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OVERVIEW OF THESIS

This thesis is concerned with the equal mass many-body problem and the 
stability of periodic solutions, with Keplerian (Coulombic) potential and 
other potentials. The classical n-body problem is a system of ordinary dif­
ferential equations that describes the motion of n particles moving under 
Newton/Coulomb laws of motion, where the forces acting are the mutual 
gravitational attractions, Coulombic interaction with the presence of a con­
stant magnetic field. In Chapter 1 we give some preliminaries of Kepler’s 
laws of planetary motion, Newton’s gravitational law and Coulomb’s law. 
Very few solutions are known for the general many-body problem, one only 
has one and two body solutions (because they are completely integrable) 
and the three body problem has the Lagrange, restricted three body so­
lutions and some planar polygonal solutions. The many-body problem for 
more than three bodies remains completely unsolved (a generic Hamilto­
nian system is not integrable). Just a few planar solutions are known as the 
central configurations an aspect of the regular n-gon solutions which are ini­
tial arrangements of the bodies that lead to special solutions of the n-body 
problem called relative equilibrium solutions, in which all the bodies rotate 
around the central of mass, keeping the mutual distances between the bodies 
remain constant with constant angular velocity. (The solutions of this kind 
remain self-similar for all time), and the other aspect of the regular n-gon 
solutions, in which all bodies move periodically tracing the same curve on 
the plane. There is just a time shift in the position to pass from point to 
the next one. Many interesting Physical systems are nearly integrable sys­
tems (they are small perturbations of completely integrable systems). For 
the periodic solutions for a Hamiltonian system with two degrees of freedom 
one can use the KAM (Kolmogorov, Arnold, and Moser) theory in which to 
make a small perturbation to the Hamiltonian system to study the stability, 
but for a Hamiltonian system with more than two degrees of freedom, KAM 
theory does not guarantee stability. Also in Chapter 1 we start to investi­
gate the method of Davies, Truman, Williams to obtain classical periodic 
solutions of the equal-mass 2n-body problem, 2n-ion problem and the n- 
electron atom problem in R3 with Newtonian (Coulombic) potential. (That 
method reduces such systems with n degrees of freedom to a system with 
just three degrees of freedom by using rotational symmetry and these three 
degrees of freedom system can be reduced to two degrees of freedom using 
Cylindrical polar coordinates. We may continue the reduction to one degree 
of freedom, resulting in the /-equation which is a highly non-linear second 
order differential equation for /  in terms of r only). In this Chapter we 
apply the method of DTW for the system of a 2n electron atom problem



with constant magnetic field. That means our system has 12n degrees of 
freedom and this can be reduced using the method to that of one particle 
with three degrees of freedom. We give examples of the four node solution 
of the four ion problem, four electron atom problem without (with) con­
stant magnetic field and four body gravitational problem. These examples 
we consider as our standard four node solution of the DTW-periodic set up 
and we show how the DTW-solutions were found. We refer to some recently 
related works for planar and non-planar periodic solutions by Chenciner et 
al and Simo. In Chapter 2, we continue the investigation of the method of 
DTW by showing how to continue to reduce our systems by using the Cylin­
drical polar coordinates (a result of this is the linear terms from the constant 
magnetic field cancelling each other). Thus reduced, giving two-degrees of 
freedom, we continue the reduction by obtaining the derivation of the /-  
equation which is a highly non-linear second order differential equation for 
/  in terms of r only. We give examples of the harmonic oscillator and the 
two particle problem to show how to calculate the important characteristics 
of the solution of the equation of motion generated by the /-equation. We 
give the numerical solutions (Runge-Kutta scheme) of the /-equation with 
the initial conditions for our standard examples. These solution agree with 
the numerical solutions (Runge-Kutta scheme) of the reduced system of our 
standard examples of the same problems.
The main contributions of the present work are:
1. The e-equation which characterises the linear stability of the /-equation 
of the DTW-solutions and provides information about the stability of the 
non-planar periodic solutions of the many-body problems. To note that the 
method can be applied to any conservative Hamiltonian system with three 
degrees of freedom which can be reduced to two degrees of freedom using 
the Cylindrical polar coordinates (Chapter 3).
2. A numerical approach to solving the e-equation for our standard examples 
providing a set of illustrative systems that show that the general solution to 
the e-equation is well behaved. The comparison of numerical and approx­
imate analytical solutions of the e-solution for the four body gravitational 
problem appears to be good. (Chapter 4).
3. New periodic solutions, weaving styles and chasing styles, with axial 
symetry and non-collison of the bodies, we describe the algebra and sym­
metry that allows us to reduce a full system of equations to just those for 
essentially one particle. Some of these styles provided the figure eight peri­
odic solutions (Chapter 5).
4. We try to give approximate solutions for the new families of the weaving 
periodic solutions (Chapter 5).



5. DTW-periodic solutions with a Logarithmic potential energy. One inter­
esting feature of these solutions is the appearance of double points in the 
initial data space corresponding to specified nodal structures. We also have 
the appearance of periodic orbits with the same nodal structure but differ­
ent winding numbers. In the work of DTW these were denoted by use of a 
notation like "11/7", ie. 11 nodes with 7 revolutions required to complete 
the orbit (Chapter 5).
6. The extention of the use of the /-equation, the e-equation and the nu­
merical approach to other potentials (Chapter 5).
7. New style of periodic solution, the weaving style with the Logarithmic 
potential energy, this gave the figure eight periodic solution (Chapter 5).
8. Suggestion for further research areas in which one could continue this 
investigation (Chapter 5).

NOTATION.
In this thesis references are indicated by square brackets [ ] and equations 
are numbered in round brackets ( ), where (a.b) denotes equation b in chap­
ter a.
This thesis has been typeset using LTj^X, except Chapter 6 using Mathe- 
matica.
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Chapter 1

THE MANY BODY 
PROBLEM

1.1 Introduction
In this Chapter we give some preliminaries, namely Kepler’s laws of planetary 
motion and Newton’s gravitational law and Coulomb’s law of motions. In 
it we show that very few solutions are known for the general many-body 
problem. Here we apply the method of DTW for the system of a 2n electron 
atom problem with constant magnetic field. That means our system has 12n 
degrees of freedom. This can be reduced to our system using the method to 
solve for just one particle with three degrees of freedom. We give examples 
of the four node solution of the four ion problem, four electron atom problem 
without (with) constant magnetic field and four body gravitational problem. 
These examples we consider as our standard four node solutions in the DTW- 
periodic set up. We shall show how the DTW-solutions were found. We shell 
also refer to some recently related works for planar and non-planar periodic 
solutions by Chenciner et al and Simo.

1.2 Many body problems
1.2.1 History
Throughout the ages man has looked at the heavens and made many at­
tempts to arrive at an explanation of the motions perceived. A complete and
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thorough treatment of the nature and date of the main contributions to the 
theory of dynamics is not appropriate herein but the significant contributions 
from our point of view are due to Kepler(1571 —1630), Newton(1642 —1727), 
Lagrange(1736 — 1813) and Hamilton(1805 — 1865).

1.2.2 Laws of planetary m otion
The motion of celestial bodies is governed by Kepler’s laws of planetary 
motion, the first law stating that the path of each planet is an ellipse with 
the Sun at a focus. The second law states that the radius vector ( a straight 
line joining the Sun and a planet) sweeps out equal areas in equal times. This 
law implies that a planet moves more rapidly when it is close to the Sun. 
The third law states that the square of each planet’s period is proportional 
to the cube of the semi-major axis of its elliptical orbit. These laws explain 
geometrically how the planets move in relation to the Sun. See [8], [19], [25], 
[29] and [76] for more details.

1.2.3 New ton
Newton’s theory of universal gravitation produced a theoretical principle on 
which to base Kepler’s three observational laws. Prom these laws, Newton 
deduced that the acceleration of any planet in its orbit is proportional to the 
inverse square of its distance from the Sun. For further details see [1], [4], [9] 
and [10], [42].

1.2.4 Solution of inverse square law motion
In this section we shall deal with Newton’s gravitational law of attraction 
and Coulomb’s law of motions. In both laws the force between two particles 
is inversely proportional to the square of the distance between them, acts 
along the line joining the particles, is proportional to the product of some 
constants a  and /?, determined in the case of Newton’s gravitational law by 
means of masses or in the case of Coulombic law by means of charges, and 
in the latter case may be attractive or repulsive. Then

fi r
F  =  — - ,  wheren = kafi  is a force constant, for k is usually a constant.
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This is a central force field dependent only on r, where r is the distance 
between the particles. It is also a conservative field because there exists a
potential function V(r), V(r) = — — such that

r
F =  -  W  

and energy is conserved. That is,

E  = ^ |r |2 +  V(r),  for unit mass, 
z

is a constant of the motion being a function of the state variables q =  r 
and p  =  r  independent of time, E  =  H (q, p). The energy is an important 
state variable even for a macroscopic oscillator, but for an atomic oscillator 
it is indispensable. Here fi = ka(3, where k , a  and (3 are constants, deter­
mining whether we have Newton’s gravitational law or Coulomb’s law. In 
the Newtonian case k = G, a  = m i and (3 =  m2, where G is the universal 
gravitational constant and m  1, m2 are the masses of the particles. In this
case the force is always attractive. In the Coulombic case we have k = ------ ,

47re0
a = Q 1 and (3 = Q2, where eo is known as the permittivity of free space, and 
Qi, Q 2 are the charges of the particles. In this case the force is attractive or 
repulsive according as Q 1, Q2 are of unlike or like sign. Let us consider two 
particles P i and P 2 moving according to the inverse square law of motion 
in an inertial frame with origin O. Locate them by means of radius vectors 
r i =  x\i  +  2/ij +  Zik and r 2 =  a^i +  +  ^2k in cartesian coordinates, where
the constant unit vectors i, j  and k are parallel to the rectangular axes x, y 
and z respectively. A vector along the line from P i to P 2 is r  =  r 2 — iq, then

r 2 — r lfor r =  r 2 —  rd  a unit vector in this direction is r i2 =  1- - - - - - - - - - - - - - - - - r .  Then the
|r2 -  r i|

force on P 2, F 2, is defined by

F 2 =  I T2 *12 =  I-----— 13 (r 2 -  *i),1*2 — Ti|2 |*2 — *l|
and analogously the force on P i, F i, satisfies F i =  — F 2, or more explicitly

F i =  l  — r 21
*i -  *2 r

i— — 13 (r i _ r 2)- 
* 1  -  * 2  3

Refer to [17], [36], [57] for further details.
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1.2.5 One and two body problems
Consider one particle with unit mass moving according to the inverse square 
law of motion in an inertial frame of reference. With respect to some 3- 
dimensional cartesian coordinate system, the equation of motion is

A4r = ---- - r where fi is a constant.

This equation can be solved by using the constants of the motion,

h =  r x r, the angular momentum of the particle ,

E  = ^ |r |2 +  V{r )i the energy of the particle and

A =  h x r +  -  r, the Hamilton Lenz Runge vector of the particle. 
r

By using these constants we can obtain

I
r  — ------------------------------ ^  •1 — e cos 6

One recognises this as the equation of a conic section with one focus at the 
origin, eccentricity e and semi latus rectum /, where I = h2/fi and e = A/ji. 
These constants are determined by the initial conditions. We will consider 
the case where we have a bounded orbit, that is, for 0 < e < 1. The 
two body problem can be reduced to a one body central force problem by 
considering the motion relative to the centre of mass which can be shown to 
move rectilinearly. As an example one could consider the motion of a planet 
around the Sun. Since the gravitational force of the Sun on a planet is so 
much larger than the forces exerted by other celestial bodies, we can safely 
ignore all bodies in the universe except for the Sun and the one planet moving 
about it. We use a cartesian coordinate system with the centre of the Sun as 
origin in an inertial frame of reference and treat the planet as particle with 
position vector r . Then the equation of the motion of the planet is

GmM  
m  r = ------  — r, or

r =  —^  r, fi =  GM,
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where G is the universal gravitational constant and M, m  are the masses 
of the Sun and the planet respectively. For another example, consider two 
particles P i, P 2 with position vectors ri, r 2 and masses m  1, m2 respectively, 
moving according to the inverse square law of motion in an inertial frame 
with origin O. Suppose the only force on each is the force due to the other. 
Then, the equation of motion of particle two relative to the centre of mass is

See [36], [47], [61], [63] for more details.

1.2.6 Restricted three body problem
The restricted problem of three gravitating bodies considers the case in which 
the mass of one of the bodies is negligibly small compared to both of the other 
two masses, and in which the two large masses move in circular orbits about 
their common center of mass. Thus, the small mass is assumed not to disturb 
the motion of the larger masses. See [44], [61] and [75].

1.2.7 The Lagrange solution
In 1772, Lagrange showed that three masses positioned at the vertices of 
an equilateral triangle, rotating about their common centre of mass with an 
appropriate angular velocity, constitutes a periodic solution of the three body 
problem. The solution of the restricted three body problem is just a version 
of this exact solution of Lagrange. This particular solution exists in the real 
world as the Trojan asteroids are to be found at the Lagrange point for the 
Sun-Jupiter system. For more details see [36], [61], [75] and [76].

1.2.8 Planar polygonal solutions
We may construct exact explicit many body solutions for gravitational attrac­
tion in special situations only. One way is to position the n bodies (particles) 
at the vertices of a regular polygon with n sides. If this system then rotates

m\G
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about its centre with a critical angular velocity a periodic solution will be 
achieved. See [62], [68] and [69] for further details.

1.2.9 Applications
When a satellite is in orbit round the Earth, the main force acting on the 
satellite is the attractive force of the Earth’s gravitation. Provided the satel­
lite does not orbit near the Moon, and stays in the vicinity of the Earth. The 
equation of motion of the satellite is approximately

G m M E 
m r = ------- -—  r, or

r = - ^ r ,  fi = GME,

where m  and M E are the masses of the satellite and the Earth respectivly, 
and r  the position vector of the satellite relative to the centre of the Earth. 
See [8], [43] and [65].
Another situation where a detailed knowledge of the periodic solutions of 
a Hamiltonian operator is required is in semi-classical quantum mechanics. 
In semi-classical quantum mechanics one can express the Green’s function 
in terms of the classical action computed along the periodic paths for the 
system. A knowledge of the stability angles for these paths enables one to 
compute the spectrum for the quantum mechanical Hamiltonian operator. 
This technique has its origins in the work of Bohr and Sommerfeld [45], 
[46]. Both employed a knowledge of the periodic solutions of an electron 
around a point nucleus to calculate the energy levels of the Hydrogen atom. 
Bohr concentrated on the circular orbits whilst Sommerfeld extended the 
study to the elliptical orbits. A comprehensive account of these semi-classical 
techniqices can be found in the excellent papers of M. Gutzwiller [32], [33], 
[34], [35],
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1.3 Coulombic/Keplerian many particle sys­
tems

1.3.1 n particle problem
In the n-particle (electron) problem we are concerned with a many particle 
problem where the forces involved are due to Coulombic interaction with the 
presence of a constant magnetic field (only non-relativistic dynamics will be 
considered). Suppose there are n  particles with charges distributed at fixed 
positions in free space and let each charge Qi have position vector q*, where 
i =  l , 2 , 7i, moving in the presence of a constant magnetic field, B, and an 
infinitely heavy positively charged nucleus, under their mutual attractions 
and repulsions in pairs with the force of magnitude kQiQj\qj — |—2 where
|qj — q* | is the distance between the ith and j th particle and A; is a constant. 
We suppose that n > 2 .  Let O an origin fixed in space be the position of the 
infinitely heavy positively charged nucleus and let q*, q* denote the position 
and velocity vectors of the ith particle. Then, the ith particle satisfies the 
equation

n QQi =  Y .  *hF(qi, q,) -  7ifc2r-W  +  k3{B x q*), (1.1)
j = l IQ* I

where F (q j,q j) =  kQiQj(c[j — cii)\cij — q i|-3. In the case of 2n-bodies, 27i-ions 
the forces involved are due to gravitational interaction, Coulombic interac­
tion respectively. Also Aq5 A;2 and A;3 are either constant or functions of the 
indexes i and j  determining the case of gravitating particles, electrons or ions. 
See [17], [20] and [63]. There is no loss of generality in assuming that any 
bounded solution takes place in the unit sphere since the 7i-particle problem 
(1.1) is invariant under the transformation q (t) —► /13 q (fit), /i > 0 . See [21], 
[62].
The system (1.1) may be represented by 3?i second order differential equa­
tions in the Newtonian formulation and by 671 nonlinear, simultaneous first 
order differential equations in the Hamiltonian formulation, a Hamiltonian 
system with the coordinates and momenta together defining the system’s 
instantaneous state. See [36], [44], [47] and [50], [51], [52] for more details.
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1.3.2 Pseudo rotational sym m etry
Consider 2n  particles (electrons) with unit mass with positions G R3 , i =  
1, 2 , 2n, moving about a core of 2n protons (an infinitely heavy positively 
charged nucleus) in the presence of a constant magnetic field, moving under 
their mutual attractions and repulsions. The Hamiltonian H (q,p) ,  H  : 
Ri2n — > R is defined by

2n 1 / 1 x 2 2n k 2 71 -1
— 2n a

i=i
where p* G R3, q* G R3, i 
equations of motion reduce to

2 71
qi =

q > -q j i  S W  

1, 2 , ...,2n, and fc, a  are constants. The

(qj-qO n„,. q< 
^ Iq. _ n |3 _ 1(717=1 IH7 Mil |4t|

j#*

+  ^ ( B  X q j  =  1,2, ...,2n,

where B is a constant magnetic field, and k\, k2 and k3 are either constant 
or functions of the indices (i — j  +  1), determining the case of gravitating 
particles, electrons or ions. The problem can be reduced from that of solving 
6n second order non linear differential equations to that of solving three sec­
ond order non-linear differential equations by demanding that the positions 
of the particles are related by the pseudo rotational matrix P  G 0(3) such 
that P 2n — I  and detP  =  — 1. The equations of motion admit a solution 
of the form q i+i =  Pq*. By applying P  to the equations of motion of q* 
we obtain the equation of motion for qj+i- This way allows one to solve the 
system of 6n equations by solving the equations of motion of qi alone. If 
we choose B parallel to the z axis, the pseudo rotational matrix for the 2n 
particles is represented by

P  =

7T 7r
cos — — sm —

n n

7r 7r
sm — cos —

n n

V 0 V

1.3.3 2n particles w ith pseudo rotational sym m etry
In this section we shall give the complete description of how one tackles 
the 2n particle problem See [21], [22], We esentially study the 2n-electron

12



problem with a magnetic field as this allows us to develop the most difficult 
case. The 2n-ion problem differs most from this setup in that we need to 
deal with k\ = (—1),-J’+1. This causes no great difficulty and so we do not 
develop a separate argument. Consider the equation of motion of q*

2 n

Qi =  — Qil-3 -2nA:2q i |q i r 3 +  fc3(B x q*) , i = 1,2, ...2n.
3=1

If we applying P  to the equation of motion of q*, where q^+i =  Pq*, 
we obtain

-  q*)l*5b- -  q>r3 -  2nfc2qi|qi|~3 +  &3(B x

2 n

Y ki(P<lj -  Pq»)|qj -  qx|-3 -  2nk2 P q i|q i|_3 +  k3P{B x q*)
3=1

2 n

Y  ki(PQj ~  PqO lPq, -  P q i |-3 -  2nk2 P q i |P q i |-3 +  k3P (B x q*)
3=1  j^i
2 n + l
Y  ki(qj+i -  q i+i)|qj+i -  q i+ i|-3 -  2nA:2 q m |qm |-3 +  k3B x qi+1

j+l=2 

2 n

Y  ~ Qi+i)|qifc -  qi+il-3 -  2nA:2q i+ i|q i+ ir3 +  k3(B x qi+1) ,
k =  1 
k ^ i+ 1

which is the equation of motion of q»+i. Here we have used

P (B  x q  i) = d e tP (P B  x Pqi) =  detP ((detP )B  x q*+i) =  B x  qi+i,

Pqi I Pqj I-3 = Qz+i|qz+i|_3
and

P B  =  (detP)B, detP  =  —1, P 2n =  I.

Pq.i = 

Pqi =  

Pqi =  

q ifi =  

Q i+ i =

13



Now, we shall just consider the equation of motion of one particle with po­
sition vector, qi. Then, the equation of motion of qi is

2 n
Qi =  ~  qi)|qj- -  q i |" 3 -  2n/c2q i|q i|~ 3 + /c3(B x Qi)

3= 2
n

= ai(qj  +  q2n+2—j -  2qi)|qj -  q i|~3 +  a 2(qn+i -  q i) |q n+i ~  qi|
3= 2

-  2n/c2q i |q i |-3 +  A;3(B x cp)
n—1

=  J2  a l(qm+l +  q 2n+2—(m+l) -  2q i)|qm+i -  q i|~ 3

-3

771=1

+  a 2( q n + i - q i ) |q n + i - q i l  3 -  2n/c2q i|q i| 3 + /c3( B x q J- 3

77 —  1

=  Y  a i{Pm + P 2n~m -  ZI)cii\{Pm -  / )q i - 3

777=1

+  a 2(Pn -  I )q i \ (Pn -  /)q i | -  2nfc2q i|q i| +  A:3(B x qj),

with initial position qi(0) =  (1,0,0) and initial velocity qi(0) — (0,yo,zo), 
where au, a 2 are constants determined by the nature of the problem in hand. 
If we want to know how P mq is related to q, we will need some simple 
algebraic properties of P. Now consider again the pseudo rotation matrix, 
represented by the matrix.

/  ^  ^  rw \I cos — — sm — 0 i

P =

n n

• ^  71"sm — cos — 0
n n

0 0 - 1/

with respect to some orthonormal basis i, j, and k. The eigenvalues of P  are 
—1, exp(±?7r/n), with corresponding eigenvectors

Vi =  4 1— 7= j, v 2 =  — in— j and v3 =  k respectively, where i = ^/—T.
y / 2  y / 2 ' y / 2  y / 2 '

Note that vi, v 2 and v 3 form a basis. It is convenient to consider vectors 
with respect to both sets of basis vectors, i, j, k and Vi , v 2 , v3 as this eases 
the calculation of the effect of P. Now, we are going to write the position

14



vector qi with respect to the orthonormal basis, i, j, k, where qi is some
vector in R3. Then, qi =  xi +  yj +  zk with respect to the original basis, and

. x + iy x — iy .
so it has components —- j= - , and >2, with respect to the eigenvectors

of P , v 1} v 2, v 3. We shall use the following notation for qi

Qi =  {x>y,z) = [ a ,M ,

where
x  +  iy , , x  — iy

a =  ^ 7 T  and 6 = ^ T ’
noting

|a |2 +  |6|2 =  x 2 +  y2.
We now calculate the components of P mqi with respect to vi, v 2, v3, with 
the notation qi =  [a, 6, z]. First we will let uj = exp(±27r/n), then P mqi has 
components [uma,uj~Tnb, (—l)mz] for qi =  [a, b,z]. We may now calculate 
the distance between qm+i andqi more easily. First of all consider,

qm+i -  qi =  P mqi -  qi 
=  (P m -  7)qi
=  [(um -  l)a, -  1)6, ( ( - 1) -  -  l)z] ,

which gives,

|qm+i -  q il2 =  I (Pm -  ^ )q i |2
=  |wm -  l |2( |a |2 +  |6|2) +  ( ( - l ) m -  1) V  
=  \ujm -  1 !2( i 2 +  2/2) +  ( ( - l ) m -  1)V .

