

 Swansea University E-Theses ___

Interactive theorem proving and program extraction.

Hou, Tie

 How to cite: ___
Hou, Tie (2014) Interactive theorem proving and program extraction.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42845

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42845
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Interactive Theorem Proving and
Program Extraction

Tie Hou

Submitted to Swansea University in fulfilment
of the requirements for the Degree o f Doctor o f Philosophy

Swansea University
Prifysgol Abertawe

Department of Computer Science
Swansea University

2014

ProQuest Number: 10821235

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821235

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration
This work has not been previously accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed (candidate)

Date ^ 8 l oSl^ l%

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

Signed (candidate)

Date

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed (candidate)

Date r̂ i

Abstract

Nowadays more and more people are relying heavily on software and software con
trolled system. The failure of some software may result in serious consequences such
as significant financial losses or substantial environmental damages. The methods for
improving the reliability of software can be viewed as either based on traditional tech
niques that from programs to give proofs, or on automatic techniques that from proofs
to generate programs.

In this dissertation, we are concerned with developing theories of program extrac
tions from proofs via realisability in order to obtain better extracted programs from
interactive theorem provers.

Firstly, we study the domain-theoretic semantics of a Church-style typed A-calculus
with constructors, pattern matching and recursion, and show that it is closely related to
the semantics of its untyped counterpart. When extracting programs from proofs via
realisability, one has the choice of extracting typed or untyped terms from proofs. Our
result shows that under a certain regularity condition, the choice is irrelevant.

Secondly, we propose a realisability interpretation of an intuitionistic version of
Church’s Simple Theory of Types (CST) which can be viewed as a formalisation of
intuitionistic higher-order logic. In this way, important syntactic properties of real
isability (e.g. being well-behaved w.r.t. substitution) can be proven elegantly on an
abstract lambda-calculus level. Our interpretation introduces a direct realisability of
monotone induction and coinduction.

Thirdly, we develop a prototype interactive theorem prover in Haskell to demon
strate the usefulness of the theory described previously. In this prototype, motivated by
the desire to facilitate the implementation of interactive proof systems with rich sets of
proof rules, we implement a uniform system of rule schemata to generate proof rules
for different styles of logical calculi.

v

Acknowledgements

First, I am most indebted to my supervisor, Ulrich Berger, for his valuable guidance,
unselfish commitment of time, continuous support and encouragement throughout my
study. He has been remarkably patient and a constant source of inspiration. Just know
ing that I could go to him for help, about any matter whatsoever, was a great source
of reassurance for me. He also provided a very nice research environment with good
connections around the world. I hope that one day I will become as prolific and inspir
ing a supervisor as he is. Second, I would like to thank Arnold Beckmann for being
my second supervisor. His concern, interest and support have been invaluable.

Furthermore, I am grateful to my examiners, Marcelo Fiore and Anton Setzer, for
their detailed high-quality comments and the interesting and stimulating discussions.
I would also like to thank Hajime Ishihara from Japan Advanced Institute of Science
and Technology and Hideki Tsuiki from Kyoto University for inviting me to visit their
research groups in Japan where most of this work has been built up.

I also take this opportunity to thank all the academic and non-academic staff of
the Computer Science Department at Swansea University for providing an excellent
working environment. In particular, I would like to thank all the staff members and
research students of the Theoretical Computer Science group at Swansea University
for the friendly atmosphere and good discussions. The MRes/PhD seminars have been
a valuable experience and I am grateful for their wonderful talks and challenging ques
tions. I would like to say a special thanks to Monika Seisenberger for her kindness and
support.

I owe many thanks to my friends that always give full attention to me to solve my
problems and put up with my moods.

Last but not least, I am deeply grateful to my father for his love, understanding and
support throughout all my life. I owe him what I am today.

Table of Contents

1 Introduction 1
1.1 Motivation.. 1
1.2 Main Contributions... 5
1.3 Overview of the Dissertation.. 6

2 Domain-theoretic Semantics of a Language of Realisers 11
2.1 Preliminaries ... 12
2.2 Types and Terms ... 19
2.3 Domain-theoretic Sem antics.. 20
2.4 Relating Typed and Untyped Terms... 32
2.5 Conclusion .. 51

3 Church’s Simple Theory of Types 53
3.1 Simply Typed Lambda C a lcu lu s.. 54
3.2 Interpretation of S T L C ... 59
3.3 Church’s Simple Theory of Types (C ST).. 6 8

3.4 Conclusion .. 94

4 Program Extraction via Realisability 95
4.1 Realisability Interpretation... 96
4.2 Induction and Coinduction.. 107
4.3 Related W o rk ... 120
4.4 Conclusion .. 122

5 Rule Schemata 125
5.1 Rule Schemata and Their Associated Generating R u le s126
5.2 Deriving the Rules from Schem ata.. 133
5.3 Realisability.. 138
5.4 Conclusion .. 142

6 Implementation 145

ix

6.1 Correctness of Implementation.. 148
6.2 Coding... 152
6.3 An Example.. 160
6.4 Conclusion .. 161

7 Conclusion 163
7.1 Summary of Contributions.. 163
7.2 Future W ork.. 164

Bibliography 167

Chapter 1

Introduction

Contents
1.1 M otivation.. 1

1.2 Main Contributions... 5

1.3 Overview of the Dissertation.............................. 6

1.1 Motivation
Ultimately, software problems are solved by building well-structured and comprehen
sible programs that are guaranteed correct with respect to the specification. However,
in general, when developing complex computer systems, no matter how well designed,
it is natural that the resulting system still is full of errors. With rapid growth of the size
and complexity of software programs, the importance of the reliability of these pro
grams arises.

A ’’correct” program is one that specifies the desired behaviour of the program.
More precisely, it produces the correct output for every possible input if the pro
gram terminates successfully, and the program will always terminate successfully. The
methodologies for designing reliable software can be viewed as either based on cor
rectness proofs (i.e., giving proofs for existing programs) or on program extractions
(i.e., from proofs to generate programs). To verify the correctness of a program em
pirically is a long-standing and widely-used practice in the software industry. Usually,
in order to obtain full correctness, this would involve feeding all possible values of
its input to the certified program and proving the correctness of the respective output.
This can be really time consuming, or even impossible. Therefore, the correctness of
the tested program cannot be guaranteed in general.

A ’’formally correct” program is one whose correctness is verified in a mathemat
ical approach. In order to achieve this, the intended behaviour of programs has to be

1

1. Introduction

specified precisely in a mathematical way. It is well known that (abstract) algorithms
are often hidden inside mathematical proofs. Indeed, from a fully formalised con
structive mathematical proof, one can easily extract a computer program of such an
algorithm together with a proof that guarantees the correctness of the program.

The research presented in this dissertation began as an attempt to provide a new
systematic approach to synthesise correct, error-free programs from proofs, and strong
theoretical guarantees about their correctness. We focus on the applicability of con
structive logics and type theories to the problem of program extraction from proofs
via realisability. There are always gaps between our thinking and our communication.
Consider the following sentence

3x(x-x = 2) (1.1)

Can we really assert this by saying x exists without giving the value of x but just
thinking there is an jc ? Even if there exists an jc , is it computable? The solution is
when we assert the existence of something, we should be able to provide an algorithm
to compute it, and a proof that the algorithm is correct. For example, to prove the
formula (1.1), we need to find an instance of jc , e.g. t, and a proof P of t • t = 2. This
computational view of existence can naturally be extended to all logical connectives.
We are led to the Brouwer-Heyting-Kolmogorov interpretation (BHK interpretation)
that explains the meaning of a proof of a given formula:

• A proof of P A Q is given as a pair (p, q) of proofs, where p is a proof of P and
q is a proof of Q.

• A proof of P V Q is given as a pair (p, q) of proofs, where either p is 0 and q is a
proof of Q, or p is 1 and q is a proof of Q.

• A proof of P —► Q is a construction which converts any proof of P into a proof
of Q.

• There is no proof for _L.

• A proof of Vjc.P(jc) is a construction which converts a proof of d G D (D is the
intended range of the variable jc) into a proof of P(d).

• A proof of 3x.P(x) is given as a pair (d,q) with d e D, where q is a proof of
P(d).

The BHK interpretation can be developed into a methodology by which one can use
mathematical reasoning to derive programs whose correctness is developed during the
construction. One important feature of constructive proofs is that the executable codes

2

Motivation

extracted from formalisations of proofs are functional programs. This provides a par
ticularly elegant way of connecting program extraction with lambda calculus and its
corresponding type theories.

The Curry-Howard isomorphism ([Cur34, How80]), also known as proofs - as
- programs correspondence, establishes a deep connection between programs and
proofs. It is a generalisation of the following syntactic analogy: a proof is identified
with a X-term (in other words, a program), the formula it provides is encoded as a type
for the program, logical rules can be represented as type inferences or programming
constructs, and proof normalisations correspond to term reductions. This contributes
a set of methods to extract programs from proofs so that the task of programming a
function is cut down to reasoning from contexts.

In traditional verification of programs, the most natural way is to start with a par
ticular specification that expresses the input-output behaviour of a desired program in
terms of logical formulas, and then build a program by hand, finally prove that the
program satisfies the specification. An alternative approach is instead of writing the
program, to generate the proof of the formulas (semi-)automatically with the help of
proof assistants. Through the power of the Curry-Howard isomorphism, a program in
a suitably chosen (usually functional) programming language is created. The trans
formation process from proofs to correct-by-construction programs is called program
extraction. Very often the generating programs contain parts that are irrelevant to com
pute the final result. How to synthesise efficient programs from proofs obeying their
formal specifications has been a long sought after goal.

One method of program extraction is to employ a realisability interpretation. In
1945 Kleene [Kle45] first introduced the concept of realisability with the idea of defin
ing a relation realises A” between natural numbers n and logical sentences A. In
tuitively, a realiser is a solution of the computational problem expressed by A. Later
many other notions on realisability were introduced. In particular Gbdel’s functional or
Dialectica Interpretation [Goe58, Goe90] and Kreisel’s modified realisability [Kre59]
have a profound impact. The possibility of effectively obtaining a program and its
verification proof is based on a sound realisability interpretation.

It is essential for people in mathematical, scientific and engineering fields to log
ically analyse problems or present mathematical models precisely. Among all the
formal logics that they choose to express and prove mathematical facts, first-order
logic has a prominent place. However, it is not an expressive tool in a practice sense,
since it is impossible to prove about higher-order objects such as sets and functions in
first-order logic directly. Some basic and reasonable notions fall outside the scope of
first-order logic, such as the transitive closure of a relation and the completeness prin
ciple for the real numbers. Starting with a formal set theory to formalise e.g. abstract
algebra in first-order logic is of course an alternative solution, especially when abbre
viations are involved. Nevertheless, such formalisations are often quite expensive in
terms of how much work needs to be carried out. Moreover, an additional limitation of

3

1. Introduction

first-order logic lies in the expression of mathematical statements due to the missing of
abstraction mechanisms for building predicates and functions and definition descrip
tion mechanisms for specifying values.

The Simple Theory of Types, originating with Alonzo Church [Chu40], is a precise
formulation of type theory which includes first-order logic. Farmer gave a detailed
analysis of the virtues of Church’s type theory in [Far08] and characterised Church’s
type theory as a simple, elegant, highly expressive and practical language and logic.
In Church’s type theory, functions are treated as primitives since properties and re
lations are expressed via functions from objects to truth values, and lambda-notation
and lambda-conversion [Chu32, Chu41] are formulated for use in the logic. Church’s
type theory is also called higher-order logic, since it admits unrestricted quantification
over higher order predicates. There are two kinds of mathematical objects in Church’s
type theory: terms and types. Terms are the terms of the X-calculus, denoting values
including truth values. Based on atomic types, e.g. the type of individuals and the type
of propositions (truth values), types can be built as functional types p —► cr where p
and cr are types. Every term has been assigned to a type which denotes the kind of val
ues it ranges over and should be consistent with the types of its subterms. In Church’s
original formalisation it is a classical type theory since it allows nonconstructive rea
soning principles. However, we will work on a version that is based on intuitionistic
logic (but is still impredicative).

Eventually we are interested in specifying the operational behaviour of a machine
when it is running a program. However, an extracted program is a collection of abstract
expressions with no observation of its behaviour, i.e. no operational semantics. There
fore, it is necessary to have a connection between the proof-theoretic view with the
execution of a program. An elegant way to ensure the correctness of the behaviours of
programs is to put denotational semantics in the middle. With denotational semantics,
we can formalise mathematically rigorous descriptions of programming languages by
assigning mathematical meanings to programs in terms of mathematical objects, such
as strings, integers, booleans and functions. Aiming at this purpose, a wealth of dif
ferent approaches are proposed. The theory of Scott domains, originally conceived by
Scott [Sco70], is a powerful mathematical tool to give a meaning to the following two
features of programming languages: recursion (least fixed point) and data types (e.g.
lists, function spaces and recursive types). Instead of representing objects as elements
of a data type in the sense of programming languages, elements of a domain are ab
stract representations of their partial properties that contain some notions of informa
tion. Thus, it is the input-output behaviour of programs that is finally being formalised.
Domain-theoretic semantics provide very simple and elegant proofs of computational
adequacy, and hence for the correctness of program extraction. Since domain theory
combines the computational features of functions with the mathematical definition of
function as a mapping from one domain to another, from a mathematical point of view,
a functional language can be viewed as a description language for domain-theoretic

4

Main Contributions

concepts.

1.2 Main Contributions
This section serves as a general description of the main achievements of this disser
tation. In the next section, background information is provided, and more detailed
explanations are given.

(1) We study the domain-theoretic semantics of a Church-style typed A-calculus
with constructors, pattern matching and recursion, and show that it is closely
related to the semantics of its untyped counterpart. When extracting programs
from proofs via realisability, one has the choice of extracting typed or untyped
terms from proofs. Our result shows that under a certain regularity condition,
the choice is irrelevant. Furthermore, we give a soundness proof for a language
of realisers of proofs involving inductive and coinductive definitions. The proof
uses logical relations, which are related to Tait’s computability method and Gi
rard’s method of reducibility candidates.

(’’Typed vs. Untyped Realizability” [BH12])

(2) We give a realisability interpretation of an intuitionistic version of Church’s Sim
ple Theory of Types (CST) which can be viewed as a formalisation of intuition
istic higher-order logic. Although definable in CST we include operators for
monotone induction and coinduction (not limited to the strictly positive case
only) and provide simple realisers for them. Realisers are formally represented
in an untyped lambda-calculus with pairing and case-construct. We introduce
a general notion of interpretation of one instance of the simply typed lambda
calculus in another, and define realisability as an instance of such an interpre
tation. In this way, important syntactic properties of realisability (e.g. being
well-behaved w.r.t. substitution) can be proven elegantly on an abstract lambda-
calculus level. Our interpretation introduces a direct realisability of monotone
induction and coinduction.

(”A realisability interpretation of Church’s simple theory of types” [BH14a])

(3) In order to demonstrate the usefulness of the theory described in (2), we develop
a prototype of the proof system in Haskell. In this prototype, motivated by the
desire to facilitate the implementation of interactive proof systems with rich sets
of proof rules, we implement a uniform system of rule schemata to generate
proof rules for different styles of logical calculi. The system requires only one
schema for each logical operator to generate introduction and elimination rules

5

1. Introduction

in natural deduction and sequent calculus style. In addition, the system sup
ports program extraction from proofs by generating realisers for the proof rules
automatically.

(’’Uniform Schemata for Proof Rules” [BH14b])

1.3 Overview of the Dissertation

Chapter 2: Typed vs. Untyped Realisability
In this chapter, we introduce a natural language of realisers for inductive and coinduc-
tive definitions, which is a typed lambda calculus with types modelling initial algebras
and final coalgebras, and terms modelling structural recursion and corecursion. In fact,
we study a more general calculus that allows fixed points of arbitrary type operators
and definitions of functions by general recursion. The advantage of this generality is
that our results will apply to all conceivable extensions of our theory of realisers of
inductive and coinductive definitions.

We study the domain-theoretic semantics of a Church-style typed A-calculus with
constructors, pattern matching and recursion, and compare it with its untyped coun
terpart. We work with polymorphic types that allow fixed points of arbitrary type
operators. A type p is interpreted as (the image of) a finitary projection (p), following
the idea of Amadio, Bruce and Longo [ABL8 6]. The main result (Theorem 2.4.16)
relates the semantics of a typed term M with its untyped variant M~: if M has type p,
where p is a regular type, that is, fixed points are only taken of positive operators, then

= M,
where [M] is the value of M in a denotational model. The proof uses logical relations.
We do not know whether the result also holds if p is not regular.

A similar problem was studied by Reynolds [ReyOO, Rey03] who established a
coherence between the typed and untyped meanings of expressions based on cpo mod
els of a version of PCF. The main differences to our work are as follows: Reynolds
considers simple types over the base types of natural numbers and booleans while we
allow arbitrary recursive types. On the other hand, he includes subtyping which we do
not. Regarding the typed semantics, Reynolds interprets typing derivations in a typed
model while we interpret terms with a typed abstraction in an untyped model.

The motivation for this study comes from program extraction from proofs via re
alisability (see e.g. [BH08, Ber09, BS10, Berl 1] for applications in constructive anal
ysis) where one has the choice of extracting typed or untyped terms from proofs. Our
result shows that if the extracted type is regular, the choice is irrelevant. In fact, reg
ularity is a harmless restriction because in the intended realisability interpretation the

6

Overview of the Dissertation

types of realising terms will always be regular. In [BerlO] the soundness of a realis
ability interpretation based on a fragment of the untyped version of our calculus was
proven, and the calculus was shown to be computationally adequate with respect to a
domain-theoretic semantics (the same semantics we are considering here). In [BS11] it
was shown that the extracted programs admit a Curry-style typing. In this dissertation
we provide the missing semantical link to Curry-style typing.

The application to realisability is also our motivation for working with Scott do
mains (instead of arbitrary epos, as Reynolds does): the adequacy proof in [BerlO]
uses the fact that all semantic objects can be approximated by compact ones, hence
we have to ensure that types are interpreted in a cartesian closed category of algebraic
domains. This is achieved by interpreting types as finitary projections. Apart from
that, our results could also be obtained using arbitrary epos and embedding-retraction
pairs.

Chapter 3: Church’s Simple T^pe Theory
In this chapter, we describe the basic logic of a constructive version of a type theory,
namely Church’s Simple Type Theory. We start with the Simply Typed Lambda Cal
culus (STLC), which is constructed freely from type atoms. And then we introduce
the notion of an interpretation from one instances of STLC to another. One important
aspect of this interpretation is that it preserves full j3-equality.

Slightly differing from Church’s original work, our version of CST is based on a
particular instance of STLC where the set of base types contains a set J? of base types
for individuals and a type of proposition o, and the constant set consists of —►, A, V,
Vp, 3p, =p, jUp and vp. Here for Vp and 3p, p is for arbitrary types, while for jup
and Vp, p is restricted to predicate types, i.e. types that are canonically (in any ccc)
isomorphic to a finite product of types of the form p —► o. The constants pp and Vp will
be interpreted as least and greatest fixed point operators for monotone arguments. In
order to precisely express their properties we give a definition of higher-order versions
of inclusion between predicates, which can be declared meaningfully only by predicate
types.

From a logical point of view, the constants —> and Vp would suffice to define all
other constant. For the logical constants including equality this was already observed
by Church [Chu40]. Iip<t> can be defined as the infimum of all x : p such that <I>jt Cp x,
and Vp <I> can be defined similarly. The reason why we prefer this richer set of constants
is that they can be given simpler realisers.

In order to enable a realisability interpretation we have to deviate from Church’s
calculus in several aspects: first our system is intuitionistic while Church’s is clas
sical. Secondly, we dropped the choice operator since it does not appear to admit a
realisability interpretation.

The reason why we choose Church’s type theory is that, due to its simplicity, it

7

1. Introduction

provides the necessary, but simple techniques for a realisability interpretation. Church
presented his theory as a foundation of mathematics, but we make use of its prop
erty that it is free to be extended. Church’s type theory is general in the sense that
it has implicit constraints on terms and types. It can be directly extended with other
datatypes such as Cartesian products, disjoint unions, records, and so on. Therefore
many programming languages support a simply typed system. Also, in Church’s type
theory axioms for set existence are no longer necessary, since lambda-notations (or
functions) provide an explicit representation of sets. In addition, type checking is de-
cidable in Church’s type theory.

Chapter 4: Program Extraction via Realisability
In this chapter, we give a definition of realisability RCST by extending CST to a more
practical form. And then we give the soundness results for our realisability interpreta
tion.

We extend CST to RCST by adding an extra base type 8 for realisers and extra
constants nil, in/,, in/?, prL, pr^, pair, app, fun, case, rec which we call program con
stants. We also extend the ranges of the parameters of the constants Vp, 3p, = p and
pp, Vp to all types respectively predicate types p of RCST.

The new base type 8 will be interpreted by a Scott domain D which is essentially
the same as the domain used in Chapter 2.

In order to prove the soundness of induction and coinduction, we replace the rules
for monotone induction in CST by rules which we call general (co)induction. That is,
rules expressing that jup<I> is the least fixed point of the operator <P(X) := Uycpx ̂ 0 0 -
The operator 4> (which could be easily formally defined in RCST) is monotone for arbi
trary 4>: p —► p, hence the least fixed point exists. If 4> is monotone, then d> is the same
as 4>. Dually, the rules for coinduction are replaced by rules expressing that vp<£ is the
greatest fixed point of the operator <£(X) := Djo Th*s 8 eneral (co)induction
is a generalisation to higher-order logic of Mendler-style (co)induction [Men91].

Our interpretation appears to be more general than related interpretations in Is-
abelle/HOL [Ber03b] and Coq [PM89b, PM89a] in that it covers unrestricted intu
itionistic higher-order logic and induction is not confined to the strictly positive case.

Realisability interpretations for monotone coinduction have been given earlier by
Tatsuta [Tat98] and Miranda-Perea [MP05]. The minor difference of Tatsuta’s inter
pretation to ours is that he uses realisability with truth (^-realisability) whereas we
omit the ’truth’ component, he works in second-order logic while we use higher order
logic, and in his system the programming language is part of the ’input system’, that is,
the formal system that is to be interpreted, while we keep the input and output systems
apart. The major difference is that we can avoid Tatsuta’s extra condition on mono
tone (co)induction namely that not only the operator has to be monotone, but also its

8

Overview of the Dissertation

realisability interpretation. Tatsuta shows that this extra condition is necessary in his
system. The reason why it is not necessary in ours is that our realising system (i.e.
output system) has rules for a certain form of non-monotone inductive and coinductive
definitions. Miranda-Perea extracts typed terms and uses a clausular form of monotone
(co)induction in Krivine [Kri93] system AF2 of second-order logic.

Our main motivation for using higher-order logic and monotone instead of strictly
positive induction/coinduction is not that applications would require this greater ex
pressive power and generality. It is more that it allows to express problems much more
naturally and less technically, and the analysis of monotone (co)induction is much
simpler than that of the strictly positive case. In addition, in our system, induction and
coinduction are completely dual to each other, which is not the case in current imple
mentations (e.g. Coq [Coq], Minlog [Min]) which are restricted to the strictly positive
case.

Our soundness result refers to the provability ”on both sides”, i.e. if A is prov
able then we get a term M that provably realises A where the realisability is defined
formally. In order to conclude that realisers also compute results we refer to the Ade
quacy results in [BerlO] that relate formal realisability to the computation of witness.

To summarise, the main improvement in our work is that we prove soundness of
realisability for monotone (co)induction

- without the extra condition that the realisability interpretation of the monotone
operator in question is again monotone (these conditions are needed in [Tat98] and
[MP05]);

- for higher-order logic (previous results are restricted to second-order logic [Tat98,
MP05] or to a restricted form of strictly positive induction and coinduction [Ber03b,
PM89b, PM89a]);

- w.r.t. type-free realisers for which a computational adequacy (i.e. normalisation)
theorem has been shown earlier and once and for all (other approaches use typed re
alisers, which means that normalisation has to be proved again if the (co)induction
scheme changes, since then type system changes as well).

Chapter 5: Uniform Schemata for Proof Rules
In this chapter, we introduce a uniform system of rule schemata, which directly ex
press the meaning of logical operators and which, in a uniform way, allow to derive
the rules of different styles of proof calculi, such as sequent calculus and natural de
duction, but also further rules that are used in interactive proof assistants. Surprisingly,
the approach requires only one schema for each logical operator. The introduction and
elimination rules of natural deduction as well as left and right rules in sequent calculus
are derived automatically. Moreover, our system is able to automatically derive realis
ers of intuitionistic proof rules, thus facilitating the implementation of proof systems
that support program extraction from proofs, such as Coq [Coq] and Minlog [Min].

9

1. Introduction

We are currently developing a prototype as shown in the next chapter of such a proof
system using rule schemata as a basis of the implementation.

Briefly, the global strategy is as follows. First we introduce rule schemata, from
which we derive generating rules. These generating rules are different rules that cor
respond to different styles of proving e.g. sequent calculus, or natural deduction or the
mixture of these two. Then from generating rules we obtain the real rules in the proof
system by instantiation and adding side formulas.

An additional advantage of rule schemata is the fact that they are built on a data
structure of finitary sets, a generalisation of finite sets. Finitary sets have the structure
of a monad and can therefore be very conveniently implemented and manipulated in a
programming language that supports monads and provides a special syntax for them.

Chapter 6: Implementation
In this chapter, we describe the implementation of a prototype interactive theorem
prover, which is an experiment with the usability of the concepts introduced in previous
chapters. It is composed of two main parts: first, an automated proof checker for
verifying mathematical arguments with the ability to store and replay proofs; second,
an interactive interface for users to input logic formulas and give commands based on
the given information, i.e. what goals remain to be proven and which assumptions are
available to prove those goals.

We consider plain simple one-sorted predicate logic without complicated data struc
tures in this prover. Modules with monad structures are used to provide a convenient
framework for applying all necessary functions for different types.

Since it is very difficult to remove bugs when programs become bigger, we also
give a precise proof for the correct behaviour of our prover before coding.

10

Chapter 2

Domain-theoretic Semantics of a
Language of Realisers

Contents__
2.1 Preliminaries.. 12

2.2 Types and T erm s.. 19

2.3 Domain-theoretic Semantics.. 20

2.4 Relating Typed and Untyped T erm s.. 32

2.5 Conclusion... 51

A notation for arbitrary functions was not available until 250 years after the math
ematical notation for expressions and equations was devised, when Church intro
duced the smallest universal programming language of the world, the lambda calcu
lus [Chu32, Chu33]. Anything that can be computed can be expressed and evaluated
via this system. The lambda calculus is an alternative to Turing machines [Tur36]
in the sense that both models define the same class of computable functions [Tur37].
However, the lambda calculus is more related to the software aspect, not caring about
the implementation of the machine evaluating it, whereas the Turing machine is more
related to the hardware aspect. Beyond its great influence in the area of computability
theory, the lambda calculus has many practical applications in the formal semantics of
programming languages.

The central concepts in the lambda calculus are function abstraction and applica
tion by variable substitution. There are two versions of the lambda calculus, typed
(also called Church-style) and untyped (also called Curry-style). The difference be
tween the two styles is that in Church-style type assignment each bound variable is
assigned a unique type, as in X x : p.Af, while in Curry-style the binding is untyped, as

11

2. Domain-theoretic Semantics of a Language of Realisers

in Xx.M. The untyped lambda calculus has no restrictions on the function application,
so the domain of a function is not declared inside the system. Therefore, the untyped
lambda calculus can formalise all effectively computable functions. On the other hand,
in the typed lambda calculus, a function can only accept the inputs of a certain given
type. Types play an important role in the development of software systems. Type
checking allows us to mechanically ensure the compatibility of the constructed pro
grams and the correctness of their functions. However, typed programming languages
are sometimes too constraining, so that untyped programming languages are taken into
account. In addition, the typed lambda calculus provides a mathematical connection
to proof theory via the Curry-Howard isomorphism.

This chapter contributes to a soundness proof for a language of realisers of proofs
involving inductive and coinductive definitions. The notion of realisability will be
discussed in more detail in Chapter 4.

2.1 Preliminaries
In this section, we will review the basic theory of Scott Domains, and give explicit
descriptions of some of its properties. More details can be found in [SHLG94, AJ94,
AC98].

The primary motivation for the study of domains was raised by two problems, least
fixed points as meanings of recursive definitions, and recursive domain equations. Let
D be some mathematical structure. Given a recursive definition on D: X = f (X) y we
want to find an element d e D such that if we substitute d for x in the equation, we will
generate a valid equation s.t. d = f(d). That is indeed looking for a fixed point of / .
Furthermore, we want a uniform canonical method for constructing such fixed points
for arbitrary D and / . However, usual mathematical structures like sets, topological
spaces, groups, vector spaces and etc. cannot satisfy these. Apart from that, giving a
mathematical semantics for the lambda calculus can also lead to problems. Take the
self-application term Xx.xx as an example. If the type of the second occurrence of x in
xx is D and that of the whole term xx is D, then the type of the first occurrence must be
[D —► D]. If [_ —► _] is a functor F : Cop x C —+C over some category C, again recursive
datatypes lead us to the requirement for a fixed point that is uniform and canonical.

A partially ordered set or poset is a set P with a binary relation C which is reflexive,
transitive and antisymmetric. If an element x e P is above every element of A C P, then
x is called an upper bound. If all elements of P are above a single element x e P, then
x is called the least element. Lower bound and largest element are defined dually. If
the least element x of P is no less than all elements of A C P, x is called supremum.
We write x = UA. A nonempty subset A C P is directed if for any x,y £ A there exists
an upper bound z G A with x Q z and y C z.

12

Preliminaries

Definition 2.1.1 (Scott-domain) A triple (D, C, ±) is a Scott-domain if it is

• directed complete: if A C D is directed, then UA CD

• algebraic: Vx G D.x := {xo G D | xo is compact} is directed and x = Ux

• bounded complete: MB C D((3x G D.B C x) => LLB G D)

where
xo G D is compact if for every directed A CD, A has a supremum UA and xo U UA

then xo C x for some x G A. By Dc we denote the set of compact elements of D.
B is bounded i f 3x G D.My CB.yCx.

The reason for working with Scott domains is that all the semantic constructions
we need are readily available, e.g. cartesian closure, solutions to recursive domain
equations, recursive definition of functions, interpretation of types, including recursive
types, as finitary projections. All these constructions are very elementary and do not
require a heavy category-theoretical machinery.

By a Scott-domain, or domain for short, we mean a bounded complete co-algebraic
dcpo with least element. We will denote the least element of a domain by _L. By 1 we
denote the sole-element domain {Nil}, and by (D\ + . . . +Dn) L, D x E , [£)—>£] the
separated sum [AC98], cartesian product, and continuous function space of domains1.
Note that in a coalesced sum, the bottom elements are identified if they have them,
while in the separated sum, a new bottom element is adjoined.

Due to G)-algebraicity, every element of a domain D is the directed countable supre
mum of compact elements.

Remark From the point of view of information, an element x CD can be interpreted
as a datum that might not be fully defined. Thus x C y indicates that all the information
represented by x is in y; the supremum of A C D is the element that contains all the
information only from every element of A; the least element contains no information
at all. The algebraicity clause guarantees that each element obtains all the information
from the ones lower down in the ordering.

Lemma 2.1.2 If for F C [D —> E], there exists an / G [D —► E] s.t. / = U F , then
/(x) = U{g(x) | g G F} for all x G D.

Proof. Since / = UF, we have (1) Mg G F(g C /) , and (2) for any f G [D —*■ E], if
V g G F (g C / ') , th e n /C / '.

Therefore we can get for all x G D and for all g G F, g (x) C f (x) , and if g (x) C f (x),
then / (x) C f (x) . That is / (x) = U {g (x) | g G F}. □

1 These domain operations should not be confused with the syntactic constructors for types which
for simplicity we denoted by the same symbols.

13

2. Domain-theoretic Semantics of a Language of Realisers

Definition 2.1.3 (Subdomain) E CD is a subdomain of D if

(i) ± d EE.

(ii) If A C E and U^A exists in D, then U&A G E and UpA = U^A.

