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Su m m a r y

Oxysterols are oxygenated derivatives of cholesterol or its precursors. One oxysterol, 
24(5'),25-epoxycholesterol (24(S),25-EC), which results from a shunt in the 
cholesterol synthesis pathway has been found at higher than expected levels in 
embryonic murine brain. Interestingly, the receptor that 24(5),25-EC is a ligand for, 
Liver X Receptor (LXR), has been implicated in neurogenesis in the ventral mid brain 
region of embryonic brain; an area with a high density of dopaminergic neurons. The 
mechanism by which LXR induces this effect is unclear. Therefore, proteomic and 
phosphoproteomic studies were performed using a stable isotope labelled in amino 
acid in cell culture (SILAC) approach in order to quantify changes in the proteome 
between different treatment groups in a mouse substantia nigra dopaminergic cell line 
(SN4741)

SN4741 cells were cultured in SILAC media containing differentially isotope labelled 
arginine and lysine. For protein expression studies SN4741 cells were treated in 
serum free media with vehicle, lOpM 24(5),25-EC, or lpM  GW3965, a synthetic 
ligand of LXR, for 24 hours. For analysis of changes in the phosphoproteome SN4741 
cells were treated in serum free media with vehicle, lOpM 24(5),25-EC, or 30pM 25- 
hydroxycholesterol for 6  hours. Cells were lysed and protein combined in a 1:1 ratio 
before trypsin digestion and peptide separation via strong cation exchange 
chromatography. Phosphopeptides were enriched using immobilised metal affinity 
chromatography (IMAC). Resulting fractions were analysed, using a data dependent 
LC-MS/MS method. Data was quantified using MaxQuant software in conjunction 
with Mascot using an IPI mouse database.

In protein expression analysis known oxysterol regulated genes, via SREBP or LXR, 
were differentially expressed. Oxysterol treatment induced global changes in proteins 
involved in lipid (cholesterol, fatty acid, phospholipid, triglyceride) synthesis. LXR(3 
protein expression increased after GW3965 and 24(5),25-EC treatment, though no 
change was seen on LXR0 mRNA, implying that ligand binding protects LXRf3 from 
degradation. 24(5),25-EC induced changes in expression and localisation of the 
membrane protein caveolin-1. Also, phosphoethanolamine cytidylyltransferase and 
collagen type IV alpha-3-binding protein, 2 proteins involved in phospholipid 
synthesis, had an altered expression after 24(5),25-EC treatment suggesting a role for 
oxysterols in membrane homeostasis. A cytokine, macrophage colony stimulating 
factor, which is required for normal neuronal development and macrophage 
differentiation had an LXR independent increased expression after 24(5),25-EC 
treatment. Quantitative RT-PCR data demonstrated that proteomic changes were due 
to both transcriptional and post-transcriptional effects of oxysterol. In addition, 
studies examining changes in the mouse phosphoproteome identified a number of 
novel phosphorylation sites.
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BSA bovine serum albumin

Cav-1 caveolin-1

CH25H cholesterol 25-hydroxylase

CHO Chinese hamster ovary

CID collision induced dissociation

CoA coenzyme A

Col4a3bp collagen type IV alpha-3-binding protein

Ct cycle threshold

CTX cerebrotendinous xanthamatosis

CYP11A1 cholesterol side-chain cleavage enzyme

CYP27A1 sterol 27-hydroxylase

CYP46A1 cholesterol 24-hydroxylase

CYP7A cholesterol 7-alpha-hydroxylase

CYP7B1 25-hydroxycholesterol 7-alpha-hydroxylase

DMEM Dulbecco’s modified Eagle medium



DMSO dimethyl sulfoxide

DTT dithiothreitol

EBI2 Epstein-Barr virus-induced gene 2

EC50 half maximal effective concentration

EDTA ethylenediaminetetraacetic acid

EGF epidermal growth factor

ELISA enzyme-linked immunosorbent assay

ERK extracellular signal regulated kinase

ESI electrospray ionisation

FBS foetal bovine serum

FDR false discovery rate

FT Fourier transform

FTICR Fourier transform ion cyclotron resonance

FXR famesoid X receptor

HpCD 2 -hydroxypropyl-p-cyclodextrin

HMG-CoA 3 -hydroxy-3 -methy lglutaryl-Co A

HPLC high performance liquid chromatography

HRP horseradish peroxidase

IFN interferon

IgA immunoglobulin A

IgG immunoglobulin G

IMAC immobilised metal affinity chromatography

Insig Insulin-induced gene

IPI International protein index

Ki binding affinity

LC liquid chromatography

LDLR low density lipoprotein receptor

LPS lipopolysaccharide

LTQ linear trap quadrupole

LXR liver X receptor

MALDI matrix assisted laser desorption ionisation

MAPK mitogen activated protein kinase

Mj3CD methyl-P-cyclodextrin



MCSF macrophage colony stimulating factor

MOAC metal oxide affinity chromatography

MS mass spectrometry

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

OSBP oxysterol binding protein

PBS phosphate buffered saline

PCyt2 phosphoethanolamine cytidylyltransferase

Poly I:C polyinosinic:polycytidylic acid

PPAR peroxisome proliferator-activated receptor

PTM post-translational modification

qPCR quantitative polymerase chain reaction

Q-TOF quadrupole -  time of flight

RF radio frequency

RT reverse transcription

RXR retinoid X receptor

SCAP SREBP cleavage activating protein

s e x strong cation exchange

SILAC stable isotope labelling with amino acids in cell culture

SREBP sterol response element binding protein

StarD4 StAR-related lipid transfer protein 4

TEMED N,N,N’,N’ -  tetramethylethylenediamine

TH tyrosine hydroxylase

TLR Toll-like receptor

TOF time of flight

TRIF TR-domain-containing adapter-inducing interferon-P

UniprotKB Uniprot knowledgebase

UV ultraviolet

XTT 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-

carboxanilide

w/o without



CHAPTER 1: INTRODUCTION

1.1 Oxysterols

1.1.1 Cholesterol

Cholesterol is a molecule that is an essential component of the eukaryotic cell 

membrane, where it plays a key role in the maintenance of permeability and fluidity.. 

Cholesterol orientates itself inside the membrane between phospholipids so that the 

hydroxyl group at position 3 of the ring structure is adjacent to the polar head group 

of phospholipids with the hydrophobic part of the molecule in the hydrophobic core 

of the membrane. The steroid ring structure interacts with the aliphatic chains of the 

phospholipid reducing the mobility of the membrane and its permeability to water 

soluble small molecules. Cholesterol reduces the fluidity of the membrane but this 

also prevents possible phase transitions. Phase transitions occur when lipid 

components of the liquid membrane crystallise at reduced temperatures. Thus, 

cholesterol plays a role in the membrane that allows the bilayer to control entry of 

water soluble small molecules and to maintain the membrane in a liquid, albeit less 

fluid, state (Olsen et al 2012).

In addition, cholesterol is an important precursor for a number of other active bio­

molecules. Cholesterol is the starting material for androgens (e.g. testosterone), 

progestogens (e.g. progesterone), oestrogens (e.g. oestradiol) glucocorticosteroids 

(e.g. hydrocortisone), mineralocorticoids (e.g. aldosterone) and bile acids (e.g. cholic 

acid) (fig. 1.1.). Cholesterol and its derivatives are therefore important molecules that 

play a multifunctional role in cellular function. However, increased levels of 

cholesterol are also associated with artherosclerosis and an increased risk of 

cardiovascular disease. For healthy adults a blood cholesterol level of <5mmol/l is 

considered norm al and concentrations above this considered high 

(http://www.nhs.uk/Conditions/Cholesterol/Pages/Diagnosis.aspx accessed 10-4- 

2013). Therefore, homeostasis is necessary to maintain a balance between cholesterol 

uptake and excretion.
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Figure 1.1. Structure o f cholesterol and bioactive molecules for which cholesterol is 

the starting material. Cholesterol contains 27 carbon atoms and is numbered as shown 

in the figure. Cholesterol is transformed via multistep biochemical reactions to form 

androgens (e.g. testosterone), progestogens (e.g. progesterone), oestrogens (e.g. 

oestradiol), glucocorticosteroids (e.g. hydrocortisone), mineral corticosteroids (e.g. 

aldosterone) and bile acids (e.g. cholic acid). It is apparent that the 4 ring structure of 

cholesterol is the basis of these molecules; changes in the ring structure, side chain or 

oxygenation can lead to profound differences in biological activity.

Cholesterol is obtained from two principal sources -  diet and from de novo synthesis. 

The majority of the daily requirement of cholesterol is achieved from the activity of a 

number o f enzymes involved in a multistep synthesis occurring at the endoplasmic 

reticulum (fig. 1.2.). The starting material for cholesterol synthesis is acetyl CoA that 

is linked to another acetyl CoA to form acetoacetyl CoA. It is converted early in the 

pathway to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then 

reduced to yield mevalonate by the action of HMG-CoA reductase; this is the rate



limiting step in cholesterol synthesis and is inhibited by statins, an extensively used 

family of drugs for reducing cholesterol level.

Therefore, the homeostasis of cholesterol is crucial to balance the essential functions 

of the molecule with the negative consequences that high levels induce. Cholesterol 

itself has a role to play by end product negative feedback but, importantly, cholesterol 

can be metabolised to form oxysterols which regulate intercellular cholesterol levels.
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Figure 1.2. The cholesterol synthesis pathway. A shunt in the pathway results in the 

formation of 24(5},25-epoxycholesterol (* = multiple steps). Enzymes responsible for 

the reactions are shown in italics.



1.1.2 Oxvsterols

Oxysterols are biologically active oxidized derivatives of cholesterol. The oxysterols 

are diverse as they can be oxidised in different positions on the molecule either by 

auto-oxidation or by enzymatic means. The oxygen can be introduced onto the 

sidechain (e.g. 22(R )-hydroxycholesterol, 24(5)-hydroxy cholesterol, 25- 

hydroxycholesterol, 24(5),25-epoxycholesterol) or onto the cholesterol ring structure 

(e.g. 7a-hydroxycholesterol, 7-ketocholesterol) (fig 1.3). In vivo oxysterols are 

produced via auto-oxidation, enzymatically via various cytochrome P450 and 

cholesterol hydroxylase enzymes (section 1.1.3.) or by a shunt in the cholesterol 

synthesis pathway that leads to the formation of 24S,25-epoxycholesterol (fig 1.2.). 

The formation of oxysterols is the first step in the synthesis of bile acids from 

cholesterol (fig. 1.4.)
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Figure 1.3. Chemical structure of oxysterols. Oxygen is introduced to the molecule to 

the sidechain or ring structure by auto-oxidation or enzymatic activity. The enzymes 

responsible for the generation of different oxysterols are shown. Biological activity of 

the oxysterols is dependent on the location o f the oxygenation with profound 

differences in efficacy as ligands.
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Figure 1.4. Simplified overview o f bile acid synthesis. The initial step in the 

formation o f bile acids of both the neutral and acidic pathways is the synthesis of 

oxysterols. In the neutral pathway cholesterol is metabolised by CYP7A to form 7a- 

hydroxycholesterol before multiple steps (indicated by *) to form bile acids (cholic 

and chenodeoxycholic acid). In the acidic pathway the initial oxysterol formed is 27- 

hydroxycholesterol by the action of CYP27A1. Multiple steps (indicated by **) 

convert 27-hydroxychoelsterol to bile acids.



The location of the modification is important as although the oxysterols share 

characteristics, such as a reduced hydrophobicity compared with the cholesterol 

parent, the location, and stereochemistry play a role in the biological function of the 

molecules. There are differences between them in terms of activity due to differences 

in protein binding. The activation of Liver X receptor (LXR), for which oxysterols are 

the natural ligand, varies considerably depending on where cholesterol is oxidised 

with E C 5 0  values ranging from 4 or 3p,M for LX Ra/p respectively for 24(S)- 

hydroxycholesterol but below the detection limit for 7-ketocholesterol (Janowski et 

al. 1999). The biological roles of oxysterols will be discussed further in section 1.1.5 

but they have been shown to be important in cholesterol homeostasis and in disease. 

Oxysterols have been associated with artherosclerotic cardiovascular disease (section 

1.1 .6 .1) and, in addition, they have also been implicated in neurodegenerative 

conditions such as Alzheimer’s disease (see section 1.1.6.3; Olkkonen & Lehto 2004, 

Vaya et a l 2007).

1.13 Synthesis of Oxysterols

Oxysterols are synthesised from cholesterol by a number of mechanisms. These 

include auto-oxidation, photo-oxidation and enzymatic formation.

1.13.1. Auto-oxidation and photo-oxidation of cholesterol

When exposed to the atmosphere cholesterol can be auto-oxidised to form oxysterols 

(Weiner et al 1972). The most commonly encountered oxysterols generated in this 

manner are the 7-position modified oxysterols that includes 7a-hydroxycholesterol, 

7 p-hydroxycholesterol and 7-ketocholesterol. In addition, 5 ,6 a -  or 5,613- 

epoxy cholesterol can be produced which is converted to 5 a ,6 P-dihy droxycholesterol. 

All these oxysterols are modified on the ring structure of cholesterol and have poor 

activity with regard to liver X receptor (LXR), the nuclear receptor for which 

oxysterols are the natural ligand (Janowski et al 1999). With the exception of 7a- 

hydroxycholesterol (section 1.1.3.2) they are not produced enzymatically. In addition 

cholesterol is also oxidised by photo-oxidation. This process predominantly yields 

5a-hydroperoxycholesterol which can be transformed to 7-position oxygenated 

oxysterols. Thus, the major products of both forms of non-enzymatic production of 

oxysterols are the same.



It has been shown that some auto-oxidation products are toxic (7(3- 

hydroxycholesterol, 7-ketocholesterol) and therefore their presence may lead to 

harmful biological effects (Hughes et al 1994). In a laboratory context it is important 

to recognise the importance of auto-oxidation with regard to artefacts generated by 

processing of cholesterol in the course of experimental methodology as they could 

potentially lead to false positive conclusions.

1.1.3.2. Enzymatic Formation of Oxysterols

Cholesterol is metabolised to oxysterols enzymatically via a number of different 

enzymes. 24(iS)-hydroxycholesterol, the predominant oxysterol found in the brain, is 

generated by the action of the cytochrome P450 CYP46A1 (Lund et al 1999). 

Unsurprisingly, in both mice and humans it is predominantly expressed in the brain 

with very low expression in other tissues. Human brain was analysed in more depth 

and expression was found across a number of subsections of the brain. Expression 

was stronger however in grey matter compared with white matter. In mouse brain 

cyp46al immunohistochemical staining showed localisation to neurons. The 

expression of CYP46A1 varies with aging. Initially the protein level in the brain, 

measured by Western blotting, of both mouse and human is low in the early stages of 

postpartum development and increases over time until reaching a steady state.

The activity of the cytochrome P450 enzyme cholesterol 7a-hydroxylase (CYP7A) 

results in the formation of 7a-hydroxycholesterol. This oxysterol, which is also a 

product of auto-oxidation, is a precursor in the formation of bile acids. It is 

predominantly expressed in the liver (Jelinek et al 1990) and is the predominant 

location of its activity (Chiang et al 1990).

The enzymatic formation of 25-hydroxycholesterol is due to the activity of cholesterol 

25-hydroxylase (Lund et al 1998). This polytopic membrane protein, unlike CYP7A 

and CYP46A1 which are responsible for the formation of 7a-hydroxycholesterol and 

24(5)-hydroxycholesterol respectively, is not a cytochrome P450. Instead, it belongs 

to a family of enzymes that require di-iron co-factors as a catalyst. Murine cholesterol 

25-hydroxylase was found in lung, heart and kidney. In comparison, human 

cholesterol 25-hydroxylase was found at very low levels in all tissues tested. Recently 

however, it has been reported that the expression of cholesterol 25-hydroxylase



increases dramatically in response to certain stimuli (see section 1.1.7 for a full 

discussion of this effect).

1.1.3.3.24(5'135-epoxvcholesteroI Synthesis

24(5),25-epoxycholesterol is an unique oxysterol as it not a metabolite of cholesterol 

but instead is a final product made by a shunt in the cholesterol synthesis mevalonate 

pathway (fig 1.2.; Nelson et al. 1981). However, the measured level of 24(5),25- 

epoxy cholesterol is much lower than that of cholesterol with levels between 0 .1% and 

1% total cholesterol reported (Spencer et al 1985; Wong et al 2004; Wong et al. 

2007). In the synthesis of cholesterol squalene epoxidase (AKA squalene 

monooxygenase) introduces an epoxide moiety to squalene to produce 2,3(5)- 

monooxidosqualene. This molecule is then cyclised by 2,3-oxidosqualene cyclase to 

form lanosterol and then processed, via a number of steps, to cholesterol. However, it 

is possible for the 2 ,3 (5) -monooxi do squalene to be oxygenated further by squalene 

epoxidase to form 2,3(5);22(5),23-dioxidosqualene. This molecule can then be 

cyclised to oxidolanosterol by 2,3-oxidosqualene cyclase before being processed 

using the same enzymes as those used in the synthesis of cholesterol to form 24(5),25- 

epoxycholesterol as an end product. This implies that any cell that synthesises 

cholesterol has the potential to synthesise 24(5),25-epoxycholesterol. Indeed, in a 

variety of cell types such as macrophages, fibroblasts and astrocytes this has been 

shown to be the case (Wong et al. 2004; Spencer et al. 1985; Wong et al. 2007).

1.1.4. Differential distribution of oxysterols

Just as the expression of oxysterol generating enzymes vary across different tissues 

(section 1.1 .3.2 ) the abundance of the different oxysterols vary depending on the 

tissue or biological fluid examined. A number of studies have been conducted to 

investigate the plasma levels of different oxysterols in humans (summarised in 

Schroepfer 2000). Although the values identified by different research groups had 

variation between them clear trends were also present. The predominant oxysterols 

identified in plasma were 27-hydroxycholesterol (a naturally occurring oxysterol 

derived from the activity of a mitochondrial cytochrome P450 sterol 27-hydroxylase 

(CYP27A1, Andersson et al 1989)), 24(5)-hydroxycholesterol and la -



hydroxycholesterol. In addition, other oxysterols, such as 25-hydroxycholesterol, 

were identified at lower concentrations.

In the central nervous system the predominant oxysterol is 24(5)-hydroxycholesterol 

due to the high expression of CYP46A1 (see section 1.1.3.2; (Lund et al 1999)). 

24(5)-hy droxycholesterol has been identified as a component of cerebrospinal fluid 

(Lutjohann et al 1996). The level of 24(5)-hydroxycholesterol in cerebrospinal fluid 

was -10%  that in plasma. The ratio of 24(5)-hy droxycholesterol to cholesterol was 

measured at 1690±600 ng/mg in children but lower in adults with a ratio of 390±50 

ng/mg. The ratios were 10-fold higher than the ratio of 24(5)-hydroxycholesterol to 

cholesterol in plasma but 50% lower than the ratio found in brain. No other sidechain 

modified oxysterols were reported by the authors. In contradiction a recent paper 

showed that the oxysterol profile of cerebrospinal fluid was a lot more complex with 

numerous oxysterols identified by charge tagging mass spectrometry (Ogundare et al 

2010). O xysterols identified  included 24(5)-hydroxycholesterol, 25- 

hydroxycholesterol, 27-hydroxycholesterol and bile acids. In this study 24(5)- 

hydroxycholesterol was not the highest concentration oxysterol identified.

24(5)-hydroxycholesterol has been identified in the brain of a number of different 

species including rat, cow, horse and human. 24(5)-hydroxycholesterol was measured 

in various tissues but was at a highest concentration in the cerebrum and cerebellum. 

In human adult brain the level analysed post mortem the level of 24(5)- 

hydroxycholesterol (Lutjohann et al 1996) was measured at 0.27-0.58 ng/pg 

cholesterol in cerebrum and 0.68 - 2.19 ng/pg cholesterol in cerebellum. In addition, it 

was reported (thought the data was not presented) that 27-hydroxycholesterol and 25- 

hydroxycholesterol were also found in brain though at lower levels - 5 to 30% and 

<3% respectively.

It is unclear at present whether the distribution of oxysterols to specific tissues, such 

as 24(5)-hydroxycholesterol to the central nervous system, leads to distinct, specific 

effects dependent on the isomer present. However, there has been a large amount of 

work conducted on the biological importance of oxysterols.



1.1.5. Biological Functions of Oxysterols

The major, well studied, biological functions of oxysterols are as important regulatory 

molecules. Due to the presence of oxysterols cholesterol synthesis is inhibited via 

negative feedback by down-regulation of the synthesis of enzymes in the synthetic 

pathway (Gill et al 2008). In addition, they can affect the homeostasis of cholesterol 

by increasing the expression levels of cholesterol exporters (e.g. ATP binding cassette 

Al (ABCA1)) and reducing the low density lipoprotein receptor mediated uptake of 

cholesterol in the form of low density lipoprotein. Oxysterols, generally, exert their 

effects through three methods; regulation of protein transcription through inhibition of 

SREBP (Sterol Response Element Binding Protein) processing, acting as a ligand for 

the nuclear receptor Liver X Receptor (LXR), and by altering the rate of protein 

degradation.

However, the functions of oxysterols are not limited to their classical roles as it has 

recently been shown that oxysterols can affect other diverse processes. Oxysterols can 

alter intracellular cell signalling by altering post-translational protein phosphorylation. 

In addition, it appears that oxysterols are important in the innate immune response, 

embryonic development, and disease progression.

I.I.5.I. Regulation of SREBP

The SREBP family are transcription factors that contain a basic helix loop helix 

leucine zipper motif ((bHLH-Zip). The family of proteins consists of 3 subtypes 

SREBP la, lc  and 2 (Brown and Goldstein 1997). Each subtype consists of a pair of 

membrane spanning domains that allow the N and C terminus domains to project into 

the cytoplasm. However, SREBP 1 and 2 differ in their function. SREBP 1 is 

predominantly expressed in the liver and adrenal gland and is involved in the 

regulation of fatty acid and triglyceride metabolism and de novo lipogenesis whereas 

SREBP2 is ubiquitously expressed and regulates the transcription of the enzymes 

involved in the cholesterol synthesis pathway (Brown and Goldstein 1997). Despite 

the divergence in their role the SREBPs are processed to their active form by a 

common transport and proteolytic mechanism.



SREBP 1/2 in the presence of sterols is retained in the endoplasmic reticulum (Yang et 

al. 2002). As the intracellular cholesterol levels falls SREBP 1/2 is transported, via the 

Golgi apparatus where it is made active due to proteolysis, to the nucleus. Two 

proteolytic cleavages are required to convert SREBP 1/2 to its mature form. The first 

SIP (site-1 protease) splits SREBP 1/2 in two but is unable to release the active 

bHLH-Zip domain (Espenshade et al. 1999). A second protease, S2P (site-2 protease), 

then converts SREBP 1/2 into a transcription factor (Zelenski et al. 1999). Active 

SREBP 1/2 is transferred to the nucleus where it can exert its effect and promote the 

expression of responsive genes.

SREBP 1/2 itself does not contain a sterol binding domain and therefore its regulation 

is reliant on two other proteins -  SCAP (SREBP cleavage activating protein) and 

Insig (Insulin induced gene) (Radhakrishnan et al. 2007). In cholesterol depleted cells 

SCAP transports SREBP 1/2 from the ER to the Golgi apparatus where it is processed 

to its active from as described above. However, SCAP contains a sterol binding 

domain that allows it to bind cholesterol (Radhakrishnan et al. 2004). The presence of 

cholesterol alters SCAPs conformation and results in effects on SREBP 1/2 

processing. SREBP 1/2 is bound to SCAP by an interaction between the c-terminus of 

both proteins that, in the presence of cholesterol, ensures that SREBP 1/2 is tethered to 

the endoplasmic reticulum membrane. Thus, the interaction of cholesterol and SCAP 

results in a down regulation in expression of SREBP 1/2 regulated genes. SCAP is 

only affected by cholesterol; 25-hydroxycholesterol had no effect on its conformation. 

However, a second protein Insig exerts a similar effect mediated by oxysterols. Insig, 

of which there are two closely related proteins Insig-1 and Insig-2, binds oxysterols 

but does not bind cholesterol (Radhakrishnan et al. 2007). In the presence of 

oxysterols Insig binds to SCAP and prevents the SCAP/SREBP1/2 complex from 

being transported to the Golgi for processing. Thus, the action of SREBP 1/2 can be 

modified by cholesterol and oxysterols.

In addition, as another layer of regulation SREBP stimulates the production of Insig 1 

mRNA. Therefore, SREBP promotes the expression of an inhibitor of its processing 

to maturation. Stimulation of Insig expression promotes inhibition of SREBP 

regulated gene transcription (Horton et al. 2003).



1.1.5.2. Activation of Liver X Receptor

The liver X receptor (LXR) is a transcription factor and a nuclear receptor with strong 

similarity to other nuclear receptors such as PPAR, FXR and RXR. LXR was 

classified, initially, as an orphan receptor as its natural ligand was unknown (Apfel et 

al 1994, Song et al 1994). LXR exists as two isoforms a  and p which have a large 

(77%) homology between the two. There are, however, differences in expression with 

L X R a being the predominant isoform in the liver whilst LXRp is ubiquitously 

expressed. Oxysterols have been shown to be the endogenous ligand for both LXRa 

and LXRp (Janowski et al 1998). The potency of different oxysterols vary depending 

on where on the ring or side chain of cholesterol the oxygen is added and the 

stereochemistry of the modification. Structure activity relationships have shown that 

the most potent ligands for LXR are oxysterols with modified side chain (Janowski et 

al 1998). Indeed, the most potent naturally occurring oxysterol ligands for LXR, 

24(5),25-epoxycholesterol and 24(5)-hydroxycholesterol, had an EC50 of <5p,M for 

both LXRa and p. In comparison, 7a-hydroxycholesterol, a naturally occurring 

oxysterol, had an efficacy of ̂ 10% at 40pM. In addition to the position the number 

and stereochemistry o f the modifications are also important as cholesterol 

hydroxylated twice were substantially less potent (e.g. Kj 24(5),25- 

dihydroxycholesterol for LXRa = 1200nM) as were enantiomers of active oxysterols 

(e.g. Kj 24(R),25-epoxy cholesterol for LXRa = 1200nM). This can be explained by 

the structure of the oxysterol binding pocket of LXR (Svensson et a l 2003). The 

crystal structure of LXR shows the orientation of the hydrophobic ring structure into a 

hydrophobic cavity. Hydrogen bonding between the hydroxyl at position 3 and 

arginine-305 holds the ring in the correct position. A second hydrogen bond between 

active sidechain oxygenated oxysterols, (e.g. 22(i?)-hydroxycholesterol, 24(5)- 

hydroxycholesterol, 24(5),25-epoxycholesterol) and either histidine-421 or 

tryptophan-443 residues in the binding pocket results in stronger binding of these 

ligands. Inactive oxysterols such as 22(5)-hydroxycholesterol and 24(R)- 

hydroxycholesterol are prevented from binding efficiently in the pocket due to steric 

effects preventing hydrogen bonding to either the histidine-421 or tryptophan-443.

Retinoid x receptor (RXR) is a nuclear receptor that is activated in the presence of 9- 

cis retinoic acid. It can heterodimerise with a number of other nuclear receptors



depending on which activating ligands are present. In the presence of oxysterols 

activated LXR forms heterodimers with RXR. This heterodimer can then activate 

transcription of genes containing a LXR response element in their promoter region. 

The LXR response element is a nucleotide sequence that has the idealised nucleotide 

sequence 5 ’ -AGGTC ANXXXXAGGTCA-3' in the promoter region of LXR activated 

genes. Genes that are regulated by LXR include a number of genes that are associated 

with cholesterol and lipid homeostasis. Examples of genes regulated by LXR include 

ATP binding cassette Al (ABCA1) which is a cholesterol efflux protein, ApoE a 

transporter of cholesterol and other hydrophobic compounds, and SREBP lc which 

controls the synthesis of fatty acid synthesising enzymes (e.g. fatty acid synthase).

I.I.5.3. Regulation of Protein Degradation

In addition to their roles in altering the transcription of genes, either by LXR or 

SREBP, oxysterols can alter the rate of protein degradation. HMG-CoA reductase, a 

membrane bound enzyme and a rate limiting step in the synthesis of cholesterol, is 

transcriptionally regulated by SREBP2. However, it has also been shown that 

oxysterols lead to a increased rate of HMG-CoA degradation (Chin et al. 1985; Gil et 

al. 1985; Nakanishi et al. 1988). This effect is mediated by Insig, the oxysterol 

sensing protein that causes SREBP retention in the endoplasmic reticulum (Sever et 

al. 2003a; Sever et al. 2003b). In the presence of sterols HMG-CoA reductase is 

ubiquitinated which is reliant on Insig; RNAi knockout of Insig 1 and 2 mitigated this 

effect (Sever et al. 2003a; Sever et al. 2003b). Therefore, these synergistic effects 

increase the rapidity of response to changes in cholesterol levels; the rate of synthesis 

of new protein is reduced and the removal of previously synthesised HMG-CoA 

reductase is accelerated.

Another protein that is targeted for degradation by the presence of oxysterols is low 

density lipoprotein receptor (LDLR). Regulation of LDLR expression is by 

modification of SREBP; the LDLR mRNA level is rapidly reduced in the presence of 

oxysterols (Metherall et al. 1989). Similarly to HMG-CoA reductase the protein, due 

to oxysterols, is ubiquitinated and then degraded. However, the mechanism of action 

by which oxysterols achieve this effect differs between the 2 proteins. In the case of 

LDLR stimulation of LXR induces Idol which ubiquitinates LDLR. LDLR is then



degraded (Zelcer et al 2009). Thus like HMG-CoA reductase these effects, at the 

protein and mRNA level, are additive.

In the presence of oxysterols the rate of degradation of LXRa and LXRp is slowed. 

Overexpressed FLAG-tagged LXRa/p in the presence of oxysterols (i.e. in the 

presence of ligand) degraded at a lower rate after protein synthesis was inhibited with 

cycloheximide (Kim et al 2009). It has not been shown whether this effect leads to a 

change in the level of endogenous LXR levels after treatment with oxysterols. Again 

this effect, in the case of LXRa, is potentially additive as the LXRa mRNA 

expression has been shown to be auto regulated in some, but not all, cell types.

Thus, it is potentially possible to affect protein expression levels by treatment with 

oxysterols without altering the level of mRNA expression. Either by inducing 

ubiquitination, as in the examples of HMG-CoA reductase and LDLR, or by 

preventing ubiquitination, in the case of LXR, it is clear that the role of oxysterols in 

protein regulation goes beyond that of transcriptional inhibition/activation via SREBP 

and LXR respectively. Indeed, it has recently been shown that the oxysterols play a 

role in the regulation of post transcriptional cell signalling.

I.I.5.4. Cell signalling

In addition to their regulatory role oxysterols can affect protein phosphorylation in 

particular the phosphorylation of extracellular signal regulated kinase (ERK1/2) 

(Yoon et al 2004, Lemaire-Ewing et a l 2009). Cholesterol stabilises a phosphatase 

complex containing oxysterol binding protein (OSBP) as a scaffold, the 

serine/threonine phosphatase PP2A and the tyrosine phosphatase HePTP that 

decreases the phosphorylation of ERK 1/2 (Wang et al 2003, Wang et a l 2005). By 

competing with cholesterol oxysterols cause the disassembling of the phosphatase 

complex and, therefore, the presence of oxysterol up-regulates ERK 1/2 

phosphorylation at the thr202/tyr204 amino acid residues. ERK 1/2 is an important 

signalling molecule and a known oncogene. It has roles in a number of different 

biological functions including cell growth, differentiation and apoptosis (Avruch 

2007). The up-regulation of ERK 1/2 phosphorylation by disassembly of this 

phosphatase has been shown in a number of different cell lines either by depletion of 

cholesterol with cyclodextrin or with treatment with oxysterols (Furuchi & Anderson



1998, Yoon et al. 2004, Agassandian et al. 2005, Calleros et al. 2006, Kim et al. 

2007, Jin et al. 2008, Lemaire-Ewing et al. 2009). This effect seems to be a feature of 

oxysterols generally as a number of different, dissimilar oxysterols have been shown 

to initiate this effect including 713-hydroxycholesterol, 2 2 -hydroxycholesterol (not 

specified R/S), and 25-hydroxycholesterol.

It is unclear whether treatment with oxysterols only affects ERK 1/2 of the mitogen 

activated protein kinase (MAPK) family as there has been contradictory evidence 

regarding other MAPKs (e.g. JNK) (Ares et al. 2000, Yoon et al. 2004). In addition, it 

is unclear as to what pathways downstream of ERK 1/2 are up/down-regulated due to 

the activation of ERK 1/2.

1.1.6. Role of Oxysterols in Disease

Oxysterols have been hypothesised to play a role in a number of disease states. These 

include cardiovascular disease, eye disease and neurodegenerative diseases.

I.I.6.I. Role of Oxysterols in Cardiovascular Disease

Artherosclerosis is a condition characterised by the hardening and thickening of the 

arterial wall caused by the accumulation of cholesterol, and other substances, in the 

wall of the artery leading to the formation of areas of hardening called plaques. 

Oxysterols have been shown to be cytotoxic to endothelial and arterial smooth muscle 

cells in vitro and have therefore been hypothesised to be artherogenic (Ares et al. 

2000). However, in vivo the situation appears to be equivocal as treatment of animals 

with dietary oxysterols resulted in variable responses. Some articles detailed increased 

levels of artherosclerosis, some reported no change whilst others observed reduced 

levels of disease progression. However, as oxidized low density lipoprotein has high 

levels of non-enzymatically formed oxysterols it is a possibility that these molecules 

have a role to play in the pathology of the disease. Indeed the most cytotoxic 

oxysterol in oxidized low density lipoprotein is 7-hydroperoxycholesterol (Chisholm 

et al. 1994). This oxysterol is rapidly decomposed to other 7-modified oxysterols and 

therefore true concentration of 7-hydroperoxycholesterol is probably under estimated 

but 7-modified oxysterols are found in high concentration in foam cells and 

artheromas. The pathogenic importance may be due to uptake oxidized low density



lipoprotein and accumulation of toxic molecules. However, the dominant oxysterol in 

artheroma is a enzymatically produced one - 27-hydroxycholesterol. It has been 

hypothesised that 27-hydroxycholesterol might act as a defence to large 

concentrations of cholesterol (Bjorkhem et al 1994; Babiker et al 1997). Evidence 

supporting this is found in analysis of the disease cerebrotendinous xanthamatosis 

(CTX). In this disease, which is a genetic autosomal recessive disease that results in 

the absence of cholesterol 27-hydroxylase (the enzyme responsible for the synthesis 

of 27-hydroxycholesterol), there is an early onset of artherosclerosis despite most 

CTX patients having normal cholesterol plasma levels (Fujiyama et al 1991). The 

majority of oxysterols in artherosclerotic plaques are comprised of 4 oxysterols. 

Together, these four oxysterols, 27-hydroxycholesterol, 7-ketocholesterol, 7p- 

hydroxycholesterol and 7a-hydroxycholesterol, account for -80% of the total amount 

of oxysterol in artherosclerotic plaques (Bjorkhem et al 1994; Crisby et al 1997). At 

present there is no direct evidence of the involvement of oxysterols in the disease. 

However, they are cytotoxic and oxysterols have been demonstrated to be pro- 

apotopic. Therefore, it appears that oxysterols have a role to play in the progression of 

this condition.

I.I.6.2. Role of Oxysterols in Eve Disease

Oxysterols have been associated with disease of the eye with implied roles in age 

related macular degeneration and glaucoma. Age-related macular degeneration is a 

disease that, as its name suggests, involves the degradation o f the macula, a 

specialised structure of the retina with a high concentration of cone photoreceptors 

and ganglion cells, and can lead to blindness. The disease is classified as two forms 

wet (or exudative) and dry (or atrophic). The wet form of the disease is due to 

increased choroidal vascularisation. The dry form of the disease is the more common, 

but generally less severe, form of the disease. It is characterised by the formation of 

drusen, extracellular deposits between the retinal pigment epithelium and Bruch’s 

membrane. These deposits can induce retinal pigment epithelial atrophy in the central 

part of the eye. Currently there are no treatments for this form of age-related macular 

dystrophy. It is this form that has been associated with oxysterols as it has recently 

been hypothesised that 7-ketocholesterol is a key player in the development of the 

disease (Rodriguez et al 2004).



In cultured retinal pigment epithelium cells treatment with low density lipoprotein 

caused toxicity after 72 hours. In order to determine if this effect was mediated by 

oxysterols the cells were treated with 50p,M oxysterol and cell viability measured 

after 72 hours (Rodriguez et al 2004) Of the oxysterols tested (25- 

hyd roxycho lestero l, 20 -hydroxychoelste ro l, 7 -k e to ch o lestero l, 70- 

hydroxy cholesterol, 7p-hydroxycholesterol) the most cytotoxic were 20- 

hydroxy cholesterol and 7-ketocholesterol. In addition, 7-ketocholesterol has been 

identified in monkey retina (Moreira et al 2009) and in retina of albino rat 

(Rodriguez and Fliesler 2009) at a level of 0.5-1.5 pmol per nmol cholesterol and 1-4 

pmol per nmol cholesterol respectively. As other sidechain hydroxylated oxysterols 

were below the detection limit (lOOfmol/nmol cholesterol) it is unclear whether these 

concentrations are in the correct range or whether auto-oxidation artefacts have 

artificially elevated them. However, despite no definitive evidence for a role for 

oxysterols in the disease oxysterol binding protein 2 (OSBP2) has been implicated 

(Torrini et al 2007).

Another eye disease with which oxysterols have been associated is glaucoma. 

Glaucoma is a chronic disease that can lead to permanent loss of sight due to optic 

nerve damage and often presents as an increased pressure of the aqueous humour 

inside the eye. A mutation in CYP46A1 was associated with incidence of primary 

open angle glaucoma (Fourgeaux et al 2009). Though there was a genetic link 

between the polymorphism and the disease this was not identified by changes in the 

plasma level of 24(«S)-hydroxycholesterol and therefore cannot be used as a biomarker 

for primary open angle glaucoma.

I.I.6.3. Role of Oxysterols in Neurodegenerative Diseases

Alzheimer’s disease is characterised by neuronal loss and the accumulation of 

amyloid beta (Ap) peptide deposits resulting in plaque formation. Ap peptide is 

formed from cleavage of amyloid precursor protein by a-secretase, P-secretase or y- 

secretase. a-secretase results in the formation of AP40 a soluble form that does not 

result in amyloid plaques. In comparison, p-secretase or y-secretase activity 

synthesises Ap42 which then forms insoluble aggregates. Oxysterols have been



implicated in Alzheimer’s disease as a biomarker of the disease and as 

neuroprotective agents.

In cerebrospinal fluid the level of 24(5)-hydroxycholesterol was increased in 14 

newly diagnosed Alzheimer’s patients compared with 10 healthy controls. In 

Alzheimer’s a level of 2.6±l.lng/ml was recorded in cerebrospinal fluid compared 

with 1.6±0.6ng/ml in healthy controls (Schonknecht et al 2002). This difference was 

considered statistically significant (p<0.05). However, no difference was observed in 

the plasma level of 24(5)-hydroxycholesterol with levels of 60.5±19.3ng/ml and 

53.6±14.3ng/ml measured in Alzheimer’s disease and healthy controls respectively. 

This change in cerebrospinal fluid level of 24(5)-hydroxycholesterol appeared 

independent of plasma cholesterol as both Alzheimer’s disease and control subjects 

had normal plasma cholesterol levels (150-230mg/dl) (Schonknecht et al 2002). In 

another study analysing the plasma level of 24(5)-hydroxycholesterol in a greater 

number of newly diagnosed Alzheimer’s patients (n=30) showed an increase in 

plasma 24(5)-hy droxycholesterol levels as compared to control (Lutjohann et al 

2000). In Alzheimer’s patients the concentration measured was 75±18ng/ml (range 

42-116) compared with 60±21ng/ml (range 24-105) of healthy control (p<0.001, 

ANCOVA). In this study however there was no statistical difference between 

Alzheimer’s and vascular dementia. Vascular dementia patients had a 24(5)- 

hydroxycholesterol plasma level of 78±20 (range 43-114) (Lutjohann et al 2000). In 

a separate study using a larger number of patients (n=40) it was shown that there was 

a significant decrease in the plasma level of 24(5)-hydroxycholesterol in Alzheimer’s 

disease patients who had been diagnosed for at least 4 years (Bretillon et al 2000). 

This decrease was modest (~18%) but statistically significant (p<0.01). Thus, from 

these studies it appears that the level of plasma 24(5)-hydroxycholesterol is an 

indication of disease progression with newly diagnosed patients having increased 

levels of plasma 24(5)-hydroxycholesterol but with a decrease over time.

Analysis of the expression of two oxysterol generating enzymes, cholesterol 24- 

hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1), showed 

differences between Alzheimer’s disease patients’ brain (n=7) and control subjects 

(n=7) (Brown 3rd et al 2004). Both enzymes, in control brain, are expressed in 

neurons and some astrocytes. Cholesterol 27-hydroxylase is also found in



oligodendrocytes. However, in Alzheimer’s disease this pattern of distribution 

changes with expression of cholesterol 24-hydroxylase predominantly in astrocytes 

and around the amyloid plaques. Cholesterol 27-hydroxylase expression decreases in 

neurons but increases in oligodendrocytes. Analysis of the effect of 24(5)- 

hydroxycholesterol and 27-hydroxycholesterol showed that both oxysterols reduced 

the rate of production of Ap peptide in rat primary cortical neurons transfected with 

adenovirus expressed amyloid precursor protein. 24(5)-hydroxycholesterol was the 

more potent of the two oxysterols. After 24 hours treatment with IOjiM 24(5)- 

hydroxycholesterol there was a reduction in A(3(40/42) peptide of -70%  whereas 

15pM 27-hydroxycholesterol reduced the AP(40/42) secretion by -40%.

Interestingly, 24(5)-hydroxycholesterol and 27-hydroxycholesterol have been shown 

to modulate the production of A(3 in human neuroblastoma SH-SY5Y cells (Prasanthi 

et al 2009). 24(5)-hydroxycholesterol did not affect the generation of A(342 while 

treatment with 5pM 27-hydroxycholesterol increased the level of this peptide -2  fold. 

This increase in A|342 level due to 27-hydroxycholesterol treatment was associated 

with increases in both amyloid precursor protein, the source of Ap peptide, and beta- 

secretase the enzyme that generates Ap42. In comparison, 24(5)-hydroxycholesterol 

treatment promoted the alpha secretase pathway that generates non-amyloidogenic 

soluble APP and therefore it appears that 24(5)-hydroxycholesterol plays a 

neuroprotective role to prevent the formation of amyloid plaques. Conversely, it 

appears that 27-hydroxycholesterol promotes the formation of insoluble Ap42.

Questions remain regarding the role of oxysterols in Alzheimer’s disease as it is still 

unclear the biological role that oxysterols play in the disease state. It appears that 

oxysterols, such as 24(5)-hydroxycholesterol, can have a neuroprotective role due to 

changes in Ap processing (Prasanthi et al 2009, Brown 3rd et al 2004). However, it 

has yet to be determined if  changes in oxysterol concentration measured in 

cerebrospinal fluid and plasma of Alzheimer’s patients is a reflection of the cause of 

neuronal loss or merely a by-product of the disease state as a neuroprotective 

homeostatic mechanism.



Table 1.1. Summary of important oxysterols and disease states in which they have 

been implicated.

Oxysterol Formed Enzyme Implicated in disease state

7-ketocholesterol Auto-oxidation n/a Cardiovascular disease.

Glaucoma.

Age related macular 

degeneration

7a-hydroxycholesterol Enzymatically.

Auto-oxidation.

CYP7A Cardiovascular disease.

7(3-hydroxy cholesterol Auto-oxidation n/a Cardiovascular disease.

22R-hydroxycholesterol Enzymatically CYP11A1 n/a

24S-hydroxycholesterol Enzymatically CYP46A1 Alzheimer’s disease.

25-hydroxycholesterol Enzymatically CH25H n/a

27-hydroxycholesterol Enzymatically CYP27A1 Cardiovascular disease 
(proposed protective role).

Alzheimer’s disease.

24(5) ,25-epoxy cholesterol Enzymatically Shunt in 
mevalonate 

pathway

n/a

1.1.7. Role of Oxysterols in Immunity

It has recently emerged that oxysterols have a role to play in the innate immune 

response. In has been shown it that the mRNA encoding cholesterol 25-hydroxylase is 

up-regulated significantly (35x) in mouse macrophages after a short (2  hour) 

incubation with lOng/ml lipopolysaccharide (LPS; Diczfalusy et al 2009). 

Lipopolysaccharide is an important component of Gram-negative bacteria and a 

potent activator of the mammalian immune response. In contrast, lipopolysaccharide 

had no effect on the mRNA level of 2 other oxysterol generating enzymes (CYP27A1 

and CYP7B1). This increase in cholesterol 25-hydroxylase mRNA corresponded with 

a ~6 fold increase in intracellular 25-hydroxycholesterol. In addition, the intravenous



injection of lipopolysaccharide into healthy human volunteers resulted in an increased 

level of 25-hydroxycholesterol in the plasma.

Another study, conducted independently (Bauman et al. 2009), showed a similar 

increase in cholesterol 25-hydroxylase (CH25H) and 25-hydroxycholesterol after 

treatment with Kdo2-Lipid A, a selective toll-like receptor 4 (TLR4) agonist, in 

peritoneal and bone marrow derived murine macrophages. This effect appeared to be 

a general response to toll-like receptor activation as lipopolysaccharide, peptidoglycan 

(a selective agonist for TLR2), polyinosinicipolycy tidy lie acid (poly I:C, a selective 

agonist for TLR3) and lipoteichoic acid (an agonist for TLR2/6) also induced the 

expression of cholesterol 25-hydroxylase and 25-hydroxycholesterol. The Kdo2-Lipid 

A induced changes were inhibited by co-incubation with either MAPK inhibitors or 

NF-kB inhibitors.

This effect of Kdo2-Lipid A was also observed in vivo in wild-type mice after 

interperitoneal injection. Induction of CH25H mRNA was observed in all tissues 

tested with a maximum response (~250fold) in the liver. Protein levels of CH25H 

were also elevated in liver and lung after Kdo2-Lipid A treatment coupled with an 

increase in concentration of 25-hydroxycholesterol in lungs and serum. In CH25H-/- 

knockout mice the level of IgA heavy chain mRNA was increased compared to wild- 

type mice. This was corroborated as the IgA level was increased in serum, lungs and 

intestinal mucosa in CH25H-/- knockout mice. These changes were shown to not be 

due to a increase in the total number of leukocytes in the CH25H-/- knockout mice 

compared with wild type mice. Conversely knockout mice lacking oxysterol 7a- 

hydroxylase (CYP7B1-/-), which in normal circumstances rapidly metabolises 25- 

hydroxycholesterol, showed significant reductions in the IgA level in the lung, serum 

and mucosa. This effect of 25-hydroxycholesterol suppressing IgA release was also 

shown in vitro in splenic B220+ cells with an IC50 of ~50nM. This effect appears to 

be independent of LXR and cellular cholesterol levels as 22(i?)-hydroxycholesterol 

and 24(7?/S)-hydroxycholesterol were inactive and co-incubation of cholesterol with 

25-hydroxycholesterol did not reverse the effect.

