
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

A mathematical analysis of the hydro-mechanics associated with the

Vitros Immunodiagnostic System.
   

Al-Tuwairqi, Salma Mohammad Aboras
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Al-Tuwairqi, Salma Mohammad Aboras (2000)  A mathematical analysis of the hydro-mechanics associated with the

Vitros Immunodiagnostic System..  thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42796

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42796
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

A Mathematical Analysis Of 
The Hydro-Mechanics Associated With 
TheVitros Immunodiagnostic System

by

Salma Mohammad Aboras AI-Tuwairqi

A dissertation submitted in candidature for the degree of Philosophiae 
Doctor in the University of Wales, Swansea



ProQuest Number: 10807572

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807572

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



l i b r a r y



To the two dearer to me than my soul 
My Father & My Mother



SUMMARY

Ortho-Clinical Diagnostics, a Johnson & Johnson company, has developed a new 
machine called ‘Vitros Immunodiagnostic System’ which can be used for the diag
nosis of a wide range of auto-immune diseases. The design and manufacture of the 
Vitros Instrument has neither been directed nor supported by mathematical analysis. 
The aim and purpose of the present dissertation is to set up a working mathematical 
model of the hydro-mechanics within the instrumentation cycle of the Vitros System.

A description of the Vitros Immunodi agnostic System is given in Chapter 1. In 
Chapter 2, a mathematical model is developed to describe the structure of the mixture 
within the well.

In Chapter 3, dynamical equations are formulated with respect to a moving frame 
of reference at rest relative to the well. In particular, with reference to two especial 
states of motion, that of a ‘sweep’ at constant angular velocity of the outer carousel 
ring, and that of a ‘jiggle’ at rapidly fluctuating angular velocity. In the former the 
equations admit a solution in which the fluid moves as if  it were rigid. Whereas, in 
the latter the equations admit an axially symmetric motion of the mixture.

In Chapter 4, the equations describing the primary flow and the (incipient) secondary 
flow are solved exactly for a hemispherical shaped well. This analytic solution gives 
a powerful description of the flow, being valid for the whole spectrum of values 
of the Reynolds number. The analysis shows that for large values o f the Reynolds 
number the flow varies rapidly in the region immediately adjacent to the boundary 
wall, but elsewhere the flow is approximately a rigid body rotation.

In Chapter 5, a similar type analysis is carried out for a cylindrical shaped well. 
The results obtained run much in parallel (and support) the findings of the previous 
chapter.

Chapter 6  is concerned with the problem of determining the way in which the sus
pended reagents drift through the patient sample, and of ascertaining the pattern they 
create when becoming entrapped on the boundary wall. The results are interest
ing: the reagents have preferred orientation within the flow and result in a preferred 
coverage of the well boundary wall, and are not uniformly placed as previously 
anticipated.

Finally, some relevant remarks are added in Chapter 7 together with an outline of a 
(possible) programme of further research.
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PREFACE

A new machine called ‘Vitros Immunodiagnostic System’ has become firmly es

tablished in the commercial field, and is now extensively used in most large hospitals 

for the speedy and reliable diagnosis of a wide range of auto-immune diseases. De

spite its extensive use, comprehension o f the mathematical theory that underlies and 

describes the many and varied workings of the machine is lacking. It is the aim 

of this dissertation to develop such a theoretical framework and to throw light on 

what can be expected of the system. It has to be understood that the study is an ex

ploratory one, though deemed self consistent and rigorous in mathematical parlance. 

Within these terms, one attempts at a presentation and development that will be read

ily understood (in its entirety) by readers not specifically trained in the field that is 

mathematics, in particular, by the engineers and physicists attached to Ortho-Clinical 

Diagnostics Ltd., Cardiff.
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to express my deep gratitude to Dr. I. M. Davies for his supervision, advice and 

especially his valuable suggestions with the work involving Mathematica. I am enor



mously indebted to Dr. J. R. Jones, a generous scientist, from whom I have learned a 

great deal mathematically and who not only directed me during the elaboration of the 

present work but was a constant source of encouragement. My sincere appreciation 

is extended to Prof. A. Truman who suggested this problem and has taken the time 

to read this dissertation and to share his comments.
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CHAPTER 1 
INTRODUCTION

Ortho-Clinical Diagnostics, a Johnson & Johnson company based in Cardiff, spe

cialises in the production of diagnostic test equipment. They have in recent times 

developed a new machine called ‘Vitros Immunodiagnostic System’ which can be 

used for the speedy and reliable diagnosis of a wide range of auto-immune diseases 

such as thyroid diseases. The design and manufacture of the Vitros Instrument has 

neither been directed nor supported by mathematical analysis. The aim and pur

pose of the present dissertation is to set up a working mathematical model of the 

hydro-mechanics within the instrumentation cycle of the Vitros System.

1.1 Vitros - An Overview

The Vitros Instrument (see Fig. 1.1.1) is a compact, self contained, easily trans

portable assemblage which works on a patient’s blood sample. It is made up, in 

the main, of two coaxial rings - an outer ring of radius 105mm and an inner ring 

- mounted on a carousel whose rotational motions are co-related (Fig. 1.1.2). The 

blood sample is delivered in a thimble shaped well onto the outer carousel ring. 

This outer ring can accommodate many such wells and its (rotational) motion both 

agitates the content of each well and transports them within the body of the machine. 

The wells are initially empty, being ejected from a pack onto the ring, their surfaces 

coated with biological reagents specific for the immuno-assay to be performed. After



delivering the patient sample under examination, biological reagents are added and 

the whole is incubated whilst in motion on the outer ring for some 1 0 - 1 5  minutes, 

the time deemed necessary for the reagents to become entrapped on the wall. At the 

end of this period (which differs for different samples), the well is transferred onto 

the inner ring. It is then taken up, washed, and a signal generating reagent added 

that makes the residuum of the mixture (entrapped on the wall) emit light in much 

the same way as a firefly. By amplifying and measuring the light using a photon 

multiplier the patient’s dysfunction can be diagnosed.

Fig. 1.1.1 Vitros hnmunodiagnostic System.
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Fig. 1.1.2 The outer and inner rings of the carousel.

The accurate functioning of the machine depends critically upon how completely 

the blood sample has mixed with the reagents. It is important that the carousel motion 

not only does this efficiently, but that it also gives the best possible distribution of 

the reagents on the well boundary wall. Such issues are addressed in the present 

dissertation.

Ortho-Clinical Diagnostic Ltd. propound on several matters, matters which they 

deem important to the overall running of the Vitros Instrument. O f these one lists 

what are seen as the four critical phases affecting the instrumentation cycle.

I. The delivery o f the patient sample and reagents to the well (with characteristic 

time of seconds).

n. The motion of the mixture within the well as it is transported round the outer 

ring (with characteristic (or incubation) time o f minutes).

IE. The drift of the reagents through the blood sample whilst in motion and the area 

of their entrapment on the boundary wall.
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IV. The spillage of the well content, that occurs from time to time, resulting in 

instrument contamination and a serious breakdown of the testing programme.

No quantitative assessment of phase I is attempted. This represents a robust 

rheological process, with delivery into a stationary well, an advantage that should not 

be lost. Neither is any attempt made to analyse phase IV, other than to comment that 

spillage is likely to be due to the well vibrating within its seating in the circumferential 

direction and to the well section departing (slightly) from the circular.

The main body of the dissertation is taken up with a broad, but in depth, analysis 

of phases II and HI, the aim being to ascertain the basic features of the motion within 

the well (i.e. of the motion as measured relative to the well when in transportation 

on the outer ring), together with that of the geometry of the entrapment area on 

the boundary wall. No experimental results are on view and the complexity of the 

instrumentation cycle suggests that such results may be long in coming. Hence, the 

present (theoretical) analysis is seen to hold a special place in the development of 

the Vitros Instrument.

L2 Plan of Research

The dissertation is concerned with the hydro-mechanics associated with the Vitros 

Immunodi agnostic System, viz. that of the motion of the mixture within the well 

and of the (particulate) reagents suspended within the mixture itself. On observ

ing the instrument in action, it is clear that such motions are complicated and that
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certain simplifying assumptions need to be made. It is claimed that these are self 

consistent and appropriate (in a broad sense) to the scale of the happenings within 

the instrumentation cycle.

In Chapter 2, a simple mathematical model is developed to describe the structure 

of the mixture within the well. This owes a great deal to the earlier work of Frohlich 

& Sack (1946) and Oldroyd (1950, 1953).

In Chapter 3, dynamical equations (i .e. those comprising the equation of continuity, 

the stress equations of motion and the rheological equations) are formulated with 

respect to a moving frame of reference at rest relative to the well. In particular, 

with reference to two especial states of motion: that of a ‘sweep’ at constant angular 

velocity of the outer carousel ring, and that of a ‘jiggle’ at rapidly fluctuating angular 

velocity. In the former (steady) state, the equations admit a solution in which the 

velocity as measured relative to the well is identically zero, i.e. in which the fluid 

moves as if  it were rigid. Whereas, in the latter (oscillatory) state, the equations 

admit an axially symmetric motion of the mixture.

In Chapter 4, the equations describing the primary flow and the (incipient) sec

ondary flow are solved exactly for a hemispherical shaped well. This analytic solution 

gives a powerful description of the flow, being valid for the whole spectrum of values 

of the Reynolds number, small to large. The analysis shows that for large values of 

the Reynolds number (based on the angular frequency of the carousel ring), indicative 

of the ‘jiggle’-mode of oscillation, the flow varies rapidly in the region immediately 

adjacent to the boundary wall, but elsewhere, in the main body o f the well, the flow 

is approximately a rigid body rotation.
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In Chapter 5, a similar type o f analysis is carried out for a cylindrical shaped well. 

Although an exact analytic solution is presented for the primary flow, one has to 

rely on an approximate formulation of the secondary flow. The results obtained run 

much in parallel (and support) the findings of the previous chapter.

Chapter 6  is concerned with the problem of determining the way in which the 

suspended (particulate) reagents drift through the patient sample, and of ascertaining 

the pattern they create when becoming entrapped on the boundary wall. The results 

are interesting: the reagents have preferred orientation within the flow and result 

in a preferred coverage of the well boundary wall, and are not uniformly placed as 

previously anticipated.

Finally, some relevant remarks are added in Chapter 7 together with an outline of 

a (possible) programme of further research.
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CHAPTER 2 
DEVELOPMENT OF A MATHEMATICAL 

MODEL

Many (and various) physical and mechanical factors affect the Vitros Immunodi- 

agnostic System, and some of these have already been highlighted in the previous 

chapter. For obvious reasons, not all factors can be looked at and investigated in 

the present study. In a first attempt at a theoretical analysis o f the system attention 

is naturally confined to what is seen as the main problem, that of ascertaining the 

general features of the motion of the mixture - the reagents and the patient sample 

- within the well whilst travelling on the (outer) carousel ring. There is no hard 

evidence of any practical measurements made in relation to the structure and motion 

of the mixture; and this is understandable, the Vitros Instrument being in the com

petitive commercial field. Thus, in developing a mathematical model, one has to 

be guided by, and to rely on, observations of the instrumentation cycle1. Although 

close attention has to be paid to the correspondence between ‘rough’ observation and 

precise mathematical description, the model should be sufficiently broad in scope 

to allow for features that may yet come to light with more detailed and prolonged 

observations. Such a development is the purpose and aim of the present chapter.

1 Johnson & Johnson Clinical Diagnostics Ltd. have allowed access to observe the Vitros Immun- 
odiagnostic System in action.
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2.1 Flow Kinematics

The bodily motion of the well, supposedly rigidly mounted in the carousel ring 

housing, is comprised of an alternating sequence of two basic, but simple, motions. 

The first is one in which the carousel rotates with constant angular velocity and the 

second is one in which the carousel oscillates rapidly with small angular amplitude. 

These two motions are interspersed with short periods o f rest when one of the wells 

comes down onto the carousel to be filled with the ‘mixture’ and when a well is taken 

up and transferred to the inner carousel ring in preparation for photo-electric analysis. 

The complication of the process is the seemingly haphazard way in which these basic 

motions are interwoven over a 10 - 15 minute period. After scrutiny of the Vitros 

Instrument (when in action) no progress can be reported on the finding of a ‘natural 

time’ for the operation, if  indeed there is one, the sequence of motions being in 

some way dependent on how many wells are queuing-up to come onto the carousel, 

on how many wells are on the carousel and, of these, how many are queuing-up 

to be taken off the carousel2. It is thus observed that the motion of the mixture 

within the well during its incubation period on the carousel is governed by rather 

complicated time-variant boundary conditions, conditions that are likely to prove 

difficult to accommodate in any mathematical analysis of the problem. However, it 

must be made clear that the present study is an exploratory one in which it is hoped 

to throw light on the main, general, features of the motion o f the mixture within the 

well. Such a programme may appear to be modest, but if  it can be achieved, even

2 Different samples are associated with different incubation times on the carousel.
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if  only in some restricted sense, then it represents a major step forward, for be it 

understood that, although the Vitros Immunodiagnostic System is established within 

the commercial market, there appear to be no theoretical considerations - one way 

or another - which may help to improve the design and efficiency of the instrument. 

Moreover, no such results seem forthcoming, and so the way forward has to rely on, 

and be guided by, the present mathematical analysis.

To make progress on the theoretical front, the basic motions imposed on the 

boundary walls of the well by the carousel ring housing are supposed separate and 

apart. In reality, there will be transient motions induced in the mixture in passing 

from one state of motion to another, but it is deemed that these will decay rapidly 

and play minor roles in comparison with those motions generated by forcing agents. 

A study of the literature lends support to this supposition: free oscillating systems, 

in which forcing agents are notable in their absence, have not proved too attractive 

to the experimentalist for this very reason (see, for example, Roscoe 1958, Roscoe & 

Bainbridge 1958, and Jones & Walters 1965, 1966). It seems reasonable therefore, 

in the first instance, to suppose the states of motion to be non-interactive.

The angular velocity £l(t) of the carousel ring is made up of ‘sweeps’ at constant 

values fl( t)  =  and of ‘jiggles’ at rapidly fluctuating values of (t). The step 

function f l(t) during any one ‘sweep’ and ‘jiggle’ is exhibited in Fig. 2.1.1: —

27r/8 and the time scale is measured in seconds. Although this is not the result o f 

detailed measurement, but of broad scale observation, it is nevertheless deemed near 

to actuality. It is reasonable to assume that one can proceed analytically without 

incurring serious disadvantages by smoothing this step function. Thus the ‘jiggle’

9



is supposed to be described by a harmonic oscillatory function o f angular amplitude 

— 27t/8 and angular frequency n ~  3 cycles per second as exhibited in Fig. 2.1.2. 

Q 

Qo

-Q o

Time

Fig. 2.1.1 The step function ft( t) describing both the ‘sweep’ and the ‘jiggle’.

Q

Time

Fig. 2.1.2 The ‘jiggle’ described by a harmonic oscillatory function of amplitude 

O0 and angular frequency n.
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2.2 Structure of the Mixture

The delivery of the patient sample and reagents to the well (with a characteristic 

time of seconds) is seen as a finely controlled and well monitored phase of the 

instrumentation cycle. The resulting mixture consists of one material, the reagents, in 

the form of small particles, either solid or liquid, dispersed randomly through another 

(host) fluid, the patient sample3. I f  the characteristic length scale o f the suspension 

(or mixture) is large in comparison with the average distance between particles, one 

may regard the suspension (or mixture) as a homogeneous fluid, but with mechanical 

properties different from those o f the sample in which the particles are suspended. 

Further, one may suppose that a random distribution of spherical particles confers 

no preferred directional properties on the homogeneous whole. One of the answers 

sought by the Immuno Diagnostic Group is on how the motion of the carousel 

affects the mixing of the two phases within the well and on how it affects the drift 

(or diffusion) of the reagents through the sample. However, they give information 

neither on the concentration of reagents within a given sample (i .e. the fraction o f the 

whole volume occupied by the reagents) nor on how the actually deposited amount 

has been deemed appropriate. Moreover, they are not prepared to release information 

on the nature of the reagents. To do so would give advantage to their competitors. It 

is anticipated that the concentration be such as to allow the reagents to drift through 

the sample by centrifugal action without in anyway affecting the motion and the 

structural nature of the sample. However, the concentration has to be sufficiently

3 When the particles are liquid droplets, the mixture then being an emulsion, their disparate identity 
is supposed maintained by interfacial tension
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large not only to give a measurable interaction, but also to give an interaction which 

is characteristic o f the sample. On the other hand, if  the concentration is too large, 

then it will affect the structural nature of the sample, in which case the reagents play 

an intrinsic part in determining the flow. Thus there appears to be a need to place 

bounds on the reagent concentration, and it would be helpful if  one could give some 

indication on how this might be done.

Two-phase systems have long been the case of serious investigation. The first 

is by Einstein (1906), who considered a highly idealized system, a suspension of 

rigid spherical particles dispersed in a purely viscous fluid o f viscosity rj. On the 

assumption that the particles are small, uniform in size, and widely dispersed, so 

that their concentration c is small, Einstein has shown that the mixture behaves 

macroscopically like a viscous fluid of constant viscosity 77*, where

V* =  >7(1 +  l c) + 0 ( c 2).

Again, Taylor (1932) has investigated the behavior of a suspension of small spher

ical drops of one incompressible viscous fluid in another, the suspended fluid drops 

being maintained spherical by large interfacial tension. It is found that the macro

scopic behavior of the system - an emulsion - is that o f a purely viscous fluid, 

characterized by a viscosity r]*, where

7] and rf being the viscosities of the continuous and disperse phases and c the con

centration of the dispersed phase4.

4 It is seen that Einstein’s formula follows on a special case o f Taylor’s in the limit ^  —» 00.
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The above two systems are seen to be purely viscous, exhibiting no elasticity 

of shape. There is little, if  any, information on the nature and type o f the reagents 

employed in the Vitros. They may be rigid or they may be elastic. There is advantage, 

at this juncture, in supposing the reagents to have some ‘springiness’ of shape, 

allowing them to be deformed on the application of applied stress. The storage of 

elastic energy in such reagents will not be instantaneous but will take some time due 

to the reaction of the sample. Likewise, on removal o f external stress, such reagents 

will take time to return to their former shape, giving rise to elastic recovery. It is 

clear therefore that a more sophisticated model is required to describe the mixture. 

Two such models have been developed, one by Frohlich & Sack (1946) and one 

by Oldroyd (1953), models which may be considered natural extensions o f those of 

Einstein and of Taylor.

Frohlich and Sack discussed the flow properties o f a suspension o f elastic parti

cles S' in a viscous fluid L, the assumption being made that the suspended particles 

are solid spheres obeying Hooke’s law. Oldroyd, on the other hand, looked at an 

idealized emulsion in which the elastic solid spheres of the Frohlich & Sack model 

are replaced by liquid droplets L', with elasticity of shape as a consequence only 

of a finite interfacial tension between the continuous and disperse phases (L and 

Z/). The methods used by Frohlich & Sack and by Oldroyd to determine the macro

scopic elastic and viscous properties of a disperse system from the properties of its 

components are not dissimilar: a fictitious, homogeneous liquid L* is envizaged to 

have the same macroscopic rheological properties as the disperse system, the flow

13



properties of L* being such that if  a small part of the macroscopic element of L* is 

replaced by the actual components of the disperse system, the macroscopic behavior 

remains unchanged5. The investigations of Frohlich & Sack and o f Oldroyd are well 

documented. Nevertheless, within this important area of analysis, it is deemed appro

priate to discuss briefly, without recourse to any detailed mathematical computation, 

the method for ascertaining the rheological description of the homogeneous liquid 

L* taken to represent the mixture. For illustration purposes, there is no advantage 

in choosing the one model rather than the other, although it would seem that the 

emulsion model o f Oldroyd may hold sway in a description of the Assay System.

To fix ideas, attention is confined to the Frohlich & Sack model. The element is 

considered in an arbitrary state of flow in which the rates of shear are so small that all 

non-linear terms can be neglected. Also, the suspension is assumed incompressible 

and isotropic, so that any convenient system of external stresses and any convenient 

shape may be chosen to investigate its flow properties.

