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Summary

This work is concerned with heuristic approaches to examination timetabling. It is 
demonstrated that a relatively new evolutionary method, the Ant System, can be the 
basis of a successful two-phase solution method. The first phase exploits ant feedback 
in order both to produce large volumes of feasible timetables and to optimise 
secondary objectives. The second phase acts as a repair facility where solution quality 
is improved further while maintaining feasibility. This is accomplished without 
increasing computational effort to unrealistic levels.

The work builds on an existing implementation for the graph colouring problem, the 
natural model for examination scheduling. It is demonstrated that by adjusting the 
graph model to allow the accommodation of several side constraints as well 
incorporating enhancement techniques within the algorithm itself, the Ant System 
algorithm becomes very effective at producing feasible timetables. The enhancements 
include a diversification function, new reward functions and trail replenishment 
tactics.

It is observed that the achievement of second-order objectives can be enhanced 
through a variety of means. A modified elitist strategy (ERF) significantly improves 
the performance of the Ant System due to the extra emphasis on second-order 
feedback. It is also shown that through the incorporation of the ERF, trail limits and, 
in particular, 19th century evolutionary theory the area of the solution space explored 
by the ants during the infancy of the search can be reduced. In addition, a good level 
of exploration is maintained as the search matures. This balance between exploration 
and exploitation is the main determinant of solution quality.

The use of a repair facility, as is common practice with evolutionary algorithms, 
encourages fitter solutions. The interaction between Lamarckian evolution and 
searching in an extended neighbourhood through the graph theoretic concept of 
Kempe chains leads to better overall solutions.

v



To Mum and Dad

In Loving Memory of Gramps



1

1
1
2
5
5

7

7
7

10
13
14
20
27
28
31
34
34
36
39
44
55
56

58

58
58
60
60
61
61
65
69
70
72
73

75

76
79
80
81

Introduction

1.1 Background............................................
1.2 The Nature of the Problem....................
1.3 Introduction to Ants................................
1.4 Solution Method...................................
1.5 Plan of the Thesis..................................

Literature Review...............................

2.1 Introduction............................................
2.2 ANTCOL................................................

2.2.1 ANTCOL Graph Colouring Heuristics
2.3 Examination Timetabling.....................

2.3.1 Common F eatures..................................
2.3.2 Solution Methods...................................
2.3.3 Recent Developments...........................
2.3.4 Local Search and TSP............................
2.3.5 Genetic Algorithms................................

2.4 Ant Algorithms.......................................
2.4.1 Early Considerations.............................
2.4.2 Enhancements of the Ant System.........
2.4.3 Ant Colony Optimisation.....................
2.4.4 Major Applications................................
2.4.5 Less Relevant Studies...........................

2.5 Conclusion..............................................

Precursory Investigation....................

3.1 Introduction............................................
3.1.1 DataSets.................................................
3.1.2 Computer Facilities................................

3.2 Basic Mechanics of the Algorithm......
3.2.1 Graph Colouring Heuristics..................
3.2.2 Influence of Bias Parameters................
3.2.3 Influence of Evaporation Factor..........
3.2.4 Efficiency of Method.............................
3.2.5 Ants Per Cycle.......................................

3.2.5.1 Na-Nc Trade-Off...................................
3.3 Stochastic Importance............................
3.4 Comparison with Costa and Hertz

(1997).....................................................
3.5 Mixing Construction Heuristics..........
3.6 Trail Potency..........................................
3.7 Speed Related Issues.............................

3.7.1 Revising the RPR...................................

1



82
83
86
87

89

89
89
90
90
93
94
94
95
97
98
99

101
105
106

107

110
111

114

114
115
120
123
125
126
128
132
134
139
145
147
149
149
151
154
155
157

3.7.2 Linear Interpolation.....................................
3.7.3 Candidate Lists.............................................
3.7.4 Limiting Trail Levels..................................

3.8 Conclusion...................................................

First-Order Conflict and Enhancement 
Techniques..................................................

4.1 Introduction..................................................
4.2 First-Order Conflict.....................................
4.3 Non-Determined Timeslot Case.................

4.3.1 Reward Function..........................................
4.3.2 Elitism...........................................................
4.3.3 Hill Climbing...............................................
4.3.4 Summary of Results...................................

4.4 Determined Timeslot Case..........................
4.4.1 Solution Enhancement.................................

4.4.1.1 Basic Trail Reinforcement..........................
4.4.1.2 Elitism..........................................................
4.4.1.3 Problematic Exam Trail..............................
4.4.1.4 Hill Climbing...............................................
4.4.1.5 Summary of Results....................................

4.5 Determined Timeslot Case -
Capacitated...................................................

4.6 Swansea Data Sets.......................................
4.7 Conclusion...................................................

Minimising Second-Order Conflict.

5.1 Introduction...........................................
5.2 Capabilities of First-Order Model.......
5.3 Combined Reward Function (CRF)...
5.4 Second-Order Bias Term.....................
5.5 Trail Intensfication..............................

5.5.1 Static Approach.....................................
5.5.2 Dynamic Approach...............................
5.5.3 Elitist Ants.............................................

5.5.3.1 Second-Order Elitist Strategy.............
5.5.3.2 Elitist Reward Function......................
5.5.3.3 Additional Second-Order Bias.............

5.5.4 Ant Synergy..........................................
5.6 Ant Convergence..................................

5.6.1 Standard Deviation...............................
5.6.2 Branching Factors................................

5.7 Influence of Timeslot Vertices............
5.8 Weighted Construction Heuristic.......
5.9 Limiting Exploitation...........................

2



Contents

Chapter
Six

5.10 Degree of Saturation.........................................  162
5.10.1 Greedy DSatur...................................................  163
5.10.2 DSatur Type 1....................................................  166

5.11 Two Populations................................................ 166
5.11.1 Same Reward Function.....................................  167
5.11.2 Different Obj ectives..........................................  168

5.11.2.1 Second-Order Reward Function (SOF)  168
5.11.2.2 CRF and SOF.....................................................  171

5.12 One Population -  Two Trails............................ 174
5.12.1 Second Trail Formulation.................................  174
5.12.2 Sensitivity of y................................................... 176
5.12.3 Different Objectives..........................................  176

5.13 Conclusion..........................................................  179

Improvement Strategies.................................  181

6.1 Introduction........................................................  181
6.2 TSP......................................................................  183

6.2.1 TSP for Examination Timetabling...................  183
6.2.2 AS Algorithm for TSP......................................  185
6.2.3 Precursory Investigation....................................  186

6.2.3.1 Weight Q............................................................. 187
6.2.3.2 Bias Parameters..................................................  187
6.2.3.3 Evaporation Factor............................................. 189
6.2.3.4 Ants Per Cycle....................................................  190
6.2.3.5 Number of Cycles.............................................. 191
6.2.3.6 Parameter Settings.............................................. 192

6.2.4 Enhancing Solution Quality..............................  192
6.2.5 Best Possible Search Conditions......................  194
6.2.6 Heuristic Bias Only............................................ 194
6.2.7 Ant Synergy.......................................................  195
6.2.8 Relationship between Before and After .

TSP.....................................................................
6.2.9 Quality-Time Trade-Off....................................  202
6.2.10 Speed of Solution Return..................................  204
6.2.11 Baldwinian and Lamarckian Systems  207
6.2.12 Data Sets with Side Constraints........................ 208

6.3 Exam Exchange Methods..................................  211
6.3.1 Local Search.......................................................  211

6.3.1.1 Steepest Descent.................................................  212
6.3.1.2 Relationship between Before and After ^^3

Loc......................................................................
6.3.1.3 Quality-Time Trade-Off....................................  214
6.3.1.4 Comparison of Local Search with TSP  218
6.3.1.5 Further Illustration of Role of Ants..................  218
6.3.1.6 TSP-Local Search Hybrid.................................  219

3



Contents

Chapter
Seven

6.3.2 Kempe Chains...................................................  221
6.3.2.1 Introduction........................................................ 221
6.3.2.2 S-Chains.............................................................  222
6.3.2.3 Application to Examination Timetabling  223
6.3.2.4 Sample Size........................................................ 224
6.3.2.5 Restriction of Kempe Improvement................  225
6.3.2.6 Width of Exploration........................................ 228

6.4 Comparison Across Methods...........................  234
6.4.1 Comparison of Exam Exchange Methods  238
6.4.2 Comparison with Simulated Annealing  240

6.5 Justification of Parameter Settings.................  242
6.6 Conclusion......................................................... 243

Conclusions and Further Work....................  246

7.1 Conclusions........................................................ 246
7.2 Further Work.....................................................  255
7.3 Final Conclusion...............................................  257

Bibliography...................................................... 258
Appendices........................................................  268



Appendices

1.1 Glossary of Terms.............................................................................................. 268
1.2 The Travelling Salesman Problem...................................................................  270

2.1 Definitions of RLF and DSatur......................................................................... 271
2.2 Genetic Algorithms..............................................................J...........................  273

3.1 Efficiency of Construction Heuristics..............................................................  274
3.2 Sensitivity of a  and /?........................................................................................  275
3.3 Performance across a  and p ..............................................................................  278
3.4 Sensitivity of p ...................................................................................................  284
3.5 Sensitvity of ..................................................................................................  286

4.1 Examination Timetabling with Ants. Abstract by Dowsland et al. (2002)... 288
4.2 Sensitvity of a  and p  with timeslot structure................................................... 292

5.1 Static Trail Reinforcement................................................................................  295

6.1 Regression Analysis (TSP)................................................................................  297
6.2 After TSP Second-Order Statistics...................................................................  300
6.3 Local Search............................. ; .......................................................................  303
6.4 Regression Analysis (Steepest Descent).........................................................  304
6.5 Before Loc Second-Order Statistics.................................................................  307
6.6 Relationship between Computational Effort and Improvement..................... 309
6.7 Simulated Annealing.......................................................................................... 310

7.1 Derivation of 8 3 4 ................................................................................................ 312