(iii) If jc is compact in E, then jc is compact in D.

(iv) Vy G DCVx G E(y C jc —► By7 G £ c(;y C 3/ C jc)).

Lemma 2.1.4 Let £ C D be a subdomain of D. Then is is a domain.

Proof By verifying the four clauses of Definition 2.1.1.

1. Assume A C E is directed. Show UA eE :
Since A C D is directed, we get UA G D. By Definition 2.1.3 (ii), we get UA G E.

2. We need to show Vx G := {y G E \ y G f e y [L x } is directed Ax = U ##).
Let x e E . We have x° := (y G D | y G Dc,y C x} is directed Ax = UDX°t since
D is a domain.
We have x^ C xP by Definition 2.1.3 (iii), and by Definition 2.1.3 (iv) we have
& is bounded.
So we get Upx5 exists, and by Definition 2.1.3 (ii) we get = UdJc ̂ Q
U ojP = x G £ .

3. Assume B C E and 3x G E.B C x. Then by Definition 2.1.1 we have UB G D.
And then by Definition 2.1.3 (ii) we get UB G E.

□
Following [ABL8 6] we interpret types as finitary projections in D. Since the range

of a finitary projection is a subdomain of D the semantics of types can be viewed as
a domain. This approach provides an easy solution to the problem of defining the
semantics of a fixed point type: one can simply take the least fixed point of a suitable
continuous function on the domain [D —> £>].

Definition 2.1.5 (Finitary projection) / : D —► D is a projection if

• / is continuous,

• / E id, i.e. Vx G D.f(x) C x,

• = i-e- Vx 6 D.f(f(x)) = f(x).

A projection / is finitary if the range of / , denoted by /(D), is a subdomain of D.

14

Preliminaries

For / : X —► X we set Fix(/) := {x E X | f(x) = x}.

Lemma 2.1.6 If a function / : X —► X is continuous and f o f = / , then /(X) = Fix(/).

Proo/ If f o f = f , then /(X) C Fix(/). Trivially Fix(/) C /(X). Hence, /(X) =
Fix(/). □

Lemma 2.1.7 E is a subdomain of D if and only if there exists a finitary projection
p : D —> D such that E = /?(D).

Proof. Assume £ is a subdomain of D. We have to find a projection p s.t.
E = p(D).

We define /?: D —> D by p(x) = Ui>{y G £ | y C jc} = U^jy G £ | y C jc}. We show
first that p is a projection.

1. Obviously, p(x) C x for all jc g A so we get p C id.

2. We need to show p o p = p. We have

P(PW) = P(U{y€£|yCAr})
= U {z e E | zQ U { y G £ |y C x } }

Let A := U{y G £ | y Cx}, and B := U{z G £ | zCA}. We show A = 5 .

• B □ A: It suffices to show that A is an upper bound of {z G £ | z C A}. This
is obvious.

• A Q B : It suffices to show that B is an upper bound of {y G E \ y C x}.
Let y E E s.t. yQx. We need to show yQB.
By definition of B, it suffices to show that yQ A. This follows by the fact
that y C x and the definition of A.

3. We show p is continuous. Clearly, p is monotone by its definition.
Let A C D directed. We need to show p(UA) Q Up(A). Since

/7(UA) = Ll{y E E \ yQ UA}
U/?(A) = U{p(a) | a E A}

= U {U {y E E \ y Q a } \ a E A } ,

let b := U{U{y G E \ y C a} \ a E A}, it is to show z Q b for any z E E s.t. z E UA.
Since every element of D can be obtained as the supremum of a directed set of
compact elements of D, we get z = U{jc G Dc \ x C z}. Then by Definition 2.1.3
(iv), there exists some xf E Ec s.t. x Q x! C z. By Definition 2.1.3 (iv), we get
x! E Dc. Thus, by (1) we get x! C b. So x C b. Hence, b is an upper bound of
{x EDc \x Q z}. Therefore, zQb.

15

2. Domain-theoretic Semantics of a Language of Realisers

Second, we want to show that E — p(D).

1. ”C”: Let x G E. Then p(x) = Ll{y G E | y □ x} = x. So x G p(D).

2. ”D ”: Assume p(x) = x. We need to show x G £.

We get Ll{y e E \ y Q x } =x. By Definition 2.1.3 (ii), £ E \ y Q x } EE,
i.e. x G /s.

”■£=”: Trivial since p is a finitary projection. □

Lemma 2.1.8 Let p : D —► D be a projection. If G p(D) and aUb exists, then
a U b e p(D).

Proof. We need to show p(a U fc) = a U b.
Since p(a U b) □ p(a) = a and p(a U b) □ p(b) = b, we get p(<z U b) □ a U b. We

get p(a U b) C a U by p C id. Therefore, p(a U 6) = a U b. □

In the following two lemmas we assume that p : D —► £> is a projection, and
p(D)c :=DcDp(D).

Lemma 2.1.9 The following are equivalent:

(a) p is finitary

(b) Vx G D(A* := {a G p(D)c | a C x}) is directed and p{x) = UAX.

(c) 3A C Dc.Vx G D(p(x) = U{a G A | a C x}).

Proo/ • We show (fc) =» (a).

Since p is a projection on D, we get p(D) = Fix(p) by Lemma 2.1.6.

We need to show p(D) is finitary, i.e. p(D) is a subdomain of D.

(i) Since p C id and J_ C p(-L)» we get _L = p(-L) G p(D).
(ii) Assume A C p(£>) and U&A exists in D. We need to show U&A G p(D), i.e.

to show p(UpA) = U£)A since p(D) = Fix(p).
Letx := U/>A. Thenp(x) = U{a G p(D)c |flL x} Lx.
We need to show p(x) □ x, i.e. p(x) □ y for all y G A.
Since U^A = x □ y for all y G A, we get p(x) □ p(y) = y.

(iii) Assume x is compact in p(D). Let x E U/jA, where A C D is directed. Then
we get x = p(x) C p(Uz)A) = L_l£>p(A). Therefore Ll£>p(A) = p(U/>A) G
p(D). Trivially p(A) C p(D). Hence, we get x C p(y) for some y G A.
Since p C id, we get p(y) C y. So x C y for some y G A. So x G Dc.

16

Preliminaries

(iv) Assume y C x for some y G Dc and x G p(D). We need to show 3/ G
{ p (D)) c { y ^ y Qx).
Since p(x) = UA*, we get V / G AJC()/ C p(x) = a:).
Since A* C Dc is directed by (iii), we get y U / for some / G A*.

• We show (a) => (b).

Assume p(D) is finitary. We need to show Vx G D(Ax := {a G p{D)c \ a C x} is
directed and p(x) = UA*).

Since JL G p(D), _L G Dc and _L C jc for all x G A we get X G A* y 0.

For all a, & G A*, we get a C x and bQx . By Lemma 2.1.8, we get a U b G A*.
So A* is directed.

Since p(x) G p(D) C D, we get p(x) = U{<2 G p(I>)c | U p(x)} = U {a G p(D)c |
p(a) E p(*)} 3 U{a G p(Z))c | 0 E *} = UAx-
Therefore, p(x) = UA*.

• We show (c) => (a).

Since p is a projection on £>, we get p(D) = Fix(p) by Lemma 2.1.6.

We need to show p(D) is finitary, i.e. p(D) is a subdomain of D.

(i) Since p U id and _L U p(_L), we get _L = p(X) G p(£>).

(ii) Assume B C p(D) and UpB exists in D. We need to show UpB G p{D), i.e.
to show p(UoB) = UdB since p(D) = Fix(p).
Let x := UqB. Then p(x) = U{a G A | a C x} for some A C Dc.
Clearly p(x) C x by p is a projection.
We need to show p(x) □ x, i.e. p(x) □ y for all y G B.
Since UpB = x □ y for all y G B, we get p(x) □ p(y) = y.

(iii) Assume x is compact in p(D). Let x C where B C D is directed.
Then we get x = p(x) C p(U£>P) = U/jp(B). Now p(B) C p(D) since p is
monotone and Udp{B) g p(D) by (b). Hence, we get x C p(y) for some
y G B. Since p C id, we get p(y) C y. So x C y for some y G B. So x G Dc.

(iv) Assume y C x for all y G Dc and for all x G p(D). We need to show 3 / G
(p(0))c (y E /E *) .
Since p(x) = U{a € A | a C x} for some A C Dc, we get V / € {a € A | a C
■*}(/Ep(x)=.*).
Since {a G A | a U x} C Dc is directed, for all y G Dc, we get y C y7 for
some y G {a G A | a U x}.

17

2. Domain-theoretic Semantics o f a Language of Realisers

• We show (c) => (a).

Assume p(D) is finitary. We need to show 3A C DC.Vx e D(p{x) = U{a G A |
a E *})• By Lemma 2.1.9 we get Vx G D(AX := {a G p(D)c | a ^ jc} is directed
and p(x) = UA*). Let A := p(D)c. Since p(D)c C Dc, we get 3A C Dc.Mx G
D{p{x) = U{a G A | a C x}).

□
Lemma 2.1.10 (Admissibility of finitary projections) If for all n, pn is a finitary pro
jection and pn C Pn+u then Unpn is a finitary projection.

Proof Let p := U„pn. By Lemma 2.1.2, it is easy to see that p is a. projection.
By Lemma 2.1.9 (c), it suffices to show p(x) = U{a G p(D)c | a C jc}.
We first show that p is idempotent:

p { p { x f) = (U/j/?/j)((Ump m)(x)) = Urt Um (p n { p m (•*))) = LIn(Pn(Pn(^))) = LIn (P n (x))

= (□ nPn)(x)=p(x).
Equation (*) easily follows from the fact that the double sequence pn(Pm(•*)) is

increasing in m and in n. Hence, we get p(D) = {x \ p(x) = x}, and therefore, U{a G
p(D)c | a L x } = Ll{a G Dc | p(a) = a A f l L x } = U {a G Dc | Un{pn{a)) = c A f l L x } =
U{a GDc | 3n.pn(a) = a A f l C x } (by compactness) = Un(U { a GDc | pn{a) =aAaC.
x }) = Un(p n(x)) = p(x). □

Lemma 2.1.11 Let (L, □) be a complete lattice, and f u f z : L —> L are monotone.
Assume Vx G L(/i (x) C fi{x)). Then LFP(/j) C LFP(/2).

Proof First to show LFP(/i) and LFP(/2) exist.
If / : L —► L is monotone, let X = {x G L \ f (x) Q x}. Since a complete latice

cannot be empty, L has a maximal element. Thus, X is nonempty. Then because / is
monotone, if x G X, then we have /(/(x)) C /(x), i.e. /(x) G X.

Let x E X and xo = HX. Then xo C x, so /(xo) C /(x) C x. Hence, /(xo) is a
lower bound of X. But xo is the greatest lower bound, so f (xo) C xo, i.e. xo G X.
Then /(xo) G X. Again since xo is the greatest lower bound of X, we get xo C /(xo).
Therefore xo = /(xo). Clearly xo is the least fixed point of / since every fixed point is
inX.

Second to show LFP(/i) C LFP(/2).
Let LFP(y-) = \lXi(i = 1 , 2) where X,- = {x G L \ f {x) C x}.
Since LFP(/2) is the greatest lower bound of X2 , then it is to show LFP(/i) C X2 .
Since LFP(/i) is the greatest lower bound of X\, i.e. LFP(/i) C. Xi, then it is to

showX2 CX1.
Assume x G X2 . Then fz(x) C x. Since /i(x) C fi(x), we get /i(x) C x. Then

xGXi. □

18

Types and Terms

2.2 Types and Terms

In this and the next section we study the syntax and semantics of types and typed terms.
Untyped terms will be introduced in Section 2.4.

Definition 2.2.1 (Types) The set of types is defined by the following grammar:

Type 9 p,cr,T ::= a \ p —► <7 |1 | p x a \ p + o | fix a .p.

where a ranges over a set TVar of type variables. The fixed-point construction fix a.p
binds all free occurrences of a in p.

We work with a Church-style typed lambda-calculus with constructors, pattern
matching and recursion which we call Language ofRealisers (LoR) because its terms
are intended to be used as extracted programs from proofs obtained by a readability
interpretation.

We consider only the constructors Nil (nullary), Pair (binary), and Left, Right,
In (unary). The intention behind the first four constructors should be obvious. The
constructor In is used to model type fixed points up to isomorphism. Many definitions
and results could be extended to an arbitrary set of constructors.

Definition 2.2.2 (Terms) The set of (Church-style typed) terms is defined by

LoR 3 M,N,Ri ::=x | X x : p.M \ MN | recx: p.M | C(Mi,... ,Mn) \
caseMof {C,•(£)->«,},£{i „}.

where x ranges over a set of variables Var, C is a constructor of arity n, and in
caseAfof{C/(jc,-) —> Ri}ie{i,...,n} ^ constructors Q are distinct and each xi is a vector
of distinct variables whose length coincide with the arity of Q. Lambda abstraction,
X x : p.Af, and recursion, recx: p.Af, bind all free occurrences of x in M, and a pattern
matching clause, C/(it/) —► R/, binds all free occurrences of Jc,- in R,-.

We introduce typing rules for LoR-terms. A type context is a set of pairs T\= x\ :
P i, . . . ,xn : pn (for notational convenience we omit the curly braces) where p,- are types
and X(are distinct variables. The set of variables {jti, . . . , xn} (which may be empty) is
denoted by dom(r).

The relation T b M : p (M is a LoR term of type p in context r) is inductively
defined as follows. Note that in the definition of terms (Definition 2.2.2), a case ex
pression can have in general many clauses, but our typing rules only allow two or one

19

2. Domain-theoretic Semantics of a Language ofRealisers

clauses.

r h N il: 1 r , * : p h x : p

r , x : p h M : a F ,x : T h M : T
r i - Xx\p .M \p —► a n - r e c * : t .M : T

rhM: p —> a r h N: p
r h MTV: <7

r h M : p T \ - N \ g
r h Pair(M,N): p x <j

r h M : p r h M : a
r h Left(M): p + <r r h Right(M): p + a

r h M : p + <J r , jc i :phL:T T , X 2 : <ThR: T
r h caseM of (Left(;ci) —*■ L;Right(x2) —>/?}: T

T h M ip x c r T,x: p , y : c\~ N : r
r h caseM of {Pair(jt,y) —► N} : T

r h M : p[fixa.p/a]
r h ln (M) : fixa.p

rhM: fixa.p r,x : p [fixa.p/a] \ -N: a
r h caseM of {In(x) —> N} : a

Note that due to these rules a term can have more than one type.

2.3 Domain-theoretic Semantics
Since we can solve the domain equations as described in Section 2.1, we now define
a particular domain D by a recursive domain equation which we will use to interpret
types and terms.

Definition 2.3.1 We define the Scott domain D by the recursive domain equation:

D - (l + D + D + D + D x D + [D -* D])±
i

: Using the constructors of LoR as names for the injections into the sum, each element in
| D has exactly one of the following forms: _L, Nil, Left (a), Right (a), In(a), Pair(a,&),

20

Domain-theoretic Semantics

Fun (/), where a and b range over D, and / ranges over continuous function from D to
D.

It will be convenient to use the continuous functions

c a s e d , :D - [Darity(c‘) —► D] —►... —> [Darity(c"> —>D] —>D

casef C a : = i ^ iffl = C‘^ >^ otherwise.

We also use an informal lambda-notation Xa.f(a) and composition / o g to define
continuous functions on D. We do not prove the continuity in each case since this
follows from well-known fact about the category of Scott domains and continuous
functions. We also let LFP: [D —► D] —► D be the continuous least fixed point operator,
which can be defined by LFP(/) = \Jnf n(±-)-

The following definition gives an unexpected interpretation of a type p as a finitary
projection (p), but from this one can derive a more familiar definition as a set, namely
the image (or, equivalently, set of fixed points) of (p). Also, (p) will be used later in
Theorem 2.4.16, and act as a function (not only a type), providing a link between the
two semantics.

Definition 2.3.2 (Semantics of types) Let [D —> D]1̂ be the set of type environ
ments, i.e., functions from TVar to [D —> D].

For every type p we define (p) : [[D —> D]TVar —> [D —► D]]

it \ r t \ xt-1 (f Nil if a = Nil v(l>f(«) = casern« Nil (= | ± otherwise)

(a)f(«) = f(o)(«)
(p + a) C(a) = caseLeft,Right a (Left o (p)Q (Righto (a) Q
(pxc)£{a) = casePair a(A ^i^2 -Pair((p)C(^i),(<T>C(^2)))

(p -^ a) f (a) = casepun a (A/.Fun((cr)f o /o (p)£))
(fixa.p)^ = LFP(Ap.Aa.casein a (AMn((p)£[a := p](^))))

W eset||p]C:=((p>C)(D).

Note that Definition 2.3.2 is well-defined since the category of domains is Cartesian
closed and a continuous function has a least fixed point.

We call a finitary projection if £(a) is a finitary projection for all
a e TVar. Our goal is to prove that if f is a finitary projection, then (p)£ is a finitary
projection. To achieve this, we first prove the following auxiliary lemmas.

Lemma 2.3.3
<2 G Dc => In(a) G Dc.

21

2. Domain-theoretic Semantics o f a Language ofRealisers

Proof Assume x E Dc. We need to show In(x) G Dc, i.e. to show VACD directed
(In(jc) C UA => 3y G A.In(x) □ y).

Assume In(x) C UA where A C D is directed. Let A' :={z | In(z) G A}. Then there
are two cases.

easel A contains no constructor element, i.e. A = {_L}. Thus, we get UA = _L 3 In(x),
which is impossible.

case2 A contains a constructor. Since we have In(x) C LIA and only elements in the
form of the same constructor can be ordered, this constructor must be In. Hence,
without loss of generality, we have _L ^ A and A = (In(z) | z E A'}.

Let z,z! E A'. Then I n ^ h ^ z 7) G A. Since A is directed, we get 3y G A s.t. In(z) C y
and In(z') C y. Thus there exists some z!' s.t. y = In(z"). So z Q z!' G A' and z! Qz!' E A'
since zi C Z2 iff In(zi) U In(z2). Therefore, A' is directed.

Now we want to show that x C LA'.
From assumption In(.x) C UA, we get there exists some y, s.t. UA = In(y) where

Vln(z) E A(In(z) U In(y)) AW G D(VTn(z) G A(In(z) C J) —j► In(y) C d), and d must be
in the form of In(<f). Thus, we get Vz G A'(z C y) AW' G D(Vz G A'(z U d') —► y C d'),
i.e. y = UA'. Since In(x) C UA by assumption, we get In(x) C In(y). Hence, we get
x U y = UA'.

Since x is compact, we get 3z G A ' i C z. And then we get In(jt) C In(z) and
In(z) E A. □

Lemma 2.3.4
VC C Dc(UC exists => In(UC) = Uln(C)).

Proof Assume UC exists. We need to show In(UC) = Uln(C).
”C”: We need to show In(UC) C Uln(C).
Let x be an upper bound of In(C). We need to show In(UC) C x.
We have Vy G C(In(y) C x). Then x = In^V) s.t. Vy G C(y C x!). Thus, UC C jV.

So In(uC) U In ^) = x .
We need to show Uln(C) C In(uC).

Since y C UC for all y G C, we get In(y) C In(UC) for all y G C, i.e. In(UC) is an
upper bound of In(C). Therefore, Uln(C) C In(UC). □

The following lemma is used in Lemma 2.3.6.
Si

Lemma 2.3.5 (Subdomain in the term of In) If A is a subdomain of D, then In(A) U
{_L} is a subdomain of D.

Proof Let A := In(A) U {±}.

22

Domain-theoretic Semantics

Assume A is a subdomain of D. We need to show A is a subdomain of D. By
Lemma 2.1.7 it is to show there exists a finitary projection p ' : D —► D such that A =
P'(D)-

From assumption, we get there exists a finitary projection p : D —» D such that
A = p(D) by Lemma 2.1.7.

Let p'(x) := casexof (In(y) —► In (p{y))} for all x E D and y e A.
Now we need to show p1 is a finitary projection. By Lemma 2.1.9 (c) it suffices to

show 3A' C Dc.Vx e D (p'(x) = U {a E A ' \ a Q x}).
By assumption, we get 3B C Dc.Vx E D(p(x) = U{a E B \ a Q x}) by Lemma 2.1.9

Then we need to show B = A'.
If p'(x) = _L, we get _L = U {a e B \ a Q _L}.
If p'(x) = p we get p'(ln(y)) =Jn (p(y)) = In(U{a e B \ a C y }) = U{In(a) |

a e B,a C y} (by Lemma 2.3.4) = U{b e B \ b Q In(y)}.
It remains to show A = //(D). By definition of p(x) we get //(D) = In(/?(D)) U

{J_}. Then by A = p(D), we get //(D) =In(/?(D))U{J_} =In(A)U{_L} =A. □

Lemma 2.3.6 If £ is a finitary projection, then (p)£ is a finitary projection.

Proof. By induction on p using Lemma 2.1.7 and 2.1.9.

• p = l.

1. We need to show (l) f is a projection, i.e. to verify clauses of Defini
tion 2.1.5.
(a) By definition of (1)£, (l) f is continuous.
(b) We need to show Vx E D. (1) f (x) C x.

If x = Nil, (l)C(Nil) = Nil. Thus, Nil C Nil.
Ifx ^ N il, (1)C(x) = _L. Thus, I L x .
Therefore, (1) f(x) L x for all x E D.

(c) We need to show (l) f o (1)^ = (l) f .
I fx = Nil, (l)?((l)C(Nil)) = (l)C(Nil).
i f^ ^ N ii, (1 >C((1 >C(*)) = (1 >C(±) = ± = (1 >CW.

2. We need to show (p) f is finitary. Then to show 3A C Dc.Vx E D((1) f (x) =
U{a e A | a C x}) by Lemma 2.1.9 (c).
Let A = {Nil}, we get Vx E D ((l)f (x) = U {a e A \ a ^x}).

• p = a.
Since (a) f (a) = f (a) (a) for all a E D, and f (a) is a finitary projection, we get
(a) f is a finitary projection.

• p = p -F cr.

23

2. Domain-theoretic Semantics of a Language of Realisers

1. We need to show (p + <r)£ is a projection, i.e. to verify clauses of Defini
tion 2.1.5.
(a) By definition of (p + a)£ , (p + <j)£ is continuous.
(b) We need to show Vr G D. (p + er) £ (*) C jc.

Ifx = Left(fc), (p + (j)f (Left(fc)) = Left((p)f (b)).
By I.H. we get (p)£(fc) C ft. Thus, Left((p)£(&)) C Left(fc).
Therefore, (p + <j)f (Left(fc)) C Left(fc).
If * = Right(fc), (p + a)£(Right(&)) = Right((p)f (b)).
By I.H. we get (p)f(fc) E b. Thus, Right((p)f (£)) C Right(fr).
Therefore, (p + a) f (Right(fc)) C Right(fc).
Otherwise, (p + a) f (*) = _L □ x.

(c) We need to show (p + <r)f o (p + <r)£ = (p -I- a) f .
If x = Left(&),

<P + ̂) f« P + ̂)?(Left(*)))
= (p + <T>?(Left«p)C(fc)))
= Left ((p m p K (b)))
= Left((p)£(b)) (by I.H.)
= (p + <T)C(Left(b))

If x = Right(fc), similar to the case x = Left(b).
Otherwise, (p + a){ ((p+ c 7){(r)) = (p + a)C (l) = l = (p + a) { (4

2. We need to show (p + a) £ is finitary.
By Lemma 2.1.9 (c), it is to show

3A C Dc.VxG D((p + <r)f(jc) = U{a GA | a E*})

If x = Left(^), we get (p + <r)f (Left(fc)) = Left((p)f (b)). By the induc
tion hyposis we get

3A C Dc.VjcgD((p>C(jc) = U{a G A \ aQx})

If x = Right(fc), we get (p + a) f (Right(fc)) = Right((cr)f(fc)). By the
induction hyposis we get

3A C Dc.V;c G D((<r)f (*) = U {a e A \ a Q jc})

Otherwise, A = {L}.

• p = p x <j.
Similar to the proof of p + a.

Domain-theoretic Semantics

1. We need to show (p —> is a projection, i.e. to verify clauses of Defini
tion 2.1.5.
(a) By definition of (p —> <r)f, (p —► <r)£ is continuous.
(b) We need to show Vx g D. (p —► a) £ (x) C x.

If a = Fun(/), to show (p —► cr)£(Fun(/)) O Fun(/). By Defini
tion 2.3.2, we get (p —► <r)£(Fun(/)) = Fun(g). So it is to show
Fun(g) C= Fun(/), i.e. g O f , i.e. (cr)£ o f o (p)£ O / .
By I.H. we get (cr)((f((p)(a))) O f((p)(a)). By I.H. we get (p)C(a)
O a. Since / is monotone/continuous, we get f((p)(a)) C f(a).
Otherwise, (p —> a)£(a) = _LO a.

(c) We need to show (p —> <y)£ o (p —> ct)£ = (p —> <r)£.
Ifx = Fun(/),

< p^a)£«p-+ (7> £(F un(/)))
= (p-^^fCPunCs)) whereg = (ff) ? ° / ° (P)C
= Fun(/i) where /i = (a)£ o g o (p) £
= Fun(/&) where /* = (a) £ ° / ° (p) £ (by I.H.)
= (p -* a)?(Fun(/))

Otherwise, (p ff)C((p -» (*)) = (p -» cr)£(X) = X = (p ->

2. We need to show (p —► cr)£ is finitary. By Lemma 2.1.9 (c), to show
3A C Dc.Vx G D((p —► (t)£ (x) = U {a e A \ a O *}).
If x = Fun(/), we get (p -> <r)£ (Fun(/)) = Fun((a)£ o f o (p)£). By the
induction hyposis we get

3B C Dc.\/x G D((p)£(x) = U{fc G B | C jc})
3C C Dc.Vx G D((cr)£(x) = U{c G C | cC ^})

Then we get /((p)£(*)) = U/({fc G 5 | b O *}). Therefore 3C C Dc.Vx G
D((p —> c)£(x) = Ll{a G C | a Ex}).
Otherwise, A = {_L}.

• p = fixa.p.

L e t / := Ap.Aa.caseina(Afc.In((p)£[a := p](6))).
Hence (fixa.p)£ = LFP(/) = Une^ f n(±). Therefore, by Lemma 2.1.10, it
suffices to show that Vw./n(_L) is a finitary projection.

25

2. Domain-theoretic Semantics of a Language ofRealisers

We do a side induction on n.

n = 0: We need to show /°(-L) is a finitary projection.

Since /°(-L) = _L and _L is a finitary projection, we get /°(-L) is a finitary pro
jection.

n-1-1: Assume p := / ”(-L) is a finitary projection. We need to show f (p) is a
finitary projection.

First to show f (p) is a projection.

We have f (p) = Aa.casein a (Afc.In((p)f [a := p](b))).

By definition of casein, f (p) is a continuous function, since by I.H. we get
(p)f [a := p] is a continuous function/finitary projection.

We need to show f (p) C id.

W ehave/(p)W = { fo ra llx eD .

In((p)£[a := p](b)) C In(fc), since by I.H. (p)C[a := p] a projection.

Therefore, f(p)(x) C x.

We need to show f (p)(f(p)(x)) = f(p){x).

If jc = In(&), since by I.H. (p)f [a := p] is idempotent, we have f (p)(f(p)(x)) =
In((P)C[« :=p]((P>?[« :=P](*))) = In((P>?[« :=P](fe)) =/(p)W -
Otherwise, we get f(p){f{p){x)) - L = f(p)(x).

Therefore, f (p) is a projection.

We need to show f (p) (D) is a subdomain of D.

Let A := « p) f [a :=p](b) \ b e D} = <p>C[a :=p](D).

By I.H. (p)£[a := p] is a finitary projection. Thus, A is a subdomain of D.

By the definition o f / , /(p)(D) = In(A) U {±}. This follows by Lemma 2.3.5.

□

Now we are ready to define the semantics of LoR-terms. The leading idea in the
[definition of the value of a typed lambda-abstraction Xx: p.M is that the domain of the

resulting function is (the semantics of) p. Therefore, the incoming argument a is first
projected down to p.

26

Domain-theoretic Semantics

Definition 2.3.7 (Semantics of terms) For all environments f : [D —> D]TVar, »}: DVar,
and every LoR term M we define the value [M]»T) € D.

= 1}(x)

pflV]|?tj = casein (M f rj) (* / - / (M f rj))
P * : p.M]]f t) = Fun(Aa.jM]]?»i[j::=(p>f(a)])

[recx: = LFP(Aa.pf]Cjj[* :=<*>?(«)])
[caseMof{Q(f,) -> R,};]]?J} = casec, c„ (Aa.p?i]]f J} [3 := a]),-

Note that in the recursion case, the least fixed point exists by the Cartesian closed
ness.

One can prove the following soundness theorem, stating that if from a context T
we can derive LoR term M with type p, and for every variable x G dom(r), 77 (x) is an
element of [T(x)]f (we will write 77 G [r]£ for this), then the value of term M is an
element of the value of type p.

Theorem 2.3.8 (Soundness For LoR terms) Let £ be a finitary projection. If T h M : p
and 7} € [rj£, then p fJ f j j e [p]?.

Proof. By induction on the definition of the relation T h M : p.

1. r b N il: 1.
We need to show [Nil] £77 G [l] f .
By Definition 2.3.7, we have [Nil] £77 = Nil.
By Definition 2.3.2, we have [l] f = {Nil, -L}. Thus, [Nil] ^ 77 G [l] f .

2 . T ,x : p h x : p.
We need to show [xJ^T] G [p]£.
By Definition 2.3.7, we have [x]^ 7 7 = 77 (x). By assumption, we have 77 (x) G
[p]£. Thus, [xJ^tj G [p]£.

^ r ,x : p h A f :< 7

Tt- Xx : p . M : p —> o
We need to show [Ax: p .M] £ 77 g [p —> a]C .
By Definition 2.3.7, we have [Ax : p.M^r j := Fun(/) where Va G D./(a) =

(p)C(a)].
Then it is to show Fun(/) G [p —> <r]£, i.e. Fun(/) = (p —> <r)f (Fun(/)), by
Definition 2.3.2, it is to show / = (<t)£ o f o (p)£.

27

2. Domain-theoretic Semantics of a Language ofRealisers

Let arbitrary a e D. It is to show f(a) = (a) £ (/((p) f («)))• The right-hand side
of above equation

(a >?(/((p)C(a)))

= W C (IM C»I{*:=(P>;«P>C(«))])
= (<r)f([M]?T}[.x:=<p)C(a)])

We need to show := (p)£(a)] = (<t)£([[M]]£j)[.x:= (p)f(a)]).
Define 7ja := 77 [x := (p)£(a)]. We have the following

r , * : p h Jlf: or A »}<, e DT,*: p]? =* Jja € [ff]]?- (IH1)

Since we have the assumption 77 G [T] f , in order to apply IH1, we need to show
77a G [T ,x: p] f , i.e. to show 7jfl(x) G [p]C.
This follows by 77a(x) = (p)f(a) G (p)C(D) = [p] f .
By IH1, we have \M$T]a £ [cr]f.
Thus, pf]]C71a = (ff>e(M<7Ja).

^ T ,x : T b Af: T
T I- rec x : T.Af: t

We need to show [rec x : T.AfJ^?] g [t]£ .
By Definition 2.3.7, we have [recx: t.M]]^77 = LFP(/) where f (a) := [AfJ^Tj [x :
= <T>C(«)]-
Then it is to show LFP(/) G [t]£.
Define 77' := 77 [x := (r) f (fc)] where b = LFP(/). We have the following

r ,* : t h Ilf: tAJJ; € IT>: =► M t y 6 M f • (Ml)
Since we have the assumption 77 G [Fj| f , in order to apply IH1, we need to show
77' G [r ,x : r j f , i.e. to show 77' (x) G [r j f .
This follows by t\'(x) = (t)£(&) £ (T)C(D) = M ?-
By IH1, we have 6 H f , i.e. (t)C(&)] 6 M f , i.e. /(h) e
tt*K-
Since b = /(fc), we have LFP(/) G [T]]f.

