

 Swansea University E-Theses ___

Tool support for CSP-CASL.

Gimblett, Andy

 How to cite: ___
Gimblett, Andy (2008) Tool support for CSP-CASL.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42715

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42715
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Tool Support for CSP-CASL

Andy Gimblett

Subm itted to the University o f W ales in fulfillm ent
o f the requirem ents for the degree of

M aster of Philosophy

Septem ber 2008

W
Swansea University
Prifysgol Abertawe

Departm ent of C om puter Science
Swansea U niversity

ProQuest Number: 10807484

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807484

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Summary

This work presents the design of the specification language Csp-Casl , and the design and im
plementation of parsing and static analysis tools for that language. Csp-Casl is an extension
of the algebraic specification language Casl , adding support for the specification of reactive
systems in the style of the process algebra Csp . While Csp-Casl has been described and
used in previous works, we present the first formal description of the language’s syntax and
static semantics. Indeed, this is the first formalisation of the static semantics of any CSP-like
language of which we are aware.

We describe Csp-Casl both informally and formally. We introduce and systematically de
scribe its various components, with examples, and consider various design decisions made
along the way. On the formal side, we present grammars for its abstract and concrete syntax,
specify its static semantics in the style of natural semantics, and formulate a solution to the
problem of computation of local top elements of Csp-Casl specifications.

Going on, we describe tool support for the language, as implemented using the functional pro
gramming language Haskell, in particular, we have a parser utilising the monadic combinator
library Parsec, and a static analyser directly implementing our static semantics in Haskell. The
implementation extends Hets, an existing toolset for specifications written in heterogeneous
combinations of languages based on Casl .

Declaration

This work has not been previously accepted in substance for any degree and is not being con
currently submitted in candidature for any degree.

Signed (candidate)

Date

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other sources
are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed (candidate)

Date

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside organisations.

Signed /................. (candidate)

Date m Q llP l...................

To Basheera

Acknowledgements

It is my pleasure to start this thesis by extending my sincere and heartfelt thanks to my long-
suffering supervisor, Markus Roggenbach, for his guidance, expertise, encouragement, friend
ship and patience over the course of this work. I am sure the process was more than a little
frustrating for a good deal of the time, as he watched me battle to balance my teaching work'
with this research, and frequently lose. It has, I am sure, been an education for us both. Within
this context, my appreciation for Erwin R. Catesbeiana Jr’s ongoing pastoral support for my
supervisor is unbounded.

I thank Swansea University’s Department of Computer Science as a whole for providing me
with the opportunity to pursue this work, and gainful employment while doing so. It remains
a stimulating and highly enjoyable place to work, and my colleagues are a source of constant
inspiration and encouragement. In particular I would like to thank John Tucker, Faron Moller,
Magne Haveraaen (visiting), Harold Thimbleby, Min Chen, Matt Jones, George Buchanan,
Parisa Eslambolchilar, Monika Seisenberger, and Chris Whyley for their oft-sought and reliable
encouragement and advice.

On the technical side, I thank Christian Maeder, Till Mossakowski and Klaus Liittich for their
help and guidance while working with Hets, and the Haskell community in general for being
such a friendly and inspirational bunch.

My fellow research students have been a constant source of camaraderie, distraction and sym
pathy. Particular commendation goes to Will Harwood for his taste in movies, David Chis-
nall for his remarkable ability to expound on any subject, and Jo Gooch for, well, being Jo.
Michaela Heyer, Dan Licata and Alexa Athelstan-Price provided refreshing outside perspec
tives on research life in their own different ways. Since, it seems, research isn’t all drinking
coffee and procrastinating, I should also thank Temesghen Kahsai, Liam O’Reilly and Gift
Samuel, who have been a great pleasure to work with.

My drumming buddies at Shiko helped keep me sane over these last two turbulent and stress-
filled years, and a nicer bunch of people I have yet to meet. Now this work is done, I say to
them, “anta na courrou se nenta”.

My parents have always believed in me, and from an early age spotted and encouraged my ten
dency towards ‘absent minded Professor’ of which this thesis is merely the latest and greatest
manifestation. They also very helpfully let me work on this thesis over Christmas instead of
doing the dishes. For all of this and more they have my undying love and thanks.

Finally, it is impossible to express adequately within the context of a work such as this my love
and appreciation for Basheera, and what her love means to me. The words cannot be written,
even with emacs.1

1 http://xkcd.com/378/

i

\

Table of Contents

1 Introduction 1
1.1 Motivation and contribu tions.. 1
1.2 Related w o r k .. 2
1.3 Thesis o u tlin e .. 3

1 Background 5

2 Casl— The Common Algebraic Specification Language 7
2.1 B ackground... 7
2.2 Overview of Casl ... 8
2.3 Casl sublanguages and extensions.. 11

3 Csp— Communicating Sequential Processes 13
3.1 B ackground... 13
3.2 Survey of CSP features and sy n ta x .. 14
3.3 The Models T , T and h f .. 18
3.4 Example: the Dining Philosophers.. 20

4 Csp-Casl 23
4.1 O v e rv ie w ... 23
4.2 Csp-Casl e x a m p le s ... 24
4.3 Case study: ep2 ... 26

5 The Hetereogeneous Context 31
5.1 Heteterogeneous specification ... 31
5.2 HetCa s l ... 32
5.3 Hets, the Heterogeneous Toolset ... 33
5.4 CSP-CASL in the heterogeneous s e t t in g ... 34

iii

6 Natural Semantics 37

6.1 In troduction ... 37

6.2 Semantics of M in i-M L ... 39

6.3 Static semantics of CASL local l ib ra r ie s .. 41

7 Haskell and Parsec 47

7.1 Haskell ... 47

7.2 P a r s e c ... 52

II Design & Implementation 59

8 The Language Implemented 61

8.1 Csp-Casl o v e rv ie w ... 61

8.2 Survey of process types and o p e ra to rs ... 67

8.3 Some design d e c is io n s ... 73

9 Csp-Casl Syntax 77

9.1 Csp-Casl abstract syntax— normal g r a m m a r ... 77

9.2 Csp-Casl abstract syntax — abbreviated g ram m ar.. 79

9.3 Csp-Casl concrete s y n ta x ... 80

10 Csp-Casl Static Semantics 85

10.1 In troduction .. 85

10.2 Signatures, variables, alphabets and subsorting... 88

10.3 Top-level e le m e n ts ... 96

10.4 Process t e r m s ... 101

10.5 Supporting elements .. 108

11 Casl subsorts and Local Top Elements 113

11.1 In troduction .. 113

11.2 Local top e le m e n ts ... 114

11.3 Algorithm and Haskell implementation.. 115

11.4 Local top elements of a p re o rd e r .. 117

12 Tool Implementation 119

12.1 Overview of Hets im plem entation..119

12.2 Implementation of p a r s e r .. 121

12.3 Implementation of pretty prin ting ... 127

12.4 Implementation of static sem an tics ..129

12.5 Automated testing ...135

Ill Evaluation & Conclusion 139

13 Selected System Runs 141
13.1 Screenshot: Hets in a c tio n ...141
13.2 Examples from [Rog06] 141
13.3 Examples demonstrating particular f e a tu r e s ... 146
13.4 Example from E P 2 ..152

14 Conclusion 157
14.1 S u m m a ry ..157
14.2 A vailab ility ; ... 158
14.3 Future w o r k ...158
14.4 Evaluation..161

Bibliography 162

List of Figures

2.1 Part of the C a s l family [M os04a]... 8
2.2 CASL specification example: monoid.. 9
2.3 Casl specification example: sort generation constraints... 10
2.4 CASL specification example: subsorts... 11

3.1 CSP-M example: simple.csp... 18

4.1 Overview of the EP2 system... 27
4.2 Part of the EP2 specification in Csp-Ca s l ... 30

5.1 Two versions of tcsl. cspcasl in H e t C a s l ... 34

7.1 Visualisation of nTree :: Tree Int and sTree :: Tree String 49
7.2 Part of the graph of a grammar.. 53

8.1 Tree representations of process term n i::N a t —»• COUNT(i) □ Q(i) ; SK IP . 66

10.1 Upcasts, downcasts, and disallowed casts in Ca s l .. 95

11.1 Graphs of relations R i and R 2 ... 114
11.2 Graphs of preorders < 1 and < 2 .. 118

13.1 Screenshot of Hets in action, parsing Csp-Ca s l .. 142
13.2 ep2 example: data p a r t ... 154
13.3 ep2 example: process p a r t ... 155

List of Tables

7.1 Some simple Parsec com binators... 54

8.1 Summary of Csp-Casl process types.. 68

10.1 Summary of naming conventions used in this ch ap te r.. 87
10.2 Summary of types used in this chapter.. 88
10.3 Computation of process term constituent alphabets ... 92
10.4 Computation of Casl formula s o r t s ... 93

12.1 Csp-Casl reserved keywords and s y m b o ls .. 125

ix

Chapter 1

Introduction

Contents
1.1 Motivation and contributions.................................... 1
1.2 Related work... 2
1.3 Thesis outline... 3

This thesis is an account of recent work in developing tool support for the specification lan
guage Csp-Casl, in particular tools for parsing and static analysis of Csp-Casl specifica
tions. In order to implement such tools it is necessary to formalise these items, therefore this
thesis is also a presentation of formal abstract and concrete grammars, and a formal static
semantics, for Csp-Casl.

1.1 Motivation and contributions

Csp-Casl [Rog03, Rog06] is motivated by a desire to integrate the specification of data and
processes on a deep level. Historically, process algebras have paid little attention to modelling
data, whereas algebraic specification languages have not directly supported concurrency; most
previous approaches to integrating processes and data [BB87, Bri88, Sca98, FSE06] have re
stricted data to initial or concrete data types, disallowing loosely specified abstract data and
refinement of data specifications. The main exception, fiCRL [GP95], allows loose data speci
fication but does not support subsorting or partiality (see section 2.2). Conversely, Csp-Casl
allows stepwise development of both processes and data — either aspect may be specified at
various levels of abstraction, and refined independently — and subsorting and partiality. This
approach was successfully put into practice in [GRS05], where we used Csp-Casl to specify
certain aspects of an electronic payment system at differing levels of abstraction (see section
4.3); [OIR07] describes refinement and integrated theorem proving on Csp-Casl , also using
the electronic payment system example.

[Rog06] describes the language ‘Core-CSP-CASL’, concentrating particularly on a presentation
of its model semantics. Our concern in this thesis is an expanded and tool-supported version of
this language, a ‘full’ Csp-Casl , with formally specified syntax and static semantics.

There are several motivations for formalising Csp-Casl . Primarily, doing so provides an ex
tremely valuable point of reference, of great utility at various stages. When designing the

2 Chapter 1 Introduction

language, it is very useful to have a language specification, which should be more readily com
prehensible and pliable than an implementation, and thus useful as a basis for discussion and
experimentation; a formal specification is then better than an informal one as it promotes un
ambiguity and completeness. Furthermore, the very act of formalisation requires us to shine
a light into all of the dark comers of the language, and make (and defend) decisions which
might otherwise go unconsidered. When implementating the tools, the formalisation provides
a reference point which promotes directness of implementation, and increases our confidence
that we are implementing what is actually intended. Finally, it also introduces the possibility of
properly building multiple tools targetting the same language, which is harder if not impossible
where the language definition is informal or consists merely of some ‘canonical implementa
tion’.

This work makes the following contributions. Most obviously, it makes the technical contri
bution of the design and implementation of Csp-Casl’s abstract and concrete syntaxes and
static semantics; while Csp-Casl is not itself entirely new, it has previously existed only as
a ‘Blackboard’ language, intended for humans and incompletely specified: its formalisation
here has necessarily required the resolution of a number of open design issues, and takes CSP-
Casl to the state where tool support and automatic processing become possible, with all their
associated benefits. This contributes directly to the field of formal methods in a number of
ways:

• On the process algebra side, a formal static semantics of a Csp dialect has never been
provided before to our knowledge, and doing so brings to light a number of issues; in
particular, we provide for the first time a proper and rigourous treatment of the hitherto
largely ignored issue of local vs. global variables of Csp processes.

• On the algebraic specification side, this work supports the programme of CoFI, the Com
mon Framework Initiative [Mos96], by formally documenting the syntax and static se
mantics of a C a s l extension language targetting reactive systems - as is required by
CoFI for any CASL extension language.

In terms of tool support, we use our formalisation of Csp-Casl in order to extend Hets, a
toolset aimed at functional specification of systems, towards full support for specifying systems
with reactive/concurrent components. Industrial case studies and applications gain immeasur
ably from such tool support: in [GRS05] we produced a prototypical specification of an elec
tronic payment system, and proved some properties of our specification on paper; producing
a full specification to match or replace that actually used in industry, and to prove properties
against it, undoubtedly requires tool support of the kind we are working towards here. The
work described in this thesis is included in the Hets distribution, and may be experimented
with freely via the Hets online interface1.

Finally, the implementation part of this work contributes in a small way to the field of parser
technology, by providing another case study and set of examples of using the Parsec monadic
combinator library for recursive descent parsing in Haskell.

1.2 Related work

Circus [WC01, WC02] is a specification, design and programming language that combines
CSP for process descriptions with the language Z [Spi89, WD96] for modelling complex data

xh t t p : //www. inf o r m a t i k . u n i - b r e m e n . de/cgi-bin/cgiwrap/maeder/het s . cgi

1.3 Thesis outline 3

structures and state. Z’s (and thus Circus’) approach to specification of data differs rather
from Ca sl ’s: Z takes the model-oriented approach, in which a system’s behaviour is defined
in terms of implicit state and transformations thereon; in contrast, CASL’s property-oriented
approach specifies behavioural properties using a system of axioms over some explicit state (in
CASL’s case, described algebraically) [HB99].

Circus has a rich set of tools including a parser, static type checker, model checker, and refine
ment checker; the Circus tools are implemented as extensions to the CZT toolkit for Z [MU05],
written in Java. The (LALR) parser is automatically generated from a language description us
ing the JFlex1 scanner generator and the Cup3 parser generator and is discussed in [MU05].
[XCS06] presents the static semantics of Circus in a style similar to that seen in chapter 10 of
this work, though at a somewhat higher level of abstraction. The rules are then implemented
as a CZT extension, utilising the visitor design pattern to define type checking actions for each
syntactic category. Circus’ approach to implementation of static checks is thus similar to ours
for Csp-Ca sl : a formal specification on paper is implemented by hand in a programming
language; our approach to parsing is rather different however, and does not involve automatic
parser generation. The Circus parser and type checker have been validated informally using
unit tests and by integration with several other tools in the Circus toolset.

In the field of tool support for CSP, the tools FDR (Failures Divergence Refinement) [FSE06]
and ProBE {Process Behaviour Explorer) [FSE03] utilise the input language Csp-M (‘Ma
chine Readable CSP’). CSP-M is summarised in [FSE06] and described in detail in [Sca98].
While the latter presents a formal syntax (as an ASCII grammar intended for processing by
the b i s o n 4 parser generator) and formal model semantics for the language, neither work for
malises the static semantics of the language. In fact, neither FDR nor ProBE perform explicit
type checking, and while using those tools type errors are ordinarily exposed only during model
checking or animation [FL08] — though [Sca98] does state that static type-checking is a de
sirable future improvement. [LZL99] presents a set of type of rules for CSP but they are
“incomplete and not adopted by any tools”, including FDR [XCS06].

An interesting recent development [FL08] sees Csp-M embedded into the functional program
ming language Haskell (see chapter 7) at the type-level, allowing CSP-M specifications to be
type checked using standard Haskell tools. That is, a CSP-M specification is encoded into
a (non-executable) Haskell program, whose type correctness implies the type correctness of
the original CSP-M. In contrast, static analysis of Csp-Casl specifications explicitly includes
type checks, though our approach differs from that described above in that it is a direct imple
mentation in Haskell of the Csp-Casl static semantics described in chapter 10.

1.3 Thesis outline

The rest of this thesis is organised as follows.

Chapters 2 to 7 present the background material required to contextualise the rest of the work:
chapters 2 and 3 introduce the specification languages Casl and Csp respectively, outlining
their key features and presenting some simple examples. Chapter 4 then introduces Csp-Casl ,
concentrating on context and motivation rather than technical details, which come later. In
chapter 5 we discuss heterogeneous specification and introduce Hets, the Heteterogeneous

2h t t p : //jflex.de
3h t t p ://www 2 .c s .turn.edu/projects/cup/
4h t t p :/ / w w w .g n u .org/software/bison/

4 Chapter 1 Introduction

Toolset, within which framework our tool is developed. In chapter 6 we introduce the natural
semantics formalism, used later in the formalisation of Csp-Casl’s static semantics. In chapter
7 we introduce the functional programming language Haskell and the monadic combinator
parsing library Parsec, key technologies for the implementation of our tool; here we also briefly
review some basic theory behind recursive descent parsing, as implemented by Parsec.

Chapters 8 to 12 represent the original contribution of this work, i.e. language design and tool
implementation: In chapter 8 we informally describe our target language Csp-Casl , exam
ining its various features, detailing design decisions, and setting the context for the following
chapters. In chapter 9 we present the abstract and concrete syntax of Csp-Casl , and discuss
some interesting aspects thereof. In chapter 10, we present the formal static semantics of CSP-
CASL, using natural semantics, in the style of the Casl Reference Manual. In chapter 11 we
examine in detail the problem of checking for local top elements, a novel aspect of Csp-Ca sl ’s
static semantics. In chapter 12 we describe the implementation of our tool as an extension to
Hets, outlining and illustrating the implementation strategies for the parser and static analyser
within this framework.

Finally, in chapters 13 and 14, we present examples of the tool in action; evaluate the project,
the language and the implementation; consider future work; and conclude.

Part I

Background

i

t

Chapter 2

C a s l — The Common Algebraic
Specification Language

Contents
2.1 Background 7
2.2 Overview of C A S L 8
2.3 CASL sublanguages and extensions 11

Casl is the Common Algebraic Specification Language. In this chapter we present a brief
overview of its key features, following [BM04, CoF04c]. Examples are derived from standard
ones in [BM04].

2.1 Background

“CASL, the Common Algebraic Specification Language, has been designed by
CoFI, the Common Framework Initiative for algebraic specification and develop
ment. CASL is an expressive language for specifying requirements and design for
conventional software. It is algebraic in the sense that models of CASL specifica
tions are algebras; the axioms can be arbitrary first-order formulas.” [BM04]

Algebraic specification is an approach to formal specification of systems based on the concepts
of universal algebra, whereby the functional requirements and design of systems are specified
as abstract data types (data types and operations thereon) using systems of signatures and
axioms written in some logic (e.g. equational, conditional, first order). [Wag02]

Over the years a number of competing algebraic specification frameworks have been devel
oped, with varying levels of tool support and industrial uptake; major examples include OBJ
[GWM+93], ACT-ONE/TWO [CEW93] and Extended ML [KST97]. The CoFI project began
in 1995, with the aim of designing a Common Framework fo r Algebraic Specification and De
velopment — an attempt to create a de facto standard framework for algebraic specification,
providing a “coherent family of languages, all extensions or restrictions of some main alge
braic specification language”. Casl is the language at the centre of that family (see figure
2.1), based on “a critical selection of the concepts and constructs found in existing algebraic

7

8 Chapter 2 CASL— The Common Algebraic Specification Language

rG raph of CASL
sublanguages and

proposed extensions

CSP-CASL

CoCASL CASL-LTL

HasC/ SB-CASL

SubFOL= PFOL=

FOL=

V JFlorn •

Figure 2.1: Part of the Casl family [Mos04a]

specification frameworks” and targetting “specifying requirements and design of conventional
software packages”. [Mos96, AS02]

In this chapter we examine C a s l further, describing its key features and in particular those
of CASL basic specifications, and considering its family of sublanguages (restrictions) and
extensions, which includes C sp-C asl; we will consider working with C a s l and in particular
heteregeneous specifications involving different languages of the family in chapter 5.

2.2 Overview of Casl

Casl provides basic specifications consisting of many-sorted signatures with subsorting, par
tial functions, sort generation constraints and axioms written in first order logic. It also pro
vides structured, architectural and library specifications for combining basic specifications in
various manners. We now describe these features further, including some illustrative examples,
following [BM04].

2.2.1 Basic specifications

A C a s l basic specification consists of a set of declarations of symbols (i.e. names) for sorts
(the data types of the specification), symbols and profiles for operations (total and partial func
tions on the sorts), symbols and profiles for predicates (relations on the sorts), and a set of
axioms and constraints which restrict the interpretations of the declared symbols. As noted
below, such specifications may be named for reference in structured specifications and named
specifications may be generic, i.e. include parametrised elements. The axioms are formulas
in two-valued first order logic with equality (FOL=), with the usual connectives and universal
quantifiers; furthermore, they may make assertions regarding definedness (e.g. of the results of
partial functions) and subsorting.

In figure 2.2 we see an example CASL specification, for a monoid: a sort and an operation
which is associative and has a unit element. This illustrates several key points just mentioned:
we have a sort name declaration, two operations (one of which is 0-ary and hence defines a
constant), and three axioms on the items declared (unit element and associativity).

The semantics of such a specification consists of a a many-sorted signature E containing the
symbols (see section 10.2.1), and a class of E -algebras corresponding to interpretations of

2.2 Overview o f CASL 9

spec MONOID =
sort Elern
ops n : Elem;

 *__ : Elem x Elem —» Elem
V x, y, z : £7era
• n * x = x %(left identity)%
• x * n = x %(right identity)%
• (x * y) * Z = x * (y * z) %(associativity)%

end

Figure 2.2: Casl specification example: monoid.

the signature in which the axioms and constraints are satisfied. The model semantics of CASL,
defining such algebras, is beyond the scope of this document; however, we note that a E-algebra
contains carrier sets corresponding to E ’s sorts, and functions and relations corresponding to
E ’s operations and predicates. In the monoid example in Figure 2.2, the class of E-algebras
forming this specification model includes the natural numbers under multiplication with an
identity of 1, the natural numbers under addition with an identity of 0, and lists under concate
nation with an identity of the empty list.

2.2.1.1 Sort generation constraints

C a s l includes sort generation constraints to further control the contents of the E-algebras’
carrier sets. The models of a loose specification (the default interpretation) include all those
with the properties defined by the specification’s axioms, without further restraint on the carrier
sets (so for example trivial carriers such as singletons will tend to be included); CASL also
allows for generated and free datatypes, however. If a sort is declared as a generated datatype,
values of the sort are built only using the sort’s provided constructors (‘no junk’ - this provides
an induction proof principle on such types); if a sort is declared as a free datatype, it is generated
and furthermore, values denoted by different constructor terms are necessarily distinct (‘no
confusion’).

The examples in figure 2.3 illustrate loose, generated, and free datatypes:

• SPEC 1 and SPEC2 are semantically identical specifications. The type declaration in
SPEC 1 is simply syntactic sugar for the declarations seen in SPEC2 defining a new sort
called Container and operations (the constructors empty and insert) on it and Elem.

• SPEC3 illustrates the free type declaration. Here the sort Nat has two constructors,
0 : N at and sue : Nat —> Nat. All free types are generated, so Nats may only be con
structed using these operations: the carrier set in any corresponding E-algebra contains
‘no junk’. However, because this is a free type, we also have ‘no confusion’: values
with differing constructions are automatically distinct, e.g. suc(0) suc(suc(0)) in the
E-algebra, even though we have provided no explicit axioms to that effect.

SPEC3 also defines an operation + : Nat x N a t— > Nat, whose meaning is axiomatised
using the induction principle provided by the free type. This operation pertains to the
generated type example in SPEC4.

• spec4 illustrates the generated type declaration. Note first that SPEC4 extends SPEC3
via the structuring keyword then.

10 Chapter 2 CASL— The Common Algebraic Specification Language

spec SPECl =
sort Elem
type Container ::= empty | insert(Elem; Container)

end
spec spec2 =

sorts Elem, Container
ops empty : Container,

in sert: Elem x Container —» Container
end
spec SPEC3 =

free type Nat :.= 0 | suc(Nat)
op + : Nat x Nat —> Nat
V m ,n : Nat
• 0 + n = n
• suc(n) + m = suc(m + n)

end
spec SPEC4 = SPEC3
then generated type In t: := — (Nat, Nat)

V a, b, c, d : Nat
• a — b — c — d ^ a - \ - d = c- \ -b

end

Figure 2.3: CASL specification example: sort generation constraints.

The generated type In t is then defined by the operation — : Nat x Nat —> In t. Again,
as this is a generated type, In ts may only be constructed using this operation: ‘no junk’
in the carrier sets. However, as In t is not a free type, there can be ‘confusion’ in the
carriers.

For example, taking the obvious interpretation of Nat as N and In t as Z, and writing
0 , 1 , 2 , 3 , . . . for the members of N at (an abuse of notation, but a useful and clear one),
we find that the In ts ‘1 — 3’, ‘0 — 2’ and ‘5 — 7’ are indistinguishable: they are all —2 in
Z.

2.2.1.2 Subsorting

A basic specification may include declarations of subsorts, in order to capture the idea that in
stances of the subsort are ‘special cases’ of the supersort. Subsorts are interpreted not by simple
set inclusion but by arbitrary embeddings (1-1 functions) between the sorts’ corresponding car
rier sets. For example, we might have Char < String (‘Char is a subsort of String'), with
disjoint carrier sets for Char and String but the obvious embedding between Chars and 1-
element Strings.

Subsorts are illustrated in the example in figure 2.4: once again we declare a free type Nat,
plus three types Car, Bicycle and Vehicle, where Car and Bicycle are subsorts of Vehicle,
along with some simple operations on these sorts. Cars and Bicycles both have a maximum
speed and a weight (as they are both Vehicles), but only Cars have an engine capacity.

As discussed in chapter 11, subsorting is significant in the static semantics of Csp-Casl, as
there is an extra requirement on any subsort relations defined in a Csp-Casl specification,

2.3 CASL sublanguages and extensions 11

spec Vehicle =
free type Nat ::= 0 | suc(Nat)
sorts Car, Bicycle < Vehicle
ops m axspeed : Vehicle —> Nat;

w eight: Vehicle —>■ Nat;
engine-capacity : Car —> Afar

end

Figure 2.4: Casl specification example: subsorts,

namely that it has local top elements.

2.2.2 Structured, architectural, and library specifications

Structured specifications build on basic specifications by allowing them to be combined into
larger and more complex specifications with the same underlying semantics. Specifically, a
structured specification can combine basic specifications, references to named specifications,
and instances of generic (i.e. parametrised) specifications, using constructs of extension, union,
hiding and renaming. Like a basic specification, the semantics of a structured specification con
sists of a signature E and a class of E-algebras. As we shall see in chapter 5, these mechanisms
play an important role in heterogeneous specification.

Structured specifications allow us to build complex specifications out of simpler ones; architec
tural specifications explicitly describe the intended structure/composition of a system in terms
of its components; they target the design phase of development, in which the decomposition
of a system into components/modules for further development and implementation in target
languages is considered. We do not consider architectural specifications any further in this
work.

Libraries are “named collections of named specifications”, and provide the highest-level or
ganisational mechanism in Casl , collecting specifications into libraries identified by name
and version number, with the aim of promoting reuse of specifications. Libraries may be local
(entirely self-contained) or distributed (referring to specifications to be downloaded for inclu
sion from elsewhere). Hierarchical version numbers support evolution of specifications and
libraries of specifications over time (and version control). We will consider libraries of Casl
specifications further in chapter 6, as a simple but representative example of how the static
semantics of CASL has been formalised using natural semantics.

2.3 Casl sublanguages and extensions

As noted above, the CoFI project aimed to create not a single ‘one size fits all’ algebraic
specification language, but rather a coherent family of languages, with Casl at its core (figure
2.1). The other members of the family are either restricted sublanguages or extensions.

12 Chapter 2 CASL— The Common Algebraic Specification Language

2.3.1 Sublanguages

Sublanguages of CASL are formed simply by restricting certain features of Casl , and are
intended for interfacing with other algebraic specification languages and existing tools, and
exploring domains for which full Casl is too rich (e.g., term rewriting requires axioms written
in equational or conditional logic: full first order logic is too rich). [BM04]

[CoF04c] describes ‘A Language for Naming Sublanguages’ in which CASL is SubPCFOL^,
meaning first-order logic with equality, subsorting, partiality and sort generation constraints
— such names consist of a sequence of feature names, followed by a description of the axioms’
expressiveness. Example sublanguages include FO Lr (simple first order logic), Horn (horn
clauses, equivalent to Prolog), SubPH orn= (“the positive conditional fragment of C a s l”), and
Eq= (classical equational logic).

2.3.2 Extensions

Of more immediate relevance to this project, extensions add features to Casl , usually but not
exclusively at the level of basic specifications. Since, by their nature, extensions add new fea
tures to Ca sl , they are subject to a similar review and approval process to that which produced
Ca sl . In particular their syntax and semantics must be documented in relation to Casl (as
we do for Csp-Casl in this document), and the usual Casl syntax and semantics must be
respected. Some CASL extensions are:

• Csp-Casl— the subject of this thesis. [Rog03, GRS05, Rog06, KRS07, OIR07]

• HetCasl— heterogeneous Casl , allowing specifications written using a mixture of
logics. Since this provides the basis for our tool implementation, and has important
ramifications for our language design, we consider it further in chapter 5. [Mos04a,
Mos05, MML07a]

• H a sCASL — adding features from Haskell, including higher order data types. [SM02]

• CoCA SL — adding support for co-algebraic specification (and allowing algebraic and
coalgebraic features to be mixed). [MRRS03, MRS03]

Chapter 3

Csp— Communicating Sequential
Processes

Contents
3.1 Background 13

3.2 Survey of CSP features and syntax.............................. 14

3.3 The Models T, T and M 18

3.4 Example: the Dining Philosophers.............................. 20

Csp [Hoa85, Ros98, AJS05, Hoa06] is Communicating Sequential Processes, a well-known
and widely used process algebra, which forms the basis of the reactive/process part of CSP-
Casl . In this chapter we introduce the language, present an overview of its key features
and syntax, briefly describe the various models of its denotational semantics, and present an
example in some detail.

3.1 Background

The process algebra CSP is one of a number of formalisms for modelling and verifying reactive
systems, i.e. ones which, rather than being characterisable by simple input/output functions,
involve interactions with other systems, running in parallel, i.e. concurrently, process algebra
as a field of study arose in reaction to perceived deficiencies of classical theories (i.e. ones
based on automata) when dealing with such systems. In particular, where we might refer to
the study of systems involving parallel or distributed aspects as concurrency theory, process
algebra is an approach to this problem characterised by the observation of (usually discrete)
behaviour of system components, usually entirely in terms of the inter-process communications
which occur. [Bae05]

Csp is one the three process algebras which have historically dominated the field; the others
are CCS (Calculus o f Communicating Systems) [Mil89] and ACP (Algebra o f Communicating
Processes) [BW90]; Petri nets [Pet62] are related earlier work, and a recent development of
particular note is the ir-calculus [Mil99], which introduces the notion of process mobility,
where the set of processes in a system may vary over time.

13

14 Chapter 3 CSP— Communicating Sequential Processes

Of these, CSP has been particularly successful in the industrial context, often applied suc
cessfully in areas as varied as distributed databases, parallel algorithms, train control systems
[BS99], fault-tolerant systems [BPS98], and security protocols [RSG+01].

Fixing one syntax, CSP offers a number of approaches to semantics. A process written in
CSP may be understood in terms of operational semantics (where the process is transformed
to a labelled transition system, with transitions representing communications); or in terms
of algebraic semantics (where properties of a process — such as equivalence to some other
process — may be deduced by syntactic transformations on the process text following a set of
algebraic laws); or in terms of denotational semantics (where the process corresponds to a value
in some mathematical model, typically a complete partial order or a complete metric space).
Of these three approaches, the latter is dominant; a number of denotational models exist, each
of which is dedicated to particular verification tasks, having varying notions of equivalence on
processes. We consider some of these models further in section 3.3.

3.2 Survey of CSP features and syntax

This section presents a survey of the key features and operators of Csp , with some examples.
Note that this is by no means exhaustive; rather, we aim to provide sufficient context for the
discussions of Csp-Casl which follow in chapters 4 and 8. Our explanations largely follow
[Ros98].

3.2.1 Basic features

Processes and communications: The basic units of abstraction in Csp are processes and
communication events, or actions. Processes are long-lived named entities existing in some
environment; communications represent instantaneous (i.e. atomic) synchronisations between
processes, usually carrying some semantic content (i.e. a value — a ‘message’) encoded in
the communication’s name. A communication may be seen as a synchronisation the process is
willing to engage in: the various operators on processes are then concerned with defining and
modifying the communications which a process offers to the environment.

Channels: Communication names may be prefixed, conceptually representing channels ‘over
which’ communication takes place, e.g. the event login, andy conceptually represents commu
nication of the value andy over the channel login; really, we are just communicating the value
login.andy. Thus, channels provide a syntactic sugaring — but a very useful one, and they are
used widely.

Alphabet: A set of communications is called an alphabet; in particular, ‘the alphabet of com
munications’ E refers to the ‘total’ alphabet of communications over which a system of pro
cesses is defined.

Named and parametrised processes: a process equation binds a process to a name, which
may be referenced by other processes. Such names may be parametrised; strictly speaking,
a parametrised process represents a family of processes, one for each possible set of param
eter values. Named processes also allow for recursion (see examples below), and systems of
mutually recursive equations.

Primitive processes: Csp defines some primitive processes with fixed behaviour. SK IP repre
sents successful termination: it never communicates anything, but nobody minds. Conversely,

3.2 Survey o f CSP features and syntax 15

ST O P represents deadlock: it represents a process which has entered a state of perpetual
noncommunication, where this is not the desired outcome. We also have D IV , represent
ing divergence: this is similar to ST O P in that it is perpetually noncommunicative, from the
environment’s point of view; however, D IV represents livelock: it is engaging in an infinite se
quence of internal, non-observable actions. Some models of Csp are capable of distinguishing
between ST O P and D IV ; others are not.

3.2.2 Prefix operators

Action prefix: The most fundamental communication operator is action prefix. The process
a —> P offers the communication a, and then behaves like the process P. For example, the
process YES:

Y E S = yes -* YE S

is always willing to communicate the value yes. A simple parametrised process example is
TICK:

T IC K (0) = 0 -> TIC K (0)
T IC K (n) = n~ * T IC K (n - 1)

For any n > 0, TIC K (n) will communicate n then behaves like T IC K (n — 1); the special
case TIC K iff) will communicate 0 but then just behaves like T IC K {0) again. Thus, T IC K (n)
counts down from n to 0, then stays at 0. Note that we have not explicitly stated that n £ N,
leaving it ‘obvious’ in this case. Of course, while this is fine ‘on the blackboard’, for tool
processing more rigour is required; the problem of defining the data types communicated by
processes, and doing so in a rich, flexible, and well-founded manner, is exactly the problem
Csp-Casl is intended to solve.

Prefix choice: If X is a set of communications, then Ix : X —> P (x) is a process which
will communicate any value x G X and then behave like P (x)\ thus, this operator allows a
choice of values to be communicated. Then c?x —» P (x) is the same thing but ‘over a channel’
(i.e. we communicate c.x). In cases where we are nominally ‘sending’ a value over a channel
(strictly all Csp communications are bidirectional synchronisations: properly, the ‘sending’
process is choosing which value is to be synchronised on), we write c\x —> P (x) as a synonym
for c.x —> P (x).

3.2.3 Choice operators

External choice: The process P □ Q offers the environment the choice of the first communi
cations of P and Q, and then behaves accordingly. For example, consider:

EC H = a ^ SK IP □ b c -> EC H

If the environment offers a, EC H will communicate a then terminate. Conversely, if the
environment offers b, EC H will communicate b, then offer only c, after which it behaves like
EC H again (i.e. offers a choice of a and b). Thus, EC H in some sense ‘recognises’ the regular
expression (be)* a. n.b.: if both sides offer the same communication, the choice of which side
is taken is nondeterministic.

16 Chapter 3 CSP— Communicating Sequential Processes

Internal choice: The process P n Q can behave either like P or like Q, where the choice
is made internally to the process (and is thus, from the point of view of the environment,
nondeterministic). Consider:

IC H = a ^ SK IP n b c -> IC H

If the environment offers b, IC H may choose to behave like a —>• SK IP , and not engage in the
b communication offered (and vice versa); only if the environment offers both a and b is IC H
obliged to communicate, because it must choose one of the alternatives.

3.2.4 Parallel operators

Interleaving: The process P ||| Q is a process where P and Q run in parallel, independent of
one another; if the environment offers a communication which both P and Q could engage in,
exactly one does so, the choice being nondeterministic. Consider:

A B = a —*■ b —> A B
CA = c a CA
IN T = A B HI CA

IN T may initially engage in a or c; supposing it engages in a, it may still engage in c sub
sequently: it presents a choice of b and c. Conversely, if it initially engages in c, then it can
subsequently only engage in a, but after that it might offer a and b, or a and c, depending on
‘which a ’ was (nondeterministically) chosen.

Synchronous parallel: The process P || Q is a process which behaves like P and Q in total
synchrony with each other; that is, it only communicates events on which they both agree.

Generalised parallel: If A is a set of communications then P |[2T]| Q behaves like P ||| Q except
for events in X , on which P and Q must synchronise. For example, supposing X = {&, c}:

A C = a A C H c ^ A C
A C A C = A C \[X][A C

A C can choose internally whether to communicate a or c; two copies are placed in parallel but
must synchronise on everything in X ; if one copy chooses to communicate c, which is in X ,
they must both do so. Clearly, then, A C A C can deadlock, if one side offers a, and the other
offers c.

Alphabetised parallel: If A and B are sets of communications then P |[A | B]\ Q behaves like
P HI Q except for events in A n B, on which P and Q must synchronise.

3.2.5 Other operators

Sequential composition: The process P \ Q is a process which behaves like P then behaves
like Q. It is useful for composing named processes, promoting modularity. For example:

A = a -> SK IP
B = b - + SK IP
A B = A] B

Here A B is equivalent to a —> b —> SK IP .

3.2 Survey o f Cs? features and syntax 17

Conditional choice: if b is some boolean valued expression, then i f b then P else Q behaves
like P if b is true, and like Q otherwise — just as one would expect.

Hiding: if X is a set of communications then P \ X is a process which behaves like P except
that any event in X is not observable from outside P \ X (though it may still take place).

Renaming: if / is an injective function / : E —> E then P \f] is a process which behaves like
P except that all its communications are subjected to the transformation / before being made
observable to the environment. (Note that there is also a relational renaming form, not shown
here.) For example, with E = N and f (x) = 2x, consider:

C O U N TU P(n) = n ^ C O U N TU P(n + 1)
E V E N S = C O U N TU P (0)\f}

Here, C O U N TU P(0) would communicate the sequence 0 , 1 , 2 , 3 , . . . whereas E V E N S, which
applies the renaming / , communicates the sequence 0 , 2 , 4 , 6 , . . .

Run and Chaos: [Ros98] also presents two further processes “with very basic behaviour that
it is useful to have standard names for”, namely R U N and C H AO S :

For a set of events A 6 E, R U N a can always communicate any member of A
desired by the environment.

For a set of events 4 e E , CH AOS a can always choose to communicate or reject
any member of A.

3.2.6 Machine readable CSP

Csp as presented in [Ros98] and outlined above is a ‘blackboard’ language whose “intended
audience is human” [Sca98], i.e. its syntax is more like ‘general mathematics’ than a machine
readable language. Naturally this leads to rich expressivity and supports the development of
related theory. However, Csp’s practical success is also founded on well developed tool sup
port, in particular the process animation tool ProBE [FSE03] and the model checker FDR
[FSE06]. In order to support such tools, [Ros98] introduces the formal language CSP-M, Ma
chine Readable CSP, which is described in detail in [Sca98] (with a formal syntax, but no static
semantics).

Data in CSP-M is defined using a purely functional programming language with a strong static
type system, requiring explicit type declarations for channels and data types. We refrain from
presenting here a survey of its syntax, but it should be noted that it forms an important ref
erence point for our design of the concrete syntax of Csp-Casl: where possible, and where
questions arose, we have kept an eye on tool interoperability between CSP-M and Csp-Casl ,
and attempted to conform to this ‘conventional form’ familiar to CSP practitioners everywhere.

For a concrete example, consider the specification s i m p l e . c s p , in figure 3.1. This exam
ple, taken from the FDR1 distribution, specifies a single-place buffer implemented over two
channels, l e f t and r i g h t ; indeed, it includes two specifications of such a buffer, and asserts
that they are equivalent. Note the order of items: data types, channels, then processes — in
Csp-Ca sl , by design, all specifications follow this order.

1 http://www.fsel.com/software.html

18 Chapter 3 CSP— Communicating Sequential Processes

— First, the set of values to be communicated
datatype FRUIT = apples | oranges | pears

— Channel declarations
channel left,right,mid : FRUIT
channel ack

— The specification is simply a single place buffer
COPY = left ? x -> right ! x -> COPY

— The implementation consists of two processes communicating over
— mid and ack
SEND = left ? x -> mid ! x -> ack -> SEND
REC = mid ? x -> right ! x -> ack -> REC

— These components are composed in parallel and the internal comms hidden
SYSTEM - (SEND [| {| mid, ack |} |] REC) \ {| mid, ack |}

— Checking "SYSTEM" against "COPY" will confirm that the implementation
— is correct.
assert COPY [FD= SYSTEM

— In fact, the processes are -equal, as shown by
assert SYSTEM [FD= COPY

Figure 3.1: CSP-M example: simple . csp

• First we define FRUIT, an enumerated type — which in CSP-CASL we would specify as
a free type in the data part; (in C sp -C a s l we would also have the option to keep FRUIT
loosely specified). Note the use of ‘— ’ for a comment.

• Channels left, right, and mi d communicate values of type FRUIT; the channel ack
is singleton-typed.

