

 Swansea University E-Theses ___

Theoretical aspects of the syntax and semantics of the Java

language.

Morris, David Edward Ronald

 How to cite: ___
Morris, David Edward Ronald (2006) Theoretical aspects of the syntax and semantics of the Java language.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42778

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42778
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Theoretical Aspects of the
Syntax and Semantics
of the Java Language

by

David Edward Ronald Morris

Master of Philosophy Thesis submitted to the
University of Wales, Swansea.

Department of Computer Science,
University o f Wales, Swansea.

August, 2006.

ProQuest Number: 10807547

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807547

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

This thesis investigates two theoretical aspects of the formal definition of programming

languages, using case studies in Java.

First, we define modular grammars which can be used to decompose large grammars.

Modular grammars allow the modular definition o f formal languages. They provide

concepts of component and architecture for grammars and languages. We show that this

modular method can be used to define a modem practical language like Java.

Second, we describe recent general work on the definition of interfaces and interface

definition languages (IDLs). In Rees, Stephenson and Tucker [2003], there is an

analysis o f the idea of interfaces and an algebraic model o f a general IDL. We apply

these ideas to analyzing aspects o f interfaces in Java.

The thesis is comprised of five chapters together with an appendix. Chapter 1 consists

of an introduction to the thesis. The second chapter reports on object-oriented

programming and the Java programming language with particular emphasis on a

mathematical theory of its definition. Chapter 3 deals with a modular decomposition of

Java syntax and grammars.

In Chapter 4, we expound a theory of the modular definitions of interfaces within any

programming language. One important feature o f the general account is the process of

flattening the hierarchical structure produced by modularity.

In Chapter 5, we attempt to implement the results of research into the Interface

Definition Language discussed in Chapter 4. We define '‘Little Java’, a subset of the

programming language Java, and endeavour to provide a series o f translations from

'Little Java’ to an abstract object-oriented interface definition language OO-IDL and

thence to an interface definition language AS-IDL for abstract data types.

In the Appendix, we review the history of the Java language.

iii

Declaration

This work has not, previously, been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

The thesis is my own work. Other sources have been acknowledged together with

explicit footnOtps and oitatipns giving explicit reference.

Signed:

Date:

Statement 1

This thesis is the result o f my own investigations, except where otherwise stated.

Explicit references have been made in acknowledgement o f the many sources of

contributive academic ^ritiqgs^A bibliography has been appended.

Signed:

Date:

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan. The title and summary is to be made available to any organization

or institution- »

Signed:

Date:

iv

Acknowledgements

In September 1930, for the first time, Adolf Hitler’s Nazi regime was recognised as a

political party by the people of Germany. One month later, with no apparent connection,

historically or politically, I was bom. Perhaps the timing was unfortunate but I

subsequently spent the duration of the Second World War in our local Grammar School

and in 1946 was eager to venture forth into the brave new world of a post war Britain. I

entered into the field of telecommunications and spent six years learning skills, which I

am glad to say, have never left me. After qualifying as an engineer, I suddenly became

aware that my future was to be found elsewhere, in teaching. I applied for a place at a

Teacher Training College and, after two years, moved on to complete a Diploma year at

Cardiff College of Physical Education.

It may seem presumptuous but the next thirty years were the happiest years of my life. I

was privileged to teach children and to leam from them in the process. On returning to

Wales, after a teaching spell in England and with two young children, my wife and I

decided that we would build our own home in Baglan. Four and a half years later we

moved into our new but slightly unfinished home and we are still here, forty three years

on. Our family, now four, have flown the nest and left us with a large and beautiful

house with a large and not so beautiful Council Tax.

In 1978, at the age of forty eight, I was seconded on a two year Computer Science

Diploma course at Swansea University. Having successfully completed the Diploma, I

returned to Cwrt Sart Comprehensive School as Head of Computer Studies. It should be

noted that Swansea University Computer Science Department was the first educational

body to train teachers in this field and it meant, most significantly, that we were all

pioneers of our time.

Due to ill health and, on reflection after a good innings, I retired at the grand old age of

fifty four. I wondered where the years had flown. With all that time on my hands my

wife and I started a computer business specialising in bespoke software and after ten

years, we retired again.

V

I would like to mention two people who, probably, were responsible for me embarking

on the latest adventure of my life. Mr. and Mrs. Edward Moseley, both graduates,

convinced me that my idea of applying to the University of Wales Swansea to undertake

a Computer Science course was worthwhile. I would like to thank them for their gentle

persuasion and friendly advice.

I applied to the College in August 1997 and, some months later, I was called to an

interview where I was told I could commence tuition on a higher degree course in the

September. During that time I was fortunate to have had the opportunity to read certain

topics prior to starting the syllabus in January 1998. In addition, there was time for me

to acquaint myself, once again, with the Unix operating system and the new network in

the Computer Science Laboratory. I say new because the last time I was at the

University was some twenty years earlier and equipment and operating procedures had

been updated since then.

My discussions with Dr Chen and Dr Stephenson were most enlightening and I was

aware that the course content was something that would have to be decided at some

time in the near future. It was with this in mind that I commenced my studies in the

Spring Term of 1998.

Unfortunately, I was to find my course of study at the University interrupted by a

serious illness. What two doctors thought was a digestive problem proved to be angina

and I was, eventually, admitted to hospital as an emergency patient. This was towards

the end o f February and within the space of two weeks I was to undergo major heart

‘bypass’ surgery. As a result, I was unable to do any kind of work for the next four

months and, in consultation with Dr. Chen, it was decided that I restart the course again

in spring, 1999.

I had discussed the course material with Dr. K. Stephenson for the coming year and the

timetable had been formulated on the basis o f projected academic requirements and

relevant lecture material deemed most suitable.

In my time o f study at the University o f Wales Swansea I have shared the company of

students, graduates, post graduates, lecturers, professors and staff. They have all made

vi

some contribution, knowingly or unknowingly, to my life. Each and everyone has

shown a willingness and desire to help and nurture the academic needs of a rather senior

fellow student; my thanks to you all.

O f course, every student has a supervisor, and I must note a gesture of special

appreciation to two academics who took on the task of guiding me through the

labyrinths of the Theory of Programming Languages.

• Dr. K. Stephenson whose patience and understanding was immeasurable and,

• Professor J. V. Tucker who took up the reins when Dr. Stephenson moved to a new

position. I am grateful to him for his invaluable help, advice and consideration, in

particular, his support and encouragement during the correction, preparation and

eventual completion of the thesis.

I would, also, pay tribute to the administrative and technical staff for their guidance on

matters of overwhelming importance such as keeping all systems in working order,

including my own. A special mention for the secretaries, Mrs. Susan Fenn and Mrs. Jill

Edwards. Jill, as secretary to Professor John Tucker, has helped me enormously and has

shown great patience and understanding in maintaining that communicative link

between myself and my supervisor, J.V.T.

Professor Min Chen and Professor Faron Moller, over the years, have been supportive

on matters of University protocol and procedure and I thank them. My thanks also, to

Dr. Phil Grant and Dr. John Sharpe, the sole survivors of the earlier Computer Science

Department teaching staff, who were my tutors on the first West Glamorgan Teachers’

Diploma Course in 1979-81.

My fellow students, throughout my time at Swansea University, have always been

helpful and understanding and I regard them as very dear friends. I am very aware of

their contribution to my own studies, to my well being and to my family. In particular, I

would like to single out Alfie Abdul-Rahman, for her inspiration and help, and Simon

Walton for his unfailing assistance.

I would like to thank my examiners, Dr. Grant Malcolm and Professor Peter Mosses,

for their invaluable contribution to this thesis. The remarks and suggestions proffered by

them, on reading my submitted thesis, were supportive and constructive and I have

endeavoured to complete their list of suggestions and corrections as accurately as

possible. I also thank Dr. Neal Harman for useful material on Java.

My final acknowledgement is to my wife Bette for her care and support throughout my

years at The University of Wales Swansea. It is significant to say that her

encouragement and endeavor has been unwavering despite having to endure a crippling

illness. I am deeply appreciative of her love and loyalty.

So, in my seventy sixth year, I submit a thesis. All those people I have mentioned have

contributed to this event and I humbly thank them.

Contents

A bstract..ii

Declaration... iii

Acknowledgements... iv

Chapter 1 .. 1

Introduction..1

Chapter 2 ..4

Object-oriented Languages and Java.. 4

2.1 Objects..6

2.2 Object Oriented Programming... 7

2.3 Concept Overview.. 8

2.4 Smalltalk, Eiffel and Python...11

2.5 Corba.. 13

2.6 The Java Platform... 16

2.6.1 Allocate memory to store the object...18

2.6.2 Move to the top of the class hierarchy... 18

2.7 A Java C lass..18

2.7.1 Class Body... 19

2.8 Inheritance... 19

2.9 A Constructor..19

2.10 A Method...20

2.11 An Interface...21

2.12 Introduction to Java R M I..21

Chapter 3 ..23

Decomposition of the Syntax of Java Language.. 23

3.1 Grammars and Modular Grammars... 24

3.1.1 Grammars..24

3.1.2 The Use of Grammars in Syntax Design.. 25

3.1.3 The Import Construct.. 26

ix

3.1.4 Special Features of Modular Grammars..28

3.1.5 Modular Decomposition..29

3.1.6 Examples of Modular Grammars.. 29

3.1.7 Context Free Grammars..33

3.1.8 Backus-Naur Form .. 35

3.1.9 Extended BN F..35

3.2 Logical Decomposition.. 36

3.2.1 D igits... 39

3.2.2 Num bers..39

3.2.3 Identifiers... 40

3.2.4 Expressions... 41

3.2.5 Expression Operators..41

3.2.6 Boolean Expressions... 43

3.2.7 Boolean Expressions Operators...44

3.2.8 Statements...45

3.2.9 Switch Statement..46

3.2.10 Declaration... 47

3.2.11 Modifiers.. 47

3.2.12 Public...49

3.2.13 Protected..49

3.2.14 Private.. 50

3.2.15 Static.. 50

3.2.16 A bstract...51

3.2.17 Final... 51

3.2.18 N ative..52

3.2.19 Synchronised.. 53

3.2.20 Types... 53

3.2.21 Prim itives... 54

3.2.22 Reference.. 54

3.2.23 Interfaces.. 55

3.2.24 Interface Declaration...55

3.2.25 Interface B ody..56

3.2.26 M ethods...58

X

3.2.27 Method Declaration...58

3.2.28 Method Body... 59

3.2.29 Classes.. 60

3.2.30 Class Declaration...60

3.2.31 Class Body..60

3.2.32 Special Cases... 62

3.2.33 Programmes..63

3.2.34 Im ports... 64

3.2.35 Packages...64

3.3 The Flattened Grammar of Little Jav a .. 66

3.4 Evaluation.. 71

Chapter 4 ..72

A Model for Interface Definition Languages.. 72

4.1 Interfaces... 72

4.1.1 Interface Components.. 73

4.1.2 Stand-alone Interface.. 74

4.1.3 Properties of Operations and Bodies.. 75

4.2 Imports and Repositories... 77

4.3 Dependency Trail Definition...78

4.4 Architecture and Flattening...79

4.5 General Flattening Algorithm...83

Chapter 5 ..86

A Subset of Java and its Interfaces... 86

Introduction... 86

5.1. Object-oriented Languages and Little Java...88

5.1.1 Classes.. 88

5.1.2 Class Definition... 90

5.1.3 Class Declaration...90

5.1.4 The Class B ody ... 90

5.1.5 Member Variables...90

5.1.6 A Method..91

5.1.7 Method Declaration...91

5.1.8 Method Body... 92

5.1.9 Constructor... 92

5.1.10 Inheritance.. 92

5.1.11 Library... 93

5.1.12 Software Architecture in Little Java.. 93

5.1.13 Grammar L isting..94

5.2 Detailed List o f Constructs..95

5.2.1 Types... 95

5.2.2 Operators...96

5.2.3 Logical...96

5.2.4 String concatenation.. 96

5.2.5 Arrays...96

5.2.6 Control Structures...97

5.2.7 M odifiers...97

5.2.8 N ull.. 97

5.2.9 This.. 97

5.2.10 Super.. 97

5.2.11 Initializer...97

5.2.12 Library...97

5.2.13 Java.lang..98

5.2.14 Input and Output...98

5.2.15 Java.lang.Math...98

5.2.16 Java.lang.Object...99

5.3 Examples of Language Features and Flattening in Java100

5.3.1 The Base C lass... 100

5.3.2 The SubClass.. 101

5.3.3 The Flattened C lass... 101

5.3.4 Class Signatures...103

5.3.5 Java Interfaces.. 104

5.4 An Abstract Object-oriented IDL... 105

5.5 Transforming Little Java into O O -ID L .. 107

5.6 Algebraic Specification Interface Definition Language A S-ID L................... 109

5.7 Translation of OO-IDL to AS-IDL.. 109

Chapter 6 ..113

xii

Chapter 7 ..117

Appendix 1 .. 120

A. 1.1 A Revised History o f the Java Language... 120

A. 1.2 A Brief History of the Internet and Related Networks................................. 120

A. 1.3 World Wide W eb ...121

A. 1.4 The Internet Technical Evolution...123

A. 1.5 M osaic... 124

A. 1.6 Java People... 124

A. 1.7 First Person... 124

Appendix 2 ...128

Switch Program Example.. 128

Bibliography.. 133

Table of Figures

Figure 2.1 Illustration of fundamental objects in a motor vehicle................................10

Figure 2.2 CORBA ORB Architecture. (Image from Borland)...................................16

Figure 3.1 A language specification using a grammar...26

Figure 3.2 Component Grammars for Construction o f GSwitchStatement..........................30

Figure 3.3 A Java Switch Statement Gram m ar..33

Figure 3.5 A Tree Diagram showing the logical decomposition of Java.................... 38

Figure 3.6 Modifiers and their usage..47

Figure 3.7 Java Primitive Data Types.. 54

Figure 3.8 An illustration of some special cases.. 62

Figure 4.1 Stand-alone Interface. ...74

Figure 4.2 Body of Interface..75

Figure 4.3 Modelling a Stand-alone Interface...76

Figure 4.4 A Repository...77

Figure 4.5 Repository Algebra.. 78

Figure 4.6 Dependency Trail Tree..79

Figure 4.7 Interface Real..80

Figure 4.8 Interface Bool... 81

Figure 4.9 Interface RealBool... 81

Figure 4.10 Interface RealBoolEqual... 82

Figure 4.11 New Interface RealBool with no Imports...82

Figure 4.12 Flattening Template... 84

Figure 4.13 Reformation of Dependency Trail... 85

Figure 5.1 Class Schematic..89

Figure 5.2 A Java Program Demonstrating the Base Class...100

Figure 5.3 The Sub Class, or Extended Base Class..101

Figure 5.4 The Flattened BaseClass / SubClass..102

Figure 5.5 The BaseClass...103

Figure 5.6 The SubClass.. 103

Figure 5.7 The Flat Class... 103

Figure 5.8 The Base Interface... 104

Figure 5.9 The Class Interface...104

xiv

Figure 5.10 The Flattening Interface...104

Figure 5.11 OO-IDL..106

Figure 5.12 The BaseClass Interface.. 107

Figure 5.13 The SubClass Interface.. 108

Figure 5.14 The FlatClass Interface.. 108

Figure 5.15 Body of OO-IDL interface-Commands / Queries......................................110

Figure 5.16 Revised example of OO-IDL Interface-BaseClass....................................I l l

Figure 5.17 Revised example of OO-IDL Interface-SubClass......................................I l l

Figure 5.18 Revised example of OO-IDL Interface-FlatClass......................................112

Figure 6.1 Fragment of Java.. 114

Figure 6.2 Abstract Object Orientated IDL..114

Figure 6.3 The Big Picture / Theoretical Framework...115

1

Chapter 1

Introduction

“It must be remembered that there is nothing more difficult to plan, more doubtful o f

success, nor more dangerous to manage, than the creation o f a new system. For the

initiator has the enmity o f all who would profit the preservation o f the old institutions

and merely lukewarm defenders o f those who would gain by the new ones. ”

Machiavelli.

In general, the thesis investigates some theoretical aspects of the formal definition, or

specification, of programming languages. We consider aspects of syntax and semantics

and focus on the object-oriented language Java as a case study of the methods, hi

software terms the overall theme is modularity and hierarchical structure, and the

architecture o f languages and programmes it determines. Theoretically, the overall

theme is the radical simplification of programming languages in order to use simple

theoretical tools.

For syntax we will consider modular grammars and Backus-Naur Forms and use them

to give a decomposition o f Java syntax. More specifically, we examine examples and

case studies in Java together with a modular construction of a subset of the Java

Language (Version 1.1).

For semantics we will consider the mathematical modelling o f the concept of interfaces

and its semantics. We abstract from a programming language the definition of an

Interface Definition Language. (Rees et al [2003]). We define sets of interfaces, termed

repositories, and examine their structure to develop a notion o f system architecture and

give a formal specification.

The idea of modular grammars for the specification of languages has been proposed in

Stephenson and Tucker [2006]. There, it is used to define small to medium size

2

examples of languages. We will develop modular grammars and apply them to a large

real world programming language to see if the idea scales up.

The general idea of interface has been analysed in Rees, Stephenson and Tucker [2003].

There, interfaces have modularity through being able to extend or import interfaces

when constructing a new interface. The paper gives algebraic specifications of libraries

of interfaces and a process called flattening which assembles an equivalent interface by

substituting the interface components. We will give an account of this theory and

investigate its application to a large real world programming language to see what the

ideas reveal and to explore their scope and limits.

Thus, the thesis investigates some theoretical concepts and tools - modular grammars,

abstract interfaces, flattening, etc - that have been used on small illustrative examples

and develops them in order to apply them to large real world languages.

In Chapter 2, we examine the main ideas about object-oriented language and identify

the concepts of class, inheritance and library. We compare languages such as Eiffel,

Corba, Java and Remote Method Invocation (RMI). We then move on to define the

syntax of the Java Language with further examples, illustrations and comparisons.

In Chapter 3, we discuss the decomposition of the Java language and make a detailed

analysis of the structures that constitute the language. We describe modular grammars

and the modular decomposition of the language. We illustrate a modular decomposition

of the syntax o f Java. The theories used for this structured approach are based on

modular, context free, grammars in Backus-Naur Form.

In Chapter 4, we define the general mathematical modelling of any interface definition

language as given in Rees, Stephenson and Tucker [2003]. Interfaces are elements of

sets called repositories and are given an algebraic structure to define system

architecture. We discuss flattening transformations that eliminate, or reduce, the

hierarchical structure, by a form of structural induction, and illustrate this with algebraic

definitions. We show how a dependency trail represents the data dependencies of an

interface and consider the properties of these interfaces. We extend the original

interface by adding the import definition. The imported interface dependency is made

3

redundant when the import is removed by the transformation technique known as

flattening.

In Chapter 5, we abstract from the concrete syntax o f Java and we define a subset ‘Little

Java’ and endeavour to provide an adequate and appropriate interface definition

language to analyse and support its semantic modelling. We have simplified the

language and made it as sound as possible without compromising the full Java language.

In order to do this we employ certain restrictions and omit certain advanced features (for

example: overloading, threads and exceptions).

In the Appendix we summarise the history of Java.

4

Chapter 2

Object-oriented Languages and Java

In this chapter we discuss some of the basic ideas about object-oriented programming as

they appear in Java. The thesis demonstrates certain features of software architecture.

What is software architecture? The following examples give selected background

information on the topic. We include some of the definitions and associated discussions

of software architecture that can be found on the CMU Software Engineering Institute

website.

■ Dahl and Nygaard [1966]

Ole-Johan Dahl and Kristen Nygaard are responsible for the origin, design and

development of the programming language Simula at the Norwegian Computing Centre

in Oslo between 1962 and 1967. Although the language never proved to be popular it

has been highly influential on modem programming methodology. Simula introduced

important object-oriented programming concepts such as objects, classes, inheritance

and dynamic binding.