5 T b M : p —> a T b AT: p
T b M A f:a

We need to show [AfA7j| ̂ 17 G [cr]]£.
By Definition 2.3.7, we have two cases.

Domain-theoretic Semantics

(1) If M ?J} = Fun(/), then = /([Wjft}).
We need to show /([A ^ t j) G [afl£, i.e. = <<r)C(/(M f »?)).
We have the following

p f l ^ e l l p - a U , (IH1)

G [[pi?. (IH2)

By IH1, we have = (p —> <r) ̂ ([[Af]] ̂ T|), i.e. Fun(/) = (p —►
a) f (Fun(/)). By Definition 2.3.2, we have / = (o) ^ o f o (p) f ,
i.e. /([JVflffj) = <cf)C(/«P>C(E^V]]C»7)))-
By IH2, we have [Affl̂ ?] = (p)C([A^T7).
Then we get/([AT]£77) = (<?)£(/([#]] £77)).

(2) Otherwise, [MW] £77 = _L. We need to show _L G M C -
This follows by Definition 2.3.2.

6 n ~ M :p r \ - N : o
T h Pair(M,A/): p x a

We need to show [Pair(M,TV)]^T] g [p x a] { .
By Definition 2.3.7, we have [Pair(M,7V)]|^r7 = Pair([Mj^rj, [W]^).
By Definition 2.3.2, we have [p x <y]f = (p x cr)C(D) = Pair([p]£, [a] f) U
{-L}.
Then it is to show Pair([Mj^77, [W]^) G Pair([p]f, [cr]]f),
i.e. to show [MJ^tj G [p]£ and [WJ^tj G [<t]£.
This follows by

\ M f t \ G IpK , (IH1)

G l a K - (M 2)

? THM :p
T b Left(M): p + a

We need to show [Left(M)]|^r] G [p + <r]f.
By Definition 2.3.7, we have [Left(M)J^r] = Left([Af]]^r]).
By Definition 2.3.2, we have [p + c] f = (p + (D) = {(p + o)^(a) \ a =
Left(&),fcGD}U{(p + cr)£(a) | a = Right(fc),fcGD}U{_L}, and (p + a)£(a) =
Left((p)f (b)) if a = Left(fc).
We need to show Left([MJ^tj) G {Left((p)f (6)) | & G D} = Left([p]]f), i.e. to
show [MJ^jj G Qp]]C-

29

2. Domain-theoretic Semantics of a Language ofRealisers

This follows by

g |p]|c. (i h i)

8 T \ - M : a
r h Right(M): p + a

We need to show |[Right(M)]|^rj e [p + a] f .
Similar to the case Left.

g T h M :p + a r , jc i :p h L :T F,jc2 : cr I-/?: t
T h caseM of (Left(jci) —> L;Right(^2) —> • T

We need to show [caseM of { Left (*1) —► L; Right (*2) —► ^ } ^ rl £ [t]£ .
Let [case 7] be [caseMof{Left(jti) —»-L;Right(jC2) —►
By Definition 2.3.7, we have three cases.

(1) If [Mj^ry = Left((p)£(a)).
Then [case] Cry = lL^r}[x := (p)f (fl)].
It is to show [IflC77 [x := (p)£ (a)] e [t]£ .
We have the following

Va 6 D.p#T)[* := <P)C(a)] G M f -

Since we have the assumption 77 e [T] £, in order to apply IHI, we need to
show Vy e dom (r,x: p). T][x := (p)£(a)](y) e [(F,jc : p)(y)JC.
The checking is similar to the previous one.
Applying IHI, we have [L]^ [x := (p)£(<*)] G [tJ£.

(2) If [M ^r]= R igh t((a)£(*)).
Then [case]] £77 = [R]£r][;t:= (<r)£(a)].
It is to show [R]^r][x := (<r)£(a)] e [t]£ .
We have the following

Va € := (<T>?(a)] € W ? . (IH2)

Since we have the assumption 7j e [T] £, in order to apply IH2, we need to
show Vy e dom (r,x: a). r\[x := (cr)£(a)](y) € [(! > : a)(y)J£.
The checking is similar to the previous one.
Applying IH2, we have [/?]£ 7 7 [jc := (cr)£(a)] e [tJ£ .

(3) Otherwise, [case]] £77 = _L. We need to show _L e [t]£ .
This follows by Definition 2.3.2.

30

Domain-theoretic Semantics

1 0 T b M i p x a F ,x : p , y :G \ - N : t
r b caseM of {Pair(x, j) —> N} : T

We need to show [caseM of(Pair(jt,;y) —► € [t]]£.
Let [case]] 7̂] be [caseM of {Pair (x,
By Definition 2.3.7, we have two cases.

(1) If[M]]^=Pair((p)C(a),(or)?(ft)).
Then [caseJ^rj = lN^r][x:= (p)£(a),y:= (o)£(b)].
It is to show [iVj^rj[x:= (p)£(a),y:= (o)£(b)\ e [r j f .
We have the following

Va,b e D.[pV]]C7}[*:= (pK(«),y ■= W f (*)] 6 [MIC- (Ml)

Since we have the assumption rj e [T] £, in order to apply IHI, we need to
show Vz € dom (r>: p , y : a) . r}[x := (p) £ (a) , y := (o) \ (b)) (z) e [(r > :
P>y:<*)(z) K-
The checking is similar to the previous one.
Applying IHI, we have [A ^ tjI* := (p)£(a),y := (a) f (fc)] G [?]]£.

(2) Otherwise, [case] £77 = _L. We need to show _L e [t]£ .
This follows by Definition 2.3.2.

^ rb M ip 'f f ix a .p '/a]
r b In(M): fix a .p '

We need to show [In(M)]£rj e [fixa.p 'Jf.
By Definition 2.3.7, we have [In(M)]]^7] = In([M]]^7j).
Then it is to show In([Mj^7]) e [fix a .p 'flf.
By Definition 2.3.2, we have

[fix a .p '] C
= LFP(Ap.Aa.casein a (A&.In((p')f [a := p](fc))))(D)
= {In((p')f [a := fixa.p ']^)) | b e D} U {±} (taking p:= fix a .p ')
= In((p'[fixa.p7a])C(D))u{±}

= Indp 'Ifixa.pV allO ui-L }

We need to show In([Mj^7]) e IndJp'Ifixa.p'/aJJQ.
This follows by

€ [p'lfixa.p'/aJK- (M!)

31

2. Domain-theoretic Semantics o f a Language ofRealisers

^ 2 r h M : fixa.p ' r ,x : p '[fixa.p '/a] \-N: a
r h caseM of (In(;c) —► N} : a

We need to show [[caseM of{In(jc) —► N}^ t] e [[cr]]C.
Let [casefl^T] be [[caseM of {In (jc) —> A/}] £77.
By Definition 2.3.7, we have two cases.

(1) If iMj^ry =In((p '[fixa.p//a])C(a)).
Then [caseJ^rj = [^Vj^r][x:= (p'[fixa.p'/a])£(a)].
It is to show [[7VJ ̂ ?7 [jc : = (p '[fixa .p '/a])f (a)] e [c j f .
We have the following

Va € := (p '[fixa.p '/«])f(a)] e H<r]]C- (M l)

Since we have the assumption 7] G [r] in order to apply IHI, we need to
show

Vy G dom(r,x: p '[fixa.p '/a]).
Tf[x:= (p '[fixa .p '/a])f (a)](y) € [[(r,x :p '[fixa.p7a])(y)l?

The checking is similar to the previous one.
Applying IHI, we have [[A J^ jc := (p'[fixa.p'/a])£(a)] G [[ajf.

(2) Otherwise, [[case]]^7] = _L. We need to show _L G I M I S -
This follows by Definition 2.3.2.

□

2.4 Relating Typed and Untyped Terms
We now relate the semantics of typed terms with the semantics of untyped terms which
are defined exactly as typed terms except that the type annotations for abstraction and
recursion are omitted:

Definition 2.4.1 (Untyped terms)

LoR- 3 M,N,Ri ::= jc | X xM \ MN | recx.M | C(Mi,... ,Mn) |
caseMof{C;(xiJ -► R,};e{l,

The same provisions made in Definition 2.2.2 for typed terms apply here.

The semantics of untyped terms is straightforward. It can be defined exactly as in
the typed case except that the type environment £ : [D —> D]TVar and finitary projec
tions involved in typed abstraction and recursion are omitted.

32

Relating Typed and Untyped Terms

Definition 2.4.2 (Semantics of untyped terms) For every environment 7] : Var —► D
and every LoR- term M we define the value [M] 77 E D.

M n = ij(x)

pfW]]j? = casepun (M j)) (A /./(M tj))
P jc.M]]tj = Fun(Aa.|[A/]]T][jc := a])

[recjc.M] 7] = LFP(Xa. p f] 7) [x: = a])
[[c a s e A f o f -* R,•}/]!? = caseCl)...,cn (M ^ l) (A3.[/?/]]tjR := a])i

Our main result, the Coincidence Theorem 2.4.16, only applies to terms that are
typed w.r.t. to a restricted notion of types where fixed point types fixa.p are allowed
only if p is positive in a.

Definition 2.4.3 (p positive/negative in a)
a is positive in a.
1 is positive and negative in a.
p —► <7 is positive in a if p is negative in a and a is positive in a.
p —»<7 is negative in a if p is positive in a and a is negative in a.
p + a and p x cr are positive in a if p and <7 are positive in a.
p + a and p x a are negative in a if p and a are negative in a.
fix]3.p is positive in a if a = p or p is positive in a .
fixp.p is negative in a if a = j3 or p is negative in a.

Definition 2.4.4 (Regular types) We define regular types p as follows.
1 is regular,
a is regular.
p + (T, p x <t, p —► cr are regular if p and <7 are regular,
fix a .p is regular if p is regular and p is positive in a .

Example 2.4.5 fix a . (a —► a) is not regular, since a —* a is not positive in a .

In the following all types are assumed to be regular.
The proof of our main result uses a logical relation based on the notion of admissi

bility. It has been used in [AJ94] and generalised in [Pit93], where it is used to prove
properties of least fixed points.

Definition 2.4.6 (Admissible relation) A relation r C D2 is called admissible if it sat
isfies

1. (l , - L) G r .

2. If (dn,d'n) e r and (dn,d'n) C (dn+ud'n+1) for all n, then Un€N{dn,d!n) E r.

33

2. Domain-theoretic Semantics of a Language of Realisers

Note that a finite relation r C D2 with (_L, _L) G r is always admissible.
Let Ad := {r C D2 | r is admissible}.

Lemma 2.4.7 Ad is a complete lattice.

Proof We know (^ (D 2), C) is a complete lattice, and if X C ^ (D 2), then UX = UX
and nX = nX. Clearly, Ad C «^(D2).

We need to show Ad is a complete lattice. It suffices to show that either every
subset has a least upper bound or every subset has a greatest lower bound. First, we
show that if we have a set of admissible relations, the intersection is admissible again.
And then it follows this intersection is the greatest lower bound in Ad.

LetX C Ad. Then HX = {(x,y) G D2 | Vr G X.(x,y) G r}.
We need to show nX is admissible, i.e. to show the following two statements hold.

• (_L,_L)GnX.

All relations r G X are admissible and every admissible r contains (_L,±).

Therefore, (±,_L) G HX.

• If {xn,yn) G HX and (*„,?„) C (*„+!,yn+i) for all n, then Une^(^n,y«) e HX.

Since D is a domain, Unxn and Unyn exist. Thus, U„e^(xn,y„) = (Unxn,\Jnyn)
exists.

Let r G X. We need to show U„eiv(xAl,yn) G r, i.e. (x,y) G r where j c = Unxn andy = L-Iny„.

Since X C Ad, r is admissible.

By assumption (xn,yn) G r for all n. Thus, (x,y) G r.

Therefore, I— (%n?yn) C OX.

□
To prove our main result we define a logical relation ~ J c D x D which can intu

itively be understood as a notion of equivalence of elements of a regular type p. We
use the informal (second-order) lambda abstraction (Ar G Ad.) to define functions on
the set Ad of admissible relations on D.

Definition 2.4.8, Lemma 2.4.10 and Lemma 2.4.9 below should be considered si
multaneously, in order to guarantee that the definition is well-defined. We use the fact
that every monotone function / on a complete lattice L has a least fixed point LFP^(/).

Definition 2.4.8 (Logical Relation) We define a relation ~pC D x D for every regular
type p and every family of admissible relations R G Ad1̂ (i.e. R{ct) G Ad for all

34

Relating Typed and Untyped Terms

a e TVar).
R

~1
R

= { (± ,1), (Nil,Nil)}
= R(a)
= {(-L,-L)>U{(Palr(«i,«2),Pair(i»i,*2)) | ai ~Jj, bu a2 b2}

P1+P2 := {(-L,X)}U{(Left(ai),Left(fci))|ai~* ii}

U{(Right(a2),Right(l>2)) I « 2 b2)
= {(-L.-L)}U{(Rin(/),Fnn(g)) |

Va,b £ D(a fc => f (a) g(6))}

= LFPAd(Ar 6 Ad.{(_L, _L)} U {(In(a),In(6)) | a ~ f a '=r] b})

R
~ P l * P 2

R
~p->o

R
J fixa.p

Remark Logical relations [Plo73] have been used successfully to prove properties of
typed systems. Famous examples are the strong normalisation proofs by Tait and Gi
rard using logical relations called computability predicates or reducibility candidates.
The crucial feature of a logical relation is that it is a family of relations indexed by
types and defined by induction on types such that all type constructors are interpreted
by their logical interpretations, e.g. —> is interpreted as logical implication.

Lemma 2.4.9

(1) If p is positive in Of, then Ar C D2. is monotone in r.

(2) If p is negative in Of, then Ar C D2 p^a ' ^ is anti-monotone in r.

Proof. By induction on p.

1 . p = l.

For (1), to show for r\ C r̂ >

For (2), to show ~ ^ a '-r2^c~^[«--ri] for ri c

By Definition 2.4.8 we have [̂a--r2]_ (Nil,Nil)}.
Proved by equality.

2. p = a.
Since Of is not negative in Of, there is only one case.

We need to show ~ ^ a '- r i^ C ~ ^ a '-r2 ̂ for r\ C r2 .

We get ~ ^ a '-ri^= /?[of := ri](of) = r\ and ~ ^ a _r2^= /?[of := r2](of) = ri by
Definition 2.4.8.
We get rd c ~ $ a ’=r ̂ by r\ C r2.

35

2. Domain-theoretic Semantics o f a Language ofRealisers

3. p = p i x p i .

For (1), to show Ar C D2. is monotone, i.e. ^ p l x ^ Q ^ p l x ^ for
n C r2.

For (2), to show Ar C D2. is anti-monotone, i.e. ^ p l x ^ ^ p l x ^
for r\ C r2.

We get = {(X, X)} U {(Pair(ai,a2), Pair(fci,h2)) | ai ~p | “ :=ri1 &i,a2 ~
t̂ ‘:=n]b2}, and~pj“:=r2,= {(X,X)}u{(Pair(a1,a2),Pair(fci,fe2)) | at ~p | “ :=n21

fcl,a2 ~p]a _r2 ̂b2} by Definition 2.4.8.

We need to show Ar C D2. ~p, and Ar C D2. ~pja are monotone and
anti-monotone.
For (1), since pi x p 2 is positive in a , we get pi and P2 are positive in a. By
I.H. we get Ar C D2. ~p]a'- ^ and Ar C D2. are monotone.
For (2), since pi x p2 is negative in a , we get pi and p2 are negative in a. By
I.H. we get Ar C D2. ~p)a'- ^ and Ar C D2. are anti-monotone.

4. p = P i+ P 2 .
Similar to the proof of pi x p2.

5. p = p —► a.

For (1), to show Ar C D2. is monotone, i.e. ~ p ! ^ ri^ C ~ p !^ r2̂ for
n c r2.

For (2), to show Ar C D2. ~ p ! ^ ^ is anti-monotone, i.e. ~p5 Q 5 <Tri ̂
for ri C r2.

By Definition 2.4.8 we have r J ^ ~r̂ =z
{(-*->X)}u{(Fun(/),Fun(g)) | Va,£>eD(a~p[“ :=ri1 b =>• /(a) ~ £ [a:= ri1 g(b))},

and~p!^CTr̂ =
{(-L. X)}u{(Fun(/),Fun(g)) | Va,b € D(a ~ p |a:=rj| fc =4* /(a) ~ £ [a := ' 21 g(h))}.

For (1), assume Ar C D2. ~p^“'- ^ is anti-monotone, to show Ar C D2. r
is monotone.
Since p —► cr is positive in a , we get p is negative in a and a is positive in a .
By I.H. we get Ar C D2. is monotone.

For (2), assume Ar C D2. ~pf“'- ^ is monotone, to show Ar C D2. is
anti-monotone.

Relating Typed and Untyped Terms

Since p —> a is negative in a , we get p is positive in a and a is negative in a.
By I.H. we get Ar C D2. is anti-monotone.

6 . p = fix/3.p.

For (1), to show is monotone, i.e. for r\ C r2.

For (2), to show is anti-monotone, i.e. for ri C r2.

By Definition 2.4.8 we have

~ S ^ ,|,= LFP(A»/ CD».{(±, j.)}L){(Iii(a),lh(i>)) a ~ p '“:=riP:=/| b}), and

~ S p . r '= LFP(A>J - D2 -{(-L.-L)}U{(In(a),In(fo)) | a fc}).

Let = LFP(4>,) (i = 1 ,2) where d*,: £?(D2) —» ^ (D 2) and

,•(0 = {(_L,X)} U {(In(a),In(£>)) | a ~[“:=r'P :=''] *}.

By Lemma 2.1.11 with setting L := <^(D2), it is to show <Fi C <J>2 or <I>2 C d>i
respectively for (1) and (2), i.e. to show Ar C D^Ar7 C D2. rJ^a-~r̂ are
monotone and anti-monotone.

For (1), since fix/3.p is positive in a, we get p is positive in a and j3. By I.H.
we get Ar C D2.A / C D2. rs ^ a'~r̂ '~ r̂ is monotone.

For (2), since fixj3.p is negative in a , we get p is negative in a and /3. By I.H.
we get Ar C D^Ar7 C D2. rJ^a’~r̂ [s anti-monotone.

□
Lemma 2.4.10 We assume R e AdTVar. Then ~p is admissible.

Proof. By induction on p.
Trivially we have (_L, _L) in all relations. So we now focus on proofs of the second

clause of admissibility (Definition 2.4.6).

• p = l.

Since is a finite relation containing (_L, J_), we get is admissible.

• pi x p2.

Let (dn)neN be a chain in rv»p xp2« Then dn = (Pair(an,^),Pair(^rt,^)) where
an Q an+h a’n E a'n+v bn E bn+u bfn C bfn+l for all n. Hence, (an,bn)neN is a
chain in and (a'n,b'n)neM is a chain in

37

2. Domain-theoretic Semantics of a Language ofRealisers

Since ~ Pl and are admissible, we get U(an,bn) = (UaniUbn) and
u (a n M = (U a 'n>u b n) So (Pair(Ua„,Ufen),Pair(U ^,U ^)) e~piXp2.
Since (Pair(Uart,U^n),Pair(UaJl,U^Jl)) = U(Pair(a„,aJl),Pair(^,^Jl)) = Lid*, we
getU dn e~*ixp2.

• P = P i+ P 2 .
Let (dn)neN be a chain in ~p1+P2. Since it is an increasing chain, then dn could
be (1 ,-L), or (Left(an),Left(fc„)), or (Right(«n),Right(^)). w.l.g. we getd„ =
(Left (an), Left (&„)) and an ~pt bn. Since dn C dn+1, then we have an C an+1,

Q bn+\ for all n. Hence (an,bn)neN is a chain in ~ Pl.

Since ~ Pl is admissible, we get U(a„,&n) = (Uan,U£n) G~pr Hence, we have
(Left(Uan),Left(uZ7Al)) ^~p1+p2*

Since (Left(Uaw),Left(Ufew)) = Udn, we get Udn £~p1+P2.

• p = p a.
Let (dn)neN be a chain in Then dn = (Fun(/„),Fun(gn)) where f n , g n e
[D - D] s.t. Va,b G D((a,b) E~*=> (fn(a),gn(b)) G ~g).

Hence, (f n (a) , g n (b)) n e N is a chain in Since is admissible, we get
(U/w(a),Ugn(^)) G ~ g .

Then we have Uc?n = (Fun(/),Fun(g)) where f = Ufn and g = Ugn, i.e. /(a) =
U(/„(fl)) and g(b) = U(gn(b)). Therefore, Udn

• fixa.p.

We have ~gxo.p= LFPAd(^) where

<I>: Ad -+ Ad
®(r) = {U>-L)}'-j {(In(a)>In(*)) |a ~ p '“ :=rL } .

First we have to show that indeed : Ad —> Ad. Let r G Ad. We have to show
d>(r) G Ad. The proof is similar to the proof of pi + P 2 . By Lemma 2.4.9, we
have is monotone. Then the least fixed point exists, we have p is
admissible.

□
Definition 2.4.11 (Compatibility) Let r C D2 and p G [D —* D]. We call r and p
compatible, in symbols r « p, if

(i) Vfl,ftGD(r(fl,fc)->p(fl)=/?(fc)).

38

Relating Typed and Untyped Terms

(ii) \ /aeDr(p(a),p(a)).

(iii) \/a,b G D(r(a,b) —► r(p(a),b)).

We call R G ^ (D 2)TVar and £ G [D —> D]1̂ compatible, in symbols /? ~ £ if R(oc) «
£(a) holds for all a G TVar.

To obtain an example of compatibility one may take any idempotent p G [D —► D]
and define r C D2 by r := {(<z,&) G D2 | p(a) = p(b)}. Then, clearly, r « p.

Lemma 2.4.12 If /? is admissible, £ is a finitary projection, and R « £, then ~p «
(p)C.

Proo/ We write r «,y,- p for the notion of compatibility obtained by deleting property
(iii) in Definition 2.4.11. Similarly, r «,-,•/ p means compatibility where properties (i)
and (ii) are deleted. The notions R £ and /? ^,77 £ are defined mutatis mutandis as
in Definition 2.4.11.

We show that if R is admissible and £ (a) is a finitary projection, then:

(1) If R&i,a £, then « fif/ (p)£.

(2) If R ~ /,7 £, then ~p (p)£.

Both statements are proved by induction on p.
First we prove the statement (1).
Casel:
(i) Assume a b. We have to show (l)£(a) = (l)£(fc).
By Definition 2.4.8, if a = b = _L, we have (l)£(a) = _L = (l)£(fc) by Defini

tion 2.3.2.
If a = b = Nil, we have (1)£(«) = Nil = (l)£(fc) by Definition 2.3.2.
(ii) Let a G D. We have to show (1)£(a) (l)£(a).
If a = Nil. Then by Definition 2.3.2, we have (l)£(a) = Nil and Nil Nil.
If a ^ Nil. Then by Definition 2.3.2, we have (l)£(a) = _L and _L _L.
Case a:
L e tf l (a) := { (a o A) I C(a)(flo) = £(a)(fco)}.
(i) Assume a k We have to show (a)£ (a) = (a)£(b). By Definition 2.3.2, it

is to show £(a)(a) = £(«)(&).
By Definition 2.4.8, we have a ~ ^ b = R(a)(a,b).
(ii) Let a G D. We have to show (a)£(a) (a)£(a), which follows by R « £.
Casep + a:
(i) Assume a ~p+(y We have to show (p + cr) £ (a) = (p + a) £ (£).
By Definition 2.4.8, if a = b = _L, we have (p + cr) £ (a) = _L = (p + <r)£(fc) by

Definition 2.3.2.

39

2. Domain-theoretic Semantics of a Language of Realisers

Ifa = Left(ai) and& = Left(&i), by Definition 2.3.2 we have (p + a) f (Left(ai)) =
Left((p)f(ai)) and (p + (Left(fci)) = Left((p)£ (b\)). By induction hypothesis
(i)ofp,w ehave(p)f(fli) = (p>f(Z?i). ThenwegetLeft((p)£(ai)) =Left((p)£(fci)).

If a = Right(ai) and b = Right(fci), we get (p + cr) £ (Right(ai)) = Right((p) £ (ai))
and (p 4- <r)£(Right(6 i)) = Right((p)£(&i)) by Definition 2.3.2. Again from induc
tion hypothesis (i) of p, we get Right((p)£(<zi)) = Right((p)£ (fci)).

(ii) Let a G D. We have to show (p 4- <r) £ (a) ~p+<T (p + cr) £ (a).
If a = Left(ai), it is to show Left((p)£ (a\)) ~p+CT Left((p)£(ai)) by Defini

tion 2.3.2, then it is to show (p)£(ai) ~p (p)£(ai). This follows by the induction
hypothesis (ii) of p.

If a = Right(fci), similar to the proof of case Left(ai).
Casep x g :
(i) Assume a ~ pXOb. We have to show (p x o)£(a) = (p x cr)£(fc).
By Definition 2.4.8, if a = b = _L, we have (p x cr)£(a) = _L = (p x <r)£(fc) by

Definition 2.3.2.
If<z = Pair(ai,tf2)>£ = Pair(fci,fc2), we get (p x a) £ (Pair (a 1 ,^2)) = Pair((p)£ (ai),

(<7)£(a2)) and (p x <r)£(Pair(£i,fc2)) =Pair((p)£(fci),(a)£(fc2))by Definition 2.3.2.
By induction hypothesis (i) of p, we have (p)£(ai) = (p)£(£>i). By induction hypoth
esis (i) of <t, we have (cr)£(<z2) = (ct)£(^2)-

Then we get Pair((p)£(ai), (a)£(a2)) = Pair((p)£(fci), (<7)£(fc2)).
(ii) Let a G D. We have to show (p x a) £(<2) ~ pXC7 (p x a)£(a).
Ifa = Pair (a 1,02)5 by Definition 2.3.2 it is to showPair((p)£(oi), (a)£(<22)) ~px<r

Pair((p)£(0i),(<j)£(a2)), then it is to show (p)£(ai) ~p (p)f(fli) and (a)£(o2)
(ct)£(o2)- This follows by the induction hypothesis (ii) of p and a.

Casep —► <t:
(i) Assume o ~ p ^ a b. We have to show (p —► c)£(a) = (p —)► <r)£(fc).
If o = b = ± , then this is trivial.
If a = Fun(/) and b = Fun(g). By the definition of ~p_>cy (Definition 2.4.8), we

have

Vc,d G D(c f(c) g(d)) (*)

By Definition 2.3.2, we have (p —► cr)£(/) = Fun((<7)£ o f o (p)£) and (p —♦
°K (g) = Fun«<r)f o <p)f)•

Let c 6 D. We need to show (<?)?(/((p)?(c))) = (<*)?(«((p)C(c)))-
By induction hypothesis (ii) for p we have (p)£(c) ? <p>cw.
Then by (*) we have / ((p) f (c)) «((p)C(c)).
Then by induction hypothesis (i) for (7 we have

<ff>f(/((p>C(c))) = (a)C(*(<p>C(c)))

(ii) Let a G D. We have to show (p —► <r)£(a) (p —> <r)£(a).

40

Relating Typed and Untyped Terms

If a ^ Fun(/). Then (p —> o)^(a) = ±. Thus _L ~p_+a _L.
If a = Fun(/), then, by Definition 2.3.2, we have (p —► <r)f (a) = Fim((<y)f o f o

(P K) .
We need to show Fun((<r)£ o f o (p)Q Fun((a)£ o f o (p) f). By the defi

nition of ~p-*cr (Definition 2.4.8), it is to show

Vc,<f 6 D(c rf => <ff>C(/«p){;(c))) (o K (f ((p K (d m -

Assume c ~p d. By induction hypothesis (i) for p, we have (p)£(c) = (p)£(d).
Then /((p>C(c))=/((p>f(rf)).

By induction hypothesis (ii) for cr, we have

(a)C (/« p)f (c))) (<7>C(/«p>e(rf)))

Case fixa.p:
By Definition 2.3.2, we have (fixa.p)f = LJnPn where
po = Aa.-L, prt+i = Aa.casein a (Afc.In((p)£[a := pj(fc))).
We set r := and show r pn by a side induction on n. This will be

sufficient, since, as one easily sees, because r is admissible (by Definition 2.4.8), the
conditions (i) and (ii) of compatibility are closed under taking directed suprema of the
right argument. Hence from r pn for all n it follows r ^ u p.

n = 0: (i) is trivial since po is constant, (ii) holds since po(a) = _L and (_L, _L) e r
since r is admissible, by Definition 2.4.8.

n + 1: (i) Assume r(a,b). We have to show pn+i(a) = pn+i(b).
If a = b = _L, the equation trivially holds.
Now assume a = In(c) and b = In (d).
Then pn+i(a) = In((p)£[a := pn](c)) and pn+i(b) = In((p)f [a := pn](d)), and

we have c d by the definition of r.
By the side induction hypothesis, r pn.
Hence, by the main induction hypothesis, rJ^a ~r̂ ~ iU (p)f [a := pn\, since r is

admissible and pn is a finitary projection (see proof of Lemma 2.3.6).
It follows (p)f [a :=pn](c) = (p)f [a := Pn](d) and therefore pn+i{a) = pn+i(b).
(ii) Let a G D. We have to show r(pn+i(a),pn+i(a)).
If a = _L, then pn+i (a) = _L and r(_L, _L) holds by admissibility of r.
If a = In(c), thenp„+i(a) = In((p)f [a :=p„](c)).
By the side induction hypothesis, r pn•
Hence, by the main induction hypothesis, (p)f[a := pn], since r is

admissible and pn is a finitary projection (see proof of Lemma 2.3.6).
It follows (p)C[a :=pn](c) ~ p [a:=r] (p)f[a :=p«](c).
Therefore p„+i(a) ~£xap p„+i(a), i.e. r(pn+i(a),p»+i(a)).

41

2. Domain-theoretic Semantics of a Language ofRealisers

Second, for statement (2), we only show two interesting cases, p —> a and fix a.p.
Casep —► a:
Assume a b. We have to show (p —► a) f (a) b.
If a = b = X, then (p —> a) f (a) = _L = b. Thus _L ~p^<7 X.
If a = Fun(/) and b = Fun(g), then by the definition of ~p-+<7, we have

Vc,d e D (c~ * d = > /(c) ~* *(</)) (*)

By Definition 2.3.2, we have (p —> a)f(a) = Fun((t7)£ 0 / 0 (p)f).
We need to show Fun((a)£ 0 / 0 (p)f) ~p->o- Fun(g). By the definition of ~p^<7,

it is to show

Vc,d G D(c d <<?)£(/((p)C(c))) ~ 5 £(<*))•
n

Assume c ~p X By induction hypothesis for p, we have

(p K (c) ~ $ d (IH(iii))

Then by (*) we have /((p)£(c)) ~<xg(d), and by induction hypothesis for <r, we have

(° K (f ((p K (c))) ~ Rog(d)

Case fixa.p:
Set r := ~ fixa p and p := (fix a.p) f . We have to show that r(a, &) implies r(p(a), &),

i.e. r Q where5 := {(a,&) | r(p(a),&)}.
We verify that rf is ~m p holds. Indeed, if (r n s)(a,b), then r(p(a),b) since

s(a,b) holds, and hence, since by Lemma 2.3.6 p is idempotent, r(p(p((a)),b) since
s(p(a),b) holds, i.e. (rn s)(p(a),b).

Since r is the least fixed point of the operator <I> := Ar.{(X, X)} U {(In(a),In(fc)) |
a b} we can attempt to prove the inclusion r C s by induction on d>, i.e.

Q s.
In fact we use the strong induction principle (see, for example, [Berl 1]) accord

ing to which it suffices to show <J>(rfi.s) C s (instead of d>(s) C s). Clearly (X,X) e s.
Hence we assume a jy ^ave t0 show r(p(In(a)), In(fc)). Since p(In(a)) =
In((p)C[ct := p](a)) andr = 0(r), wehavetoshow<I>(r)(In((p)f[a := p](<z)),In(fc)),
i .e . ,(p)C [a := p] (a)^ [a:=rU .

