odR ). Right DG-modules 
over the DG-category C are just contravariant V-functors from C to V. In turn, 
DG-morphisms of DG-modules are nothing but V-natural transformations. The 
category of right DG-modules and DG-morphisms is denoted by ModC. Using 
our notation, one has, by definition, ModC =  [Cop, V].

Theorem 5.1.2 and Proposition 2.6.24 imply ModC is a Grothendieck category 
with the family of generators

Here D nR  stands for the complex which is R  in degrees n  and n — 1 and zero 
elsewhere, with interesting differential being the identity.

E x am p le  5.1.5. Any preadditive category B  is nothing but a category enriched 
over abelian groups V =  Ab. V-functors from B  to V are the same as additive 
functors. Theorem 5.1.2 says th a t the category of additive functors (B, Ab) is 
Grothendieck with representable functors {hB =  Vb (B,  - ) 0 Z}b6b being a family 
of generators. Thus the fact tha t (B, Ab) is Grothendieck (see Example 2.3.5) 
follows from Theorem 5.1.2.

D n(Vc ( - ,  c)) := Vc (—, c) 0  D nR, c G ObC, n  G Z.
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5.2 Localizations

We say tha t a full subcategory S  of an abelian category C is a Serre subcategory 
if for any short exact sequence

0 ^  X  ^  Z  ^  0

in C an object Y  G S  if and only if X , Z  G S. A Serre subcategory S  of a 
Grothendieck category C is localizing if it is closed under taking direct limits. 
Equivalently, the inclusion functor i : <5 —> C admits the right adjoint t = ts  : 
C —»• S  which takes every object X  G C to the maximal subobject t (X)  of X  
belonging to S.  The functor t we call the torsion functor. An object C  of C is 
said to be S-torsionfree if t(C) = 0 . Given a localizing subcategory S  of C the 
quotient category C /S  consists of C  G C such that t(C)  =  t Y(C) = 0. The objects 
from C / S  we call S-closed objects. Given C  G C there exists a canonical exact 
sequence

0  -> A' -> C Cs  -> A" -> 0

with A' = t{C ), A" G <S, and where Cs £ C /S  is the maximal essential extension 
of C = C/ t (C)  such th a t C s/C  G S. The object Cs is uniquely defined up to a 
canonical isomorphism and is called the S-envelope of C. Moreover, the inclusion 
functor i : C /S  —» C has the left adjoint localizing functor ( - ) s  • C —> C / S , which 
is also exact. It takes each C  G C to Cs  G C/S.  Then,

Home (A", Y)  — Homc/<s(Ws,y)

for all X  G C and Y  G C/S.
If C and V  are Grothendieck categories, q : C —» V  is an exact functor, and 

a functor s : V  —» C is fully faithful and right adjoint to q, then S  := Ker q
H

is a localizing subcategory and there exists an equivalence C/ S  = V  such that 
H  o (—)s =  q. We shall refer to the pair (g, s) as the localization pair.

E x am p le  5.2.1. Let A  be a small preadditive category. Consider the category 
(A , Ab) of additive functors from A  to Ab. Let p G Ob A , then we have

Hom(AAb)((p, - ) ,  (p, - ) )  =  End^p.
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Let
Sp = { F e  (A,Ab) \F(p)  =  0}.

Then S p is a localizing subcategory of (^4, Ab). By [14] and [18] there is an 
equivalence of categories

(A, Ab) /Sp “  M od(End^p)op.

This result has some important applications in ring and module theory (see [16, 
17]).

More generally, given a collection of objects V  in A , we can consider the 
localizing subcategory

Sj> = { F  e  (A , Ab) | F{p) =  0 for all p E V }

of (A,  Ab) and then
M ,A b ) /5 p ^ (P ,A b ) ,

where V  on the right hand side is regarded as a full subcategory in A  (see [14] 
for details).

Our next goal is to obtain an enriched analog of this result.
Suppose V is a closed symmetric monoidal Grothendieck category. Let C be 

a V-category. By Theorem 5.1.2 [C, V] is a Grothendieck category. Suppose V  is 
a collection of objects in C. We shall also regard V  as a natural V-subcategory. 
Then

Sv  =  {F  G [C, V] | F(p) = 0 for all p e V j

is localizing in [C, V].
We shall prove below that there is a natural equivalence of Grothendieck 

categories

\ c , v y s v  = \p y ] .

Thus the same result of [14, 18] for the category of additive functors (A,  Ab) with 
A  preaddtive (see Example 5.2.1 above) is recovered from the case when V =  Ab. 
But first we prove the following
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P ro p o s itio n  5.2.2. Suppose V is a closed symmetric monoidal Grothendieck 
category. Let C be a V-category and let V  consist of a collection of objects of C. 
Then the inclusion map i : V  C is a V-functor. It induces two adjoint functors

U : [P, V] ^  [C, V] : z*

where i* is the enriched left Kan extension and i* is just restriction to V .

Proof. Although this fact is a consequence of [4, 6.7.7], we give a proof here 
for the convenience of the reader.

If F  G [P , V] then by Corollary 3.3.3 we have

/ ObV
V ( p , - ) 0 F ( p ) .

By definition of the left Kan extension, we have

/Ob v
V ( i( p ) ,- ) 0 F(p).

We want to show that

H.om[c,v](i*F,G) = Horn p>tV](F,i*G).

