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Summary

To determine the prevalence of the sickle cell gene (HbS) in Yemen 
and amongst people from different regions o f the country living in the 
capital, Sana’a City, cord blood samples from 1500 consented mothers 
were collected from hospitals in Sana’a City between July and 
December 2001. The names and original homes o f the parents were 
recorded. Cationic HPLC analysis was used for screening while 
isoelectric focusing (IEF) and DNA- PCR were used to confirm 
haemoglobin S (HbS). Thirty-three samples were found to show Hb 
FAS giving an overall likely Hb S gene frequency of 0.011. The Hb S 
gene frequency varied with the part o f the country from which the 
parents came. Amongst people from Taiz and Haja in the west the 
gene frequency was more than 0.04 but less than 0.004 amongst 
people from Ibb, adjacent to the govemorate o f Taiz. O f 66 
chromosomes from babies carrying HbS, only 1.5% additionally 
carried the presence o f -158 (C~>T) G-gamma globin gene Xmn I site 
compared with 16.1% of 168 chromosomes from babies without Hb S 
from the same regions o f the sickle cell trait samples identified in this 
study indicated that the beta S haplotype in not that associated with a 
milder course found in east Saudi Arabia. In addition to the absence 
o f both Hind III/Gy and Hind III/Ay beta globin polymorphic sites in 26 
sickle cell trait samples suggesting the predominant o f the African 
sickle cell haplotype (Benin) in Yemen. The results o f this study thus 
show a higher Hb S gene frequency in the western coastal part of 
Yemen than in the central mountainous and eastern desert areas. The 
incidence of affected homozygous births may therefore reach 
20/10,000 in the western coastal part of Yemen.
A survey to evaluate health care of sickle cell patients was performed 
using 86 patients attending hospitals in Sanaa City, Yemen. The 
results showed that the clinical services provided to the sickle cell 
patients in Yemen were generally very poor.
Limited health resources can best be invested in developing a program 
o f education, screening and health care initially prioritising those 
communities residing in the western areas of Yemen with the highest 
Hb S gene frequency.
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1. HISTORICAL BACKGROUND

The first recorded characterisation of sickle cell disorder in Africa was reported 

by Africanus Horton, who in 1874 described fevers of crises, shifting joint 

pains, and abnormality of the blood (1). Before this time the sickle cell 

disorder must have been known for generations in West Africa.

In North America, reports also described features highly suggestive o f sickle 

cell disorder. Lebby in 1846 (2) and Hodenpyl in 1898 (3) both described 

autopsies in which no spleen would be found. These were autopsies on a 

runaway slave executed for murder, and a 32-year-old man who died in 

hospital after complaining of pains all over his body, pleuritic symptoms and 

jaundice.

The story o f the growth of knowledge of the sickle cell anaemia is fascinating. 

The first commonly accepted case described of sickle cell disorder in North 

America was in 1910 when Dr James Herrick of Chicago published an article 

in the Archives of Internal Medicine entitled “Peculiar elongated and sickle­

shaped red blood corpuscles in a case of severe anaemia”. He reported a young 

student from Grenada who was studying in Chicago, and who complained of 

coughing and fever. Herrick examined the red blood cell o f the student and 

saw the characteristic pathognomonic elongated shape, which has become 

recognised with sickle cell disorder (4).

After Herrick’s report, Emmel, in 1917, observed the transformation of the 

biconcave red blood cell to the sickle form in vitro. He also noted that sickling 

occurred both in persons with severe anaemia and in others who were 

apparently healthy, thus recognising both sickle cell anaemia and sickle cell 

trait (5). Hahn and Gillespie in 1927 delineated the conditions affecting sickle
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cell formation in vitro including pH, temperature, fixatives, toxicity and others 

(6). Among the most important of their observations was that exclusion of 

oxygen was a prerequisite to sickling, and that the phenomenon could be 

reversed on re-exposure to oxygen. They postulated that similar effects of 

oxygen could occur in vivo, hypoxia leading to cellular distortion with 

consequent haemolysis. Later, Hahn applied the term sickle cell trait to the 

asymptomatic condition associated with in vitro sickling. He performed sickle 

cell studies on affected families and concluded that the trait was inherited as a 

dominant character (6).

In 1940, the sickling phenomenon was reinvestigated by Sherman, who 

confirmed the observations of Hahn and Gillespie regarding reversibility and 

the importance of oxygen. Sherman also found that the cells in sickle cell 

anaemia were bireffingent. In a casual conversation, the birefringence was 

called to the attention of the physical chemist, Linus Pauling. In 1948, Pauling 

conceived of the possibility that interaction between abnormal haemoglobin 

molecules might explain this phenomenon. With Itano, he demonstrated 

electrophoretically abnormal haemoglobin in sickle cell anaemia, thus 

originating the concept o f molecular disease (7). When Ingram in 1956 

demonstrated a difference in the amino acid sequence in one small part o f the 

polypeptide chains o f sickle cell haemoglobin, the science o f molecular 

biology took root (8).
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2. THE BIOLOGY OF SICKLE CELL DISORDER

2.1. Human haemoglobin

Haemoglobin (Hb) is a hemoprotein composed o f two pairs of globin chains 

each folded around a haem molecule that gives red blood cells their 

characteristic colour. The function is primarily to transport oxygen from the 

lungs to the body tissues and carbon dioxide from the tissues back to the lungs.

y\
\

The types o f haemoglobin differ between the adult, fetal and embryonic 

periods o f life (Table 1).

Table 1 Normal haemoglobins

Haemoglobin Globin Notes
A ct232 Major Hb in adult life (96-98% )
a 2 a 282 Minor Hb (1.5 - 3.5% )
F OC2Y2 Minor Hb in adult life (<1% ) but 

major in fetal period
Gowerl C2S2 Major Hb in embryonic life
Gower2 a 2s2 Major Hb in embryonic life
Portland 1 C2Y2 Major Hb in embryonic life
Portland2 Major Hb in embryonic life

In the foetus, there is a minor component which forms about 20% of Hb F (9) 

and it is called acetylated haemoglobin F or haemoglobin FI.

2.1.1. Structure and function

At the core of the molecule is a heterocyclic ring, called a porphyrin which 

contains an iron atom. This iron atom is the site o f oxygen binding. A haem is 

an iron containing porphyrin. The name haemoglobin is the combination o f 

haem and globin, a globin being a generic term for a globular protein. In 

humans, haemoglobin is a tetramer, made o f two alpha and two beta subunits

3



noncovalently bound (Fig.l). The subunits are structurally similar, each alpha 

chains with 141 amino acids and each beta chains with 146 amino acids. Each 

subunit has a molecular weight of about 16,000 daltons, for a total molecular 

weight in the tetramer of about 64,000 daltons. Each subunit o f haemoglobin 

contains a single haem, so that the overall binding capacity of adult human 

haemoglobin for oxygen is four oxygen molecules.

Figure 1 Haemoglobin structure 

2.1.2. Haemoglobin synthesis

Synthesised polypeptide chains and the four-haem groups combine in 

nucleated red blood cells in the bone marrow. As the bone marrow cells 

mature, the nuclei are extruded and the cells start to circulate in the blood. 

Haem synthesis occurs in many steps involving enzymes in the mitochondrion 

and cytosol of the cell. In the mitochondrion, condensation of succinyl CoA

Heme group Beta chains

Alpha chains
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and glycine forms d-aminolevulinate, which is moved to the cytosol. A series 

o f reactions produce the ring structure protoporphyrin IX that returns to the 

mitochondrion where iron is inserted to produce haem.

2.1.3. Genetic control of haemoglobin synthesis

Each of a  and P globin polypeptides is encoded by multiple genes. Thus, there 

is an a-globin family o f genes located on chromosome 16 and a P-globin 

family of genes located on the chromosome 11. The three genes o f the a - 

globin family are located in a 25-kb region of DNA on chromosome 16, and 

the five genes o f the p-globin family are located in a 65-kb region o f DNA on 

chromosome 11. These two families o f genes are expressed to synthesis 

haemoglobin molecules (Fig. 2).

GENE

CHROMOSOME #16

POLYPEPTIDE SUBUNITS 1 \  /
PRODUCED IN: em bryo £

fe tu s  cc
adult

Figure 2 Genetic control o f haemoglobin synthesis 

Alpha globin locus

Chromosomel6 has 2 identical alpha globin genes. Promoter elements exist 5' 

to each alpha globin gene. In addition, a powerful enhancer region called the 

locus control region (LCR) is required for optimal gene expression. The LCR 

is many kilobases upstream of the alpha globin locus.
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Beta globin locus

Each cell has 2 beta globin genes, one on each o f the 2 chromosomes 11 in the 

cell. These 2 beta globin genes express their globin protein in a quantity that 

precisely matches that o f the four alpha globin genes (Fig.2)

2.1.4. Abnormal haemoglobins variants

Mutations in genes that determine the polypeptide structure will cause changes 

in the amino acid sequences and results in abnormal haemoglobin. Several 

hundred haemoglobin variants have been reported, the majority o f them are due 

to the substitutions of the one amino acid (11). These substitutions lead to 

clinical disease only if they influence the haemoglobin stability or its function. 

The first recognised haemoglopinopathy was the sickle cell anaemia described 

by Herrick when a patient with severe anaemia was seen to have sickle shaped 

red blood cells (4). Sickle cell anaemia is produced by haemoglobin S and is 

the most frequent hereditary haemolytic anaemia in the world. Nearly 75% of 

affected births are in Africa. Serjeant (1997) notes that 250,000 births are 

affected by sickle cell disorders each year in the world (12) and Stienberg 

(1999) estimates that 120,000 are bom with sickle cell disorders each year in 

Africa while 1,000 in United States o f America (13). In Saudi Arabia, it is 

estimated that 2,500 births are annually affected by sickle cell disorders (14).

In the Arabian Peninsula, the highest frequency of sickle cell gene is reported 

in eastern part of the Saudi Arabia where the prevalence of the carrier-state can 

get as high as 25%.

2.2. The molecular pathology of haemoglobin S gene
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Today it is well known that the sickle cell mutation is located in chromosome 

11, where the thymine substitutes adenine in the middle position of the sixth 

codon of the beta globin gene (GAG -> GTG). This thymine substitution leads 

to encoding of valine (hydrophobic, uncharged, and molecular weight 99) 

instead of glutamic acid (hydrophilic, negative charge, and molecular weight 

129) in the sixth position of the beta-chain which lies on the outside of the 

haemoglobin molecule (Fig.3).

Beta globin
Sickle cell 

Mutation <
Sickle cell 

Mutation

Haem

Iron i 
atom Haem

vi l- Iron
j  atom

Alpha globin

Figure 3 Haemoglobin molecule structure with sickle cell mutation

This apparently minor change in the structure is responsible for profound 

c langes in molecular stability and so utili :y 15). T ie  tendency of 

dsoxygenatsd haemoglobin S to undergo polymersation underlies the 

innumerable expression of the sickling syndromes. In deoxygenated state, 

aggregate of sickled haemoglobin molecules arrange themselves in parallel 

rod-like fibres forming a solid complex core which is made of 14 filaments 

arranged as seven pairs of double filaments. Valine substitution in the sixth 

position of the beta chain stabilises these molecular stacks since each valine
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substitution in each molecule takes part in the polymer contact regions 

(16,17,18,19) (Fig.4).

Normal Erythrocyte Sickled Cell

Shape
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4 2 ? >Ĵ
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CTG ACT CCT GAG GAG AAG TC7
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1 1 i 
3 6 9
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3 6 9
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Polym eriz­
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Figure 4 Comparison between normal and sickled erythrocyte

Sickle cell anaemia is due to homozygosity of a single haemoglobin S gene 

mutation at position s x o f oeia- laemoglobin locus, but not all the; s;ckle ce 1 

pati cnis suffer the same severity of the disoraer The clinical expression of the 

haemoglobin S mutation is influenced by many genetic factors which are 

linked to the beta globin gene cluster that effect the haemoglobin F production.

2.3. Pathophysiology of sickle cell

An abundance of information (20,21) indicates that the distortion of cells 

containing haemoglobin S is the result of haemoglobin polymerisation. The



equilibrium of haemoglobin S between its liquid and solid phases is determined 

by four physiologic variables: oxygen tension, haemoglobin S concentration, 

temperature and haemoglobins other than haemoglobin S.

2.3.1. Oxygen

The most important physiologic determinant of haemoglobin S gelation is 

oxygen concentration. Polymerisation occurs only with deoxygenation (Fig.5). 

The effect of the 2,3-diphosphoglycerate (2,3-DPG) and pH in gelation are 

essentially mediated through their influence on the oxygen affinity of 

haemoglobin S for oxygen. Decreased pH or increased 2,3-DPG leads to 

decrease oxygen affinity thereby increasing the amount of deoxy-haemoglobin 

at any given oxygen tension which enhances gelation (22).

Oxyhacmoglobin Deoxyhaemoglobin

Figure 5 Deoxygenation affects on b ood sickle cell morphology 

2.3.2. Haemoglobin S concentration

There is a positive correlation between haemoglobin S concentration and 

gelation (Fig.6). Under standard laboratory conditions, gelation occurs as the 

concentration of deoxy-haemoglobin S is increased to more than 20.8 g/dl. 

Because the mean haemoglobin concentration of the red cell is normally above
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30g/dl, intracellular gelation of haemoglobin S is a predictable consequence of 

deoxygenation (23).

•  * Hb A * *

•  T - *  * •
•  Oxygen •

•  •  H bS  t

# .  ^  I
Oxygen

Figure 6 Haemoglobin S gelation in deoxygenation condition 

(right), normal haemoglobin remains soluble in deoxygenation situation (left)

2.3.3. Temperature

High temperature accelerates the sickling process. At low temperature (1- 4°C) 

the sickling is completely stopped. Insoluble deoxy-haemoglobin S dissolves 

when cooled below a critical temperature. Because the temperatures required 

for solubilisation of haemoglobin S are below the physiologic range, the 

significance of this phenomenon is limited to the laboratory study of gelation.

2.3.4. Other haemoglobins

The influence of other haemoglobins on haemoglobin S polymerisation is 

variable. Their addition ‘dilutes’ the haemoglobin S and thereby reduces 

polymerisation, but the degree of ‘dilution’ depends on the extent to which the 

additional haemoglobin may itself participate in the polymerisation. 

Haemoglobin F reduces haemoglobin S concentration in the red blood cell and 

also inhibits the its polymerisation while haemoglobins D-Punjab and O-Arab 

are involved in the formation of the sickling tubule and interact strongly with 

haemoglobin S causing an increase in its polymerisation. Other haemoglobins 

interfere with polymer formation less well. Deoxyg Hb S molecule 

copolymerises most effectively with other haemoglobin S molecules, and in
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decreasing order with haemoglobin D Punjab, O-Arab, C, C-Harlem, D, A, J 

and F (23).

2.3.5. Endothelial adherence

The membrane o f sickle red cell is abnormal and the sickle cell adherence to 

endothelium is mediated by von Willebrand’s protein (24). For instance, the 

ratio o f membrane phospholipids and cholesterol is abnormal in sickle cell 

disease. Therefore, sickle red cell membrane has pro-coagulant activity. As a 

result, a cascade could occur in which von Willebrand's protein promotes 

sickle red cell/endothelial cell adhesion, which then is a nidus for thrombus 

formation.

11



3. SICKLE CELL DISORDER

3.1. Nomenclature and classification

The term sickle cell disorder refers to a group o f pathological conditions 

resulting from the presence o f haemoglobin S and classified according to their 

genotypes (Table 2).

Table 2 Sickle cell disorder classification

Sickle cell anaemia (homozygous sickle cell)
Sickle cell/ haemoglobin C 
Sickle cell / Beta thalassaemia 
Sickle cell / haemoglobin D-Punjab 
Sickle cell / Haemoglobin O-Arab 
Sickle cell / haemoglobin Lepore 
Sickle cell/ haemoglobin C-Harlem 
Sickle cell/ haemoglobin S-Antilles 

 Haemoglobin S-Oman______________________________

Conditions excluded from the classification of sickle cell disorder: -

Sickle cell trait occurs when only one sickle cell gene is inherited from one 

parent and a normal beta chain gene inherited from the other parent. Clinical 

manifestations occur when sickle cell trait is associated with independent 

pathology such as spherocytosis and sickle cell/ hereditary persistence of fetal 

haemoglobin, causing haemolysis.

3.2. Interaction of Hb S with thalassaemia and other haemoglobinpathies

3.2.1. Sickle cell and haemoglobin C

Haemoglobin C results from a mutation at codon 6 o f beta-globin gene (beta 6; 

GAG-> AAG) leading to the substitution of glutamic acid by lysine on the sixth 

position on the beta globin. The severity of haemoglobin SC disorder is similar

12



to sickle cell anaemia. Haemoglobin SC disorder is one o f the most prevalent 

sickle-cell disorders. It is found in West Africa, west o f the Niger River, and in 

some West Indians and black Americans. It is occasionally seen in North 

Africa, Italians, and Spaniards.

On alkaline cellulose acetate electrophoresis, haemoglobin C migrates at the 

same position o f haemoglobin A2, E and O-Arab, but it can be distinguished 

from both haemoglobin E and O-Arab by acid citrate agar electrophoresis.

In haemoglobin SC, blood film shows abundant target cells, folded cells, dense 

cell and rarely sickled or crystaled shaped cell (26).

On alkaline electrophoresis, haemoglobin SC-Harlem migrates as haemoglobin 

SC while on acid acetate agar electrophoresis separates on the same position of 

haemoglobin S (27). The compound heterozygous of both haemoglobin S and 

C-Harlem causes less severe sickle cell disorder than sickle cell anaemia

3.2.2. Sickle cell and beta-thalassaemia

The beta thalassaemia syndromes are recognised by low or absent production 

o f beta globin because o f the mutations in the beta globin gene. The 

combination of beta thalassaemia with the sickle cell mutation leads to a group 

of compound heterozygous condition known as haemoglobin S/beta 

thalassaemia. The production o f haemoglobin A is the most important 

determining factor for the clinical severity of the disorder. No haemoglobin A 

is produced in haemoglobin S/ beta0 thalassaemia while in haemoglobin S/ 

beta+ thalassaemia, the haemoglobin A vary from 3 to 45%. Heterozygous 

patients for haemoglobin S and beta0 thalassaemia have similar clinical severity 

to sickle cell anaemia. Those individuals heterozygous for haemoglobin S and 

beta+ thalassaemia tend to have milder symptoms. In comparison with sickle
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cell trait, the percentage o f haemoglobin A is more than haemoglobin S, while 

in sickle cell and beta-thalassaemia, haemoglobin S is more than 50% of total 

haemoglobin. In sickle cell and beta-thalassaemia, the haemoglobin F is 

usually between 5 -  15%.

The laboratory differential diagnoses between the sickle cell anaemia and 

haemoglobin S/beta0 thalassaemia in a blood sample from a newborn is 

difficult. Since the level o f haemoglobin A in blood o f the newborn is very 

low, high performance liquid chromatography, isoelectric focusing and alkaline 

cellulose acetate or acidic citrate agar electrophoresis may not be adequately 

sensitive to detect the level of haemoglobin A. When accurate diagnosis is 

required, DNA analysis should be performed (20,28).

3.2.3. Sickle cell and alpha-thalassaemia

Alpha thalassaemia is a globin gene disorder that leads to diminished rate of 

one or more of the alpha globin chains resulting in a reduce rate o f production 

o f haemoglobin. The most common types of alpha thalassaemia seen with 

sickle cell are - a 3'7 and -a  4 2 mutations. The -a  4 2 mutation indicates to the 

deletion o f a 2 gene while the - a 3 7 mutation indicates to the deletion o f part of 

both a  genes with formation of an a 2a i fusion gene.

In sickle cell anaemia, alpha thalassaemia reduces the mean corpuscular 

haemoglobin concentration (MCHC) inhibiting polymerisation of Hb S and 

improve flow in capillaries and small vessel, but the elvated blood viscosity 

effects due to increased total haemoglobin concentration may retard flow in 

large vessels causing an increase in episodes o f bone pain (147).
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El-Hazmi et al. (1999) studied the coexistence o f alpha thalassaemia in sickle 

cell anaemia among Yemeni patients. They examined the pattern for alpha 

thalassaemia in 26 Yemeni children with sickle cell anaemia and 18 normal 

haemoglobin Yemeni individuals (control group) living in Riyadh, Saudi 

Arabia. In the sickle cell patients, the frequency of one alpha gene (-a /aa ) 

deletion was 0.346, where in the control group the frequency was 0.263. The 

frequency of two-gene (-a/_a) deletion was 0.231 in the sickle cell patients, 

compared to zero in the control group. Therefore, the overall frequency of 

alpha thalassaemia in the Yemeni children with sickle cell anaemia living in 

Riyadh is 0.576 (Table 3) (29).

Table 3 Frequency of alpha thalassaemia gene in Yemen in children

with sickle cell anaemia living in Riyadh

Group
a a /a a -a /a a - a / - a

No % No % No %
H bSS 11 42.3 9 34.6 6 23.1
Hb AA 13 68.4 5 26.3 0 0
Total 24 53.3 14 31.1 6 13.3

The haematological parameters of these sickle cell patients with alpha 

thalassaemia showed lower mean cell volume and mean cell haemoglobin and 

higher red blood cell count than sickle cell patients without alpha thalassaemia. 

Haemoglobin F concentration was higher in the sickle cell patients with alpha 

thalassaemia (7.5-10.1%) than in sickle cell patients without alpha 

thalassaemia (5.7%) (29).

The origin of the Yemeni children examined in this study had not been 

reported, but the high prevalence o f alpha thalassaemia among Yemeni sickle
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cell patients living in Riyadh may suggest high prevalence o f alpha 

thalassaemia in the Yemen population.

The clinical picture o f alpha thalassaemia with sickle cell anaemia linked with 

Arab-Indian haplotype in a study in India reported that the painful crises, 

infections and episodes o f hospitalisation significantly reduced (148).

In other a study, alpha thalassaemia trait was appeared to ameliorate the red 

blood haemolysis in sickle cell anaemia without reducing the painful crises 

frequency (140). In second study, alpha thalassaemia trait was reported to 

decrease the incidence o f soft-tissue end-organ failure in sickle cell patients but 

the incidence of osteonecrosis was expanded (141). In another study, deletion 

o f two alpha genes was linked with an increased prevalence o f avascular 

necrosis, splenomegaly and retinopathy in sickle cell patients (142). In fourth 

study, reported that the life expectancy was not changed by the coexisting 

alpha thalassaemia with sickle cell anaemia (113).

In south western part o f Saudi Arabia, alpha thalassaemia frequency is 0.55 and 

haemoglobin S gene is 0.0765, while in eastern region o f Saudi Arabia, the 

frequency of alpha thalassamia is 0.45 and the haemoglobin S gene is 0.1446 

(Table 4) (30). These figures suggest the coincidences o f haemoglobin S gene 

and alpha thalassemia in eastern region of Saudi Arabia is high. They also 

suggest high frequency o f coincidences of haemoglobin S and alpha 

thalassaemia in the south western region of Saudi Arabia which is the 

geographic extension of the west coastal strip o f Yemen.
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Table 4 Frequency of a  and p thalassamia and Hb S in Saudi Arabia

Region a -  thalassaemia P-thalassaemia HbS gene frequency
Northern 0.010 0.010 0.0065
North-western 0.190 0.076 0.0465
South-western 0.550 0.101 0.0765
Central 0.010 0.030 0.005
Eastern 0.450 0.130 0.1446

3.2.4. Sickle cell and haemoglobin DPunjab

Haemoglobin D results from a mutation occurring at the 121 codon of the beta 

globin leading to substitution of GAA-> CAA, that causes the normal glutamic 

acid to be replaced by the glutamine on the beta globin chain at position 121. 