The toll-like receptor 3 (TLR3) ligand poly I:C and the toll-like receptor 4 (TLR4) 

ligand LPS increase the mRNA expression of cholesterol 25-hydroxylase (CH25H) in



dendritic cells and macrophages derived from mouse bone marrow (Park and Scott 

2010). It appears that this is primarily a TRIF (TR-domain-containing adapter- 

inducing interferon-P), a TLR3/4 adapter molecule, dependent mechanism as in 

TRIF-/- mice the up-regulation of CH25H after treatment with polyI:C or LPS was 

abolished. In addition, TRIF signaling results in increases in interferon-p (IFNp) 

expression; both polyLC and LPS increased expression of IFNp in bone marrow 

derived dendritic cells and macrophages. Similarly to the effect on CH25H expression 

this effect is abolished in dendritic cells from TRIF-/- mice. In addition, the increase 

in CH25H expression can be induced by direct stimulation with interferons a , p or y. 

Further investigation of the pathway showed that increased expression of CH25H in 

macrophage and dendritic cells is reliant on JAK signalling as JAK inhibitors 

prevented the effects of polyLC, LPS and interferon-p. In addition, JAK inhibition 

reduces TLR3/4 ligand and interferon-p induced STAT1 phosphorylation. The 

absence of STAT1 in knockout models abolishes the increase in CH25H expression 

by polyLC, LPS and interferons a , p, and y in dendritic cells and macrophages.

Recently two groups have reported independently and concurrently the role of 7a,25- 

hydroxycholesterol in inducing the migration of immune cells via Epstein-Barr virus- 

induced gene 2 (EBI2) a G-protein coupled receptor (Hannedouche et al 201 l,Liu et 

al 2011). EBI2, whose natural ligand was previously unknown, is a key regulator of 

the migration of B-cells in lymphoid organs.

7a,25-hydroxycholesterol was identified as the naturally occurring receptor ligand of 

EBI2 (Hannedouche et al 2011). Modification of cholesterol by hydroxylation at both 

positions increased the potency of the oxysterol greatly (~1000-fold) compared with 

the mono-hydroxylated 7a-hydroxycholesterol or 25-hydroxycholesterol. In addition, 

7 a ,25-hydroxycholesterol is a potent chemoattractant of immune cells expressing 

EBI2 including B cells and dendritic cells. Blocking Gai-coupled receptors with 

pertussis toxin blocked the chemoattraction of B-cells induced by 7 a ,2 5 - 

hydroxycholesterol. The synthesis of 7a,25-hydroxycholesterol requires the activity 

of both cholesterol 25-hydroxylase (CH25H) and 25-hydroxycholesterol 7-alpha- 

hydroxylase (CYP7B1); two enzymes shown to be present at high levels in both 

spleen and lymph nodes. Therefore, to further investigate the biological relevance and



function of 7a,25-hydroxycholesterol CH25H-/- knockout mice were used. The 

concentration of 7a,25-hydroxy cholesterol was increased in the spleen of 

lipopolysaccharide treated wild type mice but not in CH25H-/- mice. In addition, 

CH25H-/- mice had attenuated in vivo migration of B-cells in the spleen. The absence 

of CH25H also decreased the level of IgGl response to the presence of antigen by ~3 

fold.

A second, independent, paper (Liu et al. 2011) also identified 7 a ,2 5 -  

hydroxycholesterol as the natural ligand of EBI2 with a EC50 value of 140pM 

measured by 35S-GTP-yS incorporation. 7a,25-hydroxycholesterol was the most 

potent of the oxysterols tested (EC50; 7a,25-hydroxycholesterol = 0.14±0.03nM; 

7a,27-hydroxycholesterol = 1.3±0.28nM; 7|3,25-hydroxycholesterol = 2.1±0.51nM; 

7p,27-hydroxy cholesterol = 51±1.78nM; 7a-hydroxycholesterol = 82±13.3; 7p- 

hydroxycholesterol = 1763±262; 25-hydroxycholesterol = 127±26.6; 27- 

hydroxycholesterol = 3029±571). 7a,25-hydroxycholesterol treatment of CHO cells 

transfected with V5 tagged human EBI2 induced receptor internalisation indicating 

that 7a,25-hydroxycholesterol is the natural ligand of the receptor. The biological 

relevance was demonstrated in vitro as B-cell and CD4+ T-cell migration in response 

to 7a,25-hydroxycholesterol was observed. This response was also observed in vivo 

in LPS activated B-cells, CD4+ T-cells, CD8+ T-cells and dendritic cells. All of these 

cells were characterised as expressing EBI2. However, this effect appears cell type 

specific as there was no response in vitro to natural killer cells, neutrophils and 

macrophages despite all three cell types of the immune system being EBI2 positive. 

7a,25-hydroxycholesterol desensitises EBI2 receptor. The observed effects in cell 

migration in wild-type mice were absent in EBI2-/- mice with no migratory response 

to 7a,25-hydroxycholesterol. Heterozygous EBI2+/- mice had a reduced response 

(-50%) to 7a,25-hydroxycholesterol compared with wild type mice.

It is clear therefore that an emerging, important role for oxysterols in the innate 

immune response is slowly being elucidated. However, it appears that oxysterols, in 

particular those hydroxylated at the 25- position, are key players in this mechanism.



1.1.8. Role in development

A large number of oxysterols are found in the central nervous system (Wang et al 

2009), but the predominant oxysterol produced in adult brain is 245- 

hydroxycholesterol (C5-3|3,245-diol), a CYP46A1 oxidised metabolite of cholesterol 

that is exclusively synthesised in the brain (Lund et al 1999). It has recently been 

shown that in murine embryonic brain 24(5),25-epoxycholesterol (C5-3p-ol-245,25- 

epoxide) is present at relatively high levels compared to other oxysterols (Wang et a l 

2009). As previously described (section 1.1.3.3), unlike other oxysterols 24(5),25- 

epoxycholesterol is not a metabolite of cholesterol but a final product in a shunt of the 

mevalonate pathway of cholesterol synthesis.

24(5),25-epoxycholesterol has a potential role in the development of the embryonic 

brain as it has been shown that the level of 24(5),25-epoxycholesterol is present at 

relatively high levels in comparison to other oxysterols in the cortex and spinal cord 

of embryonic mice (Wang et al 2009). The predominant oxysterol in adult mouse 

brain is 24(S)-hydroxycholesterol with level o f 2.53±0.05ng/pg 24(5)- 

hydroxycholesterol to cholesterol (Lutjohann et al 2002). In the embryonic murine 

brain this level is greatly reduced; at embryonic day 11 there was an observed level of 

0.026pg/g (wet weight) in the cerebral cortex and 0.013pg/g (wet weight) in the 

spinal cord. In comparison, the concentration of 24(5),25-epoxycholesterol was 

0.165pg/g (wet weight) in the cerebral cortex and 0.091 pg/g (wet weight) in the 

spinal cord. In comparison in human primary neurons, derived from 14-18 week old 

foetuses, 24(5),25-epoxycholesterol synthesis has been detected (Wong et al 2007). 

The overall level of 24(5),25-epoxycholesterol was not measured though the rate of 

synthesis of the oxysterol was 0.001-0.05% of the rate of synthesis of cholesterol 

(Wong et al 2007). It is unclear the role this increased concentration plays in murine 

embryonic neural development. However, LXRa/p is present in embryonic brain 

(Sacchetti et al 2009) and as 24(5),25-epoxycholesterol is a potent ligand for this 

nuclear receptor (Janowski et al 1999) it might play a role in neural development. 

Indeed, there is evidence to suggest that the presence of LXR is essential to 

dopaminergic neurogenesis in the ventral midbrain (Sacchetti et al 2009).



LXR is expressed in embryonic mice (Annicotte et al 2004). LXRa was observed to 

be abundant in the liver, intestines and adipose tissue whereas LXRp was more 

ubiquitously expressed with strong expression in neuronal and endocrine tissue. LXR 

is expressed in ventral midbrain progenitor cells (Sacchetti et al 2009). In addition to 

this these cells also express oxysterol generating enzymes (e.g. CYP46A1, 

oxidosqualene lanosterol cyclase) and ABCA1, whose expression is reliant on LXR 

activation. LXRa/p knockout mice showed down regulation of two genes that control 

dopaminergic neuron development Lmxlb and Wntl. These reduced expressions, 

consequently, caused the down-regulation of Pitx3 a gene regulated by Lmxlb and 

W ntl. The effect of LXRa/p knockout cased a reduced number of cells in the 

marginal zone where dopaminergic neurons are present. These effects result in 

impaired dopaminergic neuron development in LXRa/p knockout mice.

The reduction in dopaminergic neurogenesis was reliant on LXRa/p as there was no 

increase in apoptosis and oxysterols did not have a direct effect on neurogenesis in 

LXRa/p knockout mice. However, at embryonic day 11.5 dopaminergic neurogenesis 

was impaired in the floor plate midbrain, the area of the brain where dopaminergic 

neurons are derived. In LXRa/p knockout mice there were less tyrosine hydroxylase 

positive (TH+) neurons. Tyrosine hydroxylase is the rate-limiting enzyme for 

dopamine synthesis. In ventral midbrain primary cultures 22{R)-hydroxycholesterol 

and GW3965, a synthetic LXR ligand, increased the number of TH+ cells in wild type 

but not in LXRa/p knockout cells.

In addition, the efficiency of the differentiation of mouse embryonic stem cells to 

dopaminergic neurons treated with 2 2 (/?)-hydroxycholesterol was increased. 

Overexpressing LXRp had a similar effect and interestingly the combination of 

22(i?)-hydroxycholesterol treatment and LXRp was additive. The balance between, 

and organisation of, different cell types was disrupted by LXRa/p knockout as the 

number RC2+ glia increased whilst there was disorganisation of GFAP+ astrocytes. 

However the primary defect caused by LXRa/p knockout is on ventral midbrain 

dopaminergic neurogenesis.

LXRa/p knockout also disrupted the cell cycle (Sacchetti et al 2009) as there was an 

increase in cells entering the active stages of mitosis, measured by Ki67+ staining, but



no subsequent increase in Brdu incorporation and cell cycle exit was decreased. In 

LXRa/p knockout cells were held at G2/M with an increased percentage of 

progenitor cells and reduced neurogenesis.

In human embryonic stem cells LX Ra/p are expressed and increases during 

differentiation. The number of Tujl+ neurons was increased by 70% and TH+ 

neurons increased by 300% after treatment with 22(i?)-hydroxy cholesterol during 

differentiation (Sacchetti et al. 2009). The number of Tujl+ that also stained positive 

for TH cells was also increased. This effect was at its maximum at a concentration of 

0.1-0.5pM 22(R)-hydroxycholesterol. There were no signs of toxicity at these 

concentrations and TH+ oxysterol treated cells expressed midbrain dopaminergic 

markers (LMXla, ENGRAILED 1, NURR1, PITX3, GIRK2, DAT). In contrast, very 

few GABA+, serotonin+, and dopamine beta-hydroxylase (DBH)+ neurons were 

detected indicating that treatment with 2 2 (R)-hydroxycholesterol gave a specific 

enhancement of dopaminergic neuron development. In addition there was reduced 

progenitor proliferation and in the number o f astrocytes whilst increasing the 

generation of midbrain dopaminergic neurons.

More recently it has been shown that 24(«S),25-epoxycholesterol is a potent ligand of 

LXR during ventral midbrain neurogenesis and specifically promotes dopaminergic 

neurogenesis (Theofilopoulos et al. 2013). In embryonic mouse midbrain neurons 

organotypic cultures treatment with 24(5),25-epoxycholesterol increased the number 

of tyrosine hydroxylase positive neurons by 88% c .f  vehicle. Similarly 24(5),25- 

epoxycholesterol treatment increased the number of tyrosine hydroxylase positive 

neurons in mouse primary progenitor cultures. In addition, 24(5),25-epoxycholesterol 

promoted the differentiation of mouse embryonic stem cells into dopaminergic 

neurons. Thus, it appears that 24(5),25-epoxycholesterol is a critical ligand for normal 

dopaminergic neurogenesis.

However, the mechanism(s) by which 24(5),25-epoxycholesterol/LXR acts to result 

in this effect on neuron proliferation is unclear. Increased concentrations of 24(5),25- 

epoxycholesterol could alter protein expression directly through transcriptional 

modification of known or unknown LXR. In addition, 24(5),25-epoxycholesterol 

could have indirect effects by inhibiting SREBP2 and decreasing biosynthesis of



cholesterol and other members of the mevalonate pathway or inducing downstream 

effects of differentially expressed proteins.

In addition, oxysterols have been shown to affect Hedgehog signalling, a pathway that 

is involved in embryonic development. Cholesterol and oxysterols have been shown 

to increase proliferation of medulloblastoma cells through Hedgehog signalling with 

20(5)-hydroxycholesterol and 22(5)-hydroxycholesterol having the greatest effect 

(Corcoran and Scott 2006). It has also been demonstrated independently that 20(5)- 

hydroxycholesterol and 22(5)-hydroxycholesterol activate the Hedgehog pathway and 

induce an osteoinductive effect (Dwyer et al 2007). In addition, it has been 

demonstrated that 20(5)-hydroxycholesterol inhibits the differentiation of bone 

marrow stromal cells into adipocytes through a Hedgehog dependent mechanism and 

that 20(5)-hydroxy cholesterol can induce expression of Notch target genes (Kim et al 

2007; Kim et al 2010). The mechanism by which 20(5)-hydroxycholesterol effects 

Hedgehog signalling is by activating the protein Smoothened; Smoothened mediates 

the signal induced by Hedgehog ligands (Nachtergaele et al 2012). Thus, there is 

evidence for a role for oxysterols in the regulation of embryonic development.

1.2. Proteomics

Proteomics is the study of global protein expression (Wilkins et al 1996). As proteins 

are the macromolecules that implement cellular biological processes the analysis of 

changes in their expression can identify gross changes in cell function. The proteins 

expressed, including any post-translational modifications, at any given point is called 

the cell’s proteome. The proteome is more complex than the genome. The genome 

can be considered as a stable constant whereas the proteome is highly variable. The 

proteome varies with cell type, with time and as a response to stresses or stimuli (Dix 

et al 2008). In addition, mRNA splice variants of genes add further complexity as do 

post-translational modifications of proteins such as phosphorylation (Uhlen & Ponten

2005). Indeed, some proteins are able to have multiple different post-translational 

modifications illustrating the complexity of a proteomic sample at any given point.

The analysis of the proteome can be analysed as whole proteins or more commonly as 

peptides. It is common to digest protein enzymatically by using, for example, the 

enzyme trypsin. Trypsin hydrolyses the peptide bond on the carboxylic side of the



amino acids lysine and arginine. Thus, peptides are fragments of the protein backbone 

that have been generated from intact proteins. Peptides are analysed by mass 

spectrometry and their sequence identified using bioinformatic software. From this 

information the proteins present can be deduced.

A strength of proteomics is the direct analysis of protein expression rather than 

extrapolating from mRNA data e.g. microarray; it has been shown that changes in 

mRNA expression need not correlate with a change in protein expression (Rogers et 

al. 2008). It has the advantage over immunoblotting (Western blotting) as the 

expression of a large number of proteins can be analysed in one run. In addition, post- 

translational modifications of the proteome can be analysed giving information 

regarding signalling pathways or the response to a given stimulus (Olsen et al. 2006). 

Proteins can be modified after translation to alter their function, localization or 

interactions with other proteins. These alterations are termed post-translational 

modifications. Post-translational modifications significantly increase the diversity of 

the proteome as they can be initiated in response to a given stimulus to regulate 

cellular processes. A large number of diverse modifications have been identified 

including phosphorylation, glycosylation and ubiquitination. Proteomics allows the 

analysis of changes in post-translation modifications that would not be possible using 

immunoblotting due to no commercially available specific antibody (Jensen 2004).

1.2.1. Phosphoproteomics

Phosphoproteomics is a specialized branch of proteomics examining phosphorylated 

proteins. In the case of phosphorylation, an extensively studied post-translational 

modification, it has been demonstrated to be involved in the regulation of diverse 

cellular processes (e.g. apoptosis, cell cycle).

Phosphorylation, is a reversible post translational modification and plays a role in a 

variety of cellular processes and it is a common mechanism for cell signalling and 

protein regulation. In eukaryotic cells phosphorylation of protein occurs on the side 

chains of serine, threonine and tyrosine residues. These amino acids have in common 

a nucleophilic hydroxyl group that reacts with adenosine triphosphate (ATP) resulting 

in the covalent attachment of a phosphate to the amino acid side chain. 

Phosphorylation is often associated with protein activity as the addition of the



phosphate can result in conformational changes in the newly phosphorylated protein 

and can regulate the activation or inactivation of an enzyme. In addition, 

phosphorylation can induce proteins to associate and is important in signal 

transduction as it can allow an enzyme to bind its substrate. The phosphorylation and 

dephosphorylation of protein(s) is regulated by kinases and phosphatases respectively. 

The balance between the activities of these two enzyme families influences the 

dynamic phosphorylation state of a cell. At any given point the phosphorylation state 

of a cell’s proteins is called its phosphoproteome.

Phosphoproteomics is the analysis of the phosphorylation state of the entire proteome. 

This can be done in order to identify novel post-translational modification sites or to 

identify activation or deactivation of signalling pathways (Olsen et al 2006). The 

technical challenge of phosphoproteomics is high. Phosphopeptides are present in low 

abundance compared to their non-phosphorylated counterparts. In addition they are 

poorly ionized. These two factors mean that phosphoenrichment is required in order 

to examine these molecules.

1.2.2. Mass Spectrometry

Mass spectrometry measures an ion’s mass to charge ratio (m/z). Mass spectrometers 

generally consist of an ionisation source (e.g. electrospray), a mass analyzer and an 

ion detector. In combination these components allow the detection ions of different 

mass to charge ratios.

I.2.2.I. Electrosprav Ionization

The ability to investigate global protein expression has blossomed since the invention 

of 2 soft ionising techniques -  matrix assisted laser desorption ionisation (MALDI; 

Tanaka et al. 1989) and electrospray ionisation (ESI). These techniques have the 

advantage of ionizing macromolecules without inducing fragmentation. Therefore, 

these techniques have become essential for proteomic analysis as they allow the 

ionization of amino acid chains without disrupting the peptide bonds and thus 

conserving sequence information.

Electrospray ionization was developed to ionise macromolecules without inducing 

fragmentation (Fenn et al 1989). The analyte, e.g. a peptide mixture, dissolved in a



solvent is subjected to an electrical voltage that induces generation of a Taylor cone 

and the formation of a fine aerosol spray. Volatile organic solvents such as acetonitile 

or methanol are commonly used as they evaporate easily facilitating ion formation of 

the analyte. In addition, the ionisation of large flow electrospray can be improved by 

using an inert gas in order to help remove solvent. However, electrospray ionisation is 

more efficient at low flow rates due to the lower size of initial droplets. A flow rate of 

300-800nl/min resulted in an increased performance of HPLC-MS analyses (Emmett 

and Caprioli 1994). The flow rate can even be reduced even further to a nanoflow of 

~25nl/min and still generate efficient electrospray (Wilm and Mann 1996).

Mass spectrometer design also promotes ionisation e.g. a heated capillary that ions 

follow into the mass spectrometer helps evaporation. Evaporation continues until the 

droplet becomes unstable upon reaching its Rayleigh limit and emits charged jets in 

Coulomb fission. Two theories have been proposed to explain the production of gas 

phase ions. The first, the ion evaporation model theorises that that as the radius of the 

droplet decreases the surface of the droplet increases to assist in the field desorption 

of solvated ions. The second model is the charge residue model suggests that 

electrospray droplets as the solvent evaporates and splits until the droplets contain one 

analyte ion. The solvent evaporates leaving the analyte carrying the charge. 

Whichever theory is correct the end result of this ionisation technique is the formation 

of gas phase ions.

The ions produced by electrospray ionization can either be due to the addition of a 

proton [M+H] or the removal of a proton [M-H]. These modes are termed positive 

and negative modes respectively. In order to promote protonation or deprotonation, in 

positive and negative modes respectively, an acid (e.g. formic acid) or base (e.g. 

ammonia solution) can be added to the solvent. Positive mode is generally used for 

the analysis of proteins and peptides in proteomic experiments. In the case of peptides 

multiply charged ions are commonly seen. This is because both the N-terminus and 

arginine and lysine residue sidechains can act as proton acceptors thus creating ions 

carrying a +2  charge.



1.2.2.2. Mass Analyzer

A large number of different mass analyzer technologies exist including quadrupole, 

time of flight (TOF), Fourier transform ion cyclotron resonance (FTICR) and Orbitrap 

instruments. Hybrid instruments also exist that consist of a number of analyzers 

combined e.g. triple quadrupole, Q-TOF. These mass analyzers vary in how they 

measure ion m/z and technical specifications. In addition, the choice of mass analyzer 

is often determined by the application.

In proteomic studies high resolution LTQ-Orbitrap instruments are commonly used. 

The Orbitrap consists of 2 electrodes - a central electrode kept at a high voltage when 

ions are being trapped and a second electrode surrounding the first at ground potential 

(Hu et al 2005, Scigelova et al 2011). The frequencies of the oscillating ions can be 

detected and following a Fourier transform can be displayed as a mass spectrum. An 

Orbitrap instrument has a high resolution (>100,000) and a high mass accuracy 

(<5ppm) making it suitable for proteomic studies. The use of an Orbitrap mass 

analyzer for high mass accuracy MS spectra is in commercial instruments coupled 

with a linear ion trap (Hu et al 2005). The ion trap acts as an accumulation device 

that stores ions before introduction to the Orbitrap and therefore allows the use of 

continuous electrospray ionisation. In addition, the ion trap allows MS“ that fragments 

the precursor ion and therefore allows elucidation of structural information.

1.2.23. Precursor Ion

The initial mass spectrometry scan identifies all ionisable components of a sample. 

These ions identified in the MS scan give an indication of the molecular weight of 

analyte. Importantly, a precursor ion can be selected for fragmentation by selecting an 

ion at a given m/z. Fragmentation of an ion yields structural information about it. 

Peptides have a distinctive isotope envelope due to the fact that peptides can accept 

multiple protons inducing charge states of +2, +3 or more. Thus, in the example of a 

doubly charged peptide each isotopic peak that is IDa apart will be 0.5m/z apart. 

Therefore an analyte can be deduced to be a peptide by examining its precursor ion. 

However, an MS/MS scan is required for sequence information.
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I.2.2.4. Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry allows further analysis of an ion identified in the initial 

MS spectra. A precursor ion of interest is selected, based on its m/z and is fragmented 

e.g. collision induced dissociation (CID) yield structural information about the 

analyte. In the case of peptides by colliding the precursor ion with an inert gas, e.g. 

nitrogen, the peptide bonds break leading to information regarding the amino acid 

sequence (Mann & Wilm 1994). Thus, the fragmentation pattern o f a peptide’s amino 

acid backbone allows database searching (e.g. Mascot) to identify the peptide 

sequence and the protein from which it was derived by comparing it to predicted 

peptide sequence. Depending on the distribution of charge post-fragmentation (i.e. to 

the N- or C-terminus) b- and y- ions are predominantly generated (though a, c, x and z 

ions can also be formed; fig. 1.5; Roepstorff & Fohlman 1984) that allow 

identification of the sequence due to specific m/z changes that correspond to each 

amino acid. A subscript number indicates which peptide bond is broken. Thus, the 

mass differences between the b and y fragmentation ions (e.g. bi and b: fig 1.5) 

generated indicate which amino acid residue is lost. From the generated y- and b- ions 

a peptide's sequence from a given MS can be deduced.

x 3 Y3 Z 3 x 2 Y2 z 2 X 1 Y l Z 1

H , N

b |  Cj ^ 2  t ) ' ’ ^ 2  ^ 3  ^ 3  ^3

Fig 1.5. Peptide fragmentation notation. The dominant ions in MS/MS spectra are b 

and y ions.



1.2.2.5. Multistage activation

The analysis of phosphopeptides is dependent on detecting the phosphorylation 

modification of the peptide and fragmentation of the amino acid backbone of the 

peptide to deduce its sequence. The phosphate group of a phosphopeptide is relatively 

weak and they are liable to break instead of peptide bonds. Thus, phosphopeptides in 

a CID MS/MS spectrum are likely to exhibit a large neutral loss peak 98Da (H3PO4) 

or 80Da (HPO3) less than the precursor peak. This leads to inability to deduce 

sequence information from the MS/MS spectra. Therefore a second step of activation 

is required in order to obtain this information required for identification. This can be 

achieved by using MS when a dominant neutral loss peak is identified in the MS/MS 

spectra and is subsequently selected for fragmentation yielding a spectra displaying 

sequence information.

A second method that can be used to identify and sequence phosphopeptides is 

multistage activation and has the advantage of having a shorter time for analysis than 

MS3. In this method a pseudo-MS3 spectrum is generated. A precursor ion is selected 

for fragmentation at both its observed m/z and, critically, at the m/z where the neutral 

loss ion is theoretically present. This yields a spectrum with no neutral loss ion peak. 

The spectrum contains b and y ions allowing identification of the peptide sequence. In 

addition b-98 and y-98 ions are present derived from fragmentation of the neutral loss
■j

peak. Therefore, multistage activation generates a hybrid pseudo-MS spectrum 

showing both MS and MS fragmentation on the same spectrum that can be analysed 

for both peptide sequence and phosphorylation.

1.2.3. Quantitative Proteomics

After protein identification the next step is quantification to give an indication for the 

level of protein expression and how it differs in cells with different treatments. To this 

end a number of different approaches have been developed including isotope labelled 

and label free methodologies. In label free methods each sample is run individually 

and then subsequently compared. However, in the case of isotope labelling each group 

is labelled with a different isotope marker and thus they are distinguishable by mass 

spectrometry. Due to this ability to distinguish different groups it is possible to 

combine samples and compare them in a single mass spectrometry analysis.



1.2.3.1. Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC)

SILAC is a quantitative proteomic technique that allows the identification of relative 

changes in protein expression using non-radioactive isotope labelling (Ong & Mann

2006). SILAC can be used in many applications and can be used in order to monitor 

changes in gene expression, post-translational modification and protein-protein 

interactions. In this technique cells are grown in cell culture and are split into 2 or 3 

populations (fig. 1.6 .). The first population is cultured in growth media that contains 

normal, non-isotope labelled amino acids. However, the second population is grown 

in the presence of amino acids, commonly arginine and lysine, labelled with stable, 

non-radioactive isotopes. Commonly used are 13C6 and 13C6 15N4 arginine (R^/Rio) 

together with D4 and i3C6 l5N2 lysine (KVKg). These are termed light (unlabelled R  

and K), medium (K4/R6) and heavy (Kg/Rio). Due to the mechanism of action of 

trypsin that cleaves peptide bonds to the C-terminus side of arginine and lysine. Thus, 

each peptide generated, except the C-terminus, theoretically results in only having a 

single label.

As the cell population increases, and is passaged, the heavier amino acids are 

incorporated into the proteome. Eventually all proteins contain the isotope labelled 

amino acids and are heavier than their normal counterparts. Thus, they are 

distinguishable by mass spectrometry but otherwise chemically and biologically 

identical. It is therefore possible to combine the protein derived from different SILAC 

states and analyse it simultaneously as pairs or triplets of peptides that co-elute from 

HPLC columns. Therefore this methodology allows 3 treatment groups to be 

simultaneously analysed. The ratio of the peak intensities of the peptides can then be 

analysed and their relative abundance determined. Peptide ratios can then be 

extrapolated to protein expression ratios.
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Figure 1.6. Schematic of SILAC experimental design. In this study SN4741 cells were 

cultured in isotope labelled amino acid containing media. This approach can be 

extended to any cells grown in culture. Cells are then treated, in this case with vehicle 

(control), 24(5'),25-epoxycholesterol (24(S'),25-EC) and GW3965, before cells are 

lysed and protein harvested. The protein lysates are then mixed on a 1:1 ratio before 

trypsin digestion and strong cation exchange (SCX) fractionation. Fractions are then 

analysed using LC-MS/MS. Due to the isotope labelling it is possible to distinguish 

between the Might’, ‘medium’ and ‘heavy’ peptides. Mass spectra of SILAC peptides 

result in a characteristic triplet envelope and the intensity of the signal from each 

SILAC state can be used for relative quantification.

1.2.3.2. Isobaric Tagging

Isobaric tagging (e.g. iTraq) is a relative quantitative proteomic technique that allows 

identification of chemically tagged peptides from different treatment groups (Ross et 

al. 2004). In iTraq a N-succinimide ester group on the tag that reacts with primary 

amines. The workflow of the experimental approach means that the labelling occurs 

after trypsin digestion but before mixing and assumes that the labelling between 

different treatment groups is equal. The total molecular weight of tag remains 

constant but is split into a reporter moiety and a balance moiety. Thus, tagged



peptides have the same molecular weight and all identical sequence peptides co-elute 

during liquid chromatography. In addition, the precursor ion is the same molecular 

weight in all groups. Upon fragmentation low molecular weight reporter ions 

distinguish between the different groups and allow relative quantification. An 

advantage of iTraq over SILAC is that more treatment groups, up to 8 , can be 

analysed at the same time.

1.2.3.3. Label Free Quantification

Label-free quantification of proteins does not rely on an isotope label. These 

approaches are suitable for identifying large changes (> 2  orders of magnitude) but 

less reliable for identifying smaller, subtle changes. Due to the lack of an isotope label 

samples can’t be run simultaneously and require the detection of the corresponding 

peptide across different LC-MS or LC-MS/MS runs for quantification. Thus, care is 

required to account for experimental variation. Two methods used for label free 

quantification are ion peak intensity and spectral counting (Bantscheff et al. 2007).

Ion peak intensity relies on precursor signal intensity in order to quantify peptides and 

therefore relies on LC-MS only. Thus, high mass precision spectrometers are required 

for this approach as high resolution power is required for identifying peptide signals 

at the MS level. Peptides are differentiated from noise due to their isotopic pattern. 

The peptide precursor ion is tracked over time gives a chromatographic profile of the 

monoisotopic peak which is integrated to estimate original peptide concentration. No 

MS/MS spectra are generated and thus peptides with a similar m/z and coincidentally 

eluting at the same point or overlapping may be confused. The second method, 

spectral counting, compares the total number of MS/MS spectra for a given peptide 

between samples. The number of spectra is correlated with the abundance of the 

protein. Both techniques require significant normalization.

1.2.4. Peptide Mixture Complexity Reduction

Peptide mixtures generated from the protein digestion are complex and techniques to 

simplify these mixtures are commonly used. In the case of both proteomics and 

phosphoproteomics the peptide mixtures derived from proteome digestion are 

inherently complex. In order to reduce this complexity prior to mass spectrometric



analysis a number of techniques can be used. These include polyacrylamide gel 

electrophoresis, 2D-gel electrophoresis, affinity chromatography, ion exchange 

chromatography and reverse phase liquid chromatography. These steps help to 

maximize the number of peptides observed by mass spectrometry and thus increase 

the number of proteins identified. Low abundance peptides (and therefore low 

abundance proteins) are more likely to be identified in less complex mixtures. The 

techniques utilized in this work (strong cation exchange chromatography, reverse 

phase high performance liquid chromatography, phosphoenrichment) are discussed in 

more detail below.

1.2.4.1. Reverse Phase High Performance Liquid Chromatography

High performance liquid chromatography (HPLC) is a chromatography technique to 

separate analytes in complex mixtures. HPLC utilizes a stationary phase in column 

and a mobile phase that is pumped through the column carrying analytes. The 

retention time of an analyte is dependent on its interaction with the stationary phase 

and the mobile phase. Commonly C18H37 modified stationary phases are used and the 

technique is known, for historical reasons, as reverse phase HPLC. In reverse phase 

chromatography the retention of hydrophobic compounds is increased. Conversely, 

more polar analytes are eluted quicker. The retention of a given analyte can be 

adjusted by adding increased levels o f organic solvent, such as acetonitrile or 

methanol, and is commonly manipulated using a solvent gradient on a HPLC 

instrument. Importantly, liquid chromatography can be coupled to a mass 

spectrometer so that analytes eluting from the column and transferred directly to the 

spectrometer for ionization and subsequent analysis.

1.2.4.2. Strong Cation Exchange

Strong cation exchange chromatography is a form of ion exchange chromatography. 

This form of chromatography separates of molecules on the basis of their charge. The 

stationary phase of the column has anionic functional groups (e.g. polysulphoethyl 

aspartamide (PolyLC Inc.)) that interact with cationic analytes. A chromatography 

gradient increases the salt concentration (e.g. N H 4 C I )  in the solvent and results in the 

cationic molecules in the solvent competing for the anionic sites on the strong cation 

exchange column. Thus, cationic molecules are displaced and elute from the column.



Therefore, during strong cation exchange chromatography anionic analytes are eluted 

first off the column whereas strongly cationic analytes take longer. Strong cation 

exchange can be used for sample fractionation to reduce complexity prior to further 

analysis.

I.2.4.3. Phosphoenrichment

Phosphorylated peptides require enrichment prior to mass spectrometry analysis due 

to their low abundance and poor ionization (Zhou et al 2000). Strategies to extract 

phosphorylated peptides from a peptide mixture include immobilised metal ion 

affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC). 

Both techniques use metal ligands to interact with phosphate groups in order to retain 

phosphopeptides whilst allowing non-phosphorylated peptides to elute.

Immobilised metal ion affinity chromatography (IMAC) relies on the phosphate 

group’s oxygen interacting with an immobilized metal ion. A high affinity for 

phosphate groups has been shown with chelated iron(III) and gallium(III) ions (Zhou 

et ah 2000). During chromatography this results in the retention o f the 

phosphopeptides on the column and washing of the non-phosphorylated peptide 

mixture through. The phosphopeptides can then be washed off the column by 

changing the pH of the mobile phase or adding a competitor. Thus, IMAC increases 

the concentration of phosphopeptides.

Titanium dioxide is used for metal oxide affinity chromatography (MOAC) 

phosphoenrichment (Larsen et al. 2005). Similarly to IMAC titanium dioxide chelated 

resins are used to form complexes with phosphate groups. MOAC can be combined 

with IMAC in order to increase the number of phosphopeptides in the sample. In 

addition both IMAC and MOAC can be used after fractionation (e.g. strong cation 

exchange) to improve the phosphoenrichment by reducing sample complexity.

1.2.5. Proteomic Bioinformatics

The identification of peptides and therefore proteins by using the mass spectrometric 

data is reliant on bio-informatic software. It is possible to analyse spectra manually 

although this is prohibitively time consuming when considering the many thousands 

of spectra typically generated in one experiment. Therefore, database searching has



become an integral part of proteomics experiments. This search is conducted using 

software such as Mascot that identifies peptides from the raw mass spectrometry data. 

The data is analysed bio-informatically to identify peptides by comparing sequence 

information derived from MS/MS spectra to a sequence database containing all 

theoretical peptide sequences. The peptidase, such as trypsin, can be defined before 

searching so that the generated experimental peptides match the theoretical. The 

database search can be constructed so that any modifications, such as phosphorylation 

and SILAC, are taken into account. Peptides are identified and can be assigned a score 

that indicates the probability of a correct identification.

The database used for the Mascot search is not limited to one and a number of 

databases are available for various species from different sources. International 

protein index (IPI) is a database from the European Bioinformatics Institute founded 

to catalogue the disparate databases and act as a link between them. Since its 

inception a concerted effort has led to a significant synchronization of data. In light of 

this, the IPI database has recently been retired and IPI numbers are currently being 

superseded by Uniprot numbers. Uniprot is comprehensive database managed by a 

consortium of the European Bioinformatics Institute, the Swiss Institute of 

Bioinformatics and the Protein Information Resource (Uniprot Consortium 2011). 

These consortium members each individually maintained a database but joined forces 

to produce a curated protein database Uniprot knowledgebase (UniprotKB). 

UniProtKB comprises 2 sections Uniport/Swissprot that is reviewed and manually 

annotated and Uniprot/Trembl that is unreviewed and annotated automatically. 

UniprotKB/Swissprot gives indication of a large range of factors and has the ultimate 

aim of providing all known, relevant information in a single place. Therefore, Uniprot 

is currently the canonical reference set of proteins for a number of organisms.

In our study the quantification of peptides was performed using MaxQuant software. 

MaxQuant is specialised software designed for the analysis of SILAC MS spectra 

(Cox et al. 2009). MaxQuant identifies the characteristic doublet/triplet isotope 

envelopes of SILAC labelled peptides. The software tracks these precursor ions over 

time that allows the merger of the separate signal intensity peaks into a 3D 

representation. The volumes of the 3D peaks are then compared allowing the 

generation of ratios between the different SILAC states (e.g. medium:light,



heavy:light). To identify peptides MS/MS data is analysed. The data is then combined 

to give an identified and quantified peptide. In the case of phosphopeptides this means 

that they can be identified and when coupled with SILAC labelling can give an 

indication of the relative levels of phosphorylation at a specific site between control 

and treatment groups. In addition to quantifying each individual peptide the quantified 

peptide is combined with others derived from the same protein and extrapolated in 

order to generate the ratio between the SILAC states of the protein. Thus, the relative 

quantification of proteins between different SILAC states is identified and further 

analysed to identify changes in protein expression.



1.2.6. Experimental Considerations of Proteomic Studies

1.2.6.1 SN4741 Cell Line.

Due to the limited amount of primary dopaminergic neurons from mouse embryonic 

brain available for large-scale proteome wide screening in the experimental work 

presented here the differentiated neuronal cell line SN4741 was used. SN4741 cells 

are dopaminergic neurons derived form the substantia nigra of embryonic mice (Son 

et al 1999). It has previously been shown that SN4741 cells are tyrosine hydroxylase 

positive and express other neuronal markers (Son et al 1999). Dopaminergic neuronal 

markers, such as tyrosine hydroxylase, can be searched for in the proteomic data set to 

validate the model.

In order to achieve large-scale accurate protein quantification stable isotope labelling 

approaches such as SILAC or iTraq are the preferred choices. The use of a SILAC 

approach allows the harvesting of a large amount of protein (mg scale) for use in the 

proteomic experiments easily. Thus, by having a large amount of starting material the 

probability of identifying low abundance proteins is improved and therefore SILAC is 

the most appropriate choice.

1.2.6.2. Proteomic Profiling Validation of Existing Knowledge

One of the strengths of proteomic studies is the ability to analyse the proteome as a 

whole. This provides the opportunity for the experimental data to validate previously 

identified changes in protein expression as a response to a given treatment. Oxysterols 

have known regulatory roles for SREBP2 and LXR controlled genes. However, no 

previous work has been conducted analysing the effect of oxysterols in SN4741 cells. 

Indeed, it can be anticipated that 24(5),25-epoxycholesterol will induce changes in the 

cholesterol synthesis pathway in SN4741 cells through inhibition of SREBP2 and 

induction of LXR regulated genes such as ABCA1.

1.2.6.3. Identification of Novel 24(5h25-epoxvcholesterol Regulated Genes

It is difficult, if not impossible, to predict novel 24(5),25-epoxycholesterol regulated 

genes in the context of proteomic studies. The basic hypothesis of the experiments is 

broad; 24(5),25-epoxycholesterol induces protein expression changes in SN4741 cells 

via SREBP, LXR or other unknown oxysterol receptors. Early studies suggest that 

oxysterols promote dopaminergic neurogenesis through LXR (Sacchetti et al. 2009;



Theofilopoulos et al. 2013). However, which LXR regulated proteins induce this 

effect is not clear. The aim of the work is to pinpoint the protein pathways which are 

affected by 24(5),25-epoxycholesterol by employing a quantitative proteomics 

approach. This is essential to fully understand the mechanism(s) of 24(5),25- 

epoxycholesterol in promoting dopaminergic neurogenesis. The data generated from 

the proteomic studies will also be analysed for the presence of neurotrophins, proteins 

that have an important regulatory role in neuron development, survival and function 

(Hempstead 2006), and any changes in their expression. In addition, neuronal markers 

from different stages of neuronal development will be analysed to determine if 

24(5),25-epoxycholesterol has an effect on the maturation of neurons.

1.2.6.4. Identification of Novel 24(5),25-epoxvcholesterol Regulated Protein 

Phosphorylation

Oxysterols have been shown to induce changes in ERK phosphorylation (section 

1.1.5.4) a pathway associated with dopaminergic neurogenesis (Kim et al. 2006; Kim 

et al. 2008; Yoon et al. 2011; Jaeger et al. 2011). We speculate that 24(5),25- 

epoxy cholesterol could promote dopaminergic neurogenesis at multiple levels i.e. via 

activation of LXR and also, possibly, by activation of the ERK signalling pathway 

Thus, a phosphoproteomic approach will be used to identify novel 24(5),25- 

epoxy cholesterol regulated protein phosphorylation either downstream of ERK or any 

other kinase pathways. These data will provide further insight into the mechanism of 

oxysterol activity in addition to the quantitative proteomics study. Again, the basic 

hypothesis of the experiments is broad; 24(5),25-epoxycholesterol induces protein 

phosphorylation changes in SN4741 cells. Therefore, the data generated from the 

phosphoproteomic studies will be analysed to identify changes, if  any, in cell 

signalling pathways.



1.3. Aims and Objectives

The work presented here is founded on the previously reported requirement of LXR in 

normal neuronal development (Sacchetti et al. 2009) and the above expected level of 

24(5),25-epoxycholesterol in embryonic mouse brain (Wang et al. 2009b). Therefore, 

three main hypotheses form the basis of this work:

• 24(5),25-epoxycholesterol is an important molecule in normal murine 

neuronal development.

• 24(5),25-epoxycholesterol exerts an influence on neuronal development by 

inducing LXR dependent and independent changes in protein expression.

• 24(5),25-epoxycholesterol induces changes in the phosphoproteome and exerts 

an influence on neuronal development by affecting cell signalling.

In order to examine these hypotheses a SILAC experimental model was followed in 

order to examine the proteome and phosphoproteome as a whole. A differentiated 

dopaminergic neuronal cell line was chosen, SN4741, for in vitro experiments due to 

the fact they are derived from the ventral midbrain region of embryonic mice (Son et 

al. 1999) -  the same area of the brain where LXR was observed to be important in 

normal development (Sacchetti et al. 2009),



C h a pter  2: M aterials  and  M eth ods

2.1. Cell Culture

Mammalian cell culture was performed aseptically in a cell culture flow hood. All 

single use cell culture apparatus used were sterile (Greinier BioOne). Items 

transferred into the cell culture hood were sprayed with 70% ethanol.

2.1.1. SN4741 Cell Culture

SN4741 murine dopaminergic neuronal cells were cultured on 90mm tissue culture 

dishes (Greinier) in full media (see table 2.1) with incubation at 5% CO2/ 37°C. For 

routine SN4741 cell culture media was removed before the cells were washed once 

with pre-warmed phosphate buffered saline (37°C, PBS, Lonza). Trypsin/EDTA 

(approx. 2.5ml, Invitrogen) was incubated with the cells for 30s at room temperature 

before removal of the majority of the trypsin/EDTA and a further incubation of the 

cells for 4 min at 37°C/5% CO2. Detachment of the cells was observed using an 

inverted light microscope. Detached cells were re-suspended in 10ml of pre-warmed 

(37°C) full media and mixed thoroughly to ensure a homogenous cell suspension. 

Cells were then counted using a Neubauer haemocytometer (Fisher) with lOp.1 of cell 

suspension in each chamber. Cells were seeded to new 90mm tissue culture plates 

containing 15ml of full media. Plates were incubated at 37°C/5% CO2 until ready.

Table 2.1. SN4741 full media. Dulbecco’s modified Eagle medium (DMEM) with L- 

glutamine and glucose, and without sodium pyruvate was modified by adding the 

reagents shown below. Serum free media is as below with the exception that foetal 

bovine serum is omitted.

Component Manufacturer Volume

DMEM + glucose, L-glutamine w/o sodium pyruvate Invitrogen 500ml

Foetal bovine serum Invitrogen 50ml

Penicillin/streptomycin/L-glutamine Sigma 5ml

2 0 % glucose solution Sigma 15ml



2.1.2 Hela Cell Culture

Hela human cervical cancer cells were cultured on 90mm tissue culture dishes 

(Greinier) in full media (see table 2.2) with incubation at 5% CO2/ 37°C. For routine 

Hela cell culture media was removed before the cells were washed once with pre- 

warmed phosphate buffered saline (37°C, PBS, Lonza). Trypsin/EDTA (approx. 

2.5ml, Invitrogen) was incubated with the cells for 30s at room temperature before 

removal of the majority of the trypsin/EDTA and a further incubation of the cells for 

4 min at 37°C/5% CO2. Detachment of the cells was observed using an inverted light 

microscope (Zeiss). Detached cells were resuspended in 10ml of pre-warmed (37°C) 

full media and mixed thoroughly to ensure a homogenous cell suspension. Cells were 

then counted using a haemocytometer with 10pl of cell suspension in each chamber. 

Cells were then seeded to new 90mm tissue culture plates containing 15ml of full 

media. Plates were incubated at 37°C/5% CO2 until ready for use or further culture.

Table 2.2. Hela full media. Dulbecco’s modified Eagle medium (DMEM) with L- 

glutamine and glucose, and without sodium pyruvate was modified by adding the 

reagents shown below. Serum free media is as below with the exception that foetal 

bovine serum is omitted.

Component Manufacturer Volume

DMEM Invitrogen 500ml

Foetal bovine serum Invitrogen 50ml

Penicillin/streptomycin/L-glutamine Sigma 5ml

2.1.3. THP1 Cell Culture

THP1 human monocytes were cultured in 25cm2 tissue culture flasks (Coming) in full 

media (see table 2.3) with incubation at 5% CO2/ 37°C. THP1 cells grow in 

suspension. For routine culture, the cell suspension was transferred to a 15ml 

centrifuge tube and centrifuged at 700g for 5min. The media was discarded without



disruption of the cell pellet before resuspension in 10ml of full media. A 0.5ml aliquot 

of the cell suspension was taken and diluted 20x with full media. This diluted cell 

suspension was then counted using a Scepter automated hand held cell counter 

(Millipore) using 60pm sensor tips. Cells were then transferred to a new 25cm or 

75cm tissue culture flask for a final concentration of 200,000 cells/ml and a final 

volume of 10ml or 25ml respectively. Cells were incubated at 37°C/5% CO2 until 

ready for use or further culture.

Table 2.3. THP1 full media. RPMI-1640 media w/o L-Glutamine was modified by 

adding the reagents shown below. Serum free media is as below with the exception 

that no foetal bovine serum is added.

