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SUMMARY

This thesis is concerned with the massless Dirac equation in (2 + 2 )-dimensional 
space-time. We start by presenting background material on spinors and the 
Dirac equation. Then we consider the modifications to the current which are 
necessary in 2 +  2  dimensions, and spinors which imply zero current density. 
Then we consider plane wave solutions and superposition of solutions.
The action of the Lorentz group is considered, and we find solutions which 
are invariant to subgroup preserving the world line of a ‘particle’ solution. 
Then we find some more general solutions, together with the corresponding 
electromagnetic fields.

NOTATION.
In this thesis references are denoted by square brackets [ ] and equations by 
round brackets ( ) where (a.b) denotes Equation b in Chapter a.
This thesis has been typeset using L aTe X  except the lightlike line solution 
(See the Appendix) and the graphs have been done using “ Mathematica ” 
program version 4.
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Chapter 0 

Prelim inaries

0.1 Introduction
This thesis is concerned with the Dirac massless equation in (2 + 2 )-dimensional 
space-time. The Dirac equation in (3 +  l)-dimensions was introduced by 
P.A.M. Dirac in 1928 to fix some problems with the Klein-Gordon equation. 
In (n +  l)-dimensional space-time, the first difficulty faced by the Klein- 
Gordon equation was the problem of probability density. Dirac succeeded in 
producing a positive definite probability density (j° =  ip*ip > 0  for a non 
zero state 'ip). The other difficulty faced by the Klein-Gordon equation was 
that of negative energy states. Dirac’s solution to this problem relies on the 
fact that electrons have spin-f and therefore obey Pauli’s exclusion principle 
(identical particles cannot be in the same quantum state). For a more de­
tailed discussion, see [13] and [21]. Dirac supposed that the negative energy 
states are already completely filled, and the exclusion principle prevents any 
more electrons being able to enter the ‘sea’ of negative states see [8 ].
This ‘Dirac sea’ is the vacuum, so in Dirac’s theory, the vacuum is not ‘noth­
ing’, but an infinite sea of negative energy electrons, protons, neutrinos and 
all other spin-f particles! Now this ingenious theory makes an important pre­
diction, for suppose there occurs one vacancy in the electron sea a ‘hole’ with 
energy \E\. An electron with energy E  may fill this hole, emitting energy 2E, 
and leaving the vacuum: e~ +  hole — > energy, so the ‘hole’ effectively has 
charge +e and positive energy, and is called positron, the antiparticle of the 
electron. This theory of Dirac’s in 1928 predicted the existence of antipar­
ticle for all spin-1 particles. We conclude this account of antiparticles by
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Preliminaries 4

noting that, despite the successful resolution of problem of negative energies, 
the Dirac equation is no longer a single-particle equation, since it describes 
both particles and antiparticles. The only consistent philosophy is to regard 
the spinor ip as a field, such that | ip |2 gives a measure of the number of 
particles at a particular point. This field is naturally a quantum field. For a 
more detailed discussion, see [8 ], [17], [18] and [19].
In 1994, Edwin J. Beggs considered the possibility of having non-trivial elec­
tromagnetic field with currentless spinors in (4 +  2 )-dimensions. His purpose 
was to construct some exact solutions to the equations of quantum elec­
trodynamics, treated as a classical field theory. In [2 ] there are currentless 
solutions of the Dirac equation in (4 +  2)-dimensions which have a non-trivial 
electromagnetic field. The field arises from a topological singularity in the 
solutions, centered on the supposed ‘world line’ of a particle.
In this thesis, the first question we put to ourselves is whether we can find 
more solutions, and try to work towards a general solution by studying a sim­
pler problem in (2  +  2 )-dimensions. Secondly we want to try to find traveling 
wave solutions, and solutions with the symmetry of a particle. Fortunately 
we did find lots of solutions, some of them having non-trivial electromagnetic 
fields with currentless spinors. The results are specific to (2 +  2 )-dimensions. 
However it has been shown in [2] that results in (4 +  2)-dimensions are rel­
evant to problems in (3 +  l)-dimensions. Also there are other examples of 
physical theories with more that one time dimension.
Spaces with several time components do appear among the solutions of some 
physically interesting systems in higher dimensions, and they have been stud­
ied in the compact ific at ion context of Kaluza-Klein and string theories [1]. 
The idea in Yang-Mills (YM) theory is to minimize the energy of the cur­
vature of the connection, where the potentials A M live in a Lie algebra, for 
example the Lie algebra of SU(2 ). In [1 0 ] the authors show that N  = 1 
Supersymmetric self-dual Yang-Mills theory (SDYM) in 2 +  2 dimensions is 
an integrable system.
In [1] the authors show that, if we assume that the world is n +  1 dimensional, 
and try to compactify, there are very rigid constraints on the compactifica- 
tion. Allowing more than one time dimension in the original world manifold 
allows a greater variety of compactifications, including some that they argue 
are physically useful.
Since the spionrs considered are currentless, the electromagnetic field is a 
solution of the currentless Maxwell equations in 2 +  2 dimensions. However 
the Dirac equation can still place constraints on the electromagnetic poten-
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tials Afi. Also the currentless Maxwell equations only apply on the domain 
of solution of the Dirac equation. If there is a singularity in the equation, 
then that singularity can behave as thought it had charge, e.g. [2 ]. We do 
not consider boundary conditions at infinity on the electromagnetic field in 
this thesis.

0.2 Quantum mechanics and the Schrodinger 
equation

The founding of Quantum Mechanics can be placed between the years of 
1923 and 1927 [19]. Two equivalent formulations of quantum mechanics had 
been proposed almost simultaneously : Matrix Mechanics (due to Heisenberg 
and others) and Wave Mechanics (due to Schrodinger and others).
Wave Mechanics started between 1925 and 1926. The choice of a wave equa­
tion is restricted by a certain number of a priori conditions :

(I) The equation must be linear and homogeneous;
(II) The equation must be a differential equation of the first order with re­
spect to time.

All these considerations will lead us to the Schrodinger equation in a very 
natural way.

This is the Schrodinger equation for a free particle; it satisfies conditions (I) 
and (II). It also satisfies the requirements of the correspondence principle. 
Indeed the formal analogy with Classical Mechanics is a actually realized, 
equation (0 .1 ) is in a sense the quantum-mechanical translation of the clas­
sical equation which given by

the energy and momentum being represented in this quantum language by 
differential operators acting on the wave-function according to the correspon­
dence rule

d
(0,1)

E V
h
-  v •i

(0.3)
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The probability density for the Schrodinger equation is

P = .

and the probability current is

(0.4)

J  =  - (0.5)

These obey a continuity equation

(0 .6)

For a single particle we would like to have probability one of the particle 
being somewhere, i.e.

For a more detailed discussion, see [19] and [17].

0.3 Special relativity and Lorentz transfor­
mation

It is often said that special relativity is the theory of 4-dimensional spacetime. 
Consider two events in spacetime (x ,y , z , t )  and {x + dx,y  + dy, z + dz , t  + dt). 
We may generalize the notion of the distance between two points in space 
to thefintervah between two points in spacetime; call it ds. In order that ds 
be the same for all (inertial) observers, it must be invariant under Lorentz 
transformations and rotations, and so is given by

With this definition, events which are separated by a timelike interval have 
ds2 > 0  ; those separated by a spacelike interval ds2 < 0  ; and those separated 
by a null or lightlike interval ds2 =  0 .
Let us introduce some convenient notation. Coordinates on spacetime will 
be denoted by letters with Greek superscript indices running from 0 to 3, 
with 0  generally denoting the time coordinate. Thus,

(0.7)

ds2 = c2dt2 — dx2 — dy2 — dz2 . (0.8)

x M =  (x°, x 1, x2, x3) =  (ct, x, y, z ) ,
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xn = (x0, x u x 2, x 3) = (ct , - x ,  - y ,  - z ).
Furthermore, for the sake of simplicity we choose units in which c — 1. 
Empirically we know that c is the speed of light, 3 x 108 meters per second; 
Thus, we are working in units of seconds for time and light seconds for 
distance, for example.
It is also convenient to write the spacetime interval in a more compact form. 
We therefore introduce a 4 x 4 matrix, the metric, which we write using two 
lower indices:

( 1 0 0 0 ^
0 -1 0 0
0 0 -1 0

 ̂ 0 0 0 - 1 )
Here rows and columns correspond to the 0, 1 , 2 and 3 components. Since 
g ^  has a non-zero determinant, its inverse exists, and is called . In fact 
it has the same value as g in Minkowski space but this equality does not 
hold in general. It is clear that g^v contains all the information about the 
geometry of the space. We then have the nice formula

ds2 = g ^  dx^dx" .

Notice that we use the summation convention. Now we can consider linear 
coordinate transformations in spacetime. We would like the length to remain 
fixed,

ds2 = (dx)T g (dx) = (dx')T g(dx')
= (dx)T ATgA (dx), (0.9)

and therefore

g = ATgA.  (0 .1 0 )

The matrices A which satisfy (0.10) are known as the Lorentz Transforma­
tions; the set of them forms a group under matrix multiplication, known as 
the Lorentz group. There is a close analog between this group and 0(3), the 
rotation group in three-dimensional space.
Lorentz transformations fall into a number of categories. First there are the 
conventional rotations, such as a rotation in the x — y plane:

( 1 0 0
0  ^

0 cos 9 sin# 0

0 — sin# cos# 0

I 0 0 0 1 )
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The rotation angle 6 is a periodic variable with period 2n. There are also 
boosts, which may be thought of as ‘rotations between space and time direc­
tions’. An example is given by

=

( cosh0  — sinh <j> 0  0  \
— sinh (f) cosh (J) 0  0

0  0  1 0

V O  0  0  1

The boost parameter </>, unlike the rotation angle, is defined from —oo to oo. 
In general Lorentz transformations will not commute, so the Lorentz group 
is non-Abelian. For a more detailed discussion, see [4], [16], [17], [18] and 
[20].

0.4 The Klein-Gordon equation
We are now in a position to write down a wave equation for a particle with 
no spin, a scalar particle. Since it has no spin it has only one component, 
which we denote by </>. Note that (0.2) is the non-relativistic approximation 
to

E 2 = P 2c2 +  m 2 c4 (0 .11)

The wave equation is obtained from equation (0.11) by substituting differen­
tial operators for E  and P  in the standard fashion in quantum theory given 
by (0.3), ^

—ft2 0 =  —ft2c2A 0 +  m 2c4 0 , 
o t 1

which may also be written for h = c = 1 as

[ A  -  v 2 +  m 2]fli =  0 . (0 .1 2 )

This is known as the Klein-Gordon equation. It then follows that the Schrodinger 
equation should be the non-relativistic approximation of the Klein-Gordon 
equation. W hat are the corresponding expressions for the probability density 
and the probability current for the Klein-Gordon equation? To be properly 
relativistic, p should not, as in (0.4), transform as a scalar, but the time
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component of 4-vector, whose space component is j , given by (0.5). Then p 
is given by

y 2 d V
with

ih <—* */  =  (p,J)  =  — 4 ? ( d o , - v ) < l > ,m

m
where the forward-backward arrow here means the derivatives act on both 
(p and (j)* [i.e. (j)* d° (f> = (do <fr*) 4> -f <j)* (<90 <f>)\. We have the continuity 
equation

since </>* also obeys the Klein-Gordon equation. Then p and j  are the proba­
bility density and current we want. But this immediately presents a problem, 
because p is not positive definite. Since the Klein-Gordon equation is second 
order, (f> and d(j>/dt can be fixed arbitrarily at a given time, so p may take 
on negative values, and its interpretation as a probability density has to be 
abandoned. There is another problem with the Klein-Gordon equation and 
that is the solution to (0 .1 1 ), regarded as an equation for E ,

E =  ± y jp2 + ra2

so a solution to the Klein-Gordon equation may contain negative energy 
terms as well as positive energy ones. For a more detailed discussion, see [8 ] 
and [17].

0.5 The Dirac equation in 1 + 3 spacetime
Given the problems in the last section, it might have been better to treat 
space and time on a more equal footing in the Schrodinger equation. This 
what Dirac took as his starting point. In 1928 Dirac (see [7]) replaced the 
Klein-Gordon equation by a first-order equation,

d d
^dt  = (°-13)
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The question Dirac posed himself was to find the simplest choice for cq and 
/?, such that the square of the Schrodinger equation gives the Klein-Gordon 
equation

Dirac noted that only when we allow cq and 0  to be non-commuting objects 
(e.g. matrices), can one satisfy these equations. The above equation is 
equivalent to

Historically, Dirac first considered m ^ O ,  but the massless case (m =  0) is 
somewhat simpler. Here cq are the Pauli matrices, familiar from describing 
spin one-half particles

For the massive case Dirac first incorrectly thought that the positive energy 
states described the electron and the negative energy states the proton. At 
that time antiparticles were unknown. Antiparticles were predicted by Dirac 
because the only way he could make the theory consistent was to invoke the 
Pauli exclusion principle and to fill all the negative energy states. A hole in 
this sea of positive energy states, called the Dirac sea, then corresponds to a 
state of positive energy. These holes describe the antiparticle with the same 
mass as the particle.
For the massive Dirac equation we need to find a matrix 0  that anticommutes 
with all Qj. For 2 x 2  matrices this is impossible, since the Pauli matrices' 
form a complete set of anticommuting matrices. The smallest size turns out 
to be a 4 x 4 matrix. Dirac found a set of 4 x 4-matrices satisfying the 
relations (0.14) which are

It will be profitable to introduce a ‘four-vector’ of 4 x 4 matrices

pi =  (p.a +  0 m )2 = p2 +  m 2 .

0 2 = 1 , (cqaq +  ajQi) = 26ij and cq/3 -t- /to* =  0. (0-14)

=  (7°, 7*) =  (/2,/foj),

such that the Dirac equation becomes

(*7m<9m -  m)V> =  0 , (0 .16)
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where dM = d / d x M. The Dirac gamma matrices satisfy anticommuting (Clif­
ford algebra) relations

{y, y  } =  - f - f  + Y Y  =  2 <T,

where g =  diag(+ l, —1 , —1 , —1 ). We have from the gamma matrices that

This means that 7 1 is hermitian and 7 * is anti-hermitian for i = 1,2,3. An 
interaction with the electromagnetic field is included via the spacetime 
potential (Ao, Ai, A2, A3) of F^  by employing the replacement —
i q A The Dirac equation for the interacting case is given by

ij*1 {dfi — iqA^ip  =  m f  (0-17)

0.6 The Clifford algebra and Dirac Spinors:
Take V  to be any vector space with an inner product To each such
vector space V  with inner product <, >, we associate an associative algebra 
Cl(V, <, >) called the Clifford algebra in such a way that x 1 = < x, x  >, for 
all x € V. If U is any invertible element of the algebra and x' = UxU~l , 
then (x')2 =< x , x  >. Those elements U such that x' =  UxU~l is in V  for 
every x  in V  form a group, known as the Clifford group (see [3] and [6 ]). 
Those elements U give orthogonal transformations given by x' — UxU~1. 
The center is the subgroup of the Clifford group which commutes with ev­
erything. If U is in the center, then we have

x' = UxU~l = xUU~l = x .

In Physics, elements of the vector space carrying an irreducible representa­
tion of the complexified Clifford algebra are termed Dirac spinors. To see the 
relation of spinors in t +  s dimensions (where t is the time dimension and s 
is the space dimension) to the classical division algebras R , C , H and O see
[11].

Let us take V = R 1+3, that is V  is space-time with its Lorentz metric.
There should be a linear map 7  : M1+3 — ► C7(R1+3) such that
i) Every element of CZ(R1+3) can be written as a sum of products of elements
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of 7 (M1+3) (and of multiples of the identity I ) ,
ii) +  'y{v/)'y(v) = 2(v, v')I for every v and v' in R 1+3,

Set

v =

( t \
x
y 

V *

/
and "){v) =

0

0

—x — iy 
t + z

t + z 
x — iy 

0  

0

x  +  iy \  
t — z 

0 

0

0 

0

t — z 
\  —x +  iy

= ( f  - x 2 - y 2 -  z2) h  .
The Clifford algebra of R 1+3 is the complete algebra of these 4 x 4  matrices. 
The Clifford algebra is generated by

1 ,7 ° ,7 \7 2 ,7 3 ,7 /V ' (/-* < */) ,7 /W  (v < v < p), 7°717273 •

The last generator is of particular importance and we define

- . 0 1 2  3 _“ 7 7 7 7 =

In general spinors are elements of minimal left ideals of Clifford algebras. 
A subalgebra S  of algebra A is a left ideal if as G S  for all a G A  and 
5 G S  ( see [6 ] and [14]). The word minimal in this context is equivalent 
to the word irreducible, meaning that there is not a smaller ideal in S. In 
four dimensional space-time the Dirac spinors lives in 5, and the minimal 
left ideal is given by

5  -  CU f

The set of Dirac spinor is an irreducible representation of the Clifford algebra. 
Spin( 1,3) is the set of elements in the Clifford group which are even (i.e. 
sums of products of even number of gamma matrices) (see [14]). Irreducible 
representations of Spin( 1,3) are obtained by separating S  according to the 
eigenvalues of 7 5. Since (7 5) 2 =  / ,  the eigenvalues of 7 5, called the chirality, 
must be ± 1  (see [15]). Then S  is separated into two eigenspaces

5  =  S+ © S ~ ,

(  Ipl 0 0 0 ^ >

fa
0
0

0
0

0
0 1 i>l , *02 , ”03 , 4̂ € c

\  4̂ 0 0 0 J

where 7 5,0 ± =  ±ip± for € *S'± .
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0.7 Abelian gauge theories
At present many physically sensible theories of fundamental interactions are 
based on gauge theories. Here we give a brief summary of classical aspects 
of abelian theories. Maxwell’s equations are given in terms of the magnetic 
field B and the electric field E by

div B =  0, (0.18)

d B
— |-c u rlE  =  0, (0.19)
o t

div E  — j°  , (0.20)

^  -  curl B = - j .  (0.21)

The magnetic field B and the electric field E are expressed in terms of the 
vector potential A M =  (A0, A) as

B =  curl A , (0.22)

E =  —— -  grad A0 , 
o t

(0.23)

respectively. Maxwell’s equations are invariant under the gauge transforma­
tion

A, Ay +  d^X (0.24)

where x  1S a scalar function. This invariance is manifest if we define the 
electromagnetic field tensor by

/ 0 - E x Ey Ez \
Ex 0 Bz — By
Ey ~ B Z 0 Bx

V Ez By —Bx 0 /

(0.25)
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From the construction, F  is invariant under (0.24). Now Maxwell’s equations 
could be expressed in terms of the electromagnetic field tensor as

+  dvF ^  = 0 , (0.26)

dvF^  =  f  , (0.27)

where equation (0.26) includes the equations (0.18) and (0.19), and equation 
(0.27) includes the equations (0.20) and (0.21). The raising and lowering of 
spacetime indices are carried out with the metric g^v = diag(+1 , + 1 , —1 , —1 ).

Let ^  be a Dirac spinor field with electric charge q. The Dirac field 'ip is 
invariant under the global gauge transformation

'ip — > ip* =  e ~tq6 'ip ; Pp — ► Pp' =  Pp e tq e ,

where 6 E R  is a constant. We elevate this symmetry to invariance under 
the local gauge transformation,

p ;  — ► 'ip' =  e ~ tqG^  'ip ; Pp — > Ppf =  P p e %q̂ ^x \

Let us introduce the covariant derivatives,

iqA^ , V/i — IqA/i (0.28)

where A^ — d/l0(x), and \ / ^ i p  transforms in a nice way as

V „ v  =  e~iq6{x) Vm t  ■

For a more detailed discussion, see [15] and [2 1 ].



Chapter 1

The representation of the  
gam m a m atrices in 2 + 2 
dim ensions and currentless 
spinors

1.1 Introduction:
This chapter contains the following: In section 1.2 we give irreducible rep­
resentation of the Dirac gamma matrices in 2 +  2 dimensions. In section
1.3 we write the massless Dirac equation in 2 -I- 2 dimensions. In section
1.4 we talk about the conserved current by showing first that the current is. 
conserved, then we give the form for the conjugation matrix B  in terms of 
the representation of the Dirac’s 7  matrices in 2 +  2 dimensions. Finally in 
section 1.5 we find the general form of the currentless spinors. We treat the 
Dirac equation purely as a classical field theory, and do not try to look for a 
particle interpretation.

1.2 An irreducible representation of the gamma 
matrices in 2 + 2 dimensions

Consider four dimensional fiat space-time with the signature (2,2), and the 
flat metric g =  diag(+1 , + 1 , —1, —1). The representation of the Dirac

15
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gamma matrices with (2 x 2 )-dimensional entries is given by

1 f  o - r n  \  ,  /  o - i o 2 \
7 Wi 0 j  ' 7 I io 2 O '

7 3 = (  ~ 0 S )  ' 7 4 = (  </, 0 2 ) ’ (“ )

where I 2 is the (2  x 2) identity matrix. These a matrices are the Pauli spin 
matrices, and they are given by

ai = ( l  0 ) ’ ffa=( i  o‘ ) ’ *3 = (o - l ) -
This representation of the Dirac gamma matrices is particularly useful in 
that the 7 s matrix is diagonal. It gives a preferred basis for introducing the 
two component notation for spinors in four space-time dimensions [18]. This 
representation satisfies the Clifford algebra condition

{7 ", 7 1'} =  2 < r ,  (1 .2 )

and in particular

( Y ) 2 =  + 1  for /x =  1 , 2 ,
( Y ) 2 — —1 f°r /x =  3,4.

The y5 matrix is given by

75 =  7 X727374 =  ( q2 _°/2  j • (1-3)

1.3 The massless Dirac equation in 2 + 2 di­
mensions

The massless Dirac equation with the real field (potential) Ap, where the 
potentials A M live in the Lie algebra of group U( 1), is given by

Y (d p  -  iqA^'ip = 0 . (1.4)
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Here we use summations over p  for p = 1 , . . . ,  4. The last equation can be 
written as

-  iqAi) +  7 2 (5 2 -  iqA2) +  ^ ( d 3 -  iqA3) +  j 4(d4 -  iqA4)]ip = 0 .

In general we set xp = , where a, 6 , c and d are complex valued functions

f  a \  
b
c

\ d  J
of the coordinates system (x1, x2, x3, x4). Now by substituting this value for 
'ip and by using the representation for gamma matrices given by (1 .1 ) in 
equation (1.4), we can write equation (1.4) as two equations which are given 
by

f  i(d4 -  iqA4) +  (d3 -  iqA3) i(di -  iqA\) +  (d2 -  iqA2) \  (  a \

\  i(d i -  iqAi) -  (d2 -  iqA2) ~{d3 -  iqA3) +  i{d4 -  iqA4) ) \ b )
=  0 ,

/  i(d4 -  iqA4) -  (d3 -  iqA3) - i ( d i  -  iqAi) ~  (d2 -  iqA2) \  /  c > 

V -  iqAi) +  (d2 -  iqA2) i(d4 -  iqA4) +  (d3 -  iqA3) ) \ d )
=  0 .

Note that the last two equations show how the Dirac operator act on spinors, 
where in the first one it acts on the top two components of the spinor, and 
in the second equation it acts on the last two components of the spinor.

1.4 The Conserved Current :

1.4.1 The Conservation Law
Suppose that the current with signature (2 , 2 ) is given by

f  = , (1.5)

(pp* is the complex conjugate of /ipT), where B  is a given 4 x 4  constant matrix. 
We interpret as being the charge current acting as a source in Maxwell’s
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equations. Now we want to show that if the condition B Y  =  (7 ^)* B  holds 
for the matrix B , then is a conserved current, i.e.

d u f  =  0 .

We begin with

a „ = (dlixl>*)B'ftl> + P B ' f i d ' r t ) .

By using the condition which related B  and 7 M in the last equation, it be­
comes

dy {xp*B^xp) =  (dyXp*)^*B xp +  xp*B^(dyXp) .

Now we are in position to use the Dirac equation (1.4), and then the last 
equation becomes

dp (xp*B^xp) = ixp* B ^  AyXp -  ixp*Ay^* B  xp,

and we can rewrite the last equation as

dy (xp*B'ytixp) = iip*B^Ay'ip — ixp*AyB^ xp = 0 ,

where we remember that Ay is real valued function, so Ay = Ay. This means 
that the current is conserved.

1.4.2 The conjugation matrix
The idea now is to find the conjugation matrix B , which in general has this 
form

{  6 n  b i2  ^ 1 4  ^

g  _  ^21 ^22 ^23 ^24

^31 bs2 &33 ^34

\  6 4 1  6 4 2  6 4 3  6 4 4  /

This matrix B  should satisfy the following properties:

i) 7 m B — B  7  ̂ for p  =  1 , 2 ,

ii) 7 m B = —B  7 m for p = 3,4.
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Prom (i) we can write B  like this

/ bn 0 b\3 0 \
0 ^22 0 ^24

—^24 0 &22 0

V 0 —b u 0 bn )

and from (ii) we can write it as

(  1 0 0 0 ^
0 - 1 0 0
0 0 - 1 0

I o 0 0 1 )

where in general bn is a complex number. It follows from the representation 
of the Dirac gamma matrices given by (1 .1 ) that

73 74 =  —i

(  1 0  0  0  \
0 - 1 0 0  

0  0 - 1 0  

V o o o i  J
Since bu  is a complex number, we deduce that the matrix B  is a multiple of
7374 .

Supposing that B  = a  7 3 7 4, to find the value for a, let first take the complex 
conjugate for the current equation (1.5),

jv — B*ip, 

by substituting the value for B  in equation (1.6), it becomes

(1.6 )

a
jv  =  ^ B ^ i p  ,

a
and by using the current equation (1.5) the last equation becomes

J
a  -// =  f
OL

But since is real, the last equation shows that a  is pure imaginary. This 
fixes B  upto a real multiple, and we chose to set B = zq3 q4.
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1.5 The currentless spinors
The aim of this section is to find the general form of the currentless spinors 
which are given by putting j M =  0 in equation (1.5).
The zero current equation is

ip* B ^ i p  = 0  , for p = 1 , • • • , 4.

For p = 1, it becomes
^ B r f i p  =  0 .

( a \  
b
c

\  d )
the complex conjugate of 'ipT, then the last equation gives

(1.7)

If we set ip = , where a, b, c and d are complex valueds, and ip* is just

For p = 2 , 

which gives

For p = 3, 

which gives

For p — 4, 

which gives

ad — be +  cb — da = 0 . 

'ip*B'y1'ip = 0 ,

ad +  be +  cb + da = 0 . 

ip*B,y3'ip = 0 ,

ac +  bd +  ca +  db = 0  . 

ip* B ^ i p  =  0 ,

ac — bd — ca + db = 0 .

(1.8)

(1.9)

( 1 . 10)

( 1 .11)

The equations (1.8), (1.9), (1.10) and (1.11) are called the zero current equa­
tions.
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Now let us simplify the zero current equations. There are two simpler equa­
tions given by (1 .1 0 ) and (1 .1 1 ), the first one is given by adding equations 
(1 .1 0 ) and (1 .1 1 ), and the second by subtracting them,

ac-hdb =  0 , ( 1 -12)

bd + ca = 0, (1-13)

respectively. Similarly there are two simpler equations given by equations 
(1 .8 ) and (1.9), the first is given by adding equations (1.8) and (1.9) and the 
second by subtracting them,

ad + cb = 0, (1-14)

be +  da = 0, (1-15)

respectively. This simplification reduces the number of the currentless equa­
tions to two, and they are given by the equations (1.12) and (1.14). If we 
take the complex conjugate of equations (1.12) and (1.14), then we will just 
get the equations (1.13) and (1.15) respectively.

P ro p o sitio n (l.l):

There are three possible general solutions for the equations (1.12) and (1.14) 
that give zero current, and they are given by the following two cases:

Case (I): W hen a vanishes, then the general solution for the equations 
(1 .1 2 ) and (1.14) is

II) b = 0 , where c and d are complex valueds.

Case (II): W hen a is non-vanishing, then the second and the third gen­
eral solutions for the equations (1.12) and (1.14) are

111) c = d = 0, where a and b are any complex valueds,

1 1 2 ) b = aets , c — i a r e l ^ s~^ , d = i a r e l ^ s+t\

where r  is a non zero real valued, and s and t are real valueds, and a is a 
complex valued.
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Case(I): Suppose that a vanishes:

In this case we have from the equations (1.12) and (1.14) these results

db = 0 and c b =  0 .

From this we have to say that b = 0 or d = c = 0.

I l) I f  6 =  0 , then we have this solution

ip =

where c and d are complex valueds.

ip =

( 0  ^
0

c
\  d

solution

(  0  \
b
0

V o )
where b is a complex valued.

(1.16)

(1.17)

Case(II): Suppose that a is non-vanishing:

In this case we can write the equations (1.12) and (1.14) as

db cb
a a

respectively.

Now by using the first equation of the last two in the other one, giving

d = ! ± d .a a
(1.18)

I I l) I f  d =  0, then from equation (1 .1 2 ) we need as well c = 0 , so the 
solution is given by

/ f l \  
b 
0

o J
Ip = (1.19)



The currentless spinors 23

where a and b are complex valued. Note that the solution (1.17) is a special 
case of the solution (1.19).

II2)If <i /  0, then equation (1.18) becomes

bb = a d ,

since a ^  0, this means that b ^  0, and this requires as well that c ^  0. The 
last equation can be written as

a b

and if we set b/a =  A, then equation (1.20) becomes

A A = 1 so A =  els ,

for some real s. Now by substituting this value for b in the equations (1.12) 
and (1.14), they become

ac + daexs = 0 , (1 -2 1 )

ad + caeis =  0 , (1 .2 2 )

respectively. Since c and d are non zero, by multiplying equation (1.21) by c 
and equation (1 .2 2 ) by d and then subtracting the results,

-  =  £  so d = elic , (1.23)
c d

for some real t. Similarly by substituting this value for d in the equations 
(1 .2 1 ) and (1 .2 2 ), they become

ac + cae~lt els = 0, (1-24)

acelt +  caels = 0, (1-25)

respectively. Note that the last two equations are just the same, and we can
rewrite them as
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We set c/a = reld, where r  > 0 and 0 € M, and by substituting this value in 
the equation (1.26), it becomes

r e i d  =  -

The last equation requires that

. 7T s — t
u = 77.7T +  — H  — where n G N ,

then 0 is, up to a multiple of 27r,

. 7r s — t . 7t s - t
d = 2 + ~  01 e = - 2 +  — '

Now by allowing r  to be positive or negative, we can write the solution as

=

( 1 \

i r e ^ s~^ 
i re 2(s+d

a , (1.27)

where s and t are real valueds, r  is a non zero real valued, and a is a complex 
valued, as required.



Chapter 2

The plane wave solutions and 
superposition of the currentless 
spinors

2.1 Introduction
This chapter contains two main sections, and in both these two sections we 
work with the currentless spinors from the previous chapter. In section 2.2 
we find the plane wave solutions for the massless Dirac equation with poten­
tial A M, and in this section we shall allow generalized plane waves, including 
exponentially increasing or decreasing terms. The periodic plane wave solu­
tions for the massless Dirac equation are special cases of our solutions where 
the wave vector is real. Finally in section 2.3 we study superposition for the 
currentless spinors.

2.2 The plane wave solutions
The starting point in this part is to write the massless Dirac equation with 
potential which is given by

y i (dM - i A M) 1/j = 0. (2 .1 )

Let us look for a plane wave solution of the form

4> = ipo ■ e4- - ,

25
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where the vector k is called the wave vector, and ipo is a constant four-vector. 
We shall allow generalized plane waves, including exponentially increasing or 
decreasing terms, corresponding to k having complex entries. So we put

k =  £  +

where k' and k” are real constants.

Now by using the representation for the 7  matrices given by (1.1) and by 
substituting the value for in equation (2 .1 ), giving

/  0  0  i 8 4  — 8 3  — i di — d2 \
0 0 d2 — id i d3 +  i 84

83 -I- i 84 82 + i 8\ 0 0
V i 8\ — d2 i 84 — 83 0 0 /

ipo • ei ku xp

0 i A.4 — A.3 —i A-i — A.2 \{ 0
0  0 A.2 — i A\ A 3 -}- z A 4

A3 -|- i A 4 A 2 -\~ i A\  0  0

\  i A\  — A 2 i A 4 — A 3 0 0

t ikft-x̂

In this section we put 'ipo equal to

/  a \
b
c
d j

. We chose not to write 'ipo as

/  ao \  
bo
Co

\  do )
following four equations

to avoid too many subscripts. Then the last equation gives the

(^3  T i ^4 ) T- b (&2 +  i k\) — a (.A3 +  i A 4 ) +  b (A2 +  z A \ ) , (2.2 )

cl (i k\ — k̂ t) T b {i /C4 — /C3 ) — a (z A\  — A2) T b (z A4 — A3 ), (2.3)

c (z /C4 — /C3 ) — d ( ik i  + ^2) — c (z A4 — A3) — d (z A\  A2) , (^•^:)

c (/u2 — z /tj) T  d (/C3 T z /04) — c (A2 — z Ai) T d (A3 4- z A4 ) . (2.5)
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Next we are going to set >̂0 to be of the form of the currentless spinors given
in the previous chapter, and then find the plane wave solutions for each one
by solving the last four equations. We additionally assume (if A\ is not a 
constant) that

Ai  =  M  sin (L • x ) , (2.6)

where L  is a constant vector, and M  is a real constant, and that A  is a 
solution for the zero current field for the electromagnetic field,

=  0 .

If A 2 is not determined by A\,  we assume that

A 2 = N  sin (L • x r ) , (2.7)

for a real constant N,  and an arbitrary real constant r.

Proposition  (2.1):

All the plane wave solutions of the massless Dirac equation (2.1), subject to 
the preceding restrictions, are given by the following cases :

case(I) :

If we set ij)0 =

a
elsa

ira 
\  irae  i(s+b

where s and t are real constants, r is a non

zero real constant, and a is a complex constant, then the plane wave solutions 
of (2.1) are given by :

I I )  For cos (t) — cos (s) ^  0. We have k" an arbitrary constant, and

(sin (t) — sin (s))
k'i -

k'i =

(cos ( t )  — COS (*))
—sin ( t  — .s)

(cos ( t )  — cos («))
( 1 - - cos ( t  — s ) )

(cos ( t )  — cos (s))

k",

k ' { .

k " ,
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A\  is given by (2.6), where M  is an arbitrary constant and L  is constrained
by

(sin(t) - s i n (s))
1 (cos (t ) — cos (s)) 2 ’

L\ + L\  -  L\ -  L\  =  0.
Then A 2 , As and A 4 are given by

COS (t) — COS(s)

As = K  +  ~ T (t ~  S] , (k[ -  A i ) ,cos (t ) — cos(s)

A 4 =  k< -  — Tar *  ~ i \ (*> ~  Ai) ■cos (t) — cos(s)
There is a non vanishing solution for the electromagnetic field, given by 
(2.44).

12) For cos (t) — cos (s) = 0, we have the following:

I2a) If t =  s +  2n7r, then there are two possibilities:

For sin (5 ) ^  0. Then k" is an arbitrary constant, and

i //   _  CQS(^) j // lit _  ̂ in in__ p
Al/O . v Ab-J } Al/O “ ““  , , v AC 1 ? A i^  — ' U  .

2 sin (5 ) 1 d sin (s) 1
i4i is given by (2.6), where M  is an arbitrary constant and L is constrained 
by

L3 =  Li sin (5 ) — Z/2 cos (s) ,

L\  +  L2 -  L\ -  L\ = 0.
Then 4̂2, As and A 4 are given by

A -  u  . cos(s ) n ’ A \A 2 — k2 H--- :—p r  (Â  — A i) ,
sin (5)

^ 3  =  h's------ :—r r  (K ~  ^i)>sin (s)
A4 =  0 .
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There is a non vanishing solution for the electromagnetic field, given by 
(2.60).

I2a(ii)) For sin(s) =  0. We have k arbitrary, and 

k'l = 0 , hi = - k ' i  , k'{ = 0.

