

 Swansea University E-Theses ___

Mesh generation for large-scale and complex computational

simulation.

Larwood, Benjamin Guy

 How to cite: ___
Larwood, Benjamin Guy (2003) Mesh generation for large-scale and complex computational simulation.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42722

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42722
http://www.swansea.ac.uk/library/researchsupport/ris-support/

School of Engineering
University of Wales Swansea

r«e?rr-n«*

M e s h G e n e r a t io n f o r L a r g e -S c a l e a n d
C o m p l e x C o m p u t a t io n a l S im u l a t io n

BENJAMIN GUY LARWOOD
BEng (Hons), MSc

t

Thesis submitted to the University of Wales in candidature for the degree of
Doctor of Philosophy

April 2003

ProQuest Number: 10807491

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807491

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration
This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signed (Candidate)

Date ^

Statement 1
This thesis is the result of my own work/investigation except where otherwise stated.
Other sources have been acknowledged by footnotes giving explicit references. A
bibliography is appended.

Signed (Candidate)

Date ^

Statement 2
I hereby give consent for my thesis, if accepted, to be available for photocopying and for
inter-library loans, and for the title and summary to be made available to outside
organisations.

Signed

Date 3.

(Candidate)

A c k n o w l e d g e m e n t s

I would like to express my gratitude to Nigel Weatherill for giving me the chance to
study for this PhD. The encouragement and guidance that I received from Nigel, Oubay
Hassan and Ken Morgan made the time that I spent at Swansea University enjoyable.

My partner Jeni Batchelor deserves a special mention for the emotional support
throughout the long days. I would like to thanks my parents, Allan and Carolyn, and my
sister Lucy, for always being at the end of a telephone line for moral support.

My thanks also go to my friends in Swansea, Jason Jones, James MacFadden, Matthew
Profit, Dan van der Leer and at home who provided support in times of debugging
despair. Finally to Lynette and Anne, for just being there.
(Something like that would do nicely)

S u m m a r y

This thesis presents work in the area of mesh generation for large scale and complex
computational simulation. The work covers two areas of great interest within the field of
mesh generation; anisotropic mesh generation and parallel large scale mesh generation.
Examples of anisotropic Delaunay mesh generation are presented with application to
fluid dynamics and computational electromagnetic scattering simulations. Results are
shown with reference to simulation accuracy and computational efficiency.
Research into parallel mesh generation is presented and a method of parallel Delaunay
mesh generation suitable for use on distributed and shared memory parallel computers is
described. Results are shown with reference to computational efficiency, memory usage
and finale mesh quality. Examples of meshes generated in parallel are shown for both
computational fluid dynamics simulations on simple aeronautical geometries to full
aircraft and computational electromagnetic scattering simulations on full aircraft. The
meshes range in size from a few thousand tetrahedral elements to a mesh for a
computational electromagnetic simulation containing approximately one billion
tetrahedral elements.

..9

17

19

22

25

26

29

30

40

46

47

48

49

57

57

55

57

57

59

,64

,65

65

Table of Contents

1 INTRODUCTION...

2 SEQUENTIAL MESH GENERATION METHODS

2.1 S t r u c t u r e d M e sh G e n e r a t io n M e t h o d s

2 .2 U n s t r u c t u r e d M e sh G e n e r a t io n M e t h o d s

2 .3 S u m m a r y ..

3 DELAUNAY MESH GENERATION.........................

3.1 L it e r a t u r e R e v ie w ...

3 .2 D e l a u n a y T r ia n g u l a t io n ...

3.2.1 User specification o f ellipses..........................

3.2.2 Line and Point Metric Specification...............

3.2.3 Metric Intersection...

3 .3 A n iso t r o p ic M e sh A d a p t a t io n

3.3.1 Metric Derivation................

3.3.2 Dataset Derivation...

3.3.3 Edge Evaluation..

3.3.4 Cavity Restriction..

3 .4 R e s u l t s ..

3.4.1 Academic Example...

3.4.2 NA CA A erofoil Example..................................

3 .5 Su m m a r y ..

4 PARALLEL MESH GENERATION..........................

4 .1 In t r o d u c t io n ...

M esh Generation fo r Large Scale an d C om plex C om putational Sim ulation

1

4 .2 L it e r a t u r e Re v ie w ... 71

4 .3 Iso t r o pic P a r a l l e l M e sh G e n e r a t io n ... 74

4.3.1 Domain Decomposition Technique... 74

4.3.2 Load Balancing for Volume Mesh Generation.. 102

4.3.3 Volume Mesh Generation..112

4.3.4 Post Volume Mesh Generation Processes...113

4 .4 M u l t i P h y s ic s l e d E x t e n s io n s t o t h e P a r a l l e l M e s h G e n e r a t o r 129

4.4.1 Semi-Structured Layer Generation... 130

4.4.2 Computational Fluid Dynamics Application..138

4.4.3 Computational Electromagnetics Application..140

5 PARALLEL MESH GENERATION RESULTS... 143

5.1 CFD R e s u l t s ..143

5.1.1 M6 Wing Geometry.. 143

5.1.2 F I5 Military Aircraft Geometry.. 144

5.1.3 FI 6 Military Aircraft Geometry.. 146

5.1.4 EADS Gulf stream Commercial Jet... 152

5 .2 CEM Re s u l t s .. 152

5.2.1 Aerospace Engine Duct Simulation.. 153

5.2.2 Dassault Falcon Simulation...156

5.2.3 Trihedral Cavity Simulation... 158

6 CONCLUSION...162

APPENDIX A ..166

REFERENCES..169

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

Table of Figures

F ig u r e 1 S im u l a t io n p r o c e s s ...11

F ig u r e 2 A n a l o g y o f c u r v e f it t in g .. 12

F ig u r e 3 T y p ic a l m e s h siz e s f o r r e s o l v in g d if f e r e n t f l o w fe a t u r e s o n a n

AEROSPACE GEOMETRY...15

F ig u r e 4 N u m b e r in g s c h e m e o f a s t r u c t u r e d m e s h ... 17

F ig u r e 5 U n s t r u c t u r e d m e s h e x a m p l e ... 18

F ig u r e 6 St r u c t u r e d m e s h e x a m p l e ...19

F ig u r e 7 M u l t ib l o c k m e s h e x a m p l e .. 21

F ig u r e 8 A d v a n c in g f r o n t m e t h o d ...23

F ig u r e 9 V o r o n o i R e g io n s o f a se t o f n o d e s ..2 4

F ig u r e 10 S o l u t io n r e s o l u t io n ... 27

F ig u r e 11 D ir e c t io n a l p o in t d e n s it y l e a d in g t o e l e m e n t s w it h l a r g e a s p e c t

r a t io ...28

F ig u r e 12 D is t a n c e f o r D e l a u n a y e v a l u a t i o n ... 31

F ig u r e 13 D e l a u n a y s a t is f y in g c o n n e c t io n ..32

F ig u r e 14 D e l a u n a y v io l a t in g c o n n e c t io n .. 32

F ig u r e 15 P o in t a n d l in e s o u r c e s in t w o -d im e n s io n s ...33

F ig u r e 16 Iso t r o pic D e l a u n a y t r ia n g u l a t io n ..35

F ig u r e 17 A n iso t r o p ic D e l a u n a y t r ia n g u l a t io n ... 3 6

F ig u r e 18 A p p r o x im a t io n t w o d i a g r a m 39

F ig u r e 19 M e s h r e s u l t in g f r o m iso t r o p ic m e t r i c ..41

F ig u r e 2 0 M e s h r e s u l t in g f r o m a n is o t r o p ic m e t r ic .. 4 2

F ig u r e 21 M e sh r e s u l t in g f r o m a n is o t r o p ic m e t r ic .. 4 2

F ig u r e 22 M e s h r e s u l t in g f r o m a n is o t r o p ic m e t r ic .. 43

M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

3

F ig u r e 23 M e sh r e s u l t in g fr o m a n iso t r o p ic m e t r ic ..43

F ig u r e 2 4 M e sh r e su l t in g fr o m a n iso t r o p ic m e t r ic ..43

F ig u r e 25 M e sh r e su l t in g fr o m a n iso t r o p ic m e t r ic ..4 4

F ig u r e 2 6 M e s h r e s u l t in g fr o m a n iso t r o p ic m e t r ic ..4 4

F ig u r e 2 7 M e sh r e su l t in g f r o m a n iso t r o p ic m e t r ic ..4 4

F ig u r e 2 8 P o in t m etr ic s o u r c e sp e c if ic a t io n w it h o u t in t e r p o l a t io n45

F ig u r e 2 9 L in e M etr ic sp e c if ic a t io n f o r a sim pl e s q u a r e d o m a i n 4 6

F ig u r e 3 0 M etr ic In t e r s e c t io n e x a m p l e .. 48

F ig u r e 31 M e s h A d a p t a t io n C y c l e .. 4 9

F ig u r e 32 In t e r io r E d g e R e f in e m e n t ...53

F ig u r e 33 In t e r io r E d g e C o a r s e n i n g ... 54

F ig u r e 3 4 B o u n d a r y E d g e R e f in e m e n t ... 54

F ig u r e 35 B o u n d a r y E d g e C o a r s e n in g ... 55

F ig u r e 3 6 N o n m o d if ie d c a v it y ..56

F ig u r e 3 7 M o d ifie d C a v i t y ..57

F ig u r e 38 In it ia l m e sh a n d s o l u t io n ...58

F ig u r e 3 9 A d a p t e d m e sh a n d n e w so l u t io n c o m p u t e d f r o m a p r e v io u s m e sh a n d

SOLUTION... 59

F ig u r e 4 0 In it ia l iso t r o pic N A C A 0 0 1 2 m e s h ... 60

F ig u r e 41 C p p l o t fo r N A C A A e r o f o il w it h iso t r o pic a d a p t a t io n61

F ig u r e 4 2 C p p l o t fo r N A C A a e r o f o il w it h a n ist r o p ic a d a p t a t i o n 61

F ig u r e 43 Is o m e s h a d a p t a t io n m u l t im e s h s c h e m a t ic ..62

F ig u r e 4 4 A n iso p t r o p ic a d a p t a t io n m u l t im e s h s c h e m a t ic ..63

F ig u r e 45 S e q u e n t ia l a l g o r it h m f o r m a t r ix m u l t ip l ic a t io n ...68

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

4

F ig u r e 4 6 G e n e r ic w in g -b o d y g e o m e t r y sh o w in g d o m a in d e c o m p o s it io n a n d

INTER-DOMAIN MESHES IN BLUE... 76

F ig u r e 4 7 D o m a in d e c o m p o sit io n s t r a t e g y ... 78

F ig u r e 4 8 F l o w c h a r t f o r s l a v e p r o c e ss o p e r a t io n s f o r d o m a in d e c o m p o s it io n

..79

F ig u r e 4 9 A r b it r a r y c u t t in g p l a n e d e c o m p o s it io n o f t h e E A D S G u l f s t r e a m .. 84

F ig u r e 5 0 C l o s e -u p o f d o m a in d e c o m p o s it io n ... 84

F ig u r e 51 C u t t in g p l a n e a n d l e a d in g e d g e m e s h p r o b l e m ..85

F ig u r e 52 In v a l id r e g io n s f o r T h r u s t S u p e r s o n ic c a r t e s t c a s e87

F ig u r e 53 R a w e d g e e x t r a c t io n f o r E A D S G u l f s t r e a m ... 88

F ig u r e 54 S im pl e s y s t e m o f e d g e s to sh o w w e ig h t in g p a t h .. 90

F ig u r e 55 E d g e s s m o o t h e d f o r G u l f s t r e a m ..9 0

F ig u r e 56 R e g io n s f o r m e sh in g a f t e r e d g e e x t r a c t io n ..92

F ig u r e 57 R a y -L in e in t e r s e c t io n ...93

F ig u r e 58 Su m a n g l e s m e t h o d ..93

F ig u r e 59 M a r k in g o f f a c e s b y o r ie n t a t io n ..95

F ig u r e 6 0 P s u e d o c o d e f o r f l o o d fil l p r o c e d u r e ... 95

F ig u r e 61 S m o o t h in g o f e d g e p a t h s ..97

F ig u r e 6 2 B a c k g r o u n d m e s h f o r D a s s a u l t F a l c o n g e o m e t r y 98

F ig u r e 63 In t e r s e c t in g in t e r -d o m a in a n d o r ig in a l m e s h w it h p o in t in s e r t io n 100

F ig u r e 6 4 In t e r s e c t in g in t e r -d o m a in b o u n d a r y in t w o d i m e n s i o n s 101

F ig u r e 65 P o in t in s e r t io n t o a l t e r th e m e s h p r o f il e ...101

F ig u r e 6 6 T w o d im e n s io n a l d o m a in d e c o m p o s it io n ..104

F ig u r e 6 7 R e s u l t in g g r a p h f r o m d e c o m p o s it io n .. 104

F ig u r e 68 G r a p h of d e c o m p o sit io n o f a n F I 6 s im u l a t io n m o d e l 105

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

5

F ig u r e 69 T a b l e o f C o m m u n ic a t io n c o st s f o r d if f e r e n t a s s im il a t io n t e c h n iq u e s

 106

F ig u r e 7 0 G r a p h t o sh o w n u m b e r o f b o u n d a r y f a c e s p e r s u b -d o m a in f o r

DIFFERENT ASSIMILATION TECHNIQUES.. 106

F ig u r e 71 L o a d B a l a n c e f o r 4 S u b -D o m a in G u l f s t r e a m D e c o m p o s it io n 107

F ig u r e 72 M P E D a t a l o g g in g f o r 6 4 d o m a in o v e r -d e c o m p o s it io n 108

F ig u r e 73 M P E D a t a l o g g in g f o r 128 d o m a in o v e r -d e c o m p o s it io n109

F ig u r e 74 L o a d B a l a n c e f o r 8 Su b -D o m a in F I 6 D e c o m p o s it io n 110

F ig u r e 75 M P E D a t a l o g g in g f o r 2 5 6 o v e r -d e c o m p o s it io n o f t h e F I 6 G e o m e t r y

 110

F ig u r e 7 6 S l iv e r s g e n e r a t e d b y D e l a u n a y m e s h g e n e r a t io n 114

F ig u r e 77 E d g e s w a p p in g in t w o -d im e n s io n s ... 115

F ig u r e 78 E l e m e n t c o l l a p s in g a n d l o c a l r e t r ia n g u l a t io n ... 115

F ig u r e 7 9 In t e r d o m a in e l e m e n t q u a l it y p r o b l e m ...117

F ig u r e 80 P s u e d o - s e q u e n t ia l c o sm e t ic s s t r u c t u r e .. 118

F ig u r e 81 T w o d im e n s io n a l e l e m e n t e x t r a c t io n e x a m p l e ... 119

F ig u r e 82 P a r a l l e l c o sm e t ic s p r o c e ss s t r u c t u r e ...120

F ig u r e 83 T w o d im e n s io n a l d o m a in d e c o m p o sit io n s h o w in g in d e p e n d e n t t a s k s

 121

F ig u r e 84 E r r o r p r o p a g a t io n t h r o u g h t h e m e sh in u n s t r u c t u r e d m e s h in g 124

F ig u r e 85 T w o s u b -d o m a in e l e m e n t p a s s in g e x a m p l e ..125

F ig u r e 86 R e s u l t s o f p a r a l l e l c o sm e t ic s f o r 2 p a r t it io n d o m a in d e c o m p o s it io n

 126

F ig u r e 87 Re s u l t s o f p a r a l l e l c o sm e t ic s f o r 16 p a r t it io n d o m a in

DECOMPOSITION...126

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

6

F ig u r e 88 T w o -d im e n s io n a l c o m m u n ic a t io n e x a m p l e .. 128

F ig u r e 89 P o in t p l a c e m e n t sc h e m e fo r A d v a n c in g F r o n t M e t h o d131

F ig u r e 9 0 N o r m a l a v e r a g in g fo r n o d a l v a l u e s .. 131

F ig u r e 91 P o in t p l a c e m e n t s c h e m e fo r Ad v a n c in g La y e r M e t h o d132

F ig u r e 92 P r o g r a m st r u c t u r e f o r p a r a l l e l a d v a n c in g l a y e r m e t h o d 133

F ig u r e 93 P a r t it io n e d s u r f a c e m e s h f o r v is c o u s p a r a l l e l g e n e r a t io n 134

F ig u r e 94 T w o s u b -d o m a in s h o w in g g h o st c e l l s f o r c o m p a t ib il it y 135

F ig u r e 95 V is c o u s F e n c e s f o r t h e E A D S G u l f s t r e a m .. 137

F ig u r e 9 6 V is c o u s F e n c e s f o r M 6 W i n g .. 137

F ig u r e 97 E l e m e n t c r e a t io n f o r a d v a n c in g l a y e r m e t h o d ...140

F ig u r e 98 G r a p h of m e s h r e q u ir e m e n t s fo r sc a t t e r in g o f a n e l e c t r o m a g n e t ic

WAVE ACROSS 2 0 M AIRCRAFT... 141

F ig u r e 9 9 PE C S ph e r e sl ic e t h r o u g h m e s h ..142

F ig u r e 100 O N E R A M 6 w in g a n iso t r o p ic m e s h .. 144

F ig u r e 101 W o r k l o a d f o r 4 F I 5 S im u l a t io n ...145

F ig u r e 102 F o u r F I 5 D e n s it y P l o t s ... 145

F ig u r e 103 W o r k L o a d f o r 2 F I 5 S im u l a t io n ...146

F ig u r e 104 2 F I 5 D e n s it y P l o t s ...146

F ig u r e 105 F I 6 3 2 s u b -d o m a in d e c o m p o s it io n ...147

F ig u r e 106 S pe e d u p g r a p h f o r F 1 6 g e o m e t r y ...148

F ig u r e 107 L o a d B a l a n c e (e l e m e n t s) f o r t w o s u b -d o m a in F I 6 m e s h149

F ig u r e 108 L o a d B a l a n c e (e l e m e n t s) f o r f o u r S u b -d o m a in F I 6 m e s h149

F ig u r e 109 L o a d B a l a n c e (e l e m e n t s) f o r e ig h t s u b -d o m a in F 1 6 m e s h150

F ig u r e 110 L o a d b a l a n c e (e l e m e n t s) f o r t w e l v e s u b -d o m a in F 16 m e s h150

F ig u r e 111 L o a d b a l a n c e (e l e m e n t s) f o r t h ir t y -t w o s u b -d o m a in F 1 6 m e s h 151

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

7

F ig u r e 112 F16 a s s im il a t e d m e sh s h o w in g s u b -d o m a in e d g e s151

F ig u r e 113 EADS G u l f st r e a m a n iso t r o p ic m e s h ..152

F ig u r e 114 D u c t G e o m e t r y ..154

F ig u r e 115 D u c t M e sh sh o w in g p a r t it io n s ..154

F ig u r e 116 T im in g s fo r e a c h p r o c e s s o r f o r d u c t g e n e r a t io n 155

F ig u r e 117 D y n a m ic L o a d B a l a n c in g f o r e a c h p r o c e s s o r ... 155

F ig u r e 118 M e s h st a t ist ic s fo r D a s s a u l t Fa l c o n s im u l a t io n 156

F ig u r e 119 L o a d b a l a n c e f o r 500 m il l io n e l e m e n t Fa l c o n s im u l a t io n 156

F ig u r e 120 Fa l c o n CEM M e s h , s h o w in g PML r e g io n a n d iso t r o pic r e g i o n157

F ig u r e 121 S c a t t e r in g c r o ss s e c t io n o f F a l c o n s im u l a t io n s h o w in g e n g in e

NACELLE AND TAIL PLANE CUTS...157

F ig u r e 122 S o l u t io n a f t e r a sin g l e c y c l e f o r D a s s a u l t F a l c o n158

F ig u r e 123 M e s h siz e s fo r t r ih e d r a l c a v it y s im u l a t io n ... 158

F ig u r e 124 T r ih e d r a l C a v it y G e o m e t r y ...159

F ig u r e 125 E l e c t r o m a g n e t ic S c a t t e r in g s o l u t io n p l o t t e d o n g e o m e t r y159

F ig u r e 126 RCS f o r T r ih e d r a l S im u l a t io n ..160

F ig u r e 127 E l e m e n t l o a d f o r T r ih e d r a l c a v it y s im u l a t io n ... 160

F ig u r e 128 G r a p h o f w a l l c l o c k t im e f o r e a c h s u b -d o m a in o f t r ih e d r a l c a v it y

SIMULATION..161

F ig u r e 129 G r a p h o f m e m o r y u s a g e f o r e a c h s u b -d o m a in in t r ih e d r a l c a v it y

SIMULATION.. 161

M esh Generation fo r Large Scale an d Com plex C om putational S im ulation

1 Introduction

Computational simulation for engineering applications has been used to reduce

development costs for over two decades. It is used in most branches of engineering as

an essential tool to reduce development time. The understanding of physical processes

is also improved by the use of computational simulation, since complex behaviour can

be closely scrutinised.

Research into computational simulation aims toward a common goal: to improve

solution accuracy and to utilise new developments and technologies. Providing these

tools with user-friendly interfaces can only promote the use of computational simulation

within industry.

The finite element method provides a means with which physical problems can be

simulated. Initially developed for civil engineering applications, the method involves

determining the solution locally on smaller sub-problems, called elements, which

M esh G eneration fo r Large Scale and C om plex C om putational S im ulation

9

combine to form the overall solution. The method has many applications, including

solid mechanics, soil mechanics, fluid flow and electromagnetic scattering simulations

[1], and stands alongside other methods such as finite difference and finite volume

methods [2] to determine the solution to sets of differential equations that describe the

physical behaviour of the problem. The accuracy of the solution determined by solving

the differential equations that govern the physical process is reliant on both the

numerical formulation and the discretisation of the domain. An exact solution of the

physical process can only be obtained by using an infinite number of elements,

depending also on the consistency of the numerical formulation. Hence, an

approximation is used, that forms a compromise between computational expense (the

size of the discretisation and numerical formulation) and the accuracy of the simulation.

The discretisation of the computational domain into smaller domains that cover the

domain in its entirety is the second stage in the simulation process, and forms an

important part of this process. The process consists of five stages, shown in Figure 1.