Component Manufacturer Volume

RPMI-1640 W/O L-Glutamine Invitrogen 500ml

Foetal bovine serum Invitrogen 50ml

Penicillin/streptomycin/L-glutamine Sigma 5 ml

50mM 2-mercaptoethanol in PBS Sigma 500pl

2.1.4. Freezing Cells

For long term storage cells were stored in liquid nitrogen. To freeze cells the protocol 

for culturing was followed with the following exceptions. The cells were resuspended 

after treatment with trypsin (after centrifugation in the case of THP1 cells) in 1ml of 

freezing media (10% dimethyl sulfoxide (DMSO; Sigma) in foetal bovine serum) per 

90mm tissue culture plate (25cm flask for THP1 cells). The cell suspension was 

transferred to a freezing vial and stored at -80°C overnight in a bicell biofreezing 

vessel (Nihon) before transfer to liquid nitrogen.



2.1.5. SILAC Cell Culture

SN4741 murine dopaminergic neuronal cells grown for stable isotope labelling in cell 

culture (SILAC) experiments were cultured as previously described for 5 passages in 

SILAC DMEM (Pierce) supplemented with dialysed foetal bovine serum (Invitrogen), 

Penicillin/Streptomycin/L-glutamine (Sigma), and glucose (Sigma, table 4). SILAC 

DMEM was also supplemented with isotopically labelled arginine and lysine to a 

concentration of 0.398mM and 0.44mM respectively (Tight’, 12C6 Ko,12C6 Ro (Sigma);
^  1 ■> t ' i

‘medium’, H4  K4 , C6 K6 (Cambridge Isotope Laboratories Inc.); ‘heavy’, C6 R6, 

13C6 15N2 Kg, I3C6 15N4 Rio (Cambridge Isotope Laboratories Inc.)). Amino acid 

solutions were made to a 1000X stock solution of 0.398M and 0.44M for arginine and 

lysine respectively in PBS.

Table 2.4. SN4741 SILAC media. SILAC Dulbecco’s modified Eagle medium 

(DMEM) was modified by adding the reagents shown below. Serum free media is as 

below with the exception that no dialyzed foetal bovine serum is added.

Component Manufacturer Volume

SILAC DMEM Invitrogen 45ml

Dialyzed foetal bovine serum (dFBS), Invitrogen 4.5ml

Penicillin/streptomycin/L-glutamine (PSG) Sigma 0.45ml

2 0% glucose solution Sigma 1.35ml

L-arginine (0.398M) in PBS Sigma/Cambridge Isotope 

Laboratories Inc.

45 pi

L-lysine (0.44M) in PBS Sigma/Cambridge Isotope 

Laboratories Inc.

45 pi



2.2. Cell Culture Treatments.

In all cases appropriate volumes of vehicle (EtOH, 45% hydroxypropyl-p- 

cyclodextrin in 0.9% NaCl or both) were also added to media to act as controls 

between treatments.

2.2.1. Oxvsterol Treatment

2.2.1.1. Adherent cells - SN4741

Oxysterols (24(5),25-epoxycholesterol (Enzo Life Sciences), 7a-hydroxycholesterol 

(Steraloids), 7(3-hydroxycholesterol (Sigma), 19-hydroxycholesterol (Steraloids), 245- 

hydroxycholesterol (Avanti Polar Lipids), 25-hydroxycholesterol (Sigma), 27- 

hydroxy cholesterol (Avanti Polar Lipids)) were prepared at a lOmM concentration in 

45% hydroxypropy 1-p~cyclodextrin/0.9% saline (both Sigma) before dilution to lOpM 

in serum free media. Solutions were vortexed to ensure thorough mixing before sterile 

filtration.

SN4741 cells were washed twice with PBS before addition of 10ml of treatment per 

90mm tissue culture plate and incubated for 24 hours at 37°C/5% CO2.

2.2.1.2. Suspension cells - THP1

O xysterols (2 4 (5 ) ,25 -ep o x y ch o leste ro l, 7a-hydroxy  cholestero l, 7p-

hydroxycholesterol, 245-hydroxycholesterol, 25-hydroxycholesterol) was prepared at 

a lOmM concentration in 45% hydroxypropyl-p-cyclodextrin/0.9% saline (both 

Sigma) before dilution of 11.1 pi in 10ml serum free media. These solutions were 

vortexed to ensure thorough mixing before sterile filtration. 9ml of sterile treatment 

was added per 25cm flask as appropriate.

THP1 cells were transferred to a centrifuge tube before being spun at 700g for 5min. 

The media supernatant was discarded and cells resuspended in 10ml PBS. Cells were 

then spun at 700g for 5min. The PBS was discarded and the wash step repeated. The 

cells were then resuspended in 10ml serum free media. An aliquot of the cell 

suspension was diluted 1:40 with serum free media and then counted using a Scepter 

automated hand held cell counter (Millipore) using 60pm sensor tips. Cells were then 

diluted to 6x l06 with serum free media before addition of 1ml per flask as appropriate



for a final concentration of 6xl05 cells/ml and incubated for 24 hours at 37°C/5% 

C 02.

2.2.2. GW3965 Treatment

2.2.2.1. Adherent cells - SN4741

GW3965 (Sigma) prepared as a lOmM solution in ethanol before dilution to 1_M 

with serum free media. This 1 pM solution was vortexed to ensure thorough mixing 

before sterile filtration. SN4741 cells were then washed twice with PBS before 

addition of 10ml of appropriate treatment was added per 90mm plate and incubated 

for 24 hours at 37°C/5% C 02.

2.2.2.2. Suspension cells - THP1

GW3965 (Sigma) prepared as a lOmM solution in ethanol before dilution of 1.1 pi in 

10ml serum free media. This solution was vortexed to ensure thorough mixing before 

sterile filtration. 9ml of sterile treatment was added per 25cm2 flask as appropriate.

THP1 cells were transferred to a centrifuge tube before being spun at 700g for 5min. 

The media supernatant was discarded and cells resuspended in 10ml PBS. Cells were 

then spun at 700g for 5min. The PBS was discarded and the wash step repeated. The 

cells were then resuspended in 10ml serum free media. An aliquot of the cell 

suspension was diluted 1:40 with serum free media and then counted using a Scepter 

automated hand held cell counter (Millipore) using 60pm sensor tips. Cells were then 

diluted to 6x l06 with serum free media before addition of 1ml per flask as appropriate 

for a final concentration of 6x105 cells/ml and incubated for 24 hours at 37°C/5% 

C 02.

2.3. SN4741 viability assays

SN4741 cells were seeded at 200pl/well, 50,000 cells/ml in 96 well plates and 

incubated for 24 hours at 37°C/5% C 02. After incubation the cells were washed twice 

with PBS before addition of lOOpl of treatment (vehicle, lpM  GW3965, lOpM 

24(5),25-epoxycholesterol or lOpM 245-hydroxycholesterol) in charcoal stripped 

serum containing media and incubated at 37°C for the desired time.



2.3.1. Cell Viability Assay: XTT

Cell viability was measured using XTT Cell proliferation Assay Kit (ATCC) 

following the manufacturer’s instructions. XTT, in the presence of viable cells, is 

reduced to an orange colour formazan derivative that can be read by absorbance on a 

plate reader. Briefly, to 5ml of XTT solution 100 pi of activating solution was added 

and mixed. To lOOpl media (per well on a 96 well plate) 50pl of activated XTT 

reagent was added and incubated for 2-4 hours at 37°C. The plate was then read at 

475nm (test) and 660nm (control) using a POLARstar Omega plate reader (BMG 

Labtech). Wells containing media only (i.e. no cells) served as a blank control and the 

average from these wells were deducted from test wells. The reading measured at 

660nm was then deducted from the 475nm reading.

2.3.2. Cell Viability Assay: CellTiter Blue

Cell viability was then measured using CellTiter Blue assay (Promega) following the 

manufacturer’s instructions. CellTiter blue is a resazurin based assay; in the presence 

of viable cells resazurin can be reduced to resorufin, a fluorescent compound. Briefly, 

to lOOpl media (per well on a 96 well plate) 20pl of CellTiter Blue reagent was added 

and incubated for 2-4 hours at 37°C. If the treatment was in a larger volume then the 

volume of CellTiter Blue reagent was scaled up accordingly. Fluorescence was then 

measured using a POLARstar Omega plate reader (excitation 544nm; emission 

590nm). Wells containing media only (i.e. no cells) served as a blank control and the 

average from these wells were deducted from test wells.

2.4. Cell Lvsis -  Protein Extraction

Cells were washed twice with ice cold PBS before lysis was performed with 200pl ice 

cold lysis buffer (200mM ammonium bicarbonate, 0.1% sodium dodecyl sulphate 

(SDS, Invitrogen), 1% phosphatase inhibitor cocktail 1 (Sigma), 1% phosphatase 

inhibitor cocktail 2 (Sigma)) per plate. A cell scraper (Greinier) was used in order to 

ensure thorough lysis before transfer to a 1.5ml microcentrifuge tube. The lysate was 

then centrifuged at 4°C, 14000 rpm for 30min. The supernatant was transferred to a 

new microcentrifuge tube for further analysis/storage and the cell pellet was 

discarded. Samples intended for Western blotting were supplemented with Complete



protease EDTA-free inhibitors (Roche) at a 1:25 dilution from a stock 25x solution. 

Lysates were stored at -20°C for short term or -80°C for longterm.

2.5. Protein Estimation

Protein lysate concentration was estimated using Bradford assay. A bovine serum 

albumin (BSA) linear standard curve of known concentrations (table 2.5) is measured 

in order to allow regression of the absorbance of the unknown samples. To achieve 

this 60pl of 2mg/ml BSA (Bio-Rad) is mixed with 60pl of water in a 1.5ml 

microcentrifuge tube. This lpg/pl solution is then used to create the standards to test. 

The standards were prepared in duplicate.

Table 2.5. Dilutions of BSA for Bradford Assay standard curve

BSA concentration (pg/pl) Volume lpg/pl BSA (pi) Volume H20  (pi)

1 20 0

0.75 15 5

0.5 10 10

0.25 5 15

0.125 2.5 17.5

0 0 20

The lysate sample of unknown concentration were vortexed and centrifuged briefly 

before 2pi was taken and diluted 1:10 with water. These dilutions were prepared in 

duplicate for each sample. The Bradford dye reagent (Bio-Rad) was then diluted from 

a 5x stock to a lx  working solution with distilled water. 1ml of lx Bradford reagent 

was then added to each standard and sample, vortexed, and are left to incubate for 

5min. Once the incubation is complete 250pl of each standard or sample were 

transferred in duplicate to a 96-well flat-bottomed tissue culture plate (Greinier) and 

the absorbance measured at 595nm on an iMark plate reader (Bio-Rad). A linear 

standard curve was generated and the concentration of the 1:10  diluted sample



solutions were calculated from their observed absorbance. These concentrations are 

then multiplied by 10 to take into account the dilution of the sample and the volume 

required for a given weight of protein (e.g. 2 0 pg) can be calculated.

2.6. Stable Isotope Labelling in Cell Culture (SILAC)

Changes in protein expression were examined using SILAC. SN4741 cells were 

cultured for SILAC as described earlier (section 2.1.5.).

2.6.1. SILAC Treatment(s) - SN4741

Treatments (24(5),25-epoxycholesterol lOpM, GW3965 lpM ) intended for SILAC 

cells were prepared as described previously (sections 2 .2 .1, 2 .2 .2 ) in the appropriate 

serum free SILAC media (Tight’, ‘medium’, ‘heavy’). To ensure that the isotope 

labelling itself led to no change in protein expression the treatments assigned to each 

SILAC state were rotated with each biological replicate (i.e. if  24(5),25- 

epoxycholesterol used to treat Tight’ SILAC cells in first experiment then for next 

experiment 24(5),25-epoxycholesterol used to treat ‘medium’ SILAC cells.

2.6.2. SILAC Sample Reduction and Methvlation

Protein from the different SILAC states were mixed at a 1:1:1 ratio for 2mg total 

protein before incubation for lhour at 60°C with an appropriate volume of 50mM 

tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma) in HPLC grade H20  to 

give a final concentration of 5mM. To block the thio groups of cysteine amino acid 

residue the sample was then incubated for 15min at room temp with an appropriate 

volume of 200mM 5'-Methyl methanethiosulfonate (MMTS, Sigma) in HPLC grade 

isopropanol to give a final concentration of lOmM. Protein was digested using 200pg 

sequencing grade trypsin (Promega) with incubation overnight at 37°C.

2.6.3. Strong Cation Exchange (SCX) Chromatography

Strong cation exchange chromatography was performed on a Dionex Ultimate 3000 

H P L C  system using a Polysulfoethyl A column (200mmx4.6mm, 5pm, 200A, Poly 

L C  Inc; solvent A = 2% H P L C  grade acetonitrile (Fisher), 0.1% formic acid; solvent 

B = 0.6M N H 4 C I ,  2% H P L C  grade acetonitrile, 0.2% formic acid). 50pg of trypsin



digested BSA was used to validate SCX performance before sample was loaded onto 

the column. Samples were diluted lOx using solvent A and then, if required, adjusted 

to pH 2.5-3 with formic acid prior to loading. Loading of the sample was performed 

by injecting 2ml sample at 5 min intervals with a flow rate of 800pl/min of solvent B. 

Once the sample was fully loaded LC gradient was run over 70 min (0-10min 2% B, 

10-15min 2-15% B, 15-45min 15-30% B, 45-55min 30-50% B, 55-60min, 50-100% 

B, 60-65min 100% B, 65-66min 100-2% B, 66-70min 2% B) at a flow rate of 

800pl/min with fraction collection performed from 15 to 70min. Fraction collection 

was more frequent (90s per fraction) at the beginning of the run (see fig. 3.6). A UV 

trace was recorded in order to visualise the fractionation of the loaded peptide 

mixture.

2.6.4. Desalting

Sep-Pak Vac 3cc C18 cartridges (Waters) were activated with 1ml 80% 

acetonitrile/0.1% formic acid before equilibration with 4ml H2O/0.1% formic acid. 

SCX fractions were diluted 1:1 with H2O/0.1% formic acid before loading onto the 

Sep-Pak C l8 cartridge and washed with 4ml H2O/0.1% formic acid. Peptides were 

eluted from C l8 with 1ml 80% acetonitrile/0.1% formic acid before drying overnight 

under vacuum. Dry samples were resuspended in 45 pi H2O/0.1% formic acid.

2.6.5. LTO-Orbitrap Calibration Electrosprav Positive Ion Mode

The LTQ-Orbitrap (Thermo) instrument was calibrated prior to use by using the 

electrospray source in positive ion mode. Calmix (Caffeine, MRFA, Ultramark) was 

injected to the source at 3pl/min and the instrument was tuned on the 524.3m/z peak. 

The tune file was then saved. The ion trap settings calibrated initially were multipole 

RF frequency, main RF frequency, electron multiplier gain. After successful 

calibration of these parameters the following were calibrated:- mass calibration- 

normal scan rate types; mass calibration -  enhanced scan rate types; Mass and 

resolution calibration- normal scan rate type; Isolation wave form; Activation wave 

form. Following successful calibration the following Fourier transform (FT, i.e. 

Orbitrap) parameters were checked only:- transfer multipole RF frequency; storage 

multipole RF frequency; positive ion mode- storage transmission; positive ion mode -  

FT transmission. The only FT parameter calibrated was Positive ion mode -  mass



calibration. The calibration was then backed up. The ion trap was calibrated as least 

once a month and the Orbitrap calibrated at least twice a week. After calibration 

spectra were recorded of the calmix in the FT and ion trap modes to allow an audit 

trail of performance.

2.6.6. LTO-Orbitrap Nanosprav

After calibration the electrospray source was removed and replaced with the 

nanospray source. A solution of [Glu^-fibrinopeptide B human (Glufib, Sigma) 

lOOfmole/pl was required for tuning and was prepared by diluting 1 Ojul of a 

lpmole/pl stock with 90pl 40% acetonitrile/0.1% formic acid. The glufib was injected 

at a rate of 0.3pl/min. The ion trap was then tuned on 785.8m/z. Spectra were then 

acquired in the FT and ion trap (MS and MS2) modes to allow an audit trail of 

performance.

2.6.7. Liquid Chromatography

Liquid chromatography was performed in nanoflow mode on a Dionex Ultimate 3000 

HPLC system using as solvent A1 2% acetonitrile/0.1% formic acid and as solvent B1 

90%acetonitrile/0.1% formic acid. For loading H2O/0 .1% formic acid was used as the 

solvent. Lines were purged prior to LC flow commencing for 300 seconds at a flow 

rate of 2000pl/min. The LC system was attached to the mass spectrometer and the 

flow started; 4%B 0.3pl/min for micropump 1 and 15pl/min for micropump 2

2.6.8. Liquid Chromatography Validation - Bovine Serum Albumin

To evaluate liquid chromatography (LC) performance 5p,l o f 20fmol/pl trypsin 

digested BSA was injected to test the instrument. The method for the LTQ-Orbitrap 

was an nth order double play method analysing the top 6 peaks. The method consisted 

of 2 scan events. Scan event 1 was a MS scan in the FT mode with the following 

settings -  acquire time = 35min, lock mass = 445.1200, scan range =400-2000m/z, 

data format = profile, resolution = 60,000. Scan event 2 was a MS scan performed in 

the ion trap with the following settings -  centroid; activation - type = CID, default 

charge state = 2, isolation width m/z = 3, normalised collision energy = 35, activation 

Q = 0.25, activation time = 30, minimum signal required = 500, top n peaks = 6 ;



enable charge state screening, enable monoisotopic precursor selection, reject charge 

state = 1; enable dynamic exclusion, repeat = 1, repeat duration = 30s, exclusion list 

size = 500, exclusion duration = 30s, exclusion mass width = ±7ppm, early expiration 

enabled. Contact closure was used to synchronise the LC to the mass spectrometer.

2.6.9. LTO-Orbitrap LC-MS/MS

10|xl of each fraction was analysed by LC-MS/MS over a 120min gradient (0-3min 

4% B, 3-99min 4-50% B, 99-100min 50-90% B, 100-105min 90% B, 105min 90-4% 

B, 105-120min 4% B). For the first 3min of the gradient samples were loaded at 

15p,l/min onto a Symmetry300 C l8 trap column (Waters) before separation on a 

RSLCnano column C l8 column (75p,m i.d. x 15cm, Dionex) at a ~250nl/min flow 

rate. Separated peptides were analysed on a LTQ-Orbitrap over 4 mass ranges (400- 

610 m/z, 590-800 m/z, 780-1010 m/z and 990-2000 m/z) using an Orbitrap resolution 

of 60,000 and an nth order double play ‘top 6 ’ method to select ions for CID MS/MS 

(singly charged precursors ions or those with signal <500 not selected).

The method consisted of 2 scan events. Scan event 1 was a MS scan in the FT mode 

with the following settings -  acquire time = 118 min, lock mass = 445.12, scan range 

= 4 mass ranges (400-610 m/z, 590-800 m/z, 780-1010 m/z and 990-2000 m/z), data 

format = profile, resolution = 60,000. Scan event 2 was a MS2 scan performed in the 

ion trap with the following settings -  data format = centroid; activation - type = CID, 

default charge state = 2, isolation width m/z = 3, normalised collision energy = 35, 

activation Q = 0.25, activation time = 30, minimum signal required = 500, top n peaks 

= 6; enable charge state screening, enable monoisotopic precursor selection, reject 

charge state = 1; enable dynamic exclusion, repeat = 1, repeat duration = 20, 

exclusion list size = 500, exclusion duration = 90s, exclusion mass width = ±5ppm, 

early expiration enabled. Contact closure was used to synchronise the LC to the mass 

spectrometer.

2.6.10. Orbitrap Velos LC-MS/MS

Dry samples were resuspended in 100fxl H2O/0.1% formic acid. lOjxl of each fraction 

was analysed by LC-MS/MS over a 120min gradient (solvent A H2O/0.1% formic 

acid, solvent B acetonitrile/0.1% formic acid; 0-5min 2% B, 5-85min 2-40% B, 85-



lOOmin 40-80% B, 100-104min 80% B, 104-105min 80-2% B, 105-120min 2% B). 

For the first 5min of the gradient samples were loaded at lOpl/min onto a trap column 

(CapTrap, Michrom Bioresources) before separation on a Reprosil C l8 column 

(100pm i.d. x 15cm, Nikkyo Technos Co. Ltd) at a ~200nl/min flow rate. Separated 

peptides analysed on a LTQ-Orbitrap Velos over a mass range of 400-2000 m/z using 

an Orbitrap resolution of 60,000 and a data dependent (singly charged precursors ions 

or those with signal <500 not selected) ‘top 20’ method to select ions for CID 

MS/MS.

2.6.11. Analysis of SILAC LC-MS/MS data

SILAC data was analysed using MaxQuant software (v. 1.0.13.8 downloaded from 

www.maxquant.org). Thermo-Finnigan RAW files transformed to msm files using 

MaxQuant Quantify (v. 1.0.13.8) software using appropriate triplet SILAC states. 

Parameters used were Orbitrap; Triplet (Arg6 , Lys4, ArglO, Lys 8 ); maximum of 3 

labelled amino acids; variable modifications = oxidation (M), acetyl (protein n-term), 

methylthio (C); trypsin/P; MS/MS tolerance = 0.5Da; maximum msm file size = 

350Mb; maximum missed cleavages = 2; top ms/ms peaks per lOODa = 6 .

Database used was IPI mouse v3.52 modified using Maxquant SequenceReverser 

(v. 1.0.13.8). Database searching was performed using Mascot (Matrix Science 

v.2.2.2) using parameters generated by MaxQuant. MaxQuant Identify (v. 1.0.13.8) 

was used to generate data tables for further analysis. Parameters used were peptide 

false discovery rate (FDR) = 0.01; site FDR = 0.01; protein FDR = 0.01; apply site 

FDR separately; maximum peptide PEP = 1; minimum peptides = 1; minimum unique 

peptides = 1; minimum peptide length = 6 ; reverse string =REV_; contaminant string 

= CON_; use only unmodified peptides and oxidation (M), acetyl (protein N-term), 

methylthio (C); use razor and unique peptides; discard unmodified counterpart 

peptides; minimum ratio count = 1; use least modified peptides; number of threads = 

1; re-quantify; filter labelled amino acids; low scoring version of identified peptides 

not kept.

MaxQuant generated protein ratios were analysed by following the method reported 

by Graumann et al.. Low and high z-values of >2 (the equivalent of 2 standard



deviations away from the median) were treated as up- or down-regulated. Three 

biological replicates were performed.

2.7. PhosphoSILAC

Changes in protein phosphorylation after treatment with oxysterols were examined 

using a quantitative proteomic approach (SILAC). The following experimental 

protocols were used to examine changes in the phosphoproteome. SN4741 cells were 

cultured for SILAC as described earlier (section 2.1.5.).

2.7.1. PhosphoSILAC Treatments - SN4741

Treatments (24(5'),25-epoxycholesterol 10p,M, 25-hydroxycholesterol 30pM) 

intended for phosphoSILAC studies were prepared as described previously (sections

2.2.1. 2.2.2) in the appropriate serum free SILAC media (Tight5, ‘medium5, ‘heavy5) 

with the following exceptions - oxysterols were dissolved in ethanol; 25- 

hydroxycholesterol was used at a higher concentration and therefore prepared as a 

30mM stock solution before dilution to 30pM; cells incubated with treatment for 6 

hours. To ensure that the isotope labelling itself led to no change in protein expression 

the treatments assigned to each SILAC state were rotated with each biological 

replicate.

2.7.2. phosphoSILAC Sample Reduction and Methvlation

As section 2.6.1.

2.7.3. Strong Cation Exchange Chromatography

As section 2.6.2. With the exception that fraction collection was more frequent 

(1 minute per fraction) at the beginning of the run (see figures. 4.2 and 4.3)

2.7.4. Desalting

As section 2.6.3.



2.7.5. Peptide Methvlation

In one phosphoSILAC experiment methanolic HC1 (hydrochloric acid in methanol; 

Sigma) was used to methylate acidic moieties. 3N methanolic HC1 was diluted to 2N 

with HPLC grade methanol. 900pi 2N methanolic acid was added to each desalted 

dried fraction and incubated for 2 hours at room temperature with sonication every 15 

minutes before being dried under vacuum.

2.7.6. Immobilised Metal Affinity Chromatography (IMAC) Phosphoenrichment

IMAC was performed using Phos-Select Iron Affinity gel (Sigma). 150pl of gel slurry 

(-75 pi gel; suitable for ~150pg phosphopeptide) was added to a Mobicol spin column 

(Mobitec) with a 10pm pore filter inserted (Mobitec).To the slurry 500pi 30% 

acetonitrile, 250mM acetic acid was added, vortexed and centrifuged at 8200g for 1 

minute. The flow through was discarded and this step repeated twice. Dry 

phosphoSILAC samples were resuspended in 500pl 30% acetonitrile, 250mM acetic 

acid, and vortexed. The resuspended samples were added to the spin columns and 

then shaken with end over end rotation (30rpm) for 2 hours at room temperature. The 

columns were then centrifuged at 8200g for 1 minute. The gel was then washed by 

adding 500pl 30% acetonitrile, 250mM acetic acid, vortexing and then centrifuging at 

8200g for 1 minute. A second wash was the performed by adding 500pl HPLC grade 

H20 , vortexing and then centrifuging at 8200g for 1 minute. For elution 500pl 

400mM ammonium hydroxide (pH =11) was added to the gel, vortexed and shaken 

with end over end rotation (30rpm) for 5 minutes at room temperature. This was then 

eluted by centrifuging at 8200g for 1 minute to a 2ml microcentrifuge tube. A second 

elution was performed by adding 200pi 400mM ammonium hydroxide (pH = 11) to 

the gel, vortexed and shaken with end over end rotation (30rpm) for 5 minutes at 

room temperature. This was then eluted by centrifuging at 8200g for 1 minute to a 

1.5ml Protein Lo-Bind microcentrifuge tube (Eppendorf). The two sequential elutions 

were combined in a 1.5ml Protein Lo-Bind microcentrifuge tube and 5pi of formic 

acid was added to neutralise the ammonium hydroxide. The samples were then dried 

overnight under vacuum. Samples were re-suspended in 60pl H2O/0.1% formic acid.



2.7.7. LTO-Orbitrap Calibration Electrosprav Positive Ion Mode

As section 2.6.4.

2 .7 .8 . LTO-Orbitrap Nanosprav

As section 2.6.5.

2 .7 .9 . Liquid Chromatography

As section 2.6.6.

2 .7 .1 0 . Liquid Chromatography Validation - Bovine Serum Albumin

As section 2.6.7.

2 .7 .1 1 . LTO-Orbitrap LC-MS/MS

20pl of each fraction was analysed by LC-MS/MS over a 120min gradient (0-3min 

4% B, 3-99min 4-50% B, 99-100min 50-90% B, 100-105min 90% B, 105min 90-4% 

B, 105-120min 4% B). For the first 3min of the gradient samples were loaded at 

15pl/min onto a Symmetry300 C l8 trap column (Waters) before separation on a 

RSLCnano column C18 column (75 pm i.d. x 15cm, Dionex) at a ~250nl/min flow 

rate. Each phosphopeptide fraction was analysed twice (i.e. two 20pl injections) on a 

LTQ-Orbitrap over 2 mass ranges (400-760 m/z, 740-2000 m/z) using an Orbitrap 

resolution of 60,000 and a data dependent ‘top 6 ’ MS/MS method to select ions for 

CID MS/MS(singly charged precursors ions or those with signal <500 not selected). 

Multistage activation was used for fragmentation (neutral loss within top 10 of 32.70 

m/z, 49.00 m/z, 65.30 m/z, 98.00 m /z).

The method consisted of 7 scan events. Scan event 1 was a MS scan in the FT mode 

with the following settings -  acquire time =118 min, lock mass = 445.12, scan range 

= 2 mass ranges (400-760 m/z, 740-2000 m/z), data format = profile, resolution = 

60,000. Scan event 2 was a MS scan performed in the ion trap with the following 

settings -  data format = centroid; activation - type = CID, default charge state = 2, 

isolation width m/z = 3, normalised collision energy = 35, activation Q = 0.25,
• t hactivation time = 30, current scan event = 500, n most intense ion = 1; enable



multistage activation; product mass range = 400; neutral loss within top 10 of 32.70 

m/z, 49.00 m/z, 65.30 m/z, 98.00 m/z; enable charge state screening, enable 

monoisotopic precursor selection, reject charge state = 1; enable dynamic exclusion, 

repeat = 1, repeat duration = 30, exclusion list size = 500, exclusion duration = 45s, 

exclusion mass width = ±5ppm; early expiration enabled. Subsequent scans (3-7)
threpeated scan 2 with the next 5 most intense ions (i.e. in scan 3 n most intense ion =

aL

2, scan 4 n most intense ion = 3 etc.). Contact closure was used to synchronise the 

LC to the mass spectrometer.

2.7.12. Analysis of phosphoSILAC LC-MS/MS data

SILAC data was analysed using MaxQuant software (v. 1.0.13.8 downloaded from 

www.maxquant.org). Thermo-Finnigan RAW files transformed to msm files using 

Maxquant Quantify (v. 1.0.13.8) software using appropriate triplet SILAC states. 

Settings used were Orbitrap; Triplet (Arg6 , Lys4, ArglO, Lys 8 ); maximum of 3 

labelled amino acids; variable modifications = oxidation (M), acetyl (protein n-term), 

methylthio (C), phosphorylation (ST), phosphorylation (Y); trypsin/P; MS/MS 

tolerance = 0.5Da; maximum msm file size = 350Mb; maximum missed cleavages = 

2; top ms/ms peaks per lOODa = 6 .

Database used was IPI mouse v3.52 modified using Maxquant SequenceReverser 

(v. 1.0.13.8). Database searching was performed using Mascot (Matrix Science 

v.2.2.2) using parameters generated by MaxQuant. MaxQuant Identify (v. 1.0.13.8) 

was used to generate data tables for further analysis. Parameters used were peptide 

FDR = 0.01; site FDR = 0.01; protein FDR = 0.01; apply site FDR separately; 

maximum peptide PEP = 1; minimum peptides = 1; minimum unique peptides = 1; 

minimum peptide length = 6 ; reverse string =REV ; contaminant string = CON_; use 

only unmodified peptides and oxidation (M), acetyl (protein N-term), methylthio (C), 

Phospho (ST), Phospho (Y); use razor and unique peptides; discard unmodified 

counterpart peptides; minimum ratio count = 1; use least modified peptides; number of 

threads = 1; re-quantify; filter labelled amino acids; low scoring version of identified 

peptides not kept.



2.8. Western Blotting

2.8.1. Polyacrylamide Gel Casting

The electrophoresis apparatus was assembled and the resolving gel prepared (see table 

2 .6  for the required reagents for one 10cm2 plate, 1mm spacers, and a final 

concentration of 10% acrylamide). The 10% acrylamide solution was then transferred 

to the glass plates avoiding the generation of air bubbles and 1ml of water-saturated n- 

butanol was gently added to the top of the gel. The resolving gel was then left to 

polymerise.

# y
Table 2.6. Reagents used m preparation of resolving gel. Volumes are for one 10cm 

glass plate, 1mm spacers, and a final concentration of 10% acrylamide. 4X Resolving 

Gel Tris consists of 1.5M Tris HC1 pH 8 .8 , 0.4% SDS adjusted to pH 8.8  with 1M 

HC1. TEMED = N,N,N’,N’-tetramethylethylenediamine (Sigma).

Reagent Volume

Distilled water 3.15ml

Acrylamide 30% solution (Sigma) 2.5ml

4x Resolving Tris solution 1.875ml

10% w/v ammonium persulphate (APS; for electrophoresis >98%; 

Sigma)

75|xl

TEMED (for electrophoresis approx. 99%) (Sigma) 7.5pl

Once the resolving gel had polymerised the water saturated n-butanol was removed 

and the gel washed using distilled water. The stacking gel was then prepared (see 

table 2.7 for the required reagents for one 10cm2 plate, 1mm spacers, and a final 

concentration of 3% acrylamide). The solution was then transferred to the glass plates 

avoiding the generation of air bubbles. The comb was added and the stacking gel was 

then left to polymerise.



Table 2.7. Reagents used in preparation of the stacking gel. Volumes are for one 

10cm2 glass plate, 1mm spacers, and a final concentration of 3% acrylamide. 4X 

Stacking Gel Tris solution consists of 0.5M Tris HC1 pH 6 .8 , 0.4% SDS adjusted to 

pH 6.8 with 1M HC1. TEMED = N,N,N’,N’ -  tetramethylethylenediamine.

Reagent Volume

MilliQ distilled water 2 .1ml

Acrylamide 30% solution (Sigma) 0.325ml

4x Stacking gel Tris solution 0 .8ml

10% w/v ammonium persulphate (APS; for electrophoresis >98%; 

Sigma)

34pl

TEMED (for electrophoresis approx. 99%) (Sigma) 3.4pl

2.8.2. Polyacrylamide Gel Electrophoresis Sample Loading

From the concentration given by the protein estimation the volume required for 20pg 

of protein was calculated. The sample was combined with 4x sample buffer 

(Invitrogen), lOOmM dithiothreitol (DTT, Sigma), and distilled H20  in a 

microcentrifuge tube. For a 20pl reaction - x pi sample, 5 pi 4x sample buffer, 2pi 

lOOmM DTT, H20  to 20pl are combined, vortexed to ensure thorough mixing and 

then spun briefly in a microcentrifuge. The samples were then heated to 70°C for 5 

min, vortexed and then spun briefly in a microcentrifuge to collect the sample at the 

bottom of the tube prior to loading.

The wells were washed before loading by gently pipetting 1ml of running buffer (IX 

Tris-glycine tank buffer -  SDS = 200ml 4x tris-glycine tank buffer-SDS (36g Tris 

base, 172.8g glycine, distilled H20  to 31), 8ml 10% SDS, distilled H20  to 800ml) into 

the wells removing any loose polyacrylamide. The inner chamber was then filled with 

running buffer and 2 0 pl sample added to the appropriate lanes using gel-loading tips.



7pi of Novex sharp stain molecular weight ladder (Invitrogen) was added to one lane. 

Any surplus lanes were loaded with lOpl of 4x sample buffer (Invitrogen). Once 

loading is complete the outer tank is filled with running buffer and electrophoresis is 

performed at 125V for 130min at room temperature noting the current initially and on 

completion.

2.8.3. Protein Transfer to Nitrocellulose Membrane

Protein transfer was performed using XCell II™ Blot Module (Invitrogen) Western 

blotting apparatus using XCell SureLock Mini-Cell (Invitrogen). Fibre blotting pads 

and the nitrocellulose membrane were soaked in transfer buffer (1.456g Tris base, 

7.2g glycine, 200ml methanol, distilled water to 1000ml) prior to use. Filter paper was 

soaked briefly in transfer buffer prior to placing in the cassette. Care was taken 

throughout to ensure that there are no air bubbles between the components that could 

affect protein transfer. Working from the cathode core of the blotting module the 

transfer cassette was assembled by placing two fibre blotting pads, filter paper and the 

gel were assembled in order. A small amount of transfer buffer was then used to wet 

the gel before addition of the nitrocellulose membrane. A second piece of filter paper 

was then added on top of the nitrocellulose and finally, two fibre blotting pads were 

added. The anode core is then placed onto the assembly ensuring that the components 

are held firmly and with a complete connection. The whole assembly is then slid into 

the transfer tank and braced into position. Transfer buffer is added to the transfer 

chamber until the gel/membrane assembly is covered. The outer chamber is filled 

with H20 . Electrophoresis is then performed at 16V overnight at room temperature 

noting the current (in mA) initially and on completion.

2.8.4. Blocking Non-Specific Binding

After protein transfer the nitrocellulose membrane is removed from the transfer 

cassette and washed with H20  to remove any polyacrylamide residue. The membrane 

is stained with lx  Ponceau S solution (1% Ponceau S (Sigma) in 5% acetic acid) to 

ensure successful transfer has occurred. The membrane was washed with PBS-Tween 

and then blocked to prevent non-specific binding by using 2 % blocking reagent 

(Amersham) in PBS-Tween. at room temperature for lhr with gentle shaking.



2.8.5. Primary Antibody Incubation

Primary antibodies were incubated with the membrane overnight at 4°C or at room 

temperature for 3 hours with gentle shaking (Caveolin-1, 1:5000, Cell Signalling 

Technologies; ATP binding cassette A1 (ABCA1), 1:500, Novus; Actin, 1:200, 

Sigma; phosphoethanolamine cytidylyltransferase (PCyt2), 0.5pg/ml, Abeam; 

Macrophage colony stimulating factor, 0.2pg/ml, Abeam; p44/p42 MAP kinase, 

1:1000, Cell Signalling Technologies; phospho-p44/p42 MAP kinase 

(Thr202/Tyr204), 1:1000, Cell Signalling Technologies). Sodium azide was added to 

the primary antibody solution to give a final w/v concentration of 0.05% to prevent 

bacterial growth and allow the reuse of the antibody solution after storage at 4°C.

2.8.6. Secondary Antibody Incubation

After primary antibody incubation the membrane was then washed three times for 10 

minutes each with 2% Amersham blocking reagent in PBS-Tween before incubation 

with appropriate horseradish peroxidase (HRP)-linked secondary antibody (donkey 

anti-rabbit HRP-linked (Amersham) unless otherwise noted); Caveolin-1, 1:5000; 

ABCA1, 1:10,000; Actin, 1:50,000; phosphoethanolamine cytidylyltransferase 

(PCyt2), 1:20,000; Macrophage colony stimulating factor, 1:2000 donkey anti-goat 

HRP-linked (Santa Cruz) p44/p42 MAP kinase 1:2000; phospho-p44/p42 MAP 

kinase (Thr202/Tyr204) 1:1000) for 1 hour at room temperature. The nitrocellulose 

was then washed three times for 15min with PBS Tween at room temperature with 

gentle shaking. Before detection the nitrocellulose membrane was then washed with 

20ml PBS for at least 5min.

2.8.7. Detection

Enhanced chemiluminescence (ECL) is used for detection using ECL Advance kit 

(GE Amersham). An equal volume of reagent 1 and 2 are mixed (typically 1000pi of 

each for 1 blot) and are then added to the nitrocellulose. The detection reagent is 

incubated with the nitrocellulose for 5min at room temp before visualisation using a 

Biorad ChemiDoc XRS and Quantity One software (Bio-Rad). Tracker tape 

(Amersham) is used to visualise the position of the Novex sharp stain molecular 

weight ladder on the Chemidoc system.



2.9. Fixed Cell Confocal Microscopy

Glass cover slips (Fisher) were placed in each well of a 24 well tissue culture plate 

(Greinier) before incubation for 10 min with 250pl poly-L-lysine (0.01% BioReagent, 

mol wt 150,000 -  300,000 sterile filtered suitable for cell culture; Sigma). The poly- 

L-lysine was then removed and the cover slips left to dry for 20min at room 

temperature. SN4741 cells were trypsinised and counted, as previously described, 

before being seeded at a density of 50,000 cells per well in 1ml full media and 

incubated for 24 hours prior to treatment.

Oxysterols (24(5),25-epoxycholesterol (Enzo Life Sciences), 7a-hydroxycholesterol 

(Steraloids), 19-hydroxycholesterol (Steraloids), 24(5)-hydroxycholesterol (Avanti 

Polar Lipids), 25-hydroxycholesterol (Sigma), 27-hydroxycholesterol (Avanti Polar 

Lipids)) were prepared at a lOmM concentration in 45% hydroxypropyl- - 

cyclodextrin/0.9% saline (both Sigma) before dilution to lOpM in serum free media. 

GW3965 (Sigma) prepared as a lOmM solution in ethanol before dilution to lpM  

with serum free media. These solutions were vortexed to ensure thorough mixing 

before sterile filtration.

SN47471 cells were then treated with vehicle, 0.5ml GW3965 lpM  (Sigma), or 0.5ml 

lO pM  oxysterol (24(5),25-epoxycholesterol, 7a-hydroxycholesterol, 19- 

hydroxycholesterol, 24(5)-hydroxycholesterol, 25-hydroxycholesterol or 27- 

hydroxycholesterol) in the presence or absence of 250pM cholesterol (Sigma) for 24 

hours at 37°C/5% C02. After incubation cells were washed twice with 1ml PBS prior 

to fixing by incubating with 250pl 4% paraformaldehyde (Sigma) in PBS for 15 

minutes.

Fixed cells were washed three times with 1ml of Hank’s Balanced Salt Solution 

(HBSS; Invitrogen) and then stained with 250pl of lpg/ml Alexa-555 labelled wheat 

germ agglutinin (Invitrogen) per well for 5min at room temperature. After incubation 

the cells were washed twice for 5minutes with 1ml HBSS then permeabilised by 

incubating with 250p,l PBS Triton-XlOO 0.2% (Sigma) in for lOmin at room 

temperature. Non-specific binding was blocked with incubation for 30min with 250pl 

blocking buffer (0.5% essentially fat free BSA (Sigma) in PBS Triton-XlOO 0.1%)



per well before treatment with anti-caveolin-1 antibody ( 1:200  in blocking buffer, 

Cell Signalling Technologies) for lhour at room temperature. The primary antibody 

was removed and the cells washed three times with 1ml PBS Triton-XlOO 0.1% for 

5min. Alexa 488 linked anti-Rabbit secondary antibody (1:2000 in blocking buffer; 

Invitrogen) was incubated with the cells for 1 hour at room temperature before 

washing three times with 1ml PBS Triton-XlOO 0.1%. The cover slips were then 

mounted onto glass slides (Fisher) using Mowiol 4-88 mounting medium and left to 

dry overnight. Slides were imaged on a Zeiss LSM 510 Meta microscope.



2.10. Real Time Reverse Transcription PCR

2.10.1. RNA Extraction -  Adherent cells

RNA extraction was performed using RNeasy Mini Kit (Qiagen) following the 

manufacturer’s instructions. Treatments were removed from cells and stored for 

future ELISA assays. Cells (on 90mm tissues culture dishes (Greinier)) were washed 

twice with ~10ml ice cold PBS (Lonza) before addition of 600pl RLT lysis buffer 

(Qiagen). Cells were scraped using a cell scraper (Greinier) before transfer of the 

lysate to a certified RNase/DNase free 2ml microcentrifuge tube (Eppendorf). The 

lysate was then homogenised using a 1ml syringe with a BD Microfine 23G, 1_” 

needle by drawing the lysate up then expelling 10 times.

After homogenisation 600pi of 70% ethanol was added to the lysate and mixed by 

pipetting (no centrifugation). The lysate was then loaded to a RNeasy spin column 

(Qiagen) placed in a 2ml collection tube. 600pl of sample was loaded and then spun 

in a microcentrifuge for 15s at 13,000 rpm. The flow through was discarded and the 

loading was repeated until all lysate was transferred to column. 700pl of RW1 buffer 

was added to the column and spun for 15s at 13,000 rpm to wash the sample and the 

flow through was discarded. A second wash was performed; 500pl of RPE buffer was 

added to the column, spun for 15s at 13,000 rpm and the flow through was discarded. 

For the final wash 500pl of RPE buffer was added to the column, spun for 2min at 

13,000 rpm and the flow through was discarded. The column was transferred to a 

clean 2 ml collection tube and then spun again for lmin at 13,000 rpm to ensure 

removal of all wash buffers.

RNA was eluted from the column with 40pl RNase free water to a clean 1.5ml 

centrifuge tube. The water was added directly to the membrane of the column and 

then spun for lmin at 13,000 rpm. To ensure a good yield of RNA the flow through 

was reloaded onto the column and then spun again for lmin at 13,000 rpm. RNA was 

stored at -80°C.

2.10.2. RNA Extraction -  Suspension Cells

RNA extraction was performed using RNeasy Mini Kit (Qiagen) following the 

manufacturer’s instructions. The cell suspension was transferred from the tissue



culture flask to 15ml centrifuge tube and then centrifuged at 700g for 5min. The 

supernatant, i.e. the treatment media, was stored for future ELISA assays at -80°C. 

The cell pellet was washed by resuspending cells in 10ml ice cold PBS (Lonza) before 

centrifugation for 5min at 700g. This was repeated once before addition of 600pl 

RLT lysis buffer (Qiagen). The lysate was then transferred to a certified 

RNase/DNase free 2ml microcentrifuge tube (Eppendorf) and homogenised using a 

lml syringe (BD) with a BD Microfine 23 G, 1_” needle (BD) by drawing the lysate 

up then expelling 10 times.

The remainder of the extraction follows same method as adherent cells (2.9.1).

2.10.3. RNA Concentration Estimation

RNA concentration was estimated using a Nanodrop ND-1000 spectrophotometer 

(Labtech). The capillary was cleaned before use using water. The option to measure 

nucleic acid was chosen and lp l of water was loaded and used to initialise the 

instrument. The setting was switched to ‘RNA’ and lp l of water was loaded and 

measured as a blank. 1 pi of sample(s) were then loaded sequentially and measured. 

The RNA concentration was recorded (ng/pl) and the 260nm/280nm and 260/230 

ratios that indicates the quality of the RNA.

2.10.4. Reverse transcription

Reverse transcription was performed using a Quantitect Reverse Transcription kit 

(Qiagen) following the manufacturer’s instructions. All components were kept on ice 

until used. Before the reverse transcription a step to remove genomic DNA was 

undertaken; for each sample 900ng of RNA was taken and diluted to 12pl with RNase 

free water and 2pl of genomic DNA wipeout buffer added (Qiagen) for a total volume 

of 14pl. This mixture was mixed and centrifuged briefly before incubation at 42°C for 

2min (iCycler, Bio-Rad). A master mix for the reverse transcription reaction was then 

prepared consisting of 4pl 5x Quantiscript RT buffer, lp l Quantiscript reverse 

transcriptase and 1 pi of primers (all Qiagen) per sample. After incubation the sample 

was centrifuged briefly 6 pi of reverse transcription master mix was added per sample 

to give a final volume of 20pl. The samples were mixed, centrifuged briefly and then 

incubated at 42°C for 15min followed by 95°C for 3min (iCycler, Bio-Rad) to



generate cDNA. No reverse transcriptase control reactions were performed as above 

but with the Quantitect reverse transcriptase enzyme in the reaction mixture replaced 

with water.

2.10.5. Primers

Each primer set (table 2.8., Sigma (unless otherwise noted)) was evaluated to ensure 

that they amplified the target while avoiding the generation of primer dimers and that 

a linear standard curve was generated across a broad range by dilution with water 

(cDNA neat, 1:10 , 1:100, 1:1000). Primers were reconstituted from lyophilised 

powder to a lOOpM concentration with H20 .

Table 2.8 .Primers used for reverse transcription qPCR. The primers for LXRa and 

LXR|3 were obtained from the Nuclear Receptor Signalling Atlas website 

(www.nursa.org/10.1621/datasets.02001 - accessed 13-12-2010). Primers for StarD4 

se lf  designed using NCBI P rim er-B last prim er designing tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast). The primers for FADS2 were taken 

f r o m  t h e  R T p r i m e r D B  w e b s i t e

(http://medgen.ugent.be/rtprimerdb/assay_report.php?assay_id=8122 -  accessed 17-1- 

2011). Primers for CERT were obtained from Qiagen. No sequence information was 

provided. * Mismatch in primer sequence in referenced manuscript. Possible 

typographical error therefore primer sequence used 100% complementary.