■ Garlan and Shaw [1996]

Mary Shaw and David Garlan suggest that software architecture is a level of design

concerned with issues... “beyond the algorithms and data structures o f the computation;

designing and specifying the overall system structure emerges as a new kind o f

problem . Structural issues include gross organisation and global control structure;

protocols fo r communication, synchronisation, and data access; assignment o f

functionality to design elements; distribution; composition o f design elements; scaling

and performance; and selection among design alternatives.”

■ Bass, et al [1998]

Writing about a method to evaluate architectures with respect to the quality attributes

they instil in a system. Bass and his colleagues write that... “The architectural design o f

5

a system can be described from (at least) three perspectives — functional partitioning o f

its domain o f interest, its structure, and the allocation o f domain function to that

structure”

■ Hayes-Roth [1994]

Writing for the ARPA Domain-Specific Software Architecture (DSSA) program,

Hayes-Roth says “that software architecture is ... an abstract system specification

consisting primarily o f functional components described in terms o f their behaviours

and interfaces and component interconnections. ”

• Garlan and Perry [1995]

David Garlan and Dewayne Perry have adopted the following definition for their guest

editorial to the April 1995 IEEE Transactions on Software Engineering devoted to

software architecture: “The structure o f the components o f a program / system, their

inter-relationships, and principles and guidelines govern their design and evolution

over a period o f time. ”

■ Booch, Rumbaugh, and Jacobson [1999]

“An architecture is the set o f significant decisions about the organisation o f a software

system, the selection o f the structural elements and their interfaces by which the system

is composed, together with their behaviour as specified in the collaborations among

those elements, the composition o f these structural and behavioural elements into

progressively larger subsystems, and the architectural style that guides this

organisation— these elements and their interfaces, their collaborations, and their

composition. ”

In the range of expressions utilised by the idea of software architecture some terms, or

ideas, seem essential: there are building blocks that have interfaces and these give rise

to a modular or hierarchical structure. These ideas appear as fundamental motivation

for object-oriented programming in which classes and objects are building blocks and

inheritance gives the modular structure.

6

2.1 Objects

Objects are software models of the physical and conceptual things we find in the

universe around us. Hardware, software, documents, human beings, and even concepts

are all examples o f objects. For purposes of modelling, an automotive engineer would

see tyres, doors, engines, top speed, and the current fuel level as objects. Atoms,

molecules, volumes, and temperatures would be objects a chemist might consider in

order to create an object-oriented simulation o f a chemical reaction. Additionally, a

software engineer would consider stacks, queues, windows, and check boxes as objects.

Objects have state. The state of an object is the condition o f the object, or a set of

circumstances describing the object. For example, the state of a bank account object

would include the current balance, the state of a clock object would be the current time,

and the state of an electric light bulb would be "on" or "off." For complex objects like

an automobile, a complete description of the state would be complex. We use objects to

model real world or imagined situations and we typically restrict the possible states of

the objects to those that are relevant to our models.

We tend to think of objects as being strictly static. That is, the state of an object will not

change unless something outside o f the object requests the object to change its state.

Certain objects are passive (static). A list o f names does not spontaneously add new

names to itself, nor would we expect it to spontaneously delete names from itself.

Edward Berard wrote an abstract on the testing of object-oriented software which

included the evaluation of such factors as encapsulation and inheritance. (See Berard

[2000]).

However, it is possible for some objects to change their own state. If an object is

capable of spontaneously changing its own state, we refer to it as an active object.

Clocks and timers are common examples of active objects.

An algorithm for accomplishing an operation is referred to as a method. Unlike

operations, methods are not part o f the public interface for an object. Rather, methods

are hidden on the inside of an object. So, while users of bank account objects would

7

know that they could make a deposit into a bank account, they would be unaware of the

details as to how that deposit actually got credited to that particular bank account.

Systems of interacting objects, on the other hand, resemble applications. For example,

suppose that we wanted to construct an object-oriented application that controlled the

lifts in a particular building. We would assemble lifts, buttons, lamps, panels, control

units and other objects into a working application that would monitor the lifts. Such an

application would not be viewed as a library, but as a highly cohesive whole. The lift

controller application is a system of interacting objects.

2.2 Object Oriented Programming

In this section we analyse three interpretations o f object-oriented development and

record their subsequent effect on object-oriented software. The basis o f object-oriented

development is abstractly defined object types called classes; it is difficult to conceive

of a class without an abstract specification. (See Sebasta [1989]).

2.2.1 What is Object Orientation?

Object-Orientation is a paradigm for creating software systems using objects. Objects

are tangible and conceptual things we find in the real world. Using object-oriented

techniques, the code is broken into modular, reusable chunks called classes. Classes are

the "blueprint" for creating instances of objects. These classes can be used throughout

an application repeatedly. (See Flanagan [1996]).

2.2.2 The Benefits of Object-oriented Programming?

Object-oriented programming emphasises creating reusable, robust software in a way

that is easy to understand. By relating programming to the real world, it becomes much

easier to use. Walden and Nerson [1994], list some of the characteristics of object-

oriented programming and states that the programmes are,

8

• Reusable - and speeds up modular development,
• Robust - and increases quality,
• Simple - and easy to maintain,
• Flexible - and easy to modify.

2.3 Concept Overview

There are many concepts involved with object-oriented programming. The following

are the basic features we encounter:

• Classes - A generic blueprint used to create similar objects. We can have a car

class defining common properties of cars. All o f these vehicles would move,

brake, reverse, use some form of fuel, etc. Specific instances o f these objects

may be different in design, having different wheels, engines, doors, colour, but

they would all share the same basic characteristics.

• Encapsulation - Encapsulation is a principle of object-orientation that provides

common interfaces, protects the state of an object and hides its implementation

details. This common interface between objects with different internal

representation permits interchangeability. "Encapsulation is the process o f

hiding all o f the details o f an object that do not contribute to its essential

characteristics". (See Booch [1999]).

• Inheritance - Allows reuse of code by building on existing classes. Using

inheritance you can create a base class and then extend this class by creating a

subclass that has all of the inherent properties o f its base class.

• Polymorphism - Allows objects to assume many forms. We construct a class

motor vehicle with an engine, a body, steering, brakes, transmission and four

wheels. Two instances of this class, car class and lorry class, would inherit the

properties and behaviours of the parent class. Together with these inherited

capabilities, a car could have all those different qualities. We would associate

these as model features, but would still recognize it as a car. A lorry could have

more than four wheels, an articulated lorry more again. Acceleration and braking

9

are behavioural patterns and would have a contributory effect on the inherent

values of the object. The car and the lorry have the ability to move, and be

driven, but attributes will determine behaviour, in many ways.

• Library - A collection of classes that can be used to make new classes via

inheritance. Such new classes can be added to the library.

In this thesis we use the language of Java and its class structure as an example of an

object-oriented language. Shortly, we mention other languages that have a similar

structure. It is explained, perhaps, more eloquently by Booch:

“The logical model (i.e., the problem domain) is represented in the class and object

structure. In the class diagram one builds up the architecture, or the static model. To

deal with complex diagrams, the notation allows class categories to group classes into

name spaces, each category being itself a class diagram. The module and process

architecture deals with the physical allocation o f classes and objects to modules, and

with processors, devices and communication connections between them, in few words it

describes the concrete hardware with respect to the software components o f a system ”.

Booch [1992].

Class diagrams are widely used to describe the types of objects in a system and their

relationships. For example the diagram would display:

(i) the class name,

(ii) the class attributes, and

(iii) the class operations.

10

Body

Engine Seats

BrakesWheels

ThrottleTransmission

Figure 2.1 Illustration of fundamental objects in a motor vehicle.

A useful analogy set by Kenneth Litwak [2000] would be: ‘In order fo r me to exist, my

father and mother had to exist first. In order fo r my mother to exist, her mother and

father had to exist. In order fo r her parents to exist my grandparents, on my mother’s

side, had to exist, and so forth. ’

In a similar way, for a Frame object to exist, its parent object, Window, has to exist. For

a Window object to exist, its parent class Container, has to be instantiated, and so forth.

The object diagram Figure 2.1, shows how certain objects interact via the exchange of

messages. This interaction can be defined as their relationship.

We look at some languages.

11

2.4 Smalltalk, Eiffel and Python

Smalltalk. The language was developed in the seventies by Alan Kay et al. He was the

leader of a group of pioneers who were the first to research and then implement object-

oriented software. Simula, originally a subset of Algol60, was the keystone of this new

language and played an important part in its development. In Smalltalk, everything is an

object and belongs to a class. Strings, integers, booleans, etc. are all represented as

objects. Java adopted many of these concepts having strings, integers, booleans

represented as primitives and objects.

The execution of code is sequential within objects and message sending between

objects. Any message can be sent to any object; the class of the receiver object

determines whether this message is appropriate and accordingly, determines the manner

in which it should be processed. Smalltalk also made use of other advanced ideas such

as garbage collection which is described as an automatic memory reallocation process.

(See Smalltalk [1970 - 2005]).

Smalltalk programs are compiled to bytecode and run by a virtual machine (VM). They

are then executable on any hardware platform that is compatible with a VM. The

concept was adopted by Java a decade later. The Java Virtual Machine (JVM) is

discussed in Chapter 2.6.

Eiffel. Bertrand Meyer, (See Meyer [1997]) is responsible for the inception and

development o f the Eiffel language and he has been actively concerned with that

development since 1985. Eiffel is another object-oriented programming language with

the emphasis on it being robust software. Again its syntax is keyword-oriented and is

based on the concepts laid down by such languages as ALGOL and Pascal. Eiffel is

strongly typed, with automatic memory management (another implementation of

garbage collection).

Eiffel is a small language, similar in size to Pascal, and is closely allied to the original

concepts o f object-oriented software engineering set out in the earlier language

12

Smalltalk. Numerous universities around the world were quick to realise the potential of

the language and adopted it as their primary teaching language.

Python. The Python language has an extensive support system for object oriented

programming. It supports inheritance, multiple inheritance, polymorphism. Python

treats classes, functions, numbers and modules as objects. It has limited support for

private variables and regards the programmer as the controlling influence with regard to

safe programming.

Exception handling is supports extensively by Python, it is capable o f testing for error

conditions and other exception events in a program and it also has the capability to trap

the exception whenever that may occur. Exceptions can also be used to instigate the

cessation of iterative and deeply-nested message-handling code.

Again, objects may be used as instances of abstract type and can be termed as

interfaces possessing data structures with unique identities. The Object (class) would be

the basic unit and collectively, they would comprise a program that would allow

instances of these units to interface with a class and the data within that class. This

ability to communicate independently with other interfaces and with any inherited type

is common to the object-oriented languages listed above.

This language combines remarkable power with very clear syntax.. It has modules,

classes, exceptions, high level dynamic data types, and dynamic typing. There are

interfaces to many system calls and libraries. The standard library is one o f Python's

greatest strengths. The library modules can be used with custom modules written in

other languages such as C or Python. The greater part o f this library is cross-platform

compatible and Python programmes are able to run on Unix, Windows, Macintosh, and

other platforms without alteration. A comprehensive history is available on the

Wikipedia website together with a summary of the language. (See Python Programming

Language [2005]).

13

2.5 Corba

CORBA stands for Common Object Request Broker Architecture. It is a high level tool

for distributing programming with components and has many interesting ideas.

CORBA standards provide the proven, interoperable infrastructure to Java 2 Platform,

Enterprise Edition. It also provides for high-level language bindings, static and dynamic

method invocations, local and remote transparency, built-in security and transactions,

polymorphic messaging, and many more programming attributes. At the base of

CORBA is the ORB (Object Request Broker). A common principle adopted by many

computer designers is to allow many different devices to communicate with one and

other on the same bus. In software terms, the ORB is the middleware that allows all

CORBA objects to communicate with other CORBA objects that run on any number of

client and/or server machines. The ORB receives the call from a client object, finds the

object that can handle the request, passes any parameters, invokes the method and

returns a result. (See O.M.G. [2003]). Here are some of its key features:

• The Interface Definition Language - For most developers the starting point for

a CORBA application is the Interface Definition Language (IDL). The IDL

defines the interfaces that a client object will call and the server object will

implement. CORBA IDL is a declarative language supporting C++ style syntax

for keywords, preprocessor commands, pragmas, constants, types and methods.

Pragmas are special compiler commands that control certain features o f a C-

compiler and are compiler specific. An IDL to Java compiler is used to convert

the IDL into language specific client stubs and server implementation skeletons.

The latter may be defined as constructs (pieces of code) where implementations

and analyses can be shared between instances. Such constructs are skeletons, in

that they have structure but lack detail.

Object - This is a CORBA programming entity that consists of an identity, an

interface, and an implementation, which is known as a servant.

Servant - This is an implementation programming language entity that defines

the operations that support a CORBA IDL interface. Servants can be written in a

variety of languages, including C, C++, Java, Smalltalk (See Brachla &

Griswold [1993]).

Client - This is the program entity that invokes an operation on an object

implementation. Accessing the services o f a remote object should be transparent

to the caller. Ideally, it should be as simple as calling a method on an object, i.e.,

obj -> op (a r g s). The remaining components, in Figure 2.3, help to support this

level of transparency.

O bject Request B roker (ORB) - The ORB provides a mechanism for

transparently communicating client requests to target object implementations.

The ORB simplifies distributed programming by decoupling the client from the

details of the method invocations. This makes client requests appear to be local

procedure calls. When a client invokes an operation, the ORB is responsible for

finding the object implementation, transparently activating it if necessary,

delivering the request to the object, and returning any response to the caller.

ORB Interface - An ORB is a logical entity that may be implemented in

various ways (such as one or more processes or a set of libraries). To decouple

applications from implementation details, the CORBA specification defines an

abstract interface for an ORB. This interface provides various helper functions

such as converting object references to strings and vice versa, and creating

argument lists for requests made through the dynamic invocation interface

described below.

CORBA IDL stubs and skeletons - CORBA IDL stubs and skeletons serve as

the ‘glue’ between the client and server applications, respectively, and the ORB.

The transformation between CORBA IDL definitions and the target

programming language is automated by a CORBA IDL compiler. The use of a

compiler reduces the potential for inconsistencies between client stubs and

server skeletons and increases opportunities for automated compiler

optimizations.

Dynamic Invocation Interface (DII) - This interface allows a client to directly

access the underlying request mechanisms provided by an ORB. Applications

use the DII to dynamically issue requests to objects without requiring IDL

interface-specific stubs to be linked in. Unlike IDL stubs (which only allow

RPC-style requests), the DII also allows clients to make non-blocking deferred

synchronous (separate send and receive operations) and oneway (send-only)

calls.

Dynamic Skeleton Interface (DSI) - This is the server side's analogue to the

client side's DII. The DSI allows an ORB to deliver requests to an object

implementation that does not have compile-time knowledge of the type of the

object it is implementing. The client making the request has no idea whether the

implementation is using the type-specific IDL skeletons or is using the dynamic

skeletons.

O bject A dapter - This assists the ORB with delivering requests to the object

and with activating the object. More importantly, an object adapter associates

object implementations with the ORB. Object adapters can be specialized to

provide support for certain object implementation styles (such as OO-DB object

adapters for persistence and library object adapters for non-remote objects).

1 6

INTERFACE
REPOSITORY

IDL
COMPILER

IMPLEMENTATION
REPOSITORY

c l ie n t (5b ? i operationO

r

in args

REFJ out args + return value
- O

OBJECT
(s e r v a n t)

d d IDL
STUBS

V J V J
ORB

INTERFACE

IDL
SKELETON DSI

E E ili •— ---------— — r?

Giop/nop j

Jl STANDARD INTERFACE \ \ () STANDARD LANGUAGE MAPPING

ORB-SPECIFIC INTERFACE (~) STANDARD PROTOCOL

I OBJECT
ADAPTER

mm

Figure 2.2 CORBA ORB A rchitecture. (Image from Borland).

2.6 The Java Platform

The Java platform consists of the Java application programming interfaces (APIs) and

the Java Virtual Machine (JVM). Java API’s are libraries of compiled code used in a

program. They are available as ready-made programming templates that are customized

in a functional manner by the programmer thus saving a great deal of programming

time.

Java is a language developed by Sun Microsystems, Inc. The present versions of the

Java Development Kit (JDK) range from JDK1: 1.0, 1.02, 1.1, 1.3, 1.4 and 1.5. In

February 1997 Java Development Kit 1.1 was launched. In order to comply with

available software at the university and adjunct packages such as Netscape (Supporting

the version 1.1), Java version 1.1 may be designated as our program prototype for

research purposes. (See Gosling [1996]).

Java Application Program m ing Interfaces or APIs. The Java programming language

is versatile and adept and is regarded, more widely, as a language tool for the creation of

applets for the World Wide Web or Internet. An applet is a mini-programming

application that is able to operate within a Web Page. (See Horstmann [1996]).

Java’s ability to execute code on a remote and secure basis is a major advantage, and

this together with its network based user applications, graphical interfaces,

multithreading and exception handling, make it the ideal language for the interactive

requirements of internet programming. The word Java, when used in this thesis, is a

direct reference to the Sun Microsystems, Inc., system. We will discuss the program

constructs of Java on several occasions in this thesis. Java software objects are modelled

on real-world objects. They, also, have state and behaviour. A software object maintains

its state in one or more variables. A variable is an item of data named by an identifier. A

software object implements its behaviour with methods. A method is a function

(subroutine) associated with an object. One special feature is its virtual machine

A Java V irtual M achine or JVM is a virtual machine that runs Java byte code. This

code is most often generated by Java compilers, although the JVM has also been

targeted by compilers of other languages. The JVM is a vital component of the Java

platform. The availability of JVMs on almost all types o f hardware and software

platforms enables Java to function as a platform in its own right.

Programmes intended to run on a JVM must be compiled into a standardized portable

binary format called bytecode. Java was designed to allow these compiled application

programmes to be run on any platform without having to be rewritten or recompiled.

Java's virtual machine makes this possible.

A program may consist of many classes, in which case, every class will be in a different

file. For easier distribution of large programmes, multiple class files may be packaged

together in a .jar file. The JVM verifies the bytecode of the program before it is

executed.

We enumerate the steps undertaken by the JVM to make a new object.

18

2.6.1 Allocate memory to store the object.

2.6.2 Move to the top of the class hierarchy.

In the process, invoke the constructor of the superclass from each higher level class up

to the Object.

2.6.3 Make an instance of each Object going down the hierarchy inheritance trail.

We evaluate various object-oriented development configurations and compare their

individual aspects. An attempt has been made to outline the more intrinsic features e.g.

class, class body, inheritance, constructor, method and interface, and avoid repetition

and over-elaboration. Other features such as exceptions, threads and sockets, which are

strictly methods, can be discounted for purposes o f evaluation.

2.7 A Java Class

A class is a blueprint or prototype that defines the variables and the methods common to

all objects of a certain nomenclature. In object-oriented software, it is possible to have

many objects of the same kind. These objects can be recreated as blueprints (templates).

All objects in Java have state and behaviour. A blueprint of an object may be created by

a class which can, further, define its data and behaviour. A class may inherit

implementation from only one other class (Superclass). The class declaration must state

the name o f the class and may declare its Superclass with the keyword extends.

Multiple inheritance is not allowed in Java and, therefore, obviates ambiguous

implementation, However, multiple inheritance is permissible when using classes of a

special nature. These special classes, called interfaces, have no implementation and no

state and they, in turn, may optionally, implement one or more additional interfaces.

The keyword extends declares that the ClassName is the subclass of SuperClassName.

A subclass inherits variables and methods, their state and behaviour, from the

Superclass. The class inherits all the attributes of the Superclass, which it extends, and

can modify or override its attributes.

class = Identifier x SClass Identifier x Interface Jdentifier

<class-declaration> ::= <class-modifier> class <identifier> <extends> <implements>

2.7.1 Class Body

The class body is constructed of variable declarations and methods and contains the

member variables and methods supported by the class. A class is the set of all items

created using a specific pattern. It can be described as a set of all instances of that

pattern.

<class-body> ::= <list-of-declarations> <list-of-methods>

<list-of-methods> ::= <method> ; <list-of-methods> | e

Body = Sorts x Constants x Operations x Methods.