On alkaline cellulose acetate electrophoresis, haemoglobin D separates in the 

haemoglobin S position while on acid citrate agar electrophoresis it separates 

in the same haemoglobin A position (31).

The compound heterozygous haemoglobin S and haemoglobin DPunjab cause a 

disorder that is generally less severe the sickle cell anaemia. This has been 

seen in Sikhs, people o f Affo-Caribbean, Afro-American and South and 

Central American. Compound haemoglobins S and D variants other than D- 

Punjab or D-Los Angeles do not show the same severity as compound 

haemoglobins S and D-Punjab.

3.2.5. Sickle cell and haemoglobin O-Arab

The GAA->AAA mutation at codon 121 found in haemoglobin O-Arab results 

in substitution of lysine for glutamic acid at position 121 of the beta globin 

chain. This compound is a combination of the haemoglobin S and 

haemoglobin O-Arab. On alkaline cellulose acetate electrophoresis, it has the 

same mobility of haemoglobin E, C and A2. On acid citrate agar
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electrophoresis, it separates between haemoglobin A and S bands. For 

confirmation, haemoglobin O-Arab can be diagnosed by using DNA analysis 

or immunologic technique (32).

Usually heterozygosity for haemoglobin S and O-Arab causes severe sickle cell 

disorder. Its highest prevalence is seen in Bulgaria, which suggests that it was 

carried from Bulgaria to the Arab area during the Ottoman Empire. This 

compound sickle cell disorder has been seen in Arab, African, Afro-American, 

and Afro-Caribbean populations. The proportion of the haemoglobin S is 

slightly more than haemoglobin O-Arab (33).

3.2.6. Sickle cell and haemoglobin Oman

This compound is a combination of haemoglobin S mutation and another 

haemoglobin that is identical to haemoglobin O-Arab mutation (GAA->AAA 

at codon 121). It has two mutations in the beta globin; besides the beta S 

mutation in the globin, an additional mutation occurs in the same chain (beta 

121 Glu ->Lys). Because it has an additional positive charge, it migrates 

slower than haemoglobin C (34). The pathology o f heterozygous haemoglobin 

S-Oman is the result o f both sickling properties and the haemolytic anaemia 

enhanced by the mutation at the position 121 in the beta globin chain (35). It 

has been linked either to heterozygous or homozygous alpha thalassaemia.

With haemoglobin S-Oman in the heterozygous alpha thalassaemia -a /a a , 

patients have 20 -  27 % of the variant haemoglobin and show severe anaemia, 

while with coinheritance o f - a / - a  thalassaemia patients have 1 3 - 1 5 %  

haemoglobin S-Oman, and no clinical symptoms (36).
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3.2.7. Sickle cell and haemoglobin E

Haemoglobin E results from a mutation at codon 6 of the beta-globin gene at 

position 26 GAG->GAA leading to the substitution of lysine for glutamic acid 

on the beta globin chain at position 26. Also in this mutation, activation o f a 

cryptic splice donor site in exon 1 occurs leading to incorrectly spliced mRNA 

transcripts, reduced haemoglobin beta gene mRNA accumulation, and a mild 

beta-thalassaemia phenotype (37).

On alkaline cellulose acetate electrophoresis, haemoglobin E separates at the 

same position o f haemoglobin A2. On acid citrate agar, it migrates in the same 

position o f haemoglobin A.

This heterozygous state o f haemoglobin S and E leads to an asymptomatic or 

mild symptomatic condition. This has been reported in Saudi Arabians, 

Pakistani, Turks, Affo-Caribbeans and Afro-Americans (28).

3.2.8. Sickle cell and haemoglobin Lepore

The Lepore haemoglobin results from unequal cross over during meiosis with 

deletion of 3’ part of the delta gene and the 5’ part of the beta gene. The 

resultant haemoglobin Lepore has 2 normal alpha chains and 2 delta beta 

fusion chains (38).

Three types of haemoglobin Lepore have been recognised and differ in the 

delta-beta fusion point. They are haemoglobin Lepore Hollandia 

(delta22/beta50), haemoglobin Lepore Baltimore (detla59/beta86) and 

Haemoglobin Lepore Boston (delta87/betal 16).

This combination of haemoglobin S and haemoglobin Lepore has been 

observed in Mediterraneans, Afro-Americans and Affo-Caribbeans.
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Haemoglobin S/haemoglobin Lepore causes sickle cell disorder similar to 

sickle cell/beta+ thalassaemia (28). It has the same mobility as haemoglobin S 

on alkaline electrophoresis. The only bands apparently present are 

haemoglobin S, F and A2 and diagnosis can be misinterpreted as sickle cell 

anaemia or sickle cell/beta0 thalassaemia. However, High Performance Liquid 

Chromatography (HPLC) shows that haemoglobin Lepore is present. Usually 

the amount o f haemoglobin Lepore is about 10 -  12 % o f total haemoglobin 

while the amount of the haemoglobin S is about 63- 90% in sickle cell 

anaemia.

3.2.9. Hb S and hereditary persistence of fetal haemoglobin (HPFH)

Hereditary persistence o f fetal haemoglobin describes inherited states in which 

heterozgyotes show an increased proportion of haemoglobin F, persisting after 

infancy into adult life with little or no imbalance of chain synthesis and normal 

haematological values.

Haemoglobin F concentration is increased relatively in HPFH according to the 

type of HPFH mutation as either deletional or nondeletional. Individuals with 

combination of nondeletional HPFH and sickle cell trait usually show no 

symptoms and may show very minimal increases in haemoglobin F level. 

Carriers with compound heterozygosity for haemoglobin S and gene deletion 

HPFH have milder disorder than in sickle cell anaemia with 20-30% 

haemoglobin F. The severity of the combination o f haemoglobin S with HPFH 

depends also on the concentration and cellular distribution of haemoglobin F. 

The pancellular distribution of haemoglobin F is more efficient in inhibiting 

clinical symptoms than the heterocellular distribution (20). Some patients with 

sickle cell anaemia or haemoglobin S/beta0 thalassaemia have haemoglobin F
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levels close to the levels o f gene deletion haemoglobin S/HPFH. This has been 

reported in African, Affo-Caribbean and Afro-American population (28).

3.2.10. Sickle cell and G6PD deficiency

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly found 

among sickle cell anaemia patients (39,40). This is not universal as in the 

Congo. Bouanga et al. (1998) investigated the prevalence o f G6PD deficiency, 

using PCR analysis, in 188 sickle anaemia Congolese patients (109 females 

and 79 males) and 210 normal controls (115 females and 95 males). They 

found the prevalence of G6PD genotype among the sickle cell anaemia patients 

did not differ from that in the non-sickle cell patients (41).

The technical difficulty o f G6PD deficiency diagnosis in sickle cell anaemia is, 

in part, due to the high reticulocyte population characterised by higher G6PD 

enzyme levels even in deficient patients. Small sample size studies or the use 

o f different methods with various ranges of accuracy, such as semiquantitative 

methaematology reduction test, G6PD electrophoresis or cytochemical 

techniques, has confused the interpretation of the effect of G6PD deficiency in 

sickle cell anaemia. Different studies have suggested that G6PD deficiency 

effects on sickle cell anaemia can be beneficial, deleterious, or neutral.

Piomelli et al. (1972) studied the G6PD deficiency effects in 15 male sickle 

cell anaemia unrelated patients and 26 normal males (control group) at the 

Sickle-Cell Anaemia Clinic, Sydenham Hospital, New York. They found that 

the preponderance of G6PD deficiency with sickle cell anaemia supported the 

hypothesis that the simultaneous inheritance of G6PD deficiency and sickle
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cell anaemia may be beneficial (42). This simultaneous inheritance o f G6PD 

deficiency and sickle cell anaemia may ameliorate each other. This is because 

in sickle cell anaemia, the number o f reticulocytes increases leading to high 

level o f G6PD enzyme that masks G6PD deficiency. On the other hand, G6PD 

deficiency also increases the young red blood cell population leading to 

reduction in the number o f the old red blood cells and irreversible red blood 

cells that may modify the clinical severity o f sickle cell anaemia (42).

Because o f the small number of sickle cell anaemia patients involved in this 

study, the beneficial effect due to the simultaneous inheritance of G6PD 

deficiency and sickle cell anaemia may be limited and may not be generalised.

The clinical reports of Konotey-Ahulu (1972) in Ghana, that included more 

than 1500 sickle cell anaemia patients, concluded that G6PD deficiency could 

have a deleterious influence upon sickle cell anaemia because it might have an 

additional haemolysis effect in sickle cell anaemia cases (43).

This deleterious effect of G6PD deficiency could be due to the high 

coincidence of G6PD deficiency with sickle cell anaemia in hospital based 

reports.

Steinberg et al. (1988) studied 801 sickle cell anaemia male patients from The 

Cooperative Study o f Sickle Cell Disease in the USA, where 10.4 % o f them 

had G6PD deficiency. Based on the laboratory results, they failed to find 

haematological differences between sickle cell anaemia patients with or 

without G6PD deficiency. According to the clinical observations in this study, 

the G6PD deficiency was not associated with differential survival, increased
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haemolysis, reduced haemoglobin concentrations, more pain crisis or higher 

incidence of acute anaemia crisis (44).

This study could show valid results because the high number of sickle cell 

anaemia patients involved and the reliable method o f G6PD enzyme 

determination (G6PD electrophoresis) used. In addition, the patients were 

enrolled in The Cooperative Study of Sickle Cell Disease which studied the 

natural history of the severe sickle cell disorders.

3.2.11. Sickle cell and pyruvate kinase deficiency

Pyruvate kinase deficiency is characterised by high concentrations of 

erythrocyte 2,3-diphosphoglycerate. Usually patients with compound 

heterozygosity for haemoglobin S and pyruvate kinase deficiency manifests a 

severe form of sickle cell anaemia (45).

3.3. Sickle cell trait

Sickle cell trait indicates compound heterozygosity for Hb S and A. It is the 

most benign form of the sickle cell disorder. The concentration of 

haemoglobin A is always more than the haemoglobin S. Therefore, 

haemoglobin A dilutes haemoglobin S leading to a reduction in the clinical 

significance o f haemoglobin S polymerisation at the oxygen saturation and 

physiologic situations in most tissues. At oxygen saturation lower than 60%, 

the blood is totally deoxygenated and polymerisation o f haemoglobin S occurs, 

but the haemoglobin S polymerisation is about 40% of the total haemoglobin 

and the health of the carrier usually is not affected.

Sickle cell trait reduces morbidity and mortality due to malaria infection.

Sickle cell trait is of genetic importance and its diagnosis is usually needed for
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genetic counselling o f couples that are carrying the haemoglobin S gene, or 

individuals who are at risk o f inheriting the haemoglobin S gene, or for a 

population studies to determine the prevalence o f haemoglobin S gene.

3.4. Genetics of sickle cell disorder

3.4.1. Inheritance of sickle cell gene

Sickle cell anaemia is an autosomal recessive genetic disorder caused by a 

defect in the haemoglobin S gene, which codes for haemoglobin. The 

inheritance o f sickle cell disorder occurs according to the principle of 

Mendelian inheritance. If both parents have sickle cell trait (haemoglobin AS), 

they can each form germ cells containing genes either for haemoglobin A or S 

(Fig.7). Therefore, the presence of two defective genes (SS) is needed for 

sickle cell anaemia. If each parent carries one sickle haemoglobin gene (S) and 

one normal gene (A), each child has a 25% chance o f inheriting two defective 

genes and having sickle cell anaemia, a 25% chance of inheriting two normal 

genes and not having the disease, and a 50% chance o f being sickle cell trait 

like the parents.

The same probabilities apply for the inheritance o f other abnormal forms of 

haemoglobin, the gene for which can be inherited in combination with those 

for normal haemoglobin, sickle haemoglobin and beta-thalassaemia.
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Figure 7 Probabilities of inheritance of sickle cell gene

3.4.2. Population genetics

The study of genes frequency in the population is determined by the Hardy-

Weinberg principle that suggests genotype frequencies stay constant from

2 2generation to generation. The Hardy-Weinberg equation is p + 2pq + q = 1, 

where p is the haemoglobin A frequency, q is the haemoglobinopathy gene 

frequency, p2 is the frequency of homozygotes without haemoglobinopathies, 

2pq is the frequency of heterozygotes and q is the frequency of homozygous 

with haemoglobinpathies.

The use of the Hardy-Weinberg equation to calculate the gene and genotype 

frequencies is limited by selection, mutation, non-random mating 

(consanguineous marriage), drift and gene flow due to population movements 

(25).

The frequency of the haemoglobin S gene is calculated by gene counting and 

includes also the haemoglobin S gene in the AS genotype and other 

haemoglobin S gene containing genotypes (25).
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3.4.3. Incidence of sickle cell genotypes

With the knowledge of the haemoglobin S gene frequency, the Hardy-Weibery 

formula can be used to predict the incidence of the sickle cell genotype at birth. 

The predicted incidence o f homozygous SS sickle cell disorder in a population 

at birth can be approximated from the prevalence of the sickle cell trait. 

Therefore, in a population where 10% have sickle cell trait, the chance o f any 

parent having sickle cell trait will be 1 in 10. Assuming random mating, 

therefore, 1 in 100 mates will be among parents with the sickle cell trait. Since 

1 in 4 o f their children will have sickle cell anaemia (HbSS). Therefore, the 

incidence can be expected approximately as 1 in 400 or 2.5 sickle cell anaemia 

peri 000 births (25).
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4. DISTRIBUTION OF POPULATION GENETICS OF SICKLE CELL

4.1. Origins of the sickle cell gene

The high prevalences o f erythrocyte genetic mutations in human populations 

has resulted form the selective pressure of malaria, which causes 2 to 4 million 

deaths per year especially among children (46). The precise age o f the 

haemoglobin S gene is not known, but it probably emerged when malaria was 

endemic and agriculture was established as a major resource for human living. 

The appearance of the sickle cell mutation at high frequency needed a selection 

factor such as malaria which arose about 3000 years ago (47). Agriculture 

favoured large sedentary populations and the requirement for irrigation made 

suitable conditions for the Anopheles mosquito reproduction by making Still­

water ponds. The Malaysian agricultural system that reached Africa via 

Madagascar from South East Asia, 2000 years ago, brought new crops that 

increased the population o f West and East Africa, but at the same time it 

accelerated the spread o f malaria.

It is postulated that some of the sickle cell mutations in Africa occurred 

between 2000-3000 years ago and the sickle cell mutation which is linked to 

Arab-Indian haplotype might have occurred more than 3000 years ago.

4.1.1. Unicentricity and multicentricity theories

There are two theories supporting the origin of sickle cell mutation which are 

described below. However, the different sickle cell haplotypes now show that 

the sickle cell mutation has occurred as a result o f many independent events.
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4.1.2. Unicentricity mutation theory

This theory postulates that the sickle cell mutation occurred in the Neolithic 

times when climatic changes caused the desertion o f the fertile Arabian 

Peninsula leading to migration o f haemoglobin S gene carries to India and 

Equatorial Africa. This theory was supported by the geographical distribution 

o f the sickle cell gene in Africa which showed a decline in sickle cell gene 

frequency from East to West Africa (48,49).

This theory does not explain the DNA polymorphic sites have coinherit with 

sickle cell gene.

4.1.3. Multicentricity mutation theory

This theory is supported by the coinheritance of polymorphic DNA sites with 

haemoglobin S gene. If the sickle cell mutation occurred only once as 

proposed by the unicentricity theory, all haemoglobin S gene carriers would be 

associated with the same beta globin polymorphic sites. The multicentricity 

theory suggests that the haemoglobin S gene could be linked to a different 

haplotype every time a new mutation occurred.

It is now known that there are five sickle cell haplotypes - Benin, Senegal, 

Bunta, Carmeroon and Arab-Indian (Fig. 8). Each region has a characteristic 

haplotype which indicates that sickle cell mutation has occurred as a result of 

several independent events (50,51).
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Figure 8 Sickle cell haplotypes and their spreading over time

The arrows indicating spread of Benin sickle cell haplotypes spreading to North 
Africa, Mediterranean and Arab peninsula. It shows also the Arab-Indian haplotype 
spreading between East of Saudi Arabia and India (139).

4.1.4. Sickle cell haplotypes

Polymorphic DNA sites within the beta gene cluster between the e gene and p 

gene (Fig.9) have very high probability of coinheritance with mutations of 

haemoglobin S gene. These polymorphic sites as a set are called haplotypes. 

Results o f studies of DNA polymorphisms linked to the beta S-gene suggest 

that it arose from at least five independent mutations: four in Africa and 

another in Asia (53,51).

3'
£

CD— □ —CD— CD—CD
t t t  t t t it 1 1

H in d i Xm nl Hindlll Hindlll H ind i H indi H inFIH indi Hpal Bam HI

Figure 9 DNA polymorphic sites on the beta globin cluster
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The chromosomal backgrounds or haplotypes o f these mutations (Fig. 10) are 

known as the Senegal haplotype, Bantu haplotype, Benin haplotype, Cameroon 

haplotype and Arab-Indian (Asian) haplotype.

J  Q A 3*
2 7 y $3 g $

l— □ --□ — o - o — --------------------------1

t t t  t M M  t i
Hindi Xm nl Hindlll Hindlll H indi Hindi HinFl Avail Hpal Bam HI

Benin - - - + - + - +
Bantu - + - - - + + +
Senegal + + - +  + + + + +
Cameroon - - + + + + - + +
Arab-Indian + + + + + - + + .

Figure 10 DNA polymorphisms on the p globin in sickle cell haplotype

1) The Senegal haplotype

It is common in the Atlantic West Africa region including Senegal, Gambia, 

Guinea, Sierra Leone and parts of Ivory Coast. It is characterised by 

polymorphisms in the 5’flanking region of the G gamma globin gene at the 

positions -1280, -1225, -1067, -807, and specific polymorphisms at positions -  

535 and -534 (52). It shows absence of Hind II/c and Hind III/Ay and presence 

o f Xmn I, Hind III/°y, Hinc II/3’cpp and Hinf\J5'$ polymorphic sites.

2) The Bantu haplotype

It is common in the Bantu-speaking region o f equatorial and southern Africa, 

and is also seen in Kenya, Zimbabwe, Namibia, Zambia and Malawi. It shows 

a gene conversion 5’ to the A gamma-globin gene of a beta chromosome 

starting between bases -307 and -271 and extending to between 25 and 1107.

30



It is characterised by absence of Hind II/s, Xmn I, Hind III/Ay, Hinc 11/3’cpp

and Hinfl /5’P and presence of Hind III/0'/ polymorphic sites (53).

3) The Benin haplotype

It is common in the central west of Africa including Mali, Niger, Burkina-Faso, 

Ghana, Togo, Benin, and Nigeria. It is also found in Central, West and North 

Africa, Spain, Portugal, Sicily and southern mainland Italy, Greece 

(Macedonian), Turkey and north-western Saudi Arabia. It is also common in 

the Arabian Peninsula, except the eastern part o f Saudi Arabia, and this reflects 

the past history of the Arab slave trade. It shows that the 5’ flanking region of 

the G gamma-gene has two specific polymorphisms at positions -369 and -  

309 linked to the beta S gene, also another one at -657 (54). The Benin 

haplotypes is recognised by absence of Hind II/s, Xmn I, Hind Ill/^y, Hind 

III/Ay and H inf 1/5’ft and lack of Hinc 11/3’tpp polymorphic sites (53).

4) The Cameroon haplotype

It is found among Eton people in southern Cameroon. It is linked to the A and 

T gamma globin. It shows absence of Hind II/s and Xmn I, and presence of 

Hind III/0y, Hind III/Ay, //m /I /5 ’p and Hinc 11/3’cpp polymorphic sites (53).

5) The Arab-Indian (Asian) haplotype

It is associated with other foci in the eastern Saudi Arabia and some parts of 

southern and central India. This haplotype is characterised by the presence of 

the -158 (C->T) polymorphism 5’ to the G gamma-globin gene and this 

explains the higher G gamma levels seen among carries. It is recognised by
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presence of Hind II/s, Xmn I, Hind III/Gy, Hinc 11/3’cpp and Hinf\J5'$ but

absence of and Hind III/Ay polymorphic sites (53).

6) Atypical sickle cell haplotypes

j Atypical sickle cell haplotypes often come from recombination between sickle
[

j cell haplotypes common in the sickle cell anaemia and haplotypes unusually

j linked to the f3s-globin gene.
I
I
i  It is seen in less than 10% of Bantu speaking African and Senegalese.

4.1.5. Flow of the African HbS gene to North Africa and Arabian Peninsula

About 4000 year ago, the people of Africa comprised three main racial groups 

living in sub-Saharan Africa: Negroes in West Africa, Pygmies in equatorial 

Africa and Bushmen in southern Africa. Semitic and Hamitic groups lived in 

North Africa. About 2000 years ago, the negroids o f West Africa became the 

main power group. The expansion required for agricultural land and 

development o f weapons led to invasion and migration o f populations living in 

the margins o f the Benur River in eastern Nigeria. By using the rivers they 

expanded in all directions (55). Slavery was common in Africa and the 

slavery structure facilitated the flow o f genes in West Africa since the slaves 

were mainly prisoners o f war and the descendants were free and accepted in 

new societies.

The haemoglobin S gene linked to the Benin haplotype is found in North 

Africa (Morocco, Algeria, Tunis, Egypt) (56). It arrived from central West 

Africa through the ancient north-south trans-Saharan routes. The Benin 

haplotype is also found in the western part of Saudi Arabia. The flow o f this
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gene from central West Africa to the western part o f the Arabian Peninsula was 

probably through North Africa during the Arab slave trade. Except for the 

eastern region o f Saudi Arabia, the haemoglobin S gene, which is associated 

with the Benin haplotype, is found in the rest o f the Arabian Peninsula.

| 4.1.6. Flow of the Hb S gene linked to the Arab-Indian haplotype
i;

! In India, the haemoglobin S gene is almost restricted to tribal groups living in

the central and southern India. All these tribal population have the same sickle 

cell haplotype. The ancestral home o f these tribes might have been the margins 

o f the Indus River, which is close to other population that have the same sickle 

cell haplotype such as the population in o f the eastern part of Saudi Arabia 

(56).

4.2. Balanced polymorphism of the haemoglobin S gene

Homozygous sickle cell anaemia patients often die during childhood reducing 

the prevalence o f haemoglobin S gene, while in sickle cell trait the 

haemoglobin S gene is preserved and propagated. This results in balanced 

haemoglobin S gene frequency.

4.3. Haemoglobin S and malaria

People vary in their susceptibility to malaria infection depending on genetic 

factors and acquired immunity. Genetic resistance to Plasmodium falciparum 

occurs by impairment of merozoite invasion or intracellular growth or 

erythrocytic lysis preventing merozoite maturation. There are four species of 

Plasmodia causing malaria in humans. These are Plasmodium falciparum, 

Plasmodium ovalae, Plasmodium vivax and Plasmodium malariae. The deadly

33



species is Plasmodium falciparum, which often kills people in childhood due to 

cerebral malaria. Sickle cell trait has some protection against malaria in early 

childhood.

The Bantus who lives north o f the Zambezi River, an endemic malaria area, 

have a significant incidence o f sickle cell disorder, while the Bantus in the free 

malaria area in South Africa have no significant incidence of sickle cell 

disorder. Sickle cell trait carriers have a partial resistance against malaria.

This is believed to be due to:

1. High sickling rates o f infected cells that are then removed by the spleen 

reducing their life span (57).

2. In the deep vascular schizogony, infected sickle cells become static by 

adhering to venule endothelium and become highly deoxygenated which 

decreases the malaria parasite growth (58).

