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Abstract

Distributed applications such as flight booking systems, web services, and electronic payment sys
tems require parallel processing of data. Such systems exhibit concurrent aspects (e.g., deadlock 
freedom) as well as data aspects (e.g., functional correctness). Often, these two aspects depend 
on each other. The language C sp-C a sl  is tailored to the specification and verification of such 
distributed systems and allows one to model data as well as processes within a single framework.

In this thesis we explore methods and techniques tailored to theorem proving for Csp-Ca s l . This 
leads to the development of an architecture for Csp-CASL-Prover which re-uses the tools H ets 
and CSP-Prover. We also design -  up to the algorithmic level -  procedures for transforming a CSP- 
Casl  specification into Isabelle/HOL code whilst preserving the semantics. By using this transla
tion, it is possible to perform theorem proving on C sp -Ca sl  specifications using Isabelle/HOL.

As proof o f concept we validate our tool CSP-CASL-Prover on a case study of industrial strength. 
Our experiment shows that CSP-CASL-Prover scales up to large systems. When using Csp -C a sl - 
Prover. reasoning about C sp-Ca sl  specifications becomes as easy as reasoning about data and 
processes separately.

Part of the results presented within this thesis have been published in [OIR07, OIR08].
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Chapter 1

Introduction

CSP-CASL [Rog06] is a relativity young specification language tailored for describing distributed 
systems. Examples include electronic payment systems (EP2), flight booking systems, etc. Such 
system have both data and process aspects which often depend on one and other. Currently there 
exist limited tool support for this specification language.

For dependable system design it is essential in the first place to establish properties of specifications. 
Once a system has been specified in a formal specification language such as C sp-C a s l , interesting 
properties can then be verified. Such properties include (but are not limited to) safety properties 
and liveness properties such as deadlock freedom. Verifying such properties on specifications of 
large distributed systems requires machine assisted tool support.

C sp -C asl  integrates the process algebra CSP [Hoa85, Ros98] with the algebraic specification 
language Ca sl  [Mos04]. Its novel aspects include the combination of denotational semantics in 
the process part and, in particular, loose semantics for the data types covering both concepts of 
partiality and sub-sorting. In [GRS05] Csp -Ca sl  has been applied to the EP2 standard. It has 
been demonstrated that C sp-C a sl  can deal with problems of industrial strength.

Here, we develop theorem proving support for C sp-C a sl  and show that our approach scales up 
to practically relevant systems such as the EP2 standard. C sp -C a sl  comes with a simple, but 
powerful notion of refinement. C sp -Ca sl  refinement can be decomposed into first a refinement 
step on data only and then a refinement step on processes. Data refinement is well understood 
in the C a sl  context and has good tool support already. Thus, we focus in this thesis on process 
refinement and tool support. The basic idea is to re-use existing tools for the languages CASL and 
Cs p , namely for C a sl  the tool H ets [MML07] and for Csp the tool Csp-Prover [IR05, IR06], 
both of which are based on the theorem prover Isabelle/HOL [NPW02]. This re-use is possible 
thanks to the definition of the C sp-C a sl  semantics in a two step approach: First, the data specified 
in C a sl  is translated into an alphabet of communications, which, in the second step, is used within 
the processes, where the standard C sp semantics are applied.

The main issue in integrating the tools H ets and Csp-Prover into a Csp-CASL-Prover is to imple
ment -  in Isabelle/HOL -  C sp-C a s l ’s construction of an alphabet of communications out of an 
algebraic specification of data written in C a s l . The correctness of this construction relies on the 
fact that a certain relation turns out to be an equivalence relation. Although this has been proven
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to hold under certain conditions, we chose to prove this fact for each Csp-C a sl  specification in
dividually. This adds an additional layer of trust. It turns out that the alphabet construction, the 
formulation of the justification theorems (establishing the equivalence relation), and also the proofs 
o f these theorems can be automatically generated.

Closely related to C sp-C a sl  is the specification language fiCRL [GP95]. Here, data types have 
loose semantics and are specified in equational logic with total functions. The underlying seman
tics of the process algebraic part is operational. [BFG+05] presents - on the fly, as the focus of the 
paper is on protocol verification -  the prototype of a /xCRL-Prover based on the interactive theorem 
prover PVS [ORS92]. The chosen approach is to represent the abstract /iCRL data types directly 
by PVS types, and to give a subset of fiCRL processes, namely the linear process equations, an 
operational semantics in terms of labelled transition systems. Thanks to /iCRL’s simple approach 
to data -  neither sub-sorting nor partiality are available -  there is no need for an alphabet construc
tion -  as it is also the case in C sp-Ca sl  in the absence of sub-sorting and partiality. Concerning 
processes, C sp-C a sl  provides semantics to full C sp by re-using the implementation of various 
denotational C sp semantics in CSP-Prover.

Thesis outline

In Chapter 2 we introduce the functional programming language Haskell along with the concepts 
of monadic programming within Haskell. We then present an own example of creating a monadic 
parser for a subset of CSP.

Chapter 3 introduces the notions of institutions and institutions representations. We present an 
own example of Many-Sorted Equational Logic as institution. Within this chapter we also present 
several other instances of institutions, namely FOLr, PFOLr which is built on top of FOLr and 
finally SubPFOLr which is built upon PFOLr. The institution SubPFOLr is very close to the 
Ca sl  institution SubPCFOLr. We then present the category of presentations, which are the basis 
for specifications. Institution representations are then introduced which allows one to relate dif
ferent institutions. Finally we present some institution representations which allow us to translate 
specification written using the CASL institution into Isabelle/HOL.

Chapter 4 discusses all the existing tools that we re-use in the constructions within this thesis. The 
theorem prover Isabelle/HOL is introduced and discussed. This is a generic interactive theorem 
prover that has been shown to be very powerful. Isabelle/HOL plays a dominant role within this 
thesis. The tool H ets is introduced which implements both the institutions and institutions repre
sentations that are discussed in Chapter 3. This tool allows us to translate Ca sl  specifications into 
Isabelle/HOL code. Finally the tool CSP-Prover is presented which is an extension to the theorem 
prover Isabelle/HOL. Csp-Prover is centred around refinement proofs for the process algebra C s p .

Chapter 5 introduces the language C sp-Ca sl  followed by several examples of the modelling of 
systems in Csp-Ca s l . Such C sp-C a sl  specifications consist of a data part specified in Ca sl  and 
a process part where communications are specified using data from the data part. The C sp-C a sl  
semantics are then presented along with the C sp-C a sl  notions of refinement.

Chapter 6 begins by discussing our architecture for a Csp-CASL-Prover. Our algorithm for the 
tool Csp-CASL-Prover is then presented and discussed. The algorithm re-uses both the existing
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tools H ets and Csp-Prover which are introduced in Chapter 4. Our algorithm takes as its input a 
C sp -Ca sl  specification and encodes it in Isabelle/HOL whilst preserving its semantics. One can 
then easily carry out refinement proofs on processes where communications are specified using data 
from the data part (written using Ca s l ). Our algorithm produces Integrations Theorems which are 
critical in reducing the complexity of proofs of such process refinements.

Chapter 7 presents proofs which have been produced using theory files derived using our algorithm 
which is discussed in Chapter 6. We present our proofs o f four core examples for the language 
C sp-Ca sl  along with a case study of industrial strength, namely EP2, which shows our technique 
for proving on processes and data scales up and can meet the challenges of the industrial world.



Chapter 2

Haskell

Contents
2.1 M onads.........................................................................
2.2 Do notation...................................................................
2.3 A programming exercise - Developing a Csp parser

4
6
6

Haskell [HHJW07, Hug89] is a general purpose functional programming language which features 
lazy evaluation, higher order functions, polymorphism and type classes. Haskell is based on the 
lambda calculus.

Within this chapter we discuss what monads [Wad93] are and how to use them to build a small CSP 
parser that recognises processes within a restricted Csp grammar. Monads are used within the tool 
H ets [MML07] extensively and also within the library Parsec [LM01] which is a monadic-parser 
library for Haskell used for building parsers for grammars. A parser created using Parsec will be 
more efficient and easier to build for large grammars than the method presented here.

2.1 Monads

As Haskell is a purely functional programming language certain useful features cause problems, 
these features include side effects and state. Functional programming languages do not have state 
like imperative programming languages do, instead everything is done via function calls. A func
tion must also not perform any side effects such as input and output. This is because a function 
must always return the same result for given arguments, hence reading from the keyboard would 
give you different results (characters) for the same input. These problems are dealt with in Haskell 
by using monads, which provide a clean solution that fits in well with the pure functional style.

The 1 0  monad allows input and output within Haskell, without destroying the functional environ
ment of the language. For example the type 1 0  () denotes an input or output event which returns 
the type () (void), hence the type 1 0  () can be seen as an action where some output has taken 
place (or some input has taken place, where the input has been discarded as the return type is void). 
1 0  () is an instance of the more general type 1 0  a, which denotes an input/output action of type

4



2.1 Monads 5

a. A value of type 1 0  a  can be passed around within parameters of functions. When a value of 
this type is evaluated the action is performed. Hence monads allow us to sequence computations 
which represent actions. Only when the values are evaluated are the actions performed.

For instance there is a built-in function

putChar :: Char —> IO ()

that takes as a parameter a character and returns an action. When this action is evaluated the 
character is output to standard output.

Another built in-function is

getC har : IO Char

which reads a character from standard input. The function getChar returns an action. When 
this action is evaluated, a character will be read from standard input and returned as the result of 
the function. The type of this function is 10 Char. Hence, once we have read a value with this 
function we have a value of type 10 Char not a Char. This prevents the data read from escaping 
into the functional part of the language. We cannot strip off the 1 0  part of the type, however we 
can use the character part of a 10 Char within the do notation and pass it as an argument to a 
function expecting a char. Again, the result must be wrapped backup in an IO action.

Haskell has a class called Monad m [Tho99] which is based on a polymorphic type constructor m 
which declare functions return, (>>=),  (>>) and fail.
c l a s s  Monad m where

( > > = )  : : m a —>  ( a —>  m b)  - >  m b
re turn :: a —>  m a
( » )  :: m a —>  m b —>  m b
f a i l S t r in g  — >  m a

These functions control the sequencing of monads when using the do notation within Haskell and 
makes explicit the order of execution. This makes it possible to mimic imperative programming.

The return function creates basic values of the monad type m a from a value of type a. The >>= 
function is called bind, it takes two parameters: a value of the monad type m a and a function 
from the underlying monad type to a new monad type, i.e., a -> m b. The bind function returns 
as the result a value of type m b, i.e., the return type of the second parameter.

To instantiate this class, one must provide definitions of these functions1 that satisfy some properties 
such as return x should simply return the value of x, >>= should be associative and fails s 
should correspond to a computation which fails. For instance the 10 monad is an instance of this 
class that provides certain definitions of these functions.

Other examples of monads which Haskell comes equipped with are the monads List a  and 
Maybe a .

'The functions >> and f a i l  have default definitions based on >>= and r e t u r n  so these need not be re-defined if 
the default definitions are sufficient.
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2.2 Do notation

It can be awkward and hard to write understandable code if the bind (>>=) function is used 
heavily. Haskell has an alternative syntax which is available when using monads, called the do 
notation. This is an expressive syntactic sugar to build up computations using the >>= func
tion.

The do notation allows one to write blocks of code that resemble imperative programming with 
variables. The result of a monadic computation can be assigned to a variable using the < - operator. 
The variable can then be used in later monadic computations. The value that is assigned to the 
variable is of the underlying monadic type.

The following small example demonstrates the do notation.

echo :: IO () 
echo = do c <— getC har  

putChar c

The function echo reads a character from standard input and outputs it to standard output. Its 
result type is IO () , an action of type “void”. The getChar monad gets a character from the 
keyboard. It returns a value of type IO Char, an action which result in character. This underlying 
character is assigned to the variable c (c has type Char, not IO Char). The monad putChar 
then outputs the character c to standard output. Its type is Char ->  IO (). Its return type 
matches the return type of echo. This is equivalent to the following code which does not use the 
do notation but instead uses the bind function explicitly.

echo :: IO ()
echo = getC har » =  putChar

2.3 A programming exercise - Developing a CSP parser

As an exercise in using monadic programming in Haskell we study here an own example of writing 
a parser for a subset of the process algebra Cs p . This will help with the integration of tool support 
for Csp -Ca sl  with H ets as the H ets framework uses monadic programming and the algorithm 
described in Chapter 6 requires the implementation to interface with the H ets system.

Using monads it is possible to create a parser. We use monads for this in order to easily pass 
around state and order the execution of function calls. The state that we are interested in includes 
all possible parses for the consumed input along with the input that has yet to be consumed for 
each parse. We follow the approach of building a parser by Richard Bird [Bir98] but adapt the 
code for the process algebra CSP. The material in Section 2.3.1 to Section 2.3.4 has been taken 
from [Bir98].

We wish to create a parser for the following CSP grammar:-

CSP = SKIP |
STOP
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a —> P 
(P [] Q) 
(p ri q) 
(P II Q)

Here actions (the a symbol above) are natural numbers. Although this grammar is a subset of 
normal CSP grammars, it is adequate for showing how a parser may be constructed using monads.

2.3.1 The parser monad

We need to create a new monad which will represent the type of parsers. As it will be a monad, this 
will take care of sequencing parsers together and the order of execution.

A parser can be thought of as a function that takes a string as input and returns a tree as output. 
However, there is no obvious way to sequence two parsers because the first parser will only return 
the tree (which represents what was parsed) and not the unconsumed input. Hence the second 
parser will not know where to start parsing from.

We refine our definition of a parser to a function that takes a string as input and returns the pair 
consisting of the unconsumed suffix of the input and the tree as output. Now the first parser will 
return both the unconsumed input and the parse tree. The second parser is now able to work with 
the unconsumed input of the first parser and also build on the parse tree from the first parser.

Next we refine our idea of a parser further. It is possible for a string to be parsed in multiple ways 
for some grammars. Our monad should be able to deal with this situation. Hence to allow multiple 
parses for each input we return not a single pair, but a list of pairs of unconsumed input and the 
parse tree for the unconsumed input.

As we want our parser to be as general as possible, we do not want to fix the type of tree returned. 
For instance we could have a tree of integers or strings. Finally we refine this definition further to 
allow different kinds of trees by using a type variable which represent the type of the parse tree. 
Hence we are left with the generic parser that returns a tree of type a.
newtype P a r s e r  a = MkP(String —> [ ( a ,  S t r i n g ) ] )

where MkP is a type constructor and a is a type variable. An instance of this type is a function 
(labelled with the constructor MkP) which takes a string as input and returns a list of pairs of 
possible parses (which will have consumed some of the input) and the remaining unconsumed
input for that particular parse. It is also possible for a parser to fail to parse a given input. This is
represented by the parser returning an empty list of parses.

We now need a function apply which applies a parser to a string.

app l y  :: P a r s e r  a —> S t r in g  —> [ ( a ,  S t r i n g ) ]
app ly  (MkP f )  s = f s

Here the first parameter is a parser that returns a list of parses (which are pairs of values of type 
a and strings of unconsumed input) and the second is the input string. So the definition is simply 
apply the function f to the string s (and forget about the constructor MkP).
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We can now create our monad based on the function a p p l y .  The monad will control how to 
sequence parsers and will also control the order of execution. Hence the monad will need to control 
how the unconsumed input of the first parser will be passed as the input to the second parser and 
also how the resulting trees will be passed along to subsequent parsers. Once this is done we can use 
the do n o t  a t  io n  within Haskell to easily form new parsers from existing parsers by combining 
them together.

We instantiate the Monad class with our type P a r s e r  and provide definitions of the required 
functions.

i n s t a n c e  Monad P a r s e r  where
re turn  x = MkP f where f s = [ ( x S ) ]

p » =  q = MkP f
where f s = [ ( y , s ’ ’ ) | ( x ,  s ’ ) < -  app l y  p s ,

(y,  s ’ ’ ) < -  app ly  (q x )  s ’ ]

It is these definitions that allow us to sequence parsers together. These definitions do obey the 
properties set out in Section 2.1. In the definition of return x, we return the parser MkP f  
(which is the function f  labelled with the constructor MkP) which takes a string of unconsumed 
input s and returns a list of pairs [ (x , s ) ], where x is the existing parse tree to build upon. Hence 
this parser returns a single parse (as the list contains only one element) where no input has been 
consumed (as the string s is returned in the second component of the pair) and the existing parse 
tree x (first component). This is necessary when we want to change a parse tree into a parser that 
simply returns that tree with out affecting the input string.

In the definition of >>=, we create a new parser from the existing parsers p and q. When the new 
parser q >>= q is applied to the input string s, the parser first applies the parser p to the input 
string s (which results in a list pairs of parses and corresponding unconsumed input for each parse) 
and then applies the parser q to each of these parses and the corresponding unconsumed input for 
each parse. The result of this combination of parsers p and q is a list of parses for the parser p 
» =  q.
We can now use the do notation which is available for all monad types in order to sequence parsers 
together -  see Section 2.1.

2.3.2 Basic parsers

Now that the type Par ser is a monad we can combine parsers together using the do notation. First 
we build some generic basic parsers. The item parser consumes and returns the first character of 
the input. This parser will only fail when the input is exhausted, i.e., the input string is empty.

i t em :: P a r s e r  Char
i t em = MkP f

where f [] = []
f ( c : c s )  = [ ( c , cs )]

Another basic parser that we need (which does not build upon i t e m)  is the parser that always fails
i.e., returns an empty list no matter what the input is. Its called zero because it returns zero parses.
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zero  :: P a r s e r  a
zero = MkP f where f s = []

These are the most basic parsers and all the other parsers that we define are built on top of these. We 
now build a slightly more complex parser that recognises a character that satisfies a given property.

s a t  (Char —> Boo l )  —> P a r s e r  Char 
s a t  p = do c <— i t em

i f  p c then re turn  c e l s e  zero

Here we consume a character using i t e m  and we assign this to c. We then test c with the property 
p; if c passes the test (i.e., p c is true) we return the parser for the character c else we return the 
zero parser, indicating that this parse failed.

Using the s a t  parser we can build a parser that recognises a given character.

c ha r  :: Char —> P a r s e r  () 
c h a r  x = do c <— s a t  (==x)  

return  ()

Here the test is the function ==x which takes a character and returns true only if it is equal to x. If 
the s a t  (==x) parser consumes a character then we return a parser that just consumes a character 
and returns the empty tree, as we already know the character that was consumed was x. If the s a t  
parser fails then this parser will also fail.

Using recursion and the c h a r  parser we can now build a parser that recognises an entire string.

s t r i n g S t r in g  —> P a r s e r 0
s t r i n g [] = re turn  ()
s t r i n g ( x : x s )  = do char  x

s t r i n g xs
return 0

When applied to the empty string we succeed and return the empty tree. When applied to a string 
with at least one character, we first recognise that character, then recognise the rest of the string, 
then return the empty tree. Again we return the empty tree on a successful parse because we already 
know the string that a successful parse will consume.

Here we define parser that parses a digit. Notice that it is important to know which digit was parsed, 
which is why we return the actual number that was parsed (as an integer).

d i g i t  :: P a r s e r  Int
d i g i t  = do d <— sa t  i s D i g i t

re turn  (ord d — ord ’O ’)
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2.3.3 Alternation and repetition parsers

We now need a mechanism for either applying parser p or parser q in the case that parser p fails. 
This is done by the o r e l s e  parser (denoted here by I I I )  which combines the existing parsers p 
and q into a new parser p | | | q.

(1 | ) :: P a r s e r  a —> P a r s e r  a —> P a r s e r  a
p III q = MkP f

where f s = i f  n u l l  ps then a pp ly  q s e l s e  ps 
where ps = app ly  p s

We return the parser that when applied to the string s will first try and apply parser p to the string 
s and if the the empty parse is returned (i.e., parser p failed) then we apply parser q to the string s. 
To test whether the empty parse is returned we use the n u l l  operation which tests whether a list 
is empty. If parser q applied to s also fails then the parser p I I I q fails. As monads take care of 
sequencing and a valid monad is associative we can use the orelse parser in sequence to form the 
parser p I I I  q I I I  r  that tries to apply p if that fails tries to apply q and if that fails finally 
tries to apply r.

We now use the orelse parser to build a parser combinator that repeats a parser zero or more times.

many :: P a r s e r  a —> P a r s e r  [a]
many p = do x <— p

xs <— many p
return  ( x : x s )

| | | re turn  []

The many parser will take as input, a parser p which returns parse trees of type a. It will then 
return a parser that returns parse trees of lists of type a. For instance, if we have a parser p that 
recognises a digit, then by applying the many parser to the parser p we can recognise many digits. 
The result will be a list of recognised digits. This is why we return a list.

The many parser works by first using the parser p. Then p ’s result is bound to the variable x, and 
finally a recursively call to the parser many is made. If the parser p fails then we use the o r e l s e  
parser to return the empty list. We then concatenate the results into a list which is returned, the 
concatenation works well with the recursion and the base case of an empty list.

We use the many parser to define another parser some.

some :: P a r s e r  a —> P a r s e r  [ a]
some p = do x <— p

xs <— many p 
retu rn  ( x : x s )

The parser some repeats the parser p at least once and also uses recursion in a similar way to the 
many parser.

We use the many parser to build a parser for natural numbers, where we use the f o l d l  Haskell 
operation to change the list of digits into the actual natural number.
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n a t :: P a r s e r  Int
nat  = do ds <— some d i g i t

return  ( f o l d l (++++)  0 d s )
where m ++++ n = 1 0  * m + n

We return the type I n t  for simplicity as there is no type of natural numbers in Haskell.

2.3.4 W hite space parsers

We now need parsers to discard white spaces that might appear in syntax. First we define a parser 
that recognises many single spaces

s pace  :: P a r s e r  ()
s pace  = many ( s a t  i s S p a c e )  »  re turn  ()

The function i s S p a c e  is a built in Haskell function which tests a character as white space.

Next we use the s p a c e  parser to define a parser t o k e n  p that skips white space around a parser 
P-
t oken  : P a r s e r  a —> P a r s e r  a
t oken  p = do space

x <— p
space
return  x

We first recognise some white spaces using the s p a c e  parser, then we apply the parser p and bind 
the result to x. We then recognise some more white spaces. Finally, we return the parser r e t u r n  
x, which is the parser that returns the tree x without consuming any further input.

We now build our last generic parser that recognises a string surrounded by space.

symbol  :: S t r in g  —> P a r s e r  ()
symbol  xs = t oken  ( s t r i n g  xs )

2.3.5 Constructing the C sp  parser

We finally use the previously defined parsers to create a parser for the following Csp grammar:-

CSP = SKIP i
STOP i
a --> P i
(P [] Q) 1
(P n Q) 1
(P ii Q)
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where actions are natural numbers (but will be represented by integers in Haskell). The paren
thesis here are needed for the grammar to be unambiguous. The parenthesis could be omitted by 
prioritising the CSP operators. However, for simplicity, we force the use of parenthesis.

First we define a recursive abstract data type to store our parsed tree which reflects our grammar.

data CspTree  = Skip | Stop | P r e f i x  Int  CspTree  |
E x t e r n a l C h o i c e CspTree  CspTree  j
I n t e r n a l C h o i c e CspTree  CspTree  |
Sy n c P a r a l l e l CspTree  CspTree

This type will be returned by our CSP parser. We define our top level parser as

c s p P a r s e r  :: P a r s e r  CspTree
c s p P a r s e r  = s k i p  | | |  s t op  | | | p r e f i x  | | | e x t e r n a l C h o i c e  | | |

i n t e r n a l C h o i c e  | | | s y n c P a r a l l e l

which tries to recognise each sub-Csp parser in turn using the o r e l s e  parser ( | | | ). Each of these 
sub-CSP parsers are mutually exclusive thanks to the parenthesis of our grammar. We could use 
the order of the o r e l s e  parser to encode priorities of the operators, in order to reduce the use of 
parenthesis. We have chosen to use a simple grammar with forced parenthesis with means we have 
no need for priorities.

We define our s k i p  and s t o p  parsers as

s k ip  :: P a r s e r  CspTree
s k ip  = do symbol  ’’SKIP”

return  Skip

s top  :: P a r s e r  CspTree
s top  = do symbol  ’’STOP”

r e turn  Stop

which recognise a string of “SKIP” or “STOP” which may be surrounded by space. We return a 
tree representing the primitive process SKIP and STOP, respectively.

Next we define the p r e f i x  parser which will recognise an action as a natural number using infix 
notation.

p r e f i x  :: P a r s e r  CspTree
p r e f i x  = do n <— t oken  nat

symbol
p <— c s p P a r s e r
return  ( P r e f i x  n p)

Here a natural number is recognised sounded by space, then an arrow symbol and finally the rest of 
the C sp process. The result of this is the tree P r e f i x  n p where n is the action (natural number) 
of the prefix action operator and p is the tree that is a result of parsing the rest of the Csp process.
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Finally the other parsers for the remaining CSP operators are defined in a similar way. Such parsers 
work by recognising a process followed by an operator symbol followed by another processes. The 
parsers then return the tree representing the parsed process. Parenthesis are forced to stop ambiguity 
within the grammar.

e x t e r n a l C h o i c e :: P a r s e r  CspTree
e x t e r n a l C h o i c e = do symbol  ” ( ”

p <— c s p P a r s e r  
symbol  ” [ ] ” 
q <— c s p P a r s e r  
symbol  ” ) ”
return  ( E x t e r n a l C h o i c e  p q)

i n t e r n a l C h o i c e :: P a r s e r  CspTree
i n t e r n a l C h o i c e = do symbol  ” ( ”

p <— c s p P a r s e r  
symbol  ” ” 
q <— c s p P a r s e r  
symbol  ” ) ”
return  ( I n t e r n a l C h o i c e  p q)

s y n c P a r a l l e l  : P a r s e r  CspTree
s y n c P a r a l l e l  = do symbol  ” ( ”

p <— c s p P a r s e r  
symbol  ” | | ” 
q <— c s p P a r s e r  
symbol  ” ) ”
return  ( S y n c P a r a l l e l  p q)

The parser cspParser will now recognise the above grammar. An improved parser would al
low you to change the type of action from natural numbers to other types and also not require 
unnecessary parenthesis around some expressions.

2.3.6 Some utility functions

In order to output a CSP parse tree (a value of type CspTree) to standard output we need to first 
be able to convert the parse tree to a string. To do this we. must instantiate the Haskell class show 
with the data type CspTree. This will require us to provide a definition for the function show 
for each constructor of the data type CspTree. This the following code instantiate the class show 
with the data type CspTree and provides suitable definitions for the function show.

i n s t a n c e  Show CspTree  where
show Skip = ’’SK IP”
show Stop = ’’STOP”
show ( P r e f i x  n p)  = show n ++ ” —> ” ++ show p
show ( E x t e r n a l C h o i c e  p q)  = ” ( ” ++ show p ++ ” [] ” ++
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show q ++ ” ) ”
show ( I n t e r n a l C h o i c e P q) = ” ( ” ++ show p

show q ++ ” ) ”
show ( S y n c P a r a l l e l  p q) = ” ( ” ++ show p

show q ++ ” ) ”

The definitions of the function show simply convert a value of type CspTree into a string in the 
obvious way where ++ is string concatenation. We have used here, the string concatination operator 
as it serves our purpose well. The running time of this code is currently not an issue, however it is 
quadratic. There is a standard way of reducing this to a linear runtime if we need the code to be 
faster later on. However, it currently suits our purposes and needs no further improvement.

Finally before we can run the parser properly we need a few small utility functions. Firstly we are 
only interested in full parses i.e., when all the input has been consumed. We also only need a single 
full parse as our grammar does not allow multiple ambiguous parses. We use the Maybe monad 
here that allows us to simulate partial functions by returning either Just a value or Nothing. 
The following function will return the first full parse in a list of parses.

f i n d  V a l i d P a r s e :: [ ( a , S t r i n g )] —> Maybe a
f i n d V a l i d P a r s e [] = Nothing
f i n d  V a l i d P a r s e ( ( t r ee  , 55  ̂ . o t h e r s )  = J us t  t r e e
f i nd  V a l i d P a r s e ( ( t r ee  , ( x : x s ) ) : o t h e r s )  = f i n d V a l i d P a r s e  o t h e r s

If the list is empty we return Nothing indicating that no parse was found. In the second case of 
there being at the start of a list, a parse which consumed all input then we simply return this tree 
with the added constructor Just. In the third case of finding at the start of the list a parse that has 
not consumed all the input, we just recurse on the rest of the list.

We finally create a user friendly wrapper function to call a parser.

p a r s e
p a r s e

P a r s e r  a —> S t r in g  —> Maybe a 
p s = f i n d  V a l i d P a r s e  ( apply  p s)

We can now run the Csp parser c s p P a r s e r  on a string s with the code

p a r s e c s p P a r s e r  s

This will either return Nothing indicating no parse was found or Just tree where tree is a 
successful parse of type CspTree.

2.3.7 An example run

We conclude this chapter with two runs of our CSP parser. First we try a positive run where we 
expect a valid parse to be found. We issue the following command Haskell command

p a r s e  c s p P a r s e r  ” ( ( ( 1  - >  STOP [] 2 - >  3 - >  SKIP) |~|  STOP)
| | 4 - >  SKI P) ”
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This will attempt to parse a CSP string from our grammar. We have used every operator within our 
grammar as part of this test. The output of Haskell is a valid parse which when shown (output to 
standard output) yields

Just  ( ( (1  - >  STOP [] 2 - >  3 - >  SKIP) |~|  STOP) | | 4 —> SKIP)

The Just is the shown string of the Just constructor returned by our wrapper function.

