Swansea University E-Theses

Quantitative proteomic analysis of the effect of 24(S),25epoxycholesterol on SN4741 neuron cells.

Gilmore, Ian Richard

How to cite:

Gilmore, Ian Richard (2013) Quantitative proteomic analysis of the effect of 24(S),25-epoxycholesterol on SN4741 neuron cells.. thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa42712

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.)

Quantitative Proteomic Analysis of the

Effect of 24(S),25-Epoxycholesterol on

SN4741 Neuron Cells.

Ian Richard Gilmore

SubMitted to Swansea University in fulfilment of the
REQUIREMENTS FOR THE DEGREE PROGRAMME OF DOCTOR OF PHILOSOPHY

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10807481
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

SUMMARY

Oxysterols are oxygenated derivatives of cholesterol or its precursors. One oxysterol, $24(S), 25$-epoxycholesterol ($24(S), 25-E C)$, which results from a shunt in the cholesterol synthesis pathway has been found at higher than expected levels in embryonic murine brain. Interestingly, the receptor that $24(S), 25-\mathrm{EC}$ is a ligand for, Liver X Receptor (LXR), has been implicated in neurogenesis in the ventral mid brain region of embryonic brain; an area with a high density of dopaminergic neurons. The mechanism by which LXR induces this effect is unclear. Therefore, proteomic and phosphoproteomic studies were performed using a stable isotope labelled in amino acid in cell culture (SILAC) approach in order to quantify changes in the proteome between different treatment groups in a mouse substantia nigra dopaminergic cell line (SN4741)

SN4741 cells were cultured in SILAC media containing differentially isotope labelled arginine and lysine. For protein expression studies SN4741 cells were treated in serum free media with vehicle, $10 \mu \mathrm{M} 24(S), 25-\mathrm{EC}$, or $1 \mu \mathrm{M}$ GW3965, a synthetic ligand of LXR, for 24 hours. For analysis of changes in the phosphoproteome SN4741 cells were treated in serum free media with vehicle, $10 \mu \mathrm{M} 24(S), 25-\mathrm{EC}$, or $30 \mu \mathrm{M} 25-$ hydroxycholesterol for 6 hours. Cells were lysed and protein combined in a $1: 1$ ratio before trypsin digestion and peptide separation via strong cation exchange chromatography. Phosphopeptides were enriched using immobilised metal affinity chromatography (IMAC). Resulting fractions were analysed, using a data dependent LC-MS/MS method. Data was quantified using MaxQuant software in conjunction with Mascot using an IPI mouse database.
In protein expression analysis known oxysterol regulated genes, via SREBP or LXR, were differentially expressed. Oxysterol treatment induced global changes in proteins involved in lipid (cholesterol, fatty acid, phospholipid, triglyceride) synthesis. LXR β protein expression increased after GW3965 and 24(S),25-EC treatment, though no change was seen on LXR β mRNA, implying that ligand binding protects LXR β from degradation. 24(S),25-EC induced changes in expression and localisation of the membrane protein caveolin-1. Also, phosphoethanolamine cytidylyltransferase and collagen type IV alpha-3-binding protein, 2 proteins involved in phospholipid synthesis, had an altered expression after 24(S),25-EC treatment suggesting a role for oxysterols in membrane homeostasis. A cytokine, macrophage colony stimulating factor, which is required for normal neuronal development and macrophage differentiation had an LXR independent increased expression after 24(S),25-EC treatment. Quantitative RT-PCR data demonstrated that proteomic changes were due to both transcriptional and post-transcriptional effects of oxysterol. In addition, studies examining changes in the mouse phosphoproteome identified a number of novel phosphorylation sites.

DECLARATION

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed \qquad (candidate)

Date $23 / 12 / 13$ \qquad

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in a footnotes).

Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed ...
......... (candidate)
Date \qquad 2312113

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed d..... -- \qquad (candidate)

Date \qquad
CONTENTS Page
Chapter 1: Introduction 1
1.1 Oxysterols 1
1.1.1 Cholesterol 1
1.1.2 Oxysterols 5
1.1.3 Synthesis of Oxysterols 8
1.1.3.1. Auto-oxidation and photo-oxidation of 8cholesterol
1.1.3.2. Enzymatic Formation of Oxysterols 9
1.1.3.3. 24(S),25-epoxycholesterol Synthesis 10
1.1.4. Differential distribution of oxysterols 10
1.1.5. Biological Functions of Oxysterols 12
1.1.5.1. Regulation of SREBP 12
1.1.5.2. Activation of Liver X Receptor 14
1.1.5.3. Regulation of Protein Degradation 15
1.1.5.4. Cell signalling 16
1.1.6. Role of Oxysterols in Disease 17
1.1.6.1. Role of Oxysterols in Cardiovascular 17
Disease
1.1.6.2. Role of Oxysterols in Eye Disease 18
1.1.6.3. Role of Oxysterols in Neurodegenerative 19
Diseases
1.1.7. Role of Oxysterols in Immunity 22
1.1.8. Role in development 26
1.2. Proteomics 29
1.2.1. Phosphoproteomics 30
1.2.2. Mass Spectrometry 31
1.2.2.1. Electrospray Ionization 31
1.2.2.2. Mass Analyzer 33
1.2.2.3. Precursor Ion 33
1.2.2.4. Tandem Mass Spectrometry (MS/MS) 34
1.2.2.5. Multistage activation 35
1.2.3. Quantitative Proteomics 35
1.2.3.1. Stable Isotope Labelling with Amino Acids 36
in Cell Culture (SILAC)
1.2.3.2. Isobaric Tagging 37
1.2.3.3. Label Free Quantification 38
1.2.4. Peptide Mixture Complexity Reduction 38
1.2.4.1. Reverse Phase High Performance Liquid 39
Chromatography
1.2.4.2. Strong Cation Exchange 39
1.2.4.3. Phosphoenrichment 40
1.2.5. Proteomic Bioinformatics 40
1.2.6. Experimental Considerations of Proteomic Studies 43
1.2.6.1 SN4741 Cell Line. 43
1.2.6.2. Proteomic Profiling Validation of Existing 43
Knowledge
1.2.6.3. Identification of Novel 24(S),25- 43
epoxycholesterol Regulated Genes
1.2.6.4. Identification of Novel 24(S),25- 44
epoxycholesterol Regulated Protein Phosphorylation
1.3. Aims and Objectives 45
Chapter 2: Materials and Methods 46
2.1. Cell Culture 46
2.1.1. SN4741 Cell Culture 46
2.1.2 Hela Cell Culture 47
2.1.3. THP1 Cell Culture 47
2.1.4. Freezing Cells 48
2.1.5. SILAC Cell Culture 49
2.2. Cell Culture Treatments. 50
2.2.1. Oxysterol Treatment 50
2.2.1.1. Adherent cells - SN4741 50
2.2.1.2. Suspension cells - THP1 50
2.2.2. GW3965 Treatment 51
2.2.2.1. Adherent cells - SN4741 51
2.2.2.2. Suspension cells - THP1 51
2.3. SN4741 viability assays 51
2.3.1. Cell Viability Assay: XTT 52
2.3.2. Cell Viability Assay: CellTiter Blue 52
2.4. Cell Lysis - Protein Extraction 52
2.5. Protein Estimation 53
2.6. Stable Isotope Labelling in Cell Culture (SILAC) 54
2.6.1. SILAC Treatment(s) - SN4741 54
2.6.2. SILAC Sample Reduction and Methylation 54
2.6.3. Strong Cation Exchange (SCX) Chromatography 54
2.6.4. Desalting 55
2.6.5. LTQ-Orbitrap Calibration Electrospray Positive Ion 55
Mode
2.6.6. LTQ-Orbitrap Nanospray 56
2.6.7. Liquid Chromatography 56
2.6.8 Liquid Chromatography Validation - Bovine Serum 56
Albumin
2.6.9. LTQ-Orbitrap LC-MS/MS 57
2.6.10. Orbitrap Velos LC-MS/MS 57
2.6.11. Analysis of SILAC LC-MS/MS data 58
2.7. PhosphoSILAC 59
2.7.1. PhosphoSILAC Treatments - SN4741 59
2.7.2. phosphoSILAC Sample Reduction and Methylation 59
2.7.3. Strong Cation Exchange Chromatography 59
2.7.4. Desalting 59
2.7.5. Peptide Methylation 60
2.7.6. Immobilised Metal Affinity Chromatography (IMAC) 60
Phosphoenrichment
2.7.7. LTQ-Orbitrap Calibration Electrospray Positive Ion 61Mode
2.7.8. LTQ-Orbitrap Nanospray 61
2.7.9. Liquid Chromatography 61
2.7.10. Liquid Chromatography Validation - Bovine Serum 61
Albumin
2.7.11. LTQ-Orbitrap LC-MS/MS 61
2.7.12. Analysis of phosphoSILAC LC-MS/MS data 62
2.8. Western Blotting 63
2.8.1. Polyacrylamide Gel Casting 63
2.8.2. Polyacrylamide Gel Electrophoresis Sample Loading 64
2.8.3. Protein Transfer to Nitrocellulose Membrane 65
2.8.4. Blocking Non-Specific Binding 65
2.8.5. Primary Antibody Incubation 66
2.8.6. Secondary Antibody Incubation 66
2.8.7. Detection 66
2.9. Fixed Cell Confocal Microscopy 67
2.10. Real Time Reverse Transcription PCR 69
2.10.1. RNA Extraction - Adherent cells 69
2.10.2. RNA Extraction - Suspension Cells 69
2.10.3. RNA Concentration Estimation 70
2.10.4. Reverse transcription 70
2.10.5. Primers 71
2.10.6. Real Time Polymerase Chain Reaction 73
2.10.7. Data Analysis 75
2.11. Mouse MCSF Enzyme Linked Immunosorbant Assay 77
2.12. Human MCSF Enzyme Linked Immunosorbant Assay 78
2.13 Statistical Analysis 79
Chapter 3: Proteomic analysis of 24S,25- 80
EPOXYCHOLESTEROL TREATMENT IN SN4741 NEURONS
3.1. Introduction 80
3.2. Results 82
3.2.1. Analysis of 24(S),25-epoxycholesterol Treatment on 82SN4741 Growth
3.2.2. Analysis of 24(S),25-epoxycholesterol Treatment on 83SN4741 Viability
3.2.3. LXR Expression in SN4741 cells.
3.2.4. Strong Cation Exchange Fractionation of SILAC 85
peptides 87
3.2.5. C18 Reverse Phase LC-MS/MS of SILAC peptides
3.2.6. Peptide and Protein Identifications 91
3.2.7. Expression of Neurotrophins and Neuronal Markers 94
in SN4741 Cells 98
3.2.8. Analysis of proteomic data 100

Chapter 4: Further Analysis of 24(S),25- 136 EPOXYCHOLESTEROL INDUCED PROTEIN EXPRESSION CHANGES IN SN4741 NeURONS
4.1. Introduction 136
4.2. Results 138
4.2.1. Validation of Known Oxysterol Regulated Genes
Identified by SILAC
4.2.2. Ligand Binding Induces Up-Regulation of Liver X 140 Receptor $\boldsymbol{\beta}$ (LXR β)
4.2.3. Fatty Acid Synthesis 141
4.2.4. Phospholipid Synthesis 142
4.2.5. Decreased expression of Ethanolamine-phosphate 143 cytidylyltransferase
4.2.6. Increased expression of Collagen type IV alpha-3- 145
binding protein
4.2.7. 24(S),25-epoxycholesterol Effects Caveolin-1 146

Expression and Localisation
4.2.8. Changes in miscellaneous proteins 151
4.2.8.1 Golgi sialoglycoprotein MG-160 151
4.2.8.2. Increased Expression of Macrophage Colony 152

Stimulating Factor
4.2.9. Increased MCSF mRNA expression in THP1 human 156 monocytes.
Chapter 5: Phosphoproteomic analysis of 24S,25- 165
EPOXYCHOLESTEROL AND 25-HYDROXYCHOLESTEROL
TREATMENT IN SN4741 CELLS
5.1. Introduction.. 165
5.2. Results 170
5.2.1. Effect of 25-hydroxycholesterol on ERK 170
Phosphorylation
5.2.2. Strong Cation Exchange and IMAC 171
5.2.3. C18 Reverse Phase LC-MS/MS of SILAC 176
phosphopeptides
5.2.4. Phosphopeptide Identifications 184
5.2.5. Analysis of Phosphopeptides For Novel 185
Phosphorylation Sites
5.2.6. Analysis of Phosphopeptide Motifs 191
5.2.7. Quantitative Analysis of Changes in Phosphorylation 193
5.2.8. Peptide Methylation 208
5.3. Discussion 210
Chapter 5: General Discussion 214
References 220
Appendix 1: All Proteins Identified as Down-Regulated 240
in ≥ 1 Biological Replicate
Appendix 2: All Proteins Identified as Up-Regulated in ≥ 1 258
Biological Replicate
Appendix 3. All phosphopeptides identified as down- 280
REGULATED AFTER TREATMENT WITH 24(S),25-EPOXYCHOLESTEROL

Appendix 4. All phosphopeptides identified as upREGULATED AFTER TREATMENT WITH 24(S),25EPOXYCHOLESTEROL (24(S),25-EC) IN ≥ 1 BIOLOGICAL REPLICATE.

APPENDIX 5. All PhOSPHOPEPTIDES IDENTIFIED AS DOWN- 284 REGULATED AFTER TREATMENT WITH 25HYDROXYCHOLESTEROL (25-OHCHOL) IN ≥ 1 BIOLOGICAL REPLICATE.

Appendix 6. All phosphopeptides identified as up286

REGULATED AFTER TREATMENT WITH 25HYDROXYCHOLESTEROL (25-OHCHOL) IN $\mathbf{\geq 1}$ BIOLOGICAL REPLICATE.

ACKNOWLEDGEMENTS

With love to my parents for their unflinching support and Louise for putting things in perspective.

List of Figures and Tables

Figures

Chapter 1: Introduction

Figure 1.1. Structure of cholesterol and bioactive molecules for2 which cholesterol is the starting material.

Figure 1.2. The cholesterol synthesis pathway. 4
Figure 1.3. Chemical structure of oxysterols. 6
Figure 1.4. Simplified overview of bile acid synthesis. 7
Figure 1.5. Peptide fragmentation notation. 34
Figure 1.6. Schematic of SILAC experimental design. 37

Chapter 2: Materials and Methods

Figure 2.1. Typical plate set up for real time RT-PCR.

Chapter 3: Proteomic analysis of 24S,25EPOXYCHOLESTEROL TREATMENT IN SN4741 NEURONS

Figure 3.1. Effect of $24(S), 25$-epoxycholesterol on the rate of growth of SN4741 cells.

Figure 3.2. 24(S),25-epoxycholesterol is not toxic in SN4741 cells as measured by XTT assay.

Figure 3.3. 24(S),25-epoxycholesterol is not toxic in SN4741 cells as measured by Cell Titer Blue assay.
Figure 3.4. The protein level of ABCA 1 is increased after 24 hours
treatment with either $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 indicating that SN4741 cells express LXR α / β.

Figure 3.5. Strong Cation Exchange chromatography validation. 88
Figure 3.6. Strong Cation Exchange chromatography trace of SILAC peptides.

Figure 3.7. Reverse Phase LC-MS/MS validation.
Figure 3.8. Reverse Phase LC-MS/MS SILAC peptide separation.92

Figure 3.9. Example SILAC spectra for lysine and arginine 93 containing peptides.

Figure 3.10. There was a large overlap between runs of the same biological replicate on different instruments (A,B,C); 90\% (A), 91% (B) and $86 \%(C)$ of leading proteins identified on the LCQOrbitrap with ≥ 2 peptides were also identified on the Orbitrap Velos with ≥ 2 peptides97

Figure 3.11. Overlap of leading proteins identified and quantified with ≥ 2 peptides using MaxQuant.

Figure 3.12. Flowchart of data analysis showing the process by which protein expression data was rejected in order to identify reproducible changes in the proteome.

Chapter 4: Further Analysis of 24(S),25EPOXYCHOLESTEROL INDUCED PROTEIN EXPRESSION CHANGES IN SN4741 Neurons

Figure 4.1. SN4741 reverse transcription qPCR. 139
Figure 4.2. IDOL is expressed in SN4741 cells. 140
Figure 4.3. Synthesis of the monounsaturated fatty acid oleic acid. 142
Figure 4.4. Simplified schematic of phospholipid synthesis. 143
Figure 4.5. Western blotting confirmed the observed down144 regulation of phosphoethanolamine cytidylyltransferase (PCyt2) in SN4741 cells.

Figure 4.6. Western blotting confirmed the observed downregulation of caveolin-1 in SN4741 cells.

Figure 4.7. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells.
Figure 4.8. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells.

Figure 4.9. Western blotting of SN4741 lysates probing for MCSF.153

Figure 4.10. qPCR showing mean fold change in MCSF expression in SN4741 cells.

Figure 4.11. ELISA assay of secreted MCSF concentration in

Figure 4.12. qPCR showing mean fold change in MCSF expression
in THP1 monocytes.
Figure 4.13. Western blot showing no change in MCSF protein expression in THP1 monocytes.
Figure 4.14. ELISA assay of secreted MCSF concentration in THP1 cell supernatant.

Chapter 5: Phosphoproteomic analysis of 24S,25EPOXYCHOLESTEROL AND 25-HYDROXYCHOLESTEROL TREATMENT IN SN4741 CELLS

Figure 5.1 25-hydroxycholesterol treatment increases ERK1/2 phosphorylation in Hela cells.
Figure 5.2. Strong Cation Exchange chromatography trace of
SILAC peptides and phosphopeptides from the first biological replicate.
Figure 5.3. Strong Cation Exchange chromatography trace of
SILAC peptides and phosphopeptides from the second biological replicate.
Figure 5.4. Reverse Phase LC-MS/MS SILAC phosphopeptide separation.
Figure 5.5. Phosphopeptide SILAC MS scan and multistage activation.

Figure 5.6. Phosphopeptide SILAC multistage activation MS/MS
spectra.
Figure 5.7. Phosphopeptide SILAC multistage activation scans for the phosphopeptide AS(ph)EDESDLEDEEEKSQEDTEQK.

Figure 5.8. Venn diagram of phosphopeptides identified with unique sequence and site of modification.
Figure 5.9. Distribution of phosphopeptide 'best motif' with SILAC ratio.

Figure 5.10. Poor correlation in peptide ratio between biological replicates.

Chapter 6: General Discussion

Figure 6.1. The effect of $24(S), 25$-epoxycholesterol on SN4741 neuronal cells.

Chapter 1: Introduction

Table 1.1. Summary of important oxysterols and disease states in which they have been implicated.

Chapter 2: Materials and Methods

Table 2.1. SN4741 full media. 46
Table 2.2. Hela full media. 47
Table 2.3. THP1 full media. 48
Table 2.4. SN4741 SILAC media. 49
Table 2.5. Dilutions of BSA for Bradford Assay standard curve 53
Table 2.6. Reagents used in preparation of resolving gel. 63
Table 2.7. Reagents used in preparation of the stacking gel. 64
Table 2.8.Primers used for reverse transcription qPCR. 71
Table 2.9. Conditions for real time PCR 75
Table 2.10. Summary of RT-PCR primer efficiencies. Efficiency 76 shown as mean with standard deviation.

Chapter 3: Proteomic analysis of 24S,25EPOXYCHOLESTEROL TREATMENT IN SN4741 NEURONS

Table 3.1. Threshold cycle for $\mathrm{LXR} \alpha$ and LXR β after RT-qPCR.
Table 3.2. Comparison of proteins identified between LTQ-Orbitrap and Orbitrap Velos instruments.
Table 3.3. Neurotrophins and neuronal markers expressed in SN4741 cells identified in SILAC experiments.
Table 3.4. Number of proteins identified as 'no change', 'upregulated or 'down regulated' from each biological replicate on LTQ-Orbitrap or Orbitrap Velos instruments after treatment with 24(S),25-epoxycholesterol.
Table 3.5. Proteins identified as down-regulated. 102
Table 3.6. Proteins identified as up-regulated 115
Table 3.7. Gene Ontology terms identified as enriched after DAVID 126 bio-informatic analysis. informatic analysis of down regulated proteins.

Table 3.9. Kegg Pathways identified as enriched by DAVID bioinformatic analysis of up-regulated proteins.
Table 3.10. Summary of reproducible changes in protein expression.

Chapter 5: Phosphoproteomic analysis of 24S,25EPOXYCHOLESTEROL AND 25-HYDROXYCHOLESTEROL TREATMENT IN SN4741 CELLS

Table 5.1. Summary of studies analysing effects of oxysterol
treatment or cyclodextrin cholesterol depletion on ERK phosphorylation
Table 5.2. Summary of Western blot experiments analysing effect of 25-hydroxycholsterol on SN4741 cell phospho-ERK levels.
Table 5.3. The number of peptides identified in 2 biological 184 replicates.

Table 5.4. Phosphopeptides identified in both replicates that are currently listed, on Uniprot.org (accessed 02/04/12), as not having experimental evidence to demonstrate post-translational modification at these phosphorylation sites.

Table 5.5. Probabilities of phosphopeptides identified in both replicates that are not currently listed, on Uniprot.org (accessed 02/04/12), as not phosphorylated at these sites.
Table 5.6. Frequency of phosphopeptide 'best motif' in each biological replicate.
Table 5.7. Median SILAC un-normalised ratios for the 2 phosphoproteomic data sets.

Table 5.8. Phosphopeptides identified as down-regulated after treatment with $24(S), 25$-epoxycholesterol (24(S), $25-\mathrm{EC}$).

Table 5.9. Phosphopeptides identified as up-regulated after treatment with $24(S), 25$-epoxycholesterol (24(S),25-EC).

Table 5.10. Phosphopeptides identified as down-regulated after treatment with 25 -hydroxycholesterol (25-OHChol).

Table 5.11. Phosphopeptides identified as up-regulated after 202 treatment with 25 -hydroxycholesterol (25-OHChol).
Table 5.12. Phosphopeptides identified as having change in 204 expression after treatment with 25 -hydroxycholesterol (25OHChol) or $24(S), 25$-epoxycholesterol (24(S),25-EC).
Table 5.13. Incomplete methylation increases complexity of the 209 peptide mixture.
Table 5.14. Phosphopeptides with a novel site of phosphorylation 209 identified in 3 independent experiments.

Abbreviations	
19-OHChol	19-hydroxycholesterol
22-OHChol	22-hydroxycholesterol
22(R)-OHChol	22(R)-hydroxycholesterol
24(S),25-EC	24(S),25-epoxycholesterol
24(S)-OHChol	24(S)-hydroxycholesterol
25-OHChol	25-hydroxycholesterol
27-OHChol	25-hydroxycholesterol
7 α-OHChol	7 α-hydroxycholesterol
7 3 -OHChol	7 β-hydroxycholesterol
A β	Amyloid β peptide
ABCA1	ATP binding cassette A1
ABCG1	ATP binding cassette G1
ANOVA	analysis of variance
ApoE	apolipoprotein E
APS	ammonium persulphate
ATP	adenosine-5'- triphosphate
BSA	bovine serum albumin
Cav-1	caveolin-1
CH25H	cholesterol 25-hydroxylase
CHO	Chinese hamster ovary
CID	collision induced dissociation
CoA	coenzyme A
Col4a3bp	collagen type IV alpha-3-binding protein
Ct	cycle threshold
CTX	cerebrotendinous xanthamatosis
CYP11A1	cholesterol side-chain cleavage enzyme
CYP27A1	sterol 27-hydroxylase
CYP46A1	cholesterol 24-hydroxylase
CYP7A	cholesterol 7-alpha-hydroxylase
CYP7B1	25-hydroxycholesterol 7-alpha-hydroxylase
DMEM	Dulbecco's modified Eagle medium

DMSO	dimethyl sulfoxide
DTT	dithiothreitol
EBI2	Epstein-Barr virus-induced gene 2
EC50	half maximal effective concentration
EDTA	ethylenediaminetetraacetic acid
EGF	epidermal growth factor
ELISA	enzyme-linked immunosorbent assay
ERK	extracellular signal regulated kinase
ESI	electrospray ionisation
FBS	foetal bovine serum
FDR	false discovery rate
FT	Fourier transform
FTICR	Fourier transform ion cyclotron resonance
FXR	farnesoid X receptor
H β CD	2-hydroxypropyl- β-cyclodextrin
HMG-CoA	3-hydroxy-3-methylglutaryl-CoA
HPLC	high performance liquid chromatography
HRP	horseradish peroxidase
IFN	interferon
IgA	immunoglobulin A
IgG	immunoglobulin G
IMAC	immobilised metal affinity chromatography
Insig	Insulin-induced gene
IPI	International protein index
Ki	binding affinity
LC	liquid chromatography
LDLR	low density lipoprotein receptor
LPS	lipopolysaccharide
LTQ	linear trap quadrupole
LXR	liver X receptor
MALDI	matrix assisted laser desorption ionisation
MAPK	mitogen activated protein kinase
$\mathrm{M} \beta \mathrm{CD}$	methyl- β-cyclodextrin

MCSF	macrophage colony stimulating factor
MOAC	metal oxide affinity chromatography
MS	mass spectrometry
NF-кB	nuclear factor kappa-light-chain-enhancer of activated B cells
OSBP	oxysterol binding protein
PBS	phosphate buffered saline
PCyt2	phosphoethanolamine cytidylyltransferase
Poly I:C	polyinosinic:polycytidylic acid
PPAR	peroxisome proliferator-activated receptor
PTM	post-translational modification
qPCR	quantitative polymerase chain reaction
Q-TOF	quadrupole - time of flight
RF	radio frequency
RT	reverse transcription
RXR	retinoid X receptor
SCAP	SREBP cleavage activating protein
SCX	strong cation exchange
SILAC	stable isotope labelling with amino acids in cell culture
SREBP	sterol response element binding protein
StarD4	StAR-related lipid transfer protein 4
TEMED	$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ - tetramethylethylenediamine
TH	tyrosine hydroxylase
TLR	Toll-like receptor
TOF	time of flight
TRIF	TR-domain-containing adapter-inducing interferon- β
UniprotKB	Uniprot knowledgebase
UV	ultraviolet
XTT	2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5carboxanilide
w/o	without

CHAPTER 1: INTRODUCTION

1.1 Oxysterols

1.1.1 Cholesterol

Cholesterol is a molecule that is an essential component of the eukaryotic cell membrane, where it plays a key role in the maintenance of permeability and fluidity.. Cholesterol orientates itself inside the membrane between phospholipids so that the hydroxyl group at position 3 of the ring structure is adjacent to the polar head group of phospholipids with the hydrophobic part of the molecule in the hydrophobic core of the membrane. The steroid ring structure interacts with the aliphatic chains of the phospholipid reducing the mobility of the membrane and its permeability to water soluble small molecules. Cholesterol reduces the fluidity of the membrane but this also prevents possible phase transitions. Phase transitions occur when lipid components of the liquid membrane crystallise at reduced temperatures. Thus, cholesterol plays a role in the membrane that allows the bilayer to control entry of water soluble small molecules and to maintain the membrane in a liquid, albeit less fluid, state (Olsen et al. 2012).

In addition, cholesterol is an important precursor for a number of other active biomolecules. Cholesterol is the starting material for androgens (e.g. testosterone), progestogens (e.g. progesterone), oestrogens (e.g. oestradiol) glucocorticosteroids (e.g. hydrocortisone), mineralocorticoids (e.g. aldosterone) and bile acids (e.g. cholic acid) (fig. 1.1.). Cholesterol and its derivatives are therefore important molecules that play a multifunctional role in cellular function. However, increased levels of cholesterol are also associated with artherosclerosis and an increased risk of cardiovascular disease. For healthy adults a blood cholesterol level of $<5 \mathrm{mmol} / 1$ is considered normal and concentrations above this considered high (http://www.nhs.uk/Conditions/Cholesterol/Pages/Diagnosis.aspx accessed 10-42013). Therefore, homeostasis is necessary to maintain a balance between cholesterol uptake and excretion.

Figure 1.1. Structure of cholesterol and bioactive molecules for which cholesterol is the starting material. Cholesterol contains 27 carbon atoms and is numbered as shown in the figure. Cholesterol is transformed via multistep biochemical reactions to form androgens (e.g. testosterone), progestogens (e.g. progesterone), oestrogens (e.g. oestradiol), glucocorticosteroids (e.g. hydrocortisone), mineral corticosteroids (e.g. aldosterone) and bile acids (e.g. cholic acid). It is apparent that the 4 ring structure of cholesterol is the basis of these molecules; changes in the ring structure, side chain or oxygenation can lead to profound differences in biological activity.

Cholesterol is obtained from two principal sources - diet and from de novo synthesis. The majority of the daily requirement of cholesterol is achieved from the activity of a number of enzymes involved in a multistep synthesis occurring at the endoplasmic reticulum (fig. 1.2.). The starting material for cholesterol synthesis is acetyl CoA that is linked to another acetyl CoA to form acetoacetyl CoA. It is converted early in the pathway to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced to yield mevalonate by the action of HMG-CoA reductase; this is the rate
limiting step in cholesterol synthesis and is inhibited by statins, an extensively used family of drugs for reducing cholesterol level.

Therefore, the homeostasis of cholesterol is crucial to balance the essential functions of the molecule with the negative consequences that high levels induce. Cholesterol itself has a role to play by end product negative feedback but, importantly, cholesterol can be metabolised to form oxysterols which regulate intercellular cholesterol levels.

Figure 1.2. The cholesterol synthesis pathway. A shunt in the pathway results in the formation of 24(S),25-epoxycholesterol (${ }^{*}=$ multiple steps). Enzymes responsible for the reactions are shown in italics.

1.1.2 Oxysterols

Oxysterols are biologically active oxidized derivatives of cholesterol. The oxysterols are diverse as they can be oxidised in different positions on the molecule either by auto-oxidation or by enzymatic means. The oxygen can be introduced onto the sidechain (e.g. 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 25hydroxycholesterol, $24(S), 25$-epoxycholesterol) or onto the cholesterol ring structure (e.g. 7α-hydroxycholesterol, 7 -ketocholesterol) (fig 1.3). In vivo oxysterols are produced via auto-oxidation, enzymatically via various cytochrome P450 and cholesterol hydroxylase enzymes (section 1.1.3.) or by a shunt in the cholesterol synthesis pathway that leads to the formation of $24 S, 25-$ epoxycholesterol (fig 1.2.). The formation of oxysterols is the first step in the synthesis of bile acids from cholesterol (fig. 1.4.)

Figure 1.3. Chemical structure of oxysterols. Oxygen is introduced to the molecule to the sidechain or ring structure by auto-oxidation or enzymatic activity. The enzymes responsible for the generation of different oxysterols are shown. Biological activity of the oxysterols is dependent on the location of the oxygenation with profound differences in efficacy as ligands.

Figure 1.4. Simplified overview of bile acid synthesis. The initial step in the formation of bile acids of both the neutral and acidic pathways is the synthesis of oxysterols. In the neutral pathway cholesterol is metabolised by CYP7A to form $7 \alpha-$ hydroxycholesterol before multiple steps (indicated by *) to form bile acids (cholic and chenodeoxycholic acid). In the acidic pathway the initial oxysterol formed is 27 hydroxycholesterol by the action of CYP27A1. Multiple steps (indicated by ${ }^{* *}$) convert 27-hydroxychoelsterol to bile acids.

The location of the modification is important as although the oxysterols share characteristics, such as a reduced hydrophobicity compared with the cholesterol parent, the location, and stereochemistry play a role in the biological function of the molecules. There are differences between them in terms of activity due to differences in protein binding. The activation of Liver X receptor (LXR), for which oxysterols are the natural ligand, varies considerably depending on where cholesterol is oxidised with EC_{50} values ranging from 4 or $3 \mu \mathrm{M}$ for $\mathrm{LXR} \alpha / \beta$ respectively for $24(S)$ hydroxycholesterol but below the detection limit for 7-ketocholesterol (Janowski et al. 1999). The biological roles of oxysterols will be discussed further in section 1.1.5 but they have been shown to be important in cholesterol homeostasis and in disease. Oxysterols have been associated with artherosclerotic cardiovascular disease (section 1.1.6.1) and, in addition, they have also been implicated in neurodegenerative conditions such as Alzheimer's disease (see section 1.1.6.3; Olkkonen \& Lehto 2004, Vaya et al. 2007).

1.1.3 Synthesis of Oxysterols

Oxysterols are synthesised from cholesterol by a number of mechanisms. These include auto-oxidation, photo-oxidation and enzymatic formation.

1.1.3.1. Auto-oxidation and photo-oxidation of cholesterol

When exposed to the atmosphere cholesterol can be auto-oxidised to form oxysterols (Weiner et al. 1972). The most commonly encountered oxysterols generated in this manner are the 7 -position modified oxysterols that includes 7α-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol. In addition, $5,6 \alpha$ - or $5,6 \beta-$ epoxycholesterol can be produced which is converted to $5 \alpha, 6 \beta$-dihydroxycholesterol. All these oxysterols are modified on the ring structure of cholesterol and have poor activity with regard to liver X receptor (LXR), the nuclear receptor for which oxysterols are the natural ligand (Janowski et al. 1999). With the exception of $7 \alpha-$ hydroxycholesterol (section 1.1.3.2) they are not produced enzymatically. In addition cholesterol is also oxidised by photo-oxidation. This process predominantly yields 5α-hydroperoxycholesterol which can be transformed to 7-position oxygenated oxysterols. Thus, the major products of both forms of non-enzymatic production of oxysterols are the same.

It has been shown that some auto-oxidation products are toxic (7 7 hydroxycholesterol, 7-ketocholesterol) and therefore their presence may lead to harmful biological effects (Hughes et al. 1994). In a laboratory context it is important to recognise the importance of auto-oxidation with regard to artefacts generated by processing of cholesterol in the course of experimental methodology as they could potentially lead to false positive conclusions.

1.1.3.2. Enzymatic Formation of Oxysterols

Cholesterol is metabolised to oxysterols enzymatically via a number of different enzymes. 24(S)-hydroxycholesterol, the predominant oxysterol found in the brain, is generated by the action of the cytochrome P450 CYP46A1 (Lund et al. 1999). Unsurprisingly, in both mice and humans it is predominantly expressed in the brain with very low expression in other tissues. Human brain was analysed in more depth and expression was found across a number of subsections of the brain. Expression was stronger however in grey matter compared with white matter. In mouse brain cyp46al immunohistochemical staining showed localisation to neurons. The expression of CYP46A1 varies with aging. Initially the protein level in the brain, measured by Western blotting, of both mouse and human is low in the early stages of postpartum development and increases over time until reaching a steady state.

The activity of the cytochrome P450 enzyme cholesterol 7α-hydroxylase (CYP7A) results in the formation of 7α-hydroxycholesterol. This oxysterol, which is also a product of auto-oxidation, is a precursor in the formation of bile acids. It is predominantly expressed in the liver (Jelinek et al. 1990) and is the predominant location of its activity (Chiang et al. 1990).
The enzymatic formation of 25 -hydroxycholesterol is due to the activity of cholesterol 25-hydroxylase (Lund et al. 1998). This polytopic membrane protein, unlike CYP7A and CYP46A1 which are responsible for the formation of 7α-hydroxycholesterol and 24(S)-hydroxycholesterol respectively, is not a cytochrome P450. Instead, it belongs to a family of enzymes that require di-iron co-factors as a catalyst. Murine cholesterol 25-hydroxylase was found in lung, heart and kidney. In comparison, human cholesterol 25-hydroxylase was found at very low levels in all tissues tested. Recently however, it has been reported that the expression of cholesterol 25 -hydroxylase
increases dramatically in response to certain stimuli (see section 1.1.7 for a full discussion of this effect).

1.1.3.3. 24(S),25-epoxycholesterol Synthesis

24(S),25-epoxycholesterol is an unique oxysterol as it not a metabolite of cholesterol but instead is a final product made by a shunt in the cholesterol synthesis mevalonate pathway (fig 1.2.; Nelson et al. 1981). However, the measured level of 24(S),25epoxycholesterol is much lower than that of cholesterol with levels between 0.1% and 1\% total cholesterol reported (Spencer et al. 1985; Wong et al. 2004; Wong et al. 2007). In the synthesis of cholesterol squalene epoxidase (AKA squalene monooxygenase) introduces an epoxide moiety to squalene to produce $2,3(S)$ monooxidosqualene. This molecule is then cyclised by 2,3-oxidosqualene cyclase to form lanosterol and then processed, via a number of steps, to cholesterol. However, it is possible for the $2,3(S)$-monooxidosqualene to be oxygenated further by squalene epoxidase to form $2,3(S) ; 22(S), 23$-dioxidosqualene. This molecule can then be cyclised to oxidolanosterol by 2,3-oxidosqualene cyclase before being processed using the same enzymes as those used in the synthesis of cholesterol to form 24(S),25epoxycholesterol as an end product. This implies that any cell that synthesises cholesterol has the potential to synthesise 24(S),25-epoxycholesterol. Indeed, in a variety of cell types such as macrophages, fibroblasts and astrocytes this has been shown to be the case (Wong et al. 2004; Spencer et al. 1985; Wong et al. 2007).

1.1.4. Differential distribution of oxysterols

Just as the expression of oxysterol generating enzymes vary across different tissues (section 1.1.3.2) the abundance of the different oxysterols vary depending on the tissue or biological fluid examined. A number of studies have been conducted to investigate the plasma levels of different oxysterols in humans (summarised in Schroepfer 2000). Although the values identified by different research groups had variation between them clear trends were also present. The predominant oxysterols identified in plasma were 27-hydroxycholesterol (a naturally occurring oxysterol derived from the activity of a mitochondrial cytochrome P450 sterol 27-hydroxylase (CYP27A1, Andersson et al. 1989)), 24(S)-hydroxycholesterol and 7 α -
hydroxycholesterol. In addition, other oxysterols, such as 25 -hydroxycholesterol, were identified at lower concentrations.

In the central nervous system the predominant oxysterol is 24(S)-hydroxycholesterol due to the high expression of CYP46A1 (see section 1.1.3.2; (Lund et al. 1999)). 24(S)-hydroxycholesterol has been identified as a component of cerebrospinal fluid (Lütjohann et al. 1996). The level of 24(S)-hydroxycholesterol in cerebrospinal fluid was $\sim 10 \%$ that in plasma. The ratio of $24(S)$-hydroxycholesterol to cholesterol was measured at $1690 \pm 600 \mathrm{ng} / \mathrm{mg}$ in children but lower in adults with a ratio of 390 ± 50 $\mathrm{ng} / \mathrm{mg}$. The ratios were 10 -fold higher than the ratio of 24 (S-hydroxycholesterol to cholesterol in plasma but 50% lower than the ratio found in brain. No other sidechain modified oxysterols were reported by the authors. In contradiction a recent paper showed that the oxysterol profile of cerebrospinal fluid was a lot more complex with numerous oxysterols identified by charge tagging mass spectrometry (Ogundare et al. 2010). Oxysterols identified included 24(S)-hydroxycholesterol, 25hydroxycholesterol, 27-hydroxycholesterol and bile acids. In this study 24(S)hydroxycholesterol was not the highest concentration oxysterol identified.

24(S)-hydroxycholesterol has been identified in the brain of a number of different species including rat, cow, horse and human. 24(S)-hydroxycholesterol was measured in various tissues but was at a highest concentration in the cerebrum and cerebellum. In human adult brain the level analysed post mortem the level of $24(S)$ hydroxycholesterol (Lütjohann et al. 1996) was measured at $0.27-0.58 \mathrm{ng} / \mu \mathrm{g}$ cholesterol in cerebrum and $0.68-2.19 \mathrm{ng} / \mu \mathrm{g}$ cholesterol in cerebellum. In addition, it was reported (thought the data was not presented) that 27-hydroxycholesterol and 25hydroxycholesterol were also found in brain though at lower levels - 5 to 30% and $<3 \%$ respectively.

It is unclear at present whether the distribution of oxysterols to specific tissues, such as 24(S)-hydroxycholesterol to the central nervous system, leads to distinct, specific effects dependent on the isomer present. However, there has been a large amount of work conducted on the biological importance of oxysterols.

1.1.5. Biological Functions of Oxysterols

The major, well studied, biological functions of oxysterols are as important regulatory molecules. Due to the presence of oxysterols cholesterol synthesis is inhibited via negative feedback by down-regulation of the synthesis of enzymes in the synthetic pathway (Gill et al. 2008). In addition, they can affect the homeostasis of cholesterol by increasing the expression levels of cholesterol exporters (e.g. ATP binding cassette A1 (ABCA1)) and reducing the low density lipoprotein receptor mediated uptake of cholesterol in the form of low density lipoprotein. Oxysterols, generally, exert their effects through three methods; regulation of protein transcription through inhibition of SREBP (Sterol Response Element Binding Protein) processing, acting as a ligand for the nuclear receptor Liver X Receptor (LXR), and by altering the rate of protein degradation.

However, the functions of oxysterols are not limited to their classical roles as it has recently been shown that oxysterols can affect other diverse processes. Oxysterols can alter intracellular cell signalling by altering post-translational protein phosphorylation. In addition, it appears that oxysterols are important in the innate immune response, embryonic development, and disease progression.

1.1.5.1. Regulation of SREBP

The SREBP family are transcription factors that contain a basic helix loop helix leucine zipper motif ((bHLH-Zip). The family of proteins consists of 3 subtypes SREBP1a, lc and 2 (Brown and Goldstein 1997). Each subtype consists of a pair of membrane spanning domains that allow the N and C terminus domains to project into the cytoplasm. However, SREBP1 and 2 differ in their function. SREBP1 is predominantly expressed in the liver and adrenal gland and is involved in the regulation of fatty acid and triglyceride metabolism and de novo lipogenesis whereas SREBP2 is ubiquitously expressed and regulates the transcription of the enzymes involved in the cholesterol synthesis pathway (Brown and Goldstein 1997). Despite the divergence in their role the SREBPs are processed to their active form by a common transport and proteolytic mechanism.

SREBP1/2 in the presence of sterols is retained in the endoplasmic reticulum (Yang et al. 2002). As the intracellular cholesterol levels falls SREBP1/2 is transported, via the Golgi apparatus where it is made active due to proteolysis, to the nucleus. Two proteolytic cleavages are required to convert SREBP1/2 to its mature form. The first S1P (site-1 protease) splits SREBP1/2 in two but is unable to release the active bHLH-Zip domain (Espenshade et al. 1999). A second protease, S2P (site-2 protease), then converts SREBP1/2 into a transcription factor (Zelenski et al. 1999). Active SREBP1/2 is transferred to the nucleus where it can exert its effect and promote the expression of responsive genes.

SREBP1/2 itself does not contain a sterol binding domain and therefore its regulation is reliant on two other proteins - SCAP (SREBP cleavage activating protein) and Insig (Insulin induced gene) (Radhakrishnan et al. 2007). In cholesterol depleted cells SCAP transports SREBP1/2 from the ER to the Golgi apparatus where it is processed to its active from as described above. However, SCAP contains a sterol binding domain that allows it to bind cholesterol (Radhakrishnan et al. 2004). The presence of cholesterol alters SCAPs conformation and results in effects on SREBP1/2 processing. SREBP1/2 is bound to SCAP by an interaction between the c-terminus of both proteins that, in the presence of cholesterol, ensures that SREBP1/2 is tethered to the endoplasmic reticulum membrane. Thus, the interaction of cholesterol and SCAP results in a down regulation in expression of SREBP $1 / 2$ regulated genes. SCAP is only affected by cholesterol; 25-hydroxycholesterol had no effect on its conformation. However, a second protein Insig exerts a similar effect mediated by oxysterols. Insig, of which there are two closely related proteins Insig-1 and Insig-2, binds oxysterols but does not bind cholesterol (Radhakrishnan et al. 2007). In the presence of oxysterols Insig binds to SCAP and prevents the SCAP/SREBP1/2 complex from being transported to the Golgi for processing. Thus, the action of SREBP1/2 can be modified by cholesterol and oxysterols.

In addition, as another layer of regulation SREBP stimulates the production of Insig1 mRNA. Therefore, SREBP promotes the expression of an inhibitor of its processing to maturation. Stimulation of Insig expression promotes inhibition of SREBP regulated gene transcription (Horton et al. 2003).

1.1.5.2. Activation of Liver X Receptor

The liver X receptor (LXR) is a transcription factor and a nuclear receptor with strong similarity to other nuclear receptors such as PPAR, FXR and RXR. LXR was classified, initially, as an orphan receptor as its natural ligand was unknown (Apfel et al. 1994, Song et al. 1994). LXR exists as two isoforms α and β which have a large (77\%) homology between the two. There are, however, differences in expression with LXR α being the predominant isoform in the liver whilst LXR β is ubiquitously expressed. Oxysterols have been shown to be the endogenous ligand for both LXR α and LXR β (Janowski et al. 1998). The potency of different oxysterols vary depending on where on the ring or side chain of cholesterol the oxygen is added and the stereochemistry of the modification. Structure activity relationships have shown that the most potent ligands for LXR are oxysterols with modified side chain (Janowski et al. 1998). Indeed, the most potent naturally occurring oxysterol ligands for LXR, 24(S),25-epoxycholesterol and 24(S)-hydroxycholesterol, had an EC50 of $<5 \mu \mathrm{M}$ for both LXR α and β. In comparison, 7α-hydroxycholesterol, a naturally occurring oxysterol, had an efficacy of $\leq 10 \%$ at $40 \mu \mathrm{M}$. In addition to the position the number and stereochemistry of the modifications are also important as cholesterol hydroxylated twice were substantially less potent (e.g. K_{i} 24(S),25dihydroxycholesterol for $\mathrm{LXR} \alpha=1200 \mathrm{nM}$) as were enantiomers of active oxysterols (e.g. $\mathrm{K}_{\mathrm{i}} 24(\mathrm{R}), 25$-epoxycholesterol for $\mathrm{LXR} \alpha=1200 \mathrm{nM}$). This can be explained by the structure of the oxysterol binding pocket of LXR (Svensson et al. 2003). The crystal structure of LXR shows the orientation of the hydrophobic ring structure into a hydrophobic cavity. Hydrogen bonding between the hydroxyl at position 3 and arginine- 305 holds the ring in the correct position. A second hydrogen bond between active sidechain oxygenated oxysterols, (e.g. 22(R)-hydroxycholesterol, 24(S)hydroxycholesterol, $24(S), 25$-epoxycholesterol) and either histidine-421 or tryptophan-443 residues in the binding pocket results in stronger binding of these ligands. Inactive oxysterols such as $22(S)$-hydroxycholesterol and $24(R)$ hydroxycholesterol are prevented from binding efficiently in the pocket due to steric effects preventing hydrogen bonding to either the histidine-421 or tryptophan-443.

Retinoid x receptor (RXR) is a nuclear receptor that is activated in the presence of 9cis retinoic acid. It can heterodimerise with a number of other nuclear receptors
depending on which activating ligands are present. In the presence of oxysterols activated LXR forms heterodimers with RXR. This heterodimer can then activate transcription of genes containing a LXR response element in their promoter region. The LXR response element is a nucleotide sequence that has the idealised nucleotide sequence 5^{\prime}-AGGTCANXXXXAGGTCA-3' in the promoter region of LXR activated genes. Genes that are regulated by LXR include a number of genes that are associated with cholesterol and lipid homeostasis. Examples of genes regulated by LXR include ATP binding cassette A1 (ABCA1) which is a cholesterol efflux protein, ApoE a transporter of cholesterol and other hydrophobic compounds, and SREBP1c which controls the synthesis of fatty acid synthesising enzymes (e.g. fatty acid synthase).

1.1.5.3. Regulation of Protein Degradation

In addition to their roles in altering the transcription of genes, either by LXR or SREBP, oxysterols can alter the rate of protein degradation. HMG-CoA reductase, a membrane bound enzyme and a rate limiting step in the synthesis of cholesterol, is transcriptionally regulated by SREBP2. However, it has also been shown that oxysterols lead to a increased rate of HMG-CoA degradation (Chin et al. 1985; Gil et al. 1985; Nakanishi et al. 1988). This effect is mediated by Insig, the oxysterol sensing protein that causes SREBP retention in the endoplasmic reticulum (Sever et al. 2003a; Sever et al. 2003b). In the presence of sterols HMG-CoA reductase is ubiquitinated which is reliant on Insig; RNAi knockout of Insig 1 and 2 mitigated this effect (Sever et al. 2003a; Sever et al. 2003b). Therefore, these synergistic effects increase the rapidity of response to changes in cholesterol levels; the rate of synthesis of new protein is reduced and the removal of previously synthesised HMG-CoA reductase is accelerated.

Another protein that is targeted for degradation by the presence of oxysterols is low density lipoprotein receptor (LDLR). Regulation of LDLR expression is by modification of SREBP; the LDLR mRNA level is rapidly reduced in the presence of oxysterols (Metherall et al. 1989). Similarly to HMG-CoA reductase the protein, due to oxysterols, is ubiquitinated and then degraded. However, the mechanism of action by which oxysterols achieve this effect differs between the 2 proteins. In the case of LDLR stimulation of LXR induces Idol which ubiquitinates LDLR. LDLR is then
degraded (Zelcer et al. 2009). Thus like HMG-CoA reductase these effects, at the protein and mRNA level, are additive.

In the presence of oxysterols the rate of degradation of LXR α and LXR β is slowed. Overexpressed FLAG-tagged LXR α / β in the presence of oxysterols (i.e. in the presence of ligand) degraded at a lower rate after protein synthesis was inhibited with cycloheximide (Kim et al. 2009). It has not been shown whether this effect leads to a change in the level of endogenous LXR levels after treatment with oxysterols. Again this effect, in the case of LXR α, is potentially additive as the LXR α mRNA expression has been shown to be auto regulated in some, but not all, cell types.

Thus, it is potentially possible to affect protein expression levels by treatment with oxysterols without altering the level of mRNA expression. Either by inducing ubiquitination, as in the examples of HMG-CoA reductase and LDLR, or by preventing ubiquitination, in the case of LXR, it is clear that the role of oxysterols in protein regulation goes beyond that of transcriptional inhibition/activation via SREBP and LXR respectively. Indeed, it has recently been shown that the oxysterols play a role in the regulation of post transcriptional cell signalling.

1.1.5.4. Cell signalling

In addition to their regulatory role oxysterols can affect protein phosphorylation in particular the phosphorylation of extracellular signal regulated kinase (ERK1/2) (Yoon et al. 2004, Lemaire-Ewing et al. 2009). Cholesterol stabilises a phosphatase complex containing oxysterol binding protein (OSBP) as a scaffold, the serine/threonine phosphatase PP2A and the tyrosine phosphatase HePTP that decreases the phosphorylation of ERK $1 / 2$ (Wang et al. 2003, Wang et al. 2005). By competing with cholesterol oxysterols cause the disassembling of the phosphatase complex and, therefore, the presence of oxysterol up-regulates ERK 1/2 phosphorylation at the thr202/tyr204 amino acid residues. ERK $1 / 2$ is an important signalling molecule and a known oncogene. It has roles in a number of different biological functions including cell growth, differentiation and apoptosis (Avruch 2007). The up-regulation of ERK $1 / 2$ phosphorylation by disassembly of this phosphatase has been shown in a number of different cell lines either by depletion of cholesterol with cyclodextrin or with treatment with oxysterols (Furuchi \& Anderson

1998, Yoon et al. 2004, Agassandian et al. 2005, Calleros et al. 2006, Kim et al. 2007, Jin et al. 2008, Lemaire-Ewing et al. 2009). This effect seems to be a feature of oxysterols generally as a number of different, dissimilar oxysterols have been shown to initiate this effect including 7β-hydroxycholesterol, 22-hydroxycholesterol (not specified R / S), and 25-hydroxycholesterol.

It is unclear whether treatment with oxysterols only affects ERK $1 / 2$ of the mitogen activated protein kinase (MAPK) family as there has been contradictory evidence regarding other MAPKs (e.g. JNK) (Ares et al. 2000, Yoon et al. 2004). In addition, it is unclear as to what pathways downstream of ERK $1 / 2$ are up/down-regulated due to the activation of ERK $1 / 2$.

1.1.6. Role of Oxysterols in Disease

Oxysterols have been hypothesised to play a role in a number of disease states. These include cardiovascular disease, eye disease and neurodegenerative diseases.

1.1.6.1. Role of Oxysterols in Cardiovascular Disease

Artherosclerosis is a condition characterised by the hardening and thickening of the arterial wall caused by the accumulation of cholesterol, and other substances, in the wall of the artery leading to the formation of areas of hardening called plaques. Oxysterols have been shown to be cytotoxic to endothelial and arterial smooth muscle cells in vitro and have therefore been hypothesised to be artherogenic (Ares et al. 2000). However, in vivo the situation appears to be equivocal as treatment of animals with dietary oxysterols resulted in variable responses. Some articles detailed increased levels of artherosclerosis, some reported no change whilst others observed reduced levels of disease progression. However, as oxidized low density lipoprotein has high levels of non-enzymatically formed oxysterols it is a possibility that these molecules have a role to play in the pathology of the disease. Indeed the most cytotoxic oxysterol in oxidized low density lipoprotein is 7-hydroperoxycholesterol (Chisholm et al. 1994). This oxysterol is rapidly decomposed to other 7-modified oxysterols and therefore true concentration of 7-hydroperoxycholesterol is probably under estimated but 7 -modified oxysterols are found in high concentration in foam cells and artheromas. The pathogenic importance may be due to uptake oxidized low density
lipoprotein and accumulation of toxic molecules. However, the dominant oxysterol in artheroma is a enzymatically produced one - 27-hydroxycholesterol. It has been hypothesised that 27-hydroxycholesterol might act as a defence to large concentrations of cholesterol (Bjorkhem et al. 1994; Babiker et al. 1997). Evidence supporting this is found in analysis of the disease cerebrotendinous xanthamatosis (CTX). In this disease, which is a genetic autosomal recessive disease that results in the absence of cholesterol 27-hydroxylase (the enzyme responsible for the synthesis of 27-hydroxycholesterol), there is an early onset of artherosclerosis despite most CTX patients having normal cholesterol plasma levels (Fujiyama et al. 1991). The majority of oxysterols in artherosclerotic plaques are comprised of 4 oxysterols. Together, these four oxysterols, 27-hydroxycholesterol, 7-ketocholesterol, 7 β hydroxycholesterol and 7α-hydroxycholesterol, account for $\sim 80 \%$ of the total amount of oxysterol in artherosclerotic plaques (Bjorkhem et al. 1994; Crisby et al. 1997). At present there is no direct evidence of the involvement of oxysterols in the disease. However, they are cytotoxic and oxysterols have been demonstrated to be proapotopic. Therefore, it appears that oxysterols have a role to play in the progression of this condition.

1.1.6.2. Role of Oxysterols in Eye Disease

Oxysterols have been associated with disease of the eye with implied roles in age related macular degeneration and glaucoma. Age-related macular degeneration is a disease that, as its name suggests, involves the degradation of the macula, a specialised structure of the retina with a high concentration of cone photoreceptors and ganglion cells, and can lead to blindness. The disease is classified as two forms wet (or exudative) and dry (or atrophic). The wet form of the disease is due to increased choroidal vascularisation. The dry form of the disease is the more common, but generally less severe, form of the disease. It is characterised by the formation of drusen, extracellular deposits between the retinal pigment epithelium and Bruch's membrane. These deposits can induce retinal pigment epithelial atrophy in the central part of the eye. Currently there are no treatments for this form of age-related macular dystrophy. It is this form that has been associated with oxysterols as it has recently been hypothesised that 7 -ketocholesterol is a key player in the development of the disease (Rodriguez et al. 2004).

In cultured retinal pigment epithelium cells treatment with low density lipoprotein caused toxicity after 72 hours. In order to determine if this effect was mediated by oxysterols the cells were treated with $50 \mu \mathrm{M}$ oxysterol and cell viability measured after 72 hours (Rodriguez et al. 2004) Of the oxysterols tested (25hydroxycholesterol, 20-hydroxychoelsterol, 7-ketocholesterol, 7 α hydroxycholesterol, 7β-hydroxycholesterol) the most cytotoxic were 20 hydroxycholesterol and 7-ketocholesterol. In addition, 7-ketocholesterol has been identified in monkey retina (Moreira et al. 2009) and in retina of albino rat (Rodriguez and Fliesler 2009) at a level of 0.5-1.5 pmol per nmol cholesterol and 1-4 pmol per nmol cholesterol respectively. As other sidechain hydroxylated oxysterols were below the detection limit ($100 \mathrm{fmol} / \mathrm{nmol}$ cholesterol) it is unclear whether these concentrations are in the correct range or whether auto-oxidation artefacts have artificially elevated them. However, despite no definitive evidence for a role for oxysterols in the disease oxysterol binding protein 2 (OSBP2) has been implicated (Torrini et al. 2007).

Another eye disease with which oxysterols have been associated is glaucoma. Glaucoma is a chronic disease that can lead to permanent loss of sight due to optic nerve damage and often presents as an increased pressure of the aqueous humour inside the eye. A mutation in CYP46A1 was associated with incidence of primary open angle glaucoma (Fourgeaux et al. 2009). Though there was a genetic link between the polymorphism and the disease this was not identified by changes in the plasma level of $24(S)$-hydroxycholesterol and therefore cannot be used as a biomarker for primary open angle glaucoma.

1.1.6.3. Role of Oxysterols in Neurodegenerative Diseases

Alzheimer's disease is characterised by neuronal loss and the accumulation of amyloid beta ($\mathrm{A} \boldsymbol{\beta}$) peptide deposits resulting in plaque formation. $\mathrm{A} \boldsymbol{\beta}$ peptide is formed from cleavage of amyloid precursor protein by α-secretase, β-secretase or γ secretase. α-secretase results in the formation of A $\beta 40$ a soluble form that does not result in amyloid plaques. In comparison, β-secretase or γ-secretase activity synthesises A $\beta 42$ which then forms insoluble aggregates. Oxysterols have been
implicated in Alzheimer's disease as a biomarker of the disease and as neuroprotective agents.

In cerebrospinal fluid the level of $24(S)$-hydroxycholesterol was increased in 14 newly diagnosed Alzheimer's patients compared with 10 healthy controls. In Alzheimer's a level of $2.6 \pm 1.1 \mathrm{ng} / \mathrm{ml}$ was recorded in cerebrospinal fluid compared with $1.6 \pm 0.6 \mathrm{ng} / \mathrm{ml}$ in healthy controls (Schönknecht et al. 2002). This difference was considered statistically significant ($p<0.05$). However, no difference was observed in the plasma level of $24(S)$-hydroxycholesterol with levels of $60.5 \pm 19.3 \mathrm{ng} / \mathrm{ml}$ and $53.6 \pm 14.3 \mathrm{ng} / \mathrm{ml}$ measured in Alzheimer's disease and healthy controls respectively. This change in cerebrospinal fluid level of 24(S)-hydroxycholesterol appeared independent of plasma cholesterol as both Alzheimer's disease and control subjects had normal plasma cholesterol levels ($150-230 \mathrm{mg} / \mathrm{dl}$) (Schönknecht et al. 2002). In another study analysing the plasma level of $24(S)$-hydroxycholesterol in a greater number of newly diagnosed Alzheimer's patients ($n=30$) showed an increase in plasma 24(S)-hydroxycholesterol levels as compared to control (Lütjohann et al. 2000). In Alzheimer's patients the concentration measured was $75 \pm 18 \mathrm{ng} / \mathrm{ml}$ (range $42-116$) compared with $60 \pm 21 \mathrm{ng} / \mathrm{ml}$ (range 24-105) of healthy control ($\mathrm{p}<0.001$, ANCOVA). In this study however there was no statistical difference between Alzheimer's and vascular dementia. Vascular dementia patients had a $24(S)$ hydroxycholesterol plasma level of 78 ± 20 (range 43-114) (Lütjohann et al. 2000). In a separate study using a larger number of patients $(\mathrm{n}=40)$ it was shown that there was a significant decrease in the plasma level of 24(S)-hydroxycholesterol in Alzheimer's disease patients who had been diagnosed for at least 4 years (Bretillon et al. 2000). This decrease was modest ($\sim 18 \%$) but statistically significant ($p<0.01$). Thus, from these studies it appears that the level of plasma 24(S)-hydroxycholesterol is an indication of disease progression with newly diagnosed patients having increased levels of plasma 24(S)-hydroxycholesterol but with a decrease over time.

Analysis of the expression of two oxysterol generating enzymes, cholesterol 24hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1), showed differences between Alzheimer's disease patients' brain ($\mathrm{n}=7$) and control subjects ($\mathrm{n}=7$) (Brown $3^{\text {rd }}$ et al. 2004). Both enzymes, in control brain, are expressed in neurons and some astrocytes. Cholesterol 27-hydroxylase is also found in
oligodendrocytes. However, in Alzheimer's disease this pattern of distribution changes with expression of cholesterol 24-hydroxylase predominantly in astrocytes and around the amyloid plaques. Cholesterol 27-hydroxylase expression decreases in neurons but increases in oligodendrocytes. Analysis of the effect of $24(S)$ hydroxycholesterol and 27-hydroxycholesterol showed that both oxysterols reduced the rate of production of $A \beta$ peptide in rat primary cortical neurons transfected with adenovirus expressed amyloid precursor protein. 24(S)-hydroxycholesterol was the more potent of the two oxysterols. After 24 hours treatment with $10 \mu \mathrm{M} 24(S)$ hydroxycholesterol there was a reduction in $\mathrm{A} \beta(40 / 42)$ peptide of $\sim 70 \%$ whereas $15 \mu \mathrm{M}$ 27-hydroxycholesterol reduced the $\mathrm{A} \beta(40 / 42)$ secretion by $\sim 40 \%$.

Interestingly, 24(S)-hydroxycholesterol and 27-hydroxycholesterol have been shown to modulate the production of $\mathrm{A} \beta$ in human neuroblastoma SH-SY5Y cells (Prasanthi et al. 2009). 24(S)-hydroxycholesterol did not affect the generation of A $\beta 42$ while treatment with $5 \mu \mathrm{M} 27$-hydroxycholesterol increased the level of this peptide ~ 2 fold. This increase in A $\beta 42$ level due to 27-hydroxycholesterol treatment was associated with increases in both amyloid precursor protein, the source of $\mathrm{A} \beta$ peptide, and betasecretase the enzyme that generates A $\beta 42$. In comparison, 24(S)-hydroxycholesterol treatment promoted the alpha secretase pathway that generates non-amyloidogenic soluble APP and therefore it appears that $24(S)$-hydroxycholesterol plays a neuroprotective role to prevent the formation of amyloid plaques. Conversely, it appears that 27-hydroxycholesterol promotes the formation of insoluble Aß42.