3. Increased haemoglobin F concentration for a longer time in childhood, 

since the growth of Plasmodium falciparum is minimised in red cells 

containing haemoglobin F in a relatively deficient medium of reduced 

glutathiond (58).
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4.4. Geographical distribution of sickle cell disorder

4.4.1. World-wide distribution of sickle cell

Estimates made for the World Health Organisation in 1995 showed that 6% of 

the world’s population carry a haemoglobin disorder, and 7% of children bom 

today are carriers. The world wide figure for sickle cell and thalassaemia 

showed that about 2.5 million patients would have a thalassaemia syndrome, 

and about 10.5 million patients would have a sickle cell disorder (Table 5) 

(25).

Table 5 Proportion of the world population carrying Hb S

Region Population (million) % Hb S
Africa 664 10
Americas 734.2 1.4
Asia 3,143 0.6
Europe 633 0.12
Oceania 27 0
World 5,202 1.86

The frequency of Hb S differs largely with geographic places and racial 

groups. Its prevalence is influenced by the occurrence o f the sickle cell 

mutation and its selection by falciparum malaria. Haemoglobin S reaches its 

highest incidence in equatorial Africa particularly, in a broad zone extending 

from coast to coast reaching a carrier state prevalence in some places as high as 

40 - 50% (59,60).

Haemoglobin S is also found in non-African populations such as in parts of 

Sicily and Southern Italy, Northern Greece, Middle East, especially in 

Southern Turkey, eastern part of Saudi Arabia and much in Central and South 

India (59,61).
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Haemoglobin S is frequent amongst any black population with roots in Africa 

such as the Caribbean, North and South America and many inner city areas of 

Northern Europe.

The literature resources show different figures o f the prevalences o f Hb S gene 

in the developing countries and this maybe due to either small sample studies,

j hospital based research (certain groups), or estimated figures.

ii
iI;
' Table 6 shows the prevalence o f Hb S in different countries of the world

(12,59,62, 25) including Yemen (1-2%) (Figl 1) (63). The prevalence o f the 

Hb S in Yemen is an estimated value, which may not precisely reflect the 

accurate prevalence o f Hb S in the country and does not show the distribution 

o f Hb S across the country. This is lower than the prevalences of Hb S in 

Syria, Jordan, Arabs in Palestine, Iraq, Saudi Arabia, Kuwait, Bahrain, Oman 

and United Arab Emirates but it is higher than prevalences of Hb S in Lebanon, 

Iran and Jews in Israel. The prevalence o f Hb S in Yemen is much lower than 

that in West Africa but slightly higher than the prevalences in the Horn of 

Africa countries (Ethiopia, Djibouti and Somalia).
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Table 6 Prevalence of Hb S in countries o f the world

(12,59,62, 25)
% Prevalence 
o f Hb S (%)

Country Prevalence 
o f Hb S (%)

Senegal 3 - 1 5 Ethiopia 0 - 1
Gambia 6 - 2 8 Djibouti 0
Guinea Bissau < 1 - 2 5 Somalia 0
Guinea 1 3 - 3 3 Jamaica 3 . 5 - 1 2
Sierra Leone 2 2 - 3 0 Bahamas 14
Liberia < 1 - 2 9 Cuba 0 - 2 3
Ivory Coast 2 - 2 6 Haiti 7 - 1 7
Mali 5 - 1 7 Dominican 6 - 1 2
Burkina Faso 2 - 3 4 Puerto Rica < 1 - 8
Ghana 3 - 2 5 Lesser Antilles 1 - 1 4
Togo 6 - 2 8 Guadeloupe 4.4
Benin 5 - 3 1 Mexico < 1 - 9
Niger 5 - 2 3 Guatemala < 1 - 1 7
Nigeria 1 0 - 4 1 Belize 0 - 2 5
Gabon 8 - 3 2 El Salvador < 1 - 2
Cameroon < 1 - 3 1 Honduras < 1 - 1 6
Central African 
Republic

2 - 2 4 Nicaragua 0

Congo 7 - 3 2 Costa Rica < 1 - 8
Democratic 
Republic of 
Congo

1 - 4 6 Panama 0 - 2 1

Kenya < 1 - 3 4 Colombia 0 - 1 5
Uganda 1 - 3 9 Venezuela 0 - 9
Tanzania 1 - 3 8 Guyana <1
Rwanda
Tutsi
Hutu

< 1 - 5
5 - 1 5

Surinam 0 - 2 2

Burundi 1.5- 26 French Guyana 0 - 1 8
Angola 8 - 4 0 Ecuador 0
Zambia < 1 - 3 0 Peru <1
Zimbabwe < 1 - 1 1 Bolivia 0
Malawi 3 - 1 8 Brazil 0 - 1 6
Mozambique < 1 - 4 0 Paraguay 0
Madagascar < 1 - 2 3 Argentina <1
Botswana <1 Uruguay 0
Namibia 0 - 1 5 Chile <1
South Africa
Bantu
Indian
Cape Coloured

< 1 - 4
2 - 1 0
<1

Greece 0 - 3 2

Morocco < 1 - 7 Turkey < 1 - 3 4
Algeria < 1 - 1 5 Cyprus <1
Tunisia < 1 - 2 Italy
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Sicily
Sardinia
Mainland southern

<1 -  13 
0
0 .5 -1

Libya < 1 - 7 0 Portugal < 1 - 5
Egypt <1 India 0 -  35 (in some 

tribes)
Sudan <1 -  17 Pakistan < 1
Countries of A rabian Peninsula
Syria < 5 - 2 5 Emirates 2
Lebanon <1 Saudi Arabia < 1 - 3 6

(Eastern region)
Jordan 4 - 6 Kuwait 2
Arabs in Palestine 1 - 3 8 Bahrain 2.5
Jews in Israel 0 Oman 5
Iraq 0 - 2 5 Yemen 1 - 2

Yemen

Aus tral ia^ '

Figure 11 Geographic distribution of Hb S

4.4.2. Haemoglobin S in Yemen, Arabian Peninsula and B orn of Africa

4.4.2.1.a. Haemoglobin S in Yemen

Published studies addressing the prevalence of the sickle cell gene in Yemen 

are very few and have been done on Yemeni immigrant populations living in 

other countries such as the United Arab Emirate. So far no indigenous Yemen 

population study discussing the prevalence of sickle cell gene has been 

published. Therefore, the information resources regarding the prevalence of
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sickle cell gene in Yemen are very limited and the prevalence o f the Hb S in 

Yemen is an estimated value which may not be accurate. As seen in Table 7 

(62), it is higher than the prevalences in Horn Africa countries (Ethiopia, 

Djibouti and Somalia), but lower than in many West Africa countries (Table 6).

[ White (1983) reported the percentage of Kb S in Yemen is 1.3 which indicates
!
| the Hb S gene frequency was 0.0065. In his study, the blood samples were
!

; obtained from 651 Yemeni patients attending hospitals in United Arab

Emirates. Solubility test was used to detect Hb S. In this study, the author did 

not indicate the origin of the population studied, but the prevalence o f sickle 

cell gene in the eastern part of Saudi Arabia is higher than the western part. 

Table 7 shows the percentage o f Hb S in Saudi Arabia, Yemen, Oman, and 

Abu Dhabi nationals found in White study (62).

Table 7 The percentage of Hb S in some Arabian Peninsula countries

Country Number of the 
Samples

Number of the 
positive

%

Saudi 230 13 5.8
Yemen 651 9 1.3
Oman 724 37 5.1
Abu Dhabi nationals 1291 29 2.3

In a study using 5060 blood samples obtained from individuals routinely 

attending the Comiche Hospital, Abu Dhabi, United Arab Emirates, White et 

al. (1986) found that alpha thalassaemia was the most common disorder 

followed by beta thalassaemia and Hb AS in Oman, Yemen and United Arab 

Emirates. The sickle cell trait frequencies were in Oman: 0.038; the United
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Arab Emirates: 0.019; Yemen: 0.0095 (Table 8.a). Therefore the Hb S gene 

frequency in Yemen is 0.0048 (Table 8.b) (64).

Table 8.a Frequency of a , P thalassaemia, G6PD and sickle cell trait in

Oman, UAE anc Yemen
Oman UAE Yemen

Alpha thalassaemia 0.389 0.165 0.065
G6PD 0.328 0.087 0.062
Beta thalassaemia 0.024 0.017 0.024
Sickle cell trait 0.038 0.019 0.0095

Table 8.b Frequencies o f sickle cell gene in Yemen, UAE and Oman

Countries Total Number Positive Samples Hb S gene frequency
Yemen 1260 12 0.0048
UAE 2750 52 0.0095
Oman 1050 40 0.019

Both studies by White (1983 and 1986) show two slightly different rates of 

prevalence of the sickle cell gene in Yemen. White’s (1983) study showed that 

among 651 individuals from Yemen, 9 had sickle cell trait and this indicated 

the frequency of sickle cell gene in Yemen was 0.0065 while the White et al. 

(1986) study among 1260 Yemeni individuals, showed 12 had sickle cell trait 

and this indicated the frequency of sickle cell gene was 0.0048.

In 1994, the World Health Organisation published an estimate of haemoglobin 

disorder (Table 9). The prevalence of heterozygotes haemoglobin disorder 

including Hb S in the Democratic Republic of Yemen (former South Yemen) 

was 7% and 2.45 homozygous births/1000. Regarding to former North Yemen, 

Arab Republic of Yemen, the prevalence o f heterozygous haemoglobin 

disorder including Hb S was 6%, and 1.8 homozygous births/1000. The
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percentage o f annual births o f homozygotes with Hb SS was 55%, and Hb S 

/thalassaemia was 17% in both former South and North Yemen (25).

Table 9 WHO estimates of Hb S in Yemen

Country Population
(Million)

Birth
rate
/1000

Homozygous
Birth/1000

Heterozygotes
%

% Annual Births 
of homozygotes

SS S/Th

South
Yemen

2.76 47.3 2.45 7.0 55 17

North
Yemen

9.55 53.6 1.8 6.0 55 17

In a WHO report of the estimates of frequency o f haemoglobin disorders in 

countries o f the Eastern Mediterranean Region (World Health Organisation, 

1997), the prevalence o f Hb S in Yemen is 4%, annual number bom with 

homozygous Hb SS is 864, prevalence of beta thalassaemia is 2%, and the 

annual number bom with compound of Hb S and beta thalassaemia is 267 (14). 

This report shows the prevalence of Hb S as being higher than that reported by 

Seijeant (1992), Livingstone (1985), and White (1983, 1986) but lower the 

estimated prevalence by WHO (1994) (25) (Table 10).
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Table 10 Summary of studies o f Hb S prevalence in Yemen

Studies Method of 
analysis

Samples
No

% Hb AS

White (1983). The 
approximate gene frequency 
o f sickle haemoglobins in the 
Arab peninsula (62).

Solubility Test 651 1.3

White (1986). Red cell 
genetics abnormalities in 
Peninsular Arabs: sickle 
haemoglobin, G6PD 
deficiency, and alpha and beta 
thalassaemia (64).

Sickling Cell 
Test,
Haemoglobin-
electrophoresis

1260 0.95

WHO (1994). Guideline for 
the control of haemoglobin 
disorders (25)

Estimate 7 North 
6 South

The Regional Office of the 
Eastern Mediterranean 
Countries o f the World Health 
Organisation (1997) (14).

Estimate 4

4.4.2.1.b. Sickle cell haplotyte in Yemen

El-Hazmi and Warsy (1999) studied.the Xmn I polymorphism among 30 

Yemeni patients with severe sickle cell anaemia resident in Riyadh, Saudi 

Arabia. The Xmn I polymorphic site (C->T) at -158 in the G gamma globin 

gene promoter is one of several restriction endonuclease polymorphic sites 

occurring in the beta globin gene cluster on chromosome 11, which is believed 

to contribute to high level o f Hb F in carries. They examined a total o f 60 

chromosomes carrying the sickle cell gene and 14 chromosomes carrying 

normal Hb AA (control group). Xmn I polymorphism among the control group 

was positive in 42.9% and negative in 57.1%. The 60 chromosomes from the 

sickle cell patients showed only one homozygous case for the presence of the 

Xmn I polymorphism while the rest o f the chromosomes showed absence o f the
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Xmn I polymorphism. Thus Xmn I polymorphism is present in 3.3% and 

absent in 96.7% of Yemeni sickle cell patients in the study. The authors noted 

that this finding resembled the very low prevalence o f Xmn I polymorphism in 

the severe sickle cell patients from Saudi Arabia’s south-western region, which 

is the geographical extension o f western region of Yemen (65). In the same 

study, the Xmn I polymorphic site was high (frequency of 0.932) in mild sickle 

cell patients from the eastern region o f the Saudi Arabia. The Hb F levels 

among these severe sickle cell anaemia Yemeni patients varied between 2 to 

20%, but was unrelated to the Xmn I polymorphic site or the severity o f sickle 

cell anaemia. There was however a relationship between the severity o f sickle 

cell anaemia and the existence of Xmn I polymorphic site (65).

This study investigated the prevalence o f the Xmn I polymorphic site amongst 

severe sickle cell anaemia Yemeni patients living in Riyadh, Saudi Arabia, and 

showed the low prevalence of the Xmn I polymorphic site in the severe type of 

sickle cell anaemia in Yemeni patients, but it did not report the regional origin 

o f the Yemeni patients.

4.4.2.2. Sickle cell haemoglobin in Arabian Peninsula

The countries of the Arabian Peninsula (Fig. 12) historically share the language, 

religion, culture and history. Tribes o f this region moved freely and mixed 

together in the past, but this has become limited since the Second World War.
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Figure 12 Map of Arabian Peninsula 

4.4.2.2.I. Saudi Arabia

Saudi Arabia is located to north of Yemen with a population of 24 million 

which includes 5.6 million non-nationals in 2003 (138).

The frequency of the sickle cell gene in Saudi Arabia has been investigated 

using 30,055 blood samples from the different provinces (66). The frequency 

of the of the sickle cell gene was 0.1446 in the eastern province, 0.0050 in 

central province, 0.0465 in north-western province, 0.0765 in south-western 

piovinee, ard 0.0065 in northern province. The frequenc) o 'Hb S gene was 

0.0474 in the country as a whole.

This study showed that the prevalence of Hb S gene frequency was highest in 

eastern part of Saudi Arabia and the lowest was in the central part of the 

country. It also showed the prevalence of sickle cell gene in the south west, 

which is the nearest populated neighbour region and the geographic extension 

of the west coastal strip of Yemen, which was the second highest (0.0765).
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El-Hazmi (1990) studied the beta globin gene haplotypes among the sickle cell 

anaemia patients from the eastern and western parts of Saudi Arabia. A total of 

93 sickle cell anaemia patients were investigated using restriction 

endonucleases Hinc II and Hind III. The number of the sickle cell anaemia 

patients from the eastern and western parts o f Saudi Arabia was 22 and 71 

respectively. The results o f this study showed that all the sickle cell anaemia 

patients from eastern Saudi Arabia had Arab-Indian haplotype while the Benin 

haplotype was common (more than 88%) among the sickle cell patients from 

western parts o f the country (67) (which is historically part o f the western 

region o f Yemen).

A collaborative group of Arab researchers from Saudi Arabia, Egypt, Syria 

Arab Republic and Jordan studied 126 sickle cell patients from their countries, 

and from different provinces o f Saudi Arabia (14 Egyptians, 9 Syrians, 10 

Jordanians and 22, 67 and 4 Saudis from eastern, western and northern parts of 

Saudi Arabia respectively). The aim o f the study was to examine the effect of 

genetics on the clinical features of the sickle cell disorder, also to identify the 

origin o f the sickle cell gene. This study showed the Benin haplotype was 

found in 98.5% of sickle cell patients from south western part of Saudi Arabia, 

9% from eastern part o f Saudi Arabia, 100% from north western of Saudi 

Arabia, 100% in patients from Egypt, 66.7% in patients from Syria, and 80% in 

patients from Jordan. The results o f the study suggest that the clinical features 

o f the sickle cell disorder are influenced by the haplotypes of the beta globin 

gene and there were at least two common foci o f the origin o f the sickle cell 

gene, one in the eastern province of Saudi Arabia and another common in 

North Africa and north-western part o f the Arabia Peninsula (68,69). This
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confirmed previous findings that the sickle cell haplotype in eastern part o f 

Saudi Arabia is different from the sickle cell haplotype in the western part o f 

the Arabian Peninsula, where Yemen is located, and may be affected by the 

Benin haplotype since the south western part o f Saudi Arabia was until 1934 

part o f the western o f Yemen.

4.4.2.2.2. Oman

Oman lies to the east o f Yemen and has a population o f 2.8 million in 2003 

(138). A national register of haemoglobinpathies has been built to develop the 

national program for the control o f genetic blood disorders. The data was first 

gathered from hospital records, and then filtered prospectively with 

information collected by a survey of paediatricians. This national register was 

planned to determine the distribution o f the haemoglobinpathies in different 

ethnic groups and different parts of the country; incidence of births with 

haemoglobinpathies; age pattern o f patients and carriers of 

haemoglobinpathies; and determining factors influencing the prevalence of 

haemoglobinpathies in Oman. In 1995 the register reported 1757 cases of 

sickle cell anaemia and 243 cases o f beta-thalassaemia major in a population of 

about 1.5 million. It revealed that the prevalence o f sickle cell trait in Oman 

was about 10% while the prevalence o f the beta thalassaemia carriers was 

about 4%. The study also showed that sickle cell anaemia is prevalent in 40% 

of Omani tribes. Haemoglobin S was mainly found in the north part o f Oman 

where the prevalence was 6-14% while in the middle, and west regions of the 

country only one case was reported (70).

Both the Dhofar and Wusta regions showed absences o f beta thalassaemia and 

only one case o f sickle cell disorder was reported. According to this study the
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incidence of live births for homozygous sickle cell anaemia was 2.7 in 1000, 

and 0.4 in 1000 for beta thalassaemia. Genetic studies for determination o f the 

sickle cell haplotype in 23 tribes in Oman showed 46 Benin, 8 Bantu, 6 Bantu 

A4 and 3 Arab-Indian. The results o f the DNA analysis suggested the sickle 

cell haplotype in Oman mainly belongs to the African haplotypes (35). 

Historically, the people o f Dhofar (West o f Oman) and people of Al-Mahrah 

(East of Yemen) are descendants from the same tribes and shared the same 

local language (Al-Amhari) and this may suggest the reason for the same 

prevalences o f both Hb S and beta thalassaemia in both areas.

Baysal (2001) also studied the sickle cell haplotype among 50 Omani sickle 

cell anaemia patients in his laboratory in the Emirates. The results showed 

34% of the cases were Benin haplotype, 24% were Bantu haplotype and 22% 

were Arab-Indian haplotype (71). These finding support the finding o f the 

national register o f haemoglobinpathies in Oman (70).

4.4.2.2.3. United Arab Emirates

United Arab Emirates is part o f the Arabian Peninsula, bordering the Gulf of 

Oman and the Arabian Gulf, between Oman and Saudi Arabia with a 

population of 2.5 million which includes 1.6 million non-nationals in 2003 

(138),

Baysal (2001) reported that prevalence of sickle cell chromosome in United 

Arab Emirates was as high as 11.4%. The common sickle cell haplotype was 

the Arab-Indian haplotype with a prevalence of 68% among sickle cell anaemia 

patients (71).
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The high percentage of prevalence o f Arab-Indian sickle cell haplotype in 

Emirates suggests that it has been influenced by the very high prevalence o f 

Arab-Indian sickle cell haplotype in the eastern region o f Saudi Arabia.

4.4.2.2A. Bahrain

Bahrain is an island in the Arabian Gulf, east o f Saudi Arabia with a population 

o f 667,238 which includes 235,108 non-nationals in 2003 (138).

A total o f 5503 neonatal samples of Bahraini individuals were investigated for 

haemoglobinpathies disorders between 1982-1987 (72). Abnormal 

haemoglobin was identified in 44.35%. Sickle cell trait was identified in 

18.1%, sickle cell anaemia in 2.1% and alpha thalassaemia in 24.2%.

Molecular studies to identify the sickle cell haplotype in Bahrain had been 

carried out among 19 families, which showed the Arab-Indian haplotype was 

common to all the families.

The predominance of the Arab-Indian sickle cell haplotype in Bahrain may be 

due to the influence o f the Arab-Indian haplotype that is present in eastern part 

o f Saudi Arabia.

4.4.2.2.5. Kuwait

Kuwait is bordering the Arabian Gulf, between Iraq and Saudi Arabia with a 

population of 2.2 million which included 1.3 million non-nationals in 2003 

(138).

Adekile et al. (1996) studied the sickle cell haplotype in Kuwait. O f 125 sickle 

cell homozygote patients, the Arab-Indian haplotype was found in 80.8%, the 

Benin haplotype in 11.2%, the Bantu haplotype in 5.7%, and the atypical 

haplotype in 2.4% (73).
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The high prevalence of the Arab-Indian haplotype suggests the influence of 

Arab-Indian haplotype that exists in the eastern part o f the Saudi Arabia.

4.4.2.2.6. Lebanon

Lebanon is bordering the Mediterranean Sea, between Palestine and Syria with 

a population o f 3.7 million in 2003 (138).

Inati et al. (2003) studied the sickle cell haplotype in Lebanon. Fifty sickle cell 

anaemia Lebanese patients were studied using the restriction sites (HincII, Xmn 

I, Hind III, Hinc II, H inf I, Ras I, Avail). The results identified the Benin 

haplotype in 60%, a mixture of both the Benin and Cameroon haplotype in 

22%, a mixture of both the Benin and Senegal haplotype in 4%, the Cameroon 

haplotype in 4% and the Arab-Indian haplotype in 10% (74).

Thus the Benin haplotype is a common haplotype in Lebanon while the Arab- 

Indian haplotype is uncommon. The location of Lebanon suggests that the 

Benin sickle cell haplotype arrived in the western region o f the Arabian 

Peninsula through North Africa.

4.4.2.2.7. Iraq

Iraq borders the Arabian Gulf, between Iran and Kuwait and to the north east 

of Saudi Arabia with a population of 24.7 million in 2003 (138).

The prevalence of the Hb S gene in the Abu-Al-Khasib, district of southern 

Iraq, was investigated using the sickling test and cellulose acetate 

electrophoresis for haemoglobin identification. Two groups were involved in 

this study. The investigated groups were 706 children (age 10-12 years) 

randomly selected from a primary school in Abu-Al-Khasib, and a group of 

525 school children from Basrah. The results of this study showed that the
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overall prevalence o f sickle cell disorder was 16% in Abu-Al-Khasib and 2.5% 

in the Basrah (75). The high prevalence of Hb S among the children o f Abu- 

Al-Khasib may have been influenced by the high prevalence o f Hb S in the 

eastern part of Saudi Arabia, which also has similar effect on Bahrain and 

Kuwait. The sickle cell haplotype was not investigated in this study.

4.4.2.2.8. Jordan

Jordan lies to the northwest o f Saudi Arabia, between Syria to the north and 

Palestine to the west, with a population o f 5.5 million in 2003 (138). The 

population in Jordan is divided geographically into three distinct sections, all 

sharing the same Arabic heritage. These are the urban area o f the capital, the 

Bedouin southern and eastern desert provinces and the agriculturally oriented 

northern sector.

The prevalence of Hb S and beta thalassaemia has been investigated to 

determine the incidence o f the Hb S and beta thalassaemia in three areas of 

north Jordan (Al-Gor, Ajloun, Irbid). In this study, 2290 individuals and 568 

cord blood samples were analysed. Haemoglobin electrophoresis was used for 

analysis. The overall prevalence of Hb S was 4.45% while beta thalassaemia 

was found in 5.93%. Among the cord blood samples the prevalence of sickle 

cell trait was 3.17%. Haemoglobin S and beta thalassaemia showed a higher 

prevalence in Al-Gor area than Ajloun and Irbid (76).

