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A bstract

Given the NP-completeness of the satisfiability problem, the search for classes of CNF clause- 
set with poly-time satisfiability checking is of particular interest and applicability (e.g., Horn, 
2-CCS, SCUTZ). In areas such as knowledge compilation (KC) and constraint translation (to 
CNF), even stronger properties such as clausal entailment (i.e., a CNF F  logically implies a clause 
C ) need to be efficiently decidable. This thesis introduces several new hierarchies of clause-sets 
with efficient clausal-entailment checking, which extend and subsume existing hierarchies.

The main object of study is the UCk hierarchy, generalising the UC class of unit-refuta- 
tion complete clause-sets, introduced in [51] as a target class for knowledge compilation. Via 
the theory of “hardness” of clause-sets as developed in [104, 110, 2] the class UC is naturally 
generalised to UCk, containing those clause-sets which are “unit-refutation complete of level fc” , 
which is the same as having hardness at most k. Relating UCk to poly-time satisfiability the 
class SCUTZ (Single Lookahead Unit Resolution) is considered, which was introduced in [141] 
as an umbrella class for efficient (poly-time) SAT solving. S jCUTZ generalises to SCUTZk in the 
same way as UC and one of the core insights of this thesis is th a t SCUTZk — UCk holds for all 
k (including S jCUTZ =  UC\). One can thus exploit both SAT and KC streams of intuitions and 
methods for investigations of these hierarchies. As applications it is shown th a t membership 
decision for fixed levels of these hierarchies is coNP-complete and th a t SCUTZk (=  UCk) strongly 
subsumes hierarchies from [36, 10], as well as other hierarchies for efficient SAT solving.

A natural question is whether each level allows more succinct representations. Another core 
result of this thesis is an answer in the positive sense. W ithout new variables, each level of 
these hierarchies offer exponentially more succinct representations. This means th a t there are 
boolean functions with only exponential-size equivalent clause-sets at level k, but with poly
size equivalent clause-sets at level k + 1. This shows th a t UCk forms a knowledge compilation 
hierarchy inbetween the CNF and PI classes from [46], with query efficiency similar to the PI 
class (i.e., sets of prime implicates), allowing one to trade query time for succinctness.

In the outlook, representations allowing new variables are considered. It is envisioned, due 
to  the strong connections between the “hardness” notion from [104, 110, 2] and resolution com
plexity, th a t the hierarchies defined might act as a SAT-orientated alternatives to constraint- 
based notions of “good” SAT representation such as “maintaining arc-consistency via unit-clause- 
propagation” . In this direction it is shown th a t several common CNF representations already 
fit into the UCk scheme, and experiments are provided demonstrating th a t modern DPLL and 
CDCL solvers are able to solve CNF clause-sets at higher levels oiUCk  and WCfc, while solvers 
can perform poorly when using much larger representations in UC\. This provides motivation 
for considering higher levels of UCk for representations in satisfiability solving, and adds an 
additional dimension to the question of “good” SAT representations.
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Chapter 1

Introduction

The (boolean) satisfiability problem (SAT) has been a much studied research area, especially in 
the last 20 years, seeing applications in verification (see [102]) and bounded model checking (see 
[22]), scheduling and planning (see [137]), combinatorial mathematics (see [164]), cryptanalysis 
(see [122, 41, 11, 150]), and also further afield in areas such as bioinformatics (see [72]); for an 
overview see [23]. A large part of the success and popularity of SAT and modern SAT solvers over 
other methods comes from the simplicity and rich underlying structure of Conjunctive Normal 
Form (CNF) clause-sets (see Chapter 2), used as the standardised representation format. Given 
the NP-completeness of the SAT problem (as proven by Cook in [38]), an im portant theme is 
the search for relevant classes C of clause-sets F  for which one can (at least) decide satisfiability 
in polynomial time (that is, deciding whether F  logically implies the empty clause); see Section 
1.19 in [63] for some basic information.

However, what if one wants a stronger property than mere poly-time satisfiability checking? 
W hat if one wants to  be able to check satisfiability of F  under any partial instantiation? Then 
the (known and fixed) satisfiability of F  does not necessarily help. Such properties are im portant 
in knowledge compilation, where one compiles (offline) a knowledge base into some representa
tion (e.g., a CNF clause-set) and then wants th a t to be able to perform many (online) queries 
efficiently (e.g., checking satisfiability under a partial assignment). For this task one requires 
that clausal entailment queries (deciding whether F  logically implies some given clause, rather 
than just the empty clause) can be decided in polynomial time; see [46] for an overview.

Such properties are also im portant when one is interested in translating constraints or boolean 
functions to some CNF F  which will form only part of a larger SAT problem. Most SAT solvers 
search for a satisfying assignment by building up partial assignments, piece by piece. Search 
times can be exponentially reduced if the solver can (efficiently) detect the unsatisfiability of F  
under this partial assignment, and so halt search “in the wrong direction” as soon as possible. 
This is the underlying idea behind “good” representations in satisfiability by “maintaining arc- 
consistency” via unit-clause propagation, i.e., detect assignments which must be made (to satisfy 
the CNF) as early as possible, using linear time unit-clause propagation.

This thesis brings together these two areas to  form hierarchies, based on hardness notions 
from [104, 110], for S A T  knowledge compilation: compiling all of the “knowledge” of a constraint 
or boolean function, (i.e., whether it is satisfiable under each partial assignment), into the CNF 
representation, such th a t partial assignments made by modern SAT solvers (the “queries”) are 
efficient. Three hierarchies are constructed: UCk, based on the UC class introduced by Del Val in 
[51] for knowledge compilation and strongly connected to  tree-resolution space complexity; VCk, 
based on the VC class introduced in [26] and intimately connected with well-known concept of
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“maintaining arc-consistency via unit-clause-propagation” (see Section 2.8 of Chapter 2); and 
the WC/c hierarchy, extending WC  =  UC but now using (improved) asymmetric based notions 
of fu l /-resolution width complexity from [104, 110]. Each fixed level of each of these hierarchies 
offer poly-time clausal entailment (as well as other queries) for knowledge compilation, while 
subsuming existing classes, and in Chapter 5 it is shown th a t each level allows for exponentially 
more compression than the level below (i.e., the entire hierarchies themselves are useful for 
knowledge compilation). Furthermore, in Chapter 7 it is shown SAT solvers are able to  utilise 
the strong connections of these hierarchies to resolution to  quickly find short proofs for small 
compressed clause-sets in UCk for low enough k, while demonstrating poor performance on 
“easier” but much larger instances in UC\. Together, the results from Chapter 5 and Chapter 7 
dem onstrate both th a t these hierarchies as a whole are useful, not just UCi, and also th a t finding 
“good” SAT representations is a multi-dimensional problem, with at least “hardness” and size 
dimensions to consider.

1.1 Clausal entailment in knowledge com pilation and SAT
As an illustrative example, consider the boolean function /  given by the tru th  table in Figure 
1.1. While in reality this function has been chosen for its ability to concisely convey the key 
concepts of this thesis, for the sake of argument, consider two scenarios and interpretations of / :

1. S cen a rio  1: /  encodes the following product configuration problem (see [146] for work on 
using UC for product configuration problems):

(a) there is a product (e.g., a computer, car etc) which can be configured with 4 different 
pd>rts • • • i 4̂?

(b) the valid configurations for p are given by those sets S  C {i1?. . . ,  i4} where f(<ps) — 1 
and the partial assignment ips '■ {vj '■ ij € 5} x {0,1} is defined by

ĵ O otherwise.

2. S cen a rio  2: /  encodes scheduling constraints at time t in the following scheduling problem:

(a) there are 4 employees e i , . . . ,  e4  working at a factory;

(b) a valid scheduling of employees to time slot t must obey the constraints in / ,  i.e., the 
valid sets of employees 5  C {e i , . . . ,  e4} which can be scheduled together at tim e t is 
given by those sets for which f(<ps) — 1 and the partial assignment <ps '■ {vi '■ ei £ 
5} x {0,1} is defined by

/1  Ci G 5
Vs\Vi) :=  \

0 otherwise.

In this case, /  is just one constraint in the larger scheduling problem. Each time slot t' € T  
(for a set of times T) will have its own scheduling constraints for e\ , . . . ,  e4. In general these 
constraints might even overlap (e.g., employees might not want to work back to back). So 
overall there is a boolean function /  :=  /  A / '  where f  encodes together all scheduling 
constraints at times other than t.



V l v 2 v 3 v 4 f ( v  i , V 2 , V 3 , V 4 )

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

V l v 2 v 3 v 4 f ( v  i , v 2 , v 3 , v 4 )

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Figure 1.1: Truth for boolean function /  : {0, {q̂  j y

In the above scenarios we might want to consider two different tasks:

1. In Scenario 1, users will a ttem pt to  build different configurations of product p and the 
system must be able to quickly return whether these configurations are valid. That is, we 
want to  represent /  in such a way as to be able to efficiently answer queries regarding its 
satisfiability under certain assignments.

2. In Scenario 2, the larger scheduling problem /  is given only implicitly as the conjunction 
of the smaller scheduling problems for each timeslot, and so the task here is find repre
sentations for /  (and for / ' )  such th a t it is efficient to decide whether there exists a valid 
scheduling of the employees across timeslots (i.e., deciding satisfiability for / ) .

To answer these two tasks we will examine the following 3 Conjunctive Normal Form (CNF) 
clause-set representations of /  where for each CNF the order and operations have been ex
tracted away (recall th a t boolean conjunction ( A ) and disjunction ( V ) are both associative and 
com m utative).

F 0 '■= {  { V l , v 5 , n } , { v 2 , V 3 , V j } , { v 2 , V 3 , V 4 } , { v 5 , V 3 , V 4 } , { v i , V 3 , V 4 } , { v 1 , V 2 } }•
V  V  ^  V  y .  ' ---V-------------- s , -------------- '  V —  . y  — ^  S v -------------- '  " ^  '

C j C 2 C3 C4 C5 Ce

F i  := { fol, V j , V j } :  {V2  , V 3 , V 4  }, { V 2, V3 , ̂ 4}, {̂ 2, ̂ 3, ̂ 4},
C i C2 C3 C4 C q

F 2 := { {«1 , ^ , V 4 } , { v 2 , V 3 , v j } , { v 2 , V 3 , V 4 } , { V 2 i V 3 , V 4 } , { v 1 , V 3 , V 4 } }.
' v '  ' s, '   ̂ v  /  v , y  s '------v------'

C x C 2 C 3 C 4 C 5

For each of the above clause-sets the CNF interpretation is applied, i.e.,

/ = a  V i = A V i =  A V x
C G Po x G C* C  G -Pi x  G C  C G P2 %G C

So, for example, interpretting Fq as a CNF, we have

f  — (v 1 V - 1U3  V - 1U4 ) A (v 2  V v3  V v4) A (v 2  V ~̂ v3  V v4) A (~iv2  V v 3  V v4) A (tq V ^ 3  V v4) A (iq V v2)

T ask  1: Fo, F\ and F2  are expected to  be able to “efficiently” answer queries in the form of
assignments to the variables to check the consistency of potential product configurations. To 
illustrate the different possibilities and an initial insight into the UCk hierarchy (introduced in 
Chapter 2), consider these representations of F  under the following queries.
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1. Consider Fo and the partial assignment (fc 6 (v i ~> 0>v2 —> 0) (he-, is set to 0 and 
V2  is set to 0). By applying standard simplifications (i.e., removal of satisfied clauses and 
falsified literals) on the CNF we see immediately th a t (pc6 * /  (i.e., /  after applying ty?c6) 
is unsatisfiable, i.e., any product configuration not containing either ii  or 1 2  is invalid:

<PCe *  F o  =  {  { ^ 1 , ^ 3 , V 4 } ,  { ^ 2 , ^ 3 , ^ } ,  { v 2 , U 3 i M , { u 2 , U 3 , U 4 } , { u i , V 3 , U 4 } , { v l , V 2 }  }
X X X ✓  X X X

= { {U3, V4}, {^3,^4}, {^3,^4}, {v3,U4}, J.}.

T hat (ui —>■ 0, V2  —> 0) * /  is unsatisfiable follows via the observation th a t the empty clause 
(i.e., the empty disjunction) is derived.

2. Consider Fi and the query ipc*, (vi —> 0,^3 —> 0, v4 —»• 0). Now when applying the same 
simplifications as for the above case, we do not immediately derive the empty clause and 
so do not “immediately” detect th a t <pc5 * f  =  0:

V C S * F \  =  { { V l , V 3 , V 4 } , { V 2 , V 3 , V ^ } , { v 2 , V 5 , V 4 } , { v 2 , V 3 , V 4 } , { v 1 , V 2 } }
X ✓  ✓  X ✓  ✓  X X X  X

=  { {V3,w},{^2},{v2} }•

However, observe th a t further setting V2  to 0 would yield the empty clause (due to {^2 }) 
- therefore if one were to  satisfy ipc5 * Fi then such a satisfying assignment must set V2  

to 1. T hat is, we must satisfy the unit-clause {^2 }- Propagating (V2  —> 1) then yields the 
empty clause due to the other unit-clause {^2 }. In this way, this simple form of lookahead 
(“unit-clause propagation” - see Section 2.4 of Chapter 2) determines the unsatisfiability 
of <pc5 * F\ and so the incompatibility of the corresponding product configuration.

3. Finally, consider F 2  and the query ipc6 '■= (ui 0 ,V2  —> 0). This time, applying the same
simplifications above yields a CNF clause-set w ithout any unit-clauses and so unit-clause 
propagation does nothing:

VC6 * F 0  = {{ui,U3,U4},{u2,U3,W},{U2,t£,U4},{U2,U3,M,{t>l,U3,U4}}
X X X ✓  X

Instead, we can apply the same reasoning but one level higher. That is, checking whether 
a literal is forced by setting it and then checking via unit-clause propagation whether th a t 
assignment results in /  being unsatisfiable (this is failed literal elimination).

More precisely, in this case we have (V3  —> 0) * (<Pc6 * Fo) =  {{W}? {^4}} which then via 
unit-clause-propagation is obviously unsatisfiable. Therefore, all satisfying assignments to 
(<pc6 * Fo) m ust set V3  to 1, however ( 0 3  —> 1) * ((fc6 * Fo) =  {{W}-, {^4 }} which again by 
unit-clause propagation is unsatisfiable. Therefore (<pc 6 * Fo) is unsatisfiable.

These three representations offer a trade-off between the size of the representation (note Fo is 
larger than  F\ and F 2 ) and the level of lookahead necessary to decide clausal entailment (i.e., 
whether some assignment falsifies / ) .  The above examples are small but in general the trade-offs 
can be exponential as will be shown in C hapter 5.

T ask  2 In this case, we assume a fixed CNF clause-set representation F'  of f  and vary the 
representation of /  over F o ,F i and F 2 . This yields three CNF clause-set representations Fo := 
Fq U F ', F i := F i U F ' and F 2  :=  F 2  U F ' of the overall scheduling problem / .  The task is to now

10



Fo
<p I

(fi —>0) |

(v2-»0) 1
X
±

Figure 1.2: (P artia l) backtracking trees for Fq,F[ and F2 respectively.

determ ine the  satisfiability of /  (i.e., the  satisfiability of Fo, F i or equivalently F 2 ) and hence 
the  existence of a valid schedule in the  underlying scheduling problem.

The most fundam ental technique in m odern SAT solving, underlying both  m odern D PL L J) 
(see [88]) and CDCL2> ( see [121]) m ethods is backtracking (albeit augm ented w ith clause-learning 
and non-chronological backjum ping in CDCL). T h a t is, essentially the  solver a ttem p ts  to find 
a satisfying assignment for the  input CNF by building up a satisfying assignm ent piece-by- 
piece, applying simple reductions as the  solver proceeds, and backtracking and try ing a different 
assignm ent when a conflict (i.e., the  em pty clause) is detected. By considering the  (partial) 
backtracking trees given in Figure 1.2 one can see th a t in each case, depending 011 th e  choices 
the  SAT solver makes, the sub-problem  on /  can become unsatisfiable (i.e., the  current partial 
assignm ent falsifies F0 resp. F\ resp. F 2 ) but th e  solver does not detect this until much later (i.e., 
the  solver continues to  backtrack until it detects the em pty  clause). In particular, we see th a t

1. W hen Fo is m ade unsatisfiable under the  partia l assignm ent (t>i —>• 0,4*2 —>• 0), this is 
im m ediately detected by the  SAT solver because the clause {^1 ,^ 2 } yields the em pty clause 
under this assignment; no fu rther backtracking is necessary.

2. W hen F \ is m ade unsatisfiable under the partia l assignment (v \  —» 0,^3 —» 0,^4 —>■ 0) 
then  backtracking m ust still lookahead one level to  determ ine th is (essentially mimicking 
unit-clause propagation).

3. W hen F 2 is made unsatisfiable under the partia l assignm ent (iq —> 0, i>2 —> 0) then  the 
solver must now backtrack even more, looking ahead two levels ra ther than  one.

Again as in Task 1, we see a trade-off, F 0 is larger bu t when an inconsistent assignm ent is made, 
th is is im m ediately obvious and no further backtracking is necessary. In general, a solver may 
(unnecessarily) need to  search an exponential size backtracking tree to  determ ine unsatisfiabil
ity, and so the search for representations where backtracking trees are short, or at least short 
backtracking trees exist are guaranteed to  exist, are very useful in reducing solver tim e.

The aim of this thesis is to  develop natu ra l and elegant CNF “target-classes” to  represent 
boolean functions such th a t the  above queries and unsatisfiability detection are efficient. In

n T he D avis-Putnam -Logem ann-Loveland (D PLL) algorithm  applies backtracking, along w ith unit-clause elim 
ination  (see Definition 2.4.4) and pure literal e lim ina tion  (see D efinition 2.4.3) applied a t every node in th e  tree.

2)T h e  Conflict-Driven C lause Learning (CDCL) algorithm  applies backtracking w ith clause learning  and non- 
chronological backjumping  (see [121]).
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both cases, this essentially boils down to requiring th a t the representation allows efficient clausal 
entailment checking, i.e., checking unsatisfiability is efficient under any partial assignment. The 
meaning of the naturality and elegance conditions requirement is not just that the classes defined 
are not “ad-hoc” but also th a t the classes defined connect well with existing concepts and classes 
(e.g., resolution and existing poly-time SAT classes - see Chapter 4).

1.2 Classes and hierarchies for SAT knowledge com pilation
The concept of “SAT knowledge compilation” comes about by bringing together two previously 
unconnected streams of research from SAT and knowledge compilation:

S L U R  The SLUR algorithm is an incomplete linear-time SAT-decision algorithm, based on 
look-ahead via unit-clause propagation.

U C  The class UC of unit-refutation complete clause-sets enables clausal-entailment decision in 
linear time via unit-clause propagation.

T hat both streams are based on unit-clause propagation, which is also the basic tool for efficient 
SAT solving, is considered here as an essential feature. It means th a t actually we have some 
form of “SAT knowledge compilation” , where the “knowledge” is compiled in such a way th a t a 
SAT solver can “understand” it!

1.2.1 The quest for SLUR hierarchies
In the year 1995 in [141] the SLUR algorithm was introduced, a simple incomplete non-deterministic 
SAT-decision algorithm, which always succeeded on various classes with polynomial-time SAT 
decision where previously only rather complicated algorithms were known. The computation 
is divided into two phases for input-clause-set F: First we check via unit-clause propagation 
(UCP) for unsatisfiability. If this check fails, then we assume F  is satisfiable, and guess a sat
isfying assignment, using UCP-look-ahead for the guessed assignments to avoid obviously false 
assignments. The class SCUTZ contains those F  where this algorithm always succeeds (i.e., de
termines unsatisfiability in the first phase, or always finds a satisfying assignment in the second 
phase).

The natural question arises, whether SCUTZ can be turned into a hierarchy, covering in the 
limit all clause-sets. A generalisation of SLUR has been considered in [64] under the name 
“ISLUR” (improved SLUR), allowing a polynomial number p(£(F)) of backtracks (for a fixed 
polynomial p, in the input-size 2(F)), in the unsatisfiability as well as in the satisfiability phase 
of the SLUR algorithm, before giving up. It is mentioned that ISLUR gives up on every large 
enough “sparse” clause-set (which are “typical” as random k-CNF clause-sets), when no variable 
occurs “too often” . This was considered to be “disappointing” — but from the point of this thesis 
the value of the class SCUTZ lies not in being a “big” class of clause-sets with polynomial-time 
SAT solving, but in establishing a basic target class for representations of boolean functions with 
very strong properties via clause-set. For all fixed k there exists a polynomial p such th a t the 
fc-th level of the hierarchy, SCUTZk (introduced in Chapter 4), is contained in the class ISLUR 
(those clause-sets where the ISLUR algorithm never gives up). So all levels are negligible when 
considering the above sparse clause-sets, but as we show in Chapter 5, nevertheless this hierarchy 
is proper regarding good representations of boolean functions, and the parameter k is meaningful 
and robust (not just a numerical parameter like the polynomial p).

In [36, 10] it was finally proved that membership decision of SCUTZ is coNP-complete, and 
three hierarchies, S£UTZ(k),SCUTZ*(k) and CANON(fc) were presented. It still seemed th a t none
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of these hierarchies is the final answer, though they all introduce a certain natural intuition. This 
thesis now presents what seems the natural “limit hierarchy” , called here SCUTZk, which unifies 
the two basic intuitions embodied in SCUTZ(k), SCUTZ*(k) on the one hand and CANON(fc) on 
the other hand.

In order to do so a precise analysis of the SCUTZ-c\ass is needed. A SLUR transition relation
F  > F '  between clause-sets F, F ' is introduced, which makes precise one non-deterministic
step of the SLUR-algorithm. This transition from F  to  F'  happens when assigning a (single) 
literal in such a way th a t UCP does not create the empty clause. The core idea of the classes 
SCUTZ(k) and SCUTZ*(k) is to strengthen the transition relation by requesting th a t not just one 
literal is choosable, bu t actually k literals can be chosen, while the difference between them is 
th a t SCUTZ*(k) performs UCP inbetween the choices, while the weaker class SCUTZ(k) does not.

Before the solution can be described, the S£UTZk-hiera,rchy, the second source of “SAT knowl
edge compilation” approach must be discussed, the class UC of “unit-refutation complete clause- 
sets” , which is related to the stream embodied by CANON(fc).

1.2.2 Unit-refutation completeness and “hardness”
In the year 1994 in [51] the class UC was introduced, containing clause-sets F  such th a t clausal 
entailment, th a t is, whether F  \= C  holds (clause C  follows logically from F , i.e., C  is an implicate 
of F),  can be decided by unit-clause propagation. The motivation was knowledge compilation, 
th a t is, to have a more succinct alternative to the use of the set of all prime implicates (i.e., all 
minimal CNF clauses entailed by F ; see Section 2.6) of a given clause-set Fo (clausal database), 
for which one seeks an equivalent F  such th a t clausal entailment can be decided quickly.

A second development is im portant here, namely the development of the notion of “hardness” 
in [104, 110, 2]. The first source [104] from 1999 introduced the notion of hardness as a measure 
hd0 : CCS —> N o ,  assigning natural numbers to clause-sets in the following way (using S A T  C  
CCS for the satisfiable clause-sets, and U S A T  := CCS \  S A T ):

•  hdo(F) := 0 for the simplest clause-sets F  G CCS regarding SAT decision, containing the 
empty clause (i.e., ±  G F ) or being empty (i.e., F  =  T ).3)

• hd0(F ) < k for k >  1 iff there is a literal x  such th a t for F ' := (x —>■ 0) * F  (setting x  to 0) 
we have hdo(F ') <  k — 1 and either F ' G U S A T  and hdo((x —»■ 1) * F ) < k, or F ' G S A T -  
The precise value of hd(F) is then the minimum k such th a t hd(F ) < k.

In fact, for unsatisfiable clause-sets F ,  h d o ( F )  is the minimum “Horton-Strahler” number of any 
tree-resolution refutation of F  and [104] showed th a t from h d o ( F )  we get upper and lower bounds 
on the tree-resolution complexity of F  (see Section 3.3 of Chapter 3). h d o  can be computed in 
time 0(£(F) • n (F )2k~2) (essentially via breath-first search - see [104]).

The second source [110] from 2004 generalised this approach to constraint satisfaction prob
lems (and beyond). The third source [2] from 2008 considered hdo(F) on unsatisfiable clause-sets 
F  € U S  A T ,  relating it to  backdoors, cycle-cutsets and treewidth, and performing an experimen
tal study on random instances. Also in [2] we find a different extension of hdo : U S A T  —> No 
to a measure hd : CCS —>■ No, using for satisfiable instances F  G S A T  the maximisation over 
all unsatisfiable sub-instances obtained by applying partial assignments. This hardness notion is

3) A ctually a two-dimensional family h d ^ s  of such measures was introduced, based on oracles U C US AT,  
S  C S A T  for deciding unsatisfiability resp. satisfiability, and setting h d j^ sfF ) :=  0 for F E U  US.  In this thesis
we consider only the sim plest base case hdo =  hdw0l5 0 , where Uq := {F  €  CCS : l £ f }  and <S :=  {T } . Oracle
S  does not play a role in the setting of this thesis, which is fully unsatisfiability-based. See Subsection 4.3.2 for 
more information on these hierarchies, and see Section 6.1 for discussions on relativised hardness.
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harder to measure: as is shown in Theorem 4.4.5 of this thesis, determining whether hd(F ) < k 
holds for a fixed k > 1 is coNP-complete, while h d o  {F) < k can be decided in polynomial time 
(for fixed k). Nevertheless it is the central measure for this thesis, and is considered as measuring 
“representation hardness” , while h d o  measures “solver hardness” .4)

As will be shown in Theorem 4.2.2, hd(F) < k is equivalent to  the property of F , that 
all implicates of F  (i.e., all clauses C  with F  \= C) can be derived by fc-times nested input 
resolution from F , a generalisation of input resolution as introduced and studied in [104, 110].5) 
So we obtain th a t UC is precisely the class of clause-sets F  with hd(F ) < 1 ! It is then natural 
to  define the hierarchy UCk via the property hd(F) < k. The hierarchy CANON(A;) is based on 
resolution trees of height a t most k, which is a special case of fc-times nested input resolution, 
and so we have CANON(Ar) C UCk (see Theorem 4.4.6).

1.2.3 Bringing SLUR and UC together
In order to get back to SLUR, we need to emphasise the two-sided nature of the hardness measure, 
as developed in [104, 110]. In Subsection 1.2.2 the proof-theoretic side of it was discussed. The 
algorithmic side is given by the reductions r^ : CCS —>■ CCS (introduced in [104]), which perform 
certain forced assignments:

1. ri is unit-clause propagation (UCP), assigning x  —> 1 for unit-clauses {x} until all are 
eliminated.

2. T2  is (complete) failed-literal elimination, assigning, while possible, x —> 1 for literals x 
such th a t the assignment x —> 0 yields a contradiction via r i ; see Section 5.2.1 in [88] for 
the usage of failed literals in SAT solvers (so-called “look-ahead solvers”), and see Section
7.2.2 in [114] for the general explanation of r2 being the “look-ahead version” of ri.

3. In general r^+i is the “look-ahead version” of r^, assigning, while possible, x -» 1 for literals 
x such th a t the assignment x -> 0 yields a contradiction via r^.

For unsatisfiable F  the hardness hd(F) is equal to the minimal k such th a t rk{F) detects unsat
isfiability of F , i.e., rfc(F) =  {_L}. This yields the basic observation UC C  SJCUTZ — and actually 
we have UC - SCUTZ !

So by replacing the use of ri in the SLUR algorithm by r^ (using the analysis in Chapter 3 
via the transition relation) we obtain a natural hierarchy SCUTZk, which includes the previous 
SLUR-hierarchies SCUTZ(k) and SCUTZ*(k), as well as various other classes and hierarchies for 
poly-time SAT, and where we have SCUTZk — UCk• This equality of these two hierarchies, and 
the dual perspective offered (algorithmic and proof theoretic), is the argument th a t the “limit 
hierarchy” for SLUR has been found.

1.2.4 PC and arc-consistency
A similar class to UC, but coming initially from a SAT perspective, is the class VC, introduced 
in [26], of propagation complete clause-sets. Whereas UC treats ri as a consistency-checker, VC 
uses ri to detect all forced assignments under any partial assignment. As UC is generalised to 
UCk, FC is now generalised to the hierarchy VCk in Chapter 4. VCk then provides intermediate

4^hd(F) actually captures tree-like resolution (in a sense). In Section 3.6.2 a width-based measure of hardness 
is discussed, which captures dag-like resolution. This thesis considers the tree-hardness as the natural starting  
point.

5)Equivalently, as shown in [104, 110], one can say that all implicates C  have a tree-resolution proof using space 
at most k +  1.

14



layers to the UCk hierarchy (i.e., we have VCq C  UCq C  VC\ C  UC\ C  VC 2  • • •) and relates more 
directly to the notion of a clause-set “maintaining arc-consistency via unit-clause propagation” 
(see Section 2.8 in Chapter 2).

T hat “arc-consistency” is “m aintained” via unit-clause propagation means th a t for all (par
tial) assignments to the variables of the constraint, if there is a forced assignment (i.e., some 
variable which must be set to a particular value to avoid inconsistency), then unit-clause prop
agation (UCP) is sufficient to find and set this assignment. Maintaining arc-consistency and 
propagation-completeness may at a glance seem the same concept (both ask for forced literals to 
be propagated by ri).  However there is an essential difference. When translating a constraint into 
SAT, typically one does not just use the variables of the constraint, but one adds auxiliary vari
ables to allow for a compact representation. Now when one speaks of maintaining arc-consistency, 
one only cares about assignments to the constraint variables. However propagation-completeness 
deals only with the representation clause-set, thus can not know about the distinction between 
original and auxiliary variables, and thus it is a property on the (partial) assignments over all 
variables! A SAT representation, which maintains arc-consistency via UCP, will in general not 
be propagation-complete, due to assignments over both constraint and new variables yielding a 
forced assignment or even an inconsistency which UCP doesn’t detect; see Example 6.2.5 and 
Lemma 6.2.6. In contrast to this, for the basic concepts of “good” representations investigated 
in this thesis, considering all variables is a fundamental feature.

1.2.5 WCjt: a hierarchy based on full resolution

As already mentioned in Section 1.2.2 (to be further elaborated in Chapter 3), there are strong 
proof theoretic connections for UCk to tree-resolution. In [95] the argument is made th a t tree- 
resolution complexity can not provide a good measure of hardness of instances for SAT solving, 
citing the ability of modern Conflict Driven Clause Learning (CDCL) solvers to simulate ex
ponentially more powerful full-resolution (see [4, 129, 130] for evidence th a t CDCL solvers can 
simulate full resolution). However, the aim of UCk is not to  measure hardness, but to offer a 
target class for SAT translation. In this respect tree-resolution complexity measures are ideal, 
because they provide the strongest translations, and upper-bound measures for full resolution.

UCk being based on the hdo, the hardness measure from [104], which has strong connections 
to tree-resolution, means th a t if an unsatisfiable (sub-)clause-set has a high tree-resolution com
plexity (see Definition 2.5.3 in Chapter 2) then it has a high hardness, even if there exists a 
short resolution proof for it. For tighter target classes in the case of full resolution, the notion of 
width-hardness as introduced in [77, 78] is also considered, based on the width-based hierarchies 
of unsatisfiable clause-sets in [104, 110]. T hat is, a clause-set is in WCfc, the hierarchy of clause- 
sets of width-hardness fc, iff under any partial assignment resulting in an unsatisfiable clause-set 
there is a “fc-resolution” refutation as introduced in [99]. Here, unlike the typical notion of width, 
resolutions where only one parent clause needs to have length at most k are allowed, thus prop
erly generalising unit-resolution (one could speak of “asymmetric width” here, compared to the 
standard “symmetric width” ). This allows the simulation of nested input resolution, and thus 
we have UCk ^  WC/c for all k, whereas otherwise in the standard (symmetrical) sense even Horn 
clause-sets require unbounded width (recall th a t H O  C  UC\). While UCk offers the stronger 
guarantee th a t short tree-resolution proofs exist, WCk relaxes this condition to allow clause-sets 
which might have only short fu l /-resolution proofs. In this way, one can prove lowerbounds for 
width-hardness and upper-bounds for (tree-)hardness and hence prove the precise width- and 
tree- hardness for certain classes of clause-sets (see e.g., Section 1.3 and Chapter 5).
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1.3 Strict hierarchies of representations
Considering these hierarchies as target classes for SAT translations and knowledge compilation, 
we know at least th a t for every k G No and every boolean function /  there is some CNF 
representation F  G U C q (the prime implicate representation of F). A natural question to  ask is 
whether going from e.g., UCk to UCk+i means th a t certain boolean functions can be represented 
in polynomial size which only had exponential-size representations before. T hat is, in terms of 
representation, does each level offer more, or does the hierarchy collapse to UC\l

In [51] (Example 2) a separation was already shown between U C q (clause-sets containing 
all of their prime implicates) and UC\ =  UC, and the question was raised of the worst-case 
growth when compiling from an arbitrary CNF clause-set F  to some equivalent F '  G UC. This 
question was partly answered in [17] (although the connection was not made), where examples 
are provided of poly-size clause-sets with only super-polynomial size representations in UC, even 
when allowing new variables (see Subsections 6.1 and 8.2 for more on the connection between 
[17] and UCk)- This shows a super-polynomial lower-bound on the worst-case growth, but no 
method or new (larger) target-class for knowledge-compilation. Theorem 5.3.13 in Chapter 5 
now answers the question of worst-case growth from [51] in full generality with the hierarchy 
UCk- Each level of UCk is exponentially more expressive than the previous (i.e., with possible 
exponential blow-up when compiling from some F  G UCk+i to  equivalent F'  G UCk), and so 
each level offers its own new, larger class for knowledge compilation, at the expense of increased 
query time (now 0(£(F)  • n (F )2k~2) for UCk compared to 0(£(F))  for UC). This separation, 
between UCk+i and UCk for arbitrary k, is more involved than the simple separation in [51], due 
to the parameterised use of more advanced polynomial-time methods than ri (UCP). Especially 
the separation between U C q and UC\ is rather simple, since U C q does not allow any form of 
compression (i.e., simply checking for the em pty clause propagates nothing and assigns to no 
variables).

1.3.1 Separating the UCk and WCk hierarchies
A sequence (f h ) h e N  of boolean functions, which separates UCk+i from UCk w.r.t. clause-sets 
equivalent to f h  in UCk+i resp. UCk, should have the following properties:

1. A  large num ber o f  prim e im plicates: the number of prime implicates for fh  should at 
least grow super-polynomially in h , since otherwise already the set of prime implicates is 
a small clause-set in U C q (see Definition 3.4.1) equivalent to  f h -

2. E asily characterised prim e im plicates: the prime implicates of fh  should be easily 
characterised, since otherwise we can not understand how clause-sets equivalent to f h  look 
like.

3. P oly-size representations: there must exist short clause-sets in UCk+i equivalent to fh  
for all / i g N .

[148] introduced a special type of boolean functions, called there Non-repeating Unate Decision 
trees (NUD), by adding new variables to each clause of clause-sets in SM.U§=i, which is the class 
of unsatisfiable hitting clause-sets of deficiency 5 = 1 (see Section 5.2.1 of Chapter 5). These 
boolean functions have a large number of prime implicates (the maximum regarding the origi
nal number of clauses), and thus are natural to consider as candidates to  separate the levels of 
UCk- Theorem 5.1.18 in Section 5.1 shows th a t it is actually the underlying S M U $ =i clause-sets 
th a t contribute the structure. The clause-sets in SAiU$=i  are exactly those with the maximum 
number of “minimal premise sets” , and then “doping” elements of SM.Us=i yields clause-sets
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w ith  the maximal number of prime implicates. Theorem 5.3.13 then uses the tree structure of 
iSM .U{5= i to prove lower bounds on the size of equivalent representations of doped SM .Us=\ 
(clause-sets in UCk-

To be able to prove properties about all equivalent representations of some CNF clause- 
sset F, we must be able to understand its combinatorial structure in relation to  the set of all 
iits prime implicates. The notion of minimal unsatisfiability (MU) and minimally unsatisfiable 
^subsets (MUS) is im portant in understanding the combinatorics of unsatisfiable clause-sets (see 
[[100, 120]). To understand the structure of satisfiable clause-sets and their associated boolean 
ffunctions, Section 5.1 of Chapter 5 now considers the concept of “minimal premise sets” (MPS) 
iintroduced in [116]. The notion of MPS generalises th a t of MUS by considering clause-sets F  
w hich are minimal w.r.t implying any clause C  rather than just those implying JL (the empty 
cclause). And accordingly one can consider the minimal-premise subsets (MPSS) of a clause-set 
IF.

Every prime implicate C  of a clause-set F  has an associated MPSS (just consider the minimal 
ssub-clause-set of F  th a t implies C ), but not every MPSS of F  yields a prime implicate of F  (e.g., 
oconsider the MPSS {C } for some non-prime clause C  e F). By “doping” the clause-set, i.e., 
aadding a new unique variable to every clause, every clause in an MPSS F '  makes a unique 
ccontribution to its derived clause C. This results in a new clause-set D (F) which has an exact 
(correspondence between its minimal premise sets (which are (essentially) also those of F) and its 
{prime implicates. In this way, by considering clause-sets F  with a very structured set of minimal 
{premise subsets, we can derive clause-sets D (F) with very structured set of prime implicates.

Section 5.3 of Chapter 5 introduces the basic method (see Theorem 5.3.4) for lower bounding 
fche size of equivalent clause-sets of a given hardness, via the transversal number of “trigger 
hiypergraphs” . Using this lower bound method, Theorem 5.3.12 shows a lower bound on the 
rmatching number of the trigger hypergraph of doped “extremal” «SAdZ^=i-clause-sets. From 
tchis follows immediately Theorem 5.3.13, th a t for every k G No there are polysize clause-sets in 
lUCk+i, where every equivalent clause-set in WCk is of exponential size. Thus the UCk as well as 
tihe WCk hierarchy is strict regarding equivalence of polysize clause-sets.

1L.3.2 Strict hierarchies for knowledge compilation
Looking at UCk = SCUTZk again from the UC perspective, i.e., for knowledge compilation, the 
question is where does it fit with respect to existing knowledge compilation classes? [34] gives 
am overview of the CNF-based target languages (prime implicates, UC, 2-CCS, Horn clause- 
scets). [59] consider disjunctions of simple CNF classes. [46] provides an overview of target 
ccompilation languages based on “nested” (graph-based) classes, namely variants of NNF, DNNF 
amd BDDs. In all cases query complexity and succinctness is investigated. This thesis focuses 
om CNF representations, with the hope in the outlook towards good representations for current 
rcesolution-based SAT solvers. All of the CNF classes studied in [34, 46, 59] are included at the 
fiirst three levels of the hierarchy UCk, namely, sets of prime implicates in U C q , (renamable) Horn 
cllause-sets in UC\ =UC, and 2 -CCS in UC 2 -

We will see in Theorem 4.7.1 in Chapter 4 th a t UCk,VCk and WCk have the same poly-time 
qiueries as the PI knowledge compilation class (i.e., the class of clause-sets which are sets of 
pirime implicates; see Section 2.6 of Chapter 2). This is shown in comparison to  other knowledge 
ccompilation classes in Figure 1.4 (with full discussion in Chapter 4). Along with separation 
reesult in Theorem 5.3.13, this means th a t UCk, VCk and WCk form interm ediate layers between 
tHie PI and CNF knowledge compilation classes, offering increasing more succinct representations 
fuirther up the hierarchy, at the cost of polynomially more query effort (illustrated in Figure 1.5). 
Furtherm ore, every fixed level of each hierarchy is a complete class with respect to representation
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N o ta tio n Q u ery
CO poly-time consistency (satisfiability) checking
VA poly-time validity (tautology) checking
C E poly-time clausal entailment checking
IM poly-time implicant check
EQ poly-time equivalence checking
SE poly-time semantic entailment
C T poly-time model counting
M E poly-time model enumeration

Figure 1.3: Notations for knowledge compilation queries. Full details are available in Theorem
4.7.1 in Chapter 4 and in [46].

of boolean functions (as are all in Figure 1.5), unlike classes such as 2-CCS  (CNF clause-sets 
with clauses of size at most two) or H O  (Horn clause-sets) and other hierarchies for polynomial 
time satisfiability like VSHOk (generalised renamable Horn clause-sets; see Section 2.7.2.1); each 
of which is included at some fixed level oiUCk  C WCk.

An im portant point here is that, although the separation between levels oiUCk, VCk and WCk 
is only w.r.t to equivalent representations (i.e., without new variables), this perfectly fits into 
the knowledge compilation framework. Allowing the addition of new variables, i.e., moving to 
classes such as 3UC from [25], means th a t queries such as SE (semantic entailment, i.e., checking 
whether one CNF clause-set F  £ 3 UC entails another F '  £ 3 UC on free variables) are no longer 
poly-time decidable because unlike for CNF clause-sets (without new variables) one can no longer 
enumerate sets of falsifying assignments on the free (original) variables by enumerating clauses 
of the clause-set (i.e., for a CNF clause-set F  we have F  |= F'  iff VC £ F'  : F  |= C  which is 
not the case for existentially quantified CNFs). In particular, it is shown in [25] th a t 3 UC, as 
well as other query classes built by taking the closure of UC under disjunction, does not allow 
poly-time VA, IM, EQ or SE queries (as shown in Figure 1.4) while UC, and now more generally 
UCk, does.

1.4 “G ood” SAT representations
So we have seen th a t the UCk, VCk and WCk hierarchies are promising target classes for knowl
edge compilation (KC) and polynomial time satisfiability, offering intermediate layers between 
the CNF and PI classes in KC. Looking back a t the SCU Vk  perspective and connections to 
resolution (and hence to modern SAT solvers), in the outlook these classes should also provide 
good target classes for SAT translation, i.e., the translation to CNFs to be solved by modern 
SAT solvers. In general, for translations to SAT a typical path is

P ro b le m  —> C o n s tra in ts  —> B o o lean  fu n c tio n s  —>■ SAT.'   '
fo cu s o f  th is  th e s is

The VCk,UCk and WCk classes now offer “good” target classes for representing boolean 
functions (i.e., after a constraint is encoded as a boolean function) in the sense th a t they guarantee 
the existence of short tree- resp. full-resolution proofs. In [4, 129, 130] we see evidence that 
modern CDCL SAT solvers are able to find resolution proofs with low complexity in expected 
polynomial time. Furthermore, in Chapter 7, we see experimental evidence th a t when the level of 
UCk is low enough modern state-of-the-art SAT solvers are able to solve these problems relatively 
quickly.
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L CO VA CE IM EQ SE CT M E
NNF o o o o o o o o

DNNF ✓ o ✓ o o o o ✓

d-NNF o o o o o o o o

s-NNF o o o o o o o o

f-NNF o o o o o o o o

d-DNNF ✓ ✓ ✓ ✓ ? o ✓ ✓
sd-DNNF ✓ ✓ ✓ ✓ ? o ✓ ✓

BDD o o o o o o o o

FBDD ✓ ✓ ✓ ✓ ? o ✓ ✓

OBDD ✓ ✓ ✓ ✓ ✓ o ✓ ✓

OBDD< ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DNF ✓ o ✓ o o o o ✓
CNF o ✓ o ✓ o o o o

PI ✓ ✓ ✓ ✓ ✓ ✓ o ✓
IP ✓ ✓ ✓ ✓ ✓ ✓ o ✓

MODS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

u c k ✓ ✓ ✓ ✓ ✓ ✓ o ✓

r c k ✓ ✓ ✓ ✓ ✓ ✓ o ✓

W C k ✓ ✓ ✓ ✓ ✓ ✓ o ✓
3UC ✓ o ✓ o o o o ✓

U C [V ,3} ✓ o ✓ o o o o ✓

Figure 1.4: Subsets of the NNF language and their corresponding polytime queries, ^m eans 
“query possible in polytime” , o means “not possible in polytime (in general) unless P =  NP” 
and ? th a t there is no known result either way. Results and definitions for UCk, VCk and WCk 
are from Theorem 4.7.1 and Chapter 4 resp., results and definitions for 3UC and UC[ V , 3 ]  are 
from [25] and all other results and definitions are from [46]. See Figure 1.3 for query descriptions.

[An NNF-language represents a boolean function as a rooted DAG (directed acyclic graph) with 
A and V at the nodes and 1, 0, literal X  or literal ->X at the leaves. Subsets of NNF add 

constraints on the DAG such as decomposability (D), determinism (d-) and smoothness (s-) - 
see [46] for definitions.]
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Figure 1.5: Illustration of the succinctness relations between knowledge compilation classes from 
[46] and those introduced in this thesis. If there is a solid directed path  (using only —») from class 
L  to  class L' then every boolean function with poly-size representations in L' has a poly-size 
representation in L  (i.e., L  is a t least as succinct as L'). If there is no solid directed path from L 
to L' but there is a directed path (using some --->) then it is unknown whether L  is at least as 
succinct as language L ' . No directed path from L  to  L' indicates th a t there are boolean functions 
for which L  has a succinct (poly-size) representation but L' does not. Results relating to UCk, 
VCk and WCk are from Theorem 5.3.13; all other results are from [46]; some of which rely on 
the non-collapse of the polynomial hierarchy. More details are given in Section 4.7 of Chapter 4.
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Furthermore, a more direct relation between SAT solving and UCk is possible. The class UCk 
uses generalised UCP, namely the reduction r*,. Especially r 2 , which is (complete) failed-literal 
elimination, is used in look-ahead SAT solvers (see [88] for an overview) such as OKsolver ([108]), 
march ([89, 87]) and Satz ([119]). Also conflict-driven solvers such as CryptoMiniSat ([149]) 
and PicoSAT ([18, 20]) integrate r 2 during search, and solvers such as Lingeling ([20, 21]) use 
r 2 as a preprocessing technique. Furthermore, in general r*, is used, in even stronger versions, 
in the Stalmarck-solver (see [153, 84, 143], and see Section 3.5 of [104] for a discussion of the 
connections to r^), and via breadth-first “branch/m erge” rules in HeerHugo (see [73]).

1.4.1 New variables: the relative vs absolute condition
Certain results in this thesis apply only to representing boolean functions without new variables. 
On the one hand, fixing the boolean function has certain advantages. We saw for knowledge com
pilation th a t considering only equivalent representations had the upside th a t certain queries (i.e., 
VA, EQ, and SE) were poly-time decidable, while not being polytime decidable once existential 
quantification was introduced. When finding “good” SAT representations, avoiding the use of 
new variables allows the enumeration and optimisation of representations within a target-class,
i.e., the space of all representations is finite and the optimum representation can be searched for 
(e.g., see [74]).