The equations of state relating the stress tensor pik and the rate-of-strain tensor 

in the continuous liquid phase L o f constant viscosity rj are

Pik =  Pih ~  P9ik >

Pi* =  2??e.-*\

where gik is the metric tensor and p  is an arbitrary isotropic pressure which can be

superimposed without affecting the rate of strain6. The corresponding equations of

5 A macroscopic element of the material is taken to mean an element whose linear dimensions 
are large compared with those o f the elastic particles /  liquid droplets and to the distance between 
neighbouring particles /  droplets.

6 The notation is clarified in §2.4.
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state in the disperse elastic solid phase S , o f rigidity modulus fi, are o f the same 

mathematical form (for small rates of strain) but with 77 replaced by a viscosity 

operator7

_  A4 / A   ^ \
A   ̂ “  dP'

Again, when the rates o f strain are small, the equation of state for L*- a homoge

neous liquid with the same macroscopic properties as the suspension of S  in L - may 

be assumed to involve ffik, efk and their derivatives linearly, and may be written in 

the above form with 77 replaced by a viscosity operator

» _  1 +  A2A  +  v%A2 + . . .
n 7?01 + A j A  +  ^ A 2 -!-...  ̂ "  dt*’

where 770, A1? A2 , 77i ,^ 2 , ... are constants to be determined by the properties o f L  and

5.

The rheological properties of a macroscopic element of L* (r <  R, referred to 

suitably chosen spherical polar coordinates r, 9, (f>) are determined by the requirement 

that they are unchanged by a perturbation in which the portion r <  b (b «  R) is 

replaced by the actual components S  (in r <  a) and L (in a <  r <  b), where a is 

the radius of an elastic solid, and b is defined in terms of the volume concentration 

c of the disperse phase by b3c =  a3. The scheme is illustrated diagrammatically in 

Fig. 2.2.1.

7 The notation is standard: p'ik -- 2 ^ ^  is understood to mean .
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r = R r = R

r  =  b

r = a

L

L* L*

Fig. 2.2.1 Frohlich & Sack model

The homogeneous element and the composite element are now considered sepa

rately when each is subjected over the surface r = R to the same axially symmetric 

stress system

where T  is a small arbitrary function of the time t. The parameters 770, Ax, A2, Vi, ?>2, ... 

are then determined by identifying the velocity distribution on r = R  in the two

systems.

For an axially symmetric flow, whether within the homogeneous or composite 

element, the components of velocity referred to spherical polar coordinates r, 0 

may be written, consistently with the equation of continuity (e^* =  0), in the form

where the stream function It is a simple matter to express the

P(rr)  = T (3cos2# -  1), P (0 0 )  =  T (2 -  3 COS2 0) ,  P ( M )  = - T ,

P(o<P) =  0 , p ^ r )  =  0, P(r0)  = -  3Tcos0sin<9, (2 .2 . 1)
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(physical) stress components p^k) (*, k =  r,Q, (p) in terms of ip and its derivatives, 

and to substitute them into the (linearized) equations of motion. The pressure p  is 

easily eliminated and an equation derived for ip.

Within the homogeneous element L* the values of ip and p, finite at the origin 

(r =  0) and satisfying the given imposed stress distribution (2 .2 .1) on r  =  R, are

T
ip —  r 3 sin2 6 cos 0, p  =  0 . (2 .2 .2 )

2p*

Within the composite element the appropriate solutions in L are

ip = — i  +  —B  +  2(7r3 — 3Dr~2̂  sin2 6 cos 0, (2.2.3a)

p =  \-r)(Ar2 +  B r~3)(3 cos2 0 — 1 ) + p 0, (2.2.3b)

where A ,B ,C ,D  and p0 are functions of the time t only. The associated, non

vanishing components of stress are

P{rr)  =  t ^ ( — A t 2 — 3Br~3 +  4C  +  24D r-5 )(3 cos2 0 —  1 ) — p 0 , (2.2.4a)
^ i

Piee) =  r )[ (^ A r2 +  3Dr~5)(3 — 7 cos2 0) +  C(4 — 6 cos2 0)] — po,(2.2.4b)

P m  =  r / [ ( ^ r 2 +  3 D r-5 ) ( l - 5 c o s 2 ^ ) - 2 C ] - p 0, (2.2.4c)

P(re) =  —Tj(-Ar2 +  —B r ~ 3 +  6C — 24Dr~5) cos 0 sin 0. (2.2.4d)
7 2

The velocity and stress distribution in S' (r  <  a) and L* (r >  b) are given by 

expressions of exactly the same form as (2.2.3a,b), (2.2.4a-d) above but with the 

symbols A ,B ,C ,D ,  p0,r) replaced by A ' ,B \C ' ,D ' ,  pf0,r\s and by A*,B*,C*,D*,  

Pq, 7)* respectively. There are sixteen unknowns involved, the operator rj* and the 

fifteen functions of time A, A ' , A *, B , B ' , B *, (7, C", (7*, D, D ' , D *, po,Po,Po* These 

are simply determined by the conditions of continuity of velocity and o f stress in
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the composite element across r  =  a, 6, and by identifying these with those of the 

homogeneous element (as given by (2.2.1), (2.2.2)) on r =  R.

It is found that the flow conditions on r  =  R  in the homogeneous and compos

ite element cannot be matched exactly, but for sufficiently large values of R  the 

differences are very small. Eventually, it emerges that

7}* 1  +  A 2 A
(2.2.5)

where

t\o 1 +  AjA

no =  f?[i +  + o (c 2)],

A' ■

A, -  g | l  - 5 . + O M ] .

Thus the rheological behavior of a dilute suspension at small rates of shear is 

governed by the equations

Pik =  P'ik -P 9 ik , (2.2.6a)

(1 +  Ai— )p'ik =  2770(1 +  A2^ ) e ^ .  (2.2.6b)

It is observed that

(i) the constants 770, Ai, A2 are independent of the actual size o f the solid particles, 

depending only on the volume concentration c,

(ii) the intrinsic viscosity 770 is independent of the rigidity of the suspended particles 

and has the same value as given by Einstein, and

(iii) the relaxation times Ai, A2 vary directly with the viscosity 77 o f the continuous

phase and inversely with the rigidity modulus of the disperse phase.
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The form of 77* appropriate to the Oldroyd model is easily computed. The above 

analysis goes over unchanged except that the operator r/5 is replaced by a constant 

vj (the viscosity of the dispersed liquid phase). Also, due to the constant interfacial 

tension 7  everywhere between L and U, there is now in the composite element a 

discontinuity in the normal stress p(rr) across r  == a. The resulting formula for 77* is 

found to be of the same form as (2.2.5) with

7/0 =  T)[l +  +  0 ( C 2)],

=  0(167) +  l y ) 7,(167) +  I V )  2
40(77 +  7? O7  s(n +  rf)

A2 =  q(167) +  i y )  +  _  377(1677 +  i y ) e +  Q  2

40(77 +  77')7 10(77 +  7]')

It is thus seen that macroscopic elastic and viscous properties o f a dilute emulsion 

are qualitatively the same as for a suspension of elastic solid spheres. Again, the 

intrinsic viscosity is seen to be independent of the drop size and of the interfacial 

tension between the two liquids, and has the value given for 77* by Taylor’s formula. 

In contrast, parameters Ai,A2 are seen to vary directly as the drop radius a and 

inversely as the interfacial tension8.

It is observed that in the two models the relaxation times Al 7A2 are such that 

Ai >  A2 >  0, the models representing a purely viscous liquid when Ai =  A2. The 

parameters A1? A2 are seen to have direct physical significance: when the motion is 

stopped (e!fc =  0) the stress p'ik decays to zero as exp(—t /X i)  and when the stress 

is removed (p'ik — 0) the rate-of-strain efk decays to zero as exp(—t/A 2).

8 Although the analysis in this section is restricted to one or other of two disperse systems, one 
may expect the resulting stress-rate-of-strain relations (2.2.6a,b) to be applicable to other materials 
which exhibit some degree o f elasticity of shape.
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Again, the sample itself, a patient’s blood or plasma, is a suspension of solid 

particles in a viscous liquid. These particles deform under the application of stress 

and become preferentially orientated to facilitate the flow. Several studies have been 

made on the viscous and elastic properties of non-Newtonian fluids with a view of 

determining how closely they simulate the flow of human blood (see, for example, 

Liepsch et al (1991) and Gijsen et al (1999)). In the present work the sample 

is supposed represented by the Frohlich & Sack model, so that, under sufficiently 

small rates of strain, its rheological behavior is characterized by three parameters, a 

viscosity coefficient and two relaxation times. The model does not exhibit all aspects 

of blood flow in that it does not accommodate ‘shear thinning’ but blood is only one 

of many body fluids investigated by Ortho-Clinical Diagnostics Group, fluids whose 

rheological properties are yet to be ascertained.

It remains for the experimentalist to determine the values of the three parameters 

characteristic o f the mixture (sample and reagents) and of the sample itself so as 

to resolve, in part, the question posed at the beginning of this section. This should 

not prove difficult as there are many rheometers available in the commercial field to 

measure the three material parameters 770, Ai, A2 (see, for example, Oldroyd, Straw- 

bridge and Toms 1951, Broadbent & Walters 1971, and Brindley & Keene 1974). 

Whatever the outcome, whether one has to consider the motion of the mixture or 

of the sample, one has to proceed with the rheological description represented by 

equation (2.2.6a,b) when the rates of shear are sufficiently small.
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2.3 Rheological Equations at Finite Rates of Shear

So far one has supposed the rates of shear to be small, allowing one to neglect all 

non-linear terms, in which case the (general) rheological behavior can be represented 

by linear equations. Next, one needs to recast these equations in a such a form that 

they are applicable under all states of stress and o f motion. Oldroyd (1950) has 

looked at this problem in some detail. The generalized equations of state, which 

describe the rheological behavior of an arbitrary material element moving as part of 

a continuum, have to satisfy the following three conditions:

I. The equations must describe behaviour which is independent of the position 

and the motion of the element as a whole in space.

II. The equations must describe behaviour which may depend on the previous 

rheological history of the element but not in any way on the history of 

neighbouring elements.

III. The equations of state must describe behaviour which is consistent with the 

known linear behaviour when the rates of strain are small, corresponding 

here to the linear representation

Pik =  p'ik -  P9ik,

(! +  ^lgj)Pik ~  277o(1 +  ^2 ffl-)eik-

It has been demonstrated by Oldroyd that such generalization cannot be carried 

through without ambiguity. For example, possible valid generalization of equations
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(2.2.6a,b) are

(1 +  =  ^2x ) ^ e^  (Oldroyd A)

and

(1 +  Xi§ i ]l/ *  =  2?)o{1 +  X2§ t ) e i m ’ (Oldroyd B)

where for any absolute tensor 6 ^;;(x, t)

f) db"k"___ _ _ ch)k
— b -k" =  — b"k" 4 -  vm +  V  — b"k" -  Y ' — b ™"
m  " dt dx™ ^  dxi m " ^  dxm

denoting a sum of all similar terms, one for each covariant (contravariant) 

suffix. But other generalizations are equally acceptable9. The physical significance 

of the convected derivative Tf/Dt  is that it is a total time derivative in relation to 

a convected system of reference which at time t  has the same velocity vi? the same 

spin (or vorticity), and is being deformed at the same rate as the material element

at x 1 that is being followed. When applied to a tensor intrinsically associated with

the material element of a moving continuum at position x% at time t  , it introduces 

no (irrelevant) dependence on the fixed frame of reference or on the motion of the 

element as a whole in space.

The liquid defined by equation (B) - referred to by Oldroyd as liquid B - can boast 

to be able to describe most (but not all) o f the well known large scale flow behavior 

of real materials10. For example, it is capable of describing the positive Weissenberg

9 What would appear at first sight to be another possible generalization is the equation

s mi(1 +  Al §-t )p'mk =  21)0(1 +  A2 §-t ) e ^ ik

but on closer examination the left hand side is not symmetric in the free suffix and is therefore not 
valid.

10 Liquid B fails to exhibit shear thinning which is observed in many real elastic fluids.
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(1948) climbing effect when confined between coaxial rotating cylinders, and of 

describing the normal stress differences observed by Robert (1953) in real liquids, 

equivalent to equal normal stresses in all directions normal to the streamlines, in 

steady flow between rotating coaxial cones, and an extra tension along the stream

lines. For such reasons, and for simplicity of mathematical form, it seems safe, at 

an exploratory stage, to proceed with the analysis on the assumption that the flow in 

the well, whether it be that o f the mixture or o f the sample, is described by equations 

of state representative of liquid B.

2.4 Convention and Notation

The notation used throughout the text is the usual one, but may be less familiar 

to those readers who approach the work with a view to its application rather than to 

its (wider) theoretical value. A word on the convention and notation adopted may 

therefore be appropriate at this stage.

In the above, x% (i =  1 ,2 ,3) represents a fixed system of curvilinear coordinates 

for which the line element is defined in terms of the metric tensor ^ ( x ) 11 by the 

equation

ds2 =  gikdxtdxk.

Here the scheme adopted is that covariant suffixes are written below, contravariant 

suffixes above and the usual convention of summation over the values 1,2,3 applies 

to repeated suffixes.

11 x  is used as an abbreviation for x 1, x 2, x 3.
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Referred to such a system xx, ptfc(x, t) denotes the stress tensor, and e ^ ( x ,  t) the 

(first) rate-of-strain tensor, defined in terms of the velocity vector Vj(x, t) by

e ik =  - j i V i ' k + V K i ) ,

a suffix z following a comma indicating a covariant derivative with respect to a space 

coordinate x%.

In the solution of the flow problem undertaken in the next chapter, it is found 

convenient (so as to accommodate the conditions on the boundary of the mixture) to 

work in orthogonal curvilinear coordinates x% (z =  1 ,2 ,3 )12. For such systems

9ik =  9 th =  0

9u =  (#M)_1 =  not summed).

Again, in order that the results obtained bear the physical dimensions o f the tensor 

field to which they relate, and so to be capable of immediate physical interpretation, 

it is appropriate to introduce physical components o f tensors, namely the Cartesian 

components in directions coinciding with the curvilinear coordinate directions x% (i =  

1 ,2 ,3 ) locally at any particular point under consideration. If  b f  - are the components 

of an absolute tensor in a general curvilinear system x l (i =  1 ,2 ,3 ), then its physical 

components, written (i.e. with brackets placed round suffixes), are defined by

" (z, k not summed),
Il(ft»)

12 In particular, in cylindrical polar coordinates (x 1 =  r , x 2 =  0 , x 3 =  z) and in spherical polar 
coordinates ( x 1 — R , x 2 =  6 ,x 3 — <f>).
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where n ( n /) denotes a product of all similar terms, one for each covariant (con- 

travariant) suffix13. For example, the physical components of the contravariant stress 

tensor p tk are defined by

P(*k) =  P(ki) =  hihkptk (i , k not summed),

or, equally, by

ptk =  pk% :r (i 5 k not summed).
hihk

Again, the physical components of the velocity vector v% are defined by

V(i) =  hiVx (i not summed).
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CHAPTER 3
EQUATIONS GOVERNING THE MOTION

OF THE MIXTURE

The main body of the dissertation is taken up with a broad analysis o f the critical 

phase in which the mixture within the well is transported on the outer carousel ring 

(with characteristic (or incubation) time of minutes), the aim being to ascertain the 

basic features of the motion within the well. The aim and purpose of the present 

chapter is to derive, and to exhibit, precise mathematical equations which describe 

this large scale motion, and to develop an analytic process that allows for their 

solution.

3.1 Basic Flow Equations

The motion that is of primary interest in the present study is that of the mixture, 

supposed homogeneous and incompressible of density p, as measured relative to the 

well when in transportation on the outer carousel ring. It is therefore appropriate to 

measure all relevant kinematic and dynamic variables relative to a (moving) frame 

O xyz  rigidly attached to the well, with O z  drawn vertically upwards and coinciding 

with the axis of the well. Thus relative to this frame the boundary wall o f the 

well is stationary. The scheme is illustrated diagrammatically in Fig. 3.1.1: the 

height measure is 12mm and the rim diameter measure is 8mm. Henceforth, unless 

otherwise explicitly stated, it is to be understood that all variables within the text are
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as measured with respect to this moving frame Oxyz.

i

c

Fig. 3.1.1 The moving frame of reference O xyz , rigidly attached to the well. C  

denotes the centre of the carousel ring and c =  CO  its radius.

8 mm

12 mm

Fig. 3 .1.2 Geometrical shape and dimensions of the well.
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The equation of continuity expresses the principle o f conservation of mass while 

the stress equations of motion are derived from Newton’s laws of motion, and they 

may be written in the general tensorial form

v %  ̂ =  0 (equation of continuity), (3.1.1)

pf* =  p lkjk 4- pF % (stress equations of motion), (3.1.2)

independently o f the flow properties o f the mixture. When referred to the Cartesian 

frame O xyz  (in which case xx,x 2,x z are identified with x ,y , z )  the equations of 

continuity and of motion (exhibited in general by (3.1.1) and (3.1.2)) take on the 

more familiar form14

g -  0, (3 1.3)

'A -  -  + <’ ■»>

F l denoting the body force field per unit mass. Here, the acceleration f %abs, in contrast 

to the velocity v \  represents the ‘absolute’ acceleration of the fluid element and not 

as measured relative to the moving frame O x yz lb. It is appropriate to write

fa&s =  fo +  f X,

where f0 is the acceleration of the origin O and f ' is the acceleration of the fluid 

element relative to O. If in a Lagrangian representation of the flow relative to the

14 In a Cartesian representation there is no need to distinguish between covariant and contravariant 
components and so it is convenient to place all suffixes in the upper position

15 It is noted that v l {(= e^ 11) is a flow invariant so that the equation o f continuity for an 
incompressible fluid takes on the same mathematical form in all frames of reference.
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frame Oxyz , a frame rotating with angular velocity ft(t) =  (0,0, 12(£)), x  =  x ( x q ,  t)

position x 0, then the velocity V(xo, t) and the acceleration f'(xo, t) as measured 

relative to O are given by the formulae

Now, (dx/eft)xo and (d2x/d£2)xo are recognized as the velocity v (x , t) and the 

acceleration D v(x ., t ) /D t  in an Eulerian representation as measured relative to the 

rotating frame Oxyz. Thus

and may be rewritten in the form 

Dw
fa&s =  +  2(12 x v) +  (12 x x )+  12 X (12 X x) 4- V(fo • x),

which in the present regime reduces to

Iabs =  ^  +  2(12 X v) +  (12 X x )+  12 x (12 x x ) +  V (c ( -  122x +  12 y))-

Here, it is recalled that c =  CO. It is thus seen that the stress equations o f motion 

can be rewritten in the modified form

represents the position of the fluid element at time t  which at prior time t0 is in

fa&s — fo +  +  2(12 x v) +  (12 x x)-f- 12 x (12 x x),

^  + 2 (nxv)  + ( ! i x x )  + f t x ( f l x x ) ) i = - ^  + | J + ^ ,  (3.1.5)

where the term

/?c(—122x +  12 y)
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has been incorporated in the isotropic pressure p.

The instantaneous state of stress for an incompressible fluid is expressible as the 

superposition of two stress systems, viz.

Pik = P ik ~  P9ik,

where the (partial) stress system p'ik is related to the rate-of-strain components 

by a set of differential equations involving the convected derivatives D p ^ /D i and 

D e ^ / D i  together with scalar physical parameters 770, Ai, A2 characteristic o f the 

fluid, and p  represents an isotropic pressure whose variation with x  and t is deter

mined by the equations of motion16.