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

10

Results Visualisation

Geometry Definition

Problem Discretisation

Equation Solving

Error Estimation and Mesh Adaptation

Figure 1 Simulation process

The first stage in the simulation cycle is the geometry definition. Known also as

problem definition, this involves producing a computational model that accurately

represents the physical problem to be modelled. Typically, this model is derived from

designs produced using CAD tools such as CATIA[3] and CADDS[4]. A valid

computational geometry is commonly referred to as a “water-tight” geometry. This

term signifies that the domain is closed, with neither overlapping surfaces nor gaps

between surfaces. Obtaining a model that does not exhibit these features is a research

area in it’s own right, and is referred to as CAD repair. Once a valid computational

model has been derived from the input data, the second stage can begin. During the

second stage, the model is sub-divided into smaller regions, known as elements. The

collection of elements that fill the computational domain is known as a grid or mesh, the

two terms being interchangeable. The third stage involves determining the approximate

M esh Generation fo r Large Scale and Com plex C om putational S im ulation

11

solution o f the numerical problem by solving the finite element equations, which

replace the differential equations that govern the physics o f the simulation. Stage four

is not always used for simulations, but consists o f determining the error induced by the

discretisation or numerical formulation. The mesh can be adapted to increase the point

density (the number o f points) in regions o f high error, in an attempt to reduce the error

in the solution. The solution is an approximation, and is analogous to describing a curve

with straight lines. The tighter the curve, the more straight-line sections are required to

approximate the curve. The distance that the set o f straight lines are away from the

exact curved line is the error induced by the approximation. This analogy is shown in

Figure 2, where the exact curve is drawn with a red line, and the approximation with

straight edges is drawn in black.

Figure 2 Analogy of curve fitting

The final stage is solution interrogation, where regions o f interest can be visualised and

numerical data extracted from the solution. The first two stages are grouped together

and known collectively as the pre-processing stage. A pre-processor would have as its

input a geometric model, and output would be the mesh suitable for use in the third

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

12

stage, known as the processing stage. Consequently, the visualisation and results

interrogation stage is known as post-processing.

A mesh is required to exhibit a number of features that can have a distinct effect on the

simulation result. The size of the mesh must be controlled, and user definition of the

element size is required in order to resolve high gradient in the solution, and to reduce

errors. Thus user knowledge is a factor of the simulation; this must be of both the

physics that are being modelled and of the mesh generation and solution algorithms.

The quality of the elements forming the mesh is also critical for obtaining accurate

solutions and maximising computational efficiency. Fluid flow and electromagnetic

scattering solvers are dependant on the quality of the mesh, where flat and badly formed

elements can introduce spurious results into the final solution.

A mesh generator must therefore fulfil a distinct set of requirements to be useful to the

engineering community:

• Ease of use - the input to the generator must be easily understandable. The

controls easily used and effective, and meaningful messages should be produced

should any errors occur

• Automatic - as far as possible, the mesh generator should be automatic

• Quality - the mesh generated must exhibit good quality indicators to optimise

the solution stage

• Reproducibility - The results from a mesh generator should be reproducible.

Any differences due to numerical instabilities should be minimised

• Robust - The mesh generator should be robust in its implementation and the

underlying numerical scheme, with good error handling

Simulation Independent - The mesh generator should be able to provide meshes

that are suitable for a wide range of problems, with any extensions (such as

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

13

anisotropic elements for the boundary layer of viscous fluid flow simulations)

easily accessible.

In aerospace engineering, the cost of developing and testing a new design are extremely

high. Traditionally, aircraft have been designed and tested using wind tunnels, with

scaled models initially, then moving to full-scale mock-ups. Wind tunnels can cost as

much as £4000 per day for a full-scale low speed wind tunnel, in addition to the

associated costs of model creation. Taking this into consideration computer simulation

becomes an attractive alternative to prolonged wind tunnel testing, enabling the

aerospace designer the ability to test designs and developments quickly.

In the early 1970’s computing power reached levels with which it was possible to solve

the non-linear Navier-Stokes equations, in simplified Euler form, in a reasonable

amount of time on two dimensional geometries. Computational fluid dynamics (CFD)

became a fast moving research area, driven by intense interest from industry. Research

efforts across the world coupled with the ever increasing computer power have allowed

fluid flow simulations to become more accurate, modelling complex fluid flow

situations. As the simulations became more complex, in terms of geometry and solution

algorithm complexity, the solution time increased. This increased complexity places

demands on mesh generators to generate meshes of a suitable size capable of resolving

the complex features, and generating meshes containing suitably shaped elements. The

research presented within this thesis covers aspects of mesh generation related to

complex fluid flow and electromagnetic scattering simulations. As the simulation

complexity increases, in terms of the physics and geometry definition, the size of mesh

require to resolve the solution to the required degree of accuracy increases. Typical

M esh G eneration fo r Large Scale and Com plex Com putational Sim ulation

14

figures for mesh size in comparison with the flow equations that are being solved are

shown in Figure 3.

Simulation Type Typical number of nodes required

Euler 106

Laminar 107

Turbulent 108

LES 10“

Figure 3 Typical mesh sizes for resolving different flow features on an aerospace geometry

It is clear then that the large meshes are required in order to reduce errors to acceptable

levels using current flow solver technology. Hence, mesh generators must be developed

that can model geometries accurately, whilst retaining the requirements as described

previously. Generating large meshes represents a considerable challenge for mesh

generators using sequential methods. High power parallel computers formed from

networks of workstations provide large computing power for the processing stage of a

simulation, where the mesh is decomposed into a number of smaller sub-domains, and

distributed amongst the computers available. Using parallel mesh decomposition tools,

allows the sub-domains to be balanced in terms of workload (number of elements per

processor) and communication cost. However, the generation of meshes for these

simulations remains a sequential task, and therefore requires a computer with significant

amount of memory available to a single processor. Presented in Section 4 is work into

developing a stable parallel mesh generator implementation of a Delaunay based

method. The tool developed consists of fully automatic domain decomposition to allow

generation of the mesh across parallel platforms. Included in the tool is the ability to
M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

15

provide a region of stretched elements that has been used in high Reynolds flow

simulations to reduce the number of elements in the mesh whilst retaining solution

accuracy, and also used in electromagnetic simulations once again to reduce the size of

the mesh required.

Section 3 presents work in developing fully automatic anisotropic mesh generation and

adaptation methods. Concentrating in two-dimensions, the work is validated by a

number of testcases. Anisotropic or stretched elements can be used to reduce the size of

a discretisation whilst retaining the solution accuracy of the larger mesh.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

16

2 Sequential Mesh Generation Methods

Two classifications o f mesh generation methods exist, structured and unstructured. The

difference between a mesh generated using these techniques is the manner in which the

neighbours o f a point are defined. Structured meshes have a strict order, in that a

neighbouring point is easily identifiable, Figure 4. The nodes o f a structured mesh are

typically numbered in the finite difference numbering scheme {i,j}, in order to find the

neighbouring point to a given point P(i,j), increasing or decreasing in value one o f the

indices will yield the neighbour.

i-lj+1 k i+ lj+ l

i-l j

1 1

*

,
f 1

hi ,

W

i+ u1

- l j - l
1

w f

a

r i

ij-l

f

t i+ f j '1
¥ \ r ■

Figure 4 Numbering scheme of a structured mesh

M esh Generation fo r Large Scale and C om plex Com putational Sim ulation

17

However, unstructured meshes do not have this constraint o f neighbouring nodes

applied to them. The nodes that form an unstructured mesh are numbered in a

contiguous single number format. Element connectivity must be defined explicitly

using a connectivity table, which contains for each element within the mesh the node

numbers that form the element. Figure 5 shows an unstructured mesh of a simple

circular domain. The nature o f the mesh is clearly evident, where the neighbours o f a

point are not clearly identifiable.

Figure 5 Unstructured mesh example

Structured meshes typically consist o f quadrilateral or hexahedral elements, with the

generation o f simplexes (triangles or tetrahedra) by dissection o f these elements. Figure

6 shows a structured mesh o f a circular domain. This mesh is known as a type 2

structured mesh, where the structure o f the mesh has been defined to avoid degenerate

or highly skewed elements. Unstructured mesh generation methods, however, typically

produce simplex elements (triangles in two-dimensions, tetrahedra in three-dimensions),

and allow complex geometries to be meshed in a more automatic manner than

structured methods.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

18

Figure 6 Structured mesh example

The following is a brief overview of the meshing methods that have been developed to

provide a basis for finite element simulations.

2.1 Structured Mesh Generation Methods

All the methods that are used to generate structured meshes do so by generating a mesh

within a transformed rectangular computational domain, which is mapped into the

physical domain to form the mesh of the geometry. Two sub-classes of structured

meshing techniques exist; algebraic based methods [5][8] and partial differential

equation based methods [5][8]. Structured meshes were recognised as a tool to

discretise the physical region for computational fluid dynamics applications, where the

numerical algorithms can require the mesh points to follow approximately the flow.

The algebraic based methods consist of interpolation schemes. Here, the boundary

values are interpolated into the interior of the domain to produce the required number of

points within the domain. Various interpolation techniques have been developed, such

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

as Lagrange interpolation and Hermite interpolation. More commonly, the method of

transfinite interpolation^] is used.

The generation of the interior points in the physical space from a boundary description

has been recognised as a boundary value problem [5]. The solution of boundary value

problems is one of partial differential equations and the solution of the systems formed

by these equations. Elliptic partial differential equations can be used where the domain

is closed, where the solution at the boundary is of interest, such as solid mechanics

problems. Hyperbolic or parabolic equations are normally used where the domain is

open, where the solution at the outer boundary is of little interest, such as fluid dynamic

simulations over aerofoils. Using these equations, controls can be applied to control the

mesh spacing in defined regions in order to capture the solution accurately.

In order to discretise complex geometries, multiblock techniques were developed.

Dividing the physical domain into smaller sub-domains that can then be discretised

using partial differential equation or interpolation based methods. Careful attention must

be paid to the inter-domain regions, to ensure continuity of elements between

neighbouring blocks. Figure 7 shows a typical multiblock mesh for a solid mechanics

simulation. The separate blocks are created and meshed individually, by setting the

boundary points, and then using the generation methods described previously to

determine the interior point positions. These blocks of meshes are then attached to

others parts, combining to form the full geometry.

M esh Generation fo r Large Scale and Com plex C om putational S im ulation

20

Figure 7 Multiblock mesh example

The work in structured meshing has been written in many texts [5][7][8] and presented

at many conferences, such as the conference series “Numerical Grid Generation in

Computational Field Simulation” and the Meshing Roundtable Conference Series. The

reader is directed to these references and conference proceedings for a more detailed

explanation in the subject o f structured mesh generation.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

21

2.2 Unstructured Mesh Generation Methods

Unstructured mesh generation techniques grew from a requirement to discretise

complex geometries in short time scales. Whereas structured mesh methods have their

base in the mathematical concepts of differential equations, unstructured mesh methods

come from a geometrical basis. Due to this basis, the methods are automatic in nature,

requiring little user intervention even when discretising complex geometrical features.

Two methods for unstructured mesh generation are commonly used, the advancing front

method and Delaunay based methods. These methods differ by the manner in which

points and elements are introduced into the computational domain.

The advancing front technique was first described by A. George [9]. In two

dimensions, the scheme starts from a discretisation of the boundary. Figure 8 shows a

simple geometry discretised by N points. Starting from the shortest edge (an element

consisting of two points), a new point is introduced into the unmeshed domain space.

The position of this new point is determined from background mesh and mesh spacing

control functions. In order to create a new element, both nodes of the original edge are

connected to the new node, and the element connectivity added to the mesh connectivity

table. To ensure a valid mesh, this element must be checked for intersection with the

existing elements in the mesh. More information regarding the advancing front

technique is shown amongst other places in [7] [8].

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

22

F igure 8 A d vancing fron t m ethod

The advancing front method introduces elements sequentially into the unmeshed space,

whereas a Delaunay based scheme inserts points sequentially into the mesh, and

determines the new mesh including the new point. The Delaunay method describes a

technique o f connecting a set o f points in such a way that the circumcircle o f each

element (described by the three nodes) does not contain any other node[38]. A Delaunay

mesh is derived from the Voronoi regions [37], which are the regions that are closer to

each node than any other. The connection o f the Voronoi regions defines a set o f tiles

known as a Dirichlet tessellation [36]. Given a set o f nodes, the Voronoi regions are

defined by the lines (bisectors) that mark the equi-distances between the nodes (Figure

9). The connection of the nodes across these bisectors results in the creation of

simplexes. Delaunay techniques start from a convex hull, which, by definition, includes

all o f the points that defined the physical domain boundary. A coarse triangulation of

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

23

the four points o f the convex hull is created, and each point o f the boundary is

iteratively inserted, creating elements as the method proceeds. Once all points o f the

boundary have been inserted, a boundary recovery procedure must be used to enforce

the boundary edges, which may have been removed. These boundary edges and faces

can be lost since the points of the boundary are inserted into the triangulation without

consideration for the edges and boundary faces’ connectivity. This method of

generating a Delaunay satisfying mesh is known as the Bowyer-Watson [10][11]

method.

Figure 9 Voronoi Regions of a set of nodes

Other methods for discretising the domain have been developed. Yerry and Shephard

[12], introduced the spatial decomposition technique involves applying a quadtree or

octree over the domain. Recursive decomposition o f the domain until each cell in the

tree has reached the element size as defined by the background mesh. This technique

results in quadrilaterals across the domain, which can then be sub-divided to form

triangles or tetrahedra. The boundary o f the domain must be enforced, where the

boundary edges are not aligned with the edge o f the quadtree. Further references for

unstructured meshing techniques are covered in texts such as [7][8] and conferences

such as the Numerical Mesh Generation in Computational Field Simulation, Trends in

Unstructured Mesh Generation and the Meshing Roundtable series.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

24

2.3 Summary

This chapter has introduced the two types of mesh; structured and unstructured. The

methods used to generate these different types of meshes have been described to give

the reader a basis for the work to follow. Analysing the two principal schemes,

advancing front and Delaunay based methods, it can be shown that due to the

intersection checking at each point insertion, advancing front schemes are typically one

to two orders of magnitude slower to generate a given number of elements than that of a

Delaunay based scheme. For this reason, the extension of the Delaunay based methods

to generate meshes that contain many millions of elements required to allow large scale

simulations to be performed, is preferred. The following chapters discuss the extension

of the Delaunay based Bowyer-Watson method to generate stretched anisotropic

elements in order to reduce the mesh size for a required accuracy level, and to extend

the method for use on parallel computer architecture.

A survey of meshing programs, available commercially and research codes has been

published by Owen[13]. This survey shows that over two-thirds of the products

available are unstructured type codes. Of these unstructured mesh generation programs,

the programs that produce triangle or tetrahedra use some form of Delaunay algorithm

at a ratio of 2:1 compared to advancing front and octree type algorithms. The products

include extra features, the most common feature being mesh refinement. Mesh

anisotropy, boundary layer definition and adaptivity also feature.

Methods to generate unstructured hexahedra are very desirable, being the focus of

intense research [14] [15].

M esh Generation fo r Large Scale and C om plex C om putational Sim ulation

25

3 Delaunay Mesh Generation

The work in unstructured meshing initially concentrated on generating high quality

isotropic meshes, where the elements (predominantly triangles and tetrahedra) are close

to equilateral. The unique property of a Delaunay triangulation is that given a set of

points, a triangulation of these that satisfies the Delaunay criterion for each element is

the optimal triangulation [16]. Delaunay methods were developed [17] that guaranteed

the elements’ quality, and significant effort placed on post mesh generation quality

enhancement techniques [18].

To determine an approximate solution to a problem, a certain number of sampling

points must be used. A problem whose solution changes rapidly requires more

sampling points to achieve the same level of accuracy than that required for a solution

that changes less rapidly. The lower graph in Figure 10 shows a solution that changes

slowly, red line, and its approximation, solid line. This shows that for this problem a

small number of sampling points can be used to approximate the solution to a high

degree of accuracy, due to the smoothness of the solution. Conversely, the top graph in
M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

26

Figure 10 shows a solution that changes rapidly. It is evident from this that the using

the same number o f sampling points as for the smooth solution, that the accuracy is

greatly diminished. In order to achieve the same level o f accuracy a larger number o f

sampling points would be required.

Figure 10 Solution resolution

High Reynolds number flows exhibit thin regions around any bodies present within the

flow field, where the solution gradient is high. Within these regions, known as

boundary layers, the flow exhibits highly directional properties where components o f

the flow solution, such as velocity, change rapidly in certain directions, and slower in

other directions.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

27

Due to the high solution gradients within the boundary layer a large number o f points

are required in order to resolve the solution accurately. However, since the solution is

also directional with the boundary layer, then the point density need only be high in the

direction o f the rapidly changing solution. Analytical studies and experiments in wind

tunnels have shown that the solution changes with distance from the solid wall more

rapidly than along the wall.

It would be pragmatic then to use this knowledge to reduce the size o f the mesh in

certain directions, where the solution changes less rapidly, whilst keeping the dense

point spacing required to resolve the solution where the solution gradient is high.

Reducing the size o f the mesh reduces the computational expense in terms memory

usage, hard disk storage space and computing time.

Connecting a set o f points that are not equally spaced can result in elements whose

aspect ratio is high. Figure 11 shows a point spacing that has been created in an attempt

to resolve a solution that changes rapidly along the Y axis, and more slowly along the X

axis. Connecting these points results in stretched elements, where the longer edges are

approximately aligned with the solution that is changing slower than that o f the shorter

edges.

Figure 11 Directional point density leading to elements with large aspect ratio

Superimposing this mesh derived from a directional point spacing, upon that from an

isotropic point density shows that the number o f elements required to discretise the

space is reduced for the directional case. It is clear then that using a directional point

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

28

density to discretise a domain where the flow exhibits solution gradients that alter with

direction can reduce the number of elements required to resolve the solution.

3.1 Literature Review

Research into the use of unstructured meshes containing anisotropic elements where the

solution is highly directional began in the mid 1980s.

Initially, mesh adaptivity became a popular method to obtain directionally stretched

meshes. Lohner and Morgan [19] and Lohner and Cebral [20] demonstrated a

directional refinement method, which consists of determining error indicators for each

edge within the mesh, and refining edges that exhibit errors greater than some threshold

value. In classical refinement, all edges of an element are refined for a given error

estimate, so that the resulting elements exhibit isotropic indicators, whereas here only

the edges that exceed the error are refined resulting in stretched elements and higher

point density in the direction of the solution. Mavriplis [21] published an extension of

the Delaunay kernel, where the stretching and rotation of the elements is specified in

given regions via a background mesh. Peraire et al [22] described remeshing the entire

domain by means of adaptivity. Here a background mesh is used to control the three

variables that control the mesh stretching, derived from the second derivative of the

solution, the Hessian matrix. Initially the coarse mesh covering the domain contains

two elements (the convex hull), and as the adaptation loop proceeds, described in Figure

31, the previous mesh.

In the mid 1990s, the methods for mesh adaptation using the extended Delaunay kernel,

which is commonly used today to generate anisotropic unstructured meshes, emerged

from Vallet [23], Borouchaki et al [24] and Castro-Diaz et al [25]. Using the Hessian

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

matrix derived from a previous solution, the extended Delaunay kernel has been used

for both remeshing and mesh adaptation. Tam et al [26], Borouchaki et al [27] [28] and

Pain et al [29] demonstrated its use for both viscous and inviscid flow solutions.

Castro-Diaz et al [30] demonstrated extensions and modifications to the metric

definition to enable resolution at the boundary layers and multi-scale phenomena to be

determined. Borouchaki et al [31] describe the use of the extended Delaunay kernel to

generate adaptively triangular and quadrilateral meshes for flow simulations.

The method typically used to generate meshes upon surfaces described by geometric

entities, such as NURBS, is to mesh the region in the parametric space. Generating

elements in this space and then mapping back to the physical space provides regular

mesh spacing on the curved surface. The mapping between parametric and physical

space can require that elements generated in the parametric space are stretched. Since

the extension of the Delaunay kernel allows the generation of anisotropic elements, the

process can then be applied to surface meshing. Castro-Diaz and Hecht [32] and

Yamada et al [33] discuss the use of the metric controlled Delaunay kernel for surface

meshing. Lee [34][35] showed the use of metric specification to generate surface

meshes containing triangles, which are later split into quadrilaterals, using an adaptive

advancing front procedure.

3.2 Delaunay Triangulation

As discussed in 2.3, the Bowyer-Watson method of generating a Delaunay satisfying

triangulation has been shown to be one to two order of magnitude faster in generating

an equivalent sized mesh compared to other unstructured methods such as the

advancing front method.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

30

Dirichlet [36] described a method o f dividing a domain described by a set of points into

regions. These regions, known as Voronoi regions [37], are associated on a one-to-one

basis with each point in the set. Each region exhibits the property that for each point P

the associated region is the area that is closer to P than any other point in the set. The

set o f regions that fill the domain is known as a Dirichlet tessellation.

A Delaunay triangulation [38] o f a set o f points is derived from the Dirichlet

tessellation. By introducing straight lines between points that share a Voronoi region

boundary, a Delaunay satisfying triangulation o f the set o f points is generated. The

Delaunay criterion is often referred to as the empty-circle criterion, and is essentially the

evaluation o f two distances; the distance from the centre point o f the circle to that o f the

new point, A2, and the radius of the circumcircle, A], (the distance between the centre

point o f the circle and one o f the nodes o f the triangle), Figure 12.

Figure 12 Distance for Delaunay evaluation

The vertices o f the Dirichlet tessellation mark the point that is equidistant from each o f

the three points o f a triangle[10]. For a triangulation to be Delaunay satisfying, each

circle described by the three nodes o f each triangle must not enclose any other point.

Figure 13 shows the connection o f four points using the Voronoi regions to indicate

which points can be connected to produce a mesh that is Delaunay satisfying. The

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

31

alternative connection, Figure 14, shows that the circumscribed circles of the elements

are not empty.

Figure 13 Delaunay satisfying Figure 14 Delaunay violating

connection connection

Efficient algorithms to generate a Delaunay triangulation from a predefined set o f points

were described by Green and Sibson [39], Bowyer[10] and W atson[ll], in which a

number of examples for the uses o f these triangulations were given.

For numerical simulations the triangulation must be contained wholly within the

boundary of the geometry. Thus, the algorithms were extended to accommodate this,

by including boundary recovery [18] and automatic point insertion [7][18] routines. As

described earlier, a minimum number o f points are required in order to resolve the

solution within the domain accurately. The actual number o f points required is

dependant on the level o f accuracy required and the physics being modelled. To this

extent, the number o f points can be high in even the simplest simulation, such that the

manual specification o f the points is unfeasible. Automatic point insertion is used to

make the Delaunay mesh generator capable o f running without user intervention. The

user places mesh control entities into the unmeshed domain in order to control the point

spacing that will be produced by the automatic point insertion routines coupled into the

mesh generator.__
M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

32

Mesh point density control entities, known as sources, as described in [18] consist o f

three variables; the position within the domain {x,y,z}, inner radius, outer radius and

intensity or mesh spacing. The two radii describe the region in which the source

operates at the coordinate given. Within the inner radius the intensity is constant, and

within the region between the inner and outer radii the intensity decreases exponentially

to the background intensity. Point and line sources are shown in Figure 15, for a two-

dimensional geometry showing the inner and outer circles.