Using (3.13), one has isomorphisms of V-objects

V ^ F , i*G) = V A F , G o i ) =  [  V(F(p), G(i(p))). (5.2)
J O b V

On the other hand,

/ O bV

V(*(p), -)  0  F(p),G)  

= [  v7(F(p),v[c,vl(v((i(p),-),(;)))
J O bV

=  [  V(F(p),G(i(p))).  (5.3)
JobP

We have used here the fact tha t the functor Vjr(—, G) takes V-coends to V-ends [4,
6.6.11] as well as the fact tha t [C, V] is a closed V-module. Now (5.2) and (5.3)
imply i* and i* are adjoint functors. □
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T h e o re m  5.2.3. Let S-p = {G G [C, V] | (2(p) =  0 for all p G P}. Then <Sp zs 
a localizing subcategory of [C, V] and [P , V] zs equivalent to the quotient category 
[C,V]/5p.

Proof. Obviously, <Sp is localizing. Let

x :[P ,V ]-> [C ,V ]/< S p

be the composition of the left Kan extension functor z* : [P, V] —> [C, V] and the 
localization functor (—)Sv : [C, V] —>■ [C, V]/<Sp. We want to prove tha t x  is an 
equivalence of categories.

First observe that
z*z*F ^  F

for all F  G [P, V]. Second, given G G [C, V] the adjunction map (3 : i*i*G —̂ G  is 
such tha t Ker (3, Coker (3 G <Sp. Indeed, applying the exact functor i* to the exact 
sequence

Ker (3>— ► z*z*G —̂  G — »► Coker /3, 

we get an exact sequence in [P, V]

i* (Ker £)>— ► i* i»i*G j*G — -  i*(Coker 0).

Since the composite map

i*G -> i 'G

is the identity map and the left arrow is an isomorphism, then so is the right 
arrow. Thus

z*(Ker/3) =  z*(Coker/3) =  0, 

and hence Ker /?, Coker fi  G Sj>. It also follows that

{i*i*G)sp — Gsv - (5-4)
We have for all F, F ' G [P, V]

Horn [c,v\/sv {x{F) ,x{F' ) )  = Horn [cy}/sv {(i*{F)sv ,U(F ')sv )
=  Hom[C)v](^F, (uF')sp)

^  Horn[v,v](FA*{(i*F')sr ))
= Horn ['Ptv](F,i*i*F')
= Hompy] (F, F').
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We use here an isomorphism i*G = i*(Gsv ) for any G G [C, V]. The isomorphism 
is obtained by applying the exact functor i* to the exact sequence

s>— S , S ' e S P,

where Aq is the <S-p-envelope of G.
We see tha t x  is fully faithful. Now let G G [C, V\/&p be any Sp-closed object, 

then isomorphism (5.4) implies

x(z*G) =  (iJ*G )Sv = GSv = G.

If we set F  := z*G, then x (F )  =  G. This shows that x  is an equivalence of 
categories. □

C o ro lla ry  5.2.4 (Garkusha [14]). Let C be a Grothendieck category with finitely 
generated projective generators B = {Pi}i€i . Let V  = {Pj}j£j be a subfamily in 
B, where J  C I. Then

S-p =  { iG  C| Hornc {pj,x) = 0 for all pj G V}

is localizing andC/S-p is a Grothendieck category with {(P j ) s v } a family of finitely 
generated projective generators.

Proof. By Mitchell’s Theorem C is equivalent to the category (Bop,Ab) by 
means of the functor T  sending x  G C to (—,x).  Now the latter category is the 
same as the category of enriched V-functors from Bop to V where V =  Ab. We 
use as well the fact tha t a category is preadditive if and only if it is enriched in 
Ab.

It follows that T  induces an equivalence of categories C/Sp  and (Bop, Ab)/<Sp, 
where

§ v  = { F e  {Bop,Ab)\F(Pj) = 0 for all Pj G V}.

Theorem 5.2.3 implies the latter quotient category is equivalent to (P op, Ab). The 
proof of Theorem 5.2.3 shows tha t the functor

(P op,Ab) -+ C /S V

which sends F  G (P op,Ab) to {T~l (i*F))sv is an equivalence of categories. It 
follows tha t { ( P j ) s v } j e J  is a family of finitely generated projective generators of 
C/Sv . □
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E x am p le  5.2.5. Let C and V be as in Example 5.1.3 and let n  G ObC =  Z. We 
set

S n = {F £ [C, V] =  Gr R  \ F{n)  =  0}.

Then Theorem 5.2.3 implies

[C,V]/Sn ^  Gr R /S n ^  [P,Mod R],

where V  has one object n  G Z and Vp(n,n) =  R. But fP,M odi?] =  Mod R,  
hence G rR /S n = Modi?.

Below we shall work with ring objects and modules over them.

D efin ition  5.2.6. Let (C, <g>, e) be a monoidal category. A monoid (ring object) 
R  in C is an object R  G C together with two arrows fi : R  <S)R —> R,rj  : e —» R  
such tha t the diagrams

R ® ( R ® R )  

R ® R —

(R<S>R)®R

e ® n ^ ' R ® n ^ L 'Tl® e

R<S)R 

R

are commutative.