Now the components of stress are real physical agents and as such are not a sub

jective property of the frame of reference, the components define the rates at 

which distances between neighbouring points of a fluid element are changing with 

respect to time and, hence, are independent of both the translational and rotational 

motion of the element, and the convected derivative D /D i, as emphasized in the 

previous chapter, is an operator that introduces no dependence on the frame o f ref

erence. Thus the equations of state (2.2.6 a,b) remain unchanged in mathematical 

form when referred to the moving frame O x yz , it then being understood that all 

kinematic variables are as measured relative to this frame. Thus in the frame O xyz

16 For an incompressible fluid, an added, aibitrary, isotropic state o f stress has no effect on the 
kinematics.
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the equation of state for liquid Oldroyd B may be written as previously , viz.

p'k =  pl i k - p g ik, (3.1.6a)

(1 +  ik =  2no(l  +  (3.1.6b)

3.2 Axially Symmetric Flow

It is convenient to introduce cylindrical polar coordinates r, </>, z  defined by

x =  r  cos </>, y =  r  sin 0, z  =  z,

in which scheme the boundary wall o f the well may be represented by the equation 

f ( r , z )  =  0. An axially symmetric flow is assumed in which the physical components 

of the velocity vector, 'U(r), i>(2), when referred to the coordinates r7</>,z, are

functions of r, z  and t only. The equation of continuity (3.1.1) reduces to

=  °> <3-2 1 )

and is the condition for the existence of a stream function ip(r, z, t) such that

1 dip 1 dip
Vt-r) =  r T z '  V(z) =  ~ r l k '

Hence, consistent with the incompressibility condition, the velocity field is written 

in the form

t r ,\ or+u 1̂
17 It is noted that, even when working within a Cartesian fram e , one has to make a distinction

between associated covariant and contravariant tensors when evaluating their convected derivatives.
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The physical components of the modified acceleration field as depicted by the 

left-hand side of equation (3.1.5) are now easily computed, these being

d'V ) , „ 9v(r) r , ,2 . „  ^ ( r )
~ W  +  v v - f r - r “  + v M ~ a T ’
duj du 2ujV(r) du
~di +  V(z)T z + ~ r  +  v ^ f r '
dv(z) dv{z) dv{z)

+ + v (r )dt KZ) dz  Kr) dr  ’

and are seen to be independent of the parameter Yl(t). These expressions have to 

be equated with the right-hand side of equation (3.1.5). For any contravariant tensor

'j'ik

dT ikr p i k  ___  I r p e k  I j - i f c  rjy ie

,j ~  d x i  ej ej

where T^. is the Christoffel three-index symbol defined in terms of the metric gik by

^ ik =  2$ 3 {frim,k T 9mk,i 9ki,m)- 

In the polar coordinate description r, 0, z,

Qrr =  lj 9<(>4> ~  9zz =: 1? 9<}>z =  9zr =  9r(j) =  0,

in which case it is easily shown that the only non vanishing components of Y3ik are

— — r r — —r
r<f> r ’ 1  <{><]>

It follows that

rr  d p ( r r )  r<£  1  , \ rz  d p ( TZ)
P ,r =  P ,* =  -(P(rr)-P(M)) ,  P ,z =  ,

<fir _  1 ffP(r») M* _  2  ,z  _  1 d p ^ z )
p ,r r  > p  ,<t> r 2P<r*b P * r d z  1

z r  d p { r Z )  Z(p 1  ^ P ( z z )

P >r =  P >* =  r P^  P * =
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Hence, the stress equations of motion reduce to18

, dv(j.\ Ov^  2 dvrr\
p { d r + v V f r - r“  + v ^ i r )

=  _ ^ r )  +  _ ^ z )  +  _ (p (rr) _  +  pp ^  (3.2.3a)

.du du 2uv(r\ d u .
' r ( « + , ' M &  +  — + , , w * )

_ &P(r<f>) dP(<f>z) 2
-  +  -P(r0) +  p ty , ) ,  (3.2.3b)

,d % ) ( d% ) du(jg)
^ - a r  +  ^ - a r  +  ^ - a r )
&P(rz) dp(zz) 1 I TP /'i n 'I \-  —r ^ r  +  +  ~P(rz) +  p F (z), (3.2.3c)

where F(r), F ^), F(z) denote the physical components of the body force field.

Finally, the equations of state representing a liquid o f type Oldroyd B need to be 

cast in terms of the appropriate physical components. Given the formulae

D drJik
v t p' tk = d T  +  vmp> *■" "  v' ^  mk ~ yk ^

§ i eW “  =  ^ W ~  +  yme(1) “ *■ -  yi ’me<1> “  yk ■’" e<1) im’

this represents a simple, but tedious, process. The results are

/ x t/® & d  \ / dv(r\ . dvfr\ ,
P(rr) +  Al [ ( ^  +  V<r)fr +  % )^ )P ( r r )  “  2 ~frTP(rr) “  2 ~Q^P{rz)\

~  dv(r) ~ x r/ d  d  d  .dv(r\
=  2^ ^  +  2^ X^ f o + v V & r + vV d i } - f r

_ 2{d m r _ d ^ {d ^  +  d m ) l  ( 3 2 4 a )

18 Here the conservative gravitational body force (0 ,0 , —g) has been incorporated in the pressure 
fie ld p : p  —>p +  p g  • x .
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1 , , ., d d d V m
rP™  + Xl[( d t +VV f r +V^ d z ) r

dV(r) {̂v4>) _  dV(r) A**) _  ^  ^  / i
dr r dz r Qr P(rr) d z ^ ^

du . ,, <9 $  d ,d u  dv/r) du
= VOfr+Vo*2[(-0t + v ir ) -^ + vu ¥ z) - ^ - - ^ r ^ ;

d v ^ d u  duo dv(r) du .dv^) $%)>,
dz dz dr dr dz dz dr

/  ^ r /  ^  d  d  w  , d v ( r \ d v r z )

p( « ) +  Al [(& +  "  (~ a T  +  " a T  )p<~>
_ & V ) ,  _  d v u

dz P{zz) dr P(rr)‘

= no^ d T  +  ^ ) +  ’7oA2[(I  + V{r)t +  V(z)h
( dv(r) &v(*) _  d v Q  dvfz) , ,dv(r)  dV(z).

dz dr dz dr dr dz
dV(r) dV(z) _  dV(r)dV(z), 
dz dz dr dr

p \u )  , A Wd  , d  , d 2du} / ndu)A<t>z)
- 2 &  ■— •

=  2 ,o5  +  2,„A2[ ( | + , (4 + % ) | ) ^

-(g)2 - (g)2l,

&Uz)  ̂ r/ ^  ^  ^  ^  ^  /—  +  M ( -  +  ®(r)-  +  ^ ) —  -  g , . ^ )

dV(z) $(<frr) dV{z} tftyz) j
dr r dz r

du  r/ ̂  ^ & \ du  o dy(z)

du . dvjr) dv(z) _  dv(z) du
dr dz dr dr dr

(3.2.4b)

(3.2.4c)

(3.2.4d)

du
dz

(3.2.4e)
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and are again seen to be independent of the parameter Q(t).

It is observed that if  the ‘absolute’ pressure does not occur in the boundary con

ditions, the flow within the well is not only axially symmetric, but can also be 

simulated in an arrangement independent of the Vitros instrumentation.

The wells on the carousel are almost completely filled and, although subject 

(throughout the incubation period) to vigorous accelerating and decelerating mo

tions, there is no spillage of mixture, surface tension being sufficiently large to pre

vent this19. (Any spillage would cause contamination and result in serious disruption 

of the testing programme). It is reasonable to proceed on the assumption that surface 

tension is such as to prevent the growth of oscillations on the free surface, and for 

the free surface to be represented approximately by a (horizontal) plane z  =  b. The 

boundary conditions associated with equations (3.2.3a-c) then reduce to

Vt/f =  0, w — Q(t) on the wall / ( r ,  z) =  0,

ip =  0, p(rz) — p {z<f>) =  0 on the free surface z  =  b20.

19 Serious spillage occurs from time to time. This may well be due to the well vibrating within its 
seating in the circumferential direction and to the well section departing (slightly) from the circular. 
But such considerations and investigations are outside the scope of the present study.

20 No information is sought from considerations of the normal stress at the free surface, it being 
supposed that any discontinuity in the normal stress there is balanced by surface tension acting at a 
slightly deformed free surface.



In this event as the ‘absolute’ pressure (together with the gravitational force po

tential) does not play an active role, both the velocity (v(r), %>), V(z)) and the normal 

stress differences (j/(rr) - f / m , p'( u ) ^izz) - ? ( „ ) )  can be identified with those 

in a well in a fixed location rotating about its axis with (variable) angular velocity

o ( t ) .

3.2.1 ‘Sweep’ at Constant Values of f t

Inspection of the flow equations (3.2.3a-c) with lj =  Do (a constant) on the wall 

/ ( r ,  z) =  0 confirms that the appropriate solution is

i/, =  0, w =  fl0, p[ik) =  0 (z, k =  r,<t>, z),

in which case the fluid moves with the well as if  it were rigid. Thus the driving 

mechanism which causes ‘mixing’ to occur within the well is the single inertial term 

p f t  x x  in the basic stress equations of motion (3.1.5). When f t =  0 (i.e. D =  

a constant =  D0) v (r) =  (̂<p) =  % ) =  0. It is only when 0, corresponding to the 

‘jiggle’ arrangement, that there is (relative) motion of fluid within the well. This is 

the judgement of Johnson & Johnson Clinical Diagnostics Ltd. and in this they are 

proved correct.

3.2.2 ‘Jiggle’ at Rapidly Oscillating Values of f t

In this regime the carousel ring oscillates with angular amplitude Do and frequency

n j  27r:

fl =  Re(D0eint).

The governing equations are much too complicated for a direct analytical approach 

to be feasible. At this stage of the analysis there is no great advantage in seeking an
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exact solution. What is desirable is to have some idea of the structure o f the flow 

and on how it reacts to changes in external conditions. It is deemed that some strides 

can be made with the analysis o f the governing equations by employing a method 

adopted by Jones (1970) in investigating oscillatory flows between coaxial surfaces 

of revolution. Such a method- one which allows for theoretical manoeuver only- 

has had a good measure of success when applied to steady regimes (Jones (1973), 

Griffiths et al (1969)), but somewhat less so when applied to unsteady regimes (Jones 

(1970), Lyne (1970), Zalosh & Nelson (1973), James (1975), (1975)21). However, 

for the oscillatory boundary driven motions investigated in the present work, it is 

anticipated that the approach allows not only for a reasonable qualitative description 

of the flow field, but that the information that results hold true over the entire range 

of values of the Reynolds number, more especially for large (as well as small) values. 

The method, in broad outline, is the following. The mixture is first constrained by a 

virtual body-force vector to flow steadily in paths which are circles with centres on, 

and planes perpendicular to, the well axis. The body-force vector is then, at some 

time t  — t0, suddenly removed and the initial (or acceleration) motion of the liquid 

calculated. The argument is that this incipient flow can give useful information about 

the nature of the fully developed flow: if  the incipient flow consists of a cell pattern, 

it is reasonable to expect, from continuity consideration, the cell pattern to persist 

until the fully developed flow is attained.

21 The results o f Lyne (1970) and Zalosh & Nelson (1973) apply to a purely viscous regime, 
whereas those o f James (1975), (1975) apply to a more general elastico-viscous regime.
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I. Primary Flow

The mixture is first, for times t  <  fo, constrained by a virtual body-force with com

ponents F(r)(r, z, t), F(0 )(r, z, t ) , F ^ ( r ,  z, t) (whose values are as yet unspecified) to

flow in horizontal circles with centres on the axis of rotation. For this constrained 

regime (consistent with the incompressibility condition 7/^=0)

V(r) =  0, v(0) =  r [u(r, z, t) -  ft(t)], v (z) =  0.

For this basic simple flow, the stress equations of motion reduce to give

pF(r) =  -prui2 -  ~  _  ? (« )■  (3.2.5a)

pF w  =  0, (3.2.5b)

dp(rz) dp(zZ) 1 . _ .
pf v  =  — * -a r  -  - « « ) .  (3 -2 -5c>

and

du dp(r<p) , dpfa) , 2
^ a  =  ~ a T  +  ~ a r  +  (3 '2 5d)

whilst the rheological equations of state reduce to give

d d
P(rr)  +  ^1 =  (3.2.6a)

1 , . dtf(rd>) du . du . .du d 2u

d d
P'(rz)  +  (3.2.6c)

A m ) , x z 1 , 2<9(J , r z ^ x 2 ,
& W  =  - ^ [( f t : )  + ( f e )  ]. (3 -2 6 d >

1 /  ̂ / 1 eta , du . . .du cPu
r p( «  +  Ax(r T  “  * * < ” > "  ^  +  X id W z ]' (3 Z6e)

p'(z2) +  =  0. (3.2.6f)
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Inspection of equations (3.2.6a-f) show that

P (rr )  =  P [rz) =  P {zz) =  0, (3.2.7)

resulting in the simplified stress-rate-of-strain relations

1 , x 1 dp\r<i>) (dw x d2u
+  A l -  Vo(-^  +  A2^ ) ,  (3.2.8)

e-29>

^  -  ^ , )  -  P 2 ..» )

Equations (3.2.5d), (3.2.8), (3.2.9), and (3.2.10) are to be associated with the

boundary conditions

u;(r,z,t) =  Q(t) on the wall f ( r , z )  =  0, (3.2.11a)

Puz) =  0 ^  =  0, on the free surface z  =  b, (3.2.11b)
oz

together with the understood condition that u ( r ,z , t )  is finite throughout the region 

of flow.

The motion under investigation is one in which the forcing agent is the oscillatory 

rotation of the well wall, a rotation of angular amplitude and of frequency n/2n. 

It is thus appropriate to look for a solution of the form

uj(r,z ,t)  =  Re(o;(r, z)etnt), (3.2.12)

the notation being that Re denotes the real part.

Inspection of equations (3.2.8), (3.2.9) and (3.2.10) suggests that the partial stresses 

P'{r<t>)ipt(<t>z) can t>e written in the form

P(r4,)(r ,Z ,t)  =  Re(?(^)(r ,z ) e*nt),

f W r >2’*) =  Re(P (W r . 2)emt).
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whilst p1̂ )  can be written in the more complex form22

?(«(> •, z,  t ) =  Re (P o (« (n  z) + p'2iH>){r > z)e2int).

(It is observed that associated with a purely oscillatory motion the shear stresses 

are periodic with the same frequency as that of the forcing agent, but that 

the normal stress is not purely periodic but has a steady component as well as 

a periodic component with twice the frequency of the forcing agent.)

It is then not difficult to show that equations (3.2.8), (3.2.9) and (3.2.10) allow the 

solutions

p ' ^ i r ,  z , t ) = r  R e( M l ± ^ M g eint)i (3 2 13)

=  ( 3 , , 4 )

tf ( r z t )  =  |
’ 1 +  inXi dr dr dz dz

+i r i ^ [(S )2+(S )21e2int)}- (3215)
Hence, on substituting these values of (3.2.13), (3.2.14) and (3.2.15) into equation 

(3.2.5d), it is found that the constrained, or primary flow, is governed by the equation

d2u  3 du d2uj l 2 _ .
~k~2 7i~2 u  = ’ (3.2.16)dr r dr dz£

where

k2 =  —inp( 1 +  mAi)/?7o(l 4- i n \ 2),

22 It is observed that if C \ and C2 are any two complex numbers

ReCx ReC2 =  ^(Re^Cfe) +  Re(C'1C,2*)), 

where the asterisk denotes complex conjugate.
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and is to be associated with the boundary conditions

u(r , z ) =  fio on the wall / ( r ,  z) =  0, (3.2.17a)

^ ^  =  0 on the free surface z  =  b,
dz

(3.2.17b)

together with the understood condition that cu(r, z) is finite throughout the region of

flow. Here it is observed that:

(i) the primary flow can be interpreted as that o f a viscous fluid but o f complex 

viscosity

/ y, =  r,

where rj and / / ,  identified with

are known as the dynamic viscosity and dynamic rigidity, functions of the frequency

(ii) the Reynolds number is only a particular parameter of the flow and not a defining 

parameter, additional (dimensionless) parameters Ai =  nAx and A2 =  n \ 2 arise from 

the elastic properties of the fluid.

II. Secondary Flow

To proceed with the investigation, it is supposed that at time t =  t 0 the body-force

vector (F(r), FW ’ F( z)), as defined by equations (3.2.5a-c), is suddenly removed,

23 This representation is one of the popular ways o f interpreting (linear) behaviour o f elastico- 
viscous fluids, and several rheometers are available for the measurement of rj' and / / .

t _  ^0 (1  +  ^ 2AiA2) 
V ~  (1 +  »*A|) ’

and

(1 +  n 2Ai)

7 J /2 7 T 2 3 ;
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and, within the mixture24, the velocity and stress components are represented as 

(ascending) power series of the parameter t  — t0, viz.

a; =  o/°)(r, z, t0) + v {'1\ r , z , t 0)(t -  t0) +  w(2)(r, 2:, t0)(t -  t0)2 +  (3.2.18a)

^  =  ^(°)(r, z, t0) +  ^ (1)(r, z, t0)(t -  t0) +  ip(2\ r ,  z , f0)(* -  *o)2 +  (3.2.18b)

P[ik) =  ^0)(^—^o)2H---. (i ,k =  r, </>, z).

(3.2.18c)

Here lj(°\ and denote the values of w, ip and prior to the release of the 

body-force field and so correspond to their values associated with the primary flow at 

time t =  t0- Substituting equations (3.2.18a-c) into the equations o f motion (3.2.3a-c) 

and equating the coefficients independent o f (t — to), the following equations result

_ ! b S  +  £ b S  +  2 , ; «  ( J . „ 9b)

1 frpw dp(0)
p - ^ k r  =  - 7 T '  <3 2 1 9 c >r  or oz

where p(°\r ,  z, t0) is an isotropic pressure. These equations are to be associated with 

the boundary conditions

V>(1)(?\£,to) =  0, Lu{1\ r , z , t 0) =Q (t0) on the wall f ( r , z )  =  0,

(3.2.20a)

24 There can be no discontinuity (either temporal or spatial) in the velocity o f  the mixture due to 
its inertia. In turn, there can be discontinuity neither in the rate-of-strain components nor in the stress 
components. At the boundary wall f(r , z) =  0 , however, the possibility of a spatial discontinuity 
does arise. Such a discontinuity has to be interpreted in terms of the boundary conditions, requiring 
the boundary wall to be a streamline.
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ip^ir,  z , t 0) =  0, — — Tp-^’- 0-  =  0 on the free surface z =  b,
Oz

(3.2.20b)

together with the understood condition that 7p^(r , z , t0) and Lu^\r ,z , t0) are finite 

throughout the region of flow.

Comparing equations (3.2.5d) and (3.2.1 la,b) defining cu(r,z,t) with equations 

(3.2.19b) and (3.2.20a,b), it is seen that can be identified with ( d u /d t ) t=to. 

Hence, equations (3.2.19b) and (3.2.20a,b) merely state that dw /d t  is continuous at 

t =  t0. One writes, therefore,

The remaining two equations, viz.

p £ ? f - r < S )  =  (3.2.21a)
r o z  or  r

1 <9V>(1) <9p(0)
P— , (3.2.21b)

r Or Oz

together with the boundary conditions (3.2.20a,b), serve to define rfrM and p(°\ 

Eliminating gives the equation

^  +  ^  =  | _ ( r V  __ (3.2.22)
Or1 r Or Oz1 Oz p

Now, from equation (3.2.12) and (3.2.15),

u 2( r , z , t 0) =  -  Re(a)u)* +  u 2e2tnto),
2

and

i (o) f ^  ! n  r (l -  inX^Xi  -  \ 2) fdCodu* cKJdu*
Pm { r , z M )  =  v R e { ------

i — [(^ ^ )2 +  (— -)2]e2int°}
(1 +  2znAi)(l +  inXi) dr dz
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This suggests that z, t0) has the form

^ (1)(r, z, t0) =  Re(^o(r, z) +  t/>2(r, z)e2mt°), (3.2.23)

i.e. a steady component as well as a £0-periodic component with twice the frequency 

of the forcing agent. It has been pointed out (P. W. James, private communication) 

that the secondary streaming, as represented by the function can be expressed 

in a form that may have more direct physical appeal. Equation (3.2.23) may be 

rewritten in the form

=  R e(^0(r,^ ) +  V’2 (r ,z )e -2“ (‘- (o>-e2‘"!)