In this case A\  and A 4 arbitrary constants, and A 2 is given by (2.7), where 
N  and r arbitrary constants and L is constrained by

Ls = — L 2 ,

L\  +  L\  — L\  — L\  =  0.
Then A\, A 3 and A 4 are given by

A\  =  k[ , A 3 = k '3 +  (k '2 — A 2 ) , A 4 — k '4 .

There is a non vanishing solution for the electromagnetic field, given by
(2.73).

I2b) If t = — s +  2n7r, then we have k!{ arbitrary, and

k'l = 0 , k'l = — k'l cos (s) , k'l = — k'l sin ( s ) .

In this case Ai  is an arbitrary constant, A 2 is given by (2.7), where N  and r
arbitrary constants, and L is constrained by

Li = ±  [L4 cos (5 ) — L 3 sin (5 ) )

L 2 = — ( L3 cos (s) +  L4 sin (5 ) ) ,

L\ + L \ -  L \ -  L\  =  0.
Then Ai, A 3 and A 4 are given by

A! = fci,
4̂.3 =  k '3 + (k '2 — A 2) cos (5 ),
A 4 = k '4 -{-(k^ — A 2 ) sin(s).

There is a non vanishing solution for the electromagnetic field, given by 
(2.88).
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case (II):

If we set 'ifjo

( 0 \ 
0
c
d j

where c and d are complex constants. We take

c = Rieldl and d = where Ri  and R 2 are positive real numbers,
and 6 \ and 62  are real numbers. Define A =  R 1/ R 2 and <p = 6 \ — $2 . The 
plane wave solutions of (2 .1 ) are given by the following:

I I I )  For 1 — A2 7  ̂ 0, we have

(k’3 -  a 3) =  +  ( j - ^ )  *g s\Q(j>

-  ( t 2Aa2) k" c o s t ,

{k'i -  A i)  =  ~ ( | ^ ) 2)fc3 -  ( j - ^ 2 ) k'i C0S(I>

2A

[k'2 - A 2) = ( 3 -̂ 2 ) k" ~  ( i~~\ '2 ) (k* cos ^ ^  sin^  ’

1 -l- A2 9  \
(k[ - A ^  = -  ( 2 _  A2) k'i -  ( - _  a2) (k'i sin (j) +  k'i cos <j>)

The vector potential is constant as shown, this means that the electromag­
netic field is vanishing.

112) For 1 — A2 =  0, so that when A =  1 , k'i obeys the relations

k4 — kx cos (f) — /u2 sin (p,
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k'z =  — (&2 cos ^ ^1 s n̂ •

The potentials A\ and A 2 are given by (2 .6 ) and (2.7), and As and A4 are 
given by

As =  /eg +  (/c2  — A 2 ) cos 0 -f- (/cj — -A) sin 0 ,

A* =  /c4 +  (kf2 — A )  sin0 — (k[ — A )  cos 0 .

The detailed cases for A  and A  are:

II2a) M, N  and r  are arbitrary constants, and L is constrained by 

Ls = — ( L\ sin 0 +  L 2 c o s  0 ) ,

L4 =  L\ cos 0 — L 2 s in 0 ,

L\ + L \ - L \ -  L\  =  0 .

There is a non vanishing solution for the electromagnetic field, given by 
(2.118).

II2b(i)) M, N  and r  are arbitrary constants, and L is constrained by 

Li =  Z/4 cos 0  — Ls sin 0 ,

L 2 = — ( L4 sin 0 +  Ls cos 0 ) .

L\ + L \ -  L \ -  L\ = 0 .

There is a non vanishing solution for the electromagnetic field, given by
(2.123).

II2b (ii)) M  and r are arbitrary constants, and N  and L are constrained
by
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L \ a L \ - L \ - L \  = 0.

There is a non vanishing solution for the electromagnetic field, given by 
(2.127).

II2b (iii)) If N  = M  = 0, then A\  and A 2 vanish, and A 3 and A 4 are 
arbitrary constants.

case (III) :

( a \

If we set iJjq = q

V  0  /
solutions of (2.1) are similar to Case(II).

where a and b are complex constants, the plane wave

2.2.1 The plane wave solutions, case (I):
/  a \

In this case we have ^ 0  —

a 
elsa

ira
> 9 (s+d

where s and t are real constants,

\  i r a e ■
r is a non zero real constant, and a is a complex constant, so the equations 
(2.2), (2.3), (2.4) and (2.5) become

(&3 ~h i k4) +  eis (k2 +  i k\) — ( ^ 3  A i A4) +  els (A 2 +  i A \ ) , (2.8)

e (z k\ — A/?) +  (i k4 — /C3 ) = e ls(i A\ — A 2) A {i A 4 — A 3 ) , (2.9)

(i k4 — /c’3 ) — eil (i k\ +  k2) — (i A 4 — ^ 3 ) — elt (i Ai A A 2) , (2.10)

e itr {k2 — i k i ) +  (/C3  +  i k4) = e if (A2 — i A\)  +  ( A 3  A i A 4) . (2.11)

respectively. There are two simpler equations we can get from the equations
(2.8) and (2.9), where the first one is given by adding the equations (2.8) and
(2.9), and the second by subtracting them,

k4 A ki cos (s ) A k2 sin (s) =  A 4 +  A\  cos (s) +  A 2 sin (5 ), (2.12)
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ks — ki sin (s ) +  k2 cos (5 ) =  A 3 — A\  sin (s) +  A 2 cos (s) , (2.13)

respectively. Similarly there are two simpler equations we can get from the 
equations (2.10) and (2.11), where the first one is given by adding the equa­
tions (2.10) and (2.11), and the second by subtracting them,

— k 1 cos (t) — k2 sin (t) = A 4 — A\  cos (t) — A 2 sin (t ) , (2.14)

fc3 — k\ sin ( t )  -1- k2 cos ( t )  = A 3 — Ai  sin ( t )  +  A 2 cos ( t ) , (2.15)

respectively. Now to work with the last four equations we need first to know
that s, t and are real for p = 1, • • • ,4, and that kj are complex numbers
for j  = 1, • • • ,4. Set kj = kj + ikj, so each equation of the last four equations
provides two equations, where one comes from the real part and the other 
comes from the imaginary part. Let us start with equation (2.12), which 
gives us the following:

( k^ — A 4 ) +  ( kj — A \ ) cos (s) -|- ( &2 — A 2) sin (s) =  0 , (2.16)

k'i +  k” cos (5 ) + k '2 sin (s) =  0. (2-17)

From equation (2.13),

(fcj — A 3 ) — (k[ — A \ ) sin (5 ) +  {k'2 — A 2 ) cos (5 ) =  0, (2.18)

^3 — A//sin (s) +  ^2 cos (s) =  0. (2.19)

And from equation (2.14),

(&4 — A 4 ) — (k[ — A \ ) cos (t) — (k '2 — A 2 ) sin (t) =  0 , (2.20)

k'i — k'[ cos (t) — k '2 sin (t) = 0. (2.21)

Finally from equation (2.15),

(k '3 — A 3 ) — (k[ — A \ ) sin (t ) +  (k '2 — A 2 ) cos (t) = 0 , (2.22)

k3 — k" sin (t) +  k '2 cos (t) = 0 (2.23)
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Now by subtracting equation (2.17) from (2.21), and equation (2.19) from 
(2.23), gives

k" ( cos (t ) +  cos (s) ) +  &2 ( s n̂ M +  sin (5) ) =  0, (2.24)

k” ( sin (t) — sin (s) ) — k2 ( cos (t) — cos (s) ) =  0, (2.25)

respectively. Similarly by subtracting equation (2.16) from (2.20), and equa­
tion (2.18) from (2.22), gives

(k[ — Ai) ( cos (t) +  cos (s)) +  (k2 — A 2) ( sin (t ) +  sin (s)) =  0, (2.26)

(k[ — Ai) ( sin (t) — sin (s)) — (k2 — A 2 ) ( cos (t ) — cos (s)) =  0 , (2.27)

respectively. To work out the last four equations there are two main cases 
we have to consider, which are :

I I )  For (cos(t) — COS(s)) 7̂  0,

the equations (2.25) and (2.27) give

=  s in ( t ) - s in ( a)
cos (£) — cos(s)

=  sin (;) -  sinW  {k[_ A l ) , (2.29)
cos (t) — cos(s)

respectively. These values for k2 and (k2 — A 2) satisfy the equations (2.24) 
and (2.26). By substituting this value for k2 in the equations (2.17) and 
(2.19), they become

_  1 -  cos(t -  s) „ „ _  -  sin(t -  s) „ . .
4 cos (t ) — cos (s) 1 ’ 3 cos (t) — cos(s) 1

respectively. Similarly by substituting the value for (k2 — A 2) in the equations
(2.16) and (2.18), they become

l - c o s ( i - s )  ,
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respectively.

Note that the periodic plane wave solution is exactly the same as the so­
lution we have here; the only difference is that ki is real.

The electrom agnetic field for (II)

The electromagnetic field tensor is given by

F^u = -  dvAp.  (2.32)

The values for A 2 , As and A 4 are given in terms of A\  and the k's as in (2.29)
and (2.31). Now by substituting these values in equation (2.32), giving

, (s in (t) -s in (s ))  _  x 
12 '  (cos ( t )  — COS ( 5 ) )  1 '  15

Fi3 =  ■ ( 1 T /  ~  s)r ^ 9i + 8 3 ) Ai  -v (cos (t) — cos (sj) '

Fu  =  ) A i t
v (cos [t) — cos (s)) '

_  / sin (t -  3 ) (sin (t) -  sin (s)) x
23 '  (cos (i) — cos (s)) (cos (t) — cos (s)) 3 '  4’

/ (1 — cos (t — s)) _  (sin (t) -  sin (s)) x
24 '  (cos (t) — cos (s)) “ (cos (t) — cos (s)) 4 '  *’

/ (1 -  cos (t -  s)) sin (t -  s) X
34  ̂ (cos (t) — cos (s)) 3 (cos (t) — cos (s)) 4 '  1

The idea now is to find out what the zero current equation will give us,

= 0. (2.33)

For v =  1,

(cos (t) — cos (s)) (d\ +  d\ — dl — d\) A\  —
(cos (t) — cos (s)) d\ +  (sin (t) — sin (s)) d<i -f

sin(£ — s)ds — (1 — cos (t — s)) <94 d\ A\  = 0 .  (2.34)
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For v =  2,

(sin (t) — sin (s)) (<9̂  +  d\ — dl — Ai —

(cos (£) — cos (s)) d\ +  (sin (t ) — sin (s)) <92 +

sin(t — s)ds — (1 — cos (t — s)) 8 4  <92 A\  = 0 .  (2.35)

For v =  3,

sin (t -  s) (d\ +  dl -  dl -  d\) A\  +
(cos (t) — cos (s)) di +  (sin (t ) — sin (5 )) <92 +

sin (t — s) 8 3  — (1 — cos (t — s)) 8 4  d3 A\ = 0 .  (2.36)

For v = 4,

(1 — cos (t — s)) (di + 8 2  — dl — dl) Ai  —
(cos (t) — cos (s)) di +  (sin (t ) — sin ( 5 ) )  8 2  +

sin (t — s) 8 3  — (1 — cos (t — s)) 8 4  8 \ Ai  = 0 .  (2.37)

The last four equations imply another equation, which is given by 

(cos (t) — cos (s)) di +  (sin (t ) — sin (s)) d2 +

sin (t — s ) 8 3 — (1 — cos (t — s)) 8 ± Ai = 0. (2.38)

Under the given assumption for Ai  (2.6), by substituting this value for Ai  in 
equation (2.38), it becomes

(cos (t ) — cos (s)) Li +  (sin (t) — sin (s)) L 2 +

sin (t — s) L 3 — (1 — cos (t — 5 )) L4 

By using the result given by (2.39) in equation (2.34),

L\ + L \ -  L\  -  L\ = 0.

And by using equation (2.39) in equation (2.40),

=  0 (2.39)

(2.40)
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where L4 is real. This means that we have to chose the values for L2 and L3 

for L4 to be real.
Finally substituting this value for L4 in equation (2.40) gives us

L ±  (sin (t) -  sin (s))
(cos (t) — cos (s))

(2.42)

Now we are able to write A\  as

A\ = M  sin ( 2 , (sin (i) -  sin (s)) ,
(cos (t ) — cos (s))

L 2  +  X 3 L 3

( 1 - C O S  ( t - s ) )  J  _  2

(cos (t ) — cos (s ) ) 2 2 3
2 x 4 (2.43)

Now by substituting this value for A\  in the electromagnetic field, we get

„  (sin it) — sin (s))2 \ T
12 =  ( ±  (cos (t) -  cos (s))2 ) 2 C0S ( '  ̂ ’

n * , (  T  I s in (t — s) (sin(t) — sin(s)) \ _ / r
=  - M ( ^ ±   (cos (i) — cos (s))2------- ^ ) o o S ( L - X ) ,

Fu  = ± M (
(1 — cos (t — s)) (sin (t) — sin (s)) 

(cos (t) — cos (s ) ) 2
Lo -

\
F23 — —M

(1 — cos (t — s)) 
(cos (t) — cos (s ) ) 2

sin (t — s )

L l -  L I )  cos(L ■ X ) ,

Lo
(sin (t) — sin (s ))

(cos (t) — cos (s)) (cos (t) — cos (s))

(1 — cos (t — s))

L3 ) A \ ,

r  -  a i f  V1 ~ ~ t -T-
24 1 (cos(t) - c o s ( s ) )  2 T

\
2  (1 cos^  -F  Ll -  L l )  cos (L ■ X ) ,

ms / -m sf.d lS  2 ■* / v

F34 =  M  ( ±

(cos (t) — cos (s)) 

sin (t — s)
(cos (t) — cos (s)) ^

n (1  COS (t s ) ) r 2  r2
 ̂  ----- -— --------- "—TTTT 1̂ 0 —
(cos (t) — cos (s)) 2 2

+
(1 — cos (t — s)) 

(cos (t ) — cos (s))
L 3 ) cos (L ■ X ) . (2.44)
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12) For (cos (t) — cos(s)) =  0, this means that

cos (t) = cos (s ) , so t = ± s  +  2n7r, where n 6  N .

I2a) W h en  t = s +  2re7r, this value for t satisfies the equations (2.25) and 
(2.27), and the equations (2.24) and (2.26) become

k” cos (5 ) +  k '2 sin (5 ) =  0, (2.45)

( ^ —^ 1) cos (s) +  {k'2 — A 2) sin(s) =  0, (2-46)

respectively.
I2a(i)) For sin (5 )  ^  0, the equations (2.45) and (2.46) give

k'i =  -  ^  k" • (2'47)sin (5 )

(k'2 - A 2) =  (2.48)
sin (s)

respectively. Now by substituting this value for k'J, in the equations (2.17) 
and (2.19), we get

k'i = 0 , k'i =  k 'i , (2.49)
sin (s)

respectively. Similarly by substituting this value for (k'2 —A 2) in the equations
(2.16) and (2.18), we get

(k'i ~ A i ) = 0 , (k'3 - A 3) =  — V -  ( k i - A , ) ,  (2.50)
sin (s)

respectively.

Note that the periodic plane wave solution is exactly the same as the so­
lution we have here; the only difference is that k\ is real.
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The electrom agnetic field for I2a(i)

The electromagnetic field tensor is given by (2.32). The values for A 2, A 3 

and A 4 are given in terms of Ai  and the k's as in (2.48) and (2.50). Now by 
substituting these values in equation (2.32), giving

„  /  COS(s) _ - \ ,
F12 — — ( ——/ r d\ +  d2 J A i ,v sin(s) '

F\z — ( —— d\ — 8 3 }  A i ,v sm(s) '
Fu  — — d4 A i ,

^ 2 3  =  ( d2 +  d3 ) A ,  ,v sm (5 ) sin (s) '
_  cos(5 )

-C24 — “ —7~\ 0 4 ,sm (s)

T34 =  ——r-T d4 A\  .
sm (5 )

The idea now is find out what the zero current equation (2.33) will give us. 

For v = 1,

sin (s) (d\ + d l ~  dl -  d\) Ai +

(<93 +  cos (s) d2 — sin (s) <9i) d\ A\  = 0 .  (2.51)

For v = 2,

cos (s) (d\ +  dl — dl — dl) A\ —

^ 3  +  cos (s) d2 — sin (5) <92 j4i = 0 .  (2.52)

For v — 3,

[dl + d l - d l - d l ) A i  +

(dz +  cos (s) d2 — sin (5 ) <9i) <93 A\ = 0. (2.53)
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For v =  4,

($ 3  +  cos (s) d2 — sin (s) <9i) 8 4  A\  =  0. (2.54)

The last four equations imply another equation, which is given by

(<93 +  cos (s) d2 — sin (s) Ai = 0. (2.55)

Similarly under the given assumption for Ai  (2.6), by substituting this value
for Ai  in equation (2.55),

I/3 +  cos (s) L 2 — sin (s) L\ — 0.

By using the result given by (2.56) in equation (2.51), it becomes

L\ + L\ -  L % -  L\ = 0.

Now by substituting equation (2.56) in equation (2.57), it gives 

L4 =  ±  ( cos (s) Li +  sin (s) L 2 j .

Finally we could write Ai  as

Ai = M  sin ( x 1 +  x 3 sin (s) ±  x 4 cos (s) L\ +  

x 1 — x 3 cos (s) ±  x 4 sin (s) L 2 ) .

Now by substituting this value for A\  in the electromagnetic field,

F 12 =  —M  ( ^ 4  Li +  L 2 ) cos (L • X ) ,
\ sin l.?i /

F 13 =  M

sin (s)

cos (s) 
sin (s)

( cos (s) Li +  sin (5 )  L2 ) cos (L • X ) ,

F14 =  M  ( cos (s) Li +  sin (s) L 2 ) cos (L • X ) ,

F23 =  Af ( cos (s) Li +  sin (s) L 2 j cos (L • X ) ,

F24 =  i  M
cos(s) 
sin (s )

( cos (s) Li +  sin (s) L2) cos (L • X ) ,

(2.56)

(2.57)

(2.58)

(2.59)

-F34 =  T  M  . \  ( cos (s) Li +  sin (s) L2 ) cos (L ■ X ) . (2.60)
sm (s) v '
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I2a(ii)) For sin (s) =  0, this implies that s = ± 7r. N ow by substituting this 
value for s in the equations (2.45) and (2.46), they become

k'i cos(s) =  0 , so k'i = 0 , (2.61)

(k[ — Ai)  cos(s) =  0 , so (k[ — Ai) = 0 , (2.62)

respectively. By putting k'i =  0 in the equations (2.17) and (2.19), we get

k'i =  0 , k'i = -  k' i , (2.63)

respectively. Similarly by putting (k[ — A\) = 0  in the equations (2.16) and 
(2.18), we get

(K  — A^) =  0 , (kr3 — j43) =  — (k '2 — A 2 ) , (2.64)

respectively.

Note that the periodic plane wave solution is exactly the same as the so­
lution we have here; the only difference is that &2 is real.

T h e  e lectrom agnetic  field for I2a(ii)

The electromagnetic field tensor is given by (2.32). Now by substituting the 
values for A 2 , ^ 3 , A 4 and Ai we have from (2.62) and (2.64) in equation
(2.32), giving

F 12 =  d\ A 2 ,

F13 = — d\ A2,
F 1 4  =  0 ,

T23 =  — ($2 + $3 ) A 2 , 
F24 =  — 84 A 2 ,
F 34  =  84 A 2 .

The idea now is find out what the zero current equation (2.33) gives us.

For v = 1 ,

8 \ {8 2  +  $3 ) A 2 = 0. (2.65)



The plane wave solutions 42

For v =  2,

(d2 +  dl -  dj -  d\) Ai -  d2 (d2 + d$) A 2 =  0. (2.66)

For v = 3,

(<92 +  dl — $3 — <92) Ai +  ^3 (^2  +  $3 ) A 2 =  0. (2.67)

For v = 4,

<̂ 4 (<^2 +  $3 ) A 2 = 0. (2.68)

Now by subtracting the equations (2.66) and (2.67), we have

(d2 +  $3 ) 2 A 2 = 0 .  (2.69)

Under the given assumption for A 2 (2.7), by substituting this value for A 2 in 
equation (2.69), it gives

L 2 +  L 3 = 0 .  (2.70)

By using this last result equation (2.66) becomes

L \ - L \  =  0 so L4 =  ± Z q . (2.71)

Finally we could write 4̂2 as

A 2 = N  sin (^Li(xl ±  x4) +  L 2 (x2 — x 3) +  r )  . (2.72)

Now by substituting this value for A 2 in the electromagnetic field, we get 

F 12 =  N  Li cos (^Li(xl ±  x4) +  L2(x2 — a:3) +  r )  ,

Fi3 =  — N  Li cos (^Li(xl ±  a:4) +  L2 (x2 — a:3) +  r ) ,

F 14 =  0  , F 14 =  0 ,

F24 = T  N  Li cos i^Li{xl ±  x4) +  L 2 (x2 — x3) +  r ) ,

F34 =  ± 77L i cos^Lifa : 1 ±  x4) +  L2 (x2 — x3) +  r'j . (2.73)
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I 2 b) W h en  t = —s +  2 n7r, for this value of t the equations (2.24) and (2.25) 
give

k" cos (s) =  0 , /c" sin (s) =  0, (2-74)

respectively, so k” = 0. Then the equations (2.17) and (2.19) become

k'i =  — k '2 sin (s) , k'i = — k2 cos ( s ) , (2.75)

respectively. Similarly equations (2.26) and (2.27) give us

k [ - A l = 0. (2.76)

Then by using this last result the equations (2.16) and (2.18) become

(k4 -  A 4 ) =  - ( k 2 -  A 2) sin (s), (2.77)

(&3 -  A 3 ) = -  (k '2 — A 2) cos ( s ) , (2.78)

respectively.

Note that the periodic plane wave solution is exactly the same as the so­
lution we have here, the only difference is that /c2 is real.

T h e  e lec trom agnetic  field for (I2b)

The electromagnetic field tensor is given by (2.32). Now by substituting the 
values for A 2, ^ 3 , A 4 and Ai  we have from (2.77) and (2.78) in equation
(2.32), giving

F 12 — d\ A  2 ,

F l3 = -  cos (s) di A 2 ,

F u  = — sin (5) d  1 A 2 ,

F 23 = -  (c o s  ( s ) d 2 +  53) A 2

II■'3* 
r ^ -  (  sin (s) d2 +  d±) A 2

II ( cos (s) d4 — sin (5) dr
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The idea now is find out what the zero current equation (2.33) will give us. 

For v =  1,

di ( d2 +  8 3  cos (5 ) +  8 4  sin ( s ) ) A 2 =  0. (2.79)

For v = 2,

(a2, + dl -  al -  aj) a 2 -

d2 (^d2 +  8 3  cos (s) +  8 4  sin ( s ) ) A 2 = 0 .  (2.80)

For v =  3,

cos (s) (<9i +  $2 — dl — 8 \)  A 2 +

8 3  ( d2 +  8 3  cos (5 ) +  8 4  sin (s ) ) A 2 =  0. (2.81)

For v =  4,

sin (5) ( d \  +  d \ - d \ -  8 % )  A 2 +

8 4  ( d 2 +  8 3  cos (s) +  8 4  sin (s )) A 2 =  0. (2.82)

The last three equations imply another equation, which is given by

( d 2  + 8 3  cos (s) +  8 4  sin ( s ) ) U 2 =  0. (2.83)

Under the given assumption for A 2 (2.7), by substituting this value for A 2 in 
equation (2.83), it gives

L 2 +  L 3 cos (s) +  L 4 sin (5 ) =  0 . (2.84)

By using equation (2.84) in equation (2.80), we get

L\  +  L\ -  L\ -  L\  =  0. (2.85)

Now if we substitute equation (2.84) in equation (2.85), it becomes

Li = ±  (Z/4 cos (s) — L 3 sin (s ) ) . (2.86)
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Finally we could write A 2 as

A 2 = N  sin ( [x3 =F %l sin (s) — x2 cos (s)] F3

+[x4 ±  x 1 cos (s) — x 2 sin (s)]L4 +  r )  . (2.87)

Now by substituting this value for A 2 in the electromagnetic field, we get

F 12 =  ± N  (L± cos (s) — L3 sin (5 ) ) cos (L • X  +  r ) ,

F \3 =  AT (L4 cos (s) — L3 sin (s ) )  cos (s) cos (L - X  +  r ) ,

Fi4 =  A7" (L4 cos (s) — L3 sin (5 ) ) sin (s) cos (L - X  +  r ) ,

F23 =  N  sin (s)( cos (s) L4 — sin (s) L3) cos (L - X  +  r ) ,

F24 =  -  A7" (L2 sin (s) +  L4) j42 ,

F34 =  A7" ( cos (s) F4 — sin (s) F3 ) cos (L ■ X  +  r ) . (2.88)

2.2.2 The plane wave solutions, case (II) :

In this case we have ipo = where c and d are complex constants. Then

/ 0 \
0
c

V d )
the equations (2.4) and (2.5) become

d d
(i kA — /c3)  (z k\ +  k2) = (z A 4 — A 3 )  (z A\  +  A 2) , (2.89)

c c

— (k2 — i k\) +  (/c3 +  z kA) — — (A2 — i A\)  +  (A3 +  z A4) , (2.90)

respectively. We know that c and d are any non zero complex numbers. We 
set c = R\e161 and d = R 2eld2, where R\  and R 2 are positive real numbers, 
and 9\ and 02 are real numbers. Define A =  R \ / R 2 and (j) = 61 — 6 2. By
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substituting these values for c and d in the equations (2.89) and (2.90), they 
become

(i &4 — k3) — - e ^  {i k\ -f- k2) =  (2A 4 — A 3) — - e %<̂ (iA\  +  A 2 ) , (2.91)
A A

A e*̂  [k2 — i k\) (^3  -f- i k4) =  A e^  (.A2 — 2^ 1) -h (-^.3 d* -̂ 4̂) • (2.92)

Now by multiplying (2.91) by A2 and adding the result to (2.92), giving

(1 — A2)(/c3 — ^ 3) +  i(l +  A2)(A:4 — A 4 ) +
2 i \sm(j)(k2 — A 2) — 2 iX cos <j>{k\ — j4i) =  0 . (2.93)

Similarly by multiplying (2.91) by A2 and subtracting the result from (2.92), 
giving

(1 +  A2)(/C3 — A 3 ) +  2(1 — A2) (&4 — A 4 ) +
2X cos (f)(k2 — A 2) d- 2 A sin <p(ki — Ai) = 0 . (2.94)

We know that <f> and AM are real for // =  1, • • • ,4, and kj are complex numbers 
for j  = 1, • • • ,4. We set kj = kj +  ik", so each of the last two equations will 
spilt into two equations, where one comes from the real part and the other 
comes from the imaginary part. Let us start with equation (2.93), which give 
us the following:

(1 -  A2) k3 +  (1 +  A2) (fcj — A 4 ) +
2 A (k '2 — A 2) sin 4> — 2 A (k[ — A{) cos (p = 0 , (2.95)

(1 -  A2)(/cg -  A3) - ( I d -  A2)/c" -  2A k '2 s in 0 +  2A k” cos(p =  0. (2.96)

From equation (2.94),

(1 +  A2) (k '3 — A 3) — (1 — A2) k'l d-
2 A (k '2 — A 2) c o s  4> +  2 A (k[ — A\) s i n  (f) = 0, (2.97)

(1 — A2)(&4 — j44) +  (1 +  A2)/C3 +  2A k '2 cos</> +  2Ak'{ s in <j) = 0. (2.98)
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We can solve the last four equations by considering the following: 

i n )  For 1 — A2 7̂  0, so we can write the equations (2.96) and (2.98) as

(k '3 -  j43) =  ( 1 ) K  +  ( 1 _ '^ '2) K  sin<^

2 \
- ( y (2. 99)

(k\ -  M )  =  -  ( r ^ )  K  W

o \
-  ( ^- - -̂2 ) k" s in^- (2.100)

Now by using the equations (2.99) and (2.100) in the equations (2.97) and
(2.95) respectively, they become

+  [k'2 — A 2 ) cos<fi +  (k[ — Ai)  s in (f) =  0 , (2 .1 0 1 )

— (k '2 — A 2) sin <fi + (k[ — Ai) cos (fi =  0. (2.102)

We can simplify the last two equations and that by multiplying (2.101) by
cos (p and (2.102) by sin0, by subtracting the results

1 1 \2 2 \
(fc' -  A 2) =  ( Tf ^ )  k'[ -  ( T- ^ )  (k1:coS<j>- k " s in 0 ) . (2.103)

Similarly by multiplying (2.101) by sin</> and (2.102) by cos 0, by adding the 
results

1 1 \2 2A
(k[ -  A,)  =  -  ( r f _ )  k'i -  ( r - ^ )  (k'i sin +  fc" cos f t  . (2.104)
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As a result all the information in this case are given by (2.99), (2.100), (2.103) 
and (2.104). The vector potential is constant as shown, this means that the 
electromagnetic field is vanishing.

Note that the periodic plane wave solution is exactly the same as the so­
lution we have here, the only difference is that the wave vector k is real.

1 1 2 ) For 1 — A2 =  0, so that A =  ± 1 . But we know that R\ and R 2 are 
both positive and real numbers. This means that the only valid possibility 
here is that A =  1 . By substituting this value for A in the equations (2.95),
(2.96), (2.97) and (2.98), they become

(k'A — A 4 ) +  ik^ — A 2 ) s in 4> — (k[ — A\) cos<fi = 0 , (2.105)

k'l +  k '2 sin (f) — k" cos <f> = 0 , (2.106)

(fcj — A3) +  {k'2 — A 2 ) cos(j> +  {k[ — Ai)  s in<f> =  0, (2.107)

/C3 -I- k2 cos 4>+ k” sin <fi = 0 . (2.108)

Note that the periodic plane wave solution is exactly the same as the solution 
we have here; the only difference is that ki and k2 are real.

T he  e lectrom agnetic  field for case (112)

The electromagnetic field tensor is given by (2.32). Now by substituting the 
values for As and A 4 we have from (2.105) and (2.107) in equation (2.32),
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giv ing

Fn =  d \ A 2 — d2 A 1 ,

F 13 =  — cos (f)di A 2 — sin <f>diAi — d3 A \ ,

F \ a  = — sin05iA 2 +  c o s c j ) d i A i  — 84 A i ,

F23 =  — cos 4>d2 A 2 — sin $ 8 2  A i  — d3 A 2 ,

F24 =  — sin <fi 8 2  A 2 +  cos </> 8 2  A \  — 8 4  A 2 ,

F 3 4  =  — sin (p d3 A 2 H- cos (j> d3 A i  cos <j>84 A 2 +  sin <j> 84 A i .

The idea now is find  ou t w hat the zero cu rren t equation (2.33) w il l give us.

For 1/  = 1,

(d\ +  8 \  -  d l  -  8l)  Ai  -  (d2 +  cos0<93  +  sin0<94 )<9i A 2

— (81 +  sin (j)d3 — cos (f) 84)81 A\ =  0 (.2.109)

For v = 2,

(di + 8 \ - 8 \ -  dl)  A 2 — (82 +  cos (f>83 +  sin (f> 8 4 ) 8 2  A 2

— (81 +sin(fid3 — cos (j) 84)82 A\ =  0 (2.110)

For v = 3,

sin 4 >((8 \ +  d l — d l  — dl)  Ai  +  (<9i +  sin 4>83 — cos <f> <94 )<93 +

cos ( f ) ( 8 l  +  d l —  d l —  dl)  A 2 + (d2 + cos <j)d3 + s i n  ( { > 8 4 ) 83A 2 = 0  (2.111) 

For v =  4,

sin <f>((d\ d l  — d l  — dl) A 2 +  (8i +  sin <j>83 — cos 4> <94 )<94 j4 i — 

cos<f)(8 l +  dl — dl — dl) A\  +  (d2 +  cos(f)d3 +  sin</><94)<94,42 = 0  (2.112)
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Now by multiplying equation (2.109) by sin</> and equation (2.110) by cos (ft, 
and then subtracting the results from equation (2.111),

(d2 +  cos +  s in ^ 5 4)(sin(/)<9i +  cos(ftd2 + d3) A 2 +

(di +  sin (j>83 — cos 0 ^ 4)(sin +  cos(ftd2 +  <93) Ai  =  0. (2.113)

Similarly by multiplying equation (2.109) by cos (ft and equation (2.110) by 
sin^, and then subtracting the results from equation (2.112),

(<92 +  cos (ft d3 +  sin (ft <94)(cos (ftdi — sin (ft 82 — 84) A 2 +

(81 +  sin (ft 83 — cos(ft84)(cos(ft8i — sin(ft82 — 84) Ai = 0. (2.114)

In this case A 2 is not determined by A\,  so under the assumptions for A\  
and j42 given by (2.6) and (2.7) respectively, we find by substituting these 
values for Ai  and 4̂2 in the equations (2.113) and (2.114), that

TV sin (L • X  +  r)  (L2 +  cos (ft L 3 4- sin (ft L4) +  M  sin (L  • X ) (Li +

respectively. The last two equations include two main cases which are :

II2a) If we have the following :

sin (ft — cos <ft L 4 )  (sin(ftLi +  cos(ftL2 +  L3) = 0 ,  (2.115)

TV sin (jj • X  +  r)  (L2 +  cos (ft L3 +  sin (ft L4) +  M  sin (L • (L\ -f

sin^>L3 — c o s < ^ L 4 ) J(cos0Li — sin</>L2 — L4) = 0 ,  (2.116)

sin^Li +  cos(ftL2 +  L 3 =  0 ,

cos(ftLi ~  s ’m(ft L 2 — L4 =  0 , 

then we can write Ai  and A 2 as

Ai =  M  sin (x 1 Li  +  x 2 L 2 — x3[sin^Li +  cos(ftL2]

A 2 =  N  sin ( x l Li  +  x 2 L2 — x3[sin0 Li +  cos(ftL2\

+ x 4[cos(ftLi — sin<^L2] +  r) . (2 .1 1 7 )
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The electromagnetic field is given by

F \2  = N  cos (L • X  +  r) h  -  M  cos (L • X )  L 2 ,

F i3 =  — cos (ft N  cos (l/ • X  + r̂ j Li — M  cos (L • X ) L2

F14 =  sin 0 N  cos (L - X  +  r) Li — M  cos [L ■ X^j L 2 , 

F23 =  sin<)> N  cos (L • X  + r̂ j Li — M  cos (L • L2 , 

jF24 =  cos eft N  cos [L • X  + rj Li — M  cos (L • x ' j  L 2 

F34 =  N  cos (L • X  +  r) Li — M  cos (L • X ) L 2 . (2.118)

II2b ) If we have

sin {L - X^j N  cos (r)(L2 +  cos(ftL3 +  sin (ftL^)+

+M  (Li +  sin(ftL3 — cos</>Z/4 ) 

cos (L • X') JiV sin (r)(L2 +  cos (ft L 3 + s in 0 L 4) j

The last equation can be written as two equations as

N  cos (r)(L2 +  cos0Z/3 +  sin (ftL^) +

M  (Li +  sin (ft L3 — cos (ft L4) =  0, 

F ” sin (r)(L2 +  cos 0 L 3 +  sin 0 L 4) = 0 .

=  0

(2.119)

(2 .120)

By multiplying equation (2.119) by sin (r) and equation (2.120) by cos(r), 
and then subtracting the results,

M  sin(r) (Li + sin.(ft L 3 — cos(ft L 4 ) =  0 (2 .121 )
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There are many possibilities included in the equations (2.120) and (2.121). 
Next we will consider the most general possibilities, which include the others 
as special cases.

I I 2 b(i)) If we have

Z/2 =  — (cos 0 1 /3  +  sin^Z/4) and

L\ — cos (p Z/4 — sin (p L3 , 

then we can write A\  and A 2 as

A\ =  M  sin ( x 1 (cos (j) L 4 — sin (p L 3 ) — x 2 (cos (f) L% + sin (f) L 4 )

(2 .122)

The electromagnetic field is given by

— cos <p N  cos {L • X  +  r) (cos (p L 4 — sin (p L3

F \4  = — sin <p N  cos (jj • X  +  r)  (cos <p L 4 — sin <p L3

F23 =  sin (p N  cos [L • X  +  r) (cos (p L 4 — sin (p L3
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F24 —

^34  —

— cos (p N  cos (L • X  + r j  (cos (p L 4 — sin cp L3 

+ M  cos (L • X ) (cos (p L3 +  sin <p L4) ,

N  cos [L • X  +  r)  (cos (p L 4 — sin <p L3 

+ M  cos (L • X ) (cos 0 L 3 +  s'm(pL4 ) . (2.123)

II2 b ( ii) ) If sin (r) =  0,

this means that r  =  n n , and then equation (2.119) becomes

M  (Li +  sin (p L3 — cos (pL 4 )  ±  A7” (L2 +  cos <pL3 +  sin (p L4) =  0.