By induction hypothesis, and because r f ls ~m p, (p)f [a := p](a) ^ [a -rnsl £
I and hence (p)f[a := p](a) b, by monotonicity (Lemma 2.4.9). □

The next theorem is the core of the proof of the Coincidence Theorem (Theo
rem 2.4.16). For its proof we need the following auxiliary lemmas.

Let X be a set of type variables. We define R =x R1 as Va E X(R(a) = R'{gc)).
Thus, R = x R ' A Y C X = > R = y R'.

42

Relating Typed and Untyped Terms

n gt
Lemma 2.4.13 ~ T= ~ T i f R and R! coincide on all free type variables o f T, i.e.

R = F T V (t) R -

Proof. By induction on T.

1 . T = l .
R R fWe need to show

This follows by = ~ ^ = {(_L, J_), (Nil,Nil)} (Definition 2.4.8).

2 . t = a.
D ^

We need to show ~ a = ~ a •

By Definition 2.4.8, we get ^(°0» and = Rf(&)-

Since /? = ftv (t) w e have ~ a= ~ a •

3. r = p x a.

We need to show ~Jxa=~px<r

By Definition 2.4.8, we have ~ pX(T= {(_L,_L)} U {(Pair(<zi,<Z2)>Pair(&i,fc2)) |
~p&i,02 -5 ^ 2 } ,a n d -p X<T={(X,X)}U{(Pair(ai,a2),Pair(^i,62)) |«i ~p

&1,02 &2}-

By I.H. (i.e. ~p=~p and ~ * = ~ £), we have ~ pXG=~pXG-

4. T = p + (7.
Similar to the proof of p x (7.

5. T = p —> <7.
n /J/

We need to show ~ p ^ a= ~ p ^G.

By Definition 2.4.8, we have ~p_>CT= {(±,_L)} U {(Fun(/),Fun(g)) | E

D(a /(a) ~§ g(*))}, and ~ p _ ff= {(-L,-L)}U {(Fun(/),Fun(g)) | Va,h
6 D (a ~p fc =» f (a) s(i>))}.

By I.H. (i.e. ~ p = ~ p , ~<j=~o-)> ~p^o=~p->o-

6 . t = fixa.p.
/?We need to show ~ fixo.p- -flxo.p.

By Definition 2.4.8, we get ~gxa p= LFP(Ar C D2 .{(In(a),In(£>)) | a ~p^a' ^

b}), and ~Jfxa.p= LFP(Ar C D2 .{(In(a),In(h)) | a ~ p [a:=r] b}).

43

2. Domain-theoretic Semantics of a Language of Realisers

'fixa.p1

□
By I.H. (i.e. ~p=~p and R = f t v (t) r ')> we have ~*xa p='

Lemma 2.4.14 (Substitution for ~p)

r _ rt[a:=~J]
~p[*/«]— P

Proof By induction on p.

1. p = l.
Trivial, , since there is no variable a to be substituted.

2 . p = a.

We need to show

For the left-hand side of the equation we have ~a[T/a]=~? •

For the right-hand side we have T̂ = /?[« :=~?](ce) = ~?.

By equality, we have ~ a[t / 0]= ~ a [“ '=~ '1-

3. p = pi x p 2 .

We need to show (xp2)(t/o]=~p!“ ft~fl-

For the left-hand side of the equation we have ~fPl x =~p, [r/«] [t/«]

= { (X ,X)}u { (P air(a i,a2),P air(h i>h2)) I ~ p 1[f/ 0] b l ' a i ~pz[t/«] ^

We have {(-!-,_L)} U {(Pair(ai,0 2),Pair(hi,h2)) I a\ ~pj“ tI b\,

a2 ~p|a’ b f\ for the right-hand side.
We have the following

r l?[a:=~J]
r \j T ,

P i [r / o] P i

r rt[a:=~f]
Pi[x/a\ P2

Applying IH1 and ffl2, we have ~fpi xp2)[t/a]=~p!“ ft~ ' 1

4. p = P ! + P 2 .

We need to show ~ ^ 1+p2)(f/<xl= ~ p1[̂ ~ fl-

44

Relating Typed and Untyped Terms

For the left-hand side of the equation, we have ~?p1+P2)[t/al= ~ £l[f/a]+P2|t/o]
= {(-L.-L)}U{(Left(ai),Left(f»i)) | ai £>i}U{(Right(a2),Right(£>2)) I

a i ~

For the right-hand side we have ~p |xpP ^= {(-L,-L)} U {(Left(ai),Left(hi)) |

fll ~pl“:=~tl fei} U {(Right(a2), Right(i>2)) | a2 ~£ja,=~*l b2}.

We have the following

0H1)

0H2)

R _ rt[a:=~J]
~ P i [t / a] P i

R _ / ? [a : = ~ f]
~P2[T/a] P2

Applying IH1 and IH2, we have ~ ^ 1+P2)[t/o]=~p1+ft~tl-

5. p = p —► CT.

We need to show ^ <j)[T/a|=~£!%=~*1.

For the left-hand side of the equation we get ~ J ,_ <r)[T/o]= ~ p |t/o]_ <r[f/0|=
{(-L,±)} U {(Fun(/),Fun(g)) \ 'ia ,be D(a ~Jj[T/o] => /(a) «(*>))}•

For the right-hand side we have ~ p ! ^ ~ T̂ = {(_L, _L)}

U{(Fun(/),Fun(g)) | Va,b e D(a b => f (a) ^ 1 “- ^] g(fc))}.

We have the following

R _ /?[a:=~?]
~p[%/a]----P

R _ /?[a:=~J]
r̂ a[x/a]~r̂ a

Applying IH1 and ffl2, we have ~ fp^CT)[T/a]= ~ p^T ~ T]-

6 . p = fix a '.p .

We need to show x „,.p)[t/o]= ~ j h ^ ?I.

For the left-hand side of the equation we have 0,.p)[.r/o)= ~ £ [«'.(p[T/«]):

LFP(ArC D2 .{(±,-L)}U{(In(a),In(h)) \a ~ * [*/=r] b}).

(IH1)

(IH2)

45

2. Domain-theoretic Semantics of a Language of Realisers

R\a-=~R]For the right-hand side we have a, T—

LFP(Ar C D2 .{(1,X)} U{(In(a),In(fc)) | a ~ p |a:=~ 'l|a':=r| b}).
L e t s ' := S [a ':= r] .

We need to show ~|fiT/a]=~p^a ~r'
We have the following

rd _ R'[a:=~?]
p[x/a) P

R R?Then it is to show ~ T = ~ T . This follows by Lemma 2.4.13.

(IH1)

□
Let 77 7}/ denote the following: for all x E dom(r), 77 (jc) ~f(*) Tl'{x)-
Let r hreg M : p mean that T h M : p has been derived using regular types only.
M~ be the untyped term obtained from the Church-style term M by deleting the

type information in lambda abstractions.

Theorem 2.4.15 Assume R is admissible, f is a finitary projection, and /? ~ £. If
r hre* M : p and J] »)', then [A/]|̂ T) P*“]]t}'.

Proof By induction on the definition of the relation T hreg M : p.

1. r hreg N il: 1.
We need to show [[Nil]]^ 77 [[Nil-]]77'.

By Definition 2.3.7 and 2.4.2, we have [[Nil]]^ 77 = Nil and [Nil-]]77' = Nil.
By Definition 2.4.8, we have Nil Nil. Thus, [Nil] £77 [Nil-] 77'.

2. r , j t : p hregx : p.
We need to show [xJ^tj ~p [x-]t77.

By Definition 2.3.7 and 2.4.2, we have [xJ^tj = T7(x) and [x-] t77 = T]f(x).
By assumption, we have 77(jc) ~p 777(x). Thus, [xJ^tj p 1* i»)'-

3 r , x : p ^ M : a
T Y - ^ X x - . p M - . p ^ o '

We have to show p .* : p.A/]] - TJ ~p_<j \Xx.M Jji]'.
By Definition 2.3.7 and 2.4.2, we have

[Ax:p.M]^77 =F un(/) where/(a) = [M]^77[x := (p)£(tf)],
[Ax.M-] 777 = Fun(g) where g (b) = [M-] 777 [x: = b].

46

Relating Typed and Untyped Terms

It is to show Fun(/) Fun(g). By definition of our logical relation (Defini
tion 2.4.8), it is to show

Vfl, b e D(a ~p b=> f(a) #(*>)) (*)

By induction hypothesis for cr we have

Va.fc e D(a ~p b => jj[x := a) p f “]]7]'[x := b\) (IH)

To prove (*), assume a ~jj b. By Lemma 2.4.12 (iii) we have (p)f (a) ~-p b.
Hence := (p)C(a)] := fc].

. r,x
r hreg rec *: t.M : t

We have to show [[rec*: [recjc-M-]]!]'.
By Definition 2.3.7 and 2.4.2, we have

[[rec*: = LFP(/) where f (a) = [[M]l r̂?[* := (t)C(a)]t
[recxM-lT]' = LFP(g) where *(*) = dTkf]] r|' [jc := b\.

Now we have to show LFP(/) LFP(g).
By definition it is to show Un/ n(_L) Ung,I(±).
Since, by Definition 2.4.8, is admissible, it suffices to show that Vn.//I(±)

We do a side induction on rc.
n = 0: We need to show /°(-L) g°(-L), -L ±. This holds by Defini
tion 2.4.8.
n + 1: Assume as side induction hypothesis, / n(-L) g"(_L),toshow / (”+1)(J_)

^ n+1^(X). We have

/("+1>(X) = /CT(-L)) = D*]|Ct|[* := <*>CCT(-L))].
g("+1)(X) = g (/(X)) = tM -ln 'I* := «"(x)].

Then it is to show [M]]^r][* := (t)£ (f n(±))] ^M~^t}'[x := ^"(-L)]. By side
induction hypothesis, we have (r) f (/ n(_L)) g"(-L) by Lemma 2.4.12 (iii).
By main induction hypothesis we have

p/]]fn[*:= <T)ff(/*(X))] [Af-jTj'tx := g”(X)].

5 rH ** Jf:p -x r r hre® N : p
r breg M N : a

We need to show [[M/VJ t̂j §M~N~^r|,.

47

2. Domain-theoretic Semantics of a Language ofRealisers

By Definition 2.3.7 and 2.4.2, we get [fAfTV]]̂ 77 = /(fM^T?) if [[Af]]̂ ?? = Fun(/),
and pr/V -flT ,' = *flprHij') if = N j).
Then it is to show /([A]]^t]) ^([A/'_]]r]/).

We have the following

M f j} IM-] r f OHl)

[ATjri' (IH2)

By IH1 and Definition 2.4.8, we get [[AfĴ r] = Fun(/), J A f = Fun(g),
and Va,fc € D(a f(a) g(£)). Applying IH2, we have /([Af]]^)
g (l N ~ W) -

6 r h r̂ M : p r h ^ N : a
r hres Pair(Af, A) : p x a

We need to show [[Pair(Af,TV)]]^77 ~ p XC7 JPair(M_ ,Â _)]]r]/.

By Definition 2.3.7 and 2.4.2, we have [[Pair(Af,TV)]]^ 77 = P a i r ([[T V]] ^ 77)
and p>air(M-,AT)]]Ti' = Pair ([[AT]] 17', [[TV-Jti').

Then it is to show PairdMfl^rj, [[TV]]̂ ry) ~ pX(T PairdfAf-]]?]', [[TV- J77').

By Definition 2.4.8, it is to show [A fJ^ ~p [[Af-]]^' and [[A^tj [[TV- J]r7'.

This follows by

M cij ~p W ~ W <mi)
[AT]]jj' 0H2)

r hreg Af: p
r hreg Left(Af) :p + o *

We need to show [Left(Af)]|^rj ~p+<y [Left(M~)]]r]/.

By Definition 2.3.7 and 2.4.2, we have [[Left(Af)]]^ 77 = Left^A/fl^T]) and

[[Left(T̂ f-)]] 77' =Left([[Af-]]ry/).

Then it is to show Left([Af]£77) ~p+cr Left([[Af—J|77').

By Definition 2.4.8, it is to show [AfJ^rj ~p [A/-]?]'.

This follows by

M (n ~p HAHn' ohi)

Relating Typed and Untyped Terms

8 r hreg Af: a
’ r hreg Right(Af): p + a *

Similar to the proof of case Left.

9 r hreg M : p + G r , x x : p h regL:r I > 2 : g hreg : t
r hreg caseAf of (Left(;ci) —> L;Right(*2) —>/?}: T

Let [caseAf] = [caseAf of (Left(jci) —> L;Right(jt2) —»■ Z?}]
and [caseAf-] = [caseAf- of{Left(jq) —► L“ ;Right(;t2) —► }]|-
We need to show [caseAfJ^rj [caseAf-]!]'.

easel By Definition 2.3.7 and 2.4.2, we have

[caseAf] ̂ !] = [L]^!J [*i := (p)C(«)] if = Left(*i)
[caseAf-]!]' = [L-]i]'[xi := Z>] if [[AT-]]!]' = Left^i)

Then it is to show [L]£t][*i := (p)f(a)] [L-]!]'[xi := Z>].
We have the following

Va,fc G D(a ~*b=> i := a] [£-]!]'[*i := 6]) (IH1)

Assume a ~p fc. By Lemma 2.4.12 (iii) we have (p)f (a) ~p b.
Hence [L]Ct][*i := (p)C(a)] [L_]i]'[*i :=&].

case2 By Definition 2.3.7 and 2.4.2, we have

[caseM]^!] = lR^r}[x2 := (g)£(a)] if = Right(x2)
[caseAf-] 7]' = [Z r]!j '[* 2 := Z>] if [Af-]!]' = Right(*2)

Then it is to show [Z?] 7̂7 [x2 := (a)C(a)] [Z?-]!]'[jt2 := b\.
We have the following

Va,Z> G D (a Z > => [x2 := a] [fl“]f] '[* 2 := b}) (ffl2)

Assume a b. By Lemma 2.4.12 (iii) we have (<r)f (a) b.
Hence := (<*)£(«)] |[R“W [*2 := &].

^ r h regA / : p x a T ,x : p ,y : G h reg N : T

T hreg caseAf of (Pair(jc,y) —► N} : T
Let [caseAf] = [caseAf of {Pair (x,y) —>ZV}]
and [caseAf-] = [case M~ of {Pair (*,y) —► AT- }].
We need to show [caseAf]^!] [case Af-]!]'.

49

2. Domain-theoretic Semantics of a Language ofRealisers

By Definition 2.3.7 and 2.4.2, we have

[caseMj^rj = (p)£(a),y := (a)C(fc)] if =Pair(*,y)
[caseA/-] ^ ' = := a',y := A'] if [Af-]]?]' = Pair(jc,>?)

Then it is to show := {p)£(a),y := (a)£{b)] lN~W[x := a>̂ :=
b>).
We have the following that Va, b,a',b' G D

a ~ p b A a ' ~*b ' => [A^tjI* := a,y := a'] [AT]]^'!* :=fc,y :=£/] (IH1)

Assume a~p bAa' ~ o b l.

By Lemma 2.4.12 (iii) we get (p)f (a) ~p fc, (a) f (a') fc'.

Hence [[iVj^ri[x:= (p)£(a),y := (a)£(fc)] [AT]]T]/[x := a /,y :=&'].

r h regM :p '[fixa .p '/a]
’ T hre8 In(Af): fix a .p '

We need to show [[In(M)]|^ ~gxap/ pn(Af-)]Tj'.

That is, to show In([M]]^r]) ~gxa p, In(|[A/-]?]') by Definition 2.3.7 and 2.4.2.
D

By definition of ~ fixce p/ (Definition 2.4.8), it is to show

W ~ W

We have the following

W t f n ~p-|ta«.p7«] P*“ K (M i)

/?[a:=~f ,1 p
We need to show ~ p, ’“p = ~ p, [flxa.p7o].

This follows by Lemma 2.4.14.

^ 2 r breg Af: fix a .p ' T,*: p '[fixa.p '/a] hreg N : a
T hreg caseAf of (In(;t) —> A} : c

We need to show [caseAf of (In(jc) —> N } ^ t] [caseAf- of (In(jc) —► ̂ V- }]]^'.
By Definition 2.3.7 and 2.4.2, it is to show
[M^t][x := (p'[fixa.p'/a])C(a)] |[A/’~I1t7/[x:= fc].

50

Conclusion

We have the following

Va,b(a => [A^Tjfx := a] [ATJtj'I* := b}) (IH1)

Assume a ~p b. By Lemma 2.4.12 (iii) we get (p' f ixa.p' /a])£(a) ~p b.

Hence [A]]^[x:= (p '[fixa .p7a])f(a)] [[//“ Jri'tjc := b].

□
The above theorem (Theorem 2.4.15) yields as an immediate consequence our

main result that if from a context T we can derive a LoR term Af with regular type
p, and for every variable x £ dom(T), 7] (x) is an element of [T(jt)] £, then the value of
Af and its corresponding untyped term M~ coincide up to the finitary projection (p)f .

Theorem 2.4.16 (Coincidence) If T breg M : p and 7] £ [r]£ where £ is a finitary
projection, then [Af]^17 = (p) C (1'1)•

Proof. Given a finitary projection f, we define R(oc) := {(a,b) £ D2 | £(a)(a) =
f(a)(fc)}. Then R & £, as explained in the example following Definition 2.4.11.
By Lemma 2.4.15, we then have [A f]^ ~p [[Af—J77. By Lemma 2.4.12 (i), we get
(p)f (JMJ^tj) = (p)C(p#-]|Tf). Then, by Soundness Theorem 2.3.8 and the definition
of (p)?(D), we have [M]^ = (p)C([M]Ctj). Thus, [A f]^ = (p)C([Ar]Tj). □

If T = 0 and p is closed in Theorem 2.4.16, we have the following corollary.

Corollary 2.4.17 If breg Af: p, then [Af] = (p)[Af-].

2.5 Conclusion
We have studied a domain-theoretic semantics for Church-style system LoR of typed
lambda terms and proved that, when restricted to regular types, it is closely related to
its untyped counterpart. The reason for studying this domain-theoretic semantics is
that it allows for very simply and elegant proofs of computational adequacy, and hence
the correctness of program extraction.

Our results could be easily extended to also include full second-order polymor
phism Va.p, 3a.p as in [ABL8 6], but for our application, simple parametric and re
cursive types are sufficient.

The problem of relating typed and untyped readability was also studied by Long-
ley [LonOO]. He used a condition called (constructive) logical full abstraction to con
nect realisability over typed and untyped structures by means of partial combinatory
algebra.

51

2. Domain-theoretic Semantics of a Language ofRealisers

As future work we intend to investigate whether the requirement of regularity is
indeed necessary for our result to hold. Furthermore, we plan to compare the Church-
style system with a corresponding Curry-style system.

52

Chapter 3

Church’s Simple Theory of Types

Contents
3.1 Simply Typed Lambda Calculus.............................. 54
3.2 Interpretation of STLC... 59
3.3 Church’s Simple Theory of Types (C S T)................ 6 8

3.4 Conclusion.. 94

Type theories date back in general to the 20th century. Ramified Theory of Types was
first introduced by Russell [Rus08], and was elaborated in the momentous Principia
Mathematica [WR13]. The original idea of Russell’s type theory is to exclude the set-
theoretic paradoxes, which could be conducted from Frege’s Begriffschrift [Fre79], by
postulating the vicious circle principle. This principle states that no collection can be
introduced by a definition that depends on that collection itself, and is implemented by
the use of a hierarchy of levels of types. Unfortunately, this theory was too weak to
justify classical mathematics. Russell had to introduce the Axiom of Reducibility to
crush the orders down to one. However, Russell’s type theory was never completely
formalised, i.e. there were no formal definitions of the fundamentals types such as
type, proposition or logic formula.

In order to deal with Russell’s paradoxes without the requirement of types, Alonzo
Church introduced what is nowadays called the lambda calculus in [Chu33]. Later
Kleene and Rosser found that the logical system of this lambda calculus was inconsis
tent [KR35]. To avoid the Kleene-Rosser paradox, Church introduced the simply typed
lambda calculus. The simple type theory of Church basically is the simply typed
lambda calculus with the type of individuals and the type of truth values, providing a
notion of logical formulas and a notion of provability.

Building rigorous reasoning systems for hardware and software verifications is a
very demanding endeavour. Church’s type theory equipped with some modifications

53

3. Church’s Simple Theory of Types

and enhancements has been incorporated into theorem proving systems for specifying
and verifying the correctness of mathematical proofs. Notable developments in this di
rection include HOL [Gor88, GM93], IMPS [FGT93], Isabelle [Pau86, Pau89, Pau94],
PVS [ORR+96] and TPS [AINP90]. The logic of HOL is based on Church’s type the
ory extended with equality, implication and a higher-order version of Hilbert’s choice
operator. As types consist of type constants, type variables, and function types, HOL
allows polymorphic types and inference rules for definitions. The IMPS system is
an implementation of a logic based on a partial-functions-version of Church’s type
theory, due to the fact that mathematics focus on the axiomatic method and mainly
on functions including partial functions. Isabelle supports ML-style type inference
with unification, and uses a polymorphic version of Church’s type theory as its logic
language. The syntax of the logic of PVS is encoded in Church’s type theory with
parametric theories and predicate subtyping, since PVS is designed for the specifica
tion and proof of digital systems. TPS is the earliest automated theorem provers based
on Church’s type theory with mating aiming to find an expansion proof [Mil87]. More
recently, LEO-II [BPTF08], whose logic is built on Church’s type theory, implements
an extensional higher-order resolution calculus. Satallax [BB11, Brol2], which ex
tends Church’s type theory with extensionality and choice operators, is a system based
on higher-order extensional tableaux.

In this chapter, we start with the Simply Typed Lambda Calculus (STLC), which is
constructed freely from type atoms. Next, we introduce the notion of an interpretation
from one instance of STLC to another. And then we describe the logic and semantics
of our version of Church’s Simple Type Theory.

3.1 Simply Typed Lambda Calculus
| Although the pure typed lambda calculus has only a rather restricted collection of
I terms and types, its powerful relatively simple extensions have been widely used, and
! hence build up the theoretical foundations of some theorem provers. The simply typed
f lambda calculus (STLC), constructed freely from type atoms, will be presented in this

section. We will describe the basic logic of the STLC and a substitution operating
on typed terms. Later, this STLC will be enriched with more types and other useful
constructs in Section 3.3.

Syntax

The set S of types is generated from a set of base types £8 using the function and
product type constructors, respectively, —► and x .

54

Simply Typed Lambda Calculus

Definition 3.1.1 (Types)

& 3 p , G : : = b \ p —> o \ p x a

where b ranges over 8 3 .

The basic expressions of STLC are called t e r m s , given by the following definition.

Definition 3.1.2 (Terms) We define t e r m s inductively by the following grammar.

1 5 M ,N : : = x \ c \X x :p .M \ M N \
(M,N) | no(M) | m(M)

where x ranges over a set Var of variables, and c ranges over a set ^ of constants.

Definition 3.1.3 (Free Variables) Let M be a term. Then the set FV(Af) C Var of f r e e

v a r i a b l e s of M is defined recursively as follows based on the structure of terms.

• FV(jc) := { x }

• FV(c) := 0

• F V (A jc : p M) := F V (M)/{ jc}

• FV(MN) := FV(Af) U FV(N)

• FV((M,V)):=FV(M)UFV(V)

• FV(«b(Af)) := FV(Af)

• FV (^i(M)):=FV (M)

Typing Rules
A t y p e c o n te x t , also called e n v ir o n m e n t, is a set of pairs T x \ : p \ , . . . , x n : p n (for
notational convenience we omit the curly braces) where p i are types and jc ,- are dis
tinct variables. The set of variables { x \ , . . . , x n } (which may be empty) is denoted by
dom(r). Every type p,- in the context T is denoted by r(x,). Thus, in a context, each
variable occurs at most once, i.e. if (x,pi) 6 T and (x,p2) G T, then pi = P2 . Also we
denote TU { jc : p} as (T ,x: p) which does exclude that jc : p is already in the context
r .

In order to define the type of a term in a context we need a t y p i n g o f c o n s t a n t s , i.e.,
a set ^ of pairs c : p such that if c : p and c : p ', then p = p'.

55

3. Church *s Simple Theory of Types

The relation T h Af: p (Af is a term of type p in context T) is inductively defined
as follows.

r h M : p T h N . G Tl- M ' . p x c T h M i p x G
r h (M,N): p x G r h 7to(M): p T\~7ti(M):G

Lemma 3.1.4 If T h Af: p, then FV(Af) C dom(r).

Proof By induction on M.

• Af = jc .

W e need to show F V (jc) C d o m (r).

We get FV(jc) = {jc} by Definition 3.1.3, and by the typing rule for variables, we
have { jc } C dom(r).

• M = c.
We need to show FV(c) C dom(r).
Since FV(c) = 0 by Definition 3.1.3, we get FV(c) C dom(r).

• M = Xx \ p.M.
We need to show F V (A jc : p.M) C dom(r).
We get FV(Ajc : p.Af) = FV(Af)/{jc} by Definition 3.1.3.
Applying induction hypothesis FV(Af) C dom(r,jc: p), we get
FY(Af)/{jc} C dom(r,jc: p)/{x) = (dom(r) U { * }) / { jc} = dom(r).

• M = MN.
We need to show FV(MN) C dom(r).
We get FV(MN) = FV(M) UFV(V) by Definition 3.1.3.
We have the following induction hypothesis

r,jc: p h jc : p r h c: p if c : p

r,jc: p h Af: g r h M : p ^ G Th N : p
T \ - M N : gr h X x:p .M :p —> g

FV(Af) C dom(r)
FV(V) C dom(r)

Applying IH1 and EH2, we get FV(Af) UFV(V) C dom(r).

(IH1)
(IH2)

56

Simply Typed Lambda Calculus

• M=(M,N) .

Similar to the proof of above case.

• M = 7Uo(M).

We need to show FV(jlq(M)) C dom(r).

We get FV(^o(M)) = FV(M) by Definition 3.1.3. Then it is to show FV(Af) C
dom(r). This follows immediately by the induction hypothesis.

• M =

Similar to the proof of above case.

□
Lemma 3.1.5 (Uniqueness) If T h M : pi and F \~ M : p2, then these derivations are
identical, i.e. pi = P2 .

Proof. By induction on M.
The typing rules are syntax directed. Hence for a given term M , a context F and a

type p, there is at most one typing rule that derives F b M : p.

• M = x.

Since (x,Pi) £ T and (x,p2) 6 T, we get Pi = P2 -

• M = c.

Since c has only one type, we get pi = P2 .

• M = Xx\ p.M.

We need to show p —> G\ = p —► 0 2 .

By induction hypothesis, applied to F,x : p b M : <7i and : p h M : 0 2 , we
get C7i = C72.

• M = MN.

We need to show G\ = 0 2 .

B y induction hypothesis, applied to T h M : p i —>• G\, T h Af: P2 —> G2, F h N : p i
and r b W : p 2, w e get p i —> <7i = P2 —»■ 02 and p i = P2. H ence, w e have <7i = 02 .

• M=(M,N) .

Similar to the proof of above case.

57

3. Church’s Simple Theory of Types

• M = 71q(M).

We need to show pi = P2 .

By induction hypothesis, applied to T h M : pi x G\ and T h M : P2 x 0 2 , we get
Pi x (Ti = P2 x 0 2 . Hence, we have pi = P2 .

• M = 7ti{M).

Similar to the proof of above case.

□

Substitution
Simplifying or evaluating a term involving lambda expressions requires us to encom
pass operations of function application. Since free variable substitution may cause
variable capture, we need a mechanism to ensure that no bound variable has the same
name as a free variable in the term being substituted. An elementary simplification
step, called ft-conversion, involves the substitution of a free variable of a term by an
other term.

The a-equivalence is defined as usual. Intuitively, a-equivalence, T\ =a T2 means
that T2 is obtained from T\ by renaming the bound variables in 7\.

We state without proof the following lemma:

Lemma 3.1.6 a-equivalence is a congruence on lambda expressions and we have that
if M =a N t then FV(M) = FV(N).

Definition 3.1.7 LetX,7 C Var, and Z(X) : = { M e L \ FV(Af) C X}.
A variable substitution is a function r j : X —> Z(7). Every variable substitution tj

can be extended to a function r j : E(X) —> E(7) by

rj(x):= 7?W
rj(c) :=c
rj(MN) := rj(M)rj(N)
»U(M,N)) := (rj(M),ij(N))

:= JH)(»j(M))
Tj(^i(M)) := it\ (Ji(M))
t7(Ajc: p.M) := Xu! : p.t}'(M)

w here x! $ u{FV(?) (y)) \ y € FV(A.x: p.M)} UFV(Ax: p.M) and for jj' : X - * L (Y U
M) . n 'W = * and rj'(y) = tj (y) for y £ x.

We write M[N/x] for 7] (M) where rj(x) = N and r] (y) = y for y ^ x .

58

Interpretation of STLC

The meaning of 7] =a t]' is that for all x e X, 77 (jc) =a

Lemma 3.1.8 If M, N e E(X), M =a N, and 77 = a 77', then rf(M) =a V W -

Proof By induction on the definition of 77(A/). □

Definition 3.1.9 We define -equivalence as the least congruence relation =p on
terms such that

(X x : p.M)N =p M[N/x]

We write F' h r j : F if F' h rj (x) : p for all x : p e T.

Lemma 3.1.10 If T h M : p and F' b 7 7 : T, then F' h 77 (M) : p.

Proof By induction on the derivation of T h M : p. □

3.2 Interpretation of STLC
Let a formal system be a set of operations and axioms in a formal language. An inter
pretation of a formal system 7\ in a formal system T2 is a mapping from the expressions
of T\ to the expressions of T2 which preserves the validity of axioms. Roughly speak
ing, interpretation is to represent T\ in T2. Interpretations are a fundamental logical tool
to prove properties about formal systems and support mathematical reasonings. In this
section, we will introduce the notion of interpretation in the setting of two instances of
STLC. The results can be applied to arbitrary instances of STLC.

Let Si (i E {1,2}) be two instances of a simply typed lambda calculus given by
base type sets &i, constant sets and typings of the constants. Let and £/ be the
corresponding sets of types and terms.

We assume that for every variable x in £1 we have fixed in a one-to-one fashion a
variable x in S2 . More precisely, let (_) be an injective function mapping from Var to
Var, andX : = { x \ x e X } whereX C Var.

Definition 3.2.1 A base type substitution from S\ to S2, written as | : Si —► S2 , is a
function ^ : ^ 1 —» $ 2* Any base type substitution § can be extended to a function
^ —* $ 2 by setting

$ { p - > o) := § (p) - » § (a)
£(px<x) := § (p)x £ (< j)

We also extend base type substitutions to contexts by setting £ (r) := { x : ^(p) | x :
p e r } .

59

3. Church *s Simple Theory of Types

Definition 3.2.2 A constant substitution from Si to S2, written as 0 : S\ —► S2 , is a
function 0 : —► 1^,(0) s.t. 0(c) is a closed S2 term for all S\ constants c. Any
constant substitution 0 from Si to S2, together with a base type substitution ^ from Si
to S2 determines a function 0% : Ei(X) —► I>2(X) as follows.

0% (jc) : = x 0% (c) : = 0 (c)

0$(Xx:p.M) :=Xx: ^(p).O^(M) 0^(MN) := 6$(M)Q$(N)
%((M,A» := (O^MIO^N)) 0 ^ (M)) := no(O^M))
0^(ki (M)) :=7Ci (0^(M))

Lemma 3.2.3 FV(^(M)) = FV(M) where FV(M) = {jc | jc G FV(M)}.

Proof. By induction on M.

• M = jc .

We need to show FV (0<e (jc)) = FV (jc) .

From the left-hand side of the equation, we have FV(0(c (j c)) = FV(3c) by Defini
tion 3.2.2. Then it is equal to { jc } by Definition 3.1.3.

From the right-hand side, since FV(x) = { j c } , we have FV(jc) = { j c } .

Hence, we get { jc } = { j c } .

• M = c.

We need to show FV(0^ (c)) = FV(c).
From the left-hand side of the equation, we have FV(0)e(c)) = FV(0(c)) = 0
by Definition 3.2.2, since 0(c) is closed for all constants c.

From the right-hand side, we have FV(c) = 0 .
Hence, we get 0 = 0 .