This study did not investigate the sickle cell haplotype in Jordan but provided 

sickle cell prevalence in a region linked to the old Arab slave trade road which 

suggested its responsibility for the movement o f the sickle cell gene to the 

western part of the Arabian Peninsula.
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The prevalence of Hb S in Jordanian newborns has been studied (68). A total 

o f 181 cord blood samples from neonates bom at Princess Basma Teaching 

Hospital, Irbid, Jordan were analysed using haemoglobin electrophoresis. The 

frequency o f sickle cell trait was 4% among females and 6% among males 

(68). The result of this study supported the findings o f Sunaa et al. (1996) (77).

4.4.2.2.9. Israel

A survey o f the various haemoglobinpathies in Israel in 1983 concluded that 

the patients with thalassaemia often originated from Kurdistan, Yemen and 

Iraq, while the sickle cell gene came mainly from Arabic Muslims (mostly 

from northern Israel) or Bedouins who originally immigrated from southern 

Sudan, northern Iraq or Libya (78). This study did not report the number of 

investigated samples and prevalence o f the sickle cell gene among the Yemeni 

immigrants to Israel.

All these studies from the Arabian Peninsula countries strongly suggest that the 

sickle cell gene is present in all the countries but in varying proportions. There 

is a very high prevalence in the eastern region o f Saudi Arabia with a 

predominance of the Arab-Indian haplotype. The African sickle cell haplotype 

is predominant in the western region o f the Arabian Peninsula.

4.4.2.3. Haemoglobin S in the Horn of Africa (Ethiopia, Somalia)

Countries o f Horn o f Africa are separated from the west of Yemen by the Red 

Sea. These countries are Ethiopia, Eritrea, Djibouti and Somalia. Very limited 

resources can be cited regarding the sickle cell haemoglobin in these countries. 

The WHO, Country Estimates o f Prevalence o f Haemoglobin Disorders (1994)
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indicates the percentage o f population heterozygous for Hb S in Ethiopia and 

Somalia as zero (25). The absence o f the sickle cell gene suggests that the Hb 

S gene has not been transported to Yemen from these countries.



5. CLINICAL COURSE OF SICKLE CELL DISORDER

5.1. Clinical features of sickle cell disorder

Haemoglobin SS usually produces a severe anaemia with a wide spectrum of 

manifestations. It is characterised by acute, recurrent, and chronic

! complications affecting many organs and tissues. It is distinguished from other
i
; haemolytic anaemia by the vasculitic features.

Clinical features may be divided into those that are acute and episodic (crises) 

and those that are chronic and unremitting (20) (Table 11).

Table 11 Sickle crisis and organ damage

Vaso-occlusive crises Haematological crises Chronic organ damage
Hand and foot 
syndrome

Bone and joint crises 

Abdominal crises 

Central nervous crises 

Acute chest syndrome

Aplastic crises 

Sequestration crises 

Megaloblastic crises 

Haemolytic crises 

Infections crises

Growth and development 
disorders

Bone and joint disease 

Cardiovascular disorders 

Pulmonary disorders 

Hepatobiliary disorders 

Genitourinary disorders 

Ocular disorders 

Leg ulcers

Some features of the natural history of sickle cell anaemia

1. Haemolytic anaemia is apparent in infants by 12 weeks of age.

2. Splenomegaly is first noted after six months o f age.

3. The first vaso-occlusive crisis is seen between 6 - 1 2  months in about half 

the subjects and before 6 years by the vast majority (79).
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4. Dactylitis and acute splenic sequestration account for more than 80% of 

initial symptoms in the first year o f life (80).

5. Stroke is a catastrophic complication that affects 6 -  17% of children and 

young adults (81).

6. Infection is the major presenting manifestation o f sickle cell anaemia in 

early childhood, and the most common complication requiring hospitalisation. 

It is the most frequent cause o f death at all ages (20).

7. Although normal at birth the heights and weights o f children are 

significantly delayed by 3 -  6 years o f age.

Recently Berchel and his colleagues had proposed four periods for the natural 

history of sickle cell anaemia (82):

1. The neonatal period which is asymptomatic.

2. The first five years o f life, recognised by a high risk o f mortality, a high 

level of morbidity due to severe infectious crises o f acute anaemia, and painful 

crises typical to that age-group.

3. Older children and adolescents, whose life is dotted with painful crises. It is 

in this period that degenerative tissue pathology begins.

4. In adulthood, the acute crises are less frequent but multiple complications 

develop which affect the prognosis.
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5.2. Laboratory features of sickle cell anaemia

5.2.1. Blood count

At birth, blood count is normal. As Hb F decreases, the total haemoglobin 

concentration decreases and the reticulocyte number increases. Usually the 

haemoglobin level in adults is between 5 to 11 g/dl. With high Hb F 

percentage, the mean corpuscular volume (MCV) appears to be increased and 

the mean corpuscular haemoglobin concentration (MCHC) m aybe mildly 

increased. The red cell distribution width (RDW) is usually high and correlates 

with the severity of the disease. The number of nucleated cells is increased due 

to the high number of circulating erythroblasts. The number o f white blood 

cells is usually high especially during crises. Increased platelet count and large 

platelets are frequently seen. Both of these platelets abnormalities are due to 

hyposplenism (83,84).

5.2.2. Blood film

At birth, the blood film is normal. At 6 months o f age, a few sickle cells and 

target cells are generally seen. After the first year, sickle cell, nucleated cells 

and Howell-Jolly bodies are commonly seen due to hyposplenism. In adults, 

the blood smear shows a variable number and shape of sickle cells. Patients 

with high Hb F show much less blood film abnormalities (83) (Fig. 13).
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Figure 13 Sickle cell picture

5.2.3. Haemoglobin F percentage

Haemoglobin F in sickle cell anaemia is generally between 5 and 10%. In 

some cases may rise to 40 %. The level is higher in infancy, and women tend 

to have higher levels of Hb F than men (84).

5.3. Risk factors for early death of sickle cell patients

The high number of white blood cells has been recognised to be a risk factor 

for stroke, adverse outcomes and early death (85). A history of acute chest 

syndrome, renal failure, seizures dactylitis and haemoglobin concentration less 

than 7g/d are also prognostic factors of adverse outcomes and early death.

5.4. Sickle cell anaemia and pregnancy

In pregnancy, sickle cell anaemia increases the incidence of pyelonephritis, 

pulmonary infarction, pneumonia, acute chest syndrome, antepartum 

haemorrhage, prematurity and fetal death. The cause of neonatal death is 

unclear, but it may result from vaso-occlusion of the placenta. A high maternal
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mortality rate in sickle cell anaemia (33%) has been reported in some parts of 

the world (86).

Among 297 Jamaican pregnant women with sickle cell anaemia, the rate of 

spontaneous abortion was 11.8%, stillbirth was 12.8% and prenatal mortality 

was 17.1% (87). It was reported that in 61 pregnant women with sickle cell 

anaemia in Al-Hassa in the eastern part o f Saudi Arabia, only one abortion 

occurred suggesting a mild clinical expression o f sickle cell disorder in east of 

Saudi Arabia (88). The maternal mortality rates reported in West Africa and 

black America was 11.5% (89), which was much higher than in Al-Hassa.

5.5. Heterogeneity of sickle cell anaemia

The expression of sickle cell disorder severity depends on the inheritance of 

other beta globin genes with Hb S gene (haplotypes), HPFH and alpha 

thalassaemia, but it is also influenced by many environmental factors such as 

climate, infections, nutrition, medical care and age.

5.5.1. Genetic factors

5.5.1.1. Sickle cell haplotypes

The increase of Hb F levels not only reduces the Hb S concentrations in the red 

blood cell but also inhibits its polymerisation due to its high affinity to oxygen. 

There is a relationship between the sickle cell haplotype of the chromosome 

containing the beta globin gene and Hb F level. The Arab-Indian haplotype is 

often combined with Hb F levels of 10-25%. The Senegal haplotype is 

combined with high Hb F at around 7-10% in adults. Bantu and Benin
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haplotypes have lower levels o f Hb F, around 6-7%. The Cameroon halpotype 

shows the lowest level o f Hb F (90).

The relation between the haplotype and Hb F level seems to result from a link 

between haplotype and determinants o f non-deletional hereditary persistence of 

fetal haemoglobin.

The percentage o f Hb F depends on factors related and unrelated to the beta 

globin gene cluster, age, and sex (mildly higher in females). DNA sequences 

influencing the Hb F level include (91,143,144,145): the Xmnl polymorphism 

at -158 (C->T) G-gamma globin gene (being linked with a higher Hb F); 

difference of the number o f repeats o f particular motif in a sequence 

determined hypersensitive site (HS2) within the locus control region (LCR) of 

the beta gene [(AT)xNi2GT(AT)y]; a trans-acting locus at 6q23: a trans-acting 

locus at Xp22.2-22.3.

The method by which the polymorphism in the LCR at -530 bp to the G- 

gamma gene control gamma chain synthesis seems to be that, in comparison 

with (AT)7 T7, the (AT)q T5 sequence appears elevated binding of Bp-1 

(negative trans-acting factor (146).

The Arab-Indian and Senegal haplotypes are associated with the common -158 

(C->T) G-gamma globin gene Xmn I polymorphism whereas other haplotypes 

are not associated with this polymorphism. The Xmn I polymorphic site (-158) 

5’ to G gamma is one of several restriction endonuclease polymorphic sites 

occurring in the beta globin gene cluster on chromosome 11, which is believed 

to contribute to high level o f Hb F in carriers (91). Another polymorphism at 

A-gamma globin IVSII, which is associated with high fetal haemoglobin is

r

seen when the P gene is linked with the Senegal and Arab-Indian haplotypes
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(92). The IVSII sequences seem to be important in the gamma globin 

expression in stably transfected human erythroleukaemia cell (K562). This 

region was investigated in the five sickle cell haplotypes. The Ay IVSII gene 

has many differences among haplotypes and the Benin haplotype. Between 

bases 514 and 1159, there is a mixture o f polymorphisms, but the four bases 

after position 743 are unique. The existence of the sequence 10(TG) 4(CG) 

7(TG) in the repetitive sequences beginning at position 1062, which is specific 

for Bantu haplotype, but different for the sequence 13(TG) shared by the 

Senegal and Arab-Indian haplotypes. Also four specific polymophic sites at 

1272, 1203, 1207 and 1208 (TGGG->GCAA) also recognize the Benin 

haplotype.

The Arab-Indian haplotype is also linked to a polymorphism at -530 bp 

resulting in high affinity for BP-1 (a negative trans-acting factor) and lowering

r

of p production. In the Arab-Indian haplotype sickle cell anaemia, the fetal 

haemoglobin level is higher than that in sickle cell anaemia with the Senegal 

haplotype and this may be due to the effect o f -158 C->T G-gamma globin 

gene, A-gamma globin IVSII and -530 bp polymorphisms.

5.5.I.2. Persistence of fetal haemoglobin

Individuals with a combination of non-deletion hereditary persistence o f high 

fetal haemoglobin (HPFH) and sickle cell trait usually show no symptoms and 

may show very minimal increases in Hb F level. Carriers with compound 

heterozygosity for Hb S and gene deletion HPFH have a milder disorder than 

in sickle cell anaemia with 20-30% Hb F.
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The level o f Hb F that modifies the complications o f sickle cell disorder may 

depend on the population group. Among North American blacks, Hb F levels 

of 10% or more modify the severity o f the sickle cell disorder while a higher 

level o f Fib F (22-26.8%) could contribute to the mild sickle cell disorder in 

eastern part o f Saudi Arabia and India.

Inati et al (2003) in Lebanon reported that 4 patients with a haemoglobin F 

concentration greater than 15% had severe sickle anaemia (74). Seltzer et al. 

(1992) found that in 5 black families with high levels o f Hb F (19-45%), 8 

people had sickle cell anaemia and 2 of them had moderately severe anaemia. 

These 2 individuals had Hb F levels of 25% and 31%. Two other patients had 

Hb F levels o f 19%. One o f these patients had mild disease while the other had 

severe symptoms (93).

The haemoglobin F levels required to modify sickle cell disorders is a key 

question as to why different studies supply varying answers. The average level 

o f Hb F in the blood is important as well as the distribution o f Hb F between 

the cells. Uneven Hb F distribution indicates that some cells will have none of 

the protective Hb F. These cells would be prone to sickling, and could occlude 

the microcirculation.

5.5.I.3. Alpha thalassaemia

Alpha thalassaemia affects the cellular changes, haematological parameters and 

subsequently the clinical picture o f sickle cell anaemia as summarised in Table 

12 (109).
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Table 12 Cellular, clinical and haematological effects o f alpha

thalassaemia in sick e cell anaemia
Cellular effects Clinical effects Haematological values
Reduced Hb S polymer

Lowered cation exchange

Decreased red cell density

Increased red cell 
deformability

Increased osteonecrosis

Increased splenic 
sequestration

Painful episode

Fewer leg ulcers

Fewer cerebrovascular 
accidents

High Hb A2 

Microcytosis 

Low reticulocyte 

Increase of total Hb

5.5.2. Environmental factors

5.5.2.I. Infections

a. Malaria

Although, sickle cell trait does offer a relative resistance to malaria the 

infection is a major cause of morbidity and mortality in patients with sickle cell 

anaemia. Malaria is a usual precipitating factor for painful crises (94) and also 

in causing an additional severe haemolytic anaemia in sickle cell anaemia 

patients (95).

b. Encapsulated organisms

The early lack o f splenic function renders sickle cell patients more vulnerable 

to be infected with encapsulated organisms such as Streptococcus pneumoniae, 

Salmonella spp. and Haemophilus influenzae type b. These are common 

childhood infections which are likely to cause a higher morbidity when 

combined with sickle cell anaemia. However, immunisation programs should

61



minimise the infection and improve the outcome o f the disorder. The 

morbidity and mortality from pneumococcal septicaemia may be lowered by 

prophylactic penicillin during the early childhood. Pneumococcal vaccine can 

be used at a later age (96,97). Osteomyelitis and salmonella septicaemia can 

cause death in sickle cell anaemia patients, the incidence of which reflect the 

frequency of Salmonella carriage in the general population and can be 

minimised by good hygiene (95,98).

c. Viral infections

Human parvovirus infection can cause aplastic crises (99), however proper 

observation and intervention may lower mortality.

Protocols for the control o f many of these infections are available and the 

effective implementation of these depends on the efficacy of the health care 

system.

5.5.2.2. Nutrition

The failure to meet the high nutritional demand of the bone marrow and the 

high cardiovascular work may increase the morbidity and mortality rate among 

sickle cell patients.

5.5.2.3. Climate

Exposure of sickle cell patients to extreme weather plays a role may cause 

painful crises especially in cold wet weather. Hot dry climates may cause 

dehydration as a risk factor for painful crises. The painful crises are largely a 

determinant of morbidity in young adults patients.
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5.5.2.4. Medical Care

Sickle cell clinics provide special medical services for sickle cell patients and 

have lowered the morbidity rate o f the sickle cell disorder. An important role 

o f these clinics is the advice and education provided to the patients and 

families on the disorder and how to manage complications (100).

5.5.2.5. Age and secular changes

Prognosis and survival in sickle cell disorders are related to the patient’s age. 

The highest mortality rate occurs in the second six months o f life, and then it 

declines for each individual succeeding year.

5.6. Ameliorating factors of sickle cell disorder in Arabian Peninsula

It has been reported that the severity o f sickle cell anaemia in the Arab 

population of the Arabian Peninsula, especially in the eastern part o f Saudi 

Arabia, is milder than that in the other population groups. It has been reported 

when Hb F is greater than or equal to 20% of the total haemoglobin, the sickle 

cell disorder is commonly associated with a milder clinical course (101).

This particular association has been seen uncommonely in eastern region of 

Saudi Arabia and is linked to a haplotype containing the -158 Xmn I 

polymorphic site in the G-gamma globin gene promoter, which is often 

associated with raised Hb F levels.

In the eastern region of Saudi Arabia, the frequency of alpha thalassaemia is 

0.45 (30). The coincidence o f alpha thalassaemia trait with sickle cell anaemia 

reduces most of the clinical symptoms of sickle cell anaemia and is associated 

with longer survival (102), since alpha thalassaemia affects the haematological
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parameters (microcytosis) and cellular changes where it decreases Hb S 

polymerisation, cation exchange, erythrocyte density and increases erythrocyte 

deformability.

El-Hazmi (1992) suggested a minor role for Hb F as a modifier of sickle cell 

disorder severity. In his study, 264 Saudis from different regions with a variety
i
! o f symptoms associated with sickle cell disorder were evaluated to make a

i
I "severity" index. El-Hazmi concluded that among these patients, no correlation

existed between Hb F levels and the severity index (103). This questions the 

correlation between Hb F levels and mild forms o f sickle cell course.

5.7. Epidemiology of the clinical picture of sickle cell anaemia

5.7.1. Arabian Peninsula

The haematological features o f sickle cell anaemia were studied in 264 

children from different parts o f Saudi Arabia. The control group comprised 

normal children from the same parts of the country. Children from eastern 

Saudi Arabia showed the highest levels of haemoglobin, red blood cells and 

haematocrit, whilst children in the western regions showed the lowest levels of 

these haematological parameters. Children from eastern and western regions 

showed no significant difference in red cell indices and HbA2 levels. The 

sickle cell anaemia children showed higher Hb F than the normal control 

group. Fetal haemoglobin also showed differences in the same region (104). 

This study clearly reported the two differing clinical courses o f sickle cell 

anaemia in the eastern (mild form) and western (severe form) parts of Saudi 

Arabia confirming previous studies (105,106).
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A total o f 71 sickle cell anaemia patients (36 patients from the western Saudi 

Arabia and 35 patients from Yemen) were studied to characterise sickle cell 

anaemia in the western Saudi Arabia region. Patients were aged between 1 % 

and 42 years. Mean haemoglobin level was 8.1 g/dl, and 44 of the patients had

i  Hb F less than or equal to 10%. Among them, the incidence o f hepatomegaly
I
| was 69% and splenomegaly was 54.9%. Most of the sickle cell patientsi
1
| suffered from severe anaemia, respiratory and urinary tracts infections, bone

pains and infarcts. The picture of sickle cell anaemia among these patients 

indicates that sickle cell anaemia in the western part o f Saudi Arabia is as 

severe as in African patients (107).

The authors analysed the patient population as a homogenous group and did 

not separate them into Saudi and Yemeni patient groups, nor did they report the 

origin o f the Yemeni patients, but the results suggest that the clinical 

presentation of the sickle cell anaemia in the Yemeni patients may have a 

severe course.

In Bahrain, 100 children and their parents completed a survey to identify the 

characteristics o f sickle cell disease (72). This survey showed that patients 

suffered from fever (69%), pain in the hands (59%), pain in the limbs (58%), 

abdominal pain (56%), pain in the knee (55%), chest pain (36%) and urinary 

problems (18%). Haematological parameters were studied using 50 sickle cell 

patients aged between 15 to 50 years. The haematological picture showed 60% 

of the patients had haemoglobin levels less than 10 g/dl, 57% had packed cell 

volume less than 30, 64% had mean cell haemoglobin less than 25 pg and 62%
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had mean cell volume less than 76 fl. This may suggest microcytosis due to 

coexistence of the alpha thalassaemia gene. Generally, the clinical presentation 

of sickle cell anaemia among Bahrainis was mild and the haematological 

values resemble those seen in sickle cell patients in the eastern province of 

Saudi Arabia.

j Characterisation of sickle cell anaemia among patients from Irbid in Jordan
!

was examined in Princess Badi’a Teaching Hospital, Irbid, Jordan. Forty-one 

sickle cell anaemia patients were included in this study, 28 boys and 13 girls 

aged between 1.5 and 21 years. The main clinical feature among them was 

pallor (62%). A palpable spleen was found in 44% of patients older than 8 

years. The clinical presentation of the sickle cell anaemia showed different 

patterns. The fetal haemoglobin level did not correlate with the severity o f the 

sickle cell anaemia (77).

5.7.2. Africa

The clinical presentation of sickle cell anaemia in Africa is due to a 

combination o f the pathology o f the disorder, accelerated by malnutrition, 

vitamin deficiencies, parasitic infection and extreme dehydration. It has been 

confirmed that in Africa there is a high frequency of acute anaemia episodes, 

painful crises and acute chest syndrome (108).

In a screening study in northern Burkina-Faso, no patients with sickle cell 

anaemia (Hb SS) were identified although the high frequency o f the sickle cell 

trait (110) may indicate the high severity o f sickle cell course in Africa.
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5.7.3. India versus Jamaica

Kar et al. (1986) compared sickle cell patients from India and Jamaica. The 

patients from India has a less symptomatic course when compared with 

Jamaican patients; also their average Hb F levels were more than twice the 

Jamaican patients (111).

I

! 5.8. Survival of sickle cell disorderi

The life span of patients with sickle cell anaemia depends on early diagnosis, 

environmental, educational, social, medical and economical factors. Prognosis 

and survival are also affected by the age o f first presentation. When the 

condition remains unrecognised, life expectancy is very poor.

Most mortality occurs early in childhood, and declines in subsequent years. 

Infant mortality in sickle cell patients is high in developing countries in 

particular and peaks between 1 and 3 years of age (112). In developed 

countries, the average survival improves as prophylactic and medical care 

improves.

In a study performed between 1978 and 1988 in the USA, 2542 patients with 

sickle cell anaemia (age ranging from birth to 66 years at enrolment) were 

recruited to determine the life expectancy and calculate the median survival. 

Median survival was 42 years for males and 48 years for female (Fig 14) and 

50% patients survived beyond the fifth decade (113). In Jamaica, median 

survival was 53 years for male and 58.5 for female in 3301 sickle-cell patients 

attending the Jamaican sickle-cell clinic between 1987 and 1996 (102).

The lower survival age of sickle cell anaemia patients in the USA when 

compared with Jamaica is probably due to the fact that, the effect o f defaulted
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sickle cell patients on mortality rate was not investigated and precision o f 

survival estimates were not presented in the USA study.

In the eastern part o f Saudi Arabia the majority o f the patients with sickle cell 

disorders grow to adult life (112). Padmos, el at (1995) investigated 61 sickle 

cell anaemia patients from the eastern province o f Saudi Arabia with median 

survival o f 24 years. They also investigated 55 sickle cell anaemia patients 

from the Southwest o f Saudi Arabia with median survival o f 15 years (54).

In Northern Jordan, the median survival was 9 years among the studied group 

of 41 sickle cell anaemia patients (77) which suggested that the pattern of 

sickle cell anaemia in this region may have severe presentation.
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Figure 14 Survival of sickle cell patients in USA
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6. SICKLE CELL DISORDER DIAGNOSIS

Sickle cell disorder diagnosis depends on detecting the presence of 

haemoglobin S.

6.1. Sickling test

This test depends on the morphological changes o f Hb S inside the red blood 

cell when deoxygenated. In this test, one drop o f a 2% sodium metabisulphate 

is mixed with one drop o f blood on a microscope slide, then covered and 

sealed.

6.2. Solubility test

Deoxygenated Hb S is insoluble in the presence o f high molarity solution such 

as a concentrated phosphate buffer and forms a turbid suspension that can be 

visualised (114).

Both sickling and solubility tests do not differentiate between homozygous 

sickle cell (SS) and heterozygous haemoglobin S conditions such as sickle cell 

trait or Hb S/p+ thalassaemia.