Now, calculate |u m — 1|,

uj™ — 1 =  (cos — ±  z sin —)™ — 1 
n n

n . m n . . m7r . rmr,
= 2 sm —— (— sm —— ±  i cos ——),

2 n 2 n  2 n
and so, 

yielding

I -m I O O Wb'R\uj — 1 2 =  4 sin2
2 n ’



Next we want the components of (P m +  P 2n m — 2 /)q i. With qi =  [a, 6, z], 
we have P mqi =  [ujma,oj~mb, (—1 )mz] for qi =  [a, 6, z], and so

( r  +  P 2n~m -  2 /)qi =  [(wm +  J 2n~m -  2)o, ( a r m +  u ~ 2n+m -  2)6,2 ( ( - l ) m -  l)z]
=  [(wm +  aTm -  2)o, (a;m +  u~m -  2)6, 2 ((—l) m -  l)z]

ee [-4 sin 2( ^ ) a , - 4 s i n 2( ^ ) 6 , 2 ( ( - i r -  l)z],

since uj2n -- 1 and ojm +ui~m — 2 =  —4sin2( ^ ) .  We also have 

(P" -  7)qi ee [ - 2o, -26, ( ( - 1)" -  l)z],

yielding

|(P" -  / ) q i | - 3 =  ^4( |o2| +  |62| ) +  ( ( - 1)" -  l ) 2z2)  2

=  U z 2 +  y2 ) +  ( ( - l ) " - l ) v A  2 .

For the ions problem note that the ion with position P mqi has the same 
charge as the ion with position P 2n_mq 1.

1.3.4 Reduced system  of equations with constant mag­
netic field

Having simplified the system we now have the equations of the motion for 
one of the 2n particles, given by

x =  g  « i (  -  4sin2( ^ ) ) z ( 4 s i n 2( ^ )  (z2 +  y2) +  ( ( - ! ) »  -  l)  V ) ‘ §
771=1 \  /

+  a 2(—2)x(^A(x2 +  y2) +  ((—l)n — l)  z2j  — 2nk2x ^x2 +  y2 +  z 2

-  k3By,

16
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y = Y l  Qi (  -  4sin2( ^ ) W 4sin2(iS“ ) (x2 +  y2) +  ( ( _ 1 )m -  i ) 2*
771=1

+ a 2( -2 )y^4 (x 2 + y2) + ( ( - l ) n -  l ) 2̂  -  2nk2y(^x2 + y2 + z 2̂

+  faBx  ,

N _  3

z = E  a 12 ( ( - l ) m -  l W  4sin2( ^ )  (:c2 +  y2) +  ( ( - l ) m -  l )  V
7 7 - 1  /  \  2

777=1 ' 7̂1

+  a 2( ( - l ) n -  l ) z |4 ( x 2 + y2) +  ( ( - l ) n -  l)  z2j  - 2 nk2z y x 2 + y2 + z2

Note that the energy equation is

E = i(±2 + y2 + i 2) -  E  <*> (4«in2( ^ )  (x2 + y2) + ((-1)™ -  l ) V )  2

+  y2) +  ( ( - l ) n -  l ) 2 2̂)  -  2 n k J x 2 + y2 + z
1 
2 2 \

Where detP  =  — 1 and P 2n = 1. ( Note that in the 2n electron atom case 
we could also handle detP  =  +1 and P 2n =  I. In the (2n + 1) electron atom 
case we can hande detP  =  ±1 and p 2n+1 =  / ,  in a similar manner).

1.3.5 Four ion problem
Consider the motion of four ions of unit mass of charges ± 1, moving under 
their mutual attractions and repulsions. Denote their positions by q* € M3, 
with charge (—1)* for q* , i = 1, 2 , 3,4. One obtains the equations of motion 
by setting k\ = (—1),-J'+1, k2 = 0 , k% =  0 and aq =  (—l) m+1, a 2 = (—l )n+1 
and n = 2 in the general reduced system,

q* = Z X - 1)<_J+1(qj -q*)lqj - q d -3 i  =  1, 2,3,4.
i = 1

17



The problem can be reduced from that of solving twelve second order non­
linear differential equation by using the matrix P  represented by

/0  - 1 0 \

p  = 1 0 0

v0 0 - v
to that of solving three second order nonlinear differential equations. That 
is, it simplifies the system of equations to

x = —2x{2x2 +  2 y2 +  4z2)~i +  2x(4x2 +  4 y2)~%,

y = —2y(2x2 +  2 y2 +  4 z2)~^ +  2y{4x2 +  4y2)~2? 

z = —4z(2x2 +  2 y2 +  4z2)~*.

The energy equation is

E  = \(%2 +  V2 +  z 2) ~  (2x2 +  2y2 +  4z2)~^ -I- i(4 x 2 +  4y2)~^ .

The basic initial data for the problem is x(0) =  1, ?/(0) =  0, z(0) =  0, x(0) =  
0, 2/(0 ) =  yo, i(0) =  z0. For the four node solution for the four ion problem, 
let the initial velocity be as below

y0 = 0.419778768 and i 0 =  0.600918801.

This gives the angular momentum and the energy as

|h| =  y0 =  0.419778768 , E  = l(yg +  zj) -  +  1 =  -0.188448.
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The motion of one of the ions is illustrated below by plotting the (x,y)~ 
projection and the (y , z)-projection of the path.

Y

Figure l.l:(x , y)-projection.

z

Figure 1.2:(?/, z)-projection.



1.3.6 Four electron atom problem with (without) con­
stant magnetic field

Consider the motion of four electrons of unit mass each with charge (—1), 
and position q* E R3 , % =  1,2, 3,4 moving in the presence of a constant 
magnetic field and an infinitely heavy positively charged nucleus which has 
charge +4, moving under their mutual attractions and repulsions. By setting 
ki =  —1, &2 =  1, ks =  1 and aq =  —1, a 2 =  —1 and n = 2 in the general 
reduced system, one obtains the equations of motion

4
Qi = — Q*)lQi -q*r3 -4q i|qir 3 + B xqh i = 1, 2, 3,4.

j=1

The problem can be reduced from that of solving twelve second order non­
linear differential equation by using the matrix P  represented by

P  =

fO - 1  0 N

1 0 0

Vo 0 - l )

detP  =  —1,

to that of solving three second order nonlinear differential equations. Chosing 
an orthonormal coordinate system in which B =  B k gives us particularly 
simple equations. That is, it simplifies the system of equations to

x =  2x(2x2 +  2 y2 +  4z2 ) ~ 2 +  2x(4x2 +  4y2 ) ~ 2 — 4x(x2 +  y2 +  z2)~t — B y ,

y =  2y(2x2 +  2 y2 +  4 z 2)~% +  2y(4x2 +  4 y2)~% — 4 y(x2 +  y2 +  z2)~% +  B x ,

z =  4z(2x2 +  2 y2 +  4 2 2 ) _ 2 — 4^(x2 +  y 2 +  z2)_ 2 .

The energy equation is now

E =  \-(x2+ y 2+ z2) +  (2x2+ 2y2+ 4 z2)~  ̂+  \-{4x2 +  4y2)~* —4{x2+ y 2 +  z 2)~  ̂ .

The basic initial data for the problem is x(0) =  1, y(0) =  0, z(0) =  0, i(0 ) =  
0, y(0) =  yo> i(0) =  io- For the four node solution for the four electron 
problem, let the initial velocity be as below

y0 =  0.126889159 and io =  1.816605346 and B  = 0.
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This gives the angular momentum and the energy as

|h| =  2/o =  0.126889159 , E  =  \ ^ l  + ^t) + ^  + A = -1-38482.

The motion of one of the electrons is illustrated below by plotting the (x , y )- 
projection and the (y, z)-projection of the path.

y

jf

0 . 5

J L
-I----------- ------ -------------- -

- 0 . 5

J

Figure 1.3: (x, ^-projection.

Figure 1.4: (?/, z)-projection.
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For the four node solution for the four electron problem with non-zero mag­
netic field. Now let the initial velocity be as below

y0 = 0.328117187 and z0 = 1.823429687 and B =  i
Li

This gives the angular momentum h and the energy as

|h| =  y0 = 0.328117187 , E  =  i ( ^  +  ig) +  2 =  +  1 -  4 =  -1.32661.

The motion of one of the electrons is illustrated below by plotting the (x , y )- 
projection and the (?/, ^-projection of the path.

y

- 0 . 5

-0

Figure 1.5:(x, ^-projection.

z

Figure 1.6:(?/, ^-projection.
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1.3.7 Four body gravitational problem
Consider the motion of four gravitating bodies of unit mass subject to their 
mutual attractions with positions q* G M3 , i =  1,2,3,4. By setting k\ = 1, 
&2 =  0 , ks = 0 and a\ = 1, a 2 =  1 and n = 2 in the general reduced system, 
one obtains the equations of motion, which are

j =1

We let the matrix P  be

(0 - 1  0 \

p  = 1 0 0

1° 0 - l )

and as before, simplify the system of equations to

x = -2x{2x2 +  2y2 +  4z2)~* -  2x{Ax2 +  4?/2) " i ,

y = - 2y (2x2 +  2y2 +  4z2)~% — 2y(4x2 +  4y2)~%, 

z = —4z(2x2 +  2 y2 +  4z2)~*.

The energy equation is now

F  =  +  y2 +  -z2) -  (2j*2 +  2y2 +  4;z2)-2  -  ^(4x2 +  4y2)~% .

The basic initial data for the problem is x(0) =  1, 2/(0) =  0, z(0) =
0, ±(0) =  0, ?/(0) =  yo, i(0) =  Zq. For the four node solution for the four
body gravitational problem, let the initial velocity be as below

y0 = 0.333250244 and z0 = 0.841783691.

This gives the angular momentum and the energy as

|h| =  y0 =  0.333250244 , E  =  l ( j /02 +  i 02) -  -)= -  1 =  -0.547279.
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The motion of one of the electrons is illustrated below by plotting the (x, y )- 
projection and the (y , z)-projection of the path.

y

Figure 1.7:(x, ?/)-projection.

z

Figure 1.8: (2/, z)-projection.
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1.4 Mathematica code
The diagrams above were created using Mathematica to firstly apply a fourth 
order Runge-Kutta scheme to numerically solve the reduced system of equa­
tions of motion and then plot a subset of the points generated. The Mathe­
matica code used throughout the thesis will be presented in chapter 6 along 
with a brief descriptions.

1.5 How solutions were found
1.5.1 Search procedures
In the papers of Ian Davies, Aubrey Truman and David Williams [21], [22] 
solutions like those above were found by employing computer based search 
routines. These routines are documented in [21]. We briefly describe the 
basic ideas below. Suppose we wish to obtain a periodic solution, periodic 
in both r =  \ f x 2 +  y2 and 2 with the period, Pz, for the 2-motion being 
twice the period, PT, for the r-motion. Let the minimum value of r be rm, 
where rm < r < 1 and let the maximum value of 2 be 2m, where 0 < 
2 < 2m. First one obtains a planar polygonal periodic solution by initially 
choosing x(0) =  1, 2/(0) =  0 , 2 (0) =  0 , x(0) =  0 , y(0) =  yc, i ( 0) =  0 , 
and using the equation of the motion and the energy equation to ensure 
that r = 0. Now say we have the planar periodic solution subject to the 
equation of the motion with negative energy, Ec. Now initially choose small 
y  =  yc ±  m,  2 =  zc ±  m  subject to the bound state, where m  is a very 
small mesh. And try to find position and velocity for first time 2 =  0 
(when r =  1, r =  0). Let P q  be the angular distance between the starting 
point and the first point at which 2 =  0 (when r  =  1 hopefully). Let R  
denote the matrix representing a rotation of P q  about the 2-axes. If the 
initial position and velocity were (1, 0 , 0) and (0 , ?/o,io) respectively then 
the corresponding values after angular distance(period) P q  would have to be 
P ( l,  0,0) and R(0, yo, —io) respectively(the minus of the velocity of 2 because 
the motion goes up and down in 2-direction). Given some initial data, one 
solves the equations of motion numerically until 2 < 0 (io > 0). We then 
interpolate between the last two computed positions of 2 (one is negative 
and the otheir is positive) to find the time at which 2 =  0. The position and 
velocity for this time, T, (xr,2/r?0) and (x t52/T)2t )  respectively, are then
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used to compute

d(y0, z0) = \(xT,yT,0) -  # ( 1, 0 , 0 )|2 +  \(xT,yT, zT) -  R(0,yo, - z 0)\2.

For a fixed Zq we calculate d(y0, i 0) for a variety of values of yo and find 
that io which minimises d(yo, io). We then begin to work with a finer mesh 
and refine the calculations proceeding in the same manner as before. Ian 
Davies, Aubrey Truman and David Williams were very successful in obtain­
ing periodic solution of several types of many-body problems by employing 
variants of the above method. We must emphasize that as the differential 
equations were solved numerically we could not expect to find (yo, io) yield­
ing d(yo,Zo) = 0, we would only be able to consider d(yo,Zo), small with 
regard to the errors inherent in the chosen numerical scheme.
Note that one can make use of the naturally occurring constants of the mo­
tion to continually check that the numerical solution is not behaving badly. 
One could also solve the full (unreduced) system and check on the agreement 
of both systems.

1.6 Recent related works
We are of course, aware that one may easily confuse periodic solutions and 
quasi-periodic solutions when one is employing the numerical techniques to 
solve the differential equation. However the recent works of Chenciner et al 
[11], [12], [13],[14] especially [15], give the existence of periodic orbits of these 
form. There have been other numerically based developments see Georges 
Hoynant [26], Moore [54] and Simo [71], [72].
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Chapter 2

DERIVATION OF THE 
/-EQUATION

2.1 Introduction
In this chapter we will give the complete description of how to study the 
2n particle (electron) problem. We can represent the motion in Cylindrical 
polar coordinates (r, 6, z ) where x = r cos 9 and y  =  r  sin 6. Then, the system 
reduces to a pair of second order non linear differential equations for r  and z. 
We are going to see how to derive the /-equation and approach the solution 
of the system of equations from an analytical point of view as in the papers 
of Davies, Truman and Williams [21], [22]. To do this we express z in terms 
of r alone and then obtain an equation for / ( r )  =  z 2 in terms of r only by 
eliminating the explicit dependence of the derivatives on time. We obtain a 
non-linear differential equation for /  in terms of r only, a highly non-linear 
second order differential equation. The boundary conditions on /  are found 
from the initial position and the initial velocity which are dependent upon 
2/o — h and Zq. The solutions in which we are interested are those which are 
periodic in both z and r such that the period for the 2-motion is twice the 
period for the r-motion. Also, we will calculate the important characteristics 
of the solution of the equations of motion generated by the /-equation as 
follows. We let the maximum and minimum values of 2 and r be zm and rm 
respectively. We will define the periods of the respective coordinate motions, 
Pz and Pr and the angular distance Pq, in terms of yo and Zq. Furthermore in 
this chapter we shall give some examples of the harmonic oscillator and the
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two particle problem, where we study the geometry of the elliptic periodic 
solutions of the two particle problem. We will state, explicity, f ( r )  for the 
two particle problem. We will study the numerical solutions of the /-equation 
with the initial conditions for the four examples respectively as in Chapter 
1, demonstrating the agreement between the two systems.

2.2 Cylindrical polar form
Firstly rewrite the equations of motion in the previous chapter in Cylindrical 
polar coordinates, (r, #, z). The equation of motion of one of the 2n particles 
becomes

dt2
(rer) =

n—1

L E  « i ( - 4sin2( ^ - ) ) r 4̂sin2( ^ - ) r2+ ( ( - ! ) ” -  0

+  a 2( - 2) r b r 2 +  ( ( - l ) n - l ) V ]  ' - 2nk2 ( r 2 +  z2')

+  k3Br6 er +  k3Br ee,

(2 .1)

z =
71—1

E
m = 1
53 a ! 2 ( ( - l ) m -  l )z (4 s in 2(— ) r 2 +  ( ( - l ) m -  l )  2 

+  a 2( (—l ) " - l ) z ( 4 r 2 +  ( ( - l ) n - l ) " z

3
2 \  2 2 \

— 2nk2Z ^ r2 +  z

The position vector r (t) in Cylindrical polar coordinates is

r =  rer +  z k ,

(2 .2)

(2.3)

where er =  cos0i +  sin#j and eg = — sin#i +  cos#j and er , eg are the usual 
unit tangent vectors in the direction of increasing r, 6. Differentiating (2.3), 
gives

r =  rer +  rOeg +  ik, (2.4)
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showing that the velocity of the particle, in general, has components in both 
er and e# directions, called respectively the radial resolute r and the cross- 
radial resolute (transverse) r6 components. Differentiating (2.4), we have

r = (r — r02)er +  (2 fO +  r6)ee +  zk. (2.5)

Hence the acceleration has, in general, the radial component (r — rO2) and 
the cross-radial (transverse) component (2fO +  rO), which can be written as 
1 d
— — (r20). Substitute the right hand side of (2.5) in (2.1) to get

(r — r02)er +  (2 rO +  rO)ee
n—1
£ “ i ( -  4sin2( ^ ) ) r ( 4 s i n 2( ^ ) r 2 +  ((-!)">  -  l)%

m  7T,

. m = 1 2n 2 n

+  « 2(—2)r ( 4r2 +  ((—l)n — l)  z 2 J — 2n/c2r  ( r2 +  2"

+  ksBr 9 er +  k3B r e e,

2 \ 2
5 =  £  a l2 ( ( - i r  -  l W W ( ^ ) r 2 +  ((-!)•»  -  1) V

m.=l \  /
_  3

+  a 2( ( - l ) n -  l ) z  ^4r2 -1- ( ( - l ) n -  l ) 2^2̂  ~  2n/c22:^ r2 +  z 2

Equate coefficients of er , e#, since they are orthogonal coordinates, to obtain

n —1
r  — r #2 =  ^2  a i ( — 4 sin2( ^ - ) ) r  j 4 sin2(-^^) r 2 +  ( (—l)m — l)  z

m  7T.
3

2 \ 2 
. 2  1

m=l 2n 2n
3

+  a 2( -2 ) r  ( 4r2 +  ( ( - l ) n -  l)  z2 j -  2nk2 ( r2 +  z2 j +  k3Br6,

(2 .6 )
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2 rO + r6 — k^Br,  (2.7)

3

z =  « i2 ( ( - l ) m -  l ) z U s m 2( ^ ) r 2 +  ( ( - l ) m -  l ) V ^
1 \ 2 nm —1

_  3

+  a 2( ( - l ) n - l ) z U r 2 +  ( ( - ! ) " - l ) V j  2 - 2nk2z ( r 2 + z 2

From (2.7), we get,

then

giving

2 A h  B r 2r 0 ------  —  = h,

Then, by eliminating 6 from (2.6) and noting that this results in a cancellation 
of the linear terms in the constant magnetic field, the equations of motion 
become a pair of second order non linear differential equations for r and z. 
We have

n_i / \ _—

z  =  £  «1 2 ( ( - l ) m -  l)  2 (4sin2( ^ ) r 2 +  ((-1)™  -  l ) V ) ’
m =  1 \  /

+ a 2( ( - l ) n - l )  2 f 4r 2 + ( ( - ! ) " - l ) V j  “ - 2  nk2 z ( r 2 +  z2) \

k l B 2r
-3 q

+  g  a i ( -  4sin2( ^ ) )  r  (4sin2( ^ )  r 2 +  ((-!)-»  -  1) V

3 . . 3
2

2 \+  o;2 2r ^4r2 +  ((—l)n — l)  z2̂j — 2n/c2r ̂ r2 +  z
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The energy equation becomes

* 4(^2+*2+ £ + ^  -  2  « > M i ^ 2+((- i)m -  ov )
771=1 \  /

- a 2 ]- U r 2 +  ((-l)n-  l ) V )  — 2nk2 ( r2 +  zd
i 

' 2 „2 t

2.3 The derivation of the /-equation
In this section we shall rewrite the equation of motion and the energy equa­
tion as below

z = zFi (z2, r) 
r = F2(z2,r, h)

E = l ( f 2 + z2) + F3(z2,r,h),  or 

g(z2, r, h, E) = 2E  — 2Fs(z2, r, /i) =  r 2 +  i 2 

where Fi, F2 and F3 or g are functions of z, r  and h. Here

71—1
F1(z*, r )=  £ o 12 ( ( - i r - l ) ( 4 s i n 2( ^ ) r 2 +  ( ( - l ) m - l ) V )  "

777=1 \  /

+  a 2( ( - l ) " - l ) b r 2 + ( ( - ! ) "  - l ) 222)  2 - 2 nk2( r 2 + z ‘

+  £  a i ( -  4sin2( ^ ) )  r  (4sin2( ^ ) r 2 +  ((-!)">  -  l)  V )  *

+  ol2 2r ^4r2 +  ((—l) n — l)  z2>j  — 2nk2r ^ r2 +  z
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2 1 / h 2 k l B 2 r 2 \  (  . 2 f m 7 r \  2 // i\m A 2 2 \  2F3(z2,r,h)  = - ( -  + J L _ )  +  E  « i(4 s m 2(— ) r 2 +  ( ( - ! ) " • -  l)  22 )

+ a 2 1  N r 2 +  ( ( - ! ) "  -  l) 22 j -  2refc2 f r 2 +  2
I , . _I

2
2 \

We shall now see how to approach the solution of the system of equations 
from an analytical point of view. We let

z2 =  / ( r ) ,  where r 2 =  x 2 +  ?/2. (2 .8)

Differentiating (2.8) with respect to t, gives

2zz  =  f ' ( r)r  ,

so
i2 _  / /2( r)r2

4 /(r)
Differentiating again yields

2£2 +  2z£ =  f ' ( r ) r 2 +  f ( r ) r ,  (2.9)

where
r 2 =

[ 2 F - 2 F 3( /( r ) ,r ,h )]  

\ 4 f/Vi /4 /(r)
By substituting, we obtain

(■ W )  ~  f , ' ^ ) [2E~ 2F^ ' \ r ) r M  = V  -  2/ ( r ) F 1( /( r ) ,r ) .

1 + (l7(4
(2 .10)

Equation (2.10) is a second-order nonlinear ordinary differential equation 
which we call the /-equation. The equations of motion have now been re­
duced to a second order non linear ordinary differential equation, where Fi, 
F2, and F3 are all given. We now find the initial conditions on /  correspond­
ing to the initial conditions q i(0) =  i and q i(0) =  yoj +  ^ok.
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Now the initial conditions on /  are

2i,2
/(I) = 0, /'(l) 0

f 2(o, i , /o -

Prom the energy equation, we obtain

E  =  1/'(1)F2(0,1, ft) +  F3(0,1, h).

Consider z 2 = / ( r ) ,  giving, 2zz  =  f ' {r)r  and 2 =  2Fx(22,r) . We have 
therefor

2i£ =  2zzFi(z2,r), = / 'M ^ i ( / ( r )>r )-

Now integrate on both sides, to get

z2{t(z)) -  i 2(0) = f ' ( r )F\ (f { r ), r) dr,

where £(2) is the inverse function of z(t) and r(z) is the inverse function of 
z = \Jf{r).  Now, define F(z)  by

F ( z ) =  i 2(0) +  ^  ( / '( r ) F i ( / ( r ) , r )  dr.

The period of the 2-motion is

Pz = i j ‘m {F(z) )~l dz,

where zm satisfies
/* ZjYl

z2(0) +  2 /  zFi(z2,r(z)) dz = 0.
Jo

The radial period is

Pr = 2 f 1 (G (r))_ V r ,

where
=  4 /(r)[2 F  — 2F3( /( r ) , r, /&)] 

( / /2(r) +  4 /(r))
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The angular distance is

Pe = h [  (r(t))~2dt ,
Jo

where r(t) satisfies

2.4 Examples
2.4.1 Harmonic oscillator
We shall give an example to show how to calculate the important characteris­
tics of the solution of the equations of motion generated by the /-equation by 
employing the simple harmonic oscillator. Consider the equations of motion

x  = — u j \ x , y  =  — o j \ y ,  z  = —

with initial position and velocity a:(0) = 1, ?/(0) = 0, 2(0) = 0 , and x(0) = 0 , 
2/(0) = 2/0, i(0) = io, respectively. The energy equation is

E  =  + y 2 + i 2) + ^ ( v ? x 2 + u \ y 2 + u % z 2 ) .