By allowing Ar to be positive or negative, we can write the last equation as

(L\ +  s in ^ L 3 — cos(pL4 )
N  = - M  , T ^ r , •

(L2 +  cos (pLs +  smcpL4 )

Now by substituting this value for N  in equation (2.109), it becomes

(2.124)

L 4 = L\  + L I - L I .

Then we can write A\  and A 2 as

(2.125)

A\ = M  sin (x1 L\ +  x2 L 2 +  x3 L3 ±  x4 y L\  +  — L 3) ,

(Li +  sin<T!)L3 — cos (pL4)
Ao = — M

(L2 +  cos (pLs +  s in 0 L 4) 

x 2 L 2 + x 3 Ls ±  x 4 yjL\ + L \ -  L§) .

sin (x1 L ,+

(2.126)



The plane wave solutions 54

The electromagnetic field is given by

Fu  = - M  cos (L - X )  [L2 + L ^
Li  +  sin 0  Z/3 — cos (ft L4 

L 2 +  cos0 L3 +  sin 0 L4

L i +  sin 0  L3 — cos 0  Z/4j - i  A / f  / r  y U r  /  = > 1 1 1  (p L*i ~  C O S  (p \Fn  = M  cos [L - X  ) L A - ——------------ . ■ 1
'  ' L v L2 -f cos 0 L3 +  sin (ft L4 '

-  Li  sin 0 -  L3 ] ,

F 14 =  M  cos ( L - X )  Li s in0 ( 

+  L\  cos (ft — L4

L\ +  sin 0  L3 — cos <ft L4 

L2 +  cosftLs  +  sin</>L4

F23 =  M  cos (L • X  ) L2 cos </>(
Li +  sin (ft L3 — cos <ft L 4 \ 
L2 +  cosfpLz +  s in 0 L 4 '

— Lo sin (ft +  L3 (
Li +  sin 0 L3 — cos (ft L4 

L2 +  cos (ft + sin (ft L4 )]

F24 =  M c o s ( L - X )  L 2 s m 0 (-—  -------— — ■—
v '  ' L2 T cos 0 L 3 +  sm</> / - y

/ Li +  sin <ft Li  — cos 0  L4 \ -1 
+  L2 cos (ft +  L4 ( y—  -------— — -—  ) ,

\  / ,r. 4 - rnQ m  4 - s in  m I ,a /  -I

Li +  sin (ft Li  — cos (ft L 4 

L 2 +  cos (ft Li  +  sin 0 L 4 

L\  +  s\n(ftLi — cos (ft L4 

L2 +  cos0 L3 +  sin 0 L4

Li +  s\n(ftLi — cos(ftL4 

L 2 +  cos (ft Li  +  s in 0 L 4 

Li +  sin (ftLi— cos (ft L4

L34 = M  c o s  (L • Li  s in  0^

/  L i  -f- s in  (ft Li — c u s  (p ±j4 \
-  L 4 c o s  0   -----------------— ----------- ;— — —

VL 2 +  c o s  0  L 3 +  s i n 0 L 4 /

+ L 3 c o s  (ft +  L 4  s in  <ft , 

w h e r e  t h e  v e c t o r  L  s a t i s f i e s

L4 =  ±yjL\  + L l - L \ .

(2.127)

then A\  and are vanishing. This means that A 3 and A 4 are constants,
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given by

As = k '3 +  k '2 cos <j> +  k[ sin 4>,

A 4 =  /C4 +  &2 sin 0  — cos (f) . (2.128)

The electromagnetic field is vanishing.

2.3 Superposition of the currentless spinors
If we had a linear equation for tJj, we could super-impose solutions to get new 
solutions. The complication is that the spinors are connected back to the 
electromagnetic field by the equation for the current. This means that the 
whole system of the spinors and the electromagnetic field is nonlinear. Even 
in the zero current case, the zero current spinors do not form a vector space, 
so it is not possible to add any two solutions of the Dirac equation and get 
another zero current spinor solution. The idea in this section is to try to 
see when a limited version of superposition does hold, that is when the sum 
of zero current spinors is still zero current. We consider the case of adding 
currenless constants spinors, and find the conditions for the sum to be zero 
current. For the case of functions, we can do the superposition provided the 
values of the two fields at any given point satisfy the conditions.

Proposition (2.2):

The cases where the sum of two currentless spinors is another currentless 
spinor are given by the following:

In general if ip then the conditions for ip to be currentless are

given by

ad  + cb - 0 , a c +  db = 0 . (2.129)
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Case I):

Consider the following addition

/ ai
di el SI

i a i T i e ^ Sl ^ +

 ̂ ia\  r\ e ^ Sl+td j

Ci2 

a2 eIS2

i a 2 r2 e ^ S2 1̂
 ̂ i a 2 r2 e ^ S2+t2>) y

where s* and t{ are real constants, r* is a non zero real constant, and a* is 
a complex constant for i = 1,2. This spinor will be currentless and satisfy 
the conditions (2.129), if and only if

I I )  For r2 e ^ S2+t2) — r\ ^  0, we have

Ci2 d \  — a 2 di
( g2(S2~̂ 2) _ T’j e^ S2

12) For r2 e ^ S2+t2̂ — r\ el ^S2 2 Ŝl =  0, we set a2 = a\ R e lX, where R  > 0 
and A e  1 . There are two possibilities:

I2a) A =  |  ( si -  s2 ),
s2 — S\ — t\ — t2 =  2 nir , n G N , 

r2 = ±  r i .

I2b) s2 =  Si +  2nn , n G N , 

^2 =  +  2 m 7T, m  £ N ,
r 2 =  ± r i  .

Case II):

i n )  Add any spinor of the form

/ 1 \
a, where s and t are realir e ^ s ^

 ̂ ir e ^ s+t  ̂ y
constants, r is a non zero real constant, and a is a complex constant, to
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any spinor of the form

/ 0 \ 
0
c

V d j

, where c and d are complex constants. Then

the resultant spinor will be a currentless spinor and satisfy the conditions
(2.129), if and only if

d = ce c =  a R e 16 and 0 = -  (s — A ±  7r),
1

where R , A and 9 are real constants, and R > 0.

/ 1 \
A s

112) Add any spinor of the form a, where s and t are real
i r  e l2 ( s  *)

 ̂ ir e ^ s+^ J
constants, r is a non zero real constant, and a is a complex constant, to any 

/  c \  
d ", where c and d are complex numbers. Then the re-spinor of the form

sultant spinor will be a currentless spinor and satisfy the conditions (2.129), 
if and only if

a = d R e lX , d = c L e %e and L = ±  R ,

A - f S + #  =  7l7r, 77. € N ,

where R , A and 0 are real constants, and R > 0.

Case III):

III1 ) If we add any two spinors of the form

(  a \  
b 
0

V 0 J
, or of the form

( 0 \ 
0
c

\ d  J
then the resultant spinor will be trivially currentless, where a, 5, c and d are 
any complex constants.
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III2 ) If we add any spinor of the form

/  a \  
b 
0 

V  0

to any spinor of the form

, where a, b, c and d are any complex constants, then the resultant

/ 0 \
0
c

V d /
spinor will be a currentless spinor and satisfy the conditions (2.129), if and 
only if

III2a) c = d — 0,

III2b ) a = b = o,

III2c) b = a eis , c = a i r e ^ s~^ , d = a i r e ^ s+t^,

where t and s are real constants, r  is a non zero real constant.

From now until the end of this section we are going to prove the super­
position of the currentless spinors for each case.

2.3.1 Superposition of currentless spinors, case(I)
/ 1 \

Let ip be of the form a, where s and t are real constants andi r e 2(s ^
 ̂ ir e ^ s+^ j

r is a non zero constant, and a is any complex constant. Then we can add 
any twro spinors of this form to get

/
3IS1

\  I

CL\ +

\
?IS 2

ir2 e 
y ir2 e ^ S2+t2̂ j

a2
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(  d \  +  d 2 ^

aielSl +  a2elS2 

i(ai 7*1 ef -f a2 r 2 e ^ S2~t2̂ )
\  i(ai ri e ^ Sl+tl  ̂+  a2 r 2 ef(S2+f2)) y

Now by substituting this resultant spinor in the two conditions given by
(2.129), giving

&2 ai (r2 e 2^ 2+t2) — n  j =

- a i m  (n e S (ai+tl) -  r2 eiisi~ ^ S2~t2)) , (2.130)

a i (^2  e ^ S2~t2̂ — n  el{S2~ ^ Sl+tl)  ̂ =

- a i a i  ( r ie ^ (si_fl) -  r 2 ei(si~^(s2+t2)) , (2.131) 

respectively. The last two equations contain two possibilities, given by

11) If 7*2 e ^ S2+t2) — r\ el(s2-^(si-*i) o,

Then we could write (2.130) as

,r _ P%(*i+ti) _  Vr. Pi(si-±(s2- t2)
a2al  =  - a i m  ( J - T 7------:-----— ;-----n r) • (2.132)V 2 e2(S2+t2) _  el(S2~ 2 (sl~tl) ^

This value for a2 ai, also satisfies equation (2.131).

12) If r2 e ^ S2+t2) -  n e i(s2~^(5l~fl) =  0,

then we have

r2 =  r.i e i(^-5i-f2+ ti)> (2.133)

But since r\ and r 2 are non zero real constants, then

-  ( s2 — si — t 2 +  t i ) = m r, where n E N. (2.134)

Now by using (2.133) equation (2.131) becomes

— ( ei Ŝ2~t2~ ^ 8x~t^  — e*^2-^(Sl+ti) ) =  
a\ '  '

-  =  _  ei (i(«i+*i)-*2) N # (2.135)
ai ' '
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If we set a,2 /a>i = R e lX, where R  > 0 and A is real, then we can write 
equation (2.135) as

^(Sl+*l)-t2) _  £§(si-tl)
) ■

_  ̂  ̂ f ̂  1 “ ̂ 1 \ <•By multiplying both sides in the last equation by eH 2 \  it becomes

e2i\ ^ ei(S2- t2) _  ei(s2-ti)  ̂ _  ^e*(ai-t2) _  gZ(si-ii)^

Now by using (2.134) the last equation becomes

,t(S2-«l) \ _  ( J{si-t2)e2i\  ̂gi(si-ti)

and on multiplying both sides by e '^1 ‘l\
e2iA(i _  ei(«-«i)^ =  ^ ei(ii-t2) _  ^

Again by using (2.134) the last equation becomes

e2iA(l _ ei(«-Sl>) = (e<(»l-*2> _ O . (2.136)

There are two solutions for equation (2.136) which we denote by /2a) and 
1 2 b) :

1
A — -  ( Si -  s2 ) •I2a)

Then from equation (2.134),

t\ — t -2 = 2 A +  2 n n , 

where n G N. Finally from equation (2.133),

r2 =  ± n  .

(2.137)

(2.138)

(2.139)

Therefore the resultant spinor can be written as, remembering that we al­
lowed r\ to be positive or negative :

( 1 +  R e ^ Sl s ) 
eiSl (1 +  R e ^ 82~8l)) 

iTl e%(si~h) f 1 R e ^ Sx~S2)

 ̂ ?ri e ^ Sl+tl^  1 +  R e ^ S2~Sl^  j

ax, (2.140)
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where s* and ti are real constants for i = 1,2, R  and ri are non zero real 
constants, and ai is a complex constant.

I2b) s2 =  Si +  2wr, (2.141)

where n G N. Then from equation (2.134),

t2 =  ii +  2m7r. (2.142)

Similarly from equation (2.133),

r 2 =  ± n  . (2.143)

Therefore the result can be written as, remembering that we allowed r\ to 
be positive or negative :

(  1 \
3ZS1

iTl e 2 Ŝl *d 
 ̂ iri e ^ s'i+t^  y

 ̂1 +  R  ei  ̂ <̂2 i , (2.144)

where si and t\ are real constants, R  and r\ are non zero real constants, and 
a\ is a complex constant.

2.3.2 Superposition of currentless spinors, case(II)
In this part we are going to add two different forms of currentless spinors.

I l l )  We add any spinor of the form

( 1 \
eis 

ir e 2 ŝ_b 
y ir e ^ s+d j

a , where s and t are real

constants, r  is a non zero constant, and a is any complex constant, to any 
/ 0 \

^ 1, where c and d are any complex numbers. Thenspinor of the form c
V d J

the resultant spinor will be a currentless spinor, if it satisfies the conditions 
given by (2.129). Then

ad  =  — els ac, (2.145)
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ac = — els a d . (2.146)

By multiplying equation (2.145) by d and equation (2.146) by c, subtracting 
the results

cc = dd (2.147)

We set d =  elX c, where A G M. Then by substituting this value for d in 
equation (2.145), it becomes

a c e lX = — els ac.

Similarly we set c = a R e 19 , where R  > 0 and 6  G 
this value for c in the equation (2.148), it becomes

(2.148)

Now by substituting

eid = — e~id ei('s~x^

and we can write this last equation as

gi6   g i( s—\ + n —8+2mv) ( n  € N ) .

By comparing both sides in the last equation,

6  = (2n +  l ) |  +

(2.149)

(2.150)

Now by allowing R  to be positive or negative, we can write the values for c 
and d as

c = i R a e ^ 3 A), 
d =  i R a e 2 Ŝ+A) .

Finally the resultant spinor can be written as

(2.151)

/ 1

i(r e 2 ŝ 6 _|_ R e ^ s A)) 
y i ( r e ^ s + b  - f  R e f ( s+ A))  y

a , (2.152)

where s and t are real constants, R  and r are non zero real constants, and a 
is a complex constant.
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112) We add any spinor of the form

f 1
o is

\

a, where s and t arei r e 2(s d 
 ̂ ir e ^ s+t>) )

real constants, r  is a non zero constant, and a is any complex number, to
/  c \

^ ‘ , where c and d are complex. Then the resul-any spinor of the form 0
V  0  )

tant spinor will be a currentless spinor, if it satisfies the conditions given by
(2.129). Now by using the resultant spinor in the two conditions given by
(2.129), both of them will give just one equation which is

ad  =  els ac.

We set

a =  d R e iX and a — c L e ih

(2.153)

(2.154)

where A and h are real constants, and R  and L are non zero constants. Now 
by substituting these in equation (2.155), it becomes

L  =  R e i{x+s+h).

Since R  and L are non zero real constants, we have

A +  s +  h =  mr ( 77. £ N ), 

so L = ± R .  Finally we can write the resultant spinor as

(2.155)

(2.156)

( ( L e ih +  1) ^
ei{s+h\ L +  eih) 
ir L e*^+^ s-th 

 ̂ i r L e i(h+̂ s+t)) )

c, (2.157)

where L, h and 5 are real constants, r is a non zero real constant, and c is 
any complex constant.



Superposition o f the currentless spinors 64

2.3.3 Superposition of currentless spinors, case(III)

III1 ) We add any two spinors of the form

/  a \  
b 
0 

V 0
or two of the form

/ 0 \ 
0
c

V d J
where a, b, c and d are any complex constants. Then the resultant spinor 
will be trivially currentless.

III2 ) We add any spinor of the form

/  a \  
b 
0

V 0 /

to any spinor of the form

( 0 \ 
0
c

\ d  )
where a, 6, c and d are any complex constants. In fact the resultant spinor

(  a \  
bhere is just a general spinor ip = c

\  d J

, and we proved in chapter(l) that

this spinor is a currentless spinor and satisfy the conditions (2.129), if and 
only if

III2a) c = d = 0,

III2b) a = b = 0,

III2c) b = ae ls , c — air  e ? ^ — a i r e ^ s+t\

where t and s are real constants, and r is a non zero constant.



Chapter 3

Lorentz transform ations and 
world lines

3.1 Introduction
In this chapter we find the solutions of the massless Dirac equation in 2 -f 2 
dimensions with certain symmetries.
In section 3.2 we consider the action of the Lorentz group on the spinors 
in M2+2, and then we identify the Lie algebra of this group. Then we give 
the Lie algebra representation described in [9] in the section on relativistic 
covariance (p51-52).
In section 3.3 we find those elements of Lie algebra of the group SO(2,2) that 
fix the lightlike line (t, 0, t, 0) for i £ R, and then we write the correspond­
ing symmetry equations in this case. We are looking for light speed particles 
traveling along the line (t , 0, t ,  0), so we will postulate that (di + ds)^ = iK'ip, 
where K  is 4 x 4 matrix that takes the spinors to the tangent space of the 
spinors. Note that the spinors we are dealing with are the zero current spinors 
we got from chapter 1. Next in this section we consider the action of the 
Lorentz group on the vector potential, and then we write the corresponding 
symmetry equations for the vector potential. At this stage we move to the 
electromagnetic field, and find the zero current equations F ^  =  0). Now 
we use all the information we found previously in this section to write the 
massless Dirac equation in 2 +  2 dimensions with potential A Finally in 
this section we find the solution for the lightlike case, and the corresponding 
vector potential for the electromagnetic field.

65
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Similarly in section 3.4 we find those elements of Lie algebra of the group 
5 0 (2 ,2 ) that fix the timelike line (t, 0,0,0) for t € R,  and then we write the 
corresponding symmetry equations in this case. Here we look for a slower 
than light (massive) particle. Next we consider the action of the Lorentz 
group on the vector potential, and then we write the corresponding symme­
try equations for the vector potential. Similarly at this point we want to 
study the electromagnetic field, and to find the zero current equations. Now 
we use all the information we found previously in this section to write the 
massless Dirac equation in 2 +  2 dimensions with potential A M. Finally in 
this section we find the solution for the timelike case, and the corresponding 
vector potential for the electromagnetic field.

3.2 The action of Lorentz group on spinors
We take the Lorentz group to act on vectors in M2+2 by the formula

where R2+2 is just M4 with the metric gab = d ia g (+ l,+1, —1, —1). The 
condition that the metric gab is preserved is given by

where gab is the identity matrix, h is a small parameter, and tu is an element 
of Lie algebra. By using this in the metric preserving condition, we get

Thus, the Lie algebra consists of anti-symmetric matrices.
The double cover of the Lorentz group acts on the Dirac spinors in the 
following way

x a i— ► Aab x b, (3.1)

9a b A c A d gcd • 

If we move to the Lie algebra, we write

(3.2)

^ab a • (3.3)

H(t/>) =  [7°,76] .V , (3.4)
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where we only give the Lie algebra representation.
The action of the double cover of Lorentz group on spinor valued functions 
in R2+2 is given by

(A ^)(X ) =  AW (A-‘X )). (3.5)

To show that this is an action, let us take another element A#, and 

(A'(A m x )  =  A'((AV-)(A"1X))

=  A'AV>(A_1A' 1̂ ST)) 

=  A' Aip((A'A) ' 1 X )

=  ((A'A) V O W ,

as required. To look for solutions with certain symmetries means specifying 
a subgroup of the Lorentz transformations, and looking for spinor valued 
functions tp which are unchanged or invariant under these Lorentz transfor­
mations, that is

( A tP ) ( X ) =  i>{X).

If we move to the Lie algebra,

A =  1 h uj ,

and
A-1 =  1 — huj .

For A in the subgroup,

A ( # - 'A ) ) = ^ ( X ) ,  

and by differentiating this equation with respect to h ,

u i p { X ) - i p ' { X  ;u>X) =  0,

or
WTp(X) = i p ' ( X \ u X)
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By using equation (3.4) the last equation becomes

■ > P \ X - , u , X )  =  ^ u , a b - { 1a , ' , b} - ' > P -  (3-6)

To consider solutions which might look like particles, we consider the sub­
groups which preserve a lightlike line (for massless particles) and a timelike 
line (for massive particles).

3.3 The lightlike line
The line (t, 0, £, 0) for t real is a lightlike line. Now we are in position to look 
for the elements of the Lie algebra of the group SO(2, 2) that fix this line. 
There are two linearly independent elements which fix the lightlike line, and 
they are given by (i) and (ii) below :

i)

/  0 0 0 0 \
0 0 0 ^
0 0 0 0
0 - 0  0 0 /

, and by acting by the metric ga i, and

. ,c   n c a /b 9  b
( 0

0 0 0 \
0 0 0 0
0 0 0 0

^ 0 & 0 0 )

We can get the Lie group elements that fix the lightlike line from these Lie 
algebra elements by using the exponential map

Exp(tucb) =

(  1 0 0 0 \
0 cosh((3) 0 sinh(/?)
0 0 1 0

V 0 s ’m h ( P )  0 cosh(/?) J

We see that this matrix fixes x l and x3, and that x 2 and x 4 move along a 
hyperbola.
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Now ujcb acts on a point X  like this,

/  x 1 \

LUCb
X 
X3

V X 4 )

( 0 \
X4/?

0
V ]

The differential of ip in the direction u X  is given by

dy
dx 2 ' ~ dxA

Tp'(X;ucbX )  = P(x4^ z  +  x2| ^ ) ,

and by substituting this result in equation (3.6), the first symmetry equation 
in this case is given by

4 dip 2 dip 1 2 4 /

i i )  Uab =

(  0 0  a 0 \
0 0 0 0 

— a  0 0 0
V o  o o o /

and

u cb =

The Lie group element here is given by 

Exp{ujcb) 

a n d  ujcb acts on X  like this,

( 0
0 a 0 ^

0 0 0 0
a 0 0 0

\  o 0 0 0 )

(  cosh(a) 0 sinh(a) 0 V
0 1 0  0

sinh(a) 0 cosh(a) 0
\  0 0 0 1 )

uj b

(  x 1 \  /  x 3a \
x2 I. 0
x3 =

V x 4 /  \ o  J
x la

(3.7)
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The differential of ip in the direction u X  is given by

^ (X M )  = a ( x ^  + x ^ ) .

Now by using equation (3.6), the second symmetry equation in this case is 
given by

3 di/> ,dV> 1 , 3.
X' 9 ?  +  X^  =  27 7 ,/'-

(3.8)

To look for a ‘particle’ traveling on the line (£,0,t , 0), we suppose that 
we have a particularly simple equation for translation along the line, and 
postulate that

dip dip v  +  -HL = iKxp , (3.9)d x l dx 3

where i f  is a 4 x 4 matrix whose entries are functions of x 1 and x 3 only. 
There are three symmetry equations (3.7), (3.8) and (3.9).

3.3.1 The K  matrix and currentless spinors
In this part we want to find the general form for the matrix K  which takes 
the currentless spinors to the tangent space of the currentless spinors. We 
find K  so that ip +  i K i p h  +  0 (h2) is a currentless spinor for all currentless 
spinors ip, i.e.

ip' = i K.ip .

is in the tangent space to the currentless spinors for all ip.

(  1 Nels
Let us take one of the zero current spinors, ip = ^

\  i re 2 (s+b

(3.10)

a, where s

and t are real functions, r is a non zero real function, and a is a complex 
function. We consider a variation in ip, by introducing a rate of change of 
a, r, s and t with respect to a parameter. By using this in (3.10),

t'

f 1 \ / 0 \ (  ° \ / 0 \
0 i aels 0

i re% a'-j- iae%(s~^ r ,Jr =Yare3(s~b s' + ^are^^s~^

\ J V iae i  ŝ+t^ )  ̂ ^ a r e ^ s+0 / V =Yare5 /



Lorentz transformations and world lines 71

= i

(  ku  +  elsk \2  +  i r e 2 ^ - ^/c13 +  ire* ŝ+^/c14 \
&21 +  dlsk22 +  i r e 5 ŝ~^k23 +  i re2 (s+*)/c24
^31 +  els/c32 +  i r e 2 (s-t)/c33 +  i re^ (s+f)/c34

V &41 +  els/c42 +  i re% ^ _^fc43 +  i r e 2 (s+t)fc44 /

a , (3 .H )

where the L.H.S of (3.11) is an element of the tangent space to the zero 
charge spinors at ip. By comparing the two sides in the last equation we can 
write the equations that show the change in a, s, t and r as

1' = i (ku  +  eiski2 +  i r e 2 (s ^/c13 +  % re? (s+^/c14) a , (3.12)

s' — k22 ~  ku  +  ir{e 2 ŝ+t^k23 — e 2 ŝ+t^ki4 )

(e~isk2i -  eiski2) +  i r ( e?  ~  ei (s- t]k13) , (3.13)

f  =  -

r1 \ e ^  ^ k 31 -  e% +  (e* {s+t)k32 ~  e?  {s+t)k42)

+ir(k33 — /C44) +  fr(eif k34 — e il fc43)] , (3-14)

—ir
r = /C22 +  ^11 +  (e %s ^21 +  £ls ^12) d~ 

ir(e=T {s+t)k23 +  {s+t)ku ) +  ir{e?  +  e* (s_<)/ci3)

1 r(e"2i {s~t]k31 +  e2 (s_t)/c42) +  (e* (s+t)/c32 +  (s+t)fc4i)
+  2
+ ^ ( ^ 3 3  +  ^44) +  ir(elt k34 +  e lt /c43) (3.15)

The idea now is to find out the general form for the matrix K  that satisfies 
the equations (3.12)-(3.15) by using the information we have about the other 
variables. As we know that r, s and t are real, from equation (3.13),

&22 ~  &11 E (3.16)

e *s/c2i — ^ sk\2 E  IR V s, (3.17)

e 2 ŝ+t\ i k 23) — e 2 ŝ+t\ i k u ) e l  Vs, i , (3.18)
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e ^ (s~t}(ik24) -  e i ^ i i k u )  G R  Vs,*.

Let first consider equation (3.17), which gives

^21 — ~ ki2 ■

Similarly from (3.18) and (3.19),

k23 — &14 and /u24 =  ^13 5 

respectively. Now from equation (3.14),

ku  — k33 £ R j

 ̂ *^43  — 6*^34  G R V* ,

g— (s-t)(zA:31) — e 2 ŝ_d^/c42) g R  Vs,*,

e ^ 8+t){ikA1) -  e ^ (s+t\ i k 32) G R Vs,*. 

The last three equations give us the following relations

&43 — ~ k 34 , &42 =  &31 and ku = k32 ■ 

Finally equation(3.15) will provide one more relation which is

ku  — k.22 +  k ii — k33 .

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

The form for the K  matrix can be written by using the relations we had 
above as

K  =

kn k \ 2 k \ 3 ku \

—ki2 k22 ku k\3

k3i k32 3̂3 3̂4

&32 3̂1 —k u (k22 +  k\\ — k33) j

(3.28)
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3.3.2 The K  matrix and symmetry
Now we see what matrices K  in (3.9) are consistent with the symmetry 
equations (3.7) and (3.8). By acting by (d\ +  d3) on the first symmetry 
equation (3.7), it becomes

(di +  d3 )(x4 d2 +  x 2 d4)0 =  i(d i  +  d3)7274 0  > 

and we can write the last equation as

(x4 d2 +  x 2 d4)(di +  d3)0 = i q 27 4 (di +  d3) 0 .

By using equation (3.9) the last equation becomes

(x4 d2 +  x2 d4 ) K  0  = ^ 7 274 K  ip.
Zj

Since the matrix K  is independent of x2 and x4, the last equation becomes

K  72q40  =  7274 K  0  . (3.29)

This equation is true for all 0, so that K  commutes with 7274, and this fact 
gives us

k22 = kn  , k33 = k44, (3.30)

k 12 — ki2 , k \4  = k \4  , k32 =  k32 , k34 = k34 , (3.31)

k\3 =  —&i3 , /c3i — —^31 • (3.32)

From (3.30) and by using (3.27) we have k33 = kn , and from equation (3.31)
it follows that ki2, Aq4 , k32 and k34 are real. Finally from (3.32) we deduce 
that k \ 3 and k31 are pure imaginary.

The form for the matrix K  at this stage is given by

( ku k \ 2 k \ 3 k \4  ^
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where k\2 , k\4 , k32 and k34 are real, k \ 3 and k31 are pure imaginary, and kn  
is complex.

Similarly, by acting by {di +  d3) on the second symmetry equation (3.8),

(<9i +  d3 ){x3 di +  x 1 d3)ip =  ^(di  +  d3 ) j xj 3 0 ,

and this equation can be written as

1 . 1 .(x3 d\ + d3 + x 1 d A  +  di + x 3 d A  + x 1 dl)ip =  - 7 173(^i +  d3 )ip, 

and by simplifying this equation it becomes

(x3 di  +  x 1 d3) +  l] {di +  d3) 0  =  i q 173(^i +  ^3 ) 0  •

By using (3.9) in the last equation, it becomes

(x3 di +  x 1 d3) +  1 {Kip) = i q S 3# ip, (3.34)

and this equation can be written as

(x3di +  x 1 d3 )K^ip +  K  (x3di +  x1 d3)ip 

Now by using equation (3.8) in the last equation, it becomes

(x3 d\ +  x 1 <93 )iF] • ip = ^ ( q S 3 -ft — K I 1! 3) • ip — K  - ip.

If we suppose that this equation is true for all ip, then K  satisfies 

(x3 di +  x 1 d3) K  = ^ (q 17 3 K  — K  q ^ 3) — K .

From equation (3.35) we deduce that

(x3di +  x ld3)ku = - k u  , (x3di +  x ld3 )k i2  = - k 12 ,

(3.35)

(x3di +  x 1̂ ) / ^  =  - k 3 4 , (3.36)
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(x3d\ +  x 1ds)ki3 — — &13 ik \4  , (x 3d\ +  x ld^)k \4 — —ik\% — k \4  , (3.37)

(:r3<9i +  ^ ^ 3)^31 — — ̂ 31 +  ^ 3 2  j (x3di + x 1d3 )k32 — —ik^i — ks2 - (3.38)

Next we change variables by

x l (L , J) = J  sinh(L) and x 3 (L , J) = J  cosh(L), 

where L and J  are defined by

L  =  \  ln (^ r r f r )  an d  3  =  ( i x3)2 _  (x ‘)2) 2

Also we define

x 4 (p, q) = q sinh(p) and x 2 (p, q) = q cosh(p),

where p and q are defined by

p =  2 lnC 2 -  and 9 =  ((x2)2 _ (x4)2) 2 '

(3.39)

(3.40)

(3.41)

(3.42)

We can consider these new variables as abstract substitutions, which may 
take complex values, and return to our reality conditions at the end of this 
case (solutions). Alternatively these new variables may be taken to be real 
valued on a subset of space-time, with slightly different substitutions with 
changed signs used on other subsets.

First take equation (3.7) and change variables,

d  1 1 2 4 / (3.43)

Now assume ip to be one of the zero current spinors (1.16), (1.19) or (1.27). 
( 1 \

If we set ip = i r e 2 (s 6 
y i re%

a, where 5 and t are real functions, r is a non
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zero real function, and a is a complex function, substituting this zero current 
spinor in (3.43) gives

d_
dp

( 1
As

i r e  j (S t)

y ire%^s+t^

\ (
f  2 4a  =  -  7 7

1
As

\

i r e 2 (s ^
 ̂ ire% ŝ+t) )

The last equation gives us the following:

d i - i  is
r P loga = Y e '

(3.44)

d_
dp

s =  co s(s) ,

d
=  - C O s ( t ) ,

(3.45)

(3.46)

d —1
—  logr =  —  (sin(s) +  sin(*)) (3.47)

Changing variables in (3.8) gives

(3.48)

/

Similarly by substituting 0  =

1
As

\

i re? (s ^
 ̂ I re f (s+t) j

a in equation (3.48), it becomes
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The last equation gives us the following

d
d L loga = r ' s '

(3.49)

d_
d L

s = — cos(s) (3.50)

d_
d L

t = — cos (t) , (3.51)

d 1
_  logr =  -(sin  (s) -  sin (t )).

Finally change the variables in (3.9) as

z\ =  x 3 +  x 1 and z2 = x 3 — x 1.

Then it becomes

„ d
d Z\

0  = iKip

(3.52)

(3.53)

By using the chain rule we can write (3.53) in the new variables as

n ( d L  d d J  d
(a— +  = l K ^ -d z\ d L d z\ d J

From (3.40) and by using equation (3.48) the last equation becomes

=  { i e L R ~ h
(3.54)

Similarly by substituting -0 =

(  1 \

i r e 2 

 ̂ i re% j

a in equation (3.54), it becomes
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The last equation gives : 

d_ 
d J
—  loga =  teL(kn  +  k n e ,s + ire? ls~t>k i:i

+  i r e i 's+,)fc14) - ^ e “ , (3.55)

d  1 1
- — 5 =  — cos (s) — 2 eL(ki2 cos (s) — r k u  sin ( -  (s +  t)) 
o J  J  v 2

+ir/ci3 c o s ( i  (s -  t))) , (3.56)

TTrt = — eL(ik32 sin ( \ ( s  + t)) + k31 cos ( ^ ( s - t ) )  
o J r v z z

+zr/c34 cos (£)) +  cos ( f ) , (3.57)
xj

Q   I
r = - i r e L(kn  -  kn ) +  ?r2eL/c13s in ( -  (s -  t)) 

o J z
1 7*

+ r 2eL/ci4 cos ( -  (s +  £)) — 7ry(sin (s) — sin (t))
Z ZU

+ eL/c32 cos (^ (s +  £)) -  zeL/c3i sin ( i  (s -  £))

+r/ci2eL sin (s) — reL/c34 sin (£). (3.58)

Now for s . integrating the equations (3.45) and (3.50) give

log (sec (s) +  tan (s)) =  p +  log Ei  (L, J, g ) ,

log (sec (5 ) +  tan (s)) =  - L  +  log E 2 (p, J, 9),

respectively. The last two equations can be written as

log (sec (s) +  tan (s)) =  p — L +  log E(J, q), (3.59)

where E(J,q)  is a function in J  and q. The last equation gives us the values
for sin (s) and cos (s) as

E 2 (J,q) e2̂ ~V -  1
sin(s) =

E 2 {J,q)e2(P~E + 1 ’

2 E(J,q)er~L
C0S(S) =  E ^ e ^ + V  (3 '60)
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Similarly for t , integrating the equations (3.46) and (3.51) give 

log (sec (t) +  tan (£)) = - p  + log D i ( L , J, q ) ,

log (sec (5) +  tan (5)) =  —L +  log D 2 (p, J, q ) , 

respectively. The last two equations can be written as

log (sec (t) +  tan (£)) =  - p  -  L  +  log D(J, q ) , (3.61)

where D(J,q)  is a function in J  and q. The last equation gives us the values 
for sin (t) and cos (t) as

sin (t) 

cos(t )

D 2 {J,q) e~2(p+L) _  1

D 2 (J,q)e~2h>+L) + 1 ’

2D{J,q)
D 2 (J, q) e - 2(P+̂ ) +  1 • (3.62)

3.3.3 The action of the Lorentz group on the vector 
potential

In this part we see how the Lorentz group acts on the connection field A. 
The action of the Lie algebra of the Lorentz group on the covector A a is given 
by A a — ► gac wc& gbd Ad, so the symmetry equation is given by

A [X]u°bX) — gacu ci)gbd Ad , (3.63)

where uiab are the same elements of the Lie algebra of 50(2 , 2) which fixes 
the lightlike line (£, 0,£,0), and gab =  {gab)~l - We know that there are two 
linearly independent elements which fix the light like line. Next we want to 
find the symmetry equations on the connection field A  which are given by 
(3.63) for each element.