D efin ition  5.2.7. We fix a ring object R  in a monoidal category C. A  lejt R -  
module M  over R  is an object equipped with an arrow v : R ®  M  —»• M  called 
the action, which is compatible with the ring object composition. More precisely, 
we require that the following diagrams commute

R ® { R ® M )
l(g>U

R ®  M  — M

H ® e ^ ± K ® M
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Lem m a 5.2.8. Let IZ be a ring object of a closed symmetric monoidal Grothen
dieck category V. Then the category of left IZ-modules IZ Mod can naturally be 
identified with the Grothendieck category [C, V], where ObC =  {*} and Vc(*, *) =  
IZ.

Proof. Given a left 7£-module M, define a V-functor F  : C —> V as follows. 
We set F(*) =  M  and the structure map

F :  V (* ,*)->  V (F(*),F(*))

to be the map adjoint to the structure map IZ 0 M  —> M . This rule clearly yields 
the desired identification. □

Exam ple 5.2.9. To illustrate the previous lemma, let R  be a commutative uni- 
tal ring and let A  =  A 0 © A \ © • • • be a graded i?-algebra. Then A  is a ring 
object in [C, V] =  Gr R  with respect to tensor product (5.1). We can regard A  
as a one object V-category, where V =  G rR. In our notation A = Vcr i?(*,*)- 
Lemma 5.2.8 implies [C,V\ = TlMod is a Grothendieck category. Moreover, 
{A(n) = A 0  R (n )}nez are generators by Theorem 5.1.2 (see as well Exam
ple 5.1.3).

Corollary 5.2.10. Let C be a small V-category, and let c be any object of C. 
Then there is a natural equivalence of Grothendieck categories

R M od = [C,V]/<Sc,

where S c = {G G [C, V] | G(c) =  0} and R  = V(c, c).

Proof. This follows from Theorem 5.2.3 and Lemma 5.2.8. □
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Chain com plexes o f generalized  
m odules

Recall tha t the category of generalized modules Cr  is defined as

C r  := (mod R , Ab),

whose objects are the additive functors F  : m odi? —» Ab from the category of 
right finitely presented R -modules mod R  to the category of abelian groups Ab. 
Its morphisms are the natural transformations of functors. Similarly, the category 
r C  consists of the additive functors from the category of left finitely presented 
i?-modules to Ab.

In this chapter we prove that the category of chain complexes of generalized 
modules C h  Cr  over a commutative ring R  can be identified with the category of 
enriched functors [mod i?, Ch(M od i?)], where the category of finitely presented 
modules mod R  is regarded as a full subcategory of complexes Ch(M od R) con
centrated in zeroth degree and this single entry is finitely presented. As an appli
cation of this, we show that C hC ^ is a closed symmetric monoidal category. We 
shall also establish tha t C h  Cr  is a closed symmetric monoidal model category 
with nice finiteness conditions.

6.1 Generalized m odules as enriched functors

Below we shall need the following
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T heorem  6.1.1 ([8 ]). Suppose R  is a commutative ring. Then the category of 
generalized R-modules Cr  can naturally be identified with the category of enriched 
functors [mod i?, Mod R].

Proof. We briefly recall the proof from [8 ] for the convenience of the reader.
I. We first associate to any object in [modi?,Modi?] an object in Cr .

Let F  G Ob [modi?, Modi?]. By Definition 3.1.5 F  takes Ob(modi?) to 
Ob (Modi?) and for all M, M ' G m odi? there is a R- module homomorphism

Fmm> : Hom*(M, M ') -> Hom *(F(M ), F{M')).  (6 .1)

Let /  : M  —>■ M f be a homomorphism in modi?, then we set F ( f )  to be the 
image of /  in Hornr (M,M' )  under (6.1). Observe that an i?-module structure 
on F( M)  is given by

x - r  = L m m H W

for all x  G F( M)  and r  G R. Here F m m (t) stands for the image of the right 
multiplication endomorphism r : M  —► M.

II. Next, we want to show that the morphisms of [mod i?, Mod R] can naturally 
be regarded as morphisms of Cr .

We have to verify tha t V-natural transformations in [mod i?, Mod R] are mor
phisms in Cr . Given F,G  G [mod i?, Mod i?], the first step shows tha t F, G G Cr . 

So given a V-natural transformation t  in [mod i?, Mod i?], we want to prove tha t t  

yields a morphism in Cr  in a natural way. For t  we have structure homomorphisms 
in M odi? (see Definition 3.1.6)

t M : R  -> Hom*(F(Af), G(M)).

for all M, M'  G mod R.  For any M  G Mod i?, set

TM : = t M( l ) : F ( M ) - > G ( M ) .

Therefore t  yields a natural transformation in Cr

t . F ^ G .

We see tha t morphisms in [mod i?, Mod i?] can naturally be regarded as mor
phisms of Cr . So F{M)  G Mod R.
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III. In this step we shall show that any object F  of Cr  can be regarded as an 
enriched functor in [mod i?, Mod R].

For any M  G mod R  we have tha t F( M)  G Ab. Let us show tha t F( M)  is an 
R-module. For all x  G F(M) ,  we have to define x  • r, where r G R.  The element 
r  defines an i?-module homomorphism r : M  —» M  sending m  G M  to m  • r. We 
have a morphism F(r) : F( M)  —)• F( M)  and we set

x  • r := F(r)(x).