The solubility test is not useful for neonates who synthesis large amounts of 

fetal haemoglobin, and fails to detect the low concentrations o f Hb S that might 

be present in some varieties of Hb S/p+ thalassaemia or sickle cell trait with 

a  thalassaemia. It is useful for distinguishing Hb S form other haemoglobin 

variants that have the same electrophoresis migration.
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6.3. Haemoglobin electrophoresis

The alkaline cellulose electrophoresis method is the initial method used. It is 

an inexpensive method, can be prepared quickly and easily, and produces sharp 

resolution of haemoglobin bands. Electrophoresis is typically carried out at a 

pH o f 8.6 using cellulose acetate or agar as the support medium. At this pH, 

the overall haemoglobin molecule is negatively charged and, when placed in an 

electric field, will move towards the positive terminal (anode). The test is 

based on the charge change in a haemoglobin molecule due to the replacement 

o f the neutral valine o f the negatively charged glutamic acid that results in one 

net positive charge per chain and two net positive charges per molecule relative 

to Hb A. Therefore, when Hb S is placed in an electric field it moves more 

slowly than Hb A towards the positive terminal (anode). In this method, 

relative percentages o f the major haemoglobin bands can be quantified by 

densitometry or elution and spectroscopy. The cellulose acetate membranes 

can be fixed and cleared and used as a permanent record of the procedure.

In acid agar electrophoresis, most haemoglobin variants move toward the 

cathode from their point o f origin and display different relative mobilities 

compared with alkaline electrophoresis. Citrate agar electrophoresis can 

separate some haemoglobin variants that do not separate on cellulose acetate 

electrophoresis, and can resolve confusion in the detection o f many common 

haemoglobin variants such as Hb G-Philadelphia, Hb D, and Hb Lepore (115)

6.4. Iso-Electric focusing (IEF)

This electrophoretic method utilizes carrier ampholytes, small proteins that are 

able to carry both current and pH. The ampholytes are incorporated into the
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support medium (usually agarose). When a current is applied to the support 

medium, these ampholytes will gradually establish a pH gradient throughout 

the gel. When samples are placed on the gel, they will travel to their isoelectric 

point where migration stops (116). Haemoglobin S tetramers have two more 

positive charges than Hb A tetramers and migrate more slowly towards the 

anode. The high resolution o f the IEF has made it the method of choice for 

screening, particularly for neonatal screening. Gels have to be evaluated 

visually but great skill is needed because many extraneous minor haemoglobin 

bands are usually present. The quantitation of haemoglobin fractions is 

difficult.

6.5. High performance liquid chromatography (HPLC)

High Performance Liquid Chromatography generally utilizes a weak cation 

exchange column. As the ionic strength of the eluting solution is increased, 

haemoglobin variants will come off of the column at a particular retention 

time. Amino acid substitutions that are present in the haemoglobin variant will 

alter the retention time relative to haemoglobin A. HPLC has the advantages 

that many types o f haemoglobin can be isolated, the procedure can often be 

automated by a microcomputer interface, that can give a reliable interpretation 

of the chromatogram, and the various haemoglobin fractions are quantifiable. 

The disadvantages of HPLC are that it cannot always resolve Hb S or Hb C 

from other variants with the same charge, and the equipment is costly to 

purchase and maintain (117).
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6.6. DNA analysis

The use o f molecular biology techniques to study genetic red cell disorders has 

furthered understanding regarding their molecular basis. The information has 

been applied to produce prenatal diagnosis programmes by fetal DNA analysis. 

The discovery of restriction fragment length polymorphisms allowed sickle cell 

anaemia and beta thalassaemia to be diagnosed in amniocyte DNA and blood. 

The introduction of PCR in 1985 allowed precise diagnosis o f sickle cell 

anaemia on small amount of DNA (80), but it has the disadvantage o f 

costliness and limited availability.

6.7. Choice of suitable method

Suitable and sensitive methods for analysing small blood samples such as a dry 

blood spot are high performance liquid chromatography (HPLC) and iso­

electric focusing (IEF) (Table 13) (118). Electrophoresis with cellulose acetate 

can be used but the high dilution o f the elute of a dried blood spot may not 

form clear visible bands. The use o f haemoglobin-electrophoresis is less 

sensitive than HPLC and IEF for detection of low concentrations o f Hb A and 

other haemoglobins especially when their concentration is lower than 4%

(118).

In neonates, the sickling solubility test should be avoided because low Hb S 

concentration may give false negative results.

All abnormal haemoglobins detected by these screening methods should be 

confirmed by other reliable methods such as IEF and molecular genetic studies.
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Table 13 Comparison o f laboratory techniques for haemoglobinopathies 

_______screening (118,119)___________________ ___________ ______
Technique Disadvantages Sensitivity Specificity
Alkaline Cellulose 
Electrophoresis

Manual 93.1 % 95.2 %

Iso-Electric
Focusing

Visual inspection, 
prone to human error

100 % 100%

High Performance 
Liquid
Chromatography

HbA2 level may be 
inaccurate if  Hb S 
present and less 
resolution than IEF

99.9 % 99%

Determination of haemoglobin S and F in a neonate blood sample is usually 

intended to detect sickle cell anaemia but heterozygosity for Hb S and HPFH 

gives the same pattern. Follow-up and proper management programmes for 

affected children are an important part o f neonatal screening programme.

6.7.1. Postnatal diagnosis

The diagnosis of sickle cell disorder in children and adults depends on a 

combination o f electrophoretic methods and sickling or solubility tests. 

Differentiation of homozygous sickle cell and heterozygous Hb S/beta0 

thalassaemia is by quantifying the HbA2 which is increased in the S/beta0 

thalassaemia trait.

6.7.2. Neonatal diagnosis

During the neonatal period, the diagnosis is complicated by the need to identify 

small amounts of haemoglobin A, S and C. Haemoglobin electrophoresis can 

separate haemoglobin S from F but small quantities of Hb A may not be 

separated as easily in the presence of large amounts of Hb F. Isoelectric 

focusing is superior to cellulose acetate electrophoresis in detecting smaller
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amounts o f Hb S. High Performance Liquid Chromatography has been used 

successfully in the screening programmes o f haemoglobinpathies in newborns.

6.7.3. Antenatal diagnosis

For prenatal diagnosis o f sickle cell disorders, amniotic fluid and chorionic villi 

samples are used for detection o f Hb S. DNA amplification by polymerase 

chain reaction, using the synthetic oligonucleotides is specific and can identify 

Hb S in amniotic fluid and chorionic villi. DNA analysis can also be used to 

confirm the presence o f Hb S which is detected by other methods.

7. MANAGEMENT OF SICKLE CELL

As sickle cell anaemia is a chronic disorder, it is recommended that the patient 

maintains a good nutritional intake, undergoes immunisations and avoids 

extremes o f temperature, dehydration and activity. Prophylactic penicillin has 

to be given to children starting from the age of 3-4 months.

Balanced nutrition is essential to replenish the energy required by the rapid 

turnover rate in sickle cell anaemia. The increased need for folic acid may be 

achieved by either increasing dietary intake or by supplementation.

Other therapeutic approaches for treating sickle cell anaemia patient are:

7.1. Increasing oxygen affinity

Compounds such as tucaresol (589C80, 4[2-ffomyl-3-hydroxphenoxymethyl] 

benzoic acid) increases the affinity of haemoglobin S for oxygen by binding 

the N-terminus of the alpha chain and inhibiting oxygen release (120).
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7.2. Reducing haemoglobin S concentration

Compounds such as hydroxyurea increase haemoglobin F concentration by 

increasing the synthesis of gamma chains and hence haemoglobin F formation 

which reduces the haemoglobin S content o f the red cell.

7.3. Decreasing adhesiveness of haemoglobin S red blood cells 

Compounds such as hydroxyurea and sulphasalazine have anti-adhesive effects 

thereby decreasing adhesion o f sickle cells (121).

7.4. Bone marrow transplantation

Bone marrow transplantation (BMT) needs considerable experience and 

resources but it has the potential to change the phenotype of SS patients to AA 

or AS phenotypes. The major problem of BMT is the inability to predict a 

severe clinical course.

8. PREVENTION

8.1. Antenatal screening

This aims to allow informed reproductive choice by identifying couples at risk 

o f having an affected infant at an early stage in pregnancy. Options include 

prenatal diagnosis and termination of affected pregnancies if  warranted.

8.1.1. Antenatal screening for sickle cell gene

Antenatal diagnosis of sickle cell disorders is useful for the detection of 

inherited abnormalities in the foetus when the parents are known to be carriers 

o f the sickle cell genes, other interacted haemoglobinpathies genes, or 

thalassaemia. In severe cases, the foetus may be aborted. Antenatal diagnosis 

is influenced by many factors such as gestational age, social consideration and 

religious beliefs.
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8.2. Neonatal screening

This aims to identify infants with sickle cell disorder who are at risk of 

presenting for the first time with severe overwhelming infections and splenic 

sequestration crises. Early diagnosis allows prophylactic management with 

penicillin and vaccines, and parent education to identify any complications 

thereby initiating earlier treatment, reducing complications and death.

8.2.1. Neonatal screening for sickle cell gene

Neonatal screening programmes differ according to the affected population, 

level o f the service needed, technology involved and availability o f resources. 

The benefits o f the neonatal screening can be improved if  combined with a 

counselling programme, proper education and sufficient primary health care 

resources for the affected patients.

Screening o f neonates may be used selectively or as part o f a universal 

programme. Selective neonatal screening can be used for people who are 

known to be at risk o f a sickle cell disorder or where the prevalence of 

haemoglobin S is relatively low. Screening all the neonates is useful in high- 

risk populations o f the sickle cell disorder.

Cord blood can be used for neonatal screening for the sickle cell gene either as 

a dry blood spot using Guthrie Cards or with anticoagulant. However, there is 

a risk o f contamination with maternal blood. Blood samples taken by heel- 

prick can be used to eliminate such a risk.

In order to determine a health problem in any population, epidemiological 

studies are an essential tool to figure out the magnitude o f the problem. 

Neonatal screening can provide the researchers with the data required to 

produce epidemiological information especially in inherited disorders such as
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haemoglobinopathies and thalassaemia, and inform the configuration o f 

haemoglobinopathy services. Neonatal screening programmes can also 

monitor the quality control o f prenatal diagnosis.

9. RESEARCH SETTING

9.1. Yemen location, population and demographic indicators

Yemen is located in the south west of Asia on the southwest comer o f the 

Arabian Peninsula (Fig. 12). It has an area o f 527,970 sq km. Saudi Arabia 

borders the country to the north while the Arabian Sea and Gulf of Aden are to 

south. The Sultanate o f Oman borders Yemen from the east and the Red Sea 

from the west.

Yemen is one of the world’s most ancient civilisations and played an important 

part in Middle Eastern trade, supplying the ancient world with exotic items 

such as frankincense, myrrh, spices, condiments and other luxury items. The 

south -western coastal strait known as Bab El-Mandab (gate o f tears), which 

links the Indian Ocean with the Red Sea, was an important trade corridor for 

about 3,000 years. Yemen is an Arab country in both language and culture. 

There are many tribal distinctions with regard to location.

Yemen consists of 19 govemorates in addition to the capital Sana’a City (Table 

14), as shown in figure 15.

Table 14 Yemen govemorates

North East West South
Sana’a City
Sana’a
Saadah
Amran
Al-Mahweet
Dhammar
Ibb
Al-Baida

Al-Jawf
Mareb
Shabwah
Hadramout
Al-Mahrah

Haja
Al-Hodeidah
Taiz

Al-Daleh
Lahge
Aden
Abyan
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S h a b w s

Figure 15 Yemen govemorates

Yemen is geographically divided into five different regions: Mountainous, 

Plateau's, Coastal, Empty Quarter (AR-Rub-Alkali) and Islands.

The climate is hot and humid along the west coast. The climate in the western 

mountains is affected by the seasonal monsoon, but is very hot and dry (desert 

weather) in the east.

Yemenis a de\eloping country/. It lias a population of 18.26 million with a 

homogenous population. This population is distributed among the 19 

govemorates and Sana'a City as shown in Table 15 (122).
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Table 15 Distribution of resident population by govemorates (Year 2000)

Govemorate Total o f Population
Sana’a and Sana’a City 2,840,497
Aden 503,794
Taiz 2,295,990
Al-Hodeidah 1,942,251
Laheg 650,044
Ibb 2,018,878
Abyan 420,243
Dhamar 1,199,998
Shabwah 454,786
Haja 1,361,084
Al-Baida 562,851
Hadramout 873,119
Saadah 596,334
Al-Mahweet 451,624
Al-Mahrah 70,318
Mareb 226,488
Al-Jawf 433,235
Amran 955,978
Al-Daleh 403,488
Total 18,261,000

Health care is limited, as shown in Table 16 (122).

Table 16 Health data in Yemen (Year 2000)

Heath data Number
The physician number 3491
Nurses number 5437
Hospital number 106
Beds number 8631
Population number per physician 5231
Population number per bed 1916
The total Fertility Rate 5.8 children/women
Cmde Birth Rate 11.2/1000
Infant Motility Rate 71.5/1000 live births
Birth Rate 45.1/1000
Death Rate 10.3/1000
Growth Rate 3.48
Health expenditure/person/year 6.3 $
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Table 17 a, b, and c, show many demographical figure o f Yemen in year 2000 

( 122).

Table 17.a Proportion o f population in broad age group

Year Age 0 - 1 4 Age 1 5 -6 4 Age > 65
2001 46.3 50.7 3

Table 17.b Rate o f population illiteracy (10 years and above)

Male 27.7 %
Female 67.5 %

Table 17.c Population demographic indicators (Year 2000)

Total Rural Urban
Total Population 18,261,000 13,459,000 4,802,000
Family Average Size 7.4 7.5 7.2
Male life Expectancy 58.8 57.3 59.9
Female life 
Expectancy

62.7 60.3 64.0

9.2. Health services in Yemen

Fever, diarrhoea, vomiting and cough with difficulty in breathing are the 

common features preceding the death o f children under the age of five (123). 

Many children with the sickle cell disorder die due to its combination with 

other common infectious diseases. Affected children in Yemen often die 

before they are diagnosed. The patients involved in this study are from the 

Capital City of Sana’a with population of 1,488,108. Health services in Sana’a 

City also serves Sana’a govemorate (population of 1,352,389), a combined of 

2,840,497. The residents of Sana’a City include people from all govemorates 

of the country in varying proportion with a relatively low proportion of people 

from the south and east govemorates. Sana’a City is the base of almost all the 

main health facilities in the country.
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10. AIMS AND OBJECTIVES

10.1. Aim

This study aims to determine the prevalence of the sickle cell gene and the 

other related haemoglobinpathies in Yemen.

10.2. Objectives

These were to determine

1. The prevalence of the sickle cell gene among the residents o f Sana’a City.

2. The prevalence o f the sickle cell gene among different groups o f people who 

came from different parts of the country (Yemen), but are living in the Sana’a 

City.

3. The interaction of thalassaemia and the other haemoglobinpathies with 

sickle cell gene in Yemen.

4. Health care issues in relation to management of patients with sickle cell 

disorder.
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11. METHODS

11.1. Objective 1 and 3

These were addressed by identifying the haemoglobin A, S, F and A2 in a cord 

blood obtained following childbirth in the maternity wards in four main 

hospitals in the Sana’a city, namely the Al-Sabain Maternity and Children 

Hospital, Al-Thawra General Hospital, Al-Kuwait University Hospital and the 

Mother Hospital, for the period from 15 July 2001 to 28 October 2001.

Only Yemeni mothers admitted into the labour room who gave consent were 

considered for sample collection, regardless o f the method o f delivery.

Objective 2

It was addressed by analysing data related to the origin of the family o f the 

neonate.

Objective 4

It was addressed by analysing a questionnaire about the health care 

management which was completed by 86 sickle cell patients in the main 

hospitals in the Sana’a City.

11.2. Statistical Information

Statistical information about the Republic of Yemen relevant to this project 

was sought from a variety of sources such as Central Statistical Organization 

Ministry of Planning and Development, Sana’a, Yemen, World Health 

Organization (WHO), World Wild Web (www), and medline (Pubmed).
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11.3. Pilot study

A system for collecting neonatal blood onto Guthrie cards (Fig. 16) was tested 

for its feasibility by carrying out a pilot study involving 400 babies. This pilot 

study was undertaken to ensure the accuracy o f the chosen method of sample 

collection and the storage, transportation, sample preparation and analysis
I

methods, and those were found to be satisfactory.

i
ij

11.4. Main study

Using the system developed, a total of 1500 cord blood samples were collected 

from Yemeni newborns in the maternity departments at Al-Sabain Hospital, 

Al-Thawra Hospital, Al-Kuwait Hospital and Mother Hospital in Sana’a City, 

Yemen, over 6 months from July to December 2001 (Table 19.a). The names 

and residential origins o f parents were recorded. Soon, after the baby was 

delivered and during cutting the umbilical cord, cord blood samples were 

collected directly from the umbilical cord into the EDTA tubes avoiding as 

possible the contamination with the mother’s blood. No blood was collected 

from the parents for the purpose of this study.

Due to absence of DNA-extraction facilities in Yemen, locally DNA-extraction 

then transportation to UK to have a good enough samples for alpha globin gene 

amplification to detect the alpha thalassaemia mutations among these samples 

was not possible.

Cord blood samples were put on Guthrie cards (Fig. 16) (Schliecher and 

Schuell, The Science and Art Company, batra GmbH, Traben-Trabach, 

Germany) within twenty-four hours o f collection and these were kept at 4°C
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during storage and transportation to the UK. The samples were subsequently 

analysed using facilities at the Cardiff Sickle Cell and Thalassaemia 

Laboratory located in Llandough Hospital and the University Hospital o f 

Wales, Cardiff, Wales, UK.

Analysis o f the cord blood samples carried used High Pressure Liquid 

Chromatography (HPLC) and both IEF and DNA techniques for confirmation 

of the existence of abnormal variant haemoglobin, such as haemoglobin S, C, 

F, E, D, G, and others.
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Figure 16 Guthrie card

11.5. Instrumentation

11.5.1. High performance liquid chromatography

A cation-exchange, high performance liquid chromatography (HPLC) system 

(Shimadzu) and an optimised gradient o f a beta thalassaemia test kit 

(Chromsystems Instruments & Chemicals, GmbH, Munchen, Germany) were 

used to analyse all the samples for Hb A, F, S, C and D. Samples were
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prepared for analysis by punching out a small portion of the blood spot on the 

Guthrie card and eluting the haemoglobin with haemolysis reagent 

(Chromsystems Diagnostics) (124).

A high performance liquid chromatography (HPLC) system was used for 

detection and quantitation of normal and abnormal haemoglobins by using an 

Ion exchange system, either anionic or cationic. It gives percentage of 

haemoglobin A, A2, F and any abnormal haemoglobin fractions. The HPLC 

system comprised a high-pressure pump, a mixing unit, an in line detector, a 

column, a sample valve, a recorder and computer based integrator/controller 

unit. HPLC uses the principle of a cation exchange resin held in a cartridge in 

conjunction with a buffer gradient. As the ionic strength increases so certain 

haemoglobins are eluted from the column, and the presence o f haemoglobin is 

detected using a spectrophotometric technique. Two buffers are pushed 

through the high-pressure pumps, to the mixing unit, where they are mixed in a 

proper proportion required for that part o f the gradient. This mixture goes to 

the sample valve, where a certain amount o f sample is entered into the buffer 

flow line. The sample is then pumped via the column. At the start o f the 

gradient, the charged haemoglobin fractions attach to the charged silica 

packing the column, while any uncharged particles will be pumped via the 

column, making the breaking peak that is observed at the beginning of any 

chromatogram. The gradient is then initiated and the buffer mix is changed at 

the mixing valve. This allows the different haemoglobin fractions to elute 

from the column, as the charge differences on the silica and haemoglobin 

fraction change and the fractions are released and move via the column and 

detector, making the typical peaks observed on HPLC. Using the HPLC
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(Chromsystems Instrument, Diagnostics by HPLC) and the Thalassemia 

Testing Kit (from the same company), it was possible to separate and identify 

clarely the different haemoglobin A, F, A, A2, D, S, and C. The instrument 

settings were set so the injection volume is 10 -  20 pi; flow rate is 2.5 -  3.0 

ml/min; maximum pressure is 170 bar; column temperature is room 

temperature; UV-VIS detector was detection wavelength was 415 nm. Known 

control samples were used through the system to determine the haemoglobin 

fractions (Table 18.b). These fractions were identified by their retention times 

which is the time require for them to pass through the column from the start o f 

the gradient to the detector (Table 18.a). The area under any peak is used as 

the basis of integration for that peak.

Table 18.a The gradient used and run criteria

Time % Conc.of Buffer B*
0.10 18.0
5.80 68.0
5.81 100.0
6.60 100.0
6.61 18.0
8.50 0.00 Stop

* Supplied with beta thalassaemia testing kit (Chromsystems Instruments & 
Chemicals, GmbH, Munchen, Germany)

Table 18.b Analysis window set up

Name o f Window Retention Time 
(min)

Window width (min)

? FI (acetylated Hb F) 0.7 0.4
Hb F 0.8 0.6
Hb A (Adult Hb A) 4.6 0.8
Hb A2 5.3 0.8
Hb S (window) 6.25 0.8
Hb C (window) 8.0 0.8

Columns to PolyCAT A, 35 x 4.6 were used for fast screens for haemoglobin 

variants. For mobile phase A, this buffer (OlmM Bis-tris + ImM KCN) at pH



6.8 or 6.9 was used. For mobile phase B the buffer contains lOmM Bis-tris, 1 

mM KCN and 0.2 M NaCl at pH 6.55 or 6.6 was used.

For this particular study, following the analysis run, the chromatograms were 

analysed quantitatively for the presence o f peaks not normally present in cord 

dried blood spot samples. The presence o f any other significant peak, 

especially those in the haemoglobin A2, S and C windows underwent further 

analysis.

To reduce carry over to a minimum, the eluting buffer should be run at 100% 

for a minute or more. This will remove all haemoglobins off the column. The 

starting buffer mixture should then be pumped through the system to re­

equilibrate the column. The backpressure of a new column is about 66 bar at a 

flow rate of 2.5 ml/min. This can be increase with time. To protect the 

column, a maximum pressure o f 170 bar should not be exceeded.

To evaluate the HPLC system to analyse the collected cord blood samples, dry 

blood spots of previously tested as EDTA blood samples were analysed using 

the same HPLC system. No differences were observed between the 

chromatographic separations.

11.5.2. Iso-Electric Focusing

Isoelectric focusing (IEF) on agarose gels (Resolve System, Haemoglobin test 

kit, PerkinElmer Life Sciences, Norton, Ohio, USA) was used to confirm 

haemoglobin variants such as Hb S detected by HPLC. A small portion from 

each dry blood spot sample was eluted in haemoglobin elution solution 

supplied by PerkinElmer. Then the samples were focused on agarose gels after
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which the protein was fixed by immersion in 5% trichloracetic acid in 35% 

methanol and the plate was dried (116).

The principle of IEF is that the net charge o f a protein relies on the pH of the 

buffer. When the pH of the buffer is low the carboxylic acid groups o f proteins 

are uncharged and basic groups completely charged producing a positively net 

charge. But, when the pH of the buffer is high, the basic groups become 

uncharged where the carboxylic acid groups turn negatively charged, 

producing a negatively net charge. When a haemoglobin solution is applied on 

the Iso-electric focusing, the haemoglobin variants are separated in a gel 

depending on their iso-electric point that is the point at which the haemoglobin 

variants have no net charge.

Because the high sensitivity and specificity o f IEF (119), it was used in this 

study.

Using Haemoglobin Test Kit (Perkin-Elmer), the preparation and separation of 

haemoglobin is performed by the application o f the haemoglobin sample onto a 

recast agarose gel containing Resolve Ampholytes pH 6 to 8. The Resolve 

Ampholytes are made of low molecular weight amphoteric molecules with 

different isoelectric points. By applying electrical current to the gel, these 

molecules move through the gel to their isoelectric points along the gel, 

making a constant pH gradient. The haemoglobin variants also move through 

the gel till they reach the place where their individual isoelectric points equal 

the corresponding pH on the gel. The electrical charges o f haemoglobin 

variants at this point are zero and movement ceases. The electric field stops

i
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diffusion and the haemoglobin variant forms a separate thin band. The cyanide 

ion in the cathode solution prevents the oxidation of the iron molecule in Hb F. 