5



figures

Figures

Chapter
Three

Chapter
Four

Chapter
Five

Figure 3.1 Proportion of Feasible Solutions across a  when
ft = 1 for HEC.................................................................  63

Figure 3.2 Proportion o f Feasible Solutions across a  when
P =  1 for EAR.................................................................  63

Figure 3.3 Proportion o f Feasible Solutions across a  when
/?= 1 for TRENT............................................................. 64

Figure 3.4 Comparison o f Construction Heuristics A-H  for
HEC................................................................................... 66

Figure 3.5 Comparison o f Construction Heuristics A-H  for
EAR................................................................................... 67

Figure 3.6 Comparison o f Construction Heuristics A-H  for
TRENT.............................................................................  68

Figure 3.7 Deterministic against Stochastic comparison for
HEC................................................................................... 74

Figure 3.8 Deterministic against Stochastic comparison for
EAR................................................................................... 74

Figure 3.9 Deterministic against Stochastic comparison for
TRENT.............................................................................  74

Figure 3.10 Average Solution Quality for heuristics C, D  and
Amalgam CD for HEC................................................... 78

Figure 3.11 Average Solution Quality for heuristics C, D  and
Amalgam CD for EAR................................................... 78

Figure 3.12 Average solution quality with heuristics C, G and
Amalgam CG for TRENT.............................................  78

Figure 3.13 Number o f Ants versus Quality....................................  80

Figure 4.1 Average colours versus cycle plots for proposed
reward functions R l, R2 and R3 for HEC.................  92

Figure 4.2 Average colours versus cycle plots for proposed
reward functions R1,R2  and R3 for EAR.................  92

Figure 4.3 Average colours versus cycle plots for proposed
reward functions R l, R2 and R3 for TRENT  93

Figure 4.4 Average unallocated exams per timetable versus
cycle plots for w=2 and w -2 0  for HEC......................  101

Figure 4.5 An example o f number o f students per timeslot for
feasible timetable for EAR (max. 350 students)  110

Figure 4.6 An example o f number o f students per timeslot for a
Feasible Timetable for TRENT (Max 655 
Students)..........................................................................  110

Figure 5.1 Average second-order conflicts per timeslot across
construction methods for HEC...................................... 117

Figure 5.2 Average second-order conflicts per timeslot across
construction methods for EAR...................................... 117

6



Figures

Figure 5.3 Average second-order conflicts per timeslot across
construction methods for TRENT................................  117

Figure 5.4 Average Second-Order Score per Cycle across
Construction Methods for HEC...................................  118

Figure 5.5 Average Second-Order Score per Cycle across
Construction Methods for EAR..................................... 119

Figure 5.6 Average Second-Order Score per Cycle across
Construction Methods for TRENT...............................  119

Figure 5.7 Percentage o f Feasible Timetables across Second-
Order Weight S...............................................................  122

Figure 5.8 Percentage o f Feasible Timetables across Weight 6.. 125
Figure 5.9 Percentage o f Feasible Timetables across

Intensification Weight X for HEC................................  128
Figure 5.10 Run, 5,10 and 20 Cycle Minimums for HEC  131
Figure 5.11 Run, 5,10 and 20 Cycle Minimums for EAR  132
Figure 5.12 Run, 5,10 and 20 Cycle Minimums for TRENT  132
Figure 5.13 Percentage o f Feasible Timetables for range o f a  for

Second-Order Elitism.....................................................  136
Figure 5.14 Percentage o f Feasible Timetables for range o f e for

Second-Order Elitism.....................................................  138
Figure 5.15 Percentage o f Feasible Timetables across ERF

W eight$+/00.................................................................  143
Figure 5.16 Percentage o f Feasible Timetables across Trail

Intensification Weight or...............................................  144
Figure 5.17 Percentage o f Feasible Timetables across S  Ants  146
Figure 5.18 Average and Best Second-Order Score versus Cycle

plot for HEC under Elitist conditions.......................  148
Figure 5.19 Average and Best Second-Order Score versus Cycle

plot for EAR under Elitist conditions..........................  148
Figure 5.20 Average and Best Second-Order Score versus Cycle

plot for TRENT under Elitist conditions.................. 148
Figure 5.21 Cyclic Standard Deviations o f Second-Order Scores

for ERF and CRF for HEC............................................  150
Figure 5.22 Cyclic Standard Deviations o f Second-Order Scores

for ERF and CRF for EAR............................................  150
Figure 5.23 Cyclic Standard Deviations o f Second-Order Scores

for ERF and CRF for TRENT....................................... 151
Figure 5.24 Cyclic Mean Branching Factor when using ERF and

CRF for HEC...................................................................  152
Figure 5.25 Cyclic Mean Branching Factor when using ERF and

CRF for EAR...................................................................  152
Figure 5.26 Cyclic Mean Branching Factor when using ERF and

CRF for TRENT..............................................................  152
Figure 5.27 Percentage o f Feasible Timetables across P of

Weighted Construction Heuristic.................................  157
Figure 5.28 Cyclic Highest Trail Levels............................................  159
Figure 5.29 Percentage o f Feasible Timetables for range o f tmax— 160
Figure 5.30 Cyclic Mean Branching Factor for ERF and ERF

when ^ = 5 5 0  for HEC................................................. 161
Figure 5.31 Cyclic Mean Branching Factor for ERF and ERF

when tmax=600 for EAR.................................................. 161
Figure 5.32 Cyclic Mean Branching Factor for ERF and ERF

when tmax-850 for TRENT............................................  161

7



Figures

Chapter
Six

Figure 5.33

Figure 5.34 

Figure 5.35 

Figure 5.36 

Figure 5.37 

Figure 5.38 

Figure 5.39 

Figure 5.40

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4 
Figure 6.5

Figure 6.6 
Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Cyclic Mean Branching Factor from 30th cycle for 
ERF and ERF when tmax=850 for
TRENT................... 162
Percentage o f Feasible Timetables for various List
Sizes................................................................................... 164
Percentage o f Feasible Timetables across all data
sets for range o f S  on SOF.............................................  169
Average Second-Order Score versus Cycle Plot
comparing SOF and CRF for HEC...............................  170
Average Second-Order Score versus Cycle Plot
comparing SOF and CRF for EAR............................. 170
Average Second-Order Score versus Cycle Plot
comparing SOF and CRF for TRENT.......................... 170
Percentage o f Feasible Timetables across
Intensification Weight cr................................................  172
Percentage o f Feasible Timetables across 
Intensification Weight cr/..............................................  173

Average Second-Order Scores for both with and
without pheromone conditions for HEC..................... 195
Average Second-Order Scores for both with and
without pheromone conditions for EAR..................... 196
Average Second-Order Scores for both with and
without pheromone conditions for TRENT................  196
Before TSP and After TSP relationship for HEC  197
Before TSP and After TSP relationship for EAR......

Before TSP and After TSP relationship for TRENT.. 198 
Before TSP and second-order conflicts savings
relationship for HEC......................................................  200
Before TSP and second-order conflicts savings
relationship for EAR......................................................  200
Before TSP and second-order conflicts savings
relationship for TRENT.................................................. 201
Within cycle standard deviation for evolutionary
theories when using Kempe for HEC..........................  229
Within cycle standard deviation for evolutionary
theories when using Kempe for EAR..........................  229
Within cycle standard deviation for evolutionary
theories when using Kempe for TRENT..................... 230
Cyclic mean branching factor for evolutionary
theories when using Kempe for HEC..........................  230
Cyclic mean branching factor for evolutionary
theories when using Kempe for EAR..........................  231
Cyclic mean branching factor for evolutionary
theories when using Kempe for TRENT..................... 231
Cyclic mean branching factor for selection o f d2 for
HEC.................    232
Cyclic mean branching factor for selection o f d2 for
EAR................................................................................... 233
Within cyclic Standard Deviation comparing Local 
Search and Kempe for HEC..........................................  239

8



Figures

Figure 6.19 Within cyclic Standard Deviation comparing Local
Search and Kempe for EAR......................................  239

Figure 6.20 Within cyclic Standard Deviation comparing Local
Search and Kempe for TRENT..................................  240

Appendices
Figure A3.1 Proportion of Feasible Solutions across a  when (3=2

for HEC............................................................................  278
Figure A3.2 Proportion of Feasible Solutions across a  when (3=3

for HEC............................................................................  278
Figure A3.3 Proportion of Feasible Solutions across a  when j.3=4

for HEC............................................................................  278
Figure A3.4 Proportion of Feasible Solutions across a  when y8=2

for EAR............................................................................  279
Figure A3.5 Proportion o f Feasible Solutions across a  when (3=3

for EAR............................................................................  279
Figure A3.6 Proportion o f Feasible Solutions across a  when (3=4

for EAR............................................................................  279
Figure A3.7 Proportion o f Feasible Solutions across a  when (3=2

for TRENT....................................................................... 280
Figure A3.8 Proportion o f Feasible Solutions across a  when (3=3

for TRENT....................................................................... 280
Figure A3.9 Proportion o f Feasible Solutions across a  when f 3=4

for TRENT....................................................................... 280
Figure A3.10 Influence o f a  for HEC..................................................  281
Figure A3.11 Influence o f a  for EAR..................................................  282
Figure A3.12 Influence o f a  for TRENT............................................. 283
Figure A6.1 Relationship between Computation Effort and

Improvement for HEC.................................................... 309
Figure A6.2 Relationship between Computation Effort and

Improvement for EAR.................................................... 309
Figure A6.3 Relationship between Computation Effort and

Improvement for TRENT..............................................  309

9



12

59

61

62

69

69

71
72

77

81

83

84

85

86

91

95

98

100

100
103
104

104

Table 2.1 Labels used for construction heuristics for 
remainder o f thesis........................................