On the other hand, when translating constraints to satisfiability, new variables can play 
a pivotal role, both in terms of succinctness (for example, the XOR clauses in Section 6.4 of 
Chapter 6 have no short representation without new variables at all) and in terms of power, e.g., 
many representations which “maintain arc-consistency via UCP” do this via the introduction of 
new variables with certain semantic meaning (see e.g., cardinality constraint translations in [7]). 
When using UCk, VCk and WCk as target-classes for SAT translation an im portant question is 
not just whether one uses new variables, but what being in UCk etc means in the presence of 
new variables.

The most prevalent notion of “good” representation in satisfiability (of some higher level 
constraint) is one that “maintains arc-consistency via unit-clause propagation” . This is a relative 
notion th a t requires that for any partial assignment (instantiation) of the constraint variables 
(applied to the representation) unit-clause propagation on the CNF representation sets variables 
which are “forced” at the constraint level (see Section 2.8 for an explanation). As with the 3UC 
knowledge compilation class, there is a distinction between the bound new variables and the free 
original variables -  the properties regarding propagation only apply to partial assignments over 
the original variables. Translating a constraint “fully” as a clause-set into one of the UCk, VCk, 
or WCk hierarchies is instead an absolute condition -  the clause-set knows nothing about the 
constraint and all partial assignments must be considered -  a modern SAT solver can branch on 
any variable (including new).

In fact, in [94] it is shown that conflict-driven solvers with branching restricted to input 
variables have only superpolynomial run-time on EPHP^, an Extended Resolution extension to 
the well-known pigeon-hole formulas, while unrestricted branching determines unsatisfiability 
quickly (see Section 8.2 for more on this). Also experimentally it is demonstrated in [96] th a t 
input-restricted branching can have a detrimental effect on solver times and proof sizes for modern 
CDCL solvers. This adds motivation to the fundamental choice of considering all variables 
(rather than  just input variables), when deciding what properties we want for SAT translations. 
This is called here the “absolute (representation) condition” , taking also the auxiliary variables 
into account, while the “relative condition” only considers the original variables. Besides avoiding 
the creation of hard unsatisfiable sub-problems, the absolute condition also enables one to study 
the target classes, like VC, on their own, w ithout relation to  what is represented, i.e., UCk is just 
a class of clause-sets.
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1.4.2 Tools for good representations

Chapter 6 concludes the theoretical investigations by considering translations based on the 
Tseitin translation in Chapter 5, and show that interesting classes of boolean function can be 
polynomially translated to UC under the absolute condition using new variables. First the no
tion of “representation” in general is discussed in Subsection 6.1, with special emphasise on the 
“relative” versus the “absolute condition” .

The Tseitin translation for DNFs is called here the “canonical translation” , and is investigated 
in Subsection 6.2. In particular, in Lemma 6.2.7 it is shown th a t every orthogonal (or “disjoint” , 
or “hitting” ) DNF is translated to UC, while Lemma 6.3.3 shows th a t actually every DNF is 
translated to UC, when using the “reduced” canonical translation, which uses only the necessary 
part of the equivalences constitutive for the Tseitin translation. Applied to the examples from 
Chapter 5 yielding the separation of UCk+i from WCk (Theorem 5.3.13, regarding polysize 
representations without new variables), we obtain a representation in UC in Theorem 6.2.9 (for 
the canonical translation), demonstrating the power of using new variables.

It has been noted in the literature at several places (see [131, 93, 55]) th a t one might use 
only one of the two directions of the equivalences in the Tseitin-translation. Regarding the 
canonical translation we have the full translation (Definition 6.2.1) versus the reduced translation 
(Definition 6.3.1). The full translation yields UC for special inputs (Lemma 6.2.7), and has 
relative hardness 1 for general DNF (Lemma 6.2.4), however (absolute) hardness for arbitrary 
DNF-inputs can be arbitrarily high as shown in Lemma 6.2.6. On the other hand, the reduced 
translation yields always UC (Lemma 6.3.3). So we have the following explanations why using 
either both directions or only one direction in the Tseitin translation, in the context of translating 
DNFs, can perform better than the other form:

• When using both directions (i.e., the canonical translation), then splitting on the auxiliary 
variables is powerful, which is an advantage over using only one direction (i.e., the reduced 
canonical translation), where setting an auxiliary variable to false says nothing.

• On the other hand, the canonical translation, when applied to  non-hitting DNFs, can create 
hard unsatisfiable sub-problems (via partial assignments), which can not happen for the 
reduced translation.

It seems very interesting to us to turn these arguments into theorems (for concrete examples), 
and also to experimentally evaluate them. In this way we hope th a t in the future more precise 
directions can be given when to use which form of the Tseitin translation.

1.4.3 Experimental results

In Chapter 7 attention is turned to experimentation using the class of boolean functions /  used 
for the lower bound in Chapter 5, comparing short representations in UCk (for fc € {2, . . .  ,5}) 
to the UC\ translations introduced in Chapter 6. as a constraint in a general SAT problem. 
We complement these three constraint-representations in a fixed way to  obtain an unsatisfiable 
clause-set. The experiments show th a t for state-of-the-art SAT solvers (both DPLL and CDCL) 
the optimal (smaller) UCk representations perform much better in term s of running time. This 
yields some evidence to the claim that equivalent representations in UCk even for higher k (in the 
experiments here k <  5 is considered) might outperform representations obtained by introducing 
new variables, due to using (possibly) far fewer variables and clauses.
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1.5 Summary of results
The fundamental (new) definitions and concepts introduced in this thesis, as well as basic asso
ciated lemmas, are:

1. Definition 3.4.1 defines the notion of hardness upon which the UCk hierarchy is built, 
generalising the hardness for unsatisfiable clause-sets from [104, 110]. This concept was 
first mentioned as one of several possibilities for hardness measures in [2]; it is now a central 
concept.

2. Definition 4.2.1 introduces the UCk hierarchy, the emphasis of this thesis. The fundamental 
change of perspective is th a t rather than measuring hardness as in [104, 110, 2], the UCk 
hierarchy now acts as a target-class for translation and good representations.

3. Definition 3.5.1 and Definition 4.6.1 introduce propagation hardness and the VCk hierarchy 
based on the VC class from [26]. The VCk hierarchy has strictly stronger properties than 
UCk (see Section 3.5 of Chapter 3), however UCk is conceptually simpler with (more) 
direct connections to tree-resolution complexity (see Theorem 4.2.2), and so forms the 
foundational hierarchy in this thesis, to which VCk is then related.

4. Definition 3.6.2 and Definition 4.6.8 introduce the notions of (asymmetric) width-hardness 
from [104, 110] and the (new) associated WCk hierarchy. While the UCk hierarchy en
forces bounds on tree-resolution complexity (see Lemma 3.2.4), WCk places bounds on 
full-resolution complexity (see Definition 3.6.2), allowing greater scope for smaller transla
tions under the stronger proof system (and SAT solvers that simulate such systems).

5. Definition 4.5.1 defines the notion of a A;-base for optimising representations in UCk■ A 
fc-base for a clause-set F  is a minimal equivalent representation F  e  UCk of F. W ith 
such optimal representations in mind, results are proven on the complexity of finding such 
representations (i.e., minimisation) in Section 4.5 of Chapter 4.

The main results on UCk, the SCUTZk hierarchy, and their relation to the SCUTZ class are:

1. Theorem 4.2.2 shows th a t the elements of UCk are precisely the clause-sets F  where every 
prime implicate of F  can be derived by fc-times nested input resolution from F.

2. Theorem 4.4.4 shows th a t UCk = SCUTZk holds. This brings together two key perspectives, 
the proof theoretic side, UCk, defined in terms of fc-times-nested-input-resolution, and the 
algorithmic side, SCUTZk, defined in term s of the algorithmic r/t definition. Furthermore, 
this creates a further intuitive connection between the concepts of knowledge compilation 
and poly-time SAT representations, where now one can think of “SAT knowledge compila
tion” -  compiling boolean functions into good SAT representations with efficient detection 
of clausal-entailment.

3. Theorem 4.4.5 (via Theorem 4.4.4) demonstrates the coNP-completeness of membership 
decision for UCk when k > 1.

4. Theorems 4.4.6, 4.4.7 prove th a t the previous hierarchies based on SCUTZ are (strictly) 
included in the SCUTZk hierarchy, which we consider as a kind of “completion” , where 
both approaches, based on SLUR and UC, meet.

5. Regarding optimisation:
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(a) Theorem 4.5.4 shows th a t for F  in 2-CNF we can compute optimal equivalent clause- 
sets (of low hardness) in polynomial time.

(b) Theorem 4.5.5 shows that already for Horn clause-sets F,  even when all prime im
plicates are given as part of the input, the decision whether there is an equivalent 
clause-set (of low hardness) using at most a given number of clauses is NP-complete.

Chapter 5 starts by introducing a conceptual framework linking prime implicates and essential 
clauses of “doped clause-sets” with minimally unsatisfiable sub-clause-sets (minimal premise sets 
from [116]), yielding methods for constructing clause-sets (and associated boolean functions) with 
well-structured and well-understood sets of prime implicates:

1. Theorem 5.1.18 shows the correlation between prime implicates of doped clause-sets and 
minimal premise-sets of the original (undoped) clause-sets.

2. Theorem 5.2.11 characterises unsatisfiable clause-sets where every non-empty sub-clause- 
set is a minimal premise set.

3. Theorem 5.2.18 gives basic characteristics of the special class of doped SAiU s=i-clause-sets 
which are then used in the rest of Chapter 5 to prove a separation in terms of poly-size 
representability between each level of the UCk hierarchy.

The main results on size lower bounds for UCk are:

1. Theorem 5.3.4 introduces the basic method for lower bounding the size of equivalent clause- 
sets of a given hardness, via the transversal number of “trigger hypergraphs” .

2. Theorem 5.3.12 shows a lower bound on the matching number of the trigger hypergraph 
of doped “extremal” *SA4ZY,5=i-clause-sets.

3. Theorem 5.3.13 states the core separation result, showing th a t for every k € No there are 
polysize clause-sets in UCk+1 , where every equivalent clause-set in WCk is of exponential 
size.

Turning to upper bounds, th a t is, short representations (with new variables) with low hard
ness, the following main results are shown:

1. Lemma 6.2.7 shows how the Tseitin translation applied to hitting (orthogonal) DNFs (called 
here the “canonical translation”) can yield results in UC.

2. Lemma 6.3.3 shows th a t by removing clauses from the Tseitin translation (representing only 
implication rather than equivalence), one can map any DNF to UCk using new variables. 
This offers a possible explanation for differences in performance between using only one 
or both directions of the equivalences in the Tseitin-translation, noted in particular in 
[131, 93, 55].

3. Theorem 6.2.9 states th a t all doped S M U 5 - 1 -clause-sets (and in fact all doped unsatisfiable 
hitting clause-sets) have short CNF-representations in UC via the canonical translation.

4. Theorem 6.4.7 then shows th a t in general the Tseitin translation has unbounded hardness, 
using pairs of unsatisfiable XOR equations as an example.

In Chapter 7, experiments are then presented demonstrating th a t modern DPLL and CDCL 
SAT solvers can perform considerably better when one trades time for succinctness. Finally 
in the conclusion (Chapter 8), the contributions of the thesis are summarised and remaining 
conjectures and open questions are enumerated. Relations to  existing work are discussed a t the 
relevant locations throughout; in particular, comparisons to existing hierarchies and classes for 
knowledge compilation and polynomial time satisfiability occur in Chapter 4.
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1.5.1 Related publications
The publications related to this thesis are:

• The content of Chapter 3 and Chapter 4 was first presented as a conference paper ([76]) 
at SOFSEM 2013. This paper won Best Paper award at the conference.

• A (longer) journal paper ([78]), featuring the contents of Chapter 3 and Chapter 4, was 
published in the Journal of Automated Reasoning.

• Results related to the hardness of representing XOR clause-sets in Section 6.4 of Chapter 
6  are published as part of a conference paper [81], to appear at LATA 2014.

• The content of Chapters 5, 6  and 7 appear in technical reports ([79, 80]) which will be 
submitted as two further journal papers after this.

Furthermore, this work has been presented by the author at the following workshops and collo- 
quia: BCTCS 2013, CP Doctoral Program 2011, and BCTCS 2011, and has also been presented 
(again by the author) at an invited talk a t the Boolean Seminar 20136) in Liblice.

6)h t t p : / / k t i m l . m f f . c u n i . c z / b o o l e a n s e m i n a r 2 0 1 3 / i n d e x . php

25



26



Chapter 2

Prelim inaries on clause-sets and 
boolean functions

The basic existing notions and notations used in this thesis are now introduced. In particular, 
boolean functions are introduced in Section 2.1, clause-sets are introduced in Section 2.2, reso
lution proofs are defined in Section 2.5, prime implicates and implicants are discussed in Section 
2 .6 , relevant special classes of clause-sets are introduced in Section 2.7, and finally Constraint 
Programming and the connections to clause-sets and CNF satisfiability are discussed in Section 
2.8. In each case, there are entire theories (along with associated handbooks) and so the defini
tions and discussions are, for the most part, kept to those th a t are required and relevant for this 
thesis.

2.1 Boolean functions
The majority of this thesis will be concerned with the representation of boolean functions and so 
the basic notion of a boolean function and the essential notations are now defined. For the most 
part, the notations are essentially standard. A particularly im portant point is the use of named 
variables rather than positional arguments (see Definition 2.1.1) which ties in perfectly with the 
notion of clause-set representations of boolean functions (see Section 2 .2 ). For a full overview of 
the theory of boolean functions, see [42].

D efin itio n  2 . 1 . 1  A fixed universe V A  of variables with N C VA is assumed. Consider a finite 
set V  C VA of variables.

• A boolean function  on V  is a map f  : {0 ,1}V —> {0,1}, and we set v a r ( / )  := V.

• The number of variables is n ( f ) : =  11̂ 1 € No-

• The set o f all boolean functions is denoted by B T  (or, fully explicit, B T ifV A )) ,  and the
set of all boolean functions f  with var( / )  =  V  by B T V .

Remarks:

1. Note th a t we take N to not contain 0, and so 0 is not a variable. This in general avoids
confusion with negation often being represented as — while 0  =  —0 .

2 . So arguments of boolean functions /  are to tal assignments ip : var( / )  —>■ {0 , 1 }.

27



3. For the sets of satisfying/falsifying assignments of a boolean function /  the standard m ath
ematical notation, namely / - 1 (1 ) resp. / _ 1 (0 ), is used1).

4. 0 V and l v  are used for the boolean functions with domain V  which are constant 0 resp. 
1 , while 0  := 0 ® and 1  := 1 ® (in this context).

5. A variable v E V.4 considered as boolean function is idv (the identity on {u}). And 
complementation is interpreted as negation, th a t is, v considered as boolean function is 
-i idv.

6 . The boolean functions 0V ,1 V are referred to as the constant 0 resp. constant 1 boolean 
functions.

So a boolean function takes some total assignment to its variables and returns 1 or 0 . In this 
way, the boolean function /  : 0 , l v  —> {0 , 1 } acts as a characteristic function for the relation 
given by / _ 1 (1 ). Via encoding non-boolean domains into boolean (for example, see Section 2.8), 
the boolean function (as a concept) can act as an elementary building block in many modelling 
tasks. For example, in representation of knowledge bases (see Section 2.7.2); in the design of 
cryptographic primitives (e.g., substitution boxes; see [44] for an overview on cryptographic 
boolean functions); in modelling and minimisation of electrical circuits (for example, analysis of 
prime implicates, prime implicants and “minimal covers” for circuit minimisation in VLSI design 
in [30]); and analysis in the social sciences (e.g., Qualitative Comparative Analysis (QCA); 
see [134, 136] for an overview). Particularly relevant to this thesis is the general modelling of 
constraint problems and problems in the NP complexity class as boolean functions via translation 
to  satisfiability problems (a full overview of the SAT problem and related literature is available 
in [23] and a brief overview is given in the remainder of this chapter).

Im portant for the understanding and use of boolean functions in modelling is the notion 
of a partial assignment, allowing certain values of the function to  be fixed and a new boolean 
function generated. A simple example of the need for this is in the construction of knowledge 
bases. For example, in modelling medical knowledge bases, the presence of absence of many 
factors may contribute to a patient being diagnosed with a disease X and this knowledge can be 
represented as a boolean function. When certain factors are known to be present for a particular 
patient, the boolean function can then be instantiated with the partial assignment corresponding 
to  those factors, and a new boolean function derived for their specific case (for more examples of 
representing medical knowledge bases as (partial) boolean functions, see Logical Analysis of D ata 
in [83, 28]). The application of partial assignments is also vital in satisfiability and constraint 
programming, where backtracking algorithms (see e.g. DPLL as described in [8 8 ] and CDCL 
solvers as described in [1 2 1 ]) rely on the ability to build up partial assignments and evaluate the 
result.

D efin ition  2.1.2 A partial assignm ent is a map ip : V  —>- {0,1} for some finite V  C  VA, and
we set v ar (ip) V . The set of all partial assignments is denoted by 'BASS, while for V  C  VA  
we define B A S S (V )  := {(p E T A S S  : var(tp) C  V }  C  TA SS . The empty partial assignment is 
denoted by () E T A SS . Relative to some finite V  C  VA one calls a partial assignment ip with 
var(</>) =  V  a to ta l assignm ent. For a variable v E var(<£>) we define <p(v) := 1 — (p(v). Two 
partial assignments are consistent, i f  for all v E vai(p) fl v&r(ip) we have p(v) =  ip(v); 
otherwise they are called inconsistent.

D efin ition  2.1.3 The composition o : T A SS  x T A S S  —>■ T A SS , denoted by ip o p  E T A SS  for  
ip, ip E TA SS, is defined as follows:

^ T h e standard notation often used is actually / _ 1 ({0 }), but a small liberty is taken for notational convenience.
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1. var(0 o p)  = var(p)  U var(0)

2 . ( 0  o p)(v) := <̂ (i>) i f  v E var (<£>), while otherwise ( 0  o (^)(v) := 0 (u).

D efinition  2.1.4 TYie operation * : 724<S«S x BJ7 —> BJ- o f partial assignments on boolean func
tions, denoted by p> * f  £ BJ- for p  € V A SS and f  6  BJ-, is defined as follows:

1 . var (p * f )  = var ( /)  \  var(<£>)

2 . for  0  : var(<p * / ) - ) •  {0 , 1 } let (p  * / ) ( 0 ) := / ( 0  o <p) = f ( p  o 0 ).

Semantic entailment is then defined for boolean functions in the standard way:

D efinition  2.1.5 Consider two boolean functions f ,g  e  BJ7. We say that f  \= g iff for all 
p  € {0, l} var(/)Uvar(9) we have that f ( p )  — 1 => <?(</?) =  1 . We say that f  = g i f  f  f= g and 
9\= f-

Application of partial assignments is compatible with the standard boolean operations (A for 
conjunction ( “and”), V for disjunction ( “or” ), and -> for negation ( “not”)) in the following sense:

Lem m a 2.1.6 For a partial assignment p,  a finite set V  o f variables, and boolean functions f ,g  
we have:

1 . p * 0 v = ov \var(ip)

2 . p  * l v  =  i ^ \ var(<p)

3. p *  (-if) - -i(p  * f )

4. For every truth-functional composition □ of boolean functions (i.e., (fD g)(x) depends only 
on f ( x )  and g(x)) we have p  * (/□<?) = (p * f ) d ( p  * g). So

(a) p *  ( /  Ag)  = ( p *  f )  A ( p *  g)

(b) p * ( f v g )  = ( p * f ) v { p * g )
(c) p *  ( f  -> g) = ( p*  f )  -> ( p*  g)
(d) p *  ( f  «-> g) = ( p*  f )  <-> ( p*  g)

(e) p  * ( f  ® g) = (p * f )  ® (p * g).

Taking these operations as a basis, we can form arbitrary propositional formulae (e.g., (a V
-ib) A (-ia V (-i& Ac))) which then represent the underlying boolean function. Central to the topic
of this thesis are Conjunctive and Disjunctive Normal Forms.

D efinition  2 .1 .7  A propositional formula is in Conjunctive N orm al Form (C N F ) i f  it is the
conjunction of disjunctions of literals (i.e., variables or their negations). A proposition formula
is in Disjunctive Normal Form (D N F ) if  it is the disjunction o f conjunctions of variables or 
their negations.
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Remarks:

1. So, for example (a V b) A (c V d) A (a V ->c) is a CNF, and (a A c A d) V ( - > 6  A -ic A d) V (a A b) 
is a DNF.

It is a well-known fact that every boolean function has a representation as a CNF formula 
and as a DNF formula in the following sense.

L em m a 2 .1 .8  Consider a boolean function f  : {0, \ ] v  —» {0,1}. We have that

{ \
V v  v V

v £ V  v E V
\y? (v )=0  <p(v) = 1 /

V -A V
v £ V  v £ V

\ ip (v )  = l  <p(v)=0 /

In this way, the CNF representation encodes th a t for all falsifying assignments <p (i.e., unfolding 
V to a conjunction) for /  th a t /  is not true under p  (note here th a t via DeMorgan’s law we have 
-'(vi A ■ • • A vn ) = -ivi V . . .  V ->vn), and the DNF representation encodes th a t for /  to be true 
one of the satisfying assignments must be true (i.e., unfolding 3 to a disjunction).

2.2 Clause-sets
The notion of a clause-set provides a convenient abstraction for representing both Conjunctive 
and Disjunctive Normal Forms (CNFs and DNFs) by forgetting details of boolean operations 
and ordering and keeping only the underlying conflict structure (i.e., literals occurring positively 
or negatively).

D efin itio n  2 .2 . 1  We consider a fixed universe VA . of variables with N C  VA.

• The set C.X'T of literals is structured by complementation, a self-inverse bijection x  €
C T T  C TT, such that for every x  G C T T  we have exactly one of x  G VA (a positive
literal) or x  G VA (a negative literal), and such that for v G N we have v = —v.

• A clause is a finite set C  C  C T T  of literals without clashes, that is, C  fl C  — 0  with
C  := {x  : x  G C}; the set o f all clauses is denoted by CC.

• A finite clause-set F  is a finite set of clauses, the set of all finite clause-sets is denoted by 
CCS. A special clause is -L := 0  G CC, a special clause-set is T  :=  0  G CCS.

The following core measures and notations are used throughout:

1 . Let v a r : C TT  VA be defined by var(u) :=  v and var(u) := v for v G VA. For a 
set L  of literals let var(L) := {var(x) : x  G L}, and for a set G o f sets of literals let 
var(G) := (J lg g  var(L). And for a set V  o f variables let l i t(V )  : = V U V .

2. For F  G CCS le tn (F )  |var(F)| G No be the number of variables o f F , c (F )  := \F\ G No 
be the number of clauses of F , £ (F )  e  be the number o f literal occurrences 
in F.

30



3. For V Q V A  and F  e  CCS we define V  * F  := { C \ ( V  U V ) : C e  F }.

A n isomorphism from a clause-set F  to a clause-set G is a bijection a  : lit(F ) -» lit(G) for  
which (a) the map C  G F  {o;(x) : x  e  C} € G is also a bijection (i.e., a  is a hypergraph 
isomorphism on the underlying hypergraphs F  and G) and (b) a  respects literal complementation, 
i.e., a (x) =  a(x).

Remarks:

1 . So essentially C X T  is just VA  extended by a set of “negations” for every element in VA  with 
the “negation” operation defined such th a t whatever VA  can’t  contain both an element an 
its negation.

2 . We do not have (in general) 0  e  VA  (recall we do not have 0  € N), since — 0  =  0  2\

3. var(x) is the underlying variable of literal x, and accordingly var(C) and var(F) for clauses 
C  and clause-sets F  are the sets of underlying variables.

4. lit(V) is the set of literals created from V , and for the set of all literals we have C X T  =  
lit(V.4). We set lit(C) := lit(var(C)) and lit(F ) := lit (var (F )) for clauses C  and clause-sets 
F. In some cases, we will wish to directly reference the set of literals occurring in F, in 
which case we will denote this by occlit(F) := U ceF  *-'•

5. We call a clause-set full if every clause contains all variables, i.e., for all C  € F  we have 
var(C) =  var(F).

2.2.1 Partial assignments and the semantics of clause-sets
To understand the semantics of clause-sets and their correspondence to boolean functions, it is 
necessary to understand the application of partial assignments (as a t the boolean function level) 
on clause-sets.

D efinition  2.2.2 The operation * : VASS  x CCS —> CCS of partial assignments on clause-sets, 
denoted by tp * F  e  CCS for <p € T A SS  and F  € CCS, is obtained from F  in two steps:

1 . All clauses C  E F  containing a literal x  € C with <p(x) — 1 are removed.

2. From the remaining clauses all literals x  with ip{x) =  0 are removed.

Remarks:

1 . See [100] for more on partial assignments and their operations.

2. A clause-set F  is satisfiab le iff there exists a partial assignment (the satisfying as
signm ent) with cp * F  — T. Note that here only the CNF-interpretation of clause-sets is
used.

2^Of course, one can choose to have 0 € VA \  N but then one must (counter-intuitively) choose some non-0 
negation/ “inverse” for 0.
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It is now possible to introduce the CNF and DNF semantics of clause-sets:

D efin itio n  2.2.3 For a clause-set F , we use C N F  (F ) resp. D N F ( ir ) for the corresponding 
boolean functions {0 , l} var(-F) —>• {0 , 1 }:

DNF(F) :=  V A-
C€F xec

CN F(F) := / \ \ J x .
C£Fx€C

Remarks:

1. For clause-sets F  we have var(DNF(F)) =  var(CN F(F)) =  var(F).

2 . Regarding the clause-sets w ithout variables we have:

(a) DNF(T) =  CNF({_L}) =  0
(b) DNF({_L}) =  CNF(T) =  1.

The CNF resp. DNF interpretations of clause-sets yield a mapping between clauses of the 
clause-set and subsets of / - 1 (0) resp. / - 1 (1 ). This mapping has a certain geometric aspect, in
th a t each clause in the clause-set defines a sub-space in the hypercube {0,1}^ (see Section 1.9 of
Chapter 1 in [42] for more detail). This map is map explicit in the map from clauses to partial 
assignments in Definition 2.2.4.

D efin itio n  2 .2 .4  For a clause C let the partial assignment tpc be specified by

1 . var(p c ) — var(C7)

2. p c{x)  =  0 o  x  E C for x  E lit(C).

More generally for £ E {0,1}:

p f j  :=  (x  —y £ : x  E C)
( x occlit(var(<£>)) : ip(x) — e}.

And conversely, for a partial assignment ip let the clause C ^ be given as C^ := {x  E occlit(var(<p)) : 
p(x) = 0 }.

Remarks:

1 . ip± = ().

2 . p, ip are consistent iff D = 0  (that is, the corresponding clauses do not clash).

3. p°c  =  p c  and C j =  Cv .

As with CNF formulae, for each boolean function there are canonical clause-sets associated 
with the canonical CNF and DNF formulas.

D efin ition  2.2.5 For a boolean function f  let C N F ( / )  e  CCS denote the d is tin g u ish ed  co n 
ju n c tiv e  n o rm a l fo r m  of f  (containing the “max term s”), and let D N F ( / )  E CCS denote the
d is tin g u ish ed  d is ju n c tiv e  n o rm a l fo r m  o f f  (containing the “min term s”):

C N F( /)  := {Cp : p  E V A SS  A var(^) =  var( /)  A f {p)  = 0}
D N F (/) := {C I  : p  E V A SS  A var(<p) =  v ar(/) A f ( p )  = 1}.
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Remarks:

1. We have C N F(C N F(/)) =  /  as well as D N F(D N F(/)) =  / .

The default interpretation of a clause-set F  is as a CNF, which can be emphasised by speaking 
of the “CNF-clause-set F ” , th a t is, the interpretation as a boolean function is

A V x '

c e F x e c

We might consider F  also as a DNF-clause-set, which does not change F  itself, but only changes 
the interpretation of F  in considerations regarding the semantics:

v  A x -
CEFx£C

Note that by the de Morgan rules from the CNF-formula we obtain the DNF-formula via negating 
the whole formula together with negating the literals (in other words, the underlying boolean 
function of a CNF-clause-set F  is the “dual” of the underlying boolean function of the DNF- 
clause-set F ; see [42]). Thus the logical negation (as CNF) of a clause-set F  (as CNF) is obtained 
from a DNF-clause-set equivalent to F  by negating all literals.

Exam ple 2.2.6 The clause-set F  =  {{f}} has the equivalent DNF-clause-set F  =  {{v}} (the 
underlying boolean function is “self-dual”; see [42]), while the negation is {{F}}. And F  =  
{{lAic}} has the equivalent DNF-clause-set while the negation is {{u},{uJ}}.

While clause-sets and partial assignments themselves are neutral regarding CNF- or DNF- 
interpretation, the application p *  F  is based on the CNF-interpretation of F ; if we wish to  use 
the DNF-interpretation of F , then we use p  * F , where p  := (v —> p(v) : v € var(</?)). While T 
in the CNF-interpretation stands for “true” , in the DNF-interpretation it becomes “false” .

E x am p le  2 .2 .7  Consider F  := {{«},{&}} € CCS (with n (F ) =  c(F) =  I{F) — 2). Then 
DNF(F) =  {{a, 6 }}, and for p  := (a, b —»• 1) we have p  * F  = T. This corresponds to the 
CNF-interpretation a Ab of F , which has exactly one satisfying assignment p. I f  we consider 
the DNF-interpretation a V b of F , then we have three satisfying total assignments for the DNF- 
clause-set F , and for example the satisfying assignment if (a —> 1) is recognised via * F  — 
(a 0) *F  =  { ± ,  {b}}, where the result as DNF is a tautology, since _L as a DNF-clause becomes 
the constant 1 (as the empty conjunction).

2.3 Forced literals/assignm ents

Fundamental is the notion of a “forced literal” of a boolean function resp. a clause-set3 ,̂ which 
are literals which must be set to true in order to satisfy the function resp. clause-set:

D efinition  2.3.1 A literal x  is forced for a boolean function f  i f  f  \= x, and the set of forced 
literals for f  is f l ( / )  C CT1~■ A literal is forced for a clause-set F  i f  it is forced for  C N F(F), 
and we set fl(F) := fl(CNF(F)).

3)\ve prefer this logical (and common) terminology over “backbone literal” , which is only used in a special 
context
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Every literal is forced for every 0 V. In fact a boolean function /  is constant zero iff fl(/) =  C XT  
iff there is a literal x  with x , x  G fl(/). No literal is forced for any l v  (i.e., f l(lv ) =  0 ) .  We have 
for every boolean function /  that

f i ( / ) = n £ I T DNF(/>

(the index “£ Z T ” in the intersection is the “universe” of the sets considered in the intersection, 
which becomes the result if there are no sets to intersect, th a t is, if /  is unsatisfiable).

E x am p le  2.3.2 Some basic determinations o /fl(F ) are:

1 . f l({_L}) =  CXT.

2. fl(T) =  0.

3. f l({ { x i} ,. .. ,{ x n }}) =  { x i , . . . , x n }.

4 . fl({{x,y},{x,y}}) =  0 .

5. fl({{x,y},{x,y}}) =  {x}.

If x is a forced literal for F, then the fo rced  a ss ig n m en t (x —> 1 ) yields the clause-set 
(x —> 1) * F  which is satisfiability-equivalent to F. We denote by rao(F ) G CCS the result of 
applying all forced assignments to F. Note th a t F  is unsatisfiable iff r ^  (F) =  {JL} (while F  is 
uniquely satisfiable after discarding variables without influence iff r 0 0 (F ) — T).

2.4 Reductions
In 1962, Davis, Putnam , Logemann and Loveland introduced the DPLL algorithm in [47], based 
on earlier work by Davis and Putnam  in [48]. This significantly improves on the simple brute- 
force techniques for solving satisfiability and opens the field for “intelligent backtracking” by 
introducing two reduction techniques unit-clause propagation and pure literal elimination, used 
at every node in the backtracking search tree (see [8 8 ] for an overview on backtracking in SAT) 
to avoid unnecessary search.

D efin ition  2.4.1 For clause-sets F ,F ' the relation F  D ^  F ' holds i f  for all C  G F  there is 
C' G F ' with C' C  C; we say that F ' strengthens F. A reduction in this context is a map 
r : CCS —»• CCS such that for all F, F ' G CCS we have

1. r(F ) is satisfiability-equivalent to F;

2. i f  A. G r(F ) and F ' strengthens F  then J_ G r(F ').

A reduction r discovers unsatisfiability of F  i f  -LG  r(F ).

D efin ition  2.4.2 Consider a reduction r. The relation F  \=r C  holds for a clause-set F  and 
a clause C , and we say C is deducible from  F  via r, i f  r discovers unsatisfiability of (pc * F 
(that is, _L G r (p c  * F ) for p>c — (x  0 : x  G C )).

P u re  lite ra l e lim in a tio n  removes literals (and the clauses containing them) which occur in 
only one polarity. These literals can be set while maintaining satisfiability, and via the removal 
of the associated clauses, potentially hard sub-clause-sets are removed, reducing back-tracking.
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D efin itio n  2.4.3 Consider a clause-set F  and a literalx  £ occlit(F). x  is pure  i f x  ^  occlit(F). 
P u re  litera l p ropaga tion  is defined as follows

|  rp((x —» 1) * F) i f  3 x  £ occlit(F) : x  is pure in F  
1 F  otherwise

Particularly important to the work in this thesis, u n it-c lau se  p ro p a g a tio n  (U C P ) prop
agates the most simple forced literals in a clause-set, namely those which occur in singleton 
disjunctions. We will see a generalisation of UCP in Definition 3.1.1 of Chapter 3.

D efin itio n  2.4.4 Consider a clause-set F . U n it-c la u se  pro p a g a tio n  r i  : CCS —> CCS is the
reduction defined as follows

f{ ± }  i / X e F
ri (F) := < r i ( (x -* 1) * F ) i f  3 x  £ lit(F ) : _L £ (x —>■ 0) * F  .

{ F  otherwise

Remarks:

1 . The map ri : CCS —» CCS is well-defined (does not depend on the choices)4 .̂

2. ri applies only forced assignments (and so r i(F )  is satisfiability-equivalent to F ).

3. r i(F )  is computable in time 0(£(F )) and linear space (see [53]) by using clause-variable 
graphs to  avoid visiting “untouched” clauses during propagation. Watched-literal data- 
structures, introduced in [125], further improve on such graph-based algorithms by watching 
2 literals in every clause, and only taking action when one of these is set (implying th a t a 
unit-clause might have been created).

4. r i(F )  =  {_L} implies ri (ip * F ) =  {_L}.

5. n(cp * r i(F ))  =  x\(tp * F ).

6. ri is used in all modern DPLL and CDCL solvers which dominate the best performing SAT 
solvers in international SAT competitions (see Section 7.2 for discussion on state of the art 
solvers and their performance on instances in this thesis).

E x am p le  2.4.5 Consider the following clause-set and the corresponding applications of r i :

{ {a} ,{5,6},{6}} {{&},{&}} ^  { x } .

unit-clause

The utility of unit-clause propagation is demonstrated in Example 2.4.6, where a clause- 
set is shown for which ri determines unsatisfiability in linear time, but w ithout ri worst case 
exponential backtracking trees are possible.

4^This follows essentially via the diamond lemma ([126, 92]) and the fact that any rewrite system  which sets 
only forced literals is locally confluent (setting one forced literal to true can’t remove another forced literal) and 
terminating - see e.g., Lemma 3.13 in [104],
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E xam ple 2.4.6 Consider n 6 N and the unsatisfiable clause-set

Fn := I (J { { x i,.. .,X i_ i,X i} }  I u { { x i , . . . , x „ } , { x i , . . . , x n_ i,x „ } }

We have that (xn —>■ 0) *Fn — (xn —» 1) *Fn =  Fn_ i and hence by induction the backtracking tree 
formed by taking the fixed variable-order heuristic xn, . . . , x i  (?.e., always choose the “largest” 
Xi) has size 2n . However, r i(F n) =  {J_} and r i runs in linear time. This shows a worst-case 
separation between backtracking with and without r i . So for example, with n  =  3 we have:

(x3 —*0 ) (x3—►!)

(x2—>0)(x2->0) (x2 ->l) (x2—>■!)

( x j —>1) (x i ^0) (Xi-^l) (xi —>0 ) (x]->-l) (xi-J-0)(xi —>0 )

{F }  U }  U }  {1 }

compared to the following 3 steps for  ri : 

r i(F 3) = r i(  (xi 0 ) * F 3

( x i  —> 1 }

{ { x 2},  { x 2 , x 3} ,  { X2, £ 3 }}

) =  r i( (x 2  -> 0 ,x i  -»• 0 ) * F3) = {±}.

{{*3},{®i}}

2.5 Resolution
The resolution calculus was introduced in 1965 by Robinson in [138]. The resolution rule allows 
clauses, essentially representing implications such as A  —> b and b —> C for arbitrary formulas A  
and C and literal b, to be resolved to yield the clause representing A  —> C.

D efin itio n  2.5.1 Two clauses C ,D  are resolvable i f  \C fl D\ = 1 , i.e., they clash in exactly
one variable:

• For two resolvable clauses C and D the resolvent C o D  :=  (C  U D ) \  { x , x }  for C  Pi 
D =  {x} is the union of the two clauses minus the resolution literals.

•  x  is called the resolution literal, while var(x) is the resolution variable.

Remarks:

1. If x is the resolution literal of C , D , then x G C ,  and x  is the resolution literal of D, C.

Every resolvent clause derived by the resolution rule is a logical consequence of the parent 
clauses, and in [138] Robinson showed th a t resolution is in fact complete for propositional logic. 
T hat is, for any clause-set F  if a clause C  logically follows from F  (i.e., CNF(F) |= CNF({C}) 
then C  can be derived from F  via a series of resolution steps.

D efin itio n  2.5.2 A resolution tree is a pair R  =  (T ,C ) such that:

•  T  is an ordered rooted tree, where every inner node has exactly two children, and where
the set of nodes is denoted by nds(T), the root by rt(T ) € nds(T), and the set of leaves by 
lvs(T) C  nds(T).

36



• While C  : nds(T) —> CCS labels every node with a clause such that the label of an inner
node is the resolvent of the labels of its two parents.

We use:

• F ( R ) := {C (w ) : w G lvs(T)} G CCS for the “axioms” (or “premisses”) o f R;

• C (R )  := C (rt(T )) G CC as the “conclusion”;

A resolution proof R  of a clause C from a clause-set F , denoted by R  : F  h  C , is a resolution 
tree R. =  (T, C) such that F (R )  C F  and C (R) = C . We use F  h  C  i f  there exists a resolution 
proof R  of some C ' C C from F  (i.e., R  : F  C '). A resolution refutation of a clause-set F  
is a resolution proof deriving _L from F. A resolution proof T : F  h C  is regular iff along any 
path

A resolution tree T : F b C is regular iff no resolution step reintroduces a literal which has 
been resolved away earlier 5)

While the resolution rule is complete for propositional logic, a fundamental question is 
whether it is a practical proof system for showing unsatisfiability (for CNFs) or tautology (for 
DNFs). That is, given a CNF (or dually a DNF) F, how quickly can one find a resolution proof 
for F  \~ C? A  lower bound on the time for such computation is then the size of the smallest 
resolution proof th a t exists. There are two main measures for the complexity of resolution proofs.

D efin itio n  2.5.3 Consider a resolution proof R.

•  The tree-resolution com plexity  C o m p R (i?) G N is the number of nodes in R  (the “tree 
size”), that is, CompR(.R) := # n d s (R) =  |nds(T)|.

•  The resolution com plexity  C o m p r ( R )  G N is the number of distinct clauses in R  (the 
“dag size”), that is CompR(i?) := c(F(i?)).

Finally, for F  G U S A T  we set

•  C o m p ^ (F )  := min{CompR(i?) | R  : F  h J_} G N

• C o m p R (F )  := min{CompR(i?) | R  : F  b _L} G N.

Remarks:

1. Typically we identify R with T, while suppressing the labelling C.

Tree-resolution complexity is im portant because the tree-structure allows for simple inductive 
lower bound proofs (for example, see Chapter 3). However, in [71], Geordt proved th a t there 
are families of CNF clause-sets with poly-size proofs in resolution but only superpolynomial size 
regular resolution proofs, a superpolynomial separation between regular and full resolution. Later 
in [1], it was shown th a t there is an exponential separation between regular and full resolution, 
hence also showing an exponential separation for tree-resolution and full-resolution (as shown

5)If the empty clause is derived, then this is equivalent to the property, that along each path from the root 
to  some leaf no resolution variable is used twice. Every resolution tree T : F h C  can be regularised (as first 
mentioned in [156] (Theorem 3)), obtaining T '  : F  h C ' with C ' C C, where the underlying tree of T' is obtained  
from T  by cutting off some branches (thus the number of nodes and the height are not increased). This works 
by removing such resolution steps and keeping one of the parent clause, where the resolution literal would be 
reintroduced later; see Subsection 5.2.1 in [110] for details.
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in Lemma 5.1 of [157] minimal size tree-resolution refutations are regular). Every backtracking 
tree produced by a DPLL SAT solver can be directly translated to a tree-resolution proof, and 
so such lower bounds on tree-resolution complexity guarantee th a t there are CNFs which are 
“hard” for DPLL SAT solvers but not necessarily for systems based on full-resolution or stronger 
proof systems.

In [144] in 1999, Marques-Silva and Sakallah introduce the first Conflict-Driven Clause Learn
ing (CDCL) solver, breaking the direct connection between SAT solvers and tree-resolution by 
allowing the solver to learn new clauses characterising failed backtracking attem pts; for more 
details see [121]. Furthermore, in 2009 in [4], Atserias, Fichte and Thurley showed th a t idealised 
(yet practical) models of CDCL solvers can polynomially simulate full-resolution, hence showing 
th a t there are CNF clause-sets for which DPLL solvers must perform worse than CDCL.

One might think th a t such exponential separations between tree-resolution and full-resolution 
imply th a t tree-resolution should be ignored in favour of full-resolution, despite the stricter struc
ture allowing for easier upper and lower bounds proofs. However, any tree-resolution complexity 
upper-bounds on families of CNF clause-sets are also full-resolution upper-bounds, making tree- 
resolution a good candidate for offering stronger guarantees about proof length and structure. 
Also, the separation between tree-resolution and full resolution is for specific families of CNF 
clause-sets; once one allows the introduction of new variables as in the Extended Resolution proof 
system, introduced by Tseitin in [156], we have th a t extended tree-resolution can polynomially 
simulate extended full resolution. In fact, despite the existence of families of CNF clause-sets 
with exponential lower bounds for full-resolution (see [82]), there are no such lower bounds for 
extended resolution, and in fact extended resolution can polynomially simulate powerful proof 
systems such as extended Frege, as pointed out in Theorem 8.1 of [157].

2.6 Prim e implicates and implicants
A boolean function can have many CNF clause-set representations, and so when translating 
a boolean function to a clause-set representation the task becomes one of optimisation. How 
to find short representations of the boolean function? A key concept in understanding short 
representations of boolean functions /  is that of its prime implicates and implicants -  the clauses 
(resp. partial assignments, see Definition 2.2.4) of minimal size which follow from /  under the 
CNF resp. DNF interpretations (of the clause).

D efin ition  2 .6 . 1  Consider a boolean function f .

• Let p rc 0( / )  be the set of all C  G CC which as CNF are p r im e  im p lica tes  of f ,  that is,
f  \= CNF({C}) while f  CNF({C"}) for every C' C  C.

• Let p rc  1 ( f )  be the set of all C  G CC which as DNF are p r im e  im p lica n ts  o f f ,  that is,
DNF({C}) |= f  while DNF({C"}) ^  f  for every C' C  C.

Remarks:

1. Regarding the extreme cases we have for all finite V  C  VA:

(a) DNF(O) =  prCl(0) =  C N F(l) =  prc0(l) =  T

(b) D N F(l) =  prCl(l)  =  CNF(O) =  prco(0) =  {_L}.

2. Consider literals x q ,x \,  . . .  , x n , n  G No, with var(^i) ^  var(xj)  for i ^  j:

(a) prc0( \ / r= ia;i) =  {{zii • • • ,Zn}}
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(b) p r c o tA i i ^ )  =  {{^}}ie{i,...,n}
(c) prc0(x0 -» V i i ^ )  = {{^o, ^ i, • • • ,Zn}}

(d) prc0(x0 ->• A ?=i^t) = {{s o»a;i}}te{i,...,n}
(e) prc0(x0 G- VILi Xi) =  {{x 0 ,^ } } i 6 (l,...,n}
(f) prc0(x0 <- AS-i * 0  =  {{zo,zT, • • • ,^T}}
(g) prc0(x0 <-> V"=i x i) =  Prco(xo V"=i x i) Uprc0(x0 <- V?=i x i )
(h) prc0(x0 ++ A t ,  Xi) =  prc0(x0 -> A?=i x i ) U P ^ o ^ o  <- A?=i x i )

where U is disjoint-union (i.e., A  Id B =  A  U B  but we know th a t A  fl B =  0).

3. For variable-disjoint boolean functions / ,  g we have:

(a) If / ,  g are not constant-0, then prc0( /  A g) =  prc0( /)  Id prc0(g).
(b) If / ,  g are not constant-1, then prc1( f  V g) =  prc 1 ( f)  Id prc1(p).

4. A key property of prc0( /)  is that for all p  e  FZASS such th a t p  * f  — 0 we have _L G 
<p * prc0( /) . This is because by definition there is some C  G prc0( /)  with C  C  (prc0( /)  
is a clausal representation of all minimal falsifying assignments for / ) .

5. Recalling Definition 2.3.1, we can read off the forced literals from the prime implicates, 
namely x is forced for /  iff prc0( /)  fl {_L, {x}} A  0-

As usual, the default-interpretation for a clause-set is the CNF-interpretation, however, since 
here there might arise some confusion, the definitions are given explicitly:

D efin itio n  2.6 .2  For F  G CCS we define:

p rc  0(F ) := prc0(CNF(F)) 
prCl(F ) := prc,(CNF(F)).

Remarks:

1. Im portant here is th a t prcx computes the prime implicants (which is a DNF clause-set) 
but for an input clause-set we intentionally always take the CNF interpretation. We are 
simply interested in the prime implicates resp. implicants of the input boolean function, 
which by default is always given as a CNF.

Well-known is (since [24]) the determination of prime-implicates of clause-sets by resolution:

L em m a 2.6.3 For F  G CCS we have

prc 0(F) = { C e C £ S \ F \ - C A V C ' c C : F \ / C ' }

(recall Definition 2.5.2).