=  Re(-0o(r, z) +  z)[ 1 +  0(4  -  4o)] ■ e2mt).

Thus, consistent with the approximations hitherto made,

V,(1) =  Re(^0(r, z) +  ^ 2(r, z )e2mt),

a form which can be identified with that given by Frater (1964), (1964) for the even

tual, fully developed, secondary streaming motion in axially symmetric oscillatory 

flows when the amplitude of oscillation is small25. It is seen as a form which lends 

more credence to the description of ipo(r ,z)  as the component which characterizes 

the steady secondary streaming.

Substituting (3.2.23) into (3.2.22) the following two equations result:

d2V>0 Idipp t d 2ipo r 2 d  f_ _ .  nr^ , duidLo’ ^
dr2 r dr  d z 2 2 dz^WU} ^  dr  dr  d z  d z ^ ’  ̂ ^

25 It is well known that associated with an oscillatory flow in general there is a steady streaming 
motion, referred to as ‘acoustic streaming’ (see, for example, Riley (1967)).
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d 2̂  ld ip2 , d2j)2 r2 d  2 du  2 , a ^ 2n
+  a F  =  T a i {“  " 2* * K * >  +  ( & } 1}’ (3'225)

where

~  ^o(Ai -  A2) ^ 0
Kl ~  p( l  +  n2\ 2) ’ (3 Z26)

TS _  ___^°(Al A2)_____ ry ryq \

2 p(l  4- 2inA i)(l +  inXi) ’ 

and where the real part is understood. These equations are to be associated with

boundary conditions

'ipo(r,z) =  0, ̂ 2 ( ^ 2 ) =  0 on the wall f ( r , z )  =  0, (3.2.28a)

ipo(r, z) =  0, y02(̂ ', z) =  0 on the free surface z  =  b, (3.2.28b)

together with the understood condition that V>o(r*, z)  and ^ 2(r, z) are finite throughout 

the region of flow.

The secondary streaming, as characterized by the function ip(r7 z, t0), is seen to 

be made up of a steady component and an oscillatory component with frequency 

twice that of the forcing agent. The steady component z) - the average o f the 

(secondary) flow over a single time cycle 27t/n  - even i f  weak, leads (within an 

apparent oscillatory system) to extensive migration o f fluid elements within the well. 

This unique type of convection or ‘stirring’ o f the mixture associated with such steady 

streamings has especial significance within the present study in that it accelerates the 

translational rate process of the reagents within the well26. It is appropriate, therefore, 

that the next phase should include an investigation of the nature of the time-invariant 

streaming described by the function 7/>0(r, z).

26 As well, the steady streamings give rise to (steady) stresses at the boundary wall and these may 
be significant in the continual removal of loosely adhering reagents on the wall surface.
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CHAPTER 4
ANALYSIS FOR A 

HEMISPHERICAL-SHAPED WELL

The equations governing the large scale motion of the fluid mixture within an axi

ally symmetric well associated with the ‘jiggle’ mode are now formulated 

(Eqs. (3.2.16), (3.2.24)). It is the aim and purpose of the present chapter to seek 

their solutions when the well is supposed to be hemispherical in shape. Although the 

choice of geometry is intended, in the main, to facilitate the mathematical analysis, 

it is proper to stress that it is not all that wayward a description of the actual well 

configuration. The advantages that follow in the wake of this geometrical repre

sentation are considerable: exact analytical solutions, in simple closed forms, can 

be constructed for both primary and secondary flows, solutions which allow for a 

description of the motion within the well over the whole spectrum of values of the 

Reynolds number, from small to large.

4.1 Primary Flow

Within the cylindrical polar coordinate description r, </>, z (r =  0 representing the 

well axis), the primary flow is characterized by equation (3.2.16), viz.

d2ZJ 3 dcu dPuJ
W + r f r  +  W + k U  =  °'  ( 4 1 1 )

with associated boundary conditions
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u(r7 z) =  Q0 on the wall / ( r ,  z) =  0, (4.1.2a)

Z-  =  0 on the free surface z  =  b7 (4.1.2b)
oz

together with the understood condition that tu(r7 z) is finite throughout the region of 

flow. Here

inp( 1 4- inX\)
770(1 +  i n \ 2) '

For a hemispherical well of radius a, it is more convenient to refer the motion to 

spherical polar coordinates R , 9, (p defined by

r  =  R  sin 9, <p — <p7 z  =  RcosQ.  (4.1.3)

Z

Fig. 4.1.1 Hemispherical-shaped well in (R,6,<f)) coordinates.

To proceed, it is first required to express the above equation for uj in terms of the 

variables R, 9. It is a simple matter to do this by observing the operator relationships

d_
dr
d_

dz

=  sin 9
d  cos 9 d

d R +  R 8 6 ’
(4.1.4a)

( d  sin 9 d
dR  R  d9'

(4.1.4b)
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However, there is some advantage in placing the transformation process within a 

wider context. Equation (4.1.1) can be rewritten in the form

d , -idcu. d , ->duJ, ^  , —
^ ( rV + i ; ( rV + f c W = 0 - ( 4 1 5 )

Hence, on regarding the variables r, z  as plane Cartesian coordinates, the equation 

for ZJ may be represented in a wider sense by

V  • (r3W )+ fc 2r 3u; =  0. (4.1.6)

Thus, in a general transformation from supposedly Cartesians r, z  to (plane) orthogo

nal curvilinear coordinates f i , £2 with vector line element (/iid£1} h2d£2), the equation 

for u  transforms into

1 r d  , 3 h2 dlJ d . 3 h\ duJ , , 2 3_

hl h t (r h1w ?  +  m > { r h ^ ) ] + k r u !  =  0’ ( 4 1 J )

where r =  r(£l3£2) is a prescribed function o f £ i,£2. The transformation

(r, z) —> (R,9),  as defined by equation (4.1.3), is of the above class of transfor

mations, i.e. one from supposedly Cartesians r, z  to (plane) polar coordinates R, 9 

(hi =  1, h2 =  R , and r =  r ( R , 6) =  R s m  6). Thus, the equation for u)(R, 6) reduces 

to

d2d) 4 du) 1 (Pu) 3 cot#da) j2 _ , 0\
a R 2 +  +  12902  +  9 0 +  w =  ’ ( • • )

and is to be associated with boundary conditions

Q =  n 0 on the wall R  =  a, (4.1.9a)

o —
— 0 on the free surface 9 =  ^ 2r. (4.1.9b)

27 Here 6 is supposed zero, i.e. the origin is taken in the free surface.
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Symmetry, and the nature of the boundary conditions, suggest one looks for a 

solution of the form Q =  G)(R), a function of the radial coordinate R  only. In this 

event, equation (4.1.7) takes on the simple form

d2u  4 du
^  +  5 S + i o - " ’ ( 4 U 0 >

and is to be associated with the single boundary condition

Q =  Ho on the wall R  =  a. (4.1.11)

(As well, it is understood that u> is required to be finite throughout the region of 

flow.)

Equation (4.1.10) is of the class

x2y" +  axy' -I- fi2x2y =  0,

which, on using the transformation y — X(1 °4/2g (x) , reduces to the equation

x 2g” +  xg' +  ((32x 2 -  ^  ^  )g =  0,

and is recognized as a Bessel equation. Hence, on writing

Q(R) =  R - 3/2G(R),  (4.1.12)

the following equation for G(R)  results:

R2G " +  R G ' +  (k2R 2 ~ ^ ) G  =  0. (4.1.13)

Its general solution is expressible in the form

G(R) =  AJ3/2(kR) +  BJ_3/2(hR), (4.1.14)
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where J3/2(kR) and J _ 3/ 2(fci?) are Bessel functions of the first kind of orders 3 /2  and 

—3/2 respectively, and A  and B  are arbitrary constants. Thus the general solution 

of (4.1.10) is

Q(R) = R - 3' 2(AJ3/2(kR) + B J . m (kR)).

Bessel functions of order half an odd integer are expressible as finite combinations 

of elementary functions; in particular

■h ''AkK) =  { ^ R , { ^ r - c o s k R ) '  (4 1 1 5 )

J - ^ ( k n ) = / S ( ^ +sinfcH)- (4116)
It is seen that R~* J_3/2(kR) is unbounded at R  =  0, and hence, to ensure finiteness 

of the primary flow everywhere within the well, it is required that B  =  0. The

condition at the wall surface, viz. lJ =  O0 on R =  a, requires A =  Q0y/a?/J3/2(ka).

Thus, finally, the appropriate solution for the primary flow is

which, in turn, gives for the velocity field

vm  =  S lo fls in g R e( [ ( | ) 3̂ 2 (4 ' U 8 )

4.1.1 Numerical Results

An exact analytical solution (in simple closed form) has been constructed for the 

primary flow and it is a simple matter to illustrate how this flow varies with the 

Reynolds-type number R a =  y/(npa2/r]0). However, it is interesting first to look
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analytically at this behaviour in two extreme cases: (i) when R a is small (i.e. when 

the angular frequency n  (or \k\) of the forcing agent is small), and (ii) when R a is 

large (i.e. when the angular frequency n  (or |fc|) of the forcing agent is large).

I. Small Values of n 

In this case \kR\ is small throughout the region of flow 0 <  R  <  a, i.e. \kR\ «  1. 

In such a slowly oscillating scheme it is convenient to express the Bessel function 

J3/2 {kR) as an ascending power series in its (small) argument kR.  On using the 

finite expression (4.1.15) for J^/2{kR),  it is straightforward to obtain the series 

representation

JzM kR )  =  ^  [ \ ( k R f 2 -  ~ ( k R ) 7/2 +  0 ( ( k R ) u '2) )  . (4.1.19)

which, in turn, gives

w(R)  =  fio[l +  4 fc2(“2 " R 2 ) +  (4.1.20)

On neglecting terms 0 ( k A) 1 it is seen that the profile |u (R )  — fi0| is parabolic, 

varying from zero on the boundary wall to a maximum O0 1^|2 a2/10 at the centre 

(R  =  0) of the well. It is found that the profiles flatten out, i.e. |ul(R) — Q0| 

becomes smaller, as the Reynolds-type number R a becomes smaller, whilst the effect 

o f elasticity is to delay, somewhat strikingly, this feature. Further, it is found that 

uj(R) — —► 0 as k —> 0 (i.e. as n  —► 0), i.e. for very small values o f the angular

frequency n  the fluid moves as if  rigid with angular velocity which, at any instant, 

matches that of the well boundary, a motion exhibiting no secondary flow effects. 

These general comments, valid for sufficiently slowly varying regimes, are reflected 

in the exact flow diagrams illustrated in Figs. 4.2. la,b.
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n . Large Values of n

For this regime, it is necessary to look separately at two regions, that remote from 

the centre (R =  0), and that near the centre.

Region remote from the centre:

In this region both \ka\ and \kR\ are large, i.e. \ka\ , 1. Now

sin kR e%kR — e~tkR etkR +  e~tkR
——  cos kR =  -------- ——-------------------------

kR  2 ikR  2

-  h (  - _  / ____ 1  , i > -.|(=K|c ‘*1
2 z \kR\ e- '* ; i \kR\ e- ** J-

Here k =  \k\ e~*x, where

. . fnp ( I +  n2\ \ \ 1̂  7r 1 _ i  > _ i  x

|fc| = V % (tT ^aIJ  ’ x = 2 -  2(tan" "Al - tan~ "A2)-

Again as ^ kRê~ix =  e1 *«l(skx+*c«x) ? =  e-|fca|(sinx+toosx) an£j? 0n observ

ing that |fc.R| 1, the second term is seen to be negligibly small compared with the 

first. Thus

SmkH _  COS kR  ~  _ I e*M(<»=X-isinx) 
kR  2

Similarly

-  coska ~  _ I e*IH(oosx-isinx) 
ka 2

Hence, Q(R) may written

Q{R) ~ n 0{ ^ ¥ e - iia- Rm(co’,x- iBinx\  (4.1.21)
R

and, in turn, gives for the velocity field

VU) ~  fi0flsin6> R e{[(-|)V i<a- B>l*l<cc**-<,,i,1*> -  l]e<nt}. (4.1.22)
R
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Now when n (or |fc|) is large the exponential term x-*sinx) jn the above

expression is appreciable only when a — R  is small, i.e. in a region immediately 

adjacent to the wall, i.e. in a layer near the wall whose thickness is O[(np/rj0)-1 2̂], 

i.e. 0 ( a R ~ 1). Outside this layer the above exponential factor is negligible and, 

effectively, uJ ~  0 or, equally, ~  Q,0R  sin <f> Re[e*(nt-7r)], independent of the 

rheological properties of the mixture. This represents a rigid body (oscillatory) 

rotation with angular amplitude O0 and frequency n/2n,  but o f phase 7r behind that 

of the boundary wall.

Region near the centre:

In this region \ka\ 1 but \kR\ 1. Now

It is seen that in a region sufficiently near the centre (R — 0), the fluid moves as if  

rigid with angular amplitude H0 and frequency n /2 7 v  but with phase n  behind that of

sin kR
kR

and

sin ka
ka

Thus

u(R)  ~  — ̂ Q0a2k2e tka 
o

2 t,2 „—ika

i.e. lj(R) =  0 on neglect of exponentially small terms, and so,

vw  ~  QoR sin e R e(—eint) =  U„R sin 4> Re[ei(" ‘_,r)]. (4.1.23)
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the boundary wall, exactly as that predicted above for the flow outside the boundary 

layer.

One concludes that for large values o f n(or of R a) the primary flow varies rapidly 

in the region immediately adjacent to the well wall, attaining there a high peak, but 

elsewhere moves as if  rigid with angular amplitude and frequency that of the forcing 

agent but of phase tv  behind it. The effects of elasticity are to increase, substantially, 

the high peak value of the flow close to the boundary wall, while having no great 

effect elsewhere, and to decrease somewhat the thickness of the boundary region in 

which flow changes rapidly.

For illustration purposes, the exact profiles o f the square magnitude of the ‘angular’ 

velocity |a7(f^)/f20 — 1| , i.e. of v^/Q.qRsit iQ  , for various values of Reynolds- 

type number (R a =  y/{npa2/r /o ))28, and for various values of the elastic parameters 

n \ i , nX2l are exhibited in Figs. 4.2.1c-f. Here ‘distance from the wall’ is to be 

interpreted as the dimensionless measure (a — R)/a.

28 Rosenblat (1960) has shown, in case o f viscous liquids, that, within a different context, the 
above approximations to the primary flow are valid provided that (npa2/r]o) <  10 (for small values 
o f n) and (npa2/r]o) >  20 (for large values of n).
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4.2 Secondary Flow

Within the cylindrical polar description r, <f>, z, the steady streaming flow as char

acterized by the stream function 'ipoir, z) is defined by equation (3.2.24), viz.

d2ipa 19t/>0 o r 2 d  r _ _ ,  „ . d u d u f  dw dur
~ W - r ^  +  - M =  2"t e {u u  ~  2 K l ^ ~ & r  +  Y z a 7 )}’ (4 Z 1 )

and is associated with the boundary conditions

'ipo(r,z) =  0 on the wall f ( r , z )  =  0, (4.2.2a)

ipo(r,z) =  0 on the free surface z  =  0, (4.2.2b)

together with the understood condition that ipo(r, z) is finite throughout the region

of flow. Here K \  is the purely elastic parameter ?7o(A1 — \ 2) /p ( l  +  n2\ \ ) .

The differential equation for -0o(r, z) can, in much the same way as that for the

primary flow u ( r , z), be represented within a somewhat wider domain. Equation

(4.2.1) may be rewritten in the form

<9,1 , d , l # 0 o N 1 9  ,  duJdu* d a d s *
+  T z { r ^  =  2 r & {w"  '  W  +  T z ~ d ^ ) } ' (4 '2'3)

which, on regarding r , z  as plane Cartesian coordinates, may be identified as the 

equation
1 1 Q

V  • (-V 0 o ) = ~ r — {\Q\2 -  2 |VtD|2}. (4.2.4)
r  2 o z

Thus, in a transformation (r, z) —► (£1,^ 2 ), a transformation from supposedly Carte

sians r , z  to (plane) orthogonal curvilinear coordinates £1, £2, equation (4.2.4) trans

forms into



where r  — r ( ^ ! ,f2)- Thus under the transformation (r,z)  —► (R,0),  as defined by 

equation (4.1.3), and on noting that Cu =  Cu(R), the equation for the steady streaming 

flow reduces to

<9Vo cot 9 d'ipQ 1 dV o it*2 d dwdw* . 2
------------------------------------  = -------------- [ l u l u  —  z K i  ) sin u cos c f
dR2 R2 de R2 d62 2 diT  1d R d R ’

and is to be associated with boundary conditions

ipo(R, 9) — 0 on the wall R  =  a,

7T
ipo(R, 9) =  0 on the free surface 9 =  —.

Now, from (4.1.17),

>(ii) =  n °  ( - )  j3/2(fca),

and so it follows that

a \ V * J m {kR)
L U ( l t )  =  \ L n  | —  '

and

a ( n \ o * ( n )  n 2 ( a  V  Jz / 2^k R  ̂ J w ( k *R )(* )  -  ( j j j  J 3/2(fca) >

^  _  o 2 11.12 f  a V  ^V2( ^ )  Js/2 {k*R)—  a
dR dR  \ R /  J3/2{ka) Jz/2(k*a)

Here, one has made use of the identity

x  3/2J 3/2(x)) =  - x  3/2J 5/2(a;),

it being useful to note the expansion

j5/2(fci?)=v ((̂  ■ sinfcii ■ A cosM)
On writing

, . dujdlu*
G ( R ) = 0 0  - 2 K t - — ,

(4.2.6)

(4.2.7a)

(4.2.7b)

(4.2.8)

(4.2.9) 

(4.2.10)

(4.2.11)

(4.2.12)
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equation (4.2.6) reduces to

d2,ipo cot 9 dipo 1 d2V>o R 2
d R 2 R 2 89 R 2 d62 2

G'(R) sin2 9 cos 9. (4.2.13)

The form of this equation suggests that ipo may be written in the form

-00 (R-, 0) =  F(R)  sin2 9 cos 0, (4.2.14)

which on substitution into equation (4.2.13) results in the following equation for

together with the constraint that F(R)  be finite in the region of flow 0 <  R  <  a, 

0 <  9 <  7r/2. One observes that the associated homogeneous differential equation 

of (4.2.15) has the two linearly independent solutions f?3, R~2, and so it is a simple 

matter to use the method of variation of parameters to construct the general solution 

of the non-homogeneous equation. The result is

F (R ) :

(F" ~  | ~2F) =  y (? (* ) . (4.2.15)

This equation is to be integrated subject to the boundary condition

F(R)  =  0 on R  =  a, (4.2.16)

F(R) =  v x {R)R3 +  v2(R )R -2,

where

A  and B  being arbitrary constants. By rearrangement



Now

[  Ri G{R)dR = ------- ^ ----- -5 ( f  M ( R ) d R - 2 \ k \ 2Ki  f  N (R )d R )  , (4.2.18)
J s i n f c a  —  mo L.n\ \J  J J

where

^ - c o s k aka

( s m k R  \  (s ink*R \

and

3
cos k*R).

k*R

By repeated integration by parts, it is found that

f R m  — sin kR sink*R sin (k +  k*)R sin (k — k*)R
/  M (R)dR = ------------------------ 1------ )---------H-----------)-------------, (4.2.19)

J kk*R 2 (k +  k*) 2 (k — k*)

, 1 sin(fc — fc*)i2 1 sin(k +  k*)R 3 cos kR cos k*R
J  N (R )dR  =

2 (k — &*) 2 (A; 4- &*)
3 sin kR cos k*R 3 cos kR sin k*R 3s inkRsink*R  

+  k2k'R? +  k(k, )2R 2 (.kk”)2R3 '

(4.2.20)

Inspection shows that finiteness of F(R)  within the region of flow requires B  — 0, 

and the boundary condition (4.2.16) gives the appropriate value of A. Finally, one 

obtains the solution
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F(R) = n  g a4 , — sin kR  sin k*R lsin(fc +  fc*)ii

^  -cos fcaka \ky R
+  -

2 (k +  k*)

: 1 sin(k — k*)R^ R 3 f — sin ka sin k*a t 1 sin(k +  A;*)a 
+  2 (fc -  k') ’ ~  [fcj^  +  2 (fc +  fc*)

+ a 1 sin(fc — A;*).R 1 sin(A; +  fc*)i?1 sin(fc — A;*)a
2 (k — k*)
3coskRcosk*R 3sm kR cosk*R  3cosfci?sin/c*i?