Boundary recovery routines are required to ensure that the triangulation is compatible

with the geometry definition, described by edges (two dimensions) or triangles (three

dimensions), which was used as the starting point for the process. The end product o f a

Delaunay triangulation process is a mesh that includes every point o f the boundary and

any interior points introduced by the point insertion routine. This does not, however,

necessarily include the boundary edges or triangles that describe the problem.

Boundary recovery is a post mesh generation process that enforces the boundaries o f the

initial problem into the final mesh. This process involves edge swapping in two-

Figure 15 Point and line sources in two-dimensions

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

33

dimensions, and more complicated operations in three-dimensions. Numerical analyses

of boundary recovery was discussed by Weatherill et al[40], and remains one of the

challenges of Delaunay based unstructured mesh generation methods.

In order to construct a Delaunay satisfying triangulation, a coarse triangulation is

defined, consisting of two elements. These elements cover the entire physical domain,

and thus contain the boundary points, and are derived from the convex hull. Each

boundary point is inserted into the triangulation one at a time, and the triangulation is

updated to include the new point. The modification of the triangulation to include the

new point is a purely local operation, and only affects the elements whose circumcircle

includes this new point. The elements whose circumcircles include the new point are

removed from the triangulation, leaving an empty space in the mesh known as a cavity.

Using data structures to improve efficiency [10] [11], the time required to perform the

search for elements whose circumcircles include the new point, and therefore construct

the cavity, is kept to a minimum. The elements that are found to violate the Delaunay

criterion are included into a cavity. This cavity is locally re-triangulated by finding the

Dirichlet tessellation once more, for the new set of points. Figure 16 shows an example

of a point inserted into a triangulation, with the elements that form the cavity shown and

the circumcircles of the surrounding elements, with dashed lines. Evaluating the

neighbours of the element that contains the point permits the construction of the cavity

in an efficient manner. Once all boundary points have been inserted into the

triangulation, the creation of new points within the domain can begin. Weatherill et al

[18] describe a method of automatic point insertion within the triangulation. Point

density is controlled by a combination of a background mesh and mesh control entities.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

34

Figure 16 Isotropic Delaunay triangulation

Analysing a Delaunay mesh generator with the requirements set out in Chapter 1, it is

noted that the list is fulfilled. Looking at only the technical aspects, as opposed to the

implementation aspects such as ease o f use, a Delaunay mesh generator is automatic,

requiring no user input aside from setting the problem. The quality o f the resulting

mesh can be improved by post generation mesh cosmetic routines. The robustness o f a

Delaunay mesh generator is an implementation aspect, although the numerical aspects

o f the technique o f generation (that o f distance evaluation) are simple but can suffer

from computation round off errors. The boundary recovery process an area that suffers

significantly from numerical inaccuracies, although having been proved mathematically

[40].

As explained previously, the use o f stretched or anisotropic elements within a

triangulation can reduce the computational expense o f simulations where the solution is

highly directional. The extension o f Delaunay based methods to generate stretched

elements is desirable due to the speed o f these methods. In the anisotropic Delaunay

method, the in-circle criterion is modified to allow ellipses to be used. The ellipses are

defined for each node in a mesh, either from a pre-determined solution in the case for

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

35

mesh adaptation, or by specification at points within the mesh. Figure 17 shows the

insertion o f a point P into a triangulation, where metrics have been specified for each

point that describes ellipses at these points.

Figure 17 Anisotropic Delaunay triangulation

The metrics used to describe the ellipses used for triangulation describe a Riemannian

space. An isotropic mesh is built within this space, which when transformed into the

Euclidean space produces stretched elements. The metric M is a d x d matrix, where d

is the dimension o f the triangulation (i.e. two or three dimensions). In constructing a

Delaunay triangulation, the distances comparison is performed repeatedly. It is these

distance calculations that can be modified to provide the distance in the Riemannian

space described by the metrics. The distance, d(A,B), between two points A and B in

Euclidean space is found using Equation 1.

d {A,B)= Equation 1

Where the points A and B and the vector AB are defined as

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

36

A =
V xB xB xA

yB >,AB = *yB- y A
zB- za.

Equation 2

The distance between two points A and B in Euclidean space in the presence of a metric

M is the modification of Equation 1 to include the metric M, Equation 3.

dM (A , B) = VABTMAB Equation 3

Clearly, by using a metric that is symmetric and whose off-diagonal terms are zero the

two distances are equal, dM(AB) = d(AB) .

Given a suitable metric specification either monotonous across the computational

domain or varying in space, George [41] suggested the use of a number of

approximations in order to generate a triangulation that is Delaunay satisfying with

respect to the metric map, which are described below.

As discussed previously, since the Delaunay criterion is essentially the comparison of

two distances, the radius of the circumcircle, r, and the distance between the new node

and the centre of the circle, d(AB), the distances can be modified. Using Equation 3,

the distance between the centre of the circle and the new point can be determined, in the

stretched space defined by the metric. If this violates the Delaunay criterion, the

circumellipse is not empty, then the element is added to the cavity. This criterion is

described in mathematical terms in Equation 4.

d (AB) — r > 0 Equation 4

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

37

In order to determine whether the Delaunay criterion is satisfied in the case of

anisotropic element generation, the position of point Ok that is equidistant from the

three points of the element in the presence of a metric is required. In two-dimensions,

the solution of the system in Equation 5 will yield this position.

In order to generate a mesh using the anisotropic metrics, the distance criterion

containing the metric modification can be substituted for the existing Euclidean

distance. In a simplified case where the metric is monotonic across the domain, a direct

substitution is appropriate. However, if the metric varies across the domain, then a

number of approximations suggested by George[41] are used in order to allow the mesh

to conform to the metric.

The first approximation uses the metric at the point under consideration for insertion to

determine the position of the point Ok, the centre of the ellipse, as the solution of a

linear system, Equation 6.

Hence the Delaunay measure is found by using the distance between the point P and Ok,

in the presence of the metric associated with point P.

The second approximation for determining Ok consists of extending the idea of

approximation 1 by using the metric at the point under consideration for insertion M(P)

d -M (P k > P \) — d M (O k , P 2)

d M (P k ’ P \) = > ^ 3)

Equation 5

d M (p) (® K > ^1) — d M { p) (P k ’ ^ 2)

d -M (P) (P k ’) = (P k > ^ 3)

Equation 6

M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

38

and that o f the element under consideration defined at the node that does not

exist in the current cavity, shown in Figure 18. In this case the Delaunay criterion is

modified to include the two distances; if the point is enclosed by both ellipses then the

element is inserted into the cavity. Equation 7 shows the system o f equations used to

determine the corresponding centres o f the ellipses, Oki and Ok2 -

Figure 18 Approximation two diagram

d m {p) (Q k i ’ P \) = d m {p) { 0 K \ , P 2)

’ P \) = d M (p) { 0 A T I 9 ^ 3)

d m { P \) (Q K 2 > P \) = d m (p \) { Q K 2 , P 2)

d m (p \) (Q k 2 ’ P \) ~ ^ M { P \) ^ Q K2 ’ ^ 3)

Equation 7

Extending this further to allow for the metrics defined at each node o f the triangle with

the node under consideration for insertion is described as approximation three. George

remarks that whilst approximation one holds for two-dimensional meshing, it does not

for three dimensions. The latter two approximations hold for two and three-dimensional

work.

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

39

The Bowyer-Watson method for generating incrementally a Delaunay satisfying mesh

has been extended to accept metrics that stretch the mesh in particular directions. The

definition of suitable metrics across the computational domain must now be considered

in order to allow the process to be applied. This can be done in one of two ways; the

user definition of the metrics, using similar ideas to that for sources used to control the

mesh point density, or a-posteriori methods for mesh adaptation, where the metric field

is defined from an initial solution.

3.2.1 User specification of ellipses

Using knowledge of fluid flow and previous experience it is possible to define regions

where anisotropic elements could be used to reduce the computational mesh size whilst

still being able to resolve the flow properties to high levels of accuracy. As described

earlier, mesh control entities are used in isotropic mesh generation to control the mesh

point density across the computational domain, and it would be useful to extend these

ideas to allow the specification of metrics across the computational domain.

In order to allow the specification of simple variables that will control the mesh

stretching in specific regions of the computational domain, it is necessary to understand

the meaning of the metric, and what the metric represents.

A bivariate quadratic curve centred on the origin takes the equation shown in Equation

8. The coefficients in Equation 8 can be rewritten in matrix form, Equation 9. If

detlyl > 0, the determinant of J is positive, then Equation 8 defines an ellipse centred on

M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

40

the origin, where the variables a , b and c control the spacing in the principal directions

along with the rotation from the principal axes.

ax2 + 2 bxy + cy2 = 0 Equation 8

a b
J = Equation 9

b c

The aim then is to identify the coefficients a , b and c for an ellipse. Early tests with a

simple circular domain show the effect o f these coefficients, and from these it is

possible to determine that the variables a and c control the stretching o f the ellipse, and

thus the stretching o f the elements, and b the rotation o f the ellipse. However, the

coefficients do not directly indicate the stretching and orientation o f an element created

in the space defined by the metric J, since using a = c,b = Othe mesh is isotropic for

any a, shown in Figure 19.

1 0
0 1

Figure 19 Mesh resulting from isotropic metric

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

41

Figure 20 Mesh resulting from anisotropic metric

1.9 0

0 1

Figure 21 Mesh resulting from anisotropic metric

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

Figure 22 Mesh resulting from anisotropic metric

Figure 24 Mesh resulting from anisotropic metric

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

1
0.5

Figure 25 Mesh resulting from anisotropic metric

Figure 26 Mesh resulting from anisotropic metric

4 0

0 1

1 0
0 4

Figure 27 Mesh resulting from anisotropic metric

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

44

1
0.25

0.5

1

0.25

10

outer

inner

Figure 28 Point metric source specification without interpolation

Figure 21 to Figure 27 show the affect o f varying a monotonous metric across a simple

circular domain. From these examples it is clear that the first diagonal component, a,

controls the spacing along the first principal direction, and the lower diagonal

component, c, the stretching in the second principal direction, with the off-diagonal

terms, b, controlling the rotation o f the principal axes.

Given a desired stretching in the two principle directions and the angle o f rotation o f the

ellipse from the principal axes it is possible to determine the coefficient b. Appendix A

shows the substitution o f the rotation, 0, to determine the off-diagonal terms as shown

in Equation 10.

, _ (c - a)
o— Equat i on 10
2 cot 2 6

Using this definition for the rotation and George’s [7] work in specifying the stretching,

it is possible to place within the computational domain directional sources that control

the stretching and orientation o f the elements. Preliminary results, showing the use o f
M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

line metric sources to control the stretching and orientation through a square domain are

shown in Figure 29. Here line sources have been employed diagonally across the

domain to control the point spacing. In these regions, line metrics have been specified

to provide elements that are stretched and orientated at 45 degrees. The long edge

lengths along the diagonals, and shorter edge lengths at normals to the diagonals show

this. On the right o f the figure, a close up o f the centre o f the domain is shown, where

the two line metrics cross. It is at this point where metric intersection must be used, in

order to determine the correct stretching o f elements in this region. The figure shows

that where the two metrics overlap, the intersection results in circles being defined

which result in isotropic elements in the overlapping region. The metric intersection

method is described in more detail in Section 3.2.3.

Figure 29 Line Metric specification for a simple square domain

3.2.2 Line and Point Metric Specification

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

46

The specification of metric to control the domain by the user consists of defining the

principal radii of the ellipse, the rotation and the region over which the metric is

employed

The point and line metrics are specified in the same manner as the source specification,

although only a single radius is used to describe the area over which the stretching is

constant.

3.2.3 Metric Intersection

Determining the controlling metric at a point where more than one metric has been

specified requires that a form of averaging take place. The intersection of multiple

metrics in order to retain the shape of one of the metrics is required for both mesh

adaptation and mesh generation. For the case of mesh generation where point and line

metrics have been specified by the user, and the circles defining the metric application

area overlap, a single metric must be found to enable the extended Delaunay method to

be used. Mesh adaptation can also produce multiple metrics throughout a mesh. The

metric at each point of the current mesh is determined from an approximated solution,

which can be derived for a number of variables such as Mach number or density (for a

fluid dynamics simulation). Frey and George [8] suggested a number of methods to

obtain a single metric at a point from any number of metric defined, using simultaneous

matrix reduction. This method has been implemented for the mesh generation case, and

results are shown in Figure 29, where the specification of line metrics diagonally across

the domain interacts with larger point metrics. The interaction of these metrics can be

seen on the right of the figure.

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

47

Figure 30 M etric Intersection exam ple

3.3 Anisotropic Mesh Adaptation

Once the geometry has been created for a fluid flow simulation, knowledge o f flow

physics and the equation solution process is required in order to create a mesh with

suitable point density to resolve the solution to required levels o f accuracy. Since in

some cases, error estimate analysis techniques can be applied to the final solution, it

would be advantageous to use this knowledge to modify the initial mesh to minimise the

error across the domain whilst striking a balance with computational cost. The use o f

error estimates and solution gradient at each point in a mesh with an initial solution can

provide markers for refinement and coarsening o f the mesh. The process o f extracting

these error estimates and modifying the mesh to reduce the error is known as mesh

adaptation. The mesh adaptation and solution cycle is shown in Figure 31, an iterative

automatic process until the error is reduced to required levels.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

48

Yes

No
Finish

Has the mesh been modified?

Modify mesh to suit metric map

Generate Initial Mesh

Determine approximate solution

Retreive metric map from solution on current mesh

Figure 31 Mesh Adaptation Cycle

The anisotropic Delaunay method is a suitable candidate for use in mesh adaptation,

since the metric map can be obtained from an initial solution, which is then used to

control element shape and edge lengths within the mesh. The insertion of points into

the mesh also allows a Bowyer-Watson type scheme to be used in conjunction with the

metric map to update the mesh.

3.3.1 Metric Derivation

In order to derive the metric map across the domain used to control the mesh adaptation,

the Hessian matrix of the solution, \}/, must be determined at each point in the mesh.

The Hessian matrix is the matrix of second derivatives of a variable associated with the

solution, shown in Equation 11 for a two dimensional solution. The scheme is based on

that described by Pain et al [29].

M esh G eneration fo r Large Scale an d Com plex Com putational S im ulation

49

H = tfxx tfxy
tfyx tfyy Equation 11

where

d V = 3 V
I I c ^ 2 ’ V y y o 2 9^ x y *1yxdx dy

d 2y/

dxdy

The second derivatives are determined using a finite element method applied repeatedly.

The first derivatives qx and qy are found on each element, e, initially using Equation 12.

dy/
dx

dy/
dy

^ 8Nj

V dNJ
j dy

Equation 12

The first derivatives on each node, P, are then found from the first derivatives on each

element in the ball of P by Equation 13.

dy/
dx

dy/

= 2

= 2

Equation 13

By substituting \p for \p’ (the first derivative of the solution) into Equation 12, the

second derivatives and components of the Hessian matrix are found.

The anisotropic Delaunay method is only valid for a metric that is symmetric and

positive definite, and so the Hessian matrix must be modified into this form by using

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

50

Equation 14 suggested by [29]. R is the eigenvector matrix of the Hessian, and \ its

eigenvalues.

3.3.2 Dataset Derivation

A number of datasets are required to modify the mesh efficiently. The datasets consist

of singly linked lists, which can be modified as the mesh structure changes throughout

the mesh adaptation process, without resorting to rebuilding the whole dataset. The

datasets required are:

• Elements connected to vertices

• Ball of vertices

• Edge structure of the mesh

• Neighbouring elements

3.3.3 Edge Evaluation

Equation 14

where

Aj = min max
^ h 2 ’h2-max J min J

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

51

The mesh adaptation scheme is evaluated using the edges that form the elements. The

scheme of adaptation is based on that by Borouchaki et al [27]. Each edge in the mesh

is examined to determine the size of the edge in the space described by the metric M

evaluated from the metrics defined at each node form the edge (M\ and Mi) (Equation

15).

~ M, + M 2M. = ------------------------------ Equation 15

The reference edge length in the current mesh is defined by the average edge length,

lavg, and the minimum and maximum edge lengths relative to this reference edge length

are defined in Equation 16.

numedges

2>,
/ , = / = — 1:1—re f avg

numedges Equation 16

^min = 0 ' 8 / rey

Cax = 1 -2/ re f

The mesh adaptation loop consists of determining whether the edge length in the

presence of the metric falls outside of the bounds set by lmin and lmax, using the criteria:

• If the edge length is less than lmin then a node is inserted along the edge

• If the edge length is greater than lmax, then a node is inserted at the mid-point of

the edge, and the two end nodes are removed from the mesh

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

52

3.3.3.1 Interior Edge Refinement

The edges contained in the interior o f the mesh, that is those edges that are not

connected to a boundary node, are enriched by placing a point at the centre o f the edge.

The point must now be included in the triangulation. The metric for this point controls

the cavity for the triangulation. Initially the two elements that form the edge that has

been enriched are added to the cavity. Then, using the anisotropic Delaunay kernel, the

neighbouring elements are inspected for inclusion.

A simple example o f this is shown in Figure 32, where an edge has been enriched and

the cavity enriched using adjacency.

►

Figure 32 Interior Edge Refinement

3.3.3.2 Interior Edge Coarsening

Coarsening an interior edge consists o f removing the edge and replacing it with a single

node. The edge to be removed is bisected at its mid-point by a new node. The two

nodes that formed the edge and the elements that were connected to these nodes are

removed. The resulting cavity is re-triangulated using the metric at the new point,

defined as the average o f the two old nodes. An example o f this is shown in Figure 33.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

53

Figure 33 Interior Edge Coarsening

3.3.3.3 Boundary Edge Refinement

Figure 34 Boundary Edge Refinement

Boundary edge refinement represents a similar task to that o f interior edge refinement.

Figure 34 shows the refinement o f a boundary edge by placing a node at the centre o f

the edge, and constructing the cavity. Care must be taken to ensure the edges

introduced into the boundary are orientated correctly, and placed into the boundary edge

list.

3.3.3.4 Boundary Edge Coarsening

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

54

The coarsening o f a boundary edge is a similar process to that o f an interior edge. An

example o f the removal o f an edge that defines the boundary o f a computational domain

is shown in Figure 35. A single node at the centre o f the old edge replaces the two

nodes. This new node must be connected to the existing points either side o f the

removed edge, and all elements connected to the removed nodes are deleted and the

resulting cavity re-triangulated. The node placement represents the new geometry,

although it is not placed on the curve used to discretise the geometry

►

Figure 35 Boundary Edge Coarsening

3.3.4 Cavity Restriction

Adapting meshes using this scheme show that the ellipses, whilst controlled in size by

using Equation 14, can enrich the cavity resulting in highly stretched elements. These

elements show orientation in the correct direction, but do not have regular size. A

modification to the cavity definition was developed, that restricts the cavity to

neighbouring elements. In this way the ellipse is not empty, but the elements exhibit

regular stretching, that results in a mesh where the neighbouring edge lengths vary in a

regular manner. Figure 36 shows the a simulation o f inviscid fluid flow across the

NACA 0012 airfoil at an incidence angle o f zero, with mesh adaptation without cavity

correction applied, whereas Figure 37 shows the same simulation with cavity correction.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

55

Adapted using Mach number, the non-modified cavity method (Figure 36) refines the

region in front o f the wing and three wake regions from the rear o f the wing. The bow

wave enrichment shows the highly stretched elements following the path o f the wave,

refining in the x-direction where the solution gradient is high. This results in highly

stretched elements along the wave. The modified cavity (Figure 37) has picked out the

same regions but has generated more regularly stretched elements in the bow wave

regions.

Figure 36 Non modified cavity

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

56

Figure 37 M odified Cavity

3.4 Results

3.4.1 Academic Example

In order to verify the metric calculation, a simple square domain was set-up, with a

known solution. The unit square domain was meshed and a solution applied at the

nodes in order for the metrics to be calculated. A circular region o f radius 0.5, at the

centre o f the domain, was defined by a ring o f width 0.1, where the solution is defined

at each node i by:

Vi = 2

Inside this ring, the solution is \J/ defined at each node i by:

V, =sin(x,.)

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

57

Outside the ring, the solution field is constant, defined by:

Vi = 1

The solution on the initial mesh is shown in Figure 38. The adaptation o f this mesh

would seek to refine the mesh in the direction o f the solution, which within the central

region is towards the right, as the sin wave solution varies with x coordinate. Hence it

is expected that an increased point density is evident in the x direction, and a coarser

density in the y direction.

Figure 38 Initial mesh and solution

The mesh adapted with refinement only, that is without mesh coarsening and element

removal is shown in Figure 39 with the new solution applied. The elements are

stretched in the y direction, since in this direction the solution does not change, thus the

edges that are orientated with the solution have been shortened in order to capture the

sin wave more accurately.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

58

Figure 39 Adapted mesh and new solution computed from a previous mesh and

solution

3.4.2 NACA Aerofoil Example

The NACA 0012 aerofoil has long been a standard geometry to determine the accuracy

o f flow solvers against experimental results. Here, the inviscid flow over the aerofoil

has been used to adapt the initial mesh, in order to obtain accurate results within the

shock region. The simulation was run with an incidence angle, a, o f 2° and a Mach

number o f 0.7. A close-up o f the geometry and initial mesh is shown in Figure 40.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

59

Figure 40 Initial isotropic NACA0012 mesh

Figure 41 shows a plot o f Cp across the NACA aerofoil. The shock region is clearly

evident and is the region in which the greatest variation between results is found. The

adaptation here is isotropic, where each edge o f a triangle is refined if a single edge of

the triangle exhibits error exceeding a user-defined value. Three adaptation loops have

been processed, each starting from the previous adapted mesh. As the edge length

decreases within the shock region, the gradient o f the results within the region increases.

The original mesh exhibits smoothing o f the shock at the beginning and end o f the

shock region, whereas the refined meshes at steps two and three resolve the steep

gradient at the same points. Anisotropic mesh adaptation is shown in Figure 42.

Evident in the graphs is an increase in solution resolution in the shock region, shown by

a near vertical gradient for the first anisotropic adaptation loop. Subsequent adaptation

loops exhibit reduced resolution quality, which can be put down to the element quality

in this region. The solver used to determine the flow solution utilises a multigrid

technique that enhances the convergence o f the simulation. Figure 43 shows the

coarsened meshes generated automatically to serve as the discretisation for the multigrid

solver. Comparing these meshes with those shown in Figure 44, the coarsened meshes

for an anisotropically adapted mesh, the stretched elements are forming a high

proportion o f the coarsened mesh. This mesh quality issue within the coarsened mesh
M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

60

affects the convergence o f the simulation, and could be a reason for the solution

accuracy diminishing as the adaptation cycles continue.