• The abstract specification COPY, states that a buffer’s behaviour is to repeatedly read
some value on channel left, bind it to the local variable x, and then write it out on
channel right,

• Then SYSTEM is a more concrete specification, describing one possible implementation
of COPY; here the ‘receive from left’ and ‘send to right’ parts are separate processes,
synchronising on the channel mid and using the channel ack to proceed in lockstep; the
channels mid and ack are then hidden from everything outside SYSTEM:

• Finally, we assert first that SYSTEM refines COPY, and then the reverse, so that they
are in fact entirely equivalent in behaviour; these are proof obligations: it is precisely
assertions like these which FDR exists in order to check.

3.3 The Models T, T and M

Here we briefly introduce the three dominant models of Csp’s denotational semantics; each
model has varying views on two interesting questions regarding processes, namely ‘are two
processes equal?’ and ‘what properties does a process possess?’ (e.g. does it deadlock?).

3.3 The Models T, T and A f 19

The Traces model, model T , denotes a Csp process according to its finite traces, which is
the set of finite sequences of communications in which it may engage; this corresponds to
observing a system solely in terms of the communication events which occur.

traces (P) may be computed recursively using a set of rules, a few of which are:

traces(STO P) = {()}

traces{a —> P) = {()} U {(a) ^ s \ s 6 traces(P)}
traces(P □ Q) = traces(P) U traces(Q)
traces{P n Q) = traces(P) U traces{Q)

traces{P || Q) = traces(P) fl traces(Q)

Thus: ST O P never communicates anything: its set of traces consists only of the empty trace
(); the traces of an action prefix process are the traces of the prefixed process P , each prefixed
with the event a first communicated; etc.

Two processes P and Q are then traces-equivalent, P —q- Q, if traces(P) = traces(Q). In
this sense, the model T is the weakest of the three presented here. It considers equivalent many
processes which are distinguished by the other models. To give a simple example, consider:

E C H Y = a -> ST O P □ b -> STO P
IC H Y = a -* ST O P n b -* STO P

Here we have E C H Y = T IC H Y , as traces(E C H Y) = traces(IC H Y) = {(>, (a), (b>} —
the model T cannot distinguish between internal and external choice.

The Stable Failures model, model T , denotes a process by its failures. A failure is a pair
(s, X) where s is some member of traces(P) and X (called a refusal) is a set of events which
the process can refuse after s. So, after trace s, P can refuse do anything from the set X .
failures(P) is the set of P ’s failures.

The stable failures model can distinguish between internal and external choice (and much else
besides), and in particular, allows us to detect deadlock. In practice, however, the stable failures
model is mainly used to prove Failures-Divergence refinement for processes which are known
to be divergence free — see below.

Finally, the Failures-Divergence model, model Af , allows us to detect processes which might
livelock (enter a state in which they can perform an infinite sequence of internal actions, which
are not visible from outside the process).

In this model, a process is represented by its failures and also its set of divergences, where a
divergence is a trace after which the process may perform an infinite sequence of consecutive
internal actions. The model A f is used for proving safety and liveness properties of processes
(such as freedom from starvation as illustrated by the Dining Philosophers example in sec
tion 3.4). It is the ‘standard’ model of Csp, since it provides the most detailed and useful
information about a process’ possible behaviour.

The name of the Csp tool FDR stands for ‘Failures-Divergence Refinement’, reflecting the
central role of the model A f in its operation. Here refinement refers to the question of whether a
process P is ‘better’ than some other process Q in the sense that its behaviour is indistinguish
able (within a given model), but that it is more concrete, i.e. is less nondeterministic. Then we
might write Q C P , pronounced ‘P refines Q ’.

We generally want processes to be divergence free, in practical situations at least. Where that
is the case, Failures-Divergence refinement and Stable Failures refinement are identical.

20 Chapter 3 CSP— Communicating Sequential Processes

3.4 Example: the Dining Philosophers

[Ros98, §2.2] formulates the well known Dining Philosophers Problem [Dij71] in CSP; we end
this chapter by presenting the same example here, exploring its behaviour in some detail.

To briefly review: five (or, in general, n, though the problem is trivial with n < 5) philoso
phers are sat about a round table on which is a bowl of food; between each pair of adjacent
philosophers is a fork — each fork is shared between two philosophers; the philosophers al
ternate unpredictably between thinking and eating; to eat, a philosopher must first pick up the
two forks on either side of them; when they have finished eating, both forks are returned to the
table; critically, only one fork can be picked up or put down at once.

The n-philosopher version may be modelled as a system of n processes modelling the philoso
phers, and n processes modelling the forks. The operators © and © represent addition and
subtraction, respectively, modulo n.

A fork, then, is something which is repeatedly picked up and put down, either by the philoso
pher to its right, or the one to its left. This may be modelled in C sp as:

FORKi = (picksup .i.i —► putsdow n.i.i —>■ FORKi)
□ (picksup. iQ l . i —► p u tsd o w n .iQ l.i —> FORKi)

Consider the first branch of the choice, i.e. p icksup .i.i —► putsdow n.i.i —*■ FORKf.

1. Offer the value i .i on the picksup channel; this represents philosopher i (to the right of
fork i) picking up fork i.

2. Offer the value i .i on the putdown channel; this represents philosopher i putting down
fork i.

3. Behave as the process FORKi (i.e. loop, represented recursively).

Now, □ is external choice: FORKi might behave as just described, or it might behave like
the second branch, i.e. as picksup.i Q l.i^> p u tsd o w n .iQ l.i —► FORKi. This behaves very
similarly to the above, except that it communicates iQ l . i rather than i .i — representing being
picked up and put down by the philosopher to the left.

FORKi has no say about which branch is taken: the outcome depends entirely on its environ
ment. It offers both picksup .i.i and p icksup .iQ l.i, then behaves according to the choice made
externally. It is, then, the philosophers who make the choice — of course.

There are many ways the philosophers might behave: at its heart the Dining Philosophers Prob
lem is about finding the right algorithm so that deadlock (where every philosopher just waits
forever for one of their neighbours to put down a fork) and starvation (where some particular
philosopher never gets to eat) are avoided.

An obvious and naive algorithm, which can indeed lead to deadlock is as follows: when a
philosopher wants to eat, they first attempt to pick up the fork to their left, then the one to their
right; they eat, then replace the forks in the reverse order. To encode this algorithm, the zth
philosopher is represented as the following CSP process:

PHILi = thinks.i —> picksup .i.i —» picksup .i.i® 1 —»
eats.i —*■ putsdow n.i.i® 1 —► putsdow n.i.i —> PHILi

1. Offer the value i on the channel thinks', this represents philosopher i starting to think.

3.4 Example: the Dining Philosophers 21

2. Offer the value i .i on the channel picksup', as noted above, this represents philosopher
i picking up fork i, the fork to their left. This will only occur if FORKi, the only fork
process capable of engaging in this communication, does so; it need not: it might have
been picked up recently by philosopher i Q l . i , the philospher to its left. In that case
PHILi waits for it.

3. Offer the value z.z© 1 on the channel picksup', this communication represents philosopher
i picking up fork z©l, the fork to their right. Again, PHILi might need to wait, this time
for FORKj®i.

4. Offer the value i on the channel eat', this represents philosopher i starting to eat.

5. Offer the value i . iQ l on the channel putsdown; as noted above, this represents philoso
pher i putting down fork z©l, the fork to their right. In this case PHILi should never
have to wait for F O R K ^i , at least.

6. Offer the value i.i on the channel putsdown; this represents philosopher z putting down
fork i, the fork to their left. Again, this should not involve any waiting.

7. Behave as the process PHILi (i e. loop, represented recursively).

Having read the above, the reader will surely agree that the Csp process PHILi is a pleas
ingly compact representation of the behaviour described here: easier (when familiar with the
formalism) to grasp and manipulate — in other words, a good abstraction.

Now, the complete system is formed by putting all of these processes in parallel with each other
(not shown here)2. For n = 5 this forms a system of 10 processes, where each FO RK process
communicates only with 2 particular PHIL processes, and each PHIL process communicates
only with 2 particular FORK processes. A trace leading directly to deadlock is then:

{thinks.0, picksup.0.0, th inks.1, p icksup .i.i, thinks.2, picksup.2.2, thinks.3,picksup3.3 ,
thinks A, picksup .4.4)

After this trace, PHILi is offering (only) picksup. 1.2, but FORK2, the only fork process
capable of communicating this value, is offering (only) putsdow n.2.2, which can only be com
municated by PHIL2, which is waiting for picksup.2A, only possible from FORK3, which is
offering only putsdown.2.3, only possible from PHIL3, which is waiting for . . . , etc. — in a
circu lar‘deadly embrace’.

2Properly, we also need environment processes capable o f engaging in thinks and eats communications with
the philosophers, but these may be abstracted away without loss o f generality.

22 Chapter 3 CSP— Communicating Sequential Processes

Chapter 4

C s p -C a s l

Contents
4.1 Overview.. 23
4.2 Csp-Casl examples.. 24
4.3 Case study: E P 2 26

In this chapter we introduce Csp-Ca sl , the combination of CASL and CSP with which this
thesis is concerned. We present a brief overview of the language’s main features (following
[Rog03, GRS05]), present and discuss some simple examples from [Rog06], and conclude with
a larger example, from an industrial case study [GRS05]. A full description of the language
may be found in chapter 8.

4.1 Overview

Csp-Casl is a comprehensive language which combines the specification of data types in
CASL (see chapter 2) with processes written in CSP (see chapter 3). The general idea of this
language combination is to describe reactive systems in the form of processes based on CSP
operators, but where the communications between these processes are the values of data types,
which are loosely specified in Casl . All standard Casl features are available for the specifi
cation of these data types, namely many-sorted First Order Logic with equality, sort-generation
constraints, partiality, and subsorting. Furthermore, the various Casl structuring constructs
can be used to describe data types within Csp-Ca sl . For the description of processes, the
typical Csp operators are included in Csp-Ca sl : there are for instance internal choice and
external choice; the various parallel operators such as interleaving, alphabetized parallel, and
generalised parallel; communication over channels is included, where channels are a category
of symbols with sorts defined in Casl . Similarly to Casl , Csp-Casl specifications can be
organised in libraries. Indeed, it is possible to mix Casl specifications and Csp-Casl specifi
cations in one library, separating the development of data types in Casl from their use within
Csp-Casl — see chapter 5.

Syntactically, a Csp-Casl specification with name N consists of a data part Sp, which is a
structured CASL specification, an (optional) channel part Ch to declare channels, which are
typed according to the data specification, and a process part P, written in our CSP dialect,

23

24 Chapter 4 CSP-CASL

within which Casl terms are used as communications; Casl sorts denote sets of communica
tions; renaming is described by a binary Casl predicate and functions; and the Csp conditional
construct uses Casl formulae as conditions.

In the process part, recursive process definitions may be written using systems of process equa
tions, binding processes to process names. Processes can also be parametrised with variables
typed by Casl sorts. In general, this combination of recursion and parameterisation leads to
an infinite system of process equations.

As a consequence of C a s l ’s loose semantics, semantically a C sp-C asl specification is a fam
ily of process denotations for CSP processes, where each model of the data part Sp gives rise to
one process denotation. The definition of C sp-C asl is generic in its choice of Csp semantics.
For example, all denotational CSP models mentioned in [Ros98] are possible parameters.

4.2 Csp-Casl examples

We now consider four simple example Csp-Casl specifications, all taken from [Rog06]. Note
that each of these examples has been parsed, statically analysed, and pretty-printed to the Î TgX
source rendered below, by our tool — as have all of the Csp-Casl examples in this thesis.

4.2.1 Example 1: TCSl

The specification TCSl is a particularly simple example, but nonetheless illustrates several key
features:

spec TCSl =
data sorts S, T

ops c : S ;d :T
process tcsl : S ,T ;

tcsl = c ^ SKIP || d -+ SKIP
end

As noted in section 4.1, syntactically we have a data part and a process part, indicated by the
data and process keywords, respectively. The data part contains a CASL basic specification
defining two sorts, S and T , and two constants of those sorts, c and d. The process part
contains a process declaration and a process equation. The declaration declares that tcsl is the
name of a process which takes no parameters, and communicates values in the sorts S and T.
The equation then binds the process c —> SK IP || d —*■ SK IP to that name. Thus, tcsl is a
process which potentially could communicate c or d. As terms of different sorts are considered
unique, however, tc s l is in an immediate deadlock, i.e. it is equivalent to STO P.

A key point to note here, with respect to the discussion of CSP in chapter 3, is that whereas
Csp processes are not associated with particular alphabets (see in particular [Ros98, §2.7]),
C sp-C asl processes are\ this point is discussed further in section 14.3.10.

4.2.2 Example 2: TCS2

The next example, tcs2, illustrates Casl subsorting in the Csp-Casl context:

4.2 C s p - C a s l examples 25

spec tcs2 =
data sort S < T

ops c : S ; d : T
• c = d

process tcs2 : T ;
tcs2 = c -> S KI P\ \ d - + SKIP

end

This is very similar to the TCS1 example in section 4.2.1, except that in the data part, S is now
declared to be a subsort of T (see section 2.2.1.2), with an axiom restricting c and d to the
same value. The most interesting thing to note from our point of view is that in the process
part, the alphabet of tcs2 contains only T , even though tcs2 may communicate c, of sort S\
this is fine because S is implicitly also in the alphabet, because it is a subsort of T. We will see
later that subsorting has a profound effect on our treatment of process alphabets (in particular,
see section 10.2.4.1). In terms of the meaning of tcs2, it will engage in one event c and then
terminate.

4.2.3 Example 3: TCS3

The next example, tcs3, illustrates partiality in the data part.

spec TCS3 =
data sorts S, T

op / : S —>? T
• V x : S • -i def f (x)

process tcs3 \ S , T \
tcs3 = n X ::S -►/(*) -*■ SKIP |[T]\ □ y :: T —► if d e f y then SKIP else STOP

end

The operation / is defined as partial, i.e. not necessarily defined for all values of sort S\ in fact,
an axiom declares that it is undefined for all values of S. With respect to Csp-Casl parsing
and static semantics, this is irrelevant in this example — though it has a significant effect in the
model semantics, of course. The process tcs3 might first engage in an arbitrary element of sort
5, then communcate the undefined element of sort T , and finally end in a deadlock situation.
From our point of view, then, the points of interest here are:

• A generalised parallel operator: \[T]\ — the processes on either side must synchronise
on any element of T they wish to communicate;

• Two external prefix choice operators: □ x :: S —> . . . and □ y :: T —> . . .

These correspond to prefix choice in CSP — see section 3.2.2. The first one engages in
an element of sort S with the environment; the second synchronises with the f (x) on the
left hand side.

• A prefix operator, communicating a value expressed as a Casl term: f (x) —> . . .

Note two things: the Casl term refers to a (partial) function, and we pass as a parameter
the locally bound 5-sorted value x.

• A conditional choice operator: if def y then SK IP else ST O P

The conditional is controlled by a Casl formula, in this case one checking the defined-
ness of the CASL term y (a simple term in this case, consisting only of the T-sorted value

26 Chapter 4 CSP-CASL

y) — an undefined y value might be produced by an application of the partial function / ,
for example. See section 10.2.4.2 for further discussion of issues relating to definedness.

4.2.4 Example 4: TCS4

The final example from [Rog06], by comparison, is once again very straightforward in the
process part, and mainly of interest from a model semantics point of view; however, as we
shall see, there is in fact a new and interesting static semantics requirement present here:

spec TCS4 =
data sorts A , B , C < S

ops a : A; bl , b2 : B; c : C;
f '■ A —►? A ; g : C —►? C

• a = bl • b2 = c
• V x : A • -i def f{x) • V x : C • -■ def g(x)

process tcs4 : A, C ;
tcs4 = f (a) -+ SKIP 11 g(c) -> SKIP

end

The specification illustrates subsorting and partiality together, with sorts A, B and C all sub
sorts of S, and f (x) and g{x) always undefined. The purpose of the example is to consider
synchronisation of undefined values: f (a) and g(c) are undefined, so the question is do they
ever synchronise? According to Csp-Ca sl ’s model semantics, undefined values synchronise
only if they belong to sorts having a common supersort; in this case, they do, so the process
tcs4 will terminate. On the theoretical side, this gives rise to the requirement for local top
elements, which may be checked statically, and which is explored in depth in chapter 11.

4.3 Case study: ep2

We conclude this chapter with a larger example, drawn from an industrial scale case study.
In [GRS05] (from which this section draws heavily) we described the formal specification of
a banking system using Csp-Ca sl . The system in question is called ep2, which stands for
EFT/POS 2000, short for ‘Electronic Fund Transfer/Point Of Service 2000’; it is a joint project
established by a consortium of (mainly Swiss) financial institutes and companies in order to
define EFT/POS infrastructure for credit, debit, and electronic purse terminals in Switzerland1.
EP2 builds on a number of other standards, most notably EMV 2000 (the Europay/Master-
card/Visa Integrated Circuit Card standard2) and various ISO standards.

An overview of EP2 is shown in figure 4.1. The system consists of seven autonomous entities
centred around the EP2 Terminal, which is a hardware device concerned with processing card
details and authorising financial transactions. The other entities are the Cardholder (i.e. cus
tomer), Point o f Service/P OS (i.e. cash register), Attendant, POS Management System/PMS,
Acquirer, Service Center, and Card. These entities communicate with the Terminal and, to
a certain extent, with one another via XML messages in a fixed format over TCP/IP. These
messages contain information about authorisation, financial transactions, and initialisation and
status data. The state of each component heavily depends on the contents of the exchanged

1 www.eftpos2000.ch
2www.em vco.com

4.3 Case study: e p2 27

Point of Service

dtendant

Pl-Product

Terminal
CUI-Cardholder

POS Mgmt. SystemBE-BackEn<

FE-FrontEnd

Acquirer

dtendant

PBI-POS Bookkeeping

Cardholder
Bookkeeping

MBI-POS Mgmt. | \ \

AUI-Attendant " V Bookkeeping , \ '

MKRec PUI_PMS u & r /

y f\ y
Merchant^

W ABI-Acquirer Bookkeeping

Service Center

SEI-Settlement

Part o f the Specification
ep2 (detailed)

Part o f the Specification
ep2 (overview)

Part o f the Specification
ep2 (detailed)

Part o f the Specification
ep2 (user interface)

\ FII-Finance Institute
\ \

\ X V.
CH-Card Issuer \ ^

idCard
Issuer 11111111

 Not part o f the Specification
ep2

Finance
Institute

Figure 4.1: Overview of the ep2 system, from [EP202].

28 Chapter 4 CSP-CASL

data. Each component is thus a reactive system, and there are both reactive parts and data parts
which need to be modelled, with these parts heavily intertwined.

The specification is available (for a fee) to anyone who wants to build a Terminal, which would
then be tested and certified by Ztihlke Engineering AG. The ep2 project began in October 2000,
and was officially completed on May 31 2003, in that Terminals with full EP2 functionality had
been built and tested, and released for use in the field.

Now, the EP2 specification consists of twelve documents, each of which either considers some
particular component of the system in detail, or considers some aspect common to many or all
components. The Terminal, Acquirer, POS, PMS and Service Center components all have spec
ification documents setting out general, functional, and supplementary requirements, where the
functional requirements carry the most detail, and consist mainly of use cases discussing how
that particular component behaves in various situations. As well as the specifications of par
ticular components, there is a Security Specification, an Interface Specification and a Data
Dictionary. The Security Specification discusses the various security mechanisms used within
EP2, many of which are inherited from EMV and other related specifications. The Interface
Specification describes every interface between components in terms of the messages allowed
on the interface, and in what order they may flow. The Data Dictionary describes in more detail
the data elements found in messages and, in some cases, in the state of some component. It
includes brief discussion of every data element occurring in the system.

One obvious characteristic of such a document structure is that, when considering some aspect
of the system, the information required to understand that aspect is contained in several dif
ferent documents, each of which has its own things to say about the situation in question. For
example, in order to gather all information about the S l - I n i t interface between Terminal
and Acquirer, one has to examine the Terminal Specification, the Acquirer Specification, the
Interface Specification, and the Data Dictionary. The documents are written using a number
of different specification notations: plain English; UML-like graphics (use cases, activity di
agrams, message sequence charts, class models, etc.); pictures; tables; lists; file descriptions;
encoding rules. In these regards it is entirely typical of a modem industrial strength system
specification.

In general, as we found, this approach results in a specification which is difficult to understand,
and which easily leads to inconsistencies and ambiguities. As such, this is exactly the kind
of system we would like to specify formally, with all the associated benefits of tool support
that this brings. At the time at which [GRS05] was written, such tool support for Csp-Casl
was unavailable; nonetheless, we were able to specify in Csp-Casl a number of aspects of
the system, at varying levels of abstraction, and for example perform (relatively simple) proofs
of properties such as deadlock-freedom ‘on paper’. The major part of the motivation for the
efforts described in this thesis is to work towards a tool allowing such analyses to be automated,
and thus performed on a larger scale — as is required in order to be of real benefit in the
industrial context. Nonetheless, even without such tool support, we were able to identify a
number of ambiguities and even contradictions in the EP2 specification: the very act of writing
specifications in a formal language required a level of rigour at which such problems were
forced into the light.

In figure 4.2 we see a Csp-Casl specification of the top-level ‘architectural’ view of ep2— the
same view of the system illustrated in figure 4.1. In particular, it specifies at a high level each
of the nine interfaces represented by solid blue lines in that diagram (CAI-Card, Sl-Config,
COI-Config, Sl-Init, FE-FrontEnd, Ml-Subm, MI-Rec, BE-BackEnd, EI-ECR).

4.3 Case study: EP2 29

The first thing to note is that data and processes are specified separately: we have a Casl
specification describing the data, which is then referenced by the process part (see section 5.4).

The data specification defines sorts describing the data communicated on each of the interfaces
listed above; this is loose specification, where in fact all we are doing is defining a name
for each sort. Later, we would expect to refine this specification, writing a new one where
these data types are constrained, and proving that it refines this specification; a chain of such
refinements leads to a specification of a concrete system.

There are actually two interfaces between the Acquirer and the PMS; this is modelled in the
specification as a single interface carrying two data types, whose sort is then a free type,
M I-S u b m -o r-R e c enumerating these possibilities. An alternative strategy would be to treat
the two interfaces as two separate channels, each with their own sort.

The process specification begins by declaring channels representing each of the interfaces; each
channel’s sort comes from the data part.

This is followed by declarations of processes for each of the six system components involved
in these communications, giving each process an alphabet consisting of the channels over
which it may communicate. For example, the ServiceCenter process may communicate on
the cSI-C onfig and cC O I-C onfig channels.

This is followed by process equations defining the behaviour of each component’s process as a
Csp-Casl process term. Operating, like the data part, at almost the highest level of abstraction
possible, we use the R U N process to simply allow each process to communicate any value over
any of its channels, freely, forever. For example, the Card process can communicate all values
of channel cC A I-C ard \ the SeruiceCenter process communicates on two channels, which we
model as two processes, one per channel, running freely in parallel using the interleaving op
erator. A slightly more abstract view here would be R un{cSI -C on fig , cC O I-C onfig), which
does not model the fact that these two interfaces really are disjoint.

Finally, we declare and define a process, ep2, representing the entire system. Its communica
tion alphabet consists of all the channels we have defined. Its process is slightly complicated,
however. The most abstract view would simply put Card, ServiceC enter, etc. in parallel with
each other using interleaving; this would represent a broadcast environment in which each
component ignores messages on channels associated with interfaces it does not use. Instead,
we have encoded aspects (though not all) of the point-to-point communication structure of the
system explicitly, as follows.

The Terminal, sitting at the centre of the system, can in fact communicate, on any channel
except C O I-C onfig and M I-R ec, with the rest of the system. ‘The rest of the system’ is
then modelled as three procsses interleaved: the Card, the POS, and a process in which the
communications between the ServiceCenter, Acquirer, and PMS are restricted; for example,
here the ServiceCenter cannot communicate with the PMS whatsoever.

This is, then, a very abstract view of the system — but certainly not a trivial one, and one on
which we could perform, for example, deadlock analysis. For another example specification
from our work on ep2, see section 13.4.

30 Chapter 4 C sp -C asl

logic CASL
spec ep2_ data =

sorts CAI-Card\ SI-Config; SIJnit', FESrontEnd', M ISubm \ BESackEnd', E IS C R ;
COI-Config’, MIJR.ec

free type M IS u b m -o r S e c ::= subm{selectsubm :? M lSubrri) \ rec(select-red :? M I-Rec)
end

logic CspCASL
spec ep2 =

data ep2_data

channels cCAI-Card : CA1-Card\ cSI-Config : SI—Config', c S IJ n i t : S IJ n it’,
cFE-FrontEnd : FE—FrontEnd', cM ISubm : M lSubm ', cBE-BackEnd : BESackEnd',
cEI-ECR : E ISC R ', cCOI-Config : COI—Config', cM ISubm -orJRec : M ISubm —orJRec

process Card : cCAI-Card ;
ServiceCenter : cSI-Config, cCOI-Config ;
Acquirer : cCOI-Config, cSI—Init, cFE-FrontEnd, cM ISubm , cM ISubm —or-Rec ;
PosMgmtSystem : cBE-BackEnd, cM ISubm —or-Rec ;
PointOfService : cEIJEC R ;
Terminal: cCAI-Card, cSI-Config, cSIJlnit, cFEJFrontEnd, cM ISubm ,

cBEJBackEnd, cE I-E C R ;

Card = RUN (cCAI-Card)
ServiceCenter = RUN (cSI-Config) ||| RUN (cCOI-Config)
Acquirer = RUN (cCOI-Config) ||| RUN (c S IJ n it) ||| RUN (cFE-FrontEnd)

HI RUN (cM ISubm) ||| RUN (c M IS u b m -o rS e c)
PosMgmtSystem = RUN (cB E SackE nd) ||| RUN (c M IS u b m -o rS e c)
PointOfService =■ RUN (cEI-ECR)
Terminal = RUN (cCAI-Card) ||| RUN (cSI-Config) ||| RUN (c S IJ n it)

HI RUN (cFE-FrontEnd) ||| RUN (cM ISubm)
jj| RUN (c B E S a c k E n d) ||| RUN (c E IS C R)

ep2 : cCAI-Card, cSI-Config, cSIJnit, cFESrontEnd, cM ISubm , cBESackEnd,
cE IS C R , cCOI—Config, c M IS u b m -o rS e c ;

ep2 = Terminal
|[cCAI-Card, cSI—Config, cSIJnit, cFESrontEnd, cM ISubm ,
cBESackEnd, c E IS C R]|
(Card
HI (ServiceCenter

[cCOI-Config || cCOI-Config, c M IS u b m -o rS e c]
Acquirer
[cCOI-Config, c M IS u b m -o rS e c || c M IS u b m -o rS e c]
PosMgmtSystem)

HI PointOfService)

Figure 4.2: Part of the EP2 specification in Csp-Casl

Chapter 5

The Hetereogeneous Context

Contents
5.1 Heteterogeneous specification...............
5.2 H e t C a sl ...

5.3 H e t s , the Heterogeneous Toolset. . . .
5.4 C s p -C a sl in the heterogeneous setting

31
32
33
34

Csp-Casl , as described in this thesis, is designed and implemented within a framework of
heterogeneous specification. We start this chapter by introducing heterogeneous specification,
in the setting of the Casl language family. Then we briefly describe the language HetCa sl ,
and introduce the tool Hets. Finally, we describe informally how Csp-Casl fits into that
world. As we will see, this has important implications for the design, formalisation, and im
plementation of the language — the subject of this work.

5.1 Heteterogeneous specification

“Heterogeneous specification becomes more and more important because com
plex systems are often specified using multiple viewpoints, involving multiple for
malisms. Moreover, a formal software development process may lead to a change
of formalism during the development.” [MML07a]

As its name suggests, heterogeneous specification allows specification using an heterogeneous
mix of specification languages. (We ignore here informal heterogenous methods such as UML.)
Historically, using multiple specification languages on a single project has been difficult, and
poorly supported by the languages and tools in question; with a few exceptions, homogeneous
specification — i.e. using a single specification language — has been the only real option. This
has a number of obvious drawbacks:

• The language used may be insufficiently rich to describe what is desired.

• The language used may be too rich to use in conjunction with the tools desired (see the
discussion of Casl sublanguages in section 2.3.1).

• More generally, only the tools directly supported by the language may be used; using
combinations of tools is difficult or impossible.

31

32 Chapter 5 The Hetereogeneous Context

One approach to this problem might be to attempt to create an all-encompassing specification
language which solves all problems for all people. A recognition of the unlikelihood of success
of such an effort leads to the conclusion that what is required is the ability to ‘mix and match’
various specification languages as appropriate: heteregeneous specification.

As noted in chapter 2, Casl is at the centre of a family of specification languages of varying
capabilities; in such an environment, it is natural to wish to combine specifications written
in those languages heterogeneously. Recent work enables this and even, in fact, “integration
of logics that are completely different from the Casl logic”, by formalising mechanisms for
relating specifications written in a mix of languages together. For a full treatment, see [Mos03,
Mos05].

The fundamental ideas, whose details are beyond the scope of this work, are that a specification
language has underlying it a logic (Ca sl ’s, for example, is SubP C F O Lr , see section 2.3.1),
that logics may be formalised using the category-theoretical notion of an institution [GB92],
and that institution morphisms and comorphisms formalise translations between logics and thus
between specification languages. This leads to the idea of a logic graph, describing possible
translations between languages according to the morphisms in place; for example, figure 2.1
on page 8, displaying part of the Casl family of languages, is in fact a logic graph taken from
[Mos04a].

5.2 HetCasl

Thus, while a CASL structured specification may consist of multiple (homogenous) specifica
tions, a heterogeneous specification over the logic graph of CASL-family languages is a struc
tured specification consisting not only of multiple specifications, but of specifications written
in multiple logics. The language HetCasl [Mos04a] implements this notion in the Casl
family context, with tool support provided by Hets (section 5.3).

It turns out that Ca sl’s structuring constructs (see section 2.2.2) are independent of the logic
used in the basic specifications being structured. Hets thus extends Ca sl’s structuring mech
anism, adding in particular, support for declaring the logic to use in a given context, and mech
anisms for declaring relationships between logics (e.g. reductions, translations, renamings). A
key point here is that HetCasl extends Casl only at the structuring level: basic specifications
written in Casl (or any other language in its family) are essentially independent of the Het-
CASL structuring mechanisms (though as we shall see, at least for Csp-Casl , just operating
within the HetCasl context has language design implications).

We now ignore (as out of the scope of this work) HetCa sl’s inter-logic features, and concen
trate on the features of importance to Csp-Casl . In particular, we have the following syntactic
extensions at the structuring level (examples follow, section 5.4):

• Logic qualification — this addition allows the declaration that a particular logic is to be
used in a given context. A logic qualification is written:

logic L SP

where L denotes the logic to use and SP is a specification, whose local environment (see
below) is the empty environment for that logic.

• Data specification — this addition pertains specifically to CASL extensions implement
ing ‘process logics’ (e.g. and in particular Csp-Casl). A data specification is written:

5.3 Hets, the Heterogeneous Toolset 33

data SP\ SP 2

This allows for the declaration of a ‘data part’ in SP \ , interpreted as a C a s l basic or
structured specification, whose signature is then coerced into the process logic, the result
of which coercion is used as the local environment for SP 2 , itself written in the language
of the process language. See section 10.2.1 for further discussion of this mechanism and
the notion of ‘local environment’ in the C sp-C asl context.

5.3 Hets, the Heterogeneous Toolset

Hets [MML07a, MML07b] provides “parsing, static analysis and proof management for het
erogeneous multi-logic specifications by combining various tools for individual specification
languages”. Parsing and static analysis are the areas most relevant to this thesis, and are con
sidered at length elsewhere; in order to provide a rounded context however, we shall briefly
consider Hets’ proof management capabilities.

At time of writing, Hets supports (at least one of parsing, static analysis and full logic
implementation for) Casl [BM04, CoF04c], CoCasl [MRRS03, MRS03], ModalCasl
[Mos04b], Ha sCasl [SM02], Haskell [SM02], Csp-Casl , OW L-DL (Web Ontology
Language, OWL), and Casl_DL (a strongly-typed OW L-DL variant). Having written speci
fications involving one or more of these languages, we might reasonably want to say something
more interesting than just ‘the specification is well formed’1. For example:

• ‘specification A is a refinement of specification B ’;

• ‘the system described in specification A cannot deadlock’;

and more generally:

• ‘theorem X is a consequence of specifications SP \ , . . . , SPn \

Proving things in Hets is achieved via heterogeneous development graphs. Given a structured
(HetCasl) specification, such a graph encodes and represents the structure of the specifi
cation and any open proof obligations which have been automatically generated by the tool
or explicitly specified by the user as part of the input. Hets then uses a proof calculus to
decompose open obligations to local proof goals which can be discharged using an appropri
ate theorem prover. At present, Hets supports SoftFOL (automatic, for first-order logic) and
Isabelle (assisted, for higher order logic).

H ets is currently used via a GUI, in which a specification’s development graph can be visu
alised and manipulated, and through which the user may interact with the theorem pro vers. A
fully-featured command-line interface, allowing greater automation of this process, is currently
being implemented.

It is interesting to note that Hets is generic in terms of the logic graph used. It has been
developed as a tool for heterogeneous specification over the CASL family so, naturally, the
Casl family logic graph and logics are those which have been implemented so far. However,
the parts of Hets implementing heterogeneous specification are independent of (and may be
compiled separately to) those actually implementing the CASL logic graph and the individual
logics. It would thus be possible to use Hets as a framework for heterogeneous specification

'This thesis is predicated, o f course, on the notion that that is an interesting question o f itself.

34 Chapter 5 The Hetereogeneous Context

logic CspCASL
spec tcs 1 =

data sorts S, T
ops c : S ,d :T

process tcsl : S ,T ;
tcsl — c —> SKIP || d -+ SKIP

end
(a) Csp-Casl logic only

Figure 5.1: Two versions of t

logic CASL
spec D

sorts S, T
ops c : S \ d : T

end

logic CspCASL
spec tcs 1 =

data D
process tcsl ' . S ,T \

tcsl = c ^ SKIP || d -* SKIP
end

(b) Using named process D in CASL logic

;1 . c s p c a s l in H e tC a s l

on a completely different set of languages, provided the appropriate logics and logic graph are
implemented.

Hets is implemented in Haskell (see chapter 7). We describe He ts’ internal structure and
aspects of its implementation in chapter 12.

5.4 Csp-Casl in the heterogeneous setting

In order to fully integrate Csp-Casl into Hets for heterogeneous specification, it is necessary
to formulate its underlying logic as an institution; discussion of this is beyond the scope of this
work — see [Rog06, MR07, MR08]. There are, however, some interesting issues relating to
syntax and semantics, which we now explore with the support of an illustrative example.

In section 4.2.1 we considered the example Csp-Casl specification t c s l . c s p c a s l from
[Rog06]. In figure 5.1 we see two versions of the same example, in a HetCasl context.
These examples serve to illustrate and introduce the key points regarding Csp-Casl’s language
design which arise as a result of interoperation with HetCa sl .

The most important thing to note in figure 5.1(a) is the use of the data specification keyword
data, described in section 5.2. As noted in chapter 4, this keyword has historically always
been part of CSP-CASL, and its inclusion in this form in HetCasl is of great benefit for the
integration of Csp-Casl into the Casl family: what we must now formalise is the other part
of the specification, i.e. the SP 2 in ‘data SP\ 57Y- This has an important consequence,
explored further in chapter 8 and subsequent chapters: a Csp-Casl basic specification then
consists only of the process part. Syntactically, semantically and programmatically, the data
part is essentially already taken care of:

• C a s l ’s syntax is defined in [CoF04b], and H e tC a s l’s in [Mos04a]. We need only
define the syntax of the process part — though this will refer to the C a s l syntax where
we reuse C a s l items such as FORMULA and TERM.

• The Casl static semantics is defined in [BCH+04]. We need only define the static
semantics of the process part — though this will interact with the CASL static semantics,

5.4 CSP-CASL in the heterogeneous setting 35

both in terms of the ‘input’ we receive from the data part, and the semantics of items we
reuse.

• Parsing and static analysis for Casl and HetCasl is already implemented in Hets.
We need only implement them for the process part — though we will call Casl parsers
and static analysers for items we reuse, and must ensure our implementation fits into the
wider Hets machinery properly.

The other point to note from figure 5.1(a) is that it is identical to the version seen in section
4.2.1 except for the addition of the logic qualification ‘logic CSPCASL’. In fact this could (in
this case at least) be omitted: by default Hets uses the Casl logic as its initial logic, but this
may be overridden with a command-line option and thus at least for specifications written using
only a single logic, no logic qualification is required in the input file, provided it is supplied on
the command-line. However, truly heterogeneous specifications require logic qualifications,
since only the initial logic may be overridden in this manner - so it is arguably a good idea to
be explicit by default.

Finally, consider figure 5.1(b). This contains (semantically) exactly the same specification;
however, instead of embedding the text of the data part in the Csp-Casl specification, we
use HetCasl’s structuring mechanisms in order to separately specify our data and process
parts. We start by defining a basic CASL specification describing our data; this is then reused
in the Csp-Casl specification, by referring to the named specification D in its data part. Such
separation is clearly a desirable capability; it is worth noting that the data part could be defined
in a completely different source file, and could even come from an off-site library.

36 Chapter 5 The Hetereogeneous Context

Chapter 6

Natural Semantics

Contents
6.1 Introduction..
6.2 Semantics of Mini-ML...........................
6.3 Static semantics of CASL local libraries

37
39
41

6.1 Introduction

N atural Semantics [Kah87] is a framework for writing operational semantics. Originally tar-
getting the operational semantics of programming languages (notably Standard ML in [MTH90]),
it has since been used to specify semantics of specification languages, in particular the static
and model semantics of Casl [BCH+04]. It is thus of interest to us as the canonical choice for
presenting the static semantics of Csp-Ca sl , for which see chapter 10. (Csp-Ca sl’s model
semantics is outside the scope of this document, but see, e.g., [Rog06].)

The aim of this chapter is to introduce Natural Semantics in order to support chapter 10’s pre
sentation of Csp-Ca sl’s static semantics. In the rest of section 6.1 we describe the formalism
in general, then focus on aspects relating to static semantics, since this is our main area of in
terest. Here we set the scene for the examples in the following two sections: in section 6.2 we
look at the static semantics of Mini-ML as presented in [Kah87]; in section 6.3, we consider
an example from the static semantics of Ca sl , namely local libraries.

Kahn [Kah87] introduces and names the framework, noting that it builds on earlier work of
Plotkin [Plo81]. The stated aim of natural semantics in that paper is to “.. .present several
aspects of programming language semantics in a unified manner... ”. (Note the restriction here
to programming languages — application to the semantics of specification languages such as
Casl came later.) These ‘several aspects’ are:

• static — well-typedness of expressions, declarations/scope;

• dynamic — execution behaviour;

• translational — translation of expressions between languages, e.g. interpretation.

The approach is proof-theoretic: generation of new facts (proof trees) from existing ones. The
formalism’s visual style is heavily influenced by Gentzen’s Natural Deduction [vD04], hence

37

38 Chapter 6 Natural Semantics

the name.

It should be noted that Natural Semantics is a. framework or style rather than a ‘closed’ formal
ism and that, for example, a rule from Ca sl ’s static semantics looks rather different to a rule
from Mini-ML’s dynamic semantics. The framework provides basic mechanisms for writing
semantic definitions, but the exact contents of such definitions will vary greatly depending on:

• The kind of semantics we are defining — e.g., static semantics is concerned with types,
whereas dynamic semantics is concerned with values and states (both are concerned with
expressions, however).

• The kind of language whose semantics we are defining — e.g. Mini-ML and CASL are
very different languages: their elements, syntaxes and - at heart - semantic contents are
just different things.

Thus, rather than try to provide a framework containing all possibilities, Natural Semantics
instead requires that we accompany our semantic rules with definitions of the actual semantic
objects under discussion, leaving the style of these definitions open. Natural Semantics then
provides us with a mechanism for formally describing relationships between these objects,
allowing proofs to be built. As we will see, it is generally the context-specific machinery which
complicates a definition in the Natural Semantics style; the formalism itself is quite simple.

6.1.1 The formalism

Here we provide a top-down overview of the elements of the Natural Semantics formalism.
Having done this, we’ll look briefly at how static, dynamic, and translational semantics are
defined, concentrating on static semantics as our main area of interest.

A semantic definition is a collection of rules. A rule, like a rule in natural deduction, has a
numerator and a denominator. The numerator is a collection of formulae: the rule’s premises;
the denominator is just one formula: the rule’s conclusion. A rule is written:

premise i • • • premisen
conclusion

A rule’s meaning is that from proof trees yielding all of the premises we obtain a new tree
yielding the conclusion. Formulae (the premises and conclusions) consist of sequents and
conditions. Sequents have the basic form:

antecendent h consequent

the content and interpretation of which vary with context, though the consequent is always a
predicate, whose first argument is generally the subject of the sequent. Sequents are, largely,
where the ‘action’ is. A condition is a boolean predicate which restricts the applicability of
the rule (sometimes written to the right of the bar separating the premises from the conclusion
— though not in the case of CASL). An axiom is a rule with no sequent in its premises. For
examples of axioms and conditions, see rules (1) and (2) in section 6 .2 .2 .

6.1.2 Static semantics and static analysis

Having introduced the formalism in general, we now consider its application to static seman
tics. Consider the sequent:

6.2 Semantics o f Mini-ML 39

p \- E : r

This is a typical style for sequents in a static semantics definition, and can be read as:

“The expression E has type r in the context of environment p.”

Here, then, ‘expression’ and ‘type’ have their normal meanings. The environment is an artifact
of the static semantics: it is a list of bindings of which we are already aware, associating
expressions with types.