Table 3.1 Data set information............................................
Table 3.2 Statistics describing Single Pass

Heuristics..............................................................
Table 3.3 Summary statistics across a  when /3=1 for

each construction heuristic................................
Table 3.4 Summary statistics across p  with construction

heuristic C............................................................
Table 3.5 Statistics describing the timing of discovery o f

run-best solution............................................
Table 3.6 Statistics describing the influence o f the

Number o f Ants per Cycle................................
Table 3.7 Cross Tabulation of NA against Nc....................
Table 3.8 Statistics describing efficiency o f selected

construction heuristic amalgams......................
Table 3.9 Runtimes o f multiplicative and exponent

based RPR expressions.......................................
Table 3.10 Feasibility and runtimes for Full and LI

methods.................................................................
Table 3.11 Feasibility and Runtimes for Full and

Candidate list constitutions................................
Table 3.12 Time and Feasible statistics for Hybrid and 10

Desirability time conservation
methods..............................................................

Table 3.13 Feasibility and Runtimes for Full and various
T'max...........................................................................

Table 4.1 Average and best solution quality for proposed 
reward functions R l, R2 and R3...

Table 4.2 Best statistics for Graph Colouring, Basic Ant
System, Basic Ant System with Enhancement 
Techniques and Benchmark
Results..................................................................

Table 4.3 Unallocated Exams and Feasible for Range of
rc...........................................................................

Table 4.4 Unallocated Exams and Feasible for range o f
e ............................................................................

Table 4.5 Unallocated Exams and Feasible for range o f
w ......................................................................

Table 4.6 Unallocated and Feasible for range o f p 2........
Table 4.7 Entropy and Feasible..........................................
Table 4.8 Absolute Difference o f Cycle Numbers when

First Feasible Solution was observed between 
Basic and PET Systems....................................

10



Tables

Table 4.9 Unallocated and Feasible for Basic and
Hill.......................................................................... 105

Table 4.10 Feasible and Runtimes for Extended Number
of Data Set comparing
Enhancements......................................................  107

Table 4.11 Timeslot capacities for each data set.................  108
Table 4.12 Feasible and Runtimes for Extended Number

of Data Sets for Capacitated Model comparing
Enhancements..................................  108

Table 4.13 Feasible and Runtimes for Swansea Data Sets
for Uncapacitated and Capacitated models 
comparing Enhancements..................................  I l l

Chapter
Five

Table 5.1 Component Settings to be used unless
otherwise stated.................................................... 115

Table 5.2 Second-Order Statistics for Ordered, Random
and OddEven Strategies.....................................  116

Table 5.3 Second-Order Statistics for range o f 5 on the
CRF....................................................................... 122

Table 5.4 Second-Order Statistics for range o f 0 on Bias
Term.....................................................................  124

Table 5.5 Averaged Second-Order Scores for various
Intensity and Upper Bound Levels................... 127

Table 5.6 Second-Order Statistics for a range o f e   130
Table 5.7 Statistics for a sample o f n .................................  131
Table 5.8 Experimental settings o f e and cr........................ 135
Table 5.9 Second-Order Statistics describing influence

of cr........................................................................  135
Table 5.10 Second-Order Statistics describing influence

o fe .......................................................................... 137
Table 5.11 Experimental settings o f e, 82 and cr..................  140
Table 5.12 Second-Order Statistics describing influence

o fe .......................................................................... 140
Table 5.13 Statistics describing influence o f S2................... 142
Table 5.14 Statistics describing influence o f cr...................  144
Table 5.15 Robust Elitist Settings.......................................... 144
Table 5.16 Second-Order Statistics for Robust Elitist

Settings..................................................................  145
Table 5.17 Statistics describing the range o f s .................. 146
Table 5.18 First and Second-Order Statistics describing

the effectiveness o f the ERF over the CRF  153
Table 5.19 Quality Statistics for Three Trail Update

Environments........................................................  155
Table 5.20 Second-order statistics across ft for Weighted

Construction Heuristic........................................  156
Table 5.21 Second-Order statistics across range o f tmax---- 159
Table 5.22 Average and Best second-order scores for

various list sizes for Greedy DSatur.................. 164
Table 5.23 Second-Order Statistics for Two-Trail

Philosophy with same objectives......................  167

11



Tables

Chapter
Six

Table 5.24 Second-Order Statistics for SOF when One
Trail is used..........................................................  169

Table 5.25 Second-Order Statistics across a exchange
ants for Two-Trail system..................................  171

Table 5.26 Second-Order Statistics across intensification
weight a  for Two-Trail
System..................................................................  171

Table 5.27 Second-Order Statistics across Intensification
Weight cr/ for Two-Trail
system...................................................................  173

Table 5.28 Examining the Sensitivity o f y........................... 176
Table 5.29 Influence o f cron second-order solution

quality for HEC.................................................... 177
Table 5.30 Influence o f e on second-order solution quality

for HEC.................................................... 177
Table 5.31 Influence o f cron second-order solution

quality for EAR.................................................... 177
Table 5.32 Influence o f e on second-order solution quality

for EAR.................................................... 177
Table 5.33 Influence o f cron second-order solution

quality for TRENT..............................................  178
Table 5.34 Influence o f e on second-order solution quality

for TRENT..............................................  178

Table 6.1 Experimental parameter settings for TSP  186
Table 6.2 Influence o f reward function weight Q  in

TSP.......................................................................... 187
Table 6.3 Influence o f bias parameters a  and /? for HEC

in TSP....................................................................  188
Table 6.4 Influence o f bias parameters a  and /? for EAR

in TSP...................................................................  188
Table 6.5 Influence o f bias parameters a  and j3 for

TRENT in TSP.....................................................  189
Table 6.6 Influence o f evaporation rate p  in TSP  190
Table 6.7 Influence o f the number o f ants per cycle in

TSP.......................................................................... 191
Table 6.8 Average latest cycle that a new best solution

was found in TSP................................................. 191
Table 6.9 Final parameter TSP settings............................... 192
Table 6.10 Experimental parameter settings for Elitist

TSP.......................................................................... 192
Table 6.11 The influence o f the number o f elitist ants e in

TSP.......................................................................... 193
Table 6.12 Influence o f trail intensification weight a  in

TSP.......................................................................... 193
Table 6.13 TSP Statistics associated with the best search

conditions...............................................................  194
Table 6.14 Statistics describing the heuristic bias only

conditions..............................................................  195

12



Tables

Table 6.15 Spearman ’ s Rank Correlation Coefficient
quantifying Before TSP and After TSP
relationship............................................................  199

Table 6.16 Spearman’s Rank Correlation Coefficient
quantifying Before TSP and Savings 
relationship............................................................  201

Table 6.17 Second-Order After-TSP statistics for range of
deviation scores.................................................... 203

Table 6.18 Solution timing information for HEC
(TSP)......................................................................  205

Table 6.19 Solution timing information for EAR
(TSP)......................................................................  205

Table 6.20 Solution timing information for TRENT
(TSP)......................................................................  206

Table 6.21 After TSP Statistics for different fitness
strategies.................................................................  207

Table 6.22 Data set characteristics for Swan2000 and
Swan2002.............................................................. 208

Table 6.23 Parameter information.......................................... 209
Table 6.24 Frequency o f pre-assigned exams per timeslot

for Swan2000........................................................  209
Table 6.25 Frequency o f pre-assigned exams per timeslot

for Swan2002........................................................  210
Table 6.26 Solution quality for restricted and unrestricted

case.......................................................................... 210
Table 6.27 After Loc performance o f Steepest Descent

strategy for three fitness strategies.....................  212
Table 6.28 Before Loc performance o f Steepest Descent

strategy for three fitness strategies.....................  213
Table 6.29 Achievable results for dynamic min+deviation

rule for HEC..........................................................  215
Table 6.30 Achievable results for dynamic min+deviation

rule for EAR.........................................................  216
Table 6.31 Achievable results for dynamic min+deviation

rule for TRENT.....................................................  217
Table 6.32 Solution quality with Steepest Descent applied

to poorer starting solutions..................................  219
Table 6.33 Solution quality with the TSP-LOCAL hybrid

strategy...................................................................  220
Table 6.34 Influence o f Kempe sample size on solution

quality and runtime..............................................  224
Table 6.35 Influence o f evolutionary theory, Kempe and

deviation rule on solution quality for
HEC........................................................................ 226

Table 6.36 Influence o f evolutionary theory, Kempe and
deviation rule on solution quality for
EAR........................................................................ 226

Table 6.37 Influence o f evolutionary theory, Kempe and
deviation rule on solution quality for
TRENT..................................................................  227

Table 6.38 Influence o f evolutionary theories on ant-
based searches (Kempe)....................................... 228

Table 6.39 Best Before Kempe and After Kempe
solutions for experimental d2.............................. 233

13



Tables

Chapter
Seven

Appendices

Table 6.40 Comparison o f methods.......................................  235
Table 6.41 Add-on results for SWAN2000 and

SWAN2002........................................................... 238
Table 6.42 Number of vertex colour changes...................... 240
Table 6.43 SA and HAS-EXAM second-order scores  241
Table 6.44 Best scores across a  and /?................................  242

Table 7.1 Carter Costs for five benchmark methods and
HAS-EXAM.........................................................  254

Table A3.1 Rank Statistics for Eight Construction
Heuristics...............................................................  274

Table A3.2 Average and Minimum Colours for a  and /?
for HEC.................................................................  275

Table A3.3 Average and Minimum Colours for a  and /?
for EAR.................................................................  276

Table A3.4 Average and Minimum Colours for a  and /3
for TRENT............................................................ 277

Table A3.5 Average and Best Colours for range o f p  for
HEC........................................................................  284

Table A3.6 Average and Best Colours for range o f p  for
EAR...................................................................... 284

Table A3.7 Average and Best Colours for range o f p  for
TRENT.................................................................  285

Table A3.8 Average and Best Colours for range o f ants
per cycle for HEC............................................  286

Table A3.9 Average and Best Colours for range o f ants
per cycle for EAR.............................................  286

Table A3.10 Average and Best Colours for range o f ants
per cycle for TRENT.........................................  287