• M = Xx: p.M.

We need to show FV(0^(Ajc : p.M)) = FV(Ajc : pM) .
From the left-hand side of the equation, we have FV(0^ (Ajc : pM)) = FV(A3c :
£(p).0£(M)) by Definition 3.2.2.
By Definition 3.1.3, we have FV(A3c: ^(p).O^(M)) = FV(0^(M))/{jc}, and
FV(Ajc : p M) = FV(M)/{jc}.

Then from the right-hand side, we have FV(Ajc : pM) = FV(M)/{x}.

Now it is to show FV(0^ (M))/{5) = FV(M)/{3c}, i.e. FV(0^ (M)) = FV(M).
This follows immediately by the induction hypothesis applied to M .

60

Interpretation of STLC

• M = MN .

We need to show FV(0^ (MN)) = FV(MN).
From the left-hand side of the equation, by Definition 3.2.2, we get FV(0£ (MN))
= FV(0£ (m)ô (n)).
We have FV(0 ̂(M)9%(N))= FV(6% (M)) UFV(0% (N)) and FV(MV) = FV(M)
UFV(W) by Definition 3.1.3.

Then from the right-hand side, we have FV(MN) = FV(M)UFV(N).

We need to show FV(0^(M)) UFV(0^(V)) = FV(M)UFV(N). Then it is to
show FV(% (M)) = FV(M) and FV(0^ (N)) = FV(N).

This follows immediately by the induction hypothesis applied to M and N.

• M = (M ,N) .
Similar to the proof of above case.

• M = 7Cq(M).

We need to show FV(0^ (tco(M))) = FV(jto(M)).
From the left-hand side of the equation by Definition 3.2.2 we get FV(0^ (7Tq(M)))
= FV(*b(0€(Af))).
We have FV(^b(0^(M))) = FV(0^(Af)) and FV(^b(M)) = FV(M) by Defini
tion 3.1.3. Then from the right-hand side, we have FV(nb(Af)) = FV(Af).

We need to show FV (0<e (M)) = FV (M).

This follows immediately by the induction hypothesis applied to M.

• M = 7l\ (M).
Similar to the proof of above case.

□
Let r j : X —> la(Y) and T}': X —> E2 OO, for every variable substitution rj of Si, we

set ri'(x) = T}(x).
The mapping 0 ̂ commutes with variable substitutions in the following sense.

E i(x) 5— -Z2(y)

o

El (X) — 12(?)

61

3. Church’s Simple Theory of Types

Lemma 3.2.4 0g o rj = (0% o rj') o 0%.
I

Proof By induction on Af.

• M = x.
We need to show 6%(rf(x)) = (0g o T]')(0% (jc)).

From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
9{(W(x)) = = %(*)'(*)) = (#{ 0 »?')(*)•
From the right-hand side, we have (0^ oj]/)(0^(x)) = (6% o rj')(x) by Defini
tion 3.2.2. Then by Definition 3.1.7, we have (6£ o rj')(3c) = (6% o ri')(x).
Hence, we get (0g o rj’)(x) = (ei oii')(x).

• M = c.

We need to show 0£ (ff(c)) = (0% o 7]')(0g (c)).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
%(W(c)) = 0£(c) = 0(c).
From the right-hand side, we have (0% o 7]')(0^ (c)) = (0% o rj')(0(c)) by Defini
tion 3.2.2. We have (0% o 7]/)(0(c)) = 0(c) since 0(c) is closed for all constants
c. Hence, we get 0(c) = 0(c).

• M = Xx: p M .
We need to show 0 ̂(r[(Xx: p.M)) = (0£ o T]')(0g (Xx: p.M)).
From the left-hand side of the equation, by definition 3.1.7 and 3.2.2, we have
%(rj(Ax\p .M)) = 6${Xx!:p.r?(M)) = Xx! : %{p).6((rf{M)).

From the right-hand side, by Definition 3.1.7 and 3.2.2 we get (0% o T}')(0^ (Xx :
p .M)) = (0^ot}')(Xx: «(p).e4(a#)) = ■ Up)- (^° 'n ') ' (^ (M))) .

Now it is to show Xx?: ^(p).0^(i]'(M)) = X5? : ^(p).(0^orf,),(0^(M)))y i.e. to
show 0$(t\'(M)) = (0% o7]')'(0^(M))).
This follows by the induction hypothesis

% (rp(M)) = (0zon»)(0z (Af)) (IH1)

• M = MN.
We need to show 0% (r[(MN)) = (0% o rj')(0g (MN)).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
9(m M N)) = 6^(rf(M)rj(N)) = %(t)(A*))%0?M).

62

Interpretation of STLC

From the right-hand side, we have (0£ ° 777) (0<* (MN)) = (0go 7]') (6^ (M)0^ (N))
= ((^ or?/) (^ (M)) ((^ o7?/) (^ W)) by Definition 3.1.7 and 3.2.2.

We need to show 0g(ff(M))0g(rf(N)) = ((0% ° t\')(0^(M))((0^ ° t]')(0^(N))),
i.e. to show 0 ^(77(Af)) = (0^ o 7]/)(0 ^(Af)) and

These follow by the induction hypotheses

e4 (rf(M)) = (e4o7]>)(e4 (m)) (mi)

0? (AO) = W ^ y) (^ W) (m2>

• M = (M,N).
We need to show 04 (rj((M,N))) = (04 o tj')(0£ ((M,N))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
94mM,m = 0̂ ((7?(M),7?(Ar))) = <05(tj(Af)),0£(t}(lV))>.
From the right-hand side, we get (0«e ° 7]/)(0 <e((Af, N))) = (0^ ori')((0^(M),
0$(N))) = ((^ W) (^ (M)) , (0 5 ott7) (^ W)) by Definition 3.1.7 and 3.2.2.
Now it is to show

{04(lj(M)),64mN))) = { (0 ^ (% (M)) , (e ^ f j (e 4(N))),
i.e. e4(Tj(M)) = (e4 oT,')(e4(M)) and 9f (rj(N)) = (9^ n r)(0i (N)).
These follow by the induction hypotheses

0^r \ (M))=j0^W)(0^(M)) (IH1)

(n W) = (0 ^ 0 (0 ̂W) dH2)

• M = 7Lq(M).
We need to show 0 ̂(77 (^(M))) = (0^ o 77')(0^ (^b(Af))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
04(M*>(M))) = e4(7to(rj(M))) = no(94(ri(M))).
From the right-hand side, by Definition 3.1.7 and 3.2.2 we have
(6 4 o t } ') (0 4 (jco(M))) = (04 or] ') (Ko(04 (M))) = nn({94 oT)') (04 (A f))).

Now it is to show 7to(0^(rj(M))) = 7io((0| o iql)(0^(M)))t i.e. it is to show
04(1J(M)) = (0 ^) (0 f (M)).
This follows by the induction hypothesis

0f (MM)) = (9i oM)(0i (M)) (IH1)

63

3. Church’s Simple Theory of Types

• M = 7Ci(M).

We need to show = (Og o jj/)(9^(7Ui (M))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
%(T)(7ti(M))) = e^Ki(fj(M))) =
From the right-hand side, by Definition 3.1.7 and 3.2.2 we have

(M))) = (0i or\')(nl {9i {M))) = o jj')(0? (M))).

Now it is to show 7ii(0^(rj(M))) = K\((Og oj]')(0g(M))), i.e. it is to show

This follows by the induction hypothesis

0 ^ (r f m = W W) (0 ^ (M)) (IH1)

□
Definition 3.2.5 (Interpretation) An interpretation of Si in S2 , written (£, 0): Si —> S2

consists of a base type substitution t; : Si —> S2 and a constant substitution 6 : Si —> S2

such that whenever c q p , then \~2 0 (c) : £ (p).

Theorem 3.2.6 (Interpretation) Assume (£, 0) is an interpretation of Si in S2 . If T hi
M : p, then £(T) h2 0^(M): £(p).

Proof By induction on the derivation of T h 1 M : p.

• T,x: p hi x: p
We need to show £ (T ,x: p) l~ 2 0£ (jc) : (p).
By Definition 3.2.1 we have <j;(r,x: p) = £ (r) U (jc : £(p)}.
By Definition 3.2.2 we have 0£ (jc) : £ (p) = jc : ^ (p).
Hence we get (T,jc : p) (~2 0% (x): £ (p).

• r hi c : p if c : p
We need to show £ (T) l~2 0£ (c): h, (p). This follows from Definition 3.2.5.

r , j c : p h i A f : a
Th i Ax:p .M:p —> cr

We need to show ^ (T) h2 0£ (Ax: p M) : <!; (p —> a).
We have 0^(Ax : p.M) : %(p —► <r) = Ax : ^(p).0^(Af) : §(p —> a) = Ax :
^ (p).0 |(A /): <§(p) —► §(<7) by Definition 3.2.2 and 3.2.1.
We need to show £ (T) l~2 0£ (M): § (c).

64

Interpretation of STLC

This follows by the induction hypothesis

§(T ,*:p)h 2 e5(Af):S(a) OHl)

T h i M : p —̂ a T h i i V : p
T h i M i V : a

We need to show t; (T) h2 (M N): (a).
By Definition 3.2.2 it is to show ^ (T) h2 0% (M)O^ (.N) : £ (a).
We have the following induction hypothesis

£ (T) \~2 0% (Af) : % (p —> &) O H l)

^ (r)h 2 e4(Af):^(p) (IH2)

By IH1, IH2 and Definition 3.2.1, we have § (r) h2 0f (M)9((N) : 4(a).

T h i M - .p T h i N : a
r i -1 (M,N) : p x a

We need to show § (r) h2 6^((M,N)) : £(p x a).

We have e4 «Jf,W>) :£(p x a) = (64(M),0^(N)) : §(p x <7) = {e^(M) ,^(N)) :
£ (p) x £;(<t) by Definition 3.2.2 and 3.2.1.
We have the following induction hypothesis

$(r)f-2 ^ (M):$ (p) OHl)
|(T) h 2 0i (N) :S (o) (DH2)

By IH1 and IH2, we have £ (T) b2 6^((M,N)): ^(p x a).

Thi M: p x <7
r h i 7to(M):p

We need to show ^ (T) b2 0£ (^o(M)): ^ (p).
By Definition 3.2.2 we have 6^(7to(M)) : £(p) = ^o(0^(Af)): £(p).
We have the following induction hypothesis

£ (T) \~2 0% (M): ^ (p x a) OHl)

By IH1 and Definition 3.2.1, we have £ (r) b2 0^(7to(M)) : £(p).

Thi M :p x a
F l-i ^i(Af): cr

We need to show t; (T) h2 0 ̂(n\ (M)) : ^ (p).

65

3. Church ’s Simple Theory of Types

By Definition 3.2.2 we have 6^(k\(M)) : £(p) = K\(Q^(M)) : £(p).

We have the following induction hypothesis

€ (r) h 2 ^ (M) :€(px<7) OHl)

By IH1 and Definition 3.2.1, we have £ (r) l~ 2 0 |(tti(M)): £(p).

□
One important aspect of an interpretation is that it preserves full j3-equality. To this

end, we start with a definition of congruence.

Definition 3.2.7 Let ~ i be a binary relation on Si terms. We inductively defined a
congruence on S\ generated by —i as follows.

• If Af ~ i N, then Af N.

• If Af Af, then X x : p.Af « i X x : p.N.

• and Af Af', then MN » i M'N'.

• If M » i Mf and Af « i Af', then (M ,A f) « i (M',N').

• then flb(Af) 7ib(Af).

• If M Af, then TZ\ (Af) ~ i n\ (Af).

The next two lemmas explain why our interpretation respects /3-equality.

Lemma 3.2.8 Let ~ 2 be a congruence on S2 terms. Let (§, 0): Si —► S2 be an inter
pretation.

If 0 ̂ respects ~ i and ~ 2 > i.e. for all Af, N if Af N, then 0«c (Af) ~ 2 (A'"), then
0 ̂ respects ~ i and ~ 2 , i.e. for all Af, N if Af ^ 1 N then 0% (Af) ~ 2 0£ (N).

Proof. We assume 0% respects and ^ 2 , to show for all Af, N if Af ^ 1 N, then
0«e(Af) 0%(N).

By induction on ^ 1.

• M « i N.

We need to show 0<e(Af) ^ 2 This follows by Definition 3.2.7 and the
assumption that if Af Af, then 0 ̂(Af) ^ 2 0§ (Af).

• X x : p.M X x : p.N.

We need to show 0% (Xx: p.M) ^ 2 0% (h x : p.Af).

66

Interpretation of STLC

By Definition 3.2.2, it is to show Xx : £(p).Qg(M) ~2 : ^(p).O^(N). By
Definition 3.2.7, it is to show 0%(M) ^ 2 0%(N).
This follows by the induction hypothesis

0£(M)^2%(AO (IH1)

• MN » i M'N'.
We need to show 0% (MN) 9^ (.M'N').
By Definition 3.2.2, it is to show 9^(M)9^(N) « 2 9^(M,)9^(N'). By Defini
tion 3.2.7, it is to show 6£ (M) ^ 2 (Af) and 6% (M') ^ 2 ^ (N').
These follow by the induction hypotheses

%(M) ^ 2 e^(N) (IH1)
e^ (M ') ^2^ (N ') (IH2)

• (M ,A f) « i (M',N').
We need to show 9^((M,N)) ~ 2 0 | ((Af7,N7)).
By Definition 3.2.2, it is to show (0 ̂(Af), 9% (N)) ^ 2 (Af;), 0 ̂(N7)). By Def
inition 3.2.7, it is to show 0£ (Af) ~2 0£ (AQ and 0% (M') ~2 0£ (Af7).
These follow by the induction hypotheses

0 ̂(Af) ~ 2 0§ (N) (IH1)
0§(M/) « 2 ^ (^ ') (IH2)

• 7lo(M) «1 7Tq(N).

We need to show 0̂ (nb(Af)) ^ 2 0<* (^o(Af)).
By Definition 3.2.2, it is to show ^o(0,p (Af)) ^ 2 By Definition 3.2.7,
it is to show 0£ (M) ~ 2 0£ (W).
This follows by the induction hypothesis

0$(M)«2 0*(AO (IH1)

• K\(M) 7Ci(N).

We need to show 0 ̂(k\ (Af)) ^ 2 9% (ft\ (A f)).
By Definition 3.2.2, it is to show %\ (9% (Af)) « 2 tfi (0^ (N)). By Definition 3.2.7,
it is to show 0£ (Af) ~ 2 0£ (AQ.
This follows by the induction hypothesis

0£ (Af) 9$ (N) (IH1)

67

3. Church’s Simple Theory of Types

□
Lemma 3.2.9 Every interpretation 0% : S\ —> S2 respects /3-equality.

Proof. By Lemma 3.2.8 it suffices to show that 0% respects the relation generating =p.
Hence, we first have to show 9^((kx : p.M)N) =p 9^(M[N/x]). The left hand

side is equal to (Ajc : £(p) .9^(M))9^(N) by Definition 3.2.2. By Definition 3.1.7 and
Lemma 3.2.4, the right hand side is equal to 9^(M)[9^(N) /5c\. Hence both sides are
ft-equality. □

3.3 Church’s Simple Theory of Types (CST)
While in a general STLC there is no restriction on base types and constants, Church’s
type theory uses particular logical constants such as negation, disjunction, universal
quantifier and a description or selection operator. From these constants, one can define
the other logical operators. Church also introduced propositional, quantificational,
functional extensionality, infinity, descriptions and choice axioms. Church remarked
that one may introduce an axiom of Boolean extensionality (p = q D p = q \ although
it was excluded in his type theory.

In this section, CST, a particular instance of Simple Theory of Types according
to Church, is presented. We assume two kinds of base types: a set of base types for
individuals and the type of propositions (or truth values). We also assume a specific
set of constants and their typings. The rest is the same as in STLC.

Basic Logic
The types are those of STLC, but with the restriction that the set & of base types
contains a set J? of base types for individuals and the proposition type o. They are
given by the following grammar.

Definition 3.3.1 (Types)

& B p , o b \ p -> a \ p x o

where
& B b : : = i e J \ o

Predicate types are types that are canonically (in any ccc) isomorphic to a finite
product of types of the form p —► o. The inductive definition is below.

Definition 3.3.2 We define predicate types inductively as follows.

• o is a predicate type.

68

Church's Simple Theory of Types (CST)

• if p and <r are predicate types, then p x a is a predicate type.

• if p is arbitrary and <r is a predicate type, then p —> <r is a predicate type.

The set of constants contains at least logical conjunction, disjunction, implication,
universal and existential quantifiers, equality, the least and greatest fixed points.

Definition 3.3.3 (Constants) We assume a set ^ of typed constants c : p that requires
logical constants A, V, — Vp, 3p, =p, Pp and vp as a minimum.

A ,V ,—-
Vp,3p

= P
Pp,V p

o —> o —► o
(p->o)->o
p ^ p ^ o

(p ^ p) ^ p

In Vp, 3p and =p the type p is arbitrary while for pp and Vp, p is restricted to predicate
types.

Note the overloading of the symbol —* which we use at the same time as the func
tion type constructor and the constant for implication.

The constants pp and vp will be interpreted as least and greatest fixed point oper
ators. In order to precisely express their properties we need higher-order versions of
inclusion between predicates, which can be declared meaningfully only by predicate
types.

Definition 3.3.4 For every predicate type p we define the in c lu s io n o p e r a t o r C p : p —>
p —> o inductively as follows.

P̂X<T
Qp-+o

C Q :=Xx,y: o . x —>y
= Xx,y : p x cr. 71q (x) C p 7lo(y) A n\(x) C a m (y)

= Xx,y: p —> a.V w : p.xu C a yu

Definition 3.3.5 For every predicate type p define a m o n o t o n ic i t y predicate,

monop : (p —► p) —> o

monop := X& : p —► p . Vx,y : p.x Qp y —> &x C p Oy

Church introduced a proof calculus which we will also do, but later. We first look
at the semantics in domain-theoretical style.

Models of CST
For CST there are two obvious choices of models: the classical set-theoretic model
and an interpretation into constructive type theory. In both cases the models can be

69

3. Church ’s Simple Theory of Types

| extended to the realisability interpretation of CST, which will be discussed in detail
later (Chapter 4). We will extend CST to the realisability interpretation of CST by
adding an extra base type 8 for realisers and extra constants nil, in^, in/?, prL, pr^, pair,
app, fun, case, rec with the following typing

n il: 8
in^ins.pr^pr* . 8 ^ 8

pair, app: 8 —> 8 —> 8
fun: (5 —► 5) —► 8

case: 8 -► (5 8) -> {8 -► 8) -> 8
rec : (5 —> 5) —► 8

We sketch the type-theoretic interpretation only very briefly since, although it is
useful for the constructivist to know that the systems have an entirely constructive
interpretation, the point of realisability is that it smoothly links a fragment of classical
mathematics to computation.

In the type-theoretic interpretation the types of CST are interpreted as types in the
type theory. The base type o is interpreted as the type of propositions and the base
types i e / are interpreted as some inhabited types. Product and function types are
interpreted type-theoretically. Constants are interpreted as inhabitants of their types.
The prepositional constants —►, A and V are interpreted type-theoretically as function,
product and sum types. The quantifiers Vp and 3p are interpreted as dependent product
and dependent sum (II- and E-types). The extension of the type-theoretic model to
realisability would be difficult, since it requires to interpret the constant fun by 8 as a
type that contains its own function space.

In the classical model types are interpreted as sets in the following way: the base
type o is interpreted as the set {0,1} of boolean values (0 stands for false and 1 for
true); the base types i € / are interpreted as some nonempty set. Product and function
types are interpreted as Cartesian product and set-theoretic function space. Constants
are interpreted as elements of their types. The prepositional constants — A and V
are interpreted as the corresponding boolean functions of implication, conjunction and
disjunction. The quantifiers Vp and 3p are interpreted as minimum and maximum
functions. Hence, if p is interpreted as an infinite set, quantifiers of type p are in no

| reasonable sense computable.
 ̂ The classical model of CST can be extended to a model of the realisability inter
pretation of CST by interpreting the extra base type 8 as an element of Scott domain D
obtained as the solution to the recursive domain equation (as mentioned in Section 2.3)

D ~ (l + D + D + D + D x D + [D ^ D]) ±

where + and x denote the domain-theoretic separated sum and product, and [D —> D]
denotes the continuous function space.

70

Church's Simple Theory o f Types (CST)

There seems to be a mismatch with the interpretation of types in CST. First, the
type 8 is interpreted as a domain while the types in CST are interpreted as plain sets.
Second, the type of fun is (5 —> 5) —> 5, which requires fun to map all set-theoretic
functions / : D —> D to an element fun(/) G D, while fun(/) is defined only for con
tinuous / .

In order to solve this problem we slightly generalise the notion of a classical model
by interpreting types as objects in the cartesian closed category of quasi-domains and
continuous functions. By a quasi-domain we mean a topological space whose 70-
collapse is a Scott domain. Quasi-domains may also be defined order-theoretically as
those quasi-orders whose order-collapse (identifying points x and y such that x < y
and y < x) is a Scott domain. It is easy to see that the continuous function space with
the pointwise topology is the exponential in the category of quasi-domains. Every
classical model of CST in the previous sense can be viewed as a model in the new
sense by endowing plain nonempty sets with the trivial topology. Note that nonempty
trivial topological spaces have the one-point domain as To collapse and all set-theoretic
functions between such spaces are continuous.

Semantics
We will begin by defining a model in order to give semantics for CST.

Definition 3.3.6 A pre-model := (Db)be3§ where for each base type b G D& is
a quasi-domain. We require additionally that D0 ={0,1} (0,1 representing falsity and
truth) considered as a quasi-domain with the trivial topology.

Definition 3.3.7 (Semantics of types) Given pre-model we inductively define a
quasi-domain [p J for every type p

|M |:=D*
IP -* <t] := [BpH - M l
Jp x a] := [p] x M

Note that a quasi-domain is given as the meaning for base types, and the meaning
of function types is provided by a continuous function space.

Definition 3.3.8 A model j f t is a pre-model <MP together with a value [cj G Jp] for
every constant c : p.

In the following, we consider a model j f t with the constant values defined as fol
lows.

For M M M : 1(0,1} - {0,1} {0,1}], [[VpiPp]] : [(M - {0,1}) -

71

3. Church’s Simple Theory of Types

{0 , 1 }] and J=p]]: [flpj -» [pj -► {0 , 1 }], we define

= 1 and b = 1

= 0 and b = 0

= 1 and b = \

P pKp)

= min{p(m) | m G Jp]}
if 3m G Jp].p(m) = 1

= / 1
0 o.w.

= max{p(m) \ m G Jp]}
= m = n

In order to give a definition of JjUp] and JVp], we first define predicates Qp: Jp]
Jp] —► {0 , 1 } inductively as follows for every predicate type p

So
SpXCT
Sp-»<7

= Xx,y G { 0 ,1 } .* J—>]y

= Xx,y G Jp x a]. no(x) Qp no(y) Ja] m(x) tfi(y)
= Xx,y G Jp -> a].jVp](Aw G Ip].* (w) Say(w))

It is easy to see that J c p] = Cp> and gp is a partial order.
Obviously we have that Qp is a complete lattice, where the supremum U/Jt/ and

infimum of any family objects exist (jc,- G Jp]). Therefore by Tarski’s theorem
[Tar55] for a ^jp-monotone function g : Jp] —► Jp], the least and greatest fixed points
LFP(g) and GFP(g) respectively exist, and

LFP(g) := f] {x | x € DpJ, gx £ p x} GFP (g) := |J{x \ x e [[p]], jc Qp gx\

Now we define [[/tpj : [Jp]| -> Jp]] -> Jp] and [vp]]: [[pj -> [p]] -> Jp] as fol-
lows.

IPpK/) :=LFP(A_xe UpD. |J f(y))
ŷ =px

IIvp l (/) := GFP(Ajc e JpJ. f | f(y))
xQPy

Note that Xx G Jp]. UyCpX/Cy) is monotone, since if x increases then y increases
because Qp is a partial order. Then the union becomes bigger. Similarly, Xx G

72

Church's Simple Theory o f Types (CST)

UpJ. r\xcpyf(y) is monotone, since if x increases then y decreases. Then the intersec
tion becomes bigger. In addition, every function from (Jp]] to Jp] is continuous, since
p ranges over predicate types which means they all end up with o, then the topology is
trivial.

Given a context T, let 77 be an environment mapping from dom(r) to Jr(x)]. We
write 77 [= r if for every i, 77 (jc,•) G Jp,] where jc ,- G dom(r).

Definition 3.3.9 (Semantics of terms) For every derivation T h M : p, if 7] |= F, then
we define the value jAf]r 7] G Jp].

I*]]r f7 := V(x)
H r ?) := M

[Ax : p.M'fl} := Xa e flp]].[[M]]r ’*:pT,[;t := a]

p / f l f i? := p # f Tf ip l f n)

[^ (M)]r 7, := Sb(|[A/]]r j,)
p i(M)lr T, := jr1([M]]r i,)

where Jc] G Jp] for each constant c : p.

A term of type o in a context T is called T-formula. The formula is true if its value
is 1 .

Let T be {xi : p i , ... : p„}, and the proof context A a finite set of terms A,- such
that T b A t : o.

Definition 3.3.10 We define

• J?,T) (=r A := jA]r r, = 1

• A |=r A := 7] 7] |= T A jft \ 77 |=r A) => j f t , 77 |=r A)

We can omit the model J t if it is clear from the context.

Lemma 3.3.11 If T h M : p, 77 \= T, and M =a M \ then jM] r 77 = jM ']r 77.

Proof By induction on M. □

Semantically, the significance of the free variables of a term is that they delineate
the only part of the variable substitution on which the value of the term depends. This
is captured by the following lemma.

Lemma 3.3.12 (Coincidence) If T b M : p, 77 [= r , 77' f= r ', and Vjc G FV(Af), 77 (x) =
77;(x)Ar(x) = r'(x), then jAf] r 77 = JMJ^tj'.

73

3. Church’s Simple Theory of Types

Proof. By induction on the derivation of T b M : p.

• T , j c : p b x : p
We need to show Jx]]r T] = I*]1* 17'.
By Definition 3.3.9 it is to show 77(jc) = T]'(x). This follows by the assumption.

• T b c : p if c: p
We need to show Jc]]r r] =
By Definition 3.3.9 both left- and right-hand side of above equation are equal to
M -

r , jc :p b M : a
T b X x :p .M :p —> a

We need to show \X x : p.M])r rj = \X x : p.AfJ^Tj'.
It is to show Xa G := a] = Xa e := a] by
Definition 3.3.9.
We have the following induction hypothesis

(IH1)

Let 7]o := Tj[x := a] and t]q := 77' [jc := a].
Before applying IH1, we need to show 1) 77 [jc := a] [= (F,jc : p), 2) 77' [jc := a] \=
(F , j c : p), and 3) Vy G FV(M), 77[x := a](y) = T]f[x := a](y) A (T,x : p)(y) =
(F', x : p)(y). Let a G Jp].
For 1), it is to show V/. 17 [jc := a] (jc ,-) G [[(F, jc : p) (jc /)]] where jc ,- G dom (r,x : p).
If jc , G dom(r), then 77 [jc := a](jc,-) = 77 (jc ,-) g |[r(jc,-)]] by the assumption 77 f= F.
If jc ,- = jc , then 17 [jc := a](jc) = aG [pj. Thus, 77 [jc := a](jc,-) G J(r,jc: p)(jc,-)J.
For 2), similar to the proof of 1).
For 3), clearly jc G FV(Af). Hence if y = jc , then we have 77 [jc := a] (jc) = a =
77' [jc := a] (jc) and (T , jc : p)(jc) = p = (F , jc : p)(jc). If y / jc , then by assumptions
we have 77[x := a]{y) = 77(y) = r]'(y) = T]'[x := a](y) and (T ,*: p)(y) = T(y) =
r (y) = (r',jc:p)(y).
By IH1, we have Xa G [[pfl.jAfJ^PTjfx; := a] = Xa G |[p]].[[M]]rV’;,c:p77/[jc:=a].

T b Af: p —> a r b W : p
r b M W : a

We need to show [AfiV]]r 77 =
By Definition 3.3.9 it is to show |[Af]]r 77([[Af]]r 77) = [Mj^Ty'dfATj^Tj').

Church's Simple Theory of Types (CST)

This follows by the induction hypotheses

M r Ji = M S ' (M l)

m rn = M r Tj' 0H2)

r i - M : p r i - N : a
F\- (M,N): p x a

We need to show [[(Af, Â)J|r 7] = [[(Af,^)]]1̂ ?]7.
By Definition 3.3.9 it is to show (jAf]]r 77, jÂ]]r T7) = (fAfJ^rj',

This follows by the induction hypotheses

p / f j } = M r T}' (IH1)

i N f v = M r 7j' (IH2)

Tl- Af: p x a
r i -7to(M)\p

We need to show [[̂ o(Af)]]r r7 = [[^(Af)]]1̂ ?]'.

By Definition 3.3.9 it is to show 7io([[Af]]r 7j) =
This follows by the induction hypothesis

[M fjj = p f f V (IH1)

T h M : p x a
T h ^ i(M): a

We need to show |[7Ti(Af)]|r 7] = j 7Ti (Af)]1̂ ' .
By Definition 3.3.9 it is to show î([[Af]]r r]) = ^([[Af]1*?]').

This follows by the induction hypothesis

[Mfr? = (IH1)

□
We write F[x: p] for extending the context T by x : p, and if x e dom(T), replace

the type of x in T by p.
The next two lemmas show that if two terms are j3-equivalent, then the values of

these two terms are identical.

75

3. Church's Simple Theory of Types

Lemma 3.3.13 If T[x : a] b Af : p, r \~ N : g , and 77 |= F, then ^M[N/x]Jr ri =
p v fij] .

Proof. By induction on Af.

• M = x.
We need to show |x[Af/jt]]]r 77 = [jcĴ ^ 77 [x := [W]]r 77].

From the left-hand side of the equation we get [[x[Af/jc]]]r 7j = [Njr t7 by Defini
tion 3.1.7.
From the right-hand side we get [jt]1̂ ^ 7][x := [Af]r Tj] = r)[x := [[Â]]r T7](jc) =
[[7V]]r r7 by Definition 3.3.9.
Hence, we have [[//]] r r] = [iV]]r Tj.

• Af = y where x ^ y.
We need to show fty[N/x]1r ri = ^ y ^ x:â r][x := jÂ Jr r]].
By Definition 3.1.7 and 3.3.9, it is to show Tj(y) = rj(y). This follows by equal
ity.

• M = c.
We need to show [c[7//jt]]]r T7 = [c]r tx:<Tlrj[jc := [̂ V]]r Tj].
By Definition 3.1.7 and 3.3.9, both left- and right-hand side of above equation
are equal to [cJr T].

• M = Xz\p.M'.
We can always find a term Ay : p.Af such that Xy : p.Af =a Xz : p.Af' where
x ^ y andy ^ FV(N).
Then to show [[(Ay: p.M)[N/x]§r ri = [Ay: p . M ^ x:a r̂j[x := [N]r 77].
We get [(Ay : p.M)[N / x ^ r \ = A a e [p j . [[Af [TV/jc]]]r,:y:p 77 [y := a\ by Defini
tion 3.1.7 and 3.3.9 from the left-hand side of the equation.
From the right-hand side, by Definition 3.3.9 we get [Ay : p .AfJ|r ^: 77 [jc :=
M r t?] = Aa e [pfl.p/]]1̂ ’̂ T][x := [AT]r ry][y := a].
By Lemma 3.3.12, we get [Af]]r Tj = lN^r,y:prf [y := a].
Now it is to show [Af[N/;t]]]r,y:p77[y := a] = ^ M ^ x:â y:pT][x := [iVjr,;y:̂ r][y :=
a]]\y:=a}.
We have the following induction hypothesis

[tfA]Jr«Tjo = M r<'[rtr,f?o[* := M r»JJo] (M l)

76

Church’s Simple Theory o f Types (CST)

Let r 0 := T, y : p and rjo := T]\y := a].
By IH1, we have §M[N/x\lr,y:prf\y := a] = l M ^ x:(Ĵ y:p rf[x := |[Â]]r,;y:/37][y :=
a]]\y:=a\.