By using cylindrical polar coordinates, and resolving into radial and cross- 
radial resolutes, we obtain

z  =  —uj\ z .

The energy equation becomes

In this case we have

Fi{z2,r) =  —col, F2(z2, r, h) =  F3(z2,r,h) =  \  olr2+ u l z 2̂ J,
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where Fi, F2 and F3 or g  are functions of z ,  r, h .  As before we obtain the 
/-equation with the usual initial conditions. That is

( 2/|} “ ^  + ^  ~  = /,(r) _ ~ 2/(r)( “ ’ 

with

/( l)  = 0 , /'(l) = ^ Z °  2 where h = y Q .
[ h l  -  u ( )

In this simple case 

F ( z )  = z \ t ( z ) )

=20 -  'A f x 1 * f (r ) =  *0 -  w2 [ /M * )) -  / ( I ) ]  =  «0 “

The period of the -̂motion is
/* Z771 1 f  /  _ _ /'T’ (z) v —JL

Pz = 4 Jo (F(z))~* dz = 4 j o ( i 2 -  u;2 ^  /'(r) dr) 2 dz

=  4 / m( i02 - u ,2z2) ' 5 dz =

2tt
=  —  as expected,

U>2

since is defined by

% = -2 [ z F i { z 2, r) ch =  ^  2^.
./o

The radial period is

r , . 2 £ ( c W ) - ' * - ^

where
h?2 l 2 , , .2 fi , 2 2G (r) = f 2 = h2 + u i - - ^ - u i r

The angular period is

Po = h J  (V(t)) dt =  o;i7r,
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where
h2

r(t) = cos2(uit) H— ^sin2(uiit).
u  i

In this simple example we easily calculated the important characteristics of 
the solution of the equation of motion generated by the /-equation which are 
P z , P r and Pq.

2.4.2 The two particle problem
Consider the motion of two particles of unit masses subject to their mutual 
gravitational attractions with positions E R3, i =  1,2. The equation of 
motion of qi subject to a suitable choice of units is

Q2 -  Qi
Qi

|Q2 — Qi|3

with P =  — I, P 2 =  I,  detP = — 1. P  has an eigenvalue —1 of algebraic 
multiplicity 3, and so we can take the eigenvectors corresponding to —1 as i, 
j and k. The equation of motion of one particle can be writen as

r = where y = \ ,
r6 4

with initial conditions r(0) = i and r(0) = y o j  +  Z q \h . As one expects the 
path of the particle is an ellipse with semi-major and semi-minor axes a  and 
b  respectively. For periodic orbits we get,

I j yo2 +  z02 1r  = ------------- , I —   where fi = -  , e =  1 —1 — e  cos 0  y  4

we have 0 = _ L  t ?  =  a l  =  T m i n  ( since w  = 1}. By using cylindrical
polar coordinates, and resolving into radial and cross-radial resolutes, we 
obtain

z = —y z ( r 2 +  z2) 2,

The energy equation is

2 r* 
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Figure 2.1.
Now let us now concentrate on the relation between r = y / x 2 + y 2 and z .  

The path of the particle projected onto the plane z  = 0 is again an ellipse 
as in figure 2.1, with semi-major axis equal to that of the physical path but 
different semi-minor axis. That is, differing e and L  Let oq be semi-major 
axis, b i  be semi-minor axis, l \  be the semi latus rectum of the ellipse projected 
onto the plane z  —  0. We have

ai = a  but b i  =

bi

yo
\J yo2 + zo2

b,

and I 1 = — = . o . 2 
a i Vo + Zq

Vo2 i = y £
f1

The /-equation in this case is

2/ M  1 K

( 2jB _  g  +  ^ ( r 2 + / ( r ) ) -* )

h 2
=  f ( r ) ( -3 “ ( r 2  + f ( r ) )  2 )  ~  2/M  “ + /M )

with
2 z 2 1

/( l)  = 0 , /'(l) = ^ 2_°^ where h  = £0, \l  = -.

From figure 2.1, to state, explicity, /(r) for this example, given rq we shall 
get z as

z° . az = — T\ smd,  
yo
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where 7*1 satisfies

r2 = dl + r\ —  2rid0 cos 9 ,  (2.11)

or
7*1 = d o  cos 9  + y j do cos 6 + r2 — d%,

Equation (2.11) can be written as

t*i — 2— r \  + (rfn — r 2 + 2^—̂) = 0, where d 0 = a(ei — e).
ei ei

Note that
d r  i

We observe that

where

d r  t*! — d o / e i

f ( r )  = yi ( r i - C - ^ n

T \  =  d o / e i  + y j { d o / e i ) 2 +  r 2 -  d % -  2 l i d 0 / e i  with h  =  y l / f i , 

do  =  a ( e i  -  e), e x =  1 -  b \ / a 2, b i  =  y 0  b / y j y $  + ig , 

which satisfies
/( l)  = 0 and /'(l) = —

2/o — /x
Note that from the geometry of the ellipse we calculate that,

h 2
r min —

2 / i  — h 2 ’

where h 2 = t/02 + i o 2 and t*i = rmin —  d o , we get,

2 io  1 \  2z"o /  f'm ird l
f  (J 'm in ) 2/o2 V ___ 1 7  2/o2 \  h  ~  r m i n  J

T m in  h

2i 02 /  y02h2 \
yo2 V 2/o2(2/i -  h2) -  h2[i ) '

This leads to several different zeros, which means f ' ( r m i n ) could be negative, 
infinity, or positive.
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2.5 Numerical solution of /-equation
The numerical solutions (Runge-Kutta scheme) of the /-equation with the 
initial conditions for the four examples respectively as in chapter one are 
illustrated below. These diagrams agree with the numerical solutions (Runge- 
K utta scheme) of the reduced system of the same problems. These diagrams 
were created using Mathematica code and will be presented in Chapter 6 .

2.5.1 Four ion problem
For the four node solution we had yo = 0.419778769 and io =  0.600918801 
giving / o ( l )  =  —2.571113998 ( / ( l )  = 0 as standard). The diagram below 
illustrates f ( r )  for rm < r < 1, rm = rmin = 0 .866.

f

0 . 2 5

0 . 1 5

. 05

0

Figure 2.2:the /-solution for the 4ip

2.5.2 Four electron atom  problem
For the four node solution we had yo =  0.126889159 and io =  1.816605346 
giving / '( l )  =  —2.180573661 ( / ( l )  =  0 as standard). The diagram below
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illustrates f(r)  for rm < r <  1, rm =  rmin =  0.171.

f

Figure 2.3:the /-solution for the 4eap

2.5.3 Four electron atom problem with constant mag­
netic field

For the four node solution we had yo = 0.328117187 and io =  1.823429687 
giving / ' ( l )  =  —2.218274657 ( / ( l )  =  0 as standard). The diagram below 
illustrates f {r)  for rm < r < 1, r m =  rmin — 0.157.

f

Figure 2.4:the /-solution for the 4eapB

2.5.4 Four body gravitational problem
For the four node solution we had yo =  0.33250244 and io =  0.841783691 
giving / o ( l )  = —1.675076607 ( / ( l )  =  0 as standard). The diagram below
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illustrates f (r)  for rm < r < 1, rm =  rmin =  0.219.

f

r0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9

Figure 2.5:the /-solution for the 4bgp
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Chapter 3

LINEAR STABILITY OF THE 
/-EQUATION

3.1 Introduction
In this chapter we are going to study the linear stability of the /-equation. 
We assume a known solution, a positive function, / 0(r), where /o (l) =  0, 
/ ' ( l )  < 0 , investigating whether there is a nearby solution of the same kind 
with the same E  and h and we will consider a small displacement from /o(r), 
e(r). We will obtain the general form of the e-equation from the /-equation 
by employing the customary linearisation techniques. We shall give examples 
of the four electron atom problem with constant magnetic field and without 
constant magnetic field, the four body gravitational problem and the four 
ion problem. We will also develop the local behaviour of e(r) near and at 
r  =  1. This will result in a convergent series solutions (Frobenius series 
solutions) where the leading terms in the series solutions are solutions of the 
Cauchy-Euler equation. We will also give two special cases, one of them 
can be expressed in terms of Bessel functions, the other can be expressed 
in terms of Hypergeometric functions. These techniques can be applied to 
the n-electron atom problem with (without) constant magnetic field, the 2n- 
gravitational body problem and the 2n-ion problem. They may also applied 
to the restricted three body problem and the Lagrange solutions, the hip-hop 
solution. In general it can be applied to any conservative Hamiltonian system 
that can be reduced to Cylindrical polar form and that can be reduced using 
the DTW-method (the /-equation).
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3.2 The linearisation of the /-equation

3.2.1 The general e-equation
We shall write the /-equation in the form

( I / ' 2 -  f f " ) [2E -  2F3] =  ( I / ' 2 +  / ) [ / 'F 2 -  2 / f i ] (3.1)

Suppose / o  is a solution for (3.1), where fo is a positive function and / o ( l )  =  
0, / o ( l )  < 0. Now consider a small displacement from /  =  / 0, then, /  =  / o + e ,  

where e is small. Differentiate twice with respect to r, to get / '  =  f 0 +  e' and 
/ "  =  /o +  e". We will use the traditional linearisation argument for equation
(3.1) where f  = fo + e. We shall do this by considering each of the four parts 
separately. First part of the linearsation becomes

( 2 - r  -  / / " )  =  ( 2 %  -  /o/o ) +  r j  -  foe" -  f i e  + 0(e ).

Here 0(e2) means terms of second order or above in e, e', e" and products 
thereof. The second part becomes

[2E  -  2F3( /( r ) , r, h)} = [2E  -  2F3( f0(r), r, /i)] +

+ 0(e2).

d [ 2 E - 2 F 3(f(r),r,h)}
d f fo

The third part becomes

( ^ / /2 +  / )  =  (^/o2 +  fo) +  - foe1 + e +  0 (e2).

The last part becomes

[ f F 2(f(r),r,  h) -  2 f F 1(f(r),  r)\ = [foF2( f0(r), r, h) -  2f0F1(f0(r),r)\

+ F2{f0(r),r, h)e' +  

+  0 (e2).

fo
,dF2{ f (r ) , r , h)

d f
-  2F i( /0(r) ,r)  -  2f Q

fo

dFi ( f (r ) , r )
d f fo-
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Let us gather the terms together beginning with the l.h.s. of (3.1), 

( I f 2 -  / / " ) [ 2 £  -  2F3] =  ( i f 2 -  f 0fS)[2E -  2F3(f0(r),r,h)}

-  f 0[2E -  2F3( /0(r), r, h)]e" + f  [2E  -  2F3( /0(r), r, h)]e'

, f / 1 ** r t n ^ { 2 E - 2 F 3{S(r),r,h)} 
+  U 2/o •'°*'°' Qj

+ 0(e2).

f " [ 2 E - 2 F 3(f0(r),r,h)}
h

(3.2)

Now the right hand side of the /-equation (3.1) becomes

( i f 2 +  W ' F i  -  2 /F i] =  ( i f 2 +  /o ) [ f  F2( /0(r), r, ft) -  2 /0F 1( /0(r), r)]

+ /oF2( f ( r ) ,  r, ft) + - t f F 2{j0(r), r, ft) -  / o f  F i(/o(r), r)

+  [ f  W o t o . r . f t )  -  2 /0F 1( /0(r),r)]

+  (i / ?  +  /o) 

+  0 (e2).

f
,9 F 2( /( r ) ,r ,  ft) 9 F i( /( r ) ,r )

- 2 F 1( /0( r ) , r ) - 2 / o
/o

The coefficient of e' in (3.3) is

/oF2(/o (r),r, ft) +  i f 2F2( /0(r), r, ft) -  / o f  F i( /0(r) ,r) . 

By adding and subtracting | / 0f  F i( /0(r), r), we get

/o fif/oW.r.ftJ + lfFK/oW.r)

+  i f 2F2( /0(r),r,ft) -  i / o f  F i(/o (r) ,r) ,

/o-l 1

(3.3)

44



or

fo F2(f0(r), r, h) +  r)

4+ 7/0 /oF2(/0(r),r, h ) -  2/0Fi(/0(r), r)

Recall the equation of motion and the energy equation from previous chapter,

z = zF\ (z2, r) 
r = F2(z2, r , /i)

F  =  i ( r 2 +  i 2) +  F3(z2, r, /i), or

g = g(z , r, /i, E) = 2E -  2F3(z ,r,h)  = r 2 +  i  .

Then

rr +  iz  =  f F 2{z2, r, h) +  zzFi(z2, r), 

where z2 =  / ( r )  gives zz =  \ f ( r ) r ,  yielding

r r  +  zz = F2( /( r ) , r, /i) +  ^ / '( r ) F i ( / ( r ) ,  r) r,

I(r2 + z 2) =  J  |F 2( /( r ) , r, h) +  ^ / '( r ) F i ( / ( r ) ,  r) dr,

and so

^ ( /W >  F h,E)  = J  [ ^ ( / ( r ) ,  r, /i) +  ^ / '( r ) F i ( / ( r ) ,  r ) dr.

Then

or

, dg( f ( r ) , r ,h ,E)
9 =  dr =  2

dF3( f ( r ) , r , h) 
dr

F2( /( r ) , r, /i) +  ^ / '( r ) F i ( / ( r ) , r )

F2( /( r ) , r, /i) +  - / '( r ) F i ( / ( r ) ,  r)
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Also we have
g, =  dg(f(r), r,  h, E)  =  dg( f ( r ) , r , /i, F ) +  j , ^ d g ( f ( r ) ,  r, /i, F)

dr

Then,

dr

dg{f ( r ) , r , /i, F ) 
dr

dg{f ( r ) , r , h, F)
5 /

=  2 F2( /( r ) ,r ,  /i), 

=  F i( /( r ) ,r ) .

This gives

d2 g(f(r),  r , h , E)  = 2<9F2( / ( r ), r, /i)
d r d f d f

d 2 g{f(r) ,r,  h , F ) =  dF2( /( r ) ,r ,  ft) 
dr 2 dr

d 2 g{f (r ) , r , ft,F ) =  <9Fi(/(r),r)
a / 2 5 /

d 2 g(f{r),  r , ft, F ) & Fi(/(r), r)
d f d r dr

Then we have
„dF2 {f(r),r,  ft) _  9 F i( /( r ) ,r )  =  ^ dFi ( f (r) , r )

d f dr d f
dg( f {r ) , r , h , E)  d 2g( f  (r), r, h, E)

— — r —
d r d f d p

and
^  =  dF2 ( f ( r) , r , h)  = dF2 ( f {r) , r ,h)  | ^ , ^ d F 2 {f (r) , r ,h)

dr dr d f
=  ( / (P .*-) =  ^ ( / ( r ^ r )  + y , ^ 9Fi( /( r ) , r)

dr <9r a /
giving

„ _  <Pg(f (r) , r,h,E) _  d 2 g( f ( r ) , r , h , E)  , , dg( f ( r ) , r , h , E )
9 -  dr2 -  a r 2 + A 'r '

+
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The equality of (3.2) and (3.3) gives a linear differential equation of second 
order of the form,

/o[2F — 2F3( /0(r), r, h)]e” + fo[F2 (fo(r), r, h) +  ^/o-Fi(/o(r), r)]

-  / '[2 E  -  2Fs( /0(r), r, h)} +  5 / '[ / 'F 2( /0(r), r, h) -  2 /0F 1( /0(r), r)] 

+  j  fS[2E -  2F3(/o(r), r, ft)] +  \&F2 ( f 0 (r), r, h) -  2 /0F 1( /0(r), r)]

+  i ^ fo  +  /o) fo
, 9F2 ( f (r) , r,  h)

d f - 2 F 1( / o ( r ) , r ) - 2 / 0
5 F i( /( r ) ,r )

/o a / /o-

d[2E - 2 F 3 ( f (r),r,h)]  
2 joJo ) d f ■6 =  0 .

/o

This last equation can be written in the form

fo(r)g(fo{r),r,  ft,F )e" + \ fo(r)g' (fo(r),  r, ft, F ) -  fo(r)g(fQ{r), r, ft, F )

+ > ) 0 ) w , f AE) -  2/o(r)
dg( f ( r ) , r , h , E)

fo d f fo>

+ -  ( ^ 2W  +  /o W ) 

% ( /M ,r , f t ,F )1 ^ p ( / ( r ) , r , f t ,F )
2  * --------- -  2 /0(r)

/o a/ /o '

# ( /o W ,r ,f t ,F )  +  / 0(r)
d g( f ( r ) , r , h , E)

d f fo'
, t r  \ f t  r \ U n \ ( 1 tff ^dg( f ( r ) , r , h , E)  +  fo(r)g{fo{r),  r, ft, F ) I - / 0(r)---------—---------

+  (\ f o  M  +  foM )
/o

- 4
dg( f { r ) , r , h , E)

d f /o-l

•e =  0.

(3.4)

47



From the /-equation we have (since fo is a solution)

1 ( I  f f (v)d9 { f ( r ) , r , ft,F)
9 ( f o ( r ) , r , h , E ) \ 2  0 dr -  2/o (r)

dg(f(r) ,r ,h ,E)

fo d f fo

= ( | /o »  ~  /o(r)/o"(r))
( J /? ( r )  +  /o(r))

Since /o ^ M /^ /o M )  > 0, we can write,

n  , /o,2(r ) y
l / ^ W / |/o '2( r ) - /o ( r ) /o " ( r ) \  U +  4 /0( r ) }

......................  '  ~  ( i + * ! M )
 ̂ 4/o(r)

2 /oW V  i/o 2W  +  /oW dr y 4/o (r)

Now we are able to write equation (3.4) in the form

(l +  F M y
g' {fo{r) , r,h,E)  f ^ r )  4 /0(r)

c" +
2g(f 0 ( r ) , r , h , E)  f 0 (r) 2 fo'2 (r)]

[ 4 /0(r)

+ / « r ) / ( / 0W , r , ^ ) ( ( ^ « ( r W ( r ) ’r ’ ', ' £ )  -  ( ^ 2W  +  / 0W )

dg{f(r) ,r,  h , E )1 \ dg ( f ( r ) , r , h , E)
2  & ---- - 2 / 0(r)-

/o /o>

g{fo(r) , r , h,E)  + / 0(r)
dg(f{r),r,  ft, F )

+  fo{r)g(fo(r),  r, ft, E ) ( - / ' ( r )

d f
dg{f {r) , r , ft, F )

/o>

<9r /o

+  (T /^ (r ) + M r ))

- 4 dg( f ( r ) , r , ft, F )

d f
- 2 / o

d f
d 2g{ f ( r ) , r , h , E)

fo d f 2 fo

fo

e =  0.

(3.5)
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Multiplying equation (3.5) by the integrating factor

1 1  M ( l  +  t t S ) ’

where

<p(r) = m
( i + A ! w y
1 4/o(r)

[2 g f Q(r) 2  +  / „ »

4/o(r)

=  ^(ln( P2
) .

4 /o (r) ' ' u v ; r  ' 4 /0(r)
9  = g( fo( r ) , r , h,E)  = [2E -  2F3( /0,r, /*)] > 0 , (F  > F3( /0(r), r, h)),

the sum of the first two terms on the left of (3.5) can be written as an exact 
derivative, that is,

d _ ( (  9 {fo{r) , r ,h,E)  \  2 de \  /  g( f 0 (r),r,h,  E )

d r V W ) ( i +  dr /o W (l +  ^ r r ) 3

+

4 /0(r) 4 /0(r)

1 { ( \ f o ( r ) 9 ( f o ( r \ r , h , E ) - (  ^ f o{ r )  +  fo(r) )

dg( f { r ) , r , h , E)
fo(r)g( fo(r) , r ,h,E)

1 f/, , dg ( f { r ) , r , h , E)
2  * ----------

- 2 /o W
/o 9 / /O'

g( fo( r ) , r , h,E)  + / 0(r)
dg(f{r),r,  h , E )

d f

, r /  ̂ ^   ̂ L  ̂dg( f ( r ),r,h,  E )+  fo{r)g{fo{r), r , h , E )  \ - f 0 {r)---------—---------
/o

+ (j / f  M + AM)

- 4
dg(f(r) , r,  h , E )

d f
—  2 /o

d p

d 2g( f ( r ) , r , /i, -E)

/o 9 / 2 /o

fo

e =  0.

(3.6)
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Equation (3.6) can be written in the form

elr +  =  °> (3 '7 )

where ipi(r), ip(r) are functions of r such that

iP(r) = ipi (r)i/)2 (r),

where

with

9  = 9 {fo(r), r , h , E )  = [2E  -  2F3( /0(r), r, /i)] and 

, U r \  = ^
U  /o2W 52( /o W ,r , / . ,£ ) ’

with

HO =  ^ /< ? (O H /o (0 > r ,H £ )  -  ( j / (? W  +  /o (r))

(^fo{r)gi{fo(r), r, h) -  2 /0(r)p2( /o W ,r ) j j  ^ (/o (0 >  r, /i, E ) +  fo(r)g2 ( f 0 (r), r)

+  fo{r)g(fo{r), r , h , E )  ^ ( r ) p i ( / 0(r), r, /i)

r /o (0  “  2/oW )^(/oW >  0  -  4^2(/o(r), r)+  ( ^ / o 2 M  +  / o W )
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so that,

r * r \  u\ 1 d g( f { r ) , r ,h , E)  9i = 0 i(/o(r),r, h) =   ---------—---------
/o

92 = 9 2 {fo(r),r) = 

9s = 9s{fo(r),r) =

dg{ f{ r ) , r ,h , E)
d f

d29 ( f ( r ) , r , h , E )
fo

d f
fo

r t r \  i* \ 1 d2g ( f { r ) , r , h , E )94 =  p4(/o(r),r, h) =   ---------— ---------
/o

3.3 Examples
The purpose of this section is to give some examples of e-equation for our 
standard examples, the four electron atom problem with (without) constant 
magnetic field, four body gravitation problem and four ion problem.