Table A 4.1 Feasible and Unallocated for a  and ft for
HEC.....................................................................  292

Table A4.2 Feasible and Unallocated for a  and (3 for
EAR...................................................................... 293

Table A4.3 Feasible and Unallocated for a  and (3 for
TRENT.................................................................  294

Table A5.1 Statistics for range o f X on bias term for
various UB for HEC.........................................  295

Table A5.2 Statistics for range o f X on bias term for
various UB for EAR......................................... 295

Table A5.3 Statistics for range o f X on bias term for
various UB for TRENT.....................................  296

Table A 6.1 Regression Analysis o f Before TSP and After
TSP....................................................................... 297

Table A6.2 Regression Analysis o f Before TSP versus
Savings..................................................................  299

Table A6.3 After TSP results for min+deviation rule for
HEC...................................................................... 300

Table A6.4 After TSP results for min+deviation rule for
HEC...................................................................... 301

14



Tables

Table A6.5 After TSP results for min+deviation rule for
HEC..................................................................... 302

Table A6.6 Regression Analysis o f Before Loc versus
After Loc..............................................................  304

Table A6.7 Regression Analysis o f Before Loc versus
Savings.................................................................  305

Table A6.8 Before Loc Second-Order statistics for
Baldwinian and Lamarckian theories for
HEC....................................................................... 307

Table A6.9 Before Loc Second-Order statistics for
Baldwinian and Lamarckian theories for
EAR....................................................................... 307

Table A 6.10 Before Loc Second-Order statistics for
Baldwinian and Lamarckian theories for
TRENT.................................................................  308

Table A7.1 Estimates o f S3id.................................................... 312



Chapter 1 Introduction

Chapter 1

Introduction
1.1 Background

Our lives are ruled by structure, but often we are not aware of this. Examples are the trains 

we catch, the television we watch and the football matches we attend. All such events have 

to be scheduled and we fit our lives around them. Many are organised in an attempt to 

please the majority. The scheduling of exams is no different. All exams tend to cause stress 

and among the most difficult and important in many people’s lives are their degree exams. 

These are taken in the final, and some in the penultimate, year in university and are the 

culmination of several years work and are crucial in deciding the working life fate of many 

students. Consequently, most institutions are interested in producing timetables which are 

designed to include some degree of student comfort. The examination timetabling problem 

is known to be computationally difficult and comprises a mixture of hard and soft 

constraints. A successful timetable is one that satisfies all the hard constraints and deals 

with the other constraints as far as possible.

1.2 The Nature of the Problem

The way that the examination timetabling problem is solved tends to vary due to different 

objectives demanded by institutions. Due to increasing numbers of students and greater 

numbers of modules, producing an examination timetable has become a more difficult task 

to tackle. Initially, institutions used manual techniques. At the University of Wales 

Swansea, this style of timetable construction was performed until 1993 when no feasible 

(see glossary of terms for definition, Appendix 1.1) timetable could be produced in this 

manner. A more sophisticated approach was needed and The Integrated Scheduling System 

for University Examinations (TISSUE) was introduced, Thompson (1995).

Over the years, many heuristic based methods have been used to schedule examination 

timetables at universities. The heuristics range from greedy to tailor made. Additionally, 

the use of meta-heuristics (see glossary of terms for definition, Appendix 1.1) has become 

more commonplace. Simulated Annealing (see TISSUE above), Tabu Search and more 

recently Genetic Algorithms have all been used. The focus of this thesis is the development
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and analysis o f an evolutionary meta-heuristic, called Ant Algorithms, which bases its 

construction style on the analogy o f how real ants hunt for food. The method will be 

considered in greater detail later in this Introduction.

1.3 Introduction to Ants

Marco Dorigo introduced the first Ant System (AS) in his PhD thesis in 1991. AS was 

initially applied to the Travelling Salesman Problem (TSP), see definition in Appendix 1.2, 

due to the natural parallel to routing problems. The idea behind AS is (loosely) based upon 

the activities o f the ant species Linepithema Humile. Tasks such as the hunt for food or the 

construction o f nests require cooperation between the ants. Given that ants do not have 

sight and are unable to communicate directly, a form o f stimulus is required to enable 

successful teamwork, namely pheromones, which act as a communication tool for the ants. 

To achieve greater understanding, we will consider the foraging activities o f the ants. If 

one has ever observed ants hunt for food, it has probably been noticed that the insects tend 

to follow the shortest path between the nest and the food source. This can be explained 

through the following diagrams.

The ants follow the shortest path possible from the nest to the food source due to high 

deposits o f pheromone.

Nest
afefch.■■ 111 I I I .  .M fe , . . g g y . .

Food

An obstacle (pebble) is placed in the centre, in an asymmetric position.

Nest
w ...4 0 +d.

Obstacle

Food
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When the ants reach the obstacle, they are unsure which path to take due to the absence of 

pheromone. Consequently, approximately equal numbers o f ants traverse each possible 

path.

Nest <mi; -m.....
^  +»'

Obstacle

Food

However, there is a quicker accumulation o f pheromone per unit time on the shorter side. 

This greater accumulation o f stimuli will bias more ants to follow the shorter path, each 

leaving further trail on the shorter side. Eventually, high concentrations o f pheromone will 

be present on the shorter side and zero pheromone on the longer side. In consequence, all 

ants will converge to the shorter side and thus, will follow the shortest path.

Nest Food

Obstacle

The above illustrates the ability o f  the ants when they work collectively.

Real ants are biased towards the levels o f  pheromone that are present on the ground. Their 

foraging activities are modelled probabilistically, with the probability o f the next decision 

dependent on pheromone, r, and desirability, ij. The latter component attempts to exploit 

greediness through providing knowledge o f the topology o f the problem. Typically, the 

distance between towns acts as a desirability function for TSP.

In AS, ants make decisions according to the random proportional rule (RPR). For each 

artificial ant in the TSP, the probability, p tj, o f selecting the next town j  to visit when at 

town i at time t is computed as the product o f r  and 77 scores, relative to the other towns j .  

Parameters a  and /? are used to balance the importance between trail and desirability. 

Selection is finalised through the roulette wheel philosophy.
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The RPR is presented below in Equation 1.1.

k ' t k Y  i f  j  e J  (i)
2 f J  k ) ( U )

^ * 0')
0 otherwise

where Jkfi) refers to the list of towns j  that can be sequenced immediately after town i 

when ant k is constructing a tour. The list Jk(i) can depend on criteria such as nearest subset 

of towns, and ordering constraints i.e. towns 3 or 5 has to come after town 2.

Dorigo et al. (1991) presented three AS algorithms, Ant Density, Ant Quantity and Ant 

Cycle, which differed according to their trail update procedure. Ant Density ants deposit a

fixed amount Q, while Ant Quantity ants deposit a measure —  (with dy reflecting the
d v

distance between towns i and j). Both methods update trail measures after the addition of 

each edge to the tour. Ant Cycle differs through the timing of pheromone updates. Ants 

replenish the trail levels on each edge (ij) after the construction of a solution through the

feedback function , where Lk refers to the length of tour k. All methods allow for 
L

pheromone evaporation, which aids the construction process. Relatively poor solution 

characteristics become less influential through time, thus reducing the chances for future 

selection. The combination of pheromone dissipation and reduced selection will encourage 

the avoidance of repeating known poor solutions. Results indicated that the Ant Cycle 

algorithm was superior, Dorigo et al. (1991), thus making the other algorithms obsolete 

and no subsequent research was performed on Ant Density and Ant Quantity.

By 1996, Ant Algorithms became known as Ant Colony Optimisation (ACO) to 

accommodate the emergence of extended and enhanced versions of the AS paradigm such 

as the MIN-MAX Ant System (MMAS) and the Ant Colony System (ACS). Many of the 

ant-based studies will be discussed in the literature review (Chapter 2).
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1.4 Solution Method

The aim of the thesis is to develop an examination timetabling solution method that can 

accommodate a mixture of hard and soft constraints. This solution method is segregated 

into two phases. The first phase exploits the ant feedback mechanism such that hard and 

soft constraints are tackled collectively. The second phase acts as a repair facility where 

further attempts are made to improve the condition of feasible timetables. During this 

subsequent phase, timetable feasibility is retained.

Initial experiments indicated that the solution method was very capable of producing 

timetables of quality that matched some benchmark methods. When the aim was to 

minimise the number of timeslots required, a basic (non-enhanced) ant-based method 

rivalled the known best on seven occasions (out of 12 data sets). The incorporation of 

algorithm based improvement strategies increased the success rate to 10 out of 12. The 

added inclusion of a hard constraint repair facility improves the rate further (11). When the 

aim was to allocate exams to a pre-specified number of timetables, the ability of the 

method was evident.

In phase two, only feasible solutions are eligible for improvement. Since it is determined 

that superior ant-based solutions require reduced repair time (thus validating the role of the 

ants), not all feasible timetables are improved (dependent on selection criteria used). Let us 

here refer to each ant-based solution eligible for improvement as a starting solution. When 

using some search process, it is shown that the neighbourhood definition around each 

starting solution does bear an influence on the ability to achieve superior final solutions. 

Also, it is demonstrated that the use of 19th century evolutionary theory aids the search 

processes of the ants through encouraging wider exploration. Other means of broadening 

ant exploration are discussed.

1.5 Plan of Thesis

In Chapter 2, a review of related literature is presented. Chapter 3 examines the basic 

algorithm and gains insight into the appropriate parameter settings and construction 

heuristic that should be used to encourage better solution quality. Due to the inherent 

computational expense of the algorithm, methods of runtime conservation are then
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discussed. This chapter lays the foundation for this thesis. Chapter 4 introduces first-order 

conflict on capacitated and uncapacitated levels. Conclusions are drawn regarding the 

success of the basic algorithm to generate feasible clash-free timetables. The benefit of 

methods of solution enhancement such as trail intensification, bias constants and hill 

climbing is discussed.