Questions remain regarding the role of oxysterols in Alzheimer's disease as it is still unclear the biological role that oxysterols play in the disease state. It appears that oxysterols, such as $24(S)$-hydroxycholesterol, can have a neuroprotective role due to changes in $\mathrm{A} \beta$ processing (Prasanthi et al. 2009, Brown $3^{\text {rd }}$ et al. 2004). However, it has yet to be determined if changes in oxysterol concentration measured in cerebrospinal fluid and plasma of Alzheimer's patients is a reflection of the cause of neuronal loss or merely a by-product of the disease state as a neuroprotective homeostatic mechanism.

Table 1.1. Summary of important oxysterols and disease states in which they have been implicated.

Oxysterol	Formed	Enzyme	Implicated in disease state
7-ketocholesterol	Auto-oxidation	n/a	Cardiovascular disease. Glaucoma.
			Age related macular degeneration
7 α-hydroxycholesterol	Enzymatically. Auto-oxidation.	CYP7A	Cardiovascular disease.
73-hydroxycholesterol	Auto-oxidation	n/a	Cardiovascular disease.
22R-hydroxycholesterol	Enzymatically	CYP11A1	n/a
24S-hydroxycholesterol	Enzymatically	CYP46A1	Alzheimer's disease.
25-hydroxycholesterol	Enzymatically	CH25H	n/a
27-hydroxycholesterol	Enzymatically	CYP27A1	Cardiovascular disease (proposed protective role). Alzheimer's disease.
24(S),25-epoxycholesterol	Enzymatically	Shunt in mevalonate pathway	n/a

1.1.7. Role of Oxysterols in Immunity

It has recently emerged that oxysterols have a role to play in the innate immune response. In has been shown it that the mRNA encoding cholesterol 25-hydroxylase is up-regulated significantly (35 x) in mouse macrophages after a short (2 hour) incubation with $10 \mathrm{ng} / \mathrm{ml}$ lipopolysaccharide (LPS; Diczfalusy et al. 2009). Lipopolysaccharide is an important component of Gram-negative bacteria and a potent activator of the mammalian immune response. In contrast, lipopolysaccharide had no effect on the mRNA level of 2 other oxysterol generating enzymes (CYP27A1 and CYP7B1). This increase in cholesterol 25-hydroxylase mRNA corresponded with a ~ 6 fold increase in intracellular 25-hydroxycholesterol. In addition, the intravenous
injection of lipopolysaccharide into healthy human volunteers resulted in an increased level of 25-hydroxycholesterol in the plasma.

Another study, conducted independently (Bauman et al. 2009), showed a similar increase in cholesterol 25-hydroxylase (CH 25 H) and 25-hydroxycholesterol after treatment with Kdo2-Lipid A, a selective toll-like receptor 4 (TLR4) agonist, in peritoneal and bone marrow derived murine macrophages. This effect appeared to be a general response to toll-like receptor activation as lipopolysaccharide, peptidoglycan (a selective agonist for TLR2), polyinosinic:polycytidylic acid (poly I:C, a selective agonist for TLR3) and lipoteichoic acid (an agonist for TLR2/6) also induced the expression of cholesterol 25-hydroxylase and 25-hydroxycholesterol. The Kdo2-Lipid A induced changes were inhibited by co-incubation with either MAPK inhibitors or NF-kB inhibitors.

This effect of Kdo2-Lipid A was also observed in vivo in wild-type mice after interperitoneal injection. Induction of CH 25 H mRNA was observed in all tissues tested with a maximum response (~ 250 fold) in the liver. Protein levels of CH 25 H were also elevated in liver and lung after Kdo2-Lipid A treatment coupled with an increase in concentration of 25-hydroxycholesterol in lungs and serum. In $\mathrm{CH} 25 \mathrm{H}-/-$ knockout mice the level of IgA heavy chain mRNA was increased compared to wildtype mice. This was corroborated as the IgA level was increased in serum, lungs and intestinal mucosa in $\mathrm{CH} 25 \mathrm{H}-/-$ knockout mice. These changes were shown to not be due to a increase in the total number of leukocytes in the $\mathrm{CH} 25 \mathrm{H}-/-$ knockout mice compared with wild type mice. Conversely knockout mice lacking oxysterol $7 \alpha-$ hydroxylase (CYP7B1-/-), which in normal circumstances rapidly metabolises 25 hydroxycholesterol, showed significant reductions in the IgA level in the lung, serum and mucosa. This effect of 25-hydroxycholesterol suppressing IgA release was also shown in vitro in splenic B220+ cells with an IC50 of $\sim 50 \mathrm{nM}$. This effect appears to be independent of LXR and cellular cholesterol levels as 22(R)-hydroxycholesterol and $24(R / S)$-hydroxycholesterol were inactive and co-incubation of cholesterol with 25-hydroxycholesterol did not reverse the effect.

The toll-like receptor 3 (TLR3) ligand poly I:C and the toll-like receptor 4 (TLR4) ligand LPS increase the mRNA expression of cholesterol 25-hydroxylase $(\mathrm{CH} 25 \mathrm{H})$ in
dendritic cells and macrophages derived from mouse bone marrow (Park and Scott 2010). It appears that this is primarily a TRIF (TR-domain-containing adapterinducing interferon- β), a TLR3/4 adapter molecule, dependent mechanism as in TRIF-/- mice the up-regulation of CH 25 H after treatment with polyI:C or LPS was abolished. In addition, TRIF signaling results in increases in interferon- β (IFN β) expression; both polyI:C and LPS increased expression of IFN β in bone marrow derived dendritic cells and macrophages. Similarly to the effect on CH 25 H expression this effect is abolished in dendritic cells from TRIF-/- mice. In addition, the increase in CH 25 H expression can be induced by direct stimulation with interferons α, β or γ. Further investigation of the pathway showed that increased expression of CH 25 H in macrophage and dendritic cells is reliant on JAK signalling as JAK inhibitors prevented the effects of polyI:C, LPS and interferon- β. In addition, JAK inhibition reduces TLR3/4 ligand and interferon $-\beta$ induced STAT1 phosphorylation. The absence of STAT1 in knockout models abolishes the increase in CH 25 H expression by polyI:C, LPS and interferons α, β, and γ in dendritic cells and macrophages.

Recently two groups have reported independently and concurrently the role of $7 \alpha, 25-$ hydroxycholesterol in inducing the migration of immune cells via Epstein-Barr virusinduced gene 2 (EBI2) a G-protein coupled receptor (Hannedouche et al. 2011,Liu et al. 2011). EBI2, whose natural ligand was previously unknown, is a key regulator of the migration of B-cells in lymphoid organs.

7 $\alpha, 25$-hydroxycholesterol was identified as the naturally occurring receptor ligand of EBI2 (Hannedouche et al. 2011). Modification of cholesterol by hydroxylation at both positions increased the potency of the oxysterol greatly (~ 1000-fold) compared with the mono-hydroxylated 7α-hydroxycholesterol or 25 -hydroxycholesterol. In addition, $7 \alpha, 25-$ hydroxycholesterol is a potent chemoattractant of immune cells expressing EBI2 including B cells and dendritic cells. Blocking Ga_{i}-coupled receptors with pertussis toxin blocked the chemoattraction of B -cells induced by $7 \alpha, 25-$ hydroxycholesterol. The synthesis of $7 \alpha, 25$-hydroxycholesterol requires the activity of both cholesterol 25-hydroxylase (CH 25 H) and 25-hydroxycholesterol 7 -alphahydroxylase (CYP7B1); two enzymes shown to be present at high levels in both spleen and lymph nodes. Therefore, to further investigate the biological relevance and
function of $7 \alpha, 25$-hydroxycholesterol $\mathrm{CH} 25 \mathrm{H}-/-$ knockout mice were used. The concentration of $7 \alpha, 25$-hydroxycholesterol was increased in the spleen of lipopolysaccharide treated wild type mice but not in $\mathrm{CH} 25 \mathrm{H}-/-$ mice. In addition, $\mathrm{CH} 25 \mathrm{H}-/-$ mice had attenuated in vivo migration of B-cells in the spleen. The absence of CH 25 H also decreased the level of IgGl response to the presence of antigen by ~ 3 fold.

A second, independent, paper (Liu et al. 2011) also identified 7 $\mathbf{\alpha , 2 5 -}$ hydroxycholesterol as the natural ligand of EBI2 with a EC50 value of 140 pM measured by 35S-GTP- γ S incorporation. 7 $\alpha, 25$-hydroxycholesterol was the most potent of the oxysterols tested (EC50; $7 \alpha, 25$-hydroxycholesterol $=0.14 \pm 0.03 \mathrm{nM}$; $7 \alpha, 27$-hydroxycholesterol $=1.3 \pm 0.28 \mathrm{nM} ; 7 \beta, 25$-hydroxycholesterol $=2.1 \pm 0.51 \mathrm{nM} ;$ $7 \beta, 27$-hydroxycholesterol $=51 \pm 1.78 \mathrm{nM} ; 7 \alpha$-hydroxycholesterol $=82 \pm 13.3 ; 7 \beta-$ hydroxycholesterol $=1763 \pm 262 ; 25$-hydroxycholesterol $=127 \pm 26.6 ; 27$ hydroxycholesterol $=3029 \pm 571$). $7 \alpha, 25$-hydroxycholesterol treatment of CHO cells transfected with V5 tagged human EBI2 induced receptor internalisation indicating that $7 \alpha, 25$-hydroxycholesterol is the natural ligand of the receptor. The biological relevance was demonstrated in vitro as B-cell and CD4+ T-cell migration in response to $7 \boldsymbol{\alpha}, 25$-hydroxycholesterol was observed. This response was also observed in vivo in LPS activated B-cells, CD4+ T-cells, CD8+ T-cells and dendritic cells. All of these cells were characterised as expressing EBI2. However, this effect appears cell type specific as there was no response in vitro to natural killer cells, neutrophils and macrophages despite all three cell types of the immune system being EBI2 positive. $7 \alpha, 25$-hydroxycholesterol desensitises EBI2 receptor. The observed effects in cell migration in wild-type mice were absent in EBI2-/- mice with no migratory response to $7 \alpha, 25$-hydroxycholesterol. Heterozygous EBI2+/- mice had a reduced response ($\sim 50 \%$) to $7 \alpha, 25$-hydroxycholesterol compared with wild type mice.

It is clear therefore that an emerging, important role for oxysterols in the innate immune response is slowly being elucidated. However, it appears that oxysterols, in particular those hydroxylated at the 25-position, are key players in this mechanism.

1.1.8. Role in development

A large number of oxysterols are found in the central nervous system (Wang et al. 2009), but the predominant oxysterol produced in adult brain is $24 S$ hydroxycholesterol ($\mathrm{C}^{5}-3 \beta, 24 S$-diol), a CYP46A1 oxidised metabolite of cholesterol that is exclusively synthesised in the brain (Lund et al. 1999). It has recently been shown that in murine embryonic brain 24(S),25-epoxycholesterol ($C^{5}-3 \beta$-ol-24S,25epoxide) is present at relatively high levels compared to other oxysterols (Wang et al. 2009). As previously described (section 1.1.3.3), unlike other oxysterols $24(S), 25-$ epoxycholesterol is not a metabolite of cholesterol but a final product in a shunt of the mevalonate pathway of cholesterol synthesis.

24(S),25-epoxycholesterol has a potential role in the development of the embryonic brain as it has been shown that the level of $24(S), 25$-epoxycholesterol is present at relatively high levels in comparison to other oxysterols in the cortex and spinal cord of embryonic mice (Wang et al. 2009). The predominant oxysterol in adult mouse brain is $24(\mathrm{~S})$-hydroxycholesterol with level of $2.53 \pm 0.05 \mathrm{ng} / \mu \mathrm{g} 24(\mathrm{~S})$ hydroxycholesterol to cholesterol (Lütjohann et al. 2002). In the embryonic murine brain this level is greatly reduced; at embryonic day 11 there was an observed level of $0.026 \mu \mathrm{~g} / \mathrm{g}$ (wet weight) in the cerebral cortex and $0.013 \mu \mathrm{~g} / \mathrm{g}$ (wet weight) in the spinal cord. In comparison, the concentration of 24(S),25-epoxycholesterol was $0.165 \mu \mathrm{~g} / \mathrm{g}$ (wet weight) in the cerebral cortex and $0.091 \mu \mathrm{~g} / \mathrm{g}$ (wet weight) in the spinal cord. In comparison in human primary neurons, derived from 14-18 week old foetuses, 24(S),25-epoxycholesterol synthesis has been detected (Wong et al. 2007). The overall level of $24(S), 25$-epoxycholesterol was not measured though the rate of synthesis of the oxysterol was $0.001-0.05 \%$ of the rate of synthesis of cholesterol (Wong et al. 2007). It is unclear the role this increased concentration plays in murine embryonic neural development. However, LXR α / β is present in embryonic brain (Sacchetti et al. 2009) and as $24(S), 25$-epoxycholesterol is a potent ligand for this nuclear receptor (Janowski et al. 1999) it might play a role in neural development. Indeed, there is evidence to suggest that the presence of LXR is essential to dopaminergic neurogenesis in the ventral midbrain (Sacchetti et al. 2009).

LXR is expressed in embryonic mice (Annicotte et al. 2004). LXR α was observed to be abundant in the liver, intestines and adipose tissue whereas LXR β was more ubiquitously expressed with strong expression in neuronal and endocrine tissue. LXR is expressed in ventral midbrain progenitor cells (Sacchetti et al. 2009). In addition to this these cells also express oxysterol generating enzymes (e.g. CYP46A1, oxidosqualene lanosterol cyclase) and ABCA1, whose expression is reliant on LXR activation. LXR α / β knockout mice showed down regulation of two genes that control dopaminergic neuron development Lmxlb and Wntl. These reduced expressions, consequently, caused the down-regulation of Pitx3 a gene regulated by Lmxlb and Wntl. The effect of $\mathrm{LXR} \alpha / \beta$ knockout cased a reduced number of cells in the marginal zone where dopaminergic neurons are present. These effects result in impaired dopaminergic neuron development in LXR α / β knockout mice.

The reduction in dopaminergic neurogenesis was reliant on LXR α / β as there was no increase in apoptosis and oxysterols did not have a direct effect on neurogenesis in LXR α / β knockout mice. However, at embryonic day 11.5 dopaminergic neurogenesis was impaired in the floor plate midbrain, the area of the brain where dopaminergic neurons are derived. In LXR α / β knockout mice there were less tyrosine hydroxylase positive (TH^{\dagger}) neurons. Tyrosine hydroxylase is the rate-limiting enzyme for dopamine synthesis. In ventral midbrain primary cultures $22(R)$-hydroxycholesterol and GW3965, a synthetic LXR ligand, increased the number of TH^{+}cells in wild type but not in LXR α / β knockout cells.

In addition, the efficiency of the differentiation of mouse embryonic stem cells to dopaminergic neurons treated with $22(R)$-hydroxycholesterol was increased. Overexpressing LXR β had a similar effect and interestingly the combination of 22(R)-hydroxycholesterol treatment and LXR β was additive. The balance between, and organisation of, different cell types was disrupted by LXR α / β knockout as the number RC^{+}glia increased whilst there was disorganisation of GFAP^{+}astrocytes. However the primary defect caused by LXR α / β knockout is on ventral midbrain dopaminergic neurogenesis.

LXR α / β knockout also disrupted the cell cycle (Sacchetti et al. 2009) as there was an increase in cells entering the active stages of mitosis, measured by Ki67+ staining, but
no subsequent increase in Brdu incorporation and cell cycle exit was decreased. In LXR α / β knockout cells were held at G2/M with an increased percentage of progenitor cells and reduced neurogenesis.

In human embryonic stem cells LXR α / β are expressed and increases during differentiation. The number of Tuj1+ neurons was increased by 70% and $\mathrm{TH}+$ neurons increased by 300% after treatment with $22(R)$-hydroxycholesterol during differentiation (Sacchetti et al. 2009). The number of Tuj1+ that also stained positive for TH cells was also increased. This effect was at its maximum at a concentration of $0.1-0.5 \mu \mathrm{M} 22(\mathrm{R})$-hydroxycholesterol. There were no signs of toxicity at these concentrations and TH + oxysterol treated cells expressed midbrain dopaminergic markers (LMX1a, ENGRAILED1, NURR1, PITX3, GIRK2, DAT). In contrast, very few GABA+, serotonin+, and dopamine beta-hydroxylase (DBH)+ neurons were detected indicating that treatment with $22(R)$-hydroxycholesterol gave a specific enhancement of dopaminergic neuron development. In addition there was reduced progenitor proliferation and in the number of astrocytes whilst increasing the generation of midbrain dopaminergic neurons.

More recently it has been shown that 24(S),25-epoxycholesterol is a potent ligand of LXR during ventral midbrain neurogenesis and specifically promotes dopaminergic neurogenesis (Theofilopoulos et al. 2013). In embryonic mouse midbrain neurons organotypic cultures treatment with 24(S),25-epoxycholesterol increased the number of tyrosine hydroxylase positive neurons by 88% c.f. vehicle. Similarly $24(S), 25-$ epoxycholesterol treatment increased the number of tyrosine hydroxylase positive neurons in mouse primary progenitor cultures. In addition, 24(S),25-epoxycholesterol promoted the differentiation of mouse embryonic stem cells into dopaminergic neurons. Thus, it appears that $24(S), 25$-epoxycholesterol is a critical ligand for normal dopaminergic neurogenesis.

However, the mechanism(s) by which 24(S),25-epoxycholesterol/LXR acts to result in this effect on neuron proliferation is unclear. Increased concentrations of $24(S), 25-$ epoxycholesterol could alter protein expression directly through transcriptional modification of known or unknown LXR. In addition, 24(S),25-epoxycholesterol could have indirect effects by inhibiting SREBP2 and decreasing biosynthesis of
cholesterol and other members of the mevalonate pathway or inducing downstream effects of differentially expressed proteins.

In addition, oxysterols have been shown to affect Hedgehog signalling, a pathway that is involved in embryonic development. Cholesterol and oxysterols have been shown to increase proliferation of medulloblastoma cells through Hedgehog signalling with 20(S)-hydroxycholesterol and 22(S)-hydroxycholesterol having the greatest effect (Corcoran and Scott 2006). It has also been demonstrated independently that 20(S)hydroxycholesterol and 22(S)-hydroxycholesterol activate the Hedgehog pathway and induce an osteoinductive effect (Dwyer et al. 2007). In addition, it has been demonstrated that $20(S)$-hydroxycholesterol inhibits the differentiation of bone marrow stromal cells into adipocytes through a Hedgehog dependent mechanism and that 20(S)-hydroxycholesterol can induce expression of Notch target genes (Kim et al. 2007; Kim et al. 2010). The mechanism by which 20(S)-hydroxycholesterol effects Hedgehog signalling is by activating the protein Smoothened; Smoothened mediates the signal induced by Hedgehog ligands (Nachtergaele et al. 2012). Thus, there is evidence for a role for oxysterols in the regulation of embryonic development.

1.2. Proteomics

Proteomics is the study of global protein expression (Wilkins et al. 1996). As proteins are the macromolecules that implement cellular biological processes the analysis of changes in their expression can identify gross changes in cell function. The proteins expressed, including any post-translational modifications, at any given point is called the cell's proteome. The proteome is more complex than the genome. The genome can be considered as a stable constant whereas the proteome is highly variable. The proteome varies with cell type, with time and as a response to stresses or stimuli (Dix et al. 2008). In addition, mRNA splice variants of genes add further complexity as do post-translational modifications of proteins such as phosphorylation (Uhlen \& Ponten 2005). Indeed, some proteins are able to have multiple different post-translational modifications illustrating the complexity of a proteomic sample at any given point.

The analysis of the proteome can be analysed as whole proteins or more commonly as peptides. It is common to digest protein enzymatically by using, for example, the enzyme trypsin. Trypsin hydrolyses the peptide bond on the carboxylic side of the
amino acids lysine and arginine. Thus, peptides are fragments of the protein backbone that have been generated from intact proteins. Peptides are analysed by mass spectrometry and their sequence identified using bioinformatic software. From this information the proteins present can be deduced.

A strength of proteomics is the direct analysis of protein expression rather than extrapolating from mRNA data e.g. microarray; it has been shown that changes in mRNA expression need not correlate with a change in protein expression (Rogers et al. 2008). It has the advantage over immunoblotting (Western blotting) as the expression of a large number of proteins can be analysed in one run. In addition, posttranslational modifications of the proteome can be analysed giving information regarding signalling pathways or the response to a given stimulus (Olsen et al. 2006). Proteins can be modified after translation to alter their function, localization or interactions with other proteins. These alterations are termed post-translational modifications. Post-translational modifications significantly increase the diversity of the proteome as they can be initiated in response to a given stimulus to regulate cellular processes. A large number of diverse modifications have been identified including phosphorylation, glycosylation and ubiquitination. Proteomics allows the analysis of changes in post-translation modifications that would not be possible using immunoblotting due to no commercially available specific antibody (Jensen 2004).

1.2.1. Phosphoproteomics

Phosphoproteomics is a specialized branch of proteomics examining phosphorylated proteins. In the case of phosphorylation, an extensively studied post-translational modification, it has been demonstrated to be involved in the regulation of diverse cellular processes (e.g. apoptosis, cell cycle).

Phosphorylation, is a reversible post translational modification and plays a role in a variety of cellular processes and it is a common mechanism for cell signalling and protein regulation. In eukaryotic cells phosphorylation of protein occurs on the side chains of serine, threonine and tyrosine residues. These amino acids have in common a nucleophilic hydroxyl group that reacts with adenosine triphosphate (ATP) resulting in the covalent attachment of a phosphate to the amino acid side chain. Phosphorylation is often associated with protein activity as the addition of the
phosphate can result in conformational changes in the newly phosphorylated protein and can regulate the activation or inactivation of an enzyme. In addition, phosphorylation can induce proteins to associate and is important in signal transduction as it can allow an enzyme to bind its substrate. The phosphorylation and dephosphorylation of protein(s) is regulated by kinases and phosphatases respectively. The balance between the activities of these two enzyme families influences the dynamic phosphorylation state of a cell. At any given point the phosphorylation state of a cell's proteins is called its phosphoproteome.

Phosphoproteomics is the analysis of the phosphorylation state of the entire proteome. This can be done in order to identify novel post-translational modification sites or to identify activation or deactivation of signalling pathways (Olsen et al. 2006). The technical challenge of phosphoproteomics is high. Phosphopeptides are present in low abundance compared to their non-phosphorylated counterparts. In addition they are poorly ionized. These two factors mean that phosphoenrichment is required in order to examine these molecules.

1.2.2. Mass Spectrometry

Mass spectrometry measures an ion's mass to charge ratio (m / z). Mass spectrometers generally consist of an ionisation source (e.g. electrospray), a mass analyzer and an ion detector. In combination these components allow the detection ions of different mass to charge ratios.

1.2.2.1. Electrospray Ionization

The ability to investigate global protein expression has blossomed since the invention of 2 soft ionising techniques - matrix assisted laser desorption ionisation (MALDI; Tanaka et al. 1989) and electrospray ionisation (ESI). These techniques have the advantage of ionizing macromolecules without inducing fragmentation. Therefore, these techniques have become essential for proteomic analysis as they allow the ionization of amino acid chains without disrupting the peptide bonds and thus conserving sequence information.

Electrospray ionization was developed to ionise macromolecules without inducing fragmentation (Fenn et al. 1989). The analyte, e.g. a peptide mixture, dissolved in a
solvent is subjected to an electrical voltage that induces generation of a Taylor cone and the formation of a fine aerosol spray. Volatile organic solvents such as acetonitile or methanol are commonly used as they evaporate easily facilitating ion formation of the analyte. In addition, the ionisation of large flow electrospray can be improved by using an inert gas in order to help remove solvent. However, electrospray ionisation is more efficient at low flow rates due to the lower size of initial droplets. A flow rate of $300-800 \mathrm{nl} / \mathrm{min}$ resulted in an increased performance of HPLC-MS analyses (Emmett and Caprioli 1994). The flow rate can even be reduced even further to a nanoflow of $\sim 25 \mathrm{nl} / \mathrm{min}$ and still generate efficient electrospray (Wilm and Mann 1996).

Mass spectrometer design also promotes ionisation e.g. a heated capillary that ions follow into the mass spectrometer helps evaporation. Evaporation continues until the droplet becomes unstable upon reaching its Rayleigh limit and emits charged jets in Coulomb fission. Two theories have been proposed to explain the production of gas phase ions. The first, the ion evaporation model theorises that that as the radius of the droplet decreases the surface of the droplet increases to assist in the field desorption of solvated ions. The second model is the charge residue model suggests that electrospray droplets as the solvent evaporates and splits until the droplets contain one analyte ion. The solvent evaporates leaving the analyte carrying the charge. Whichever theory is correct the end result of this ionisation technique is the formation of gas phase ions.

The ions produced by electrospray ionization can either be due to the addition of a proton $[\mathrm{M}+\mathrm{H}]$ or the removal of a proton $[\mathrm{M}-\mathrm{H}]$. These modes are termed positive and negative modes respectively. In order to promote protonation or deprotonation, in positive and negative modes respectively, an acid (e.g. formic acid) or base (e.g. ammonia solution) can be added to the solvent. Positive mode is generally used for the analysis of proteins and peptides in proteomic experiments. In the case of peptides multiply charged ions are commonly seen. This is because both the N -terminus and arginine and lysine residue sidechains can act as proton acceptors thus creating ions carrying $a+2$ charge .

1.2.2.2. Mass Analyzer

A large number of different mass analyzer technologies exist including quadrupole, time of flight (TOF), Fourier transform ion cyclotron resonance (FTICR) and Orbitrap instruments. Hybrid instruments also exist that consist of a number of analyzers combined e.g. triple quadrupole, Q-TOF. These mass analyzers vary in how they measure ion m / z and technical specifications. In addition, the choice of mass analyzer is often determined by the application.

In proteomic studies high resolution LTQ-Orbitrap instruments are commonly used. The Orbitrap consists of 2 electrodes - a central electrode kept at a high voltage when ions are being trapped and a second electrode surrounding the first at ground potential (Hu et al. 2005, Scigelova et al. 2011). The frequencies of the oscillating ions can be detected and following a Fourier transform can be displayed as a mass spectrum. An Orbitrap instrument has a high resolution $(>100,000)$ and a high mass accuracy ($<5 \mathrm{ppm}$) making it suitable for proteomic studies. The use of an Orbitrap mass analyzer for high mass accuracy MS spectra is in commercial instruments coupled with a linear ion trap (Hu et al. 2005). The ion trap acts as an accumulation device that stores ions before introduction to the Orbitrap and therefore allows the use of continuous electrospray ionisation. In addition, the ion trap allows $\mathrm{MS}^{\mathbf{n}}$ that fragments the precursor ion and therefore allows elucidation of structural information.

1.2.2.3. Precursor Ion

The initial mass spectrometry scan identifies all ionisable components of a sample. These ions identified in the MS scan give an indication of the molecular weight of analyte. Importantly, a precursor ion can be selected for fragmentation by selecting an ion at a given m / z. Fragmentation of an ion yields structural information about it. Peptides have a distinctive isotope envelope due to the fact that peptides can accept multiple protons inducing charge states of $+2,+3$ or more. Thus, in the example of a doubly charged peptide each isotopic peak that is 1 Da apart will be $0.5 \mathrm{~m} / \mathrm{z}$ apart. Therefore an analyte can be deduced to be a peptide by examining its precursor ion. However, an MS/MS scan is required for sequence information.

1.2.2.4. Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry allows further analysis of an ion identified in the initial MS spectra. A precursor ion of interest is selected, based on its m / z and is fragmented e.g. collision induced dissociation (CID) yield structural information about the analyte. In the case of peptides by colliding the precursor ion with an inert gas, e.g. nitrogen, the peptide bonds break leading to information regarding the amino acid sequence (Mann \& Wilm 1994). Thus, the fragmentation pattern of a peptide's amino acid backbone allows database searching (e.g. Mascot) to identify the peptide sequence and the protein from which it was derived by comparing it to predicted peptide sequence. Depending on the distribution of charge post-fragmentation (i.e. to the N - or C -terminus) b - and y -ions are predominantly generated (though $\mathrm{a}, \mathrm{c}, \mathrm{x}$ and z ions can also be formed; fig. 1.5; Roepstorff \& Fohlman 1984) that allow identification of the sequence due to specific m / z changes that correspond to each amino acid. A subscript number indicates which peptide bond is broken. Thus, the mass differences between the b and y fragmentation ions (e.g. b_{1} and b_{2} fig 1.5) generated indicate which amino acid residue is lost. From the generated y - and b - ions a peptide's sequence from a given MS^{2} can be deduced.

Fig 1.5. Peptide fragmentation notation. The dominant ions in MS/MS spectra are b and y ions.

1.2.2.5. Multistage activation

The analysis of phosphopeptides is dependent on detecting the phosphorylation modification of the peptide and fragmentation of the amino acid backbone of the peptide to deduce its sequence. The phosphate group of a phosphopeptide is relatively weak and they are liable to break instead of peptide bonds. Thus, phosphopeptides in a CID MS/MS spectrum are likely to exhibit a large neutral loss peak 98Da $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ or $80 \mathrm{Da}\left(\mathrm{HPO}_{3}\right)$ less than the precursor peak. This leads to inability to deduce sequence information from the MS/MS spectra. Therefore a second step of activation is required in order to obtain this information required for identification. This can be achieved by using MS^{3} when a dominant neutral loss peak is identified in the MS/MS spectra and is subsequently selected for fragmentation yielding a spectra displaying sequence information.

A second method that can be used to identify and sequence phosphopeptides is multistage activation and has the advantage of having a shorter time for analysis than MS^{3}. In this method a pseudo-MS ${ }^{3}$ spectrum is generated. A precursor ion is selected for fragmentation at both its observed m / z and, critically, at the m / z where the neutral loss ion is theoretically present. This yields a spectrum with no neutral loss ion peak. The spectrum contains b and y ions allowing identification of the peptide sequence. In addition b-98 and y-98 ions are present derived from fragmentation of the neutral loss peak. Therefore, multistage activation generates a hybrid pseudo- MS^{3} spectrum showing both MS^{2} and MS^{3} fragmentation on the same spectrum that can be analysed for both peptide sequence and phosphorylation.

1.2.3. Quantitative Proteomics

After protein identification the next step is quantification to give an indication for the level of protein expression and how it differs in cells with different treatments. To this end a number of different approaches have been developed including isotope labelled and label free methodologies. In label free methods each sample is run individually and then subsequently compared. However, in the case of isotope labelling each group is labelled with a different isotope marker and thus they are distinguishable by mass spectrometry. Due to this ability to distinguish different groups it is possible to combine samples and compare them in a single mass spectrometry analysis.

1.2.3.1. Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC)

SILAC is a quantitative proteomic technique that allows the identification of relative changes in protein expression using non-radioactive isotope labelling (Ong \& Mann 2006). SILAC can be used in many applications and can be used in order to monitor changes in gene expression, post-translational modification and protein-protein interactions. In this technique cells are grown in cell culture and are split into 2 or 3 populations (fig. 1.6.). The first population is cultured in growth media that contains normal, non-isotope labelled amino acids. However, the second population is grown in the presence of amino acids, commonly arginine and lysine, labelled with stable, non-radioactive isotopes. Commonly used are ${ }^{13} \mathrm{C}_{6}$ and ${ }^{13} \mathrm{C}_{6}{ }^{15} \mathrm{~N}_{4} \operatorname{arginine}\left(\mathrm{R}_{6} / \mathrm{R}_{10}\right)$ together with D_{4} and ${ }^{13} \mathrm{C}_{6}{ }^{15} \mathrm{~N}_{2}$ lysine $\left(\mathrm{K}_{4} / \mathrm{K}_{8}\right)$. These are termed light (unlabelled R and K), medium ($\mathrm{K}_{4} / \mathrm{R}_{6}$) and heavy $\left(\mathrm{K}_{8} / \mathrm{R}_{10}\right)$. Due to the mechanism of action of trypsin that cleaves peptide bonds to the C-terminus side of arginine and lysine. Thus, each peptide generated, except the C-terminus, theoretically results in only having a single label.

As the cell population increases, and is passaged, the heavier amino acids are incorporated into the proteome. Eventually all proteins contain the isotope labelled amino acids and are heavier than their normal counterparts. Thus, they are distinguishable by mass spectrometry but otherwise chemically and biologically identical. It is therefore possible to combine the protein derived from different SILAC states and analyse it simultaneously as pairs or triplets of peptides that co-elute from HPLC columns. Therefore this methodology allows 3 treatment groups to be simultaneously analysed. The ratio of the peak intensities of the peptides can then be analysed and their relative abundance determined. Peptide ratios can then be extrapolated to protein expression ratios.

Figure 1.6. Schematic of SILAC experimental design. In this study SN4741 cells were cultured in isotope labelled amino acid containing media. This approach can be extended to any cells grown in culture. Cells are then treated, in this case with vehicle (control), 24(S),25-epoxycholesterol (24(S),25-EC) and GW3965, before cells are lysed and protein harvested. The protein lysates are then mixed on a 1:1 ratio before trypsin digestion and strong cation exchange (SCX) fractionation. Fractions are then analysed using LC-MS/MS. Due to the isotope labelling it is possible to distinguish between the 'light', 'medium' and 'heavy' peptides. Mass spectra of SILAC peptides result in a characteristic triplet envelope and the intensity of the signal from each SILAC state can be used for relative quantification.

1.2.3.2. Isobaric Tagging

Isobaric tagging (e.g. iTraq) is a relative quantitative proteomic technique that allows identification of chemically tagged peptides from different treatment groups (Ross et al. 2004). In iTraq a N -succinimide ester group on the tag that reacts with primary amines. The workflow of the experimental approach means that the labelling occurs after trypsin digestion but before mixing and assumes that the labelling between different treatment groups is equal. The total molecular weight of tag remains constant but is split into a reporter moiety and a balance moiety. Thus, tagged
peptides have the same molecular weight and all identical sequence peptides co-elute during liquid chromatography. In addition, the precursor ion is the same molecular weight in all groups. Upon fragmentation low molecular weight reporter ions distinguish between the different groups and allow relative quantification. An advantage of iTraq over SILAC is that more treatment groups, up to 8, can be analysed at the same time.

1.2.3.3. Label Free Ouantification

Label-free quantification of proteins does not rely on an isotope label. These approaches are suitable for identifying large changes (>2 orders of magnitude) but less reliable for identifying smaller, subtle changes. Due to the lack of an isotope label samples can't be run simultaneously and require the detection of the corresponding peptide across different LC-MS or LC-MS/MS runs for quantification. Thus, care is required to account for experimental variation. Two methods used for label free quantification are ion peak intensity and spectral counting (Bantscheff et al. 2007).

Ion peak intensity relies on precursor signal intensity in order to quantify peptides and therefore relies on LC-MS only. Thus, high mass precision spectrometers are required for this approach as high resolution power is required for identifying peptide signals at the MS level. Peptides are differentiated from noise due to their isotopic pattern. The peptide precursor ion is tracked over time gives a chromatographic profile of the monoisotopic peak which is integrated to estimate original peptide concentration. No MS/MS spectra are generated and thus peptides with a similar m / z and coincidentally eluting at the same point or overlapping may be confused. The second method, spectral counting, compares the total number of MS/MS spectra for a given peptide between samples. The number of spectra is correlated with the abundance of the protein. Both techniques require significant normalization.

1.2.4. Peptide Mixture Complexity Reduction

Peptide mixtures generated from the protein digestion are complex and techniques to simplify these mixtures are commonly used. In the case of both proteomics and phosphoproteomics the peptide mixtures derived from proteome digestion are inherently complex. In order to reduce this complexity prior to mass spectrometric
analysis a number of techniques can be used. These include polyacrylamide gel electrophoresis, 2D-gel electrophoresis, affinity chromatography, ion exchange chromatography and reverse phase liquid chromatography. These steps help to maximize the number of peptides observed by mass spectrometry and thus increase the number of proteins identified. Low abundance peptides (and therefore low abundance proteins) are more likely to be identified in less complex mixtures. The techniques utilized in this work (strong cation exchange chromatography, reverse phase high performance liquid chromatography, phosphoenrichment) are discussed in more detail below.

1.2.4.1. Reverse Phase High Performance Liquid Chromatography

High performance liquid chromatography (HPLC) is a chromatography technique to separate analytes in complex mixtures. HPLC utilizes a stationary phase in column and a mobile phase that is pumped through the column carrying analytes. The retention time of an analyte is dependent on its interaction with the stationary phase and the mobile phase. Commonly $\mathrm{C}_{18} \mathrm{H}_{37}$ modified stationary phases are used and the technique is known, for historical reasons, as reverse phase HPLC. In reverse phase chromatography the retention of hydrophobic compounds is increased. Conversely, more polar analytes are eluted quicker. The retention of a given analyte can be adjusted by adding increased levels of organic solvent, such as acetonitrile or methanol, and is commonly manipulated using a solvent gradient on a HPLC instrument. Importantly, liquid chromatography can be coupled to a mass spectrometer so that analytes eluting from the column and transferred directly to the spectrometer for ionization and subsequent analysis.

1.2.4.2. Strong Cation Exchange

Strong cation exchange chromatography is a form of ion exchange chromatography. This form of chromatography separates of molecules on the basis of their charge. The stationary phase of the column has anionic functional groups (e.g. polysulphoethyl aspartamide (PolyLC Inc.)) that interact with cationic analytes. A chromatography gradient increases the salt concentration (e.g. $\mathrm{NH}_{4} \mathrm{Cl}$) in the solvent and results in the cationic molecules in the solvent competing for the anionic sites on the strong cation exchange column. Thus, cationic molecules are displaced and elute from the column.

Therefore, during strong cation exchange chromatography anionic analytes are eluted first off the column whereas strongly cationic analytes take longer. Strong cation exchange can be used for sample fractionation to reduce complexity prior to further analysis.

1.2.4.3. Phosphoenrichment

Phosphorylated peptides require enrichment prior to mass spectrometry analysis due to their low abundance and poor ionization (Zhou et al. 2000). Strategies to extract phosphorylated peptides from a peptide mixture include immobilised metal ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC). Both techniques use metal ligands to interact with phosphate groups in order to retain phosphopeptides whilst allowing non-phosphorylated peptides to elute.

Immobilised metal ion affinity chromatography (IMAC) relies on the phosphate group's oxygen interacting with an immobilized metal ion. A high affinity for phosphate groups has been shown with chelated iron(III) and gallium(III) ions (Zhou et al. 2000). During chromatography this results in the retention of the phosphopeptides on the column and washing of the non-phosphorylated peptide mixture through. The phosphopeptides can then be washed off the column by changing the pH of the mobile phase or adding a competitor. Thus, IMAC increases the concentration of phosphopeptides.

Titanium dioxide is used for metal oxide affinity chromatography (MOAC) phosphoenrichment (Larsen et al. 2005). Similarly to IMAC titanium dioxide chelated resins are used to form complexes with phosphate groups. MOAC can be combined with IMAC in order to increase the number of phosphopeptides in the sample. In addition both IMAC and MOAC can be used after fractionation (e.g. strong cation exchange) to improve the phosphoenrichment by reducing sample complexity.

1.2.5. Proteomic Bioinformatics

The identification of peptides and therefore proteins by using the mass spectrometric data is reliant on bio-informatic software. It is possible to analyse spectra manually although this is prohibitively time consuming when considering the many thousands of spectra typically generated in one experiment. Therefore, database searching has
become an integral part of proteomics experiments. This search is conducted using software such as Mascot that identifies peptides from the raw mass spectrometry data. The data is analysed bio-informatically to identify peptides by comparing sequence information derived from MS/MS spectra to a sequence database containing all theoretical peptide sequences. The peptidase, such as trypsin, can be defined before searching so that the generated experimental peptides match the theoretical. The database search can be constructed so that any modifications, such as phosphorylation and SILAC, are taken into account. Peptides are identified and can be assigned a score that indicates the probability of a correct identification.

The database used for the Mascot search is not limited to one and a number of databases are available for various species from different sources. International protein index (IPI) is a database from the European Bioinformatics Institute founded to catalogue the disparate databases and act as a link between them. Since its inception a concerted effort has led to a significant synchronization of data. In light of this, the IPI database has recently been retired and IPI numbers are currently being superseded by Uniprot numbers. Uniprot is comprehensive database managed by a consortium of the European Bioinformatics Institute, the Swiss Institute of Bioinformatics and the Protein Information Resource (Uniprot Consortium 2011). These consortium members each individually maintained a database but joined forces to produce a curated protein database Uniprot knowledgebase (UniprotKB). UniProtKB comprises 2 sections Uniport/Swissprot that is reviewed and manually annotated and Uniprot/Trembl that is unreviewed and annotated automatically. UniprotKB/Swissprot gives indication of a large range of factors and has the ultimate aim of providing all known, relevant information in a single place. Therefore, Uniprot is currently the canonical reference set of proteins for a number of organisms.

In our study the quantification of peptides was performed using MaxQuant software. MaxQuant is specialised software designed for the analysis of SILAC MS spectra (Cox et al. 2009). MaxQuant identifies the characteristic doublet/triplet isotope envelopes of SILAC labelled peptides. The software tracks these precursor ions over time that allows the merger of the separate signal intensity peaks into a 3D representation. The volumes of the 3D peaks are then compared allowing the generation of ratios between the different SILAC states (e.g. medium:light,
heavy:light). To identify peptides MS/MS data is analysed. The data is then combined to give an identified and quantified peptide. In the case of phosphopeptides this means that they can be identified and when coupled with SILAC labelling can give an indication of the relative levels of phosphorylation at a specific site between control and treatment groups. In addition to quantifying each individual peptide the quantified peptide is combined with others derived from the same protein and extrapolated in order to generate the ratio between the SILAC states of the protein. Thus, the relative quantification of proteins between different SILAC states is identified and further analysed to identify changes in protein expression.

1.2.6. Experimental Considerations of Proteomic Studies

1.2.6.1 SN4741 Cell Line.

Due to the limited amount of primary dopaminergic neurons from mouse embryonic brain available for large-scale proteome wide screening in the experimental work presented here the differentiated neuronal cell line SN4741 was used. SN4741 cells are dopaminergic neurons derived form the substantia nigra of embryonic mice (Son et al 1999). It has previously been shown that SN4741 cells are tyrosine hydroxylase positive and express other neuronal markers (Son et al 1999). Dopaminergic neuronal markers, such as tyrosine hydroxylase, can be searched for in the proteomic data set to validate the model.

In order to achieve large-scale accurate protein quantification stable isotope labelling approaches such as SILAC or iTraq are the preferred choices. The use of a SILAC approach allows the harvesting of a large amount of protein (mg scale) for use in the proteomic experiments easily. Thus, by having a large amount of starting material the probability of identifying low abundance proteins is improved and therefore SILAC is the most appropriate choice.

1.2.6.2. Proteomic Profiling Validation of Existing Knowledge

One of the strengths of proteomic studies is the ability to analyse the proteome as a whole. This provides the opportunity for the experimental data to validate previously identified changes in protein expression as a response to a given treatment. Oxysterols have known regulatory roles for SREBP2 and LXR controlled genes. However, no previous work has been conducted analysing the effect of oxysterols in SN4741 cells. Indeed, it can be anticipated that $24(S), 25$-epoxycholesterol will induce changes in the cholesterol synthesis pathway in SN4741 cells through inhibition of SREBP2 and induction of LXR regulated genes such as ABCA1.

1.2.6.3. Identification of Novel 24(S),25-epoxycholesterol Regulated Genes

It is difficult, if not impossible, to predict novel $24(S), 25$-epoxycholesterol regulated genes in the context of proteomic studies. The basic hypothesis of the experiments is broad; 24(S),25-epoxycholesterol induces protein expression changes in SN4741 cells via SREBP, LXR or other unknown oxysterol receptors. Early studies suggest that oxysterols promote dopaminergic neurogenesis through LXR (Sacchetti et al. 2009;

Theofilopoulos et al. 2013). However, which LXR regulated proteins induce this effect is not clear. The aim of the work is to pinpoint the protein pathways which are affected by $24(S), 25$-epoxycholesterol by employing a quantitative proteomics approach. This is essential to fully understand the mechanism(s) of $24(S), 25-$ epoxycholesterol in promoting dopaminergic neurogenesis. The data generated from the proteomic studies will also be analysed for the presence of neurotrophins, proteins that have an important regulatory role in neuron development, survival and function (Hempstead 2006), and any changes in their expression. In addition, neuronal markers from different stages of neuronal development will be analysed to determine if 24(S),25-epoxycholesterol has an effect on the maturation of neurons.

1.2.6.4. Identification of Novel $24(S), 25-$ epoxycholesterol Regulated Protein

 PhosphorylationOxysterols have been shown to induce changes in ERK phosphorylation (section 1.1.5.4) a pathway associated with dopaminergic neurogenesis (Kim et al. 2006; Kim et al. 2008; Yoon et al. 2011; Jaeger et al. 2011). We speculate that 24(S),25epoxycholesterol could promote dopaminergic neurogenesis at multiple levels i.e. via activation of LXR and also, possibly, by activation of the ERK signalling pathway Thus, a phosphoproteomic approach will be used to identify novel $24(S), 25-$ epoxycholesterol regulated protein phosphorylation either downstream of ERK or any other kinase pathways. These data will provide further insight into the mechanism of oxysterol activity in addition to the quantitative proteomics study. Again, the basic hypothesis of the experiments is broad; 24(S),25-epoxycholesterol induces protein phosphorylation changes in SN4741 cells. Therefore, the data generated from the phosphoproteomic studies will be analysed to identify changes, if any, in cell signalling pathways.

1.3. Aims and Obiectives

The work presented here is founded on the previously reported requirement of LXR in normal neuronal development (Sacchetti et al. 2009) and the above expected level of 24(S),25-epoxycholesterol in embryonic mouse brain (Wang et al. 2009b). Therefore, three main hypotheses form the basis of this work:

- 24(S),25-epoxycholesterol is an important molecule in normal murine neuronal development.
- 24(S),25-epoxycholesterol exerts an influence on neuronal development by inducing LXR dependent and independent changes in protein expression.
- 24(S),25-epoxycholesterol induces changes in the phosphoproteome and exerts an influence on neuronal development by affecting cell signalling.

In order to examine these hypotheses a SILAC experimental model was followed in order to examine the proteome and phosphoproteome as a whole. A differentiated dopaminergic neuronal cell line was chosen, SN4741, for in vitro experiments due to the fact they are derived from the ventral midbrain region of embryonic mice (Son et al. 1999) - the same area of the brain where LXR was observed to be important in normal development (Sacchetti et al. 2009),

Chapter 2: Materials and Methods

2.1. Cell Culture

Mammalian cell culture was performed aseptically in a cell culture flow hood. All single use cell culture apparatus used were sterile (Greinier BioOne). Items transferred into the cell culture hood were sprayed with 70% ethanol.

2.1.1. SN4741 Cell Culture

SN4741 murine dopaminergic neuronal cells were cultured on 90 mm tissue culture dishes (Greinier) in full media (see table 2.1) with incubation at $5 \% \mathrm{CO}_{2} / 37^{\circ} \mathrm{C}$. For routine SN4741 cell culture media was removed before the cells were washed once with pre-warmed phosphate buffered saline $\left(37^{\circ} \mathrm{C}\right.$, PBS, Lonza). Trypsin/EDTA (approx. 2.5 ml , Invitrogen) was incubated with the cells for 30 s at room temperature before removal of the majority of the trypsin/EDTA and a further incubation of the cells for 4 min at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$. Detachment of the cells was observed using an inverted light microscope. Detached cells were re-suspended in 10 ml of pre-warmed $\left(37^{\circ} \mathrm{C}\right)$ full media and mixed thoroughly to ensure a homogenous cell suspension. Cells were then counted using a Neubauer haemocytometer (Fisher) with $10 \mu \mathrm{l}$ of cell suspension in each chamber. Cells were seeded to new 90 mm tissue culture plates containing 15 ml of full media. Plates were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ until ready.

Table 2.1. SN4741 full media. Dulbecco's modified Eagle medium (DMEM) with Lglutamine and glucose, and without sodium pyruvate was modified by adding the reagents shown below. Serum free media is as below with the exception that foetal bovine serum is omitted.

Component	Manufacturer	Volume
DMEM + glucose, L-glutamine w/o sodium pyruvate	Invitrogen	500 ml
Foetal bovine serum	Invitrogen	50 ml
Penicillin/streptomycin/L-glutamine	Sigma	5 ml
20% glucose solution	Sigma	15 ml

2.1.2 Hela Cell Culture

Hela human cervical cancer cells were cultured on 90 mm tissue culture dishes (Greinier) in full media (see table 2.2) with incubation at $5 \% \mathrm{CO}_{2} / 37^{\circ} \mathrm{C}$. For routine Hela cell culture media was removed before the cells were washed once with prewarmed phosphate buffered saline $\left(37^{\circ} \mathrm{C}, \mathrm{PBS}\right.$, Lonza). Trypsin/EDTA (approx. 2.5 ml , Invitrogen) was incubated with the cells for 30 s at room temperature before removal of the majority of the trypsin/EDTA and a further incubation of the cells for 4 min at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$. Detachment of the cells was observed using an inverted light microscope (Zeiss). Detached cells were resuspended in 10 ml of pre-warmed $\left(37^{\circ} \mathrm{C}\right)$ full media and mixed thoroughly to ensure a homogenous cell suspension. Cells were then counted using a haemocytometer with $10 \mu \mathrm{l}$ of cell suspension in each chamber. Cells were then seeded to new 90 mm tissue culture plates containing 15 ml of full media. Plates were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ until ready for use or further culture.

Table 2.2. Hela full media. Dulbecco's modified Eagle medium (DMEM) with Lglutamine and glucose, and without sodium pyruvate was modified by adding the reagents shown below. Serum free media is as below with the exception that foetal bovine serum is omitted.

Component	Manufacturer	Volume
DMEM	Invitrogen	500 ml
Foetal bovine serum	Invitrogen	50 ml
Penicillin/streptomycin/L-glutamine	Sigma	5 ml

2.1.3. THP1 Cell Culture

THP1 human monocytes were cultured in $25 \mathrm{~cm}^{2}$ tissue culture flasks (Corning) in full media (see table 2.3) with incubation at $5 \% \mathrm{CO}_{2} / 37^{\circ} \mathrm{C}$. THP1 cells grow in suspension. For routine culture, the cell suspension was transferred to a 15 ml centrifuge tube and centrifuged at 700 g for 5 min . The media was discarded without
disruption of the cell pellet before resuspension in 10 ml of full media. A 0.5 ml aliquot of the cell suspension was taken and diluted 20 x with full media. This diluted cell suspension was then counted using a Scepter automated hand held cell counter (Millipore) using $60 \mu \mathrm{~m}$ sensor tips. Cells were then transferred to a new $25 \mathrm{~cm}^{2}$ or $75 \mathrm{~cm}^{2}$ tissue culture flask for a final concentration of 200,000 cells $/ \mathrm{ml}$ and a final volume of 10 ml or 25 ml respectively. Cells were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ until ready for use or further culture.

Table 2.3. THP1 full media. RPMI-1640 media w/o L-Glutamine was modified by adding the reagents shown below. Serum free media is as below with the exception that no foetal bovine serum is added.

Component	Manufacturer	Volume
RPMI-1640 W/O L-Glutamine	Invitrogen	500 ml
Foetal bovine serum	Invitrogen	50 ml
Penicillin/streptomycin/L-glutamine	Sigma	5 ml
50 mM 2-mercaptoethanol in PBS	Sigma	$500 \mu \mathrm{l}$

2.1.4. Freezing Cells

For long term storage cells were stored in liquid nitrogen. To freeze cells the protocol for culturing was followed with the following exceptions. The cells were resuspended after treatment with trypsin (after centrifugation in the case of THP1 cells) in 1 ml of freezing media (10% dimethyl sulfoxide (DMSO; Sigma) in foetal bovine serum) per 90 mm tissue culture plate $\left(25 \mathrm{~cm}^{2}\right.$ flask for THP1 cells). The cell suspension was transferred to a freezing vial and stored at $-80^{\circ} \mathrm{C}$ overnight in a bicell biofreezing vessel (Nihon) before transfer to liquid nitrogen.

2.1.5. SILAC Cell Culture

SN4741 murine dopaminergic neuronal cells grown for stable isotope labelling in cell culture (SILAC) experiments were cultured as previously described for 5 passages in SILAC DMEM (Pierce) supplemented with dialysed foetal bovine serum (Invitrogen), Penicillin/Streptomycin/L-glutamine (Sigma), and glucose (Sigma, table 4). SILAC DMEM was also supplemented with isotopically labelled arginine and lysine to a concentration of 0.398 mM and 0.44 mM respectively ('light', ${ }^{12} \mathrm{C}_{6} \mathrm{~K}_{0},{ }^{12} \mathrm{C}_{6} \mathrm{R}_{0}$ (Sigma); 'medium', ${ }^{2} \mathrm{H}_{4} \mathrm{~K}_{4},{ }^{13} \mathrm{C}_{6} \mathrm{~K}_{6}$ (Cambridge Isotope Laboratories Inc.); 'heavy', ${ }^{13} \mathrm{C}_{6} \mathrm{R}_{6}$, ${ }^{13} \mathrm{C}_{6}{ }^{15} \mathrm{~N}_{2} \mathrm{~K} 8,{ }^{13} \mathrm{C}_{6}{ }^{15} \mathrm{~N}_{4} \mathrm{R}_{10}$ (Cambridge Isotope Laboratories Inc.)). Amino acid solutions were made to a 1000 X stock solution of 0.398 M and 0.44 M for arginine and lysine respectively in PBS.

Table 2.4. SN4741 SILAC media. SILAC Dulbecco's modified Eagle medium (DMEM) was modified by adding the reagents shown below. Serum free media is as below with the exception that no dialyzed foetal bovine serum is added.

Component	Manufacturer	Volume
SILAC DMEM	Invitrogen	45 ml
Dialyzed foetal bovine serum (dFBS),	Invitrogen	4.5 ml
Penicillin/streptomycin/L-glutamine (PSG)	Sigma	0.45 ml
20% glucose solution	Sigma	1.35 ml
L-arginine (0.398M) in PBS	Sigma/Cambridge Isotope Laboratories Inc.	$45 \mu \mathrm{l}$
L-lysine (0.44M) in PBS	Sigma/Cambridge Isotope Laboratories Inc.	$45 \mu \mathrm{l}$

2.2. Cell Culture Treatments.

In all cases appropriate volumes of vehicle ($\mathrm{EtOH}, 45 \%$ hydroxypropyl- β cyclodextrin in $0.9 \% \mathrm{NaCl}$ or both) were also added to media to act as controls between treatments.

2.2.1. Oxysterol Treatment

2.2.1.1. Adherent cells - SN4741

Oxysterols (24(S),25-epoxycholesterol (Enzo Life Sciences), 7α-hydroxycholesterol (Steraloids), 7ß-hydroxycholesterol (Sigma), 19-hydroxycholesterol (Steraloids), 24Shydroxycholesterol (Avanti Polar Lipids), 25-hydroxycholesterol (Sigma), 27hydroxycholesterol (Avanti Polar Lipids)) were prepared at a 10 mM concentration in 45% hydroxypropyl- β-cyclodextrin/ 0.9% saline (both Sigma) before dilution to $10 \mu \mathrm{M}$ in serum free media. Solutions were vortexed to ensure thorough mixing before sterile filtration.

SN4741 cells were washed twice with PBS before addition of 10 ml of treatment per 90 mm tissue culture plate and incubated for 24 hours at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$.

2.2.1.2. Suspension cells - THP1

Oxysterols (24(S),25-epoxycholesterol, 7 α-hydroxycholesterol, 7 β hydroxycholesterol, $24 S$-hydroxycholesterol, 25-hydroxycholesterol) was prepared at a 10 mM concentration in 45% hydroxypropyl- β-cyclodextrin/0.9\% saline (both Sigma) before dilution of $11.1 \mu \mathrm{l}$ in 10 ml serum free media. These solutions were vortexed to ensure thorough mixing before sterile filtration. 9 ml of sterile treatment was added per $25 \mathrm{~cm}^{2}$ flask as appropriate.

THP1 cells were transferred to a centrifuge tube before being spun at 700 g for 5 min . The media supernatant was discarded and cells resuspended in 10 ml PBS. Cells were then spun at 700 g for 5 min . The PBS was discarded and the wash step repeated. The cells were then resuspended in 10 ml serum free media. An aliquot of the cell suspension was diluted 1:40 with serum free media and then counted using a Scepter automated hand held cell counter (Millipore) using $60 \mu \mathrm{~m}$ sensor tips. Cells were then diluted to 6×10^{6} with serum free media before addition of 1 ml per flask as appropriate
for a final concentration of 6×10^{5} cells $/ \mathrm{ml}$ and incubated for 24 hours at $37^{\circ} \mathrm{C} / 5 \%$ CO_{2}.

2.2.2. GW3965 Treatment

2.2.2.1. Adherent cells - SN4741

GW3965 (Sigma) prepared as a 10 mM solution in ethanol before dilution to $1 _M$ with serum free media. This $1 \mu \mathrm{M}$ solution was vortexed to ensure thorough mixing before sterile filtration. SN4741 cells were then washed twice with PBS before addition of 10 ml of appropriate treatment was added per 90 mm plate and incubated for 24 hours at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$.

2.2.2.2. Suspension cells - THP1

GW3965 (Sigma) prepared as a 10 mM solution in ethanol before dilution of $1.1 \mu 1$ in 10 ml serum free media. This solution was vortexed to ensure thorough mixing before sterile filtration. 9 ml of sterile treatment was added per $25 \mathrm{~cm}^{2}$ flask as appropriate.

THP1 cells were transferred to a centrifuge tube before being spun at 700 g for 5 min . The media supernatant was discarded and cells resuspended in 10 ml PBS. Cells were then spun at 700 g for 5 min . The PBS was discarded and the wash step repeated. The cells were then resuspended in 10 ml serum free media. An aliquot of the cell suspension was diluted 1:40 with serum free media and then counted using a Scepter automated hand held cell counter (Millipore) using $60 \mu \mathrm{~m}$ sensor tips. Cells were then diluted to 6×10^{6} with serum free media before addition of 1 ml per flask as appropriate for a final concentration of 6×10^{5} cells $/ \mathrm{ml}$ and incubated for 24 hours at $37^{\circ} \mathrm{C} / 5 \%$ CO_{2}.

2.3. SN4741 viability assays

SN4741 cells were seeded at $200 \mu \mathrm{l} /$ well, 50,000 cells $/ \mathrm{ml}$ in 96 well plates and incubated for 24 hours at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$. After incubation the cells were washed twice with PBS before addition of $100 \mu \mathrm{l}$ of treatment (vehicle, $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M}$ $24(S), 25$-epoxycholesterol or $10 \mu \mathrm{M} 24 S$-hydroxycholesterol) in charcoal stripped serum containing media and incubated at $37^{\circ} \mathrm{C}$ for the desired time.

2.3.1. Cell Viability Assay: XTT

Cell viability was measured using XTT Cell proliferation Assay Kit (ATCC) following the manufacturer's instructions. XTT, in the presence of viable cells, is reduced to an orange colour formazan derivative that can be read by absorbance on a plate reader. Briefly, to 5 ml of XTT solution $100 \mu \mathrm{l}$ of activating solution was added and mixed. To $100 \mu 1$ media (per well on a 96 well plate) $50 \mu 1$ of activated XTT reagent was added and incubated for $2-4$ hours at $37^{\circ} \mathrm{C}$. The plate was then read at 475 nm (test) and 660 nm (control) using a POLARstar Omega plate reader (BMG Labtech). Wells containing media only (i.e. no cells) served as a blank control and the average from these wells were deducted from test wells. The reading measured at 660 nm was then deducted from the 475 nm reading.

2.3.2. Cell Viability Assay: CellTiter Blue

Cell viability was then measured using CellTiter Blue assay (Promega) following the manufacturer's instructions. CellTiter blue is a resazurin based assay; in the presence of viable cells resazurin can be reduced to resorufin, a fluorescent compound. Briefly, to $100 \mu 1$ media (per well on a 96 well plate) 20μ l of CellTiter Blue reagent was added and incubated for $2-4$ hours at $37^{\circ} \mathrm{C}$. If the treatment was in a larger volume then the volume of CellTiter Blue reagent was scaled up accordingly. Fluorescence was then measured using a POLARstar Omega plate reader (excitation 544nm; emission 590 nm). Wells containing media only (i.e. no cells) served as a blank control and the average from these wells were deducted from test wells.

2.4. Cell Lysis - Protein Extraction

Cells were washed twice with ice cold PBS before lysis was performed with 200μ l ice cold lysis buffer (200 mM ammonium bicarbonate, 0.1% sodium dodecyl sulphate (SDS, Invitrogen), 1% phosphatase inhibitor cocktail 1 (Sigma), 1% phosphatase inhibitor cocktail 2 (Sigma)) per plate. A cell scraper (Greinier) was used in order to ensure thorough lysis before transfer to a 1.5 ml microcentrifuge tube. The lysate was then centrifuged at $4^{\circ} \mathrm{C}, 14000 \mathrm{rpm}$ for 30 min . The supernatant was transferred to a new microcentrifuge tube for further analysis/storage and the cell pellet was discarded. Samples intended for Western blotting were supplemented with Complete
protease EDTA-free inhibitors (Roche) at a 1:25 dilution from a stock 25 x solution. Lysates were stored at $-20^{\circ} \mathrm{C}$ for short term or $-80^{\circ} \mathrm{C}$ for longterm.

2.5. Protein Estimation

Protein lysate concentration was estimated using Bradford assay. A bovine serum albumin (BSA) linear standard curve of known concentrations (table 2.5) is measured in order to allow regression of the absorbance of the unknown samples. To achieve this $60 \mu \mathrm{l}$ of $2 \mathrm{mg} / \mathrm{ml}$ BSA (Bio-Rad) is mixed with $60 \mu \mathrm{l}$ of water in a 1.5 ml microcentrifuge tube. This $1 \mu \mathrm{~g} / \mu \mathrm{l}$ solution is then used to create the standards to test. The standards were prepared in duplicate.