Primer Name Species Sequence (5’-3’) Reference

LXRa forward Mouse AGG AGT GTC GAC TTC GCA AA See table legend

LXRa reverse Mouse CTC TTC TTG CCG TTC AGT TT See table legend

LXRP forward Mouse AAG CAG GTG CCA GGG TTC T See table legend

LXRp reverse Mouse TGC ATT CTG TCT CGT GGT TGT See table legend

SREBPlc forward Mouse ATC GGC GCG GAA GCT GTC GGG 

GTA GCG TC

Shimomura et al. 

1997



SREBPlc reverse Mouse ACT GTC TTG GTT GTT GAT GAG CTG 

GAG CAT

Shimomura et al. 

1997

Cav-1 forward Mouse AAC GAC GAC GTG GTC AAG A Bailey & Liu 2008

Cav-1 reverse Mouse CAC AGT GAA GGT GGT GAA GC Bailey & Liu 2008

LDLR forward Mouse CAT GCA GCA GGA ACG AGT TC* Masson et al. 2004

LDLR reverse Mouse GGA GTC AGG AAT GCA TCG GC Masson et al. 2004

StarD4 forward Mouse ATG CGT TAC ACC ACT GCT GGG C See table legend

StarD4 reverse Mouse TCT GGT CTC GTC TCA CTC CAC TCA See table legend

MCSF forward Mouse GAA CAC TGT AGC CAC ATG ATT GG Wang et al. 2009

MCSF reverse Mouse TGG CAT GAA GTC TCC ATT TGA C Wang et al. 2009

Col4a3bp forward Mouse Unknown See table legend

Col4a3bp reverse Mouse Unknown See table legend

P-actin forward Mouse GGT CGT ACC ACA GGC ATT GTG 

ATG

Shimomura et al. 

1997

P-actin reverse Mouse GGA GAG CAT AGC CCT CGT AGA 

TGG

Shimomura et al. 

1997

IDOL forward Mouse AGG AGA TCA ACT CCA CCT TCT G Zelcer et al. 2009

IDOL reverse Mouse ATC TGC AGA CCG GAC AGG Zelcer et al. 2009

MCSF forward Human TGC AGC GGC TGA TTG ACA Razzaque et al. 2002

MCSF reverse Human TTC AAC TGT TCC TGG TCT ACA AAC 

TC

Razzaque et al. 2002

P-actin forward Human GAT GGC CAC GGC TGC TTC Cronin et al. 2011

P-actin reverse Human TGC CTC AGG GCA GCG GAA Cronin et al. 2011



2.10.6. Real Time Polymerase Chain Reaction

Primers (table 2.8) were diluted from a lOOpM stock solution to lOpM with water, 

vortexed and centrifuged. A master mix was then prepared for each gene. For each 

well 12.5pl of QuantiFast SYBR green PCR master mix 2x (Qiagen), 2.5pi forward 

primer (i.e. lpM  final concentration), 2.5pi reverse primer (i.e. lpM  final 

concentration), 5.5pi RNase free water was required and therefore these values were 

multiplied by the number of wells to be used (plus an overage). The master mix was 

then mixed and centrifuged briefly.

cDNA was taken from each sample and pooled in order to be used to generate a 

standard curve. The pooled cDNA used for the standard curve was diluted 1:10, 1:100 

and 1:1000 using serial dilutions. Samples to be analysed for gene expression (and 

noRT controls) were diluted 1:4 with water so that they fell within the limits of the 

standard curve. At each stage the cDNA was mixed and centrifuged to give a 

homogenous mixture. Each sample was analysed in triplicate. The master mix was 

then transferred into the PCR plate with 23 pi per well as appropriate. 2pl of cDNA 

(or water for no template controls (NTC)) was added to each well as appropriate (see 

figure 2.1 for example of plate set up).



1 2 3 4 5 6 7 8 9 10 11 12

A 1:1000, Pooled, 

Target

1:4, sample A, 

Target

1:4, sample E, 

Target

1:4, sample D, 

Target noRT

B 1:100, Pooled, 

Target

1:4, sample A, 

P-actin

1:4, sample E, 

P-actin

1:4, sample D, 

P-actin noRT

C 1:10, Pooled, 

Target

1:4, sample B, 

Target

1:4, sample A, 

Target noRT

1:4, sample E, 

Target, noRT

D Undiluted, Pooled, 

Target

1:4, sample B, 

P-actin

1:4, sample A, 

P-actin noRt

1:4, sample E, 

P-actin, noRT

E 1:1000, Pooled, 

P-actin

1:4, sample C, 

Target

1:4, sample B, 

Target noRt

F 1:100, Pooled, P- 

actin

1:4, sample C, 

P-actin

1:4, sample B, 

P-actin noRT

G 1:10, Pooled, P- 

actin

1:4, sample D, 

Target

1:4, sample C, 

Target noRT

NTC target

H Undiluted, Pooled, 

P-actin

1:4, sample D, 

p-actin

1:4, sample C, 

P-actin noRT

NTC P-actin

Figure 2.1. Typical plate set up for real time RT-PCR. All samples were run in 

triplicate. A standard curve derived form pooled cDNA from the samples was 

generated using 4 serial dilutions. Samples for analysis of expression were diluted 1:4 

with DNase/RNase free water. NoRt = No reverse transcriptase added to sample in the 

RT step. NTC = No template control

The plate was then centrifuged briefly to ensure that samples were collected at the 

bottom of the well and then checked to ensure that no air bubbles were present. The 

plate was then transferred to an iQ5 real time PCR detection system (Bio-Rad) to be 

analysed using the conditions shown in table 2.9.



Table 2.9. Conditions for real time PCR

Cycle Cycle

Repeated

Temperature (°C) Dwell Time (s) Additional

information

1 lx 95°C 300

2.1 45x 95°C 10

2.2 60°C 30 Real time analysis

3 lx 95°C 60

4 lx 55°C 60

5 81x Start at 55°C with a 0.5°C 

increase per cycle

10 Melt curve analysis

2.10.7. Data Analysis

The standard curve derived from the pooled cDNA was used to monitor primer 

efficiency. Primer efficiency expressed as a percentage was generated using the Bio- 

Rad iQ5 software. Primer efficiencies summarised in table 2.10.



Table 2.10. Summary of RT-PCR primer efficiencies. Efficiency shown as mean with 

standard deviation.

Gene Species Primer efficiency

LXRa Mouse 93.5±5.2

LXRp Mouse 109.7±6.8

SREBPlc Mouse 93.1 ±4.0

Cav-1 Mouse 88.2±0.64

LDLR Mouse 100 .8±8.2

StarD4 Mouse 100.0±2.3

MCSF Mouse 98.4±7.6

Col4a3bp Mouse 102.9±2.0

IDOL Mouse 94.1 ±1.3

p-actin Mouse 97.4±6.7

MCSF Human 102.8±4.3

p-actin Human 102.0±1.3

Analysis of the data was performed using AACt method. The cycle threshold value 

(Ct) of the gene of the interest was subtracted from the Ct value of the reference gene 

(p-actin) from the same sample giving the ACt value.

A C t  — Ct(sample) — Ct^reference)

This was repeated for each experimental condition. The ACt values for the treatment 

were then subtracted from the control value giving a AACt value.

A A C t  — ACt(treatment) — ACt(control)

The AACt value was then converted into fold induction; as the amount of product 

amplified theoretically doubles with each PCR cycle this can be written as:-

Fold induction c.f. control = 2'MCt



2.11. Mouse MCSF Enzyme Linked Immunosorbant Assay

A mouse MCSF Quantikine kit assay (R&D Systems) was performed following the 

manufacturer’s instructions. Briefly, a mouse MCSF standard was reconstituted with 

2ml of calibrator diluent RD5-16 (R&D Systems) giving a stock solution of 

2000pg/ml. This solution was incubated at room temperature for 5min with gentle 

shaking before being used to create samples for a standard curve by using serial 

dilution. Calibrator diluent RD5-16 was used as a diluent. The concentrations for the 

standard curve were 2000pg/ml (stock solution), lOOOpg/ml, 500pg/ml, 250pg/ml, 

125pg/ml, 62.5pg/ml, 31.25pg/ml, Opg/ml (Calibrator diluent RD5-16). The kit’s 

supplied mouse MCSF internal control was reconstituted in 1ml ddFLO. This internal 

control should yield a reading of 175-29 lpg/ml. For unknown concentration samples, 

0.5ml of cell culture supernatant was vortexed then centrifuged at 14,000 rpm for 

2min at 4°C.

50pl of assay diluent RD1N (R&D systems) was added to each well of the MCSF 

antibody pre-coated microplate supplied with the kit. 50(xl of standard, control or 

sample was then added to each well as appropriate. To ensure thorough mixing the 

plate was tapped gently for one minute. The plate was then covered with an adhesive 

strip and incubated for 2 hours at room temperature. After incubation each well was 

aspirated and washed (~400pl) with lx  wash buffer (supplied as a 25x concentrated 

solution, R&D Systems). This wash step was repeated four times (i.e. 5 washes in 

total). The plate was then gently blotted against a clean paper towel to ensure removal 

of remaining wash buffer. 100pi of mouse MCSF conjugate (R&D Systems) was then 

added to each well and the plate covered with a new adhesive strip. The plate was 

then incubated at room temperature for 2 hours. After incubation the wells were 

washed as described previously.

Substrate solution was prepared by mixing equal volumes of colour reagent A and B 

(both R&D systems). 100pi of substrate solution was then added to each well and 

incubated for 30 min at room temperature protecting the plate from light. lOOpl of 

stop solution was added to each well. The plate was gently tapped in order to ensure 

thorough mixing and the development of a uniform colour. The optical density of 

each well was then read on an iMark microplate reader (Bio-Rad) set at a wavelength



of 450nm. The plate was then read at 595nm to correct for optical imperfections of the 

plate.

2.12. Human MCSF Enzyme Linked Immunosorbant Assay

A human MCSF Quantikine kit assay (R&D Systems) was performed following the 

manufacturer’s instructions. Precautionary measures were taken to prevent 

contamination from MCSF found in human saliva -  a facemask and gloves were 

worn. Briefly, a human MCSF standard was reconstituted with 1ml of calibrator 

diluent RD5-18 (R&D Systems) giving a stock solution of 50,000pg/ml. This solution 

was incubated at room temperature for 15min with gentle shaking before being used 

to create samples for a standard curve by using serial dilution. Calibrator diluent RD5- 

18 was used as a diluent. The concentrations for the standard curve were 5000pg/ml 

(stock solution), 2500pg/ml, 1250pg/ml, 625pg/ml, 312.5pg/ml, 156.25pg/ml, 

78.125pg/ml, Opg/ml (Calibrator diluent RD5-18). For unknown concentration 

samples, 0.5ml of cell culture supernatant was vortexed then centrifuged at 14,000 

rpm for 2min at 4°C.

lOOpl of assay diluent RD1-56 (R&D systems) was added to each well of the MCSF 

antibody pre-coated microplate supplied with the kit. lOOp.1 of standard or sample was 

then added to each well as appropriate. To ensure thorough mixing the plate was 

tapped gently for one minute. The plate was then covered with an adhesive strip and 

incubated for 2 hours at room temperature. After incubation each well was aspirated 

and washed (-400pi) with lx  wash buffer (supplied as a 25x concentrated solution, 

R&D Systems). This wash step was repeated three times (i.e. 4 washes in total). The 

plate was then gently blotted against a clean paper towel to ensure removal of 

remaining wash buffer. 200pi of human MCSF conjugate (R&D Systems) was then 

added to each well and the plate covered with a new adhesive strip. The plate was 

then incubated at room temperature for 2 hours. After incubation the wells were 

washed as described previously.

Substrate solution was prepared by mixing equal volumes of colour reagent A and B 

(both R&D systems). 200pl of substrate solution was then added to each well and 

incubated for 30 min at room temperature protecting the plate from light. 50pl of stop 

solution was added to each well. The plate was gently tapped in order to ensure



thorough mixing and the development of a uniform colour. The optical density of 

each well was then read on an iMark microplate reader (Bio-Rad) set at a wavelength 

of 450nm. The plate was then read at 595nm to correct for optical imperfections of the 

plate.

2.13 Statistical Analysis

Statistical analysis was performed on the data using Microsoft Excel 2007 software 

using Student’s two-tailed t-test. p values below 0.05 were considered a significant 

change.



C h a p t e r  3: P r o t e o m i c  a n a l y s i s  o f  2 4 ( 5 ) ,2 5 - e p o x y c h o l e s t e r o l  

TREATMENT IN S N 4 7 4 1  NEURONS

3.1. Introduction

24(5),25-epoxycholesterol is an unusual oxysterol. It is unusual as it is not an 

oxygenated metabolite of cholesterol but a product of a shunt in the mevalonate 

biosynthetic pathway. An epoxide group is introduced to squalene by squalene 

epoxidase during synthesis of cholesterol. The product of this reaction, 2,3- 

oxidosqualene (AKA 2,3-monoepoxysqualene), is then processed by a number of 

downstream enzymes to synthesise cholesterol. However, 2,3-oxidosqualene can be 

processed further in order to create 2,3:22,23-dioxidosqualene. This can then be 

cyclised by lanosterol synthase and further processed along the same enzymatic 

pathway in order to create 24(5),25-epoxycholesterol. 24(5),25-epoxycholesterol is a 

potent endogenous ligand of Insig and LXR (see sections 1.1.5.1. and 1.1.5.2. 

respectively). Therefore, an increase in the concentration o f 24(5),25- 

epoxycholesterol results in up-regulation of genes with a LXR response element in 

their promoter and down-regulation of SREBP2 regulated genes.

24(5),25-epoxycholesterol appears to have a role in the development of the embryonic 

brain as 24(5),25-epoxycholesterol is present at relatively high levels in comparison to 

other oxysterols in the cortex and spinal cord of embryonic mice (Wang et al. 2009). 

The major oxysterol in adult mouse brain is 24(5)-hydroxycholesterol with a 

concentration of 2.53±0.05ng/pg 24(5)-hydroxycholesterol to cholesterol (Lutjohann 

et al. 2002). In the embryonic murine brain 24(5)-hydroxycholesterol is not the most 

abundant; at embryonic day 11 there was an observed level of 24(5)- 

hydroxycholesterol of 0.026pg/g wet weight in the cerebral cortex and 0.013pg/g wet 

weight in the spinal cord. In comparison, the concentration of 24(5),25- 

epoxycholesterol was 0.165pg/g wet weight in the cerebral cortex and 0.091 pg/g wet 

weight in the spinal cord. It is unclear the role 24(5),25-epoxycholesterol, the most 

abundant oxysterol in foetal brain, plays in murine embryonic neural development 

though as LXR is present in embryonic brain (Annicotte et al. 2004) and that 

24(5),25-epoxycholesterol is a potent ligand for this nuclear receptor (Janowski et al. 

1999) it might play a role in neural development. Indeed, there is evidence to suggest



that the presence of LXR is essential to ventral midbrain neurogenesis (Sacchetti et al 

2009)

The mechanism by which LXR induces neurogenesis is unclear. Therefore, in order to 

investigate the role of 24(5),25-epoxycholesterol and LXR in neurogenesis a 

quantitative proteomic approach was employed. The proteomic technique stable 

isotope labelling in cell culture (SILAC) was used in order to identify changes in the 

proteome after treatment with 24(5),25-epoxycholesterol and GW3965. To this end, 

as a model for embryonic mouse brain, the murine neuronal cell line SN4741 was 

used. SN4741 cells are dopaminergic neurons derived from the substantia nigra of 

embryonic mouse (Son et a l 1999). The substantia nigra is located in the ventral 

midbrain. Therefore, SN4741 cells are a relevant model to the increased neurogenesis 

seen after LXR activation in vivo. Treatment of SILAC labelled SN4741 cells with 

either 24(5),25-epoxycholesterol or the synthetic LXR ligand lpM  GW3965 (which 

only activates LXR and has no effect on SREBP2) allows differentiation of effects as 

LXR dependent or independent. Thus, the aim of this work is to identify protein 

expression changes in SN4741 cells after 24(5),25-epoxy cholesterol treatment and 

identify if  these effects are LXR dependent or independent.



3.2. Results

3.2.1. Analysis of 24(5h25-epoxvcholesterol Treatment on SN4741 Growth

To determine if 24(5),25-epoxycholesterol is toxic to SN4741 cells grown in culture 

cells were incubated with either lOpM 24(5),25-epoxycholesterol or with vehicle and 

the total cell number counted. In order to ensure that the cells survived in culture for a 

prolonged period but without introducing lipid small molecules that could affect the 

activity of 24(5),25-epoxycholesterol the media used contained charcoal stripped 

foetal bovine serum (FBS). After 76 hours there was no difference in cell number 

between 24(5),25-epoxychoelsterol and control (fig 3.1). However, incubation with 

charcoal stripped serum reduced the rate of growth and the vehicle and 24(5),25- 

epoxycholesterol treated cells in this media grew slower than control cells incubated 

in full media. Five days after seeding SN4741 cells at 2.5x104cells/well in 24 well 

plates in full media they reached confluency and the plateau of the stationary phase of 

the curve. However, the 24(5),25-epoxycholesterol and control cells in stripped serum 

media did not reach confluency. However, as there were no statistical differences 

between control and 24(5),25-epoxycholesterol treatment (p>0.05 Student’s t-test) it 

appears that 24(5),25-epoxy cholesterol is non-toxic to SN4741 cells when measured 

by total cell number.
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Figure 3.1. Effect of 24(5),25-epoxycholesterol on the rate of growth of SN4741 cells. 

24 well plates were seeded at 2.5x104 cells/well in media containg charcoal stripped 

media with either lOpM 24(5),25-epoxy cholesterol or vehicle as control. Full media 

media was used to determine the effect of the charcoal stripped serum media on rate 

of cell growth. No difference in cell growth was observed with 24(5),25- 

epoxycholsterol and vehicle in charcoal stripped serum media. Cells grown in full 

media had a higher rate of cell growth compared with those grown in charcoal 

stripped serum media.

3.2.2. Analysis of 24(53.25-epoxvcholesteroi Treatment on SN4741 Viability

In addition the toxicity of 24(5),25-epoxycholesterol was measured using two other 

techniques -  XTT (sodium 2,3,-bis(2-m ethoxy-4-nitro-5-sulfophenyl)-5- 

[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) assay and Cell Titer Blue assay 

(a resazurin based assay marketed by Promega). Both techniques measure the ability 

of the cell to metabolise XTT or resoruzin respectively and induce a colour change 

that is proportional to the healthy cell number. XTT is not believed to enter the cell 

due to the net negative charge of the molecule and is believed to be reduced at the 

plasma membrane. Treatment with 24(5),25-epoxycholesterol led to no toxicity as 

shown by XTT assay (fig 3.2). After 24 or 48 hours of incubation with vehicle, lpM  

GW3965, IOjiM 24(5),25-epoxycholesterol, lOpM 24(5)-hydroxycholesterol no 

differences were observed. In the case of Cell Titer Blue again no toxicity was



observed (fig 3.3) after treatm ent with ljaM GW 3965, lOpM 24(5),25- 

epoxycholesterol or lOpM 24(5)-hydroxycholesterol for 24 or 48 hours.

■ 24hoiii

■ 48l)oni

Figure 3.2. 24(5),25-epoxycholesterol is not toxic in SN4741 cells as measured by 

XTT assay (n= l). Measurements were conducted at the specific absorbance 

wavelength of reduced XTT (475nm) and at 660nm as a measure of non-specific 

absorbance. No differences were observed between control, lpM  GW3965, lOpM 

24(5),25-epoxycholesterol, 10pM 24(5)-hydroxycholesterol after 24 or 48 hours.
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Figure 3.3. 24(5),25-epoxycholesterol is not toxic in SN4741 cells as measured by 

Cell Titer Blue assay (n=2). Measurements were conducted at fluorescent excitation 

wavlength (544nm) and emission wavelength (590nm) of resorufin (the metabolite 

generated by the reduction of resoruzin). No differences were observed between 

control, lpM  GW 3965, lOgM 24(5),25-epoxycholesterol or IOjiM 24(5)- 

hydroxycholesterol after 24 or 48 hours.

3.2.3. LXR Expression in SN4741 cells.

The aim of this study was to investigate LXR dependent and independent changes in 

protein expression. Therefore, the expression of LXRa and LXR|3 was evaluated in 

SN4741 cells to ensure the appropriateness of the cell line as a model. The expression 

of both isoforms was evaluated by RT-qPCR to identify the presence of mRNA. In 

SN4741 cells both isoforms were present with LXR(3 the predominant isoform with 

levels -1 0  higher than LXRawhich correlates with previously published data for the 

central nervous system (Whitney et al. 2002; table 3.1.).



Table 3.1. Threshold cycle for LXRa and LXR|3 after RT-qPCR. Threshold cycle is 

inversely proportional to the abundance of mRNA. Therefore, more LXRf3 mRNA is 

present than LXRa mRNA; LXR(3 has a higher expression level.

Gene Threshold Cycle

LXRa 21.1±0.9

LXR(3 17.8±1.1

In addition, after SN4741 cells were treated with either 10pM 24(5),25- 

epoxycholesterol or lpM  GW3965 the protein o f the LXR responsive gene ABCA1 

was increased (fig 3.4). The expression of ABCA1 is low in untreated cells. However, 

after 24 hours treatment with either lOpM 24(5),25-epoxycholesterol or lpM  

GW3965 the protein level is increased markedly indicating activation o f LXR. At the 

mRNA level RT-qPCR experiments showed that the LXRa regulated gene SREBPlc 

was up-regulated after treatment with both 24(5),25-epoxycholesterol and GW3965 

indicating the expression of LXRa and the expected response (fig 3.12). GW3965 had 

a greater effect on SREBPlc expression with a ~7-fold increase over control whereas 

24(5),25-epoxycholesterol only induced a ~3-fold increase.

Figure 3.4. The protein level of ABCA1 is increased after 24 hours treatment with 

either 10pM 24(5),25-epoxycholesterol or lpM  GW3965 indicating that SN4741 

cells express LXRa/(3.



3.2.4. Strong Cation Exchange Fractionation of SILAC peptides

Treatment of SN4741 cells with 10pM 24(5),25-epoxycholesterol or lpM  GW3965 

showed no toxic effects of these small molecules and SN4741 cells expressed 

LXRa/p. Thus, SN4741 cells were deemed suitable as a model for proteomic studies 

and grown in SILAC media for 5 passages. 5 passages is enough time to ensure full 

incorporation of the labelled amino acids to occur based on previous experience in our 

laboratory. SILAC SN4741 cells were treated with either vehicle, lpM  GW3965 or 

lOpM 24(5),25-epoxycholesterol for 24 hours in serum free SILAC media, before 

lysis and protein estimation. An equal amount of protein from each SILAC state was 

combined on a 1:1 basis and digested with trypsin to form a SILAC peptide mixture. 

This peptide mixture was then subjected to further analysis to elucidate proteomic 

changes.

Before the mass spectrometric analysis of the SILAC peptides 2-dimensional LC- 

MS/MS was performed. The first dimension of separation was performed using strong 

cation exchange chromatography. Strong cation exchange separates molecules by 

charge; anionic molecules elute first. Thus, the technique can be used as a 

fractionation step to reduce sample complexity prior to the second dimension of 

separation that is reverse phase C l8 LC-MS/MS. In order to validate the strong cation 

exchange chromatography that was to be used on the SILAC samples the system was 

tested. A blank injection of solvent showed no detection of peptides eluting from the 

column (fig 3.5A) and therefore indicated lack of contamination of the system. In 

addition, to validate the ability of the column to separate peptides trypsin digested 

bovine serum albumin (BSA) was used. 50pg of peptide mixture was separated on the 

column and detected by UV (fig 3.5B).



u u

A

B

200-

ISO

50-

5 0 0

3 0 0
— 1“  1O0 4 0 0200

Figure 3.5. Strong Cation Exchange chromatography validation. Example UV 

(X=214nm) chromatogram are shown highlighting expected instrument performance. 

A) A blank was run to ensure no carry over was present from previous experiments B) 

50pg of BSA trypsin digested peptides loaded onto the column were separated by 

SCX.



Before fractionating the SILAC samples by SCX an additional blank run was to 

ensure that the column was free from BSA digest contamination. These procedures 

ensure no carry over from previous experiments and sufficient column performance. 

Once column performance was evaluated SILAC peptides were injected onto the 

column. From the UV chromatogram (fig. 3.6) it can be seen that there is a large 

amount of material present (c.f. blank and 50jj.g BSA chromatograms fig. 3.5) and 

that the material present has been separated. The majority of the peptides were eluted 

early in the run and therefore the time interval for fraction collection was shorter 

before increasing towards the end of the run where less material is present. The total 

number of peptides, compared to the number of unique peptides per fraction, can be 

seen in figure (fig. 3.6.). Therefore, the use of strong cation exchange chromatography 

was successful in reducing the complexity of the initial peptide mixture for 

subsequent LC-MS/MS steps. However, the number o f peptides present in the 

fractions results in a complex mixture for reverse phase chromatography despite the 

fractionation.



Figure 3.6. Strong Cation Exchange chromatography trace o f SILAC peptides. 

Example o f strong cation exchange chromatography fractionation from one 

experiment presented. A) The UV (?^=214nm) chromatogram highlights the large 

number of peptides present on the column. The time interval for fraction collection is 

indicated B) In this example a total 38458 peptides were identified. O f these 15526 

were unique peptides. Strong cation exchange chromatography reduced the total 

number of peptides and number o f unique peptides per fraction with ^10% of the 

experiment total per fraction. Thus, each fraction is simplified compared to the initial 

mixture yet remains a complex peptide mixture in its own right.



3.2.5. C18 Reverse Phase LC-MS/MS of SILAC peptides

The peptide mixture fractions derived from strong cation exchange chromatography 

were desalted using Seppak C18 columns, dried under vacuum and resuspended in 

H2O/0.1%formic acid to be analysed by LC-MS/MS. In order to test the performance 

of the reverse phase C l8 column performance prior to running the SN4741 derived 

SILAC samples trypsin digested bovine serum albumin (BSA) was used. This allowed 

validation of both chromatography and mass spectrometry performance. The use of 

5pi of a 20fmol/pl BSA trypsin digest gave a good signal in the mass spectra with 

sharp chromatographical peaks that indicate that the column performance is 

acceptable (a typical chromatogram is shown in fig. 3.7). In order to ensure the 

complete removal of the BSA peptides prior to running the SILAC SN4741 samples a 

blank run was performed injecting 80% acetonitrile.
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Figure 3.7. Reverse Phase LC-MS/MS validation. Example of column performance 

showing separation of peptides from a BSA trypsin digest. In order to ensure reverse 

phase column is clean a blank is run before initiating SILAC proteomic samples.
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Figure 3.8. Reverse Phase LC-MS/MS SILAC peptide separation. An example 

chromatogram is shown that exemplifies the fact that peptides co-eluting from the 

strong cation exchange chromatography step can be separated by C 18 reverse phase 

chromatography.

SILAC peptides were injected on to the HPLC system and separated over a 2 hour 

gradient. It can be seen from the example in figure 3.8 that a fraction obtained from 

strong cation exchange chromatography is still a very complex sample but the 

peptides present can be separated on the C l8 column. Peptides eluting from the 

column are then analysed by mass spectrometry. Peaks with characteristic features of 

peptides were identified by the initial mass spectrometry scan and, if they conformed 

to the pre-selected criteria, were chosen for fragmentation (see Materials and Methods 

section 2.6.8.). The mass spectrometric scan of the fragments leads to the analysis of 

the backbone sequence and identification. However, the initial MS scan is critical to 

SILAC success as this scan is used for quantification. The SILAC envelope patterns 

have a triplet motif which are used for quantification. Indeed, the SILAC envelope 

patterns are indicative of labelled peptides (fig 3.9.). The use of differentially labelled 

arginine and lysine made it possible to distinguish between peptides terminating in 

different amino acids which contributes to the ease with which the bio-informatic 

software can identify peptides. It is possible to determine if a peptide contains 

arginine or lysine merely by examining the initial MS scan (fig 3.9) without any 

further information of sequence. For each technical replicate all raw spectrometric



data files were analysed simultaneously using MaxQuant software. This allowed the 

software to generate protein ratios derived from all the available spectra.
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Figure 3.9. Example SILAC spectra for lysine and arginine containing peptides. The 

lysine containing spectra (A) is a triply charged peptide which, for the light peptide 

has a MW of 1953.057. It can be identified as containing lysine due to the mass shift 

between the SILAC states (medium +1.33m/z i.e. + 4Da; heavy = +2.66m/z i.e. 

+8Da). This peptide was identified by ms/ms fragmentation as having the sequence 

VAPDEHPILLTEAPLNPK from -actin. The arginine containing spectra (B) is a 

doubly charged peptide which, for the light peptide, has a MW of 1601.889. It can be 

identified as containing lysine due to the mass shift between the SILAC states 

(medium +3m/z i.e. + 6Da; heavy = +5m/z i.e. + 10Da). This peptide was identified by 

ms/ms fragmentation as having the sequence AAAAGALAPGPLPDLAAR from 

UDP-N-acetylhexosamine pyrophosphorylase-like protein 1.



3.2.6. Peptide and Protein Identifications

A large number of peptides were identified in each biological replicate and on each 

instrument though in these SILAC experiments the Orbitrap Velos instrument 

performed better than the LTQ-Orbitrap with regard to total number of peptide 

identifications. The LTQ Orbitrap identified in total 22,395 (10,495 unique), 38,458 

(10,495 unique) and 75,322 (18,755 unique) peptides and the Orbitrap Velos 39,160 

(18,671 unique), 52,249 (23,292 unique) and 105,952 (34,650 unique) peptides from 

each biological replicate respectively. This corresponds to an increase in the number 

of unique peptides identified on the Orbitrap Velos compared to the LTQ-Orbitrap of 

77.9%, 121.9% and 84.8% for each biological replicate. This increase in number of 

peptides identified corresponded to an increased number of proteins identified on the 

Orbitrap Velos instrument compared with the LTQ-Orbitrap (table 3.2). A large 

number of proteins were identified from the 3 biological replicates on both the LTQ- 

Orbitrap and the Orbitrap Velos instruments and, in each case, the majority of 

proteins were identified with ^2 peptides (table 3.2). The Orbitrap Velos identified 

1117, 971 and 1540 more proteins than the LTQ Orbitrap with ^2 peptides in each of 

the 3 biological replicates respectively.

Table 3.2. Comparison of proteins identified between LTQ-Orbitrap and Orbitrap 

Velos instruments. The majority of proteins were identified with ^2 peptides. A large 

proportion of proteins were identified with more peptides.

Replicate 1 2 3

Instrument LTQ-
Orbitrap

Orbitrap
Velos

LTQ-
Orbitrap

Orbitrap
Velos

LTQ-
Orbitrap

Orbitrap
Velos

Proteins
identified

with:-

> 1 peptide 2941 4211 3654 4672 3662 5219

> 2 peptide 2039 3156 2739 3710 2879 4419

> 3 peptide 1382 2334 2009 2844 2223 3622

> 4 peptide 983 1763 1489 2223 1753 2985

> 5 peptide 720 1392 1143 1755 1417 2501



There was a large overlap between the same lysates run on the two different 

instruments with the majority of leading proteins identified on both instruments. The 

number of proteins identified with s>l peptide from 3 biological replicates on both 

instruments was 2612 (59.0% of the 4425 proteins identified in total from both 

instruments), 3252 (64.7% of the 5025 proteins identified in total from both 

instruments) and 3098 (54.1% of the 5722 proteins identified in total from both 

instruments) respectively. The number of proteins identified with >2 peptides from 

the 3 biological replicates on both instruments was 1839 (54.8%), 2505 (63.5%) and 

2473 (51.3%) respectively (fig 3.10.).
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Figure 3.10. There was a large overlap between runs of the same biological replicate 

on different instruments (A, B, C); 90% (A), 91% (B) and 86% (C) of leading proteins 

identified on the LCQ-Orbitrap with >2 peptides were also identified on the Orbitrap 

Velos with >2 peptides
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There was a large overlap between the three different biological replicates. The 

number of leading proteins identified and quantified with ^1 peptide in all 3 

biological replicates was 2096 proteins (44.3% total proteins) on the LTQ-Orbitrap. 

The number of proteins identified with s=l peptides in at least 2 of the biological 

replicates was unsurprisingly higher still; of the 4729 leading proteins identified 

69.5% (3285) were identified in at least 2 biological replicates. In comparison, on the 

Orbitrap Velos 48.6% (3090) of the 6358 leading proteins identified with ssl peptide 

were observed in all 3 biological replicates. The number of leading proteins identified 

in at least 2 of the biological replicates with s=l peptide was 70.6% (4489). Therefore, 

these data demonstrate that the majority of proteins were quantified on at least 2 

occasions from different biological replicates increasing the ease of discriminating 

between reproducible changes and rogue data points from a single biological sample.

However, the confidence in proteomic data is increased if multiple peptides are used 

for identification and quantification as relying on only 1 peptide can lead to error in 

identification and quantification due to error introduced by experimental variability or 

the software used during post-run analysis of the raw mass spectral data. The samples 

run on the LTQ-Orbitrap had 42.9% (1546) of the 3607 leading proteins identified 

with ^2 peptides observed in all 3 biological replicates. The number of proteins 

identified with ^2 peptides in at least 2 of the biological replicates was 69.4% (2504) 

of the total leading proteins identified with ^2 peptides. In comparison, on the 

Orbitrap Velos 45.8% (2404) of the 5246 leading proteins identified with ^ 2  peptides 

were observed in all 3 biological replicates (fig 3.11). The number of leading proteins 

identified in at least 2 of the biological replicates with ^2 peptides was 69.3% (3635). 

It is clear, therefore, that the use of the SILAC proteomic methodology identified and 

quantified a large number of proteins suitable for further analysis. In addition, due to 

the large overlap between identifications from the three biological replicates, and the 

confidence inferred from multiple peptide protein identification these data are suitable 

for the analysis of up and down-regulation of protein as reproducible changes to the 

proteome should be apparent.



7 /
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Figure 3.11. Overlap of leading proteins identified and quantified with >2 peptides 

using MaxQuant. A large overlap existed between 3 separate biological replicates run 

on a LTQ-Orbitrap (A) or an Orbitrap Velos instrument (B). 43% of proteins 

identified on the LTQ-Orbitrap and 46% of proteins identified on the Orbitrap Velos 

were present in all 3 replicates. 69% and 69% of proteins were identified in at least 2 

replicates on the LTQ-Orbitrap and Orbitrap Velos instruments respectively.



3.2.7. Expression of Neurotrophins and Neuronal Markers in SN4741 Cells

The aim of the work is to elucidate the effect of 24(5),25-epoxycholesterol in 

neuronal development. A group of proteins with an established role in neuronal 

development are the neurotrophins (Hempstead 2006). Thus, the dataset was mined 

for the presence of the neurotrophins brain derived neurotrophic factor (BDNF), glial 

cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (Cntf), 

neurotrophin 3 (Ntf3), neurotrophin 4 (Ntf4) and nerve growth factor (NGF). None of 

these neurotrophins were detected in the data set (table 3.3).

In addition, neuronal markers from different stages of neuronal development were 

present (table 3.3). Nestrin and SOX2 that are markers of neuronal progenitor cells 

were identified. Nestrin was down-regulated in some but not all of the biological 

replicates after treatment with 24(5),25-epoxycholesterol. Doublecortin a marker of 

early neuronal development was identified but another marker neurogenic 

differentiation 1 was not. The mature neuronal markers beta III tubulin (Tubb3) and 

microtubule-associated protein 2 (MAP2) were identified in all 3 biological replicates. 

Thus, a number of markers from different stages of neuronal development were 

identified although 24(5),25-epoxycholesterol had no reproducible effect on their 

expression.

No dopaminergic neuron markers were identified (table 3.3). However, it is important 

to note that a given protein may be expressed but not be present in the dataset due to 

the technicalities of proteomics. Low abundance proteins may not be identified. In 

addition, protein identification is reliant on the peptides generated by the action of 

trypsin. In this regard very short peptides do not furnish enough sequence information 

to allow confident identification from which protein they are derived. In addition, if a 

peptide is poorly ionised (e.g. due to a number of acidic amino acids) then it is 

unlikely to be detected.



Table 3.3. Neurotrophins and neuronal markers expressed in SN4741 cells identified 

in SILAC experiments. Normalised SILAC ratios shown are 24(»S),25- 

epoxycholesterokcontrol. Neurotrophins (brain derived neurotrophic factor (BDNF), 

glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (Cntf), 

neurotrophin 3 (Ntf3), neurotrophin 4 (Ntf4), nerve growth factor (NGF)) were not 

detected in any experiment. Markers of neuronal progenitor cells (Nestin (Nes), 

transcription factor SOX-2 (SOX2)) were detected. Early neuronal markers 

(doublecortin (DCX), neurogenic differentiation 1 (Neurodl). Mature neuronal 

markers (beta III tubulin (Tubb3), microtubule-associated protein 2 (MAP2)) were 

identified in all experiments, whereas (RNA binding protein fox-1 homolog 3 

(Rbfox3; NeuN)) was not. Dopaminergic markers (GTP cyclohydrolase 1 (Gchl), 

aromatic L-amino acid decarboxylase (Ddc), tyrosine hydroxylase (Th) were not 

detected.

Biological Replicate 1 2 3

Technical Replicate 1 2 1 2 1 2
Protein

Bdnf / / / / / /

Gndf / / / / / /

Cntf / / / / / /

Ntf3 / / / / / /

Ntf4 / / / / / /

Ngf / / / / / /

Nes 0.535 0.665 0.786 0.771 0.868 0.916

Sox2 / / 1.048 1.302 1.139 0.943

Dcx / / 0.927 0.865 / 1.151

Neurodl / / / / / /

Tubb3 1.117 1.226 0.957 1.015 0.888 0.798

Map2 1.086 0.990 0.951 0.783 0.831 /

Rbfox3 / / / / / /

Gchl / / / / / /

Ddc / / / / / /

Th / / / / / /



3.2.8. Analysis of proteomic data

In each dataset the ratio of identified proteins had a normal distribution. The protein 

identification and quantification data generated from Maxquant was analysed to class 

proteins as ‘no change’, ‘up-regulated’ or ‘down-regulated’ using a previously 

published method (Graumann et al. 2008). The median was calculated and an increase 

or decrease the equivalent to 2 standards deviations (the arithmetic mean and standard 

deviation are not used in this method to prevent outliers having a pronounced effect) 

away from the median was classed as changed. Therefore, due to the use of the 

variation of the data in its calculation, the ratio between the heavy, medium and light 

SILAC states that serve as the boundary between ‘no change’ and ‘up’ or ‘down- 

regulation’ varied between datasets (table 3.4). This method identified a small portion 

of the total number of proteins as up- and down- regulated after treatment with 

24(5),25-epoxycholesterol or GW3965 (table 3.4). The leading proteins identified as 

changed were then searched to determine reproducible trends in protein expression 

changes across the 6  datasets.

Table 3.4. Number of proteins identified as ‘no change’, ‘up-regulated or ‘down 

regulated’ from each biological replicate on LTQ-Orbitrap or Orbitrap Velos 

instruments after treatment with 24(5),25-epoxycholesterol. The ratio cut-offs for 

what was classed as a change in protein expression (i.e. up or down regulation) are 

shown. Proteins were identified with s=2 peptides.

Biological

Replicate
1 2 3

Instrument LTQ-
Orbitrap

Orbitrap
Velos

LTQ-
Orbitrap

Orbitrap
Velos

LTQ-
Orbitrap

Orbitrap
Velos

Ratio Cut-off (up/down) 1.23/0.73 1.23/0.71 1.35/0.76 1.34/0.76 1.18/0.74 1.19/0.73

Up-regulated 78 158 116 195 227 233

No change 1855 2848 2534 3344 2471 3951

Down-regulated 106 150 89 171 181 235



In order to ensure no changes of interest were missed the proteomic datasets were also 

examined in detail by analysing every protein identified as up or down regulated to 

attempt to identify proteins of interest. In total, from all the biological and technical 

replicates, 1072 different proteins were identified as up-regulated in total and 864 

proteins were identified as down-regulated (Appendix 1 and 2). No proteins were 

excluded from this analysis and therefore a large number of proteins were identified 

with only 1 peptide. For these proteins identified with 1 peptide there is the possibility 

of experimental error having a larger effect on the quantification. In addition, a 

number of proteins were only identified in only one biological replicate. For these 

proteins there is no contradictory data but conversely no validatory data. Therefore, it 

is important to recognise the limitations of these data however they could yield 

valuable information.

The proteins identified as up and down regulated (Appendix 1 and 2) were examined 

to determine which proteins had no contradictory data. In total, 229 proteins were 

classed as up-regulated and had no contradictory data (table 3.5) whereas 285 proteins 

were classed as down-regulated (table 3.6).
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The data were then analysed using the bio-informatic software DAVID 

(http://david.abcc.ncifcrf.gov/) in order to determine if there are any links between the 

identified proteins that have previously been identified in the literature. The software 

identifies significant enrichment of gene ontology (GO) terms i.e. the process or 

processes in which the gene(s) function are over represented in the data set.

In total 15 GO terms were significantly enriched in the down-regulated proteins (table

3.7.) whereas no GO terms were identified as significantly enriched from the up- 

regulated proteins. It is obvious from the identified GO terms that the overarching 

factor in these terms is the effect on lipid small molecules. The 8 most significantly 

enriched terms are related to the biosynthesis and processing of sterols, cholesterol, 

steroid and lipids. Thus, it is clear, and unsurprising, that treatment of SN4741 cells 

with 24(S),25-epoxycholesterol results in alterations in the biosynthesis and 

processing of a variety of lipid molecules.

Table 3.7. Gene Ontology terms identified as enriched after DAVID bio-informatic 

analysis. GO terms significantly enriched after p-value correction (Benjamini) are 

shown. Proteins up and down regulated were analysed independently but all 

significantly enriched GO terms identified were from the down regulated proteins 

data.

Term Count Fold Enrichment p-value Benjamini
Sterol biosynthetic process 13 30.96 2.59E-15 3.32E-12
Cholesterol biosynthetic process 12 37.28 3.33E-15 2.17E-12
Sterol metabolic process 16 14.85 1.39E-13 6.05E-11
Cholesterol metabolic process 15 15.31 6.34E-13 2.06E-10
Steroid biosynthetic process 14 14.09 1.43E-11 3.72E-09
Steroid metabolic process 17 7.54 8.37E-10 1.82E-07
Lipid biosynthetic process 19 4.76 9.65E-08 1.80E-05
Lipid metabolic process 29 2.98 4.01E-07 6.53E-05
Alcohol metabolic process 19 3.77 2.93E-06 4.23E-04
Oxidation reduction 26 2.76 7.11E-06 9.25E-04
Isoprenoid biosynthetic process 6 19.49 1.08E-05 0.001
Isoprenoid metabolic process 7 10.21 5.74E-05 0.006
Transport 54 1.65 1.52E-04 0.015
Establishment of localization 54 1.64 1.81E-04 0.017
Cellular lipid metabolic process 18 2.67 4.19E-04 0.036



In addition to the GO terms identified the analysis of the down-regulated proteins 

identified a number of KEGG pathways as enriched (table 3.8) though only 2 

pathways had significant Benjamini corrected p-values. Again, unsurprisingly, the 

most significantly enriched pathways were those related to steroid biosynthesis and 

terpenoid backbone synthesis. These pathways have a large number of previously 

identified SREBP2 regulated proteins. It is interesting to note that despite not being 

significantly enriched after correction of the p-value the KEGG pathways of both 

Alzheimer’s and Parkinson’s disease, 2 neurodegenerative diseases, were identified as 

enriched.



Table 3.8. KEGG Pathways identified as enriched by DAVID bio-informatic analysis 

of down regulated proteins. Benjamini is the corrected p-value required after multiple 

analysis.

Kegg Pathway Count IPI Number Fold Enrichment p-value Benjamini
Steroid biosynthesis 8 IPI00338068, IPI00137471, 

IPI00474810, IPI00169958, 
IPI00130988, IPI00316067, 
IPI00128692,1PI00458711, 

IPI00133526

32.15 1.77E-09 2.08E-07

Terpenoid
backbone
biosynthesis

7 IPI00849448, IP100319950, 
IPI00756996, IPI00120457, 
IPI00133709, IPI00331707, 

IPI00228253

34.15 2.09E-08 1.22E-06

Cardiac muscle 
contraction

6 IPI00224210,1PI00121550, 
IPI00131176, IPI00114377, 
IPI00129516, IP100225390

5.25 5.18E-03 0.183

Oxidative
phosphorylation

7 IPI00224210, IPI00131176, 
IPI00313841, IPI00114377, 
IPI00318645, IPI00129516, 

IPI00225390

3.68 0.01 0.275

Parkinson's disease 7 IPI00648249,1PI00224210, 
IPI00131176, IP100923056, 
IPI00114377, IP100129516, 

IPI00225390

3.60 0.01 0.249

Natural killer cell
mediated
cytotoxicity

6 IPI00133132, IP100322542, 
IPI00881074, IPI00136110, 
IPI00856542, IPI00665857

3.36 0.03 0.461

Alzheimer's disease 7 IPI00224210, IPI00131176, 
IPI00114377, IPI00117124, 
IPI00665857, IPI001295I6, 

IPI00225390

2.63 0.05 0.555

Calcium signalling 
pathway

7 IPI00471089, IPI00133132, 
IPI00466672, IPI00626433, 
IPI00831180, IPI00263265, 

EPI00665857

2.50 0.06 0.578

Biosynthesis o f 
unsaturated fatty 
acids

3 IPI00129362, IPI00117142, 
IPI00318108

7.59 0.06 0.537

Focal adhesion 7 IPI00626433, IPI00117829, 
IPI00136110, IPI00828653, 
IPI00421218, IPI00136701, 

IPI00110508

2.41 0.07 0.550

Butanoate
metabolsim

3 IPI00135189, IPI00331707, 
IPI00228253

5.54 0.099 0.672



The proteins identified as up-regulated were also analysed to identify enriched 

pathways (table 3.9). No significant changes in enrichment were identified after 

correction of the p-value. Thus, it appears that treatment of SN4741 cells with lOpM 

24(5),25-epoxycholesterol fails to up-regulate specific pathways en masse but rather 

up-regulates single unrelated proteins.

Table 3.9. Kegg Pathways identified as enriched by DAVID bio-informatic analysis 

of up-regulated proteins. Benjamini is the corrected p-value required after multiple 

analysis.