-  +     +

R 2K 2 (A; — k*) 2 (A; +  A;*)

kk*R k2k*R2 k(k*)2R 2
3s in kR sm k*R  R3 .1 sm(k — k*)a 1 sin(fc +  k*)a 

(kk*)2R? ' ~  ~a 2 {k -  k*) 2 (A; +  A;*)
3 cos A:a cos k*a 3 sin ka cos A:*a 3 cos A;asinfc*a

-  +   +kk*a 
3 sin kasm k*a

k2k*a2 k(k*)2a'?

)]}■(kk*)2a3

The associated steady velocity field is defined by

1

(4.2.21)

n(1) =  -  
(R) R 2 sin 9 dO

94,0 = 4 j F ( i i ) ( 3 s i n 20 - 2 ) ,

( 1) _  _
<"> R sin ffdR

94)0 =  --F'(R)  sin 0 cos 0 , 
R

(4.2.22a)

(4.2.22b)

It is thus seen that the initial acceleration vector has a non-zero component tangential 

to the boundary wall R =  a.

4.2.1 Numerical Results

Secondary steady streaming flows, as characterized by ijjo(R,0) above, are asso

ciated with oscillatory flow but not with steady flow. It is relevant within our study 

to look closely at the behaviour of -0o(R, Q) with the Reynolds-type number R a and 

with the parameters Ai, A2 characterizing the elasticity of the fluid. Although the ex

pression for ^ ( R ,  0) is in the form of a finite combination of elementary functions, 

it is still somewhat complicated in mathematical form. Nevertheless, it is possible to
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make some general deductions about the nature of the secondary flow in two special 

cases: (i) when the frequency n of oscillation is small, and (ii) when the frequency 

n o f oscillation is large.

Before one turns to look at these two special regimes, it may be appropriate to 

ascertain the nature of the secondary flow when the mixture is supposed Newtonian, 

in which case the expression for ipo(R, 0) reduces to

ipo(R, 6) =
n  *

2 date -c o s fc aka

f a4 — sinkRsink*R  1 sin(A; +  k*)R 
2 I ~rY> V •- ■*» -   ̂ ~R 2 \k\z R 2 (k +  k*)

l s m (k  — k*)R^ R 3 ( — sin ka sin k*a ( 1 sin{k-\-k*)a 
+  2 (k -  k') ' _  +  2 (k +  fc*)

1 sin(k — k*)a . 2
2 ( l - fc. ) - ) > S m g c 0 s g -

(4.2.23)

Although this expression for ?/>o(R, 6) is much simpler in mathematical form than 

that represented by (4.2.14) and (4.2.21), it is not sufficiently simple to allow one 

to make a broad analytical comment on the flow structure. However, its numerical 

evaluation over a wide range of values of the Reynolds-type number R a shows 

that the flow is little changed by variation of frequency, fluid being always thrown 

outwards near the boundary wall and drawn inwards near the well axis, i.e. a flow 

much as expected by centrifugal effects. The numerical findings are exhibited in 

Figs 4.2.1a-d.
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Fig. 4.2.1a Secondary (steady) streaming -00(R, 9) =  constant for a Newtonian

fluid when Ra =  1.

Fig. 4.2.1b Secondary (steady) streaming 0 O (R, 9) =  constant for a Newtonian

fluid when R a =  4.
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Fig. 4.2.1c Secondary (steady) streaming ipo(R, 0) =  constant for a Newtonian

fluid when Ra =  10.

Fig. 4.2. Id Secondary (steady) streaming 'ipo(R, 9) =  constant for a Newtonian

fluid when R a =  20.
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One now turns to look at the two special cases remarked on above.

I. Small Values of n

For small values of n, i.e. when \kR\ and |fca| are both small, it is convenient to 

express the trigonometric functions in the exact expression for ipo(R, 0) in ascending 

powers of their (small) arguments. After long and tedious algebraic manoeuvers, it 

is found that

M R > ° )  -  \k \4 R3(a2 -  r 2 ) [ ~ +  r 2 ) +  ~  sin2° cos<?’

(4.2.24)

where A is the dimensionless parameter ^0A1/(p a 2). This result shows that 

ipo(R,6) =  0 (n 2). Thus for small values o f the frequency n j the secondary 

(steady) streaming flow is a very weak affair. However, it varies strikingly with 

elasticity. When Ai =  A2, corresponding to a Newtonian mixture, the flow is seen to 

be dominated by centrifugal actions, fluid being thrown outwards near the boundary 

wall (R =  a) and drawn inwards along the axis of rotation (9 =  0) consistent with 

the numerical illustration in Figs. 4.2.1a-d. However, when Ai >  A2 >  0, it is seen 

that non-Newtonian actions counteract, and may even dominate, centrifugal actions. 

The indication is that low (critical) values o f the frequency n/2n  exist for which 

non-Newtonian actions can overwhelm centrifugal actions, and in the region of flow 

within the well in which this is the case the direction of the flow would be spectac

ularly reversed29. Such effects are somewhat surprising, but are indeed reflected in

29 It is seen from formula (4.2.24) that the ratio o f Newtonian actions to non-Newtonian actions 
decreases as R  decreases, i.e. as one approaches the centre o f the well. This shows that as elasticity 
increases flow reversal is manifest first in the interior as is indeed shown in the exact streamline 
patterns exhibited in Fig. 4.2.3b.
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the exact streamline projections ipo(R,0) =  constant exhibited in Figs. 4.2.2a,b.

Fig. 4.2.2a Secondary (steady) streaming (R, 6) =  constant for an 

elastico-viscous fluid (nAi =  0, n \ 2 =  0) when Ra =  l.

Fig. 4.2.2b Secondary (steady) streaming ip0(R,Q) =  constant for an 

elastico-viscous fluid (n \ i  =  0.02, n \ 2 =  0.005) when R a =  1.
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n . Large Values of n

As previously made clear in the analysis of the primary flow, it is necessary to 

look separately at two regions, that remote from the centre (R =  0), and that near 

the centre.

Region remote from the centre:

In this region both \kR\ and \ka\ are large, for which regime, on neglecting expo

nentially small terms, it is found that30

O2 /i4 f?3
M R , 8 )  -  — [1 -  2/Cl |fc|2](— e - 2l*K“- R)sto)<------- ) sin28 cos6. (4.2.25)

4 |/c |sm x  rC o,

This representation reveals much about the nature of the secondary flow when the 

frequency of oscillation is large. In particular:

(i) The exponential term e- 2\kKa~R)smx js negligibly small other than in a thin layer 

immediately adjacent to the boundary wall R =  a . Within this layer, whose thickness 

is 0 ( a R ~ 1), the streamline projection gradients are large, whilst (relatively) small 

elsewhere, i.e. in the main body of the well. The steady streaming that is generated 

is thus seen to be more significant (or intense) in a region near the wall and less so 

elsewhere within the well.

(ii) Accompanying this rapid change in the steady streaming, in the region close 

to the wall, one finds that the direction of the flow is controlled by the parameter 

1 — 2K\ \k \ \  flow reversal being associated with a change o f sign of 1 — 2Ki \k\2, a 

function of the frequency of the forcing agent and of the parameters characterizing

30 Here it is supposed that 1 — 2 K i  \k\2 is not zero.
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the rheological properties of the mixture31. In the illustrations undertaken here, 

corresponding to the values A2/Ai =  1/4, pa2/rj0Xi =  50, it is found th a t \  — 2K\ \k\2 

vanishes for two distinct values of n, namely n 1? n 2 (n\ <  n2), where

n 1,n 2 =  (46.99,212.82)
paz

When n <  n\, the flow is similar to a Newtonian fluid, i.e. a flow controlled by 

centrifugal actions; when n x < n <  n 2, the flow is spectacularly reversed, i.e. a flow 

in which non-Newtonian actions overwhelm centrifugal actions; and when n > n2 

the flow is again similar to that of a Newtonian fluid. This pattern of flow is well 

reflected in the exact streamline projections ifj0(R,6) =  constant illustrated in Figs. 

4.2.4a-e.

Region near the centre:

In this region \ka\ 1 but \kR\ 1. For such a regime, it is found that

M R , 8) ^  | k | V 2a|fc|8i” *R3sin20cos0, (4.2.26)
45

which result shows that Vip0(R,9)  is exponentially small, indicating that the sec

ondary streaming flow is ‘weak’.

Two groups of streamline projection curves 'ipo(R,0) =  constant are exhibited:

(i) Figs. 4.2.3a-e show the way the secondary flow varies with elasticity for a 

fixed Reynolds-type number R a. Fig. 4.2.3a shows the flow, for sufficiently small 

elasticity, to be dominated everywhere by centrifugal actions, fluid being thrown

outwards near the boundary wall and drawn inwards near the axis of rotation. As

31 The zeros of this parameter can be matched with those o f the function <f>i o f Frater (1964) and 
of the function N x o f Jones (1970), functions associated with flows between rotating parallel plates.
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elasticity increases, Figs. 4.2.3b-e show that a region of flow reversal begins to 

develop in the inner region and that this region expands with increasing elasticity 

until it envelopes the whole region within the well. These results are more in keeping 

with the findings of Frater (1964) which indicate that non-Newtonian effects emanate 

from within the main body of fluid and not from the boundary wall as indicated by 

Jones (1970). As elasticity proceeds to increase centrifugal actions again begin to 

dominate in the near-wall region, eventually overwhelming non-Newtonian actions 

throughout the well.

Fig. 4.2.3a Secondary (steady) streaming 'ipo(R, 9) =  constant for an 

elastico-viscous fluid (nAi =  0.2, n \ 2 =  0.05) when R a =  5.
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Fig. 4.2.3b Secondary (steady) streaming ipo(R, 6) =  constant for an

elastico-viscous fluid (nXi =  0.4, nX2 =  0.1) when Ra =  5.

Fig. 4.2.3c Secondary (steady) streaming V>o(R, 9) =  constant for an 

elastico-viscous fluid (nX\ =  1, nX2 =  0.25) when Ra =  5.



Fig. 4.2.3d Secondary (steady) streaming ip0(R,6) = constant for an

elastico-viscous fluid (nXi =  4, nX2 =  1) when Ra =  5.

Fig. 4.2.3e Secondary (steady) streaming ip0(R, 0) =  constant for an 

elastico-viscous fluid (nXi =  6, nX2 — 1.5) when R a =  5.
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(ii) Figs. 4.2.4a-c show the way the secondary flow varies with the Reynolds-type 

number R a for fixed elasticity. For sufficiently small values of R a (i.e. o f n), for 

the measure of elasticity chosen, the flow is dominated throughout the well by non- 

Newtonian actions, fluid being drawn inwards along the boundary wall and thrown 

outwards along the axis of rotation32. As the Reynolds-type number increases, a 

region develops near the boundary wall in which centrifugal actions dominate, a 

region which expands to occupy the whole well. The exact reverse pattern of events 

occurs as R a increases further, until the whole well is dominated by centrifugal 

actions. This type of regime remains unchanged as R a proceeds to higher values.

Fig. 4.2.4a Secondary (steady) streaming ipo(R, 0) =  constant for an 

elastico-viscous fluid (nAi =  0.02, n \ 2 =  0.005) when R a — 1.

32 For a Newtonian fluid (Ai =  A2), the effect is the opposite, centrifugal actions being eveiywhere 
in control.
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Fig. 4.2.4b Secondary (steady) streaming ip0(R,6) =  constant for an

elastico-viscous fluid (nXi =  0.245, n \ 2 =  0.06) when Ra =  3.5.

Fig. 4.2.4c Secondary (steady) streaming V’o(R, 0) =  constant for an 

elastico-viscous fluid (nXi =  0.5, n \ 2 =  0.125) when R a =  5.
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The above {exact) pattern o f the secondary steady streaming flow is much in 

keeping with the approximate analysis for small and large values of the frequency

n/27r.

4.3 Concluding Remark

A qualitative picture of the flow of the mixture within the well whilst in motion on 

the outer carousel ring has now been obtained. Within the main ‘inner’ body of the 

well the mixture moves nearly as if  rigid, a motion virtually free o f any migratory 

motion of fluid elements. Whereas, within a thin layer adjacent to the well wall, the 

flow varies rapidly, and is associated with vigorous (steady) stirrings o f the mixture.
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CHAPTER 5
ANALYSIS FOR A 

CYLINDRICAL-SHAPED WELL

The study of the large scale flow of the mixture within the well, whilst in motion 

on the outer carousel ring, is continued in the present chapter, the well geometry 

being now supposed cylindrical in shape. An exact solution for the primary flow is 

developed in the form of an infinite series, a series which converges rapidly when the 

frequency of oscillation is large as in the ‘jiggle’ regime. However, it has not been 

found possible to construct an exact solution for the steady streaming as characterized 

by the function y;0(r, z), but reasonably accurate representations can be found when 

the ratio of radius to depth of the well is either large or small.

5.1 Primary Flow

Within a cylindrical polar description r, 0, z, in which r  =  0 represents the well 

axis, the governing equation for the primary flow is defined by equation (3.2.16),

viz.

dr2 r dr  d z 2 

and is associated with the boundary conditions

d 2uj 3 duJ d2u) 0
+  — b -TT-z +  k Q =  0, (5.1.1)

uj(r, z ) =  n 0 on the wall r  =  a, (5.1.2a)

uJ(r,z) =  Q0 on the wall z  =  0, (5.1.2b)
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5 Z)— ^ =  0 on the free surface z =  6, (5.1.2c)
oz

together with the understood condition that cj(r, z) is finite throughout the region of 

flow. Here

k =  |fc| e“*x, \k\ -  , / ^  ( and x  =  7  “  ^ ( ta n - 1  nXl -  ta n - 1  nX2). 
y r/o \ i  +  n a 2J  4  z

The solution o f the differential system (5.1.1)-(5.1.2a-c) is easily constructed in the 

case of a ‘shallow’ well and in the case of a ‘deep’ well. It is appropriate, in the 

first instance, to look at these two special cases separately.

I. Shallow Well

In this case it is supposed that a b. Hence, approximately, Q =  o>(z), in which 

event the equation for Q reduces to

^ ^ - \ - k 2u =  0, (5.1.3)

and is associated with the boundary conditions

d)(z) =  z =  0, (5.1.4a)

^  =  0 on z  =  6, (5.1.4b)
OZ

together with the understood condition that O(z) is finite throughout the region of 

flow 0 <  z <  b. Equations (5.1.3)-(5.1.4a,b) are seen to admit the solution

cosk(b — z)
u{z)  =  n ° kb (5 1 5 )  

and, in turn, gives for the velocity field

v w  =  O0rR e [(C° Sfc^  ^  -  l ) emt]. (5.1.6)
cos kb



n .  Deep Well

In this case it is supposed that a <C b. Hence, approximately Q =  <D(r), in which

event equation (5.1.1) reduces to

d2u  3 duj ^
-T-J +  - — +  fc2o> =  0, (5.1.7)
dr1 r  dr

and is associated with the boundary condition

Q(r) =  fio on r  =  a, (5.1.8)

together with the understood condition that u(r)  is finite throughout the region of

flow 0 <  r  <  a. Equations (5.1.7) and (5.1.8) are seen to admit the solution

/ \ ^  aJi(kr)
Q {r) =  ( 5 1 '9)

with associated velocity field

aJi(kr)  in(
vw  =  U0r  (5.1.10)

J i being the Bessel function of the first kind of order unity.

One next looks at equations (5.1.1)-(5.1.2a-c) with a view of constructing a 

general solution for a cylindrical well o f radius a and depth b, the above two solu

tions being derivable as special cases (corresponding to two extreme configurations). 

Two different, but exact, representations are derived for IJ(r, z), one suitable for ap

plication in the case of a shallow well when a^> b, and one suitable for application 

in the case of a deep well when b^> a. (See Jones & Walters (1966)).

First, with a view of constructing a solution suitable for application in the case 

of a shallow well, it is convenient to consider the (more) symmetrical flow regime
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defined by the differential equation (5.1.1) in the region 0 < r <  a, 0 < z <  2b 

subject to the boundary conditions

uJ(r,z) =  £l0 on r  =  a, (5.1.11a)

cJ(r, z) =  on z  — 0, (5.1.11b)

iD(r,z) — Q0 o n z  =  2b. (5.1.11c)

Symmetry will demand that the solution be such that du){r, z ) / d z  is identically zero 

on z  — b. Hence, the solution of the above parallel problem, when restricted to the 

region 0 <  z  <  b, will correspond to that in a well of radius a and depth 6.

In the analysis of the above scheme, it is convenient to introduce the finite Fourier 

sine transform uiF(r,m)  of o>(r,z) defined by

1 7717TZ
u F{r,m)  =  -  Q(r, z) sm(-^j—)dz. (5.1.12)

Multiplying equation (5.1.1) by \  s i n ( ^ ) z  and integrating with respect to z  between

the limits 0 and 2b results in the equation

=  <“ • » )

and is to be associated with the Fourier sine transform of the boundary conditions 

(5.1.11a-c), viz.

on
u)F(r,m)  — ------ - [ (—l ) m — 1] on r  =  a, (5.1.14)

rmi

together with the understood condition that u F(r ,m ) is finite throughout the region 

of flow. Here =  k2 — ( ^ ) 2. The general solution of the differential equation

(5.1.13) is

QF(r,m) =  ^ J i { h mr) +  ^ T i( / imr) +  9 0^ - [ ( - l ) m -  1], (5.1.15)
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where J\(hmr ), Y\{hmr) are Bessel functions of the first and second kind of order 

unity, A  and B  being arbitrary constants. On imposing the boundary condition

(5.1.14), the appropriate solution finite throughout the region of flow is

_ fi0[ ( - l ) m -  1] (rmt  2k2 aJi(hmr)
M r , m )  = -------- ------------

Thus, on using the inversion formula

(5.1.16)

u!(r , z ) =  E WH r >m ) S“ (^7 ^ )>
777= 1

(5.1.17)

it is found that

- /  ) x2' ^ o [ ( - l ) m -  1] frrnv 2k2 aJ1(hmr ) \  . rrnrz^
u n r , z ) =  > --------—-------  t t t t ------------ z~r,-----7 sin(— r- )- (5.1.18)

\ 2b rmr r Jiihmd))  2b

This expression for (L>(r, z),  applicable in the region 0 <  z  <  b, can be rearranged in

a more convenient form. Now

1 f 2b fi0cosfc(6 — z) . TT l'K Z
T /  r;------sin ——— )dz
b Jo cos kb 2b

Oq

2b cos kb
— f i o

f 2 b  7 7 7 7 T  7 7 7 7 T

/  {sin[(~7̂ T +  k )z  ~  M>[ +  sm[(—  ~  ty z  +  kb]}dxJo 2b 2b

2b cos k b 
fiom7r

c o s [(^  +  k)z -  kb] c o s [ (^  -  k)z  +  kb]
rmr , j.
2b  +  K

+ rrm  _  u  
2b K

2b

K - i r - i ] ,
2 b*hl

and so f20m7r[(—l ) m — l]/2b2h2m is recognized as the finite Fourier sine transform 

of fio cos k(b — z ) /cos  kb, i.e.,

^  n Qmn mnz  Q0 cos k(b -  z)
U ^ r K - 1) - 1]sm(̂ T ) = — ^Tb—

Hence the expression for u>(r, z) can be rearranged to give 

Oocos k(b — z) 4£loak2 ^  «A(^2m+i^)

(5.1.19)

LJ(r,z) cos kb Em  0 (2m  +  l )h2m+\Jl(hZm+\a)
sm

(2m +  1)77^
2b J 

(5.1.20)
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where h\m+l =  k2 — ((2m -I- 1)7t/26)2 . It is now seen that the first term in (5.1.20) 

is the solution represented by equation (5.1.5), appropriate to the case of the shallow 

well, and so (5.1.20) is a representation of u)(r, z) that is particularly well suited for 

application in the case a »  b. The corresponding (oscillatory) primary flow within 

a cylindrical well of radius a and depth b is

^  n r, cosk(b — z) 
v w  =  n 0r R e { ( - l + — coskb

4afc2 ^  J i(h2m+ir) . A2m  +  l)irz int
7Tr  (2m + l ) / i | m+1J i( /i2m+ia ) Sm 2b

(5.1.21)

Second, with a view of constructing a solution suitable for application in the case of 

a deep well, it is convenient to reverse the role of the variables r, z  and to consider 

a transformation on the variable r. The Hankel transform u)H(qi,z) of o(r ,  z) is 

introduced, defined by

H)H{ q i , z ) =  f  r 2J\(qir)u(r,z)dr,  (5.1.22)
Jo

where Qi is a positive root of J i(^ a )  =  0. On multiplying equation (5.1.1) by

r 2J\{qir) and integrating with respect to r  between the limits 0 and a, the following

equation results

+  (k2 -  q2)uH =  n 0a 2&J((<&a), (5.1.23)

and is to be associated with the boundary condition

a20
= --------Jo fea) on z =  0, (5.1.24a)

d u H(qi,z)
=  0 on z  =  6, (5.1.24b)

dz
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together with the understood condition that z) is finite throughout the region

of flow. Here one has made use of the identities

/  2iTl
x Jfi—\(x^dx — x Jn(x) and Jn^-\(x) — Jn(x) Jn—i(x).