We now try a negative test where we expect the parser to fail. We try to parse a non valid Csp 
expression with the code

p a r s e  c s p P a r s e r  ” 4 —> STOP —> STOP”

The string 4 -> STOP -> STOP is not a valid CSP expression from our grammar. The test 
produces the following output when shown.

Nothing

This indicates that no parse was possible. Both tests have indicated that our Csp parser runs as 
expected.
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Institutions capture the nature of logic systems and are the language used to define Ca sl  and C sp- 
C a s l . The tool H ets [MML07] (see Section 4.2) implements various institutions centred around 
the C asl  institution. H ets also uses institution representations in order to translate specifications 
from one logic to another.

Section 3.1 introduces the notions of institutions. An own example of the institution many-sorted 
equational logic is then presented in Section 3.2. Further examples of institutions necessary for 
the constructions within this thesis are presented in Section 3.3. The category of presentations is 
briefly introduced in Section 3.4. Institutions representations are then introduced in Section 3.5, 
which allow one to related different institutions. Finally in Section 3.6 we present two instances of 
institution representations which are used within H ets and play a central role within this thesis.

3.1 Institutions

Institutions were introduced by Joseph Goguen and Rod Burstall in the late 1970’s in order to deal 
with the large volume of logical systems being used and developed in computer science. Insti
tutions capture the very essence of what a logical system is. By using institutions it is possible 
to create specification languages, proof calculi and tools which are independent of the underlying 
logical system. Institution representations allow one to relate and translate institutions with other 
institutions. Goguen and Burstall sum up the idea of an institution in the following slogan taken 
from [GB92]

16
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“Truth is invariant under change of notation”.

This slogan expresses that truth is independent of which symbols we use to represent our functions, 
relations and variables. Hence if we have a logical statement and we swap all occurrences of our 
variable symbols, function symbols and relation symbols with different symbols then our statement 
means the same as the original statement.

The formal definition of institutions and institution representations rely on Category Theory. In
formally an institution consists of a collection of signatures with signature morphisms and for each 
signature a collection of sentences, models and a satisfaction relation between the sentences and 
models such that the satisfaction condition holds. The satisfaction condition roughly means that 
if one translates a sentence under a signature with a signature morphism, then the satisfaction of a 
translated sentence and a model is preserved. The satisfaction condition is the formal notion of the 
above slogan, where the signature morphism is the function that swaps our symbols.

We follow here [Mos02] where Mossakowski defines an institution 1 as a quadruple 
(SIGN7,sen7,mod7, [=7) where:

•  SIGN7 is a category.

•  sen7 : SIGN7 —► SET is a functor.

•  mod7 : (SIGN7)0̂  -* CAT is a functor.

•  1= 2 — |mod7(£)| x sen7(E), for each £  : SIGN7,

such that the satisfaction condition holds: for every <r : £  —> £ ' in SIGN7,

mod/ (o-)(M/) | = 2  ip M' (=2 / sen7(cr)(</?)

holds for every <p £ sen7(£) and for every M' £ |mod7(£ /)|. Figure 3.1 shows a diagram repre
sentation of an institution.

The idea here is to have a collection of signatures and signature morphisms which map symbols 
in a compatible way. This collection is the category SIGN7. Nothing else about the structure of 
the category SIGN is assumed. The top left of Figure 3.1 depicts the category SIGN with two 
signatures £  and £ ' along with a signature morphism o  between them.

The functor sen7 : SIGN7 —> SET gives for each signature £  : SIGN7, the set of sentences sen7(£) 
over the signature £ , and for each signature morphism a  : £  —> £ ', the map sen7(cr) : sen7(£) —> 
sen7(£') which translates sentences built over £  to sentences built over £ '. The category SET is the 
category where the objects are sets, the morphisms are total functions between sets, composition is 
functional composition and the identity function assigns to every set the identity function on that 
set [Fia04]. The top right of Figure 3.1 depicts the category SET with two sets of signatures sen(£) 
and sen(£/) along with a sentence morphism sen(<r) between them.

The functor mod7 : (SIGN7)op —> CAT gives for each signature £  : SIGN7, the category of 
models for that signature mod7(£ ), and for each signature morphism a  : £  —> £ ', the reduct 
functor mod7(cr) : mod/ (£ /) —> mod7(£ ) which reduces models over the signature £ ' to models 
over the signature £ . The category SIGNop is the category with the same objects and morphisms as 
SIGN, but where the morphisms have been reversed, e.g., if  o  : £  —> £ ' is a morphism in SIGN, 
then a  : £ ' —> £  is a morphism in SIGNop. Morphism composition is also reversed within this
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SIGN SET

sen(E)
sen sen(a)

sen(E')

mod CAT

mod(E) mod(E')

M'

Figure 3.1: Diagram of the notion of an institution.

category. The category CAT is the category of categories, where the objects are categories and the 
morphisms are functors1.

The lower half of Figure 3.1 depicts the category CAT. Depicted within this category are two 
categories of models, namely mod(E) and mod(E'). Within the category mod(E') there are two 
models M  and M' along with a model morphism h between them. The reducts of these models 
and the reduct model morphism are depicted within the category mod(E) as m\a, m'\a and h\a 
respectively.

As mod7 is a functor into the category CAT, mod7(E) is the category where objects are models 
over the signature E and morphisms are the homomorphisms between the models. The operation 
|_| when applied to a category results in the class of objects of that category, where the morphisms 
of the category are simply forgotten. Hence |mod7(E)| is the class of models of E within the 
institution I.

The satisfaction condition ensures that satisfaction with respect to the satisfaction relation, is pre
served across translation of sentences and reducts of models.

We introduce some shorthand notations that are often used when dealing with institutions. We write 
a((p) for sen7(<7)(</?) and M'\a for modI(o){M'). Also the subscript on the satisfaction relation and 
the superscript I  may be omitted when it is clear from the context and no confusion arises. These are 
the most common shorthand notations as defined by Mossakowski in [Mos02], which are slightly 
different to those defined by Goguen and Burstall in [GB92].

1 Some authors have concerns over the size of the category CAT. We do not consider such concerns within this thesis.
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Thus for each cr : E —» S ' in SIGN, the satisfaction condition becomes

M ' \ a  [=£ ( p  M '  1= 5]/

for each M' £ |mod7(E ')| and ip £ sen7(E).

Given an arbitrary fixed institution, we can define the usual notion of logical consequence or se
mantical entailment. Given a set of E-sentences T C sen(E) and a E-sentences ip £ sen(E), we 
say

T |= 5] <p iff for all E models M  £ |m od(E)|,M  \=% T implies M  [=5] (p 

where M  |=5] T means M  [=5] ^  for every tf) £ T.

3.2 Many-sorted equational logic as an institution

We illustrate the concept of an institution with an own example. Here, we define m a n y - s o r t e d  
e q u a t i o n a l  l o g i c  as an institution.

We first define what our signatures and signature morphisms are (the category SIGN) -  Sec
tion 3.2.1, where we prove that SIGN is a valid category. We then define the functor sen in 
Section 3.2.2, where we prove that sen is a valid functor. Next we define the functor mod in 
Section 3.2.3, where we prove that mod(E) forms a category for each signature E and that the 
reduct functor mod(o-) is a functor for each signature morphism o  : E —> E'. We also prove that 
mod itself is a functor. Finally we define the satisfaction relation |= and prove that the satisfaction 
condition holds in Section 3.2.4.

3.2.1 M any-sorted equation logic - Category SIGN

One particular notion of a signature as defined by [LEW97] is a pair of sets E =  (S, ft), where

• S is a set of sorts.

•  ft is a set o f total functions symbols, o f the form n : s\ x . . .  x s* —► s with 5 1 , . . . ,  5*, s £ S
and k > 0.

Given two signatures E =  (S, ft) and E' =  (S', ft'), a signature morphism cr : E —> E' is a pair of 
functions (<rs,<Tfi) where

• as : S -> S'

•  < t q  : f t  — > f t '

such that for each function symbol n : si x . . .  x Sk —> s £ ft, k > 0 , there exists a function
name m with crn(n : x . . .  x s* —> s) =  (m : 0-5 (51) x . . .  x 0-5 (5 )̂ —>• 0-5 (5)), such that
m : 0-5 (51) x . . .  x crs{sic) —> 0-5 (5) £ ft'. This forms our category SIGN.

Given two signature morphisms a : E —> E' and o7 : E' —> E" morphism composition is defined 
as:

cr' o  cr =  (0 -5 , c r y  o  (0 -5 , a q )  =  (0-5  o  a s , a'n o a n , )
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Let Idz =  (Idxs,Id'£n) : E —»■ S ' denote the identity morphism of E =  (S, ft) where Id-£s : S —> S 
and Idzn : —► Q are defined as

• Ids(s) — s and

• Idn(u) - u

for any s 6  S and u> £ ft.

Theorem 3.1: SIGN is a category.

To prove that SIGN is a category, we must prove that identity morphisms exist (see Lemma 3.2)
and that morphism composition is associative (see Lemma 3.3).

Lemma 3.2: Identity morphisms exist in SIGN i.e., for all signature morphisms cr : E —> E' there 
exist morphisms Idz and Id^,1 such that

cr o  Id£ — cr and Id£/ o  cr — o

Proof. Let cr : E —> E' be an arbitrary signature morphism where E =  (S , Q). We must prove that 
cr o  / c / s  — cr.

cr o  / c / s  =  (<75, ctq) o  ( / J £ s , / d s n ) Unfolding the definition of cr and / c f c -
=  (os 0 IdY,s , ctq o ) Definition of morphism composition.
=  (0's, crfi) Definition of identity morphism.
=  cr The definition of o.

Since cr is an arbitrary signature morphism, we can conclude that cr o  Idz = a for all signature 
morphisms cr : E —> E'. The same line of thought holds for the proof of I d ^  00 = 0 . □

Lemma 3.3: Morphism composition is associative in SIGN, i.e., for all signature morphisms o  : 
E —> E', cr' : E ' —> E" and cr" : E" —» E'", where E, E', E", and S '" are signatures in SIGN,

cr" o (cr' o  cr) =  (cr"  o  cr ')  o  cr

Proof. Let cr : E —> S ', cr' : E ' —> E" and cr" : E" —> E'" be arbitrary signature morphisms where 
E = , E', E", and E'" are signatures in SIGN. We must prove that cr" o  (cr ' o  cr) — {cr" o  cr ') o  cr.

cr" o (cr' o cr) =  (o's', ct'q) ° ((cr ,̂ cr^) o (cr5, ctq)) Unfolding the morphism definition.
=  (erf, <7q) o ((cr  ̂o 0-5 ), (cr^ o ctq)) Definition of morphism composition.
=  (o's o (cTf o os), o-q o (cr'ft 0 crn)) Definition of morphism composition.
=  ((&$ 0 cr's) 0 0’s), (o’q 0 ^ci) 0 ato) Associativity of functions.
=  ((cr'J o cr^), (<7q o (j^)) o (cr5, cr^) Definition of morphism composition.
=  ((o's, cr'lt) o (o’s, ctq)) o (<75, ctq) Definition of morphism composition.
=  (cr"  o cr') o cr Folding the morphism definition.

Since cr, cr', and cr" are arbitrary signature morphisms, we can conclude that a" o  (cr' 0 7 )  =  
(cr"  o  cr ')  o  cr for all signature morphisms cr : E —> E', cr' : E ' —> E", and cr" : E" —» E'". □

This completes the proof obligations that SIGN is indeed a valid category.
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3.2.2 M any-sorted equation logic - Functor sen

Given a signature E =  (S, S2) and a family of variables X  — (Xs)s€s of disjoint sets (which may or 
may not be infinite), the terms of sort s over E using the family of variables X  is denoted as TZ(X),s 
defined by:

1- Xs C T ^ x^s.

2. if n > s is an operation of then n £ Tz(x),s-

3. if n : s\ x . . .  x  Sk s, k > 1 is an operation of Q and if ti G T ^ X),s  ̂ f°r 1 <  1 < then 
n(h, ■ ■ • ,tk) €

Now that we have terms we can build formulae. Formulae in many-sorted equational logic are very 
simple, they are just equations quantified over all variables, that compare two terms of the same 
sort. For each signature E the set of sentences is

sen(E) =  {VX.t = u \ t , u e  FS(X))J

In order to translate sentences we must first be able to translate variables and terms. Given a 
signature morphism cr : E —>• E' and a family of disjoint sets (Xs)ses the variable translation is 
defined as

<t((jw«es) = (( U
a(s)—s'

Theorem 3.4: cr(X) is a family of disjoint sets for all signature morphisms cr : E —> E' and for all 
families of disjoint sets .

Proof. Let cr : E —> E' be an arbitrary signature morphism and (Xs)s^s be an arbitrary family of 
disjoint sets, where E =  (S , H). We must show that cr(X) is a family of disjoint sets.

Assume cr(X) is family of sets which is not disjoint. This means that there exists s'i,s'2 G S' with 
f  s'2 such there exists x' G cr{X)ŝ  and xf G cr{X)ŝ . This can only be the case if there exists 

some si, S2 G S with j i  /  ^2 and cr(5 i) =  s[, cr(s2) =  s'2 such that there exists jc G XSl andx G XS2. 
Since as X  is a family of disjoint sets, we know that for all sa,Sb G S such that sa Sb it is the case 
that XSa n  XSb — 0, thus we have a contradiction. We can conclude that cr(X) is a family of disjoint 
sets.

As cr and X  are arbitrary, we can conclude that cr(X) is a family of disjoint sets for all signature 
morphisms cr : E —> E' and for all families of disjoint infinite sets (Xs)se$. □

Given a signature morphism o  : E —> E' and a family of variables X  for the signature E, where 
E =  (S, Q), then term translation is defined by:

1 . ar{x) = cr{x) for any x EX.

2. ar(n) =  m for any n > s G ft with cr{n » s) — (m :—> cr^)).

3. crr(n(?i,. . .  ,tk)) — tn(aT(ti) , . . . ,  for any (n : s\ x . . .  x s^ —> s G fi), k ^  1, with 
cr{n : j i  x . . .  x —> j) =  (m : x . . .  x cr(sk) —> cr(s)).
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The subscript T on the term translation may be omitted where no confusion arises.

We now define the translation of sentences, given a signature morphism a  : £  —> £ ', sentence 
translation sen(cr) is defined as

sen((j)(VX.r =  u) =  V o(X).o(t) =  <r(w).

Theorem 3.5: sen is a functor.

To prove sen is a functor we must prove that sen preserves identity morphisms (see Lemma 3.6) 
and that sen preserves composition of morphisms (see Lemma 3.7).

Lemma 3.6: sen preserves identity morphisms, i.e., for all £  in SIGN

sen {Idj^) — 7^sen(s)

where Idsen(s) denotes the identity morphism (which in this case is the identity function) for the set 
sen(£).

Proof. Let £  =  (S , fi) be an arbitrary signature in SIGN. Let p  be an arbitrary sentence in sen(£). 
We know that ip has the form VX.r =  u where / , « £  f°r some s £ S. We must prove that
sen (Idz)(p) = Id stniYi){ip).

sen(Id^)(p) =  sen(Idj:)(VX.t = u) Definition of <p.
=  V Id-z (X) .Id's (t) =  Id^ («)) Definition of sen.
=  \/X.t =  u Definition of identities, variable translation,

and term translation.
=  Idsen(Z) (VX.f =  u) Definition of /J sen(E) •
=  /<isen(S) (v3) Definition of p.

Since p  and £  are arbitrary, we can conclude sen(/Js) =  M;en(£) f°r signatures £  in SIGN. □

Lemma 3.7: sen preserves composition of morphisms, i.e., for all signature morphisms o  : £  —» 
£ ' and p : £ ' -» £"

sen(p o a) =  sen(p) o sen(<r).

Proof. Let cr : £  —> £ ' and p : £ ' £ "  be arbitrary signature morphisms, where £  =  (S , fi). Let
p  be an arbitrary sentence in sen(£). We know that p  has the form VX.f =  u where t, u e  T ^ X)tS 
for some s G S. We must prove that sen(p o  cr)(p) =  (sen(p) o  sen(cr))((p).

L.H.S =  sen(p o o)(p)
= sen(p o o)(yX .t  — u) Definition of p.
— V(p o cr)(X).(p o cr)(r) =  (po cr)(u) Definition of sen.
=  V(p(cr(X))).(p(cr(r))) =  (p(cr(w))) Definition of morphism composition.

R.H.S =  (sen(p) o sen(cr))(<p)
=  (sen(p) o sen(<j))(VZ.t =  u) Definition of p.
— sen(p)(sen(tr)(VX.r =  u)) Definition of morphism composition .
=  sen(p)(Vcr(X).cr(r) =  cr{u)) Definition of sen.
=  V(p(cr(X))).(p(cr(r))) =  (p(cr(«))) Definition of sen.
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Since cr, p and ip are arbitrary, we can conclude that sen(p o  cr) — sen(p) o  sen(cr) for all signature 
morphisms cr : E —> E' and p : E' —> E". □

This completes the proof obligations that sen is indeed a valid functor.

3.2.3 M any-sorted equation logic - Functor mod

The functor mod : (SIGN)op —» CAT maps into the category of categories. Hence, for any 
signature E in the category SIGN, mod(E) must be a category. We define mod(E) to be the 
category of total algebras for the signature E (our models), and the morphisms in this category to 
be homomorphisms between the total algebras (model morphisms).

Given a signature E =  (S, f2), a model (a total algebra) for E assigns:

• A carrier set A (s) to each sort symbol s E S.

• A total function A(n : s\ x  . . .  x sk -+ s) : A(si) x . . .  x A(sk) —> A(s) to each function 
symbol (n : s\ x  . . .  x Sk —> s) E Cl, k > 0.

Given two models A,B  in mod(E), a model morphism (homomorphism) h : A —> B is a family 
(hs)S£S of functions hs : A(s) —» B(s) such that for any function symbol u  £ Cl, say u  — (n : 
s\ x . . .  x s/c -+ s),k > 0 , the following condition holds:

hs(A(u)(a i, .. . , ak)) = B(u)(hsi(a i) , .. . ,h Sk(ak))

for all (a \ , . . . ,  ak) E A(si) x . . .  x A(sk).

Within the category mod(E) for a given signature E, composition of morphisms is homomorphism 
composition and the identity morphism for an algebra A (denoted as Id a) is the identity homomor
phism for A.

Theorem 3.8: mod(E) is a category for every signature E in SIGN.

To prove that mod(E) is a category for every signature E in SIGN, we must prove that identity
morphisms exist in mod(E) (see Lemma 3.9) and that morphism composition is associative in 
mod(E) (see Lemma 3.10).

Lemma 3.9: Given a signature E =  (S, fi) in SIGN, identity morphisms exist in mod(E), i.e., for 
all homomorphisms h : A —> B in mod(E), there exist homomorphisms Id a and Ids such that

h o  Ma — h and Mb ° h = h.

Proof. Let h : A —> B be an arbitrary homomorphism in mod(E), where A and B are models in
mod(E). We must prove that ho  Ma = h i.e., hs o  Mas — hs for all s E S.

Let s E S and x E A(s).

(hs oIdAs)(x) — hs{IdAs{x)) Homomorphism composition.
=  hs (x) Definition of the identity homomorphism Id a -



3.2 Many-sorted equational logic as an institution 24

Since x, s, and h are all arbitrary, we can conclude that ho  Id a = h holds for all homomorphisms 
h : A —> B in mod(E). The same line of thought holds for the proof of Ids o h =  h. □

Lemma 3.10: Given a signature E =  (S , Q) in SIGN, morphism composition is associative in 
mod(E), i.e., for all homomorphisms h : A —> B, h! : B —> C, and h" : C —> D in mod(E), where 
A, B, C, and D are models in mod(E),

h" o  (h' oh) — (h'' o h!) o  h.

Proof. Let h : A —> B, h' : B —> C, and h" : C —> D be arbitrary homomorphisms in mod(E) 
where A, 5 , C, and D are models in mod(E). We must prove that h" o  (/*' oh) — {h" o h') o h, i.e.,
h" o (h!s o hs) — (h1' o h!s) o hs for all s E S.

Let s G S and jc G A(s).

{h" o (h's o hs))(x) — (h"(h's(hs(x)))) Homomorphism composition.
=  ((h" o h's) o hs)(x) Homomorphism composition.

Since x, s, h, h', and h" are all arbitrary we can conclude that h" o (h' oh) — {h" o h') o h for all 
homomorphisms h : A —> B ,h ' : B C, and h" : C —> D in mod(E). □

This completes the proof obligations that mod(E) is indeed a valid category for every signature E 
in SIGN.

We have now defined mod(E) for a signature E in SIGN. The objects are total algebras and the 
morphisms are the homomorphisms between them.

Given two signatures E =  (S,Cl), S' =  (S', ST), and a signature morphism o : E —» E' the 
cr-reduct of A' for an algebra A' in mod(E') is defined as:

• (A' |(j) (5) =  A'(o-(j)) for all s G S.

• (A' lo-X^) = A'(a(u))  for all a; G f2.

We now define the functor mod on signature morphisms. Given a signature morphism a  : E —» E', 
mod(cr) : mod(E') —> mod(E) is a functor.

For each total algebra A' in mod(E'), we define mod(cr)(A') as A'\a (the cr-reduct of A').

For each homomorphism h! : A' —> B' in mod(E'), we define mod(cr) (h!) to be the homomorphism 
reduct h'\a : A '\a B '\a where

(h'\a)s = h'a(s) for each s £ S.

We have now defined our functor mod. We have defined its behaviour on objects and morphisms. 
It maps into the category CAT, where objects are categories, morphisms are functors, morphism 
composition is functor composition and the identity morphisms are the identity functors. We denote 
the identity functor within the category CAT as Mn0d(£) for the category mod(E).

Theorem 3.11: mod(cr) is a functor for every signature morphism o : E —» E'.
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To prove mod(cr) is a functor for every signature morphism cr : E —» E', we must prove that 
mod (cr) preserves identity morphisms (see Lemma 3.12) and that mod(cr) preserves composition 
of morphisms (see Lemma 3.13).

Lemma 3.12: Given a signature morphism cr : E —> E' where E =  (5, f2), mod(o-) preserves 
identity morphisms, i.e., for all models A' in mod(E')

mod (cr) {Ida' ) =  Idmod (CT) (a; ) ■

Proof. Let A' be an arbitrary model in mod(E'). We must prove that mod(cr)(/c/A/) =  Idmod(o-)(A')»
i.e., (mod{o){IdA>))s = {Idm0d(a)(A'))  ̂for a11 sorts s e  s -

Let s G S and x  G (A'|o-)(j).

L.H.S =  (mod(a)(IdA>))s(x)
= {(IdA,)\a)s{x) Definition of mod (cr).
=  {Id^ ) a (s) (x ) Definition of homomorphism reduct.
=  x  Definition of homomorphism identity.

R.H.S =  (f^mod(<7 )(A'))s{x)
— (^ (a' d M*) Definition of mod (cr).
=  x  Definition of homomorphism identity.

Since s, x  and A' are all arbitrary we can conclude that mod(cr)(/c/A/) =  Idmod(CT)(A/) f°r all models 
A 'in  mod(E'). □

Lemma 3.13: Given a signature morphism o  : E —> E' where E =  (S, O), mod(cr) preserves 
composition of morphisms, i.e., for all morphisms h' : A' —> B' and g' : B' —> C' in mod(E')

mod(cr)(g' o  h!) =  mod(cr)(g') o  m o d ^ ^ /i ') .

Proof. Let h' : A' B' and g' : B' C' be arbitrary morphisms in mod(E'). We must prove 
that mod(cr)(g' o  h!) — mod(cr)(g') o  mod(cr)(/z'), i.e., (m o d ^ ^ g ' o  h!))s = (mod(cr)(g/))J o  

(mod(cr)(/i/)).y for all sorts s G S.

Let s e  S.
(mod((j)(g/ o  h!))s — {{g' o  h')\a)s Definition of mod (c r ) .

=  (g' o  h')a^  Definition of homomorphism reduct.
=  g ^  o h'a^  Homomorphism composition.
=  (g/|a )j °  { h ' \ o ) s  Definition of homomorphism reduct.
=  (mod(cr)(g/)),y o  (m o d ^ )^ '))^  Definition of mod(cr).

Since 5 is an arbitrary sort in S and the morphisms h! and g' are arbitrary, we can conclude that 
mod(cr)(g' o  h') — mod((j)(g') o  mod(cr)(/i') for all morphisms h! : A' —> B' and g' : B' —> C' in 
mod(E'). □

This completes the proof obligations that mod (cr ) is indeed a valid functor for every signature 
morphism cr : E —> E'.

Theorem 3.14: mod is a functor.



3.2 Many-sorted equational logic as an institution 26

To prove mod is a functor we must prove that mod preserves identity morphisms (see Lemma 3.15) 
and that mod preserves composition of morphisms (see Lemma 3.16).

Lemma 3.15: mod preserves identity morphisms, i.e., for all signatures E in SIGN

mod (/JE) =  Idmod{E)

Proof. Let E =  (5, Vt) be an arbitrary signature in SIGN. Let A be an arbitrary model in mod(E). 
We must prove that m od(Idz)(A) =  Idmoi^ ( A ) .

L.H.S mod(/c/s) (A) =  A|wE which means

• for each s £ S that ( A )( )̂ =  A(Idz(s)) =  A(s).

• for each lj £ ft that (A|wI,)(A)(u;) =  A(Id^{uj)) — A(cj). 

by definition of mod and the definition of the identity morphisms.

R.H.S Mn<>d(£) (A) =  A by the definition of identity functors in the category CAT and the functor 
mod. Hence, by the definition of a total algebra we have a set A(s) for each sort s £ S and a total 
function A(u)  for each function symbol u G O .

Since A and E are arbitrary, we can conclude mod(/c/s) =  M n o d (£ )  f°r signatures E : SIGN.
□

Lemma 3.16: mod preserves composition of morphisms, i.e., for all signature morphisms a  : 
E —» E ' and p : E ' —> E"

mod(p o cr) =  mod (cr) o mod(p)

Proof. Let cr : E —► E' and p : E ' —► E" be arbitrary signature morphisms, where E =  (S, Q). Let 
A" be an arbitrary model in mod(E").

We must prove that mod(p o cr)(A") =  (mod (cr) o mod(p))(A").

L.H.S mod(p o cr)(A//) is a model over the signature E , hence

• for each s £ S we have mod(p o cr)(A")(.s) =  A"{p o cr)(s) = A"(p(o(s))) and

• for each uj £ ft we have mod(p o a)(A")(uj) =  A"(p o cr)(u) — A"(p(o(u>))).

R.H.S (mod(cr) o mod(p))(A") =  mod(cr)(mod(p)(A")) is a model over the signature E, hence

• for each s £ S we have mod(cr)(mod(p)(A"))(j') =  m od(/?)(A") (cr(j)) =  A"(p(cr(^))) and

• for each a; £ ft we have mod(cr)(mod(p)(A//))(u;) =  mod(/?)(A")(cr(u;)) = A"(p(cr(u))).

since cr, p and A" are arbitrary, we can conclude that mod(p o a) = mod (cr) o mod(/?) for all 
signature morphisms o : E —> E7 and p : E' —> E". □

This completes the proof obligations that mod is indeed a valid functor.



3.2 Many-sorted equational logic as an institution 27

3.2.4 M any-sorted equation logic - Satisfaction relation

We now define the satisfaction relation between our models and sentences. For this we will need 
the notions of assignments and term evaluation.

Given a signature E =  (S, Q), an algebra A in mod(E) and a family of variables X  for the signature
E, an assignment of X for A is a family a =  (as)ses of functions as : Xs —» A( 5 ) .  We normally
drop the subscript s (where no confusion arises) and just write a  : X  —> A for such an assignment.

We now define term evaluation. Given a signature E =  (S , fI), an Algebra A in mod(E), a family 
of variables X, a term t £ T^(x) 311 assignment a  : X  —> A then A(a)(t) is defined as:

1. A(a)(t) =  a s(x) if t = x  with x £ Xs, s £ S,

2. A(a)(t) — A(u) if t — n and u  = (n > s) £ Q,

3. A(a)(t) =  A(w)(A(a)(fi),. . . ,  A (a)(^)) if f =  w(?i,.. - , fjt), 
uj =  (n : si x . . .  x Sk —<► s) £ ft,
k >  1 and
U ^ 1 < i < k.

Finally we define satisfaction. Given a signature E, a formula VX.f =  w in sen(E), and an algebra 
A in mod(E),

A [=£ VX.r =  u 

iff

for all assignments a : X  —> A, A(a)(/) =  A(a)(«)

We now introduce the Reduct Theorem (Theorem 3.17) which is needed in order to prove that 
the satisfaction condition holds. The reduct theorem and it’s proof along with the proof of the 
satisfaction condition has been lifted from [LEW97] and applied to the notions of an institution and 
Category Theory.

Theorem 3.17 (Reduct Theorem): Let E and E' be signatures in SIGN where E =  (S,Q). Let 
cr : E —> E' be a signature morphism in SIGN. Let X  be a family of variables for E and t 
be a term. Finally, let M' be a model in mod(E') and a' : cr(X) —> M' be an assignment for M '. 
Then

(M'U)(a' |CT) « = M V ) ( < T ( r ) )

where (a 7̂ )  : X  —> (M7|CT) is the assignment for (M7|CT) defined by:

(a'|aM *) = a'ais)(o(x))

for all x £ Xs, s £ S.