2.8 Inheritance

A class inherits state and behaviour from its superclass. Inheritance provides a powerful

and natural mechanism for organizing and structuring software programmes. The nature

of an object can be determined by the definition of the class. Object-oriented systems

take this a step further and allow classes to be defined in terms of other classes. For

example, estate cars, saloon cars, and racing cars are all kinds o f cars. In object-oriented

terminology, they are all subclasses of the car class. Similarly, the car class is the

superclass o f estate cars, saloon cars, and racing cars. (See Green [1996-2005]).

2.9 A Constructor

All Java classes have constructors. A constructor is part o f a class and is used to

initialize a new object of that class type. The class constructor always has the same

name as the class and has no return type.

20

(i) Java supports name overloading for constructors i.e. a class can have any

number of constructors with the same name.

(ii) When writing a class, the Runtime System automatically provides a

constructor for that class if one has not been included.

(iii) It may be termed that a constructor is a Method that uses its arguments to

initialize the state of the new object.

(iv) The compiler can determine which constructor to implement based on the

number o f arguments used.

2.10 A Method

An object, although capable of performing, usually appears as a component o f a larger

program or application that contains other objects. Through the interaction of these

objects, programmers are able to achieve higher-order functionality and more complex

behaviour patterns. This software interaction is a communicative process known as

message sending. When object (A) wants another object (B) invoke an object (B)

method, a message is sent by object (A) to the object (B).

It follows that a class of objects that define such operations are required to interface

with one and other in order that they may facilitate communication. This notion of

interface is governed by the language protocol. In Java, classes make declarations to

objects by using methods. Their implementation is defined as is their state. The method

has two parts: the method declaration and the method body. The method declaration

defines all of the method’s attributes and the method body contains the Java instructions

that implement the method. Java has an explicit case wherein a method may have a

body without any instructions (empty parenthesis) and therefore no implementation.

21

2.11 An Interface

A Java interface is a contract in the form of a collection of method and constant

declarations. When a class implements an interface, it promises to implement all o f the

methods declared in that interface. Within the Java language an interface is a device that

unrelated objects use to interact with each other. An interface is probably most

analogous to a protocol. In fact, other object-oriented languages have the functionality

o f interfaces and call their interfaces, protocols. An interface is a protocol o f behaviour

that may be implemented by any class anywhere in the class hierarchy.

2.12 Introduction to Java RMI

Java Remote Method Invocation (Java RMI) enables the program to create distributed

Java technology-based applications, in which the methods of remote Java objects can be

invoked from other Java virtual machines.

There are three processes that enable remote method invocation.

(i) The Client process that is invoking a method on a remote object.

(ii) The Server process that owns the remote object. The remote object is an

ordinary object in the address space of the server process.

(iii) The Object Registry is a name server that relates objects with names.

Objects are registered with the Object Registry. Once an object has been

registered, one can use the Object Registry to obtain access to a remote

object using the name of the object.

Java RMI allows one to invoke a method on an object that exists in another address

space. The other address space could be on the same machine or a different one. (See

Java Sun.com [2002]).

22

4In the Java distributed object model, a remote object is one whose methods can be
invoked from another Java Virtual Machine, potentially on a different host. A remote
object implements one or more remote interfaces, which are pure Java interfaces that
declare the methods o f the remote object. A method invocation on a remote object has
the same syntax as a method invocation on a local object

The Java distributed object model preserves the Java object model in the following

ways:

(i) a reference to a remote object can be passed as an argument or returned as a

result in any local or remote method invocation,.

(ii) programmers can utilize natural Java mechanisms for the type-checking and

casting of remote objects,

(iii) clients are able to interact with remote interfaces.

When a remote object reference is passed, that reference is made available to the client

receiver. It is difficult to foretell the precise eventualities o f the applications under

review but it appears that RMI is moving closer towards CORBA and the two

technologies could merge into a single, seamless, distributed object architecture to take

advantage of the strengths of the two object disciplines.

23

Chapter 3

Decomposition of the Syntax of Java Language

We have reviewed some o f the basic ideas about object-oriented programming in

Chapter 2, now we write on the definition of the syntax of languages.

The syntax of a programming language is commonly specified using a grammar. A

grammar defines the symbols that make up programmes in the language and, in

particular, the rules for forming the legal programmes of the language. A practical

language will need many rules. Large grammars extending over pages are common. For

example, the syntax o f Java as defined in Gosling et al, [1996] takes up 14 pages and

has hundreds of rules.

There are two methods by which we can improve the way in which we read and use a

grammar. We can improve:

• the presentation, by adapting and finding another notation more suitable for

human or machine consumption, and

• the structure, by employing some concept of modularity with the aid of an

importing construct that breaks down grammars into useful components.

The following sections introduce and apply the idea of modular grammars. We show

how to construct such a grammar and how it is related to standard grammars. To

illustrate our definition we give an example based on a switch fragment of Java. An

example can be seen in Appendix 2.

Modular grammars were introduced informally in courses on formal languages to speed

up the description of illustrated examples. See (Stephenson and Tucker [2006]). Here

we apply modular grammars to the specification of a major subset o f Java to investigate

the techniques when used in a large language.

24

3.1 Grammars and Modular Grammars

3.1.1 Grammars

A grammar is a mathematical idea designed to specify formal languages and is a

collection of rules to generate the strings of a language. These rules define how we are

able to form these strings by means of systematic substitutions.

A grammar consists of the four components:

(1) a set T of terminal symbols, comprising alphabetical characters that appear in

strings generated by the grammar,

(2) a finite set N o f non-terminal symbols, which are placeholders, or variables, for

patterns o f terminal symbols generated by the non-terminal symbols where

N (I T = 0 ;

(3) a start symbol S E N , which is a special non-terminal symbol that appears in

the initial string generated by the grammar;

(4) a finite set P o f productions, which are rules, o f the form u —> v where a non

empty string u E (T U N)+ is written on the left side of the production and a

string v E (T U N)* is written on the right side of the production. Strings on

the left and right hand side may contain terminals and / or non-terminals.

We display the quadruple G = (T, N, S, P) as follows:

grammar G

alphabet T

nonterminals N

start S

rules P

25

To generate a string of terminal symbols from a grammar we begin with a string

consisting of the start symbol. We choose some production with the start symbol on the

left hand side and replace it with the right hand side of the production. The process of

choosing and applying productions to the string continues. Specifically, a production

whose left hand side matches some substring of the current string of terminals and non­

terminals is picked and that substring is replaced by the right hand side of the

production. This process is repeated until all the non-terminals have been removed.

The language o f a formal grammar G = (N, T, P, S), denoted as L(G), is defined as all

those strings over E that can be generated, initially, with the start symbol S and then

applying the production rules in P until no more non-terminal symbols are present.

The language L(G) determined by grammar G is defined in the usual way:

L(G)= { w E T * \ S = > * w }

where =>* is the transitive closure of the one-step application => of production rules.

The details of these concepts are in Backhouse [1976].

3.1.2 The Use of Grammars in Syntax Design

The following procedure is used to specify the syntax of a language L :

Stage 1. The language L is built from symbols of some alphabet, so we choose an
alphabet T, such that L c J * .

Stage 2. We create a grammar G, such that L czL(G).

Stage 3. Finally, unwanted or undesirable strings have to be removed from L(G) to
leave L.

26

L(G)

Figure 3.1 A language specification using a grammar.

3.1.3 The Import Construct

To allow a modular approach to the design of syntax, in which different syntactic

components can be defined independently, we introduce a notion o f a modular

grammar. This idea is based on a simple addition of an import construct to grammars.

Consider a modular grammar which has the simple form:

G = (I, T , N , S , P)

where I = {Gj. G„} is a list of non modular grammars that are to be imported and T,

V, S and P represent the notion of a grammar as in (3.1.1). We display it:

grammar G

import /

alphabet T

nonterminals N

start S

rules P

27

Now the grammar G imports the list / o f grammars. For simplicity, suppose that each G,

has no imports and

G, = (7\ , N j , S i , P t).

grammar G,

alphabet T,

nonterminals iV{

start Si

rules P i

Then the meaning of the grammar G is defined by substituting the G,’s into G and

eliminating the import construct.

grammar Flattened G

alphabet TKJTj U . . ■ u Tn

nonterminals N U N] U . ■ U N n

start S

rules P U P i U . . • U P n

In general, we must import modular grammars into modular grammars. This leads to a

hierarchical structure. To define such modular grammars, and in particular, the flattened

forms that they denote, we need a more complicated inductive definition.

Definition. A modular grammar is defined inductively by two clauses:

If (T, S, V, P) is a grammar then

G = (0 , T, V, S, P) is a modular grammar with flattened form

F(G) = (T, V, S, P).

2 8

Let I = {G;,..., Gn } be a set of modular grammars with flattened forms

F(Gi) = (Tj , V i , S , , P j)

then G = (I, T, V, S, P) is a modular grammar with flattened form

F(G) = (Tf , Vf , S f , Pf)

where

T f= T u T i U . . , u T n

V f = V u V i U . . . u V n

Sf = S U Si u . . . u Sn

P f = P u P i U . . . u P n

Clearly, a stand-alone modular grammar is equivalent to the established concept of a

grammar. We say that the above grammar, without imports, is the flattened form of G.

We view the modular grammar G as a notation for its flattened form Flattened G.

More generally, in a modular grammar, the list / will be a list o f other modular

grammars, each of which may contain further imports. The flattened form can be

defined by unpacking the grammars named as imports, step by step, provided that no

import depends on itself and the process is non cyclic.

3.1.4 Special Features of Modular Grammars

The above definition is not without its complications and some refinements may be

required. First, we can be precise about the set o f grammars we are using and, upon

which, the construction and flattening o f grammars are operating. For example, in

importing a grammar, we assume that it exists in our domain of grammars.

Secondly, we must take care of the case when we use a grammar that, in turn, imports

itself. Here, flattening breaks down, in the sense that, we do not get a stand-alone

grammar. For each modular grammar, we can track its dependency on other grammars

by drawing a graph. Normally, we expect this graph to be a tree whose leaves are stand­

alone grammars. If a modular grammar depends on itself, this graph is cyclic. In this

case one option is simply to ignore the attempt to “self import” and add nothing.

3.1.5 M odular Decomposition

We can consider how to decompose large grammars in different ways. This allows us to

explore the idea of splitting grammars into smaller components.

The various components of the grammars used in the decomposition of the language

syntax, together with the design and maintenance of the language specification,

becomes easier, more manageable and accountable, and simpler to change.

3.1.6 Examples of M odular G ram m ars

We consider a simple fragment of Java to illustrate the idea of a modular grammar. We

choose the fragment switch and give a modular grammar GSwitch Statement.

The switch statement is used to conditionally perform statements based on an integer

expression. The value of this integer determines the invocation of an appropriate case

label among those listed inside the block which follows. If a matching case label is

found, control is transferred to the first statement after the label. If not, control is

transferred to the first label following a default label. If there is no default label, the

entire switch statement is skipped. The break statements are necessary because without

them, control falls through the subsequent case statements. That is, without an explicit

break keyword, control will flow sequentially through the case statements. A more

detailed description can be seen in Appendix 2.

The architecture of GSwitchStatement js as Figure 3.2

witch

Expressions

Expressions Ops Boolean Expressions Identifiers Numbers

X
Relational Ops Boolean Ops Unicode Digits

Figure 3.2 Component Grammars for Construction of Statement

To avoid over-complication of imports we adopt a simplified process by using the

branch G?wltch and its dependencies GExpressions , (f umbers, G°lglts as an example. The

same would then be true of all branches. We refer to later defined grammars in Chapter

3.

GDigits 3.2.1

q Expressions 3 2 4

q Numbers

q Operators

3.2.2

3.2.5

q Identifier

-i.Boolean

3.2.3

3.2.6

The following examples show how we use the mathematical idea o f a grammar to build

definitions for a simple programming language. The programming language we have

chosen is Java and we itemise the specific components o f a Switch programming

language. A program example, showing the switch statement, is listed in Appendix 2.

(i) digits,

(ii) natural numbers,

(iii) identifiers,

(iv) expressions,

(v) operators,

31

(vi) booleans,

(vii) programmes

We start with a grammar GDlglts for generating digits:

grammar QDigits

alphabet 0 ,1 , . . . , 9

nonterminals Digit

start Digit

rules Digit -> 0

Digit -> 1

Digit 9

By means of the new construct, import we build a grammar QNumbers utilising the

previous grammar GDlglts.

grammar GNumbers

import QDigits

alphabet . , O, Ox

nonterminals Number, Real, Octal, Hex

start Number

rules Number -» Digit

Number Number Digit

Real Number. Number

Octal -> O Number

Hex -» Ox Number

32

The next example, GExpressions, calls on additional imports, other than QNumbers ? and we

list them as shown.

grammar cessio n s

import ^Expression Operators q .Boolean Expressions q .Identifiers q Numbers

nonterminals Exp

start Exp

rules Exp —> Identifier

Exp -> Number

Exp -> PrefixUnaryOp Exp

Exp -> Exp PostfixUnaryOp

The list o f imports include the grammar QNumbers which, in turn, contains another

import GDlglts. A further example can be seen in section 3.2.2.

We move, finally, to Figure 3.3, the Switch Statement Grammar GSwitch Statement ,where

we show the import components, GRelational0perators, GBoolean 0perators and GExpresslons.

33

grammar s-iSwitch Statement&

import q Relational Operators q Boolean Operators q Expressions

alphabet case, default, break,; , :

nonterminals CaseList, Case, Break, s

start CaseList

rules CaseList —> Case

CaseList —> C ase; CaseList

Case —> case Expression: Break

Case —> case Expression:
Statement Break

Case —> default: Break

Case -> default: Statement Break

Break —> break

Break —> £

Figure 3.3 A Java Switch Statement Grammar

3.1.7 Context Free Grammars

A context-free grammar (CFG) is a formal grammar in which every production rule is

of the form V —► w, where V is a non-terminal symbol and w is a string consisting of

terminals and/or non-terminals. Such a rule is called a context-free rule.

The term "context-free" originates from the feature that the variable V can always be

replaced by w in no matter what context it occurs. A set of finite length words, or

strings, over some finite alphabet, comprises a formal language and this is said to be

context free if there is a context-free grammar which generates it.

34

Context-free grammars are powerful enough to describe the syntax of programming

languages in Stage 2 of their definition, i.e. for any language L we can always find a

CFG G such that

(i) L c L (G) ,

(ii) and in particular L(G) is a “good approximation” to L.

In fact, almost all programming languages are defined via context free grammars, in this

way. However, it is well known that context free grammars cannot define working

languages exactly, i. e. there are programming languages L such that, for all context free

grammars G:

L * L(G).

(See Backhouse [1978]).

Among the well known grammars of the Chomsky hierarchy are regular grammars and

context sensitive grammars. Regular grammars are simpler than context-free grammars.

Although they are useful in defining simple bits of syntax, like identifiers, they are

unable to define the syntax of terms and commands. Context sensitive grammars are

more complicated than context-free and can define more complicated languages.

However, they are intricate to design, use and parse.

grammar G

alphabet T

nonterminals N

start S

rules P

35

Definition A modular grammar G = (I, T, V, S, P) is said to be context-free if every

rule in P is a context-free rule.

Proposition The flattened form o f a context-free modular grammar is a context-free

stand-alone modular grammar, i.e. simply a context-free grammar.

3.1.8 Backus-Naur Form

With the aid of these modular grammars we are able to construct a simple step by step

account of a programming language. However, it is useful to introduce a BNF style

notation for the modular context-free grammars.

A description of the grammar using BNF is as follows:

• The terminal symbols are written in bold font.

• Non-terminal symbols are enclosed in angle brackets, e.g., <identifier>,

<digit>.

• The start symbol is the non terminal that is first in the list o f appropriate

productions.

• The symbol ::= (is defined as) indicates that the non-terminal expression on

the right hand side is represented by the non-terminal productions on the left

hand side.

• The symbol | (or) indicates that there is a possible alternative production to

follow.

3.1.9 Extended BNF

We have previously described the acronym BNF as the Backus Naur Form and its

invention is attributed to John Backus and Peter Naur who used it to interpret the

ALGOL 60 language. (See Naur [I960]).

Later, some symbols used in regular expressions were added to the original BNF

notation, giving rise to Extended BNF (EBNF). EBNF is simple powerful and defines

the syntax of a language by using a number of rules. A terminal symbol is a symbol that

36

cannot be split into a smaller component of the language. In EBNF, these characters

have special meanings:

(i) [] indicate optional symbols. For example, [x] indicates that x is optional.

(ii) { } indicate repetition.

(iii) () groups items together

(iv) | separates alternatives. For example, x | y is read x or y.

3.2 Logical Decomposition

The model syntax of the language deals with numbers, identifiers and expressions

forming the content of program statements. Declarations are types relevant to the Java

language whilst modifiers are tabulated and then appropriately sub-divided dependent

on their usage.

In the analysis of the decomposition we focus on the method, the class and subsequently

the program. It can be argued that many other constructs should be included in this

analysis such as exceptions, threads etc., and may be treated as special methods.

However, we do not include them in our model.

It should be noted that all exceptions that can be generated, are subclasses o f the class

java.lang.throwable.Exception. With this in mind, and the idea of a hierarchy of

errors, it is acceptable that they come under the overall definition set out for a class.

The Java Interface is constructed with a declaration and a body. The declaration may

contain modifiers and the interface must be named. It may, also, optionally extend or

implement an interface or list o f interfaces. The interface body may contain constant

declarations or, optionally, method declarations.

• The Class has similar characteristics, in that it is constructed with a

declaration and a body. Its declaration may, optionally, contain modifiers

and it demands a class name. It may, optionally, extend one Superclass or

implement an interface but not a list of interfaces. Its body contains variables

and methods which, as members, are supported by the class. Classes parallel

data types. They not only define the data fields used to determine the state of

an object, they also specify the object’s functionality. Once a class is

defined, instances of that class can be created.

• M ethods have similarities to interfaces and classes in that they have a

declaration and a body together with the optional modifiers. Here the

similarity ends as every method must incorporate parameters and they,

optionally, contain arguments. The return value o f the data type must be the

same as that previously declared by the method.

• Statements cover the conditional, iterative, bounded, unbounded and case

forms.

• Types are categorised into primitives, numbers, characters, boolean and

reference types which are pointers to values or sets o f values.

The result of this analysis is a modular grammar for a subset o f Java that contains the

essential constructs which could be extended to include all constructs. To test the

“accuracy” of the modular grammar we need to flatten it and compare it with a standard

definition of the relevant subset o f Java. (See Section 3.3.). This would involve analysis

of a standard grammar, as mentioned in Chapter 1, and a removal o f the features we

have omitted from the text in Section 3.3, The Flattened Grammar of Little Java.

38

This section defines the syntax of the Java programming language. We incrementally

construct this definition on the basis of a logical decomposition of Java, as illustrated in

Figure 3.5.

letters digits

relational operators ̂boolean operators identifiers numbers expression operators

imports packages boolean egressions <— expressions modifiers types

declarationsstatements

method declarations

methods

interfacesclasses

Programmes

Figure 3.5 A Tree Diagram showing the logical decomposition of Java.

In Fig 3.5 the arrows indicate imports, e.g. boolean expressions import expressions.