So F ( M)  G Modi?. Now we define an enriched functor associated with F.  We 
therefore define a morphism in Mod R

FMM, : Hom*(M, M')  Ho m R( F ( M ) : F(M')) ,  FMM>{f) := F ( / ) ,

for all M,  M 1 in mod R.
Next we construct diagram (3.9). We have tha t

um ■' R  —> Hornr (M, M )

is given by the right multiplication homomorphism. One has

Fm m {u m {t)) =  F(r)

for all r G R,  a n d  hence th e  d iag ram

R  ^ ^ H o m r (M, M)

F m m

Horn r ( F ( M) , F( M) )

is commutative. The structure of an enriched functor for F , denoted by the same 
letter, is completed.

So every object in Cr  can naturally be regarded as an enriched functor in 
[modi?, Modi?].

IV. In this step we shall show that morphisms in C r  (recall tha t these are 
natural transformations of additive functors) can naturally be regarded as V- 
natural transformations in [mod i?, Mod i?], i.e. as morphisms of [mod i?, Mod i?].

U F ( M )
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Let r  : F  —> G be any natural transformation in Cr . Then for each object 
M  G modi?, there exists a homomorphism tm  '■ F( M)  -» G(M)  in Ab and for 
each homomorphism /  : M  —> M'  in mod R  the diagram

F ( M)  G(M)

F(f) G(f )

is commutative.
By above we can regard F,G  as enriched functors. We want to show that r  

yields a V-natural transformation t between the V-functors F  and G. For any 
M  G mod R  define a map

tM : R ^  Horn r (F{M),  G{M))

as := tm ° F(r) = G(r) o t m - By definition, ?m(1) =  t m - Then the maps
tM yield V-natural transformations between the V-functors F  and G. □

6.2 Chain com plexes of generalized m odules as 
enriched functors

Let Ch(M od R) be the category of chain complexes of modules over a commuta
tive ring R.  It is a closed symmetric monoidal cofibrantly generated and weakly 
finitely generated model category by sections 4.4 and 4.6. Weak equivalences are 
the quasi-isomorphisms and fibrations are the surjective chain maps. The tensor 
product and internal Hom-object are defined as in (4.1) and (4.2). The monoidal 
unit is the chain complex with the ring R  concentrated in zeroth degree and other 
degrees are zero.

The category of finitely presented modules mod R  is a small symmetric mo
noidal category naturally enriched over Modi?. Moreover, m odi? can also be 
enriched over C h  Mod i? if we regard a module M  G mod i? as the chain complex 
with M  concentrated in zeroth degree and other degrees are zero. Given, M, iV G 

mod i? the internal Hom-object is the chain complex

—> 0 —> Hornr (M,  A?) —y 0 —y
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where Hornr (M, N ) is concentrated in zeroth degree. Observe tha t this complex 
equals Hom(M, N ), where M, N  are regarded as complexes defined above.

If there is no likelihood of confusion, we shall also write the internal Hom- 
chain complex as V(A*,Bm), where A .,B .  are two chain complexes. In other 
words,

V ( A . , B m) :=H qm

Theorem  6.2.1. Suppose R  is a commutative ring. Then the category of chain 
complexes of generalized R-modules Ch(Cjj) can naturally be identified with the 
category [mod R, Ch(M od R)].

Proof. Given M  £ mod R  we want to describe chain morphisms as follows

0 „ ,r 0
0 M 0

 ► V(A„ B.)i  -2V  V(A„ B .)o V(A„  B .) - i  ► • • ■

From the diagram we have doa = 0. This means doa(m ) =  0, for all m  £ M . 

a{m)  £ V ( A . , B 9)o = Homfi(d p, Bp)

do

a(m)  = (otp(m) : A p Bp)peZ 
dap(m ) =  0 =  doLp{m) — a ( m ) p_ \d.

We get a commutative diagram

a dp+i A dp A 
-'Up+l -'Up—1

a p+i{m)

 *B.

ap(m)

p+1
yP + 1

B.p dp B.p - i

This shows a(m) : A . —> B . is a chain map.
I. Consider a V-functor F  £ [mod R, Ch(M od R)\. By definition, we have 

F( M)  £ Ch(Mod.R) for any M  in mod R.  We also have a map

FMm ' : V(M, M ') -> V (F(M ),F(A f')) G C h(M odtf).
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This is the same as a chain map

F M m' : (------ > 0 ^  Horn M' )  —> 0 -> • • •) — ► Horn ( F( M) .  F(M' ) ) .

By above we have a chain map

Fm w U)  ■ F( M)  -y F ( M ’)

for all /  G Hom^(M, M '). It is directly verified tha t FmmH&m) — i 
and FMM"{gf)  = FM>M"{g)FMM>U) for any 9 € HornR( M' , M")  (see Defini
tion 3.1.5).

If we observe that Ch C r  is the same as the category (mod i?, Ch(Ab)) of 
additive functors from m odi? to Ch(Ab), it follows tha t the enriched functor F  
gives rise to an object in Ch C r .  We denote this object by the same letter.