Proof. We prove the reduct theorem using induction on the structure of t. For each case we must 
prove (M7|<T)(o:7|CT)(r) =  M'{a'){a{t)).
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if t =  x, x  £ Xs :

(Af'|o-) (ce71cr) (jc) =  (a'lo-)^*) Definition of term evaluation.
=  ^ ( 5) (^W)  Definition of ( a '|ff).
=  M (al)(o(x)) Definition of term evaluation.

if t =  n, u  =  (n * s) E H :

(M'\a)(a'\a)(n) = (M' |a )(cj) Definition of term evaluation.
=  Definition of a reduct.
=  M' {a') (cr(n)) Definitions of term evaluation and term translation.

if t — n{t\ , . . . ,  tk), u  = (n : s\ x  . . .  x  sk s) £ Q,, k ^  I :

{M'\a)(ot'\a){n{ti,. . .  ,tk))
=  (M'\a)(uj)((M'\cr)(a /\a)(ti) , . . . ,  (M'\a)(a'\a)(tic)) Definition of term evaluation.
=  {M \a){uS){M'(ot!){cr{ti) ) , . . .  ,M'(a')(o(tk))) Induction hypothesis.
=  M'(o(uj))(M>(a,) (o ( t i ) ) , . . .  ,M'(a')(o(tk))) Definition a reduct.
=  (a{n{t\ , . . .  ,tk))) Definitions of term evaluation

and term translation.

□
Theorem 3.18: The satisfaction condition holds, i.e., for all signature morphisms cr : E —» E' in 
SIGN, all models M1 in mod(E') and all sentences tp in sen(E),

M'\o- (=e P M! [=i;/ cr(ip).

Proof. Let E, E' be signatures and cr : E —> E' be a signature morphism in SIGN. Let ' iX .t  =  u 
be an arbitrary sentence in sen(E) and M' be a model in mod(E). We must prove that:

{M'\cj) |=e VX.t = u iff M' H e' cr(VX.r =  u)

i.e.,
(M'H) [=E VX.t =  u iff M' H e' V<j(X).cr(r) =  o(u)

We prove each implication separately.

Case 1: =>> Let {M'\a) H e VX.t — u hold, by the definition of the satisfaction relation, we know 
that (M/ |0.)(a)(r) =  (M'\a)(a)(u) holds for all assignments a  : X  —> Let a ' : o(X) —>■ M'
be an assignment for M1. We have to prove M' (.a'){o(t)) =M'(a')((r(u)).

M ,(a')(a(t)) =  {M, \(J){a'\cr){t) Reduct Theorem.
— (M'\(J){a'\a){u) As {ot!\a) is an assignment from X  into (M'\a).
— M'(a')(o(u)) Reduct Theorem.
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Case 2: <= Let M' [=£/ Va{X).a{t) =  <r(w), by the definition of the satisfaction relation, we 
know that M'(a')(o(t)) = M'(a'){(j{u)) for all assignments a' : o(X) —> M'. Let a : X  —> (M'|o-) 
be an assignment for (M'|CT). We have to prove (M, \a)(a)(t) — (M'\a)(a)(u).

Now consider the assignment (3' : o{X) —> Af' defined by:

P a ( s ) ( a (X ) )  =  <*s(x)

for any x £ Xs,s £ S.

(Mf\a)(a)(t) = (M'\a)(0'\a)(t) As (/3'\a) — ol.

=  M'(j3')(o(t)) Reduct Theorem.
— M'{(3'){o{u)) As (3' is an assignment from o(X) into M '.
= (M/\a)(P'\cr)(u) Reduct Theorem.
= As (0%) = a.

Since the signatures £ , E', the signature morphism cr, the model M', and the sentence \/X.t = u 
are all arbitrary, we can conclude that the satisfaction condition holds. □

We have now defined the components of the institution many-sorted equational logic 
and proven the relevant properties that establish this as a valid institution.

3.3 Other examples of institutions

M a n y - s o r t e d  e q u a t i o n a l  l o g i c  is a small example of a logic that forms an institution. 
Many other institutions exist, for example CSP forms various institutions [MR07].

We now outline the institutions necessary for the constructions within this thesis. For simplicity we 
disregard sort generation constraints in our discussions, as they currently play no role in our C sp - 
Casl  encoding. This is justified by an implementation issue within He t s . In Sections 3.3.1 and 
3.3.2 we outline the institution PFOLr and FOLr, respectively. These both play a prominent role 
in the translation of Ca sl  specifications into Isabelle/HOL code. We present finally the institution 
SubPFOLr (Section 3.3.3) which is build on top of PFOLr and is close to the institution underlying 
Casl  0SubPCFOLr).

3.3.1 PFOL=

We present here some parts of the institution PFOL= (partial first order logic with equality) as it is 
defined in [Mos02]. We present only the category of signatures, the models, the set of sentences for 
a signature and an informal definition of the satisfaction relation. We do not present every definition 
of some shorthand notations along with the definitions of terms, variables and term evaluation. We 
do however use these notations. Such definitions can be found in [Mos02].

Signatures. A many-sorted signature E =  (5, TF, PF , P) in PFOLr consists of:

• a set of sorts symbols S,
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•  two S* x  S-sorted families TF = (TFWjS)wes*,ses and PF = (PFW)S)w€s*,s€S of total function 
symbols and partial function symbols, respectively, such that TFW>S fl PFWS = 0, for each 
(w, s) G S* x  S (constants are treated as functions with no arguments), and

• a family P = (Pw)wes* of predicate symbols.

We use the following short hand notations within this chapter as they are defined in [Mos02]. We 
w rite / : w —>■ s G TF for/  G TFw>s, f  : w —►?£ G PF for/  G PFWjS and p : w G P for p  G Pw.
Given a function/ : A —> B, let/* : A* —> B* be its extension to finite strings. Given a finite string
w — s i . . .  sn and sets MS1, . . . ,  MSn, we write Mw for the Cartesian product MSl x . . .  x MSn.

Given signatures E =  (S , TF, PF, P) and E' =  (S', TF', PF',P'), a signature morphism o  : E —> E' 
consists of:

•  a map crs : S —> S',

•  a map : 7 7 ^ , U PFW>S U (w)>(7s(s) preserving totality, for each
w G 5*, 5 G S, and

•  a map cr  ̂ : Pw P'̂ s* ̂  for each w G 5*.

Identities and composition are defined in the obvious way. This gives us a category of PCFOLr- 
signatures.

Models. Given a many-sorted signature E =  (S, TF, PF, P), a many-sorted E-model M  consists 
of:

•  a non-empty carrier set Ms for each sort symbol s G S,

•  a partial function (/w,s)m (also written just / m) from Mw to Ms for each function symbol 
/  G TFWjS U PFW>S, the function being total i f f  G TFWjS, and

•  a predicate (j>w)m (also written just pm) Q Mw for each predicate symbol p  G Pw.

A many-sorted E-homomorphism h : M  —> iV consists of a family of functions (hs : Ms —» Ns)ses 
with the property that for all /  G TFWjS U PFW>S and ( a \ , . .. ,an) G Mw with (/ŵ )m(« i, • • •, an) 
defined, we have

^ j ( ( / v v , j ) a / ( ^ 1  j  • • ■ j  ^ n ) )  =  i  ( ^ l ) > • • • > fan))

and for allp E Pw and (a \ , . . .  ,an) G Afw,

( a i , . . .  ,an) G faw)M implies (hSlfai), ■ ■ . ,h Sn(an)) G faw)N- 

Identities and composition are defined in the obvious way.

Concerning reducts, if a  : E —> E; is a signature morphism with E =  (S, TF,PF,P), and M' is a 
E'-model, then M'\a is the E-model M  with:

• Ms for each sort symbol s G S,

• (fw,s)M := faw,s(f))M' for each function symbol/ G TFWjS U PFWjS,
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• (P w )m  '•= f°r eac^ predicate symbolp £ Pw.

This is well defined since cr£ preserves totality.

Given a E'-homomorphism h' : M[ —> M'2, its reduct h\a : M[\a —>• M'2\a is the homomorphism 
defined by

(h'\(j)s ■= h'as ^  for each sort symbol s £ S.

It is easy to see that the reduct w.r.t. the identity is the identity, and that the reduct w.r.t. a composi
tion is the composition of the reducts w.r.t. the signature morphisms that are composed. Thus, mod 
is a functor.

Sentences. A many-sorted atomic E-formula with variables in X  is either (1) an application of a 
qualified predicate symbol to terms of appropriate sorts, (2) an existential equation between terms 
of the same sort, (3) a strong equation between terms of the same sort, or (4) an assertion about the 
definedness of a term:

The set AF^(X) of many-sorted atomic E-formulae with variables in X  is the least set satisfying 
the following rules:

1. p w(ti , . . .  ,tn) £ AFz(X), if ti £ Ts (X)Sj,p  £ Pw, w = S\ . . .  sn £ S*,

2. t = t' £ AFe(X), if t, t* £ Ts(X)St s £ S (existential equations),

3. t — t' £ AFy,(X), i f t , t / £ Tj:(X)s, s  £ S (strong equations),

4. deft £ AFs(X), if t £ Tj:(X)s, s £ S (definedness assertions).

The set FO-^iX) ° f  many-sorted first-order E-formulae with variables in X  is the least set satisfying 
the following rules:

1. AFe {X) C FOe {X),

2. F £ FOy,{X) (read: false),

3. {<p A VO € F O ^X )  and (ip => if,) £ FO^{X) for cp, £ F O ^X ) ,

4. (yx  : s • p) £ FOx(X) for p  £ FOz(X  U {x : s}), s £ S.

We omit brackets whenever this is unambiguous and use the usual abbreviations: for p  => F,
p  V for ~'(->p A -i-ip), T for ->F and B x i j ^ ^ f o r - i V x : ^ *  -*p.

Now a E-sentence is a closed many-sorted first-order E-formula (i.e., a many-sorted first-order 
E-formula in the empty set of variables). For further details see [Mos02].

Satisfaction relation. Even though the evaluation of a term w.r.t. a variable assignment may be 
undefined, the evaluation of a formula is always defined (and is either true or false). That is, we 
have a two-valued logic.

The application of a predicate symbol p  to a sequence of argument terms holds w.r.t. a valuation 
v : X  —► M  iff the values of all the terms are defined under v#  and give a tuple belonging to p m - 
A definedness assertion concerning a term holds iff the value of the term is defined. An existential
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equation holds iff the values of both terms are defined and identical, whereas a strong equation 
holds also when the values of both terms are undefined; thus both notions of equation coincide for 
defined terms.

A formula p  is satisfied in a model M  (written M \= ip) iff it is satisfied w.r.t. all variable valuations 
into M.

This concludes the presentation of PFOLr, for further details see [Mos02].

3.3.2 FOL=

FOLr (first order logic with equality) is the sub-logic of PFOLr with the restriction that the set of 
partial functions symbols within the signature is empty.

3.3.3  SubPFOLr

We present here some parts of the institution SubPFOLr (sub-sprted partial first order logic with 
equality) as it is defined in [Mos02]. We present only the signatures, models and the sentences.

Signatures. A sub-sorted signature E =  (S, TF, PF, P, ^ s) consists of a many-sorted signature 
(S, TF, PF, P) (as defined in PFOLr) together with a reflexive and transitive sub-sort relation ^ 5  

C S x S. The relation ^ 5  extends point-wise to sequences of sorts. We drop the subscript S 
when it is obvious from the context. For a sub-sorted signature E =  (S , TF, PF, P, ^ 5) we define 
overloading relations and ~/> for function and predicate symbols, respectively. Let/  : uq —» s\, 
f  : W2 —> $2 £ TF U PF. Then/  : xv\ —> $1 : ^2 ^2 iff there exist xv E S*, s E S such that
w ^  h>i, xv ^  W2, s 1 ^  s, and S2 ^  s. Let p : xv\, p : W2 E P. Then p : vtq ~p p : W2 iff there exists
xv E S* such that xv ^  xv\ and xv ^  XV2.

With each sub-sorted signature E =  (5, TF, PF, P, ^ 5) we associate a many-sorted signature E =  
(S, TF, PF, P), which extends the underlying many-sorted signature (S, TF, PF, P) with

• a total injection function symbol in  j : s —> s' for each pair of sorts s s',

• a partial projection function symbol p r  : s' ->?s for each pair of sorts 5 ^ 5  s', and

• an unary membership predicate symbol EJ: s' for each pair of sorts i  ^ 5

We assume that the symbols used for injection, projection and membership are not used otherwise 
in E. In formulae, we also write t E s instead of Ey (r) if s' is clear from the context.

Models. Sub-sorted H-models are many-sorted E-models satisfying in PFOLr the following set 
of axioms 7(E) (all variables are universally quantified):

1. in  jj^ jc) =  x  for s £ S (identity),

2 . i n  j JvS/ (x) = i n  j j (y) => x = y for s ^ 5  s' (embedding-injectivity),

3. in  j 5/ j//(in ^/(jc)) =  i n  s"(x) for s ^ 5  s' ^ 5  s" (transitivity),
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4. p r y )if( ( in  j^y (x)) =  xfor^ ^ 5  s' (projection),

5. p ry  s(jc) =  p r y >f (y) => x  =  y for 5 ^ 5  s' (projection-injectivity),

6 . Gy (x) <=$ def p r y )iy(r) for s ^ 5  5' (membership),

7. i n j y i,(/w/)y ( i n j Jliyi ( r i ) , . . . , i n j Jnj,/(xn))) =
• • • > -'-n i s n,sl((.x n ) ) )  fo r /w ',s '  f w " , s " ■>

where w ^ 5  w', w" , w =  si . . .  sn, w' — ^  . s'n, w" = s'{ . . .  s", s',s" < 5  s (function- 
monotonicity),

8 . p w' ( i n  (xi), • • •, i n  (rn)) <̂>
/ V ' ( i n  j ^ y / O i ) ,  ■ • •, i n  j J(I)J//(x„)) forpw> ~ Pp w»,
where w w', xv", w — s i . . .  sn, W  =  s[ . . .  s'n, w" = s'{ . . .  s” (predicate-monotonicity).

Sentences. Sub-sorted H-sentences are ordinary many-sorted Yi-sentences.

For further details of this institution see [Mos02].

3.4 Presentations

We present here the notions of the category of theories and the category of presentations as they 
are defined in [Mos02]. Let us fix an arbitrary institution I — (SIGN, sen, mod, \=). The simplest 
specifications over an arbitrary institution are just theories T = (E, T), where E is a signature 
in SIGN and T C Sen(E) is a set of sentences. We set Sig(T) =  E and Ax(T) =  T. Theory 
morphisms <r(E, T) —> (E', T') are those signature morphisms o : E —> E' for which T' |=£/ <r(r), 
that is, axioms are mapped to logical consequences. By inheriting composition and identities from 
SIGN, we obtain a category TH of theories. It is easy to extend sen and mod to start from TH 
by putting sen((E ,r)) =  Sen(E) and letting m od((E,r)) be the full sub-category of mod(E) 
induced by the class of those models M  satisfying T. The category PRES of presentations (also 
called flat specifications) is the full sub-category of theories having finite sets of axioms.

3.5 Institutions representations

In order to relate different institutions, we use the notion of institution representations (also called 
institutions comorphisms). These allow us to encode one institution within another institution and 
are implemented within the tool Hets [MML07] (see Section 4.2).

An institution representation from an institution I  to an institution J  is a triple which consists of 
three components: a functor $ , a natural transformation a, and a natural transformation (3.

The functor $  translates /-signatures into /-presentations. This means that the signatures of I  
are translated into signatures of J  plus a finite set of axioms. For example in the translation of 
PFOLr (partial first order logic with equality) to FOLr (first order logic with equality), partial func
tions can be encoded as total functions provided an extra undefined element is added to each set 
of sort symbols and also a definedness function on each sort is added. Axioms are then needed
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to control how the definedness functions behave (e.g., definedness should hold for every element 
of the sort expect the undefined element). This is why /-presentations are required and not just 
/-signatures.

The natural transformation a  translates I -sentences to /-sentences. This is similar to the functor 
sen from institutions. The natural transformation (3 translates /-models to /-models, which again is 
similar to the functor mod from institutions.

Formally, given institutions I  — (SIGN7,sen7, mod7, f=7) and /  =  (SIGN7, sen*7, mod-7, |=7) , a 
simple institution representation p = (<E>, a , (3) : I  —» /  consists of

• a functor $  : SIGN7 -> PRES7,

• a natural transformation a : sen7 —> sen7 o  $,

• a natural transformation (3 : mod7 o  &op —> mod7,

such that the representation condition is satisfied: for every signature E in SIGN7, model M' in 
mod7($(E )) and sentence <p in sen7(E) the following holds:

M  |=£ <p

The above means that for each signature E in SIGN7, $  maps E to a/-presentation $(E)  in PRES7.
For every signature morphism a : E —> E' in SIGN7, $  maps cr to a presentation morphism
4> (cr) : <f>(E) —► $(E ') in PRES7, which translates /-presentations over E into presentations over 
E'.

For every signature E in SIGN7, there is a sentence translation ai£ : sen7(E) —> sen7($(E )) which 
translates /-sentences to /-sentences.

For every signature E in SIGN7, there is a model translation (3̂ , : mod7($(E)) —► mod7(E) which 
translates /-models to /-models. (3 is a contravariant model translation, similar to that of mod of an 
institution.

The representation condition has the same idea as the satisfaction condition of Institutions. This 
ensures that satisfaction with respect to the satisfaction relation, is preserved across translation of 
sentences from institution I  to institution /  and translation of models from institution /  to institution 
/ .

As a  is a natural transformation, any signature morphism a  : E —> E' in SIGN7 makes the follow
ing diagram commute:
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sen7(E)

sender)

sen7(E')
OLY,'

seny($(E))

seny($(cr))

sen7($(E'))

Similarly, as (3 is a natural transformation, any signature morphism a : E 
the following diagram commute:

mod7(E)
Pe

mod7(cr)

mod7(E')
Pe >

mody($(E))

E' in SIGN7 makes

mod‘7($(cr))

mod7($(E'))

We have presented here the notion of institutions representations that allows one to encode one 
institution within another institution. Two institution representations from institutions I to J  and J  to 
K  can be composed together to form an institution representation from institution I  to institution K. 
This allows encodings of one institution within another institution where no direct representations 
are available.

3.6 Examples of institution representations

We now present the institutions representations used in Section 4.2 that allows H ets to encode 
Ca sl  specifications within the theorem prover Isabelle/HOL. First we present the institution rep
resentation that allows one to encode SubPFOLr in PFOLr -  Section 3.6.1. Followed by the 
institution representation for encoding PFOLr in FOLr -  Section 3.6.2. Both these institution 
representations can be composed together to form an encoding from CASL to Isabelle/HOL2.

2F o r  s im p lic ity  w e  d isreg a r d  so r t g en e r a tio n  c o n s tr a in ts  in  ou r  d is c u s s io n s ,  a s th e y  cu rr en tly  p la y  n o  r o le  in  o u r  

C s p - C a s l  e n c o d in g . T h is  is  ju s t i f ie d  b y  an im p le m e n ta t io n  is s u e  w ith in  H e t s .
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3.6.1 Representing SubPFOLr  in PFO Lr

We present here the translation of the institution SubPFOLr to PFOLr as it is defined in [Mos02], 
The translation is trivial, since the institution SubPFOLr is defined in terms of the institution 
PFOLr (see Section 3.3.3):

• Signatures. A signature E is mapped to the presentation (E, / (E)).

• Models. Model translation is the identity.

• Sentences. Sentence translation is the identity.

• Satisfaction. The representation condition follows immediately.

3.6.2 Representing PFO Lr  in FO Lr

We present here some parts of the translation of the institution PFOLr to FOLr as it is defined 
in [Mos02]. Specifically, we present the signature translation and the sentence translation.

The main idea is to use a definedness predicate to divide each carrier set into defined and unde
fined elements. The defined elements represent ordinary values, while the undefined elements all 
represent the undefined. Partial functions thus can be totalised: they possibly yield an undefined 
element. We specify that there is at least one undefined element ± , however, it may be not the only 
one.

Signatures. A PFOLr -signature E =  (5, TF, PF , P) is translated to a FOLr -presentation having 
the signature

Sig{§{E)) = (S,TF PF {±: s \ s £ S } , P {D : s \ s e  5})

and the set of axioms Ax($(E)):

1. 3 x : s • Ds (jc) for each s E S,

2. -iDS(L S) for each s E S,

3. Ds(f(xi , . . .  ,xn)) A;=i...n-^/(3Ci) f°r each functi°n sym bol/ : s i . . .  sn —> s E TF,

4. D5(g(xi, . . .  ,xn)) =>■ A,=i n Dst (xi) for each partial function symbol g : s\ . . .  sn —>?s E 
PF,

5. p(x i , . . . ,  xn) => Af=i n As, (■xd f°r each predicate symbol p : s \ . . .  sn E P.

D plays the role of a definedness predicate: the elements inside D are called defined, those outside 
D are called undefined. The axioms in the signature translation state that there is at least one defined 
element (1), that _L is an undefined element (2), total functions are indeed total (3) and all functions 
((3), (4)) and predicates (5) are strict.

As we want only a single undefined element in each sort, we add the extra axiom ->(x =-U) =>► 
Ds(x) for each sort s E S as defined in Section 4.1.6 of [Mos02]. This guarantees that the _L element
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is the only undefined element in each sort. This extra axiom along with axiom (2) simplifies to a 
new axiom -<(Ds(x)) (x =-Ly) for each sort s £ S.

Theorem 3.19: Given a Signature E =  (S, TF, PF, P)

-iZ)j(_Ls) A (-i(* =-Lj) => Ds(x)) iff -i(D4(x)) <?=> (x =-Lj) 

for each x  £ s, s E S.

Proof. We have proven this using the theorem prover SPASS [WBH+02]. □

Sentences. The sentence translation keeps the structure of the sentences and maps strong and 
existential equality to appropriate circumscriptions using the definedness predicate D. Definedness 
is mapped to D, and quantifiers are relativised to the set of all defined elements [Mos02].

Formally, a E-sentence ip (in PFOLr) is translated to the <f>(E)-sentence

• ot^{def{t)) = Ds(t),

•  OLz(ti — t2) =  ((L>s ( t i )  V Ds(t2)) => h  =  *2 ) .

•  A VO =  <x e (<p ) a  cke W .

• &z(ti =  h)  =  h  =  t2 / \D s{t\),

• az ( p ( h , - - - , t n)) = p ( h , . . . , t n),

• a s (F )  =  F,

•  a z ( p  =» V’) =  => <*e:(V0»

• a s ( V x  : 5 • </?) =  Vjc : 5 • Z)j(jc) =>■
For further details of this institution representation see [Mos02].
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CSP-CASL-Prover re-uses existing technology and tools where appropriate. In this section we will 
explain what these tools are and what they do.

Isabelle [NPW02, Pau94] is a widely used, generic interactive theorem prover implemented in 
ML [MTH90]. It is developed at Cambridge University and the Technical University of Munich. 
Isabelle is a command line tool which is closely integrated with Proof General [AspOO, Pro] to 
provide a powerful graphical user interface. Isabelle has many variants, each one instantiated with a 
different logic. The most popular being Isabelle/HOL, the Isabelle variant that has been instantiated 
with Higher Order Logic (HOL). During this thesis we use the variant Isabelle/HOL.

Isabelle has an input language similar to ML which consists of commands and proof commands. 
Commands allow one to extend the logic in various ways. For example, by adding new types, data 
structures and functions. While proof commands allow one to interface with Isabelle in order to 
prove lemmas and theorems.

Isabelle has an outer syntax and an inner syntax. The outer syntax is where the commands and proof 
commands live, whereas the inner syntax is used within such commands and proof commands to 
specify formulae of the particular logic that Isabelle has been instantiated with. Hence the inner 
syntax changes depending on the logic in use and is surrounded by double quotes (these can be 
omitted if they are quoting a single term -  which is often the case).

Using the techniques described here the tool CSP-Prover [IR05, IR06, IR] (see Section 4.3) provides 
a deep encoding of the process algebra CSP in Isabelle/HOL. HETS [MML07] on the other hand 
produces a shallow encoding of Casl in Isabelle/HOL (see Section 4.2).

4.1 Isabelle/HOL

38
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4,1.1 Theorems and proofs

The purpose of Isabelle is to aid the user in interactively proving theorems on mathematical formu
lae of a particular domain.

Theorems are entered into Isabelle via the command 

th e o r e m  name [ o p t ] : " f o r m u l a "

where name is an optional argument used to later reference the theorem, o p t  are some options 
which control how Isabelle uses the theorem once it has been established and f o r m u l a  is the 
mathematical formula to be established as a theorem. This theorem then needs to be proven in 
Isabelle. Lemmas can also be introduced in a similar way by replacing the keyword t h e o r e m  by 
the keyword lemma. Isabelle displays the proof goals which need to be discharged in order for that 
theorem to be proven. For example the command

th e o r e m  T 1 : "a+b = b+a"

creates a new theorem with the name T1 and the formula a+b = b+a. Here we can see that no 
options have been specified and that a+b = b+a is a formula of the inner syntax of the particular 
logic in use. Isabelle displays the following proof goal once the above theorem command has been 
issued.

p r o o f  ( p r o v e ) : s t e p  0

f i x e d  v a r i a b l e s :

g o a l

Here the goal only has a single sub-goal which is to prove a+b = b+a. The variables a and b 
have been fixed so that we can work with them, whereas in the theorem they where arbitrary. The 
display of the goals can be more complex where essentially the sub-goals are prefixed by a list of 
local assumptions which can be used to prove the goal.

To prove such a theorem, proof commands are issued which modify the proof state by transforming 
goals into other goals (or possibly many sub-goals). A goal is discharged if it is transformed into the 
truth value True.  A theorem is proven when all of its proof obligations are discharged. Previously 
established theorems can be used within further proofs as new rules (see Section 4.1.4). Proof 
commands can be combined in various ways to form tactics (see Section 4.1.5), which can ease the 
burden of discharging proof goals.

Isabelle sometimes uses schematic variables inside goals where they usually can be considered as 
links between various goals. A schematic variable or unknown always has a ? as its first character. 
Logically, an unknown is a free variable. But it may be instantiated by another term during the 
proof process. For example, the mathematical theorem x — x is represented in Isabelle as ?jc —?x, 
which means that Isabelle can instantiate it arbitrarily. This is in contrast to ordinary variables, 
which remain fixed [NPW02]. We normally do not use schematic variables explicitly, however the 
proof machinery uses the extensively.
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4.1.2 Theory files

Isabelle uses theory files which are scripts of Isabelle commands and proof commands. Such 
theory files can use theorems, proofs, data structures and functions written in other theory files. 
This brings in a concept of modularity and code re-use to Isabelle. Isabelle/HOL comes equipped 
with an extensive library of existing theory files which the user can make use of. For example the 
theory file nat. thy contains the formalisation of the natural numbers and operations on them in 
Isabelle/HOL.

A theory file has the general structure 

t h e o r y  T
im p o r t s  B1 ... Bn 
b e g i n

declarations, definitions, and proofs 
e n d

where T is the theory’s name, B1... Bn are the names of existing theory files upon which this theory 
file is based and declarations, definitions, and proofs are the newly introduced 
types, functions and proofs.

4.1.3 Commands

Commands allow one to extended the logic and can be seen as the functional programming language 
of Isabelle/HOL. For example, one can add new data structures, types and function definitions to 
Isabelle/HOL. This allows one to accommodate for the particular area of interest. Here we will 
give an overview of some of the most frequently used commands in the project.

New types can be introduced in various ways depending on what command is used. To introduce a 
new data type in Isabelle/HOL the command

d a t a t y p e  (al, ... , an) t =
Cl Til ... Tlkl | ... | Cm Tml ... Cm TmKm

may be issued where t is the type name of the new data type, ai are type variables (parameters for 
the type), Ci are distinct constructors and Ti j are types. Recursive types are allowed, i.e., when 
the type t is used on the R.H.S as some of the types Ti j. Polymorphic data types are created by 
using the type variables ai on the R.H.S in place of some of the types Ti j. The parenthesis around 
the type parameters can be omitted in the case of zero or one parameter. For example, to add a new 
data type with the name Num, the command

d a t a t y p e  Num = N nat I I int

can be issued. This will create a new type which is the sum of natural numbers and integers. N and 
I are user chosen type constructors while nat and int are the built in types of natural numbers 
and integers respectively. Such a datatype declaration comes with built in induction tactics within 
Isabelle/HOL, see section 4.1.5 for details.
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Functions whose parameter is defined by a datatype command may be defined using primitive 
recursion via the primrec command. This allows on to define functions which are based on the 
recursive nature of types defined via the datatype command.

We can now define addition on our new type Num by creating a new function plus: : Num
=> Num => Num such that a natural number will be returned only if both arguments are natural 
numbers, else an integer will be returned. This can be defined by primitive recursion as

c o n s t s  plus:: "Num => Num => Num"
p r im r e c  "plus (N n) x = ( c a s e  x o f (N m) => N (n + m)

1 (I m) => I ((int n) + m)) "
"plus (I n) x = ( c a s e  x o f (N m) => I (n + (int m) )

1 (I m) => I (n + m) ) "

where a number of other commands (namely, consts and case) have also been used. These 
commands will be explained in the next paragraph. When using primitive recursion (the command 
primrec) in Isabelle/HOL, it is required that all functions terminate. Non-terminating functions 
can cause inconsistencies in Isabelle/HOL. Due to the construction of Isabelle/HOL it is impossible 
to write a definition using the primrec command which Isabelle/HOL considers to be valid that 
is actually a definition of a non-terminating function. Isabelle does this by requiring that one 
parameter has been declared via a datatype command and that there is a single equation for each 
constructor of the datatype. This parameter must be called in a way that is structurally smaller. This 
with a few other restrictions ensures that the function terminates in all cases.