Remarks:

1. It is im portant to note here th a t resolution as a syntactic operation acts on clause-sets, 
irrespective of whether we take a CNF or DNF interpretation. This means th a t also the 
set prc0(F) is defined for a clause-set irrespective of whether we take the CNF or DNF 
interpretation. In this sense, we are justified in talking of the p rim e  c lauses of F , i.e., 
those elements of prc0(F).
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Prime-implicants of clause-sets are minimal satisfying assignments, and can be described as 
follows:

L em m a 2.6.4 For F  G CCS we have

prCj(F) = {C  e CCS I VC" G F  : C  n  C' ^  0 A VC" c  C 3  C" € F  : C' D C" =  0}. 

Prime-clauses represent the CNF- resp. DNF-interpretations in the following sense:

L em m a 2.6.5 For a clause-set F  we have

CNF(prc 0 (F )) ^  CNF (F)
DNF(pr Cl(F)) =* DNF(F)

C o ro lla ry  2 .6 . 6  For clause-sets F ,G  € CCS we have:

CN F(F) ^  CNF(G) ^  prc0 (F) =  prc0 (G)
DNF(F) “  DNF(G) ^  prCl(F) =  p rc^G ).

If a clause-set F  now contains only prime clauses (i.e., only those in prc0 (F)) then we called 
it p rim al:

D efin itio n  2.6.7 A clause-set F  G CCS is called C N F -p r im a l resp. D N F -p r im a l i f  F  C
prc0 (CNF(F)) resp. F  C prc1 (DNF(F)).

Remarks:

1. F  is CNF-primal iff there are no clauses C C  D  with D  € F  and CN F(F) |= CNF({C}).
And F  is DNF-primal iff there are no clauses C  C  D  with D  G F  and DNF({C}) f=
DNF(F).

2. T and {J_} are CNF- and DNF-primal.

3. As discussed in the remarks of 2.6.3, we have the notion of a prime clause, irrespective of the 
CNF resp. DNF interpretation, and hence we may also speak here of p r im a l clause-sets,
i.e., those th a t contain only prime clauses.

For a boolean function / ,  the smallest clause-set F  with C N F(F) =  /  will necessarily be 
primal and ir re d u n d a n t.

D efin itio n  2.6.8 A clause-set F  G CCS is called irred u n d a n t i f  for all clauses C  G F  it holds 
that C N F(F \  {C}) ^  CNF({C}) (or, equivalently, CNF(F) ^  C N F(F  \  {C})).

T hat the minimality of F  (w.r.t the number of literals) requires irredundancy follows by 
definition. That primality is necessary follows by the observation th a t non-primal clauses in F  
can be replaced with any subsuming primal clauses without breaking equivalence.

L em m a 2.6.9 Consider a clause-set F . For all C  G F \p r c 0 (F) and all C' G prc0 (F) such that 
C' C C  we have that CNF (F) ^  CNF ((F  \  {C}) U {C"}).

However, for any given boolean function /  there are potentially many irredundant primal 
clause-sets equivalent to /  (see Example 4.5.3 for an illustrative case). To achieve a basic size- 
lower-bound for any such clause-set F  with CN F(F) =  /  one can consider e sse n tia l p rim e  
im p lica tes.
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D efin ition  2 .6 .10 Consider a boolean function f  £ B T . A prime implicate C  £ prc0( /)  is 
essential ifp rc 0 (F) \  {C} is not equivalent to F.

Lem m a 2.6.11 Consider F  £ CCS, and let P  C prc0 (-F) be the set o f essential prime implicates 
of F. Now for every F ' € CCS equivalent to F  there exists an injection i : P  —»■ F ' such that for  
all C  £ P  it holds that C  C i(C ). Thus c(F') > c(P).

P ro o f: For every C' £ F ’ there exists a C  £ prc0 (.F) (=  prc0 (F ') by Corollary 2.6.6) such that 
C  C  C"; replacing every C' £ F  by such a chosen C  we obtain F "  C  prc0 (.F) with P  C  F " . This 
is possible because C  follows from F ', and so F f U {C} is equivalent to  F ', but then C' follows 
from C  (hence from F  U {C}) and so (F 1 U {C}) \  {C"} is equivalent to F '. □

2.7 Special classes of clause and clause-sets

The most fundamental of classes of clause-set for polynomial time satisfiability are now intro
duced, which it will be shown (for our purposes) are subsumed at different levels of the UCk 
hierarchy (see Lemma 4.3.2). The use of these classes and their generalisations, both as theo
retical frameworks (showing tractability, fixed-parameter tractability etc) as well as in practical 
settings (for example the use of Horn clauses in logic programming, as discussed in [101]) also 
helps illustrate the utility of the hierarchies defined in this thesis.

2.7.1 2 -CCS
An elementary hierarchy of clause-set classes is th a t of the classes of clause-set with clauses of 
size at most k :

D efin itio n  2.7.1 The class of clause-sets with clauses of size at most k is denoted by:

k-CCS := {F  £ CCS | VC £ F  : |C| < k}

In general, it is (now) well-known that deciding satisfiability for k-CC S  for k > 3 is NP- 
complete (proven in [38], Cook’s original paper on the NP-completeness of SAT). In 1967 in [103], 
Krom showed th a t for 2-CNFs (where all disjunctions are of size < 2) computing the resolution 
closure and checking for the empty-clause (empty-disjunction) yields a quadratic satisfiability
algorithm. Later in [3] a linear time algorithm was introduced based on detecting strongly
connected components of the graph defined by the 2 -CCS  clause-set.

L em m a 2.7.2 For all F  £ 2 -CCS the question “F  £ S A T ? ” is decidable in time 0 (n ).

This is im portant as a tractability result for satisfiability and many problems can be reduced 
to 2 -CCS  for certain fixed parameters. For example in minimizing channel density in VLSI de
sign in [29], polytime sports scheduling ( “home-away assignment”) in [124], inferring haplotypes 
for sets of individuals in bioformatics in [57], as well as showing the tractability of restricted 
constraint languages in [128]; for an overview see Chapter 5 in [42]. Furthermore, unlike 3-CCS 
and above, one can find the smallest equivalent 2-CCS formula in polynomial time (see Theorem 
4.5.4 in Chapter 4).
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2.7.2 Horn clause-sets and generalisations
The concept of a Horn clause, and Horn formulas, were introduced in [91]. Horn clauses intuitively 
represent implications of the form v\ A . . .  A Vk —> v (for variables v \ , . . .  ,Vk,v  G VA) making 
Horn clause-sets prime candidates for modelling functional dependencies in database theory and 
logic programming (for example the use of Horn-logic as the underlying predicate language in 
[101];see below for further details).

D efin ition  2.7.3 A clause C  € CC is a H orn clause i f  \C fl VA\ <  1 and is a pure H orn  
clause i f  \C fl V.4| =  1 . A  H orn clause-set resp. pure H orn clause-set is a clause-set with 
only Horn resp. pure Horn clauses. Let H O  C CCS be the set o f all H orn clause-sets, that is, 
H O  := {F  G CCS | VC  G F  : \C n V A \ < I}, while H O +  :=  {F  G CCS | VC G F  : |CnV.A| =  1} 
is the set of all pure H orn clause-sets.

Some simple properties of Horn clause-sets are:

1. HO  and H O + are stable under union (being a Horn clause or pure Horn clause is a local 
syntactic property).

2. Every F  G H O + is satisfiable via (v —>■ 1 : v G var(F)) * F  =  T .

3. Every F  G H O  not containing the empty clause or positive unit-clauses is satisfiable via 
(v —> 0 : v G var(F)) * F  =  T .

4. HO  is stable under elimination of literal occurrences and elimination of clauses (and thus 
also under application of partial assignments).

5. H O + is stable under elimination of clauses, but not under elimination of literal occurrences 
and not under application of partial assignments. H O + is stable under elimination of 
negative literal occurrences and under application of partial assignments which set no 
variable to 0 .

6 . HO  as well as H O + is stable under addition of resolvents, and thus we have:

(a) For F  G H O  holds prc0 (F ) G HO.

(b) For F  G H O + holds prc0 (F ) G H O +.

7. Checking whether a clause-set F  is a Horn clause-set (or pure Horn) is possible in linear 
time (0 ( l(F )) - simply check each clause is Horn resp. pure Horn).

As first shown in [53], there is a linear time algorithm for the determining satisfiability of the 
special case of Horn formulas. In fact, not only is satisfiability of Horn clause-sets solvable in 
linear time, but it is actually solvable using unit-clause propagation (this was originally shown 
in [8 6 ] but is repeated here for pedagogical reasons) in linear time (due to [53] as mentioned in 
Section 2.4).

Lem m a 2.7.4 Consider a Horn clause-set F  G HO. We have that

n ( F )  =  {_L} <=> F e U S A T .

P ro o f: That r i(F )  =  {_L} =4> F  G U S A T  follows from the fact th a t ri only sets forced 
assignments. To show th a t F  G U S A T  ==> r i(F )  =  {_L} we consider the contraposition 
r i(F ) 7  ̂ {_!_} = >  F  G S A T .  Consider an F  such th a t F ' : =  r i (F )  /  {J_}. If F ' =  T  then
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obviously F  G S A T .  Otherwise F ' is a Horn clause-set (recall Horn clause-sets are closed under 
application of partial assignments) and by the definition of ri we know th a t all clauses in F ' 
are of size > 2. Therefore every clause in F  contains at least one negated variable and so the 
assignment (v —> 0 : v G var(F /)) satisfies F '. □

In general, not every boolean function has an equivalent representation in 710 (for example, 
those given by monotone CNFs -  CNFs for which every clause contains only positive literals), 
however despite this the class is important as both the foundation of logic programming (as 
discussed in [1 0 1 ] 6^), as approximation classes for knowledge representation (see for example 
using Horn upper and lower bounds as a method for producing approximate knowledge bases in 
[142]), for modelling of functional dependencies in database systems in [58], and more (a good 
overview of uses of Horn clause-sets and Horn functions can be found in Chapter 6  of [42]).

2 .7.2.1 G en e ra lisa tio n s  o f H o rn  c lau se -se ts

Due to the fact th a t TiO is insufficient to model all boolean functions and numerous simple classes 
of clause-set are not included, an obvious question becomes how to generalise Horn clause-sets 
to larger classes which allow more to be represented while maintaining im portant properties. A 
first attem pt at generalising Horn clause-sets comes by observing th a t the “essential” syntactical 
structure is preserved by renamings.

D efin itio n  2.7.5 By TVHO C  CCS we denote the class of renamable H orn clause-sets,
that is, the class o f clause-sets which are isomorphic to some Horn clause-sets.

Remarks:

1 . Checking whether a clause-set F  is in TTHO can be done in linear time as shown in [56].

2. IZTIO is now closed only under disjoint union, not union of arbitrary members (observe 
that for any clause C  the clause-set {C} is renamable Horn but there are clause-sets which 
are not in IZTiO).

While IZTiO clearly includes more clause-sets than 710 (for example, at least monotone 
CNFs are now included), it is still not complete with respect to representing boolean functions 
(e.g., parity functions, which have unique minimal CNF representations via their sets of prime 
implicates, have no equivalent clause-set representation in 7ZTIO -  despite satisfiability for these 
representations being possible via just checking for _L). To address the inability oiTLO and 7ZTiO 
to represent certain families of boolean functions, there have been various generalisations of 7LO 
and 7ZTiO to hierarchies of poly-time SAT classes. One of the first such classes which maintains 
many of the properties of the Horn class is th a t of generalised Horn clause-sets introduced in 
[162, 6 6 ] and later recharacterised in [99].

6 Horn logic with respect to  logic programming is actually concerned with Horn clauses in predicate logic, 
however the underlying structure is still the same and the fundamentals properties that ensure the poly-time 
solvability of propositional Horn clause-sets is the same as that that underlies the structure of predicate Horn 
formulae.
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D e fin itio n  2.7.6 Let H O \  := HO , while for k > 1 we define H O k  C CCS as the set of all 
F  £ CCS such that there exists an ordering F  = {C \ , . . . ,  Cm }, m  := c(F), of clauses, and there 
exist sets of positive literals Vi C VA for i £ { 1 , . . . ,  m } such that we have

Vi C . . .  C Vm
Vi Q C 1 , . . . , V m C C m
{'Ci \  m}} 6 H O k-1-

Remarks:

1 . By choosing all Vi =  0 we see th a t we have HOk Q HOk> for 1 < k < k'.

2 . For F  £ H O k , k £ N, k > 2, and every finite V  C VA  we have {C  U V  : C £ F } £ HO k  as 
well.

We collect some tools for recognition of generalised Horn clause-sets in the following lemma 
(all follow by definition or via a simple inductive proof):

L em m a  2.7 .7  For k £ N the classes HOk are stable under the following operations:

1 . removal of clauses;

2. crossing out of variables (the operation V  * F  for variable-sets V );

3. application o f partial assignments (note that this can be achieved by crossing out o f variables
and removal of clauses);

4 . addition and removal of negative literal occurrences;

5. addition of a clause C  for which there is D £ F  with D  C C such that C \ D  contains only
negative literals.

Note that these operations can lead to contraction o f clauses. The class H O \ is also stable under 
removal of arbitrary literal occurrences and under DP-reduction.

Although not immediately obvious, we see th a t in the limit the HOk hierarchy is capable of 
representing all boolean functions:

L em m a 2.7.8 For a full unsatisfiable clause-set F  with n := n (F )  >  0 we have:

1. F  £ H O n .

2 . I f  n (F ) > I, then F  ^ H O n- 1 -

P ro o f: To see th a t F  £ H O n , we proceed by induction on n. For n =  0 and n  =  1 th a t 
F  £ H O \ =  H O  follows from the definition. For n > 1 choose a variable v £ var(F) and order 
the clauses C \ , . . . ,  CV of F  such th a t those clauses containing v come first, followed by those with 
v (note this covers all clauses). Now set Vi =  • • • =  V2™-\ =  0 and V2 n -i+i =  • • • =  V2n =  {u}. 
We have th a t F "  := {Ci \  Vi : i £ { 1 , . . . ,  m}} =  F ' U {C  U {u} : C £ F '}  where F ' is the full 
unsatisfiable clause-set on var(F) \  {u}. By induction F ' £ H O n- \  and so by part 5 of Lemma
2.7.7 we have th a t F " £ H O n- \ , hence F  £ H O n .

To see th a t F  £ H O n_ i, we again proceed by induction on n. For n  =  2 observe by 
definition th a t F  HO  due to the binary clause with all positive literals. For n > 2 assume 
for the sake of contradiction th a t F  £ H O n- \  and hence th a t there exist V i , . . . ,V 2 n and an
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ordering C \ , . . . ,  C 2 " of the clause of F  such th a t V \ C . . .  C V2n, V \ Q C \ , . . . ,  V2n C C 2 " and 
F ' :=  {Ci \  K  : i G { 1 , . . .  ,m}} G H O n- 2. H V 1 =  - - - = V 2~ = l  then F ' =  F  and for any 
variable v G var(F) we have by induction th a t (v —» 0) * F ' H O n - 2 and so by part 3 of Lemma
2.7.7 F  £ l-LOn- 1 . Otherwise, consider the smallest i G { 1 ,.. .  , 2n } such th a t V* 7  ̂ 0 and some 
witness variable v G Vi. For all j  > i we have th a t Vi C Cj and so all clauses containing v occur 
in C i , . . .  C i- 1 , i.e., {C  U {u} : C  G F"} C  { C i,. . . ,  C i- 1 } C F ',  where F "  is the full clause-set 
on var(F) \  {v}. Therefore (v —> 0) * F ' =  F "  which by induction is not in 'HOn- 2  and so by 
part 3 of Lemma 2.7.7 neither is F ',  a contradiction. □

By Part 1 of Lemma 2.7.8 and Part 1 of Lemma 2.7.7:

Corollary 2.7.9 For all boolean functions f  we have that CN F( /)  G H O n^ y

There have been numerous other examples of classes and hierarchies generalising Horn clause- 
sets, including SC U R  (introduced in [141] to capture classes of clause-set solvable via UCP (ri); 
discussed in Section 4.1 of Chapter 4), SC U R (k) and SC U R*(k) (based on SCU'R, and introduced 
in [36,10]), ( n f c ) f c e N 0 and (Tk)ken0 (based on nested structures of renamable Horn clause-sets and 
introduced in [35], CANON(fc) (based on bounded depth resolution, and introduced in [36, 10]), 
as well as the G k(U ,S) hierarchies from [104, 110] (on which for unsatisfiable clause-sets the 
hierarchy UCk in this thesis is based). These hierarchies are discussed in more detail in Chapter 
4, where they are compared to the hierarchies introduced in this thesis.

2.7.3 Hitting clause-sets
Another simple class of clause-sets with poly-time satisfiability testing is th a t of hitting clause- 
sets, sometimes called “orthogonal” or “disjoint” when referring to the DNF interpretation.

D efinition 2 .7 .10 A clause-set F  is hitting i f  every two different clauses C,C' G F  clash in 
at least one literal, i.e., C  n  C" 7  ̂ 0. The set o f hitting clause-sets is denoted by 'H XT' C CCS.

Remarks:

1. In [42] we see the use of the term orthogonal rather than hitting. T hat is, an orthogonal 
DNF is a hitting clause-set under the DNF representation. While for example in [154] we 
see the term  disjoint used, referring to the fact th a t every clause in a hitting clause-set 
represents a disjoint sets of assignments (i.e., CNF({(7})- 1 (0) fl CNF({C"})- 1 (0) =  0 for 
all different C, C' G F  G K I T ) .

Unlike for 2-CCS  and Horn clause-sets the poly-time satisfiability of hitting clause-sets is 
not related to the resolution calculus but purely to a counting property given by the structure 
of the clause-set. If we take a CNF interpretation of a hitting clause-set, then each clause C  
represents a disjoint set of total falsifying assignments, and so we can determine unsatisfiability 
by counting up all falsifying total assignments covered by each clause to see if all to tal assignments 
are covered.

Lem m a 2.7.11 For all clause-sets F  G H T T  we have that

|C N F (F )- 1 (0)| =  |D N F(F)- 1 (1 )| =  ^  2 n(F)“ lc|
ceF

and that F  G U S A T  |C N F(F)- 1 (0)| =  2 n F̂f  Hence the satisfiability of F  G H I T  (as a 
CNF clause-set) can be determined in time 0 (l(F )) .
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An overview of hitting clause-sets (and orthogonal DNFs) is given in Chapter 7 of [42] and 
the combinatorics of clashing in clause-sets is given in [109]. While the focus of this thesis is on 
hierarchies based on complexity measures for resolution (and hence the classes considered are 
orthogonal to hitting clause-sets -  all full clause-sets are hitting while the class of full-clause-sets 
doesn’t fit into any of the classes introduced here), we will see in Chapter 6  th a t the properties 
of hitting clause-sets can be useful for translation into the classes introduced in this thesis, and 
so the definition and intuition are useful.

2.8 Constraint Programming and satisfiability
The primary focus of this thesis is on the power (and limits) of clausal representations of boolean 
functions and the combinatorial properties of these representations. However, in the outlook it is 
envisaged th a t the classes defined will be conceptually useful in the understanding of translations 
of constraints to SAT. T hat is, modelling some decision problem as a set of high level constraints 
and then encoding and translating these constraints to CNF. In this way, then solving with 
a SAT solver (as done for example in the CSP solver Sugar in [155]), rather than solving the 
constraints directly using specialised constraint solvers.

When translating a network of constraints to satisfiability, it is im portant to understand the 
basic notions from Constraint Programming. An overview of constraint programming can be 
found in [139]; the notions directly relevant to this thesis are now summarised, formulated with 
notations closely matching those for clauses and clause-sets.

D efinition 2.8.1 Consider a fixed universe V A  of variables with N C VA, together with a
fixed set (the “universal domain”) VOAA of “values”, where we assume 0 , 1  e  VOM  (and thus
\VOM\ > 2). A constraint satisfaction  problem  (C S P ) P  is a triple P  := (V,D,F) such 
that

1. V  C VA is the variable set;

2. D : V  —»■ P (VOM) specifies the domain of each variable;

3. F  C { (V ',R )  : V ' C V, R  C n ^ V ' D(v) } is the set of constraints (i.e., a subset of the 
variables and a relation over their domains). For a constraint C  we denote the variable set 
by Vc and the relation by R e-

A partial assignm ent p  : V ' —> VOM  to a CSP assigns values to variables; p  is total for a 
CSP if  V ' = V . A partial assignment p  is consistent with a constraint C  i f  there is a partial 
assignment p ' : Vc —»■ VOM. extending p  (i.e., p ' p )  such that p ' € R c  holds. A partial 
assignment p  satisfies a constraint C  if  p \v (i.e., p  restricted to V c) is consistent with C. A 
partial assignment p  satisfies resp. “is consistent” with a CSP if  p  satisfies resp. “is consistent” 
with every constraint in P . A CSP is then satisfiable i f  there is some partial assignment which 
satisfies it. The application of a partial assignment to a constraint and/or CSP then follows by 
removing variables and restricting constraint relations in the natural way.

To solve an instance of a CSP then means to find a satisfying assignment or show none exists. 
Methods for solving constraint problems are similar and very much related to SAT (e.g., various 
forms of intelligent backtracking are also used; see Chapter 4 in [139]), and similar techniques 
are often used (e.g. “nogood” learning, related to clause-learning, see Section 4.5 in Chapter 
4 of [139]; and watched literals in [69]) in modern CSP solvers such as [6 8 ]. The advantage 
of CSP solvers (in general) is th a t they benefit from higher level specialised representations
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of constraints, which can be conceptually easier for the user and can allow the solver to use 
specialised propagation algorithms for each constraint (unlike SAT where typically the CNF 
clause-set is considered as a “whole” ). SAT, on the other hand, benefits from the simple and yet 
rich combinatorial structure of the CNF representation, allowing for work to be devoted to very 
efficient algorithms and data-structures for the general problem.

To represent a CSP as a clause-set, (essentially) the task is then to find a clause-set repre
senting each individual constraint and take the union to  form a representation of the whole CSP. 
In general, representing a constraint as a clause-set has two conceptual stages, which we call here 
encod ing and translation . The encod ing step takes the constraint C  and encodes the non- 
boolean variables and their domains into boolean variables, resulting in a boolean function fc -  
The translation  stage then translates this boolean function f c  to  a CNF clause-set Fc- This 
is not just a conceptual separation, but a real one; the boolean function f c  exists for any CNF 
clause-set F  representing some constraint C  by just taking CN F(F) and this boolean function 
and its relation to the CNF representation F  have their own properties and can be studied in 
their own right.

E xam ple 2.8.2 Consider the constraint C  := ({ v \,v 2},-R) with underlying domains D (v i) =  
{1,2,3} and D (v2) =  {4,5}, and R  := {(1,4), (2,5), (3,4), (1, 5)}. The direct encoding, dis
cussed in [160], of C  into S A T  encodes each possible assignment v = d (for variable v and 
domain value d) as a single variable vv=d which is true i f  this assignment is made, and false 
otherwise. For C the direct encoding yields the boolean function f c  '■ {0 ,1}V -> {0,1} with 
V  = {vVi=i,V Vi=2i'Vv-1=3,VV2=4i'VV2=5} with

f c ( v )  =  1 <=> Vi G D {vi), j  G D ( v 2 ) : (<p(vVl=i) =  1 A <p(vV2=j) =  1) <-> ( i , j )  G R. 

f c  then has the following natural clause-set representation F c - '

F c  • {  { ^ v i  =  1) V vi = 2  }  5 {^t>i =  1 > ^ v i  = 3  }  i {^i>i = 2 )  = 3  } )  {^V2 = 4 )  = 5  }  i iS - . -  v _  — ✓ V. v  ✓
v i  is  a ssign ed  a t m o s t one va lu e V2  is  a ssign ed  a t m o s t on e  value

{^ u j  = 1 ,  V vi = 2 )  ^ v \  = 3 }  ) { ^ 2 = 4 5 ^ 2 = 5 }  { ^ v i = 2 ?  ^*/2=4}»  {^t»i =3? ^ 2 = 5 } }' v ' v '  ' v '
v-\ a ssign ed  a t least one value V2  a ssign ed  a t lea st one va lu e  (2 ,4 )$ .R  an d  (3 ,5 )& R

The support encoding, introduced in [67], o f C uses the same underlying encoding f c  of C,
i.e., each variable of f c  represents that v — d for some variable v and value d G D (v). However, 
to improve propagation, it introduces additional clauses. That is, it uses a different translation 
of f c  (see Example 2.8.5).

One of the central notions in CP is th a t of maintaining consistency of constraints and/or 
the network. The aim of “maintaining (some form of) consistency” is to ensure th a t under some 
(restricted type of) partial assignment if certain assignments v = d are inconsistent with the 
CSP then this is directly forced in the network, e.g., by removing d from the domain of v. 
There are many forms of consistency considered, including arc-consistency, path consistency, 
as well as generalisations such as fc-consistency and {i,j)~consistency (for a full overview see 
Chapter 3 in [139]). Path, k-, and (i,j)~  consistency notions focus on consistency across multiple 
constraints, while this thesis focuses on the translations of individual boolean functions, ignoring 
the possibility of decomposition. Therefore, most relevant to  this thesis is (relational) arc- 
consistency  as defined in [50].
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D efin itio n  2.8.3 A constraint C  :=  (V ',R ), in some constraint satisfaction problem P  : =
(V, D , F), is (generalised) arc-consistent i f  for every variable v G var (C) and every value d G D (v ) 
the partial assignment (v —» d) is consistent with C. A constraint problem P  is arc-consistent if  
every constraint is arc-consistent.

Path consistency, fc-consistency and {i,j)~consistency generalise arc-consistency in various ways 
by considering assignments of size greater than 2 across multiple constraints. When solving a 
CSP problem by translating to SAT (i.e., to a CNF clause-set), the typical aim in the literature 
has been to try  to ensure these notions of consistency are “m aintained” by the SAT solver. There 
has been considerable work on maintaining arc-consistency in SAT via unit-clause-propagation 
(see Definition 2.8.4), for example translating cardinality constraints while maintaining arc- 
consistency in [135, 7, 147]; for restricted classes of pseudo-boolean constraints in [8 ]; for arbitrary 
crisp constraints (i.e., finite constraints where the relation is given explicitly) in [67, 6 ]; for 
smooth DNNFs (restricted forms of boolean formulae with a “decomposability property” allowing 
efficient queries in knowledge compilation; see [46]) in [98].

D efin itio n  2 .8 .4  Unit-clause propagation (x\) maintains arc-consistency for a constraint C  on 
a clause-set representation F  i f  F  represents C  (i.e., satisfying assignments for C correspond to 
satisfying assignments for F  and vice versa) and for all partial assignments 'ip to the variables 
of C then i f  for some variable v and value d G D (v) we have that v ^  d is forced by C under 'ip 
then ri forces the corresponding variables in F.

W hat “the corresponding variables in F ” are will be highly dependent on the encoding of 
the non-boolean constraint variables into the boolean variables of the SAT instance. A concrete 
example is given in Example 2.8.5.

E x am p le  2.8.5 Consider the constraint C from Example 2.8.2. The support encoding, intro
duced in [67], encodes C in the same way as the direct encoding (i.e., the encoded boolean function  
is f c  from Example 2.8.2) but now translates f c  to a clause-set by encoding the support for each 
v = d assignment, rather than encoding the “nogoods” (i.e., (2,4) ^  R ). The su p p o rt of a value 
assignment v = d is the set of possible total assignments to the other variables in the constraint 
which are consistent with the assignment v = d. The final clause-set translation of C  using the 
support encoding is given by encoding for each assignment v — d that at least one of its supports 
must also be assigned to satisfy the constraint. The support encoding F[j for C  is given by the 
following clauses where AM O(v{) and ALO (vi) indicate that the corresponding clauses encode 
that Vi takes at-most resp. at-least one value in its domain:

Fc:=
{ { VV l = l ,  V V l —2 } ,  {U u! =  l , V Vy =  3 } )  { v v ± = 2 i ^111= 3}) { 1^ 2 = 4 ; ^ 2 = 5 }  j { F u i = l )  V V l = 2 , Ui;1 = 3 } , -{Vv2 = 4 ) ^ 2 = 5 }
V V 1  ̂  ̂ V * s . V '  v . V

A M O ( v 1)  A M O ( v 2 )  A L O ( v i )  A L O ( v 2)

= 1  > V v 2 = 4  j V v 2 = 5  } 1 { ^ 1  = 2 1 V v 2 = 5  } . { V y 1 = 3 , V y 2 = 4 ^  .
s. -  ■ v._ . — — ✓ V. ——  ■ v   ̂ V........ y. *
=  !)-*• ((*>2 =  4) V (v2 =  5)) (n  =  2) -v (u2 =  5) (vx =  3) -► («2 =  4)

{ v V2 = 4  j Vv i  = 1 , Vv ^ = 3  } ( V y 2 = 5 ) V v i  =  1 , V v i  = 2 }  }
V — . - y * V . v . ■

( v 2  =  4) -► ((*>! =  1) V („ ! =  3)) ( v 2  = 5 )  —► ((*,! =  1) V =  2))

In [67], it is shown that the support encoding “maintains arc-consistency via unit-clause propa
gation”. In this particular example, this means that

1. for all partial assignments ip : V  —> {1 ,2 ,3 ,4 ,5} (for V  C {v\,V 2 }) to C  and

2. for all i G {1,2} and d G D(vi)
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if  vv.-d E v ar(ri({vVi=^ , ^  : v e V )  * F 'c )) then Vi =  d is consistent with C under partial 
assignment ip. In other words, any assignment v =  d which is inconsistent at the constraint level 
results in the forced literal vv=d in f c  which is then found and propagated by i \ .  That unit-clause 
propagation propagates vVi=d follows from the fact that i fv i  — d is not consistent with C under ip 
then it has no support and so the support clause for V{ = d yields a unit-clause. So for example, 
i f  we consider the partial assignment ip : {^2 } {1? 2 ,3 ,4 ,5} with ip(v2 ) =  4 then neither V2  =  5
or v 1 = 2  are consistent with ip * C and hence unit-clause propagation forces vV2=$ and vV l - 2  to 
false:

1 . ri((u U 2 = 4  ->■ 1 )*F(j) =  xi((vV 2 - 4  -> 1,u „ 2 = 5  -> 0 )* F c ) (due to { w f f z >-»• {vFfF^});

2. x\{fvV2-^  —> 1, vV2=s —> 0) * F'c ) — ri((v t ; 2 = 4  —> 1 ,vV2=s —»■ 0 ,vVl=2 —> 0} * F{j)
(due to {vVl=2 , vV2=5} {vVi=2});

3. Finally ri((u „ 2 = 4  l , v V2=5 ->■ 0 ,vVl=2 ->■ 0) * F'c ) =  {uWj=i ,u Wl=3}}.

In the case of both the direct and support encodings, the translations of the encoded boolean 
functions do not use introduce new variables. However, other constraint translations, for example 
translations of cardinality constraints in [7] do introduce new variables as a means of producing 
small translations.

In this thesis, the focus is purely on representations of boolean functions, and so the results 
apply purely to the translation aspect of constraint translation. T hat is, on the translation 
of a boolean function to a CNF. The important fact here is th a t maintaining arc-consistency 
via UCP on a clause-set F c  representing a constraint C  requires for all partial assignments to 
the constraint variables, translated to partial assignments on the variables the encoded boolean 
function f c , that the relevant propagations are made on these variables. However, if F c  uses 
auxiliary variables to represent f c ,  there is no requirement th a t arbitrary partial assignments 
setting auxiliary variables must have efficient propagation properties. This is the heart of the 
difference between relative and absolute notions of hardness as discussed in Section 6.1 of Chapter
6 . Restricting attention to translations of boolean functions (i.e., assuming the encoding step has 
already been done), UCP maintaining arc-consistency w .r.t a boolean function /  on a clause-set 
F  is equivalent to F  having p-hardness 1 relative to /  as discussed in Section 6.1 of Chapter 6 .
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Chapter 3

The hardness of clause-sets

This chapter is devoted to the discussion of hd : CCS —v No. It is the central concept of the thesis, 
from which the hierarchy UCk is derived (Definition 4.2.1). The basic idea is to start with some 
measurement h : U S A T  —> No of “the complexity” of unsatisfiable clause-sets F. This measure 
is extended to arbitrary F  € CCS by maximising over all “sub-instances” of F , th a t is, over all 
unsatisfiable p *  F  for (arbitrary) partial assignments p. A first guess for h : U S A T  —>■ No is to 
take something like the logarithm of the tree-resolution complexity of F. However this measure is 
too fine-grained (how do we separate levels of the hierarchy? 0 .0 1 ? 0 .1 ? 1 ?) and doesn’t  yield a 
hierarchy like UCk (introduced in Chapter 4), where each level brings a qualitative enhancement. 
Another approach is algorithmical, measuring how far F  is from being refutable by unit-clause 
propagation. As shown in [104, 1 1 0 ], actually these two lines of thought can be brought together 
by the hardness measure hd : U S A T  -» No. Why only tree-resolution, and not dag-resolution 
(i.e., full resolution)? The tree-resolution approach is the natural starting point, and what is 
easy for tree-resolution is also easy for dag-resolution. The basic approach here towards the more 
complicated handling of dag-resolution is given by whd (from Section 3.6.2), made into the WCfc 
hierarchy in Section 4.6.

The outline of this section is as follows. hd(F) is defined and discussed for unsatisfiable F  in 
Subsection 3.3. The general case (arbitrary F) is handled in Subsection 3.4 by reduction to  the 
unsatisfiable cases within F  (as produced by applying partial assignments). The central result 
of this section can be seen in Theorem 4.2.2, which shows th a t a clause-set F  having hd(F) < k 
is equivalent to the condition th a t all prime implicates of F  can be derived by some resolution 
tree with a Horton-Strahler number at most k. In this way some form of geometric intuition 
is gained, and a machinery becomes available. The first applications are given by the various 
lemmas in Section 4.3 for determining hardness under various circumstances.

When considering only unsatisfiable clause-sets F , in [104, 110] actually a general concept 
of “hardness” was introduced, parameterised by an oracle U C  U S A T  for ( “easy”) detection of 
special cases of unsatisfiability. In this thesis only U =  {F  e  CCS : _L G F} is used, but a general 
theory using oracles is expected to become im portant in the future (see discussion in the outlook 
in Section 8.2 of Chapter 8 ).

Most lemmas in Sections 3.1 to 3.3.1 recap results from [104, 110], excluding Lemma 3.3.5 and 
Corollary 3.3.6 which introduce new conceptual insight. Prom Section 3.4 onwards all results are 
new to this thesis (although published in [76, 78]) and constitute original research contributions.
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3.1 Generalised unit-clause-propagation
In this section we review the approximations of forced assignments as computed by the hierarchy 
of reductions r^ : CCS —> CCS from [104, 110] for fc G No. First we introduce the semantical 
notion of forced literals/assignments in Subsection 2.3 together with the limit-reduction Too : 
CCS —)• CCS, which eliminates all forced assignments. In Subsection 3.1.1 then the r^-reductions 
themselves (eliminating some forced assignments) are defined and basic properties discussed. In 
Subsection 3.2 finally we introduce generalised (nested) input resolution and its main parameter, 
the “Horton-Strahler number” of the corresponding resolution tree, generalising the well-known 
refutational equivalence between unit resolution and input resolution, and providing the proof- 
theoretic background.

For further discussions of these reductions, in the context of SAT decision and in their rela
tions to various consistency and width-related notions, see [104, 110] and Section 3 in [112]. It 
seems here th a t the r^-reductions establish the SAT-counterpart to  consistency-notions from the 
constraint literature (see [16] for an overview). We have the following basic distinction between 
SAT and CSP: SAT has the extremely “th in” clauses, enabling the global point of view ( “no (or 
flat) hierarchies”), while CSP has “fat” constraints, the “lumping together” of clauses. In the 
SAT world, the r^-reductions approximate global consistency via approaching all assignments of 
Tqo, while in the CSP world, consistency means making the constraints stronger and stronger 
(lumping more and more clauses together), until only one constraint is left. Thus the (stronger) 
consistency-notions of CSP are more related to width-restricted resolution, while, as shown in 
[104, 110], the r^-reductions are much weaker (each only using linear space). Making a clause-set 
F  “consistent” in the SAT world thus means here to find a “representation” F ' of F  (see Section
6.1 in Chapter 5 for some discussion on “representations” ), where via r*, for some k G No we can 
derive “everything” , which is embodied in its most elementary form in the t/C^-hierarchy, that 
is, via the condition F ' G UCk (Definition 4.2.1).

3.1.1 A hierarchy of reductions
We now review the hierarchy r*. : CCS -» CCS, fc G No, of reductions ([104]), which achieves 
approximating Too by poly-time computable functions. The basic idea is th a t unit-clause propaga
tion in a sense computes the most direct forced assignments (at “level fc =  1 ” ), and generalisations 
like failed-literal elimination (level fc =  2 ) find more forced assignments.

D efinition  3.1.1 ([104]) The maps rfc : CCS -» CCS for  fc G No are defined as follows (for 
F  G CCS):

{-L} i f ±  e  F  
F  otherwise

1) * F) i f 3 x  G lit(F ’) : rk{{x —» 0) * F)  =  {JL} 
otherwise

ri is unit-clause propagation, V2  is (full) failed literal elimination. We call r/t generalised  unit- 
clause-propagation  o f level fc. In [104] one finds the basic observations in Lemma 3.1.2 
proven.

r0 (F) :=

rfc+i (F) :=
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L em m a 3.1.2 For all k G No, clause-sets F  G CCS and partial assignments ip G V A SS we have 
that:

• The map vk : CCS —> CCS is well-defined (does not depend on the choices)1̂ .

• The map rk is a reduction in the sense of Definition 2.4-1.

• r*; applies only forced assignments (and so rk(F) is satisfiability-equivalent to F ).

• rk{F) is computable in time 0(£(F)  • n (i?)2(max^ ,1 _̂1 )̂ and linear space.

• rk(F)  =  {_L} implies rk (p * F)  =  {_L}.

• rk( ip*rk(F))  = r  k{ p * F ) .

Quasi-automatisation of tree-resolution is achieved for inputs F  G U S A T  by applying ro(F), r i(F ) , 
until unsatisfiability has been achieved ([104]). Actually, a more general form was introduced 
in [104], namely r̂ f for some oracle U deciding unsatisfiability at level 0. It is likely th a t this 
generalisation is important for future progress (see Section 6.1), however in the m ajority of this 
thesis only the trivial oracle U =  {F  G CCS : _L G F }  is considered, which recognises unsatis
fiability at level 0 iff the empty clause occurs (see Subsection 4.3.2 for some discussion of this 
choice). A further generalisation to constraint-like systems (via an abstract, axiomatic approach) 
was achieved in [1 1 0 ], however in this initial study attention is restricted to boolean values and 
CNF-representations.

E x am p le  3 .1 .3  Computing some rk{F) (using literals x \ , . . . , x n ,x ,y  with pairwise different 
underlying variables):

1 . rfc({±}) =  {±} for k >  0 .

2. rk(T) = T  for k > 0.

3. For F  := { {x i} ,. . . ,  {xn }}: r0 (F)  =  F,  rk (F)  =  T f o r k >  1 .

4■ For F'  := F  U {{x, y}}: r0 (F ') =  F ' , r k (F') = {{x, y}} f o r k  > 1 (note that {{x,y}} has 
no forced assignments).

5. For F  := {{x, y}, {x, y}}: r k(F) = F  f o r k  <1 ,  r k (F) = T f o r k  > 2 .

6 . For F  := {{x, y}, {x, y}, {x, y}, {x, y}}: rk(F) = F  for k < 1, rk(F) = {±} for k >  2.

Via the reductions rk we can approximate the implication relation F  |= C  as follows:

D efin itio n  3 .1 .4  ([104, 110]) For k G No, clause-sets F  and clauses C the relation F  \=k c  
holds if  rk((fc * F)  = {±}.

As it is well-known, F  |=i C  iff some subclause of C  follows from F  via input resolution.

E x am p le  3 .1 .5  Consider k G No and literals x , y , w:

1 . For all k >  0 and all clauses C we have:

^T his follows essentially via the diamond lemma ([126, 92]) and the fact that any rewrite system  which sets 
only forced literals is locally confluent (setting one forced literal to true can’t remove another forced literal) and
terminating - see e.g., Lemma 3.13 in [104].
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(a) F  \=k C i f  there is D G F  with D  C  C (note _L G <pc * F).

(b) {±} C and T  f a  C.

2- {{z,y}>{z,?7}} |=fc {z} iff k > 1 .

3. For F  := { { x ,  y}, {y, z}} we have F  f=fc { x ,  z} iff k > 1 .

4. For F  :=  { { x ,  y, w}, {y, z, w}, { x ,  y,w},  {y, 2 , w}} we have F  \=k { x ,  z j  iff k > 2 (note that
(x  —̂ 1, z —̂ 0) * F  G 2—CHS).

In order for vk to  “trigger” , it must find a clause of length at most k (somewhat strengthening 
Lemma 3.18, Part 2(b) in [104]; the proof follows by definition, using an easy induction):

L em m a 3.1.6 Consider F  e CCS and k € No- I f  for all clauses C  € F  we have \C\ >  k, then 
r k (F) = F.

Furthermore, for any given clause-set F,  rn{F) will find all forced assignments:

L em m a 3.1.7 For F  G CCS holds rQO( F) = rn(F)(F).

P ro o f: If var(F) =  0  then trivially by definition we have roo({_L}) =  ro({_L}) =  {_L} and
r o o ( T )  =  rn(j?)(T) =  T. For n > 0 we proceed by induction on |var(F)|. Consider a forced literal
x of F.  We have (x —> 1 ) * F  G U S A T  and so by induction rn (F)—i((x  -> 1) * F) = {1}  and
hence by definition rn ( F ) { F )  = rn(F)((x 1) * F). □

3.2 Generalised input resolution
III [104], Chapter 4, the leveled height “h (T )” of branching trees T  has been introduced, which 
was further generalised in [110], Chapter 3 (to a general form of constraint satisfaction problems). 
It handles satisfiable as well as unsatisfiable clause-sets. In this thesis we will mostly use the 
unsatisfiable case. In this case the measure reduces to a well-known measure which only considers 
the structure of the tree. As discussed in Subsections 4.2, 4.3 of [104], the leveled height of 
splitting trees for unsatisfiable clause-sets appeared at many places in the literature. [2 ] used the 
term “Horton-Strahler number” (sometimes also “Strahler number” ): it seems the oldest source 
(from 1945), however disconnected from its various (re-)inventions in computer science. We use 
this notation here, since we consider the leveled height mostly for the unsatisfiable case; as in 
[2], the Horton-Strahler number of the trivial tree is 0.

D efin ition  3.2.1 Consider a resolution tree T  (recall Definition 2.5.2). The H o r to n -S tra h le r  
number h s(T ) G No is defined as hs(T) := 0, i f  T  is trivial (consists only of one node), while 
otherwise we have two subtrees T i,T 2 , and we set hs(T) := m ax(hs(Ti), hs(T2 )) i f  hs(Ti) ^  
hs(T2 ), while in case o /hs(T i) =  hs(X2 ) we set hs(T) := hs(Ti) +  1 (= hs(T2 ) +  1 /

Remarks:

1. See Sections 4.2, 4.3 in [104] for various characterisations of hs(T).

E x am p le  3.2.2 Examples o f trees with their Horton-Strahler numbers. We denote by T\ and 
T 2 in each example the left and right sub-trees o f the root.
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Tree T hs(T ) Explanation
0 trivial tree

/  \ 1 hs(Ti) -  0, 
hs(T2) =  0.

/  \
/  \

1 hs(Ti) =  0, 
hs(T2) =  1.

/ 
/ 

\ 
/ 

\
\

1 hs(Ti) =  0, 
h s (r2) =  1.

/  \  /  \
2

hs(Ti) =  1, 
hs(T2) =  1.

/  \  \
/  \  /  \

2
hs(Ti) =  1, 
hs(T2) -  2 .

In [104], Chapter 7 (generalised in [110], Chapter 5), generalised input resolution was intro
duced. We use the notation “ I-*,” for it:

D efin ition  3 .2 .3  For a clause-set F  and a clause C the relation F  h*. C  (C can be derived 
from F  by k - tim e s  n es ted  in p u t reso lu tio n ) i f  there exists a resolution tree T  and C' C C  
with T  : F  H C' and hs(T) < k.

By Theorem 7.5 in [104], generalised in Corollary 5.12 in [110]2).

L em m a 3.2.4 For clause-sets F , clauses C and k G No we have F  (=£ C  if  and only i f  F  h*, C.

3.3 Hardness of unsatisfiable clause-sets
In [104] the following hardness parameter was introduced and investigated (further generalised 
in [110]). The core idea in [104] was to introduce mechanisms and classes for polynomial time 
satisfiability with poly-time recognition and strong connections to  resolution complexity. In 
Section 3.4, a new hardness measure will be introduced which will form the basis of the “target- 
classes” introduced in this thesis, where poly-time satisfiability and the strong connections to 
resolution are maintained but, as we will see in Theorem 4.4.5 in Chapter 4, poly-time recognition 
is lost.

D efin ition  3.3 .1  The h a rd n ess  hd(F) of an unsatisfiable F  e  CCS is the minimal k e  No 
such that rfc(F) =  {_L}.

Remarks:

1. In [104, 110] the notation “h (F )” was used (resp., more generally, “h ^ s ( F ) ” , using oracles 
for unsatisfiability and satisfiability detection), which seems now to us too unspecific.

2)Lemma 3.2.4 essentially follows from the general correspondence between regular tree-resolution proofs and 
backtracking trees (which r*. form), as well as the fact that minimum-size tree-resolution proofs are regular.
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2 . By Lemma 3.7 of [104], we have th a t for unsatisfiable F  and fixed fc we can check “Is 
hd(F) < fc?” in running time 0(£(F)  • n ( F) 2k).

By Theorem 7.8 (and Corollary 7.9) in [104] (or, more generally, Theorem 5.14 in [110]) we 
have for F  G U S A T :

2hd(F) < I  (ComPr(F) +  1) < (n(F) + l )hd(F)

(recall Definition 2.5.2; recall th a t a binary tree with fc G N leaves has exactly 2fc — 1 nodes, and 
note that in [104, 110] the numbers of leaves are counted, while according to Definition 2.5.2 here 
we count nodes). This shows a direct connection between hd and tree-resolution complexity and 
in Section 7.2.1 of [104] we see for unsatisfiable F  th a t hd(F) +  1 is precisely the tree resolution 
space complexity.