Chapter 5 presents Second-Order Conflict and discusses techniques that can be used to 

improve the Second-Order condition of a timetable. Firstly, components of the algorithm 

are modified to incorporate Second-Order characteristics. Secondly, additional factors, 

such as a bias constant and a weighted degree construction heuristic, are incorporated to 

improve quality. The investigation then concentrates on a two-trail philosophy, which 

allows information to pass between trails.

Chapter 6 demonstrates the additional benefit of an ‘add-on’ procedure. The Chapter 

considers three forms of evolution theory (Darwin, Baldwin and Lamarck) and assesses 

their influence on solution quality while utilising three add-on procedures (TSP, Local 

Search and Kempe Chains). The effectiveness of an ant based method as an examination 

scheduling tool is measured against Simulated Annealing.

Chapter 7 concludes the thesis and presents a modified version of the final algorithm to 

incorporate the well documented ‘proximity costs’ and results are compared against 

benchmark algorithms. Ideas for further research are also discussed.
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Chapter 2

Literature Review

2.1 Introduction

Chapter 1 introduced examination timetabling and ant algorithms. A review, which 

discusses the literature belonging to these fields and closely related areas, is compiled in 

this chapter. The structure of this chapter is as follows.

Firstly, the work, as presented in Costa and Hertz (1997), that forms the basis of this thesis 

is detailed.

Secondly, the salient examination timetabling literature is studied. It would be impractical 

to cover all the work performed within this area due to volume of material available but the 

more relevant papers are included. This section is divided into five main subsections. The 

first subsection covers the common features of the examination timetabling problem. The 

second discusses a variety of single and multi phase methods that have been developed. 

The third subsection details the more recent exam based literature. The fourth addresses the 

use of timetable repair facilities such as local search and TSP. The final subsection surveys 

the literature published on the application of Genetic Algorithms to the examination 

timetabling problem, due to the similarities between them and ant systems. Both are 

population based, both are based on natural systems and both include means of learning 

from one generation to another, indicating that lessons can be learnt from literature relating 

to genetic algorithms.

Thirdly, a comprehensive review of ant-based literature is presented. This section attempts 

to step chronologically through the literature. It first regards the early considerations of AS 

and then observes extensions and developments of AS, which gave birth to Ant Colony 

Optimisation (ACO). To understand how ant algorithms are applied to real-life practical 

problems an account of ant applications is then presented.

2.2 ANTCOL

Costa and Hertz (1997) presented an implementation for graph colouring called ANTCOL. 

The aim of this algorithm is to use the learning powers of the ants to improve solution
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quality of Assignment Type Problems with particular attention being paid to graph 

colouring. Since the examination timetabling problem has often been modelled as a graph 

colouring problem, it seems logical that ANTCOL could be applied as the basis of an 

examination timetabling solution method. The basic graph colouring method can be 

summarised as follows. Let G, with vertex set V and edge set E, be the graph describing the 

problem. The aim is to find a q-colouring with no adjacent vertices within the same colour 

group, with q as small as possible (hopefully equal to the chromatic number x(G) ~ the 

minimum number of colours needed to colour the graph).

ANTCOL is described as follows. Ants are segregated into cycles and the aim of each ant 

is to generate a colouring while influenced by a mixture of pheromone, desirability and 

inherent randomisation that exists within the method. At some stage k, the experiences that 

have been accumulated during the previous k- 1  stages are memorized in an n by n (where n 

refers to the number of vertices describing the problem) matrix M, which is updated at 

strategic times. For two non-adjacent vertices vr and y*, the value Mrs is the trail existing 

between vr and y* and represents the average quality of colourings obtained by allocating 

the same colour to vr and v*. For all adjacent vertices vr and y*, Mrs=0. To mimic the real- 

life parallel, trail levels are evaporated and this evaporation is represented by the parameter 

(1-p) with 0<p<l. It has been stated earlier that the use of evaporation in this analogous 

environment is to enhance the exploratory powers of the ants. Given m ants per cycle, the 

colourings generated within that time are si,...,sm and Srsci{sit ...,sm} denotes the subset of 

solutions in which vr and v* were allocated to the same colour group. Let qt be the number 

of colours used in st (l<t<m). The update of Mrs in M  is as follows in Equation 2.1.

M „ = p _ M „ + ] T -  (2 .1 )
Q t

Equation 2.2 refers to the random proportional rule (RPR) and can be seen as a balance 

between a trail and desirability factor, which are raised to bias parameters a  and p  

respectively. The role of these parameters is to stipulate the level of importance of the trail 

and desirability scores.
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At a decision stage k, an ant chooses an uncoloured vertex i to be allocated colour j  with 

probability p(k,i,j) according to the roulette wheel philosophy, Goldberg (1989).

. a = r{s[k-1 ],i, j ) a -T](s[k - 1],i, j Y
X  [r (5[  ̂-  l l  i, r )  -il(s[k -  lj, i, r f  ]
reJj

where s[k-lJ represents a partial solution

Ji is the set of colours feasible for vertex i

a ,, p  are the bias parameters for trail and visibility
[
f

The structure of the RPR does vary according to the style of construction that is used. 

These variants will be noted later.

r(s\k is the trail factor and represents the observed benefit of inserting vertex i

into colour group j  at stage k. It can be defined as follows.

!

where Vj refers to the number of vertices coloured j .  If the colour j  has some members then 

the trail factor is computed as the ratio of cumulative trails between a vertex i and members 

already assigned to colour j .  If colour j  is empty, then the trail factor takes a value of 1.

Tj(s[k represents the desirability score of vertex i at decision stage k. Costa and

Hertz (1997) suggested eight suitable means of determining i j ( s [ k - \ \ i , j ) ,  which are 

based on two traditional graph colouring heuristics -  the Recursive Largest Degree First 

(RLF), Leighton (1979), and Degree of Saturation (DSatur), Brelaz (1979). Both 

construction heuristic routines are detailed in Appendix 2.1. Simple descriptions of both 

heuristics are as follows. RLF builds the colours sequentially. A new colour is introduced

2X,
-  i f V j >  o

xeV

VJ\y| (2.3)

1 otherwise
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when no further insertions within the current colour group are possible. Vertices are 

allocated colours depending on their position within an ordered (according to degree) list 

and the non-violation of conflicts. DSatur builds the colours concurrently but only 

introduces a new colour when some vertex cannot be allocated to the current set of colours. 

Vertices are allocated their minimum feasible colour depending on their position within an 

ordered (according to the degree of saturation -  see glossary of terms, Appendix 1.1) list. 

The lists associated with both heuristics are dynamically structured and are updated after 

the colouring of each vertex. The use of these heuristics in tandem with the ants will be 

referred to as ANT-RLF and ANT-DSATUR for ease of explanation.

2.2.1 ANTCOL graph colouring construction heuristics

ANT-RLF(Z,Q)

where 2M  and 2 and 0=1, 2 and 3. The two procedures in E  regard the selection of the 

first vertex within each colour group. The three procedures in O  quantify the desirability 

(greedy philosophy) of inserting a vertex at some decision stage.

The six variants of ANT-RLF can be described in greater detail as follows.

Let W be the set of uncoloured vertices that can feasibly be coloured in the current colour 

group.

Let B be the set of uncoloured vertices that can no longer be coloured in the current group. 

Let degw(v) represent the degree of vertex v with respect to the vertices in set W.

The first vertex in each colour group is selected through:

E=  1 Random selection of v eW  

Z = 2  max{degw(v)} with veW

Remaining vertices within each colour group are chosen by:

O  = 1 degs(v) Degree of v with respect to infeasible uncoloured vertices.
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Q  = 2 I w l  - degw(v) Difference between number of feasible uncoloured vertices and the

degree of v with respect to the set of feasible uncoloured vertices.

Q  = 3 degwuB(v) Degree of v with respect to the uncoloured subgraph.

All components of Q  attempt to accommodate the larger degree vertices during the early 

stages of construction.

The probability of inserting a vertex i in colour j  at decision stage k  now becomes.

Modification to RPR has arisen since we are no longer attempting to select an unknown 

colour j  for an unknown vertex i. The anonymity of vertex i will remain but now there is 

prior knowledge of colour j  due to the sequential nature of RLF.

ANT-DS ATUR(v|/)

With y ^ l  and 2. When y/=l, a vertex, when selected, is assigned to its minimum feasible 

colour cmin. At some decision stage, the trail score of an eligible vertex for colouring is 

computed by considering the trails with the coloured members of cmin. Meanwhile, when 

y/=2 , a vertex v does not necessarily receive the colour cmin, but rather some colour c 

(probabilistically biased according to trail levels) which satisfies cmin(v)<c<q, when q 

colours have already been used and cmin(v) refers to the minimum feasible colour of vertex

v.

The two variants of DSatur can be described as follows.

Let A be the set of uncoloured vertices.

Let degA(v) be the degree of vertex v with respect to the set A.

11
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The first vertex is selected by max{degA(v)}. The expression 7j(s[k-l],i) represents the 

degree of saturation for vertex i at decision stage k. The RPR for y/=l and yp=2 are 

presented below:

When i|/=l

The probability of allocating cmin to vertex i at decision stage k is

p ( k i c  ) =  f t M b ' . c - . . ) > ( * [ * (2.5)
! ”  X  _ 1 1 ' >  min Y MAk -  ' I  i f  ]
I ieA

When \|/=2

The probability of selecting vertex i at decision stage k  is

c -6 )
ieA

After the selection of vertex /, the probability of assigning it colour j

(i • ^ r ( s [ k - \ \ i j ) a

< 2 ' 7 )

je J ,

where is the set of feasible colours for vertex i. These eight construction heuristics will 

feature heavily in Chapter 3 and consequently, will be relabelled for ease of notation.

2 Q Label

ANT-RLF

1
1 A
2 B
3 C

2
1 D
2 E
3 F

ANT-DSATUR V=1 G
\]/=2 H

Table 2.1 -  Labels used fo r  construction heuristics fo r  remainder o f  thesis.
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2.3 Examination Timetabling

The basic examination timetabling problem can be described through the following 

formulation.