Kegg Pathway Count IPI Number Fold Enrichment p-value Benjamini

Metabolism of xenobiotics 

by cytochrome P450

5 IPI00323911 
IPI00890112 
IPI00111222 
IPI00554953 
IPI00134432 

IPI00153143

7.01 0.005 0.415

Drug metabolism 5 IPI00323911 

IPI00890112 
IP100111222 
IP100554953 
IPI00134432 
IPI00153143

6.17 0.008 0.344

Ribosome 4 IPI00880213 
IPI00466820 
IPI00849113 
IPI00869475

4.16 0.068 0.916

Fc gammaR-mediated 

phagocytosis

4 IPI00272878 
IPI00229848 
IPI00655177 

IPI00117274

3.78 0.086 0.904



As mentioned earlier some of the proteins identified had weak evidence of changes in 

expression either due to a low number of peptides or due to the fact that they were not 

identified in all biological replicates. Thus, in order to determine proteins with 

stronger evidence of expression changes the data presented in table 3.5. and table 3.6. 

were re-examined. Proteins identified with only 1 peptide were excluded. In addition, 

proteins only identified in 1 biological replicate were also excluded. Finally, proteins 

only identified with low-scoring peptides or where there was a large variability 

between peptides were excluded. The flowchart for data analysis is shown in figure 

3.12. Thus, reliable, reproducible data was extracted from the data (table 3.10).

Total proteins

Proteins classified as up 
or down regulated

Proteins with contradictory 
data removed

Proteins identified with only 
1 peptide removed

Proteins identified in only 1 
biological replicate removed

Peptides analysed for good 
Mascot score and 
reproducibility of expression

Combined for final table of 
observed reproducible changes

Down

285

864

129

1072

229

6692

Figure 3.12. Flowchart of data analysis showing the process by which protein 

expression data was rejected in order to identify reproducible changes in the 

proteome. Of the 6692 unique proteins identified in the 3 biological replicates only 47 

(0.7%) had strong, reproducible evidence of a change in protein expression.



It can be seen that previously identified changes associated with inhibition of 

SREBP2 processing by oxysterols are reliably observed in all 3 biological replicates 

after treatment with lOpM 24(5),25-epoxy cholesterol (table 3.10). The synthetic LXR 

ligand GW3965, as expected, had no effect on the transcription of these genes. It is 

important to recognise that despite these proteins being previously identified and well 

characterised as regulated by SREBP2, and therefore, by oxysterols via INSIG, it is 

critical to the reliability of the SILAC experimental design that known changes 

expected with 24(5),25-epoxycholesterol are identified successfully in order to have 

confidence that other unexpected changes are true. In addition, ABCA1 expression 

was up-regulated after treatment with both 24(5),25-epoxycholesterol and GW3965. 

ABCA1 expression is dependent on LXR activation. As both 24(5),25- 

epoxycholesterol and GW3965 are ligands for LXR it again validates the 

methodology that a predicted change is observed after analysis of the proteomic data.

A number of proteins reproducibly identified as having a changed expression had 

links to cholesterol, phospholipids or fatty acids (table 3.10). However, other proteins, 

with no apparent link to lipids were also identified as having a changed expression. 

For example, two proteins that were reproducibly observed as being up regulated 

were Golgi apparatus protein 1 and macrophage colony stimulating factor.



Table 3.10. Summary of reproducible changes in protein expression. For the 3 

biological replicates the mean SILAC ratio compared to control derived from the 

Orbitrap and Velos instruments is shown.
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3.3. Discussion

The proteomic analysis of SN4741 cells after treatment with 24(5),25- 

epoxycholesterol and GW3965 identified a large number of proteins. In total, 6692 

unique proteins were identified with z>\ peptide in the 3 biological replicates (figure

3.12). However, the majority of proteins in each replicate were identified with 2 or 

more peptides (table 3.2). Thus, it is clear that the experimental approach of strong 

cation exchange to reduce the sample complexity followed by LC-MS was successful 

when judged by the total number of observed proteins in the experiments. In addition, 

the SILAC labelling adopted gave a wealth of data that required painstaking analysis 

to extract the most reliable data. From a technical perspective, it was clear that the 

Orbitrap Velos was the instrument that performed better as it consistently identified 

more peptides, and therefore proteins, than the LTQ-Orbitrap instrument (table 3.2).

A large number of proteins were identified as having an altered expression after 

treatment with 24(5),25-epoxy cholesterol. In total 1072 up-regulated and 864 down- 

regulated proteins were identified in the 3 biological replicates (Appendix 1, 

Appendix 2). However, analysis of these proteins identified a significant number with 

contradictory data in a different data set (e.g. up-regulated in one dataset but no 

change in the others; Appendix 1, Appendix 2). The analysis of the data to remove 

these proteins led to a large proportion of them to be rejected as having a change in 

protein expression. After removal of contradictory proteins 229 (21.4%) up-regulated 

proteins and 285 (33.0%) down regulated proteins remained (table 3.5, table 3.6, fig

3.12). These data give a clear indication of the necessity of multiple biological 

replicates in proteomic studies.

The proteins identified as changed were then analysed by using the online software 

DAVID in order to identify GO terms and pathways significantly up or down- 

regulated in the data set. No GO terms or KEGG pathways were up-regulated with 

statistical significance. Therefore, it appears from these data that 24(5),25- 

epoxycholesterol up-regulates individual proteins and not whole pathways. In 

comparison, there was significant down regulation of 15 GO terms (table 3.7). In 

addition, 2 KEGG pathways were down-regulated after Benjamini correction - steroid 

biosynthesis and terpenoid backbone biosynthesis. It is unsurprising that these 

pathways are down-regulated as their expression is controlled by SREBP2.



The proteins identified in tables 3.5 and 3.6 have no contradictory data. However, the 

majority of the identified proteins have been identified as having a change in 

expression have only weak evidence to support the observation. A reliance on a 

SILAC ratio measurement from a single peptide can lead to experimental error. 

Similarly a protein observed in only one biological replicate can have an erroneous 

measurement. This is clear from the number of proteins with observed changes in 

expression being rejected as due to having contradictory data in a different biological 

replicate (figure 3.12). Thus, proteins that were only identified with one peptide or in 

one biological replicate were rejected.

The final analysis of the identified proteins was to examine their individual peptides 

used to identify the protein. The Mascot scores and the reproducibility of the SILAC 

ratios between peptides used to identify and quantify the same protein were examined. 

Proteins identified only with peptides with low Mascot scores were rejected. In 

addition, proteins identified with a number of unique peptides with a large variation in 

the SILAC quantification ratio were also rejected. This ensured that the proteins 

remaining were identified in multiple biological replicates, with multiple peptides and 

that the peptides used for identification had good Mascot scores and low variability of 

the SILAC ratio. Thus, the final 47 proteins presented in table 3.10 are the proteins 

with the most robust evidence of changes in expression. The rejection of the vast 

majority of the proteins identified as changed is a necessary evil in order to have the 

final outcome of a reliable, but much smaller, set of data.

It is clear that from the data presented here the SILAC proteomic approach was 

successful in identifying proteins, both known and novel, which are sensitive to 

24(5),25-epoxy cholesterol treatment and with a reproducible response (table 3.10). 

Both instruments identified expected SREBP2 regulated changes in protein 

expression of enzymes involved in the cholesterol synthesis pathway after 24(5),25- 

epoxycholesterol treatment. It is unlikely that any observed changes were due to 

toxicity as it was shown that 24(5),25-epoxycholesterol was non-toxic to SN4741 

cells (fig 3.1; fig 3.2; fig 3.3). In addition, the rigorous criteria by which the data was 

analysed meant that the protein expression data presented here are trustworthy.

However, further validation of these data is required in order to determine how 

24(5),25-epoxycholesterol induces the observed changes in protein expression. Thus



in the next chapter work will be conducted in order to elucidate the mechanisms 

involved.
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4.1. Introduction

24(5),25-epoxy cholesterol induces changes in the proteome of SN4741 cells. This 

effect is apparent in the proteomic data presented in Chapter 3 where 47 proteins were 

identified as changed reliably and reproducibly (table 3.10). Therefore, there is 

already evidence these proteins are sensitive to 24(5),25-epoxycholesterol. However, 

further analysis is required in order to validate the results and elucidate the 

mechanism by which 24(5),25-epoxycholesterol induces these changes.

It is already known that 24(5),25-epoxycholesterol can increase gene expression by 

activating the transcription factor LXR (section 1.1.5.2.). In addition, previous work 

has shown that oxysterols can prevent gene transcription regulated by SREBP2 

(section 1.1.5.1). Thus, there is precedent for oxysterols inducing changes in gene 

expression by altering transcription of mRNA. Therefore, in order to investigate 

whether the observed changes in protein expression correlated with a change in the 

transcription of mRNA qPCR can be performed. These experiments will lead to 

understanding the mechanism by which 24(5),25-epoxycholesterol is inducing the 

observed changes.

In addition, further analysis of the protein expression changes at the protein level can 

be performed to validate and clarify the observed data in the SILAC proteomic 

experiments. An obvious example would be the use of Western blotting in order to 

confirm changes in protein expression. In addition, other techniques can be used to 

examine specific attributes of a protein observed as having changed. For example, 

ELISA can be used to examine if changes in expression correlate to changes in 

secretion of a given protein.

It is possible that secondary effects may influence changes in both protein expression 

and localisation as oxysterols reduce cholesterol synthesis due to inhibition of 

SREBP2. Thus, in the presence of 24(5),25-epoxycholesterol the cholesterol content 

of SN4741 cells will be reduced. Cholesterol is an essential component of membranes 

and therefore a reduction in the cholesterol level may disrupt the cellular membrane



and lead to changes in protein expression and localisation. Therefore, the observed 

protein expression changes in the SILAC experiments may be due to changes in the 

cellular cholesterol level. In this instance immunofluorescence may be used as an 

adjunct to examine changes in the localisation of a protein after treatment with 

24(5),25-epoxycholesterol.

In summary, the aim of this chapter is to further investigate and discuss the changes 

identified in the SILAC quantitative proteomic experiments.



4.2. Results

4.2.1. Validation of Known Oxvsterol Regulated Genes Identified by SILAC

The SILAC proteomic data led to the identification of known SREBP2 regulated 

genes in the cholesterol synthesis pathway to be identified reproducibly as down- 

regulated after treatment with 10pM 24(5),25-epoxycholesterol (table 3.10). The 

synthetic LXR ligand GW3965, as expected, did not down-regulate these genes. 

However, from these data it appears that GW3965 treatment resulted in the up- 

regulation of squalene synthase. It is important to recognise that despite these proteins 

being previously identified and well characterised as regulated by SREBP2, and 

therefore, by oxysterols via INSIG, it is critical to the reliability of the SILAC 

experimental design that known changes expected with 24(5),25-epoxycholesterol are 

identified successfully in order to have confidence that other unexpected changes are 

true.

Low density lipoprotein receptor (LDLR), another SREBP2 regulated gene, was 

observed as down regulated by 24(5),25-epoxycholesterol and not by GW3965 at the 

protein and mRNA level (table 3.10; figure 4.1). Interestingly, the protein expression 

of LDLR was not classed as down regulated after treatment with the LXR agonist 

GW3965 though it tended toward a reduced expression; LXR activation has been 

reported to increase LDLR protein degradation by inducing IDOL mediated 

ubiquitination in hepatocytes and macrophages (Zelcer et al. 2009). To determine if 

this effect on LDLR was a cell type specific effect initially IDOL expression was 

measured in SN4741 cells by qPCR. IDOL protein was not identified in the proteomic 

data set however IDOL mRNA was detected in SN4741 cells (figure 4.2). Therefore, 

these proteomic data indicate that in SN4741 cells the predominant mechanism of 

LDLR regulation is through SREBP2.



Figure 4.1. SN4741 reverse transcription qPCR. qPCR was performed on RNA 

extracted from SN4741 cells treated with vehicle, lpM  GW3965 or lOpM 24(5),25 

epoxycholesterol. Data shown is presented as mean fold change in mRNA expression 

compared with control; n=3, compared with control * p<0.05, Student’s t-test; A 

p<0.01, Student's t-test, ♦ p<0.001, Student's two tailed t-test.

A number of other genes previously identified as regulated by oxysterols had changes 

in their expression identified. The LXR regulated gene ABCA1, when identified was 

up-regulated after treatment with 24(5),25-epoxycholesterol and GW3965 (table 

3.10). StarD4 was down regulated in the presence o f 24(5),25-epoxycholesterol but 

not with GW3965 at the protein and mRNA level (table 3.10; figure 4.1) which tallies 

with reported SREBP2 regulation (Soccio et al. 2005).
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Figure 4.2. IDOL is expressed in SN4741 cells. RT-qPCR indicated the presence of 

IDOL mRNA in SN4741 cells. cDNA was used neat and at dilutions of 1:10, 1:100 

and 1:1000 and qPCR amplification and melt curve plots are shown.
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4.2.2. Ligand Binding Induces Un-Regulation of Liver X Receptor 6 (LXRB)

Liver X receptor (LXR) is a nuclear receptor for which oxysterols are the natural 

ligand (see section 1.1.5.2). LXR has two isoforms LXRa and LXRp. LXRa was not 

identified in any of the proteomic data sets. However, in the proteomic data LXRp 

was identified as up-regulated in the presence of lOpM 24(5), 25-epoxy cholesterol and 

lp,M GW3965 (table 3.9). Therefore, it appears from these data that activation of 

LXRp by either a natural or synthetic ligand causes an increase in its expression. 

Therefore, the effect of 10p,M 24(5),25-epoxycholesterol and lp,M GW3965 on
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LXRp expression at the mRNA level was measured using RT-qPCR to examine if 

this change in the protein level was due to increased transcription. LXRa mRNA 

expression was also analysed as LXRa has been reported to be self regulating in 

human macrophages and murine adipose tissue (Laffitte et al 2001, Whitney et al 

2001, Li et al 2002, Ulven et al 2004). However, in contradiction, there have been 

conflicting reports of no change in expression of LXRa after ligand activation in 

murine RAW264.7 macrophages and primary murine macrophages (Laffitte et al 

2001, Li et al 2002). Therefore, this effect appears to be cell type specific. In SN4741 

cells the expression of LXRa does not appear to self regulating; no change at the gene 

expression level of LXRa was observed after treatment with GW3965 or 24(5),25- 

epoxycholesterol. Treatment of SN4741 cells with the LXR ligands (24(5^),25- 

epoxycholesterol or GW3965) did not affect the level of LXRp mRNA expression.

4.2.3. Fatty Acid Synthesis

The complexity of fatty acid synthesis regulation is demonstrated in these data. Some 

SREBPlc regulated genes (acetyl-CoA carboxylase 1, long-chain-fatty-acid Co A 

ligase 3, fatty acid synthase) involved in fatty acid synthesis were increased after 

GW3965 treatment (table 3.10), but, despite the induction of SREBPlc mRNA (fig. 

4.1) the expression of these genes were not changed after treatment with 24(5),25- 

epoxycholesterol. Similarly, the previously reported SREBP1 regulated gene, M idl- 

interacting protein (Ecker et al 2010) was up-regulated in the presence of GW3965 

but not 24(5),25-epoxycholesterol. Interestingly, two genes, fatty acid desaturase 2 

and lipin 1, that have been identified as SREBP1 regulated were unaffected by 

GW3965 (table 3.10; Horton et al 2003). These genes, Fatty acid desaturase 2 and 

lipin 1 were however down-regulated after treatment with 24(5),25-epoxycholesterol 

(table 3.5.).
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Figure 4.3. Synthesis of the monounsaturated fatty acid oleic acid. The enzymes fatty 

acid synthase and acetyl-CoA carboxylase-1 are regulated by SREBPlc and were 

identified as up-regulated after treatment with GW3965.

4.2.4. Phospholipid Synthesis

Reproducible changes were observed in the proteomic data of proteins involved in the 

synthesis of phospholipids (figure 4.4.) after treatment with lOpM 24(S),25- 

epoxycholesterol including ethanolamine-phosphate cytidylyltransferase and collagen 

type IV alpha-3-binding protein.
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Figure 4.4. Simplified schematic of phospholipid synthesis. Ethanolamine-phosphate 

cytidylyltransferase was identified as down-regulated after treatment with 24(5),25- 

epoxycholesterol.

4.2.5. Decreased expression of Ethanolamine-phosphate cytidylyltransferase

Ethanolamine-phosphate cytidylyltransferase (PCyt2) is an enzyme involved in 

phospholipid biosynthesis and catalyses the reaction of cytidine triphosphate with 

ethanolamine phosphate yielding cytidine diphosphate-ethanolamine (CDP- 

ethanolamine) and diphosphate. CDP-ethanolamine is then processed further 

generating phosphatidylethanolamine. Phosphatidylethanolamine is major component 

of biological membrane and is found in all cells but is particularly abundant in the 

central nervous system (Bakovic et al 2007 for review).

In the proteomics datasets PCyt2 was identified and quantified as down regulated 

reproducibly after treatment with 24(<S),25-epoxycholesterol but not with GW3965 

suggesting a SREBP2 mediated mechanism (table 3.10). The mean reduction in 

ethanolamine-phosphate cytidylyltransferase protein expression after 24(5),25- 

epoxy cholesterol treatment was 33% less than that of control cell ethanolamine- 

phosphate cytidylyltransferase expression. In order to validate these data Western 

blotting was performed in SN4741 whole cell lysates. Treatment with 24(5),25-



epoxycholesterol was shown to down regulate PCyt2 correlating with the proteomics 

data (fig 4.5). Densitometry analysis showed that PCyt2 was reduced by 15% in 

24(50,25-epoxycholesterol treated cells. This was less than observed in the proteomic 

experiments but highlighted the same trend. There was no significant change with 

GW3965

Control 24S. 2 5-epoxy cholesterol GW3965

Figure 4.5. W estern blotting confirm ed the observed dow n-regulation o f 

phosphoethanolamine cytidylyltransferase (PCyt2) in SN4741 cells. 10pM 24(£')25 

epoxycholesterol decreased the expression of PCyt2 (lane 2) whilst 1 pM GW3965 

had no effect on PCyt2 expression (lane 3). Both GW3965 and 24(S)2 5 

epoxycholesterol induced ABCA1 (A lanes 2 and 3). Densitometry showed a 

significant (p^O.05) decrease in PCyt2 expression of 15% compared with control 

(n=3, Student's t-test).



4.2.6. Increased expression of Collagen type IV alpha-3-binding protein

Collagen type IV alpha-3-binding protein (col4a3bp; Ceramide transfer protein; 

Goodpasture antigen-binding protein; StAR-related lipid transfer protein 11) transfers 

ceramide from where it is synthesised in the endoplasmic reticulum to the Golgi 

apparatus where it is utilised in the synthesis of the phospholipid sphingomyelin 

(Hanada et al 2007 for review). Collagen type IV alpha-3-binding protein has been 

associated with oxysterol binding protein (OSBP) and the presence of 25- 

hydroxy cholesterol promotes activation of collagen type IV alpha-3-binding protein 

mediated transfer of ceramide to the Golgi apparatus and, therefore, an increased rate 

of sphingomyelin synthesis (Perry & Ridgeway 2006). In addition, phosphorylation of 

OSBP at serine240 by protein kinase D impairs the Golgi localisation of collagen type 

IV alpha-3-binding protein (Nhek et al 2010). These data suggest a regulatory role 

for oxysterols in ceramide processing. Interestingly, in some vertebrate species 

collagen type IV alpha-3-binding protein may have a role in embryo development as 

in a zebrafish knockout model it appears to play an anti-apoptotic role and is required 

for normal skeletal muscle and brain growth (Granero-Molto et al 2008).

The proteomics showed that collagen type IV alpha-3-binding protein expression 

increased reproducibly after treatment with 24(5),25-epoxy cholesterol (table 3.10). 

No change was observed after treatment with GW3965 suggesting an LXR 

independent mechanism. The identification of collagen type IV alpha-3-binding 

protein was from multiple peptides and from all biological replicates lending 

confidence that this observation is a true change (table 3.6). The mean increase in 

collagen type IV alpha-3-binding protein expression after 24(5),25-epoxycholesterol 

treatment was 45% more than that of control cell collagen type IV alpha-3-binding 

protein expression.

In order to determine if the increase observed at the protein level was due to increased 

transcription RT-qPCR experiments were performed. The mRNA expression of 

collagen type IV alpha-3-binding protein increased modestly after 24(5),25- 

epoxycholesterol treatment for 24 hours (fig. 4.1). The increase was of a similar 

magnitude to the change in protein expression seen in the proteomics data. And whilst 

this increase was statistically significant the p value was close to the 0.05 limit



(p=0.046). No change was observed in collagen type IV alpha-3-binding protein 

mRNA expression after treatment with GW3965.

4.2.7. 24(5rL25-epoxvcholesterol Effects Caveolin-1 Expression and Localisation

Caveolin-1, a 20-22kDa protein, is a membrane protein that has multiple functions 

including roles in endocytosis and cell signalling (reviewed in Parton & Simons 2007; 

Hansen & Nichols 2010). Caveolin-1 forms hairpin loops protruding from the plasma 

membrane into the cytoplasm by having the C and N termini of the protein anchored 

to the lipid bilayer. Caveolin can oligomerise with itself and these homooligomers 

associate with cholesterol and sphingomyelin in order to form caveolae. Caveolae are 

invaginations in the plasma membrane wall that have many intracellular functions. 

Each caveolae domain has been estimated to contain 100-200 caveolin proteins and 

~10x the number of cholesterol molecules. These hydophobic parts of the membrane 

are termed lipid rafts.

Caveolin-1 was identified in the SILAC proteomic experiments as down regulated 

(table 3.10). Caveolin-1 was identified in all three biological and technical replicates. 

The mean reduction in caveolin-1 protein expression after 24(5), 25-epoxy cholesterol 

treatment was 30% less than that of control cell caveolin-1 expression. Western 

blotting was performed in order to validate this result. Caveolin-1 showed a decrease 

in protein expression after 24 hours when measured by immunoblotting (fig 4.6). 

Densitometry indicates that this observed decrease, when normalised to actin was 

similar to that observed in the proteomic data for both 24(5)25 epoxycholesterol and 

GW3965. Caveolin-1 was reduced by 32% in 24(5),25-epoxycholesterol treated cells 

and 15% in GW3965 treated cells. This was comparable to the observations in the 

proteomic experiments.

It has been reported that caveolin-1 expression is regulated, at least in part, by 

changes in the level of cholesterol (Hailstones et al 1998). Moreover, it appears that 

oxysterols (7-ketocholesterol, 7a-hydroxycholesterol) can influence the transcription 

o f caveolin-1 (Fielding et al 1997). Therefore, to analyse whether the observed 

effects on caveolin-1 expression on SN4741 cells was due to changes in transcription 

RT-qPCR experiments were performed.
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Figure 4.6. Western blotting confirmed the observed down-regulation of caveolin-1 in 

SN4741 cells. lOpM 24(5)25-epoxycholesterol and 1 pM GW3965 decreased the 

expression o f caveolin-1 (lane 2). Results are indicative o f 3 independent 

experiments. Densitometry showed a significant (p<;0.05) decrease in caveolin-1 

expression of 32% after 24(5)25-epoxycholesterol treatment but no significant change 

after GW3965 treatment compared with control (n=3, Student's t-test).

Caveolin-1 expression showed no change at the mRNA level after treatment with 

GW3965 or 24(5),25-epoxycholesterol (fig 4.1). At the protein level 24(5),25- 

epoxycholesterol induced changes in caveolin-1 that was identified in the proteomics 

data (table 3.10) and by Western blotting (fig 4.6). This implies that the effect of 

24(5),25-epoxycholesterol is due to post-translational effects. As mentioned earlier, 

lipid rafts that form the subcellular location of caveolin-1 have an abundance of



cholesterol and are usually found on the plasma membrane. Changes in the 

intracellular cholesterol could potentially affect caveolin-1 by disrupting the 

composition of lipid rafts. This implies that oxysterols could interfere with caveolin-1 

localisation by inhibiting cholesterol synthesis. In order to test this hypothesis 

immunofluorescence confocal microscopy was undertaken in order to observe the 

effect in caveolin-1 localisation that oxysterols induced in SN4741 cells.

SN4741 cells fixed in 4% paraformaldehyde showed predominant plasma membrane 

labelling of caveolin-1 (fig 4.7) Exposure of the SN4741 cells to 24(5),25- 

epoxy cholesterol led to a loss of caveolin-1 from the membrane and a predominantly 

intracellular location. Incubation with lpM  GW3965 did not change the localisation 

pattern observed. GW3965 induces ABCA1 to export cholesterol but does not reduce 

cholesterol synthesis. The experimental approach was performed in serum free 

conditions and therefore this observation might be due to the inability of media to 

accept the exported cholesterol. Whether there would be a different observation in 

vivo is unclear. In addition other oxysterols were tested. Oxysterols with the greatest 

affinity for Insig (Radhakrishnan et al. 2007) and, therefore, the greatest antagonism 

of SREBP2 regulated gene transcription led to a more pronounced change in 

localisation. 245-hydroxycholesterol, 25-hydroxycholesterol and 27- 

hydroxy cholesterol treatment (all at lOpM) resulted in localisation being disrupted 

similarly to 24(5),25-epoxy cholesterol. In comparison, 7a-hydroxy cholesterol and 

19-hydroxy cholesterol, 2 oxysterols that are classed as having intermediate or 

minimal SREBP2 inhibitory effects respectively, showed a negligible effect on the 

distribution of caveolin-1 (fig 4.8).

To analyse if the effects of 24(5),25-epoxy cholesterol, 245-hydroxycholesterol, 25- 

hydroxycholesterol and 27-hydroxycholesterol were due to inhibition of cholesterol 

synthesis, and therefore intracellular cholesterol depletion, SN4741 cells were co­

incubated with lOp-M oxysterol and 250pM cholesterol (fig 4.7; fig 4.8). The 

presence of cholesterol antagonised the changes in caveolin-1 localisation observed 

after oxysterol treatment alone with a normalisation of signal to the plasma 

membrane. This suggests that caveolin-1 localisation is regulated, at least partially, by 

changes in the intracellular cholesterol level. Therefore, these data show that 

24(5),25-epoxycholesterol, and other oxysterols, can induce changes in protein



expression and localisation due to indirect effects either by inducing changes on the 

cellular cholesterol level or by disrupting lipid rafts.
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Figure 4.7. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells. 

Caveolin-1 labelled with monoclonal antibody and using appropriate Alexa 488 

labelled secondary. Vehicle treated control cells (A) has a predominant distribution 

of caveolin-1 on the plasma membrane. Treatment with lpM  GW3965 (B) and lOpM 

24(5),25-epoxycholesterol (C) led to a reduction in signal located on the cell surface 

and to a predominantly internal distribution o f caveolin-1. Co-incubation of lOpM 

24(5),25-epoxycholesterol with 250pM cholesterol resulted in caveolin-1 localisation 

to partially normalise to the plasma membrane (D).
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Figure 4.8. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells. 

Caveolin-1 labelled with monoclonal antibody and using appropriate Alexa 488 

labelled secondary. lOpM 245-hydroxycholesterol (24(S)-OHChol, A), 10pM 25- 

hydroxycholesterol (25-OHChol. C), lOpM 27-hydroxycholesterol (27-OHChol, E) 

led to a reduction in signal located on the cell surface and to a predominantly internal 

distribution of caveolin-1. Co-incubation of lOpM 24S'-hydroxycholesterol, lOpM 25-



hydroxycholesterol, lOpM 27-hydroxycholesterol with 250pM cholesterol resulted in 

caveolin-1 localisation to partially normalise to the plasma membrane (B, D, F). 

lOpM 19-hydroxy cholesterol (19-OHChol, G) and lOpM 7a-hydroxycholesterol 

(7a-OHChol, I) showed no change in signal located on the cell surface. Co­

incubation of lOpM 19-hydroxy cholesterol and 10pM 7a-hydroxycholesterol with 

250pM cholesterol had no effect (H, J).

4.2.8. Changes in miscellaneous proteins

Other proteins, with no apparent link to cholesterol, phospholipids or fatty acids were 

also identified as having a changed expression. 2 proteins that were reproducibly 

observed as being up regulated were Golgi apparatus protein 1 and macrophage 

colony stimulating factor.

4.2.8.1 Golgi sialoglvconrotein MG-160

Golgi sialoglycoprotein MG-160 (ESL1; GLG1; E-selectin ligand 1; Golgi apparatus 

protein 1) is a protein associated with the membrane of the Golgi apparatus though its 

function is unknown (Gonatas et al 1989). It is however, expressed early in embryo 

development of some vertebrate species suggesting a potential role in development. In 

chick embryos Golgi sialoglycoprotein MG-160 has been observed as expressed after 

3 days with high levels in the notochord, neural tube, somites, and cartilage (Stieber et 

al 1995).

The proteomics showed that Golgi sialoglycoprotein MG-160 expression increased 

reproducibly after treatment with 24(5),25-epoxycholesterol (table 3.10). No change 

was observed after treatment with GW3965 suggesting an LXR independent 

mechanism. The mean increase in Golgi sialoglycoprotein MG-160 expression after 

24(5),25-epoxycholesterol treatment was 36% more than that of control cells Golgi 

sialoglycoprotein MG-160 protein expression. The identification of Golgi 

sialoglycoprotein MG-160 was from multiple peptides and from all biological 

replicates lending confidence that this observation is a true change. To identify this 

protein at least 3 unique peptides were used whilst the maximum was 22 unique



peptides and thus the large number of peptides identified lends weight to the observed 

changes in protein expression. However, as a note of caution, no further validation 

was undertaken.

4.2.8.2. Increased Expression of Macrophage Colony Stimulating Factor

Macrophage colony stimulating factor (MCSF; Colony stimulating factor 1, CSF-1), 

was identified in the SILAC experiments as up-regulated reproducibly in SN4741 

cells after IOjiM 24(5),25-epoxycholesterol but not lpM  GW3965 (table 3.10). 

MCSF is a a-helical cytokine whose primary role is a inducer of mononuclear cell 

activity by promoting the survival, proliferation and differentiation of monocytes and 

macrophages (Sweet & Hume 2003 for review) and acts through MCSF receptor 

(MCSF-R; c-fms). MCSF deficient mice are macrophage deficient but also suffer 

from osteopetrosis due to a reduction in osteoclast numbers (Yoshida et al 1990; 

Wiktor-Jedrzejczak et al 1990). In addition, MCSF deficient mice are infertile 

suggesting a role in reproduction (Pollard et al 1991). The absence of MCSF results 

in mental retardation due to abnormal brain development (Michaelson et al 1996). 

Thus, MCSF is essential for healthy development.

SN4741 cells are a neuronal cell line and therefore due to the implication of 

oxysterols in brain development the observed proteomic change in MCSF expression 

warranted further analysis. MCSF was identified in all three biological replicates and 

5 of the 6  technical replicates. The mean increase in MCSF protein expression after 

24(5),25-epoxycholesterol treatment was -34%  more than that of control cell MCSF 

expression (table 3.10). However, the change in the proteomic data was unable to be 

validated by Western blotting the same lysates (fig 4.9). Immunoblotting of SN4741 

whole cell lysates showed no change in the level of MCSF after lOpM 24(5),25- 

epoxycholesterol or lpM  GW3965 treatment. Densitometry indicates that neither 

treatment had an effect on the observed level of MCSF.



Figure 4.9. Western blotting o f SN4741 lysates probing for MCSF. No significant 

change was observed in MCSF protein expression by Western blotting compared with 

control after treatment with lOpM 24(S'),25-epoxycholesterol or lpM  GW3965 (n=3, 

Student’s t-test).

To determine if the observed change in the proteomic data resulted from an increase 

to the transcription of the MCSF gene qRT-PCR was performed. The transcription of 

MCSF was not increased in the presence of GW3965, 7a-hydroxycholesterol and 7(3- 

hydroxycholesterol. In contradiction a modest, but significant, increase was observed 

after treatment with 24(5),25-epoxycholesterol, 24(S)-hydroxycholesterol, and 25-



hydroxycholesterol (fig 4.10). 24(5),25-epoxycholesterol, 24(S)-hydroxycholesterol 

and 25-hydroxycholesterol led to a ~1.5 fold increase in the mRNA level after 24 

hours of treatment. The oxysterols that caused an increase in MCSF were oxygenated 

on the side chain and natural efficacious ligands for LXR. However, as GW3965 did 

not induce any change in the mRNA level o f MSCF it can be inferred that the 

mechanism of action is not through LXR.
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Figure 4.10. qPCR showing mean fold change in MCSF expression in SN4741 cells. 

Treatment with sidechain oxygenated oxysterols resulted in a modest but statistically 

significant increase in MSCF expression after 24 hours in an apparently LXR 

independent mechanism as lpM  GW3965 treatment did not result in an observable 

change in expression. lOpM 2 4 (5 ),25 -epoxycho lestero l, lOpM 2 4 (5 )- 

hydroxycholesterol and lOpM 25-hydroxycholesterol increased expression of MCSF 

~1.5fold. Ring oxygenated oxystero ls (7a-hydroxycho lestero l or 7(3- 

hydroxycholesterol) did not significantly change the expression of MCSF. Compared 

with control, n=3, * p<0.05. Student’s t-test; ** p<0.01, Student’s t-test.



In order to determine if the increased expression of MCSF observed at the protein 

level in the SILAC proteomic data and at the mRNA level in the qPCR data resulted 

in an increased secretion from SN4741 cells an enzyme linked immunosorbant assay 

(ELISA) was performed (fig 4.11). The ELISA allowed the detection of MCSF in the 

cell culture medium of SN4741 cells treated with vehicle, lpM  GW3965 or 10pM 

oxysterol (2 4 (5 ),2 5 -ep o x y ch o les te ro l, 2 4 (5 )-h y d ro x y c h o le s te ro l, 25-

hydroxycholesterol. 7a-hydroxycholesterol, 7 |3-hydroxycholesterol). The 

concentration of the internal control, supplied as part of the kit, calculated by standard 

curve fell into the acceptable limits for the assay. MCSF secretion was detected at low 

levels in SN4741 cells with the concentration in the cell culture media o f ~70pg/ml. 

No differences were observed in the secreted MCSF level between different treatment 

groups (ANOVA p>0.05).
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Figure 4.11. ELISA assay of secreted MCSF concentration in SN4741 cell 

supernatant. No significant difference in MCSF secretion was observed with lpM  

GW3965 or IOjiM oxysterol treatment (n=3, ANOVA).



4.2.9. Increased MCSF mRNA expression in THP1 human monocytes.

As mentioned earlier (section 4.2.8.2) MCSF is a cytokine and its biological role 

includes the inducement of monocytes to differentiate to macrophages. Therefore, 

following the data from the SN4741 cells that MCSF was modestly up-regulated after 

oxysterol treatment, experiments were undertaken in THP1 human monocytes in 

order to determine the effect, if any, oxysterols were inducing.

In THP1 monocytes there was a large response to oxysterols at the mRNA level (fig 

4.12). All oxysterol treatments (24(5),25-epoxycholesterol, 24(5)-hydroxycholesterol, 

25-hydroxycholesterol, 7a-hydroxycholesterol, 7(3-hydroxycholesterol) resulted in an 

up-regulation in MCSF expression. The greatest response, with a 35 mean fold change 

compared with control was 25-hydroxycholesterol. The other oxysterols tested 

(24(5),25-epoxycholesterol, 24(5)-hydroxycholesterol, 7a-hydroxycholesterol, 7(3- 

hydroxycholesterol) gave a reduced but still significant response. These oxysterols 

gave a varied response with 7a-hydroxycholesterol < 24(5),25-epoxycholesterol < 

24(5)-hydroxycholesterol < 713-hydroxy cholesterol < 25-hydroxycholesterol. 

Interestingly, there was no change with GW3965 suggesting an LXR independent 

mechanism. This is supported by the data that shows that 7a-hydroxycholesterol, an 

oxysterol classed as a poor activator of LXRa and LXR(3 (Janowski et al. 1999), is 

inducing changes in MCSF expression.



Figure 4.12. qPCR showing mean fold change in MCSF expression in THP1 

monocytes. Treatment with sidechain oxygenated oxysterols resulted in a significant 

increase in MCSF expression. 25-hydroxycholesterol treatment resulted in the greatest 

observed change after 24 hours in an apparently LXR independent mechanism as 

lpM  GW3965 treatment did not result in an observable change in expression c.f. 

control. lOpM 24(S),25-epoxycholesterol, lOpM 24(S)-hydroxycholesterol (p<0.05, 

Student's t-test) and lOpM 25-hydroxycholesterol (p<0.01, Student’s t-test) increased 

MCSF expression. Unlike in SN4741 cells the cholesterol ring oxygenated oxysterols 

7a-hydroxycholesterol and 7|3-hydroxycholesterol also induced significant increases 

in MCSF gene expression. Compared with control, n=3, * p<0.05, Student’s t-test; ** 

p<0.01, Student’s t-test, ***p<0.001, Student’s t-test.

In order to determine if the observed increase in MCSF mRNA was coupled with an 

increase at the protein level immunoblotting was performed. Western blotting was 

performed using anti-MCSF primary antibody supplied with a MCSF ELISA kit for 

detection was used to probe for MCSF. The antibody is directly linked to horseradish 

peroxidase and therefore required no secondary antibody before detection using 

chemiluminescence. Western blotting o f whole cell lysates did not identify a 

difference in the level of MCSF in THP1 monocytes after 24 hour treatment with



GW3965, 24(.S,),25-epoxycholesterol or 25-hydroxycholesterol (figure 4.13). Thus, 

the significant increase observed at the mRNA level appears not to be reproduced post 

translationally at the protein level.
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Figure 4.13. Western blot showing no change in MCSF protein expression in THP1 

monocytes. No increase was observed in MCSF expression after treatment with lpM  

GW3965, lOpM 24(1Sr),25-epoxycholesterol or lOpM 25-hydroxycholesterol for 24 

hours (n=l).

As shown previously in THP1 monocytes there is a large increase in MCSF mRNA 

expression following oxysterol treatment (fig 4.12) that is not corroborated at the 

protein level (fig. 4.13). It is possible, though unlikely, that no change in MCSF 

protein was due to increased secretion from the cells of newly synthesised protein. 

Thus, creating a situation whereby protein synthesis is increased but impossible to 

detect by examination of whole cell lysate due to the protein being secreted leading to 

no net change. Therefore, an enzyme linked immunosorbant assay (ELISA) was 

performed. The ELISA assay was performed on cell culture media taken from human 

THP1 monocytes treated with vehicle, GW3965, or various oxysterols (24(*S),25- 

epoxycholesterol, 24(S )-hydroxycholestero l, 25-hydroxycholestero l, 7 a -  

hydroxycholesterol, 7|3-hydroxycholesterol; fig 4.14). This assay was performed in 

order to determine if the significant up-regulation of MCSF expression observed at



the mRNA level corresponded to an increase in secretion of MCSF. The MCSF 

concentration for all treatments, when quantified with a standard curve, fell below the 

concentration of the lowest concentration standard (78.125pg/ml) and therefore from 

these data it appears that oxysterol treatment alone does not directly stimulate MCSF 

secretion in THP1 cells.

Figure 4.14. ELISA assay of secreted MCSF concentration in THP1 cell supernatant. 

All treatments were below the concentration of the most dilute MCSF standard. Thus, 

THP1 monocytes appear not secrete MCSF in the presence of oxysterols.
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4.3. Discussion

SREBPlc is the main transcription factor responsible for the regulation of fatty acid 

synthesis. The transcription of SREBPlc is induced by LXRa, however the 

processing of SREBPlc is inhibited by Insig binding. As oxysterols mediate both 

LXRa activation and Insig inhibition there is a balance between the two opposing 

effects. In some cases, such as SREBPlc regulated genes acetyl-CoA carboxylase 1 

and fatty acid synthase the net effect after 24(5),25-epoxycholesterol is no change at 

the protein level whilst GW3965 increased the expression of these genes due to the 

lack of the Insig inhibitory effect. However, for other genes also regulated by 

SREBPlc, such as fatty acid desaturase 2 (table 3.10), it appears that the binding of 

Insig overcome the effect of increased SREBP1 causing a reduction in gene 

expression after treatment with 24(5),25-epoxycholesterol. These effects may be cell 

type specific as the SREBPlc induction is due to LXRa whose expression varies 

between different tissues.

The nuclear receptor LXRp, for which oxysterols are the natural ligand, was 

identified as up-regulated after treatment with both 24(5),25-epoxy cholesterol and the 

synthetic ligand GW3965 suggesting a LXR dependent mechanism. It is interesting 

that LXRp was not increased at the mRNA level (fig 4.1), i.e. that transcription was 

not increased, as there is some evidence that the binding of ligand to LXRP prevents 

degradation of the nuclear receptor (Kim et al 2009). Cells were transfected with 

FLAG tagged LXRp and, after cycloheximide treatment to prevent new protein 

synthesis, the degradation of the protein was measured. The binding of ligand to 

LXRp slowed the degradation of LXRp. Therefore, we hypothesise that the increase 

at the proteomic level is due to a decrease in degradation of LXRp but with no 

decrease in protein production. These data are the first to show that ligand binding can 

increase the level of endogenous LXRp protein.

It appears that the presence of 24(5),25-epoxycholesterol has differential effects on 

members of the StAR-related lipid transfer protein family of transporters. StAR- 

related lipid transfer protein 4 (Stard4) is regulated by SREBP2 and transports 

cholesterol (Soccio et al 2005). At both the protein and mRNA level Stard4 is down- 

regulated after 24(5),25-epoxycholesterol treatment (table 3.10; fig. 4.1).



Interestingly, the converse is true of Collagen type IV alpha-3-binding protein 

(col4a3bp; StAR-related lipid transfer protein 11, Stardll). At both the protein and 

mRNA level Collagen type IV alpha-3-binding protein is up-regulated after 24(5),25- 

epoxycholesterol treatment (table 3.10; fig. 4.1). Collagen type IV alpha-3-binding 

protein transports ceramide from the endoplasmic reticulum to the Golgi apparatus 

where it is synthesised to sphingomyelin. Interestingly, an LXR responsive gene, 

ABCG1, exports both cholesterol and sphingomyelin (Kennedy et al 2001; Sabol et 

al 2005; Sano et al 2007). Therefore, the increase in Collagen type IV alpha-3- 

binding protein might be a homeostatic feedback to prevent reduced levels of 

sphingomyelin by increasing the rate of synthesis of the phospholipid. Indeed, this 

hypothesis fits the observation that the presence of 25-hydroxycholesterol promotes 

activation of Collagen type IV alpha-3-binding protein mediated transfer of ceramide 

to the Golgi apparatus and, therefore, an increased rate of sphingomyelin synthesis 

(Perry & Ridgeway 2006).

It appears that oxysterols have multiple roles in membrane homeostasis. It has been 

shown that the enzyme phosphoethanolamine cytidylyltransferase (PCyt2) that is 

required for phosphoethanolamine synthesis is down-regulated after 24(5),25- 

epoxycholesterol treatment. During the period where this work was undertaken it has 

been independently reported in the literature that PCyt2 is regulated by SREBP2 and, 

therefore, oxysterols in mouse NIH3T3 fibroblasts (Ando et al 2010). Therefore, 

these data presented here corroborates the previously reported data generated from a 

different cell type and shows that 24(5),25-epoxycholesterol regulates PCyt2 in 

SN4741 neurons by modulating SREBP induced transcription. However, another 

enzyme previously reported to be regulated by SREBP2, phosphocholine 

cytidylyltransferase (Pcytl) was identified in the proteomics data as having no change 

in expression (table 3.10.; Kast et al 2001).

The expression and localisation of the membrane protein caveolin-1 appears to be 

influenced indirectly by 24(5),25-epoxycholesterol. Caveolin-1 was observed as 

down-regulated at the protein level but unchanged at the mRNA level (table 3.10; fig. 

4.1; fig 4.6). Two major components of lipid rafts are caveolin-1 and cholesterol and 

thus we hypothesise that the level of the two are interdependent and that in this case a 

change in the intracellular cholesterol level is responsible for the observation of 

decreased protein expression. This hypothesis is supported by the confocal



microscopy data that demonstrates that oxysterols with a high affinity for Insig affect 

the localisation of caveolin-1 and that this effect can be negated by co-incubating with 

cholesterol (fig 4.7; fig 4.8). This relationship, could potentially explain the 

observation that in apolipoprotein E (ApoE) knockout mice there was an increased 

expression of brain caveolin-1 (Gaudreault et al 2004). As ApoE is a cholesterol 

transporter this implicates a role for cholesterol homeostasis dysregulation in the 

observed up-regulation. An isoform of apolipoprotein E termed ApoE4 has been 

implicated in Alzheimer’s disease. Thus, cholesterol dysregulation may explain the 

increased expression of caveolin-1 observed in the frontal cortex and hippocampus of 

Alzheimer’s disease patients compared with age matched control patients (Gaudreault 

et al 2004).

The SILAC data also identified changes unassociated with lipid metabolism and 

membrane homeostasis. It is interesting that MCSF was identified as increased at the 

protein and mRNA level after oxysterol treatment in SN741 neurons and, at the 

mRNA level, in THP1 monocytes (table 3.10; fig 4.10; fig 4.12). MCSF expression 

appears to be required for normal brain development in mice (Michaelson et al 1996) 

and has been associated with two disease states also associated with oxysterols; 

artherosclerosis and Alzheimer’s disease (section 1.1.6.). In artherosclerosis MCSF 

expression is increased in endothelial cells after treatment with low density 

lipoprotein (Rajavashisth et al 1990). Indeed, in MCSF knockout mice there was a 

marked decrease in artherosclerotic lesions after feeding with an atherogenic diet 

(Qiao et al 1997) and in low density lipoprotein receptor knockout mice 

artherogenesis was significantly reduced after MCSF was knocked out (i.e. double 

knockout LDLR -/-, op/op, Rajavashisth et al. 1998). Therefore, it is possible that the 

oxysterol component of low density lipoprotein is a mediator in this increase of 

MCSF due to the measured induction of MCSF mRNA in monocytes (fig 4.12).

MCSF has been associated with Alzheimer’s disease though its role is unclear. The 

expression of MCSF has been shown to associate with Ap plaques in Alzheimer’s 

patients brains and that in the cerebrospinal fluid of Alzheimer’s patients the level of 

MCSF is elevated ~5-fold compared with control (Du Yan et al. 1997). Also, in a 

mouse model of Alzheimer’s increased expression of MCSF-R has been observed in 

microglia in transgenic AbPPV717F mice suggesting a role for its ligand MCSF



(Murphy et al. 2000). Indeed, in two studies from the same group it appears that 

MCSF is beneficial as knockout MCSF mice (these mice were not an Alzheimer’s 

model) had an increased number of amyloid plaques (Kaku et al. 2003) and injection 

of MCSF to these mice reduced the deposition of Ap (Kawata et al. 2005). However, 

there is contradictory evidence as an independent study did not observe Ap deposits 

in MCSF knockout mice (Kondo et al. 2009). Transgenic mice with the chimeric 

human/mouse Ap precursor protein (APPSwe) gene and the human presenilin 1 gene 

(A246E variant) injected with MCSF had reduced Ap deposits and an increase in the 

number of microglia (Boissonneault et al. 2009). As microglia have been shown to be 

able to clear Ap this increase might be relevant (Majunder et al. 2007). However, the 

benefit of MCSF activated microglia is unclear as there is evidence that they can 

augment toxicity induced by Ap (Li et al. 2004).

The mechanism by which oxysterols increase the expression of MCSF appears to be 

independent of LXR as GW3965 shows no activity whilst ring oxygenated oxysterols 

such as 7P-hydroxycholesterol and 7a-hydroxycholesterol induce significant 

increases in MCSF mRNA in THP1 monocytes. A nuclear receptor that has been 

shown to regulate MCSF expression is PPARy (Bonfield et al. 2008). Similarly to 

LXR, PPARy is a nuclear receptor that requires heterodimerisation with RXR when 

activated. PPARy activation causes a decrease in MCSF expression (Bonfield et al. 