39

3.2.1 Digits

A digit is one of ten Arabic symbols from 0 to 9; the symbol is used in a system of

numeration.

grammar ^Digits

alphabet 0 ,1 , . . . , 9

nonterminals Digit

start Digit

rules Digit -> 0

Digit -> 1

Digit -> 9

3.2.2 Numbers

A number is a non-empty sequence of digits. The different numeric types define the

degree o f precision with which a number is represented and the range of values it can

accommodate. Numbers can be whole, or real, and may be in base 10, 8, or 16.

grammar QNumbers

import q Digits

alphabet . , O, Ox

nonterminals Number, Real, Octal, Hex

start Number

rules Number -> Digit

Number -> Number Digit

Real -> Num ber. Number

Octal -> O Number

Hex -» Ox Number

40

3.2.3 Identifiers

An identifier is constructed as a letter followed by a sequence o f letters or digits

contained in the Unicode list. Unicode is a list o f symbols comprising a character-coded

system that supports text constructed from various alphabets. The Website

www.unicode.org has a comprehensive and updated collection o f codes in use

throughout the world. Subsets of these codes are used in Java development, depending

on the country originating usage. There are 40,000 characters available in the Unicode

set compared with 256 ASCII.

grammar q Identifiers

import q Digits q Unicode

alphabet a, b, , z, A, B, ,z
nonterminals Letter, Identifier

start Identifier

rules Identifier - > Letter

Identifier - > Identifier Letter

Identifier - > Identifier Digit

Identifier - > Identifier Unicode

Letter - > a

Letter b

Letter - > z

Letter - > A

Letter - > B

Letter - > Z

41

3.2.4 Expressions

An expression may be:
(i) an atomic expression formed by an identifier or number; or
(ii) an expression constructed from other expressions by the application of a unary

operator (+ , ++, —) to an expression; or
(iii) a binary operator applied to two expressions.

grammar q Expressions

import q Expression Operators q Identifiers q Numbers

nonterminals Exp,

start Exp

rules Exp -* Identifier

Exp -> Number

Exp -> PrefixUnaryOp Exp

Exp —> Exp PostfixUnaryOp

Exp -> Exp BinaryOp Exp

3.2.5 Expression Operators

Operators perform some function on either one or two operands. The prefix unary

operator ++ before an identifier evaluates to the value o f that identifier value after

incrementing. The postfix unary operator ++ after an identifier evaluates to the value of

the identifier before incrementing. The unary operator — acts in the same way but

decrements instead. Bitwise operators allow you to change data by manipulating bits.

Note that the operators + may only be placed before an expression when used as

unary operators; whereas the other unary operators + + and - - may be applied before or

after expressions.

42

grammar

import

alphabet

nonterminals

start

rules

q Expression Operators

R̂elational Operators ^Boolean Operators

+ + - - + - * / %

PrefixUnaryOp, PostfixUnaryOp, Arithmetic, Bitwise

Prefix Unary Op

Prefix Unary Op -> ++
Prefix Unary Op —>

Prefix Unary Op —> +
Prefix Unary Op -> -
Postfix Unary Op ++
Postfix Unary Op —>
Arithmetic -> +
Arithmetic -> -

Arithmetic *

Arithmetic —> /
Arithmetic —> %
Bitwise -> »
Bitwise -> «
Bitwise -> » >
Bitwise -> &
Bitwise V
Bitwise A

Bitwise ~

43

3.2.6 Boolean Expressions

A boolean expression is either:

(i) an atomic boolean expression formed from the constants true or false; or an

identifier; or

(ii) a boolean expression constructed from other boolean expressions; or

(iii) a result o f applying a binary relational operator to expressions.

The value of any boolean expression is either true or false.

grammar q Boolean Expressions

import q Relational Operators q Boolean Operators q Expressions

alphabet true, false

nonterminals BoolExp, BoolOpl, Exp

start BoolExp

rules BoolExp —> true

BoolExp -> false

BoolExp -> Identifier

BoolExp —> BoolExp BoolOpl BoolExp

BoolExp —> Exp RelationalOp Exp

44

3.2.7 Boolean Expressions Operators

Relational operators undertake the comparison o f two values and the result is Boolean.

Boolean expressions can be combined with boolean operators; the result is true or false.

______ ftBoolean Expression Operatorsgrammar Cj

import ^Identifiers q Expression Operators

alphabet > , > = , < , < = ?

nonterminals RelationalOp, BooleanOp

start RelationalOp

rules RelationalOp —> >

RelationalOp -> >=

RelationalOp -> <

RelationalOp -> <=

RelationalOp -> ==

RelationalOp -> =

RelationalOp -> i=

BooleanOp -> &&

BooleanOp ‘II’

BooleanOp -> !

45

3.2.8 Statements

Statements may be:

(i) assignments to variables or constants,
(ii) sequencing,
(iii) conditional statements of the form if, else, else if, or switch;
(iv) or iteration which may be bounded in the form of for loops,
(v) or unbounded in the form of while or do while loops.

grammar /~iStatementsC7

import q Boolean Expressions q Expressions

alphabet final, i f , else , else if , switch , for, while , do while , (,) , { , }

nonterminals Statement

start Statement

rules Statement -> Type Identifier = Expression;

Statement -> final Type Identifier = Expression;

Statement —> Statement Statement

Statement -* if {BoolExp) {<Statement}

Statement -> if {BoolExp) {Statement} else {Statement}

Statement -> else if {BoolExp) {Statement}

Statement -> switch {Type Identifier) {CaseList}

Statement -> for {Type Identifier = Expression; BoolExp;
Expression) {<Statement}

Statement -> while {Expression) {Statement}

Statement -> do {Statement} while {BoolExp)

46

3.2.9 Switch Statement

The switch construct makes selections in case branches based on the value o f an

expression. The switch statement may use the break keyword to terminate a branch and

move to the first statement following the case statement. Alternatively the break

keyword may be omitted and the program would flow to subsequent case statements.

The last break statement terminates the conditional switch. If a value passes through

each case statement without any action taking place, the keyword default may be used

to explicitly handle the event. See Appendix 2 for the program example. The following

gives a simplified version of Switch (no nesting of break).

grammar Switch Statement

import Relational Operators q Boolean Operators q Expressions

alphabet case, default, break,; , :

nonterminals CaseList, Case, Break, s

start CaseList

rules CaseList —> Case

CaseList —> C ase; CaseList

Case —> case Expression: Break

Case —> case Expression : Statement Break

Case -> default: Break

Case —> default: Statement Break

Break —> break

Break -> £

47

3.2.10 Declaration

A variable declaration has two components, the type of the variable and its name.

grammar q Declarations

import q Identifiers

alphabet case, default, break ,; , :

nonterminals Declaration, Type, ListOfDec, s

start Declaration

rules Declaration —> Type Identifier

Declaration —> €

ListOfDec —> Declaration; ListOfDec

ListOfDec —> £

3.2.11 Modifiers

Modifiers may be used to control the behaviour of a class, interface, method or variable.

Not all modifiers can be used on each o f these elements as shown in Figure 3.5

Modifier Class Interface Method Variable
Public yes yes yes yes
protected no no yes yes
Private no no yes yes
Static no no yes yes
Abstract yes yes yes no
Final yes no yes yes
Native no no yes no
synchronised no no yes no

Figure 3.6 Modifiers and their usage.

48

grammar q Modifiers

import q Identifiers

alphabet

nonterminals ClassMod, InterfaceMod, MethodMod, AccessMod, VarMod, Public,
Abstract, Final, Static, Synchronised, Native, Private, Protected

start ClassMod

rules ClassMod -> public abstract

ClassMod -> Public Final

InterfaceMod -> Public Abstract

MethodMod -> AccessMod Static Abstract Synchronised Native

MethodMod -> AccessMod Static Final Synchronised Native

AccessMod -> Public

AccessMod -> Final

AccessMod -> Protected

VarMod -> AccessMod Static Final

49

3.2.12 Public

The public keyword declares that the object is totally accessible to any invocation from

inside or outside the package. A public method or variable is visible wherever the class

is visible.

grammar q Public

import q Modifiers

alphabet public

nonterminals Public, s

start Public

rules Public —> public

Public -> £

3.2.13 Protected

The protected accessor allows access to an object from its class, subclass and all classes

within the package.

grammar q Protected

import q Modifiers

alphabet protected

nonterminals Protected, £

start Protected

rules Protected -> protected

Protected —> £

50

3.2.14 Private

The private accessor is the most restrictive and declares the object to be non-accessible

other than to the class in which it is defined.

grammar q Private

import q Modifiers

alphabet private

nonterminals Private, s

start Private

rules Private —> private

Private —> £

3.2.15 Static

A static modifier declares an instance to be a class variable, or a method, to be a class

method. Every instance of a class has its own instance variable memory location. A

static class variable, or method argument, would have one memory location, irrespective

of the number of instances of the class. The variable may be accessed by class name or

through an instance of that class.

grammar q Static

import q Modifiers

alphabet static

nonterminals Static, s

start Static

rules Static -> static

Static £

51

3.2.16 Abstract

The abstract keyword, when used to modify a class, declares that the class exists, solely,

to be sub-classed and cannot, therefore, be instantiated. It may be regarded as a

prototype or unique parent class from which a child class can be copied. This enables

the subclass to inherit state and behaviour from the parent class (super-class). An

abstract class may contain abstract methods or non-abstract methods but a class which

has an abstract method, must be declared abstract. Methods declared as abstract have no

implementation and do not have a method body.

grammar ^Abstract

import q Modifiers

alphabet abstract

nonterminals Abstract, s

start Abstract

rules Abstract -» abstract

Abstract -> 8

3.2.17 Final

When used as a class modifier it signifies the class cannot be subclassed. The final

modifier placed in a method declaration protects the method from being over-ridden by

its subclasses. It follows that it would not be possible to declare a class as both abstract

and final. If a variable is declared as final it indicates that the value o f the variable will

not be changed. The final modifier cannot be used on local variables.

52

grammar QFinal

import q Modifiers

alphabet final

nonterminals Final, e

start Final

rules Final

Final

3.2.18 Native

The native keyword instructs the compiler that a method implementation is to be

provided by another programming language. A native method returns a value of any

type. The type must match the type specified in the method definition.

grammar q Native

import Modifiers

alphabet native

nonterminals Native, s

start Native

rules Native —> native

Native -> 8

53

3.2.19 Synchronised

A thread is a controlled task that operates within a program, independently, and without

interference from other threads. Threads of this nature are termed asynchronous. When

threads are called upon to run tasks that may require access to common data such as a

file then there is need for special handling. Thread methods, in this case, use the

synchronised keyword to prevent the class being modified by conflicting threads. It

places a lock on the instance that invoked the method, to obviate the invocation of more

than one thread at any particular time.

grammar Synchronised

import q Modifiers

alphabet synchronised

nonterminals Synchronised, s

start Synchronised

rules Synchronised —> synchronised

Synchronised -> e

3.2.20 Types

A type may be primitive or reference.

grammar Qrypes

import ^Declarations

alphabet

nonterminals Type, primitive, reference

start Type

rules Type -> primitive

Type -> reference

54

3.2.21 Primitives

Primitive types are: byte, short, int, long, float, double, char and boolean. The different

numeric types define the degree of precision with which a number is represented and the

range o f values it can accommodate.

Type Definition
Boolean true or false
Char 16 bit Unicode character
Byte 8 bit signed two's complement integer
Short 16 bit signed two's complement integer
Int 32 bit signed two's complement integer
Long 64 bit signed two's complement integer
Float 32 bit IEEE 754 floating point value
Double 64 bit IEEE 754 floating point value

Figure 3.7 Java Primitive Data Types.

3.2.22 Reference

Reference types are, as the name implies, types that have a pointer (reference) to the

value, or set of values, held by the variable.

grammar GKeJ"e"ce

import (^Identifiers ̂ (.Types ̂ Q Numbers

alphabet [,]

nonterminals Reference, Identifier, Array, Range, s

start Reference

Reference -> Identifier

Reference -> Array

Array -> Identifier [Range]

Range -> Number

Range -> Array

Range -> 8

55

Arrays are generic data types. If the elements, within the array, are of type char then the

array is of type char. A sequence of characters is called a string and all Java objects

have a string class (and therefore a type string) which deal with string components in a

special way. e.g. allowing the characters to be seen as array elements that can be

utilised accordingly.

The array range is from 0 to a specified number or, the parameters may be left empty.

Java does not cater for multidimensional arrays but you may have arrays o f arrays.

3.2.23 Interfaces

An interface is a collection of declared methods and constants. It does not provide

implementation for these methods. The interface is constructed from:

(i) the interface declaration, and
(ii) the interface body.

grammar Interfaces

import q Identifiers q Declarations q Method Declarations

alphabet { .}

nonterminals Interface, InterfaceDec, InterfaceBody

start Interface

rules Interface InterfaceDec { InterfaceBody}

3.2.24 Interface Declaration

The interface declaration may optionally contain a modifier. It is placed before the

interface identifier in order to regulate access to any invocation instigated elsewhere in

the program. The declaration must state the name of the interface and optionally declare

its Superinterface with the keyword extends, and optionally implement one, or more,

interfaces.

56

grammar q Interface Declarations

import q -Declarations q Method Declarations

alphabet interface, extends, implements,,

nonterminals Interface, InterfaceDec, InterfaceMod InterfaceBody,
implements, InterfaceList, e

start InterfaceDec

rules InterfaceDec —> InterfaceMod interface Identifier extends

Implements InterfaceList

Extends -> extends Identifier

Extends £

Implements -> implements InterfaceList

Implements -> £

InterfaceList -> Interface

InterfaceList -> Interface , InterfaceList

3.2.25 Interface Body

The interface body may contain constant declarations and, optionally contain one, or

more, method declarations. They have to be defined within the interface declaration.

grammar q Interface Body

import q Declarations, q .Interface Declarations

alphabet 5

nonterminals InterfaceBody, ListofDecs, MethodDecList, MethodDec

start InterfaceBody

rules InterfaceBody -> ListofDecs MethodDecList

MethodDecList MethodDec ; MethodDecList

MethodDecList —> MethodDec

MethodDecList -> £

The interface methods have parameters but no body and can only be implemented by

calls from the class or other objects within inherited subclasses. An interface may

extend any number o f other interfaces. They do not provide multiple inheritance.

All statements within the interface body are implicitly public, static and final. The

modifiers private and protected are not allowed in this case.

3.2.26 Methods

A method’s implementation is constructed from a method declaration and, optionally, a

method body.

grammar q Methods

import q Identifiers q Declarations q Method Declarations

alphabet { , }

nonterminals Method, MethodDec, MethodBody

start Method

rules Method -> MethodDec { MethodBody}

3.2.27 Method Declaration

The method declaration may optionally contain a method modifier. It is placed before

the method identifier in order to regulate method access, state or behaviour. The

declaration must state a method name, the return type, the number and type o f its

arguments. Java insists on the return value of data type to be identical to the method

declaration data type. Methods may return reference data types or primitive data types.

If no return value is required, the keyword void must be placed before the method.

59

grammar q Method Declarations

import q .Identifiers, q Declarations

alphabet method, { , } , ,

nonterminals MethodDec, MethodMod, MethodBody, argList

start MethodDec

rules MethodDec —> MethodMod method Identifier { argList}

3.2.28 Method Body

The method body is constructed from variable declarations and, statements. The method

body may contain local variables and methods supported by the class. Member variables

can be static or non static. Methods can be declared in the same way.

grammar q Method Body and Method Expression

import q MethodDeclarations

alphabet new, type, {,}, void

nonterminals MethodBody, MethodDec, Statement, MethodExp, Identifier, argList,
type, s

start MethodBody

rules MethodBody —> Statement
MethodBody —> type Identifier, MethodExp
MethodBody —> Identifier MethodExp
MethodBody —> New MethodDec
MethodBody —> £

MethodExp -> expression, identifier, { argList}
ArgList —> type Identifier, argList
ArgList —> £
ReturnType —> type
ReturnType void

60

The keyword, new, is an unary operator and instantiates an object, or an array, to a

memory allocation of that type. It creates the object, but a constructor is invoked to

initialise a new object o f a type previously declared. A constructor must have the same

name as the class, in which it appears. The object is said to ‘overload’ the class

identifier.

Overload methods, utilised in this manner, are distinguishable to the compiler by:

(i) the number and

(ii) the type of the arguments passed by the method.

3.2.29 Classes

A class is a template that can be used to instantiate other objects. It is constructed from:

(i) the class declaration and

(ii) the class body.

3.2.30 Class Declaration

The class declaration, may optionally contain a modifier. It is placed before the class

identifier in order to regulate access to any invocation instigated elsewhere in the

program. The declaration must state the name of the class and, optionally, declare its

superclass with the extends keyword, and, optionally, implement one or more interfaces.

(See Section 4). The keyword extends declares that the ClassName is the subclass of

SuperClassName. A subclass inherits variables and methods, their state and behaviour,

from the superclass. The class inherits all the attributes of the superclass, which it

extends, and can modify, or override, those attributes.

3.2.31 Class Body

The class body is made up o f variable declarations and methods and contains the

member variables and methods supported by the class. Methods may be instance or

class. Variables within the class body are of three types, instance, class and local.

61

grammar Class

import q Methods q Identifiers q.Modifiers

alphabet class, {,}, extends, implements,; ,,

nonterminals Method, ClassDec, ClassMod, Extends, Implements, ListOfDecs,
ListOfMethods, InterfaceList, Interface, e

start Class

rules Class —> ClassDec { ClassBody }

ClassDec —> ClassMod class Identifier Extends Implements

ClassBody —> ListOfDecs, ListOfMethods

ListOfMethods -> M ethod ; ListOfMethods

ListOfMethods —> £

Extends —> extends Identifier

Extends —> £

Implements -> implements InterfaceList

Implements —> £

InterfaceList —> Interface InterfaceList

InterfaceList —> £

3.2.32 Special Cases

Java provides standard methods to deal with errors. The process is termed exception

handling and is a means to deal with unusual conditions which may arise when

programmes are executed. The class Exception and Error together with their

subclasses, inherit methods from their parent class Throw able. These methods are useful

as aids when debugging program errors. The exceptions are ‘caught’ by the try method

and can be dealt with accordingly. They can be categorised as follows:

• Try-catch Exceptions caught in the body o f the Try method should be
handled by the catch method and outside o f that try block.

• If an optional method is present, it must include a return statement.

Error

Runtime Exceptions Other Exceptions

Throwable

Exception

Figure 3.8 An illustration of some special cases.

The object o f the previous paragraph is to emphasise that the methods above, although

specialist, are worthy of mention.

Every non static instance member variable of a class has its own memory address but a

static, or class variable, would have one memory location, shared by the instances of the

class. The variable may be accessed by class name or through an instance of that class.

The functionality o f this is that there are times when subclasses may depend,

favourably, on certain variables retaining a common value. Methods that utilise class

variable must be termed class methods.

63

3.2.33 Programmes

Java is an interpretative, object-oriented, programming language. Its origins are based

on other well-known languages and its derivation is such that it is able to perform in a

platform independent manner. The Java compiler is used to convert the source program

into byte-code. This code can then be executed, within the Java runtime environment,

with the aid of the Java interpreter.

A program, or application, consists of

(i) Optionally, imports;
(ii) optionally, a package name (See 3.2.35);
(iii) classes, and
(iv) optionally, interfaces.

grammar ^program, List of Classess and List of Interfaces

import ^Methods q .Interfaces q Identifiers

alphabet

nonterminals ClassList, InterfaceList, Interface, s

start Program

rules Program -> Import Package ClassList InterfaceList

ClassList -> Class

ClassList -> Class ClassList

InterfaceList Interface InterfaceList

InterfaceList £

64

3.2.34 Imports

The constructs of importing discussed in Chapter 3.1.4 (Import Constructs) can be

improvised to import data types. To import any data type, we require two stages:

The language Java, allows the programmer to import other classes or interfaces or

classes and interfaces. The collection is termed a package and the package is identified

by a unique name. An asterisk, in an import statement, can only be used to specify all

programmes in the package, (e.g. import graphics.*). Similarly a full stop may be used

in a specific manner (import graphics.rectangle).

grammar q Imports

import q Identifier

alphabet im port,;

nonterminals Import, s

start Import

rules Import —> import identifier ; Import

Import £

3.2.35 Packages

If a program name is not designated specifically as a package the Java run-time system

assigns the application a package default setting without a name. To create a package,

the package keyword, together with a package name, is placed directly before the first

class declaration in the program. A package is a group of related classes, and, or

interfaces, that comprise the program. Only one package can be attributed to a source

file at any one time.

65

grammar GPackagess

import Q^ifier

alphabet package,

nonterminals Package, e

start Package

rules Package -> package identifier

Package —> s

We show an example o f the above in the form of a typical Java class programming

setup.

Package Mycounter. library;

Public class Counter{

}

The classes and interfaces within the Java Development Kit (JDK) are members of

packages bundled in such a way as to facilitate connectivity and functionality. They are

termed as imports. Java might need to find other classes named in the main class

definition. The compiler has to know where to look for these classes in the import

statements.