Table 2.5. Dilutions of BSA for Bradford Assay standard curve

BSA concentration $(\mu \mathrm{g} / \mu \mathrm{l})$	Volume $1 \mu \mathrm{~g} / \mu \mathrm{l} \mathrm{BSA}(\mu \mathrm{l})$	Volume $\mathrm{H}_{2} \mathrm{O}(\mu \mathrm{l})$
1	20	0
0.75	15	5
0.5	10	10
0.25	5	15
0.125	2.5	17.5
0	0	20

The lysate sample of unknown concentration were vortexed and centrifuged briefly before $2 \mu \mathrm{l}$ was taken and diluted 1:10 with water. These dilutions were prepared in duplicate for each sample. The Bradford dye reagent (Bio-Rad) was then diluted from a 5 x stock to a 1 x working solution with distilled water. 1 ml of 1 x Bradford reagent was then added to each standard and sample, vortexed, and are left to incubate for 5 min . Once the incubation is complete $250 \mu \mathrm{l}$ of each standard or sample were transferred in duplicate to a 96-well flat-bottomed tissue culture plate (Greinier) and the absorbance measured at 595 nm on an iMark plate reader (Bio-Rad). A linear standard curve was generated and the concentration of the $1: 10$ diluted sample
solutions were calculated from their observed absorbance. These concentrations are then multiplied by 10 to take into account the dilution of the sample and the volume required for a given weight of protein (e.g. $20 \mu \mathrm{~g}$) can be calculated.

2.6. Stable Isotope Labelling in Cell Culture (SILAC)

Changes in protein expression were examined using SILAC. SN4741 cells were cultured for SILAC as described earlier (section 2.1.5.).

2.6.1. SILAC Treatment(s) - SN4741

Treatments (24(S),25-epoxycholesterol $10 \mu \mathrm{M}$, GW3965 $1 \mu \mathrm{M}$) intended for SILAC cells were prepared as described previously (sections 2.2.1, 2.2.2) in the appropriate serum free SILAC media ('light', 'medium', 'heavy'). To ensure that the isotope labelling itself led to no change in protein expression the treatments assigned to each SILAC state were rotated with each biological replicate (i.e. if $24(S), 25-$ epoxycholesterol used to treat 'light' SILAC cells in first experiment then for next experiment $24(S), 25$-epoxycholesterol used to treat 'medium' SILAC cells.

2.6.2. SILAC Sample Reduction and Methylation

Protein from the different SILAC states were mixed at a $1: 1: 1$ ratio for 2 mg total protein before incubation for 1 hour at $60^{\circ} \mathrm{C}$ with an appropriate volume of 50 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma) in HPLC grade $\mathrm{H}_{2} \mathrm{O}$ to give a final concentration of 5 mM . To block the thio groups of cysteine amino acid residue the sample was then incubated for 15 min at room temp with an appropriate volume of $200 \mathrm{mM} S$-Methyl methanethiosulfonate (MMTS, Sigma) in HPLC grade isopropanol to give a final concentration of 10 mM . Protein was digested using $200 \mu \mathrm{~g}$ sequencing grade trypsin (Promega) with incubation overnight at $37^{\circ} \mathrm{C}$.

2.6.3. Strong Cation Exchange (SCX) Chromatography

Strong cation exchange chromatography was performed on a Dionex Ultimate 3000 HPLC system using a Polysulfoethyl A column ($200 \mathrm{mmx} 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}, 200 \AA$, Poly LC Inc; solvent A $=2 \%$ HPLC grade acetonitrile (Fisher), 0.1% formic acid; solvent $\mathrm{B}=0.6 \mathrm{M} \mathrm{NH} 4 \mathrm{Cl}, 2 \% \mathrm{HPLC}$ grade acetonitrile, 0.2% formic acid). $50 \mu \mathrm{~g}$ of trypsin
digested BSA was used to validate SCX performance before sample was loaded onto the column. Samples were diluted 10 x using solvent A and then, if required, adjusted to pH 2.5-3 with formic acid prior to loading. Loading of the sample was performed by injecting 2 ml sample at 5 min intervals with a flow rate of $800 \mu \mathrm{l} / \mathrm{min}$ of solvent B. Once the sample was fully loaded LC gradient was run over $70 \mathrm{~min}(0-10 \mathrm{~min} 2 \% \mathrm{~B}$, $10-15 \mathrm{~min} 2-15 \%$ B, $15-45 \mathrm{~min} 15-30 \% \mathrm{~B}, 45-55 \mathrm{~min} 30-50 \% \mathrm{~B}, 55-60 \mathrm{~min}, 50-100 \%$ $\mathrm{B}, 60-65 \mathrm{~min} 100 \% \mathrm{~B}, 65-66 \mathrm{~min} 100-2 \% \mathrm{~B}, 66-70 \mathrm{~min} 2 \% \mathrm{~B}$) at a flow rate of $800 \mu \mathrm{l} / \mathrm{min}$ with fraction collection performed from 15 to 70 min . Fraction collection was more frequent (90 s per fraction) at the beginning of the run (see fig. 3.6). A UV trace was recorded in order to visualise the fractionation of the loaded peptide mixture.

2.6.4. Desalting

Sep-Pak Vac 3cc C18 cartridges (Waters) were activated with $1 \mathrm{ml} 80 \%$ acetonitrile/ 0.1% formic acid before equilibration with $4 \mathrm{ml}_{2} \mathrm{O} / 0.1 \%$ formic acid. SCX fractions were diluted $1: 1$ with $\mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid before loading onto the Sep-Pak C18 cartridge and washed with $4 \mathrm{ml}_{2} \mathrm{O} / 0.1 \%$ formic acid. Peptides were eluted from C 18 with $1 \mathrm{ml} 80 \%$ acetonitrile/ 0.1% formic acid before drying overnight under vacuum. Dry samples were resuspended in $45 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid.

2.6.5. LTO-Orbitrap Calibration Electrospray Positive Ion Mode

The LTQ-Orbitrap (Thermo) instrument was calibrated prior to use by using the electrospray source in positive ion mode. Calmix (Caffeine, MRFA, Ultramark) was injected to the source at $3 \mu \mathrm{l} / \mathrm{min}$ and the instrument was tuned on the $524.3 \mathrm{~m} / \mathrm{z}$ peak. The tune file was then saved. The ion trap settings calibrated initially were multipole RF frequency, main RF frequency, electron multiplier gain. After successful calibration of these parameters the following were calibrated:- mass calibrationnormal scan rate types; mass calibration - enhanced scan rate types; Mass and resolution calibration- normal scan rate type; Isolation wave form; Activation wave form. Following successful calibration the following Fourier transform (FT, i.e. Orbitrap) parameters were checked only:- transfer multipole RF frequency; storage multipole RF frequency; positive ion mode- storage transmission; positive ion mode FT transmission. The only FT parameter calibrated was Positive ion mode - mass
calibration. The calibration was then backed up. The ion trap was calibrated as least once a month and the Orbitrap calibrated at least twice a week. After calibration spectra were recorded of the calmix in the FT and ion trap modes to allow an audit trail of performance.

2.6.6. LTO-Orbitrap Nanospray

After calibration the electrospray source was removed and replaced with the nanospray source. A solution of [Glu ${ }^{1}$]-fibrinopeptide B human (Glufib, Sigma) $100 \mathrm{fmole} / \mu \mathrm{l}$ was required for tuning and was prepared by diluting $10 \mu \mathrm{l}$ of a $1 \mathrm{pmole} / \mu \mathrm{l}$ stock with $90 \mu \mathrm{l} 40 \%$ acetonitrile $/ 0.1 \%$ formic acid. The glufib was injected at a rate of $0.3 \mu \mathrm{l} / \mathrm{min}$. The ion trap was then tuned on $785.8 \mathrm{~m} / \mathrm{z}$. Spectra were then acquired in the FT and ion trap (MS and MS^{2}) modes to allow an audit trail of performance.

2.6.7. Liquid Chromatography

Liquid chromatography was performed in nanoflow mode on a Dionex Ultimate 3000 HPLC system using as solvent A1 2\% acetonitrile/ 0.1% formic acid and as solvent B1 90% acetonitrile/ 0.1% formic acid. For loading $\mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid was used as the solvent. Lines were purged prior to LC flow commencing for 300 seconds at a flow rate of $2000 \mu \mathrm{l} / \mathrm{min}$. The LC system was attached to the mass spectrometer and the flow started; 4% B $0.3 \mu \mathrm{l} / \mathrm{min}$ for micropump 1 and $15 \mu \mathrm{l} / \mathrm{min}$ for micropump 2

2.6.8. Liquid Chromatography Validation - Bovine Serum Albumin

To evaluate liquid chromatography (LC) performance $5 \mu \mathrm{l}$ of $20 \mathrm{fmol} / \mu \mathrm{l}$ trypsin digested BSA was injected to test the instrument. The method for the LTQ-Orbitrap was an $\mathrm{n}^{\text {th }}$ order double play method analysing the top 6 peaks. The method consisted of 2 scan events. Scan event 1 was a MS scan in the FT mode with the following settings - acquire time $=35 \mathrm{~min}$, lock mass $=445.1200$, scan range $=400-2000 \mathrm{~m} / \mathrm{z}$, data format $=$ profile, resolution $=60,000$. Scan event 2 was a MS ${ }^{2}$ scan performed in the ion trap with the following settings - centroid; activation - type = CID, default charge state $=2$, isolation width $\mathrm{m} / \mathrm{z}=3$, normalised collision energy $=35$, activation $\mathrm{Q}=0.25$, activation time $=30$, minimum signal required $=500$, top n peaks $=6$;
enable charge state screening, enable monoisotopic precursor selection, reject charge state $=1$; enable dynamic exclusion, repeat $=1$, repeat duration $=30 \mathrm{~s}$, exclusion list size $=500$, exclusion duration $=30 \mathrm{~s}$, exclusion mass width $= \pm 7 \mathrm{ppm}$, early expiration enabled. Contact closure was used to synchronise the LC to the mass spectrometer.

2.6.9. LTQ-Orbitrap LC-MS/MS

$10 \mu \mathrm{l}$ of each fraction was analysed by LC-MS/MS over a 120 min gradient $(0-3 \mathrm{~min}$ 4% B, $3-99 \min 4-50 \%$ B, $99-100 \mathrm{~min} 50-90 \%$ B, $100-105 \mathrm{~min} 90 \%$ B, $105 \mathrm{~min} 90-4 \%$ B, $105-120 \mathrm{~min} 4 \% \mathrm{~B})$. For the first 3 min of the gradient samples were loaded at $15 \mu \mathrm{l} / \mathrm{min}$ onto a Symmetry 300 C 18 trap column (Waters) before separation on a RSLCnano column C18 column ($75 \mu \mathrm{~m}$ i.d. x 15 cm , Dionex) at a $\sim 250 \mathrm{nl} / \mathrm{min}$ flow rate. Separated peptides were analysed on a LTQ-Orbitrap over 4 mass ranges (400$610 \mathrm{~m} / \mathrm{z}, 590-800 \mathrm{~m} / \mathrm{z}, 780-1010 \mathrm{~m} / \mathrm{z}$ and $990-2000 \mathrm{~m} / \mathrm{z}$) using an Orbitrap resolution of 60,000 and an $\mathrm{n}^{\text {th }}$ order double play 'top 6' method to select ions for CID MS/MS (singly charged precursors ions or those with signal <500 not selected).

The method consisted of 2 scan events. Scan event 1 was a MS scan in the FT mode with the following settings - acquire time $=118 \mathrm{~min}$, lock mass $=445.12$, scan range $=4$ mass ranges ($400-610 \mathrm{~m} / \mathrm{z}, 590-800 \mathrm{~m} / \mathrm{z}, 780-1010 \mathrm{~m} / \mathrm{z}$ and $990-2000 \mathrm{~m} / \mathrm{z}$), data format $=$ profile, resolution $=60,000$. Scan event 2 was a MS 2 scan performed in the ion trap with the following settings - data format = centroid; activation - type $=$ CID, default charge state $=2$, isolation width $m / z=3$, normalised collision energy $=35$, activation $Q=0.25$, activation time $=30$, minimum signal required $=500$, top n peaks $=6$; enable charge state screening, enable monoisotopic precursor selection, reject charge state $=1$; enable dynamic exclusion, repeat $=1$, repeat duration $=20$, exclusion list size $=500$, exclusion duration $=90 \mathrm{~s}$, exclusion mass width $= \pm 5 \mathrm{ppm}$, early expiration enabled. Contact closure was used to synchronise the LC to the mass spectrometer.

2.6.10. Orbitrap Velos LC-MS/MS

Dry samples were resuspended in $100 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid. $10 \mu \mathrm{l}$ of each fraction was analysed by LC-MS/MS over a 120 min gradient (solvent $\mathrm{A}_{2} \mathrm{O} / 0.1 \%$ formic acid, solvent B acetonitrile/ 0.1% formic acid; $0-5 \min 2 \% B, 5-85 \min 2-40 \% B, 85-$
$100 \mathrm{~min} 40-80 \% \mathrm{~B}, 100-104 \min 80 \% \mathrm{~B}, 104-105 \mathrm{~min} 80-2 \% \mathrm{~B}, 105-120 \mathrm{~min} 2 \% \mathrm{~B})$. For the first 5 min of the gradient samples were loaded at $10 \mu \mathrm{l} / \mathrm{min}$ onto a trap column (CapTrap, Michrom Bioresources) before separation on a Reprosil C18 column ($100 \mu \mathrm{~m}$ i.d. x 15 cm , Nikkyo Technos Co. Ltd) at a $\sim 200 \mathrm{nl} / \mathrm{min}$ flow rate. Separated peptides analysed on a LTQ-Orbitrap Velos over a mass range of $400-2000 \mathrm{~m} / \mathrm{z}$ using an Orbitrap resolution of 60,000 and a data dependent (singly charged precursors ions or those with signal <500 not selected) 'top 20' method to select ions for CID MS/MS.

2.6.11. Analysis of SILAC LC-MS/MS data

SILAC data was analysed using MaxQuant software (v.1.0.13.8 downloaded from www.maxquant.org). Thermo-Finnigan RAW files transformed to msm files using MaxQuant Quantify (v.1.0.13.8) software using appropriate triplet SILAC states. Parameters used were Orbitrap; Triplet (Arg6, Lys4, Arg10, Lys 8); maximum of 3 labelled amino acids; variable modifications $=$ oxidation (M), acetyl (protein n-term), methylthio $(\mathrm{C}) ;$ trypsin $/ \mathrm{P} ; \mathrm{MS} / \mathrm{MS}$ tolerance $=0.5 \mathrm{Da}$; maximum msm file size $=$ 350 Mb ; maximum missed cleavages $=2$; top $\mathrm{ms} / \mathrm{ms}$ peaks per $100 \mathrm{Da}=6$.

Database used was IPI mouse v3.52 modified using Maxquant SequenceReverser (v.1.0.13.8). Database searching was performed using Mascot (Matrix Science v.2.2.2) using parameters generated by MaxQuant. MaxQuant Identify (v.1.0.13.8) was used to generate data tables for further analysis. Parameters used were peptide false discovery rate $(\mathrm{FDR})=0.01$; site $\mathrm{FDR}=0.01$; protein $\mathrm{FDR}=0.01$; apply site FDR separately; maximum peptide $\mathrm{PEP}=1$; minimum peptides $=1$; minimum unique peptides $=1$; minimum peptide length $=6$; reverse string $=$ REV_; contaminant string = CON_; use only unmodified peptides and oxidation (M), acetyl (protein N-term), methylthio (C); use razor and unique peptides; discard unmodified counterpart peptides; minimum ratio count $=1$; use least modified peptides; number of threads $=$ 1; re-quantify; filter labelled amino acids; low scoring version of identified peptides not kept.

MaxQuant generated protein ratios were analysed by following the method reported by Graumann et al.. Low and high z-values of ≥ 2 (the equivalent of 2 standard
deviations away from the median) were treated as up- or down-regulated. Three biological replicates were performed.

2.7. PhosphoSILAC

Changes in protein phosphorylation after treatment with oxysterols were examined using a quantitative proteomic approach (SILAC). The following experimental protocols were used to examine changes in the phosphoproteome. SN4741 cells were cultured for SILAC as described earlier (section 2.1.5.).

2.7.1. PhosphoSILAC Treatments - SN4741

Treatments $(24(S), 25$-epoxycholesterol $10 \mu \mathrm{M}, 25$-hydroxycholesterol $30 \mu \mathrm{M})$ intended for phosphoSILAC studies were prepared as described previously (sections 2.2.1, 2.2.2) in the appropriate serum free SILAC media ('light', 'medium', 'heavy') with the following exceptions - oxysterols were dissolved in ethanol; 25hydroxycholesterol was used at a higher concentration and therefore prepared as a 30 mM stock solution before dilution to $30 \mu \mathrm{M}$; cells incubated with treatment for 6 hours. To ensure that the isotope labelling itself led to no change in protein expression the treatments assigned to each SILAC state were rotated with each biological replicate.

2.7.2. phosphoSILAC Sample Reduction and Methylation

As section 2.6.1.

2.7.3. Strong Cation Exchange Chromatography

As section 2.6.2. With the exception that fraction collection was more frequent (1minute per fraction) at the beginning of the run (see figures. 4.2 and 4.3)

2.7.4. Desalting

As section 2.6.3.

2.7.5. Peptide Methylation

In one phosphoSILAC experiment methanolic HCl (hydrochloric acid in methanol; Sigma) was used to methylate acidic moieties. 3 N methanolic HCl was diluted to 2 N with HPLC grade methanol. $900 \mu \mathrm{l} 2 \mathrm{~N}$ methanolic acid was added to each desalted dried fraction and incubated for 2 hours at room temperature with sonication every 15 minutes before being dried under vacuum.

2.7.6. Immobilised Metal Affinity Chromatography (IMAC) Phosphoenrichment

IMAC was performed using Phos-Select Iron Affinity gel (Sigma). $150 \mu \mathrm{l}$ of gel slurry ($\approx 75 \mu \mathrm{l}$ gel; suitable for $\sim 150 \mu \mathrm{~g}$ phosphopeptide) was added to a Mobicol spin column (Mobitec) with a $10 \mu \mathrm{~m}$ pore filter inserted (Mobitec).To the slurry $500 \mu \mathrm{l} 30 \%$ acetonitrile, 250 mM acetic acid was added, vortexed and centrifuged at 8200 g for 1 minute. The flow through was discarded and this step repeated twice. Dry phosphoSILAC samples were resuspended in $500 \mu \mathrm{l} 30 \%$ acetonitrile, 250 mM acetic acid, and vortexed. The resuspended samples were added to the spin columns and then shaken with end over end rotation (30rpm) for 2 hours at room temperature. The columns were then centrifuged at 8200 g for 1 minute. The gel was then washed by adding $500 \mu \mathrm{ll} 30 \%$ acetonitrile, 250 mM acetic acid, vortexing and then centrifuging at 8200 g for 1 minute. A second wash was the performed by adding $500 \mu \mathrm{l}$ HPLC grade $\mathrm{H}_{2} \mathrm{O}$, vortexing and then centrifuging at 8200 g for 1 minute. For elution $500 \mu \mathrm{l}$ 400 mM ammonium hydroxide $(\mathrm{pH}=11)$ was added to the gel, vortexed and shaken with end over end rotation (30 rpm) for 5 minutes at room temperature. This was then eluted by centrifuging at 8200 g for 1 minute to a 2 ml microcentrifuge tube. A second elution was performed by adding $200 \mu \mathrm{l} 400 \mathrm{mM}$ ammonium hydroxide $(\mathrm{pH}=11)$ to the gel, vortexed and shaken with end over end rotation (30 rpm) for 5 minutes at room temperature. This was then eluted by centrifuging at 8200 g for 1 minute to a 1.5 ml Protein Lo-Bind microcentrifuge tube (Eppendorf). The two sequential elutions were combined in a 1.5 ml Protein Lo-Bind microcentrifuge tube and $5 \mu \mathrm{l}$ of formic acid was added to neutralise the ammonium hydroxide. The samples were then dried overnight under vacuum. Samples were re-suspended in $60 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid.

As section 2.6.4.

2.7.8. LTO-Orbitrap Nanospray

As section 2.6.5.

2.7.9. Liquid Chromatography

As section 2.6.6.

2.7.10. Liquid Chromatography Validation - Bovine Serum Albumin

As section 2.6.7.

2.7.11. LTO-Orbitrap LC-MS/MS

$20 \mu l$ of each fraction was analysed by LC-MS/MS over a 120 min gradient $(0-3 \mathrm{~min}$ 4% B, $3-99 \mathrm{~min} 4-50 \%$ B, $99-100 \mathrm{~min} 50-90 \%$ B, $100-105 \mathrm{~min} 90 \%$ B, $105 \mathrm{~min} 90-4 \%$ B, $105-120 \mathrm{~min} 4 \% \mathrm{~B}$). For the first 3 min of the gradient samples were loaded at $15 \mu \mathrm{l} / \mathrm{min}$ onto a Symmetry 300 C 18 trap column (Waters) before separation on a RSLCnano column C18 column ($75 \mu \mathrm{~m}$ i.d. x 15 cm , Dionex) at a $\sim 250 \mathrm{nl} / \mathrm{min}$ flow rate. Each phosphopeptide fraction was analysed twice (i.e. two $20 \mu \mathrm{l}$ injections) on a LTQ-Orbitrap over 2 mass ranges (400-760 m/z, 740-2000 m/z) using an Orbitrap resolution of 60,000 and a data dependent 'top 6' MS/MS method to select ions for CID MS/MS(singly charged precursors ions or those with signal <500 not selected). Multistage activation was used for fragmentation (neutral loss within top 10 of 32.70 $\mathrm{m} / \mathrm{z}, 49.00 \mathrm{~m} / \mathrm{z}, 65.30 \mathrm{~m} / \mathrm{z}, 98.00 \mathrm{~m} / \mathrm{z}$).

The method consisted of 7 scan events. Scan event 1 was a MS scan in the FT mode with the following settings - acquire time $=118 \mathrm{~min}$, lock mass $=445.12$, scan range $=2$ mass ranges ($400-760 \mathrm{~m} / \mathrm{z}, 740-2000 \mathrm{~m} / \mathrm{z}$), data format $=$ profile, resolution $=$ 60,000 . Scan event 2 was a MS^{2} scan performed in the ion trap with the following settings - data format $=$ centroid; activation - type $=$ CID, default charge state $=2$, isolation width $\mathrm{m} / \mathrm{z}=3$, normalised collision energy $=35$, activation $\mathrm{Q}=0.25$, activation time $=30$, current scan event $=500, \mathrm{n}^{\text {th }}$ most intense ion $=1$; enable
multistage activation; product mass range $=400$; neutral loss within top 10 of 32.70 $\mathrm{m} / \mathrm{z}, 49.00 \mathrm{~m} / \mathrm{z}, 65.30 \mathrm{~m} / \mathrm{z}, 98.00 \mathrm{~m} / \mathrm{z}$; enable charge state screening, enable monoisotopic precursor selection, reject charge state $=1$; enable dynamic exclusion, repeat $=1$, repeat duration $=30$, exclusion list size $=500$, exclusion duration $=45 \mathrm{~s}$, exclusion mass width $= \pm 5 \mathrm{ppm}$; early expiration enabled. Subsequent scans (3-7) repeated scan 2 with the next 5 most intense ions (i.e. in scan $3 n^{\text {th }}$ most intense ion $=$ 2, scan $4 \mathrm{n}^{\text {th }}$ most intense ion $=3$ etc.). Contact closure was used to synchronise the LC to the mass spectrometer.

2.7.12. Analysis of phosphoSILAC LC-MS/MS data

SILAC data was analysed using MaxQuant software (v.1.0.13.8 downloaded from www.maxquant.org). Thermo-Finnigan RAW files transformed to msm files using Maxquant Quantify (v.1.0.13.8) software using appropriate triplet SILAC states. Settings used were Orbitrap; Triplet (Arg6, Lys4, Arg10, Lys 8); maximum of 3 labelled amino acids; variable modifications = oxidation (M), acetyl (protein n-term), methylthio (C), phosphorylation (ST), phosphorylation (Y); trypsin/P; MS/MS tolerance $=0.5 \mathrm{Da}$; maximum msm file size $=350 \mathrm{Mb}$; maximum missed cleavages $=$ 2 ; top $\mathrm{ms} / \mathrm{ms}$ peaks per $100 \mathrm{Da}=6$.

Database used was IPI mouse v3.52 modified using Maxquant SequenceReverser (v.1.0.13.8). Database searching was performed using Mascot (Matrix Science v.2.2.2) using parameters generated by MaxQuant. MaxQuant Identify (v.1.0.13.8) was used to generate data tables for further analysis. Parameters used were peptide $\mathrm{FDR}=0.01$; site $\mathrm{FDR}=0.01$; protein $\mathrm{FDR}=0.01$; apply site FDR separately; maximum peptide $\mathrm{PEP}=1$; minimum peptides $=1$; minimum unique peptides $=1$; minimum peptide length $=6$; reverse string $=$ REV_; contaminant string $=$ CON_; use only unmodified peptides and oxidation (M), acetyl (protein N-term), methylthio (C), Phospho (ST), Phospho (Y); use razor and unique peptides; discard unmodified counterpart peptides; minimum ratio count $=1$; use least modified peptides; number of threads $=1$; re-quantify; filter labelled amino acids; low scoring version of identified peptides not kept.

2.8. Western Blotting

2.8.1. Polyacrylamide Gel Casting

The electrophoresis apparatus was assembled and the resolving gel prepared (see table 2.6 for the required reagents for one $10 \mathrm{~cm}^{2}$ plate, 1 mm spacers, and a final concentration of 10% acrylamide). The 10% acrylamide solution was then transferred to the glass plates avoiding the generation of air bubbles and 1 ml of water-saturated n butanol was gently added to the top of the gel. The resolving gel was then left to polymerise.

Table 2.6. Reagents used in preparation of resolving gel. Volumes are for one $10 \mathrm{~cm}^{2}$ glass plate, 1 mm spacers, and a final concentration of 10% acrylamide. 4X Resolving Gel Tris consists of 1.5 M Tris $\mathrm{HCl} \mathrm{pH} 8.8,0.4 \%$ SDS adjusted to pH 8.8 with 1 M HCl. TEMED $=\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{N}$ '-tetramethylethylenediamine (Sigma).

Reagent	Volume
Distilled water	3.15 ml
Acrylamide 30\% solution (Sigma)	2.5 ml
4 x Resolving Tris solution	1.875 ml
10\% w/v ammonium persulphate (APS; for electrophoresis $\geq 98 \% ;$ Sigma)	$75 \mu \mathrm{l}$
TEMED (for electrophoresis approx. 99\%) (Sigma)	$7.5 \mu \mathrm{l}$

Once the resolving gel had polymerised the water saturated n-butanol was removed and the gel washed using distilled water. The stacking gel was then prepared (see table 2.7 for the required reagents for one $10 \mathrm{~cm}^{2}$ plate, 1 mm spacers, and a final concentration of 3% acrylamide). The solution was then transferred to the glass plates avoiding the generation of air bubbles. The comb was added and the stacking gel was then left to polymerise.

Table 2.7. Reagents used in preparation of the stacking gel. Volumes are for one $10 \mathrm{~cm}^{2}$ glass plate, 1 mm spacers, and a final concentration of 3% acrylamide. 4X Stacking Gel Tris solution consists of 0.5 M Tris $\mathrm{HCl} \mathrm{pH} 6.8,0.4 \%$ SDS adjusted to pH 6.8 with 1 M HCl . TEMED $=\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}-$ tetramethylethylenediamine .

Reagent	Volume
MilliQ distilled water	2.1 ml
Acrylamide 30\% solution (Sigma)	0.325 ml
4 x Stacking gel Tris solution	0.8 ml
10% w/v ammonium persulphate (APS; for electrophoresis $\geq 98 \% ;$ Sigma)	$34 \mu \mathrm{l}$
TEMED (for electrophoresis approx. 99\%) (Sigma)	$3.4 \mu \mathrm{l}$

2.8.2. Polyacrylamide Gel Electrophoresis Sample Loading

From the concentration given by the protein estimation the volume required for $20 \mu \mathrm{~g}$ of protein was calculated. The sample was combined with $4 x$ sample buffer (Invitrogen), 100 mM dithiothreitol (DTT, Sigma), and distilled $\mathrm{H}_{2} \mathrm{O}$ in a microcentrifuge tube. For a $20 \mu 1$ reaction - $x \mu l$ sample, $5 \mu l 4 x$ sample buffer, $2 \mu 1$ 100 mM DTT, $\mathrm{H}_{2} \mathrm{O}$ to $20 \mu \mathrm{l}$ are combined, vortexed to ensure thorough mixing and then spun briefly in a microcentrifuge. The samples were then heated to $70^{\circ} \mathrm{C}$ for 5 min , vortexed and then spun briefly in a microcentrifuge to collect the sample at the bottom of the tube prior to loading.

The wells were washed before loading by gently pipetting 1 ml of running buffer (1 X Tris-glycine tank buffer - SDS $=200 \mathrm{ml} 4 \mathrm{x}$ tris-glycine tank buffer-SDS (36g Tris base, 172.8 g glycine, distilled $\mathrm{H}_{2} \mathrm{O}$ to 31), $8 \mathrm{ml} 10 \%$ SDS, distilled $\mathrm{H}_{2} \mathrm{O}$ to 800 ml) into the wells removing any loose polyacrylamide. The inner chamber was then filled with running buffer and $20 \mu \mathrm{l}$ sample added to the appropriate lanes using gel-loading tips.
$7 \mu \mathrm{l}$ of Novex sharp stain molecular weight ladder (Invitrogen) was added to one lane. Any surplus lanes were loaded with $10 \mu l$ of $4 x$ sample buffer (Invitrogen). Once loading is complete the outer tank is filled with running buffer and electrophoresis is performed at 125 V for 130 min at room temperature noting the current initially and on completion.

2.8.3. Protein Transfer to Nitrocellulose Membrane

Protein transfer was performed using XCell II ${ }^{\text {TM }}$ Blot Module (Invitrogen) Western blotting apparatus using XCell SureLock Mini-Cell (Invitrogen). Fibre blotting pads and the nitrocellulose membrane were soaked in transfer buffer (1.456g Tris base, 7.2 g glycine, 200 ml methanol, distilled water to 1000 ml) prior to use. Filter paper was soaked briefly in transfer buffer prior to placing in the cassette. Care was taken throughout to ensure that there are no air bubbles between the components that could affect protein transfer. Working from the cathode core of the blotting module the transfer cassette was assembled by placing two fibre blotting pads, filter paper and the gel were assembled in order. A small amount of transfer buffer was then used to wet the gel before addition of the nitrocellulose membrane. A second piece of filter paper was then added on top of the nitrocellulose and finally, two fibre blotting pads were added. The anode core is then placed onto the assembly ensuring that the components are held firmly and with a complete connection. The whole assembly is then slid into the transfer tank and braced into position. Transfer buffer is added to the transfer chamber until the $\mathrm{gel} / \mathrm{membrane}$ assembly is covered. The outer chamber is filled with $\mathrm{H}_{2} \mathrm{O}$. Electrophoresis is then performed at 16 V overnight at room temperature noting the current (in mA) initially and on completion.

2.8.4. Blocking Non-Specific Binding

After protein transfer the nitrocellulose membrane is removed from the transfer cassette and washed with $\mathrm{H}_{2} \mathrm{O}$ to remove any polyacrylamide residue. The membrane is stained with 1x Ponceau S solution (1\% Ponceau S (Sigma) in 5\% acetic acid) to ensure successful transfer has occurred. The membrane was washed with PBS-Tween and then blocked to prevent non-specific binding by using 2% blocking reagent (Amersham) in PBS-Tween. at room temperature for 1 hr with gentle shaking.

2.8.5. Primary Antibody Incubation

Primary antibodies were incubated with the membrane overnight at $4^{\circ} \mathrm{C}$ or at room temperature for 3 hours with gentle shaking (Caveolin-1, 1:5000, Cell Signalling Technologies; ATP binding cassette A1 (ABCA1), 1:500, Novus; Actin, 1:200, Sigma; phosphoethanolamine cytidylyltransferase (PCyt2), $0.5 \mu \mathrm{~g} / \mathrm{ml}$, Abcam; Macrophage colony stimulating factor, $0.2 \mu \mathrm{~g} / \mathrm{ml}$, Abcam; p44/p42 MAP kinase, 1:1000, Cell Signalling Technologies; phospho-p44/p42 MAP kinase (Thr202/Tyr204), 1:1000, Cell Signalling Technologies). Sodium azide was added to the primary antibody solution to give a final w / v concentration of 0.05% to prevent bacterial growth and allow the reuse of the antibody solution after storage at $4^{\circ} \mathrm{C}$.

2.8.6. Secondary Antibody Incubation

After primary antibody incubation the membrane was then washed three times for 10 minutes each with 2\% Amersham blocking reagent in PBS-Tween before incubation with appropriate horseradish peroxidase (HRP)-linked secondary antibody (donkey anti-rabbit HRP-linked (Amersham) unless otherwise noted); Caveolin-1, 1:5000; ABCA1, 1:10,000; Actin, 1:50,000; phosphoethanolamine cytidylyltransferase (PCyt2), 1:20,000; Macrophage colony stimulating factor, 1:2000 donkey anti-goat HRP-linked (Santa Cruz) p44/p42 MAP kinase 1:2000; phospho-p44/p42 MAP kinase (Thr202/Tyr204) 1:1000) for 1 hour at room temperature. The nitrocellulose was then washed three times for 15 min with PBS Tween at room temperature with gentle shaking. Before detection the nitrocellulose membrane was then washed with 20 ml PBS for at least 5 min .

2.8.7. Detection

Enhanced chemiluminescence (ECL) is used for detection using ECL Advance kit (GE Amersham). An equal volume of reagent 1 and 2 are mixed (typically $1000 \mu \mathrm{l}$ of each for 1 blot) and are then added to the nitrocellulose. The detection reagent is incubated with the nitrocellulose for 5 min at room temp before visualisation using a Biorad ChemiDoc XRS and Quantity One software (Bio-Rad). Tracker tape (Amersham) is used to visualise the position of the Novex sharp stain molecular weight ladder on the Chemidoc system.

2.9. Fixed Cell Confocal Microscopy

Glass cover slips (Fisher) were placed in each well of a 24 well tissue culture plate (Greinier) before incubation for 10 min with $250 \mu \mathrm{l}$ poly-L-lysine (0.01% BioReagent, mol wt 150,000-300,000 sterile filtered suitable for cell culture; Sigma). The poly-L-lysine was then removed and the cover slips left to dry for 20 min at room temperature. SN4741 cells were trypsinised and counted, as previously described, before being seeded at a density of 50,000 cells per well in 1 ml full media and incubated for 24 hours prior to treatment.

Oxysterols (24(S),25-epoxycholesterol (Enzo Life Sciences), 7α-hydroxycholesterol (Steraloids), 19-hydroxycholesterol (Steraloids), 24(S)-hydroxycholesterol (Avanti Polar Lipids), 25-hydroxycholesterol (Sigma), 27-hydroxycholesterol (Avanti Polar Lipids)) were prepared at a 10 mM concentration in 45% hydroxypropyl-_cyclodextrin $/ 0.9 \%$ saline (both Sigma) before dilution to $10 \mu \mathrm{M}$ in serum free media. GW3965 (Sigma) prepared as a 10 mM solution in ethanol before dilution to $1 \mu \mathrm{M}$ with serum free media. These solutions were vortexed to ensure thorough mixing before sterile filtration.

SN47471 cells were then treated with vehicle, 0.5 ml GW3965 $1 \mu \mathrm{M}$ (Sigma), or 0.5 ml $10 \mu \mathrm{M}$ oxysterol (24(S),25-epoxycholesterol, 7α-hydroxycholesterol, 19hydroxycholesterol, 24(S)-hydroxycholesterol, 25-hydroxycholesterol or 27hydroxycholesterol) in the presence or absence of $250 \mu \mathrm{M}$ cholesterol (Sigma) for 24 hours at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO} 2$. After incubation cells were washed twice with 1 ml PBS prior to fixing by incubating with $250 \mu \mathrm{l} 4 \%$ paraformaldehyde (Sigma) in PBS for 15 minutes.

Fixed cells were washed three times with 1ml of Hank's Balanced Salt Solution (HBSS; Invitrogen) and then stained with $250 \mu \mathrm{l}$ of $1 \mu \mathrm{~g} / \mathrm{ml}$ Alexa- 555 labelled wheat germ agglutinin (Invitrogen) per well for 5 min at room temperature. After incubation the cells were washed twice for 5minutes with 1ml HBSS then permeabilised by incubating with $250 \mu \mathrm{l}$ PBS Triton-X100 0.2% (Sigma) in for 10 min at room temperature. Non-specific binding was blocked with incubation for 30 min with $250 \mu \mathrm{l}$ blocking buffer (0.5% essentially fat free BSA (Sigma) in PBS Triton-X100 0.1\%)
per well before treatment with anti-caveolin-1 antibody (1:200 in blocking buffer, Cell Signalling Technologies) for 1 hour at room temperature. The primary antibody was removed and the cells washed three times with 1 ml PBS Triton-X100 0.1% for 5 min . Alexa 488 linked anti-Rabbit secondary antibody (1:2000 in blocking buffer; Invitrogen) was incubated with the cells for 1 hour at room temperature before washing three times with 1 ml PBS Triton-X100 0.1%. The cover slips were then mounted onto glass slides (Fisher) using Mowiol 4-88 mounting medium and left to dry overnight. Slides were imaged on a Zeiss LSM 510 Meta microscope.

2.10. Real Time Reverse Transcription PCR

2.10.1. RNA Extraction - Adherent cells

RNA extraction was performed using RNeasy Mini Kit (Qiagen) following the manufacturer's instructions. Treatments were removed from cells and stored for future ELISA assays. Cells (on 90 mm tissues culture dishes (Greinier)) were washed twice with $\sim 10 \mathrm{ml}$ ice cold PBS (Lonza) before addition of $600 \mu \mathrm{l}$ RLT lysis buffer (Qiagen). Cells were scraped using a cell scraper (Greinier) before transfer of the lysate to a certified RNase/DNase free 2 ml microcentrifuge tube (Eppendorf). The lysate was then homogenised using a 1 ml syringe with a BD Microfine $23 \mathrm{G}, 1_{\text {_" }}$ needle by drawing the lysate up then expelling 10 times.

After homogenisation $600 \mu \mathrm{l}$ of 70% ethanol was added to the lysate and mixed by pipetting (no centrifugation). The lysate was then loaded to a RNeasy spin column (Qiagen) placed in a 2 ml collection tube. $600 \mu \mathrm{l}$ of sample was loaded and then spun in a microcentrifuge for 15 s at $13,000 \mathrm{rpm}$. The flow through was discarded and the loading was repeated until all lysate was transferred to column. $700 \mu 1$ of RW1 buffer was added to the column and spun for 15 s at $13,000 \mathrm{rpm}$ to wash the sample and the flow through was discarded. A second wash was performed; $500 \mu 1$ of RPE buffer was added to the column, spun for 15 s at $13,000 \mathrm{rpm}$ and the flow through was discarded. For the final wash $500 \mu \mathrm{l}$ of RPE buffer was added to the column, spun for 2 min at $13,000 \mathrm{rpm}$ and the flow through was discarded. The column was transferred to a clean 2 ml collection tube and then spun again for 1 min at $13,000 \mathrm{rpm}$ to ensure removal of all wash buffers.

RNA was eluted from the column with 40μ l RNase free water to a clean 1.5 ml centrifuge tube. The water was added directly to the membrane of the column and then spun for 1 min at $13,000 \mathrm{rpm}$. To ensure a good yield of RNA the flow through was reloaded onto the column and then spun again for 1 min at $13,000 \mathrm{rpm}$. RNA was stored at $-80^{\circ} \mathrm{C}$.

2.10.2. RNA Extraction - Suspension Cells

RNA extraction was performed using RNeasy Mini Kit (Qiagen) following the manufacturer's instructions. The cell suspension was transferred from the tissue
culture flask to 15 ml centrifuge tube and then centrifuged at 700 g for 5 min . The supernatant, i.e. the treatment media, was stored for future ELISA assays at $-80^{\circ} \mathrm{C}$. The cell pellet was washed by resuspending cells in 10 ml ice cold PBS (Lonza) before centrifugation for 5 min at 700 g . This was repeated once before addition of $600 \mu \mathrm{l}$ RLT lysis buffer (Qiagen). The lysate was then transferred to a certified RNase/DNase free 2 ml microcentrifuge tube (Eppendorf) and homogenised using a 1 ml syringe (BD) with a BD Microfine 23G, $1_{\text {_" }}$ needle (BD) by drawing the lysate up then expelling 10 times.

The remainder of the extraction follows same method as adherent cells (2.9.1).

2.10.3. RNA Concentration Estimation

RNA concentration was estimated using a Nanodrop ND-1000 spectrophotometer (Labtech). The capillary was cleaned before use using water. The option to measure nucleic acid was chosen and $1 \mu l$ of water was loaded and used to initialise the instrument. The setting was switched to 'RNA' and 1μ l of water was loaded and measured as a blank. $1 \mu \mathrm{l}$ of sample(s) were then loaded sequentially and measured. The RNA concentration was recorded ($\mathrm{ng} / \mu \mathrm{I}$) and the $260 \mathrm{~nm} / 280 \mathrm{~nm}$ and $260 / 230$ ratios that indicates the quality of the RNA.

2.10.4. Reverse transcription

Reverse transcription was performed using a Quantitect Reverse Transcription kit (Qiagen) following the manufacturer's instructions. All components were kept on ice until used. Before the reverse transcription a step to remove genomic DNA was undertaken; for each sample 900 ng of RNA was taken and diluted to 12μ l with RNase free water and $2 \mu l$ of genomic DNA wipeout buffer added (Qiagen) for a total volume of 14μ. This mixture was mixed and centrifuged briefly before incubation at $42^{\circ} \mathrm{C}$ for 2 min (iCycler, Bio-Rad). A master mix for the reverse transcription reaction was then prepared consisting of $4 \mu \mathrm{l} 5 \mathrm{x}$ Quantiscript RT buffer, $1 \mu \mathrm{l}$ Quantiscript reverse transcriptase and $1 \mu \mathrm{l}$ of primers (all Qiagen) per sample. After incubation the sample was centrifuged briefly 6μ l of reverse transcription master mix was added per sample to give a final volume of $20 \mu \mathrm{l}$. The samples were mixed, centrifuged briefly and then incubated at $42^{\circ} \mathrm{C}$ for 15 min followed by $95^{\circ} \mathrm{C}$ for 3 min (iCycler, Bio-Rad) to
generate cDNA. No reverse transcriptase control reactions were performed as above but with the Quantitect reverse transcriptase enzyme in the reaction mixture replaced with water.

2.10.5. Primers

Each primer set (table 2.8., Sigma (unless otherwise noted)) was evaluated to ensure that they amplified the target while avoiding the generation of primer dimers and that a linear standard curve was generated across a broad range by dilution with water (cDNA neat, $1: 10,1: 100,1: 1000)$. Primers were reconstituted from lyophilised powder to a $100 \mu \mathrm{M}$ concentration with $\mathrm{H}_{2} \mathrm{O}$.

Table 2.8.Primers used for reverse transcription qPCR. The primers for LXR α and LXR β were obtained from the Nuclear Receptor Signalling Atlas website (www.nursa.org/10.1621/datasets.02001 - accessed 13-12-2010). Primers for StarD4 self designed using NCBI Primer-Blast primer designing tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast). The primers for FADS2 were taken from the \quad RTprimerDB website (http://medgen.ugent.be/rtprimerdb/assay_report.php?assay_id=8122 - accessed 17-12011). Primers for CERT were obtained from Qiagen. No sequence information was provided. * Mismatch in primer sequence in referenced manuscript. Possible typographical error therefore primer sequence used 100% complementary.

Primer Name	Species	Sequence (5'-3')	Reference
LXR α forward	Mouse	AGG AGT GTC GAC TTC GCA AA	See table legend
LXR α reverse	Mouse	CTC TTC TTG CCG TTC AGT TT	See table legend
LXR β forward	Mouse	AAG CAG GTG CCA GGG TTC T	See table legend
LXRß reverse	Mouse	TGC ATT CTG TCT CGT GGT TGT	See table legend
SREBP1c forward	Mouse	ATC GGC GCG GAA GCT GTC GGG	Shimomura et al. GTA GCG TC

SREBP 1c reverse	Mouse	ACT GTC TTG GTT GTT GAT GAG CTG GAG CAT	Shimomura et al. 1997
Cav-1 forward	Mouse	AAC GAC GAC GTG GTC AAG A	Bailey \& Liu 2008
Cav-1 reverse	Mouse	CAC AGT GAA GGT GGT GAA GC	Bailey \& Liu 2008
LDLR forward	Mouse	CAT GCA GCA GGA ACG AGT TC*	Masson et al. 2004
LDLR reverse	Mouse	GGA GTC AGG AAT GCA TCG GC	Masson et al. 2004
StarD4 forward	Mouse	ATG CGT TAC ACC ACT GCT GGG C	See table legend
StarD4 reverse	Mouse	TCT GGT CTC GTC TCA CTC CAC TCA	See table legend
MCSF forward	Mouse	GAA CAC TGT AGC CAC ATG ATt GG	Wang et al. 2009
MCSF reverse	Mouse	TGG CAT GAA GTC TCC ATT TGA C	Wang et al. 2009
Col4a3bp forward	Mouse	Unknown	See table legend
Col4a3bp reverse	Mouse	Unknown	See table legend
β-actin forward	Mouse	GGT CGT ACC ACA GGC ATT GTG ATG	Shimomura et al. 1997
β-actin reverse	Mouse	GGA GAG CAT AGC CCT CGT AGA TGG	Shimomura et al. 1997
IDOL forward	Mouse	AGG AGA TCA ACT CCA CCT TCT G	Zelcer et al. 2009
IDOL reverse	Mouse	ATC TGC AGA CCG GAC AGG	Zelcer et al. 2009
MCSF forward	Human	TGC AGC GGC TGA TTG ACA	Razzaque et al. 2002
MCSF reverse	Human	TTC AAC TGT TCC TGG TCT ACA AAC TC	Razzaque et al. 2002
β-actin forward	Human	GAT GGC CAC GGC TGC TTC	Cronin et al. 2011
β-actin reverse	Human	TGC CTC AGG GCA GCG GAA	Cronin et al. 2011

2.10.6. Real Time Polymerase Chain Reaction

Primers (table 2.8) were diluted from a $100 \mu \mathrm{M}$ stock solution to $10 \mu \mathrm{M}$ with water, vortexed and centrifuged. A master mix was then prepared for each gene. For each well 12.5μ l of QuantiFast SYBR green PCR master mix 2x (Qiagen), $2.5 \mu \mathrm{l}$ forward primer (i.e. $1 \mu \mathrm{M}$ final concentration), $2.5 \mu \mathrm{l}$ reverse primer (i.e. $1 \mu \mathrm{M}$ final concentration), $5.5 \mu \mathrm{l}$ RNase free water was required and therefore these values were multiplied by the number of wells to be used (plus an overage). The master mix was then mixed and centrifuged briefly.
cDNA was taken from each sample and pooled in order to be used to generate a standard curve. The pooled cDNA used for the standard curve was diluted 1:10, 1:100 and 1:1000 using serial dilutions. Samples to be analysed for gene expression (and noRT controls) were diluted $1: 4$ with water so that they fell within the limits of the standard curve. At each stage the cDNA was mixed and centrifuged to give a homogenous mixture. Each sample was analysed in triplicate. The master mix was then transferred into the PCR plate with $23 \mu \mathrm{l}$ per well as appropriate. $2 \mu \mathrm{l}$ of cDNA (or water for no template controls (NTC)) was added to each well as appropriate (see figure 2.1 for example of plate set up).

Figure 2.1. Typical plate set up for real time RT-PCR. All samples were run in triplicate. A standard curve derived form pooled cDNA from the samples was generated using 4 serial dilutions. Samples for analysis of expression were diluted 1:4 with DNase/RNase free water. NoRt = No reverse transcriptase added to sample in the RT step. NTC $=$ No template control

The plate was then centrifuged briefly to ensure that samples were collected at the bottom of the well and then checked to ensure that no air bubbles were present. The plate was then transferred to an iQ 5 real time PCR detection system (Bio-Rad) to be analysed using the conditions shown in table 2.9.

Table 2.9. Conditions for real time PCR

Cycle	Cycle Repeated	Temperature $\left({ }^{\circ} \mathrm{C}\right)$ (Dwell Time (s)	Additional information
1	1 x	$95^{\circ} \mathrm{C}$	300	
2.1	45 x	$95^{\circ} \mathrm{C}$	10	
2.2		$60^{\circ} \mathrm{C}$	30	Real time analysis
3	1 x	$95^{\circ} \mathrm{C}$	60	
4	1 x	$55^{\circ} \mathrm{C}$	60	
5	81 x	Start at $55^{\circ} \mathrm{C}$ with a $0.5^{\circ} \mathrm{C}$ increase per cycle	10	Melt curve analysis

2.10.7. Data Analysis

The standard curve derived from the pooled cDNA was used to monitor primer efficiency. Primer efficiency expressed as a percentage was generated using the BioRad iQ5 software. Primer efficiencies summarised in table 2.10.

Table 2.10. Summary of RT-PCR primer efficiencies. Efficiency shown as mean with standard deviation.

Gene	Species	Primer efficiency
LXR α	Mouse	93.5 ± 5.2
LXR β	Mouse	109.7 ± 6.8
SREBP1c	Mouse	93.1 ± 4.0
Cav- 1	Mouse	88.2 ± 0.64
LDLR	Mouse	100.8 ± 8.2
StarD4	Mouse	100.0 ± 2.3
MCSF	Mouse	98.4 ± 7.6
Col4a3bp	Mouse	102.9 ± 2.0
IDOL	Mouse	94.1 ± 1.3
β-actin	Mouse	97.4 ± 6.7
MCSF	Human	102.8 ± 4.3
β-actin	Human	102.0 ± 1.3

Analysis of the data was performed using $\Delta \Delta \mathrm{Ct}$ method. The cycle threshold value (Ct) of the gene of the interest was subtracted from the Ct value of the reference gene (β-actin) from the same sample giving the $\Delta \mathrm{Ct}$ value.

$$
\Delta \mathrm{Ct}=\mathrm{Ct}_{\text {(sample) }}-\mathrm{Ct}_{\text {(reference) }}
$$

This was repeated for each experimental condition. The $\Delta \mathrm{Ct}$ values for the treatment were then subtracted from the control value giving a $\Delta \Delta \mathrm{Ct}$ value.

$$
\Delta \Delta \mathrm{Ct}=\Delta \mathrm{Ct}_{\text {(treatment) }}-\Delta \mathrm{Ct}_{\text {(control) }}
$$

The $\Delta \Delta \mathrm{Ct}$ value was then converted into fold induction; as the amount of product amplified theoretically doubles with each PCR cycle this can be written as:-

$$
\text { Fold induction c.f. control }=2^{-\Delta \Delta \mathrm{Ct}}
$$

2.11. Mouse MCSF Enzyme Linked Immunosorbant Assay

A mouse MCSF Quantikine kit assay (R\&D Systems) was performed following the manufacturer's instructions. Briefly, a mouse MCSF standard was reconstituted with 2 ml of calibrator diluent RD5-16 (R\&D Systems) giving a stock solution of $2000 \mathrm{pg} / \mathrm{ml}$. This solution was incubated at room temperature for 5 min with gentle shaking before being used to create samples for a standard curve by using serial dilution. Calibrator diluent RD5-16 was used as a diluent. The concentrations for the standard curve were $2000 \mathrm{pg} / \mathrm{ml}$ (stock solution), $1000 \mathrm{pg} / \mathrm{ml}, 500 \mathrm{pg} / \mathrm{ml}, 250 \mathrm{pg} / \mathrm{ml}$, $125 \mathrm{pg} / \mathrm{ml}, 62.5 \mathrm{pg} / \mathrm{ml}, 31.25 \mathrm{pg} / \mathrm{ml}, 0 \mathrm{pg} / \mathrm{ml}$ (Calibrator diluent RD5-16). The kit's supplied mouse MCSF internal control was reconstituted in $1 \mathrm{ml} \mathrm{ddH} \mathrm{H}_{2} \mathrm{O}$. This internal control should yield a reading of $175-291 \mathrm{pg} / \mathrm{ml}$. For unknown concentration samples, 0.5 ml of cell culture supernatant was vortexed then centrifuged at $14,000 \mathrm{rpm}$ for 2 min at $4^{\circ} \mathrm{C}$.
$50 \mu 1$ of assay diluent RD1N (R\&D systems) was added to each well of the MCSF antibody pre-coated microplate supplied with the kit. $50 \mu \mathrm{l}$ of standard, control or sample was then added to each well as appropriate. To ensure thorough mixing the plate was tapped gently for one minute. The plate was then covered with an adhesive strip and incubated for 2 hours at room temperature. After incubation each well was aspirated and washed $(\sim 400 \mu \mathrm{l}$) with 1 x wash buffer (supplied as a 25 x concentrated solution, R\&D Systems). This wash step was repeated four times (i.e. 5 washes in total). The plate was then gently blotted against a clean paper towel to ensure removal of remaining wash buffer. 100μ l of mouse MCSF conjugate (R\&D Systems) was then added to each well and the plate covered with a new adhesive strip. The plate was then incubated at room temperature for 2 hours. After incubation the wells were washed as described previously.

Substrate solution was prepared by mixing equal volumes of colour reagent A and B (both R\&D systems). $100 \mu \mathrm{l}$ of substrate solution was then added to each well and incubated for 30 min at room temperature protecting the plate from light. $100 \mu \mathrm{l}$ of stop solution was added to each well. The plate was gently tapped in order to ensure thorough mixing and the development of a uniform colour. The optical density of each well was then read on an iMark microplate reader (Bio-Rad) set at a wavelength
of 450 nm . The plate was then read at 595 nm to correct for optical imperfections of the plate.

2.12. Human MCSF Enzyme Linked Immunosorbant Assay

A human MCSF Quantikine kit assay (R\&D Systems) was performed following the manufacturer's instructions. Precautionary measures were taken to prevent contamination from MCSF found in human saliva - a facemask and gloves were worn. Briefly, a human MCSF standard was reconstituted with 1 ml of calibrator diluent RD5-18 (R\&D Systems) giving a stock solution of $50,000 \mathrm{pg} / \mathrm{ml}$. This solution was incubated at room temperature for 15 min with gentle shaking before being used to create samples for a standard curve by using serial dilution. Calibrator diluent RD518 was used as a diluent. The concentrations for the standard curve were $5000 \mathrm{pg} / \mathrm{ml}$ (stock solution), $2500 \mathrm{pg} / \mathrm{ml}, 1250 \mathrm{pg} / \mathrm{ml}, 625 \mathrm{pg} / \mathrm{ml}, 312.5 \mathrm{pg} / \mathrm{ml}, 156.25 \mathrm{pg} / \mathrm{ml}$, $78.125 \mathrm{pg} / \mathrm{ml}, 0 \mathrm{pg} / \mathrm{ml}$ (Calibrator diluent RD5-18). For unknown concentration samples, 0.5 ml of cell culture supernatant was vortexed then centrifuged at 14,000 rpm for $2 \min$ at $4^{\circ} \mathrm{C}$.
100μ l of assay diluent RD1-56 (R\&D systems) was added to each well of the MCSF antibody pre-coated microplate supplied with the kit. $100 \mu \mathrm{l}$ of standard or sample was then added to each well as appropriate. To ensure thorough mixing the plate was tapped gently for one minute. The plate was then covered with an adhesive strip and incubated for 2 hours at room temperature. After incubation each well was aspirated and washed ($\sim 400 \mu \mathrm{l}$) with 1 x wash buffer (supplied as a 25 x concentrated solution, R\&D Systems). This wash step was repeated three times (i.e. 4 washes in total). The plate was then gently blotted against a clean paper towel to ensure removal of remaining wash buffer. 200μ l of human MCSF conjugate (R\&D Systems) was then added to each well and the plate covered with a new adhesive strip. The plate was then incubated at room temperature for 2 hours. After incubation the wells were washed as described previously.

Substrate solution was prepared by mixing equal volumes of colour reagent A and B (both R\&D systems). $200 \mu 1$ of substrate solution was then added to each well and incubated for 30 min at room temperature protecting the plate from light. $50 \mu \mathrm{l}$ of stop solution was added to each well. The plate was gently tapped in order to ensure
thorough mixing and the development of a uniform colour. The optical density of each well was then read on an iMark microplate reader (Bio-Rad) set at a wavelength of 450 nm . The plate was then read at 595 nm to correct for optical imperfections of the plate.

2.13 Statistical Analysis

Statistical analysis was performed on the data using Microsoft Excel 2007 software using Student's two-tailed t-test. p values below 0.05 were considered a significant change.

CHAPTER 3: PROTEOMIC ANALYSIS OF 24(S),25-EPOXYCHOLESTEROL

TREATMENT IN SN4741 NEURONS

3.1. Introduction

$24(S), 25$-epoxycholesterol is an unusual oxysterol. It is unusual as it is not an oxygenated metabolite of cholesterol but a product of a shunt in the mevalonate biosynthetic pathway. An epoxide group is introduced to squalene by squalene epoxidase during synthesis of cholesterol. The product of this reaction, 2,3oxidosqualene (AKA 2,3-monoepoxysqualene), is then processed by a number of downstream enzymes to synthesise cholesterol. However, 2,3-oxidosqualene can be processed further in order to create 2,3:22,23-dioxidosqualene. This can then be cyclised by lanosterol synthase and further processed along the same enzymatic pathway in order to create $24(S), 25$-epoxycholesterol. $24(S), 25$-epoxycholesterol is a potent endogenous ligand of Insig and LXR (see sections 1.1.5.1. and 1.1.5.2. respectively). Therefore, an increase in the concentration of 24(S),25epoxycholesterol results in up-regulation of genes with a LXR response element in their promoter and down-regulation of SREBP2 regulated genes.

24(S),25-epoxycholesterol appears to have a role in the development of the embryonic brain as $24(S), 25$-epoxycholesterol is present at relatively high levels in comparison to other oxysterols in the cortex and spinal cord of embryonic mice (Wang et al. 2009). The major oxysterol in adult mouse brain is $24(S)$-hydroxycholesterol with a concentration of $2.53 \pm 0.05 \mathrm{ng} / \mu \mathrm{gg} 24(S)$-hydroxycholesterol to cholesterol (Lütjohann et al. 2002). In the embryonic murine brain 24(S)-hydroxycholesterol is not the most abundant; at embryonic day 11 there was an observed level of $24(S)$ hydroxycholesterol of $0.026 \mu \mathrm{~g} / \mathrm{g}$ wet weight in the cerebral cortex and $0.013 \mu \mathrm{~g} / \mathrm{g}$ wet weight in the spinal cord. In comparison, the concentration of $24(S), 25-$ epoxycholesterol was $0.165 \mu \mathrm{~g} / \mathrm{g}$ wet weight in the cerebral cortex and $0.091 \mu \mathrm{~g} / \mathrm{g}$ wet weight in the spinal cord. It is unclear the role $24(S), 25$-epoxycholesterol, the most abundant oxysterol in foetal brain, plays in murine embryonic neural development though as LXR is present in embryonic brain (Annicotte et al. 2004) and that $24(S), 25$-epoxycholesterol is a potent ligand for this nuclear receptor (Janowski et al. 1999) it might play a role in neural development. Indeed, there is evidence to suggest
that the presence of LXR is essential to ventral midbrain neurogenesis (Sacchetti et al. 2009)

The mechanism by which LXR induces neurogenesis is unclear. Therefore, in order to investigate the role of $24(S), 25$-epoxycholesterol and LXR in neurogenesis a quantitative proteomic approach was employed. The proteomic technique stable isotope labelling in cell culture (SILAC) was used in order to identify changes in the proteome after treatment with $24(S), 25$-epoxycholesterol and GW3965. To this end, as a model for embryonic mouse brain, the murine neuronal cell line SN4741 was used. SN4741 cells are dopaminergic neurons derived from the substantia nigra of embryonic mouse (Son et al. 1999). The substantia nigra is located in the ventral midbrain. Therefore, SN4741 cells are a relevant model to the increased neurogenesis seen after LXR activation in vivo. Treatment of SILAC labelled SN4741 cells with either $24(S), 25$-epoxycholesterol or the synthetic LXR ligand $1 \mu \mathrm{M}$ GW3965 (which only activates LXR and has no effect on SREBP2) allows differentiation of effects as LXR dependent or independent. Thus, the aim of this work is to identify protein expression changes in SN4741 cells after 24(S),25-epoxycholesterol treatment and identify if these effects are LXR dependent or independent.

3.2. Results

3.2.1. Analysis of 24(S), 25-epoxycholesterol Treatment on SN4741 Growth

To determine if $24(S), 25$-epoxycholesterol is toxic to SN4741 cells grown in culture cells were incubated with either $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or with vehicle and the total cell number counted. In order to ensure that the cells survived in culture for a prolonged period but without introducing lipid small molecules that could affect the activity of $24(S), 25$-epoxycholesterol the media used contained charcoal stripped foetal bovine serum (FBS). After 76 hours there was no difference in cell number between $24(S), 25$-epoxychoelsterol and control (fig 3.1). However, incubation with charcoal stripped serum reduced the rate of growth and the vehicle and $24(S), 25-$ epoxycholesterol treated cells in this media grew slower than control cells incubated in full media. Five days after seeding SN4741 cells at 2.5×10^{4} cells/well in 24 well plates in full media they reached confluency and the plateau of the stationary phase of the curve. However, the $24(S), 25$-epoxycholesterol and control cells in stripped serum media did not reach confluency. However, as there were no statistical differences between control and 24(S),25-epoxycholesterol treatment ($\mathrm{p}>0.05$ Student's t-test) it appears that $24(S), 25$-epoxycholesterol is non-toxic to SN4741 cells when measured by total cell number.

Figure 3.1. Effect of $24(S), 25$-epoxycholesterol on the rate of growth of SN4741 cells. 24 well plates were seeded at 2.5×10^{4} cells/well in media containg charcoal stripped media with either $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or vehicle as control. Full media media was used to determine the effect of the charcoal stripped serum media on rate of cell growth. No difference in cell growth was observed with 24(S),25epoxycholsterol and vehicle in charcoal stripped serum media. Cells grown in full media had a higher rate of cell growth compared with those grown in charcoal stripped serum media.