(i) ^ab

/  0 0 0 0 ^ (  0 0 0 0 \0 0 0 0 then lu c b = 0 0 0 0
0 0 0 0 0 0 0 0

V 0 - 0 0 0 1 0 0 0 0 /
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then by substituting this value for u  c b equation (3.63) becomes

0 \
o-2 n n n o-2 n o n .X
X

\  x 4 )

( 0
0 0 0 \ (  X 1 \ (  0 0 0

0 0 0 p X 2
) =

0 0 0
0 0 0 0 x 3 0 0 0

V o p 0 0 j \  x 4 ) I  0 - p 0
which gives the first symmetry equation

d
d x 2

+  x 2 — ) a

(  0 0 0 0 \
0 0 0 -1
0 0 0 0

V o - i  o o j
A

0 
0 )

A

(3.64)

Now we can write equation (3.64) in the new variables as

b A -

( 0 0 0 0
0 0 0 - 1
0 0 0 0

1 0 - 1 0 0 )

A,

where p is given by (3.42).

(ii) u ab =

(  0 0 a 0 \
0 0 0 0 

— a  0 0 0
V o  o o o }

(  0 0 a  0 \
0 0 0 0
a  0 0 0
0 0 0 0 /

then by substituting this value for uj c b equation (3.63) becomes

A!{

f  x 1 \  
x 2 

x 3 

V X 4 J

/ 0  0 a  0 \  /  x l \
0  0  0  0  j :2

a 0 0 0 x3
\  0 0 0 0 )  \  x 4 J

) =

( 0 0 a 0 \
0 0 0 0
a  0 0 0

V 0 0 0 0 )

(3.65)

A,

which gives the second symmetry equation

d
x"

d x 1
A + x l

d
dx 3

A =

(  o 
0

-1  0 
V o o

0 - 1  0 \  
0 0 0

0 
0

0 
0

A. (3.66)
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Finally we can write equation (3.66) in the new variables as

k A

/ 0 0 -1
0 0 0 0

-1 0 0 0
I 0 0 0 0 )

A , (3.67)

where L is given by (3.40).

Next we want to find out what values the vector potential takes by substi- 
( A i \

A 2tuting A
A 3

\  a 4

equation (3.65), which gives 

d

in the equations (3.65) and (3.67). Let us first consider

—  Ai = 0 so Ai = f i  (L, J , q) , (3.68)

^ 3  =  °dp
so A 3 = f 3 ' (L ,J ,q ) , (3.69)

d_
dp

d_
dp

A 2 — —A4 ,

A 4 — —A 2 ,

(3.70)

(3.71)

where f \  (L, J, q) and / 3 (L, J, q) are any real valued functions. From the 
equations (3.70) and (3.71), we have

d2

dp

dp2

2 A 2 — A 2 s o  A 2 — / 2 (L, J, 9 ) e p +  <72(L, J, 9 ) e  p , (3.72)

A4 =  A* so A 4 = f 4 (L,J ,q)ep + g4 {L,J,q)e p , (3.73)
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where / 2(L, J, g), <72(L, J, g), f 4 (L,J,q)  and g4 (L,J,q)  are any real valued 
functions, and L, J , p and q are given by (3.40) and (3.42) respectively.

Equation (3.67) gives
Q

—  A 2 = 0 so that A 2 =  f 2 (J,q,p) , (3-74)dL

d_
dL
d

—  A 4 = 0 so that A 4 = f 4 (J,q,p) , (3.75)

d
- A 1 =  - A 3 , (3.76)

r\

= • (3-77)

where / 2 (J,q,p) and f 4 {J,q,p) are any real valued functions. From the 
equations (3.76) and (3.77),

d2 , . . x , , „ _ L

dL2 

d2

A i = A i  so A 1 = f i (J,q,p)e +gi{J,q,p)e  , (3.78)

g L<2 =  A 3 so  A 3 =  / 3 W q,p)eL +  9 3 (J, q,p)e~L , (3.79)

where f i (L,J,q) ,  gi{L,J,q),  f 3 (L,J,q)  and g3 (L,J,q)  are any real valued 
functions. Now by comparing the values for A\  and j43, and by substituting 
them in (3.76) and (3.77),

A\  =  f i {J ,q)eL +  gl (J,q)e~L , (3.80)

A 3 =  - f i ( J , q ) e L +  gl (J,q)e~L , (3.81)

respectively, where f i (J,q)  and gi{J,q) are any real valued functions. Sim­
ilarly by comparing the values for A 2 and A 4 and by substituting them in 
(3.70) and (3.71),

A 2 = f 2 (J,q)ep + g2 (J,q)e~p , (3.82)

AlI =  - f 2 (J,q)ep +  g2 {J,q)e~p , (3.83)

respectively, where / 2(J,q) and 0 2 W 0 ) are any real valued functions.
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3.3.4 The electromagnetic field
In this part more about the vector potential, which is a solution for the 
electromagnetic field, where the electromagnetic field tensor is given by

iV , =  < V t - d , V  (3.84)

Now using the chain rule, the derivatives in the new variables become:
d  . d  1 d

—  = — smh(L) —  +  — cosh(L) —  ,

i  =  cosh(P) |  i  s i n h ( p ) | ,

i  =  c o s h ( L ) A - i Sin h ( L ) A ,

d  . . d  1 d
W  =  - s m h ( p ) ^  +  - c o s h ( p ) - ,

where L, J , p and q are given by (3.40) and (3.42) respectively. The electro­
magnetic field components (3.84) are then

Fu  = -  sinh (L) — ( /2(J, q)ep +  g2(J, q)e~p) 

d
— cosh (p) —  (f i (J,q)eL +  gl {J,q)e~L) ,

-̂ 13 =  - (-g-j  + -j) (fi(J,q) + gi (J ,q) ) ,
r\

Fu = - s in h (L )  —  ( ~ f 2 {J,q)ep +  g2 (J,q)e~p) 

d
+ s in h (p )—  (f i (J,q)eL + gl (J,q)e~L),

F23 = cosh (p) q) eL +  gi(J,q)e~L)
dq

— cosh (L) - ^ j { f 2 (J,q)ep + g2 (J,q)e~p),
r\ -|

^ 2 4  =  — ( « - - - 1- - )  ( / 2W  Q) — 02 W  q))  ,dg q

F34 =  cosh ( L ) f 2 (J, q)ep + g2 (J,q)e~p) 

d
+  sinh (p) — ( - / i ( J ,g ) e L +  #i( J, g)e~L) . (3.85)
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Next let us substitute the electromagnetic field components in the currentless 
equation

d M =  0 .  ( 3 . 8 6 )

For v = 1,

sinh +  “ ) J jW 2 (J-1) +  S2 M  ?))

-  cosh ?) +  SiW  ?))

+ (^ ~  +  “ )g ~ ( /iW  </) +  siW<?) e L)

+  cosh(L) (f i (J,q)  +  9i(J,q)) =  0 . (3.87)

For v = 2,

s i n h ( p ) ( ^  +  i ) ^ ( / 2 ( J , g )  -  g2{J,q))

- c .o s h ( p ) ( ^  +  j ) ^ ( / i ( J , g )  -  0i(J,g))

+ 7}A (/2(J’ ̂  e?? +  ̂e_̂

-  s'mh {p) \ ( f 2{J,q)  -  g2(J,q) )  =  0 .  ( 3 . 8 8 )
r

For v =  3,

cosh +  - ) - ^ - ( f 2 {J,q) +  g2 {J,q))
oq q OJ

— sinh ( L ) ( - L  +  +  9i(J,q))

- i j - q + +  f liW ? )e _ i)

+  sinh (I )  +  9i(J,q))  = 0 .  (3.89)
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For v — 4,

cosh(p)(-L  +  I ) A ( / 2(J)9) j. g2 (J,q))

- s i n h ( p ) ( ^  +  ~ 9 i U , 9 ))

+ ( g j  +  eP +  52W e_P)

-  cosh (p) - t  ( f2(J, q) -  g2(J , q)) =  0. (3.90)

To solve the last four equations. We multiply equation (3.87) by sinh (L) 
and equation (3.89) by cosh(L), and subtract, giving

{T q + \ )J j { h ( J ' q ) +  9i (J ' q)) +

^~dq q^~dq^1̂ '  ^  ~  9i{J, O)) =  0- (3.91)

By multiplying equation (3.87) by cosh (L) and equation (3.89) by sinh(L), 
and subtract, giving

( o  ̂ “ ) o- (.AM Q) + gi{J,q)) + (fi{J,q) + gi(J,q))o q  q  o q

- ( - Q - j d - j )  —  {fi(J,q) + gi(J,q)) = 0. (3.92)

Similarly by multiplying equation (3.88) by cosh (p) and equation (3.90) by 
sinh(p), and subtract, giving

( §~J + l ) J q ( h ( J ' q ) ~  9 l { J ' Q)) +

^Wj  +  + 92^ ' ^  ~ (3.93)
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Finally by multiplying equation (3.88) by sinh (p) and equation (3.90) by 
cosh(p), and subtract, giving

(j j  + -  9*0,9)) + £  (MJ,q) -  9*0,9))

- i . 4 -  + \)4-{f*0,9) -  9*0,9)) = 0 -  (3.94)oq q oq

From the equations (3.91) and (3.93),
r \  r \

Tj - j ( f2(J,q)  +  9 2 {J,q) )  +  - ^ { f i ( J , q )  - 9 i ( J , q) )  = K J q ) ~ l , (3-95)

where b is a constant.
We solve (3.92) by the method of separation of variables. If we set / i(J , q) +  
9 i(J,q) = C(J)D(q ), equation (3.92) becomes

- D « A  +  7 > A C<J > - 0 -
We can write the last equation as

1 i 4 -  + - ) 4 - D ( q )  + - ^ - 7 ^ ( - L ;  + \ ) 4 l C { J )  = 0.  (3.96)
D ( q y d q  q ' d q  J 2 C { J y d J  J ' d J

- H  H

We see that this equation splits into two parts, the first being a function of
q only, and the second a function of J  only. This means that

+  5 ^  +  jE,) I3<' ' ) “  (1 9 7 )

+  +  (1 9 S |

where H  is an arbitrary constant.
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Note that the equations (3.97) and (3.98) are of the form of B essel’s equa­
tion, which is given by

/ d2 I d  . n2.\ .
{ j ^  +  z 7 z  +  ^ - ^ ) r ^  =  0 (3.99)

This is called B essel’s equation of order n, where n  is a constant. The 
general solution of Bessel’s equation is given by

R(x)  = uJn(x) +  vYn(x) (3.100)

where u and v are constants. The function Jn(x) is called B essel’s function  
of the first kind of order n, and is given by

J  M  = y  ( (HLfP+n (3.101)

The function Yn{x) is called B essel’s function of the second kind of order 
n, and is given by

Yn(x) = -
7T

n—1

( In ^ + 7 )Jn(x)  - y Y .
( n - p -  1)!' x 2v_n

2 £ S  rA V

I f  ( - l ) p+1 ,x- 
2  ~ '0P'-(P + n Y- 2

pi
V  ̂ P+n ^

kk=l k=l
(3.102)

To solve the equations (3.97) and (3.98), first let us take equation (3.97), 
which is just Bessel's equation of order zero. The solution for this equation 
is given in terms of Bessel functions of the first and the second kind of order 
zero as

D(q)  =  d , J 0( q V H )  +  d?Y0(q V H ) ,

where d\ and d2 are arbitrary constants, and it can be written as

D(q) =  di 

d->

E ( - i ) p , <i V h  2b

p T o  (P'-)2 ' 2  
2 1 , .  ,q\/~H

+

- ( ( l n ( ^ - ) + 7 )jo (?V tf) +

(- lr1 .qy/H 1
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Similarly for equation (3.98), which is just Bessel’s equation of the order one, 
where the solution for this equation will given in terms of Bessel function of 
the first and the second kind of order one as

C{J) = c1J 1 ( J y / i i ) +  CzYiOVH),  

where C\ and c<i are arbitrary constants. It can be written as

(-i)m ,j Vh ,
C(J)  =  Cl E 2m + l

Lm=o m-!(m +  1)! '  2 
2 /, .  , J \ / H

+

- ( ( I n  ( ^ - )  +  ! ) M J V h ) +
1 »  (-1)™+' U H )2 m + 1

2 m = o  m \ ( m  +  1)! 2 J &  k > )

where 7  denotes Euler’s constant, defined by

7  =  lim (1 +  i  i  H h — — logn) =  0, 5772n-*oo 2 3 n

, (3.104)

0

10

0

-1

1

Figure 3.1: This figure shows Jo(x) and Yq(x ), where To(^) has a 
singularity at x = 0.
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o

10

0

-1

1

Figure 3.2: This figure shows J\{x) and Y\(x),  where Y\(x)  has a 
singularity at x = 0.

Now we can write / i( J ,  q) +  g\ (J, q) from (3.92) as

+  =  c1d1J0 (qVH)J 1 ( j V H )  +

cidiJ0(q\fH)Yi{J y/H) +  
c1d2Y0 { q \ / H ) J i { J ' / H ) , (3.105)

where c* and di are constants for i = 1,2.

Similarly if we set f 2 (J,q) ~  9 2 {J,q) — U(J)V(q),  then equation (3.94) be­
comes

We can write the last equation as

1 (# 7  +  ^ ) # 7 ^ )  +  ^ - T 7 ^ ( ^  +  1 ) ^ ( « )  =  0- (3-106)U(J).  d J  J ’d J q2 V(q) dq q dq
-h h

We see that this equation splits into two parts, the first being a function of 
J  only, and the second a function of q only. This means that

(3.107)
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dq2 qdq  

where h is an arbitrary constant

(3.108)

The equations (3.105) and (3.107) are just of the form of B essel’s eq u a tio n  
of order zero and order one respectively. Their solutions are given by

V(J)  =  «i
( - 1  )p , J V h 2p

(■ +

U-2

E

§  (p O2

7r (( ln +
( - i  r \ J V h n i + i_ +

V{q) =  v j

Pt l  (P-)2 

( - 1)

(■ +
P

(3.109)

E 2m+l

r;2

+

- ( ( ln (^ T “ ) +  7 ) ^ ( 9 ^ )  +
7T \  2

m
( S i  + £ i ) ̂ ( l)m+1 2m+l

2 ^ 0 m!(77? +  l)! 2

m+l
(3.n°)

a:=i ^ fc=i 7 J
respectively, where iq, u2, i>i and i;2 are arbitrary constants. Now we can 
write / 2(J, q) — 9 2 {<J1q) from (3.94) as

h ( J , q )  -  9i {J,  9 )  =  uiViJ0( J v h ) J i ( q v h )  +

U2V2Y0(J \ f h ) Y l {qy/h) +

U2Vi J0 {Jy/h)Y1 (qy/h) + 
u 1V2Y0 ( j V h ) J i { q V h ) , (3.111)

where iq and Vi are constants for i = 1,2.

We now consider the case where H = h. = 0, because the formulas (3.105) 
and (3.111) are quite difficult to deal with. Then by substituting H = 0 in 
equations (3.97) and (3.98), they become

(3.112)
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t f r  +  l b - T F W - 0 - (3U3>
respectively. The solutions of the equations (3.112) and (3.113) are

D(q) =  di In q + d2 , (3.114)

C{J)  =  ci J _1+  c2 J ,  (3.115)

respectively, where Ci, c2, di and d2 are arbitrary constants.
Now we are able to write f i (J,q)  +  9 i(J,q) from (3.92) as

/ iW g )  +  0 iM g) =  di (ci J ~ l +  c 2 J) In {q) +  d2(ci J -1 +  c2 J) .  (3.116)

Similarly by substituting h = 0 in the equations (3.107) and (3.108), they 
become

(■Tp + l J j ) u{J)  = 0 ' ( 3 -1 1 7 )

( d ? 5 +  q T q  ~  =  °  ’ ^3 ' 118^

respectively. The solutions for the equations (3.112) and (3.113) are given
by

U(J) = u\ InJ-f- u2 , (3.119)

V{q) = vi q~l +  v2 q, (3.120)

respectively, where U\, u2, V\ and v2 are arbitrary constants.
Now we are able to write / 2( J, q) — g2 (J, q) from (3.94) as

/2W  q) ~ 9 2 {J, q) = Ui {vi q~l +  v2 q) In (J)  +  u 2 (vi q~l +  v2 q ) . (3.121)
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Summ ary of 3 .3 .4:

In this subsection we have obtained the following equations

(3.95) =» J, q) +  g2 (J, q)) +  f q( f i( J, q) -  9 i{J, q)) = b{Jq)~1 ,

(3.116) => fi{J,q) + 9 \{J,q) = di {cx J " 1 +  c2 J)\n(q)  +  d2 (c1 J -1  +  c2 J ) ,
(3.121) => / 2 (J,tf) ~ g 2 (J,q) = ui (vi q~l +  v2 q) \n(J)  +  u 2 {vl q~l +  v2 q) ,

where 5, c*, dj, u* and Vi are arbitrary constants and and 9i are arbitrary 
functions for all i — 1,2. The last two equations are found on the assumption 
that H  = h = 0 in (3.96) and (3.106).

The electromagnetic field is given in terms of these equations by (3.85). The 
J  and q coordinates are defined by (3.40) and (3.42) respectively.

3.3.5 The solution of the lightlike line case
In this part of the section we first write the massless Dirac equation in 2 +  2 
dimensions in the new variables p, q, J  and L. Next we use the symmetry 
equations. By doing that we will be left just with one derivative in the 
massless Dirac equation. The massless Dirac equation with potential is 
given by

Y  (d^ -  iAtu) .ip = 0

Now we are in position to write the massless Dirac equation in 2 +  2 dimen­
sions in the new variables as

7 1 (-s inh (L ) +  j  cosh(L) t^)V-; +

7 2 (cosh(p) -77- — -  sinh(p) 77-) z/> + 
oq q op
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At this point we substitute the symmetry equations (3.43), (3.48) and (3.54) 
in the last equation, and it becomes

7 1 ( -  sinh(L) (ieLK  -  ^ -  q V )  +  ^ -  cosh(L) 7 V )  ip +

7 3 ( cosh(L) (ieLK  -  ^  7 V )  -  ^ -  sinh(L) 7 V )  4 } +

d  1
7 2 ( cosh(p) —  -  — sinh(p) 7 V )  ip +  

d  1
74 ( -  sinh(p) —  +  — cosh(p) 7274) ip =  A^ - ip .

We could simplify the last equation like this

— sinh(L) 7 1(zeLA') +  —  sinh(L) 7s +  —  cosh(L) 7 s) ip +
ZiO Zdt)

fcosh(L) j 3(ieLK )  — —  cosh(L) 7 1 — —  sinh(L) 7 1 W  +
Z t /  ZdU

d  1
( cosh(p) — 7 2 -  — sinh(p) 74) ip +

Q ^
( -  sinh(p) — 74 +  — cosh(p) 7 2) ip =  i Y  A„ • ip . 
v o q  I q  '

Let us now arrange the last equation as

zeL(cosh(L) 73 — sinh(L) ip +  -  eL(")/3 — 7 1 )ip+
£ u

d  1
( cosh(p) 72 -  sinh(p) 74) +  7^) V; =  i 7M ■ ip •

Finally the massless Dirac equation has become

i  (eL(q3 -  7 1) +  e_L(73 +  7 l )){ieLK )  ip +  ^  eL(73 -  7 1) ip+

i  (ep(7 2 -  7 4) +  e p(y2 + + ^ )  ip = A^ - ip. (3.122)

Now we substitute the values for the matrix K  and the vector potential
that given by (3.33) and (3.80)-(3.83) respectively in equation (3.122), where
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ip

1
eis 

i re%
A  ( s+t )

a is a zero current spinor. Next by using Mathematica

\  i r e 2 w_ri'' J 
See the Appendix], equation (3.122) gives

d s + t s — t,
— s =  —2irki$e cos ( ■——) cosh (L — p) +  sin ( - )sinh (L — p)
O Q Zi Zd

P g _ £ g _j_ £
2rku eL sin (—-—) cosh (L — p) + cos (———) sinh (L — p) 

£ &
2ikn eL cosh (L — p) sin (s) +  sinh (L — p)

2ki2eL cosh (L — p) + sin (5) sinh (L — p) +  

2 i f l (J,q)eL~p(l +  sin (5)) -  2ig1 (J, q)(sin (s) -  1) -

2i cos (s)(f 2 {J,q) -  9 2 {J,q)) +  j e L_p(l +  s in (s )) ,

+

(3.123)

d
— ki3 eL [ cos ( -  ) cosh (L +  p) — sin (-— -) sinh (j
r L 2 2
2 r g —|— £ g   £
- ks 2 ^L cos (—-—) sinh (L +p)  — sin (—-—) cosh (L 

2/c34eL cosh (L + p) + sin (t) sinh (L + p) +

2 i kneL [ cosh (L + p) sin (t) +  sinh (L + p) +

2i/i(«7, q)eL~p(l +  sin (t)) -  2?p](J, g)(sin (t) -  1) +

2? cos ( t)( /2(J, q) ~ 9 2 {J,q)) + j e L+p(l + s in ( t ) ) ,

+

(3,124)
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-^-r = r 2 k ue L sin (—g—) sinh (L — p) — cos (—7 —) cosh (L — p) 
0  q 1 2 2

ir2 k\3 eL sin (—— ) cosh (L — p ) — cos (— —) sinh (L — p) 
z z

+

+

ik3ieL
s t s — t

sin ( - -) cosh (L +  p) — cos ( - - - —) sinh (L +  p) 
z  z

+
s 1

k32e sin (------ ) sinh (L +  p) — cos (—-—) cosh (L +  p) +
2 2

i rkneL cos (s) cosh (L — p) — r k n eL cos (s) sinh (L — p) — 
i rkn eL cos ( t )  cosh (L +  p) +  rk3±eL cos (t ) sinh (L +  p) — 
i reLf i ( J , 9)(cos (t)ep — cos (s)e~p) —

?re-Lgi(J, g)(cos (s)ep — cos (t)e-p) +

?r ( sin (5 )  +  sin (£)) ( / 2( J, 9 ) -  g2 (J, q)) +

2J
cos (s) e p — cos (t) ep (3.125)

d
—  loga =  ~k n e p |e2L(l +  iels) — e2p(l — iexs) +  

' -kn {ep(l +  ie'a) +  e2L~p(l -  ieis)] +

U s - t ) - p e2L(\ +  ie,s) + e2p(l -  ie,s)2PC\

+

+

eL- p(l -  iei8) h  (J, q) +  ep- L9 l (J, q)( 1 +  ieis) + 
i(l +  iets) / 2( J, q) +  i( 1 -  iels) g2 {J, g) -

—7 - e_p evJ  +  iqeL( 1 — iels)
2 Jg L J

(3.126)

Since we know that s, t and r are real, the equations (3.123), (3.124) and 
(3.125) will split into two parts, where the first parts equal the change of s, 
t and r and the second parts vanish. We know from (3.30)-(3.32) that /q2, 
ku,  k32 and /C34 are real, ki3 and k3\ are pure imaginary, and kn  is complex. 
Define

k \ 3 — ik\13 > 3̂1

kn = /cii +  ik-i

k* i — iko31

11
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where k[3, k31, k and A:'n  are real. From equation (3.123),

5
—— 5 =  2 rk\ 3eL 
d q  16

s t s — t
cos ( --) cosh (L — p) +  sin (— —) sinh (L — p)

2 r k u e L sin (------ ) cosh (L — p) +  cos (-------) sinh (L — p)
2 2

2 k'u eL cosh (L — p) sin (s) +  sinh (L — p)

2 k\2eL cosh (L — p) +  sin (s) sinh (L — p) 

■j eL~p(l +  sin (s ) ) ,

+

(3.127)

2fi{J, q)eL p( l  +  sin(s)) -  2pi(J, 9 ) (sin (s) -  l)  

- 2  cos (s) ( / 2( J , «?) -  #2 W 9 )) +  

cosh (L — p) sin (s) +  sinh (L — p)2 k"leL =  0 (3.128)

From equation (3.124),

3  - 2 f/ L— t = — k l3e 
dq r 16

s 1 s — t 1
cos (—-—) cosh (L +  p) — sin (— —) sinh (L +  p) +

2
s — t.

- k 32eL cos (—77—) sinh (L +  p) — sin (^——) cosh (L +  p)

2 k ^ e L cosh (L +  p) +  sin (£) sinh (L +  p)

2 fc/n eL cosh (L +  p) sin (t) +  sinh (L +  p)

+

+

j e L+p( l+ s in  (*)), (3.129)

2fi{J, q)eL P (1  +  sin(t)) -  2 gl (J,q)(sin(t) -  1 )
+ 2 cos (t ){f2 {J,q) -  g2 (J, q))+

2kf[xeL cosh (L +  p) sin (t) +  sinh (L +  p) = 0 .  (3.130)
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Finally from equation (3.125),

_d_
dq

r = r 2 ki^eL sin (—̂ —) sinh (L — p) — cos (—r —) cosh (L — p) 
z z

r 2k'13eL
,s — t

sin ( - -  ) cosh (L — p) — cos ( -— —) sinh (L — p)

k’31eL

2

sin ) cosh (L +  p) — cos (—7—-) sinh (L +  p)
2

,s — t
+

/c32eL sin ( ) sinh (L +  p) — cos ( ) cosh (L +  p)
z z

rk'n eL cos (s) cosh (L — p) — r k ^ e 1  cos (s) sinh (L — p) — 
rk'n eL cos (t) cosh (L +  p) +  rk34eL cos (f) sinh (L +  p) +
r

2J
cos (s) e p — cos (t) ep (3.131)

reLf\(J,  <7)(cos (t)ep — cos (s)e p) +  re Lpi(J, <7)(cos (s)ep— 

cos (t)e_p) -  r (s in (s )  +  sin (£)) ( / 2(J, g) -  P2M 9 ) ) -  

r/c//1eL cos (s) cosh (L — p) +  r/c^ cos (t) cosh (L +  p) = 0  .(3.132)

At this stage we will assume that k \ 3 = k3i = 0. This implies by the equa­
tions (3.37) and (3.38) that k i4 — fc32 =  0 as well, and then the matrix K  
becomes

I< =

k - u k \ 2 0
°  ^

— k  12 k u 0 0

0 0 k u k 3 4

(3.133)

\  0 0 — k 3 4  k u  J

where Aq2 and k 3 4  are real, and k u  is complex. From equation (3.36), 

k u  =  +  i N ' u ( J ) )  , k l 2  =  e ~ L N l 2 ( J ) ,

ks4 — e t Ar34( J ) , (3.134)
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where N N [ lf 7V13, and N 34 are real functions of J  only. In this case we 
can write the equations (3.127), (3.129), (3.131) and (3.126) as

d_
dq

—N'n (J) cosh (L — p) sin (s) +  sinh (L — p) 

—2 Ni 2 (J) cosh (L — p) +  sin (s) sinh (L — p) 

eL_p(l +  sin (5 )), (3.135)

d_
dq

t =  2 N'n (J) cosh(L +  p) s in (t) +  s inh (L +  p) 

2A34( J) cosh (L +  p) +  sin (t) sinh (L -f p) 

j e L+P(l +  sin (*)),

+

(3.136)

d_
dq

r = —rN'n (J) cos (s) cosh (L — p) — rNi 2 (J) cos (5 ) sinh (L — p) 

—rN'u (J) cos (t) cosh (L +  p) +  WV34( J) cos (t) sinh (L +  p)

+  2 J 6
cos (s) e p — cos (t ) ep (3.137)

-^-loga =  ^Arn (J )e  L̂+p) e2L(l +  iels) — e2p(l — iels) 
dq 2  L

+

^ N n {J)e~L [ep(l +  ieis) +  e2L~p(l -  iels) +

eL p( l - i e ls) f l {J,q) + ep Lgl {J, g)(l +  iels) +  
z'(l +  z'els) / 2(J, q) +  2(1 -  zels) p2(«/, ?) -

2 Jq
,-p epJ  +  zgeL(l — iels) (3.138)

respectively. There are as well the equations (3.56), (3.57), (3.58) and (3.55), 
which can be written in this case as

d 1
—  s = -  cos(s) -  2Nl2 {J)cos{s) , 
a j  j

(3.139)

- ^ j t  =  co s(< )(l -2JV 34( J ) ) , (3.140)
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f j \ o g r  =  N'n ( J ) +  N U(J) sin ( s ) - N 3i (J) sin (t) 

-  2 7  (sin (s) -  sin (t)), (3.141)

7 7  l°g a = (3.142)

There are two equations for s, (3.135) and (3.139), which we need to solve. 
Now we use the symmetry of double derivatives,

d _ d _  _ _ d _ d _  
dq d J  S d J  d q S

The last equation gives

[(1  -  2 ^ , ( 7 ) )  (±  -  2N u ( J ) )  + -  2N n (J))[

( cosh (L — p) +  sin (s) sinh (L — p )) +

( sinh (L — p) +  sin (s) cosh (L — p) ĵ = 0 .

By substituting the value for sin (s) from (3.60), the last equation becomes

( ( 1  -  2 A ^ ( J ) ) ( i  -  2JVia(J)) + A g  _  2iV12(J ) ) )

+  ( ( 1  -  2N u ( J ) f  + 2Ar; i ( J ) ) ) ] £ 2( J ,9) +

’( ( 7  -  M ' U(J))  ( 7  -  2 ^ 1 2 (J)) + j j  ( 7  -  2Nn (J)) )

=  0 .- ( ( I - 2 A W J ) ) 2 +  A ( 1  2Nl i (J) ) (3.143)

If E(J, q) varies as a function of g, then the first term varies with q whereas 
the second is a constant when q varies. We deduce that the two square 
brackets vanish. Define

Ri(J)  =  -  2N'n (J))  and R 2 (J) = ( - -  2 N n (J)) . (3.144)
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Hence

and
1

R \ { J )  + J j R i ( J ) = 0 • (3-146)

Prom the equations (3.145) and (3.146),
J

—  (flf(J) -  R \ ( J ) )  =  0 so that R \ { J )  -  R \ { J )  =  G2 , (3.147)

where G is an arbitrary constant. We rewrite equation (3.146) as

=  G 2 - R \ ( J ) .

By integrating the last equation, for G  ^  0 it becomes

R \ { J )  —  G  _  2 GJ + 2 c

R i ( J )  +  G

where c an arbitrary constant. From the last equation we find

where G ^  0 and c are arbitrary constants. Now by substituting this value 
for R \ ( J )  in equation (3.145), it becomes

By integrating the last equation,

* ’ <j )  -  . M i <!-i 49»

where a is constant. Now substitute the values for R \ ( J )  and R 2 ( J )  which 
given by (3.148) and (3.149) in equation (3.146), to find the relation between 
G and a. which is a 2 =  G2, so that a = ± G .
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Prom (3.144), N[X(J)  and Ni 2 (J)  are given by

AT' < n  -  I r l  cosh (GJ  -  c) ^
11 2 V  sinh ( G J - c )

N n  (J) = \
r 1 a
'-J sinh (GJ — c)

(3.150)

(3.151)

where a  = ±G.

We also need to solve two equations for t, (3.136) and (3.140). Using the 
symmetry of double derivatives,

d _ d _  _  _d_d_  
dq d d J  d q ^

The last equation gives us

-  2N3 4( J ) ) ( j  +  2N'n (J)) + 2 L ( *  -  2N l2 (J))'

( cosh (L +  p) +  sin (t) sinh (L T p) ) -f-

{ j - 2 N 3 4 (J))  +  — ( — +  2A^(i(J))]

( cosh (L +  p) sin (t ) +  sinh (L +  /?)) =  0.

By substituting the value for sin (t ) from (3.62), the last equation becomes

( ( 1  -  2N 3 4 ( J ) ) ( j  + 2N'n (J)) + m i O ) ) )

D 2 (J,q) ++  ( ( —— 2Ar34(J))  +  —  ( — +  2iV1' 1(J))

J + 2 N n (J))

= 0.- ( ( j -27V34 (J))2 +  ^ 7 ( j  +  2TV;i ( J ) ) ) ]  =  0. (3.152)

If D{ J, q) varies as a function of q, then the first term varies with q whereas 
the second is a constant when q varies. Then we deduce that the two square 
brackets vanish. Define

T,(J)  =  ( 1  + 2 ^ , ( 7 ) )  and T2 (J) =  ( -  -  2N3i ( J ) ) . (3.153)
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Thus the result is given by the following two equations

T!(J)T2(J) + 4~ M j ) =  0 , (3.154)

(3.155)

From (3.150) the value for N'n (J), and by substituting it in 7\( J ), it becomes

Now by substituting this value for Xi(J) in equation (3.154), it becomes

where 8  is an arbitrary constant. Substituting the value for T\(J)  in equation 
(3.155) gives

Note that we have two different values, (3.156) and (3.157), for T ^ J ) , and 
there is no possibility of chose of constants to make them equal. The fact 
is that the equations (3.145), (3.146), (3.154) and (3.155) are all true if and 
only if G — 0. We conclude that G ^  0 is not a valid possibility, and continue 
with G = 0.

Now substitute G = 0 in equation (3.147), giving

Integrating the last equation gives

T2 (J) =  6  J - 2 sinh (GJ -  c ) , (3.156)

which becomes

(3.157)

R\(J)  -  R 22 {J) = 0, so R\(J)  = Rl (J)
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By using this result in equation (3.146), it becomes

Now integrating the last equation,

Ri(J)  =  1J  +  c ’ SO R 2 ( J )  =  ± J  +  c ’
(3.158)

where c is an arbitrary constant. The values for N fn (J) and Ni 2 (J) are given 
by

Ar; ,  n  l r l  1 I , ,  n  1 r 1 ( ± l ) i

A l l ( J )  =  9h ~  7 7 ^  a n d  N u { j )  =  ^ b ~ T T 7 ]2 L J  J  +  cJ
(3.159)

We have from (3.159) the value for iV ^ J ) , and by substituting it in T \(J) 
which given by (3.153), we find

r^ )  = (4-7X7)J  J  H- c

Now by substituting this value for T\(J)  in equation (3.154), it becomes

Integrating the last equation,

T2 {J) =  6 J - \ J  + c),

(3.160)

(3.161)

where 6  is an arbitrary constant. Substituting the value for T)(J) given by 
(3.160) in equation (3.155), it becomes

and we have

T2(J ) =  ( J2 “  (J  +  c)2)

Now by comparing the two values for T2 (J),

2 J 2 J 4

(3.162)

(J  +  c)2 (J  +  c)4
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but to make the last equation true for all J  we have to put c =  0, and we 
deduce that 8  = ±1.

Putting c = 0 and 8  = ±1 in the equations (3.159), (3.161) and (3.153), 
then they become

Nh( J )  = 0, (3.163)

N n (J) =  0 or JV12(J) =  1  (3.164)

N 3i (J) = 0 or N 3 4(J) = 1 .  (3.165)

Therefore there are four cases. We are not going to do them all because they 
are much like each other. We will consider the following two cases:

C ase (I): For N'n (J) = N 12(J) = N 3 4{J) = 0

Let us start with s, by substituting the value for -/V12(J) in equation (3.139),

j s  = j  cos (s). (3.166)

We can write the last equation as

d s d J
cos(s) J

By integrating this last equation,

log (sec (s) +  tan (s)) =  p — L +  log J  +  logE ( q ) , (3.167)

where E(q) is any function of q, and we can rewrite the last equation as

sec (s) +  tan (s) =  J  E(q) ep~L .

Then we can write sin (s) and cos (s) as

J 2E 2 {q)e2(p- V  -  1
sin (s) =

J*E2(q)e2lP-V +  1 ’

C0S(S) =  (3.168)
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Now by differentiating (3.167) with respect to q, it becomes

log ( sec (s) +  tan (s)) =  — ^  ^  log E(q) .
dq  v ' cos (s) dq dq

By substituting the values for ds/dq  given by (3.135) and cos (5 ) in the last 
equation, it becomes

J 2 & ( q ) e +  1 r l  L. p(  P E ? ® '* * - *  -  h i =  ± XqrE{q]
2JE(q)e»~L h   ̂ J 2 E 2 (q)e2̂  + l ' J  dq g W ’

and by simplifying the last equation,

± E { q )  =  E \ q ) .

Now by integrating the last equation,

q +  a
E(q) =  —  , (3.169)

where a  is an arbitrary constant.
Finally we can write sin (s) and cos (5 ) as

s in (s) =
r r ^ ) e 2<p~L> - 1jq+g)2 J__________

v £ v > 2(p- L) +  1 ’

—2 ( - J )ep~L 
cos (s) = —  ,.(̂ +Q̂  . (3.170)

Similarly for t, by substituting the value for Ns4 (J) in equation (3.140), it 
becomes

—  t = J  cos (t), (3.171)

and we can write the last equation as

dt  d J
cos (t) J
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By integrating this last equation,

log (sec (t) +  tan (£)) =  — p — L +  log J  -F log D(q) , (3.172)

where D(q) is any function of g, and we can rewrite the last equation as

sec (t) +  tan (t) = J  D(q) e~̂ p+L^.