Given the above sequent, two questions we might reasonably ask are:

1. Given p, can E be assigned the type r such that p b E : r ? (type checking)

2. Given E and r, does there exist an environment p such that p b E : r ? (typability)

In the Csp-Casl context, we are most interested in questions of the first kind, though our
semantic objects are not restricted to types of expressions, and our semantic rules build a variety
of semantic objects. Nonetheless, the basic operation of constructing semantic objects and
checking that they relate ‘sanely’ to one another is the central question in our task of static
analysis: specifications which violate the rules are ill-formed, and must be rejected with an
appropriate and hopefully useful error message.

The sequent form given above is not the only possibity. Commonly, we might have:

• p\ b DECL : p2 a declaration, expanding environment p\ to p2

• p b E : r expression E has type r in environment p

• p b E expression E is well-typed in environment p

A static semantic definition then consists of a collection of rules, some of which concern build
ing environments (e.g. rules containing sequents of the first type above), and the rest of which
concern determining/checking the types of expressions within environments (e.g. rules con
taining sequents of the second and third types above).

We will see and discuss examples of such rules later in this chapter, but here is a simple example
to whet the appetite:

p h E\ : ri p \~ Ei : r2
p h (E i, E2) : ri x r2

We can read this as “the pair (E \, E2) has the type r\ x r2 in environment p provided E\ and E2

have types r\ and r2 respectively in environment p”. The proof of the premises involves further
rules, leading eventually to ‘base’ rules dealing with constants, literals, and declarations. Sim
ilarly, the conclusion might be used when checking some other expression involving (E \, E 2),
in the context of environment p.

6.2 Semantics of Mini-ML

Our first example of Natural Semantics in action comes from [Kah87], in which Kahn exempli
fies static, dynamic, and translational semantics using a small functional language, Mini-ML.
Since we are primarily concerned with static semantics, we concentrate on this aspect.

40 Chapter 6 Natural Semantics

6.2.1 Mini-ML

Mini-ML is “a simple typed A-calculus with constants, products, conditionals and recursive
function definitions” [Kah87]. Before we can discuss its static semantics, we need to introduce
the language, though we omit the details. As a simple example of its concrete syntax, here is
the mandatory factorial.

letrec factoria l^ A x. if x = 0 then 1 else x* factorial(x — 1)
in factorial 4

The abstract syntax of Mini-ML is fairly simple. The sorts are expressions, identifiers and
patterns, which occur in lambda abstractions and let-expressions (in the example above, the
first occurences of factorial and x are patterns; subsequent occurrences are identifiers).

In order to discuss Mini-ML’s static semantics, we must first consider its type language. In
Mini-ML, a type r is one of the following:

• a basic type (int or boot)’,

• a type variable a\

• a functional type r —» r' (with r, r' types);

• a product type r x r' (with r , r ' types).

We noted earlier that an environment consists of a list of bindings, which associate expressions
with types. In Mini-ML, a binding associates an expression with one of the following:

• a type r;

• a type-scheme V a .a where a is a type variable and cr is a type-scheme.

Type variables and quantified type schemes allow us to define types of polymorphic functions,
e.g. V a .a —► a, the type of the polymorphic identity function.

6.2.2 Static semantics

The full static semantics is beyond the scope of this chapter. Instead, we will examine a few
example rules which give us a good idea of the flavour and meaning of the semantic definition.
Our first two example rules deal with declarations:

b ident x, r : ident x: r (1)

I- P u n ' Pi P u n : p 2
(pi n P2 = 0) (2)

I- (P i , P 2), n x r2 : Pi + P2

Here b P ,r : p means “declaring P with type r creates the environment p”. Rule (1) allows
for the declarations of identifiers; rule (2) for the declaration of patterns, which are essentially
binary trees of identifiers. Here + is a ‘union-like’ operation on environments (with some extra
rules, omitted here).

Further examples then concern the types of expressions. Here we see the more familiar judge
ment p h E : r. Now we are no longer just building environments; we are checking types of
expressions against them.

p b Ei : bool p b E 2 : r p b E3 - ~
p b if E \ then E2 else E% : r (3)

6.3 Static semantics o f CASL local libraries 41

Rule (3) is fairly simple, and shows how to determine the type of a conditional expression: it is
necessarily the type of either (both) of the branch expressions; the condition expression itself
must be boolean, of course. Note that it explicitly introduces the constraint that £2 and £3
must have the same type.

I- P y :pf p + p' Y~ E : r
p \- X P .E : r' -> r

Rule (4) determines the type of a A-abstraction: a function type, of course. Here P has type
r' in p', and E has type r in the concatenation of p' and p, the environment in which the A-
abstraction occurs. The point here is that P need not exist in the environment p in which we
consider the X P .E . In essense, we add it to that environment when checking E.

p h £ 1 : r' -» r p h E2 : r'
p b Ei £ 2 : r

Rule (5) determines the type of a function application. It checks that the function is applied to
an expression of the correct type (r ').

At this point, hopefully the meaning of the rule given at the end of section 6.1.2 is clear.

6.3 Static semantics of CASL local libraries

As a domain-specific example, we now consider the static semantics of CASL local libraries,
as defined in [BCH+04, §111:6.2]. We have chosen this example because it is small enough to
discuss fairly briefly, while adequately illustrating the key features of C asl’s static semantic
rules, and in particular some interesting aspects (namely linear visibility and qualified rules)
which also appear in the Csp-Casl semantics.

The rules in this context have a slightly different structure to those for Mini-ML considered
above. In particular, whereas the Mini-ML rules are concerned with determining the type of
an expression, the C a s l static semantics are somewhat more general in character: a given rule
will ‘yield’ one or more of various kinds of semantic objects — not just a type. In the case
of local libraries, the main yielded semantic objects are static global environments, described
below. However, one of the rules yields not only a static global environment but also a library
name. In general, C a s l static semantic rules yield whatever semantic objects are required in
the given context; the C sp-C asl rules presented in chapter 10 are similarly varied. They are
thus richer — and correspondingly harder to decode — than the Mini-ML rules; none of this is
particularly surprising given CASL’s (and CSP-CASL’s) greater scope and complexity.

Removal of aspects relating only to distributed libraries

Note that the rules presented in this section are in fact modified versions of those found in
[BCH+04, §131:6.2]. Casl supports not only local libraries but also distributed ones, and the
rules for distributed libraries involve semantic objects called static universal environments and
global directories. As the rules for distributed libraries extend those for local libraries, the latter
must (in their full form) ‘pass through’ these extra semantic objects. However, the objects are
not actually used in the local library rules; as such, as we do not consider distributed libraries
here, we have chosen to simplify and clarify our discussion of the rules for local libraries by
omitting those parts of no immediate relevance.

42 Chapter 6 Natural Semantics

6.3.1 Semantic objects

As noted in section 6.1, it is necessary when writing rules using Natural Semantics to define
the domain-specific objects to which the rules refer. In the case of the CASL local library rules,
we have the following semantic objects:

• Static global environments Y s = (Qs, VS, A S,T S), which consist of finite functions from
names to static denotations of generic specifications, views, architectural specifications
and unit specifications.

The details of Qs, Vs, A s, and Ts are irrelevant to this discussion, and thus omitted. How
ever, the main point is that the static global environment is a container for the semantic
objects corresponding to the contents of the library. As such, this is the key semantic
object related to local libraries, and the rules presented below are essentially concerned
with building these.

• Library names and library identifiers. A library identifier is either a URL pointing di
rectly to the library, or a path facilitating indirect lookup via a global directory (see note
regarding distributed libraries, above). A library name is then a library identifier and a
version number.

L I E Libld = Url^S Path
L N E LibName = Libld x Version

The internal structure of URLs, paths, and version numbers is irrelevant to this discus
sion, and thus omitted.

6.3.2 The rules

The presentation of C a s l’s static semantics in [BCH+04, §111:6.2] adheres to a particular
format throughout. The first part of any collection of rules is the abstract syntax excerpt for the
syntactic elements in the rules’ conclusions. In this case, we are interested in LIB-DEFN and
LIB-ITEM:
LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
This is followed by a highlighted summary of the key points of the rules which follow. In the
case of Casl local libraries, it reads:

“A library definition LIB-DEFN provides a collection of specification (and per
haps also view) definitions. It is well-formed only when the defined names are
distinct, and not referenced until (strictly) after their definitions. The global envi
ronment for each definition is that determined by the preceding definitions. Thus a
library in C a s l provides linear visibility, and mutual or cyclic chains of references
are not allowed.”

This is followed by some optional discussion, and then the rules themselves. Here we have
a header summarising the format of the rule or rules following, and the actual rule/rules —
often interspersed with and followed by further discussion/clarification of the rule’s contents
and meaning.

6.3 Static semantics o f CASL local libraries 43

6.3.2.1 LIB-DEFN

The first rule for local libraries is as follows:

b LIB-DEFN > (L N , F S)

b LIB-NAME [> L N 0 h LIB-ITEM* > T s
b lib-defn LIB-NAME LIB-ITEM* > (L N , T S)

The header summarises the rule:

1. It is the rule for the syntactic element LIB-DEFN.
2. The required context is empty (there is nothing to the left of the b symbol).

3. The semantic object yielded is a pair consisting of a library name L N and a static global
environment Ts.

Thus, given a library definition, we may compute a library name and static global environment
for that library definition.

Now consider the rule itself; there are two premises and (of course) one conclusion. The con
clusion is essentially identical to the header, except that the syntactic element LIB-DEFN has
been expanded according to one rule from the abstract syntax. This introduces the syntactic
elements which are referred to in the premises. Where the grammar contains multiple produc
tions for a particular syntactic element, there will be a set of rules in the semantics — see the
discussion of ‘qualified rules’, below.

The premise b LIB-NAME > L N refers to the rule for LIB-NAME; this rule is not shown
here, but as it has no context we may reliably infer that it simply turns a syntactic name (what
ever is contained in LIB-NAME) into a semantic one (i.e. LN). Such premises are typical at
the level of names. Note that the library name L N yielded by this premise is then the first part
of the pair yielded by the LIB-DEFN rule’s conclusion.

The premise 0 b LIB-ITEM* t> Ts refers to the rule for LIB-ITEM*, considered below.
To this rule is passed an empty set which, as we shall see, forms the basis of the yielded static
global environment Ts. That Ts is then the second part of the pair yielded by the LIB-DEFN
rule’s conclusion.

6.3.2.2 LIB-ITEM*

The next rule defines the static semantics of a sequence of LIB-ITEMS. It is probably the most
interesting rule of the three presented here, as it encodes linear visibility.

Ts b LIB-ITEM* >r's

Thus: the rule deals with a sequence of LIB-ITEMs; the context consists of a static global
environment; the rule then yields a different static global environment. In particular, as we
shall see, the ‘input’ static global environment T s is expanded upon by each LIB-ITEM in the
sequence to produce the final one, T's.

44 Chapter 6 Natural Semantics

(rs)o I- LIB-ITEMi > (rs)i

________ (r s) n - i I- LIB-ITEMn > {Fs)n________
(r s)o I- LIB-ITEMi . . . LIB-ITEMn > (Fs)n

In the rule’s conclusion, LIB-ITEM* is expanded to an indexed list of LIB-lTEMs, each of
which has a corresponding sequent in the rule’s premises. The LIB-ITEM rule is presented
below, but the particular thing to note here is the chain of static global environments being
passed along the rules: the rule for LIB-ITEMi receives the first, (rs)o in its context, and
produces (rs)i, which is passed to LIB-ITEM2 , which produces (Ts)2, etc., until finally
LIB-ITEMn produces the final static global environment (Ts)n which is in turn yielded by
the rule’s conclusion.

This arrangement implements linear visibility, whereby later library items may refer to items
defined in earlier ones, but not the other way round. We also find linear visibility in the C s p -
C a s l static semantics: for example, process declarations and process equations may be in
terspersed, but a process equation may only refer to a process whose declaration has already
been seen (see section 10.3.3). Nonlinear visibility requires a somewhat more complicated
arrangement of rules; for a C a s l example see datatype declarations [BCH+04, §111:2.3.4].

Finally, there is a small stylistic point to make here. The rule shows how to expand a static
global environment Fs with a sequence of library items to produce a new static global environ
ment r's . When we ‘call’ it from the LIB-DEFN rule we pass an empty set to r s, so that the
net effect is to produce the static global environment for the entire library and only the library.
Now, note that an alternative and equivalent rule would receive no static global environment
as input, and simply build up from the empty set internally by passing 0 in the LIB-ITEMi
premise:

0 h L IB -IT E M i > (Ts)i

(Ta)w_i t~ LIB-ITEMn > (Ta)w
h LIB-ITEMi . . . LIB-ITEMn > (Ts)n

There seems to be no technical reason for not using this style: no other rule in the CASL
semantics refers to this LIB-1TEM* rule, so no other rule wants to pass in a non-empty starting
environment. We speculate, then, that the rule has been written in this form because C a s l
has been designed to be extended, and some extension might in fact wish to treat libraries
differently. In the C s p - C a s l rules we tend towards the other, more minimal, rule form where
possible, favouring compactness over generality — see for example the CHAN-DECLS rule in
section 10.3.2.

6.3.2.3 LIB-ITEM

The final rule deals with an individual library item:

Ts h LIB-ITEM \>T'S
Thus, the LIB-ITEM rule takes a static global environment as context, and yields a different
one:

Fs b SPEC-DEFN > F's
Fs h SPEC-DEFN qua LIB-ITEM > F's

6.3 Static semantics o f CASL local libraries 45

The main thing to note here is that this is a qualified rule. Qualified rules correspond to ele
ments of the abstract syntax containing disjoint unions of syntactic categories. Consider again
the abstract syntax for LIB-ITEM:
LIB-ITEM SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
Thus, a LIB-ITEM devolves to one of four possibilities, and we need one rule for each of
these cases. These, then, are qualified rules, and are indicated by the presence of the text ‘qua’
in the rule’s conclusion. There is only ever one sequent in the premises of a qualified rule:
a reference to the rule for the syntactic category to which we are devolving — in this case,
SPEC-DEFN. The rule for SPEC-DEFN is not shown: it is part of the static semantics of
structured specifications [BCH +04,111:4]. Recall that semantically, a library is nothing more
than a container for semantic denotations of entire specifications; detailed knowledge of those
semantic objects is not required in order to understand the rules for local libraries. In other
words, C asl’s static semantics is structured in a helpfully modular fashion.

Similar qualified rules exist for devolving LIB-ITEM to VIEW-DEFN, ARCH-SPEC-DEFN,
and UNIT-SPEC-DEFN; however, it is almost always the case that where we have qualified
rules covering the disjoint union of syntactic categories, only the first rule is shown — the rest
are elided. In such cases it is implicit that the elided rules are entirely similar to the shown one,
differing only in the syntactic category to which the rule refers. As such, we can easily infer
the three missing rules in this example.

46 Chapter 6 Natural Semantics

Chapter 7

Haskell and Parsec

Contents
7.1 Haskell
7.2 Parsec .

47
52

In this chapter we introduce the programming language Haskell, in which our tool is imple
mented, and the library Parsec, which is the key technology in the implementation of the parser
part of the tool. Note that the use of both Haskell and Parsec in our implementation is a con
straint introduced by the context of our work, i.e. extension of the Hets toolset: Hets is
written in Haskell, and uses Parsec throughout for parsing — see chapters 5 and 12.

Haskell [BW88, Pey03, HHJW07] is a polymorphically-typed, lazy purely functional program
ming language, based on the A-calculus. In this section we introduce its key features with some
small examples, in particular concentrating on aspects of relevance to our implementation.

7.1.1 Main features

Haskell is functional in the sense introduced by Backus in [Bac78]; a Haskell program is a
collection of functions, and is pure in that a function has no side effects: it takes some input
and produces some output, and that is all it does. Thus, Haskell programs have no implicit state,
as modification of state violates purity. Indeed, Haskell functions are referentially transparent:
every application of a given function with a certain input produces the same output, just like a
function in the mathematical sense; as such, a function application can always be replaced by
the value thus produced.

Our first example of a Haskell function is the function which doubles integers:

double :: In t — > In t
double x = x + x

The first line is the function’s type signature, and states that this is a function from I n t to
I n t ; the second line defines the function’s behaviour, equationally, in an obvious manner. It is

7.1 Haskell

47

48 Chapter 7 Haskell and Parsec

almost always possible to omit the type signature, and have the Haskell compiler infer it from
the function definition using Hindley-Milner type inference [Mil78].

A function call, or application is written without parentheses; e.g. d o u b le 5, which accord
ing to the above definition of d o u b le , has the value 10. Anonymous functions may be written
in the form of A-abstractions, as \x -> f x (for the A-term A x . f (x)) , binding a single
input variable to the name x within the scope of f .

Haskell is strongly typed (all values have a particular type), and statically typed (the type of a
value never changes). Furthermore, and critically, Haskell is higher-order: functions are ‘first
class citizens’, have types (as demonstrated above), and may be passed as parameters to, and
returned from, other functions. For example, consider:

twice :: (Int — > Int) — > (In t — > Int)
twice fn x = fn (fn x)

This higher-order function takes and returns a function from I n t to I n t — the function it
returns has the effect of applying the input function twice. We can go further: Haskell is
polymorphic; rather than restrict t w i c e to functions from I n t to I n t , we can generalise it
as follows:

twice :: (a —> a) —> (a —> a)
twice fn x = fn (fn x)

Here a is a type variable referring to ‘some type’. Supposing we also define:

repS tr:: String — > String
repStr a = a ++ a

which repeats a string, then we have:

(twice double) 5 = 20
(twice repStr) ”hi ” = ”hi hi hi hi”

Haskell has a number of other built-in types, including I n t s , S t r i n g s , C hars, lists (in fact,
a S t r i n g is just a list of C hars, written [C h a r]), etc. Naturally, we may define our own
types based on these — primarily via algebraic data types. These are aggregated types, whose
values consist of data of various types wrapped in a constructor,; an algebraic datatype may
have multiple constructors, and their definitions may be recursive. For example, the following
defines a polymorphic datatype of binary trees: . _

data Tree a = Leaf a
| Tree (Tree a) (Tree a)

The datatype is called T r e e a (‘tree of a s ’), and has two constructors: L e a f wraps a value of
type a i n a T r e e a value representing a leaf of the tree; T r e e takes two values of type T r e e
a and wraps them in a T r e e a value representing an inner node, n.b., we have a constructor
with the same name as the type, and we have a recursive definition. Then the following:

nTree = Tree (Tree (Leaf 1) (Leaf 2)) (Tree (Leaf 3) (Leaf 4))
sTree = Tree (Leaf ”andy”) (Tree (Leaf ’’markus”) (Leaf ’’basheera”))

defines two values: n T r e e of type T r e e I n t , and s T r e e of type T r e e S t r i n g , illus
trated in figure 7.1.

Algebraic datatypes are used widely in our tool, in particular to represent abstract syntax trees
produced by the parser (see section 12.2 .1), and various semantic objects produced by the static
semantics phase (see section 12.4).

7.1 Haskell 49

A A
1 2 3 4

nTree

Figure 7.1: Visualisation of nTree :: Tree Int and sTree :: Tree String

When a value of an algebraic datatype is referenced, its members are typically unpacked using
pattern matching on constructors. The following function walks a Tree a from left-to-right,
depth first:

walk (Leaf x) = show x
walk (Tree left right) = (walk left) ++ ” ” ++ (walk right)

show converts a value to a String — see below. Then, walk takes a Tree a as input, and
returns a string of the tree’s leaves, e.g.:

walk nTree = ” 1 2 3 4 ”

The definition of walk consists of a case distinction over the datatype’s constructors; if the
Tree a value is a leaf node, then the a value is bound locally to the name x, used on the
right side; similarly, the case for an inner node binds the child values to the names left and
right. In general, pattern matching is used extensively in Haskell function definitions.

Type classes are a novel feature of Haskell, somewhat akin to interfaces in, say, Java, in that
they define a contract regarding functions which must be defined for a particular type. For
example, the type signature of walk, above, is:

w alk :: Show a => Tree a — > String

The ‘Show a =>’ part of this signature enforces a constraint, namely that this function can
only be called on values of type Tree a where the type a is a member of the type class
Show. This is a standard type class concerned with converting values to strings. In particular,
it guarantees the existence of the function show :: a -> String used in the Leaf a
case of walk.
Clearly, we should be able to state that our own data types are members of particular type
classes. One convenient method is a derived instance, where we request a default implementa
tion to be inferred by the compiler; e.g. we might write our Tree a declaration as:

data Tree a = Leaf a
| Tree (Tree a) (Tree a)

deriving (Show, Eq)

Then Tree a automatically ‘inherits’ implementations of show and == (to check for equal
ity). However, this constrains Tree a values to types a which are instances of both Show
and Eq (almost all built-in types are). Where such a derivation cannot be made or is unsuitable,
we may explicitly declare a type to be a member of a type class, and provide implementations
of the required functions; for example, this is necessary when we implement pretty-printing of
C s p -C a s l — see section 12.3.

"andy"

"markus" "basheera"
sTree

50 Chapter 7 Haskell and Parsec

A Haskell program is organised into modules providing namespaces — this is Haskell’s key
method for controlling scope of functions. Modules may import other modules, in which case
the imported module’s exported types and functions are in scope in the importing module. By
default, all of the contents of a module are exported; modules may hide contents by providing
an explicit export list. Conversely, an import may be restricted by listing the names to import,
or may be qualified by some name, in which case any references to the imported items must be
prefixed by the qualification name.

Haskell has a large standard library of modules providing types, type classes and functions for
a wide range of standard and exotic purposes. In particular, there are modules for: datatypes
such as sets, relations, lists, mappings, monads, functors, and various representations of prim
itive types such as integers and strings; common tasks such as filesystem access, networking,
pseudorandom number generation, graphics, sound processing, and user interfaces; and facili
ties for distributing Haskell packages, and for interfacing with code written in other languages
via the Foreign Function Interface. Furthermore, there is a large and ever-growing collection
of third-party libraries1 for an astonishing range of purposes.

7.1.2 Monads and monadic I/O

In section 7.1.1 we asserted that Haskell programs consist of functions which have no side
effects. This purity is at the heart of Haskell and results in many distinctive and useful prop
erties; however, in general, we sometimes want side effects and non-purity, e.g. for input and
output. Reading from and writing to the console, for example, must clearly modify some state
somewhere in the computer.

There are a number of ways in which this problem might be solved; Haskell uses monads to
control side effects of this nature [Wad92, HHJW07]. Monads, a category-theoretical construct,
neatly encapsulate the concept of order of execution, and in fact allow the Haskell programmer
to define their own execution strategy for a given situation; in particular, in Haskell we have
monadic input/output via the 10 monad, as well as a plethora of other monads. Due to
Haskell’s purity, order of execution is in general unpredictable, particularly as Haskell is lazy
and only evaluates an expression when its value is required; clearly this is also problematic for
I/O. Using the 10 monad, we represent and manipulate computations which have side effects
and a strictly sequential order of execution; it is important to realise that in such functions, we
are not performing the I/O, but are computing functions which perform the I/O and which are
called at runtime as required according to lazy evaluation of I/O values. All Haskell functions,
including ones operating on the 10 monad, are pure — see the example below.

From the programmer’s point of view, the key benefit of this approach is a clear separation
between code which can give rise to side-effects, and pure code where this is not the case:
a function’s type signature clearly indicates which ‘world’ we are in, and the type system
rigourously enforces this separation. Most Haskell programs consist of an outer ‘interface
shell’ which performs I/O, often written in a more imperative style, and a pure functional
‘core’ with no side effects. Indeed, the type signature of a Haskell program’s m a in function is
m a i n : : 10 () — that is, m a i n takes no parameters, performs some I/O as a side effect,
and returns nothing (here () represents the empty type, and also values of that type). Then we
have, e.g., to read and write a line from/to the console:

getLine:: IO String

’h t t p :/ / hackage.h a s k e l l .org/

7.1 Haskell 51

putS trL n :: String — > IO ()

A monad is any type which implements the Monad type class, Monad m, with polymorphic
type constructor m (1 0 in the above), and four particular functions, such that they obey certain
laws; the functions are:

(> > =) : : m a — > (a —> m b) —> m b
re tu rn :: a —> m a
(>>) : : m a —> mb —> mb
f a i l :: S tring — > m a

Of these, >> and f a i l have default implementations in terms of the first two functions; these
defaults usually suffice but may be overridden if necessary. Thus, it is minimally necessary
to define (>>=) (pronounced ‘bind’) and r e t u r n . Together, these functions control the se
quencing of computations occuring ‘in the monad’, r e t u r n specifies how a value of type a
is ‘placed inside’ the monadic value m a, and (>>=) and (>>) specify how to chain compu
tations performed within the monad.

For the implementation details of (>>=), etc., see [Pey03]; the key point to note is that the
user of the monad simply calls these functions to ‘chain together’ operations to be performed
within the monad, however is appropriate for the monad in use: the actual control of execution
order is thus abstracted away, into these functions.

This turns out to be such a central idea (and in particular, I/O is such a critical aspect of any
programming language) that Haskell blesses monads (which are, after all, just another type
class in the library) with a particular syntactic sugar called ‘do notation’. This can be seen as
defining an imperative-looking sublanguage where chains of monadic function calls may be
created without explicitly chaining them using (>>=), (>>) , etc. To give a trivial example,
here is a complete Haskell program for asking a user their name and then printing it back to
them:

module GetName where

m a in :: IO ()
main = do putS trL n ’’What is your name?”

name < — getLine
putS trLn (’’Hello, ” ++ name)
retu rn ()

The ‘do-block’ in m a i n chains together four calls, binding the result of the second to the
name name, in scope for the remainder of the block. We emphasise again that this imperative-
appearing notation is just syntactic sugaring for pure Haskell. In this case, the body of m a i n
is desugared to the following:

main = (putStrLn ’’What is your name?”) > > (getLine) > > =
(\nam e — > (putStrLn (’’Hello, ” ++ name)) > > (re tu rn ()))

Note how the (>>=) operater passes the result of g e t L i n e to a A-abstraction defining the
scope of name.

Now, while monads were introduced to address the I/O issue, they are not restricted to I/O,
nor to encoding strictly sequential execution. For example, the Maybe monad encapsulates
a simple notion of exception handling, where we have a chain of dependent computations
which can be interrupted at any point by the failure of one of them. Of particular interest

52 Chapter 7 Haskell and Parsec

to us, however, are mechanisms for simulating statefulness (see section 12.4), and Parsec’s
GenParser monad, which encapsulates the execution model of a recursive descent parser
with arbitrary backtracking, which we now examine in context.

7.2 Parsec — monadic combinator parsing in Haskell

7.2.1 Recursive Descent Parsing

Parsec, the subject of this section, is a library for writing recursive descent parsers', we should
briefly outline what this means.

Preliminary definitions: An alphabet is a finite set of symbols, typically atomic characters;
a string is a finite sequence of symbols taken from an alphabet; a formal language is a set
of strings over some alphabet; a grammar is a description of a formal language, manifested
as a set of rules concerning how strings in the language may be generated; in that context, a
terminal is an entity in the grammar corresponding to a symbol in the alphabet, whereas a non
terminal is a different kind of entity, not corresponding to a symbol in the alphabet; finally, a
context-free grammar is a grammar having a particular structure. [Sud05]

For example, here is a context-free grammar:

S -> A
A -> T I A + T
T b | (A)

Here we have four terminals (6, + , (and)), three non-terminals (S , A, and T) and five pro
ductions showing how non-terminals may be transformed (the *|’ symbol indicates choice, so
e.g. there are two productions for A, namely A—>T, i.e. ‘A may be replaced by T \ and
A —y A + T , i.e. ‘A may be replaced by A + 7”). This grammar defines a language, namely
the set of strings of non-terminals derivable by repeated applications of the production rules
starting, by convention, with a single instance of the non-terminal S.

For example, the follow demonstates a derivation of the string (6) + b in this language:

S A A + T -> T + T (A) + T (A) + b (T) + b (b) + b

Now, “parsing is the process of determining how a string of terminals can be generated by a
grammar” [ALSU06]. That is, given some input consisting of members of an alphabet, and
a grammar defining a language we are interested in, we wish to determine if it is possible
to generate that input from that grammar — and (critically) if so, howl This question is of
central importance for processing texts written in formal languages, in particular programming
languages and specification languages.

There are a number of ways to approach this problem, but a common view on them is that of
traversing the graph o f a grammar, this is a directed graph, where:

• leaf nodes are strings in the corresponding language;

• inner nodes are ‘partially-derived’ strings, containing some non-terminals;

• the root node is the grammar’s start symbol;

• at every node, we have an arc for every possible production leading from that node
(possibly labelling the arc with the derivation).

7.2 Parsec 53

S

A

A + TT

T + T r + A+ r A + b A + (A)b

(6) . . .

Figure 7.2: Part of the graph of a grammar

For any non-trivial grammar, such a graph will be infinite, of course. For example, the start of
the graph of the grammar seen above is shown in figure 7.2.

Recursive descent parsing, then, is an approach to parsing characterised by exploration of this
graph, top-down, one derivation at a time until a non-terminal is reached; the exploration is
directed by the input string being parsed: in the above example, at the inner node labelled T, if
the next symbol of input is ‘(’ then we clearly take the right-hand branch and ignore the other.
In general this approach requires backtracking, so that ‘dead end’ branches may be explored
and disregarded: the maximum number of symbols one must read before possibly being forced
to backtrack is the lookahead of the grammar. There is a danger of exploring an infinitely long
branch; with finite input this can only occur without consuming all input, thus, if exploring the
tree top-down and left-to-right, an infinite branch is the result of left-recursion in the grammar,
where the leftmost symbol of a production is identical to the non-terminal acted on by that
production2. Such grammars may be transformed mechanistically into non-left-recursive ones,
however.

7.2.2 Parsec

Parsec [LM01] is a library for writing parsers in Haskell, based on earlier work by Wadler,
Hutton, and others [Wad85, Hut92, Fok95, HM96]. The library provides a polymorphic type
GenParser tok st a, representing a backtracking recursive descent parser with unbounded
lookahead which parses tokens of type tok, with a user supplied state st, returning a value
of type a on success. This may then be specialised, e.g. Parsec also provides Parser a, a
type synonym for GenParser Char () a, for statelessly parsing a stream of characters
to a value of type a. Building on this, the library also provides a number of basic parsers
for parsing characters, words, upper case characters, whitespace, etc., and (critically) a range
of com binators, i.e. higher order functions, for combining parsers (table 7.1 summarises a
few interesting combinators, including all mentioned in this chapter and in chapter 12). For

2Strictly, this is direct left-recursion; indirect left recusion involves intermediate symbols but is handled simi
larly.

54 Chapter 7 Haskell and Parsec

Com binator M eaning
many p
manyl p

Apply parser p zero or more times, returning a list of results.
Like many but requires at least one successful application of p.

sepBy p s
sepByl p s

Apply parser p zero or more times, separated by application of parser s.
Like sepBy but requires at least one successful application of p.

endBy p s
endByl p s

Like sepBy but also requires a successful application of s at the end.
Like endBy but requires at least one successful application of p.

skipMany p
skipManyl p

Apply parser p zero or more times, discarding its results.
Like skipMany but requires at least one successful application of p.

option x p
choice ps

Try to apply parser p ; if it fails w/o consuming input, return value x.
Try to apply each parser in list ps until one succeeds, then return its value.

p < l> q
try p

Try to apply parser p; if it fails w/o consuming input, attempt q.
Try to apply parser p; if it fails, backtrack so no input was consumed.

Table 7.1: Some simple Parsec combinators

example3, given a parser:

le tte r:: Parser C har

that is, a stateless parser over a stream of characters which returns a Char and, as its name
suggests, accepts only letters, we might define:

w ord :: Parser [Char]
word = manyl letter

to parse a word up until whitespace; this uses the m a n y l combinator, with type signature:

manyl :: GenParser tok st a — > GenParser tok st [a]

This combinator takes a parser which returns a value of type a, and returns a parser which
returns a value of type [a], i.e. a list of a values; in particular, manyl applies its input parser
as many times as possible before failure, and succeeds provided there is at least one application.
In general, parsec’s combinators, and the ability to write new ones, provide much of its power,
and are a superb example of the power of higher-order programming.

7.2.2.1 Example runs

Consider the following short session in ghci, an interactive environment for Haskell:

*Parses> parse word "" "hello"
Right "hello"
Here *Parses>is the interactive environment’s prompt, and displays the name of the mod
ule defining our current scope (in which we have defined word, above), parse is a Parsec
function for running a parser: its first parameter is the parser to run; its second (blank here) is
a filename, nominally the file where the parser’s input originated (for error messages); its third
parameter is the input to parse.

The result of the call parse word "" "hello" is the value Right "hello". This is a
value of type Either ParseError String, where Either is a polymorphic type used
where a computation may have two possible outcomes, with different types:

3Examples in this section are mostly drawn directly from the Parsec documentation.

7.2 Parsec 55

data E ither a b = Left a
| Right b

deriving (Eq, Ord)

In this context, Right "hello" means “successful parse; parse result is the string "hello"”.
A similar example:

*Parses> parse word "" "hello there"
Right "hello"
If we try to parse the string "hello there", we get the same result, demonstrating that
manyl letter does indeed stop when it reaches a non-letter (i.e. when letter fails), in
this case a space.

An error manifests as a Left ParseError result from parse:
*Parses> parse word "" ""
Left (line 1, column 1):
unexpected end of input
expecting letter
In this example, we have attempted to parse an empty string as a word; this is rejected because
the manyl combinator only succeeds if it is able to apply its argument parser at least once.

Finally, we see a similar error with input not consisting entirely of letters:

*Parses> parse word "" "1234"
Left (line 1, column 1):
unexpected "1"
expecting letter
(Note that if this input had prefixed with letters, word would have successfully parsed those
letters, until reading the first non-letter — as in the second example, above.)

Now, the nature of a recursive descent parser is that it attempts to parse sequences of symbols,
backtracking and trying alternatives on failure. Let us now examine each of these aspects.

7.2.3 Sequencing parsers

Monads provide a mechanism for controlling order of execution in a flexible manner, encoded
in the monad’s implementation of (>>=) and return, but in practice we can generally ab
stract this away using do-notation (see section 7.1.2). Consider the following function:

openClose:: Parser C har
openClose = do char ’(’

char ’)’

Here the char parser succeeds if it reads the specified character, and fails otherwise; openClose
thus succeeds if it reads a ‘ (’ followed by a ‘) ’. In general, then, a do-block in a Parsec monad
represents sequential application of a number of parsers, and succeeds if each of those parsers
succeeds; as soon as one fails, the whole block fails — so in the above, if the first character is
not ‘ (’, the second char parser is not attempted.

56 Chapter 7 Haskell and Parsec

7.2.4 Backtracking and lookahead

Parsec’s backtracking and unbounded lookahead is based on control of what happens when a
parser fails; in particular, we have two combinators, < | > (pronounced ‘predictive’) and try,
which work as follows:

• a < | > b attempts to apply parser a, but if it fails without consuming any input, instead
attempts to apply parser b.

• t r y a attempts to apply parser a, but if it fails, it backtracks to the point before the
attempt was begun.

Thus, we use t r y to control backtracking, and < | > to control choice between alternatives.

Let us consider a larger example, though one with no backtracking:

separator:: Parser ()
separator = skipMany 1 (space < |> char ’,’)

sentence:: Parser [String]
sentence = do words < — sepBy 1 word separator

oneO f”.?!”
return words

Here space attempts to parse the single character ‘ ’ (a space), so (space < I > char
') attempts to parse a space or a comma; there is no try here because if space fails, no
backtracking is necessary: we haven’t consumed any input while trying to match that single
character. skipManyl applies its argument as many times as possible and at least once,
discarding the results; thus, separator reads (but discards) at least one space or comma.

This allows us to write the sentence parser: we use sepBy 1 to read a sequence of words
(at least one), separated by spaces and commas, and terminated by either a full stop, a question
mark or an exclamation mark; then we return the list of words just read.

An instructive example regarding backtracking is:

testOr = string ”(a)”
< |> string ”(b)”

string creates a parser which attempts to parse a specified string. Despite initial appearances,
this will fail to parse the string ‘ (b) ’, because with that input, the parser string "(a)11
successfully reads a ‘ (’ character then fails on the ‘b’, having consumed input — so the second
branch of < | > is not taken.

The traditional fix would be to refactor the grammar to reduce the lookahead, giving:

testOr 1 = do char ’(’
char ’a’ < |> char ’b ’
c h a r’)’

However, thanks to the t r y combinator we may encode our intended meaning more directly:

testOr2 = try (string ”(a)”)
< |> string ”(b)”

7.2 Parsec 57

Here we have wrapped the s t r i n g M (a) 11 parser in a t r y call, so if it fails at any point, the
second alternative will be attempted.

In summary: Parsec provides a domain specific embedded language [Hud96] for writing back
tracking recursive descent parsers in Haskell; as outlined here, it allows very direct encoding
of a concrete grammar as Haskell functions, and allows the full power of higher-order pro
gramming in Haskell to be used in manipulating and combining the parser functions; when
compared with more traditional parsing technologies such as Lex and Yacc [ALSU06], it is
thus much more direct and readable, and may be freely extended by the programmer as re
quired by context — which is a much harder proposition in that more traditional setting.

58 Chapter 7 Haskell and Parsec

Part II

Design & Implementation

59

Chapter 8

The Language Implemented

Contents
8.1 C s p -C a s l overview... 61
8.2 Survey of process types and operators........................... 67
8.3 Some design decisions.. 73

In this chapter we describe CSP-CASL as formalised and implemented in this project. We pro
vide an overview of its features, survey the various .process types and process operators, and
summarise various language design decisions made. This serves as an informal but compre
hensive introduction to the following chapters which describe in detail the syntax and static
semantics we have implemented, and the implementation itself.

8.1 C s p -C a s l overview

8.1.1 Introduction

A C sp-C asl specification consists of a data part and a process part (see chapter 4); however, a
C a s l specification may be reused as the data part of an heterogeneous C sp-C asl specification
(see section 5.4). Thus, we need define neither the data part of a C sp-C asl specification, nor its
‘coarse structure’ (e.g. the starting s p e c keyword, specification name, etc.): they are defined
in [CoF04c] and [Mos04a]1, respectively. Thus, our primary concern is the process part.

The process part of a CSP-CASL specification consists of an optional channel declarations
part, followed by the keyword p r o c e s s , followed by a sequence of process declarations and
process equations, interspersed with one another and subject to linear visibility. Drilling down
a little further:

• a channel declaration declares a list of channel names and their associated sort;

• a process declaration declares a process name, the sorts of any parameters it takes, and
its alphabet of permitted communications;

'Actually, [Mos04a] defines H e t Ca s l ’s syntax but not its static semantics; still, the latter is essentially that o f
C a s l structured specifications defined in [BCH+ 0 4 ,111:4],

61

62 Chapter 8 The Language Implemented

• a process equation then associates a previously-declared process name with a process
term, built from primitive processes via process operators.

A key feature of a process algebra is of course communication between processes; in CSP-
Casl , we have individual communication events having a particular sort and possibly occur
ring over a channel, and event sets, which describe collections of possible communications. In
general, collections of possible and actual communications are characterised in Csp-Casl by
communication alphabets, which are essentially sets of sort and channel names.

For the rest of this section, we describe each of these elements in more depth, and informally
introduce syntax and aspects of the static semantics as appropriate. As we are introducing the
concrete syntax, all of the examples in this section are given in machine readable form (i.e.
ASCII).

8.1.2 Communication alphabets

A number of Csp-Casl process operators involve communication between processes. In par
ticular:

• The various prefix operators each communicate an event, having a particular sort, possi
bly over a channel.

• Run, chaos, generalised parallel, and alphabetised parallel involve communications cho
sen from an event set. An event set is not, as the name suggests, simply a set of events.
Rather, it is a set of sort names and channel names, where the communication event
engaged in must have a sort found in the event set (modulo channels & subsorting).

• Furthermore, the hiding operator involves event sets: hiding hides sorts/channels named
in an event set.

A process’ possible and actual communications may, thus, be characterised by a communica
tion alphabet, which describes a set of communications. Specifically, it is a set containing:

1. Casl sort names — the sorts of non-channel communications in the alphabet;

2. Csp-Casl channel names — the channels of channel communications2.

(Clearly, then, an event set is then simply a communication alphabet, albeit in a particular
context.)

Specifically, we refer to a process’ possible communications as its alphabet o f permitted com
munications’, these are declared in process declarations (see section 8.1.4). We refer to a pro
cess’ actual communications as its constituent alphabet’, these arise recursively from process
terms as described in sections 8.2 and 10.2.3.

Syntactically, a communication alphabet (or event set) is a list of comma-separated sort and
channel names, freely mixed. For example, in:

RUN(a,b,c,d)
the fist a , b , c , d is an event set, and is valid provided a, b, c and d are sort names or channel
names (syntactically, at least, they are: sort names and channel names are CASL S IMP LE - 1 Ds).

2Or rather, typed channel names, which are (channel name, sort) pairs — in order to deal properly with subsort
ing: see section 10.2.3 for a proper treatment.

8.1 C s p -C a s l overview 63

Repetition is allowed and of no consequence, as the (syntactic) list is transformed to a (seman
tic) set.

Semantically, we require that the names in a communication alphabet are known, i.e. have
been declared previously in the data part or a channel declaration. We distinguish between a
communication alphabet’s sort names and channel names at the semantic level, by performing
this lookup; this introduces the restriction that channel names and sort names must be distinct.
This is discussed further in section 8.3.

Communication alphabets are checked at two points in CSP-C ASL’s static semantics, namely in
considering alphabetised processes, and process equations. This is described further in section
10.2.3.

8.1.3 Channel declarations

Conceptually, a channel is an entity ‘over which’ a communication may occur (though a chan
nel is not required for a communication to occur). In both CSP and Csp-Casl , a channel is in
fact nothing more than a ‘tag’ attached to a communication — written as a prefix.

Now, a Csp-Casl channel has a sort, which is just a Casl sort defined in the specification’s
data part: only communications whose sort matches that of the channel (modulo subsorting)
may occur over that channel. A channel declaration introduces new channel names, and binds
each of them to a Casl sort. Attempting later to use a channel which has not been declared is
an error.