C p fo r NACA ae ro fo il a t M =0.7 a lp h a= 2

1.5

1

0 5

0

-0 -5 !

■1

-1 5

♦ Original Mesh

■ First Adaptation Loop

Second Adaptation Loop

X Third Adaptation Loop

Figure 41 Cp plot for NACA Aerofoil with isotropic adaptation

A n s io tro p ic M esh A d a p ta tio n with n o d e re m o v a l fo r NACA M=0.7 A=2

♦ Original Mesh

■ First Adaptation

Second Adaptation

X Third Adaptation

X Fourth Adaptation

Figure 42 Cp plot for NACA aerofoil with anistropic adaptation

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

61

Figure 43 Isomesh adaptation m ultim esh schem atic

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

Figure 44 Anisoptropic adaptation m ultim esh schematic

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

3 .5 Sum m ary

This chapter has described the techniques that can be employed to generate stretched or

anisotropic elements in order to reduce the size of the discretisation without detriment to

the solution accuracy. The evolution of the anisotropic Delaunay method has been

shown, and has been implemented in two-dimensions following the work of Borouchaki

et al[27]. Work that remains uncovered, and would benefit from extension into three

dimensions is the use of metric specified by the user using point and line metrics. These

entities could be of great value in performing numerical simulations where the

adaptation loop is not desirable. Here, using knowledge of flow physics, the mesh

could be generated automatically to include stretched elements, in order to reduce the

final mesh size. Issues with the multigrid methodology and stretched elements would

benefit from further investigation and research in as much as it may be necessary to

modify the mesh coarsening algorithms.

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

64

4 Parallel Mesh Generation

4.1 Introduction

The statement that computing power doubles every 18 to 24 months is well known [42].

The need for this power is ever-present within the computer simulation community, and

methods to reduce simulation time and increase simulation complexity are researched.

The concept of using more than one processor to increase the computing power is a

logical step to make.

Parallel computing (using more than a single processor to complete a task) thus

provides a means to increase the size, and hence the complexity, of a simulation whilst

decreasing the time required to perform the simulation. Amdahl [43] recognised that

the computation time can never exceed the time required for the serial sections of a

parallel code. Indeed, many parallel programs exhibit levelling off of the speedup

graphs (time versus number of processors) where the sequential algorithms dominate

the computation. Gustafson [44] countered Amdahl’s first law, by commenting that the

purpose of parallel computing is to increase the size of problem that is possible to solve
M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

65

[45]. For the computational simulation community this equals increased physics

complexity modelling, requiring larger meshes to resolve the solution to the required

level of accuracy

Many different aspects of their architecture can be used to classify computers. For

parallel computing, these aspects are the number of instruction and data streams. A

sequential computer containing a single processor and memory bank is known as a

Single Instruction stream, Single Data stream computer (SISD). This follows the Von

Neumann computer model. By increasing the number of instruction streams and/or data

streams, parallel computers are obtained that exhibit distinct characteristics.

A Multiple Instruction stream, Single Data stream (MISD) model defines a computer

more commonly referred to as a vector class computer; an example of a vector computer

is the CRAY XMP. Here the parallelisation is performed, usually by the compiler, on

an array level. For example to store a vertex in 513 would require a two-dimensional

array of length number of points and width three {x,y,z}. Any operations performed on

the coordinates can therefore be distributed amongst three processors for computation.

Single Instruction stream, Multiple Data stream (SIMD) computers are more commonly

known as Massively Parallel Processors (MPP). In this type of computer, there exists a

control unit that distributes instructions to the processing elements (PE’s), which in turn

consist of an arithmetic unit and private memory. Each PE executes the same

instruction concurrently, on different data held in the memory bank. Using these

machines very high computational efficiency can be obtained for embarrassingly

parallel problems. If a programming switch exists, such as an IF-THEN statement in

Fortran, then each dataset must fulfil the same criterion. The occurrence of unmatched

criterion results in wasted clock cycles whilst processors wait idle.

M esh Generation fo r Large Scale and C om plex C om putational Sim ulation

66

The last model of parallel computing is the Multiple Instruction stream, Multiple Data

stream (MIMD). Arguably the most flexible of the parallel models, the computers

consist of any number of processors (usually less than that of MPP’s) with distributed or

shared memory. The processors are typically cheaper than those of SIMD or MISD

processors, and MIMD computers can be formed from networks of workstations.

Two main types of MIMD computers exist, providing a significant amount of

computing power to the user, the differences in which lie in the memory distribution

within the computer architecture. A distributed parallel computer can be thought of as

geographically separate computers connected by a communication path, typically a

network. The use of software such as CONDOR[46] or LSF[47] on individual

workstations can increase the flexibility of distributed memory parallel computers. This

type of software monitors the load on the available workstations and distributes jobs to

the workstations that have little or no load. The software performs check-pointing of

the programs if the workstation experiences a load other than that of the parallel

process, and restarting the program on a different machine. Of the fastest computers in

the world (listed at www.top500.org) over three-quarters are distributed memory

supercomputers, such as the Cray T3 series and IBM SP series computers. These

machines are similar to a network of workstations running load-levelling software, but

connected by low-latency high bandwidth connections. Networks of workstations are

typically connected via Ethernet or fast Ethernet, which exhibits high latency and low

bandwidth performance.

A shared memory computer is formed by a number of processors each having access to

a shared memory space. Computers such as the SGI Origin have distributed memory,

but a method is employed via the operating system to allow the complete memory bank

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

to be accessible from a single processor. The memory is connected by a fast connection

capable of 1 . 6 gigabits per second, which hides a significant proportion of the latency

involved in accessing memory that is physically separate from the processor.

This difference between the two types of parallel MIMD computers significantly affects

the type of parallel program that is suitable to run on them, and the programming

methods applicable. Writing a program for a shared memory machine is different to

that for distributed memory computers. Since all processors have access to all the data

for a program via the memory space, the use of message passing is not required; hence

parallelisation of the algorithms within a program is better suited to a shared memory

computer. A basic example of this would be to consider the multiplication of two

square matrices, A and B of size N x N , shown in Figure 45.

Do i = 1 ,N

Do j = 1, N

C(iJ) = 0

Do k = 1, N

C(ij) = C(i,j) + A(i,k)*B(kj)

Enddo

Enddo

Enddo

Figure 45 Sequential algorithm for matrix multiplication

For a shared memory computer this would be extended for parallel computation by

using N processors each calculating the result for each row. This parallelisation can be

performed due to the independent nature of the calculation. A distributed memory

computer parallelisation of the algorithm would involve sending the data required for

each row to each of A processors for computation, and then recompiling the final results
M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

68

in matrix C. For non-independent calculations, where the possibility of a process

completing its section of the code before another and overwriting data still in use by

other processes (such as iterative algorithms), use of barriers to synchronise the

processes is required. These are placed into the code by the developer to force the

program to wait at the points specified by the barriers until all processes have reached

them.

The processing stage of a simulation represents a significant challenge in terms of

computational efficiency. Complex physics simulations can require a mesh containing

a large number of suitably shaped elements upon which calculations using complex

algorithms are performed. Parallel computing has been used to speed up the time

required to obtain the solution on these meshes containing many elements.

Supercomputers such as the Cray T3E provide a large amount of processing power by

using a large number of processors using memory that is exclusive to each processor;

the memory available for each processor can range from 500Mb to 1Gb. A Delaunay

sequential mesh generator typically uses approximately 100Mb per million elements

generated, thus using a Cray T3E configured with 500Mb of memory per node it would

be possible to generate approximately a five million element tetrahedral mesh. A

supercomputer configured with 1024 processors would clearly be able to provide the

solution to the simulation on a problem far larger than five million elements, and thus a

parallel mesh generation method is sought. Shared memory machines, such as the SGI

ORIGIN series computers, allow the generation of large meshes using sequential

programs. This type of platform is suitable for large-scale simulations, since large

amounts of memory are available to a single processor (in the region of 1 0 0 gigabytes

of RAM), although limitations to the number of processes exist, and hence time

M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

69

penalties are incurred when compared to running on massively parallel processors. This

would allow using sequential codes for mesh generation to generate meshes for

simulations involving 250 million tetrahedra. In this case, the time taken to generate

such a mesh would be prohibitively long. In the absence of a parallel mesh generator,

other methods can be used to obtain partitioned meshes suitable for parallel solution.

Partitioning libraries exist that can be used to give a good compromise between load

balance and communication cost for mesh partitioning. For example, a mesh can be

generated using traditional sequential algorithms, and then partitioned on the parallel

machine that is to be used to determine the solution. Alternatively, large calculations

have been performed using mesh enrichment to provide suitably large meshes. Here a

coarse mesh is generated sequentially, and then partitioned and distributed to the

parallel processors. For a simulation that uses constant mesh point density across the

computational domain, the mesh enrichment process is highly scalable, and any load

imbalance negligible [48]. This approach is not suitable for simulations such as CFD,

where the mesh point density spacing varies across the domain.

In developing a parallel mesh generation method, a number of specifications should be

adhered to:

• Reduce memory requirement to generate a given mesh, thus a processor should

never hold more than one single sub-domain mesh at any one given time.

• Reduce generation time, all algorithms should be carefully designed without N

loops.

• Robustness - the process should be robust due to the large datasets that the

process will be used to generate

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

70

The granularity of the parallel scheme employed is also important, and could have

significant impact on the performance of the program. The granularity of a parallel

algorithm describes the computation to communication ratio. The solution stage of the

simulation process in parallel form is typically a fine-grained parallel algorithm, for

explicit type calculations. For each time step, the boundary nodes are computed first

and then communicated to the sharing sub-domains. Once the communication has been

performed, the solutions at the interior nodes are determined. Since this is performed at

each time step, the communication cost is high, and minimising this by careful domain

decomposition can reap rewards in terms of wall clock time. The scheme chosen for the

parallel mesh generator is coarse grained, this will allow the generator to be

instrumented on physically separate machines using high latency, low bandwidth inter

process communication devices, typically ethemet. The sub-domains are written to

disk, and a small message is sent to the corresponding slave to read the sub-domain.

For either domain decomposition or volume mesh generation the computation involved

for each message is large, and thus the generator represents a coarse grained algorithm.

4.2 Literature Review

Parallel mesh generation became an important field of research in the early 1990’s when

parallel computers became increasingly common. Classified into three groups in [49],

parallel mesh generators take one of three forms, concerning the handling of the

interface regions between processors. The classifications are:

• Parallel generators that mesh the inter-domain regions prior to volume meshing

M esh G eneration fo r Large Scale and C om plex C om putational S im ulation

• Parallel generators that mesh the inter-domain regions as the volume meshing is

performed

• Parallel generators that mesh the inter-domain regions after the volume meshing

Initially in two dimensions, methods to perform parallel mesh generation were

investigated. Lohner et al [50] described the parallelisation of the advancing front

procedure using Cartesian, quadtree/octree or background mesh domain decomposition.

In this work, the inter-domain regions are discretised after the sub-domains then the

final mesh is assembled. A parallel Laplacian smoother is applied to the sub-domains

with element migration across the inter-domain boundaries to improve the quality of the

final mesh. Verhoeven et al [51] demonstrated parallel Delaunay mesh generation using

domain decomposition. Initially a coarse mesh is built by connecting the boundary

points without inserting points into the domain, and RSB [52] decomposition applied.

The boundaries of the domain decomposition result are discretised with the correct

point spacing, and each individual sub-domain meshed using a constrained sequential

Delaunay mesh generator. Lammer et al [53] has described the use of domain

decomposition using inertial partitioning on the CAD geometry for solid mechanics

simulations. Introducing lines to partition the geometry into separate sub-domains and

applying sequential Delaunay algorithms on the resulting boundaries. Topping et al

[54] have parallelised the advancing front procedure to generate quadrilateral meshes,

using a processor farming approach. By employing manual domain decomposition,

performed by the user, the meshing is performed by adaptively re-meshing each sub-

domain with quadrilateral elements.

In three dimensions, the methods developed in two dimensions have been successfully

extended. Lohner [55] has shown the extension of the parallel advancing front scheme

into three dimensions to generate meshes containing up to 1 0 0 million tetrahedral

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

72

elements. Performing diagonal swapping, bad element removal and Laplacian

smoothing in parallel ensures element quality without loss of computational efficiency.

Coupez et al [56] have shown the application of parallel re-meshing for solid mechanics

problems although report significant mesh quality problems due to constraints applied

to extract high computational efficiency. Parallel meshing is described in two-

dimensions consisting of partitioning a non boundary-conforming mesh and meshing

the resulting sub-domains in parallel. Rypl et al [57] have demonstrated a similar

approach to Lammer et al [53] of partitioning the CAD geometry in three dimensions,

although have reported problems with model topology that have incurred restrictions.

Said et al [58] demonstrated the extension of the work by Verhoeven et al [51] into

three dimensions using coarse meshing and partitioning, and in [59] demonstrated the

geometrical partitioning method extended within this thesis.

Parallelising the Bowyer-Watson algorithm has been accomplished by a number of

research groups [60][61]. The process consists of inserting points in parallel into the

mesh that is distributed across a number of processors. Calculating the cavity and

creating the tetrahedra is highly parallel if the cavity is contained on a single processor.

However if the cavity extends across a number of sub-domains, the elements that exist

whose circumspheres include the new point must be requested and communicated

across the partitions. Chrisochoides et al [62] have made a significant contribution to

the parallelisation of the Bowyer -Watson algorithm, by reducing the latency incurred

by the request and receive procedures required to form the cavity when the

circumsphere encroaches across sub-domain boundaries, a speed up factor of 6 has been

reported for generating one million tetrahedra. de Cougny et al [63] have demonstrated

the parallelisation of the advancing front method using a distributed octree. This tree is

partitioned in parallel using recursive bisection, which are then meshed in parallel. The

M esh G eneration fo r Large Scale and C om plex C om putational Sim ulation

73

inter-domain regions are left empty, and meshed once the sub-domain meshing stage

has completed.

Wu et al [64] demonstrated a parallel adaptive meshing technique, involving coarse

initial meshing and domain decomposition to provide the sub-domains upon which an

adaptive meshing scheme is performed to retrieve the final fine meshes required for

simulation.

4.3 Isotropic Parallel Mesh Generation

4.3.1 Domain Decomposition Technique

A domain decomposition step is required before the generation of volume elements can

begin, in order to reduce the single volume mesh generation tasks to a set of smaller

sub-tasks. This is to sub-divide the domain into smaller sub-domains, which can then

be farmed amongst the available processors.

The domain decomposition procedure must fulfil a number of criteria to be suitable for

use as a mesh generation tool. The procedure should be robust, in that any errors that

could occur, such as invalid surface mesh definition, can be handled within the

program. The procedure should be restorable; if the machine that the program is

operating on fails; the user should be able to restart the code with a different number of

processors and/or sub-domains. This capability provides a high degree of flexibility, in

that the program can be stopped at any point during the domain decomposition

procedure and then restarted on a different computer all together.

The decomposition procedure should also exploit any avenues for parallelisation

available in order to minimise idle processor time. The principle aim of the domain

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

74

decomposition tool, however, is to sub-divide the mesh generation problem into smaller

sub-problems, each capable of running across multiple processors, utilising the memory

available. The aim of the parallel mesh generation strategy as described in section 4.1,

is to minimise the memory requirement for generating large meshes and to reduce the

mesh generation time as a by-product of parallelisation. Thus, dividing the problem

into smaller independent sub-problems, allows the use of distributed machines

containing limited amounts of memory.

A domain decomposition scheme such as this relying on a surface mesh, and planar cuts

to separate the sub-domains, can give rise to unbalanced workload for parallel

simulation solvers, if the volume mesh sub-domains produced by the parallel mesh

generator are used as the partitioning for the solution step. The domain decomposition

step applied within the parallel mesh generator is not intended to produce volume mesh

sub-domains that are suitable for simulations where the mesh point density is not

constant throughout the computational domain (such as CFD simulations). The final

mesh of the whole domain is brought back together in a manner that minimises any

memory usage, and is described in more detail in section 4.3.4.2.2. Once the mesh has

been brought together, public domain mesh partitioning codes, typically graph based, as

described in section 4.3.2.1, are used to partition the volume mesh for sub-domains, that

minimise any communication, and minimise the variance in element / point count in the

mesh sub-domains.

The load balancing that can be applied to the domain decomposition scheme involves

balancing the number of faces as far as possible between the sub-domains. The

algorithm sub-divides only those sub-domains that have a boundary face count higher

than that of a cut-off value, a, an optimal figure of which has been found to lie within

the region:

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

75

Nsub Nsub
 > a > -------

8 16

where Nsub is the number o f sub-domains as set by the user. Using this cut-off value

allows the domain decomposition to bisect the sub-domains that have a higher number

o f boundary faces, and possibly a high workload for volume mesh generation. This

method then exhibits octree type decomposition, as shown in Figure 46, a generic wing-

body geometry. The generated inter-domain meshes are shown in blue, whilst the

geometry is yellow. The octree type decomposition, where regions o f high point

density have been decomposed can be seen around the wing region.

Figure 46 Generic wing-body geometry showing domain decomposition and

inter-domain meshes in blue

Clearly, the number o f sub-domains as set by the user may not allow the sub-domains to

become coupled closely enough to allow the number o f boundary faces per sub-domain

to become balanced. A method to balance the domains to ensure the workload o f the

volume element generation step is balanced as far as possible, to utilise the parallel

architecture fully, was devised and implemented, and is described in section 4.3.2.2.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

76

Bisecting a surface mesh with a plane allows the domain described by the surface mesh

to be separated into two halves. A mesh generated on this plane should accurately

represent a cut through a mesh generated on the whole surface of that domain. In this

way, the two smaller sub-domains can be generated independently, and mesh quality in

the region of the plane should not suffer.

The domain decomposition process is written in such a way that once the first bisection

has been completed and validated (section 4.3.1.10) then multiple processors can be

used. The sub-division of a surface mesh is an independent process, and hence any

number of sub-domains can be sub-divided at any given time provided the number of

processors is available. Here, dynamic load balancing is used (section 4.3.1.3) to cope

with an imbalance in processors and sub-domains.

The iterative process is shown more clearly in Figure 47. Starting from the top, the

surface mesh of triangles describes the computational domain. A plane is introduced

into the domain orthogonal to the longest axis, in this case the jc-axis. Extracting the

nodes that intersect this plane, and mapping into two-dimensions, allows the two-

dimensional mesh generation process to take place. This mesh “fits” into the surface

mesh, in as much as the point density on this plane conforms to that described by mesh

control entities. This now separates the original surface into two independent sub-

domains, which can now also be sub-divided.

The cutting plane can either be placed orthogonal to an axis (x, y or z) or the plane can

be placed at an angle to an axis, described in Section 4.3.1.4.

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

77

Second Cut

Second Level o f Decomposition

Figure 47 Domain decomposition strategy

The steps required to intersect a plane with the surface mesh are shown in Figure 48.

The master process handles the problems (sub-domain boundaries) to be sub-divided,

and send the messages to the slaves.

M esh Generation fo r Large Scale and C om plex C om putational Sim ulation

78

Check validity of inter-domain mesh within original mesh

Perform singly connected loop derivation

Colour boundary triangles (Section 4.3.1.8)

Perform 2D meshing on edges to generate inter-domain mesh

Intersect and extract edges on cutting plane (Section 4.3.1.5)

Orientate edges (Section 4.3.1.7)

Place cutting plane in valid region

Find valid/invalid regions for domain (Section 4.3.1.4)

Send back mesh if valid
Retry with a different position/axis if invalid

receive boundary surface mesh from master

Find axis for orthogonal axis aligned planar subdivision(Section 4.3.1.4)
or

Find axis and rotation for arbitrary position planar subdivision (Section 4.1.3.4)
rotate domain accordingly

Figure 48 Flowchart for slave process operations for domain decomposition

4.3.1.1 Master-Worker Processor Structure

The processor structure of the parallel mesh generator takes the form of a master-worker

strategy. The master process deals with handling and sorting tasks, which are then

processed and distributed amongst the available worker processes which perform the

required tasks, including mesh subdivision, volume mesh generation and mesh

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

79

cosmetics. The worker processes are independent from each other, and so no

communication is required between them.

4.3.1.2 Message Passing Libraries

In order to develop a parallel mesh generator two options exist; explicit message

passing for distributed computing and compiler parallelisation. Explicit message

passing utilises message passing libraries such as MPI [65] and PVM [6 6]. These

libraries provide a means by which it is possible to start parallel programs with an

arbitrary number of processes, running on any number of computers connected by some

form of network (Ethernet, Miranet etc). Using the MPI library for portability, the

parallel mesh generator can operate on either distributed or shared memory parallel

platforms.

4.3.1.3 Dynamic Load Balancing

In order to cope with an imbalance of processors and sub-problems, dynamic load

balancing is used [67]. Consider the case for parallel mesh generation where the surface

mesh has been decomposed into 8 sub-domains. If only four processors are available

the dynamic load balancing provides a means by which the eight sub-domains can be

meshes in parallel. The first four sub-domains are sent to the available processors,

which then generate the volume meshes in these sub-domains. Once a mesh has

completed, a message is sent back to the waiting master, who then builds the next sub-

domain and sends to the processor that has just completed. In this way, any imbalance

M esh G eneration fo r Large Scale and Complex C om putational S im ulation

80

in the workload for each processor is balanced as far as possible and an imbalance

between processes and tasks is also balanced.

4.3.1.4 Planar Placement

The planar cut can either be placed orthogonal to the longest axis of the sub-domain, or

rotated about an axis according to an analysis of the inertia matrix of the sub-domain.

Farhat and Lesoinne [6 8] suggested the use of inertia algorithms to partition finite

element meshes for parallel finite element solution, more recently Lammer and

Burghardt [53] show the application of inertia algorithms to generate triangular and

quadrilateral meshes. By extending the work in [53] [6 8] into three dimensions, the

inertia method has been applied in order to determine the axis and principal direction

(and hence the angle of rotation,0) to place the planar cut.

The choice of axis comes from the eigenvalues for the inertia matrix, and the angle of

this plane from the eigenvectors. The inertia matrix is written as shown in Equation 17.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

81

/ 1 1
XX XZ

I I I
y x yy yz

/= 4

/«=ZG'i-yC8)2+(z,-z«)2
i=1

/=1

4 = Z f a ~ Xcgf + fa; “ y cgJ Equation 17
1=1

^ =7j» =Zta -^Xxf - jv)i=i

=a, =Z(*< - *<*Xz.' - zJ
;=1

^ =I*>=Z ^ Xz. - z«)
i=l

where eg denotes the centre o f gravity o f the domain

Taking the eigenvalues of the matrix /, Eit and the eigenvectors Ev, the largest Et is used

as the axis for subdivision, and the angle between this axis and the corresponding

eigenvalue as the angle of rotation. Since this type of decomposition is simply a rotated

plane, it is possible to rotate the sub-domain in the opposite direction to obtain an

inclined cutting plane through the sub-domain. The domain must be rotated about the

origin, centred on the centre of gravity of the domain.