2008). Therefore it appears that PPARy activation has an inverse effect to treatment 

with oxysterols. This leads to the hypothesis that oxysterols can inhibit PPARy 

activity. Indeed, there has been recent evidence to suggest that 25-hydroxycholesterol 

can inhibit PPARy (Xu et al. 2012).

The large (~3 5-fold) up-regulation in MCSF mRNA expression in THP1 cells after 

25-hydroxycholesterol treatment may indicate that this is a part of an immune 

response. A large increase in the enzyme cholesterol-25-hydroxylase and its product 

25-hydroxycholesterol is seen after exposure to lipopolysaccharide (section 1.1.7). 

The role of this increase in 25-hydroxycholesterol is currently unclear. Therefore, part 

o f the response to infection may be to induce MCSF production to promote the 

differentiation of monocytes to macrophages and/or recmit macrophages to the site of 

infection. However, no increase in MCSF was identified in THP1 cells at the protein



level measured either by ELISA or Western blot. Therefore, it is possible that the 

synthesis and secretion of MCSF protein is controlled post-translationally and 

requires a secondary signal in order for the observed increase in mRNA expression to 

be converted to increased protein.

It is important to note that the experiments presented here were only conducted 3 

times and that the low number of replicates may influence the statistical analysis. 

Ideally a sample size greater than 3 would have been used which would increase the 

power of Student’s t-test. Unfortunately, time and financial constraints were in place 

limiting the number of replicates performed. It is however common for biological 

papers, even in high impact ‘good’ journals to combine a sample size of 3 with 

Student’s t-test (e.g. Zelcer et al. 2009).

In summary, the SILAC proteomic approach has identified a large number of proteins 

with confidence in their quantification and identification due to the use of multiple 

peptides. This approach has led to the observation of expected changes such as down 

regulation of the cholesterol synthesis pathway. In addition, a number of the proteins 

observed as having their expression changed were related to the composition of 

cellular membranes. Thus, as 24(5),25-epoxycholesterol is the most abundant 

oxysterol in murine embryonic brain it is likely that it plays a role in embryonic lipid 

homeostasis. Increased expression of LXRp after ligand binding and the LXR 

independent increase in MCSF expression were also observed. Therefore, as 24(5),25- 

epoxycholesterol induces LXRp and MCSF and that these proteins are required for 

normal brain development we hypothesise that the role of this oxysterol is an 

important one for embryonic neurogenesis.



C h a p t e r  5: P h o s p h o p r o t e o m i c  a n a l y s i s  o f  2 4 ( 5 ) , 2 5 -

e p o x y c h o l e s t e r o l  AND 25-HYDROXYCHOLESTEROL t r e a t m e n t  in  

S N 4 7 4 1  c e l l s

5.1. Introduction.

A common post-translational modification of proteins is phosphorylation. It has been 

estimated that around 30% of proteins will at some point during their expression (i.e. 

not simultaneously) be phosphorylated (Larsen et al 2005). Protein phosphorylation 

is important for the transmission of signals within eukaryotic cells and thus, plays an 

important role in the regulation of diverse cellular processes. The reversible addition, 

or subtraction, of a phosphate group to proteins can result in the activation, or 

deactivation, of enzymes due to a conformational shift in their tertiary structure. This 

change can result in an enzyme having its activity restricted by altering the binding 

pocket that recognises the target molecule or by modifying the active site of enzyme 

activity. Serine, threonine and, less commonly, tyrosine amino acids can be 

phosphorylated in eukaryotic organisms. Protein phosphorylation is regulated 

enzymatically; enzymes classed as kinases add a phosphate group to a protein 

whereas a phosphatase does the reverse.

The major role for oxysterols is in cholesterol homeostasis (section 1.1.5). However, 

in addition to their regulatory role oxysterols can affect protein phosphorylation. 

There is evidence to show that oxysterols effect the phosphorylation of extracellular 

signal regulated kinase (ERK1/2) (Yoon et al 2004, Lemaire-Ewing et al 2009). 

Cholesterol stabilises a phosphatase complex containing oxysterol binding protein 

(OSBP) as a scaffold, the serine/threonine phosphatase PP2A and the tyrosine 

phosphatase HePTP that decreases the phosphorylation of ERK 1/2 (Wang et al 

2003, Wang et al 2005). By competing with cholesterol 25-hydroxycholesterol 

causes the disassembling of the phosphatase complex and, therefore, the presence of 

oxysterol up-regulates ERK 1 phosphorylation at the thr202/tyr204 amino acid 

residues and ERK 2 at thrl85/tyrl87. ERK 1/2 is an important signalling molecule 

and a known oncogene. It has roles in a number of different biological functions 

including cell growth, differentiation and apoptosis (Avruch 2007). The up-regulation 

of ERK 1/2 phosphorylation has been shown in a number of different cell lines either



by depletion of cholesterol with cyclodextrin or with treatment with oxysterols (table 

4.1; Furuchi & Anderson 1998, Yoon et al 2004, Agassandian et al 2005, Calleros et 

al 2006, Kim et al 2007, Jin et al 2008, Lemaire-Ewing et al 2009). This effect 

seems to be a feature of oxysterols generally as a number of diverse oxysterols have 

been shown to initiate this effect including 7p-hydroxycholesterol, 2 2 - 

hydroxycholesterol, and 25-hydroxycholesterol.

It is unclear whether treatment with oxysterols only affects ERK 1/2 of the mitogen 

activated protein kinase (MAPK) family as there has been contradictory evidence 

regarding other MAPKs (e.g. JNK) (Ares et al 2000, Yoon et al 2004). In addition, it 

is unclear as to what pathways downstream of ERK 1/2 are up/down-regulated due to 

the activation of ERK1/2. Furthermore, it is possible that phosphorylation on other 

proteins other than MAPKs could be affected by the destabilisation and deactivation 

of the PP2A/HePTP phosphatase complex. It has been demonstrated in the literature 

that oxysterols can cause changes to phosphorylation, however, the full extent and 

significance of these has yet to be assessed (table 5.1).



Table 5.1. Summary of studies analysing effects of oxysterol treatment or 

cyclodextrin cholesterol depletion on ERK phosphorylation. * = No information 

regarding conformation. All changes were demonstrated using Western blotting. 

MpCD= methyl-P-cyclodextrin. HpCD= 2-hydroxypropyl-p-cyclodextrin. OHChol = 

hydroxy cholesterol.

Oxysterol Cell-line Condition Effect on Phospho- 
ERK

Reference

n/a Rat-1 Serum starved 24-40hrs 
2% HpCD lhr 

EGF 50ng/ml (0-10min)

Increase after 3min 
c.f. control.

Furuchi 
& Anderson 

1998

7p-OHChol Human aortic 
smooth 
muscle

5pg/ml 5-20min 
Serum starved 24hrs 

Serum free treatments

Increase after 5min 
c.f. control

Max. response after 
lOmin.

Ares et al. 
2000

n/a Fibroblasts
/Hela

20pM PD98059 for 
10m in then 0.5-2% 

MpCD 15min

Increase with all 
concentrations M0CD 

c.f.control.

Wang et al. 
2003

22(R)-OHChol KMBC 30pM 
Serum starved 24hrs 

Time course

Increase after 2hrs.
No control or total- 
ERK data presented.

Yoon et al. 
2004

22-OHChol * MLE 5-30pM 
Serum free treatments 

Time course

Increase after 15min. 
Persisted for 6hours.

Agassandian 
et al. 2005

25-OHChol NIH3T3 2.5pM 
With serum 

48hours

~2 fold increase
No total-ERK data 

presented.

Calleros et 
al. 2006

n/a HaCaT lOmM M0CD lhr 
Serum starved 24hrs

Increase after 60min 
c.f. control.

Kim et al. 
2007

n/a Normal
human

melanocytes

ImM M0CD 
Time course. 
With serum.

Increase after 6 hours. 
Persisted for 48hours.

No control data 
presented.

Jin et al, 
2008

7p-OHChol
25-OHChol

THP-1 50pM 
Time course. 
With serum.

Max. increase at 
6hours.

7p-OHChol = ~6-fold
25-OHChol = -3-fold.

Lemaire- 
Ewing et al. 

2009



In embryonic mouse brain 24(5),25-epoxycholesterol is present at a concentration 

greater than expected (Wang et al 2009). The role that it plays is unclear it is possible 

that it acts beyond its activity as a ligand for SREBP and LXR and induces changes in 

post-translational modifications such as phosphorylation. Indeed, this is feasible as 

there is, as previously described, evidence that oxysterols can induce changes in ERK 

phosphorylation. Interestingly, previous work has shown a link between ERK activity 

and normal dopaminergic neuronal development. It has been shown that dopamine D2 

receptors in mesenphalic neuronal primary cell cultures activate ERK (Kim et al. 

2006). This in turn activates the transcription factor Nurrl that is important for normal 

dopaminergic neuron development, (Kim et al. 2006). Further work by the same 

group showed that striatal-enriched protein tyrosine phosphatase, a ERK phosphatase, 

also has an effect on normal dopaminergic neuron development (Kim et al. 2008). 

Gene silencing of striatal-enriched protein tyrosine phosphatase using siRNA reduced 

by -25% the number of tyrosine hydroxylase positive mesenphalic neuronal primary 

cells. In addition, another paper, again by the same group, demonstrated that Wnt5a 

protein acted through dopamine D2 receptors to increase the number of tyrosine 

hydroxylase positive cells in mesenphalic neuronal primary cell cultures by -25%  

(Yoon et al. 2011). Wnt5a protein induced ERK phosphorylation that appeared to be 

mediated by EGFR signalling; small molecule inhibition of EGFR abolished the 

effect of Wnt5a on ERK phosphorylation and the increase in tyrosine hydroxylase 

positive neurons. It has also been shown, by an independent group, that ERK has a 

role to play in midbrain dopaminergic neurogenesis (Jaeger et al 2011). In this case it 

appears that small molecule inhibition of ERK phosphorylation, for 2 days, triggers 

the differentiation of stem cells into dopaminergic neurons. However, ERK 

phosphorylation is then required in order to consolidate this effect. To demonstrate 

this, a small molecule MEK inhibitor PD0325901 used continuously for 5 days had no 

effect on Lmxla and Foxa2 (markers of dopaminergic neurogenesis) whereas 2 days 

treatment with PD0325901 followed by 3 days without significantly increased both. 

Thus, it appears that the regulation of ERK is important in normal dopaminergic 

neurogenesis.

Therefore, in order to evaluate changes to protein phosphorylation in SN4741 

neuronal cells after treatment with oxysterols, 25-hydroxycholesterol and 24(5),25-



epoxy cholesterol, a SILAC (section 1.2.3.1.) phosphoproteomic approach was 

employed.

Phosphoproteomics is the analysis of post-translational phosphorylation on a global 

protein level. However, phosphopeptides are difficult to analyze as the higher 

abundance of unmodified peptides leads to low signal intensities and low ionization 

efficiency (Thingholm et al 2009). Therefore, phosphoproteomics relies on the 

enrichment of the phosphopeptides allowing the modified peptide to be observed 

rather than the much more abundant unmodified peptides. A number of 

phosphoenrichment techniques are available that allow the concentration of 

phosphopeptides (section 1.2.4.3.). In the work presented here a strong cation 

exchange fractionation step was used prior to immobilised metal ion affinity 

chromatography (IMAC). IMAC relies on the chelation of positively charged metal 

ions to beads creating a stationary phase that will bind to negatively charged 

phosphopeptides. Therefore, non-phosphorylated peptides will not bind to the metal 

ions and will be present in the initial flow through and phosphopeptides can be eluted 

subsequently and analysed using LC-MS/MS using a multistage activation method 

(section 1.2.2.3.).

Thus, the aim of the work is to investigate the phosphoproteomic changes in SN4741 

cells, a neuronal cell line derived from the substantia nigra of embryonic mice, treated 

with 25-hydroxycholesterol and 24(5),25-epoxycholesterol.



5.2. Results

5.2.1. Effect of 25-hvdroxvcholesterol on ERK Phosphorylation

Initially Western blotting was perform ed exam ining the effect o f 25- 

hydroxycholesterol in Hela cells. This was performed to observe previously reported 

changes in ERK phosphorylation in transfected Hela cells after 25-hydroxycholesterol 

treatment (Wang et al. 2005). An increase in phosphorylated ERK was observed after 

6 hours treatment which persisted until 24 hours (fig. 5.1). This slow onset of action 

suggests a secondary or tertiary effect o f 25-hydroxycholesterol on ERK 

phosphorylation. The phosphoERKl/2 antibody used detects phosphorylation on 

thr202/tyr204 (ERK1) or thrl 85/tyrl 87 (ERK2) when either amino acid residue or 

both are phosphorylated.

, 2 5-livdioxy cholesterolControl

, k (  ____________ t____________
Tune thorn s) 1 1 2 4 6 24 1 ' 1 2 4 6 24 1

  Phospho-ERKl
.... tl. mtm ----- Phospho-ERK2

rnmmm mmmm mmmm m m  m m  —  ERK2

Sqnnleue synthase 

Actui

Figure 5.1 25-hydroxycholesterol treatment increases ERK 1/2 phosphorylation in 

Hela cells. IOjiM 25-hydroxycholesterol in serum free media increased ERK 1/2 

phosphorylation over time in Hela cells (20pg lysate loaded) with a corresponding 

decrease in the SREBP2 regulated gene squalene synthase (n=l). No serum starvation 

was performed prior to treatment.

The role o f oxysterols in neuronal development is the area o f interest in this research 

and therefore phosphoproteomic experiments were to be conducted in SN4741 cells 

derived from embryonic murine substantia nigra. SN4741 cells are dissimilar to Hela 

as they are neuronal not epithelial and are derived from mouse instead of human. 

Therefore, after the initial experim ent in Hela cells the effect o f 25-



hydroxy cholesterol on phospho-ERK was examined in SN4741 cells. A number of 

experiments were performed (table 5.2) using different methodologies though these 

experiments proved inconclusive with a number of contradictory observations. 

However, the effect of 25-hydroxycholesterol on phospho-ERK might be cell type or 

species specific and therefore we proceeded with SILAC experiments to examine the 

phosphoproteome as a whole.

Table 5.2. Summary of Western blot experiments analysing effect of 25- 

hydroxycholsterol on SN4741 cell phospho-ERK levels. All treatments performed in 

serum free media. H(3CD=2-hydroxypropyl-(3-cyclodextrin; EGF=epidermal growth 

factor; 25-OHChol=25-hydroxycholesterol.

Treatment Treatment
time

Observed change in ERK 
phosphorylation c.f. control

Serum
starved?

lOpM 25-OHChol 24 hours Down No

lOpM 25- OHChol 24 hours No change No

25 pM 25- OHChol 2 hours No change 24 hours

25 pM 25- OHChol 3 hours Down 24 hours

25pM 25- OHChol 3 hours Up 24 hours

2% HpCD + EGF 2 hours No change 24 hours

2% HPCD + EGF 1 hours No change 24 hours

2% HpCD + EGF 1 hours No change 24 hours

5.2.2. Strong Cation Exchange and IMAC

Strong cation exchange chromatography was used in order to reduce the complexity 

o f  the peptide mixture. The performance of the column was evaluated prior to use as 

shown previously (fig. 3.5). The presence of a phosphate group on 

serine/threonine/tyrosine residues of peptides results in a more anionic molecule. 

Strong cation exchange chromatography separates molecules based on their charge, 

with cationic molecules retained longer so phosphopeptides would elute earlier from 

the column. Therefore, the fraction collection was shortened at the beginning of the 

run when compared with the fractionation conducted for the protein expression



proteomics (fig. 3.6). It can be seen that the largest number of phosphopeptides as a 

percentage of the total number of peptides in the fraction were eluted at the beginning 

of the strong cation exchange run in both biological replicates (fig. 5.2; fig. 5.3).

In early fractions the majority of peptides eluted are phosphorylated (e.g. fractions 5 

and 3 respectively for the 2 biological replicates). In addition, a large number of 

phosphopeptides eluted in the middle of the run. It can be seen that this is the time 

where the majority of peptides elute from the SCX column and therefore a large 

number of phosphopeptides here is unsurprising. However, as a proportion of the total 

this is much lower than early fractions. In these ‘middle’ fractions a large number of 

non-phosphorylated peptides were observed. The IMAC approach employed for 

phosphopeptide enrichment should, in theory, only bind phosphorylated peptides. 

Therefore, it is likely that the detection of these non-phosphorylated peptides is due to 

non-specific interactions between the IMAC beads and anionic residues.
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Figure 5.2. Strong Cation Exchange chromatography trace of SILAC peptides and 

phosphopeptides from the first biological replicate. A) The UV (X=214nm) 

chromatogram highlights the large number of peptides present on the column. The 

time interval for fraction collection is indicated B) In this example a total of 4513 

unique peptides were identified. Of these 1232 were unique phosphopeptides. 

Phosphopeptides eluted throughout the run but predominantly in early fractions. In 

fraction 5 the majority (84%) were identified as phosphopeptides. In later fractions 

very few phosphopeptides were detectable.
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Figure 5.3. Strong Cation Exchange chromatography trace of SILAC peptides and 

phosphopeptides from the second biological replicate. A) The UV (X=214nm) 

chromatogram highlights the large number of peptides present on the column. The 

time interval for fraction collection is indicated B) In this example a total of 7990 

peptides were identified. O f these 845 were unique phosphopeptides. 

Phosphopeptides eluted throughout the run but predominantly in early fractions. In 

fraction 3 the majority (68%) were identified as phosphopeptides. In later fractions 

very few phosphopeptides were detectable.

5.2,3. C18 Reverse Phase LC-MS/MS of SILAC phosphopeptides

The peptide mixture fractions derived from IMAC phosphoenrichment were dried 

under vacuum and resuspended in H2O/0 .1% formic acid to be analysed by LC- 

MS/MS. In order to test the performance of the reverse phase C18 column 

performance prior to running the SN4741 derived SILAC samples trypsin digested 

bovine serum albumin (lOOfmol; BSA) was used. This allowed validation of both 

chromatography and mass spectrometry performance. In order to ensure the complete 

removal of the BSA peptides prior to running the SILAC SN4741 phosphopeptide 

samples a blank run was performed injecting 80% acetonitrile.
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Figure 5.4. Reverse Phase LC-MS/MS SILAC phosphopeptide separation. An 

example chromatogram (fraction 5 o f 1st biological replicate; fig. 5.2) is shown that 

exemplifies the fact that phosphopeptides co-eluting from the strong cation exchange 

chromatography step can be separated by Cl 8 reverse phase chromatography.

SILAC phosphopeptides were injected on to the HPLC system and separated over a 2 

hour gradient. It can be seen from the example in figure 5.4 that a fraction obtained 

from strong cation exchange chromatography and subsequently enriched using IMAC 

is still a complex sample but the peptides present can be separated on the Cl 8 column. 

Peptides eluting from the column were then analysed by mass spectrometry. Peaks 

with characteristic features o f peptides were identified by the initial mass 

spectrometry scan and if they conformed to pre-selected criteria were chosen for 

fragmentation (see Materials and Methods section 2.7.11). As previously described 

the initial MS scan is critical to SILAC success as this scan is used for quantification. 

Similarly to spectra observed in total protein these SILAC envelope patterns have a 

triplet motif that was indicative of labelled peptides (see fig 5.5. for example of a 

SILAC triplet). In the analysis of phosphopeptides fragmentation of the peptide is 

critical for the analysis of both the backbone sequence and identification of the 

location of post-translational modification(s). MS2 fragmentation is often insufficient 

to identify both peptide sequence due to extensive neutral loss of the relatively labile



phosphate bond instead of backbone fragmentation. Thus, in MS spectra the 

dominant peak is often the precursor ion with a neutral loss of 98Da or 80Da 

(representing H3PO4 or HPO3 respectively). Therefore multistage activation was 

employed to allow identification of phosphopeptide sequence.

Multistage activation is a pseudo MS3 process. In this process a selected precursor ion 

is selected for fragmentation then subjected to further fragmentation at the m/z where 

the neutral loss ion, in theory, should be. The fragments from both activations are then 

combined into one spectrum which is, in effect, a hybrid of MS and MS spectra. The 

peptide LLHEDLDES(ph)DDDVDEK has a monoisotopic mass of 1965.88Da and 

can be seen as doubly charged ion at 983.9 m/z (3.21 ppm mass error; fig 5.5A) was 

selected for fragmentation. It can be seen that in the multistage activation spectra (fig 

5.5B) that the peptide has been fragmented to yield sequence information. There is no 

dominant neutral loss peak. A number of ions are present that identify phosphorylated 

and neutral loss versions of the same peptide demonstrated by a neutral loss of 98Da 

(fig. 5.5B; fig 5.5C)
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Figure 5.5. Phosphopeptide SILAC MS scan and multistage activation. The doubly 

charged phosphopeptide LLHEDLDES(ph)DDDVDEK is derived from Arf-GAP 

with SH3 domain, ANK repeat and PH domain-containing protein 2. The peptide has 

a monoisotopic mass of 1965.88Da was observed as a doubly charged ion (A). After 

the light SILAC phosphopeptide precursor ion at 983.90 m /z  was selected for 

fragmentation it was analysed using multistage activation. Neutral loss o f the



phosphate group(s) results in a loss of 98Da (B) and therefore multistage activation 

allows the observation of both neutral loss and backbone fragmentation resulting in 

identification of the sequence and phosphorylation site of the peptide (C).

The probability of the correct post-translational modification assignment is given by a 

post-translational modification (PTM) score. This value gives an indication of the 

probability differential between different amino acid residues on the peptide 

backbone. Examples o f ‘good’, ‘moderate’ and ‘poor’ spectra are shown in figure 5.6. 

It can be seen from these spectra that the quality of the multistage activation 

fragmentation spectra is integral to the identification of sequence and phosphorylation 

that can be seen by the Mascot and post-translational modification scores of the 3 

peptides. The Mascot scores are 89.71, 41.39 and 23.91 and the PTM score 341.18, 

124.18 and 94.36 for the ‘good’ ‘moderate’ and ‘poor’ phosphopeptides. The ‘good’ 

spectrum has a large number of strong peaks above the background giving it high 

scores and making it a good spectrum for identification (fig 5.6A) as a large number 

of b and y ions were identified that allows identification of the phosphorylated amino 

acid. A neutral loss of 98 was observed from the y4 to y n  but only on the bi6 and big 

ions indicating the probable location o f the phosphorylation on the 

GHSDSSASESEVSLLS(ph)PVK. It is clear that the ‘poor’ spectrum (fig 5.6C) has a 

lower peak intensity c.f. background that limits the reliability of the spectra for 

identification of b and y ions which is reflected in its lower scores.
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Figure 5.6. Phosphopeptide SILAC multistage activation MS/MS spectra. A) a ‘good’ 

spectra that identified the light SILAC peptide GHSDSSASESEVSLLS(ph)PVK 

from serine/threonine-protein phosphatase 4 regulatory subunit 2 (Mascot score = 

89 .71 ; PTM score  = 3 4 1 .1 8 ; P hospho  s ite  p ro b a b ility  =

GHSDSSASESEVSLLS(l)PVK). B) A ‘moderate’ spectra that identified the light 

SILAC peptide SGAQASSTPLS(ph)PTR from Lamin-A/C (Mascot score = 41.39; 

PTM  s c o r e  = 1 2 4 . 1 8 ;  P h o s p h o  s i t e  p r o b a b i l i t y  = 

SGAQASS(0.006)T(0.062)PLS(0.931 )PTR). C) A ‘poor’ spectra that identified the 

peptide GDLGASSPS(ph)MK from Ahnak protein (Mascot score = 23.91; PTM score 

= 94.36; Phospho site probability = GDLGAS(0.048)S(0.048)PS(0.904)M K.



The PTM score does not, however, give an indication of whether the phosphorylation 

site identification site is unequivocal. It merely gives an indication of the differential 

between other sites on the peptide. For exam ple, the peptide 

AS(ph)EDESDLEDEEEKSQEDTEQK derived from DNA replication licensing 

factor MCM3 was identified with a Mascot score of 96.69, and a high PTM score of 

359.53 due to a large differential between the potential phosphorylation sites on the 

peptide (Phospho scores differentials = AS(0)EDES(0)DLEDEEEKS(- 

104.96)QEDT(-111.59)EQK). However, the correct phosphorylation site cannot be 

identified as by examining the phosphorylation probabilities on the peptide 

AS(0.5)EDES(0.5)DLEDEEEKSQEDTEQK it is not possible to distinguish between 

two serine residues (fig 5.7). These spectra are derived from the same sample and 

precursor ion therefore it is possible that this inability to distinguish is due to a mixed 

population being present. Alternatively, the phosphate group might be transferred 

during tandem MS to a different amino acid residue in the peptide which is a 

phenomenon that has been demonstrated to occur (Palumbo & Reid 2008). This effect 

could be the cause of these observed contradictory phosphorylation site 

identifications. Thus, spectra generated from multistage activation are can be used for 

identification of phosphopeptide sequence and site of post-translational modification 

though caution is required. All the scores and probabilities generated by the bio- 

informatic software need to be taken into account to avoid false identification of 

phosphopeptides.
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Figure 5.7. Phosphopeptide SILAC m ultistage activation scans for the 

phosphopeptide AS(ph)EDESDLEDEEEKSQEDTEQK. The peptide is derived from 

DNA replication licensing factor MCM3. The phosphopeptide was identified with a 

Mascot score of 96.69, and a high PTM score of 359.53. The phosphorylation site 

could not be identified unequivocally as equally probable were the peak assignment 

for the two phosphopeptides A S(ph)ED ESD LED EEEK SQ ED TEQK  (A) and 

ASEDES(ph)DLEDEEEKSQEDTEQK (B).Thus, the phosphorylation probabilities 

on the peptide AS(0.5)EDES(0.5)DLEDEEEKSQEDTEQK.



5.2.4. Phosphopeptide Identifications

Overall in the 2 biological replicates there were 7606 and 13499 peptides (table 5.3.). 

Of these 4513 (59%) and 7990 (59%) unique peptides were identified. However, not 

all of these peptides were identified as phosphorylated. In total 1266 (17% of total) 

and 1383 (10% of total) phosphopeptides were identified. The number of unique 

phosphopeptides was lower with 1232 (27% of total unique peptides) and 845 (11% 

of total unique peptides) identified respectively. The large majority o f the 

phosphopeptides identified were phosphorylated on serine or threonine amino acid 

residues. For the 2 biological replicates <1% of the phosphopeptides identified were 

phosphorylated on tyrosine residues. These data suggest that the phosphoenrichment 

worked despite the obvious fact that a large number of non-modified peptides remain.

Table 5.3. The number of peptides identified in 2 biological replicates. Peptides had a 

mascot score s25 and had a ratio between the SILAC sates generated. Starting 

material refers to the total amount of protein trypsin digested in the biological 

replicate

Replicate 1 2

Starting Material 2mg 4mg

Total peptides 7606 13499

Unique 4513 7990

ST total 1261 1378

ST unique 1227 840

Y total 5 5

Y unique 5 5



A large number of phosphopeptides were identified in each biological replicate. The 

LTQ Orbitrap identified in total 1232 and 845 unique phosphopeptides in terms of 

peptide sequence and phosphorylation site from each biological replicate respectively. 

There was an overlap between samples with 414 unique phosphopeptides with 

identical peptide sequence and phosphorylation site identified (fig. 5.8.). Therefore, a 

total of 1663 unique phosphopeptides were identified in total.

8 1 8 4 3 14 1 4

Figure 5.8. Venn diagram of phosphopeptides identified with unique sequence and 

site of modification. In the 2 biological replicates a total o f 1232 and 845 unique 

phosphopeptides were identified with a Mascot score ^25 and a SILAC ratio 

generated. 414 phosphopeptides were identified in both biological replicates.

5.2.5. Analysis of Phosphopeptides For Novel Phosphorylation Sites

The 414 phosphopeptides identified as being present in both biological replicates 

were examined further to determine if the observed post-translational modifications 

had been previously reported. The bio-informatic software MaxQuant generates data 

tables and one column is labelled 'Known Site'. This column indicates if the site has 

been previously reported to be phosphorylated. O f the 414 phosphopeptides 203 

peptides were identified as phosphorylated on serine, 24 on threonine and 2 on 

tyrosine. Therefore, 185 phosphopeptides were classed as having a previously 

unreported phosphorylation site. In order to determine if any of these phosphorylation 

sites were novel the current canonical sequence and post translational modification 

status of each protein was examined using the protein database Uniprot 

(www.uniprot.oru accessed 02-04-2012). Of the 185 phosphorylation sites 56 were



identified as not currently having experimental evidence to demonstrate

phosphorylation i.e. 129 were listed on Uniprot as having been observed

experimentally (table 5.4).

These 56 phosphopeptides can be split into phosphosites that have been predicted ‘by 

similarity’ (due to similarity with homologous sites on other proteins or species) and 

those that are not listed on Uniprot at present. 10 (of the 56) phosphopeptides gave 

experimental validation of ‘by similarity’ predicted sites whilst 46 peptides gave 

evidence for previously unknown post-translational modifications. The novel nature 

of these phosphorylation sites means that as they have not been elucidated 

experimentally previously it is impossible to validate them using antibodies as none 

are commercially available. However, the probability o f the correct site of 

phosphorylation is calculated by the software and is shown in table 5.5. The majority 

(37/46, 80%), of phosphorylation sites were identified in both biological replicates 

with a probability of ^0.9 indicating there is confidence in the identification of the 

phosphorylation site on these peptides. Indeed, for 13 of the phosphopeptides the 

probability of the phosphorylation site was 1, i.e. unequivocal, in both biological 

replicates. However, there was equivocal data on the phosphorylation site on 9 

phosphopeptides (table 5.5). Therefore, for 37 phosphopeptides there is a high 

confidence in these data due to a high mascot score and phosphorylation site location 

probability



Table 5.4. Phosphopeptides identified in both replicates that are currently listed, on 

Uniprot.org (accessed 02/04/12), as not having experimental evidence to demonstrate 

post-translational modification at these phosphorylation sites. Some sites are listed as 

‘by similarity’ as they have been predicted due to similarity to other sites or species. 

Mascot scores are listed to indicate probability of correct identification.

Gene Sequence and Phosphorylation site Amino
Acid

Position

Site known on 
Uniprot

Mascot Score from 
Replicate

1 2

Map4 AAVGVTGNDITT(ph)PPNK 658 Not listed 52.63 54

Pal AEEEGKGS(ph)QEEAGR 53 Not listed 55.03 51.41

Anln AS(ph)SPVTAATFITENR 292 Not listed 34.63 64.27

Mcphl ASSFYGSAS(ph)PNHLR 273 Not listed 43.29 35.01

Hirip3 AVES(ph)TDEDHQTDLDAK 134 Not listed 36.12 45.56

Flna C(me)GQSAAVAS(ph)PGGSIDSR 16 Not listed 53.4 41.72

Larpl ES(ph)PRPPAAAEAPAGSDGEDGGR 335 By similarity 47.37 46.24

Sntb2 GPAGEAS(ph)ASPPVR 88 Not listed 36.99 38.41

Gtf2fl GTSRPGTPS(ph)AEAASTSSTLR 391 By similarity 43.03 35.53

Kiaa0913 HTGMASIDSSAPETTSDSS(ph)PTLSR 1158 Not listed 39.97 60.26

Tdpl HV SS(ph)PDVTTAQK 119 Not listed 32.78 32.9

Ralbpl IAQEIASLS(ph)KEDVSK 463 By similarity 48.23 52.17

Fzrl INENEKS(ph)PSQNR 72 Not listed 35.33 36.45

Myo9b KETPS(ph)PEMETAAQK 1142 Not listed 36.71 30.67

Spg20 KS(ph)PEQESV STAPQR 126 Not listed 39.11 51.42

Camsap2 LDGES(ph)DKEQFDDDQK 1137 Not listed 42.61 35.62

Speccl LGSSPTS(ph)SC(me)NPTPTK 136 Not listed 31.81 27.02

Rg9mtd2 LGTS(ph)DGEEER 24 Not listed 58.13 25.1

Thumpd2 LLQGS(ph)PEQGEAVTR 172 Not listed 35.55 40.41

Ranbp2 LNSNNSAS(ph)PHR 837 Not listed 40.56 51.76

Ppfibpl LPTKPETS(ph)FEEGDGR 417 Not listed 28.15 30.17

Tp53bpl LPTSEEERS(ph)PAK 1675 By similarity 25.34 25.63

Usp32 LSN S(ph)KENLDTSK 1423 Not listed 28.62 35.16

Zc3hl3 NTEEPSS(ph)PVRK 110 Not listed 32.47 32.42

Phf3 NTVDIVDKPENS(ph)PQR 377 Not listed 50.04 50.63

Filip 11 PAS(ph)PSAPLQDNR 1080 Not listed 59.06 41.67

Irsl PASVDGSPV S(ph)PSTNR 343 By similarity 27.92 42.29

Larpl PATGISQPPTT (ph)PTGQATR 1315 Not listed 48.09 40.79

Chtfl8 PC(me)PAG S(ph)PGN VNR 70 Not listed 43.42 38.29

Gigyf2 PGTPS(ph)DHQPQEATQFER 385 Not listed 64.14 47.33

Bopl PHMS(ph)PASLPGK 11 Not listed 32.9 28.18



Zc3hlla PLSSSSVLQES(ph)PTK 677 Not listed 67.72 34.78

Affl P V GNISH S(ph)PK 140 Not listed 35.66 31.23

Sosl RPESAPAESS(ph)PSK 1153 Not listed 35.23 42.41

Rbmxrt RSTPS(ph)GPVR 165 Not listed 53.29 40.18

Srrm2 RVPS(ph)PTPVPK 2535 Not listed 30.7 47.53

Kiaa0284 S(ph)GRSPEPDPAPPK 840 Not listed 33.59 25.25

Bag3 S(ph)GTPVHC(me)PSPIR 289 Not listed 42.66 40.41

Sqstm 1 S(ph)RLTPTTPESSSTGTEDK 266 By similarity 69.05 74.88

FralOacl S(ph)RSPPSEEASK 248 Not listed 43.14 33.29

Anln SC(me)TKPS(ph)PSK 66 Not listed 29.48 28.03

Birc6 SDS(ph)VTGHTSQK 465 Not listed 25.93 37.29

Srrm2 SESDSSPDS(ph)KPK 1521 Not listed 48.28 35.64

Larp4 SNAVS(ph)PTR 642 By similarity 28.32 25.02

FralOacl SRS(ph)PPSEEASK 250 Not listed 43.14 33.29

Chd8 T(ph)ASPSPLRPDAPVEK 1995 By similarity 25.73 27.58

Api5 TSEDTSS(ph)GSPPKK 462 By similarity 41.21 57.63

Papola TSS(ph)PNKEESPK 648 Not listed 26.95 31.16

Prrc2b TTHASSDGPET(ph)PSK 823 Not listed 25.72 29.61

Phldb2 TTPSLS(ph)PHFSSATMGR 958 By similarity 32.55 48.44

Cbx8 VDDKPSS(ph)PGDSSK 164 Not listed 47.38 33

Hdgfrp2 VMTVTA VTTT ATS(ph)DR 137 Not listed 76.11 51.2

Dnmtl VPALAS(ph)PAGSLPDHVR 15 Not listed 36.18 56.18

Arppl9 VT (ph)SPEKAEE AK 22 Not listed 34.2 28.94

Arppl9 VTS(ph)PEKAEEAK 23 Not listed 34.2 28.94

Anapcl VTS(ph)TPQKPQAEQEENR 901 Not listed 52.09 26.45



Table 5.5. Probabilities of phosphopeptides identified in both replicates that are not 

currently listed, on Uniprot.org (accessed 02/04/12), as not phosphorylated at these 

sites. Underlined phosphopeptides indicate a high probability of correct 

phosphorylation site identification.

Sequence and 
Phosphorylation site

Gene Phosphorylation Site Probabilities

1 2

AAV G VTGNDITT ( dMPPN 
K

Map4 AAVGVTGNDIT(0.07)T(0.93)P
PNK

AAVGVTGNDIT(0.01 )T(0.99)P 
PNK

AEEEGKGSf ohlOEE AGR Pal AEEEGKGS( 1)QEEAGR AEEEGKGS( 1 )QEEAGR

AS(ph)SPVTAATFITENR Anln AS(0.5)S(0.5)PVTAATFITENR AS(0.5)S(0.5)PVTAATFITENR

ASSFYGSASfDhlPNHLR Mcphl ASSFY GS(0.001 )AS(0.999)PNH 
LR

ASSFYGS(0.078)AS(0.922)PNH
LR

AVESfDhlTDEDHOTDLDA
K

Hirip3 AVES(0.994)T(0.006)DEDHQT
DLDAK

AVES(0.997)T(0.003)DEDHQT
DLDAK

C( melGOSAA VASt dMPGG 
SIDSR

Flna CGQSAA VAS( 1 )PGGSIDSR CGQSAA VAS(0.903)PGG 
S(0.097)IDSR

GPAGEAStohlASPPVR Sntb2 GPAGEAS(0.994)AS(0.006)PPV
R

GPAGEAS(0.992)AS(0.008)PPV
R

HTGMASIDSSAPETTSDSS
(ph)PTLSR

Kiaa0913 HTGMASIDSSAPETTS(0.001 )D 
S(0.16)S(0.82)PT(0.019)L 

S(0.001)R

HTGMASIDSSAPETTSD 
S(0.007)S(0.993)PT(0.001 )LSR

HVSStphlPDVTTAOK Tdpl HVS(0.044)S(0.956)PDVTTAQ
K

H V S(0.004)S(0.996)PD VTTAQ 
K

INENEKS(ph)PSQNR Fzrl INENEKS(0.961)PS(0.039)QNR INENEKS(0.5)PS(0.5)QNR

KETPSt ohlPEMETAAOK Myo9b K£TPS( 1 )PEMETAAQK KETPS( 1 )PEMETAAQK

KS( dMPEOES V ST APOR Spg20 KS( 1)PEQESVSTAPQR KS( 1 )PEQESVSTAPQR

LDGESIdMDKEOFDDDOK Camsap2 LDGES( 1 )DKEQFDDDQK LDGES(1)DKEQFDDDQK

LGSSPTS(ph)SC(me)NPTP
TK

Speccl LGS(0.014)S(0.098)PT(0.098) 
S(0.771 )S(0.014)CNPT(0.002)PT 

(0.002)K

LGS(0.019)S(0.025)PT(0.106) 
S(0.712)S(0.106)CNPT(0.025)P 

T(0.006)K

LGTSt dMDGEEER Rg9mtd2 LGTS( 1 )DGEEER LGTS( 1 )DGEEER

LLOGSfDhlPEOGEAVTR Thumpd2 LLQGS( 1)PEQGEAVTR LLQGS( 1 )PEQGEA VTR

LNSNNSASfohlPHR Ranbp2 LNSNNS(0.005)AS(0.995)PHR LNSNNS(0.002)AS(0.998)PHR

LPTKPETSfohlFEEGDGR Ppfibpl LPTKPET(0.08)S(0.92)FEEGDG
R

LPTKPET(0.068)S(0.932)FEEG
DGR

LSNSf dMKENLDTSK Usp32 LSNS( 1 )KENLDTSK LSNS( 1 )KENLDTSK

NTEEPSSt dMPVRK Zc3hl3 NTEEPS(0.005)S(0.995)PVRK NTEEPS(0.057)S(0.943)PVRK

NT VDIVDKPEN St dMPOR Phf3 NT VDIVDKPEN S( 1 )PQR NTVDI VDKPEN S( 1 )PQR

PAS( DhlPS APLODNR Filip 11 PAS(0.994)PS(0.006)APLQDNR PAS( 1 )PSAPLQDNR

PAT GISOPPTT tDhlPT GOA 
TR

Larpl PATGISQPPT(0.066)T(0.928)PT 
(0.005)GQATR

PATGISQPPT(0.001)T(0.908)PT
(0.091)GQATR

PCI mê PAGSf ohlPGNVNR Chtfl 8 PCPAGS( 1 )PGN VNR PCPAGS( 1 )PGN VNR

PGTPSt DhlDHOPOEATOFE Gigyf2 PGT(0.062)PS(0.938)DHQPQEA PGT(0.084)PS(0.916)DHQPQE



R TQFER ATQFER

PHMS(ph)PASLPGK Bopl PHMS( 1 )PASLPGK PHMS(0.5)PAS(0.5)LPGK

PLSSSSVLOESfohlPTK Zc3hlla PLSSSSVLQES(0.997)P
T(0.003)K

PLSSSSVLQES(0.996)P
T(0.004)K

PVGNISHSfohlPK Affl PVGNISHS(1)PK PVGNISHS(1)PK

RPESAPAESS(ph)PSK Sosl RPESAPAES(0.054)S(0.892)P
S(0.054)K

RPESAPAES(0.084)S(0.915)P 
S(0.001)K

RSTPSf dMGPVR Rbmxrt RSTPS(1)GPVR RST(0.001 )PS(0.999)GPVR

RVPSC dMPTPVPK Srrm2 RVPS( 1 )PTPVPK RVPS( 1 )PTP VPK

S(ph)GRSPEPDPAPPK Kiaa0284 S(0.86)GRS(0.14)PEPDPAPPK S(0.84)GRS(0.16)PEPDPAPPK

S(ph)GTPVHC(me)PSPIR Bag3 S(0.827)GT(0.173 )PVHCPSPIR S(0.827)GT(0.173)PVHCPSPIR

SfohlRSPPSEEASK FralOacl S(0.935)RS(0.065)PPSEEASK S(0.919)RS(0.081 )PPSEEASK

SCfmelTKPSlDhlPSK Anln SCTKPS(1)PSK SCTKPS(1)PSK

SDSfohWTGHTSOK Birc6 S(0.026)DS(0.974)VTGHTSQK S(0.024)DS(0.976)VTGHTSQK

SESDSSPDSIdMKPK Srrm2 SESDSSPDS( 1 )KPK SESDSSPDS( 1 )KPK

SRSfDh)PPSEEASK FralOacl S(0.001 )RS(0.996)PPS(0.003)EE 
ASK

S(0.022)RS(0.975)PPS(0.002)EE
ASK

TSS1 ohlPNKEESPK Papola TSS( 1 )PNKEESPK T(0.002)S(0.007)S(0.991 )PN KE 
ESPK

TTHASSDGPETlohlPSK Prrc2b TTHASS(0.007)DGPET(0.993)P
S(0.001)K

TTHASSDGPET (1 )PSK

VDDKPSSfohlPGDSSK Cbx8 VDDKPS(0.004)S(0.996)PGDSS
K

VDDKPS(0.008)S(0.992)PGDSS
K

VMTVTA VTTT ATSf dMDR Hdgfirp2 VMTVTA VTTT AT(0.003) 
S(0.997)DR

VMTVTA VTTTAT(0.004) 
S(0.996)DR

VP ALA Si nh 1PAGSLPDHV 
R

Dnmtl VPALAS(0.993)P AGS(0.007)LP 
DHVR

VPALAS(0.999)PAGS(0.001 )LP 
DHVR

VTlDhlSPEKAEEAK Arppl9 VT(0.929)S(0.071 )PEKAEEAK VT(0.955)S(0.045)PEKAEEAK

VTSt DhtPEKAEE AK Arppl9 VT(0.045)S(0.955)PEKAEEAK VT(0.045)S(0.955)PEKAEEAK

VTS(ph)TPQKPQAEQEEN
R

Anapcl VT(0.123)S(0.754)T(0.123)PQK 
PQAEQEENR

VT(0.098)S(0.805)T(0.098)PQK
PQAEQEENR



5.2.6. Analysis of Phosphopeptide Motifs

Enzymes classed as kinases carry out phosphorylation of proteins. Kinases recognise 

amino acid sequences on their target that direct the phosphorylation of the site. The 

analysis of previously determined substrates of kinases has led to consensus 

sequences recognised by a given kinase. These amino acid sequences are termed 

motifs. The knowledge of the motif can be utilised to predict phosphorylation sites or 

the kinase responsible for a given phosphorylation. However, by analysing sequence 

alone they do not take into account secondary or tertiary structures present in the 

protein. Thus, the 3 dimensional structure of the protein is critical and caution is 

required if extrapolating kinase activity from amino acid sequence alone (Kennedy & 

Krebs 1991).

Despite this the simplicity of the consensus sequence of the motifs have made them 

useful tools in the study of kinases and prediction of their substrates. For example, in 

the case of ERK (MAPK) the motif required, as a minimum, for kinase activity is a 

serine or threonine residue followed by a proline at the C-terminal side (S/TP). 

However, a proline residue is often found at the -2 position. Thus, the optimum motif 

for ERK2 is PXS/TP, where X is any amino acid residue (Davis 1993).

The site of phosphorylation and its relationship to the amino acid sequence of 

identified phosphopeptides is analysed by the MaxQuant software in order to give a 

predicted kinase. This information is presented as a ‘best m otif. Thus, the analysis of 

probable kinases acting on the phosphopeptides identified might yield information 

regarding the effect of oxysterol treatment on certain enzymes and pathways. From 

the datasets a large number of different kinases were identified as being probable 

enzymes for the phosphorylation sites identified (table 5.6).



Table 5.6. Frequency of phosphopeptide ‘best m otif in each biological replicate.

Biological replicate

Best Motif 1 2

CAMK2 56 45

CDK1 46 37

CDK2 94 71

CHK1/2 19 10

CK1 116 75

CK2 163 68

ERK/MAPK 43 34

FHA KAPP 14 13

GSK3 41 27

NEK6 35 27

PKA 115 69

PKA/AKT 78 52

PKC 1 1

PKD 15 15

Polo box 47 41

WW GroupIV 75 69

Other 56 33

None 218 158

Therefore, in order to examine if  there were any correlation between oxysterol 

treatment and changes in kinase/phosphatase activity the 6 most abundant motifs were 

examined in order to determine if they had a normal distribution when analysed with 

the SILAC ratio. The 6 best motifs analysed were CDK2, CK1, CK2, PKA, 

PKA/AKT, WW GroupIV (fig 5.9.). In addition, ERK/MAPK was analysed. The 

SILAC ratio had a normal distribution when plotted for the phosphopeptides 

identified with each motif. Therefore the data suggest that for peptides with these 

motifs the treatment with 24(5),25-epoxycholsterol are not having an effect on these



kinases. If the oxysterol was inducing changes in the phosphorylation a skewed 

distribution would be apparent.
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Figure 5.9. Distribution of phosphopeptide ‘best m otif with SILAC ratio. Graphs 

indicate the distribution of motifs in the first (A) and second (B) biological replicate. 

Both biological replicates showed a normal distribution of the most abundant ‘best’ 

phospho motifs when plotted against un-normalised SILAC ratio after 24CS),25- 

epoxycholesterol treatment. These data suggest no effect o f the oxysterols on these 

kinases. The median un-normalised SILAC ratio value for total peptides after 

24(5),25-epoxycholesterol treatment was 0.59 and 0.81 respectively for the two 

biological treatments (15.87 percentile = 0.50 and 0.69 respectively, 84.13 percentile 

= 0.66 and 0.95 respectively).