Then we can write sin (t ) and cos (t) as

J 2 D 2 (q)e~2(j)+L>> -  1
sin (t) = 

cos (t) =

J 2D 2 (q)e~2(p+L) +  1 ’

2 JD(q)e~(p+V
J 2D 2 (q)e-2(p+V +  1 '

Now by differentiating (3.172) with respect to q, it becomes

log ( sec (t) +  tan (4)) =  - 1 ^  =  A  log D(q) .

By substituting the values for dt/dq  given by (3.136) and cos (t) in the last 
equation, it becomes

J 2D 2 (q)e-2(”+L) +  1 r 1 (v+L) / J>D*(g) e - ™  -  U i =  ± x D( )
2 JD(q)e-(P+U <-J V J 2 (q)e~^+L) + 1  'J  dq g W ’

and by simplifying the last equation,

f q m  = d % ) .

Now by integrating the last equation,

D (?) =  T V S ’ (3-173)q +  p
where f3 is an arbitrary constant. Finally we can write sin (t) and cos (t) as

( j2  V ~ 2(v+D _  1 
\(q+0 )2) e 1s in (t) =

— o f  J  \ f - { p + l ) 

cos (t) =  . } {9̂ '  '---------- . (3.174)

( j £ w y 2(p+L)+1 

( n & * y « * L) + 1
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Now if we substitute the values for N'n (J), Ni 2 (J) and Nm(J)  in equation 
(3.137), then it becomes

o  1

—  logr =  - —eL cos (s) e~p — cos (t) ep . (3.175)

By substituting the values for cos (5 ) and cos (t) in (3.175), it becomes

d {q + P) (q + a)logr =
dq (q + (3) 2 4- J 2e~2(p+L) (q 4- a ) 2 4- J 2e2̂p~L^

Now by integrating both sides with respect to q gives

r /  (9  + / ? )2 +  J V 2(P+L) 4  .
V {q +  a ) 2 +  J 2e2^ ~ L) )  ’  ̂ ^

wdiere a and (3 are arbitrary constants.

Next substitute the values cos (s), sin (s), cos (t) and sin (t) in the equations
(3.128), (3.130) and (3.132). Let us first start with the equations (3.128) and
(3.130)

2/ i  (-/, O') y———yr +  2~ r ~ r —rf/hW ?) — 02M9)){q 4- a y  [q 4- a) v '

+2 9l (J,q)  + ^ 1( j r ) ( _ i L 5 - l ) = 0 , (3,177)

2 M I q ) -  2 - 4 _ ( / 2( J ,9) - S2( J ,9))
(q +  P )2 (q +  P)

(q +  p y
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From equation (3.132),

J 3
+

(q + a)(q + fl) 2 

/ l W , )  +  A T l W ) s _ ^ _ s  +

( w . , ) - « ;■ , ( J ) ) ( ffl.

+

J 4
+

+ 2 ( /2(J,9) -92{J,q)) = 0.

This equation must be true for all values of L and p , so we deduce that the 
following equations are true:

j -
(q +  a)(g -f /J) +  (23i(J ,9) - A r"(J)) = 0 ,  (3.179)

(2 gi(J,q) -  ( 0  -  a) -  2( f 2 (J,q) -  g2(J,q)) J = 0 , (3.180)

(2 f1(J,g) +  lV "(J)) ( + f )( “ L  - 2 ( / 2( J , g ) - g 2(J,g)) = 0 .  (3.181)

By rearranging the equation (3.181) and adding it to equation (3.180), 

MJ,q)-92(J,q) = J2 _ + 0) g) + gi(g)) • (3-182)
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Next we substitute the values for f 2 (J,q) — 9 2 (J,q) and f i (J,q)  +  9 \{J, q) 
that we had from (3.121) and (3.116) respectively in equation (3.182), and 
it becomes

J 2 -  (q + a){q + (3)
d\ (ci J  1 +  c2 J)  In (q) +  d2 {c\ J  1 +  c2 J) 

Ui (vi q~l +  v2 q) In (J) +  u2(v 1 q~l +  v2 q) ,

where the only variables in the last equation are J  and q, and the rest are all 
arbitrary constants. To compare both sides in the last equation, first start 
with the terms that have logarithms in them, and we find these two terms 
vanish. This leaves

J ( P - a ) d2(ci J  1 +  c2 J) = u2(v 1 q 1 +  v2 q)- 1

J 2 -  (q + a)(q + (3) -1 

By comparing coefficients

/ 2W 9 ) -  02 W 9) =  0 

and either f i (J,  q) +  9 i(J, q) = 0 or (3 = a . (3.183)

In fact we found that if we started with assuming (3 =  a  at some stage we 
will get f i (J,q)  +  9 i(J,q) — 0. This means one case is a special case of 
the other. Next we are going to consider the general possibility which is
f l U q )  + S iW ?) =  0.

Suppose that f \ (J,q)  +  9 i(J,q) — 0? and we have

f 2 (J,q) ~ 92{J,q) = 0.

Now by substituting the last result in the equations (3.181) and (3.180), we 
get the values for / i( J ,  q) and gi( J, q) which are

f M Q )  =  ^ K ( J )  and gi (J,q) = . (3.184)

Note that from these values for f i (J,q)  and p i(J ,q), it seem that f i  and g\ 
are functions of J  only. Now by using all these results in equation (3.95), it 
becomes

(3.185)
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By integrating equation (3.185) with respect to J ,

M M )  =  +  C{q) (3.186)

where C(q) is a function of q and b is an arbitrary constant.

Now to work out the equations (3.138) and (3.142), by differentiating (3.138) 
with respect to J  and (3.142) with respect to q, and then by substituting the 
results in the following equation

d d d d
Wj (a ?  s<^  = I T q ^ d l  g a ) ’

it gives
o - i  i

2i cosh (L -  p) cos (5 ) ( —  N^ ( J )  -  -  sin (s) N ^ J ) }  +  —
o 1

—2 cosh (L — p) fs in (s) —— N ^ J )  +  — cos2 (s) N ^ J ) )  = 0 .  (3.187)
(JO o

Now by taking the real and imaginary parts of this equation, we will find 
that

Arn (^ ) =  0 and b = 0, (3.188)

so that
f i  =  9 \ =  0 , f 2 = g2 = C(q) .

Finally by substituting these values for / 1, g\ and / 2 in equation (3.138), it 
becomes

d J
—  log a =  2iC(q) —i
d q J 2e2(p_L) +  (q +  a ) 2

 L _i_ ____________( ^  +  a ) ____________ / q , oq \
2q J 2e2(P"L) +  (q +  a ) 2 ’ { }

and by integrating the last equation with respect to q,

= _ L  + (q + a f ) (3.190)
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Ai  and A 3 are vanishing, and A 2 and A 4 are given by

A 2 = 2  C(q) cosh (p) ,

A 4 = — 2 C(q) sinh (p) ,

where C(q) is any function of q. The electromagnetic field in this case is 
vanishing.

Summary of case (I) :

The solution for the Dirac equation is given by

( 1 \
a where,

a
1(^i*leL-p)+2iC(g)

T
(q +  P ) 2 +  J 2e -2h>+L)

sin (s ) cos(s)

2 (p+L)

( - d l — \ p - 2 { p + L )  1 1 

\{q+t3)2) e
(  J2 \ P~2  ( p+L)  +  1
\(q+0 )2) e

where a  and p  are arbitrary constants.

A\  and A 3 are vanishing, and A 2 and A 4 are given by

A 2 = 2 C(q) cosh (p) ,

A 4 = — 2 C(q) sinh (p) ,
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where C(q) is any function of q. The electromagnetic field in this case is 
vanishing.

The variables L, J , p and q are written in the original variables as

L  =  and J  =  ( h 3)2 - ^ 1)2) 2 ’

p = 311(1 « =  ((*2)2 - ( * 4)2) 2 -

x °  — X

;2 + x 4 

2  v x 2 — x

For more details about these variables see p76

Note that there could be problems with imaginary values for s and t for
general o  and (5. However if we put a  =  (3 = 0, we get

(x3 — 1 ofx3— X1 ^
• ( x \x 2~XA 1 / \ 2-XA)sm s =   -------------- , cos(s) =  ---- -— ^ ,

( f c ? )  + 1 ( £ 3 ) + i

/ x3 —x1 ^2   1 _o ( i 3—x1
/J.\ \X2+X4 J \X2+X4 )

sm W =  , , ' 2—  ’ C0SW =
(St?) + 1 (StS) +1

The value for a  and r  become

(, 2\2 ( 4̂ 2̂  ~3/4 ! ( ^ ~ X \ 2 -iian- if^ )+ 2 iC (? )
a =  { ( x )  ~ ( x ) )  ) +  l e  v '

(  ^  _L 1 V I
\ x 2+ x 4 J Vr  =
( f c S )  + 1

Note that since C(q) is an arbitrary function of q, then we can choose it to 
cancel the multiple q~3/2 in the value of a.
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F i g u r e  3 .4 :  S h o w s  t h e  g r a p h s  o f  b o t l i  A r g ( c i )  a n d  A r g ( r a ) .  t h e  g r a p h  o f  

A r g ( o )  i s  p l o t t e d  a g a i n s t  7? 1 a n d  m 1} a n d  t h e  g r a p h  o f  A r g ( r a )  i s  p l o t t e d  

a g a i n s t  n A a n d  r a 2 , w h e r e  ri i  = r 3 - x 1 , r n ,  =  x 2 -  x 4 , a n d  m 2 =  x 1 +  x 4 . 

T h e  w o r l d  l i n e  o f  t h e  p a r t i c l e  i s  g i v e n  b y  n 1 — 0 .
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- l

- 1 0
m l , m2

-1

n l

- 210

F i g u r e  3 .5 :  S h o w s  t h e  g r a p h s  o f  b o t h  s a n d  t .  t h e  g r a p h  o f  s i s  

p l o t t e d  a g a i n s t  n \  a n d  m i  a n d  t h e  g r a p h  o f t  i s  p l o t t e d  a g a i n s t  

771 a n d  m 2 , w h e r e  ri\ =  x 3 — x 1, m i  =  x 2 — x 4, a n d  m 2 =  x 2 -F x4.
T h e  w o r l d  l i n e  o f  t h e  p a r t i c l e  i s  g i v e n  b y  ri \  =  0 .

C ase (II): For N'U{J) = Ari2(J) =  0 and  N M(J) = 1 / J

I n  t h i s  c a s e  i f  w e  s u b s t i t u t e  t h e  v a l u e  f o r  7V12( J )  in  e q u a t i o n  ( 3 . 1 3 9 ) ,  t h e n  

f o r  s w e  w i l l  h a v e  t h e  s a m e  a s  in  t h e  f i r s t  c a s e .  B u t  i f  w e  s u b s t i t u t e  t h e  v a l u e  

f o r  A  3 4 ( J )  i n  e q u a t i o n  ( 3 . 1 4 0 ) ,  i t  b e c o m e s

T j j t  = - j -  cos ( t ) , (3.191)
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and we can write the last equation as

d t  d J
cos (t) J

By integrating the last equation,

log (sec (t) +  tan (t)) =  — p — L — log J  +  logD (g), (3.192)

where D(q) is any function of and we rewrite the last equation as

sec (t) +  tan (£) =  D(q) e_h>+L) . 
u

Then we write sin (t) and cos (t) as

DHq) -2 (p+L)  _  1

sin W =
e_2(p+L) +  1

2  d (q) c~(p+l ) 
cos (<) =  -&UTZ_ _ e -2{p+L)  +  1

Now by differentiating (3.192) with respect to q ,

A  log („« ,(() + tan (t)) =  =  A  log D(g).

Substituting the values for dt/dq  given by (3.136) and cos (t) the last equation
becomes

D 2(Q) -2 (p+L)  i l l  D 2(q) -2{p+L)  _  i »

J2 n( v------------ [—e_(p+L) ( jffr-,----------------------- l) l  =  3 — log D ( q ) ,
2  °i3l e-(p+L) L J  V P?jjd g - 2  (P+L) +  1 J\ dq  V '

and by simplifying the last equation,

d N

T q D(q)  =  ~ l -

Now by integrating both sides,

D(q) =  - 1  (q + P),  (3.193)
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where j3 is an arbitrary constant.
Finally we can write sin (t) and cos (t) as

(& M -)e“2(p+L) -  1
sin (t) = ----------------

( ^ ) e - 2(P+L) +  l

_2 f (Q+P)\ c~(p+L)
cos (t) = 7  / 1 2 \  • (3.194)w  ( l£ + ^ ) e-2(p+L) +  1 V '

Now substitute the values for N'n (J), N i 2 {J) and N ^ ( J )  in equation (3.137), 
it becomes

d i r
—  logr =  —  cos (s) eL~p — cos (t) e~^L+pS) . (3.195)

By substituting the values for cos (s) and cos (t) equation (3.195) becomes

d  { q  +  P) { q  +  ® )—  logr =dq (q +  p ) 2 +  J 2e2(r+L) (q +  a )2 +  J 2e2(p“L) '

Now by integrating both sides with respect to q,

r - r s«+q + ? r : y .\  (q +  a )2 +  J 2e2(p_L) / 

where a  and (3 are arbitrary constants.

Next substitute the values for cos (s), sin(s), cos (t) and sin (t) in the equa­
tions (3.128), (3.130) and (3.132). Let us first start with the equations (3.128) 
and (3.130), they become

(q +  of) 2 {q +  a)

(q +  ®)‘

(3.198)
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(q + a) +
+

From equation (3.132),

e-2(P+i, [ ( 2 / l ( J ,g) +  iV "(J)) j ^ y  +

( 2 * 0 , 9 ) - N ^ j j )  

e2(p-L) [ ( 2 / l (J ig) +  iV "(J))

(25 l( J ,9) - ^ 1(J)) j ^ a) j 

e- ^ [ ( 2 Sl( J ,9)-7V ;'1(J))

2 ( /2( J ,9) - 52( J ,5) ) | ^ ]  +

[ ( 2 / lW 9 )+ W rl( j ) ) ( ^ - ( £ M )

+2(/2(J, g) — (72W q)) = 0 .

This equation must be true for all L and p. We deduce that the following 
equations are true:

(2f x(J,q) + A '"(J)) j i M  + (2gi(J,g) -  jV "(J)) = 0 ,  (3.199)

-  2 ( /2( J ,g ) - g 2 {J,q)) J  =  0, (3.200)

+  2 ( h ( J , q ) - g 2(J,q)) = 0 .  (3.201)
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Now by rearranging the equation (3.201) and by adding it to equation (3.200), 

( j 2 - ( g +  /?)(? +  « ) )

=  ( M J , q ) - 9 2 (J,q)) ( P - a ) .  (3.202)

Next we substitute the values for / 2 ( J, <?) — P2K  q) and / i (  J, q) + #i(J, q) that 
we had from (3.121) and (3.116) respectively in equation (3.182),

(J2~ (?+/ )(g+Q)) K (Ci J_1 + C2 ̂ ln (9) + d2(Ci J l  + C2 J)
=  ui (vi q~l + v2 q) In (J )  +  u2 (vi g _1 +  i;2 q) (/? -  a),

where the only variables in the last equation are J  and q, and the rest are all 
arbitrary constants. To compare both sides in the last equation, first start 
with the terms that have logarithms. We find these two terms vanish. This 
leaves

(—------------------+  d2(c! J -1 +  c2 J) =  u2(vi q~Y +  v2 q) {(3 -  a ) .

By comparing coefficients,

/ iW g )  +  0 iM g) =  o
and either f 2 ( J , q ) —g2 (J,q) — 0 or (3 = a .  (3.203)

In fact we found that if we started with assuming (3 =  a  at some stage 
we will get f2(J,q) — 9 2 {J,q) — 0, but if we start with the possibility 
/ 2 W q)—9 2 (J, q) — 0. This means one case is a special case of the other. Next 
we are going to consider the general possibility which is / 2(J, q) — g2 (J, q) = 
0.

Suppose that f 2( J, q) — g2( J, q) =  0, and we have

h{J ,q)  +  9 i(J,q) = 0.

In fact in this case we will have the same results as in case(I). We are not 
going to repeat this, but we will write the results as

7V"(J) =  0 and 6 =  0,
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so that
Si = 9i =  0 , f 2 = 92  = C(q) .

Finally in this case we will have the same value for a, which is given by

Ai  and are vanishing, and A 2 and A 4 are given by

A 2 = 2C(q)  cosh (p) ,

A 4 — — 2 C(q) sinh (p) ,

where C(q) is any function of q. The electromagnetic field in this case is 
vanishing.

Summary of case (II) :

The Dirac spinor for the solution in this case is given by

a 1= •J(J2 e2(P~U + (g +  a )2) e
—itan  1  ̂ eL p^+2iC(<j)

y/Q

( 1 \
a where,

a
1

(J 2e2(p_L) +  (q +  a)2) e—itan  1 ( ^ eL p( j+‘2,C(q, 

V i

r
(q +  P ) 2 +  J 2e2(p+L)
{q +  a ) 2 +  J 2e2(p-L)

cos(s )

sin(t) = ----------------(to+ flli^lp+L ) +  I

(9+^F'je-2(p+L) _  ^
COS ( t ) — —r :—— -------------------------

( la i f l^ e - 2̂ )  +  1
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where a  and (3 are arbitrary constants.

A\  and are vanishing, and A 2 and A 4 are given by

A 2 = 2 C(q) cosh (p) ,

A 4 = — 2  C(q) sinh (p),

where C(q) is any function of q. The electromagnetic field in this case is 
vanishing.

The variables L, J , p and q are written in the original variables as

,3 i1 , , x 6 +  x 
x 3 — x

-2 I —.4

L =  9 ln(zr^r) and 3  =  (V)2- ^ 1)2)2.

p =  \  and q =  (t*2)2 - ^ 4)2) 2 -
Note that there could be problems with imaginary values for 5 and t for 
general a  and (3. However if we put a = (3 = 0, we get

(  X 3 —  X 1 \  ^    1  r \ f  X 3  — X 4 ~\

(  \  \ X 2 — X 4 )  /  \ [ x 2- x 4 J
S m (S) = , , , 2-----  i C0S(S) =

( £ ? )  + 1 ’ ( £ £ )  + 1 ’

/ x 2— X 4  \ ̂  _ 1  r \  f  X 2 — X 4  \
• (+\ \3:3+^1/ \rr3+x1//

SinW =  a \ 2-----  > COSW =
( f e ? )  + 1 ( f e ? )  + 1

The value for a and r  become

f t  2n2 /  4 a 2 \ “ 3/ 4 l f xS ~  x l \ 2 , n - i t e m - 1 ( 4 = 4 ) +*C(q)((x2) 2 -  (x4)2) ^ ( - 5-— ) + 1 e

( x3+a"1 i l l  
\ x 2- x 4 )  1  ̂2

( £ ? ) ’ + 1
r =
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3.4 The timelike line
Consider a timelike line (t, 0,0,0) for t a real number. As in the lightlike case 
we want to find the elements of the Lie algebra of the group 50(2 ,2) that 
fix this line. In the process of solving this case we find (3.221) and (3.241), 
which means that the spinor field must be zero outside the cone

(x2)2 =  (x3)2 +  (x4)2 .

This is an unusual circumstance, but we shall continue to solve the equations, 
as the solutions restricted to the cone seem to be well behaved.

There are three linearly independent elements that fix the given timelike 
line, given by

i) ab

/  0 0 0 0 \
0 0 0 0
0 0 0 8

\  0 0 - 8 0 )

and

UJ b

( 0 0 0 0 \
0 0 0 0
0 0 0 - 8

\ 0 0 8 0 )
The Lie group element is given by 

Exp(i jch) =

(  1 0 0 0
0 1 0  0
0 0 cos(<5) — sin(<5)

\  0 0 sin(<5) cos(<5) /

and u ci, acts on X  like this

UJ'b

( x 1 \  
x 2
X s  

\  X 4 )

0 
0

—x A8

V x 38 J

The differential of ip in the direction ljX  is given by 

ip' (X;ucbX )  = 7 (x3! ^ -  -  x4 ^
dxA dx3 ) ■
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Now by substituting this in equation (3.6), the first symmetry equation in 
this case is given by

ii) Uab =

3 dip 4 dip 1 3 4

/  0 0 0 0 \
0 0 0 /?
0 0 0 0

V o - p  o o /
, and

(3.204)

Mb =

The Lie algebra element is given by

< 0
0 0 0  \

0 0 0 p
0 0 0 0

^ 0 p 0 0  )

/  1

Exp(ucb) =

and u cb acts on X  like this

uj b

0 0 0 \
0 cosh(/?) 0 sinh(/?)
0 0

\  0 sinh(/3) 0 cosh(/?) /

/ x1 \
x 2

X3

(  0 \
x A(3 

0
V x 2(5 )\ x  J

The differential of 'ijj in the direction cuX is given by 

i / / ( A > cjX ) = 0(xi&4) • ~i9V’
dx 2

+ x
dx4

Now by substituting this in equation (3.6), the second symmetry equation in 
this case is given by
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iii) u)ab =
( 0 0 0 0 \

0 0 a 0
0 —a 0 0

V o 0 0 0 )
, and

v cb =
< 0 0 0 0 \

0 0 a 0
0 a 0 0

I  0 0 0 0 )

The Lie algebra element is given by

/  1

Exp{ujcb) =

0 0 0 \
0 cosh(a) sinh(o;) 0
0 sinh(a) cosh(a) 0

V 0 0 0 i  J
and u cb acts on X  like this

coCb

( x 1 \  
x 2

X3 
\  X4 /

( 0 \
x 3a

2x a
\  0 J

The differential o f 'd’ in the direction tuX is given by

d)\X]ujcbX )  =  a(x3^ ^  +  x 2 7T^)  •dx2 dx 3

Now by substituting this in equation (3.6), the third symmetry equation in 
this case is given by

o dd  9 d^) 1 9 o ,

X d ^  + X d ^  = 2 1 ^ ’-
(3.206)

We find a total of three symmetry equations in this case, which are equations 
(3.204), (3.205) and (3.206).

By multiplying equation (3.204) by x2, it becomes
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and by multiplying equation (3.205) by x3, it becomes

2 3 3 4 4 3 2 4 ;

X X d ^  + X X d ^  = 2 X 1 ^ '  

Finally by multiplying equation (3.206) by x4, it becomes

4 3 2 4 1 4 2 3 /
X X M + X  X W  = 2 X 1 1 ^ -

(3.208)

(3.209)

Now by adding equations (3.207) and (3.209), and then by subtracting the 
result from equation (3.208),

(x273q4 +  x47273 — x37274) ip =  0. 

By multiplying equation (3.210) by 727374, it becomes

(x3 q3 +  x4 q4 — x2 7 2) -0 =  0.

(3.210)

(3.211)

3.4.1 The symmetry equations and currentless spinors
In this part we examine the currentless spinors, first by applying condition 
(3.211), and secondly by applying the symmetry equations we had in the 
previous part. Let us now consider these currentless spinors:

( 1 \
I) When =

it gives

a, by substituting this spinor in equation (3.211),

x -  (x — i x ) e , (3.212)

x 1 = (x +  z x ) e ,

x2 =  (x3 +  i x4) e ls ,

(3.213)

(3.214)

x2 =  (x3 — ix 4) els (3.215)
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From the last four equations, there is a relation between 5 and t which given 
by

t = — s +  2 mr 

Then this currentless spinor becomes

(3.216)

ip =
(  1 >

ets
i rels

V i r  J

Now if we subtract (3.214) from (3.215),

a . (3.217)

x —

sin (s) x
x  so that 5 =  tan (— ) (for cos (s) ^  0). (3.218)

x 6cos(s)

By adding (3.214) to (3.215),

x 2 = x 4 sin (s) +  x 3 cos (s). (3.219)

Now by substituting the value for x 4 given by (3.218) equation (3.219) be­
comes

x3 =  x 2 cos (s) and x 4 = x 2 sin (5 ). (3.220)

This means well,

(x2)2 = (x3)2 +  (x4)2 . (3.221)

Now we are in position to start to apply the symmetry equations on this 
currentless spinor, but before that we change the variables as

(p, Q.) ~  Q sinh(p) and x2(p, q) = q cosh(p), 

where p and q are defined by

p  = \  lnC2 and 9 = - 2 ■

Now the symmetry equation given by (3.205) becomes

(3.222)

(3.223)
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By substituting the value for ip given by (3.217) in equation (3.224), it gives

log® =  ^ e is, (3.225)
o p  2

d
—  s =  cos (5 ), (3.226)
o p

1 /  = °- (3-22?)
Now the symmetry equation which given by (3.206) will become

3 / —sinh(p) d , , \ \  w  \ ^ l , 1 2 s ,
( ------  ^ + cosh(/>) g-q ) +  9 cosh(p) — =  - 7  7 4,.

(3.228)

Note from the equations (3.221) and (3.223),

(x3)2 =  g2 so that x3 =  ± q .  (3.229)

This means that there are two possibilities. Next we will consider the possi­
bility where x3 = q, and the other will be similar. For x3 = q, we know from 
(3.218) that

x^
tan (5 ) =  — so tan (5 ) =  sinh (p) . (3.230)

x 6

This means that s is a function of p only, and we write it as

5 =  tan -1 ( sinh (p) ) . (3.231)

Now by using (3.229) in equation (3.228), it becomes

d  d  1
( 2q cosh (p) —  -  sinh (p) - ) i / > = -  7273 i/> . (3.232)

By substituting the value for the ip given by (3.217) in equation (3.232), it 
gives

d  d  1
( 2q cosh (p) —  -  sinh(p) — ) log a =  -  el s , (3.233)
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r \ r\

( 2q cosh (p) —  — sinh (p) —  ) r = 0 . (3.234)
v oq o p '

From equation (3.227) we know that r  is independent of p, and by using this 
in equation (3.234), we find that r is independent of q as well. This means
that r  is a function only of x 1. Now by using equation (3.225) in equation
(3.233), it becomes

d 1
2q cosh (p) —  log a =  -  ( 1 — i sinh (p) ) els ,

and the last equation can be written as

, , , d , 1 /  . . , / N \ r 1 •sm^  (p ) 1
2 q cosh (p) —  log a = -  ( 1 -  , smh (p) )

Finally this equation becomes

log a = - i-  . (3.235)
dq 4q

By integrating equation (3.235) with respect to q,

log a = ^ log q + f f a x 1). (3.236)

Now we can write equation (3.225) as

d , —i f  1 .sinh(p) \
dp  ° ga = T  b o s h  (p) + ! cosh(p) ) ' ^

By integrating equation (3.237) with respect to p,

log a =  t  log q \  log (cosh (p)) — i tan-1 (eP) +  f ( x l ) . (3.238)

Summ ary of (I):

We found that r is a function of x 1 only, and for x 3 =  q, the values for s and 
log a are given by

s = tan -1 ( sinh (p) ) ,



Lorentz transformations and world lines 129

a =  gi  (cosh(p))i e - itan"1(e,,)+/(ll: 

where p and q are given by (3.223).

II) When ^

/  0 \
0
c

\ d  )
(3.211), there are two possibilities:

, by substituting this currentless spinor in equation

and

x 1 d =  (x3 — ix4) c so that d =

x 2 c = (x3 +  i x4) d so that d =

(x3 — ix4)

(x3 +  ix4)

From these two values for d, there is a condition which is

(x2)2 -  (x3)2 +  (x4)2

Then the currentless spinor becomes

(3.239)

(3.240)

(3.241)

( 0 \ 
0 
1

(x3 —ix4) ?
\  (x3+ix4)2 J

C, (3.242)

Now we are in position to change the variables as in (3.222). Similarly in 
this case we will consider the possibility where x3 — q and the other will be 
similar. By substituting the value for -0 given by (3.242) in equation (3.224), 
it gives

d i / I — i sinh (p) \ \
c .

dp  ~ 2 ^ 1  +  z sinh (p)

By integrating the last equation with respect to p,

logc = 1 log (1 +  i sinh (p)) + g(g, x l )

(3.243)

(3.244)
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By substituting the value for the i\) given by (3.242) in equation (3.232) and 
by using equation (3.243), it becomes

d 1
—  logc =  —  . 
d q 4 q

By integrating equation (3.245) with respect to q,

logc =  ~ log(1 +  i sinh (p)) + i  logg +  g(xl )

(3.245)

(3.246)

S u m m ary  of (II):

In this case we found

log c =  i  log (1 +  i sinh (p)) +  i  log q +  g{xl ) ,

where p and q are given by (3.223).

3.4.2 The action of Lorentz group on vector potential
In this part to see how the Lorentz group acts on the connection field A. We 
will just give the Lie algebra representation which is given by

A c\ X c-ujcbX b) = gacu ct,gbdAd . (3.247)

The idea now is to get the symmetry equations for the connection field A  
given by equation (3.247). We know that there are three linearly indepen­
dent elements of the Lie algebra of the group SO(2, 2) that fix the timelike 
line, and they are:

i) ^ab

/  0 0 0 0 \
0 0 0 0
0 0 0 <5

V 0 0  - 8  0  J

, .c __UJ b —

(  0 0 0 0 \
0 0 0 0
0 0 0 - 6

V 0 0 6  0 j

By substituting this value for in equation (3.247), the first symmetry 
equation is given by

d
dx4

d
— x

dx 3
) A  =

( 0 0 0 0 \
0 0 0 0
0 0 0 -1

V o o  i  o  )
A. (3.248)
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/  0 0 
0 0 
0 0 

VO -0

0 0 \  
0 p 
0 0 
0 0 /

. ,c __LJ b —

/  0 0 
0 0 
0 0 

VO 0

0 0 \  
o 0  

0 0 
0 0 /

By substituting this value for u cb in equation (3.247), the second symme­
try equation is given by

/  0
a

dx 2

iii )ujab =

(  0 
0 
0 

V 0

0 0 
0 a  

—a  0 
0 0

+ x d

0 \  
0 
0 
0 /

d
dx4

) A  =

. ,C ___UJ b —

0 
0

V 0
( 0 0 

0 0 
0 a

V 0 0

0
0
0

-1

0
- 1
0
0

A.

0
a
0

0
By using this value for u cb in (3.247),

(x2
d

dx 2
+ x d

d
dx 3

) A  =

(  0 
0 
0 

V 0

0
0

- 1
0

o \  
0 
0 
0 /

0
-1
0
0

0 \  
0 
0 
0

A

Now by multiplying equation (3.248) by x2, it becomes

/  0 0 0 0 \
0 0 
0 0 

V o  o

0 0
0 -1
1 0

A ,

/
and by multiplying equation (3.249) by x 3, it becomes

/  0 0 0 0 \  
0 0 - 1

x \ x '
d d

dx 2 + X W ) A  = XC 0 
0 J

A
0
0 0 0 

V o  - i  o
Similarly if we multiply equation (3.250) by x4, it becomes

/  0 0 0 0 \
0 0 - 1  
0 - 1 0  

V o  o  o

0 
0 
0

A

(3.249)

(3.250)

(3.251)

(3.252)

(3.253)
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Now add equations (3.251) and (3.253), and subtracting the result from equa­
tion (3.252),

)A =  0.

f 0 0 0 0 ( 0 0 0 0 \ ( 0 0 0 0 \
t 2 0 0 0 0 4 0 0 -1 0 0 0 0 -1(x2 0 0 0 -1 +x 4 0 -1 0 0 - X 6 0 0 0 0

\ 0 0 1 0 / ^ 0 0 0 0 / ^ 0 -1 0 0 /

By putting A  =

/ M \ 
A 2

A 3

\  a 4 j

in the last equation,

—x 4 +  x3 A 4

—x 4 A 2 — x 2 A 4 

{ x 3 A 2 + X2 A 3 J

=  0 .

From this last equation,

A3 =  - 4 -  Ao A a —
—x

X- X*

Now by changing the variables as in (3.222), equation (3.249) becomes

(3.254)

d_
dp

A =

(  0 0 0 0 \  
0 0 0 -1  
0 0 0 0 

V 0 - 1  0  0

A.

We considered that x 3 = q. by using (3.254), the last equation gives

8  A  -  0 8  A -  Sinh(p) A— A.i — U , —  — ---- r r r  s±2 .
op Op cosh(p)

Similarly for equation (3.250), by changing variables

(3.255)

d d
( 2q cosh (p) —  -  sinh (p)—  'J A =

dp

( 0 0 0 0 \
0 0 - 1 0  
0 - 1 0 0  

V 0 0 0 0 /

A.
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This last equation gives
r \ r \ i

— A i  = 0 , —  A 2 =  —  A 2 . (3.256)
oq oq 2  q

From the equations (3.255) and (3.256) we deduce that is a function of 
x 1 only, and for A 2

A 2 = q% cosh (p) h f x1) , (3.257)

where h is an arbitrary function

3.4.3 The electromagnetic field :
From the previous part we found that A\  is a function of x 1 only, and A 2,
A s  and A 4  are given by

A 2 = q% cosh (p) hfa1) ,

A 3 = - q ^ h ( x l ),
A 4 = — qi sinh (p) h(x l ) .

The electromagnetic field tensor is given by

Lhi/ — dfj, A u dy Ay .

The electromagnetic fields are given by

F l2 = q 2̂ cosh(p) —  h(xl ),

F l3  =

dFu  = - q ^  sinli(p) —  ^(x1),

T23 =  q cosh (p) h(x l ) ,
F24 =  0 ,

F34 =  q ~  sinh (p) h(x l ) .

Now the zero current equation is given by

3 y F ^  = 0 .
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For v = 1,
r \

h(xl) =  0, (3.258)

and this means that h(xl ) is a constant.

For v =  2,

h{xl ) =  0, (3.259)

and this means that A{ = 0 for i = 2,3,4. Therefore the electromagnetic
field vanishes.

3.4.4 The solution of the timelike line case
The Dirac equation with zero mass is given by

, i 5 2 d 3 d 4<9 ■ u a i
( 7 a ^  +  7 a ^  +  7 d ^  + 1 d ^ )i ,  = l Y A ^ -

Now by using equations (3.204), (3.205) and (3.206),

+ , 2 , 4 _ ^ ! A w ,  +  v V ^ ! j? _____
1  d x 1 ^  ' 1  x4 3x4'^  0 2 x ^  1

d
+ 7 =  i ' y , iA t t i p ,

which simplifies to

7 1 tt~7  V’ +  ~ j 7 4 </> +  - ^ ( ^ V  +  z 3 7'3 -  ^ V )  ^  =  * 7 m^ m ^  •ax 1 x4 x4 ax4

Now by differentiating equation (3.211) with respect to x l-

7 4 -0 +  ( x V  +  x37 3 -  x272) ^ -  ^  =  0 . 

By using this result in the Dirac equation, it becomes

7 = i ^  ■ (3.260)
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Now we use the value for the vector potential we had in the previous subsec­
tion in equation (3.260), it becomes

d
71 dx1 ^  =  i lAAl ^ '

Now by multiplying both sides by 7 1, the last equation becomes
r\

0 ^ ^  = i Ai tp .  (3.261)

Now by substituting the value for ip given by (3.217) in equation (3.261),

d d
7 log a =  i A i  and ——- logr =  0 . 
1 d x 1d x

(3.262)

The last two equations tell us first that r is a constant, and that a is given 
bv

a =  qi (cosh(p))5e- itan 1 f  a, 

S u m m ary  of (I):

The solution for the Dirac equation is given by

(3.263)

=

( 1 \
eis 

i rels
V i r  J

a ,

where r  is constant, and for x 3 =  q the values for s  and a are given by

s = tan -1  ( sinh (p) ) ,

a =  q i  (cosh (p))5 e~‘ tan' '  (e”)+i f A' dx‘ .

Note that the spinor field is vanishing out sides the cone

(x2) 2 = (x3 ) 2 +  (x4)2 .

The variables p  and q are given by

1 . , x 2 +  X4
2 x 2 — x L

) and q =  ( (x2)2 — (x 4)„4\2 \  2
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Ai  is a function of x 1 only, and A 2, As and A 4 are vanishing, which means 
that the electromagnetic field vanishes as well.