E-1 E P

min 1 1 E  w *  (2-8>
,=i *=,-+] j =i

subject to

A,x9  < Bj V periody (2.9)
/=i

p

^ X y  =1 V exam i (2.10)
7=1

Xy > 0 V exam i, period j  (2.11)

where A{- = the number of students sitting exam i

Bj = the number of seats available in period j  

Cik = 1 if any students are taking both exams i and k, 0  otherwise 

xij = 1 if exam i is scheduled for periody, 0 otherwise 

E  exams and P  periods.

The objective function, Equation 2.8, minimises first-order conflict. The first constraint, 

Equation 2.9, ensures that the room constraint for period j  is not violated. The second 

constraint, Equation 2.10, ensures that every exam is scheduled.

In practice, the examination timetabling problem is subject to a greater range of 

constraints. Typically, at the University of Wales Swansea the following criteria, obtained 

from Thompson (1995), must be adhered to in order to classify the timetable as useable.

Objectives

1. To minimise second-order conflict

2. To schedule large exams early
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Constraints

3. There should be no first-order conflict

4. Time-window constraints, including pre-assignments are to be obeyed.

5. Ordering constraints are to be obeyed.

6. Certain pairs of exams are to be scheduled for the same time period.

I 7. Certain pairs of exams are not to be scheduled for the same time period.

| 8. Room constraints are to be obeyed.

| 2.3.1 Common Features
E
i

The following section details the aspects that are commonly discussed by authors with 

respect to the examination timetabling problem. Examples of how these concerns were 

addressed are given. General surveys on the examination timetabling problem can be found 

in Carter (1986) and Burke et al. (1995a).

Direct Conflict

An obvious first-order constraint is direct conflict. No student can physically sit two 

examinations at the same time. Therefore, any examination timetabling model must avoid 

such a possibility. It was Broder (1964) who first attempted to minimise the number of 

student conflicts, while, in a similar fashion, Cole (1964) presented an algorithm that 

minimised the number of time periods needed to ensure that no student had a clash. Foxley 

and Lockyer (1968) used the Cole paper as the basis of their investigation. The authors 

introduced a priority score for each exam that was determined by the number of clashes. 

The higher the priority score, the more important it is that the corresponding exam is 

allocated at an earlier stage in the timetable. The authors also introduced a second priority 

score for those exams that are known to be problematic to accommodate in the timetable. It 

was based on a scale of 1 to 15 with those exams with higher scores receiving overriding 

privileges with respect to timeslot allocation.

Mehta (1981) and Arani and Lofti (1989) consider fixed period timetables and attempt to 

produce a conflict-free schedule within this pre-determined length. The problem of 

minimising the number of periods necessary to produce clash free solutions has also been
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tackled, for example Carter et al. (1996), Caramia et al. (2000), White and Xie (2000), 

Bullnheimer et al. (1997a).

There are occasions when all the exams cannot be timetabled within a pre-specified 

number of exam periods due to direct clash violations. Penalty functions are then 

introduced with the objective of minimising the number of conflicts. Dowsland (1990) and 

Mehta (1981) consider examples of this. Mehta (1981) introduces the ‘compression of 

schedule’ method. A time frame is collapsed and the exams/courses belonging to that time 

frame are distributed among other periods. The intention is to disperse the exams 

throughout the timetable to minimise direct clashes. The timeslot to collapse is chosen as 

follows. Let w(i,j) be the number of students taking both courses i and j. If course i is 

moved from some timeslot into a new timeslot Yi then the number of conflicts is defined as

" < < . * , ) = (2 -n )

The timeslot X  to be collapsed is the one that gives the minimum value of

Y,MinMi,Yi) Y^X (2 .12)
ieX

Exam i is moved to a timeslot T/ such that Min w(i, Y,) .

This method can be utilised when the predetermined number of exam periods is not 

sufficient. The timeslot with the lowest dispersal score is removed and the scheduler 

attempts to incorporate the affected exams within the remaining timeslots.

Bullnheimer (1997a) wrote that a modified QAP, namely the Quadratic Semi Assignment 

Problem (QSAP), could be used to model the examination timetabling problem. The 

difference between the QAP and the QSAP lies with the relaxation of a constraint that 

allows the allocation of more than one exam to any timeslot. The number of timeslots is 

not fixed but is subject to a penalty score to favour shorter timetables. In order to avoid 

first-order clashes, a very high penalty score is incorporated within a penalty function, 

which will be detailed in the following section.
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Second Order Conflict

As stated above, the main objective for an examination scheduler is to eliminate first-order 

conflict. If this ambition is realised when utilising a fixed length exam period then some 

degree of freedom may exist to improve the student acceptability of the timetable. Many 

institutions aim to give students free periods between exams to aid their revision. This is 

most commonly managed by minimising the number of students who are required to sit 

two exams in a row, formally known as second-order conflict. White and Chan (1979) 

moved courses to alternate, feasible periods with fewer conflicting courses in the adjacent 

periods. Lofti and Cerveny (1991) and Desroches et al. (1978) rearranged the exam blocks 

through the TSP as a way to minimise second-order conflict. The TSP, used as a 

examination scheduling tool, will be detailed in Chapter 6.

The accommodation of higher-order conflicts has also been incorporated within 

examination scheduling solution methods. Carter et al. (1994) minimise the number of 

students that sat x  or more exams in y  successive time periods. Laporte and Desroches 

(1984) describe a penalty function of scheduling exams s time periods apart (described in 

Section 2.3.4). Mehta (1981) attempts to minimise the number of students that sit runs of 

three examinations in a row. Earlier pieces of work such as Foxley and Lockyer (1968) 

also tackled the student comfort problem. Each exam i is issued with a ‘waiting periods’ 

counter. After an exam i is inserted into the schedule, any other exam j  that has at least one 

student in common with exam i is not allowed to be allocated within the next W periods.

The method (QSAP) proposed by Bullnheimer (1997a) is centred on the student’s opinion 

of the timetable. The time between two periods, s and t, is defined as distance (dst) and the 

underlying principle is to maximise the overall study time for students. A distance matrix

d st is defined as in Equation 2.14.

- M  if  s = t 
dst = < 0 if s and t are 'back - to - back' > (2.14) 

(dst)“ otherwise
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dst draws a balance between spacing the exams for the students, the length of the

timetable and minimising the occurrence of exams in consecutive timeslots. d st is 

aggregated according to the number of students affected and incorporated within the QSAP 

formulation with the objective of maximisation.

Large costs (■-M) are incurred for first-order conflict violations. Zero costs are assigned to 

back-to-back incidences and higher-order conflicts are raised by ae[0 ,l]. The parameter a  

provides the scheduler with the ability to adjust to student comfort demands that are 

imposed by institutions (since the demands between institutions do vary). Setting a -0  

means that only back-to-back exams are regarded harmful to students, while a=l indicates 

that the impact of distance between exams per student is constant. Within these settings, a  

represents the marginal product o f study time, which decays over time. Therefore, the costs 

presented in Equation 2.14 are scaled according to rate of acceptance by the students. 

Typically, allocating exams in the same timeslot that are common to students has a very 

large negative impact on the acceptance of a timetable, while larger spaces between exams 

are more welcomed and this is represented by the reward stipulated.

Bullnheimer proposes two variants of the QSAP. The first uses a fixed cost when 

institutions are indifferent regarding what timeslots should be free while the second utilises 

a cost that grows per extra timeslot and is used to shorten the length of the exam period. 

The authors claimed that the QSAP is suitable for small examination scheduling problems 

but will require some grouping algorithm, such as graph colouring, for larger problems that 

require the sitting of numerous exams during one sitting.

Balakrishnan (1991) used RLF to allocate feasible exams to timeslots and imposed 

tolerance limits to ensure that no more than a number x  of students was were required sit 

back-to-back exams and 24-hour conflicts (number of exams that students sit during a 24- 

hour period).
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Room Constraints

The number of students allocated to sit exams per period is often limited. Such a limit 

depends on the seating capacities of an institution. Such a constraint is of first-order 

concern and has to be observed. Arani and Lofti (1989) and White and Haddad (1983) 

ensure that the number of students assigned to take exams in any one period does not 

exceed the number of seats available. The allocation of exams to rooms was performed in a 

separate phase which simplifies the problem. If it is allowed for an exam to be split 

between rooms then a feasible solution is always obtainable.

Earlier work such as Wood (1968) acknowledged that seating students for exams was 

potentially problematic. Wood (1968) sorted exams according to size of room required. 

The exams were then segregated into groups and assigned to timeslots according to the 

largest degree first rule subject to feasibility and a selection of secondary objectives.

The increase in student numbers has made examination scheduling a more constrained 

problem due to the limited increase in seating facilities in response. The added pressures of 

modularisation and the desire to reduce the lengths of exam timetables have forced 

schedulers to solve the problem differently, Burke et al. (1995a). It is more common to 

allocate exams to rooms while generating the timetable and move away from the 

commonly used multi-phase approach, e.g. Carter et al. (1994). Balakrishnan (1991) 

discussed the more constrained problem at the Freeman School of Business, where only 

one exam per room is allowed. Consequently, it was imperative to monitor space 

utilisation during timetable construction. Lofti and Cerveny (1991) meanwhile, paid 

particular attention to the minimisation of the number of exams that require separate 

rooms. They formulated the problem of assigning exams to available rooms as a non-linear 

integer program. The authors ensured that the same exam, when split, was not sat on 

different campuses. Carter et al. (1994) guaranteed that split exams were placed in adjacent 

rooms.