• M = Mi M2 .
We need to show [(MiM2) [N/x]^r rf = [MiM^]1̂ *^ 7] [x := [Â]]r 7]].
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get
[(M1M2)[7VA]lr 7] = lMx[Nlx}{M2[Nlx})fr] = [M i[^A]lr T}([M2 [AfA]fjj).

We get \MxM2f ^ T \ [x := [JV]r J?] = l M i f ^ :â r][x := Q̂V]]r t7] (HA/2]]r[jc:<Tl[x
:= [iVj T}]) from the right-hand side, by Definition 3.3.9.
Then it is to show that [[Mi[A,/^]]r Tj([M2 [Af/j:]]]r t)) = [MiJr lr<7ljj[;t:= [A']1'?)]
(lM2f ^ ff]r}[x:= p v ftj]).
This follows by the induction hypotheses

[Mi = [MiJr I*:<fljj[.x := iNfri] (IH1)

lM2[N/x]fr) = [M zfl^ n [x := [iv f tj] (ffl2)

• M = (Mi ,M2).
We need to show l(M\,M2)[N /x]lr ri = J(Mi,M2)]]r tJc:<T̂7][jc := [A^t]].
From the left-hand side of the equation we get [[(Mi,M2)[N/jc]]]r 77 = l(M\[N/x],
M2 [7Vr/jc])J|r r7 = (§Mi[N/x]§r rf, §M2 [N /x]§r r]} by Definition 3.1.7 and 3.3.9.
From the right-hand side, by Definition 3.3.9, we get [(Mi,M2)]]r ^:̂ 77[̂ :=
M r n] = m ¥ [x:o]ri[x--= m r r}UM2¥ [x:G]ri[x--= M r r?]>.
Now it is to show ([[Mi[̂ V/jc]]]r rj, §M2[N/x]]lr ri) = ([[Mi]]r [Jc:<T]77 [jc : = jjÂ]]r 77],
jM2l r ^] 7] [x := M r T7]).
This follows by the induction hypotheses

[Mi[iVA]lr Tj = p /] r T}] (IH1)

iM2[N/x]fi} = lM2f W r i [x := [tf f i j] (ffl2)

• M = 7Cq(M).
We need to show J^o(M)[AT/jc]]|r Tj = p^) (M)^x:a r̂][x := [Â]]r rj].
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get
^ (M) [^ A] f 77 = lKo(M[N/x])Fri = no(lM[N/x]fT}).
From the right-hand side we get [[tc o (M)]]r f-r : 17 [jc : = [[N]]r 77] = TCo([[Mjr ^ :^ 17 [jc
:= |[7V]]r 77]) by Definition 3.3.9.

77

3. Church’s Simple Theory of Types

We need to show 7io([M[A//x;]]]r T7) = ^o(|[M ^ x:a r̂f[x := [WF7?])-
This follows by the induction hypothesis

lM[N/x]fri = [A ff ̂ 7} [x := [iv fjj] (IH1)

• M = K\{M).

We need to show J^i(M)[7V/^]]]r rj = := [[Â F7?]*
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get
lid (M)\N/x]fri = l7n(M[N/xmr T] = * i (W \N /x] lr ri)-
From the right-hand side we get [fti (M) F ^ t}[x := |[W]]r 7]] = K\ ([A f F ^ 77 [x
:= [M r 77]) by Definition 3.3.9.

We need to show Ki(lM[N/x]1r,q) = n i (l M ^ x:°^ri[x := [pvF7?])-
This follows by the induction hypothesis

[[M[JV/x]]]r 7j = l M f W r] [x := [JVfjj] (IH1)

□
Lemma 3.3.14 If T h M , N : p, then M =p N => [M]]r r7 = [W]]r T7.

Proof By induction on the definition of /3-equivalence. We only look at the interesting
case, namely j3-conversion.

Let M be (Xx : p.T\)T2, and N be 7i [T2/x], where T2 has the type p.
Then it is to show \ (X x : p .T \)T^r \ = J7\ P^/jcJF7?-
From the left-hand side of the equation by Definition 3.3.9 we get [[(A* : p.Ti)T2̂ r

T] = [A * :p .7 iF 7?(|p2F7?) = (Xa e [[p M ^ iF ^ n f c ^ a lX K F 7?) = l T { f ^ ’Pr}[x
:= parf?].

On the right-hand side, by Lemma 3.3.13 we have [[7\ p i /^ lF 7? = p i F ^ 77 [jc :=
KF77].

Thus, [7i]r,Jc:pT?[̂ := P 2F 7?] = J7 i]]r ^ :^ 7 7 [jc := P 2F 7?] since T,x : p = r[x :
| P]. □

\ Proof Calculus and Soundness
Denotational semantics is concerned with abstracting away from irrelevant details in
order to focus on the aspects that are of interest to the user of the semantics. Therefore,
it is natural to ensure a semantics is reasonably or sufficiently abstract for the need of
the user. Soundness of a deductive system is the property that whenever a formula A
of the language T upon which the deductive system is based is derivable from a set A

78

Church's Simple Theory of Types (CST)

of formulas of that language, the formula is a consequence of that set. In other words,
any model making all formulas in A true makes A true as well.

We start with constructing a deductive system. An intuitionistic proof calculus for
CST, which is suitable for program extraction, is given in Table 3.1. It derives sequents
of the form A h r A, where A is a finite set of T-formulas and A is a T-formula, where
by a T-formula we mean a term M such that T h M : o.

Remarks. 1. In order to enable a realisability interpretation we had to deviate from
Church’s calculus in several aspects: first our system is intuitionistic while Church’s is
classical. Secondly, we dropped the choice operator since it does not appear to admit
a realisability interpretation. There are other realisability interpretations where ver
sions of choice are realisable, e.g. Krivine’s countable choice in classical second-order
logic [Kri03], Raffalli and Ruyer’s choice axiom in higher-order logic [RR08], Oliva
and Streicher study the connection between Krivine’s work and modified realisabil
ity [OS08].

2. From a logical point of view, the constants —> and Vp would suffice to define all
other constants. For the logical constants including equality this was already observed
by Church [Chu40]. Furthermore, we could have defined equality, following Church,
as

(x=p y) := V p :p -> o .p * -* p y .

More formally
=p := Xx,y: p.Vp : p -> o.px-+ py.

jUp<P can be defined as the infimum of all jc : p such that < $ jc Cp x, and vp d> can be
defined similarly. The reason why we prefer this richer set of constants is that they
can be given simpler realisers as the ones extracted from the impredicative definitions
above. For example, Tatsuta [Tat98] (in his theory of H D V2) extracted the realiser
from the impredicative definition of Vp. However, the realiser of the coclosure rule
for coinduction is simply the identity in our case, but Tatsuta has a more complicated
A-term (Xxr.r(Xp.m(Xxrs.s(po, r))x(poxpi)) on page 353). More details will be given
in the next chapter (Lemma 4.2.7).

3. In CST, the rules for p p and v p are restricted to monotone operators. In the
next chapter, we will consider an extension of CST that has rules for pp<t> and vpd> for
arbitrary operators <£.

4. In the following we will tacitly use the following derived rules that state that
P -equality implies equality and equals can be replaced by equals in any context.

T\~A ,B : p A _ B A hr A = p B A hr M[A/x\
A hp A = p B ̂ A hp M[B/x]

79

3. Church’s Simple Theory of Types

Table 3.1: Proof Calculus for CST

r b A,A: o A Hr A T\~B\o 0 A _ D use-------------------------- -— —--------------- B A = r B
A, A hr A AhpZ?

A l~r A A h r # + A hr A A Z? _ AhpAAB
AhpAAB A A h r A ' A hr B Ar

A hp A r h B : o /+ F h A : o A h r # w+
A hr A V 5 V/ Abr AVfl Vr

A hr A V 5 A,Ahr C A,flbr C
Ahr C v

A, A hr i? + A hr A —> Z? A hr A
A hr A —> B A hr B

A M x vj xfresh Ahr VpM__T ^ N 'P v-
AhpVpA/ p Ah r MN p

A\-r MN r h N : p Ahr 3PM A.Afchp^pC n_
A hp 3PM p A hp C p

A, pA hp,p:p->o pB A hp A = p B A hp PA
A hp A = p B pftesh Ahp PB =

A hr.i:p Ax =<y Bx
— ri ;---------- -— ext x freshA hr A = p^cyB

T h <1>: p —> p T h A : o A h r monop (<I>) A h r <l>(Af) Cp Af------------;----- :-------------- Clrt ------------------1--------------------------------- ----- Indo
A hr 3>(jup3>) Cp jup<J> A hr jup >̂ Cp Af

T h <I>: p —»p T h A : o A h r monop (<I>) A h r M Cp <J>(Af)---------------------- — Cocln Coin
A hr Vp̂ > Cp 3>(vp<I>) Ahr M C p Vp(4>)

Now we give two examples to demonstrate inductive and coinductive definitions.
Later in the next chapter we will give the realisability interpretation of these two ex
amples.

Example 3.3.15 (Inductive Natural Numbers)

80

Church’s Simple Theory o f Types (CST)

Consider the typing context r+ := {0,1: i, + : i —► i —► i, — : i —> 1} and let A+
consist of the formulas stating that (+, — ,0) is an Abelian group. Formally, the terms
0,1, + , — are variables, but we like to view them as constants and the assumptions A+
as axioms. We will write M — N as a shorthand for M + (—N).

We define the set of natural numbers as an inductive predicate. Set 4> := Xp : l —>
o . X x : i .x =i 0 Vp(x — 1), and define N := A more readable notation for the
definition of N would be

N* = x = , 0 v N(jc- 1) .

Example 3.3.16 (Coinductive Fibonacci Numbers)
Continuing the previous example, we give a definition of a coinductive predicate

FIB := where

:= Xq : I —> I —► o.Xx,y : l .NxAqy (x+y).

This becomes more readable if a similar notation as for N is used:

FIB x y = N x A FIB y {x+ y)

Informally, FIBxy states that there exists a Fibonacci sequence of natural numbers
starting with x,y.

Lemma 3.3.17 If A hp A, then T h A : o and VB £ A (r h B:o).

Proof By induction on the structure of the relation A hp A.

r h A,A: o• ------------- use
A, A bp A

We have r b A,A : o, which means T b A : o A VB £ (A,A)(r b B : o).

A bp A T b B : o
Abr B P

We need to show T b B : o A VB' € A(T b B' : o).
Since we have T b B :o , this follows by the induction hypothesis

r b A : o A VB7 £ A(r bB/ :o) (IH1)

A bp A A bp B
• - - - - - - - - A +AbpAAB

We need to show T b A A B : o A VB' £ A(T b B' :o).
We have the following induction hypothesis

r b A : o A VB7 £ A(r bB':o) (IH1)
rb Bi oA VB 'e A(rbB/ :o) (IH2)

81

3. Church*s Simple Theory of Types

By the uniqueness of derivations, from T b A : 0 and T b B : 0 , we have T b
A A B : 0 . Then by IH1, we have T b A AB : o A VB' £ A(T h B; : o).

A br AAB
A h r A A/

We need to show T h A : o A VB' £ A(T h B ' : 0).
We have the following induction hypothesis

T b A A B : 0 A VB' £ A(T b B ': o) (IH1)

By the uniqueness of derivations, from T h A A B : 0 , we have T h A : 0 . Then by
IH1, we have T h A : 0 A VB' £ A(T h B ' : 0).

A bpA AB
Ahr B Ar

We need to show T h B : 0 A VB' £ A(T h B ': 0).
We have the following induction hypothesis

r h A A B : 0 AVB7£ A (r h B ' : 0) (IH1)

By the uniqueness of derivations, from T h A A B : 0 , we have T h B : 0 . Then by
IH1, we have T h B : 0 A VB' £ A(T h B ': 0).

A hp A r h B : 0 ,• ----- v,
Ahr AVB 1

We need to show T h A V B : 0 A MB' £ A(T h B ': 0).
We have the following induction hypothesis

T h A : 0 A VBr £ A(T \~ B' \o) (IH1)

By the uniqueness of derivations, from T h A : 0 , we have T h A V B : 0 . Then by
IH1, we have T h A V B: 0 A VB' £ A(T b B ': 0).

T bA : 0 AbpB ,• -------------------- ±— v+
AbpAVB

We need to show T b A V B : 0 A VB' £ A(T b B ': 0).
We have the following induction hypothesis

T b B : 0 A VB' £ A(T b B ': 0) (IH1)

By the uniqueness of derivations, from T b B : 0 , we have T b A V B : 0 . Then by
IH1, we have T b A V B : 0 A VB' £ A(T b B ': 0).

82

Church's Simple Theory of Types (CST)

Al-r AVB A,A hr C A,Bhr C
Ahr C

We need to show T h C : o A MB' E A(r h B' \o).
We have the following induction hypothesis

F\~AMB:oAMB' E A(F\~ B':o)
T\~C:oAMB'e (A ,A)(rh5':o)
T\-C:oAMB' e (A,B)(FhB':o)

(IH1)
(ffl2)
(ffl3)

By the weakening rule, it is safe to apply IH2 and IH3. Then by IH2, we have
F\~C:oAMB' EA(F\~B' :o).

A, A hpB +
Ahr A ^ B

We need to show F h A —> B : o A MB' E A(F h B' :o).
We have the following induction hypothesis

Now we need to show F h A —> B : o.
By the uniqueness of derivations, it is to show T,A h B : o. It follows by the
weakening rule and IH1. By IH1, we have MB' E A(T h B' : o).

A hp A —► B A hp A
* Ahr B ^

We need to show T h B : o A MB' E A(T h B' : o).
We have the following induction hypothesis

By the uniqueness of derivations, from T h A —» B : o and T h A : o, we have
T h f i ro . Then by IH1, we have T h B : o A MB' E A (T h B' : o).

T)r B :o A MB1 E (A,A)(T h & :o) (IH1)

T h A —>• B : o A MB' E A(T h B7: o)
T h A : o A MB' E A(T h B7: o)

(IH1)
(IH2)

A h r ^:p MX

A hr MPM p
We need to show T h MpM : o A MB' E A(T h B' : o).
We have the following induction hypothesis

T , r : p h M x : o A MB' E A(r, x : p h B7: o) (IH1)

83

3. Church *s Simple Theory of Types

From VpAf we know there exists some x that has the type p. Thus from T we
can derive r , jc : p. So it is safe to apply IH1. By the uniqueness of derivations
and the weakening rule, from T,x: p\~ M x : 0 , we have T b VpAf: o.
Since the x in (T, x : p) is generated from the application with Af, it has no effects
on A. Then by IH1, from VB' E A(r,x : p h 5 ' : o) , we have VB' E A(T b B ': 0).

A br VpM T \ ~ N : p w_
Abr AfrV p

We need to show T b Af/V: o A VB' E A(T b B ' : o).
We have the following induction hypothesis

T b VpAf: o A VB' E A (T b B ' :o) (IH1)

By the uniqueness of derivations, from T b VpAf : 0 and V \~ N : p, we have
T b Af//: 0 . Then by IH1, we have T b MAT: 0 A VB' E A(T b B ': 0).

A bp Af/V T b W : p 3+
A br 3pAf p

We need to show T b 3pM : 0 A VB' E A(T b B ': 0).
We have the following induction hypothesis

T b M N : 0 A VB' E A(T b B ': 0) (IH1)

By the uniqueness of derivations, from T b MN : 0 and T b / / : p, we have
r b VpAf: 0 . Then by IH1, we have T b =3pAf: 0 A VB' E A(T b B ': 0).

Abp3pAf A,Mx\~r^c:p C _̂
AbpC p

We need to show T b C : 0 A VB' E A(T b B ': 0).
We have the following induction hypothesis

r b 3pAf: 0 A VB' E A(r b B7: 0) (IH1)
T,jc : p b C : 0 A VB7 E (A,Afx)(T,jc : p b B ' : o) (ffl2)

By the weakening rule it is safe to apply IH2. By the uniqueness of derivations,
from T b 3pAf: 0 and T ,x : p b C : 0 , we have T b C : 0 . Then by IH1, we have
T b C : 0 A VB' E A(T b B ': 0).

A ,pA \~r,p:p-+o p B +
= + p freshAbr A = p B

We need to show T b A —p B : 0 A VB' E A(T b B ': 0).

84

Church's Simple Theory o f Types (CST)

We have the following induction hypothesis

T,p : p -> o h pB : o AMB' G (A,pA)(T,p : p ^ 0 b P ' : 0) (IH1)

By the weakening rule it is safe to apply IH1. By the uniqueness of derivations,
from T , p : p —> o h p B : 0 , we have T h A =p B : o. Since p has no effects on A,
by IH1, we have MB' G A(r h P ' : 0).

 ̂ A h r A =p B A hp PA
* A hr PP =

We need to show T h PP : 0 A VP' G A(r h P ' : o).

We have the following induction hypothesis

r h A =p P : o A MB' G A (r h P ' : o) (IH1)
r h PA : o A VP' G A(r h P7: o) (ffl2)

By the uniqueness of derivations, from T h A = p P : o and r h PA : o, we have
r h P B : o. Then by IH1, we have T h PB : o A MB' G A(T h B' :o).

Ahr s:PA x = a Bx
• — r~,----- :------------ -— ext x freshA hr A = p— P

We need to show T h A =p->a P : 0 A MB' G A(T h P ' io) .

We have the following induction hypothesis

T , x : p h Ax =a B x :o A MB' G A(r,;t : p h P ' : o) (IH1)

Since x is generated for applications with A and P, it has no effects on A. Thus
it is safe to apply IH1. By the uniqueness of derivations, from T , x : p h Ax —a
B x : 0 , we have T h A =p^ a B : o.

Then by IH1, we have T h A = p^ P : 0 A MB' G A(T h P ' : 0).

r i - 0 : p - > p ri-A:o q
A l~r <t>(pp<t>) c p ppO p

We need to show T h <f>(jUpd>) Cp Pp<t>: 0 A VP G A (rh B:o).

This follows by the assumptions and the definitions of fip and Cp.

A h r monop (<£) A h r Cp M
* A h r pp<*> Cp M

We need to show T h Pp<£ Cp M : o AMB e A(T h P : 0).

85

3. Church’s Simple Theory of Types

We have the following induction hypothesis

T b monop (<&): o A Vfl e A(T b B : o) (IH1)
r b <1>(M) Cp M : <? A Vfl e A (r b B : o) (ffl2)

By the uniqueness of derivations, we have T b jUp4> Cp M :o. Then by IH1, we
have T b pp& Cp M : o A MB e A (T b5:o) .

rb<I>:p—>p T b A : o ^ ,K ^ Cocl,
A br Vp4> Cp <J>(vp<I>) ” P

We need to show T b Vp<J> Cp d>(vpd>): oA\/B e A(rh Bio).

This follows by the assumptions and the definitions of Vp and Cp.

A bp monop (<£) A bp M C p <I>(M)
* AI-rMCp vp(<I>) 01p

We need to show T b M C p vp (<£): o A VB e A (r h B : o).

We have the following induction hypothesis

T b monop(<I>) :oA \/Be A(T \- B:o) (IH1)
r b M C p <1>(M) : o A e A(T b B : o) (ffl2)

By the uniqueness of derivations, we have T b M C p Vp(<l>): o. Then by IH1,
we have F b M C p yp(<I>) :oA \ /Be A(Tb B:o).

□
Theorem 3.3.18 (Soundness) If A bp A, then A |=p A.

Proof By induction on the structure of the relation A bp A.

T b A,A: o• — -——r-------- use
A, A bp A

We need to show A,A |=p A. Then by Definition 3.3.10, that is, assume 77 (= F
and J t , T] |=p (A,A), to show J t , 77 |=p A.

From the assumption M , 77 |=p (A, A) we get J f , rj |=p A.

. A b r A rhg:o p A = f B
A b p B H P

We need to show A f=p B. Then by Definition 3.3.10, that is, assume 77 |= T and
77 |=p A, to show 77 [=p B, i.e. to show jBjr 77 = 1.

86

Church's Simple Theory of Types (CST)

We have the following induction hypothesis

A h r A 0H1)

By Definition 3.3.10 we have rj |=r A.
That is, [[A]]r Tj = 1. By Lemma 3.3.14 we get [[fi]]r Tj = 1 since A =p fi.

A l~r A A hp B
• - - - - - - - - - ------------------- - ------ A +A h r A A 5 A

We need to show A |=r A AB. Then by Definition 3.3.10, that is, assume t] h r
and J t , tj | = r A, to show rf h r A A fi, i.e. to show JA A fi]]r 7j = 1 . That is
to show [A]]r 7j = 1 and [fi]]r 7j = 1.
We have the following induction hypothesis

By Definition 3.3.10 we have rf h r A and t j h r B.
That is, [A frj = 1 and [f i]] r T j = 1 .

AhrAA.fi
A h r A 1

We need to show A h r A. Then by Definition 3.3.10, that is, assume t j h r and
t j h r A, to show jft , t j h r A, i.e. to show [A]]r t j = 1 .

We have the following induction hypothesis

By Definition 3.3.10 we have t j h r A A f i .

That is, [A AfiJr Tj = 1, i.e. [A]]r Tj = 1 and [[fi]]r Tj = 1.

Ahr AAfi
Ahr fi Ar

We need to show A h r B. Then by Definition 3.3.10, that is, assume t j h r and
J t , t j h r A, to show rj h r B, i.e. to show [fi]]r Tj = 1.
We have the following induction hypothesis

A |=rA
A |= rfi

(IH1)
(ffl2)

A h rA A f i (IH1)

A h rA A f i

By Definition 3.3.10 we have ^ , t j h r A A f i .

That is, JA AfiJr Tj = 1, i.e. JA]]r Tj = 1 and [fi]r 7j = 1.

(IH1)

87

3. Church’s Simple Theory of Types

A hp A r h B : o , ---------------------v tAhpAVB '
We need to show A [=r A y B. Then by Definition 3.3.10, that is, assume 77 |= r
and J Z , 77 |=r A, to show J Z , rj |=r A V B, i.e. to show [[A V B^r 7] = 1.
We have the following induction hypothesis

A |=r A (IH1)

By Definition 3.3.10 we have JZ, 7] |=r A.
That is, |[A]]r ry = 1. Thus, JA V 5jr r] = 1.

T h A : o A hp B 4 /+
Ah r AMB Vr

We need to show A |=r A MB. Then by Definition 3.3.10, that is, assume 77 |= F
and J Z , 77 f=p A, to show J Z , 77 |=r A V B, i.e. to show [A V Z?]r 7] = 1.
We have the following induction hypothesis

A ^ r S (IH1)

By Definition 3.3.10 we have J Z , 77 |=r B.
That is, [B]]r jj = 1. Thus, [[A VSjr T7 = 1.

AhpAVB A, A br C A,Bbr C
AI-r C v

We need to show A |=r C. Then by Definition 3.3.10, that is, assume 7] |= T and
J f , 7] |=p A, to show J Z , 7] |=p C.
We have the following induction hypothesis

A |=r A V Z? (IH1)
A, A [=r C (ffl2)
A,B [=r C (ffl3)

By Definition 3.3.10 we have

(7 7 1= T A JZ, 77 |=r A) =>■ J Z ', 77 |=r A V B
(77 \= r A jZZ, 77 |=r (A)-A)) => J Z , 77 |=r Z3
(77 |= r A ^ , 7 7 \=r (A,B)) => ^ , T 7 \=rC

Before we apply IH2 or IH3, we need to show J Z , 77 f=r (A,A) or JZ,r\ \=r
(A,5). That is to show J Z , 77 |=p A or J Z , 77 |=r 5, i.e. [A]]r 77 = 1 or p?]r 77 = 1.
Then to show [A V5 j r 77 = 1. This follows by J Z , 77 |= rAM B.
By IH2, we have J Z , 77 f=r C.

Church’s Simple Theory o f Types (CST)

A, A +
A hr A-+B

We need to show A f=r A —> B. Then by Definition 3.3.10, that is, assume 77 |= F
and ./#, rj h r A, to show j f i , rf |=r A —► 5, i.e. to show [[A —> B] r 77 = 1. That
is, assume |[A]]r r] = 1, to show p?]r T] = 1.
We have the following induction hypothesis

A, A h r # (IH1)

Before applying IH1, we need to show JZ, 77 |=r (A, A) first. We have 77 |=r
A by assumption, then it is to show |=r A, i.e. jA]]r T] = 1. This follows
by the assumption.
By IH1, by Definition 3.3.10 we have (77 |= F A r y |=r (A,A)) = > ^ , 7 7 |=r#-
That is, p?]r T7 = 1.

A h r A —> B A hr A
Ahr B

We need to show A |=r B. Then by Definition 3.3.10, that is, assume 77 |= F and
J Z , 77 |=r A, to show JZ, rj |=r B, i.e. to show [Bjr ?] = 1.
We have the following induction hypothesis

(Ml)
(M2)

By Definition 3.3.10, from IH1, we have |=r A —>■ B. That is, [A —►
Bjr 7] = 1, i.e. if [A]]r r] = 1, then [[B]]r r] = 1. [[A] r 77 = 1 holds by IH2. Thus,
[S lr 7J = 1 .

A h r ro Mx , - ,• ---------- v+ x fresh
A hr VPM 9

We need to show A |=r VpAf. Then by Definition 3.3.10, that is, assume 7] |= T
and JZ, 77 h r A, to show JZ,77 |=r VpAf, i.e. to show [[VpAf]]r r] = 1. That is,
HYpUM1̂ = i e - to show Va e = !•
We have the following induction hypothesis

A h r s:PMx (M l)

Before applying IH1, we need to show a) 77 [jc := a] f= (T , jc : p) and b) JZ, 77 [jc :=
a] H>:p A first. Let a G [p].
For a), it is to show Vf.77 [jc := a] (j c /) G [[(F,j c : p)(jc/)] where jc / G dom(r,Jc: p).
If jc,- G dom(r), then 77 [jc := a] (x/) = 77 (jc ,-) G jr(x/)]| by 77 \=T. If j c/ = j c , then
7][x := a](x) = a G [pj. Thus, 7][x:=a](xi) G [(T ,*: p) (*/)].

A [=rA->B
A hr A

89

3. Church’s Simple Theory of Types

For b), it is to show VA E A (^ , 7] [jc := a] |=r,rp i*e. [[A]]r,*:p7] [jc := a] = 1.
By Lemma 3.3.13, it is to show |A[A//jc]]]r Tj = 1 where [[A7]]1̂ = a. Since x
is fresh, it is to show [A]]r 7] = 1 for all A E A. This follows by the assumption
JZ,ri |=rA.

From IH1, we have (7] [jc : = a] | = (T,x : p) 7] [jc : = a] (=r,x:p A) = > 7] [x : =

a] \=r̂ c:p Mx by Definition 3.3.10. That is, we have

[[Mx]]r ’*:p 7] [r := a] = 1
= » p f] |r ,*:pr/[jc := a](p:^r,x:p'q[x := a]) = 1
= > [7 7 [j c : = (a) = 1

=*\M\A!/x}fr){a) = 1
=>p/fj](a) = l

Ahr VPM r h AT: p w_
* A hr MN 9

We need to show A \=rMN. Then by Definition 3.3.10, that is, assume 77 |= r
and , rj |=p A, to show 7] |=p MN , i.e. to show [[MiV]]r 77 = 1.

We have the following induction hypothesis

A |=r VpM (IH1)

From IH1, we get M ,r\ [=r VpM by Definition 3.3.10. That is [VpM]]r 77 = 1,
i.e. VaE Jp]].|[M]lr 77(a) = 1. Then by T h N : p and 7] |= T, we get [AfJr 77 E [[pj.
Thus, we get [Af]]r 77([[/V]]r 77) = 1, i.e. §MN^r 7] = 1 by Definition 3.3.9.

A hr MN r \ ~ N : p g+
A hp 3pM 9

We need to show A |=p 3pM. Then by Definition 3.3.10, that is, assume 77 |= F
and 7] |=r A, to show 77 \=r 3pAf, i.e. to show [3pM]]r 77 = 1. That is,
[3 p]][[Af]]r 77 = 1, i.e. to show 3a E [[p].[[M]]r 77(a) = 1.

We have the following induction hypothesis

A \=rMN (IH1)

Then we get M,v\ |=pM/V by Definition 3.3.10. That is, [MN])r T7 = 1, i.e.
jAf]r 77([[N]]r T7) = 1. Then by Definition 3.3.9, from T h N : p and 77 \= T, we
get M r 77 E i p l Thus, we get 3a E JpJ.|[M]]r 77(a) = 1.

(by Definition 3.3.9)
(by Definition 3.3.9)

(by Lemma 3.3.13)
(by x fresh)

90

Church’s Simple Theory of Types (CST)

A h r 3 PM A-M xhr^ C 3 - * fresh
AI-pC p

We need to show A \=r C. Then by Definition 3.3.10, that is, assume 77 |= F and
rj f=r A, to show , 77 |=r C, i.e. to show jC]]r T] = 1.

We have the following induction hypothesis

A f=r 3pM (IH1)
A,Afx |=r>:p C (ffl2)

Then by Definition 3.3.10 we have

Vrfir f N rA , t]' \=r A) => Tf' \=r 3pM
Vj)"(r}" 1= (r , x : p) \=r -̂.p (A,Mt)) =!> N r*.P C

Let tj' := 77, and 77" := tj[jc := a].
From * ^ ,7 7 |=r 3pAf, we get p pM] r 77 = 1, i.e. P PJ[[M]]r T7 = 1, i.e. 3a G
M - W f t l (a) = 1 -
Before applying IH2, we need to show a) rj [x : = a[\= (r,jc : p) and b) ^ , 77 [x :=
a] l=r>:p (A,Afx) first. Let a G [[p].
For a), it is to show Vi. 77 [jc := a] (jc ,-) e [[(F,j c : p)(jv/)J where jc,- G dom(r,jc: p).
If Xi G dom(r), then r}[x \= a](xi) = 77(jc ,-) G Jr(x,-)]] by the assumption 77 |= F.
If jc,- = j c , then 77 [x := a](x) = a G [[p]. Thus, 77 [jc := < z](jc ,-) G |[(r,jc: p)(jc,-)j.

For b), it is to show §A,Mx'$r’x'p'n[x := a\ = 1, i.e. [[A]]rrX :p77[jc := a] = 1 and
[[Afjc]]r,*:p 77 [jc := a] = 1 which is equal to [[M] r , * :p 77 [jc := a]([[jcjr ^ 77[x := a]) =
1, i.e. pf]]r ’*:P 77[jc := a] (77 [jc := a](jc)) = 1, i.e. [x := a](a) = 1. Since

jc is fresh, then by Lemma 3.3.13 it is to show [A]]r 77 = 1 and |[M]]r T7 (a) = 1. It
follows by the assumption J t , 77 \=r A and IH1.

From M , 77 [jc := a] |=r>:p C (from IH2), we get [[C]]r ’*:p77 [jc := a] = 1. Since jc

is fresh, by Lemma 3.3.13, we get HCjr 77 = 1.

A,pA l~r,P:p->o pB ^
= + p freshA bp A =p B

We need to show A |= r A = p B. Then by Definition 3 .3 .10, that is, assume 77 |= F
and 77 |=p A, to show , 77 [=r A = p B, i.e. to show [A = p Bjr 77 = 1. That
is, for every p G [p —► 0], assume [[pAj^Tj = 1, to show [[p£]]r 77 = 1.