The consts command extends the signature by a new symbol. Here we declare the function plus 
which extends the signature with a new function. This function takes as parameters two values of 
type Num and returns a value of type Num. The case command allows for a definition based on 
the analysis of the constructors of a data type. We use this here to apply case analysis based on the 
constructor of the second parameter. The function int is a function that comes with Isabelle/HOL 
and converts a natural number (type nat) into an integer (type int).

4.1.4 Proof commands

After a theorem or lemma command (see Section 4.1.1) has been issued, Isabelle changes into 
its proof mode. In this mode, proof obligations may be discharged by the application of proof 
commands.

Whilst developing a proof, the proof command sorry allows one to explore the proof structure. 
The proof command sorry instantly dismisses all goals and completes the proof. The theorem 
can be used later on in the script as if it has been proven. This can be very useful for top down 
development, where lower lemmas and theorems can be assumed to hold using the proof command 
sorry and later completed. All sorry proof commands must be replaced by real proofs in order 
to be sure that the theorem actually holds.

Another useful proof command is defer, which moves the first sub-goal to the end of the list 
of sub-goals. This is useful when the user wants to prove the most complex sub-goal first. For 
example, when the user is sure that the first sub-goal holds, but is unsure whether others hold. The
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hardest sub-goals can be investigated first, if this sub-goal cannot be proven then there is no point 
in continuing the rest of the proof. The proof command p r e f e r  n i s  similar and moves the nth 
sub-goal to the start of the list.

So far we have looked at proof commands that “organise” proofs, i.e., proof commands that re-order 
the sub-goal list and allows one to explore the proof structure. We now discuss proof commands 
that actually transform proof goals and allows one to make progress within proofs.

One of the most frequently used proof command is the a p p l y  command which is used to apply 
many different proof methods to the proof state. One such popular use of this is

a P P l y ( a u t o )

which tries to automatically prove all sub-goals. The a u t o  proof method mainly tries to simplify 
all sub-goals by invoking the simplifier on each sub-goal in turn. This is a powerful method and 
one of the main proof tools of Isabelle/HOL.

Isabelle/HOL has a large collection of simplification rules called the simpset. When the simplifier 
is invoked, the rules in the simpset are applied (almost blindly) from left to right to the first sub
goal and the sub-goal’s assumptions. These rules are used as rewrite rules during the term rewriting 
process. This is a powerful method and can automatically prove many goals. The user can invoke 
the simplifier via the a u t o  method via the proof command

a p p l y (s imp m o d i f i e r  l i s t )

where the user may specify modifiers that control how the simplifier behaves. For example the user 
can specify a list of rules to be temporarily added the simpset via the proof command

a p p l y (Simp a d d : r u l e s )

where r u l e s  are a list of the names of previously established lemmas and theorems to be tempo
rally added to the simpset.

Rules can also be temporarily deleted from the simpset in a similar manner via the modifier d e l .

The simplifier applies rules almost blindly from left to right, as a result the user can easily add new 
rules that cause non-termination of the simplifier. For example, If the formula x=y ==> y=x was 
somehow added to the simpset, maybe because this formula was a result of another formula which 
had been re-written using a third rewrite rule, then this would easily lead to non-termination. It is 
useful in these cases to remove the offending rules from the s i m p s e t .

When a lemma or theorem is created the user can specify several options (see Section 4.1.1). For 
instance, one such option is the simp option that causes the lemma or theorem to be added to the 
simpset from that point onward.

When a lemma or theorem has been successfully proven (when all goals have been discharged), the 
proof command done should be issued which causes Isabelle to exit the proof mode and return to 
normal behaviour where commands can be issued again.
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4,1.5 Tactics

Tactics allow the user to apply many proof steps in complex ways by issuing a single proof com
mand. Tactics work by collecting together proof commands and applying them in certain combina
tions. Isabelle/HOL also comes with some built in tactics. One such tactic is induction over types 
declared using the d a t a t y p e  command. Its name is i n d u c t _ t a c .  It is applied by the command 
a p p l y  ( i n d u c t - t a c  x) where x is the variable to apply induction on. When applied this proof 
command will transform the first sub-goal into many sub-goals, one for each constructor of the data 
type.

The following Isabelle/HOL code proves our new function p l u s  (see Section 4.1.3) to be commu
tative. This uses the induction tactic and the a u t o  proof method to easily prove the theorem.

t h e o r e m  comm: " p l u s  a  b = p l u s  b a 1 

a p p l y ( i n d u c t _ t a c  a) 
a p p l y ( i nd u c t _ t a c  b) 
p r e f e r  3
a p p l y ( i n d u c t _ t a c  b)
a p p l y ( a u to )
d o n e

The interesting steps here are the induction steps on the variables a and b. After the fourth proof 
command (Line 5) has been issued, the proof obligation has been reduced to a finite case distinction 
over the forms of the variables a and b. Each variable has one of two forms, either the constructor 
N at followed by a natural number or the constructor I n t  followed by an integer. Hence there 
are only four possible cases. Hence we obtain after applying the final induction tactic (Line 5) the 
following four sub-goals, where i n t ,  n a t ,  i n t a  and n a t a  can be regarded as local variables 
(where Isabelle/HOL has generated the names):

g o a l  ( th e o r e m (comm) , 4 s u b g o a l s ) :
1. ! ! int nat. plus (I int) (N nat) = plus (N nat) (I int)
2. !!int inta . plus (I int) (I inta) = plus (I inta) (I int)
3. !!nat nata . plus (N nat) (N nata) = plus (N nata) (N nat)
4 .  ! !nat int. plus (N nat) (I int) = plus (I int) (N nat)

The a u t o  proof method is now capable of solving all 4 sub-goals by applying the definitions of 
function the p l u s  and simplifying the results -  Line 6 . Line 7 completes the proof with the proof 
command done.

One can also combine several proof steps to form tactics. For instance proof methods can be 
combined sequentially to form a tactic by separating them with a comma. This has been used 
in the proof of commutativity of p l u s  above, where a p p l y  ( i n d u c t _ t a c  b ,  a u t o )  is the 
proof command that applies the tactic ( i n d u c t _ t a c  b ,  a u t o )  to the proof state. This proof 
command causes Isabelle to first apply induction on the first sub-goal followed by an attempt to 
automatically solve the sub-goals. We could have used the symbol | instead of the comma, this 
would have caused Isabelle to first try and apply induction and only if this fails does Isabelle try 
to automatically solve the sub-goals. However, this would not be a good idea in this case as once
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we have performed induction we would like Isabelle to try and automatically solve the sub-goals, 
hence sequencing of proof commands is the correct choice.

Another useful way of creating tactics is to append a + at the end of the proof command a p p l y  . 
For instance the proof command

aPPly (simp) +

invokes the simplifier which solve the first sub-goal and then repeatedly invokes the simplifier upon 
the remaining sub-goals until the application of the simplifier fails at which point the application of 
the tactic will be complete. This can be very useful in combination with the tactic formed using a 
comma to repeatedly apply a sequential list of proof commands. This can result in a significantly 
shorter proof script.

4.1.6 Philosophy of Isabelle

Isabelle is based on a small core of axioms, all other functionality and theorems are derived from 
this small core. Hence as long as the core is consistent then everything which is derived from it will 
also be consistent. There are a few commands for which this doesn’t follow. Thus, these commands 
must be used with caution, for example the command

a x io m s  A1: "P"

states that the formula P always holds. A1 is a label so we can later reference the axiom. This can 
be used to state that false formulae hold, for instance the command

a x io m s  False_Axiom: "False"

states that the formulae False holds, this axiom has the name False—Axiom. It is now possible 
to prove every formulae true in Isabelle/HOL. This is done by proving true formulae true and 
when one has a false formulae, first reduce it to the sub-goal False.and then use the axiom 
False_Axiom to prove it holds.

4.2 H ets

The Heterogeneous Tool Set (Hets) [MML07] is a parsing, static analysis and proof management 
tool for various specification languages centred around C asl. H ets is an established tool and is 
developed mainly at Bremen University where work continues to add new features. H ets is an 
interactive system with a graphical user interface, recently command line support has been called 
for.

H ets is a system which keeps track of open proof goals (which are caused by theorems which 
have not yet been proven) and closed proof goals (which are caused by theorems which have been 
proven or disproven). H ets reads a specification text possibly including open proof goals, parses 
it, and then performs static analysis on it. After this, a graph of the structure of the specification is 
displayed in it’s user interface. Within this graph, the user can see which goals are open and which
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are closed. The user can also perform various operations on each node in the graph, for instance 
requesting the theory of such a node, HETS will then display the relevant information.

H ets  can interface with different theorem provers, including Isabelle and SPASS [WBH+02]. 
H ets  can call theorem provers with proof obligations and axioms given by specifications in order 
to discharge open proof goals. This allows the user to pass control over to a theorem prover and use 
that theorem prove to discharge open proof obligations. Figure 4.1 shows a screen-shot of H ets  
running on a specification containing open proof goals. There are two windows shown, one of 
which is the proof window that allows one to interface with various theorem provers. Various open 
proof goals can be seen in the top left of the proof window, a list of theorem provers can be seen in 
the centre right and various axioms and theorems which can be pass to the theorem prover can be 
seen in the lower half. Once the proof obligation is discharged, control returns to H ets  and H ets  
records what was proven by changing the colours of the nodes on the graph to green.

if)raw(Craph) 1. 1.1 -  Development Graph for AbstractFS

e e l
Selectee Coal(s):

Display j Prove ,; Show proof details

Status:

No Prover Running

Sublogic of Currently Selected Theory

Pick Theorem Prover

Select all ( Deselect all ) 

( Select open goals t More Am grained selection. . I

Tine grained com position of theory

Theorems to  include if provenAxioms to  include

Select all Deselect all 

■ Deselect former theorem s ) Select all ) | Deselect all

Show theory |t  Show selected theory |

Figure 4.1: Screen-shot of H e t s .

H et s  is also capable of taking a specification written in one specification language and then trans
forming it into a specification written in another language, whilst preserving the semantics of the 
original specification. An important instance of this is the ability to transform CASL specifications 
into suitable code for use in the theorem prover Isabelle/HOL. We mainly use H ets  as an input/out
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put tool, loading specifications written in C asl  and encoding them into Isabelle/HOL theory files. 
This is a non-trivial encoding and Csp-CASL-Prover exploits this functionality heavily.

Figure 4.2 shows the most important sub-logics and comorphisms which are currently supported by 
H e t s . Each of these sub-logics is implemented within H ets as an institution (see Section 3.1). The 
arrows are the institution representations (comorphisms) which allows one to transform specifica
tions from one institution into specifications from another institution (see Section 3.5). Arrow can 
be composed thus forming many transformations between various sub-logics. We use the transfor
mation along the path “CASL2PCFOL” -> “PCFOL2CFOL” -» “CFOL2IsabelleHOL” to translate 
our C a sl  specifications (the data part of our C sp -C a sl  specifications) into Isabelle/HOL code 
(see Section 6.4).

4.2.1 The Isabelle encoding of C a sl

H ets is able to automatically transform a C asl  specification into an Isabelle/HOL theory file 
whilst preserving the semantics of the original CASL specification. The logic of Ca sl  is Sub- 
PCFOLr (sub-sorted partial first order logic with sort generation constraints and equality) and the 
logic of Isabelle/HOL is obviously HOL (a higher order logic). H ets provides us with the follow
ing automatic translation from CASL to Isabelle/HOL: CASL to PCFOLr, PCFOLr to CFOLr, 
CFOLr to Isabelle/HOL.

There are other translations available, but we have chosen to use this translation as the axioms and 
functions which its provides are the most appropriate for use with our construction.

We describe the encoding using a running example 1 performed on the C a s l  specification shown 
in Figure 4.3. Here we have a specification called “SP” which has two sorts S and T. Sort S is a 
sub-sort of sort T. There is also a partial function from sort S to sort T.
The first translation from C a sl  to PCFOLr translates specifications written using the logic Sub- 
PCFOLr into specifications using the logic PCFOLr. This translation removes sub-sorting from 
the specification, this is done by encoding the sub-sorting using injection and projection functions 
(see Section 3.6.1) for details.

Figure 4.4 shows the resulting specification after the specification in Figure 4.3 has been translated 
from C a s l  to PCFOLr. We still have two sorts S and T, however they are no longer in a sub-sort 
relation. We still have our partial function f from S to T. Additionally we have two new func
tions: an injection function gn_inj_S_T from S to T and a partial projection function gn_proj_T_S 
from T to S. We also have new axioms that govern how the injection and projections functions 
behave. These new functions and axioms are exactly the same functions and axioms discussed in 
Section 3.6.1.

The second translation PCFOLr to CFOLr translates specifications written using the logic PC
FOLr  into specification using the logic CFOLr. This translation encoding a special element in 
each sort called the undefined element (bottom) and totalises partial functions using such undefined 
elements.

'For the running example we have use Hets version 0.8, for the rest of the thesis we have used Hets version 0.6. 
Both versions are identical for our purposes up to the naming scheme of the functions, predicates and axioms.
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Figure 4.2: Graph 
their comorphisms
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of the most important sub-logics currently supported by HETS, together with 
[Mos06],
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s p e c  SP = 
s o r t  S < T
o p  f: S ->? T 

e n d

Figure 4.3: A small example of a C asl specification (with no formulae) in the logic SubPFOLr.

s o r t s  S, T
o p  f : S ->? T
o p  gn__inj_S_T : S -> T
o p  gn_proj_T_S H 1 V ■o CO

forall x ,  y : S . gn_inj_S_T(x) =e= gn_inj_S_T(y) => x =e= y
% (ga_embedding_injectivity)%

forall x, y : T . gn_pro j__T_S (x) =e= gn_pro j_T_S (y) = >  x =e= y
% (ga_projection_injectivity)%

forall x : S . gn_proj_T_S(gn_inj_S_T(x)) =e= x % (ga_projection)%

Figure 4.4: Specification after encoding o f sub-sorting in the logic PFO Lr.

Figure 4.5 shows the resulting specification after the PCFOL= to CFOLr translation has been 
applied to the specification in Figure 4.4. We still have two sorts (S and T) and a pair of injec
tion and projection functions, however the projection function is now a total function. There are 
new undefined elements gn_bottom_S and gn_bottom_T along with two definedness pred
icates gn_defined for sorts S and T. Extra axioms have also been added, that govern how 
the predicates and undefined elements behave. The axioms ga_embedding_in jectivity, 
ga_pro jection_in jectivity and ga_pro jection have been translated to work with 
the new undefined elements and predicates. The new predicates, undefined elements, axioms and 
translated axioms are the same as in Section 3.6.2.

The final translation CFOLr to Isabelle/HOL translates the syntax of CFOLr into the correct 
syntax for Isabelle/HOL. This translation also encodes sort generation constraints into FOLr (al
though, currently, this plays no role as we do not use sort generation constraints). As Isabelle/HOL 
has (to the best of our knowledge) not yet been formalised in the framework of an institution, this 
translation lacks the mathematical rigour of the previous translations.

Figure 4.6 shows the resulting Isabelle/HOL theory file 2 after the CFOL= to Isabelle/HOL transla
tion has been applied to the specification in Figure 4.5. This is basically just a syntactic translation 
from the logic CFOLr to Isabelle/HOL code. For instance the sort declarations have been changed 
into typedecl commands for Isabelle/HOL.

This translation has produced a shallow encoding of C asl inside Isabelle/HOL (no deep-encoding

2 A header and a line stating the point between the signature extension and the axioms needs to be added to this code 
in order for it to be a valid Isabelle/HOL theory file.
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s o r t s  S, T
o p  f : S -> T 
o p  gn_bottom_S 
o p  gn_bottom_T 
o p  gn_inj_S_T : 
o p  gn_proj_T_S 
p r e d  gn_defined 
p r e d  gn_defined

: S 
: T
S -> T 
: T -> S 
: S 
: T

. exists x : S • gn_defined(x) % (ga_nonEmpty)%

forall x : S • not gn_defined(x) <=> x = gn_bottom_S
% (ga_notDefBottom)%

. exists x : T • gn_defined(x) % (ga_nonEmpty_l)%

forall x : T • not gn_defined(x) <=> x = gn_bottom_T
% (ga_notDefBottom_l)%

forall x_l : S . gn_defined(gn_inj_S_T(x_l)) <=> gn_defined(x_l)
% (ga_totality)%

forall x_l : S . gn_defined(f(x_l)) => gn_defined(x_l)
% (ga_strictness)%

forall x_l : T . gn_defined(gn_proj_T_S(x_l)) => gn_defined(x_l)
% (ga_strictness_l)%

forall x, y 
=> gn_inj_ 

=> x =

: S . gn_defined(x) & gn_defined(y)
S_T(x) = gn_inj_S_T(y) & gn_defined(gn_inj_S_T(x)) 
y & gn_defined(x) % (ga_embedding_injectivity)%

forall x, y 
=> gn_proj 

=> x =

: T 
_T_ 
y &

. gn_defined(x) & gn_defined(y)
S(x) = gn_proj_T_S(y) & gn_defined(gn_proj_T_S(x)) 
gn_defined(x) % (ga_projection_injectivity)%

forall x : S . gn_defined(x) => gn_proj_T_S(gn_inj_S_T(x)) = x 
& gn_defined(gn_proj_T_S(gn_inj_S_T(x))) % (ga_projection)%

Figure 4.5: Specification after encoding of partial functions the in logic FOLr
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typedecl S 
typedecl T 

consts
X_f :: "S => T" ( " f [3] 999)
X_gn_bottom_S :: "S" ("gn'_bottom'_S")
X_gn_bottom_T :: "T" ("gn'_bottom'_T")
X_gn_inj_S_T :: "S => T" ("gn'_inj'_S'_T/' (_')" [3] 999)
X_gn_proj_T_S :: "T => S" ("gn'_proj'_T'_S/' (_')" [3] 999) 
gn_definedXl :: "S => bool" ("gn'_defined''/'(_')" [3] 999) 
gn_definedX2 :: "T=>bool" ("gn'_defined''''/'(_')" [3] 999)

instance S :: type .. 
instance T:: type ..

ga_nonEmpty [rule_format] : "EX x. gn_defined'(x)"

ga_notDefBottom [rule_format] :
"ALL x. (" gn_defined'(x)) = (x = gn_bottom_S)"

ga_nonEmpty_l [rule_format] : "EX x. gn_defined'' (x)"

ga_notDefBottom_l [rule_format] :
"ALL x. (~ gn_defined'' (x)) = (x = gn_bottom_T)"

ga_totality [rule_format] :
"ALL x_l. gn_defined'' (gn_inj_S_T(x_l)) = gn_defined' (x_l)" 

ga_strictness [rule_format] :
"ALL x_l. gn_defined'' (f(x_l)) — > gn_defined'(x_l)" 

ga_strictness_l [rule_format] :
"ALL x_l. gn_defined'(gn_proj_T_S(x_l)) --> gn_defined'' (x_l)"

ga_embedding_injectivity [rule_format] : "ALL x. ALL y.
gn_defined'(x) & gn_defined'(y) — >
gn_inj_S_T(x) = gn_inj_S_T(y) & gn_defined'' (gn_inj_S_T(x)) — > 
x = y & gn_defined'(x)"

ga_projection_injectivity [rule_format] : "ALL x. ALL y.
gn_defined'' (x) & gn_defined'' (y) — >
gn_proj_T_S(x) = gn_proj_T_S(y) & gn_defined'(gn_proj_T_S(x))
— > x = y & gn_defined' ' (x)"

ga_projection [rule_format] : "ALL x. gn_defined'(x) — >
gn_proj_T_S(gn_inj_S_T(x)) = x & 
gn_defined'(gn_proj_T_S(gn_inj_S_T(x)))"

Figure 4.6: Specification encoded within Isabelle/HOL.
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of C a s l  in Isabelle/HOL exists). This means that the semantic objects are encoded directly in 
Isabelle/HOL without any syntax (see [NvOPOO] for further details of shallow and deep encodings). 
The typedecl commands that have been produced extend the signature with loosely specified 
types that Isabelle/HOL requires types to be non-empty. This matches the fact that C a s l  also 
requires sorts to be non-empty.

Using this encoding we can now translate any CASL specification into an Isabelle/HOL theory file 
with the same semantics. We use this feature for part of the translation of Csp-C a sl  specifications. 
In particular we encode the data part of a CSP-CASL specification into Isabelle/HOL using the exact 
method described here.

4.3 CSP-Prover

Csp-Prover [IR05, IR06, IR] is an interactive theorem prover built upon Isabelle/HOL. CSP-Prover 
is dedicated to refinement proofs within the process algebra CSP [Hoa85, Ros98]. It is generic in 
the models of Csp that can be used. Currently the trace model T  and the stable-failures model T  
are available, while implementations of the models 1Z and A/* are well underway. The stable failures 
model has been shown to be complete [IR06].

CSP-Prover provides a deep-encoding of CSP within Isabelle/HOL (i.e., the syntax and semantics 
of Csp processes have been encoded within Isabelle/HOL). Consequently, it offers a CSP process 
type ' a proc, where ' a is an Isabelle/HOL type variable. This type variable can be instantiated 
with any Isabelle/HOL type. For instance the type int proc is the type of CSP processes where 
communications are integer values (values of type int).

Csp-Prover supports two methods for allowing the user to prove process refinements, namely syn
tactical and semantical proofs.

Semantical proofs evaluate the denotational semantics of Csp processes and compare the denota
tions. For example, when working in the traces model, it is common to be proving equality between 
sets of traces of CSP processes as part of a process refinement proof. Semantical proofs tend to be 
more challenging than syntactical proofs.

Syntactical proofs transform the syntax of C sp  processes into equivalent CSP processes via CSP 
laws, until syntactical identity is reached. Csp-Prover provides a large collection of such C sp laws 
and tactics. Such tactics combine C sp laws to provide powerful proof principles. These CSP laws 
have been proven to be correct with respect to the semantics. Hence one can use them without 
looking into their semantics, which means that proofs of process refinements can remain purely 
syntactical.

During this project we have only used syntactic proofs.

4.3.1 The encoding

Csp-Prover provides a deep encoding of CSP in Isabelle/HOL. As part of this encoding there is a 
recursive data type 'a proc along with other types representing the semantic domains for each 
model. For instance ' a domT is the type representing the semantic domain of the traces model
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T , which is a set of traces over the type ' a which satisfy a healthiness condition. Similarly there 
is a type ' a domF which represents the semantic domain of the stable failures model T .  As the 
semantic domain of the stable failures model consists of pairs of traces and failures (which satisfy 
some healthiness conditions), the definition of the type ' a domF uses the type of traces ' a domT. 
Hence the deep encoding reflects the relationship between the CSP traces model T  and the stable 
failures model T .

Finally, semantic maps have also been encoded into Isabelle/HOL. These map processes to the 
semantic domain of each CSP model. For instance, there is a semantic map [_]r : ' a proc =>■ 
' a domT which maps processes to the semantic domain of the traces model T. Similarly, there 
is a semantic map for the stable failures model T ,  |_Jjc- : ' a  proc => ' a  domF which maps 
processes to the semantic domain of the stable failures model.

4.3.2 CSP process refinements

Each Csp model defines a notion of refinement between two CSP processes. The simplest notion 
of refinement is within the traces model T , where a process Q is a refinement of a process P if and 
only if all the possible sequences of communications that Q can perform are also possible for P. 
This is formally written as

P C7- Q traces(Q) C traces(P)

where the function traces{P) is defined as the set of all possible sequences which the process P can 
engage in. The process STOP is a traces refinement of every process as it communicates no events. 
Trace refinements can be written within Csp-Prover as

t h e o r e m  "P <=T Q"

in order to create a new theorem that states that Q is a traces refinement of P.
Refinement within the stable failures model (JF) is defined as

P Q traces(Q) C traces(P) Afailures(Q) C failures{P) 

where failures{P) is the set of all P ’s failures. This can be written similarly in Csp-Prover as 

t h e o r e m  "P <=F Q"

in order to setup a stable failures refinement theorem.

In Csp, deadlock is represented by the process Stop. A process is deadlock- free, if it never 
reaches a state equivalent to Stop [IRar]. Stable failures refinement preserves deadlock freedom
i.e., if P Cj- Q and P is deadlock free then Q is also deadlock free. We use this fact to prove (see 
Section 7.2) deadlock freedom of an electronic payment system standard, namely EP2 [ep202].

4.3.3 Syntactic proofs without tactics

We give no examples of semantic proofs in Csp-Prover as we only use syntactical proofs within 
this project. The CSP-Prover User Guide [IR07] provides detailed examples of how to use both 
semantic proofs and syntactical proofs.
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To perform a syntactic proof (without using tactics) one must apply Csp laws which Csp-Prover 
provides to discharge the proof obligations. The Csp-Prover User Manual calls this manual syn
tactical proofs. All the CSP laws that are provided have been proved correct at the semantic level, 
which means we can use them without looking in to their semantics.

First we briefly present an example from [IR07] for syntactic proofs, whilst explaining the Csp 
laws that are used. We wish to prove that the processes (a -> P) I [{a}] | (a ->  Q) and a
-> (P I [{a}] I Q )are equivalent within the stable failures model.

The first process (a -> P) I [{a}] | (a ->  Q) is the process which has two sub processes, 
namely, a process that communicates an a action and then behaves like the process P and a pro
cesses that communicates an a action and then behaves like the process Q. Both these sub-processes 
synchronise over the set {a}. This means that the process (a -> P) I [{a}] | (a ->  Q) can 
only perform the action a if both sub-processes are ready to engage in the event a.
The second process a -> (P I [{a}] | Q) is similar in that it communicates the action a
and then behaves like the process (P I [{a}] I Q), which is the process formed when the sub
processes P and Q synchronise over the set {a}.
In the following code, lines 1 and 2 create the theorem while the rest prove it.

lem m a syntactical_proof:
" (a -> P) I[{a}]| (a -> Q) =F 

a p p ly  (rule cspF_rw_left) 
a p p ly  (rule cspF_decompo) 
a p p ly  (simp) 
a p p ly  (rule cspF_step) 
a p p ly  (rule cspF_step)

a p p ly  (rule cspF_rw_left) 
a p p ly  (rule cspF_step)

a p p ly  (rule cspF_rw_right) 
a p p ly  (rule cspF_step)

a p p ly  (rule cspF_decompo) 
a p p ly  (simp) 
a p p ly  (simp) 
d o n e

a -> (P I[{a}]| Q)

The above proof works by carefully controlling which CSP laws are applied to specific sub-expression 
at the correct time. This involves decomposing the process to the correct level, then applying the 
Csp step laws and finally applying some simplification.

After lines 1 and 2 are loaded, we have the following goal3:

g o a l  (lem m a (syntactical_proof), 1 s u b g o a l ) :
1. (a -> P) I[{a}]| (a -> Q) =F a -> (P |[{a}]| Q)

3Some of the header information which Isabelle displays with the goals have been omitted.
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The main idea for discharging this goal is to:

1. re-formulate the sub-processes in terms of the Action Prefix operator using step laws,

2. apply the Action Prefix step law, and

3. perform simplification of the remaining goal.

We cannot apply certain useful CSP laws including step laws until we have isolated one of the 
sides of the equation. We do this by applying the rules cspF_rw_left or cspF_rw_right to 
rewrite either the left of right side of the goal, respectively. This will cause the goal to be split into
two sub-goals linked with a schematic variable, hence isolating one of the sides of the equation.

After Line 3 is loaded we have the following sub-goals:

g o a l  (lem m a (syntactical_proof), 2 s u b g o a l s ) :
1. (a -> P) I [{a}] | (a -> Q) =F 7P2.0
2. ?P2.0 =F a -> (P I[{a}]| Q)

where ?P2 . 0 is a schematic variable used to link both sides of the equation. We would now like 
to transform the process a -> P into the equivalent process ? x:{a} -> P (and similarly for 
the process a -> Q).
First, we have to decompose the generalised parallel operator in order to access the left and right 
operands of the generalised parallel operator. We do this in line 4 by using the cspF_decompo 
law which results in the following sub-goals:

g o a l  (lem m a (syntactical_proof), 4 s u b g o a l s ) :
1. {a} = ?Y1
2. a -> P =F ?Q1.1
3. a -> Q =F ?Q2.1
4. ?Q1.1 |[?Y1]| ?Q2.1 =F a -> (P 1 [{a}] | Q)

Here sub-goals 2 and 3 are our left and right operands of the generalised parallel operator, which 
are now isolated.

Next we use the Csp step laws to transform our two processes a ->  P and a ->  Q into the 
processes? x :{ a }  ->  P and ? x :{ a}  ->  Q, respectively. After lines 5-7 are loaded we have 
the following goal:

g o a l  (lem m a ( s y n t a c t i c a l _ p r o o f ) ,  1 s u b g o a l ) :
1. (? x :{a } -> P) I[ { a } ] | (? x : { a }  -> Q) =F a -> (P I[ { a } ] I Q)

Here the process on the L.H.S is now ready to have the parallel operator reduced, this can only be 
done when the two sub-processes have a prefix choice operator at their heads. We now have this 
situation which we did not have at the start of this proof.

Now we can reduce the action prefixes with the outer parallel operator (lines 9-10). First by isolat
ing the left hand side of the equation and then applying the CSP step laws. We now turn our attention 
to the right hand side of the equation. We need to transform the process a - >  (P | [ { a } ] |  Q) 
into the equivalent process ? x :{a}  -> (P I [{a}] I Q). This is done with lines 12-13.
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Finally some simplification within the sub-expressions completes the proof, lines 15-18. Full de
tails can be found in [IR07].