3.2.2. Analysis of 24(S),25-epoxycholesterol Treatment on SN4741 Viability

In addition the toxicity of $24(S), 25$-epoxycholesterol was measured using two other techniques - XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) assay and Cell Titer Blue assay (a resazurin based assay marketed by Promega). Both techniques measure the ability of the cell to metabolise XTT or resoruzin respectively and induce a colour change that is proportional to the healthy cell number. XTT is not believed to enter the cell due to the net negative charge of the molecule and is believed to be reduced at the plasma membrane. Treatment with $24(S), 25$-epoxycholesterol led to no toxicity as shown by XTT assay (fig 3.2). After 24 or 48 hours of incubation with vehicle, $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol, $10 \mu \mathrm{M} 24(S)$-hydroxycholesterol no differences were observed. In the case of Cell Titer Blue again no toxicity was
observed (fig 3.3) after treatment with $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M}$ 24(S),25epoxycholesterol or $10 \mu \mathrm{M} 24(S)$-hydroxycholesterol for 24 or 48 hours.

Figure 3.2. 24(S),25-epoxycholesterol is not toxic in SN4741 cells as measured by XTT assay ($\mathrm{n}=1$). Measurements were conducted at the specific absorbance wavelength of reduced XTT (475 nm) and at 660 nm as a measure of non-specific absorbance. No differences were observed between control, $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M}$ $24(S), 25$-epoxycholesterol, $10 \mu \mathrm{M} 24(S)$-hydroxycholesterol after 24 or 48 hours.

Figure 3.3. 24(S),25-epoxycholesterol is not toxic in SN4741 cells as measured by Cell Titer Blue assay ($n=2$). Measurements were conducted at fluorescent excitation wavlength (544 nm) and emission wavelength (590 nm) of resorufin (the metabolite generated by the reduction of resoruzin). No differences were observed between control, $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $10 \mu \mathrm{M} 24(S)$ hydroxycholesterol after 24 or 48 hours.

3.2.3. LXR Expression in SN4741 cells.

The aim of this study was to investigate LXR dependent and independent changes in protein expression. Therefore, the expression of LXR α and LXR β was evaluated in SN4741 cells to ensure the appropriateness of the cell line as a model. The expression of both isoforms was evaluated by RT-qPCR to identify the presence of mRNA. In SN4741 cells both isoforms were present with LXR β the predominant isoform with levels ~ 10 higher than LXR α which correlates with previously published data for the central nervous system (Whitney et al. 2002; table 3.1.).

Table 3.1. Threshold cycle for $\mathrm{LXR} \alpha$ and LXR β after RT-qPCR. Threshold cycle is inversely proportional to the abundance of mRNA. Therefore, more LXR β mRNA is present than LXR α mRNA; LXR β has a higher expression level.

Gene	Threshold Cycle
LXR α	21.1 ± 0.9
LXR β	17.8 ± 1.1

In addition, after SN 4741 cells were treated with either $10 \mu \mathrm{M} 24(S), 25-$ epoxycholesterol or $1 \mu \mathrm{MGW} 3965$ the protein of the LXR responsive gene ABCA1 was increased (fig 3.4). The expression of ABCA1 is low in untreated cells. However, after 24 hours treatment with either $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 the protein level is increased markedly indicating activation of LXR. At the mRNA level RT-qPCR experiments showed that the LXR α regulated gene SREBP1c was up-regulated after treatment with both $24(\$), 25$-epoxycholesterol and GW3965 indicating the expression of LXR α and the expected response (fig 3.12). GW3965 had a greater effect on SREBP1c expression with a ~ 7-fold increase over control whereas 24 (S), 25-epoxycholesterol only induced a ~ 3-fold increase.

Figure 3.4. The protein level of ABCA1 is increased after 24 hours treatment with either $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 indicating that SN4741 cells express LXR α / β.

3.2.4. Strong Cation Exchange Fractionation of SILAC peptides

Treatment of SN4741 cells with $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 showed no toxic effects of these small molecules and SN4741 cells expressed LXR α / β. Thus, SN4741 cells were deemed suitable as a model for proteomic studies and grown in SILAC media for 5 passages. 5 passages is enough time to ensure full incorporation of the labelled amino acids to occur based on previous experience in our laboratory. SILAC SN4741 cells were treated with either vehicle, $1 \mu \mathrm{M}$ GW3965 or $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol for 24 hours in serum free SILAC media, before lysis and protein estimation. An equal amount of protein from each SILAC state was combined on a $1: 1$ basis and digested with trypsin to form a SILAC peptide mixture. This peptide mixture was then subjected to further analysis to elucidate proteomic changes.

Before the mass spectrometric analysis of the SILAC peptides 2-dimensional LCMS/MS was performed. The first dimension of separation was performed using strong cation exchange chromatography. Strong cation exchange separates molecules by charge; anionic molecules elute first. Thus, the technique can be used as a fractionation step to reduce sample complexity prior to the second dimension of separation that is reverse phase C18 LC-MS/MS. In order to validate the strong cation exchange chromatography that was to be used on the SILAC samples the system was tested. A blank injection of solvent showed no detection of peptides eluting from the column (fig 3.5A) and therefore indicated lack of contamination of the system. In addition, to validate the ability of the column to separate peptides trypsin digested bovine serum albumin (BSA) was used. $50 \mu \mathrm{~g}$ of peptide mixture was separated on the column and detected by UV (fig 3.5B).

A

B

Figure 3.5. Strong Cation Exchange chromatography validation. Example UV ($\lambda=214 \mathrm{~nm}$) chromatogram are shown highlighting expected instrument performance. A) A blank was run to ensure no carry over was present from previous experiments B) $50 \mu \mathrm{~g}$ of BSA trypsin digested peptides loaded onto the column were separated by SCX.

Before fractionating the SILAC samples by SCX an additional blank run was to ensure that the column was free from BSA digest contamination. These procedures ensure no carry over from previous experiments and sufficient column performance. Once column performance was evaluated SILAC peptides were injected onto the column. From the UV chromatogram (fig. 3.6) it can be seen that there is a large amount of material present (c.f. blank and $50 \mu \mathrm{~g}$ BSA chromatograms fig. 3.5) and that the material present has been separated. The majority of the peptides were eluted early in the run and therefore the time interval for fraction collection was shorter before increasing towards the end of the run where less material is present. The total number of peptides, compared to the number of unique peptides per fraction, can be seen in figure (fig. 3.6.). Therefore, the use of strong cation exchange chromatography was successful in reducing the complexity of the initial peptide mixture for subsequent LC-MS/MS steps. However, the number of peptides present in the fractions results in a complex mixture for reverse phase chromatography despite the fractionation.

Figure 3.6. Strong Cation Exchange chromatography trace of SILAC peptides. Example of strong cation exchange chromatography fractionation from one experiment presented. A) The UV $(\lambda=214 \mathrm{~nm})$ chromatogram highlights the large number of peptides present on the column. The time interval for fraction collection is indicated B) In this example a total 38458 peptides were identified. Of these 15526 were unique peptides. Strong cation exchange chromatography reduced the total number of peptides and number of unique peptides per fraction with $\leq 10 \%$ of the experiment total per fraction. Thus, each fraction is simplified compared to the initial mixture yet remains a complex peptide mixture in its own right.

3.2.5. C18 Reverse Phase LC-MS/MS of SILAC nentides

The peptide mixture fractions derived from strong cation exchange chromatography were desalted using Seppak C18 columns, dried under vacuum and resuspended in $\mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid to be analysed by LC-MS/MS. In order to test the performance of the reverse phase C18 column performance prior to running the SN4741 derived SILAC samples trypsin digested bovine serum albumin (BSA) was used. This allowed validation of both chromatography and mass spectrometry performance. The use of $5 \mu \mathrm{l}$ of a $20 \mathrm{fmol} / \mu \mathrm{l}$ BSA trypsin digest gave a good signal in the mass spectra with sharp chromatographical peaks that indicate that the column performance is acceptable (a typical chromatogram is shown in fig. 3.7). In order to ensure the complete removal of the BSA peptides prior to running the SILAC SN4741 samples a blank run was performed injecting 80% acetonitrile.

Figure 3.7. Reverse Phase LC-MS/MS validation. Example of column performance showing separation of peptides from a BSA trypsin digest. In order to ensure reverse phase column is clean a blank is run before initiating SILAC proteomic samples.

Figure 3.8. Reverse Phase LC-MS/MS SILAC peptide separation. An example chromatogram is shown that exemplifies the fact that peptides co-eluting from the strong cation exchange chromatography step can be separated by C18 reverse phase chromatography.

SILAC peptides were injected on to the HPLC system and separated over a 2 hour gradient. It can be seen from the example in figure 3.8 that a fraction obtained from strong cation exchange chromatography is still a very complex sample but the peptides present can be separated on the C18 column. Peptides eluting from the column are then analysed by mass spectrometry. Peaks with characteristic features of peptides were identified by the initial mass spectrometry scan and, if they conformed to the pre-selected criteria, were chosen for fragmentation (see Materials and Methods section 2.6.8.). The mass spectrometric scan of the fragments leads to the analysis of the backbone sequence and identification. However, the initial MS scan is critical to SILAC success as this scan is used for quantification. The SILAC envelope patterns have a triplet motif which are used for quantification. Indeed, the SILAC envelope patterns are indicative of labelled peptides (fig 3.9.). The use of differentially labelled arginine and lysine made it possible to distinguish between peptides terminating in different amino acids which contributes to the ease with which the bio-informatic software can identify peptides. It is possible to determine if a peptide contains arginine or lysine merely by examining the initial MS scan (fig 3.9) without any further information of sequence. For each technical replicate all raw spectrometric
data files were analysed simultaneously using MaxQuant software. This allowed the software to generate protein ratios derived from all the available spectra.

A

B

Figure 3.9. Example SILAC spectra for lysine and arginine containing peptides. The lysine containing spectra (A) is a triply charged peptide which, for the light peptide has a MW of 1953.057. It can be identified as containing lysine due to the mass shift between the SILAC states (medium $+1.33 \mathrm{~m} / \mathrm{z}$ i.e. +4 Da ; heavy $=+2.66 \mathrm{~m} / \mathrm{z}$ i.e . $+8 \mathrm{Da})$. This peptide was identified by $\mathrm{ms} / \mathrm{ms}$ fragmentation as having the sequence VAPDEHPILLTEAPLNPK from _-actin. The arginine containing spectra (B) is a doubly charged peptide which, for the light peptide, has a MW of 1601.889. It can be identified as containing lysine due to the mass shift between the SILAC states $($ medium $+3 \mathrm{~m} / \mathrm{z}$ i.e. +6 Da ; heavy $=+5 \mathrm{~m} / \mathrm{z}$ i.e. +10 Da). This peptide was identified by $\mathrm{ms} / \mathrm{ms}$ fragmentation as having the sequence AAAAGALAPGPLPDLAAR from UDP-N-acetylhexosamine pyrophosphorylase-like protein 1.

3.2.6. Peptide and Protein Identifications

A large number of peptides were identified in each biological replicate and on each instrument though in these SILAC experiments the Orbitrap Velos instrument performed better than the LTQ-Orbitrap with regard to total number of peptide identifications. The LTQ Orbitrap identified in total 22,395 (10,495 unique), 38,458 (10,495 unique) and 75,322 (18,755 unique) peptides and the Orbitrap Velos 39,160 (18,671 unique), 52,249 (23,292 unique) and 105,952 (34,650 unique) peptides from each biological replicate respectively. This corresponds to an increase in the number of unique peptides identified on the Orbitrap Velos compared to the LTQ-Orbitrap of $77.9 \%, 121.9 \%$ and 84.8% for each biological replicate. This increase in number of peptides identified corresponded to an increased number of proteins identified on the Orbitrap Velos instrument compared with the LTQ-Orbitrap (table 3.2). A large number of proteins were identified from the 3 biological replicates on both the LTQOrbitrap and the Orbitrap Velos instruments and, in each case, the majority of proteins were identified with ≥ 2 peptides (table 3.2). The Orbitrap Velos identified 1117, 971 and 1540 more proteins than the LTQ Orbitrap with ≥ 2 peptides in each of the 3 biological replicates respectively.

Table 3.2. Comparison of proteins identified between LTQ-Orbitrap and Orbitrap Velos instruments. The majority of proteins were identified with ≥ 2 peptides. A large proportion of proteins were identified with more peptides.

	Replicate	1		2		3	
	Instrument	LTQOrbitrap	Orbitrap Velos	$\begin{gathered} \text { LTQ- } \\ \text { Orbitrap } \end{gathered}$	Orbitrap Velos	$\begin{gathered} \text { LTQ- } \\ \text { Orbitrap } \end{gathered}$	Orbitrap Velos
Proteins identified with:-	≥ 1 peptide	2941	4211	3654	4672	3662	5219
	≥ 2 peptide	2039	3156	2739	3710	2879	4419
	≥ 3 peptide	1382	2334	2009	2844	2223	3622
	≥ 4 peptide	983	1763	1489	2223	1753	2985
	≥ 5 peptide	720	1392	1143	1755	1417	2501

There was a large overlap between the same lysates run on the two different instruments with the majority of leading proteins identified on both instruments. The number of proteins identified with ≥ 1 peptide from 3 biological replicates on both instruments was 2612 (59.0% of the 4425 proteins identified in total from both instruments), 3252 (64.7% of the 5025 proteins identified in total from both instruments) and 3098 (54.1% of the 5722 proteins identified in total from both instruments) respectively. The number of proteins identified with ≥ 2 peptides from the 3 biological replicates on both instruments was 1839 (54.8%), 2505 (63.5%) and 2473 (51.3\%) respectively (fig 3.10.).

Figure 3.10. There was a large overlap between runs of the same biological replicate on different instruments (A, B, C); 90% (A), 91% (B) and 86% (C) of leading proteins identified on the LCQ-Orbitrap with ≥ 2 peptides were also identified on the Orbitrap Velos with ≥ 2 peptides

There was a large overlap between the three different biological replicates. The number of leading proteins identified and quantified with ≥ 1 peptide in all 3 biological replicates was 2096 proteins (44.3% total proteins) on the LTQ-Orbitrap. The number of proteins identified with ≥ 1 peptides in at least 2 of the biological replicates was unsurprisingly higher still; of the 4729 leading proteins identified 69.5% (3285) were identified in at least 2 biological replicates. In comparison, on the Orbitrap Velos 48.6% (3090) of the 6358 leading proteins identified with ≥ 1 peptide were observed in all 3 biological replicates. The number of leading proteins identified in at least 2 of the biological replicates with ≥ 1 peptide was 70.6% (4489). Therefore, these data demonstrate that the majority of proteins were quantified on at least 2 occasions from different biological replicates increasing the ease of discriminating between reproducible changes and rogue data points from a single biological sample.

However, the confidence in proteomic data is increased if multiple peptides are used for identification and quantification as relying on only 1 peptide can lead to error in identification and quantification due to error introduced by experimental variability or the software used during post-run analysis of the raw mass spectral data. The samples run on the LTQ-Orbitrap had 42.9% (1546) of the 3607 leading proteins identified with ≥ 2 peptides observed in all 3 biological replicates. The number of proteins identified with ≥ 2 peptides in at least 2 of the biological replicates was 69.4% (2504) of the total leading proteins identified with ≥ 2 peptides. In comparison, on the Orbitrap Velos 45.8% (2404) of the 5246 leading proteins identified with ≥ 2 peptides were observed in all 3 biological replicates (fig 3.11). The number of leading proteins identified in at least 2 of the biological replicates with ≥ 2 peptides was 69.3% (3635). It is clear, therefore, that the use of the SILAC proteomic methodology identified and quantified a large number of proteins suitable for further analysis. In addition, due to the large overlap between identifications from the three biological replicates, and the confidence inferred from multiple peptide protein identification these data are suitable for the analysis of up and down-regulation of protein as reproducible changes to the proteome should be apparent.

Figure 3.11. Overlap of leading proteins identified and quantified with ≥ 2 peptides using MaxQuant. A large overlap existed between 3 separate biological replicates run on a LTQ-Orbitrap (A) or an Orbitrap Velos instrument (B). 43\% of proteins identified on the LTQ-Orbitrap and 46% of proteins identified on the Orbitrap Velos were present in all 3 replicates. 69% and 69% of proteins were identified in at least 2 replicates on the LTQ-Orbitrap and Orbitrap Velos instruments respectively.

3.2.7. Expression of Neurotrophins and Neuronal Markers in SN4741 Cells

The aim of the work is to elucidate the effect of $24(S), 25$-epoxycholesterol in neuronal development. A group of proteins with an established role in neuronal development are the neurotrophins (Hempstead 2006). Thus, the dataset was mined for the presence of the neurotrophins brain derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (Cntf), neurotrophin 3 ($\mathrm{Ntf3}$), neurotrophin 4 ($\mathrm{Ntf4}$) and nerve growth factor (NGF). None of these neurotrophins were detected in the data set (table 3.3).

In addition, neuronal markers from different stages of neuronal development were present (table 3.3). Nestrin and SOX2 that are markers of neuronal progenitor cells were identified. Nestrin was down-regulated in some but not all of the biological replicates after treatment with $24(S), 25$-epoxycholesterol. Doublecortin a marker of early neuronal development was identified but another marker neurogenic differentiation 1 was not. The mature neuronal markers beta III tubulin (Tubb3) and microtubule-associated protein 2 (MAP2) were identified in all 3 biological replicates. Thus, a number of markers from different stages of neuronal development were identified although $24(S)$,25-epoxycholesterol had no reproducible effect on their expression.

No dopaminergic neuron markers were identified (table 3.3). However, it is important to note that a given protein may be expressed but not be present in the dataset due to the technicalities of proteomics. Low abundance proteins may not be identified. In addition, protein identification is reliant on the peptides generated by the action of trypsin. In this regard very short peptides do not furnish enough sequence information to allow confident identification from which protein they are derived. In addition, if a peptide is poorly ionised (e.g. due to a number of acidic amino acids) then it is unlikely to be detected.

Table 3.3. Neurotrophins and neuronal markers expressed in SN4741 cells identified in SILAC experiments. Normalised SILAC ratios shown are $24(S), 25-$ epoxycholesterol:control. Neurotrophins (brain derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (Cntf), neurotrophin 3 (Ntf 3), neurotrophin 4 ($\mathrm{Ntf4}$), nerve growth factor (NGF)) were not detected in any experiment. Markers of neuronal progenitor cells (Nestin (Nes), transcription factor SOX-2 (SOX2)) were detected. Early neuronal markers (doublecortin (DCX), neurogenic differentiation 1 (Neurod1). Mature neuronal markers (beta III tubulin (Tubb3), microtubule-associated protein 2 (MAP2)) were identified in all experiments, whereas (RNA binding protein fox- 1 homolog 3 (Rbfox3; NeuN)) was not. Dopaminergic markers (GTP cyclohydrolase 1 (Gch1), aromatic L-amino acid decarboxylase (Ddc), tyrosine hydroxylase (Th) were not detected.

Biological Replicate	1		2		3	
Technical Replicate	1	2	1	2	1	2
Protein						
Bdnf	$/$	$/$	$/$	$/$	$/$	$/$
Gndf	$/$	$/$	$/$	$/$	$/$	$/$
Cnff	$/$	$/$	$/$	$/$	$/$	$/$
Ntf3	$/$	$/$	$/$	$/$	$/$	$/$
Ntf4	$/$	$/$	$/$	$/$	$/$	$/$
Ngf	$/$	$/$	$/$	$/$	$/$	$/$
Nes	0.535	0.665	0.786	0.771	0.868	0.916
Sox2	$/$	$/$	1.048	1.302	1.139	0.943
Dcx	$/$	$/$	0.927	0.865	$/$	1.151
Neurod1	$/$	$/$	$/$	$/$	$/$	$/$
Tubb3	1.117	1.226	0.957	1.015	0.888	0.798
Map2	1.086	0.990	0.951	0.783	0.831	$/$
Rbfox3	$/$	$/$	$/$	$/$	$/$	$/$
Gch1	$/$	$/$	$/$	$/$	$/$	$/$
Ddc	$/$	$/$	$/$	$/$	$/$	$/$
Th	$/$	$/$	$/$	$/$	$/$	$/$

3.2.8. Analysis of proteomic data

In each dataset the ratio of identified proteins had a normal distribution. The protein identification and quantification data generated from Maxquant was analysed to class proteins as 'no change', 'up-regulated' or 'down-regulated' using a previously published method (Graumann et al. 2008). The median was calculated and an increase or decrease the equivalent to 2 standards deviations (the arithmetic mean and standard deviation are not used in this method to prevent outliers having a pronounced effect) away from the median was classed as changed. Therefore, due to the use of the variation of the data in its calculation, the ratio between the heavy, medium and light SILAC states that serve as the boundary between 'no change' and 'up' or 'downregulation' varied between datasets (table 3.4). This method identified a small portion of the total number of proteins as up- and down- regulated after treatment with 24(S),25-epoxycholesterol or GW3965 (table 3.4). The leading proteins identified as changed were then searched to determine reproducible trends in protein expression changes across the 6 datasets.

Table 3.4. Number of proteins identified as 'no change', 'up-regulated or 'down regulated' from each biological replicate on LTQ-Orbitrap or Orbitrap Velos instruments after treatment with 24(S),25-epoxycholesterol. The ratio cut-offs for what was classed as a change in protein expression (i.e. up or down regulation) are shown. Proteins were identified with ≥ 2 peptides.

Biological Replicate	1		2		3	
Instrument	LTQ- Orbitrap	Orbitrap Velos	LTQ- Orbitrap	Orbitrap Velos	LTQ- Orbitrap	Orbitrap Velos
Ratio Cut-off (up/down)	$1.23 / 0.73$	$1.23 / 0.71$	$1.35 / 0.76$	$1.34 / 0.76$	$1.18 / 0.74$	$1.19 / 0.73$
Up-regulated	78	158	116	195	227	233
No change	1855	2848	2534	3344	2471	3951
Down-regulated	106	150	89	171	181	235

In order to ensure no changes of interest were missed the proteomic datasets were also examined in detail by analysing every protein identified as up or down regulated to attempt to identify proteins of interest. In total, from all the biological and technical replicates, 1072 different proteins were identified as up-regulated in total and 864 proteins were identified as down-regulated (Appendix 1 and 2). No proteins were excluded from this analysis and therefore a large number of proteins were identified with only 1 peptide. For these proteins identified with 1 peptide there is the possibility of experimental error having a larger effect on the quantification. In addition, a number of proteins were only identified in only one biological replicate. For these proteins there is no contradictory data but conversely no validatory data. Therefore, it is important to recognise the limitations of these data however they could yield valuable information.

The proteins identified as up and down regulated (Appendix 1 and 2) were examined to determine which proteins had no contradictory data. In total, 229 proteins were classed as up-regulated and had no contradictory data (table 3.5) whereas 285 proteins were classed as down-regulated (table 3.6).
Table 3.5. Proteins identified as down-regulated. (Pep - Number of unique peptides, EC- SILAC ratio after treatment with $10 \mu \mathrm{M}$ 24(S),25-

Biological Replicate												2								
Technical Replicate				1			2			1			2			1			2	
Protein Names	Gene Names	Protein ID	Pep	EC	GW															
V-type proton ATPase subunit d 1	Atp6v0dl	IPI00313841	1	0.66	0.54	3	0.83	0.84	1			2	0.79	0.82	1			4	0.72	0.69
Intraflagellar transport protein 52 homolog	Ift52	IP100459776	1	0.66	0.90	1			1			1			1			1		
Low-density lipoprotein receptor	Ldir	IP100312063	1	0.64	0.97	4	0.37	0.87	1			3	0.36	0.76	5	0.27	0.78	12	0.26	0.82
$\mathrm{H}-2$ class I histocompatibility antigen, D-P alpha chain	H2-D1	IP100126301	2	0.64	0.80	1			1			1			1			1		
Desmin	Des	IPI00130102	4	0.63	0.88	1			3	0.54	0.80	1			1			1		
AP-3 complex subunit delta-1	Ap3d1	IPI00117811	1	0.62	16.39	1			2	0.81	1.01	5	0.73	1.01	1	0.70	0.72	10	0.77	0.74
Acetyl-CoA acetyltransferase, cytosolic	Acat2	IP100228253	5	0.62	1.35	6	0.62	1.05	7	0.53	0.97	8	0.55	0.97	9	0.63	1.03	12	0.64	1.10
Friend virus susceptibility protein 1	Fv1	IPI00137355	1	0.61	2.43	1	0.78	1.13	1	0.62	1.06	1	0.62	0.94	1			2	0.67	1.02
Retinol dehydrogenase 11	Rdh11	IPI00136098	1	0.61	1.09	2	0.64	0.95	1	0.79	1.04	2	0.74	0.88	1			4	0.60	1.07
Putative uncharacterized protein	Zbtb45	IP100284393	1	0.61	0.72	1			1			1			1			1		
Mdm2-binding protein	Mtbp	IP100330521	1	0.58	0.87	1			1			1			1			1		
Farnesyl pyrophosphate synthetase	Fdps	IPI00120457	5	0.51	1.08	8	0.55	1.07	7	0.53	1.02	9	0.52	1.03	12	0.51	1.07	14	0.54	1.06
Phosphomevalonate kinase	Pmvk	IPI00133709	1	0.50	1.22	1	0.48	0.94	1	0.54	1.20	1			1			1	0.76	1.22
WD repeat and SOF domain-containing protein 1	Wdsof1	IP100129701	1	0.49	0.95	1			1			1			1			3	0.84	0.93
Kinetochore protein Spc24	Spc24	IP100132177	1	0.48	0.78	1	0.67	1.03	1			1			1			2	0.82	0.99
Putative uncharacterized protein	Hsd17b7	IPI00474810	2	0.47	1.00	1			2	0.65	1.20	2	0.59	1.11	3	0.58	1.09	5	0.55	1.24
Sterol-4-alpha-carboxylate 3dehydrogenase, decarboxylating	Nsdhl	IP100128692	6	0.46	0.99	7	0.53	1.09	6	0.50	1.02	8	0.49	1.01	13	0.57	1.16	18	0.59	1.20
Protein C9orf140 homolog		IPI00462403	1	0.46		1			1			1			1			1		
Acyl-CoA synthetase short-chain family	Myh7b	IPI00752027	2	0.45	1.08	2	0.53	1.05	4	0.42	1.17	4	0.46	1.16	3	0.54	1.37	4	0.54	1.33

member 2

containing protein 2A														
Transcription factor 4	Tcef	IPT00400418	1	$\underline{2}$	9:69	9.87	1	1			1	1		
MKIAA0429 protein	Mtss 1	IP100876025	1	1	0.60	1.19	1	1			1	1		
Transmembrane protein 97	Tmem97	IPI00122430	1	1	0.59	0.76	1	1			1	1		
Sodium/potassium-transporting ATPase subunit beta-1	Atplbl	IPI00121550	1	1	0.57	0.90	1	1			1	2	0.62	0.80
Ras-related protein Rap-2a	Rap2a	IPI00396701	1	1	0.56	1.06	1	1			1	4	0.61	1.06
Inositol 1,4,5-trisphosphate 3-kinase B	Itpkb	IP100263265	1	1	0.55	0.87	1	3	0.72	1.04	1	1		
3-keto-steroid reductase	Hsd17b7	IP100316067	1	3	0.54	0.96	1	1			1	1		
MutS protein homolog 4	Msh4	IPI00118045	1	1	0.49	1.25	1	1			1	1		
Low density lipoprotein receptor adapter protein 1	Ldirap1	IPI00454119	1	1	0.47	0.56	1	1			1	1		
Ubiquitin-conjugating enzyme E2 J1	Ube2j1	IPI00648249	1	1	0.47	0.92	1	1			1	1	0.75	0.82
Protein FAM64A	Fam64a	IPI00221521	1	1	0.45	1.10	1	1			1	1	0.50	0.89
Fibroblast growth factor 4	Fgf4	IPI00114434	1	1	0.44	0.13	1	1			1	1		
Acyl-CoA desaturase 2	Scd2	IPI00117142	1	2	0.41	1.42	1	1			1	1		
Serine/threonine-protein kinase Nek10	Nek 10	IPI00844655	1	2	0.39	0.35	1	1			1	1		
Acyl-CoA-binding domain-containing protein 5	Acbd5	IP100754110	1	1	0.33	1.11	1	1			1	1	0.64	0.90
Matrix-remodeling-associated protein 8	Mxra8	IPI00310519	1	1	0.30	1.28	1	2	0.73	1.84	1	2	0.70	0.95
Protein phosphatase PTC7 homolog	Pptc7	IPI00421081	1	1	0.29	0.43	1	1			1	1		
BMP-2-inducible protein kinase	Bmp2k	IPI00313513	1	1	0.28	0.69	1	1			1	1		
Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6	Arggef6	IPI00170221	1	2	0.26	1.16	1	1			1	1		
Leucine-zipper-like transcriptional regulator 1	Lztrl	IPI00272721	1	1	0.24	0.90	1	1			1	1		
Small proline-rich protein 3	Sprr3	IPI00114255	1	1	0.17	2.27	1	1			1	1		
Zinc finger protein RFP	Trim27	IPI00122244	1	1	0.12	1.08	1	1			1	1		
Putative uncharacterized protein	Srcap	IPI00620743	1	1	0.12	1.02	1	1			1	1		
Carbonic anhydrase 2	Ca 2	IPI00121534	1	1	0.10	0.06	1	1			1	1		

FUN14 domain-containing protein 1	Fundc1	IPI00119124	1			1			1	0.73	0.73	1	0.66	0.82	1	0.73	0.81	2	0.81	0.85
ZAN	Zan	IPI00944148	1			1			1	0.73	0.93	1			1			1		
Pre-B-cell leukemia transcription factorinteracting protein 1	Pbxipl	IPI00153644	1	0.76	0.65	1			1	0.72	1.03	2	0.71	0.76	1			2	0.66	0.79
Cadherin 13, isoform CRA_a	Cdh13	IPI00775975	1	0.73	1.00	3	0.74	0.92	1	0.72	0.94	2	0.61	0.76	1			5	0.81	0.95
Mitochondrial carrier triple repeat 6	Mcart6	IP100831068	1			1			1	0.70	0.10	1			1			1		
Sept5 protein	Sep-05	IPI00923056	1			1			1	0.70	1.31	3	0.73	1.19	4	0.81	1.10	1		
Talin-2	$\mathrm{T} \ln 2$	IPI00421218	1			1			9	0.66	0.78	1			1			1		
UPF0577 protein KIAA1324	Kiaal324	IP100342908	1			1			1	0.65	0.84	1	0.61	0.81	1			1		
Protein AF-9	Mllt 3	IPI00473183	1			1			1	0.65	1.10	1			1			1		
ELMO domain-containing protein 1	Elmodi	IP100228907	1			1			1	0.64	0.86	1			1			1		
Cytochrome c oxidase subunit 6B1	Cox6bl	IPI00225390	1			1			1	0.59	0.72	1	0.62	0.75	2	0.48	0.65	1		
Mtch2 protein	Mtch2	IPI00807902	1			1			1	0.58	0.71	1	0.68	0.80	1	0.51	0.47	1		
Calcineurin binding protein 1	Cabin1	IP100380107	1			1			1	0.56	0.85	1	0.65	0.79	1	0.64	0.91	1	0.59	0.84
Cornifin-A	Sprria	IPI00123458	3	0.80	0.98	6	0.73	0.96	8	0.55	0.91	7	0.59	0.91	8	0.70	0.87	10	0.72	0.93
Mevalonate kinase	Mvk	IPI00756996	3	0.74	1.02	5	0.69	0.98	4	0.53	0.90	6	0.55	0.89	4	0.60	1.02	10	0.58	0.99
B-cell receptor-associated protein 29	Bcap29	IPI00119980	1			1			1	0.50	0.82	1			1			1		
Retinoblastoma-like protein 1	Rbll	IPI00137864	1			1			1	0.29	0.18	1			1			2	0.80	1.00
Synemin	Synm	IPI00469184	1			1			1	0.27	0.73	1	0.39	0.70	1	0.67	0.75	1	0.70	0.81
Tripartite motif-containing protein 75	Trim75	IPI00339960	1			1			1	0.26	0.22	1			1			1		
Brain-specific ankyrin-G	Ank3	IPI00623506	1			1			2	0.20	2.57	1			1			1		
Protein FAM63B	Fam63b	IPI00420796	1	0.82	1.01	1	0.69	0.75	1	0.19	0.45	1	0.79	0.64	2	0.68	0.90	3	0.60	0.97
		IP100666788	1			1			1	0.09	0.16	1	0.02	0.00	1			1		
Putative uncharacterized protein	$\begin{gathered} \text { 5830433M19Ri } \\ \mathrm{k} \\ \hline \end{gathered}$	IPI00954606	1			1			1	0.08	0.92	1			1			1		
Uncharacterized protein C20orf152 homolog	4921517L17Rik	IPI00828904	1			1			1	0.01	4.09	1			,			1		
Putative uncharacterized protein	Traf7	IPI00474945	1			1			1	0.01	0.01	1	0.02	0.01	1			1		
Myosin-IXa	Myo9a	IPI00928546	1			1			1			2	0.73	1.13	1			1		
Bardet-Biedl syndrome 7	Bbs7	IPI00648065	1			1			1			1	0.73	0.96	1			1		

DNA polymerase delta catalytic subunit	Pold 1	IPI00323143	1	1			1	3	0.73	0.79	1			1		
DEP domain-containing protein 5	Depdc5	IPI00881403	1	1			1	1	0.72	0.92	1			1		
39S ribosomal protein L38, mitochondrial	Mrpl38	IPI00462925	1	1			1	1	0.72	0.76	1			1		
Sodium- and chloride-dependent glycine transporter 1	Glyt1	IPI00468633	1	1			1	1	0.71	0.85	1			1	0.46	0.87
Frizzled-1	Fzdl	IPI00118170	1	1			1	2	0.71	0.77	1			1	0.74	0.83
CCR4-associated factor 1	Caf1	IPI00121265	1	1			1	1	0.70	11.82	1			/		
PtdIns-4,5-P2 4-Ptase I	Tmem55b	IPI00356633	1	1			1	1	0.69	1.32	1	0.47	0.73	1	0.51	0.79
Protein tyrosine phosphatase, receptor type, D	Ptprd	IPI00608063	1	1			1	1	0.69	0.78	1			1		
Branched-chain acyl-CoA oxidase	Acox 3	IPI00318108	1	1			1	11	0.68	0.90	1			1		
T-complex protein 11-like protein 1	Tcpl 111	IPI00225028	1	1			1	1	0.68	0.79	1			1		
SH3 domain-binding protein 2	3bp2	IPI00881074	1	1			1	2	0.68	1.20	1			1		
PDZ domain-containing protein GIPC3	Gipc3	IPI00154021	1	1			1	2	0.68	0.91	/			1		
Lysophospholipase-like protein 1	Lyplalı	IPI00153133	1	1			1	2	0.67	0.92	1			1		
Putative uncharacterized protein	Samhd1	IPI00653746	1	1			1	2	0.67	0.74	1			1		
Cytochrome c oxidase subunit 7A2, mitochondrial	Cox7a2	IPI00114377	1	1			1	1	0.66	0.68	1			1	0.44	0.46
Butyrate-induced protein 1	Ptplad1	IPI00322145	1	1			1	1	0.65	0.73	1	0.70	0.53	1	0.73	0.65
$\mathrm{H}-2$ class I histocompatibility antigen, D-37 alpha chain	H2-T23	IPI00322542	1	1			1	2	0.65	3.65	1			1		
Fibulin-2	Fbln2	IPI00132067	1	1			1	1	0.64	0.92	1			1		
Putative uncharacterized protein	Crmpl	IPI00312527	1	1			1	3	0.64	0.86	1			4	0.72	0.72
MCG141096, isoform CRA_a	1700081L11Rik	IPI00649809	1	1	0.74	0.95	1	1	0.63	0.74	1			1		
Protein YIPF6	Yipf6	IPI00225621	1	1			/	1	0.62	0.96	1			1		
mTERF domain-containing protein 3, mitochondrial	Mterfd3	IPI00222753	1	1			1	2	0.62	1.04	1			1		
Cat eye syndrome critical region protein 5 homolog	Cecr5	IPI00314106	1	1			1	1	0.59	1.12	1			1		

CTP:phosphoethanolamine cytidylyltransferase	Pcyt2	IPI00311395	3	0.74	1.11	2	0.70	0.98	1	3	0.59	1.04	1	0.59	1.21	5	0.75	1.05
Putative uncharacterized protein	Cp	IPI00874570	1			1			1	3	0.58	0.78	1			1		
Angiomotin-like protein 1	Amotll	IPI00669483	1			1			1	1	0.58	5.77	1			1		
Putative uncharacterized protein	Slc25al	IPI00276926	1			1			1	1	0.58	0.65	1			1	0.40	0.54
Dynein, axonemal, heavy chain 9	Dnahc9	IPI00473970	1			1			1	1	0.57	0.37	1			1		
7-dehydrocholesterol reductase	Dhcr7	IPI00130988	1			1			1	1	0.56	0.92	1			1		
Rho GTPase-activating protein 6	Arhgap6	IPI00831349	1			1			1	2	0.56	0.12	1			1		
Mitochondrial fission regulator 1	Kiaa0009	IPI00162850	1			1			1	1	0.52	0.64	1			1		
Myosin-Id	Myold	IP100408207	1			1			1	1	0.52	1.03	1			1	0.57	0.84
Anthrax toxin receptor 1	Antxr1	IPI00318636	1			1			1	1	0.52	0.70	1			1		
Mtm1 protein	Mtm1	IPI00944189	1			1			1	1	0.51	1.00	1			1		
2-hydroxyacyl-CoA lyase 1	Hacl1	IPI00316314	1			1			1	3	0.49	0.86	1	0.70	0.84	3	0.73	1.04
Delta(6) fatty acid desaturase	Fads2	IPI00129362	1			1			1	1	0.48	0.96	1			4	0.63	0.95
Glyoxylate reductase 1 homolog	Glyr1	IPI00817029	1			1			1	1	0.48	0.83	1			1		
Uncharacterized protein KIAA0819	Kiaa0819	IPI00858146	1			1			1	2	0.47	1.28	1			1		
67-11-3 protein	Lpts	IPI00153088	1			1			1	2	0.45	0.42	1			2	0.80	1.10
StAR-related lipid transfer protein 4	Stard4	IPI00320022	1			1			1	1	0.39	1.06	1			2	0.34	1.07
C-4 methylsterol oxidase	Sc4mol	IPI00133526	1			1			1	1	0.31	1.22	1			1		
Complex III subunit 8	Uqcrq	IPI00224210	1			1			1	1	0.22	0.95	1	0.45	0.85	1		
Protease, serine, 3	Prss 3	IPI00130391	1			1			1	1	0.22	26.52	1			1		
High affinity cAMP-specific $3^{\prime}, 5^{\prime}$-cyclic phosphodiesterase 7A	Pde7a	IPI00230552	1			1			1	1	0.21	0.07	1			1		
Probable G-protein coupled receptor 158	Gpr158	IPI00465871	1			1			1	1	0.20	0.22	1			1		
Arylsulfatase A	Arsa	IPI00118039	1			1			1	1	0.16	0.70	1			1		
Putative uncharacterized protein	Fdft 1	IP100338068	1			1			1	1	0.16	1.54	1			2	0.19	1.64
Zinc finger protein 182	Zfp182	IPI00775902	1			1			1	1	0.12	6.37	1			1		
Novel KRAB box and zinc finger, C 2 H 2 type domain containing protein	TTMUUSG000 00016626	IPI00850019	1			1			1	2	0.08	0.01	1			1		

Regulator of sex-limitation 2	AI929863	IPI00329967	1	1			1	1	0.06	3.98	1			1		
GABA-A receptor-associated membrane protein 1	Godz	IPI00172092	1	1			1	1	0.03	0.01	1			1		
Interleukin-4-induced protein 1	Fig1	IPI00759856	1	1			1	1	0.03	0.02	1			1		
Putative uncharacterized protein	Tspan 15	IPI00775936	1	1			1	1	0.02	3.62	1			1		
Bcl-2 homologous antagonist/killer	Bak1	IPI00309183	1	1			1	1			1	0.69	0.80	1	0.69	0.80
Cytochrome c oxidase subunit 2	Mtco2	IPI00131176	1	1			1	1	0.78	0.74	1	0.68	0.48	2	0.62	0.52
Zfp597 protein	Zfp597	IPI00129554	1	1			1	1			1	0.67	0.73	1		
Probable cation-transporting ATPase 13A3	Atpl3a3	IPI00850873	1	1			1	1			1	0.67	0.64	1		
H-2 class I histocompatibility antigen, K-W28 alpha chain	H2-K1	IPI00126458	1	1			1	1			2	0.64	1.03	1		
Ectonucleotide pyrophosphatase/phosphodiesterase family member 5	Enpp5	IP100111163	1	1			1	1			1	0.64	0.82	1		
Tetratricopeptide repeat protein 35	Ttc35	IPI00133612	1	1			1	1			1	0.62	0.81	2	0.65	0.75
Carbonyl reductase family member 4	Cbr4	IP100127227	1	1			1	1			1	0.56	0.55	1		
Mitochondrial inner membrane protein	Immt	IPI00381412	1	1			1	1			3	0.56	0.66	1		
Glucose-6-phosphate 1-dehydrogenase 2	G6pd2	IPI00228867	1	1			1	1			4	0.55	0.92	1		
Phosphatidylinositol-4-phosphate 3kinase C2 domain-containing subunit gamma	Pik3c2g	IP100115695	1	1			1	,			1	0.54	0.89	1		
Band 4.1-like protein 5	Epb4115	IPI00469962	1	3	0.79	0.84	1	1			2	0.53	0.84	4	0.66	0.92
Ankycorbin	Rai14	IPI00453820	1	1			1	1			1	0.52	0.76	4	0.60	0.73
TBC1 domain family member 8	Tbeld8	IPI00130023	1	1			1	1			2	0.35	185.8	1		
Transcription factor RFX3	Rfx 3	IP100121582	1	1			1	1			1	0.34	43.26	1		
Soluble calcium-activated nucleotidase 1	Cant1	IPI00113039	1	1			1	1			1	0.30	1.07	1		
Putative uncharacterized protein	Card6	IPI00351041	1	1			1	1			1	0.22	0.28	1		
		IPI00947579	1	1			1	1			2	0.18	0.98	1		

Putative uncharacterized protein	Fam184a	IPI00665988	1			1	1	1	1	0.09	0.01	1		
Melanocortin receptor 4	Mc4r	IPI00111301	1			1	,	1	1	0.09	0.04	1		
Ras-related protein Rab-39A	Rab39	IPI00221836	1			1	1	1	2	0.02	0.00	1		
MCG7443, isoform CRA_a	Gal3st4	IPI00626253	1			1	1	1	1	0.01	0.00	1		
Kinocilin	Kncn	IPI00656192	1			1	1	1	1	0.01	0.09	1		
Cyclin-D1-binding protein 1	Cendbpl	IPI00653166	1			1	1	1	1			1	0.70	0.91
Nucleolar protein 14	Nop14	IPI00353010	1			1	1	1	1			2	0.70	0.89
Disrupted in renal carcinoma protein 2 homolog	Dirc2	IPI00221417	1			1	1	1	1			1	0.70	0.98
P2X purinoceptor	P2rx4	IPI00471089	1			1	1	1	1			3	0.70	0.52
Protein zyg-11 homolog A	Zyglla	IP100848714	1			1	1	1	1			2	0.70	2.88
AFG3-like protein 1	Afg311	IPI00468514	1			1	1	1	1			2	0.70	0.90
UPF0672 protein C3orf58 homolog	$\begin{gathered} 190002 \mathrm{~N} 15 \mathrm{Ri} \\ \mathrm{k} \end{gathered}$	IPI00875583	1			1	1	1	/			2	0.69	0.97
Anoctamin-10	Anol0	IPI00848909	1			1	1	1	1			1	0.69	0.57
Armadillo repeat-containing protein 8	Arme8	IPI00844808	1			1	1	1	1			4	0.69	1.22
Electrogenic sodium bicarbonate cotransporter 1	Slc4a4	IPI00314749	1			1	1	1	1			2	0.68	0.42
Bullous pemphigoid antigen 1, isoforms 6/7	Dst	IPI00623531	1			1	1	1	1			5	0.68	0.96
Vomeronasal 1 receptor, H 4	V1rh4	IP100153507	1			1	1	1	1			1	0.68	6.68
Endogenous murine leukemia virus	EG622147	IPI00854954	1			1	1	1	1			2	0.68	1.08
		IP100807763	1			1	1	1	1			2	0.67	3.58
Solute carrier family 23 member 2	Slc23a2	IPI00165688	1			1	1	1	1			3	0.67	0.90
Stromal antigen 1	Stag1	IPI00466867	1			1	1	1	1			8	0.67	0.86
BAT2 domain-containing protein 1	Bat2d1	IPI00659535	1			1	1	1	1			29	0.67	1.19
Nucleolar protein 11	Nol11	IPI00153791	1	0.82	0.84	1	1	1	1			2	0.67	0.81
Gpsn2 protein	Gpsn2	IPI00875068	1			1	1	1	1			2	0.67	0.85
Geminin	Gmnn	IPI00131716	1			1	1	1	1			1	0.66	0.68
Conserved oligomeric Golgi complex	Cogl	IPI00129529	1			1	1	1	1			2	0.66	0.82

subunit 1

subunit 1												
Probable cation-transporting ATPase												
13A1	Atpl3a1	IPI00109891	1	1			1	1	1	2	0.66	0.98
Putative uncharacterized protein	Brwdl	IPI00654074	1	1			1	1	1	1	0.66	0.81
Sphingolipid delta(4)-desaturase DES1	Degs 1	IPI00113731	1	1			1	1	1	2	0.65	0.61
Ferric-chelate reductase 1	FRRS1	IPI00322418	1	1			1	1	1	1	0.65	0.42
Putative sodium-coupled neutral amino acid transporter 10	Slc38a10	IPI00228647	1	1			1	1	1	1	0.65	0.42
Coiled-coil domain-containing protein 109A	Ccdc109a	IPI00655156	1	1			1	1	1	3	0.65	0.80
Melanoma antigen, family E, 1	Mageel	IPI00453948	1	1			1	1	1	1	0.65	0.88
Protein cornichon homolog 4	Cnih4	IPI00109447	1	1			1	1	1	1	0.64	0.73
Signal peptidase complex catalytic subunit SEC11A	Sec1la	IPI00894649	1	1			1	1	1	1	0.64	0.78
Adrenodoxin-like protein, mitochondrial	Fdx11	IPI00132087	1	1			1	1	1	1	0.64	0.86
Patched domain-containing protein 2	Ptchd2	IPI00464195	1	1			1	1	1	1	0.64	0.85
UPF0539 protein C7orf59 homolog		IPI00229218	1	1			1	1	1	1	0.63	0.69
Calcium-binding protein p22	Chp	IPI00665857	1	1			1	1	1	2	0.63	0.76
Rab11 family-interacting protein 5	Rab11fip5	IPI00230238	1	1			1	1	1	6	0.63	1.31
F-box/LRR-repeat protein 8	Fbx18	IPI00319775	1	1	0.77	0.82	1	1	1	1	0.62	1.19
WD repeat-containing protein 43	Wdr43	IPI00849919	1	1			1	1	1	4	0.62	0.79
Sterol regulatory element-binding protein cleavage-activating protein	Scap	IPI00856221	1	1			1	1	1	2	0.62	0.70
Transmembrane and coiled-coil domaincontaining protein C6orf129 homolog		IPI00869365	1	1			1	1	1	1	0.62	1.87
		IPI00886331	1	1			1	1	1	2	0.62	0.54
Plasma membrane calcium-transporting ATPase 2	Atp2b2	IPI00831180	1	1			1	1	1	4	0.62	0.77
Putative uncharacterized protein	Gmebl	IPI00123517	1	1			1	1	1	1	0.62	1.03
Translocon-associated protein subunit	Ssr4	IPI00122346	1	2	0.77	1.01	1	1	1	4	0.61	0.80

delta

delta												
TLD domain-containing protein												
KIAA1609	Kiaal609	IP100157480	1	1	1	1	0.78	0.95	1	2	0.60	1.11
Syntaxin-2	Stx2	IPI00117112	1	1	1	1			1	2	0.60	0.79
Exoc6b protein	Exoc6b	IPI00224528	1	1	1	1			/	2	0.59	0.77
MOSC domain-containing protein 2, mitochondrial	Mosc2	IPI00123276	1	1	1	1			1	4	0.59	0.58
Leucine-rich repeat-containing protein 58	Lrrc58	IPI00751601	1	1	1	1			1	1	0.59	1.13
Proviral envelope protein	D17H6S56E-5	IPI00283900	1	1	1	1			1	2	0.58	0.71
Receptor tyrosine-protein kinase erbB-2	Erbb2	IPI00626433	1	1	1	1			1	1	0.58	0.70
Enhancer of polycomb homolog 2	Epc2	IPI00223821	1	1	1	1			1	1	0.57	0.50
Sucrase-isomaltase	$\underset{\text { 2010204N08Ri }}{\text { k }}$	IPI00756791	1	1	1	1			1	2	0.56	1.89
Protein XRP2	Rp2	IPI00222852	1	1	1	1			1	1	0.56	0.67
Protein KRI1 homolog	Kril	IPI00311761	1	1	1	1			1	1	0.55	0.66
Putative uncharacterized protein	Spcs 3	IPI00420727	1	1	1	1			1	1	0.54	1.09
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11	Ndufal1	IPI00318645	1	1	1	1			1	1	0.52	1.13
Osteopetrosis-associated transmembrane protein 1	Ostm1	IPI00221706	1	1	1	1			1	2	0.52	0.80
Leucine-rich repeat serine/threonineprotein kinase 1	Lrrk1	IPI00756788	1	1	1	1			1	1	0.51	6.10
Interferon-activable protein 202	Ifi202	IPI00126725	1	1	1	1			1	2	0.51	0.25
Bcl10-interacting CARD protein	1110007C09Rik	IPI00315974	1	1	1	1			1	1	0.50	0.96
Equilibrative nucleoside transporter 3	Slc29a3	IPI00321909	1	1	1	1			1	1	0.50	0.78
N(6)-adenine-specific DNA methyltransferase 2	N6amt2	IPI00132944	1	1	1	1			1	1	0.50	0.78
Translocon-associated protein subunit gamma	Ssr3	IPI00120826	1	1	1	1			1	1	0.49	0.76

Collagen alpha-1(II) chain	Col2al	IPI00828653	1	1	1	1			1	2	0.47	1.12
Envelope polyprotein	EG667538	IPI00845826	1	1	1	1			1	6	0.47	0.68
Mitochondrial carrier homolog 2	Mtch2	IPI00132039	1	1	1	1			1	4	0.46	0.44
Glycerol kinase	Gk	IPI00404687	1	1	1	1			1	1	0.46	1.71
Mitochondrial 2-oxoglutarate/malate carrier protein	Slc25all	IPI00230754	1	1	1	1			1	2	0.45	0.61
Fibronectin type-III domain-containing protein C4orf31 homolog		IPI00330474	1	1	1	1			1	1	0.45	0.56
ORM1-like protein 2	Ormd12	IPI00133384	1	1	1	1	0.82	1.07	1	1	0.45	1.31
snRNA-activating protein complex subunit I	Snapc1	IPI00169634	1	1	1	1			1	1	0.45	0.97
Probable helicase with zinc finger domain	Helz	IPI00453654	/	1	1	1			1	1	0.45	0.30
Bromodomain-containing protein 8	Brd8	IPI00153722	1	1	1	1			1	2	0.45	1.12
		IPI00380986	1	1	1	1			1	2	0.43	0.12
Integrin beta-7	Itgb7	IPI00110508	1	1	1	1			1	1	0.42	0.79
THAP domain-containing protein 2	Thap2	IPI00135144	1	1	1	1			1	1	0.39	1.97
Family with sequence similarity 55, member B	4432416J03Rik	IPI00881975	1	1	1	1			1	1	0.39	0.21
Transcobalamin-2	Tcn2	IPI00136556	1	1	1	1			1	1	0.38	0.36
Zinc finger protein 541	Znf541	IP100758325	1	1	1	1			1	1	0.28	0.38
		IPI00849452	1	1	1	1			1	3	0.27	0.21
Nebulin-related-anchoring protein	Nrap	IPI00135182	1	1	1	1			1	1	0.22	3.30
Zinc finger protein 536	Znf536	IPI00377726	1	1	1	1			1	2	0.20	0.14
NACHT-, LRR-, and PYD-containing protein 1 paralog c	Nirple	IPI00665815	1	1	1	1			1	1	0.19	0.13
Zinc finger protein 397 opposite strand	Zfp397os	IPI00876362	1	1	1	1			1	1	0.18	0.96
		IPI00849706	1	1	1	1			1	3	0.17	0.39
Grifin	Grifin	IPI00134234	1	1	1	1			1	1	0.15	1.00
Sperm motility kinase 3	Smok3a	IPI00136957	1	1	1	1			1	1	0.11	0.29

Ankyrin repeat domain-containing protein 37	Ankrd37	IPI00229712	1	1	1	1	1	1	0.09	0.07
Ribonuclease H 1	Rnasehl	IPI00117308	1	1	1	1	1	1	0.08	0.17
Ig kappa chain V-V region HP R16.7		IPI00464383	1	1	1	1	1	1	0.06	0.23
Reck protein	Reck	IPI00890886	1	1	1	1	1	1	0.06	2.07
Voltage-dependent N-type calcium channel subunit alpha-1B	Cacnalb	IPI00466672	1	1	1	1	1	1	0.03	0.21
Tnik protein	Tnik	IP100662721	1	1	1	1	1	1	0.03	0.03
		IPI00466185	1	1	1	1	1	10	0.03	0.02
Putative uncharacterized protein	Zbed4	IPI00848479	1	1	1	1	1	1	0.02	0.03
Zinc phosphodiesterase ELAC protein 1	Elac 1	IPI00331197	1	1	1	/	1	1	0.01	0.07

Table 3.6. Proteins identified as up-regulated (Pep - Number of unique peptides, EC- SILAC ratio after treatment with $10 \mu \mathrm{M} 24(S), 25-$
epoxycholesterol, GW - SILAC ratio after treatment with $1 \mu \mathrm{M}$ GW3965)

Biological Replicate																	3			
Technical Replicate				1			2			1			2			1			2	
Protein Names	Gene Names	Protein ID	Pep	EC	GW															
Cohesin subunit SA-1	Stag1	IP100135921	1	23.72		3	22.64	0.80	1			1			1			1		
ATPase, $\mathrm{Na}+/ \mathrm{K}+$ transporting, alpha 3 polypeptide	Atpla3	IP100752412	4	14.87	5.16	'			1			1			7	1.35	1.43	1		
Putative uncharacterized protein	EG641366	IP100461390	2	9.41	1.26	,			1			1			/			1		
FRAS1-related extracellular matrix protein 2	Frem2	IP100553703	1	7.08	13.23	1			1			1			/			1		
Aromatic-preferring amino acid transporter	Slc7a15	IPI00314366	1	3.30	0.53	1			1			1			1			1		
Putative uncharacterized protein	$\begin{aligned} & \hline \text { ENSMUSG0000 } \\ & 0053526 \end{aligned}$	IP100403867	1	2.33	13.72	'			1			1			1			1		
Putative uncharacterized protein	Khsrp	IP100229109	1	1.98	3.21	1			/			1			/			1		
Putative uncharacterized protein	4933416I08Rik	IP100136529	1	1.70	0.99	/			1			1			/			1		
Caprin-2	Caprin2	IPII00856547	1	1.64	0.77	1			1			1			/			/		
Aldehyde dehydrogenase family 3 , subfamily A1	Aldh3a1	IP100890112	5	1.40	1.31	7	1.27	1.22	6	1.86	1.23	7	1.76	1.23	5	1.51	1.22	11	1.58	1.21
Digestive organ expansion factor homolog	Def	IP100225214	1	1.35	1.08	1	1.29	1.17	I			1			'			2	1.17	0.92
FERM domain-containing protein 4A	Frmd4a	IPII00222107	1	1.31	0.93	/			1			1	1.18	0.94	1			/		
Prolyl endopeptidase-like	Prepl	IP100652834	3	1.26	1.02	1			1			1			/			1		
Putative uncharacterized protein	$\begin{aligned} & \text { ENSMUSG0000 } \\ & 0079623 \end{aligned}$	IP100652501	1			1	19.78	63.89	1			1			1			1	20.75	1.11
ATP-binding cassette, sub-family A (ABC 1), member 1	Abcal	IPI00889843	1			1	13.68	9.71	1			7	10.92	4.72	4	9.71	5.34	10		2.48

Activin receptor type-1	Acvrl	IPI00409269	1			1	11.83	0.91	1			1			1			1		
Integrin alpha 9 protein	Itga9	IPI00130117	1			1	8.40	6.34	1			1			/			/		
RNA-binding protein 40	Rnpc3	IPI00831482	1			1	7.46	9.61	1			/			/			/		
		IPI00890274	1			1	6.72	6.97	1			/			/			1		
Ankyrin repeat and $\mathrm{BTB} / \mathrm{POZ}$ domaincontaining protein 2	Abtb2	IP100349814	1			1	2.63	5.20	1			/			/			/		
Ovarian cancer-associated gene 2 protein homolog		IP100110207	1			1	2.30	0.77	1			/			/			/		
Tubulin polyglutamylase TTLL7	Ttll7	IP100760054	1			1	2.22	1.00	1			/			1			1		
Nucleolar protein 4	Nol4	IPI00410916	1			1	2.17	2.16	1			1			1			1		
Tyrosine-protein phosphatase nonreceptor type 6	Ptpn6	IPI00225419	1			1	2.17	0.74	1			/			/			/		
40S ribosomal protein S30	Fau	IPI00849113	1			1	1.83	1.62	1			1			2	1.40	0.88	2	1.36	1.03
Dedicator of cytokinesis protein 2	Dock2	IPI00117274	1			1	1.62	13.32	1			1			1			1		
A1607873 protein	Al607873	IPI00848965	1			3	1.57	1.21	1			1			1			1		
F-box only protein 9	Fbxo9	IPI00474493	1			1	1.51	1.13	1			/			1			1		
Transcription factor E2F1	E2f1	IPI00338528	1			1	1.50	1.00	1			/			1			1		
Glutathione peroxidase 1	Gpx1	IP100319652	1			1	1.49	1.24	1			1			1			1		
ATPase family AAA domain-containing protein 5	Atad5	IPI00408664	1			1	1.45	1.03	1			1			1			1		
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2	Plcg2	IP100229848	1			1	1.42	0.91	1			/			1			1		
Sulfiredoxin 1 homolog (S. cerevisiae)	Srxn1	IPI00112189	1			1	1.42	1.39	1			3	1.61	1.21	1			1	1.40	0.90
Peroxisomal coenzyme A diphosphatase NUDT7	Nudt7	IPI00119755	1			1	1.39	1.15	1			1			1			1		
ATP-binding cassette sub-family A member 7	Abca7	IP100125970	2	1.12	0.85	2	1.39	1.09	2	1.30	1.06	3	1.57	0.96	3	1.25	0.85	4	1.40	0.93
Dual specificity protein phosphatase 19	Dusp19	IPI00463211	1			1	1.38	0.93	1			1			1			1		
Zinc finger FYVE domain-containing protein 19	Zfyve19	IPI00119998	1	1.23	0.90	1	1.37	0.98	1			1			1			1		

Coiled-coil domain-containing protein 117	Ccdcl17	IPI00321929	1			1	1.37	0.77	1			1			/			1		
Thioredoxin domain-containing protein 11	Txndcl1	IPI00170006	1			1	1.35	0.84	1			/			1			1		
Molybdenum cofactor synthesis protein 2A	Mocs2	IPI00130416	1			1	1.34	0.98	1			/			/			1		
Uncharacterized protein C4orf21 homolog	4930422G04Rik	IPI00754519	1			1	1.34	0.91	1			/			/			1		
Retinoic acid receptor RXR-alpha	Rxra	IP100849526	1			1	1.32	1.16	1			/			1			1		
CDGSH iron sulfur domain-containing protein 3, mitochondrial	Cisd3	IP100649725	1			1	1.32	1.19	1			/			/			1		
Expressed sequence AU019823	AU019823	IPI00417063	1			1	1.31	1.21	1			1			/			1		
Golgi apparatus protein 1	Glg1	IPI00122399	3	1.18	0.91	8	1.31	0.98	5	1.37	0.87	7	1.29	0.87	10	1.51	1.06	22	1.50	1.04
Tropomyosin beta chain	Tpm2	IPI00123319	1			9	1.31	2.07	1			1			1			1		
Protein YIF 1A	Yifla	IPI00128941	1			1	1.31	1.22	1			1			/			1		
Protein KIAA0664	Kiaa0664	IPI00462594	1			8	1.31	1.19	1			1			1			1		
45 kDa calcium-binding protein	Sdf4	IPI00117754	1			1	1.30	1.12	1			1			1			1		
		IP100808297	1			1	1.30	0.82	1			1			1			1		
DNA (cytosine-5)-methyltransferase 3A	Dnmt3a	IPI00172129	1			2	1.30	1.09	1			1			1			1		
Neuron navigator 1	Nav1	IPI00229599	1			1	1.30	1.07	1			1			/			1		
Oncoprotein-induced transcript 3 protein	Oit3	IPI00453489	1			1	1.29	1.81	1			1			1			1		
LIM domain-binding protein 3	Ldb3	IPI00323030	1			1	1.28	1.30	1			1			1			1		
Dynamin-1	Dnm1	IPI00272878	1			3	1.28	1.29	1			1			1			1		
Collagen type IV alpha-3-binding protein	Col4a3bp	IPI00111167	1			3	1.28	1.08	3	1.42	1.34	4	1.52	1.05	4	1.58	1.15	4	1.46	1.05
tRNA guanosine-2'-O-methyltransferase TRM13 homolog	Ccdc76	IPI00378506	1			1	1.27	0.87	1			1			1			1		
E3 ubiquitin-protein ligase MIB1	Mib1	IP100330112	1	1.25	1.03	1	1.26	1.23	1			1			1			1		
Epidermal growth factor-containing fibulin-like extracellular matrix protein 1	Efemp1	IPI00515343	1			1	1.26	1.25	1			4	1.44	1.44	1			1		