Lem m a 3.3.2 Consider an unsatisfiable clause-set F  G U S A T  and fc G No. The following are 
equivalent:

1. F  has hardness fc, i.e., k is the smallest value s.t. F  [=*, ±  and equivalently F  bfc _L.

2. F  has tree resolution space complexity fc +  1.

3. k is the optimal value of the Pudlak-Impagliazzo-game on F  (in [133], Pudlak-Impagliazzo 
showed that the optimal value of their game theoretic complexity measurement was the tree 
resolution space-complexity plus one).

E xam ple 3.3.3 Here are some basic determinations of hd(F) for unsatisfiable clause-sets F , 
using literals x , y , z  with distinct underlying variables:

1. hd(F) = 0  iff ± £ F .

2 . hd({{x},{x}}) =  1 .

3. hd({{x},{x,y},{]/,2 },{z}}) =  1.

4 . hd({{x ,y},{x ,y},{x ,y},{x ,y}}) =  2 .

5. hd ( { { x , y } , { x , y } , { y , z } , { y , z } , { x , y , z } , { x , y , z } } )  = 2.

By Lemma 3.2.4 we get:

Lem m a 3.3.4 For an unsatisfiable clause-set F  and fc G No the following conditions are equiv
alent:

1 . hd(F) <  fc

2. F  h i

3. F  J_.

By applying partial assignments we can reach all hardness-levels in a clause-set:

Lem m a 3.3.5 For an unsatisfiable clause-set F  and every 0 <  fc < hd(F ) there exists a partial 
assignment with n{g>) = k and hd(</> * F) — hd(F) — fc.
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P ro o f: We proceed by induction on n(F).  As fc < hd(F ) < n(F) ,  for the base case we consider 
n(F)  =  fc. If n(F) — k then all p  with n(p) - k have hd(</? * F) = hd({_L}) =  0 =  hd(F ) — k.
For n(F) > k , we make a case distinction on the value of A;. If fc =  0 then choose p  — {). If
fc =  1 then:

1 . Assume for the sake of contradiction th a t there is no x  € lit(F ) such th a t hd((x —> 1 ) *F) =  
hd(F) — 1; otherwise we are done.

2 . If for all x  e  lit(F ) we had hd((x —> 1) * F ) < hd(F) — 2  then by Definition 3.3.1 we would 
have hd(F) < fc — 1, a contradiction.

3. Therefore there must exist an x  e  lit(F ) such th a t

hd(F) =  hd((x —> 1 ) * F) > hd((x —> 0) * F)  + 1 .

4. By induction hypothesis we have a partial assignment p  with n(p)  =  1 such th a t hd((/? *
((x -» 1) * F))  =  hd(F ) — 1 .

5. Application of partial assignments doesn’t  increase hardness (Lemma 3.11 of [104]) and so 
we have

hd{p * F ) > hd((x 1 ) * (p * F)) = hd(F ) -  1.

6 . By our choice of x  we have

hd((x —>■ 1) * (</? * F))  = hd(F ) — 1
hd((x —>• 0) *(</?* F))  < hd(F ) — 2,

therefore by Definition 3.3.1 we have hd(</? * F) < hd(F) — 1.

7. Thus we have th a t hd(<^ * F) = hd(F) — 1.

Finally, for fc > 1, we apply induction using the fc =  1 case; once we can reduce by 1 we can 
reduce by fc. □

As a corollary of Lemma 3.3.5, we see th a t to prove Too{p*F)  ^  rk{p*F)  it suffices to find some 
p'  D p  with Tk+i{p'  * F)  ^  Tk{p' * F ), allowing a poly-size witness p'  th a t rOQ( p * F )  /  rk(p  * F)  
with a poly-time check for fixed fc (i.e., running r*, and r*;+ i).

C o ro lla ry  3.3.6 For all clause-sets F , partial assignments p , and fc € No i f  Xoo(p * F ) ^  
ik{p * F ) then there exists a partial assignment p ' D p  such that x^+ iip ' * F ) ^  rk{p'  * F ).

P roof: If r0 0 (p*F) ^  rk(p*F)  then by definition there exists some forced literal x  G lit(rfc(c/?*F)) 
for which rfc_i((:r -» 0) * Tk{p * F )) ^  {_L}. Denote by p'  D p  the partial assignment extending
p  such that p'  * F  =  rk{p * F)  (recall ik just assigns literals). If hd((x —>• 0) *(</?'* F )) =  fc
then by definition Xk+i(p'  * F) ^  *k{p' * F) = Tk{p * F)  because r/t+i sets x  while r^ does not. 
Otherwise hd((rr —> 0) * (p! * F))  > fc +  1 and (x —> 0) * (pr * F ) is unsatisfiable (recall x  was 
forced) and so by Lemma 3.3.5 there is some p" D (x —> 0) o p ' such th a t hd{p" * F) =  fc -I- 1, 
so rkk+1 (p" * F ) 7  ̂Xk(p" * F ). □
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3.3.1 Lower bounding hardness
For showing lower bounds on the hardness for unsatisfiable clause-sets, we can use the method
ology developed in Subsection 3.4.2 of [104], A simplified version of Lemma 3.17 from [104], 
sufficient for our purposes, is as follows (we give a proof for the sake of completeness):

L em m a 3.3.7 Consider C C U S A T  and a function h : C —»■ No- For k E No let Ck := {F  E 
C : h(F) > k}. Then VF  E C : hd(F) > h(F) holds i f  and only i f  U C q fl C\ =  0 (where 
U C q = { F  E CCS : hd(F) =  0}J, and fo r all k E N ,  F  E Ck and x  E lit(F ) there exist 
clause-sets F q , F \ e  CCS fulfilling the following three conditions:

1. n(F£) < n((x —> e) * F)  for both e E {0,1};

2. hd(Fe) < hd((:r —>■ s) * F ) for both £ E {0,1};

3. F0  e  Ck or Fi E Ck- 1 .

P ro o f: The given condition is necessary, since we can choose Fe := (v —> s) * F  for e E {0,1}. 
To see sufficiency, assume for the sake of contradiction th a t there is F  E C with hd(F ) <  h(F),  
and consider such an F  with minimal n(F).  If hd(F ) =  0, so h(F)  =  0 (otherwise F  E U C q nC i), 
and thus hd(F) > 1 holds. It follows th a t there is x  E lit(F ) with hd((x —> 1) * F ) < hd(F ). Let 
k := h(F); so F  E Ck- By assumption there are Fo, F i E CCS  with hd(Fe) < hd((x —y e) * F ) for 
both £ E {0,1}, and Fq e  Ck or F\  E Ck- 1 - If Fo E Ck, then hd(Fo) < hd(F ) < k < h(Fo),  while 
n(Fo) < n (F ), contradicting minimality of F . And if F i E Ck- i, then hd(F i) < hd(F ) — 1 < 
k -  1 <  h(Fi),  while n(F i) < n (F ), contradicting again minimality of F . □

3.4 Hardness of (arbitrary) clause-sets
The hardness hd(F) of arbitrary clause-sets can now be defined as the maximum hardness over 
all unsatisfiable instances obtained by partial assignments, in this way quantifying the hardness 
of clausal entailment for any clause.

D efin itio n  3.4.1 The hardness  h d ( F )  E No for F  E CCS is the minimal k E No such that 
for all clauses C with F  \= C we have F  \=k C (recall Definition 3.1.4; by Lemma 3.2.4 this is 
equivalent to F  h k C, i.e., r k{<p * F ) =  { - L } j .

Remarks:

1 . This differs from the hardness notion for satisfiable clause-sets from [104], which instead 
measures the maximum number of decisions (i.e., assignments which aren’t determined to 
be forced by r^) needed to deduce the empty clause-set.

In other words, if F  ^  T then hd(F ) is the maximum of hd(<^ * F ) for partial assignments ip 
such th a t ip*F E U S A T . To our knowledge, the measure hd(F) for satisfiable F  was mentioned 
the first time in the literature in [2 ], Definition 8  (the only result there concerning this measure 
is Lemma 9, relating it to another hardness-alternative for satisfiable F ). Note th a t one can 
restrict attention in Definition 3.4.1 to C  E prc0 (F). Hardness 0 means th a t all prime clauses 
are there, i.e., hd(F) =  0 iff prc0 (F ) C  F . Especially hd(T) =  0.

Lemma 3.3.5, stating that hd(<^ * F) takes exactly the values from 0 to hd(F ), extends 
by definition to satisfiable F  E CCS, when adding to the size of the partial assignment <p the 
minimum size of a partial assignment with ip*F E U S A T  and h d (^* F ) =  hd(F). Furthermore,
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a trivial but fundamental lemma following from Lemma 3.11 of [104] and by the definition of 
hd(F):

L em m a 3.4.2 For F  G CCS and <p G V A SS we have hd(</? * F ) < hd(F).

Im portant here is th a t due to the closure of hd under partial assignment, when considering 
partial assignments th a t lead to unsatisfiability, it suffices now to consider minimal satisfying 
assignments, i.e., prime implicates.

L em m a 3.4.3 For all clause-sets F we have that hd(F) is the minimal k G No such that for 
all prime clauses C  G prc0 (F) we have F C (recall Definition 3.1.4; by Lemma 3.2.4 this is 
equivalent to F  bfc C).

A first result using this new notion is that, based on the results from [104, 110], a powerful 
proof-theoretic characterisation of clause-sets F  with hd(F ) < k can be given:

T h e o re m  3 .4 .4  For k G No and F  G CCS we have

hd(F) < k VC G prc0 (F) : F \ - k C.

Thus if every C  G prc0 (F ) has a tree-resolution refutation using at most 2k+1 — 1 leaves (i.e., 
Compft((pc * F ) < 2k+1), then hd(F) < k.

P ro o f: The equivalence hd(F) < k <=> VC G prc0 (F) : F \-k C  follows from Lemma 3.2.4. And 
if hd(F) k , then there is C G prcg(F) with F  \fk C, and then every tree-resolution derivation 
of C  from F  needs at least 2k+1 leaves due to 2 hd^ c'*F  ̂ < C o m p ^ ^ c 1 * F) (as stated before). □

E x am p le  3.4.5 Here are some basic determinations of hardness for satisfiable clause-sets (for 
unsatisfiable F see Example 3.3.3), using Theorem 3.4-4 ( w, x , y , z  are literals with distinct un
derlying variables):

1. hd(T) =  0.

2 . hd({{x}}) =  0 .

3. For F  := {{x,y}, {x,y}} we have hd(F) =  1:

(a) prc0 (F ) =  {{x}}.

(b) hd((x -» 0) * F ) =  hd({{y}, {y}}) =  1.

4. For F  := {{x, y}, {y , z } }  we have hd(F) =  1:

(a) prc0 (F ) =  {{{x, y}, {y, z},  {x, z} } } .
(b) hd((x —>■ 1, y —> 0) * F ) =  hd({_L}) =  0.

(c) hd((y —> 1, z —> 0) * F ) =  hd({_L}) =  0.
(d) hd((x -)> 1, 2  - 4  0) * F ) =  hd({{y}, {y}}) =  1.

5. For F  := {{z , x, y}, {z,  x, y}, {z,  x, y}, {z,  x, y}} we have hd(F ) =  2:

(a) prc0 (F ) =  {{2 }}.

(b) hd ( ( 2  -> 0 ) * F )  =  hd({{x ,y},{x ,y},{x ,y},{x ,y}} =  2 .
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3.4.1 Some basic hardness determinations
The following basic lemma follows directly by definition and Lemma 3.4.2:

L em m a 3.4.6 I f  two clause-sets F  and F ' are variable-disjoint, then we have:

1 . I f  F, F ' G S A T ,  t f ie n h d (F U F ')  =  m ax(hd(F), hd (F ')) .

£  I f  F  G S A T  and F ' G U S A T , then h d (F  U F ') =  hd (F ').

3. I f  F, F ' G U S A T , then hd (F  U F ') — m in(hd(F), hd (F ')) .

P ro o f: First consider case 1. To see th a t h d (F u F ')  > m ax(hd(F), hd (F ')) , assume w.l.o.g th a t 
hd(F ') > hd(F) and consider a satisfying assignment p  for F '. We then have th a t hd(FU  F') > 
hd(<^ * (F  U F')) = hd (F ') (p satisfies all the clauses in F  but doesn’t touch F')  by Lemma
3.4.2. To see that hd(F  U F ')  < m ax(hd(F), hd (F ')) , consider for the sake of contradiction
that there is a partial assignment p  observing th a t h d (F  U F ')  > m ax(hd(F), hd (F ')) (i.e., 
F u F ' l / m a x (h d (F ) ,h d (F ' ) )  Cy>)- T  must falsify F  or F ' individually (otherwise just extend both to a 
total satisfying assignment; possible due to disjointness). However, this means th a t F  b h d ( F )  

or F  b h d ( F ' )  hence F  I- m in (h d (F ) ,h d (F ' ) )  Cp , hence F  I- rnin ( h d (F ) ,h d (F ' ) )  Ctp (recall th a t a 
resolution refutation for a subset of a clause-set refutes the superset), a contradiction and so 
hd(F  U F ')  < m ax(hd(F), hd (F ')) . Case 2 follows in essentially the same way.

Finally consider case 3. T hat h d (F  U F f) < m in(hd(F), hd (F ')) follows from the same rea
soning as for case 1 . To see th a t hd (F  U F 1) > m in(hd(F), hd (F ')) , assume for the sake of 
contradiction that there is some resolution proof T  : F  U F ' bfc _L for k < m in(hd(F), hd(F ')). 
F  and F ' are variable-disjoint and so T  must be a resolution proof from either F  or F ' and so 
m in(hd(F), hd(F ')) < k, a contradiction. □

Via full clause-sets A n with n  variables and 2n clauses we obtain (unsatisfiable, simplest) 
examples with h d (4 n) =  n, and when removing one clause for n > 1 , then we obtain satisfiable 
examples A'n with hd(4^) =  n — 1 , maximising hardness:

L em m a 3.4.7 Consider a full clause-set F  G CCS (i.e., each clause contains all variables).

1. hd(T) = 0.

2. I f  F  is unsatisfiable then hd(F) =  n (F ).

3. I f  F  ±  T, then hd(F) =  n (F ) -  minCeprCo(F)|C,|.

4- I f  for F  no two clauses are resolvable, then hd(F) =  0.

P ro o f: Part 1 follows by Definition, P art 2 is Lemma 3.18 in [104], while Part 4 follows from 
P art 3. It remains to show Part 3. If F  is unsatisfiable, then we get Part 2. For satisfiable F  and a 
partial assignment p  with var(</?) C var(F) it is p * F  a full clause-set with n(p*F)  =  n(F)  — n(p),  
and so the assertion follows by reduction to the unsatisfiable case. □

The following lemma yields a way of pumping up hardness:

L em m a 3.4.8 Consider F  G CCS andv  G V.A\var(F). Let F ' :=  {Cu{u} : C  G F}u{C u{ii} : 
C g F } .  Then we have hd(F') =  hd(F) + 1 .
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P ro o f: We have hd(F ') < hd(F ) +  1 by definition (if v is not set by the test-assignment, then 
it can be set to an arbitrary value, yielding a forced assignment at level hd(F)). Now consider 
a partial assignment p  with var((^) C var(F), p  * F E U S A T  and hd(<p * F) = hd(F ). Now also 
p  * F' E U S A T  holds, where p  * F' =  {C  U {u }  : C E p  * F }  U {C  U {v} : C E p  * F}.  Thus 
we have reduced the assertion of the lemma to the special case where F E U S A T , and where 
hd(F ') > hd(F) +  1 is left to be shown. This now follows easily by induction on the number of 
variables. □

3.5 Propagation-hardness
While hardness measures the level of r^ necessary to decide consistency (i.e., checking p  * F  E 
U S A T  by rk{p * F)  = {J_}), another possibility is to consider the level of rfc necessary to find 
all forced assignments.

D efin ition  3.5.1 For F  E CCS we define the p ro p a g a tio n -h a rd n ess  ( “p-hardness”) p h d (F )  E
No as the minimal k 6 No such that for all partial assignments p  E T A S S  we have

Tk{ p * F )  = i 0 0 { p * F ) .

Remarks:

1. A clause-set F  E CCS  having p-hardness < k means th a t for every instantiation (applica
tion of partial assignments) the r^-reduction catches all forced assignments.

2. Regarding zero-measures we have:

(a) For a clause-set F  E CCS  we have phd(F) =  0 iff either F  — T  or _L E F  (since if there 
is C E F  of minimal length with \C\ >  0, then for x  E C  we have for p  :=
that x E d(p  * F)  and xq{p * F) = p  * F  ^  Too(p * F)).

(b) If hd(F) =  0, then phd(F) < 1.
(c) For unsatisfiable F  we have phd(F) =  hd(F ) in case of hd(F ) > 1.

As for hardness, a fundamental property of this hardness measure deriving from properties 
of the rfc reduction is its closure under application of partial assignment.

L em m a 3.5.2 For F  E CCS and T A S S  we have phd(<£ * F ) < phd(F).

P roo f: This follows from the fact th a t any partial assignment p ' witnessing th a t phd(v?*F) >  k 
(i.e., rOQ(p' * (p*  F )) ^  Xk{p' * { p * F ))) for some k yields the witness p ' o p  for phd(F) > k (i.e., 
Tooilp' o p ) * F ) ^ T k ( ( p '  o p ) * F ) ) .  □

So propagation-hardness ensures th a t forced literals are found as well as inconsistency and 
so by the definition of forced literals it follows th a t phd(F) < hd(F ) +  1:

L em m a 3.5.3 For F  E CCS we have hd(F) < phd(F) < hd(F ) +  1.

P roo f: That hd(F) < phd(F ) follows by definition (any witnessing partial assignment for 
hd(F) > k also witnesses phd(F) > k ). To see th a t phd(F) <  hd(F ) +  1, assume for the 
sake of contradiction that phd(F ) >  hd(F) +  1 , i.e., th a t there is some partial assignment p  
such that rOQ(p * F ) * F)- By definition of r ^  there is some forced literal x, i.e.,
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(x —» 0 ) * ((p * F ) G U S A T , for which rhd(ir)((x —» 0) * (</? * F)) ^  {_L}. This contradicts the 
definition of hd(F). □
Remarks:

1 . A simple example where the upper bound of Lemma 3.5.3 is attained is the clause-set 
F  := {{a, b, c}, {a, b, c}, {a, b, c}}: By Lemma 3.4.7 we have hd(F) =  1 , while phd(F) =  2,
since for (c —» 0) * F  the two assignments a, b —> 1 are forced.

However, despite the ability for p-hardness to be higher than  hardness, the number of variables 
is still a natural limit, as evidenced by the fact th a t rn(F) will find all forced assignments of F  
(see Lemma 3.1.7).

L em m a 3.5.4 For F  G CCS we have phd(F) < n (F ).

Lemma 3.5.2 along with Lemma 3.1.6 leads to simple yet not always immediately obvious 
applications, such as the separation of hardness and p-hardness for full-clause-sets.

L em m a 3.5.5 For all full clause-sets F  G CCS, n  := n (F ), we have

1 . IfO < c(F) < 2 n then phd(F) =  hd(F) +  1.

2 . I f  c(F)  =  0 or c(F) — 2n then phd(F) =  hd(F ).

(Recall Lemma 3-4-7 for  hd (F).)

P ro o f: The assertions follow by Lemma 3.1.6, using the stability of the class of full clause-sets 
under partial assignments, while upper bounds follow via Lemma 3.5.4 and Lemma 3.5.3.

More precisely, to see th a t phd(F) > hd(F) +  1 for all full clause-sets with 0  <  c(F) < 2 n 
(i.e., not just those F  directly containing a forced literal) observe th a t by Theorem 3.4.4 there is 
a prime implicate C  of F  with p c  * F  G U S A T  and hd(</?c' * F) — hd(F) (=  n(<pc * F )). As C  is 
a prime implicate, for all x  G C  we have that P c\{x) * F  is satisfiable with forced literal x , and as 
F  is a full-clause-set, so is </?c\{x} * F , hence n,(<£>c\{x} * F ) =  n(( fc * F) + 1  =  hd(F ) + 1 . So by 
Lemma 3.1.6 and Lemma 3.5.2 we have phd(F) > phd((/P(7 \{x} *F ) > n(tpC\{x} * F ) =  hd(F) + 1 . 
□

One might think for a clause-set F  with a forced literal x  th a t if hd((x —> 0) * F ) =  k 
then naturally phd(F) = k -1-1, i.e., r^+i is needed to  find x  because r^ is needed to determine 
unsatisfiability of (x —> 0) * F . However, this is not always the case, as illustrated in Lemma 
3.5.6.

L em m a 3.5.6 Consider n  G N and a full unsatisfiable clause-set F  with n(F)  — n. Consider 
a literal x  with var(x) ^  var(F), and C  G F , and let F ' : =  (F  \  { C } )  U {C  U {x}}. Then 
hd (F ') =  phd(F ') =  n.

P ro o f: It suffices to show h d (F ') > n  and phd(F ') < n:

1. hd(F ') > n follows from hd(F ') > hd((x —> 0) * F ') — hd(F) =  n.

2. To show that phd(F ') < n, we must show th a t for all partial assignments ip w ith var((/p) C  
var(F ') holds rn (<p * F ') — roo{<p * F '):

(a) If n((f) > 1 then n(p  * F') < n  and so rn (p * F ')  — r^(cp * F ') .
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(b) Otherwise p  * F'  =  F ' . Consider any literal y G C \  {x} (using n > 1 here). Observe 
th a t (y —» 1 )* F ' is full and unsatisfiable with n((y —» 1)*F ') < n —1, and thus hd((y —> 
1 ) * F ')  < n — 1. Therefore, by definition of rn , we have rn (F ') =  rn ((^ —>• 0) * F').  
Now n((y —» 0) * F ')  < n, and therefore rn ((y —> 0) * F ')  =  r^ ( (y  —>■ 0) * F ')  =  r0 0 ( F l) 
(since y is forced for F ') . □

On the other hand, we can always “raise” the p-hardness of a clause-set up above the hardness 
via a simple construction:

L em m a 3.5.7 Consider F  G CCS and a literal x with var(x) £ var(F). Let F' := {C  U {x} : 
C  G F}. Then phd(F ') =  hd(F ) +  1, while hd (F ') =  hd(F ).

P roo f: T hat h d (F ') > hd(F) follows by Lemma 3.4.2 and the fact th a t F  =  (x —»• 0) * F'. T hat 
hd(F ') < hd(F) follows from the fact that any partial assignment p  witnessing hd (F ') > k (i.e., 
i / j * F g  U S A T  and r k(<p * F) A {-*-}) for some k must set x to 0  (as (x —>■ 1) * F ' =  T ) ,  hence 
p  * F' = tp * F  and so p  also witnesses hd(F) > k.

That phd(F ') < hd(F) +  1  follows by Lemma 3.5.3. Finally, to  see th a t phd(F ') > hd(F) 
assume for the sake of contradiction th a t phd(F ') < hd(F) and consider a partial assignment p  
witnessing the hardness of F , i.e., such th a t p  * F  e  U S A T  and hd(</? * F) = hd(F). We have 
that p  * F 1 = {C  U {x} : C  G p  * F}, so x is a forced literal for p  * F ' and so we have th a t 
r0 0 (p*F/) — r00((x —> 1 )*F' ) = T  ^  F' .  Therefore by the definition of r^ there exists some literal 
x' such th a t rhd(F)-i((:c/ -> 0) * (p * F)) = {±} and rhd(F)((:c —> 1) * (v7* F')) — T .  However, if 
x ' 7  ̂x then setting x to 1 satisfies (x'  —> 0) * (p * F ') and so rhd(ir) - i ( ( a;/ —> 0) * (p* F')) ^  {-L}. 
Therefore we must have x' =  x, but then rhd(F )-i((^  0) * (p * F ') )  =  rhd(F)-i(^  * F) ^  {-L}
due to the hardness of F , a contradiction. □

Due to the close connection between rfc and k times nested input resolution from Lemma 3.2.4, 
we have that a clause-set F  has a propagation-hardness <  k if under any partial assignment p  
all forced literals follow via k times nested input resolution:

L em m a 3.5.8 Consider a clause-set F and fc G No- We have that phd(F) < fc iff for all partial 
assignments p  G VASS and literals x G C I T  that p  * F \= x = >  p  * F  h*, x.

Remarks:

1. Recall th a t if p * F  G U S A T  then p * F  \= x for all literals x and so this is a strengthening of 
Definition 3.4.1 but less elegant due to the need to refer directly to  the partial assignment 
p  rather than  considering the complexity of deriving as in Definition 3.4.1.

We will see in Chapter 4.6 th a t this alternative characterisation of p-hardness links it directly 
to the class VC considered in [26] when fc =  1 and allows a generalised hierarchy V C to be 
defined for higher fc.
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3.6 W idth-based hardness
In Section 2.5, we saw th a t full-resolution is strictly more powerful than  tree-resolution. There
fore, while a clause-set having low hardness offers a stronger guarantee (i.e., there are proofs 
in the weaker tree-resolution proof system, which are then also full-resolution proofs) it makes 
sense to contrast, compare and develop in tandem  measures based on full-resolution. One of the 
core measures for full-resolution complexity is width.

A basic weakness of the standard notion of width-restricted resolution, which demands th a t 
both parent clauses must have length at most k for some fixed k G N0  (the “width” ; see [12]), 
is that even Horn clause-sets require unbounded width in this sense. The correct solution, as 
investigated and discussed in [104, 110], is to use the notion of “fc-resolution” as introduced in 
[99], where only one parent clause needs to have length at most k (thus properly generalising 
unit-resolution). Nested input-resolution ([104, 110]) is the proof-theoretic basis of hardness, 
and approximates tree-resolution. In the same vein, fc-resolution is the proof-theoretic basis of 
“w-hardness” , and approximates dag-resolution (see Theorem 6.12 in [110]).

3.6.1 fc-resolution
In [99] fc-resolution was introduced, and further investigated in [104, 1 1 0 ]:

D efin ition  3.6.1 Consider fc € No.

• Two clauses C , D are k-reso lvable i f  they are resolvable (recall Definition 2.5.1) and \C\ < 
fc V \D\ < k, and the resolvent C o D  is then called a k-reso lven t.

•  We use F  \-k C  i f  there is a resolution proof R  with R  : F  b C ' for some C' C C (recall 
Definition 2.5.2) such that every resolvent in R  is a k-resolvent.

Remarks:

1. In Definition 3.1.2 we defined F  [=*. C , in Definition 3.2.3 F  I-*. C, and in Lemma 3.2.4 we 
showed that F  \—k C <=> F  bfc C.

2 . We have F  C F  C  for fc < 1 , while for general fc G No holds F  \~k C  =>■ F  \~k C  
(see [104, 110]).

3.6.2 Width-based hardness
Using the notion of fc-resolution rather than fc-times nested input resolution, we get a notion 
of hardness related to the (asymmetric) width complexity of full resolution, rather than tree 
resolution as with hd:

D efin itio n  3.6.2 For F  G U S A T  let w h d (F )  G No ( “width hardness” or “w-hardness”) be the 
minimal fc G No such that F  b fc 1  holds. And for F  G CCS let w hd(F) G No be the minimal 
fc G No such that for all partial assignments <p holds p F  G U S A T  =></?* F  b fc _L.

Remarks:

1. We have whd(F) — fc hd(F) =  fc for fc G {0,1}, while in general w hd(F) < hd(F) holds.

2. In general, unlike for hd, we do not have th a t whd(F) < fc iff V C  G CC : F  f= C  •<=>• 
F  \-k C. This is because while hd measures a global structural property of tree-resolution 
proofs (i.e., the Horton-Strahler number), whd measures the local notion of width.
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We have whd(F) < 1 <=> UC(F) < 1 and for all fc G No holds whd(F) < hd(F) (this follows 
by Lemma 6 . 8  in [110] for unsatisfiable clause-sets, which extends to satisfiable clause-sets by 
definition). For unsatisfiable F , whether w hd(F) =  k holds for k G {0,1,2} can be decided in 
polynomial time; this is non-trivial for k — 2 ([33]) and unknown for k > 2.

If a clause-set F  G U S A T  has a fc-resolution refutation R  then via induction on R  for all
partial assignments </? there is a fc-resolution proof of (p * F. Therefore, again as for hardness, we 
have the fundamental property w-hardness is closed under application of partial assignment.

L em m a 3.6.3 For F  G CCS and V A SS we have whd(<^ * F ) < w hd(F).

As a special case of Theorem 6.12 in [110] we obtain for F  G U S A T , n(F)  /  0, the following
general lower bound on resolution complexity:

w h d ( F ) 2

CompR(F) > b ,

where b := =  1.1331484..., while CompR(F) G N is the minimal number of different clauses
in a (tree-)resolution refutation of F.  Similar to Theorem 14 in [76] resp. Theorem 5.7 in [77, 78] 
we thus obtain:

L em m a 3.6.4 For F  G CCS and k G No, such that fo r every C  G prc0 (F) with \C\ < n(F)
( f c + i ) 2

there exists a resolution proof of C from F  using at most bn(F">~i°i different clauses, we have 
whd(F) < fc.

Illustrating the “weaker” nature of whd, in Example 3.6.5 we see a simple case where whd is 
lower than hd.

E x am p le  3.6.5 Consider the following clause-set for literals x i , X 2 , x[,x' 2 , yi  with different un
derlying variables:

F  {  { x i , X2 } , { 3 ^ 1 5 x 2}> {*£ 1 1x 2, y \ } , { 2 : 1 , x 2 1 y i } , {^ 1 , * ^ 2 } > {^T> x i } > 1 »x 2 > 2 / 1 1  ’ x 2 > 2 / 1 }  }
V v  . . ^  V  v -  -  -  ✓  S ^  ✓  V v  ✓

* 1  =  x 2  x/1  — ► ( * 1  7 ^  x 2 )  =  x '2  y i  —> ( x [  ^  x ' 2 )

We have that F  G U S A T  and whd(F) =  2 but hd(F ) =  3. That w hd(F) > 2 comes from the 
fact that there are no unit-clauses. That w hd(F) < 2  is evidenced by the following 2-resolution 
proof:

{x\ ,X2 } {xi ,X2 ,y[} {xT,x2} {x\ ,X2 ,yi} {x i>x 2 } { x ^ x ^ y i }  {x\,x '2} { x ^ x ^ y i }
{xi, yT>________________{x 2 ,yi} {x'2 ,yi}________________ {x 2 ,Vi}

{yr}_______________________________________ (yi>
±

That hd(F) < 3  is evidenced by the fact that the above resolution proof has Horton-Strahler 
number 3. To see that hd(F) > 3 observe that for all literals x  G lit(F ) we have r i((x  —> 0) *F ) 7  ̂
{_L} (r2 (F ) 7  ̂ {J_} hence hd(F) > 2 ) and hence 1 3 (F) =  F  /  {-L}-

In general, from [127] it is known that there are families of unsatisfiable clause-sets with constant 
symmetric-width (hence also asymmetric) but linear full-resolution space-complexity. In Theo
rem 6.4.7 we shall see another example of such a linear separation between width (i.e., whd) and 
iree-resolution space complexity (i.e., hd).
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3.7 Remarks on the term “hardness”
In general, if one speaks of the “hardness measure” hd : CCS —>• No (Definition 3.4.1) in context 
with other measures, then one should call it more specifically tree-hardness ( “t-hardness”), de
noted by th d (F ), due to its close relation to tree-resolution (and its space complexity). So we 
have three basic types of hardness-measures, namely t-hardness th d (F ), p-hardness phd(F ), and 
w-hardness w hd(F). In this thesis, since thd (F ) is still most im portant here, we denote it by 
hd(F) =  thd (F ).

In what respect is the terminology “hardness” appropriate? The hardness measure hd(F) 
has been introduced in [104, 110], based on quasi-automatisation of tree-resolution, th a t is, on 
a specific algorithmic approach (close to Stalmarcks approach).3) In [2] hd(F) for unsatisfiable 
F  was proposed as measure of SAT-solver-hardness in general. This was criticised in [95] by the 
argument, th a t conflict-driven SAT solvers would be closer to dag-resolution (full resolution) than 
tree-resolution. Due to  their heuristical nature, it seems to us th a t there is no robust measure of 
SAT-solver-hardness. Instead, our three basic measures, which are robust and mathematically 
meaningful, measure how good a clause-set F  is in representing an underlying boolean function 
in the following sense:

• Regarding instantiation we take a worst-case approach, th a t is, we consider all partial 
assignments ip and their applications ip * F  (insofar they create unsatisfiability or forced 
literals).

A SAT-solver only uses certain partial assignments, and thus this worst-case approach is 
overkill. However when using F  in any context, then it makes sense to consider all partial 
assignments.

• Regarding algorithms, we take a breadth-first approach, th a t is, the smallest k such th a t r^ 
or /c-resolution succeeds. For k > l a  SAT-solver might not find these inferences. However 
those algorithms need polynomial time, and thus are implementable, and furthermore the 
maximisation over all partial assignments needs to be complemented with a minimisation 
in order to yield something interesting.

3^Using the simplest oracle, on unsatisfiable instances the measure from [104, 110] yields hd (i?). But on 
satisfiable instances the approach of [104, 110] is very different, namely an algorithmic polynomial-time approach 
is taken, extending the breadth-first search for tree-resolution refutations in a natural way.

66



Chapter 4

Classes and hierarchies for SAT 
knowledge com pilation

The SCUTZ and UC classes are now described, and the hierarchies SCUTZk and UCk derived. The 
fundamental result is then presented th a t SCUTZk =  UCk is proven in Theorem 4.4.4 for two 
previously (thought to be) distinct classes, and bringing together the two conceptual streams of 
intuition from polynomial time SAT solving (SCUTZ) and knowledge compilation (UC). The basic 
properties of the hierarchies are proven, as well as the relations of UCk to existing hierarchies, 
and the related hierarchies VCk and WCk  defined and connected to UCk-

4.1 The SLUR class and extensions
The SLUR-algorithm and the class SCUTZ C CCS have been introduced in [141]. The SLUR- 
algorithm for input F  G CCS is an incomplete polynomial-time SAT algorithm, which ei
ther returns “SAT” , “UNSAT” (in both cases correctly) or gives up. This algorithm is non- 
deterministic, and SCUTZ is the class of clause-sets where it never gives up (and thus SAT- 
decision for F  G SCUTZ can be done in polynomial time). Due to an observation attributed 
to Truemper in [61], the SLUR-algorithm can be implemented such th a t it runs in linear time. 
Decision of membership, th a t is whether F  G SCUTZ holds, by definition is in coNP, but only in 
[36] it was finally shown th a t this decision problem is coNP-complete.

The original motivation was th a t SCUTZ contains several other classes, including renamable 
Horn, extended Horn, hidden extended Horn, simple extended Horn and CC-balanced clause- 
sets, where for each class it was known th a t the SAT problem is solvable in polynomial time, but 
with in some cases rather complicated proofs, while it is trivial to see th a t the SLUR-algorithm 
runs in polynomial time. In [61, 62] probabilistic properties of SCUTZ have been investigated. ̂

In this section we first give a semantic definition of SCUTZ in Subsection 4.1.1. In a nutshell, 
SCUTZ is the class of clause-sets where either UCP (unit-clause propagation aka ri)  creates the 
empty clause, or where otherwise iteratively making assignments followed by UCP will always 
yield a satisfying assignment, given th a t these transitions do not obviously create unsatisfiable 
results, i.e., do not create the empty clause. In order to understand this definition (and its various

^ A t this point a popular misunderstanding should be avoided: The well-known dichotomy result of Schaefer 
(see Subsection 8.6) states that under certain conditions there are precisely six classes of problem instances with  
polytime SAT solving (unless P = N P ). However this has no bearing on the classes considered here, since they do 
not fall within the restricted framework of Schaefer’s theorem.
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extensions) clearly, we present a precise mathematical (non-algorithmic) definition, based on the 
SL U Rtransition relation F  > F ' (Definition 4.1.3), which represents one non-deterministic step of

the SLUR algorithm: If ri on input F  G CCS does not determine unsatisfiability (in which case 
we have F  G SCUTZ), then F  G SCUTZ iff T can be reached by this transition relation, while 
everything else reachable from F  is not an end-point of this transition relation.

In [36, 10] recently three approaches towards generalising SCUTZ have been considered, and 
we discuss them  in Subsection 4.1.2. Our generalisation, called SCUTZk, which we see as the 
natural completion of these approaches, will be presented in Section 4.4.

4.1.1 SLUR
The SLUR-algorithm ( “Single Lookahead Unit Resolution”) from [141] is described for input 
F  G CCS as follows (fully formalised in Definition 4.1.1 and Definition 4.1.3):

1. First run UCP, th a t is, reduce F  ^  F ' where F ' =  r i(F ) .

2. If now 1  G F ' then we determined F  unsatisfiable.

3. If not, then the algorithm guesses a satisfying assignment for F ', by repeated transitions
SLU RF ' -------> F " , where F "  is obtained by assigning one variable and then performing UCP,

i.e., F "  := ri((x  —» 1 ) * F ') for some literal x.

4. The “lookahead” means th a t transitions with F "  =  {_L} are not allowed.

5. The algorithm might find a satisfying assignment in this way, or it gets stuck, th a t is, for 
the chosen literal both assignments x  —>• 1 and x —» 1 yield {_L}, in which case it “gives 
up” .

6 . It is im portant to note - there is no backtracking, the algorithm is linear time and may 
return “satisfiable” or “unsatisfiable” (correctly), or instead it might “give up” .

The SLUR class is defined as the class of clause-sets where this algorithm never gives up. The 
precise details are as follows. First we define the underlying transition relation (one non-failing 
transition from F  to F'):

SLf URD efin ition  4.1.1 For clause-sets F ,F ' G CCS the relation F  > F ' holds i f  there is x  G
lit(F) such that F ' =  ri((x  -» 1) * F) and F ' A  {J_}. The transitive-reflexive closure is denoted 
L p, SLUR  n /by F  K F .

E x am p le  4.1.2 Considering when we have F  --L - R>* F ' and when not:

1 . F  T  iff F  G S A T .

2. {C} -S--U—} T precisely for all clauses C ^ l .

3• {{x,y},{x,y}} > T.

4- {{^ y} ,{y ,z}}  SLUR> T  (due to e.g. n ( (x  -> 1) * {{x, y}, {y, z}})  = T) .

5. F  SL UR> F ' does not hold i f  there is no literal to set, or i f  ri detects unsatisfiability o f F ' .
That is, there are n o  clause-sets F, F ' such that any of the following hold:
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(a) T F .

(b) {!_} F.

(c) F  F .

(d) F  F ' where n ( F ')  =  {±} .

SLU RVia the transition-relation F  > F ' we can now easily define the class SCUTZ, which will
find a natural generalisation in Definition 4.4.1 to SCUTZk for k E No (where SCUTZ =  SCUTZi):

D efin itio n  4.1.3 The set o f all fully reduced clause-sets reachable from F  E CCS is denoted by 

s lu r (F )  := {F ' € CCS \ F  F ' A - 3  F "  E CCS : F ' F"}.

Finally the class of all clause-sets which are either identified by UCP to be unsatisfiable, or where
by SLUR-reduction always a satisfying assignment is found, is denoted by SCUTZ  := {F  E CCS :
n ( F ) ^ { ± } ^ s l u r ( F )  =  {T}}.

We could define -^LU—> as F  -  — (x —> 1 ) * F  iff r i((x  —»• 1 ) * F) /  ± , and this would yield 
the same class SCUTZ but a different transition relation (one would not be forced to immediately 
make forced assignments).

E x am p le  4.1.4 Computing slur(F) for clause-sets F:

1. slur(F) ^  0 (in the “worst” case we have F  € slur(F)).

2. slur({_L}) =

3. slur(T) =  {T}.

4. slur({C}) =  {T} i f f C ^ L .

5. I f i i ( F )  =  T then slur(F) =  {T}.

6 . s \ m{{{x , y} , {x , y}} )  = {T}.

7. slur({{x,y},{y,z}}) =  {T}.

8 . For F  := { { x , y } , { x , y } , { x , y } , { x , y } }  we have slur(F) =  {F}.

9. For F ' := {{z,  x,  y}, {z, x , y j ,  {z , x , y}, { z , x , y } }  we have T , F  G slur(F ').

4.1.2 Previous approaches for SLUR hierarchies
In [36, 10] three hierarchies SCUTZ(k),SCUTZ*(k) (k G N) and CANON(fc) (k G No) have been 
introduced. In Section 4 of [10] it is shown th a t SCUTZ{k) C  SCUTZ*(k) for all k G N and so we 
restrict our attention to  SCUTZ*(k) and CANON(fc).

CANON(/c) is defined to be the set of clause-sets F  such th a t every C  G prc0 (F) can be 
derived from F  by a resolution tree of height at most k. Note th a t basically by definition 
(using stability of resolution proofs under application of partial assignments) we get that each 
CANON(fc) is stable under application of partial assignments and under variable-disjoint union.

The SCUTZ*{k) hierarchy is derived in [10] from the SCUTZ class by extending the reduction 
r\. We provide an alternative formalisation here, in the same manner as in Section 4.1.1. The
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main question is the transition relation F  ^  F '. The <S££V7£*(fc)-hierarchy provides stronger 
and stronger witnesses th a t F ' might be satisfiable, by longer and longer assignments (making 
“A; decisions”) not yielding the empty clause:

D efin itio n  4.1.5 That partial assignment p  E V A SS m a kes  k dec isio n s for some k E No 
w.r.t. F  E CCS is defined recursively as follows: For k =  0 this relation holds i f  p  * F  — i i (F) ,  
while for k > 0  this relation holds i f  either there is k' < k such that p  makes k’ decision w.r.t.
F  and p  * F  = T, or there exists x  E lit(F ) and a partial assignment p ' making k — 1 decision 
for i i ({x  —» 1) * F),  and where p  * F  = p ' * r i((x  —> 1) * F).

Now F  SLUR*ky p f j or k > 1 by definition holds i f  there is a partial assignment p  making k
decision w.r.t. F  with F ' — p *  F , where F ' 7  ̂ {-!-}• The reflexive-transitive closure i s  —t*.

Finally we can define the hierarchy:

s lu r*( k ) ( F)  := {F'  E CCS \ F  SLUR* \  F'  A 3 F " : F'  SLUR*fc> F"}
S C U K * ( k )  := { F E C C S : s \ m * { k ) { F ) ^ { F } = > s \ u r * { k ) ( F )  = { T} } .

The unsatisfiable elements of SCUTZ*(k) are those F  A  T with slur* (A;) (F) = {F}. By definition 
each SCUTZ*(k) is stable under application of partial assignments, but not stable under variable- 
disjoint union, since the number of decision variables is bounded by k (in Lemma 4.3.4 we will see 
that our hierarchy is stable under variable-disjoint union, which is natural since it strengthens 
the CANON(fc)-hierarchy).

E x am p le  4.1.6 Some examples for  CANON(k) and SCUTZ*(k) (k E N):

1 . Consider the unsatisfiable clause-set F  := {{x, y}, {x, y}, {x, y}, {x, y}}.

(a) F  £ SCUTZ because F  is unsatisfiable but r i(F )  7  ̂ {_L}.
(b) F  E SjCUTZ*(1) because i i ( (x '  —> 1 )*F)  =  {_L }/ora//x ' € lit(F ) and so s lu r* (l)(F ) =

{F}.
(c) This establishes SCUTZ C  SCUTZ*(\).
(d) F  E CANON(2) \C A N O N (l) because actually all tree-resolution refutations of F  are 

full binary trees of height 2 .

2. Consider the satisfiable clause-set F ' : =  {{x i , . . . ,  x*,} U C \ C  E F }.

(a) F ’ SCUTZ*(k) because F ' SLUR*k^  where F  is unsatisfiable and thus ->(F 5LUR*k)i/i 
T), whence slur*(A:)(F/) 7  ̂ {T}.

(b) F ' E SCUTZ*(k + 1) because we have r i ( p*  F' )  E {T, {_L}} for all partial assignments 
p of length k +  1 on variables of F ' hence slur*(A;)(Fi) =  {T}.

(c) F ' E CANON(2) because the only prime implicate is { x i , . . .  ,Xfc} and actually all its 
tree-resolution proofs are full binary trees o f height 2 .

4.2 UCk: unit-refutation com plete clause-sets at level-k
The second source for our investigations is the class UC of unit-refutation complete clause-sets, 
introduced in [51] as a target class for knowledge compilation. Via the theory of “hardness” of 
clause-sets as developed in [104, 110, 2] we obtain a natural generalisation UCk,  containing those 
clause-sets which are “unit-refutation complete of level k” , which is the same as having hardness 
at most k.
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D efin ition  4.2.1 For k £ No let UCk  := {F  G CCS : hd(F) < k} (the class o f u n it-r e fu ta tio n  
com plete c la u se-se ts  o f  level k). ^

The class UC\ has been introduced in [51] for knowledge compilation. Various (resolution-based) 
algorithms computing for clause-sets F  some equivalent set F ' G UC\ of prime implicates are 
discussed there. Based on the results from [104, 110] restated in Theorem 4.2.2, a powerful 
proof-theoretic characterisation for all classes UCk can be given:

T h eo rem  4.2.2 For k G No and F  G CCS we have

F e U C k VC G prc0 (F) : F  \~k C.

Thus if  every C  G prc0 (F) has a tree-resolution refutation using at most 2k+l — 1 leaves (i.e., 
Compj^((^c * F) < 2k+1), then hd(F) < k.

A p re cu rso r A generalisation of UC was already discussed in [52]. Assuming a polytime SAT- 
decision algorithm P  : C —> {0,1} for some C C CCS , the class PC C CCS of “P-complete” 
clause-sets is defined as the set of F  G CCS such th a t for all implicates C  holds P{ipc *F ) — 0.3) 
This is an obvious generalisation of UCk, when using Ck :=  { F  G CCS : rk {F )  G { T ,  {_!_}}} and 
Pfc : Cfc —> {0 ,1 } with Pk{F) =  1 rk{F)  =  T. But it does not cover the hierarchies VCk or 
}VCk, which are based on different principles.4) We note the conceptual weakness of demanding 
a SAT-decision algorithm P , where actually only a means for detecting unsatisfiability is needed.

[52] continues by considering the (generic) hierarchy (IIfc)fceN0 from [132], a precursor of [104]. 
n0 Q CCS in principal is arbitrary, but is assumed to be polytime decidable and SAT-decidable. 
Then 11̂  for k > 0 is the set of F  G CCS such th a t F  G life-! or there is a literal x G lit(F ) with 
(x —> 1) * F  G Ilfc-i and (x —>■ 1) * F  G 11 .̂ We note th a t if we choose IIo =  {F  G CCS : JL G F h  
then rifc =  UCk C \U SA T  for all k > 0 . However this choice for Ho was never considered for th a t 
hierarchy from [132], which might have two reasons: Implicit preference is given to classes Ho 
closed under sub-clause-set formation (see Section 6.3 in [78] for more discussions on this issue). 
And furthermore SAT and UNSAT is not distinguished in [132] and in subsequent work directly 
relying on it; see Subsection 1.2 in [104] for a discussion of this. So the four choices for no 
considered in [52] are 'HO, 2-CCS, 1ZHO and QHO.  Accordingly UCq O U S A T  is not contained 
at any n^, and so not even ri on unsatisfiable clause-set is covered by the considered hierarchies.