This proof is quite intimately linked with the structure of the CSP processes in the theorem. The 
user spends most of the time decomposing the processes in the correct way in order to apply the 
CSP step laws. If the process changes slightly the proof will have to be modified accordingly. We 
can (usually) improve on this by using tactics in syntactical proofs.

4.3.4 Syntactic proofs with tactics

By using tactics we can automate much of the syntactic proofs, the CSP-Prover User Manual calls 
this semi-automatic syntactical proofs. Here we prove the same theorem but using tactics which 
are provided by Csp-Prover. This example is also covered in detail within the Csp-Prover User 
Guide [IR07].

lem m a tactical_proof:
" (a -> P) 1[{a}]| (a -> Q) =F a -> (P I [{a}] | Q) "

a p p ly (tactic {* cspF_hsf__tac 1 * })
a p p ly (auto)
d o n e

Here lines 1 and 2 state the theorem while line 3 does most of the work, by using a powerful tactic. 
Line 4 performs some simplification via the a u t o  proof method. Finally, Line 5 completes the 
proof.

The tactic cspF_hsf_tac is one of the most useful tactics which Csp-Prover provides. This 
tactic works by first applying the tactics cspF_hsf_left_tac and cspF_hsf_right_tac 
in sequence. The tactic cspF_hsf _left_tac is used to sequentialise processes on the left hand 
side of equations. This is achieved by applying certain Csp laws to the processes much like in 
the previous example in Section 4.3.3. The net result of this tactic is that it is usually capable of 
decomposing processes and applying the CSP step laws at relevant places.

We use the tactic cspF_hsf_tac in Line 3 which first tackles the left hand side followed by the 
right hand side. The sub-processes a ->  P a n d a  ->  Q are transformed into the equivalent pro
cesses ? x:{a} -> P and ? x : {a} -> Q, respectively. Then the generalised parallel operator 
is transformed with the C sp step laws. Then the tactic moves to the right hand side where the pro
cess a -> (P | [{a}] | Q) is transformed into the process ? x:{a} -> (P | [{a}] I Q). 
Finally some simplification via the auto proof method completes the proof (line 4).

Here we have seen that the tactics provided by CSP prover can automate much of the proof script. 
This results in elimination of a lot of the monotonous proof steps and also completes the proof in a 
much simpler manner where the high level proof structure is usually visible.
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Csp-Casl [Rog06] is a comprehensive language which combines processes written in CSP [Hoa85, 
Ros98] with the specification of data types in Casl [Mos04, BM04]. The general idea is to de
scribe reactive systems in the form of processes based on Csp operators, where the communications 
of these processes are the values of data types, which are loosely specified in Ca sl . All standard 
Csp operators are available, such as multiple prefix, the various parallel operators, operators for 
non-deterministic choice, communication over channels. Concerning Casl features, the full lan
guage is available to specify data types, namely many-sorted first order logic with sort-generation 
constraints, partiality, and sub-sorting. Furthermore, the various CASL structuring constructs are 
included, where the structured f r e e  construct adds the possibility to specify data types with initial 
semantics. Csp-Casl specifications can be organised in libraries. This allows to specify a complex 
system in a modular way.

Syntactically, a Csp-Casl specification with name N  consists of a data part Sp, which is a struc
tured Casl specification, an (optional) channel part Ch to declare channels, which are typed ac
cording to the data part, and a process part P written in CSP, within which Casl  terms are used as 
communications, CASL sorts denote sets of communications, relational renaming is described by a 
binary CASL predicate, and the CSP conditional construct uses CASL formulae as conditions -  see 
Figure 5.1 for an instance of this scheme:

5.1 Modelling systems in Csp-Casl

Here we discuss the modelling of systems in Csp-Ca sl . We first present four core examples 
taken from [Rog06], which capture the central challenges of theorem proving for Csp-Casl-

ccspec N  = data Sp channel Ch process P end

56
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Section 5.1.1. We then present specifications of a remote control unit [Kah07] -  Section 5.1.2. 
Finally, we present the C sp-Casl specification of a dialog within the EP2 system -  Section 5.1.3.

5.1.1 The four core examples

We present here four specifications taken from [Rog06], which represent the four core cases of 
C sp-Casl specifications. All other more complex specifications are just various instances and 
combinations of these four core cases.

c c s p e c  tcsl =
d a t a  s o r t  S, T

o p s  c : S;
o p s  d: T;

p r o c e s s
tcsl = c -> SKIP |I d *-> SKIP

e n d

Figure 5.1: Core C sp-Casl example 1: No sub-sorting or partial functions.

The first core example is shown in Figure 5.1. The data-part has two sorts S and T which are not re
lated in any way and two constants c and d of sorts S and T, respectively. The process part consists 
of a single process where two sub-processes synchronise over the parallel CSP operator. The first 
process communicates the constant c then terminates while the second process communicates the 
constant d and then terminates. The two sub-processes can only synchronise if they communicate 
the same event, i.e., if c = d in all models. Analysis of the C sp-Casl semantics leads us to the 
fact that this is not the case and c is not equal to d in all models. Hence this process deadlocks 
and is equivalent to the process STOP within the stable failures model T . A prover for C sp-Casl 
should be able to prove this process equivalence.

c c s p e c  tcs2 = 
d a t a  s o r t s  S < T

p r o c e s s
tcs2 c -> SKIP

e n d

Figure 5.2: Core C sp-Casl example 2: Sub-sorting without partial functions.

The second core example (Figure 5.2) is a modification of the first (Figure 5.1), where the data-part 
has an axiom added. The axiom states that the constants c and d are equal. This has the result that 
the sub-processes do synchronise, as c = d in all models. Hence the process is equal to the process 
c -> SKIP within the stable failures model T . A  prover for C sp-Casl should also be able to 
prove this process equivalence.
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c c s p e c  tcs3 =
d a t a  s o r t s  S, T

o p s  f : S ->? T
. forall x : S . not def f(x);

p r o c e s s
tcs3 = ? x: S -> f(x) -> SKIP [I T |]

7 y: T -> (if def y then P else Q)
e n d

Figure 5.3: Core CSP-CASL example 3: Partial functions without sub-sorting.

The third core example (Figure 5.3) starts fresh and introduced undefined terms. The data-part 
specifies that there are two sorts S and T which are not related. There is also a partial function from 
sort S to sort T and a single axiom that states that the result of the function f is undefined for all 
inputs of sort S. The process part again consists of a single process which is the synchronisation of 
two sub processes over sort T. The first sub-process receives an element x of sort S then commu
nicates the event f (x) and finally terminates. The second sub-process receives a value y of sort T 
and if this value is defined behaves like the process P else it behaves like the process Q.
As these two sub-processes synchronise over the sort T, the undefined result of f (x) is received 
and bound to the variable y. This raises the question whether y is defined in all models. The result 
of this question dictates the remaining behaviour of the second sub-process. The variable y is un
defined in all models according to the C sp-Casl semantics. Hence the entire process is equivalent 
to the process ? x :S  ->  f (x) ->  (SKIP [| T |]  Q ) within the stable failures model T . 
Once again, a prover for C sp-Casl should be able to prove this process equivalence.

c c s p e c  tcs4 = 
d a t a  s o r t s  A, B, C <

forall x: A 
forall x: C

not def f(x) 
not def g (x);

p r o c e s s
tcs.4 f(a) -> SKIP g(c) -> SKIP

e n d

Figure 5.4: Core C sp-Casl example 4: Sub-sorting with partial functions.

The final core example (Figure 5.4) is a more complex C sp-Casl specification than the previous
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three examples, containing both sub-sorting and partial functions. There are four sorts A, B, C 
and S with sorts A, B and C all being sub-sorts of sort S. There are several constants, namely: a 
of sort A, bl and b2 of sort B and c of sort C. There are two partial functions, namely, f from 
sort A to sort A and g from sort C to sort C. The data-part concludes with two axioms that state 
that the results of the functions f and g are undefined for all inputs. The process-part consists of 
a single processes composed of two sub-processes synchronising over the parallel CSP operator. 
The first sub-process communicates the value f  (a ) and terminates while the second sub-process 
communicates the value g (c ) and terminates.

As sorts A and C have a common super-sort S and f (a ) and g (c ) both result in undefined ele
ments in all models, the sub-processes successfully synchronise. Hence the entire process is equiv
alent to the process g(c) -> SKIP within the stable failures model T . Once again, a prover for 
C sp -C asl should be able to prove this process equivalence.

If these four core examples can be dealt with in a prover for Csp-Casl, then the prover should be 
able to handle all possible Csp-Casl refinement proofs. In Chapter 7 we show that our approach 
for CsP-CASL-Prover can indeed deal with these four core examples.

5.1.2 Case study - Remote control unit

The following presents a specification of a remote control unit. These results are from personal 
communication with Temesghen Kahsai, Markus Roggenbach, and Holger Schlingloff [Kah07].

We specify a remote control unit (RCU) which, for example, could interface and control a television 
via the user pressing various buttons on the remote control. When a button is pressed the remote 
control unit sends (usually using infrared light) a signal to another device, for instance a television.

On an abstract level, a remote control unit can be described as having a number of buttons and a 
light emitting diode {LED), which is capable of transmitting keycodes (for instance bitvectors of 
length 16). The buttons can only be pressed one at a time. Internally, the remote control unit stores 
a table which maps buttons to keycodes. Whenever a button is pressed, the remote control unit 
sends the corresponding keycode via the LED. This is captured by the C sp -C asl specification in 
Figure 5.5.

c c s p e c  AbstractRCU= 
d a t a  s o r t s  Button, Signal

o p s  codeOf: Button -> Signal; 
p r o c e s s

AbstractRCU = ? x :Button -> codeOf(x) ->  Skip
e n d

Figure 5.5: Csp-Casl specification for an abstract remote control unit.

In the 1970’s a typical basic remote control unit (BRCU) had at least 11 buttons (bo.. .bg,bonOff)• 
An agreed standard for remote control units defines the signals that are emitted by the LED. Signals 
are to be bitvectors of length 16 with the following structure: the first 4 bits identify the company,
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the next 5 bits represent the device type (e.g., TV, DVD, etc.), while the last 7 bits identify which 
button was pressed. This can be captured by the C sp-Ca sl  specification in Figure 5.6.

c c s p e c  BRCU=
d a t a  s o r t s  Button, Signal

o p s  bO, bl, ... , b9, bOnOff: Button; 
free type Bit ::= 0 I 1 

then List [ s o r t  Bit] 
then

s o r t  Signal = {1 : List[Bit] . #1 = 16 } 
o p  codeOf: Button -> Signal;

prefix: List[Bit] = [0000]++[01010] 
a x io m s

codeOf(bO) = prefix ++ [0000000];

codeOf(b9) = prefix ++ [0001001]; 
codeOf(bOnOff) = prefix ++ [1111111]; 
forall b: Button . exists 1: List[Bit] .

codeOf(b) = prefix++l
p r o c e s s

BRCU = ? x: Button -> codeOf(x) -> Skip 
e n d

Figure 5.6: Csp-Ca sl  specification for a basic remote control unit.

The specification of the basic remote control unit is a refinement according to to the C sp -C asl  
refinement' notions of the specification of the abstract remote control unit [Kah07], i.e.,

pf - rpf

AbstractRCU BRCU.

A prover for C s p -C asl  should also be able to prove this refinement between the specification of  
the abstract remote control unit and the specification of the basic remote control unit.

Soon after this first generation of basic remote control units, the market demanded improved remote 
control units with more functionality and, thus, more buttons. In particular, buttons bvoiup and bvoidn 
for controlling the volume and bchup and bchdn for cycling though channels were introduced.

5.1.3 Case study - EP2

As a running example and case study, we choose a dialog of the EP2 system [ep202]. This dialog 
has been modelled as a specification in Csp-C a sl-  see [GRS05] for further details of the modelling 
approach. The data-part of the C sp-C a sl  specification for EP2 can been seen in Figure 5.7, while 
the process-part can be seen in Figure 5.8.

In this dialog, the credit card terminal and another component, the so-called acquirer, are supposed 
to exchange initialisation information over the channel C _ S I _ I n i t .  The messages on this channel 
can be classified into the following types:
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• SessionStart and SessionEnd,
• ConfigDataRequest and ConfigDataResponse,
• D_SI_Init_ConfigDataNotification and 
D_SI_Init_ConfigDataAcknowledge,

• D_SI_Init_RemoveConfigDataNotification and 
D_SI_Init_RemoveConfigDataAcknowledge,

• D_SI_Init_ActivateConfigDataNotification and 
D_SI_Init_ActivateConfigDataAcknowledge.

Each of these message types are declared as sorts (Line 4 to Line 13 of Figure 5.7) in the specifica
tion.

In order to model the dialog properly, we need to ensure that certain message groups do not overlap,
i.e., messages of type SessionEnd, Conf igDataRequest,
D_SI_Init_ConfigDataNotification,
D_SI_Init_RemoveConfigDataNotification, and
D_SI_Init_ActivateConf igDataAcknowledge are never equal to each other (Lines 15 
to 37 of Figure 5.7).

Finally, we create constants of certain sorts (Line 39 to 43 of Figure 5.7) which are used in the 
process part as communications (see Figure 5.7).

The terminal initiates the dialog by sending a message of type SessionStart, see the process 
Ter_Init in Figure 5.8. The acquirer receives this message, see the process Acq_Init.
In Acq_Conf igManagement, the acquirer then takes the internal decision either to end the dia
log by sending the message seM of type SessionEnd or to start one of four data exchanges with 
the terminal. The terminal, on the other side, waits in the process Ter_Conf igManagement for 
a message from the acquirer. Depending on the type of this message, the terminal ends the dialog 
with SKIP, engages in a data exchange, or executes the deadlock process STOP. The system con
sists of the parallel composition of terminal and acquirer. Should one of these two components be 
in a deadlock, the whole system will be in deadlock.

5.2 C s p -C a sl  semantics and refinement

Semantically, a C sp-C a sl  specification is a family of process denotations for a C sp  process, where 
each model of the data part Sp gives rise to one process denotation. The definition of the language 
C sp -C asl  is generic in the choice of specific C sp semantics. For example, all denotational Csp  
models mentioned in [Ros98] are possible parameters, these include the traces model T , the stable 
failures model F , the failures /  divergences model fif  and, the newly defined stable revivals model 
n  [Ros05].

The semantics of C sp -Ca sl  are defined in a two-step approach1, see Figure 5.9. Given a CSP- 
C a sl  specification (Sp, P), in the first step we construct for each data model M  of Sp a CSP process

'We omit the syntactic encoding of channels into the data part.
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l i b r a r y  EP2

s p e c  D _ A C L _ G e t I n i t i n i t i a l i s a t i o n  = 
s o r t s  D _ S I _ I n i t _ S e s s i o n S t a r t ,

D _ S I _ I n i t _ S e s s i o n E n d ,
D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ,
D _ S I _ I n i t _ C o n f i g D a t a R e s p o n s e ,
D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n ,
D _ S I _ I n i t _ C o n f i g D a t a A c k n o w l e d g e ,  
D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n ,  
D _ S I _ I n i t _ R e m o v e C o n f i g D a t a A c k n o w l e d g e ,  
D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n ,  
D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a A c k n o w l e d g e  < D _ S I _ I n i t

f o r a l l  x :D _ S I _ I n i t _ S e s s i o n E n d ;
y : D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ S e s s i o n E n d ;
y : D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ S e s s i o n E n d ;
y : D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ S e s s i o n E n d ;
y : D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)

f o r a l l  x :D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ;
y : D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ;
y : D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ;
y : D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)

f o r a l l  x :D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n ;
y : D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)  

f o r a l l  x : D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n ;
y : D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)

f o r a l l  x : D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n ;
y : D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n  . n o t  (x=y)

o p s seM: D _ S I _ I n i t _ S e s s i o n E n d ;
cdrM: D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ;
cdnM: D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n ;
rcdnM: D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n ;
acdnM: D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n

end

Figure 5.7: CASL specification of the data-part of an EP2 dialog between the terminal and the 
acquirer.
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c c s p e c  G e t I n i t i a l i s a t i o n D a t a  =
d a ta  D _ A C L _ G e t I n i t i a l i s a t i o n

c h a n n e ls
C _ S I _ I n i t :  D _ S I _ I n i t

p r o c e s s

l e t
T e r _ I n i t  =

G _ S I _ I n i t  !? s e s s i o n S t a r t : D _ S I _ I n i t _ S e s s i o n S t a r t  
- >  T e r _ C o n f i g u r a t i o n M a n a g e m e n t

T e r _ C o n f i g u r a t i o n M a n a g e m e n t  = C _ S I _ I n i t  ? c o n f i g M e s s : D _ S I _ I n i t  ->  
i f  ( c o n f i g M e s s :D _ S I _ S e s s i o n E n d )  t h e n  

S k i p
e l s e  i f  ( c o n f i g M e s s : D _ S I _ I n i t _ C o n f i g D a t a R e q u e s t ) t h e n  

C _ S I _ I n i t  !? r e s p o n s e :  D _ S I _ I n i t _ C o n f i g D a t a R e s p o n s e  
->  T e r _ C o n f i g u r a t i o n M a n a g e m e n t  

e l s e  i f  ( c o n f i g M e s s  : D _ S I _ I n i t _ C o n f i g D a t a N o t i f i c a t i o n )  t h e n  
C _ S I _ I n i t  !? a c k n o w l e d g e :  D _ S I _ I n i t _ C o n f i g D a t a A c k n o w l e d g e  
->  T e r _ C o n f i g u r a t i o n M a n a g e m e n t  

e l s e  i f  ( c o n f i g M e s s  : D _ S I _ I n i t _ R e m o v e C o n f i g D a t a N o t i f i c a t i o n )  t h e n  
C _ S I _ I n i t  !? a c k n o w l e d g e :  D _ S I _ I n i t _ R e m o v e C o n f i g D a t a A c k n o w l e d g e  
- >  T e r _ C o n f i g u r a t i o n M a n a g e m e n t  

e l s e  ( c o n f i g M e s s  : D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a N o t i f i c a t i o n )  t h e n  
C _ S I _ I n i t  !? a c k n o w l e d g e :
D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a A c k n o w l e d g e  
- >  T e r _ C o n f i g u r a t i o n M a n a g e m e n t

A c q _ I n i t  =
C _ S I _ I n i t  ? s e s s i o n S t a r t :  D _ S I _ I n i t _ S e s s i o n S t a r t  

- >  A c q _ C o n f i g u r a t i o n M a n a g e m e n t

A c q _ C o n f i g u r a t i o n M a n a g e m e n t  =
C _ S I _ I n i t  ! seM - >  S k i p  

I~I C _ S I _ I n i t  ! cdrM
- >  C _ S I _ I n i t  ? r e s p o n s e :  D _ S I _ I n i t _ C o n f i g D a t a R e s p o n s e  
- >  A c q _ C o n f i g u r a t i o n M a n a g e m e n t  

I “ I C _ S I _ I n i t  ! cdnM
- >  C _ S I _ I n i t  ? a c k n o w l e d g e :  D _ S I _ I n i t _ C o n f i g D a t a A c k n o w l e d g e  
- >  A c q _ C o n f i g u r a t i o n M a n a g e m e n t  

I~I C _ S I _ I n i t  ! rcdnM
- >  C _ S I _ I n i t  ? a c k n o w l e d g e :
D _ S I _ I n i t _ R e m o v e C o n f i g D a t a A c k n o w l e d g e  
- >  A c q _ C o n f i g u r a t i o n M a n a g e m e n t  

I~I C _ S I _ I n i t  ! acdnM
- >  C _ S I _ I n i t  ? a c k n o w l e d g e :
D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a A c k n o w l e d g e  
- >  A c q _ C o n f i g u r a t i o n M a n a g e m e n t

i n
A c q _ I n i t  | [ C _ S I _ I n i t  ] | T e r _ I n i t

end

Figure 5.8: A Csp-Casl specification of an EP2 dialog between the terminal and the acquirer.
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(Sp,P)

C asl

C sp  sem antics
(^ A f)M eM od (S p )

Figure 5.9: C sp-Ca sl  semantics.

P'(A(P(M))). To this end, we define for each model M, which might include partial functions, an 
equivalent model (3(M) in which partial functions are totalised. P(M) gives rise to an alphabet of 
communications A{j3{M)). In order to deal with CSP binding, we introduce variable evaluations 
v : X  —> P(M). With these notations we define the process P'(A(P(M))) := \P\%-$-+p(M), where 
0 is the empty evaluation from the empty set to the model P(M), i.e., P has no free variables. 
In the second step we point-wise apply a denotational CSP semantics. This translates a process 
P'(A(P(M))) into its denotation in the semantic domain of the chosen CSP model.

In the following we sketch the alphabet construction -  see [Rog06] for the full details. The purpose 
of the alphabet construction is to transform a C a s l  model into a set for use as an alphabet of 
communications in the process algebra CSP. C a s l  models are defined in two steps: First, we define 
what a model over a many-sorted signature is. Using this concept we define what a model over a 
sub-sorted signature is. For the sake of readability we repeat certain notions from Section 3.3.1.

A many-sorted signature E =  (S, TF, PF, P) consists of

• a set S of sorts,

• two 5* x S-sorted families TF = (TFw>s)w£s*,s£S and PF = (PFW}S)wes*,ses of total function 
symbols and partial function symbols, respectively, such that TFWyS D PFW S =  0 for each 
(w, s) e  S* x S , and

• a family P — (Pw)wgs* of predicate symbols.

Given a many-sorted signature E =  (5, TF, PF, P), a many-sorted H-model M  consists of

• a non-empty carrier set Ms for each sort symbol s E S,

• a partial function (fw,s)M ’ Mw —>• Ms for each function sym bol/ G TFWjS U PFWS, the 
function being total fo r /  E TFW>S, and

• a relation (jjw)m Q Mw for each predicate symbolp  G Pw.

Together with the standard definition of first order logic formulae and their satisfaction, this defini
tion yields the institution PFOLr, see [Mos02] for the details.

A sub-sorted signature E =  (S , TF,PF,P,  <) consists of a many-sorted signature (5, TF,PF,P) 
together with a reflexive and transitive sub-sort relation <sQ  S x S .  The relation < 5  extends point- 
wise to sequences of sorts. With each sub-sorted signature E =  (S , TF,PF,P,  <) we associate a 
many-sorted signature E =  (S, TF, PF, P), which extends the underlying many-sorted signature
(S, TF, PF, P) with

•  a total injection function symbol i n  j : s —» /  for each pair o f sorts s <s s'
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•  a partial projection function symbol p r  : s' — for each pair of sorts s <s s', and

•  an unary membership predicate symbol ess, : s' for each pair of sorts s < 5  s'.

Sub-sorted E-models are many-sorted E-models satisfying in PFOLr the set of axioms /(E ), 
which prescribe how the injection, projection, and membership behave2. A typical axiom in /(E ) 
is i n  j 5 j(x) =  x  for s G S. Together with the definition of sub-sorted first order logic formulae and 
their satisfaction, this definition yields the institution SubPFOLr, see [Mos02] for the details.

The definition of the institution FinCommSubPFOLr provides the data-logic of the process part 
of a C sp -C asl  specification. It is a specialisation of the institution SubPFOLr: Only sub-sorted- 
signatures with finitely many sorts are allowed. Also, the notion of a model is changed: A data- 
logic E-model M  is the strict extension M  := ext(C) of an ordinary many-sorted model C over 
E =  (S, TF, PF, P) which satisfies in PFOLr the set of axioms /(E ). For the carrier sets, this 
extension is defined as: Ms =  ext(Cs) =  Cs U {JL} for all s G S, where _L £ Cs for all s G S. Given 
a model C, its extension ext(C) = M  is uniquely determined. Forgetting the strict extension results 
again in C.

A is a data-logic signature E =  (S, TF, PF, P, <) with local top elements, if for all u, u', s G S the 
following holds: if u, u' > s then there exists t G S with t > u,u'. Relatively to a model M  for a 
signature with top elements, we define an alphabet of communications

A(M) :=  (|+ |M S) ^
s€S

where (j,x) ~  (s',x!) iff either

• x = x' =  _L and there exists u G S such that s < u and s' <  u,

or

• 7^ 1 , there exists u G S such that s <  u and s' < u, and

•  for all u E S with s < u and s' <  u the following holds:

( i n j ^ V M  =  i n j (j/>ll)M(j/)

for s, s' G S, x  G Ms,xf G Ms>. For signatures with local top elements the relation ~  turns out to be 
an equivalence relation.

The following presents a C s p -Ca sl  refinement [Rog06] decomposition theorem which allows one 
to split a C sp-C a sl  refinement into a first refinement of the data part followed by a refinement of 
the process part. These results are from Temesghen Kahsai [Kah07].

For a denotational CSP model with domain V ,  the semantic domain of C sp -C a s l consists o f the 
class o f /-indexed families o f process denotations dM €  V,  i.e.,

( / m )m g /

where I  is the class o f SubPFOLr models.

2and also define how overloading works.
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We define Csp-C a sl  refinement between two semantic objects, denoted as by:

iff
r  C /  A VM' G / ' : dM> Cv  d 'M,,

Here / ' C  I  denotes inclusion of model classes over the same signature, and C p is the refinement 
notion in the chosen Csp model V.  In the traces model T  we have for instance T C7- T  
T' C  T, where T and T1 are prefix closed sets of traces3. The definitions of Csp refinements for 
V  G {T, fif, J7, X, ZV}, c.f. [Ros98], which are all based on set inclusion, yield that C sp -C a s l  
refinement is a preorder.

We can now characterise data refinement between two semantic objects denoted as by:

if
/ ' C 7  A V M 'G / '  :dM> =d'M,

Here I’ C l  denotes inclusion of model classes over the same signature.

We can also characterise process refinement in a similar way at the semantic level, denoted as 
by:

(dM')M'a' P̂ v  (d'M,)M>€i> 
if

VM' G / ' : dw  Qv d'M,

We denote a C sp -C a sl  specification as a pair (Sp, P), where Sp and P  represent the specification of 
the data part and the process part, respectively. We can now lift the notion of C sp -Ca sl  refinement 
at the semantic level (~»d) to Cs p -C a sl  refinement on specifications, denoted by c^ p f . Note 
that in the data refinement is not necessary for the domain t> to be specified as the process part 
always remains constant. C sp -C a sl  refinement on two specifications is defines as:

(sP,p)  c^ ef (sP' , n
iff

Mod(iSp') C Mod (Sp) A 
VM' G Mod(Sp') : [ [ /^ ^ -^ (a / 'J c s p  [ M 0:0->^(m')1csp

where mod(Sp) is the class of models for the specification Sp.

We can now use this to characterise data refinement and process refinement at the specification 
level. We obtain the following data refinement at the specification level for a. fixed signature and a 
fixed process-part, which we denote as :

data Sp process P end } , ,
data  I f l .E ( J 5 p )  =  E (V ),

j  ^  J | I 2. Mod(S//) c  Mod (Sp)
data Sp process P end J

3We follow here the CSP convention, where T' refines T is written as T O-p T', i.e., the more specific process is on
the right-hand side of the symbol.
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We also obtain the following process refinement at the specification level for afixed data-specification 
Sp, which we denote as

data Sp process P end |  for ^  g Mod(Sp) ;

data Sp process F> end J ‘ t  & • csp

Here, [ J c s p  is the evaluation of processes according to the C sp denotational semantics, and
0 : 0 —> /3(M) is the empty evaluation into the CommSubPFOLr model (3{M).

Theorem 5.1: C sp-C a sl  refinement between two specifications can be decomposed into first a 
data refinement followed by a process refinement i.e.,

(sP,p ) ( s p ' , n

(,Sp,P) d“ a (Sp',P) and (Sp',P) s s g  (Sp'.P1)

Proof. We prove this theorem by showing both directions of the equivalence individually:

“= > ” Let (Sp, P) c^ » p f (Sp',P '), by definition this holds i f f :

1. Mod(Sp') C Mod(Sp)

2. VM' G M od(V ) : [[P ]* ^  c s p  E d [[P']0:0_  c s p

Data refinement (Sp,P) d̂ a (Sp',P) holds if Mod(Sp') C Mod (Sp) and E(Sp) = E(Sp'), 
this holds thanks to (1). Process refinement (Sp', P) (Sp', P') holds if VM G Mod (5/?) : 
m ^j0:0- / 3(M)lcsp E d  [I^ 'l0:0^ /3(M)]csp- This is proven by (2) condition of C sp-C asl  
refinement.

“<*=” Let (Sp,P) d̂ a (Sp',P) if Mod (Sp') C Mod (Sp) A E(Sp) = Z(Sp'), and (Sp’,P) %°p 
(Sp ',? ). This holds if VM' G M od(V ) = [ M 0:0^ /3(m)]csp E d  [ M ^ / w J c s p .  By 
Taking both of the conditions we prove (Sp, P) cS~>pf (Sp', P').

The last direction can also be proven using the preorder property of C sp -C a sl  refinement. □

However is not possible to decompose a C sp-C a sl  refinement between specifications in to first a 
process refinement followed by a data refinement, i.e.,

(Sp,P) c^ rpef (Sp',Pf)
¥=>

(Sp,P) %*£ (Sp,P ') and (Sp,P') d̂ a (Sp',P')

To prove this, we give a counter-example that shows that performing a process refinement followed 
by a data refinement leads to an inconsistent specification on the data-part.