Mediator of RNA polymerase II transcription subunit 24	Med24	IPI00857417	1	1	1.26	0.97	1			1			1			1		
Mannan-binding lectin serine protease 1	Masp1	IPI00475209	/	1	1.25	0.85	1			1			1			1		
MKIAA0628 protein	Zfp623	IPI00111118	1	1			1	34.11	6.69	1			1			1		
L(3)mbt-like (Drosophila)	L3mbtl	IPI00457726	1	1			1	13.29	91.27	1			1			1		
Ral GTPase-activating protein subunit alpha-1	Ralgapal	IPI00460042	1	1			1	7.94	6.75	2	3.23	1.29	1	1.85	0.63	1		
Cingulin	Cgn	IPI00757790	1	1			1	4.04	1.14	1			1			1		
Putative uncharacterized protein	Spp1	IPI00625970	/	1			2	2.27	0.91	1	2.09	0.85	1			2	1.72	0.90
Transcription factor E2F7	E2f7	IPI00420139	1	1			1	2.23	1.48	1			1			1		
Glutathione S-transferase A4	Gsta 4	IPI00323911	1	1			1	2.17	1.48	2	2.02	1.35	2	1.55	1.07	5	1.48	1.03
Aldehyde dehydrogenase, dimeric NADP-preferring	Aldh3a1	IPI00111222	1	1			5	2.04	1.26	7	1.76	1.26	5	1.84	1.28	1		
Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial	Mthfd2	IPI00109824	1	1			1	1.80	1.41	2	1.70	1.37	1			1		
Constitutive coactivator of PPAR-gamma-like protein 2	Fam120c	IPI00416125	1	1			2	1.75	0.11	1			1			1		
Fanconi anemia group I protein homolog	Fanci	IPI00225412	1	1	1.24	1.11	1	1.71	1.07	1			1			1		
CTD small phosphatase-like protein 2	Ctdspl2	IPI00454047	1	1			4	1.57	1.15	2	1.60	0.93	1			1		
Ankyrin repeat and SOCS box protein 6	Asb6	IPI00131423	1	1			1	1.56	1.21	1			1			1		
Pyridoxal-dependent decarboxylase domain-containing protein 1	Pdxdc1	IPI00336503	1	1			7	1.56	0.85	1			14	1.35	1.09	18	1.27	1.04
FK506 binding protein 10	Fkbp10	IPI00944194	1	1			5	1.53	1.07	5	1.32	1.00	5	1.74	1.11	1		
Butyrate response factor 2	Zfp3612	IPI00138319	1	1			1	1.53	1.07	1			1			1		
		IPI00622024	1	1			1	1.53	1.13	1			1			1		
Coiled-coil-helix-coiled-coil-helix domain-containing protein 6	Chchd6	IPI00313390	1	1			1	1.50	0.78	1	1.46	7.79	1			1		
Zfp384 protein	Zfp384	IPI00555146	1	1			1	1.50	0.89	1			1			1		
Sperm-associated antigen 5	Spag5	IPI00380243	1	1			1	1.49	1.04	1	1.76	1.08	1			1		

Leucine carboxyl methyltransferase 2	Lemt2	IPI00914155	1			1			1	1.48	1.45	1			1			/		
Putative uncharacterized protein	Pfkp	IPI00927975	1			1			5	1.44	1.65	5	1.34	1.23	7	1.20	1.28	1		
Putative uncharacterized protein	Bnip2	IPI00473381	1			1			1	1.42	2.39	1			1			1		
		IPI00850044	1			/			1			1	61.97	1.31	1			1		
BTB/POZ domain-containing protein 6	Btbd6	IP100110006	1			1			/			1	39.80	10.60	1			1		
FtsJ methyltransferase domaincontaining protein 1	Ftsjd1	IPI00331208	1			1			1			1	13.01	4.49	1			1		
Connecdenn	Dennd1a	IPI00322415	1			1			1			1	5.62	0.98	1			1		
GRB2-associated binder 1	Gab1	IPI00406794	1			1			1			1	4.74	1.34	1			1		
UPF0461 protein C5orf24 homolog		IPI00330644	1			1			1	1.22	0.87	2	3.70	0.61	1	3.46	0.87	3	3.92	0.95
Putative uncharacterized protein	B930095I24Rik	IPI00405150	1			1			1			1	3.50	32.11	1			1		
Chromodomain helicase DNA binding protein 6	Chd6	IPI00457724	1			1			1			2	3.35	1.45	1			1		
mMRP63	Mrp63	IPI00132487	1			1			1			1	2.87	0.93	1			1		
ALL-1	All1	IPI00315032	1			1			1			1	2.39	1.46	1			1		
Liver X receptor beta	Lxrb	IP100119090	1			1			1			2	2.09	3.11	1	2.04	2.29	1		
28S ribosomal protein S21, mitochondrial	Mrps21	IP100115896	1	1.19	1.14	1	1.20	1.05	1			1	2.08	1.04	1			1	1.23	0.83
Putative uncharacterized protein	Faim	IPI00890905	1			1			1			2	2.05	1.19	1			1		
Protein ftsJ homolog 3	Ftsj3	IPI00119632	1			1			1			1	1.97	1.23	1			1		
Apolipoprotein J	Apoj	IPI00320420	1			1			1			1	1.97	0.94	1			1		
DnaJ (Hsp40) homolog, subfamily C, member 17	Dnajc17	IPI00943363	1			1			1			1	1.84	1.08	1			1		
Smoothelin	Smsmo	IPI00648499	1			1			1			1	1.79	1.11	1			1		
Folylpoly-gamma-glutamate synthetase	Fpgs	IP100653390	1			1			1			1	1.78	40.42	1			1		
B aggressive lymphoma protein homolog	Bal	IPI00377563	1			1			1			1	1.77	1.06	1			1		
Kinesin family member 2C	Kif2c	IPI00648327	1			1			1			3	1.75	1.00	1			1		
Putative uncharacterized protein	Rps6kal	IPI00648998	1			1			1			1	1.69	1.51	1			1		
G9 sialidase	Neu	IPI00315576	1			1			1			1	1.68	0.84	1			1	1.27	1.06

Lymphocyte antigen 6A-2/6E-1	Ly6	IPI00120592	1	1	1			1	1.65	1.85	1			/		
G2/mitotic-specific cyclin-B2	Ccnb2	IP100314149	1	1	1			1	1.65	0.99	1	2.64	0.56	1		
MFLJ00163 protein	Maged1	IPI00556867	1	1	1			2	1.58	1.34	1			1		
Syndecan-3	Kiaa0468	IPI00135452	1	1	/			1	1.57	0.81	1			1		
Zinc finger MYND domain-containing protein 11	Zmyndl1	IPI00775961	1	/	1			1	1.55	1.09	1			1		
DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	Ddx21	IPI00652987	/	/	1			15	1.54	0.94	1			/		
DEAH box protein 32	Ddx32	IPI00127679	1	1	1			1	1.50	0.91	1			1	1.33	0.97
		IPI00278864	1	1	1			1	1.49	1.14	1			/		
ATP-dependent RNA helicase ROK1like	Ddx52	IPI00336965	/	1	1			2	1.49	1.12	1			1		
Putative uncharacterized protein	Nol14	IP100785218	1	1	1			3	1.48	0.82	1			1		
Cyclooxygenase-2	Cox2	IPI00308785	1	1	1			1	1.48	1.12	1			1		
Surfeit locus protein 1	Surf1	IPI00319135	1	1	1			1	1.47	1.17	1			1		
Neuron navigator 2	Nav2	IPI00466984	1	1	1			2	1.46	1.52	1			1		
PAT1-like protein 1	Patl1	IPI00309059	1	1	1			1	1.46	1.04	1			2	1.22	1.15
Brix domain-containing protein 5	Bxdc5	IP100380313	1	1	1			1	1.46	0.81	1			1		
MCG9286, isoform CRA_b	Aagab	IPI00654197	1	1	1			1	1.45	1.12	1			1		
Citron Rho-interacting kinase	Cit	IPI00655040	1	1	1			2	1.44	1.02	1			1		
NOL1/NOP2/Sun domain family member 5	Nsun5	IPI00311260	1	1	/			1	1.43	1.82	1			1		
Uncharacterized protein C8orf59 homo		IPI00785295	1	1	1			1	1.42	0.96	1			1		
TBC1 domain family member 25	Tbc1d25	IPI00222302	1	1	1			1	1.42	1.08	/			1		
Gene Y protein	Trific	IPI00463173	1	1	1			1	1.40	103.24	1			1	7.29	12.88
		IPI00856470	1	1	1			2	1.40	1.02	1			2	1.25	1.37
Pumilio homolog 1	Kiaa0099	IPI00400349	1	/	1			5	1.39	1.05	1			1		
Ankyrin repeat domain-containing protein 16	Ankrd16	IPI00221778	1	1	1	1.35	1.09	1	1.39	1.00	1			1		
MKIAA0480 protein	Cep350	IPI00928565	1	1	1			3	1.38	0.78	1			1		

ATP-dependent RNA helicase DDX55	Ddx55	IPI00453808	1	1			1			1	1.37	1.22	1			1		
		IPI00881767	1	1			1			1			1	122.9	11.59	1		
Membrane transport protein XK	Xk	IPI00135678	1	1			1			1			1	12.20	61.82	1		
Coiled-coil domain-containing protein 52	Ccdc52	IPI00170090	1	/			1			/			1	2.00	1.21	1		
WD repeat-containing protein 24	Wdr24	IPI00229321	1	1			1			/			1	1.91	0.90	1		
Receptor-type tyrosine-protein phosphatase gamma	Ptprg	IPI00114671	1	1			1			/			1	1.59	1.01	1		
60S ribosomal protein L36	Rpl36	IPI00869475	1	1			1			1			3	1.53	0.98	1		
60S ribosomal protein L18a	Rpl18a	IPI00880213	1	1			1			/			4	1.45	0.92	1		
Procollagen C-endopeptidase enhancer 1	Pcolce	IPI00120176	/	1			1			1			4	1.44	0.93	5	1.33	0.94
Macrophage colony-stimulating factor 1	Csf1	IPI00125138	1	2	1.23	1.00	1	1.34	0.92	2	1.35	1.43	1	1.43	0.96	2	1.36	1.01
Gamma-aminobutyric acid receptorassociated protein	Gabarap	IPI00120754	1	1			1			1			1	1.38	0.92	1		
Rho guanine nucleotide exchange factor 19	Arhgef19	IPI00226216	/	1			1			/			1	1.38	1.02	1	1.45	1.27
Amyloid beta A4 precursor proteinbinding family A member 3	Apba3	IPI00135411	1	1			1			2	1.21	3.10	1	1.34	1.03	2	1.30	1.01
Prenylated Rab acceptor protein 1	Rabac1	IP100129399	1	1			1			2	1.25	0.90	1	1.34	0.82	2	1.38	1.00
40S ribosomal protein S8	Rps8	IPI00466820	1	1			1			1			6	1.27	0.94	10	1.25	0.93
3222402P14Rik protein	Ppp2r3a	IPI00406107	1	/			1			/			1	1.25	0.86	1		
		IPI00858126	1	1			1			1			3	1.23	1.17	1		
Insulin receptor substrate 2	Irs2	IPI00923679	1	/			8	1.32	1.13	7	1.28	1.12	7	1.22	1.13	1		
Ribose-phosphate pyrophosphokinase	Prps 111	IPI00900411	1	1			2	1.23	1.07	1			2	1.22	0.99	1		
Mediator of RNA polymerase II transcription subunit 13-like	Med131	IPI00420457	1	1			1			1			1			1	44.54	10.66
Zinc finger protein 462	Zfp462	IPI00467729	1	1			1			/			1			1	41.05	4.63
Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] 2	Gfpt2	IPI00278312	1	1			1			1			1			5	26.66	231.8
Mesenchyme homeobox 1	Meox 1	IPI00649802	1	1			1			1			1			1	25.75	5.82

Syntaxin-binding protein 4	Stxbp4	IPI00125455	1	1	1	1			1	1	21.24	7.19
Serine/threonine-protein kinase ULK1	Ulk1	IPI00752067	1	1	1	1			/	1	19.83	0.86
		IPI00457415	1	1	1	1			1	3	12.35	1.41
Transmembrane protein 54	Tmem54	IPI00471083	1	1	1	1			1	1	7.66	2.50
Fascin homolog 2, actin-bundling protein, retinal (Strongylocentrotus purpuratus)	Fscn2	IP100226453	1	1	1	1			1	1	3.57	1.05
Olfactory receptor Olfr 1477	Olfr 1477	IPI00313137	1	1	1	1			/	1	3.16	1.65
TRAF-interacting protein with FHA domain-containing protein A	Tifa	IPI00153104	/	1	1	1			1	1	2.70	0.73
Pcdhgc5 protein	Pcdhgc5	IPI00129572	1	1	1	1			1	2	2.61	0.86
Protein deltex-2	Dtx2	IPI00113171	1	1	1	1			/	1	2.58	1.26
Ubiquinone biosynthesis methyltransferase COQ5, mitochondria	Coq5	IPI00379695	1	1	1	1			/	1	2.46	8.59
Gamma-tubulin complex component 3	Tubgcp3	IPI00396839	1	1	1	1			1	2	2.33	1.73
WD repeat-containing protein 7	Wdr7	IPI00120637	1	1	1	1			/	1	2.28	1.04
Brain-specific angiogenesis inhibitor 1	Bail	IPI00850693	1	1	1	1			1	1	2.17	0.62
Dynein heavy chain 8, axonemal	Dnahc8	IPI00172328	1	1	1	1			/	1	1.96	5.98
Glucocorticoid modulatory elementbinding protein 2	Gmeb2	IP100118393	1	1	1	1			/	1	1.94	1.09
E3 ubiquitin-protein ligase UBR2	Ubr2	IPI00468701	1	1	1	1			1	2	1.90	1.09
Coiled-coil domain-containing protein 77	Ccdc77	IPI00112708	1	1	1	1			1	1	1.88	1.24
U6 snRNA-specific terminal uridylyltransferase 1	Tut1	IPI00153749	1	1	1	1	1.35	1.14	1	3	1.83	1.36
IRFD2	Ifrd2	IPI00469290	1	1	1	1			/	1	1.78	0.91
E3 ubiquitin-protein ligase NRDP1	Rnf41	IPI00308182	1	1	1	1			/	1	1.73	2.18
Uncharacterized protein C11orf61 homolog		IPI00279213	1	1	1	1			1	1	1.65	0.98
HN1-like protein	AY358078	IPI00396784	1	1	1	1			1	2	1.61	1.03
		IPI00751634	1	1	1	1			/	3	1.50	0.90

E3 ubiquitin-protein ligase Prajal	Pjal	IPI00309237	1			1			1			1			1	1	1.49	1.23
Nuclear prelamin A recognition factorlike protein	Narfl	IPI00309907	1			1			1			1			1	1	1.48	0.76
CDK5 regulatory subunit-associated protein 1-like 1	Cdkall	IP100163015	1			1			1			1			1	1	1.47	1.20
HMG box transcription factor BBX	Bbx	IPI00625898	1			1			1			1			1	2	1.46	3.35
Suppressor of fused homolog	Sufu	IPI00124718	1			1			1			1			1	2	1.46	66.24
Putative uncharacterized protein	Ttc13	IPI00895079	1			1			1			1			1	2	1.46	1.28
Arylsulfatase A	Arsa	IPI00607957	1			1			1			1			1	1	1.44	0.96
Clusterin-associated protein 1	Cluap1	IPI00277399	1			1			1			1			1	1	1.43	1.41
Inositol 1,4,5-triphosphate receptorinteracting protein	Itprip	IPI00420315	1			1			1			1			1	1	1.43	1.01
Arhgef5 protein	Arhgef5	IPI00855144	1			1			4	1.26	1.09	2	1.22	0.87	1	1	1.43	0.65
VPS10 domain-containing receptor SorCS2	Sorcs2	IPI00110262	1			1			1			1			1	1	1.43	0.54
Putative uncharacterized protein	Ugt2b1	IPI00153143	1			1			1			1			1	1	1.42	1.08
Vitamin K-dependent gammacarboxylase	Ggcx	IPI00136012	1			1			1			1			1	1	1.39	1.45
Ankyrin repeat domain-containing protein 46	Ankrd46	IPI00225335	1			1			1			1			1	2	1.38	1.05
Ribosome biogenesis protein NSA2 homolog	Tinpl	IPI00468437	1			/			1			1			1	1	1.38	1.09
Metalloproteinase inhibitor 1	Timp1	IPI00114403	1			1			1			1			1	1	1.37	0.81
Kinesin-like protein KIF21A	Kif21a	IPI00454081	1	1.21	1.09	2	1.24	1.06	1	1.33	1.54	3	1.22	1.01	1	3	1.36	1.09
Sequestosome-1	Sqstm1	IPI00474373	1			1			1			1			1	11	1.35	1.15
Cartilage-associated protein	Crtap	IPI00111370	1			1			1			1			1	6	1.34	1.21
Retinitis pigmentosa 1-like 1 protein	Rp111	IPI00229529	1			1			1			1			1	4	1.34	0.88
UDP-glucuronosyltransferase 1-6	Ugtla6	IPI00134432	1			1			1			1			1	2	1.34	1.07
Serine proteinase inhibitor mBM2A	Spi15	IPI00115683	1			1			1			1			1	2	1.33	1.26
Phosphatidylinositol-4-phosphate 5-	Pip5k1c	IPI00655177	1			1			1			1			1	2	1.32	1.27

kinase type-1 gamma										
MAP kinase-activating death domain protein	Madd	IPI00620097	1	/	1	/	1	1	1.32	1.06
		IPI00831560	1	1	1	1	1	1	1.30	0.95
Putative uncharacterized protein	Pi4ka	IPI00115875	1	1	/	1	1	3	1.30	1.10
Mps one binder kinase activator-like 2	Mob2	IP100139718	1	1	1	1	1	1	1.29	1.04
Ras-related protein Rab-3B	Rab3b	IP100113112	1	1	1	1	1	4	1.29	1.13
Calcium-transporting ATPase type 2C member 2	Atp2c2	IPI00849112	1	1	1	1	1	1	1.29	8.75
Alanine aminotransferase 2	Gpt2	IPI00265352	1	1	1	1	1	3	1.29	1.29
Glutathione S-transferase A1	Gstal	IPI00554953	1	1	1	1	1	3	1.28	1.19
Plectin-1	Plec 1	IPI00421271	1	1	1	1	1	180	1.28	1.31
MKIAA0480 protein	Cep350	[PI00118304	1	1	1	1	1	1	1.28	0.78
StAR-related lipid transfer protein 5	Stard5	IPI00284769	1	1	1	/	1	1	1.28	1.38
MKIAA0657 protein	Obsl1	IPI00403485	1	1	1	1	1	2	1.28	1.07
Putative uncharacterized protein	EG433762	IPI00463111	1	1	1	1	1	2	1.28	1.07
Carbohydrate kinase domain-containing protein	Carkd	IPI00894581	1	1	1	1	1	6	1.27	1.10
3-ketoacyl-CoA thiolase B, peroxisomal	Acaalb	IPI00122139	1	1	1	1	1	9	1.26	1.14
Plakophilin-4	Pkp4	IPI00473693	1	1	1	/	1	2	1.24	1.52
Influenza virus NS1A-binding protein homolog	Ivns1abp	IPI00420559	1	1	1	/	1	1	1.24	1.60
DNA polymerase	Pold	IPI00313515	1	1	1	1	1	8	1.24	0.93
PH and SEC7 domain-containing protein 3	Psd3	IPI00874973	1	1	1	1	1	1	1.24	1.76
TSC22 domain family protein 1	Tsc22d1	IPI00420803	1	1	1	1	1	3	1.23	1.11
Interferon-induced 35 kDa protein homolog	Ifi35	IPI00261188	1	1	1	1	1	1	1.23	0.96
RRP15-like protein	Rrp15	IPI00458958	1	1	1	1	/	2	1.23	1.09
GTP-binding protein 8	Gtpbp8	IPI00110725	1	1	1	1	1	1	1.23	1.23

The data were then analysed using the bio-informatic software DAVID (http://david.abcc.ncifcrf.gov/) in order to determine if there are any links between the identified proteins that have previously been identified in the literature. The software identifies significant enrichment of gene ontology (GO) terms i.e. the process or processes in which the gene(s) function are over represented in the data set.

In total 15 GO terms were significantly enriched in the down-regulated proteins (table 3.7.) whereas no GO terms were identified as significantly enriched from the upregulated proteins. It is obvious from the identified GO terms that the overarching factor in these terms is the effect on lipid small molecules. The 8 most significantly enriched terms are related to the biosynthesis and processing of sterols, cholesterol, steroid and lipids. Thus, it is clear, and unsurprising, that treatment of SN4741 cells with $24(S), 25$-epoxycholesterol results in alterations in the biosynthesis and processing of a variety of lipid molecules.

Table 3.7. Gene Ontology terms identified as enriched after DAVID bio-informatic analysis. GO terms significantly enriched after p-value correction (Benjamini) are shown. Proteins up and down regulated were analysed independently but all significantly enriched GO terms identified were from the down regulated proteins data.

Term	Count	Fold Enrichment	p-value	Benjamini
Sterol biosynthetic process	13	30.96	$2.59 \mathrm{E}-15$	$3.32 \mathrm{E}-12$
Cholesterol biosynthetic process	12	37.28	$3.33 \mathrm{E}-15$	$2.17 \mathrm{E}-12$
Sterol metabolic process	16	14.85	$1.39 \mathrm{E}-13$	$6.05 \mathrm{E}-11$
Cholesterol metabolic process	15	15.31	$6.34 \mathrm{E}-13$	$2.06 \mathrm{E}-10$
Steroid biosynthetic process	14	14.09	$1.43 \mathrm{E}-11$	$3.72 \mathrm{E}-09$
Steroid metabolic process	17	7.54	$8.37 \mathrm{E}-10$	$1.82 \mathrm{E}-07$
Lipid biosynthetic process	19	4.76	$9.65 \mathrm{E}-08$	$1.80 \mathrm{E}-05$
Lipid metabolic process	29	2.98	$4.01 \mathrm{E}-07$	$6.53 \mathrm{E}-05$
Alcohol metabolic process	19	3.77	$2.93 \mathrm{E}-06$	$4.23 \mathrm{E}-04$
Oxidation reduction	26	2.76	$7.11 \mathrm{E}-06$	$9.25 \mathrm{E}-04$
Isoprenoid biosynthetic process	6	19.49	$1.08 \mathrm{E}-05$	0.001
Isoprenoid metabolic process	7	10.21	$5.74 \mathrm{E}-05$	0.006
Transport	54	1.65	$1.52 \mathrm{E}-04$	0.015
Establishment of localization	54	1.64	$1.81 \mathrm{E}-04$	0.017
Cellular lipid metabolic process	18	2.67	$4.19 \mathrm{E}-04$	0.036

In addition to the GO terms identified the analysis of the down-regulated proteins identified a number of KEGG pathways as enriched (table 3.8) though only 2 pathways had significant Benjamini corrected p-values. Again, unsurprisingly, the most significantly enriched pathways were those related to steroid biosynthesis and terpenoid backbone synthesis. These pathways have a large number of previously identified SREBP2 regulated proteins. It is interesting to note that despite not being significantly enriched after correction of the p-value the KEGG pathways of both Alzheimer's and Parkinson's disease, 2 neurodegenerative diseases, were identified as enriched.

Table 3.8. KEGG Pathways identified as enriched by DAVID bio-informatic analysis of down regulated proteins. Benjamini is the corrected p-value required after multiple analysis.

Kegg Pathway	Count	IPI Number	Fold Enrichment	p-value	Benjamini
Steroid biosynthesis	8	IPI00338068, IPI00137471, IPI00474810, IPI00169958, IPI00130988, IPI00316067, IPI00128692, IPI00458711, IPI00133526	32.15	$1.77 \mathrm{E}-09$	2.08E-07
Terpenoid backbone biosynthesis	7	IPI00849448, IP100319950, IPI00756996, IPI00120457, IPI00133709, IPI00331707, IPI00228253	34.15	$2.09 \mathrm{E}-08$	1.22E-06
Cardiac muscle contraction	6	IPI00224210, IPI00121550, IPI00131176, IPI00114377, IPI00129516, IP100225390	5.25	$5.18 \mathrm{E}-03$	0.183
Oxidative phosphorylation	7	IPI00224210, IPI00131176, IPI00313841, IPI00114377, IPI003 18645, IPI00129516, IPI00225390	3.68	0.01	0.275
Parkinson's disease	7	IPI00648249, IPI00224210, IPI00131176, IPI00923056, IPI001 14377, IP100129516, IPI00225390	3.60	0.01	0.249
Natural killer cell mediated cytotoxicity	6	IPI00133132, IPI00322542, IPI00881074, IPI001361 10, IPI00856542, IP100665857	3.36	0.03	0.461
Alzheimer's disease	7	IPI00224210, IPI00131176, IPI00114377, IPI00117124, IPI00665857, IPI00129516, IPI00225390	2.63	0.05	0.555
Calcium signalling pathway	7	IPI00471089, IPI00133132, IPI00466672, IPI00626433, IPI00831180, IPI00263265, IPI00665857	2.50	0.06	0.578
Biosynthesis of unsaturated fatty acids	3	$\begin{gathered} \text { IPI00129362, IPI00117142, } \\ \text { IPI00318108 } \end{gathered}$	7.59	0.06	0.537
Focal adhesion	7	IPI00626433, IPI00117829, IPI00136110, IPI00828653, IPI00421218, IPI00136701, IPI001 10508	2.41	0.07	0.550
Butanoate metabolsim	3	$\begin{gathered} \hline \text { IPI00135189, IPI00331707, } \\ \text { IPI00228253 } \end{gathered}$	5.54	0.099	0.672

The proteins identified as up-regulated were also analysed to identify enriched pathways (table 3.9). No significant changes in enrichment were identified after correction of the p-value. Thus, it appears that treatment of SN4741 cells with $10 \mu \mathrm{M}$ 24(S),25-epoxycholesterol fails to up-regulate specific pathways en masse but rather up-regulates single unrelated proteins.

Table 3.9. Kegg Pathways identified as enriched by DAVID bio-informatic analysis of up-regulated proteins. Benjamini is the corrected p-value required after multiple analysis.
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Kegg Pathway } & \text { Count } & \text { IPI Number } & \text { Fold Enrichment } & \text { p-value } & \text { Benjamini } \\ \hline \begin{array}{c}\text { Metabolism of xenobiotics } \\ \text { by cytochrome P450 }\end{array} & 5 & \begin{array}{c}\text { IP100323911 } \\ \text { IP100890112 } \\ \text { IP100111222 }\end{array} & 7.01 & 0.005 & 0.415 \\ \text { IP100554953 } \\ \text { IP100134432 } \\ \text { IP100153143 }\end{array}\right)$

As mentioned earlier some of the proteins identified had weak evidence of changes in expression either due to a low number of peptides or due to the fact that they were not identified in all biological replicates. Thus, in order to determine proteins with stronger evidence of expression changes the data presented in table 3.5. and table 3.6. were re-examined. Proteins identified with only 1 peptide were excluded. In addition, proteins only identified in 1 biological replicate were also excluded. Finally, proteins only identified with low-scoring peptides or where there was a large variability between peptides were excluded. The flowchart for data analysis is shown in figure 3.12. Thus, reliable, reproducible data was extracted from the data (table 3.10).

Figure 3.12. Flowchart of data analysis showing the process by which protein expression data was rejected in order to identify reproducible changes in the proteome. Of the 6692 unique proteins identified in the 3 biological replicates only 47 (0.7%) had strong, reproducible evidence of a change in protein expression.

It can be seen that previously identified changes associated with inhibition of SREBP2 processing by oxysterols are reliably observed in all 3 biological replicates after treatment with $10 \mu \mathrm{M} 24(S), 25-e p o x y c h o l e s t e r o l(t a b l e ~ 3.10)$. The synthetic LXR ligand GW3965, as expected, had no effect on the transcription of these genes. It is important to recognise that despite these proteins being previously identified and well characterised as regulated by SREBP2, and therefore, by oxysterols via INSIG, it is critical to the reliability of the SILAC experimental design that known changes expected with $24(S), 25$-epoxycholesterol are identified successfully in order to have confidence that other unexpected changes are true. In addition, ABCA1 expression was up-regulated after treatment with both $24(S), 25$-epoxycholesterol and GW3965. ABCA1 expression is dependent on LXR activation. As both 24(S),25epoxycholesterol and GW3965 are ligands for LXR it again validates the methodology that a predicted change is observed after analysis of the proteomic data.

A number of proteins reproducibly identified as having a changed expression had links to cholesterol, phospholipids or fatty acids (table 3.10). However, other proteins, with no apparent link to lipids were also identified as having a changed expression. For example, two proteins that were reproducibly observed as being up regulated were Golgi apparatus protein 1 and macrophage colony stimulating factor.

Table 3.10. Summary of reproducible changes in protein expression. For the 3 biological replicates the mean SILAC ratio compared to control derived from the Orbitrap and Velos instruments is shown.

3.3. Discussion

The proteomic analysis of SN4741 cells after treatment with 24(S),25epoxycholesterol and GW3965 identified a large number of proteins. In total, 6692 unique proteins were identified with ≥ 1 peptide in the 3 biological replicates (figure 3.12). However, the majority of proteins in each replicate were identified with 2 or more peptides (table 3.2). Thus, it is clear that the experimental approach of strong cation exchange to reduce the sample complexity followed by LC-MS was successful when judged by the total number of observed proteins in the experiments. In addition, the SILAC labelling adopted gave a wealth of data that required painstaking analysis to extract the most reliable data. From a technical perspective, it was clear that the Orbitrap Velos was the instrument that performed better as it consistently identified more peptides, and therefore proteins, than the LTQ-Orbitrap instrument (table 3.2).

A large number of proteins were identified as having an altered expression after treatment with $24(S), 25$-epoxycholesterol. In total 1072 up-regulated and 864 downregulated proteins were identified in the 3 biological replicates (Appendix 1, Appendix 2). However, analysis of these proteins identified a significant number with contradictory data in a different data set (e.g. up-regulated in one dataset but no change in the others; Appendix 1, Appendix 2). The analysis of the data to remove these proteins led to a large proportion of them to be rejected as having a change in protein expression. After removal of contradictory proteins 229 (21.4\%) up-regulated proteins and $285(33.0 \%)$ down regulated proteins remained (table 3.5, table 3.6, fig 3.12). These data give a clear indication of the necessity of multiple biological replicates in proteomic studies.

The proteins identified as changed were then analysed by using the online software DAVID in order to identify GO terms and pathways significantly up or downregulated in the data set. No GO terms or KEGG pathways were up-regulated with statistical significance. Therefore, it appears from these data that $24(S), 25-$ epoxycholesterol up-regulates individual proteins and not whole pathways. In comparison, there was significant down regulation of 15 GO terms (table 3.7). In addition, 2 KEGG pathways were down-regulated after Benjamini correction - steroid biosynthesis and terpenoid backbone biosynthesis. It is unsurprising that these pathways are down-regulated as their expression is controlled by SREBP2.

The proteins identified in tables 3.5 and 3.6 have no contradictory data. However, the majority of the identified proteins have been identified as having a change in expression have only weak evidence to support the observation. A reliance on a SILAC ratio measurement from a single peptide can lead to experimental error. Similarly a protein observed in only one biological replicate can have an erroneous measurement. This is clear from the number of proteins with observed changes in expression being rejected as due to having contradictory data in a different biological replicate (figure 3.12). Thus, proteins that were only identified with one peptide or in one biological replicate were rejected.

The final analysis of the identified proteins was to examine their individual peptides used to identify the protein. The Mascot scores and the reproducibility of the SILAC ratios between peptides used to identify and quantify the same protein were examined. Proteins identified only with peptides with low Mascot scores were rejected. In addition, proteins identified with a number of unique peptides with a large variation in the SILAC quantification ratio were also rejected. This ensured that the proteins remaining were identified in multiple biological replicates, with multiple peptides and that the peptides used for identification had good Mascot scores and low variability of the SILAC ratio. Thus, the final 47 proteins presented in table 3.10 are the proteins with the most robust evidence of changes in expression. The rejection of the vast majority of the proteins identified as changed is a necessary evil in order to have the final outcome of a reliable, but much smaller, set of data.

It is clear that from the data presented here the SILAC proteomic approach was successful in identifying proteins, both known and novel, which are sensitive to $24(S), 25-$ epoxycholesterol treatment and with a reproducible response (table 3.10). Both instruments identified expected SREBP2 regulated changes in protein expression of enzymes involved in the cholesterol synthesis pathway after 24(S),25epoxycholesterol treatment. It is unlikely that any observed changes were due to toxicity as it was shown that $24(S)$,25-epoxycholesterol was non-toxic to SN4741 cells (fig 3.1; fig 3.2; fig 3.3). In addition, the rigorous criteria by which the data was analysed meant that the protein expression data presented here are trustworthy.

However, further validation of these data is required in order to determine how $24(S), 25$-epoxycholesterol induces the observed changes in protein expression. Thus
in the next chapter work will be conducted in order to elucidate the mechanisms involved.

Chapter 4: FURTHER ANALYSIS OF 24(S),25-EPOXYCHOLESTEROL

 INDUCED PROTEIN EXPRESSION CHANGES IN SN4741 NEURONS
4.1. Introduction

$24(S), 25$-epoxycholesterol induces changes in the proteome of SN4741 cells. This effect is apparent in the proteomic data presented in Chapter 3 where 47 proteins were identified as changed reliably and reproducibly (table 3.10). Therefore, there is already evidence these proteins are sensitive to $24(S), 25$-epoxycholesterol. However, further analysis is required in order to validate the results and elucidate the mechanism by which 24(S),25-epoxycholesterol induces these changes.

It is already known that $24(S), 25$-epoxycholesterol can increase gene expression by activating the transcription factor LXR (section 1.1.5.2.). In addition, previous work has shown that oxysterols can prevent gene transcription regulated by SREBP2 (section 1.1.5.1). Thus, there is precedent for oxysterols inducing changes in gene expression by altering transcription of mRNA. Therefore, in order to investigate whether the observed changes in protein expression correlated with a change in the transcription of mRNA qPCR can be performed. These experiments will lead to understanding the mechanism by which $24(S), 25$-epoxycholesterol is inducing the observed changes.

In addition, further analysis of the protein expression changes at the protein level can be performed to validate and clarify the observed data in the SILAC proteomic experiments. An obvious example would be the use of Western blotting in order to confirm changes in protein expression. In addition, other techniques can be used to examine specific attributes of a protein observed as having changed. For example, ELISA can be used to examine if changes in expression correlate to changes in secretion of a given protein.

It is possible that secondary effects may influence changes in both protein expression and localisation as oxysterols reduce cholesterol synthesis due to inhibition of SREBP2. Thus, in the presence of 24(S),25-epoxycholesterol the cholesterol content of SN4741 cells will be reduced. Cholesterol is an essential component of membranes and therefore a reduction in the cholesterol level may disrupt the cellular membrane
and lead to changes in protein expression and localisation. Therefore, the observed protein expression changes in the SILAC experiments may be due to changes in the cellular cholesterol level. In this instance immunofluorescence may be used as an adjunct to examine changes in the localisation of a protein after treatment with 24(S),25-epoxycholesterol.

In summary, the aim of this chapter is to further investigate and discuss the changes identified in the SILAC quantitative proteomic experiments.

4.2. Results

4.2.1. Validation of Known Oxysterol Regulated Genes Identified by SILAC

The SILAC proteomic data led to the identification of known SREBP2 regulated genes in the cholesterol synthesis pathway to be identified reproducibly as downregulated after treatment with $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol (table 3.10). The synthetic LXR ligand GW3965, as expected, did not down-regulate these genes. However, from these data it appears that GW3965 treatment resulted in the upregulation of squalene synthase. It is important to recognise that despite these proteins being previously identified and well characterised as regulated by SREBP2, and therefore, by oxysterols via INSIG, it is critical to the reliability of the SILAC experimental design that known changes expected with $24(S)$,25-epoxycholesterol are identified successfully in order to have confidence that other unexpected changes are true.

Low density lipoprotein receptor (LDLR), another SREBP2 regulated gene, was observed as down regulated by $24(S), 25$-epoxycholesterol and not by GW3965 at the protein and mRNA level (table 3.10; figure 4.1). Interestingly, the protein expression of LDLR was not classed as down regulated after treatment with the LXR agonist GW3965 though it tended toward a reduced expression; LXR activation has been reported to increase LDLR protein degradation by inducing IDOL mediated ubiquitination in hepatocytes and macrophages (Zelcer et al. 2009). To determine if this effect on LDLR was a cell type specific effect initially IDOL expression was measured in SN4741 cells by qPCR. IDOL protein was not identified in the proteomic data set however IDOL mRNA was detected in SN4741 cells (figure 4.2). Therefore, these proteomic data indicate that in SN4741 cells the predominant mechanism of LDLR regulation is through SREBP2.

Figure 4.1. SN4741 reverse transcription qPCR. qPCR was performed on RNA extracted from SN4741 cells treated with vehicle, $1 \mu \mathrm{M}$ GW3965 or $10 \mu \mathrm{M} 24(S), 25$ epoxycholesterol. Data shown is presented as mean fold change in mRNA expression compared with control; $\mathrm{n}=3$, compared with control * $\mathrm{p}<0.05$, Student's t -test; $\mathrm{p}<0.01$, Student's t-test, $\mathrm{p}<0.001$, Student's two tailed t -test.

A number of other genes previously identified as regulated by oxysterols had changes in their expression identified. The LXR regulated gene ABCA1, when identified was up-regulated after treatment with $24(S), 25$-epoxycholesterol and GW3 365 (table 3.10). StarD4 was down regulated in the presence of $24(S), 25$-epoxycholesterol but not with GW3965 at the protein and mRNA level (table 3.10; figure 4.1) which tallies with reported SREBP2 regulation (Soccio et al. 2005).

Figure 4.2. IDOL is expressed in SN4741 cells. RT-qPCR indicated the presence of IDOL mRNA in SN4741 cells. cDNA was used neat and at dilutions of 1:10, 1:100 and 1:1000 and qPCR amplification and melt curve plots are shown.

4.2.2. Ligand Binding Induces Up-Regulation of Liver X Receptor $\boldsymbol{\beta}$ (LXRB)

Liver X receptor (LXR) is a nuclear receptor for which oxysterols are the natural ligand (see section 1.1.5.2). LXR has two isoforms LXR α and LXR β. LXR α was not identified in any of the proteomic data sets. However, in the proteomic data LXR β was identified as up-regulated in the presence of $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol and $1 \mu \mathrm{M}$ GW3965 (table 3.9). Therefore, it appears from these data that activation of LXR β by either a natural or synthetic ligand causes an increase in its expression. Therefore, the effect of $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol and $1 \mu \mathrm{M}$ GW3965 on

LXR β expression at the mRNA level was measured using RT-qPCR to examine if this change in the protein level was due to increased transcription. LXR α mRNA expression was also analysed as $\mathrm{LXR} \alpha$ has been reported to be self regulating in human macrophages and murine adipose tissue (Laffitte et al. 2001, Whitney et al. 2001, Li et al. 2002, Ulven et al. 2004). However, in contradiction, there have been conflicting reports of no change in expression of LXR α after ligand activation in murine RAW264.7 macrophages and primary murine macrophages (Laffitte et al. 2001, Li et al. 2002). Therefore, this effect appears to be cell type specific. In SN4741 cells the expression of $\mathrm{LXR} \alpha$ does not appear to self regulating; no change at the gene expression level of LXR α was observed after treatment with GW3965 or 24(S),25epoxycholesterol. Treatment of SN4741 cells with the LXR ligands (24(S),25epoxycholesterol or GW3965) did not affect the level of LXR β mRNA expression.

4.2.3. Fatty Acid Synthesis

The complexity of fatty acid synthesis regulation is demonstrated in these data. Some SREBP1c regulated genes (acetyl-CoA carboxylase 1, long-chain-fatty-acid CoA ligase 3 , fatty acid synthase) involved in fatty acid synthesis were increased after GW3965 treatment (table 3.10), but, despite the induction of SREBP1c mRNA (fig. 4.1) the expression of these genes were not changed after treatment with 24(S),25epoxycholesterol. Similarly, the previously reported SREBP1 regulated gene, Mid1interacting protein (Ecker et al. 2010) was up-regulated in the presence of GW3965 but not $24(S), 25$-epoxycholesterol. Interestingly, two genes, fatty acid desaturase 2 and lipin 1, that have been identified as SREBP1 regulated were unaffected by GW3965 (table 3.10; Horton et al. 2003). These genes, Fatty acid desaturase 2 and lipin 1 were however down-regulated after treatment with 24(S),25-epoxycholesterol (table 3.5.).

Figure 4.3. Synthesis of the monounsaturated fatty acid oleic acid. The enzymes fatty acid synthase and acetyl-CoA carboxylase-1 are regulated by SREBP1c and were identified as up-regulated after treatment with GW3965.

4.2.4. Phospholipid Synthesis

Reproducible changes were observed in the proteomic data of proteins involved in the synthesis of phospholipids (figure 4.4.) after treatment with $10 \mu \mathrm{M} 24(S), 25-$ epoxycholesterol including ethanolamine-phosphate cytidylyltransferase and collagen type IV alpha-3-binding protein.

Figure 4.4. Simplified schematic of phospholipid synthesis. Ethanolamine-phosphate cytidylyltransferase was identified as down-regulated after treatment with 24(S),25epoxycholesterol.

4.2.5. Decreased expression of Ethanolamine-phosphate cytidylyltransferase

Ethanolamine-phosphate cytidylyltransferase (PCyt2) is an enzyme involved in phospholipid biosynthesis and catalyses the reaction of cytidine triphosphate with ethanolamine phosphate yielding cytidine diphosphate-ethanolamine (CDPethanolamine) and diphosphate. CDP-ethanolamine is then processed further generating phosphatidylethanolamine. Phosphatidylethanolamine is major component of biological membrane and is found in all cells but is particularly abundant in the central nervous system (Bakovic et al. 2007 for review).

In the proteomics datasets PCyt2 was identified and quantified as down regulated reproducibly after treatment with 24(S),25-epoxycholesterol but not with GW3965 suggesting a SREBP2 mediated mechanism (table 3.10). The mean reduction in ethanolamine-phosphate cytidylyltransferase protein expression after 24(S),25epoxycholesterol treatment was 33% less than that of control cell ethanolaminephosphate cytidylyltransferase expression. In order to validate these data Western blotting was performed in SN4741 whole cell lysates. Treatment with 24(S),25-
epoxycholesterol was shown to down regulate PCyt 2 correlating with the proteomics data (fig 4.5). Densitometry analysis showed that PCyt2 was reduced by 15% in 24(S),25-epoxycholesterol treated cells. This was less than observed in the proteomic experiments but highlighted the same trend. There was no significant change with GW3965

Figure 4.5. Western blotting confirmed the observed down-regulation of phosphoethanolamine cytidylyltransferase (PCyt2) in SN4741 cells. $10 \mu \mathrm{M} 24(S) 25$ epoxycholesterol decreased the expression of PCyt2 (lane 2) whilst $1 \mu \mathrm{M}$ GW3965 had no effect on PCyt2 expression (lane 3). Both GW3965 and $24(S) 25$ epoxycholesterol induced ABCA1 (A lanes 2 and 3). Densitometry showed a significant $(\mathrm{p} \leq 0.05)$ decrease in PCyt2 expression of 15% compared with control ($\mathrm{n}=3$, Student's t -test).

4.2.6. Increased expression of Collagen type IV alpha-3-binding protein

Collagen type IV alpha-3-binding protein (col4a3bp; Ceramide transfer protein; Goodpasture antigen-binding protein; StAR-related lipid transfer protein 11) transfers ceramide from where it is synthesised in the endoplasmic reticulum to the Golgi apparatus where it is utilised in the synthesis of the phospholipid sphingomyelin (Hanada et al. 2007 for review). Collagen type IV alpha-3-binding protein has been associated with oxysterol binding protein (OSBP) and the presence of 25 hydroxycholesterol promotes activation of collagen type IV alpha-3-binding protein mediated transfer of ceramide to the Golgi apparatus and, therefore, an increased rate of sphingomyelin synthesis (Perry \& Ridgeway 2006). In addition, phosphorylation of OSBP at serine 240 by protein kinase D impairs the Golgi localisation of collagen type IV alpha-3-binding protein (Nhek et al. 2010). These data suggest a regulatory role for oxysterols in ceramide processing. Interestingly, in some vertebrate species collagen type IV alpha-3-binding protein may have a role in embryo development as in a zebrafish knockout model it appears to play an anti-apoptotic role and is required for normal skeletal muscle and brain growth (Granero-Molto et al. 2008).

The proteomics showed that collagen type IV alpha-3-binding protein expression increased reproducibly after treatment with $24(S), 25$-epoxycholesterol (table 3.10). No change was observed after treatment with GW3965 suggesting an LXR independent mechanism. The identification of collagen type IV alpha-3-binding protein was from multiple peptides and from all biological replicates lending confidence that this observation is a true change (table 3.6). The mean increase in collagen type IV alpha-3-binding protein expression after 24(S),25-epoxycholesterol treatment was 45% more than that of control cell collagen type IV alpha-3-binding protein expression.

In order to determine if the increase observed at the protein level was due to increased transcription RT-qPCR experiments were performed. The mRNA expression of collagen type IV alpha-3-binding protein increased modestly after 24(S),25epoxycholesterol treatment for 24 hours (fig. 4.1). The increase was of a similar magnitude to the change in protein expression seen in the proteomics data. And whilst this increase was statistically significant the p value was close to the 0.05 limit
($\mathbf{p}=0.046$). No change was observed in collagen type IV alpha-3-binding protein mRNA expression after treatment with GW3965.

4.2.7. 24(S),25-epoxycholesterol Effects Caveolin-1 Expression and Localisation

Caveolin-1, a $20-22 \mathrm{kDa}$ protein, is a membrane protein that has multiple functions including roles in endocytosis and cell signalling (reviewed in Parton \& Simons 2007; Hansen \& Nichols 2010). Caveolin-1 forms hairpin loops protruding from the plasma membrane into the cytoplasm by having the C and N termini of the protein anchored to the lipid bilayer. Caveolin can oligomerise with itself and these homooligomers associate with cholesterol and sphingomyelin in order to form caveolae. Caveolae are invaginations in the plasma membrane wall that have many intracellular functions. Each caveolae domain has been estimated to contain 100-200 caveolin proteins and $\sim 10 \mathrm{x}$ the number of cholesterol molecules. These hydophobic parts of the membrane are termed lipid rafts.

Caveolin-1 was identified in the SILAC proteomic experiments as down regulated (table 3.10). Caveolin-1 was identified in all three biological and technical replicates. The mean reduction in caveolin-1 protein expression after 24(S),25-epoxycholesterol treatment was 30% less than that of control cell caveolin-1 expression. Western blotting was performed in order to validate this result. Caveolin-1 showed a decrease in protein expression after 24 hours when measured by immunoblotting (fig 4.6). Densitometry indicates that this observed decrease, when normalised to actin was similar to that observed in the proteomic data for both $24(S) 25$ epoxycholesterol and GW3965. Caveolin-1 was reduced by 32% in $24(S), 25$-epoxycholesterol treated cells and 15% in GW3965 treated cells. This was comparable to the observations in the proteomic experiments.

It has been reported that caveolin-1 expression is regulated, at least in part, by changes in the level of cholesterol (Hailstones et al. 1998). Moreover, it appears that oxysterols (7-ketocholesterol, 7α-hydroxycholesterol) can influence the transcription of caveolin-1 (Fielding et al. 1997). Therefore, to analyse whether the observed effects on caveolin-1 expression on SN4741 cells was due to changes in transcription RT-qPCR experiments were performed.

Figure 4.6. Western blotting confirmed the observed down-regulation of caveolin-1 in SN4741 cells. $10 \mu \mathrm{M} 24(S) 25$-epoxycholesterol and $1 \mu \mathrm{M}$ GW3965 decreased the expression of caveolin-1 (lane 2). Results are indicative of 3 independent experiments. Densitometry showed a significant ($\mathrm{p} \leq 0.05$) decrease in caveolin-1 expression of 32% after $24(S) 25$-epoxycholesterol treatment but no significant change after GW3965 treatment compared with control ($\mathrm{n}=3$, Student's t -test).

Caveolin-1 expression showed no change at the mRNA level after treatment with GW3965 or $24(S), 25$-epoxycholesterol (fig 4.1). At the protein level $24(S), 25-$ epoxycholesterol induced changes in caveolin-1 that was identified in the proteomics data (table 3.10) and by Western blotting (fig 4.6). This implies that the effect of $24(S), 25$-epoxycholesterol is due to post-translational effects. As mentioned earlier, lipid rafts that form the subcellular location of caveolin-1 have an abundance of
cholesterol and are usually found on the plasma membrane. Changes in the intracellular cholesterol could potentially affect caveolin-1 by disrupting the composition of lipid rafts. This implies that oxysterols could interfere with caveolin-1 localisation by inhibiting cholesterol synthesis. In order to test this hypothesis immunofluorescence confocal microscopy was undertaken in order to observe the effect in caveolin-1 localisation that oxysterols induced in SN4741 cells.

SN4741 cells fixed in 4\% paraformaldehyde showed predominant plasma membrane labelling of caveolin-1 (fig 4.7) Exposure of the SN4741 cells to 24(S),25epoxycholesterol led to a loss of caveolin-1 from the membrane and a predominantly intracellular location. Incubation with $1 \mu \mathrm{M}$ GW3965 did not change the localisation pattern observed. GW3965 induces ABCA1 to export cholesterol but does not reduce cholesterol synthesis. The experimental approach was performed in serum free conditions and therefore this observation might be due to the inability of media to accept the exported cholesterol. Whether there would be a different observation in vivo is unclear. In addition other oxysterols were tested. Oxysterols with the greatest affinity for Insig (Radhakrishnan et al. 2007) and, therefore, the greatest antagonism of SREBP2 regulated gene transcription led to a more pronounced change in localisation. 24S-hydroxycholesterol, 25-hydroxycholesterol and 27hydroxycholesterol treatment (all at $10 \mu \mathrm{M}$) resulted in localisation being disrupted similarly to $24(S), 25$-epoxycholesterol. In comparison, 7α-hydroxycholesterol and 19-hydroxycholesterol, 2 oxysterols that are classed as having intermediate or minimal SREBP2 inhibitory effects respectively, showed a negligible effect on the distribution of caveolin-1 (fig 4.8).

To analyse if the effects of $24(S), 25$-epoxycholesterol, $24 S$-hydroxycholesterol, 25hydroxycholesterol and 27-hydroxycholesterol were due to inhibition of cholesterol synthesis, and therefore intracellular cholesterol depletion, SN4741 cells were coincubated with $10 \mu \mathrm{M}$ oxysterol and $250 \mu \mathrm{M}$ cholesterol (fig 4.7; fig 4.8). The presence of cholesterol antagonised the changes in caveolin-1 localisation observed after oxysterol treatment alone with a normalisation of signal to the plasma membrane. This suggests that caveolin-1 localisation is regulated, at least partially, by changes in the intracellular cholesterol level. Therefore, these data show that $24(S), 25$-epoxycholesterol, and other oxysterols, can induce changes in protein
expression and localisation due to indirect effects either by inducing changes on the cellular cholesterol level or by disrupting lipid rafts.

Figure 4.7. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells. Caveolin-1 labelled with monoclonal antibody and using appropriate Alexa 488 labelled secondary. Vehicle treated control cells (A) has a predominant distribution of caveolin-1 on the plasma membrane. Treatment with $1 \mu \mathrm{M}$ GW3965 (B) and $10 \mu \mathrm{M}$ 24(S),25-epoxycholesterol (C) led to a reduction in signal located on the cell surface and to a predominantly internal distribution of caveolin-1. Co-incubation of $10 \mu \mathrm{M}$ $24(S), 25$-epoxycholesterol with $250 \mu \mathrm{M}$ cholesterol resulted in caveolin-1 localisation to partially normalise to the plasma membrane (D).

Figure 4.8. Confocal microscopy performed on paraformaldehyde fixed SN4741 cells. Caveolin-1 labelled with monoclonal antibody and using appropriate Alexa 488 labelled secondary. $10 \mu \mathrm{M} 24 S$-hydroxycholesterol ($24(\mathrm{~S})$-OHChol, A), $10 \mu \mathrm{M} 25-$ hydroxycholesterol (25-OHChol, C), $10 \mu \mathrm{M} 27$-hydroxycholesterol (27-OHChol, E) led to a reduction in signal located on the cell surface and to a predominantly internal distribution of caveolin-1. Co-incubation of $10 \mu \mathrm{M} 24 S$-hydroxycholesterol, $10 \mu \mathrm{M} 25-$
hydroxycholesterol, $10 \mu \mathrm{M} 27$-hydroxycholesterol with $250 \mu \mathrm{M}$ cholesterol resulted in caveolin- 1 localisation to partially normalise to the plasma membrane ($\mathrm{B}, \mathrm{D}, \mathrm{F}$). $10 \mu \mathrm{M}$ 19-hydroxycholesterol (19-OHChol, G) and $10 \mu \mathrm{M} 7 \alpha$-hydroxycholesterol ($7 \alpha-\mathrm{OHChol}, \mathrm{I}$) showed no change in signal located on the cell surface. Coincubation of $10 \mu \mathrm{M} 19$-hydroxycholesterol and $10 \mu \mathrm{M} 7 \alpha$-hydroxycholesterol with $250 \mu \mathrm{M}$ cholesterol had no effect (H, J).

4.2.8. Changes in miscellaneous proteins

Other proteins, with no apparent link to cholesterol, phospholipids or fatty acids were also identified as having a changed expression. 2 proteins that were reproducibly observed as being up regulated were Golgi apparatus protein 1 and macrophage colony stimulating factor.

4.2.8.1 Golgi sialoglycoprotein MG-160

Golgi sialoglycoprotein MG-160 (ESL1; GLG1; E-selectin ligand 1; Golgi apparatus protein 1) is a protein associated with the membrane of the Golgi apparatus though its function is unknown (Gonatas et al. 1989). It is however, expressed early in embryo development of some vertebrate species suggesting a potential role in development. In chick embryos Golgi sialoglycoprotein MG-160 has been observed as expressed after 3 days with high levels in the notochord, neural tube, somites, and cartilage (Stieber et al. 1995).

The proteomics showed that Golgi sialoglycoprotein MG-160 expression increased reproducibly after treatment with $24(S), 25$-epoxycholesterol (table 3.10). No change was observed after treatment with GW3965 suggesting an LXR independent mechanism. The mean increase in Golgi sialoglycoprotein MG-160expression after $24(S), 25$-epoxycholesterol treatment was 36% more than that of control cells Golgi sialoglycoprotein MG-160 protein expression. The identification of Golgi sialoglycoprotein MG-160 was from multiple peptides and from all biological replicates lending confidence that this observation is a true change. To identify this protein at least 3 unique peptides were used whilst the maximum was 22 unique
peptides and thus the large number of peptides identified lends weight to the observed changes in protein expression. However, as a note of caution, no further validation was undertaken.

4.2.8.2. Increased Expression of Macrophage Colony Stimulating Factor

Macrophage colony stimulating factor (MCSF; Colony stimulating factor 1, CSF-1), was identified in the SILAC experiments as up-regulated reproducibly in SN4741 cells after $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol but not $1 \mu \mathrm{M}$ GW3965 (table 3.10). MCSF is a α-helical cytokine whose primary role is a inducer of mononuclear cell activity by promoting the survival, proliferation and differentiation of monocytes and macrophages (Sweet \& Hume 2003 for review) and acts through MCSF receptor (MCSF-R; c-fms). MCSF deficient mice are macrophage deficient but also suffer from osteopetrosis due to a reduction in osteoclast numbers (Yoshida et al. 1990; Wiktor-Jedrzejczak et al. 1990). In addition, MCSF deficient mice are infertile suggesting a role in reproduction (Pollard et al. 1991). The absence of MCSF results in mental retardation due to abnormal brain development (Michaelson et al. 1996). Thus, MCSF is essential for healthy development.

SN4741 cells are a neuronal cell line and therefore due to the implication of oxysterols in brain development the observed proteomic change in MCSF expression warranted further analysis. MCSF was identified in all three biological replicates and 5 of the 6 technical replicates. The mean increase in MCSF protein expression after 24(S),25-epoxycholesterol treatment was $\sim 34 \%$ more than that of control cell MCSF expression (table 3.10). However, the change in the proteomic data was unable to be validated by Western blotting the same lysates (fig 4.9). Immunoblotting of SN4741 whole cell lysates showed no change in the level of MCSF after $10 \mu \mathrm{M} 24(S), 25-$ epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 treatment. Densitometry indicates that neither treatment had an effect on the observed level of MCSF.

Figure 4.9. Western blotting of SN4741 lysates probing for MCSF. No significant change was observed in MCSF protein expression by Western blotting compared with control after treatment with $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $1 \mu \mathrm{M}$ GW3965 (n=3, Student's t-test).

To determine if the observed change in the proteomic data resulted from an increase to the transcription of the MCSF gene qRT-PCR was performed. The transcription of MCSF was not increased in the presence of GW3965, 7α-hydroxycholesterol and 7β hydroxycholesterol. In contradiction a modest, but significant, increase was observed after treatment with $24(S), 25$-epoxycholesterol, 24(S)-hydroxycholesterol, and 25-
hydroxycholesterol (fig 4.10). 24(S),25-epoxycholesterol, 24(S)-hydroxycholesterol and 25 -hydroxycholesterol led to a ~ 1.5 fold increase in the mRNA level after 24 hours of treatment. The oxysterols that caused an increase in MCSF were oxygenated on the side chain and natural efficacious ligands for LXR. However, as GW3965 did not induce any change in the mRNA level of MSCF it can be inferred that the mechanism of action is not through LXR.

Figure 4.10 . qPCR showing mean fold change in MCSF expression in SN4741 cells. Treatment with sidechain oxygenated oxysterols resulted in a modest but statistically significant increase in MSCF expression after 24 hours in an apparently LXR independent mechanism as $1 \mu \mathrm{M}$ GW3965 treatment did not result in an observable change in expression. $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol, $10 \mu \mathrm{M} 24(S)$ hydroxycholesterol and $10 \mu \mathrm{M} 25$-hydroxycholesterol increased expression of MCSF ~ 1.5 fold. Ring oxygenated oxysterols (7α-hydroxycholesterol or 7β hydroxycholesterol) did not significantly change the expression of MCSF. Compared with control, $\mathrm{n}=3$, ${ }^{*} \mathrm{p}<0.05$, Student's t -test; ${ }^{* *} \mathrm{p}<0.01$, Student's t-test.

In order to determine if the increased expression of MCSF observed at the protein level in the SILAC proteomic data and at the mRNA level in the qPCR data resulted in an increased secretion from SN4741 cells an enzyme linked immunosorbant assay (ELISA) was performed (fig 4.11). The ELISA allowed the detection of MCSF in the cell culture medium of SN4741 cells treated with vehicle, $1 \mu \mathrm{M}$ GW3965 or $10 \mu \mathrm{M}$ oxysterol (24(S),25-epoxycholesterol, 24(S)-hydroxycholesterol, 25hydroxycholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol). The concentration of the internal control, supplied as part of the kit, calculated by standard curve fell into the acceptable limits for the assay. MCSF secretion was detected at low levels in SN4741 cells with the concentration in the cell culture media of $\sim 70 \mathrm{pg} / \mathrm{ml}$. No differences were observed in the secreted MCSF level between different treatment groups (ANOVA p>0.05).

Figure 4.11. ELISA assay of secreted MCSF concentration in SN4741 cell supernatant. No significant difference in MCSF secretion was observed with $1 \mu \mathrm{M}$ GW3965 or $10 \mu \mathrm{M}$ oxysterol treatment ($\mathrm{n}=3$, ANOVA).

4.2.9. Increased MCSF mRNA expression in THP1 human monocytes.

As mentioned earlier (section 4.2.8.2) MCSF is a cytokine and its biological role includes the inducement of monocytes to differentiate to macrophages. Therefore, following the data from the SN4741 cells that MCSF was modestly up-regulated after oxysterol treatment, experiments were undertaken in THP1 human monocytes in order to determine the effect, if any, oxysterols were inducing.

In THP1 monocytes there was a large response to oxysterols at the mRNA level (fig 4.12). All oxysterol treatments (24(S),25-epoxycholesterol, 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol) resulted in an up-regulation in MCSF expression. The greatest response, with a 35 mean fold change compared with control was 25 -hydroxycholesterol. The other oxysterols tested (24(S),25-epoxycholesterol, 24(S)-hydroxycholesterol, 7 α-hydroxycholesterol, 7 β hydroxycholesterol) gave a reduced but still significant response. These oxysterols gave a varied response with 7α-hydroxycholesterol $<24(S), 25$-epoxycholesterol $<$ $24(S)$-hydroxycholesterol < 7 β-hydroxycholesterol < 25-hydroxycholesterol. Interestingly, there was no change with GW3965 suggesting an LXR independent mechanism. This is supported by the data that shows that 7α-hydroxycholesterol, an oxysterol classed as a poor activator of LXR α and LXR β (Janowski et al. 1999), is inducing changes in MCSF expression.

Figure 4.12. qPCR showing mean fold change in MCSF expression in THP1 monocytes. Treatment with sidechain oxygenated oxysterols resulted in a significant increase in MCSF expression. 25-hydroxycholesterol treatment resulted in the greatest observed change after 24 hours in an apparently LXR independent mechanism as $1 \mu \mathrm{M}$ GW3965 treatment did not result in an observable change in expression c.f. control. $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol, $10 \mu \mathrm{M} 24(S)$-hydroxycholesterol (p <0.05, Student's t-test) and $10 \mu \mathrm{M} 25$-hydroxycholesterol ($\mathrm{p}<0.01$, Student's t-test) increased MCSF expression. Unlike in SN4741 cells the cholesterol ring oxygenated oxysterols 7α-hydroxycholesterol and 7β-hydroxycholesterol also induced significant increases in MCSF gene expression. Compared with control, $\mathrm{n}=3,{ }^{*} \mathrm{p}<0.05$, Student's t-test; ** $\mathrm{p}<0.01$, Student's t-test, ${ }^{* * *} \mathrm{p}<0.001$, Student's t-test.