X

It is a simple matter to construct the general solution o f (5.1.23): it is

^H(qi,z) =  A  cos liZ +  B  sin l{z  +  ^  J0(^a ), (5.1.25)

where I2 =  k2 — q2. Here one has made use of the further identity

—  {xJi(x)) =  xJ0(x). 
ax

On applying boundary condition (5.1.24a,b), one finds

_ tt0a2 ( k 2 cos h ( b - z )  \  ,
UH{qi,z) =  — J2 ------------ 7T------- qi M q i a)- (5.1.26)If \ q i  cos l{b J

Therefore, on using the inversion formula

-  ( \ ^ ^  -  ( \ / c i  o'ix“ (r,z)  =  2 ^ -^ r — .— - z U H(qu z), (5.1.27)
fct a2r [Mqia)]

one obtains the solution

- ( \ ^  -2 ^ o  ( k2 cos h(b -  z) \  M q i r ) /c i“ (r, z) =  }_  ̂—2—  ' -  qi - y j— 'r. (5.1.28)
Ifr \ q { cosl{b J J0(qia)

Expression (5.1.28) for u(r, z) may be rearranged in a more convenient form as

follows. Now

f l0a ( k a M q ia) M ^ a) ~  qiaJi{ka)Jo(qid)
Ji(ka) qf -  k2

If Jo fea),

85



and is recognized as the Hankel transform of Q,0aJi (kr)/ r j x (ka) . Hence

aJ\{kr)  _  ^  2Hqqi J\{qiT) .
l \ j x{ka) U  n r  M qia) '

Thus u ( r , z) may be expressed in the form

- /  \ n  aM kr) 2 ^  1 c o s l i (b -  z) Ji{qir)
^ r ’Z) =  a ° V M k o ) - — ^  cos hb Jo(qiaY  (5 1 '30)

The first term in (5.1.30) is recognized as the solution appropriate to the case of a

deep well, and so (5.1.30) is a representation of u(r, z) particularly well suited for

application in the case when b a. Finally, the associated (oscillatory) primary

velocity field may be written

O r  Pr f f  1 I a'̂ 1(̂ r) 2̂ 0^2 1 COS l i f t  ~  z ) J l (q i r ) \ i n t y  /r i^ ) =  n o rR e { ( - l  +  - ^ — — cos7<j  M q i a ) )e }■ (5.1.31)

5.1.1 Numerical Results

Although the primary (oscillatory) motion, as represented by equation (5.1.21), or 

equally by equation (5.1.31), is complicated in mathematical form, it is nevertheless 

possible to make some general deductions about the nature o f the flow in certain 

regions when the frequency of oscillation n/27r is sufficiently small or large. Two 

special configurations are assessed: the shallow well and the deep well.

I. Small Values of n

i. Shallow well (a b)

Sufficiently far away from the wall (r  =  a) o f the well, the primary flow may be 

approximated by



and so for small values of the frequency n/2iv, i.e., of \kz\ (0 <  £ <  b), one may 

write

u(z)  =  n 0[l +  ]rk2z(2b — z)  +  0(fc4)], (5.1.33)

and, in turn, gives for the primary velocity

V(0) =  Re[{^Q0k2rz(2b -  z) +  0 ( k A)}emt]. (5.1.34)
imt

It is thus seen that the angular velocity profiles v^){z) /r ,  i.e. |U(z) — O o|, are 

approximately parabolic, varying from zero on the wall z  =  0 to a maximum at 

the free surface z  =  b. The effect of elasticity is to heighten these profiles across 

the whole depth of the well, i.e. to increase the velocity at all points in the well. 

As the frequency decreases the variation of v ^ / r  with z  becomes less marked, 

and eventually the primary flow v^) approaches zero at all points in the well as n 

approaches zero, i.e. as the forcing agent approaches a steady value. These features 

of the flow are seen to be reflected in the exact profiles exhibited in Figs. 5.1.1a-d.

The notation is that R a =  ^ (pa2n/r}0) and Rb =  y/(pb2n/r]o), i.e. Reynolds-type 

numbers with characteristic lengths based respectively on the radius and depth of the 

well, the ratio R a : Rb being identified with the ratio a : 6; and , again, as in the 

previous chapter, the ‘distance from the wall’ is to be interpreted as the appropriate 

dimensionless measure.
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I ——pH0 r ----NeWoman
0.6 (1,0.7)

(1,0.5)

(1,0.3)
0 .5

0.3

0.2

Distance from the wall
0 .60 .2 0.4 0.8 1

Fig. 5.1.1a Primary flow profiles for various values of the elastic parameters

(nAi,7iA2) when R b = 1 ,R b/R a = 0.2 and r =  0.01.

I —  Pn or  Newtonian
0.6 (1,0.7)

(1,0.5)

(1,0.3)
0 .5

0.4

0.3

0.2

Distance from the wall
0.2 0.6 0.80.4 1

Fig. 5.1.1b Primary flow profiles for various values of the elastic parameters

(7?.Ai, 7iA2) when Rb — l , R b/ R a = 0.2 and r = 0.2.
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I— fnor  Newtonian

(1,0.7)

(1,0.5)

(1,0.3)

0 .5

0.3

0.2

Distance from the will
0.2 0 .60.4

Fig. 5.11c Primary flow profiles for various values of the elastic parameters 

(nAl5nA2) when Rb = 1 ,R h/R a — 0.2 and r =  0.5.

■ v < * >  K?

' n r  —  Newtoman

(1,0.7)

(1,0.5)

(1,0.3)

0.06

0.04

0.02

Distance from thewall
0.2 0.6

Fig. 5.1. Id Primary flow profiles for various values of the elastic parameters

(nAi,rrA2) when Rb = 1 ,R b/ R a = 0.2 and r  =  0.9.
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ii. Deep well (b a)

Here, sufficiently far away from the floor wall (z — 0) of the well, the primary 

flow may be approximated by

/ x ~  a,J\(kr)
( 5 J 3 S )

On using the infinite series representation for the Bessel function J\(kr),  one obtains, 

for sufficiently small values of n, i.e. o f \kr\ (0 <  r  <  a),

<D(r) =  O0[l +  \ k 2{a2 ~  r 2) +  0 ( k A)\, (5.1.36)
o

and, in turn, gives the velocity field

VW  =  R e[{n0|fc 2r ( a 2 -  r 2) +  0 ( k 4)}eint]. (5.1.37)
O

The results are seen to be similar in all ways with those in the previous case, the 

f(^ )(r) /r  velocity profiles are again parabolic, varying from zero on the wall r  — a 

to a maximum on the axis of symmetry r =  0. Likewise, the effect o f elasticity is 

to increase somewhat the velocity throughout the well. Again, v^) approaches zero 

as the forcing agent approaches a steady value (i.e. as n  approaches zero). These

general features of the flow as seen to be reflected in the exact profiles exhibited in

Figs. 5.1.2a-d.
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I——-r1 fio r   Navtcman

0.03

0.025

0.02

0.015

0.01

0.005

Distance from the wall
0.2 0.4 0 .6

Fig. 5.1.2a Primary flow profiles for various values of the elastic parameters 

( n \u n \ 2) when R a = 1 ,R a/R b =  0.2 and z — 1.

1 no r 1   Navtcman

( 1 , 0.7 )
0.03

( 1 , 0 . 5 )
0.025 (1 , 0 . 3 )

0.02

0.015

0.01

0.005

Distance from the wall
0.2

Fig. 5.1.2b Primary flow profiles for various values of the elastic parameters

(■nX\,nXi) when R a =  1 ,R a/Rb =  0.2 and z = 0.8.
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1 siv r 1  Newtonian

( 1 , 0.7
0.03

(1 , 0. 5 )
0.025 ( 1 , 0 . 3 )

0.02

0.015

0.01

0.005

Distance from the wail
0.2 0.4 0 .6 0.8 1

Fig. 5.1.2c Primary flow profiles for various values of the elastic parameters 

(nAl3nA2) when Ra =  1, Ra/Rb = 0.2 and z = 0.5.

lAi'Lp1 ft, r 1   Newtonian

0.02

0.015

0.01

0.005

Distance from the wall
0.60.2

Fig. 5.1.2d Primary flow profiles for various values of the elastic parameters

(nAl3riA2) when Ra =  1 ,R a/Ri, = 0.2 and z =  0.1.
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Although the above analyses apply to extreme well configurations, they are deemed 

sufficient to indicate the general nature of the flow of the mixture within the well 

when n  is very small: the mixture rotates as if  rigid with angular velocity which at 

any instant equals that of the wall at the same instant. These results are in exact 

parallel with those in the previous chapter, i.e. those results relating to flow within 

a hemispherical-shaped well. The general deduction that can be made, based on the 

primary flow, is that no appreciable mixing takes place within the well when the 

frequency of oscillation is small, 

n. Large Values of n 

i. Shallow well (a b)

One now seeks to analyse the behaviour of a), as defined approximately by (5.1.32), 

for large values o f n, i.e. o f |/e|. In such a regime, one needs to look separately at 

two regions: a region near the floor wall (z  =  0) o f the well in which region \k\b 

and \k\ (b — z) are both large, and a region remote from the wall in which region 

\k\b is large whilst \k\ (6 — z) is small.

Region near the w all z  =  0:

It is convenient to write

cos k ( b ~ z )  =  h eikbe- ikz +  e - ikbeihz),
L i

cos kb =  +  e~ikb).
L i

Now, since within this region \k\ b and |fc| (b — z) are both large (i.e. \k\b 1 and

\k\z <C 1 ), one obtains, on neglecting exponentially small terms,

<D =  Q(z) ~  n 0e - |fc|2(sinx+ioosx),
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and, in turn, gives for the velocity field

vw  ~  n 0r R e [ (e - |^<*iBX+ioo,x> -  l)e * “]. (5.1.38)

The exponential factor here is negligibly small everywhere except in a thin layer 

adjacent to the wall z =  0. The velocity field varies rapidly within this layer, attaining 

a high peak value near the wall. Outside this layer, one obtains, on neglecting 

exponentially small terms,

Vfr) — H0r  Re[—e,nt],

i.e. a flow which is, approximately, a rigid body rotation with the same angular 

amplitude (n 0) and frequency (n/2n) o f the boundary wall, but of phase n behind 

it. The effects of elasticity are to increase substantially the value of v ^ / r  

the wall, while having no great effect on its magnitude over the rest of the region of 

flow, and to decrease somewhat the thickness o f the boundary layer region in which 

the velocity changes rapidly. These general features are seen to be reflected in the 

exact profiles exhibited in Figs. (5.1.3a-d) and (5.1.4a-d).

Region remote from the w all z  — 0 :

Within this region both \k\b and \k\z  are large. Thus, on neglecting exponentially 

small terms,

cos k(b — z) n ikh
  -------- ~  2e ~  0.

cos kb

2
close to

Hence

Uj(z) — 0,

and

vM  - fio rR e l-e* * * ], (5.1.39)
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i .e. the flow is, effectively, a rigid body rotation of angular amplitude and frequency 

that of the wall, but of phase 7r behind it.

The nature of the primary flow is now ascertained: the velocity varies rapidly in 

a thin layer adjacent to the wall, there attaining a high peak, whereas elsewhere the 

flow approaches a rigid body rotation

Fig. 5.1.3a Primary flow profiles for various values of the elastic parameters

(nAi, nA2) when Rt = 6, Rb/Ra = 0.2 and r  =  0.01.

Newtonian

1
Distance from the wall

(1,0.7)

(1,0.5)

(1,0.3)
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v(*)
f t r 1

1.2

0.6

0.2

0.40.2 0.6 0 .8

Newtonian
(1,0.7)

(1,0.5)

(1,0.3)

Distance from the wall

Fig. 5.1.3b Primary flow profiles for various values of the elastic parameters 

(nAi,nA2) when Rb = 6, Rb/Ra = 0.2 and r = 0.2.

' IT?fin r Newtonian

(1,0.7)

(1,0.5)

(1,0.3)

0.2

Distance from the wall
10.4 0.6 0.80.2

Fig 5.1.3c Primary flow profiles for various values of the elastic parameters

(nAi,nA2) when R b = 6,R b/ R a =  0.2 and r =  0.5.
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—  NeW onian
(1,0.7)

(1,0.5)

(1,0.3)

1.75

1.5

1.25

0.75

0.5

0.25

Distance from the wall
0.2 0.60.4

Fig. 5.1.3d Primary flow profiles for various values of the elastic parameters 

(nAl5nA2) when Rb = 6 ,R b/R a = 0.2 and r = 0.9.

I
fi0 r  Newt oman

(1,0.7)

(1,0.5)

(1,0.3)
1.2

0.6

0.2

— Distance lrom the wall
0.80.60.2 0.4

Fig. 5.1.4a Primary flow profiles for various values of the elastic parameters

(nAl5 nA2) when Rb =  20, Rb/Ra = 0.2 and r =  0.01.
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(1,0.7)

(1,0.5)

(1,0.3)

0.6

0.2

Distance from the wall
0 .60.2 0.4 0.8

Fig. 5.1.4b Primary flow profiles for various values of the elastic parameters

(nAi, nX2) when R b = 20, R b/R a = 0.2 and r = 0.2.
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(1,0.5)

(1,0.3)
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—1— Instance from the wall
0.60.2

Fig. 5.1.4c Primary flow profiles for various values of the elastic parameters

(nXi,n \2) when R b =  20, Rb/ R a =  0.2 and r =  0.5.
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 Newtonian

(1,0.7)

(1,0.5)

(1,0.3)

Distance from the will

Fig. 5.1.4d Primary flow profiles for various values of the elastic parameters 

(nXu nX2) when Rb = 20, Rb/ R a =  0.2 and r = 0.9.

//. Deep well (b̂ $> a)

Region remote from the axis r = 0:

In this region of flow both \k \ a and |fc| r are large, and so on using the asymptotic 

expansions for the Bessel functions in equation (5.1.35), it is found that, on neglecting 

exponentially small terms,

3

LD(r) ~  fi„ f “ V

and
3

vw  ~  n 0r R e [ ( f “ )  2 (5.1.40)

The exponential term here has only appreciable effect in a thin layer adjacent to the 

wall r — a. Within this boundary-layer the velocity varies rapidly, there attaining a 

high peak, but elsewhere, outside this layer, the flow approaches that of a rigid body 

rotation of the same angular amplitude (Qq) and frequency (n/2ty) as that of the
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boundary wall, but of phase 7r behind it. The effect of elasticity is again to decrease 

somewhat the thickness of this boundary layer where the velocity varies rapidly and 

to increase the peak value of the velocity.

Region near the central axis:

In this region \k\a 1 and \k\r 1, and it is not difficult to show that, on 

neglecting exponentially small terms,

corresponding to a flow as described above in the region outside the wall boundary 

layer. The above general features of the flow are fairly accurately reflected in the 

exact profiles exhibited in Figs. (5.1.5a-d) and (5.1.6a-d).

cj ( z ) ~  0 ,

and

V(0 ) ~  Q0r Re[—e*nt], (5.1.41)

Newtonian

0.

1.

Distance from the wail

( 1 , 0 . 5 )

( 1 , 0 . 7  )

( 1 , 0 . 3 )

0.2 0.4 0.6 0.8

Fig. 5.1.5a Primary flow profiles for various values of the elastic parameters

(77 Ai, nX‘2) when Ru =  6, Ra/R b = 0.2 and z = 1.
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  Nswtcnian

( 1 , 0 . 5 )

1.5

0 .5

Distance from the wall
0.2 0.4 0 .6 0.8 1

Fig. 5 .1.5b Primary flow profiles for various values of the elastic parameters 

(nAl5nA2) when Ra =  6, Ra/Rb =  0.2 and z = 0.8.

*V)
nor

1.5

0.5

0.60.2

t'fewtcnian

( 1 , 0 . 7 )

( 1 , 0 . 5 )

( 1 , 0 . 3 )

Distance from the wall

Fig. 5.1.5c Primary flow profiles for various values of the elastic parameters

(nAi,nA2) when Ra = 6, Ra/Rb — 0.2 and z = 0.5.



  Newtcnian

( 1 , 0 . 7  )2 .5

( 1 , 0 . 5 )

( 1 , 0 . 3 )

1.5

0 .5

Distance from the wall
0.60.2 0.4 0.8 1

Fig. 5.1.5d Primary flow profiles for various values of the elastic parameters 

(nA1?nA2) when Ra = =  0.2 and z =  0.1.

r   t'fewtonian

( 1 , 0 . 7 )

( 1 , 0 . 5 )
1.2

0.4

0.2
Distance from the wall

0.60.2

Fig. 5.1.6a Primary flow profiles for various values of the elastic parameters

( n \ i , n \ 2) when Ra — 20, Ra/Rb = 0-2 and z = 1.
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  Newtonian

( 1 , 0 . 7

( 1 , 0 . 5 )
1.2

( 1 , 0 . 3 )

0.6

0.2

Distance from the wall
0.2 0.6

Fig. 5.1.6b Primary flow profiles for various values of the elastic parameters 

(nXi ,n\2) when Ra = 20, Ra/R\> — 0.2 and z =  0.8.

■Ho r  Newtonian

( 1 , 0 . 7 )

1.2

0.6

0.2

Distance from the wall
0.2 0.4 0.6

Fig. 5.1.6c Primary flow profiles for various values of the elastic parameters

(nXl: nX‘2) when Ra = 20, Ra/Rb =  0.2 and z = 0.5.
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  Nswtmian

0.4

0.8

0.2

0.6

1.4

1.2

1

Distance from the wall

( 1 ,0 .3 )

( 1 ,0 .5 )

( 1 ,0 .7 )

0.2 0.4 0 .6 0.8

Fig. 5.1 6d Primary flow profiles for various values of the elastic parameters 

( n \ l , n \ 2) when Ra = 20, Ra/Rb = 0.2 and z =  0.1.