Example 5.2: As a counter-example, we consider the following Csp-C a sl  specifications:

03
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c c s p e c  F i r s t  = 
d a t a  s o r t s  S,

o p s  a : S ;

p r o c e s s
a ->  S to p

c c s p e c  Second  = 
d a t a  s o r t s  S, T 

o p s  a : S ;
b : T;
f :  S ->  T 

a x io m
n o t  ( f  (a) = b)

p r o c e s s
i f  f ( a ) = b  t h e n  b ->  S to p  

e l s e  a ->  S to p

The Csp-Casl specification F i r s t  is a refinement of the Csp-Casl specification Second ,  i.e.,

C C ” 3TGfFirst Second

This holds if and only if Mod(5p5C(:ô ) C M o d and V M '  e  Mod{Spsecond) • 

tttt^F^rl0:0^ /3(M)]csp Qv l{Psecondb.^/3(M)]csp- Let M  be a model of SpFirst such that 
M(f)(M(a)) = M(b).  Let us consider now the process refinement and analyse the set of traces of
[•^Second] a nd  [ P J  •

Evaluation Traces
[ P Second}

iPflrst]
{ ( ) , # ) }

{(),M(a)} {(),M(b)}  as b and a are from different sorts. Therefore {PFirst} !2r \P Second} • This
shows that we can’t perform first a refinement on the process part and then on the data part.

The other direction of the implication

(Sp,P) (Sp,?) and (Sp.F) d“a (Sp',P)

(Sp,P) c5 f (Spf.P1) 

holds thanks to the preorder property of Csp-Casl refinement.



Chapter 6

Encoding the Csp-Casl semantics in 
Isabelle/HOL

In this chapter we first discuss the architecture of Csp-CASL-Prover and how it uses the exist
ing tools Hets (see Section 4.2) and CSP-Prover (see Section 4.3). We then describe an algo
rithm which translates the data-part of a Csp-Casl specification into a semantically equivalent 
Isabelle/HOL theory, adds the semantic construction of Csp-Casl , and theorems with proofs that 
justify this construction. This theory file is ready for use within CSP-Prover.

6.1 Architecture of CSP-CASL-Prover

Csp-CASL-Prover uses the existing tools Hets and CSP-Prover discussed in Sections 4.2 and 4.3, 
respectively. Its proposed architecture is shown in Figure 6.1. The overall idea is that Csp-Casl- 
Prover takes a Csp-Casl process refinement statement as its input. The Csp-Casl specifications 
involved are parsed and transformed by CSP-CASL-Prover into a new file suitable for use in Csp- 
Prover. This file can then be directly used within CSP-Prover to interactively prove if the Csp-Casl 
process refinement holds. For example, deadlock freedom of a system of processes can be proven 
using such a refinement statement, see Section 7.2 for details.

Contents
6.1 Architecture of CSP-CASL-Prover.......................
6.2 The algo rithm ..................................
6.3 Producing the h e a d e r ......................
6.4 Producing the H e t s  encoding ........
6.5 Producing the alphabet and justification theorems
6.6 Producing the integration theorem s....................
6.7 Producing the data theorems place holder............
6.8 Producing the process translations.......................
6.9 Dependencies.....................................

69
71
72
72
73
92
93 
93 
95

69



6.1 Architecture of CSP-CASL-Prover 70

CSP-CASL Prover

CSP-ProverHets +

Theory Files

Isabelle
Hets

Translated 
Process & Data 

Refinement 
«Sp],[P])<=([Sp'],[P'])

Process & Data 
Refinement 

(Sp,P) <= (Sp’.P’)

Refinement 
Holds / 

Doesn’t Hold

Theorem
Prover

Translator

*
Interactive 

Theorem Proving

Figure 6.1: Diagram of the basic architecture of Csp-CASL-Prover.

Csp-CASL-Prover re-uses the existing functionality of H e ts  in order to produce part of the file that 
will be used as input to CSP-Prover. We take the data part of a C sp -C a s l specification and translate 
this into Isabelle/HOL code via HETS. This generates (in general) several types in Isabelle/HOL, 
which need to be transformed into one alphabet to become the parameter of the CSP-Prover process 
type '  a p r o c .  This is expressed in Figure 6.1 by HETS being labelled as “Hets +”, which rep
resents the extra encoding that needs to be done. This is discussed in more detail in the following 
sections.

Hets Translation of CASL \

Alphabet Construction & Justification Theorems

Integration Theorems /
Data Theorems \

Process Theorems )

To be au to m a tica lly  
gen erated  by C SP-C A SL  
Prover.

A pp lica tio n  d ep en d e n t, to  
be  provided by th e  user.

Figure 6.2: Structure of a translated C sp-C asl specification using Csp-CASL-Prover.

The final form of the file which is produced by Csp-CASL-Prover (i.e., H ets and the extra encod
ing) is labelled as “Translated Processes and Data Refinement” in Figure 6.1. Figure 6.2 shows how 
this file is split up into five distinct parts. The first three parts can all be automatically generated 
from the original C sp-C asl specification. The final two parts are dependent on the application. 
Csp-CASL-Prover provides place holder code that the user can fill in and expand for these two 
parts.

T h e  first part of the file s h o w n  in Figure 6.2 “H e t s  Translation of C A S L ” is the direct e n c o d i n g  o f  the 
data part of the C sp-C asl specification w h i c h  is p r o d u c e d  b y  H ets-  see Section 6.4. T h e  s e c o n d  
part “A l p h a b e t  Construction &  Justification T h e o r e m s ” provides the C sp-C asl semantics, n a m e l y  
the alphabet of c o m m u n i c a t i o n s ,  over w h i c h  C sp processes c a n  b e  constructed -  see Section 6.5.
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s p e c  running_example =

s o r t s  R, S, T, U 
s o r t s  S,U < T

o p  f : S -> S

e n d

Figure 6.3: CASL specification -  Running example.

Main:
ProduceHeader 
ProduceHetsEncoding
ProduceAlphabetAndJustificationTheorems 
ProducelntegrationTheorems 
ProduceDataTheoremsPlaceHolder 
ProduceProcessTranslations

Figure 6.4: Csp-Casl main algorithm.

The third part “Integration Theorems” provides the user with a mechanism to lift proof obligations 
on processes to proof obligations on data in the H ets encoding only -  see Section 6.6. These 
integration theorems are crucial in keeping the final proof of the process refinement small, readable 
and manageable -  see Section 7.2 for an example. The forth part is where the user shall write 
auxiliary theorems and proofs which are helpful for the specific process refinement to be proven -  
see Section 6.7. The final part is where the user shall provide the proof of the refinement between 
the processes -  see Section 6.8. This is the users main goal.

6.2 The algorithm

The algorithm takes a C sp-C asl specification and produces a theory file which is suitable for use 
within Isabelle/HOL and CSP-Prover such that there is a single type Alphabet which can be 
used within CSP-Prover in order to create processes which use data specified by CASL as commu
nications i.e., the type Alphabet proc. Such a theory file consists of five main sections (see 
Figure 6.2) and a small header.

Most of the steps in the algorithm are calls to sub-algorithms (we use sub-algorithms in order to 
split up the main algorithm into smaller more manageable parts), perform simple loops or output 
strings. Such strings are Isabelle/HOL commands which will be interpreted by Isabelle/HOL when 
the theory file is loaded.

We describe the algorithm using a procedural pseudocode style. We use the CASL specification 
in Figure 6.3 as a running example of how our algorithm works on the data-part of Csp-Casl
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specifications. The specification in Figure 6.3 has four sorts R, S, T and U. Sorts S and U are sub
sorts of T, while sort R is completely unrelated. We also have a single total function f  from S to 
S. The sub-sort structure will become important in the example when we construct the eq function 
(see Section 6.5.2).

The starting point of our algorithm can be seen in Figure 6.4, which simply calls many sub
algorithms. Each of the sub-algorithms corresponds to a section of the theory file that is produced 
(see Figure 6.2). First we produce a small header that makes the file a valid theory file in Is
abelle/HOL with support for CSP-Prover. The H ets encoding of the data-part is then produced 
followed by the construction of the alphabet and justification theorems which rely on the construc
tions of the H ets encoding. Integration theorems are then produced which provide support for 
proving properties on the alphabet. Next a place holder for user specific theorems is produced. 
Finally, the translated processes are produced which use terms built from the alphabet as commu
nications.

We will now describe each of the sub-algorithms within the remainder of this chapter.

6.3 Producing the header

The sub-algorithm ProduceHeader is very simple and is used to produce the header of the 
theory file. It outputs a series of strings which when interpreted perform actions in Isabelle/HOL. 
The following Isabelle/HOL code is produced by this sub-algorithm:

t h e o r y  name 
im p o r t s  CSP_Model 
b e g i n

Line 1 sets up the name o f the theory file, this name should be the name of the CSP-CASL spec
ification (although the name can be anything without affecting the operation of the algorithm or 
resulting theory file). Line 2 outputs the statement that the theory file is based on the Csp model 
CSP_Model (a theory file provided by CSP-Prover). For this thesis we only use the stable failures 
model T  and hence w e use the text CSP_F for the parameter CSP_Model, an alternatively would 
be CSP_T if  one wishes to use the traces model T  instead. This allows us later to access the type 
proc provided by CSP-Prover. Line 3 simply begins the main contents of the theory file.

We have now produced the header for a valid Isabelle/HOL theory file ready for the rest of the 
algorithm to produce the contents of it.

6.4 Producing the H e t s  encoding

The purpose of the sub-algorithm ProduceHetsEncoding is to represent the data-part of the 
C sp -C a s l specification in Isabelle/HOL so that we can build upon it later in the algorithm. The 
tool H e ts  (see Section 4.2) can already transform a CASL specification into Isabelle/HOL code. As 
our C sp -C a sl specification consists of a data-part (C a s l)  and a process-part (Csp) we use the tool 
H e ts  to transform the C a s l  part into Isabelle/HOL code. This translation is done via the encoding
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“CASL2PCF0L” -* “PCFOL2CFOL” -> “CF0L2IsabelleH0L”. This particular transformation 
encodes the sub-sort relation as a pair of total injection and projection functions between each pair 
of sorts in the sub-sort relation of the specification. It encodes partial functions (including the 
projection functions) as total functions by providing a unique undefined element called the bottom 
element for each sort. See Section 4.2.1 for details of the encoding.

The direct output of H e ts  (version 0.60) cannot be used as Isabelle/HOL code. This is because 
there is no theory header, which has been taken care of by the sub-algorithm ProduceHeader 
(see Section 6.3) and also because the Isabelle/HOL command

a x io m s

which states that axioms are to follow, needs to be added between the function declarations and the 
axioms produced by H ets.
Figure 6.5 shows the H ets encoding of the specification of our running example (Figure 6.3). Line 
30 has been added manually as described above. The dots “... ” stand for omitted code, which does 
not have relevance for our further discussions.

At this point we now have a theory file which models the data-part of a C sp-Casl specification. 
However there is no single data-type that can be used which represents all sorts in the specification. 
This functionality is produced by the sub-algorithm ProduceAlphabetAndJustificationTheorems 
(see Section 6.5).

6.5 Producing the alphabet and justification theorems

The sub-algorithm ProduceAlphabetAndJustificationTheorems (see Figure 6.6) is 
the core of the Csp-Casl encoding and calls a number of other sub-algorithms (again we use 
sub-algorithms to maintain readability). First a new type PreAlphabet is produced (Line 2) 
followed by a function eq which tests whether two elements of the PreAlphabet are equal 
(Line 3). As we have sub-sorting available in the Casl specification (data-part of the Csp-Casl 
specification), many values of type PreAlphabet will represent the same value. Hence we need 
to work with equivalence classes of PreAlphabet where all the elements within a class represent 
the same value. We can build the quotient of PreAlphabet over the function eq if the function 
eq forms an equivalence relation. Line 4 produces the theorems and proofs that are needed in order 
to establish the function eq as an equivalence relation. Line 5 then uses these theorems to create 
the Alphabet of communications which is the quotient of the PreAlphabet. Finally lines 6 
and 7 produce new types and functions over the type Alphabet which are used when defining 
Csp processes.

These sub-algorithms are described in the following sub-sections.

6.5.1 Producing the PreAlphabet

We need a way of collecting all the sorts of the Casl specification into a single type within Is
abelle/HOL. This is what the sub-algorithm ProducePreAlphabet does, which we now de-
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t y p e d e c l  R 
t y p e d e c l  S 
t y p e d e c l  T 
t y p e d e c l  U

c o n s t s
f :: "S => S II ("f' (_')" [10] 999)
g__bottom_l : "R" ("g'_'_bottom")
g__bottom_2 : "S" ("g'_'_bottom''")
g__bottom_3 II p  II ("g'_'_bottom''''")
g__bottom_4 "U" ("g'_'_bottom'_3")
g__def ined_l : "R => bool" ("g'_'_defined' (_' )" [10] 999)
g__def ined_2 : "S => bool" ("g'_'_defined' ' ' ( [10] 999)
g__def ined_3 II p => bool" ("g'_'_defined' r t r ' (_' )" [10] 999)
g__def ined_4 : "U => bool" ("g'_'_defined' _3' (_' ) " [10] 999)
9 __in j_l : : "S => T" Cg'_'_inj' (_') " [10] 999)
g__inj_2 : : c ii V H " ("g'_'_inj" ' (_') " [10] 999)
g__proj_l : : AIIH S" ("g'_'_proj'(_')" [10] 999)
g__proj_2 : : AIIH U" ("g'_'_proj" ' ( _ ' )  " [10] 999)

in s t a n c e  R : : t y p e  
b y  i n t r o _ c l a s s e s  
in s t a n c e  S ::  t y p e  
by i n t r o _ c l a s s e s  
in s t a n c e  T : :  t y p e  
by i n t r o _ c l a s s e s  
in s t a n c e  U ::  t y p e  
by i n t r o _ c l a s s e s

ax iom s

g a _ n o t D e f B o t t o m :  " A L L  x .  ( ~  g  d e f i n e d ( x ) )  =  ( x  =  g  b o t t o m ) "

g a _ n o t D e f B o t t o m _ l : " A L L  x .  ( ~  g __ d e f i n e d ' ( x ) ) =  ( x  =  g _____ b o t t o m ' ) "

g a _ n o t D e f B o t t o m _ 2 : " A L L  x .  ( ~  g __ d e f i n e d ' '  ( x ) ) =  ( x  =  g __ b o t t o m ' ' ) "

g a _ n o t D e f B o t t o m _ 3 : " A L L  x .  ( ~  g __ d e f i n e d _ 3 ( x ) ) =  ( x  =  g __ b o t t o m _ 3 ) "

g a _ t o t a l i t y _ l : " A L L  x _ l . g  d e f i n e d ' '  ( g  i n j  ( x _ l )  ) =  g  d e f i n e d '  ( x _ l ) "
g a _ t o t a l i t y _2 : " A L L  x _ l . g  d e f i n e d ' ' ( g  i n j ' ( x _ l ) )  =  g  d e f i n e d _3  ( x _ l ) "

g a _ e m b e d d i n g _ i n j e c t i v i t y : " A L L  x .  A L L  y .  g  d e f i n e d '  ( x )  & g  d e f i n e d '  ( y )
— > g  i n j  ( x )  =  g  i n j  ( y )  & g __ d e f i n e d '  ' ( g _i n j  ( x )  )
— > x  =  y  & g  d e f i n e d '  ( x )  "

g a _ e m b e d d i n g _ i n j e c t i v i t y _ l : "ALL x .  ALL y .  g d e f i n e d _ 3 ( x )  &
g d e f i n e d _ 3 ( y )
— > g i n j '  (x)  = g i n j '  (y) & g d e f i n e d ' '  (g i n j '  (x)  )
— > x = y & g  d e f i n e d _ 3 ( x ) ". . .

Figure 6.5: H ets encoding of Figure 6.3 in IsabelleHOL.
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ProduceAlphabetAndJustificationTheorems: 
ProducePreAlphabet 
ProduceEqFunction
ProduceProofOfEquivellenceRelation 
ProduceAlphabetAsQuotient 
ProduceBarTypes 
ProduceChooseFunctions

Figure 6.6: C sp-Casl sub-algorithm to produce the alphabet and justification theorems, 

scribe.
H ets has already been used to translate the C asl specification into Isabelle/HOL code (see Sec
tion 6.4). As a result we have a type representing each sort in the specification. We use the 
datatype command to create the disjoint sum of the types representing the sorts. This is done 
by the following Isabelle/HOL code

d a t a t y p e  PreAlphabet = C_A Sort_A | ... | C_N Sort_N

where Sort_A ... Sort_N are variables to be replaced by the types which H ets has produced 
and C_A ... C_N are variables standing for unique constructors for each sort. In the theory files 
we have produced using this algorithm, we have used the unique constructors C_A, C_B, C_C,
. . . ,  etc. where A, B and C are the names of the sorts.

Performing the algorithm described above on our running example yields the following Isabelle- 
HOL code:

d a t a t y p e  PreAlphabet = C_R R I C_S S I C_T T I C_U U

Our running example has four sorts R, S, T and U. Hence, we need four constructors, one per sort. 
We have chosen to name the constructors C_S for each sort S in order to maintain readability.

6.5.2 Producing the Eq function

We now need a function which checks whether two elements of the PreAlphabet are equal 
with respect to the C sp-Casl semantics [Rog06]. This function is produced by the sub-algorithm 
ProduceEqFunction, which we now explore.

This C sp-Casl encoding only works correctly for specifications with local top elements. We 
assume that the specification has local top elements, which results in a simpler definition of equality 
which we now specify as the behaviour of the eq function. The static analysis which is performed 
by the C sp-Casl parser [Gim07] will reject any C sp-Casl specifications which do not have local 
top elements. If the input specification does not have local top elements then our algorithm will 
produce Isabelle/HOL code that has undefined behaviour with respect to the proof scripts when run 
with Isabelle/HOL. This will most likely manifest itself with the failure of the transitivity proof 
and the proofs for the integration theorems. However, it is impossible for this code to lead to
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inconsistencies in Isabelle/HOL if it is used. If a proof fails, then the user will not be able to 
continue and will not be able to use the constructions that our algorithm has tried to produce.

The definition of the relation ~  from the C sp-Casl semantics [Rog06] (see Section 5.2) is captured 
here by the function eq and some auxiliary functions. As we are working with a specific sub-sort 
graph for a given specification, the definition of our eq function can be slightly simpler than its 
semantic counterpart.

As bottom is treated as a normal element in our encoding and the up-casting of bottom (an injection 
function applied to bottom) always yields the bottom element of the super-sort, its behaviour in the 
e q  function is the same as the behaviour for defined elements.

Two elements are equal when they are equal in all super sorts (and possibly the current sort if this 
is applicable i.e., when both elements are from the same sort). Two elements are never equal if they 
are from two disconnected components of the sub-sort graph. We use the functions which Hets 
provides to inject elements to the super sorts and check their equality at the appropriate sort levels.

This is realised via several functions which make use of currying. The functions are dependent on 
the C sp-Casl specification and hence the algorithm generates different Isabelle/HOL code (which 
describe the functions) for each C sp-Casl specification used with the algorithm.

Firstly a function called compare_with_S is produced for each sort S in the C sp-C asl speci
fication. This function will take an element of type S and an element of type PreAlphabet and 
checks whether they are equal. These functions are then used in the function eq. We will explain 
these function in reverse order, starting with the eq function.

The eq function is defined using Isabelle/HOL’s primitive recursion scheme (although we do not 
use it recursively) by the following code:

c o n s t s
eq :: "PreAlphabet => PreAlphabet => bool" 

p r im r e c
eq_A: "eq(C_A ax) = compare_with_A ax"

eq_N: "eq(C_N nx) = compare_with_N nx"

where there is one line per sort T describing the behaviour of the function in the case that the first 
parameter is of sort T, which is recognised by the constructor C_T. Each definition then uses the 
already defined function compare_with_T by calling it with the first element stripped of the 
constructor (the variable tx in the line for sort T) and the second element of type PreAlphabet 
(via currying).

The above procedure yields the following code for our running example: 

c o n s t s
eq :: "PreAlphabet => PreAlphabet => bool" 

p r im r e c
eq_R: "eq(C_R r) = compare_with_R r" 
eq_S: "eq(C_S s) = compare_with_S s"
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eq_T: "eq(C_T t) = compare_with_T t" 
eq_U:" eq(C_U u) = compare_with_U u"

Here we have defined the eq  function using four auxiliary functions which have to be previously 
defined (these are explained next). The behaviour of this function is defined by case distinction on 
the form of the first argument. We have chosen here to use instead of the variable x, a lower case 
version of the sort names for the variables. This convention helps the code maintain its readability.

In order for the eq function to be defined, all the functions compare_with_S (for each sort 
S) must be previously defined. Such functions check whether the first element is equal to the 
second element. There is one function per sort S in order to deal with the case that the second 
element matches the sort. The first element has been already been stripped of the constructor (in 
the definition of eq and hence is of type S for the function compare_with_S for sort S. The 
second element is of type PreAlphabet. These functions are also defined using the primitive 
recursion scheme in a similar manner to the eq function by the following Isabelle/HOL code for 
each sort S:
c o n s t s

compare_with_S :: "Sort => PreAlphabet => bool"
p r im r e c

compare_w i t h_S_A: "compare_with_S Sx (C_A Ay) = formula_A

compare_with_S_N: "compare_with_S Sx (C_N Ny) = formula_N

where there is again a line defining the behaviour for each sort T. The formula differs from line to 
line and is dependent on both the types of the elements we are comparing and the sub-sort relation 
of the specification. In the definition of the formula (f ormula_A ... f ormula_N) we make use 
of both parameters which were originally of type PreAlphabet but have now been stripped of 
the constructors. Thus we know their underlying types (as each line deals with a specific pair of 
types from the PreAlphabet).
Each formula must return the Boolean true if and only if both elements are equal at all super sort 
levels (and also the current level if both elements are of the same sort). If both elements are from 
disconnected components of the graph the formula is simply False. As we know the sub-sort 
relation and the types of both elements the formula can be written explicitly for each case.

We define the general form of the formula -  for arbitrary sorts S and T which are in the same 
connected component of the sub-sort graph -  as:

sx = ty & g inj_sl(sx) = g inj_tl(ty)
& . . .
& g inj_sn(sx) = g inj_tm(ty)

Here sx  is the first element and t x  is the second element, we assume here that they are of types 
S and T, respectively. Both elements have been stripped of the constructors. If sort S is the same 
sort as T then we must perform the first test in the formula (sx  = ty ) ,  otherwise this is omitted. 
There is a test for each common super-sort for S and T where sx  and t y  are up-cast to that sort 
and tested for equality at that sort level. To do this we use the injection function which the H e ts



6.5 Producing the alphabet and justification theorems 78

encoding provides (see Section 6.4), these are represented above by the functions g  in  j _ s l
... g  i n  j _ s n  and g  i n  j _ t  1 ... g  i n  j_tm. Each of these tests is inserted into the formula
by using the Boolean and operation (&) to join the tests. This definition causes each formula to be 
different depending on the sorts and sub-sort relation.

We repeat here the definition of the ~  relation as defined in the C sp -C asl semantics (see Sec
tion 5.2). (s,x) ~  {s',x') iff either

• x =  x! =  _L and there exists u E S such that s < u and s' < u,

or

• x ^ i y ^ i ,  there exists u € S such that s < u and s' <  u, and

• for all u E S with s < u and s' < u the following holds:

( i n j  (J|I4))m M  =  in

for 5, s' G S, x G Ms,x! G Ms>.

Our implementation of the relation ~  is the eq  function which uses the c o m p a r e _ t o  functions. 
Our functions are defined individually for each Csp-Casl specification. Our definition of ~  coin
cides with the definition from the Csp-Casl semantics [Rog06].

R T
\

S U

Figure 6.7: Sub-sort graph of the Csp-Casl specification shown in Figure 6.3.

We now present the code for the function compare_with_S which is produced for our running 
example. The code for the other three comparison functions is similar. Figure 6.7 shows the sub
sort graph of the specification of our running example.

c o n s t s
compare_with_S iis => PreAlphabet => bool 1?

p r im r e c
"compare_with_S sx (C_R ry) = False"
"compare_with_S sx (C_S sy) = ( (sx = sy) &

(g__inj (sx) = g__inj(sy)))"
"compare_with_S sx n 1 H ty) = (g__inj (sx) = ty) "
"compare_with_S sx 0 1 c uy) = (g__inj (sx) = g__in j' (uy) ) "

We define the function by case distinction on form of the second element. We know the first element 
is of type S and hence we have four cases. In the first case of the first element being of sort S and 
the second of sort R, the formula is simply False as the sorts are from disconnected components 
of the graph and hence the elements sx and ry are never equal. In the second case of the second 
element being of the underlying sort S we have to compare the variables at both sort levels S and 
T. We do this by testing if sx and ry are equal and if their up-casting to sort T are equal. The third 
and forth cases are similar, as both elements are from differing sorts then they cannot be checked
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ProduceProofOfEquivellenceRelation: 
ProduceProofOfReflexivityOfEq 
ProduceProofOfSymmetryOfEq 
ProduceProofOfTransitivityOfEq

Figure 6.8: C sp-Cas l sub-algorithm to produce header of theory file.

for equality at their local sort level. There is only one common super sort T. In the third case, sx  
is up-cast to sort T where it is compared for equality with ty. In the forth case both sx  and uy are 
up-cast to sort T and compared for equality.

So far we have created a header, produced a data encoding via H ets and now produced a new 
type PreAlphabet with a function which tests whether two elements of the PreAlphabet are 
equal according to the C sp-Casl semantics and the C sp-Casl specification which the algorithm 
is performed against. Next we produce theorems and proofs which establish the function eq as an 
equivalence relation.

6.5.3 Producing the proof that the function e q  is an equivalence relation

The algorithm always produces a function eq that defines a relation over the type P reAlphabet. 
In this section we prove that the function eq actually defines an equivalence relation. The sub
algorithm shown in Figure 6.8) (ProduceProofOfEquivellenceRelat ion) works by call
ing a number of other sub-algorithms (again we use sub-algorithms to maintain readability). Line 
2 produces the theorem and proof that the eq function is reflexive. Line 3 produces the theorem 
and proof that the eq function is symmetric. Finally, Line 4 produces the theorem and proof that 
the function eq is transitive. These theorems are then used within Section 6.5.4 to construct the 
quotient.

6.5.3.1 Producing the proof of reflexivity of Eq

The goal of the sub-algorithm ProduceProofOfReflexivityOfEq is to produce the theo
rem and proof that the function eq  is reflexive. This theorem and proof turns out to be very simple 
as both the theorem and proof are completely independent of the specification.

The following Isabelle/HOL code is produced by the sub-algorithm
ProduceProofOfReflexivityOfEq:

1 theorem eq_refl: "eq x x'
2 apply(induct x)
3 apply(auto)
4 done

This particular piece of code does not alter depending upon which C sp-Cas l specification the 
algorithm is performed upon.
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1 ProduceProofOfSymmetryOfEq:
2 output: theorem eq_symm: " [| eq x y | ] ==> eq y x"
3
A

output: apply(induct x)
T
5 for (i=0; i<n; i++)
6 output: prefer (i*n)+l
7
8

output: apply(induct y)
o
9 output: apply(auto)

10 output: done

Figure 6.9: C sp-Casl sub-algorithm to produce theorem and proof that eq is symmetric.

The main idea behind this code is to induct the variable x fully, which will result in finite case 
distinction as we are inducting over the type PreAlphabet which is defined as a non-recursive 
data type. Once we have fully inducted the variable x all the sub-goals (of which there will be one 
for each sort) will have no variables and Isabelle/HOL will be able to automatically solve them.

Line 1 sets up the theorem with the name eq_ref 1 that an object of type PreAlphabet is equal 
with itself. As there is only a single variable the proof is very simple. Line 2 applies induction 
to the variable x, which generates a sub-goal for each sort in the specification because there is a 
constructor for each sort in the PreAlphabet. Line 3 then solves all the sub-goals automatically 
as all the sub-goals reduce to simple equations of the form x=x. Line 4 completes the proof with 
the Isabelle command done.
We have now established the function eq is reflexive and move on to establishing that it is also 
symmetric.

6.5.3.2 Producing the proof of symmetry of Eq

The goal of the sub-algorithm ProduceProofOf Symmet ryOfEq (see Figure 6.9) is to produce 
the theorem and proof that the function eq is symmetric. This theorem and proof turns out to be 
a little more complex that that of reflexivity (see Section 6.5.3.1) because the proof structure uses 
induction based on the number of sorts in the specification.

The main idea behind this piece of code is similar to the idea behind the code for the proof of 
reflexivity. First, we induct all the variables fully, which will leave us with a finite case distinction 
with no variables. Then we allow Isabelle/HOL to automatically solve all the sub-goals.

Line 2 creates a theorem with the name eq_symm that states that the function eq is symmetric. 
Line 3 then applies induction on the variable x which results in one sub-goal for each sort because 
there is a constructor for each sort in the definition of the type PreAlphabet. The loop (Line 
5) allows us to deal with each of these sub-goals in turn. We now wish to perform induction on 
the variable y in each sub-goal, however as we induct the variable y in the first sub-goal, another 
sub-goal is generated for each sort. We solve this by first pulling each sub-goal to the top of the 
list (Line 6) and only then applying induction to the top sub-goal (Line 7). At the end of the
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induction there are n2 sub-goals, where n is the number of sorts in the specification. Finally we 
allow Isabelle/HOL to automatically solve all the sub-goals in Line 9 using a similar technique to 
the reflexivity proof (see Section 6.5.3.1). Finally, Line 10 completes the proof.