Due to these weaknesses, [52] does not consider a hierarchy generalising UC. Prom our point 
of view one could say, th a t life is only considered as a resource for polytime recognition of certain 
instances for UCk resp. UCk+1 ; compare Subsections 6 .2 , 6.3 in [78] for results in this direction.

4.3 Fundamental properties of UCk
In Subsection 3.4.1 we determined hardness for various constructions. In Subsection 4.3.1 we con
sider various classes contained in some UCk together with stability properties oiUCk- Relations 
to alternative hierarchies from the literature are discussed in Subsection 4.3.2. We conclude

2^To elaborate, UC^ is the class of clause-sets F  which have that for all partial assignments ip € PASS  if 
tp * F  €  U S A T  then rfc(F) =  {-L}. That is, under any falsifying assignment, rk is sufficient to  determine 
unsatisfiability.

3)[52] actually favours adding unit-clauses to F, but we consider applying partial assignments as more funda^ 
mental.

4^This is obvious for fc >  1 and VCk, since VCk F U S A T  =  UCk F U SA T ,  while VCk F S A T  C UCk F S A T .  We 
conjecture that for fc >  3 there is no (polytime) P  with PC =  WCk (as remarked in Section 3.6.2, for fc E (0 ,1 , 2} 
there exists such a P).
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our discussion of basic properties of hardness in Subsection 4.3.3, considering the most basic 
cases of precise hardness-computations. We stress th a t (algorithmic) computation of hardness 
for arbitrary instances is less important here5), since we aim more a t constructing “soft” (low 
hardness) representations than measuring hardness of given instances. W hat is needed is a theory 
to identify general constructions.

4.3.1 Containment and stability properties
The following fundamental lemma is obvious from the definition:

L em m a 4.3.1 Consider C C CCS stable under application of partial assignments and k E No- 
I f  C D U S A T  C UCk then C C UCk ■

We apply Lemma 4.3.1 to  various well-known classes C (stating in brackets the source for the 
bound on the unsatisfiable cases).

L em m a 4.3.2 Consider F  € CCS.

1. For ip € VASS and all fc E No we have that F  E UCk implies ip* F  E UCk (by Lemma 3.11 
in [1 0 4 ]).

2. F  E UCn(p) (by Lemma 3.18 in [104]).

3. 2-CCS C UC2  (by Lemma 5.6 in [104]).6^

4■ HO  C UC\ (by Lemma 5.8 in [104]).

5. QUO  C UC2  (by Lemma 5.12 in [104]; see Section 6.10.2 in [42], and [158]).

6 . For all fc E N we have HOk Q UCk (by Lemma 5.10 in [104]; see [99]).

Obviously Part 4 of Lemma 4.3.2 can be generalised to F  E 7ZHO  (see Lemma 4.3.4, P art 3). 
And considering Part 3, by a standard autarky-argument for 2-CCS  (see [100]) we can sharpen 
the hardness-upper-bound 2  for satisfiable clause-sets:

L em m a 4.3.3 We have that 2 -CCS fi S A T  C UC\.

P ro o f: Consider a partial assignment <p with unsatisfiable <p*F. Now we have r i (ip*F) = {_L}, 
since otherwise T\(ip * F)  C F  (all C E F  must have |C | =  2 and ri doesn’t introduce new 
2 -clauses), and thus ri (ip * F)  would be satisfiable. □

5'Decision of membership in UCk for k >  1 is coNP-complete, as shown in Theorem 4.4.5, which seems natural 
for classes with strong expressive power (for example, we see less expressive classes such as H O ,  H O k  with poly
tim e decidability are able to capture fewer boolean functions (at fixed levels), or sim ply collapsing as in Lemma 
8.1.4). A core implication of this is that hd will sometimes be impractical as a measure, which is precisely why 
one instead considers UCk as target classes by construction.

6^To see that hd(F) <  2 for F  E 2-CCS HUS A T,  observe that if T2 {F) — F' ^  {_L} then F' £  2-CCS C\USAT  
with all C  E F  having \C\ =  2 (otherwise T2 (F) =  T2 (F') ^  F'). Consider a minimally unsatisfiable subset 
F" C F' and a variable x G occlit(F"). If rx((x —> 0) * F") =  {J_} then r2 (F ) =  T2 (F') F' (a contradiction), 
otherwise r i((x  —» 0) * F") C F" is still unsatisfiable, contradicting the minimal unsatisfiability of F ".
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We have the following stability properties:

L em m a 4.3.4 Consider k E No.

1 . UCk is stable under application of partial assignments (with Lemma 4-3.2, Part 1; this 
might reduce hardness).

2 . UCk is stable under variable-disjoint union (with Lemma 3.4-6).

3. UCk is stable under renaming variables and switching polarities (by definition).

4- UCk is stable under subsumption-elimination (by basic properties of resolution).

5. UCk is stable under addition of inf erred clauses (by definition; this might reduce hardness).

E x am p le  4.3.5 Examples for non-stability:

1 . UCq is obviously not stable under removal of clauses.

2. UCq is not stable under removal of literal occurrences, for  example { { x , y } , { x , y } }  E UCq, 
but {{x}, {x,y}} £ UC0.

3. UCq is not stable under crossing out of variables, e.g. { { x , y } ,  { x , y } }  E UCq, but when 
crossing out variable x we obtain {{y}, {y}} ^ UCq.

4- UCq is not stable under addition of clauses, for example {{a?}} € UCq, but {{a:},{x}} ^ 
UCq.

5. UCq is not stable under addition of literal occurrences, e.g. {{a:},{y}} E UCq, but 
{{z ,y } ,{y }}  i  UCq.

4.3.2 Alternative hierarchies
No class UCk is stable under removal of clauses. We will see in this subsection th a t this boils 
down to the class U q  of clause-sets containing the empty clauses not being stable under removal of 
clauses. Some classes contained in UC\ however are stable under removal of clauses, for examples 
renamable Horn clause-sets (1ZHO), and in [35] hierarchies based on this more restricted class 
have been considered. To understand the connection to our approach, some comments on the 
use of “oracles” in this setting are needed (see Chapter 8  for future developments).

In [104, 110] the hierarchy Gk(U, S ) C CCS (k E No) has been introduced, using oracles 
U C U S A T  for unsatisfiability detection and S  C S A T  for satisfiability detection:

D efin ition  4.3.6 For all k E No and classes U ,S  C CCS, the class Gk{U,S)  is defined as
follows. Let

G°(W ,S ) = U  and G j(W ,S )  =  S.

While

• F  E G ^+ 1 (U, S )  i f  either F  — {_L} or there is some (v,e)  E var(F) x {0,1} such that

( v ^ e ) * F e G ° k{U,S) and (v -> e) * F  E G°k+1 (U, S).
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• F £ G k+ 1 (U, S )  i f  either F  =  T or there is some ( v , e )  £ var(F) x {0,1} such that

{« -> e) * F  £ G \(U ,S ) or

{v e) * F  £ GQk(U ,S) and (v -+e) * F  £ Gk+1 (U,S).

Finally, G k ( U , S )  : =  G°k {U, S ) U G{{U, S).

1. The minimal oracles considered there are Uq := { F  £ CCS : X € F}  and <?o :=  {^}.

2 . One uses Gk(U,S)  := Gk{U, S)  HUS A T  and G \(U , S ) := Gk{ U , S ) n S A T .  Since G°k(U, S) 
does not depend on S , one writes Gk(U) := Gk(U,S).

3. For all k £ N0 holds Gk(Uo) =  UCk n  U S  A T .  On satisfiable instances in general the 
hierarchies are incomparable.

4. If C C CCS  is stable under application of partial assignments, then each class G k(C) := 
Gk{C n U S A T ,C  n S A T )  (for k £ N o )  is also stable under partial assignments (Lemma 4.2 
in [1 1 0 ]). So if C n U S A T  Q UCk> for some k' £ N o ,  then we have Gk{C) C UCk+k1 (using 
Lemma 4.3.1). This is the basis of all inclusion-relations of Section 4.3.

5. In [104, 110] it is assumed th a t Uq Q U  holds. This ensures th a t UCk H U S A T  C Gk (C) 
always holds, but in most cases makes classes Gk(U,S)  unstable under elimination of 
clauses.

In [35] two hierarchies (IIfc)fcgN0, {Tk)keN0 have been introduced; the basic motivations and 
the relations to our hierarchies are as follows:

D efin ition  4 .3 .7  For all C C  CCS and all k £ No consider the class G'k (C) defined as follows

• G'q(F) := C.

• for all clause-sets F  £ CCS we have F  £ Gk+1(C) iff F  £ {T, {_L}} or there exists (v , e ) £ 
var(F) x {0 ,1 } such that (v —> e) * F  £ Gk(C) and (v —> e) * F  £ G'k+1(C).

The hierarchies (IIfc) fceNo and ( T k)k£N0 are defined as (G,k('R'HO))keN0> {Gk(Q'HO))ke^0 re
spectively.

1 . We have Uk n  U S A T  =  G°k(KH O ) and Uk n  S A T  C G lk{1THO) (with n 0  =  7IHO).  Note 
that we do not have Uo C  7VHO here.

2 . It is 'JZ'HO fi U S A T  C  G\(Uq) (Lemma 4.3.2, Part 4), while 7ZTLO fl S A T  is not included 
in any G \(U ,Sq). More generally we have 11̂  O U S A T  C Gk+1(Uo) for all k > 0 .

3. So the choice of the oracle 7ZTLO is less powerful on unsatisfiable instances than the choice of 
Uo (when going up one level in the hierarchy), while the special recognition of satisfiability 
for IZHO is (naturally) not captured by any level of the Gfc-hierarchy, when using only the 
trivial satisfiability-oracle So (even using U — US  A T  does not change this, since this only 
yields full handling of all forced assignments, while a satisfiable instance in 1THO might 
not have any forced assignment).

4. For k > 1  we have 11̂  fl S A T  C  G\{TTHO), where an example for F  £ G\{fRMO) \  II/c is 
given by F  :=  {{u} U C  : C  £ F '}  for some F ' £ CCS \  11̂  and v £ V.A \  var(F '). The 
point is th a t recognition for the Gk{U,S)~hierarchy includes satisfiability-decision at lower 
levels, and if one branch, here (v —> 1 ), yields a satisfiable instance, then the other branch 
((u 0 )) is not inspected — which however is the case for 1 1 ^.
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5. 1ZFLO is stable under application of partial assignments, and, th a t is its main feature, stable 
under removal of clauses. This yields th a t all life are stable under removal of clauses, which 
is the main motivation for this choice of the base oracle.

6 . Uq is not contained in any life, and thus there are unsatisfiable clause-sets of hardness 0  

not contained in any given life.

7. [35] considered also (shortly) the hierarchy C  CCS (k E N o ) ,  with n U S A T  = 
GQk{QFLO) and n  S A T  C Gk(QRO) ,  based on the stronger oracle QUO  D 7ZFLO of 
q-Horn clause-sets (again stable under application of partial assignments and removal of 
clauses). We have C U S A T  C ^ + 2 (^ 0 ) f°r all k > 0  (Lemma 4.3.2, Part 5).

By Lemma 4.3.1 we get:

L em m a 4.3.8 For all k E N o  we have 11*; C  UCk+i and C  UCk+ 2  fo r the hierarchies life, 
introduced in [35].

4.3.3 Determining hardness computationally
By the well-known computation of prc0 (F ) via resolution-closure we obtain:

L em m a 4.3.9 Whether for F  E CCS we have hd(F) — 0 or not can be decided in polynomial 
time, namely hd(F) =  0 holds i f  and only i f  F  is stable under resolution modulo subsumption 
(which means that for all resolvable C, D E F  with resolvent R  there exists E  E F  with E  C  R).

Thus if the hardness is known to be at most 1, we can compute it efficiently:

C o ro lla ry  4.3.10 Consider a class C C  CCS o f clause-sets where C C  UC\ is known. Then for  
F e C  one can compute hd(F) E {0,1} in polynomial time.

Examples for C are given by FLO C  UC\ (Lemma 4.3.2) and in Subsection 4.1.1. Another 
example class with known hardness is given by 2-C C S  C  UC2  (Lemma 4.3.2), and also here we 
can compute the hardness efficiently:

L em m a 4.3.11 For F  E 2-CCS one can compute hd(F) E {0,1,2} in polynomial time.

P ro o f: One method is to observe th a t for elements of 2-CCS the set of prime-implicates can be 
determined in polynomial time, while SAT-decision can be done in linear time. More efficient is 
the following:

1. Determine first whether F  is satisfiable or not.

2. If F  is satisfiable, then hd(F) E {0,1} by Lemma 4.3.3, and whether hd(F ) =  0 or not can 
be determined by Lemma 4.3.9.

3. If F  is unsatisfiable, then it suffices to compute r o ( F )  and t i (F) .  □  

See Theorem 4.4.5 for coNP-completeness of determining an upper bound on hardness.
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4.4 The SLUR hierarchy
We now define the SCUTZk hierarchy, generalising SCUTZ (recall Subsection 4.1.1) in a natural 
way, by replacing ri with r^. In Subsection 4.4.1 we show SCUTZk =  UCk,  and as application 
obtain coNP-completeness of membership decision for UCk for fc > 1. In Section 4.4.2 we 
determine the relations to the previous hierarchies SCUTZ*(k) and CANON(/c) as discussed in 
Subsection 4.1.2.

D efin ition  4.4.1 Consider k G No- For clause-sets F, F ' G CCS the relation F  SLURk> p '  
holds i f  there is x  G lit(F ) such that F ' =  rfc((x —> 1 ) * F ) and F ' ^  {-I-}- The transitive-reflexive
closure is denoted by F  SL URk>* F ' . The set of all fully reduced clause-sets reachable from F  is 
denoted by

s lu rfc(F )  := {F ' G CCS \ F  SLUT kK p '  A - 3  F "  G CCS : F ' SLURk> F") .

Finally the class of all clause-sets which are either identified by r^ to be unsatisfiable, or where 
by k-SLUR-reduction always a satisfying assignment is found, is denoted by SCUTZk — {F  G 
CCS : rt (F) ^  {1} =► slurfc(F) = {T}}.

We have SCUTZ\ =  SCUTZ (recall Definition 4.1.3). Note also the following simple properties for 
F G CCS:

1 . T g slur^(F) ^ F g  SAT-

2. For F' G slurfc(F) \  {T} we have F' G US AT, and if F G SA T, then r k(F') ^  {_L}.

3. If F G SCUTZk, then F G S A T  and F SLURfc ̂  p '  implies F' G SAT. Note in this case 
that F' G slurfe(F) implies F' = T  and F £  slurfc(F) implies F' SLURfc ̂  f

Again we could define the transition relation in a less restricted way, as F  SLURfc> (x —> 1 ) * F
iff rfc((x —> 1) * F) A  J-, and fhis would yield the same class SCUTZk-

E x am p le  4.4.2 Some examples for SCUTZ2 \  SCUTZ\:

1. Consider the unsatisfiable clause-set F  := {{x, y} ,  {x , y }, {x, y},  {x, y}}-

(a) F £ SCUTZ\ because F is unsatisfiable but ri (F) ^  {_L}.

(b) F  G SCUTZ2  because 1 2 (F) =  {_L}.

2. Consider the satisfiable clause-set F ' :=  {{xi,X 2 } U C  | C  G F}.

(a) F ' SCUTZ1 =  SCU1Z because F ' SLUR>* F  =  (xi ,X2  —>■ 0 )* F ', where slur(F) =  {F} 
and so F  G slur(F ').

SL UH,2(b) F ' G SCUTZ2  because for any p  such that F '  p  * F ' and F ' ^  T  we have one
of the following two cases:

i. p  * F 1 is satisfiable, and so p  * F ' slur2 (F ).
ii. p  * F 1 is unsatisfiable and so (x \ —» 0 ,X2  —> 0) C p, but this contradicts the fact

SL UR2that F '  p *  F ' . That is, after setting either x \  or X2 to 0, lookahead with
T2  detects unsatisfiability of p *  F ' and so one can never transition to p *  F ' from  
F '.
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Therefore slrn^F ') =  {T}.

More generally we have { { a q , . . .  , Xk}  U C  | C  G F }  G SCUTZ2  \SC U 1Z*(k) (recall Example 
4.1.6).

L em m a 4.4.3 We have for F  G CCS, k G No and a partial assignment p  with ik{<P * F) 7^ {-L} 
that F  SL URk>* rk{p  * F) holds.

P ro o f: The assignments of ip can be performed via SLUR-fc-transitions. □

4.4.1 SLUR =  UC
For F G UCk there is the following polynomial-time SAT decision: F is unsatisfiable iff rk{F) =  
{_L}. And a satisfying assignment can be found for satisfiable F via self-reduction, th a t is, 
probing variables, where unsatisfiability again is checked for by means of r*. For k =  1 this 
means exactly th a t the nondeterministic “SLUR”-algorithm will not fail. And th a t implies th a t 
F G SCUTZ holds, where SCUTZ is the class of clause-sets where th a t algorithm never fails. 
So UC\ C SCUTZ. Now it turns out, that actually this property characterises UC\, th a t is, 
UC 1 =  SCUTZ holds, which makes available the results on SCUTZ.

We now show th a t this equality between UC and SCUTZ holds in full generality for the UCk 
and SCUTZk hierarchies.

T h eo rem  4.4.4 For all k G N0 holds SCUTZk — UCk-

P roof: Consider F G CCS. We have to show F G SCUTZk <=> hd (F) < k. For F G US A T  this 
follows from the definitions, and thus we assume F G SAT.

First consider F G SCUTZk- Consider a partial assignment ip such th a t p f G  US AT. We
SLURfchave to show Xk{p * F) =  {_L}, and so assume ik{<p * F) ^  {_L}. It follows F  Tk(p * F)

by Lemma 4.4.3, whence r*.(</? * F ) G S A T  contradicting ip * F G US AT.
Now assume hd(F ) <  k, and we show F  G SCUTZk-, i.e., slur^(F) =  T . Assume there is 

F' G slurfc(F) \  { T } .  By Property 2 for Definition 4.4.1 we get F ' G US A T  and r fc(F') ^  {_L}. 
However by Lemma 4.3.2, Part 1 we get hd (F ') < k, and thus rfc(F') =  { -L } . □

It seemed an essential feature of the class SCUTZ, th a t its most natural definition is by the 
SLUR-algorithm; for example in [64] we find the quote “I find it interesting th a t the algorithm 
seems simpler than the conditions under which it is a decision procedure.” By Theorem 4.4.4 
now we have a simple characterisation of these conditions, namely th a t unsatisfiability after 
instantiation is always detected by unit-clause propagation. Using the characterisation SCUTZ =  
UC, we can show coNP-completeness of hardness-determination:

T h eo rem  4.4.5 For fixed k G N the decision whether hd (F ) <  k (i.e., whether F  G UCk, or, by 
Theorem 4-4-4, whether F  G SCUTZk) is coNP-complete.

P roof: The decision whether F  ^ SCUTZk is in NP by definition of SCUTZk (or use Lemma 
3.3.5). By Theorem 3 in [36] we have that SCUTZ is coNP-complete, which by Lemma 3.4.8 can 
be lifted to higher k. □
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4.4.2 Comparison to the previous hierarchies

The alternative hierarchies SCUTZ*(k) and CANON(A;) (recall Subsection 4.1.2) do not generalise 
r i by r/c, but extend ri in various ways (maintaining linear-time computation for the (non- 
deterministic) transitions). In this way in [36, 10] rather complicated argumentations arise, in 
contrast to our elegant characterisation of the classes UCk in Theorem 4.2.2. As a consequence, 
we can give short proofs th a t the alternative hierarchies are subsumed by our hierarchy, while 
already the second level of our hierarchy is (naturally) not contained in any levels of these 
two hierarchies (naturally, since the time-exponent for deciding whether a (non-deterministic) 
transition can be done w.r.t. hierarchy SCUTZk depends on k ).

First we simplify and generalise the main result of [10], th a t CANON(l) C SCUTZ. By 
definition we have CANON(O) =  UCq.

Theorem  4.4.6 For all k e No we have:

1 . CANON(k) C UCk-

2 . UCX g  CANON(fc) (and thus CANON(k) C  UCk for k > 1 ).

P ro o f: By Theorem 4.2.2 and the fact, th a t the Horton-Strahler number of a tree is at most 
the height, we see th a t CANON(fc) C UCk■ T hat UC\ % CANON(fc) can be seen by observing 
th a t there are formulas in TiO n  U S A T  with arbitrary resolution-height complexity and so 
UO % CANON(fc). By UO  C  UCX we get UCX % CANON(/c). □

Also the other hierarchy SCUTZ*(k) is strictly contained in our hierarchy:

Theorem  4.4.T For all k 6  No we have:

1 . SCUTZ*(k) c  SCUTZk+i.

2. SCUTZi £  SCUTZ*{k).

P ro o f: Part 1 follows most easily by using Lemma 4.3.1 together with the simple fact th a t
slur*(k)(F) =  {F}  for F  ^  T implies rfc+ 1 (F) =  {J_}; for the strictness of the inclusion use P art
2. Part 2 follows from CANON(2) % SCUTZ*{k) (Lemma 13 in [10]), while by Theorem 4.4.6 we 
have CANON(2 ) C  SCUTZ2. □

Part 1 of Theorem 4.4.7 can not be improved, since SCUTZ*(k) and SCUTZk are incomparable:

L em m a 4.4 .8  For k > 2  holds SCUTZ*(k) % SCUTZk and SCUTZk 2  SCUTZ*(k).

P ro o f: That SCUTZk % SCUTZ*(k) follows by P art 2  of Theorem 4.4.7. T hat SCUTZ*(k) % 
SCUTZk follows from the fact th a t for the full unsatisfiable clause-set Fk on k variables (i.e., 
containing all 2 k clauses of length k) we have Fk+i G SCUTZ*(k) by Lemma 10 in [10] but 
Fk+1 ^  SCUTZk by P art 2  of Lemma 3.4.7. □
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4.5 Optimisation
We conclude by considering the question of finding, for an input-clause-set F, short equivalent 
clause-sets F' G UCk for fixed k. Definition 4.5.1 provides the appropriate notion of “irre- 
dundancy” via the notion of a “k-base” , where irredundancy refers to both removal of literal 
occurrences and removal of clauses. In Theorem 4.5.4 we show th a t the problem is solvable in 
polynomial time for inputs F  G 2-CCS, while in Theorem 4.5.5 we show th a t the problem is 
NP-complete even when restricting the input to Horn clause-sets w ith very few prime implicates.

D efin itio n  4.5.1 A clause-set F  is a k-base for some k G No U { + 0 0 } i fh d (F ) < k, and after 
removing any literal occurrence or any clause from F , the result F ' is either not equivalent to F  
or has hd(F ') > k.

Remarks:

1 . Every k-base F  is primal, th a t is, F  C prc0 ( i7’) (see Lemma 4.5.2).

2. A clause-set F  is a 0-base iff F  — prc0 (F), while F  is an 0 0 -base iff F  is primal and 
irredundant (removal of any clause yields a clause-set not equivalent to F).

3. For a given clause-set F, we consider the problem of computing a shortest (w.r.t. the 
number of clauses or the number of literal occurrences) equivalent A;-base F ', which we call 
a fc-base for F :

(a) By [140] for k =  0 0  this problem is E 2 -complete.
(b) A special case of interest here is when F  — prc0 (F ), in which case F ' C F  must hold. 

Since all prime implicates are given as input, for k < 0 0  the decision problem whether 
F  has a fc-base of size at most k (k is part of the input) is now in NR In Theorem
4.5.5 we will see that this decision problem is actually NP-complete, even under rather
restricted circumstances.

L em m a 4.5.2 Consider a clause-set F. I f  F  is a k-base then F  is primal.

P ro o f: Assume for the sake of contradiction th a t this is not the case, that there is a clause-set 
F  which is a fc-base but is not primal. In this case there is a (non prime) clause D  G F  with
a prime clause C  C D  of F. If F ' := (F  \  {£>}) U {C } G UCk then F  is clearly not a fc-base
as F ' is smaller and still represents the same clause-set. Therefore, there must exist a clause 
C' following from F  such that R  \ F  \~k C' but F ' I-fk C '. However, we can get a (possibly 
smaller) Ar-times nested input resolution proof of C' from F ' by simply replacing D  with C  in R. 
Therefore F ' \~k C ', a contradiction. □

E x am p le  4.5.3 Consider the clause-set

F  := { {u 1, , uj)■, { v 2 , i>3, v j }, { v 2, V3 , V j }, {V2 , V3, ̂ 4}, {V l , V 3 ,  V 4}, {^1, ̂ 2 } }•
C] C-2 C3 C4 C5 Cq

and clause-sets F\ := F  \  {C5 } and F2  := F  \  { C q } .  We have that:

1 . F  is a 0-base, that is, prc0 (F) =  F.
We have to show that F  is closed under resolution modulo subsumption. We have the 

following possible resolutions in F  with the associated subsuming clauses: C 1 0 C2  D C q , 

C\ 0 C3 D C%, C2 0 C5  D C q , C3 OC5 D C q , C \ O C q =  C q .
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2. F ,F \ and F2  are the only k-bases (k £ No) that are equivalent to F.

To show that there are no other k-bases equivalent to F  we must show that all other 
subsets of F  are not equivalent to F. It suffices to show that the clauses C i,C 2 ,C s,C ^  
are irredundant (i.e., occur in all primal clause-sets equivalent to F ) and the clause-set 
Fs := F  \  {Cs,Cg} is not equivalent to F . The irredundancy of C \,C 2 ,C ^,C ^ is seen by 
the fact that they are not obtained as resolvents. That F3  is not equivalent to F  follows 
from the fact that F$ does not contain positive clauses while F  does.

3. Fi is a 1 -base (and 2-base) and is equivalent to F  but is not a O-base.

We have C^oCq  =  C 5  and thus F\ )= C5 . To see hd(Fi) =  1, observe hd[}pch * Fi) =
h d ( { { ^ } ,  W ) )  =  !•

4- F2 is a 2-base and is equivalent to F  but is not a 1 -base.

We have (C\ 0 C3 ) o(C 2 0 C5 ) =  Cq and thus F2  \— Cq. Furthermore, we have that hd(<,c>c6 *
F2) =  hd ({{^ , ̂ } ,  {v3, ^ 4 }, {^3 , ^4}, {^3 , ^4 }}) =  2 .

5. Thus F  is neither a 1 -base nor a 2-base.

Theorem  4.5 .4  For clause-sets F  E 2-CCS we can compute shortest-size (minimum number of 
clauses or minimum number o f literal occurrences) equivalent k-bases F ' for all k £ No U {+ 0 0 } 
in polynomial time as follows:

1. I f  F  is unsatisfiable, then the best possibility is F ' {J_}. So assume in the sequel that F  
is satisfiable.

2. I f  F  =  T , then F ' := T . So assume in the sequel that F  ^  T .

3. I f  F  has a forced literal x , then any k-base for F  contains {x}, and we can split off x  by
considering an optimal k-base for (x -» 1) *F . So we can assume w.l.o.g. in the sequel that 
F  has no forced literals. (Thus F  as well as prc0 (F) contains only clauses of length equal
2 .;

4- Since all k-bases of F  without new variables are subsets o f prc0 (F ), when considering 
“shortest k-bases” now there is no differences between the measures c (number of clauses) 
and t  (number of literal occurrences), and we can just speak o f “shortest k-bases”.

5. The (unique) 0-base o f F , the setprc 0 (F) E 2-CCS o f all prime-implicates, can be computed 
in polynomial time by the methods discussed in Section 5.8 in [42].

6 . Every 0 0 -base o f F  without new variables is a 1 -base (Lemma 4-3.3), and thus w.r.t. k-bases 
for k E No U {+ 0 0 } only the determination of shortest 1-bases is left, where the shortest
1-bases are precisely the smallest subsets of prc0 (F ) equivalent to F .

7. Finally in Chapter 9 o f [37] (affirmed in [85]) it is shown how to compute shortest equivalent 
sets of prime-implicates, and thus shortest 1 -bases can be computed in polynomial time.

T heorem  4.5.5 Consider k E No U {+ 0 0 }.

1. Assume k > 1. The decision problem “For inputs F  E TLO+ n  3-CCS with prc0 (F) — F  
and m  E No, decide whether there is a k-base F ' o f F  with c(F ') < m .” (note that here 
F ' C F  must hold) is NP-complete.
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2. For k =  0 the decision problem “For input F  E  HO  and m  E  No, decide whether there is a 
k-base F ' of F  with c(F) < m . ” is in P.

P roof: For Part 2 one enumerates with polynomial delay the prime implicates of F  (see Section 
6.5 in [42] for efficient methods): if this process stops with at most m  prime implicates found, 
then the answer is “yes” , otherwise the answer is “no” .

For Part 1 we first note th a t the problem is in NP, since all prime clauses are given, and 
hd(F) < 1. The heart of the completeness is Theorem 6.18 in [42], which states th a t “Horn 
minimisation w.r.t. the number of clauses remains NP-complete even if the input is restricted 
to cubic pure Horn expressions.” , plus the fact from the underlying report [27], th a t for the 
considered G E  H O + f l  3-CCS  all prime implicates are also of length at most 3, and thus we can 
take as input F  := prc0 (G!) € H O + f l  3-CCS  (which can be computed in polynomial time). □

4.6 Interleaved hierarchies: UCk? VCk, and WCk-
Having introduced UCk, which is based on the hardness measure hd from Chapter 3, attention 
is now turned to related hierarchies based on p-hardness and width-based hardness measures 
introduced in Section 3.5 and Section 3.6 of Chapter 3. These hierarchies are not the central 
topic of study for this thesis but are directly related to  UCk and so it is both necessary to define 
them and relate them to UCk-

4.6.1 VCk: propagation completeness at level k
Complementary to “unit-refutation completeness” there is the notion of “propagation complete
ness” , as investigated in [130, 26]. This is captured and generalised by a corresponding measure 
phd : CCS -» N0 of “propagation-hardness” introduced in Section 3.5, and the class VC of 
“propagation-complete clause-sets” can be properly generalised as follows:

Definition 4.6.1 For k E No let VC*. := {F  E CCS : phd(F) < k } (the class of propagation- 
complete clause-sets of level k).

Remarks:

1. By definition of r^ we see th a t VCk Q VCk+i for all k E No (i.e., we get a hierarchy). In
Lemma 4.6.2 we’ll see th a t this hierarchy is strict.

2. By Lemma 3.5.4 we get UfceN0 ^ k = CCS.

3. By Lemma 3.5.8 we have VC =  VC\ from [26].

These classes lie (strictly) between the UCk-classes (stronger than Lemma 3.5.3):

Lemm a 4.6.2 For k E No we have VCk C  UCk C  VCk+i-

P roof: By Lemma 3.5.6 we get VCk+i\UCk ^  0  (Lemma 3.5.6 provides F  E (UCk+i C\VCk+i) \
UCk) 5 while by Lemma 3.5.7 we get UCk \  VCk 7  ̂ 0. □
Remarks:

1. The initial five (strict) inclusions VCq C  UCq C  VC\ C  UC\ C  VC 2  C  UC2  are certified by 
the clause-sets
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(a) { { v ^ e U C o X V C o

(b) {{t»i, v2}, {^1 }} £ VC 1 \  UCq

(c) {{^1 ,^ 2 }, {^1,^2}} e  UCi \V C i

(d) {{ui, v2, v3}, {uT,u2},{vi,U2}, {FT,7^}} e  VC 2  \  UCi

(e) {{^1 ,^ 2 , ^3}j {FT> ^2 ,^ 3 }, {^i, V2 , ^3 }, ^3 }} € UC2 \V C 2.

From Lemma 4.3.2 and the fact th a t UCk C VCk+ 1 (or by definition) we get:

Lem m a 4.6.3 Consider F  E C£*S.

1. I f  F  € 2-CCS =  { F g  C£tS | VC E F  : |C| < 2}, then F  e  PC 3 (by definition).

2. I f F e H O  = { F e  CCS | VC 6  F  : |C fl VC4| < 1} (Horn clause-sets), then F  E PC 2.

5. More generally, i f  F  E QHO, the set of q-Horn clause-sets (see Section 6.10.2 in [42], and 
[158]), then F  E PC 3 .

Generalising Horn clause-sets to the hierarchy HOk from [99] (with HO  1 =  H O): if  
F  E HOk for  fc sN , i/ien F  E VCk+i (that HOk  £  VCk follows by Lemma 3.5.5).

Strengthening Lemma 4.3.2, Part 3 and Lemma 4.6.3, Part 1 :

Lem m a 4.6.4 Consider F  E 2-CCS.

1. I f  F  is satisfiable, then hd(F) < 1 .

2. phd(F) < 2 (and thus 2-CCS C VC2).

3. I f  F  has no forced literals and F  7  ̂T , then phd(F) =  1.

P r o o f :  Part 2 follows from Part 1 and Lemma 4.3.2, Part 3. For Part 1 consider a partial
assignment <p with unsatisfiable </?*F. Now we have ri(</?*F) =  {_L}, since otherwise ri(<^*F) C 
F , and thus ri(<^ * F) would be satisfiable. Finally for P art 3 consider a partial assignment <p. 
If ri (</? * F ) 7  ̂ {J_}, then ri (ip * F )  C F ,  and since F  has no forced literals, also fl(ri(</? * F )) =  0 
holds, whence phd(F) < 1 .  □
Remarks:

1 . Examples from 2-CCS for different values of hd and phd:

(a) F 0  E {T, {{± }}}:  hd(F0) =  phd(F0) =  0.

(b) Fi := {{a,b}}  E 2-CCS: hd(F i) =  0 and phd(F i) =  1.

(c) F 2 := {{a ,b},{b ,c}}  E 2-CCS: hd(F2) =  phd(F2) =  1.

(d) F 3 := {{a, 6 }, {a, b}} E 2-CCS: hd(F3) =  1 and phd(F3) =  2.
(e) F 4  := {{a, &}, {a, &}, {a, b}, {a, b}} E 2-CCS: hd(F i) =  phd(F i) =  2.

(f) F 5 := {{a, 6 , v}, {a, b}, {a, &}, {a, 6 }} ^  2-CCS but hd(Fs) =  phd(Fs) =  2 (hence
2-CCS C VC2).

(g) The statements for F \,F ^,F ^  are covered by Lemmas 3.4.7, 3.5.5, and F 5 is covered 
by Lemma 3.5.6.

(h) Note th a t F i ,F 2,F 3 and F 5 are satisfiable, whereas F 4  is not. By Part 1 of Lemma 
4.6.4 there are no satisfiable clause-sets F  E 2-CCS with hd(F) =  2.
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C orollary 4.6 .5  Consider a clause-set F  £ 2-CCS. If F  is primal then F  E VC\.

Proof: If F  is primal then either F  =  {_!_} hence F  E UCq C  VC\ or all forced assignments 
occur as unit-clauses in F  and hence r i(F )  yields a clause-set w ithout forced assignments, which 
by Lemma 4.6.4 is in VC\ and so by Lemma 3.1.2 and the definition of VCk we have F  E VC\.
□
Due to the interleaved nature of VCk with UCk we get also coNP-completeness of the membership 
problem for k > 2 :

T heorem  4.6.6 For fixed k E N  with k > 2 the decision whether phd(F) < k (i.e., whether 
F  E VCk) is coNP-complete.

Proof: That the decision whether F £ VCk is in NP follows from the fact th a t if F  ^  VCk then 
there is a partial assignment p  witnessing this such th a t r00(£/? * F) ^  Tk(p * F).  By Lemma
3.3.6 p  can be extended to a (still poly-size) witness p' for which Tk+i(pr * F) ^  rkip1 * F) 
yielding a poly-size witness th a t F VCk which is checkable in poly-time via running r^+i and 
Tk■ Therefore F  E VCk is in coNP. By Theorem 4.4.5 we have th a t checking whether F  E UCk 
is coNP-complete; deciding F  E UCk can be translated to  deciding F' E VCk+i by Lemma 3.5.7 
and so by reduction, checking F  E VCk for any fixed k > 2 is coNP-complete. □
Note th a t Theorem 4.6.6 does not prove th a t membership for VC is coNP-complete. Membership 
for UCq is poly-time and so the simple proof technique using Lemma 3.5.7 does not imply th a t 
membership for VC is coNP-complete. This is left as a conjecture:

C onjecture 4 .6 .7  The decision whether phd(F) < 1 (i.e., whether F  E V C \) is coNP-completeV

4.6.2 WCfc: width-A; refutation completeness
Complementary to “unit-refutation completeness” but in a different direction is the notion of 
“width-refutation completeness” . This is captured and generalised by the corresponding mea
sure whd : CCS —> Nq of “width-based hardness” introduced in Section 3.6.2 (generalising the 
asymmetric notion of width from [104, 110]), and the class WC  =  UC can be properly generalised 
as follows:

D efinition  4 .6 .8  For k E No let W Ck := {F  E CCS : w hd(F) < k} (the class of r e fu ta tio n  
com ple te  c la u ses-se ts  o f  w id th  k).

Remarks:

1. By definition of r*, we see th a t WCk C  WCk+i for all k E No (i.e., we get a hierarchy). In 
Lemma 4.6.2 we’ll see th a t this hierarchy is strict.

2 . By Lemma 3.6.3 we have th a t WCk is closed under application of partial assignments.

We have WCo =  UCq, WCi =  UC\, and for all k E No holds UCk Q WCfc (this follows 
by Lemma 6 . 8  in [110] for unsatisfiable clause-sets, which extends to  satisfiable clause-sets by 
definition). For unsatisfiable F , whether w hd(F) =  k holds for k E {0,1,2} can be decided in 
polynomial time; this is non-trivial for k =  2  ([33]) and unknown for k > 2. Nevertheless, the 
clausal entailment problem F  |= C  for F  E WCk and fixed k E No is decidable in polynomial time,

7)Petr Kucera and Ondrej Cepek (the authors of [36], which shows that SCUTZk (— UCk) membership is 
coNP-complete) have stated that they are in the process of publishing a paper showing that VC\  membership is 
coNP-complete.
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as shown in Subsection 6.5 of [110], by actually using a slight strengthening of fc-resolution, which 
combines width-bounded resolution and input resolution. While space-complexity of the decision 
F  |= C  for F  G UCk is linear (for fixed k ), now for WCk space-complexity is 0 (I(F ) ■ n ( F ) ° ^ ) .

L em m a 4.6.9 For all k G No we have that WCk C WCk+i-

P ro o f: That WCk Q WCk+i follows by definition. To see that WCk+i \  WCk 7  ̂ 0, consider a 
full clause-set F  with k + l  variables and observe th a t F  G WCk+i \  WCk 7  ̂ 0. □

From Lemma 4.3.2 and the fact th a t UCk Q WCk (or by definition) we get:

L em m a 4.6.10 Consider F  G CCS.

1. I f  F  G 2-CCS =  {F  G CCS | VC G F  : |C7| < 2}, then w hd(F) < 2 (by definition).

2. I f  F  G HO  =  { F e  CCS | V C g F :  \C<~)VA\ < 1} (Horn clause-sets), then F  G W C \.

3. More generally, i f  F  G QHO, the set of q-Horn clause-sets (see Section 6.10.2 in [42], and 
[158]), then F  G W C2.

4- Generalising Horn clause-sets to the hierarchy HOk from [99] (with H O \ =  H O ): if 
F  G HOk for k G N, then F  G WCk (that HOk % WCk - 1 follows by considering full 
unsatisfiable clause-sets on k variables).

In Theorem 6.4.7 we shall see an example of a family of clause-sets (Fn)nefq0 which all fit in 
WC 3  but for which Fn + 1 G UCn+\ \  UCn, demonstrating th a t simplicity in terms of clause-set 
membership that the WCk hierarchy is a much more powerful hierarchy than UCk■ In the outlook 
it is hypothesised in Conjecture 8.1.1 th a t for representing boolean functions (even using new 
variables) that WC 2  can represent boolean functions (with short representations) for which there 
are no poly-size representations in any fixed level of the UCk hierarchy.

4.7 Knowledge compilation properties
In [46] we saw th a t the motivation for defining UC was to introduce a class of clause-sets for 
knowledge compilation where certain types of query have the same query complexity as the PI 
class (see Figure 1.4 in Section 1.3.2 of Chapter 1 ). Theorem 4.7.1 now shows th a t UCk, VCk and 
WCk all fulfill the same criteria, and in Chapter 5 we will see th a t each level of these hierarchies 
offers potentially exponentially more succinctness. These two results mean th a t UCk, VCk and 
WCk offer intermediate target classes for knowledge compilation inbetween the CNF and PI 
classes where the parameter k allows query time to be traded for size.

T h eo rem  4.7.1 For all fixed k G No and all F ,F ' G WCk 2  UCk 2  VCk we have that the 
following queries are decidable in polynomial time (in c(F)):

• Consistency checking (CO - i.e., whether F  \= A.).

• Clausal entailment checking (CE - i.e., whether F  \= C for arbitrary C  G CL).

• Vcilidity checking (VA - i.e., whether T |= F).

•  Implicant checking (IM  - i.e., whether T |= ( fc * F  for an arbitrary clause C  G CL; whether
C as a DNF clause is an implicant of F).
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• Equivalence checking (EQ - i.e., whether CN F(F) =  C N F (F ')).

• Semantic Entailment (SE - i.e., whether F  \= F ').

Furthermore, Model Enumeration (ME - i.e., enumerating all satisfying assignments) is possible 
in time p(c(F ),m ) fo r polynomial p where m  is the number of satisfying total assignments for F .

P roof: That clausal entailment is decidable in poly-time for WCk is shown in Subsection 6.5 
of [104] (see 4.6.2 of this thesis for more discussion). T hat validity and implicant checking are 
poly-time follows from the fact th a t WCk are CNF clause-sets and so implicant checking is simply 
checking whether * F  =  T. That semantic entailment is poly-time decidable follows from the 
fact that F  |= F ' can be checked by checking if F  \= C  for all C  G F ' and so semantic entailment 
can be checked by c(F ') (poly-time) clausal entailment checks. T hat equivalence checking then 
follows from the ability to checking semantic entailment (i.e., just check F  f= F ' and F ' \= F). 
Finally, that all models can be enumerated in poly-time in c(F) and m  follows from the fact th a t
CE and VA are possible in polynomial time (see Lemma A.3 in [46]). In particular, since CE
and VA are possible in polynomial time then this allows derivation of a minimal decision tree 
with at most m  T  leaves and at most n(F ) ■ m  ±  leaves. □
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Chapter 5

Strict hierarchies for equivalent 
representations

Having now introduced the hierarchies UCk-, VCk, and WCk, this chapter now deals with the 
strictness of these hierarchies for representation of boolean functions. More precisely, the main 
result is that each level UCk+i C WCk+i contains families of clause-sets which are poly-size but 
for which there is no equivalent poly-size family of clause-sets in UCk C  WCk (see Theorem 
5.3.13).

In Section 5.1 minimal premise sets are introduced as a method for characterising and un
derstanding the structure of unsatisfiable sub-clause-sets of a clause-set F. Doping is then 
introduced, providing a way to map unsatisfiable sub-clause-sets to prime implicates (and back), 
providing clause-sets with well characterised prime implicates. Finally, in Section 5.2 these no
tions are applied to our source of hard examples (saturated minimally unsatisfiable clause-sets 
of deficiency 1), leading to the main separation result in Section 5.3.

5.1 Minimal premise sets and doped clause-sets

In this section we study “minimal premise sets” , “mps’s” for short, introduced in [116], together 
with the properties of “doped” clause-sets, generalising a construction used in [148]. Mps’s 
are generalisations of minimally unsatisfiable clause-sets stronger than  irredundant clause-sets, 
while doping relates prime implicates and sub-mps’s (i.e., minimal premise sets as subsets of a 
clause-set).

Recall that a clause-set F  is minimally unsatisfiable if F  E U S A T ,  while for all C  E F  holds 
F  \  {C} E S A T .  The set of all minimally unsatisfiable clause-sets is A 1U  C  CCS; see [100] for 
more information. In other words, for F  E CCS we have F  E M U  if and only if F  |= _L and 
F  is minimal regarding this entailment relation. Now an mps is a clause-set F  which minimally 
implies some clause C, i.e., F  \= C, while F ' C  for all F ' C  F. In Subsection 5.1.1 we 
study the basic properties of mps’s F , and determine the unique minimal clause implied by F  
as puc(.F), the set of pure literals of F.

For a clause-set F  its doped version D (F) E CCS receives an additional new ( “doping” ) 
variable for each clause. The basic properties are studied in Subsection 5.1.2, and in Theorem 
5.1.18 we show that the prime implicates of D (F) correspond 1-1 to  the mps’s contained in F. 
In Subsection 5.1.3 we determine the hardness of doped clause-sets.
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5.1.1 Minimal premise sets
In Section 4.1 in [116] basic properties of minimal premise sets are considered:

D efin itio n  5.1.1 A clause-set F  E CCS is a m in im a l p rem ise  s e t  ( “m ps”) f o r  a clause
C  6  CC if  F  \= C and V F ' C F  : F ' C, while F  is a m in im a l p re m ise  se t  i f  there exists a 
clause C such that F  is a minimal premise set for C. The set o f all minimal premise (clause-)sets 
is denoted by A W S .

Remarks:

1. T is not an mps (since no clause follows from T).

2 . An unsatisfiable clause-set is an mps iff it is minimally unsatisfiable, i.e., M V S O U S A T  =  
M U .  In Corollary 5.1.8 we will see that the minimally unsatisfiable clause-sets are precisely 
the mps’s w ithout pure literals.

3. Every minimal premise clause-set is irredundant (no clause follows from the other clauses).

4. For a clause-set F  and any implicate F  \= C  there exists a minimal premise sub-clause-set 
F ' C F  for C.

5. A single clause C  yields an mps {C}.

6 . Two clauses C  ^  D  yield an mps {C, D} iff C ,D  are resolvable.

7. If F i ,F 2  G M V S  with var(Fi) n  var(F2) =  0, then F\ U F 2  ^  M V S  except in case of 
Fi =  F2 =  {±}.

E x am p le  5.1.2 {{a}, {6 }} for variables a ^  b is irredundant but not an mps.