5.2.7. Quantitative Analysis of Chanties in Phosphorylation

As the samples were SILAC labelled this allowed the analysis of quantitative changes 

in the phosphorylation status o f the SN4741 cells upon treatment with 25- 

hydroxycholesterol and 24(5),25-epoxycholesterol. Thus, in order to elucidate



reproducible changes in the phosphoproteome the data sets were examined for

phosphopeptides reproducibly identified by the SILAC labelling as up or down

regulated.

Due to the fact that phosphorylation in signalling pathways is transient and occurs 

without a change in total protein expression individual phosphopeptides were 

analysed instead of the overall protein expression in order to examine the 

phosphorylation state of the SN4741 cells. To this end, peptides common to both 

biological replicates with a Mascot score ^25 and a SILAC ratio were examined for 

reproducible up or down regulation of the phosphopeptides. The un-normalised 

SILAC ratio was used for analysis. The median un-normalised SILAC ratio value 

after 25-hydroxycholesterol treatment (i.e. 25-hydroxycholesterol:control) was 0.66 

and 0.75 respectively for the two biological treatments. The 15.87 percentile figure 

which gives an estimation of the standard deviation gave values of 0.53 and 0.61 for 

the 2 biological replicates. After 24(5),25-epoxycholesterol treatment the median un- 

normalised SILAC ratio value was 0.59 and 0.81 respectively for the 2 biological 

replicates. The 15.87 percentile figure was 0.50 and 0.69 respectively.



Table 5.7. Median SILAC un-normalised ratios for the 2 phosphoproteomic data sets. 

The median un-normalised 25-hydroxycholesterol:control and 24(5),25- 

epoxy cholesterol:control ratios are shown as well as the 15.87 and 84.13 percentile 

ranges for the data.

Ratio 25-OHChol :Control Ratio 245,25-EC :Control

Median 15.87
Percentile

84.13
Percentile

Median 15.87
Percentile

84.13
Percentile

Replicate

1 0.66 0.53 0.77 0.59 0.50 0.66

2 0.75 0.61 0.93 0.81 0.69 0.95

A number of phosphopeptides were identified as being up or down regulated after 

treatment with 25-hydroxycholesterol or 24(5),25-epoxycholesterol. In total 87 unique 

peptides were identified as up-regulated and 65 down-regulated after treatment with 

25-hydroxycholesterol. 101 unique phosphopeptides were identified as up-regulated 

and 68  down-regulated after treatment with 24(5),25-epoxycholesterol (a complete list 

o f all phosphopeptides identified as changed is shown in appendix 3, appendix 4, 

appendix 5 and appendix 6 ). However, a number of these phosphopeptides had 

contradictory data between the 2 datasets. Therefore, these phosphopeptides were 

removed and the remaining peptides are shown below (tables 5.8, 5.9, 5.10, 5.11)



Table 5.8. Phosphopeptides identified as down-regulated after treatment with

24(5),25-epoxycholesterol (24(5),25-EC). Un-normalised SILAC phosphopeptide

ratios are displayed

Mascot Score Ratio Ratio

25-OHChol 24(iS),25-EC
:Control :Control

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

EEVAS(ph)EPEEAASPTTPK Nop56 IPI00318048 48.39 / 0.358 / 0.413 /

SQET(ph)PEKPR Msll IPI00110256 30.08 / 0.650 / 0.408 /
GEGERS(ph)DEENEEK Po!r3g IPI00463147 60.57 / 0.671 / 0.408 /

HS(ph)VTGYGDC(me)AAGAR Jub IPI00453693 35.36 / 0.440 / 0.404 /
GDVS(ph)EDEPSLGR Rnmt IPI00453849 32.67 / 0.598 / 0.400 /

RPMEEDGEEKSPS(ph)K I1G IPI00130591 34.61 / 0.410 / 0.400 /

RIS(ph)GLIYEETR
Histlh4

a IPI00623776 35.15 / 0.267 / 0.400 /

SRLTPT(ph)TPESSSTGTEDK Sqstml IPI00133374 69.05 / 0.392 / 0.398 /

ADS(ph)DSEDKGEESKPK Cbxl IPI00129466 40.05 / 0.347 / 0.393 /

NNVMT(ph )S PNVHL K. Cenpcl IPI00114808 34.17 / 0.284 / 0.390 /

GVQAGNSDT(ph)EGGQPGR Acini 1PI00121136 32.19 / 0.811 / 0.387 /

NGLSQPS(ph)EEEVDIPKPK Ddx21 IP100120691 42.24 / 0.323 / 0.384 /

LPSGSGPASPTT(ph)GSAVDIR Ahnak IPI00553798 65.09 / 0.339 / 0.378 /

GSGEASSDSIDHS(ph)PAK
Suv39h

2 IPI00111417 26.96 / 0.174 / 0.377 /

KTS(ph)LSDSTTSAYPGDAGK
Rab3ga

Pi IPI00749720 39.80 / 0.593 / 0.377 /

GHYEVTGS(ph)DDEAGK Ahnak IPI00553798 58.36 / 0.168 / 0.371 /

S(ph)ESSGNLPS V ADTR Akapl IPI00230591 29.82 / 0.390 / 0.371 /

SNS(ph)FSDER Ahnak IPI00553798 29.85 / 0.154 / 0.366 /

RLS(ph)QSDEDVIR Wdr26 IPI00226275 83.20 29.45 0.399 0.357 0.365 0.414

GGVTGSPEASLSGS(ph)KGDLK Ahnak IPI00553798 43.68 / 0.119 / 0.363 /

LPSDSSASPPLSQT(ph)TPNKDADD
QAR Eya3 IPI00411085 40.03 / 0.518 / 0.348 /

S(ph)PSRPLPEVTDEYK Ssb 1PI00134300 26.42 / 0.551 / 0.346 /

GGVTGSPEAS(ph)ISGSK.GDLK Ahnak IP100553798 43.68 / 0.135 / 0.346 /

AS(ph)AVSPEKAPM(ox)TSK Tcofl IPI00115660 34.02 / 0.345 / 0.346 /

DSVPAS(ph)PGVPAADFPAETEQS
KPSK Top2a IPI00122223 25.31 / 0.116 / 0.342 /

KGDDS(ph)DEEDLC(me)J SNK Stardl3 IPI00857002 57.82 / 0.027 / 0.317 /

S(ph)SPPVEHPAGTSTTDNDVIIR Rail 4 IPI00453820 35.31 / 0.170 / 0.308 /

GDQVSQNGLPAEQGS(ph)PR Sptbnl IPI00319830 58.12 / 0.654 / 0.208 /



SHS(ph)LDDLQGDADVGK Sashl IPI00338954 / 58.75 / 0.525 / 0.538

LESHGSS(ph)EESLQVQEK Vcan IPI00875672 / 42.02 / 0.497 / 0.535

ANTSS(ph)DLEKDDDAYK Ranbp2 IP100337844 / 40.08 / 0.436 / 0.533

MSPNETLFLES(ph)TNK Rragc IPI00468702 / 32.32 / 0.407 / 0.530

AES(ph)PETSAVESTQSTPQK. Pds5b IPI00845638 41.44 63.25 0.594 0.288 0.437 0.520

LEPAPLDSS(ph)PAVSTHEGSK Renbp IPIOO124826 / 31.06 / 0.584 / 0.515

(ac)S(ph)ET APV AQAASTATEKPAA 
AK

Histlhl
a IPI00228616 / 53.02 / 0.439 / 0.514

PQSP VIQ AT AGS(ph)PK Arfgef2 IPIOO 13 7087 / 41.94 / 0.350 / 0.511

VS(ph)PVPSPSQPAR Micall IPIOO116371 / 25.71 / 0.435 / 0.486

IDQGS(ph)HTAGESSTR Tdpl IPI00222253 / 34.56 / 0.416 / 0.476

S(ph)PASTSSVNGTPGSQLSTPR Dclkl IPI00468380 / 43.36 / 0.459 / 0.472

AQGHS(ph)PVNGLLK Ccnl2 IPI00310772 / 25.94 / 0.493 / 0.464

HNS(ph)TTSSTSSGGYR Abil IPI00798483 / 57.32 / 0.536 / 0.443

TASRPEDTPDSPSGPSS(ph)PK Lrrcl6a IPI00474873 / 46.92 / 0.216 / 0.439

AGYTT(ph)DESSSSSLHTTR Fxr2 IPIOO126389 / 38.76 / 0.551 / 0.358

LYNSEESRPYT(ph)NK Crkrs IPI00648022 / 49.10 / 0.205 / 0.338

PQSAS(ph)PAKEEQK Palm IPIOO 129298 / 30.20 / 0.390 / 0.196



Table 5.9. Phosphopeptides identified as up-regulated after treatment with 24(5),25-

epoxycholesterol (24(5),25-EC). Un-normalised SILAC phosphopeptide ratios are

displayed

Mascot Score Ratio

25-OHChol
:Control

Ratio

24(5),25-EC
rControl

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

KDS(ph)ISEDEMVLR Wdtcl IPIOO108450 43.30 / 0.82 / 1.66 /

GGIDNPAIT(ph)SDQEVDDKK
Arhgap

5 IPIOO124298 40.63 / 0.92 / 1.13 /
KQIT(ph)VEELVR Plecl IPI00400215 38.61 / 0.62 / 1.07 /

PTGGLRDS(ph)EAEK Hirip3 IPI00222813 29.49 / 1.03 / 1.06 /
DELADElANSS(ph)GK Myh9 IPIOO 123181 29.65 / 1.17 / 0.97 /

GPEVEGS(ph)PVSEALR Brwdl IPI00654074 37.76 / 0.55 / 0.95 /

LLQDSSS(ph)PVDLAK Ncoa2 IPIOO 116968 29.72 / 1.12 / 0.92 /

IKPDEDLPS(ph)PGSR Gli3 IPIOO123429 42.62 / 0.78 / 0.91 /

IKDPDLT(ph)TPDSK Ckap2 IPI00470092 44.82 / 0.79 / 0.85 /

SEVQAHS(ph)PSR Mtap2 IPI00895965 31.21 / 0.91 / 0.85 /

ADS(ph)PAGLEAAR
Kiaa028

4 IP100380953 35.46 / 0.78 / 0.84 /

GGSS(ph)EELHDSPR Hdgfip2 IPIOO116442 34.55 / 0.74 / 0.81 /

ASS(ph)EDTLNKPGSASSGVAR Speccl IPI00798550 33.64 / 0.89 / 0.80 /

KGS(ph)LDYLK Luzpl IPI00322204 30.67 / 0.71 / 0.80 /

HGPAQAVTGTSVTS(ph)PIK Ccnt2 IPI00654257 47.80 / 0.74 / 0.79 /

NS(ph)PNNISGISNPPGTPR Ssbp3 IPI00341944 51.85 / 0.82 / 0.79 /

KLS(ph)SGDLR Phldbl IPI00330246 30.55 / 0.68 / 0.79 /

RAS(ph)LSDIGFGK Pctk3 IP100111168 49.16 / 0.60 / 0.78 /

IKDPDLTT(ph)PDSK Ckap2 IPI00470092 44.82 / 0.95 / 0.78 /

K.GT (ph)GDC(me)SDEE VDGK Myh9 IPI00123181 49.18 / 0.84 / 0.78 /

SQDAT V S(ph)PGSEQSEK Zc3hcl IPI00465879 50.16 / 0.53 / 0.78 /

GQGT(ph)PPSGPGVGR Wbp7 IPI00857289 27.74 / 0.61 / 0.77 /

QESLKS(ph)PEEEDQQAFR Nes IPI00453692 36.61 / 0.67 / 0.76 /

TQSSS(ph)C(me)EDLPSTTOPK Cask IPI00776341 25.68 / 0.46 / 0.76 /

RFS(ph)M(ox)EDLNK Pctk3 IPI00111168 47.88 / 0.69 / 0.76 /

DDISEIQSLASDHS(ph)GR Tjpl IPIOO135971 31.83 / 0.57 / 0.76 /

C(me)IFMSETQS S(ph)PTK Pias2 IPI00453655 30.79 / 0.47 / 0.75 /
QDVDNAS(ph)LAR Vim IPI00227299 31.40 / 0.72 / 0.75 /

QEFSS(ph)EEMTK Vcaml IP100126834 25.88 / 0.83 / 0.74 /
(ac)SDQEAKPST(ph)EDLGDKK Sumol IPIOO124593 33.58 / 0.78 / 0.73 /



DC(me)AKS(ph)DDEESLTLPEK Nfkbl IPI00719890 52.31 / 0.80 / 0.73 /

PAVVS(ph)PLSLSTEAR Crtcl IPI00469761 43.71 / 0.80 / 0.73 /

YVSGSS(ph)PDLVTR Ptpnl4 IPI00122168 49.84 / 0.73 / 0.73 /

ASPDQNASTHT(ph)PQSSAK Clintl IPI00648186 34.63 / 0.78 / 0.73 /

SSGSLS(ph)PGLETEDPLEAR
Tnkslb

Pi IPI00459443 36.91 / 0.68 / 0.73 /

TASESISNLSEAGS(ph)VK Clipl IPI00857273 31.00 / 0.98 / 0.72 /

AQTPESC(me)GSVT(ph)PER Filip 11 IPI00755058 30.92 / 0.94 / 0.72 /

SAT(ph)LETKPESK Ifngrl IPI00323231 25.38 / 0.64 / 0.72 /

SDEEDRAS(ph)EPK Zc3hl8 IPI00673693 27.94 / 0.79 / 0.72 /

VEESSEIS(ph)PEPK Uspl IPI00330276 40.56 / 0.57 / 0.72 /

S(ph)LEGENHDPLSSWK Nes IPI00453692 45.85 / 0.68 / 0.72 /

MHASSTGSS(ph)C(me)DLSK Cdgap IP100125505 27.19 / 0.54 / 0.72 /

AKT(ph)PVTLK Tmpo IPI00828976 41.32 / 0.58 / 0.72 /

SSS(ph)FGSVSTSSTSSK Snxl6 IPI00331029 / 54.62 / 1.42 / 5.00

SGFGGMSS(ph)PVlR Nupl07 IPI00221767 / 40.37 / 2.57 / 2.07

TEEDRENTQIDDTEPLS(ph)PVSNS
K

Trp53bp
1 IP100229801 / 28.80 / 2.58 / 1.90

SEDRPS(ph)SPQVSVAAVETK
Trp53bp

1 1PI00229801 / 48.56 / 2.07 / 1.70

PAS(ph)PLSGPR
D2Wsu

81e 1PI00224127 / 29.84 / 1.80 / 1.65

GEVAPKET(ph)PKK
Marcksl

1 IPI00281011 / 26.82 / 2.27 / 1.65

TVGNVS(ph)PTAQMVQR Rbm7 1PI00133061 / 28.20 / 1.41 / 1.65

LHSAQLS(ph)PVDETPATQSQLK Mlfl ip 1P100459115 / 36.63 / 1.95 / 1.62

QEGAQENVKNS(ph)PVPR Gmnn IPI00131716 / 30.64 / 2.56 / 1.60

TTS(ph)PDLFESQSLTSASSK Epo2 IPI00336844 / 27.33 / 1.25 / 1.55

AGS(ph)SPTQGAQNEAPR Tcf20 IPI00407458 / 30.95 / 1.46 / 1.51

AS(ph)SHSSQSQGGGSVTK Lmna IPI00620256 / 58.67 / 2.60 / 1.51

C(me)QETESNEEQSIS(ph)PEKR Akapl2 IPIOO 123709 / 85.89 / 1.19 / 1.49

LATSS(ph)PEQSWPSTFK Pml IPI00229072 / 29.49 / 1.18 / 1.43

KQNET ADEAT(ph)TPQAK Nolcl IPI00720058 / 43.74 / 1.50 / 1.42

EIITEEPS(ph)EEEADMPKPK Ddx21 IPIOO120691 / 31.38 / 1.69 / 1.38

AEEDEILNRS(ph)PR Canx IPIOO119618 / 25.35 / 1.51 / 1.35

GPEVTSQGVQTSS(ph)PAC(me)K Atxn2 IPIOO117229 / 25.10 / 1.07 / 1.30

ASGQAFELILS(ph)PR Stmnl IPI00551236 / 30.07 / 0.87 / 1.30

AVGEEQRS(ph)EEPK Akapl2 IPIOO123709 / 31.72 / 1.15 / 1.30



Table 5.10. Phosphopeptides identified as down-regulated after treatment with 25-

hydroxycholesterol (25-OHChol). Un-normalised SILAC phosphopeptide ratios are

displayed

Mascot Score Ratio Ratio

25-OHChol 24(S),25-EC
:Control rControl

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

SPDEATAADQES(ph)EDDLSASR Farpl IPI00356904 26.44 / 0.349 / 0.465 /
TEEVLSPDGSPSKS(ph)PSK Add3 IPI00387580 38.11 / 0.349 / 0.439 /
ADS(ph)DSEDKGEESKPK Cbxl IPIOO129466 40.05 / 0.347 / 0.393 /

EELEQQT(ph)DGDC(me)DEEDDDK
DGEVPK Sec62 IPI00134398 57.28 / 0.346 / 0.532 /

EDAPPEDKES(ph)ESEAK Cds2 IPI00468999 26.03 / 0.346 / 0.594 /

ERQES(ph)ESEQELVNK Pdcdll IPI00551454 39.77 / 0.345 / 0.560 /

AS(ph)AVSPEKAPM(ox)TSK Tcofl IPI00115660 34.02 / 0.345 / 0.346 /

ADS(ph)DSEDKGEESKPK Cbxl IPIOO129466 40.05 / 0.344 / 0.451 /

LPSGSGPASPTT(ph)GSAVDIR Ahnak IPI00553798 65.09 / 0.339 / 0.378 /

IGPLGLS(ph)PK Rpll2 IPI00463634 45.65 / 0.333 / 0.426 /

EIITEEPS(ph)EEEADM(ox)PKPK Ddx21 IP100120691 56.99 / 0.330 / 0.443 /

NGLSQPS(ph)EEEADIPKPK Ddx21 IPIOO 120691 36.77 / 0.325 / 0.431 /

NGLSQPS(ph)EEEVDIPKPK Ddx21 IPI00120691 42.24 / 0.323 / 0.384 /

NISEES(ph)PLTHR Pask IPI00400044 32.53 / 0.322 / 0.610 /

S(ph)PAKEPVEQPR Spen IPI00828562 25.27 / 0.321 / 0.464 /

RVSGS(ph)ATPNSEAPR Ddx51 IPI00396728 58.55 / 0.306 / 0.460 /

S(ph)HTGEAAAVR Bcl2113 IPI00321499 35.83 / 0.288 / 0.467 /

NNVMT(ph)SPNVHLK Cenpcl IPIOO114808 34.17 / 0.284 / 0.390 /

RVS(ph)GSATPNSEAPR Ddx51 IPI00396728 58.55 / 0.278 / 0.427 /

YLEIDS(ph)DEESR Sdadl IPI00387439 33.64 / 0.276 / 0.529 /

DDS(ph)GAEDNVDTHQQQAENST
VPTADSR Rspryl IPI00223590 27.35 / 0.275 / 0.445 /

LSQVNGATPVS(ph)PIEPESK.
Mybbpl

a IPI00331361 33.48 / 0.272 / 0.461 /

RIS(ph)GLIYEETR
Histlh4

a IPI00623776 35.15 / 0.267 / 0.400 /

GS(ph)HC(me)SGSGDPAEYNLR Lmna IPI00620256 32.11 / 0.257 / 0.488 /

LSQVNGAT(ph)PVSPIEPESK
Mybbpl

a IPI00331361 33.48 / 0.254 / 0.436 /

SST(ph)PLPTVSSSAENTR Tmpo IPI00896574 55.29 / 0.246 / 0.516 /
SPFNSPSPQDS(ph)PR Nfic IPIOO137501 40.52 / 0.213 / 0.435 /

GSGEASSDSIDHS(ph)PAK
Suv39h

2 IPI00111417 26.96 / 0.174 / 0.377 /



S(ph)SPP VEHPAGTSTTDND VIIR Rail4 IPI00453820 35.31 / 0.170 / 0.308 /

GHYEVTGS(ph)DDEAGK Ahnak IPI00553798 58.36 / 0.168 / 0.371 /

SNS(ph)FSDER Ahnak IPI00553798 29.85 / 0.154 / 0.366 /

GGVTGSPEAS(ph)ISGSKGDLK Ahnak IPI00553798 43.68 / 0.135 / 0.346 /

GGVTGSPEASISGS(ph)KGDLK Ahnak IPI00553798 43.68 / 0.119 / 0.363 /

DSVPAS(ph)PGVPAADFPAETEQS
KPSK Top2a IPIOO122223 25.31 / 0.116 / 0.342 /

SGAAEEDDS(ph)GVEVYYR Pdcdll IPI00551454 41.08 / 0.104 / 0.592 /

KGDDS(ph)DEEDLC(me)ISNK Stardl3 IPI00857002 57.82 / 0.027 / 0.317 /

MSPNETLFLES(ph)TNK Rragc IPI00468702 / 32.32 / 0.407 / 0.530

SPSPSPTS(ph)PGSLR Dclkl IPI00468380 / 51.87 / 0.398 / 0.582

PQSAS(ph)PAKEEQK Palm IPIOO129298 / 30.2 / 0.390 / 0.196

LS(ph)PAYSLGSLTGASPR Phldbl IPI00330246 / 34.03 / 0.369 / 0.573

SGTSTPTTPGSTAITPGT(ph)PPSYS
SR Mtap2 IPI00895463 / 69.16 / 0.360 / 0.661

TASRPEDTPDSPSGPSS(ph)PK Lrrcl6a IPI00474873 / 46.92 / 0.216 / 0.439

LYNSEESRPYT(ph)NK Crkrs IPI00648022 / 49.1 / 0.205 / 0.338



Table 5.11. Phosphopeptides identified as up-regulated after treatment with 25-

hydroxycholesterol (25-OHChol). Un-normalised SILAC phosphopeptide ratios are

displayed

Mascot Score Ratio Ratio

25-OHChol 24(£),25-EC
:Control :Control

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

HGS(ph)DPAFGPSPR Fam83h IPI00227516 28.43 / 1.795 / 0.658 /
DELADEIANSS(ph)GK Myh9 IPI00123181 29.65 / 1.166 / 0.970 /

S(ph)STSGSASSLESGVYR Gtsel IPI00268247 63.04 / 1.152 / 0.614 /
AQT(ph)PESC(me)GSVTPER Filipll IPI00755058 30.92 / 1.120 / 0.637 /

LLQDSSS(ph)PVDLAK Ncoa2 IPIOO 116968 29.72 / 1.118 / 0.919 /

RQS(ph)LTSPDSQSTR Herd IPI00676574 33.46 38.87 1.064 0.991 0.698 0.776

GS(ph)PEDGSHEASPLEGK Rbm20 IPI00849187 51.26 / 1.055 / 0.586 /

PTGGLRDS(ph)EAEK Hirip3 IPI00222813 29.49 / 1.035 / 1.064 /

KLEVS(ph)PGDEQSNVETR Gnl3 IPI00222461 73.45 / 0.988 / 0.431 /

TASESlSNLSEAGS(ph)VK Clipl IPI00857273 31 / 0.975 / 0.725 /

IKDPDLTT (ph)PDSK Ckap2 IPI00470092 44.82 / 0.954 / 0.782 /

AQTPESC(me)GSVT(ph)PER Filipll IPI00755058 30.92 / 0.944 / 0.724 /

GGlDNPAIT(ph)SDQEVDDKK
Arhgap

5 IPIOO 124298 40.63 / 0.924 / 1.125 /

SNS(ph)NSSSVITTEDNK Filipll IPI00755058 77.83 / 0.922 / 0.623 /

SEVQAHS(ph)PSR Mtap2 IPI00895965 31.21 / 0.907 / 0.849 /

TTSTSNPSS(ph)PAPDWYK Atrx IPI00857253 38.08 / 0.892 / 0.604 /

ASS(ph)EDTLNKPGSASSGVAR Speed IPI00798550 33.64 / 0.887 / 0.805 /

YMSSDTT(ph)SPELR Sin3a IPIOO117932 27.09 / 0.883 / 0.580 /

YIASVQGSAPS(ph)PR Ranbp2 IPI00337844 36.79 / 0.875 / 0.596 /

EKEEEETS(ph)PDTSIPR ArhgefS IPI00855144 48.09 / 0.868 / 0.565 /

AS(ph)SHSSQSQGGGSVTK Lmna IPI00620256 / 58.67 / 2.595 / 1.511

TEEDRENTQIDDTEPLS(ph)PVSNS
K

Trp53bp
1 IPI00229801 / 28.8 / 2.576 / 1.904

SGFGGMSS(ph)PVlR Nupl07 IPI00221767 / 40.37 / 2.574 / 2.074

QEGAQENVKNS(ph)PVPR Gmnn IPI00131716 / 30.64 / 2.565 / 1.603

GEVAPKET(ph)PRK
Marcksl

1 IPI00281011 / 26.82 / 2.274 / 1.651

SEDRPS(ph)SPQVSVAAVETK
Trp53bp

1 IPI00229801 / 48.56 / 2.071 / 1.704

LHSAQLS(ph)PVDETPATQSQLK Mlflip IPI00459115 / 36.63 / 1.947 / 1.619

PAS(ph)PLSGPR
D2Wsu

81e IPI00224127 / 29.84 / 1.802 / 1.652



T(ph)SMGGTQQQFVEGVR Ctnnbl IPI00125899 / 48.59 / 1.721 / 1.130

EIITEEPS(ph)EEEADMPKPK Ddx21 IPI00120691 / 31.38 / 1.693 / 1.383

HLFSS(ph)TENLAAR
Rabllfi

Pi IPI00169485 / 39.84 / 1.665 / 1.264

NWTEDIEGGISS(ph)PVK Nfic IPI00137501 / 32.95 / 1.656 / 1.073

TTVYYQS(ph)PLESKPR Atad2 IP100135252 / 41.56 / 1.532 / 1.139

T(ph)GSLQLSSTSIGTSSLK Coblll IPI00762331 / 31.52 / 1.526 / 0.746

AEEDEILNRS(ph)PR Canx IPI00119618 / 25.35 / 1.506 / 1.350

K.QNET ADE AT (ph)TPQ AK Nolcl IPI00720058 / 43.74 / 1.498 / 1.422

SRLTPTTPES(ph)SSTGTEDK Sqstml IPI00133374 / 74.88 / 1.485 / 0.733

IALESVGQPEEQMESGNC(me)S(ph)
GGDDDWTHLSSK Sqstml IPI00133374 / 27.33 / 1.471 / 0.787

AGS(ph)SPTQGAQNEAPR TcQO IPI00407458 / 30.95 / 1.457 / 1.514

KAPLTLAGS(ph)PTPK. Wiz IP100263016 / 39.77 / 1.455 / 1.147

KLDTFQSTS(ph)PK Ddx24 IPI00113576 / 27.61 / 1.453 / 1.063

SRLT(ph)PTTPESSSTGTEDK Sqstml IPI00133374 / 74.88 / 1.435 / 0.821

SSS(ph)FGSVSTSSTSSK Snxl6 1P100331029 / 54.62 / 1.416 / 4.998

TVGNVS(ph)PTAQMVQR Rbm7 IP100133061 / 28.2 / 1.414 / 1.646

SRLTPTT(ph)PESSSTGTEDK Sqstml IPI00133374 / 74.88 / 1.408 / 0.841

TEMDKS(ph)PFNSPSPQDSPR Nfic 1PI00137501 / 35.42 / 1.371 / 1.118



Removal of the phosphopeptides only identified in 1 biological replicate reduced the 

total number of phosphopeptides considerably. In total 2 phosphopeptides were 

identified as changed (1 down-regulated, and 1 up-regulated) in both biological 

replicates after treatment with 25-hydroxycholesterol (table 5.12.). In the case of these 

phosphopeptides they are in the lowest or highest 15.87 percentile range and thus can 

be considered greater than 1 standard deviation away from the median. The median 

ratio after 24(5),25-epoxycholesterol was 0.59 (15.87 percentile = 0.5) and 0.81 

(15.87 percentile = 0.69) for the two biological replicates respectively. Thus, only one 

peptide (RLS(ph)QSDEDVIR) was in the 15.87 percentile range in both biological 

replicates after treatment with 24(5),25-epoxy cholesterol. It is interesting to note that 

the protein from which this phosphopeptide is derived has been associated with 

MAPK signalling (Zhu et al. 2004). There is evidence that MAPK (AKA ERK) 

phosphorylation can be influenced by oxysterols and, in addition, ERK appears to 

have a role in dopaminergic neurogenesis (section 5.1).

Table 5.12. Phosphopeptides identified as having change in expression after treatment 

with 25-hydroxycholesterol (25-OHChol) or 24(5),25-epoxycholesterol (24(5),25- 

EC). All the peptides had a probability of identification of the correct phosphorylation 

site of ̂ 0.98. Un-normalised SILAC phosphopeptide ratios are displayed. Values in 

bold were classed as changed

Mascot Score Ratio

25-OHChol
:Control

Ratio

24(S),25-EC
:Control

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI Number

RLS(ph)QSDEDVIR Wdr26 IPI00226275 83.2 29.45 0.36 0.36 0.40 0.41

RQS(ph)LTSPDSQSTR Herd IPI00676574 33.46 38.87 1.06 0.99 0.69 0.77.



Both phosphopeptides identified as changed (table 5.12) have no commercially 

available antibodies it was impossible to validate these changes. This inability to 

reproduce the observed changes by a different technique is critical as when analysed 

as a population the ratio of the phosphopeptides that were identified in both biological 

replicates were variable (fig. 5.10). Indeed, in some cases the phosphopeptides 

identified when quantified changed in opposite directions. Points in the upper left 

quadrant of the graph represent phosphopeptides that have increased in one replicate 

and decreased in the other (fig. 5.10). Thus, despite strong evidence to suggest that the 

peptide identification and phosphorylation site is correct without further experimental 

evidence it is difficult to have certainty to the changes in the quantification of the 

phosphorylation.
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Figure 5.10. Poor correlation in peptide ratio between biological replicates. There is 

poor correlation in the ratios of the phosphopeptides common to both biological 

replicates after treatment with 25-hydroxycholesterol. The un-normalised ratio of the 

phosphopeptide (A) has a poor correlation with a number of peptides having opposite 

responses in a number of cases (top left quadrant). The normalised phosphopeptide 

ratios had a similar trend (B). Normalisation occurs in each experiment to take into 

account any error introduced by protein mixing. (C) As a contrast peptide ratios from 

2 biological replicates treated with 24(5'),25-epoxycholesterol and analysed for 

changes in protein expression (Chapter 3) showed a much better correlation in 

normalised peptide ratio between different biological samples.



5.2.8. Peptide Methvlation

In an attempt to increase the specificity of the IMAC by reducing non-specific 

binding peptide methylation was undertaken. To methylate acidic amino acids and the 

C-terminus carboxylic acid peptides were incubated with methanolic hydrochloric 

acid. This methylation would, in theory prevent non-specific binding to the IMAC 

column as the non-phosphate negatively charged acidic moieties are blocked by the 

methyl group. Therefore to examine this method 2.25mg of SILAC SN4741 lysate 

was fractioned using strong cation exchange, treated with methanolic acid, 

phosphoenriched using IMAC and analysed by LC-MS/MS. This resulted in a total of 

4510 peptides (2067 unique) being identified with a total Mascot score ^25 and a 

SILAC ratio generated. 1082 of these 4510 peptides were phosphorylated. In total 609 

unique phosphopeptides were identified. However, when examining peptide 

methylation only 716 of the total peptides were identified with a methylation either on 

an aspartic (D) or glutamic acid (E) residue or on the C-terminus. Of these only 425 

were unique peptides. In addition, often the same peptide was methylated in different 

and/or multiple places. For example the peptide ALAAAGYDVEK from Histone 

H I.2 has 3 potential methylation sites one aspartic acid residue (D), one glutamic acid 

residue (E) and the C-terminus. This peptide was identified with 5 different 

combinations of methylation (table 5.13.). The 5 peptides eluted from the Cl 8 column 

at different rates and therefore the total amount of peptide with the same amino acid 

sequence was split between the different retention times.



Table 5.13. Incomplete methylation increases complexity o f the peptide mixture. In

this example one peptide sequence was identified 5 times with different levels of

methylation

Peptide Sequence Mascot Score Retention Time

ALAAAGYD(me)VE(me)K_(me) 58.27 55.025

ALAAAGYDVE(me)K_(me) 50.81 51.578

ALAAAGYD(me)VEKJme) 34.84 50.173

ALAAAGYD(me)VE(me)K 41.49 52.224

ALAAAGYDVE(me)K 40.82 47.177

However, this dataset did contain some phosphopeptides and these were analysed to 

confirm the novel sites previously observed (table 5.5). Thus, analysis of the 609 

unique phosphopeptides allowed further confirmation of 5 novel phosphorylation sites 

(table 5.14).

Table 5.14. Phosphopeptides with a novel site of phosphorylation identified in 3 

independent experiments.

Sequence and 

Phosphorylation site

Gene Phosphorylation Site Probabilities Mascot Score

ASSFYGSAS(ph)PNHLR Mcphl ASSFYGS(0.007)AS(0.993)PNHLR 43.72

HVSS(ph)PDVTTAQK Tdpl HVS(0.054)S(0.946)PDVTTAQK 30.83

KS(ph)PEQESVSTAPQR Spg20 KS(0.999)PEQES(0.001)VSTAPQR 38.85

MTVDIVDKPEN S(ph)PQR PhD NTVDI VDKPENS( 1 )PQR 58.37

RSTPS(ph)GPVR Rbmxrt RSTPS( 1)GPVR 40.09



5.3. Discussion

The basis of these experiments was to identify changes in phosphorylation induced by 

oxysterols in SN4741 cells. Therefore, in order to elucidate reproducible changes in 

the phosphoproteome the data sets were examined for phosphopeptides reproducibly 

identified by the SILAC labelling as up-or down regulated. A limitation of the study 

was a use of only one time point for the SILAC experiments. As phosphorylation is a 

transient, reversible modification it is possible that some changes induced by 

oxysterol treatment were not observed due to examining the phosphoproteome at the 

‘wrong’ time point.

However, 2 phosphopeptides were identified as having a changed expression after 

treatment with 25-hydroxycholesterol (table 5.12). The peptides identified had good 

Mascot scores and a high probability that the phosphorylation is assigned to the 

correct amino acid. Interestingly, WD repeat-containing protein 26 (Wdr26) which the 

previously reported phosphopeptide RLS(ph)QSDEDVIR (Sweet et a l 2009) is 

derived from has previously been associated with MAPK signalling (Zhu et al 2004); 

a pathway also associated with oxysterols and dopaminergic neurogenesis. This 

phosphopeptide was classed as changed after treatment with 25-hydroxycholesterol or 

24(5),25-epoxycholesterol. However, the independent validation of the observed 

change in these phosphopeptides was unable to be achieved due to the lack of a 

commercially available antibody.

With the lack of validation it is difficult to draw conclusions beyond unequivocal 

identification as in these experiments the reproducibility of the phosphopeptide 

quantification was ambiguous due to the fact that in some cases the same 

phosphopeptide was identified up or down regulated in different biological replicates 

(fig 5.10). Thus, these data throw into doubt the reliability of the very few 

reproducible changes observed after treatment with 25-hydroxycholesterol and 

24(5),25-epoxycholesterol. To a certain extent these results are unsurprising as 

phosphorylation is a transient modification that can react quickly to a broad range of 

stimuli. These data highlight the technical difficulties in identifying reproducible 

changes in the phosphoproteome.



However, with this methodology, utilising strong cation exchange chromatography 

and IMAC phosphoenrichment, a large number of phosphopeptides were identified by 

mass spectrometry in each biological replicate. In the two biological replicates 1232 

and 845 unique phosphopeptides were identified, 27% and 11% of the total unique 

peptides. In total 1663 phosphopeptides were identified with a Mascot score ^25. 

Thus, in 2 biological replicates a proportion of the total phosphopeptides identified 

(414/1663, 24.9%) were observed in both data sets with Mascot scores ^25. The 

reproducible observation of the same phosphopeptide in different biological replicates 

is a major challenge of phosphoproteomics and others have reported similar 

difficulties (Engholm-Keller et al 2012).

Of the 414 phosphopeptides identified in both data sets 56 were identified as not 

currently having experimental evidence to demonstrate phosphorylation. Further 

analysis of these peptides allowed confident identification o f 37 novel 

phosphorylation sites.

These data indicate that strong cation exchange chromatography followed by IMAC 

resulted in phosphopeptide enrichment. However, the number of phosphopeptides 

identified could be improved by improving the methodology. To this end peptide 

methylation was examined as a methodology to reduce the amount of non-specific 

binding to the IMAC column. However, from the data presented here the current 

methodology is unsuitable. The methylation is incomplete as shown by the data that 

only a subsection of the total population (716/4510) were identified as methylated. 

Furthermore, peptides identified as methylated did not react completely (table 5.13). 

Incomplete methylation means that unspecific binding to the column may still occur. 

Indeed, it appears that methylation, in some cases, does not prevent non specific 

binding (table 5.13). In addition the incomplete nature of the methylation may mean 

that some phosphopeptides have more than one retention time for the same sequence. 

This may lead to some of these low abundance, poorly ionisable peptides to not be 

detected at all. Thus methylation in some cases may be counterproductive. Therefore, 

other options to increase the number of phosphopeptide identifications may be 

preferable.

One option is to use another phosphoenrichment method sequentially after IMAC. In 

this case the peptide flow through from the IMAC columns would be subjected to



further stages of phosphoenrichment. Titanium dioxide (TiCb) has previously been 

used for this purpose after IMAC phosphoenrichment and resulted in a greater number 

of peptides identified (Thingholm et al 2008). Another option is to use multiple 

sequential rounds of phosphoenrichment using the same technique. This approach has 

recently been performed using titanium dioxide which resulted in the identification of 

-4000 phosphorylation sites (Sharma et al 2012). Using these approaches could 

increase the number of phosphopeptides identified and increase further the 

identifications common to independent biological replicates.

A second approach to improve the number of phosphopeptides identified might be to 

change the quantification approach. As shown in chapter 3 SILAC is a powerful 

technique for quantitative proteomics. However, in the case of phosphoproteomics 

some of its inherent characteristics might be considered weaknesses. SILAC is reliant 

on the triplet of peaks, seen in the MS scan, that are derived from the same peptide 

sequence but containing isotope labelled arginine or lysine in order to quantify 

peptides and, therefore, proteins. Therefore, this means for each peptide sequence 

there are 3 precursor ions in the spectra. For evaluation of total protein expression this 

is not an issue. However, the low abundance of phosphopeptides, coupled with their 

poor ability to ionise, might mean that due to splitting the total intensity from a given 

phosphopeptide over 3 peaks might result in the peptide being below the detection 

limit. Thus, an isobaric labelling, such as iTraq (section 1.2.3.2) might provide a 

better option for the quantitative analysis of phosphopeptides. iTraq labelling is 

performed on peptides prior to mixing and results in a covalent bond between amine 

groups of peptides and the iTraq reagent. The resultant labelling is isobaric between 

different groups and is only apparent in the MS2 fragmentation spectra where reporter 

ions are used to quantify different treatment groups. Therefore, due to the isobaric 

nature of the iTraq labelling the initial precursor ion, unlike SILAC, is a single peak. 

This fact may increase the number of low intensity phosphopeptides identified whilst 

retaining the ability to quantify changes between different treatment groups.

One option to improve the reliability of the phosphopeptide quantification would be to 

analyse the non-phosphorylated peptide mixture eluted on the IMAC 

phosphoenrichment by LC-MS/MS. Therefore, they could be used in combination 

with the phosphoenriched samples, but processed by LC-MS/MS independently, in



order to normalise the phosphorylation of a given phosphopeptide to total protein 

expression. This can be done automatically by bio-informatic software whilst 

analysing data. This would give a more reliable estimation of the change in 

phosphorylation as the effect of experimental error in protein mixing would be 

adjusted for. By analysing the phosphopeptide alone this normalisation to protein is 

impossible as commonly the phosphopeptide is the only peptide used for 

identification of any protein and thus when normalised to protein results a ratio of 1.

In summary, the phosphoproteomic analysis of SN4741 cells led to the identification 

of a large number of phosphopeptides. Indeed, these data resulted in the identification 

of a number of novel phosphorylation sites in the mouse proteome. The work 

presented here does not investigate the role the identified phosphorylation sites play in 

the cell. It does, however, provide experimental evidence that these post translational 

modifications occur providing a basis for future elucidation. Unfortunately, the 

quantitative phosphoproteomics proved less successful. Phosphorylation is a transient 

and highly responsive post-translational modification and when compared to total 

protein expression that is, relatively, stable the analysis of the phosphoproteome is 

inherently more difficult. Thus, these data indicate the large technical challenge 

involved in quantitative phosphoproteomic studies.



C hapter  6: G eneral  D iscussion

Proteomics as a technology is still in its infancy. The power of this experimental 

approach is to analyse the global effects of treatments on protein expression and post- 

translational modifications. In this case the effect of 24(5),25-epoxycholesterol or 

GW3965 on protein expression and 24(5),25-epoxycholesterol or 25- 

hydroxycholesterol on the phosphoproteome. The data presented here highlight the 

effectiveness of proteomic experimental design in the ability to identify quantifiable 

changes in protein expression is clear. In the experiments analysing protein expression 

thousands of proteins were identified and quantified the majority of which with 2 or 

more peptides. The SILAC approach employed identified expected changes in protein 

expression after treatment with 24(5),25-epoxycholesterol or GW3965. These 

observations in known changes (e.g. the LXR regulated gene ABCA1) lend weight to 

the observed unexpected changes and, in addition, act as a positive control for 

treatment uptake. The SILAC methodology for quantifying protein expression 

changes presented here could easily be applied to any cell type or treatment.

Nevertheless, challenges remain. The selection of a peptide for fragmentation is 

reliant, to a certain extent, on chance as there is no guarantee that a protein of interest 

will be identified. This can be seen in tables 3.5. and 3.6 where a number of proteins 

are not identified in all three biological replicates. This is especially true of proteins of 

interest that are of low abundance as peptides with a weaker signal are at risk of not 

being selected for fragmentation and therefore identified. In addition, as SILAC data 

consists of light, medium and heavy peptides the spectra generated are inherently 

more complex. This could result in fragmentation of the same peptide in different 

SILAC states over a lower abundance unique peptide. In addition, the increased 

complexity might mask lower abundance peptides by having precursor ion peaks from 

other peptides superimposed on them. However, despite these potential limitations the 

SILAC data presented here identified a number of novel 24(5),25-epoxycholesterol 

induced protein changes.

Cholesterol itself is an integral part of cell membranes therefore it is perhaps 

unsurprising that a number of the novel 24(5),25-epoxycholesterol changes observed 

are related to membrane composition. The presence of 24(5),25-epoxycholesterol 

inhibits cholesterol synthesis and therefore may lead to membrane alteration (fig 6.1).



Two proteins involved directly or indirectly in phospholipid synthesis, 

phosphoethanolamine cytidylyltransferase and collagen type IV alpha-3-binding 

protein, were identified as changed after 24(5),2 5-epoxy cholesterol treatment. 

Phosphoethanolamine cytidylyltransferase (PCyt2), a independently reported 

SREBP2 regulated gene identified whilst this work was being conducted (Ando et al 

2010), is required for phosphoethanolamine synthesis and is down-regulated after 

24(5),25-epoxycholesterol treatment (table 3.10). Collagen type IV alpha-3-binding 

protein (col4a3bp; StAR-related lipid transfer protein 11, S tardll) is up-regulated 

after 24(5),25-epoxycholesterol treatment at both the protein and mRNA level (table 

3.10; fig. 4.1). This protein transports ceramide from the endoplasmic reticulum to the 

Golgi apparatus where it is synthesised to sphingomyelin. In addition to the changes 

in the proteins involved in lipid synthesis caveolin-1, the lipid raft component, was 

identified as down-regulated after 24(5),25-epoxycholesterol treatment which based 

on confocal microscopy data appears to be related to changes in cholesterol levels 

(table 3.10; fig 3.17; fig.3.18; fig. 3.19). In order to investigate this hypothesis it could 

be possible to investigate the cholesterol level of 24(5),25-epoxycholesterol treated 

SN4741 cells to see if there is a correlation between cholesterol level and caveolin-1 

expression. Indeed, mass spectrometry could be used to analyse all the components of 

the plasma membrane. Thus, quantification of phospholipids and cholesterol could 

determine the effect of the observed protein changes in relation to membrane lipids.

It is clear that 24(5),25-epoxy cholesterol has an effect on caveolin-1 expression and 

localisation. Further investigations into the effect of 24(5),25-epoxycholesterol on 

protein localisation in SN4741 cells could be conducted using a proteomics approach. 

Subcellular fractionation could be used in order to examine the protein expression in 

certain parts of the cell. Subcellular fractionation allows different components of the 

cell to be isolated and therefore analysed separately. Thus, it could be possible to 

combine subcellular fractionation with, for example, SILAC labelling in order to 

quantify changes to protein distribution after a treatment. This approach would allow 

the identification of changes in membrane protein composition and protein 

translocation (e.g. cytoplasm to nucleus) where the total protein expression remains 

constant.

24(5),25-epoxycholesterol was shown to increase macrophage colony stimulating 

factor (MCSF) in SN4741 cells at both the protein and mRNA level. It is interesting



to note that MCSF is required for normal brain development and that, also, 24(5),25- 

epoxycholesterol is present at higher than expected levels in embryonic mouse brain 

(Michaelson et al. 1996; Wang et al 2009). A role for LXR in ventral midbrain 

development has been demonstrated (Sacchetti et al 2009) however, it is unlikely this 

increase in MCSF expression in SN4741 cells is LXR controlled as, the synthetic 

ligand, GW3965 had no effect. Indeed the ring oxygenated oxysterols 7|3- 

hydroxycholesterol and 7a-hydroxycholesterol, which are considered weak LXR 

agonists, induced significant increases in MCSF mRNA in THP1 monocytes.

The lack of effect after GW3965 implies that a LXR independent mechanism is 

responsible for the observed increase in MCSF expression. Unfortunately, due to time 

restraints it was beyond the scope of this work to examine in detail the mechanism by 

which oxysterols induce this effect. However, a number of possibilities exist through 

which oxysterols could induce this observed effect on MCSF expression. A nuclear 

receptor that has been shown to regulate MCSF expression is PPARy (Bonfield et al 

2008). Similarly to LXR, PPARy is a nuclear receptor that requires heterodimerisation 

with RXR when activated. PPARy activation causes a decrease in MCSF expression 

(Bonfield et al 2008). Therefore it appears that PPARy activation has an inverse 

effect to treatment with oxysterols. This leads to the hypothesis that oxysterols can 

inhibit PPARy activity. Indeed, there has been recent evidence to suggest that this is 

the case with 25-hydroxycholesterol inhibiting PPARy (Xu et a l 2012). It appears 

that PPARy inhibits MCSF expression through repressing NF-kB mediated 

transcription (Bonfield et al 2008). Furthermore, evidence of oxysterols inducing NF- 

kB translocation has recently been reported (Aye et al 2012; Xu et al 2012). Thus, 

one hypothesis is that the observed increase in MCSF expression is due to inhibition 

of PPARy and increased translocation of NF-kB. Another potential mechanism for the 

increase in MCSF expression via NF-kB activation is through ERK signalling. 