3.3.1 Four electron atom  problem with constant mag­
netic field

First consider the four electron atom problem with constant magnetic field. 
We have,

Fi(/(r),r) =  4 2r +  4/(r) - 4  r +  /(r)

3 3

e 2(/(r), r,h) = ^  +  2r(2r2 +  4 /(r ))  +  ^  -  4 r ( r2 + / w )

g(f(r),  r , h , E )  = 2 E -  2 Fs(/(r) , r , h ) = 2 E - ^ - 2  ( 2  r2 +  4 /(r ))  ’ -  ^

+  8 r2 +  /(r )
B'V2„2
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Then the e-equation becomes

( i + m ,
g'{fo{r),T,h,E)  /o(r) 3 4 /0(r)

e" +
Zg(fo(r) , r ,h,E)  f 0(r) 2 /o '2(i-)n

1 4/o(r)
(3.8)

^(r )
+  fo(r)g2( M r ) , r , h , E ) 6

where

6(r) =  -  (^ /o2W +  /o W )

f /o (r).9i(/o(r). r, ft) -  2/o(r)52(/o(r), r) ) ) ( s ( / 0(r), r, ft, E ) +  f 0(r)g2(fo{r), r)

+  /oM s(/o(r), r , h , E )  ( /o(r)si(/0(r), r, ft) 

f ^ l r l + f n l r l )  I+  +  /o(r)) ( b / o ( r) -  2 /o(r))33( /0(r),r) -  402( /o(r),r)

so that,

g( fo(r ) , r ,h ,E)  = 2E  -  ^  -  2^2r2 +  4 /0(r)^ -  ^

52



f t ( \  U\ 1 dg{ f { r ) , r , h , E)  
9 i(fo(r ), r, h) =  ---------—---------

fo

= ^  + 2r (2r 2  + 4f 0 (r)) + ^  -  4 r ( r 2 + f 0 (r)

92(fo(r),r)
d g ( f ( r ) , r , h , E )

d f
= Fl ( f 0 {r),r)

fo

= 4[ 2r2 +  4 /0(r) ) - 4  r 2 +  / 0(r)

93{fo{r ) , r )  =
d 2 g( f ( r ) , r , h , E )

d p
dFi ( f ( r ) , r )

fo d f fo

= -2 4  2r2 +  4 /0(r) + 6  r 2 +  / 0(r)

By multiplying equation (3.8) by the integrating factor

V'i (r) =
2 E  -  ^  -  2 1 2r2 +  4 /0(r)J -  £  +  8 1 r 2 +  / 0(r)

/o( ^  4/o(r)'

I ^2 r 

“ T ’

S2r2
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where

r —
2 E  — §  — 21 2r2 + 4/o(r) I -  £  +  8( r2 + f 0 ( r )

B 2t 2

2E - g - 2 ( 2r2 +  4 /0(r)j -  i +  8 | r * +  /„(r)j -

(1 +
f l , ( r )  3 4/p(r) )
A W  2 g H r )  j

[ 4 /0(r)

2 £ - ^ - 2 ( 2 r 2 +  4 /0(r)) ’ -  £  +  8 ( r 2 +  / 0(r)

BV2

d r

B 2r 2

The sum of the first two terms on the left of (3.8) can be written as an exact 
derivative, that is,

d r

2 E - % - 2 ^2r2 +  4 /0(r)J -  £  +  8 ( r 2 +  / 0(r)

4/oM

B 2r 2 j

_ ! _ V —/ d r

+<
2 E - £ - 2 (2r2 +  4 /0(r)i ’ -  £  +  8 (r 2 +  / 0(r)j 

/„2( r ) ( l  +  ^ 3

n 2r 2 j 
4 \  2

4/o(r)'
6(r)

•e =  0

/o2 2 E - % -  2^2r2 +  4 /0(r) j  ’ -  £  +  8 U 2 +  / 0(r) B 2r 2
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K r ) =  f§ /o 2(r )

~ ( \ f o 2(r) + M r ) ) U ( r )

2 E - ^ - 2 ( 2 r 2 + 4 M r ) )  * -  ±  + s f r 2 + f 0(r)
B 2r 2'

^  +  2r^2r2 +  4 /0(r)j

- 4 r  r2 +  / 0(r)
B 2r

~  2/o (r)

3
2

5  - 2 ( 2 r 2 + 4 / o ( r ) ) 2 -  b + 8 ( r 2 + / o ( r )

4 | 2̂r2 +  4 /0(r)J -  4 ̂ r2 +  / 0(r) 

1 B 2 r 2 -

+  / 0W
14^2r2 + 4/0(r)J -  4^r2 + /o(r)J

_ 5

r/oW “  2/oW )  ̂“  24 ̂ 2r2 + 4/0(r)  ̂ + 6^r2 + / 0(r)

-  4[ 4(2r2+ 4/0(r) ] - 4 ( r 2 + / 0(r)

+  (^/o2W +  /oW)

3.3.2 Four electron atom  problem
Secondly consider the four electron atom problem without constant magnetic 
field. We have,

_  3 _  3

Fi {f {r ), r) = 4 ̂ 2r2 +  4 / ( r ) j  -  4 ^ r2 +  f ( r ) j  ,

3 3

F2 ( f (r) , r , h)  = ^  +  2r M2r2 +  4 /(r )  j +  -  4r ^ r2 +  / ( r )  j ,

<?(/(r), r , h , E )  = 2E -  2F3 (f (r) , r,  h ) = 2 E - ^ - 2 U r 2 +  4f ( r ) )  * -  ±

+  8 ( r 2 + f ( r ) )  \
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Then the e-equation becomes

9'(fo(r) ,r ,h,E) fh(r) 3 4}a(r)} 1
€" +

2g( fo(r) , r ,h,E)  f 0(r) 2 foa (r)
( 4/o(r)

(3.9)

K r )
+  fo(r)g2( f o ( r ) , r , h , E) C

where

Hr) =  ( j / o ’M sCfoW .r.fc,#) -  ( ^ f o ( r )  +  / 0(r))

f/oM ffif/oM .r, /i) -  2 /0fr)g2( /o (r ) ,r )b  (fl(/o(r),r, h , E )  + f 0{r)g2(}Q(r),r)

+  Mr)g(fo(r) ,  r , h , E )  lfo(r)gi(fa(r),  r, h) 

f?l r  1 +  Mr)) I+  ( j/o 2(r ) +  /oM ) r/oM  -  2/o(r))fl3(/o(r), r) -  4p2( /0(r), r)

Hence, we obtain

g( fo(r ) , r ,h ,E)  = 2 E - ' j ^  -  2 1 2r2 +  4 /0(r) j -  — +  8 ( r2 +  / 0(r)

1 <%K/(r),r,h,£) Pi(/oW,r, h) =  -
2 <9r

*■ « ' ) ) ■ ’ - s

=  F2(/o(r),r, h)
fo

3 , 3

= ^  + 2r (2r2 + 4* (r)) + 4^2 _ 4r (r2 + f ° ^ )

94( / , ( r ) 1r) =  W r >-r -* ’*> =  ^ lf /o W .r)
fod f

= 4^2r2 +  4/o(r) ) -  4( r2 +  / 0(r)
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9 s(fo(r),r) =
d 2 g{ f ( r ) , r , h , E)

d p
d Fi ( f ( r ) , r )

fo d f fo

=  -24 \ 2r 2 +  4/o(r) j  +  6 |r 2 +  f 0 (r) 

By multiplying equation (3.9) by the integrating factor

2 £ - ^ - 2 ( 2 r 2 +  4 /0(r) i  + 8  r 2 +  / 0(r)
^ i(r )  =

/o W ( l  +
t f ( r )  Y  
4/o(r)

where

2 E - Z - 2  2r2 +  4 /0(r) - i  +  8 r 2 +  / ,( r )

2E -  £§ -  2 (2 r2 +  4 /0(r) )  -  £  +  8 ( r 2 +  f 0 (r)

(1 +  y 
fo(r) 3 4/p(r)
/oM 2 /o'2(r)

1 4/o(r)

=  - f l l ndr

2 E - K - 2  2r2 +  4 /0(r) -  2L +  8 r 2 + /o(r)

f w f i  4- 
/ 0 W ^1 + 4 A W )
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The sum of the first two terms on the left of (3.9) can be written as an exact
derivative, that is,

2 £ - ^ - 2 l 2 r 2 +  4 /0( r ) l  -  J - +  8 r 2 + /o(r) I . j  .

dr dr
4/o (r)

2 E - £ - 2 ( 2 r 2 + 4f 0 (r)) * -  ±  + g ( r 2 + f 0 (r))  \ i

b(r)

/o |2-E ~  is  ~  2 | 2r2 +  4 /o (r)i ’ -  ±  +  s ( r 2 +  / 0(r)

•e =  0,

=  Q /o V ) 2 £  -  ^  -  2 (2 r2 +  4 /0(r))  ’ -  ^  +  8 ( r 2 +  / 0(r)

-  ( . \ f o( r ) +  /o M )( /o M J  +  2 r(2 r2 +  4 /„(r)) * +  T

3 ,

4 r ( r 2 +  / 0(r) -  2/o (r) 4 ( 2 r 2 +  4 /0(r) ) - 4 ( r 2 +  / 0(r)

(  2 E - ^ - 2  (2r 2 + 4 /0(r) j  ’ -  2 .  +  8 ( r 2 +  / 0(r)

+  fo(r) 4 ( 2 r 2 +  4 /0(r) ] -  4[ r 2 + / 0(r) +  (^/o2W  +  /oW )

r fo(r ) “  2 /oM ) f  -  24 ̂ 2r2 +  4f 0 (r)\  +  6 ^ r2 +  / 0(r)

-  4 4 2r2 +  4/o(r) -  4 r 2 +  f 0 (r)
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3.3.3 Four body gravitation problem
Consider the four body gravitation problem. We have,

F i( / ( r ) , r )  =  —4^2r2 +  4 /(r)^  ,

F2 {f{r) , r ,h)  = ^ - 2 r ^ 2 r 2 +  4 / ( r ) j  -  E ,

9 ( fo( r ) , r , h,E)  = 2 E - 2 F 3 ( f{r) , r ,h)  = 2E -  ^  + 2 \ 2 r 2 +  4 / ( r ) j  + ^ .

Then the e-equation becomes

e" +

a + f _ m y
^ Uo ( r ) , r , h , E)  f ^ r )  3 4 /0(r)
2g(f 0 ( r ) , r , h , E)  f 0 (r) 2 /o '2(r)>

1 4/o(r)
(3.10)

K r )
+  fo(r)g2 ( f o{r ) , r , h , E) €

where

b(r) = 0 ^ f o ( r ) g ( f o ( r ) , r , h , E ) - (  i/< ?(r) +  / 0( r ) )

yo( r)gi ( fo( r) , r , h) -  2/o(r)<?2(/o (r),r)J  j  ^ ( /o ( r ) , r ,  / i ,£ )  +  /o(r)ff2(/o (r),r)

+  fo(r)g(f 0 (r),r, h , £ )  ( f 0 (r)gi(f 0 (r), r, h)

4- f J r l l  I+  (j /o 2(0  +  /oM ) ( b / o ( r ) -  2/o(r))s3(/o(r),r) -  4p2( /0(r) ,r)

so that,

5 ( /o W > h , E ) =  2F  -  ^  +  2 ^2r2 +  4 /0(r)>j +
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n ( f  ( r \  r  M  — 1 (r), T, h, E  )gi{fo{r),r, h) -   --------- —-------- F2 (fo(r),r, h)
fo

= K - 2 r ( 2 r2 + 4f 0 (r))  - - t - ,

92(fo(r),r) =
dg(f(r),r,  h , E)

d f

=  —4^2r2 +  4/o(r) 

d 2 g{ f ( r ) , r , h , E)

4 r 2

=  ^i(/o(r)>r)
/o

a / :
3 F i ( / ( r ) , r )

9 / /o

=  24 l2r2 +  4 /0( r ) j  .

By multiplying equation (3.10) by the integrating factor

2 £ - £  +  2 (2 r2 +  4 /0(r))  '  +  £ ^ 1

M r ) =  I —

where

2E - S  +  a f 2r2 +  4/o(r) +  i

2 £ - g  +  2 l 2 r 2 +  4 /0(r)J + 4 .

/oW  3 l + 4/0( r ) M
fa i r )  2 /o'2( r ) .

1 4/o(r)

= £ lin

2 £ - £  +  2 l 2 r 2 +  4 /0( r ) l  +  £

, M /i , /0 (r)'\l 
/o (r)( 1 +  4 M o )
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The sum of the first two terms on the left of (3.10) can be written as an exact
derivative, that is,

d_
dr

2 £ - g  +  2( 2 r 2 +  4 /o (r)l

P( r ) ( l  I
/o( H + 4 /0(r)J

dr

+  •

2-B — ^  +  2 I 2r2 +  4 /0(r) I

t f { r )  ^  
4/o (r) )'

6(r)

/o2 2i? — +  2 1 2r2 +  4 /0(r) I +  £

>e =  0,

1

2 £ h2 J
~  “T +  2 12r2 +  4/o (r) +

^  -  2 r^2 r2 +  4 /0(r)

2r

1
4r2

-  2/o (r) - 4  2r2 +  4 /0(r)

2r2 +  4/o (r))  +  4 .

+ Mr)
3

- 4  2r2 +  4 /0(r) +  (j /o 2(r) +  /o(r))
 o

( ^ r /o(r ) ~  2/o M ) (^24^2r2 +  4/o(r)N) 'j -  4^ -  4^2r2 +  4 /0(r)
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3.3.4 Four ion problem
Consider the four ion problem. We have,

F i( / ( r ) , r )  =  —4^2r2 +  4 /(r)^  ,

F2(/(r),r,/» ) =  ^ - 2 r ^ 2 r 2 +  4 / ( r ) j  +

g ( f ( r ) , r , h , E)  = 2 E  - 2 F3 ( f ( r) , r , h)  = 2 E  -  ^  +  2^2r2 +  4 /(r )  j  -  

Then the e-equation becomes

e" +
g' {fo{r) , r ,h,E)  f!y(r) 3 *■ 4 /0( r ) '
2g( fo(r) , r , h,E)  f 0 (r) 2 / o V ) .

1 4/o(r)
(3.11)

K r )
+  fo(r)g2 ( f o{r ) , r , h , E) e

where

bir ) =  f  l f o ( r ) g ( f o { r ), r, h, E ) -  ( j /o 2(r) +  /o (r ) )n2 , v 4 . 

fo(r )9i ( fo(r) ,  r, /i) -  2 f 0(r)g2( fo ( r ) i r)  I ] I p ( /0(r), r, ft, E ) +  /o W ^ f/o W , r)

+  fo(r)g(fo{r), r , h , E )  \fo(r)gi{fo{r),  r, /i) 

1 4- fnfrU f+  ( ^ 2W  +  /oW ) r fo W  “  2/o(r))^3( /0(r), r) -  4^2(/o(r), r)

so that,

g(fo(r),r,  h , E )  = 2E — ^  + 2 ^2r 2 +  4 /0(r)^ -
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„  i f  r h\ -  l d9 ( f(r) , r ,  h , E ) = F2( /0(r),r, h)
fo

=  “ 3  _ 2 r ( 2 r 2  +  4 / o ( r ) )  +  ^ 2 -

92(fo(r),r) =
dg{f{r) , r , h ,£ )

P 3 ( /o W ,r )  =

d f

= —4^2r2 +  4/ 0 (r) 

d2g(f(r) , r ,  h , E )

F i( /0(r),r)
/o

a / :
9Fi ( f {r ) , r )

=  24 j 2r2 +  4 /0(r))

/o

By multiplying equation (3.11) by the integrating factor

/ 2.E — S  +  2 ( 2r2 +  4/o(r)) 2r  \  2

V>i(r) =

where

2 B - f J  +  2^2r2 +  4 /0(r)

2 £ - f |  +  2(2r2 +  4 /0(r)j

(1 + f A r ) y
fo(r) 3 4/p(r)
/oW  2 ^  +  / 0'2(r)^

2r

=  - f i m
dr

4/o(r)

2£, - ^  +  2(2r2 +  4 /0(r) 2r

, /o
/o(r)(1+® )
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The sum of the first two terms on the left of (3.11) can be written as an exact
derivative, that is,

d 2 E - ^ + 2 \ 2 r 2 + 4 f0(r)\

f ? M (  1 + l l M y
4/o (r) '

2r  \  2 de
dr

+  <
2 E - ^  + 2 \ 2 r 2 + 4 M r ) )  ’ -  £  N 1 ,

F72

b(r)

/o2 2E — ^  + 2 1 2r2 +  4/o(r) 2 r

>e =  0,

b(r ) =  (^ /o 2(r ) 2 E - ^  + 2 ( 2 r* + 4f 0 (r))  ’ -  1

-  (~:fo(r ) +  /o(r))( /o(r) ^ ■ - 2 r ( 2 r 2 +  4 /0(r))

-  2/o(r) — 4 ( 2r2 +  4 /0(r))

K
2 E -  —  +  2 2r2 +  4 /0(r)

+  M r ) - 4  2r2 + 4 / 0(r)

1
2 r

+ (jJ5?(r) + /o(r))
 b

r/o(r) ~  2/oM ) f  24 ̂  2r2 +  4 /0(r)^ >) - 4 / ' - 4 ( ' 2 r 2 +  4 /0(r)
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3.4 Local behaviour near and at r = 1 for the 
general e-equation

The aim of this section is to describe the solution’s behaviour near and at 
r  =  1 for the general e-equation. The /-equation can be written in the form

f "(r)  = F ( f ( r ) , r , h , E )

=  f (r )g(f( l ) ,  r, h, E) h’ "  ( k ™  +  / ( r ) )

dg{f ( r ) , r , h , E )
dr

— 2 /(r)
fo d f fo-

(3.12)
where

/(I) = 0,
5(1) =  5(0,1, h, E) = i / ' ( l ) F 2(0 ,1, h) = 4

d g( f ( r ) , r , h , E)
dr

= 2F2(0 ,1, h).
fo

Now when r — 1, the left hand side of (3.12) is / ;,(1). Although F  is not 
defined when r = 1, we need to know how F  behaves near and at 1. The value 
of the limit of F  is not obvious because both numerator and denominator 
approach 0 and 0/0 is not defined. From (3.12) using L’Hopital’s Rule we 
get the value of the limit when r = 1, which is

/"(i) = /'(i)
3F2(0 ,l,h )

4Fi(0,! ) - / ' ( ! ) dF2 ( f (r) , r ,h)

9F2 ( f (r) , r , h)
dr

d f

(0,1 ,/*)>

(0,1, h)

This is the same value we can obtain by take the derivatives with respect to 
t of the equation

22 =  / ( r )
We will develop the local behaviour of e(r) near and at r = 1, from equation 
(3.4), in the form

fo(r)g2 {fo(r), r, h, E  )e"(r) +  fo(r)g(f 0 (r), r, h, E  )a(r)e'(r) +  b(r)e(r) = 0,
(3.13)
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where

9  =  g ( f o { r ) , r , h , E )  =  [ 2 E  -  2 F 3 ( f 0 ( r ) ,  r, ft)], 

a(r) = ^/oW^(/oW.r, ft, £ )  -  f o { r ) g ( f 0 ( r ) , r ,  ft, E ) 

+  \ f o { r ) ( f o { r ) g i { f o { r ) , r ,  ft) -  2 /0(r)p2(/o (r),r)) , 

b(r ) = ^ /o 2{ r ) g { f o { r ) ,  r, ft, E ) -  ( ^ f o{r )  + / 0(r)) 

fc) -  2/o(rte(/oW.r) j j  ^(/oW >r,ft,£) + /o(r)p2(/o(r),r) 

+ f o { r ) g { f o { r ) ,  r , h , E )  |/J(r)3i(/0(r), r, ft)

1
+  ( ^ o 2 M  +  / o W ) ( ^ r /oW  -  2/o(r))#*(/o(r),r) -  4 p 2 ( / o W , r )

Now since / o ( l )  =  0, 6(1) =  0, we will study equation (3.13) at r = 1, which 
can be written in the form

Mr)g{r)e"(r)  =  (fo(r)g(r)a(r)e'(r) + 6 (r)e (r) j. (3.14)

Now when r = 1, assuming e " ( l )  is a finite, the left hand side of (3.14) is 0, 
but the right hand side of (3.14) is 0/0, since / o ( l )  =  0 and 6(1) =  0. Then 
we have to use L’Hopital’s Rule with the right hand side of (3.14) and we 
obtain

e,{1) =  _ / W ( i M i ) €(1) '

Also from (3.13) we get

fo(r )g2(r ) J~v '
e"(r ) =  ~  >2 ( fo(r)g(r)a(r)e'(r) +  6(r)e(r) ). (3.15)

Now when r = 1, assuming e"'(l) is a finite, the left hand side of (3.15) is 
e"(l), but the right hand side of (3.15) is 0/0, since /o(l) =  0, 6(1) =  0 and 
e'(l) =  — 6/( l)e (l)//o (l)g (l)a (l) . Then we have to use L’Hopital’s Rule with
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the right hand side of (3.15) and we obtain

f(ySf(l)ff(l)a(l) + 2/i(l)fl'(l)a(l) + 2/i(l)ff(l)a'(l) +  26 '(l))e '(l) +  6"( l)e ( l) !

2 f ? ( l ) g 2 (l) + 2 f!)(l)g(l )a(l )

Now when e(l) =  0, then e'(l) =  0 and e"(l) =  0 and when e(l) =  Si, then 
e'(l) =  ^4(l)<$i and en{l) =  £(l)<5i where <5i, A(  1) and B(  1) are non-zero 
constants, we see that e"(l) and e'(l) are linear dependent on e(l), where

9(l)  = \ m 9 i ( l )  = \ m F 2 (,0,hh),

a(l) =  =  j /o 2(l)S i(l) =  l / ? ( l ) f i ( 0 , 1 ,h),

6(1) =  0 ,
g'{l) = 231(1) +  f'0 {l)g2 {l) =  2F2(0 ,1, h) +  ^ ( l ) F . ( 0 ,1),

m  =  /o (lW (l)fl2(l) +  ^ 2(1)3(1V(1) -  /o2(l)s ( l)5 i( l)( l +  ^ ( l ) )

-  ^ 2(i)s(i) ^/o (1)51(1)+m m  - 2/0(1)32(1)!

-  | / o 2 ( l ) ( s ( l )  -  ^ ( l ) 3 i ( l ) ) ( 3 ' ( l )  +  / o( 1 ) 3 2 ( 1 ) )

+ / o (1)s (1) ( / o (1)3i (1) +  j / i?(1) ( 2 / 0 (1)0 3 (1) — 432(1))1 ,

4F i(0 ,1) -  / ' ( l )
dF2 ( f ( r ) , r , h) dF2 ( f {r ) , r , h) 

dr (0,1, h)
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b"( 1) = ^'2(1)S2(1) + /o(l)/o"(l)ff2(l) + 2/o(l)/o

+ 5/o2(i)9(i)5"(i) -  /o(i)/o (1)5(1)51 (i)(^/o(i) + iys(i) + 1)

-  2/'(l)ff(l)( |/" (l)  + l)(/^(l)Pi(l) + /o(l)</i(l) -  2/ 0(1)32(1))

-  ^ 2( i )9( i ) ( / r ( i )<?i ( i )+ + / o ( i K( i )  -  i m m

~  4/o(l)ff2(l))

+ 2 ( /'( l) /? ( l)3 ( l)^ 2(l)</(l) -  /'2(l)Pl(l)(l + i/o (l))

-  J/?(l)(/?(l)ft(l) + /o(l)3i(l) -  2/0(1)32(1))  ̂(3'(1) + ^(1)32(1)) 

^ (/o2( l) s ( l )  -  ^/o3( l)5i( l ) ) ( s " ( l)  +  /o (1)52(1) +  2/0(1)32(1))

(/o (l)ff(l) + 2/o(l)3,(l)) (/o(l)3i(l) + k 3(l)93(l) -  434(1))

+  2

+

+ /o ( l) ( l  +  |/o ( l) ) ( |/o ( l ) f f3 ( l )  -  434(1))

+  g/o2( i ) (  ( /? ( i)  -  3 /0(i ))fl»(i )+ -  432(1)) V

with

9 i(l) =  ^ 2(0 ,1, h), 
92(1) =  ^ i(0 ,1),
53(1 ) = ? W ( r ) , r )

d f

9i(i) =  r 2 (o.i.h), 
g'2 (l) = F[(0,l),  
m ^ Fl ( / ( r ) , r )

(0 ,1)

d f d r + m d 2 F l { m ’r)
(0,1) d p (0,1)

9n{ 1) — ^4(1) +  /o(l) (2 +  /o(l))^3(l) +  /o(1)<72(1)»
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f o (  1) = 15F | (0,1, h)

+ 18io -f? (0i 1> h)

16z20 F ^ 0 , l ) F ^ ( 0 , l , h )

9Fi ( f (r) , r )
dr

9 F i( /( r ) ,r )
+  36io F |(0 , l ,h)

(0 ,1) °J (0,1)

— 2 0 Zq Fi(0, 1) F |( 0 ,1, h)
dF2 ( f {r ) , r , /i)

dr (0,1 ,h)

+ 4 i i F 3 m , i » { e w l u -h) - 3 i o2F23(0,l,fc)

-  48io F i(0 ,1) F2(0 ,1, h)

(0,1, h ) /

dF2 ( f ( r ) , r , /i)

d2 F2 ( f (r) , r,  h) 
dr2

d f

+  18io F2(0 ,1, /i)
dF2 {f{r),r,  h)

<9r

(0,1,h)

dF2 { f ( r ) , r , /i)

(0,l,/i)

- 1 2 i $ F 22(O,l,/0

(0,1,/i)

d 2 F2 ( f ( r ) , r , /i)

- 1 2 i o6F2(0,l,/i)

(0,1,h ) /

d 2 F2 ( f ( r ) , r , /i)

d f d r (0,1 ,/i)

5 / 5 (0,1, h)>

Now consider equation (3.13) which can be written in the form

f o ( r )92(r)e"(r)  +  fo{r)g{r)a{r)e ' ( r )  +  6(r)e(r) =  0. (3.16)

Now, we shall take a Taylor expansion for /o (r) ,  g(r)  and a(r), 6(r) about 
r  = 1 and we will let u =  1 — r  in that expansion since we are interested in 
r  < 1. Suppose there exists a Taylor expansion for fo(r)  about r  =  1 in the 
form

/oM = E  -  i)"
n=0 n •
oo

1=

71 = 0

where u =  1 -  r, cn =  ( - l ) n/ 0(n)(l)/n !, c0 =  / 0(1) =  0, cx =  - /o ( l )  ±  0, 
since Zq ^  0, we see that the constant term of the Taylor series expansion for

(0,1, h)
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/o(r) about r = 1 is zero and the coefficient of the linear term is non-zero. 
Therefore

/  oo \  2
/o (r) =  ( £ c n « " )

\ n = 0 /
oo

=  E dn“"-
n=0

where d0 =  Co — d\ — 2c0ci =  0, d2 =  c\ =  /q2( 1) 7  ̂ 0. We see that 
the constant term and the coefficient of the linear term are zero and the 
coefficient of the quadratic term is non-zero for the Taylor series expansion 
for /o (r) about r = 1. Also a Taylor expansion for g(r) about r =  1 can be 
written in the form

3<r) = E  -1 )
71 = 0 n!