W ith Corollary 4.5 in [116] we see th a t every clause-set minimally entails at most one clause:

L em m a 5.1.3 For F  € M V S  there exists exactly one C  € prc0 (F ) such that F  is a minimal 
premise set for C , and C is the smallest element of the set of clauses for which F  is a minimal 
premise set.

We remark that Lemma 5.1.3 does not mean th a t |prc0 (F )| =  1 for F  E M V S ; indeed, F  
can have many F ' c F  with F ' E M V S , and each such F ' might contribute a prime implicate, 
as we will see later. We wish now to determine th a t unique prime implicate C  which follows 
minimally from an mps F . It is clear th a t C  must contain all pure literals from F , since all 
clauses of F  must be used, and we can not get rid of pure literals.

D efin itio n  5.1.4 For F  E CCS the pure  clause o f  F , denoted by p u c (F )  E CC, is the set of
pure literals of F , that is, puc(F) := L \  (L  fl L), where L  := \J F  is the set of literals occurring
in F.

E x am p le  5.1.5 For F  =  {{a, 6 }, {a, c}} we have puc(F) =  {b, c}.



The main observation for determining C  is th a t the conclusion of a regular resolution proof 
consists precisely of the pure literals of the axioms (this follows by definition):

L em m a 5.1.6 For a regular resolution proof T  : F  h C, where every clause of F  is used in T , 
we have C  =  puc(F).

Due to the completeness of regular resolution we thus see, th a t puc(F) is the desired unique 
prime implicate:

L em m a 5.1.7 For F  E M V S  the unique prime implicate C, for which F  is a minimal premise 
set (see Lemma 5.1.3), is C  — puc(F).

P ro o f: Consider a regular resolution proof T  : F  b C  (recall th a t regular resolution is complete); 
due to F  E M V S  every clause of F  must be used in T, and thus the assertion follows by Lemma 
5.1.6. □

Corollary 5.1.8 I f  we have F  E M V S  with puc(F) =  _L, then F  E M U .

By Lemma 4.4 in [116] we get the main characterisation of mps’s, namely th a t after elimina
tion of pure literals they must be minimally unsatisfiable:

Lem m a 5.1.9 Consider a clause-set F  E CCS. Then F  E M V S  i f  and only i f  the following 
two conditions hold for p  := p puc(F) (setting precisely the pure literals of F  to false):

1. p * F  E M U  (after removing the pure literals we obtain a minimal unsatisfiable clause-sets).

2. p  is contraction-free for F , that is, for clauses C ,D  E F  with C  ^  D we have p  * {C } ^  
p * {D}.

These two conditions are equivalent to stating that p  * F  as a multi-clause-set (not contracting 
equal clauses) is minimally unsatisfiable.

Remarks:

1. Note that if we didn’t have condition 2 then we could have e.g., F  :=  {{^i, y \} , { x i ,y 2}, {5T}}
where <̂puc(F) =  {yi —► 0>y2 —> 0) and p  * F  — {{a^i}, {^i}} £ M U  but every clause fol
lowing from F  follows from a strict subset (note th a t if {y i} follows then also {2/1 , 2/2 } 
does).

Thus we obtain all mps’s by considering some minimally unsatisfiable clause-sets and adding 
new variables in the form of pure literals:

Corollary 5.1.10 The following process generates precisely the F ' E M V S :

1. Choose F  E M U .

2. Choose a clause P  with var(P) fl var(F) — 0 ( “P ” like “pure”).

3. Choose a map e : F  —> P (P) ( “e” like “extension”).

4. Let F ' := (C U e (C ) : C  E F }.
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For unsatisfiable clause-sets the set of minimally unsatisfiable sub-clause-sets has been studied 
extensively in the literature; see [120] for a recent overview. The set of subsets which are mps’s 
strengthen this notion (now for all clause-sets):

D efin itio n  5.1.11 For a clause-set F  G CCS by m p s (F )  C CCS the set o f all minimal premise 
sub-clause-sets is denoted: mps(F) := P (F) H M V S .

We have |m ps(F)| < 2ĈF"> — 1 (there is a typo in Corollary 4.6 of [116], misplacing the “—1 ” 
into the exponent). The minimal elements of m ps(F) are {C } G mps(F) for C  G F. Since every 
prime implicate of a clause-set has some minimal premise sub-clause-set, we get th a t running 
through all sub-mps’s in a clause-set F  and extracting the clauses with the pure literals we obtain 
at least all prime implicates:

L em m a 5.1.12 For F  G CCS the map F ' G mps(F’) *->• puc(F ') C {C G CC : F  f= C} covers 
prc0 (F) (i.e., its range contains the prime implicates of F).

E x am p le  5.1.13 Examples where we have more minimal premise sub-clause-sets than prime 
implicates are given by F  G M U , where prc0 (F) = {_L}, while in the most extreme case every 
non-empty subset of F  can be a minimal premise sub-clause-set (see Theorem 5.2.11).

5.1.2 Doping clause-sets
“Doping” is the process of adding a unique new variable to every clause of a clause-set. It enables 
us to follow the usage of this clause in resolution derivations:

D efin itio n  5.1.14 For every clause-set F  G CCS we assume an injection u F : F  —> Vb4\var(.F) 
in the following, assigning to every clause C a different variable u F . For a clause C  G CC and 
a clause-set F  G CCS we then define the doping  D jr(C ') := C  U {uF } G CC, while D (F ) := 
(D f (C) : C  G F }  G CCS.

Remarks:

1. “Doping” has various meanings, where here we mean the meaning as used when “doping” 
semiconductors to modulate their conductivity properties (see [161]).

2 . In the following we drop the upper index in “u £ ” , i.e., we just use “u c ” ■

3. We have D : CCS ->• S A T .

4. For F  G CCS we have n(D (F)) =  n(F ) -I- c(F) and c(D(F)) =  c(F).

•5. For F  G CCS we have puc(D(F)) =  puc(F) U {u c  ' C  G F}.

We are interested in the prime implicates of doped clause-sets. It is easy to  see th a t all doped 
clauses are themselves essential prime implicates:

L em m a 5.1.15 For F  G CCS we have D (F) C prc0 (D (F)), and furthermore all elements of 
D (F) are essential prime implicates.
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P ro o f: Every resolvent of clauses from D (F) contains at least two doping variables, and thus 
the clauses of D (F) themselves (which contain only one doping variable) are prime and necessary.
□

Thus by Lemma 2.6.11 among all the clause-sets equivalent to D (F) this clause-set itself is 
the smallest. Directly by Lemma 5.1.9 we get th a t a clause-set is an mps iff its doped form is an 
mps:

L em m a 5.1.16 For F  £ CCS holds F  £ M V S  «=> D (F) £ M V S .  Thus the map F ' £ 
m ps(F) t-> D (F ') is a bijection from  m ps(F) to m ps(D(F)).

For doped clause-sets the surjection, from m ps(F) to prc0 (F ), of Lemma 5.1.12 is bijective:

L em m a 5.1.17 Consider a clause-set F  £ CCS, and let G := D (F ).

1. The map F ' £ mps(G) puc(F ') £ CC is a bijection from  mps(G) to prc0 (G).

2. The inverse map from  prc0 (G) to mps(G) obtains from C  £ prc0 (G) the clause-set F ' £ 
mps(G) with puc(F ') =  C as F ' =  {D (F) : D  £ F  A ud £ var(C)}.

P roo f: By Lemma 5.1.12 it remains to show th a t the map of Part 1 is injective and does not have 
subsumptions in the image. Assume for the sake of contradiction there are G ',G "  £ mps(G), 
G' 7̂  G", with puc(G ') C puc(G"). Since every clause of F  has a different doping-variable, 
G' C G" must hold. Consider the F ',F "  £ m ps(F) with D (F ') =  G' and D (F") =  G ". We have 
F ' C F " , and thus puc(F ') % puc(F"), since for every F  £ M V S  the clause puc(F) is a prime 
implicate of F . It follows th a t puc(G') $7 puc(G?"), contradicting the assumption. □

By Lemma 5.1.16 and Lemma 5.1.17 we obtain:

T h eo rem  5.1.18 Consider F  £ CCS. Then the map F ' £ m ps(F) *->• puc(D (F ')) £ CC is a 
bijection from  m ps(F) to prc0 (D(F)).

Theorem 5.1.18 together with the description of the inversion map in Lemma 5.1.17 yields com
putation of the set m ps(F) for F  £ CCS via computation of prc0 (D (F)).

C o ro lla ry  5.1.19 For F  £ CCS we obtain a map from  prc0 (D (F)) to the set of implicates of F  
covering prc0 (F) by the mapping C  £ prc0 (D(F)) C  \  V  for V  :=  {u c  ’ C  £ F}.

P roof: The given map can be obtained as a composition as follows: For C  £ prc0 (D (F)) take 
(the unique) F ' £ m ps(F) with puc(D (F')) =  C , and we have C \  V  =  puc(F '). □

5.1.3 Hardness of doped clause-sets
The hardness of a doped clause-set is the maximal hardness of sub-clause-sets of the original 
clause-set:

L em m a 5.1.20 For F  £ CCS we have hd(D (F)) =  max^'CF h d (F ').
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P ro o f: We have hd(F ') < hd(D (F)) for all F ' C F , since via applying a suitable partial
assignment we obtain F ' from F, setting the doping-variables in F ' to  false, and the rest to 
true. And if we consider an arbitrary partial assignment p  with p  * D (F) £ U S AT,  then w.l.o.g. 
all doping variables are set (we can set the doping-variables not used by p  to  true, since these 
variables are all pure), and then we have a partial assignment making F ' unsatisfiable for th a t 
F ' £ U S A T  given by all the doping variables set by p  to false. □

E x am p le  5.1.21 For an example o f a clause-set F  £ U S A T  with hd(D (F)) > hd (F) consider 
any clause-set F ' £ CCS with hd (F ') > 0, and then take F  := F ' U {_L} (note that _L ^ F '). 
Thus hd(F) =  0. And by Part 1 o f Lemma 6.5 in [77, 78], all UCk are closed under partial 
assignments, so for p  := (u± —> 1) U (uc —> 0 | C £ F ') we have hd(D (F)) > hd(</? * D (F)) =  
hd(F ') > hd(F) =  0 .

5.2 Doping tree clause-sets
As explained in Subsection 1.3, we want to construct boolean functions (given by clause-sets) 
with a large number of prime implicates, and where we have strong control over these prime 
implicates. For the purpose we dope “minimally unsatisfiable clause-sets of deficiency 1” , that 
is the elements of SMU$=i. First we review in Subsection 5.2.1 the background (for more 
information see [100]). Then in Subsection 5.2.2 we consider doping of these special clause-sets. 
In Theorem 5.2.11 we show th a t F  £ SMU$=i are precisely the clause-sets such th a t every 
non-empty subset is an mps, and in Theorem 5.2.18 we determine basic properties of D (F).

5.2.1 Preliminaries on minimal unsatisfiability
A minimally unsatisfiable F  £ M U  is saturated minimally unsatisfiable iff for all clause C £ F  
and for every literal x  with var(x) ^  var(C) the clause-set (F  \  C) U (C  U {x}) is satisfiable. 
The set of all saturated minimally unsatisfiable clause-sets is denoted by SAA.1l C M U . By 
S M U s =k we denote the set of F  £ S M U  with 5(F) — k , where the deficiency of a clause- 
set F  is given by 5(F) c(F) — n(F ). In [107] (generalised in [116]) it is shown th a t the 
elements of SMU$=i are exactly the clause-sets introduced in [39]. The details are as follows. 
For rooted trees T  we use nds(T ) for the set of nodes and lvs(T ) C lvs(T) for the set of 
leaves, and we set # n d s (T )  :=  |nds(T)| and # lv s (T )  := |lvs(T)|. In our context, the nodes of 
rooted trees are just determined by their positions, and do not have names themselves. Another 
useful notation for a tree T  and a node w is Tw , which is the sub-tree of T  with root w\ so 
lvs(T) =  {w £ nds(T) : # n d s (Tw) =  1}. Recall th a t for a full binary tree T  (i.e., a tree where 
every non-leaf node has two children) we have #nds(T ) =  2 #lvs(T ) — 1.

D efinition  5.2.1 Consider a full binary tree T  and an injective vertex labelling u : (nds(T) \  
lvs(T)) —> VA for the inner nodes; the set of all such pairs is denoted by T \.  The induced edge- 
labelling assigns to every edge from an inner node w to a child w 1 the literal u(w) resp. u(w) for  
a left resp. right child. We define the c la u se-se t re p re se n ta tio n  F 1 (T , u ) (where “1” reminds 
of deficiency 1  here; see Lemma 5.2.2) to be F 1 (T , it) := {Cw : w £ lvs(T)}, where clause C w 
consists of all the literals (i.e., edge-labels) on the path from the root o fT  to w.
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By Lemma C.5 in [107]:

Lem m a 5.2.2 F 1 : 71 -> SM.Us=i is a bijection.

By T 1 : S M U s=i —> 71 we denote the inversion of F 1. Typically we identify (T, u) € 71 with T, 
and let the context determine u. So T 1 (F) is the full binary tree, where the variable v labelling 
the root (for F  ^  {_L}) is the unique variable occurring in every clause of F , and the clause-sets 
determining the left resp. right subtree are (v —» 0) * F  resp. (v —> 1) * F. By w c  for C  G F  we 
denote the leaf w of T X(F) such th a t Cw =  C. Furthermore we identify the literals of F  with 
the edges of T 1 (F). Note th a t c(F) — # lv s (T 1 (F )) and n(F ) — # n d s(T 1 (F )) — ^tlvs(T 1 (F)).

E xam ple 5.2.3 Consider the following labelled binary tree T:

Vi

1 2  3 4

Then F ^ T )  =  {{vi, v2, v3}, {vi, v2, ^3 }, {^1 , t>2 , v4}» {vi, v2, ^4 ), (ui, ^5 }, {ui, v5}}, where for ex
ample C 3 =  {v\,V 2 , V4 } and W{Vl^ y  - 6 .

The effect of applying a partial assignment to some element of SA4Us=i is easily described 
as follows:

L em m a 5.2.4 Consider F  € SA4Us=i and a literal x  €E lit(F ); let ip :=  (x -» 1) and F ' ip*F. 
We have:

1. F ' e S M U 5=1.

2. Let T  := T X(F ) and T ' := T 1 (F /). The tree T ' is obtained from T  as follows:

(a) Consider the node w € T  labelled with var(x). Let Tx ,Tx be the two subtrees hanging 
at w, following the edge labelled with x  resp. x.

(b) Now T ' is obtained from T ' by removing subtree Tx, and attaching Tx directly at 
position w.

C o ro lla ry  5.2.5 SM .Us=i is stable under application o f partial assignments, that is, for F  6

SAiUs=  1 and ip e  V A SS holds ip* F  £ SAiU $=i .

From Lemma 5.2.2 follows SAiUs=i  C UTLTT, where FLIT  C CCS is the set of hitting 
clause-sets, that is, those F  € CCS where every two clauses clash in at least one literal, i.e., for 
all C, D e  F, C ^ D, we have \CC\D\ > 1, and LIFLXT := W I T  HUS A T .  It is well-known th a t 
UFLIT C S M U  holds (for a proof see Lemma 2  in [117]).
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5.2.2 Doping SMUs=\
We are interested in clause-sets which have as many sub-mps’s as possible:

D efin ition  5.2.6 A clause-set F  ^  T  is a to ta l m p s  i f  m ps(F) =  P (F ) \  {T}.

Every total mps is an mps.

E xam ple 5.2.7 {{a, &}, {a, 6}, {b}} is a total mps, while {{a, &}, {a}, {6}} is an mps (since m in
imally unsatisfiable), but not a total mps.

By Lemma 5.1.9 and Corollary 5.1.8 we get:

Lem m a 5.2.8 A clause-set F  is a total mps i f  and only i f  F ' :=  p̂puc{F) * F  is total mps, and 
‘Fpuc(F) i s  contraction-free for F . I f  F  is a total mps, then thus we have F ' £ M.U.

To determine all to tal mps’s, it remains to determine the minimally unsatisfiable total mps’s. 
Before we can prove th a t these are precisely the saturated minimally unsatisfiable clause-sets of 
deficiency 1 , we need to  state a basic property of these clause-sets, which follows by definition of 
T 1 (F) for F  £ SAiU s=i (recall Subsection 5.2.1):

Lem m a 5.2.9 Consider F  £ SA4Us=i and F ' C F. Let T  := T 1 (F ). The set puc(F ') of pure 
literals of F ' can be determined as follows:

1 . Let Wp> := {w c  '■ C  £ F '}  C lvs(T) be the set o f leaves corresponding to the clauses of F ' .

2. For a literal x  £ lit(F ) let w £ nds(T) be the node labelled with var(rr), and let Tx the 
subtree of w reached by x, and let Tx be the subtree o f w reached by x.

3. Now x  £ puc(F ') i f  and only ifWp< D lvs(Tx) ^  0 and Wp> H lvs(Tx) =  0.

E xam ple 5.2.10 Consider the clause-set

F  := { { v i ,v 2 ,v 3 } ,{v i,V 2 ,V 3 },{v i,v5 ,v 4 } ,{ v i ,v 5 ,ln } ,{ v I ,v 5 ,V 6 } ,{v I,v 5 ,vE},{vi,vE}  }

C i c 2 c 3 c 4 c . C6 C7

and the subset F ' := {C i,C 3 ,C 4 ,C 7}. The tree T 1 (F) is as follows, with the dashed edges 
representing literals not i n \ J F '  = {v i,V 2 ,v$,V 4 ,v \ ,V 2 ,vi,vE }:

We have W p 1 =  {1,3,4, 7} and

P U C ( F ')  =  | J F '  \  {  V 2 ^ 2  , v i ^ v i  , }  - { ^ 3 ,  ^ 5 } -

C i ,C 3 c 4, c 7 c 3, c 4
Now consider x  £ lit(F ):
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1. For x  =  v3 holds lvs(TU3) fl Wp> — {1} and Tyj n  Wp> =  0, thus vs G puc(F ').

2. For x  = vs holds lvs(F^) fl Wp> =  {7} and TV5 D Wp> =  0, thus v 5 G puc(F ').

3. Considering for example x  — Vi, we have\vs(TVl)C\Wp> — {1,3} and lvs(T^)nW pv =  {7}, 
thus vi ^ puc(F '), while for x  = vq we have lvs(Tv6) fl Wp> =  0 and lvs(T^) fl Wp> — 0, 
thus vq puc(F ').

T h e o re m  5.2.11 A n unsatisfiable clause-set F  G U S A T  is a total mps i f  and only if  F  G
S M U s=i.

P ro o f: First assume th a t F  is a total mps. Then every two clauses C, D  G F , C  7  ̂ D, clash 
in exactly one literal (otherwise {C, D} £ M V S ) .  In [109], Corollary 34, it was shown th a t an 
unsatisfiable clause-sets F  has precisely one clash between any pair of different clause-sets iff 
F  G SMUs=i  holds (an alternative proof was found in [148]).^ Now assume F  G SM U s= i, 
and we have to show th a t F  is a total mps. So consider F ' G P (F ) \  { T } ,  and let C  puc(F),
<p := <pc- Since F 1 is a hitting clause-set, <p is contraction-free for F ', and according to  Lemma
5.1.9 it remains to show th a t F "  := <p * F ' is unsatisfiable (recall th a t hitting clause-sets are 
irredundant). Assume th a t F "  is satisfiable, and consider a partial assignment ip with ip*F" =  T 
and var (ip) fl var (ip) =  0. We show th a t then ip U ip would be a satisfying assignment for F , 
contradicting the assumption. To this end it suffices to show th a t for all D  G F  \  F ' holds 
C n f i ^ 0 .  Consider T  :=  T X(F), and let Wp> be defined as in Lemma 5.2.9. Starting from the 
leaf w d , let w be the first node on the path to the root of T  such th a t one of the two subtrees of 
w contains a leaf of W p1- Let x  be the literal a t w  on the path to w d - So by Lemma 5.2.9 we 
have i g C ,  while by definition x  G D. □
The proof of Theorem 5.2.11 actually shows th a t for F  G U S A T  already from all 2-element 
subsets of F  being mps’s follows F  G SM U s=\- We are turning now our attention to a closer un
derstanding of the prime implicates C  of doped F  G SMU$=i. We start with their identification 
with non-empty sub-clause-sets F ' of D(F):

L em m a 5.2.12 Consider a clause-set F  G S M U 5 - 1 . By Theorem 5.2.11 each non-empty subset 
of F  yields a minimal premise set. Thus by Theorem 5.1.18 we have:

1. prc0 (D(F)) =  (puc(F ') | T /  F ' C D(F)}.

2. |prc„(D(F))| =  2 «<f > -  1 .

The main result of [148] is the stronger result th a t the clause-sets F  G CCS with |prc0 (F )| =  
2 c(f ) _  i  are precisely the clause-sets D (F) for F  G SM U$=i when allowing to replace the single 
doping variable of a clause by any non-empty set of new (pure) literals. Back to  the task at hand: 
Since the clauses of D (F) can be identified with leaves of the tree T X(F), we obtain a bijection 
between non-empty sets V  of leaves of the tree T X(F) and prime implicates of D(F):

D efin ition  5.2.13 For F  G <SA4^=i and 0 ^  V C lvs(T 1 (F )) the clause C v  is the prime 
implicate pucdC^, G F  | w G V}) o /D (F ) according to Lemma 5.2.12. For w G lvs(T 1 (F)) we 
furthermore set u w u cw-

By Lemma 5.2.12:

L em m a 5.2.14 For F  G S M U 5=l holds prc0 (D (F)) =  {C v  \ 0 ^  V  C lvs(T 1 (F))}.

■‘Tn [109] the notation “UHTT” was used to denote “uniform hitting clause-sets” , which is now more appro
priately called “(conflict-)regular hitting clause-sets”, while “U” now stands for “unsatisfiable” .
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How precisely from V  C lvs^ 1 (F )) the prime implicate C y  is constructed shows the following 
lemma:

Lem m a 5.2.15 Consider F  G SM.U5=\ and 0 /  V C lvs(T1(F)). We have C y  =  U y  U P y ,  
U y  n P y  =  0, where

1. U y  := {uw | w G V}, and

2. P y  := puc(F ') for F ' := {C w : w E V } as given in Lemma 5.2.9, that is, P y  is the set of
literals x  such that V  n lvs(Tx) ^  0 and V  fl lvs(Tx) =  0.

E xam ple 5.2.16 Consider the clause-set

F  := {{ui,v 2 },{ui,U2},{iyr,U3},{ur,V3}} e  S M U s=i 

corresponding to the tree

Vl

1 2  3 4

with the doped clause-set

®(F ) =  {{Ul,V2 ,U i} ,{ u i,^ ,U 2 },{ljT,U3,W3},{ur,U3,W4}}-

Now consider the set V  := {1 ,3} . According to Definition 5.2.13 we have that C y  =  puc({{ni,U 2 ,u i} , {FT, ^3 , ^ 3 }} 
{i>2 ,V3 , Ui,U3 }. By Lemma 5.2.15 we have that C y = Uy U P y, where Uy — {1 1 1 , 1 1 3} and 
P y = puc({{vi, ^2 }, {FT, ^3 }} — {v2 iVs}. Note that for both x  G {v 2 ,v$ \ — Py we have that 
lvs(Tx) fl V  ^  0 and lvs(Tx) fl V  = 0, but we do not have this for x  G lit(F ) \  {V2 , ^3 }.

The hardness of F  as well as D (F) is the Horton-Strahler number of T 1 (F):

L em m a 5.2.17 Consider F  G SA4U$=i, and let k :=  hs(T 1 (F )). Then we have hd (F ) =  
hd(D (F)) =  k.

P ro o f: Let T  := T 1 (F). F irst we show hd(F ) =  k. We have hd(F ) <  k, since T  is by
definition of F  = F 1 (F) already a resolution tree (when extending the labelling of leaves to all 
nodes), deriving _L from F . To show hd(F) > k , we use Lemma 3.3.7 with C := S A iU s=i and 
h(F) := hs(T 1 (F)). Based on Lemma 5.2.4, we consider the effect on the Horton-Strahler number 
of assigning a tru th  value to one variable v G var(F). Let w G nds(T) be the (inner) node labelled 
with v, and let Tq ,T™ be the left resp. right subtree hanging at w. Now the effect of assigning 
£ G {0,1} to v is to replace Tw with T™. Let Te be the (whole) tree obtained by assigning e to v, 
tha t is, Te := T 1((u —>•£)* F ). If hs(Fo;) =  hs(T1u;), then we have hs(Te) > A; — 1, since at most 
one increase of the Horton-Strahler number for subtrees is missed out now. Otherwise we have 
hs(To) =  hs(T) or hs(Ti) =  hs(T), since removal of the subtree with the smaller Horton-Strahler 
number has no influence on the Horton-Strahler number of the whole tree. So altogether Lemma
3.3.7 is applicable, which concludes the proof of hd(F) =  k.

For showing hd(D (F)) = k we use Lemma 5.1.20: so consider F ' C F  and ip G P A SS  with 
p *  F 1 e U S A T , let F "  :=</?* F ',  and we have to show hd(F ") < k. W.l.o.g. var(<p) C var(F ').
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By Corollary 5.2.5 we have th a t p  * F  e  S A iU s=i, and thus ip * F  = F "  must hold, and 
hd(F ") =  hs(T 1 (F ")) (by the first part). By Lemma 5.2.4, T 1 (F ") results from T  by a sequence 
of removing subtrees, and it is easy to see, th a t thus hs(T 1 (F ")) < k holds. □

We summarise what we have learned about D (F) for F  E SAiUs=i-

T h eo rem  5.2.18 Consider F  E SM.U$=i.

1. For each clause-set F ' equivalent to D (F) there is an injection i : D (F) —> F ' with V C  E 
D (F) : C  C i(C ) (by Lemma 5.1.15).

2. D (F) is a total mps (by Lemma 5.2.8 together with Theorem 5.2.11).

3. The prime implicates o /D (F ) are given by Lemmas 5.2.14, 5.2.15.

4■ hd(D (F)) = hs(T 1 (F)) (by Lemma 5.2.17).

5.3 Lower bounds
This section proves the main result of this chapter, Theorem 5.3.13, which exhibits for every k > 0 
sequences (F k+1)ne^ of small clause-sets of hardness k +  1 , where every equivalent clause-set of 
hardness k (indeed of w-hardness k) is of exponential size. In this way we show th a t the UCk 
hierarchy is useful, i.e., equivalent clause-sets with higher hardness can be substantially shorter. 
These F k + 1  are doped versions of clause-sets from SM.Us= i (recall Theorem 5.2.18), which are 
“extremal” , that is, their underlying trees T 1 (F ^+1) are for given Horton-Strahler number k + 1 
and height n  as large as possible.

The organisation of this section is as follows: In Subsection 5.3.1 the main tool for showing 
size-lower-bounds for equivalent clause-sets of a given (w-) hardness is established in Theorem 
5.3.4. Subsection 5.3.2 introduces the “extremal trees” . Subsection 5.3.3 shows the main lower 
bound in Theorem 5.3.12, and applies it to show the separation Theorem 5.3.13.

5.3.1 Trigger hypergraphs
A hypergraph is a pair G — (V ,F), where V  is a set (of “vertices” ) and E  C P(V) (the set of 
hyperedges), where one uses V{G) := V  and E(G ) :=  E . A transversal of a hypergraph G is a 
set T  C V(G) such th a t for all E  E E(G ) holds T n £  /  0. The minimum size of a transversal is 
denoted by t (G ), the tra n sv e rsa l  n u m b er. And let i '(G )  be the m a tch in g  n u m b e r of G, 
the maximum number of pairwise disjoint hyperedges. Obviously we have r(G ) > v(G) for all 
hypergraphs G.

D efin ition  5.3.1 Consider k E No and F  E CCS. The trigger hypergraph Tk{F) is the 
hypergraph with the prime implicates of F  as its vertices, and fo r every prime implicate C  of F  
a hyperedge E £. The hyperedge E q  contains all prime implicates C ' E prc0 (F) which are not 
satisfied by <pc and yield a clause of size at most k under pc- That is,

1 . V (Tk(F)) := p rc 0 (F ), and

2. E (Tk(F )) := {Ejf, \ C  E prc0 (F)},

where E kc  := { C  E prc0 (F) | C' fl C = 0 A \C' \  C\ < k}.
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Note that the trigger hypergraph of F  G CCS depends only on the underlying boolean function 
of F , and thus for every equivalent F ' we have Tfc(F') = Tk(F).

E x am p le  5.3.2 Consider the clause-set

F  := { { v l, V3,  Va }:  { v 2 , ̂3, V4 h  i v  2, V3, ̂ 4 }, {^2 , ̂3, ̂ 4 }, fr 1, ̂ 3 , ̂ 4 }, fol, ̂ 2 } }•
Cl C2 C3 C4 C5 C6

As shown in Example 8.2 of [77, 78] we have prc0 (F) =  F. The trigger hypergraph To(F) is 
(as always) the hypergraph with all singleton sets, i.e., E (T q(F)) =  { { C i} ,. . . ,  {C^} }. The 
hypergraphs Tk(F) for k G {1 ,2 }  are represented by Figures 5.1, 5.2.

C i c P  c P  Q , c P  c P

c3 c 4 ^  r  c3 -  -  c6.  c4 ^
U O  O O KJ O

Figure 5.1: 7 \(F ) Figure 5.2: 7 2 (F)

To interpret the diagrams:

1. An arrow from a clause C to a clause D represents that C  G E £>.

2 . A dotted arrow from C to D represents that \D \C \  > k (so C  £ E q ), but C  fl D  =  0, and 
thus for some large enough k' > k we will have C  G E p .

3. No arrow between C and D indicates that C  n  D  ^  0 (i.e., for all k' we have C  £ E p  and 
D i  E k ).

4. The size of a hyperedge F |,  is the in-degree o f the vertex D.

Consider F ^ g =  {Ce} and E q 6 = {C \, C 2 , C3, C5 , Ce}- As we will see in Lemma 5.3.3, therefore 
every F ' C F  equivalent to F  such that F ' G UC\ must have Cq g  F '.  However, E q 6 contains 
more clauses than E ^ e, and for example F \ { C q} G UC2 XUC1 as shown in Example 4-5.3. Using 
the above diagrammatic notation, we can also see that for all k' >  2  we have 7V (F) =  7 2 (F ), as 
there are no dotted lines for T2 (F) (i.e., no clauses C  and D such that |F \C | > 2 but COD  =  0j.

L em m a 5.3.3 Consider k G No and F  G CCS with whd(F) < k. Then there is a clause-set F f 
such that

1. F ' C prc0 (F) and F ' is equivalent to F;

2. there is an injection i : F ' F  such that VC  G F ' : C  C i(C );

3. w hd(F ') < k;

4- F ' is a transversal o fTk(F ).

P ro o f: Obtain F ' from F  by choosing for every C g F  some C' G prc0 (F ) with C ' C  C. Then 
the first two properties are obvious, while Property 3 follows from P art 1 of Lemma 6 . 1  in [110]. 
Assume that F ' is not a transversal of Tjt(F), th a t is, there is C  G prc0 (F ) with F ' fl £& =  0 . 
Then ipc*F ' G U S A T , but every clause has length strictly greater than  k, and thus fc-resolution 
does not derive _L from ipc * F ',  contradicting w hd(F ') < k. □
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Directly from Lemma 5.3.3 follows:

T heorem  5.3.4 For k G No and F  G WCfc we have c(F) >  r(Tfc(F)).

5.3.2 Extremal trees
For a given hardness k > 1 we need to construct (full binary) trees which are as large as possible; 
this is achieved by specifying the height, and using trees which are “filled up” completely for the 
given parameter values:

D efin itio n  5.3.5 A pair (k , h ) G Ng with h > k and k = 0 ^ h  — 0 is called an allow ed  
p a ra m ete r  pair. For an allowed parameter pair (k , h) a full binary tree T  is called an ex trem a l 
tree o f  H o rto n -S tra h le r  n u m b e r  k  a n d  h e ig h t h  i f

1 . hs(T) =  k, ht(T) =  h;

2. for all T ' with hs(T') < k and h t(T ') < h we have nds(T ') < nds(T).

We denote the set of all extremal trees with Horton-Strahler number k and height h by H S (k , h ).

Note that for allowed parameter pairs (k , h) we have k =  0 «=> h =  0. Extremal trees are easily 
characterised and constructed as follows:

1. HS(0,0) contains only the trivial tree (with one node).

2. HS(1, h) for h G N consists exactly of the full binary trees T  with hs(T) =  1 and ht(T) =  h, 
which can also be characterised as those full binary trees T  with ht(T) =  h such th a t every 
node has at least one child which is a leaf.

3. For k > 2 and h > k we have T  G HS(fc, h) iff T  has the left subtree Tq and the right subtree 
Ti, and there is e G {0,1} with Te G HS(A; — 1, h — 1) and T i_e G HS(min(fc, h — l ) ,h  — 1).

L em m a 5.3.6 For all allowed parameter pairs (k ,h ) we have HS(k ,h )  ^  0.

The unique elements of HS(/c, k ) for k G No are the perfect binary trees of height k , which are
the smallest binary trees of Horton-Strahler number k.

L em m a 5.3.7 For an allowed parameter pair (k , h) and for T  G HS(k, h) we have # lvs(T ) =
a(fc, h) := Y li=o (i) • have a(k , h) =  Q(hk) for fixed k.

P ro o f: For k < 1 we have a(0 ,0 ) =  1 and a ( l ,h )  = 1 4 - h. which are obviously correct. Now
consider k > 2. By induction hypothesis we get

#nds(T ) =  a (k  — 1, h — 1) 4 - a(min(fc, h — 1), h — 1).

If h =  fc, then a(k, h) — 2k (for all k ), and we get #nds(T ) =  a (k  — 1 , k — 1 ) +  a(k  — l , k  — 1) =
2 ■ 2k~1 — 2k =  a(k, k). Otherwise we have

#nds(T ) =  a(k —■ 1, h — 1) 4 - a(k, h — 1 ) =



□

E xam ple 5.3.8 Consider the following labelled binary tree T:

lo 2i 3i A2 5i 62

Applying the recursive construction/characterisation we see T  G HS(2,3). By simple counting 
we see that T  has 7 leaves, in agreement with Lemma 5.3.7, i.e., Y lj= 0  (j) — (0 ) +  ( 1) +  (2 ) =  
1  +  3 +  3 =  7. Assuming that o f the two subtrees at an inner node, the left subtree has Horton- 
Strahler numbers at least as big as the right subtree, the idea is that the sum runs over the number 
j  of right turns in a path from the root to the leaves. In the above tree T , the number of right 
turns is indicated as an index to the leaf-name. I f  the Horton-Strahler number is k, with at most 
k right-turns we must be able to reach every leaf.

We summarise the additional knowledge over Theorem 5.2.18 (using additionally that most 
leaves of T  G HS(fc, h) have depth precisely h):

L em m a 5.3.9 Consider an allowed parameter pair (k , h) and T  G HS(fc, h), and let F  := F ^ T ) .

1 . n(D(F)) = 2  • a(k, h) -  1 (= B {hk) for fixed k).

2 . c(D(F)) =  a (k , h) (— Q (hk) for fixed k).

3. £(D(F)) < h • a (k , h) (= Q(hk+1) for fixed k).

4. D (F) G UCk \U C k -i  (for k > 1).

In Theorem 5.3.13 we will see th a t these D (F) from Lemma 5.3.9 do not have short equivalent 
clause-sets of hardness k — 1 .

5.3.3 Exponential lower bounds on “better” equivalent clause-sets
The depth of a node w in a rooted tree T, denoted b y  dT-(iu) G No, is the length of the path 
from the root of T  to w. Recall th a t two sets A, B  are incomparable iff A % B  and B  % A. 
Furthermore we call two sets A , B  incomparable on a set C  if the sets A  n  C  and B  n  C  are 
incomparable.

D efin itio n  5.3.10 Consider a full binary tree T , where every leaf has depth at least k +  1. 
Consider furthermore 0 ^  V, V ' C lvs(T). Then V  and V ' are d ep th -k -in co m p a ra b le  f o r  T  
i f V  and V ' are incomparable on lvs(Tw) for all w G nds(T) with d t ( ^ )  =  k.

Note that for all allowed param eter pairs (k , h) and T  G HS(fc, h) every leaf has depth at least k.
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L em m a 5.3.11 Consider k E No, T  E 71, and 0 ^  Vo,Vi lvs(T) which are depth-k-
incomparable for T . Let F  := F 1 (T) and consider Tk(F) (recall Definition 5.3.1). Then the
hyperedges E ^ v , E ^ v are disjoint (recall Definition 5.2.13).

P ro o f: Assume th a t E ^ v , Eqv are not disjoint; thus there is 0 ^  V  C  lvs(T) with C y  E

Eqv n E c v . We will show th a t there is £ E {0,1} with |C y \  Cy£ | >  k +  1, which contradicts 
the definition of Tfc(F).

Since V  ^  0, there is w E  V. Consider the first k + 1 nodes W \,. . . ,  Wk+i on the path 
from the root to w. Let w[ be the child of w t-\  different from Wi for i E  { 2 , . . . ,  k + 1}, and
let Ti := Twr for i E  while Tk+i := TWk+1; see Figure 5.3. We show th a t each
of T i , . . . , Tfc+i contributes at least two unique literals to |Cy \  Cvbl +  |Cy \  C yJ, so th a t we 
get |Cy \  CyQ | +  |Cy \  Cy1 \ > (k + 1) • 2, from which follows th a t there is e E  {0,1} with 
| C y \  Cyc | > k + 1 as claimed.

w i

w 2

Wi

k + 1

W

Figure 5.3: Illustration of sub-trees . . . ,  T^+i.

Due to the depth-k-incomparability of V, V7, for each i E ( 1 , . . . ,  A: -h 1} and each e E {0,1} 
there are nodes vf with v\ E (lvs(Ti) n V£) \  Vj. We have two cases now:

I If i f  E V, t h e n  u v e E C y  \  C y T.

II If i f  ^ V, then consider the first node v on the path from i f  to  the root such th a t for the
other child v' of v, not on th a t path to the root, holds lvs(T„') D V  ^  0: now for the literal 
x  labelling the edge from v to v' we have x  E C y  \  C y e . Note th a t v is below or equal to 
Wi (due to w E  V).

For each £ E {0,1}, the literals collected in C y  \  C y e from these k + 1 sources do not coincide,
due to the pairwise node-disjointness of the trees T i , . . . ,  Tk+1 . □
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T h e o re m  5.3.12 Consider k G No, h > k +  1, and T  G HS(k +  l ,h ) ;  let F  := D (F 1 (T)) and 
m  a( 1, h - k )  — 1 + h — k. We have

I/(Tfc(F) ) - ( m )  > e(Vh]'
where the second inequality assumes h > k + 5, while the Q-estimation assumes fixed k.

P ro o f: For every S  C P(lvs(T)) with 0 ^ S', such th a t every two different elements of S
are depth-/c-incomparable for T, we have u(Tk(F)) > |Sj by Lemma 5.3.11. We can actually 
determine the maximal size of such an S ,  which is M  := (™,), where m f := |_tJ> as follows. 
Let T := {Tw : w G nds(T) A d t (w )  =  A:}; note that for T l,T"  G T with T f ^  T"  we have 
lvs(T/)filvs(T//) =  0. Choose To G T with minimal #lvs(To); by Lemma 5.3.7 we have #lvs(To) =  
m. Let S 0 {Fnlvs(To) : V  G S } .  Then Sq is an antichain (i.e., the elements of So  are pairwise 
incomparable) and |S'o| =  \S\ .  By Sperner’s Theorem ([152]) holds |So| < M , and this upper 
bound M  is realised, just observing the antichain-condition, by choosing for So the set ( '^ T 0 )̂ 
of subsets of lvs(To) of size m'. This construction of So can be extended to a construction of 
S  (of the same size) by choosing for each T ' G T an injection jr> ■ Sq - »  ( lvs(^ )) and defining 
S := (U T >£T 3T '(V )} ve sn- The given estimation of M  follows from Stirling’s approximation. □

We are now able to state the main result of this chapter, proving Conjecture 1.1 from [77, 78] 
th a t UCk, and indeed also WCk, is a proper hierarchy of boolean functions regarding polysize 
representations without new variables (see Subsection 6.1 for a discussion of “representations” 
in general):

T h eo rem  5.3.13 Consider k G No. For h > k + 1 choose one Th G HS(k + 1 ,h ) (note there 
is up to left-right swaps (of children in Th) exactly one element in HS(k + 1 ,h )), and let Fh 
D (F 1 (T/1)). Consider the sequence (Fh)h>k+ \•

1. By Lemma 5.3.9 we have n(Fh) = Q{hk+1) as well as c(Fh) = Q (hk+1), and Fh G UCk+i-

2 . Consider a sequence {F'h)h>k+ 1  of clause-sets with F'’h equivalent to Fh, such that F'h G 

WCfc. By Theorems 5.3.12, 5.3.4 we have c(F^) =  f i ( ^ ) .

The sequence (Fh)h>k+i from Theorem 5.3.13 then acts as a witness for the separation of 
the UCk and WCfc hierarchies:

T h eo rem  5.3.14 For all k G No there are families of boolean functions with poly-size represen
tations inUCk+i but only exponential-size representations in WCk-

We conjecture that Theorem 5.3.13 can be strengthened by including the PC-hierarchy in 
the following way2 :̂

C o n je c tu re  5.3.15 For every k G No there exists a sequence (Fn)n of  clause-sets in VCk+i, 
where for convenience we assume n(Fn) = n for all n, such that (£(Fn))n^  is polynomially 
bounded, and such that for every sequence (F^)nGN in WCk, where for a lln  E N holds that F„ is 
equivalent to Fn, the sequence (£(F^))n£N is not polynomially bounded.

■^Theorem 5.3.13 only separates UCk from UCk+i  and so VCk from VCk+2 , while it is still possible that VCk 
and VCk+ 1 can not be separated.
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Chapter 6

Analysing the T seitin  translation

Chapters 4 and 5 defined the UCk, VCk and WCk hierarchies and answered the fundamental 
questions regarding their properties and relations to existing classes. Attention is now turned 
to  questions regarding the use of these hierarchies as “target-classes” for good representations 
of boolean functions in satisfiability. In Chapters 4 and 5 the focus was on representations 
without new variables, allowing strong properties to be proven in this simpler, more restricted 
setting, where optimisation over all (equivalent) representations is possible. However, a large 
part of the power of CNF comes from the ability to use new variables to represent and replace 
repeated structures. One of the most well-known methods for representing boolean functions 
as a CNF using new variables is the Tseitin translation from [156]. The Tseitin translation 
converts arbitrary propositional formulae (or even circuits) to CNF by inductively replacing 
each sub-formulae with a new variable and introducing clauses defining the semantics of these 
new variables. This new-variable translation is investigated in this chapter for the restricted 
cases of DNF formulae (see the “canonical translation” in Section 6.2) and single XOR equations 
(see Section 6.4).

First, in Section 6.1, the notion of CNF representation is introduced (i.e., now allowing new 
variables) and a relaxed “relative” notion of hardness introduced, now requiring efficient clausal 
entailment only for implicates in the original variables of the boolean function. The concept 
of “maintaining arc-consistency via UCP” for a boolean function /  then relates exactly to the 
translation having p-hardness 1 relative to / .  In Sections 6 . 2  and 6.3, two variants of the Tseitin 
translation are introduced and applied to sub-classes of DNF clause-sets yielding CNF clause- 
sets with different hardness measures under the relative and “absolute” measures, and offering 
potential insight into differences in performance when using only one “polarity” of clauses in the 
Tseitin translation, i.e., with equivalence clauses (i.e., vp  «->■ F  for a sub-formula F) compared to 
using implication clauses (i.e., using vp —> F  for a sub-formula F  where possible), as discussed 
in [131, 93, 55]. Lastly, the Tseitin translation on XOR clauses is analysed and shown to fit into 
UC\ (i.e., it has absolute hardness 1), while for multiple XOR clauses we see th a t this simple 
translation can have unbounded hardness for both relative and absolute measures. In this way, 
examples are shown of the use of the theoretical framework for proving hardness bounds (i.e., 
membership in UCk for some bounded k) for concrete representations and evidence is given th a t 
various existing translations actually satisfy the stronger absolute condition, rather than the 
typical weaker relative notions from the literature.
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6.1 CNF representations
The most general notion useful in the SAT-context of a CNF-representation allowing new vari
ables seems to allow existentially quantified new variables (see e.g., [31]), which yields the fol
lowing basic definition:

D efin itio n  6.1.1 A CN F-representation of F  e  CCS (as CNF) is a clause-set F ' £ CCS 
with var(F) C  var(F ') such that the satisfying assignments o f F ' (as CNF) projected to var(F) 
are precisely the satisfying assignments o f F.

E x am p le  6.1.2 Consider F  := {{a, 6 }}. Then F ' := F  U is a CNF-representation
of F , since the satisfying assignments of F  can be extended to satisfying assignments of F ' by 
assigning v —» 1, while no new satisfying assignments are present, since F ' is a superset o f F. 
Also FU{{u}} is a CNF-representation of F , but FU{{a}} is not, since the satisfying assignment 
(a —> 0 , b -» 1) of F  would be lost. Also { { v ,a ,6 }} is not a CNF-representation of F , since here 
now we would obtain a new satisfying assignment for F , namely (a, b 0).

The CNF-representations F ' of F  without new variables, th a t is, with var(F ') =  var(F), are 
precisely the clause-sets F ' equivalent to F  with var(F ') =  var(F). We have conjectured in 
[77, 78] (Conjecture 9.4) th a t Theorem 5.3.13 (and Conjecture 5.3.15) also holds when allowing 
new variables, which in this context we can rephrase as follows, also extending the conjecture by 
including WCk (see Conjecture 8.1.2 for a further strengthening):

C o n je c tu re  6.1.3 For every k £ No there exists a sequence (Fn)n of  clause-sets, such that 
there is a sequence (F^)nen, where

• each F„ is a CNF-representation of Fn,

•  Z{F( 0  is polynomial in n,

•  and we have F'n £ VCk+i,

but where there is no such sequence (F ”)ne^ with F!f £ WCk-

Our basic condition for a “good” representation F ' of F  £ CCS is th a t F ' £ UCk holds
for some “low” k (a constant if F  depends on parameters). This is what we call the a b so lu te
co n d itio n  — regarding the requirement of detecting unsatisfiability of ip * F ' for some partial 
assignment p  we do not distinguish between original variables (those in var(F)) and new variables 
(those in var(F ') \  var(F)), th a t is, var(</>) C  var(F ') is considered. If we consider only var(<^) C  
var(F), then we obtain the re la tiv e  co nd ition :

D efin itio n  6.1.4 For F  £ CCS and V  C  VA we define:

• the relative hardness hdV (F) £ N0 is the minimum k £ N0  such that for all partial
assignments if £ V A SS with var(<p) C  V  and ip * F  £ U S A T  we have Tk(p * F) =  {-L},-

• the relative p-hardness p h d v (F )  £ No is the minimum  A: £ No such that for all p  £ 
VASS with var(p) C V  we have rk{p * F) =  r00(p  * F);

• the relative w-hardness w h d v ( i r ) £ No is the minimum k £ No such that for all 
p  £ V A SS with var (p) C  V  and p  * F  £ U S A T  we have that k-resolution derives ±  from  
p * F.