Import java.awt.* will search for all classes in the java.awt directory to find the

appropriate class definition.

6 6

3.3 The Flattened Grammar of Little Java

Let us now flatten our modular grammar for a subset o f Java and briefly compare it with

a standard definition o f Java syntax. Here is the flattened version of the modular

grammar in 3.2.

^ Little Javagrammar u

alphabet 0,1,..., 9, . , O, Ox, a, b, .. ., z, A, B, . . . , Z, , - -, + ,
true, false, > = , < , < = , = = , = , && , ‘||’ ,! , f in a l, i f , else , else if ,
sw itch, fo r , while , do while , (,) , { , } , case, default, b reak ,; , :, :,
public, protected, private, static, abstract, final, native, synchronised, [,],
interface, extends, implements, method, {, }, new, type, void, class,
import, package

nonterminals Digit, Number, Real, Octal, Hex, Letter, Identifier, Exp,, Expression
PrefixUnaryOp, PostfixUnaryOp, Arithmetic, Bitwise, BoolExp,
BoolOpl, RelationalOp, BooleanOp, Statement, CaseList, Case, Break,
s, Declaration, Type, ListOfDec, ClassMod, InterfaceMod, MethodMod,
Access Mod, VarMod, Public, Abstract, Final, Static, Synchronised,
Native, Private, Protected, primitive, reference, Reference, Array,
Range, Interface, InterfaceDec, InterfaceBody, InterfaceMod,
InterfaceList, ListofDecs, MethodDecList, MethodDec, Method,
MethodBody, MethodMod, argList, Statement, MethodExp, type,
ClassDec, ClassMod, Extends, Implements, ListOfDecs, ListOfMethods,
ClassList, Import, Package

start

rules

Program

Digit -> 0
Digit —> 1

Digit -+ 9
Number —> Digit
Number -> Number Digit
Real Number. Number
Octal -> O Number
Hex Ox Number
Identifier Letter
Identifier -> Identifier Letter
Identifier Identifier Digit
Identifier -> Identifier Unicode
Letter a

67

Letter —>

Letter —>
Letter —>
Letter ->

Letter —>
Exp —>
Exp —>
Exp —>
Exp —>
Exp —>
PrefixUnaryOp
PreftxUnaryOp
Prefix Unary Op
PrefixUnaryOp
PostfixUnaryOp
PostfixUnaryOp
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Bitwise
Bitwise
Bitwise
Bitwise
Bitwise
Bitwise
Bitwise
BoolExp
BoolExp
BoolExp
BoolExp
BoolExp
RelationalOp ->
RelationalOp ->
RelationalOp —>
RelationalOp —>
RelationalOp —>
RelationalOp —>

b

z
A
B

Z
Identifier
Number
PrefixUnaryOp Exp
Exp PostfixUnaryOp
Exp BinaryOp Exp

-> ++

- > +

++
->
-> +

>
> =

<
< =

*

/
-> %

»
«

» >
—> &
- + I

A
- > ~

- > true
- > false
—> Identifier
—> BoolExp BoolOpl BoolExp
-> Exp RelationalOp Exp

6 8

RelationalOp -> |=
BooleanOp -> &&
BooleanOp ir
BooleanOp -> I
Statement -> Type Identifier — Expression;
Statement -> final Type Identifier = Expression;
Statement -> Statement Statement
Statement -> if {BoolExp) {Statement}
Statement —> if {BoolExp) {Statement} else {Statement}
Statement -> else if {BoolExp) {Statement}
Statement -> switch {Type Identifier) {CaseList}
Statement -> for {Type Identifier = Expression; BoolExp;

Expression) {Statement}

Statement -> while {Expression) {Statement}
Statement -> do {Statement} while {BoolExp)
CaseList -> Case
CaseList -> C ase; CaseList
Case -> case Expression : Break
Case -> case Expression : Statement Break
Case -> default: Break
Case —> default: Statement Break
Break —> break
Break -> £
Declaration -> Type Identifier
Declaration -> £
ListOfDec -> Declaration ; ListOfDec
ListOfDec -> £
ClassMod -> public abstract
ClassMod -> Public Final
InterfaceMod -> Public Abstract
MethodMod -> AccessMod Static Abstract Synchronised Native
MethodMod -> AccessMod Static Final Synchronised Native
AccessMod -> Public
AccessMod -» Final
AccessMod -> Protected
VarMod -> AccessMod Static Final
Public -> public
Public -> £
Protected -> protected
Protected -> £
Private -> private
Private —> £
Static -> static

69

Static —> s
Abstrac -> abstract
Abstract -> £
Final -> final
Final -> £
Native -> native
Native -> £
Synchronised -> synchronised
Synchronised -> £
Type -> primitive
Type -> reference
Reference -> Identifier
Reference -> Array
Array -> Identifier [Range]
Range -> Number
Range -> Array
Range -> s
Interface -> InterfaceDec { InterfaceBody }
InterfaceDec -> InterfaceMod interface Identifier i

Implements InterfaceList

Extends -> extends Identifier
Extends -> £
Implements -> implements InterfaceList
Implements -> £
InterfaceList -> Interface
InterfaceList -> Interface, InterfaceList
InterfaceBody -> ListofDecs MethodDecList
MethodDecList -> MethodDec ; MethodDecList
MethodDecList -> MethodDec
MethodDecList -> 8
Method -> MethodDec { MethodBody }
MethodDec -> MethodMod method Identifier { argList}
MethodBody -> Statement
MethodBody -> type Identifier, MethodExp
MethodBody -> Identifier MethodExp
MethodBody -> New MethodDec
MethodBody -> £
MethodExp -> Expression, identifier, { argList}
ArgList -> type Identifier, argList
ArgList -> £
ReturnType type
ReturnType -> void
Class -> ClassDec { ClassBody }

70

ClassDec —> ClassMod class Identifier Extends Implements
ClassBody -> ListOfDecs, ListOfMethods
ListOfMethods -> M ethod; ListOfMethods
ListOfMethods -> £
Extends -> extends Identifier
Extends -> £
Implements -> implements InterfaceList
Implements -> £
InterfaceList -> Interface InterfaceList
InterfaceList -> £
Class -> ClassDec { ClassBody }
ClassDec -> ClassMod class Identifier

Extends Implements
ClassBody -> ListOfDecs, ListOfMethods
ListOfMethods -> M ethod; ListOfMethods
ListOfMethods £
Extends —> extends Identifier
Extends -> £
Implements -> implements InterfaceList
Implements -> £
InterfaceList -> Interface InterfaceList
InterfaceList —> £
Program -> Import Package ClassList InterfaceList
ClassList —> Class
ClassList -> Class ClassList
InterfaceList —> Interface InterfaceList
InterfaceList -> £
Import -> import identifier; Import
Import -> £
Package -> package identifier
Package -> £

3.4 Evaluation

Languages used in practical programming can never have small syntax. The subset of

Java essentially determined by methods and inheritance is not small. The flattened

grammar with its hundreds of rules illustrates this. The advantages of the modular

approach to syntax seems to be:

1. that mathematical properties of modular grammars are closely related to

conventional grammars because of the simple definition of flattening and

2. modular grammars lead to a systematic unfolding of the syntax in which

each syntactical category can be reflected on. This is a useful tool for

programming language designers as they make decisions that could affect

users for years.

3. Modular grammars make it easy for reliability to

a. change the syntax of a part o f a language,

b. specify fragments and subsets.

4. Modular grammars could easily maintain new language processing tools that

support modular construction of new programming languages.

72

Chapter 4

A Model for Interface Definition Languages

In this chapter we now turn from syntactic specifications to the second topic of the

thesis that of modelling interfaces. Commercially, many leading IT organisations in the

world have encountered great difficulty trying to deal with rewrites and poorly prepared

programming code. The commercial world has realised the significance of ideas about

interfaces and have embraced them.

The topic of interface definition languages is relatively new. Computer scientists have

been researching the subject for a number o f years in connection with how to build

software in a modular way using software components. More generally, interfaces have

become prominent in object-oriented programming languages and tools. (See discussion

of Corba in Chapter 2). However, the algebraic specification community has used

mathematically sound concepts of interfaces to ensure pure, uncluttered and well

scrutinised non-ambiguous programming specifications for over thirty years.

What are interfaces? What is an interface definition language? An attempt at an abstract

and general model of the concept of interface is Rees, Stephenson and Tucker [2003].

We will explain the main ideas of that paper, in preparation for our analysis of their

application in Java.

4.1 Interfaces

An interface definition language is used to define the interfaces of components and how

they are involved in making a system interface. An interface offers no implementation

for any of its operations but gives names to a collection o f operations that combine to

carry out logical operations within that system interface.

How do we make the notion of interface explicit in the mathematical modelling of any

programming language?

73

To make progress on this question we consider some general ideas about interfaces and

express them in a model of an interface definition language. Specifically, to examine the

general notion of an interface, we follow the ideas in Rees, Stephenson and Tucker

[2003]. In this paper an interface is treated very abstractly as follows. They model an

Interface Definition Language as sets o f interfaces, called repositories, and give them

some algebraic operations resulting in a sort of algebra of interfaces. This algebraic

structure allows them to define a notion of system architecture via the algebraic idea of

term. A key idea is to allow an interface to have imports. They show how a dependency

trail represents the data dependencies of an interface and investigate the properties of

these interfaces. The imported interface dependency is made redundant by a

transformation technique known as ‘flattening’ which is a sort o f assembly process.

In the thesis we deal, primarily, with object-oriented systems and so the question is, can

such a simple approach offer anything to object-oriented programming? Can the

approach be the basis which could be used, in principle, for other languages and their

respective architectural styles? Interfaces should define the interaction between separate

software systems at each stage of abstraction and should provide details of common

data definitions together with information on the interaction and control of data within a

system environment. This applies, particularly, to larger systems. By investigating a real

0 0 language like Java we can test the ideas and see what works and what is missing.

4.1.1 Interface Components

We assume that the abstract structure of an interface has these three components:

(i) Name of Interface,

(ii) Import List of Interfaces,

(iii) Body of Interface.

The focus of the abstraction is the identity of an interface, i.e. its Name, and the other

interfaces upon which it may rely, Imports. What makes the notion general is the ability

to choose different bodies.

74

The main interest in Rees et al., [2003] is the process o f assembling an interface from

the component interfaces named in imports. This process is called ‘flattening’. To

define the process we need to define:

(i) basic interfaces that have no components and can be implemented directly;

these are so called stand-alone interfaces,

(ii) abstract properties and operations on bodies that put interfaces together and

(iii) a global space of interfaces where all interfaces can be found.

4.1.2 Stand-alone Interface

Definition. An interface has a name identifier, imports and a body. An interface that has

a body with no imports is said to be a stand-alone interface. Thus an interface is a triple

o f the form:

{Name, Import, Body).

Such an interface is capable of operation without calling on any outside source. It is the

integral component from which other interfaces can be constructed. Its basic

constructors are given in Figure 4.1.

algebra Stand_Alone_Interface

import Identifier, Body

carriers Stand_Alone_Interf ace

constants

operations make interface: Identifier x Body —> Stand Alone Interface
name tag: Stand_Alone_Interface —> Identifier
body: Stand_Alone_Interface —> Body

definitions name_tag(make_interface (n, B)) = n

body (make _interface (n, B)) = B

Figure 4.1 Stand-alone Interface.

75

4.1.3 Properties of Operations and Bodies

Bodies vary in their specification. To manipulate bodies algebraically, Rees et al.,

[2003], use the following:

(i) A body with no content which is a constant null.

(ii) An operation jo in to concatenate two bodies, and

(iii) tag to rename a body’s components.

Algebra Bodies

Imports Identifiers

Carriers Body

Constants null: —> Body

Operations jo in : Body x Body —» Body
T a g : Body x Identifier —» Body

Definitions Tag(null, n) = null

Tag(join(B, C), n) =joinTag(B, n), Tag(C, n))

Figure 4.2 Body of Interface.

The following algebra illustrates the production o f a stand-alone interface. In order to

remove imports we use the operator mkSAIntf. This application, when invoked, forces

the interface with imports to be a Stand Alone Interface, an interface without imports.

The operation directly responsible for this is called trivial which, as its name implies,

mathematically zeros the interface name. In order to maintain the contents of the

original import the operator extends, in conjunction with mklntf, and adds to the

component declarations of the existing interface, the name, imports and body of

another. The process of removing the imports is termed ‘flattening’.

76

Algebra Interface

Import SAInterfaces, Names

Carriers Interface

Constants

operations intf: Identifier x Names x Body —» Interface
name : Interface —> Identifier
im ports: Interface —> Names
b od y: Interface -» Body
extend: Interface x Interface —> Interface
trivial: Identifier —» SAInterface
m kln ft: SAInterface - » Interface

definitions
m kSAIntf: Interface -> SAInterface

name(intf (n, I, B)) = n
imports(intf (n ,I ,B))= I

body(intf (n, I, B)) = B
extend(I, J) = intf(name(I), concat(cut(name(J), imports(I)), imports(J)),

join(body(I), tag(body(J), name(J)))
Trivial(n) = sa_intf(n, null)
mklntf(l) = intf(name(I), emptynames, body (I)

c sa_intf(name(I), (body(I)) i f imports(I) = empty„ames,'
mkSAItnf(I) = \ trivial (names (I)) otherwise.

Figure 4.3 Modelling a Stand-alone Interface.

Rees, Stephenson and Tucker [2003].

77

4.2 Imports and Repositories

Interfaces may import the features of other interfaces by invoking the interface name.

This, in turn, demands that all named interfaces, together with imports, are contained in

the global list o f interfaces. It is this full and unambiguous listing that makes up a

library of interfaces, or repository.

The problem of defining a ‘well formed’ interface is solved by placing conditions on the

library, or repository. An interface that has a body with no imports is said to be a stand­

alone interface; it is the integral component from which other interfaces can be

constructed and it must be free o f repetition. When an interface is not ‘stand-alone’

stipulations must be met for the interface, together with its body, to be well-formed.

Firstly, any interface listed among the imports must be present within the repository.

Secondly, in calling an interface via the import mechanism repeatedly we do not

encounter a cycle in the list o f names found in that repository. An interface name that is

needed does not, subsequently, re-import itself. Shortly, we will define the Dependency

Trail which we can use to formalise and rule out this cyclic behaviour.

The key points are:

(i) a well formed interface can always be flattened into a stand-alone interface, and

(ii) if every interface is well-formed then the repository is said to be well-formed.

A repository is defined as a non-empty list of interfaces with unique names.

repository R

interface

endrepository

Figure 4.4 A Repository.

78

In the case of a well formed Repository we may define the algebra:

algebra Repository
import Interface
carriers Repository
constants
operations named: Repository -» Names
definitions named{I\, . . . ,4) = name(I\) , . . . , name (4)

Figure 4.5 Repository Algebra.

We use repositories to define operations that specify what actually happens when an

interface is imported into another interface. Specifically they are based on two items:

(i) tagging, the process of recording information on the location (address) of the

various interface names:

Taginti: Name x in tf —> Name

Tag (N, B) = body (Tagint](N, in tf (B)) ,..., Tag intm (N, intfm (B))); and

(ii) joining, the process of adding one components of one body to the

components o f another. It satisfies properties such as:

Join (B, B) = B

4.3 Dependency Trail Definition

Within a repository, each interface would demand a unique name. An interface may

import the features and content o f another interface by declaring its name. An interface

thus formed is dependent on the named import. The list, or record of dependent

interfaces, is termed a dependency trail. So that we may interrogate the properties of

these interfaces, we employ the technique known as ‘flattening’ which transforms the

import declaration properties of an interface. We extend the original interface by adding

the import definition. The imported interface dependency is made redundant when the

79

import is removed and the ‘flattened’ interface is termed a stand alone interface. The

dependency factors are substituted with other unique identifiers within the trail.

Trail

IntNamei [ntName,

Figure 4.6 Dependency Trail Tree.

4.4 Architecture and Flattening

We have defined an interface as a declaration of name, a list o f imports and a body. We

have defined repositories as sets o f interfaces. An Architecture is a structured set of

interfaces defined by a term based on the import operation within the repository.

Name

Imports Body

Interface

y
Repository

v
Architecture

80

With an abstract notion of architecture we can define a Dependency Trail as a function

to maintain a list o f interfaces within a repository. The function is recursive on the

structure o f the architecture and moves through the dependency trail checking and

removing any name repetitions that may be found. The architecture and the repository

has a trail o f import dependencies and flattening entails the removal of these

dependencies:

Flatten : Architecture —> Stand-Alone,

flatten (A) e Stand-Alone

The well-formed interface is defined as the non-ambiguous adaptation of an import

interface. If the constraints imposed on the syntax are observed in keeping with the

‘flattening’ process then the Interface can be said to be a Stand-Alone interface and that

the interface is well-formed and, therefore, the architecture is well-formed.

f : Architecture x Interface xName* -> Interface

Examples. Here is a simple example illustrating the ideas for data interfaces. We

specify interfaces Real, Bool, RealBool and RealBoolEqual. We show an interface Real

with no imports:

repository

interface Real

imports

sorts real

ops a d d : real x real —> real
minus real x real -> real
m ult: real x real —> real
d i v : real x real —>real

endinterface Real

Figure 4.7 Interface Real.

81

In Figure 4.8 the interface Bool has no imports, and is termed a Stand-alone Interface.

interface Bool

imports

sorts bool

ops tru e : —>bool
false —> bool,
n o t: bool —> bool
a n d : bool x bool -> bool
o r : bool x bool —> bool

endinterface Bool

Figure 4.8 Interface Bool.

The interface RealBool is constructed by invoking interface Real and interface Bool

with the import definition.

Interface RealBool

imports Real, Bool

sorts real, bool;

ops

endinterface RealBool

Figure 4.9 Interface RealBool.

In Figure 4.12, as the Interfaces Real and Bool are Imports they no longer have to be

declared as operations. The operation eq, however, is not an import and is, therefore

listed as an operation statement.

82

Interface RealBoolEqual

Imports Real, Bool

sorts

ops
eq : real x real —> bool

endinterface RealBool

Figure 4.10 Interface RealBoolEqual.

In order to ‘flatten’ the interface RealBool we remove the import dependencies. The

interface Real and the interface Bool are both listed as operations in the new interface

RealBool. This is illustrated in Figure 4.11.

interface RealBool

imports

sorts real, bool;

ops a d d : real x real —> real,
minus : real x real—> real,
m u lt: real x real —> real,
div : real x real —> real,
tru e : —> bool,
fa ls e : —> bool,
n o t: bool —> bool,
a n d : bool x bool —> bool,
or : bool x bool —> bool,
eq : real x real —> bool;

endinterface RealBool

Figure 4.11 New Interface RealBool with no Imports.

When ‘flattening’ occurs certain problems come to light. The following points are

problem areas that may be encountered in such circumstances:

• Names in an import list o f interface dependencies may not be found in a

repository. Thus flattening does not produce a stand-alone interface.

• Names may be duplicated in a repository.

• The interface has been used recursively in the assembly process, if its own name

appears in its dependency trail.

• Methods which may or may not contain parameters.

• Queries which do not alter state but invoke a response, value or await a reply.

For strategies that could be employed when such questions arise, see Rees, Stephenson

and Tucker [2003].

4.5 General Flattening Algorithm

Given a repository and interface with imports, we can attempt to trace dependencies by

traversing the dependency graph. In order to flatten a signature, we need to combine the

interfaces that it depends on. So, how do we combine interfaces? Let us suppose we

have an operation

Expand: Interfaces with Imports x Interfaces with Imports —> Interfaces with imports

so that

Expand(E, E1)

is an interface with the same name as E, and will join the imports, sorts, constants and

operations o f the interfaces 2, E7.

84

We use records to represent interfaces and produce a template algorithm for performing

as follows:

//Given an interface X as input, creates its flattening version Flattened

//Creates a copy Flattened o f X and renames it as Flattened X.
Flattened= X;
Flattened. Name = concat (“Flattened” = Z.Name);

II Pick out the imports of / o f X
I = Z Imports',

//Whilst there is an import in Flattened

while I ! = 0 {

//Pick an import I
switch {

case i s I :

//Replace i with the imports that i depends on

/ = / - { / } U Extract(i, R).Imports’,

//Update Flattened import list
Flattened. Imports = /;

//Flatten Flattened with the interface named i in the repository R
Flattened = Expand(Flattened, Extract(i, R));
break:

}
>

Figure 4.12 Flattening Template.