The general nature of the (primary) flow within the well when n is large is now 

ascertained in general terms:

(i) the main body of the mixture rotates as if rigid with the same angular amplitude 

(f20) and frequency (n/2ir) as that of the boundary wall, but of phase 7r behind it, 

and hence in space its motion is one of pure translation (without rotation),

(ii) the motion of the mixture immediately adjacent to the boundary wall varies in

tensely with distance from the wall, there attaining a high peak value, these variations 

in the flow being significantly changed by the presence of elasticity.
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5.2 Secondary Flow

The equation governing the (secondary) steady streaming flow, as characterized 

by the stream function is given by equation (3.2.24), viz.

l# 0 o  , <9Vo r 2 d  ,  f dudu* duduJ*
- ^ ~ r - f r + ^  =  ~ 2 K l ( a F - f r  +  T z a F » *  (5-2 1 >

and is to be associated with the boundary conditions

ifio(r, z) =  0 on r  =  a, (5.2.2a)

ipo(r, z) =  0 on z =  0, (5.2.2b)

•0o(r, z) =  0 on z  =  6, (5.2.2c)

together with the understood condition that ipo(r, z) is finite throughout the region of

flow. Here K\ =  r]0(Xi — A2) /p ( l  +  n 2Af). No progress can be reported in the finding 

of an exact analytical solution of this equation for i/>0(r ,z )9 the difficulty arising 

from the unwieldy representation of the primary flow, a rather complicated infinite 

series, whichever of the two representations (5.1.21), (5.1.31) is chosen. The steady 

streaming flow, as characterized by ipo(r, z), is the mechanism within the oscillatory 

‘jiggle’ mode whereby fluid elements are transported from one region of the well to 

another, and it is thus important to be able to comment, even if only in a vague way, on 

its overall structure. Some progress can be made in this direction within two schemes: 

that in which a ;»  b (or, equally, R a(=  y/(npa2/r]0)) »  Rb(= V (nP 2̂/ ’Ho)))', and 

that in which b^> a (R b R a).
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I. The case in which a b, i.e. R a Rb

When a ^  b it is suitable to express u(r,z)  in the form (5.1.20), viz.

Q 0 c o s k{b — z )  4 f 2 0 aA;2 ^  ^ i ( ^ 2 m + i r ) . r ( 2 r a + l ) 7 r z

c o s  kb  +  7T r  (2m +  l ) / i f m + i J i ( / i 2m + i a ) Sm 26

(5.2.3)

In the illustrations undertaken here, corresponding to the values Rb/Ra =  0.2, 

A2/A 1 =  0.25, b2p/r)0\ i  =  50, it is interesting to look at the errors involved in 

truncating the infinite series in (5.2.3) at rn = 1. Figs 5.2.la,b give a numerical plot 

of the size of the error involved.

oj{r, z) -  L

1x10'7

8xl0';

6x10'

4x10“

2x10

0.2 0.6

Fig 5.2.1a The plot of |(w(r, z) — L) /O0| vs. z, where 

L =  n 0 sinfffl}, 1 and 0.5.u >- cos kb irr h \ J \ ( h \ a )  L 2b J J ’ °
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0.2 0.4

Fig 5.2.1b The plot of |(u(r,z) — L)/Qo\ vs. z, where

^  s in [§ ]}. f t  =  10 and r  =  0.5.

It may be concluded that the first term in the infinite series on the right hand side 

of (5.2.3), i.e. the term defined by

4ak2 Ji(h}r) . 7rz
nr h\J\{h\a) 2b

is by far the dominant term. Thus within such a scheme one may write

_  f  cos k(b — z) 4ak2 J\(h\r) rn z , \
i ™ ^ 1 - < 52 -4)

It is important to stress that this expression for u)(r, z), although approximate, sat

isfies not only the governing differential equation (5.1.1) but also the exact boundary 

conditions on the wall z =  0 and on the free surface z =  b. It fails only to satisfy 

the single condition cD(r, z) =  on the boundary wall r =  a, which wall is deemed 

too distant to have any appreciable effect on the flow.
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Consistent with the above approximation, one finds that

lju* = fio[(cosha!i +  c o sa 2) 1{cosh [a i(l — - ) ]  +  cos[a!2( l  — 7 )]}
b b

. 2k2aJi(hir)  . n z . . ri:t/T .
+ ( “ 79—7 7 7 — \---- ,—7 {sin[A: (b — z) +  — 1 — sm[k (b — z) — — 1}7rh2rJi(hia) cosk*b 1 v '  2b1 L v } 2b ij

+the complex conjugate expression)], (5.2.5)

=  ^ o(lfc|2 (cosllQ!i +  c o sa 2) H oosh la ifl -  | ) ]  +  cos[a2( l  -  | ) ] }

. k *k 2a J i ( h i r )  r . r j . /T . 7 r z ,  . r i . /T . 717:,..

+ ( 6 /1?rJ1(/l la)cosfc*6 {sm[fc (6  “  +  +  ^  (& “  z) “  ¥ 1}

-\-the complex conjugate expression)], (5.2.6)

where ot\ =  2 |fc| 6 sin x  and a 2 =  2 |fc| b cos x- Thus, the equation for ^ ( r ,  z) reduces

33to

0V o  , a 2tAo ^or 2 r, N-ir “ l M „ u i 2 ^ ,
~ W ~ r +  =  — [ ( c o s h +  e o sa 2) { - — [ l - 2 \ k \

sinh [a i(l -  | ) ]  +  ^ [ 1  +  2 \ k f  Ki]
b b

• r  ^ m i  . 2k2aJi(hir)
sm[a2( l - - ) ] }  +  (- 1V '

b h2rJ\{hid)  cos k*b
r z 1 & 7Cj , , 7T r t * / t \ ^  i

{(^ - — ) ( 2 6 - f c ) c o s [ r ( 6 - z) +  7 ]
.1 k* F \ w 7T r , . 7T Z ,,

+ ( ^  +  _ r ) ( 26 +  f c ) c 0 s [ M 6 - ^ ) _ 261}

+//ze complex conjugate expression)]. (5.2.7)

On writing V>o(r , 2 ) in the form 

•0o(r, z) =  r 2Fi(z)  +  [rJi(hir)F2(z) +  the complex conjugate expression], (5.2.8)

33 Here (d u  /  dr)(dcJ* /  dr)  is o f lower order of magnitude compared with ( d u /d z ) ( d u * /d z ) .
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the following equations for F1(z) and F2(z) result:

O2 H r
F i ( z ) = T T [ ( c o s h o i!  +  c o sa 2)_1{ [ l -  2 \k\2 Ki] cosh [ax (1 -  - ) ]

Z az b

+[1 +  2 |fc| K\] cos[a2( l  — —)]}], (5.2.9)

7r  7T r
+ M 2(fc* +  — ) cos[fc*(6 -  z) -  — ]}, (5.2.10)

where Mi  =  1 — irk* K i /b  and M2 =  1 4- 7rk*Ki/b. These equations are to be 

associated with the boundary conditions

Fi(0) =  Fi (b) =  0, (* =  1,2), (5.2.11)

together with the understood condition that F\(z)  and F2(z) are finite throughout the 

region of flow.

By integration of equation (5.2.9)

Fi(z) =  —frf^cosh  ax + co sa^ )-1 !./^  sinh[ax(l — - ) ] + N 2 sin[a:2( l  ——j \ } + A z + B ,

(5.2.12)

where N\  =  (1 — 2 \k\2 K \ ) /2 a i  and N 2 =  (1 +  2 \k\2 K \ ) / 2 a 2, A  and B  being 

arbitrary constants. On imposing the boundary conditions (5.2.11), one obtains

Fi(z) =  M l^ coshai +  coso;2) 1 {A/r1[(l — - )s in h a x  — sinh[o:1( l  — —)]]

+ N 2[(1 -  | )  s in a 2 -  sin[a2( l  -  |) ] ]} . (5.2.13)

Next, to construct the solution of the differential equation (5.2.10). Two linearly in

dependent solutions o f the associated homogeneous equation are seen to be cosh hiz ,
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sinhhiz.  To proceed, one writes by the usual method o f variation of parameters

F2 (z) =  v i(z ) coshhiz  4- V2 (z) sinhhiz.  (5.2.14)

It is then straightforward to show that

, \ ,  n 2Qk2a _ Afj(fc* -  i )  /L , ,
n h \ U h ia) cosk 'b [ hl +  (*• -  COSh/llZ

7TZ  7T 7TZ
cos[k*(b- z) +  - z r ]~  (k* -  — ) sinh hiz  sin[k*(b -  z) +  — ])

2b 2b 2b
M2(fc* + § )  ft_ , L  r,  ̂ 7rz.

and

^  +  (fc.  +  1 ) 5 ^  cosh h'z coslfc*(6 -  z ) -

- ( fc* +  ^)sinh/tizsin[fc*(&  -  z) -  ^ ] ) } ,

n 20k2a f t
U2(z) =  B  H , a - ---------------------- ---- T, ;r~ ( /ii  Sinh h \ Z

nhiJi(hia) cosk*b h2 -(- (k* — ^ ) 2
7TZ 7T 7TZ

cos [A:* (6 -  2:) +  — ] -  (A:* -  — ) cosh h iz  sin [A;* (6 -  z) +  — ])
2b 2b 2b

, M2(fc* +  i )   _N
' fc* +  (fc. +  Sinh ^  ~  Z) -  » 1

7T 7TZ
-(fc* +  2 6 )co sh /i1zsin[/c*(6 -  z) -  -^ ] )L

A and B  being arbitrary constants. Finally, on imposing the boundary conditions

(5.2.11), one obtains

ngfc2q M2(fc* +  f )  s in h M f e - z )
n h i J i ^ a )  h\ +  (k* — ^ ) 2 h\ +  (fc* +  g ) 2 sinh/ijf)
, cos[fc*(6-z) +  f ]

hi +  (A;* — l^)2 cos k*b
rn*\lc*(h -  z l  -  ^ 1

■}. (5.2.15)
h\ +  (k* +  |^ )2 cos k*b

Thus, the solution of (5.2.1), (5.2.2a-c) in the case when a »  6, or when i?a »  R b,

is

ip0( r , z ) =  r 2F i(z) +  r J i ( / i i r )F 2(z) +  r  J i(/iJr)F 5  (z), (5.2.16)
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where Fi(z) and F2(z) are as given by equations (5.2.13) and (5.2.15).

The expression for t/;0(r , z) is too complicated in mathematical form to allow any 

broad analytical comment to be made on the structure of the flow. Any comment 

has to be guided by numerical evaluation. The streamline projection exhibited in 

Figs. 5.2.2a-d correspond to the values R b / R a =  0.2, A2/Ai =  0.25, b2p/rjoAi =  50, 

and for a range of values of R b. For small values of Rb (i.e. o f n) the flow is 

seen to be similar to that of a Newtonian fluid, i.e. a flow controlled by centrifugal 

actions. As the Reynolds-type number R b increases a region develops in the interior 

within which non-Newtonian actions dominate resulting in a region of flow reversal. 

This region of flow reversal expands with increasing R b to occupy the whole region 

within the well. With ever increasing values of R b the process is put in reverse until, 

eventually, the whole region again becomes dominated by centrifugal actions.

Fig. 5.2.2a Secondary (steady) streaming (r,z) =  constant when Rb =  1.
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Fig. 5.2.2b Secondary (steady) streaming z) — constant when Rb =  6.85.

Fig. 5.2.2c Secondary (steady) streaming t/j0(r,z)  =  constant when R b =  10.
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Fig. 5.2.2d Secondary (steady) streaming ipo{r, z) =  constant when Rb =  16.

H. The case in which b̂ $> a, i.e. R b R a

When b^> a, it is appropriate to express cb(r,z) in the form (5.1.30),viz.

- (  \ -  o  aM kr) 2Q0k2 ”  1 cosli(b -  z) Ji(q,r) „
u(r , z )  ^ o r/i(fca) r  Z .  % l2 isosbb Jo(qia) ’

As previously remarked, the infinite series representation of the primary flow d){r, z) 

makes the construction of an analytic solution of equation (5.2.1) prohibitive. How

ever, in the case under consideration, i.e. that in which b a, and for the values 

Ra/Rb =  0.2, A2/Ai =  0.25, a2p/r]0Xi =  50, viz. the numerical parameters cho

sen for illustration purposes, inspection shows that, even for reasonably large values 

of the Reynolds-type number R a, the infinite series (5.2.17) for o ( r , z )  converges 

rapidly. The numerical findings, exhibited graphically in Figs 5.2.2a,b, show that the 

error involved in replacing the infinite series by a finite series (i =  1) is negligibly 

small.
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1(27 (r, z) - E ) / n 0\

3x10"

2.5x10'

2x10"

1.5x10"

1x10'

5x10"

0.2

Fig 5.2.2a The plot of |(^ (r, z) — E)/£Lq\ v s . r  where 

E  =  Ra. =  1 and z =  0.5.u *-rJi(fca) 91^7* co s iib  J o (? l“ ) J

|(27(r, z) ~E)/n01

3.5x10'

3x10'

2.5x10"

2x10"

1.5x10"

1x10"

5x10"

0 .60.2

Fig 5.2.2b The plot of |(w(r, z) — E ) / Q 0\ vs. r  where
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There is ample justification, therefore, in proceeding with the analysis by writing

(5.2.18)

Again, it is significant to observe that the expression for u)(r, z) here, although 

approximate, satisfies all the required conditions other than the single condition 

<D(r, z) =  on the boundary wall z  =  0, which wall is deemed too distant from the 

region of flow under investigation to have any significant effect.

It follows that, to the same order of approximation,

34 Here (duj/ dz)  (dcJ* / dz)  is o f lower order of magnitude compared with {du /  dr)(du*  /  dr).

— — * UJU)
2 a2 J\(kr) J\(k*r) 2ak2 cosZi(6 — z) J\{k*r) J\{q\r)
0 r 2 J\{ka) J\{k*a) q\l2r 2 cos lib J\(k*a) Jo(q\a)

-\-the complex conjugate expression)], (5.2.19)

dcu du* n 2\a2 ^2(^r ) ^2(&*r ) ,2afc Ifc^cosZj^ — z) J2{k*r) J2(qir )
dr  dr  0 r 2 Ji{ka) J\{k*a) l2r 2 coslib Ji(k*a) Jo(qia)

-\-the complex conjugate expression)]. (5.2.20)

The resulting equation for ipo(r, z) then reduces to34

d 2jj0 _  1 dipo d 2ipo Vt^ak2 .Ji(k*r)Ji{qir) — 2k*qiKiJ2(k*r)J2(qir)
d r2 r  dr  d z 2 q ih

sin li(b — z)
cos lib

Ji(k*a)J0(qia)

+  the complex conjugate expression.

(5.2.21)

By writing ipo (r, z) in the form

jjo(r, z) =  F(r) sin li(b — z) 4- the complex conjugate expression, (5.2.22)
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equation (5.2.21) reduces to give the following ordinary differential equation for F(r)

_  I f ' / V ' i  _  , 1 P M  -  ~ n o a k 2  -  2 f c * g i j f i J 2 ( f c > ) J 2 ( g i ? - K
r  1 qilicosljb J\(k*a)Jo(qia)

(5.2.23)

and is subject to the conditions

F(r)  is finite in 0 <  r  <  a, (5.2.24a)

F(a) =  0, (5.2.24b)

The associated homogeneous differential equation of (5.2.23) may be written in the 

more recognizable form

( * ? ) + « « ■ * -

two linearly independent solutions of which are seen to be rJi(i l ir)  and rY1(zZ1r). 

Thus, the general solution of (5.2.23) can be constructed by the usual method of 

variation of parameters. By writing

F(r) =  vi(r)rJi(i l ir )  4- V2 (r)rYi(i l ir ) , (5.2.26)

it is not difficult to show that

 ̂ Slhtak2 sec lxb f , , / . ,
Vl{r) =  A + 2a i h J M J J a i a )  L  « J2q1liJi(k*a)J0(q1a)

-2k*q1K 1J2{k*0J2(q iCM ,

and

/ s ^  — tlnirak2 seclib fT „ ... T T
^(r) = + ^

- 2  k ' q i K t M k ' O M n Z M ,
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A  and B  being arbitrary constants. In the process o f solving one has made use of 

the result Jn{x)Y^{x) — J'n(x)Yn(x) =  Hence, the general solution of (5.2.23) 

may be written as

F(r)  being as defined by (5.2.28).

The expression for ip0(r, z)  is far too complicated in mathematical form to al

low one to make any general analytical deduction on the nature of flow. How

ever, one may obtain a fair idea of the structure of flow by numerical evalua

tion. The streamline projections exhibited in Figs. 5.2.3a-f correspond to the values 

Ra/Rb =  0.2, A2/Ai =  0.25, a2p/r\oAi =  50, and for various values of R a.

F(r)  =  ArJ
Qoirak2 sec lib

2q1l1J1(k*a)J0(qia)

[ r M i h ^ J ^ Y ^ i h O W O M q i O  -  W q i K i U k ' O U q i t i m

- r Y . i i h r )  f  M i h W i i ^ M q i i )  -Ja

(5.2.27)

By imposing conditions (5.2.24a,b), one obtains the result

Cl^nak2 sec lib

- 2 k ' q t K i W d U q & W - r Y ^ h r )  f  U i h i V ^ O J j q i O
Jo

+  rJ , ( ihr )  jT  Y ^ i h ^ M k ' ^ M q ^ )

2k, q1K 1J2(kt O J2{q iO H - (5.2.28)

Finally

z) =  F(r)  sin h(b -  z)  +  F*(r) s i n -  z),  (5.2.29)
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Fig. 5.2.3a Secondary (steady) streaming V>o(r, z) =  constant when Ra =  1.

Fig. 5.2.3b Secondary (steady) streaming ipo(r,z) =  constant when i?a =  1.6535.
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Fig. 5.2.3c Secondary (steady) streaming ipo(r, z) =  constant when Ra =  2.

Fig. 5.2.3d Secondary (steady) streaming ipoir^z) — constant when Ra =  4.
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Fig. 5.2.3e Secondary (steady) streaming (r,z) =  constant when Ra =  5.

Fig. 5.2.3f Secondary (steady) streaming ^ ( r ,  z) =  constant when R a — 6.

The pattern of events run very much in parallel to those described above for the 

case a » 6 ,  except that the roles of r, z  are reversed. However, for values of R a 

much in excess o f 10 the accuracy of the development is brought into question.
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CHAPTER 6 
DRIFT PATTERN OF THE REAGENTS

The nature o f the flow within the well whilst in motion on the outer carousel ring 

is now known in broad outline. The next (and final) stage is to determine the way 

in which the (particulate) reagents drift through the patient sample, supposing their 

concentration not sufficiently large to affect the structural nature of the flow; and , 

moreover, to determine the pattern which the reagents make when they eventually 

accumulate on the boundary wall. It is the purpose of the present chapter to address 

this problem, which investigation would complete the study of the hydro-mechanics 

associated with the Vitros Immunodiagnostic System.

6.1 Introduction

It is now necessary to give identity to the suspended (particulate) reagents. Again, 

as in previous discussions, all kinematic variables are measured relative to the (mov

ing) Cartesian frame O xyz  fixed relative to the well (cf. Chapter 3): O z  is vertically 

upwards and coincides with the well axis and Ox  is along the radial direction CO. 

Relative to this frame, x  =  x (x 0, t) denotes the position of a suspended element at 

time t, the parameter Xq, the position of the element at time t0, being that which 

identifies the element and distinguishes it from all other elements. (No two elements 

can occupy the same position xo at one and the same time to.) The problem, there

fore, is that of tracing the position vector x (x 0, t) as the element drifts within the
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well for a large array o f x 0-values, and to determine their eventual positions when 

they end up caught on the boundary wall.

To proceed with such an undertaking, it is first necessary to model the force 

experienced by a suspended element due to its interaction with the patient sample. 

This would be a difficult if  not insurmountable task, were it not for some crucial 

features o f the motion. It has been pointed out that the incubation period for the 

patient sample whilst on the outer carousel ring is some 1 0 - 1 5  minutes, the time 

deemed necessary for the reagents to traverse distances of the order of centimetres 

to reach their final destination on the boundary wall. It is thus clearly the case 

that within the instrumentation cycle drift velocities are small; and, likewise, drift 

accelerations are small other than at isolated times when the reagents strike the wall. 

To make progress, one may suppose, consistent with the above considerations,

(i) that interactive effects between elements are weak,

(ii) that interfacial tensions are sufficiently large to maintain the general spherical 

shapes of elements,

and

(iii) that flows in the locality of elements are axially symmetric.

These assumptions are deemed self consistent, appropriate to the information given 

of the Vitros Immunodiagnostic System , and satisfactory in a first exploratory study. 