The rotation matrix A has three forms, dependant on the axis that the domain is being

rotated around. For x-axis rotation the matrix is of form Ai, for y-axis rotation the

matrix takes the form A2 and for z-axis takes the form A3 (=Ai), (Equation 18).

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

82

A\ — A3 —

A2 —

cos # 0 sin # 0

0 1 0 0
- s in # 0 cos# 0

0 0 0 1

1 0 0 O'
0 cos# - s in # 0

0 sin # cos # 0

0 0 0 1

Equation 18

The domain must be rotated centred around the origin, and hence two matrices are

formed that allow the domain to be moved to the centre and away again after rotation,

these are shown in Equation 19.

B =

C =

1 0 0
0 1 0 - y *
0 0 1 Zcg
0 0 0 1

1 0 0 V
0 1 0
0 0 1
0 0 0 1

Equation 19

The rotation of the domain can now be written as a transformation to the origin, a

rotation and a transformation back to the original position, Equation 20. Where XQid is

the vector of coordinates for each point within the mesh, with a fourth component equal

to one. The fourth component in the vector, and the fourth row in each matrix A^B,C is

a check that should be equal to one in the result vector Xnew. This check is inserted to

ensure that the transformation has been completed successfully.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

83

X new = { (A x B) x C) x X M Equation 20

Preliminary results, showing the decomposition o f the computational domain o f the

EADS Gulfstream into 16 sub-domains is shown in Figure 49. A close-up with the

aircraft and cutting planes coloured by sub-domain number is shown in Figure 50.

Figure 49 Arbitrary cutting plane decomposition of the EADS Gulfstream

Figure 50 Close-up of domain decomposition

The position o f the planar cut that forms the inter domain boundary is critical for mesh

quality and successful domain decomposition. If the plane is placed too close to natural

M esh Generation fo r Large Scale and Complex Com putational Sim ulation

84

boundaries, such as leading and trailing edges o f wing tips, for a specified edge length /

point density, then the elements generated in the final volume mesh can be o f poor

quality. As an example, Figure 51 shows a two-dimensional case o f a wing tip and

cutting plane (dashed line). A simplified case, the shortest distance between the leading

edge and cutting plane, 6, is less than the specified edge length, h, within the region,

thus giving rise to elements that do not correspond to the mesh density specified by the

user. Post processing steps have been taken to alleviate this occurrence, in three

dimensions, where the mesh quality procedures described in 4.3.4.1 are unable to

remove bad shaped elements.

Leading Edge

Cutting Plane

Figure 51 Cutting plane and leading edge mesh problem

In order to cope with this, and to prevent this situation from occurring, a method has

been developed that entails inspecting the angle between the normal for the cutting

plane and those o f the surface boundary triangles, where the angle between these two

vectors is less than a pre-defined tolerance then the face is marked. From this

information, it is then a simple task to build the regions o f the boundary mesh where a

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

85

cutting plane should not be placed. Inspecting whether the current cutting plane

position lies within one of these invalid regions is trivial, and the cutting plane moved

into a valid region if required. The algorithm used to determine the invalid, and thus

valid, regions is shown below:

Procedure findvalidregions

For each boundary triangle:

Find normal for the current face

Determine angle, 9, between normal fo r current face and cutting

plane

I f 9 < tolerance:

Extend or create invalid zone to include minimum and maximum

o f current boundary face

Endif

Endfor

For all invalid zones, check that cutting plane does not lie within any

zone

I f cutting plane lies within an invalid zone, move to closest valid zone,

with distance at least “minimum point density” away from closest

invalid zone

The invalid regions for the Thrust supersonic car are shown shaded in Figure 52.

M esh Generation fo r Large Scale and C om plex C om putational Sim ulation

86

y

^ ^ x ■ ■ ■ ■ Invalid Region

Figure 52 Invalid regions for Thrust Supersonic car testcase

4.3.1.5 Edge Derivation

Once a valid area for the cutting plane has been found, the edges that form the boundary

for inter-domain two-dimensional mesh generation, must be extracted from the surface

triangulation. The edge data structure is extracted from the surface triangulation and

from this dataset a loop o f order n, where n is number o f surface triangles in the current

domain, is processed and all edges o f the triangulation that cross the cutting plane

position are extracted. These edges for the EADS Gulfstream, for a cutting plane

intersecting the wing, fuselage and engine nacelle are shown in Figure 53.

M esh Generation fo r Large Scale and Complex Com putational Sim ulation

87

Figure 53 Raw edge extraction for EADS Gulfstream

A number o f pre-processing steps are taken before these edges are suitable for two-

dimensional mesh generation; the edges must be formed into singly connected loop(s),

the path o f the boundary edges smoothed in three dimensions and the edges mapped

into two dimensions.

4.3.1.6 Singly Connected Loop Derivation

The edges extracted from the surface triangulation, as shown in Figure 53, are formed

into closed correctly orientated loops in order for the inter-domain mesh generation

stage to be possible. All nodes within the edge loops can be connected to two edges

only. It is clear in the figure that the edges extracted do not fulfil this criterion, and thus

pre mesh generation processing must take place.

A loop across the edge connectivity to count the number o f nodes connected to each

edge can remove the edges that are formed from nodes that are singly connected. Once

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

this step has taken place, the existence of points within the loop that have more than two

edges meeting at them requires consideration.

A simple form of weighted graph analysis can quickly and efficiently deal with these

edges, and form a closed rim of edges. A start and end point is chosen from the list of

edges on each separate loop of edges. This point is selected as a node that is present in

only two edges, and thus would not be removed by the weighted graph analysis. Each

node is then given a weight by advancing through the loop from start to end. To form

the closed loop, it is then necessary to work backwards through the edges from the end

point, choosing the lowest weighted node at every point. Marking the edges as the

process progresses through the edge loop enables the removal of non-marked edges.

This process is more readily described with a simple edge loop, shown in Figure 54.

The start and end nodes are chosen as nodes 1 and 2 (marked in red). A weight is

applied to each node, by initialising a counter and incrementing this for every node

connected to the current node. The weights calculated for this graph are shown in the

table of zp(node number) and zw/(weight assigned to each node). The table on the right

of the figure shows the final path around the edge loop, obtained by moving backwards

through the mesh, moving to the node with the lowest weight at every point where a

choice is available. The red numbers represent the nodes that have been removed from

the edge loop to make the loop singly connected.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

89

IP IW
T

1 -10

2 0

3 1

4 2

5 3

6 4

7 5

8 6

9 7

10 8

II 9

12 10

13 11

14 12

Figure 54 Simple system of edges to show weighting path

The process applied to the edge derivation shown in Figure 53 is shown in Figure 55.

Figure 55 Edges smoothed for Gulfstream

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

90

4.3.1.7 Edge Orientation

The edges now form closed loops and must be orientated correctly to ensure that mesh

generation stage forms the mesh of triangular elements in the correct regions.

Typically, a mesh will be generated on the left hand side of an edge, defined by the

edge’s direction. The direction of an edge is determined by the connectivity of nodes

that forms the edge, thus it is necessary to orientate edge loops so that the triangles are

generated in the regions where tetrahedra will exist in the final volume mesh. Figure 56

shows a simplified example to explain this. The problem consists of two hollow

cylinders, one with a smaller radius passing through the larger radius. For clarity, the

box shaped outer boundary is not shown. On the lower right hand side of the figure, is

the regions shown in green where the final tetrahedral mesh would exist. The regions

where edges would be extracted for two-dimensional mesh generation are shown in

black. For the both cylinders, two loops would be extracted, that represent the inner and

outer surfaces. In the region between the outer boundary and the outer surface, the

region between the inner surface of the larger cylinder and the outer surface of the

smaller cylinder, and the region inside the smaller cylinder, tetrahedral are required.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

91

Figure 56 Regions for meshing after edge extraction

With aerospace geometries, cutting through engine nacelles can give edge loops inside

other edge loops, and with multi-domain problems the orientation must be able to cope

with separate domains. The steps taken to perform the orientation are shown below,

with corresponding algorithms.

The edge loop orientation concentrates on identifying which loops exist inside other

loops. Two methods exist in determining this; ray-line intersection, shown in Figure 57

where a point from the edge loop under consideration is chosen, and a line drawn to

anywhere outside o f the bounding box o f all o f the edge loops. By determining the

number o f times that this ray intersects the edges in all the loops, the current loop can be

identified. In Figure 57 a loop o f singly connected edges is shown, with two rays

starting from arbitrary points within space. The top ray is outside o f the edge loop, and

intersects with edges from the loop four times. The ray below this one originates from a

point inside o f the edge loop, and intersects with the edge o f the loop three times. This

occurs for any ray that does not pass along an edge, and hence is a valuable tool in

determining whether a point lies inside or outside o f an edge loop.

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

92

Figure 57 Ray-Line intersection

The second method involves determining the angle between a single node on the current

edge loop and the edges o f all other edge loops in the domain, Figure 58.

Figure 58 Sum angles method

If ^ 6 - 2k then the edge loop under consideration is inside o f the other edge loop, if

^ 6 * 2k then the edge loop is outside o f the other loop. The direction of an edge loop

can also be determined in this manner, by locating a temporary node at the nodal

average position o f the edge loops, and determining the total angle as before. If

^ 6 - 2 k then the edge loop is orientated clockwise, if ^ 0 = -2 /rth en the edge loop

is orientated anticlockwise.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

93

4.3.1.8 Boundary Face Colouring

The term colouring in reference to mesh generation is used to describe a particular state

of the element being marked. Here, colouring is used to identify the partition to which a

boundary face belongs. The process splits a domain described by triangular faces into

two separate domains, thus the colouring list for the boundary faces will be filled with

integers one or two. The surface mesh decomposition process relies on colouring to

identify which partition the boundary faces have been sorted into. Since all procedures

up to this point have operated on the edges of the boundary mesh, the information from

this has to be transferred to the faces. A closed rim of edges forms the boundary for

two-dimensional mesh generation, and hence where the inter-domain mesh will be

connected. A flood fill procedure has been employed to march out from either side of

the edges, marking the colour of each face as the algorithm progresses. The scheme is

node based, and the boundary face colour is derived from the nodal colour. Initially, the

nodes forming the boundary for inter domain mesh generation are marked, and then the

faces that form each edge are marked. This method uses the orientation of the boundary

faces to determine which side of the cutting plane a face lies. This method ensures that

the faces are marked contiguously, and in order n, where n is the number of nodes that

form the boundary where the inter-domain mesh will be generated. The method is

shown more clearly in Figure 59. The edge under consideration has nodes 1 and 2.

Element I contains this edge in the correct order as shown by the connectivity table, and

so from knowledge of the orientation scheme it is possible to decide which side of the

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

94

cutting plane this element lies. Element II however, also contains edge 1-2, but in this

case in the reverse, hence the element lies on the opposite side to element I.

2

4

1

Element N o Element Connectivity

1 1 2 3

II 1 4 2

Figure 59 Marking of faces by orientation

Once the faces that will form the inter domain mesh boundary have been marked, the

flood fill algorithm can begin. A loop over number o f points is used here, to reduce the

calculations required. To permit this, a data structure containing the elements connected

to nodes is built first, before the flood fill procedure can begin. The flood fill algorithm

is shown in Figure 60.

P rocedure floodfdl
For each node in the mesh:

I f node has been marked:
For each face connected to current node:

Mark faces with current node’s colour
Endfor

Endif
Endfor
I f no faces have been marked in the pass:

For each node in the mesh:
I f node has not been marked:

Determine which side o f the cutting plane it lies
Mark node accordingly

Restart algorithm at top
Endif

Endfor
 Endif___

Figure 60 Psuedo code for floodfill procedure

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

95

Before the colouring of the boundary faces can be accepted, and the two dimensional

mesh generation process begins, the edges must be smoothed in three dimensions and

checked to ensure that the mapping of the edges into two dimensions does not cause the

edges to intersect, and to reduce the chance of intersection between the inter-domain

and the original surface mesh. A number of smoothing methods were tested during the

development, which included inspecting the angles between given edge paths. The most

successful of these methods is described here.

The smoothing of the boundary edges is not a classical smoothing, such as a Laplacian

type smoother that moves the nodes to the centre of the ball of nodes, but the path that

the inter domain boundary will take is smoothed. The nodal positions in are not

changed, simply the edges that form the inter domain mesh generation boundaries are

changed. This type of smoothing is required since it reduces the possibility that the

mesh generated on the inter domain plane when mapped back into three dimensions will

not intersect the original domain boundary. By inspecting the edges, and the faces that

form the edges, and re-routing the edge path, such that it does not follow around two

edges of a given triangle, a smoother path can be created, Figure 61.

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

96

Figure 61 Smoothing of edge paths

Once a set o f edges that is admissible for two-dimensional mesh generation has been

found, the coordinates o f the vertices that form the boundary must be mapped onto the

two-dimensional cutting plane. The occurrence o f nodes tangling as they are mapped

into two dimensions is dealt with by referring to the orientation data, and once the

nodes are placed in the correct position, the procedure o f two-dimensional mesh

generation can begin. Clearly, not only is it possible for edges to become tangled, but

also the edges when mapped into two dimensions can intersect with each other.

Detecting this is trivial, and moving the position o f the plane and beginning the edge

extraction loop once more overcomes this problem.

4.3.1.9 Two-Dimensional Inter Domain Mesh Generation

The slave operating on the three-dimensional boundary mapped into two dimensions

performs the generation o f the inter-domain mesh. Initially this process was performed

by the Delaunay mesh generator as incorporated into the three dimensional stage,

operating in two dimensions (i.e. z coordinate = 0). However, it was found whilst this

was suitable for small test cases, where the inter-domain mesh had a small number of

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

97

elements, once larger test cases were tried the boundary recovery process in three

dimensions began to fail. This was caused by the reduced quality o f the inter-domain

mesh, which did not exactly meet the specifications as defined by the mesh control

entities (sources), due to interpolation performed by the volume mesh generator, when

generating the sequential mesh. To alleviate this, an advancing front procedure was

used to generate the mesh in the parametric space, using a background mesh defined by

the sources.

The background mesh was found to be a way in which it was possible to accurately and

automatically determine the point density at any given position within the domain.

Before any parallel mesh generation can begin, the pre-processor must be used to

generate the background mesh, which consists o f connecting the sources to create

tetrahedra. The background mesh is generated using a coarse triangulation o f the box

that encloses the domain, and inserting points into this mesh at the source positions.

The mesh is generated using a Bowyer-Watson procedure. An example o f the

background mesh is shown in Figure 62. A Cutting plane is used through the mesh to

show where the tetrahedral are created. The inner points in the mesh represent the

centre o f the sources used to control the mesh point spacing.

Figure 62 Background mesh for Dassault Falcon geometry

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

98

4.3.1.10 Mesh Validity

The inter-domain two-dimensional mesh is checked for validity in the original sub-

domain before acceptance. In the development stage of the parallel mesh generator, the

inter-domain mesh when inserted into the sub-domain could intersect with the original

boundary. Initially this occurred due to the inaccuracies in determining the correct point

spacing near to the boundary edges. Using the background mesh method to determine

the mesh point spacing at any point as described in section 4.3.1.9 this problem was

alleviated. However, it is still possible for the two surface meshes to intersect, in

particular where an edge has been removed from the boundary of the inter-domain mesh

boundary in order to produce closed loops.

If the inter-domain mesh intersects with the sub-domain mesh a number of options

exist. Point insertion is possible, in an attempt to Tift’ the inter-domain mesh away

from the original surface.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

99

Figure 63 Intersecting inter-dom ain and original mesh with point insertion

Figure 63 shows an example o f an inter-domain mesh intersecting with the original

boundary. At the top o f the figure, the boundary for two-dimensional mesh generation

can be seen, where one side o f the mesh has been removed. Generating the inter

domain mesh and placing into the surface mesh, in the lower o f the figure, shows the

intersection with the original boundary. Iterative point insertion by splitting the edges,

and mapping the new node onto the plane, can alleviate this problem.

Figure 64 shows a two-dimensional example, where the points used to define the

boundary o f the inter-domain mesh are some distance away from the cutting plane

position.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

100

Inter Domain mesh

Original Surface Mesh

Figure 64 Intersecting inter-domain boundary in two dimensions

This results in the regions connected to the original boundary highlighted in red, where

intersection between the inter-domain mesh and the original boundary could occur.

Inserting points into the mesh along the edges that are intersecting, it is possible to alter

the profile o f the inter-domain mesh, such that the mesh is moved away from the

original boundary, removing the intersection, Figure 65.

Once point insertion has failed to remove the intersection, the plane can be moved and

the inter-domain mesh generation process started once more.

Inter D om ain m esh

Original Surface M esh

Inserted Point

Figure 65 Point insertion to alter the mesh profile

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

101

4.3.2 Load Balancing for Volume Mesh Generation

Once the domain decomposition stage is complete, the volume meshes consisting of

tetrahedra must be generated. At the parallel mesh generator inception, the sub-domain

volume meshes were generated and left as a partitioned mesh, that together with the

communication information, form the complete mesh of the domain and are ready for

the simulation stage of the computational simulation cycle. Hence, it is necessary to

know a-priori to generating the volume mesh how many processors will be available for

the solution stage. In this situation, where the mesh will be left partitioned, the

partitions produced by the domain decomposition step can produce unbalanced sub-

domains.

The use of the partitions derived for mesh generation creates a number of significant

computational problems for the simulation stage. The communication size of a mesh, a

measure of the number of communication nodes that adjoins the partitioned meshes, can

significantly affect the performance of a parallel algorithm, in particular one whose

algorithm is a fine-grained algorithm, which typifies fluid dynamics and

electromagnetic parallel solvers.

The partitioned meshes from the domain decomposition step can be highly unbalanced,

in particular for computational fluid dynamics meshes where the edge length changes

through the computational domain. In this type of calculation, the output from the

parallel mesh generator in partitioned form is not suitable for computation in terms of

load balance and communication. This imbalance in load affects the mesh generators

ability to generate meshes on computer platforms that have a low overhead of memory;

primarily what the parallel mesh generator was created to do.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

102

In an effort to alleviate this problem of unbalanced partitions of volume meshes, a

method of over-decomposition and assimilation is used. By automatically sub-dividing

the boundary surface mesh into more partitions than are required, and then assimilating

these surfaces meshes into the required number of partitions, where the number of

boundary faces per sub-domain has a better balance, the volume mesh stage can produce

mesh partitions that exhibit improved load balance

A method has been devised to assimilate the sub-domain surface meshes into fewer

partitions with lower variance in boundary triangle count. Initially, the method used

was to assimilate the domain by inspecting the neighbours of each sub-domain and

evaluating the sum of the boundary triangles of a resulting sub-domain created by the

assimilation of the two partitions into one. Two partitions are said to be neighbours if

they share common boundary triangles, and the two neighbouring sub-domains can

therefore be easily assimilated into a single sub-domain by the removal of these shared

triangles. This method was found to be unsuitable as the difference between the

required number of sub-domains and the total number of over-decomposed sub-domains

grew.

A variation on this method entails building the graph that represents the domain over

decomposition. A node is placed at the centre of each sub-domain, and an edge is

formed by connecting two nodes (that represent two sub-domains) where the two sub-

domains share common faces. Figure 66 shows a simple two-dimensional domain that

has been decomposed using the scheme described previously.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

103

Figure 66 Two dimensional domain decomposition

The resulting graph o f this decomposition is shown in Figure 67. By performing a

graph analysis on this, using freely available software such as METIS [69], it is possible

to obtain the colour o f each node in the final decomposition. A typical graph o f the

decomposition o f an F 16 geometry and domain is shown in Figure 68.

Figure 67 Resulting graph from decomposition

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

104

Figure 68 Graph o f decom position o f an F16 sim ulation model

From this information, the sub-domains can be assimilated to fewer partitions with

improved load balance in terms o f number o f boundary faces. Clearly, using this graph

without any regard to the quantities that are represented by the edges and nodes will not

provide any o f the improvements that are possible with graph methods, and so weights

are applied to the nodes and edges o f the graph. The node weights are set as the number

o f boundary faces in the sub-domain that the node represents, and the edge weights are

defined as the number o f inter-domain boundary faces between two neighbouring sub-

domains that the edge represents. By using this weighted graph, and graph partitioning

software that can partition weighted graphs, it is possible to minimise the edge cut,

where all cut edges will represent inter domain boundaries, and thus communication in

the final mesh. In this manner, the communication o f the final partitioned volume

meshes can be reduced, in addition to the better work load balance afforded by applying

the boundary face weights. Figure 69 shows the communication costs for the differing

graph partitioning methods available through the METIS library. The corresponding

load balance in terms o f number o f boundary faces is shown in Figure 70. This shows

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

105

that for this testcase, series three, produced using “metispartgraphrecursive” has the

lowest communication cost.

Series Method Maximum
communication nodes

1 Metispartgraphkway 2998

2 Metispartgraphvkway 2566

3 metispartgraphrecursive 2213

Figure 69 Table of Communication costs for different assimilation techniques

O SenesI

■ Senes2

O Senes3

Figure 70 Graph to show number of boundary faces per sub-domain for

different assimilation techniques

Figure 71 shows the load balance for a domain decomposition o f the EADS Gulfstream

into 4 sub-domains. Series two depicts the load balance for an over-decomposition to

64 sub-domains; series three shows the over-decomposition to 128 sub-domains and

series four an over-decomposition to 256 sub-domains. The graph shows the

improvement in load balance over that provided by a non over-decomposed domain,

series one. Although the load balance has been significantly improved by performing

25000

20000

10000

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

106

this method, the partitioned meshes are not suitable for performing a simulation due to

the load imbalance.

□ Series 1

■ Series2

□ Series3

0 E+00

Sub-Domain number

Figure 71 Load Balance for 4 Sub-Domain Gulfstream Decomposition

Figure 72 shows the data logging tool provided by the MPICH message passing library,

using the output from the over-decomposition o f the Gulfstream mesh to 64 sub-

domains and assimilation to 4 sub-domains. The master process is shown in red as

process number zero, and all slave processes (in this case eight) are shown in blue.