Syntactically, a channel declaration is a comma-separated fist of channel names (Casl S IMP LE- IDs),
followed by a colon, followed by a sort name. A channel declarations section of a CSP-CASL
specification is then a semicolon-separated sequence of channel declarations, preceded by the
keyword c h a n n e l or c h a n n e l s . For example:

c h a n n e l s
a r b , c : d ;
e , f , g : h

There are three semantic restrictions on channel declarations:

1. The sorts must be known, i.e. must have been declared in the data part.

2. A channel may not have the same name as a sort; we require distinct names in order to be
able to properly distinguish members of a communication alphabet (see section 8.1.2).

3. A channel name may not be declared more than once with different sorts, for obvious
reasons. Multiple declarations of a channel name with the same sort are accepted, but
raise a warning in our implementation.

8.1.3.1 Channels in CSP vs channels in Csp -Casl

Csp supports two channel forms which are not supported directly in Csp-Ca sl :

• Recursive — e.g. we can have d . c . b . a where a is the original communication, and b,
c and d are all channel names.

64 Chapter 8 The Language Implemented

• Indexed — e.g. we can have c [i] . a , where a is the original communication, and c [i]
represents an indexed family of channels.

In C s p -C a s l we make the design decision that only ‘simple’ channel names are supported;
we do not directly support recursive or indexed channels: rather, a C s p -C a s l communication
event is either a simple event or an event sent across a single channel.

The rationale behind this decision is that the structure introduced by a recursive or indexed
channel name may (and arguably should) be defined using C a s l . That is, while C s p -C a s l
does not directly support these channel forms, a channel’s sort is a defined in C a s l , and C a s l
is strong enough to emulate these structures in a sort definition. Conversely, supporting these
extra channel forms directly in C s p -C a s l would complicate the syntax and static semantics.
A future version might possibly support these forms (either as ‘syntactic sugar’ or fully inte
grated) — however, a strong argument could be made that C a s l is the right place to define
such structure anyway.

8.1.4 Process declarations

A process declaration declares a new process name, which may subsequently be used in pro
cess equations. In the declaration, the process name has associated with it the sorts of the
process’ expected parameters (if any), and the sorts and channel names constituting the pro
cess’ alphabet o f permitted communications.

Syntactically, a process declaration consists of the following, in this order:

1. a process name (a simple identifier);

2. an optional, parenthesised, comma-separated fist of CASL sort names — the sorts of the
process’ parameters;

3. a colon;

4. an optional comma-separated list of C a s l sort names and C s p -C a s l channel names —
the process’ alphabet of permitted communications (see section 8.1.2);

5. a semicolon.

For example, the following are both syntactally valid process declarations:

P:;
Q(a,a,b) : a,b,c;

Semantic restrictions on a process declaration are as follows.

• A parameter sort list must contain only sorts which are known in the data part. Simi
larly, as described in section 8 .1.2, the permitted communication alphabet must contain
previously-declared sort names and channel names.

Thus, in the example above, we require that a and b are known C a s l sort names, and
that c is either a known C a s l sort name or a known C s p -C a s l channel name.

Note that a process declaration’s parameter list and alphabet of permitted communications
may both be empty, as in the P example above. Obviously processes need not have any pa
rameters; similarly, while an empty communication alphabet appears initially strange, it is in
fact perfectly valid. For example, the process STOP engages in no communication, and so

8.1 CSP-CASL overview 65

could legitimately be bound, in a process equation, to P. (See section 8.1.5 for more on process
equations.)

8.1.5 Process equations

A process equation binds a process name to a process term. Syntactically, it consists of a
parametrised process name followed by an ‘equals’ sign, followed by a process term.

A parametrised process name consists of a process name followed by an optional parenthesised
list of variable names — the process-global variables of the process (see section 8.1.7). If the
variable name list is present and contains more than one element, the elements are comma-
separated. Process terms are described further in section 8.1.6 — they correspond to what we
might loosely think of a s ‘a process’ such as STOP, x -> P, P [| a , b |] y -> Q,
etc.

For example, the following three lines each contain a single process equation:

P = STOP
Q (a , b , c) = a -> P |~| (b -> Q ; c -> Z(c))
Z (d) = [] x : : s -> Q (x , x , d)

Semantic requirements on process equations are as follows:

• The process name must have already been declared in a process declaration (see section
8.1.4).

• The length of the parameter list must be the same as that of the parameter sort list in the
corresponding process declaration.

• Each variable name in the parameter list must be unique within the list.

• The constituent alphabet of the process term on the right hand side of the process equa
tion must be contained in the permitted alphabet of the process name found on the left
hand side (see section 10.2.3 for further discussion of this important aspect of the static
semantics).

8.1.6 Process terms

Process terms are constructed recursively from primitive processes, (references to) named pro
cesses, and applications of process operators on process terms, as follows:

• A reference to a named process is a process term — see section 8.2.2. Examples:

Q
COUNT(i+1)

• A primitive process is a process term — see section 8.2.3. Examples:

SKIP
RUN(a,b)

• A process operator applied to one or two process terms (as appropriate for the operator)
is a process term — see sections 8.2.4 to 8.2.10. Examples:

66 Chapter 8 The Language Implemented

n

□ % :: In t □

)

/ \
COUNT(i)

/ \
i :: Int COUNT(i) Q(i) SK IP Q(i) SK IP

(a) Normal operator precedence (b) Enforced left-to-right operator precedence

Figure 8.1: Tree representations of process term Hi:: Nat COUNT(i) □ Q(i) ; SK IP .

Figure 8.1(a) illustrates the process term in this final example as a tree whose inner
nodes are process operators (see section 8 .2), and whose leaves are either parameters of
those operators or named processes. The structure of this tree is dictated by the process
operator precedence rules presented in section 8.2 .1.

• A parenthesised process term is a process term. Parentheses may be used to indicate
desired structure of a term where it varies from that arising automatically from the pro
cess operator precedence rules presented in section 8.2.1. Examples:

The first of these has the same tree structure as in the previous example, explicitly rep
resented using parentheses; again, its structure is illustrated in figure 8.1(a). The second
example uses parentheses to enforce a linear ‘left-to-right’ reading of the process opera
tors; its structure is illustrated in figure 8.1(b).

As mentioned in section 8.1.2, a process term has a constituent alphabet describing the com
munications appearing in that process; how these are computed is described in section 10.2.3.1.

8.1.7 Process variables: global and local

C s p -C a s l processes, like C sp processes, may make use of variables. In C s p -C a s l , however,
unlike in CSP, we explicitly acknowledge the distinction between process-global and process-
local variables. CSP takes a declarative view on variables declared locally to a process: when
the process has terminated, all information on such variables vanishes; this is complemented
by recursive process definitions, where a variable serves to define (potentially infinitely) many
processes, naming one process for every value the variable can take [Ros98] [MR07, §3.2].
Setting this in the context of C s p -C a s l process terms, then, we have the following:

• A process-global variable is one which arises from the parameter list of the parametrised
process name part of a process equation (see section 8.1.5). For example, in:

x -> Q
x -> y -> Q
|~| i :: Nat -> COUNT (i + 1) [] Q(i) ; SKIP

(|“| i :: Nat -> COUNT(i+1)) [] (Q(i) ; SKIP)
I~| i :: Nat -> (COUNT(i+1) [] (Q(i) ; SKIP))

P(x) = x -> SKIP

8.2 Survey o f process types and operators 67

the variable x is process-global.

The scope of a process-global variable is the entire process term on the right hand side
of the process equation.

• A process-local variable is one which arises as the result of a prefix term introducing
a new binding, i.e. in an internal prefix choice, an external prefix choice, a channel
nondeterministic send, or a channel receive (see section 8.2.4). For example, in:

P(x) = |~| i :: Nat -> (COUNT(i+1) [] (Q(i) ; SKIP))
the variable i is process-local, whereas x is, as above, process-global (and not actually
used on the right hand side in this example).

A process-local variable arises in a prefix term; its scope is the remainder of that prefix
term until a sequential composition operator is encountered — sequential composition
causes all process-local variable bindings to be erased (see section 8.2.5). Considering
our example above, we see that the right hand side of the process equation is exactly the
process term illustrated in figure 8 .1(b); thus, we see that the scope of i includes the
terms COUNT (i+1) a n d Q (i) but not the SKIP.

8.2 Survey of process types and operators

In this section, we survey the various processes and process operators which may occur in CSP-
C a s l process terms in more detail. Examples are given in pretty-printed ETpX throughout —
refer to table 8.1 for a summary of machine-readable and pretty-printed syntax, as well as
operator precedences (see section 8 .2 .1).

While we introduce a few aspects of the static semantics, we do not describe the computation
of a term’s constituent alphabet here, however: see section 10.2.3.1.

8.2.1 Precedence of process operators

The abstract syntax for process terms presented in section 9.1.2 is quite ambiguous; since, in
practice, an unique parse tree is required for each process term, we define levels of precedence
for the various process operators as follows, starting with the highest precedence (‘binds most
tightly’). These levels have been chosen to match those seen in CSP [FSE06], and are also
summarised in table 8 .1.

• 0 — named processes and primitive processes (including R U N Q and C H AO S ()) are
atomic;

• 1 — hiding and renaming;

• 2 — prefix operators of all kinds;

• 3 — sequential composition;

• 4 — external and internal choice;

• 5 — parallel operators of all kinds;

• 6 — conditional.

68 Chapter 8 The Language Implemented

Element Machine readable syntax Pretty printed Precedence
Named process P (tlr . . . , t n) 0
Skip SKIP SK IP 0
Stop STOP ST O P 0
Div DIV D IV 0
Run RUN (e s) R U N (es) 0
Chaos CHAOS (es) CH AOS (es) o
Term prefix t ->p t P 1
Internal prefix choice I ~ |x : : s ->p ria;:: s —> p 1
External prefix choice [] x : : s ->p □ a;::s —> p 1
Channel send c ! t ->p c\t —> p 1
Channel nondeterministic send cl x : : s ->p c\x ::s —► p 1
Channel receive c ? x : : s ->p c?x:: s —► p 1
Sequential composition P'rQ p \ q 2
Internal choice p \ ~ \q p H q 3
External choice p [] q p □ q 3
Interleaving P 1 II q p III q 4
Synchronous p \ \ q p II q 4
Generalised parallel p [\ e s \] q p\[es]\q 4
Alphabetised parallel p [e s \ \ | es2]q p|[esi||es2]|tf 4
Hiding p \e s p \ e s 5
Renaming p [[R]] p[R] 5
Conditional i f ip then p else q if (p then p else q 6

Table 8.1: Sum m ary o f C sp-C asl p rocess types.

8.2 Survey o f process types and operators 69

The precedence levels are encoded in the structure of the concrete grammar presented in section
9.3. Naturally, and as described in section 8.1.6, these precedences may be over-ridden using
parentheses in the usual manner.

For operators at the same level of precedence, and where it is not otherwise clear (i.e. for the
choice and parallel operators), we read from left to right in the absence of parentheses. Thus,
for example, X □ Y n Z is parsed as {X □ Y) n Z.

8.2.2 Named processes

A named process P (£ i , . • . , tn) is a reference to a process nam e P previously declared in a
process declaration, passing the vales o f the C a s l terms t i , . . . , tn to its parameters.

If the process expects no parameters, the parentheses must be omitted.

In the static semantics, we require the term list to be the same length as the declaration’s
parameter list, and that each term’s overall sort is compatible with the corresponding CASL
sort in the parameter list declaration (see section 10.2.4.2 for a discussion of what we mean by
‘compatible’).

8.2.3 Primitive processes

Skip: The process

SK IP

represents immediate successful termination. It never engages in any communication.

Stop: The process

STO P

represents deadlock: it never communicates and never terminates.

Div: The process

D IV

represents livelock: it does nothing except diverge — an infinite sequence of internal, non
observable actions.

Run: Let es be an event set. Then

RUN(es)

can always communicate any member of es desired by the environment.

Chaos: Let es be an event set. Then

CHAOS (es)

can always choose to communicate some member of es or to reject everything.

70 Chapter 8 The Language Implemented

8.2.4 Prefix

C s p -C a s l has s ix prefix operators, w here a process en gages in a com m unication then behaves
lik e som e other process; three o f these operators are essen tia lly ‘channel version s’ o f the other
three:

Term prefix: Let t b e a C a s l term, and P a process. Then

t -► P

communicates the value of t, then behaves like P .

Internal prefix choice: Let x be a variable name, s a CASL sort, and P a process. Then

H x :: s —> P

communicates a particular s-sorted value v, then behaves like P with x bound to v as a process-
local variable.

External prefix choice: Let x be a variable name, s a CASL sort, and P a process. Then

D x :: s —*■ P

communicates any s-sorted value v, then behaves like P with x bound to v as a process-local
variable.

Channel send: Let t be a CASL term of sort s, c a channel whose sort is a supersort of s, and
P a process. Then

c\t -► P

communicates the value of t over the channel c, then behaves like P . This can be seen as the
‘channel version’ of term prefix, above.

In the static semantics, we require that c is known and that the overall sort of £ is a subsort of
the sort of c.

Channel nondeterministic send: Let z be a variable name, s a C a s l sort, c a channel, and P
a process. Then

c\x ::s —> P

communicates a particular s-sorted value v over the channel c, then behaves like P with x
bound to v as a process-local variable. This can be seen as the ‘channel version’ of internal
prefix choice, above.

In the static semantics, we require that s and c are known, and that s is a subsort of the sort of c.
Thus, the value communicated need not be of the exact same sort as the channel: the specifier
may restrict the values communicated, provided they do so in line with C a s l subsorting.

Channel receive: Let a: be a variable name, s a C a s l sort, c a channel, and P a process. Then

c ? x :: s —► P

communicates any s-sorted value v over the channel c, then behaves like P with x bound to v
as a process-local variable. This can be seen as the ‘channel version’ of external prefix choice,
above.

8.2 Survey o f process types and operators 71

In the static semantics, we require that s and c are known, and that s is a subsort of the sort of c.
Thus, the value communicated need not be of the exact same sort as the channel: the specifier
may restrict the values communicated, provided they do so in line with C a s l subsorting.

8.2.5 Sequential composition

Sequential composition: Let P and Q be processes. Then

P ; Q

first behaves like P , then when P terminates successfully, it behaves like Q. If P never termi
nates successfully, neither does P ; Q.

As discussed in section 8.1.7, any process-local variables in scope in P fall out of scope in Q.

8.2.6 Internal and external choice

Internal choice: Let P and Q be processes. Then

P n Q

behaves either like P or Q, where the choice between them is made arbitrarily, without the
knowledge or the control of the environment.

External choice: Let P and Q be processes. Then

P U Q

offers the environment the choice of the first events of P and Q and then behaves accordingly.

8.2.7 Parallel operators

Interleaving: Let P and Q be processes. Then

p III Q

is a process where P and Q run independently of each other: any event which P ||| Q com
municates arises in precisely one of P and Q\ if they could both have communicated the same
event then the choice of which one actually did so is nondeterministic.

Synchronous: Let P and Q be processes. Then

p \\Q
is a process where P and Q agree on all 'events that occur; any event communicated by P || Q
is communicated by P and Q simultaneously.

Generalised parallel: Let P and Q be processes, and es an event set. Then

P\[es]\Q

is a process where all values in es are synchronized (if communicated, must be communicated
by both P and Q) , and values outside es are independent (may be communicated by either P
and Q, but never both in sychrony).

72 Chapter 8 The Language Implemented

In the static semantics, we require es to be a valid event set (i.e. contain only known sorts and
channels).

Alphabetised parallel: Let P and Q be processes, and es\ and es2 event sets. Then

P\[esi\\es2]\Q

is a process in which P may communicate any event in esi, and Q may communicate any event
in es2, but they must synchronize on any communications in the intersection of esi and e2.

In the static semantics, we require esi and es2 to be valid event sets (i.e. contain only known
sorts and channels), and we require them to be contained in the constituent alphabets of P and
Q, respectively.

8.2.8 Hiding

Hiding: Let P be a process, and es an event set. Then

P \ e s

behaves like P except that any communications in es are hidden; i.e. while they may still occur
inside P, they are invisible to and uncontrollable by anything outside P.

In the static semantics, we require es to be a valid event set (i.e. contain only known sorts and
channels).

8.2.9 Renaming

Renaming: L et P be a process and r\ , ..., rn be CASL ID s. Then

P [n , . . • , r„]

behaves like P except that any communications it engages in are subjected to conversion by
each of the renaming items . . . rn in turn.

Syntactically, the renam ing item s r* are ju st C a s l ID s . Sem antically, w e require that each r*
is be either a know n C a s l unary (total or partial) function

t'i '• î,l ► 5 ^ 2

or a know n C a s l binary predicate

t'i : ^i,l * S ip

Syntactically, the two cases are indistinguishable; we distinguish between the two, and deter
mine the sorts involved, at the semantic level.

8.2.10 Conditional

Conditional: Let P i and P 2 be processes, and (p a C a s l formula. Then

if p then P else Q

behaves like P i if <p evaluates as true, and otherwise behaves like P 2.

8.3 Some design decisions 73

8.3 Some design decisions

Here we collect and summarise some notable design decisions made during the development
of Csp-Ca sl .

8.3.1 Communication alphabets distinguished at semantic level

Communication alphabets (and event sets) are undistinguished lists of sort and channel names;
we distinguish between the two at the semantic level, by looking up sort names and channel
names in the signature. This simplifies the syntax (the alternative approach would be to list first
one kind, then a separator, then the other kind) and gives the specifier greater freedom, while
introducing the requirement that sort names and channel names are distinct; this seems to be a
quite reasonable requirement, however.

8.3.2 No recursive / indexed channels

As noted in section 8.1.3.1, recursive and indexed channels are not directly supported by Csp-
Casl , as these structures can (and arguably should) be simulated in Casl sorts definitions.

8.3.3 Treatment of multiple channel declarations

We reject multiple declarations of the same channel with different sorts, for obvious reasons
— see section 8.1.3. An alternative approach would be to allow them and only kept the last,
so that later declarations shadow earlier ones; we argue, however, that this could lead to subtle
errors which were harder to find later on, and that the extra burden on the specifier at this stage
is small and reasonable.

In fine with Casl , we allow multiple declarations with the same sort, since that will not lead
directly to errors later — but we raise a warning in our implementation.

8.3.4 Explicit process declarations vs implicit inference

We require that processes are declared before use, and that their permitted communication
alphabets are declared and ‘match’ the actual constituent alphabets arising from process terms.
An alternative approach would have been to not require process declarations, and instead infer
the required process names, parameter sort fists, and communication alphabets from their usage
in process terms.

Our approach does admittedly place an added burden on the specifier, and has largely been cho
sen in order to simplify the task of formalising and implementing Csp-Ca sl ’s static semantics
at this stage. A future version of the language might relax these requirements.

However, note that even in the presence of inference, one would not wish to do away with
process declarations altogether. Not only do they provide useful documentation and make a
specification easier to understand, they also allow the specifier to introduce tighter constraints
on processes than those arising from the inference algorithm. In particular, they are essential
in order to support loose specification of processes in a structured setting.

74 Chapter 8 The Language Implemented

Consider, for example, the specification LOOSE, below. This has been written in a (currently)
fictional dialect of Csp-Casl with inference of process alphabets, and no process declarations.
Here, the process Q is loosely specified. Conceptually, all the specifier wishes to say about it
is that it occurs after P has communicated a then b then c.

spec LOOSE =
data sorts S, T, U

ops a : S\ b : T; c : U
process P = a —> b —* c —> Q

end

Now consider the task of inferring process alphabets for P and Q. We would expect an algo
rithm to produce the smallest possible ‘safe’ answer. For P, such an algorithm would produce
the answer {S, T, U} (consider the sorts of a, b and c). For Q, it would be the empty set.

However, what if the specifier’s intention is that Q’s alphabet should be {5 } , say — or indeed
anything other than 0? With inference but no declarations, this is impossible to specify. Within
the scope of LOOSE this is unimportant, but in a structured setting, properly specifying the
alphabet of Q might be of utmost importance (i.e. elsewhere). Hence, process declarations are
required, even in the presence of inference.

8.3.5 Equational vs let-expression style

We write processes in an equational style rather than in the ‘Zer-expression’ style seen in earlier
Csp-Casl papers, in particular [GRS05]. That is, systems of processes are written as, for
example:

X = STOP
Y = SKIP
Z = a ^ X U Y

rather than (say):

let X = STOP
Y = SKIP

in a ^ X U Y

N o te that the first o f these defines a system o f several p rocesses, whereas the secon d really
describes just on e process. Equational sty le is thus m ore general. If, in practice, w e w ish to
hide som e processes w h ile sp ec ify in g ‘in the large’, this can be d one using H e t C a s l ’s (C a s l -
inherited) structuring m echanism s — in particular the local... within m echanism (see [BM04,
§6.4]).

A potentially interesting future extension to Csp-Casl would be the addition of let-expressions
at the process operator level; this would provide a fully generalised process equation scoping
mechanism similar to that seen for functions in Haskell (say). Then one could write, e.g.:

X = STOP
Z = let Y = SKIP

in a -> X □ Y

to restrict the scope of Y in a more pleasantly localised manner than is possible at present
using local... within.

8.3 Some design decisions 75

8.3.6 Use of : : in prefix process operator syntax

The syntax x :: s (meaning ‘a; is a variable of sort s ’) in certain of the prefix operators was
chosen because the more obvious x : s form also parses as a CASL term and so is unsuitable
— a channel nondeterministic send could be confused for a channel send. We chose a double
colon because it is used to declare an entity’s type in Haskell, and so seemed a reasonable
second choice here.

8.3.7 Renaming items distinguished at semantic level

Similarly to the situation with communication alphabets noted above: renaming items are
undistinguished lists of function and predicate names; we distinguish between the two at the
semantic level, by looking up the names in the specification’s C a s l signature. Again, this
simplifies the syntax, since we don’t have to ‘artificially’ distinguish the two categories. Doing
so would be particularly onerous in this case, because the order of renaming items matters,
so we couldn’t just ‘list the functions first, then a separator, then the predicates’, for example.
However, note that C a s l does not enforce distinct function and predicate names (though the
H e t s tool does raise a warning when a clash occurs), so the order in which we perform our
lookup is significant. In C s p -C a s l we adopt the convention that if a renaming item has a name
which is both a binary function and a predicate, we interpret it as the function (a function of
the wrong profile may be ignored).

8.3.8 Variable names in parametrised process names must be unique

We reject multiple declarations of the same parameter name in a parametrised process name.
While this seems an obvious restriction, it could (possibly) be usefully relaxed in the future.
Consider the following specification:

spec x x =
data sort Nat < Rat

op n : Nat
process P{Nat, Rat) : R a t ;

Q(Rat) : R a t ;
P{x,x) = x - > S K I P U Q { x)

end

This is currently invalid, due to the repetition of x in P ’s variable fist. However, looking at P ’s
parameter sort list we see that it might in fact be reasonable to use the same variable in two
slots: in the first, it is treated as sort Nat, in the second as Rat. Since N at is a subsort of Rat,
this is fine provided the value passed in is not in R a t\N a t.

It is unclear at this stage how useful such a relaxation would be, or its greater implications
for the semantics; as such, the restriction remains in place but we note that future work would
investigate this further.

76 Chapter 8 The Language Implemented

Chapter 9

C s p -Ca sl Syntax

Contents
9.1 C s p -C a s l abstract syntax — normal grammar . .
9.2 CSP-CASL abstract syntax — abbreviated grammar
9.3 CSP-CASL concrete sy n ta x

77
79
80

In this chapter, we formally present the syntax of C s p -C a s l , following closely the style of
[CoF04b]: the three grammars here are presented in the order seen there, and the grammars
and production rules are written using syntax seen there (see in particular [CoF04b, §11:2]).

• In section 9.1 we present the ‘normal grammar’ of the abstract syntax, which forms the
basis of the C s p -C a s l static semantics; each syntactic category appearing in the normal
grammar has a corresponding rule or set of rules in chapter 10.

• In section 9.2, again following [CoF04b], we present the ‘abbreviated grammar’ of the
abstract syntax, providing a more concise view of the syntactic categories — one which
corresponds more closely to the Haskell algebraic data types used to represent the ab
stract syntax in our implementation (see chapter 12).

• Finally, in section 9.3, we present the concrete syntax of C s p -C a s l as implemented
lately in H e t s using Parsec.

In each of these grammars, a number of non-terminals refer to members of the corresponding
C a s l grammar; we note these in each case.

9.1 Csp-Casl abstract syntax — normal grammar

The following nonterminal symbols correspond to nonterminals in C a s l , and are left unspec
ified in the C s p -C a s l abstract syntax: FORMULA, ID , S IM P L E -ID , SORT, TERM, VAR.

9.1.1 Top-level elements

CSP-BASIC-SPEC ::= csp-basic-spec CHAN-DECLS PROC-ITEMS

CHAN-DECLS ::= chan-decls CHAN-DECL*

77

78 Chapter 9 CSP-CASL Syntax

CHAN-DECL
CHAN-NAMES
CHAN-NAME
CHAN-TYPE

chan-decl CHAN-NAMES CHAN-TYPE
chan-names CHAN-NAME+
chan-name SIMPLE-ID
chan-type SORT

PROC-ITEMS
PROC-ITEM

proc-items PROC-ITEM+
PROC-DECL | PROC-EQ

PROC-DECL
PROC-NAME
PROC-ARGS
PROC-ALPHA

proc-decl PROC-NAME PROC-ARGS PROC-ALPHA
proc-name SIMPLE-ID
proc-args SORT*
proc-alphabet COMM-TYPE*

PROC-EQ
PARM-PROCNAME
PROC-VARS
PROC-VAR

proc-eq PARM-PROCNAME PROCESS
parm-procnarae PROC-NAME PROC-VARS
proc-vars PROC-VAR*
proc-var VAR

9.1.2 Processes

PROCESS

NAMED-PROC
BASIC-PROC

SKIP-PROC
STOP-PROC
DIV-PROC
RUN-PROC
CHAOS-PROC
PREFIX-PROC
INTPRE-PROC
EXTPRE-PROC
SEQ-PROC
INTCHOICE-PROC
EXTCHOICE-PROC
INTPAR-PROC
SYNPAR-PROC
GENPAR-PROC
ALPHAPAR-PROC
HIDING-PROC
RENAMING-PROC
CONDITION-PROC

:= NAMED-PROC | BASIC-PROC | PREFIX-PROC
| INTPRE-PROC | EXTPRE-PROC | SEQ-PROC
| INTCHOICE-PROC | EXTCHOICE-PROC | INTPAR-PROC
| SYNPAR-PROC | GENPAR-PROC | ALPHAPAR-PROC
| HIDING-PROC | RENAMING-PROC | CONDITION-PROC

:= named-proc PROC-NAME TERM*
: = S K IP -P R O C | S T O P-PR O C | D IV -P R O C | RUN-PROC

I CHAOS-PROC
= skip-proc
= stop-proc
= div-proc
= run-proc EVENT-SET
= chaos-proc EVENT-SET
= prefix-proc EVENT PROCESS
= intpre-proc SVAR-DECL PROCESS
= extpre-proc SVAR-DECL PROCESS
= seq-proc PROCESS PROCESS
= intchoice-proc PROCESS PROCESS
= extchoice-proc PROCESS PROCESS
= intpar-proc PROCESS PROCESS
= synpar-proc PROCESS PROCESS
= genpar-proc EVENT-SET PROCESS PROCESS
= alphapar-proc EVENT-SET EVENT-SET PROCESS PROCESS
= hiding-proc PROCESS EVENT-SET
= renaming-proc PROCESS RENAMING
= condition-proc FORMULA PROCESS PROCESS

9.1.3 Supporting items

EVENT-SET •event-set COMM-TYPE*

COMM-TYPE = comm-type SIMPLE-ID

9.2 CSP-CASL abstract syntax — abbreviated grammar 79

EVENT

SVAR-DECL

RENAMING

RENAMING-ITEM

= term-event TERM
I chan-send CHAN-NAME TERM
I chan-nondet-send CHAN-NAME VAR SORT
I chan-recv CHAN-NAME VAR SORT

= svar-decl VAR SORT

= renaming RENAMING-ITEM+

= renaming-item ID

9.2 Csp-Casl abstract syntax — abbreviated grammar

This abbreviated grammar defines the same language as the one in section 9.1. It was obtained
by eliminating each nonterminal that occurs only once as an alternative. The categories in this
grammar correspond closely to the Haskell algebraic datatypes used to represent the abstract
syntax in our implementation (see section 12.2 .1).

A s in section 9.1, the fo llow in g nonterm inal sym bols correspond to CASL nonterm inals in
C a s l , and are le ft unspecified in the C s p -C a s l abstract syntax: FORMULA, ID , S IM P L E -ID ,
SORT, TERM, VAR.

9.2.1 Top-level elements

CSP-BASIC-SPEC ::= csp-basic-spec CHAN-DECLS PROC-ITEMS

CHAN-DECLS
CHAN-DECL
CHAN-NAME

= chan-decls CHAN-DECL*
= chan-decl CHAN-NAME+ SORT
= chan-name SIMPLE-ID

PROC-ITEMS
PROC-ITEM

PROC-NAME

= proc-items PROC-ITEM+
= proc-decl PROC-NAME SORT* SIMPLE-ID*
| proc-eq PROC-NAME VAR* PROCESS
:= proc-name SIMPLE-ID

9.2.2 Processes

PROCESS ;= named-proc PROC-NAME TERM*
I skip-proc
I stop-proc
I div-proc
I run-proc EVENT-SET
I chaos-proc EVENT-SET
I prefix-proc EVENT PROCESS
I intpre-proc SVAR-DECL PROCESS
| extpre-proc SVAR-DECL PROCESS
| seq-proc PROCESS PROCESS
I intchoice-proc PROCESS PROCESS
I extchoice-proc PROCESS PROCESS
I intpar-proc PROCESS PROCESS
I synpar-proc PROCESS PROCESS

80 Chapter 9 CSP-CASL Syntax

genpar-proc EVENT-SET PROCESS PROCESS
alphapar-proc EVENT-SET EVENT-SET PROCESS PROCESS
hiding-proc PROCESS EVENT-SET
renaming-proc PROCESS ID+
condition-proc FORMULA PROCESS PROCESS

9.2.3 Supporting items

EVENT-SET ::= event-set SIMPLE-ID*

EVENT term-event TERM
I channel-send CHAN-NAME TERM
I channel-nondet-send CHAN-NAME VAR SORT
I channel-recv CHAN-NAME VAR SORT

SVAR-DECL svar-decl VAR SORT

9.3 Csp-Casl concrete syntax

Here is the concrete grammar for the process part of a Csp-Casl specification.

As in section 9.1, the following nonterminal symbols correspond to Casl nonterminals in
Casl , and are left unspecified in the Csp-Casl abstract syntax: FORMULA, ID, SIMPLE-ID,
SORT, TERM, VAR.

CSP-BASIC-SPEC

CHAN-PART

CHAN-DECLS

CHAN-DECL

CHAN-NAMES

CHAN-NAME

PROC-PART

PROC-ITEMS

PROC-ITEM

PROC-DECL

::= CHAN-PART PROC-PART
| PROC-PART

::= channel CHAN-DECLS
| channels CHAN-DECLS

::= CHAN-DECL
| CHAN-DECL ; CHAN-DECLS

::= CHAN-NAMES : SORT

::= CHAN-NAME
| CHAN-NAME , CHAN-NAMES

::= SIMPLE-ID

::= process PROC-ITEMS

::= PROC-ITEM
| PROC-ITEM PROC-ITEMS

::= PROC-DECL
| PROC-EQ

::= PROC-NAME (SORTS) : PROC-ALPHABET ;
| PROC-NAME : PROC-ALPHABET ;

9.3 CSP-CASL concrete syntax 81

PROC-NAME

SORTS

PROC-ALPHABET

COMM-TYPES

COMM-TYPE

PROC-EQ

PARM-PROCNAME

VAR-LIST

EVENT-SET

PROCESS

COND-PROC

PAR-PROC

CHOICE-PROC

SEQ-PROC

PREF-PROC

EVENT

SVAR-DECL

HID-REN-PROC

HID-REN-PROC-W

:= SIMPLE-ID

:= SORT
| SORT , SORTS

:= COMM-TYPES

:= COMM-TYPE
| COMM-TYPES , COMM-TYPE

:= SIMPLE-ID

:= PARM-PROCNAME = PROCESS

:= PROC-NAME
| PROC-NAME (VAR-LIST)

:= VAR
| VAR , VAR-LIST

:= COMM-TYPES

:= COND-PROC
| PAR-PROC

if FORMULA then PROCESS else PROCESS

::= CHOICE-PROC
| PAR-PROC "II" CHOICE-PROC
| PAR-PROC "III" CHOICE-PROC
| PAR-PROC [EVENT-SET] CHOICE-PROC
| PAR-PROC [EVENT-SET "||" EVENT-SET] CHOICE-PROC

::= SEQ-PROC
| CHOICE-PROC [] SEQ-PROC
| CHOICE-PROC "IT SEQ-PROC
PREF-PROC

| SEQ-PROC ; PREF-PROC

::= HID-REN-PROC
| EVENT -> PREF-PROC
| [] SVAR-DECL -> PREF-PROC
| "IT SVAR-DECL -> PREF-PROC

::= TERM
| CHAN-NAME ! TERM
| CHAN-NAME ! VAR :: SORT
| CHAN-NAME ? VAR :: SORT

::= VAR :: SORT

::= PRIM-PROC HID-REN-PROC-W

::= \ EVENT-SET
| [[RENAMING]]

82 Chapter 9 CSP-CASL Syntax

RENAMING = RENAMING-ITEM
| RENAMING-ITEM + RENAMING

RENAMING-ITEM ID

PRIM-PROC (PROCESS)
run (EVENT-SET)
chaos (EVENT-SET)
div
stop
skip
NAMED-PROC

NAMED-PROC = PROC-NAME
| PROC-NAME (TERMS)

9.3.1 Analysis of concrete syntax

We have used an online context-free grammar checking tool1 in order to investigate this gram
mar’s properties.

The first thing to note about our grammar, however, is that it is incomplete: as noted above,
various non-terminals correspond to C a s l nonterminals. When analysing the C s p -C a s l con
crete grammar, it would be a mistake to treat the CASL nonterminals as ‘black boxes’, i.e. as
terminals in the C s p -C a s l grammar. Thus, our analysis has been performed on a larger gram
mar than the one shown here, extended with aspects of the C a s l concrete syntax as required.
As these rules appear in [CoF04b] (and are quite extensive) we omit them here.

We now note some interesting aspects of our analysis.

9.3.1.1 The Csp -Casl concrete grammar is left recursive

Our grammar is left-recursive: see, e.g., the mle for CHOICE-PROC:
CHOICE-PROC ::= SEQ-PROC

This is not a problem, however, because the grammar may be automatically transformed to
an equivalent non-left-recursive grammar using standard techniques (see, eg [ALSU06]). For
example, the C H O I C E - P R O C rule becomes:

CHOICE-PROC SEQ-PROC CHOICE-PROC1

CHOICE-PROC1 ::= [] SEQ-PROC CHOICE-PROC1
| "IT SEQ-PROC CHOICE-PROC1
| epsilon

'h t t p ://s m l w e b .c p s c .u c a l g a r y .ca

| CHOICE-PROC [] SEQ-PROC
| CHOICE-PROC " I T SEQ-PROC

9.3 C s p -Ca s l concrete syntax 83

where epsilon indicates an empty parse. The rules for CHOICE-PROC and CHOICE-PROC1
shown above are then translated very directly into Parsec parsing functions in our implementa
tion (see chapter 10).

Similar comments may be made regarding a number of the rules.

9.3.1.2 The Csp-Casl concrete grammar is not LL(n) for any n

Unlike the Casl concrete grammar, our C sp-Casl grammar is not LL(1), or indeed LL(n) for
any n. The problem is an unbounded lookahead while parsing a PROC-ITEM: after reading
a SIMPLE-ID for the process name, in order to differentiate between the cases PROC-DECL
and PROC-EQ we need to look ahead for either a colon or an equals sign (respectively). As
we may first need to parse a list of parameter sorts or names (respectively), the size of this
lookahead is in fact unbounded.

In practice, however, this is again no problem, and is handled beautifully in the implementation
by Parsec’s t r y combinator: we attempt to parse the PROC-ITEM as a PROC-DECL but if
we fail (because, say, we hit an equals when we expected a colon), we ‘rewind’ and attempt
instead to parse it as a PROC-EQ.
The alternative would have been to transform our grammar to one in which the choice between
PROC-DECL and PROC-EQ is deferred until the last moment: we would parse the process
name and parameter list and then make a choice between the two cases depending on whether
the next symbol is a colon or an equals.

The advantage of our method is that our grammar remains simple and comprehensible, and
our implementation remains a fairly direct translation of that grammar. An apparent but in fact
negligible disadvantage is performance: a failed lookahead is wasted processing time, for sure,
but in practice all reasonable specifications will have processes with negligibly short parameter
lists, and the lookahead will be unnoticeable. If this ever turns out to not be the case, of course,
we can transform the grammar to fix the problem.

Other parts of the grammar also involve small lookaheads, also implemented using the t ry
combinator, but this is the one unbounded one of which we are aware.

9.3.1.3 Notes on use of online grammar analysis tool

The online tool requires input in a more restricted format than that used in [CoF04b] and this
chapter; as such, we have written a small utility in Haskell for parsing a grammar in our format
and transforming it to something suitable for the online to o l.

For example, the rule for EVENT:
EVENT ::= TERM

| CHAN-NAME ! TERM
| CHAN-NAME ! VAR :: SORT
| CHAN-NAME ? VAR :: SORT

is translated to:

EVENT -> CHAN_NAME sym_bang TERM
I CHAN_NAME sym_bang VAR sym_dcolon SORT
I CHAN_NAME sym_ques VAR sym_dcolon SORT

84 Chapter 9 CSP-CASL Syntax

| TERM

The required translation is in fact fairly simple:

1. Rewrite ‘ : : = ’ as in each rule.

2. Rewrite various symbols that appear as terminals, e.g. ‘ : : ’ becomes ‘s y m _ d c o l o n ’
(the online tool has a very restricted input alphabet).

3. Rewrite nonterminal names, replacing (which is rejected by the online tool) with

4. Ensure every rule ends with a ‘ ’ symbol.

It’s fairly clear that these are reasonably simple textual transformations which could be per
formed (albeit with care) without parsing the grammar — however, doing so was a useful ex
ercise in its own right, and could have been the first stage of writing a tool to perform grammar
analysis/transformation ourselves (though in the end this proved unnecessary).

Chapter 10

C s p -C a sl Static Semantics

Contents
10.1 Introduction........................ :
10.2 Signatures, variables, alphabets and subsorting
10.3 Top-level elem ents...
10.4 Process terms..
10.5 Supporting elements..

85
88
96

101
108

10.1 Introduction

In this chapter we present the formal static semantics of C s p -C a s l , building on those of C a s l
[BCH+04]. In this first section we introduce the required concepts, semantic objects, and some
notation. In section 10.2, we closely examine some areas of particular interest, viz. signature
structure, local vs global variables, communication alphabets, and the implications of C a s l
subsorting. Finally, in sections 10.3, 10.4, and 10.5 we present the actual rules, using the
Natural Semantics formalism described in chapter 6; here we follow the style of the CASL
static semantics, as explored in section 6.3. Each of the syntactic categories in C s p -C a s l ’s
abstract syntax (section 9.1) has a rule or set of rules in one of these three sections.

We reuse various concepts, definitions, and rules from [BCH+ 04]; in general this is made clear
at point of usage, but note in particular that many of the rules given in sections 10.3 to 10.5
refer without note to the CASL static semantic rules for FORMULA, ID, SIMPLE-ID, SORT,
TERM and VAR.

10.1.1 Overview

The fundamental purpose of the static semantics is to define a transformation from terms in
C sp-Casl’s abstract syntax to various corresponding semantic objects, and to define condi
tions and requirements on those transformations and objects. The (input) abstract syntax terms
are produced by our parser; the (output) representations of semantic objects may then be pro
cessed by tools outside the scope of this thesis, e.g. automated or interactive theorem provers
— see section 5.3.

85

86 Chapter 10 CSP-CASL Static Semantics

The ultimate product of the static semantics is a pair consisting of a C s p -C a s l signature
encoding channel and process declarations and a set of semantic objects representing C s p -
CASL process equations. The latter are essentially similar to syntactic process equations as
seen in the abstract syntax, in that they each bind a parametrised process name to a process
term; however, there are important differences.

• A process term ’s sem antic object is decorated at various points w ith extra inform ation; in
particular, syntactic C a s l term s and variables are transformed to fully qualified versions,
tagged w ith their sorts.

• In some cases we transform undistinguished identifiers into particular distinguished se
mantic objects by lookup; for example, a RENAMING-ITEM is syntactically just a C a s l
ID, which is then transformed to an id and a pair of sort names by performing lookups
against the specification’s data part (see section 10.5.4).

• There are some other general structural differences between the syntactic and semantic
worlds, e.g. syntactic lists often become sets in the corresponding semantic object (e.g.
CHAN-NAMES); in other cases, e.g. RENAMING, the semantic object is also a list.

As well as producing the signature and process equation objects, we perform various static
checks as side-effects, including:

• Declaration checks: e.g. in a process declaration, we check that each sort in the process’
parameter sort list has been declared in the data part.

• Type checks: e.g. in a reference to a named process, we check that the sorts of the
parameters passed to the process correspond to those in the process’ declaration.

• Alphabet computation and checking: we compute the constituent alphabet of a process
term, and perform associated checks at the process equation and process term level.

10.1.2 Notation

We re-use a number of notational conventions from [BCH+04, §1.1]. In particular:

• F inSet(A) is the set of all finite subsets of set A.

• FinSeq(A) is the set of all finite sequences of elements of set A.

• A B is the set of partial functions from A to B.