On their bases, the essential force on an element due to the continuous phase is an 

axial drag opposing the relative velocity U  =  x  (x0, t ) — v  (x,£), v  (x,£) denoting 

the velocity field of the patient sample as measured relative to the frame O xyz. If  

the patient sample were purely viscous then this would be the Stokes drag of amount
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67rsrj |U |, where e is the radius of the spherical element and 7/ is the viscosity of 

the continuous phase. Leslie (1961) has made a study of such regimes when the 

host fluid is elastico-viscous. His findings are that the drag is reduced somewhat 

by the presence of elasticity and differs in amount from that of the Stokes value by 

terms 0 ( |U |3) when |U | is small. It is thus reasonable to suppose the drag to be 

represented, with sufficient approximation, by —6iv€r]o{k (xq, t )— v  (x,£)), r]0 being 

the intrinsic viscosity o f the patient sample.

6.2 Equation Governing the Motion of the Reagents

The motion that is of interest in the present study is that of the reagents as measured 

relative to the well whilst in motion on the outer carousel ring, i.e. as measured 

relative to the frame O xyz  exhibited in Fig. 6.2.1 (and as described in Chapter 3).

z.

C

Fig. 6 .2 .1  The moving frame of reference O xyz , rigidly attached to the well. C  

denotes the centre of the carousel ring.
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In establishing equations which describe in time the drift o f a suspended element 

in position x  = (x ,y , z) at time t, one requires a representation for its absolute accel

eration i aba. Now the frame O xyz  is rotating with angular velocity f t  =  (0,0, ft(t)), 

and so

where c  = C O  =  (c, 0,0). In turn

fafes =  f o +  X  +2 (12 X x) +  (12 X x) +  f t  X (f t  x x)

— x  +2 (12 x x )+  12 x (x +  c ) +  12 x (f t  x (x -I- c)), (6.2.2)

it being noted that c =  0 . If F is the vector sum of the forces acting on the reagent 

in position x  at time t, then the equation governing its motion is

m[x +2(12 x x )+  1 2 x ( x  +  c )  +  1 2 x ( 1 2 x  ( x  +  c ) ) ]  =  F, (6.2.3)

where m  denotes the mass of the reagent. The vector force F is comprised o f (i)

the gravitational force (0 ,0 ,— mg), (ii) the upthrust or buoyancy force (0 ,0 ,ra 'g ), 

m'  being the mass of the sample displaced by the reagent, and (iii) the drag 

-67r£7/0(x (x q ,* )- v  (x,£)).

One is now in a position to take advantage of the analyses of the previous Chapters: 

the velocity v , viz. that o f the sample as measured relative to the well, is of the 

general form

*abs =  V 0 +  X  +12 X X

x  +  12 x (x  +  c ), (6 .2 .1)

(6.2.4)
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Thus the above vector equation of motion may be written in the component form

3? I)
x - 2 0  V — f l y  — 0 2(x +  c) =  - k O 0[x +  y(u  -  fi)], (6.2.5)

y + 2 0  x +  O (x +  c) — 0 2y  =  — kO0[y — x ( l j  — f i ) l ,  ( 6 . 2 . 6 )
r l o z

z =  - k Q 0(z  (6-2 -7)r  or m

where k is the dimensionless parameter 67^ 770/ t he parameter which charac

terizes the (main) reaction of the sample under investigation. These equations are 

to be associated with an array of values of initial conditions, i.e. values of xq and 

associated (realistic) values of (x)x=Xo-

It is all too clear that unless the velocity field v(x,£) is of a particularly simple type

little progress will result in seeking an analytical solution, and that procedures will

necessarily have to be numerical. The two basic flow regimes that have been analysed 

are (i) that resulting from a ‘sweep’ at constant angular velocity O =  (0 ,0 ,0 0)7 and

(ii) that resulting from a‘jiggle’ at oscillatory angular velocity f t  =  (0,0, Re[n0emt]). 

The problems relating to the calculation of the drift patterns for these two regimes 

are now studied.

6.3 The ‘Sweep’-Mode at Constant Values of £1

The analysis undertaken in §3.2.1 shows that when £1 is constant in value, i.e. 

when f t  =  (0,0, fio), the mixture within the well moves as if  it were rigid, i.e. the 

appropriate solution for the velocity field is v (x , t )=  0, corresponding to 'ip =  0, 

uJ =  O0. In this event, the equations of motion (6.2.5), (6.2.6) and (6.2.7) reduce to

x + k  Oo x  — 2fi0 V ~O qX =  OqC, (6-3.1)
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y  -\-k rig y  +2f2o y  —

• •  • / m  \z  +kQ,0 z =  (--------1 )g,
m

(6.3.2)

(6.3.3)

i.e. linear differential equations with constant coefficients whose integration is easily 

effected. It is reasonable to suppose that m! jm  — 1 is small so that, within the 

regime looked at, the drift in the z  direction is likely to be small. It may therefore be 

supposed that z{t)  ~  z0. The drift that is relevant here is that in the x, y-plane, i.e. 

in the plane perpendicular to the axis of rotation, due to a combination o f centrifugal 

actions and sample (interactions. This drift in any plane z  =  z0, is controlled by 

equations (6.3.1) and (6.3.2).

The homogeneous linear system associated with equations (6.3.1) and (6.3.2) may 

be solved using matrix methods. By letting

( \
x

\ y  J

=  eP*

\ B J

one finds that the system has the following matrix form

(

/ \ B)
=  0 , (6.3.4)

01 + knuf) -  n20 - 2n o0

2n0j3 ft2 + kQ0p  — fig 

where /?, A  and B  are constants. A necessary and sufficient condition for (6.3.4) to 

have a nontrivial solution is that /? is a solution of the characteristic equation

/32 + kn0j3 -  nl - 2  n0/3

2fi0 P (32 + k£lof3 — f2g
=  0 , (6.3.5)

i.e.

(/?2 + %n0p -  n2)2 = - ( 2n0/?)2. (6.3.6)
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The appropriate eigenvalues are ( j  =  1,2,3,4),  where

/ 3 \  —  — — f 2 o ( &  4 -  2 z )  +  —  £Iq \ J k 2 +  4  i f c ,

@2 —  —  2 ^ o ( ^  +  2 z )  —  —  £ lo \ J k ?  +  4 z f c ,

/?3 = -  2z) + i n 0\/fc2 -  4zfc,

/ 3 4  =  — i f 2 0 ( f c  —  2 z )  —  l o \ j k 2 —  4 z f c .

Therefore the eigenvectors associated with (3j can be expressed as

(  \
1

(7 =  1, 2, 3, 4).

V 5 / /

(6.3.7a) 

(6.3.7b) 

(6.3.7c) 

(6.3.7d)

(6.3.8)

y  (Pj +  k£lo(3j — f 2 g ) / 2 Q o (3j
j

Here Ej are arbitrary constants. Thus, in any plane z =  z0, the drift paths 

x =  x { t) ,y  =  z/(t) o f the reagents are given by the equations

j = i

(6.3.9)

(6.3.10)

Here x  =  —c, y =  0 represent particular solutions of the non-homogeneous equations

(6.3.1)-(6.3.2). One has now to associate initial conditions with equations (6.3.1)-

(6.3.2), i.e. initial values of xo and o f (x)x=Xo. The reagents would remain at 

rest save for the motion of the mixture within the well, and so a realistic initial 

state would be one in which the reagents reside in the quiescent state x aba=  0. 

For illustration purposes one supposes this to be the case, i.e. one associates with 

equations (6.3.9)-(6.3.10) the initial conditions

x  =  x q ,  x =  — H0 x ( x q  +  c )  ; t  — 0 . (6.3.11)
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As the elements migrate within the well, they will from time to time collide with 

the boundary wall. To allow for the worst possible scenario, perfect reflection of 

the reagents is allowed at the wall. Hence, if  and when an element hits the wall in 

position x  =  x c its velocity of rebound is calculated by the formula

(̂ ■)x=xc > (^)x=xc — 2((x)x=Xc • n ) n 35.

The drift or trace paths x  =  x (x 0, t) when Xq =  0, i.e. for a reagent start

ing in the centre of the well, for various values of the (dimensionless) parameter 

k (=  Qtv£T]o/ (m fi0)), the parameter characterizing the effect of the patient sample, 

are exhibited in Figs. 6.3.1-6.3.5. It is seen that for small values of k the elements 

migrate, without undue hinderance, back and forth across the well before finally 

settling on the wall. However, as k becomes larger, the elements on reaching the 

wall find it difficult to push on elsewhere and quickly become entrapped on it.

35 ( k ) x = x c • t  is continuous but (x )x=Xc - n  is reversed in direction.
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Fig. 6.3 .1 An over-view of the trace-path of a reagent with starting position

xq =  (0,0) when k =  0.

Fig. 6.3 .2 An over-view of the trace-path of a reagent with starting position

xq =  (0,0) when k =  3.
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Fig. 6.3.3 An over-view of the trace-path of a reagent with starting position

xq =  (0,0) when k =  6.

Fig. 6.3.4 An over-view of the trace-path of a reagent with starting position

Xq =  (0,0) when k =  9.
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Fig. 6.3.5 An over-view of the trace-path of a reagent with starting position

Xq =  (0,0) when k =  12.

The trace paths for the large array of xo-values exhibited in Fig. 6.3.6 have been 

computed for the three cases

(i) k =  k\ =  3, (ii) ^ =  /c2 =  6, (iii) k =  kz =  12.

What is found (in each case) is that a guttate band forms on the region of the 

wall remote from the axis o f rotation building up in intensity on either side of the 

x-axis (i.e. the central line CO  ). The position and extent of this guttate band 

A jB i (i =  1,2,3) corresponding to the values k =  ki (i =  1,2,3) are exhibited 

in Figs. 6.3.7-6.3.9. The indication is that the extent of the band increases with 

increasing k , but the time taken for it to become established on the wall decreases 

significantly with increasing k.

To illustrate further, it is shown in Figs. 6.3.10-6.3.13 when k =  =  12

how elements with the different starting positions (—0.278,0.856), (—0.155, —0.476),
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(0.285,0.093), (0, —0.1) all end up being eventually entrapped on the band A 3B 3 of 

the boundary wall.

Fig. 6.3.6 Array of xo-values spreading throughout the plane z  — zq.

Fig. 6.3.7 The guttate band corresponding to k =  kx =  3.
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Fig. 6.3.8 The guttate band corresponding to k =

Fig. 6.3.9 The guttate band corresponding to k = k.

>2 =  6.

=  12.
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Fig. 6.3.10 An over-view of the trace-path of a reagent with starting position 

xq =  (—0.278,0.856) when k =  =  12.

Fig. 6.3.11 An over-view of the trace-path of a reagent with starting position 

Xq = (—0.155, —0.476) when k =  k3 — 12.
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Fig. 6.3.12 An over-view of the trace-path of a reagent with starting position 

x0 =  (0.285,0.093) when k =  k3 =  12.

Fig. 6.3.13 An over-view of the trace-path of a reagent with starting position

X q  =  ( 0 ,  — 0 . 1 )  when k =  k3 =  1 2 .
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The asymmetry in the boundary activity revealed by the above analyses may not 

have been appreciated in the instrumentation design. The preferred orientation within 

the flow will result in a non-uniform coverage of the well boundary wall.

6.4 The 6 Jiggle’-Mode at Oscillatory Values of f t

It is an inescapable fact that when f t  is oscillatory in nature the flow of the mixture 

within the well, although axially symmetric, is complicated in mathematical struc

ture. This, in turn, results in massively complicated (and analytically intractable) 

differential equations characterizing the drift of the reagents. To illustrate the dif

ficulties involved one need only consider the simplest case that can be envisaged, 

viz. that of a deep well when conditions are such that the regime is described by the 

primary flow, i.e. when the velocity field within the well is described by

=  0, LJ -  -  1] cos nt ir =  V (x2 +  2/2))* (6-4-1)rJi{ka)

In this event, the differential equations that describe the trajectories x  =  x (x 0, £), in 

any plane z(t) — z0, reduce to

(A)

x  -f k  fi0 x —2f2o cos n t y  — ftq  cos2 nt  x  4- flo(n sin nt

-\-kfto[(aJi(kr)/rJi(ka)) — 1] co snt)y  =  cQqcos2nt, 

y V +2f20 cos nt x — ft% cos2 n ty  — fto(n sin nt

+kfto[(aJi(kr)/rJ\{ka)) — 1] cosn t )x  = crtftosinnt.

These equations, in contrast with those of the previous section (i.e. those which 

characterize sweep at constant value of ft), are neither linear in mathematical form
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nor capable of being decoupled. However, when the angular frequency n /2 n  is 

either small or large, the flow has a relatively simple structure, what is to all extent 

and purpose a rigid body rotation. These are seemingly rather special modes of 

oscillations, but approximations to these are easily realized in practice. So far as 

one is able to judge, the ‘jiggle’-mode is one in which the frequency of oscillation is 

large. For such a regime, our analysis has shown that, but for a thin layer immediately 

adjacent to the boundary wall, the flow within the well is equivalent to a rigid body 

rotation. It is therefore worthwhile to pursue events further when the frequency of 

oscillation falls within one or other of these two modes to see the type of difficulty 

that is encountered.

6.4.1 Small Values of n

The earlier study has shown that, with sufficient approximation, the flow within 

the well is described by

Thus, in any plane z =  z0, the drift x  =  (x (t),y (t))  of the reagents is described by 

the linear differential equations

x -\-k f20 x —2fl0 cos nt y  —Qg c o s 2 n t x  4 -  nfl0 sin n ty  =  cf2g cos2 n t ,

6.4.2 Large Values of n

For such values of n, it has been shown that the flow within the well, but for a 

thin layer immediately adjacent to the boundary wall, is described by

'0 =  0, lj =  cos nt. (6.4.2)

(B)
y  4-k f2o V +2f2o cos nt x — fig cos2 n ty  — nflo sin n tx  =  cnflo sin nt.

0  =  0, cj — fl =  —flo cos n t , (6.4.3)
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i.e. a rigid body rotation of angular amplitude and frequency as that of the wall but 

o f phase ir behind it. Thus, if  one were to neglect the boundary layer activity, then, 

in any plane z  =  Zq, the drift of the reagents is described by the linear equations

x +k  x  — 2!^o cos nt y  — fig cos2 n tx

+Qo(ri sin nt — k cos n t)y =  cSIq cos2 nt, 

y + k  n 0 y  +2f2o cos nt x —Qq cos2 nt y

—Qo(n sin n t — k£lo cos nt) x =  cnQ,o sin nt.

(C)

It is noted that equations (B) and (C) are linear in mathematical form. Nevertheless, 

they seem too complicated to allow for the construction of analytical solutions, and 

so, whether one looks at (A), (B) and (C), progress will have to rely on numerical 

procedures. This challenge is not taken on in the present study.

6.5 References

Leslie, F. M., “The slow flow of a visco-elastic liquid past a sphere”, 1961, Quart. 

J. Mech. App. Math., 14, 36.
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CHAPTER 7 
CONCLUDING REMARKS

The present (and final) chapter has three purposes. First, to comment on the 

significance of the mathematical findings in relation to the Vitros Immunodiagnostic 

System; second, to indicate a possible programme of further research; and, third, to 

draw attention to some other factors only touched upon in the main text.

7.1 Mathematical Findings

The design and manufacture of the Vitros Instrument (now widely available in 

hospitals for the speedy (and reliable) diagnosis of a wide range of illnesses) has 

neither been guided nor supported by mathematical analysis. The present study is the 

first attempt to set up a working mathematical model of the hydro-mechanics within 

the instrumentation cycle. Although the present model may have shortcomings, and 

is yet to deliver on certain aspects of the cycle o f operation, it is anticipated that 

the broad findings that have hitherto emerged offer opportunities to improve the 

design and efficiency of the instrument. What is found is that the reagents have 

preferred orientations within the flow and become entrapped on a preferred site on 

the boundary wall, and are not uniformly dispersed on the wall surface as previously 

anticipated. This has to have an important bearing on the optical -photo process- part 

o f the instrumentation cycle. There is as yet no detailed comparison with experiment 

that one can report upon.
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7.2 Further Research

The next move has to be that o f investigating equations (B) and (C), and possibly 

the more complicated equations (A), numerically for a large array of xo-values subject 

to the quiescent state x o6s=  0. Although equations (B), valid for low frequencies 

o f oscillation, are not serious contenders for describing the ‘jiggle5-mode, it will, 

nevertheless, be interesting to see how the associated trace-paths compare with those 

o f descriptions (A) and (C).

The shortfall in all three descriptions (A), (B) and (C) is that, in essence, they give 

a two-dimensional picture, and fail to account for the secondary flow that is present 

within the well. A feature o f the flow at high frequencies, which characterizes the 

‘jiggle5-mode, is the boundary layer, or shear layer, which forms at the boundary 

wall. Outside this layer the flow is approximately that of a rigid body (with the 

same angular amplitude and frequency as that of the boundary wall but of phase 7r 

behind it), a flow insensitive to change in rheological properties of the mixture within 

the well. It is possible that this structure can be used to obtain simple approximate 

expressions for the velocity and stress fields, valid at high frequencies, when it may 

not be possible to obtain a description of events throughout the well valid at all 

frequencies (i.e. that of obtaining the general solutions of equations (3.2.3a-c) and 

(3.2.4a-f)).

One approach would be the following. When the (dimensionless) parameter 

Ra =  y/(npa2/r]o), the ratio o f well characteristic length a to viscous length y/(r]o/np), 

is laige one anticipates a boundary layer of thickness 0 (a R ~ 1) at the wall. One 

then rescales (suitably) the kinematic and dynamic variables within this boundary
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layer and expands them in power series in Ra l . The solutions so obtained are then 

matched with the solutions outside the boundary layer, these solutions being likewise 

developed in power series in the same parameter R ~l . The approach is the so called 

method of matched asymptotic expansions. Such an approach is widely used and doc

umented for classical viscous flow (see, for example, Lyne (1970) and Riley (1967)), 

but less so for elastico-viscous flow. Within the (wider) field of non-Newtonian flow 

it is (in general) not possible to eliminate the stresses in terms of the velocities. The 

result is that the dynamic terms, the stresses, need to be analysed side by side with 

the kinematics terms, the velocities. This makes for difficulties. In developing a 

boundary-layer theory for el asti co-viscous flows, there remains controversy over the 

assessment of the orders of magnitude of the various dynamic and kinematic terms 

that appear in the governing equations (see Frater (1970) and Walters (1970) for 

details). However, James (1975) has had some success in extending the approach to 

analyse oscillatory flows in curved pipes.

Within the present work one has already first hand experience of the method on 

having expanded the exact expression for the primary and (incipient) secondary flows 

associated with the hemispherical well in powers of R~l (i.e. those results valid when 

a\k\ »  1). No attempt at such a development has, as yet, been instigated.

7.3 Other Factors

Several other hydro-mechanical factors may need to be assessed as (more) experi

mental results become evident. For example, one cannot be certain if  stratification of
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density, and possibly of viscosity, affects the process. Again, there may be anomalous 

flow near the wall; in a solution of high polymeric material, the permitted distribu

tion of molecular orientations very near the wall is restricted by the presence o f the 

wall itself. This may possibly be accounted for by allowing a velocity o f slip at the 

boundary proportional to the skin friction at the wall, a tolerance which may easily 

be admitted and assessed within the present mathematical development.

It is emphasized that the present study is focussed on the one aspect within the 

Vitros Immunodiagnostic System in which the sample within the well is transported 

on the outer carousel ring. No quantitative assessment is attempted of the critical 

phase in which the sample and reagents are delivered to the well, a robust Theological 

process (with characteristic time of seconds). Neither is a serious attempt made 

to shed light on any major spillage of the well content that occurs from time to 

time, resulting in serious instrument contamination and a breakdown of the testing 

programme. This aspect is only touched upon in the main text, but it is believed 

that circumferential vibrations within the carousel seating, along with a change of 

geometry of the well, may be the cause.

It is with the above few observations that the dissertation is concluded.
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