By using this procedure on our running example, we derive the following code:

lemma eq_symm: " [ 1 eq x y |] ==> eq y x"
apply(induct x)
prefer 1 apply(induct y)
prefer 5 apply(induct y)
prefer 9 apply(induct y)
prefer 13 apply(induct y)
apply(auto)
done

After the induction on x is performed in Line 2, we are left with 4 sub-goals. For each of these sub
goals we must induct the variable y, we do this in Lines 3 to 6. Finally, we solve all n2 sub-goals 
by using the automatic proof method (Line 7) and complete the proof in Line 8 using the command 
done.  We now show the proof state after Line 3 has been executed.

p r o o f  (prove): step 3

f i x e d  v a r i a b l e s :  x, y

g o a l (lem m a (eq_symm), 7 s u b g o a l s ) :
1 . !R Ra. eq (C_R Ra) (C_R R) ==> eq (C__R R) (C__R Ra)
2 . !S R. eq (C_R R) (C_S S) ==> eq (C_S S) 0 1 R)
3 . !T R. eq (C_R R) (C_T T) ==> eq (C_T T) 0 1 R)
4 . !U R. eq (C_R R) (C_U U) ==> eq (C_U U) (C_R R)
5 . !S . eq (C_S S) y ==> eq y (C_S S)
6 . !T . eq (C_T T) y ==> eq y (C_T T)
7 . !U . eq (C_U U) y ==> eq y (C_U U)

This shows why the prefer commands are necessary. We have to first pull sub-goal 5 to the top 
of the sub-goal list before we can apply induction to the variable y. This is the purpose of Line 4 
of the proof script.

We have now produced the theorem and proof that the function eq is symmetric.

6.5.3.3 Producing the proof of transitivity of Eq

We need one final proof to conclude that the function eq forms an equivalence relation. The 
theorem and proof of transitivity turns out to be more complicated due to the bottom elements that 
H ets has introduced. The sub-algorithm ProduceProofOfTransitivityOfEq first needs 
to generalise two sets of axioms that H ets has produced. Once this has been done the proof of 
transitivity of eq can be completed. The first set of axioms concerns the decomposition of the larger
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injection functions into two smaller injection functions, while the second set of axioms concerns 
the injectivity of the injection functions.

We first deal with the decomposition lemmas. Hets produces axioms of the form (where n is a 
natural number and is omitted in the case of zero):

1 ga_transitivity_n : "ALL x. g_defined(x)
2 — > g inj'' (g___inj (x) ) = g_inj' (x)
3 & g defined' ' (g inj' ' (g_inj (x) ) ) "

The exact injection and definedness functions will change depending on the specification. This 
particular axiom states that the injection function g  i n j '  can be decomposed into the injec
tion function g  i n j  followed by the the injection function g  i n  j ' ' when the arguments are
defined. As we have a unique bottom element for each sort which is preserved by the injection 
functions, these axioms generalise so that they also hold for the bottom elements, hence they hold 
for all elements. The generalisation of these axioms are the first set of lemmas that need to be 
produced in order to prove transitivity of the function eq.

For each of the transitivity axioms that Hets produced, we produce the following Isabelle/HOL 
code (where n is a natural number and is omitted in the case of zero):

1
2
3
4
5
6
7
8 
9

10
11
12
13
14

lemma inj_decomposition_n: "g inj'' (g inj(x)) = g inj' (x)"
apply(case_tac "g defined'' (g inj'' (g inj(x)))")

(* Case 1 *)
apply(subgoal_tac "g defined(x)")
apply(insent ga_transitivity_n) 
apply(simp)
apply(simp add: 'ga_totality_axioms')

(* Case 2*)
apply(subgoal_tac g defined''(g inj'(x))")
apply(simp add: 'ga_notDefBottom_axioms') 
apply(simp add: 'ga_totality_axioms')

done

Where the exact injection functions in Line 1 should match the Hets axiom that we are generalising 
(we work here with the Hets axiom stated above).

The lemma is called i n  j _ d e c o m p o s i t i o n _ n  where n should match the Hets axiom number
(or omitted in the case of zero) and states that the injection function g  i n j ' can be decomposed
into the injection function g  i n j  followed by the the injection function g  i n j ' ' for any
element x.

We prove this by performing a case distinction upon the definedness of the left hand side. This is 
performed in Line 2 where the exact definedness function will be different for each lemma pro
duced, but only one definedness function will be type correct in this context.
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Case 1: In the first case we know that the left hand side is defined.

In order for the right hand side to be equal to the left hand side, the right hand side must also 
be defined. By the totality of the injection functions and the assumption that the right hand side 
is defined, we can conclude that x is also defined, thus we add this as a sub-goal in Line 5 (the 
exact definedness function will be different for each lemma produced, but only one definedness 
function will be type correct in this context). This adds an assumption to the first sub-goal. We can 
then use the H ets axiom which we are generalising and simplification to prove that the decom
position holds for defined elements, lines 6 and 7. Finally we have to prove that the sub-goal that 
we introduced on Line 5 holds. We do this by performing simplification with the added axioms 
ga_totality_axioms which state that the injections applied to defined elements yield defined 
elements (Line 8).

Case 2: In the second case we know that the left hand side is undefined. Hence, the right hand
side must also be undefined if the equality holds. We assume the right hand side is undefined by 
adding this as a sub-goal in Line 11 (again the exact definedness function will change, but only one 
will be type correct in this context). As both sides are undefined, and there is a single undefined 
element (bottom) we know the equality holds. This is proven in Line 12 by adding the axioms 
that state the bottom element is unique (ga_notDefBottom_axioms).. Finally, we prove the 
sub-goal which we added as an assumption in line 11 in the same way as we proved the sub-goal 
in the first case, by performing simplification with the totality axioms (Line 13).

Our running example does not have any transitivity axioms generated by HETS. The code and 
proof produced by the above procedure is very similar to the next procedure, for which our running 
example does produce code.

We now have all the HETS transitivity axioms generalised as lemmas called inj_decomposit- 
ion_n (where n is a natural number and is omitted in the case of zero). These lemmas hold for all 
elements and not only defined elements.

The second set of lemmas that need to be produced are generalisations of the injectivity lemmas 
that H ets produced. The reasons for this are identical to the reasons for the transitivity axioms 
above and the production of the lemmas is almost identical to the production of the decomposition 
lemmas above.

H ets will have produced several axioms of the form:

ga_embedding_injectivity_n : "ALL x. ALL y.
g defined(x) & g defined(y)
— > g inj(x) = g inj(y) & g defined'(g inj(x))
— > x = y & g defined(x)"

Where n is a natural number and is omitted in the case of zero. The exact injection and definedness 
functions will change depending on the specification. This particular axiom states that if x and 
y are defined, the injection of x equals the injection of y and the result of the injection on x is 
defined then x and y must be equal (i.e., the function in j is injective when both arguments are 
defined). As we have a unique bottom element for each sort which is preserved by the injection 
functions, these axioms generalise so that they also hold for the bottom elements, hence they hold
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for all elements. The generalisation of these axioms are the second set of lemmas that need to be 
produced in order to prove transitivity of the function eq.

For each of the embedding injectivity axioms that H ets produced, we produce the following Is
abelle/HOL code (where n is a natural number and is omitted in the case of zero):

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18

lemma injectivity_n: "[| g inj ( x )  = g inj(y) |] ==> x = y1
apply(case_tac "g defined'(g inj(x))")

(* Case 1 *)
apply(subgoal_tac "g defined(x)")
apply (subgoal_tac 11 g def ined (y) ")
apply(insert ga_embedding_injectivity_n) 
apply(simp)
apply(simp add: 'ga_totality_axioms')
apply(simp (no_asm_use) add: 'ga_totality_axioms')

(* Case 2*)
apply(subgoal_tac g__defined(x)")
apply(subgoal_tac g__defined(y)")
apply(simp add: 'ga_notDefBottom_axioms')
apply(simp add: 'ga_totality_axioms')
apply(simp (no_asm_use) add: 'ga_totality_axioms')

done

Where the exact injection function in Line 1 should match the H ets axiom that we are generalising 
(we work here with the H ets axiom stated above).

The lemma is called in j ect ivit y_n where n should match the H ets axiom number (or omitted 
in the case of zero) and states that the injection function g inj is injective for any element x.

We prove this by performing a case distinction upon the definedness of the injection of x (i.e.,
g inj ( x ) ) within the assumption. This is performed in Line 2 where the exact definedness
function will be different for each lemma produced, but only one definedness function will be type 
correct in this context.

Case 1: In the first case we know that the injection of x is defined and we assume that the injection 
of x equals the injection of y. By the totality of the injection functions and the assumption that the 
injection of x equals the injection of y , we can conclude that both x and y must also be defined. We 
add these as assumptions in Lines 5 and 6 (again the exact definedness function will be different 
for each lemma produced, but only one will be type correct in this context). We will have to prove 
both of these sub-goals at the end of this case. These sub-goals have added the assumptions that 
x and y are both defined to the first sub-goal. We can then use the H ets axiom which we are 
generalising and simplification to prove the injection function is injective for defined elements, 
lines 7 and 8. Finally we have to prove that the sub-goals that we introduced on Lines 5 and 6 hold. 
We do this by performing simplification with the added axioms ( g a _ to ta l i ty _ a x io m s )  that 
state that the injection functions applied to defined elements yield defined elements (Lines 8 to 10).



6.5 Producing the alphabet and justification theorems 85

However, in Line 10 we need to stop the simplifier from using simplified assumptions to simplify 
other assumptions and conclusions as this would result in non-terminating loops. We achieve this 
by invoking the simplifier with the option no_asm _use.

Case 2: In the second case we know that the injection of x is undefined and we assume that the
injection of x equals the injection of y. By the totality of the injections and the assumption that the 
injection of x equals the injection of y, we can conclude that both x and y must be undefined as 
well. We add the facts x and y must be undefined as sub-goals in Lines 13 and 14 which become 
assumptions in the first sub-goal (again the exact definedness function will change, but only one 
will be type correct in this context). These will need to be proven at the end of this case. As x and 
y are undefined, and there is a single undefined element (bottom) we know the equality between 
x and y holds. This is proven in Line 15 by adding the axioms (g a_ n o tD efB o tto m _ ax io m s) 
that state the bottom element is the unique undefined element for each sort. We finally prove the 
sub-goals (lines 16 and 17) in the same way as we proved the sub-goals in case 1, by performing 
simplification with the totality axioms.

Our running example has exactly two embedding injectivity lemmas produced by H ets, one for 
each injection function. Hence we must produce two generalised injectivity lemmas. We present 
here only one of these functions as the other is very similar. The following code is produced for the 
corresponding H ets axiom g a _ e m b e d d in g _ in  j e c t i v i t y  (Line 44 in Figure 6.5).

lemma injectivity: "[1 g__inj (x) = g__inj(y) | ] ==> x = y"
apply (case_tac "g__defined'' (g__inj ( x ))")

(* Case 1 *)
apply (subgoal_tac "g__defined'(x ) " )
apply (subgoal_tac "g__defined'(y)")
apply (insert ga_embedding_injectivity)
apply (simp)
apply (s imp add: ga_totality_l ga_totality_2)
apply (simp (no_asm_use) add: ga_totality_l ga_totality_2)

(* Case 2*)
apply (subgoal_tac g__defined' (x)")
apply (subgoal_tac g__defined'(y)")
apply (s imp add: ga_notDefBottom ga_notDefBottom_l

ga_notDefBottom_2 ga_notDefBottom_3)
apply (simp add: ga_totality_l ga_totality_2)
apply (simp (no_asm_use) add: ga_totality_l ga_totality_2)

done

This code was produced by simply following the steps described above.

We now have all the H ets injectivity axioms generalised as lemmas called i n  j e c t i v i t y _ n  
(where n is a natural number and is omitted in the case of zero). These lemmas hold for all elements 
and not only defined elements.
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1 ProduceProofOfTransitivityOfEq
2 ProduceDecompositionLemmas
3
4

ProduceInjectivityLemmas
*■+
5 output: theorem eq_trans: "[ eq x  y ; eq y z  |] ==> eq x  z "

6
7

output: apply(induct x )
/
8 for (i=0; i<n; i++)
9 output: prefer (i*n)+l
10 output: apply(induct y)
11
12 for (i=0; i<n~2; i++)
13 output: prefer (i*n)+l
14 output: apply (induct z )  ■
15
16 output: apply (auto simp add: 'Injectivity_lemmas
17 Decomposition_lemmas')
18 output: done

Figure 6.10: Csp-Casl sub-algorithm to produce theorem and proof that eq is transitive.

With both of these sets of lemmas available, proving transitivity of the function eq becomes rel
atively easy and follows the same proof approach as the proof of symmetry of the function eq, 
although its a little more complex. This is because there is an additional variable involved, hence 
more induction needs to take place.

Figure 6.10 shows the full sub-algorithm ProduceProofOfTransitivityOfEq that pro
duces the transitivity proof. Lines 2 and 3 produce the lemmas that we have described above. Line 
5 establishes the theorem that the function eq is transitive with the name eq_trans. In order to 
prove this we first induct all the variables fully, which will leave us with a finite case distinction 
with no variables. Then we allow Isabelle/HOL to automatically solve all the sub-goals.

Line 6 then applies induction on the variable x which results in one sub-goal for each sort as there 
is a constructor for each sort in the definition of the type PreAlphabet. The loop (Line 8) allows 
us to deal with each of these sub-goals in turn. We now wish to perform induction on the variable 
y in each sub-goal, however as we induct the variable y in the first sub-goal, another sub-goal is 
generated for each sort. We solve this by first pulling each sub-goal to the top of the list (Line 9) 
and only then applying induction to the top sub-goal (Line 10). At the end of the induction there is 
n2 sub-goals, where n is the number of sorts in the specification.

However, each of these sub-goals contains the variable z. Thus we need more induction to create 
our complete finite case distinction. Another Loop in Line 12 allows us to apply induction to 
the variable z in the same way as we applied induction to the variable y in each sub-goal. After 
this loop we have n3 sub-goals with no variables which forms our finite case distinction. All the 
sub-goals involve showing simple equalities between injection of x and z.

Finally we allow Isabelle/HOL to automatically solve all the sub-goals in Line 16 by adding the in-
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jectivity and decomposition lemmas which we provided earlier as part of this sub-algorithm. These 
allow each of the larger injections to be substituted with two smaller injections. The smallest injec
tions have been proven to be injective and hence Isabelle/HOL can show that the equalities within 
the sub-goals hold. Line 18 then completes the proof by outputting the Isabelle/HOL command
done.
The following code is produced for the transitivity theorem for the specification of our running 
example.

1 lemma eq_trans: "[| eq x y ; eq y z |] ==> eq x z"
2 apply(induct x)
3 prefer 1 apply(induct y)
4 prefer 5 apply(induct y)
5 prefer 9 apply(induct y)
6 prefer 13 apply(induct y)
7 prefer 1 apply(induct z)
8 prefer 5 apply(induct z)
9 prefer 9 apply(induct z)
10 prefer 13 apply(induct z)
11 prefer 17 apply(induct z)
12 prefer 21 apply(induct z)
13 prefer 25 apply(induct z)
14 prefer 2 9 apply(induct z)
15 prefer 33 apply(induct z)
16 prefer 37 apply(induct z)
17 prefer 41 apply(induct z)
18 prefer 4 5 apply(induct z)
19 prefer 4 9 apply(induct z)
20 prefer 53 apply(induct z)
21 prefer 57 apply(induct z)
22 prefer 61 apply(induct z)
23 apply(auto simp add: injectivity injectivity_l)
24 done

Here we have to induct according to the number of sorts. After the final induction (Line 22) there 
are 43 sub-goals. All these sub-goals are solved automatically by adding the generalised injectivity 
lemmas that were previously produced by this sub-algorithm.

We have now produced the theorem and proof that the function eq  is transitive hence we have suc
cessfully produced all the proofs necessary to conclude that the function eq  forms an equivalence 
relation.

We illustrate this proof idea by a concrete example. Consider the sub-sort structure shown in 
Figure 6.11 where the functions shown are the injections functions which H e t s  provides1.

After applying the necessary induction to the proof goals, we obtain n3 sub-goals, where n represent 
the number of sorts in the specification. As we have 4 sorts in our example, there will be 64 sub-

1 We use the infix notation of ~  in place of the Isabelle function eq .
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V
injJT-V

z: U

i n j S J J

a::S

Figure 6.11: Example of a possible sub-sort structure with injection functions.

goals to discharge. One of the resulting sub-goals will be

x ~  y A y  ~  z => x ~  z

where x, y and z are variables of the types S, T and U, respectively. There will be one sub-goal for 
each permutation of x, y and z.

Expanding the definition of x  ~  z yields two new sub-goals: in jS -U (x ) =  z and inj-S-V (x) =  
inj_U-V(z). We focus here on proving inj-S-V(x) =  inj-U -V(z). This equation means that x is 
equal to z in the sort V. Expanding the definition of x  ~  y we obtain the equation inj-SJV(x) =  
inj_TJV{y). From y ~  z we obtain the equation inj-TJV (y) =  inj-U-V(z). These two facts 
together yield the equation injJS-V(x) =  inj-U-V(z). This proves one part of the goal, the other 
can be proven in a similar way using the fact that the functions we use are injections (these axioms 
are provided by HETS).

Isabelle/HOL can carry out all these proofs fully automatically, provided the simplifier is enriched 
with the injection and decomposition axioms that were previously produced, see lines 16 and 17 of 
Figure 6.10.

Interestingly this is a new method of proving transitivity of the eq  function. The method from the 
proof in [Rog06], uses the facts that the specification has local top elements and that an injection fol
lowed by a projection yields the original value (i.e., p r ( i n  j(x)) =  x). The proof method we have 
does not use the projection functions at all, but instead uses the facts that the injection functions 
(functions for “casting” elements to different sorts) are indeed injective functions (H ets  creates 
axioms to control this). It seems that it is easier to use this proof method within Isabelle/HOL than 
the proof method used in [Rog06].

6.5.4 Producing the alphabet as a quotient

At this stage the type PreAlphabet and the eq function are both declared. Theorems and proofs 
of reflexivity, symmetry and transitivity of the function eq have also been established. The sub
algorithm ProduceAlphabetAsQuotient can now use such established theorems to con
struct the alphabet of communications -  the type Alphabet.
The sub-algorithm ProduceAlphabetAsQuotient produces the following Isabelle/HOL 
code2:

2Here the Isabelle/HOL command for the symbol ~  is \  <  s im  > , there is no equivalent ASCII code available.
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1
2
3
4
5
6
7
8 
9 
0 
1 
2
3
4
5

instance PreAlphabet::eqv 
by intro_classes

defs (overloaded)
preAlphabet_sim_def : "x \<sim> y == eq x y"

instance PreAlphabet::equiv
apply(intro_classes)
apply(unfold preAlphabet_sim_def)
apply(rule eq_refl)
apply(rule eq_trans)
apply(auto)
apply(rule eq_symm)
apply(simp)
done

This code is completely independent of the specification. Hence, it does not alter depending on 
what specification the algorithm is performed against.

Line 1 states that the type PreAlphabet is an instance of the axiomatic type class eqv. This is 
proven by Line 2. Now that the type PreAlphabet is an instance of the type class eqv we can 
provide a definition for the relation ~ . Lines 4 and 5 states that the relation ~  is overloaded and x 
is in relation to y if the function eq x y evaluates to true. This is how we created the relation ~  
from the existing function eq.
Now that we have provided a definition for ~  we can instantiate PreAlphabet as an instance of 
the axiomatic type class equiv -  Line 7. This comes with a proof obligation that the ~  relation 
is actually an equivalence relation. Line 8 begins the proof, which leaves us with three sub-goals 
where we must prove ~  is reflexive, symmetric and transitive. Line 9 then unfolds the definition of 
~ , which results in the sub-goals being transformed into proof obligations that the function eq  is 
reflexive, symmetric and transitive. Lines 10 to 14 then apply the previously established theorems 
(see Section 6.5.3) in the correct order which successfully discharges all proof obligations. Finally 
Line 15 completes the proof with the Isabelle command done.
As the type PreAlphabet is a member of the axiomatic type class equiv we can use the built 
in type of ' a quot to form the quotient of the PreAlphabet, i.e., the type PreAlphabet 
quot. The alphabet of communications can now be established using the following Isabelle/HOL 
code:

types Alphabet = "PreAlphabet quot"

This creates a new type Alphabet which is a type synonym of the type PreAlphabet quot. 
The type Alphabet will be automatically expanded in Isabelle/HOL into P reAlphabet quot 
every time it is used and unfortunately will not be converted back to Alphabet when shown to 
the user.

We have finally established a type for the alphabet of communications. This can now be used as a
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parameter for the CSP-Prover type ' a proc. The type Alphabet proc is the type of all CSP 
processes over the alphabet of communications. This alphabet is built from the C asl specification 
and captures all sorts and functions from the specification. The equivalence class of any term 
of the C asl specification can now be used as a communications event in a CSP process of type 
Alphabet proc.

6.5.5 Producing the bar types

Now that we have our alphabet of communications (the type Alphabet), we need a mechanism to 
allow us to address certain subsets of this alphabet. We need a subset for each original sort. These 
subsets are necessary for certain CSP-Prover operations. For instance CSP-Prover’s internal prefix 
choice operator, which is written as:

! x : A -> P (x)

Here x is a variable, A can be any subset of the alphabet and P (x) is a Process. When writing 
C sp-Casl specifications only sort symbols can be used for the set A. Hence, we need a subset of 
the alphabet for each original sort in order to use this operation over the the alphabet.

1
2

Line 1 produces a new type S_Bar where the elements are exactly the equivalence class of each 
element of sort S wrapped in the appropriate constructor (i.e., C_S for each sort S). This comes with 
a proof obligations that the type is non-empty. This is discharged using the auto proof method 
(Line 2).

Isabelle/HOL has now created a set and a type called S_Bar, both of which coincide. Also two 
conversion functions have been defined, namely

Abs_S_Bar :: S_Bar => Alphabet 
Rep_S_Bar :: Alphabet => S_Bar

for converting between the set and the type.

We can now write processes that use the new subsets of the alphabet of communications. For 
example, the process

? x :S_Bar -> x -> SKIP

can be written, where S_Bar is a set of Alphabet. Hence x is an element of type Alphabet 
and can be used as a valid communication event.

As we have four sorts in our running example (Figure 6.3). We must produce four new types 
mirroring the sorts. The following Isabelle/HOL code is produced by applying the above steps to 
the specification.

The sub-algorithm ProduceBarTypes produces for each sort S a type S_Bar, which is a set of 
type Alphabet produced by:

t y p e d e f  S_Bar = "{x ::Alphabet. EX (y::S). x = class(C_S y)}" 
b y  auto
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t y p e d e f
b y  auto

R_Bar = " {x: :Alphabet. EX (r: : R) • x = class(C_R r) }"

t y p e d e f
b y  auto

S_Bar = " {x: :Alphabet. EX (s :: S) . x = class(C_S s) p

t y p e d e f
b y  auto

T_Bar = " {x: :Alphabet. EX (t:: T) . x = class(C_T t) p

t y p e d e f
b y  auto

U_Bar = n {x: :Alphabet. EX (u: :U) . x = class(C_U u) p

This construction allows us to write the following process 

? x : R_Bar -> x -> SKIP

in CSP-Prover which will be of type Alphabet proc. This would correspond to the process 
? x : R -> x -> SKIP

in the C sp-Casl specification.

6.5.6 Producing the choose functions

We now have new types S_Bar for each sort S. However, H ets has produced functions which 
operate on the underlying types (e.g., S) not the bar variants (e.g., S_Bar). There is a type prob
lem when applying values to the bar types to the functions which H ets has produced. We solve 
this by creating for each sort S a function choose_S. This is the purpose of the sub-algorithm 
ProduceChooseFunctions. For each sort S we produce the following code:

c o n s t s
choose_S :: "S_Bar => S" 

a x io m s  choose_S: "forall x y .
(choose_S x = y) = ((class(C_S y)) = (Rep_S_Bar x))"

We have had to provide an axiomatic definition of this functions. The function choose_S allows 
us to take an element of S_Bar (i.e., an equivalence class of the term C_S x for some x of type 
S) and return the underlying element x. With these function available we can now use values of 
the bar types as parameters to the existing functions that H ets produced. Such results can then 
be packaged up to become elements of type Alphabet and hence valid communications events 
within processes.



6.6 Producing the integration theorems 92

6.6 Producing the integration theorems

In order to make working with process refinement proofs in our type system easy, Integration 
Theorems must be provided. The form of such theorems have been analysed in [Rog06]. There they 
discovered three types of integration theorems are necessary for semantical proofs. We produce 
here (using the sub-algorithm Producelntegrat ionTheorems) the first integration theorem. 
This allows a test of equality between two elements of type Alphabet to be reduced to a test on the 
underlying data specified in the H ets encoding which represents the data-part of the specification.

The following code is produced for each pair of sorts S and T (where n is a natural number and
must be incremented for each lemma):

lem m a integration_theorem_n: " (class(C_S x) =
(injection (x) =

a p p l y (simp a d d : quot_equality)
a p p l y (unfold preAlphabet_sim_def)
a p p l y (auto simp a d d : ' Injectivity_lemmas

Decomposition_lemmas')
d o n e

class (C_T t )) = 
injection(y))"

Here the constructors C_S and C_T are the corresponding constructors for each sort S and T, 
respectively. The test on the R.H.S is a test of equality between the elements x and y at the level of 
their top-most sort, this is achieved by replacing the functions i n j e ct i on_s and i n j e ct i on_t 
with the corresponding injection functions produced by H ets which up-cast values to their top
most sort.

If both elements are from separate connected components of the sub-sort graph, this test is replaced 
by the Boolean value False. If there is more than one top-most sort available (i.e., in the case of 
isomorphic sorts) either sort level can be used in the test.

These theorems can be automatically proven by unfolding the definition of the equivalence classes 
and the ~  relation -  lines 3 and 4. Followed by invoking the automatic proof method (lines 5 aiid 6) 
with the added axioms that were already used as part of the transitivity proof (see Section 6.5.3.3).

In order to use the choose functions easily, we must provide some support theorems. For each sort 
S we produce the following Isabelle/HOL code:

lem m a choose_S_lemma : 11 [ I (C_S x) \<sim> (C_S y) | ] ==> x = y" 
a p p l y (unfold preAlphabet_sim_def) 
a p p l y (auto) 
d o n e

Where the constructor C_S is the corresponding constructor for the sort S. This lemma states that 
if two elements of type PreAlphabet are from the same sort and are related by ~  then the 
underlying elements are equal. This proof is necessary to check that the axiomatic definition of 
the choose function is legal and also to allow easier proofs when using the choose functions. 
This proof can be completed automatically by first unfolding the definition of ~  (Line 2) and then 
unfolding and simplifying the definitions of the eq function (Line 3).
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With these two types of integration theorems available, semantical proofs become more reasonable, 
as questions on the alphabet of communications can be reduced to questions on the underlying data 
specified by Casl. These are required to keep the process refinement proofs small, clear and 
manageable.

6.7 Producing the data theorems place holder

The algorithm ProduceDataTheoremsPlaceHolder simply produces some comments sug
gesting that the user should re-place these comments with Data Theorems that are specific to the 
problem area of the user. This is purely to guide the user and help maintain a logical structure to 
the resulting theory file.

6.8 Producing the process translations

We have produced a Haskell program that uses the Csp-Casl parser [Gim07] to produce process 
translations. Currently this translation process works only for a single sorted specification and 
processes with only constants as communications. It is straightforward future work to extend this 
program to full Csp-Ca sl . The point of this section is to show the feasibility of our approach.

d a t a  PROCESS
= Skip Range
| Stop Range
j  P r e f i x P r o c e s s  EVENT PROCESS Range 
| E x t e r n a l C h o i c e  PROCESS PROCESS Range
| I n t e r n a l C h o i c e  PROCESS PROCESS Range
| S y n c h r o n o u s P a r a l l e l  PROCESS PROCESS Range

Figure 6.12: Part of the abstract syntax for the processes of C sp-Casl parser [Gim07].

Figure 6.12 shows part of the Haskell abstract data type that is used to represent processes in the 
C sp-Casl parser. This data type is recursive and resembles what we expect of a type capturing the 
grammar of CSP. The C sp-Casl parser has pretty print functions available which transform values 
of such types into strings. Our translation program is a modification of the pretty print functions 
that accompany the C sp-Casl parser.

We will present our pretty print function for the following datatype used by C sp-Casl parser:

d a t a  PROCJTEM = Pr o c De c l  PROCESSJNAME PROC_ARGS PROCJVLPHABET 
| ProcEq PARMPROCNAME PROCESS 

d e r i v i n g  Show
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Here the type PARM_PROCNAME, PROC—ARGS, and P ROC-ALPHABET are all types defined by 
the C sp-Casl parser. The interesting case here is the ProcEq case. This is where our pretty print 
functions transform parse trees representing process equations into valid Csp-Prover code.

The following Haskell code is part of the original pretty print functions that accompany the C sp- 
C a s l  parser:

p r i n t P r o c I t e m  :: PROCJTEM —> Doc 
p r i n t P r o c I t e m  ( ProcEq  pn p)  =

( p r e t t y  pn)  <+> e q u a l s  <+> ( p r e t t y  p)

We have modified this pretty print function to output valid CSP-Prover syntax. The modified version 
is:

p r i n t P r o c I t e m :: PROCJTEM - >  Doc
p r i n t P r o c I t e m ( ProcEq  pn p)  =

( t e x t  ” c o n s t s ” ) <+> ( p r e t t y  pn)  <+>
( t e x t  ” :: \ ” A l ph a b e t  p r o c \ ” ” ) $+$

( t e x t  ” d e f s ” ) <+> ( p r e t t y  pn)  o  ( t e x t  ” _de f :  \ ” ” ) <+>
( p r e t t y pn)  <+> ( t e x t  ” ==” ) <+> ( p r e t t y  p)  o  ( t e x t  ” \ ” ” )

Here we only show the case of printing the values with the constructor ProcEq. The function 
printProcItem does not return strings, but a value of type (Doc) which represents a string. 
The function <+> appends two values of type Doc whilst adding a space between them, while the 
function < > appends two values of type Doc without adding a space between them. The function 
$ + $ appends two values of type Doc whilst adding a line break between them. Finally the function 
text converts a string to a value of type Doc. The functions handling the type Doc are defined 
within the H ets framework.