=  m nUn.
7 1 = 0

where m n = ( ~ l ) ng ^ ( l ) / n \ ,  m0 =  g ( l )  7  ̂ 0, m 1 = - g ' (  1) 7  ̂ 0, ra2 =  
g"(l)/2  7  ̂ 0. We see that the constant term of the Taylor series expansion 
for g{r)  about r  = 1, the coefficient of the linear term and the coefficient of 
the quadratic term are non-zero. Therefore

/ 00 \  2
9 2 ( r ) =  (  Y  m n U U I

\  7 1 = 0  /
OO

=  Y  Sn Un .
7 1 = 0

where so =  =  g 2{ 1), Si =  2momi =  —2g( l ) g ' ( l )  ^  0, S2 =  2m0ra2 -fra^ =
g ( l ) g"( l )  +  g,2( 1) 7  ̂ 0. We also have that the constant term of the Taylor 
series expansion for g 2(r)  about r  — 1, the coefficient of the linear term and 
the coefficient of the quadratic term are non-zero. A Taylor expansion for 
a(r) about r  — 1 can be written in the form

7 1 = 0  U- 
OO

=  Y  anuU-
71= 0
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where an =  (—l)nâ n̂ (l)/n!, a0 = a(l) ^ 0, ai = — a'(l) ^  0, a2 = a"(l )/2  ^
0. Again we see that the constant term of Taylor series expansion for a(r) 
about r =  1, the coefficient of the linear term and the coefficient of the 
quadratic term are non-zero. Also we can write the Taylor expansion for b(r) 
about r = 1 in the form

00 b ^ ( l )  
b(r) = E ^ T - ( r - i r

n = 0  n ' 

oo

= E  6»«n.
71=0

where bn =  ( - l ) n6(n)(l)/n!, b0 = b( 1) = 0, bi = —1/ ( 1 ) ^ 0 ,b2 = b”(l )/2  ^  0. 
We have that the constant term of Taylor series expansion for b(r) about 
r = 1 is zero and the coefficient of the linear term and the coefficient of the 
quadratic term are non-zero. Let

/oo \ / oo \ / oo \
P(u)  =  fo(r)g(r)a(r) =  I ^  cnun 11 m nun I I ]T  anun I

V 71=0 /  V 71=0 /  V 71=0 /
OO

= E
71=0

where P0  = Com0 a0 = 0, Pi = Cim0 a0  = -/o 2(l)#2(l)/2  ±  0, P2 =  Cim0ai + 
Cimiao + C2moao 7̂  0 , where the constant term is zero and the coefficient of 
the linear term and the coefficient of the quadratic term are non-zero. Let

R (u ) = fo(r )92 {r) =  (  £  (  £  snunN)
\  71=0 /  \  71=0 /
OO

= E
71=0

where R 0 = d 0 s 0 =  0, R i  =  d 0 S i  + dis0 = 0, R 2 =  d 2 s 0  =  /q2(1) 2̂(1) ^ 0, 
with the constant term and the coefficient of the linear term are zero and the 
coefficient of the quadratic term is non-zero. Let



where Q0 = b0 = 6(1) =  0, Qi = 61 = —1/(1) ±  0, Q2 = 62 = 6"(l)/2  ^  0. 
We see that the constant term is zero and the coefficient of the linear term 
and the coefficient of the quadratic term are non-zero. To solve equation
(3.16) which can be written in the form

R(u)e"(u) +  P(u)e'(u) +  Q(u)e(u) = 0. (3-17)

where R(u),  P(u ) and Q(u) have Taylor series expansion, we multiply all the 
coefficients of P(u)  by —1 since du/dr = — 1 and R (0) =  0. This means u = 
0, (r =  1) is a regular singular point of equation (3.17). The fact that u = 0 is 
a regular singular point of equation (3.17) means that uP(u) /R(u)  = up(u) 
and u 2 Q(u)/R(u)  = u 2 q(u) have finite limits as u —> 0, and are analytic 
at u =  0. Thus they have convergent power series expansions of the form 
up(u) =  pnun and u 2 q(u) =  Y0£=o QnUn • To see this divide equation
(3.17) by R(u)  and then multiply by u2, obtaining

u 2 e"(u) -I- u[up{u)^e'(u) + (u2 q(u)^e(u) = 0, (3.18)

or

Since

OO OO

u 2 e"(u) +  Y,PnUn)e'(u) +  ( QnUn)e(u) = 0.
n=0 n=0

uP(u) . . 2 V2' n= up(u) = p 0 + p i u + p 2u ~\------ = ^ Pnu ,
R [u ) 71 = 0

OO
U Q(u) o f \ 2 V—' <n

D/ x =  U q[u) = q0 +  qiU +  q2u H = \ q nu .
Ryu) 7 1 = 0

We have
uP(u)  1 

Po =  lim -  ■: =«-»o Ryu) 2

i. u 2 Q{u) 
q0 = hm x =  0.H «->o R(u)

Hence, for u near 0 we have, up(u) ~  po and u 2p(u) «  q$. Therefore it is 
reasonable to expect that the solutions to (3.18) will behave (for u near 0) 
like the solutions to the Cauchy-Euler equation. We thus have

u2 ~^P~ +PoU~ d ^  + q°6^  = °» (3.19)
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the Cauchy-Euler equation corresponding to equation (3.18). The general 
solution of the Cauchy-Euler equation (3.19) in any interval not containing 
the origin is determined by the roots Ai and A2 of the equation

x(A) =  A(A — 1) +  p0\  +  q0 = 0.

Thus Ai =  0 , A2 =  1/2, since the roots are real and different and A2 — Ai is 
not zero or positive integer, then

e(u) =  8 1  +  6 2 ^ ,  where <5i, 6 2  are constants, u > 0 .

To solve equation (3.18) we assume that there is a solution of the form

t(u) =  W(A,«) =  ]T  anux+n, (3.20)
7 1 = 0

where ao ^  0 , and we have written e = ^(A, u) to emphasize that depends
on A as well as on u. Then e'(u), e"(u) are given by

e'(u) = E  a n(A +  n)u
71= 0

A + 7 1  — 1

e”(u ) — E M A  +  n) ( \  + n — 1)u A + 7 1  — 2

71 = 0

By substitution the expressions for e(w), e'(u) and e"(u) in the equation (3.18) 
we obtain

E«n(A + n)(A + n -  l)ux+n + ( 2̂pnun\ f E an(̂  + n)uA + 7 1

71 = 0 71 = 0 71 = 0

+  ( E  I ( E  a nUX+U ) =  0.
V  71 = 0  /  V  7 1 = 0  /

Which can be written in the form

E
7 1 = 0

(A +  n)(A +  n -  l )an +  E ( A +  j ) a j P n - j  +  E  ^ Q n - ;
j = 0 j = 0

u A + 7 1  __ 0 ,
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or

a 0x(A)wA +  ]T
n=l

n—1
X(A +  n)an +  ^  ^(A +  j )pn-j  +  Qn-jJ«j uA+n =  0.

The last equation to be satisfied for all u, the coefficient of each power of u 
in the last equation must be zero. Since ao 7  ̂0, the coefficient of ux becomes

x(A) =  A(A — 1) +  PoA -f qo = A(A — 1) +  -  A =  0.

Note that it is exactly the polynomial equation we would obtain for the 
Euler equation (3.19) associated with equation (3.18). The roots are Ai =  0, 
A2 =  1/2, these values of A are called the exponents at the singularity for 
the regular singular point u — 0(r =  1). They determine the qualitative 
(nature) behavior of the solution (3.20) in the neighborhood of the singular 
point. Now let the coefficient of ux+n equal to zero. This gives the relation

Tl—l /
X ( A  +  n ) a n +  Y  

j = 0  \

The last equation shows that a n depends on the value of A and all of the 
preceding coefficients ao, c * i , a ^ - i ,  and the coefficients in the series for 
up(u) and u2q(u) provided that x(A +  n) 7  ̂ 0, n > 1. Then the last equation 
can be written in the form

Since these roots are real, different and do not differ by an integer, there 
exist two linearly independent solutions of equation (3.18) of the form

0 0

ei(u) =  1 +  ] T a n(0)un,
71=1

( OO 1
1 +  Y a n{Y)uU

71= 1  ^

(A + j ) P n - j  +  Q n - j  )&] = 0, n > 1. (3.21)

(A +  j )pn-j  +  qn-j  ]otj = 0 , n > 1.

74



where a n(0) and an{\) are given by relation (3.21) with ao — 1- 
Since equation (3.17) has the form

^ R 2 u 2 + R 3 u3 + 0(?z4)^ e"(u) +  ^ -  Piu -  P2 u2 — P3u3 +  0 (u 4)^ e'(u)

+  ^Qo T Qi u +  Q 2 +  Qs +  0 (‘it4)^ e(u) — 0 .

We could choose special case of the form

R 2 u 2 e"(u) +  (—Pi)ue'(u) +  (Q0 +  Qi uje(u) = 0.

or

2 /// N , (“ ^l) !( \ , (Oo +  Q\u) (  ̂u e (u ) H  — ue (w) H--------   e[u) =  0 .
R q r ?

or

where

u e"(u) +poue\u)  +  (q0  +  qxu ) e(u) = 0. (3.22)

Po =
i?2

00 = 0 ,

Q i
tfl =

R2

^ 2(1)P2(1) 2 ’

V{ 1)
^  ys2(i)P2( i ) ’

To solve equation (3.22) which special case of equation (3.18), we obtain from
the general relation (3.21) the special relation in the form

a n — 7\ i \7\ \ V\ > ^ — 1) (3.23)(A +  n)(A +  n -

where
Q i  fr'(i)

Qi = -ft =
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For each root Ai and A2 we use equation (3.23) to determine the coeficients 
<21, 0:2, ...on.... For Ai =  0, we obtain

Thus

Oil =

o 2 = 

013 =

n(n -  5) 

2q1a 0

K , n > 1

In general we get

Or) --

1 • 1
(2g1)2q0

( l - 2 ) ( l - 3 )
(2gi)3q 0

(1 • 2 * 3)(1 * 3 - 5) ' 

( - l ) " ( 29l )"a 0 , n > 1.
[1 • 3 • 5 • • • (2n -  l)]n!

Therefore, when ao =  1, one solution of equation (3.21) is 

/ n , , v2' ( - l ) n(2«i)"a0«n

This series converges for all u because

limn—► 00

&n+l'U'n+1

a nun
= lim

2 | qxu\
(2n +  l)(n  +  1)

=  0 .

Corresponding to the second root A =  A2 =  1/ 2 , we have

Or) — QlOln-1

Thus

01 =

0 2 =

03 —

n(n +  5) 

2q1a 0

n  >  1

1-3
(2gi)2o 0

( l-2 )(3 -5 )
(2gi)3o 0 

(1 • 2 • 3)(3 • 5 • 7) *
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In general we get

Oirt. —
(—1)"(2 qi)na 0

, n > 1.
[3 • 5 • 7 • • • (2n + l)]n!

Therefore, when ao =  1, another solution of equation (3.21) is

(—l)n(2q1)"a0 u’
e2 (u) ^ 1 + ^ 1 [1 . 3 . 5 . . . ( 2n +  l)]n!

Also this series converges for all u because

, u > 0

limn—i-oo
&n+1̂ n+1

OtnU1
= lim

2 qx\u\
n—oo (2 n  +  3 )(n  +  1)

=  0 .

Since the leading terms in the series solutions E\(u) and 6 2 {u) are u° and u s, 
respectively, it follows that the solutions are linearly independent. Hence the 
general solution of equation (3.21) in the form

e(u) = j3\6\(u) +  # 2̂ 2(w), where /?i, @ 2 are constants, u > 0 .

The above solution are recognised as Bessel functions and we have

e(u) = u* C \ J \  (2<7iU2 ) +  c 2J _ i ( 2 q i u 2 ) , u > 0

where

J±(2 qlU2 ) = 

J_i { 2 qiu2) =

nqiU:
— sin(2^iW2), u > 0

\ TiqiU'-
— cos(2^iW2)5 u > 0 .

Thus

e(u) =
yfW \

Ci sin(2g i\ /u ) +  C2 cos(2 qi \ /u) , u > 0 .

If we chose to keep some more terms in equation (3.17) we could consider 
the form



This equation is a Hypergeometric equation

w(  1 — w\e”(w) +  (c — -^-w) e'(w) — ^ e (tu ) — 0 , 
v J v P i  '  P i

where

iu =  Pi u,

p i _  1 
° R 2 2
3  A  «'(!) .
^  /o (l)s(l) 4Pl’

2ff'(l) f f ( l)

A  =

R* 5(1) my
Qi &'(1)
R 2 /o” ( 1 ) 5 2 ( 1 )  ’ 

and so has a solution of the form

e(w) = A 2 F1 (a, b; c; w) +  B  w l~c 2Fi(a — c +  1, b — c +  1; 2 — c; w/)

where 4̂ and B  being arbitrary constants and the constants a, b satisfy the 
equations

Aa =
bPi

3.5 Conclusion
In this chapter we have obtained the e-equation which characterises the linear 
stability of solutions of the /-equation and consequently provides informa­
tion about the stability of the periodic solutions of the many-body problems 
highlighted in earlier chapters. The e-equation is of second order with com­
plicated coefficients depending on /o, a known solution, and other known 
functions. We may express this equation in a particularly pleasing form 
where the leading terms are written (ipe')'. Given a series representation, 
suitably well behaved, for /o we have obtained a solution in series form and
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commented on its region of convergence. The complicated nature of the 
e-equation has led us to develop an approximate analytical solution in the 
region of r = 1, u = 0. This exact analytical solution can be cast in several 
forms all exhibiting the same basic behaviour. Two of these can be written 
in terms of familiar special functions, Bessel and Hyper geometric. In order 
to study and exhibit the generic behaviour of solution to the e-equation we 
must procede to a numerical solution of the equation for a particular system 
and specific /o. We do so in the next chapter for our now familiar set of 
illustrative examples.
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Chapter 4 

NUMERICAL APPROACH

4.1 Introduction
The e-equation as developed in Chapter 3, is best studied from a numerical 
point of view due to the lack of exact solutions to the /-equation. We will 
obtain numerical solutions of the e-equation for our now familiar standard 
problems; four body gravitational, four body ionic, four electron atom and 
four electron atom with magnetic field. In each of these cases we will use the 
solution of the /-equation corresponding to the four node periodic solution. 
We have chosen to use a fourth order Runge K utta scheme to solve the e- 
equation as this is both familiar and highly accurate. We do not use native 
Mathematica code to solve our differential equations due to the somewhat 
obscure behaviour of the e-equation at r = 1 (u = 0). We have chosen to solve 
for both the known solution of the /-equation, / o ,  and the sought solution 
of the e-equation simultaneously in order to avoid having to precompute and 
store a large amount of data for our numerical representation of /o. With this 
approach we also have the freedom to vary the step length associated with the 
Runge K utta method without having to ensure that it is an integer multiple 
of some datum step length associated with a precomputed representation of 
/ o -  We have to exercise some care in starting the numerical solution due to 
the nature of the e-equation and must compute the values of the coefficients of 
e and e' at r = 1 (u = 0). We have one algorithm to perform the calculations 
in the first instance and then the usual algorithm is used to handle the 
computation thereon. Note that the nature of the e-equation forces e and e' 
to be related at r = 1 (u = 0).
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4.2 The general e-equation
To study numerically the generic behaviour of solutions to the e-equation for 
our standard examples, we consider the general e-equation in the form

fo(r)g2(fo{r),r, h, E)e"(r) + fo(r)g(fo(r), r, h, E  )a(r)e'(r) + b(r)e(r) =  0,
(4.1)

where
9 =  9(fo(r), r , h , E )  = [2E  -  2F3( /0(r), r, /i)],

=  \fo{r)g'(fo{r),r,  h , E ) ~  fo{r)g(f0{r) ,r , h , E )

3 ,,+  7 /o M (/o M £ i(/o M ,r, h) -  2/0(r)52(/o(r),r)),4'
1
2 J \j \- / j  \ j  v \ -  / 1 ■ i ■ - 1 — / v 4 ■ 

fo{r)gi(fo(r), r, h) -  2f0{r)g2{f0(r), r) 1 I ( p (/0(r), r , h , E )  + fo{r)g2(f0{r), r)

K r ) = fo(r )g{ f0( r ) , r , h , E ) -  ( j f o ( r ) + f o ( r ) )

+  fo(r)g(fo(r), r , h , E )  ^ /o (r)# i(/0(r), r, h ) 

+  ( \ f o  M  +  /oW ) ( l r fo(r ) ~  2fo{r))g3{fo(r),r) -  4g2( f0(r),r)

/ dg( f ( r ) , r ,h ,E)
dr

/o
=  2 ^ i( /o ( r ) , r ,  h) +  i fo{r)g2( f o ( r ) , r ) \

as before. This gives

£ i(/o (r),r, h) =

92(fo(r),r) =

#3(/o (r ) ,r )  =

2

d g ( f ( r ) , r ,h ,E )

F2( /0(r) ,r , h ),
/o

d f
d2g{f{r),r,  h , E )

fo

d p

= F i(/o (r),r),

dFi(f (r) ,  r )

/o /o

As mentioned previously e(l) and e'(l) are linearly dependent and so we 
choose to solve for e(r), rm <  r  <  1, in the two cases e(l) =  1 and e"(l) =  0 
and e(l) =  0 and e"(l) =  1.
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4.3 The four body gravitational problem
In this section we consider the case of the four body gravitational problem. 
We have the general form of the e-equation (4.1) with,

g( fo{r) , r ,h ,E)  = 2E -  ^  +  2^2r2 +  4 /0(r)j +

9 i{fo(r),r,h)  =  ~  -  2r^2r2 +  4 /0(r)^ -

P2(/oW ,r) =  -4 ^ 2 r2 +  4 /0(r)^ ,

P3(/oW,r) =  24^2r2 +  4 /0(r)j .

The initial data for the four node solution of this system gives us 
/o (l) — —1.675076608 with /o(l) =  0 as usual and rmin = 0.219.

4.3.1 Case e(l) =  1 and e"(l) =  0
The numerical solution of the e-equation under these initial conditions is 
plotted below. Note that the solution is well behaved with no excessive 
growth.

e
1

0 . 8

0 . 6
0 .4
0 . 2

0 . 2
0 .4

Figure 4.1:the e-solution for the 4nbgp
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4 .3 .2  C ase e(l) =  0 and €"(1) =  1

Again note that after an initial period of rapid growth the solution settles 
down and remains very small.

e
- 61 . 5 * 1 0
- 61 . 2 5 - 1 0
- 61 - 1 0
- 7

- 75- 10
-72 . 5 - 1 0

r0 . 2  0 . 4  0 . 6 0 . 8 1

Figure 4.2:the e-solution for the 4nbgp

4.4 The four body ionic problem
We consider the case of the four body ionic problem. We have the general 
form of the e-equation (4.1) with,

ff(/oW» r, h, E ) = 2E -  ^  +  2 ^2r 2 +  4 /0(r) j

9 i(fo(r ), r, h) = ^ ~  2r(2r 2 +  4 /0(r)^ +

9 2 {fo{r),r) =  - 4 ^ 2 r 2 +  4 /0(r) j  ,

9 3 (fo(r),r) = 24^2r2 + 4 / 0(r)^ .

The initial data for the four node solution of this system gives us 
/ '( l )  =  —2.571113999 with /o(l) =  0 as usual and rmin = 0.866.
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4 .4 .1  C ase e(l) =  1 and e"(l) =  0

The numerical solution of the e-equation under these initial conditions is 
plotted below. Note that the solution is well behaved with no excessive 
growth.

0 . 9 5

0 . 8 5

Figure 4.3:the e-solution for the 4nbip

4.4.2 Case e(l) =  0 and e"(l) =  1
Again note that after an initial period of rapid growth the solution settles 
down and remains very small.

- 61 . 7 5 - 1 0
- 61 . 5 - 1 0
- 61 . 2 5 - 1 0
- 61 - 1 0
- 7*5- 1 0
- 7

2 . 5 - 1 0

Figure 4.4:the e-solution for the 4nbip
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4.5 The four electron atom problem
In this section we consider the case of the four electron atom problem. We 
have the general form of the e-equation (4.1) with,

g( fo(r) , r ,h ,E)  = 2 E  -  ^  -  2^2r 2  +  4 /0( r ) j  -  ^

+  8 ( r 2 +  /o (r)) \

3 3

9 i {h(r ) , r ,h)  = ^  +  2r ^2r2 +  4 /0( r ) j  +  ^  -  4r ^ r2 +  / 0( r ) j  ,

_  3 _  3

9 2 {fo(r), r) = 4 ^2r2 +  4 /0(r)^ -  4 ^ r2 +  / 0(r)^ ,

_  5 _  5

^ ( /o W .f )  =  —24^2r2 +  4 /o (r)j +  6 ^r2 +  fo(r)^j .

The initial data for the four node solution of this system gives us 
/ ' ( l )  =  —2.180573661 with /o(l) =  0 as usual and rmin = 0.171.

4.5.1 Case e(l) =  1 and e"(l) =  0
The numerical solution of the e-equation under these initial conditions is 
plotted below. Note that the solution is well behaved with no excessive 
growth.