104



We have the following obvious properties:

1. V  C  V ' implies h v  (F ) < hv (F ) for h G {hd, phd, whd}.

2. hv (F) < h(F) = hv&T̂ ( F )  for h € {hd, phd, whd}.

3. For F  G S A T  holds hd 0 (F) =  whd0 (F) =  0, while phd0 (F) is the smallest k such th a t
ffc(F) =  r 0 0 (F).

4. For F  G U S A T  holds hd 0 (F) =  phd0 (F) =  hd(F) =  phd(F) and whd0 (F) =  w hd(F).

Having a representation F ' of F  with phdvar^ ( F ' )  <  1 is typically called maintaining arc 
consistency (that is, forced assignments, which via the encoding represent restrictions on (higher- 
level) constraint domains, are always propagated by ri - see Section 2.8). Having hdvar^  (F ')  =  0 
is equivalent to prc0 (F) C F ',  and thus for hardness 0 new variables are not helpful, neither for 
the relative nor the absolute condition.

In Theorem 1 in [17], it is (essentially) proven th a t for every boolean function /  w ith a 
poly-size representation F  of relative hardness < 1 can be mapped to a poly-size monotone 
circuit encoding the consistency checking function f c for /  and back to a relative hardness <  1  

representation Fc  of f c via the Tseitin translation. From this, along with monotone circuit 
lower bound results (see Chapter 9 in [97] for an overview) it immediately follows th a t there 
are boolean functions, such as the A llD iffe re n t constraint and satisfiable pigeon-hole formulas 
(PHP™), which have poly-size CNF representations but for which all relative hardness <  1  

representations are of super-polynomial size.

T heorem  6.1.5 (C orollary 4 in [17]) There are sequences o f boolean functions with poly-size 
CNF representations for which all representations with relative hardness < 1 are o f super
polynomial size.

The mapping from CNF representations F  of relative hardness <  1 to monotone circuits for 
the consistency checker works by encoding the process of unit-clause propagation directly as a 
monotone circuit yielding a representation of the consistency checker. In the same way, it should 
also be possible to construct a monotone circuit for the consistency checker of F  by encoding 
rfc-propagation rather than ri. In this case, any sequence of boolean functions with poly-size 
representation of relative hardness < k would have poly-size monotone circuit representations of 
their consistency checkers which would then map back, via the Tseitin translation, to a relative 
hardness < 1 representation F c  for f c. By adding binary “transfer” clauses to map the meaning 
of the variables of F  to variables of the consistency checker, it should be possible to convert 
F c  to a clause-set F ' with hdvar^ ( F ' )  < 1. Such a translation from relative hardness < k 
representations to relative hardness < 1 representations would result in the collapse of the UCk 
hierarchy to the first level for relative hardness.

C onjecture 6.1.6 For every k > 1  there is a polytime function t(F , V ), which takes a clause-set 
F  and a finite set V  o f variables as arguments, such that in case o /p h d v (F) < k the output 
t (F ,V ) is a representation o f F  with phdv (£(F)) < 1 .

More involved would be the collapse of the WCfc-hierarchy to the first level regarding relative 
hardness. The poly-time SAT-decision mechanism for WCk is more complex, however, the lack 
of constraint placed on the new variables by the relative condition means considerable simulation 
should be possible.
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C onjecture 6.1.7 For every k > 1 there is a polytime function t(F , V), which takes a clause-set 
F  and a finite set V  of variables as arguments, such that in case of w hdv  (F) < k the output 
t (F ,V ) is a representation of F  with w hdv (t(F)) < 1 .

Note that for all F  G CCS and V  C VA  holds whdv (F) < 1 <*=> h d ^ (F ) < 1. The collapse 
of all considered hierarchies to their first level, when considering the relative condition, is for 
us a major argument in favour of the absolute condition: W ithin the class of representations 
of relative hardness at most 1 (when using new variables) there is a lot of structure, and many 
representations fulfil absolute conditions; some basic examples follow in the remainder of this 
chapter.

The focus in the remainder of this chapter turns to upper bounds, investigating cases where 
the Tseitin translation yields representations in UC D VC for the absolute condition. Existing 
research (e.g., “maintaining arc-consistency via UCP”) deals with relative p-hardness < 1 and 
now we demonstrate th a t in the case of the Tseitin translation on hitting DNFs and reduced 
version of arbitrary DNFs, having absolute hardness < 1 is possible. In Subsection 6.1 the 
general notion of “CNF representation” is discussed. In Subsection 6.2 the translation from 
DNF into CNF is discussed, which is considered here as a map from CCS to CCS , and which we 
call the “canonical translation” . Lemma 6.2.6 shows th a t the hardness of canonical translation 
results can be arbitrarily high. On the other hand, Lemma 6.2.7 shows th a t for hitting DNF 
the canonical translation result is in UC, and Theorem 6.2.9 applies this to our lower bound 
examples, in contrast to Theorem 5.3.13 (so we see th a t new variables help here). By using 
only the necessary direction of the equivalences in the Tseitin translation, in Lemma 6.3.3 we 
see that for this “reduced canonical translation” the result is always in UC. Finally in Section
6.4 the Tseitin translation is applied to sets of XOR equations, providing an example where the 
hardness of the Tseitin translation on general circuits is unbounded.

6.2 The canonical translation
If for the F  G CCS to be represented we have an equivalent DNF G € CCS, then we can 
apply the Tseitin translation, using one new variable v to express one DNF-clause, i.e., using 
prc0(u f \ xec x ) f°r C €lG. The details are as follows.

It is assumed that an injection vet : {(F, C) \ F  G CCS A C g  F } -> V.4 is given, yielding 
the variables of the canonical translation, such th a t var(F) Pi {vct(F, C )}ceF  — 0 holds for all 
F  G CCS (that is, these variables are new for F). We write v c t^  :=  vct(F, C).

D efinition  6.2.1 The map ct : CCS —»■ CCS is defined for F  G CCS as

ct (F) := {{vct£ ,x}  : C  G F  Ax G C  } U { {vct£} U C  : C  G F }  U {  {vct^}ceF  }•

The first two types of clauses are the prime implicates of the boolean functions vct£ -f-> f \ xeC x, 
while the last type (a long, single clause) says th a t one of the (DNF-)clauses from F  must be 
true. To emphasise: the map ct is a map from clause-sets to clause-sets, where the (implicit) 
interpretation of the input and the output is different: the input F  G CCS is interpreted as DNF, 
while the output ct(F ) G CCS is interpreted as CNF. Some basic properties of the canonical 
translation:

1. The basic measures of the canonical translation for F  G CCS are given by

(a) n(c t(F )) =  n (F ) +  c(F)
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(b) c(ct(F)) =  1 +  c(F) +  £{F) for F  ±  {_!_}.

2. ct(T) =  {_L} and ct({JL}) =  {{v c t^ j} } .

3. Consider p  E V A SS  with var(</?) C var(F), and treat F  as a multi-clause-set, th a t is, 
if application of p  to different non-satisfied clauses from F  makes these clauses equal, 
then no contractions are performed. Then the canonical translation behaves homomorphic 
regarding application of partial assignments in the sense th a t c t(p * F )  (recall th a t we need 
to treat F  here as a DNF) is isomorphic to (p  U ip) * c t(F ), where if sets those v e t?  to 0 
for which there is x  € C  with p(x) =  0.

E x am p le  6.2.2 We give some simple examples for canonical translations.

1. For F  {{t>i},_L} we have

&

c t(F) =  {{vet?1, U i lJ v c t^ 1,u r} , {vet?} , { v c tg \ vet?} }.

V\ «->■ v e t? 1 1 v e t?  v e t ? 1 V v e t?

2 . For F  := {{v i, v2, ^3 }, {^i, v2, ^4 }} we have
s------v v------V----- ''

C i C 2

c t(F ) = {{vet?1, ui}, {vct?1, ^ } , ^ ? 1, ^ } ,  {vct?1, ^ ! , ^ , ^ } ,
^ -  n .  .  v  . — 1 11 ✓

(u i A v 2 A v3) «->• v e t? 1 

{vct?2,rq}, {vct?2,^ } ,  {vct?2,u 4}, { vet?2, IT, 7*2, ^ } ,  {vet?1, v e t?2} }.
v-------------------------------------------- v , v----------- -̂----------,

(u i A v 2 A v 4) ++ v e t? 2 v e t? 1 V v e t? 2

3. Applying p  := (1*3 —> 1 , v4  —> 1 ) to the last example (Case 2) yields

p  * c t(F) =  {{vet?1, vi}, {vet?1, u2}, {vct?1,^!, V2 },
' v '

(v i A « 2) h  v e t? 1

{vctp2, Vi}, {vctp2, ^2 }, {vctp2,^!) 7^}, {vet?1, VCt? 2 } }.
v------------------------------------------------------------V------------------------------------------------------------ '  v-------------------- V -------------------- '

(v i  A v 2) «-* v e t? 2 v e t ? 1 V v e t ? 2

4■ Applying p  := (v^ -» 0) to Case 2  yields

p * c t{F )  =  {{vet?1, Ui}, {vet?1 , 1 2̂ }, {vet?1},
'------------------  v----------------- '

v e t? 1

{vet?2, v1}, {vet?2, v2}, {vet?2, u4}, {vet?2 , ITT, 7 *2 , V4 }, {vet?1, vet?2} }.
N---------------------------------- v----------------------------------- ' '-------- V-------- '

(Vi A v 2 A V4) «->• v e t? 2 v e t? 1 V v e t ? 2
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5. While applying p  := (vs —> 0 ) and ip := {vct^ 1 —> 0} to Case 2  yields

( p  U ip)  * c t(F) =  {{vctg2 , V i }, {vctg2, v 2 } ,  { v c tf i, p4}, {vct^2, ui, u2,u4} , {vct^ 2 } }.

(v i A v 2 A v4) «->■ v c t ^2 v c t^ 2

In Case 3 we see an example of why for the canonical translation to have the homomorphism  
property we must consider F  as a multi-clause-set. That is, p * F  =  {{^1 ,^ 2 }}, and s 0  p*c.t(F) ^  
c t(p * F ):  the clause {vi,u2} is represented by two separate new variables in p * c t(F )  compared 
to only one in ct(p  * F).

In Case 4 we see an example where for the homomorphism property of the canonical trans
lation not just renaming, but also some unit-clause elimination is needed. These unit-clauses 
are added in Case 5, extending the assignment to falsify the new variable vct^ 1 corresponding to 
falsified DNF-clause C \.

L em m a 6.2.3 Consider F  £ CCS (as CNF) and an equivalent DNF-clause-set G £ CCS. Then 
c t(G) is a CNF-representation of F.

P ro o f: ct(F ) is true iff at least one of its vet-variables is set to true, which is precisely the case 
iff at least one of DNF-clauses of G is satisfied, where the (DNF-)clauses of G cover precisely the 
satisfying assignments of F. □

L em m a 6.2 .4  For F  £ CCS we have hdvar^ (c t( .F ) )  < 1 (recall Definition 6.1.4)-

P ro o f: Consider £ VASS  with var(<^) C var(F) and p  * c t(F ) £ U S A T .  Then all DNF- 
clauses of F  are falsified, which yields via UCP th a t all vct-variables are set to false, and thus 
ri(<p*ct(F)) =  {±}. □
In [98] a more general version of Lemma 6.2.4 is proven, showing th a t for all “smooth” DNNFs 
(Disjoint Negation Normal Form) the Tseitin translation yields a clause-set which maintains 
arc-consistency via UCP (a somewhat stronger property than relative hardness < 1  as in Lemma 
6.2.4).1) That Lemma 6.2.4 only establishes the relative condition, and not the absolute one, is 
due to  the fact that setting vct-variables to 0  can pose arbitrarily hard conditions; a concrete 
example follows, while a more drastic general construction is given in Lemma 6.2.6. However 
the difficulties can be overcome, by just removing them: In Lemma 6.3.3 we will see th a t when 
dropping the part of the canonical translation which gives meaning to setting vct-variables to  0 , 
tha t then we actually can establish the absolute condition.

E x am p le  6.2.5 Consider the following clause-set with variables . . .  ,£ 5 :

F  := {  { X 1 , X 2 , X 3 } , { X I , X 2 , X 4 } , { X I , X 2 , X 5 }  }.

^ There is a mistake in [98] in that it claims that the Tseitin translation of all DN NFs maintain arc-consistency 
via UCP, however this is shown only for smooth DNNFs as confirmed by George Katirelos via e-mail in January 
2012 .
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The canonical translation is

ct (F) =  {{a;i,vctJ1 },{x 2 ,v c t^ 1 },{x 3 ,v c t^ 1 }},{xi,a:2 ,a:3 ,v c tJ 1}U 
'-------------------------------------- v------------------------------------ '

v c t^ 1 •<-»■ ( * i  A X2 A x 3)

{{x 1, vct£2}, {x2, vetp2 }, {x4, vct£2}}, {xT, x i, Xl, vct£2} U
V-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - v - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

v c t^2 «->• ( x i  A X2 A X4)

{{xi, vct^3}, {x2, v e tJ3}, {x5, vct£3}}, {xl, x^, XE, VCt^ 3 } U
'-------------------------------------- v------------------------------------ '

v c t^3 «-»• ( x i  A x 2 A x 5)

{{vctp1, vetF2 , VCtp3 } } .
'   '

(v c t^1 V v c t^ 2 V v c t^ 3)

Applying the partial assignment ip := (x3  —> 1 ,X4  —> l ,x s  —> l ,v c t ^ 3 —> 0) yields

F ':= ip * c t(F )  = { { x i,v c tj 1 },{x 2 ,v c t j 1 }} ,{x r,x ^ ,v c tp 1} u
" ------------------------------------------------------------------ V------------------------------------------------------------- '

v c t^ 1 ( x i  A *2)

{{xi, vet£2}, {x2, vct£2}}, {xl, x$, vct£2} U
^ . ■ -  i. y

v c t^ 2 «->• (®i A x 2)
{{xT,x^}} U { { v c t^ v c t j2}} .
 ̂ y. y v

- .(X l A x 2) (v c t^ 1 V v c tg 2)

We have F ' e U S A T , where F ' has no unit-clauses, whence hd (F ') > 2 , and so ct (F) £ UC\. 

For general input-DNFs, the hardness of the canonical translation can be arbitrary high:

L em m a 6 .2 . 6  Consider F  e  CCS. L e tv  € V .4\var(F) and F ' := Fu{{v}}. Then hd(c t(F ')) > 
hd(F).

P ro o f: Let p  := (vctp, —> 0 : C E F) U (v —> 1, v c t j^  —> 1). Then p  * c t(F ')  =  F "  := {C : C  E 
F}, where hd(ct(F ')) > hd(F") =  hd(F). □
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If we do not have just a DNF, but a “disjoint” or “orthogonal” DNF (see Section 1 . 6  and 
Chapter 7 in [42]), which are as clause-sets precisely the hitting clause-sets, then we obtain 
absolute hardness 1 :

L em m a 6.2.7 For F  E FLIT we have c t(F) E UC, where c t(F) is a representation o f the 
DNF-clause-set F.

P ro o f: Consider a partial assignment p  such th a t p  * c t(F ) is unsatisfiable. Since FLIT  is 
stable under application of partial assignments, and furthermore here no contractions take place, 
w.l.o.g. we can assume that var(cp) n  var(F) =  0. If p  sets two or more vct-variables to true, 
then UCP yields a contradiction, since any two clauses from F  clash. If p  would set precisely 
one vet-variable to true, then we had p  * c t(F ) =  T . So assume th a t p  sets no vet-variable to 
true. Now p  must set all vct-variables to false, since, as already mentioned, just setting one 
vet-variable to true satisfies c t(F ). And thus _L E ct(F ). □

We now want to show th a t via the canonical translation we can obtain representations of 
D (F) for F  E UFLIT. For this we show first th a t all such D (F) have short hitting DNF clause- 
sets. For F  E CCS let # s a t ( F )  E No denote the number of satisfying assignments for F , th a t 
is, # sa t(F )  =  |DNF(F)|.

L em m a 6.2.8 Consider F  E UFLIT, and let m  := n(F ) +  c(F).

1. # sa t(D (F )) =  2m" 1.

2 . Let F ' := { C u { u c }  \ C € F } ;  by definition we have F ' E FLIT. Furthermore # s a t(F ')  =  
2m— 1.

3. F ' as a DNF-clause-set is equivalent to the CNF-clause-set D (F).

P ro o f: We have =   ̂ (see [100])- Thus X^ceD(F) ^ =  which proves Part
1 (note m  — n(D (F)) and D (F) E FLIT). Part 2  follows from P art 1 , since F ' results from 
D (F) by flipping literals. Finally we consider Part 3. All elements of F ',  as DNF-clauses (i.e., 
conjunctions of literals), represent satisfying assignments for D (F), th a t is, for all C  E F ' and 
D  E D(F) we have C  fl D /  0. By P art 2, precisely half of the total assignments of DNF-clause- 
set F ' are falsifying, and thus precisely half of the total assignments are satisfying: since this is 
the same number as the satisfying assignments of D (F), we obtain th a t the DNF-clause-set F ' 
is equivalent to the CNF-clause-set F . □
An alternative line of argumentation is th a t for F  E  UFLIT  the (logical) negation of D (F) (as a 
CNF) is given by D (F)', which is obtained from D (F) by flipping all doping literals, i.e., replacing 
clauses C U  {u c}  by C U  {u c }• That this is indeed the negation, follows from the two facts, th a t 
D (F) U D (F )' E FLIT  by definition, and th a t D (F) U D (F )' results from F  by replacing each 
clause C  with the two clauses C  U {uc}, C  U {uc}, which are together equivalent to C.
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By Lemma 6.2.8 and Lemma 6.2.7 we obtain now th a t doped unsatisfiable hitting clause-sets 
have good representations via the canonical translation:

T h eo rem  6.2.9 For F  £ U H I T  there is a short CNF-representation (using new variables) of 
D (F) in UC, namely F ' ct({C U {itc} : C £ F}) £ UC, where:

1 . n(F ') = n(F) + 2c(F).

2. c(F') =  1 +  2c{F )+ £{F ).

This applies especially for F  £ SA4U$=i C  UFLTT.

6.3 The reduced canonical translation
Finally we show that when relaxing the canonical translation, using only the necessary direction 
of the constitutive equivalences, then we actually obtain representations in UC for every DNF- 
clause-set:

D efin itio n  6.3.1 The map c t “ : CCS —> CCS ( “reduced canonical translation”) is defined for  
F  £ CCS as c t“(F) := {{vct£, x}  : C £ F  A x  £ C } U {{vct^jc'eF}-

Note that all clauses of ct” (F) are binary except of the long clause stating th a t one of the 
vct-variables must become true. And also note th a t in case of ±  ^ F  the additional clauses 
of ct(F ), that is, the C £ c t(F ) \  ct~(F), are all blocked for c t(F ) (see [105, 106]), since C  
can not be resolved on the vet-variable in it. We have var(ct_(F)) =  var(ct(F )), and thus 
n (c t“(F)) =  n(F) +  c(F), while c(ct~(F)) =  1 +  £(F), for all F  £ CCS. W ith the same proof as 
Lemma 6.2.3 we get:

L em m a 6.3.2 Consider F  £ CCS (as CNF) and an equivalent DNF-clause-set G £ CCS. Then 
c t- (G) is a CNF-representation of F.

We show now that dropping the additional (blocked) clauses, present in the full form ct(F ), 
actually leads to the hardness dropping to 1 for arbitrary input-DNFs (recall Lemma 6.2.6), 
exploiting th a t now there are less possibilities for making ct~(F) unsatisfiable by instantiation:

L em m a 6.3.3 For F  £ CCS we have c t“(F) £ UC (i.e., c t- : CCS UC).

P ro o f: For the sake of contradiction consider a partial assignment <p such th a t F ' := *
ct~(F)) £ U S A T  but F ' ^  {_L}. Note that F ' contains neither _L nor a unit-clause, and thus F ' 
is a subset of ct“(F) except of the possibly shortened or satisfied long vct-clause. If F ' contains 
no new variables, then thus F ' =  T , a contradiction. So there exists some C £ F  such th a t vct^ 
occurs in F '. Consider the assignment ip', which sets vct^  and all x £ C  to true, while setting 
all other (remaining) new variables to false: <p' satisfies F ', a contradiction. □

E x am p le  6.3.4 We conclude our basic considerations of “canonical translations” by discussing 
“unique extension properties”. A representation F ' of F  has the unique extension property 
( “uep”) if  for every total satisfying assignment o f F  there is exactly one extension to a satisfying 
assignment of F ' . For every F  £ CCS the representation ct (F) of F  has the uep, since a variable 
vetp  must be set to 1 precisely for those C £ F  which are satisfied by <p in the DNF-sense (i.e., 
Tp * {C} = {-L}^. On the other hand, the representation c t“(F ) of F  in general has not the uep:

111



The total satisfying assignments for  c t(F) extending p  are exactly those which set at least one 
of the variables vct^ true for those C £ F  which are satisfied in the DNF-sense.

A representation F ' of F  has the strong unique extension property i f  for every partial as
signment p  with _L £ p  * F  (i.e., p  satisfied at least one of the DNF-clauses) there is exactly 
one extension on the new variables (alone) to a satisfying assignment o f F ' . For F  £ 'HTT  
the representation c t(F) of F  has the strong uep, since the satisfying assignments given by the 
clauses of F  are inconsistent with each other.

6.4 XOR-clause-sets
Systems of linear equations over the two-element field {0,1} and their SAT representations are 
the subject of this section. The framework is discussed in Subsection 6.4.1, some general tools for 
computing hardness from components are presented in Subsection 6.4.2, and finally we consider 
more general systems of XORs in Subsection 6.4.3.

6.4.1 The framework
As usual, an X O R -c lau se  (also known as “parity constraint”) is a (boolean) constraint of the 
form x \ ©• • -©xn =  0  for literals x \ , . .. , x n , which we just represent by the clause { x i , . . .  , x n} £ 
CL, where w.l.o.g. we can restrict our attention to (proper) clauses (as clash-free sets). Note that 
x i ©• • • ©xn — y is equivalent to x i© - • -@xn ©y =  0 , while x© x =  0  and x© x =  1 , and 0 ©x =  x 
and 1 © x =  x. An X O R -c lau se-se t F  is a set of XOR-clauses, which is just represented by an 
ordinary clause-set F  £ CCS (with a different interpretation). A partial assignment p  £ VASS 
satisfies an XOR-clause-set F  iff var(</>) 5  var(F) and for every C £ F  the number of x £ C  
w ith var(x) =  1 is even. A CNF-representation of an XOR-clause-set F  £ CCS is a clause-set 
F ' £  CCS with var(F) C var(F ') such that the projections of the satisfying to tal assignments 
for F' (as CNF-clause-set) to var(F) are precisely the satisfying (total) assignments for F  (as 
XOR-clause-set).

In this initial study we concentrate on CNF-representations of XOR-clause-sets F  with c(F) <
2 . First we consider c(F) =  1, th a t is, a single XOR-clause C, to which we often refer as “xi©- • •© 
x n =  0” (with n =  |C|; more precise would be ®xe c x  =  0)- There is precisely one equivalent 
clause-set, i.e., there is exactly one representation without new variables, namely Xo(C) 
prc0(xi © • • • © x n =  0 ), the set of prime implicates of the underlying boolean function, which is 
unique since the prime implicates are not resolvable. X q(C ) has 2 n _ 1  clauses for n > 1 (while 
for n  =  0 we have Xq{C) =  T ), namely precisely those full clauses over {var(x i),. . . ,  var(xn)} 
where the parity of the number of complementations is different from the parity of the number 
of complementations in C. So representations of hardness 0 are only feasible for small n. In the 
following lemma we analyse a typical CNF-representation of the XOR-clause C , which uses new 
variables y* (for i £ {2 , . . . ,  n  — 1 }) to  compute the xor of the first i bits, i.e., y* =  x i © • • • © X*.
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L em m a 6.4.1 We define X \  : CC —> UC, such that X i  (C) is a CNF-representation of the
XOR-clause-set {C }, as follows, using C — { x i , . . .  , xn }, n  =  \C\.

• For n < 2  let X i  (C) be the CNF-representation without new variables.

• For n > 3 consider pairwise different (new) variables y2, . • • ,y n- i  € V M \var(C ). Let

X i { C )  :=  P 2 U (Utos1 -P.) U P n ,  Where

P2  :=  prc0( x 1 © x 2 =  y 2) =  {{^T, x 2, 2/2}, {x i,T z , y i) ,  { x i ,  x 2 , y^}, { x T ,x ^ ,^ 2 }}

P* := prc0 (j/i_i ©Xi =  j/i) =  { { y F X ^ i,y i} ,  {y i_ i,x ^ ,y i} , {yi_ i, Xi,y~i}, { y F ^ ,x l ,y l} }
Pn := prc0 (y„_i © x n =  0) =  {{j/n_ i,5 ^ } ,{ ^ Z T ,x n }}.

We have X ffC )  G ZVC, with n (F ) = 2n — 2, c(F) =  4n — 6  and £(F) =  12n — 20.

P ro o f: Let P  := X’i(C). Assume for the sake of contradiction th a t P  ^ WC. Thus there exists
a partial assignment <p such th a t for F ' := ri(</? * P ) we have P ' G U S A T ,  but P ' 7  ̂ {-L}. By- 
definition P ' has no clauses of size < 1 and is non-empty. Observe th a t setting any variable 
in Pi for i G { 2 ,... ,n  — 1} yields a pair of binary clauses representing an equivalence or anti
equivalence between the two remaining variables. Also if Pi fl F ' 7  ̂ 0 for some i G { 2 , . . . ,  n  — 1}, 
then we have Px C P ',  since all clauses of Pi contain all variables of Pt . Therefore we have 
P ' =  E  U Pi for some subset I  C { 2 , . . . ,  n — 1}, where E  is a set of clauses representing 
a chain of equalities and inequalities. Consider the assignment tp1 := (x* —> 0 : i G I). We 
have p ' * Pi — ip' * prc0 (2Ai-i 4- Xi = yi) = prc0 (yi_i =  yi); note th a t Xj is only in Pi, and so 
(xi —> 1) only touches Pi. So ip' * F ' now contains only variable-disjoint chains of equivalences 
and anti-equivalences, each trivially satisfiable, yielding a contradiction. □

E x am p le  6.4.2 For n =  3 we get

x i(c ) = { { x i , x 2 ,y 5 } ,{ x 1 , ^ , y 2 } ,{ x ^ ,x 2 ,y 2 } , { ^ , x 5 ,y 5 } ,{ y 2 ,x ^ } ,{ y 5 , x 3} }.
'------------------------------- v------------------------------- '-'----------v---------- '

X l  ©  £C2 =  2/2 3/2 ©  X 3 =  0

6.4.2 Hardness under union
When applied piecewise to a system of linear equations (with different auxiliary variables for 
each single equation), the translation X \  from Lemma 6.4.1 does not yield a clause-set in UC, as 
shown in Theorem 6.4.7. To facilitate the precise computation of the hardness of the union of 
two such XOR-clause-translations, two general tools for upper bounds on hardness and one for 
lower bounds are presented.

L em m a 6.4.3 Consider F  G CCS and V  C var(P). Let P  be the set o f partial assignments 
with var(,0) =  V. Then hd(P) < |Vj +  m ax^ep hd(-0 * P ).

P ro o f: Consider a partial assignment p> with * F  G U S AT", we have to show hd(<£> * F) < 
\V\ +  max.0 Gp hd(-0 * P ). Build a resolution refutation of (p * F  by first creating a splitting 
tree (possibly degenerated) on the variables of V; this splitting tree (a perfect binary tree) has 
height |Vj, and at each of its leaves we have a clause-set <p * (t/j * F) for some appropriate 
■0 G P. Thus at each leaf we can attach a splitting tree of Horton-Strahler number of hardness 
at most max^gp hd(0 * P ), and from th a t (via the well-known correspondence of splitting trees
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and resolution trees; see [104, 110] for details) we obtain a resolution tree fulfilling the desired 
hardness bound. □

We obtain an upper bound on the hardness of the union of two clause-sets:

C o ro lla ry  6.4.4 For F i ,F 2  G CCS holds hd(Fi U F2 ) < m ax(hd(Fi), hd(F2)) +  |var(Fi) n  
var(F2)|.

P ro o f: Apply Lemma 6.4.3 with F  := F\ U F 2 and V  := var(F i) fl var(F2), and apply the 
general upper bound hd(Fi U F 2) < m ax(hd(Fi), hd(F2)) for variable-disjoint F i ,F 2 (Lemma 15 
in [76]). □

Substitution of literals can not increase (w-)hardness:

L em m a 6.4.5 Consider a clause-set F  G U S A T  and (arbitrary) literals x, y. Denote by Fx<- y G 
U S A T  the result of replacing x  by y and x  by y in F , followed by removing clauses containing 
complementary literals. Then we have hd(Fx<_ y ) < hd(F) and whd(Fx<_y) < w hd(F).

P ro o f: Consider T  : F  b _L. It is a well-known fact (and a simple exercise), th a t the substitution 
of y into x  can be performed in T, obtaining Tx<̂ y : Fx^ y h ±. This is easiest to see by performing 
first the substitution with T  itself, obtaining a tree T ' which as a binary tree is identical to T, 
using “pseudo-clauses” with (possibly) complementary literals; the resolution rule for sets C, D  of 
literals with x  G C  and x  G D  allows to derive the clause (C'\{x})U(F)\{x}), where the resolution- 
variables are taken over from T. Now “tautological” clauses (containing complementary literals) 
can be cut off from T': from the root (labelled with _L) go to a first resolution step where 
the resolvent is non-tautological, while one of the parent clauses is tautological (note th a t not 
both parent clauses can be tautological) — the subtree with the tautological clause can now be 
cut off, obtaining a new pseudo-resolution tree where clauses only got (possibly) shorter (see 
Lemma 6.1, part 1 , in [110]). Repeating this process we obtain Tx^ y as required. Obviously 
hs(Tx<- y) < hs(T), and if in T  for every resolution step at least one of the parent clauses has 
length at most k for some fixed (otherwise arbitrary) fc G No, then this also holds for Tx^ y. □

E x am p le  6.4.6 The simplest example showing that for satisfiable clause-sets F  (w-)hardness 
can be increased by substitution is given by F  := {{x}, {y}} for  var(x) var(y). Here hd(F) =  0, 
while Fx^ y =  {{y}, {y}}, and thus hd(Fx<_y) =  1.

6.4.3 Translating two XOR-clauses
Now we are ready to determine the (high) hardness of the union of the (piecewise) translation 
of two XOR-clauses for a basic special case:

T h eo rem  6.4.7 For n G N and (different) variables v \ , . . .  ,v n consider the system

vi © v 2 © • • ■ © vn — 0  

vi ® V2  © • • • 0  v^  =  0,

that is, consider the XOR-clauses C\ { u i , . . . ,u n } and C 2 := { v \ , . .. ,v n- \ ,v f f} .  First we 
remark that Xq{{C\, C2 }) is the clause-set with all 2 n full clauses of { v i , . . .  ,v n }, and thus 
hd(Xo({Ci, C2}) =  whd(Xo({Ci, C2}) =  n. Now let Tn :=  X \({ C \, C 2 }) (recall Lemma 6 .4 -1 ). 
We have:
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1. n(Tn) — 2 • (2n — 2) — n =  3n — 4 /o r n > 2 .

2. c(Tn) =  8 n — 1 2  /o r  n > 2 .

3. £{Tn) =  24n -  40 for n >  2.

4. Tn e U S A T n 3 - C £ S .

5. hd (F) = n.

6 . For n >  3 holds whd(Tn) =  wid(Tn) =  3.

P ro o f: The (w-)hardness of X o({C \, C2 }) follows by Lemma 3.18 in [104]. Prom Corollary
6.4.4 and Lemma 6.4.1 we obtain hd(Tn) < n + 1. B etter is to apply Lemma 6.4.3 with V  := 
{r»2 , . . . ,  f n-i} - By definition we see th a t 0  * Tn G 2-C C S  (i.e., all clauses have length at 
most two) for 0  with var(0) =  V. By Lemma 19 in [76] we have hd(0  * Tn) <  2, and thus 
hd(Tn ) < (n — 2 ) +  2  =  n. The lower bound is obtained by an application of Lemma 3.3.7. 
Consider any literal x  e  lit(Tn ). Setting x  to  true or false results either in an equivalence or 
in an anti-equivalence. Propagating this (anti-)equivalence yields a clause-set T' isomorphic to 
Tn- 1 , where by Lemma 6.4.5 this propagation does not increase hardness, so we have hd((x —» 
1) * Tn) > hd(T ') = hd(Tn_ i). The argumentation can be trivially extended for n  G {0,1,2}, 
and so by Lemma 3.3.7 we get hd(Tn ) > n.

We now turn to the w-hardness. To show the upper bound, consider the closure Tn of Tn under 
2 -resolution. The binary clauses in Tn are exactly prc0 (yn- i  — x n A y'n_i =  x n ). The resolution 
of these binary clauses with ternary clauses in Tn allows the corresponding substitutions (yn - 1 =  
x n =  y'n- i )  t°  be made in (other) clauses containing those variables, but this does not introduce 
any further clauses of size < 2. Therefore, Tn contains only clauses of size > 2, so whd(Tn) >  3.

To show wid(Tn) < 3, we construct a resolution refutation as follows:

1 . From prc0 (yn_ i© x n =  0)Uprco( ^ _ 1 © 5^ =  0) (C X i(C ,D ))  we derive prc0 (yn_! =  y'n_ x) 
in Figure 6.1.

2 . For all i € N from

prc0(yi_i ® Xi = yi) U prc0(y'_1 © = y') U prc0(yi =  y')

we derive prc0 (y i-i =  y '_ x) in Figure 6.2. Hence by induction on n  from

I U  prc0(yi-i = yi) Uprc0(y'_! ®Xi = y') ) U prc0(y„-i = y;_!)

' --------------------------------------------------------------------------------------- v --------------------------------------------------------------------------------------- ' ------ ' --------------------------- V--------------------------- '

C  X l  ( C ,  D )  From steP 1

we derive prc0 (y2 =  y'2)-

3. Finally, from

prc0(xi 0 x 2 =  y2) U prc0(xi 0  x 2  =  y2 )U prc 0 (y2 =  y'2)
'-------------------------- --------------------------- ' '--------V--------'

C X i (C, D ) steP 2

we derive _L (see Figure 6.3).
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From

prc0(yn_ i  ®  x n =  0) =  { { y ^ \ , x n } , { y n- i , x ^ } }  

prc0 (yu-i = 0 ) = {{i4 _i,x^}, {j/n-i.®»}}.

v ia  2-resolu tion  we derive prc0(yn _ i  =  =  { { s / ^ T , {s/n-i,l/n-i}}:

{ y n - l , X n }  {l/n-H1"} {j/n-l.Xn} {l/n-li^n}
{ ^ T . y n - i }  { y n - i , y n - i }

Figure 6.1: Deriving prc0 (yn_i =  y^_x) from prc0 (yn_i =  x n )Uprc0(y'n_ 1 =  x n ) via 2-resolution

From

{{y^—i ? > y*}) {yi—11 Hi}, {yi— i ■> x^, Hi}i {yi—i ) Xi, y^}}v v *------— - - V V  ̂  ̂ ^
prc0(y^_i ©Xi =  yi)

prc0 (y^_i ©a^i =  y ’i )  =  { { y ' . ^ x ^ y ' j ^ y '^ x ^ y 'M y ' . ^ x ^ y '} ,  {y ' _ l5  x*,y'}}

we derive prc0(yi_i =  y '_x) =  {{y<_x, y*-i}, {y '_x, yi-i}}:

Figure 6.2: Deriving prc0(yi_x =  y'_x) from prc0(yi_x©Xi =  yi )Uprc0(y'_1 ©x* =  y')Uprc0(yi =  
y') via 3-resolution.
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From

{{*^ 11 *^2) V 2 {*^11 *^21 V2}) {*^1 j -^25 V2}i {'Eh %2i \)2} }  
v v v v v v v v

prc0 (a:i ® x 2  = y'2) =  {{xi, x 2, y^j, { x i,x 2, y'2 j ,  { x i ,x 2, y'2}, {xi, x2, y'2}}

we derive _L:

{ 1̂, ^2,2/2} A  {xi,x2,y'2}

Figure 6.3: Deriving _L from prc0(:ri © X2  =  y2) U prc0 (a:i © x 2 =  y£) u  Prco(y2 =  y'2 ) via 
3-resolution.

The number of clauses in this refutation (which uses only clauses of length at most 3) alto
gether is

1 . 8 n -  12 clauses from Tn .

2 . 2 clauses from the derivation of prc0 (yn_i =  y'n_i) (see Figure 6 .1 ).

3. (n — 3) • 10 clauses from (n — 3) induction steps (see Figure 6.2).

4. 1 1  clauses in the final refutation in step 3 (see Figure 6.3).

So in total, the resolution proof is of size 18n — 29. □

C o ro lla ry  6.4.8 The Tseitin translation, applied to a boolean circuit, has unbounded hardness 
in general, for the full form, as well as the reduced form, as can be seen by the circuit computing 
via binary XORs in two chains the two sums vi © • • • © vn and v\ © • • • © vn, and where the 
final circuit, computing the (single) output, is the equivalence of these two sums: The full Tseitin 
translation has hardness n by Theorem 6.4-7, and thus also the reduced Tseitin translation, which 
yields an (unsatisfiable) sub-clause-set, has hardness at least n.
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Chapter 7

Experim ents

In this chapter some experiments are performed on the use of the three different mechanisms for 
representing boolean functions /  studied in this thesis:

1 . clause-sets F  equivalent to /  with F  e  UCk where k is as low as feasible;

2 . the canonical translation ct(G) for a DNF-clause-set G equivalent to / ;

3. and the reduced canonical translation ct~(G).

The instances are described in Subsection 7.1, while the experimental results are discussed in 
Subsection 7.2. The focus is on gaining a better understanding of the interaction between solver 
behaviour and problem representation, and so we consider various representative complete SAT 
solvers. The tools for generating, running and analysing these experiments are available in the 
O K library (see [113]).

7.1 The instances
For our experiments we want to take a boolean function fk,h 3 5  a constraint in a bigger SAT 
problem Gk,h• The “optimal” equivalent representation Fkth of fk,h shall have hardness k , and 
fk,h should also have a small equivalent DNF, so th a t the canonical and reduced canonical 
translation are available.

For fk th we fake the boolean functions from Theorem 5.3.12, which have the short CNFs 
(without new variables) Fk,h :=  D(F 1 (Tk,h)) for & > 2 and h > k -1-1, where Tk,h £ HS(fc, h). So 
Fkth has hardness k, while every equivalent clause-set of hardness at most k — 1  contains at least 
b(m) := many clauses for m  := h — k.

For the “completion” to Gk,h let F'k h be the negation of Fk,h according to the remarks to 
Lemma 6.2.8, that is, Fk h is obtained from Fk,h by complementing the doping literals in each 
clause. Let F  := {C  : C  6  F}  for F  € CCS. Note th a t Fk h is the DNF for Fk,h- We define Glk h 
for i = 1,2,3 as always including Fk h, and additionally

F  Gl,h uses Fk,hi he., G \ h := Fk h U Fkth.

2. Gk h uses the canonical translation according to  Theorem 6.2.9 (and Lemma 6.2.8), i.e.,
G t , h := F ; ,h U c t(? £ 0 .
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3. Gk h uses the reduced canonical translation according to Lemma 6.3.3 (and Lemma 6.2.8),

i-e-> Gl h  -  FL h U ct~(FL,h)’

The sizes of the G \ h are determined as follows:

• By Lemma 5.3.9 we have c(Fk^ )  =  h), while n(Fk^ )  =  2c(Fk^ )  — 1  =  2 a(k , h) — 1 .

• The size of F'k h is precisely the same.

• So n(G \ h) =  2a{k,h) -  1 and c(G \ h) =  2a (k ,h ),  while £(G \ h) = 2£(Fk)h).

• n (Gl,h) = n (Gl,h ) =  h) ~ 1-

• c(Gl,h) =  1  +  Q( ^  and £{Gl,h) =  *0 +  3l(F k ĥ).

•  c(Gj>h) = 1  +  2 a(k, h) +  l(F k,h) and £ (G lh) = 2 a(k, h) +  4£(Fkth).

See Figure 7.1 for the numerical data. The lower bounds b(h — k) there for the number of clauses 
in any clause-set F  equivalent to Fk^  and with F  e WCk- i  show th a t these representations 
are infeasible here. As an amusing fact one can note here th a t the number of clauses in F  E 
WCo would be (precisely) 2 C — 1 , which even for the smallest example considered is a rather 
astronomical number. We can determine the hardness of the Glk h precisely; first an auxiliary 
lemma:

L em m a 7.1.1 For F  6  CCS and F ' € (c t(F ), c t_(F)} holds F u F '  e U S A T  andhd(F U  F ') <
2 .

P ro o f: Due to ct- (F) C ct(F ) w.l.o.g. F ' =  ct~(F), since UC2 F U S A T  is closed under formation 
of super-clause-sets by Lemma 6.7 in [78]. For all C G F  and x  E  C  the binary clause \ c tc  —> x  
is in F '.  Thus setting vctc  to 1 in F u F '  results in setting a: to 1 via ri, which altogether falsifies 
C  € F . Thus X2  applied to F  U F ' sets all vctc  to 0, which falsifies {vctc  : C  G F} G F'. □

We note th a t in the clause-set F  U F ' of Lemma 7.1.1, the additional clauses of F ' =  c t(F ) 
over F ' =  ct- (F) are subsumed by the clauses of F , and thus here the difference between these 
two translations is very small. We can now determine the (total) hardness of the unsatisfiable 
SAT problems Gk,h as follows:

L em m a 7.1.2 Consider k, h € N with k > 2 and h > k + 1. We have:

1 . hd {Gi b) = k + 1 .

2. hd ( G lh) =  hd(G | J  =  2.

P ro o f: hd(Gj[. h) — k + 1 follows from the fact, that by definition Gk h € SM.Us=  1 holds, where 
the corresponding tree T  := T x(Gj  ̂ •) has Horton-Strahler number k +  1 (recall Lemma 5.2.17): 
T  is obtained from the underlying Tkth by replacing each leaf with the full binary tree with 
three nodes. G \ h and Gk h have hardness at least 2 since they are unsatisfiable and contain no 
unit-clauses. The remaining assertions follow by Lemma 7.1.1. □
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7.2 Environment and solvers
For the experiments a 64-bit workstation with 32 GB RAM and Intel i5-2320 CPUs (6144 KB 
cache) running with 3 GHz was, where only a single CPU was employed. To emphasise again, 
the aim of these experiments was to obtain a qualitative picture of the behaviour of a range of 
contemporary SAT solvers, and not to  find out which solver is “fastest” . For the experimentation 
the following solvers1) were used, which give a good coverage of state of the art SAT solving and 
of the winners of recent SAT competitions and SAT races2):

•  Lookahead solvers (see [8 8 , 114] for the general concepts):

— OKsolver ([108]), a look-ahead solver with well-defined behaviour, no ad-hoc heuris
tics, and which applies complete T2  (at every node). This solver won gold at the SAT 
2 0 0 2  competition.

— s a tz  ([119]), a look-ahead solver which applies partial T2  and r 3 . In the OKlibrary 
version 215 is maintained, with improved/corrected in /ou tpu t and coding standard.

— march_pl ([87]), a look-ahead solver applying partial r2 , r3 , and resolution- and equivalence- 
preprocessing. march_pl contains the same underlying technology as its sibling solvers 
m arch _ { rw ,h i,k s ,d l, eq}, which won gold, silver and bronze at the 2004 to 2011 SAT 
competitions and SAT races. The p i  (partial lookahead) version is used here.

• Conflict-driven solvers (see [121] for an overview):

— Mini Sat family:

* M iniSat ([54,151]), version 2.2.0, the latest version of the well-established M iniSat 
solver, used as starting point for many new conflict-driven solvers. Previous ver
sions won gold at the SAT Race 2006 and 2008, as well as numerous bronze and 
silver awards a t the SAT competition 2007. This solver is used as a standard 
reference at recent SAT competitions and races, and is referenced extensively in 
the literature.

* CryptoM iniSat ([150, 149]), a M iniSat derivative designed specifically to tackle 
hard cryptographic problems. This solver won gold at SAT Race 2010 and gold 
and silver at the SAT competition 2011. Version 2.9.6 is used here.

* Glucose ([5]), a M iniSat derivative utilising a new clause scoring scheme and 
aggressive learnt-clause deletion. This solver won gold in both SAT 2011 compe
tition and SAT Challenge 2 0 1 2 . Versions 2.0 and 2.2 are used here.

— L ingeling family:

* PicoSAT ([18, 20]), a conflict-driven solver using an aggressive restart strategy, 
compact data-structures, and offering proof-trace options to allow for unsatisfi
ability checking. This solver won gold and silver at the SAT competition 2007.
The latest version 913 is used here.

* PrecoSAT ([19]), integrates the SATeLite preprocessor into PicoSAT, applying 
various reductions including partial r 2 at certain nodes in the search tree. This

1^all of them  are available, together with build tools and the generators, in the OKlibrary ([113], h ttp://w w w . 
o k - s a t - l ib r a r y . org)

2^The (parent) SAT competition homepage is at h ttp ://w w w .sa tco m p etitio n .o rg  with links to each individual 
com petition. Analyses of the SAT 2002-2004 competitions are available in [145, 14, 15]; analyses of the perfor
mance of SAT solvers on the random resp. industrial benchmarks can be found in [111, 163]; and benchmark and 
solver descriptions for the SAT com petition 2009 resp. SAT Challenge 2012 are available in [13, 9].
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solver won gold and silver at the SAT 2009 competition. The latest version 570 
is used here.

* L ingeling ([20, 21]), based on PrecoSAT, focuses further on integrating prepro
cessing and search, introducing new algorithms and data-structures to speed up 
these techniques and reduce memory footprint. As with PrecoSAT, this solver 
applies partial r2  at specially chosen nodes in the search tree. This solver won
bronze at the SAT 2011 competition and silver at the SAT Race 2010. The latest
version ala-b02aala-121013  is used here.