85

We illustrate the definition with the help of the following:

Interface (with imports)

4
Flatten (Remove imports)

4
Stand-Alone-Interface

4
Transfer (Create new interface by tagging imports to body o f new interface)

4
Add to Repository

*
Check for duplicity of Name on Dependency Trail.

4
If false reform Dependency Trail.

Figure 4.13 Reformation of Dependency Trail.

Full details of the recursion definition and flattening can be found in Rees et al [2003].

86

Chapter 5

A Subset of Java and its Interfaces

“Inside every large language is a small language struggling to get out..."

Attributed to C. A. R. Hoare.

Introduction

In this chapter we will use the general ideas on interfaces in Chapter 4, to explore the

role o f interfaces in the object-oriented language Java. We will test the application of

the general interface model to notions of interface for Java. Do existing Java notions

conform to the model? Is there a new interface notion, based on the model that makes

sense in Java?

First, in Sections 5.1 - 5.3, we will consider a subset of Java called Little Java, based

upon classes and inheritance. The idea is to consider the key features that can be used in

Little Java without fear of degradation or conflict when comparing it with the larger

language.

Secondly, in Section 5.4, we will introduce a small abstract object-oriented interface

definition language called OO-IDL into which we translate the class constructs of Little

Java,

T : Little Java —► OO-IDL.

The syntax and semantics of OO-IDL is shaped by the general model o f interfaces in

Chapter 4, and the syntax and semantics of algebraic specification languages. Indeed,

we complete the semantic definition o f OO-IDL by translating it into a model expressed

in the interface definition language AS-IDL of algebraic specifications, via

M : OO-IDL —► AS-IDL

87

O f course, AS-IDL is the familiar language of algebraic signatures, and its semantics is

given by interpreting signatures by algebras via some mapping

[]: AS-IDL —> Algebras

that assigns to each signature some algebra or class of algebras; the methodology works

for either choice. Thus, the range Algebras of [] could be either

(i) a class of algebras, or

(ii) a class o f classes of algebras, respectively.

These classes o f algebras could be derived from specifications, e.g. by taking initial or

loose semantics of a system of axioms. For easy definitions we can assume it is a class

o f algebras of different signatures.

By combining these steps in this way,

[] • M • T: Little Java —> Algebras,

we give algebraic semantics for abstract object-oriented interfaces and, ultimately, for

classes in Little Java: if class c E Little Java then it has a semantic model in, for

example, the algebra

[M(T(c))] E Algebras.

In keeping close to Java, with its size and syntactic structure, we encounter difficulties

in defining the map T, formally and in general. We explain T via examples; the

definitions of M and [] are less laborious.

O f special interest is what happens to the idea of modularity and flattening in these three

languages. In this way, we make an algebraic model o f some 0 0 interface constructs as

realised in Java and examine the concept of flattening.

Flattening enables the semantic definition [] to be simple and easy to understand. The

languages OO-IDL and AS-IDL are based firmly on the model in Chapter 4.

5.1. Object-oriented Languages and Little Java

An object-oriented programming language is designed to emphasise a modular approach

to programming in which software consists of units or components also programmed in

the same language. The programming concepts that capture the idea o f programming

units or components are class or object and the program concepts that capture putting

units together are connected with inheritance. In this section we enumerate all the

essential features of object-oriented programming that we are to study, using Little Java.

In general, we wish to consider the interaction and behaviour of the following:

(i) one class and another,

(ii) data types,

(iii) how a class may extend another class,

(iv) how methods within a class interface with other classes and methods,

(v) how implementation of methods can return a value or return or void,

(vi) the interaction between the interface and other interfaces,

(vii) how an interface may extend and implement an interface or a list of

interfaces.

5.1.1 Classes

The class construct has several sub-constructs which we consider in turn. These

components are displayed below.

89

Class Definition.

Class Declaration, public class Classname
abstract
final

Class Body { Members: variable, method.
Non Member: constructor. }

Members

V ariable D eclarations:
public, protected, private, static, void, var

M ethod D eclarations:
public, protected, private, static, void, method

Non Members

C onstructor. Every class provides a default
(no argument) constructor. A constructor is

called by the new operator.

Optionally extends (inherits)
features o f the Superclass
from Library o f classes

Optionally implements
interfaces from Library o f
interfaces

Figure 5.1 Class Schematic.

90

5.1.2 Class Definition

A class is a template that can be used to instantiate other objects. It is constructed from:

(i) a class declaration and

(ii) a class body.

In summary,

Class Definition = Declaration + Body.

5.1.3 Class Declaration

The declaration must state the name of the class and, optionally, declare its superclass

with the keyword extends and, optionally, implement one, or more interfaces. (See

Section 2.7).

The class declaration may optionally contain a modifier. It is placed before the class

identifier in order to regulate access to any invocation instigated elsewhere in the

program.

5.1.4 The Class Body

The class body is constructed of variable declarations and methods and contains the

member variables and methods supported by the class. It can be described as a set of all

instances o f that pattern. There is a need to formulate a list o f definitions and methods

within the body o f the class. (See Section 2.7.1). In summary,

Body = Declarations + Methods.

5.1.5 Member Variables

Collectively, static variables and instance variables are called member variables, or just

members. Variables defined inside a method are called local, temporary variables and

static final variables are termed constants.

91

(i) Variables with the modifier static before them are part of the class in which

they appear and are, therefore, called class variables. They are members to

this class and no other class, e.g. static, int, num;

(ii) static class variables are allocated once for a class and are declared in the

class body, not in a method;

(iii) static final declaration, e.g. static final x = 3. This declares that x is a

constant and is applicable to the member class only.

5.1.6 A Method

In Java, classes use methods to communicate with objects. The method has two parts:

the method declaration and the method body. The method declaration defines all of the

method’s attributes and the method body contains the Java instructions that implement

the method. Java has an explicit case wherein a method may have a body but no

instructions and no implementation:

Method = Declaration + Body.

5.1.7 Method Declaration

Method declarations describe code that may be invoked by method invocation

expressions. A class method is invoked relative to the class type; an instance method is

invoked with respect to some particular object that is an instance of the class type. A

method, whose declaration does not indicate how it is implemented, must be declared

abstract. A method may be declared final, in which case it cannot be hidden or

overridden and no precedence is given to other methods to alter the behaviour of this

particular method.

The method declaration may, optionally, contain a method modifier. It is placed before

the method identifier in order to regulate method access, state or behaviour. The

declaration must state a method name, the return type, the number and type of its

arguments. Java insists on the return value of data type to be identical to the method

declaration data type. Methods may return reference data types or primitive data types.

If no return value is required, the keyword void must be placed before the method.

92

5.1.8 M ethod Body

The method body is constructed from

(i) variable declarations and,

(ii) statements.

The method body may contain local variables and methods supported by the class.

Member variables can be static or non static. Methods can be declared in the same way.

5.1.9 C onstructor

A constructor is a part of a class and is used to initialize a new object o f that class type.

The class constructor always has the same name as the class and has no return type. A

constructor uses its arguments to initialize the state o f the new object. Java supports

name overloading for constructors, i.e. a class can have any number of constructors with

the same name.

When writing a class, the Runtime System automatically provides a constructor for that

class if one has not been included. The compiler can determine which constructor to

implement based on the number of arguments used.

5.1.10 Inheritance

In the Java language, an interface defines a set of methods. A class that implements an

interface refers to the protocol defined by that interface. All objects in Java have state

and behaviour. A blueprint of an object may be created by a class which can, further,

define its data and behaviour. A class may inherit state and behaviour from only one

other class, its Superclass. The class declaration must state the name of the class and

may declare its Superclass with the keyword extends.

ClassName interfaceName

1 r

optionallyextends Superclass implementsoptionally

93

The keyword extends declares that the ClassName is the subclass o f SuperClassName.

A subclass inherits variables and methods, their state and behaviour, from the

Superclass. The class inherits all the attributes o f the Superclass, which it extends, but

can, modify, or override, these attributes.

We include the implement clause keyword within the class declaration for the class

implementation o f an interface or interfaces. Multiple inheritances are not permissible

within Java but the Java platform supports multiple inheritances when using classes

with special interfaces. These special classes, called interfaces, have no implementation

and no state and they, in turn, may optionally, implement one, or more, additional

interfaces.

An interface is a collection of declared methods and constants. It does not provide

implementation for these methods. The interface is constructed from:

(i) The interface declaration and,

(ii) The interface body

The keyword im plem ent declares an interface or a list o f interfaces. It may optionally

contain a modifier which is placed before the interface identifier in order to regulate

access by any invocation instigated elsewhere in the program. The declaration must

state the name of the interface and optionally declare its Superinterface with the

keyword extends, and optionally implement one, or more, interfaces.

5.1.11 L ibrary

To complete our lists of concepts we need to add the idea of a library of pre-existing

classes that can be imported into the programmes of Little Java. For theoretical

purposes, it does not matter too much what choice we make as long as we have some

given classes to use.

5.1.12 Software A rchitecture in Little Java

We see component-based software as an extension of basic object-oriented software. It

is clear that object-oriented principles can be used as a basis for the specification and

94

design of other architectural styles e.g. pipe filter architecture. (See Garlan and Shaw

[1996] and Rees et al [2003]).

We are interested in modelling a simple notion of software architecture for object-

oriented programmes in Little Java. In Java there is a specific notion of interface that is

derived from the notion of class. A Java interface is a contract in the form of a

collection of method and constant declarations. When a class implements an interface, it

promises to implement all of the methods declared in that interface. Within the Java

language an interface is a device that unrelated objects use to interact with each other.

An interface is probably most analogous to a protocol; the behaviour o f the interface

may be implemented by any class, anywhere, in the class hierarchy. Thus, there is a

notion of architecture derivable from Java.

Java Architecture = Structured set o f Java interfaces.

Java program interface = Package + Imports + Class Name + Body.

5.1.13 G ram m ar Listing

In Chapter 3 we gave a subset of Java designed to illustrate modular syntax techniques.

We based the subset on JDK 1.1 and, subsequently, named it J l. Little Java is a subset

ofJl ,

Little Java <z J l cr Java 1.1.

We now list the syntactic features retained in our construct o f Little Java. (See Gosling

& McGilton [1996]).

Essentially we adopt the basic Java language fundamentals. The language itself is vast,

particularly when you consider the enormous library of classes and methods that are

available to the programmer. We look at the fixed Java structures and build on these to

establish our subset. We will also show how the im port keyword may be used to

provide further classes and methods, if and when required, without compromising the

language simplicity.

95

It should be accepted that all features not deemed to be essential to our simplistic

approach should be left out of the language. We give some examples o f these advanced

features: overloading, messages to super, base types, null pointers, abstract method

declarations, shadowing, access control (public, private, etc)., threads and exceptions.

(See Green [1996-2005]).

We assume that the set o f variables includes the special variable this, but that this is

never used as the name of an argument to a method. Every class has a Superclass that

we declare with the keyword extends. The type of an expression may depend on the

type of any methods it invokes, and the type o f a method depends on the type of

expression within its body. (See Java Forums [1996-2005]).

With Little Java, rigorous arguments allow us to provide classes, methods, fields,

inheritance, and dynamic typecasts, with semantics closely following that o f Java. Little

Java thus illustrates many of the interesting features o f a working set o f principles for

the full language, while remaining efficient and compact. (See Sun Microsystems, Inc.

[1995-2005]).

5.2 Detailed List of Constructs

We consider, in specific detail, a concrete syntax of Little Java. In the preparation of

this subset we were influenced by Felleisen & Friedman [1998] and Igarashi, Pierce and

Wadler [2001]. We begin with a basic program notion to write a typical class and then

list the essential components of our simple Javal subset, namely Little Java.

5.2.1 Types

(i) Fundamental primitive types: int, double, boolean.
(ii) The other primitive types: short, long, byte, char and float.

96

We refer to the table, Figure 3.6 in Chapter 3.2.1, to illustrate all fundamental types.

Type Table Definition No 1.
Boolean A boolean value, true or false
Char 16 bit Unicode character
Byte 8 bit signed two's complement integer
Short 16 bit signed two's complement integer
Int 32 bit signed two's complement integer
Long 64 bit signed two's complement integer
Float 32 bit IEEE 754 floating point value
Double 64 bit IEEE 754 floating point value

Types derived for Little Java listed in second table.

Type Table Definition No 2.
Boolean A boolean value, true or false
Char 16 bit Unicode character
Int 32 bit signed two's complement integer
Float 32 bit IEEE 754 floating point value
Double 64 bit IEEE 754 floating point value

5.2.2 O perators

(i) Arithmetic operators: +
(ii) Increment/decrement operator: ++, —
(iii) The assignment operator =
(iv) The combined arithmetic/assignment operators +=, -=, *=, /=, %=
(v) Relational operators ==, !=, <, <=, >, >=

5.2.3 Logical

Logical operations &&, ||, !

5.2.4 String concatenation

+

5.2.5 A rrays.

(i) Arrays: One dimensional arrays and two dimensional rectangular arrays are
part of the ‘Little Java’ subset.

(ii) Both arrays o f primitive types (e.g. int[] and arrays o f objects. Initialisation
of named arrays (int[] a = {1, 2 ,3 };)

5.2.6 Control Structures,

(i) if, if else,

(ii) while, for, return.

5.2.7 Modifiers

(i) The accessor modifiers public, protected, private and final.
(ii) The modifier void that indicates that no return value is expected.
(iii) The modifier Static that denotes a class variable or class method.

5.2.8 Null

Null is a reference and is part o f the Little Java subset. It is not a keyword but is classed

as a special literal of the null type.

5.2.9 This

The use of this is restricted to passing the implicit parameter in its entirety to another

method (e.g. obj.method (this)) and to descriptions such as "the implicit parameter this".

5.2.10 Super

The use of the keyword, super, is restricted to invoking a superclass constructor

super(args), e.g. super. superClassMethodName().

5.2.11 Initializer

We implement constructors that initialize all instance variables. Class constants are

initialised with an initializer.

5.2.12 Library

The Java language allows the programmer to import classes, interfaces and their

respective methods, from a comprehensive library. The library components may be

accessed by a process called importing. These lists, or packages, are made available to a

programmer by using the import keyword at the beginning of a Java program.

98

Thus, Java.lang.String is a class called String in the package java.lang. All classes in

this package extend the immutable object class Java.lang.object.

5.2.13 Java.lang

Java.lang .S tring
class

The String class represents character strings. Strings in Java are sequence o f characters similar
to characters in this paragraph. The matched brackets indicate that an array o f Strings is
required. An array is a linear collection o f these characters and the name args is given to this
array. This name part o f the main declaration can vary.

Java.lang.System
class

The System class contains several useful class fields and methods. It cannot be instantiated
(extend). Among the facilities provided by the System class are standard input, output streams;
access to externally defined "properties"; a means o f loading files and libraries and a utility
method for quickly copying part o f an array.

5.2.14 Inpu t and O utput
In Java, you need to have a method named main in at least one class. An example of the
syntax is found below.

Java.lang.System

The System class contains several useful class fields and methods. It cannot be
instantiated (extends). Among the facilities provided by the System class are
standard input, output and error output streams; access to externally defined
"properties" and a means o f loading files and libraries.

An exam ple of how the
System class main method
could be used w ithin a
class.

public static void main(String [] args)
{

{ String message = "Hello";
System.out.println (message);

}
}

We now define the following components as a subset of our earlier Java language

namely, J l. Our new subset is called Little Java. A table is drawn to illustrate the library

architecture.

Selected methods for Little Java, are to be found in Java.lang.String:

(i) boolean compareTo(Object other)
(ii) boolean equals(Object other)
(iii) int length()
(iv) String substring(int from, int to)
(v) String substring(int from)
(vi) int indexOf(String s)

5.2.15 Java.lang.M ath

(i) static int abs(int x)

99

(ii) static double abs(double x)
(iii) atic double pow(double base, double exponent)
(iv) static double sqrt(double x)

Java.lang .M ath The class Math contains methods for performing basic numeric operations such as the
elementary exponential, logarithm, square root, and trigonometric functions.

5.2.16 Java.lang.O bject

(i) boolean equals(Object other)
(ii) String toString(Object other)

Jav a .lan g .o b jec t In Java the Object class is the root o f the class hierarchy. Every class has Object as a
superclass. All objects, including arrays, implement the methods o f this class.

We have mentioned previously that the Java Core Application Programming Interface

(package java.io) specifies a list o f class interfaces and explicit interfaces for the

purpose of manipulating data streams.

In the Java programming language, the names of classes that are defined inside

packages always start with the package name. Classes in the same package are

automatically imported, as are the classes in the java.lang package. For all other classes,

you must supply an import statement to import a particular class e.g. import

java.awt.Rectangle; or to import all classes in a package, using the on demand notation

import java.awt.*. The java.io package is an ideal example o f a repository of related

interfaces.

Here are a few of the many packages available in the Java Platform that could be useful

as libraries to Little Java.

(i) Java.io is the package for reading and writing (input and output).

(ii) Java.applet provides the classes necessary to create an applet and
the classes an applet uses for communication purposes.

(iii) Java.aw t is the package that contains all o f the classes for creating
user interfaces and for painting graphics and images.

100

5.3 Examples of Language Features and Flattening in Java

We make reference to Chapter 5, Section 5.1.10 which deals with Java inheritance and

show three example programmes that will help us to understand the meaning of Java

Class inheritance in terms of flattening.

5.3.1 The Base Class

In Figure 5.2 we define the straightforward and simple class, BaseClass.

import java.util. ArrayList;
public class BaseClass {

protected ArrayList list = new ArrayList();
public void add(String s) {

list.add(s);
}
public String get(int i) {

String s;
try {

s = (String)list.get(i);
}
catch (Exception e) {

s = "Error"; return s;

>

}
public void delete(int i) {

try {
listremove(i);

}
catch (Exception e) {

s = “Very Bad”; return s;

>

}

>

Figure 5.2 A Java Program Demonstrating the Base Class.

5.3.2 The SubClass

In our second example we define class SubClass and invoke the Java keyword extends

in order that BaseClass inherits the properties and attributes o f the parent class.

Import java.util. ArrayList;

public class SubClass extends BaseClass {

public void clear() {

list.clear()

}

}

Figure 5.3 The Sub Class, o r Extended Base Class.

Our SubClass is termed the subclass of our Superclass (BaseClass) with all the
attributes of the ‘BaseClass’.

5.3.3 The Flattened Class

The flattening process involves the removal of imports. If we remove these imports

from SubClass, certain inherited attributes extended from BaseClass will be lost.

Specifically, variables will no longer be accessible to the SubClass. In order to correct

this we combine the first two classes, without imports, to a third program, FlatClass as

illustrated in Figure 5.4.

The FlatClass functions in exactly the same way as the previous versions with imports

but the declarations o f both classes are combined into the one class.

^ Q
LIBRARY

import java.util. ArrayList;

public class FlatClass {
private ArrayList list = new ArrayList();
public void add(String s) {

list.add(s);
}
public String get(int i) {

String s;
try {

s = (String)listget(i);
}
catch (Exception e) {

s = "Error"; return s;
}

public void delete(int i) {
try {

list.remove(i);
}
catch (Exception e) {

s = “Error”; return s;
}

}
public void clear() {

list.clear();

}

}

Figure 5.4 The Flattened BaseClass / SubClass.

103

5.3.4 Class Signatures

In Java we can abstract from programmes the components that are important for

interfaces, using class signatures and interfaces (5.3.5). The three classes Base, Sub and

Flat class can be stripped down to simple declarations o f method names as follows:

Public class BaseClass {

public void add(String s){

>
public String get(int i){

}
public void delete(int i){

}
}___

Figure 5.5 The BaseClass.

Public class SubClass extends BaseClass {
public void clear() {

>

>

Figure 5.6 The SubClass.