Similarly by substituting the value for tp given by (3.242) in equation (3.261),

d
d x l  logc =  i * .

Now by integrating the last equation, we can write c finally as

i  f  A y  d x 1

c = g4 (1 +  ? sinh (p) )

Summary of (II):

The solution for the Dirac equation is given by

ip =

0 
0 
1

(x3 —i x4) 2 
\  (x3+ix4)S /

C,

where for x 3 = q the value for c is given by

1 ' /  -41 dx1
c = q* sinh (p) )

Note that the spinor field is vanishing out sides the cone

(x2)2 =  (x3)2 +  (x4)2 .

The variables p and q are given by

V =  « ln(
1 . ,x 2 +  x4

xz — xh
) and q — ((x2)2 — (x4)A\2\  2

(3.264)

(3.265)

A\ is a function of x 1 only, and A 2, As and A 4 are vanishing as well as the 
electromagnetic field.



Chapter 4 

Solutions for the m assless Dirac 
equation in 2 + 2 dim ensions

4.1 Introduction
The aim of this chapter is to find more general solutions for the massless 
Dirac equation with potential in 2 +  2 dimensions. These solutions are 
not constrained by the sort of symmetries we described in the last chapter. 
In this chapter we want to consider one of the currentless spinors,

/ 1
e is

-  (i r e 2 ' s —t)

-  (i r e 2 [s+t)

\

where s and t are real functions, r  is a non zero real function, and a is a
( 0 \

complex function. For spinors of the form ' ĉ
V d  j

we have found plane wave

solutions already in chapter 2. As the sum of any spinors of this form is also 
currentless, we can write quite general solutions as the sums (or integrals) of

/  « \
such plane waves. Similarly we can consider spinors of the form

V 0 J

137
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In section 4.2 we write the Dirac massless equation with potential A M in 2 +  2 
dimensions. Then write the corresponding four equations for the currentless 
spinor, and find that we have two cases to study. In section 4.3 we want to 
show that some of the equations are equivalent to equations written in terms 
of differential forms. In section 4.4 we study the first case. For convenience 
we make an assumption that the vector potential components satisfy two 
relations to simplify the equations, then we study the electromagnetic field. 
Similarly in the last section we study the second case.

4.2 The massless Dirac equation in 2 + 2 di­
mensions

The massless Dirac equation with potential in 2 +  2 dimensions is given
by

Y ( d n  ~ iA„)ip =  0 , (4.1)

where A^ is a real valued function. Now we substitute the representation for 
the gamma matrices given by (1.1) in equation (4.1), to give

/  0 0  id4 — d3 —idi — d2 \
0  0 —id\ +  d2 id4 +  d3

id4 +  d3 idi +  d2 0  0

V idi — d2 id4 — d3 0 0

ip =

0 0 iA4 — A 3 —iA\  — A 2 ^
0 0 —1’ A\  +  A 2 iA4 +  A 3

iA4 +  A 3 iAi  +  A 2 0 0
\  iA\  — A 2 iA 4 — + 3  0 0

i).

/

The last equation, by putting ?/; in general equal to

(  a \  
b
c

V d j

, provides the

following four equations

a (&3 T 1 ^4) b {k2 +  i k4) = a (A3 +  i A 4) +  b (A 2 +  i A 4) , (4-2)

d (z k\ — k̂ P) +  b (z k4 — /C3 ) — cz (z A\  — Â f) +  b (z A 4 — 2I3 ) , (4-3)
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c(i k 4 — k 3) — d  (z k\  +  k^) — c (z A 4 — -A3 ) — d  (z A\  +  A2) , (4-4)

c (k 2 — z A4) +  d (k3 +  z /c4) — c (A2 — z Ai) +  d  (A3 +  z A 4 ) . (4-5)

Next we set xp to be the currentless spinor we chose earlier, and then write 
the corresponding four equations for the equations (4.2)-(4.5).

Set
b = ae ls , c = i a r e ^ s~^ , d = i a r e * ^ s+t\

where s and t are real functions, r is a non zero real function, and a is a
complex function. The corresponding four equations for the equations (4.2)- 
(4.5) are given by

( d3 +  $4 ) log a +  ets ( d2 +  i d i ) log a +  iels (d 2 +  idi )s

= i [ (A 3 +  iA4 ) +  ( A2 +  zAi)e*s ], (4-6)

(d 3 +  <94 ) log a +  els ( d2 +  i d i ) log a +  iels d2 +  idi )s

— z[(zAi — A2 ) +  (zA4 — A 3 )e ls], (4-7)

e 2 ( id4 — <93 )log(ra) — e^^s+i  ̂ (d 2 +  id4) log (ra) +

es ( id4 -  d3 )s -  ^ e 2 (s_f) ( idA -  d3 )t -  

L 6 2 (s+b ( q2 _|_ )s _  L ei (s+b ( q2 _)_ iqi _

z[ ( zA4 -  A3 ) e 2 -  ( A2 +  zAi )e*(s+f) ], '(4.8)

ei(s-z) ^ 2 _  ?;^1 )log(ra) — e^(s+i)(<93 +  z<94) log (ra) +

A (s-b  ( ,92 _  2^  )5 _  L e\ ( q2 — id 1 )£ 4 .

|  ej (>+t) ( g3 + iQit )s +  1 ej (»+*) ( +  =

i[ ( A 2 -  iA l) e* (s- ‘> + ( ^ 3  +  a 4 ) e i (s+t)}. (4.9)
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We can simplify the last two equations giving by multiplying equation (4.8) 
by e% ^~8\  to give

( idi ~  d3 ) log (ra) -  elt ( d2 +  idi )  log (ra) +

^ ( idi ~  d3 )s -  |  ( id4 -  d3 )t -

%-^ext (d2 +  idi )s  ~ ^ e xt (d2 +  idi ) t  =

i [( iAi  — A 3 ) — ( A 2 +  i Ai ) e l t ). (4-10)

Similarly by multiplying equation (4.9) by e~^^a+t\

e~xt ( d2 -  i d i ) log (ra) -  ( d3 +  id4, ) log (ra) +

^ e~l t (d 2 -  idi )s  -  ^ e ~ xt (d 2 -  idi ) t  +

2 (^3 +  idi, )s + — (d3 +  id4, )t =

i [ ( A 2 — i A \ ) e lt +  ( A 3 +  iA4 )].  (4-11)

The system of equations we have from the Dirac equation which we want to 
solve are given by (4.6), (4.7), (4.10) and (4.11). Next we want to show that 
each equation of the system provides two new equations, one from the real 
part and the other from the imaginary part. Note that r, s and t are real, 
and we can use a gauge transformation to make a positive, so that log a is 
real as well. Let us start with equation (4.6), giving

d3 log a +  (cos(s)<92 — sin (s) d \ ) log a — (sin(s)<92 +  cos(s)di ) s

= —[Ai  +  sin (s) A 2 +  cos(s)7 li], (4-12) 

di log a +  ( cos (s) di +  sin (s) d2 ) log a — ( sin (s) d\ — cos (s) d2 )s

=  A 3 — sin(s)>4i +  cos (s) A 2 . (4.13)
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From equation (4.7),

— d3 log a +  (sin (s) d4 — cos (s) d2 ) log a — d4s

= — [ A 4 +  sin (s) A 2 +  cos (s) A\  ], 

d4 log a +  ( cos (s) di +  sin (s) d2 ) log a — d3s

= — [ A 3 — sin (s) A\  +  cos (s) A 2 ].

From equation (4.10),

— d3 log (ra) +  ( sin (t) d\ — cos (t) d2 ) log (ra) -

^ d4 ( s -  t ) +  i  ( sin (t) d2 +  cos (t) dx ) ( s +  t )

=  — A 4 +  sin (t) A 2 +  cos (t) A \ , 

d4 log (ra) — ( sin (t) d2 +  cos (t) d i ) log (ra) —

i d3 (s  -  t ) +  i  ( sin (t) di -  cos (t) d2 ) ( s +  t )

=  — A 3 +  sin (t) A i — cos (t) A 2 . 

Finally from equation (4.11),

d3 log (ra) +  ( cos (t) d2 — sin (t) d \ ) log (ra) —

i  d4 ( s +  t ) +  ^ ( sin (t) d2 +  cos (t) d4) ( s — t )

=  — A 4 +  sin (t) A 2 +  cos (t) A i ,

— d4 log (ra) +  ( sin (t) d2 +  cos (t) d \ ) log (ra) —

i  d3 ( s +  t ) +  i  ( sin (t) di -  cos (t) d2 ) ( s -  t )  

= — A 3 +  sin (t) Ai  — cos (t) A 2 .
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Now we can simplify the last eight equations by adding and subtracting one 
from the other. This gives another eight equations, given by the following :

The first two equations are given by subtracting (4.12) from (4.14) and by 
adding them,

2 ( d 3  +  cos (s) — sin (s) 8 \ ) log a =

( cos (s) di +  sin (s ) <92 — <94 ) s , (4.20)

( <94 +  cos (s ) di +  sin (5 )  <92 ) s =

2 ( A 4 + Ai  c o s  ( 5 )  +  v42 sin (s) ) , (4-21)

respectively. The second two equations are given by adding (4.13) to (4.15) 
and by subtracting them,

2 ( d\ +  cos (s) d\ + sin (5 )  <92 ) log a =

( 8 3  — cos (s) <92 +  sin (s) 8 \ ) s , (4.22)

( $3 +  cos (s) <92 — sin (s) 8 \ j s =

2  ( A 3 +  j42 cos  (s ) — A\  sin ( s )  ) , (4-23)

respectively. The third two equations are given by subtracting (4.16) from
(4.18) and by adding them,

2 ( <93 +  cos (t) d‘2 — sin (t) di ) log (ra) =

(^8 4  + cos (t) d\ + sin (t) <92 ) t , (4.24)

( 8 4  — cos (t) 8 1 — sin (t ) 8 2  ) 5 =

2 (A 4 — Ai  cos (t) — A 2 sin (t)'j , (4-25)
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respectively. The last two equations are given by subtracting (4.17) from
(4.19) and by adding them,

2 ( <94 — cos (t) di — sin (t ) &2 ) log (ra) =

— ( <93 — cos (t ) <92 +  sin (t) <9i ) t , (4.26)

( <93 +  cos (t) — sin (t ) ) s =

2 ^A 3 +  A 2 cos (t) — Ai s in (t))  , (4-27)

respectively. The general solution for the Dirac massless equation is given
by solving the last eight equations.

We can replace the equations (4.21), (4.23), (4.25) and (4.27) by simpler 
four equations

By subtracting (4.21) from (4.25),

( cos (t ) +  cos (s) 'j ( di s — 2  A \ ) +

( sin (f) +  sin (s) ) ( <92 s — 2 A 2 ) = 0 . (4.28)

And by subtracting (4.23) from (4.27),

( sin (t ) — sin ( s )  ) ( <9i s — 2 A\ )  —

( cos (t) — cos (5) ) (<92 s — 2 A 2 ) =  0 . (4.29)

And by adding (4.23) from (4.27),

2 ( <93 s — 2 A 3 ) — ( sin (t) +  sin (s) ) ( di  s — 2 A i )  +

( cos (t) +  cos (s) ) ( 8 2  s — 2 A 2 ) =  0 . (4.30)

Finally by adding (4.21) from (4.25),

2  ( 8 4  s — 2 A 4 ) — ( cos (t) — cos (s) ) ( <9i s — 2  A])  —

( sin (t) — sin (s) ) (<92 5 — 2 A 2 ) =  0 . (4.31)
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4.3 Using differential forms
There are two equations that involve derivatives of t which are (4.24) and 
(4.26). Now we want to look at these two equations to get more information
about t. Let us consider this equation for log (ra) :

H  , G log (ra) = H  ( G log (ra) j — G (^H log (ra) ) , (4.32)

where H  and G are given by

H = 2 ( <94 — sin (t) d2 — cos (t) d\ ) ,

G = 2 ( $3 — sin (t) d\ +  cos (t) 8 2 ) .

Then by using the equations (4.24) and (4.26) in equation (4.32),we find

( 0 4 2 +  d^ 2 — 8 ^  — 8  2 ) t  = 2 [ (8 \ t) di +

(8 2 1) 8 2  -  (d3 t ) d 3 -  (d4 t )d4] log ( ra) . (4.33)

The last equation can be written as

(ra) 2 ( 8  2 +  8  2 -  8  2 -  8  2 ) t  = [(d it)d i +

(d2 1 ) d2 -  (d3 t) d3 -  (dA t) d4 ] (ra) 2 .

Let set p = (ra)2, then we can wrrite the last equation in a compact form­
as

d4 ( pd 4 t )  +  <93 ( p d 3 t )  -  d2 ( p d 2 t )  -  di (pdi  t )  = 0. (4.34)

If we can solve equation (4.34) for t and p , this might help to solve the
other equations. Note that an equation like (4.34) could be solved by using 
differential forms, where the second order partial differential equation (4.34) 
is equivalent to this equation in differential forms

d(  — W 4 dx1 A dx2 A dx3 +  W 3 dx 1 A dx2 A dxA +

W2 dx 1 A dx3 A dx4 — W\ dx2 A dx3 A dx4 ) = 0, (4.35)



Solutions for the massless Dirac equation in 2 +  2 dimensions 145

where Wx =  pdrf  for i =  1, • • • , 4. The 3-form

o = — WA dx 1 A dx2 A dx3 +  VI3 dx1 A dx2 A dx 4 +

IV2 d x 1 A dx3 A drr4 — VFi dx2 A d x 3 A dx4 ,

is called a closed 3-form, since dcr =  0. Note that every closed form on R4 

is exact, which means that there is a 2-form U which satisfies

a  =  d U .

The problem now is for a given Wx satisfying (4.35), can we find p and t? If
the answer is yes, then we can use this to try to solve the equations (4.24)
and (4.26) for p and t. Now the equations we want start with are given by 
this formula

dj W i -  di Wj  =  —  W i — —  Wj  , (4.36)
P P

for 1 < 1 < j  < 4. This means that we have six equations,

d2 \ v l -  di I I 2 =
d2p
—  Wi -

8 \P
P P

a3 iib -  di lib = ^  Wl -
P p

-  di 114 - 8 \P r r r----  I ll  -
V p

d3 112 -  d2 w 3 = 1k <M

R,|
 ̂

1

V P

dA 112 -  d2 w A = ^ w 3 - d2P u / ----W4
V P

8 4  IT 3 - d s W A = 1

a, I 
 ̂

1 d‘iP U f  ----  11 4
P p

which we would like to solve for dx logp, i — 1, 2, 3,4.
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Treating these as six linear equations in four variables (the Wi) we find

64 W \  — b2 W 2 T  b\ W3 =  0 ,

65 Wi -  h  W2 + h  w A =  0,

b& 1471 — 63 W3 -f- 62 W4 = 0,

b6 W 2 -  b5 W 3 +  bAWA = 0,

where bk for k = 1, • • • , 6  are given by the left hand sides of (4.36) respec­
tively, so for example bi = d2 W\  — d\ W2. From these equations we derive

63 64 — b2 65 +  b\ b$ = 0 .

We can write the last equation in terms of W s as

£yH ( d i W n i d k W , )  = 0 , (4.37)

where e1234 =  + 1 . This tensor e is anti-symmetric, that is every time we 
swap two indices the sign will change.
We see that (4.37) is an additional relation to impose on W  to find the value 
of p and t. So far I have not been able to solve this, or to find any additional 
conditions.

4 . 4  C ase  (I), F or cos ( t )  — COS ( s )  7̂  0

We begin with just the assumption cos (£) — cos (s) 7  ̂ 0, but it will be
convenient later to make further assumptions, namely (4.41) and that t is 
constant. In this case we have from the equations (4.28)-(4.31) the following 
relations :

« -k >

(a 3 S - 2 A 3 ) =  ( (d 1 s - 2 A 1),  (4.39)
v cos (t) — cos (s ) '
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( 8 4  s — 2  A 4 ) — f  ——  -----) ( d\ s — 2 A \ ). (4.40)
'  cos (t) — cos (5 ) '

At this stage we need to simplify our equations, because they are quite dif­
ficult to deal with without simplifying them, so we assum e th a t  th e  fol­
lowing tw o eq u a tio n s  a re  tru e

A 4 = — ( Ai  cos (s) +  A 2 sin (5 ) ) ,
(4.41)

A s = Ai  sin (s) — A 2 cos (s) .

Then the equations (4.21) and (4.23) will become

( d4 +  cos (5 ) d\ +  sin (5 ) d2 ) s = 0, (4.42)

( <93 +  cos (s) d2 — sin (s) d\ ) s = 0 , (4*43)

respectively. Consider a point X_ in space-time. Equations (4.42) and (4.43)
show that s is constant on the plane through X_ spanned by the vectors
(cos (s), sin (s), 0,1) and (— sin (5 ), cos (s), 1,0). where s = s p f) . If we take 
another point X7, we also find that the function s is constant on the plane
through X7 spanned by the vectors (cos (s'), sin (s'), 0,1) and (— sin (s'), cos (s'), 1,0),
where s' =  s(X').

If these planes intersect, we then have s(20 =  s(20 -

The planes must intersect if the four vectors (cos (s), sin (s), 0,1), (— sin (s), cos (s), 1,0), 
(cos (s'), sin (s'), 0,1) and (— sin (s'), cos (s'), 1, 0) form a basis for R2+2.

If they do not give a basis, then

cos (s (2 0 ) sin(s(X ')) 0 1
— sin (s(X ')) c.os(s(X')) 1 0  _

cos (s(2Q) sin (s(2Q) 0 1
— sin (s(20) cos (s(20) 1 0

The condition we have from the last equation is

c o s ( s ( 2 0 )  c o s ( 5 ( 2 C ) )  +  s i n  ( s  ( 2 0 )  s m {s {2f!))  =  1 ,
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and we could write this condition as

cos(s(X)  -  s(X' ))  = 1. (4.44)

This means that s(X) — s(X!) = 2n7r, where n € N, and as s is a contin­
uous function, then we deduce that s is a constant.

Now by considering 5 as a constant in the equations (4.20) and (4.22), we
get

(%  +  cos (s)d2 — sin (s) <9i ) a =  0, (4.45)

( d4 +  cos (s) d\ +  sin (s) &2 ) a =  0 , (4.46)

respectively. By changing the variables in the equations (4.45) and (4.46), 
we can solve them and write a as

a =  x 4 — x 1 cos (s) — x 2 sin (s ) , x 3 +  x 1 sin (s) — x 2 cos (s ) ) . (4.47)

where h is an arbitrary function of two variables.
We can write the relations (4.38), (4.39) and (4.40) as

=  ( s in i ; i - sin(; ) , ) ^ ,  (4.48)
v c o s  ( t )  — COS ( s ) '

/ — sin (t — s) \ „ . J .
^3 =  ( /Tv---------- TT ) A\  ? (4.49)v cos (t) — cos (s) J

/ I  — cos (t — s) \ . , A
A.4 =  ( -- — ----------- -—- ) A-i . (4.50)

'  cos (t) — cos (s) '

4.4.1 The electromagnetic field
We know that the electromagnetic field tensor is given by

=  d„Au -  dv Ap.  (4.51)
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By using the values for A 2 , As and A\  given by (4.48), (4.49) and (4.50) in 
terms of A\  in (4.51),

( sin (t) — sin ( s ) )
F12 =  - 7 ----- — ---------- — v (diAi )  -  d2 A 1 -

( cos (t) — cos (5 ) )

( 1 — cos (t — s)
Ai  ------------------- ^ 5  (ft t ) ,

( cos (t) — cos ( s ) )

Fl3 = 7 ,sm (t s ) ,v  (ft^4i) -  f t ^ i  +cos (t) — COS (5 )  )

cos (s) ( 1 — cos (t — s) )
Ai  —^ r1  (ft t) .

cos (t) — cos ( s ) )

( 1 — cos (t — s ) )
F » = 7 -----77----------7 T r ( f t ^ i ) - f t A -cos (t) — COS (5 ) )

cos (s) sin (t -  s)
A\   ----------------------- “ 2 (di t) ,

( cos (t) — cos (s) )

F .. - s m ( t - s )  ( sin (f) -  sin ( f t ,
23 “  7— 77\---------r r r  ^ 2 A i > ~ i — 3 ^cos [t) — COS (5 ) J ( cos (£) — cos (s) J

f  1 -  c o s  (t -  s )  )  . \
Ai —̂---------------------~ 2  (  <% t +  COS (s) 8 2 t ) ,

c o s  (t) — COS (5 ) J

( 1 — cos (t — s) ) ( sin (t) — sin (s'
F24 = -r------------  ~ ^ ( d 2 A l) - i ----- —--------- ^ ( O M i ) -

( cos (t ) — cos (s) ) ( cos (t) — cos (s) )

A\   -----------   “ 2 ( ( 1 — cos (t — s ) ) <941
cos (t) — cos (s) J

+  cos (s) sin (t — s) d2 t^  ,
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( l  -  cos( t - s ) )  s in (t — s) .
■̂ 34 — 7 ------- —------------ TTT (^ 3 ^ 1 ) +  7 ------- 7 7 ------------ “ T  (^ 4 ^ 1 ) +

( cos (t) — cos ( s ) )

•̂1
cos(s)

(  c o s  ( t ) — COS( s

( cos(t ) — co s(s ))

( ( 1  -  cos( t - s ) ) d 4t — sin (t — s) ds t ) .

The next thing we want to do is to find out what the currentless equation 
gives us in terms of the electromagnetic field components. The currentless 
equation is given by

dp F» v = 0

W hen  v = 1.

(d2~ — ds~ — <942) A\  +

(4.52)

(1 — cos (t — s)^jd4 —
( cos (t ) — co s(s)j 

sin (t — s)ds — ( s in  (t) — sin(s))<92 <9i^i —

A 1

cos (t ) — c o s (s  

+  cos (s) sin (t — s)<94 j d\t —

( 1  — cos (t — s ) )d2 +  cos (s) (1 — cos (t — s) )ds 

d\ A\

cos(t ) — cos(s
(1 -  cos (f 5) )d2 +

cos (s) ( 1 — cos (t — s ) )6s +  cos (s) sin (t — s)d 4 

d\ t
t -

c o s (t ) — C O S(5 

+  cos (s ) sin (t — s)<94 A i +

(1 — cos (t — s) )d2 +  cos (s) (1 — cos (t — s) )ds 

A\ (di t)
(sin (t ) cos (t — s) +

cos (t ) — cos( 5 ) ) 

sin (s) ( 1 — cos (t — s ) )) ( d2 +  cos (s) $3 ) t +  ( sin (t ) sin (t — s) +

cos (5) (1 — cos (t — s ) )) <941 = 0 (4.53)
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When v — 2,

( sm ^  ~ sm(>) \  ^  a  a) ^  +  2 r -
V r n s  IT 1 — m s  l a ) /  L

( 1 — COS (t — s ) )

cos(t ) — cos(s)

{dsA^idst)  -  {d4Ai)(d4 t)

1

+

( cos (t) — cos ( s ) )

-  cos (s )) di d2Ai  +  A\  

(d2 Ai)  cos (s)

( cos (t) — cos (s) ) 2 

( 1  — cos (t — s ) ) d 4 — sin (t — s )d3 — ( cos (t)

( 1  -  c o s ( t - s ) )  (a22 _ a3 2 _ a42)t

( cos (t) — cos (s) ) 2

( 1  — cos [t — s ) ) ( sin (t) — sin ( s ) ) 
( cos (t) — cos (s) ) 3

A\  cos (s)

(cos (t) — cos (s) ) 2 

( 1  — cos (t — s) )d3 + sin (t — s ) <94

( 1  — cos (t — s) )d3 +  sin (t — s) <94

A\

( cos (t) — cos (s) )2

sin (t — s) ( sin (t) — sin ( s ) ) — ( cos (t) — cos (s )) 
( cos (t) — cos (5 ) )3

cos (s) (1 — cos (t — s ) ) ( sin (t) — sin ( 5 ) )

dot —

cos (s) (d4t) +

( cos (t) — cos (s ) ) 3
(d3 t) (d2 t) = 0. (4.54)
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When v = 3,

cos 00 'cM (a'j)(ft2 +322 “  942)711 +  2 +

cos (s) (1 — cos (t — s) )
(d2Ai)(d2t) -  (d4 Ai)(d4t) +

1
( cos (t) — cos ( s ) )

( sin (t) — sin ( s ) ) d\ d3Ai  +  A\  

(d3 Ai)

( cos (t) — cos (s) )2 

( cos (t) — cos ( s ) ) d\ — (1 — cos (t — s ) ) d 4 +

COS ( s )  ( 1 -  COS ( t  -  s )  ) ( 9 i 2 +  ^ 2  _  ^ 2 ) t

+

A\

+

( cos (t) — cos (s) )2 

cos (s) (1 — cos (t — s ) ) ( sin (t) — sin ( s ) )

( cos (£) — cos (s) )2 

(1 — cos (t — s) )d2 +  cos (s) sin (t — s) d4 t +

( cos (t) — cos (s) )3
( (dit)2 +  (d2t )2 — (d4t)2^

A\
( cos (t.) — cos (s) )2

- sin (t — s) ( sin (t) — sin ( s ) ) — ( cos (t) — cos ( s ) )
A\

(1 — cos {t — s) )d2 +  cos (s) sin (t — s )d 4 d3t +

cos (s) (d4t) +
( cos (t) — cos (s) )3

(1 — cos (t — s ) ) ( sin (t) — sin ( s ) ) 
( cos (t) — cos (s ) )3

(d2 t) (d3t ) =  0. . (4.55)
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When v = 4
1 — cos (t — s)

( ) (ds2 -  d22 -  <V) Ax + 2 [ +
cos (t) — cos (s) 1 L

/o  „ w «  \ n! cos (s) sin (t -  s)
(82Ai ) ( 82t) — (<93Ai)(<93t) 1  ----- —------------ -I-

J ( cos (t) — cos (s) )2

( cos (t ) — cos ( s ) ) d\  +
( cos(t ) — cos(5))

( sin (t) — sin ( s ) ) <92 +  sin (t — s) 8 3  ^4^ 1+

cos (s) sin (t — s) . 2 - 2  o 2>A\
( cos (t) — cos (s) ) 2 

(^4  ^.1)

(dS + d 2J - d 3z) t  +

( cos (t) — cos (s) ) 2

cos (s) ( 1  — cos (t — s) ) 8 3

sin (t — s)( sin (t) — sin ( s ) ) — ( cos (t) — cos ( s ) )

( 1  — cos (t — s) )d2 +  

t +

Ai  cos (s)

(d\t)2 +  {d2t )2 — (dst)2 j  +  A\ 

cos (s) 8 3  8 4 1 +  Ai

( cos (t) — cos (s) ) 3

( 1  — cos (t — s ) )
d2 +

( cos (t) — cos (s) ) 2

(1 — cos (t — s))(sin (t) — sin (s))
(cos (t) — cos (s ) ) 3

(d2t) +  cos (s) (d3 t) ] (8 4 1) = 0. (4.56)

Now as we see all these equations are still quite difficult to work with. The 
next idea is to simplify them by making an assumption.

A ssum e th a t  t is a  co n s tan t, then as we showed that s was a constant 
(4.44), equations (4.24) and (4.26) become

( 8 3  +  cos (t) d2 — sin (t) 8 \ ) (ra) = 0  , 

( 8 4  — cos (t ) di — sin (t) d2) (ra) =  0 ,

(4.57)

(4.58)
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respectively. By changing the variables in the equations (4.57) and (4.58), 
we can solve them and we can write (ra) as

ra = g ( x 4 +  x 1 cos ( t )  +  x2 s in ( t ) , x 3 +  x 1 sin (t) — x 2 cos (t ))  , (4.59)

w'here g is an arbitrary function of two variables.
Now we can write the equations (4.53), (4.54), (4.55) and (4.56) as the fol­
lowing

( cos (t ) -  cos (s) ) ( d 2 +  d 2 -  d 2 -  d 2 ) Ai  +

(l — cos (t — s)) d4 — sin (t — s) d3 — ( sin (t ) —

sin (s)) di — (cos (t) — cos (s)) <9î 4i =  0, (4.60)

( sin (t ) -  sin ( s ) ) ( d 2 +  d22 — d 2 -  d 2 ) Ai  +

(l — cos (t — s)) d4 — sin (t — s) d3 — ( sin (t ) —

sin(s))02 — (cos(t) — cos (s)) d\ d2A\  = 0, (4.61)

sin (t — s) ( d 2 -I- d 2 — d 2 — d 2 ) Ai  —
( l — cos (t — s)) d4 — sin (t — s) d3 — ( sin (t ) —

sin (s)) d2 — (cos (t) — cos (s)) di j d3 A\  =  0, (4.62)

( 1 -  cos (t — s ) ) ( d \ 2 +  d 2 — d3 2 -  d 2 ) Ai  +

(l — cos (t — s)) d4 — sin (t — s) d3 — ( sin (t ) —

sin (s)) d2 — ( cos (t ) — cos (s)) d\ d4A\ = 0, (4.63)

respectively. There are another four interesting equations which are derived 
from the last four equations, and which we will solve first. To get the first 
equation let us multiply (4.60) by (cos(t) — cos(s)), (4.61) by ( sin (t) —

sin (s) V (4.62) by ( — sin (t — s) ) and finally (4.63) by ( cos (t — s) — 1), 
and acid all the results together, giving

(l — cos (t — s)) d4 — sin (t — s) d3 — ( sin (t ) —

sin (s)) d2 — (cos (t) — cos(s))<9i Ai  = 0 .  (4.64)
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The second equation is given by multiplying (4.60) by ( sin (t) — sin ( s ) ) 

and (4.61) by (cos (t) — cos(s)), then subtracting the results, giving

(sin (t) — sin(s))<9i — (cos (t) — cos (s)) 8 2  

[ ( l  — cos (t — s)) 84  — sin (t — s ) d 3 —

( sin (t) — sin (s)) 8 2  — (cos (t) — cos (s)) <9i j Ai =  0. (4.65)

The third equation is given by multiplying (4.60) by sin (t — s )  and (4.62) by
(cos(£) — cos(s)), then adding the results, giving

sin (t — s ) 8 i  — ( cos (t ) — cos (s)) 83  

( l  — cos (t — 5 )) 84 — sin (t — s )  83 —

(sin (t) — sin (s)) <92 — (cos (t) — cos (s)) 8 \ Ai  = 0. (4.66)

Finally the last equation is given by multiplying (4.60) by ( cos (t — s) — 1)
and (4.63) by (cos(£) — cos(s)), and subtracting the results, giving

cos (t — s) — 1) di — ( cos (t ) — cos (s)) 8 4

1 — cos (t — s ) j  8 4  — sin (t — s) 8 3  —

sin(t) — sin (s)) d 2 — (cos(t) — cos(s))<9i A \  = 0 

To solve the last four equations we set

/1  =  ( l — cos (t — s)) 8 4  — sin (t — s )  8 3  —

(4.67)

(sin (t) — sin(s))<92 — (cos(t) — cos (s)) 8 \  A \ . 

Now we can write the equations (4.64)-(4.67) as the following 

1 — cos (t — s)) 8 4  — sin (t — s )  8 3  — ( sin (t ) —

(4.68)

sin (s)) d2 — ( cos (t ) — cos (s)) 8\ f i  = 0, (4.69)
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(sin (t) — sin(s))<9i — (cos (t) — co s(s))d 2 f i  = 0 ,  (4.70)

s in (t — s)di  — (c o s (t) — cos (s)) £3 f i  = 0 ,  (4.71)

( l  — cos (t — s) ) di — (cos (t) — cos (s)) <94 f i  = 0 ,  (4.72)

respectively. The last four equations are linearly dependent, implying that 
/1  is a function of one variable,

. / 1 sin (t) -  sin (s) 2
fi  ( di x 1 +  a i  777— ---------7-7-  x1 -  ai

sin (t — s) 3

cos (t) +  cos (s) cos (t) +  cos (s)
1 — cos (t — s) a \ ,,

+  f l i  777----------7 7  x J, (4.73)
cos (t) +  cos (s) '

where a\ is an arbitrary constant. By substituting this value for f i  in equa­
tion (4.68), it becomes

( l  — cos (t — s)) 8 4  — sin (t — s) 8 3  — ( sin (t) — sin (s)) 8 2  —

cos (t) — cos(s))<9i A\ = f i  ( a i r 1 +  a\ 

sin (t — s ) _ 3

sin (t) — sin (s) 2

cos (t) +  cos (s) 

1 — cos (t — s) 4
- a i  7— ------ —— x ° + a i -----—-----1---- 7—r x H ) . (4.74)

cos (t) +  cos (s) COS (t) +  COS (5 )  '

To work out the last equation we need to change the variables first:

For x 1 and x 2,

sin (t) — sin (s)
p = x 1 +  ( - )z 2 ,

cos (t) — cos (s) 
q =  ( cos (t) + cos (s)) x l +  ( sin (t) +  sin (sfj x 2 . (4.75)

And for x 3 and x4,

L =
1 — cos (t — s)

K - (
sin (t — s)

cos (t) — cos (s) '  '  cos (t) — cos (s)

J  =  ( l +  cos (t — s)) xA +  sin (t — s) x 3 . (4.76)
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Now we can write equation (4.74) in the new variables as

2 cos (t — s) , d d . . - , / y. \
(-5 -  -  ITT M l  =  / i ( “i(p +  £) ) •  (4.77)cos (t) — cos (s) <9p d L

Again here we need to change the variables as

R = p — L and K  = p + L.  (4.78)

Then equation (4.77) becomes

a  A i  =  COs(f) -  COS (s)
d R  2 cos (t — s )

By integrating the last equation with respect to R,  we can write A\  as

. cos (t) -  cos (s)
— R —7------77----- \— f i ( ai K)  + g i { K , q , J ) ,

2  cos [t — s )

or

. cos(t) -  cos(s) .
71] — — ------ 7- v— {p ~  L)  f i ( ai{p + L)) + gi (p + L, q , J ) ,

2  cos [t — s)
(4.79)

w7here L, J, p and q are as given in (4.65) and (4.66), and gi is an arbitrary 
function of three variables..

The idea now is to substitute this value for A\  in the equations (4.60)-(4.63). 
In fact by doing this we will have the same result from all of them,

o  -  (  1 “  C0S (*  “  S ) 1 SI , _ s>2 a i ( --------j~.------%—  i f i +  Qi / 1v cos (t — S) '
+ ( di 2 +  d2 2 — d- 2 -  d 2 ) gi =  0. (4.80)

Since g\ is a function of p +  L, q and J  only, we have

( d 2 +  d 2 — d^ — d 2) g\ =

2 (1 +  cos (1 -  s ) ) ( —  -  —  ) . (4.81)
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Now by using equation (4.81) in  equation (4.80), i t  becomes

d 2 d 2 _  cos (t -  s) -  2

<9(?2 d J 2 ^ 1 2 cos (£ — s ) ( l  +  cos (t — s))  1 f l l

To solve the last equation we need firs t to  change the variables as

h\ = q +  J  , h2 = q — J .

Now we can w rite  equation (4.82) as

A _ d  d _  _  cos (t -  s) -  2

d h i d h , 2 ^ 1 2 cos(t — s)(l +  cos(t — s)) 0l 1 1

Since g\ is a func tion  o f p +  L, h\ and h2 only, and / i  is fun c tio n  o f K ,
K  is p  +  L , now we are able to  w rite  as

COS (t -  5) -  2 , L W / 7V"\
P i — 7;----------- 77----- 771--- ;----------77--------- yT a i™ i ^ 2  ) +8 cos (t — s ) ( l  +  cos (t — s))

g2 ( h ^ h 2 , K ) ,  

where g2 is any so lu tion  o f

d  d
92 =  0 ,dhi  d h 2

where hi and h2 are given by (4.83).

Finally we can write Ai  as

. cos (t ) -  cos (s) r \ * / t t  \  \

Al ~  2 cos (t — s) (P -  L ) f ' M P +  L )) +

C0S^  ^  2 ajhi h2 +  L))8 cos (t — s)(l +  cos (t — s)) 

+  g2 ( h \ , h 2 , p +  L ).