Haemoglobin F has a high affinity for oxygen. Partial oxidation o f the iron 

molecules leads to a band (methaemoglobin F) focuses in the Hb S position, 

leading to false positive for Hb S. The presence of cyanide ions in the cathode 

solution ensures that adequate amounts will be existed to prevent the formation 

o f methaemoglobin F during IEF. Trichloroacetic acid spoils the tertiary 

structure o f haemoglobin, by sequestering internal water molecules. If this 

occurred, the internal hydrophobic amino acids are exposed leading 

haemoglobin to coagulate and fall out o f solution.

11.5.3. Deoxyribonucleic acid - Polymerase chain reaction analysis

Polymerase chain reaction (PCR) has a great impact on the study o f nucleic 

acids. By using of a thermostable DNA polymerase (Taq polymerase), PCR 

results in the amplification of a certain DNA fragment can be observed by 

ethidium bromide staining on an agarose gel.

Extraction o f DNA from blood or tissue sample can be used for DNA-PCR 

analysis. The quality and quantity of the obtained DNA will differ according 

to the size, age and cell count o f the sample. The DNA in the nucleus is 

strongly bound to many proteins as chromatin. To extract the DNA, it is 

essentially to remove these as well as other cellular proteins.
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11.5.3.1. Principle of DNA-PCR Analysis

Two oligonucleotide primers direct multiple cycles o f localised DNA 

replication to make an exponential increase in the number o f the copies of the 

target sequence. After 20 to 30 cycles, amplification of the target DNA will 

reach to 100,000 folds. In order to amplify the DNA, four deoxynucleotide 

triphosphates (dATP, dTTP, dCTP, and GTP), PCR buffer, and the 

thermostable taq polymerase are needed

The first phase of the reaction is denaturing the DNA by heating the reaction 

mixture to 95 °C and followed by cooling to 50-65 °C that alloweds the 

annealing o f the primers to the DNA. Then the mixture is heated to 72 °C in 

this phase the taq polymerase generates DNA, extending from the oligo in 5’ to 

3’ direction. Repetition of the denaturing, annealing, and extension stages 

which occur by rising and lowering the temperature leading to exponential 

amplification of DNA fragment that lies between the two oligos (Fig. 17).
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Figure 17 DNA-PCR principle

Digestion of the amplified DNA fragment can be done by a proper restriction 

enzyme. The producing fragments can be separated by gel electrophoresis then 

stained with ethidium bromide and seen under ultraviolet light.

For detection of Hb S, PCR amplification of the first two exons of the beta 

globin gene in order to detect the Hb S mutation was done using the primers 

(GGCCAATCTACTCCCAGGAG) and (ACATCAAGGGTCCCATAGAC). 

PCR thermal cycler instrument is used to amplify the DNA. The optimal 

annealing temperature used to amplify is 95 °C for 9 minutes followed by 40 

cycles o f 94 °C for 30 seconds, 62°C for 30 seconds and 72 °C for 1 minute.

At the end of these 40 cycles the temperature was kept for 10 minute before 

removing the samples.
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Then the enzyme Dde 1 digests the amplified DNA samples. The undigested 

fragment is 597 bp (base pair) in size. 5 Dde I restriction sites exist normally; 

one of which is abolished by the Hb S mutation.

Separation o f the producing fragments is carrying out using 3% agarose gel 

electrophoresis [1.5 gram agarose gel dissolved in 50 ml TBE buffer (0.89M 

Tris, 0.89M Boric acid, 0.02M Na2 EDT, final pH 8.3) with 1.2 ethidium 

bromide (2.5 mg/ml)]. The gel electrophoresis is then run at 140 volts up to 

one hour untie full separation o f the bands is completed.

The gel is placed onto an UV transilluminator and photographed.

Haemoglobin SS gives the bands o f sizes 351, 88, 89, 37 and 40 bp. 

Haemoglobin AS produces the bands o f the sizes 351, 201, 150, 88, 89, 37 and 

40 bp. Haemoglobin AA gives the bands of the sizes 201, 150, 88, 89, 37 and 

40 bp.

To confirm the absence o f beta S mutation in the samples that show unknown 

haemoglobin variants by the HPLC and IEF, they had been investigated with 

the other samples that contain Hb S.

11.5.3.2. DNA sequence analysis

The extracted DNA is amplified using specific primers for the required 

analysis in the PCR method. The PCR product is sequenced after removing of 

enzyme, primer and dNTPs, by a mechanism of denaturation then by primers 

annealing and 3’extension of a complementary strand of DNA by the enzyme 

AmpliTaq DNA Polymerase FS in the presence of a mixture o f dNTPs and 

fluorescent dideoxynucleotides. The ratio of nucleotides to dideoxynucleotides 

is such that they are in a statistical chance of inserting a dideoxynucleotide. 

When this happen first the chain is stopped because 3’extension cannot
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continue and second the chain ‘n ’ nucleotides in length is tagged with a 

fluorescent tag indicating the nature of the 4n’ nucleotide. Cycling the stages 

of denaturation, annealing and synthesis enables amplification o f the process 

and an adequate yield o f product for detection.

The fluorescent polynucleotides are separated from the fluorescent precursors 

by ethanol precipitation, redissolved, denatured, and applied to a denaturing 

polyacrylamid gel optimised to separate strands that differ by only a single 

nucleotide. Scanning each track of the gel for the four different fluorescent 

signals that can be assigned one to each of the nucleotides allows the 

nucleotide sequence to be read directly.

Samples showed unknown peaks in HPLC or bands on IEF were sequenced to 

identify the unknown haemoglobins.

11.6. Sample elution preparation from Guthrie cards

11.6.1. HPLC Analysis

Screw capped vials (1.5 ml) were labelled with unique identifying code. A six- 

mm hole punch was used to get a single disc from the centre of each blood spot 

on the appropriate Guthrie card which placed in the appropriately labelled 

screw capped vial. Then 1ml o f haemolysis reagent was added to the vial. The 

cap was closed and sample mixed for 15 minutes. After that, the disc was 

removed from the vial and spun for 1 minute at 13000 rpm to sediment any 

debris. The clear fluid containing the haemolysate of the sample was kept for 

24 hours before the analysis.

11.6.2. Iso-Electric focusing
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A 6 mm disc out o f the dry blood spot was used to prepare the haemolysate of 

each blood sample. A 50 ul of haemoglobin elution solution was added on the 

dry blood disc in small tube. Then the tube was mixed for 15 minutes. Then 

the tube was spun and the clear elution o f the haemolysate was used for the 

analysis.
|

iIi
i 11.6.3. Extraction of DNA

!
Guthrie cards are widely used for neonatal genetic DNA analysis. A 5 mm 

circle of Guthrie card containing the dry blood sample was placed into a small 

eppendorf tube contained 60 pi o f buffer for EDTA blood (Applied 

Bio System) After incubation o f this mixture for 40 minutes at 97 °C, the tube 

centrifuged and the buffered supernatant containing the DNA was transferred 

to a clean tube. This separated DNA liquid was used immediately or frozen for 

later use.

11.7. Samples analysis

11.7.1. High performance liquid chromatography analysis

Prepared samples for HPLC were used for this analysis. The HPLC set up 

using a prime sample, which was a cord blood of Guthrie card sample. This 

primes the system ready for analytical samples, which followed by the 

sequence o f samples for testing. The run was set afternoon and continue 

overnight, the results were obtained next day. Known sample also were run 

with each batch to ensure the accuracy of the obtained results.

If any abnormal fraction was seen in the peaks of the curves o f the result, the 

sample preparation and analysis for HPLC was repeated using a new blood
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spot o f the same Guthrie card. To ascertain that the peak was valid and there 

had been no mix-up or contamination o f the original blood spot on the card. If 

the abnormal fraction was confirmed, then Iso-electric focusing was carried out 

using suitable controls to mark the positions o f common abnormal 

haemoglobins on the gel.

11.7.2. Iso-Electric focusing analysis

Prepared samples for IEF analysis and a control mixture o f Hb A, S and C were 

used in this test. The samples were run according to the method and 

manufacture instruction at 1500 volts (18mA) for 90 minutes. The running 

was resumed after the 15 minutes o f removing the template. Trichloroacetic 

acid in concentration of 5% prepared in 35% methanol was used as protein 

fixative solution. The gel was dried at 50 -  60 °C for about 20 minutes.

To confirm any abnormal band seen in position of Hb S or any other 

haemoglobins on the IEF gel, the sample was sent to University Hospital 

(UHW) Haematology Research Laboratory, to undergo DNA level 

investigations to confirm the band as Hb S or to identify the unknown 

haemoglobins.

11.7.3. DNA-PCR analysis

11.7.3.1. Determination of Hb S and other p globin gene mutations

r

The p mutation was detected by a previously published method involving 

PCR amplification of the first two exons o f the P globin gene followed by Dde I 

digestion of the PCR product (125). Further mutation analysis o f the P globin 

gene coding region was carried out by PCR amplification o f the first two exons
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of the p globin gene using the forward primer 

5 ’GGCCAATCTACTCCCAGGAG3 ’ and the reverse primer 

5 ’ ACATCAAGGGTCCCATAGAC3 ’, and PCR amplification of the third 

exon of the p globin gene using the forward primer 

5’CAATGTATCATGCCTCTTTGCACC3’ and the reverse primer 

5’CACTGACCTCCCACATTCCC3\ followed by direct sequence analysis 

using the same primers and the ABI PRISM™ BigDye fluorescent dideoxy 

chain terminator cycle sequencing kit (Applied Biosystems, Foster City, CA, 

USA). The fluorescent products were separated by capillary electrophoresis 

and analysed using an ABI 3100 Genetic Analyser (Applied Biosystems,

Foster City, CA, USA).

Adding o f 1 jlxI  of extracted DNA sample to a mixture of 19 pi distilled water, 

2.5 pi lOxPCR buffer (83mM (NH4)2S 0 4,335mM Tris-HCl, pH 8.8), 1 pi 

dNTPs, 0.18 pi Taq Gold and 1.5 pi primer mix of equal volume o f them at 

concentration of 10 pM. Then incubated in thermal cycler at 95 °C for 9min, 

then for 40 cycles. Size marker (OX 174, Hae III) was use to evaluate the size 

and concentration of the DNA products. Also blank sample was used to make 

sure there was no contamination in the any o f the mixtures.

The PCR product was tested to evaluate the DNA amplification. This 

performed by running of agarose gel electrophoresis. In this method, PCR 

sample products were loaded into the gel that placed in the electrophoresis tank 

contained 400ml of TBE buffer (0.89M Tris, 0.89M Boric acid, 0.02M Na2 

EDT, final pH 8.3). Ethidium Bromide (2.5 mg/ml) also was been added to the 

buffer at the concentration as the gel. After the bands had separated enough, 

the gel was placed onto an UV transilluminator and viewed and photographed.
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All the DNA-PCR products o f the samples were tested and showed a band in 

positions size 603 bp.

Digestion using Dde I enzyme for detection Hb S was run for all the samples, 

size marker (0X174, Hae III) and controls (homozygous Hb SS, heterozygous 

Hb AS, normal Hb AA). In this test 7 pi o f the mixture 1 OxPCR buffer (83mM 

(NH4)2SC>4,335mM Tris-HCl), made of 5.6 pi distilled water, 1.4 pi NEB3 

buffer (100 mN NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT) and 0.52 

pi Dde I [lO.OOOU/ml (NEB 175)] was added to 7 p 1 DNA-PCR product. Then 

incubated at 37 °C for overnight. After the incubation, agarose gel 

electrophoresis was run for the entire digested DNA samples with the six 

marker and controls at 140 volts for about 45 minutes. Finally the separated 

bands were placed onto an UV transilluminator and photographed.

11.7.3.2. DNA sequence analysis

Sequence o f DNA was made in four separate steps 

Step A: Purification o f the PCR products for sequencing 

The DNA-PCR product was purified for sequencing. In this step the PCR 

product was added to 225 pi of the binding buffer solution. Then this mixture 

was transferred to a spin column tube and spun. The solution in the collected 

tube was decanted. Washing solution (0.5 ml) was added to the spin column, 

spun and the collected elute was removed. Again 0.25 ml o f washing solution 

was added to the column and spun and the collected solution was decanted.

The spin column was placed onto broken tops tubes. Into each column 30 pi
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sterile water was added, then spun. The collected elute in the tube contained 

the purified PCR product.

The concentration o f the purified DNA-PCR product was determined by 

electrophoresing 5 pi o f each product in agarose gel and 10 pi o f the size 

marker (0X174, Hae III) at known concentration. Electrophoresis was run at 

140 volts for 45 minutes.

Step B: Prism Dye Terminator Cycle Sequencing

The ideal concentration o f PCR product is between 15 -  45ng, which was

added per 10 pi sequencing reaction. All sequences were performed in forward

and backward to minimise the chances of losing heterozygosity due to a very

small signal from one o f the nucleotides of single nucleotide deletions or

insertions.

Diluted (1/6) the forward primer 5’GGCCAATCTACTCCCAGGAG 3’ and 

the reverse primer 5’ACATCAAGGGTCCCATAGAC 3’, both were used for 

detection mutation in first and second exons.

From each primer 1.2 pi was added to 2 pi PCR product and mixed with 2 pi 

of terminator ready reagent mixture (ABI Prism BigDye Terminator Ready 

Reaction Kit PE Applied Biosystems). Then distilled water was added to them 

making the total volume in each tube 10 pi. By using thermal cycler, this 

preparation was incubated for 25 cycles (96 °C for 10 seconds, 50°C for 5 

seconds, and 60°C for 4 minutes).
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Step C: Preparing the sequence reaction product for gel electrophoresis 

All the entire contents o f each reaction tube from step B was added a mixture 

o f 8 pi distilled water and 2 pi 3M-sodium acetate. Then a 50 pi o f 95% 

ethanol was added to the above mixture. Then this mixture was mixed 

thoroughly and placed on ice for 20 to 25 minutes. Then was spun for 25 

minutes at high speed. The supernatant was removed and 250 pi o f 70% 

ethanol was added. Then it was spun at high speed for 5 minutes. Again the 

supernatant was aspirated and the pellet was stored in dark at - 20 °C until 

electrophoresis was possible.

Step D: Referral o f samples to University of Wales College of Medicine 

Molecular Biology Services for Automated Sequence Analysis.

11.7.3.3. Detection of mutation in exon 3

It was carried out using the same method as in first and second exons analysis, 

except the following:

The primers used were 5 ’ C AAT GT AT CAT GCCT CTTT GC ACC3 ’ for forward 

5 ’ CACTGACCTCCCACATTCCC3 ’ for backward.

1 pi DNA extract was added to 15.5 pi distilled water, 2.5 pi lOxPCR buffer 

(83mM (NH4 )2S0 4 ?3 3 5 mM Tris-HCl), lp l dNTPs, 5 pi primers mixture of 

equal volume from each one and 0.17 pi Taq Gold.

Then the mixture was incubated in thermal cycler at 96 °C for 9 minutes then 

for 37 cycles (90 °C for 1 min, 66 °C for 2min) then for 66 °C forlO min.
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11.7.3.4. Detection of alpha thalassaemia mutations -a 3'7 and -a 4'2

The alpha thalassaemia alleles consist o f either deletion mutations in and 

around the globin gene cluster or point mutations within one o f the two-globin

"X 1 AOgenes. The two common alpha thalassaemia deletions are - a  ' and -a  ‘ that 

can be identified by the polymerase chain reaction method (126,127,128), but 

the application o f these PCR methods for detection alpha thalassaemia 

mutations has some difficulties. Southern blot analysis remains the 

recommended method for detection alpha thalassaemia mutations because of 

its ability to diagnose all alleles in one set. The primers in Table 19 were used 

for detection o f alpha thalassaemia mutations (128).

Table 19 Primers used for detection o f alpha thalassaemia mutations

- a  ' multiplex 
PCR:

Forward: AAGTCCACCCCTTCCTTCCTCACC 
Reverse 1: ATGAGAGAAATGTTCTGGCACCTGCACTTG 
Reverse 2: TCCATCCCCTCCTCCCGCCCCTGCCTTTTC

- a 4'2
multiplex
PCR:

Forward: TCCTGATCTTTGAATGAAGTCCGAGTAGGC 
Reversel:TGGGGGTGGGTGTGAGGAGACAGGAAAGAGAGA 
Reverse 2: ATCACTGATAAGTCATTTCCTGGGGGTCTG

Polymerase chain reaction was preformed using 5% DMSO, 200 pmol/1 dNTPs 

and 1.25 units o f AmpliTaq Gold polymerase, 2.5 pi lOx PCR buffer [83mM 

(NH4)2SC>4? 335mM Tris-HCl, pH 8.8], primer concentration between 0.1 and 

0.3 pM and 100 ng DNA.

The PCR conditions used are 95 °C for 9 minutes, then 40 cycles o f 94°C for 

30 seconds, 57 °C for seconds, and 72 °C for 2 minutes, then extension 

temperature o f 72 °C 10 minutes. Gel electrophoresis (1.2% agarose gel) was 

applied and specific PCR product was determined.
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11.7.3.5. Determination of theXmn  I polymorphic site

The -158 (C—>T) G-gamma globin gene polymorphic site was detected by 

PCR amplification using 5 ’ GAACTTAAGAGATAATGGCCTAA3 ’ and 

5’ATGACCCATGGCGTCTGGACTAG3’ as forward and reverse primers 

respectively (129) followed by digestion o f the PCR product with the 

restriction endonuclease Xmn I (New England Biolabs Inc., Beverly, MA, 

USA). Digested fragments were separated on agarose gel electrophoresis and 

analysed after ethidium bromide staining. The -158 C—»T Xmn I 

polymorphism creates a restriction site for this enzyme and digested fragments 

of sizes 420 and 220 bp were observed.

11.7.3.6. Determination of p globin cluster haplotypes

Haplotypes were identified by the analysis o f the polymorphic restictriction 

sites in the beta globin gene cluster: Hind II/s, Hind III/0')', Hind III/Ay , Hinc 

11/3’cpp y , H inf I/5’p in addition to Xmn I. Fragments containing each o f these 

polymorphic sites were amplified by PCR DNA amplification using forward 

and reverse primers (Eurogentec Ltd, UK) (Table 20) specific for each 

polymorphic site and subsequently digested with the appropriate restriction 

endonuclease (New England Biolabs Inc., Beverly, MA, USA) for each 

polymorphic site (130,131).



Table 20 Primers used to identify the beta globin cluster

Polymorphic site Primers
Hind Il/e TCTCTGTTTGATGACAAATTC

AGTCATTGGTCAAGGCTGACC
Hind III/Gy AGTGCTGCAAGAAGAACAACTACC

CTCTGCATCATGGGCAGTGAGCTC
Hind IJI/Ay ATGCTGCTAATGCTTCATTAC

TCATGTGTGATCTCTCAGCAG
Hinc II/3’<pp TCTGCATTTGACTCTGTTAGC

GGACCCTAACTGATATAACTA
Hinfl/5'f, CTACGCTGACCTCATAAATG

CTAATCTGCAAGAGTGTCT

11.8. Prevalence of haemoglobin S

The overall prevalence o f sickle cell trait was calculated as the percentage of 

sickle cell trait samples detected amongst the total tested. Prevalence for 

different localities was determined indirectly, from the information on the 

places o f residence o f the parents. If the parents were from different 

govemorates that child was considered to come from either one or the other 

and lower and upper limits for prevalences for these areas were therefore 

given.

11.9. Survey to evaluate the sickle cell patient’s health care in Yemen

Due to the lack of information in the literature regarding health care issues, a 

questionnaire was used to evaluate the available health care for sickle cell 

patients in Yemen. The questionnaire was constructed to collect information 

about age of the patient, time o f diagnosis o f sickle cell disorders, methods of 

sickle cell disorder diagnosis, health care after the diagnosis, sickle cell 

management, blood transfusion services, cost of health care and causes of 

death o f sickle cell patients.
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11.9.1. Sampling

Eighty-six known sickle cell anaemia patients registered in two hospitals (Al- 

Thawra, Kuwait University) were identified and their parents were 

interviewed. The questionnaire was completed by the researcher.

11.9.2. Interview Details

Interview took place during 5 months from September 2001 to January 2002. 

After informal consent was obtained from parents or their relatives, subjects 

were interviewed for 15 -20  minutes in the Haematology Department in Al- 

Thawra Hospital and in the Internal Medicine Department in Kuwait 

University Hospital. Data was also obtained from laboratory and hospital 

records.

11.9.3. Questionnaire Form

The table 21 below shows the questionnaire from.

Table 21 The questionnaire of the survey

1 Age Year
Month Yes No

2 Diagnosis of sickle 
cell disorders

At birth.
Before the appearance o f sickle cell anaemia 
symptoms
After the appearance of the sickle cell 
symptoms
During sickle cell complications
At death

3 How was the sickle 
cell disorder 
diagnosed?

From the clinical signs and symptoms
From the family health history
From the blood smear
From the sickling test
From the haemoglobin electrophoresis test
From other methods.
Are you aware o f sickle cell patient registry?

4 Health Care after 
the diagnosis sickle

Are you aware o f sickle cell association?
Are you aware o f sickle cell health centre?

103



cell disorder Are you aware o f sickle cell disorders card?
Are you aware o f regular health evaluation?
What laboratory tests do you regularly or 
often tested?
Are you aware of your disorder?
Were you told what you should do during a 
crisis?
Were you or your relative told to avoid 
sickle cell disorder in the future?
Have you got leaflets about your disorder?
Where do you go in crisis?

5 Sickle cell 
management

Does haematologist treat you?
Do you use haematinics?
Do you use antibiotic as prophylactic?
Have you got enough vaccines?
Have you been instructed to improve your 
hygiene?
Have you been instructed to improve your 
quality of food?
Do you use chelating agent to remove the 
extra iron from your body?
Do you use hydroxyurea?
Once

6 Have you been 
hospitalised in a 
year?

Twice
Three times
More than three times
7 days or less

7 How long do you 
spend in hospital 
each year?

One month or less
More than a month
Do you get fresh blood transfusion?
Do you get blood from relative donors?

8 Blood transfusion 
services for sickle 
cell patient

Do you get blood from blood bank?
Is Kell group including in the blood cross 
matching?
Equal or less than 1000 ml
Less than 2000 ml

9 How much do you 
get transfused 
blood per year?

More than 2000 ml
Do you pay the cost o f blood transfusion?
Do you pay the cost o f the prescriptions?

10 Cost of health care 
for sickle cell 
patient

Do you pay the cost o f hospitalisation?
Severe anaemia (lack of blood transfusion 
services).
Blood transfusion complications.

11 Causes o f death of 
sickle cell patient.

Sickle cell disorder complications 
(infection).
Negligence o f the patient or his relative due 
to their poverty and/or illiteracy.
Misdiagnosis of sickle cell disorder
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12. RESULTS

12.1. Cord blood analysis

None o f the intended mothers refused to take part in this study. Only one 

sample replaced by another cord blood sample after the pilot study showed it 

was adult blood sample (98% Hb A). Three hundred samples were left behind 

in Yemen due to delay in receiving the Guthrie cards form UK.

Table 22.a-b show distribution of collected samples by hospital and 

govemorate.