From this output it is evident that the domain decomposition took just under half o f the

overall wall clock time to decompose the mesh into 64 sub-domains and assimilate into

eight. Evident also, is the parallel domain decomposition, as the mesh becomes divided

into more sub-domains the load balancing hands out the tasks to the waiting processes.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

107

W o rk e r

C ^ Q ID 0 D II [□□ODOOHIMI
o o d i x o onEium

□ □ COCO 0 IB

Figure 72 MPE Data logging for 64 domain over-decomposition

Figure 73 shows the output o f the MPE logging facility for the Gulfstream over

decomposed to 128 sub-domains and again assimilated to 4 sub-domains. Here the blue

blocks represent where the slave process is working on data. The yellow blocks

represent the volume grid generation stage. Using eight slave processes and one master

process, the domain decomposition uses seven processes to decompose the domain into

128 sub-domains. The gaps that are present during the decomposition phase are due to

the method that has been employed with task farming. The tasks are distributed

amongst the available processes, and data retrieved at the end. This means that a new

loop o f decomposition cannot begin until the master process has received all the data.

In addition, during the volume grid generation phase, the four processes 5 to 8 are not

used since only four volume grid generation tasks exist. Within the domain

decomposition step, it is clear that all processes are being used to divide sub-domains,

whereas in Figure 72 the last process did not contribute to the domain decomposition

step. The volume mesh stage, highlighted by the yellow bars, shows a different pattern

to that in Figure 73, due to the assimilation o f the sub-domains producing a different

result. From the wall clock time scale, it is also evident that the total time for domain

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

108

decomposition is slightly longer than for the 64 sub-domain case, although the overall

wall clock time for the entire meshing process is less than for the 64 sub-domain case.

M a n a g e r W o rk e r D e c o m p o s itio n

Figure 73 MPE Data logging for 128 domain over-decomposition

The meshes generated in the examples shown in Figure 71 contain a total o f 1.8 million

elements. These meshes are small enough in size to generate sequentially, and so the

parallel mesh generator would not conceivably be used. Figure 74 shows the robust

nature o f the method, by applying the technique to a complex geometry, the EADS F I6

in full store configuration. Here, the domain has been over decomposed to 256 sub-

domains, and assimilated to 8 sub-domains for volume meshing. Figure 75 shows the

MPE output for the mesh.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

109

Elements and Boundary Faces o f F 16 Mesh

[r nr11

_ —J

1 1

n _ n . - a . =□ = 3 i n

i—

-I
1 2 3 4 5 6 7 8

□ Elem en ts

□ F a c e s

Figure 74 Load Balance for 8 Sub-Domain FI 6 Decomposition

| | O e e o w p o e ii lo n Manager

3220 4506 5767 7065 6373

Figure 75 MPE Data logging for 256 over-decomposition of the F I6 Geometry

It would be advantageous then to uncouple the dependency between the output o f the

parallel mesh generator and the input o f the solver. Thus a single mesh file is created

once all the volume meshes have been completed. The surface mesh assimilation still

has a role to play, however, in improving the efficiency o f the parallel mesh generator,

in as much as reducing the speed paradigm for parallel computations ‘only as fast as the

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

110

slowest horse’. By balancing the load in this manner, the volume grid generation task is

balanced among the processes, such that the time taken is approximately equal for each

task. This benefits the memory overhead per process required. In addition to this, the

assimilation provides a justifiable step, to ensure that the volume mesh partitions are

large enough to reduce the occurrence of bad elements. A surface mesh decomposition

that contains many small sub-domains could conceivably reduce the final volume mesh

quality

4.3.2.1 Graph Methods for Load Balancing

Mesh partitioning plays an important role in parallel simulations. A poorly partitioned

mesh can exhibit unbalanced workload and a large communication cost. Graph

methods, that represent the mesh as a graph, either by using the nodes and edges of the

mesh as the graph, or using the barycentre centre of every element as a node and the

neighbouring element information as the edges, represent a method that can partition

meshes into well-balanced partitioned meshes with minimised communication costs.

Generally freely available, METIS[69], CHACO[70] and JOSTLE[71] are some of the

graph partitioning tools available. A discussion on the merits and improvements to the

graph partitioning methodology can be found in Hendrickson et al[72].

4.3.2.2 Surface Mesh Assimilation

To join two sub-domains that share an inter-domain boundary a number of arrays

require updating. The master process holds an array of length TotalNumberOfFaces

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

111

and width two. In this is stored the colour of each boundary face, both inter-domain and

original. A boundary face is recognised by having a single entry in the first column, the

second column containing a zero. An inter-domain boundary face is identified by

having two positive entries in the array, each of which signifying the two sub-domains

that the face separates.

The output from the graph-repartitioning tool is the colour of each sub-domain for the

new smaller number of sub-domains. Isolating the sub-domains into the new groups,

and removing the inter-domain boundary faces that join two sub-domains allows the

new sub-domains to be created. Finally, once all the inter-domain mesh boundary faces

have been numbered accordingly, the boundary faces are renumbered without the faces

that have been removed to assimilate the domains.

4.3.3 Volume Mesh Generation

The volume mesh generation stage consists of two steps:

• Orientation of the sub-domain boundary triangles

• Triangulation using the Bowyer-Watson method (including automatic point

insertion, boundary recovery and mesh cosmetic routines)

The original boundary surface of the domain will be orientated in the correct direction

however; the inter-domain meshes may not be orientated in the correct way. Indeed, as

the number of sub-domains increases, it is possible for sub-domains to be constructed

from wholly inter-domain meshes.

M esh G eneration fo r Large Scale and Complex C om putational S im ulation

112

In order to orientate these sub-domains, a ray-tracing algorithm is used, as described in

two dimensions in Section 4.3.1.7. Since the inter-domain meshes are orientated along

an axis (and the axis that a face is generated on can be found be inspecting the normal)

then the orientation of a face can be found. It would not be efficient, however, to

perform this ray-tracing algorithm for each boundary face within the sub-domain.

Instead, a method has been employed that orientates the boundary faces by using a

single orientated boundary face. The orientation of a domain from a single boundary

face consists of determining the direction of each edge in relation to that of the

orientated face. Careful programming of this allows the sub-domain to be orientated in

the correct direction, even when a sub-domain contains the connection of more than two

faces at an edge.

4.3.4 Post Volume Mesh Generation Processes

4.3.4.1 Parallel Mesh Cosmetics

Early on in the history of computational simulation, merely obtaining a mesh that

accurately represented the problem proved a distinct challenge and many methods were

devised to discretise the computational domain, some of which are described in Section

2. As the solution techniques become more complex, the discretisation of the domain

becomes crucial in finding a solution that minimises any errors introduced due to the

mesh - in as much as the mesh is a compromise between computing power and

resources versus error. A Delaunay triangulation method as described in Section 2.2,

with iterative automatic point insertion, requires a post-processing step of the mesh to

improve the quality of the mesh. This is required because it is possible for a traditional

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

113

Delaunay method to admit ‘slivers’ and other poorly formed tetrahedral elements into

the mesh, as shown in Figure 76 (comes from [7]). The figure shows two boundary

triangles {1,2,4} and {2,3,4}, which due to numerical round off, have been connected to

form a tetrahedron {1,2,3,4}. In two-dimensions, a set of three almost co-linear points

could conceivably form a flat triangle. However, the circumscribed circle would more

than likely include another element that will then allow the removal of such flat

triangles. In three-dimensions, four co-planar points could, due to numerical round off,

form a flat tetrahedron. Here, the position of a nearby point could be outside of the

circumsphere described by the flat element, and thus the tetrahedron (known as a sliver)

will be left within the mesh.

In order to improve the mesh quality of a sequentially generated mesh, three methods

are used; edge swapping, element collapsing and mesh smoothing (Laplacian).

Edge swapping entails swapping shared edges between two neighbouring elements in

the case of two dimensional mesh generation, and in three dimensions swapping shared

faces. Figure 77 shows the two-dimensional case of swapping an internal edge between

two neighbouring triangles. Clearly, this has removed the badly formed elements that

were admitted by the Delaunay criterion and maximised the minimum internal angle in

the two elements.

1 1

Figure 76 Slivers generated by Delaunay mesh generation

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

114

Figure 77 Edge swapping in two-dimensions

When an element has been generated that has a small internal angle, and cannot be

repaired by swapping edges or faces, then that element should be collapsed, and the

resulting hole filled with a local re-triangulation. Figure 78 shows that the ill-formed

element that, for the purposes of the example, cannot be repaired by swapping has been

removed from the triangulation by moving one of the nodes that forms the flat element.

Essentially the node in the centre of the diagram has been moved to lie on the lower

edge.

Once the edge/face swapping and element collapsing routines have completed, the mesh

should also be smoothed to ensure that the point density, and thus edge length, varies

smoothly through the computational domain. Laplacian smoothing provides a means by

Figure 78 Element collapsing and local retriangulation

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

which the mesh can be smoothed efficiently, by placing the nodes of a mesh at the

centre of the ball formed by the elements to which the node is connected. Assuming the

edges of the mesh are represented by springs, minimising the strain within the springs

iteratively, with the force exerted by a spring proportional to its length and along its

direction [50]. Iteratively moving points until the points are moved less than a pre

defined tolerance produces a mesh that is smooth.

The mesh cosmetics schemes described previously are applicable to a sequentially

generated mesh, and can then also be used during the parallel mesh generator, in the aim

to provide a good quality mesh. A mesh generated by the parallel mesh generator

should demonstrate close to the same quality indicators when compared to an equivalent

sequential mesh.

The parallel mesh will, however, have planes within the final mesh that are clearly

identifiable as points that were generated during the decomposition step. These planes

within the mesh cause problems for the cosmetics routines, due to the methods which

are used to improve the quality of the mesh; in particular when an element is wholly

formed of surface nodes, the quality operations of smoothing, element collapsing and

edge swapping cannot improve the element quality. Whilst the occurrence in a

sequential mesh of this is rare, the decomposition stage and the method of planar cuts

increases this occurrence dramatically. This is more readily described in two

dimensions, Figure 79, where the nodes generated on the plane are marked in red. The

mesh has been mapped back into two dimensions (for the two-dimensional case shown

here), with newly generated nodes placed on the plane of the cut. The rim that formed

the boundary for the inter-domain mesh generation step is not on the plane, and thus the

Delaunay criterion has allowed for a triangle to be created that is formed by the three

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

116

boundary points. Any swapping o f the shared edge produces two elements o f decreased

element quality and so the element is passed over without alteration.

Figure 79 Inter domain element quality problem

Clearly, it is possible to improve the quality o f this element, because in the

neighbouring partition the inter-domain node also exists. Thus, the inter domain node

can be moved and the elements surrounding this region can be operated on by the

quality enhancement procedures.

The simplest way to perform cosmetics on the completed parallel mesh would be to

perform the cosmetics sequentially. However, this could require a substantial amount

o f memory to be available to a single processor, which violates a specification o f the

parallel mesh generator, to reduce memory requirements. To overcome this, and to

have only a single mesh loaded per process, a parallel scheme has been developed to

perform the cosmetic routines in parallel on the partitioned meshes. By passing

elements across inter-domain boundaries, a given sub-domain can be enriched with

elements from it’s neighbouring partitions, which then allows the cosmetic routines to

remove the badly formed elements which arise from the inter-domain boundary. Before

any elements can be passed across and shuffled between neighbouring sub-domains, it

is necessary to perform a global numbering stage. The stage is described in detail in

Section 4.3.4.1.1.

M esh G eneration fo r Large Scale and Com plex Com putational Sim ulation

117

The neighbouring sub-domain data is found from the surface number of boundary

triangles, which is set as a negative number of the opposing sub-domain when the sub-

domains were built. Initially, a pseudo-parallel scheme was devised, that utilised two

slave processes of the parallel mesh generator. One slave is known as an extract slave,

which purely extracts elements from a required sub-domain, and sends these elements to

the other slave, the cosmetic slave. The master, who hands out the tasks sequentially to

the cosmetic slave, controls the overall process. The structure is shown in Figure 80.

MASTER COSMETIC SLAVE EXTRACT SLAVE

•For each sub-domain to
perform cosmetics on

•Send sub-domain
number

•Receive flag and
continue

< C

o •Receive sub-domain
number

•Read in sub-domain
volume mesh

•Build required list from
sub-domain nodes

•For each sub-domain in
the required list send sub-
domain number

•Receive elements and
store in global numbering ^

•Perform Cosmetics

•Return flag for succesful
completion to master

^•R eceive sub-domain
number and extract
elements

•Send elements to
cosmetic slave

Figure 80 Psuedo-sequential cosmetics structure

The master process sends a message to the cosmetic slave containing the number of the

sub-domain to perform the cosmetics procedures on. Upon receiving this information,

the cosmetics slave opens the globally numbered mesh file, and reads in the sub-domain

mesh. By looping over the boundary face surface numbers, it is possible to build up the
M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

118

list o f sub-domains that neighbour this sub-domain through faces o f tetrahedra.

Looping over this list and sending the neighbouring domain number to the extract slave,

allows the extract slave to retrieve from the neighbouring sub-domain all the elements

that are connected to the sub-domain that is under consideration for cosmetics. To

ensure that all elements are passed to the sub-domain, the global node numbers are used

and the extract slave is permitted to enrich the list held by the cosmetic slave so that

sub-domains that are connected by edges and points are also included in the element

extraction process. Figure 81 shows the case o f using boundary points for receiving

elements, if boundary edges (faces in three-dimensions) have been used the elements

connected by a single node in sub-domain 4 would have been ignored. Clearly, this

element is required to accurately smooth the elements in the region where the four

partitions meet, and so enriching the list and using global node numbering allows for the

element to be included in the cosmetic routines.

Sub-domain 2Sub-domain 1

Sub-domain 4

Sub-domain 3

Figure 81 Two dimensional element extraction example

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

119

The extract slave must also create a valid sub-domain from the remaining elements, in

terms o f boundary face data, since this domain will also have the cosmetic procedures

applied to it. Once the cosmetic slave has received all the elements from connected

partitions, the mesh is updated with the new elements and boundary face data. Once

this has been completed, the cosmetic routines described previously can be applied and

the resulting mesh written to fde.

A method that uses all the available processes has also been developed. The structure of

this is shown in Figure 82. Here, the problem is set-up by identifying the independent

tasks that exist within the domain decomposition. These independent tasks exist

because it is not permitted to perform cosmetics on the same node/element concurrently.

Hence, two sub-domains that require elements from sub-domains that are not common

can perform the cosmetics procedures.

MASTER PROCESSOR

Siave Slave Slave Slave Slave
processor processor processor processor processor

N-4 N-3 N-2 AM N

EXTRACT SLAVE

Figure 82 Parallel cosmetics process structure

Figure 83 shows simple two-dimensional domain decomposition; the sub-domains

highlighted in yellow are those that can be operated on without interference. Hence

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

120

once a single loop has been processed, only two sub-domains will have been altered by

the mesh cosmetics procedures. Hence, in order to process all the sub-domains, the

loop must continue to identify opportunities for parallelism until all the sub-domains

have been processed. Dynamic load balancing is required to deal with an imbalance o f

tasks and processes.

Figure 83 Two dimensional domain decomposition showing independent tasks

4.3.4.1.1 Global Numbering Scheme

The global number o f each node within the sub-domain mesh files must be determined

before the cosmetics routines and element passing routines can begin. The global

numbering will start with the original surface mesh numbering, and all extra nodes

added as they are generated. Hence, after the surface nodes, the inter-domain nodes will

be added. The master process builds the sub-domain boundaries in the local numbering

system for each sub-domain, and maintains a record in a single dimension array o f the

global numbers o f these nodes. It is simple and efficient then to number the volume

nodes globally, starting with the first sub-domain and then proceeding sequentially in

the order o f sub-domain numbering.

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

121

The result of this type of numbering scheme is that areas of the mesh are numbered

contiguously. This differs to a sequentially generated Delaunay mesh, where new nodes

are inserted into elements with automatic point insertion so two new points could be at

different ends of the mesh. For large-scale computations, the mesh is typically too large

to read into a single processor. Before the simulation can begin, a mesh partitioning

scheme is required to balance the load and minimise communication across the

available processors. In order to read a mesh onto a distributed computer that exceeds

the memory available to a single processor, a scheme has been developed [73] that

allows a number of processors to read separate sections of mesh.

Here, for an ^/-processor case containing M elements and P points computation, each

processor reads in N/M elements and N/P points and then communicates the nodal

coordinates to the respective processor. Since the mesh is numbered contiguously,

reading in a mesh generated by the parallel mesh generator is considerably quicker than

that generated by a sequential nature due to the ‘pockets’ of contiguously numbered

elements throughout the domain.

4.3.4.1.2 Element Extraction Criteria

It is important to maintain valid partitioned meshes at all times, to enable the restarting

of the mesh generator. Once a sub-domain has had elements removed or added by the

corresponding slave the boundary faces, the faces of elements that form the boundary,

must be extracted along with surface number information. In order to determine the

elements that form the boundary, it is necessary to build the neighbouring elements

information.

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

122

The outcome of this routine is an array of length NumberOfElements and width four. In

each of the four columns is stored the neighbouring element, where each column

represents the face number as defined by the tetrahedron local numbering scheme. A

loop of order NumberOfElements can then extract the boundary face data wherever a

zero in a column occurs.

The extraction of elements is based on a node marked scheme. Initially, the nodes that

are required are marked, and the node to element connectivity array built for the mesh.

By looping over the nodes required, all elements that are connected can be marked for

removal. In this manner, the required node list can be updated interactively through the

loop, which allows for a smooth layer of elements to be extracted and multiple layers.

Anomalies within the boundary definition of an object to be meshed are propagated

through the mesh, in both unstructured and structured meshing. Figure 84 shows

regions of poor quality elements caused by poor boundary definition and surface

definition. These regions, circled, cause poorly formed tetrahedra to be formed during

the generation process. These elements can cause problems for the Delaunay process as

the further points are introduced into the mesh, causing the error that originated at the

geometry definition stage to propagate through the surface mesh to the volume mesh.

For this reason, it may not be possible for the cosmetics procedures to remove badly

formed elements simply by receiving a sigle layer of elements surrounding the element

under consideration.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

123

Figure 84 Error propagation through the mesh in unstructured meshing

To overcome this, it has been found that differing number o f elements should be passed

between neighbouring sub-domains. Consider a two-dimensional mesh generated in two

separate sub-domains, Figure 85, the inter-domain shared edges are highlighted in red.

Initially, sub-domain one requires elements to be received from sub-domain two. Since

sub-domain two has not been processed by the cosmetics routines with extra elements,

two layers of elements are requested and sent to sub-domain one. Once sub-domain one

has been processed, sub-domain two must have the same procedure applied to it.

However, since two layers o f elements have already been sent across, it is necessary to

request four layers o f elements from sub-domain one.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

124

Pass two layers of elements from II to I

II

Pass four layers of elements from I to II

I II

Figure 85 Two sub-domain element passing example

In this manner, all the elements in the region o f the cutting plane are smoothed, and any

errors that may have propagated are removed

4.3.4.1.3 Mesh Comparisons

The results for the parallel cosmetics procedure are shown in Figure 86 and Figure 87

for computational electromagnetic simulation geometry o f a perfectly electrical

conductor (PEC) sphere. The quality o f the meshes generated by the parallel mesh

generator are obtained from the final completed mesh, and compared to an equivalent

sequentially generated mesh, using the same volume mesh generator in the sequential

and parallel models. Figure 86 shows the comparison o f dihedral angle between a

sequential mesh, a parallel mesh with two sub-domains without parallel cosmetics and a

parallel mesh with two sub-domains with parallel cosmetics. The same cosmetics

parameters were used for all three meshes, and it is evident that the mesh generated

without cosmetics is different from that with the cosmetics. A similar test for mesh

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

125

quality with a larger number o f sub-domains, Figure 87, shows a similar situation. The

performance o f an electromagnetic solver is largely based on the time step calculated

from the smallest element height in the mesh. Table 1 shows the results o f running the

solver on these meshes, and demonstrates the height o f the smallest element and the

resulting time step.

Dihedral Angle Analysis

u

Sequential Mesh

Parallel Mesh (3Parts) with Cosmetics

Parallel Mesh (3Parts) without Cosmetics

Figure 86 Results of parallel cosmetics for 2 partition domain decomposition

Dihedral Angle Analysis

Parallel Mesh (16Parts) with Cosmetics
Parallel Mesh (16Parts) without Cosmetics
Sequential Mesh

Figure 87 Results of parallel cosmetics for 16 partition domain decomposition

M esh Generation fo r Large Scale and Complex Com putational Sim ulation

126

Mesh No of Time

Steps

Minimum Element

Height

Sequential Mesh 660 0.76169E-02

3 sub-domain mesh with 660 0.759-7E-02

cosmetics

3 sub-domain mesh without 34750 0.13352E-02

cosmetics

16 sub-domain mesh with 1125 0.43085E-02

cosmetics

16 sub-domain mesh without 34750 0.13352E-02

cosmetics

Table 1 Element Height and Resulting time step for PEC sphere

4.3.4.2 Final Mesh Options

In order to perform a numerical simulation on the mesh generated in parallel, the final

meshes must be output in such a form that is compatible with the input of the particular

solver in question. If the solver incorporates a mesh-partitioning tool, the desired output

would possibly be a global mesh of the domain; however, if a mesh-partitioning tool is

not incorporated, then the partitions generated by the parallel mesh generator could be

used. In the case of partitioned meshes being used, a communication table is required,

from which the solver can extract the list of common nodes between partitions.

4.3.4.2.1 Communication Data Retrieval

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

127

Once the volume mesh generation stage of the parallel mesh generator has completed,

and any cosmetics having been performed on the resulting sub-domains, the

communication table containing the common nodes must be extracted. For each sub-

domain volume mesh file, a communication table file is generated that contains the local

node number for each node on the surface of the sub-domain, and the corresponding

local node number in all domains that share this node. This is shown clearly with a

two-dimensional example of a partitioned mesh, Figure 88. Partition I (left) has five

communication nodes, {1,9,10,12,11}, that are common with nodes in partition II

(right), {6,10,9,8,7}.

2 1
11

12

10

6

1

Figure 88 Two-dimensional communication example

4.3.4.2.2 Global Mesh Completion

As an alternative to using the domain decomposition used for volume mesh generation,

the partitioned mesh can be brought together to form a single global mesh file. In order

to keep within the specifications of the mesh generator, not more than one sub-domain

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

128

mesh file can be present on a processor at an instant in time. To achieve this, a loop of

order NumberOfSubDomains is processed. At each step in the loop, the corresponding

sub-domain mesh is opened and loaded into memory. If the mesh has had parallel

cosmetics performed on it, the element and boundary face connectivity exists in the

global numbering, so the data need simply be written to the file, and any new points

added correspondingly. If the mesh is not in global numbering, the sub-domain is

numbered correctly and output to the global mesh file.