(4.82)

(4.83)

where

(4.84)

(4.85)
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There are non vanishing solutions for the electromagnetic field, given by

_  2 sin (t — s) f d d  .
12 cos (t) — cos (s) d hi d h2

s i n ( t - S) ( c o s ( t - S) - 2)_a i ( / i i  +
4 cos (t — s)(l +  cos (t — s))

Fu =

sin (t — s) / . n d n , s d \
 777 r r  ( 2 cosW ^ i r  +  2cos (5) W T ) 92 ~cos (t) — cos (s) v d h i a / 1.2 '

sin (t -  s)(cos (t — s) — 2) /., 7 . .  . . . . .
8cos(t — s)(l +  cos ( t - s ) )  ( {kl + A2)(C0S (*) +  C°S {S)) “

(A i-/» 2 ))a i/[  -  h  ■'  cos (t — s)

1 5 <9
 —----------—  (2cos(s) —— +  2cos(«) —— )fl2 -
cos (t) — cos (s) v d h i d h 2 '

cos (t — s) / , . d d
( 2 c°s{ t ) -—  +  2 co s(s )— - ) g 2 +

cos (t) — cos (s) '  dh i  d h 2

cos (t — s) — 2 /
4 cos (t — s)(l +  cos (t — s))(cos (t) — cos (s)) '  C0S

cos (s) cos (t — s))hi +  (cos (5) — cos (t) cos (t — s ^ h ^ a i ^  +  

1 -  cos ( t - s )
J11cos (t — s)

sin (t — s) (n . . . d n , d \
23 = -------- 1T\-------- T\  ( 2 s in ( * ^ r -  +  2sm («) ^ i r ) P 2cos (t) — cos (s) v d hi d h 2 '

sin (t — s)(cos (t — s) — 2)
■(sin (t)h2 +

4 cos (t — s )(l +  cos (t — s))(cos (t) — cos (s))

/ \ j \ ,, sin (t — s) (sin (t) — sin (s))
sm (s)hi f l i / i   -----   777----------TTT h  ’cos (t — 8) (cos (t) — cos (s))
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F24 — — m ----------TT ( 2sm (s ST" +  2sln t  S T  _cos {t) — cos (s) v d hi d h 2 /

cos (t — s) / . y d ^ , . d \
 7T\---------- 77  ( 2 sm W ^ 77  +  2sln(s ^ 7 r j5 2  +cos (t) — cos(s) v dhi  d h 2 J

cos (t — s) — 2 (( • ( \
4 cos (t — s)( 1 +  cos (t — s))(cos (t) — cos (s))  ̂ S

sin (s) cos (t — s))hi  +  (sin ( 5 )  — sin (t) cos (t — s ^ h ^ a i ^  +  

(1 — cos (t — s)) (sin (t) — sin(s))

T34 —

cos (t — s) (cos (t) — cos (s)) ^  ’

sin (t — s)(cos (t — s) — 2)
4 cos (t — s)( 1 +  cos (t — s ) ) (cos (t) — cos (s ))

d

ai(h\  — ^2) / ’

sin (t — s) , d 
+ -----77̂ ------ ^ - t ( ) P2 •

COS (t) — COS (s) <9/li 5 /l2

4.4.2 Summary of Case (I)
In this case we have that

cos (t ) — cos (s) 7̂  0 .

The solution for the Dirac massless equation is given by

(4.86)

/  1 \
nis

h -

i r e 2 ( s - t ) a,

7 i r ŝ+t  ̂ j

where s and t are real constants, and

a = h(^x4 — x 1 cos (s ) — x 2 sin (s ), x 3 +  x 1 sin (s) — x 2 cos (s ) ) ,

ra = x 4 +  x 1 cos (t) +  x 2 sin ( t ) , x 3 +  x 1 sin (t) — x 2 cos (t) ) ,

where h and g are arbitrary functions.
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The vector potential is given by

=  ( ° in g - r
v cos(t ) — COS(s) ' 

— sin (t — s)
a 3 = ( ~\ rnc It ) — « I /COS (t) — cos (s)

= ( A - ^ r A ) Al t
v cos(t ) — cos(sj J

where A\  is given by

. COS (t) -  cos (s) , _

*  =  2 CL ( t - s )  { p - L ) M a ^ P + L)) +

COŜ  ^  2 a\hih2 +  L))8 cos (t — s )(l +  cos (t — s))

+  92 ( h i , h2 , p +  L ),

where f i  is an arbitrary function of p +  L, ai is an arbitrary constant, and 
g2 is any solution of

9 9  n
dhi  d h 2 ^ 2

where hi and h2 are given by

hi = q + J  , h2 = q — J .

There are non vanishing solutions for the electromagnetic field, given by 
(4.86).

The variables p, L, q and J  are given by

i , sin (t) -  sin (s) x 2 
'  cos (t) — cos (s ) '

q = (cos (t) +  cos (s)j x l +  (sin (t) +  s in (s ))x 2 .

L =  (  ---------T--------------------- )  X4 -  (  ------- — i )  X3 ,
v cos (t) — COS ( 5 ) J v cos (t) — cos (s) ;

J  = ( l  + cos (t — s)) x 4 +  sin (t — s) x3
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4.5 Case (II), For cos ( t )  —  c o s  ( s )  = 0
We begin with just the assumption cos (t) — cos (s) =  0. It will be convenient 
now to make further assumptions, namely (4.91) and that t is constant. In 
this case we have

cos (t) =  cos (s) so that t = ±  s +  2mr , n € N . (4.87)

Next we are going to do one of these possibilities. The other will be similar. 
The one we want to do now is w hen  t =  s +  2nir\

Then we have from the equations (4.28), (4.29), (4.30) and (4.31) for sin (s) ^  
0 the following relations :

(d 2 s — 2  A 2 ) = ---- :— }- (<9i s — 2 A \ ) ,  (4.88)
sin (s)

{ 8 3 s — 2 As)  = —— (di  s — 2  A \ ) , (4.89)
sin (s)

(d4s -  2 A 4 ) = 0. (4.90)

At this stage we need to simplify our equations (4.21)-(4.27), because it is
quite difficult to deal with them without simplifying them, so now we want
to assum e th a t  th e  following a re  tru e

A 4 =  — (Ai  cos (s) +  A 2 sin (s) ),
(4.91)

A 3 = A\  sin (s) — A 2 cos  ( s ) .

Then the equations (4.21) and (4.23) become

( $4 +  cos (s) d\ +  sin (s) d2 J s = 0 , (4.92)

( 8 3  +  cos (s) d2 — sin (s) 8 \ ) s =  0 , (4.93)

respectively. Similarly from the last two equations we can deduce that s is
constant, then from the equations (4.20) and (4.22) we will have the same
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value for a as in (4.47), and from the equations (4.24) and (4.26) the value 
for (ra) as in (4.59) after replacing each t by s +  2mr, so that

ra = g ( x 4 +  x 1 cos (5 ) +  x 2 s in (s ) , x 3 +  x l sin (s) — x 2 cos (s ) ) ,
(4.94)

where g is an arbitrary function of two variables.
Now we can write the relations (4.88), (4.89) and (4.90) as

A 2 — — -—7—r A\  , A 3 = ———  A\  , A 4 =  0. (4.95)
sm (s) sin (s)

4.5.1 The electromagnetic field
We know that the electromagnetic field tensor is given by (4.51). Now by 
using the values for A 2, A 3 and A 4 given by (4.95) in (4.51), we have following

_  /C O S ( s )  \
^ 1 2  — — ( “ — 7“ T &1 +  8 2 ) A i  ,v sm (s) '

T13 =  ( —— 1— r  8 \  —  ^3 3 ,v sm (s) '
F\a — ~ 8 4 A \ ,

^23  =  — y r  ( d2 +  cos (s) 8 3  ) A x ,sm (s) v '
cos (s)

-C24 — ——r r  A\  ,sm (s )

F34 = ---- :—-r~r 8 4 A\  .
sm (s)

The next thing we want to do is to find what the currentless equation (4-52) 
will give us by using the electromagnetic field components.

When v — 1,

sin (s ) ( 8  2 +  d 2 — 8 3  — d4 ) A\  + ( cos (s) d2

— sin (s) di + 8 3 )̂ di Ai  = 0. (4.96)

When v = 2,

c,os(s)(<9i2 +  d2 -  8 3  -  8  2) A 1 -

( cos (s) d2 — sin (s) 8 \ +  8 3 ) d2 A\  = 0. (4.97)
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When v = 3,

( d 2 +  d 2 — d 2 — d 2) A\  +

( cos (s) d2 — sin (5) d\ +  d^ ) ds A\  =  0 . (4.98)

When v — 4,

( cos (s) ^2  — sin (s) d\ +  $3 ) dA Ai  =  0. (4.99)

There are another three interesting equations which are derived from the last 
four equations, and which we will solve first. To get the first equation, let 
us multiply (4.96) by sin (5 ) and (4.97) by cos (5 ), and add the results to 
equation (4.98), giving

( co s(s)d~2 — s in {s)di  +  <93) A\  = 0 .  (4.100)

The second equation is given by multiplying (4.96) by cos (s) and (4.97) by 
sin (s), and by subtracting the results,

(cos(s)<9i +  s in (s)cb ) ( cos (5 ) 8 2  — sin (s) d\ +  d ^  Ai  = 0 .  (4.101)

The last equation is given by multiplying (4.98) by sin (s ) then by subtracting
the result from (4.96).

(<9i +  sin (s) £3 ) ( cos  (s) $2 — sin (5 ) di +  8 $} A\  = 0 .  (4.102)

Now before solving these equations let us first set

/1  =  ( cos (s) d2 — sin (5 ) d\ +  <93 j A \ . (4.103)

Then using this we write the equations (4.99)-(4.102) as

dAfi  =  0, (4.104)

( cos (5 ) d2 — sin (s)5 i + <93) / i  = 0 ,  (4.105)

( cos (s) d\ +  sin (s) 82 ) f i  =  0, (4.106)
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(<9i +  s in (s )d 3 ) f i  = 0 ,  (4.107)

respectively. The  last fou r equations are lin e a rly  dependent equations, im ­
p ly in g  th a t / i  is a fun c tio n  o f one variable,

f i  ( a i x 1 -  a i x 2 +  . 1 ; a i x 3 ) . (4.108)
v sm (5 ) sm (s ) J

By su b s titu tin g  th is  value fo r f i  in  equation (4.103), i t  becomes

( cos (s ) d2 — sin (s) d\  +  <93 ) Ai  =

e* (  1 COS f s l  ry \  *5 \  / \
f i i d i X  :——  d\ x +  . —  A l l  ) .  (4.109)

v sm (s) sm (s) '

To w ork out the  last equation we need to  change the variables firs t as the
fo llow ing

1 cos(s) 9
P =  X ------ : r—r X ,

sm (5 )

q =  x 1 sin (5 ) +  x 2 cos (5 ) .  (4.110)

Now we can w rite  equation (4.109) in  the new variables as

T T ( i r  sin (5) ^ 3 ) ^ 1  =  f \  (  clx p  +  . 1 di x3 ) .sm (s) v o p  J v sm (s) '

A gain we change the variables fo r the last equation as

1 iR  =  p  - 7 - z X  ,
sm (s)

K  =  p  H— . \  x 3 . (4-111)
sm (s )

By using th is  change o f variables, we w rite  the last equation as

2 - ^ A i  =  -  sin(s)  f ^ a i K ) .

Now by in teg ra ting  b o th  sides in  the last equation w ith  respect to  R ,

M  =  sin (s) / i (  a i K ) R  +  gi( I< , q , x 4 ) .
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or

A, = sin(*)*(«,(? + - J ^ x » ) ) ( P - ^ y ^ 3)

+  0 i(p  +  — I  \ , P, z 4) , (4.112)v sm (s) '

where p and q are given by (4.110), and gi is an arbitrary function of three
variables.

The idea now is to substitute this value for A\  in the equations (4.96)-(4.99). 
In fact by doing this we will have the same result coming from all of them, 
giving

( di 2 +  d2 -  d3 2 -  d 2 ) gi ( K , q , x 4 ) =  0 . (4.113)

Next we want to know what g\ is independent of. Starting with

( a di +  b d2 +  c d3 ) K  = a -  b cos_L^ +  _ c = o ,
sm (s) sm (s)

( a d  i +  bd2 +  c d3 ) ( ———— ) = a +  b ——  ̂ =  0,
sm (s) sm (s )

we find values of a. b and c so that

( a d] +  b d-2 +  c d3 ) g\ =  0,

If we set b =  — sin(s). then

(cos(s)d i — sin (s) d2 — sin (2 s )d 3 )g\  =  0. (4.114)

Now unless sin (2s) =  ±  1. this equation is a derivative in a spacelike direc­
tion. We can do a Lorentz transformation to new coordinates ( z/i, y2, y3, 2/4 ) 
for 1R2+2 with signature (+, +, —, —), in which (4.114) becomes

d ^Pi (2/1,2/2,2/3,2/4) =  0,
dy\

i.e. gi is a function of ( y2, 2/3,2/4) and

( d2 -  d-3 -  d 2 ) g} (2/2,2/3 , 2/4) =  0 .
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This equation has lots of solutions, one way to solve an equation like this is 
by separation of variables.

If sin (2s) =  ± 1 , similarly we can get new coordinates in which (4.114) 
becomes

(di -  83)91 ( 2/ i , 2/2,2/3 , 2/4 ) =  0 .

Now by changing the variables to

P> =  P i +  2/3 , q ' =  P i -  2/3,

the last equation says that

(d2 2 -  d4 2 )gl {yi  -  2/3 , 2/2 , 2/4 ) =  0.

There are non vanishing solutions for the electromagnetic field, given by
Q

F \2  — — 2 cos (s) —  £1 ,
dq

t? ■ ( \ £ 1 / ^ ® \ ®F13 — ~  sm (s) / 1 H :——  (  ---— -  )p  1 +  —  p i ,
sm (s) Op o x 6 Oq

Fu =

F23 = 

Foa — 

F34 —

d
d x 4

c o s  ( s )  , \ & c o s  ( s ) d  c o s  ( 5 ) <9——-TT f  1 — c o s  ( s )  —  pi H :——  —  g 1 H--- ;— — r pi ,
s m  ( s )  op  sm {s) Oq s m  ( s )  Ox 6

c o s ( s )  0
sin (s) Ox 4 

- 1  0
Pi •sin (s) <9x4

4.5.2 Summary of Case (II)
In this case

cos (t) — cos (s) =  0.

The solution for the Dirac massless equation is given by

/ 1 \

(4.115)

= i r e 2 (s b
K (s + t)\  i r e
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where s and t  are real constants, and

a =  x4 — x 1 cos ( 5 ) — x 2 sin (5 ) ,  x 3 +  x 1 sin (s) — x 2 cos (s) ) ,

ra =  p (  x 4 +  x 1 cos (s ) +  x 2 sin (5 ) ,  x 3 +  x 1 sin (s) — x 2 cos (s) ) ,

where h and g are a rb itra ry  functions.

The vector p o te n tia l is given by

cos(s) . . 1 .
A 2 = ---- :—j - t  A\  , =  ———r A\  , A 4 — 0,

sm ( 5 ) sm (s)

where A\  is given by

Ai  =  — - s in ( s ) / 1( a 1 (p +  — ^ r x 3) )  ( p ------
2 v sm (s) ' sm (s)

+  9 i ( p  +  ' . - 7  \  x 3 , q,  x 4 ) ,
v sm (5 ) y

where f \  is an a rb itra ry  func tion  o f (p +  x 3/s in ( s ) ) ,  a i is an a rb itra ry  
constant, and p i is any so lu tion  o f

( 0 \ 2 +  do2 — ds2 — d 2 )g\  =  0,

where p i is a func tion  o f (p +  x3/  sin (s)), q and x4. There are non vanishing 
solutions for the electrom agnetic fie ld, given by (4.115).

The variables p and q are given by
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APPENDIX

The lightlike line solution (light speed particle)

In this case w e are looking for light speed particle, in other word w e are looking for particles traveling along the 

line (t,0,t,0). The representation o f  the Dirac gamma matrices are given by

n  ={{0, 0, 0, -I}, rS 0 s 0 1 H s *O*H
n

O*r-—1
O 0}, rS00*0*HWJ

{{0, 1--'
•F=t100 {0, 0 1 H- O 0 H- O O {i, 1--.—1
OOO

Y2 = *OO*O'-V-' - 1 ) , { 0 ,  0 ,  1 , 0 } ,

O*OO*H1'-r-'*O*OSH*O

{{ 0 , 0 0 1 {0 , 0 ,  1 ,  0 } , {0 , 1 ,  0 ,  0 } , { - 1 ,  0 , 0 ,  0 }}

Y3 =

H
1*

O

*
O

0} , r
S O * O s 0 1 ) ,

0

*
0

*
H

0} ,

O

*
O

*

H
Is

0’-r-'

{{0, 0, - 1 ,  0}, (0, 0, 0, 1}, {1/

r
'n

OOO
{0, - 1 ,  0, 0}}

The currentless spinor we want to consider in this case is given by

^={{ a}, {aeIS }, (I r a c1 ((B_t)/2) }, {I r a c1 (<B+t)/2) } }

{{a}, { a e i s }, { l a e ^ 1̂ 1 r} , { i a e ^ i(s+t) r } }

There are two linearly independent elem ents o f the Lie algebra o f the group SO (2,2) which preserve a lightlike 
line (for massless particles), and they will provide two symmetry equations by substituting them in the Lie 
algebra representation (3.4). The symmetry equations we have here are given by

x4 + x2 = y  y2y4 .1/r ,
o x2  (3 x4 2

-3 d ip a ip 1x3 - —-  + x l  - —-  = — yl  y3 . j/r .
o x l  0x3  2

To look for particles travelling on the line (t,0,t,0), we suppose that we have a particularly sim ple equation for 
translation along the line,w e guess that

d  $  d  11/
d  x l  5 x3

= iK ip .



where K is a 4x4  matrix, and its entries are all functions o f x l  and x3 only. The matrix K takes the currentless 
spinor to the tangent space o f  the currentless spinor. B y working out the last equation together with the sym m e­
try equations w e find the form for the matrix K which is

K= {{kll, kl2, kl3, kl4}, {-kl2, kll, kl4, -kl3), 
{k31, k32, Conjugate [kll] , k34},
{k32, -k31, -k34, Conjugate[kll]}}

{ { k l l ,  k l 2 , k l 3 , k l 4 } , { - k l 2 ,  k l l ,  k l 4 ,  - k l 3 } ,  
{ k31 ,  k 3 2 ,  C o n j u g a t e  [ k l l ]  , k34}  ,
{ k 3 2 ,  - k 3 1 ,  - k 3 4 ,  C o n j u g a t e [ k l l ] }}

The m assless Dirac equation is given by

- i  ) lA = 0 .

By using the symmetry equations and by changing the variables w e write could the Dirac equation in 2+2  
dim ensions as

( 1/ 2)  (eL (y3 - y l )  + e*L (y3 + yl)  ) ( i e L K) (A + (1 / (2 J )  ) eL (y3 - yl)  iA +

( 1/ 2)  (ep (y2 - y4) + e' p (y2 + y4) ) ( )  <A = i  iA,

where p, q, J and L are given by (3.40) and (3.42). To work out the last equation w e need first to find the values 
for the fo llow ing operators:

Opratorl = I (A1 yl + A2 y2 + A3 y3 + A4 y4)

Oprator2= ( 1 / 2 ) (eL (r3 -yl) +®-L (y3 + yl))

({0, ( - e " L - *L>' y ( - i  e"L + i  e L) } ,

{0, ( - i  e " L + i  e L ) , y  ( e"L + e L) } ,

{y ( e - L + eL)' j
( i  e ‘L - i  e L) , 0 , 0 },

(y (i  e ‘L -iel) T ( “ e ‘
■L - e L ) , 0 , 0 }}



Oprator3= 1 (Oprator2.K)

{ { i y  ( - e _L -  e L) k 3 1  + y  ( - i  e"L + i  e L) 3c32j ,

i - y  ( - i  e"L + i  e L) k3 1  + y  < - e _L -  e L) k 3 2 j  ,

i - y  ( - i  e -L + i  e L) k3 4  + y  ( - e ~ L -  e L) C o n j u g a t e  [ k l l ]  | ,

i y  ( - e ‘L -  e L) k3 4  + y  ( - i  e"L + i  e L) C o n j u g a t e  [ k l l ]  J ] ,

t 1 y  ( - i  e "L + i  e L) k 3 1  + y  (e"L + e L) k 3 2 |  ,

i -  y  ( e"L + e L) k 3 1  + y  ( - i  e"L + i  e L) k 3 2 j  ,

i -  y  ( e " L + e L) k 3 4 + y  ( - i  e"L + i  e L) C o n j u g a t e  [ k l l ]  j ,

i y  ( - i  e -L + i  e L) k34 + y  ( e “L + e L) C o n j u g a t e  [ k l l ]  j } ,

{1 y  ( e _L + e L) k l l  -  y  ( i  e ' L -  i  e L) k l 2 j ,

i y  (i  e~L - i  e L) k l l  + y  (e"L + e L) k l 2 j ,

i y  ( e _L + e L) k l 3  + y  ( i  e -L - i  e L) k l 4 |  ,

i - y  ( i  e “L - i  eL) k l 3  + y  (e“L + eL) k l 4 )  } ,

{ ±
y  (i  e _L - i  e L) k l l  - y  ( - e “L - eL) k l 2 ) ,

i y  (- e ' L - e L) k l l  + y  ( i e ’L - i  e L) k l 2 ) ,

i y  ( i  e _L - i  e L) k l 3  + y  ( - e _L - eL) k l 4 )  ,

i -  y  ( - e ' L -  e L ) k l 3  + y  ( i  e _L -  i  e L) k l 4 )  } }

O p r a t o r 4 = ( 1 / (2 J ) ) (T3 - r  i )

{{o ,  0 , -
eL
2 J  '

1 e L
2 J  J '

( o ,  0 ,
1 e L
2 J  ' eL )2 J  J '

( —  -  I 2 J  '
1 eL
2 J  ' 0 , o}, { - ieL1 2 J

e L 
2 J , 0 , 0 }}

O p r a t o r 5 = ( 1 / 2 ) (ep to 1 •< + ®_P (Y2 + Y4) )

{{0, °- y ( i  e _p -  i  e p ) ,  1 p - e p ) } ,

{0, ( e ' p + e p ) , y ( i e "p - i e p ) ) ,

{y ( i  e _p - ieP)' y (e"p + e p ) , 0, 0} ,

(y (~ e "p - e » ) ,  A  ( i e ' p -  i  e p , 0 , 0 }}



Tearml = ( eL Oprator3) .ijf

[ { i a  e L+x
• ( - I

( - i  e _L + i e L) k31 + y  ( - e " L -  e L) k321 +

i  a  e L
( t  ( -

e " L -  e L) k31 + y  ( - i  e -L + i  e L) k32j  -

a e L+^ i ( s - t )
i i i

r  (-  y  ( - i e _L+ i e L) k34 +

1
T ( - e " L - e L) C o n j u g a t e  [ k l l ]  J -  a  e L+T *■ ( S + t )  ^

( t
- e “L - e L) k34 + y  ( - i  e “L + i  e L) C o n j u g a t e  [ k l l ]  j J ,

{ i  a  e L+i
8 ( 4 ( e ' L + e L) k31 + y  ( - i e  1 + i e h ) k32) +

i  a  e L
( t ‘ -

i  e ' L + i  e L) k31 + y  ( e -L + e L k32j -

a  e L+^ i ( s - t ) r  ( - y  (e"L + e L ) k34 +

1
2

( - i e ‘' h  + i  e L ) C o n j u g a t e  [ k l l ]  j -  a i ( s + t )  j -

( t
• — L- i  e + i  e L) k34 + y  ( e “L + e L) C o n j u g a t e  [ k l l ]  j ]■ ,

|  i  a  e L |
T  ( e "

L + e L) k l l  -  y  ( i  e ”L -  i  e L) k l2)  +

i a e - ‘* ( i ( i  e -L -  i  e L) k l l  + y  ( e _L + e L) k l2 )  -

a  e L+^ i ( s - t ) ( y  (e ' L + e L ) kl3  + y  ( i  e~L - i  eL) kl41 r  -

a  e L+^ i ( s  + t ) ( -  y  ( i  e -L -  i  eL) kl3  + y  (e -L + e L) kl4J r }  ,

{ i a e L ( T  ( i 'e ' L -  i  e L) k l l  -  y  ( - e ' L -  e L ) kl2  j +

i a e - ”  ( i - ( - e _L -  e L) k l l  + y  ( i  e~L -  i eL ) k l2  J -

a  e L+^ i ( s - t ) ( y  ( i  e ' L -  i  eL) kl3  + y  (-e •L -  e L) k l 4 j r  -

L + -ya e * i ( s + t ) ( -  y  ( ~ e 'L -  e L ) kl3  + y  ( i e ' L -  i  e L) k l 4 J r } }

T e a r m 2  = O p r  a  t o r  4 . &

f f i  a eL+̂  1 (s_t) r  a eL+̂  1 (s+t) r  1
11 T ?r Yr ) '2 J  2 J

r a eL+'=r 1 <s_t> r  i  a eL+̂  1 (s+t) r
f------2 J ----  + ----- 2~J----- >'
f a eL i  a eL+i s r i  a eL a eL+i s •, , 
L ~ 2 J  2 J  J '  l 2 J  Y j  JJ



Tearm3 = Opratorl

{ { - a  ( -A3 + i A 4 )  1 <s_t> r - a  ( - i A l - A 2 )  e T

{ - a  ( - i  A1 + A2) i  (s_t) r - a  (A3 + i  A4) 1

{ i a  (A3 + i A 4 )  + i a  ( i A l + A 2 )  e l s },
{ i a  ( i A l - A 2 )  + i a  ( -  A3 + i  A 4 ) e 1 s } ]

x (s+t)  r J f 

(s+t) r j 7



Tearm4 = Tearm3 - Team2 - Tearml

[ [ - i a  e L+ls | -  ( - i  e “L + i  e L) k3 1  + ^ -  ( - e “L -  e L) k 3 2 |  -

|  ( -  e~L -  e L) k 3 1 + ( - i  e _L + i  e L ) k 3 2 j -1 a  e

a  ( -A3 + i A 4 )  e "3" 1 <s_t) r - a  ( - i A l - A 2 )  e T 1 (s+t) r  +

i  a  e L t 3  1 | s ' tl r  a  e L+T 1 (s+t> r  L + ^ r s t )
--------------------------- + ------------------------ + a  e  T ' r

2 J  2 J

( -  ( - i  e “L + i  e h ) k3 4  + -i- ( - e ' L -  e L) C o n j u g a t e  [ k l l ]  j + a

^L + -j- i (s + t) ^

( ~e ' L -  eL) k 3 4  + ( - i  e"L + i e L) C o n j u g a t e  [ k l l ]  j j ,

1  . _T. T. . . - - 1[ - i  a  e L+1 s ( -  — (e"L + eL) k 3 1 + — (- i  e _L + i e L) k32 j -  

i a e L | -i- ( - i e " L + i e L) k31 + - -̂ (e ' L + eL) k3 2 j -

a  ( -  i  A1 + A 2 ) e T 1 <s-t) r - a  (A3 + i  A4) 1 <s+t) r  +

a  e L+^ 1 (s_t) r  i  a  i <s+t) r  _ ^  i. A (s_t)
2 J  2 J

+ a  e

1
- f  <e ' L +

e L) k3 4  + -i- ( - i  e  L + i  e L) C o n j u g a t e  [ k l l ]  J + a

L + l  i (s + t)

L
r

1 i  e L) k3 4  + ( e _L + e L ) C o n j u g a t e  [ k l l ]  j ]• ,

a  l  a  e 1[ i  a  (A3 + i  A 4 ) + i  a  ( i  Al  + A2) e 1 s -  a e +

i a e L f ( e L + e L) k l l  — ( i  e~L -  i  e L) k l 2 ] -

2 J  2 J

^ H ^ - L -
2 '  2

i  a  e L+ls | ( i  e"L -  i e L) k l l  + - -̂ ( e"L + e L) k l 2 | + 

a  e L+T 1 (s_t) | ( e ~ L + e L) k l 3  + ( i  e"L -  i  e L) k l 4 |  r  + 

a  e L+T 1 <s+t> | -  ( i  e~L -  i  e L) k l 3  + (e"L + e L) k l 4 j  r ]  ,

L ^ ^.L+i S
[ i a  ( i A l - A 2 )  + i a  ( -A3 + i A 4 )  e l s  + -1 5  € + a  6

2 J  2 J

i  a  e L | -i- ( i  e"L -  i  e L ) k l l  -  ( - e " L -  e L) k l 2 | -

i  a  e L+ls | — ( - e L - e L) k l l  + — ( i e L - i e L) k l 2 j + 

a  e L+T 1 (s-t) ( i  e " L -  i  e L) k l 3  + -i- ( - e _L -  e L) k l 4 j  r  + 

a  e L + i  i ( s+t )  1_ ( _ c - l  _ c l j  k l 3  + J _  ( i  c - l  _ i  e Lj  k l 4 j r j j



Oprator6 = Inverse[Oprator5]

- p1 e J

-p 1 e J

- pl  e 1

- p l  e 1

Oprator7 = FullSimplify[Oprator6]

{{0 ,  0 ,  - i S i n h [ p ] ,  - C o s h [ p ] } ,  {0 ,  0 ,  C o s h [ p ] ,  - i S i n h [ p ] } ,  
{ - i S i n h [ p ] ,  C o s h [ p ] ,  0,  0 } ,  { - C o s h [ p ] ,  - i S i n h [ p ] ,  0,  0}}

Tearm6 = Oprator7 . Tearm4

a  ea  ( i  A l  -  A 2 ) + i  a  ( -A3 + i  A4) e
2 J 2 J

, L + i  s ( - e - L - e L) k l l  +

r  +

r  Cosh[p] -

a  e i  a  e'i  a  (A3 + i  A 4 ) + i  a  ( i  Al  + A 2 ) e
2 J

L + i  s

a  e i  a  ei  a  (A3 + i  A4) + i  a  ( i  A l  + A 2 ) e
2 J

, L + i  si  a  e

r  +



T 1 (s+t> ( - y  ( i  e"L -  i  e L) k l 3  + y  ( e ‘L + e L) k l 4 )  r j

C o s h [ p ]  -  i i a  ( i  A l  -  A 2 ) + i a  ( -  A3 + i  A 4 ) e 1 s +

i  a  e L a e L+is
2 J + 2 J

i  a  e L | ! < i e ^ - i e L) kll-y ( - e ' L -  e L ) kl21 -

i  a  e L+i * ( t  <- _L -  e L) kll + y  ( i e ' L -  i  e L) kl2 j +

a  e L+^ 1 ( s - t )  1 1
I 2 ( i  e “L -  i  e L ) kl3 + y ( - e _L -  e L) kl4j r  +

a  e L+^ 1 ( s+t )  1 1  
\ 2 ■ ( - e " L -  e L) kl3 + y ( i  e "L -  i  e L ) kl4 j

r ]  S i n h [ p ] j ,

-i a  e L+is (-y (e"L + e L) k 3 1  + y  ( - i  e ‘L + i  e L) k32 )  -

i  a  e L | y  ( - i  e ' L + i e L) k3 1  + y  (e"L + e L) k 3 2 1 -  

a  (- i A l  + A 2 ) e ^ i  <s_t> r - a  (A3 + i A 4 ) 1 (s+t) r  +
a  € l +4  i  <s- t )  r  ± a  e L+4 - i  (S+t)  r  L+4_ i ( s _t)
---------------------  -     + a. 0  j v

2 J  2 J

y  (e~L + e L) k 3 4  + y  ( - i  e"L + i  e L) C o n j u g a t e  [ k l l ]  j

a  e L+^ 1 <s+t) r  | y  ( - i  e"L + i  e L ) k3 4  +

1 \ y  (e~L + e L) C o n j u g a t e  [ k l l ]  j C o s h [ p ]  -
i

s ( - y  ( - i  e~L + i  e L) k3 1  + y  ( - e ’L - e L) k3 2 )  -

y  ( - e _L -  e L) k3 1  + y  (-i e ' L + i  e L) k32 )  -  

( -A3 + i  A4) 1 (s_t) r - a  (-i A l  -  A2) 1 (s+t) r  +

x -  i  a  e

i  a  e L+^ 1 (s- c) r  a  e L+~ i (s+t) r
+   +

2 J  2 J
L + - i -  i  ( s - t )  „  /  _  A .  /  _  -i ^ " L x  x  2.  / _ c _ L _ c La  e T 1 ’ r  ( - i e + i e )  k34  + y  ( - e "  - e

C o n j u g a t e  [ k l l ]  ) + a  e L+^ 1 (s+t) r  ( y  ( - e -L -  e L) k3 4  +

— ( - i  e “L + i e L) C o n j u g a t e [ k l l ] j  S i n h [ p ] j ,
>

, L + i s  I  ^  / x _ - L  , • _ L  \ V 3 1  ,- i  a e  s ^_ ( - i e + i e )  k 3 1 + y  ( - e '  - e  ) k 3 2 |  -

i  a e L ( y  ( - e ~ L -  e L) k3 1  + y  ( - i  e ' L + i  e L) k 3 2 ) -

a ( -  A3 + i  A 4 ) i (s"t, r - a  ( - i A l - A 2 )  i (s+t) r  +

i  a e L+‘2"1 (s_t) r  a  e L'A * (s+t) r
 +  —  +

2 J  2  J

a  eL+̂  1 (s-t) r  y  ( ~ i  e_L + i  e L) k 3 4  + y  ( -e~L -  eL) 

C o n j u g a t e  [ k l l ]  j + a  eL+T 1 (s+t> r  | y  ( - e _L -  eL )



k 3 4  + — ( - i  e “L + i  e L) C o n j u g a t e [ k l l ]  j C o s h f p ]

a e

- i  a  e L+1 s | ^  (e"L + e L) k 3 1 + (- i  e ' L + i e L) k 3 2 j -

i  a  e L ( i  ( - i  e _L + i  e L) k 3 1 + y  (e"L + e L) k 3 2 j -

a  ( - i  A l  + A2) e*  i  (s_t) r - a  (A3 4- i A4) i <s+t) r  +

a  e L+̂  i (s_t> r  i  a  e h+^ * <s+t) r  L+1 ± (s_t)-------------------------------------------------------  + a  1 ,s Z) r
2 J  2 J

Y  ( e -L + e L) k3 4  + ^  ( “ *• e_L + i  e L) C o n j u g a t e  [ k l l ]  j

l + 4  i  ( s + t )  r  |  e - L  +  £  j ^ 3 4  +

Y  (e~L + eL) C o n j u g a t e  [ k l l ]  j S i n h [ p ] j ]

Equal = (1 / (2 q)) ^

f f a -| f a e1 s ■) f i a e ^ 1 <s-fc> r  -| r i  a 1 (s+t) r  i i 
*■ *- ~2~q -* ' >• 2 q J ' «■ T q  ■* ' <■ 2 q  ^

St:****************************************

^ ill = Equa2
d  q



Equa2 = FullSimplify [Tearm6 - Equal]

f{ —^ 2 J q

( a e - ^  j e -p+r i (2 s+t> ( j  ( _ i  A l  -  A2 + i  A3 + A4 + e 2p <i  A l  +

A2 + i  A3 + A4 -  i  k l l  -  k l 2 ) ) + 

e L ( - 1  + e L J  ( - i  k l l  + k l 2 )  ) ) q  + e~p+̂  J  q  
r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -

2 e u P* i t  ( k l 3  C o s h [ L - p ]  -  i k l 4  S i n h  [L -  p]  ) ) +

( - i  e L_p q + e 2L' p J  ( k l l  + i  k l 2 )  q  +
J  ( - 1 +  ( 2 A l  + i  (2 A 2  + i k l l  + k l 2 )  ) q C o s h  [p]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 ) q  S i n h  £p] ))))}<■

{ 2 j 'q  (a  e__r" ( e ' p+-3“ ( e L ( - l  + e L J  ( - i k l l  + k l 2 ) )  +