In order to determine if the observed increase in MCSF mRNA was coupled with an increase at the protein level immunoblotting was performed. Western blotting was performed using anti-MCSF primary antibody supplied with a MCSF ELISA kit for detection was used to probe for MCSF. The antibody is directly linked to horseradish peroxidase and therefore required no secondary antibody before detection using chemiluminescence. Western blotting of whole cell lysates did not identify a difference in the level of MCSF in THP1 monocytes after 24 hour treatment with

GW3965, 24(S),25-epoxycholesterol or 25-hydroxycholesterol (figure 4.13). Thus, the significant increase observed at the mRNA level appears not to be reproduced post translationally at the protein level.

MCSF

Figure 4.13. Western blot showing no change in MCSF protein expression in THP1 monocytes. No increase was observed in MCSF expression after treatment with $1 \mu \mathrm{M}$ GW3965, $10 \mu \mathrm{M} 24(S), 25$-epoxycholesterol or $10 \mu \mathrm{M} 25$-hydroxycholesterol for 24 hours ($\mathrm{n}=1$).

As shown previously in THP1 monocytes there is a large increase in MCSF mRNA expression following oxysterol treatment (fig 4.12) that is not corroborated at the protein level (fig. 4.13). It is possible, though unlikely, that no change in MCSF protein was due to increased secretion from the cells of newly synthesised protein. Thus, creating a situation whereby protein synthesis is increased but impossible to detect by examination of whole cell lysate due to the protein being secreted leading to no net change. Therefore, an enzyme linked immunosorbant assay (ELISA) was performed. The ELISA assay was performed on cell culture media taken from human THP1 monocytes treated with vehicle, GW3965, or various oxysterols (24(S),25epoxycholesterol, 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 7 α hydroxycholesterol, 7β-hydroxycholesterol; fig 4.14). This assay was performed in order to determine if the significant up-regulation of MCSF expression observed at
the mRNA level corresponded to an increase in secretion of MCSF. The MCSF concentration for all treatments, when quantified with a standard curve, fell below the concentration of the lowest concentration standard $(78.125 \mathrm{pg} / \mathrm{ml})$ and therefore from these data it appears that oxysterol treatment alone does not directly stimulate MCSF secretion in THP 1 cells.

Figure 4.14. ELISA assay of secreted MCSF concentration in THP1 cell supernatant. All treatments were below the concentration of the most dilute MCSF standard. Thus, THP1 monocytes appear not secrete MCSF in the presence of oxysterols.

4.3. Discussion

SREBP1c is the main transcription factor responsible for the regulation of fatty acid synthesis. The transcription of SREBP1c is induced by LXR α, however the processing of SREBP1c is inhibited by Insig binding. As oxysterols mediate both LXR α activation and Insig inhibition there is a balance between the two opposing effects. In some cases, such as SREBP1c regulated genes acetyl-CoA carboxylase 1 and fatty acid synthase the net effect after 24(S),25-epoxycholesterol is no change at the protein level whilst GW3965 increased the expression of these genes due to the lack of the Insig inhibitory effect. However, for other genes also regulated by SREBP1c, such as fatty acid desaturase 2 (table 3.10), it appears that the binding of Insig overcome the effect of increased SREBP1 causing a reduction in gene expression after treatment with $24(S), 25$-epoxycholesterol. These effects may be cell type specific as the SREBP1c induction is due to $\mathrm{LXR} \alpha$ whose expression varies between different tissues.

The nuclear receptor LXR β, for which oxysterols are the natural ligand, was identified as up-regulated after treatment with both $24(S), 25$-epoxycholesterol and the synthetic ligand GW3965 suggesting a LXR dependent mechanism. It is interesting that LXR β was not increased at the mRNA level (fig 4.1), i.e. that transcription was not increased, as there is some evidence that the binding of ligand to LXR β prevents degradation of the nuclear receptor (Kim et al. 2009). Cells were transfected with FLAG tagged LXR β and, after cycloheximide treatment to prevent new protein synthesis, the degradation of the protein was measured. The binding of ligand to LXR β slowed the degradation of LXR β. Therefore, we hypothesise that the increase at the proteomic level is due to a decrease in degradation of LXR β but with no decrease in protein production. These data are the first to show that ligand binding can increase the level of endogenous LXR β protein.

It appears that the presence of $24(S), 25$-epoxycholesterol has differential effects on members of the StAR-related lipid transfer protein family of transporters. StARrelated lipid transfer protein 4 (Stard4) is regulated by SREBP2 and transports cholesterol (Soccio et al. 2005). At both the protein and mRNA level Stard4 is downregulated after $24(S), 25$-epoxycholesterol treatment (table 3.10 ; fig. 4.1).

Interestingly, the converse is true of Collagen type IV alpha-3-binding protein (col4a3bp; StAR-related lipid transfer protein 11, Stard11). At both the protein and mRNA level Collagen type IV alpha-3-binding protein is up-regulated after 24(S),25epoxycholesterol treatment (table 3.10; fig. 4.1). Collagen type IV alpha-3-binding protein transports ceramide from the endoplasmic reticulum to the Golgi apparatus where it is synthesised to sphingomyelin. Interestingly, an LXR responsive gene, ABCG1, exports both cholesterol and sphingomyelin (Kennedy et al. 2001; Sabol et al. 2005; Sano et al. 2007). Therefore, the increase in Collagen type IV alpha-3binding protein might be a homeostatic feedback to prevent reduced levels of sphingomyelin by increasing the rate of synthesis of the phospholipid. Indeed, this hypothesis fits the observation that the presence of 25 -hydroxycholesterol promotes activation of Collagen type IV alpha-3-binding protein mediated transfer of ceramide to the Golgi apparatus and, therefore, an increased rate of sphingomyelin synthesis (Perry \& Ridgeway 2006).

It appears that oxysterols have multiple roles in membrane homeostasis. It has been shown that the enzyme phosphoethanolamine cytidylyltransferase (PCyt2) that is required for phosphoethanolamine synthesis is down-regulated after $24(S), 25-$ epoxycholesterol treatment. During the period where this work was undertaken it has been independently reported in the literature that PCyt2 is regulated by SREBP2 and, therefore, oxysterols in mouse NIH3T3 fibroblasts (Ando et al. 2010). Therefore, these data presented here corroborates the previously reported data generated from a different cell type and shows that $24(S), 25$-epoxycholesterol regulates PCyt2 in SN4741 neurons by modulating SREBP induced transcription. However, another enzyme previously reported to be regulated by SREBP2, phosphocholine cytidylyltransferase (Pcyt1) was identified in the proteomics data as having no change in expression (table 3.10.; Kast et al. 2001).

The expression and localisation of the membrane protein caveolin-1 appears to be influenced indirectly by $24(S), 25$-epoxycholesterol. Caveolin-1 was observed as down-regulated at the protein level but unchanged at the mRNA level (table 3.10; fig. 4.1; fig 4.6). Two major components of lipid rafts are caveolin-1 and cholesterol and thus we hypothesise that the level of the two are interdependent and that in this case a change in the intracellular cholesterol level is responsible for the observation of decreased protein expression. This hypothesis is supported by the confocal
microscopy data that demonstrates that oxysterols with a high affinity for Insig affect the localisation of caveolin-1 and that this effect can be negated by co-incubating with cholesterol (fig 4.7; fig 4.8). This relationship, could potentially explain the observation that in apolipoprotein E (ApoE) knockout mice there was an increased expression of brain caveolin-1 (Gaudreault et al. 2004). As ApoE is a cholesterol transporter this implicates a role for cholesterol homeostasis dysregulation in the observed up-regulation. An isoform of apolipoprotein E termed ApoE4 has been implicated in Alzheimer's disease. Thus, cholesterol dysregulation may explain the increased expression of caveolin-1 observed in the frontal cortex and hippocampus of Alzheimer's disease patients compared with age matched control patients (Gaudreault et al. 2004).

The SILAC data also identified changes unassociated with lipid metabolism and membrane homeostasis. It is interesting that MCSF was identified as increased at the protein and mRNA level after oxysterol treatment in SN741 neurons and, at the mRNA level, in THP1 monocytes (table 3.10; fig 4.10; fig 4.12). MCSF expression appears to be required for normal brain development in mice (Michaelson et al. 1996) and has been associated with two disease states also associated with oxysterols; artherosclerosis and Alzheimer's disease (section 1.1.6.). In artherosclerosis MCSF expression is increased in endothelial cells after treatment with low density lipoprotein (Rajavashisth et al. 1990). Indeed, in MCSF knockout mice there was a marked decrease in artherosclerotic lesions after feeding with an atherogenic diet (Qiao et al. 1997) and in low density lipoprotein receptor knockout mice artherogenesis was significantly reduced after MCSF was knocked out (i.e. double knockout LDLR -/-, op/op, Rajavashisth et al. 1998). Therefore, it is possible that the oxysterol component of low density lipoprotein is a mediator in this increase of MCSF due to the measured induction of MCSF mRNA in monocytes (fig 4.12).

MCSF has been associated with Alzheimer's disease though its role is unclear. The expression of MCSF has been shown to associate with $\mathrm{A} \beta$ plaques in Alzheimer's patients brains and that in the cerebrospinal fluid of Alzheimer's patients the level of MCSF is elevated ~ 5-fold compared with control (Du Yan et al. 1997). Also, in a mouse model of Alzheimer's increased expression of MCSF-R has been observed in microglia in transgenic AbPPV717F mice suggesting a role for its ligand MCSF
(Murphy et al. 2000). Indeed, in two studies from the same group it appears that MCSF is beneficial as knockout MCSF mice (these mice were not an Alzheimer's model) had an increased number of amyloid plaques (Kaku et al. 2003) and injection of MCSF to these mice reduced the deposition of A β (Kawata et al. 2005). However, there is contradictory evidence as an independent study did not observe $A \beta$ deposits in MCSF knockout mice (Kondo et al. 2009). Transgenic mice with the chimeric human/mouse $A \beta$ precursor protein (APPSwe) gene and the human presenilin 1 gene (A246E variant) injected with MCSF had reduced $\mathrm{A} \beta$ deposits and an increase in the number of microglia (Boissonneault et al. 2009). As microglia have been shown to be able to clear $A \beta$ this increase might be relevant (Majunder et al. 2007). However, the benefit of MCSF activated microglia is unclear as there is evidence that they can augment toxicity induced by $\mathrm{A} \beta$ (Li et al. 2004).

The mechanism by which oxysterols increase the expression of MCSF appears to be independent of LXR as GW3965 shows no activity whilst ring oxygenated oxysterols such as 7β-hydroxycholesterol and 7α-hydroxycholesterol induce significant increases in MCSF mRNA in THP1 monocytes. A nuclear receptor that has been shown to regulate MCSF expression is PPAR γ (Bonfield et al. 2008). Similarly to LXR, PPAR γ is a nuclear receptor that requires heterodimerisation with RXR when activated. PPAR γ activation causes a decrease in MCSF expression (Bonfield et al. 2008). Therefore it appears that $\operatorname{PPAR} \gamma$ activation has an inverse effect to treatment with oxysterols. This leads to the hypothesis that oxysterols can inhibit PPAR γ activity. Indeed, there has been recent evidence to suggest that 25-hydroxycholesterol can inhibit PPAR γ (Xu et al. 2012).

The large (~ 35-fold) up-regulation in MCSF mRNA expression in THP1 cells after 25-hydroxycholesterol treatment may indicate that this is a part of an immune response. A large increase in the enzyme cholesterol-25-hydroxylase and its product 25-hydroxycholesterol is seen after exposure to lipopolysaccharide (section 1.1.7). The role of this increase in 25 -hydroxycholesterol is currently unclear. Therefore, part of the response to infection may be to induce MCSF production to promote the differentiation of monocytes to macrophages and/or recruit macrophages to the site of infection. However, no increase in MCSF was identified in THP1 cells at the protein
level measured either by ELISA or Western blot. Therefore, it is possible that the synthesis and secretion of MCSF protein is controlled post-translationally and requires a secondary signal in order for the observed increase in mRNA expression to be converted to increased protein.

It is important to note that the experiments presented here were only conducted 3 times and that the low number of replicates may influence the statistical analysis. Ideally a sample size greater than 3 would have been used which would increase the power of Student's t -test. Unfortunately, time and financial constraints were in place limiting the number of replicates performed. It is however common for biological papers, even in high impact 'good' journals to combine a sample size of 3 with Student's t-test (e.g. Zelcer et al. 2009).

In summary, the SILAC proteomic approach has identified a large number of proteins with confidence in their quantification and identification due to the use of multiple peptides. This approach has led to the observation of expected changes such as down regulation of the cholesterol synthesis pathway. In addition, a number of the proteins observed as having their expression changed were related to the composition of cellular membranes. Thus, as $24(S), 25$-epoxycholesterol is the most abundant oxysterol in murine embryonic brain it is likely that it plays a role in embryonic lipid homeostasis. Increased expression of LXR β after ligand binding and the LXR independent increase in MCSF expression were also observed. Therefore, as 24(S),25epoxycholesterol induces LXR β and MCSF and that these proteins are required for normal brain development we hypothesise that the role of this oxysterol is an important one for embryonic neurogenesis.

CHAPTER 5: PHOSPHOPROTEOMIC ANALYSIS OF 24(S),25-

 EPOXYCHOLESTEROL AND 25-HYDROXYCHOLESTEROL TREATMENT IN
SN4741 CELLS

5.1. Introduction.

A common post-translational modification of proteins is phosphorylation. It has been estimated that around 30% of proteins will at some point during their expression (i.e. not simultaneously) be phosphorylated (Larsen et al. 2005). Protein phosphorylation is important for the transmission of signals within eukaryotic cells and thus, plays an important role in the regulation of diverse cellular processes. The reversible addition, or subtraction, of a phosphate group to proteins can result in the activation, or deactivation, of enzymes due to a conformational shift in their tertiary structure. This change can result in an enzyme having its activity restricted by altering the binding pocket that recognises the target molecule or by modifying the active site of enzyme activity. Serine, threonine and, less commonly, tyrosine amino acids can be phosphorylated in eukaryotic organisms. Protein phosphorylation is regulated enzymatically; enzymes classed as kinases add a phosphate group to a protein whereas a phosphatase does the reverse.

The major role for oxysterols is in cholesterol homeostasis (section 1.1.5). However, in addition to their regulatory role oxysterols can affect protein phosphorylation. There is evidence to show that oxysterols effect the phosphorylation of extracellular signal regulated kinase (ERK1/2) (Yoon et al. 2004, Lemaire-Ewing et al. 2009). Cholesterol stabilises a phosphatase complex containing oxysterol binding protein (OSBP) as a scaffold, the serine/threonine phosphatase PP2A and the tyrosine phosphatase HePTP that decreases the phosphorylation of ERK 1/2 (Wang et al. 2003, Wang et al. 2005). By competing with cholesterol 25 -hydroxycholesterol causes the disassembling of the phosphatase complex and, therefore, the presence of oxysterol up-regulates ERK 1 phosphorylation at the thr202/tyr204 amino acid residues and ERK 2 at thr185/tyr187. ERK $1 / 2$ is an important signalling molecule and a known oncogene. It has roles in a number of different biological functions including cell growth, differentiation and apoptosis (Avruch 2007). The up-regulation of ERK $1 / 2$ phosphorylation has been shown in a number of different cell lines either
by depletion of cholesterol with cyclodextrin or with treatment with oxysterols (table 4.1; Furuchi \& Anderson 1998, Yoon et al. 2004, Agassandian et al. 2005, Calleros et al. 2006, Kim et al. 2007, Jin et al. 2008, Lemaire-Ewing et al. 2009). This effect seems to be a feature of oxysterols generally as a number of diverse oxysterols have been shown to initiate this effect including 7β-hydroxycholesterol, 22hydroxycholesterol, and 25-hydroxycholesterol.

It is unclear whether treatment with oxysterols only affects ERK $1 / 2$ of the mitogen activated protein kinase (MAPK) family as there has been contradictory evidence regarding other MAPKs (e.g. JNK) (Ares et al. 2000, Yoon et al. 2004). In addition, it is unclear as to what pathways downstream of ERK $1 / 2$ are up/down-regulated due to the activation of ERK $1 / 2$. Furthermore, it is possible that phosphorylation on other proteins other than MAPKs could be affected by the destabilisation and deactivation of the PP2A/HePTP phosphatase complex. It has been demonstrated in the literature that oxysterols can cause changes to phosphorylation, however, the full extent and significance of these has yet to be assessed (table 5.1).

Table 5.1. Summary of studies analysing effects of oxysterol treatment or cyclodextrin cholesterol depletion on ERK phosphorylation. * = No information regarding conformation. All changes were demonstrated using Western blotting. $\mathrm{M} \beta \mathrm{CD}=$ methyl $-\beta$-cyclodextrin. $\mathrm{H} \beta \mathrm{CD}=2$-hydroxypropyl- β-cyclodextrin. $\mathrm{OHChol}=$ hydroxycholesterol.

Oxysterol	Cell-line	Condition	Effect on PhosphoERK	Reference
n/a	Rat-1	Serum starved 24-40hrs $2 \% \mathrm{H} \beta \mathrm{CD} 1 \mathrm{hr}$ EGF $50 \mathrm{ng} / \mathrm{ml}$ ($0-10 \mathrm{~min}$)	Increase after 3min c.f. control.	Furuchi \&Anderson 1998
73-OHChol	Human aortic smooth muscle	$5 \mu \mathrm{~g} / \mathrm{ml} 5-20 \mathrm{~min}$ Serum starved 24 hrs Serum free treatments	Increase after 5min c.f. control Max. response after 10 min .	$\begin{gathered} \text { Ares et al. } \\ 2000 \end{gathered}$
n/a	Fibroblasts /Hela	$20 \mu \mathrm{M}$ PD98059 for 10 min then $0.5-2 \%$ M β CD 15 min	Increase with all concentrations M β CD c.f.control.	Wang et al. 2003
22(R)-OHChol	KMBC	$30 \mu \mathrm{M}$ Serum starved 24 hrs Time course	Increase after 2 hrs . No control or totalERK data presented.	Yoon et al. 2004
22-OHChol *	MLE	$5-30 \mu \mathrm{M}$ Serum free treatments Time course	Increase after 15 min . Persisted for 6hours.	Agassandian et al. 2005
25-OHChol	NIH3T3	$2.5 \mu \mathrm{M}$ With serum 48hours	~ 2 fold increase No total-ERK data presented.	Calleros et al. 2006
n/a	HaCaT	10 mM M β CD 1 hr Serum starved 24hrs	Increase after 60min c.f. control.	Kim et al. 2007
n/a	Normal human melanocytes	1 mM M β CD Time course. With serum.	Increase after 6 hours. Persisted for 48hours. No control data presented.	Jin et al, 2008
78 -OHChol 25-OHChol	THP-1	$50 \mu \mathrm{M}$ Time course. With serum.	Max. increase at 6hours. $\begin{aligned} 7 \beta-\mathrm{OHChol} & =\sim 6 \text {-fold } \\ 25-\mathrm{OHChol} & =\sim 3 \text {-fold } . \end{aligned}$	LemaireEwing et al. 2009

In embryonic mouse brain $24(S), 25$-epoxycholesterol is present at a concentration greater than expected (Wang et al. 2009). The role that it plays is unclear it is possible that it acts beyond its activity as a ligand for SREBP and LXR and induces changes in post-translational modifications such as phosphorylation. Indeed, this is feasible as there is, as previously described, evidence that oxysterols can induce changes in ERK phosphorylation. Interestingly, previous work has shown a link between ERK activity and normal dopaminergic neuronal development. It has been shown that dopamine D_{2} receptors in mesenphalic neuronal primary cell cultures activate ERK (Kim et al. 2006). This in turn activates the transcription factor Nurrl that is important for normal dopaminergic neuron development, (Kim et al. 2006). Further work by the same group showed that striatal-enriched protein tyrosine phosphatase, a ERK phosphatase, also has an effect on normal dopaminergic neuron development (Kim et al. 2008). Gene silencing of striatal-enriched protein tyrosine phosphatase using siRNA reduced by $\sim 25 \%$ the number of tyrosine hydroxylase positive mesenphalic neuronal primary cells. In addition, another paper, again by the same group, demonstrated that Wnt5a protein acted through dopamine D_{2} receptors to increase the number of tyrosine hydroxylase positive cells in mesenphalic neuronal primary cell cultures by $\sim \mathbf{2 5 \%}$ (Yoon et al. 2011). Wnt5a protein induced ERK phosphorylation that appeared to be mediated by EGFR signalling; small molecule inhibition of EGFR abolished the effect of Wnt5a on ERK phosphorylation and the increase in tyrosine hydroxylase positive neurons. It has also been shown, by an independent group, that ERK has a role to play in midbrain dopaminergic neurogenesis (Jaeger et al. 2011). In this case it appears that small molecule inhibition of ERK phosphorylation, for 2 days, triggers the differentiation of stem cells into dopaminergic neurons. However, ERK phosphorylation is then required in order to consolidate this effect. To demonstrate this, a small molecule MEK inhibitor PD0325901 used continuously for 5 days had no effect on Lmxla and Foxa2 (markers of dopaminergic neurogenesis) whereas 2 days treatment with PD0325901 followed by 3 days without significantly increased both. Thus, it appears that the regulation of ERK is important in normal dopaminergic neurogenesis.

Therefore, in order to evaluate changes to protein phosphorylation in SN4741 neuronal cells after treatment with oxysterols, 25-hydroxycholesterol and 24(S),25-
epoxycholesterol, a SILAC (section 1.2.3.1.) phosphoproteomic approach was employed.

Phosphoproteomics is the analysis of post-translational phosphorylation on a global protein level. However, phosphopeptides are difficult to analyze as the higher abundance of unmodified peptides leads to low signal intensities and low ionization efficiency (Thingholm et al. 2009). Therefore, phosphoproteomics relies on the enrichment of the phosphopeptides allowing the modified peptide to be observed rather than the much more abundant unmodified peptides. A number of phosphoenrichment techniques are available that allow the concentration of phosphopeptides (section 1.2.4.3.). In the work presented here a strong cation exchange fractionation step was used prior to immobilised metal ion affinity chromatography (IMAC). IMAC relies on the chelation of positively charged metal ions to beads creating a stationary phase that will bind to negatively charged phosphopeptides. Therefore, non-phosphorylated peptides will not bind to the metal ions and will be present in the initial flow through and phosphopeptides can be eluted subsequently and analysed using LC-MS/MS using a multistage activation method (section 1.2.2.3.).

Thus, the aim of the work is to investigate the phosphoproteomic changes in SN4741 cells, a neuronal cell line derived from the substantia nigra of embryonic mice, treated with 25-hydroxycholesterol and 24(S),25-epoxycholesterol.

5.2. Results

5.2.1. Effect of 25-hydroxvcholesterol on ERK Phosphorylation

Initially Western blotting was performed examining the effect of 25hydroxycholesterol in Hela cells. This was performed to observe previously reported changes in ERK phosphorylation in transfected Hela cells after 25-hydroxycholesterol treatment (Wang et al. 2005). An increase in phosphorylated ERK was observed after 6 hours treatment which persisted until 24 hours (fig. 5.1). This slow onset of action suggests a secondary or tertiary effect of 25 -hydroxycholesterol on ERK phosphorylation. The phosphoERK1/2 antibody used detects phosphorylation on thr202/tyr204 (ERK1) or thr 185/tyr187 (ERK2) when either amino acid residue or both are phosphorylated.

Figure 5.1 25-hydroxycholesterol treatment increases ERK1/2 phosphorylation in Hela cells. $10 \mu \mathrm{M} 25$-hydroxycholesterol in serum free media increased ERK1/2 phosphorylation over time in Hela cells ($20 \mu \mathrm{~g}$ lysate loaded) with a corresponding decrease in the SREBP2 regulated gene squalene synthase ($n=1$). No serum starvation was performed prior to treatment.

The role of oxysterols in neuronal development is the area of interest in this research and therefore phosphoproteomic experiments were to be conducted in SN4741 cells derived from embryonic murine substantia nigra. SN4741 cells are dissimilar to Hela as they are neuronal not epithelial and are derived from mouse instead of human. Therefore, after the initial experiment in Hela cells the effect of 25-
hydroxycholesterol on phospho-ERK was examined in SN4741 cells. A number of experiments were performed (table 5.2) using different methodologies though these experiments proved inconclusive with a number of contradictory observations. However, the effect of 25 -hydroxycholesterol on phospho-ERK might be cell type or species specific and therefore we proceeded with SILAC experiments to examine the phosphoproteome as a whole.

Table 5.2. Summary of Western blot experiments analysing effect of 25hydroxycholsterol on SN4741 cell phospho-ERK levels. All treatments performed in serum free media. $\mathrm{H} \beta \mathrm{CD}=2$-hydroxypropyl- β-cyclodextrin; $\mathrm{EGF}=$ epidermal growth factor; 25-OHChol=25-hydroxycholesterol.

Treatment	Treatment time	Observed change in ERK phosphorylation c.f. control	Serum starved?
$10 \mu \mathrm{M} 25-$ OHChol	24 hours	Down	No
$10 \mu \mathrm{M} 25-$ OHChol	24 hours	No change	No
$25 \mu \mathrm{M} 25-$ OHChol	2 hours	No change	24 hours
$25 \mu \mathrm{M} 25-$ OHChol	3 hours	Down	24 hours
$25 \mu \mathrm{M} 25-$ OHChol	3 hours	Up	24 hours
$2 \% \mathrm{H} \beta \mathrm{CD}+$ EGF	2 hours	No change	24 hours
$2 \% \mathrm{H} \beta \mathrm{CD}+$ EGF	1 hours	No change	24 hours
$2 \% \mathrm{H} \beta C D+$ EGF	1 hours	No change	24 hours

5.2.2. Strong Cation Exchange and IMAC

Strong cation exchange chromatography was used in order to reduce the complexity of the peptide mixture. The performance of the column was evaluated prior to use as shown previously (fig. 3.5). The presence of a phosphate group on serine/threonine/tyrosine residues of peptides results in a more anionic molecule. Strong cation exchange chromatography separates molecules based on their charge, with cationic molecules retained longer so phosphopeptides would elute earlier from the column. Therefore, the fraction collection was shortened at the beginning of the run when compared with the fractionation conducted for the protein expression
proteomics (fig. 3.6). It can be seen that the largest number of phosphopeptides as a percentage of the total number of peptides in the fraction were eluted at the beginning of the strong cation exchange run in both biological replicates (fig. 5.2; fig. 5.3).

In early fractions the majority of peptides eluted are phosphorylated (e.g. fractions 5 and 3 respectively for the 2 biological replicates). In addition, a large number of phosphopeptides eluted in the middle of the run. It can be seen that this is the time where the majority of peptides elute from the SCX column and therefore a large number of phosphopeptides here is unsurprising. However, as a proportion of the total this is much lower than early fractions. In these 'middle' fractions a large number of non-phosphorylated peptides were observed. The IMAC approach employed for phosphopeptide enrichment should, in theory, only bind phosphorylated peptides. Therefore, it is likely that the detection of these non-phosphorylated peptides is due to non-specific interactions between the IMAC beads and anionic residues.

A

B

Fraction

Figure 5.2. Strong Cation Exchange chromatography trace of SILAC peptides and phosphopeptides from the first biological replicate. A) The UV ($\lambda=214 \mathrm{~nm}$) chromatogram highlights the large number of peptides present on the column. The time interval for fraction collection is indicated B) In this example a total of 4513 unique peptides were identified. Of these 1232 were unique phosphopeptides. Phosphopeptides eluted throughout the run but predominantly in early fractions. In fraction 5 the majority (84%) were identified as phosphopeptides. In later fractions very few phosphopeptides were detectable.

A

B

Fraction

Figure 5.3. Strong Cation Exchange chromatography trace of SILAC peptides and phosphopeptides from the second biological replicate. A) The UV ($\lambda=214 \mathrm{~nm}$) chromatogram highlights the large number of peptides present on the column. The time interval for fraction collection is indicated B) In this example a total of 7990 peptides were identified. Of these 845 were unique phosphopeptides. Phosphopeptides eluted throughout the run but predominantly in early fractions. In fraction 3 the majority (68%) were identified as phosphopeptides. In later fractions very few phosphopeptides were detectable.

5.2.3. C18 Reverse Phase LC-MS/MS of SILAC phosphopeptides

The peptide mixture fractions derived from IMAC phosphoenrichment were dried under vacuum and resuspended in $\mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid to be analysed by LCMS/MS. In order to test the performance of the reverse phase C18 column performance prior to running the SN4741 derived SILAC samples trypsin digested bovine serum albumin (100 fmol ; BSA) was used. This allowed validation of both chromatography and mass spectrometry performance. In order to ensure the complete removal of the BSA peptides prior to running the SILAC SN4741 phosphopeptide samples a blank run was performed injecting $\mathbf{8 0 \%}$ acetonitrile.

Figure 5.4. Reverse Phase LC-MS/MS SILAC phosphopeptide separation. An example chromatogram (fraction 5 of $1^{\text {st }}$ biological replicate; fig. 5.2) is shown that exemplifies the fact that phosphopeptides co-eluting from the strong cation exchange chromatography step can be separated by C18 reverse phase chromatography.

SILAC phosphopeptides were injected on to the HPLC system and separated over a 2 hour gradient. It can be seen from the example in figure 5.4 that a fraction obtained from strong cation exchange chromatography and subsequently enriched using IMAC is still a complex sample but the peptides present can be separated on the C18 column. Peptides eluting from the column were then analysed by mass spectrometry. Peaks with characteristic features of peptides were identified by the initial mass spectrometry scan and if they conformed to pre-selected criteria were chosen for fragmentation (see Materials and Methods section 2.7.11). As previously described the initial MS scan is critical to SILAC success as this scan is used for quantification. Similarly to spectra observed in total protein these SILAC envelope patterns have a triplet motif that was indicative of labelled peptides (see fig 5.5. for example of a SILAC triplet). In the analysis of phosphopeptides fragmentation of the peptide is critical for the analysis of both the backbone sequence and identification of the location of post-translational modification(s). MS^{2} fragmentation is often insufficient to identify both peptide sequence due to extensive neutral loss of the relatively labile
phosphate bond instead of backbone fragmentation. Thus, in MS^{2} spectra the dominant peak is often the precursor ion with a neutral loss of 98 Da or 80 Da (representing $\mathrm{H}_{3} \mathrm{PO}_{4}$ or HPO_{3} respectively). Therefore multistage activation was employed to allow identification of phosphopeptide sequence.

Multistage activation is a pseudo MS^{3} process. In this process a selected precursor ion is selected for fragmentation then subjected to further fragmentation at the m / z where the neutral loss ion, in theory, should be. The fragments from both activations are then combined into one spectrum which is, in effect, a hybrid of MS^{2} and MS^{3} spectra. The peptide LLHEDLDES(ph)DDDVDEK has a monoisotopic mass of 1965.88 Da and can be seen as doubly charged ion at $983.9 \mathrm{~m} / \mathrm{z}$ (3.21 ppm mass error; fig 5.5 A) was selected for fragmentation. It can be seen that in the multistage activation spectra (fig 5.5B) that the peptide has been fragmented to yield sequence information. There is no dominant neutral loss peak. A number of ions are present that identify phosphorylated and neutral loss versions of the same peptide demonstrated by a neutral loss of 98Da (fig. 5.5B; fig 5.5C)

B

C

Figure 5.5. Phosphopeptide SILAC MS scan and multistage activation. The doubly charged phosphopeptide LLHEDLDES(ph)DDDVDEK is derived from Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2. The peptide has a monoisotopic mass of 1965.88 Da was observed as a doubly charged ion (A). After the light SILAC phosphopeptide precursor ion at $983.90 \mathrm{~m} / \mathrm{z}$ was selected for fragmentation it was analysed using multistage activation. Neutral loss of the
phosphate group(s) results in a loss of 98Da (B) and therefore multistage activation allows the observation of both neutral loss and backbone fragmentation resulting in identification of the sequence and phosphorylation site of the peptide (C).

The probability of the correct post-translational modification assignment is given by a post-translational modification (PTM) score. This value gives an indication of the probability differential between different amino acid residues on the peptide backbone. Examples of 'good', 'moderate' and 'poor' spectra are shown in figure 5.6. It can be seen from these spectra that the quality of the multistage activation fragmentation spectra is integral to the identification of sequence and phosphorylation that can be seen by the Mascot and post-translational modification scores of the 3 peptides. The Mascot scores are 89.71, 41.39 and 23.91 and the PTM score 341.18, 124.18 and 94.36 for the 'good' 'moderate' and 'poor' phosphopeptides. The 'good' spectrum has a large number of strong peaks above the background giving it high scores and making it a good spectrum for identification (fig 5.6A) as a large number of b and y ions were identified that allows identification of the phosphorylated amino acid. A neutral loss of 98 was observed from the y_{4} to y_{17} but only on the b_{16} and b_{18} ions indicating the probable location of the phosphorylation on the GHSDSSASESEVSLLS(ph)PVK. It is clear that the 'poor' spectrum (fig 5.6C) has a lower peak intensity c.f. background that limits the reliability of the spectra for identification of b and y ions which is reflected in its lower scores.

A

(GHSDSSASESEVSLLS(ph)PVE

B

C

Figure 5.6. Phosphopeptide SILAC multistage activation MS/MS spectra. A) a 'good' spectra that identified the light SILAC peptide GHSDSSASESEVSLLS(ph)PVK from serine/threonine-protein phosphatase 4 regulatory subunit $2($ Mascot score $=$ 89.71; PTM score = 341.18; Phospho site probability = GHSDSSASESEVSLLS(1)PVK). B) A 'moderate' spectra that identified the light SILAC peptide SGAQASSTPLS(ph)PTR from Lamin-A/C (Mascot score $=41.39$; PTM score $=124.18$; Phospho site probability = SGAQASS(0.006)T(0.062)PLS(0.931$)$ PTR). C) A 'poor' spectra that identified the peptide GDLGASSPS(ph)MK from Ahnak protein (Mascot score $=23.91$; PTM score $=94.36$; Phospho site probability $=\operatorname{GDLGAS}(0.048) \mathrm{S}(0.048) \operatorname{PS}(0.904) \mathrm{MK}$.

The PTM score does not, however, give an indication of whether the phosphorylation site identification site is unequivocal. It merely gives an indication of the differential between other sites on the peptide. For example, the peptide AS(ph)EDESDLEDEEEKSQEDTEQK derived from DNA replication licensing factor MCM3 was identified with a Mascot score of 96.69 , and a high PTM score of 359.53 due to a large differential between the potential phosphorylation sites on the peptide (Phospho scores differentials $=$ AS(0)EDES(0)DLEDEEEKS $(-$ 104.96)QEDT(-111.59)EQK). However, the correct phosphorylation site cannot be identified as by examining the phosphorylation probabilities on the peptide $\mathrm{AS}(0.5) \mathrm{EDES}(0.5) \mathrm{DLEDEEEKSQEDTEQK}$ it is not possible to distinguish between two serine residues (fig 5.7). These spectra are derived from the same sample and precursor ion therefore it is possible that this inability to distinguish is due to a mixed population being present. Alternatively, the phosphate group might be transferred during tandem MS to a different amino acid residue in the peptide which is a phenomenon that has been demonstrated to occur (Palumbo \& Reid 2008). This effect could be the cause of these observed contradictory phosphorylation site identifications. Thus, spectra generated from multistage activation are can be used for identification of phosphopeptide sequence and site of post-translational modification though caution is required. All the scores and probabilities generated by the bioinformatic software need to be taken into account to avoid false identification of phosphopeptides.

B

Figure 5.7. Phosphopeptide SILAC multistage activation scans for the phosphopeptide AS(ph)EDESDLEDEEEKSQEDTEQK. The peptide is derived from DNA replication licensing factor MCM3. The phosphopeptide was identified with a Mascot score of 96.69 , and a high PTM score of 359.53 . The phosphorylation site could not be identified unequivocally as equally probable were the peak assignment for the two phosphopeptides AS(ph)EDESDLEDEEEKSQEDTEQK (A) and ASEDES(ph)DLEDEEEKSQEDTEQK (B).Thus, the phosphorylation probabilities on the peptide $\operatorname{AS}(0.5) E D E S(0.5)$ DLEDEEEKSQEDTEQK.

5.2.4. Phosphopeptide Identifications

Overall in the 2 biological replicates there were 7606 and 13499 peptides (table 5.3.). Of these 4513 (59\%) and 7990 (59\%) unique peptides were identified. However, not all of these peptides were identified as phosphorylated. In total 1266 (17\% of total) and 1383 (10% of total) phosphopeptides were identified. The number of unique phosphopeptides was lower with 1232 (27\% of total unique peptides) and 845 (11\% of total unique peptides) identified respectively. The large majority of the phosphopeptides identified were phosphorylated on serine or threonine amino acid residues. For the 2 biological replicates $<1 \%$ of the phosphopeptides identified were phosphorylated on tyrosine residues. These data suggest that the phosphoenrichment worked despite the obvious fact that a large number of non-modified peptides remain.

Table 5.3. The number of peptides identified in 2 biological replicates. Peptides had a mascot score ≥ 25 and had a ratio between the SILAC sates generated. Starting material refers to the total amount of protein trypsin digested in the biological replicate

Replicate	1	2
Starting Material	2 mg	4 mg
Total peptides	7606	13499
Unique	4513	7990
ST total	1261	1378
ST unique	1227	840
Y total	5	5
Y unique	5	5

A large number of phosphopeptides were identified in each biological replicate. The LTQ Orbitrap identified in total 1232 and 845 unique phosphopeptides in terms of peptide sequence and phosphorylation site from each biological replicate respectively. There was an overlap between samples with 414 unique phosphopeptides with identical peptide sequence and phosphorylation site identified (fig. 5.8.). Therefore, a total of 1663 unique phosphopeptides were identified in total.

Figure 5.8. Venn diagram of phosphopeptides identified with unique sequence and site of modification. In the 2 biological replicates a total of 1232 and 845 unique phosphopeptides were identified with a Mascot score ≥ 25 and a SILAC ratio generated. 414 phosphopeptides were identified in both biological replicates.

5.2.5. Analysis of Phosphopentides For Novel Phosphorvlation Sites

The 414 phosphopeptides identified as being present in both biological replicates were examined further to determine if the observed post-translational modifications had been previously reported. The bio-informatic software MaxQuant generates data tables and one column is labelled 'Known Site'. This column indicates if the site has been previously reported to be phosphorylated. Of the 414 phosphopeptides 203 peptides were identified as phosphorylated on serine, 24 on threonine and 2 on tyrosine. Therefore, 185 phosphopeptides were classed as having a previously unreported phosphorylation site. In order to determine if any of these phosphorylation sites were novel the current canonical sequence and post translational modification status of each protein was examined using the protein database Uniprot (www.uniprot.org accessed 02-04-2012). Of the 185 phosphorylation sites 56 were
identified as not currently having experimental evidence to demonstrate phosphorylation i.e. 129 were listed on Uniprot as having been observed experimentally (table 5.4).

These 56 phosphopeptides can be split into phosphosites that have been predicted 'by similarity' (due to similarity with homologous sites on other proteins or species) and those that are not listed on Uniprot at present. 10 (of the 56) phosphopeptides gave experimental validation of 'by similarity' predicted sites whilst 46 peptides gave evidence for previously unknown post-translational modifications. The novel nature of these phosphorylation sites means that as they have not been elucidated experimentally previously it is impossible to validate them using antibodies as none are commercially available. However, the probability of the correct site of phosphorylation is calculated by the software and is shown in table 5.5. The majority ($37 / 46,80 \%$), of phosphorylation sites were identified in both biological replicates with a probability of ≥ 0.9 indicating there is confidence in the identification of the phosphorylation site on these peptides. Indeed, for 13 of the phosphopeptides the probability of the phosphorylation site was 1 , i.e. unequivocal, in both biological replicates. However, there was equivocal data on the phosphorylation site on 9 phosphopeptides (table 5.5). Therefore, for 37 phosphopeptides there is a high confidence in these data due to a high mascot score and phosphorylation site location probability

Table 5.4. Phosphopeptides identified in both replicates that are currently listed, on Uniprot.org (accessed 02/04/12), as not having experimental evidence to demonstrate post-translational modification at these phosphorylation sites. Some sites are listed as 'by similarity' as they have been predicted due to similarity to other sites or species. Mascot scores are listed to indicate probability of correct identification.

Gene	Sequence and Phosphorylation site	Amino Acid Position	Site known on Uniprot	Mascot Score from Replicate	
				1	2
Map4	AAVGVTGNDITT(ph)PPNK	658	Not listed	52.63	54
Pal	AEEEGKGS(ph)QEEAGR	53	Not listed	55.03	51.41
Anln	AS(ph)SPVTAATFITENR	292	Not listed	34.63	64.27
Mcphl	ASSFYGSAS(ph)PNHLR	273	Not listed	43.29	35.01
Hirip3	AVES(ph)TDEDHQTDLDAK	134	Not listed	36.12	45.56
Flna	C(me)GQSAAVAS(ph)PGGSIDSR	16	Not listed	53.4	41.72
Larp1	ES(ph)PRPPAAAEAPAGSDGEDGGR	335	By similarity	47.37	46.24
Sntb2	GPAGEAS(ph)ASPPVR	88	Not listed	36.99	38.41
Gtf2fl	GTSRPGTPS(ph)AEAASTSSTLR	391	By similarity	43.03	35.53
Kiaa0913	HTGMASIDSSAPETTSDSS(ph)PTLSR	1158	Not listed	39.97	60.26
Tdpl	HVSS(ph)PDVTTAQK	119	Not listed	32.78	32.9
Ralbp1	IAQEIASLS(ph)KEDVSK	463	By similarity	48.23	52.17
Fzr1	INENEKS(ph)PSQNR	72	Not listed	35.33	36.45
Myo9b	KETPS(ph)PEMETAAQK	1142	Not listed	36.71	30.67
Spg20	KS(ph)PEQESVSTAPQR	126	Not listed	39.11	51.42
Camsap2	LDGES(ph)DKEQFDDDQK	1137	Not listed	42.61	35.62
Specc1	LGSSPTS(ph)SC(me)NPTPTK	136	Not listed	31.81	27.02
Rg9mtd2	LGTS(ph)DGEEER	24	Not listed	58.13	25.1
Thumpd2	LLQGS(ph)PEQGEAVTR	172	Not listed	35.55	40.41
Ranbp2	LNSNNSAS(ph)PHR	837	Not listed	40.56	51.76
Ppfibp1	LPTKPETS(ph)FEEGDGR	417	Not listed	28.15	30.17
Tp53bpl	LPTSEEERS(ph)PAK	1675	By similarity	25.34	25.63
Usp32	LSNS(ph)KENLDTSK	1423	Not listed	28.62	35.16
Zc3h13	NTEEPSS(ph)PVRK	110	Not listed	32.47	32.42
Phf3	NTVDIVDKPENS(ph)PQR	377	Not listed	50.04	50.63
Filip11	PAS(ph)PSAPLQDNR	1080	Not listed	59.06	41.67
Irs1	PASVDGSPVS(ph)PSTNR	343	By similarity	27.92	42.29
Larpl	PATGISQPPTT(ph)PTGQATR	1315	Not listed	48.09	40.79
Chtf18	PC(me)PAGS(ph)PGNVNR	70	Not listed	43.42	38.29
Gigyf2	PGTPS(ph)DHQPQEATQFER	385	Not listed	64.14	47.33
Bop1	PHMS(ph)PASLPGK	11	Not listed	32.9	28.18

Zc3h11a	PLSSSSVLQES(ph)PTK	677	Not listed	67.72	34.78
Affl	PVGNISHS(ph)PK	140	Not listed	35.66	31.23
Sos 1	RPESAPAESS(ph)PSK	1153	Not listed	35.23	42.41
Rbmxrt	RSTPS(ph)GPVR	165	Not listed	53.29	40.18
Srrm2	RVPS(ph)PTPVPK	2535	Not listed	30.7	47.53
Kiaa0284	S(ph)GRSPEPDPAPPK	840	Not listed	33.59	25.25
Bag3	S(ph)GTPVHC(me)PSPIR	289	Not listed	42.66	40.41
Sqstm1	S(ph)RLTPTTPESSSTGTEDK	266	By similarity	69.05	74.88
Fral0ac 1	S(ph)RSPPSEEASK	248	Not listed	43.14	33.29
Anln	SC(me)TKPS(ph)PSK	66	Not listed	29.48	28.03
Birc6	SDS(ph)VTGHTSQK	465	Not listed	25.93	37.29
Srrm2	SESDSSPDS(ph)KPK	1521	Not listed	48.28	35.64
Larp4	SNAVS(ph)PTR	642	By similarity	28.32	25.02
Fral0ac1	SRS(ph)PPSEEASK	250	Not listed	43.14	33.29
Chd8	T(ph)ASPSPLRPDAPVEK	1995	By similarity	25.73	27.58
Api5	TSEDTSS(ph)GSPPKK	462	By similarity	41.21	57.63
Papola	TSS(ph)PNKEESPK	648	Not listed	26.95	31.16
Prrc2b	TTHASSDGPET(ph)PSK	823	Not listed	25.72	29.61
Phldb2	TTPSLS(ph)PHFSSATMGR	958	By similarity	32.55	48.44
Cbx8	VDDKPSS(ph)PGDSSK	164	Not listed	47.38	33
Hdgfrp2	VMTVTAVTTTATS(ph)DR	137	Not listed	76.11	51.2
Dnmt1	VPALAS(ph)PAGSLPDHVR	15	Not listed	36.18	56.18
Arpp19	VT(ph)SPEKAEEAK	22	Not listed	34.2	28.94
Arpp 19	VTS(ph)PEKAEEAK	23	Not listed	34.2	28.94
Anape 1	VTS(ph)TPQKPQAEQEENR	901	Not listed	52.09	26.45

Table 5.5. Probabilities of phosphopeptides identified in both replicates that are not currently listed, on Uniprot.org (accessed 02/04/12), as not phosphorylated at these sites. Underlined phosphopeptides indicate a high probability of correct phosphorylation site identification.

Sequence and Phosphorylation site	Gene	Phosphorylation Site Probabilities	
		1	2
$\frac{\text { AAVGVTGNDITT(ph)PPN }}{\underline{K}}$	Map4	AAVGVTGNDIT(0.07)T(0.93)P PNK	AAVGVTGNDIT(0.01)T(0.99)P PNK
AEEEGKGS(ph)QEEAGR	Pal	AEEEGKGS(1)QEEAGR	AEEEGKGS(1)QEEAGR
AS(ph)SPVTAATFITENR	Anln	AS(0.5)S(0.5)PVTAATFITENR	AS(0.5)S(0.5)PVTAATFITENR
ASSFYGSAS(ph)PNHLR	Mcph1	$\begin{gathered} \text { ASSFYGS(} 0.001 \text {)AS(} 0.999) \text { PNH } \\ \text { LR } \end{gathered}$	$\underset{\text { LR }}{\operatorname{ASSFYGS}(0.078) \mathrm{AS}(0.922) \mathrm{PNH}}$
$\frac{\operatorname{AVES}(\mathrm{ph}) \text { TDEDHOTDLDA }}{\underline{\mathrm{K}}}$	Hirip3	$\begin{gathered} \operatorname{AVES}(0.994) \mathrm{T}(0.006) \mathrm{DEDHQT} \\ \text { DLDAK } \end{gathered}$	$\begin{gathered} \operatorname{AVES}(0.997) \mathrm{T}(0.003) \mathrm{DEDHQT} \\ \text { DLDAK } \end{gathered}$
$\frac{\mathrm{C}(\mathrm{me}) \mathrm{GQSAAVAS}(\mathrm{ph}) \mathrm{PGG}}{\text { SIDSR }}$	Flna	CGQSAAVAS(1)PGGSIDSR	$\begin{gathered} \text { CGQSAAVAS(} 0.903 \text {)PGG } \\ \text { S(} 0.097 \text { IDSR } \end{gathered}$
GPAGEAS(ph)ASPPVR	Sntb2	$\begin{gathered} \operatorname{GPAGEAS}(0.994) \operatorname{AS}(0.006) \operatorname{PPV} \\ \mathrm{R} \end{gathered}$	GPAGEAS(0.992)AS(0.008)PPV R
HTGMASIDSSAPETTSDSS (ph)PTLSR	Kiaa0913	HTGMASIDSSAPETTS(0.001)D $\mathbf{S}(0.16) \mathrm{S}(0.82) \mathrm{PT}(0.019) \mathrm{L}$ $\mathrm{S}(0.001) \mathrm{R}$	HTGMASIDSSAPETTSD S(0.007)S(0.993)PT(0.001)LSR
HVSS(ph)PDVTTAOK	Tdp1	$\text { HVS(} 0.044) \mathrm{S}(0.956) \mathrm{PDVTTAQ}$ K	$\underset{\mathrm{K}}{\operatorname{HVS}(0.004) \mathrm{S}(0.996) \mathrm{PDVTTAQ}}$
INENEKS(ph)PSQNR	Fzr1	INENEKS(0.961)PS(0.039)QNR	INENEKS(0.5)PS(0.5)QNR
KETPS(ph)PEMETAAOK	Myo9b	KETPS(1)PEMETAAQK	KETPS(1)PEMETAAQK
KS(ph)PEQESVSTAPOR	Spg20	KS(1)PEQESVSTAPQR	KS(1)PEQESVSTAPQR
LDGES(ph)DKEQFDDDOK	Camsap2	LDGES(1)DKEQFDDDQK	LDGES(1)DKEQFDDDQK
$\underset{\text { TK }}{\operatorname{LGSSPTS}(\mathrm{ph}) \mathrm{SC}(\mathrm{me}) \mathrm{NPTP}}$	Specc 1	LGS(0.014)S(0.098)PT(0.098) S(0.771)S(0.014)CNPT(0.002)PT (0.002)K	LGS(0.019$) \mathrm{S}(0.025) \mathrm{PT}(0.106)$ $\mathrm{S}(0.712) \mathrm{S}(0.106) \mathrm{CNPT}(0.025) \mathrm{P}$ $\mathrm{T}(0.006) \mathrm{K}$
LGTS(ph)DGEEER	Rg9mtd2	LGTS(1)DGEEER	LGTS(1)DGEEER
LLOGS(ph)PEQGEAVTR	Thumpd2	LLQGS(1)PEQGEAVTR	LLQGS(1)PEQGEAVTR
LNSNNSAS(ph)PHR	Ranbp2	LNSNNS(0.005)AS(0.995)PHR	LNSNNS(0.002)AS(0.998)PHR
LPTKPETS(ph)FEEGDGR	Ppfibpl	LPTKPET(0.08)S(0.92)FEEGDG R	$\begin{gathered} \text { LPTKPET(} 0.068) \mathrm{S}(0.932) \text { FEEG } \\ \text { DGR } \end{gathered}$
LSNS(ph)KENLDTSK	Usp32	LSNS(1)KENLDTSK	LSNS(1)KENLDTSK
NTEEPSS(ph)PVRK	Zc3h13	NTEEPS(0.005)S(0.995)PVRK	NTEEPS(0.057)S(0.943)PVRK
NTVDIVDKPENS(ph)PQR	Phf3	NTVDIVDKPENS(1)PQR	NTVDIVDKPENS(1)PQR
PAS(ph)PSAPLQDNR	Filipll	PAS(0.994)PS(0.006)APLQDNR	PAS(1)PSAPLQDNR
$\frac{\text { PATGISQPPTT(ph)PTGQA }}{\text { TR }}$	Larpl	$\begin{gathered} \text { PATGISQPPT(0.066)T(0.928)PT } \\ (0.005) \text { GQATR } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PATGISQPPT(} 0.001) \mathrm{T}(0.908) \mathrm{PT} \\ & \text { (0.091)GQATR } \end{aligned}$
PC(me)PAGS(ph)PGNVNR	Chtf18	PCPAGS(1)PGNVNR	PCPAGS(1)PGNVNR
PGTPS(ph)DHOPQEATQFE	Gigyf2	PGT(0.062)PS(0.938)DHQPQEA	PGT(0.084)PS(0.916)DHQPQE

R		TQFER	ATQFER
PHMS(ph)PASLPGK	Bopl	PHMS(1)PASLPGK	PHMS(0.5)PAS(0.5)LPGK
PLSSSSVLOES(ph)PTK	Zc3h1la	$\begin{gathered} \text { PLSSSSVLQES(0.997)P } \\ \mathrm{T}(0.003) \mathrm{K} \end{gathered}$	$\begin{gathered} \text { PLSSSSVLQES(0.996)P } \\ \mathrm{T}(0.004) \mathrm{K} \end{gathered}$
PVGNISHS(ph)PK	Aff1	PVGNISHS(1)PK	PVGNISHS(1)PK
RPESAPAESS(ph)PSK	Sos1	$\begin{gathered} \text { RPESAPAES }(0.054) \mathrm{S}(0.892) \mathrm{P} \\ \mathrm{~S}(0.054) \mathrm{K} \end{gathered}$	RPESAPAES $(0.084) \mathrm{S}(0.915) \mathrm{P}$ $\mathrm{S}(0.001) \mathrm{K}$
RSTPS(ph)GPVR	Rbmxrt	RSTPS(1)GPVR	RST(0.001)PS(0.999)GPVR
RVPS(ph)PTPVPK	Srrm2	RVPS(1)PTPVPK	RVPS(1)PTPVPK
S(ph)GRSPEPDPAPPK	Kiaa0284	S(0.86)GRS(0.14)PEPDPAPPK	S(0.84)GRS(0.16)PEPDPAPPK
S(ph)GTPVHC(me)PSPIR	Bag3	S(0.827)GT(0.173)PVHCPSPIR	S(0.827)GT(0.173)PVHCPSPIR
S(ph)RSPPSEEASK	Fral0ac 1	$\mathrm{S}(0.935) \mathrm{RS}(0.065)$ PPSEEASK	S(0.919)RS(0.081)PPSEEASK
SC(me)TKPS(ph)PSK	Anln	SCTKPS(1)PSK	SCTKPS(1)PSK
SDS(ph)VTGHTSQK	Birc6	S(0.026)DS(0.974)VTGHTSQK	S(0.024)DS(0.976)VTGHTSQK
SESDSSPDS(ph)KPK	Srrm2	SESDSSPDS(1)KPK	SESDSSPDS(1)KPK
SRS(ph)PPSEEASK	Fra10ac1	$\mathrm{S}(0.001) \mathrm{RS}(0.996) \operatorname{PPS}(0.003) \mathrm{EE}$ ASK	$\begin{gathered} \mathrm{S}(0.022) \operatorname{RS}(0.975) \operatorname{PPS}(0.002) \mathrm{EE} \\ \text { ASK } \end{gathered}$
TSS(ph)PNKEESPK	Papola	TSS(1)PNKEESPK	$\mathrm{T}(0.002) \mathrm{S}(0.007) \mathrm{S}(0.991) \mathrm{PNKE}$ ESPK
TTHASSDGPET(ph)PSK	Prre2b	$\begin{gathered} \text { TTHASS(} 0.007) \text { DGPET(} 0.993) \mathrm{P} \\ \mathrm{~S}(0.001) \mathrm{K} \end{gathered}$	TTHASSDGPET(1)PSK
VDDKPSS(ph)PGDSSK	Cbx8	VDDKPS(0.004)S(0.996)PGDSS K	VDDKPS(0.008)S(0.992)PGDSS K
VMTVTAVTTTATS(ph)DR	Hdgfrp2	VMTVTAVTTTAT(0.003) S(0.997)DR	VMTVTAVTTTAT(0.004) S(0.996)DR
$\frac{\text { VPALAS(ph)PAGSLPDHV }}{\underline{R}}$	Dnmt	VPALAS(0.993)PAGS(0.007)LP DHVR	VPALAS(0.999)PAGS(0.001)LP DHVR
VT(ph)SPEKAEEAK	Arppl9	VT(0.929)S(0.071)PEKAEEAK	VT(0.955)S(0.045)PEKAEEAK
VTS(ph)PEKAEEAK	Arpp 19	VT(0.045)S(0.955)PEKAEEAK	VT(0.045)S(0.955)PEKAEEAK
VTS(ph)TPQKPQAEQEEN R	Anapc 1	VT(0.123)S(0.754)T(0.123)PQK PQAEQEENR	VT(0.098)S(0.805)T(0.098)PQK PQAEQEENR

5.2.6. Analysis of Phosphopeptide Motifs

Enzymes classed as kinases carry out phosphorylation of proteins. Kinases recognise amino acid sequences on their target that direct the phosphorylation of the site. The analysis of previously determined substrates of kinases has led to consensus sequences recognised by a given kinase. These amino acid sequences are termed motifs. The knowledge of the motif can be utilised to predict phosphorylation sites or the kinase responsible for a given phosphorylation. However, by analysing sequence alone they do not take into account secondary or tertiary structures present in the protein. Thus, the 3 dimensional structure of the protein is critical and caution is required if extrapolating kinase activity from amino acid sequence alone (Kennelly \& Krebs 1991).

Despite this the simplicity of the consensus sequence of the motifs have made them useful tools in the study of kinases and prediction of their substrates. For example, in the case of ERK (MAPK) the motif required, as a minimum, for kinase activity is a serine or threonine residue followed by a proline at the C-terminal side (S/TP). However, a proline residue is often found at the -2 position. Thus, the optimum motif for ERK2 is PXS/TP, where X is any amino acid residue (Davis 1993).

The site of phosphorylation and its relationship to the amino acid sequence of identified phosphopeptides is analysed by the MaxQuant software in order to give a predicted kinase. This information is presented as a 'best motif'. Thus, the analysis of probable kinases acting on the phosphopeptides identified might yield information regarding the effect of oxysterol treatment on certain enzymes and pathways. From the datasets a large number of different kinases were identified as being probable enzymes for the phosphorylation sites identified (table 5.6).

Table 5.6. Frequency of phosphopeptide 'best motif' in each biological replicate.

	Biological replicate	
Best Motif	1	2
CAMK2	56	45
CDK1	46	37
CDK2	94	71
CHK 1/2	19	10
CK1	116	75
CK2	163	68
ERK/MAPK	43	34
FHA KAPP	14	13
GSK3	41	27
NEK6	35	27
PKA	115	69
PKA/AKT	78	52
PKC	1	1
PKD	15	15
Polo box	47	41
WW GroupIV	75	69
Other	56	33
None	218	158

Therefore, in order to examine if there were any correlation between oxysterol treatment and changes in kinase/phosphatase activity the 6 most abundant motifs were examined in order to determine if they had a normal distribution when analysed with the SILAC ratio. The 6 best motifs analysed were CDK2, CK1, CK2, PKA, PKA/AKT, WW GroupIV (fig 5.9.). In addition, ERK/MAPK was analysed. The SILAC ratio had a normal distribution when plotted for the phosphopeptides identified with each motif. Therefore the data suggest that for peptides with these motifs the treatment with $24(S), 25$-epoxycholsterol are not having an effect on these
kinases. If the oxysterol was inducing changes in the phosphorylation a skewed distribution would be apparent.

Figure 5.9. Distribution of phosphopeptide 'best motif' with SILAC ratio. Graphs indicate the distribution of motifs in the first (A) and second (B) biological replicate. Both biological replicates showed a normal distribution of the most abundant 'best' phospho motifs when plotted against un-normalised SILAC ratio after 24(S),25epoxycholesterol treatment. These data suggest no effect of the oxysterols on these kinases. The median un-normalised SILAC ratio value for total peptides after $24(S), 25$-epoxycholesterol treatment was 0.59 and 0.81 respectively for the two biological treatments (15.87 percentile $=0.50$ and 0.69 respectively, 84.13 percentile $=0.66$ and 0.95 respectively).

5.2.7. Ouantitative Analvsis of Changes in Phosphorvlation

As the samples were SILAC labelled this allowed the analysis of quantitative changes in the phosphorylation status of the SN4741 cells upon treatment with 25hydroxycholesterol and $24(S), 25$-epoxycholesterol. Thus, in order to elucidate
reproducible changes in the phosphoproteome the data sets were examined for phosphopeptides reproducibly identified by the SILAC labelling as up or down regulated.

Due to the fact that phosphorylation in signalling pathways is transient and occurs without a change in total protein expression individual phosphopeptides were analysed instead of the overall protein expression in order to examine the phosphorylation state of the SN4741 cells. To this end, peptides common to both biological replicates with a Mascot score ≥ 25 and a SILAC ratio were examined for reproducible up or down regulation of the phosphopeptides. The un-normalised SILAC ratio was used for analysis. The median un-normalised SILAC ratio value after 25-hydroxycholesterol treatment (i.e. 25-hydroxycholesterol:control) was 0.66 and 0.75 respectively for the two biological treatments. The 15.87 percentile figure which gives an estimation of the standard deviation gave values of 0.53 and 0.61 for the 2 biological replicates. After 24(S),25-epoxycholesterol treatment the median unnormalised SILAC ratio value was 0.59 and 0.81 respectively for the 2 biological replicates. The 15.87 percentile figure was 0.50 and 0.69 respectively.

Table 5.7. Median SILAC un-normalised ratios for the 2 phosphoproteomic data sets. The median un-normalised 25-hydroxycholesterol:control and 24(S),25epoxycholesterol:control ratios are shown as well as the 15.87 and 84.13 percentile ranges for the data.