Inhibition of ERK can decrease NF-kB activity (Vanden Berghe et al 1998) therefore 

as oxysterols can increase ERK phosphorylation (Yoon et al 2004, Lemaire-Ewing et 

al 2009) it is possible that MCSF expression is increased through this pathway. Thus, 

it is possible that there is a link between the results observed for MCSF at the protein 

and mRNA level and the initial basis for the phosphoproteomic studies presented 

here. Experimental evidence would be required to confirm the pathway through the
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Figure 6.1. The effect of 24(5),25-epoxycholesterol on SN4741 neuronal cells. It is 

hypothesised that 24(5),25-epoxycholesterol induces a number of changes in cell 

membranes through direct (e.g. reducing the synthesis of cholesterol) and indirect 

(e.g. inducing changes in caveolin-1 expression and localisation) mechanisms. In 

addition, LXR independent up-regulation of Golgi sialoglycoprotein MG-160 (ESL1) 

and macrophage colony stimulating factor (MCSF) through an unknown mechanism 

was observed. MCSF has previously been reported to be important in brain 

development (Michaelson et al. 1996) and therefore it is hypothesised that this is an 

important effect of 24(5),25-epoxycholesterol on murine embryonic development.



use of small molecule inhibitors or RNAi in combination with oxysterol treatment. 

This approach would allow dissection of the mechanism by which oxysterols increase 

MCSF expression.

The use of SILAC in phosphoproteomic studies was also, albeit to a lesser extent, 

successful. A large number of phosphopeptides were identified with a Mascot score 

>25 and quantified (fig. 5.8). A number of these phosphopeptides confirmed predicted 

phosphorylation sites that had no previous experimental validation. In addition, a 

number of phosphorylation sites previously unreported on the canonical protein 

database Uniprot were identified (table 5.4; 5.5). The absence of a commercially 

available antibody for these previously unidentified phosphorylation sites means that 

validation is impossible. However, there is confidence in the mass spectrometry data 

and therefore it is probable that the sequence and phosphorylation site identifications 

are correct. The analysis of the function of these novel phosphorylation sites was 

beyond the scope of this work, however, a foundation is laid for future work. The 

identified phosphopeptides, novel and previously reported, can now be predicted as to 

where they will elute from both the strong cation exchange and C l8 HPLC column. 

This allows, if required, a focused approach for a given phosphopeptide.

The identification of reproducible changes in the phosphoproteome proved difficult. 

A number of issues identified in these studies would be able to improve subsequent 

studies. The low abundance of phosphopeptides makes their analysis difficult. In 

addition, a large number of non-phosphorylated peptides were also identified in the 

phosphoenriched samples (table 5.3). Therefore, improvements in phosphoenrichment 

would be beneficial to improve the number of phosphopeptides identified. This would 

also improve the probability of identifying the same phosphopeptide in different 

biological replicates giving a greater overlap of phosphopeptides between different 

samples. This would be beneficial to identify reproducible changes in the 

phosphoproteome. The use of SILAC as a technique might not be ideal for 

phosphoproteomic work due to the characteristic 3 precursor ions in a SILAC peptide 

spectrum splitting the signal from low abundance phosphopeptides. In addition, as 

phosphopeptides are poorly ionisable there is a risk of not detecting phosphopeptides 

present in the sample. The use of an alternate labelling strategy, such as iTraq, could 

help to limit this due to peptides in different groups having the same mass and, thus, 

only distinguishable in the MS/MS spectra. One problem of the phosphoproteomic



methodology is the lack of an internal positive control in a similar vein to the 

SREBP2 regulated genes in the protein expression studies. ERK 1/2, the only 

previously reported protein whose phosphorylation is induced by oxysterols, was not 

identified in any dataset. Therefore, due to the unknown effects of the oxysterols on 

phosphorylation beyond that reported for ERK 1/2 there is a lack of known changes in 

the phosphoproteomic data set to look for as a validation. This makes it difficult to 

analyse quantifiable changes in the data set with confidence. In addition, the observed 

variation between different biological replicates meant that there is doubt in the few 

reproducibly observed changes in SILAC phosphopeptide quantification data without 

further experimental validation.

As a cautionary note it is important to recognise that as the experiments presented 

here were performed in serum free media the observed changes might be increased, 

reduced or absent, in the presence of serum. Serum is a complex mixture that contains 

a large number of components including cholesterol and oxysterols. Serum free media 

for in vitro studies allows the removal of the variability of batch to batch serum 

composition but might not necessarily portray the in vivo situation. However, these 

proteomic and phosphoproteomic studies provide a wealth of data regarding the effect 

of oxysterols on SN4741 neuronal cells and provide a large dataset to inspire further 

work. The role of oxysterols in membrane homeostasis, in subcellular protein 

localisation, and in immunity can be further elucidated and all stem from these data 

presented here. The most exciting discovery is that of a role of oxysterols in MCSF 

expression. This observation ties in with observed relationship between MCSF 

expression and neuronal development, neurodegenerative disease, and immunity. All 

of these are areas with which oxysterols have been associated and therefore their 

relationship with MCSF is an ideal subject for future work.
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Appendix 3. All phosphopeptides identified as down-regulated after treatment with

24(5),25-epoxycholesterol (24(5),25-EC) in ^1 biological replicate. Un-normalised

SILAC phosphopeptide ratios are displayed

Mascot Score Ratio
25-OHChol

:Control

Ratio
24(5),25-EC

:Control
Replicate 1 2 1 2 1 2

Phosphopeptide Gene I PI
Number

EEVAS(ph)EPEEAASPTTPK Nop56 IPI00318048 48.39 / 0.358 / 0.413 /

RVS(ph)QEANLLTLAQK

Cl 3003 
9016Ri 
k IPI00225777 36.98 65.16 0.628 0.889 0.412 0.796

SETAPAAPAAPAPAEKT(ph)PVK
Histlhl
e IPI00223714 53.69 25.47 0.388 0.688 0.409 0.790

HG APAAPS( ph)PPPR
Tbcldl
Ob IPI00469012 43.89 50.35 0.521 0.574 0.408 0.770

SOET(ph)PEKPR Msll IPI00110256 30.08 / 0.650 / 0.408 /
GEGERS(ph)DEENEEK Polr3g IPI00463147 60.57 / 0.671 / 0.408 /
HS( ph) VTG YGDC( me) A AGAR Jub IPI00453693 35.36 / 0.440 / 0.404 /
GDVS(ph)EDEPSLGR Rnmt IPI00453849 32.67 / 0.598 / 0.400 /
RPMEEDGEEKSPS(ph)K n o IPIOO130591 34.61 / 0.410 / 0.400 /

RIS(ph)GLIYEETR
Histlh4
a IPI00623776 35.15 / 0.267 / 0.400 /

SRLTPT(ph)TPESSSTGTEDK Sqstml IPIOO133374 69.05 / 0.392 / 0.398 /
ADS(ph)DSEDKGEESKPK Cbxl IPIOO129466 40.05 / 0.347 / 0.393 /
PMSVAGS(ph)PLSPGPVR Irs2 IPI00379844 61.73 45.92 0.494 0.606 0.392 0.684
NNVMT(ph)SPNVHLK Cenpcl IPI00114808 34.17 / 0.284 / 0.390 /

LPTSEEERS(ph)PAK
Trp53bp
1 IPI0022980I 25.34 25.63 0.217 3.061 0.387 2.082

HLSTPSS V S( ph)PEPODPAK
Arhgefl
2 IPI00754880 46.3 36.63 0.450 0.545 0.387 0.820

GVOAGNSDT(ph)EGGQPGR Acini IPIOO121136 32.19 / 0.811 / 0.387 /
SETLVNAOOTPLGT(ph)PK Palm IPIOO129298 43.67 37.09 0.267 1.074 0.386 1.079
NGLSOPS(ph)EEEVDIPKPK Ddx21 IPIOO120691 42.24 / 0.323 / 0.384 /
LPSGSGPASPTT(ph)GSAVDIR Ahnak IPI00553798 65.09 / 0.339 / 0.378 /

GSGEASSDSIDHS(ph)PAK
Suv39h
2 IPI00111417 26.96 / 0.174 / 0.377 /

KTS(ph)LSDSTTSAYPGDAGK
Rab3ga
Pi IPI00749720 39.8 / 0.593 / 0.377 /

S( ph)NSLPHS A VSNAASK Wdr20a IPIOO153206 26.16 36.48 0.462 0.909 0.376 0.825
GHYEVTGS(ph)DDEAGK Ahnak IPI00553798 58.36 / 0.168 / 0.371 /
S(ph)ESSGNLPSVADTR Akapl IPI00230591 29.82 / 0.390 / 0.371 /
SNS(ph)FSDER Ahnak IPI00553798 29.85 / 0.154 / 0.366 /
RLS(ph)QSDEDVIR Wdr26 1PI00226275 83.2 29.45 0.399 0.357 0.365 0.414
GGVTGSPEASISGS(ph)KGDLK Ahnak IPI00553798 43.68 / 0.119 / 0.363 /
LGSSPTS(ph)SC(me)NPTPTK Speed IPI00798550 31.81 27.02 0.422 0.667 0.363 0.800
ETNVSKEDT(ph)DQEEK Psipl IPIOO115257 37.57 44.98 0.386 0.996 0.362 0.871
LPSDSSASPPLSQT(ph)TPNKDADD
OAR Eya3 IPI00411085 40.03 / 0.518 / 0.348 /
SC ph)PSRPLPE VTDEYK Ssb IPIOO134300 26.42 / 0.551 / 0.346 /
GGVTGSPEAS(ph)ISGSKGDLK Ahnak IPI00553798 43.68 / 0.135 / 0.346 /
GVTASSSS(ph)PASAPK Ncaml IPIOO122971 43.46 34.3 0.244 1.437 0.346 1.195
AS(ph)AVSPEKAPM(ox)TSK Tcofl IPI00115660 34.02 / 0.345 / 0.346 /
SLS(ph)PSHLTEDR Zc3hl3 IPI00515528 44.78 33.98 0.317 0.922 0.344 0.904
DSVPAS(ph)PGVPAADFPAETEQS
KPSK Top2a IPIOO122223 25.31 / 0.116 / 0.342 /
PASVDGSPVS(ph)PSTNR Irsl IPIOO119627 27.92 42.29 0.724 0.494 0.335 0.797
VDS(ph)SSEDGVDAKPDR Casp7 IPIOO 130131 50.6 39.73 0.535 0.540 0.325 0.690

SPAPSNPTLS(ph)PSTPAK
Mybbpl
a IPI00331361 34.8 33.16 0.159 1.852 0.323 1.256
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KGDDS(ph)DEEDLC(me)ISNK Stardl3 IPI00857002 57.82 / 0.027 / 0.317 /
S(ph)SPPVEHPAGTSTTDNDVIIR Rail 4 IPI00453820 35.31 / 0.170 / 0.308 /
APQS(ph)PTLAPAK Cxadr IPI00270376 25.52 30.84 0.219 1.618 0.291 1.103
GDOVSONGLPAEQGS(ph)PR Sptbnl IPI00319830 58.12 / 0.654 / 0.208 /
SHS(ph)LDDLOGDADVGK Sashl 1PI00338954 / 58.75 / 0.525 / 0.538
LESHGSS(ph)EESLQVQEK Vcan IPI00875672 / 42.02 / 0.497 / 0.535
ANTSS( ph)DLEKDDDAYK Ranbp2 IPI00337844 / 40.08 / 0.436 / 0.533
SLPASGTPOS(ph)PPAVK IPI00851031 49.32 62.59 0.747 0.487 0.582 0.533
MSPNETLFLES(ph)TNK Rragc IPI00468702 / 32.32 / 0.407 / 0.530
TSS(ph)PNK.EESPK Papola 1PI00266738 26.95 31.16 0.825 0.503 0.879 0.530
AES(ph)PETSAVESTQSTPQK Pds5b IPI00845638 41.44 63.25 0.594 0.288 0.437 0.520
LEPAPLDSS(ph)PAVSTHEGSK Renbp IPIOO124826 / 31.06 / 0.584 / 0.515
(ac)S( ph)ET APV AQ AASTATEKPA A 
AK

Histlhl
a IPI00228616 / 53.02 / 0.439 / 0.514

POSPVIOATAGS(ph)PK ArfgeO IPIOO137087 / 41.94 / 0.350 / 0.511
APS(ph)PSQPPK Pds5b IPI00845638 27.46 25.3 0.582 0.410 0.547 0.501
RIS(ph)DPLTSSPGR Mcm2 IPI00323820 80.09 70.35 0.722 0.529 0.584 0.495
VS(ph)PVPSPSOPAR Micall IPIOO116371 / 25.71 / 0.435 / 0.486
IDQGS(ph)HTAGESSTR Tdpl IPI00222253 / 34.56 / 0.416 / 0.476
KPDQT(ph)LDEDDPGAAPLK Bsg IPI00408495 45.13 34.22 0.548 0.543 0.647 0.474
S(ph)PASTSSVNGTPGSQLSTPR Dclkl IPI00468380 / 43.36 / 0.459 / 0.472
KTS(ph)PASLDFPEPOK Znf828 IPI00453800 36.79 46.94 0.541 0.805 0.638 0.471
AOGHS(ph)PVNGLLK Ccnl2 IPI00310772 / 25.94 / 0.493 / 0.464
HNS(ph)TTSSTSSGGYR Abil IPI00798483 / 57.32 / 0.536 / 0.443
TASRPEDTPDSPSGPSS(ph)PK Lrrcl6a IPI00474873 / 46.92 / 0.216 / 0.439
RPDPDS( ph)DEDEDYER Rbml7 IPIOO 170394 64.68 49.04 0.649 0.562 0.562 0.428
AGYTT(ph)DESSSSSLHTTR Fxr2 IPIOO126389 / 38.76 / 0.551 / 0.358
LYNSEESRPYT(ph)NK Crkrs IPI00648022 / 49.1 / 0.205 / 0.338
PQSAS(ph)PAKEEQK Palm IPIOO129298 / 30.2 / 0.390 / 0.196
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Appendix 4. All phosphopeptides identified as up-regulated after treatment with

24(5),25-epoxycholesterol (24(5),25-EC) in ^1 biological replicate. Un-normalised

SILAC phosphopeptide ratios are displayed

Mascot Score Ratio
25-OHChoI

:Control

Ratio
24(5),25-EC

:ControI

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

KDS(ph)ISEDEMVLR Wdtcl IPIOO108450 43.30 / 0.82 / 1.66 /

GGIDNPAIT(ph)SDQEVDDKK
Arhgap
5 IPIOO124298 40.63 / 0.92 / 1.13 /

KQIT(ph)VEELVR Plecl IPI00400215 38.61 / 0.62 / 1.07 /
PTGGLRDS(ph)EAEK Hirip3 IPI00222813 29.49 / 1.03 / 1.06 /
DELADEIANSS(ph)GK Myh9 IPI00123181 29.65 / 1.17 / 0.97 /
GPEVEGS(ph)PVSEALR Brwdl IPI00654074 37.76 / 0.55 / 0.95 /
LLODSSS(ph)PVDLAK Ncoa2 IPIOO116968 29.72 / 1.12 / 0.92 /
IKPDEDLPS(ph)PGSR Gli3 IPIOO123429 42.62 / 0.78 / 0.91 /
TSS(ph)PNKEESPK Papola IPI00266738 26.95 31.16 0.82 0.50 0.88 0.53
IKDPDLT(ph)TPDSK Ckap2 IPI00470092 44.82 / 0.79 / 0.85 /
SEVOAHS(ph)PSR Mtap2 IPI00895965 31.21 / 0.91 / 0.85 /

ADS( ph)PAGLEA AR
Kiaa028
4 IPI00380953 35.46 / 0.78 / 0.84 /

LPS(ph)PAOTOR Micall2 IPI00280103 30.76 33.11 0.87 0.51 0.82 0.88
PATS(ph)TPDLASHR PtpnH IPIOO122168 51.69 67.48 0.57 0.67 0.81 0.73
GGSS(ph)EELHDSPR Hdgfrp2 IPIOO 116442 34.55 / 0.74 / 0.81 /
ASS(ph)EDTLNKPGSASSGVAR Speed IPI00798550 33.64 / 0.89 / 0.80 /
AYT(ph)HQVVTR Cdk7 IPIOO129222 26.40 28.51 0.98 0.31 0.80 0.63
KGS(ph)LDYLK Luzpl IPI00322204 30.67 / 0.71 / 0.80 /
HGPAQ A VTGTS VTS( ph )PIK Ccnt2 IPI00654257 47.80 / 0.74 / 0.79 /
NS(ph )PNNISGISNPPGTPR Ssbp3 1PI00341944 51.85 / 0.82 / 0.79 /
KLS(ph)SGDLR Phldbl IPI00330246 30.55 / 0.68 / 0.79 /
ASSHSSQSQGGGS(ph)VTK Lmna IPI00620256 47.84 58.67 0.54 1.58 0.79 0.90
RAS(ph)LSDIGFGK Pctk3 IPIOO 11U 68 49.16 / 0.60 / 0.78 /
IKDPDLTT(ph)PDSK Ckap2 IPI00470092 44.82 / 0.95 / 0.78 /

S( ph) ASSDTSEELNSODSPK
Slc9a3r
1 IPIOO 109311 78.91 100.99 0.71 0.70 0.78 0.84

KGT(ph)GDC(me)SDEEVDGK Myh9 IPIOO 123181 49.18 / 0.84 / 0.78 /
HVSS(ph)PDVTTAQK Tdpl IPI00222253 32.78 32.90 0.72 0.81 0.78 0.93
SODATVS(ph)PGSEQSEK Zc3hcl IPI00465879 50.16 / 0.53 / 0.78 /
GQGTI ph)PPSGPGVGR Wbp7 IPI00857289 27.74 / 0.61 / 0.77 /
SGALAS(ph)PTDPFOSR Trim47 IPI00480235 32.36 36.30 0.59 0.77 0.77 0.80
OESLKS(ph)PEEEDQOAFR Nes IPI00453692 36.61 / 0.67 / 0.76 /
TQSSS(ph)C(me)EDLPSTTQPK Cask IPI00776341 25.68 / 0.46 / 0.76 /
RAS(ph)LEIGESFPEGTK Myo9b IPI00229766 60.85 42.49 0.99 0.58 0.76 0.71
RFS(ph)M(ox)EDLNK Pctk3 IPIOO 111 168 47.88 / 0.69 / 0.76 /
DDISElQSLASDHS(ph)GR Tjpl IPI00135971 31.83 / 0.57 / 0.76 /
C(me)IFMSETOSS(ph)PTK Pias2 IPI00453655 30.79 / 0.47 / 0.75 /
ODVDNAS(ph)LAR Vim IPI00227299 31.40 / 0.72 / 0.75 /
POSPVIQAT AGS(ph)PK Arfgef2 IPIOO137087 30.88 41.94 0.83 0.35 0.74 0.51
QEFSS(ph)EEMTK VcamI IPI00126834 25.88 / 0.83 / 0.74 /
SLS(ph)TSGESLYHVLGLDK Dnajc5 IPIOO 132206 50.50 47.88 0.51 1.70 0.74 1.20
(ac)SDQEAKPST(ph)EDLGDKK Sumol IPIOO124593 33.58 / 0.78 / 0.73 /
DCf me)AKS( ph)DDEESLTLPEK Nikbl IPI00719890 52.31 / 0.80 / 0.73 /
PAW  S( ph)PLSLSTE AR Crtcl 1PI00469761 43.71 / 0.80 / 0.73 /
YVSGSS(ph)PDLVTR PtpnH IPIOO122168 49.84 / 0.73 / 0.73 /
ASPDQNASTHT(ph)POSSAK Clintl IPI00648186 34.63 / 0.78 / 0.73 /

SSGSLS(ph)PGLETEDPLEAR
Tnkslb
pl IPI00459443 36.91 / 0.68 / 0.73 /
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TASESISNLSEAGSl ph) VK Clip] IPI00857273 31.00 / 0.98 / 0.72 /
AQTPESC(me)GSVT(ph)PER Filipll IP100755058 30.92 / 0.94 / 0.72 /

T(ph)SPTVATOTGASVTSTR
Faml 17 
b 1PI00461475 68.26 64.54 0.73 0.73 0.72 0.89

S(ph)FEDLTDHPVTR Adam 17 IP100314443 44.01 46.28 0.71 0.66 0.72 0.94
SAT(ph)LETKPESK Ifhgrl IP100323231 25.38 / 0.64 / 0.72 /
VMTVTAVTTTATS(ph)DR Hdgfrp2 IPIOO116442 76.11 51.20 0.60 0.72 0.72 0.89
SDEEDRAS(ph)EPK Zc3hl8 IPI00673693 27.94 / 0.79 / 0.72 /
VEESSEIS(ph)PEPK Uspl IPI00330276 40.56 / 0.57 / 0.72 /
S(ph)LEGENHDPLSSWK Nes IPI00453692 45.85 / 0.68 / 0.72 /
MHASSTGSS(ph)C(me)DLSK Cdgap IPIOO125505 27.19 / 0.54 / 0.72 /
KIS(ph)GTTALQEALK Clipl IPI00857273 33.36 67.72 0.88 0.77 0.72 0.74
AKT(ph)PVTLK Tmpo IPI00828976 41.32 / 0.58 / 0.72 /
SSS(ph)FGSVSTSSTSSK Snxl6 IPI00331029 / 54.62 / 1.42 / 5.00
TAS(ph)GSSVTSLEGTR Ndrgl IPIOO125960 45.97 41.37 0.50 1.04 0.57 3.57
GGVTGS(ph)PEASISGSK Ahnak IPI00553798 43.68 27.58 0.21 3.27 0.47 2.79
SGFGGMS(ph)SPVIR Nup107 IPI00221767 28.39 40.37 0.37 2.64 0.63 2.32

LPTSEEERS(ph)PAK
Trp53bp
1 IPI00229801 25.34 25.63 0.22 3.06 0.39 2.08

SGFGGMSS(ph)PVIR Nupl07 IPI00221767 / 40.37 / 2.57 / 2.07
AS(ph)PALGSGHHDGSGDSLEMSS
LDR

Tomm7
Oa IPI00751137 64.86 47.86 0.29 2.31 0.46 2.05

ASS(ph)HSSOSOGGGSVTK Lmna IPI00620256 47.84 58.67 0.19 3.86 0.52 1.95
TEEDRENTQIDDTEPLS(ph)PVSNS
K

Trp53bp
1 IPI00229801 / 28.80 / 2.58 / 1.90

KOOOEPTC(me)EPS(ph)PK Hmga2 IPI00331612 26.67 30.20 0.29 2.23 0.43 1.72

SEDRPS(ph )SPQVS VAA VETK
Trp53bp
1 IPI00229801 / 48.56 / 2.07 / 1.70

AEAKPGT(ph)PAK Nolcl IPI00720058 36.93 39.65 0.31 2.25 0.47 1.67

PASfph)PLSGPR
D2Wsu
8le IPI00224127 / 29.84 / 1.80 / 1.65

GEVAPKET(ph)PKK
Marcksl
1 IPI00281011 / 26.82 / 2.27 / 1.65

TVGNVSfph)PTAOMVQR Rbm7 IPIOO133061 / 28.20 / 1.41 / 1.65
LHSAOLS(ph)PVDETPATOSOLK Ml flip IPI00459115 / 36.63 / 1.95 / 1.62
OEGAOENVKNSfph)PVPR Gmnn IPI00I31716 / 30.64 / 2.56 / 1.60
GISQTNLITTVT(ph)PEK Epb4113 1PI00229299 50.15 40.47 0.46 1.55 0.52 1.55
TTS(ph)PDLFESOSLTSASSK Epn2 IPI00336844 / 27.33 / 1.25 / 1.55
ATWGDGGDNS(ph)PSNVVSK Snap23 IPIOO113798 64.07 49.53 0.49 1.69 0.46 1.54

LEOHSCX>POLS(ph)PATSGR
Torlaip
1 IPI00762273 25.81 47.94 0.58 1.33 0.58 1.53

AGS(ph)SPTQGAQNEAPR Tc£20 IPI00407458 / 30.95 / 1.46 / 1.51
AS(ph)SHSSOSOGGGSVTK Lmna IPI00620256 / 58.67 / 2.60 / 1.51
C(me)QETESNEEQSIS(ph)PElCR Akapl2 IPIOO123709 / 85.89 / 1.19 / 1.49
AGGS(ph)PASYHGSTSPR Epn2 IPI00336844 49.92 47.77 0.50 1.47 0.50 1.47
SLYSSS(ph)PGGAYVTR Vim IPI00227299 34.83 53.18 0.67 0.97 0.67 1.47
FGEYNSNIS(ph)PEEK Nopl4 IPI00353010 36.25 30.49 0.43 1.68 0.54 1.45
GE AT AERPGEAAVASS( ph)PSK Marcks IPI00229534 53.11 53.46 0.60 1.36 0.58 1.45
LATSS(ph)PEQSWPSTFK Pml IPI00229072 / 29.49 / 1.18 / 1.43
KONETADEAT(ph)TPOAK Nolcl IPI00720058 / 43.74 / 1.50 / 1.42
AAKES1 ph)EEEEEEEETEEK Nolcl IPI00720058 93.93 73.89 0.42 1.80 0.46 1.41
EIITEEPS(ph)EEEADMPKPK Ddx21 IPIOO 120691 / 31.38 / 1.69 / 1.38
LLKPGEEPSEYTfph)DEEDTK Pgrmc2 IPI00351206 39.74 35.31 0.39 1.61 0.48 1.36
AEEDEILNRS(ph)PR Canx IPIOO119618 / 25.35 / 1.51 / 1.35
SSGS(ph)PYGGGYGSGGGSGGYGS
R

Hnmpa
3 IPI00269661 113.25 92.56 0.42 1.50 0.58 1.35

SSSSLLAS(ph)PSHIAAK Fam62b IPI00266942 26.75 30.80 0.59 1.46 0.57 1.34
NVAEALGHS(ph)PK Irf2bpl IPI00453578 37.33 27.45 0.75 0.81 0.67 1.34
QKS(ph)DAEEDGVTGSQDEEDSKP
K Canx IPIOO 119618 88.22 64.73 0.48 1.53 0.54 1.34
SKTS(ph)PVASGSTSK Cep170 IPI00667973 51.13 43.40 0.68 1.18 0.68 1.34
AFGPGLQGGNAGS(ph)PAR Flna IPI00875567 36.73 27.19 0.68 0.82 0.60 1.33
GPEVTSQGVQTSS(ph)PAC(me)K Atxn2 IPIOO117229 / 25.10 / 1.07 / 1.30
ASGOAFELILS(ph)PR Stmnl IP100551236 / 30.07 / 0.87 / 1.30
AVGEEQRS(ph)EEPK Akapl2 IP100123709 / 31.72 / 1.15 / 1.30
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Appendix 5. A ll phosphopeptides identified as down-regulated after treatment with 25-

hydroxy cholesterol (25-OHChol) in s i  biological replicate. Un-normalised SILAC

phosphopeptide ratios are displayed

Mascot Score Ratio Ratio
25-OHChol

:Control
24(5),25-EC

:ControI

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

NEKS(ph)EEEQSSASVK Hnmpc IPI00874321 51.11 45.64 0.350 1.095 0.433 0.832
SPDEAT A ADQES(ph)EDDLS ASR Farpl IPI00356904 26.44 / 0.349 / 0.465 /
TEE VLSPDGSPSKS( ph)PSK Add3 IPI00387580 38.11 / 0.349 / 0.439 /
ADS(ph)DSEDKGEESKPK Cbxl IPIOO 129466 40.05 / 0.347 / 0.393 /
EELEQQT(ph)DGDC(me)DEEDDDK
DGEVPK Sec62 IPIOO134398 57.28 / 0.346 / 0.532 /
EDAPPEDK£S(ph)ESEAK Cds2 IPI00468999 26.03 / 0.346 / 0.594 /

GE V APKET ( ph)PK
Marcksl
1 IPI00281011 33.28 26.82 0.345 2.274 0.556 1.651

EROES(ph)ESEOELVNK Pdcdl1 IPI00551454 39.77 / 0.345 / 0.560 /
AS(ph)AVSPEKAPM(ox)TSK Tcofl IPIOO115660 34.02 / 0.345 / 0.346 /
ADS(ph)DSEDKGEESKPK Cbxl IPI00129466 40.05 / 0.344 / 0.451 /
LPSGSGPASPTT(ph)GSAVDIR Ahnak IPI00553798 65.09 / 0.339 / 0.378 /
SPFNSPS(ph)PQDSPR Nfic IPIOO 137501 40.52 35.42 0.334 1.146 0.464 1.050
IGPLGLS(ph)PK Rpll2 IPI00463634 45.65 / 0.333 / 0.426 /
E1ITEEPS( ph)EEE ADM(ox)PKPK Ddx21 IPIOO120691 56.99 / 0.330 / 0.443 /
NGLSOPS(ph)EEEADlPKPK Ddx21 IPIOO120691 36.77 / 0.325 / 0.431 /
NGLSOPS( ph )EEE VDIPK.PK Ddx21 IPIOO 120691 42.24 / 0.323 / 0.384 /
NISEES(ph)PLTHR Pask IPI00400044 32.53 / 0.322 / 0.610 /
S(ph)PAKEPVEOPR Spen IPI00828562 25.27 / 0.321 / 0.464 /
SLS(ph)PSHLTEDR Zc3hl3 IPI00515528 44.78 33.98 0.317 0.922 0.344 0.904
T(ph)GSESSOTGASATSGR Eif4b IPI00221581 79.96 77.19 0.314 1.215 0.474 0.757
AEAKPGT(ph)PAK Nolcl IPI00720058 36.93 39.65 0.308 2.251 0.470 1.673
RVSGS(ph)ATPNSEAPR Ddx51 IPI00396728 58.55 / 0.306 / 0.460 /
AS(ph)PALGSGHHDGSGDSLEMSS
LDR

Tomm7
Oa IPI00751137 64.86 47.86 0.293 2.308 0.464 2.047

S(ph)QEMVHLVNK Cd44 IPI00410802 52.66 33.35 0.292 1.021 0.420 0.827
S( ph)HTGE A AA VR Bcl2113 IPI00321499 35.83 / 0.288 / 0.467 /
KQQQEPTC(me)EPS(ph)PK Hmga2 IPI00331612 26.67 30.2 0.287 2.231 0.428 1.718
NNVMT(ph)SPNVHLK Cenpcl IPIOO114808 34.17 / 0.284 / 0.390 /
RVS(ph)GSATPNSEAPR Ddx51 IPI00396728 58.55 / 0.278 / 0.427 /
YLEIDS( ph)DEES R Sdadl IPI00387439 33.64 / 0.276 / 0.529 /
DDS(ph)GAEDN VDTHQQQAEN ST 
VPTADSR Rspryl IPI00223590 27.35 / 0.275 / 0.445 /

LSQ VNGATPV S( ph)PIEPESK
Mybbpl
a IPI00331361 33.48 / 0.272 / 0.461 /

SETLVNAOOTPLGT(ph)PK Palm IPIOO129298 43.67 37.09 0.267 1.074 0.386 1.079

RI S( ph)GLI YEETR
Hist 1 h4 
a IPI00623776 35.15 / 0.267 / 0.400 /

GS(ph)HC(me)SGSGDPAEYNLR Lmna IPI00620256 32.11 / 0.257 / 0.488 /

LSOVNGAT(ph)PVSPIEPESK
Mybbpl
a IPI00331361 33.48 / 0.254 / 0.436 /

SST(ph)PLPTVSSSAENTR Tmpo IPI00896574 55.29 / 0.246 / 0.516 /
GVTASSSS(ph)PASAPK Ncaml IPIOO122971 43.46 34.3 0.244 1.437 0.346 1.195
ASSHS(ph)SOSOGGGSVTK Lmna IPI00620256 47.84 58.67 0.224 2.410 0.536 1.175
APQS(ph)PTLAPAK Cxadr IPI00270376 25.52 30.84 0.219 1.618 0.291 1.103

LPTSEEERS(ph)PAK
Trp53bp
1 IPI00229801 25.34 25.63 0.217 3.061 0.387 2.082

GGVTGS(ph)PEASISGSK Ahnak IPI00553798 43.68 27.58 0.215 3.272 0.474 2.790
SPFNSPSPODS(ph)PR Nfic IPIOO137501 40.52 / 0.213 / 0.435 /



285

ASS(Dh)HSSOSOGGGSVTK Lmna IPI00620256 47.84 58.67 0.194 3.858 0.523 1.945
LRS(ph)EDGVEGDLGETQSR Ahnak IPI00553798 33.49 32.86 0.178 1.087 0.415 0.795

GSGEASSDSIDHS(ph)PAK
Suv39h
2 IPI00111417 26.96 / 0.174 / 0.377 /

S(ph)SPPVEHPAGTSTTDNDVIIR Rail 4 IPI00453820 35.31 / 0.170 / 0.308 /
GH YE VTGS( ph )DDE AGK Ahnak IP100553798 58.36 / 0.168 / 0.371 /

SPAPSNPTLS(ph)PSTPAK
Mybbpl
a IPI00331361 34.8 33.16 0.159 1.852 0.323 1.256

SNS(ph)FSDER Ahnak IPI00553798 29.85 / 0.154 / 0.366 /
GGVTGSPEAS(ph)ISGSKGDLK Ahnak IPI00553798 43.68 / 0.135 / 0.346 /
GGVTGSPEASISGS(ph)KGDLK Ahnak 1PI00553798 43.68 / 0.119 / 0.363 /
DSVPAS(ph)PGVPAADFPAETEQS
KPSK Top2a IPIOO122223 25.31 / 0.116 / 0.342 /
SGAAEEDDS(ph)GVEVYYR Pdcdll IPI00551454 41.08 / 0.104 / 0.592 /
KGDDS(ph)DEEDLC(me)ISNK Stard13 IPI00857002 57.82 / 0.027 / 0.317 /
FIOELSGSS(ph)PK Tcfap4 IPIOO121217 27.49 35.23 0.018 1.013 0.430 0.581
MSPNETLFLES(ph)TNK Rragc IPI00468702 / 32.32 / 0.407 / 0.530
SPSPSPTS(ph)PGSLR Dclkl IPI00468380 / 51.87 / 0.398 / 0.582
POSAS(ph)PAKEEQK Palm IPIOO129298 / 30.2 / 0.390 / 0.196
LS(ph)PAYSLGSLTGASPR Phldbl IPI00330246 / 34.03 / 0.369 / 0.573
SGTSTP1TPGSTAITPGT(ph)PPSYS
SR Mtap2 IPI00895463 / 69.16 / 0.360 / 0.661
POSPVIOATAGS(ph)PK Arfgef2 IPIOO137087 30.88 41.94 0.827 0.350 0.742 0.511
AYT(ph)HOWTR Cdk7 IPIOO 129222 26.4 28.51 0.981 0.313 0.801 0.632
AES(ph)PETSAVESTOSTPQK Pds5b IPI00845638 41.44 63.25 0.594 0.288 0.437 0.520
TASRPEDTPDSPSGPSS(ph)PK Lrrc 16a IPI00474873 / 46.92 / 0.216 / 0.439
LYNSEESRPYT(ph)NK Crkrs IPI00648022 / 49.1 / 0.205 / 0.338
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Appendix 6. All phosphopeptides identified as up-regulated after treatment with 25-

hydroxycholesterol (25-OHChol) in ^1 biological replicate. Un-normalised SILAC

phosphopeptide ratios are displayed

Mascot Score Ratio
25-OHChol

:Control

Ratio
24(5),25-EC

:Control

Replicate 1 2 1 2 1 2

Phosphopeptide Gene IPI
Number

HGS(ph)DPAFGPSPR Fam83h IPI00227516 28.43 / 1.795 / 0.658 /
DELADEIAN SS(ph)GK Myh9 IPIOO123181 29.65 / 1.166 / 0.970 /
S(ph)STSGSASSLESGVYR Gtsel IPI00268247 63.04 / 1.152 / 0.614 /
AQT(ph)PESC(me)GSVTPER Filip] 1 IPI00755058 30.92 / 1.120 / 0.637 /
LLODSSS(ph)PVDLAK Ncoa2 IPI00116968 29.72 / 1.118 / 0.919 /
ROS(ph)LTSPDSOSTR Herd IPI00676574 33.46 38.87 1.064 0.991 0.698 0.776
VDHGAEIITQS(ph)PSR Mtap2 IPI00895965 61.57 80.97 1.062 0.717 0.679 0.989
GS(ph)PEDGSHEASPLEGK Rbm20 IPI00849187 51.26 / 1.055 / 0.586 /
PTGGLRDS(ph)EAEK Hirip3 IPI00222813 29.49 / 1.035 / 1.064 /
RAS( ph)LEIGES FPEGTK Myo9b IPI00229766 60.85 42.49 0.989 0.578 0.758 0.713
KLEVS(ph)PGDEQSNVETR Gnl3 IPI00222461 73.45 / 0.988 / 0.431 /
AYT(ph)HOVVTR Cdk7 IPIOO129222 26.4 28.51 0.981 0.313 0.801 0.632
TASESISNLSEAGS(ph)VK Clipl IPI00857273 31 / 0.975 / 0.725 /
IKDPDLTT(ph)PDSK Ckap2 IPI00470092 44.82 / 0.954 / 0.782 /
AOTPESC(meKJSVT(ph)PER Filipll IPI00755058 30.92 / 0.944 / 0.724 /

GGIDNPAIT(ph)SDQEVDDKK
Arhgap
5 IPIOO124298 40.63 / 0.924 / 1.125 /

SNS(ph)NSSSVlTTEDNK Filipll 1PI00755058 77.83 / 0.922 / 0.623 /
C(me)QS(ph)PILHSSSSASSNIPSAK IP100875090 39.2 48.16 0.918 0.573 0.700 0.668
SEVOAHS(ph)PSR Mtap2 IPI00895965 31.21 / 0.907 / 0.849 /
KS(ph)PEQESVSTAPQR Spg20 IPIOO153501 39.11 51.42 0.900 0.689 0.708 1.084
TTSTSNPSS(ph)PAPDWYK Atrx IPI00857253 38.08 / 0.892 / 0.604 /
ASS(ph)EDTLNKPGSASSGVAR Speed IPI00798550 33.64 / 0.887 / 0.805 /
YMSSDTT(ph)SPELR Sin3a IPIOO117932 27.09 / 0.883 / 0.580 /
KIS(ph)GTTALQEALK Clipl IPI00857273 33.36 67.72 0.882 0.770 0.720 0.745
NSGATADAGSIS(ph)PR Ercc5 IPI00875692 46.69 47.1 0.881 0.485 0.627 0.883
HNSAS(ph)VENVSLR Irs2 IPI00379844 53.04 55.86 0.877 0.752 0.615 0.720
YIASVQGSAPS(ph)PR Ranbp2 IPI00337844 36.79 / 0.875 / 0.596 /
EKEEEETS1 ph)PDTSIPR ArhgefS IPI00855144 48.09 / 0.868 / 0.565 /
LPS(ph)PAQT0R Micall2 IPI00280103 30.76 33.11 0.865 0.509 0.816 0.876
ASS(ph)HSSQSOGGGSVTK Lmna IP100620256 47.84 58.67 0.194 3.858 0.523 1.945
GGVTGS( ph)PEASISGSK Ahnak IPI00553798 43.68 27.58 0.215 3.272 0.474 2.790

LPTSEEERS(ph)PAK
Trp53bp
1 IPI00229801 25.34 25.63 0.217 3.061 0.387 2.082

SGFGGMS(ph)SPVIR Nupl07 IPI00221767 28.39 40.37 0.372 2.643 0.626 2.319
AS( ph )S HSSQSOGGGS VTK Lmna IPI00620256 / 58.67 / 2.595 / 1.511
TEEDRENTQ1 DDTEPLS(ph)PV SNS 
K

Trp53bp
1 IPI00229801 / 28.8 / 2.576 / 1.904

SGFGGMSS(ph)PVIR Nupl07 IPI00221767 / 40.37 / 2.574 / 2.074
QEGAQEN VKNS( ph)PVPR Gmnn IPIOO131716 / 30.64 / 2.565 / 1.603
ASSHS(ph)SOSOGGGSVTK Lmna IPI00620256 47.84 58.67 0.224 2.410 0.536 1.175
AS(ph)PALGSGHHDGSGDSLEMSS
LDR

Tomm7
Oa IPI00751137 64.86 47.86 0.293 2.308 0.464 2.047

GEVAPKET(ph)PKK
Marcksl
1 IPI00281011 / 26.82 / 2.274 / 1.651

AEAKPGT(ph)PAK Nolcl IPI00720058 36.93 39.65 0.308 2.251 0.470 1.673
KOOOEPTC(me)EPS(ph)PK Hmga2 IPI00331612 26.67 30.2 0.287 2.231 0.428 1.718

S EDRPS( ph )S PQ V S V A A VETK
Trp53bp
1 IPI0022980I / 48.56 / 2.071 / 1.704

LHSAQLS(ph)PVDETPATQSQLK Mlflip IPI00459115 / 36.63 / 1.947 / 1.619
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SP APSNPTLS( ph )PSTP AK
Mybbpl
a IPI00331361 34.8 33.16 0.159 1.852 0.323 1.256

PAS(ph)PLSGPR
D2Wsu 
81 e IPI00224127 / 29.84 / 1.802 / 1.652

AAKES(ph)EEEEEEEETEEK Nolcl IPI00720058 93.93 73.89 0.420 1.796 0.464 1.406
T(ph)SMGGTOOOFVEGVR Ctnnbl IPIOO125899 / 48.59 / 1.721 / 1.130
SLS(ph)TSGESLYHVLGLDK Dnajc5 IPIOO132206 50.5 47.88 0.508 1.703 0.739 1.197
EIITEEPS(ph)EEEADMPKPK Ddx21 IPIOO120691 / 31.38 / 1.693 / 1.383
ATWGDGGDNS(ph)PSNVVSK Snap23 IPIOO113798 64.07 49.53 0.493 1.687 0.455 1.545
FGEYNSNIS(ph)PEEK Nop 14 IPI00353010 36.25 30.49 0.434 1.684 0.539 1.451

HLFSS(ph)TENLAAR
Rabllfi
Pi IPIOO169485 / 39.84 / 1.665 / 1.264

NWTEDIEGGIS S( ph)P VK Nfic IPI00137501 / 32.95 / 1.656 / 1.073
APQS(ph)PTLAPAK Cxadr IPI00270376 25.52 30.84 0.219 1.618 0.291 1.103
LLKPGEEPSEYT(ph)DEEDTK Pgrmc2 IPI00351206 39.74 35.31 0.393 1.606 0.475 1.357
KFS(ph)EEPEVAANFTK Nop56 IPI00318048 35.3 31.73 0.442 1.595 0.504 0.850
ASSHSSQSQGGGS(ph)VTK Lmna IPI00620256 47.84 58.67 0.553 1.582 0.701 0.899
GISQTNLITTVT(ph)PEK Epb41l3 IPI00229299 50.15 40.47 0.458 1.549 0.521 1.551
QKS(ph)DAEEDGVTGSQDEEDSKP
K Canx IPI00119618 88.22 64.73 0.476 1.533 0.545 1.340
TTV YY 0S( ph)PLESKPR Atad2 IPIOO135252 / 41.56 / 1.532 / 1.139
T(ph)GSLOLSSTSIGTSSLK Coblll IPI00762331 / 31.52 / 1.526 / 0.746
VQTT(ph)PSKPGGDR Cdc20 IPI00320406 30.44 31.01 0.417 1.516 0.586 0.870
AEEDEILNRS(ph)PR Canx IPI00119618 / 25.35 / 1.506 / 1.350
S SGS(ph)P Y GGG Y GSGGGSGG Y GS 
R

Hnmpa
3 IPI00269661 113.25 92.56 0.420 1.501 0.581 1.346

KQNETADEAT(ph)TPQAK Nolcl IPI00720058 / 43.74 / 1.498 / 1.422
SRLTPTTPES(ph)SSTGTEDK Sqstml IPIOO133374 / 74.88 / 1.485 / 0.733

AAAT(ph)PESQEPQAK
Marcksl
1 IPI00281011 38.45 26.81 0.438 1.477 0.531 0.964

AGGS(ph)PASYHGSTSPR Epn2 IPI00336844 49.92 47.77 0.503 1.473 0.498 1.475
IALESVGQPEEQMESGNC(me)S(ph)
GGDDDWTHLSSK Sqstml IPIOO133374 / 27.33 / 1.471 / 0.787
SSSSLLAS(ph)PSHIAAK Fam62b IPI00266942 26.75 30.8 0.594 1.465 0.568 1.344
AGS(ph)SPTQGAQNEAPR Tcf20 IPI00407458 / 30.95 / 1.457 / 1.514
KAPLTLAGS(ph)PTPK Wiz IPI00263016 / 39.77 / 1.455 / 1.147
KLDTFQSTS(ph)PK Ddx24 IPIOO 113576 / 27.61 / 1.453 / 1.063
GVTASSSS(ph)PASAPK Ncaml IPIOO122971 43.46 34.3 0.244 1.437 0.346 1.195
SRLT(ph)PTTPESSSTGTEDK Sqstml IPIOO133374 / 74.88 / 1.435 / 0.821
SDAEEDGVTGS(ph)QDEEDSKPK Canx IPI00119618 88.22 64.73 0.467 1.430 0.557 1.215
SSS(ph)FGSVSTSSTSSK Snxl6 IPI00331029 / 54.62 / 1.416 / 4.998
S(ph)RPLNAVSQDGK Csda IPI00330591 47.17 44.25 0.563 1.416 0.553 1.041
TVGNVS(ph)PTAOMVQR Rbm7 IPIOO133061 / 28.2 / 1.414 / 1.646
S(ph)SGSPYGGGYGSGGGSGGYGS
R

Hnmpa
3 IPI00269661 113.25 92.56 0.461 1.414 0.578 1.245

SRLTPTT(ph)PESSSTGTEDK Sqstm 1 IPIOO133374 / 74.88 / 1.408 / 0.841
IAQEIASLS(ph)KEDVSK Ralbpl IPI00421132 48.23 52.17 0.463 1.392 0.539 1.266
KPAQETEETS(ph)SQESAEED Hmga2 IPI00331612 40.72 28.37 0.482 1.384 0.484 0.886
TEMDKS(ph)PFNSPSPQDSPR Nfic IPIOO137501 / 35.42 / 1.371 / 1.118
GDKS(ph)SEPTEDVETK Tgoln2 IPI00408895 46.27 33.26 0.585 1.370 0.553 1.109
GEATAERPGEAAVASS(ph)PSK Marcks IPI00229534 53.11 53.46 0.600 1.362 0.576 1.450