4.4 Multi Physics led Extensions to the Parallel Mesh Generator

The parallel mesh generator has thus far been limited to the generation of isotropic

tetrahedral elements. Unstructured inviscid flow simulations require isotropic

tetrahedral elements throughout the domain to resolve the flow solution accurately. A

typical inviscid flow simulation over an aircraft geometry would require of the order of

one million nodes, or 5 million tetrahedra. As described in Chapter 3, the use of

anisotropic elements to reduce the number of elements for a given simulation whilst

retaining the solution accuracy is desired. The anisotropic Delaunay method discussed

earlier presents significant problems for optimisation in terms of parallelisation and

indeed extension to three dimensions. The advancing layer method of anisotropic mesh

generation has been used to provide the meshing for boundary later simulations in a

number of mesh generators developed previously [74][75]. The optimisation of this

procedure is required before it is suitable for inclusion into the parallel mesh generator.

Herein, various optimisation methods are discussed. The following is the description of

the addition to the parallel mesh generator to generate anisotropic hybrid elements for

M esh Generation fo r Large Scale and Com plex Com putational S im ulation

129

high Reynolds number flow simulations, and semi-structured tetrahedral elements to

truncate the infinite domain of electromagnetic scattering simulations.

4.4.1 Semi-Structured Layer Generation

4.4.1.1 Sequential Methods

Section 3 described the use of anisotropic elements for complex flow field simulations.

The methods are described in terms of solution resolution for sequential generation

schemes. The extension of the parallel grid generator to include an option to include a

layer of anisotropic elements within the mesh increases the flexibility of the program,

such that it can be used to discretise geometries for complex flow simulations.

4.4.1.2 Advancing Layer Scheme

The advancing layer technique to generate anisotropic elements was first published by

[76]. The method is based on the advancing front technique but a number of subtle

changes are used to ensure the layers of anisotropic elements are formed. In the

advancing front method, the front grows from a boundary from the shortest edge into

the unmeshed domain. Conversely, in the advancing layer method, a complete layer of

element is grown from the boundary at a time. Therefore, a second layer of elements

will only be generated once the first layer has been completed, subject to geometry

constraints. The point placement scheme in the advancing front scheme typically places

points where the new edge lengths generated will closely match the lengths of the

existing edges of the mesh, Figure 89.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

130

Figure 89 Point placement scheme for Advancing Front Method

Point placement in the advancing layer scheme is controlled by user definition of the

spacing of each layer of the mesh. The nodes are generated along extraction lines,

which are defined at normals from the mesh surface. These normals are determined for

each node in the surface mesh above which a boundary layer will be generated, by

averaging the normals for each surface elements that surround the node, Figure 90.

N TOt N 5

n 4

Figure 90 Normal averaging for nodal values

The advancing layer method for a simple two-dimensional geometry is shown in Figure

91. Starting at a node on the surface, a new node is generated along the extraction line

created from the node. The distance along the extraction line is controlled by user

input, and defines the height of each layer in the boundary layer mesh. The elements

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

131

are created in the same manner as the advancing front method, but the advancing layer

method ensures that the a new layer of elements is not started until all the nodes have

been tested for new element creation.

Figure 91 Point placement scheme for Advancing Layer Method

4.4.1.3 Optimisation

The parallel mesh generator described previously can be thought of as a parallel

harness, into which any sequential unstructured mesh generator can be incorporated to

generate large unstructured meshes on parallel platforms. The sequential Delaunay

mesh generator developed previously [18] has been used for the work shown here. This

sequential mesh generator has the option to generate anisotropic elements for viscous

flow simulation using the advancing layer procedure. In a typical mesh of an aerospace

geometry suitable for high Reynolds number flow simulations, the anisotropic elements

within the viscous layer can account for over 50% of the entire mesh elements. To date,

meshes for high Reynolds numbers flow simulations containing up to 100 million

tetrahedral elements have been generated, placing large demands on memory from the

computing power available. It would be advantageous then to generate this boundary

layer region in parallel, in order to reduce the memory overhead requirement to

acceptable levels, and to speedup the generation process.

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

132

Initially, a method to generate the anisotropic elements in parallel was devised. As with

most unstructured mesh generation methods, the advancing layer technique does not

easily lend itself to parallelisation. Any method would require a fine-grained parallel

algorithm, and thus be heavily dependant on communication, requiring a computer with

low latency inter-process communication. The program structure for such a parallel

advancing layer structure, for a two-process computer, is shown in Figure 92.

•Surface mesh and control file input

•Surface mesh partitioning (typically
METIS)

•Distribute second partition

•Generate interior and boundary nodes

•Send data o f new boundary nodes

•Receive flag o f acceptance/rejection ^

•If number o f layers reached finish,
else restart with a new layer

^ ^Receive surface mesh partition

•Generate interior nodes and elements
connected

•Receive information regarding'
boundary point generation

•Check boundary nodes and resulting
element for compatibility

•Return acceptance flag acceptable

•If number o f layers reached finish,
else restart with a new layer

Figure 92 Program structure for parallel advancing layer method

Once the master process has read the surface mesh of the computational domain, a

decomposition of the mesh is required to partition the domain into NumProcs-1 sub-

domains, using METIS. This surface mesh is only the surfaces upon which the

advancing layers will be grown from, an example of which is shown in Figure 93, for a
M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

133

surface mesh o f the EADS Gulfstream geometry. The different colours for the edges

represent the different sub-domains.

Figure 93 Partitioned surface mesh for viscous parallel generation

Distributing these sub-domains to the respective processes, allows for the advancing

layer process to begin. In order to avoid the case where one partition will have

generated a new node, and not been generated within the second partition, a hierarchy is

placed on the processes. The hierarchy ensures that a node is not considered for

generation by more than a single process. Distributing the partitioned surface mesh, the

boundary nodes o f each sub-domain are recorded and owned by a single process. A

boundary node is considered by the process with the lowest number connected to the

node, and the result communicated to the remaining domains that share this node. The

lowest process number in this case will generate the node and connect to other nodes

within the sub-domain to generate the tetrahedral elements. The partitioned surface

meshes will contain all triangles belonging to the sub-domain, and all elements

connected to the boundary nodes, as shown in Figure 94 for a two sub-domain

decomposition case. Thus, a layer o f elements will be connected to the sub-domain that

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

134

are there to obtain the normals for the nodes, entailing duplication o f nodes and

elements, known as ghost elements.

Edge belonging to sub-domain
Shared boundary edge
Ghost edges/elements

Figure 94 Two sub-domain showing ghost cells for compatibility

Upon receiving the information regarding generation o f a boundary node, a domain will

form the elements surrounding the node, and check for any intersections with the

current front within the domain. Once a point has been accepted, a message o f

acceptance is sent to the process that generated the node. This procedure is repeatedly

until either the number o f layers required has been met, or no further elements can be

generated due to intersections with the original domain boundary or the newly generated

viscous mesh.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

135

This type of scheme restricts the parallel mesh generator to machines with low latency

and high bandwidth in order to maintain program efficiency. This method was

developed further, into a coarse grained approach more in keeping with the scheme of

the parallel isotropic mesh generator.

Generating the inter-domain partitions prior to generating the volume allows the

isotropic parallel mesh generator to be coarse grained, and therefore able to operate on

computer platforms with low bandwidth, such as networks of workstations. A similar

approach was devised for the advancing layer approach. The inter-domain meshes in

this case consist of three-dimensional triangles originating from the surface mesh

attached at the join between two sub-domains. Figure 95 shows the procedure applied

to the EADS Gulfstream; Figure 96 the procedure applied to the M6 Wing, where the

anisotropic triangles separating the domains are shown, known as viscous fences.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

136

Figure 95 Viscous Fences for the EADS Gulfstream

Figure 96 Viscous Fences for M6 Wing

The master using the same procedures as the tetrahedral element procedures generates

the viscous fences. The only change is made to the connectivity in order to generate the

triangles. Once this has been performed, the partition meshes along with the

corresponding fences can be sent to the processes for advancing layer tetrahedral

element generation. This reduces the communication to zero between the slave

processes, and thus the advancing layer generation method and the isotropic parallel

generation method have the same process structure.

However, this method works for simple geometries such as the M6 wing, where all

surfaces are regular and do not fold back, so any intersection between viscous layers

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

137

cannot occur. For more complex geometries, it is possible for viscous layers to

intersect, and thus after each layer of elements has been generated a communication step

to broadcast the top surface of all individual viscous meshes is required to check for

intersection. Whilst this scheme reduces the memory required to generate the viscous

mesh, the time penalty was too large a price to pay.

A different method was sought that allows the memory overhead to be reduced and the

time penalties to be kept to a minimum. It was decided that the most suitable method to

generate the viscous layers in a manner that would reduce the memory overhead was to

optimise the advancing layer method itself. Since each layer of elements is based upon

the preceeding layer’s top face, then outputting the previous layer and freeing the

memory could significantly reduce the total amount of memory required. Hence, the

advancing layer method was incorporated into the parallel mesh generator sequentially,

with each layer of elements written out to disk, and corresponding memory freed. The

time increase for the I/O operation whilst still a factor, is smaller than that of the

increases caused by the previous two parallel advancing later methods described

previously. This optimisation allows that only a sinlge layer of boundary layer elements

are held in memory at any given time.

4.4.2 Computational Fluid Dynamics Application

4.4.2.1 Boundary Layer Region Mesh Provision

The advancing layer technique is more comprehensively described in [21]. A brief

overview is given here, highlighting the optimisation of the procedure and the

subsequent extension for hybrid element generation.

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

138

Figure 97 shows the process for generating tetrahedral elements once a point has been

successfully placed along a surface normal originating at a point on the surface mesh.

An array of length NumberOfSurfaceNodes is maintained throughout the generation

process that contains the last node to be generated on each normal. Once a new node

has been generated, the tetrahedra containing this point must be generated. This is

performed by creating for each surface triangle that contains the normal upon which the

node was generated a tetrahedron, by connecting the top node of the three surface points

and the new point.

During the optimisation of this procedure, the nodes for the new layer are generated and

checked for intersection with the current front (the top faces of the element layers). The

new faces of the tetrahedron are inserted into a tree data structure [8], the array of nodes

above surface nodes updated and the tetrahedron connectivity deleted. The elements are

created ‘on-the-fly’ when writing out each layer, and so it is possible to generate prism,

pyramid and tetrahedral elements when writing to the file. A prism element is created

wherever all three nodes of a surface triangle have a node generated above them

(element on the right of Figure 97), a pyramid element where only two of the three

nodes have a node above them (element in the middle of Figure 97) and a tetrahedron

whenever only on of the three nodes has been generated (element on the left of Figure

97).

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

139

4

N ew Node

4 4

Surface Triangle

Element Local Connectivity

1 2 3 4

I 1 2 3 4

II 2 3 4 5

III 2 5 4 6

Figure 97 Element creation for advancing layer method

Once the boundary layer region has been successfully meshed using this approach, the

isotropic region must be discretised with tetrahedra. By extracting the top surface o f the

viscous layer, and merging with the outer boundary and any symmetry planes that exist,

the boundary surface mesh o f the isotropic mesh generator is created. This surface

mesh can then be handed to the parallel mesh generator for partitioning and meshing as

described previously. Once the isotropic region has been meshed, the volume mesh is

completed and placed into a single mesh file, ready for partitioning and solution.

The results and comparisons between the parallel and the sequential viscous mesh

generators are shown in Section 5.1.

4.4.3 Computational Electromagnetics Application

4.4.3.1 Perfectly Matched Layer Region Provision

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

140

Standard low order finite element methods for solving the linear Maxwell equations for

electromagnetic simulations place large demands on the mesh generation process. The

frequency o f the electromagnetic wave and the size o f the object determine the point

density and hence the size o f mesh required. Figure 98 shows the mesh requirements

for the simulation o f the scattering o f an electromagnetic wave across an aircraft o f

length 20 metres. Radar frequency simulations o f interest to the aerospace industry start

at around 8 GHz, and hence the mesh required to perform such a simulation would be in

the region o f 100 million elements.

Figure 98 Graph of mesh requirements for scattering of an electromagnetic

wave across 20 m aircraft

The generation o f such large meshes is not possible using standard sequential methods,

and hence a parallel scheme is employed. The infinite domain can also be truncated by

the use o f a semi-structured region o f elements, known as the Perfectly Matched Layer

(PML). In order to retain the memory savings provided by the parallel mesh generator,

the PML region is required to be generated in such a way that these savings are

maintained. Using the advancing layer method, this time operating on the outer
M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

141

boundary surface, with constant layer height defined as the mesh spacing on the

boundary it is possible to discretise the region with isotropic semi-structured layer. The

formulation for a PML was devised by [77] [78] and prevents the reflection o f the wave

back into the computational domain. The optimised advancing front scheme is

employed in a similar manner to the viscous generator, although here the regeneration

o f the isotropic region boundaries is not required.

An example o f the method, applied to the classical electromagnetic scattering testcase

o f a PEC sphere is shown in Figure 99. The slice through the mesh clearly shows the

PML region o f semi-structured mesh expanding from the isotropic region, ten layers

thick. Also evident is the proximity o f the outer boundary to the object, afforded by the

PML region.

Figure 99 PEC Sphere slice through mesh

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

142

5 Parallel Mesh Generation Results

5.1 CFD Results

5.1.1 M6 Wing Geometry

A single ONERA M6 wing is a geometry used regularly in aerospace to compare results

of CFD modelling and wind tunnel tests. The geometry was used in the development of

the parallel mesh generator, as a simple testcase. As stated previously, the primary aim

of the parallelisation of the mesh generator is to increase the size of problem possible,

and hence it is necessart to compare the memory usage of the parallel mesh generator,

and that of the sequential mesh generator used with the harness. Previously, the

boundary layer meshing algorithm of advancing layers was described, with the

enhancement to reduce memory requirements. Generating ten layers of anisotropic

elements on the M6 wing geometry, shown in , the optimised advancing layers method

used a total of 14MB of memory, compared to a non-optimised memory requirement of

17MB. In total, the memory usage for generating the complete mesh (isotropic and

M esh G eneration fo r Large Scale and Complex C om putational Sim ulation

143

anisotropic parts) for the parallel grid generator is 108MB compared to 201MB for the

sequential method.

Figure 100 ONERA M6 wing anisotropic mesh

5.1.2 F15 Military Aircraft Geometry

Two simulations were performed with inviscid airflow at a speed o f Mach 0.85 for the

F16 military aircraft geometry. The “finger o f four” formation is routinely used as a

typical flight pattern, and so is a legitimate simulation to perform. The computational

domain was set with the four aircraft in a cylindrical domain. In order to gain optimal

computational efficiency from both the parallel mesh generator and the fluid dynamics

solver, the over-decomposition method was used. Initially the computational domain

was decomposed into 512 sub-domains, and then assimilated to 8 sub-domains for

volume meshing. The workload for each sub-domain is shown in Figure 101, showing

that whilst the load balance is not perfect, it is better than the balance that would have

been obtained from a raw decomposition. The total number o f elements used for the

M esh Generation fo r Large Scale and C om plex C om putational Sim ulation

144

simulation was approximately 39 million tetrahedra and 730,000 vertices. The

simulation result on the four aircraft is shown in Figure 102.

6.E+05

„ 5.E+05
c
E 4.E+05
Ji 5
*3 3.E+05

| 2.E+05

Z 1.E+05

0.E+00

Figure 101 Work Load for 4 F15 Simulation

Figure 102 Four F15 Density Plots

In order to increase the complexity o f the FI 5 geometry, in order to test the robustness

and applicability o f the parallel mesh generator with over-decomposition, the “Display”

configuration was devised. Consisting o f two F I 5 aircraft flying with the tail planes

entwined, an inviscid calculation was performed at Mach 0.85 with incidence angle o f

five degrees. The work-load graph is shown in Figure 103, with the density plots from

the solution rendered onto the aircraft shown in Figure 104. Again, the mesh was

overdecomposed to 512 sub-domains, and assimilated to eight sub-domains.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

145

1 2 3 4 5 6 7 8
Sub-Domain Number

Sub-Domain number

Figure 103 Work Load for 2 F15 Simulation

Figure 104 2 FI 5 Density Plots

5.1.3 F16 Military Aircraft Geometry

The F I 6 military aircraft geometry was used in full store configuration to determine

speed up graphs for the parallel mesh generator. For flow feature resolution, the

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

146

number o f elements required to resolve the flow was approximately 60 million

elements. Figure 105 shows a typical decomposition o f the geometry, with cutting

planes clearly shown. The aircraft is plotted in red, showing the large variation o f

element size from the immediate area around the aircraft to the outer boundary.

Figure 105 F16 32 sub-domain decomposition

The F I6 geometry was chosen for timing tests in order to determine any speed-up

observed as a by-product o f parallelisation. Figure 106 shows the speed-up achieved by

decomposing the domain into 32 sub-domains and assimilating to the number o f

processors for each particular case.

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

7

6

5

a
D
TJ

I
C/> 3

2

1

0
20 22 24 26 28 30 320 2 6 8 10 12 16 1814

Figure 106 Speed up graph for F16 geometry

The graph shows that super-linear speed up is achieved between one and two processors

and one and four processors. Increasing the number o f processors beyond this, for this

testcase, does not yield greater than a factor o f 6 speed-up, although this is due in part to

the reduction in load balance. Shown in Figure 107 to Figure 111 are the load balance

graphs, showing that as the number o f partitions to assimilate to approaches that o f the

maximum number o f sub-domains to decompose the domain to before assimilation, the

load balance o f the assimilated domains reduces significantly. Figure 112 shows the

volume partitioned mesh o f the FI 6, where the edges o f the sub-domain boundary have

been plotted to show the complex nature o f the sub-domains after assimilation.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

148

3 30E<07

3 20EO7

3 10EO7

Figure 107 Load Balance (elements) for two sub-domain F16 mesh

Figure 108 Load Balance (elements) for four Sub-domain F16 mesh

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

149

1 60607

1 40607

1 20607

1 00607

8 00606

6 00606

4 00606

2 00606

00 0 6 0 0

Figure 109 Load Balance (elements) for eight sub-domain F16 mesh

1 20607

1 00607

8 00606

6 00606

4 00606

20 0 6 0 6

0 00600

Figure 110 Load balance (elements) for twelve sub-domain F16 mesh

M il
1 2 3 4 5 6 7 6

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

150

20EO7

6.00E 06

00EO6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 111 Load balance (elements) for thirty-two sub-domain F I6 mesh

Figure 112 F16 assimilated mesh showing sub-domain edges

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

151

5.1.4 EADS Gulfstream Commercial Jet

In order to demonstrate the application o f the boundary layer mesh generation scheme

to a full aircraft geometry, the Gulfstream jet has been used. A boundary layer

containing 15 layers o f anisotropic elements was required. Generating the anisotropic

region using the optimised advancing layer method showed memory usage o f 50MB,

compatred to 82MB for the sequential non-optimised generation scheme. In total, the

maximum memory usage for the parallel mesh generator was 150MB, which compares

favourably to the sequential generation method where 273MB o f memory was required.

Figure 113 shows a cut through the mesh, clearly showing the layers o f anisotropic

elements grown from the fuselage.

Figure 113 EADS Gulfstream anisotropic mesh

5.2 CEM Results

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

Electromagnetic scattering simulations place great demands on mesh generation

programs. The use of low-order schemes to solve the linear Maxwell equations results

in requirements for meshes with edge lengths that are proportional to the frequency of

the simulation. Typical military and civil applications for electromagnetic scattering for

aerospace applications require that the scattering wave has a frequency of greater than 8

GHz. The graph in Figure 98 shows the increase in mesh size for the scattering of an

electromagnetic wave across an aircraft twenty metres in length. To perform these large

simulation parallel computer architecture is required, and parallel meshing stands out as

the only means of generating the large datasets, typically greater than 100 million

tetrahedral elements, to enable the simulation to be performed. Three test cases are

shown for the application of parallel meshing as a means to provide these large datasets.

An aerospace engine duct, provided by BAESystems, shows the application to internal

scattering problems with a simulation at 10 GHz. The scattering of an incident wave

across the Dassault Falcon is shown for a simulation at 1 GHz, and a similar simulation

of a trihedral cavity at 10 GHz.

5.2.1 Aerospace Engine Duct Simulation

The aerospace engine duct simulation represents a single incident wave entering the

engine duct and reflecting back out. This type of scattering represents a problem for

engineers designing stealth aircraft, and as such provides an opportunity to model

sections of the aircraft individually. The simulation was to be performed at a frequency

of 10 GHz, giving a wavelength of 3 centimetres. The shape of the duct was

approximately a tube, of length 6.2 metres and diameter 0.45 metres. Assuming ten

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

153

nodes per wavelength for the solver, gave a requirement o f 47.25 million vertices,

which is approximately 250 million elements. Due to the internal bounded nature o f the

simulation, a perfectly matched layer was not required. The uniformity o f the

electromagnetic mesh means that any over-decomposition is not required, and the load

balance is good enough to perform the simulation on the raw decomposition result.

Figure 114 Duct Geometry

Figure 115 Duct Mesh showing partitions

The mesh was generated using 128 sub-domains, on 32 processors. This therefore

required that dynamic load balancing be used; the number o f sub-domains that each o f

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

154

the 32 processors generated is shown in Figure 117. The time that each processor was

operating for is shown in Figure 116. This shows uniformity in the length that each

processor took, although the number o f sub-domains generated varies. It should be

noted that the programme was run in full debugging mode to generate the sub-domains

and volume meshes, which accounts for the length o f time taken.

T i m e in H o u r s for Ea ch P r o c e s s o r

20

18

61

14

12

</>
i 10

8

6

4

2

0
2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 321

P r o c e s s o r N u m b e r

Figure 116 Timings for each processor for duct generation

Dynamic Load Balancing

</)
■ I6
t 5m
Q-

a> 3■Q

h
z

1

0

n
n L
Ui- H flfl 1 1 IL 1 L J JMLLJ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Processor Number

Figure 117 Dynamic Load Balancing for each processor

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

155

4

297327167134

5.2.2 Dassault Falcon Simulation

In order to perform the simulation o f a single incident wave across a commercial jet,

here the Dassault Falcon, a large number o f elements are required. The simulation was

performed at a frequency o f 1 GHz, requiring the domain be discretised with 500

million elements. The mesh statistics are shown in Figure 118, and the simulation after

one cycle in Figure 122. The load balance, excluding PML region is shown in Figure

119.