J  ( -  i  A l  + A2 + i  A3 -  A4 -
e 2 p ( -  i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) )  q  + 

e -p+-!_ J q r  ( e 2L ( - i  + e x t ) ( i k l 3 + k l 4 )  +
e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n  [ t ]  ) ) + 

e 4 x <2 s+t) ^e -p ( _ e P j  + i e l q - e 2L J  ( k l l  + i  k l 2 )  q) +
J  q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2 )  C o s h [ p ]  +

( -  2 A3 + 2 i  A4 + k l l  -  i  k l 2 ) S i n h  [p]  ) ) ) ) } »

{ —- —  (a e ( e ^  A <s+2 t] q  r  ( i  e L+p ( - 1  + e L J  k 3 4 )  -  
1 2 J q  1 v

J  (2 A3 + i  (2 A4 + k 3 4 )  ) C o s h [ p ]  +
2 e L J  C o n j u g a t e [ k l l ]  C o s h [ L  + p]  +
J  ( 2 A l - 2 i A 2  + i  k 3 4 )  S i n h  [p] ) +

2 e L+_2̂  J q  ( i  ( e l s k 3 1 - k 3 2 )  C o s h [ L  + p]  +
(k31  + e l s  k 3 2 ) S i n h  [L + p]  ) -

e^~ r  (e L+p ( - l  + e L J k 3 4 )  q  + J  ( i  + ( -  2 i  Al  + 2 A2 + k3 4)
q  C o s h  [p] + ( 2 i A 3  + 2 A 4 - k 3 4 )  q  S i n h  [p]  ) -

2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) ) } ,

{ 2 j q  (a  ( e ^  q r  ( i  e L+p ( - 1  + e L J  k34)  +

J  ( - 2  A3 + 2 i  A4 -  i  k3 4 )  C o s h [ p ]  +
2 e L J  C o n j u g a t e [ k l l ]  C o s h [ L  + p]  +
J  (2 A l  + i  (2 A2 + k34)  ) S i n h [ p ]  ) +

2 e L+-z“ J  q  ( - i  (k31  + e l s  k32 )  C o s h [ L  + p ]  +

( e i s  k3 1  -  k 3 2 ) S i n h [ L  + p]  ) + 1 <s+2t) r
( e L+p ( - 1  + e L J  k 3 4 ) q  + J  ( - 2  i  Al  -  2 A2 + k3 4)  q

C o s h  [p]  -  J  ( i  + ( - 2  i  A3 + 2 A4 + k34)  q  S i n h  [p] ) -  
2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) ) } )

——  a  = a l  a q



al = 
1

2 Jq (a®- * («"p+* 4 (2 *+t) (J (-x Al - A2 + x A3 + A4 + e2p (x Al +
A2 + x A3 + A4 - i. kll - kl2) ) + 

eL (-1+®1* J (-xkll + kl2))) q + e-p+Ar Jq 
r (e2p (-xkl3 +kl4) +e2L (xkl3 +kl4) -

2 eL+p+it (ki3 cosh[L-p] - x kl4 Sinh [L - p])) +
®-r- (-xeI'"p q + e2L_p J (kll + ikl2) q +

J (-1 + (2 Al + x (2 A2 + xkll + kl2)) qCosh[p] +
(2 A3 + 2 x A4 - kll + x kl2) q Sinh[p]))))

a e
2 J  q

j e -P+4 i ( 2  s + t )   ̂j  ( _ i  A l  -  A2 + i  A3 + A4 + e2p ( i  A l  + A2 + i  A3 + 

A4 -  i  k l l  -  k l 2 ) ) + eL ( - 1  + eL J  ( - i  k l l  + k l 2 )  ) ) 

q  + e"p+^  J q r  (e2p ( - i k l 3  + k l 4 )  + e2L ( i k l 3  + k l 4 )  -  
2 e L+p+11 ( ^ 1 3  c o s h  [L -  p ]  -  i  k l 4  S i n h  [L -  p ] ) ) +

( - i  e L‘p q  + e 2L_p J  ( k l l  + i  k l 2 )  q  +
J  ( - 1  + (2 A l  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h [ p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k ! 2 ) q  S i n h  [ p ] ) ) ) )



si = ((-I) / a) e"(1 m)
— —  (ae“^  (e-p+̂ - (eL (-1 + eL J (-xkll + kl2)) +2 Jq v v

J (-i Al + A2 +xA3 - A4 - e2p
(-i Al + A2 - i A3 + A4 + xkll + kl2))) q +

e'p+-¥- j q r  (en  (-i + ext) (xkl3 + kl4) + e2p
(kl3 + x kl4) (1 - x Cos [t] + Sin[t])) + e ^ i(2 8+t) 

(e_p (-ep J + iel q - e Jl J (kll + xkl2) q) + Jq
( (-2 Al + 2 xA2+kll-xkl2) Cosh[p] + (-2 A3+ 2

x A4 + kll - x k!2) Sinh [p])) ) ) I + (X / a) al»)
1

2 J  q  '

(e~p+Ir- (eL ( - 1  + eL J  ( -  i  k l l  + k l 2 ) ) + J  ( -  i  A l + A2 + i  A3 -

A4 -  e2 p (-  i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) q  +
e _p+ j q r  (e2L ( - i  + ex t ) (i  k l 3  + k l 4 )  +

e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n [ t ] ) )  + 
e 4- i <2 s+t) ^e -p ( _ e P j  + i e L q - e 2L J  ( k l l  + i  k l 2 )  q) +

J q  ( ( - 2 A l  + 2 i A 2  + k l l - i k l 2 )  C o s h [ p ]  +
( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 ) S i n h  [p]  ) ) ) ) +

e - - ^  j e -P+4 i (2 s+t) ( j  ( _ i  A l  -  A2 + i  A3 + A 4 +

e 2 p ( i  A l  + A2 + i  A3 + A4 -  i  k l l  -  k l 2 ) ) +
eL ( - 1 + e L J  ( - i  k l l  + k l 2 ) ) ) q  +

+ J q r  (e2p ( - i k l 3 + k l 4 )  + e 2L ( i k l 3 + k l 4 )  -  
2 e L+p+x c ( k l 3  C o s h  [L -  p ]  -  i  k l 4  S i n h  [L -  p ]  ) ) +

( - i  eL_p q + e 2 L_p J  ( k l l  + i  k l 2 ) q  +
J  ( - 1 +  (2 A l  + i  (2 A2 + i  k l l  + k l 2 ) ) q  C o s h  [p] +

(2 A3 + 2  i  A4 -  k l l  + i  k l 2 ) q  S i n h  [p] ) ) ) )

2 J  q

Equa3 = (1 / (r a)) A (t_8)
f— -—  fa (e* A (B+2t) qr (x cL+p (-1 + eL Jk34) - J (2 A3 +I 2 Jq v v

x (2A4+k34)) Cosh[p] + 2 cL J Conjugate [kll] 
Cosh [L + p] + J (2 Al - 2 x A2 + x k34) Sinh [p]) +

2 eL+~  Jq (i (®*“ k31 - k32) Cosh [L + p] +
(k31 + eis k32) Sinh[L + p]) - r 

(eL+p (-1 + cL Jk34) q + J (x + (-2 x Al + 2 A2 + k34) 
q Cosh [p] + (2 x A3 + 2 A4 - k34) q Sinh [p]) - 

2 x eL J q Conjugate [kll] Sinh [
L + P])))] + ((-X) /a) al + (1/2) si



2 J  q

( i  e _ijL (e"p+^  1 (2s+t) ( J  ( - i  A l  - A 2  + i  A3 + A4 + e 2p ( i  A l  +A2 + 

i  A3 + A4 -  i  k l l  -  k l 2 ) ) + 

e L ( - l  + e L J  ( - i  k l l  + k l 2 ) ) ) q  + J q
r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -

2 e L+p+1 ( k l 3  C o s h [ L  -  p ]  -  i  k l 4  S i n h  [L — p]  ) ) +

( - i  e L-p q  + e 2L_p J  ( k l l  + i  k l 2 )  q  +
J  ( - 1  + (2 A l  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h [ p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 ) q  S i n h  [p]  ) ) )  ) +

i_  2 * ( e _p+^  ( e L ( - l + e L J  ( - i k l l  + k l 2 ) )  +

J  ( -  i  A l  + A2 + i  A3 -  A4 -
e 2 p ( -  i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) q  +

e _p+i3i  J q r ( e 2L ( _ i  + e i t ^  ^  k l 3  + k l 4 j +

e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n [ t ] ) )  + 
e 4  i  <2 s+t) ( e -P ^_e p j + i e L q _ e 2 L j  ( k l l  + i  k l 2 ) q ) +

J q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2 ) C o s h [ p ]  +
( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 )  S i n h [ p ]  ) ) ) ) +

— -—  ( i  e""^  ( e -p+^  x <2 s+t) ( J  ( - i  A l  -  A2 + i  A3 + A4 +
2 J  q  ' '

e 2 p ( i  Al + A2 + i  A3 + A4 -  i  k l l  -  k l 2 ) ) + 
e L ( - l  + e L J  ( - i  k l l  + k l 2 ) ) ) q  + 

e ' ^ ^ 1 J q r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -  
2 e L+P+11 ( k i 3 C o s h  [L -  p]  -  i  k l 4  S i n h  [L -  p ]  ) ) +

( - i  e L' p q  + e 2 L_p J  ( k l l  + i  k l 2  ) q  +
J  ( - 1 +  (2 Al  + i  (2 A2 + i  k l l  + k l 2 )  ) q  C o s h [ p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 )  q  S i n h  [p] ) ) ) ) j +

 h- ( e - ^  + T 1 <-s+t> ( e ^ i<s+2t) q r  ( i  e L+p ( - l  + e L J k 3 4 )  -
2 J  q  r  ' '

J  (2 A3 + i  (2 A4 + k34)  ) C o s h  [p] +
2 e L J  C o n j u g a t e  [ k l l ]  C o s h  [L + p]  +
J  (2 Al  -  2 i  A2 + i  k34)  S i n h [ p ]  ) +

2 e L+-r" J q  ( i  ( e l s k 3 1 - k 3 2 )  C o s h [ L  + p]  +
(k31  + e i s  k 3 2 ) S i n h [ L  + p ] ) -
r  ( e L+p ( - 1  + e L J  k34)  q  + J  ( i  + ( - 2 i A l + 2 A 2  + k34)  

q  C o s h  [p]  + ( 2 i A 3  + 2 A 4 - k 3 4 )  q  S i n h  [p] ) -  
2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) )



Equa4 = (1 / (r a)) e * A ('t_,)
(- (a c""5“ (e**" qr (xeL+p (-1 + el Jk34) + J (-2 A3 + 2 iI 2 Jq v '

A4 - ik34) Cosh[p] + 2 eL J Conjugate [kll] 
Cosh [L + p] + J (2 Al + i (2 A2 + k34)) Sinh [p]) +

2 eL+~  Jq (-i (k31 + e*B k32f) Cosh[L + p] +
(eifl k31 - k32) Sinh [L + p]) + e T i(*+Jt) r 

(eL+p (-1 + eL Jk34) q + J (-2 i Al - 2 A2 +k34) q
Cosh[p] - J (i + (-2 i A3 + 2 A4 + k34) q Sinh[p]) -

2 i eL J q Conjugate [kll]
Sinh [L + p]))) 1 + ((-I) /a) al + (1/2) si



2 J  q

( i  e~~r~ ( e ' p+^  1 (2s+t) ( J  ( - i  A l  -  A2 + i  A3 + A4 + e 2 p ( i  A l  + A2 +

i  A3 + A4 -  i  k l l  -  k l 2 ) ) +

e L ( - 1  + e L J  ( - i k l l  + k l 2 ) ) )  q  + e"p+_3_ J  q  
r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -

2 e L+p+1 ( k l 3  C o s h [ L  -  p ]  -  i  k l 4  S i n h  [L -  p ]  ) ) + 

e V  ( _ i  e L-p q  + e 2L-p J  ( k l l  + i  k l 2 )  q  +
J  ( - 1  + (2 A l  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h [ p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 ) q  S i n h  [p] ) ) ) ) +

T  ( ~ Y T q  ( i e ~±S~ ^  ( e"p+JjL ( e L < - l + e L J  ( - i k l l  + k l 2 ) )  +

J  ( -  i  A l  + A2 + i  A3 -  A4 -
e 2 p ( -  i  A l + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) q  + 

e _p+‘i '̂ J q r  ( e 2L ( - i  + e x t ) ( i  k l 3  + k l 4 )  +
e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n [ t ]  ) ) + 

i (2 s+t) ^e -p ( _ e P j + i e L q - e 2 L J  ( k l l  + i  k l 2 )  q)  + 
J  q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2  ) C o s h  [p]  +

( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 )  S i n h [ p ]  ) ))  ) +

— - —  ( i  e " ^  ( e _p+^  1 (2s+t) ( J  ( - i  A l  -  A2 + i  A3 + A4 +
2 J  q  ' '

e 2 p (i A l + A2 + i A3 + A4 -  i k l l  -  k l 2 ) ) +
e L ( - l + e L J  (-i k l l  + k l 2 ) ) ) q  +

e"p+i^  J q r  ( e 2p (-i k l 3  + k l 4 )  + e 2L (i k l 3  + k l 4 )  -  
2 e L+p+l t  ( ^ 1 3  c o s h  [L -  p ]  -  i k l 4  S i n h  [L -  p ]  ) ) +

( -  i  e L_p q  + e 2 L"p J  ( k l l  + i  k l 2 ) q  +
J  ( - 1  + (2 Al  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h [ p ]  +

(2 A3 + 2  i  A4 -  k l l  + i  k l 2 ) q  S i n h  [p] ) ) ) ) j +

  ----- (e*  1 ( e ^ 1 q  r  ( i  e L+p ( - 1  + e L J  k34 )  +
2 J  q  r  ' '

J  ( - 2  A3 + 2 i  A4 -  i  k34 )  C o s h [ p ]  +
2 e L J  C o n j u g a t e  [ k l l ]  C o s h [ L  + p]  +
J  (2 A l  + i  (2 A2 + k34)  ) S i n h  [p]  ) +

2 e L+-jl J q  ( - i  (k31  + e l s k32 )  C o s h  [L + p]  +
( e l s k 3 1 - k 3 2 )  S i n h [ L  + p ] )  +

e  i  i  ( s + 2  t ) r  ^ e L + p  ( _ l + e L j k 3 4 )  q  +

J  ( - 2 i A l - 2 A 2 + k 3 4 )  q  C o sh  [p] -  
J  ( i  + ( - 2 i A 3 + 2 A 4  + k34 )  q  S i n h  [p] ) -  
2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) )

t l
a  q

tl = Equa3 - Equa4

2 J  q
( e L ( - l  + e L J  ( - i k l l  + k l 2 ) )  + J  ( - i A l  + A2 + i A 3 -



A 4 - e 2p ( -  i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) 

q  + e “p+^  J q r  ( e 2L ( - i  + e x t ) ( i  k l 3  + k l 4 )  +
e 2p ( k l 3  + i k l 4 )  ( l - i C o s [ t ]  + s i n [ t ] ) )  + 

e 4- i ( 2 s +t) ( e -P ( _ e p J  + i e L q - e 2L J  ( k l l  + i k l 2 )  q)  +
J  q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2 )  C o s h [ p ]  +

( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 )  S i n h [ p ]  ) ) ) ) -

—-— (i  e - ^  (c-p+t  i <2 s+t> ( j  (_i  A l  - A2 + i  A3 + A4 +
2 J  q  ' '

e 2 p ( i  Al  + A2 + i  A3 + A4 -  i  k l l  -  k l 2 ) ) +
e L ( - 1  + e L J  ( - i  k l l  + k l 2 )  ))  q  +

e - p+ijl J q r  ( e 2p ( - i k l 3  + k l 4 )  + e 2L ( i k l 3  + k l 4 )  -
2 e L+P+i t  ( k l 3  C o s h [ L - p ]  -  i  k l 4  S i n h [ L - p ]  ) ) +

e 2̂  ( - i  e L_p q  + e 2 L_p J  ( k l l  + i  k l 2 ) q  +
J  ( - 1  + (2 Al  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h f p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 )  q  S i n h [ p ] ) ) ) ) )  +

■L ( - y j j ■ ( i e - i s - - ^  ( e - p+J^  ( e L ( - l + e L J  ( - i k l l + k l 2 ) )  +

J  ( -  i  Al  + A2 + i  A3 -  A4 -
e 2 p ( - i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) q  + 

e~p+2̂  J q r  ( e 2L ( - i + e x t ) (i  k l 3  + k l 4 )  +
e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n [ t ] ) )  + 

g t  *■ <2 s+t) ( e -P ( _ ep J +  i  e L q -  e 2L J  ( k l l  + i k l 2 )  q)  + 
J q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2 )  C o s h [ p ]  +

( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 )  S i n h [ p ]  ) ) ) ) +

— -—  ( i  e -2^  ( e ' p+^ 1 <2 s+t| ( J  ( - i  A l -  A2 + i  A3 + A4 +
2 J  q  ’ '

e 2 p ( i  Al  + A2 + i  A3 + A4 -  i  k l l  -  k l 2 ) ) +
e L ( - l  + e L J  ( - i  k l l  + k l 2 )  ) ) q  +

e - p+i^  J q r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -
2 e L+p+1 c ( k l 3  C o s h  [L -  p]  -  i  k l 4  S i n h  [L -  p ]  ) ) +

e 2̂  ( -  i  e L_p q  + e 2 L_p J  ( k l l  + i  k l 2 ) q  +
J  ( - 1  + (2 Al  + i  (2 A2 + i  k l l  + k l 2 )  ) q C o s h [ p ]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 )  q  S i n h [ p ]  ) ) ) ) j +

 I   (e - ^  + ̂  1 (~s+t) ( e ^ i(s+2t)  q r  ( i e L+p ( - l  + e L J k 3 4 )  -
2 J  q  r  ' '

J  (2 A3 + i  (2 A4 + k 3 4 ) ) C o s h [ p ]  +
2 e L J  C o n j u g a t e  [ k l l ]  C o s h  [L + p]  +
J  (2 A l  -  2 i  A2 + i  k34)  S i n h  [p]  ) +

2 e h+1r- j q  ( i  ( e i s  k3 1  -  k32)  C o s h [ L  + p]  +
(k31  + e l s k32 )  S i n h [ L  + p ] )  -  

e 2*' r  (e L+p ( - 1  + e L J  k3 4) q  + J  ( i  + ( - 2 i A l + 2 A 2 + k 3 4 )  
q  C o s h  [p]  + ( 2 i A 3  + 2 A 4 - k 3 4 )  q  S i n h  [p] ) -  

2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) ) -

 1----- / 4- i (-a-t)--ir ( e 2̂  q r  ( i  e L+p ( - 1  + e L J k 3 4 )  +
2 J q r  ' 1

J  ( - 2 A 3  + 2 i A 4 - i k 3 4 )  C o s h  [p] +
2 e L J C o n j u g a t e [ k l l ]  C o s h [ L + p] +
J  (2 A l  + i  (2 A2 + k34)  ) S i n h  [p]  ) +

2 e L+J21 J q  ( -  i  (k31  + e l s k32 )  C o s h  [L + p]  +
( e i s k 3 1 - k 3 2 )  S i n h [ L  + p ] )  +



e 4 i ( s + 2 t )  r  ^ e L +p  ( _ i + e L J k 3 4 ) q  +

J  ( - 2  i  A l  -  2 A2 + k3 4)  q  C o s h [ p j  -  
J  ( i  + ( - 2 i A 3 + 2 A 4  + k3 4)  q  S i n h [ p ]  ) -  
2 i e L J  q C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) )

a n——  r  = r la q



rl = ((-1 r) / 2) (Equ&3 + Equa4)

-  ——  ( i e ’i s " ^  ( e - p+i^  ( e L ( - 1  + e L J  ( - i  k l l  + k l 2 )  ) + J  
2 J  q  ' '

( -  i  A l  + A2 + i  A3 -  A4 -  e 2 p
{- i  A l  + A2 -  i  A3 + A4 + i  k l l  + k l 2 ) ) ) q  +

e-P+T1 j q r  ( e 2L ( - i  + e ifc) ( i  k l 3  + k l 4 )  +
e 2p ( k l 3  + i  k l 4 )  (1 -  i  Cos  [ t ]  + S i n  [ t ]  ) ) +

e 4- i  (2 s+t) ( e -P ( _ e p J  + i e L q _ e 2L j  ( k n  + i  k l 2 ) q )  + 

J  q  ( ( - 2  A l  + 2 i  A2 + k l l  -  i  k l 2 )  C o s h  [p]  +
( - 2  A3 + 2 i  A4 + k l l  -  i  k l 2 )  S i n h [ p ]  ) ) ) ) -

— - —  ( i e ' ^  / c -p+t A <2 s+t> ( j  ( - i  A l  -  A2 + i  A3 + A4 +
2 J  q  ' '

e 2p ( i  A l  + A2 + i  A3 + A4 -  i  k l l  -  k l 2 )  ) +
e L ( - 1  + e L J  ( - i  k l l  + k l 2 )  ) ) q  +

e ' p+_̂ " J q r  ( e 2p ( - i  k l 3  + k l 4 )  + e 2L ( i  k l 3  + k l 4 )  -  
2 e L+p+l t ( k l 3  C o s h  [L -  p ]  -  i  k l 4  S i n h  [L -  p ]  ) ) + ■ 

( - i  e L_p q + e 2L_p J  ( k l l  + i  k l 2 )  q  +
J  ( - 1 +  ( 2 A l  + i  (2 A2 + i  k l l  + k l 2 ) ) q  C o s h  [p]  +

(2 A3 + 2 i  A4 -  k l l  + i  k l 2 ) q  S i n h  [p] ))  ) ) +

  ----- ( e " ^  + ̂  1 <_s+t) ( e ^  i (s+2t) q  r  ( i  e L+p ( - 1  + e L J k 3 4 )  -
2 J  q  r  ' '

J  (2 A3 + i  (2 A4 + k34 )  ) C o s h [ p ]  +
2 e L J  C o n j u g a t e [ k l l ]  C o s h [ L  + p]  +
J  ( 2 A l - 2 i A 2  + i  k3 4)  S i n h  [p] ) +

2 e L+J31 J  q  ( i  ( e l s  k31  -  k32)  C o s h [ L  + p]  +

( k 3 1 + e 1 s k32  ) S i n h  [L + p]  ) -  e -2- r  
(e L+p ( - l + e L J k 3 4 )  q + J  ( i  + ( - 2 i A l  + 2A2 + k34)  

q C o s h  [p] + (2 i  A3 + 2 A4 -  k34)  q S i n h  [p] ) -
2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p ] ) ) ) +

—— ----- ( e ^  1 ( e ^  q  r  ( i  e L+p ( - 1  + e L J  k3 4 )  +
2 J  q  r  ' '

J  ( - 2 A 3 + 2 i A 4 - i k 3 4 )  C o s h [ p ]  +
2 e L J  C o n j u g a t e  [ k l l ]  C o s h  [L + p]  +
J  (2 Al  + i  (2 A2 + k34)  ) S i n h  [p] ) +

2 e L+i;r J  q  ( - i  (k31 + e 1 s k32 ) C o s h  [L + p]  +

( e i s  k31  -  k 3 2 ) S i n h [ L  + p]  ) + 1 (s+2 c) r
(e L+p ( - l  + e L J k 3 4 )  q  + J  ( - 2 i A l - 2 A 2 + k 3 4 )  q

C o s h  [p] -  J  ( i  + ( - 2  i  A3 + 2 A4 + k34)  q  S i n h  [p] ) -

2 i  e L J  q  C o n j u g a t e  [ k l l ]  S i n h  [L + p]  ) ) ) j

Now we w a n t  t o  g i v e  t h e  v a l u e s  f o r  t h e  v e c t o r  p o t e n t i a l  A^ a s  t h e  f o l l o w i n g



w h e r e  f  i a n d  g i  a r e  a l l  r e a l  f u n c t i o n s  o f  q  a n d  J  o n l y ,  f o r  i  = 1 ,  2
a

d q
a  = a  [1  ]

a[l] = FullSimplify[Factor[al]]

'a e -L-p-it /e 4- i (2 S + t)
2 J  q

(-2 e L+p ( f  2 -  g 2 ) J  + i  e 2p J  (2 g l  -  e L ( k l l  -  i  k l 2 )  ) + 
e 2L ( - l - 2 i f l J  + e L J ( - i  k l l  + k l 2 ) ) ) q  +

( e 2 p J  (2 g l  -  e L ( k l l - i k l 2 ) )  q + 
e 2L ( - i  + 2 f l  J  + e L J  ( k l l  + i  k l 2 ) ) q  + 
i  e L+p J  ( i  + 2 ( f 2  + g2)  q) ) +

J  ( - e 2L ( - i  + e 1 c ) ( k l 3  -  i  k l 4 )  -
,2P ( i  + e i c ) ( k l 3  + i  k l 4 )  ) q r | )

a
a q

s  = s  [ 1 ]



s[l] = FullSimplify[Factor[si]]

_ 1 _  | e - L - p - | i ( 2 S+t) | _ 2  i  e L+p+i2L (1 + e 2 i s ) ( f 2  -  g2)  J  +

e 2L ( e -̂  (i + e l s ) 2 (-i + 2 f l J  + e L J  ( k l l  + i k l 2 )  ) -

eL+ir- (i + eis) J  ( k l 3  - i k l 4 )  r +
€l+4- i < s + 2  t) J  ( k l 3  _ i  k l 4 )  r  ( 1  _ i C o s  [S] + sin [ s ]  ) ) +

e 2p ( - i  + e l s ) J  | - 2  ( - i  + e l s ) g l  +

(1 + i) e L | ( k l l  - i k l 2 )  ( C o s [ y ]  - S i n [ - | - ] )  +
( k l 3  + i k l 4 )  r ( c o s  [|-] + S i n [  |-] ) )

(-iCos[ii^-] +sin[ii^]))))

W e know that s is real, so now w e want to find the follow ing coefficients to enable us to get the right formula 

for s[ l ]

FullSimplify[Coefficient[s[1], f1, 1]]

e L-p-is ( i  + e i s } 2

FullSimplify[Coefficient [s [1], gl, 1]]

-  2 i  e _L+p ( - 1  + S i n  [ s  ] )

FullSimplify [Coefficient [s [1] , £ 2 , 1]]

- 2  i  Cos  [ s ]

FullSimplify[Coefficient[s[1], g2, 1]]

2 i  C o s [ s ]

FullSimplify[Coefficient[s[1], kll, 1]]

2 i e L ( C o s h [ L  -  p]  S i n [ s ]  + S i n h [ L  -  p ]  )



FullSimplify[Coefficient[s[1], kl2, 1] ]

- 2  e L (C o sh  [L -  p ]  + S i n  [ s ]  S i n h [ L  -  p j )

FullSimplify[Coefficient[s[1], kl3, 1]]

- 2  i  e L r  | c o s  [ ~ ^ ] C o s h  [L -  p ]  + S i n  [ S ^ ] S i n h  [L -  p ]  j

FullSimplify[Coefficient[s[1] ,  kl4, 1]]

- 2  e L r  | C o s h  [L -  p ]  S i n  [ S -  t  ] + Cos  [ S * ] S i n h  [L -  p ]  j

0 tearmsl = FullSimplify [
s[l] - f 1 (eL-p"is (i + eis)2) - gl (-2ie"L+p (-1 + Sin[s])) 
f2 (-2iCos[s]) - g2 (2 iCos[s]) - 
kll (2ieL (Cosh[L-p] Sin[s] +Sinh[L-p])) - 
kl2 (-2 eL (Cosh [L - p] + Sin[s] Sinh [L - p])) -
kl3 |-2 ieL r |cos [ — -—  ] Cosh [L - p] +

Sin[— -— ] Sinh[L - p] j j - kl4 |-2 eL r 

^Cosh[L-p] Sin[ ] + Cos [---- ] Sinh[L-p]jj]

e L' p (1 + S i n [ s ]  )

a
a q

t  = t  [i;



t[l] = FullSimplify[Factor[tl]]

^  /  - L - p - | i ( s + 2t )

2 J  r  '
(2 i  e L+p+J^  ( l  + e 2 i t ) ( f 2  -  g2 )  J  r  + J  ( eL+^ 1 (2s+t> ( l  + i e 1 1 ) 

(k31  + i  k32 )  -  ( - i  + e ifc) (k31  + i  k 3 2 ) -

( - i  + e l t ) 2 r  (2 g l  + i  e L (k34  + i  C o n j u g a t e  [ k l l  ] ) ) ) + 

e 2 ( L +P)  ( i  + e i t )  ( e 1̂  J  (k31  -  i  k3 2 )  +

c l +4- i (2 s+t) j  ( i  k 3 1  + k 3 2 ) + e -¥- ( i  + e i t : ) r  

(-i + 2 f l  J  + e L J  (ik34 + C o n j u g a t e  [kll] ) ) ) ) )

Similarly we know that t is real, so

FullSimplify[Coefficient[t[1], fl, 1]]

e L+p-i  t  ( i  + e i t ) 2

FullSimplify[Coefficient[t [1], gl, 1]]

2 i (- 1 + S i n  [ t  ] ) (-  C o s h  [ L + p ]  + S i n h  [L + p]  )

FullSimplify[Coefficient[t[1], f2, 1]]

2 i  C o s [ t ]

FullSimplify[Coefficient[t[1], g2, 1]]

- 2  i  C o s [ t ]

FullSimplify[Coefficient[t[1], kll, 1]]

0

FullSimplify[Coefficient[t[1] , kl2, 1]]

0



FullSimplify[Coefficient[t [1], kl3, 1]]

0

FullSimplify[Coefficient[t[1], kl4# 1]]

0

FullSimplify[Coefficient[t[1] ,  k31, 1]]

2 i  e L (Cos  [ ] C o s h  [L + p ]  -  S i n  [ ] S i n h  [L + p ]  )

FullSimplify[Coefficient[t[1] ,  k32, 1]]

2 e L ( - C o s h [ L + p ]  S i n [ - ^ - ]  + C o s [ - s|^-] S i n h [ L  + p ] )

FullSimplify[Coefficient[t[1], k34, 1]]

- 2  e L ( C o s h [ L  + p]  + S i n [ t ]  S i n h [ L  + p ] )

FullSimplify[Coefficient[t[1], Conjugate[kll], 1] ]

2 i  e L (C osh  [L + p]  S i n  [ t ]  + S i n h  [L + p]  )



0 tearmtl= FullSimplify[t[1] - f 1 (cL+p_it (x + eifc)2) - 
gl (2 x (-1 + Sin[t]) (-Cosh[L + p] + Sinh[L+p])) - 
f 2 (2 i Cos [t]) - g2 (-2 i Cos [t]) -
k31  ̂—  ̂ 2 x eL ^Cos [ — -—  ] Cosh [L + p] -

Sin[— -— ] Sinh[L + p]jjj - k32 |— 2̂ eL

^-Cosh[L+p] Sin[— -— ] +Cos[— -— ] Sinh [L + p] j j j -
k34 (-2el (Cosh[L + p] + Sin[t] Sinh[L + p])) - 
Conjugate [kll] (2xeL (Cosh[L+p] Sin[t] + Sinh[L + p])) ]

c l +p  ( 1  +  S i n [ t ]  )

J

r  = r [ 1 ]a q

r[l] = FullSimplify[Factor[rl]]

/ p - L - p - i  ( s + t )

4 J  I

( e l t  (1 + e 2 i s ) ( e 2L (1 + i  J  (2 f l  + e L ( k l l  + i  k l 2 )  ) ) +

e 2 p J  ( - 2  i  g l  + e L ( i k l l  + k l 2 ) ) ) r  + e l s  ( l  + e 2 l t )
(2 i g l  J  - eL J  k34 + e2 (L+P) ( -1  - 2 i  f  1 J + eL J  k34) ) r -

4 e2 L+p J ( C o s [ s  + t ]  + i S i n [ s  + t ] )

| k 3 2  Cos  [ S - ■ ] C o s h  [L + p]  + i  r  C o n j u g a t e  [ k l l ]

Cos  [ t ]  C o s h  [L + p]  -  i  k3 1  C o s h  [L + p]  S i n  [ S * ] +

r 2 C o s h  [L -  p]  | k l 4  Cos  [ S ^ ^ ] -  i  k l 3  S i n  [ — ~ ~ ] | + 

i ( f 2 - g 2 )  r  ( S i n [ s ]  + S i n [ t ] )  ( - C o s h [ L ]  + S i n h [ L ]  ) + 

i  k l 3  r 2 Cos [ S ■t  ] S i n h  [L -  p]  -

k l 4  r 2 S i n  [ -S * ^ ] S i n h  [L -  p ]  +

| i  k31  Cos  [ S- ^ t  ] -  k32 S i n  [ ^ ] | S i n h  [L + p]  j j j

FullSimplify[Coefficient[r[1] , fl, 1]]

( ( - C o s [ s ]  + C o s [ t ] ) C o s h [ p ]  + ( C o s [ s ]  + C o s [ t ] ) S i n h [ p ] )



FullSimplify[Coefficient [r[l], gl, 1]]

-i e"L r
( ( C o s [ s ]  - C o s [ t ] )  C o s h [ p ]  + ( C o s [ s ]  + C o s [ t ] )  S i n h [ p ] )

FullSimplify[Coefficient[r[1], £ 2 , 1]]

i  r  ( S i n  [ s ]  + S i n  [ t ] )

FullSimplify[Coefficient[r[1], g 2 ,  1]]

- i  r  ( S i n [ s ]  + S i n [ t ] )

FullSimplify[Coefficient[r[1] ,  kll, 1]]

i e L r  C o s [ s ]  C o s h [ L  -  p ]

FullSimplify[Coefficient[r[1], kl2, 1]]

- e L r C o s [ s ]  S i n h [ L - p ]

FullSimplify[Coefficient[r[1], kl3, 1]]

i  e L r 2 | c o s h  [L -  p ]  S i n  [ S-* ] -  Cos  [ S — ] S i n h  [L -  p ]  j

FullSimplify[Coefficient[r[1] ,  kl4# 1]]

e L r 2 | - C o s  [ ^ ] C o s h  [L -  p ]  + S i n  [ -S * ^  ] S i n h  [L -  p ]  j

FullSimplify[Coefficient[r[1] ,  k31, 1]]

ieL | c o s h [ L  + p]  S i n  [ S * ^ ] -  Cos [ S ^  ] S i n h [ L  + p ] j



FullSimplify[Coefficient[r[l], k32, 1]]

e L | - C o s  [ —~2 ~  ] C o s h [ L  + p]  + S i n  [ S * ^ ] S i n h [ L  + p ] |

FullSimplify[Coefficient[r[l], k34# 1] ]

e L r C o s [ t ]  S i n h [ L  + p]

FullSimplify[Coefficient[r[l], Conjugate[kll] , 1] ]

- i e L r  Cos  [ t ]  C o s h [ L  + p]

0 tearmrl =
FullSimplify[r[l] - f 1 (-ieL r ((-Cos[s] +Cos[t]) Cosh[p] + 

(Cos[s] +Cos[t]) Sinh[p])) - 
gl (-i e‘L r ((Cos [s] - Cos [t]) Cosh[p] +

(Cos[s] +Cos[t]) Sinh[p])) - 
f2 (ir (Sin[s] +Sin[t])) - g2 (-ir (Sin[s] +Sin[t])) - 
kll (i eL r Cos [s] Cosh [L - p]) -
kl2 (-e1, r Cos [s] Sinh [L - p]) - kl3 eL r2

(
S i t  S  —  t  \ \Cosh[L-p] Sin[— -— ] — Cos £— -— ] Sinh[L-p]jj - kl4

( / 8 *" t 8 t \ \eL r2 ^-Cos [— -— ] Cosh[L - p] + Sin[— -— ] Sinh[L - p] j j -

k31 eL ^Cosh[L + p] Sin[— -— ] -

k34 (el rCos[t] Sinh[L + p]) -
Conjugate [kll] (-ieL r Cos [t] Cosh [L + p]) ]

e L r  ( ( C o s [ s ]  -  C o s [ t ] ) C o s h [ p ]  -  (Cos [ s ]  + C o s [ t ] ) S i n h [ p ] )
2 J