Public class FlatClass {

Public void add(String s){

>
} public String get(int i){

}
public void delete(int i){

}
public void clear() {

}
}

Figure 5.7 The Flat Class.

104

These signature classes contain the names of key components o f our three classes. This

brings us closer to the level o f abstraction we need for our IDL models.

5.3.5 Java Interfaces

The interface construct o f Java also allows us to write these declarations:

interface Base {

public void add(String s);

public String get(int i);

public void delete(int i);

}

Figure 5.8 The Base Interface.

interface Class extends Base {

public void clear();
}

Figure 5.9 The Class Interface.

interface Flat {

public void add(String.s);

public String.get(int i);

public void delete(int i);

public void clear();

}

Figure 5.10 The Flattening Interface.

105

5.4 An Abstract Object-oriented IDL

We have stripped down Java to Little Java which is based on the constructs of classes,

inheritance, and a library. In this section we reflect on those three concepts and create a

simple abstract model of them. This model is an abstract IDL called OO-IDL.

Moreover, we focus on the role of interfaces in their use. We begin by looking at this

idea o f classes and their interfaces.

Methods can only be created as part of a class. Sometimes, named methods have typed

parameters that return values. The objects, or interfaces, declare interaction between

components in the manner described above. The method within that class(object) may

be called from other instantiated objects.

We have defined the Java methods earlier in 5.1 but we now differentiate between kinds

of methods.

(i) Command methods,

(ii) Query methods.

These methods are rarely distinguished in working languages but have a quite distinct

semantical behaviour that should be visible in an interface.

Firstly, we deal with command methods. Commands simply change the state o f an

implementation depending upon the values of some parameters. As functions they have

the form: the i-th command is

Com,: state x rl i x ... x r\(i) -> state

Secondly, queries return a value, or values, as well as change the state o f an
implementation. Thus, as a function they have the form: the j-th query is

QmStatej: state x r'y x ... x —estate x r*

This can be unpacked into its co-ordinate functions.

QmStatej: state x/y x ... -esta te

QmDataf state xy-'y x ... x ^ ^ ^

Thus, the general form of an interface in OO-IDL is given in Figure 5.11.

interface Body OO-IDL interface with commands/queries

import

sorts ..., s, ...

constants

operations sj x ... * s n ^> s,...

declarations • ••> di, . . .

methods

(commands) mComf. tj1 x ... x t1 k(i) —> void

mComp: t f x ... x tk(pf —> void

(queries) mQueryj: rl] x... x rli(j) —> r1

mQueryq: rqj x... x rqi(q) rq

endinterface

Figure 5.11 OO-IDL.

107

5.5 Transforming Little Java into OO-IDL

When mapping Little Java programmes to the abstract forms of OO-IDL we

(i) make explicit all implicit notions of dependency and inheritance;

(ii) classify each method as a command or query;

(iii) map inheritance, extends in Little Java, to import.

We use the program examples of BaseClass (Figure 5.2), SubClass (Figure 5.3) and

FlatClass (Figure 5.4) to illustrate our 0 0 - IDL translation. Java modifiers such as

public, static and void are used to control usage o f class expressions and assignments

during the running of these program but do not alter their state. In order to simplify our

transformation it would be acceptable, semantically, to omit these modifiers when

mapping to our signature.

The revised BaseClass program components before transformation.

interface BaseClass

sorts 5, . . . , string, int

constants

operations

methods

(commands) add : string -> void
delete : int —> void

(queries) get : int —> string

endinterface

Figure 5.12 The BaseClass Interface.

The revised SubClass program components before transformation.

interface SubClass

imports BaseClass

sorts

constants

operations

methods

commands: c lear: —> void

Figure 5.13 The SubClass Interface.

The revised FlatClass program components before transformation.

interface Flattening

sorts int, String

constants

operations

methods

commands) add : string —> void
delete : int —> void
clear : —> void

(queries) get : int —> string

endinterface

Figure 5.14 The FlatClass Interface.

109

5.6 Algebraic Specification Interface Definition Language AS-IDL

There are many algebraic specification languages. They have much in common because

they are well founded semantically on a small collection o f precise mathematical

concepts, most notably many sorted algebras and axiomatic theories. Axiomatic theories

are used to specify a system component and the algebras represent possible models.

Many early languages, such as the OBJ family, emphasised initial algebras and term

rewriting.

The Common Algebraic Specification Language (CASL) was designed by the Common

Framework Initiative (CoFI), for algebraic specification and research. It emphasises

loose semantics and theorem proving. (See Mosses [2004]).

The simple notion of many sorted signatures which play a basic role in all aspects of

algebraic specifications is, in fact, a precise concept o f an interface for data types and

systems modeled by algebras. Thus, an algebraic specification language with its

axiomatic theories removed is an interface definition language. Furthermore, it is an

IDL that is relatively easy to understand and is, in fact, equipped with the same basic

theory.

O f greater importance for our investigation is the fact that we can

(i) model anything using algebras, and

(ii) understand this IDL

Our simple IDL for signatures has three components

(i) signatures,

(ii) inheritance based on imports and flattening,

(iii) a library.

5.7 Translation of OO-IDL to AS-IDL

When translating from OO-IDL to AS-IDL we

110

(i) make explicit the role of the state of the class and

(ii) model the behaviour o f their methods by functions on state and parameters.

In the transition from Little Java to 00_ID L we introduce distinctions between method

commands and queries. The mapping to signatures is quite direct and we have the

correlation.

O O I D L Signature

p method commands —> p ops

q method queries —> 2q ops

For example, the general form for an OO-IDL in Figure 5.11 translates into

signature Translated Body of OO-IDL interface-Commands/ Queries

sorts state, ..., s, ...

constants Cl s, ...

operations f : si x... * s n ->s, ...

(methods)

(commands) mComji state x t j 1 x ... x tk(i)1 —estate

mComp: state * t f x ... x tk(pf —>state

(queries) mQii state x r11 x ... x y1̂ -> rJ
mQStateji state x r1 / x ... x y1 i(j) —>state

mQq: state x rqj x ... x rqi(q) —>rq
mQStateq: state x rqi x ... x rqi(qj —>state

endinterface

Figure 5.15 Body of OO-IDL interface-Commands / Queries.

I l l

Here are translations on three OO-IDL components in Fig 5.12, Fig 5.13 and Fig 5.14.

The OO-IDL given in Figure 5.12 becomes:

signature BaseClass

sorts string, int, state

constants

operations

(commands)

(queries)

add : state x string —> state
delete : state x int -> state
get : state x int —> state
get : state x int —> string

endinterface

Figure 5.16 Revised example of OO-IDL Interface-BaseClass.

The OO-IDL given in Figure 5.13 becomes:

signature SubClass

import BaseClass

sorts string, state

constants

operations

(commands) clear : state state

endinterface

Figure 5.17 Revised example of OO-IDL Interface-SubClass.

112

The OO-IDL given in Figure 5.14 becomes:

signature FlatClass

sorts string, int, state, ..., s,...

constants

operations

(commands) add : state x string —> state
delete : state x int -> state
clear : state —> state

(queries) get : state x int -> state
get : state x int —> int

endinterface

Figure 5.18 Revised example of OO-IDL Interface-FlatClass.

Now we are able to use the standard semantic methods for abstract data types to give a

semantic model for OO-IDL and, hence, Little Java programmes.

J —> T(J) ->MT(J)

We define semantics o f Little Java J to be [[MT(J)]] which is some algebra or class of

algebras as we discussed in the introduction o f Chapter 5. We have, also, to determine

the expressive power o f a language in which inheritance is defined by flattening. We

suspect it may be as expressive as Java.

Chapter 6

Conclusions and Further Work.

This thesis investigates two theoretical aspects o f the formal definition o f programming

languages, using case studies in Java. First, we define modular grammars which can be

used to decompose large grammars. Modular grammars allow the modular definition of

formal languages. They provide concepts o f component and architecture for grammars

and languages. We show that this modular method can be used to define a modem

practical language like Java.

Second, we describe recent general work on the definition of interfaces and interface

definition languages (IDLs). In Rees, Stephenson and Tucker [2003], there is an

analysis of the idea of interfaces and an algebraic model o f a general IDL. We apply

these ideas to analysing aspects of interfaces in Java. These ideas extend the methods

used in Stephenson & Tucker [2006].

This latter task is more complicated and, in conclusion, we reflect on the method here as

it leads to ideas for further research.

In Chapter 5, we attempted to implement the results of research into the general form of

interface definition languages, discussed in Chapter 4. We defined ‘Little Java’, a subset

of the programming language Java, and endeavoured to describe a series o f translations

from ‘Little Java’ to an abstract object-oriented interface definition language OO-IDL

and, thence, to an interface definition language AS-EDL for abstract data types. The AS-

IDL can be given its algebraic semantics in a number o f well-understood ways.

Consider the process o f translation in separate stages. First, the aim of the translation

from Little Java into OO-IDL is represented by the following commutative diagram,

where flattening is preserved.

LJa

flat u

LJa

For x e Little Java, T flatu (x) = flat oo T(x)

T

va -----------------------► 0 0 - IDL

flat oo

Tr y

v a flat ■ ■■ ► 0 0 -ID L flat

Figure 6.1 Fragment of Java.

Second, the aim of the translation from OO-IDL into AS-IDL is represented by the

following commutative diagram, again in which flattening is preserved and some form

of algebraic semantics is chosen.

I

0 0

flat oo

0 0

7or y e OO-IDL, M flat oo (y) = flat as M(y)

M

-IDL -----------------------► AS-IDL

flat as

M I

- IDL flat-----------------------► AS - IDL flat ► Algebra

Figure 6.2 Abstract Object Orientated IDL.

Putting the two steps together we have the following commutative diagram, in which

flattening is preserved.

115

(1) LHS of diagram: For x e Little Java
(2) RHS of diagram: For y e OO-IDL
(3) For x e Little Java

LJava

flatLJ

LJava flat

T flatu (x) = flatoo T(x)
M flatoo (y) = flatAs M(y)
M T fla tu (x) = flat as M(T(x))

M
"► OO - IDL -

flatoo

▼
+ O O -ID L flat

-► A S -ID L

flatAS

M
AS - IDL flat

Figure 6.3 The Big Picture / Theoretical Framework.

We think that our work shows that there is a case for saying that the algebraic model of

Rees, Stephenson and Tucker [2003] can capture the very basic structure o f class

interfaces in a simple subset of Java. For such a simple language a series o f translations

can result in an algebraic semantics for such a subset o f the Java language. We have not

used the algebraic structures of the interface model in Chapter 4 to define these

translations but we believe it could be done by structural inductions. We are content to

explore and demonstrate the feasibility of the general ideas. It would be interesting to

determine the expressive power of a language in which an inheritance is defined purely

by flattening. We suspect it may be as expressive as Java with its more complex

inheritance.

We could investigate, further, the semantics o f class notions in Java, and other
M

languages such as Eiffel and C . For example, missing features such as public and

private could be included in OO-IDL and AS-IDL. The basic methodology of this

thesis should be applicable to other languages and selected further constructs, i.e. the

technique of mapping a fragment, Little L, o f an OO language L, to OO-IDL and then to

AS-IDL, in such a way that some form of inheritance native to L is preserved, should

work:

116

L -> OO-IDL —> A S - IDL

In particular, if OO-IDL proves to be stable and robust under translation for other

languages, and its mapping

M : OO-IDL -> AS-IDL

models, semantically, features relevant to a variety o f languages, then our concept and

methods are useful.

117

Chapter 7

Thesis Summary and Evaluation.

In the first year o f research, in consultation with Dr Stephenson, it was decided that, in

view o f my interest and background, the research topic would be based on the

theoretical aspects o f the syntax and semantics of the Java programming language.

On reflection, we would, perhaps, re-arrange certain sections to give us a clearer picture

of how we apply the transfer o f algebraic rules to Little Java. This has been achieved in

some areas. For example, Chapter 4 sets out certain rules and illustrations, in a

hierarchical manner, prior to the introduction of Chapter 5.

In Chapter 2, we write of ‘building blocks that have interfaces which give rise to a

modular or hierarchical structure’ and then give interpretations of object-oriented

development in different languages before itemising the basic features o f the Java

language. We considered, in general, that the thesis would investigate certain theoretical

aspects o f the formal definition, or specification, of programming languages. We

considered aspects of syntax and semantics and centered our study on the object-

oriented language, Java, and adopted its methods as a base concept for our case study.

Our work, in this area, was influenced by the authors of software architecture such as

Dhal and Nygaard, (See Dhal and Nygaard [1966]), Garlan and Shaw, (See Garlan and

Shaw [1996]), Bass et al, (See Bass et al [1998]), Hayes-Roth, (See Hayes-Roth

[1994]), Garlan and Perry, (See Garlan and Perry [1995]), Booch et al, (See Booch et al

[1999]). Our example programmes, namely, Smalltalk, Eiffel and Python lead to the

introduction of Java and the Virtual Machine-Java byte code.

In Chapter 3, we introduce Modular Grammars as a preparation to the modular

decomposition o f Java. We show the main language components o f Java and explain

their function and relationship with other components. We illustrate this by the principal

o f logical decomposition. This, together with our list o f modular grammars, illustrates

the basic structure of the large language. This interpretation contributed to the

construction of our subset, Little Java.

Particular attention was paid to the overall theme of modularity, hierarchical structure,

and architecture of languages. Subsequently, we employed a process o f simplification

on these section headings with the aid of simple theoretical tools.

For syntax we would consider modular grammars and Backus-Naur Form and use them

to give a decomposition o f Java syntax. More specifically, we examine examples and

case studies in Java together with a modular construction of a subset of the language.

In Chapter 4, we write a preparation for IDL. For semantics we considered the

mathematical modelling based on the concept o f interfaces and their semantic

applications. We developed modular grammars and applied them to large, current and

real programming languages.

Our paper gives algebraic specifications of libraries of interfaces. We explain the

importance of the dependency trail and its data dependencies, and the properties of the

interface. We added the import definition and dealt with the imported interface,

dependency, redundancy and the technique known as flattening. We investigated some

theoretical concepts such as modular grammars, abstract interfaces and flattening, etc,

and their application to larger languages.

Our aim would be to illustrate the meaning of modularity and flattening in these three

languages. The general concepts on interfaces, discussed in Chapter 4, have a bearing

on the work outlined in Chapter 5. We defined a subset ‘Little Java’ from the concrete

syntax of Java and provided a simplified interface definition language with certain

omissions. These omissions, already listed, would not compromise the full Java

language. The process o f translating this subset to an abstract object-oriented interface

definition language, OO-IDL and, thence, to an interface definition language AS-IDL

for abstract data types (in our case, algebraic signatures into mapping). The mapping

examples in Chapter 6 help to illustrate the theory.

What have we written? We have selected an object oriented language, namely, Java and

analysed its content and form and interpreted it in a theoretical and modular manner by

decomposition. We have introduced the principle o f interfaces and the removal of

imports, resulting in ‘flattening’. Finally, we have translated from ‘Little Java’ to an

abstract object-oriented interface definition language OO-IDL and, thence, to an

interface definition language AS-IDL for abstract data types.

We would anticipate that in this changing scientific environment, certain sections of the

thesis could prove invaluable to future study, if only for its attempt to evaluate the

transition o f an imperative language (albeit a subset of that language) to an OO - IDL.

We can only accept that other people’s interpretation of the subject matter o f the thesis

would vary enormously. We would be extremely pleased to learn, from prospective

readers, their views and suggestions, but this is unlikely. Nevertheless, we hope they

find the thesis to be informative and of educational worth.

The history o f the Java language is compelling and interesting. We thought it was

important that we include a summarised account of its origin and its subsequent

development. The revised history is listed in the Appendix.

Appendix 1

We outline the history of the Java language and pay particular attention to the early

years, its inception and its gradual progress due primarily, and in no small measure, to

the rapid growth of the World Wide Web (Internet).

The switch program example is illustrated in Appendix 2.

A.1.1 A Revised History of the Java Language

This is an excerpt from James Gosling’s account of the History o f Java.

This research paper is predominately linked with the language Java and we, therefore,

discuss the importance o f its early history and how, and why a certain company

gathered a dedicated group o f individuals to research the possibility o f creating an

interface capable o f communicating with the various network protocols in existence at

that time; an interface which would work on a common communication platform and

capable o f meeting the demands presented by these systems.

We write about the instigation o f this language and the reasons fo r its inception. The

following paragraphs help to illustrate the fundamental issues involved and the history

and development o f the Java Language.

(See Gosling [1996]).

A.1.2 A Brief History of the Internet and Related Networks

In 1973 an American project was instigated by the Government Defence Agency to

research the techniques and technologies of packet networks. The main objective was to

undertake a study on communication protocols and subsequently formulate a system of

networked computers, capable o f communicating, with one another, transparently. As a

direct result o f this study and research a system, named simply, the ‘Internet’ was bom.

Two of the protocols to evolve from this research are:

(iii) TCP/IP Protocol Suite: Transmission Control Protocol.

(iv) (TCP) and Internet Protocol (IP).

In 1986, the U.S. National Science Foundation (NSF) initiated the development of the

NSFNET which, today, provides a major backbone communication service for the

Internet. With its 45 megabit per second facilities, the NSFNET carries on the order of

12 billion packets per month between the networks it links. The National Aeronautics

and Space Administration (NASA) and the U.S. Department o f Energy contributed

additional backbone facilities in the form of the NSINET and ESNET respectively. In

Europe, major international backbones such as NORDUNET and others provide

connectivity to over one hundred thousand computers on a large number of networks.

Commercial network providers in the U.S. and Europe are beginning to offer Internet

experience and access support on a competitive basis to any interested parties. (See

Segal [1995]).

A.1.3 World Wide Web

Tim Bemers-Lee, now Sir Tim Bemers-Lee, the creator o f the World Wide Web, first

released in 1991, at CERN in Switzerland currently heading the World Wide

Consortium, has shown great interest in a new concept called R.D.E. (Resources

Definition Framework). The theory purports that it will allow software to travel through

cyberspace adapting itself to various encountered conditions and behavioural situations,

thereby performing tasks on behalf of the human user.

The idea has been termed ‘The Semantic W ay’ and it is claimed that the concept will

change the lives o f the world population by turning the Internet into a place that is as

intelligible for computers as it is for human beings. A frightening concept, perhaps, and

one, which has been recognized by the likes o f worldwide giants I. B. M., Hewlett

Packard and Nokia as a worthwhile project that has prompted them to invest heavily in

research. There are sceptics who state that it is an idea that will ultimately be destined

for use by academics as a theory worthy of interest. This is merely conceptual but the

proposal has its own supporters who see it as a tool capable o f transforming the way in

which we handle information on the Web. Bemers-Lee saw the World Wide Web as a

massive portal of information available to anyone and capable o f inter connection on a

composite linkage platform.

"The Semantic Web is an extension o f the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation."

(See Tim Bemers-Lee, James Hendler, Ora Lassila [May 2001]).

The problem with these millions of pages of information and the millions of

connections made by computers is that they are stored in a format that is intelligible to

human thought and understanding. This is difficult for computers that have no concept

of natural languages and is one o f the reasons why so many link operations (non­

computer aided) have to be carried out by hand.

The race is on to bring about a change in the way we store our information. If computers

are to take on the task of interpreting the content o f files and act accordingly, then the

contents have to be coded in a way that will facilitate this interaction. This will,

ultimately, allow computers to read directly without interpretation.

The first-ever Millennium Technology Prize was today awarded to Tim Bemers-Lee for

the invention o f the WWW service on the internet. The prize trophy, “The Peak”, was

presented by the President of The Republic of Finland, Ms Taija Halonen, in Finlandia

Hall. In his acceptance speech Tim Bemers-Lee said”We must remember that the web is

a long way from revealing its full potential. The extension from human-readable to

include also machine-readable information is just one direction o f development”.

At this stage, and as an integral part of our research, it would be proper to introduce the

contribution made to the development of the World Wide Web, by Tim Bemers-Lee, a

graduate o f Queen’s College Oxford in 1976. In 1980, whilst working as an independent

software consultant, he wrote a program for storing information, using random

associations. This program called "Enquire” was never published, but it proved to be the

conceptual basis for further development o f the World Wide Web. He continued his

research, working with various bodies such as CERN (European Organisation for

Nuclear Research), and in 1989, he proposed a global hypertext project, to be known as

the World Wide Web. This project was started in October 1990 and was operational,

and on the Internet by the summer o f 1991. (See Campbell-Kelly and Aspray [1996]).