Pre-Assignments and Time-Windows

Institutions often require certain exams to be pre-assigned or restricted to a subset of exam 

sessions due to a variety of reasons. Chan and White (1978) acknowledged the added
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limitation. Burke et al. (1994b) stipulated that pre-assigned exams were to be allocated 

first. Balakrishnan (1991) demonstrated that the incorporation of period vertices, which 

form a clique, could be used to accommodate constraining exams. An edge between an 

exam and period vertex indicates conflict, therefore, preventing that exam from taking 

place during that period. Let there be t timeslots, the degree of a pre-assigned exam vertex 

with respect to the timeslot vertices will be t-1. Additionally, if  an exam can be allocated to 

n timeslots then the degree of that exam vertex with respect to the period vertices is t-n.

Orderings

It is common for certain exams to have to follow others. Lofti and Cervany (1991) and 

Arani and Lofti (1989) state that at SUNYAB, certain pairs of exams have to be scheduled 

for successive periods. Burke et al. (1994b) caters for successive exams in the following 

way. Let exams A and B be ordered exams, with A preceding B. Exam A is a member of 

the graph, while B is maintained elsewhere. When A is added to the solution, B is 

immediately included and construction continues.

Simultaneous Exams

There are occasions when sets of exams have to be scheduled on the same day or even in 

the same room due to certain similarities between the exams. Mehta (1981) and 

Balakrishnan (1991) combine the information of relevant exams such that the exams are 

treated as one. On the contrary, institutional or departmental rules may dictate that certain 

exams cannot be sat during the same session. Mehta (1981) caters for this scenario through 

the creation of conflicts between relevant exams.

Large Exams Early

Many institutions prefer to schedule large enrolment courses earlier in the exam schedule 

to allow lecturers extra marking time. For example, Patnaik and Hosking (1985) schedule 

large exams early at the Asian Institute of Technology and Burke et al. (1995a) at 

Nottingham University. Johnson (1990) suggests that forcing early large enrolment exams 

early will conflict with the objective of minimising second-order conflict. A weighted 

linear function is used to deal with bigger exams at earlier stages of the construction
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process. Consequently, these exams can be allocated to earlier timeslots and solutions are 

built around these large enrolment exams.

Number of Timeslots

Institutions do tend to have varying opinions about deciding on the number of timeslots 

that should be used. If an institution is flexible regarding the number of timeslots then the 

scheduler can construct a timetable that creates a balance between the number of slots and 

maximising study time for the students. However, as Bullnheimer (1997a) suggested, the 

benefit of extra study time for the student has a decaying effect. Burke et al. (1994a) and 

Bullnheimer (1997a) both suggest penalising each additional timeslot that is used above a 

pre-specified desired maximum, either through a fixed or an increasing cost.

Johnson (1990) orders the exams according to a linear function Zi=aifNi + Mt with N{ 

representing the enrolment score of course i and is the number of courses with which 

course i clashes. The weight a symbolises the relative importance of the two components. 

Courses are dealt with in descending order and allocated to feasible timeslots that increase 

the same-day (number of students that sit more than one exam in the same day) conflicts by 

the smallest measures. Solutions are improved, according to a same-day conflicts cost 

function, through an annealing (please see Appendix 6.7 for definition of Simulated 

Annealing) method. Timeslots are rearranged to minimise the number of students that sit 

back-to back exams.

2.3.2 Solution Methods

Examination timetabling has been tackled in a plethora of ways. In this section, we will 

divide the discussion into two main categories.

1. Single phase methods. The solution process is contained within one sweep of the 

algorithm.

2. Multi phase methods. The problem is divided into separate phases. Each phase has 

a different objective.
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Single Phase Methods

Single phase heuristics are most commonly greedy single pass heuristics which tackle the 

problem in one iteration. These are not sophisticated techniques and have no ability to look 

ahead. Consequently, large, unwanted costs are typically incurred towards the end of the 

construction process. However, these heuristics are relatively easy to implement and were 

used in the early stages of automated examination timetabling. One of the earliest proposed 

methods was by Broder (1964), who minimises the number of direct conflicts using a 

simple greedy algorithm. Exams are ordered according to the student clashes and allocated 

to a period that is deemed the best. The determination of ‘best’ does vary according to the 

criteria used. In the case of a tie, allocation is performed on a random basis. The algorithm 

is run according to a number of different random streams in order to encourage solution 

variability.

The most important aspect of the method proposed by Cole (1964) involves the creation of 

a clash matrix C to inform the user whether two exams have at least one candidate in 

common. A value c,y represents the clash score of exams i and j.  If exams i and j  have at 

least one student in common then c,y=7 and c,y=0 if there are no overlapping students 

between the two exams. Cole orders the exams in the same manner as Broder (1964) and 

refers to the clash matrix to deduce whether a particular allocation is viable. The work by 

Cole was furthered by Foxley and Lockyer (1968) who ordered the exams based on 

perceived levels of difficulty and importance. This led the way towards problem specific 

interaction to enhance solution quality. The user was also allowed to make manual 

adjustments.

Wood (1969) presented the similarity matrix where the cellfij) represents the similarity of 

vertices i and j .  If vertices i and j  are not connected then the similarity is equal to the 

number of neighbours common to i and j .  The colouring procedure considers pairs of 

vertices at a time. The similarity matrix is scanned to find the greatest value. If vertices i 

and j  have both been coloured then the next pair is considered. If both i and j  have not been 

inserted then colouring depends on the degree of these vertices. If both degrees are less 

than the number of colour groups then the pair is ignored and another pair is considered. 

Otherwise, i and j  are allocated to the colour group that allows feasible insertion. If not 

possible, a new colour group is started. If i has been coloured ct and j  is uncoloured then j
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is added to c, if the degree of j  is less than the number of colour groups and feasible 

insertion is viable.

Graph colouring heuristics have played instrumental roles in many examination scheduling 

procedures and provide the backbone for the ANTCOL algorithm. Carter (1986) 

summarises many graph colouring heuristics. Earlier methods involved listing the vertices 

according to degree and filling the colour groups from the top of the list. Examples are 

Welsh and Powell (1967) and Peck and Williams (1966). The former builds the colours 

concurrently and allocates vertices to the lowest feasible colour while the latter fills the 

colour groups sequentially and attempts to fill the timeslots as much as possible without 

any direct conflicts. After the completion of each colour group, allocation to the next 

colour group starts at the top of the list. These approaches were overshadowed by similar, 

but dynamic methods that updated the lists according to the uncoloured subgraph and some 

allowed backtracking facilities to improve colourings. Dunstan (1976) presented the 

Largest degree first recursive: fill from top heuristic. After the colouring of a vertex, it is 

removed from the graph. The degree of each uncoloured vertex is recalculated with respect 

to the uncoloured subgraph and the degree list is re-sorted. Matula et al. (1972) introduced 

Smallest degree last recursive with interchange which lists the vertices in descending order 

according to degree. Vertices at the bottom of the list are removed from the graph and the 

degree of each eligible vertex is recalculated and the list resorted. When all vertices have 

been coloured, the original removed vertices are then coloured. If after the construction of 

c colours, there exists an uncoloured vertex v,- that clashes with at least one member vy of 

each colour group then a vertex swap is needed, which is defined as follows. If there exists 

a colour c that contains one neighbour, vy, of v,- then recolour vy if feasible and insert v,- into 

c. Otherwise, the authors suggested a bichromatic interchange. For each colour group c, 

determine the set of neighbours Vc of vy. If the set Vc does not conflict with vertex v,- or any 

other vertices in c, then interchange set Vc with v,. Leighton (1979) and Brelaz (1979) 

detail important graph colouring heuristics. These are presented in Appendix 2.1 and 

mentioned in Section 2.2 where the ANTCOL algorithm is detailed.

A similar type of enhancement strategy was detailed in Carter (1986) and Carter et al. 

(1996). Backtracking was used to amend for ‘earlier errors’. This method attempts to 

accommodate ‘difficult’ exams through the removal of other exams from the schedule. 

These displaced exams are then re-inserted into feasible timeslots if possible. Results
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presented in Carter et al. (1996) indicate that backtracking is worthwhile when applied to 

the solutions returned through single pass heuristics. The average reduction in schedule 

length is 50%. Before backtracking is implemented, exams are inserted in the timetable 

based on some exam list pre-ordering. Five sorting criteria were compared. Some 

traditional techniques were used such as largest degree and saturation degree. However, the 

authors also used largest enrolment, random ordering and largest weighted degree (largest 

degree weighted by student enrolments). It was stated that ordering by saturation degree 

led to the best results. The results do indicate the importance of good pre-ordering of 

exams. The authors also include an initial phase, which colours the vertices belonging to 

the maximum clique. It was recognised that this procedure was beneficial to solution 

quality given that examination timetabling problems generally have large maximal cliques, 

thus increasing colouring difficulties. Carter at al. also introduced a cost function that is 

based on the penalty function detailed by Laporte and Desroches (1984). The Carter et al. 

cost function will be used in Chapter 7.

Kiaer and Yellen (1992) presented a single-pass heuristic for the university course 

timetabling problem using weighted graph colouring. The vertices represent the courses, 

while a connecting edge between two vertices indicates conflict. Whereas standard graph 

colouring would demand a colouring that allocates no connected vertices to the same 

colour group, weighted graph colouring relaxes this limitation. Each edge is weighted 

according to the criteria used e.g. number of students in common and the objective is to 

obtain a colouring that minimises the overall weighting. The algorithm colours each vertex 

in turn to the period of lowest cost, with appropriately high costs being used to ensure that 

constraints are not broken. See Dowsland (1990) for a similar study.

Cangalovic and Schreuder (1991) proposed a weighted graph colouring model for the 

timetabling problem, with vertices assigned weights based on the length of the lecture. 

Two vertices are connected by an edge if the corresponding classes have teachers or rooms 

in common. Assigning a colour to a vertex represents the hour that a class will take place 

and the vertex weight indicates how many colours (hours) need to be assigned to that 

vertex. The objective is to find an interval k-colouring that does not violate any conflicts.