Table 22.a Distribution of collected samples by govemorate and hospital

Govemorate Total
Samples

Samples
Al-Sabain

Samples
Al-Thawra

Samples
Mother

Samples
Kuwait

Sana’a and 
Sana’a City

745 484 229 9 23

Aden 18 7 10 0 1
Tiaz 171 79 73 4 15
Al-Hodeidah 27 20 6 0 1
Laheg 1 0 1 0 0
Ibb 179 64 104 5 6
Abyan 13 6 5 0 2
Dhamar 138 43 86 2 7
Shabwah 2 1 0 1 0
Haja 30 15 11 1 3
Al-Beida 53 27 25 0 1
Hadramout 16 5 9 0 2
Saadah 4 2 2 0 0
Al-Mahweet 45 19 23 0 3
Al-Mahrah 1 1 0 0 0
Mareb 16 7 7 0 2
Al-Jawf 4 3 0 0 1
Arnran 22 7 11 0 4
Al-Daleh 15 5 7 2 1
Total 1,500 795 609 24 72
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Table 22.b Distribution o f the samples by hosipital
Hospitals Number o f the Samples
Al-Sabain Maternity and Children Hospital 795
Al-Thawra General Hospital 609
Al-Kuwait University Hospital 72
Mother Hospital 24
Total 1,500

12.1. High performance liquid chromatography

O f the total 1500 cord blood samples analysed by HPLC, all chromatograms 

showed peaks eluting in the positions of Hb A and Hb F (Fig. 18). Thirty-eight 

samples showed abnormal haemoglobin peaks. Thirty-four o f these had peaks 

in the position o f Hb S (Fig. 18.b) one o f which (sample Al-Kuwait 59) was 

unusually small and o f uncertain significance.

The sample Al-Thawra 402 showed a peak between HbF and HbA and a minor 

peak in the Hb A2 position. Sample Al-Sabain 1771 showed two peaks, one 

between Hb A and Hb A2 and a minor peak eluting later than Hb S. Sample 

Al-Thawra 2 showed a single extra peak between Hb A and Hb F and sample 

Al-Sabain 1203 showed a single peak between Hb A and Hb A2 (Fig. 18 c—f).
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Figure 18 HPLC elution peaks

(a) sample showing no abnormalities, (b) sample from a baby found to have 
HbAFS, (c) sample Al-Thawra 402, (d) sample Al-Sabain 1771, (e) sample Al- 
Thawra 2, (f) sample Al-Sabain 1203
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12.2. Iso-Electric focusing

All the samples showing abnormal haemoglobin peaks on HPLC were 

examined by IEF. Thirty-three of them were confirmed by IEF as probable Hb 

FAS. The sample Al-Kuwait 59 showed no variant haemoglobin band at all 

and was confirmed to lack the Hb S gene mutation by DNA studies. The 

sample Al-Thawra 402 showed a minor band at position Hb A -6  mm and 

sample Al-Sabain 1771 showed a minor band at position Hb A -1 6  mm. 

Sample Al-Thawra 2 showed two bands: a minor band at position Hb A -7  mm 

and a major band at position Hb A -13 mm and sample Al-Sabain 1203 

showed a minor band at position HbA -  9 mm. These four samples were 

considered to contain unknown haemoglobin variants requiring further 

investigation for their identification. From the numbers o f the peaks on HPLC 

and their relative intensities on IEF, it seems likely that Al-Thawra 402 and Al- 

Sabain 1771 contained slow alpha chain variants producing both fetal and adult 

haemoglobin variants detected most clearly by HPLC. Al-Thawra 2 could 

contain a gamma chain variant and Al-Sabain 1203 appeared likely to contain a 

beta globin chain variant.
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Figure 19 IEF plate of the samples with haemoglobin variants

(1) Al-Thawra 402. (2) Control ASC. (3) Sickle cell trait. (4) Al-Sabain 1771. 
(5) Sickle cell trait. (6) Normal. (7) Al-Thawra 2. (8) Normal. (9) Sickle cell 
trait. (10) Al-Sabain 1203. (11) Sickle cell trait. (12) Sickle cell trait. (13) 
Control ASC.

12.3. DNA analysis

All samples showed haemoglobin variants on HPLC were further examined at 

the DNA level.

12.3.1. Detection of Hb S mutation

All 33 samples showed a peak in the Hb S window on HPLC and a band in the 

HbS position on IEF were confirned as heterozygous Hb S p ig . 20) by the 

PCR-DNA studies. Sample Al-Kuwait 59 showed the usual fragment sizes 

only, as did the 4 samples with unidentified variant haemoglobins.

In lane 3 (Fig. 20), sample Al-Sabain 1046 showed a faint Hb S band with size 

of 351 bp. The HPLC result o f this sample was Hb A (22.64%), Hb S 

(11.13%) and Hb A2 (0.97). This result suggesting this faint Hb S band is due 

to maternal blood contamination. While in lane 7 (Fig. 20), the Hb AA sample 

showed a faint Hb S band with size of 351 bp which is due to partial digestion.
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Figure 20 Gels of PCR-DNA of samples with haemoglobin variants

Marker in lane (1). HbSS in lane (2) and (16). HbAA in lane (7) and (12).
Hb AS in lane (3), (4), (5), (6), (8), (9), (10), (11), (13) and (14).

12.3.2. Direct sequence analysis

Direct sequence analysis o f all three (3 globin gene exons of the four samples 

containing unknown haemoglobin variants revealed an abnormality only in 

sample Al-Sabain 1203 which showed heterozygosity for an adenine to 

cytosine substitution in codon 22 (GAA—»GCA). This predicts the 

replacement of alanine by glutamic acid, which occurs in Hb G Coushatta 

(132).

12.4 M aternal blood contamination

None of the samples in this study showed obvious signs o f maternal blood 

contamination which is considered when adult Hb (A+ S+ any other adult Hb) 

level is more than Hb F level and a definite Hb A2 peak on the HPLC or 

prominent A2 band on IEF (133). However, examination of the D de\ digested 

PCR products of the first exon of the beta globin gene showed a discrepant 

beta-A:beta-S product ratio that might be a maternal blood contamination. On 

review of these discrepancies of beta-A:beta-S product ratio and then the other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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HPLC results, a combination o f both adult Hb > 20% and Hb A2 >0.5% had 

been suggested as a criteria to assess what difference this would make to the 

conclusions o f this study.

According to the suggested criteria in this study that arrived at empirically to 

indicate possible contamination with maternal blood, of 1500 samples 40 

samples (2.7%) showed levels o f Hb A2 >0.5% and adult Hb>20%. Only two 

o f them with Hb S gene which is not thought to have had a major effect on the 

conclusions drawn from this study.

12.5. Results of alpha thalassaemia mutations HX3-7 and -a 4'2 

PCR amplification o f the common alpha thalassaemia mutations -a  and - 

a 4 2 did not show PCR products on the gel electrophoresis. This may be due to 

the nature of dried blood spots where deterioration o f the blood samples from 

the time it is taken as oxidation of the haemoglobin occurs, resulting in 

methaemoglobin formation. This degradation is likely to be greater at higher 

temperatures and long storage. The blood samples on Guthrie cards used in 

this study were collected between July and December 2001. After one year, 

they were analysed for alpha thalassaemia genes. In addition, the PCR product 

(DNA) is large (1.8 kb) which makes it easier to degrade by long storage, in 

normal circumstances this should not prevent analysis using the DNA

'in AO
techniques. This states the prevalence o f mutations -a  and -a  " in Yemen 

and their interaction with Hb S remained unsolved in this study.
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12.6. Prevalence of haemoglobin S

Tables 23 a-b show the places of origin o f the parents of the children tested and 

found to have haemoglobin variants. The names o f the parents recorded from 

the mother maternity file while their places o f origin were reported by asking 

the mothers soon after delivery in the labour room. Figure 21 shows the 

distribution o f sickle cell trait and total collected number o f samples in each 

govemorate o f Yemen. No Hb S homozygotes were detected in this study 

(Fig. 22).

Table 23.c shows the calculated Hb S gene frequencies. The overall Hb S gene 

frequency was 0.011. The accurate estimation of the Hb S gene prevalence 

was calculated using 95% confidence interval. Thus the calculated standard 

error is 0.0027 and the 95% confidence limits would be 0.0164 to 0.0056. The 

Hb S gene frequency was highest (probably>0.01) in the following 

govemorates: Haja: 0.0033 to 0.0500, Taiz: 0.0380 to 0.0439, Al-Hodeidah: 

0.0185 to 0.0370, Amran: 0.0227 and Abyan: 0.0000 to 0.0385. The 

govemorates of Sana’a and Sana’a City, Ibb, Dhamar, Al-Baida and Al- 

Mahweet appear to have lower (probably<0.01) Hb S gene frequencies (0.0067 

to 0.0081, 0.0028, 0.0000 to 0.0036, 0.0000 to 0.0094 and 0.0000 to 0.0111 

respectively).
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Figure 21 Distribution o f sickle cell trait and the total number o f sample in each govemorate
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Table 23.a The hospitals from which the blood samples found to contain

variant haemoglobins were collected and the place o f origin o f each parent

H bFSA Hospital Sample No. Mother’s Origin Father’s Origin
1 Mother 9 Taiz Sana’a
2 Al-Sabain 1046 Taiz Taiz
3 Al-Sabain 1144 Sana’a Sana’a
4 Al-Sabain 1194 Taiz Taiz
5 Al-Sabain 1217 Sana’a Sana’a
6 Al-Sabain 1238 Haja Al-Hodeidah
7 Al-Sabain 1300 Taiz Taiz
8 Al-Sabain 1319 Taiz Taiz
9 Al-Sabain 1321 Taiz Taiz
10 Al-Sabain 1376 Sana’a Sana’a
11 Al-Sabain 1591 Al-Hodeidah Al-Hodeidah
12 Al-Sabain 1616 Taiz Taiz
13 Al-Sabain 1753 Sana’a Sana’a
14 Al-Sabain 1765 Taiz Taiz
15 Al-Sabain 1794 Taiz Abyan
16 Al-Sabain 1719 Sana’a Sana’a
17 Al-Sabain 1732 Ibb Ibb
18 Al-Thawra 34 Sana’a Sana’a
19 Al-Thawra 87 Taiz Taiz
20 Al-Thawra 553 Taiz Taiz
21 Al-Thawra 163 Dhamar Al-Beida
22 Al-Kawait 24 Sana’a Sana’a
23 Al-Kawait 37 Sana’a Sana’a
24 Al-Kawait 41 Taiz Taiz
25 Al-Kawait 69 Sana’a Al-Mahweet
26 Al-Kawait 76 Haja Haja
27 Al-Thawra 834 Taiz Taiz
28 Al-Thawra 250 Taiz Taiz
29 Al-Thawra 261 Taiz Taiz
30 Al-Thawra 264 Haja Haja
31 Al-Thawra 269 Sana’a Sana’a
32 Al-Thawra 423 Amran Amran
33 Al-Thawra 493 Sana’a Sana’a
HbFA?
34 Al-Sabain 1203 Ibb Ibb
35 Al-Sabain 1771 Al-Beida Al-Beida
36 Al-Thawra 2 Al-Mahweet Al-Mahweet
37 Al-Thawra 402 Dhamar Dhamar
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Table 23.b Summary o f the abnormal haemoglobins results

Hospital Sample HPLC IEF DNA Mother’s
Origin

Father’s
Origin

Sabain 1203 A+Hb? A+Hb? AG-
Coushatta

Ibb Ibb

Sabain 1771 A+Hb? A+Hb? A+non P 
globin

Al-Beida Al-Beida

Thawra 2 A+Hb? A+Hb? A+non p 
globin

Mahweet Mahweet

Thawra 402 A+Hb? A+Hb? A+non B 
globin

Dhamar Dhamar

Table 23.c Prevalence o f sickle cell trait in different govemorates in Yemen

Govemorate
Investigated
sample
number

Prevalence 
Hb AS #

Haemoglobin S 
gene frequency

Number %
Sana’a&Sana’a
City

745 10-12* 1.34-1.61 0.0067-0.0081

Aden 18 0 0.0 0.0000
Taiz 171 13 - 15* 7.6 - 8.77 0.0380 - 0.0439
Al-Hodeidah 27 1 - 2 * 3.7-7.4 0.0185-0.0370
Laheg 1 0 0.0 0.0000
Ibb 179 1 0.56 0.0028
Abyan 13 0 - 1 * 0.0 - 7.69 0.0000 - 0.0385
Dhamar 138 0 - 1 * 0.0 - 0.73 0.0000 - 0.0036
Shabwah 2 0 0.0 0.0000
Haja 30 2 - 3 * 6 .6 7 -1 0 0.0333 - 0.0500
Al-Beida 53 0 - 1 * o 0 1 VO 0.0000 - 0.0094
Hadramout 16 0 0.0 0.0000
Saadah 4 0 0.0 0.0000
Al-Mahweet 45 0 - 1 * 0.0 - 2.22 0.0000-0.0111
Al-Mahrah 1 0 0.0 0.0000
Mareb 16 0 0.0 0.0000
Al-Jawf 4 0 0.0 0.0000
Amran 22 1 4.55 0.0227
Al-Daeh 15 0 0.0 0.0000
Total 1,500 33 2.2 0.0110

* The infant has parents who come from different govemorates and the HbS 
gene is from one or the other.
# No Hb S homozygotes were found
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Figure 22 Summary of HPLC, IEF, DNA analysis results 

12.7. Prevalence of the Xmn  I polymorphism

Table 24.a shows only one of the 66 chromosomes (1.5%) from the samples 

indicating sickle cell trait (Hb FAS) showed the presence o f the G-gamma 

globin gene promoter Xmn I site (Fig.23), i.e. 3.0% maximum of the Hb S 

chromosomes, compared with 27 (16.1%) of the 168 chromosomes from HbFA 

samples carefully selected from the same govemorates as the Hb FAS samples. 

Table 24.b shows the prevalence of Xmn I among HbS chromosomes from 

different govemorates in Yemen and which was only 1.5 % in Sana’a and 

Sana’a City. Table 24.c shows the prevalence of Xmn I among HbFA 

chromosomes which was highest in Abyan and Dhamar (50%), followed by 

Al-Hodiedah (30%), Sana’a and Sana’a City (18%) and were 16.7 % in Lahge
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and Al-Mahweet, 12.9 in Taiz and not detected in the rest govemorates. Table 

24.d compares the prevalence of Xm n  I among chromosomes with and without 

Hb S in both groups, and shows the higher prevalence of Xm n  I among the non 

sickle cell carries.

The Hb S mutation in Yemen is therefore not usually on the Arab-Indian 

haplotype that is associated with a milder clinical course. The western coastal 

part of Yemen that consisted from Taiz, Al-Hodiedah and Haja govemorates 

showed 11 Xm n  I positive chromosomes from 84 total chromosomes among 

the non-Hb S samples and this results gives the prevalence of Xm n  I of 13.1% 

in the western coast of Yemen while among the Hb S group is zero (Table

24.b).

tin

Undigested fragment (641)
(C at p o sition - 158) -

T at. position - 158 j_
Digested fragment (420,220)

Figure 23 Gel electrophoresis o f the polymorphism Xmn  I
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Table 24.a The Xmn I results among sickle cell trait and non-sickle

cell samples

H bFSA Sample No. Mother’s Origin Father’s Origin Xmn I
1 Mot 9 Taiz Sana’a - / -
2 Sab21046 Taiz Taiz - / -
3 Sab 1144 Sana’a Sana’a - / -
4 Sab 1194 Taiz Taiz - / -
5 Sab 1217 Sana’a Sana’a - / -
6 Sab 1238 Haja Al-Hodeidah - / -
7 Sab 1300 Taiz Taiz - / -
8 Sab 1319 Taiz Taiz - / -
9 Sab 1321 Taiz Taiz - / -
10 Sab 1376 Sana’a Sana’a + / -
11 Sab 1591 Al-Hodeidah Al-Hodeidah - / -
12 Sab 1616 Taiz Taiz - / -
13 Sab 1753 Sana’a Sana’a - / -
14 Sab 1765 Taiz Taiz - / -
15 Sab 1794 Taiz Abyan - / -
16 Sab 1719 Sana’a Sana’a - / -
17 Sab 1732 Ibb Ibb - / -
18 Tha334 Sana’a Sana’a - / -
19 Tha 87 Taiz Taiz - / -
20 Tha 553 Taiz Taiz - / -
21 Tha 163 Dhamar Al-Beida - / -
22 Kuw 24 Sana’a Sana’a - / -
23 Kuw 37 Sana’a Sana’a - / -
24 Kuw 41 Taiz Taiz - / -
25 Kuw 69 Sana’a Al-Mahweet - / -
26 Kuw 76 Haja Haja - / -
27 Tha 834 Taiz Taiz - / -
28 Tha 250 Taiz Taiz - / -
29 Tha 261 Taiz Taiz - / -
30 Tha 264 Haja Haja - / -
31 Tha 269 Sana’a Sana’a - / -
32 Tha 423 Amran Amran - / -
33 Tha 493 Sana’a Sana’a - / -
HbFA?
34 Sab 1203 Ibb Ibb - / -
35 Sab 1771 Al-Beida Al-Beida - / -
36 Tha 2 Al-Mahweet Al-Mahweet - / -
37 Tha 402 Dhamar Dhamar + / +
H bFA
38 Tha 59 Dhamar Dhamar + / -
39 Sab 1736 Sana’a Sana’a - / -
40 Sab 1737 Sana’a Sana’a + / -
41 Sab 1738 Sana’a Sana’a - / -
42 Sab 1739 Sana’a Sana’a - / -
43 Sab 1001 Sana’a Sana’a + / -
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44 Sab1002 Al-Hodeidah Al-Hodeidah - / -
45 Sab 1003 Al-Hodeidah Al-Hodeidah - / -
46 Sab 1004 Haja Haja - / -
47 Sab 1005 Dhamar Dhamar - / -
48 Sab 1006 Sana’a Sana’a - / -
49 Sab 1007 Taiz Taiz - / -
50 Mot 1 Ibb Ibb + / -
51 Kuw45 Amran Amran - / -
52 Tha 3 Al-Mahweet Al-Mahweet - / -
53 Tha 23 Taiz Taiz - / -
54 Tha 102 Al-Beida Al-Beida - / -
55 Sab 1201 Haja Haja - / -
56 Sab 1009 Al-Beida Al-Beida - / -
57 Sab 1048 Al-Mahweet Al-Mahweet + / -
58 Sab 1190 Ibb Ibb - / -
59 Sab 1465 Sana’a Sana’a + / -
60 Sab 1466 Sana’a Sana’a - / -
61 Sab 1468 Sana’a Sana’a + / -
62 Sab 1469 Sana’a Sana’a + / -
63 Sab1470 Sana’a Sana’a - / -
64 Sab 1471 Sana’a Sana’a - / -
65 Sab 1472 Sana’a Sana’a - / -
66 Sab 1473 Sana’a Sana’a + / -
67 Sab 1479 Sana’a Sana’a - / -
68 Sab 1480 Sana’a Sana’a - / -
69 Sab 1481 Sana’a Sana’a + / -
70 Sab 1482 Sana’a Sana’a - / -
71 Sab 1483 Sana’a Sana’a - / -
72 Sab 1485 Sana’a Sana’a + / -
73 Sab 1486 Sana’a Sana’a + / -
74 Sab 1487 Sana’a Sana’a - / -
75 Sab 1488 Sana’a Sana’a - / -
76 Sab 1490 Sana’a Sana’a - / -
77 Sab 1493 Sana’a Sana’a - / -
78 Sab 1348 Taiz Taiz + / -
79 Sab 1351 Taiz Taiz - / -
80 Sab 1356 Taiz Taiz - / -
81 Sab 1398 Taiz Taiz - / -
82 Sab 1401 Taiz Taiz - / -
83 Sab 1411 Taiz Taiz - / -
84 Sab 1420 Taiz Taiz + / -
85 Sab 1444 Taiz Taiz - / -
86 Sab 1449 Taiz Taiz - / -
87 Sab 1461 Taiz Taiz - / -
88 Sab 1476 Taiz Taiz + / -
89 Sab 1489 Taiz Taiz - / -
90 Sab 1492 Taiz Taiz - / -
91 Sab 1494 Taiz Taiz - / -
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92 Sab 1498 Taiz Taiz + / -
93 Sab 1507 Taiz Taiz + / -
94 Sab 1515 Taiz Taiz - / -
95 Sab 1519 Taiz Taiz + / -
96 Sab 1522 Taiz Taiz - / -
97 Sab 1527 Taiz Taiz - / -
98 Sab 1539 Taiz Taiz - / -
99 Sab 1547 Taiz Taiz - / -
100 Sab 1550 Taiz Taiz - / -
101 Sab 1593 Taiz Taiz - / -
102 Sab 1602 Taiz Taiz - / -
103 Sab 1606 Taiz Taiz - / -
104 Sab 1639 Taiz Taiz + / -
105 Sab 1740 Taiz Taiz - / -
106 Sab 1756 Taiz Taiz + / -
107 Sab 1303 Al-Hodeidah Al-Hodeidah + / -
108 Sab 1312 Al-Hodeidah Al-Hodeidah - / -
109 Sab 1353 Al-Hodeidah Al-Hodeidah + / +
110 Sab 1436 Abyan Abyan + / -
111 Sab 1514 Abyan Abyan + / -
112 Sab 1400 Haja Haja - / -
113 Sab 1434 Haja Haja - / -
114 Sab 1755 Haja H aja - / -
115 Sab 1777 Haja H aja - / -
116 Sab 1467 Amran Amran - / -
117 Sab 1529 Amran Amran - / -

1-Mother, 2- Al-Sabain, 3- Al-Thawra, 4-K-Al-Kuwait.
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Table 24.b The prevalence oiXmnl among Hb AS samples

Number of Positive Prevalence
Govemorate chromosomes Xmn I X m n I (%)
Sana’a &Sana’a City 20-24 1 1.5
Aden 0 0 0
Taiz 26-30 0 0
Al-Hodiedah 2-4 0 0
Laheg 0 0 0
Ibb 2 0 0
Abyan 0-2 0 0
Dhamar 0-2 0 0
Shabwah 0 0 0
Haja 4-6 0 0
Al-Beida 0-2 0 0
Hadramout 0 0 0
Saadah 0 0 0
Al-Mahweet 0-2 0 0
Al-Mahrah 0 0 0
Mareb 0 0 0
Al-Jawf 0 0 0
Amran 2 0 0
Al-Daleh 0 0 0
Total 66 1 1.5

Table 24.c The prevalence of Xmn I among non-HbAS samples

Numbers of No.of Positive Prevalence
Govemorate chromosomes Xmn I Xmn I (%)
Sana’a &Sana’a City 50 9 18
Aden 0 0 0
Taiz 62 8 12.9
Al-Hodiedah 10 3 30
Laheg 0 0 0
Ibb 6 1 16.7
Abyan 4 2 50
Dhamar 6 3 50
Shabwah 0 0 0
Haja 12 0 0
Al-Baida 6 0 0
Hadramout 0 0 0
Saadah 0 0 0
Al-Mahweet 6 1 16.7
Al-Mahrah 0 0 0
Mareb 0 0 0
Al-Jawf 0 0 0
Amran 6 0 0
Al-Daleh 0 0 0
Total 168 27 16.1
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Table 24.d Comparison between the prevalence of Xmn I among HbAS

and non-HbAS samples in different govemorates in Yemen

Govemorate HbAS (%) Non-HbAS (%)

Sana’a&Sana’a City 1.5 18
Aden 0 0
Taiz 0 12.9
Al-Hodiedah 0 30
Laheg 0 0
Ibb 0 16.7
Abyan 0 50
Dhamar 0 50
Shabwah 0 0
Haja 0 0
Al-Baida 0 0
Hadramout 0 0
Saadah 0 0
Al-Mahweet 0 16.7
Al-Mahrah 0 0
Mareb 0 0
Al-Jawf 0 0
Amran 0 0
Al-Daleh 0 0
Total 1.5 16.1

12.8. Results of the (3 globin gene polymorphisms

Twenty six o f the thirty three o f the sickle cell trait samples (79%) in this study 

showed absence of Xmn I, Hind III/Gy and Hind III/Ay polymorphic sites (Table

25.a) and this pattern is seen in Benin sickle cell haplotype. The polymorphic 

site Hind/Gri showed heterozygous in other 5 samples while Hind III/ Ay showed 

absence in 31 samples. The result o f the polymorphic site Hind Il/e showed 

that 6 samples are absence and twenty six are heterozygous (-/+) where the 

results of the polymorphic sites H inf 1/5’P appeared only 2 samples are absence 

and 2 homozygous positive and the rest are heterozygous (Table 25.b). In 

addition to the 26 samples with Benin pattern haplotype, samples number 11
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and 13 have another Benin haplotype pattern while samples 28 and 30 show 

pattern can be seen in either in Benin or Bantu haplotypes, and sample 32 

showed polymorphic sites pattern seen in either Benin or Cameroon 

haplotypes. Finally, the pattern of the polymorphic sites seen in sample 31 is 

found in the Bantu sickle cell haplotype.