We have the following induction hypothesis

A,pA [=r,p:p-^o P # (IH1)

91

3. Church’s Simple Theory of Types

Then by Definition 3.3.10 we have

f=r (A,pA)) = > ^ , 77' |=p pB

Let r\' := 7][p:= q] and r ' := r , p : p —► o.
Before applying IH1, we need to show a) rf \p := #] |= (r , p : p —► o) and b) ^ , 7]
[p •= ?] Nr,p:p^ 0 (A,pA) first. Let ? € [p —»o}.
For a), it is to show Vi.7] [p := q\ (pi) G [(r , p : p —> o) (p,-)] where pi G dom(r, p :
p —> o). If pi G dom(r), then rj\p:=q] (pi) = 7] (p/) G |jr(pt-)]] by the assumption
77 t== r . If pi = p, then 7] [p := $](p) = <7 6 [[p -> oj. Thus, 77[p := ^(p,-) G
l(r,p:p->0)(p/)]] .
For b), it is to show [A,pA]]r ’p:p_>07j[p := <7] = 1, i.e. [[A]]r,/> :p—̂ ^77 [p := q] = 1
and [[pA]r ’p:p_'07][p := #] = 1. Since p is fresh, then by Lemma 3.3.13 it is to
show [A fij = 1 and [pA]]r 7] = 1. It follows by the assumptions M , 77 A
and [pA]]r 7] = 1.
From J£, t j [p := #] |= r> p:p_^0 p £ (from IH1), we get ^ p B ^ p:P^0fq [p:=q] = 1.
Since p is fresh, by Lemma 3.3.13, we get |[pB]]r 7j = 1.

A hr A = p B A hr PA
Ahr FB =

We need to show A |=r PB. Then by Definition 3.3.10, that is, assume 77 |= F
and , tj \=r A, to show 7] |=r PB, i.e. to show [P5]]r 7j = 1.
We have the following induction hypothesis

A |=rA =p B (IH1)
A [=r PA (IH2)

By Definition 3.3.10, from IH1, we have |=rA —p B. That is, [A —p
5] r 77 = 1, i.e. if JPA]]r 77 = 1, then [[PB]]r 7] = 1 for every P G [[p —► oj.
[PA]r 7i = 1 holds by IH2. Thus, [PB]]r 7] = 1.

. A hr^p A x = a Bx
• — 1 ^— ext x freshA hr A = p ->(7 B

We need to show A |=r A =p-><r B. Then by Definition 3.3.10, that is, assume
77 |= T and J t , rj f=r A, to show 77 [=r A =p->a i*e. to show [A =p-><j
B f n = 1. That is, for every p e (p —► a) —► o, assume |[pAjr 7j = 1, to show
Ip flfj} = 1 .
We have the following induction hypothesis

A |=r>:p Ax = 0 Bx (IH1)

92

Church's Simple Theory o f Types (CST)

Then by Definition 3.3.10 we have

^ r f i r f N r* A rf N r A) ^ * ^ 5 rf N r Ax =a Bx

Let tj' := 77[jc := a] and F' := T,jc : p .

Before applying IH1, we need to show a) 77 [jc := a\ |= (r,jc: p) and b) ^ , rj [x :=
a] Nr>:p A first. Let a £ Jp].
For a), it is to show \/i.rj[x := a](xt) £ I (r ,j c : p) (*,)]] where jc,- £ d om (r ,jc : p) .
If jc/ £ d om (r), then 77 [jc := a](jc,-) = rj (jc,-) £ (JF(jc,-)]] by the assumption tj \= T.
If xi = x t then t j [x := <z](jc) = a £ JpJ. Thus, r j [x a] (x i) £ [[(F,jc : p)(jc,-)]j.

Forb), it is to show [[A]] r »;c:P 77 [jc : = «] = 1. Since jc is fresh, then by Lemma 3.3.13
it is to show [[A]r 77 = 1. It follows by the assumptions rj |=r A.
From rj [jc := a] |=r>:p Ajc = a B x (from IH 1), w e get [Ajc = a B x ^ r ,x :p Tj [jc :=
a] = 1. That is, for every q £ G —> 0 , i f l q A x ^ r ,x : p r j [x := a] = 1, then ^ q A x \ \ r,x:P

77 [jc := <3] = 1. It equals to for every p £ (p —► cr) —► 0 , i f ^ p A ^ riX:pTj [x := d \ = 1,
then Jp2?]]r ’*:p77 [jc := a] = 1. S ince jc is fresh, by Lem m a 3 .3 .13 , it equals to i f
^ p A f T j = 1, then f t p B f ' T j = 1.

n - 0 : p ^ p r h A : o q
A l-r <J>(pp<I>) c p ppcj> P

We need to show A |=r ^ (P p^) Cp Pp<I>. Then by Definition 3.3.10, that is,
assume rj [= F and J t , r j [=r A, to show Jt ,x j (=r <&(pp<&) c p pp<I>, i.e. to
show [d>(ppd>) Cp P p ^ f r j = 1 .
By the definition of [Pp], we have [^(Pp^)]]1̂ = [Pp<I>]]r 77. Then since [Cp
] is a partial order, we have [3>(Pp<I>)]]tj [Cp]] [pp<I>]]r T7, i.e. [<J>(pp<I>) Cp
ppd>]]r T7 holds.

A hp monop (<I>) A hp d>(M) Cp Af
* A hr lip<& Cp M Mp

We need to show A f=p Pp^ Cp Af. Then by Definition 3.3.10, that is, assume
77 |= F and tj |=r A, to show J t , tj \=r Pp<£ Cp Af, i.e. to show [ppO Cp
Af]r 77 = 1 .
This follows by the Tarski’s theorem.

r h < £ : p —>p T h A :o „ ,• ---------- ;----- Codp
A h r Vp<I> Cp <D(vp >̂)

The proof is dual to the Cip case.

A hp monop (4>) A hp Af Cp <£(Af)
* A h r M C p Vp(<P) 0,p

The proof is dual to the Indp case.

93

3. Church’s Simple Theory of Types

□

3.4 Conclusion
Firstly we have studied the simply typed lambda calculus (with products), and intro
duced the notion of an interpretation from one instance of the simply typed lambda
calculus to another. Every interpretation respects /3-equality.

And then we have described a particular instance of the simply typed lambda cal
culus, called CST, where the set of base types contains a set J? of base types for
individuals and the proposition type o, and the constant set consists of the constants
A, V,^,Vp,3p,=p,^ip, and Vp.

Our deductive system of CST is different from Church’s original one in several
aspects: first, we used natural deduction while Church used a Hilbert style calculus;
second, our calculus is intuitionistic while Church’s is classical; third, we dropped the
choice operator in order to enable a realisability interpretation.

94

Chapter 4

Program Extraction via Readability

Contents
4.1 Readability Interpretation
4.2 Induction and Coinduction
4.3 Related Work................
4.4 Conclusion...................

96
107
120
122

One method of program extraction is to employ a realisability interpretation. In 1945
Kleene [Kle45] first introduced the concept of realisability with the idea of defining a
relation *7z realises A” between natural numbers n and logical sentences A. Later many
other notions on realisability were introduced. In particular Godel’s functional or Di-
alectica Interpretation [Goe58, Goe90] and Kreisel’s modified realisability [Kre59]
have a profound impact. Originally intended to be a contribution to Hilbert’s pro
gram, the Dialectica interpretation showed that the consistency of Peano Arithmetic
is reduced to that of Godel’s system T, a quantifier-free theory based on finite types.
In contrast to the Dialectica Interpretation, modified realisability also established a
correspondence between Peano Arithmetic and System T, but treated logical implica
tion differently. In addition, Kleene and Vesley [KV65, Tro73] introduced a notion of
function realisability for the purpose of providing a classically understood model for
Brouwerian Intuitionism. The possibility of effectively obtaining a program and its
verification proof is based on a sound realisability interpretation. A historical account
of realisability is presented in [VO02].

After nearly three decades of research, program extraction constitutes a fruitful
area with an established theory and incorporations in several proof assistants. We
give a brief overview of some proof systems supporting program extractions. In Sec
tion 4.3, we will elaborate more details on this. The first theorem provers that sup
port program extraction are Nuprl [CAA+8 6] which is based on Martin-Lof type

95

4. Program Extraction via Realisability

theory, and the PX system [HN87], based on Feferman’s theory of functions and
classes [Fef79], which provides an optimising method of extracting untyped LISP
programs from proofs of specifications. An interesting method of program extrac
tion is implemented in PhoX [Raf04] which uses second-order formulas to define data

; types. The program extraction facilities of the Coq system [PM89b, PMW93, Let03],
I based on a variety of type theory, Calculus of Inductive Constructions [CPM90] can

transform Coq proofs and functions into OCaml, Haskell and Scheme. A distinguish
characterisation of Minlog [BBS+98] is that the logical language in use is minimal
first order logic. There has also been some work on program extraction in the Isabelle
system [Ber03c] which is based on simply-typed, minimal higher order logic. Addi
tionally, based on the Curry-Howard correspondence, some constructively typed lan
guages, e.g. Agda [BDN09, FS11] and Epigram [MM04], allow program extractions
in a way. Their type checkers ensure the correctness of extracted programs at compile
time. Chuang in his PhD thesis gives a concrete example of applying Agda’s program
extraction machinery to solve exact real number computation problem in [Chul 1].

In this chapter in order to implement program extractions, CST described in Chap
ter 3 is extended by some extra datatype and new constants. Hence, the realisability is
applied to the full CST, and it is untyped.

4.1 Realisability Interpretation
We will begin our exploration of realisability by extending CST to a system RCST
that contains an untyped rudimentary functional programming language. We will give
a realisability interpretation of CST in RCST and prove a soundness result.

As mentioned previously in Section 3.3, we extend CST to RCST by adding an
extra base type 8 for realisers and extra constants nil, in^, inr> prL, pr^, pair, app, fun,
case, rec with the following typing

n il: 8
inLjin/^pr^pr* : 8 -> 8

pair, app: 8 —> 8 —> 8
fun: (5 —► 5) —► 8

case: 8 -► {8 -> 8) -+ (8 -► 8) -> 8
rec: (5 —► 5) —► 8

where 8 is interpreted as a Scott domain D obtained as the solution to the recursive
domain equation

I
[D ~ (1 + D + D + D + D x D+[D^D])_ l

96

Realisability Interpretation

We also extend the ranges of the parameters of the constants Vp, 3p, = p and /ip,
vp to all types respectively predicate types p of RCST.

We define =§ as the least congruence relation on terms such that

case (ini, M) Mi M2 =$ M\M
case (iyirM)Mi M2 =s M2M

prL(pairMiM2) = s Mi
prR (pair Mi M2) = 5 M2

app (funM) N =g MN
appM(recM) =$ rec M

and define = as the least congruence relation containing =p and =$.
Note that the case expression here is a special instance (with two clauses) of the

case expression (caseMof{C,(Jc/) —> Ri}ie{i,...,n}) *n Chapter 2 .
For better readability we use the notations

caseM of {(in/,*) —► Mi; (in/?jc) —> M2} := cascM (X x: 5 .Mi) (Xx : 5.M2)
Xgx.M := fun {Xx: 8.M)
M -N := appMN

Hence

case(in^M) of{(in/,jt) —> Mi; (in/?*) —► M2} = Mi[M/jc]
case (in/?M) of{(in/,jt) —►Mi; (in/?jc) —>M2} =M 2 [M/x]

(Xsx.M)-N = M[N/x]

The logical rules of RCST are the same as those of CST (with p ranging over
RCST types of course), except for the rule ft and the rules for pp and vp.

The P rule is replaced by the rule

Ahr A r h
A hp B

We replace the rules for monotone induction, Clp and Indp, by rules expressing that
jup<J> is the least fixed point of the operator <J>(X) := (j£c^<I>(y). The operator 4>
(which could be easily formally defined in RCST) is monotone for arbitrary <I>: p —> p,
hence the least fixed point exists. If <I> is monotone, then is the same as <E>. Dually,
the rules for coinduction are replaced by rules expressing that vpd> is the greatest fixed
point of the operator d>(X) := DyDpX^W- This general (co)induction is a generali

97

4. Program Extraction via Realisability

sation to higher-order logic of Mendler-style (co)induction [Men91].

Ahr M Cp pp3> A ,Y C p M hr &(Y) Cp M
ClGp — -— = £ ------ v y IndGp Y fresh

A hr 3>(Af) Cp jUp<I> A hr pp4> Cp M

A hr V p ^ C p M A , M C p 7 h M C p < D (y)
^ ^ CoclGp---- — -----= ± -----------=E— CoiGp Y fresh

A hr Vp<£ Cp 3>(Af) A hr M Cp vp<I>

Definition 4.1.1 (Realisability Interpretation) We define an interpretation (r,R) of
CST in RCST where the base type substitution

r(o) := 8 ^ o
r(i) := i

and the constant substitution (for the sake of readability we write Vx: p. A for Vp (Xx:
p.A) and 3 x : p.A for 3p(Xx: p.A))

R (~0 = XA,B: S —>o.Xd: 8 .Va: 8 .Aa —> B(d■ a)
R(A) = XA,B:5-> o.Xd: 8.3a,b : 8 .d =§ pmiabAAaABb

R (v) = XA,B\ S —»o.Xd : 8.3a: 8 .(d =$ in^tf AAa) V (d = 5 in/?a ABa)

R(Vp) II "I T 8 —> o.Xd : 8 .Vx: r(p).Axd

R(3 p) = X A : r(p) 8 —► o.Xd : 8.3tx: r(p).Axd

R (= p) — X A,B : r(p) .X d: 8 . d = 5 nil A A =T(P) B

R(Mp) = Pr (p)

R(vp) = Vr(p)

According to Definition 3.2.2 the type substitution r and the constant substitution
R induce a mapping Rr from CST terms to RCST terms. For notational simplicity we
denote this mapping again by R.

Remark The definition of R(c) becomes more comprehensible when we apply it to

Realisability Interpretation

arguments.

R(A -> B) d = Va : 8 . R(A) a -> R (B) (d • a)
R(AAB)d = 3a,b : 5 .d =§ pakab AR(A)a AR(B)b
R(A\JB)d = (3a : 8 .d=$ in£,a AR(A)a) V (3b : S.d=$ inRbAR(B)b)

R(Vx: p.A)d = V3c: r(p).R(A)</
R(3x : p.A)d = 33c: r(p).R(A)d
R(A =p B)d = d =s nil A R(A) = r(p)
R(jLlp <!>*) d = P r^ & x d

R(vp <J>x) d = vr(p)<E>;td

Example 4.1.2 (Realisers of natural numbers)
Let us continue with Example 3.3.15.
Recall that we define the set of natural numbers as an inductive predicate. Set

& := Xp : i —> o .X x : i . x = t 0 \/ p(x — 1), and define N := p t^ 0 <P. A more readable
notation for the definition of N would be

Njc£ * = , 0 V N (jc- 1) .

As an example of a proof by induction we show that the natural numbers are closed
under addition:

A+ b r+ Vx,y: i . N x A N y —► N(x+y)

Setting P(x) := X y : i . N(x+y), the formula to be proven is equivalent to Vx: I . Nx —►
N Qi->0 P{x). Hence, it suffices to show &P(x) C t^ 0 P(x) under the extra assump
tion Nx. Unfolding the definition of <I> and using proof by cases (V“), this amounts
to proving N(x + 0) and Vy : i .N(x + (y — 1)) —> N(x + y), which is easy, given the
assumptions A+ and Nx.

The realisability interpretation of natural numbers is

R(N x)d = lA ^ s^ o R i ty x d

where R(<J>) = Xp : i —► 8 —► o.Xx : i.Xd : 8 . (d =$ in^nil Ax = t 0) V (3b : 8 .d =§
inRbAp(x— 1)b).

In a more readable notation:

R(Nx)d = (d = 5 in^nil Ax = 0) V (3b: 8 .d =§ inRbAR(N(x— 1))&).

Hence, a natural number n: I is realised by the numeral n : 5, where 0 := in^ nil,
/i+ 1 := inRit.

99

4. Program Extraction via Realisability

An element d : 8 realises the closure of natural numbers under addition, i.e. the
formula Vx,y: i.Nx A Ny —> N(x+y), if for all i and all a, b: 8

R(Nx)aAR(Ny)& —> R(N(x+y))(d- (pairafc)).

which says that d adds natural numbers in unary notation.

Example 4.1.3 (Interpretation for Fibonacci Numbers)
Let us continue with Example 3.3.16.
Recall that we define a coinductive predicate FIB := vl_>l_>0xP where

:= Xq : I —► I —► o.X x ,y : i .NxAqy{x+y).

A more readable notation would be

FEBxy = NxAFIBy(x-l-y)

As an example of a proof that uses coinduction we show

A+ hr+ FIB 11.

We show more generally, that FIB holds for any two natural numbers, i.e. Q C
FIB where Q := Xx,y: I . Nx AN y. By coinduction, it suffices to show Q CM l^ 0
which is easily done using the previously proven fact that natural numbers are closed
under addition.

The interpretation of Fibonacci numbers is

R(FYBxy)d = Vi_n_>$_>oR 0 P)xy</

where R('P) = Xq: i —> i —► 8 ^ o . X x , y : i .X d : 8 .3a ,b : 8 .d=$ pairafcAR(Nx)aA
qy(x+y)b.

In more readable notation

R(FIB jry) d = R(N*)(prt </) AR(FIBy (jc+y))(pr*«i).

which says that d is a stream of natural numbers in unary notation where the head
realises Nx and the tail realises FIBy (x+y).

Let us compare the given realisability interpretation of equality with the realisabil
ity interpretation of Leibniz equality.

Definition 4.1.4
=p:= XA,B : p.Vp : p —> o.pA —> pB

Lemma 4.1.5

100

Realisability Interpretation

(a) A = Lp B ^> A = p B

(b) R (=p)A B / «-* \/q : r(p) 8 o.Va: S .q A a —* qB (f a)

(c) (3 / :S .R (4) A B /) ~ A = L p)B

Proof (a) By the rules = + and =~.

(b) By the definition of realisability.

(c) => : ^
Assume R(=p)A 5 / and p : r(p) —► o, we need to show pA —► pB.
Then by (b) we get V#: r(p) —> 5 —► o.Va : S . q A a ^ qB(f- a).
Let q\= X x \ r(p)A,a : S.px. Then we get pA —► pR.

Assume A =^(p) It is easy to see that for f Fun(Aa : 8 .a) we have
R(=\)ABf .

□
Definition 4.1.6 (Realisability for sequents) Realisability for a sequent A bp A is de
fined as follows.

Let A := {B\ , ... ,Bn} and T := {xi : pi , . . . : pk}. Then a : 8 realises A bp A if
a realises the formula Vjci : p i ... Vjc* : Pk.Bi AZ?2 A... AZ?„ —> A.

Hence,

R(A bpA)a = Vxi: r (p i) . . .Vx* : r(pk) M b : 8 .R(Bi A... ABn)b-+ R(A)(a• b).

We write A bp A for a derivable sequent in RCST.
Note that the statement that a term M realises a sequent A bp A is equivalent to

the derivability of R(A) b ^ u r R(A) (M • pairn(&i,... ,bn)) and F' b M : 5, where
T' := {at : 8 \ i e { l , . . .,«}}, r (T) = {xi : r (p i) , r (p *) } , R(A) := {R(R/)fc/1
i £ {1 , . . . ,n}} with fresh variables bu and pairn is defined as pair2 (&i,&2) = pairfci ^2 .
pairn(6 i , • • •, bn) = pair (pair^j (bi, . . . , bn-i)) bn.

The following Soundness Theorem for realisability interpretation states that from
a proof of a formula one can extract a program provably realising it.

Theorem 4.1.7 (Soundness) If A bp A, then there exists some term M of type 8 such
that R(A bp A)M is provable.

Proof By induction on the derivation of A bp A.
It suffices to show that each rule is realisable, i.e., for a rule

Ai bpj A\ ... An bpw An
A bp A

101

4. Program Extraction via Realisability

to show that there is a term e : 8 such that for all a\ ,.. . ,an : 8 realising the premises,
e • a\ •... • an realises the conclusion.

Note that if the proof contexts A and A/, and the typing contexts T and T/ are all
the same respectively, it suffices to find a realiser of the formula A\ A . . . A An —► A.

Non-logical rules (equality, induction and coinduction) will be proved separately
in later theorems (Theorem 4.1.8, Theorem 4.2.10 and Theorem 4.2.11).

T h A , A : o
use

A, A h r A
We need to show R(A,A) h j ^ u r R(A) Af.

By Definition 4.1.6, we have R(A,A) = R(A) U {R(A)x}. We set Af := x.

. AtrA----rh1 2 0 s
Ah r B p

We need to show R(A) h jg ^ p R(R) Af.

We have the following induction hypothesis

R(A) ^ (r) u r R(A)Mo (M l)

By Lemma 3.2.9, we have R(A) = R(#).
Hence, we have R(A) h j ^ u r R(B) Afo, by j35 rule, so we set Af := Mo.

A hp A A h rR ,
• - -- - - - - - A +Ahr AAB

We need to show R(A) h j^ u p R(A AZ?) Af.

It is to show R(A) h j ^ u r R(A) (prLAf) A R(B) {prRM) by Definition 4.1.1.

We have the following induction hypothesis

R(A)hJ(r)u r R (A)Mi (IH1)

R(A) ^ (r) u r R (*) M 2 (IH2)

We set Af := pairAfi M2. Thus, Afi = prLAf and M2 = pr^Af.
By IH1, IH2 and Rule A + , we get R(A) h j ^ u r R(A)(prLM) AR(B)(pr/?Af).

Ahr AAB
A hr A A/

We need to show R(A) h j^ ^ p R(A) Af.

We have the following induction hypothesis

R(A) h j^ u p R (A AR)Afo (IH1)

102

Realisability Interpretation

We have R(A A B)Mq = R(A) (prLMo) A R(£) (pr^Mo) by Definition 4.1.1.

We set M := prLA/o. By Rule Af , we get R(A) h j ^ urv R(A) Af.

A I - p A A B
A h r B Ar

We need to show R(A) h j ^ u r R(B)M.

We have the following induction hypothesis

R(A)h;:(r)u rR(AA£)Mo (M l)

We have R(A A B)Mq = R(A) (prLAfo) A R(J5) (prRMo) by Definition 4.1.1.

We set M := PtrMq. By Rule Ar , we get R(A) HJ(r)ur R(B)M.

AI-pA r h f i : o .
• - -------------------------------------

A h r A V 2? 1

We need to show R(A) h [^ u r R(A V B)M.

It is to show R(A) h j ^ ur, (3a : 8 . M =§ in^a A R(A)a) V (3b : 8 . M =$ inRb A

R (B)b) by Definition 4.1.1.

We have the following induction hypothesis

R(A) ^ (r) u r R(A)Mi

We set M := miMi- By Rule V+, we get R(A) h | ^ u r (3a : 8 .M =$ inLa A

R(A)a) V (3b: 8 .M = 5 inRb AR(B)b).

9 r h A : o A h r B +
A h r A V B r

We need to show R(A) h j ^ u r R(A V B)M.

It is to show R(A) l~J(r)ur : =$ in^a A R(A)a) V (3b : 5 .M =$ inRb A
R (B)b) by Definition 4.1.1.

We have the following induction hypothesis

R(A) K(r)ur *(B)M2 (IH1)

We set M := inRM2. By Rule V+, we get R(A) h ^ u r (3a : 8 . M =$ inLa A

R(A)a) V (3& : 8 .M =$ inRb AR(B)b).

103

4. Program Extraction via Realisability

m Ahr AV£ A,Ahr C A,£hr C
A \~r C

We need to show R(A) h j ^ ur, R(C) M.

We have the following induction hypothesis

R(A) hJ(r)up R(AVB)M0

R C A j ^ ^ h ^ u p ^ R t C j M !
R(A),R(5)yhJ(r)u r~5 R(C)M2

0H1)
(ffl2)

0H3)

From IH1, we have R(A V £)Mo = 3 a : 8 . (Mo =g in^a A R(A)<z) V (Mo = 5 inRa A
R(2?)a) by Definition 4.1.1.

We set M := caseMo of{(in^3c) —> M\ \ (in/?3c) —> M2}. Without loss of general
ity, we assume Mo := in^a for some a : 5 such that R(A)a. Then M = M\ [a/x\.
Hence, by IH2, we get R(A) h j ^ ur, R(C)M.

A, A hr B +
Aht A ^ B

We need to show R(A) h^r ûr, R(A —► B)M.

It is to show R(A) h j ^ u r V<z : 5.R(A)a —> R (B)(M-a) by Definition 4.1.1.

We have the following induction hypothesis

We set M := X$xM q. Thus M • a = Mo [a/3c]. By Rule —>+ and V+, we get
R(A) h j(r)up Vci: 5.R(A)a R(B)(M-a).

AhrA — A h r A
A hp 5

We need to show R(A) h j ^ up R(B)M.

We have the following induction hypothesis

From IH1 we get R(A —► R) = Va : 5.R(A)a —> R(R) (Mo ■ a) by Definition 4.1.1.

We set M : = Mo • Mi. By Rule V- and — we get R(A) h j ^ up R(5)M.

R(A),R(A)7hJ(r)u P > ? :5 R(B)M0 (IH1)

R(A) H;(r)ur R (A ^ B) M 0

R(A) l-J(r)un R (A)Ml
(M l)
(IH2)

104

Realisability Interpretation

A l~rjc'D Mx , - ,• ----- r i ------v+ a: fresh
AbrVpM p

We need to show R(A) b j ^ u r R(VpA) M.

It is to show R(A) b jg ^ p V3c: r(p).R(A)xM by Definition 4.1.1.

We have the following induction hypothesis

R(A) Hj(r)^:r(p)ur R(Ajc)Mo (IH1)

We set M := Mq. Since R(Ajc) = R(A)jc, by Rule we get R(A) b j ^ u r
Vx : r(p).R(A)xM.

AhrVpM T h N : p w_
* Abr MN p

We need to show R(A) b^r ûp R (MN) K.

It is to show R(A) b j ^ up R(M)R(N)K by Definition 3.2.2.

We have the following induction hypothesis

R(A)b;(r)upR(VpM)tfo 0H1)

We have R(VpM)^b = Vx: r(p).R(Af)3c£o by Definition 4.1.1.
We set K := K0, by Rule V“(p), we get R(A) b j ^ u r R(M)R(N)K.

A br MN T b N : p 3+
A br 3 PM p

We need to show R(A) b j^ ^ p R(3pM) K.

It is to show R(A) b j ^ up 33c: r(p).R(M)xK by Definition 4.1.1.

We have the following induction hypothesis

R(A)b;(r)upR(MA0*o 0H1)

We have R(MN)Ko = R(M)R(N)Kq by Definition 3.2.2.

We set K := K0i by Rule 3+(p), we get R(A) b j(r)ur 3x : r(p).R(M)*£.

. A h r 3PM- A’M* h r> :p C fresh
Abr C p

We need to show R(A) b R (C) K.

105

4. Program Extraction via Realisability

We have the following induction hypothesis

R(A) ^(nun R(3pM)£i
R(A),R(Mx)y h^(r) - :5 u ri5 r;5 R fC)^

(IH1)

(IH2)

We have R(3pM)£i = 3 x : r{p).R{M)xK\ by Definition 4.1.1, and R(Afx)y =
R(M)jcy by Definition 3.2.2.
We set K := Kq, by Rule 3~(p), we get R(A) R(C) K.

Theorem 4.1.8 The rules for equality are realisable.

Proof. (= +) : We show e := X a : 8 .Xb : 5.nil is a realiser.

Assume / realises A,pA \~r,p-.p̂ o pB, that is, (1) Vp : r(p) —► 8 —> o.\/a,b
(R(A)a A R(pA)b —> R (pB)(f •a-b)), to show Va (R(A)a —► R(A =p B) (e •
f - a) i

Hence, assume R(A)a, to show R(A =p B)nil. By the definition of R(=p), it is
to show R(A) = r (p) R(B)>
Let p Xx : r (p).Xa : 5.R(A) = r(p) x. Then we get R{pA)b = R(A) = r(p)
R(A). Hence, the premise of (1) holds. Therefore, R (pB)(f -a-b) = R(A) = r(p)

(=) : We show e := X f i , fa : 8 . fa is a realiser.
Assume / i := Xa : 5.nil realises A h r A = p B and fa realises A hp PA , that is,
for all a, (1) R(A)3 -> R(A =p B) [fa • a) and (2) R(A)a -► R(PA) {fa • a), it is to
show Va.R(A)a —»R(/>B)(e -fa- fa- a).
Hence, assume R(A)a, to show R {PB){e • fa • fa • a).
That is to show R{P)R{B){fa • a).

From (1) we have R(A =p B)nil, i.e., R(A) = r(p) R(^)- From (2) we have
R{PA){fa.a), i.e. R(P)R(A) (/ 2 • a).
By Rule = “ , we obtain R(P)R(B) {fa ■ a) as required since R(P)R(A) {fa - a) =p
{Xp: r{p).R{P)p{fa-a))R{A).

(ext) : We show e := X a : 8 .Xb : 5.nil is a realiser.

Assume f := Xa: 5.nil realises A hp^p Ax =G Bx.
That is, (1) Vjc : p.Va (R(A)a —> R(Ax =G Bx){f -a)), to show Va(R(A)a —>•
R(A = p— B){e • f -a)). Hence, assume R(A)<z, to show R(A =p->o B)nil.

□

R (£).

106

Induction and Coinduction

By the definition of R(=p^<y), it is to show R(A) = r (p—X7) i.e. to show
R(A) =r(p)->r(a)

From (1) we have V x : p.R(Ax =a Bx)nil, i.e. \fx : r(p).R(A)x=t{a) R (B)x.

Therefore, by Rule (ext) at type r(p), we have R(A) = r (p)-*r(<y) R(^)-
□

4.2 Induction and Coinduction
The proof of the soundness for induction and coinduction hinges on the fact that the
realisability of an inclusion can be expressed by an inclusion. To this end we introduce
image and inverse-image operations. The realisability interpretation of higher type
inclusion Cp can then be expressed as a composition of ^ r(p) and these image and
inverse-image operations.

Definition 4.2.1 For every predicate type p we define terms Imp, Imp : 8 —► r(p) —>
r(p) as follows.

Im^ := X d : S .X p: 8 —> o.Xb: 83a : 8 . p a A d a = § b
Imp^tf := X d : 8 .Xp : r(p) —> r(a).Xx:r(p).Jm0 d(px)
Impx<7 := X d : S.Xp : r(p) x r(cr).(Imp (prLrf)^b(p),Im<T(pr/?<i)^i(p))

Im“ := X d : S.Xp : 8 —► o.Xa : 8 .p(d-a)
Imp_+a := A d : 5 .A p: r(p) —► r(cr).A;c: r(p).Im ^d(pjt)

Impxo •= M 8 • r (P) x r(a).(Imp (prLJ)^o(p),Im“ (p r^d)^ /?))

Lemma 4.2.2 For every predicate type p, provably in RCST the following are equiv
alent for all A , B : r(p) and d : 5

(a) R(ACp J3)d

(b) A C r(p)Imprfi?

(c) ImpdA Cr(p) B

Proof. By induction on p.

• p = o.

107

4. Program Extraction via Realisability

First, to show R(A CQ B)d +-> Im0dA Cr^ B.

R(A C0 B)d
=o R(A -► B)d
=0 R(^)R(A)R(B)d
=o Vm : 8 .Aa —»■ B(d • a)
=o Vm: 8. (3a: 8 . A a A d - a = 0 u) —*Bu

=o Vm : S . lm odA u —► Bu

= 0 Im0d A C s^ 0 B

—o ImodA Qr(p) B

Then to show R(A C0 B)d =Q A Cr(0) Im“ dB.

R(A C0 B)d
=o R(A -*• B)d
=o R(-+)R{A)R(B)d
=o Vm : 8 .Aa —> B(d • a)

=o Vm : 8 .Aa —> Im“ <iBM
=<>A C5 ^ 0 Im“ </£

o A —r(o)

• p = p ^ G .
First, to show R(A Cp_>a B)d <-> Imp^ a dA Cr(p_ ^ B,

R(A Q:P—>g B)d
=o R(Vx: p.Ax Ca Bx)d
= o R(Vp)R(A*: p.Ajt C CT Bx)d
= o R(Vp)(A3c: r(p).R(Ax Ca Bx))d
= o Vm : r(p). (Xx : r(p).R(Ax C c Bx))ud

=o Vm : v(p).R(Qa)(Au)(Bu)d
=o Vm : r(p).R(Ajt CG Bx)d

= o Vm : r(p).Im <yJ(AM) (Bu)
=o Vm : r(p). (Imp^ CT<iA)M Cr^ 5 m

= o (Imp_,(yC?A) 5

(By Definition 3.3.4)

(By Definition 4.1.1)

(Let u : = d a)
(By Definition 4.2.1)

(By Definition 3.3.4)

(By Definition 4.1.1)

(By Definition 3.3.4)

(By Definition 4.1.1)
(By Definition 4.2.1)
(By Definition 3.3.4)

(By Definition 4.1.1)

(By Definition 3.3.4)

(By Definition 4.1.1)

(By = p)

(By I.H.)