0 . 7 5

0 . 2 5

- 0 . 2 5

- 0 . 7 5

Figure 4.5:the e-solution for the 4neap
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4 .5 .2  C ase e(l) — 0 and e"(l) =  1

Again note that after an initial period of rapid growth the solution settles 
down and remains very small.

1 . 7 5 - 1 0
1 . 5 - 1 0  

1 . 2 5 - 1 0
1-10

7 . 5 - 1 0  
5- 10

2 . 5 - 1 0

0 . 2  0 . 4  0 . 6  0

Figure 4.6 :the e-solution for the 4neap

4.6 The four electron atom with magnetic field 
problem

We consider the case of the four electron atom problem with constant mag­
netic field. We have the general form of the e-equation (4.1) with,

0 (/o(r), r , h , E )  = 2 E - ^  — 2 ^2r2 +  4f 0 (r)\  -

+  8 r 2 +  / 0(r)
B  r2 J2

4 ’

9 i(fo(r),r,h) = +  2r far 2 +  4f 0 (r)\  +  -  4r ( r 2 +  f 0 (r)
4 r 2

B 2r

9 2 {fo{r),r) =  4 \ 2 r 2 +  4 f 0 (r)j  - 4  \ r 2 + f 0 (r)j

9 3 (fo(r),r) = - 2 4 ( 2 r 2 + 4 /0(r))  +  6 ^r2 +  f 0 (r)

86



The initial data for the four node solution of this system gives us 
/ ' ( l )  =  —2.218274657 with /o(l) =  0 as usual and rmin = 0.157.

4.6.1 Case e(l) =  1 and e"(l) =  0
The numerical solution of the e-equation under these initial conditions is 
plotted below. Note that the solution is well behaved with no excessive 
growth.

e

0

0

-1

Figure 4.7:the e-solution for the 4neapB

4.6.2 Case e(l) =  0 and e"(l) =  1
Again note that after an initial period of rapid growth the solution settles 
down and remains very small.

e
- 62 - 1 0

- 61 . 5 - 1 0

- 61 - 1 0

- 75- 10

r0 . 2 0 . 4  0 . 6 0 . 8 1

Figure 4.8:the e-solution for the 4neapB
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4.7 Comparisons with approximate analytic 
solution

It is interesting to compare the approximate analytical solution, J ( u ), of 
Chapter 3 with the numerical solution e(u) as follows.
We have from the approximate analytical solution for the four node solution 
of the four body gravitional problem, b'{ 1) =  —1.388353518,
/ '( l )  =  -1.675076608, and g( 1) =  0.708600303, that gives

91 =  ~ / W ( i )  =  ° '985435153'

we also have
J(u) = cos(2qiy/u),

that gives J(0) =  1, J'(0) =  - 2 qj = -1.9421564, J"(0) =  0.
We have from the numerical solution for the four node solution of the four 
body gravitional problem, e(0) =  1, €'(0) =  —1.9708701, ^'(O) =  0.
The diagram of the comparison of numerical and approximate analytical so­
lutions of the e-solution for the four body gravitational problem is illustrated 
below

e
1

0 . 8

0 . 6

0 . 4
0 . 2

0 . 2

0 . 4

Figure 4.9:comparison of solutions of the e-solution for the 4nbgp

4.8 Conclusion
First let us emphasize that the Mathematica code used in the calculations 
illustrated herein is detailed in Chapter 6 . Many of the necessary calculations 
performed could only be easily done with access to software like Mathematica.



The subsequent manipulation of the data strings representing the solutions 
of the e-equation was again eased by use of Mathematica. Note that in all 
the cases above the general behaviour of the solution to the e-equation is well 
behaved. The comparison of numerical and approximate analytical solutions 
of the e-solution for the four body gravitational problem appears to be good.
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Chapter 5

New styles of Periodic 
Solutions and DTW-Periodic 
Solutions for new potentials

5.1 Introduction
In the process of studying the /-equation and the e-equation we began to 
comprehend that there could be other styles of periodic solution accessible 
by our standard methods. The papers of MR [49] and DTW [21], [22] were 
crucial in prompting our initial thoughts in this new direction. As often 
happens our attention had been brought, by I Stewart, to the recent work 
of Chenciner et al and we were pleased to note that while the DTW solu­
tions were considered by Chenciner our new structures were not. The planar 
periodic solutions of Chenciner and Montgomery [14] have a little more in 
common with our new style of periodic solution. The initial work of DTW 
concentrated on periodic solutions where each particle followed a path which 
was that of one particle subject to some fixed rotation. Other forms of so­
lution were accessible to this ansatz but essentially satisfied the description 
above. The new types of periodic solution fall into two categories; weav­
ing and chasing. The weaving periodic solutions are characterized by the 
particles moving towards each other in pairs and following one of two paths 
related by rotation and (or) reflection. The axial symmetry of the solutions 
is however preserved. The chasing periodic solutions are characterised by the 
particles pairwise chasing each other. Let us also note that the original DTW
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style of solutions can be obtained with a logarithmic pair potential replacing 
the Kepler/Coulomb potential. The papers of DTW [21], [22] and the book 
of Bradbury [4] were crucial in prompting our initial thoughts in this way by 
changing potential energy to obtain DTW-solutions. One interesting feature 
of the logarithmic solutions is the appearance of double points in the initial 
data space corresponding to specified nodal structures. We also have the 
appearance of periodic orbits with the same nodal structure but defferent 
winding numbers. In the work of DTW these were denotes by use of a no­
tation like "11/7", ie. 11 nodes with 7 revolutions required to complete the 
orbit. We also obtain the new style, weaving solution, with the logarithmic 
potential energy.

5.2 The new styles
In this section we will describe the algebra and symmetry that allows us 
to reduce a full system of equations to just those for essentially one body 
in the new styles of motion. The two main points to keep track of are 
the preservation of the axial symmetries and the non-collision of the bodies. 
In the weaving case the bodies are initially situated at the vertices of a 
regular polygon as in the case of the DTW periodic solutions. The bodies 
are then considered in adjacent pairs to move towards each other rotationally 
about a common axis but with opposing signs for their angular velocities and 
linear velocities orthogonal to the initial reference plane of the polygonal 
arrangement. It is not too difficult to envisage this style of motion for the 
four body problems but it is a bit more awkward in the case of the six 
body problems. In the chasing style, for the six body problem, the bodies 
are initially positioned on the coordinate axes each at the same distance 
from the center of mass (the origin). The positions of the bodies are related 
essentially by shifting the coordinates to the left or to the right by one place 
and possibly reflecting in the origin. This ensures that the configuration can 
never be planar. The full flavour of the algebra and symmetry is presented 
below.
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5.3 The algebra of Pi , P2 and P = P1P2 , Q = 
P 2P 1

5.3.1 Four electron case (2,2)
We shall start by studying the algebra of Pi , P2 and P , Q in the case of
(2 , 2)-electron atom problem where P  = Q. These are represented by

(0 1 0 ^ ( 0 -1 0 ^ (-1 0 0\

Pl = 1 0 0 , P2 = - 1  0 0 and P  = 0 - 1  0

0 - V v 0 0 - V U 0 l j

and Pi  = / ,  P22 = I, P 2 = / ,  detPi =  1, detP2 — 1, the eigenvalues of 
Pi, P2 and P  are — lw ith  algebraic multiplicity 2, 1, with corresponding
eigenvectors for Pi,

vi = (0 , 0 , 1), v2 =  ( - - ^ , - ^ = , 0),andu 3 =  ( ^ > ^ ’°) respectively,

with corresponding eigenvectors for P2 ,

vi = (0 , 0 , 1), v3 = (-J= ,-^= ,0),andu2 =  respectively.

with corresponding eigenvectors for P,

ui = (1, 0 , 0), u 2 =  (0 , 1, 0), and^3 =  (0 , 0 , 1) respectively.

Now applying Pi to the equation of motion of q x , to obtain the equation of 
motion of q 2 and then we will apply P2 to this equation to get the equation 
of motion of q 3 and by applying Pi to it to obtain the equation of motion of 
q4 and by applying P2 to last equation we will return to the first equation. 
Now, let qi =  (x,y,z) ,  then, q 2 =  Pxq x =  ( y , x , - z ) ,  and so q 3 =  P2q 2 =  
(—x, —y, z) and q4 =  P iq3 =  (—y, —x, —z). We choose two families, the first 
is up which is (1,3) and the second is down which is (2,4). Also we have 
1 2, 3 4 and 1 <=$■ 4, 2 <==$■ 3, also we get 1 <=$■ 3, 2 4.
Then, we shall solve the equation of motion of qi. The equation of motion
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of q i is
4

qi = k i(Oj ~  Oi)l0j -  Qil”3 “ 4qi|qi| 
i=2

4

-3

= h  

= h

= h

5Z(q? -oi)|q* -qil'
lj= 2

— 4qx|qi| -3

(0 2 -qi)|q 2 -q i | 3 + (q3-qi)|q3-qi| 3 + (q4 -  qi)|q4 -  qi| 3

- 4 q i |q i | - 3

(P, -  /JqxKPx -  / ) q i | -3 +  (P  -  P )q i|(P  -  7)qi| - 3

+  (P2 - / ) q 1|(P2 - / ) q 1|- 3 ~ 4 q i |q i | 3,

where k =  —1, with initial position q i(0) =  (2 , 0 , 0) and initial velocity 
Qi(0) =  (0, yo, Zo). Now, we want to know the coordinates of (Pi — I )qi with 
qi =  (x,y,z) .  Consider

0 2  -  qi = (-Pi - 1)qi
=  ( y - x , x - y ,  —2 z),

which gives

Consider

which gives

|(Pi — 7)q i |-3  =  { 2 ( x - y ) 2  + 4z2

q 3 -  q i =  (P -  7)qi
=  ( - 2 x , - 2 y , 0 ),

| ( P - / ) q i | - 3 =  I 4 ( x 2 + y2)

Consider

04 -  qi =  (P2 -  /)q i
=  ( ~ ( x  +  2/)» ~ ( x  +  2/)» ~ 2 z )i
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which gives

|(P2 -  7 )q i |-3 =  + y ) 2 + Az^j .

5.3.2 Six electron case (3,3)
We shall start by studying the algebra of Pi, P2 and P , Q in the case of 
(3, 3)-electron atom problem where P  ^  Q. These are represented by

H y/3
2 0\ / - I  0 0 ^

Pl = 2
1
2 0 , P2 = 0 1 0 and

I 0 0 V v 0 0 - v

1
\ / 3
2 0 ^

( *

v/3
2 0 \

P = ■J3 
2

1
2 0 , 0  = v /3

2
1
2 0

I 0 0 - 1/ V0 0 - 1/

and P 3 =  7, P |  =  7, P 2 =  / ,  Q2 =  7 , detPi =  1, detP2 =  1, de tP  =  1, 
detQ =  1. The eigenvalues of Pi are 1, — |  ±  the eigenvalues of P2 
is — 1 with algebraic multiplicity 2 , 1 and the eigenvalues of P  and Q are 
— 1 with algebraic multiplicity 2 , 1, with corresponding eigenvectors for P i,

vi =  (0 , 0 , 1), v2 = (-^= , -~ j=  i, 0), andu3 =  (-^= respectively,

and with corresponding eigenvectors for P2,

7/i =  ( 1 , 0 , 0 ) , u 2 =  (0 , 1, 0), and w3 =  (0 , 0 , 1) respectively.

with corresponding eigenvectors for P,

1 y/3 y/S 1
wi = ( -  , —  , 0 ), u 3 =  (0 , °, ! ) ,  and w2 = (— — , - ,  0) respectively.
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with corresponding eigenvectors for Q,

1 \/3  1 >/*
W° = ( 2 ’ — ’0 ) ’ =  (0 , 0 , 1), andu;i =  , 0) respectively.

Now applying Pi to the equation of motion of qi, to obtain the equation of 
motion of q2 and then we will apply Pi to the second equation to get the 
equation of motion of q3  and by applying P2 to the equation of motion of q3  to 
obtain the equation of motion of q4  and by applying Pi to fourth equation to 
get fifth equation and by applying Pi to fifth equation to obtain the equation 
of motion of q6 and by applying P2 to the sixth equation we will return to 
the first equation. Now, let qi =  (x , y , z ), then, q 2 =  P iq x =  (—\ x  —
V̂3 y/3
9 y ’ 9 x \y , z ) ,  and so q3 =  Pxqi =  ( - | x  +  ^  y , x - \ y ,  z) and q4 =v/3

P2Q3 =  ( \ x  -  Y  y, x  -  \y,  - z ) ,  q5 =  Pxq4 = { \ x + & y , y - x -  \y,  - z )  
and q 6 =  P iq 5 =  (—x,y,  —z). We choose two family the first is up which is

1

4,
2 6 , 3 5 and 1 5, 2 4, 3 6 . Then, we shall solve the
equation of motion of qi, The equation of motion qi is

(1,2, 3) and the second is down which is (4 ,5 ,6) suth that 1 ==$■ 2 ==^ 3 ==b 
and 4 =>  5 ==> 6 4 and 1 <=k>- 6 , 2 <=> 5, 3 4, also we get 1

Q Q Q

qi = “ Qil 3 “
3=2

’ 6
= h  E ( < ^ - q i ) l ^ - q i

lj= 2

1-3

1-3 6qi|qi| 3

(q2 -  qi) | 0 2  — qil 3 + (os -  qi)|qs — qil 3 + (q4 -  qi)|q4 -  qi 1-3

+ (qs -  qOlqs -  qil 3 + (qe -  qi)|qe -  qi 1-3 - 6 q i |q i |  3

=  h  (Pi -  / ) q i |(ft  -  / ) q i |-3 +  (P3 -  / )q i |(P 3 -  / ) q i |-3 

+  (P -  / ) q i |(P -  / ) q i | - 3 +  (<?- J)q,|(Q -  / (q i l ’ 3

+  (P2 - / ) q i |(P2 - / ) q i | - 6 q i |q i

where k = —1, with initial position qi(0) =  (2,0,0) and initial velocity 
qi(0) =  (0, y0, io). Now, we want to know the coordinates of (P* — /)q i with
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qi =  (x,y,z).  Consider

02 -  qi =  {Pi -  /)q i
. 3  73 73 3 ,

=  — — y , - z - x  — -  y .  0 ),v 2 2 2 2

which gives

| ( P i - / ) q i | - 3 =  ^ 3( x 2 + y2)J ,

also

qs -  qi = (Pi -  /)oi
3 73 73 3

— +  —  y , — — £ — — 2/, 0 ),V 2 2 2 2
which gives

|(P12 - / ) q i | - 3 =  ^3(i2 +  y2 ) j  .

Also

qi -  qi = (P -  /)qi
, i  73 73 3

= ^ 2 x - ^ z v ' ~ x - 2 v ' ~ 2z)'
which gives

| ( P - / ) q i |~3 =  x  +  V3 y ) 2 +  4z2^ ,

also

Os -  qi = (<3 -  /)qi
1 73 73 3

=  (—2 ~2~ ’ ~ 2  ~  2  ' z ”
which gives

\ ( Q - I ) q 1 \ ~ 3 = f ( x - V 3 y ) 2 + 4z2)  ,
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also

which gives

qe — Qi =  (P2 -  z)qi
=  (—2 a:, 0 , - 22;),

| ( P 2 - / ) q i | - 3 =  \ A { x 2 +  z 2 )

5.3.3 Six electron case (2,2, 2)
In this subsection we shall start by studing the algebra of Pi , P2 and P,
Q in the case of (2, 2, 2)-electron atom problem where P  =  
represented by

Q. These

/ - I  0 0 N /o 0 l \ /  0 0 - A

Pi = 0 - 1 0 ,p 2 = 1 0 0 and P  = - 1 0 0

v 0 0 - v 1° 1 oj 1 ° - 1 0 /

and Pj2 =  / ,  P |  =  / ,  P 6 =  I,  detPi =  —1. detP2 =  1, the eigenvalue of 
Pi is —1 with algebraic multiplicity 3, the eigenvalues of P2 are 1, —1/2 ±  
y/3i /2  and the eigenvalues of P  are —1, 1/2 ±  \/3  i / 2, with corresponding 
eigenvectors for Pi,

Vi = (1, 0 , 0), v2 = (0 , 1, 0), andu3 =  (0 , 0 , 1) respectively, 

and with corresponding eigenvectors for P2,

1 / ,  , ,s 1 ,  1 V 3 . 1 ,Ul =  ^ = (  1,1,1), U2 =  _ , ,  1) aad

=  - U - l / 2  +  V3i /2,us =  — l / z y/6 i/'Z, —  — z, 1) respectively.
V 3 2 2
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with corresponding eigenvectors for P,

1 . . 1 , 1  %/3 1 >/3
Ul =  7 5  ̂ "  “ 3 =  ~ ~ 2  *’ ~ 2  +  ~ 2 *’ ^ ’

1 , 1  -s/3 . 1
“2 _  V 3( - 2 +  T *’ _ 2

\/3  .
«, 1) respectively.

Now applying Pi to the equation of motion of qi, to obtain the equation 
of motion of q2 and then we will apply Pi to the first equation to get the 
equation of motion of q3 and by applying P2  to the equation of motion of q2  

to obtain the equation of motion of q4 and by applying Pi to third equation 
to get fifth equation and by applying P2 to fourth equation to obtain the 
equation of motion of q6 and by applying P2 to the fifth equation we will 
return to the first equation. Now, let qi =  (x, y, 2), then, q 2 =  P iq i =  
( - x ,  - y ,  - z ) ,  and so q3 =  P2qi =  (z ,x ,y)  and q4 =  Pjq3 =  ( - 2 , - x ,  - y ) ,  
qs =  P2q3 =  (y, z, x) and q6 =  Piqs =  (—y, —z, —x) and We choose two 
family the first is up which is (1,3,5) and the second is down which is (2 ,4 ,6)

r» O y-Plv a r  / l v  c  1 1 P2. O P2. er P2.suth that 1 
P2. A JY 6 P2.

2, 3 4, 5 6 and 1
P.  A ^ p .2, also we get 1 =4> 4, 2 3, 3

5 
6 , 4

1 and 
5 and2 ==> 4

P  P5 ==> 2, 6 ==$> 1. Then, we shall solve the equation of motion of qi, The 
equation of motion qi is 

6
1 - 3

3=2

S ( q j - q i ) | q j - q i l - 3

Lj=2
-6qi|qi| 3

= h (q2 -  qi)|q2 -  qil + (qs -  qi)|qs -  qi| + (q4 -  qi)|q4 -  qi 1 - 3

+ (qs -  qi)|qs -  qil + (qe ~ qi)|qe -  qi 1 - 3 -6qi|qi

=  h  (P1 -  7)q1|(P1 -  / ) q i | - 3 +  (P2 -  / ) q a|(P2 -  / ) q i | - 3 

+  (P  -  / ) q i |(P  -  / ) q i | - 3 +  (P | -  / ) q i |( P | -  / ) q i | - 3 

+  (P iP | -  /)q i |(P iP f  -  / ) q i | - 3 -  6q i |q i |- 3,
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where k = —1, with initial position q i(0) =  (2, 0 , 0) and initial velocity 
qi(0) =  (0, yo, Zq). N o w , we want to know the coordinates of (Pi — I )qi with 
qi =  (x,y,z) .  Consider

which gives

also

q 2 -  qi =  (Pi ~  J)q i
=  (—2a:, —2y, - 2z),

| (Pi -  J)q i| 3 =  ( Ax2 +  4y2 +  4z2

qs -  qi =  ( p 2 -  /)q i
=  ( z - x , x - y , y - z ) ,

which gives

|(P2 - / ) q i | - 3 =  ( 2 ( x 2 + y 2 + z 2 ) - 2 ( x(y  + z ) + y z ) )

also

q 4  -  q i  =  ( P  -  / ) q i

=  ( - ( x  +  z ) , - ( x  +  y), - ( y  +  2)),

which gives

|(P  -  I ) q i |-3 =  ^2 ( x 2 +  y2 +  22 ) +  2( x(y +  z) +  y z )

also

qs -  qi =  (P22 -  J)qi
=  ( y - x , 2 - y , x - 2),

which gives

|(P22 -  / )q i |-3 =  ^2( x2 +  y2 +  22 ) -  2 ( x(y +  2) +  y z )
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also
qe -  qi = {PiPi -  J)qi

=  { - ( x  +  y), - ( y  +  z ) , - ( x  +  2)),
which gives

|(P iP22 -  I ) q i |-3 =  ^2( x2 +  y2 +  22) +  2( x(y + z ) + y z ) ' j  .

5.4 Reduced system
5.4.1 Four electron case (2,2)
Having simplified the system we now have the equation of the motion for one 
of the 4-electrons case (2, 2), given by

x = k\ (y -  x) ^2(x -  y)2 +  4z 2̂  +  (-2 )x  ̂ 4(x2 +  y2)

— (x -f y) ( 2(x +  y)2 +  4z'd — 4x I x2 +  y2 +  22

y = ki ( x - y )  2(x -  y)2 +  422 ) +  (—2)y I 4(x2 +  y2)

— (x +  y) ( 2(x +  y)2 +  4z: -  Ay I x2 +  y2 +  z2

z = ki (~2)z  2(x -  y f  + Az2 ) + ( -2 ) z  [2(x + y f  +  4z‘

— 4z I x 2 +  y2 +  z2

Note that the energy equation is

E =  ^ ( i 2 +  y2 +  z2) +  ^ ( 2 ( x - ? / ) 2 +  4z2)  + \ ( 4 i ^  + V1)

+ - h ( x  + y f  + 4z2 j + a I x 2 + y2 + z2
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5.4.2 Six electron case (3,3)
Having simplified the system we now have the equation of the motion for one 
of the 6-electrons case (3,3), given by

x = k\ ( -  Sxj I 3(x2 + y 2) I -I- (—2x) ( 4(x2 +  z2)

-  ^ ( x  + V S y ) ( { x  +  V S y )2 + ±z2\ -  ^ ( x  -  V s y ) ( ( x  -  V S y ) 2 + 4z2

— 6x I x 2 +  y2 -1- z2

y = k i 3(x2 + y2) \  -  ^ { x  + V S y ) ( { x  + V S y )2 + 4z2

V s
+  ~y (x - V S y ) \ i x -  V S y )2 +  Az2 -  6y ( x 2 +  y2 +  z 2

z =  ki ( - 2 z) ( 4(x2 +  z 2) I -  (2z) (x + V S y )2 + 4z*

— (2z) ( (x -  V S y )2 +  4z “
3
2

— 6z I x2 +  y2 +  z2

Note that the energy equation is

E =  \ { x 2 +  y2 +  z 2) +  ^3(x2 +  y2)  ̂ +  ^  (x +  VSy)2 +  4 z 2)^

+  (x -  VS y)2 +  4z2) \  +  i  U ( x 2 +  2 2)Nj -  6 ( x 2 +  y2 +  22
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5 .4 .3  S ix  e lectron  case (2,2,2)

Having simplified the system we now have the equation of the motion for one 
of the 6-electrons case (2,2,2), given by

x  =  k\ ( — 2x) |^4(x2 +  y2 +  z 2) j  

+  ((-2 x ) + (y + z)) ^2(x2 +  y2 +  z2) -  2(x(y +  z) +  y z ) j  

+  ( ( —2x) -  (y +  z)) ^2 (x2 +  y2 +  z2) +  2 (x(y  +  2 ) +  yz) 

- 6 x ( x 2 +  y2 -I- z2̂  ,

y = k ( “  2y) |̂ 4(x2 +  y2 +  z2) J 

+  ((-2?/) +  (x +  2)) ^2(x2 +  y2 +  z2) -  2(x(y +  z) +  yz)^

+  ((-2 y ) -  (x +  2:)) ^2(a:2 +  y2 +  z2) +  2(x(y +  z) +  2/2) 

-6 y ^ :r2 +  y2 +  z2̂  ,

2 =  fci ( -  2z) ^4(x2 +  y2 +  z2) j  

4- ( (-2 z ) +  (x +  ?/)) ^2(x2 +  y2 +  z2) -  2(x(y +  z) +  yz) j  

+  ((—2z) -  (x +  y)) ^2(z2 +  y2 +  z2) +  2(x(y +  z) +  yz) 

-  6z f x 2 +  y2 +  z2>) .