The idea behind the overall pretty print function is to transform process equations, e.g., P = a 
-> b -> Q, into processes that use our alphabet of communications whilst being written in C sp- 
Prover syntax. We do this by declaring the process name e.g., in our example P, as a new constant 
of type Alphabet proc. The R.H.S of the equation, in our example a -> b -> Q, is then 
translated separately and is bound by an Isabelle/HOL definition to the process name. The commu
nications of the R.H.S are the equivalence classes of the original communications after they have 
been “wrapped” up in the appropriate constructor of the type PreAlphabet.
As an example we translate the following processes specified in C sp-Casl syntax:
P = a -> b -> SKIP 
Q = P |"| c ->STOP 
R = P [] ( C  -> SKIP)

We assume here that all constants are of sort S. We mn our process translator on the processes, this 
yields the following Csp-Prover code:

c o n s t s  P :: "Alphabet proc"
d e f s  P_def: " P == class(C_S a) -> class(C_S b) -> SKIP" 
c o n s t s  Q :: "Alphabet proc"
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d e f s  Q__def: " Q == P ( ) r| class(C_S c) -> STOP"
c o n s t s R : : "Alphabet proc"
d e f s  R__def: 50 ii ii + class(C_S c) -> SKIP"

Here the symbol [ + ] is CSP-Prover’s syntax for the external choice operator. This code can now 
be directly inserted into the process part of the theory file produced by our algorithm.

6.9 Dependencies

The following table shows the dependencies of the PreAlphabet construction and the Integration 
Theorems. T(D) denotes that the theorem is dependent on the parameter in the column heading, 
while T(I) expresses that the theorem is independent of the parameter in the column heading, and 
similar P(_) expresses the dependencies of the proofs on the parameter in the column heading.

Specification # of Sorts Sub-sort Structure
PreAlphabet Construction 
eq-Reflexivity 
eq_Symmetry 
eq_Transitivity 
Integration Theorems

T(D) / P{D) 
T{I)!P{I) 
T{I) /  P{D) 
T(I) /  P(D) 
T(D)/P(D)

T(I)/P(D) 
T(I)/P(I) 
T(I) /  P(D) 
T(I)IP(D)
T(I) I p (d )

T{D) /  P{D) 
T(I)/P(I) 
T(I) / P{1) 
T(I)/P(D) 
T(D) I P(D)

The reflexivity property of the eq  relation is completely independent of the specification whereas 
the proof of symmetry relies only on the number of sorts in the specification and the proof of 
transitivity relies on the number of sorts and the sub-sort structure. The integration theorems are the 
most dependent on the specification. All these proofs can be automatically generated our algorithm.
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Proofs in CSP-CASL-Prover
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7.1 The four core examples

Four core examples have been discussed in Section 5.1.1. We present the proofs o f the equality 
between the relevant processes according to the C sp -C a sl  semantics using CSP-CASL-Prover.

7.1.1 Core example 1

Figure 5.1 shows the first core example which a C sp-Ca sl  prover should be able to prove. We 
must be able to show that the process t c s l  = c  ->  SKIP | |  d ->  SKIP specified in the 
Csp-C a sl  specification is equivalent to the process STOP. We have performed our algorithm on 
the C sp-C a sl  specification in Figure 5.1. This lead to a theory file where we proved that this 
equality holds.

Figure 7.1 shows the final proof script of the process equality. Line 1 establishes the theorem. Line 
3 applies the Csp-Prover tactic c s p F _ h s f _ t a c .  Finally we have to apply a theorem which we

1
2
3
4

t h e o r e m  "c - >  SKIP | |  d ->  SKIP =F STOP” 
a p p l y ( t a c t i c  { * c s p F _ h s f _ t a c  1 * } )
a p p l y ( a u t o  s im p  a d d : S y n t a c t i c _ I n t e g r a t io n _ T h e o r e m _ A )  
d o n e

Figure 7.1: Cs p -Ca sl  proof for the core C sp-Ca sl  example 1 (Figure 5.1).

96
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1
2
3
4
5

t h e o r e m  "(class (C_S c)) -> SKIP || (class(C_T d)) -> SKIP = F ( 
class(C_S c)) -> SKIP" 

a p p l y (tactic {*cspF_hsf_tac 1 *} I
auto simp a d d : Syntactic_Integration_Theorem_B)+

d o n e

Figure 7.2: C sp -Ca sl  proof for the core C sp-C a sl  example 2 (Figure 5.2).

believe is a form of a Syntactical Integration Theorem -  which we had to prove manually for now. 
Simplification with this theorem completes the proof.

7.1.2 Core example 2

Figure 5.2 shows the second core example which a C sp-Casl prover should be able to prove. The 
challenge here is to show that the same process as in the first core example (tcsl = c -> SKIP 
II d ->  SKIP) is equivalent to the process c ->  SKIP when we have the specification shown 
in Figure 5.2.

Figure 7.2 shows the proof of this challenge using C sp-Casl prover. It is very similar to the proof 
for core example 1. We apply Csp-Prover’s tactics whilst applying a similar theorem as we proved 
for the first example.

7.1.3 Core example 3

Figure 5.3 shows the third core example for a C sp-Casl prover. This is the most complicated 
example of the four. We must prove that the process ? x: S -> f (x) -> SKIP [ I T | ]
? y:T -> (if def y then P else Q) is equivalent to the process ? x:S -> f (x)
-> (SKIP [ | T |] Q). This involves us having to use our first Data Theorem. It relies on the
fact that the result of the function f is always undefined.

Figure 7.3 shows the proof script for this example. We have deviated here from the algorithm doc
umented throughout this thesis by not using the choose functions, but instead using a projection 
function in combination with the built in pick function on equivalence classes. We have chosen 
to do this in order to explore other techniques for a CSP-CASL-Prover. Both this method and our 
documented algorithm produce working theory files that can be used to prove this process equiv
alence easily. The proof here is quite simple, it applies Csp-Prover’s tactics along with automatic 
theorem proving using some Syntactical Integration Theorems and the Data Theorem that we had 
to provide.

7.1.4 Core example 4

We conclude this section with the forth core example shown in Figure 5.4. Here the challenge is to 
prove that the process f (a) -> SKIP | | g (c) -> SKIP is equivalent to the process g (c) 
-> SKIP according to the C sp-Casl semantics.
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1
2
3
4
5
6
7
8 
9

10
11
12
13

t h e o r e m  "? x : S_Bar -> class(C_T (f (proj_S (pick x)))) -> SKIP
|[T_Bar]|
? y : T_Bar -> IF g__defined (proj_T (pick y)) THEN

P ELSE Q
=F
? x : S_Bottom -> class(C_T (f (proj_S (pick x)))) ->
(SKIP |[T_Bottom]| Q)"

a p p l y (tactic {*cspF_hsf_tac 1 *} I
auto simp a d d : Syntactic_Integration_Theorem_C

Syntactic_Integration_Theorem_D
Data_Theorem_A)+

d o n e

Figure 7.3: C sp-Ca sl  proof for the core C sp -Ca sl  example 3 (Figure 5.3).

1 t h e o r e m  "f(a) -> SKIP || g(c) -> SKIP =F class(C_C(g c)) -> SKIP”
2 a p p l y (tactic {*cspF_hsf_tac 1 *} I
3 auto simp a d d : Syntactic_Integration_Theorem_E)+
4 d o n e

Figure 7.4: Csp -C a sl  proof for the core C sp -Ca sl  example 4 (Figure 5.4).

The proof script shown in Figure 7.4 completes our proof on the four core example. This proof 
is essentially the same as the other examples and uses Csp-Prover’s powerful tactics along with a 
Syntactic Integration Theorem.

It is future work to identify the forms and automatic proofs of the Syntactical Integration Theorems. 
We have shown that our approach can deal easily with all four core examples using essentially the 
same proof method.

7.2 EP2 dialog is deadlock free

As an application of CSP-CASL-Prover we prove deadlock freedom in an industrial setting. Here we 
prove deadlock freedom of a dialog in the EP2 system (see Section 5.1.3) as shown in Figures 5.7 
and 5.8.

Our approach is to prove that, in the stable failures model F , the EP2 system is a refinement of 
the sequential system shown in Figure 7.5. Here, we have an Abstract process that sends a 
SessionStart value and then enters a loop. The Loop process either sends a SessionEnd 
message and terminates, or it sends a certain type of request message followed by a response 
message (of the type corresponding to the to the type of the request message) and then repeats 
the loop. The process Loop chooses internally, which of these five branches is taken. As this 
system has no parallelism it is impossible for it to deadlock. Process refinement within stable
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1
9

c c s p e c G e t I n i t i a l i s a t i o n D a t a  =
L

3 d a t a D_ACL _ G e t I n i t i a l i s a t i o n
4
5 c h a n n e l s
6
7

C _ S I _ I n i t : D _ S I _ I n i t
/
8
Q

p r o c e s s
7

10 l e t
11 A b s t r a c t =
12 C _S I_ I n i t  !? s e s s i o n S t a r t : D _ S I _ I n i t _ S e s s i o n S t a r t  - >  Loop
13
14 Loop = C _ S I _ I n i t  ! seM
15 -> SKIP
16 1 ~ 1 C _ S I _ I n i t  ! cdrM
17 -> C _ S I _ I n i t  !? r e s p o n s e :  D _ S I _ I n i t _ C o n f i g D a t a R e s p o n s e
18 - >  Loop
19 1 ~ 1 C _ S I _ I n i t  ! cdnM
20 - >  C _ S I _ I n i t  !? a c k n o w l e d g e :
21 D _ S I _ I n i t _ C o n f i g D a t a A c k n o w l e d g e
22 - >  Loop
23 1 ~ 1 C _ S I _ I n i t  ! rcdnM
24 - >  C _ S I _ I n i t  !? a c k n o w l e d g e :
25 D _ S I _ I n i t _ R e m o v e C o n f i g D a t a A c k n o w l e d g e
26 - >  Loop
27 1 " 1 C _ S I _ I n i t  ! acdnM
28 - >  C _ S I _ I n i t  !? a c k n o w l e d g e :
29 D _ S I _ I n i t _ A c t i v a t e C o n f i g D a t a A c k n o w l e d g e
30 - >  Loop
31 i n
32 A b s t r a c t
33 e n d

Figure 7.5: A C sp-C a sl  specification of the EP2 dialog between the terminal and the acquirer as 
a sequential system.
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1
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3
4
5
6
7
8 
9

10
11

t h e o r e m  ep2: "Abs_System =F System"
a p p ly  (unfold System_def Abs_System_def)
a p p ly  (rule cspF_fp_induct_left[ o f  _ "Abs_System_to_System"]) 
a p p ly  (simp_all) 
a p p ly  (induct_tac p)

(* main part *)

a p p ly  (tactic {* cspF_hsf_tac 1 *} I rule cspF_decompo |
auto simp a d d : csp_prefix_ss_def image_iff inj_on_def)+

d o n e

Figure 7.6: Proof of deadlock freedom of the EP2 system (see Figures 5.7 and 5.8).

failures model preserves deadlock freedom. Hence if we can show that the EP2 system is indeed a 
refinement of the sequential system, then the EP2 system is guaranteed to be deadlock free.

For our refinement proof we apply the algorithms discussed in this paper on both the EP2 system 
as well as on the sequential system specification (they both have the same data-part).

In the modelling of the EP2 dialog we ensured that certain message groups do not overlap, i.e., 
messages of type SessionEnd, Conf igDataRequest,
D_SI_Init_ConfigDataNotification,
D_SI_Init_RemoveConfigDataNotification, and
D_SI_Init_ActivateConf igDataAcknowledge are never equal to each other. This was 
done using axioms in lines 15 to 37 of Figure 5.7).

We have to prove theorems that lift the axioms to undefined elements -  this is an indication of the 
type of Integration Theorems that are required for syntactical proofs. Once we have proven these 
theorems and added them to Isabelle/HOL’s simplifier set, we can then prove deadlock freedom 
as shown in Figure 7.6 (we actually show more, namely that both systems are equivalent). This 
refinement proof involves recursive process definitions. These are first unfolded, then (metric) 
fixed point induction is applied. A powerful tactic from Csp-Prover finally discharges the proof 
obligation. The whole proof script involves syntactic proof techniques only.

7.3 Statistics

Example 1 Example 2 Example 3 Example 4 EP2
Csp-Casl Construction 1 1 1 2 95
Data Theorems & 1 1 1 1 20
Process Refinements
Sum 2 2 2 3 115

Figure 7.7: Table showing the running time (in seconds) of Isabelle/HOL code.
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The algorithm has been carried out manually on the all four core examples and the EP2 specifica
tion. Figure 7.7 shows the running time of the theory files that have been produced by C sp-Casl 
prover for each of the proof discussed in this section1. All running times are reasonably short. 
The EP2 example involves an unusually large number of sorts and sub-sort relations. This explains 
the relatively long execution time for the proofs in the alphabet construction. This is still a good 
runtime in relation to the proof time of the process part.

'The tests were carried out on a computer with a 1.5GHz computer with 512Mb.
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8.1 Summary

C sp-Casl Semantics Our Algorithm
sub-sorted signature to many-sorted signa
ture using in  j ,  p r  and

H ets translation SubPCFOLr to 
PCFOLr

alphabet construction:

A{M)  := (1+)MS) ^
s€.S

types Alphabet = ’’PreAlphabet quot”

definition of ~ definition of eq  and c o m p a r e .to  func
tions.

~  is an equivalence relation proof obligations from the instantiation
i n s t a n c e  P r e A l p h a b e t : : e q u i v

Figure 8.1: Table showing the matching of our algorithm to the Cs p -Ca sl  semantics.

In this thesis we have explored essential theorem proving methods and techniques for Csp -C a s l . 
This has lead to the development of an architecture for CSP-CASL-Prover which re-uses the tools 
H ets and Csp-Prover. We designed up to the algorithmic level procedures for theorem proving 
support on Csp -Ca sl  specifications. This construction faithfully respects the semantics of Csp- 
C a s l  as shown in Figure 8.1.

We have applied our approach to a case study of industrial strength by carrying out our algorithm 
manually. This has shown several key facts. Firstly, that our concept works out. Secondly, that it is

102
103

102
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possible to perform theorem proving on C sp-Casl specifications with current technology. Thirdly, 
that our approach scales up to large real-world distributed systems.

We especially achieved:

• The derived specifications are readable and manageable for human beings. They are of a 
reasonable size in terms of the number of lines.

• When using CSP-CASL-Prover, reasoning about Csp-Casl specifications becomes as easy 
as reasoning about data and processes separately.

• The derived theory files are practical and the runtime of them in Isabelle/HOL is reasonable. 

The results presented within this thesis have already been published in [OIR07, OIR08].

8.2 Future work

There are several aspects of work that should be undertaken to follow on from this project. Firstly, 
the algorithms described in Chapter 6 should be implemented in Haskell. This will also lead to fur
ther development of the proof infrastructure offered by CSP-CASL-Prover. Secondly, a semi-deep 
encoding should be investigated. Thirdly, the potential of CSP-CASL-Prover should be demon
strated, e.g., by undertaking a larger case study in the contex of the Grand Challenge 6: Dependable 
Systems Evolution initiative.

8.2.1 Implementation and further development o f CSP-CASL-Prover

The algorithms described in Chapter 6 should be implemented within the HETS framework. As
Hets is implemented in the functional programming language Haskell, the algorithms will also
need to be implemented in Haskell. H e ts  already contains a parser and a static analyser for Csp- 
C a s l  [Gim07]. Built in to the static analysis for C sp-C asl is a check that rejects all C sp-C asl 
specifications which do not have local top elements. The algorithms for CSP-CASL-Prover require 
specification to have local top elements.

Hets is currently in a state where it is appropriate for the algorithms to be implemented. The 
implementation will need to call the Hets machinery to parse and check C sp-Casl specifications, 
once accepted the implementation will need to access certain information in order to provide the 
algorithms with their required input. The data that needs to be accessed form a parse tree for a 
given Csp-Casl specification is:

• What sorts symbols are there?

• What does the sub-sort graph look like?

• What are all the constants, functions and predicate symbols and their profiles?

With these questions answered, the implementation has all the information required to execute the 
algorithms for CSP-CASL-Prover.
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8.2.2 Semi-deep encoding

As seen in the thesis the shallow encoding works out. However, it comes with the “downside” that 
the following items of the encoding are heavily dependent on the specification:

• The construction of the eq function.

• The proof that the function eq is symmetric.

• The proof that the eq function is transitive.

The theorem and proof that the function eq is reflexive is simple enough to be completely indepen
dent of the specification. Hence the semantical construction is individual for each specification as 
the proofs of symmetry and transitivity of the function eq are dependent on the specification.

We suggest a semi-deep encoding in contrast to the well studied techniques of shallow and deep 
encoding [NvOPOO]. Such an encoding would consist of:

• The shallow encoding enriched by,

• A sub-sort graph where it is assumed that the graph and the encoding fit together.

The semantical construction can then be built using theorems and proofs which only depend on 
properties of this graph. Figure 4.3 shows the C asl specification which we have used as a running 
example in Section 4.2.1 in order to explain the Isabelle encoding of CASL. This specification has 
two sorts S and T. Sort S is a sub-sort of T. There is also a partial function from sort S to sort T. We 
will now use this same example in order to illustrate what a semi-deep encoding might look like.

A semi-deep encoding has the same starting point as the shallow encoding, that is we translate 
the specification into Isabelle as outline in Section 4.2.1. Hets must add to the translated code 
(Figure 4.6) some addition Isabelle/HOL commands. The following code might be added for the 
semi-deep encoding:

d a t a t y p e  the_sorts = S I T 
c o n s t s

subsorts :: " (the_sorts * the_sorts) set" 
d e f s

subsorts_def : "subsorts == { (S,S), (S,T), (T,T) }" 

c o n s t s
injection : "' a => the_sorts => 'a" 

d e f s
injection_def : "..." 

c o n s t s
sort_of :: "'a => the_sorts" 
is_bottom :: "'a => bool"

There is a d a t a t y p e  command which creates a new type t h e _ s o r t s  with two constructors 
S and T which represent the names of the sorts in the original specification. We then have a 
binary relation s u b s o r t s  which in Isabelle/HOL is defined as a set of pairs ( t h e _ s o r t s  *
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the_sort s). The definition of this relation is the set of all pairs of sorts that are in the original 
sub-sort relation (we may need to take the transitive closure -  we assume here that this is necessary). 
We also need a function that takes an element of an arbitrary type, tells us what sort it is from (this 
is the function sort_of). Finally we need a function that tests whether an element is a bottom 
element or not, this is the function is_bottom. We have omitted the definition of the functions 
sort_of and is-bottom as these cause no trouble and can be easily defined using the primitive 
recursion scheme.

We now need a function that can inject an arbitrary element of any sort to a super sort. For instance 
if we have x of type S then we would like the function application

injection x T

to inject x  from type S to type T, the result would be an element of type T. The target type is 
specified by the second argument which is of type the_sorts. It is future work to develop an 
appropriate type signature and definition for the injection function in Isabelle/HOL.

Now we can define what it means for a specification to have local top elements. This can be done 
with the following Isabelle/HOL code:

c o n s t s
LocalTopElements :: bool 

d e f s
LocalTopElements_def : "LocalTopElements == 
forall s u v .  ((s,u) : subsorts & (s,v) : subsorts)
— > (exists t . ((u,t) : subsorts & (v,t) : subsorts))"

We have specified a constant LocalTopElements of type bool which is true when the specifi
cation has local top elements.

c o n s t s
eq :: " ' a  => 'b => bool" 

d e f s
eq_def : "eq (x::'a) (y::'b) ==
( is_bottom x 
& is_bottom y
& exists u . ((sort_of x,u) : subsorts &

(sort_of y,u) : subsorts)
) I
( ~ is_bottom x
& ~ is_bottom y
& exists u . ( (sort_of x , u )  : subsorts &

(sort_of y,u) : subsorts)
& forall u . (((sort_of x,u) : subsorts &

(sort_of y,u) : subsorts)
— >

(forall z . (((sort_of x,z) : subsorts &
(sort_of y, z) : subsorts)
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— > ( i n j e c t i o n  x z = i n j e c t i o n  y  z )

)

)

Here we have specified the function e q  exactly as outlined in Section 5.2. The above sketch illus
trates the rough idea of this approach. It is future work to find a type correct and valid encoding.

We can now prove that the function e q  is reflexive, symmetric and transitive using the assumption 
that L o c a l T o p E l e m e n t  s = T r u e .  These proofs will now be independent of the specification and 
only depend on a proof that L o c a l T o p E l e m e n t s = T r u e .  This is now the only proof which is 
dependent on the specification. The construction is also independent of the specification except for 
the definitions of the functions s u b s o r t s ,  i n j e c t i o n ,  s o r t _ o f , and i s _ b o t t o m .

A s a result o f a sem i-deep encoding, the proofs tha t the function  e q  is sym m etric and transitive b e 
com e independent o f  the specification. CSP-CA SL-Prover is now  required  to  p roduce static proofs 
o f  the sym m etry  and transitiv ity  o f  the function  e q ,  w hich are alw ays the sam e fo r each speci
fication. T he o ld  p ro o f o f  transitiv ity  proved n 3 sub-goals w here n is the num ber o f  sorts in  the 
specification. T he new  p roo f w ill no t sp lit the goal in to  as m any sub-goals and w ill b e  static, hence 
it m ay be bu ilt in  to  the heap  system  o f  Isabelle and be proven once and fo r all.

T here  is a trade-o ff w ith  th e  new  proofs. T hat is the new  proofs rely  on the assum ption  tha t the 
sub-sort graph has local top  elem ents. This new  ex tra theorem  and p ro o f m ust be  p rov ided  by 
CSP-CASL-Prover. T his p roo f w ill be easie r and shorter than  the previous proofs o f  sym m etry  and 
transitiv ity  o f  the function e q .  H ence this is a  good trade-o ff and an im provem ent over the shallow  
encoding.

This approach will require modification of the HETS tool and hence will require the co-operation 
of the H e t s  development team at Bremen University.

8.2.3 Grand Challenge 6: Dependable Systems Evolution Initiative

Following an initiative by T. Hoare, in a combined effort, Computer Scientists in the U.K. have 
identified several Grand Challenges [Man, Hoa, GCH, HM05] for the field, and have joined their 
forces to advance the state of Software Engineering and Computer Science. These Grand Chal
lenges have international recognition with special sessions at conferences such as ETAPS’05 (The 
European Joint Conferences on Theory and Practice of Software)1. Within the Grand Challenge 
initiative are several Grand Challenges with the goal of advancing different areas of research. Due 
to the style of each challenge, a solution would indicate a major breakthrough in the area of the 
challenge.

The Grand Challenge 6 -  Dependable Systems Evolution (Committee members: Juan Bicarregui, 
Jonathan Bowen, Tony Hoare, Cliff Jones, John McDermid, Colin O’Halloran, Peter O’Heam, 
Brian Randell, Martyn Thomas and Jim Woodcock (chair)) [GC6] intends to give evidence that 
fully verified software is possible and to advance verification technology. In order to accomplish 
this they wish to:

’http://www.etaps05.inf.ed.ac.uk/
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• Create a repository of verified software.

• Identify “large projects” which will advance the field.

• Create tools that help in the development of completely reliable and dependable systems.

The Grand Challenge 6 initiative has been recognised internationally. The following conferences 
in 2008 had special dedicated sessions for the initiative:

• ICECCS’08 (International Conference on Engineering of Complex Computer Systems)2,

• FM’08 (International Symposium on Formal Methods)3,

• SBMF'08 (Brazilian Symposium on Formal Methods)4,

• ABZ’08 (Abstract State Machines, B and Z)5, and

• VSTTE’08 (Verified Software: Theories, Tools, Experiments)6.

The Mondex pilot project [Mon] was the first large project launched in January 2006 and was set 
to have a duration of one year. Mondex is an electronic purse that stores money on smart cards. 
Mondex enables people to carry, store and spend cash values using a payment card. The money on 
these smart cards behave exactly like normal cash and can be transferred to other purses without 
requiring signatures, PIN numbers or authorisation [Mon], The Mondex pilot project has now come 
to an end. During the project many interesting properties of the Mondex system were verified using 
various formal methods and specification languages such as Z, B, Event-B and RAISE [JWCW08].

There are new large projects being identified within the Grand Challenge 6 initiative [GC608]. 
Among these “large projects” we have identified the following two potential applications for anal
ysis and verification of CSP-CASL-Prover:

• The Pacemaker formal methods challenge.

• The FreeRTOS challenge.

8.2.3.1 Pacemaker formal methods challenge

The pacemaker formal methods challenge is an international challenge which is recognised within 
the Grand Challenge 6 initiative. It is managed by the Software Quality Research Laboratory [Pac] 
which is associated with the Department of Computing and Software at McMaster University, 
Canada [cas].

A pacemaker is a small medical device that is implanted into patients, an example can be seen in 
Figure 8.2. It controls abnormal heart rhythms using electrical impulses delivered by electrodes 
contacting the heart muscles. These electrical impulses regulate the beating of the heart.

2http://www.iceccs.org/
3http://www.fm2008.abo.fi/
4http://www.lasid.ufba.br/sbmf2008/
5http://www.cs.york.ac.uk/circus/mc/abz/
6http://qpq.csl.sri.com/vsr/vstte-08/
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Figure 8.2: Image of a pacemaker [Pac].

The company Boston Scientific [Bos] has released to the public domain a system specification of 
a previous generation pacemaker. The aims of this project are fairly wide. Participants can con
tribute anything from a complete version of the pacemaker software to just a formal requirements 
document [Pac].

The heart pacemaker is a state based system. It is a strength of C s p -C a s l  to describe such state 
based systems. States correspond to processes, transitions correspond to the action prefix operator, 
and branching can be captured by choice operators. Parallel composition can also be used for 
neat and elegant descriptions of such state based systems. Once the pacemaker system has been 
modelled, one is able to prove interesting properties of the system, such as liveness using the Csp- 
C a s l  notions of refinement.

8.2.3.2 FreeRTOS challenge

In co-operation with the company Wittenstein High Integrity Systems [Wit] the Grand Challenge 6 
group has identified the verification of the operating system FreeRTOS as a Grand Challenge.

FreeRTOS is a portable, open source, mini real time kernel designed specifically for small embed
ded systems which can be used in commercial applications [Fre]. A real time kernel (sometimes 
called a real time scheduler) is the part of the kernel that is responsible for deciding which task 
should be currently executing and switching the execution between such tasks [Fre].

Clearly such a scheduler has concurrent aspects. There are multiple processes (or tasks) which 
would like to be executing on the processor. Only one task can be executing at any one time and it 
is the responsibility of the scheduler as to which one has this privilege. Tasks can be in one of the 
following states:

•  Running -  When the task is actually executing and utilising the processor.

•  Ready -  When the task is able to execute but a different task is currently in the Running state.

•  Blocked -  When the task is waiting for some temporal or external event.

•  Suspended -  When the task has been explicitly suspended.

The transitions from one state to another can be seen in Figure 8.3. Only tasks in the Ready state 
can be moved into the Running state and only a single task can be in the Running state at any one 
time. A task may move to the Suspended state from any other state by the v T a s k S u s p e n d  () 
API call being made. A suspended task can only move to a Ready state by the v T ask R esu m e () 
API call being made. A running task may move to the Blocked state by calling any blocking API 
function. For example, reading from an external device would cause the task to block. A blocked
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S u sp e n d e d

vTaskSuspendQ
calledvTaskSuspend() 

called

Ready R unning

Event Blocking API 
function called

B locked

Figure 8.3: Diagram showing the valid task state transitions [Fre].

task may move to the Ready state if an event occurs. For example a task that is blocked because 
it is waiting on an external device to read data would become ready when the device has finished 
reading the data and has signalled so with an event.

C sp -C a s l is well suited to model such Real Time Schedulers because such systems have large 
amounts of concurrency and are state based. The states correspond to processes and the transitions 
correspond to action prefix events. There are a number of standard functions that are used in Real 
Time Operating Systems and also studied in the classical Process Algebra literature such as:

• Queues,

• Binary semaphores,

• Counting semaphores,

•  Mutexes, and

•  Recursive mutexes.

All of these are used for inter-task communications, for instance when processes synchronise in 
order to prevent race conditions from occurring. Once modelled we can use CSP-CASL-Prover to 
verify interesting properties of such a system. For instance some properties that we may wish to 
prove are:

• That the scheduler meets its specifications.

• That the scheduler does not deadlock or livelock.

• That binary semaphores do prevent race conditions.

However, in order to properly model such a system, we must abstract from the real time aspect 
of FreeRTOS as CSP-CASL has no real time mechanisms. Creating a work around would also be
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possib le if  w e do not w ish  to abstract aw ay from  the real tim e aspects o f  such a system . W e feel 
that this aspect does no t detract from  the neat and elegant m odelling  tha t C s p -C a s l  can provide 
for such a system .
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