Number of Vertices Number of Elements

Surface Mesh 1.4xl06 4.2x106

Volume Mesh 498.7x106 10.4xl06

Figure 118 Mesh statistics for Dassault Falcon simulation

60E+07

40E+07

Figure 119 Load balance for 500 million element Falcon simulation

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

156

5369

Figure 120 Falcon CEM Mesh, showing PML region and isotropic region

Figure 121 Scattering cross section of Falcon simulation showing engine nacelle

and tail plane cuts

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

157

Figure 122 Solution after a single cycle for Dassault Falcon

5.2.3 Trihedral Cavity Simulation

A number o f simulations were performed in conjunction with the University o f

M innesota to compare the scattering o f a single incident electromagnetic wave into a

trihedral cavity. The geometry is shown in Figure 124, and the solution at 20 GHz is

shown in Figure 125. A number o f frequencies were simulated, finishing in a

simulation o f 20 GHz. This frequency required a mesh size o f approximately 1 billion

tetrahedral elements, including PML region containing approximately 100 million

elements. The mesh sizes generated are shown in Figure 123.

Number of Vertices Number of Elements

Surface Mesh 1.3x10'’ 4.1x 106

Volume Mesh 183xl06 980x106

Figure 123 Mesh sizes for trihedral cavity simulation

M esh Generation fo r Large Scale and Complex Com putational Sim ulation

158

Figure 124 Trihedral Cavity Geometry

Figure 125 Electromagnetic Scattering solution plotted on geometry

Generated on an SGI Origin class parallel computer, the surface mesh was subdivided

into 63 isotropic sub-domains, with a final sub-domain used to contain the PML region.

Each isotropic sub-domain contains approximately 15 million tetrahedral elements. The

sub-domain element load distribution is shown in Figure 127.

M esh Generation fo r Large Scale and Complex C om putational Sim ulation

159

2 5

1 5

10

5

O

-5

10

15

20

25

30
210 220 2301 50 1 T O 200160

Figure 126 RCS for Trihedral Simulation

G rap h o f e le m e n t n u m b e r in e a c h o f 63 iso tro p ic s u b -d o m a in s

Figure 127 Element load for Trihedral cavity simulation

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

160

M
em

or
y

U
sa

ge

28 48 00

24 00 00

1012 00

14 24 00

4 48 00

l u ll!
S u b - D o m a i n

Figure 128 Graph of wall clock time for each sub-domain of trihedral cavity

simulation

00E+09

Sub-D om ain N um ber

Figure 129 Graph of memory usage for each sub-domain in trihedral cavity

simulation

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

161

6 Conclusion

The work presented in this thesis has covered aspects of mesh generation related to the

simulation of fluid flow and electromagnetic scattering. Initially, the two types of mesh

were introduced, structured and unstructured. The methods developed to generate these

types of meshes have been described.

Section 3 introduced the Delaunay method for creating a triangulation of a set of points

and the various implementa for creating Delaunay satisfying meshes. The use of

anisotropic or stretched elements was explained in terms of computational efficiency

and solution accuracy for fluid flow simulations. The extension of the Delaunay

method to use ellipses in place of circles in order to generate these stretched elements

was shown.

A new method to specify the metrics that describe the ellipses was developed as an

extension of the source method for point density control. Shown with examples of its

application for two-dimensional meshes, the directional sources can be applied where a-

priori knowledge of the flow directions is known. This would allow the developer to
M esh Generation fo r Large Scale and Com plex C om putational S im ulation

162

generate initial meshes containing stretched elements, such that the simulations would

require less points than for an isotropic mesh for similar flow solution resolution. This

mesh could then form the basis for an adaptive simulation, where cycles of solution and

mesh adaptation are used to resolve flow solution and reduce error across the domain.

An adaptive scheme to adapt a mesh to contain anisotropic elements has also been

introduced. By determining the metric map that defines the ellipses from a previous

solution, the mesh can be modified accordingly to conform to this metric map. The

scheme ensures that the mesh is Delaunay satisfying with respect to the metric map, and

contains directional point density where dictated by the solution. Obtaining the metric

map and adapting the mesh provides a measure of the error across the domain.

Problems of the accuracy of the metric map with respect to the size of ellipses were

discussed, and a method to restrict the cavity to neighbouring elements suggested.

Results have been shown that demonstrate this restriction, and how the solution

improved by using this method. The cavity modification ensures that the structure of

the mesh follows the solution, and that the mesh quality indicators, such as number of

elements at a point, do not exceed recommended values.

Section 4 introduced the use of parallel computing for mesh generation tasks. The

reasons behind the use of parallel computing in simulations of fluid and electromagnetic

problems were discussed. A method for generating isotropic meshes was introduced

initially. The various problems associated with the generation of meshes in parallel (for

example load balancing and final mesh quality) were discussed, and methods to

alleviate these problems described. A method to balance the volume mesh generation

task, by over-decomposing the mesh and assimilating to fewer tasks, results in sub-

domains that have improved load balance compared to that of the initial sub-domains

provided by the divide and conquer scheme. Results for these type of meshes for

M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

163

geometries varying in complexity from a simple M6 wing to an aircraft in full store

configuration were shown. In order to challenge both the flow solver and the mesh

generator, the meshes for four entire aircraft in ‘finger of four’ configuration and two

aircraft in an unrealistic configuration were generated. The flow solutions for these

simulations were shown. The parallel mesh generator has also been extended to provide

boundary layer definition capability. By optimising the advancing layer technique such

that only a single layer of elements is held in memory at once, the memory overhead

requirement is kept to a minimum. The meshes were validated on a number of testcases

shown in Section 5. In addition to the boundary layer definition, the advancing layer

technique was used to discretise the perfectly matched layer region for electromagnetic

scattering simulations. This technique was applied to three testcases; a PEC sphere, a

full aircraft geometry and a trihedral cavity. The simulations ranged in size from 100

million elements to 1 billion elements.

Further work for the anisotropic Delaunay work would be to extend the principles to

three-dimensions. Problems have been reported [41] that can reduce the applicability

and robustness of the method. In two dimensions the use of anisotropic elements to

reduce computational expense is not required, due to the relative inexpense of computer

hardware and because of the size of problems tackled. In three-dimensions, an adaptive

mesh scheme could be used, where an initial mesh containing anisotropic elements

which have been defined by directional point sources is used as the starting point. From

an initial solution on this mesh, a metric map can be obtained for the adaptation loop to

begin. The savings of anisotropic elements are only noticed in three-dimensions, where

the mesh size can rapidly grow beyond the memory capabilities of most workstations.

The use of the cavity restriction would also aid in creating mesh structure in the regions

of adaptation.

M esh G eneration fo r Large Scale and C om plex C om putational S im ulation

164

A parallel mesh generator has been created that is both stable and memory efficient.

The program is used in industry to generate meshes in aerospace research institutes

across Europe. The results shown range from meshes of a few thousand elements,

where the parallel aspects are not required, to meshes containing hundreds of million

elements. The bottleneck of simulations has traditionally been the mesh generator,

since flow solvers have been relatively scalable with mesh size, reliant on simply

porting to a larger machine in terms of processors or memory. The use of graph

partitioning libraries to partition the meshes have allowed meshes to be distributed to

parallel machines whilst balancing workload and minimising communication. By using

the parallel scheme meshes can be generated that allow the simulation of physical

problems previously not possible with current linear solver technology. In the future,

higher order methods may be used in order to reduce the number of elements required to

resolve the solution. Whilst generating meshes in size of up to 500 million elements has

been possible for fluid flow and electromagnetic scattering simulations in an automatic

way, generating very large meshes containing over 750 million elements begins to test

the software to the point where the user must intervene.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

165

APPENDIX A

A bivariate quadratic curve centred on the origin has the equation:

ax2 + 2 bxy + cy2 = 0

J =
a b
b c

If J>0 then this equation defines an ellipse centred on the origin. Parameters a and c

control the stretching along the major and minor axes, and b controls the rotation of the

minor and major axes. Therefore, b can be replaced by a rotation:

X cos# sin#

y _ - s in # cos#

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

166

So

x = x cos 3 + y' sin#

y = - x sin 3 + y cos 3

Substituting these equations we get:

x 2 = (jc cos 3 + y sin t9)(x cos 3 + y sin 3)

= x'2 cos2 3 + y '2 sin2 3 + 2x'y' sin#cos»9

y 2 = (-jc sin 3 + y cos 3)(-x sin 3 + y cos 3)

= x 2 sin2 3 + y '2 cos2 3 - x y sin3 cos3 - y x cos .9 sin#

xy = (x cos 3 + y sin 3)(-x sin 3 + y cos 3)

= y '2 sin# cos # + x y (cos2 # - s i n 2 3) - x 2 cos# sin#

Substituting these equations into (1) gives:

a x 2 cos2 3 + ay 2 sin2 3

+ 2by 2 s in#cos# + 26;ty (cos2 «9-sin2 3)-2 b x 2 cos# sin#

+ ex'2 sin2 3 - 2 c x y sin»9cosi9 + cy2 cos2 3 = 0

Collecting terms gives us:

x'2(acos2 # -2 6 c o s# s in # + csin2 3) +

y 2(a sin2# + 26sin#cos# + ccos2 #) +

x y (2asin#cos# + 26(cos2 # - s i n 2 #)-2 c s in # c o s#) = 0

Comparing coefficients

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

167

a x '2 + 2b x y + c y 2 = 0

a = <2 cos2 $ - 2 6 cos#sin#+ csin2 $

6 = as in # co s$ + 6cos2 # - 6 s in 2 # -c s in # c o s #

c = asm 2 $ + 26sin#cos$ + ccos2 3

Hence in order to make cross terms vanish, need to set

6 = 0
6 = 6(cos2 # - s i n 2 #)-(< ;- a) sin# cos#
= 6 cos(2#) - \ { c - a) sin(2#) = 0

For this to be true:

6 cos(2#) = \ (c - a) sin(2$)

cos(2^ _ (c -a) _ cot(2i9)
sin(2#) 26

So, given a stretching along the principal axes, a and c, and the required rotation, d, it is

possible to determine b using the formula:

2b= i c ~ a) { c ~ a)
cot(2#) 2 cot(2#)

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

168

REFERENCES

1 Zienkiewicz OC, Taylor RJ. The Finite Element Method, Volume 1 The Basis (fifth

edition); Butterworth and Heinemann 2000.

2 Versteeg HK, Malalaseker A; An introduction to computational fluid dynamics:;

Prentice-Hall 1995

3 http://www.catia.com

4 http://www.ptc.com

5 Thompson JF, Warsi ZUA, Mastin CW; Numerical grid generation, foundation and

applications:; North Holland 1985

6 Gordon WJ, Hall CA; Construction o f curvilinear coordinate system and applications

to mesh generation; International Journal For Numerical Methods in Engineering; 1973

7 Frey PJ, George P-L; Mesh generation application to finite elements', hermes-science

Paris 2000

8 Thompson JF, Soni BK, Weatherill NP (Editors); Handbook o f Grid Generation;

CRC Press New York 1999

9 George A; Computer implementation o f the finite element method; PhD Thesis

Stanford University 1971

10 Bowyer A; Computing Dirichlet tessellations; The Computer Journal 1981; Vol 24

no 2: pp 162-166.

M esh Generation fo r Large Scale and Com plex Com putational Sim ulation

169

11 Watson DF; Computing the n-dimensional Delaunay tessellation with application to

Voronoipolytopes\ The Computer Journal 1981; Vol 24 no 2: pp 167-172.

12 Yerry M, Shephard MS; Automatic Three-Dimensional Mesh Generation By The

Modified Octree Technique', International Journal For Numerical Methods in

Engineering 1984; Vol 20 pp. 1965-1990

13 Owen SJ; Meshing software survey; Published online

http://www.andrew.cmu.edu/user/sowen/softsurv.html

14 Schneiders R; A grid-based algorithm for the generation o f hexahedral element

meshes; Engineering with Computers 1996; Vol 12 pp 168-177

15 Tautges TJ, Blacker T, Mitchell SA; The Whisker Weaving Algorithm: A

Connectivity-Based Method for Constructing All-Hexahedral Finite Element Meshes;

International Journal for Numerical Methods in Engineering 1996;Vol 39 pp.3327-3349

16 Sibson R; Locally Equiangular triangulations; The Computer Journal; 1978 Vol 21

pp243-245

17 Ruppert J; A Delaunay Refinement Algorithm fo r Quality 2-Dimensional Mesh

Generation; Journal of Algorithms, pp. 1-45, Feb 1994

18 Weatherill NP, Hassan O; Efficient three-dimensional Delaunay triangulation with

automatic point creation and imposed boundary constraints; International Journal for

Numerical Methods in Engineering 1994; Vol 37 pp 2005-2039

19 Lohner R, Morgan K. Improved adaptive refinement strategies for finite element

aerodynamic computations; From proceedings of American Institute of Aeronautics and
thAstronautics, 24 Aerospace Sciences Meeting, January 6-9 1986. AIAA-86-0499.

20 Lohner R, Cerbral J. Generation o f non-isotropic unstructured meshes via

directional enrichment; International Journal for Numerical Methods in Engineering

2000; Vol 49: pp219-232.

21 Mavriplis DJ; Unstructured and adaptive mesh generation fo r high Reynolds number

viscous flow; Numerical Grid Generation in Computational Fluid Mechanics, Pineridge

Press; 1988 pp 611-620

22 Peraire J, Vahdati M, Morgan K, Zienkiewicz OC. Adaptive remeshing for

compressible flow computations. Internal report CR/R/544/86, Institute for Numerical

Methods in Engineering, University College, Swansea. 1986.

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

170

23 Vallet M-G; Generation de maillages element finis anistropes et adaptifs\ These de

l’Universite Paris 6 1992.

24 Borouchaki H, Castro-Diaz MJ, George PL, Hecht F, Mohammadi B; Anistropic

adaptive mesh generation in two dimensions fo r CFD\ From 5th International

Conference On Numerical Grid Generation in Computational Field Simulations,

Mississippi State University, Vol 3, pp. 197-206, April 1996

25 Castro-Diaz MJ, Hecht F, Mohammadi B; New progress in anisotropic mesh

adaptation for inviscid and viscous flows simulations:; INRIA Report No. 2671, INRIA,

October 1995.

26 Tam A, Ait-Ali-Yahia D, Robichaud MP, Moore M, Kozel V, Habashi WG.

Anisotropic mesh adaptation fo r 3D flows on structured and unstructured meshes:;

Computer methods in applied mechanical engineering. 2000; Vol 189: ppl205-1230.

27 Borouchaki H, George PL, Hecht F, Laug P, Saltel E; Delaunay mesh generation

governed by metric specifications, part I Algorithms:; Finite Elements in Analysis and

Design. 1997; Vol 25: pp 61-83.

28 Borouchaki H, George PL, Mohammadi B; Delaunay mesh generation governed by

metric specifications, part II Applications; Finite Elements in Analysis and Design.

1997; Vol 25: pp 85-109.

29 Pain CC, Umpleby AP, de Oliveira CRE, Goddard AJH; Tetrahedral mesh

optimisation and adaptivity fo r steady-state and transient finite element calculations;

Computer Methods in Applied Mechanical Engineering. 2001; Vol 190:pp3771-3796.

30 Castro-Diaz MJ, Hecht F, Mohammadi B, Pironneau O; Anisotropic unstructured

mesh adaptation fo r flow simulations. International Journal for Numerical Methods in

Fluids. 1997; Vol 25: pp475-491.

31 Borouchaki H, Frey PJ. Adaptive triangular-quadrilateral mesh generation.

International Journal for Numerical Methods in Engineering. 1998; Vol 41: pp915-934.

32 Castro-Diaz MJ, Hecht F. Anisotropic Surface Mesh Generation. INRIA Rapport

de recherche; October 1995; Number 2672.

33 Yamada A, Shimada K, Itoh T. Meshing curved wire-frame models through energy

minimization and packing o f ellipses. International Journal for Numerical Methods in

Engineering; 1999; Vol 46:pp 1221-1236.

M esh G eneration fo r Large Scale and Com plex C om putational S im ulation

171

34 Lee CK. Automatic metric advancing front triangulation over curved surfaces.

Engineering Computations; Vol 17:pp48-74.

35 Lee YK, Lee CK. Automatic generation o f anistropic quadrilateral meshes on

three-dimensional surfaces using metric specification. International Journal for

Numerical Methods in Engineering; 2002; Vol 53: pp2673-2700.

36 Dirichlet GL. Uber die Reduction der positiven Quadratischen formen met drei

Enderstimmten Ganzen Zahlen; Z. Reine Angew, Mathematics 1850; Vol 40 no 3:

pp209-227.

37 Voronoi G; Nouvelles applications des parameters continues a la theore des formes

quadratiques. Recherches sur les parallelloedres primitfs, Journal Reine Angew.

Mathematics 1908; Vol 134.

38 Delaunay B. Sue la sphere vide. Bulletin of Academic Science URSS. Science

National 1934: pp 793-800.

39 Green PJ, Sibson R; Computing Dirichlet tessellation in the plane. The Computer

Journal 1981; Vol 21 no 2: pp 168-173.

40 Weatherill N. P.; The reconstruction o f boundary contours and surfaces in arbitrary

unstructured triangular and tetrahedral grids:; Engineering Computations; Vol. 13,

No.8, 1996, pp66-81.

41 George PL, Borouchaki H. Anisotropic Delaunay based mesh generation. Von

Karman Institute for Fluid Dynamics Lecture Series, 31st Computational Fluid

Dynamics, 20-24 March 2000.

42 Moore GE; Cramming more components onto integrated circuits:; Electronics 1965;

Vol 38 (8)

43 Amdahl GM; Validity o f single-processor approach to achieving large scale

computing scalability', Proceedings of AFIPS Conference Reston, VA 1967;pp483-485

44 Gustafson JL; Re-evaluating Amdahl’s law; CACM 1988; Vol 31(5) pp532-533

45 Kumar V; Introduction to parallel computing; design and analysis of parallel

algorithms;Benjamin/Cummings Publishers, California 1994

46 CONDOR: http://www.cs.wisc.edu/condor

47 LSF : http://www.platform.com

M esh Generation fo r Large Scale and Com plex C om putational S im ulation

172

48 Aliabadi S, Zellas J, Ahedi J, Johnson A, Berger C, Smith J; Implicit, large-scale,

parallel 3D simulation o f waves impacting floating vessels’, AHPCRC Technical Report

1002-102, Minneapolis

49 de Cougny HL, Shephard MS. Parallel Volume Meshing using face removals and

hierarchical repartitioning. Computer Methods in Applied Mechanical Engineering;

1999; Vol 174: pp275-298.

50 Lohner R, Camberos J, Merriam M; Parallel Unstructured Mesh Generation.

Computer methods in applied mechanics and engineering; 1992; Vol 95: pp343-357.

51 Gaither A, Marcum D, Reese D, Weatherill NP; A Paradigm for Parallel

Unstructured Grid Generation; 5th International Conference on Numerical Grid

Generation in Computational Field Simmulations; Mississippi State University, pp.731-

740, April 1996

52 Simon H; Partitioning o f unstructured problems for parallel processing; Computer

Systems in Engineering 1991; Vol2 ppl35-148

53 Lammer L, Burghardt M; Parallel generation o f triangular and quadrilateral

meshes; Advances in Engineering Software; 2000(31) 929-936

54 Topping BHV, Cheng B; Parallel and distributed adaptive quadrilateral mesh

generation; Computers and Structures; 1999 (73) 519-536

55 Lohner R; Parallel Advancing Front Mesh Generation Scheme;

56 Coupez T, Digonnet H, Ducloux R; Parallel meshing and remeshing; Applied

Mathematical Modelling; 2000 (25): 153-175

57 Rypl D, Bittnar Z; Parallel 3D Mesh Generator

58 Said R, Weatherill NP, Hassan O, Morgan K, Verhoeven NA; Distributed parallel

Delaunay mesh generation; Computer Method in Applied Mechanical Engineering

1999; vol 177 ppl09-125

59 Said R, Larwood BG, Weatherill NP, Hassan O, Morgan K; Parallel Delaunay

unstructured mesh generation; Proceedings of the 7 International Conference on

Numerical Grid Generation in Computational Field Simulation 2000;

60 Okunsaya T, Peraire J; 3D Parallel Unstructured Mesh Generation; Trends in

Unstructured Mesh Generation; AMD-Volume 220; ASME 1997

61 Chew LP, Chrisochoides N, Sukup F; Parallel Constrained Delaunay Meshing;

Trends in Unstructured Mesh Generation; AMD-Volume 220; ASME 1997
M esh Generation fo r Large Scale and Com plex C om putational Sim ulation

173

62 Chrisochoides N, Nave D; Parallel Delaunay Mesh Generation Kernel; International

Journal for Numerical Methods in Engineering 2002;

63 de Cougny HL, Shephard MS, Ozturan C; Parallel Three-Dimensional Mesh

Generation on Distributed Memory MIMD Computers',; Engineering with Computers;

1996 (12) 94-106

64 Wu P, Houstis EN; Parallel Adaptive Mesh Generation and Decomposition;

Engineering with Computers; 1996(12) 155-167

65 Gropp W, Lusk E, Doss N, Skjellum A; A high-performance, portable

implementation o f the (MPI) message passing interface standard; Parallel Computing;

1996(22) 789-828

66 Geist A, Beguelin A, Dongeurra J, Jiang W, Mandel R; PVM: Parallel Virtual

Machine, A users guide and tutorial fo r Networked Parallel Computing; 1994 MIT

Press

67 Verhoeven NA, Jones J, Weatherill NP, Morgan K; PVM and MPI applied to a

master/slave parallel mesh generator,; PPECC Workshop 1995

68 Farhat C, Lesoinne M; Automatic partitioning o f unstructured meshes for the

parallel solution o f problems in computational mechanics',; International Journal for

Numerical Methods in Engineering; 1993(36) 745-764

69 Karypis G, Schloegel K, Kumar V; Parallel Graph Partitioning and Sparse Matrix

Ordering Library; University of Minnesota 1998

70 Hendrickson B, Leland R; The CHACO users guide; Sandia National Labs,

Albuquerque 1995

71 Walshaw, C; Parallel Jostle Library Interface; University of Greenwich 2000

72 Hendrickson B, Kolda TG; Graph partitioning models for parallel computing;

Parallel Computing 2000; Vol 26 pp 1519-1534

73 Jones JW; An investigation into Visualisation fo r Computational Simulation; PhD

Thesis, Swansea, 2003

74 ICEM CFD : http://www.icemcfd.com

75 TGRID : http://www.fluent.com

76 Pirzadeh S; Viscous Unstructured three-dimensional grids by the Advancing layers

method; 32nd Aerosapce Sciences Meeting and Exhibit 1994; AIAA-94-0417

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

174

77 Collino F, Monk PB; Optimizing the perfectly matched layer; Computer Methods for

Applied Mechanical Engineering 1998; Vol 164 pp 157-171

78 Berenger JP; A perfectly matched layer for the absorption o f electromagnetic waves;

Journal of Computational Physics 1994; Vol 114 pp 185-200

M esh G eneration fo r Large Scale and Com plex C om putational Sim ulation

175