• D o m (f) C A is the dom ain o f / : A —̂ B.

• A —>■ B is the set o f total functions from A to B.

Some rules require the use of further auxiliary functions for fine-grained manipulation of se
mantic elements. In particular, we use:

• fs t : A x B —» A and snd : A x B —> B to project the first and second elements,
respectively, of a pair G A x B.

• sort : FQ Term —> Sort to obtain the overall sort of a C a s l fully-qualified term — see
section 10.2.4.2; definition in [BCH+04, §2.1.3].

• sorts : Formula —* F inSet(Sort) to obtain the sorts referenced in a CASL formula —
see section 10.2.3.1.

10.1 Introduction 87

Symbol Meaning
E a Casl signature, E = (S, T F , P F , P , <).
S a set of Casl sorts, S C Sort.

TF a set of Casl total functions.
P F a set of CASL partial functions.
P a set of Casl predicates.
< a Casl subsort relation on a set S of sorts.
A a Csp signature, A E ChanSet x ProcSet.

CH a channel definition set, CH E ChanSet = ChanName Sort.
PR a process definition set, P R E ProcSet = ProcName —̂ ProcProfile.

s a sort, s E Sort.
c a channel name, c E ChanName.
C a set of channel names, C C ChanName.

(c ,s) a typed channel name, (c, s) E TypedChanName = ChanName x Sort.
£ a communication type e E CommType = ChanName U Sort.
a a communication alphabet, a E Comm Alpha = FinSet (Comm Type).
P a process name, P E ProcName.

args a sequence of process argument sorts, args E FinSeq(Sort).
V , Q process terms.

i a Casl identifier, i E Id.
x ,y variable names, i , j/ E Var.

V a set of variable names, V C Var.
X a set of Casl variables, X E Variables = Sort ^ F inSet(Var).
G a set of process-global variables, G E Variables.
L a set of process-local variables, L E Variables.
t a (Casl) term, £ E FQTerm.

es an event-set, es E CommAlpha = F inSet (CommType).
e a communication event.
R a renaming, R E FinSeq(Id x 5or£ x Sort)', a sequence of renaming items.
r a renaming item, r E Id x 5or£ x Port.
V a (Casl) formula.

Note that the symbol P is used both for C a s l predicates and C sp-C asl process names. In
practice, it is always clear from context which is intended; in particular, the predicates part
of a C a s l signature is in practice projected as Ep, as noted in section 10.1.2, in every case
except the rule for RENAM ING-ITEM (section 10.5.4) — and that rule makes no reference to
C sp-C asl process names.

Table 10.1: Summary of naming conventions used in this chapter.

88 Chapter 10 C s p -C a s l Static Semantics

Type M embers Definition
Sort C a s l sort names. [BCH+04]
Id C a s l identifiers. [BCH+04]
Var C a s l variable names. [BCH+04]

FQ Term C a s l fully-qualified terms. [BCH+04]
Formula C a s l formulae. [BCH+04]
FunSet C a s l functions. [BCH+04], 10.2.1

FunProfile C a s l function profiles. [BCH+04], 10.2.1
FunName C a s l function names. [BCH+04], 10.2.1
PredSet C a s l predicates. [BCH+04], 10.2.1

PredProfile C a s l predicate profiles. [BCH+04], 10.2.1
PredName C a s l predicate names. [BCH+04], 10.2.1
Variables Finite maps from sort names to sets of variable

names
[BCH+04], 10.2.2

ChanSet Partial functions from channel names to sorts. 10.2.1
ChanName Channel names. 10.2.1

ProcSet Partial functions from process names to process
profiles.

10.2.1

ProcName Process names. 10.2.1
ProcProfile (Parameter sort sequence, communication alpha

bet) pairs.
10.2.1

Comm Alpha Sets of communication types. 10.2.1
CommType Sorts and typed channel names. 10.2.1

TypedChanName (Channel name, sort name) pairs. 10.2.1

Table 10.2: Summary of types used in this chapter.

• Given a C a s l subsorted signature E = (5 , T F , P F , P , <) we project its individual
components as S's, TF%, PF%, P s ,

We adopt a number of naming conventions for instances of semantic objects. These are sum
marised in table 10.1. That table refers to a number of sets defining the types of those semantic
objects (e.g. ChanName)', table 10.2 summarises these sets, their contents, and where to find
their definitions.

The internal structure of identifiers used to identify sorts, variables, channels, renaming-items
and processes is insignificant for the static semantics of C sp -C a s l specifications. See [BCH+04,
§2.6] for the structure of Sort, Var and Id.

Finally, note that in some of the rules we use abbreviated versions of names of syntactic el
ements in order to save space (e.g. P-I for PROC-ITEM in the rale for PROC-ITEMS in
section 10.3.3). We use the full forms corresponding to the abstract syntax presented in sec
tion 9.1 wherever possible, but otherwise we note the use of abbreviated forms in the rale’s
accompanying text.

10.2 Signatures, variables, alphabets and subsorting

In this section we consider some areas of particular interest, viz. : the contents and meaning
of CASL and CSP-CASL signatures; the treatment of variables', the contents and treatment of

10.2 Signatures, variables, alphabets and subsorting 89

communication alphabets', and the im plications for the CSP-CASL static sem antics o f CASL
subsorting.

10.2.1 Csp-Casl signatures

A C a s l subsorted signature [BCH+04, §2.1.1] is a 5-tuple £ = (P, T F , P F , P , <) with:

S G SortS et = FinSet (Sort)
T F , P F G FunSet = FunProfile —1 FinSet(FunN am e)

P G PredSet = PredProfile —̂ FinSet(PredNam e)
FunProfile = FinSeq(Sort) x Sort

PredProfile = FinSeq(Sort)

• < G Port x Port is a preorder o f subsort embedding on the set P o f sorts.

• Port, FunProfile, FunName and PredName are as defined in [BCH+04, §2.1.1].

For exam ple, consider the fo llow in g sim p le C a s l fragment:

sorts a, b, c
ops / : a x b —» c\ g : a x b —► c;

h : —► b
pred p \ a y . c

The corresponding signature is £ = (P, T P , P F , P) , with:

P = {a, 6, c}
T P = {((a, 6) ,c) (-> { /,# } , ((a), 6) h-> {/*}}
P P = 0

P = {(a, c) i—> {p}}

A C s p -C a s l signature (E , A) is a pair con sistin g o f a C a s l signature £ as described above
and a CSP signature A = (CH, PR), containing inform ation on channels and processes,
specifically: a fam ily o f sets o f sort nam es indexed by channel nam e; and a fam ily o f sets
o f p rocess profiles indexed by process name:

CH G ChanSet = ChanName Sort
PR G ProcSet = ProcName —> ProcProfile

ProcProfile = FinSeq(Sort) x CommAlpha

a G CommAlpha = F inSet (CommType)

e G CommType = Sort U TypedChanName

(c, s) G TypedChanName = ChanName x Sort
ChanName = ProcName = Id

Thus: a channel has a nam e and a sort; a process has a nam e and a profile, w hich con sists o f
a (p ossib ly em pty) finite sequence o f process param eter sorts, and a set describ ing its alphabet
o f p ossib le com unications.

N o te an im portant d ifference here, b etw een C a s l signatures and C s p signatures: in the former,
functions are represented as m aps from (function) profiles to (function) nam es; conversely, in a

90 Chapter 10 CSP-CASL Static Semantics

Csp signature, channels and processess are represented as maps from (channel/process) names
to (channel/process) profiles. The distinction arises because CASL allows overloading of func
tion names, whereas in Csp-Casl neither channel names nor process names are overloaded
(overloading of the former is unnecessary in the presence of Casl subsorting); this simplifies
things for us: the (frequent) act of lookup by name is easier if we map from names, rather than
to names.

10.2.2 Variables

[BCH+04, §111:2.1.3] defines Variables = S o r t ^ FinSet (Var), i.e. sets of variable names
indexed by sort name (note that this structure allows overloading of variable names). A CASL
term is statically checked in a context including such a Variables set — it is precisely these
variables which may occur within that term.

Now, as discussed in section 8.1.7, in C sp -C a s l we carefully separate process-global vari
ables (declared on the left hand side of a process equation) and process-local variables (locally
scoped variables arising within a process term). In particular, in the sequential composition
operator on process terms, the second process term starts with an empty set of process-local
variables.

In our static semantics, then, we write a set of process-global variables as G and a set of
process-local variables as L. (An undistinguished set of variables is just written X , following
[BCH+04].) The two are unified only when static checks on a Casl term are required, i.e. in
the rules for NAMED-PROC and PREFIX-PROC (although the latter could have been deferred
to the appropriate EVENT rule equally well).

Note that in rules which build or extend variable sets (e.g. INTPRE-PROC), we use the
operator -I- defined in [BCH+04, §111:2.1.3], with type signature:

+ : Variables x (Var x Sort) —> Variables

10.2.3 Communication alphabets

An important aspect of the static analysis ofaCsP-CASL specification is the analysis of com
munication alphabets, where:

• A process declaration includes a declaration of the alphabet of permitted communications
of that process (see section 8.1.2).

• A process term (recursively) produces a constituent alphabet, describing the communi
cations occurring in that process term. Items are introduced into this constituent alphabet
by particular process operators as discussed below.

Formally, a communication alphabet a is a member of CommAlpha:

a G CommAlpha = FinSet(CommType)
CommType = Sort U TypedChanName

(c, s) G TypedChanName = ChanName x Sort

Thus, a communication alphabet is a finite set of CommType elements, each of which is either
a sort name or a (channel name, sort name) pair. Note that this concept covers not only con
stituent and permitted alphabets, but also event sets, as used by various of the process operators.

10.2 Signatures, variables, alphabets and subsorting 91

Note the use of typed channel names in communication alphabets; at first this seems unnec
essary, because a channel’? declaration already associates it with a sort, which can thus be
inferred by lookup. C a s l subsorting complicates matters, however: in some cases we need to
lift C a s l subsorts to C sp-C asl communications; we may, e.g., send an s\-sorted value over
a S2 -sorted channel provided si < 5 2 . As such, it is necessary to track the actual intended sort
of a given channel event, rather than simply inferring it from the channel’s declaration. This is
discussed further in section 10.2.4.1.

There are two major semantic requirements involving communication alphabets:

1. In a process equation P = p, the constituent alphabet a p of the process term p on the
right hand side must be ‘included in’ the permitted communication alphabet a p of the
process P named on the left hand side. This requirement arises from the formalisation
of C s p -C a s l ’s logic as an institution [MR07].

2. In an alphabetised parallel process p |[esi||es2]| <?> the event sets esi and es2 must be ‘in
cluded in’ the constituent alphabets a p and a q of the process terms p and q, respectively.
This is a standard requirement inherited from Csp [Ros98].

We formally define ‘included in’ in section 10.2.4.1.

10.2.3.1 Computation of process term constituent alpabets

The constituent alphabet of a process term is computed recursively over its structure, by com
puting the constituent alphabets of its components, and combining/modifying them according
to the process term’s type. At bottom, communication types (sorts and typed channel names)
are introduced into the alphabet by process terms which engage in communications, or by
hide/rename/conditional processes.

The rules are mainly simple, and are summarised in table 10.3. They largely build directly on
the rules for CSP terms presented in [MR07, §3.2]. The rules are implemented in the natural
semantics rules later in this chapter, in particular the rules in section 10.4.

In section 10.1.2 we introduced the function sorts : Formula —> FinSet(Sort), to compute
the sorts occurring in a C a s l formula. A C a s l formula is a formula in First Order Logic;
as such we define sorts () recursively on a formula’s structure, as shown in table 10.4. This
definition is, strictly, incomplete, in that C a s l formulae have a richer syntax which is encoded
in [CoF04a] to the form presented here.

10.2.4 Implications of subsorting

Casl subsorting introduces some interesting challenges to the Csp-Casl context: comparison
of communication alphabets needs to be closed under subsort, and Casl terms in Csp-Casl
processes may need to be cast, which requires careful attention to subsorting.

10.2.4.1 Closure under subsorting of communication alphabets

In section 10.2.3 we introduced two major semantic requirements on communication alphabets,
but deferred discussion of what we mean by one being ‘included in’ another; we shall now

92 Chapter 10 CSP-CASL Static Semantics

Process type Process Term p Constituent alphabet, a p Notes
Named process P (h , . . . , t n) Permitted alphabet of P [1]
Skip SK IP 0
Stop S T O P 0
Div D I V 0
Run R U N (es) es
Chaos CH AOS {es) es
Term prefix ' t - + p a p U {sort{t)}
Channel send c\t —> p a p U {sort{t) , (c, sort(t))} [1]
Channel nondeterministic send c\x ::s —> p a P U {s, (c, s)} [2]
Channel receive c?x ::s —> p a P U { 5 , (c, s)} [2]
Internal prefix choice n x::s —> p a p U {s} [2]
External prefix choice O x ::s —> p o lp U {s} [2]
Sequential composition p ; q OLp U Oiq

Internal choice p H q OLp U Oiq

External choice p □ q OLp U Oiq

Interleaving V III Q Oip U OLq

Synchronous v II q OLp LJ OL q

Generalised parallel p\[es]\q a p \ J a q \J es
Alphabetised parallel p\[esi\\es2]\q OLp U Oiq [3]
Hiding p \ e s o lp U es [4]

Renaming p [n , . - . , r n]
n

^ P ̂U » s i)2}
i = 1

with n : S i t 1 x Si,2 (predicate)
or ri : S i t 1 —> S i t2 (functional)

[5]

Conditional if tp then p else q a p U a q U sorts{(p) [6]

Notes
1. See discussion of terms, sorts, and subsorting in section 10.2.4.2.
2. Introduces a new binding on x to the term’s local variables.
3. We require esi C a p A es2 C a q.
4. We add es to the constituent alphabet despite the fact that we are hiding its communica

tions, for reasons discussed in [MR07]: without it, CSP-CASL cannot form an institution.
Thus, the constituent alphabet is not (as it first appears) simply the alphabet of commu
nications in which the process term attempts to engage.
Note also that we do not require es e a p as, e.g., we allow ST O P \ Nat.

5. We do not require {s^i, Q &P as, e.g., we allow STOP[r\ with r : Nat —> Int.
6 . See table 10.4.

Table 10.3: Computation of process term constituent alphabets

10.2 Signatures, variables, alphabets and subsorting 93

sorts (p)
f f 0

Tl
fa lsehood

P (ti , . . . , t n) [J sort(ti) predicate

t\ = h {sort(ti)} equality

ti = h {sort(ti)} existential equality
d e f t {sort(t)} definedness

“ if { sor t(t)} negation

fl A f2 (s o r f (f i) , s o r f (f2) } conjunction

fl ^ {sor t(ti), sort(t2)} im plication
V x : s • p { s } U sorts(<p) universal qualifier

Table 10.4: Computation of Casl formula sorts

define this properly; the notion is slightly complicated by the need to take account of closure
under CASL subsort.

Consider the process equation P = p, and suppose a p = {si}, and a p = {S2} for si, S2 G
Sorts. Suppose further that S2 < si, i.e. S2 is a CASL subsort of si. In this case, we would like
to say that a p is indeed ‘included in’ ap , since semantically that process equation is perfectly
acceptable: anything p attempts to communicate is allowed by P, because S2 < si. However,
a simple check for set inclusion fools us: a p ^ ap .

We must, then, lift the C a s l subsort relation to communication alphabets. Specifically, we
define the subsort closure operator j : CommAlpha —> CommAlpha as follows:

1 (a) ■.= 111 1 y - x 6 Sort
Y l {(c, y) | y < z) U{ y \ y < z) x = (c, z) € TypedChanName

That is, for any sort name in the alphabet, we include each of its subsorts; and for any typed
channel name in the alphabet, we include a corresponding typed channel name for each of its
sort’s subsorts, and we include each of its sort’s subsorts.

Then, in the above example, a p C [(ap) gives us the right answer (i.e. ‘true’).

Remark: an alternative approach would be to close CommAlpha under subsort by definition
— then ordinary C would suffice, but it would be necessary to recompute subsort closure every
time we modify a CommAlpha. As most of the semantic rules for process terms involve
union of communication alphabets, this would be frequent. However, we only need the subsort
closure when comparing two communication alphabets which, as noted above, happens rarely.
Thus, in order to both simplify the definition of CommAlpha, and with an eye on performance
of the implementation, we choose to enact subsort closure via the j operator described above,
rather than directly in the CommAlpha type.

10.2.4.2 Subsorting and terms

In the presence of subsorting, type checking of C a s l terms which occur in C s p - C a s l pro
cess terms requires some attention. Before discussing the CsP-CASL-specific aspects, let us
examine how the sorts of C a s l terms are treated in the presence of subsorting.

The static semantic rules for TERM given in [BCH+04, §111:2.5.4] all yield a fully qualified term

94 Chapter 10 CSP-CASL Static Semantics

£ FQTerm, whose overall sort may then be computed [BCH+04, §111:2.1.3]. Thus, given a
syntactic TERM and appropriate context, we may use existing C a s l machinery to obtain the
corresponding fully qualified term t, and its sort sort(t).

Now, suppose we have two C a s l sorts s and s', with s < s'. In such a setting, there are two
kinds of cast1 one might perform on a term t [BCH+04, §111:3.3.2]:

• upcast — if t has sort s then the upcast t : s' has sort s', and expands to an application
of the implicit operation embedding s in s';

• downcast — if t has sort s', then the downcast t as s has sort s and expands to an
application of the implicit operation projecting s' to s.

Clearly, an embedding produced by an upcast will always be total. However, a projection
produced by a downcast may (and usually will) be partial.

Consider, for example, the Casl specification Casts in figure 10.1, which extends Int from
the Casl standard libraries [RMS04]. In particular, this imports the sorts Nat and Int, with
Nat a subsort of Int. The four axioms then illustrate the various casting possibilities, as fol
lows:

• The first axiom illustrates upcast: a, of sort Nat, has the value 1: Nat and is upcast to
an In t (which is bound to the name x). Since Nat is a subsort of Int, this is well-sorted
and always defined.

• The second axiom illustrates downcast: y, of sort Int, has the value 1: In t and is down
cast to a Nat (bound to the name b). Clearly this projection is also well-sorted and
defined.

• The third axiom also illustrates a downcast: z, of sort Int, has the value —1 : Int, and
is downcast to a Nat (bound to the name c). Clearly, while the term z as Nat is well-
sorted, its value is undefined — however, it is important to note that this is not prevented
by CASL’s static semantics. This could then be checked for elsewhere in the specification
using Ca sl ’s definedness assertion operator, def [BM04, §4.2]. For example, we might
write an axiom which begins def c =4> . . .

• The final axiom illustrates disallowed casts. Here we have w, of sort Other, and we
attempt to upcast/downcast it to Nat — both of which attempts must necessarily fail be
cause Nat and Other are in no subsort relationship with each other. Such cast attempts,
then, are not well-sorted in Ca sl ’s static semantics.

Now, in order to properly treat C a s l terms occurring in C sp-C asl process terms, and bearing
in mind the above, it proves useful to define the function cast : FQTerm x Sort —*■ FQTerm
which, given a fully qualified term t and a sort s attempts to cast t to s in the following manner:

t if sort{t) = s
t : s if sort(t) < s (upcast/embedding)
t as s if s < sort(t) (downcast/projection)
error otherwise

Let us now consider Casl terms as they occur in Csp-Casl process terms. There are three
cases:

1. parameters in a reference to a named process, P (t i , . . . , tn)

cast(t, s) := <

JHere we slightly abuse existing terminology for our own purposes: [BCH+ 04] just uses ‘cast’ where we use
‘downcast’, and has no explicit name for what w e call ‘upcast’.

10.2 Signatures, variables, alphabets and subsorting 95

fro m B a s i c / N u m b e r s g et In t

sp ec C a s t s = In t

th en so r t Other
o p s a, b, c, d, e : Nat,

x , y , z : Int\
w : Other

• a = 1 A x = a : Int
• y = l A b = y a s Nat
• z = — 1 A c — z a s Nat
• d = w : Nat A e = w as Nat

% (u p c a s t)%

% (w ell-so r ted d o w n c a s t)%

% (w ell-sorted d ow n cast, v a lu e u n d e fin e d)%

% (d isa llo w ed c a s t s)%

en d

Figure 10.1: Upcasts, downcasts, and disallowed casts in CASL

2. in a term prefix process, t —► p

3. in a channel send process, c\t —> p

In each case, the term’s sort contributes to the constituent alphabet of the process term, as dis
cussed in section 10.2.3; in the first and third cases, however, there are additional requirements:

• The sort of each parameter in a named process reference must be castable to the cor
responding sort in the process declaration. For example, given the process declaration
P (S , T) and the named process reference P(a, b), we require that cast (a, S) 7 ̂ error
and cast(b, T) 7 ̂ error.

• Similarly, the sort of a term in a channel send must be castable to the sort of the channel.
For example, in the process term c\t —► p, if c has the sort s, we require that cast(t , s) f

The rules for NAMED-PROC (section 10.4.2) and channel send (section 10.5.2) formalise these
requirements.

error.

96 Chapter 10 CSP-CASL Static Semantics

10.3 Top-level elements

This section contains the static semantics rules for the ‘top level’ elements of a Csp-Casl
specification — i.e. those whose abstract syntax is defined in section 9.1.1.

10.3.1 Csp-Casl basic specifications

A Csp-Casl basic specification CSP-BASIC-SPEC is a sequence of channel declarations
and a sequence of process declarations and process equations. It determines a CSP signature
and a set of Csp-Casl process equations.

CSP-BASIC-SPEC ::= csp-basic-spec CHAN-DECLS PROC-ITEMS

E h CSP-BASIC-SPEC > A, ^

Given a Casl signature E representing the data part of a Csp-Casl specification, and a syn
tactic CSP-BASIC-SPEC representing the process part, we compute a CSP signature A and
a se t'T of semantic objects representing Csp-Casl process equations. We require that the
Casl signature has local top elements, as described in chapter 11, deferring the definition of
hasLocalTops until then.

hasLocalTops(E) E b CHAN-DECLS [> CH E, CH b PROC-ITEMS t> A, V
E b c s p - b a s i c - s p e c CHAN-DECLS PROC-ITEMS > A, \I/

10.3.2 Channel declarations

A CHAN-DECLS is a sequence of channel declarations, each of which declares a number of
channels as having a particular Casl sort. Multiple declarations of the same channel name
must map to the same Casl sort.

CHAN-DECLS ::= chan-decls CHAN-DECL*

E b CHAN-DECLS > CH

Given a Casl signature E and a CHAN-DECLS sequence of channel declarations, we compute
a ChanSet map CH from channel names to sort names. CH is built linearly, starting with the
empty set and adding the product of each successive CHAN-DECL rule.

The requirement that multiple declarations of the same channel name must map to the same
C a s l sort is encoded in the rules for CHAN-DECL and CHAN-NAMES, below. A partially built
CH is passed to each CHAN-DECL rule as context in order to enable this.

E ,0 b CHAN-DECL! \> CHX

E, CHi U • • • U CHn-1 b CHAN-DECLn > CHn
E b c h a n - d e c l s CHAN-DECLi • • • CHAN-DECLn > CHn

A CHAN-DECL is a set of channel names and a channel sort, and declares that each of the
named channels has the specified sort.

CHAN-DECL = chan-decl CHAN-NAMES CHAN-TYPE

10.3 Top-level elements 97

E, CH b CHAN-DECL > CH'

Given a CASL signature E, a ChanMap CH, and a syntactic CHAN-DECLS containing a
sequence of channel names and a sort name, we compute a channel map CH' containing map
pings from each of the channel names to the sort name.

E b CHAN-TYPE O s E, C H , s b CHAN-NAMES O {ci, • • • , Cn }

E, CH b c h a n - d e c l CHAN-NAMES CHAN-TYPE O {ci s, • • • , cn i-> s}

A CHAN-TYPE is just a Casl sort.

CHAN-TYPE ::= chan-type SORT

E b CHAN-TYPE O s

Given a CASL signature E and a syntactic CHAN-TYPE, we (trivially) compute a Casl sort.
We require that the sort has been previously declared, i.e. it is known in E.

b SORT O s s € Eg
E b c h a n - ty p e SORT O s

A CHAN-NAMES is a sequence of channel names, which are just SIMPLE-IDs. A channel
may not have the same name as a previously declared Casl sort.

CHAN-NAMES ::= chan-names CHAN-NAME+
CHAN-NAME ::= chan-name SIMPLE-ID

E, CH, s b CHAN-NAMES O C

Given a Casl signature E, a ChanMap CH, a Casl sort s, and a syntactic CHAN-NAMES
sequence of channel names, we compute a set of channel names. This rule rejects repeated
declarations of the same channel name with different sorts (see section 8.3.3) by looking for
an existing entry for each channel name in the ChanMap — if one is found, we require that
it maps to the sort name currently under consideration. Note that our implementation raises a
warning in the case of multiple declarations with the same sort (see section 12.4).

E b CHAN-NAMEi > c\ c\ G D om (C H) =» CH(ci) = s

E b CHAN-NAMEn > cn cn G D om (C H) => CH{cn) = s
E, C H , s b c h a n -n a m e s CHAN-NAMEi • • • CHAN-NAMEn D> {Ci, * * * , cn }

E b CHAN-NAME 1> C

Given a CASL signature and a syntactic CHAN-NAME, we (trivially) compute a channel name.
This rule rejects channel names already in use as sort names, in order that we may reliably
distinguish between the two when considering communication alphabets (see 8.3).

b SIMPLE-ID > c C g

E b ch an -n am e SIMPLE-ID > c

10.3.3 Process items

A PROC-ITEMS is a sequence of process declarations and process equations.

98 Chapter 10 CSP-CASL Static Semantics

P R O C -IT E M S : : = p r o c - i t e m s P R O C -IT E M +

E, CH b PROC-ITEMS > A , 'L

Given a CASL signature E, a ChanSet CH, and a syntactic PROC-ITEMS sequence of process
declarations and process equations, we compute a CSP signature A and a set ^ of process
equations.

Each member of the PROC-ITEMS sequence is considered in turn: each PROC-ITEM rule
yields a ProcSet PRi and a set 'l/i of process equations, one of which will be the empty set
depending on whether the PROC-ITEM contains a process declaration or process equation.
Linear visibility of process declarations is encoded here, by the linear construction of the in
termediate ProcSets P R \ , . . . , P R n~ 1 and the presentation of their cumulative unions to the
successive PROC-ITEM rules as context.

Note that in this rule we use the abbreviated form P - I for PROC-ITEM.

E, {CH, 0) b p - i i > P R u V i

__________________ E , (CH, P R i U • • • U P R n - l) b P - I w > P R n ^ n __________________

E , CH b p r o c - i t e m s P - I i • • • P - I n > {CH, P R \ U • • • U P R n), U • • • U

A PROC-ITEM is either a process declaration or a process equation.

P R O C -IT E M : : = PR O C -D E C L | PR O C -E Q

E ,A b PROC-ITEM > PR,'&

G iven a C a s l signature E, a C s p signature A, and a syntactic PROC-ITEM, w e com pute a
ProcSet P R and a set 'L o f process equations.

W e have tw o qualified rules d evo lv in g PROC-1TEM to the tw o p ossib ilities. If the PROC-1TEM
is a PROC-DECL, P R contains one p rocess declaration object, and ’L is the em pty set; i f it is a
PROC-EQ, P R is the em pty set and 'L contains one p rocess equation object.

E ,A b PROC-DECL > P R
E ,A b PROC-DECL q u a PROC-ITEM > PR, 0

E ,A b PROC-EQ >\&
E ,A b PROC-EQ q u a PROC-ITEM > 0 , 'L

10.3.4 Process declarations

A PROC-DECL is a process nam e, a seq u en ce o f param eter sorts, and a sequ en ce o f perm itted
alphabet item s.

PR O C -D ECL : : = p r o c - d e c l PROC-NAME PROC-ARGS PR OC-ALPHA

E ,A b PROC-DECL > P R

G iven a C a s l signature E, a C s p signature A and a syntactic PROC-DECL process declara
tion, w e com pute a sin g le-e lem en t ProcSet P R m apping the declaration’s process nam e to its
param eter sort list and perm itted alphabet.

10.3 Top-level elements 99

We require that the process name is not already known, i.e. multiple declarations of the same
process are disallowed.

b PROC-NAME > P
P £ D om (PR) E b PROC-ARGS > args E, CH b PROC-ALPHA > a

E, (CH, PR) b p r o c - d e c l PROC-NAME PROC-ARGS PROC-ALPHA > {P i—»• (args, a)}

A pro c- name is just a Casl s im p l e - id

PROC-NAME ::= proc-name SIMPLE-ID

b PROC-NAME > P

Given a syntactic PROC-NAME, we (trivially) compute a process name.

_______ b SIMPLE-ID > P_______
b p roc-n am e SIMPLE-ID > P

A PROC-ARGS is a sequence of Casl sort names, defining the parameter sorts expected in a
reference to a named process.

PROC-ARGS ::= proc-args SORT*

E b PROC-ARGS > args

Given a Casl signature E and a syntactic PROC-ARGS sequence of Casl sorts, we (triv
ially) compute a sequence args of Casl sorts. We require that each sort has been previously
declared, i.e. it is known in E.

b SORTi > Si Si G E s

b SORTn ^ Sfi Sji £ E s
E b p r o c - a r g s SORTi •• • SORTn > (si,-- - , sn)

A PROC-ALPHA, a process’ permitted communication alphabet, is a sequence of
COMM-TYPEs; these are undistinguished identifiers, to be differentiated into a set of sort names
and channel names.___

PROC-ALPHA ::= proc-alphabet COMM-TYPE*

E, CH b PROC-ALPHA > a

Given a Casl signature E, a ChanMap CH , and a syntactic PROC-ALPHA, we produce
a communication alphabet a describing the permitted communications of the process. Each
COMM-TYPE produces one corresponding CommType object; the distinction between sorts
and typed channel names occurs in the COMM-TYPE rule.

Note that the COMM-TYPE fist may contain duplicate entries (though obviously the set pro
duced has no such duplication), and that the alphabet will be closed under Casl subsort when
compared with other alphabets (see section 10.2.4.1).

Note the similarity between this rule and the one for EVENT-SET (section 10.5.1).

100 Chapter 10 CSP-CASL Static Semantics

E, CH b COMM-TYPEi > £i

E, CH b COMM-TYPEi t> £n
E, CH b p r o c - a l p h a b e t COMM-TYPEi •• • COMM-TYPEn > { e i , . . . , £ n }

10.3.5 Process equations

A PROC-EQ process equation binds a parametrised process name to a process term.

PR O C -E Q : : = p r o c - e q PARM-PROCNAME PROCESS

E, A b PROC-EQ > \P

Given a C a s l signature E, a C sp signature A and a syntactic PROC-EQ, we compute a set
containing one semantic object representing a process equation. First, we compute a process
name P and process-global variable set G\ given this, we compute a process term p and its
constituent alphabet a p, given this, we check that the subsort closure J, (ap) of the process
term’s constituent alphabet is a subset of the subsort closure j (s n d (P R (P))) of the process’
permitted alphabet. (In an environment containing P G ProcName and P R 6 ProcSet,
s n d (P R (P)) is the permitted alphabet from the process declaration of P.) See sections 10.2.3
and 10.2.4.1 for further discussion of communication alphabet checking. Note that the empty
set is passed to the PROCESS rule as its local variable set (see section 10.2.2).

Note that in this rule we use the abbreviated forms P-PN and P for PARM-PROCNAME and
PROCESS respectively.

P R b P-PN > P, G E, (CH, PR), (7,0 b P l>p,ap | (ap) C j (snd(PR(P)))
E, (CH, PR) b p r o c - e q P-PN P > {P (G) = p}

A PARM-PROCNAME is a process name and a (possibly empty) sequence of variable names.

PARM-PROCNAME : : = parm -procnam e PROC-NAME PROC-VARS

P R b PARM-PROCNAME > P, X

Given a ProcSet P R and a syntactic PARM-PROCNAME, we compute a process name P and a
variable set X which will become the process’ global variable set. We require that the process
name has been previously declared, i.e. it is known in PR.

b PROC-NAME > P P G D om (P R) PR, P b PROC-VARS > X
P R b p a rm -p ro c n a m e PROC-NAME PROC-VARS > P, X

A PROC-VARS is a sequence of Casl variable names occurring in a parametrised process
name.___

PROC-VARS : : = p r o c - v a r s PROC-VAR*

PR, P b PROC-VARS > X

Given a ProcSet PR , a process name P, and a sequence of syntactic PROC-VARs, we compute
a variable set X mapping sorts to the variable names as specified by the named process’ profile.

In an environment containing P G ProcName and P R G ProcSet, f s t (P R (P)) is the param
eter sort list from the process declaration of P (if it has been declared). This is used here both

10.4 Process terms 101

to check that the length of the variable list is appropriate, and to determine the sort for each
variable in the resultant variable set.

The rule encodes the following requirements: the number of variable names being declared for
the process name must equal the declared number of sorts in the process’ parameter list; there
must be no repetition of variable names (see section 8.3.8). This last requirement is encoded in
the way this rule linearly builds a variable set for the parameter names, passing the growing set
as context to each instance of the PROC-VAR rule (see below), which then rejects any repeated
names.

0, (fs t (P R (P))) i h PROC-VARi > Xi

n = # (fs t (P R (P))) Xn_ i, {fst(PR{P)))n I- PROC-VARn > X n
P R , P h p r o c - v a r s PROC-VARi • • • PROC-VARn > X n

A PROC-VAR just a C a s l variable name, which we require to have not been declared already
within the local context.___

PROC-VAR ::= proc-var VAR

X , s h PROC-VAR > X '

Given a variable set X , a C a s l sort s and a syntactic PROC-VAR, we compute an extension
X ' to X for the specified variable name and sort. We disallow multiple instances of the same
variable name to occur in a parametrised process name for reasons discussed in section 8.3.8.

h VAR [> x -i 3 s ' G D om (X) « i E l (s')
X , s h p r o c - v a r VAR t> X + (x, s)

10.4 Process terms

This section contains the static semantics rules for the various processes and process operators
which can build a Csp-Casl process term — i.e. those whose abstract syntax is defined in
section 9.1.2.

All of the rules in this section have the same form:

E, A, G, L b PROCESS > p, a

Given a C a s l signature E, a Csp signature A, a set G of process-global variables, a set L
of process-local variables, and a syntactic PROCESS, we compute a process term p and its
constituent alphabet a.

The rules differ from each other in the following manners:

• in the syntactic category under consideration (obviously);

• in the context-specific side-requirements arising;

• in the construction of a ;

• in the treatment of local variables — some rules introduce new ones, and the sequential
composition rule reinitialises them in its second half, for example.

102 Chapter 10 CSP-CASL Static Semantics

10.4.1 PROCESS

A Csp-Casl process term PROCESS may be a named process reference, a basic process, or
an application of one of the various process operators.

PROCESS NAMED-PROC | BASIC-PROC | PREFIX-PROC
| INTPRE-PROC | EXTPRE-PROC | SEQ-PROC
| INTCHOICE-PROC | EXTCHOICE-PROC | INTPAR-PROC
| SYNPAR-PROC | GENPAR-PROC | ALPHAPAR-PROC
| HIDING-PROC | RENAMING-PROC | CONDITION-PROC

E, A, G , i h PROCESS > p , a

PROCESS is the disjoint union of fifteen more specialised syntactic categories, i.e. NAMED-PROC,
BASIC-PROC, etc.; as such, and as described in section 6.3.2.3, we require fifteen qualified
rules, one per sub-category, each devolving PROCESS to one of the more specialised possibil
ities. Following the convention of [BCH+04], we show just one rule, and note that the rest are
entirely similar and may be trivially inferred.

E, A, G ,L b NAMED-PROC \> p ,ap
E, A, G, L h NAMED-PROC qua PROCESS > p , a p

10.4.2 NAMED-PROC

A NAMED-PROC is a reference to a process by name, and should include appropriately-sorted
terms passed as the parameters required by that process.

NAMED-PROC ::= named-proc PROC-NAME TERM*

E ,A , G ,L \~ NAMED-PROC > p , a

As noted in section 10.3.5, in an environment containing P G ProcName and PR G ProcSet,
f s t (P R (P)) is the parameter sort list from the process declaration of P (if it has been declared).

Then, for the sake of brevity in the rule which follows, let us define k : FQTerm x Int —>
FQTerm as:

K,(t,n) := c a s t(t , f s t (P R (P))n))

Thus, k, looks up the nth parameter sort in the named process’ parameter sort fist, and attempts
to cast the fully qualified term t to that sort (see section 10.2.4.2).

The rule encodes the following requirements: the process name must be a valid identifier;
the process name must have already been declared (otherwise the P R (P) lookup will fail);
the number of parameters passed in this named process reference must equal the declared
number of sorts in the process’ parameter list; each parameter must be a well-formed CASL
term given the current environment; each parameter term’s overall sort must be compatible
with the corresponding sort in the process declaration (see section 10.2.4.2).

We present G U L, as context to the TERM rule: each Casl term here may refer to any process-
global and process-local variables visible at this point.

The constituent alphabet a computed by this rule is just the permitted alphabet of the named
process, as defined in its process declaration.

10.4 Process terms 103

Note that in this rule we use the abbreviated forms P-N and T for PROC-NAME and TERM
respectively.

(E, G U L) b Ti > t\ 1) error
b P-N > P

{ fs t{P R (P))) = n (E, G U L) b Tn > tn i^(tn, n) / error
Y ,,(C H , PR), G, L b n am ed -p roc P-N Ti • • • Tn > P(K{t\, 1) , . . . , K,(tn , n)), snd(P R (P))

10.4.3 BASIC-PROC

A C sp -C a s l basic process BASIC-PROC is either an atomic primitive process or Run or
Chaos. ___

::= SKIP-PROC | STOP-PROC | DIV-PROC | RUN-PROC
| CHAOS-PROC

::= skip-proc
::= stop-proc
::= div-proc
::= run-proc EVENT-SET

chaos-proc EVENT-SET

E, A, G ,L b BASIC-PROC > p , a

We once again elide trivial rules corresponding to the disjoint union of a number of syntactic
categories (see section 10.4.1), and focus on the specialised rules.

E, A ,G , L b SKIP-PROC > p, a

A SKIP-PROC, is a simple atomic process; it never communicates, so its constituent alphabet
a is the empty set.

E, A, G, L b s k i p - p r o c [> SKIP,®

E ,A , G , L b STOP-PROC > p , a

A STOP-PROC, is a simple atomic process; it never communicates, so its constituent alphabet
a is the empty set.

E ,A , G, L b s t o p - p r o c > STO P , 0

E, A, G ,L b DIV-PROC 1> p ,a

A DIV-PROC, is a simple atomic process; it never communicates, so its constituent alphabet
a is the empty set.

E, A, G, L b d iv - p r o c > D IV , 0

E, A, G ,L b RUN-PROC > p , a

BASIC-PROC

SKIP-PROC
STOP-PROC
DIV-PROC
RUN-PROC
CHAOS-PROC

104 Chapter 10 C s p -C a sl Static Semantics

A RUN-PROC is an atomic process with an associated EVENT-SET; its constituent alphabet
a is the computed event set.

E, A b EVENT-SET > es
E ,A , G , L b r u n -p r o c EVENT-SET > R U N (es) , es

E, A, G ,L b CHAOS-PROC Op, a

A CHAOS-PROC is an atomic process with an associated EVENT-SET; its constituent alphabet
a is the computed event set.

E, A b EVENT-SET O es
E, A, G, L b c h a o s - p r o c EVENT-SET t> CHAOS (es), es

10.4.4 PREFIX—PROC

A PREFIX-PROC consists of a communication event EVENT and a process term PROCESS .
The communication event may introduce a new binding to the set of process-local variables.

PREFIX-PROC ::= prefix-proc EVENT PROCESS

E, A, G ,L b PREFIX-PROC > p , a

The EVENT rule receives as context G U L\ if the event involves a Casl term (i.e. it is a term
prefix or a channel send), that Casl term may refer to any process-global and process-local
variables visible at this point.

If the event is a channel nondeterministic send or a channel receive, the EVENT rule will
introduce a new variable binding, encoded in the variable set X \ otherwise, X is the empty set.
In either case, it is added to the local variable set L provided as context to the PROCESS rule.
Thus, that rule computes its process term in an expanded context.

The constituent alphabet a computed by this rule is the union of the computed event set and
that of the process term.

E, C H , G U L b EVENT > e, a e, X E ,A , b PROCESS > p, a p
E , (C H ,P R) ,P , G ,L b p r e f i x - p r o c EVENT PROCESS t> e -> p, a e U a p

10.4.5 INTPRE-PROC

An INTPRE-PROC consists of a single variable declaration SVAR-DECL and a process term
PROCESS; it introduces a new binding to the set of process-local variables.

INTPRE-PROC ::= intpre-proc SVAR-DECL PROCESS

E, A, G, L b INTPRE-PROC > p , a

Note the similarity between this rule and that of PREFIX-PROC, above. This rule always
introduces a new variable binding via the SVAR-DECL rule, which is then added to the local
variable set passed as context to the PROCESS rule. Thus, that rule computes its process term
in an expanded context. The constituent alphabet a computed by this rule is that of the process
term plus the sort of the newly introduced variable.

10.4 Process terms 105

E s b SVAR-DECL D> X, S E, A, G, L + (x, s) b PROCESS >p,Otp
E ,A , G ,L h i n t p r e - p r o c SVAR-DECL PROCESS l> l"1x:: s —> p, a p U {s}

10.4.6 EXTPRE-PROC

An EXTPRE-PROC consists of a single variable declaration SVAR-DECL and a process term
PROCESS; it introduces a new binding to the set of process-local variables.

EXTPRE-PROC extpre-proc SVAR-DECL PROCESS

E, A, G ,L b EXTPRE-PROC > p , a

See comments for INTPRE-PROC, above.