3
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Note that the energy equation is 

E  =  i ( ± 2 +  y 2 +  z 2) +  i  ^4(x2 +  y 2 +  z 2)^j 

+  ^2(x2 +  y 2 +  z 2) -  2 ( x ( y  + z) + y z ^ j  

+  ( 2 ( x 2 +  y 2 +  z 2) +  2 ( x ( y  +  z) +  2/2 ) J

We are now in a position to show the new style, weaving style and chasing 
style of the new family of classical periodic solutions.

5.5 Numerical illustrations
5.5.1 The weaving solution of the four electron case

(2 , 2)

The weaving motion of (2, 2)-electron atom problem is characterized by the 
particles (2-polygon) moving towards each other in pairs and following one of 
two paths related by rotation and (or) reflection. The motion of the particle 
in the planar case is illustrated below.

-2-3 -1
-1

- 2

-3

Figure 5.1:the planar motion of the particle.
In the case of the weaving motion of the first style, the basic initial data 
for the problem is x(0) =  2, y(0) =  0, 2 (0) =  0, £(0) =  0, y(0) = yo =

x 2 + y2 + z2
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0.702824019, i(0) =  z0 =  0.844139019. the motion of one of the (2,2)-
electrons is illustrated below by plotting the (x, ?/)-projection and the (y , z)-
projection that is the figure eight, of the path.

y

0 . 7 5

0 . 2 5

-1
- 0 . 2 5

<r0.75

Figure 5.2:(x, y)-projection.

z

- 0 . 7 5 - 0 . 5 - 0 . 2 5

-1

Figure 5.3:(y, z)-projection.
The weaving motion of the second style, the basic initial data for the problem 
is x(0) =  2, y(0) =  0, z(0) =  0, x(0) =  0, y(0) =  y0 = 0.311175313, i(0) =  
Zq = 1.247172813. The motion of one of the (2 ,2)-electrons is illustrated
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below by plotting the (x , y)-projection and the (y , ^-projection of the path.

y

-l
- 0 . 5

-l

Figure 5.4: (:r, ^-projection.

Z

- 2

Figure 5.5:(y, 2)-projection.

5.5.2 The weaving solution of the six electron case (3,3)
The weaving motion of (3 ,3)-electron atom problem is characterized by the 
polygon moving towards each other in pairs and following one of two paths 
related by rotation and (or) reflection. In the case of weaving motion of 
the first style, the basic initial data for the problem is a:(0) =  2, y(0) =  
0, ^(0) =  0, i(0 ) =  0, y(0) = y0 = 1.052019592, i(0) =  &o = 0.970048096. 
The motion of one of the (3,3)-electrons is illustrated below by plotting the
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(x, ?/)-projection and the (y , ^-projection that is the figure eight but is very 
thin, of the path.

y

-l

- 0 . 5

-l

Figure 5.6: (x, ?/)-projection.

z

-1

-1

Figure 5.7:(?/, z)-projection.
The weaving motion of the second style, the basic initial data for the problem 
is s(0) =  2, y(0) =  0, *(0) =  0, ±(0) =  0, y{0) =  y0 = 0.497197979, i(0) =  
zq = 0.804782126. The motion of one of the (3 ,3)-electrons is illustrated
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below by plotting the (x, ?/)-projection and the (y, z)-projection of the path.

Y

0 . 7 5

- 0 . 2 5

- 0 . 7 5

Figure 5.8: (x, ^-projection.

z

- 0 . 7 5 - 0 . 5 - 0

-1

Figure 5.9: (y, z)-projection.

5.5.3 The chasing solution of the six electron case (2, 2,2)
The chasing motion of (2, 2 ,2)-electron atom problem are characterized by 
the particles pairwise chasing each other. In the case of chasing motion of the 
first style, the basic initial data for the problem is x(0) =  2, ?/(0) =  0, z(0) =
0, x(0) =  0, ?/(0) = y0 = 1.401844268, i(0) =  i 0 =  -0.477833459. the 
motion of one of the (2, 2, 2)-electrons is illustrated below by plotting the 
(x, 2/)-projection and the (?/, z )-projection that is the figure eight but is very 
thin, of the path.

107



Figure 5.10:(x, ?/)-projection.

z

- 0 . 2

- 0 . 6

Figure 5.11 :(y, z)-projcction.
The chasing motion of the second style, the basic initial data for the problem 
is x(0) =  2, 2/(0) -  0, z(0) =  0, x(0) =  0, y(0) = y0 = 0.82185, i(0) =  
Zo = 1.28288. The motion of one of the (2 ,2 ,2)-electrons is illustrated below 
by plotting the (x, ?/)-projection and the (y, z)-projection of an almost closed 
path.
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Figure 5.12: (z, ^-projection.

-i

Figure 5.13: (y, z)-projection.

The interesting feature of the chasing solution is the replacement of the 
value of the initial velocities, yo> to obtain the same periodic solution
with different view.

5.6 The logarithmic pair potential
The purpose of this section is to study the motion of particles with logarith­
mic potential energy, to obtain the DTW-periodic solutions.
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5.6.1 The one particle problem
Suppose two concentric cylindrical electrodes of radii a and b are maintained 
at potentials Va and as in figure 5.14. Suppose a charged particle with 
unit mass and with charge q is placed between these electrodes. Then, there 
will be a electric field between them so the force on the particle is

(j
F(r) = ----- , r = |r|, C  =  qK  is a constant,

r

where
K Va ~ Vb 

log(b/a)'
The constant K  can be positive or negative, depending on whether the inner 
electrode is at a higher or lower potential than the outer electrode. Therefore, 
the force is attraction toward the inner electrode if C > 0, periodic motion 
occur, or repulsion from inner electrode if C < 0, periodic motion does not 
occur.

Figure 5.14:the cylindrical electrodes. 
The equation of motion of the particle is in the form

This equation can not be solved in the same way as r  =  —f i r / r 3, since in the 
plannar case one could reduce the equation of motion to the Duffing equation
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which shows the orbit is still almost an ellipse, but it does not quite close on 
itself so one could obtain one node, two node, three node, or more. For more 
details see [4], [56]. So in physical space in the case bounded state we will 
have one node, two node, three node or more. Some examples of n-node

y

-0

- r

Figure 5.15:eight node.

y

A 5

-l

Figure 5.16:ten node.
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5.6.2 2n particle problem
In similar manner to chapter one, consider 2n particles (electrons, protons). 
The Hamiltonian H (q , p), H  : M12n — > M is defined by

2 n  ̂ 2n 2n

tf(q,p) = H 2 p  ̂+ /ĉ loglqi _2ria^ loglqil’
i= l i < j  i = l

where p* G M3, qi G M3, « =  1,2, ...,2n, and k , a  are constants. The
equations of motion reduce to

Qz =  X ^^i'f r _ - qZ|2 “  2nfc2 |-%- +  &3 (B  x  4 )  , i  =  1 ,2 ,...,2n.
7 = 1  i H j  H d  1 0 * 1

5.6.3 Four electron, four proton case with constant 
m agnetic field

Consider the motion of four electron, four proton problem with non-zero 
constant magnetic field. We have

x = 2x(2x2 +  2 y2 +  4 z2)~l +  2x(4x2 +  4 y2)~l — 4x(x2 +  y2 +  z2)_1 — By,

y = 2y(2x2 +  2 y2 +  4 z2)~l +  2y{4x2 +  4 y2)~l — 4 y(x2 +  y2 +  z2)-1 +  B x ,

z =  4z(2:r2 +  2 y2 +  4z2)-1 — 4z(a;2 +  ?/2 +  z2)-1 .

The energy equation is

E = i ( x 2+ ^ 2-|-i2) + i  log(2x2+22/2+4z2) + i  log(4x2+4i/2)—2 \og(x2+y2+z2).
£  Li ~r

The basic initial data for the problem is x(0) =  1, 2/(0) =  0, 2 (0) =  0, x(0) = 
0, ?/(0) =  2/0, i(0) =  zq. Four node solution for four electrons problem with 
non-zero magnetic field. Now let the initial velocity be as below

y0 =  0.158673861 and i 0 =  1.831370524 and B  = )-.
f

This gives the angular momentum h and the energy as

|h| =  0.158673861, E  =  h y l  +  i j )  + log 2 =  2.382694875.
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The motion of one of the electrons is illustrated below by plotting the (x, y)-
projection and the (y , ^-projection of the path.

y

-iv

Figure 5.17:(x, ?/)-projection.

z

Figure 5.18: (2/, z)-projection.
Some initial data for the four electron, four proton case with B  = 1/2, we 
illustrated above the four node.
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style Vo it)
4-node 0.158673861 1.831370524
5-node 0.190906250 1.872131347
6-node 0.203952693 1.891726220
7-node 0.211099884 1.903146057
10-node 0.087936096 1.766124514
13-node 0.173666409 1.849080684
13-node 0.207975264 1.898108780
13-node 0.400657620 1.775244976
14-node 0.183710828 1.862125924
22-node 0.175981587 1.851996894

5.6.4 Four electron, four proton case
Consider the motion of four electron, four proton problem without constant 
magnetic field. We have

x  = 2x(2x2 +  2y2 +  4z2)~l +  2x{4x2 +  4y2)~l -  4x(x2 + y2 + z2) ~ \

y = 2y{2x2 +  2 y2 +  4z2)~1 +  2y{4x2 +  4y2)~1 — 4 y(x2 +  y 2 +  z2)-1 ,

z = 4z(2x2 +  2 y2 +  4 z2)-1 — 4z(x2 +  y2 +  z2)-1.

The energy equation is

E  =  ^ (x 2+ ^ 2+ i 2) + i  \og(2x2+2y2+4z2)+-~: \og(4x2+4y2)—2\og(x2+y2+ z2).

The basic initial data for the problem is x(0) =  1, 2/(0) =  0, z(0) =  0, x(0) = 
0, ?/(0) =  yo, i(0) =  zq. Five node solution for four electrons problem with 
zero magnetic field. Now let the initial velocity be as below

2/o =  0.232491359 and zq = 1.737912948 and B  = 0.

This gives the angular momentum h and the energy as

|h| =  0.232491359, E  = \ { y l  + ig) +  log 2 =  2.230344004.
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The motion of one of the electrons is illustrated below by plotting the (x , y )-
projection and the (y , z)-projection of the path.

y

0 . 7 5

- 0 . 7 5 - 0 . 5

- 0 . 7 5

Figure 5.19: (re, ?/)-projection.

z

- 0 . 7 5 0 . 5 - 0 . 2 5 0 . 7 5

11

Figure 5.20:(y, z)-projection.
Some initial data for the four electron, proton problem with zero constant 
magnetic field, we illustrated above the five node.
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style Vo zo
2-node 1.179298267 1.006456761
5-node 0.232491359 1.737912948
7-node 0.383286960 1.642541768
9-node 0.517671389 1.561070041
11-node 0.139499899 1.810333983
12-node 0.308302908 1.688436452
13-node 0.184128906 1.77309125
14-node 0.129091780 1.820019069
15-node 0.771598659 1.390586697
16-node 0.453704842 1.600097593
17-node 0.123004394 1.825910703
23-node 0.203117381 1.758790886
25-node 0.133512571 1.815848282
28-node 0.207945839 1.755264923

5.6.5 Four ion case
Consider the motion of four ion problem. We have

x = —2x{2x2 +  2 y2 +  4 z2)~l +  2x(4x2 +  4 y2)~l — 4x(x2 +  y2 +  22)-1,

y = —2y(2x2 +  2y2 +  422)-1 +  2?/(4x2 +  4?/2)-1 -  4y(x2 +  y2 +  z2)-1 ,

2 =  —4z(2x2 +  2?/2-|-4z2)“1 — 4z{x2 + y2 + z2)~l .

The energy equation is

E  = +  V2 +  ^2) +  j  log(2x2 +  2y2 +  422) -  ilo g (4 x 2 +  4?/2).

The basic initial data for the problem is x(0) =  1, y{0) =  0, 2(0) =  0, x(0) =  
0, ?)(0) =  yo, i(0) =  Zq. Eight node solution for four ions problem. Now let 
the initial velocity be as below

y0 = 0.211174259 and i 0 =  1.002803401.

This gives the angular momentum h and the energy as

|h| =  0.211174259, E  = U y l  + zjj) =  0.525104614.
&
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The motion of one of the ions is illustrated below by plotting the (x,y)~
projection and the (y , z)-projection of the path.

y

- 0 . 5

- 0 . 5

Figure 5.21:(x, ^-projection.

z

- 0 . 2

' .75

Figure 5.22:(y, ^-projection.
Some initial data for the four ion problem, we illustrated above the eight 
node.
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style Vo zo
5-node 0.413409154 0.813180543
8-node 0.211174259 1.002803401
9-node 0.183620195 1.020070847
10-node 0.162762366 1.031704395
11-node 0.146349422 1.039961938
12-node 0.133057406 1.046055914
13-node 0.122050845 1.050692850
17-node 0.196361809 1.012350808
35-node 0.137199918 1.044214351

5.6.6 Four body attractive case
Consider the motion of four body attractive problem. We have

x = -2 x (2 x 2 +  2y2 +  4z2)~l -  2x(4x2 +  %2)-1 -  4x(x2 +  y2 +  z 2) ~ \

y = —2y(2x2 +  2y2 +  4z2)~l -  2y(4x2 +  4y2)~l -  4y(x2 +  y2 +  z2)-1, 

i  =  —4z(2x2 + 2y2 + 4z2)~l — 4z(x2 + y2 + z 2)~l .

The energy equation is

E  =  +  y2 +  z 2) +  ^ log(2x2 +  2y2 +  4z2) +  j  \og(4x2 -1- 4y2).
Z Z fr

The basic initial data for the problem is x(0) =  1, 2/(0) =  0, z(0) =  0, ±(0) =
0, ?/(0) =  t/o, i(0) =  Zq. 12 node solution for four body attractive problem
with two different figures respectively. Now let the initial velocity be as below

2/0 =  0.139931809 and i 0 =  1.012789841.

This gives the angular momentum h and the energy as

|h| =  0.139931809, E  = \ { y l  +  ig) +  log2 =  1.215809267.
£

y0 = 0.393976836 and i 0 =  1.044904945.

This gives the angular momentum h and the energy as

|h| =  0.393976836 =  , E  =  +  i j } )  +  log 2 =  1.316669226.
z
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The motion of one of the body attractive is illustrated below by plotting the
(x , ?/)-projection and the (?/, z)-projection of the path.

y

Figure 5.23:(x, ?/)-projection.

Z

Figure 5.24: (y, ^-projection.
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Figure 5.25:(x, ?/)-projection.

z

Figure 5.26:(y, ^-projection.
The basic initial data for the problem is a;(0) =  1, y(0) =  0, z(0) =  0, i:(0) =  
0, y(0) =  yo, i(0) =  zq. 16 node solution for four body attractive problem 
with two different figures respectively. Now let the initial velocity be as below

y0 = 0.032086053 and i 0 =  997224011.

This gives the angular momentum h and the energy as

|h| =  0.032086053, E  =  +  *0 ) +  loS 2 =  1.190889802.

yQ =  0.60338346 and i 0 =  1.035290507.
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This gives the angular momentum h and the energy as

|h| =  0.60338346, E  =  \{tf0 +  ig) +  log 2 =  1.411096197.

The motion of one of the body attractive is illustrated below by plotting the 
(x, ?/)-projection and the (y , ^-projection of the path.

y

-l

-l

Figure 5.27:(x, ?/)-projection.

y
/  /

I  /
/ o . o \

\  \
Figure 5.28:the central area.
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z

- 0 . 4

Figure 5.29: (y, z)-projection.

y

Figure 5.30: (x, ?/)-projection.
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Figure 5.31 :(y, 2:)-projection.
Some initial data for the four body attractive problem, we illustrated above 
the 12-node and 16-node.

style Vo zo
7-node 0.531675084 1.044383593
9-node 0.650978515 1.024878906
11-node 0.712176249 1.005303124
12-node 0.139931809 1.012789841
12-node 0.393976836 1.044904945
15-node 0.777265557 0.975371421
16-node 0.032086053 0.997224011
16-node 0.603383460 1.035290507
19-node 0.454659968 1.046983750
19-node 0.100687214 1.006611136

5.7 Similar style to the Weaving style with 
logarithmic potential energy

In similar manner the motion of (2, 2)-electron atom problem with loga­
rithmic potential energy, in the weaving motion, the basic initial data for 
the problem is x(0) =  2, y(0) =  0, z(0) =  0, i(0 ) =  0, y(0) = yo — 
1.004045317, i(0) = zq = 1.233972099. The motion of one of the (2,2)- 
electrons is illustrated below by plotting the (x, ?/)-projection and the (y, z)-
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projection that is the figure eight but is very thin, of the path.

y

-l

-l

Figure 5.32:(x, ?/)-projection.

-i

-i

- 1 . 5

Figure 5.33: (y, z)-projection.

5.8 Conclusion
In this chapter we have obtained new style of periodic solutions with inverse- 
square law that mean with potential energy in general form A;/|q* — | —
Qf/|q»|. The new types of periodic solution fall into two categories, weaving 
and chasing periodic solutions. The planar periodic solutions of CM [14] 
have a little more in common with our new style of periodic solution. We 
try to give approximate of new families of the 2n electron atom problem
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work as (n, n) where n is odd or even, the weaving periodic solutions are 
characterized by the n-polygon moving towards each other in pairs, such that 
every particle from the first polygon work with one particle from the second 
polygon in pairs. In general consider the n -polygon as particles move up 
and down in pairs. We also have obtained the DTW-periodic solutions with 
logarithmic potential energy and we could apply all the theory in chapters 
two and three and the numerical approch in chapter four to this system. We 
have also obtained the weaving style of the new style of the periodic solutions 
with the logarithmic potential energy. Unfortunately, we can not apply the 
/-equation for the new types of periodic solutions.

5.9 Further Research
One could continue to study the stability of the /-equation by considering 
non-linear stability criteria. A further avenue would be that of concentrating 
on the nature of /  and e at r = rm as opposed to r = 1. One could continue 
to solve the general e-equation with respect to /  insted of r. In some cases 
it might be appropriate to consider more general pure pair potentials, r n, for 
both positive and negative n. Of more Physical interest might be combination 
of pure pair potentials as in the clasical Lennard-Jones potential. In all of 
these cases one could seek characterisations of the generic periodic solutions 
asuming that such systemes admit interesting styles of solutions. One could 
continue the investegation to the potential in the form V(r) +  W(r)  and 
V(r)W{r).  For examples, n / r  +  k / r 2, n / r  +  fcilogr, r(logr) — r, (logr)2, 
and where could obtain a precessing ellipse and where could apply (not apply) 
the /-equation. One could continue to study the linear (nonlinear) staiblity 
of the new styles of periodic solutions, since we can not use the /-equation 
with that periodic solutions. With the harmonic potential one could try to 
show that any periodic solutions are obtain with any number of particles 
that always be one node and two node some of them provided figure eight.
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Chapter 6
MATHEMATICA CODE USED IN 
OBTAINING PERIODIC 
SOLUTIONS

Chapter 1

In sections 1.3.5, 1.3.6 and 1.3.7 of Chapter 1 we displayed some of the periodic 
solutions found by Davies, Truman and Williams in order to illustrate their basic 
nature. The system of equations to be solved in all cases is similar to that displayed 
below (those for the four body gravitational problem). The system below is a 
reduced system obtained after imposing the pseudo rotational symmetry on the 
motion. The full system would comprise twelve second order differential equations.

x"[ t1 = ~2x[t] {(4x[t]2 + 2 y \ t f  +  2 z l t f f 3'2 + (4  x [ t f  + 4

J " M  = -2y[t]((4x[t)2 + 2 y[t]2 + 2 z[t]2)~3'2 + (4  x[t]2 + 4y[f]2f 3/2)

z " M  = ~4z[ t ] / (4x[ t f  + 2 y [ t f  + 2 z [ t f ) ' 2

The initial data for the system is fixed except for the values of the initial velocities
in the y and z directions.

x [0] == 1 . 0 ,  y [0] =  0 . 0 ,  z [0] == 0 . 0 ,  
x ' [0] ==0, y ' [0] == adot, z ' [0] == gdot.

One of the early periodic solutions found, the four node solution, has the following 
values for the velocities.

adot = 0.333250244; 
gdot =0.8417836914;

To compute the known periodic orbits we use native Mathematica code and assign
the output to a named variable in order that we may manipulate it later for the
purposes of viewing.
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rsol= NDSolve[
{x* * [t] = -2 x[t] ( (2 x[t] A2+2y[t]A2+4z[t]*2)*(-3/2) +

(4x[t] A2 + 4y[t] A2) A (-3/2)), 
y * • [t] == -2y[tJ ( (2 x[t] *2+2y[t]A2+4z[t]*2)A (-3/2) +

(4 x[t] A 2 + 4 y [t] A2) A (-3/2))/ 
z ' * [t] ss -4 z[t] (2x[t] A2 + 2 y[t] A2 + 4z[t]A2) A (-3/2)# 
x[0] = 1.0, y[0] == 0.0, z[0] == 0.0, 
x ' [0] == 0.0, y ' [0] == adot, z ' [0] = gdot},
{x, y, z}, {t, 0, 13), MaxSteps -* 2000];

Given the interpolating function representation of the solution we can either view 
the solution in plane sections by using ParametricPlot or in plane projection by 
use of ParametricPlot3D. We have one of the archetypal illustrations below.

ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. rsol], 
{t, 0, 13}, Viewpoint -> {0, 0, 50},
Boxed -> False, Axes -> False, PlotPoints -> 2000]

- G r a p h i c s 3D
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Chapter 2

In Chapter 2 the f equation was derived and discussed in some detail. The con­
stants of the motion, angular momentum and energy, play a part in the statement of 
the f equation as do the functions F \,F 2  and F3 . Once again we display these 
constants and functions in the case of the four body gravitational problem.

h = adot;
energy =0.5 (adot adot + gdot gdot) - 1 / Sqrt [2] - 0.25;

Fone[f_, r_] ;= -4 / (4 f + 2 r A2) A (3 / 2) ;
Ftwo [f_, r_, h_] : =

-2r/(4f + 2r*2)*(3/2) -1/ (4rA2) + h A2 / r A3;
Fthree[f_, r_, h_] : = -1 / (4f + 2 r A2)A (l/2) - 

1 / (4 r) + h A2 / (2 r A2) ;
With everything stated and defined it would be simplest to employ NDSoIve again 
to compute the numerical solution of the f equation. This was the earliest way we 
used but it no longer works in the current version of Mathematica. One would 
assign the output of NDSoIve to a named variable and then display the computed 
function as desired. The original code is below.

f sol = NDSoIve [ (f [r] (f ' [r] f ' [r] / 2 - f [r] f * • [r])
(2 energy - 2 Fthree [f [r], r, h] ) = f [r]' (f ' [r] f ' [r] / 4 + 
f 03 ) (f ' O] Ftwo [f [r], r, h] - 2 f [r] Fone [f [r], r]), 

f [13 = (10) A (-20), f f [13 == 2 gdot gdot / Ftwo [0.0f 1.0, h] } , 
f, {r, 0.219, 1.0)3;

The only way to force the above code to return a solution is to set f(l) equal to a 
very negative power of 10. We will demonstrate the current robust method for 
computing solutions of the f equation in the next section.