The high heterozygousity results o f Hind II/c, Hinc 11/3’cpp and H inf 1/5’p do 

not exclude the Benin sickle cell haplotype because the absence polymorphic 

site might be located on the allele which carries the hemoglobin S mutation.
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Table 25.a Results of the beta globin gene polymorphic sites

Hb
FSA

Sample
number

Mother’s
Origin

Father’s
Origin

Hind
II/s

Xmn
I

Hind
III/°y

Hind
III/Ay

Hinc
II/3’cp3

H inf
h5’3

1 M ot19 Taiz Sana’a -/+ - - -/- -/- -/+ -/+
2 Sab2

1046
Taiz Taiz -/+ -/- -/- -/- -/+

3 Sab 1144 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+
4 Sab 1194 Taiz Taiz -/+ -/- -/- +/+
5 Sab 1217 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+
6 Sab 1238 Haja Hodeidah -/+ - - -/- -/+ -/+
7 Sab 1300 Taiz Taiz -/+ - - -/+ -/- -/+ -/+
8 Sab 1319 Taiz Taiz -/- -/- -/+ -/+
9 Sab 1321 Taiz Taiz -/+ -/- -/- -/- -/+
10 Sab 1376 Sana’a Sana’a -/+ + / - -/+ -/- -/+ -/+
11 Sab 1591 Hodeidah Hodeidah -/- -/- -/- +/+
12 Sab 1616 Taiz Taiz -/+ -/- -/- -/+ -/+
13 Sab 1753 Sana’a Sana’a -/- -/+ -/- +/+ -/+
14 Sab 1765 Taiz Taiz -/+ - - -/- -/- -/+ -/+
15 Sab 1794 Taiz Abyan -/+ -/- -/- -/+ -/+
16 Sab 1719 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+
17 Sab 1732 Ibb Ibb -/+ - - -/- -/- -/+ -/+
18 Tha3 3 4 Sana’a Sana’a -/+ -/- -/- -/+
19 Tha 87 Taiz Taiz -/+ - - -/- -/- -/+ -/+
20 Tha 553 Taiz Taiz -/+ - - -/- -/- -/+ -/+
21 T h a 163 Dhamar Al-Beida -/+ - - -/- -/- -/+ -/+
22 Kuw 24 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+
23 Kuw 37 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+
24 Kuw 41 Taiz Taiz -/+ - - -/- -/- -/+ -/+
25 Kuw 69 Sana’a Mahweet * -/- -/- -/+ -/+
26 Kuw 76 Haja Haja -/+ - - -/- -/- -/+ -/+
27 Tha 834 Taiz Taiz -/+ -/- -/- +/+
28 Tha 250 Taiz Taiz -/- -/+ * -/+
29 Tha 261 Taiz Taiz -/+ - - -/- -/- -/+ -/+
30 Tha 264 Haja Haja -/+ - - * -/- -/+ -/+
31 Tha 269 Sana’a Sana’a - - * * -/- -/+
32 Tha 423 Amran Amran -/- -/+ * +/+ -/+
33 Tha 493 Sana’a Sana’a -/+ - - -/- -/- -/+ -/+

*No result (no band on the gel electrophoresis)

Benin sickle cell haplotype - - - - + -
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Table 25.b Summary of beta globin gene polymorphic sites results

Results Hind II/e Xmn I Hind
m P y

Hind
III/Ay

Hinc
II/3’(p(3

H inf
I/5’(3

Homozygous negative 6
(18%)

32
(97%)

26
(79%)

31
(94%)

6
(18%)

2
(6%)

Heterozygous
Neg/Pos

26
(39-79)

1
(1.5-3%)

5
(8-15%)

0 23
(35-70%)

29
(44-8%)

Homozygous positive 0 0 0 0 3
(9%)

2
(6%)

No result 1 0 2 2 1 0

12.9. Survey results of the sickle cell anaemia patients

Because the sickle cell anaemia patients were children, their parents or 

relatives answered the questions o f this survey following verbal consent. In 

addition, due to incomplete medical records for most o f the sickle cell patients, 

many of these questions were answered inadequately.

Questions about the sickle cell diagnosis and blood transfusion answered with 

the medical records support.

Table 26.a Age o f the patients (n=86)

Age in years Number of patients %
Less than 5 33 38
6 - 1 2 49 57
1 3 - 1 5 4 5

Table 26.b Diagnosis o f sickle cell disorders for the first time (n=86)
When Diagnosed Number of patients
At birth 0
Before the appearance o f the symptoms 4
After the appearance o f the symptoms 69
During sickle cell complications 13
On death. 0

Eighty percent of the patients were diagnosed for first time with sickle cell 

disorder after the appearance o f clinical signs and symptoms while 15% during 

the complication of the disorder and 5% before the appearance of the clinical 

symptoms. No patients were diagnosed at birth.
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Table 26.c How was sickle cell disorder diagnosed? (n=86)
Method o f sickle cell diagnosis Number of patients
Clinical signs and symptoms, family health 
history, blood smear

26

Clinical signs and symptoms, family health 
history, blood smear, sickling test

30

Clinical signs and symptoms, family health 
history, blood smear, sickling test, haemoglobin 
electrophoresis test

30

Other methods (HPLC, IEF, DNA Studies) 0

In addition to the clinical, family history and physical signs in 30% of the 

patients the only other laboratory test done to confirm the diagnosis was blood 

smear. In 35% of the patients, the diagnosis was confirmed with a sickling test 

while the reminder had haemoglobin electrophoresis. None o f the patient had 

HPLC, IEF or DNA analysis.

Table 26. d Health care after the diagnosis sickle cell disorder (n=86)
Heath care after diagnosis Number o f patients
Knowing sickle cell patient registry 0
Knowing sickle cell association 0
Knowing sickle cell health centre 0
Having sickle cell disorders card 0
Doing regular health evaluation 9
Doing regular or often laboratory tests 52
Knowing what is sickle cell disorder 42
Knowing what to do during crisis 58
Avoiding sickle cell disorder in the future 82
Having written materials about sickle cell 0

Table 26.e Sickle cell management (n=26)
Sickle cell management Number of patients
In crisis, do you go to hospital or clinical centre 82
Treating by haematologist 0
Using haematinics 86
Using antibiotic as prophylactic 0
Having immunizations (BCG, Diphtheria, Tetanus, 
Portusis, Measles, Polio, Hepatitis B)

82

Instructing to improve your hygiene 59
Instructing to improve your quality o f the food 61
Avoiding extreme weather 82
Avoiding dehydration 82
Using chelating agent 0
Using hydroxyurea 0
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hygiene and nutrition. Ninety-five precent o f the patients was advised to avoid 

extreme weather and dehydration.

Table 26.f Hospitalisation of sickle cell patients each year (n=86)
Hospitalisation each year Number o f patients
One 4
Twice 9
Three times 30
More than three times 43

Most of the patients (84%) were hospitalised three or more times per year 

where few (15%) of the patients were hospitalised twice or less.

Table 26.g Hospitalisation period o f sickle cell patients each year (n=86)
Period of hospitalisation each year Number of patients
7 days or less 2
One month or less 76
More than a month 8

Most of the patients (88%) hospitalised for a period between one week and a 

month.

Table 26.h Blood transfusion services for sickle cell patients (n=86)
Transfused blood Number of patients
Fresh blood 0
Stored blood 86
Blood from relatives 44
Blood from blood bank 42
Cross matching with ABO Rh 86
Cross matching with ABO Rh +Kell antigen 0
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About 36% of the patients had transfused blood between 1000 and 2000 mm 

with whole blood each year where 31% had more than 2000 ml and only 6% of 

the patients had less than 1000 ml of blood. Twenty-three patients (27%) did 

not know the quantity o f the transfused blood.

Table 26.j Cost o f health care for sickle cell patient (n=86)_______
Cost o f health care Number of patients
Cost o f blood transfusion 86 (partially paid)
Cost o f the prescriptions 86
Cost o f hospitalisation 86 (partially paid)

All the patients paid all the cost o f their prescriptions and partially for the 

hospitalisation and blood transfusion.

Causes of death

All the conducted patients were alive at the time of the interview. Three 

doctors worked with sickle cell patients in AI-Thawra Hospital were 

interviewed to answer this question, and they suggested that the major causes 

of death among the sickle cell patients were severe anaemia and infections. 

The blood transfusion services are existed only in main hospitals that were 

built in large cities where only 26% of the population live in. Patient’s family
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Haja, Al-Hodeidah and Taiz govemorates the Hb S gene frequency probably 

ranges from 0.0185 to 0.0500, and is 0.035 to 0.044 for these combined 

regions. The southern govemorates such as Abyan shows a Hb S gene 

frequency of zero to 0.0385, and no Hb S was detected amongst samples from 

the eastern and southern (desert) parts o f the country such as Mareb, Al-Jawf, 

Shabwah, Hadramount, Al-Mahrah, Aden, Laheg and Al-Daleh.

Three of the 38 samples showing haemoglobin variants contain non-P globin 

gene variants and further investigations are required to identify them. The 

study has demonstrated the first recorded case o f Hb G Coushatta in the 

Yemeni population. One of the 66 chromosomes (1.5%) from the sickle cell 

trait samples showed the presence o f the G-gamma globin gene promoter Xmn 

I site compared with 27 (16.1%) of the 168 chromosomes from Hb FA samples 

selected from the same govemorates as the Hb FAS samples. In 79% of the 

sickle cell trait samples, absence of Xmn I, Hind Ill/^y and Hind IH/Ay 

polymorphic sites in same sample were found.

A survey of patients/families with sickle cell anaemia showed there is no 

national patient register for sickle cell diseases in Yemen, and no patient
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knew that sickle cell is a sort o f genetic blood disorder and to some extent that 

they have crescent shaped cells. Also 67% of the patients went to emergency 

departments in hospital during crisis.

13.2 Internal validity of the findings

Despite careful supervision and communication regarding the manner in which 

the cord blood should be collected maternal blood was present in a small 

number o f samples. Neonatal blood collection would avoid this problem but 

would have been much more difficult to organise.

The total samples were collected from people from different regions o f Yemen 

living in the capital, Sana’a City, therefore these samples were representative of 

the population of Yemen. The number of samples collected form the southern 

govemorates was often too small for any firm conclusion to be drawn.

The absence of any homozygous Hb S samples in this study is probably due to 

a low number of samples from the west coastal govemorates (Haja, Taiz and 

Al-Hodeidah) comprising only 15.2% of the total (228 of 1500).
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sickle cell trait samples in this study is not determined.

13.3 External validity of the findings

It is estimated that the annual number of malaria cases in Yemen is around 3 

million (134) and the highest Hb S gene frequency was found in samples from 

the endemic malarial area that is the west coastal part o f the country adjacent to 

the sea separating it from east Africa. In samples from the west coastal part of 

Yemen the Hb S gene frequency is 0.035 to 0.044. This is lower ip <0.01; %2 

test) than the 0.0765 frequency recorded in southwest Saudi Arabia, the 

geographic extension of the west coastal strip o f Yemen (66). A similar 

magnitude o f difference was observed between samples from the highest 

frequency localities and those from their eastern neighbours including Sana’a 

city.

The prevalence of Hb S in the eastern govemorates adjacent to Oman’s border 

showed almost no cases o f sickle cell trait and this agreed with the very low 

prevalence o f sickle cell gene found in Dhofar region, West o f Oman (70).



samples mat were laenunea m tms stuay.

The pattern o f absence of Xmn I, Hind III/Gy and Hind III/Ay polymorphic sites 

is present in the Benin sickle cell haplotype and not in the Arab-Indian sickle 

cell haplotype. Therefore, the predominant sickle cell haplotype in Yemen is 

the African haplotype, more likely the Benin haplotype. This is supported by 

the findings o f El-Hazmi (1999) study that showed the prevalence of the Benin 

sickle cell haplotype is 98.5% in the south western region of Saudi Arabia (69). 

This region is the geographic extension of the Yemeni western costal part, in 

which the prevalence of the sickle cell gene is the highest in this study.

The prevalences studies that were performed in Saudi Arabia (66), Oman (70), 

Bahrain (72) and United Arab Emirates (62) are completely or partially 

hospital based studies and samples were collected from both healthy and 

unhealthy individuals seeking medical help from health centres, outpatient 

clinics, hospital wards. Therefore, the results of these studies o f such selected 

group of patients can be biased. In these studies, some of their samples were 

collected from adults, which may have underestimated prevalence of sickle cell
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would predict a homozygous birth rate o f approximately 1 in 520 to 1 in 692. 

This may be somewhat higher depending upon the proportion of 

consanguineous marriage and marriages within the same tribe, and easily 

missed in a sample size o f 228. In those areas where double heterozygosity for 

P thalassaemia and Hb S occurs the rate o f births affected by sickle cell 

disorders will be higher than that predicted from the frequency of Hb S alone.

Results o f HPLC suggest the absence of P° thalassaemia, since all the samples 

showed presence of haemoglobin A. The absence o f any of these 

haemoglobins C, E, and D indicates their prevalences are very low in Yemen.

Further investigations are needed to determine alpha chain and gamma chain 

variants involved in this study and reported as non-beta globin chain. 

Haemoglobin G Coushatta is not o f clinical importance but other Hb variants 

and thalassemia may be, and it would therefore be important to study their 

prevalence in Yemen.
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and Hind III/Ay polymorphic sites on the beta globin cluster in the sickle cell 

trait samples o f this study.

The presence of the African sickle cell haplotype in Yemen, like the Benin 

haplotype, matches the clinical severity o f the sickle cell clinical course among 

Yemeni patients as indicated by the survey results in this study.

The Benin sickle cell haplotype, which is found in south western Saudi Arabia 

(69,135), probably came from central West Africa through the slave trade 

routes and perhaps subsequently to the western region of Yemen. The Hb S 

gene in the other side of the Red Sea that separates Yemen from African 

countries- Ethiopia, Somalia and Djibouti showed prevalences o f 0 -1% which 

are much lower than that in western part o f Yemen. Therefore, the existence of 

the Benin sickle cell haplotype in Yemen supports the argument of Nagel 

(1991) and Kulozik (1986) who suggested that population of West Africa that 

have African haplotypes have migrated to North Africa, the Mediterranean, 

then to Southwest o f the Arabian Peninsula (136,137) where Yemen is located.
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in Yemen are mainly children, perhaps due to poor survival o f sickle cell 

patient to adult life. The high amount of the transfused blood (more than 1000 

ml/year/patient) in 67.4% of the patients, the high frequency of hospital 

admission (three or more times in a year) in 84.9% of the patients and the long 

time o f hospitalisations (8-30days) in 97.7% of the patients suggest that 

patients suffer frequently from health problems related to their sickle cell 

disorder due to either the severity of the sickle cell disorder or poor health care 

services or both.

Ninety-five precent o f the sickle cell patients were diagnosed either after the 

appearance of clinical symptoms or complications. This suggests the absence 

of neonatal and antenatal screening programmes for sickle cell in Yemen. 

None of the patients were diagnosed by HPLC, IEF or DNA studies which 

demonstrate the limitations of clinical laboratory services in the hospitals of 

Sana’a City, Yemen, and suggests DNA analysis services have not been 

implemented yet in these laboratories.
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diseases such as malaria infection, tuberculosis and schistosomiasis, in addition 

to the poor health administration in Yemen might be also responsible for the 

neglect o f these disorders in Yemen.

The absence of use the hydroxyurea or chelating agent (desferal) in cases o f 

iron overload, suggests doctors may have no experience of using these 

treatments in sickle cell patients.

No transfused blood had been cross-matched with Kell group, which suggests 

poor skill, limited knowledge or inadequate financial resources for the blood 

transfusion services. Only about half o f the patients knew their sickle cell 

disorder and about half of the patients attended hospitals for regular laboratory 

tests or health evaluation, which indicates a poor level o f knowledge in these 

patients or their relatives about sickle cell disorder.

A wider survey is required to determine the definite clinical characteristics of 

sickle cell disorder in Yemen, since the sickle cell patients that were included 

in this survey were only those who attended hospitals in the Sana’a City. They 

were seeking help because o f their suffering from the sickle cell disorder, but
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might have been missed the mild sickle cell or misdiagnosed patients who did 

not attended the hospital.

This survey was carried out among sickle cell patients attended hospitals in 

Sana’a City. The health situation may be worse for sickle cell patients who 

live away from these health institutes, particularly the western coastal part o f 

Yemen, where we found the highest prevalence of sickle cell gene.

This study suggests a higher Hb S gene frequency amongst babies bom in the 

capital city o f Yemen than obtained previously on migrants from the Yemen 

(62,64). In addition, it goes further by demonstrating an uneven distribution of 

the Hb S gene amongst people from different govemorates, and the 

predominant o f non- Arab- Indian (Benin) sickle cell haplotype in Yemen. 

These findings are important because they raise the possibility that services can 

be targeted at those most in need thus saving valuable resources. The 

communities most at risk in Taiz, Al-Hodeidah and Haja are not those who 

reside near hospitals and would therefore benefit from the development of 

community health services. An obvious limitation of the study is the inability
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more precisely. Nevertheless from this study findings sickle cell anaemia is 

expected to be a particular problem in the western part o f Yemen to which 

health resources and health education for families affected could be directed.

15. CONCLUSION

The results of this study suggest an overall HbS gene frequency is 0.011 with a 

higher frequency in the western coastal part o f Yemen than in the central 

mountainous and eastern desert areas. The incidence of affected homozygous 

births may reach 20/10,000 in western areas although it is lower than this 

overall. Analysis o f sickle cell haplotype in Yemen indicated it most likely 

belongs to the Benin haplotype that has a severe sickle cell clinical course. 

Results o f the sickle cell anaemia patients survey show that the clinical services 

provided to the sickle cell patients in Yemen are very poor.

Limited health resources can best be invested in developing a program of 

education, premarriage counselling, screening and health care, prioritising 

those communities residing in the western areas o f Yemen with the highest Hb 

S gene frequency.
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and debris.
5. The HPLC run is then set up using a prime sample.
6. The gradient used and run criteria were follows:

Acquisition Set up
Sampling frequency 5.0 Hz
Runtime 8.5 minutes
Acquisition Delay 0.0

Gradient
Time % Concentration of buffer B*

0.10 18.0
5.80 68.0
5.81 100.0
6.60 100.0
6.61 18.0
8.50 00.0 STOP

* Supplied with beta thalassaemia testing kit (Chromsystems Instruments & 
Chemicals, GmbH, Munchen, Germany)

Analysis window set up
Name of Window Retention time (min) Window width (min)
?F1 (acetylated Hb F) 0.7 0.4
Hb F 0.8 0.6
HbA 4.6 0.8
HbA2 5.3 0.8
Hb S 6.23 0.8
Hb C 8.0 0.8

Following the analysis run, the chromatograms are analysed quantitatively for the 
presence o f peaks not normally present in neonatal dried blood spot samples.
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Samples extraction
A 6 mm disc out o f the dry blood spot is used to prepare the haemolysate o f eac 

blood sample. A 50ul o f haemoglobin elution solution is added on the dry blood disc 
small tube. Then the tube is mixed for 15 minutes. After the disc has been removed ti 
tube is spun and the clear elution o f the haemolysate can be used for analysis.
Method
1. Turn on water to cool plate. Clean plate.
2. Remove gel form packing.
3. Put a drop of water on the centre o f the plate.
4. Place gel on the plate.
5. Blot gel gently with one Gel Blotter.
6. Set up anode and cathode wicks.
7. Place the sample template onto the gel so that it buts-up against the cathode wick.
8. Pipette 7.5 pi o f sample lysate onto the appropriate well on the template.
9. Put on internal IEF chamber top. Connect the electrode connectors.
10. Put on the top cover.
11. Run at 1.5kV, 18 mA for 1 hour and 30 minutes.
12. Place gel in protein fixation for 10 minutes.
13. Wash in large quantities o f distilled water for 15 minutes.
14. Dry the gel at 50 -  60 0C for about 20 minutes.
15. If staining is required. Use Isolab Gel Stain.
16. Wash in water for 5 minutes.
17. De-stain plate until background is clear in (5 parts water/ 5 parts methanol/ 1 part 

glacial acetic acid)
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into eacti tube 24 pi 0 1  tne mastermix ana lpi djna extract (sample;.

Conditions of PCR:
95 °C 9 min 

40 cycles:
94°C 30 sec 
62 °C 30 sec 
72 °C 1 min 

72 °C 10 min

Dde I Digestion for HbS
Per tube: 5.6 pi water

1.4 pi NEB3
0.52 pi Dde I, 10,000 U/ml

7 pi buffer + 7 pi PCR product

Incubate at 37 °C for 3-6 hours or preferably overnight.

Gel electrophoresis
3.0% NuSieve agarose gel electrophoresis:
(1.5 g in 50 ml 0.5xTBE buffer + 1 pi 2.5 mg/ml ethidium bromide)
TBE buffer (0.89M Tris, 0.89M Boric acid, 0.02M Na2 EDT, final pH 8.3)

Electrophoresis tank preparation:
(400 ml buffer + 12 pi ethidium bromide)
15 pi o f the PCR product + 2 pi o f loading dye (200 plIM Tris HCL - pH 8.0,
5 ml glycerol, 4.8 ml water, 1.0 mg Bromophenol blue)

Running time is 40 minutes at 150V.
Photographing of gel: The gel is placed onto an UV transilluminator and 
viewed and the gel can be photographed.

Interpretation:
The undigested fragment is 351 bp in size
5 Dde I restriction sites exist normally one of which is abolished by the HbS mutation.
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p i  O L N irS

pi primers 
017 pi Taq Gold

Into each tube 23.5 pi o f the mastermix and lp l DNA extract (sample). 

Conditions of PCR:
95 °C 9 min

37 cycles:
93 °C 1 min 
66 °C 2 min

66 °C 10 min

The product size is 861 bp

Digestion with EcoRl
36 pi water
4 pi React 2 1 Ox buffer
2 pi 12 Units/pl Eco R1

5 pi enzyme/ buffer + 5 pi PCR product, 
incubate at 37 °C for at least 3 - 6  hours.

Gel electrophoresis as in Appendix C 

Interpretation
HbAA gives bands of sizes 554 and 307 bp.

Hb AD gives bands of sizes 861, 554, and 307 bp.
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Into each tube 23.5 pi of the mastermix and lpl DNA extract (sample).

Conditions of PCR:
95 °C 10 min 
40 cycles: 
94°C 30 sec 
56 °C 30 sec 
72 °C 1 min

72 °C 10 min

Digestion
Per tube:

5.45 pi water
1.4 pi NEB3
0.14 pi BSA
0.24 pi enzyme Xmn 120U/pl

7 pi o f this tube + 7 pi PCR product

Incubate at 37 °C for 6 hours or preferably overnight.

Gel electrophoresis as in Appendix C except the agarose gel is 2% 

Interpretation
Undigested fragment size is 641 bp (C at position -158)
Digested fragments (420 + 220 bp) ( T at position -  158)
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