E s b SVAR-DECL > x, s E, A, G ,L + (x, s) b PROCESS \> p ,a p
E ,A , G ,L b e x t p r e - p r o c SVAR-DECL PROCESS > □ x :: 5 -+ p, a p U {5}

10.4.7 SEQ-PROC

A SEQ-PROC consists of two process terms, the second of which is considered in a context
having an empty process-local variable set.

SEQ-PROC ::= seq-proc PROCESS PROCESS

E, A, G, L b SEQ-PROC > p, a

Note that we pass the empty local variable set to the second PROCESS rule; this encodes the
necessary reinitialisation of process-local variables in a sequential composition — see section
8.1.7. The constituent alphabet a computed by this rule is the union of those of the two process
terms.

E, A, G ,L b PROCESSi > P , a p E, A, (7,0 b PROCESS2 > q , a q

E, A , G, L b s e q - p r o c PROCESSi PROCESS2 > p ; q, Oip U a q

10.4.8 INTCHO ICE—PROC

An INTCHOICE-PROC consists of two process terms, both considered in the same context.

INTCHOICE-PROC ::= intchoice-proc PROCESS PROCESS

E, A, G ,L b INTCHOICE-PROC > p , a

An INTCHOICE-PROC contains two PROCESSes, both of which are considered in the same
context as the INTCHOICE-PROC itself. The constituent alphabet a computed by this rule is
the union of those of the two process terms.

E, A, G, L b PROCESSi > p , a p E, A, G, L b PROCESS2 > q ,a q
E, A , G, L b i n t c h o i c e - p r o c PROCESSi PROCESS2 > p fl q, a p U a q

106 Chapter 10 CSP-CASL Static Semantics

10.4.9 EXTCHOICE—PROC

An EXTCHOICE-PROC consists of two process terms, both considered in the same context.

EXTCHOICE-PROC ::= extchoice-proc PROCESS PROCESS

£ , A, G, L b EXTCHOICE-PROC Op, a

An EXTCHOICE-PROC contains two PROCESSes, both of which are considered in the same
context as the EXTCHOICE-PROC itself. The constituent alphabet a computed by this rule is
the union of those of the two process terms.

£ , A, G, L b PROCESSi O p , a p £ , A, G, L b PROCESS2 O q, a q
E, A, G, L b e x t c h o i c e - p r o c PROCESSi PROCESS2 O p □ q, a p U a g

10.4.10 INTPAR-PROC

An INTPAR-PROC consists of two process terms, both considered in the same context.

INTPAR-PROC ::= intpar-proc PROCESS PROCESS

E, A, G, L b INTPAR-PROC > p ,a

An INTPAR-PROC contains two PROCESSes, both of which are considered in the same con
text as the INTPAR-PROC itself. The constituent alphabet a computed by this rule is the union
of those of the two process terms.

E, A, G ,L b PROCESSi l> p , a p E, A, G, L b PROCESS2 > q, a q
E, A , G ,L b i n t p a r - p r o c PROCESSi PROCESS2 > p ||| q , a p U a q

10.4.11 SYNPAR-PROC

A SYNPAR-PROC consists of two process terms, both considered in the same context.

SYNPAR-PROC synpar-proc PROCESS PROCESS

E, A, G ,L b SYNPAR-PROC Op, a

A SYNPAR-PROC contains two PROCESSes, both of which are considered in the same context
as the SYNPAR-PROC itself. The constituent alphabet a computed by this rule is the union of
those of the two process terms.

£ , A, G, L b PROCESSi O p , a p £ ,A , G, L b PROCESS2 O q ,a q
£ ,A , G , L b s y n p a r - p r o c PROCESSi PROCESS2 P II a p U a q

10.4.12 GENPAR-PROC

A GENPAR-PROC consists of two process terms, both considered in the same context, and an
event set.

GENPAR-PROC ::= genpar-proc EVENT-SET PROCESS PROCESS

10.4 Process terms 107

E ,A , G ,L \- GENPAR-PROC > p , a

A GENPAR-PROC contains two PROCESSes, both of which are considered in the same context
as the GENPAR-PROC itself, and an EVENT-SET, representing communications on which the
process terms must synchronise. The constituent alphabet a computed by this rule is the union
of the event set and those of the two process terms.

E, A, G, L h PROCESSi > p , a p
S ,A h EVENT-SET > es E, A, G ,L h PROCESS2 t> q, a q

E, A, (7, L h g e n p a r - p r o c EVENT-SET PROCESSi PROCESS2 t> p\[es)\ q, a p U a q U es

10.4.13 ALPHAPAR-PROC

An ALPHAPAR-PROC consists of two process terms, both considered in the same context, and
two event sets. The event sets must be ‘included in’ the constituent alphabets of the process
terms.___

ALPHAPAR-PROC alphapar-proc EVENT-SET EVENT-SET PROCESS PROCESS

E, A, G ,L b ALPHAPAR-PROC > p , a

An ALPHAPAR-PROC contains two PROCESSes, both of which are considered in the same
context as the ALPHAPAR-PROC itself, and two event sets, representing communications in
which they may engage, and on the union of which they must sychronise. We require that the
subsort closure J. (esi) of the left-hand event set is a subset of the subsort closure I (ap) of
the constituent alphabet of the left-hand process; similarly, we require that the subsort closure
I (es2) of right-hand event set is a subset of the subsort closure j. (a q) of the constituent
alphabet of the left-hand process — see section 10.2.3. The constituent alphabet a computed
by this rule is the union of those of the two process terms — we do not need to include the
event sets as they are, by the previous sentence, already there.

Note that in this rule we use the abbreviated forms ES and P for EVENT-SET and PROCESS
respectively.

E, A h ESi > esi E,A , G ,L b Pi > p,ap l(esi) C l(ap)
£, A I- ES2 > es2 E ,A , G ,L b P2 > q,aq j(es2) C J,(a9)

E ,A , G: L b alphapar-proc ESi ES2 Pi P2 > p|[esi||es2]|g,ap U aq

10.4.14 HIDING-PROC

A HIDING-PROC consists of a process term and an event set representing communications
which are not visible to the HIDING-PROC’s environment.______________________________

HIDING-PROC ::= hiding-proc PROCESS EVENT-SET

E, A ,G ,L \ ~ HIDING-PROC > p, a

The constituent alphabet a computed by this rule is the union of the event set and that of the
process term.

108 Chapter 10 C s p -C a sl Static Semantics

E, A b EVENT-SET > es E, A, (? ,I h PROCESS D> p, a p
E, A, G, L b h id in g - p r o c PROCESS EVENT-SET > p \ e s , a p U es

10.4.15 RENAMING-PROC

A RENAMING-PROC consists of a process term and a RENAMING, which is just a sequence of
RENAMING-ITEMS.___________

RENAMING-PROC ::= renaming-proc PROCESS RENAMING

E, A, G ,L b RENAMING-PROC Op, a

The constituent alphabet a computed by this rule is the union of that of the process term, and
that of the renaming (which just contains all of the sorts referenced in the renaming).

E b RENAMING O R , a R E, A, h PROCESS O p, a p
T , ,A ,G ,L b r e n a m in g -p r o c PROCESS RENAMING O p [R], a p U a R

10.4.16 CONDITI ON—PROC

A CONDITION-PROC consists of a FORMULA and two PROCESSes.______

CONDITION-PROC condition-proc FORMULA PROCESS PROCESS

E ,A , G , L b CONDITION-PROC O p , a

The constituent alphabet a computed by this rule is the union of those of the two process terms,
plus the sorts arising from the C a s l formula (see section 10.1.2).

Note that in this rule we use the abbreviated forms F and P for FORMULA and PROCESS
respectively.

E, A, G, L b Pi > p, a p
(E, G U L) b F \> ip E, A, G, L b P2 > q, otq

E ,A , (?, L b c o n d i t io n - p r o c F Pi P2 > if <p then p else g, a p U a q U sorts(ip)

10.5 Supporting elements

This section contains the static semantics rules for the ‘supporting elements’ of a C s p -C a s l
specification which are neither at the ‘top level’, nor processes — i.e. those whose abstract
syntax is defined in section 9.1.3. In particular, here we present rules for communication events
and event sets, single variable declarations, and renamings.

10.5.1 EVENT-SET and COMM-TYPE

An EVENT-SET is a sequence of COMM-TYPEs; these are undistinguished identifiers, to be
differentiated into a set of sort names and channel names.

EVENT-SET ::= event-set COMM-TYPE*
COMM-TYPE ::= comm-type SIMPLE-ID

10.5 Supporting elements 109

S ,A h EVENT-SET > es

Given a Casl signature E, a CSP signature A, and a syntactic EVENT-SET, we compute an
event set es of e G CommType, considering each COMM-TYPE independently.

Note that the COMM-TYPE list may contain duplicate entries (though obviously the set pro
duced has no such duplication), and that the event set will be closed under Casl subsort when
compared with other alphabets (see section 10.2.4.1).

E, CH b COMM-TYPEi > £l

E, CH b COMM-TYPEi > £n
£ , (O T ,P £) b e v e n t - s e t COMM-TYPEi •• • COMM-TYPEn > { e i , . . . , £ n}

E, CH b COMM-TYPE > £

Given a Casl signature E, a ChanSet CH, and a syntactic COMM-TYPE, we compute a
communication type e G CommType. The following two rules distinguish between sort and
channel communictation types by looking for the COMM-TYPE in the sort names in the sort
part of the Casl signature E, and in the channel names in the domain of the ChanSet CH.
For a given COMM-TYPE, at most one of these rules will apply — see section 10.3.2.

_________b SIMPLE-ID > 5 s G Sy________
E , CH b e v e n t - s e t - i t e m SIMPLE-ID > 5

b SIMPLE-ID > c c G D om (C H)
Tâ C H b e v e n t - s e t - i t e m SIMPLE-ID > (c, CH(c))

10.5.2 EVENT

An EVENT is either a term prefix event, a channel send event, a channel nondeterministic send
event, or a channel receive event.

EVENT ::= term-event TERM
I chan-send CHAN-NAME TERM
| chan-nondet-send CHAN-NAME VAR SORT
I chan-recv CHAN-NAME VAR SORT

E, CH, X b EVENT > e, a , X '

Given a Casl signature E, a ChanSet CH, a variable set X and a syntactic EVENT, we
compute an event e, a constituent alphabet a containing any communication types arising
from the event, and a variable set X ' containing any newly introduced local variables. There
are four rules: one per event type.

Term prefix

A term prefix event contains a TERM which is checked in the given context and produces a fully
qualified term t G FQTerm. The constituent alphabet a of the event contains just the sort of
t; no new variables are introduced.

(E, X) b TERM > t
E, CiJ, X b t e r m - e v e n t TERM > t, {sort(t)} , 0

110 Chapter 10 CSP-CASL Static Semantics

Channel send

A channel send event contains a CHAN-NAME and a TERM; the latter is checked in the given
context and produces a fully qualified term t G FQTerm. We attempt to cast the term to the
sort of the channel as described in section 10.2.4.2 — this implicitly encodes the requirement
that the channel name has been declared, otherwise the lookup in CH will fail. The constituent
alphabet a of the event contains the sort of the cast term and the channel name tagged with the
sort of the cast term; no new variables are introduced.

Note that in this rule we use the abbreviated forms C-N and T for CHAN-NAME and TERM
respectively.

b C-N > c (S ,X) b T > t cast(t , C H (c)) ^ error
Y , ,C H ,X b c h a n -s e n d C-N T > c!f, {sort(cast(t, C H (c))), (c, sort(cast(t, CH(c))))}, 0

Channel nondeterministic send

A channel nondeterministic send event contains a CHAN-NAME, a VAR and a SORT. We require
that the sort has been previously declared, and that it is a subsort of the declared sort of the
channel (and thus, we implicitly require that the channel name has been previously declared).
The constituent alphabet a of the event contains the specified sort and the channel name tagged
with the specified sort; the new variable set X ' contains one element, associating the declared
variable name with the specified sort.

b SORT D>s
b CHAN-NAME > c b VAR > x s G E s s < CH(c)

E , C H , X b chan-nondet-send CHAN-NAME VAR SORT > c \x:: s, (s, (c, s)}, { 5 1—> {^}}

Channel receive

A channel receive event contains a CHAN-NAME, a VAR and a SORT. We require that the
sort has been previously declared, and that it is a subsort of the declared sort of the channel
(and thus, we implicitly require that the channel name has been previously declared). The
constituent alphabet a of the event contains the specified sort and the channel name tagged
with the specified sort; the new variable set X ' contains one element, associating the declared
variable name with the specified sort.

b SORT > s
b CHAN-NAME [> c b VAR > x S G E s S < CH(c)

E, CH, X b c h a n - r e c v CHAN-NAME VAR SORT t> c lx :: s, {s, (c, s)}, (s i-> {x}}

10.5.3 SVAR-DECL

An SVAR-DECL is ‘single variable declaration’, introducing a new variable name having a
particular sort.

SVAR-DECL = s v a r -d e c l VAR SORT

10.5 Supporting elements 111

S I" SVAR-DECL > X , S

Given a set S of Casl sorts and a syntactic SVAR-DECL, we (trivially) compute a variable
name x and a Casl sort s. We require that the sort s computed from SORT is already known,
i.e. it is a member of S.

t~ VAR > x I" SORT > s S e S
S b s v a r - d e c l VAR SORT t>x, s

10.5.4 RENAMING and RENAMING-ITEM

A RENAMING is a sequence of RENAMING-ITEMS, which are undistinguised Casl IDs, to
be resolved to names of Casl binary functions or predicates.

RENAMING ::= renaming RENAMING-ITEM+
RENAMING-ITEM ::= renaming-item ID

E h RENAMING > it!, a

Given a C a s l signature E and a syntactic RENAMING (which is a sequence of RENAMING-ITEMs),
we compute a renaming R (which is a sequence of renaming items r<) and a communication
alphabet a containing the sorts which appear the in the renaming items.

E b RENAMING-1TEMi > n,OLn

E b RENAMING-1 TEMi > rn , a rn
E b ren am in g RENAMING-1 TEMi •• • RENAMING-1 TEMn > (n , * * • rn), a n U • • • U a rn

E b RENAMING-ITEM > r , a

Given a Casl signature E containing sets TF, PF, and P of total functions, partial functions
and predicates (respectively), and a syntactic RENAMING-ITEM, which is just a Casl ID, we
compute a renaming item r e (I d x S o r tx Sort) and a communication alphabet a containing
the sorts seen in r. The RENAMING-ITEM is expected to be the name of a previously declared
binary function or predicate, determined via lookup in E; the corresponding renaming item r
is then a triple consisting of the function or predicate name and the two sorts appearing in its
profile.

The lookup is fairly complex, as we require that the name is unique among the binary functions
and predicates.

b ID > i 3!(s1}s2) G Sort x Sort • 3 \X G { r i?((Sl))S2), PF((Sl))S2), P<Sl)S2>} • i e X

(S, TF, PF, P ,<) b r e n a m in g - ite m ID > («, si, 5 2), {si, 5 2 }

112 Chapter 10 CSP-CASL Static Semantics

Chapter 11

C a s l subsorts and Local Top
Elements

Contents
11.1 Introduction... 113

11.2 Local top elements.. 114

11.3 Algorithm and Haskell implementation........................ 115

11.4 Local top elements of a preorder.................................... 117

11.1 Introduction

As noted in 2.2.1, in C a s l we may declare a sort to be a subsort of another sort (the supersort),
in order to capture the idea that instances of the subsort are ‘special cases’ of the supersort.
Given a C sp-C asl specification it is important to check that any subsort relationships defined
in the data part have local top elements — see section 4.2.4 and [Rog06]. Informally, this
means that whenever a sort is a subsort of two other sorts, we require that the two supersorts are
themselves subsorts of a common supersort - the common supersort is then the corresponding
top element.

In this chapter, we define this notion more precisely, formulate a simple algorithm for the
computation of local top elements, and present a Haskell implementation of the algorithm. The
implementation is used to look for local top elements in subsort relations, as part of the static
checks performed by the C sp-Casl tool — see chapter 10.

Note that the definitions, algorithm and implementation presented here relate to local top ele
ments within the context of arbitrary binary relations on a single set. This is a small departure
from, and more general than, their original formulation in [Rog06], in which the context is
Casl subsorts (a preorder). It turns out that the concepts of local top elements and preorder
are orthogonal, and may be considered separately. Naturally, when dealing with Casl subsorts
in practice we must remember that they form a preorder - but we may take advantage of the fact
that any required computation is independent of the local top elements question. We consider
the implications of preorders in more detail in section 11.4.

113

114 Chapter 11 CASL sub sorts and Local Top Elements

a a

Figure 11.1: Graphs of relations R \ and R 2 (example 11.4).

11.2 Local top elements

Definition 11.1: A binary relation R on a set S is a subset of S x S. We write (a, b) e R as
aRb.

Definition 11.2: Given a set S and a binary relation R C S x S, R has local top elements iff:

V a, b, c G S • A aRc A b = f i c = > 3 d £ S * bRd A c.Rd

To work towards an algorithm for checking for local top elements, we define a binary relation’s
top element obligations and the corresponding top elements as follows.

Definition 11.3 (Obligations and top elements): Given a set S and a binary relation R, we
define the top element obligations o f R as:

C r = {(a, {&, c}) E S x F inSet(S) \ aRb A aRc}

By abuse of notation, we write an individual obligation (a, {6, c}) as ba c. (Note then that ba c
and ca b are the same obligation.)

For each bac G C r we define the corresponding top elements o f ba° as:

T c — {d € S | bRd A cRd}.

Then, R has local top elements iff V C 6 C r * T c 0- Checking for the presence of local top
elements is thus a matter of computing the top element obligations for the relation, and then
checking that each has a non-empty set of corresponding top elements.

Example 11.4: Consider the relations

#1 = {(a, 6), (a, c), (6, d), (c, d)} (over {a, 6, c, d})
J?2 = '{ (a , &), (a, c), (6, d), (c, e)} (over {a, 6, c, d, e})

Figure 11.1 shows these relations as directed graphs, with an arc from x to y iff xRy.

Clearly C r 1 = C r 2 = { ba c}. In R i, Tbac = {d}; bac is the only top element obligation in
R i, and it has a corresponding top element, so R i has local top elements. In R2, however,
Tbac = 0, i.e. i?2 does not have local top elements (as ba c witnesses).

11.3 Algorithm and Haskell implementation 115

11.3 Algorithm and Haskell implementation

An algorithm to check for local top elements arises naturally from the definitions given above.
Given a set S and a binary relation R on that set, we first compute Cr , the set of top element
obligations of R. Then, for each ba c E C r , we compute Tbac, the set of corresponding top
elements. R does not have local top elements iff T c = 0 for any C .

This algorithm may be implemented in Haskell very directly, thanks to Haskell’s excellent
support for higher order functions and rich standard library. We make extensive use of the
standard Set type and its facilities to map over sets and filter out particular elements,
and of Haskell’s excellent pattern-matching capabilities. We find this implementation to be an
excellent example of Haskell’s ability to directly encode high-level problems.

11.3.1 Data types

We start by defining data types for binary relations and obligations. A Relation relates
two types which may differ; a BinaryRelation is simply a relation on a single type.
Obligation is an algebraic data type where Obligation x y z = yx z in the notation
given above.

import qualified Data.Set as S
import List
import Maybe

type Relation a b = S.Set (a, b)
type BinaryRelation a = Relation a a

data Obligation a = Obligation a a a

As noted in definition 11.3, it is clear that ba c = ca b. We encode this in Haskell by declar
ing our Obligation type to be an instance of the Eq type class, and providing a suitable
implementation of ==, the equality check function:

instance Eq a => Eq (Obligation a) where
(Obligation n m o) == (Obligation x y z) =

(n==x) && ((m ,o)=(y,z) || (m,o)==(z,y))

In order to be able to use the standard library’s Set type for Obligations, Obligation
also needs to be an instance of the Ord type class (defining not just equality, but ordering).
We use a simple lexicographic ordering, with an exception for equality as noted above. (If
we just used the simple lexicographic ordering, with no special case for equality, a Set of
Obligations could in fact contain both ba c = ca b. The reason for Haskell’s use of Ord
rather than the more obvious Eq in the Set type is apparently related to performance concerns
in the implementation of a number of Set functions — see for example the discussion of
f romDist inctAscList, below.)

instance Ord a => Ord (Obligation a) where
compare (Obligation n m o) (Obligation x y z)

| (Obligation n m o) = (Obligation x y z) = EQ
| otherwise = compare (n,m,o) (x,y,z)

116 Chapter 11 CASL subsorts and Local Top Elements

Finally, so that we may easily obtain string representations of obligations (e.g. for debugging),
we also make it an instance of the Show class:

instance Show a => Show (Obligation a) where
show (Obligation x y z) = show [x,y,z]

Having defined a suitable type for our key data type, O b l i g a t i o n , much of the work is done.
The S e t type will now handle such matters as ignoring duplicates, and provides high level
functionality such as map and f i l t e r .

11.3.2 Computation of obligations and top elements

We start with a couple of utility functions upon which the algorithm is built. First, trans
formation of a set into its cartesian product. This is naturally expressed in Haskell as a fist
comprehension; the only complications are t o A s c L i s t and f r o m D i s t i n c t A s c L i s t 1
(necessary because it is a list comprehension - not a set comprehension), and the presence of
an O rd a restriction in the type signature (arising due to use of the S e t type).

cartesian :: O rd a => S.Set a — > S.Set (a,a)
cartesian x = S.fromDistinctAscList [(i,j) | i < — xs, j < — xs]

where xs = S.toAscList x

Second, s t r ip M a y b e , to turn a set of M aybe a into a set of a. M aybe is a polymorphic
algebraic data type representing ‘possibly present’ data: values of type M aybe a may be
either J u s t a (data is present) or N o th in g (data is not present). This function discards the
N o th in g s and extracts the contents of the J u s t s . Most of the work is in fact by the library
function M ay b e . c a t M aybe s , which does exactly that on a list (not a set).

stripMaybe :: O rd a = > S.Set (Maybe a) — > S.Set a
stripMaybe x = S.fromList $ M aybe.catM aybes $ S.toList x

Computation of top element obligations is then expressed easily. We take a B i n a r yRe 1 a t i on
a, i.e. a set of (a , a) pairs. We compute its cartesian product, giving us all possible pairings
of pairs. We map over those pairings looking for ones of the right ‘shape’, turning each into
either a N o th in g (not an obligation) or a J u s t O b l i g a t i o n . Finally we strip the M aybes
and are left with a set of obligations over a.

obligations :: O rd a = > BinaryRelation a — > S.Set (Obligation a)
obligations r = stripMaybe $ S.map isObligation (cartesian r) \

where isObligation ((w,x),(y,z)) =
if (w==y) && (x /= z) && (w /= z) && (w /= x)
then Ju st (Obligation w x z)
else Nothing

For each obligation, we need to compute its corresponding top elements. We take as input the
obligation and the cartesian product of the entire (original) binary relation. We filter that carte
sian product down to only those elements containing top element candidates for the obligation;
then we map over that, extracting the top elements. The set we return is a set of top elements
for the specified candidate.

* f r o m D is t in c tA s c L is t assumes the list is ascending and contains no duplicates. The latter condition
is obviously met since our input is a set; the former is met by the list comprehension and use of to A s c L i s t .
f r o m D is t in c tA s c L i s t is O(n), as opposed to the ‘safe’ f ro m L is t , which makes so such assumptions but
only performs 0(n log n).

11.4 Local top elements o f a preorder 117

findTops :: O rd a — BinaryRelation (a,a) (Obligation a) S.Set a
findTops c cand = S.map get.top (S.filter (is_top cand) c)

where is_top (Obligation _ y z) ((m,n),(o,p))=((m==y)&&(o==z)&&(n==p))
get_top ((_,_),(_,p)) = p

Finally, we compute the local top elements of a relation by computing its obligations and then,
for each obligation, computing its set of corresponding top elements.

localTops :: O rd a => BinaryRelation a — > S.Set (Obligation a, S.Set a)
localTops r = S.map (\x — > (x, m x)) (obligations r)

where m = findTops $ cartesian r

Checking the result of this function for empty sets on the right hand side is trivial and omitted
here.

11.4 Local top elements of a preorder

As mentioned in section 11.1, the C a s l subsorting relation forms a preorder. In this section,
we consider the implications for our algorithm and its implementation.

Definition 11.5: A binary relation < on a set S' is a preorder if it is:

• reflexive: a € S =$■ a < a

• transitive: a < b / \ b < c = > a < c

Given an arbitrary binary relation R over a set S, we can always obtain a preorder over S by
taking R ’s reflexive transitive closure R +~.

Thus, given a set of sorts and their subsort relation, if we aim to check for local top elements,
we must first transform the relation into its reflexive transitive closure, and look for local top
elements there.

Example 11.6: Consider again the relations R \ and R 2 (example 11.4. They are neither transi
tive nor reflexive, but under reflexive transitive closure we obtain the corresponding preorders:

< 1 = {(a , 6), (a, c), (6, d), (c, d), (a, a), (b, b), (c, c), (d, d), (a, d)}
< 2 = {(a , b), (a, c), (6, d), (c, e), (a, a), (6, 6), (c, c), (d, d), (e, e), (a, d), (a, e)}

Figure 11.4 shows these preorders as graphs (arcs arising through transitive closure are heavy;
those arising through reflexive closure are dotted). Then:

% = CRl U {bad, °ad, aa \ °ac, aad, bbd, Ccd}
C<2 = C r 2 U {bad, ca e, dae, aab, aa c, aadaae, bbd, Ccd}

It is easy to check that < 1, like R i, has local top elements. The obligations bad, cad introduced
by transitive closure both have d as top element — see below.

Similar comments may be made of <2 which, like R 2 , does not have local top elements: ba°
still has no top element, though again, all obligations introduced by transitive closure do (e.g.
bad, with top element d), as do all those introduced through reflexive closure (e.g. aac, with
top element c).

118 Chapter 11 CASL subsorts and Local Top Elements

v

b
\ 4

Figure 11.2: Graphs of preorders < i and <2 (example 11.6).

Now, in the above example we saw that reflexive closure only introduced trivially satisfiable
obligations; indeed, it is easy to see that this is true in general: every obligation introduced by
reflexive closure has form Xx y, with y a top element. If we write r(R) as the reflexive closure
of a relation R then we have:

C r { R) = C R U {Xx y | x , y e S • xR y}

with y a top element for Xx y trivially. Thus, for the purpose of checking for local top elements,
we do not in fact need to compute a relation’s reflexive closure; however, the same cannot be
said for transitive closure: in general it will introduce new obligations not trivially satisfied.

In practice, however, the problem of computing a relation’s transitive closure has already been
solved for us: the relation we actually want to check for local top elements is the subsort
relation on Casl sorts, arising from a specification’s data part, which is parsed and statically
analysed by existing machinery in HeTS. It turns out that this relation is then made available
to us, already subjected to transitive closure: as such, the algorithm described in section 11.3
is adequate to check a Csp-Casl specification for local top elements.

Chapter 12

Tool Implementation

Contents___
12.1 Overview of HETS implementation... 119
12.2 Implementation of parser...121
12.3 Implementation of pretty printing..127
12.4 Implementation of static semantics..129
12.5 Automated testin g ..135

In this chapter we discuss the implementation of our Csp-Casl tool within the framework of
the Hets toolset. In section 12.1 we present an overview of the Hets codebase and consider
its overall structure; sections 12.2, 12.3 and 12.4 then describe our implementation of CSP-
Casl parsing, pretty printing and static analysis respectively, within that framework; finally,
in section 12.5 we describe the testing strategies employed during development. An exhaustive
description of the Csp-Casl codebase is beyond the scope of this work; as such, we focus on
key features, general concerns, and some particular areas of interest.

12.1 Overview of Hets implementation

At time of writing, the Hets codebase1 consists of 568 Haskell modules and 655 other files
(e.g. documentation and test cases) in a tree of 131 directories.

The core of HETS is entirely logic-independent, and provides a framework for heteregeneous
specification over an arbitrary logic graph. The module h e t s . h s is the main program, to
be compiled to the binary executable H ets; then there are various directories providing, e.g.:
command-line interface, interpretation of command-line arguments and file I/O (D r iv er);
graphical user interface (GUI); abstract syntax, parsing and pretty-printing of HetCasl struc
tured and architectural specifications and specification libraries (S yn tax); static analysis of
HetCasl structured specifications (S t a t i c); and institution-based infrastructure for present
ing a logic to HETS (L og ic).

There are a number of common tasks which any CASL-related logic-specific code must per
form, in particular (though not only) parsing, pretty printing and static analysis. Rather than

'Downloadable from the HETS home page at h t t p : / /www. i n f o rm a t i k . u n i-b re m e n . d e / c o f i / h e t s /

119

120 Chapter 12 Tool Implementation

have each logic ‘reinvent the wheel’ much code is factored out into reusable logic-generic
modules. In particular, the directory Common contains a large number of modules providing
functionality which almost any CASL-related logic will require; for example:

• C om m on/L exer. h s ,C o m m o n /Id .h s , Com m on/K eywords. hs,C om m on/T oken . h s,
C om m on/A nnoState . h s — lexical analysis and parsing of CASL-family languages
(see section 12.2).

• Common/Doc . h s , Common/Do c U t i l s . h s — pretty printing facilities (see section
12.3).

• C o m m o n /L ib /S ta te . h s , C o m m o n /R esu lt. h s — state and result monads for static
analysis (see section 12.4).

All of the above modules (and a few others) are used by the Csp-Casl code discussed later.
Furthermore, a logic which extends or otherwise interfaces with CASL will typically also reuse
code which is nominally specific to CASL basic specifications; in our case, the Csp-Casl code
makes reference to:

• CA SL/AS_Basic_CASL. h s — abstract syntax of Casl basic specifications; reused
by the Csp-Casl abstract syntax, which references TERM, SORT, VAR, etc.

• C A S L /F orm u la .h s — parsers for Casl formulae and terms; reused by the Csp-
Casl parser.

• C A S L /S ign . h s , C A S L /S ta tA n a . h s — CASL signatures and static analysis; reused
by Csp-Casl static analysis.

Finally, logic-specific code resides in immediate subdirectories of the root directory, each
named after the logic in question. For example, there are logic-specific directories CASL (CASL
basic specifications), H a s k e l l (for H asC A SL), P r o p o s i t i o n a l (forpropositional logic)
and of course CspCASL. Each such directory contains code for dealing with logic-specific ba
sic specifications — the equivalents of CASL basic specifications (see section 2.2.1); such basic
specifications may then be included structurally in heterogeneous specifications as described
in chapter 5.

The exact contents of the logic-specific directories vary from logic to logic, but typically in
clude modules for:

• Representation of abstract syntax, implemented by algebraic data types, values of which
represent terms in the logic’s abstract syntax.

• Parsing, implemented using Parsec and the CASL-family parsing functions mentioned
above.

• Pretty printing, using Common/Doc . h s , C om m on/D ocU tils . h s and others.

• Static analysis of abstract syntax terms, which involves manipulation of (stateful) signa
tures and generation of debug, warning, and error messages. This also typically requires
the definition of data types for semantic objects distinct from abstract syntax terms; de
pending on the logic’s complexity, these might be defined in a separate module, or along
with the static analysis.

• Integration with H e t s ’ structuring mechanisms, by instantiating the type class L o g ic
defined in L o g ic /L o g ic . h s.

12.2 Implementation o f parser 121

Each logic also requires certain entries in the top-level Makefile enabling its code to be
built with the rest of the system, and possibly some modules in the Comorphi sms directory,
defining morphisms between logics (beyond the scope of this thesis).

Note also that a particular logic can in some cases introduce requirements outside its logic-
specific directory; e.g. and in particular, pretty printing of logic-specific symbols in LTgX may
(and in the case of Csp-Ca sl , does) require modifications to the general pretty-printing code
— see section 12.3.

12.2 Implementation of parser

The parser’s job is to transform an input text into a term over the abstract syntax; this, then,
involves two artifacts: the data types used to represent such a term, and the functions used
to perform the transformation. In this section, we discuss these two aspects, describing our
overall approach, various relevant features of Parsec and Hets, and some interesting nuances.

12.2.1 Representation of abstract syntax

C sp -C asl’s abbreviated abstract syntax (see section 9.2) is encoded using algebraic data types
in the modules CspCASL/AS_CspCASL. der. hs (for everything above the level of a pro
cess term) and CspCASL/AS_CspCASL_Process . der . hs (for the rest). The encoding
is very direct; for example, the grammar fragment:

EVENT : : = t e r m - e v e n t TERM
| c h a n - s e n d CHAN-NAME TERM
I c h a n - n o n d e t - s e n d CHAN-NAME VAR SORT
| c h a n - r e c v CHAN-NAME VAR SORT

is implemented in AS_CspCASL_Process . der. hs as:

data EVENT = TermEvent (TERM ()) Range
| ChanSend CHANNEL JSTAME (TERM ()) Range
| ChanNonDetSend CHANNELJMAME VAR SORT Range
| ChanRecv CHANNEL JNAME VAR SORT Range
deriving (Show,Eq)

This representative example illustrates a number of important points. It defines a single data
type, EVENT, with four constructors (TermEvent, etc.), with varying parameters. Values
created using the various constructors are differentiated where necessary by pattern matching
on the constructor name (e.g. see section 12.3).

We reuse CASL abstract syntax elements such as TERM (which is parametrised, here with the
empty type ()) , SORT and VAR. The EVENT data type is a derived instance of the type classes
Show and Eq, automatically providing string representations of, and equality comparisons on,
its values.

Note that each constructor includes a Range parameter; this data type (defined in Common /1 d . hs)
stores syntactic positional information, enabling very specific error messages (see section 12.4
and examples in chapter 13). This is partially enabled by the ‘type sensitive preprocessor’

122 Chapter 12 Tool Implementation

Drift2: in this case, AS_CspCASL_Process . der. hs is transformed at build-time to AS_CspCASL_Proc
with automatically-derived implementations of the getRange function (see section 12.2.2.3).

The abstract syntax data types refer to each other; in the above example, the data type CHANNEL_NAME
is just a type synonym, defined in the same module, for the Casl data type S IMPLE_ID:
type CHANNEL.NAME = SIMPLE J D

Similarly, the EVENT data type is itself of course referenced in the constructor P r e f ixP r oces s
for a term-prefix process term, one of nineteen PROCESS constructors, most of which we omit
here (cf. abbreviated abstract grammar in section 9.2.2):

data PROCESS

| PrefixProcess EVENT PROCESS Range

deriving (Eq, Show)

12.2.2 The parsers

Csp-Ca sl’s logic-specific parsers are found in the modules CspCASL/Parse_CspCASL. hs
and CspCASL/Parse_CspCASL_Process .hs (divided as described at the start of sec
tion 12.2.1). Parsing Csp-Ca sl , like all parsing in Hets, is implemented using Parsec (see
chapter 7); this basic functionality is augmented by Hets machinery supporting cross-cutting
concerns such as handling annotations3 and tracking the positions of syntactic elements for
use in error reporting — as well as more mundane matters of parsing particular symbols such
as semicolons and the like. Hets’ key type for parsers is AParser: this data type, defined
in Common/AnnoState . hs, builds on Parsec’s monadic GenParser data type to provide
annotation-collecting arbitrary-lookahead backtracking recursive-descent parsers. Every single
function for parsing Csp-Casl uses AParser. __
The code follows the concrete grammar given in section 9.3 remarkably closely, both in its
coarse structure and its treatment of individual syntactic categories; this is an unsurprising and
intended result of using Parsec. We now consider some interesting or instructive aspects.

12.2.2.1 Integration with H ets at the logic level

The ‘top level’ Csp-Casl parser is cspBasicSpec:
cspBasicSpec :: AParser st CspBasicSpec
cspBasicSpec = do chans < — option [] $ chanDecls

items < — processltems
return (CspBasicSpec chans items)

It takes no parameters, and returns a value of type AParser st CspBasicSpec, which
we read as ‘a parser which maintains some state (i.e. annotations) and returns an abstract syntax

2h t t p : / / r e p e t a e . n e t / c o m p u t e r / h a s k e 1 1 / D r I F T /
3C sp-Casl in its current form only uses annotations for comments, whereas in C asl annotations may carry

extra ‘side channel’ semantic content, e.g. that a particular axiom is in fact a proof obligation; it is anticipated that
later incarnations of Csp-Casl will also use annotations for such purposes.

12.2 Implementation o f parser 123

term of type CspBasicSpec’. Note that the input text is completely abstracted away, as is
usual with Parsec.

The body of the parser is a do-block encoding the intended largely sequential behaviour
of the parser. There are three steps: first, parse the CHAN-DECLS part; second, parse the
PROC-ITEMS part; finally, wrap the results in a CspBasicSpec value and package that into
the monad. We consider procltems in section 12.2.2.2; chanDecls follows:

chanDecls :: AParser st [CHANNEL_DECL]
chanDecls = do choice [asKey channels, asKey channelsS]

cds < — chanDecl ‘sepBy‘ anSemi
return cds

There are two things to notice about how channel declarations are handled. First: we use three
standard combinators from the Parsec library:

• option (in cspBasicSpec) tries to apply its second argument; if that fails without
consuming input, its first argument is returned. Here, it implements channel section
optionality: if the specification doesn’t begin with a channels or channel keyword,
the list of channel declarations is empty.

• choice tries to apply the parsers in a list of parsers, in order, until one of them succeeds.
Here, it implements the choice between the keyword channels and its singular form
— in common with the choice of ops vs. op, preds vs. pred, etc. in C a s l.

• sepB y applies zero or more occurrences of its first argument, separated by its second,
returning the fist of results. Here, it parses a channel declaration fist consisting of zero
or more individual channel declarations (not considered further here) separated by semi
colons.

(The sepBy 1 variant requires at least one application of its first argument; for Csp-
CASL channels it seems reasonable to allow zero; there seems no strong reason to disal
low an empty channel section which happens to begin with a channels keyword.)

Second: we use the asKey and anSemi parsers from H e ts . The former parses the speci
fied keyword, possibly followed by an annotation; the latter just parses a semicolon, possibly
followed by an annotation; furthermore, both parsers are lookahead: if the parse fails, they con
sume no input. This last point is important in conjunction with the use of opt ion as described
above; otherwise, we would have to explicitly use the try combinator to force lookahead here
(see below).

Finally, we ask: what calls cspBasicSpec? CspCASL/Logic_CspCASL. hs defines the
C sp-C asl logic’s interface to the rest of H ets, such that C sp-C asl basic specifications may
be used in a heterogeneous setting. Every logic has such a module, consisting essentially of
boilerplate with slots to be filled with references to various logic-specific types and functions.
In the case of C sp-C asl and cspBasicSpec, the relevant part is:

instance Syntax CspCASL CspBasicSpec SYMBJTEMS SYMB_MAP JTEM S
where parse_basic_spec CspCASL = Just cspBasicSpec

parse_symb_items CspCASL = Just $ symbltems csp.caslJkeywords
parse_symb_map.items CspCASL = Just $ symbMapItems csp_casl_keywords

In outline: the data type CspCASL (not shown), when initiated with three parameters including
CspBasicSpec (the top-level abstract syntax datatype, corresponding toCSP-BASIC-SPEC
in section 9.2.1), is an instance of the Syntax type class; its basic specification parser is

124 Chapter 12 Tool Implementation

cspBasicSpec. (The lines referring to symbols and symbol-maps in the above relate to
structured specification, and are beyond the scope of this discussion.)

12.2.2.2 Com binators for a rb itra ry lookahead while parsing process items

Let us now consider process items. The relevant part of the concrete grammar (section 9.3) is
very simple:

PROC-ITEMS ::= PROC-ITEM
| PROC-ITEM PROC-ITEMS

PROC-ITEM ::= PROC-DECL
| PROC-EQ

The implementation is remarkably similar, and an excellent illustration of the power of Parsec
and higher-order programming in general:

procltems :: AParser st [PROCJTEM]
procltems = manyl procltem

procltem :: AParser st PROCJTEM
procltem = try procDecl

< |> procEq

procltems returns a parser which parses a list of PROC_ITEMs; procltem returns a parser
which parses just one. procltems simply calls Parsec’s manyl combinator: this returns a
parser which performs one or more applications of its argument. The idea that ‘the process part
of a C sp-Casl specification is just a list of process items’ is thus easily encoded.

Now, the process items are process equations and process declarations, freely mixed (linear
visibility is enforced at the static semantic level); they are syntactically differentiated by an ar
bitrary lookahead (see section 9.3.1.2) performed by the p r o c 11 em parser. The t r y combina
tor attempts to apply its single argument: in this case, it attempts to parse a process declaration.
If it fails, it consumes no input: thus, arbitrary lookahead, clearly encoded and independent of
the parser actually doing the looking ahead. The combinator < | > (pronounced ‘predictive’)
applies its first argument, but if that fails without consuming any input, applies its second (see
section 7.2.4). Thus, the overall behaviour of the p r o c lt e m parser is that if p r o c D e c l fails,
p rocE q is called (with no t r y : if that fails, we have a parse error).

procDecl (not shown) is somewhat similar to cspBasicSpec, above: its optional parame
ter list is implemented using option; the process’ alphabet is parsed using H ets’ commaSepl
combinator (i.e. it is a comma-separated list with at least one element); etc. The key point re
garding lookahead is that if the process item being parsed happens to be a process equation,
i.e. if procDecl will fail, it has to parse a parameter name and an (optional) list of param
eters before it does fail (by reading an equals sign when it expects a colon); this is arbitrary
lookahead, because the parameter list can be any length — however, it seems unlikely that any
realistic/otherwise tractable process would have a long enough parameter fist for this to be a
problem. The alternative to this lookahead would be to restructure procltem so it parses the
name and parameter list and then differentiates, with a one-symbol lookahead; while this would
not be so onerous, we argue that keeping our current implementation is a reasonable applica
tion of Hoare’s famous maxim that “premature optimisiation is the root of all evil” [Hyd06]
(on the other hand, this has implications for error messages — see section 13.3.3).