II. Now let a  : F  => G  be a V-map in [modi?, Ch(M odi?)]. It consists of 
giving a chain map

a M : (0 -> i? 0 ) — > V (F (M ),G{ M) )  = Horn( F ( M \ G ( M ) ) .

which is equivalent to giving a chain map c h m { t )  : F ( M)  —> G { M)  for all r  G i?, 
such that the following diagram commutes

(0 - y  H o r n R { M ,  M ' )  -> 0)

V ( F ( M ) ,  F ( A / ' ) )  ® V ( F ( M ' ) ,  G ( M ’))

CF(M)G(M)G(M‘ CF ( M ) F ( M ' ) G ( M ' )

T h e  d iag ram  im plies th e  following:
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(a) For all r G R  and /  G Hom#(M, M')  the chain map c(q;mM (g> Gm m 'U))  '• 
F ( M)  —> G(M')  equals the chain map Gm m '{I)  ° « m (r).

(b) For all r G R  and /  G H o iu r(M , M')  the chain map c(Fm m '(/) ® c^mM) : 
F (M ) G(M ') equals a M>(r) o F M M>{ f ) -

So we get a commutative diagram

F (M ) — aM{r) > G(M)

M M if) Gmm'(I)

Thus olm(t ) : F (M ) —>■ G(M)  gives rise to a morphism in (modi?, Ch(Ab)) =  
C h  CR.

We shall associate to the enriched map a  : F  => G in [mod i?, Ch(M od i?)] 
the map F  —> G in C h  Cr  given by the chain maps q m( 1) : F( M)  —► G(M),  
M  G mod i?. We denote the associated chain map by the same letter a.

III. By Theorem 6.1.1 the category Ch[mod R , Mod R] is identified with C h  Cr . 
Let F # G Ch[mod i?, Mod i?], so we have a chain complex

TP   .  Z? ^ n  +  1̂  j p   ̂ TP & n - l ^
r  •  — ’ -C n+1 -fro -C n —1

with each Fn G [mod i?, Mod R] and each dn being a V-natural transformation 
from mod R  to Mod R. We have to associate a V-functor in [mod i?, Ch(M od i?)] 
to Fm.

If M  G mod R  then

F. (M) = ----------   F {M )nN 2^ )F ( M ) n ^  F ( M ) t l ^  • • • € Ch(M od R)

Also, for any map /  : M  —>■ M'  G modi? we have tha t F .( / )  : F. (M)  —> F .(M ') 
is a chain map, because each square of the following diagram is commutative

F„+i(M) Fn(M)

Fmm'U) if) if)
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Thus Fm m 1 i f )  ls a chain map, and hence one gets a chain map

F M m> : (------ > 0  -> Horn*(M, M ') 0 -)• • ■ •) — > Horn( FJM) .  FJM' ) ) .

Since FMM(idM) =  idF̂ M) and FMM"(gf) = FM>Mn{g)FMM, { f ) for all g e  
H o r n F,. yields a V-functor in [mod R,  Ch(M od R)] denoted by the 
same letter.

IV. Next let (3 : F . —>• G. be a chain map in Ch[mod i?, Mod R], then we have 
the following commutative diagram

Note tha t each (3n^M ■ R  Homn(Fn( M ) , Gn(M))  is such that diagram (3.10) 
is commutative for it. So we are given maps (3n>M(r ) : Fn(M)  -* Gn(M)  for all 
r € R.

One has a commutative diagram for all r E R

dn+l

@n+ 1 P n  — l

P n + \ ,M  {T) Pn,M ( r ) /? n,M(r)

G„(M) n̂,M (1) G„-i(M))

In particular, /3m (r) : Fm{M)  -> G'.(M) is a chain map. 
Now we want to show that the diagram

F,{M) M r )  > G. (M) (6 .2)

W ) G .( / )

commutes. Commutativity of diagram (3.10) implies commutativity of the fol-
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lowing diagram for all n  G Z:

K(/)

P n , M ’ ( r )

GnU)

G„(M ')

Commutativity of the latter together with the facts that G •{$)■> ^ * (/) are
all chain maps is enough to check commutativity of (6 .2 ) as shown in the diagram 
below

Fn+1( M ) ---------^ --------- - F n(M)

^n+l,M'(r)

Fn+l{f)

En+i\M')
& n + \,M \T  )

Gn+1(M)
Gn+lU)

Gn+1(M ')

dn+l
/3n,M'(r)

' ^ G n{

dn-\-1

Thus we have constructed a V-natural map (3 : F . —> G..
It is now easily verified tha t associations given in steps I-IV yield the desired 

isomorphisms of categories [mod R, Ch(M od R)] and C h  Cr . □

T h eo rem  6.2.2. Let R  be a commutative ring, then CIi(Cr) is a left and right 
proper closed symmetric monoidal V-model category, where V = Ch(M odi?). 
The tensor product of two complexes F .,G . E Ch(Cfl) is given by

/
(M,N)Emod iiigimod R

F.(M) ®R G.{N)  8  HornR(M  8  N,  - ) .  (6.3)

Here Horn#(M <g>R N , —) is regarded as a complex concentrated in zeroth degree. 
The internal Horn-object is defined as

H o r n ( F . ,G .) ( M ) = /  Homch(ModR)( F . ( i V ) , G . ( M N)).  (6.4)
J iVGmod R

Moreover, Ch(C^) satisfies the monoid axiom in the sense of Schwede-Shipley [49].
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Proof. By Theorem 6 .2 .1  we know that C h  Cr can be identified with 
[mod R, Ch(M od R)]. Note that mod R  is symmetric monoidal category enriched 
over Ch(M odi?). Now formulas (6.3)-(6.4) as well as the fact tha t C hC# is 
closed symmetric monoidal follow from Theorem 3.3.4.