	Ratio 25-OHChol :Control			Ratio 24S,25-EC :Control		
	Median	15.87 Percentile	84.13 Percentile	Median	15.87 Percentile	84.13 Percentile
Replicate						
1	0.66	0.53	0.77	0.59	0.50	0.66
2	0.75	0.61	0.93	0.81	0.69	0.95

A number of phosphopeptides were identified as being up or down regulated after treatment with 25 -hydroxycholesterol or $24(S), 25$-epoxycholesterol. In total 87 unique peptides were identified as up-regulated and 65 down-regulated after treatment with 25-hydroxycholesterol. 101 unique phosphopeptides were identified as up-regulated and 68 down-regulated after treatment with 24(S),25-epoxycholesterol (a complete list of all phosphopeptides identified as changed is shown in appendix 3, appendix 4, appendix 5 and appendix 6). However, a number of these phosphopeptides had contradictory data between the 2 datasets. Therefore, these phosphopeptides were removed and the remaining peptides are shown below (tables 5.8, 5.9, 5.10, 5.11)

Table 5.8. Phosphopeptides identified as down-regulated after treatment with $24(S), 25$-epoxycholesterol (24(S),25-EC). Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio 24(S),25-EC :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI Number						
EEVAS(ph)EPEEAASPTTPK	Nop56	IPI00318048	48.39	1	0.358	1	0.413	1	
SQET(ph)PEKPR	Msll	IPI00110256	30.08	1	0.650	1	0.408	/	
GEGERS(ph)DEENEEK	Polr3g	IPI00463147	60.57	1	0.671	1	0.408	/	
HS(ph)VTGYGDC(me)AAGAR	Jub	IPI00453693	35.36	1	0.440	1	0.404	/	
GDVS(ph)EDEPSLGR	Rnmt	IPI00453849	32.67	/	0.598	1	0.400	1	
RPMEEDGEEKSPS(ph)K	Ilf3	IPI00130591	34.61	/	0.410	1	0.400	/	
RIS(ph)GLIYEETR	Histlh4 a	IPI00623776	35.15	1	0.267	1	0.400	/	
SRLTPT(ph)TPESSSTGTEDK	Sqstm1	IPI00133374	69.05	/	0.392	1	0.398	/	
ADS(ph)DSEDKGEESKPK	Cbx 1	IPI00129466	40.05	/	0.347	/	0.393	1	
NNVMT(ph)SPNVHLK	Cenpc 1	IPI00114808	34.17	/	0.284	/	0.390	1	
GVQAGNSDT(ph)EGGQPGR	Acin 1	IPI00121136	32.19	1	0.811	/	0.387	1	
NGLSQPS(ph)EEEVDIPKPK	Ddx 21	IPI00120691	42.24	I	0.323	1	0.384	1	
LPSGSGPASPTT(ph)GSAVDIR	Ahnak	IPI00553798	65.09	1	0.339	1	0.378	1	
GSGEASSDSIDHS(ph)PAK	$\begin{gathered} \text { Suv39h } \\ 2 \\ \hline \end{gathered}$	IPI00111417	26.96	/	0.174	/	0.377	/	
KTS(ph)LSDSTTSAYPGDAGK	$\begin{gathered} \text { Rab3ga } \\ \text { p1 } \end{gathered}$	IPI00749720	39.80	1	0.593	1	0.377	1	
GHYEVTGS(ph)DDEAGK	Ahnak	IPI00553798	58.36	1	0.168	1	0.371	1	
S(ph)ESSGNLPSVADTR	Akap 1	IPI00230591	29.82	1	0.390	1	0.371	1	
SNS(ph)FSDER	Ahnak	IPI00553798	29.85	1	0.154	1	0.366	1	
RLS(ph)QSDEDVIR	Wdr26	IPI00226275	83.20	29.45	0.399	0.357	0.365	0.414	
GGVTGSPEASISGS(ph)KGDLK	Ahnak	IPI00553798	43.68	1	0.119	1	0.363	1	
LPSDSSASPPLSQT(ph)TPNKDADD QAR	Eya3	IPI00411085	40.03	1	0.518	1	0.348	1	
S(ph)PSRPLPEVTDEYK	Ssb	IPI00134300	26.42	1	0.551	/	0.346	1	
GGVTGSPEAS(ph)ISGSKGDLK	Ahnak	IPI00553798	43.68	1	0.135	1	0.346	/	
AS(ph)AVSPEKAPM(ox)TSK	Tcofl	IPI00115660	34.02	1	0.345	1	0.346	1	
DSVPAS(ph)PGVPAADFPAETEQS KPSK	Top2a	IPI00122223	25.31	1	0.116	1	0.342	1	
KGDDS(ph)DEEDLC(me)ISNK	Stard13	IPI00857002	57.82	1	0.027	/	0.317	/	
S(ph)SPPVEHPAGTSTTDNDVIIR	Rail4	IPI00453820	35.31	1	0.170	/	0.308	/	
GDQVSQNGLPAEQGS(ph)PR	Sptbn 1	IPI00319830	58.12	1	0.654	1	0.208	1	

SHS(ph)LDDLQGDADVGK	Sash1	IPI00338954	1	58.75	1	0.525	1	0.538
LESHGSS(ph)EESLQVQEK	Vcan	IPI00875672	1	42.02	1	0.497	1	0.535
ANTSS(ph)DLEKDDDAYK	Ranbp2	IPI00337844	1	40.08	1	0.436	1	0.533
MSPNETLFLES(ph)TNK	Rrage	IPI00468702	1	32.32	1	0.407	1	0.530
AES(ph)PETSAVESTQSTPQK	Pds5b	IPI00845638	41.44	63.25	0.594	0.288	0.437	0.520
LEPAPLDSS(ph)PAVSTHEGSK	Renbp	IPI00124826	1	31.06	1	0.584	1	0.515
(ac)S(ph)ETAPVAQAASTATEKPAA AK	Histlh1 a	IPI00228616	/	53.02	1	0.439	1	0.514
PQSPVIQATAGS(ph)PK	Arfgef2	IPI00137087	1	41.94	1	0.350	1	0.511
VS(ph)PVPSPSQPAR	Micall	IPI00116371	1	25.71	1	0.435	1	0.486
IDQGS(ph)HTAGESSTR	Tdpl	IPI00222253	1	34.56	1	0.416	1	0.476
S(ph)PASTSSVNGTPGSQLSTPR	Dclk 1	IPI00468380	1	43.36	1	0.459	1	0.472
AQGHS(ph)PVNGLLK	Ccnl2	IPI00310772	1	25.94	1	0.493	1	0.464
HNS(ph)TTSSTSSGGYR	Abil	IPI00798483	1	57.32	1	0.536	1	0.443
TASRPEDTPDSPSGPSS(ph)PK	Lrre16a	IPI00474873	1	46.92	1	0.216	/	0.439
AGYTT(ph)DESSSSSLHTTR	Fxr2	IPI00126389	/	38.76	1	0.551	/	0.358
LYNSEESRPYT(ph)NK	Crkrs	IPI00648022	1	49.10	/	0.205	/	0.338
PQSAS(ph)PAKEEQK	Palm	IPI00129298	/	30.20	/	0.390	/	0.196

Table 5.9. Phosphopeptides identified as up-regulated after treatment with 24(S),25epoxycholesterol (24(S),25-EC). Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio 24(S),25-EC :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI Number						
KDS(ph)ISEDEMVLR	Wdtcl	IPI00108450	43.30	1	0.82	1	1.66	1	
GGIDNPAIT(ph)SDQEVDDKK	$\begin{gathered} \text { Arhgap } \\ 5 \end{gathered}$	IPI00124298	40.63	1	0.92	1	1.13	1	
KQIT(ph)VEELVR	Plec 1	IPI00400215	38.61	1	0.62	1	1.07	1	
PTGGLRDS(ph)EAEK	Hirip3	IPI00222813	29.49	1	1.03	1	1.06	1	
DELADEIANSS(ph)GK	Myh9	1PI00123181	29.65	1	1.17	1	0.97	1	
GPEVEGS(ph)PVSEALR	Brwd	IPI00654074	37.76	1	0.55	1	0.95	1	
LLQDSSS(ph)PVDLAK	Ncoa2	IPI00116968	29.72	1	1.12	1	0.92	1	
IKPDEDLPS(ph)PGSR	Gli3	IPI00123429	42.62	1	0.78	1	0.91	1	
IKDPDLT(ph)TPDSK	Ckap2	IPI00470092	44.82	1	0.79	1	0.85	1	
SEVQAHS(ph)PSR	Mtap2	IPI00895965	31.21	/	0.91	1	0.85	1	
ADS(ph)PAGLEAAR	$\begin{gathered} \text { Kiaa028 } \\ 4 \end{gathered}$	IP100380953	35.46	1	0.78	1	0.84	1	
GGSS(ph)EELHDSPR	Hdgfrp2	IP1001 16442	34.55	1	0.74	1	0.81	1	
ASS(ph)EDTLNKPGSASSGVAR	Specc1	IPI00798550	33.64	1	0.89	1	0.80	1	
KGS(ph)LDYLK	Luzp1	IPI00322204	30.67	1	0.71	1	0.80	1	
HGPAQAVTGTSVTS(ph)PIK	Ccnt2	IPI00654257	47.80	1	0.74	1	0.79	1	
NS(ph)PNNISGISNPPGTPR	Ssbp3	IPI00341944	51.85	1	0.82	1	0.79	1	
KLS(ph)SGDLR	Phldbl	IPI00330246	30.55	1	0.68	1	0.79	1	
RAS(ph)LSDIGFGK	Pctk3	IP100111168	49.16	1	0.60	1	0.78	1	
IKDPDLTT(ph)PDSK	Ckap2	IPI00470092	44.82	1	0.95	1	0.78	1	
KGT(ph)GDC(me)SDEEVDGK	Myh9	IPI00123181	49.18	1	0.84	1	0.78	1	
SQDATVS(ph)PGSEQSEK	Zc3hcl	IPI00465879	50.16	1	0.53	1	0.78	1	
GQGT(ph)PPSGPGVGR	Wbp7	IPI00857289	27.74	1	0.61	1	0.77	1	
QESLKS(ph)PEEEDQQAFR	Nes	IPI00453692	36.61	1	0.67	1	0.76	1	
TQSSS(ph)C(me)EDLPSTTQPK	Cask	IPI00776341	25.68	1	0.46	1	0.76	1	
RFS(ph)M(ox)EDLNK	Pctk3	IPI00111168	47.88	1	0.69	1	0.76	1	
DDISEIQSLASDHS(ph)GR	Tjp1	IPI00135971	31.83	1	0.57	1	0.76	1	
C(me)IFMSETQSS(ph)PTK	Pias2	IPI00453655	30.79	1	0.47	1	0.75	1	
QDVDNAS(ph)LAR	Vim	IPI00227299	31.40	1	0.72	1	0.75	1	
QEFSS(ph)EEMTK	Vcaml	IP100126834	25.88	1	0.83	1	0.74	1	
(ac)SDQEAKPST(ph)EDLGDKK	Sumol	IPI00124593	33.58	1	0.78	1	0.73	1	

DC(me)AKS(ph)DDEESLTLPEK	Nfkb1	IPI00719890	52.31	1	0.80	1	0.73	1
PAVVS(ph)PLSLSTEAR	Crtcl	IPI00469761	43.71	1	0.80	1	0.73	1
YVSGSS(ph)PDLVTR	Ptpn14	IPI00122168	49.84	1	0.73	/	0.73	1
ASPDQNASTHT(ph)PQSSAK	Clint 1	IPI00648186	34.63	1	0.78	1	0.73	1
SSGSLS(ph)PGLETEDPLEAR	Tnkslb p1	IPI00459443	36.91	1	0.68	/	0.73	1
TASESISNLSEAGS(ph)VK	Clipl	IPI00857273	31.00	1	0.98	1	0.72	1
AQTPESC(me)GSVT(ph)PER	Filipll	IPI00755058	30.92	1	0.94	1	0.72	1
SAT(ph)LETKPESK	Ifngr 1	IPI00323231	25.38	/	0.64	1	0.72	1
SDEEDRAS(ph)EPK	Zc3h18	IPI00673693	27.94	1	0.79	/	0.72	1
VEESSEIS(ph)PEPK	Uspl	IPI00330276	40.56	1	0.57	1	0.72	1
S(ph)LEGENHDPLSSVVK	Nes	IPI00453692	45.85	1	0.68	1	0.72	1
MHASSTGSS(ph)C(me)DLSK	Cdgap	IP100125505	27.19	1	0.54	/	0.72	1
AKT(ph)PVTLK	Tmpo	IPI00828976	41.32	1	0.58	1	0.72	1
SSS(ph)FGSVSTSSTSSK	Snx 16	IPI00331029	1	54.62	1	1.42	1	5.00
SGFGGMSS(ph)PVIR	Nup 107	IPI00221767	/	40.37	1	2.57	1	2.07
$\begin{aligned} & \text { TEEDRENTQIDDTEPLS(ph)PVSNS } \\ & \mathbf{K} \end{aligned}$	$\begin{gathered} \text { Trp53bp } \\ 1 \end{gathered}$	IPI00229801	/	28.80	/	2.58	/	1.90
SEDRPS(ph)SPQVSVAAVETK	$\underset{1}{\text { Trp53bp }}$	1PI00229801	1	48.56	1	2.07	1	1.70
PAS(ph)PLSGPR	$\begin{gathered} \text { D2Wsu } \\ \text { 81e } \end{gathered}$	IPI00224127	/	29.84	/	1.80	/	1.65
GEVAPKET(ph)PKK	Marcksl 1	IPI00281011	/	26.82	/	2.27	1	1.65
TVGNVS(ph)PTAQMVQR	Rbm7	IPI00133061	1	28.20	1	1.41	1	1.65
LHSAQLS(ph)PVDETPATQSQLK	Mlflip	IP100459115	1	36.63	/	1.95	1	1.62
QEGAQENVKNS(ph)PVPR	Gmnn	IPI00131716	1	30.64	/	2.56	/	1.60
TTS(ph)PDLFESQSLTSASSK	Epn2	IPI00336844	1	27.33	1	1.25	1	1.55
AGS(ph)SPTQGAQNEAPR	Tcf20	IPI00407458	1	30.95	1	1.46	1	1.51
AS(ph)SHSSQSQGGGSVTK	Lmna	IPI00620256	/	58.67	/	2.60	1	1.51
C(me)QETESNEEQSIS(ph)PEKR	Akapl2	IPI00123709	1	85.89	1	1.19	1	1.49
LATSS(ph)PEQSWPSTFK	Pml	IPI00229072	/	29.49	1	1.18	1	1.43
KQNETADEAT(ph)TPQAK	Nolc1	IPI00720058	1	43.74	1	1.50	/	1.42
EIITEEPS(ph)EEEADMPKPK	Ddx21	IPI00120691	1	31.38	1	1.69	/	1.38
AEEDEILNRS(ph)PR	Canx	IPI00119618	/	25.35	/	1.51	1	1.35
GPEVTSQGVQTSS(ph)PAC(me)K	Atxn2	IPI00117229	1	25.10	1	1.07	1	1.30
ASGQAFELILS(ph)PR	Stmn 1	IPI00551236	/	30.07	/	0.87	1	1.30
AVGEEQRS(ph)EEPK	Akap12	IPI00123709	/	31.72	/	1.15	/	1.30

Table 5.10. Phosphopeptides identified as down-regulated after treatment with 25hydroxycholesterol (25-OHChol). Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio 24(S),25-EC :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI Number						
SPDEATAADQES(ph)EDDLSASR	Farpl	IPI00356904	26.44	1	0.349	1	0.465	1	
TEEVLSPDGSPSKS(ph)PSK	Add3	IPI00387580	38.11	1	0.349	/	0.439	1	
ADS(ph)DSEDKGEESKPK	Cbx1	IPI00129466	40.05	1	0.347	1	0.393	1	
EELEQQT(ph)DGDC(me)DEEDDDK DGEVPK	Sec62	IPI00134398	57.28	1	0.346	1	0.532	1	
EDAPPEDKES(ph)ESEAK	Cds2	IPI00468999	26.03	/	0.346	1	0.594	1	
ERQES(ph)ESEQELVNK	Pdcdl 1	IPI00551454	39.77	1	0.345	1	0.560	1	
AS(ph)AVSPEKAPM(ox)TSK	Tcofl	IPI00115660	34.02	1	0.345	1	0.346	1	
ADS(ph)DSEDKGEESKPK	Cbx 1	IPI00129466	40.05	1	0.344	1	0.451	1	
LPSGSGPASPTT(ph)GSAVDIR	Ahnak	IPI00553798	65.09	1	0.339	/	0.378	/	
IGPLGLS(ph)PK	Rpl12	IPI00463634	45.65	1	0.333	1	0.426	1	
EIITEEPS(ph)EEEADM(ox)PKPK	Ddx 21	IP100120691	56.99	1	0.330	/	0.443	/	
NGLSQPS(ph)EEEADIPKPK	Ddx21	IPI00120691	36.77	1	0.325	/	0.431	/	
NGLSQPS(ph)EEEVDIPKPK	Ddx21	IPI00120691	42.24	1	0.323	1	0.384	1	
NISEES(ph)PLTHR	Pask	IPI00400044	32.53	/	0.322	1	0.610	1	
S(ph)PAKEPVEQPR	Spen	IPI00828562	25.27	1	0.321	1	0.464	1	
RVSGS(ph)ATPNSEAPR	Ddx51	IPI00396728	58.55	1	0.306	1	0.460	/	
S(ph)HTGEAAAVR	Bcl2113	IPI00321499	35.83	1	0.288	/	0.467	/	
NNVMT(ph)SPNVHLK	Cenpc 1	IPI00114808	34.17	1	0.284	/	0.390	1	
RVS(ph)GSATPNSEAPR	Ddx51	IPI00396728	58.55	1	0.278	/	0.427	1	
YLEIDS(ph)DEESR	Sdad 1	IPI00387439	33.64	1	0.276	1	0.529	1	
DDS(ph)GAEDNVDTHQQQAENST VPTADSR	Rspry 1	IPI00223590	27.35	1	0.275	/	0.445	1	
LSQVNGATPVS(ph)PIEPESK	Mybbpl \mathbf{a}	IPI00331361	33.48	1	0.272	1	0.461	1	
RIS(ph)GLIYEETR	Histlh4 a	IPI00623776	35.15	1	0.267	/	0.400	1	
GS(ph)HC(me)SGSGDPAEYNLR	Lmna	IPI00620256	32.11	1	0.257	/	0.488	1	
LSQVNGAT(ph)PVSPIEPESK	$\begin{gathered} \text { Mybbpl } \\ \text { a } \end{gathered}$	IPI00331361	33.48	/	0.254	1	0.436	/	
SST(ph)PLPTVSSSAENTR	Tmpo	IPI00896574	55.29	1	0.246	/	0.516	/	
SPFNSPSPQDS(ph)PR	Nfic	IPI00137501	40.52	1	0.213	/	0.435	1	
GSGEASSDSIDHS(ph)PAK	$\begin{gathered} \text { Suv39h } \\ 2 \end{gathered}$	IPI00111417	26.96	1	0.174	1	0.377	1	

S(ph)SPPVEHPAGTSTTDNDVIIR	Rail4	IPI00453820	35.31	$/$	0.170	$/$	0.308	$/$
GHYEVTGS(ph)DDEAGK	Ahnak	IPI00553798	58.36	$/$	0.168	$/$	0.371	$/$
SNS(ph)FSDER	Ahnak	IPI00553798	29.85	$/$	0.154	$/$	0.366	$/$
GGVTGSPEAS(ph)ISGSKGDLK	Ahnak	IPI00553798	43.68	$/$	0.135	$/$	0.346	$/$
GGVTGSPEASISGS(ph)KGDLK	Ahnak	IPI00553798	43.68	$/$	0.119	$/$	0.363	$/$
DSVPAS(ph)PGVPAADFPAETEQS KPSK	Top2a	IPI00122223	25.31	$/$	0.116	$/$	0.342	$/$
SGAAEEDDS(ph)GVEVYYR	Pdcd11	IPI00551454	41.08	$/$	0.104	$/$	0.592	$/$
KGDDS(ph)DEEDLC(me)ISNK	Stard13	IPI00857002	57.82	$/$	0.027	$/$	0.317	$/$
MSPNETLFLES(ph)TNK	Rragc	IPI00468702	$/$	32.32	$/$	0.407	$/$	0.530
SPSPSPTS(ph)PGSLR	Dclk1	IPI00468380	$/$	51.87	$/$	0.398	$/$	0.582
PQSAS(ph)PAKEEQK	Palm	IPI00129298	$/$	30.2	$/$	0.390	$/$	0.196
LS(ph)PAYSLGSLTGASPR	Phldb1	IPI00330246	$/$	34.03	$/$	0.369	$/$	0.573
SGTSTPTTPGSTAITPGT(ph)PPSYS SR	Mtap2	IPI00895463	$/$	69.16	$/$	0.360	$/$	0.661
TASRPEDTPDSPSGPSS(ph)PK	Lrce16a	IPI00474873	$/$	46.92	$/$	0.216	$/$	0.439
LYNSEESRPYT(ph)NK	Crkrs	IPI00648022	$/$	49.1	$/$	0.205	$/$	0.338

Table 5.11. Phosphopeptides identified as up-regulated after treatment with 25hydroxycholesterol (25-OHChol). Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio 24(S),25-EC :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene								
HGS(ph)DPAFGPSPR	Fam83h	IPI00227516	28.43	1	1.795	1	0.658	1	
DELADEIANSS(ph)GK	Myh9	IPI00123181	29.65	1	1.166	1	0.970	1	
S(ph)STSGSASSLESGVYR	Gtse 1	IPI00268247	63.04	1	1.152	1	0.614	1	
AQT(ph)PESC(me)GSVTPER	Filipll	IPI00755058	30.92	1	1.120	1	0.637	1	
LLQDSSS(ph)PVDLAK	Ncoa2	IPI00116968	29.72	1	1.118	1	0.919	1	
RQS(ph)LTSPDSQSTR	Herc1	IPI00676574	33.46	38.87	1.064	0.991	0.698	0.776	
GS(ph)PEDGSHEASPLEGK	Rbm20	IPI00849187	51.26	1	1.055	1	0.586	1	
PTGGLRDS(ph)EAEK	Hirip3	IPI00222813	29.49	1	1.035	1	1.064	1	
KLEVS(ph)PGDEQSNVETR	Gn13	IP100222461	73.45	1	0.988	1	0.431	1	
TASESISNLSEAGS(ph)VK	Clipl	IP100857273	31	1	0.975	1	0.725	1	
IKDPDLTT(ph)PDSK	Ckap2	IPI00470092	44.82	1	0.954	1	0.782	1	
AQTPESC(me)GSVT(ph)PER	Filipll	IPI00755058	30.92	1	0.944	1	0.724	1	
GGIDNPAIT(ph)SDQEVDDKK	$\begin{gathered} \text { Arhgap } \\ 5 \end{gathered}$	IPI00124298	40.63	1	0.924	1	1.125	1	
SNS(ph)NSSSVITTEDNK	Filip11	IPI00755058	77.83	1	0.922	1	0.623	1	
SEVQAHS(ph)PSR	Mtap2	IP100895965	31.21	1	0.907	/	0.849	1	
TTSTSNPSS(ph)PAPDWYK	Atrx	IPI00857253	38.08	1	0.892	1	0.604	1	
ASS(ph)EDTLNKPGSASSGVAR	Specc1	IPI00798550	33.64	1	0.887	1	0.805	1	
YMSSDTT(ph)SPELR	Sin3a	IPI00117932	27.09	1	0.883	1	0.580	1	
YIASVQGSAPS(ph)PR	Ranbp2	IPI00337844	36.79	1	0.875	1	0.596	1	
EKEEEETS(ph)PDTSIPR	Arhgef5	IPI00855144	48.09	1	0.868	/	0.565	1	
AS(ph)SHSSQSQGGGSVTK	Lmna	IPI00620256	1	58.67	1	2.595	1	1.511	
$\begin{aligned} & \text { TEEDRENTQIDDTEPLS(ph)PVSNS } \\ & \mathrm{K} \end{aligned}$	$\begin{gathered} \text { Trp53bp } \\ 1 \end{gathered}$	IPI00229801	1	28.8	1	2.576	1	1.904	
SGFGGMSS(ph)PVIR	Nup107	IPI00221767	1	40.37	1	2.574	1	2.074	
QEGAQENVKNS(ph)PVPR	Gmnn	IPI00131716	1	30.64	1	2.565	1	1.603	
GEVAPKET(ph)PKK	$\begin{gathered} \text { Marcksl } \\ 1 \\ \hline \end{gathered}$	IPI00281011	1	26.82	1	2.274	1	1.651	
SEDRPS(ph)SPQVSVAAVETK	$\begin{gathered} \text { Trp53bp } \\ 1 \end{gathered}$	IPI00229801	1	48.56	1	2.071	1	1.704	
LHSAQLS(ph)PVDETPATQSQLK	Mlflip	IPI00459115	1	36.63	1	1.947	1	1.619	
PAS(ph)PLSGPR	$\begin{gathered} \text { D2Wsu } \\ 81 \mathrm{e} \end{gathered}$	IPI00224127	1	29.84	1	1.802	1	1.652	

T(ph)SMGGTQQQFVEGVR	Ctnnbl	IPI00125899	1	48.59	1	1.721	1	1.130
EIITEEPS(ph)EEEADMPKPK	Ddx21	IPI00120691	1	31.38	1	1.693	1	1.383
HLFSS(ph)TENLAAR	$\begin{gathered} \text { Rabllfi } \\ \mathrm{pl} \\ \hline \end{gathered}$	IPI00169485	1	39.84	7	1.665	/	1.264
NWTEDIEGGISS(ph)PVK	Nfic	IPI00137501	1	32.95	$/$	1.656	1	1.073
TTVYYQS(ph)PLESKPR	Atad 2	IPI00135252	1	41.56	1	1.532	1	1.139
T(ph)GSLQLSSTSIGTSSLK	Cobll 1	IPI00762331	1	31.52	1	1.526	1	0.746
AEEDEILNRS(ph)PR	Canx	IPI00119618	1	25.35	1	1.506	1	1.350
KQNETADEAT(ph)TPQAK	Nolc1	IPI00720058	1	43.74	/	1.498	1	1.422
SRLTPTTPES(ph)SSTGTEDK	Sqstml	IPI00133374	/	74.88	/	1.485	1	0.733
IALESVGQPEEQMESGNC(me)S(ph) GGDDDWTHLSSK	Sqstm1	IPI00133374	/	27.33	/	1.471	/	0.787
AGS(ph)SPTQGAQNEAPR	Tcf20	IPI00407458	1	30.95	1	1.457	/	1.514
KAPLTLAGS(ph)PTPK	Wiz	IP100263016	/	39.77	/	1.455	1	1.147
KLDTFQSTS(ph)PK	Ddx 24	IPI00113576	1	27.61	1	1.453	1	1.063
SRLT(ph)PTTPESSSTGTEDK	Sqstm1	IPI00133374	/	74.88	1	1.435	/	0.821
SSS(ph)FGSVSTSSTSSK	Snx16	1PI00331029	/	54.62	/	1.416	1	4.998
TVGNVS(ph)PTAQMVQR	Rbm7	IPI00133061	1	28.2	/	1.414	1	1.646
SRLTPTT(ph)PESSSTGTEDK	Sqstml	IPI00133374	1	74.88	1	1.408	1	0.841
TEMDKS(ph)PFNSPSPQDSPR	Nfic	IPI00137501	1	35.42	1	1.371	/	1.118

Removal of the phosphopeptides only identified in 1 biological replicate reduced the total number of phosphopeptides considerably. In total 2 phosphopeptides were identified as changed (1 down-regulated, and 1 up-regulated) in both biological replicates after treatment with 25-hydroxycholesterol (table 5.12.). In the case of these phosphopeptides they are in the lowest or highest 15.87 percentile range and thus can be considered greater than 1 standard deviation away from the median. The median ratio after $24(S), 25$-epoxycholesterol was $0.59(15.87$ percentile $=0.5)$ and 0.81 (15.87 percentile $=0.69$) for the two biological replicates respectively. Thus, only one peptide (RLS(ph)QSDEDVIR) was in the 15.87 percentile range in both biological replicates after treatment with $24(S), 25$-epoxycholesterol. It is interesting to note that the protein from which this phosphopeptide is derived has been associated with MAPK signalling (Zhu et al. 2004). There is evidence that MAPK (AKA ERK) phosphorylation can be influenced by oxysterols and, in addition, ERK appears to have a role in dopaminergic neurogenesis (section 5.1).

Table 5.12. Phosphopeptides identified as having change in expression after treatment with 25-hydroxycholesterol (25-OHChol) or 24(S),25-epoxycholesterol (24(S),25EC). All the peptides had a probability of identification of the correct phosphorylation site of ≥ 0.98. Un-normalised SILAC phosphopeptide ratios are displayed. Values in bold were classed as changed

			Mascot Score		Ratio 25-OHChol :Control		$\begin{gathered} \hline \text { Ratio } \\ \text { 24(S),25-EC } \\ \text { :Control } \end{gathered}$	
		Replicate	1	2	1	2	1	2
Phosphopeptide	Gene	IPI Number						
RLS(ph)QSDEDVIR	Wdr26	IPI00226275	83.2	29.45	0.36	0.36	0.40	0.41
RQS(ph)LTSPDSQSTR	Herc1	IP100676574	33.46	38.87	1.06	0.99	0.69	0.77 .

Both phosphopeptides identified as changed (table 5.12) have no commercially available antibodies it was impossible to validate these changes. This inability to reproduce the observed changes by a different technique is critical as when analysed as a population the ratio of the phosphopeptides that were identified in both biological replicates were variable (fig. 5.10). Indeed, in some cases the phosphopeptides identified when quantified changed in opposite directions. Points in the upper left quadrant of the graph represent phosphopeptides that have increased in one replicate and decreased in the other (fig. 5.10). Thus, despite strong evidence to suggest that the peptide identification and phosphorylation site is correct without further experimental evidence it is difficult to have certainty to the changes in the quantification of the phosphorylation.

A

B

Figure 5.10. Poor correlation in peptide ratio between biological replicates. There is poor correlation in the ratios of the phosphopeptides common to both biological replicates after treatment with 25-hydroxycholesterol. The un-normalised ratio of the phosphopeptide (A) has a poor correlation with a number of peptides having opposite responses in a number of cases (top left quadrant). The normalised phosphopeptide ratios had a similar trend (B). Normalisation occurs in each experiment to take into account any error introduced by protein mixing. (C) As a contrast peptide ratios from 2 biological replicates treated with $24(S), 25$-epoxycholesterol and analysed for changes in protein expression (Chapter 3) showed a much better correlation in normalised peptide ratio between different biological samples.

5.2.8. Peptide Methylation

In an attempt to increase the specificity of the IMAC by reducing non-specific binding peptide methylation was undertaken. To methylate acidic amino acids and the C-terminus carboxylic acid peptides were incubated with methanolic hydrochloric acid. This methylation would, in theory prevent non-specific binding to the IMAC column as the non-phosphate negatively charged acidic moieties are blocked by the methyl group. Therefore to examine this method 2.25 mg of SILAC SN4741 lysate was fractioned using strong cation exchange, treated with methanolic acid, phosphoenriched using IMAC and analysed by LC-MS/MS. This resulted in a total of 4510 peptides (2067 unique) being identified with a total Mascot score ≥ 25 and a SILAC ratio generated. 1082 of these 4510 peptides were phosphorylated. In total 609 unique phosphopeptides were identified. However, when examining peptide methylation only 716 of the total peptides were identified with a methylation either on an aspartic (D) or glutamic acid (E) residue or on the C-terminus. Of these only 425 were unique peptides. In addition, often the same peptide was methylated in different and/or multiple places. For example the peptide ALAAAGYDVEK from Histone H1.2 has 3 potential methylation sites one aspartic acid residue (D), one glutamic acid residue (E) and the C-terminus. This peptide was identified with 5 different combinations of methylation (table 5.13.). The 5 peptides eluted from the C 18 column at different rates and therefore the total amount of peptide with the same amino acid sequence was split between the different retention times.

Table 5.13. Incomplete methylation increases complexity of the peptide mixture. In this example one peptide sequence was identified 5 times with different levels of methylation

Peptide Sequence	Mascot Score	Retention Time
ALAAAGYD(me)VE(me)K_(me)	58.27	55.025
ALAAAGYDVE(me)K_(me)	50.81	51.578
ALAAAGYD(me)VEK_(me)	34.84	50.173
ALAAAGYD(me)VE(me)K	41.49	52.224
ALAAAGYDVE(me)K	40.82	47.177

However, this dataset did contain some phosphopeptides and these were analysed to confirm the novel sites previously observed (table 5.5). Thus, analysis of the 609 unique phosphopeptides allowed further confirmation of 5 novel phosphorylation sites (table 5.14).

Table 5.14. Phosphopeptides with a novel site of phosphorylation identified in 3 independent experiments.

Sequence and Phosphorylation site	Gene	Phosphorylation Site Probabilities	Mascot Score
ASSFYGSAS(ph)PNHLR	Mcph1	ASSFYGS(0.007)AS(0.993)PNHLR	43.72
HVSS(ph)PDVTTAQK	Tdp1	HVS(0.054)S(0.946)PDVTTAQK	30.83
KS(ph)PEQESVSTAPQR	Spg20	KS(0.999)PEQES(0.001)VSTAPQR	38.85
NTVDIVDKPENS(ph)PQR	Phf3	NTVDIVDKPENS(1)PQR	58.37
RSTPS(ph)GPVR	Rbmxrt	RSTPS(1)GPVR	40.09

5.3. Discussion

The basis of these experiments was to identify changes in phosphorylation induced by oxysterols in SN4741 cells. Therefore, in order to elucidate reproducible changes in the phosphoproteome the data sets were examined for phosphopeptides reproducibly identified by the SILAC labelling as up-or down regulated. A limitation of the study was a use of only one time point for the SILAC experiments. As phosphorylation is a transient, reversible modification it is possible that some changes induced by oxysterol treatment were not observed due to examining the phosphoproteome at the 'wrong' time point.

However, 2 phosphopeptides were identified as having a changed expression after treatment with 25 -hydroxycholesterol (table 5.12). The peptides identified had good Mascot scores and a high probability that the phosphorylation is assigned to the correct amino acid. Interestingly, WD repeat-containing protein 26 (Wdr26) which the previously reported phosphopeptide RLS(ph)QSDEDVIR (Sweet et al. 2009) is derived from has previously been associated with MAPK signalling (Zhu et al. 2004); a pathway also associated with oxysterols and dopaminergic neurogenesis. This phosphopeptide was classed as changed after treatment with 25-hydroxycholesterol or 24(S),25-epoxycholesterol. However, the independent validation of the observed change in these phosphopeptides was unable to be achieved due to the lack of a commercially available antibody.

With the lack of validation it is difficult to draw conclusions beyond unequivocal identification as in these experiments the reproducibility of the phosphopeptide quantification was ambiguous due to the fact that in some cases the same phosphopeptide was identified up or down regulated in different biological replicates (fig 5.10). Thus, these data throw into doubt the reliability of the very few reproducible changes observed after treatment with 25 -hydroxycholesterol and $24(S), 25$-epoxycholesterol. To a certain extent these results are unsurprising as phosphorylation is a transient modification that can react quickly to a broad range of stimuli. These data highlight the technical difficulties in identifying reproducible changes in the phosphoproteome.

However, with this methodology, utilising strong cation exchange chromatography and IMAC phosphoenrichment, a large number of phosphopeptides were identified by mass spectrometry in each biological replicate. In the two biological replicates 1232 and 845 unique phosphopeptides were identified, 27% and 11% of the total unique peptides. In total 1663 phosphopeptides were identified with a Mascot score ≥ 25. Thus, in 2 biological replicates a proportion of the total phosphopeptides identified (414/1663, 24.9\%) were observed in both data sets with Mascot scores ≥ 25. The reproducible observation of the same phosphopeptide in different biological replicates is a major challenge of phosphoproteomics and others have reported similar difficulties (Engholm-Keller et al. 2012).

Of the 414 phosphopeptides identified in both data sets 56 were identified as not currently having experimental evidence to demonstrate phosphorylation. Further analysis of these peptides allowed confident identification of 37 novel phosphorylation sites.

These data indicate that strong cation exchange chromatography followed by IMAC resulted in phosphopeptide enrichment. However, the number of phosphopeptides identified could be improved by improving the methodology. To this end peptide methylation was examined as a methodology to reduce the amount of non-specific binding to the IMAC column. However, from the data presented here the current methodology is unsuitable. The methylation is incomplete as shown by the data that only a subsection of the total population (716/4510) were identified as methylated. Furthermore, peptides identified as methylated did not react completely (table 5.13). Incomplete methylation means that unspecific binding to the column may still occur. Indeed, it appears that methylation, in some cases, does not prevent non specific binding (table 5.13). In addition the incomplete nature of the methylation may mean that some phosphopeptides have more than one retention time for the same sequence. This may lead to some of these low abundance, poorly ionisable peptides to not be detected at all. Thus methylation in some cases may be counterproductive. Therefore, other options to increase the number of phosphopeptide identifications may be preferable.

One option is to use another phosphoenrichment method sequentially after IMAC. In this case the peptide flow through from the IMAC columns would be subjected to
further stages of phosphoenrichment. Titanium dioxide $\left(\mathrm{TiO}_{2}\right)$ has previously been used for this purpose after IMAC phosphoenrichment and resulted in a greater number of peptides identified (Thingholm et al. 2008). Another option is to use multiple sequential rounds of phosphoenrichment using the same technique. This approach has recently been performed using titanium dioxide which resulted in the identification of ~ 4000 phosphorylation sites (Sharma et al. 2012). Using these approaches could increase the number of phosphopeptides identified and increase further the identifications common to independent biological replicates.

A second approach to improve the number of phosphopeptides identified might be to change the quantification approach. As shown in chapter 3 SILAC is a powerful technique for quantitative proteomics. However, in the case of phosphoproteomics some of its inherent characteristics might be considered weaknesses. SILAC is reliant on the triplet of peaks, seen in the MS scan, that are derived from the same peptide sequence but containing isotope labelled arginine or lysine in order to quantify peptides and, therefore, proteins. Therefore, this means for each peptide sequence there are 3 precursor ions in the spectra. For evaluation of total protein expression this is not an issue. However, the low abundance of phosphopeptides, coupled with their poor ability to ionise, might mean that due to splitting the total intensity from a given phosphopeptide over 3 peaks might result in the peptide being below the detection limit. Thus, an isobaric labelling, such as iTraq (section 1.2.3.2) might provide a better option for the quantitative analysis of phosphopeptides. iTraq labelling is performed on peptides prior to mixing and results in a covalent bond between amine groups of peptides and the iTraq reagent. The resultant labelling is isobaric between different groups and is only apparent in the MS^{2} fragmentation spectra where reporter ions are used to quantify different treatment groups. Therefore, due to the isobaric nature of the iTraq labelling the initial precursor ion, unlike SILAC, is a single peak. This fact may increase the number of low intensity phosphopeptides identified whilst retaining the ability to quantify changes between different treatment groups.

One option to improve the reliability of the phosphopeptide quantification would be to analyse the non-phosphorylated peptide mixture eluted on the IMAC phosphoenrichment by LC-MS/MS. Therefore, they could be used in combination with the phosphoenriched samples, but processed by LC-MS/MS independently, in
order to normalise the phosphorylation of a given phosphopeptide to total protein expression. This can be done automatically by bio-informatic software whilst analysing data. This would give a more reliable estimation of the change in phosphorylation as the effect of experimental error in protein mixing would be adjusted for. By analysing the phosphopeptide alone this normalisation to protein is impossible as commonly the phosphopeptide is the only peptide used for identification of any protein and thus when normalised to protein results a ratio of 1 .

In summary, the phosphoproteomic analysis of SN4741 cells led to the identification of a large number of phosphopeptides. Indeed, these data resulted in the identification of a number of novel phosphorylation sites in the mouse proteome. The work presented here does not investigate the role the identified phosphorylation sites play in the cell. It does, however, provide experimental evidence that these post translational modifications occur providing a basis for future elucidation. Unfortunately, the quantitative phosphoproteomics proved less successful. Phosphorylation is a transient and highly responsive post-translational modification and when compared to total protein expression that is, relatively, stable the analysis of the phosphoproteome is inherently more difficult. Thus, these data indicate the large technical challenge involved in quantitative phosphoproteomic studies.

Chapter 6: General Discussion

Proteomics as a technology is still in its infancy. The power of this experimental approach is to analyse the global effects of treatments on protein expression and posttranslational modifications. In this case the effect of 24(S),25-epoxycholesterol or GW3965 on protein expression and $24(S), 25$-epoxycholesterol or 25 hydroxycholesterol on the phosphoproteome. The data presented here highlight the effectiveness of proteomic experimental design in the ability to identify quantifiable changes in protein expression is clear. In the experiments analysing protein expression thousands of proteins were identified and quantified the majority of which with 2 or more peptides. The SILAC approach employed identified expected changes in protein expression after treatment with $24(S), 25$-epoxycholesterol or GW3965. These observations in known changes (e.g. the LXR regulated gene ABCA1) lend weight to the observed unexpected changes and, in addition, act as a positive control for treatment uptake. The SILAC methodology for quantifying protein expression changes presented here could easily be applied to any cell type or treatment.

Nevertheless, challenges remain. The selection of a peptide for fragmentation is reliant, to a certain extent, on chance as there is no guarantee that a protein of interest will be identified. This can be seen in tables 3.5 . and 3.6 where a number of proteins are not identified in all three biological replicates. This is especially true of proteins of interest that are of low abundance as peptides with a weaker signal are at risk of not being selected for fragmentation and therefore identified. In addition, as SILAC data consists of light, medium and heavy peptides the spectra generated are inherently more complex. This could result in fragmentation of the same peptide in different SILAC states over a lower abundance unique peptide. In addition, the increased complexity might mask lower abundance peptides by having precursor ion peaks from other peptides superimposed on them. However, despite these potential limitations the SILAC data presented here identified a number of novel $24(S)$,25-epoxycholesterol induced protein changes.

Cholesterol itself is an integral part of cell membranes therefore it is perhaps unsurprising that a number of the novel $24(S), 25$-epoxycholesterol changes observed are related to membrane composition. The presence of $24(S), 25$-epoxycholesterol inhibits cholesterol synthesis and therefore may lead to membrane alteration (fig 6.1).

Two proteins involved directly or indirectly in phospholipid synthesis, phosphoethanolamine cytidylyltransferase and collagen type IV alpha-3-binding protein, were identified as changed after $24(S), 25$-epoxycholesterol treatment. Phosphoethanolamine cytidylyltransferase (PCyt2), a independently reported SREBP2 regulated gene identified whilst this work was being conducted (Ando et al. 2010), is required for phosphoethanolamine synthesis and is down-regulated after 24(S),25-epoxycholesterol treatment (table 3.10). Collagen type IV alpha-3-binding protein (col4a3bp; StAR-related lipid transfer protein 11, Stardl1) is up-regulated after $24(S), 25$-epoxycholesterol treatment at both the protein and mRNA level (table 3.10; fig. 4.1). This protein transports ceramide from the endoplasmic reticulum to the Golgi apparatus where it is synthesised to sphingomyelin. In addition to the changes in the proteins involved in lipid synthesis caveolin-1, the lipid raft component, was identified as down-regulated after 24(S),25-epoxycholesterol treatment which based on confocal microscopy data appears to be related to changes in cholesterol levels (table 3.10; fig 3.17; fig.3.18; fig. 3.19). In order to investigate this hypothesis it could be possible to investigate the cholesterol level of $24(S), 25$-epoxycholesterol treated SN4741 cells to see if there is a correlation between cholesterol level and caveolin-1 expression. Indeed, mass spectrometry could be used to analyse all the components of the plasma membrane. Thus, quantification of phospholipids and cholesterol could determine the effect of the observed protein changes in relation to membrane lipids.

It is clear that $24(S), 25$-epoxycholesterol has an effect on caveolin- 1 expression and localisation. Further investigations into the effect of 24(S),25-epoxycholesterol on protein localisation in SN4741 cells could be conducted using a proteomics approach. Subcellular fractionation could be used in order to examine the protein expression in certain parts of the cell. Subcellular fractionation allows different components of the cell to be isolated and therefore analysed separately. Thus, it could be possible to combine subcellular fractionation with, for example, SILAC labelling in order to quantify changes to protein distribution after a treatment. This approach would allow the identification of changes in membrane protein composition and protein translocation (e.g. cytoplasm to nucleus) where the total protein expression remains constant.

24(S),25-epoxycholesterol was shown to increase macrophage colony stimulating factor (MCSF) in SN4741 cells at both the protein and mRNA level. It is interesting
to note that MCSF is required for normal brain development and that, also, 24(S),25epoxycholesterol is present at higher than expected levels in embryonic mouse brain (Michaelson et al. 1996; Wang et al. 2009). A role for LXR in ventral midbrain development has been demonstrated (Sacchetti et al. 2009) however, it is unlikely this increase in MCSF expression in SN4741 cells is LXR controlled as, the synthetic ligand, GW3965 had no effect. Indeed the ring oxygenated oxysterols 7β hydroxycholesterol and 7α-hydroxycholesterol, which are considered weak LXR agonists, induced significant increases in MCSF mRNA in THP1 monocytes.

The lack of effect after GW3965 implies that a LXR independent mechanism is responsible for the observed increase in MCSF expression. Unfortunately, due to time restraints it was beyond the scope of this work to examine in detail the mechanism by which oxysterols induce this effect. However, a number of possibilities exist through which oxysterols could induce this observed effect on MCSF expression. A nuclear receptor that has been shown to regulate MCSF expression is PPAR (Bonfield et al. 2008). Similarly to LXR, PPAR γ is a nuclear receptor that requires heterodimerisation with RXR when activated. PPAR γ activation causes a decrease in MCSF expression (Bonfield et al. 2008). Therefore it appears that PPAR γ activation has an inverse effect to treatment with oxysterols. This leads to the hypothesis that oxysterols can inhibit PPAR γ activity. Indeed, there has been recent evidence to suggest that this is the case with 25-hydroxycholesterol inhibiting PPAR (Xu et al. 2012). It appears that PPAR γ inhibits MCSF expression through repressing NF-kB mediated transcription (Bonfield et al. 2008). Furthermore, evidence of oxysterols inducing NFkB translocation has recently been reported (Aye et al. 2012; Xu et al. 2012). Thus, one hypothesis is that the observed increase in MCSF expression is due to inhibition of PPAR γ and increased translocation of NF-kB. Another potential mechanism for the increase in MCSF expression via NF-kB activation is through ERK signalling. Inhibition of ERK can decrease NF-kB activity (Vanden Berghe et al. 1998) therefore as oxysterols can increase ERK phosphorylation (Yoon et al. 2004, Lemaire-Ewing et al. 2009) it is possible that MCSF expression is increased through this pathway. Thus, it is possible that there is a link between the results observed for MCSF at the protein and mRNA level and the initial basis for the phosphoproteomic studies presented here. Experimental evidence would be required to confirm the pathway through the

Figure 6.1. The effect of $24(S), 25$-epoxycholesterol on SN4741 neuronal cells. It is hypothesised that $24(S), 25$-epoxycholesterol induces a number of changes in cell membranes through direct (e.g. reducing the synthesis of cholesterol) and indirect (e.g. inducing changes in caveolin-1 expression and localisation) mechanisms. In addition, LXR independent up-regulation of Golgi sialoglycoprotein MG-160 (ESL1) and macrophage colony stimulating factor (MCSF) through an unknown mechanism was observed. MCSF has previously been reported to be important in brain development (Michaelson et al. 1996) and therefore it is hypothesised that this is an important effect of $24(S), 25$-epoxycholesterol on murine embryonic development.
use of small molecule inhibitors or RNAi in combination with oxysterol treatment. This approach would allow dissection of the mechanism by which oxysterols increase MCSF expression.

The use of SILAC in phosphoproteomic studies was also, albeit to a lesser extent, successful. A large number of phosphopeptides were identified with a Mascot score >25 and quantified (fig. 5.8). A number of these phosphopeptides confirmed predicted phosphorylation sites that had no previous experimental validation. In addition, a number of phosphorylation sites previously unreported on the canonical protein database Uniprot were identified (table $5.4 ; 5.5$). The absence of a commercially available antibody for these previously unidentified phosphorylation sites means that validation is impossible. However, there is confidence in the mass spectrometry data and therefore it is probable that the sequence and phosphorylation site identifications are correct. The analysis of the function of these novel phosphorylation sites was beyond the scope of this work, however, a foundation is laid for future work. The identified phosphopeptides, novel and previously reported, can now be predicted as to where they will elute from both the strong cation exchange and C18 HPLC column. This allows, if required, a focused approach for a given phosphopeptide.

The identification of reproducible changes in the phosphoproteome proved difficult. A number of issues identified in these studies would be able to improve subsequent studies. The low abundance of phosphopeptides makes their analysis difficult. In addition, a large number of non-phosphorylated peptides were also identified in the phosphoenriched samples (table 5.3). Therefore, improvements in phosphoenrichment would be beneficial to improve the number of phosphopeptides identified. This would also improve the probability of identifying the same phosphopeptide in different biological replicates giving a greater overlap of phosphopeptides between different samples. This would be beneficial to identify reproducible changes in the phosphoproteome. The use of SILAC as a technique might not be ideal for phosphoproteomic work due to the characteristic 3 precursor ions in a SILAC peptide spectrum splitting the signal from low abundance phosphopeptides. In addition, as phosphopeptides are poorly ionisable there is a risk of not detecting phosphopeptides present in the sample. The use of an alternate labelling strategy, such as iTraq, could help to limit this due to peptides in different groups having the same mass and, thus, only distinguishable in the MS/MS spectra. One problem of the phosphoproteomic
methodology is the lack of an internal positive control in a similar vein to the SREBP2 regulated genes in the protein expression studies. ERK1/2, the only previously reported protein whose phosphorylation is induced by oxysterols, was not identified in any dataset. Therefore, due to the unknown effects of the oxysterols on phosphorylation beyond that reported for ERK $1 / 2$ there is a lack of known changes in the phosphoproteomic data set to look for as a validation. This makes it difficult to analyse quantifiable changes in the data set with confidence. In addition, the observed variation between different biological replicates meant that there is doubt in the few reproducibly observed changes in SILAC phosphopeptide quantification data without further experimental validation.

As a cautionary note it is important to recognise that as the experiments presented here were performed in serum free media the observed changes might be increased, reduced or absent, in the presence of serum. Serum is a complex mixture that contains a large number of components including cholesterol and oxysterols. Serum free media for in vitro studies allows the removal of the variability of batch to batch serum composition but might not necessarily portray the in vivo situation. However, these proteomic and phosphoproteomic studies provide a wealth of data regarding the effect of oxysterols on SN4741 neuronal cells and provide a large dataset to inspire further work. The role of oxysterols in membrane homeostasis, in subcellular protein localisation, and in immunity can be further elucidated and all stem from these data presented here. The most exciting discovery is that of a role of oxysterols in MCSF expression. This observation ties in with observed relationship between MCSF expression and neuronal development, neurodegenerative disease, and immunity. All of these are areas with which oxysterols have been associated and therefore their relationship with MCSF is an ideal subject for future work.

References

Agassandian M, Zhou J, Tephly LA, Ryan AJ, Carter AB, Mallampalli RK. Oxysterols inhibit phosphatidylcholine synthesis via ERK docking and phosphorylation of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 2005 Jun 3;280(22):21577-87.

Andersson S, Davis DL, Dahlbäck H, Jörnvall H, Russell DW. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222-9.

Ando H, Horibata Y, Yamashita S, Oyama T, Sugimoto H. Low-density lipoprotein and oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase in vitro. Biochim Biophys Acta. 2010 Apr; 1801(4):487-95.

Annicotte JS, Schoonjans K, Auwerx J. Expression of the liver X receptor alpha and beta in embryonic and adult mice. Anat Rec A Discov Mol Cell Evol Biol. 2004 Apr;277(2):312-6.

Ares MP, Pörn-Ares MI, Moses S, Thyberg J, Juntti-Berggren L, Berggren P, Hultgårdh-Nilsson A, Kallin B, Nilsson J. 7beta-hydroxycholesterol induces $\mathrm{Ca}(2+$) oscillations, MAP kinase activation and apoptosis in human aortic smooth muscle cells. Atherosclerosis. 2000 Nov; 153 (1):23-35

Avruch J. MAP kinase pathways: the first twenty years. Biochim Biophys Acta. 2007 Aug;1773(8):1150-60

Aye IL, Waddell BJ, Mark PJ, Keelan JA. Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF_B. Mol Hum Reprod. 2012 Jan 10. [Epub ahead of print]

Babiker A, Andersson O, Lund E, Xiu RJ, Deeb S, Reshef A, Leitersdorf E, Diczfalusy U, Björkhem I. Elimination of cholesterol in macrophages and endothelial cells by the sterol 27 -hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem. 1997 Oct 17;272(42):26253-61.

Bailey KM, Liu J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem. 2008 May 16;283(20):13714-24.

Bakovic M, Fullerton MD, Michel V. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol. 2007 Jun;85(3):283-300.

Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007 Oct;389(4):1017-31.

Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16764-9.

Björkhem I, Andersson O, Diczfalusy U, Sevastik B, Xiu RJ, Duan C, Lund E. Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8592-6.

Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer's disease. Brain. 2009 Apr; 132(Pt 4):1078-92.

Bonfield TL, Thomassen MJ, Farver CF, Abraham S, Koloze MT, Zhang X, Mosser DM, Culver DA. Peroxisome proliferator-activated receptor-gamma regulates the expression of alveolar macrophage macrophage colony-stimulating factor. J Immunol. 2008 Jul 1;181(1):235-42.

Bretillon L, Sidén A, Wahlund LO, Lütjohann D, Minthon L, Crisby M, Hillert J, Groth CG, Diczfalusy U, Björkhem I. Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci Lett. 2000 Oct 27;293(2):87-90.

Brown J 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B. Differential expression of cholesterol hydroxylases in Alzheimer's disease. J Biol Chem. 2004 Aug 13;279(33):34674-81.

Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331-40.

Calleros L, Lasa M, Rodríguez-Alvarez FJ, Toro MJ, Chiloeches A. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. Apoptosis. 2006 Jul;11(7):1161-73.

Chiang JY, Miller WF, Lin GM. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Purification of cholesterol 7 alpha-hydroxylase and the immunochemical evidence for the induction of cholesterol 7 alpha-hydroxylase by cholestyramine and circadian rhythm. J Biol Chem. 1990 Mar 5;265(7):3889-97.

Chin DJ, Gil G, Faust JR, Goldstein JL, Brown MS, Luskey KL. Sterols accelerate degradation of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase encoded by a constitutively expressed cDNA. Mol Cell Biol. 1985 Apr;5(4):634-41.

Chisolm GM, Ma G, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, DiCorleto PE. 7ロ-Hydroperoxycholest-5-en-3口-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci U S A. 1994;91:11452-11456.

Corcoran RB, Scott MP. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8408-13.

Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M.A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc. 2009;4(5):698-705.

Crisby M, Nilsson J, Kostulas V, Björkhem I, Diczfalusy U. Localization of sterol 27hydroxylase immuno-reactivity in human atherosclerotic plaques. Biochim Biophys Acta. 1997 Feb 18;1344(3):278-85.

Cronin J, McAdam E, Danikas A, Tselepis C, Griffiths P, Baxter J, Thomas L, Manson J, Jenkins G. Epidermal growth factor receptor (EGFR) is overexpressed in high-grade dysplasia and adenocarcinoma of the esophagus and may represent a biomarker of histological progression in Barrett's esophagus (BE). Am J Gastroenterol. 2011 Jan;106(1):46-56.

Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553-6.

Diczfalusy U, Olofsson KE, Carlsson AM, Gong M, Golenbock DT, Rooyackers O, Fläring U, Björkbacka H. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res. 2009 Nov;50(11):2258-64.

Dix MM, Simon GM, Cravatt BF. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell. 2008 Aug 22;134(4):679-91.

Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5296-301.

Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem. 2007 Mar 23;282(12):8959-68.

Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7817-22.

Emmett MR, Caprioli RM Micro-electrospray mass spectrometry: ultra-highsensitivity analysis of peptides and proteins. J. Am. Soc. Mass Spectrom. 1994: 5 (7):

605-613.
Engholm-Keller K, Birck P, Størling J, Pociot F, Mandrup-Poulsen T, Larsen MR. TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics. 2012 Oct 22;75(18):574961.

Espenshade PJ, Cheng D, Goldstein JL, Brown MS. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory elementbinding proteins. J Biol Chem. 1999 Aug 6;274(32):22795-804.

Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64-71.

Fielding CJ, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3753-8.

Fourgeux C, Martine L, Björkhem I, Diczfalusy U, Joffre C, Acar N, Creuzot-Garcher C, Bron A, Bretillon L. Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5712-7.

Fujiyama J, Kuriyama M, Arima S, Shibata Y, Nagata K, Takenaga S, Tanaka H, Osame M. Atherogenic risk factors in cerebrotendinous xanthomatosis. Clin Chim Acta. 1991 Aug 15;200(1):1-11.

Furuchi T, Anderson RG. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem. 1998 Aug 14;273(33):21099104.

Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer's disease brain. Neurobiol Aging. 2004 Jul;25(6):753-9.

Gil G, Faust JR, Chin DJ, Goldstein JL, Brown MS. Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 Мау;41(1):249-58.

Gill S, Chow R, Brown AJ. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res. 2008 Nov;47(6):391404

Gonatas JO, Mezitis SG, Stieber A, Fleischer B, Gonatas NK. MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus. J Biol Chem. 1989 Jan 5;264(1):646-53.

Granero-Moltó F, Sarmah S, O'Rear L, Spagnoli A, Abrahamson D, Saus J, Hudson BG, Knapik EW. Goodpasture antigen-binding protein and its spliced variant, ceramide transfer protein, have different functions in the modulation of apoptosis during zebrafish development. J Biol Chem. 2008 Jul 18;283(29):20495-504.

Graumann J, Hubner NC, Kim JB, Ko K, Moser M, Kumar C, Cox J, Schöler H, Mann M. Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics. 2008 Apr;7(4):672-83.

Hailstones D, Sleer LS, Parton RG, Stanley KK. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res. 1998 Feb;39(2):369-79

Hanada K, Kumagai K, Tomishige N, Kawano M. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta. 2007 Jun;1771(6):644-53.

Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noël S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW. Oxysterols direct immune cell migration via EBI2. Nature. 2011 Jul 27;475(7357):524-7.

Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 2010 Apr;20(4):177-86.

Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res. 2006 Feb;3(1):19-24.

Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32.

Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005 Apr;40(4):430-43.

Hughes H, Mathews B, Lenz ML, Guyton JR. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arterioscler Thromb. 1994 Jul;14(7):1177-85.

Jaeger I, Arber C, Risner-Janiczek JR, Kuechler J, Pritzsche D, Chen IC, Naveenan T, Ungless MA, Li M. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development. 2011 Oct;138(20):4363-74.

Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):266-71.

Jelinek DF, Andersson S, Slaughter CA, Russell DW. Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J Biol Chem. 1990 May 15;265(14):8190-7.

Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 2004 Feb;8(1):33-41.

Jin SH, Lee YY, Kang HY. Methyl-beta-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. Arch Dermatol Res. 2008 Sep;300(8):451-4.

Kaku M, Tsutsui K, Motokawa M, Kawata T, Fujita T, Kohno S, Tohma Y, Ohtani J, Tenjoh K, Tanne K. Amyloid beta protein deposition and neuron loss in osteopetrotic (op/op) mice. Brain Res Brain Res Protoc. 2003 Oct;12(2):104-8.

Kast HR, Nguyen CM, Anisfeld AM, Ericsson J, Edwards PA. CTP:phosphocholine cytidylyltransferase, a new sterol- and SREBP-responsive gene. J Lipid Res. 2001 Aug;42(8):1266-72.

Kawata T, Tsutsui K, Kohno S, Kaku M, Fujita T, Tenjou K, Ohtani J, Motokawa M, Shigekawa M, Tohma Y, Tanne K. Amyloid beta protein deposition in osteopetrotic (op/op) mice is reduced by injections of macrophage colony stimulating factor. J Int Med Res. 2005 Nov-Dec;33(6):654-60.

Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem. 2001 Oct 19;276(42):39438-47.

Kennelly PJ, Krebs EG. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):155558.

Kim KH, Yoon JM, Choi AH, Kim WS, Lee GY, Kim JB. Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1. Mol Endocrinol. 2009 Apr;23(4):466-74.

Kim S, Kim Y, Lee Y, Cho KH, Kim KH, Chung JH. Cholesterol inhibits MMP-9 expression in human epidermal keratinocytes and HaCaT cells. FEBS Lett. 2007 Aug 7;581(20):3869-74.

Kim SY, Choi KC, Chang MS, Kim MH, Kim SY, Na YS, Lee JE, Jin BK, Lee BH, Baik JH. The dopamine D2 receptor regulates the development of dopaminergic neurons via extracellular signal-regulated kinase and Nurrl activation. J Neurosci. 2006 Apr 26;26(17):4567-76.

Kim SY, Lee HJ, Kim YN, Yoon S, Lee JE, Sun W, Choi EJ, Baik JH. Striatalenriched protein tyrosine phosphatase regulates dopaminergic neuronal development via extracellular signal-regulated kinase signaling. Exp Neurol. 2008 Nov;214(1):6977.

Kim WK, Meliton V, Amantea CM, Hahn TJ, Parhami F. 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J Bone Miner Res. 2007 Nov;22(11):1711-9.

Kim KH, Yoon JM, Choi AH, Kim WS, Lee GY, Kim JB. Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by displacing BARD1/BRCA1. Mol Endocrinol. 2009 Apr;23(4):466-74.

Kim WK, Meliton V, Tetradis S, Weinmaster G, Hahn TJ, Carlson M, Nelson SF, Parhami F. Osteogenic oxysterol, 20(S)-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. J Bone Miner Res. 2010 Apr;25(4):782-95.

Kondo Y, Lemere CA, Seabrook TJ. Osteopetrotic (op/op) mice have reduced microglia, no Abeta deposition, and no changes in dopaminergic neurons. J Neuroinflammation. 2007 Dec 20;4:31.

Knight BL. ATP-binding cassette transporter A1: regulation of cholesterol efflux. Biochem Soc Trans. 2004 Feb;32(Pt 1):124-7

Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL, Tontonoz P. Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol. 2001 Nov;21(22):7558-68

Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005 Jul;4(7):873-86.

Lemaire-Ewing S, Berthier A, Royer MC, Logette E, Corcos L, Bouchot A, Monier S, Prunet C, Raveneau M, Rébé C, Desrumaux C, Lizard G, Néel D. 7betaHydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-fos via the ERK1/2 signaling pathway in THP-1 cells: oxysterols-induced IL-8 secretion is calcium-dependent. Cell Biol Toxicol. 2009 Apr;25(2):127-39.

Li M, Pisalyaput K, Galvan M, Tenner AJ. Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloidinduced microglia-mediated neurotoxicity. J Neurochem. 2004 Nov;91(3):623-33.

Li Y, Bolten C, Bhat BG, Woodring-Dietz J, Li S, Prayaga SK, Xia C, Lala DS. Induction of human liver X receptor alpha gene expression via an autoregulatory loop mechanism. Mol Endocrinol. 2002 Mar;16(3):506-14.

Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, Yu J, Sutton SW, Qin N, Banie H, Karlsson L, Sun S, Lovenberg TW. Oxysterols direct B-cell migration through EBI2. Nature. 2011 Jul 27;475(7357):519-23.

Lund EG, Kerr TA, Sakai J, Li WP, Russell DW. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem. 1998 Dec 18;273(51):34316-27.

Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7238-43.

Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Sidén A, Diczfalusy U, Björkhem I. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24 S hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9799-804

Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R. Plasma 24Shydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res. 2000 Feb;41(2):195-8.

Lütjohann D, Brzezinka A, Barth E, Abramowski D, Staufenbiel M, von Bergmann K, Beyreuther K, Multhaup G, Bayer TA. Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J Lipid Res. 2002 Jul;43(7):107885.

Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007 Apr;18(4):1490-6.

Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390-9.

Masson D, Staels B, Gautier T, Desrumaux C, Athias A, Le Guern N, Schneider M, Zak Z, Dumont L, Deckert V, Tall A, Jiang XC, Lagrost L. Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res. 2004 Mar;45(3):543-50.

Metherall JE, Goldstein JL, Luskey KL, Brown MS. Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells. J Biol Chem. 1989 Sep 15;264(26):15634-41.

Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, Kessler JA. CSF-1 deficiency in mice results in abnormal brain development. Development. 1996 Sep;122(9):2661-72.

Moreira EF, Larrayoz IM, Lee JW, Rodríguez IR. 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Invest Ophthalmol Vis Sci. 2009 Feb;50(2):523-32.

Murphy GM Jr, Zhao F, Yang L, Cordell B. Expression of macrophage colonystimulating factor receptor is increased in the AbetaPP(V717F) transgenic mouse model of Alzheimer's disease. Am J Pathol. 2000 Sep;157(3):895-904.

Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH, Covey DF, Rohatgi R. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol. 2012 Jan 8;8(2):211-20.

Nakanishi M, Goldstein JL, Brown MS. Multivalent control of 3-hydroxy-3methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem. 1988 Jun 25;263(18):8929-37.

Nelson JA, Steckbeck SR, Spencer TA. Biosynthesis of 24,25-epoxycholesterol from squalene 2,3;22,23-dioxide. J Biol Chem. 1981 Feb 10;256(3):1067-8.

Nhek S, Ngo M, Yang X, Ng MM, Field SJ, Asara JM, Ridgway ND, Toker A. Regulation of oxysterol-binding protein Golgi localization through protein kinase Dmediated phosphorylation. Mol Biol Cell. 2010 Jul 1;21(13):2327-37.

Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas E, Sjövall J, Brenton AG, Wang Y, Griffiths WJ. Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain? J Biol Chem. 2010 Feb 12;285(7):4666-79.

Olkkonen VM, Lehto M. Oxysterols and oxysterol binding proteins: role in lipid metabolism and atherosclerosis. Ann Med. 2004;36(8):562-72

Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48.

Olsen BN, Schlesinger PH, Ory DS, Baker NA. Side-chain oxysterols: from cells to membranes to molecules. Biochim Biophys Acta. 2012 Feb;1818(2):330-6.

Ong SE, Mann M.A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc. 2006;1(6):2650-60.

Palumbo AM, Reid GE. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal Chem. 2008 Dec 15;80(24):9735-47.

Park K, Scott AL. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons.J Leukoc Biol. 2010 Dec;88(6):1081-7.

Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007 Mar;8(3):185-94.

Perry RJ, Ridgway ND. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol Biol Cell. 2006 Jun;17(6):2604-16.

Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol. 1991 Nov;148(1):273-83.

Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on betaamyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener. 2009 Jan 6;4:1.

Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth TB. Role of macrophage colonystimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol. 1997 May;150(5):1687-99.

Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL. Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell. 2004 Jul 23;15(2):259-68.

Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6511-8.

Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254-7.

Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P, Lusis A. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest. 1998 Jun 15;101(12):2702-10.

Razzaque MS, Foster CS, Ahmed AR. Role of enhanced expression of m-CSF in conjunctiva affected by cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 2002 Sep;43(9):2977-83.

Rodriguez IR, Alam S, Lee JW. Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Invest Ophthalmol Vis Sci. 2004 Aug;45(8):2830-7

Rodriguez IR, Fliesler SJ. Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem Photobiol. 2009 Sep-Oct;85(5):1116-25.

Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601.

Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics. 2008 Dec 15;24(24):2894-900. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004 Dec;3(12):1154-69.

Sabol SL, Brewer HB Jr, Santamarina-Fojo S. The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res. 2005 Oct;46(10):2151-67.

Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell. 2009 Oct 2;5(4):409-19.

Sano O, Kobayashi A, Nagao K, Kumagai K, Kioka N, Hanada K, Ueda K, Matsuo M. Sphingomyelin-dependence of cholesterol efflux mediated by ABCG1. J Lipid Res. 2007 Nov; 48(11):2377-84.

Schönknecht P, Lütjohann D, Pantel J, Bardenheuer H, Hartmann T, von Bergmann K, Beyreuther K, Schröder J. Cerebrospinal fluid 24S-hydroxycholesterol is increased
in patients with Alzheimer's disease compared to healthy controls. Neurosci Lett. 2002 May 10;324(1):83-5.

Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000 Jan; 80(1):361-554.

Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. Fourier transform mass spectrometry. Mol Cell Proteomics. 2011 Jul;10(7):M111.009431

Sever N, Yang T, Brown MS, Goldstein JL, DeBose-Boyd RA. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterolsensing domain. Mol Cell. 2003a Jan; 11(1):25-33.

Sever N, Song BL, Yabe D, Goldstein JL, Brown MS, DeBose-Boyd RA. Insigdependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutarylCoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem. 2003b Dec 26;278(52):52479-90.

Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU. Quantitative proteomics reveals that hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics. 2012 Mar;11(3):M111.014654.

Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons la and lc in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997 Mar 1;99(5):838-45.

Soccio RE, Adams RM, Maxwell KN, Breslow JL. Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress. J Biol Chem. 2005 May 13;280(19):19410-8.

Song C, Kokontis JM, Hiipakka RA, Liao S. Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci USA 1994; 91: 10809-10813.

Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci. 1999 Jan 1;19(1):10-20.

Spencer TA, Gayen AK, Phirwa S, Nelson JA, Taylor FR, Kandutsch AA, Erickson SK. 24(S),25-Epoxycholesterol. Evidence consistent with a role in the regulation of hepatic cholesterogenesis. J Biol Chem. 1985 Nov 5;260(25):13391-4.

Stieber A, Mourelatos Z, Chen YJ, Le Douarin N, Gonatas NK. MG160, a membrane protein of the Golgi apparatus which is homologous to a fibroblast growth factor receptor and to a ligand for E-selectin, is found only in the Golgi apparatus and appears early in chicken embryo development. Exp Cell Res. 1995 Aug;219(2):56270.

Svensson S, Ostberg T, Jacobsson M, Norström C, Stefansson K, Hallén D, Johansson IC, Zachrisson K, Ogg D, Jendeberg L. Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J. 2003 Sep 15;22(18):4625-33.

Sweet MJ, Hume DA. CSF-1 as a regulator of macrophage activation and immune responses. Arch Immunol Ther Exp (Warsz). 2003;51(3):169-77.

Sweet SM, Bailey CM, Cunningham DL, Heath JK, Cooper HJ. Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry. Mol Cell Proteomics. 2009 May;8(5):904-12.

Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and Polymer Analyses up to $\mathrm{m} / \mathrm{z} 100000$ by Laser Ionization Time-of flight Mass Spectrometry. Rapid Commun Mass Spectrom 1988: 2 (20): 151-3.

Theofilopoulos S, Wang Y, Kitambi SS, Sacchetti P, Sousa KM, Bodin K, Kirk J, Saltó C, Gustafsson M, Toledo EM, Karu K, Gustafsson J \AA, Steffensen KR, Ernfors P, Sjövall J, Griffiths WJ, Arenas E. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol. 2013 Feb;9(2):126-33.

Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008 Apr;7(4):661-71.

Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics. 2009 Mar;9(6):1451-68.

Torrini M, Marchese C, Vanzetti M, Marini V, Origone P, Garré C, Mareni C. Mutation analysis of oxisterol-binding-protein gene in patients with age-related macular degeneration. Genet Test. 2007 Winter;11(4):421-6.

Uhlen M, Ponten F.Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics. 2005 Apr;4(4):384-93.

Ulven SM, Dalen KT, Gustafsson JA, Nebb HI. Tissue-specific autoregulation of the LXRalpha gene facilitates induction of apoE in mouse adipose tissue. J Lipid Res. 2004 Nov;45(11):2052-62.

UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011 Jan;39:D214-9.

Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998 Feb 6;273(6):3285-90.

Vaya J, Schipper HM. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J Neurochem. 2007 Sep;102(6):1727-37.

Wang PY, Liu P, Weng J, Sontag E, Anderson RG. A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J. 2003 Jun 2;22(11):2658-67.

Wang PY, Weng J, Anderson RG. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science. 2005 Mar 4;307(5714):1472-6.

Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O'Malley BW, Xu J. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):151-6.

Wang Y, Sousa KM, Bodin K, Theofilopoulos S, Sacchetti P, Hornshaw M, Woffendin G, Karu K, Sjövall J, Arenas E, Griffiths WJ. Targeted lipidomic analysis of oxysterols in the embryonic central nervous system. Mol Biosyst. 2009 May;5(5):529-41.

Weiner ND, Noomnont P, Felmeister A. Autoxidation of cholesterol in aqueous dispersions and in monomolecular films. J Lipid Res. 1972 Mar; 13(2):253-5.

Whitney KD, Watson MA, Goodwin B, Galardi CM, Maglich JM, Wilson JG, Willson TM, Collins JL, Kliewer SA. Liver X receptor (LXR) regulation of the LXRalpha gene in human macrophages. J Biol Chem. 2001 Nov 23;276(47):4350915.

Whitney KD, Watson MA, Collins JL, Benson WG, Stone TM, Numerick MJ, Tippin TK, Wilson JG, Winegar DA, Kliewer SA. Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol. 2002 Jun;16(6):1378-85.

Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4828-32.

Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y). 1996 Jan;14(1):61-5.

Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem. 1996 Jan 1;68(1):1-8.

Wong J, Quinn CM, Brown AJ. Statins inhibit synthesis of an oxysterol ligand for the liver x receptor in human macrophages with consequences for cholesterol flux. Arterioscler Thromb Vasc Biol. 2004 Dec;24(12):2365-71.

Wong J, Quinn CM, Guillemin G, Brown AJ. Primary human astrocytes produce 24(S),25-epoxycholesterol with implications for brain cholesterol homeostasis. J Neurochem. 2007 Dec;103(5):1764-73.

Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S. 25-Hydroxycholesterol-3-Sulfate (25HC3S) Attenuates Inflammatory Response via PPARgamma Signaling in Human THP-1 Macrophages. Am J Physiol Endocrinol Metab. 2012 Jan 24.

Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23;110(4):489-500.

Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology. 2004 Mar;39(3):732-8.

Yoon S, Choi MH, Chang MS, Baik JH. Wnt5a-dopamine D2 receptor interactions regulate dopamine neuron development via extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2011 May 6;286(18):15641-51.

Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):4424.

Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009 Jul 3;325(5936):100-4.

Zelenski NG, Rawson RB, Brown MS, Goldstein JL. Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. J Biol Chem. 1999 Jul 30;274(31):21973-80.

Zhou W, Merrick BA, Khaledi MG, Tomer KB. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2000 Apr;11(4):273-82.

Zhu Y, Wang Y, Xia C, Li D, Li Y, Zeng W, Yuan W, Liu H, Zhu C, Wu X, Liu M. WDR26: a novel Gbeta-like protein, suppresses MAPK signaling pathway. J Cell Biochem. 2004 Oct 15;93(3):579-87. SILAC ratio after treatment with GW3965.

IPI00553773	Muc5ac	088715	1			3	0.902	0.943	1			1			1			2	2.036	0.445
IPI00172328	Dnahc8	Q91XQ0-1	1			1			1			1			1			1	1.960	5.976
IP100118393	Gmeb2	P58929	,			1			1			1			1			1	1.938	1.090
IPI00468701	Ubr2	Q6WKZ8-1	1			1			1						1			2	1.900	1.093
IPI00112708	Ccdc77	Q9CZH8-1	1			1			1			1			1			1	1.885	1.238
IP100111328	Tsc22d4	Q9EQN3	1			5	0.893	0.864	1			3	1.122	1.003	1			3	1.882	0.462
IPI00915083	Cnot2	Q3TIJ0	1			1			2	0.931	0.977	4	1.066	1.096	3	1.058	1.175	2	1.881	4.210
IPI00119913	Apc	Q61315-1	1			2	0.851	1.313	1	1.016	0.943	2	0.438	0.787	1			2	1.864	1.380
IPI00608106	Numbl	Q3UH86	1			1			1			2	0.873	0.905	1			2	1.852	1.000
IPI00153749	Tutl	Q8R3F9-1	1			1			1			1	1.352	1.142	1			3	1.827	1.357
IP100122493	Fkbp10	Q61576	3	0.711	0.870	5	0.767	0.903	1			1			1			10	1.814	1.298
IPI00464296	Epb4113	Q9WV92-8	1			13	0.903	1.143	1			1			1			24	1.796	1.354
IP100469290	Ifrd2	Q7TSB3	1			1			1			1			1			1	1.781	0.906
LPI00380799	Pde2a	Q3TXZ6	1			1			1				0.948	1.388	1			1	1.767	1.198
IPI00308182	Rnf41	Q8BH75-1	1			1			1			1			1			1	1.734	2.180
IPI00229852	Yrdc	Q3U5F4	1			2	0.932	1.035	1			2	1.225	1.268	1			1	1.721	1.943
IPI00279213		Q6NZR2-1	1			1			1			1			1			1	1.649	0.982
IPI00756386	Dhtkdl	A2ATU0	1			1			1			1	1.114	1.119	1			1	1.624	1.449
IPI00138084	Adk	P55264-2	1			1			1			1			7	1.041	1.062	11	1.623	0.988
IPI00402913	Ube2v2	Q9D2M8-1	1			6	1.065	0.962	6	1.094	0.977	7	0.987	0.992	5	1.060	1.002	8	1.619	1.371
IPI00396784	AY358078	Q6UY53	1			1			1			1			1			2	1.613	1.027
IP100229539	Hist3h2bb	Q8CGP0	4	0.693	0.995	1			1			1			1			7	1.611	1.150
IPI00112032	Carkd	Q9CZ42-1	3	0.966	0.949	4	0.868	0.964	4	0.994	1.062	5	0.881	1.036	3	1.081	1.019	6	1.611	27.04
[PI00606952	Commd6	Q3V4B5	1			1			1			2	0.967	0.932	1			1	1.517	1.078
IPI00751634			1			1			1			1			1			3	1.498	0.897
IPI00309237	Pjal	O55176-3	1			1			1			1			1			1	1.491	1.233
IPI00309907	Narfl	Q7TMW6-2	1			1			1			1			1			1	1.480	0.756
IPI00163015	Cdkall	Q91WE6-1	1			1			1			1			1			1	1.473	1.198
IPI00625995	Gatad2a	Q8CHY6	1			1			1	1.086	0.828	2	0.955	1.052	1			1	1.468	0.917
IPI00625898	Bbx	Q8VBW5-1	1			1			1			1			1			2	1.464	3.354
IP100124718	Sufu	Q9Z0P7-4	1			1			1			1			1			2	1.464	66.23
IPI00169954	Nsil	Q8K305	1			1	1.053	1.167	1	1.249	1.142	1	1.331	0.859	1			2	1.464	12.36
IPI00895079	Ttel3	Q3UMK4	1			1			1			1			1			2	1.463	1.275
LPI00914684	Rpl36	Q5M9L1	1			2	1.072	1.113	1			1			1			3	1.462	0.946
IPI00845679	Spg11	Q3UHA3-2	1			1			1	1.056	1.264	2	0.802	0.909	1			2	1.451	0.976
PP100113389	Niban	A0PJB3	2	0.553	1.004	2	0.899	1.332	1			1			1			3	1.450	2.939
IPI00111501	Cplx 2	P84086	1			2	0.993	0.996	1	1.098	1.417	3	1.047	1.073	1			2	1.446	1.205
IP100676717	Btaf1	A0ZVB6	1			1			2	1.106	1.029	2	1.172	1.310	1			1	1.445	0.754
IPI00607957	Arsa	Q9DC66	1			1			1			1			1			1	1.445	0.961
IP100277399	Cluapl	Q8R3P7	1			1			1			1			1			1	1.434	1.413
IPI00420315	Itprip	Q3TNL8-1	1			1			1			1			1			1	1.432	1.009
IPI00855144	Arhgef5	Q8R172	1			1			4	1.265	1.091	2	1.222	0.868	1			1	1.432	0.651
IPI00110262	Sorcs2	Q9EPR5	1			1			1			1			1			1	1.427	0.539
[P100321357	Znf593	Q9DB42	1			1	0.952	1.099	1			1	1.098	0.938	2	0.785	1.206	4	1.424	0.895
IPI00554894	Anxa6	P14824	1			15	1.032	1.181	1			10	1.172	1.318	1			21	1.422	1.541
P100153143	Ugt2b1	Q8R084	1			1			1			1			1			1	1.422	1.082
IPI00162790	Rpl18a	P62717	3	0.901	0.918	4	1.119	1.078	3	0.734	0.838	6	0.886	0.957	1			7	1.418	0.972
IPI00224682	Elp3	Q9CZX0-2	1			2	1.085	0.849	1			3	0.773	0.816	1			6	1.418	1.019

Appendix 3. All phosphopeptides identified as down-regulated after treatment with $24(S), 25$-epoxycholesterol ($24(S), 25-E C$) in ≥ 1 biological replicate. Un-normalised

SILAC phosphopeptide ratios are displayed

			Mascot Score		Ratio 25-OHChol :Control		$\begin{gathered} \text { Ratio } \\ \text { 24(S),25-EC } \\ \text { :Control } \end{gathered}$	
		Replicate	1	2	1	2	1	2
Phosphopeptide	Gene	IPI Number						
EEVAS(ph)EPEEAASPTTPK	Nop56	IPI00318048	48.39	1	0.358	1	0.413	1
RVS(ph)QEANLLTLAQK	$\begin{aligned} & \mathrm{C} 13003 \\ & 9 \mathrm{O} 16 \mathrm{Ri} \\ & \mathrm{k} \\ & \hline \end{aligned}$	IPI00225777	36.98	65.16	0.628	0.889	0.412	0.796
SETAPAAPAAPAPAEKT(ph)PVK	Histlh1 e	IPI00223714	53.69	25.47	0.388	0.688	0.409	0.790
HGAPAAPS(ph)PPPR	$\begin{aligned} & \text { Tbcld1 } \\ & 0 \mathrm{~b} \\ & \hline \end{aligned}$	IPI00469012	43.89	50.35	0.521	0.574	0.408	0.770
SQET(ph)PEKPR	Msl 1	IPI00110256	30.08	1	0.650	1	0.408	1
GEGERS(ph)DEENEEK	Polr3g	IPI00463147	60.57	1	0.671	1	0.408	1
HS(ph)VTGYGDC(me)AAGAR	Jub	IPI00453693	35.36	1	0.440	1	0.404	1
GDVS(ph)EDEPSLGR	Rnmt	IPI00453849	32.67	1	0.598	1	0.400	1
RPMEEDGEEKSPS(ph)K	IIf3	IPI0013059]	34.61	1	0.410	1	0.400	1
RIS(ph)GLIYEETR	$\begin{aligned} & \text { Histlh4 } \\ & \text { a } \end{aligned}$	IPI00623776	35.15	1	0.267	1	0.400	1
SRLTPT(ph)TPESSSTGTEDK	Sqstm1	IPI00133374	69.05	1	0.392	1	0.398	1
ADS(ph)DSEDKGEESKPK	CbxI	IPI00129466	40.05	1	0.347	1	0.393	1
PMSVAGS(ph)PLSPGPVR	Irs2	IPI00379844	61.73	45.92	0.494	0.606	0.392	0.684
NNVMT(ph)SPNVHLK	Cenpc1	IPI00] 14808	34.17	1	0.284	1	0.390	1
LPTSEEERS(ph)PAK	$\begin{aligned} & \text { Trp53bp } \\ & 1 \\ & \hline \end{aligned}$	IPI00229801	25.34	25.63	0.217	3.061	0.387	2.082
HLSTPSSVS(ph)PEPQDPAK	$\begin{aligned} & \text { Arhgef1 } \\ & 2 \\ & \hline \end{aligned}$	IPI00754880	46.3	36.63	0.450	0.545	0.387	0.820
GVQAGNSDT(ph)EGGQPGR	Acin 1	IPI00121136	32.19	1	0.811	1	0.387	1
SETLVNAQQTPLGT(ph)PK	Palm	IPI00129298	43.67	37.09	0.267	1.074	0.386	1.079
NGLSQPS(ph)EEEVDIPKPK	Ddx 21	IPI00120691	42.24	1	0.323	1	0.384	1
LPSGSGPASPTT(ph)GSAVDIR	Ahnak	IPI00553798	65.09	1	0.339	1	0.378	1
GSGEASSDSIDHS(ph)PAK	$\begin{aligned} & \text { Suv39h } \\ & 2 \\ & \hline \end{aligned}$	IPI00111417	26.96	1	0.174	1	0.377	1
KTS(ph)LSDSTTSAYPGDAGK	Rab3ga pl	IPI00749720	39.8	1	0.593	1	0.377	1
S(ph)NSLPHSAVSNAASK	Wdr20a	IPI00153206	26.16	36.48	0.462	0.909	0.376	0.825
GHYEVTGS(ph)DDEAGK	Ahnak	IPI00553798	58.36	1	0.168	1	0.371	1
S(ph)ESSGNLPSVADTR	Akapl	IPI00230591	29.82	1	0.390	1	0.371	1
SNS(ph)FSDER	Ahnak	IPI00553798	29.85	1	0.154	1	0.366	1
RLS(ph)QSDEDVIR	Wdr26	IPI00226275	83.2	29.45	0.399	0.357	0.365	0.414
GGVTGSPEASISGS(ph)KGDLK	Ahnak	IPI00553798	43.68	1	0.119	1	0.363	1
LGSSPTS(ph)SC(me)NPTPTK	Specc 1	IPI00798550	31.81	27.02	0.422	0.667	0.363	0.800
ETNVSKEDT(ph)DQEEK	Psipl	IPI00115257	37.57	44.98	0.386	0.996	0.362	0.871
$\begin{aligned} & \text { LPSDSSASPPLSQT(ph)TPNKDADD } \\ & \text { QAR } \end{aligned}$	Eya3	IPI00411085	40.03	1	0.518	1	0.348	1
S(ph)PSRPLPEVTDEYK	Ssb	IPI00134300	26.42	1	0.551	1	0.346	1
GGVTGSPEAS(ph)ISGSKGDLK	Ahnak	IPI00553798	43.68	1	0.135	1	0.346	1
GVTASSSS(ph)PASAPK	Ncaml	IPI00122971	43.46	34.3	0.244	1.437	0.346	1.195
AS(ph)AVSPEKAPM(ox)TSK	Tcofl	IPI00115660	34.02	1	0.345	1	0.346	1
SLS(ph)PSHLTEDR	Zc3h13	IPI00515528	44.78	33.98	0.317	0.922	0.344	0.904
DSVPAS(ph)PGVPAADFPAETEQS KPSK	Top2a	[P100122223	25.31	1	0.116	1	0.342	1
PASVDGSPVS(ph)PSTNR	Irs1	IPI00119627	27.92	42.29	0.724	0.494	0.335	0.797
VDS(ph)SSEDGVDAKPDR	Casp7	IPI00130131	50.6	39.73	0.535	0.540	0.325	0.690
SPAPSNPTLS(ph)PSTPAK	Mybbpl a	IPI00331361	34.8	33.16	0.159	1.852	0.323	1.256

KGDDS(ph)DEEDLC(me)ISNK	Stard13	IPI00857002	57.82	$/$	0.027	$/$	0.317	$/$
S(ph)SPPVEHPAGTSTTDNDVIIR	Rail4	IPI00453820	35.31	$/$	0.170	$/$	0.308	$/$
APQS(ph)PTLAPAK	Cxadr	IPI00270376	25.52	30.84	0.219	1.618	0.291	1.103
GDQVSQNGLPAEQGS(ph)PR	Sptbn1	IPI00319830	58.12	$/$	0.654	$/$	0.208	$/$
SHS(ph)LDDLQGDADVGK	Sash1	IPI00338954	$/$	58.75	$/$	0.525	$/$	0.538
LESHGSS(ph)EESLQVQEK	Vcan	IPI00875672	$/$	42.02	$/$	0.497	$/$	0.535
ANTSS(ph)DLEKDDDAYK	Ranbp2	IPI00337844	$/$	40.08	$/$	0.436	$/$	0.533
SLPASGTPQS(ph)PPAVK		IPI00851031	49.32	62.59	0.747	0.487	0.582	0.533
MSPNETLFLES(ph)TNK	Rragc	IPI00468702	$/$	32.32	$/$	0.407	$/$	0.530
TSS(ph)PNKEESPK	Papola	IPI00266738	26.95	31.16	0.825	0.503	0.879	0.530
AES(ph)PETSAVESTQSTPQK	Pds5b	IPI00845638	41.44	63.25	0.594	0.288	0.437	0.520
LEPAPLDSS(ph)PAVSTHEGSK	Renbp	IPI00124826	$/$	31.06	$/$	0.584	$/$	0.515
(ac)S(ph)ETAPVAQAASTATEKPAA	Hist1h1							
AK	a	IPI00228616	$/$	53.02	$/$	0.439	$/$	0.514
PQSPVIQATAGS(ph)PK	Arfgef2	IPI00137087	$/$	41.94	$/$	0.350	$/$	0.511
APS(ph)PSQPPPK	Pds5b	IPI00845638	27.46	25.3	0.582	0.410	0.547	0.501
RIS(ph)DPLTSSPGR	Mcm2	IPI00323820	80.09	70.35	0.722	0.529	0.584	0.495
VS(ph)PVPSPSQPAR	Mical1	IPI00I16371	$/$	25.71	$/$	0.435	$/$	0.486
IDQGS(ph)HTAGESSTR	Tdp1	IPI00222253	$/$	34.56	$/$	0.416	$/$	0.476
KPDQT(ph)LDEDDPGAAPLK	Bsg	IPI00408495	45.13	34.22	0.548	0.543	0.647	0.474
S(ph)PASTSSVNGTPGSQLSTPR	Dclk1	IPI00468380	$/$	43.36	$/$	0.459	$/$	0.472
KTS(ph)PASLDFPEPQK	Znf828	IPI00453800	36.79	46.94	0.541	0.805	0.638	0.471
AQGHS(ph)PVNGLLK	Ccnl2	IPI00310772	$/$	25.94	$/$	0.493	$/$	0.464
HNS(ph)TTSSTSSGGYR	Abil	IPI00798483	$/$	57.32	$/$	0.536	$/$	0.443
TASRPEDTPDSPSGPSS(ph)PK	Lrrc16a	IPI00474873	$/$	46.92	$/$	0.216	$/$	0.439
RPDPDS(ph)DEDEDYER	Rbm17	IPI00170394	64.68	49.04	0.649	0.562	0.562	0.428
AGYTT(ph)DESSSSSLHTTR	Fxr2	IPI00126389	$/$	38.76	$/$	0.551	$/$	0.358
LYNSEESRPYT(ph)NK	Crkrs	IPI00648022	$/$	49.1	$/$	0.205	$/$	0.338
PQSAS(ph)PAKEEQK	Palm	IPI00129298	$/$	30.2	$/$	0.390	$/$	0.196

Appendix 4. All phosphopeptides identified as up-regulated after treatment with $24(S), 25$-epoxycholesterol (24(S),25-EC) in ≥ 1 biological replicate. Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio $24(S), 25-E C$:Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI Number						
KDS(ph)ISEDEMVLR	Wdtcl	IPI00108450	43.30	1	0.82	1	1.66	1	
GGIDNPAIT(ph)SDQEVDDKK	Arhgap 5	IPI00124298	40.63	1	0.92	1	1.13	1	
KQIT(ph)VEELVR	Plecl	IPI00400215	38.61	1	0.62	1	1.07	1	
PTGGLRDS(ph)EAEK	Hirip3	IPI00222813	29.49	1	1.03	1	1.06	1	
DELADEIANSS(ph)GK	Myh9	IPI00123181	29.65	1	1.17	1	0.97	1	
GPEVEGS(ph)PVSEALR	Brwdl	IPI00654074	37.76	1	0.55	1	0.95	1	
LLQDSSS(ph)PVDLAK	Ncoa2	IPI00116968	29.72	1	1.12	1	0.92	1	
IKPDEDLPS(ph)PGSR	Gli3	IPI00123429	42.62	1	0.78	1	0.91	1	
TSS(ph)PNKEESPK	Papola	IPI00266738	26.95	31.16	0.82	0.50	0.88	0.53	
IKDPDLT(ph)TPDSK	Ckap2	IPI00470092	44.82	1	0.79	1	0.85	1	
SEVQAHS(ph)PSR	Mtap2	IPI00895965	31.21	1	0.91	1	0.85	1	
ADS(ph)PAGLEAAR	Kiaa028	IPI00380953	35.46	1	0.78	1	0.84	1	
LPS(ph)PAQTQR	Micall2	IPI00280103	30.76	33.11	0.87	0.51	0.82	0.88	
PATS(ph)TPDLASHR	Ptpn 14	IPI00122168	51.69	67.48	0.57	0.67	0.81	0.73	
GGSS(ph)EELHDSPR	Hdgfip2	IPI00116442	34.55	1	0.74	1	0.81	1	
ASS(ph)EDTLNKPGSASSGVAR	Spece 1	IPI00798550	33.64	1	0.89	1	0.80	1	
AYT(ph)HQVVTR	Cdk7	IPI00129222	26.40	28.51	0.98	0.31	0.80	0.63	
KGS(ph)LDYLK	Luzp1	IPI00322204	30.67	1	0.71	1	0.80	1	
HGPAQAVTGTSVTS(ph)PIK	Cent2	IPI00654257	47.80	1	0.74	1	0.79	1	
NS(ph)PNNISGISNPPGTPR	Ssbp3	IPI00341944	51.85	1	0.82	1	0.79	1	
KLS(ph)SGDLR	Phldbl	IPI00330246	30.55	1	0.68	1	0.79	1	
ASSHSSQSQGGGS(ph)VTK	Lmna	IPI00620256	47.84	58.67	0.54	1.58	0.79	0.90	
RAS(ph)LSDIGFGK	Pctk3	IPI00111168	49.16	1	0.60	1	0.78	1	
IKDPDLTT(ph)PDSK	Ckap2	IPI00470092	44.82	1	0.95	1	0.78	1	
S(ph)ASSDTSEELNSQDSPK	$\begin{aligned} & \text { Slc9a3r } \\ & 1 \\ & \hline \end{aligned}$	IPI00109311	78.91	100.99	0.71	0.70	0.78	0.84	
KGT(ph)GDC(me)SDEEVDGK	Myh9	IPI00123181	49.18	1	0.84	1	0.78	1	
HVSS(ph)PDVTTAQK	Tdpl	IPI00222253	32.78	32.90	0.72	0.81	0.78	0.93	
SQDATVS(ph)PGSEQSEK	Zc3hcl	IPI00465879	50.16	1	0.53	1	0.78	1	
GQGT(ph)PPSGPGVGR	Wbp7	[PI00857289	27.74	1	0.61	1	0.77	1	
SGALAS(ph)PTDPFQSR	Trim47	IPI00480235	32.36	36.30	0.59	0.77	0.77	0.80	
QESLKS(ph)PEEEDQQAFR	Nes	IPI00453692	36.61	1	0.67	1	0.76	1	
TQSSS(ph)C(me)EDLPSTTQPK	Cask	IPI00776341	25.68	1	0.46	1	0.76	1	
RAS(ph)LEIGESFPEGTK	Myo9b	IPI00229766	60.85	42.49	0.99	0.58	0.76	0.71	
RFS(ph)M(ox)EDLNK	Pctk3	IPI00111168	47.88	1	0.69	1	0.76	1	
DDISEIQSLASDHS(ph)GR	Tjpl	IPI00135971	31.83	1	0.57	1	0.76	1	
C(me)IFMSETQSS(ph)PTK	Pias2	IPI00453655	30.79	1	0.47	1	0.75	1	
QDVDNAS(ph)LAR	Vim	IPI00227299	31.40	1	0.72	1	0.75	1	
PQSPVIQATAGS(ph)PK	Arfgef2	IPI00137087	30.88	41.94	0.83	0.35	0.74	0.51	
QEFSS(ph)EEMTK	Vcaml	IPI00126834	25.88	1	0.83	1	0.74	1	
SLS(ph)TSGESLYHVLGLDK	Dnajc5	IPI00132206	50.50	47.88	0.51	1.70	0.74	1.20	
(ac)SDQEAKPST(ph)EDLGDKK	Sumol	IPI00124593	33.58	1	0.78	1	0.73	1	
DC(me)AKS(ph)DDEESLTLPEK	Nfkbl	IPI00719890	52.31	1	0.80	1	0.73	1	
PAVVS(ph)PLSLSTEAR	Crtcl	1PI00469761	43.71	1	0.80	1	0.73	1	
YVSGSS(ph)PDLVTR	Ptpn 14	[PI00122]68	49.84	1	0.73	1	0.73	1	
ASPDQNASTHT(ph)PQSSAK	Clint1	IPI00648186	34.63	1	0.78	1	0.73	1	
SSGSLS(ph)PGLETEDPLEAR	Tnkslb pl	IPI00459443	36.91	1	0.68	1	0.73	1	

TASESISNLSEAGS(ph)VK	Clip 1	IPI00857273	31.00	1	0.98	1	0.72	/
AQTPESC(me)GSVT(ph)PER	Filipll	IPI00755058	30.92	1	0.94	1	0.72	1
T(ph)SPTVATQTGASVTSTR	Faml17 b	IPI00461475	68.26	64.54	0.73	0.73	0.72	0.89
S(ph)FEDLTDHPVTR	Adam 17	IPI00314443	44.01	46.28	0.71	0.66	0.72	0.94
SAT(ph)LETKPESK	Ifngr 1	IPI00323231	25.38	1	0.64	1	0.72	1
VMTVTAVTTTATS(ph)DR	Hdgfrp 2	IPI001 16442	76.11	51.20	0.60	0.72	0.72	0.89
SDEEDRAS(ph)EPK	Zc3h18	IPI00673693	27.94	1	0.79	1	0.72	1
VEESSEIS(ph)PEPK	Uspl	IPI00330276	40.56	1	0.57	1	0.72	1
S(ph)LEGENHDPLSSVVK	Nes	IP100453692	45.85	1	0.68	1	0.72	1
MHASSTGSS(ph)C(me)DLSK	Cdgap	IPI00125505	27.19	1	0.54	1	0.72	1
KIS(ph)GTTALQEALK	Clip1	IP100857273	33.36	67.72	0.88	0.77	0.72	0.74
AKT(ph)PVTLK	Tmpo	IPI00828976	41.32	1	0.58	1	0.72	1
SSS(ph)FGSVSTSSTSSK	Snx16	IPI00331029	1	54.62	1	1.42	1	5.00
TAS(ph)GSSVTSLEGTR	Ndrgl	IPI00125960	45.97	41.37	0.50	1.04	0.57	3.57
GGVTGS(ph)PEASISGSK	Ahnak	IP100553798	43.68	27.58	0.21	3.27	0.47	2.79
SGFGGMS(ph)SPVIR	Nup107	IPI00221767	28.39	40.37	0.37	2.64	0.63	2.32
LPTSEEERS(ph)PAK	$\begin{aligned} & \text { Trp53bp } \\ & 1 \end{aligned}$	IPI00229801	25.34	25.63	0.22	3.06	0.39	2.08
SGFGGMSS(ph)PVIR	Nup107	IPI00221767	1	40.37	1	2.57	1	2.07
AS(ph)PALGSGHHDGSGDSLEMSS LDR	$\begin{aligned} & \text { Tomm7 } \\ & \text { 0a } \\ & \hline \end{aligned}$	IPI00751137	64.86	47.86	0.29	2.31	0.46	2.05
ASS(ph)HSSQSQGGGSVTK	Lmna	IPI00620256	47.84	58.67	0.19	3.86	0.52	1.95
TEEDRENTQIDDTEPLS(ph)PVSNS K	$\begin{aligned} & \text { Trp53bp } \\ & 1 \end{aligned}$	IPI00229801	1	28.80	1	2.58	1	1.90
KQQQEPTC(me)EPS(ph)PK	Hmga2	IPI00331612	26.67	30.20	0.29	2.23	0.43	1.72
SEDRPS(ph)SPQVSVAAVETK	$\begin{aligned} & \text { Trp53bp } \\ & 1 \end{aligned}$	IPI00229801	1	48.56	1	2.07	1	1.70
AEAKPGT(ph)PAK	Nolcl	IPI00720058	36.93	39.65	0.31	2.25	0.47	1.67
PAS(ph)PLSGPR	$\begin{aligned} & \text { D2Wsu } \\ & \text { 81e } \\ & \hline \end{aligned}$	[PI00224127	1	29.84	1	1.80	1	1.65
GEVAPKET(ph)PKK	Marcksl 1	IPI00281011	1	26.82	1	2.27	1	1.65
TVGNVS(ph)PTAQMVQR	Rbm7	IPI00133061	1	28.20	1	1.41	1	1.65
LHSAQLS(ph)PVDETPATQSQLK	Mlflip	IPI00459115	1	36.63	1	1.95	1	1.62
QEGAQENVKNS(ph)PVPR	Gmnn	IPI00131716	1	30.64	1	2.56	1	1.60
GISQTNLITTVT(ph)PEK	Epb4113	IPI00229299	50.15	40.47	0.46	1.55	0.52	1.55
TTS(ph)PDLFESQSLTSASSK	Epn2	IPI00336844	1	27.33	1	1.25	1	1.55
ATWGDGGDNS(ph)PSNVVSK	Snap23	IPI00113798	64.07	49.53	0.49	1.69	0.46	1.54
LEQHSQQPQLS(ph)PATSGR	Torlaip 1	IPI00762273	25.81	47.94	0.58	1.33	0.58	1.53
AGS(ph)SPTQGAQNEAPR	Tcf20	IPI00407458	1	30.95	1	1.46	1	1.51
AS(ph)SHSSQSQGGGSVTK	Lmna	IPI00620256	1	58.67		2.60	1	1.51
C(me)QETESNEEQSIS(ph)PEKR	Akapl2	IPI00123709	1	85.89	1	1.19	1	1.49
AGGS(ph)PASYHGSTSPR	Epn2	IPI00336844	49.92	47.77	0.50	1.47	0.50	1.47
SLYSSS(ph)PGGAYVTR	Vim	IPI00227299	34.83	53.18	0.67	0.97	0.67	1.47
FGEYNSNIS(ph)PEEK	Nop14	IPI00353010	36.25	30.49	0.43	1.68	0.54	1.45
GEATAERPGEAAVASS(ph)PSK	Marcks	IPI00229534	53.11	53.46	0.60	1.36	0.58	1.45
LATSS(ph)PEQSWPSTFK	PmI	IPI00229072	1	29.49	1	1.18	1	1.43
KQNETADEAT(ph)TPQAK	Nolc 1	IPI00720058	1	43.74	1	1.50	1	1.42
AAKES(ph)EEEEEEEETEEK	Nolcl	IPI00720058	93.93	73.89	0.42	1.80	0.46	1.41
EIITEEPS(ph)EEEADMPKPK	Ddx21	IPI00120691	1	31.38	1	1.69	1	1.38
LLKPGEEPSEYT(ph)DEEDTK	Pgrmc2	IPI00351206	39.74	35.31	0.39	1.61	0.48	1.36
AEEDEILNRS(ph)PR	Canx	IPI00119618	1	25.35	1	1.51	1	1.35
```SSGS(ph)PYGGGYGSGGGSGGYGS R```	Hnrnpa $3$	IPI00269661	113.25	92.56	0.42	1.50	0.58	1.35
SSSSLLAS(ph)PSHIAAK	Fam62b	IPI00266942	26.75	30.80	0.59	1.46	0.57	1.34
NVAEALGHS(ph)PK	Irf2bpl	IPI00453578	37.33	27.45	0.75	0.81	0.67	1.34
$\begin{aligned} & \text { QKS(ph)DAEEDGVTGSQDEEDSKP } \\ & \mathrm{K} \end{aligned}$	Canx	IPI00119618	88.22	64.73	0.48	1.53	0.54	1.34
SKTS(ph)PVASGSTSK	Cep170	IPI00667973	51.13	43.40	0.68	1.18	0.68	1.34
AFGPGLQGGNAGS(ph)PAR	Flna	IP100875567	36.73	27.19	0.68	0.82	0.60	1.33
GPEVTSQGVQTSS(ph)PAC(me)K	Atxn2	IPI00117229	1	25.10	1	1.07	1	1.30
ASGQAFELILS(ph)PR	Stmnl	IP100551236	1	30.07	1	0.87	1	1.30
AVGEEQRS(ph)EEPK	Akapl2	IP100123709		31.72	1	1.15	1	1.30

Appendix 5. All phosphopeptides identified as down-regulated after treatment with 25hydroxycholesterol (25-OHChol) in $\geq 1$ biological replicate. Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol :Control		Ratio 24(S),25-EC   :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI   Number						
NEKS(ph)EEEQSSASVK	Hnmpc	IPI00874321	51.11	45.64	0.350	1.095	0.433	0.832	
SPDEATAADQES(ph)EDDLSASR	Farpl	IPI00356904	26.44	1	0.349	1	0.465	1	
TEEVLSPDGSPSKS(ph)PSK	Add3	IPI00387580	38.11	1	0.349	1	0.439	1	
ADS(ph)DSEDKGEESKPK	Cbx1	IPI00129466	40.05	1	0.347	1	0.393	1	
EELEQQT(ph)DGDC(me)DEEDDDK DGEVPK	Sec62	IPI00134398	57.28	1	0.346	1	0.532	1	
EDAPPEDKES(ph)ESEAK	Cds2	IPI00468999	26.03	1	0.346	1	0.594	1	
GEVAPKET(ph)PK	$\begin{aligned} & \text { Marcksl } \\ & 1 \\ & \hline \end{aligned}$	IPI00281011	33.28	26.82	0.345	2.274	0.556	1.651	
ERQES(ph)ESEQELVNK	Pdcd 11	IPI00551454	39.77	1	0.345	1	0.560	1	
AS(ph)AVSPEKAPM(ox)TSK	Tcofl	IPI00I 15660	34.02	1	0.345	1	0.346	1	
ADS(ph)DSEDKGEESKPK	Cbxl	IPI00129466	40.05	1	0.344	1	0.451	1	
LPSGSGPASPTT(ph)GSAVDIR	Ahnak	IPI00553798	65.09	1	0.339	1	0.378	1	
SPFNSPS(ph)PQDSPR	Nfic	IPI00137501	40.52	35.42	0.334	1.146	0.464	1.050	
IGPLGLS(ph)PK	Rpl 12	IPI00463634	45.65	1	0.333	1	0.426	1	
EIITEEPS(ph)EEEADM(ox)PKPK	Ddx21	IPI00120691	56.99	1	0.330	1	0.443	1	
NGLSQPS(ph)EEEADIPKPK	Ddx21	IPI00120691	36.77	1	0.325	1	0.431	1	
NGLSQPS(ph)EEEVDIPKPK	Ddx 21	IPI00120691	42.24	1	0.323	1	0.384	1	
NISEES(ph)PLTHR	Pask	IPI00400044	32.53	1	0.322	1	0.610	1	
S(ph)PAKEPVEQPR	Spen	IPI00828562	25.27	1	0.321	1	0.464	1	
SLS(ph)PSHLTEDR	Zc3h13	IPI00515528	44.78	33.98	0.317	0.922	0.344	0.904	
T(ph)GSESSQTGASATSGR	Eif4b	IPI00221581	79.96	77.19	0.314	1.215	0.474	0.757	
AEAKPGT(ph)PAK	Nolc 1	IPI00720058	36.93	39.65	0.308	2.251	0.470	1.673	
RVSGS(ph)ATPNSEAPR	Ddx51	IPI00396728	58.55	1	0.306	1	0.460	1	
AS(ph)PALGSGHHDGSGDSLEMSS LDR	Tomm7 0a	IPI00751137	64.86	47.86	0.293	2.308	0.464	2.047	
S(ph)QEMVHLVNK	Cd44	IPI00410802	52.66	33.35	0.292	1.021	0.420	0.827	
S(ph)HTGEAAAVR	Bcl2113	IPI00321499	35.83	1	0.288	1	0.467	1	
KQQQEPTC(me)EPS(ph)PK	Hmga2	IPI003316I2	26.67	30.2	0.287	2.231	0.428	1.718	
NNVMT(ph)SPNVHLK	Cenpc1	IPI00114808	34.17	1	0.284	1	0.390	1	
RVS(ph)GSATPNSEAPR	Ddx51	IPI00396728	58.55	1	0.278	1	0.427	1	
YLEIDS(ph)DEESR	Sdadl	IPI00387439	33.64	1	0.276	1	0.529	1	
DDS(ph)GAEDNVDTHQQQAENST VPTADSR	Rspry 1	IPI00223590	27.35	1	0.275	1	0.445	1	
LSQVNGATPVS(ph)PIEPESK	Mybbpl a	IPI00331361	33.48	1	0.272	1	0.461	1	
SETLVNAQQTPLGT(ph)PK	Palm	IPI00129298	43.67	37.09	0.267	1.074	0.386	1.079	
RIS(ph)GLIYEETR	Histlh4 a	IPI00623776	35.15	1	0.267	1	0.400	1	
GS(ph)HC(me)SGSGDPAEYNLR	Lmna	IPI00620256	32.11	1	0.257	1	0.488	1	
LSQVNGAT(ph)PVSPIEPESK	Mybbp1   a	IPI00331361	33.48	1	0.254	1	0.436	1	
SST(ph)PLPTVSSSAENTR	Tmpo	IPI00896574	55.29	1	0.246	1	0.516	1	
GVTASSSS(ph)PASAPK	Ncaml	IPI00122971	43.46	34.3	0.244	1.437	0.346	1.195	
ASSHS(ph)SQSQGGGSVTK	Lmna	IPI00620256	47.84	58.67	0.224	2.410	0.536	1.175	
APQS(ph)PTLAPAK	Cxadr	IPI00270376	25.52	30.84	0.219	1.618	0.291	1.103	
LPTSEEERS(ph)PAK	Trp53bp	[PI00229801	25.34	25.63	0.217	3.061	0.387	2.082	
GGVTGS(ph)PEASISGSK	Ahnak	IP100553798	43.68	27.58	0.215	3.272	0.474	2.790	
SPFNSPSPQDS(ph)PR	Nfic	IPI00137501	40.52	1	0.213	1	0.435	1	


ASS(ph)HSSQSQGGGSVTK	Lmna	IPI00620256	47.84	58.67	0.194	3.858	0.523	1.945
LRS(ph)EDGVEGDLGETQSR	Ahnak	IPI00553798	33.49	32.86	0.178	1.087	0.415	0.795
GSGEASSDSIDHS(ph)PAK	$\begin{aligned} & \text { Suv39h } \\ & 2 \\ & \hline \end{aligned}$	IPI00111417	26.96	1	0.174	1	0.377	1
S(ph)SPPVEHPAGTSTTDNDVIIR	Rail4	IPI00453820	35.31	1	0.170	1	0.308	1
GHYEVTGS(ph)DDEAGK	Ahnak	IPI00553798	58.36	1	0.168	1	0.371	1
SPAPSNPTLS(ph)PSTPAK	Mybbpl   a	IPI00331361	34.8	33.16	0.159	1.852	0.323	1.256
SNS(ph)FSDER	Ahnak	IPI00553798	29.85	1	0.154	1	0.366	1
GGVTGSPEAS(ph)ISGSKGDLK	Ahnak	IPI00553798	43.68	1	0.135	1	0.346	1
GGVTGSPEASISGS(ph)KGDLK	Ahnak	IPI00553798	43.68	1	0.119	1	0.363	1
DSVPAS(ph)PGVPAADFPAETEQS KPSK	Top2a	[PI00]22223	25.31	1	0.116	1	0.342	1
SGAAEEDDS(ph)GVEVYYR	Pdcd11	IPI00551454	41.08		0.104	1	0.592	1
KGDDS(ph)DEEDLC(me)ISNK	Stard 13	IPI00857002	57.82	1	0.027	1	0.317	1
FIQELSGSS(ph)PK	Tcfap4	IPI00121217	27.49	35.23	0.018	1.013	0.430	0.581
MSPNETLFLES(ph)TNK	Rragc	IPI00468702	1	32.32	1	0.407	1	0.530
SPSPSPTS(ph)PGSLR	Dclk 1	IPI00468380	1	51.87	1	0.398	1	0.582
PQSAS(ph)PAKEEQK	Palm	IPI00129298	1	30.2	1	0.390	1	0.196
LS(ph)PAYSLGSLTGASPR	Phldbl	IPI00330246	1	34.03	1	0.369	1	0.573
SGTSTPTTPGSTAITPGT(ph)PPSYS SR	Mtap2	IPI00895463	1	69.16	1	0.360	1	0.661
PQSPVIQATAGS(ph)PK	Arfgef2	IPI00137087	30.88	41.94	0.827	0.350	0.742	0.511
AYT(ph)HQVVTR	Cdk7	IPI00129222	26.4	28.51	0.981	0.313	0.801	0.632
AES(ph)PETSAVESTQSTPQK	Pds5b	IPI00845638	41.44	63.25	0.594	0.288	0.437	0.520
TASRPEDTPDSPSGPSS(ph)PK	Lrrcl6a	IPI00474873	1	46.92	1	0.216	1	0.439
LYNSEESRPYT(ph)NK	Crkrs	IPI00648022	1	49.1	1	0.205	1	0.338

Appendix 6. All phosphopeptides identified as up-regulated after treatment with 25hydroxycholesterol ( $25-\mathrm{OHChol}$ ) in $\geq 1$ biological replicate. Un-normalised SILAC phosphopeptide ratios are displayed

		Replicate	Mascot Score		Ratio 25-OHChol   :Control		Ratio $24(S), 25-E C$   :Control		
		1	2	1	2	1	2		
Phosphopeptide	Gene		IPI   Number						
HGS(ph)DPAFGPSPR	Fam83h	IPI00227516	28.43	1	1.795	1	0.658	1	
DELADEIANSS(ph)GK	Myh9	IPI00123181	29.65	1	1.166	1	0.970	1	
S(ph)STSGSASSLESGVYR	Gtse1	IPI00268247	63.04	1	1.152	1	0.614	1	
AQT(ph)PESC(me)GSVTPER	Filipll	IPI00755058	30.92	1	1.120	1	0.637	1	
LLQDSSS(ph)PVDLAK	Ncoa2	IPI00116968	29.72	1	1.118	1	0.919	1	
RQS(ph)LTSPDSQSTR	Hercl	IPI00676574	33.46	38.87	1.064	0.991	0.698	0.776	
VDHGAEIITQS(ph)PSR	Mtap2	IPI00895965	61.57	80.97	1.062	0.717	0.679	0.989	
GS(ph)PEDGSHEASPLEGK	Rbm20	IPI00849187	51.26	1	1.055	1	0.586	1	
PTGGLRDS(ph)EAEK	Hirip3	IPI00222813	29.49	1	1.035	1	1.064	1	
RAS(ph)LEIGESFPEGTK	Myo9b	IPI00229766	60.85	42.49	0.989	0.578	0.758	0.713	
KLEVS(ph)PGDEQSNVETR	Gnl3	IPI00222461	73.45	1	0.988	1	0.431	1	
AYT(ph)HQVVTR	Cdk7	IPI00129222	26.4	28.51	0.981	0.313	0.801	0.632	
TASESISNLSEAGS(ph)VK	Clip 1	IPI00857273	31	1	0.975	1	0.725	1	
IKDPDLTT(ph)PDSK	Ckap2	IPI00470092	44.82	1	0.954	1	0.782	1	
AQTPESC(me)GSVT(ph)PER	Filip1I	IPI00755058	30.92	1	0.944	1	0.724	1	
GGIDNPAIT(ph)SDQEVDDKK	Arhgap $5$	IPI00124298	40.63	1	0.924	1	1.125	1	
SNS(ph)NSSSVITTEDNK	Filipll	1P100755058	77.83	1	0.922	1	0.623	1	
C(me)QS(ph)PILHSSSSASSNIPSAK		IPI00875090	39.2	48.16	0.918	0.573	0.700	0.668	
SEVQAHS(ph)PSR	Mtap2	IPI00895965	31.21	1	0.907	1	0.849	1	
KS(ph)PEQESVSTAPQR	Spg20	IPI00153501	39.11	51.42	0.900	0.689	0.708	1.084	
TTSTSNPSS(ph)PAPDWYK	Atrx	IPI00857253	38.08	1	0.892	1	0.604	1	
ASS(ph)EDTLNKPGSASSGVAR	Speccl	IPI00798550	33.64	1	0.887	1	0.805	1	
YMSSDTT(ph)SPELR	Sin3a	IPI00117932	27.09	1	0.883	1	0.580	1	
KIS(ph)GTTALQEALK	Clip 1	IPI00857273	33.36	67.72	0.882	0.770	0.720	0.745	
NSGATADAGSIS(ph)PR	Erce5	IPI00875692	46.69	47.1	0.881	0.485	0.627	0.883	
HNSAS(ph)VENVSLR	Irs2	IPI00379844	53.04	55.86	0.877	0.752	0.615	0.720	
YIASVQGSAPS(ph)PR	Ranbp2	IPI00337844	36.79	1	0.875	1	0.596	1	
EKEEEETS(ph)PDTSIPR	Arhgef5	IPI00855144	48.09	1	0.868	1	0.565	1	
LPS(ph)PAQTQR	Micall2	IPI00280103	30.76	33.11	0.865	0.509	0.816	0.876	
ASS(ph)HSSQSQGGGSVTK	Lmna	IPI00620256	47.84	58.67	0.194	3.858	0.523	1.945	
GGVTGS(ph)PEASISGSK	Ahnak	IPI00553798	43.68	27.58	0.215	3.272	0.474	2.790	
LPTSEEERS(ph)PAK	Trp53bp   1	IPI00229801	25.34	25.63	0.217	3.061	0.387	2.082	
SGFGGMS(ph)SPVIR	Nup107	IPI00221767	28.39	40.37	0.372	2.643	0.626	2.319	
AS(ph)SHSSQSQGGGSVTK	Lmna	IPI00620256	1	58.67	1	2.595	1	1.511	
TEEDRENTQIDDTEPLS(ph)PVSNS K	$\begin{aligned} & \text { Trp53bp } \\ & 1 \end{aligned}$	IPI00229801	1	28.8	1	2.576	1	1.904	
SGFGGMSS(ph)PVIR	Nup107	IPI00221767	1	40.37	1	2.574	1	2.074	
QEGAQENVKNS(ph)PVPR	Gmnn	IPI00131716	1	30.64	1	2.565	1	1.603	
ASSHS(ph)SQSQGGGSVTK	Lmna	IPI00620256	47.84	58.67	0.224	2.410	0.536	1.175	
$\begin{aligned} & \text { AS(ph)PALGSGHHDGSGDSLEMSS } \\ & \text { LDR } \end{aligned}$	$\begin{aligned} & \text { Tomm7 } \\ & 0 \mathrm{a} \\ & \hline \end{aligned}$	IPI00751137	64.86	47.86	0.293	2.308	0.464	2.047	
GEVAPKET(ph)PKK	Marcksl 1	IPI00281011	1	26.82	1	2.274	1	1.651	
AEAKPGT(ph)PAK	Nolc1	IPI00720058	36.93	39.65	0.308	2.251	0.470	1.673	
KQQQEPTC(me)EPS(ph)PK	Hmga2	IPI00331612	26.67	30.2	0.287	2.231	0.428	1.718	
SEDRPS(ph)SPQVSVAAVETK	Trp53bp $1$	IPI00229801	1	48.56	1	2.071	1	1.704	
LHSAQLS(ph)PVDETPATQSQLK	Mlflip	IPI00459115	1	36.63	1	1.947	1	1.619	


SPAPSNPTLS(ph)PSTPAK	Mybbp1   a	IPI00331361	34.8	33.16	0.159	1.852	0.323	1.256
PAS(ph)PLSGPR	$\begin{aligned} & \text { D2Wsu } \\ & \text { 81e } \\ & \hline \end{aligned}$	IPI00224127	1	29.84	1	1.802	1	1.652
AAKES(ph)EEEEEEEETEEK	Nolc1	IPI00720058	93.93	73.89	0.420	1.796	0.464	1.406
T(ph)SMGGTQQQFVEGVR	Ctnnbl	IPI00125899	1	48.59	1	1.721	1	1.130
SLS(ph)TSGESLYHVLGLDK	Dnajc5	IPI00132206	50.5	47.88	0.508	1.703	0.739	1.197
EIITEEPS(ph)EEEADMPKPK	Ddx21	IPI00120691	1	31.38	,	1.693	1	1.383
ATWGDGGDNS(ph)PSNVVSK	Snap23	IPI00113798	64.07	49.53	0.493	1.687	0.455	1.545
FGEYNSNIS(ph)PEEK	Nop14	IPI00353010	36.25	30.49	0.434	1.684	0.539	1.451
HLFSS(ph)TENLAAR	Rabllifi   pl	IPI00169485	1	39.84	1	1.665	1	1.264
NWTEDIEGGISS(ph)PVK	Nfic	IPI00137501	1	32.95	1	1.656	1	1.073
APQS(ph)PTLAPAK	Cxadr	IPI00270376	25.52	30.84	0.219	1.618	0.291	1.103
LLKPGEEPSEYT(ph)DEEDTK	Pgrmc2	IPI00351206	39.74	35.31	0.393	1.606	0.475	1.357
KFS(ph)EEPEVAANFTK	Nop56	IPI00318048	35.3	31.73	0.442	1.595	0.504	0.850
ASSHSSQSQGGGS(ph)VTK	Lmna	IPI00620256	47.84	58.67	0.553	1.582	0.701	0.899
GISQTNLITTVT(ph)PEK	Epb4113	IPI00229299	50.15	40.47	0.458	1.549	0.521	1.551
```QKS(ph)DAEEDGVTGSQDEEDSKP K```	Canx	IPI00119618	88.22	64.73	0.476	1.533	0.545	1.340
TTVYYQS(ph)PLESKPR	Atad2	IPI00135252	1	41.56	1	1.532	1	1.139
T(ph)GSLQLSSTSIGTSSLK	Cobll 1	IPI00762331	1	31.52	1	1.526	1	0.746
VQTT(ph)PSKPGGDR	Cdc20	IPI00320406	30.44	31.01	0.417	1.516	0.586	0.870
AEEDEILNRS(ph)PR	Canx	IPI00119618	1	25.35	1	1.506	1	1.350
```SSGS(ph)PYGGGYGSGGGSGGYGS R```	$\begin{aligned} & \text { Hnrnpa } \\ & 3 \\ & \hline \end{aligned}$	IPI00269661	113.25	92.56	0.420	1.501	0.581	1.346
KQNETADEAT(ph)TPQAK	Nolcl	IPI00720058	1	43.74	1	1.498	1	1.422
SRLTPTTPES(ph)SSTGTEDK	Sqstml	IPI00133374	1	74.88	1	1.485	1	0.733
AAAT(ph)PESQEPQAK	$\begin{aligned} & \hline \text { Marcksl } \\ & 1 \\ & \hline \end{aligned}$	IPI00281011	38.45	26.81	0.438	1.477	0.531	0.964
AGGS(ph)PASYHGSTSPR	Epn2	[PI00336844	49.92	47.77	0.503	1.473	0.498	1.475
IALESVGQPEEQMESGNC(me)S(ph) GGDDDWTHLSSK	Sqstm 1	IPI00133374	1	27.33	1	1.471	1	0.787
SSSSLLAS(ph)PSHIAAK	Fam62b	IPI00266942	26.75	30.8	0.594	1.465	0.568	1.344
AGS(ph)SPTQGAQNEAPR	Tcf20	IPI00407458	1	30.95	1	1.457	1	1.514
KAPLTLAGS(ph)PTPK	Wiz	IPI00263016	1	39.77	1	1.455	1	1.147
KLDTFQSTS(ph)PK	Ddx24	IPI00113576	1	27.61	1	1.453	1	1.063
GVTASSSS(ph)PASAPK	Ncaml	IPI00122971	43.46	34.3	0.244	1.437	0.346	1.195
SRLT(ph)PTTPESSSTGTEDK	Sqstm I	IPI00133374	1	74.88	1	1.435	1	0.821
SDAEEDGVTGS(ph)QDEEDSKPK	Canx	IPI00119618	88.22	64.73	0.467	1.430	0.557	1.215
SSS(ph)FGSVSTSSTSSK	Snx 16	IPI00331029	1	54.62	1	1.416	1	4.998
S(ph)RPLNAVSQDGK	Csda	IPI00330591	47.17	44.25	0.563	1.416	0.553	1.041
TVGNVS(ph)PTAQMVQR	Rbm 7	IPI00133061	1	28.2	1	1.414	1	1.646
S(ph)SGSPYGGGYGSGGGSGGYGS R	$\begin{aligned} & \text { Hnrnpa } \\ & 3 \\ & \hline \end{aligned}$	[PI0026966]	113.25	92.56	0.461	1.414	0.578	1.245
SRLTPTT(ph)PESSSTGTEDK	Sqstm]	IPI00133374	1	74.88	1	1.408	1	0.841
IAQEIASLS(ph)KEDVSK	Ralbpl	IPI00421132	48.23	52.17	0.463	1.392	0.539	1.266
KPAQETEETS(ph)SQESAEED	Hmga2	IPI00331612	40.72	28.37	0.482	1.384	0.484	0.886
TEMDKS(ph)PFNSPSPQDSPR	Nfic	IPI00137501	1	35.42	1	1.371	1	1.118
GDKS(ph)SEPTEDVETK	Tgoln2	IPI00408895	46.27	33.26	0.585	1.370	0.553	1.109
GEATAERPGEAAVASS(ph)PSK	Marcks	IPI00229534	53.11	53.46	0.600	1.362	0.576	1.450