12.2 Implementation o f parser 125

Symbol Usage
channel Channel section keyword
channels Channel section keyword (alternative)
process Process section keyword

RUN ‘Run’ process
CHAOS ‘Chaos’ process
DIV ‘Divergence’ process
SKIP ‘Skip’ process
STOP ‘Stop’ process
i Channel send and channel nondeterministic send processes
? Channel receive process
: ; Various prefix processes
-> Various prefix processes
r Sequential composition
1 1 1 Interleaving
1 1 Syncrhonous and alphabetised parallel
[1 Generalised parallel
1] Generalised parallel
[Alphabetised parallel
] Alphabetised parallel
[] External choice and external prefix choice
1 ~ 1 Internal choice and internal prefix choice

\ Hiding process
[[Renaming process
]] Renaming process

Table 12.1: Csp-Casl reserved keywords and symbols

12.2.2.3 Keyword and identifier parsing; encoding syntactic range

Consider the term_event parser:

term_event:: AParser st EVENT
term.event = do t < — CASL.Formula.term csp.caslJkeywords

return (TermEvent t (getRange t))

This encodes the first option of the concrete syntax rule for EVENT (see section 12.2.1), to
parse an event which consists simply of a C a s l term. There are three things to note:

• Part of the work is done by existing H e t s machinery, in the form of the term parser
from CASL/Formula. hs.

• t e rm is parametrised by a list of logic-specific keywords, disallowed as identifiers in the
term; in this case it is csp_casl_keywords, defined in CspCASL/CspCASL_Keywords . hs.
Most (but not all: see section 12.3) CsP-CASL-specific keywords and symbols are de
fined in that same module, including, e.g., channels and channel seen in section
12.2.2.1. See table 12.1 for a full list of CSP-CASL-specific reserved words.

• The call getRange t takes the TERM value returned by term and returns a Range
value encoding the term’s position in the input text; this is then simply stored in the
TermEvent’s Range slot (see section 12.2.1).

126 Chapter 12 Tool Implementation

term_event is a sim p le exam ple o f how syntactic range inform ation is stored in a C s p - C a s l
abstract syntax value; a m ore interesting exam p le is seen in chan_nondet_send, parsing a
channel nondeterm inistic send event (e .g . ‘c \ x: : s ’ in c\x::s —> SKIP):

chanjnondet_send :: AParser st EVENT
chan_nondet_send = do cn < — varld csp_casl_key words

asKey chan_sendS
v < — var
asKey svar_sortS
s < — sortld csp_casl_keywords
return (ChanNonDetSend cn v s (compRange cn s))

H ere, varld and sortld are H ETS-provided parsers for C a s l variable and sort nam es re
spectively, again param etrised w ith a list o f d isa llow ed keyw ord strings. chan_SendS and
svar_sortS, from CspCASL_Keywords . hs are the sym bols ! and : : respectively.

Now, a channel nondeterministic event is composed of five constituent syntactic entities; as
such, the ChanNonDetSend value’s Range is computed in terms of the ranges of those con-
sistuents. Specifically, our compRange function takes two values with Ranges (specifically,
values of type class Posltem) and returns a Range covering their total span (i.e. its start is
the start of the first parameter; its end is the end of the second). This range can then be usefully
exposed in error and debug messages such as the following (where, e.g., 15.13 means ‘line
15, column 13’).

*** Error /tmp/examples/egl.cspcasl:15.13-15.28,
Chapter 13, on sample runs of our tool, presents a full range of further examples.

12.2.2.4 Encoding of precedence in grammar, and corresponding parser structure

Finally, let us consider the implementation of operator precedence in C s p -C a s l process terms
(see section 8.2.1). This is, in fact, largely a matter of grammar design: the concrete grammar in
section 9.3 encodes operator precedences in a standard manner [ALSU06]. However, as noted
in section 9.3.1.1, the concrete grammar for process terms is left recursive, which is a problem
for a recursive descent parser. Consider the following concrete grammar fragment, encoding
the difference in precedence level of (internal/external) choice and sequential composition.

CHOICE-PROC ::= SEQ-PROC
| CHOICE-PROC [] SEQ-PROC
| CHOICE-PROC " I " SEQ-PROC

A direct implementation in Parsec of this rule would look something like this:

choice.proc lp = try seq_proc
< |> try (do lp < — choice_proc

asKey extemal.choiceS
rp < — seq_proc
return (ExtemalChoice lp rp (compRange lp rp))

< |> do lp < — choice_proc
asKey intemaLchoiceS
rp < — seq_proc
return (IntemalChoice lp rp (compRange lp rp))

12.3 Implementation o f pretty printing 127

(Note use of compRange again, this time covering entire process terms). The problem here is
that if that first call to seq_proc fails, the next thing tried is a call to choice_proc, leading
immediately into a nonterminating recursion. To solve this problem, we apply a standard trans
formation to the grammar, yielding equivalent but non-left-recursive rules, as demonstrated for
CHOICE-PROC in section 9.3.1.1. The transformed concrete grammar fragment is:

CHOICE-PROC SEQ-PROC CHOICE-PROC1

CHOICE-PROC1 ::= [] SEQ-PROC CHOICE-PROC1
| " I T SEQ-PROC CHOICE-PROC1
I e p s i lo n

It is this form of the grammar (not explicitly written in its entirety in this thesis) which is
implemented in our tool; for CHOICE-PROC, we have:

choice_proc :: AParser st PROCESS
choice_proc = do sp < — seq_proc

p < — choice_proc’ sp
return p

choice.proc’ :: PROCESS — > AParser st PROCESS
choice.proc’ lp = do asKey extemaLchoiceS

rp < — seq_proc
p < — choice.proc’ (ExtemalChoice lp rp (compRange lp rp))
return p

< | > do asKey intemaLchoiceS
rp < — seq_proc
p < — choice.proc’ (IntemalChoice lp rp (compRange lp rp))
return p

< | > return lp

This is a fairly direct encoding of the transformed grammar fragment shown above; the most
interesting thing to note is that choice_proc' (corresponding to the CHOICE-PROC1 rule)
is parametrised with the PROCESS returned by the sequence_process parser: that value
needs to be passed ‘forwards’ for inclusion in the overall result of the parser — as either the
left hand side of an ExtemalChoice or IntemalChoice value, or just on its own if
those parsers fail (note use of asKey which, as noted above, consumes no input on failure —
hence, no try here).

Finally, it is worth noting that while Parsec’s ParsecExpr module provides a simple mecha
nism for building expression parsers in which precedence and associativity are specified declar-
atively, this does not provide a simple solution for parsing process terms; the problem is that
some process terms (e.g. generalised and alphabetised parallel) involve complex multi-part
operators which are not expressible using the ParsecExpr mechanism. Thus, despite some
promising exploratory work on a restricted subset of the grammar, it is in fact necessary to
encode the final grammar manually.

12.3 Implementation of pretty printing

Pretty printing of C s p -C a s l specifications is implemented using H e t s ’ standard mechanisms,
based on [Hug95], and reuses C a s l ’s existing pretty printing facilities where possible. The

128 Chapter 12 Tool Implementation

basic machinery, defined in Common/Doc. hs and Common/DocUtils . hs, consists of
the data type Doc representing pretty-printable documents; various atomic Doc values; various
combinators for composing Docs; and the Pretty type class, to be instantiated by any pretty-
printable type.

In this context, a pretty printer for a type is implemented by declaring the type to be an instance
of the Pretty type class, and writing the pretty function thus required, to transform a value
of the type into a corresponding Doc value. When a logic is integrated into H ets as outlined
earlier in this chapter, specifications written in that logic may then be pretty printed to ASCII,
DTgX or HTML by passing appropriate command-line switches when running H ets (all CSP
CASL examples in this thesis are typeset by H ets; see also section 13.2).

As a representative example illustrating some key points, consider the pretty printer functions
for process items:

instance Pretty PROCJTEM where pretty = printProcItem

printProcItems :: [PROCJTEM] — > Doc
printProcItems ps = foldl ($+$) empty (map pretty ps)

printProcItem :: PROCJTEM — > Doc
printProcItem (Proc J)ec l pn args alpha) =

(pretty pn) < > (printArgs args) < + > colon < + > (pretty alpha) < + > semi
where printArgs [] = empty

printArgs a = parens $ ppWithCommas a
printProcItem (ProcJEq pn p) = (pretty pn) < + > equals < + > (pretty p)

The first line declares PROC_ITEM to be pretty-printable, using the printProcItem func
tion.

printProcItems prints a list o f PROC_ITEMs; it m aps pretty over every elem ent o f that
lis t then, starting w ith the em pty Doc, fo ld s the list o f Docs thus produced dow n to a s in g le
Doc value, com b in ing the elem en ts pairw ise using the $ + $ com binator; this last com bines tw o
Doc values into a new one, inserting a n ew lin e betw een them .

printProcItem, to handle a single PROC_ITEM value, illustrates the use of pattern match
ing over a type’s constructors,' as mentioned in section 12.2.1. There are two cases: one for
Proc_Decl values (process declarations), and one for Proc_Eqs (process equations). The
main points to note are:

• Calls to pretty printers of the various constituent values (e.g. process name, process
argument list), none of which are shown here.

• Use of the <+> and <> combinators, to place two Docs besides each other (with and
without a space, respectively); c f $ + $, above.

• The ppWithCommas combinator, to pretty print a list of values, separated by commas.

• The atomic Doc values colon, semi, and equals representing those symbols.

On the whole, defining pretty printing in H e t s is reasonably straightforward. The only real
difficulty encountered relates to symbols. The issue is that in many cases, a symbol’s DTgX
representation is very different from its plain text one; a CSP-CASL-specific example is the
external choice operator, whose ASCII form is [], but whose DT^X is \Box, rendered as □.

12.4 Implementation o f static semantics 129

Now, H ets provides a mechanism addressing such symbols: in Doc. hs, the value latexSymbols
maps ASCII representations of symbols to their MjgX equivalents; an output-context-aware
pretty printer for such symbols may then be created using the symbol function — so in our
example, rather than render external choice as:

text extemaLchoiceS

we render it as:

symbol extemaLchoiceS

which results in a render time lookup in latexSymbols if and only if the desired output is
HTeX.

This works well, up to the point of ASCII symbol-clash, at which point problems emerge. The
root cause of these problems is that latexSymbols is a map from ASCII representations to
ETgX equivalents — thus, a given ASCII key can have only one corresponding LSTgX value.
With Csp-Casl this causes a problem with alphabetised parallel, and results in a divergence
between our pretty printed format and Csp’s. Specifically:

• In CSP, alphabetised parallel is pretty-printed with a single | in the middle, e.g. p |[x | y]\ q,
whereas the machine-readable a version, uses two | characters, e.g. p [x | I y] q.

• In Csp-Casl , we have p|fr| |^|q for pretty printed, and p [x | | y] q for machine readable,
i.e. two bars in both versions.

The reason for this divergence arises from the deficiency noted above: we could normally
use the latexSymbols machinery to define a symbol whose ASCII differs from its HTpX,
but in this case that is impossible because of a clash with sychronous parallel, whose ASCII
representation is also | | , but whose HTpX is \mid\mid. latexSymbols may include a
map for synchronous parallel, or for alphabetised parallel, but not for both; thus, we must
choose between a single bar or two bars in the HTpX version, where our choice applies to both
cases. As the two bars seem more fundamental to synchronous parallel than the single bar
seems fundamental to alphabetised parallel, we make the compromise described here.

A possible solution to this problem would be raise our symbol handling from the syntactic to
the semantic level: we would define a type, a value of which would contain all of the various
representations of a particular symbol; thus, we would no longer refer to a symbol primarily
via its ASCn representation (as we do now), but rather via a value of this new type. This
would decouple ASCII and IATpX, and in particular allow a given ASCII string to have multiple
associated LHgX strings, depending on the actual semantic content intended. This would solve
the problem described above, but would require non-trivial refactoring of Hets, beyond its
Csp-CASL-specific parts.

12.4 Implementation of static semantics

The C sp-C asl static semantics presented in chapters 10 and 11 is implemented in the mod
ule CspCASL/St at Ana. hs, whose functions transform abstract syntax values to values of
semantic types defined mostly in CspCASL/SignCSP . hs. The analysis functions also per
form the various checks required, possibly raising errors which halt further computation on the
specification, or warnings, which allow computation to continue but indicate possible cause
for concern. We present the features and techniques by example, considering the analysis of
several particular syntactic categories.

130 Chapter 12 Tool Implementation

12.4.1 Representation and analysis of C s p -C a s l basic specifications

A CSP-CASL basic specification is represented using types defined in CspCASL/SignCSP . hs:
type CspCASLSign = Sign () CspSign

data CspSign = CspSign { chans :: ChanNameMap
, procS et:: ProcNameMap
} deriving (Eq, Show)

A CspCASLSign value, representing a C sp-Casl signature, is a CASL basic signature (Sign,
defined in CASL/Sign. hs) extended with a CspSign value representing a CSP signature —
see section 10.2.1. A C spS i gn value contains a map from channel names to Casl sort names,
and a map from process names to process profiles (we omit the details of process profiles here):

type ChanNameMap = Map.Map CHANNEL-NAME SORT
type ProcNameMap = Map.Map PROCESS-NAME ProcProfile

The top-level static analysis function, ana_BASIC_CSP, analyses a CspBasicSpec value
(a basic specification in the abstract syntax) in the context of a C sp-Casl signature, wrapped
in an instance of the State monad (see below). This function is ‘plugged in’ to the H e ts
machinery in a manner similar to that described for abstract syntax and parsing, earlier in this
chapter.

anaJBASIC.CSP :: CspBasicSpec — > State CspCASLSign ()
ana_BASIC_CSP cc = do checkLocalTops

mapM anaChanDecl (channels cc)
mapM anaProcItem (proc Jtem s cc)
return ()

Thus: there is one anaChanDecl caliper CHAN-DECL (see section 10.3.2), and one anaProcItem
call per PROC-ITEM (see section 10.3.3). The former is worthy of close consideration.

12.4.2 Analysis of channel declarations

The purpose of the function anaChanDecl (below) is to transform syntactic CHAN-DECL
values into (modifications of) semantic ChanNameMap values (see section 12.4.1). The func
tion corresponds reasonably closely to the CHAN-DECL rule in section 10.3.2, except that new
elements are added to the channel name map not here, but in anaChannelName (discussed
below); this is a specific example of a general point of interest, namely that there is an almost
direct translation from static semantics rules to their implementation, but it is not as direct as
that for syntax. This is unsurprising: Parsec provides (rather successfully) a domain specific
language for recursive descent parsing, enabling our designs to be implemented directly — that
is, after all, the point of a domain specific language [Hud96]. For our static analysis, we have
no such DSL, and must implement the rules in more ‘traditional’ Haskell, which leads to heavy
use of monadic folds, etc., in code where the most natural place to do something (e.g. add
entries to a channel map) is not necessarily the most natural place to specify that in the design.
Overall, however, the coarse structure is at least essentially identical.

anaChanDecl:: CHANNELJDECL — > State CspCASLSign ()
anaChanDecl (ChannelDecl chanNames chanSort) = do

checkSorts [chanSort]

12.4 Implementation o f static semantics 131

sig < - get
let ext = extendedlnfo sig

oldChanMap = chans ext
newChanMap < — M onad.foldM (anaChannelName chanSort) oldChanMap chanNames
vds < — gets envDiags
put sig { extendedlnfo = ext { chans = newChanMap }

, envDiags = vds }
retu rn ()

The first line of the body calls checkSorts (a Casl static analysis function) which, given
a list of SORTs, adds an error to the state for every sort not known in the signature’s Casl
part; here, it checks that the declared channel sort is known. This is exactly as seen in the
CHAN-DECL rule.

The get call, and the corresponding put at the end of the function, respectively get and put
a CspCASLSign value stored in a State monad [Wad95] (anaChanDecl’s type signature
tells us that the state stored is of type CspCASLSign). The CspCASLSign ‘in the state’ at
the start of the function is thus bound to the name sig. Later, the put call replaces that state
with an copy of sig whose extendedlnfo and envDiags fields are updated to new val
ues. Such a get/put pair is typical of a static analysis function which manipulates the signature;
a function which needs only to examine the signature (e.g. to look up a channel’s sort) need
only perform the get, of course.

Having acquired the signature, extendedlnfo projects the CspSign part, bound to the
name ext, and finally the signature’s channel map is bound to the name oldChanMap.
This forms the basis of an updated channel map, constructed by folding (anaChannelName
chanSort) over the list of CHAN_NAMEs in chanNames. Consider anaChannelName’s
type signature:

anaChannelName :: SORT — > ChanNameMap — > CHANNELJNAME — >
State CspCASLSign ChanNameMap

Given a sort, a channel name map, and a channel name, anaChannelName returns a new
channel name map, computed in a state monad containing a C sp -C a s l signature. We omit
its definition here, but it should be clear that it returns a copy of the input map, with a new
entry mapping the channel name to the sort. This, then, implements the CHAN-NAME S and
CHAN-NAME rule in section 10.3.2.

Any duplicated channel names cause anaChannelName to raise errors and warnings (not
shown); anaChanDecl then collects those diagnostic messages in a value bound to the name
vds, and stores them in the modified signature. Such is the mechanism for storing diagnostic
messages in H e ts static analysis; if, at the end of static analysis, there are any errors, they will
be reported en masse, and execution will cease. We will see an example of the mechanism for
raising error messages shortly.

12.4.3 Analysis of process terms

anaProcTerm analyses process terms, whose type signature,

anaProcTerm :: PROCESS — > ProcVarMap — > ProcVarMap — > State CspCASLSign
CommAlpha

132 Chapter 12 Tool Implementation

corresponds closely with the PROCESS rules’ general form (see start of section 10.4): input
consists of a process term, and global/local variable sets (here called ProcVarMaps); the
required signature context comes from the state monad. The function yields the process term’s
constituent alphabet; anaProcEq, which analyses a process equation, checks this against the
process’ permitted alphabet (see section 10.2.3) — we examine the similar check in the context
of alphabetised parallel, shortly.

The body of anaProcTerm is a large case distinction, with one case per PROCESS con
structor; we concentrate on just one case, namely alphabetised parallel:

anaProcTerm proc gVars lVars = case proc of

AlphabetisedParallel p esp esq q _ — >
do pComms < — anaProcTerm p gVars lVars

pSynComms < — anaEventSet esp
checkCommAlphaSub pSynComms pComms proc ’’alphabetised parallel, left”
qSynComms < — anaEventSet esq
qComms < — anaProcTerm q gVars lVars
checkCommAlphaSub qSynComms qComms proc ’’alphabetised parallel, right”
re tu rn (pComms ‘S.union4 qComms)

Recalling that such a process term is written p||esp| \es^\q, and comparing with the ALPHAPAR-PROC
rule in section 10.4.13, this is easily understood: we (recursively) analyse the left hand process
term p, binding its constituent alphabet to the name pComms; we analyse the left hand event
setp esp, binding its alphabet to pSynComms; then we check that the latter is included in the
fomer (under subsort closure); then we repeat for the right hand side. The overall product of
the analysis is the union of the process terms’ constituent alphabets. The interesting part, of
course, is checkCommAlphaSub.

12.4.4 Analysis of communication alphabets

checkCommAlphaSub :: CommAlpha — > CommAlpha — > PROCESS — > String — >
State CspCASLSign ()

checkCommAlphaSub sub super proc context = do
sig < - get
let extras = ((closeCspCommAlpha sig sub) ‘S.difference4 (closeCspCommAlpha sig super

))
if S.null extras

then do return ()
else do let err = (’’Communication alphabet subset violations (” ++

context ++ ”): ” ++ (show $ S.toList extras))
addDiags [mkDiag Error err proc]
return ()

This function, which is also called for the similar check on process equations, checks that the
subsort closure of one communication alphabet (sub) is a subset of the subsort closure of
another (super). The set of elements violating that requirement (collected via set difference)
is reported via a Diagnosis value (Common/Result. hs), added to the state’s collection
of diagnostic messages.

12.4 Implementation o f static semantics 133

Specifically, the error message is represented by the Diagnosis value returned from the
mkDiag Error err proc call. Error indicates that the diagnosis is an error (as opposed
to a Warning, Hint or Debug), err is the error string, built from a context-specific string
(see analysis of AlphabetisedParallel, above) and a string representation of the set of
CommType values violating the requirement. Finally, proc is the process term containing the
violation, and will be included in the error output for the user — in particular, its range will be
obtained by a getRange call, and printed out. Thus, any value to be included in a diagnostic
message in this manner must implement the Posltem type class (see section 12.2.2.3). In the
case of AlphabetisedParallel, proc is the alphabetised parallel process term; in the
case of a process equation check, it will be the entire process term on the right hand side of the
equation.

For example, the following specification contains a violation of the alphabet subset condition
on an alphabetised parallel process: the constituent alphabet of the named process term Q is
Q ’s permitted communication alphabet, T , but the alphabetised parallel operator requires that
the subsort closure of the right-hand {5} event set be a subset of that set — which is obviously
not the case (though if we had S < T it would be).

logic CspCASL
spec A lp h a E rro r =

data sorts S, T
process P : S ,T ;Q-T;

P = SKIP \ \ (RUN (S) \[S \\ S]\ Q)
end

The output by HETS is then:

[gimbo@mane Hets] ./hets CspCASL/test/alpha_error.cspcasl
logic CspCASL
Analyzing spec AlphaError
*** Error CspCASL/test/alpha_error.cspcasl:6.26-6.4 5,
Communication alphabet subset violations (alphabetised parallel,' right): [S]
'RUN (S) [S || S] Q'
hets: user error (Stopped due to errors)

The error message tells us we have an alphabet subset violation, that it occurs on the right
hand side of an alphabetised parallel process term, and that the list of offending communi
cation types contains just one element, S. The offending process is then printed in its en
tirety (note that only the alphabetised parallel process term is printed, not the entire process
equation); its location is shown on the line beginning ***, i.e. line 7, columns 18 to 32, of
/tmp/alpha_error. cspcasl. See chapter 13 for more example system runs.

12.4.5 Analysis of Casl terms

Analysis of Casl terms is an interesting and non-trivial example of integration with Hets’
existing static analysis machinery. Casl terms occur in Csp-Casl prefix process terms (rep
resenting a value to be communicated) and named process references (representing values for
global parameters of the named process). We will consider the latter.

The NAMED-PROC rule given in section 10.4.2 checks that the number of parameters is as
expected, and then for each parameter attempts to cast it to the appropriate sort, as described

134 Chapter 12 Tool Implementation

in section 10.2.4.2. The relevant part of anaN am edP roc , the function which implements this
rule, is as follows (full version omitted):

if (length terms) == (length varSorts)
then do m apM (anaNamedProcTerm procVars) (zip terms varSorts)

re tu rn permAlpha
else do let err = ’’wrong number of arguments in named process”

addDiags [mkDiag Error err proc]
re tu rn S.empty

The term list length check is obvious; the terms and expected sorts are zipped together4 and
passed individually (along with p r o c V a r s , the combined global and local variable sets), to
the function an aN am edP rocT erm , which checks a single term/sort pair:

anaNamedProcTerm :: ProcVarMap — > ((TERM ()), SORT) — > State CspCASLSign ()
anaNamedProcTerm pm (t, expSort) = do

mt < — anaTermCspCASL pm t
case mt of Nothing — > re tu rn () — CASL term analysis failed

(Just at) — > do ccTermCast at expSort — attempt cast; don’t need result
re tu rn ()

a n aN am ed P ro cT erm is quite simple: it calls anaTerm CspCA SL, to perform CASL static
analysis of the term and, if that was successful, calls c c T e rm C a s t, which attempts to cast
it to the required sort. The result of that cast is itself a term (see below), but that value is
not required here: we just need to perform the cast, so it may raise an error if appropriate.
anaTerm CspCA SL is a thin and uninteresting wrapper around anaT erm C spC A S L ':

anaTermCspCASL’ :: CspCASLSign - > (TERM ()) - > Result (TERM ())
anaTermCspCASL’ sig t = do

let alllds = unite [mkldSets (allOpIds sig) $ allPredlds sig]
mix = emptyMix { mixRules = makeRules (globAnnos sig) alllds }

resT < — resolveMixfix (putParen mix) (mixResolve mix)
(globAnnos sig) (mixRules mix) t

oneExpTerm (const return) sig resT

anaT erm C spC A SL ' takes a C sp -C a s l signature and a term, and returns a (fully qualified)
term in the R e s u l t monad (which is, above this level, integrated with the S t a t e monad).
Now, all of the work here is being done by existing C a s l machinery; it is complicated mainly
by the necessary presence of mixfix analysis, in which terms written in ‘mixfix notation’ (which
“generalises infix, prefix, and postfix notation to allow arbitrary mixing of argument positions
and identifier tokens” [BM04, §3.1]), identified but left unresolved during parsing, are resolved.

The details of this process are largely opaque to us: we extract Casl operation and predicate
names from the signature (a l l O p I d s s ig , etc.) and bind them to the name a l l l d s ; we
create a ‘mixfix analysis context’ m ix from that; r e s o lv e M ix F ix then performs any mixfix
resolution required on the term, and finally, oneE xpT erm tests that the term can be uniquely
resolved in the face of overloading; the result of oneE xpT erm is a fully qualified term, which
anaT erm C spC A SL ' then returns.

Casting that fully qualified term to the desired sort is more straightforward — a fairly direct
encoding of the case distinction in the definition of cast : FQTerm x Sort —> FQTerrn, from
section 10.2.4.2.

4 z i p combines two lists into a list of pairs; its type signature is z i p : [a] -> [b] -> [(a , b)]

12.5 Automated testing 135

ccTermCast returns a value of type Maybe (TERM ()) because the cast can fail: see the
last case, which returns Nothing. Conversely, if the fully qualified term t’s sort termSort
is the same as the desired sort cSort, we just return t (or rather, Just t, where Just
indicates success, vs. Nothing’s failure); otherwise, we check the CASL signature’s subsort
relation to see if termSort < cSort or vice versa; in both cases, we wrap the term in
another term, using the Sorted_term constructor for an upcast, and the Cast constructor
for a downcast. Note the use of getRange again to pass the input term’s Range value to the
TERM constructors.

ccTermCast:: (TERM ()) - > SORT - > State CspCASLSign (Maybe (TERM ()))
ccTermCast t cSort =

if termSort = - (cSort)
then return (Just t)
else do sig < — get

if Rel.member termSort cSort (sortRel sig)
then do let err = ’’upcast term to ” ++ (show cSort)

addDiags [mkDiag Debug err t]
return (Just (Sorted_term t cSort (getRange t)))

else if Rel.member cSort termSort (sortRel sig)
then do let err = ’’downcast term to ” ++ (show cSort)

addDiags [mkDiag Debug err t]
return (Just (Cast t cSort (getRange t)))

else do let err = ’’can’t cast term to sort ” ++ (show cSort)
addDiags [mkDiag Error err t]
return Nothing

where termSort = (sortOfTerm t)

12.5 Automated testing

We conclude this chapter with a brief discussion of the issue of testing. This section is neces
sarily brief as our testing strategy, at least within the context of Hets, has been essentially ‘ad
hoc’ and ‘by hand’: tests have been written and performed individually when deemed necessary
to test a particular feature, typically the one most recently implemented.

We would much prefer that this were not the case: a good set of automated tests gives valuable
assurance that a codebase does what is required, and continues to do so over time and continued
development. Working from a formal specification, as we have done here, certainly helps raise
assurance that what is required, and only that, has been implemented (which is, of course, one
of the intentions of unit testing), and Haskell’s all-encompassing type system virtually forces
one to write code which is in some sense correct — however, automated tests would still be
extremely desirable.

The basic problem is that Hets does not currently provide a framework for automated testing:
there are some test specifications in a particular directory, where make t e s t will check that
each is handled by the tool without errors, but this is not very detailed and ignores the issue
of negative testing, where we test not just the positive cases (‘yes, it worked as expected’) but
also the negative ones (‘yes, it failed as expected’). For a parser and static analyser, negative
tests are arguably as important as positive ones.

136 Chapter 12 Tool Implementation

Now, at an earlier stage in this project, before our codebase was integrated with He t s , we did
in fact have a framework for automatically performing positive and negative tests on the parsing
and pretty printing functions. The framework’s basic data unit was a test case containing:

1. a name for the test case (‘Prefix skip’ in the example below);

2. the name of the parser function with which to process the fragment (‘Process’ below);

3. the sense of the test: ++ (positive) or — (negative);

4. the expected output, where a positive test would expect an ASCII pretty print of the
abstract syntax term parsed, and a negative test would expect an error message;

5. a dividing line consisting of 10 dashes;

6. the fragment of Csp-Casl to be tested.

Note that this was an entirely standalone program, independent of He t s . As such, an entire
C sp-Casl specification could not be tested, because there was no way to deal with the data
part; similarly, C asl entities such as sort names, terms, and formulae, could only be simple
identifiers. Nonetheless, such a framework proved useful at a time when the parser was in a
daily state of flux.

For example, the following is a simple positive test case targetting the process term parser:

Prefix skip
Process
++
a -> SKIP || SKIP

a -> SKIP || SKIP
Running the tool on this test case produces the following output:

Performing tests
Prefix skip (++Process) passed
This is deliberately terse: the intent is that a large batch of tests which pass should do so fairly
quietly — only test failures should stand out.

A negative test case, where we expect the parse to fail, is:

Prefix skip
Process

"Prefix skip" (line 1, column 9):
unexpected "|"
expecting "%" or words

a -> [] || SKIP
Here we expect the error output shown before the Csp-Casl source; a successful test run looks
very similar to the one above:

Performing tests
Prefix skip (— Process) passed
Naturally, a test which fails should report details of the failure. Here we force a failure by
changing the above negative test so the Csp-Casl source will, in fact, parse:

12.5 Automated testing 137

Prefix skip
Process

"Prefix skip" (line 1, column 9):
unexpected "|"
expecting "%" or words

a -> SKIP || SKIP
Now the output tells us that the test failed, with ‘unexpected parse success’ — our negative test
failed, because the parse was successful, contrary to expectations:

Performing tests
Prefix skip (— Process) failed - unexpected parse success
-> expected:
"Prefix skip" (line 1, column 9):
unexpected "|"
expecting "%" or words
-> got:
a -> SKIP || SKIP
Note that the failure report tells us what was expected, and what was obtained — in this case,
because the parse succeeded, the (unexpected/undesirable) output is the process term pretty
printed in ASCII.

Now, clearly there is no technical reason why such a test framework could not be employed in
Hets; however, this has not yet been done. There are two possible approaches:

1. An external tool which calls het s, collects its output, examines output files, etc. — such
a tool could be reasonably quickly developed in a scripting language such as Python, for
example.

2. An integrated testing tool written in Haskell which calls the appropriate Hets functions
directly in order to run tests and collect and analyse the outputs. This is essentially how
the framework above works, which is the main reason why it was not carried forward
when our work was integrated with Hets: the Hets codebase is decidely non-trivial in
nature, and it was far from obvious how to achieve this in a timely manner.

Reinstating our automated testing framework is certainly desirable future work — not only for
the Csp-Casl tools but also, we would argue, for the rest of Hets too.

An interesting possible enhancement would be to take the output of the ASCII pretty printer
and put that back through the parser; this would enable us to ask two pertinent questions:

1. Does the output of the pretty printer parse?

2. Is the output of the pretty printer a fixed point, with respect to repeated parsing/pretty
printing?

Naturally, we would like the answer to both of these question to be ‘yes’.

138 Chapter 12 Tool Implementation

Part III

Evaluation & Conclusion

139

Chapter 13

Selected System Runs

Contents
13.1 Screenshot: H e t s in action..141

13.2 Examples from [Rog06]..141

13.3 Examples demonstrating particular featu res..................146

13.4 Example from e p 2152

In this chapter we demonstrate our implementation by presenting selected runs of the system
on input files demonstrating various aspects of interest.

13.1 Screenshot: Hets in action

In figure 13.1 we see the obligatory screenshot of the tool in action, processing two of the
examples presented later in this chapter. In the foreground terminal, h e t s has just processed
t c s 4 . c s p c a s l (see section 13.2.4), with debug output enabled via the -v 5 command line
option. In the other terminal, we have just built h e t s and run it on t c s 3 . c s p c a s l (see
section 13.2.3). In the background lurks emacs, showing the source of t c s 3 . c s p c a s l and
some static analysis code.

Note that Hets’ ordinary mode of operation includes a GUI for proof management; however,
as Csp-Casl support extends thus far only to parsing and static analysis, we do not invoke the
GUI, and are only interested in CLI output.

13.2 Examples from [Rog06]

In chapter 4, we illustrated Csp-Casl with four examples first seen in [Rog06]. These provide
simple positive tests, i.e. specifications which successfully parse and pass static analysis —
and an opportunity to demonstrate some of h e t s ’ command line options.

141

[e
im

bo
Om

an
e

He
ts

]
ma

te

142 Chapter 13 Selected System Runs

Z> —' LL — LL D C
:«0 aO O 0 0 4 - qO hh o.O of) Cm)*—• nr*

C l IJI r -i u'l 0 0 L J S j u jD J J CO J J ±J COo c qi u'i c n a.' c ai a.i - ai ■ a> •
r.i 0 l_l Ol ' i I U ZTTl I j '■ I I tH I I I I tH lZj
E r-t ii u " 5 'H h u -4- C l '4- Cl

■r-i 4-' U.O O iTl QU iTi B: C u Ol » -<H t t Ol U rH
aO C l <—* c O' Ci l . » zri u t

— » I—I iTl LL LL. '—i I CO U LL U CO « LL. U CO

0 0 0 1—I 21 O' O0 C O i1
• C j UJC l D —4

Figure 13.1: Screenshot of Hets in action, parsing Csp-Casl

13.2 Examples from [Rog06] 143

13.2.1 tcsl.cspcasl — almost the simplest possible

This example illustrates successful parse and analysis of a very simple specification, almost the
simplest one could write.
Input:

logic CspCASL
spec tcsl =
data sort S, T

ops c: S; d: T
process
tcsl: S, T
tcsl = c -> SKIP ||d -> SKIP

Output:

[gimbo@mane Hets] ./hets CspCASL/test/tcsl.cspcasl
logic CspCASL
Analyzing spec tcsl

13.2.2 tcs2.cspcasl — debug output

This example illustrates debug output, enabled by invoking the hets executable with the -v5
option (meaning ‘verbosity = 5’; -v3 activates warnings but not debug — see below).
Input:

logic CspCASL
spec tcs2 =
data sorts S < T

ops c: S; d: T;
c = d;

process
t c s 2 : S, T ;
tcs2 = c -> SKIP || d -> SKIP

Output:

[gimbo@mane Hets] ./hets -v5 CspCASL/test/tcs2.cspcasl
Options: — verbose=5 — hets-libdir=../Hets-lib — casl-amalg=cell

CspCASL/test/tcs2.cspcasl
Processing input: CspCASL/test/tcs2.cspcasl
Reading file CspCASL/test/tcs2.cspcasl
logic CspCASL
Analyzing spec tcs2
Debug CspCASL/test/tcs2.cspcasl:8.17-8.30,
Synchronous 'c -> SKIP || d -> SKIP'
Debug CspCASL/test/tcs2.cspcasl:8.17,
Prefix 'c -> SKIP'
Debug CspCASL/test/tcs2.cspcasl:8.17,
Skip 'SKIP'
Debug CspCASL/test/tcs2.cspcasl:8.30,
Prefix 'd -> SKIP'
Debug CspCASL/test/tcs2.cspcasl:8.30,
Skip 'SKIP'
Current OutDir: CspCASL/test/

144 Chapter 13 Selected System Runs

Discussion: Our implementation currently adds a Debug diagnostic message for every process
term traversed: the order of the debug messages demonstrates the order of traversal: a node is
visited, then its children, from left to right.

13.2.3 tcs3.cspcasl — pretty printing ASCII

This example contains a considerably more complex process term, with external prefix choice
(note use of the local variables x and y in C a s l terms), term prefix (with a C a s l function),
generalised parallel, and conditional. ASCII pretty print is enabled with the -o pp. het
option.

Input:
logic CspCASL
spec tcs3 =
data sorts S, T

ops f: S ->? T
. forall x: S . not def f(x);

process
tcs3: S, T; tcs3 = [] x :: S -> f(x) -> SKIP [| T |]

[] y :: T -> (if def y then SKIP else STOP)
Output:
[gimbo@mane Hets] ./hets -o pp.het CspCASL/test/tcs3.cspcasl
logic CspCASL
Analyzing spec tcs3
Discussion: This produces the output file CspCASL/test/tcs 3 . cspcasl .pp.het, with
the following contents (long line wrapped by hand):

library library

logic CspCASL - —-

spec tcs3 = ■ - -
data sorts S, T

op f : S ->? T
. forall x : S . not def f(x)

process tcs3 : S, T ;
tcs3 = [] x :: S -> f (x) -> SKIP [| T |]

[] y :: T -> if def y then SKIP else STOP
end

13.2.4 tcs4.cspcasl — pretty printing DTjgX

This exam ple illustrates LSTgX pretty print, enabled w ith the - o p p . t e x option.

Input:

l o g i c C sp C A S L
s p e c t c s 4 =
d a t a s o r t s A, B , C < S

o p s a : A; b l , b 2 : B; c : C;
f : A - > ? A; g : C - > ? C

13.2 Examples from [Rog06] 145

a = bl . b2 = c
forall x: A . not def f(x) . forall x: C . not def g(x);

process
tcs4: A, C; tcs4 = f(a) -> SKIP || g(c) -> SKIP

Output:
[giinbo@mane Hets] ./hets -o pp.tex CspCASL/test/tcs4.cspcasl
logic CspCASL
Analyzing spec tcs4
Discussion: This produces the output file CspCASL/test/tcs 4 .cspcasl. pp.tex, with
the following contents (long times truncated):
\begin{hetcasl}
\KW{library} \SId{library}\\
\ \
\KW{logic} \Sid{CspCASL}\\
\ \
\SPEC \=\SIdIndex{tcs4} \Ax{=}\\
\> \KW{data} \=\SORTS \=\Id{A}, \Id{B}, \Id{C} \Ax{<} \Id{S}\\
\>\> \OPS \=\IdDeclLabel {\Id{a} } {a} \Ax{:} \Id{A}.;\\
\>\>\> \IdDeclLabel{\Id{bl}}{bl}, \IdDeclLabel{\Id{b2}}{b2} \Ax{:}
\>\>\> \IdDeclLabel{\Id{c}}{c} \Ax{:} \Id{C};\\
\>\>\> \IdDeclLabel{\Id{f}}{f} \Ax{:} \=\Id{A} \Ax{\rightarrow?} \I ...
\>\>\> \IdDeclLabel{\Id{g}}{g} \Ax{:} \=\Id{C} \Ax{\rightarrow?} \I ...
\>\> \Ax{\bullet} \=\IdApplLabel{\Id{a}}{a} \Ax{=} \IdApplLabel{\Id ...
\>\> \Ax{\bullet} \=\IdApplLabel{\Id{b2}}{b2} \Ax{=} \IdApplLabel{\ ...
\>\> \Ax{\bullet} \=\Ax{\forall} \Id{x} \Ax{:} \Id{A} \Ax{\bullet} ...
\>\> \Ax{\bullet} \=\Ax{\forall} \Id{x} \Ax{:} \Id{C} \Ax{\bullet} ...
\> \KW{process} \=\Id{tcs4} \Ax{:} \=\Id{A}, \Id{C} ;\\
\>\> \Id{tcs4} \Ax{=} \IdApplLabel{\Id{f}}{f}(\IdApplLabel{\Id{a}}{ ...
\KW{end}
\end{hetcasl}
which renders as follows (the version in chapter 4 has been post-processed by hand):
library library

logic C spCASL

spec tcs4 =
data sorts A,B,C<S

ops a : A\
bl, b2 : B\
c : C;
/ : A —*? A;
g '• C —>? C

• a — bl
• b2 = c
• V x : A • -i def f{x)
• V x : C • -i def g(x)

process tcs4 : A, C ;
tcs4 =f(a) -> SKIP || g(c) -> SKIP

end

146 Chapter 13 Selected System Runs

13.2.5 tcsl.het.cspcasl — separation of process and data parts

This example demonstrates handling an explicitly heterogeneous specification, namely the het
erogeneous version of t c s l . c s p c a s l (see section 5.4).

Input:

spec D =
sort S, T
ops c: S; d: T

logic CspCASL
spec tcsl =
data D
process
tcsl: S, T;
tcsl = c -> SKIP ||d -> SKIP

Output:

[gimbo@mane Hets] ./hets CspCASL/test/tcsl.het.cspcasl
logic CASL
Analyzing spec D
logic CspCASL
Analyzing spec tcsl
Discussion: Note that output reports first analysing specification D in logic CASL (the default),
then analyses specification t c s l in logic CspCASL.

13.3 Examples demonstrating particular features

In this section we demonstrate further features of the tool, paying particular attention to viola
tions of the syntax and static semantics formalised in chapters 9 to 11.

13.3.1 Parse error: English text instead of Csp-Casl

Input:

logic CspCASL
spec tcsl =
data sort S, T

ops c: S; d: T
process
Just some random text.

Output:

[gimbo@mane Hets] ./hets CspCASL/test/parse_errl. cspcasl
*** Error,
CspCASL/test/parse_errl.cspcasl:6.10:
unexpected "s"
expecting "=e=" or "="
Discussion: As we would hope, text utterly unrelated to C s p -Ca sl is detected as such. Since
J u s t is a valid process name, the error occurs at the start of some: we would expect either an
open parenthesis (indicating the start of an argument list), a colon (for a process declaration),

13.3 Examples demonstrating particular features 147

or an equals sign (for a process equation). In this regard, the error message is less helpful than
we would like, as it does not indicate that a colon might be expected here. This is an area for
future improvement — nonetheless, the exact location of the error is correctly identified as line
6, column 10.