It remains to show that C h  Cr is a left and right proper closed symmetric 
monoidal V-model category. Since the category CI i Cr can be identified with 
[mod R,  Ch(M od R)] by Theorem 6.2.1, it is enough to verify this for the cat
egory [mod R, Ch(M od R)]. The category Ch(M odi?) is a closed symmetric 
monoidal cofibrantly generated model category, where the weak equivalences are 
quasi-isomorphisms and the fibrations are surjective chain morphisms (see The
orem 4.3.18 and Example 4.4.5). Moreover, Ch(M od R)  is weakly finitely gener
ated in the sense of [10, Section 3.1]. Also, Ch(M od R)  satisfies the monoid axiom 
in the sense of [49]. It follows from [10, 4.2] tha t [mod R, Ch(M od R)] is a weakly 
finitely generated model category, where fibrations and weak equivalences are de
fined objectwise. Furthermore, the category [mod R, Ch(M od R)] is a monoidal 
V-enriched model category satisfying the monoid axiom by Theorem 4.6.5, be
cause m odi? is a symmetric monoidal category enriched over Ch(M odi?). Fi
nally, [10, 4.8] implies [mod R, Ch(M od R)] is both left and right proper. □

Corollary 6.2.3. Let IZ be a ring object in Ch(C#). Then the category of left 
IZ-modules is a cofibrantly generated model Grothendieck category. I f  IZ is a 
commutative ring object, then the category of IZ-modules is a cofibrantly generated, 
monoidal model category satisfying the monoid axiom, and the category of IZ- 
algebras is a cofibrantly generated model category.

Proof. This is a consequence of Lemma 5.2.8, Theorem 6.2.2 and [49, 4.1].
□

In order to construct some Grothendieck categories inside Ch(Cjj), we shall 
recall the notion of a coalgebra.

D efinition 6.2.4. An R-coalgebra over a commutative ring R  is an i?-module C 
with i?-linear maps
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called (coassociative) coproduct and counit, respectively, with the properties 

(Ic  ® A) o A =  (A (g> Ic ) o A, and (Ic  0  e) o A =  Ic  — (e ® /<?) o A, 

which can be expressed by commutativity of the diagrams

c  —   ~ C ® R C
/c<S>A

C ® R C C ® r C ® r C

C ® R C .

£®Ic

A coalgebra (C, A ,e) is said to be cocommutative if A =  S  o A, where 

S  : C C C <8>r C, a (g) b —> b ® a,

is the twist map.

Exam ple 6.2.5. A typical example of a ring object in Ch(C^) is constructed as 
follows. Let C  be a finitely presented i?-module. We regard the representable 
functor (C, —) G C r  as a complex in zeroth degree. Lemma 3.3.5 implies a natural 
isomorphism of representable functors

( C , - ) © ( C , - ) S ( C ® R C ,- ) .

It follows tha t (C, —) is a ring object of Ch(C^) if and only if C is an i?-coalgebra. 
It is a commutative ring object if and only if C  is a cocommutative i?-coalgebra. 
By the previous corollary we have a Grothendieck model category of (C, — )- 
modules inside CIi(Cr).



Chapter 7

A lm ost stable hom otopy category  
structure for T>(Cr )

In this chapter we give another application of Theorem 6.2.2. Namely, we prove 
tha t the derived category V(Cr ) of the Grothendieck category of generalized mod
ules is a closed symmetric monoidal compactly generated triangulated category 
with duality on compact objects. However, compact objects are not strongly du- 
alizable as it will be shown below. Thus T>(Cr ) is an example of a category which 
satisfies all the axioms of a unital algebraic stable homotopy theory in the sense 
of Hovey-Palmieri-Strickland [29] except the property that compact objects are 
strongly dualizable. This kind of categories is new. We refer to these as uni
tal algebraic almost stable homotopy categories. A basic example of this class of 
categories is V(Cr ).

We start with the following

T h eo rem  7.0.6. Let R  be a commutative ring. Then the derived category V{Cr) 
of the Grothendieck category Cr is a compactly generated triangulated closed sym
metric monoidal category, where formulas (6.3) and (6.4) yield the derived tensor 
product F# ©L G .  and derived internal Hom-object R H om (F .,G .). The compact 
objects ofViCR) are the complexes isomorphic to bounded complexes of coherent 
functors in cohCr .

Proof. By Theorem 6.2.2 CIi(Cr) is a left and right proper closed sym
metric monoidal V-model category, where V =  Ch(M od R). Hence the derived 
category V{Cr)  is identified with the homotopy category Ho(C1i(Cr)). But the

90
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latter category is a closed symmetric monoidal category by [26, 4.3.2] with de
rived tensor product and internal Hom-functors induced by (6.3) and (6.4) from 
Theorem 6.2.2.

Since Cr  is a Grothendieck category with finitely generated projective gen
erators {(M, — )}Memodi?, then its derived category V { C r ) is a compactly gener
ated triangulated category. The compact objects are those quasi-isomorphic to 
bounded complexes of representable functors. They are also called perfect com
plexes. Since every coherent functor C  G co h Cr  has a resolution (see, e.g., [25, 
2 .1])

0  —  (L, - )  —  (K , - )  —  (M, - )  —  C  —  0 ,

where K , L , M  G mod R , then every bounded complex of coherent functors is 
quasi-isomorphic to a bounded complex of representable functors. It follows that 
every bounded complex of coherent functors is quasi-isomorphic to a perfect com
plex. This finishes the proof. □

Rem ark 7.0.7. A monoidal unit in C h  Cr  and V ( C r ) is (R, —) = — <S>r  R  
regarded as a complex concentrated in zeroth degree.