In 1994, Tim Bemers-Lee founded the World Wide Web Consortium at the

Massachusetts Institute of Technology. Since that time he has served as its Director and

his aim has been: “to lead the Web to its fu ll potential, ensuring its stability through

rapid evolution and revolutionary transformations o f its usage. ” The Consortium may

be found at http://www.w3.org/.

Various research and educational institutions, together with regional and local bodies,

formed networks. In the early days, a great deal o f support originated from the United

States and its federal and state governments. It must be emphasised, however, that

industrial bodies have made an enormous contribution to the building o f the network in

the early days. This is true in all major countries throughout the world, particularly

Europe. Towards the end of 1991, the Internet had grown to over 5,000 networks and by

1994 approximately thirty six countries, serving over 700,000 host computers and

4,000,000 users, were in operation. Figures taken from ‘A B rie f History o f the Green

Project \ (java.sun.com/people/).

The continued rise in population of Internet users and the relative system networks grew

internationally and globally to include commercial, private, educational, research,

business and government organizations across the world. The recent proliferation of

web sites attests to the rapid growth and success o f the Internet. Designed to provide

information, showcase products and services, and form the basis o f an electronic

marketplace, each web site can be broken up into multiple pages o f information, each

identified by a URL. Today, there are millions of URLs in use throughout the world.

A. 1.4 The Internet Technical Evolution

The foundation for the information superhighway has been laid. The Internet - which

interconnects thousands of public and private networks worldwide - today provides

millions of users with access to information from around the globe. This complex web

of networks forms the pathway for a global information revolution that will eventually

link businesses, public and private agencies, and educational centers with one another.

A.1.5 Mosaic

To address this need Netscape Communications Corporation was founded in April 1994

by Dr. James H. Clark (Silicon Graphics) and Marc Andreessen, (NCSA Mosaic

Software and Graphical User Interface). The development o f Netscape continued and

the innovative Netscape Navigator client software was eventually available for

download over the Internet.

A.1.6 Java People

In 1991, under the guidance o f James Gosling of Sun, a small research development

team was commissioned by Sun to evaluate concepts that were compatible with "next

wave" development in computing. The emphasis was to be centered on digitally

controlled consumer devices and computers.

In the summer o f 1992 after a concentrated effort, lasting over eighteen months, the

Green Team (as they were now called) had perfected an interactive, handheld home-

entertainment device controller with an animated touch screen user interface. The

appliance, named Star Seven, was capable of controlling a wide range o f appliances,

and at the same time, displayed animation using a new, processor-independent

language. The new language, pioneered by James Gosling, was christened "Oak," after

the tree outside his window.

A.1.7 First Person

Sun turned the Green Team into a separate company and re-named it FirstPerson. The

new company was instructed to find a market for their innovative device and they

targeted, initially, the Cable companies, hoping to initiate the new interactive software

into their cable networking systems. This, unfortunately, did not prove fruitful and they

needed to look elsewhere for recognition. Within the three days, John Gage, James

Gosling and colleagues decided that the Internet, already growing in popularity, was the

obvious choice for the type o f network configuration they were seeking and not the

cable TV industry as they had originally thought.

The Internet and its inherent technology matched the technology o f Java. They

possessed the same parallel capability of moving media content across networks. It also

offered the capability to move "behaviour" in the form of applets along with the content.

Gosling explains: "We had already been developing the kind o f 'underwear' to make

content available at the same time the Web was being developed. Even though the Web

had been around fo r 20 years or so, with FTP and telnet, it was difficult to use. Then

Mosaic came out in 1993 as an easy-to-use front end to the Web, and that

revolutionized people's perceptions. The Internet was being transformed into exactly the

network that we had been trying to convince the cable companies they ought to be

building. All the s tu ff we had wanted to do, in generalities, f i t perfectly with the way

applications were written, delivered, and used on the Internet. It was ju st an incredible

accident. And it was patently obvious that the Internet and Java were a match made in

heaven. So that's what we did." (See Gosling [Java.sun.com]).

When two or more networks are joined together it becomes an internet. In the year 1994

the Internet connected, roughly, 60,000 independent networks into a vast global

internet. It was a widely used means of moving media content throughout this network

utilising HTML. Hyper Text Markup Language is used, internationally, to publish

hypertext on the World Wide Web. It is a non-proprietary format based upon the

descriptive Standardised Markup Language SGML, and can be created and processed

by a wide range of text editors, simple or sophisticated.

In that same year using Mosaic as a template, the team, subsequently, developed a

demonstration program that was capable o f object animation within a Web browser. The

resultant program was named “WebRunner” and was the forerunner o f the HotJavaTM

browser. A year later the improved program was demonstrated to a Technology

conference. The audience witnessed the moving text images for the first time and was

quick to realize the immediate potential of the new technology. The WebRunner binary

code was released over the Internet for developers and anyone interested in their work.

The response was amazing and in a few months the number o f downloads had reached

over 10,000. This, together with the ever increasing number o f e-mails amounting to

thousands each day, was handled by the dedicated and overworked team to the best of

their ability. The success o f the project had generated such an enormous reaction that it

was rapidly becoming unmanageable. “They simply saturated the line," said Gosling.

Sun, the originators of the project, committed themselves to the new Java Technology.

This act, in itself, was regarded by the team as monumental, but what followed, was to

prove even more momentous.

On May 23, 1995, John Gage, director o f the Science Office for Sun Microsystems, and

Marc Andreessen, co-founder and executive vice president at Netscape, announced that

JavaTM technology was officially in being and was to be incorporated into Netscape

Navigator™. Java technology was created as a programming tool by Patrick Naughton,

Mike Sheridan, and James Gosling o f Sun in 1991. The original members of the Java

technology team numbered less than thirty people but this small group created and

developed a technology that would greatly influence the computing world. Judging by

the outcome of this research, they had vindicated themselves admirably.

Unexpectedly the news that Netscape's Marc Andreessen had signed an agreement to

integrate Java technology into the Navigator browser surprised the Java team. They,

together with the rest o f the world, learned the facts when Andreessen and a Sun

executive appeared briefly on stage to cement the deal with a handshake.

A recent survey by Matthew Gray [2003], gave the number of host users as over

170,000,000. We are lead to believe that most, if not all, o f these would have Java

technology implementation to some degree. (Internet Statistics [http://www.isc.org/]).

Some of these implementations are listed:

JDK, the sandbox, applets, thousands of Java technology-oriented startups, over a

thousand books on Java technology, JavaBeans architecture, Java Studio, Netscape

Communicator, Internet Explorer, various search engines, Internet service providers,

170 million Internet users, 56K and cable modems, broadband, electronic commerce,

servlets, Java Foundation Classes, Enterprise JavaBeansTM components, Swing,

JavaOS for BusinessTM, and commitments from major players such as IBM.

127

Within two years, the JavaOne conference had attracted 10,000 developers. In the third

year, the renamed Java technology, now Sun Java Software Division employed 800

people, a few more than the original Green Team.

Since that introduction in May 1995, the Java platform has been adopted more quickly

across the industry board than any other new technology in computing history. It seems

that when people see that a particular product has development potential they make a

concerted effort to further that development. Java has successfully exhibited its prowess

by turning static Web pages into interactive, dynamic, animated documents. It can also

boast that it works with distributed platform-independent applications. Since its debut, it

has taken the international community by storm and enhanced Web browsers, almost

everywhere, with animation, audio, video and real-time interactivity.

Appendix 2

Switch Program Example

We include this example to further illustrate the work covered in 3.2.9. The switch

statement, in the Java language, is used to conditionally perform statements based on an

integer expression. The following sample program, SwitchDemo, declares an integer,

month whose value represents the name month in a calendar. The program displays the

name of the month, based on the designated integer, using the switch statement:

public class SwitchDemo {

public static void main(String[] args) {

int month = 8;

switch (month) {

case 1: System.out.println("January"); break;

case 2: System.out.println("February"); break;

case 3: System.out.println("March"); break;

case 4: System.out.println("April"); break;

case 5: System.out.println("May"); break;

case 6: System.out.println("June"); break;

case 7: System.out.println("July"); break;

case 8: System.out.println("August"); break;

case 9: System.out.println("September"); break;

case 10: System.out.println("October"); break;

129

case 11: System.out.println("November"); break;

case 12: System.out.println("December"); break;

}

}

>
The switch statement evaluates its expression, in this case the value o f month, and

executes the appropriate case statement. Thus, the output o f the program is: August. Of

course, you could implement this by using an i f statement:

int month = 8;

if (month = 1) {

System.out.println("January");

} else if (month == 2) {

System.out.println("February");

}

. . . II and so on

Deciding whether to use an i f statement or a switch statement is a matter for the

programmer who needs to observe the need for clarity and functionality. An i f statement

can be used to make decisions based on ranges of values or conditions, whereas a switch

statement can make decisions based only on a single integer value. Also, the value

provided to each case statement must be unique.

Another point o f interest in the switch statement is the break statement after each case.

Each break statement terminates the enclosing switch statement, and the flow of control

continues with the first statement following the switch block. The break statements are

necessary because without them, the case statements fall through. That is, without an

explicit break, control will flow sequentially through subsequent case statements.

Following is an example, Switch Demo, which illustrates why it might be useful to have

case statements fall through:

public class SwitchDemo2 {

public static void main(String[] args) {

int month = 2;

int year = 2000;

int numDays = 0;

switch (month) {

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:

numDays = 31;

break;

case 4:

case 6:

case 9:

case 11:

numDays = 30;

break;

case 2:

if (((year % 4 = 0) && !(year % 100 = 0))

|| (year % 400 = 0))

numDays = 29;

else

numDays = 28;

131

break;

}
System.out.println("Number of Days = " + numDays);

}
}
The output from this program is:

Number o f Days = 29

Technically, the final break is not required because flow would fall out o f the switch

statement anyway. However, we recommend using a break for the last case statement

just in case there is need to add further case statements at a later date. This makes code

modification easier and less error-prone. The keyword break is used to terminate loops

in Branching Statements.

Finally, the default statement can be used at the end of switch statements to handle all

values that aren't explicitly handled by one of the case statements.

int month = 8;

switch (month) {

case 1: System.out.println("January");break;

case 2: System.out.println("February");break;

case 3:

System.out.println("March"); break;

case 4:

System.out.println("April"); break;

case 5:

System.out.println("May"); break;

case 6:

System.out.println("June"); break;

case 7:

System.out.println("July"); break;

case 8:

System.out.println("August"); break;

case 9:

System.out.println("September"); break;

case 10:

System.out.println("October"); break;

case 11:

System.out.println("November"); break;

case 12:

System.out.println("December"); break;

default: System.out.println("That is not a valid month!"); break;

}

133

Bibliography

Backhouse R. C. [1979].

R. C. Backhouse, Syntax o f Programming Language, Theory and Practice,
Prentice-Hall International, London, 1979.

Backus J. [I960].

J. Backus, Syntax o f the proposed Algebraic Language o f the Zurich ACM-
GAMM Conference. In Proceedings o f an International Conference on
Information Processing, UNESCO, Paris, 1959. Butterworth, London, 1960.

Bass et a l [1998].

Len Bass, Paul Clements and Rick Kazman, Software Architecture in Practice,
Addison Wesley, 1998.

BerardE. [1989].

Edward V. Berard, The Object Agency, Inc. Web-site at:
http://www.toa.com/pub/oodarticle.htm 1989.

Bemers-Lee et al. [2001].

Tim Bemers-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific
American, May 2001.

Booch et al. [1999].

Grady Booch, Rumbaugh, and Jacobson. The UML Modelling Language User
Guide. Addison-Wesley, 1999.

Booch. [1999].

Grady Booch, Object-Oriented Analysis and Design with Applications, Addison-
Wesley, September1999.

Borland. [2003].

Budi Kumiawan “Java for the Web” 2004.

Brachla G & Griswold D. [1993].

Gilad Bracha & David Griswold, Strongtalk: type checking Smalltalk in a
production environment, In Proceedings o f the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications, p.215-
230, September 26-October 01, 1993, Washington, D.C., United States

Buril C. W. [1967].

C. W. Buril, Foundations o f Real Numbers, McGraw-Hill, 1967.

Buschmann et al. [1996].

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, & M. Stal. A System o f
Patterns. John Wiley & Sons, 1996.

Campbell-Kelly M. [1982-1996].

M. Campbell-Kelly. The Development of Computer Programming in Britain
(1945 to 1955) Annals o f the History o f Computing, 4(2): 121-139,1982.

M. Campbell-Kelly and William Aspray, Computer: A History o f the
information Machine, Basic Books, 1996.

Campione & Walrath. [1996].

M. Campione & K. Walrath. The Java Tutorial, Addison - Wesley, 1996.

Campione M., Walrath K. & Alison Huml A. [2001].

M. Campione, K. Walrath & Alison Huml, The Java Tutorial, Third Edition
Addison - Wesley, 2001.

Chomsky N. [1956].

Noam Chomsky, Syntactic Structures, Mouton & Co. 1957.

Chomsky N. [1956].

IRE Transactions on Information Theory, IT-2 (3): 113 {124,1956. Cohn, 1982.

Dahl & Nygaard. [1966].

Johan Dahl and Kristen Nygaard, The Simula Language, 1966.

135

Eiffel Software. [1985].

http://www.eiffel.com/index.html

Fact Guru. [2005].

Fact Guru Object-oriented Software Engineering [2005]. Website:

http://www.site.uottawa.ca:4321/oose/index.html - Javawrapperclass

Felleisen M. & Friedman P. [1998].

Matthias Felleisen and Daniel P. Friedman, A little Java, A Few Patterns, The
MIT Press, London. [1998]

Flanagan D. [1996].

D. Flanagan, Java in a Nutshell, O ’Reilly, 1996.

Garlan and Perry. [1995].

David Garlan, Dewayne Perry. Introduction to the Special Issue on Software
Architecture. IEEE Transactions on Software Engineering, 21(4), Apr. 1995.

Garlan and Shaw. [1996].

David Garlan and Mary Shaw, Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

Goguen J. et al. [1977],

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial Algebra
Semantics and Continuous Algebras. Journal of the ACM, 24: 68, 95, 1977.

Goldberg & Robson. [1983].

J. Goldberg and D. Robson, Smalltalk-80: The Language and Its
Implementation, Longman Publishing Co., MA, 1983.

Gosling J. [1996].

James Gosling, Java Application Programming Interface, Java Team, 1996.

James Gosling & Henry McGilton, The Java Language Environment, 1996.

Website at:

httv://www. iavaworld. com/iavaa a/2002-07/02-qa-0719-multinheritance. html

GrayM . [1993-95].

Matthew Gray, Measuring the Growth of the Web, Massachuessets Institute of
Technology, 1993-95, Build a Web Site, Prima Publishing, 1995.

Green R. [1996-2005].

Roedy Green , Java Glossary, Canadian Mind Products, 1996-2005.

Website: http://mindprod.com/igloss/suner.html

Hayes-RothF. [1994].

Frederick Hayes-Roth, "Architecture-Based Acquisition and Development o f
Software: Guidelines and Recommendations from the ARPA Domain-Specific
Software Architecture (DSSA) Program," Teknowledge Federal Systems.
Version 1.01 February 4, 1994.

Horstmann C. [1996].

G. Cornell & C. Horstmann. Core Java. Sunsoft Press, 1996.

ICEIMT. [1997].

International Conference on Enterprise Integration and Modelling Technology,

Website: http://www.mel.nist.gov/workshop/iceimt97

Igarashi A., Pierce B. and Wadler P. [2001].

Atsushi Igarashi, Benjamin Pierce and Philip Wadler, Featherweight Java: A
Minimal Core Calculus fo r Java and GJ, ACM Transactions on Programming
Languages and Systems, Vol. 23, No. 3, May 2001, Pages 396—450 [2002],

Website: http://www.eecs.umich.edu/~bchandra/courses/papers/Igarashi FJ.pdf

137

Jackson & McClennan. [1997].

J. Jackson & A. McClennan, Java by Example, Sunsoft Press, 1997.

Java Forums. [1996-2005].

Developers Java.Sun, Website:

http ://forum.i ava.sun.com/thread.i spa?threadID=557037&start=360

Kay A. [1996].

Alan Kay, The Early History o f SmallTalk, in Bergin, Jr., T.J., and R.G. Gibson.
History o f Programming Languages - II, ACM Press, New York NY, and
Addison-Wesley Publ. Co., Reading MA 1996, pp. 511-578, with additional
commentary and transcripts

Website: http://en.wikipedia.org/wiki/Alan Kav

Kleene S. [1909-1994].

Stephen C. Kleene, Mathematical Logic, New York, John Wiley, 1967.

LitwakK. [2000].

Kenneth Litwak, Pure Java™ 2, Sams Publishing, 2000.

Meinke & Tucker [1993].

K. Meinke & J. Tucker, Many Sorted Logic and its Applications, J. Wiley &
Sons, 1993.

Merrick & Allen [1997].

P. Merrick & C. Allen, Web Interface Definition Language, W3C 1997.

Meyer B. [1997],

Bertrand Meyer, Object-oriented Software Construction, Prentice-Hall
Technical Reference, 1967. Bertrand Meyer, Object-oriented Software
Construction, Second Edition, Upper Saddle River, NJ: Prentice-Hall PTR,
1997.

138

Mosses P. D. [2004]

Peter D. Mosses, Editor CASL Reference Manual, LNCS 2960 (IFIP Series),
Springer, 2004. XVII + 528 pages.

Naur P. [I960].

Peter Naur , J. W. Backus , F. L. Bauer , J. Green , C. Katz , J. M cCarthy, A. J.
Perlis , H. Rutishauser , K. Samelson , B. Vauquois , J. H. Wegstein , A. van
Wijngaarden , M. Woodger, Report on the Algorithmic Language ALGOL 60,
Communications of the ACM, v.3 n.5, p.299-314, May 1960 .

Neumann [1995].

P. Neumann, Computer Related Risks, Addison-Wesley, 1995.

Niemeyer et al. [1996].

Patrick Niemeyer & Josh Peck, Exploring Java, O ’Reilly, 1996.

O.M.G. [2003].

The Object Management Group. Website: http://www.omg.org/

Python Programming Language [2005].

Python Programming Language, Object-oriented Programming.

Website: http://en.wikipedia.org/wiki/Pvthon programming language#Obiect-
oriented programming

Rees, Stephenson and Tucker. [2003].

D. LI. Rees, K. Stephenson & J. V. Tucker, The Algebraic Structure o f
Interfaces, Science of Computer Programming, Elsevier, 2003.

Sebasta Robert W. [1989].

Robert W. Sebesta, Programming the World Wide Web 2003, Addison Wesley

1989.

139

Segal B. [1995].

Ben Segal, A Short History o f Internet Protocol at CERN, CERN IT-PDF-TE
1995.

Website: http://ben.home.cem.ch/ben/TCPHIST.html

Smalltalk [1970 -2005].

Smalltalk Programming Language, Object-oriented Programming.

Website: http://en.wikipedia.org/wiki/Smalltalk

Stephenson K. [2002].

Karen Stephenson, An Algebraic Approach to Syntax, Semantics and
Compilation, University of Wales, Swansea, 2002.

Stephenson and Tucker [2006].

Karen Stephenson & J. V. Tucker, Data, Syntax & Semantics, University of
Wales, Swansea, 2006.

Sun. [2000].

Sun Microsystems Inc., A Grammar fo r the Java Programming Language, 2000.
Sun Microsystems Inc. Remote Method Invocation(RMI), 2003.

Website: http://iava.sun.com/products/idk/rmi/

Van der Linden. [1996].

Peter van der Linden, Just Java, Sunsoft Press, 1996.

Walden andNerson. [1994].

Kim Walden and Jean-Marc Nerson, Seamless Object-oriented Programming,
Prentice-Hall, Reference and Method Book on BON, 1994.