Given our InterpolatingFunction representation for f we typically have the behav­
iour as displayed below.
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Plot[Evaluate[f[r] /. fsol],
{r, 0.219, 1.0}, Axe s Labe 1-* {"r", nf"}]

. f

0

- G r a p h i c s  -

It is natural to compare this coerced solution of the f equation and the analogous 
values from the raw system of the previous section. The agreement appears to be 
good

ParametricPlot [Evaluate [{Sqrt [x[t] A 2 + y[t] A2], z[t] A2} /. rsol], 
(t, 0, 1.62}, AxesLabel -* {"r", "z2"}]

0.5

0 . 2

0

- G r a p h i c s  -

although a better way to compare the solutions is to integrate the square of their 
difference. The first line below creates a function of r and the second line below 
extracts our computed f.
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af= Interpolation[Flatten[
Table[Evaluate[{Sqrt[y[t]A2 + x[t]A2], z[t]A2} /. rsol], 
{t, 0, 1.62, 0.01}], 1]];

df[x_] :» First[f[x] /. fsol];
The result of our comparison is quite acceptable.

NIntegrate[ (af[x] - df[x] ) (af[x] - df[x]), {x, 0.219, 1.0}]

3 .2 4 2 4 7  xlCT11

Chapter 4

The basic idea is to use a fourth order Runge Kutta scheme to compute the solution 
of the e equation for a given system and solution of the f equation. There are sev­
eral problems that arise almost immediately. First of all the f equation does not 
admit exact solutions except in the simplest of situations and so we must fall back 
on numerical representations of solutions of the f equation. Given that we must do 
this we can either compute particular solutions of the f equation in advance and 
store them to high accuracy and small mesh or we can enlarge the numerical 
scheme and compute the solution of the f equation alongside that of the e equation. 
We choose to do the latter. The second problem is one seen already in the raw 
naive code used to solve the f equation namely the bad behaviour of some coeffi­
cients at r equals 1. We avoid this particular problem by using two forms of the 
Runge Kutta scheme. One, with the limiting values of the coefficients calculated 
algebraically, is used initially and then the standard scheme is applied repeatedly 
as usual. We make great use of Mathematica to compute the coefficients in what 
follows.

Let us put the gory bits at the end of this section.
We begin by choosing one of the standard problems and one of the four node 
periodic solutions. The initial velocities, energy and functions F \ , F2  and F 3 are 
listed again for convenience.

adot = 0.333250244; 
gdot s 0.8417836914;

h st adot;
energy » 0.5 (adot adot + gdot gdot) - 1 / Sqrt [2] -0.25;
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Fone[f_, r_] : = -4 / (4 f + 2 r A2) A (3/2);
Ftwo[f_, r_, h_] : =

-2 r / (4f+ 2 r A2) A (3 / 2) - 1 / (4r*2) + h A2 / r A3;
Fthree[£_, r__, h_] -1/ (4£ + 2 r A2)*(l/2) -

1/ (4 r) + h A2 / (2 r A2) ;
The system of differential equations for f and e are rewritten in first order vector 
form with the four vector representing the derivative as shown below. Note that it 
is a little complicated.

ff[{r_, {f_, fp_, e_, ep_)}] : =
{fp# (fp2 (2 energy - 2 Fthree [f, r# h]) / 2 -

(fp2 / 4 + f) (fp Ftwo [f, r ,  h] - 2 f Fone [f , r])) /
(f (2 energy - 2 Fthree [f , r, h])) , ep,

- |ep ̂  ( Ftwo [f# r# h] + 1 / 2 fp Fone[f# r] ) -
fp (2 energy - 2 Fthree [f # r, h]) +
—  (fp2Ftwo[f, t , h] - 2ffpFone[f, r]) jj +

© ((fp2 (2 energy - 2 Fthree [f # r# h]) / 2 -
(fp2 / 4 + f) (fp Ftwo [f, r, h] - 2 f Fone [f, r]))

((2 energy - 2 Fthree [f, r, h]) + f Fone [f, r]) /
(f (2 energy - 2 Fthree [f, r, h])) +

(fp Ftwo [f, r, h] + (fp2 / 4 + f)
((r fp / 2 - 2 f) Fone(1'0> [f, r] -4Fone[f, r])))j J  

(f (2 energy - 2 Fthree [f, r, h]) ) }
The standard Runge Kutta scheme is implemented in the form below where we 
have made as much use of lists as possible. We have not bothered to compile these 
bits of code as they are not too demanding on current machines.

RungeKuttaFourC [ { f_f h_f p0_}] := Module [ (npl, kl, k2, k3, k4), 
kl = f[pOJ;
k2 s f [pO + {h/2, hkl/2}];
k3 = f [pO + (h/2# h k2 / 2} ] ;
k4 = f [pO + {h, h k3 } ] ;
npl =p0 + {h, h (kl + 2k2 + 2k3 +k4) /6};
{f# h , npl}]

The initial Runge Kutta scheme differs only in that we have explicitly calculated 
the required value of / " ( l )  and left it in terms of the partial derivatives of 
F \ , F2 and F 3.
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RungeKuttaFourCInitial[{f h _ ,  pO_}] :=
Module [{npl, kl, k2, k3, k4},

r Xkl = {2 gdot gdot /Ftwo[0.0, 1.0, h], -----------------3Ftwo[0, 1, adot]3 
(2 (4 gdot2 Fone[0, 1] Ftwo[0, 1, adot] - gdot2 Ftwo[0, 1, adot] 

Ftwo<0'1,0) [0, 1, adot] - 2 gdot* Ftwo<1,0'0) [0, 1, adot])) , 
epsilonprimeO, epsilondoubleprimeO ];
k2 = f [pO + {h/2, hkl/2}]; 
k3 s f[p0+ {h/2, hk2 / 2} ] ; 

k4 = £ [pO + {h, h k3 } ] ;
npl = pO + {h, h (kl + 2 k2 + 2 k3 + k4) / 6} ;

{£, h, npl}]
The preceding code is almost all we require to solve for f and e but we have to 
check on the values of the coefficients of e and e'to ensure that we have the correct 
dependence ( or lack of it ) between e, e'and e"at r equals 1. We simply have to 
extract the coefficients and substitute for several known quantities. This results in 
the numerical values for the coefficients of e and e'represented below as ncO and 
ncl.

cl = f [r] (Ftwo [f [r] , r, h] + 1 / 2 f' [r] Fone [f [r] , r]) - 
f' [r] (2 energy - 2 Fthree [f [r] , r, h]) +
—  f' [r] ( f' [r] Ftwo[f [r] , r, h] -2f[r] Fone [f [r] , r]) ; 4

% /. r->l;

% / . h -* adot;

% / .  f [1] -♦ 0;

% /. f * [1] 2 gdot gdot / Ftwo [0, 1, h] ;

ncl = %

- 0 . 5 9 3 4 7 9

cO * f" [r] ( (2 energy - 2 Fthree [f [r], r, h]) + f [r] Fone [f [r], r]) + 
f'[r] Ftwo[f[r], r, h] -
(£ '[r] f '[r] + 4 f [r]) Fone[f[r], r] + (f * [r] f * [r] /4 +f[r])
(f'[r] Ftwo(1'°'0) [f [r], r, h] -2f[r] Fone(1'0) [£[r], r]) ;
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% /. h -* adot;

% /. r -> 1;

% /. f[1] -♦ 0;

& /. f ' [1] -+ 2 gdot gdot / Ftwo [0, 1, h] ;

Q/ / . f "  [1] -♦ -------- ---- ----3 Ftwo [ 0 , 1, adot ]
(2 (4 gdot2 Fone[0, 1] Ftwo[0, 1, adot] - gdot2 Ftwo[0, 1, adot] 

Ftwo*0'1'0* [0, 1, adot] - 2 gdot4 Ftwo*1'0,0* [0, 1, adot]));

ncO = %

1 . 1 6 9 6 7

Note the slightly messy form of /" (l)  shown above. This was obtained by repeated 
differentiation of z2 = fir), a tedious task which was eased and certified by Mathe­
matica. Given the values of ncO and ncl we can tie the initial values of e and 
e'together in the correct way and set up an initial data string for the Runge Kutta 
scheme. Note that we employ RungeKuttaFourlnitial just the once and then fall 
back on the standard scheme. The first case.

epsilonO = 1.0; 
epsilondoubleprimeO =0.0; 
epsilonprimeO = - ncO epsilonO / ncl;

dataO = {1.0,
{0.0, 2 gdot gdot / Ftwo[0.0, 1.0, h] , epsilonO, epsilonprimeO}}

{ 1 . ,  { 0 . ,  - 1 . 6 7 5 0 8 ,  1 . ,  1 . 9 7 0 8 7 } }

We begin our illustration below with a calculation of f and e on [0.1,1.0].

RungeKuttaFourCInitial {{££, -0.001, dataO}]

{ f f ,  - 0 . 0 0 1 ,  { 0 . 9 9 9 ,  { 0 .0 0 1 6 4 1 4 8 ,  - 1 . 6 7 2 6 9 ,  0 . 9 9 8 0 2 7 ,  2 .0 0 3 9 2 } } }

pts = NestList[RungeKuttaFourC, % , 890} ;
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The raw data is stored as a list for future use even though it is quite bulky. We 
would only write out the data if it took a considerable time to compute. We extract 
the (r,e) and (r,f) data pairs by a gratuitous use of list manipulation and after 
prepending the requisite initial data point we can display the results.

plotptsepsa Transpose[Drop[
Drop[Transpose[Map[Flatten[Last[#]] &, pts]], -1], {2, 3}]];

plotptsf=
Transpose[Drop[Transpose[Map[Flatten[Last[#]] &, pts]], -3]];

plotpts = Prepend[plotptsf, {1.0, 0.0}];

ListPlot[plotpts. PlotJoined -♦ True,
PlotRange -*■ { {0.2 , 1.0}, {0.0, 0.68} } , AxesLabel -* {"r", "f"}]

f

r
0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9

- G r a p h i c s  -

The above is a plot of f against r and below is a plot of e against r.

plotpts = Prepend[plotptseps, {1.0, epsilonO}];
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ListPlot[Drop[plotpts, -140], Plot Joined-* True, 
PlotRange -» {{0.0, 1.0), {-0.5, 1.0}}, 
AxesOrigin -* {0, 0}, AxesLabel -> {"r", '€"}]

€

- 0 . 2

- 0 . 4

- G r a p h i c s  -

The second case.

epsilonO = 0.0; 
epsilondoubleprimeO =1.0; 
epsilonprimeO = -ncO epsilonO / ncl;

dataO = {1.0,
{0.0, 2 gdot gdot /Ftwo[0.0, 1.0, h], epsilonO, epsilonprimeO}}

{ 1 . ,  { 0 . ,  - 1 . 6 7 5 0 8 ,  0 . ,  0 . } }

RungeKuttaFourCXnitial[{££, -0.001, dataO}]

{ f f ,  - 0 . 0 0 1 ,
{ 0 .9 9 9 ,  { 0 . 0 0 1 6 4 1 4 8 ,  - 1 . 6 7 2 6 9 ,  1 . 1 9 5 1 8 x 10 ‘7 , - 0 . 0 0 0 0 4 8 9 0 4 4 } } }

pts = NestList[RungeKuttaFourC, % , 750];

plotptseps = Transpose[Drop[
Drop[Transpose[Nap[Flatten[Last[#]] &, pts]], -1], {2, 3}]];
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plotptsf —
Transpose [Drop [Transpose [Map [Flatten [Last [#]] &, pts]], -3]]; 

Another plot below is for e against r.

plotpts= Prepend[plotptseps, {1.0, epsilonO}];

ListPlot[plotpts. PlotJoined-» True, 
PlotRange -* {{0.0, 1.0], {0.0, 0.000001615}}, 
AxesOrigin -* {0, 0}, AxesLabel-» {"r", "e"}]

6

-61 .5 x 1 0
-61 .2 5 x 1 0
-61x10
- 77 . 5 x 1 0

5x10
- 72 . 5 x 1 0

r0 . 40 . 2 0 . 6 0 . 8 1

- G r a p h i c s  -

It must be emphasised that the manipulative power of Mathematica was most 
useful in calculating the coefficients employed above especially in their limiting 
cases. We have embedded the relevant cells below but do not list them in their 
open form herein.

■ Limiting value of f11 at r=1 ( general form)

■ Limiting value of fm at r=1 ( general form )

■ Epsilon Equation Coefficients

136



Chapter 5

In this chapter we are concerned with obtaining new periodic solutions of our 
standard systems and periodic solutions of some new systems. As a starting point 
we sought planar solutions of a system with new symmetry. These solutions were 
illustrated in a very simple manner and the raw code has already been mentioned in 
an earlier section.

We start the motion off from a point with zero velocity and by doing so are able to 
characterise the motion by means of a critical angle, tho.

tho = N[7r/ 4.68] ;
We resort to using the native code to construct an interpolating function and assign 
the output to a named variable as before.

NDSoIve[
{x*'[t] == (x[t] -y[t])/(2 (x[t] -y[t])2 + 4z[t]2)3/2 +

(x[t] + y[t]) / (2 (x[t] + y [t])2 + 4 z [t]2)3/2 +
2 x [t] / (4 x [t]2 + 4 y [t]2)3/2 - 4x[t]/(x[t]2 + y [t]2 + z[t]2)3/2, 

y 11 ft] == (y[t] -x[t]) / (2 (x[t] -y[t])2 + 4 z[t]2)3/2 +
(x[t] + y[t]) / (2 (x[t] + y[t])2 + 4 z[t]2)3/2 +
2y[t]/(4 x [t]2 + 4 y [t]2)3/2 - 4y[t]/(x[t32 + y [t]2 + z [t]2 )3/2, 

z • ■ [t] ==2 z[t] / (2 (x[t] -y[t])2 + 4 z[t]2)3/2 +
2z[t]/ (2 (xft] +y[t] )2 + 4 z[t]2)3/2 -
4 z[t] / (x[t]2+y[t]a + z[t]2)3/2, 

x[0] =- 2 Cos [tho] , y [0] = = 2 Sin [tho], z [0] == 0.0, 
x ' [0] ==0.0, y ’ [0] ==0.0, z * [0]== 0.0 } ,
{x, y, z), {t, 0, 4}, MaocSteps -> 5000 ]

We see the oscillatory nature of the motion for one particle in the diagram below.
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ParametricPlot[Evaluate[{x[t], y[t]} /. rsol], 
{t, 0, 4), PlotPoints -* 2000,
PlotRange -* {{-3, 3}, {-3, 3}}, AspectRatio 1]

-3 -2 -1

-1

- 2

-3

- G r a p h i c s  -

When we have to search for more involved periodic solutions we have initially 
mimiced the methods of Davies et al.

The basic idea is to numerically solve the reduced equations of motion and then at 
an appropriate time stop the solution and compare the position and velocity with 
the target position and velocity. Sometimes, searching for a multi-node solution for 
example, the target position and velocity will be related to the initial position and 
velocity by some fixed rotation with a possible additional reflection for the veloc­
ity. In some situations, however, the target position and velocity are just the initial 
position and velocity.

We take advantage of the native Mathematica code to find an approximate solution 
to the problem in hand and then use the more accurate Runge Kutta scheme to find 
a more accurate solution. After interpolating against the chosen coordinate, usually 
z (in this section y), we compute the six dimensional distance between the final 
position and velocity and the target position and velocity.

We start as always with some initial velocity data just in order to test some of the 
code as we proceed.
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adot a 0.55; 
gdot * 0.6;

The module nsol is used to construct a rough and ready solution to our problem. 
The bonus, however, is that it returns an interpolating function and so we can 
readily solve implicit equalities involving the solution.

nsol[adot_, gdot_] : = NDSoIve[
{x"[t] aa (x[t] - y[t]) / (2 (x[t] - y[t])J + 4 z[t]J)3/2 +

(x[t] + y [t]) J  (2 (x[t] + y[t])2 +4 z[t]2)3/2 +
2x[t] / (4 x[t]2 + 4 y[t]2)3/2 - 4 x[t] / (x[t]2 +y[t]2 + z[t]2)3/2f 

y**[t] as (y[t] - x[t] ) / (2 (x[tj -y[t] )2 +4 z[t]2)3/2 +
(x[t] +y[t]) / (2 (x[t] +y[t])2 + 4 z[t]a)3/2 +
2y[t] / (4 x[t]2 + 4 y [t] 2) 3/2 - 4y[t]/(x[t]2 +y(t]2 + z[t]2)3/2# 

z"[t] as 2 z [t] / (2 (x[t] -y[t])2 + 4 z[t]2)3/2 +
2 z [t] / (2 (X[t] + y[t])2 +4 z[t]2)3/2 -
4z[t] J  (x[t]2 + y[t]2 + z[t]2)3/2f x[0] ==2.0, y[0] a a 0.0, 

z[0] a= 0.0, x* [0] ==0.0, y ' [0] ss adot, z ' [0] == gdot j,
{x, y, z}, {t, 0, 20}, MaxSteps -> 5000 ]

The Runge Kutta scheme is the same as that displayed previously but this time we 
have a six vector for the representative of the derivative.

f[{t_, {x , y_, z , u , v , w_}}] : =
{u, v, w, (x-y)/(2 (x-y)2+4z2)3/2 + (x + y) / (2 (x + y)2 + 4 z2) 3/2 +
2 x/ (4 x2 + 4 y2)3/2 - 4 x/ (x2 + y2 + z2)3/2,
(y - x) / (2 (x - y)2 * 4 z2)3/2 + {x + y) / (2 (x + y)2 + 4 z2) 3/2 +
2 y / (4 x2 + 4 y2) 3/2 - 4y/ (x2 + y2 + z2 ) 3/2 ,
2 z / (2 {x - y)2 + 4 z2 ) 3/2 + 2 z / (2 (x + y)2 + 4 z2)3/2 - 
4 z j  (x2 + y2 + z2)3/21

RungeKuttaFourC [ {£_, h_, p0_}] := Module [ {npl, kl, k2, k3, k4}, 
kl a £ [pO ] ;
k2 a f [pO + {h/2, h kl / 2 } ] ; 
k3 a f [P0 + {h/2, hk2 / 2}] ; 

k4 a f [pO + {h, h k3 } ] ;
npl a pO + {h, h (kl + 2 k2 + 2 k3 + k4) / 6 } ;

{f, h, npl}}
The initial data string, when used,, is again of a familiar form.
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dataO = {0*0, {2.0, 0.0, 0.0, 0.0, adot, gdot}}

{0. , {2.  , 0 .  , 0 .  , 0 .  , 0 . 5 5 ,  0 . 6 } }

The next module is the engine for the search. We find a rough and ready solution, 
rsol, starting with our initial velocity estimate and then find the first time at which 
we are nearest the target, in this case, y=0. Having found this time we run the 
Runge Kutta scheme to within 100 time steps of this target time and then construct 
a datastring of length 200 which takes the solution to approximately 100 time steps 
after the critical time. Identifying the first data point after the critical time, y=0, 
and the last data point after the critical time we obtain gvec and lvec. We then 
construct cvec by interpolation and it is cvec which we compare with our target 
position and velocity.

sixmet [adot_, gdot_, f_, h_] : =
Module[{rsol, ru, nsteps, dataal, datast, 
vec, pos, gvec, lvec, yg, yl, cvec, size}, 

rsol = nsol[adot, gdot];
ru s FindRoot [ (y /. First [rsol] ) [t] ==0, {t, 6}]; 
nsteps = Floor [ (t /. ru) / h - 100] ; 
dataal= Nest[RungeKuttaFourC,

{£, h, {0.0, {2.0, 0.0, 0.0, 0.0, adot, gdot}}}, nsteps]; 
datast = NestList[RungeKuttaFourC, dataal, 200]; 
vec =

First[Select[datast, (Part[Last[Last[#]], 2] >=0.0) &, 1] ] ; 
pos = First[Flatten[Position[datast, vec]]]; 
gvec = Last [Last [vec] ] ;
lvec = Last [Last [Part [datast, pos - 1] ] ] ; 
yg = Part [gvec, 2] ; 
ylsPart[lvec, 2] ;
cvec = (yg lvec - yl gvec) / (yg - yl) ;
size = Sqrt [ (cvec - {2.0, 0.0, 0.0, 0.0, adot, gdot}).

(cvec-{2.0, 0.0, 0.0, 0.0, adot, gdot})]]

sixmet[adot, gdot, f, 0.0001]

0 .0180909

sixmet[0.7028240185972064, 0.8441390185972064, £, 0.0001]

0 .0041 71 42

In order that we can automate the search for periodic solutions we use the follow­
ing module to run sixmet on an array of initial data points centred on some chosen 
initial velocity data. This module, hunt, either returns the data point with the 
smallest six-dimensional separation or if it is the initial data point it halves the
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working mesh. This method is crude or naive but it does seem to be effective. We 
may set the timestep for the Runge Kutta scheme outwith the control of the module 
hunt and further refine the size of the time mesh as required.

timestep = 0.0001;

hunt[{adot_, gdot_, mesh_}] : = Module[{ar, rpos},
ar a Table [sixmet [adot + mesh i, gdot + mesh j , f , timestep],

{i, -1, 1, 1}, {j, -1, 1, 1}]; 
rpos a First[Position[ar, Min[ar]]] - {2, 2);
If [rpos == (0, 0}, (adot, gdot, mesh/2),
{adot + mesh First [rpos] , gdot + mesh Last [rpos], mesh} ] ]

Given that we have some reasonably accurate initial data for a periodic solution of 
our chosen system we can store some spatial data for later use by means of the 
module Wrapper. This module simply sieves the computed data in order that we 
may represent the periodic solution in a more compact form.

adot = 0.7028240185972064; 
gdot - 0.8441390185972064;

dataO = {0.0, {2.0, 0.0, 0.0, 0.0, adot, gdot} }

{ 0 . ,  { 2 . ,  0 . ,  0 . ,  0 . ,  0 . 7 0 2 8 2 4 ,  0 . 8 4 4 1 3 9 } }

Wrapper [u_] s = Module [{te}, te = Nest [RungeKuttaFourC, u, 100] ;
Write[stream. Drop[Last[Last[te]], -3]];te]

A usual with Mathematica we may set the file input-output path to be something 
reasonable otherwise the files created can end up in some strange places.

SetDirectory ["Ahmed:ThesissChapter(6)sn]

Ahmed: T h e s i s :C h a p t e r (6)

We assign the channel to the variable stream as this was quoted in Wrapper 
above.

stream a OpenWrite["4=(2,2)eap_l"];
Nest[Wrapper, {f, 0.0001, dataO), 800];
Close[stream];

Once we have some data saved we simply read it in, choose which coordinates to 
plot and then employ ListPlot to do the work.
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str = OpenRead["4=(2,2)eap_l"]; 
sarr = ReadList[str];
Close[str];

pointsxy = Transpose [Drop [Transpose [sarr] , -1] ] ;

ListPlot [pointsxy, Plot Joined -> True, 
PlotStyle ->PointSize[0.001] , 
AspectRatio -* 1, AxesLabel {"x", "y"}]

y

0 . 7 5

0 . 2 5

- 0 . 5-1

- 0 . 2 5

- 0 . 7 5

- G r a p h i c s  -

pointsyz = Transpose [Drop [Transpose [sarr], 1] ] ;
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ListPlot[pointsyz, PlotJoined -+ True, 
Aspect Ratio 1, AxesLabel -> {"y% "Z"}]

z

0 . 2 5 0 . 7 5

- 0 . 5

-1

- G r a p h i c s  -
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