D efinition 7.0.8. Let V be a closed symmetric monoidal additive category, with 
monoidal product x ® y ,  unit e, and internal function objects V(x, y). An object 
x  G V is strongly dualizable if the natural map V(x,e)  0  y —>• V(x, y) is an 
isomorphism for all y. We shall also write x y to denote V(x,e).

It follows from [38, Theorem 7.1.6] that the functor

x G V 4  r v G V

puts the full subcategory of strongly dualizable objects of V in duality.

We want to show below that T>{Cr ) has a duality on the full subcategory of 
compact objects T>(Cr ) c but these are not strongly dualizable in general. To this 
end we shall need a categorical duality

D  : (cohC/?)op —)• coh r C

of Auslander [1] and Gruson-Jensen [23] (see [25] as well) defined over any non- 
commutative ring R  as follows. Given r N  G R  mod, we have

(DC){r N)  := HomCH(C, -  <g>* N).
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If ry : B  —> C  is a morphism in coh Cr , then

D(v )n : D(C)( rN)  D( B) ( r N)

is defined to be Homcfi(ry, — N).  For M r  G m odi? and r N  G i?mod we have
tha t

D ( M r , —) =  M  <g>R — and D( — 0 # N ) =  (r N ,  —).

We shall refer to this duality as the Auslander-Gruson-Jensen Duality.
Suppose now R  is commutative. Then the category Cr  is closed symmetric 

monoidal for the same reasons that C hC R is. The monoidal product C  0  C' and 
internal Hom-object HomfC, C') are computed by formulas, which are similar 
to (6.3)-(6.4). It can also be shown that the Auslander-Gruson-Jensen Duality 
D  defined above is isomorphic to the internal Hom-functor

Hom(—, (i?, —)) =  Hom(—, — R)

(we refer the reader to [8 ] for further details).
The following example shows tha t compact objects of V ( C r ) are not strongly 

dualizable in general.

E x am p le  7.0.9. There are objects C  G V{Cr )° and X  G V(Cr ) such tha t the 
natural arrow

Cv Ol X  ^  i?Hom(C, X )  (7.1)

is not an isomorphism, where

C v := i?Hpm(C, - ® r R) = i?Hom(C, (i?, - ) ) .

Let R = Z and M  = N  = Z2 G mod Z. We have an exact sequence

0 ---- ^ Z ^ - ^ Z --- ^ Z 2 ----- ^ 0 .

We want to compute (— 0  M )v 0 L — 0  N  = (— 0  Z2)v ©L — 0  Z2.
To compute (— 0  Z2)v, consider a projective resolution for — 0  Z2 in C%

0 ----  (Z2, - ) -----► (Z, - )  (Z, - )  — -  -  ® z 2 ► 0.
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Then (— 0  Z2)v is the value of Hom(—, (Z, —)) at the projective resolution of 
— 0 Z2. Since Hom(—, (Z, —)) puts the category of coherent objects cohCz in 
duality and takes representable functors (L, —) to — 0  L, then (— ® Z2)v is the 
complex

• • • —y 0 —y — 0 Z —y — 0  Z —y — 0  Z2 —̂ 0 —̂ • • •

This complex has only one non-zero homology group (Z2, —), which we place in 
zeroth degree as a complex. We see tha t (— ® Z2)v =  (Z2, —).

We take a projective resolution for — ® N  in cohCz as above

0----► (Z2, - )  ► (Z, -) (Z, - ) ----->- -  ® Z2 >- 0.

Tensoring it with (M, —) =  (Z2, —) we get (M, —) 0 L — 07V which is the complex

■ • • 0 —>■ (Z2, —) 0  (Z2, —) —► (Z2, —) 0  (Z, —) —»■ (Z2, —) 0  (Z, —) —y 0 —> • • •

By Lemma 3.3.5 it equals the complex

 ►O ► (Z2> - )  ►(Z2,- ) - M z2,- )  -0----► •••

Note that evaluation of this complex at Z is zero.
Now compute RHom(— 0  M, — 0  N).  It is the value of Hqm(—, — 0  N)  at 

the projective resolution of — ® M

0 ---- ►(Z2, - ) ---- ► (Z. - )  ^ = 1  (Z, - ) -----* — <%> M  ►O.

Applying Hpm(—, — ® N)  to the complex

0 —* (z2) -) —  (Z, -) (z, -) —  0

we get a complex

0 —y Hom((Z, —), — 0  Z2) —> Hom((Z, —), — 0  Z2) —y Hom((Z2, —), — 0  Z2) -> 0

Using enriched Yoneda Lemma 3.3.1, it is equal to

0 ---- ^ -  0  Z2 —^  -  0  Z2 —^  -  0  Z2 -->■ 0.

The value of this complex at Z has non-trivial homology. We conclude tha t (7.1) 
cannot be an isomorphism in general. We conclude tha t compact objects of T>(Cr ) 
are not strongly dualizable.
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L em m a 7.0.10. The triangulated category V ( C r ) c of compact objects ofV(Cji)  
is triangle equivalent to the derived category V b(coh Cr ) of bounded complexes in 
coh Cr .