13.3.2 Parse error: forgotten semicolon separator in channel list

Input:

logic CspCASL
spec tcsl =
data sort S, T

ops c: S; d: T
channels
t : S
x : S

process
tcsl: S, T;
tcsl = c -> SKIP ||d -> SKIP

Output:

[gimbo0mane Hets] ./hets CspCASL/test/parse_err2.cspcasl
*** Error,
CspCASL/test/parse_err2.cspcasl:7.5:
unexpected "x"
expecting "%", or "process"
Discussion: W ith a forgotten sem ico lon betw een the tw o channel declarations, the parser e x
pects either for the process part to begin , or for there to be an annotation (beginn ing w ith %, or
for the last channel sort seen (i.e . T) to b e in com plete (e.g .T [a] is a valid C a s l sort nam e).

13.3.3 Parse error: forgotten semicolon terminator after process declaration

Input:

l o g i c C sp C A S L
s p e c t c s l =

d a t a s o r t S , T
o p s c : S ; d : T

p r o c e s s
t c s l : S , T
t c s l = c - > S K I P | | d - > S K I P

Output:

[g i m b o 0 m a n e H e t s] . / h e t s C s p C A S L / t e s t / p a r s e _ e r r 3 . c s p c a s l
* * * E r r o r ,
C s p C A S L / t e s t / p a r s e _ e r r 3 . c s p c a s l : 6 . 9 :
u n e x p e c t e d " : "
e x p e c t i n g c a s l c h a r , , " (" , " % " , " = e = " o r " = "

Discussion: Again, the error is detected, but the message is less than ideal: it reports that the :
after t c s l is unexpected, which is strange given that the actual error occurs afterwards. The
reason may be understood with reference to the discussion in section 12.2.2.2: the p r o c D e c l

148 Chapter 13 Selected System Runs

parser would parse t c s l : S , T successfully, but upon encountering the next token, t c s l ,
would fail; at this point, thanks to the t r y combinator, input is rewound and the p rocE q
parser reads t c s l , failing at the colon.

In general, formation of error messages is a difficult problem in the context of parsing: we
would like error messages which tell us where the error is, but often an error isn’t recognised
at that location; this is certainly an area where future work could be highly beneficial to users
of the tool.

13.3.4 Parse error: unexpected symbol — with a good error message

This example is a variant of tcs3. cspcasl, above, where the event set in the generalised
parallel operator has been replaced with a synchronous parallel symbol.

Input:

logic CspCASL
spec tcs3 =
data sorts S, T

ops f: S ->? T
. forall x: S . not def f(x);

process
tcs3: S, T;
tcs3 = [] x :: S -> f(x) -> SKIP [| || |]

[] y :: T -> (if def y then SKIP else STOP)
Output:

[gimbo@mane Hets] ./hets CspCASL/test/paErAlpha.cspcasl
*** Error,
CspCASL/test/paErAlpha.cspcasl:8.39:
unexpected "|"
expecting communication type or "|]"
Discussion: here the error is much clearer: an unexpected | where we expected an annotation,
a communication type (a sort or channel name), or the closure of the generalised parallel oper
ator. ‘Communication type’ is added to this list by Parsec’s < ? > combinator; the relevant code
fragment is:

< | > do asKey genpar.openS
es < — event_set < ? > ’’communication type”
asKey genpar_closeS
rp < — choice_proc
p < — par_proc’ (GeneralisedParallel lp es rp (compRange lp rp))

13.3.5 Static analysis of channel and process declarations

This example demonstrates the implementation of all of the requirements on channel declara
tions and process declarations stated in sections 10.3.2 and 10.3.4.

Input:

13.3 Examples demonstrating particular features 149

l o g i c CspCASL
spec saErDecls =

data s o r t S,T
channels

x : U;
y : S; y : T; y: S;
w : S;
S : T

p r o c e ss
P: S, T;
P: S, T;
Q(U) : U;

Output:

[gimbo@mane Hets] . / h e t s -v3 C spC A S L/tes t / saErD ec ls . c s p c a s l
Options: — verbose=3 — h e t s - l i b d i r = . . / t o o l s / H e t s - l i b — c a s l - a m a l g = c e l l

C spC ASL/tes t / saErDec ls . c s p c a s l
P r o c e s s i n g input: CspC ASL/tes t / saErDec ls . c s p c a s l
Reading f i l e CspC ASL/tes t / saErDec ls . c s p c a s l
l o g i c CspCASL
Analyz ing spec saErDecls
*** Error CspC ASL/tes t / saErDec ls . c s p c a s l : 5 .9 ,
unknown s o r t ' U'
*** Error CspC ASL/tes t / saErDec ls . c s p c a s l : 6 .1 2 ,
channel d e c la r e d wi th m u l t i p l e s o r t s 'y '
Warning CspC ASL/te s t / saErDec ls . c s p c a s l : 6 .1 9 ,
channel r e d e c la r e d with same s o r t 'y'
*** Error CspC ASL/tes t / saErDec ls . c s p c a s l : 8 .5 ,
channel name a lready in use as a s o r t name 'S'
*** Error C spC ASL/tes t / saErDec ls . c s p c a s l :1 1 .5 ,
p r oc e ss name d e c la r e d more than once 'P'
*** Error C spC ASL/tes t / saErDec ls . c s p c a s l : 1 2 .7 ,
unknown s o r t 'U'
*** Error C s p C A S L / te s t / s a E r D e c l s v c s p c a s l : 1 2 .1 1 ,
not a s o r t or channel name 'U'
h e t s : u ser error (Stopped due t o error s)

Discussion: Note the use of the -v 3 in order to display warnings.

• CHAN-TYPE rule: a channel’s type must be a known sort; violated by U at (5,9).

• CHAN-NAMES rule: a channel must not be declared multiple times with different sorts;
violated by y : T at (6,12).

• CHAN-NAMES rule: raise a warning for multiple declaration of the same channel with
the same sort; triggered by y : S at (6,19).

• CHAN-NAME rule: a channel’s name must not be an already known sort name; violated
by S : T at (8,5).

• PROC-DECL rule: a process must not be declared more than once; violated by P at
(11,5).

• PROC-ARGS rule: every sort in a process declaration’s parameter sort list must be
known; violated by U at (12,7).

150 Chapter 13 Selected System Runs

• PROC-ALPHA and COMM-TYPE rules: every symbol in a process declaration’s permit
ted alphabet must be a known sort or channel name; violated by U at (12, 11).

13.3.6 Static analysis of process equations

This example demonstrates the implementation of some of the requirements on process equa
tions stated in section 10.3.5.

Input:
logic CspCASL
spec saErProcEqs =
data sort S, T

ops x: S
process
P: S;
P = RUN(T)
Q(x) = SKIP
Z (S) : S;
Z (n, y) = x -> SKIP

Output:
[gimbo@mane Hets] ./hets CspCASL/test/saErProcEqs.cspcasl
logic CspCASL
Analyzing spec saErProcEqs
*** Error CspCASL/test/saErProcEqs.cspcasl:7.9-7.14,
Communication alphabet subset violations (process equation): [T]
'RUN (T)'
*** Error CspCASL/test/saErProcEqs.cspcasl:8.5,
process equation for unknown process 'Q'
*** Error CspCASL/test/saErProcEqs.cspcasl:10.5,
too many process arguments ' Zv
hets: user error (Stopped due to errors)
Discussion:

• PROC-EQ rule: the subsort closure of the equation’s process term must be a subset of
the subsort closure of the process’ permitted alphabet; violated by the communication
alphabet [T] , generated by the process term RUN (T) (7,9 to 7,14).

• PARM-PROCNAME rule: the process name in a parametrised process name must have
been declared already; violated by process name Q (8,5).

• PROC-VARS rule: the number of variable names in the parametrised process name must
equal the number of parameter sorts in the process’ declaration; violated by the process
named Z at (10,5).

13.3.7 Static analysis of process terms

This example demonstrates the implementation of some of the requirements on process terms
stated in section 10.4.

Input:

13.3 Examples demonstrating particular features 151

logic CspCASL
spec saErProcEqs =
data sort S, T

ops y: T
process
P : S;
Q (S) : S;
P = Q (y)
Q (x) = x -> RUN (U) || [] t :: U -> t -> SKIP
Z : S;
Z = [] t :: S -> SKIP ; t -> SKIP
W: S ;
W = SKIP [S ||] SKIP

Output:

[gimbo@mane Hets] ./hets CspCASL/test/saErProcTerms.cspcasl
logic CspCASL
Analyzing spec saErProcEqs
*** Error CspCASL/test/saErProcTerms.cspcasl:8.11,
can't cast term to sort S ' (op y : T) '
*** Error CspCASL/test/saErProcTerms.cspcasl:9.21,
not a sort or channel name 'U'
*** Error CspCASL/test/saErProcTerms.cspcasl:9.35,
unknown sort 'U'
*** Error CspCASL/test/saErProcTerms.cspcasl:11.29,
no operation with 0 arguments found for 't'
*** Error CspCASL/test/saErProcTerms.cspcasl:13.9-13.23,
Communication alphabet subset violations (alphabetised parallel, left): [S]
'SKIP [S ||] SKIP'
hets: user error (Stopped due to errors)

Discussion:

• NAMED-PROC rule: every parameter in a named process reference must be castable to a
term of the sort specified by the corresponding slot in the named process’ parameter sort
list; violated by y at (8,11), which we attempt to cast from T to S, failing as they are not
in a subsort relation with each other.

• RUN, EVENT-SET and COMM-TYPE rules: every symbol in an event set must be a
known sort or channel name; violated by U at (9,21).

• EXTPRE-PROC and SVAR-DECL rules: the sort referenced in a single variable decla
ration must already be known; violated by U at (9,35).

• SEQ-PROC rule: the second process in a sequential composition receives an empty local
variable set; demonstrated by non-recognition of t at (11,29).

• ALPHAPAR-PROC rule: the subsort closure of an event set in an alphabetised parallel
process must be a subset of the subsort closure of the corresponding process term; vio
lated by event set [S] on left hand side of alphabetised parallel process SKIP [S | |
] SKIP at (13,9 to 13,23).

152 Chapter 13 Selected System Runs

13.3.8 Static analysis of local top elements

These two examples demonstrate the implementation of the checks for local top elements de
scribed in chapter 11 and triggered by the CSP-BASIC-SPEC rule (section 10.3.1).

First, the simplest possible example without local top elements:

Input:

logic CspCASL
spec saErProcEqs =
data sort a < b ; a <c
process
P:;
P = SKIP

Output:

[gimbo@mane Hets] ./hets CspCASL/test/saErLocalTops.cspcasl
logic CspCASL
Analyzing spec saErProcEqs
*** Error CspCASL/test/saErLocalTops.cspcasl:4.3-7.1,
local top element obligation (a<c,b) unfulfilled ' '
hets: user error (Stopped due to errors)
Discussion: analysis has revealed that a is a subsort of both b and c, i.e. there is an obligation
bac\ sadly, the obligation is unfulfilled, so further processing cannot take place.

In our second example, the obligation bac is met by the presence of a local top element, d — a
supersort of both b and c:

Input:
logic CspCASL
spec saErProcEqs =
data sort a < b ; a < c ; b < d ; c < d
process
P:;
P = SKIP

Output:

[gimbo@mane Hets] ./hets CspCASL/test/saOKLocalTops.cspcasl
logic CspCASL
Analyzing spec saErProcEqs

13.4 Example from ep2

In this section we present a major example from an industrial case study ([GRS05], on the
ep2 banking system [EP202]). The Csp-Casl specification shown in figures 13.4 (data part)
and 13.4 (process part) specifies the communications which occur between two components of
the system, the Terminal and Acquirer, in order to initialise the Terminal. The details of the
specification are not relevant here, but it is interesting to note that while this specification has
been presented (in some form) twice already, in [GRS05] and [OIR07] (which included a proof
of its deadlock freedom), this is the first time this specification has been parsed by a tool.

13.4 Example from EP2 153

This is certainly the largest example processed by the tool thus far; doing so was instructive,
and led to the following observations:

• In the process part of the version published in [OIR07], the reference to the data part by
specification name was incorrect due to a spelling error; this was not noticed before tool
processing.

• The version published in [OIR07] was missing the e l s e STOP at the end of the large
if / then / else cascade; C sp-Casl as described in this thesis requires both the t h e n and
the e l s e part, in order to avoid dangling-else problems, so the tool also rejected this.

• The version published in [OIR07] had an error in its Casl syntax. The condition in each
of the conditional processes is a Casl formula which checks sort membership; in the
ETpX output and in [OIR07], they appear as x : S; however, the correct input format is in
fact x in S.

• The concrete syntax has developed in various forms since [OIR07] was written, as re
flected in this thesis; for example, we use x : : s rather than x : s in channel receive
processes — thus some updates were required there.

• Finally, in order for the specification to parse correctly, it proved necessary to parenthe
sise the entirety of the outermost conditional process; upon investigation, this turns out
to be an issue with the encoding of precedence in the grammar. As such, the tool (which
correctly implements that grammar) has been useful in drawing attention to the problem,
whose resolution remains future work.

154 Chapter 13 Selected System Runs

lib rary library

logic CASL

spec D _ A C L _ G e tIn i t in i t ia l is a t io n =
sorts DSIJlnit-SessionStart,

D -SI-InitSessionEnd, DSI-Jnit-ConfigDataRequest, DSI-lnitJConfigDataResponse,
DSI-Jnit-ConfigDataNotification, D-SI-lnit-ConfigDataAcknowledge,
DCSI_Init_RemoveConfigDataNotification, DSIJfnit-RemoveConfigDataAcknowledge,
DSI-Jnit^ActivateConfigDataNotification, DSI^Init^ActivateConfigDataAcknowledge
< D -SI-Init

V x : D S IJ fn itS essio n E n d ; y : D-SI-Init^ConfigDataRequest
• -i x = y

V x : D S IJ fn itS essio n E n d ; y : D SIJnit-ConfigD ataNotification
• ->x = y

V jc : D S IJ n itS e ssio n E n d ; y : D SIJnitSem oveConfigD ataN otification
• -i x = y

V x : D SIJn itS essio n E n d ', y : D SIJnitSctivateConfigD ataN otification
• -i x = y

V x : DSU nitJConfigDataRequest', y : DSIJnit-ConfigD ataNotification
• ->x = y

V x : DSIJnitJSonfigDataRequesV, y : DSIJnitJRemoveConfigDataNotification
• -> x ~ y

V x : DSIJnit-ConfigD ataRequest', y : D SIJnitSctivateConfigD ataN otification
• -i x = y

V x : DSIJnit-ConfigDataNotification', y : D SIJnitSem oveConfigD ataN otification
• -i x = y

V a: : DSIJnit-ConfigD ataNotification\ y : D SIJnitSctivateConfigD ataN otification
• - i jc = y

V x : DSIJnitSem oveConfigD ataN otification\ y : DSIJnit-ActivateConfigDataNotification
• ->x = y

ops seM : D S IJ n itS e s s io n E n d ;
cdrM : DSIJnit-ConfigD ataRequest',
cdnM : DSIJnit-ConfigDataNotification',
rcdnM : DSIJnit-RemoveConfigDataNotification ;
acdnM : DSIJnit-ActivateConfigDataNotification

Figure 13.2: e p2 example: data part

13.4 Example from EP2 155

logic CspCASL

spec GetIn itia lisa tio nData =
data D _ A C L _ G e tIn it in it ia l is a tio n
channel C S I J n i t : D_SI_lnit
process T e rJ n it: C S I J n i t ;

Ter-ConfigurationManagement: C S I J n i t ;
A cqJln it: C S I J n i t ;
AcqJConfigurationManagement: C S I J n i t ;
TerJfnit = C S I J ln i t ! sessionStart:: D S IJ n itS e ss io n S ta r t —*■
Ter-ConfigurationManagement
Ter-ConfigurationManagement — C S IJ ln it ? configMess :: D S I J n i t —>

if (configMess in D S IS essio n E n d)
then SKIP
else if {configMess in D SIJnit-ConfigD ataRequest)

then C S I J n i t ! response :: D S I J n i t—ConfigDataResponse —►
Ter-ConfigurationManagement

else if {configMess in DSIJnit-ConfigD ataNotification)
then C S I J n i t ! acknowledge ::

D S I J n i t—ConfigDataAcknowledge —>
Ter-ConfigurationManagement

else if {configMess in DSIJnit-RemoveConfigDataNotification)
then C S I J n i t ! acknowledge ::

DSIJnit-RemoveConfigDataAcknowledge —>
Ter-ConfigurationManagement

else if {configMess in DSIJnit-ActivateConfigDataNotification)
then C S I J n i t ! acknowledge ::
DSIJnit-ActivateConfigDataAcknowledge —>
Ter-ConfigurationManagement
else STOP

A cqJn it = C S I J n i t ? sessionStart:: D S IJ n itS e ss io n S ta r t —>
Acq-ConfigurationManagement

AcqJConfigurationManagement =
C S I J n i t ! seM -*• S£7P
n C S I J n i t ! cdrM —> C S I J n i t ? response ::

DSIJnit-ConfigD ataResponse —► Acq-ConfigurationManagement
n C S I J n i t ! cdnM —> C S I J n i t ? acknowledge ::

DSIJnit-ConfigDataAcknowledge —> AcqJConfigurationManagement
n C S I J n i t ! rcdnM —*■ C S I J n i t ? acknowledge ::

DSIJnit-RemoveConfigDataAcknowledge —>
Acq-ConfigurationManagement

n C S I J n i t ! acdnM —» C S I J n i t ? acknowledge ::
DSIJnit-ActivateConfigDataAcknowledge —*
Acq-ConfigurationManagement

System : C S I J n i t ;
System = A cq Jn it |[C S I J n i t]| TerJnit

end

Figure 13.3: e p2 example: process part

156 Chapter 13 Selected System Runs

Chapter 14

Conclusion

Contents
14.1 Summary....................157
14.2 Availability...................158
14.3 Future work..................158
14.4 Evaluation...................161

14.1 Summary

In this thesis we have given an account of the design, formalisation, and implementation of syn
tactic and static semantic rules for the specification language C sp-Casl. After a background
section in which we surveyed Csp-Casl’s context and a number of related matters, we sum
marised the language, informally discussing all of its syntactic and static semantic features,
and provided examples. We then formalised its abstract and concrete syntax as context-free
grammars, and formalised its static semantics using the Natural Semantics formalism. Fol
lowing this, we formulated the problem of checking a C sp-Casl specification for local top
elements, and presented an algorithm for solving this problem, and an implementation in the
programming language Haskell. We then described the implementation of a tool, based on
those formalisations, to check a C sp-Casl specification’s syntax and static properties; the tool
was written in Haskell as an extension to the toolset H ets. Finally, we demonstrated the tool
in use, on a number of small examples, and a large example from an industrial case study.

This work advances the field of formal specification by providing initial tool support for a new
specification language, in a framework which can, in time, be extended to provide full auto
mated and interactive theorem proving on specifications written in that language. Furthermore,
this thesis provides the only formal static semantics of a CSP dialect of which we are aware,
and also the first formal treatment of the issue of local and global variables in a Csp dialect.
By formalising these aspects of C sp-Casl, we advance the programme of CoFI, the Common
Framework Initiative, by contributing to the development of another candidate CASL exten
sion language for its family. Finally, this work provides a further successful case study of the
use of Parsec for recursive descent combinator parsing, and of the extensibility of the H ets
architecture.

157

158 Chapter 14 Conclusion

14.2 Availability

The w ork described in this thesis is part o f the standard H e t s distribution, available from:

http://www.informatik.uni-bremen.de/cofi/hets/
HETS has fairly dem anding requirem ents for installation, in terms o f supporting softw are. For
tunately, it is easy to experim ent w ith the parsing and static analysis parts o f H e t s v ia an online
interface, at:

http://www.informatik.uni-bremen.de/cgi-bin/cgiwrap/maeder/hets.cgi
All of the examples in this thesis should be usable at that web page (possibly with the addition
of a preceding ‘logic CspCASL’ directive). An archive of the examples is downloadable
from:

http://www.cs.swan.ac.uk/~csandy/mphil/examples.tar

14.3 Future work

There is always room for improvement. As this work has progressed, it has given rise to an
astonishing number of ideas for possible extensions and modifications — ‘wishlist features’
with which to enhance the specification experience. We have also at several points drawn
attention to shortcomings or problems with the language — though nothing major, we believe:
some ‘rough edges’ which could be smoothed out. Time and usage will demonstrate which
of the wishlist features are truly desirable; until then, we briefly survey the areas of possible
future work.

14.3.1 Automated testing

As noted in section 12.5, at an earlier stage in development we found an automated testing
framework highly beneficial with respect to grammar design and parser implementation; as
such, it would be very desirable to reinstate such a framework, as described in that section —
indeed, this could, if done properly, be of great benefit not only to C s p -C a s l , but to H e t s in
general.

14.3.2 Improve error messages

As noted in section 13.3.3, error messages indicating parse errors are in some circumstances
misleading in their reports of the location of the error. Production bf useful error messages from
parsers is well-known to be a difficult problem: “the error handler in a parser has goals that
are simple to state but challenging to realize” [ALSU06] — and is in fact complicated by our
current approach of encoding the grammar as directly as possible using Parsec’s combinators.

As hinted at in section 13.3.3, the first step in improving this situation would be to apply stan
dard grammar transformations to minimise the lookahead required at any point in our grammar;
this would tend to localise error messages to the actual point of error, but at the expense of hav
ing a more complicated grammar, with a less obvious correspondence between abstract and

14.3 Future work 159

concrete syntax. Nonetheless, now that the formalisation of C sp-Casl has progressed past
this initial stage, it is probably a price worth paying, for the sake of the users of the language.

14.3.3 Precedence encoding issue / conditional process

Related to the previous point, and as reported in section 13.4, there is a problem involving the
encoding of precedences within our concrete grammar. This problem does not prevent the tool
being used, and an informed and intelligent user can easily work out the solution of adding
parentheses where we would not strictly expect to require them — but it is certainly a ‘wart’
in the design which we would like to eliminate. Resolution of this issue will involve careful
analysis of the concrete grammar, preferably with the aid of an appropriate tool.

14.3.4 Universe of communications

In C sp it is conventional to refer to ‘the entire alphabet’ as E (see section 3.2.1), so one can
easily write, e.g.

P | [S] | Q

In C sp -C a s l there is currently no easy way to do this: one must explicitly list all sort and
channel names one wishes to use; thus, we suggest, as a simple extension to the language, a
way to refer to ‘the Universe of all possible communications’ with some distinguished identifer,
e.g. Univ, then we might write:

P\[Univ]\Q

14.3.5 Process definitions

A convenient — and straightforward to implement — syntactic sugaring would be process
definitions, which unite declaration and equation. For example, rather than the following:

logic CspCASL
spec ProcDefn =

data sorts S, T
process P(S, T) : S , T ;

P(a, b) = a —> SKIP □ b -> SKIP
end

we might instead write:

logic CspCASL
spec ProcDefn -

data sorts S, T
process P{a : S, b : T) : S ,T = a -> SKIP U b ^ SKIP

end

160 Chapter 14 Conclusion

14.3.6 No explicit channel declarations section

For largely historical reasons, our current design demands that channels are declared in a spe
cial section preceding the specification’s processes: earlier works on C s p -C a s l followed this
form, and it seemed reasonable to do the same here. However, there is no strong reason for
doing so; in the interests of flexibility we propose relaxing this constraint, so that channel dec
larations may be mixed with process declarations and process equations freely (albeit subject
to linear visibility, until such a time that that constraint is lifted).

14.3.7 Parametrised process operators/replicated forms

A ll o f the C s p -C a s l process operators presented in this thesis are unary or binary, i.e. they
either m odify a s in g le process, or com b in e tw o p rocesses to form a new one. H ow ever, in
C s p w e have replicated form s o f certain operators, i.e. parametrised process operators; adding
these to C s p -C a s l w ould provide a u sefu l language feature.

For example, the following:

10

ii m
i : N a t —l

might represent P (l) || P (2) || •• • || P(10).

A n in itial version m ight b e restricted to ranging over natural num bers (as in the above exam ple),
and im ply im porting the appropriate C a s l standard library. It w ould , however, be natural to
fram e such operators so that rather than b ein g lim ited to ranging over the integers or natural
num bers (say), they w ere able to range over arbitrary CASL sorts having the right properties;
in particular, free types w ould m ake go o d candidates in this setting. Then there are related
q uestions o f loop control, e .g . step s ize , direction, etc. — such aspects m ight be sp ecified
u sing C A SL-style annotations, for exam ple.

14.3.8 Pattern matching

C s p -C a s l process names may be parametrised; this immediately leads to the observation that
pattern matching on process equations, in the style of Haskell, provides a very useful syntactic
sugaring. Again, how to achieve this in a general form over C a s l sorts is unclear at this stage,
but again, free types seem at least tractable. For example, rather than write:

logic CspCASL
spec p a t t M a t c h =

data free type Nat ::= 0 | succ{Nat)
process CounterfNat) : N a t ;

Counter(n) = if n = 0 then 0 —*■ Counter (0) else succ(n) —»■ Counter (n)
end

w e m ight then instead write:

logic CspCASL
spec p a t t M a t c h =

data free type Nat ::= 0 | succ{Nat)
process CounterfNat) : N a t ;

14.4 Evaluation 161

CounteriO) — 0 —>■ Counter (0)
Counter(succ(n)) = succ(n) —» Counter (n)

end

14.3.9 Let-expressions

As described in section 8.3.5, a potentially interesting future extension to Csp-Casl would
be the addition of let-expressions at the process operator level, providing a fully generalised
process equation scoping mechanism similar to that seen for functions in Haskell (say).

14.3.10 Inference of process parameter sorts and process alphabets

Rather than require processes to be declared before use, we might allow process equations
without corresponding declarations (see section 8.3.4). This requires inference of each process’
parameter sorts and alphabet.

In [Ros98, §2.7], Roscoe notes that the version of CSP presented in that work does not assign
particular alphabets to each process, and this differs from Hoare’s original treatment in [Hoa85]
— our approach, then, follows Hoare rather than Roscoe. Roscoe argues that the disadvantages
of ‘the alphabetized version of CSP’ are the necessity to provide all alphabets (cluttering def
initions), and additional theoretical complexity. In this thesis we have, we hope, addressed at
least some of the theoretical issues (model semantics is addressed elsewhere, e.g. [Rog06]).
To Roscoe’s first criticism, however, we must concede: requiring process declarations cer
tainly adds complexity and length to C s p -C a s l specifications; unified process definitions, as
described in section 14.3.5, would go some way to alleviating this; even so, a version of C s p -
C a s l which minimises the necessity for declaration is clearly desirable.

14.4 Evaluation

On the whole, this work has been a success. Whereas previously C s p -C a s l was a ‘blackboard’
language, presented in several works and with a well-worked out mathematical basis, it lacked
both a fixed formal syntax, and tool support. The aim of this work was to perform language
design tasks leading to not only a fixed and formalised syntax for C s p -C a s l , but also a fixed
and formalised static semantics, and an implementation of those formalisations in an appropri
ate tool. All of these aims have been achieved, and for the first time it is now possible to check
C s p -C a s l specifications for syntactic and static semantic errors; furthermore, there now exists
a single, and thorough, point of reference for those working with the language, or extending
and adapting it in the future. As such, we consider the project to have been successful.

W e have dem onstrated the too l in this thesis, and for the specifications processed so far, the
too l and the language both seem to us to w ork w ell. W e anticipate that now that too l support
is finally available, m ore specifications w ill be written in C s p -C a s l , not for the purpose o f
testing the tool, but for the purpose o f sp ec ify in g things; w e fu lly anticipate that this w ill lead
to extrem ely interesting and valuable feedback , insight into our language design and how it
m ight b e im proved and — alas — no doubt a few bug reports. This w ill be the true test o f the
w ork presented here.

162 Chapter 14 Conclusion

Bibliography

[AJS05]

[ALSU06]

[AS02]

[Bac78]

[Bae05]

[BB87]

[BCH+04]

[BM04]

[BPS98]

[Bri88]

[BS99]

Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors. Communicating
Sequential Processes: The First 25 Years, Symposium on the Occasion o f 25
Years o f CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume 3525
of Lecture Notes in Computer Science. Springer, 2005.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Pub
lishing Co., Inc., Boston, MA, USA, 2006.

David Aspinall and Donald Sannella. From Specifications to Code in C a s l .
In AMAST ’02: Proceedings o f the 9th International Conference on Alge
braic Methodology and Software Technology, pages 1-14, London, UK, 2002.
Springer-Verlag.

John Backus. Can programming be liberated from the von Neumann style?: a
functional style and its algebra of programs. Commun. ACM, 21(8):613-641,
1978.

J. C. M. Baeten. A Brief History of Process Algebra. Theoretical Computer
Science, 335(2-3): 131-146, 2005.

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification
language LOTOS. Comput. Netw. ISDN Syst., 14(l):25-59, 1987.

Hubert Baumeister, Maura Cerioli, Anne Haxthausen, Till Mossakowski, Peter D.
Mosses, Donald Sannella, and Andrzej Tarlecki. CASL semantics. In C a s l
Reference Manual [CoF04c], part m . Edited by D. Sannella and A. Tarlecki.

Michel Bidoit and Peter D. Mosses. C a s l User Manual. LNCS Vol. 2900 (IFIP
Series). Springer, 2004. With chapters by Till Mossakowski, Donald Sannella,
and Andrzej Tarlecki.

Bettina Buth, Jan Peleska, and Hui Shi. Combining methods for the livelock
analysis of a fault-tolerant system. In AM AST’98, LNCS 1548, pages 124-139.
Springer, 1998.

Ed Brinksma. On the Design o f Extended LOTOS - A Specification Language fo r
Open Distributed Systems. PhD thesis, Department of Informatics, University of
Twente, Enschede, Netherlands, 1988.

Bettina Buth and Mike Schronen. Model-checking the architectural design of
a fail-safe communication system for railway interlocking systems. In FM ’99,
LNCS 1709. Springer, 1999.

163

164 BIBLIOGRAPHY

[BW88] Richard Bird and Philip Wadler. An Introduction to Functional Programming.
Prentice Hall, 1988.

[BW90] J. C. M. Beaten and W. P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[CEW93] Ingo Classen, Hartmut Ehrig, and Dietmar Wolz. Algebraic specification tech
niques and tools fo r software development: the ACT approach. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1993.

[CoF04a] CoFI Language Design Group. C a s l summary. In C a s l Reference Manual
[CoF04c], part I. Edited by B. Krieg-Briickner and P. D. Mosses.

[CoF04b] CoFI Language Design Group. C a s l syntax. In C a s l Reference Manual
[CoF04c], part II. Edited by B. Krieg-Briickner and P. D.Mosses.

[CoF04c] CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS Vol.
2960 (IFIP Series). Springer, 2004.

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Infor-
matica, 1(2): 115-138, 1971.

[EP202] eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.

[FL08] Marc Fontaine and Michael Leuschel. Typechecking CSP Specifications using
Haskell. In AVOCS 2007: Seventh International Workshop on Automated Verifi
cation o f Critical Systems, proceedings to appear in Formal Aspects of Comput
ing. Springer, 2008.

[Fok95] Jeroen Fokker. Functional Parsers. In Advanced Functional Programming, First
International Spring School on Advanced Functional Programming Techniques-
Tutorial Text, pages 1-23. Springer, 1995.

[FSE03] Process Behaviour Explorer — the ProBE User Manual. Formal Systems (Eu
rope) Ltd., 2003.

[FSE06] Failures-Divergence Refinement — the FDR2 User Manual. Formal Systems
(Europe) Ltd., 2006.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract Model Theory for
Specification and Programming. Journal o f the ACM, 39(1):95-146, 1992.

[GP95] J.F. Groote and A. Ponse. The syntax and semantics of pCRL. In Algebra of
Communicating Processes ’94, Workshops in Computing Series, pages 26-62.
Springer, 1995.

[GRS05] Andy Gimblett, Markus Roggenbach, and Bemd-Holger Schlingloff. Towards a
Formal Specification of an Electronic Payment System in C s p -C a s l . In J. L.
Fiadeiro, P. Mosses, and F. Orejas, editors, Recent Trends in Algebraic Devel
opment Techniques, 17th International Workshop, WADT 2004, Selected Papers,
LNCS Vol. 3423, pages 61-78. Springer, 2005.

[GWM+93] Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications o f
Algebraic Specification using OBJ. Cambridge University Press, 1993.

BIBLIOGRAPHY 165

[HB99]

[HHJW07]

[HM96]

[Hoa85]

[Hoa06]

[Hud96]

[Hug95]

[Hut92]

[Hyd06]

[Kah87]

[KRS07]

[KST97]

[LM01]

[LZL99]

[Mil78]

[Mil89]

Michael G. Hinchey and J. P. Bowen. High-Integrity System Specification and
Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History
of Haskell: Being Lazy With Class. In HOPL III: Proceedings o f the third ACM
SIGPLAN conference on History o f programming languages, pages 12-1-12-55,
New York, NY, USA, 2007. ACM.

Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham,
1996.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

C. A. R. Hoare. Why ever CSP? Electronic Notes in Theoretical Computer
Science, 162:209-215, September 2006.

Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
page 196, 1996.

John Hughes. The Design of a Pretty-printing Library. In Advanced Functional
Programming, First International Spring School on Advanced Functional Pro
gramming Techniques-Tutorial Text, pages 53-96, London, UK, 1995. Springer-
Verlag.

Graham Hutton. Higher-order Functions for Parsing. Journal o f Functional Pro
gramming, 2(3):323-343, July 1992.

Randall Hyde. The Fallacy of Premature Optimization. ACM Ubiquity, 7(24):2-
2, 2006.

Gilles Kahn. Natural Semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet,
and Martin Wirsing, editors, STACS, volume 247 of Lecture Notes in Computer
Science, pages 22-39. Springer, 1987.

Temesghen Kahsai, Markus Roggenbach, and Bemd-Holger Schlingloff.
Specification-based testing for refinement. In Mike Hinchey and Tiziana Mar-
garia, editors, Proceedings ofSEFM 2007, pages 237-247. IEEE Computer So
ciety, 2007.

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of extended
ML: a gentle introduction. Theoretical Computer Science, 173(2):445-484,1997.

Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Combinators
for the Real World. Technical Report Technical Report UU-CS-2001-35, Univer-
siteit Utrecht, 2001.

Wenjun Li, Xiaocong Zhou, and Shixian Li. The typing of communicating se
quential processes. In TOOLS '99: Proceedings o f the 31st International Confer
ence on Technology o f Object-Oriented Language and Systems, page 61, Wash
ington, DC, USA, 1999. IEEE Computer Society.

Robin Milner. A Theory of Type Polymorphism in Programming. Journal o f
Computer and System Sciences, 17(3):348—375, December 1978.

Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Sad
dle River, NJ, USA, 1989.

166 BIBLIOGRAPHY

[Mil99]

[MML07a]

[MML07b]

[Mos96]

[MosOl]

[Mos03]

[Mos04a]

[Mos04b]

[Mos05]

[MR07]

[MR08]

[MRRS03]

[MRS03]

[MTH90]

Robin Milner. Communicating and mobile systems: the ir-calculus. Cambridge
University Press, New York, NY, USA, 1999.

Till Mossakowski, Christian Maeder, and Klaus Liittich. The Heterogeneous Tool
Set. In Michael Huth Oma Grumberg, editor, TACAS 2007: Tools and Algorithms
fo r the Construction and Analysis o f Systems, 13 th International Conference, Pro
ceedings, LNCS Vol. 4424, pages 519-522. Springer, 2007.

Till Mossakowski, Christian Maeder, and Klaus Liittich. The Heterogeneous Tool
Set. In Bernhard Beckert, editor, VERIFY 2007, 4th International Verification
Workshop, volume 259 of CEUR Workshop Proceedings, pages 119-135. 2007.

Peter D. Mosses. CoFI: The Common Framework Initiative for algebraic speci
fication. Bulletin o f the EATCS, 59:127-132, June 1996. An updated version is
[MosOl].

Peter D. Mosses. CoFI: The common framework initiative for algebraic specifica
tion and development. In G. Paun, G. Rozenberg, and A. Salomaa, editors, Cur
rent Trends in Theoretical Computer Science: Entering the 21st Century, pages
153-163. World Scientific, 2001.

Till Mossakowski. Foundations of heterogeneous specification. In Wirsing et al.
[WPH03], pages 359-375.

Till Mossakowski. H e t C a s l - Heterogeneous Specification. Language Sum
mary. Technical report, Universitaet Bremen, 2004.

Till Mossakowski. ModalCASL - Specification with Multi-Modal Logics. Lan
guage Summary. Technical report, Universitaet Bremen, 2004.

Till Mossakowski. Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis, Universitaet Bremen, 2005.

Till Mossakowski and Markus Roggenbach. Structured CSP- A Process Algebra
as an Institution. In J. L. Fiadeiro and P. Schobbens, editors, Recent Trends in
Algebraic Development Techniques, 18th International Workshop, WADT 2006,
Revised Selected Papers, LNCS Vol. 4409, pages 92-110. Springer, 2007.

Till Mossakowski and Markus Roggenbach. An institution for processes and
data. In Andrea Corradini and Fabio Gadducci, editors, WADT 2008 - Prelimi
nary Proceedings, Techinal Report: TR-08-15, pages 13-14. Universita Di Pisa,
Dipartimento Di Informatica, 2008.

Till Mossakowski, Horst Reichel, Markus Roggenbach, and Lutz Schroder.
Algebraic-coalgebraic specification in CoCASL. In Wirsing et al. [WPH03],
pages 376-392. Extended version submitted for publication.

Till Mossakowski, Markus Roggenbach, and Lutz Schroder. C o C a s l at work
- modelling process algebra. In H. P. Gumm, editor, Coalgebraic Methods in
Computer Science, CMCS’03, Warsaw, Poland, Proceedings, ENTCS Vol. 82.1.
Elsevier, 2003.

Robin Milner, Mads Tofte, and Robert Harper. The Definition o f Standard ML.
August 1990.

BIBLIOGRAPHY 167

[MU05]

[OIR07]

[Pet62]

[Pey03]

[PI08 I]

[RMS04]

[Rog03]

[Rog06]

[Ros98]

[RSG+01]

[Sca98]

[SM02]

[Spi89]

[Sud05]

[vD04]

[Wad85]

Petra Malik and Mark Utting. Czt: A framework for z tools. In ZB. Lecture,
pages 65-84. Springer-Verlag, LNCS, 2005.

Liam O’Reilly, Yoshinao Isobe, and Markus Roggenbach. Integrating Theorem
Proving for Processes and Data. In Magne Haveraaen, John Power, and Monika
Seisenberger, editors, CALCO Young Researchers Workshop CALCO-jnr 2007 -
Abstracts fo r Presentations, pages 18-20. University of Bergen, 2007.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut fur
Instrumentelle Mathematik, Schriften des DM Nr. 2, 1962.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries - The Revised
Report. Cambridge University Press, Cambridge, England, 2003.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMIFN-19, University of Aarhus, 1981.

Markus Roggenbach, Till Mossakowski, and Lutz Schroder. C a s l libraries. In
C a s l Reference Manual, LNCS Vol. 2960 (IFIP Series), part V. Springer, 2004.

Markus Roggenbach. C s p -C a s l : a new Integration of Process Algebra and Al
gebraic Specification. In E Spoto, G. Scollo, and A. Nijholt, editors, Algebraic
Methods in Language Processing, AMiLP 2003, TWLT Vol. 21, pages 229-243.
Univ. of Twente, 2003.

Markus Roggenbach. C s p -C a s l : a new Integration of Process Algebra and Al
gebraic Specification. Theoretical Computer Science, 354(1):42-71, 2006.

A.W. Roscoe. The Theory and Practice o f Concurrency. Prentice Hall, 1998.

Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe.
The Modelling and Analysis o f Security Protocols: the CSP Approach. Addison-
Wesley, 2001.

Bryan Scattergood. The Semantics and Implementation of Machine-Readable
CSP, 1998. DPhil thesis, University of Oxford.

Lutz Schroder and Till Mossakowski. H a s C a s l : Towards integrated specifica
tion and development of Haskell programs. In H. Kirchner and C. Ringeissen,
editors, Algebraic Methods and Software Technology, 9th International Confer
ence, AM AST2002, Saint-Gilles-les-Bains, Reunion Island, France, Proceedings,
LNCS Vol. 2422, pages 99-116. Springer, 2002.

J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

Thomas A. Sudkamp. Languages and Machines: An Introduction to the Theory
o f Computer Science (3rd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

Dirk van Dalen. Logic and Structure. Springer, 2004.

Philip Wadler. How to replace failure by a list of successes. In FPLCA 1985:
Functional Programming Languages and Computer Architecture, LNCS Vol.
201, pages 113-128. Springer, 1985.

168 BIBLIOGRAPHY

[Wad92]

[Wad95]

[Wag02]

[WC01]

[WC02]

[WD96]

[WPH03]

[XCS06]

Philip Wadler. The essence of functional programming. In POPL ’92: Proceed
ings o f the 19 th ACM SIGPLAN-SIGACT symposium on Principles o f program
ming languages, pages 1-14, New York, NY, USA, 1992. ACM.

Philip Wadler. Monads for functional programming. In Advanced Functional
Programming, First International Spring School on Advanced Functional Pro
gramming Techniques-Tutorial Text, pages 24-52, London, UK, 1995. Springer-
Verlag.

Eric G. Wagner. Algebraic specifications: some old history and new thoughts.
fNordic Journal o f Computing, 9(4):373-404, 2002.

J. C. P. Woodcock and A. L. C. Cavalcanti. A concurrent language for refinement.
In A. Butterfield and C. Pahl, editors, IWFM ’01: 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184— 203. Springer-Verlag, 2002.

Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

M. Wirsing, D. Pattinson, and R. Hennicker, editors. Recent Trends in A l
gebraic Development Techniques, 16th International Workshop, WADT 2002,
Frauenchiemsee, Germany, 2002, Revised Selected Papers, LNCS Vol. 2755.
Springer, 2003.

M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus
Specifications. In A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian
Symposium on Formal Methods, pages 105 - 120, 2006.