7.3 Look-ahead solvers
First we consider the OKsolver (see Figure 7.1 for the data  table and Figure 7.6 for the graph), 
as a look-ahead solver (see [8 8 , 114] for the general concepts), as well as a solver with a “clean” 
behaviour, due to the minimisation of the use of heuristical shortcuts. For example, the OKsolver 
seems to be the only SAT-solver computing r2 , while all other solvers (recall the discussion in 
Subsection 1.4) only test selected literals for failed literals. We see th a t the Gk h are far easier 

2 3than the Gk'h, although they require branching. Indeed, the straightforward heuristics choosing 
a variable occurring most often will find a backtracking tree of optimal, i.e., linear size (note
th a t all F  G SM U s= \ have exactly one variable occurring in every clause, and splitting on
this variable creates two variable-disjoint instances). In conformance with this, linear regression 
shows with high correlation th a t the instances Gk h are solved by the OKsolver in linear time,
1.e., 0(£). Considering now G ^ ,  recall that by Lemma 7.1.2 all these instances have hardness
2, that is, they can be solved without branching. And in fact the number of ^-reductions of 
the OKsolver for these instances is precisely c(Fk^) — 1, in accordance with Lemma 7.1.1. The 
worst-case running time for r2 is 0 (n 2  • £), but in this case going once through the list of all 
variables is sufficient to  find the contradiction. Again in conformance with this, linear regression 
shows with high correlation th a t the instances G ^ h are solved in time 0 (n  ■ £). We note here 
th a t the OKsolver is actually the fastest solver on these instances, for all three types, though 
this is not the focus of these experiments.

Other look-ahead solvers are not efficient on these instances:

• sa tz  (see Figure 7.2 for the data table and Figure 7.7 for the graph) shows th a t finding 
a short resolution refutation is not guaranteed, even on the easiest instances: on G \ 2 2 it 
needed 4.1 sec, and on G \ %2  already 6878 sec, while the number of nodes for G \ h in general 
is (precisely) 2 h~ 1 — 1 , thus showing a stable exponential behaviour.

• march_pl performed somewhat better, but was also not able to complete even the easier in
stances Gk h; furthermore it crashed on various instances, and was thus also not considered 
further.

7.4 Conflict-driven solvers
Now we turn to the conflict-driven solvers (see [121] for a general introduction), where we con
sider the M iniSat-family (see Figure 7.3 and Figure 7.4 for the data  tables and Figures 7.8, 
7.9, 7.10, 7.11, 7.12, 7.13 for graphs) and the L ingeling-fam ily (see Figure 7.5 for the data 
table and Figures 7.14, 7.15, and 7.16 for graphs). Considering Gk h, we note th a t M iniSat as 
well as PrecoSAT always solve these instances by preprocessing (i.e., no decision/branching, no
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conflicts). And actually  M in iS at -n o -p re  (w ithout preprocessing) solves these instances faster 
(by branching) th an  w ith preprocessing, as do the  G lu c o se  solvers. W hile PicoSAT, which also 
does not use preprocessing, is not much slower th an  PrecoSAT. W ith  the  largest instance G 5 3 5 , 
all solvers except of PrecoSAT have considerable difficulties, bu t all can handle it (only PicoSAT 
aborts, likely due to  a bug). T h a t OKsolver is much faster here we believe is due to  th e  fact, 
th a t in general look-ahead solvers should be b e tte r th an  conflict-driven solvers on unsatisfiable 
instances, where th e  shortest refutations are (close to) tree-like (and in th is case the tree-like 
refutation of F  E S A i U s = i  given by the  underlying tree T  1(F) is the shortest possible overall).

T urning to  G .̂'3h, we see th a t C ryp toM in iS at as well as PicoSAT solve the  easier instances 
w ith  failed-literal elim ination (w ithout branching). Most of the  tim e these instances are harder 
th an  the ir Gk h counterparts, and for k 6  {4,5} much more so, and actually  no solver here was 
able to  handle k =  5 w ith h =  35. There seems to  be no essential difference between G k h 
and Gk h (different from the OKsolver, whose running tim e was proportionally  larger for Gk h, 
according to  the bigger size).

7.5 Discussion
Unsatisfiable clause-sets Glk h have been presented, which have a fixed p a rt Fk h and a “con
s tra in t” Fk,h in th ree different representations, nam ely Fk,h itself for G k h , the  canonical tran s
lation for Gk h , and the  reduced canonical transla tion  for Gk h . I t is w orth considering a fourth 
“hidden” representation, nam ely some clause-set Fkh  equivalent to  Fk h w ith h d (Fk h) < k — 1 
and minimal c(Fk h ), yielding Gk h.

The first goal of these experiments was to show th a t Gkh  is a very bad problem representation, 
and this should be evident by inspecting Figure 7.1, where the numerical values for the lower 
bound c{Fk h ) >  b(h — k) are presented. On the other hand, Gk h is for all solvers except of 
satz a very easy instance. This shows that there are cases where to represent a boolean function 
/  by an equivalent clause-set F  of some hardness k, the value of k is decisive. Note th a t the 
criterion of “maintaining arc-consistency” here means to choose k — 1 , and thus the sequence 
G\ k demonstrates the infeasibility of arc-consistency without new variables (and th a t using just 
failed-literal reduction can solve the problem).

If the boolean function /  has a short circuit, then we can use the Tseitin translation, in the 
full or the reduced form, to obtain a short representation of / .  In Theorem 6.2.9 and in Lemma 
6.3.3 we have seen two situations, where starting from a DNF we obtain a representation in UC\. 
These two tools apply here, and we get G \ h and Gk h from them. The question arises which of 
the three representations Gk h for i e  {1,2,3} is best?

The experiments clearly show that here Gk h performs best, even in this special situation, 
where G2k \  have very special properties (namely they have hardness 2). It seems th a t there is a 
general pattern: If for a boolean function /  we have an equivalent CNF F  of bounded (“small” ) 
hardness, which is not much bigger than an equivalent DNF F ', then F  will perform better for 
SAT solving than the canonical translation (reduced or full) of F '.
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Instance statistics OKsolver statistics
k h i n c I a ( k ,  h ) b(h -  k ) t  (sec) nds T2
2 22 1 507 508 8604 254 1.8 ■ 10b 0.0 43 232

2 761 4811 17716 0.0 1 253
3 761 4557 13160 0.0 1 253

32 1 1057 1058 24994 529 1.6 • 109 0.0 63 497
2 1586 13556 51046 0.0 1 528
3 1586 13027 38020 0.0 1 528

42 1 1807 1808 54784 904 1.4 • 1012 0.0 83 862
2 2711 29201 111,376 0.1 1 903
3 2711 28297 83080 0.1 1 903

52 1 2757 2758 101,974 1379 1.3 • 1015 0.1 103 1327
2 4136 53746 206,706 0.4 1 1378
3 4136 52367 154,340 0.2 1 1378

62 1 3907 3908 170,564 1954 1.2 • 1018 0.2 123 1892
2 5861 89191 345,036 1.0 1 1953
3 5861 87237 257,800 0.5 1 1953

72 1 5257 5258 264,554 2629 1.1 ■ 1021 0.4 143 2557
2 7886 137,536 534,366 4.0 1 2628
3 7886 134,907 399,460 1.0 1 2628

3 23 1 4095 4096 80594 2048 1.8 ■ 10b 0.0 507 1794
2 6143 44394 165,284 0.2 1 2047
3 6143 42346 122,939 0.1 1 2047

33 1 12035 12036 327,384 6018 1.6 • 109 0.2 1057 5489
2 18053 175,729 666,804 4.8 1 6017
3 18053 169,711 497,094 1.6 1 6017

43 1 26575 26576 922,524 13288 1.4 • 1012 1.0 1807 12384
2 39863 487,839 1,871,624 82.6 1 13287
3 39863 474,551 1,397,074 28.9 1 13287

4 24 1 25901 25902 562,542 12951 1.8 • 10b 0.4 4095 10903
2 38852 307,174 1,150,986 15.4 1 12950
3 38852 294,223 856,764 4.5 1 12950

34 1 105,911 105,912 3,150,408 52,956 1.6 • 109 3.3 12035 46938
2 158,867 1,681,117 6,406,728 843.4 1 52955
3 158,867 1,628,161 4,778,568 410.8 1 52955

44 1 299,971 299,972 11,326,724 149,986 1.4 • 1012 16.5 26575 136,698
2 449,957 5,963,335 22,953,420 10233 1 149,985
3 449,957 5,813,349 17,140,072 5296 1 149,985

5 25 1 136,811 136,812 3,202,912 68406 1.8 • 10b 2.7 25901 55455
2 205,217 1,738,269 6,542,636 664.6 1 68405
3 205,217 1,669,863 4,872,774 348.7 1 68405

35 1 768,335 768,336 24,413,776 384,168 1.6 • 109 31.2 105,911 331,212
2 1,152,503 12,975,225 49,595,888 36743 1 384,167
3 1,152,503 12,591,057 37,004,832 20062 1 384,167

Figure 7.1: Instance statistics for Glk h, and solver statistics for the OKsolver with option “no- 
tree-pruning”, turning off the intelligent backtracking, which consumes too much memory for 
the larger instances, “nds” is the number of nodes of the backtracking tree, while “r 2 ” is the 
number of ^-reductions F  ^  r2 (ri((x  -> 1) * F)) in case of ri((x  —> 0) * F) =  {_L}.

124



s a tz
k h i t (sec) nds f 2

2 2 2 2 0 . 1 37 246
3 0 . 0

32 2 0.7 57 511
3 0.3

42 2 3.9 77 876
3 1 . 6

52 2 13.8 97 1341
3 5.7

62 2 37.7 117 1906
3 16.7

72 2 89.9 137 2571
3 39.5

3 23 2 7.8 381 2055
3 2 . 8

33 2 161.8 871 5890
3 66.9

43 2 1327 1561 12925
3 521.6

4 24 2 469.5 2701 13481
3 205.4

34 2 12957 9051 52896
3 5666

44 2 143,558 21401 147,436
3 60673

5 25 2 13420 15093 73399
3 5518

35 2 609,056 72913 392,371
3 250,076

Figure 7.2: Solver times for G\. h for s a tz
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MiniSat MiniSat -no-pre CryptoMiniSat
k h i t (sec) decisions confl t (sec) decisions confl t  (sec) decisions confl
2 22 1 0.0 0 0 0.0 10227 365 0.0 1832 20

2 0.0 1134 136 0.0 6706 416 0.0 0 0
3 0.0 1134 136 0.0 6706 416 0.0 0 0

32 1 0.0 0 0 0.0 36646 795 0.0 2165 25
2 0.0 12816 740 0.0 18301 905 0.0 0 0
3 0.0 12816 740 0.0 18301 905 0.0 0 0

42 1 0.1 0 0 0.0 133.105 1366 0.0 5798 53
2 0.2 29334 1529 0.1 32008 1563 0.0 0 0
3 0.1 29334 1529 0.1 32008 1563 0.0 0 0

52 1 0.2 0 0 0.0 206,925 1962 0.1 12291 50
2 0.6 65019 2778 0.2 79259 2496 0.0 0 0
3 0.6 65019 2778 0.2 79259 2496 0.0 0 0

62 1 0.5 0 0 0.1 482,733 2861 0.2 21874 55
2 1.1 129,523 3887 0.4 158,975 3697 0.1 0 0
3 1.0 129,523 3887 0.4 158,975 3697 0.1 0 0

72 1 1.1 0 0 0.1 533,500 3963 0.5 24866 56
2 2.7 165,596 5417 1.4 137,582 4981 0.1 0 0
3 2.4 165,596 5417 1.3 137,582 4981 0.1 0 0

3 23 1 0.2 0 0 0.1 726,328 3344 0.1 66885 349
2 0.1 34343 1276 0.5 87038 2719 0.1 0 0
3 0.1 34343 1276 0.5 84922 2683 0.1 0 0

33 1 2.1 0 0 0.6 6,024,786 10163 0.7 767,860 1426
2 15.0 245,555 8333 10.4 293,488 8213 0.4 0 0
3 14.8 244,410 8272 10.5 303,064 8217 0.4 0 0

43 1 14.6 0 0 3.3 30,413,289 23355 4.8 11,673,409 12547
2 132.5 886,834 20033 89.5 764,994 20101 1.0 0 0
3 134.7 837,910 19939 91.0 808,130 19817 1.2 0 0

4 24 1 5.5 0 0 3.4 26,310,775 23307 2.5 10,823,044 14335
2 10.1 351,753 10427 71.8 603,915 15761 1.1 0 0
3 9.9 351,468 10330 62.2 603,915 15761 1.4 0 0

34 1 149.5 0 0 62.2 510,575,547 88280 57.8 121,886,023 65608
2 6381 3,851,979 72123 5376 4,762,174 69651 706.2 1,080,246 30501
3 6894 4,265,009 70250 4749 4,762,174 69651 614.8 1,165,228 30500

44 1 2117 0 0 475.7 4,225,934,440 232,867 538.6 1,756,703,536 332,497
2 A17749 10,905,675 62092 A50777 16,691,952 192,830 34461 5,708,264 114,958
3 S A31985 14,856,654 155,899 34850 4,565,988 105,312

5 25 1 143.3 0 0 74.9 702,026,588 109,898 76.5 168,438,898 66235
2 3282 3,391,255 67344 4044 5,413,350 82751 1323 1,336,804 30561
3 3209 3,202,774 66739 4058 5,413,350 82751 1283 1,281,716 30500

35 1
2
3

11636
A90649
A60657

0
9,481,265
8,729,650

0
68589
52968

2633
S
A36000

30,154,061,700 608,180 4440
L
L

16,767,014,292 942,020

Figure 7.3: Solver times for Glk h for default M iniSat and M iniSat -n o -p re  (turning off pre
processing), and CryptoM iniSat. “S” marks a segmentation fault of the solver, “L” marks th a t 
the solver failed due to “too long clauses” , and “A” marks a user-abortion.
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G lucose-2 .0 G lu co se-2 .2 G lu cose-2 .2  -no-pre
k h i t (sec) decisions confl t (sec) decisions confl t (sec) decisions confl
2 22 1 0.0 11763 350 0.0 0 0 0.0 11763 350

2 0.0 6433 383 0.0 1338 117 0.0 4528 372
3 0.0 6442 400 0.0 1338 117 0.0 4525 372

32 1 0.0 27529 853 0.0 0 0 0.0 28632 828
2 0.0 19317 934 0.0 11854 821 0.0 14790 944
3 0.0 21288 929 0.0 11854 821 0.0 14790 944

42 1 0.0 113,533 1371 0.1 0 0 0.0 142,244 1337
2 0.1 32674 1594 0.3 45090 1815 0.1 27105 1581
3 0.1 32472 1544 0.3 37014 1810 0.1 27378 1586

52 1 0.0 204,314 2017 0.2 0 0 0.0 248,484 2098
2 0.2 44778 2694 0.5 67688 2780 0.2 69119 3149
3 0.2 44535 2588 0.4 70132 2855 0.2 69122 3153

62 1 0.1 256,891 3003 0.5 0 0 0.1 642,210 2869
2 0.5 79563 3786 1.0 113,817 4049 0.4 113,672 4127
3 0.5 79604 3800 1.0 113,369 4034 0.4 114,158 4072

72 1 0.2 1,200,842 3969 1.1 0 0 0.1 713,326 4134
2 1.0 152,734 6127 1.3 117,395 5428 0.8 212,232 5707
3 1.0 152,734 6127 1.3 117,395 5428 0.8 211,843 5751

3 23 1 0.1 293,599 3642 0.2 0 0 0.1 506,971 3175
2 0.4 50429 2601 0.1 31991 1203 0.5 85427 2681
3 0.4 50883 2626 0.1 32318 1203 0.5 73480 2711

33 1 0.5 2,573,291 9976 2.2 0 0 0.5 3,840,023 9642
2 19.0 310,569 8770 16.7 290,082 8357 7.6 280,477 8222
3 13.0 264,088 8633 16.4 317,545 8725 11.4 274,384 8333

43 1 2.5 12,387,073 21567 14.7 0 0 2.0 16,213,348 21837
2 98.7 834,345 22453 169.9 933,775 21365 102.6 997,026 21333
3 107.9 894,762 22331 180.3 824,482 20823 108.3 1,082,633 21424

4 24 1 3.0 13,739,340 23265 5.8 0 0 2.8 24,791,124 21260
2 93.4 746,936 16170 11.8 413,088 10756 75.2 815,951 16919
3 73.6 624,916 16463 12.5 433,902 10558 93.5 782,268 17800

34 1 73.1 404,205,131 92344 159.1 0 0 43.9 421,363,723 85660
2 5889 3,856,879 73007 9479 4,159,301 79382 6503 5,511,016 79964
3 5557 3,857,144 75795 7804 4,121,835 73212 5428 5,344,150 73399

44 1
2
3

539.0
A32100
A31080

3,658,524,320 287,335 1911
A90780
A68400

0 0 537.9
A90960
A104,100

5,428,781,274 269,273

5 25 1 102.2 731,691,363 129,523 152.1 0 0 115.8 899,226,706 118,088
2 12922 4,993,251 83431 4903 4,080,112 74150 9027 8,034,854 83562
3 11711 5,333,175 83959 3116 3,466,754 70752 9720 7,240,354 81337

35 1
2
3

4250
A40440
A32280

30,080,297,160 816,139 9959
A374,400
A77880

0 0 2729
A86460
A81300

30,938,594,432 700,202

Figure 7.4: Solver times for Glk h for default G lucose-2 .0 , G lucose-2 .2 , and G lucose-2 .2  
-n o -p re  (turning off pre-processing). “A” marks a user-abortion.
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L ingeling PrecoSAT PicoSAT
k h i t (sec) decisions confl t (sec) decisions confl t (sec) decisions confl
2 22 1 0.0 31414 100 0.0 0 1 0.0 5832 254

2 0.0 972 100 0.0 20 16 0.0 0 254
3 0.0 972 100 0.0 20 16 0.0 0 254

32 1 0.2 55014 100 0.0 0 1 0.0 21843 585
2 0.0 1593 100 0.1 18 20 0.0 0 529
3 0.0 1593 100 0.1 18 20 0.0 0 529

42 1 0.3 106,962 100 0.0 0 1 0.0 39980 964
2 0.0 2413 100 0.4 39798 560 0.0 0 904
3 0.0 2413 100 0.4 39798 560 0.0 0 904

52 1 0.5 195,342 100 0.1 0 1 0.0 87623 1411
2 0.1 3432 100 0.9 135,771 1438 0.1 0 1379
3 0.1 3432 100 1.0 135,771 1438 0.0 0 1379

62 1 2.1 2,908,253 1528 0.1 0 1 0.1 195,811 2023
2 1.4 9993 338 2.0 268,652 2398 0.1 0 1954
3 1.2 8754 343 2.2 268,652 2398 0.1 0 1954

72 1 3.8 5,780,521 2100 0.2 0 1 0.1 358,396 2689
2 3.4 41069 835 4.1 452,024 3493 0.2 0 2629
3 1.6 17563 745 4.4 452,024 3493 0.1 0 2629

3 23 1 0.9 772,664 655 0.0 0 1 0.1 373,029 2217
2 0.3 4730 100 0.9 21 17 0.1 0 2048
3 0.3 4730 100 0.9 21 17 0.1 0 2048

33 1 7.0 11,494,104 4470 0.2 0 1 0.4 1,832,220 6261
2 15.6 133,145 4822 8.8 9954 209 3.6 301,757 7808
3 34.8 187,408 4941 8.7 9954 209 3.8 397,594 7774

43 1 54.6 103,646,649 13585 1.1 0 1 1.5 6,710,296 13635
2 834.3 1,058,591 28616 53.9 2,137,226 17295 125.1 2,259,244 20567
3 683.6 920,917 29862 54.7 2,137,226 17295 125.2 2,378,109 20760

4 24 1 33.2 61,516,109 13324 0.5 0 1 1.3 7,197,271 13337
2 201.0 420,199 19113 30.4 87937 857 44.5 730,302 16283
3 411.0 813,880 20978 29.9 87937 857 53.5 899,721 16270

34 1 389.4 736,985,317 54187 9.2 0 1 15.9 77,852,480 54002
2 25004 4,431,011 103,069 751.9 37,282,690 64688 5110 4,952,348 73501
3 18593 5,206,665 119,524 735.8 37,282,690 64688 5822 6,354,378 73540

44 1 3139 5,980,879,353 152,934 94.2 0 1 135.7 524,180,945 152,931
2 A94270 7,284,838 72027 35356 1,035,463,259 410,510 M
3 A60882 7,688,765 71408 44808 1,035,463,259 410,510 M

5 25 1 479.6 903,741,154 70177 10.1 0 1 25.6 120,756,190 69336
2 37201 5,026,759 124,208 3636 31,539,722 31092 5523 4,436,819 83821
3 19148 3,958,185 117,605 3484 31,539,722 31092 6540 5,328,658 83829

35 1
2
3

14845
A687,866
A94779

28,147,090,014
11,495,987
6,939,217

392,047
39217
30146

389.0
F49440
F49527

0 1 F478.5
M
M

Figure 7.5: Solver times for Glk h for L ingeling , PrecoSAT, and PicoSAT. “M” marks a failure 
of the solver due to “out of memory” , “F” marks a self-declared failure of the solver, and “A” 
marks a user-abortion.
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k = 2 k = 3

3 0 5 0 e o 3 53 0

3 0 3 5

Figure 7.6: Solver tim es of Height (i.e., h)  vs Tim e (i.e., f, in seconds) for OKsolver w ith option 
“no-tree-pruning'1. The lines for i — 1, 2 and 3 are coloured green, blue and red respectively. 
See Figure 7.1 for the  full details.

k = 2

S

5 0 6 0H O 3 0 3 5

3 0 3 5 3 0 3 22 6

Figure 7.7: Solver tim es of Height (i.e., h) vs Tim e (i.e., t, in seconds) for S a tz . The lines for
i — 2 and 3 are coloured blue and red respectively; i — 1 is missing as explained in Section 7.3.
See Figure 7.2 for the  full details.
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k = 2 k = 3

20 3 0 5 0 6 0

i

3 0 3 5

s

s

3 0 3 5 3 02 8

Figure 7.8: Solver tim es of Height (i.e., h)  vs Tim e (i.e., t , in seconds) for M iniS at. The lines for 
? =  1 .2  and 3 are coloured green, blue and red respectively. See Figure 7.3 for the  full details.

5 020 3 0 8 0

3

3 0  3 5

H e i g h t

3 5

H e i g h t

2 6 3 0 3 2

Figure 7.9: Solver tim es of Height (i.e.. h) vs Tim e (i.e., f, in seconds) for M in iS at -n o -p re
(turning off pre-processing). The lines for i — 1, 2 and 3 are coloured green, blue and red
respectively. See Figure 7.3 for the  full details.
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k = 2

H e i g h t

6 0  VO 3 0 3 5

3 0 3 5

Figure 7.10: Solver tim es of Height (i.e., h ) vs Time (i.e., t,  in seconds) for C ryp toM in iS at. The 
lines for i — 1 ,2  and 3 are coloured green, blue and red respectively; no te  th a t d a ta  is missing 
for k  =  5 as there is only a single value for i =  2 and ? -- 3. See Figure 7.3 for the  full details.

3 0 3 0 5 0 e o 3 53 0

k = 5

3 52 5 3 0 2 G 3 0

Figure 7.11: Solver tim es of Height (i.e.. h) vs Time (i.e., f, in seconds) for G lu c o se -2 .0 . The
lines for i = 1 .2  and 3 are coloured green, blue and red respectively. See Figure 7.4 for the full
details.
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k = 2 k = 3

20 5 03 0 6 0 3 0 3 5

3 52 5 3 0

M

2 6 2 6 3 0 3 2

Figure 7.12: Solver times of Height (i.e., h)  vs Tim e (i.e., f, in seconds) for G lu c o se -2 .2 . The 
lines for i =  1, 2 and 3 are coloured green, blue and red respectively. See Figure 7.4 for the  full 
details.

20 3 0 5 0 6 0

S

3 53 0

<3*
£1=

3 0 3 5 3 0 3 22 6

Figure 7.13: Solver times of Height (i.e., h ) vs Tim e (i.e., t. in seconds) for G lu c o se -2 .2 -n o -p re .
The lines for i = 1 ,2  and 3 are coloured green, blue and red respectively. See Figure 7.4 for the
full details.
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k = 2 k = 3

3 0 5 020 6 0 3 0 3 5 4 0

ss

3 0 3 5

g o t

Figure 7.14: Solver tim es of Height (i.e., h ) vs Time (i.e., t, in seconds) for L in g e lin g . The 
lines for i =  1, 2 and 3 are coloured green, blue and red respectively. See Figure 7.5 for the  full 
details.

20 3 0 5 0 6 0 3 0 3 5

3 0 3 5

k S

3 0

e i g h t

Figure 7.15: Solver tim es of Height (i.e., h) vs Tim e (i.e.. t. in seconds) for PrecoSA T . The lines
for i =  1. 2 and 3 are coloured green, blue and red respectively. See Figure 7.5 for the full details.
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k = 2 k = 3

§
20 3 0 5 0 6 0 2 5 3 0 3 5

k = 4

3 0 3 5

H e i g h t

Figure 7.10: Solver tim es of Height (i.e., h ) vs Tim e (i.e., £, in seconds) for PicoSAT. The lines 
for i =  1 ,2  and 3 are coloured green, blue and red respectively; note th a t  d a ta  is missing for 
k  =  5 as there is only a single value for i =  2 and i — 3. See Figure 7.5 for the  full details.
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Chapter 8

Conclusion and outlook

This thesis has brought together two streams of research, one started by [51] in 1994, introducing 
UC for knowledge compilation, and one started by [141] in 1995, introducing SCUV, for polytime 
SAT decision. Two natural generalisations, UCk and SCUlZk have been provided, and the 
(actually surprising) identity SCUTZk =  UCk provides both sides of the equation with additional 
tools. Various basic lemmas and theorems have been shown, providing a framework for elegant 
and powerful proofs. Regarding computational problems, the most basic questions have been 
answered.

Deriving from UCk, three hierarchies VCk, UCk and WCk of target classes for knowledge 
compilation and “good” SAT representations have been introduced and discussed. It has been 
shown that each level of UCk+i contains clause-sets without equivalent short clause-sets in WCk- 
When using new variables, conditions were shown under which the Tseitin translation produces 
translations in UC, while in general there are sequences of boolean circuits for which the Tseitin 
translation has unbounded hardness. Finally, in Chapter 7, experimental results were provided 
demonstrating both that modern SAT solvers can “handle” higher hardness (in certain cases) 
while polynomially larger representations in UC\ perform dem onstratably worse. To conclude, 
future directions, conjectures and open questions are considered.

8.1 Strictness of hierarchies
A fundamental question is the strictness of the hierarchies VCk, UCk and WCk in each of the 
dimensions (with and without new variables; under the relative vs absolute condition). In Theo
rem 5.3.13 in Chapter 5 it was shown w.r.t. logical equivalence (i.e., w ithout new variables) th a t 
the UCk and WCk hierarchies are strict (as representation hierarchies). It follows th a t for VCk 
at least every second level yields an advance regarding logical equivalence (and polysize), i.e., 
tha t VCk+ 2  can be exponentially more succinct than VCk■ These strictness results offer evidence 
that the UCk^VCk and WCk hierarchies are useful, for example using failed literal reduction can 
allow one to use exponentially smaller SAT or knowledge compilation translations. Open are 
the questions of strictness for the hierarchies allowing new variables. To summarise, the main 
conjectures are:

1. Conjecture 5.3.15 strengthens Theorem 5.3.13 by taking the PC-hierarchy into account 
(i.e., conjecturing th a t VCk+i can be exponentially more succinct than  VCk)-

2. Conjecture 6.1.3 (roughly) says th a t all of VCk, UCk aad WCk are strict (similar to Theorem 
5.3.13), when allowing new variables under the absolute condition.
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3. Conjecture 6.1.7 says th a t the WCk hierarchy collapses to W C\ (and thus to VC i), when 
allowing new variables under the relative condition.

Considered together, under the relative condition only the levels VCq C UCq C VC\ are strict 
regarding polysize representations, where the two classes VCo C UCq do not gain anything from 
the new variables, while everything of VCk, UCk and WCk for k > 1 can be reduced (in polytime, 
with exponent depending on k) to VC\ =  VC. And VC under the relative condition is the same 
as the well-known condition of “arc consistency” for SAT translation. A major result of this 
thesis, th a t VCk, UCk and WCk for the absolute condition and without new variables do not 
collapse, shows that a rich structure was hidden under the carpet of the relative condition aka 
arc consistency. A basic difference between the relative and absolute condition is th a t under the 
relative condition the new variables can be used to perform certain “computations” , since there 
are no conditions on the new variable other than not to distort the satisfying assignments, and 
it should be possible to use this to show the collapse to arc consistency, by encoding the stronger 
condition into the clause-sets in such a way th a t UCP can perform the “computations” . The 
various strictness results and conjectures are summarised in Figure 8.1.

W ith o u t new  v ariab les W ith  new  v a riab le s
re la tiv e ab so lu te

UCk

v c k

WCk

Strict 
(Theorem 5.3.13)

Strict? 
(Conjecture 5.3.15)

Strict 
(Theorem 5.3.13)

Collapses? 
(Conjectures 6.1.6 and 6.1.7)

Strict? 
(Conjecture 6.1.3)

Figure 8.1: Summary of strictness results and conjectures for the UCk, VCk and WCk hierar
chies. Strict here means that there exists a sequence of clause-sets (Fn ) n e ^ 0 all in UCk+i resp. 
VCk+i resp. WCk+i such that all representations (with resp. without new variables) (F^ ) n e ^ 0  

of (Fn)neNo all in UCk resp. VCk resp. WCk are of super-polynomial size, while otherwise the 
relevant hierarchy collapses.

8.1.1 Separating the different hierarchies
For stating the three main conjectures relating the three hierarchies, the following notions are 
used:

•  A sequence (F^)ne^ is called a CNF-representation of (i?n)neN if for all n  € N the clause-set 
F'fn is a CNF-representation of Fn .

• A po lysize sequence in  C C CCS is a sequence (Fn)neN with Fn e  C for all n  e  N, such 
th a t (£(Fn))nen is polynomially bounded (i.e., there is a polynomial p (x ) with t(F n) < p(n ) 
for all n € N).

It is conjectured that WC 2 , even without new variables, offers possibilities for good represen
tations not offered by any UCk:

C o n je c tu re  8 .1 . 1  There exists a polysize (Fn )n in W C 2 , such that for no k e No there exists 
a poly size CNF-representation (FffjneN of (Fn)n£N inUCk-
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A proof of Conjecture 8.1.1 needed, besides the new handling of the new variables, to develop 
lower-bounds methods specifically for hardness, since the method via trigger hypergraphs yields 
already lower bounds for w-hardness.

It is conjectured th a t new variables can not simulate higher hardness, strengthening Theorem 
5.3.13, Conjecture 5.3.15 and Conjecture 6.1.3:

C onjecture 8.1.2 For every k G No there exists a polysize (Fn )n in PCk+i, such that there 
is no polysize CNF-representation (F^)nGN of (Fn)ne^ in WCk-

Finally it is conjectured that there is a sequence of boolean functions which has polysize 
arc-consistent representations, but no polysize representations of bounded hardness, even for the 
w-hardness:

C onjecture 8.1.3 There exists a polysize (Fn)nG^ in CCS, such that there is a polysize CNF- 
representation of (Fn)n£?$ with hdvar F̂n\F ^ )  <  1  for all n  G N, while for no k E No
there is a polysize CNF-representation (F ”)ne^ o /(F n)nGN in WCk-

Regarding the notion of a “polysize sequence” (Fn)nGN> this is a very liberal notion, allowing to 
express arbitrary boolean functions, since the number of variables could be logarithmic in the 
index, and thus Fn could contain exponentially many clauses in the number of variables. The 
sequence of Theorem 5.3.13 also fulfils n(Fn) = Q(n), and making this provision one could speak 
of “simple” boolean functions, however this would complicate the formulations of the conjectures, 
and so was avoided.

The considerations on hierarchies are concluded by considering the three hierarchies SjCUTZ(k) 
introduced in [159], SCU7Z*(k) introduced in [36], and CANON(fc) introduced in [10], which were 
compared to the UC-hierarchy in Chapter 4. From the point of view of polysize representations 
without new variables, the hierarchy CANON(fc) collapses to CANON(O) =  UCq\

Lem m a 8.1 .4  For F  €E CCS let k(F) be the minimal k € No such that F  € CANON(fc). Then 
the function  prc0  : CCS —» CANON(O) =  U C q can be computed in  time 0 (c (F ) 3 ' 2 • £{F)), when 
the input is F  together with k := k(F).

Proof: Let K  := 2 k. So for every C  € prc0 (F) there exists F 'C F  with F ' |= C  and c(F ') < K , 
since a resolution tree of height k has at most K  leaves. Now we compute prc0 (F ) as follows:

1 . Set P  := 0.

2. Run through all F 'C F  with c(F ') <  K; their number is 0 (c (F )K ).

3. For each F ' determine whether F ' |= puc(F') holds, in which case clause puc(F ') is added 
to F ; note that the test can be performed in time 0 ( 2 K ■ K ).

4. The final P  obtained has 0 (c (F )K ) many elements. After performing subsumption elimi
nation (in cubic time) we obtain prc0 (F) (by Lemma 5.1.7). □

It seems an interesting question whether the two other hierarchies SCUTZ(k), SCU7Z*(k) collapse 
or not, and whether they can be reduced to some UCk-
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8.2 Hard boolean functions handled by oracles
As mentioned in Section 6 .1 , generalising [17], it should be possible to show that there are 
boolean functions such as the satisfiable pigeonhole formulas PHP™ which do not have polysize 
representations of bounded hardness even for the relative condition. One way to overcome this 
barrier is to generalise the theory started here via the use of oracles as in [104, 110] (recall 
Subsection 4.3.2), and then employing oracles which can handle pigeonhole formulas. The basic 
definitions are as follows.

D efin ition  8 .2 . 1  A valid  oracle for generalised unit-clause propagation is some U C U S A T  
with {_L} G U which is stable under application of partial assignments. The oracle is s tro n g  if  
hio c  U, where Uq := {F  G CCS : _L G F}.

Consider k G N0. In [104] the reduction r^ : CCS —> CCS has been defined. An equivalent 
definition (generalising Definition 3.1.1) is as follows for F  G CCS:

' (F) : =
if  F  e U  
otherwise

M (F s .=  J rfc+i((; r -^ !> * F ) i / 3 x G l i t ( F ) : r “ ( ( : r -> 0 )* F )  =  {.L}
fc+ 1  | F  otherwise

Note rfc =  r^°. Generalising Definitions 3.3.1, 3.4.1:

D efin ition  8.2.2 Consider a valid oracle U. The hardness h d u ( F )  G No ( “hardness with 
oracle U ”) of an unsatisfiable F  G CCS is the minimal k G No such that r ( F )  =  {_L}. And for  
general F  G CCS we define hd^(T ) := 0, while for F  /  T let

hd u(F)  := max{hd^(c£ * F) : ip G P ASS  A ip * F  £ U S A T }  G No.

We have hd =  hd^0, and if U is strong then for all F  holds hd^(F ) <  hd(F ). An interesting 
oracle U (with polytime membership decision) is given by the class of unsatisfiable clause-sets 
defined in [49] via semidefinite programming, for which we get hd£/(PHP™) =  0.

An important aspect of the theory to be developed must be the usefulness of the representation 
(with oracles) in context, that is, as a “constraint” in a bigger problem: a boolean function /  
represented by a clause-set F  is typically contained in F ' D F , where F ' is the SAT problem to 
be solved (containing also other constraints). One approach is to require from the oracle also 
stability under addition of clauses, as we have it already for the resolution-based reductions like r^, 
so that the (relativised) reductions r*f can always run on the whole clause-set (an instantiation 
of F '). However for example for the semidefinite programming oracle mentioned above, this 
would be prohibitively expensive. And for some oracles, like detection of minimally unsatisfiable 
clause-sets of a given deficiency, the problems would turn  from polytime to  NP-hard in this way 
([60, 32]). Furthermore, th a t we have some representation does not mean th a t in other parts
of the problems also th a t oracle will be of help. So in many cases it is better to restrict the
application of the oracle U to the subset F  C  F ', where to  achieve the desired hardness the 
oracle is required.

8.3 Exploring (t-,w-)hardness
In [104] the notions of hardness and w-hardness for unsatisfiable clause-sets were extensively 
explored, along with their relations to tree- and full-resolution complexity. However, there remain
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both open questions regarding the new generalisation to satisfiable clause-sets (hd from Definition 
3.4.1) and also new questions raised for unsatisfiable clause-sets related to more recent results.

8.3.1 Exploring hardness
Regarding the underlying hardness notions discussed in Chapter 3, two directions of future 
research are further charactisations of hardness and the placement of the UCk hierarchy in the 
landscape of all CNF clause-sets. In particular, the following are two possibilities for future 
research:

1. In Lemma 3.3.2 we saw that for unsatisfiable clause-sets F  G CCS th a t hd(F ) is the 
optimal value for the Pudlak-Impagliazzo game from [133]. Can this characterisation be 
extended to give a game-theoretic characterisation of hardness (from Definition 3.4.1) for 
all clause-sets?

2. In [62] a probabilistic argument is used to estimate the proportion of fc-CNF clause-sets th a t 
are in SCUTZ and other simple poly-time SAT classes. A next step in this direction would 
be to try to generalise these results to UCk (=  SCUlZk) to estimate how the proportion of 
CCS th a t UCk makes up grows in k (tending towards 1 as A; tends to oo - recall UfceN0 UCk =  
CCS).

8.3.2 Exploring w-hardness
It is to be expected th a t w-hardness can behave very differently from hardness. For example, 
as expressed by Conjecture 8 .1 .1 , already its second level should contain short clause-sets not 
representable in any UCk• However yet we do not have tools at hand to handle w-hardness (we 
do not even have yet a conjectured example for such a separation). A first task is to investigate 
which of the results on hardness from this thesis and from [78] can be adapted to w-hardness.

Can the classes WCk go beyond monotone circuits, which were shown in [17] to be strongly 
related to the expressive power of arc-consistent CNF representations (see Section 8 . 2  for some 
further remarks)? Conjecture 6.1.7 would show the contrary, namely th a t in the (unrestricted) 
presence of new variables also w-hardness boils down, modulo polytime computations, to VC\ 
(under the relative condition!). If this is true, then the believable greater power of WCk over UCk 
would all take place inside arc-consistency; and by Conjecture 8.1.3 it would take place strictly 
inside arc-consistency.

8.4 A theory of “good” SAT representations
The main future application, which brings the WC-perspective and the <S£ZV7?,-perspective to
gether, is in the area of “good SAT representations” . This thesis considers the approach of 
representing a boolean function /  via a clause-set F  G UCk as the first beginning of what is 
envisaged as a theory of good SAT representations. The main open questions here and future 
directions for research are now enumerated.

1 . Full constraint translation: Throughout this thesis the focus has been on representing 
boolean functions. However, in general, when translating to SAT one typically follows a 
more “full” process:

Problem  ---------- >• C onstrain ts ----------> Boolean functions  > SAT.
M o d e ll in g  E n c o d in g  T r a n s l a t i o n

' ---------------------------------------------------------------v --------------------------------------------------------------- '

focus of th is  thesis

139



As mentioned in Section 2 . 8  of Chapter 2, the current main methodology for deriving 
“good” SAT translations is to attack the problem from the constraint perspective - trying 
to derive SAT translations which maintain certain forms of consistency in the original 
constraint network via mechanisms such as unit-clause propagation in the SAT solver.

In light of the UCk,VCk and WCk hierarchies, another possibility is to consider the trans
lation from the SAT perspective, relying on these “target-classes” for guarantees on solver 
performance, rather than on consistency notions at the higher level. Interesting future 
directions are:

(a) E ncoding vs translation: The focus in this thesis on translation of boolean func
tions to CNF is both conceptually simpler than the constraint to CNF translation, 
useful on its own in a variety of cases, and useful as the translation component of the 
above SAT translation process. In future, it would be interesting to look both purely 
at the encoding part of SAT translation, i.e., assuming an ideal translation and asking 
when different encodings (i.e., direct, log, order etc) can maintain different types of 
constraint consistency, and also for fixed encodings, what are the best translations.

(b) Unions: Proven in [65], it is a well-known fact in the constraint community that 
maintaining arc-consistency on acyclic binary constraint networks enforces satisfia
bility (i.e., if the network is inconsistent the maintenance procedure will produce an 
empty domain for some constraint). From the SAT perspective, instead if one has 
clause-sets Fq, . . . ,  Fm e VCk (for k E No) with an acyclic variable interaction hyper
graph (nodes are variables, hyperedges are var(Fj) for all i € { 1 , . . . ,  m}) then in the 
same way one should have U m 'efi m} £ VCk■ This would then provide another 
method for upper-bounding the p-hardness of SAT instances and constructing (in a 
tree-like manner) p-soft representations. Of particular interest would be to consider 
additional constraints one could place on the variable-interaction hypergraph to al
low only a constant or bounded increase in (p-)hardness, for example bounds on the 
tree-width and restrictions on the type of constraint.

2. A  database o f constraint exam ples: In Chapter 6  it is shown th a t a reduced version of 
Tseitin translation applied to DNF clause-sets yield CNF representations in UC. The next 
step would be to reconsider all literature on “good” SAT representations (e.g., cardinality 
constraint translations from [147, 7], pseudo-boolean constraints in [55, 8 ], translations of 
arbitrary smooth DNNFs from [98] etc), particularly those representations which maintain 
arc-consistency via UCP and determine

(a) whether the translations map into UC, VC or WC;

(b) whether they map into these classes via the relative or absolute condition;

(c) if not (for either condition), under what restrictions do they map to these classes;

(d) does climbing the UCk, VCk and the WCk hierarchy allow generalisations of these 
constraints to be represented (particularly for example in the pseudo-boolean and 
DNNF cases)?

3. H euristical guidelines for “g ood ” representations: In Chapter 7 we saw evidence 
th a t for certain types of clause-set there is a size vs hardness trade-off for SAT solver 
performance. That is, it is not the case th a t translating a SAT problem to CNF by 
translating each constraint to  UC\ will always be better than translating to  UC2 or UC3 

etc. Finding the “best SAT representation” is a very multidimensional process - one must 
(at least) optimise the hardness and the size, as well as higher level interactions between
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constraints. A focus in future practical and empirical SAT research on applying a large 
variety of techniques (including hardness measures) and reporting on the successes, as well 
as the failures, would help to form a corpus of good heuristics for SAT translations.

8.5 Compilation procedures
For a given boolean function /  and k G No, how do we find algorithmically a “small” equivalent 
F  G UCk ? In Chapter 4 the notion of a uk-base for / ” is introduced, which is an F  G UCk 
equivalent to / ,  with F  C prc0( /)  and where no clause can be removed without increasing the 
hardness or destroying equivalence. It is shown that if /  is given as a 2-CNF, then a smallest 
k-base is computable in polynomial time, but even for /  with given prc0( /) ,  where prc0( / )  is 
a Horn clause-set, deciding whether a fc-base of a described size for a fixed k > 1 exists is 
NP-complete.

There are interesting applications where prc0( /)  is given (or can be computed), and where 
then some small equivalent F  £ UCk is sought. The most basic approach filters out unneeded 
prime implicates; see [75, 74] for some initial applications to  cryptanalysis. A simple filtering 
heuristic, used in [75, 74], is to favour (keeping) short-clauses. In a first phase, starting with the 
necessary elements of prc0( /) , further elements are added (when needed) in ascending order of 
size for building up the initial F  G UCk (which in general is not a base). In the second phase, 
clauses from F  are removed in descending order of size when reducing to a k-base. The intuition 
behind this heuristic is th a t small clauses cover more total assignments (so fewer are needed), and 
they are also more likely to trigger r^, making them more useful in producing small, powerful 
representations. Essentially the same heuristic is considered in [26] (called “length-increasing 
iterative empowerment”) when generating representations in VC.

For the case that /  is given by a CNF Fo, in [51] one finds refinements of the resolution 
procedure applied to Fo, which would normally compute prc0( /) ,  i.e., the 0-base in UC0, and 
where by some form of “compression” now an equivalent F  G UC\ is computed. This approach 
needed to be generalised to arbitrary UCk• Another approach would also be to consider compu
tations of prime implicate sets and fc-bases implicitly, using implicit representations via BDD-like 
structures such as in [40].

8.6 Translating the Schaefer classes
To conclude some remarks are made on the four main classes from Schaefer’s dichotomy result 
(see Section 12.2 in [45] for an introduction, and see [43] for an in-depth overview on recent 
developments). The point of view here is that we consider a boolean function /  which is either 
Horn, dual Horn, bijunctive or affine, and we ask for a good representation F  G CCS of / :

•  If /  is Horn or dual Horn, then there is a (dual) Horn clause-set F  equivalent to  / ,  and 
by Part 4 of Lemma 4.3.2 we have hd(F) < 1 .  So obtaining a representation F  G UC is 
trivial; however optimising the size of F  is NP-complete (see Theorem 4.5.5).

• If /  is bijunctive, then there is a 2-CNF F  equivalent to / ,  and by P art 3 of Lemma 4.3.2 
we have hd(F) < 2. Moreover, by Theorem 4.5.4 we can reduce the hardness to 0 or 1 (as 
we wish) in polynomial time, and that by optimal (shortest) such F .

• If /  is affine, th a t is, /  is the conjunction of m  linear equations x \  ® • • • @xp =  0 over {0,1} 
viewed as a 2 -element field, with addition © as exclusive-or, then the situation regarding 
the existence of a representation of bounded hardness is not fully understood yet:
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1. If m  — 1, then there is precisely one CNF-representation of /  without new variables, 
containing 2P _ 1  clauses and being (trivially) of hardness 0. So without new variables 
we have a polysize representation of bounded hardness iff p is bounded.

2. While when allowing new variables, then for m  =  1 there is a representation F  G UC, 
as is shown in Lemma 6.4.1 of Chapter 6 .

3. For arbitrary m  there is definitely no small representation without new variables when 
the clause-length p is unbounded. When bounding p, or when allowing new variables, 
then the existence of a polysize F  G UCk for some fixed k seems to be an interesting 
open problem; for some partial results see [118]. Perhaps no polysize representations 
F  G UC exist, even for the “relative condition” , where propagation-conditions are 
posed only for the variables in the XOR-clauses; see again [17] for general tools for 
such lower bounds, and see Chapter 5 and Chapter 6  for more discussions.
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