Proof. By the proof of Theorem 7.0.6 T>(Cr ) c is triangle equivalent to the 
full subcategory V ( C r )c of bounded complexes in coL C r . Let

M  N

be a morphism in T>(Cr ) with M ,N  € V ( C r )c . Let P  —> M  be a projective 
resolution of M . Then P  is in V ( C r )c and P  is isomorphic to X  in V ( C r ). But P  
is a bounded complex of projectives in Cr . Therefore there is a quasi-isomorphism 
P  —» X .  Then we get a diagram in V ( C r ) c

P

X

M  N

By [33, 9.1] the natural functor

V \c o h  CR) - > ■  V{CRf

is fully faithful. But objects are the same, and therefore these subcategories of 
V { C r ) coincide. □

L em m a 7.0.11. There is a triangle equivalence of triangulated categories V b(coh C r ) 

and T>b((coh.C r ) ° p ) taking X  G X^coIiCr) to Hqm(X, — <g> R).

Proof. By [8 ] Hpm(—, — 0  R) : coh Cr  —> (coh Cr )°p is an equivalence 
of abelian categories. Moreover, this functor is isomorphic to the Auslander- 
Gruson-Jensen duality (see [8 , 4.6]). The fact that equivalent abelian categories 
have equivalent derived categories finishes the proof. □



95

Corollary 7.0.12. ,Db(cohCR) is triangle equivalent to (V b(cohCr))°p.

Proof. This follows from the previous lemma and the fact tha t V b(Aop) is 
triangle equivalent to (V c(A))op for any abelian category A. □

Theorem  7.0.13 (Auslander-Gruson-Jensen Duality for compact objects). Let 
D(CR)C be the full triangulated subcategory of V(CR) of compact objects. Then 
there is a duality

D  : fV(CR)c)op -> V(CR)C 

that takes a compact object C. to

DC. := i?Hom(C#, — ®R R).

Proof. By Lemma 7.0.10 V(CR)c ~  V b(cohCR). Let T>b(proiCR) be a full 
subcategory of V(CRy  consisting of bounded complexes of representable coherent 
functors. The composition

X>b(proj CR)    V{CR)C V b(cohCR)

is an equivalence of triangulated categories.
Lemma 7.0.11 and Corollary 7.0.12 imply Hqm(—, — 0  R)  is an equivalence 

of triangulated categories D*(coh Cr ) ~  (X>b(cohCR))op.
Now the composite of equivalences

©‘(projCfi) -»■ V(CRy  -c  D V h C * )  -»■ (®6(cohCfl))op ^  (V{CRf  )op

computes the desired equivalence i?Hom(—, — 0  R)  of triangulated categories. □

Definition 7.0.14 (Hovey-Palmieri-Strickland [29]). A stable homotopy category 
is a category C with the following extra structure:

1 . A triangulation.

2 . A closed symmetric monoidal structure, compatible with the triangulation.

3. A set Q of strongly dualizable objects of C, such that the only localizing 
subcategory of C containing Q is C itself.
We also assume th a t C satisfies the following:
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4. Arbitrary coproducts of objects of C exist.

5. Every cohomology functor on C is representable.

We shall say tha t such a category C is algebraic if the objects of Q are compact. 
If, in addition, the unit object e is compact, we say tha t C is unital algebraic.

D efin itio n  7.0.15. An almost stable homotopy category is a category C which 
satisfies axioms (l)-(2) and (4)-(5) for a stable homotopy category and the fol
lowing axiom:

(3') There is a full small subcategory Q of C with duality D : Qop —> Q, such 
tha t the only localizing subcategory of C containing Q is C itself.

Algebraic and unital algebraic almost stable homotopy categories are defined as 
in Definition 7.0.14.

R em ark  7.0.16. Every stable homotopy category C with generating set of strong
ly dualizable Q is an almost stable homotopy category. Indeed, we can assume 
without loss of generality tha t xv £ Q for every x  £ Q, and then the full sub
category of C whose objects are those of Q has a duality and generates
C. The following theorem shows tha t there are algebraic almost stable homotopy 
categories which are not stable homotopy categories.

T h eo rem  7.0.17. Let R  be a commutative ring. Then V ( C r ) is a unital alge
braic almost stable homotopy category, which is not an algebraic stable homotopy 
category in the sense of Definition 7.0.14-

Proof. Let Q be the full subcategory of compact objects of V ( C r ). The fact 
tha t V { C r ) is a unital algebraic almost stable homotopy category follows from 
Theorems 7.0.6 and 7.0.13. We also use here the fact tha t every cohomology 
functor on a compactly generated triangulated category is representable by a 
theorem of Neeman [42, Theorem 3.1].

Suppose V ( C r ) is generated by compact strongly dualizable objects Q as re
quired for an algebraic stable homotopy category. By [29, Theorem A.2.5] we may 
assume without loss of generality tha t Q is a thick subcategory in the triangu
lated category of compact objects. If Q generated D ( C r ), then another theorem of
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Neeman [42, Theorem 2.1] would imply tha t Q contains all compact objects. But 
Example 7.0.9 shows tha t compact objects of V(Cr ) are not strongly dualizable 
in general. This contradiction finishes the proof. □
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