(By Definition 4.2.1)

(By Definition 3.3.4)

108

Induction and Coinduction

Then to show R(A Cp^ a B)d = 0 A Cr p̂^ a ̂Imp^ a dB.

R(A Cp—><y B)d
—0 R(Vjc : p A x Qa Bx)d
=o R(Vp)R(Ax: p A x C a Bx)d
—o R(Vp)(A3c: r(p).R(Ajt Cff Bx))d
=o Vm : r(p). (Xx : r(p).R(Ajc C a Bx)) ud

=o Vm : r(p).R(C0)(Au)(Bu)d
=o Vm : r(p). R(Ax C c Bx)d

=0 Vu:r(p).Au Cr^ Im“ d(Bu)

=o Vm : r(p).Au Cr((y) (Im~_0 dB)u

~~o A C.r(p—*o) Imp^ Q d B

• p = p X G.

First, to show R(A Cpxa B)d Impx^dA C.r^pXO) B.

R(A Cpx<y J?)rf
=o R(^o(A) Cp ^o(5) A 7Ti (A) C a jti(B))d (By Definition 3.3.4)
= 0 R(A)R(^o(A) Cp ^o(B))R(^i(A) CCT 7Ti (£))</
= 0 R(^o(A) Cp 71q(B)) (prLd)

A R(^i (A) CCT 7Ti (5)) (pr/jd) (By Definition 4.1.1)

= 0 Imp (prLd) Kq(A) Cr(p) tiq(B)

A ImCT (pr^ d) (A) Cr((y) m (B) (By I.H.)

= 0 7Co((Imp (prLJ) 710(A),Im^ (prRd) 7Ti(A))) Cr(p) no(B)

A7Ti((Imp (prLd) 7tb(A),Ima (prRd) 7Ti(A))) Cr((y) %x(B) (By =p)

= 0 7lb(ImpxGdA) Cr(p) 7tb(B)

A 7Ti(ImpXcr<iA) Cr(c7) 7Ti(Z?) (By Definition 4.2.1)

=o (ImpxadA) Cr(px<y) B (By Definition 3.3.4)

(By Definition 3.3.4)

(By Definition 4.1.1)

(By =p)

(ByLH.)

(By Definition 4.2.1)

(By Definition 3.3.4)

109

4. Program Extraction via Realisability

Then to show R(A CpxG B)d —0 A QT(pxG) ImpX<7 dZ?.

R(A Cpxo B)d
=o R(fio(A) Qp 71q(B) A %\ (A) C0 m (B))d (By Definition 3.3.4)
= 0 R(A)R(^o(A) Cp flb(R))R(jri(A) C CT n\{B))d
=o R(«b(A) Cp 710(B)) (prLd)

AR(^i(A) Qg 7C\(B)) (prRd) (By Definition 4.1.1)

= 0 flb(A) Q r(p) Imp (prLd) no(B)
A it\ (A) C r(<T) Im" (pr^ d) Tt\ (B) (By I.H.)

= 0 A Cr(p^CT) Imp_>a dB (By Definition 3.3.4)

Lemma 4.2.3 For every predicate type p and every d : 6 , Imp d and Imp d are mono
tone, i.e.

(a) hr \/d : 5.VA,£ : r(p).A Qr(p) & “ * ImpdA Qr(p) ImpdB

(b) hr \/d : 8 .VA,B: r(p).A Cr^ B —* Imp dA Qr(p) Imp dB

Proof. By induction on p.

• p = 0 .

□

(a) A Cr^ B

^ A C^—vo B
=> Vm : S.Au CQ Bu

(By Definition 4.1.1)

(By Definition 3.3.4)

(By Definition 3.3.4)=> Vm : 8 .Au —► Bu

=> Vm : 5.(3a : 8 . A a A d a = s u)
(3b : 8 . B b A d b = g u) (Chosen u \—a and b := a)

=>• Vm : S.JmodAu —> JmodBu

=> Vm : 5-Imo^AM Co ImodBu

=> ImcdA C5_̂ o ImcdB

(By Definition 4.2.1)

(By Definition 3.3.4)

(By Definition 3.3.4)

(By Definition 4.1.1)=> Imc dA C r(o) Im0dB

110

Induction and Coinduction

(b) a c t{o) b

=>ACs^ 0 B (By Definition 4.1.1)

=> Vm : 8 . A a C0 Ba (By Definition 3.3.4)

\/a : 8 .Aa —► Ba (By Definition 3.3.4)

=>Vu:8 A (d ‘u)^>B(d-u) (Chosen a : = d u)
=> Vm : 8 . Jm~ dAu —> Im~ dBu (By Definition 4.2.1)

=> Vm : 5.1m~dAu CQ Im~ dBu (By Definition 3.3.4)

=> Im“ dA Q$-+0 Im“ dB (By Definition 3.3.4)

=> Im“ dA C r(o) Im“ dB (By Definition 4.1.1)

• p = p —> <T.

(a) A Cr(p̂ <y) B

^ A Qr(p)—>r(cr) B
=>• Vm : r(p).A u C Bu (By Definition 3.3.4)

=>• Vm : r(p).Im CT<iAM ^ r (cr) (By I.H.)

=» Imp^CT<iA Qr(p_><7) Im p ^ d # (By Definition 3.3.4)

(6) A CT(p_̂ 0j B

^ ^ —r(p)->r(cr) B

=> Vm : r(p).Au ^ r(cr) B m (By Definition 3.3.4)

=> Vm : r(p).Im^dAM ^ r(<y) Im^di^M (By I.H.)

=> Imp^^^A Qr(p^o) Imp^KjdB (By Definition 3.3.4)

111

4. Program Extraction via Realisability

(a) A ^ r(pxa) B
=> 7io(A) Cr(p) 7to(B) A %\(A) Cr(ff) 7t\(B) (By Definition 3.3.4)

=» Imp (prLd) TGo(A) Cr(p) Imp (prLd) Tib(B)

A Im^ (pr*d) 7t\ (A) Cr(<T) Im^ (pr*d) %\ (B) (By I.H.)

=> Tib((Imp (prL J)7to{A),Ima (pr*d)TTi(A)))

—r(p) no((Imp (prLd)7Co(B),Ima (pr*d)nx(B)))
A 7Ti ((Imp (prL </) Tib (A), Im^ (pr* d) %\ (A)))
Cr(<y) ^i((Imp (prLd)Tio(B),Imo-(prRd)nx(B))) (By = p)

=> Tib(ImpxadA) Cr(p) Tio(ImpX<y(iB)

TTi(ImpxCT^) —r(<x) TTi(ImpX(y<iB) (By Definition 4.2.1)

=> Im p x a ^ —r(px<t) Im pxa^^ (By Definition 3.3.4)

(£) ^ (pxCT)-®
=> ^b(A) c r(p) ^b(B) A TTi (A) Cr((J) TTi (£) (By Definition 3.3.4)

=> Imp (prLd) T5o(A) ^r(p) Imp (prLd) 7Cq(B)
AIm“ (pr*d) KX(A) Cr((T) Im“ (prRd) K\(B) (By I.H.)

=> ^b«Imp (prLJ)TCo(A),Im“ (pr*</)TTi(A)))

—r(p) ^b((Imp (prLrf)Tio(B),Im~ (pr*</)TTi(£)))

ATTi((Imp (prLJ)TZb(A),Im~ (pr*d)tti(A)))

—r(<y) tfi((Imp (prLd) Tib(B),Im“ (prRd) nx{B))) (By =p)

=>• Tib(ImpxadA) —r(p) ^b(Bttpxa^^)
TTi(ImpxadA) Cr(CT) 7Ti(ImpxadB) (By Definition 4.2.1)

=> ImpXGdA Cr(px<y) Jm~x c dB (By Definition 3.3.4)

□
Definition 4.2.4 For every predicate type p we define a closed term idp of type 8 such
that

id*, := fun(Aa : 8 . a)
idp_><j != id<j
idpXc7 := pair (idp, ida)

112

Induction and Coinduction

Intuitively, idp is just a name for what will be used later as realisers of the closure
and coclosure rules.

Lemma 4.2.5 For every p : r(p), Im“ idp p = r(p) P is provable in RCST for every
predicate type p.

Proof. By induction on p.

• p = o.

Imo id0p
= r(o) X a : 8 .p(ido-a)

= r(o) • fi'PQ

=r(o) P

(By Definition 4.2.1)
(By Definition 4.2.4 and =p)

• p = p ^ G .

Im p^ ^ id p-^ p

= r(p-*<r) h x : r(p). Im” idp^ c (px)
=r(p->o) *-x: r(p).Im ” idCT (px)

= r(p-*<r) ' r(p)~Px
=r(p—»T) P

(By Definition 4.2.1)
(By Definition 4.2.4)

(By I.H.)

• p = p x cr.

Imp x o * d p x o P

=r(p—»cr) ^ p (Prt idpx<7)71i)(p),
Im^(prRidpX(T)wi(p))

=r(p—cr) (Imp idp 7H)(p),Im” idff (p))
“r(p—><r) («<)(P)-̂ 1(P)>
= r(p->cr) P

(By Definition 4.2.1)
(By Definition 4.2.4 and =^)

(ByI.H.)

Lemma 4.2.6 If T h : p, then h f R(A Cp B)idp R(A) Qr(p) R(#)-

Proof. Immediate by Lemma 4.2.2 and 4.2.5.

□

□
The following lemma is a part of the soundness theorem for induction and coin

duction. It shows that the closure and coclosure rules are realisable.

113

4. Program Extraction via Realisability

Lemma 4.2.7 If T h 3>: p —> p where p is a predicate type, then

(a) l-J(r) R(<I>(|tp<I>) Cp H p < t >) i d p

(b) l-J(r) R(vp4> Cp 4>(vp4>))idp

Proof Assume T h <I>: p —> p, where p is a predicate type. Clearly r(p) is a predicate
type as well. Furthermore, by Theorem 3.2.6, r(T) b R(4>): r(p) —*• r(p).

(a) By Lemma 4.2.6, it is to show R(<I>)(pr(p)R(4>)) Qr(p) Pt(p)&(&)-

This follows by applying the closure rule Clr(p) to R(d>).

(b) By Lemma 4.2.6, it is to show vr(p)R(<I>) C r(p) R(<I>)(vr(p)R(d>)).

This follows by applying the coclosure rule Coclr(p) to R(d>).

□
Note that this lemma states that closure and coclosure rules are realised by the iden

tity. As pointed out in Section 3.3, the realiser of the coclosure rule given in Tatsuta’s
theory of TIDV2 [Tat98] is more complicated {Xxr.r(Xp.m{Xxrs.s(pQ,r))x{pQxp\)) on
page 353).

We give the definition of composition operations which will be used later in the
soundness proof for induction and coinduction.

Definition 4.2.8 We define composition operations op : 8 —► 8 —► 8 for every predicate
type p by

oG := Xd, e : 8. f\m(Xa : 8. d • (e • a))
Op— 1= 0(j
Opxo := Xd,e : 8 .pak{{prLd) 0p(prLe),(prRd)0 o{pTRe))

Note that we use infix notation for representing composition operations.
We also set &p:= Xx,y : p.x Cp yA y Cp x.

Lemma 4.2.9 In RCST the following are provable:

(a) Imp d (Imp ex) ^ r(p) Imp (d op e)x

(b) Im“ d (Im“ ex) = r(p) Im“ (eop d)x

Proof. By induction on p.

114

Induction and Coinduction

• p = o.

(a) Jmod(lmoex)
=r(o) he : 83 b : 8. (Jmc ex)b Ad-b =$ c (By Definition 4.2.1)
=r(o) Ac • S 3 b : 8 3 a : S . x a A e a = $ b A d -b = $ c

(By Definition 4.2.1)
~ r(o) A c : 8 3 a : 8 .xa A d ■ (e a) = § c (By = 5)

= r (o) Ac : S 3 b : 8 3 a : 8.xaA(fun(Xa : 8. d - (e-a))) a = 5 c
(By =p)

= r(o) Ac: 8 3 b : 8 3 a : 8.xaA{doQe) - a=g c (By Definition 4.2.8)
= r(0) Im<, (do0 e)x (By Definition 4.2.1)

(b) Im~ d (Im“ ex)
= r(o) Xa : 5.1m“ ex{d-a) (By Definition 4.2.1)
= r(0) Xa: 8.x{e- (d-a)) (By Definition 4.2.1)
= r(0) Xa : 5.x(fim(Aa :8.e- {d-a)))-a (By =p)
=r(0) X a : 8.x((eo0d)-a)

=r(o) Imo {eo0d)x

• p = p ^ G .

(a) Imp - + c d (Imp-̂ CT ex)
=r(p—Kj) Xy :r{p).lma d{{lmp-,(jex)y)
==r(p—xr) Ay ' r{p).lm<jd{lma e{xy))
~r(p—><j) Ay - r{p).Jma (doa e) {xy)
= r(p—kt) Ay - r(p).1m0 (d o p ^ e) {xy)

= r(p->cr) fttlp^o{dOp—KJe)x

{b) Jmp_a d{Jmp_Gex)

= r(p—><t) Ay: r{p).Jm-d{{Jm-_0 ex)y)
= r(p—><t) Ay: r(p).Im “ d (Im" c {xy))
= r(p—►cr) Ay: r(p).Im “ {eo0 d) {xy)
=r(p-cr) Ay : r(p).Im “ {eop^ a d) {xy)
= r(p—►cr) Bnp—kt {eOp—>(jd)x

115

(By Definition 4.2.8)
(By Definition 4.2.1)

(By Definition 4.2.1)
(By Definition 4.2.1)

(ByI.H.)
(By Definition 4.2.8)
(By Definition 4.2.1)

(By Definition 4.2.1)
(By Definition 4.2.1)

(ByI.H.)
(By Definition 4.2.8)
(By Definition 4.2.1)

4. Program Extraction via Realisability

• p = p x a .

(a) Imp x d (Imp x a ex)
=r(pxcr) (Imp (prLd) 7ro(Impxaex),

Im<7 (pr^d) ^i(ImpX<7 ^^)) (By Definition 4.2.1)
= r(pxa) (Imp(PrLd) flb«tap (prLe) (p r fie)7Ti(x))),

Ima (prfid) 7Ci((Imp (prt e) ^b(x),Im<!(prpe)rti(x)>))
(By Definition 4.2.1)

=r(pxa) (Imp (prLd) (Imp (prLe) ^o(x)),
Im<7 (pr*d) (Im<7 (pr*e) %\(*))) (By =p)

~r(px<7) (Imp((prL</)op {prLe))no{x),
Im<7 ((prRd) 0(7 (pr^c)) (x)) (By I.H.)

= r(pxcr) (ImpprL(dOpXGe)ltQ(x),
\mapTR(dOpX(je)Tt\(x)) (By Definition 4.2.8 and =p)

= r(p x G) Imp x a {d Op x a e) x (By Definition 4.2.1)

(b) lmp ya d(Im-y(Jex)

=r(px<7) ^ p (Prid)7tb(tapxffex),
Im^ (pr^ d) K\ (Imp x G ex)) (By Definition 4.2.1)

~r(px<7) (tap (prLd) ^((Im p (p^e) ^(x^Im ,, (prp e) (x))),
Im" (prfirf) Jti((lmp (prLe)ab(x),Im^ (prs e) Wi(x)»)

(By Definition 4.2.1)
=r(px<r) (tap (piLd)(Im~ (prLe)jCo(x)),

t a CT (prRd) (Ima (prfle) 7ti(x))) (By =fi)

=r(px<r) (tap ((prLe)op (prLd))zo(x),
t a “ ((prfie)oCT (ptf/d)) m(x)) (By I.H.)

=r(px<r) (tapp rL(eopxad)nb(x),
ImGprR(eOpxcd) Tt\{x)) (By Definition 4.2.8 and =jg)

= r(pX(7) ImpX(7 {eopx(Jd)x (By Definition 4.2.1)

□
Theorem 4.2.10 Monotone induction is realised by the term

Ip := Am,s : 5 .rec(A /: 8.sop (m- f))

116

Induction and Coinduction

for every predicate type p.

Proof. It suffices to show that the closed term Ip realises the formula

V<I>: r(p) —* r(p).Vm : 5.R(monop4>)m —>
VM: r(p).Vs : 8.R(0(M) C p M)s -+ R(pp3> Cp M)(Ip • m • 5).

Hence, we assume R(monop<£)m and R(4>(M) Cp M)s.
By Lemma 4.2.2, from the assumptions we have

(a) VA,£: r(p).Va : 8.A C r(p) Imp ^ 3>(A) C r(p) Imp (m-a) (3>(R))

(b) <I>(M) Cr(p) Imp sM

Let / := rec(A/ : 8.sop (m • /)) , by Lemma 4.2.2, it is to show Pp^> Qr(p) ^ p fM .
We will use the general induction rule IndGp to prove, so we assume

(c) ? C r(p)Imp /M .

We have to show <J>(7) Qr(p) Imp fM .
From assumptions (c) and (a) we have <£(y) Qr(p) Imp (m • /) (<I>(M)).
By assumption (b) and Lemma 4.2.3 (b) we get

Imp (m• /) (3>(M)) Cr(p) Imp (m • /) (Imp sM).

By Lemma 4.2.9 (b) we get

bnp (m• /) (Imp sM) = r(p) Imp (sop (m • f))M.

Applying transitivity of Cr(p), we have

$ (?) —rfp) Imp (sop (m f)) M .

Since / = 5 sop (m- /) , we have d>(F) ^r(p) bnp /M . □

Theorem 4.2.11 Monotone coinduction is realised by the term

l£° := Am,s : 5 .rec(A /: 8. (m- f) o p s)

for every predicate type p.

Proof It suffices to show that the closed term Ip° realises the formula

V<I>: r(p) —> r(p).Vm : 5.R(monop^>)m —►
VM: r(p).Vs: S.R(M Cp 3>(M)).s -> R(M Cp vp<I>)(I™• m • 5)

Hence, we assume R(monop®)m and R(M Cp d>(M))s.
By Lemma 4.2.2, from the assumptions we have

117

4. Program Extraction via Realisability

(a) VA,£ : r (p).Va : 8. Imp a A Cr(p) B —> Imp (m • a) (<£(£)) 4>(A)

(b) Imp sM Cr(p) <J>(M)

Let / := I ' 0 • m • s, by Lemma 4.2.2, it is to show Imp f M Qr(p) vp®-
We will use the general coinduction rule CoiGp to prove, so we assume

(c) Imp f M C r{p)Y

We have to show Imp f M Qr{p) 3*00-
From assumptions (c) and (a) we have Imp (m • /) (<£(Af)) Cr(p) <P(7).
By assumption (b) and Lemma 4.2.3 (a) we get

!mp (m • /) (Imp sM) Cr(p) Imp (m • /) (<I>(M))

By Lemma 4.2.9 (a) we get

Imp (m ■ /) (Imp sM) ~ r(p) Imp ((m• /) op .s)M

Applying transitivity of Qr(p)> we bave

Imp ((m /) o pi)M Cr(p)

Since / =$ (m • /) op 5 , we have Imp f M Q r(p) ^ 0 0 - ^

In the following two examples, for better reading, we re-state the details of previous
examples.

Example 4.2.12 (Extracting Program for Addition)
Consider the typing context r+ := { 0 ,1 :1 , + : 1 —> 1 —> 1 , — : 1 —> 1} and let A+

consist of the formulas stating that (+ ,—,0) is an Abelian group. Formally, the terms
0,1, + , — are variables, but we like to view them as constants and the assumptions A+
as axioms. We will write M — N as a shorthand for M + (—N).

We define the set of natural numbers as an inductive predicate. Set <I> := Xp : 1 —>
o . X x : 1 .x =1 0 Vp(x — 1), and define N := Pi^o3>. A more readable notation for the
definition of N would be

Ni = * = , 0 v N(jc- 1) .

As an example of a proof by induction we show that the natural numbers are closed
under addition:

A+ \~r+ Vjc,y : 1 .NxANy —> N(x+y)

Setting P(x) := X y : 1 . N(x+y), the formula to be proven is equivalent to Vx: 1 . Nx —>
N Cj_ ,0 P(x). Hence, it suffices to show <f>P(x) Ct_+0 P(x) under the extra assump
tion Nx. Unfolding the definition of 4> and using proof by cases (V-), this amounts

118

Induction and Coinduction

to proving N(jc + 0) and Vy : I .N(x + (y - 1)) —> N(x+y), which is easy, given the
assumptions A+ and Ni.

The realisability interpretation of natural numbers is

R(Nx)d = p ^ g ^ R ^ x d

where R(<£) = Xp : i —> 8 —> o.Xx : i.Xd : 8. (d =g in^nil Ajc =t 0) V (36 : 8.d =$
in/?6 A/?(jt — 1)6).

In a more readable notation:

R(Njt)d = (d =g inz,nil Ax = 0) V (36 : 8.d =g in/? 6 AR(N (jc— 1))6).

Hence, a natural number n: 1 is realised by the numeral n : 6 , where 0 := in/, nil,
n + 1 := in/?w.

An element d : 8 realises the closure of natural numbers under addition, i.e. the
formula Vx,y: i .Nx A Ny —► N(x+y), if for alljt,y : 1 and all a ,6 : 8

R(Nx)a AR(Ny) 6 —> R(N(x+y))(d- (paira6)).

which says that d adds natural numbers in unary notation.
We define adding n for a fixed n as

add[/i] := rec(Xg f.Xgm. casern (Xga.n) (Xgm'.inR(f-m'))).

Thus, the base and step cases are add[«] (in*, nil) = n and add[n] (in/? m) = in/? (add [n] m)
respectively. Therefore, the addition program (the realiser) is

add := Asp.add[prLp] • (prRp).

Example 4.2.13 (Extracting Program for Fibonacci Numbers)
Continuing the previous example, we give a definition of a coinductive predicate

FIB := vl_n _+0xP where

'P := X q : 1 —► 1 —► o. Xx,y : 1 .NjtA#y(jt+y).

This becomes more readable if a similar notation as for N is used:

FIB xy = Njc A FIBy {x+ y)

Informally, FIBxy states that there exists a Fibonacci sequence of natural numbers
starting withx,y.

As an example of a proof that uses coinduction we show

A+ bp+ FIB 11.

119

4. Program Extraction via Realisability

We show more generally, that FIB holds for any two natuiral numbers, i.e. Q
FIB where Q := Xx,y : I . Nx A Ny. By coinduction, it suffiices to show Q ¥ Q,
which is easily done using the previously proven fact thatt natural numbers are closed
under addition.

The interpretation of Fibonacci numbers is

| R(FIBxy)d = v ^ ^ s ^ R f f l x i y d

! where R('F) = X q : i —> I —> 5 —»o. Xx,y : i .Xd: 83a ,b : <8.d =$ pakabAR(Nx)aA
| qy(x+y)b.

In more readable notation
I
| R(FIBjcy)<i = R(Njc)(prL<i) AR(FIBy(^-H-y))(pr/j<i).

I which says that d is a stream of natural numbers in unairy notation where the head
realises Nx and the tail realises FIBy (x+y).

The Fibonacci program realising that FIB contains all {pairs of natural numbers is

Fib := rec(X§f .Xgp.pair(prLp) (/• (pair(pr^p) (add/?)))).

4.3 Related Work
Coq is a proof assistant with the program extraction mechamism for higher-order logic.
In 1985, Coquand introduced the first version of a logical ssystem, called the Calculus
of Constructions [CH8 8 , Coq85]. There is one drawback tco this approach: it is impos
sible to give direct inductive definitions. Later in 1989 Cojquand and Paulin-Mohring
extended it with primitive inductive definitions. As a resultt, the Calculus of Inductive
Constructions, a higher-order typed lambda calculus with cdependent types, is used by
Coq as the logical language. It is in fact a pure type systeim with subtyping, and has
Martin-Lof-style inductive definitions. Coq 8 is based on ai weaker calculus called the
Predicative Calculus of Inductive Constructions [BCHPMC04] by making the universe
(or sort) Set become predicative in order to be compatible with classical choice.

Paulin-Mohring [PM89b, PM89a] provided a realisatbility interpretation, in the
sense of Kleene, for the Calculus of Constructions and prcoved the correctness of ex
tracted programs. As the system grew up and several limitaations popped up, Letouzey
completely redesigned Coq’s extraction mechanism to hamdle any Coq terms, ensure
the correctness of the extraction, and guarantee that the exttracted terms produced are
typable. It assigns different types to terms representing dlata and terms representing
properties of the data. Since the latter cannot be used in tlhe definition of data, a.k.a.
computationally irrelevant, there is no need to extract themi. It is very important to re
move the logical parts in proofs with regard to the size of the extracted program and the

120

Related Work

speed of implementing the extraction. Miquell [Miq07] presented another extraction
mechanism of Coq based on Krivine’s realisaibility model of classical second-order
arithmetic.

Following Paulin-Mohring’s work, based o>n Krivine’s realisability theory [Kri93,
KP90] and the framework of Pure type System [Bar91, Bar92], Bemardy and Las-
son [BL11] constructed a logic from the programming language of its realisers with
syntactic definitions of parametricity and realis.ability.

Berghofer [Ber03b] presented a generic fraimework for program extraction and in
stantiated it to Isabelle/HOL, aiming at demonstrating that Isabelle is suitable as a
basis for program extraction. He also showed applications of a program extraction
framework in Isabelle/HOL to realistic examples including the induction principle for
natural numbers. However, as Isabelle is based! on a classical logic, only the construc
tive parts of terms are considered in the extraction.

The underlying logic of the Minlog system is the Theory of Computable Func
tionals (TCF) [Sch93, SW12]. The difference; between TCF and other type theories
lies in that TCF emphasises partial continuous functionals. Minlog treats computable
functionals as constants, and infinitary free algebras as base types. Not only ML-style
type parameters, but also predicative, predicate; variables for comprehension terms are
allowed. In Minlog, terms with same normal forms are identical. Therefore, Minlog
supports inductive and coinductive definitions land program extractions from classical
and constructive proofs. Hou [Hou06] implermented a coinductive proof for the cor
rectness of a corecursive program for the average function with regard to the signed
digit stream representation in Minlog. Berger, Miyamoto, Schwichtenberg and Seisen-
berger gave an overview of Minlog and explaiined its program extraction mechanism
in [BMSS11]. The program extraction procedure of Minlog is based on Kreisel’s mod
ified realisability, which from every constructive proof M of a formula A with compu
tational content a term [AfJ can be extracted to) ’’realise” A. Other program extraction
methods like Dialectica Interpretation have been implemented in Minlog. Applica
tions of program extraction from proofs via reallisability, including exact real numbers,
are presented in [Ber09] and [BS12]. In additiion, Miyamoto, Nordvall Forsberg and
Schwichtenberg extended Minlog to support striictly positive nested inductive and coin
ductive definitions in [MNFS13].

Since the Nuprl system is based on constructive type theory, a proven correct pro
gram can be extracted from a proof of its specification (theorem statements). Nuprl
can formalise and verify induction principles as lemmas within the type theory that
yield extracts that are recursion schemes optimiised for both readability and efficiency.
Caldwell presented the extraction o f’’efficient” recursion schemes from proofs of well-
founded induction principles in [Cal02].

121

4. Program Extraction via Realisability

4.4 Conclusion

i We have studied a realisability interpretation of an intuitionistic version of Church’s
Simple Theory of Types described in Chapter 3.
I The Soundness Theorem of realisability is split into three steps: First one shows
that from a formal proof of a formula A one can extract a lambda-term and a formal
proof that it realises A. Then one shows that formally proven formulas are true in a
domain-theoretic model. Finally, one shows that for so-called E-formulas A, which are
formulas whose potential realisers contain observable information (essentially finite
lists, or trees), if it holds in the domain-theoretic model that a lambda-term M realises
A, then M reduces w.r.t. a lazy operational semantics to a canonical term (e.g. numeral)
that realises A (computational adequacy).

j In this dissertation we have carried out only the first two steps. The last step will
be an interesting future work. We will sketch how our realisability interpretation can
be used to extract programs from proofs. Since most of the methods and results shown
later can be taken over from [BerlO], we will be rather brief and will only comment in
detail on the changes and additions necessary.

First, we define two classes of formulas.

Definition 4.4.1 (Non-computational formula) A T-formula A is called non-computa-
tional if it does not contain the constants V, v p , f ip , and for all occurrences of Vp, 3p
in A and x : p G T, p is an object-type, that is, p contains only base types from J?.

Definition 4.4.2 (E-formula) A T-formula A is called L-formula if (a) it does not con
tain the constants —> and v p , (b) for all occurrences of Vp, 3p, in A and x : p £ T, p is
an object-type, and (c) for all occurrences of pp, p is of the form a —► o where <7 is an
object type.

The pathway to extracted programs is now as follows:
(1) Given a proof of a sequent A h r A in CST we extract, using the Soundness

Theorem (Theorem 4.1.7), a closed term M provably realising the sequent.
(2) If the formulas in A are non-computational, then the formula A A is equivalent

to the assertion that it is realised by some trivial term nil' built from nil by pairing and
(dummy) lambda-abstraction. Hence we can derive A hp R(M • nil') A.

(3) Let P be the /3-normal form of M ■ nil'. P will be closed and contain only
program constants. Let us call such a term P a program.

(4) If the assumptions A are true in some standard classical model (see Section
3.3), then in that model the value JP] of P will realise A.

(5) If A is a E-formula, then JPJ will be a data, that is a finite combinatorial object
built from nil by left and right injections and pairing (numerals are examples of data).
We can identify a data with the canonical program built from nil, inp, in/?, pair defining
it.

122

Conclusion

(6) Now we can employ a Computational Adequacy Theorem ([BerlO] Theorem 11)
according to which a program P denoting data reduces to that data in a suitable lazy
big-step semantics.

(7) Since the big-step semantics is denotationally correct we know that the data
[P] realises A and can be computed from P.

The steps (1-7) amount to a proof of the following theorem:

Theorem 4.4.3 (Program extraction for data) Let T b A : o be a finite set of non-
computational formulas. Then from a proof of A bp A, where A is a E-formula, one
can extract a program P with the property that P reduces to some data realising A.
Furthermore, a proof that A implies that d realises A is extracted.

Theorem 4.4.3 can be easily generalised to the situation where the proven formula
is an implication between E-formulas:

Theorem 4.4.4 (Program extraction for data functions) Let A be a finite set of non-
computational formulas. Then from a proof of A bp A —> B, where A and B are E-
formulas, one can extract a program P with the property that for any data d realising
A, P d reduces to some data realising B. Furthermore, a proof of A, Datad bp d.s
R(A) d —> R(P) (P • d) is extracted, where Data: 8 —> o is a closed term defining of the
property of being data.

Remark on applications. Theorems 4.4.3 and 4.4.4 cover most applications of pro
gram extraction, but they can be generalised to considerably larger classes of formulas.
This will be the subject of further work.

Example 3.3.15 is covered by Theorem 4.4.4 since NxANy —> N(x + y) is an
implication between E-formulas.

The program extracted from Example 3.3.16 is an infinite stream (see Example 4.2.13).
In order to compute with it we need to extract finite data from that stream. For exam
ple, we can access its n-th element. To this end we define inductively (using slightly
informal notation)

FTB'jtyz = (z=i OANx) V FIB7y(jt+y) (z — 1)

and prove Vz : i .Nz —► Vr,y : I .FIBjcy —► FIB'xyz by induction on N. Combining
this with Example 3.3.16 we obtain Vz : i . Nz —> FIB' 11 z, which is covered by Theo
rem 4.4.4. The extracted program would, given a natural number n in unary notation,
read off the nth element of the infinite stream of Fibonacci numbers. Note that mem-
oization takes place here: if we compute first the 100th Fibonacci number, then 100
additions of natural numbers will be carried out, but if we later compute the 99th num
ber, the (partially computed) stream will only be looked up without performing any
additions. We could of course prove directly (without detour through the coinduc-

123