Graph colouring heuristics exist due to the problem at hand being NP-Hard, however there 

are exact procedures. The use of an exact method is inappropriate for examination
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timetabling due to typical problem size. Literature detailing exact methods can be found in 

Ellis and Lepolesa (1989) and Brown (1972). Modification to Brown (1972) can be found 

in Brelaz (1979) and corrections to this can be seen in Kubale and Kusz (1983) and 

Peemoller (1983).

Multiple Phased Approaches

Multiple phase methods break the problem down into several parts and solve each 

individually. The solution(s) achieved after each stage is/are retained and the requirements 

of the next stage are incorporated and another (set of) solution(s) is/are attained.

Arani and Lotfi (1989) detailed a three-phase approach for the examination timetabling 

problem. Phase 1 assigns exams to blocks so as to minimise direct conflicts. The number 

of blocks is equal to the number of timeslots. This problem is modelled as a QAP without 

column constraints and modelled heuristically in the following way. The vertices are 

ordered according to the weighted degree (product of degree of vertex and the number of 

students taking the exam). Each exam is assigned to the first available session or the 

timeslot that creates minimum conflict, which is the objective in the first phase. The 

second phase designates which exam blocks are to be placed within the same exam day. 

The authors outlined suitable approaches based upon the number of exam slots within each 

day and the attitudes of the institutions. If the last session of one day can be considered 

adjacent to the first session of the following day then the task of minimising second-ordef 

conflict can be modelled as a TSP. However, this was not the case at the University of 

New York at Buffalo (SUNYAB) and the authors used a different approach. The problem 

was modelled as a set-covering problem and was solved using a Lagrangian Relaxation 

based method. The objective was to minimise the number of students that sit two or three 

consecutive exams in each day. The third and final phase organises the exam blocks within 

each exam day to minimise consecutive exams for students. If there are three exam periods 

within each exam day then the two exam blocks that creates the most conflict can be 

assigned to the first and last blocks of each day. Therefore, such an amendment is quite 

trivial. However, if  the number of exam periods within each day exceeds three, the 

problem can be modelled as a TSP.

Lotfi and Cervany (1991) extend the work discussed by Arani and Lotfi (1989) by 

incorporating some additional constraints and introducing a fourth phase, which assigns
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exams to rooms. Phase 1 is still modelled as a QAP but, in addition, the number of exams 

per block is limited to 100 and no lecturer can be in charge of two exams within the same 

block. Phase 2 assigns exam blocks to exam days. This task was modelled as a QAP 

without column constraints to produce an initial solution and swaps were used to enhance 

quality. Phase 3 organises the exam blocks within exam days and is modelled, as in Arani 

and Lotfi (1989), as a TSP. It is solved via the ‘next nearest city’ heuristic as described in 

Papadimitriou and Steiglitz (1982). The ‘new’ fourth phase assigns exams to rooms to 

maximise the space utilisation. A greedy heuristic is utilised, which minimises the number 

of split exams while observing university regulations at SUNYAB, which requires that a 

final exam must be held in a room with a seating capacity of at least twice the number of 

candidates.

Balakrishnan et al. (1992) minimises the number of students that are required to write 

consecutive exams on the same day through a network flow model. A node (i,t) symbolises 

the assignment of exam group i to timeslot t. The edges define the various predecessors 

and successors and the associated weight represents the impact on the second-order quality 

of the timetable. For example, an edge that connects node (i, t) and node (j, t+1) indicates 

that exam group j  immediately follows exam group i. The number of students in common 

with the two exam groups weights this edge. If two exams are scheduled for the same day 

then the weight is £but zero if crossing two days. A shortest path matrix L is constructed 

where L(i,t) represents the length of the shortest path from the source to the sink, which 

includes node (i,t). L is calculated using dynamic programming recursions. The value L(i,t) 

can be taken as a lower bound on the minimum number of back-to-back conflicts obtained 

if exam group i is allocated to timeslot t. The minimum value in any column of nodes is the 

lower bound and a tighter bound can be obtained through taking the maximum minimum 

over the columns. Any value L(i,t) that is lower than this tighter lower bound is increased 

to that value. The assignment problem can be used to assign exam groups to timeslots to 

minimise the sum of the selected paths, which acts as an upper bound. Additionally, a new 

lower bound can be derived from the average path length from the assignment problem. 

Lagrangian relaxation is then used to improve the lower bound. The relaxed problem is 

guaranteed to obtain a feasible solution and any solution value is a lower bound to the 

original problem. A subgradient technique is used to improve the Lagrangian multipliers 

and consequently, new L(i,t) values. This procedure is recursive and terminates when a
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satisfactory solution has been generated. The authors claim that this approach outperforms 

the TSP.

When institutions, such as SUNYAB, hold three exam sessions per day, students may 

experience the possibility of sitting two exams in the same day. Arani et al. (1988) attempt 

to minimise this occurrence through modelling it as a set-covering problem with additional 

side constraints. The objective function represents the sum of the students that are to sit 

two or more exams during the same day and is minimised subject to two constraints. The 

first constraint stipulates that each exam block has to be assigned to a timeslot and the 

second constraint ensures that the number of exam days equals the predetermined number 

of exam days. The form, in which the first constraint is applied, if at all, determines the 

nature of the solution method i.e. set covering or set-partitioning problem. The authors 

recognised that the relaxation of the first constraint through Lagrangian multipliers (that 

forces each block to be assigned to exactly one timeslot) tends to produce better bounds at 

each node in the branch and bound tree. Bounds can be produced efficiently by inspection. 

Two side constraints are imposed to improve the quality of the bound. The first finds the 

two cheapest arrangements. The more expensive arrangement is removed if it contains an 

exam block included in the cheapest arrangement. The cheaper arrangement is then added 

to the solution and the procedure continues. An arrangement may remove another 

arrangement from inclusion within the solution on only one occasion. Otherwise, the lower 

bound becomes invalid. The second side constraint attempts to exclude high cost 

arrangements that have at least one exam block in common with those arrangements that 

are already fixed in the solution. The initial multipliers are computed according to the dual 

variables obtained through the LP relaxation of the objective function. The multipliers are 

updated according to specified step sizes and over a maximum number of iterations. This 

relaxation method is shown to improve performance.

Other related studies include Tillet (1975) who assigned teachers to courses using integer 

programming and Carter (1989) who tackles the classroom assignment problem using 

Lagrangian Relaxation. Tripathy (1980) also used Lagrangian relaxation within a branch- 

and-bound procedure for modest size problems based on real data. Results were compared 

against the heuristic presented in Barham and Westwood (1978).
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2.3.3 Recent Developments

Over the last decade, timetabling algorithms have become even more sophisticated and 

wide ranging. This section will discuss a subset of recent literature. Thompson and 

Dowsland (1998) tackled the examination timetabling problem using a two phased 

approach. The first phase obtains a feasible solution and the second seeks to find an 

improvement with respect to secondary objectives and soft constraints while maintaining 

feasibility. The authors use simulated annealing to explore the solution space and define 

various neighbourhoods. It is demonstrated that the use of the graph-theoretic concept of 

Kempe Chains extends the neighbourhood in phase two, Morgenstem (1989a), and leads to 

superior solution quality. Thompson and Dowsland (1998) stressed that the neighbourhood 

definition for phase two was very important for overall solution quality.

Morgenstem (1989a) suggested the Kempe Chain neighbourhood for the graph colouring 

problem. The great advantage of this type of neighbourhood is the maintenance of 

feasibility, which will form a pivotal role in Chapter 6. Morgenstem used a sampling 

mechanism that is biased towards the selection of vertices from small colour classes. 

However, a Kempe chain move is as likely to increase the size of a chosen class as 

decrease it, and therefore, does not necessarily aid in the removal of small colour classes.

Thompson and Dowsland (1998) used problem specific decisions for phase one of their 

solution method as presented in Chams et al. (1987). The solution space consists of all 

partitions of vertices into k  colour classes. The neighbourhood is the set of solutions 

produced by changing the colour of one vertex. The cost function is equal to the number of 

edges between vertices in the same colour class and the starting solution is produced 

randomly.

Merlot et al. (2002) use simulated annealing with Kempe Chains within their hybrid 

algorithm for the examination timetabling problem. The authors presented a three-phase 

strategy. The first phase uses constraint programming to obtain a feasible timetable. 

Allocation of exams to timeslots is performed according to some criteria i.e. degree, 

enrolled students. If the feasible allocation of some exams is impossible within a stipulated 

set of timeslots then backtracking is used to form gaps (removal of exams) within the 

timetable to allow entry of these unallocated exams and subsequent moves will then
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attempt to re-accommodate these removed exams. The second phase improves solution 

quality with respect to secondary objectives. Simulated Annealing is used to search the 

solution space and Kempe Chains were incorporated to extend the neighbourhood. A third 

phase uses a hill climbing strategy to ensure that the final solution is a local optimum. The 

results presented are competitive with the benchmark solutions of Carter et al. (1996) and 

Caramia et al. (2000).

Caramia et al. (2000) presents a set of algorithms for the examination timetabling problem. 

The greedy scheduler allocates exams, ordered according to degree, to the lowest feasible 

timeslot, while the penalty decreaser spaces out the exams evenly while keeping the 

number of timeslots fixed. If the penalty decreaser is not successful then the penalty trader 

is used. The penalty trader trades off penalties for timeslots. This facility decides which 

exams (ordered according to benefit) should be moved to additional timeslots. Additional 

aspects such as the checkpoint scheme and bridging priorities were included to allow for 

wider exploration. The former stops the algorithm at certain steps, releases memory of 

previous searches and starts a new local search. The latter prevents searching similar areas 

of the solution space.

Burke and Petrovic (2002) indicate that the future of automated timetabling lies with the 

use of hyper-heuristic methods. The objective of a hyper-heuristic is to design an algorithm 

that will select the most appropriate heuristic to carry out a certain task based on the 

environment i.e. conditions of the search, problem to be solved. Ross et al. (1998) suggest 

that genetic algorithms could be used to select appropriate timetabling heuristics.

2.3.4 Local search and TSP

After a solution method has been used to construct a timetable, improvement techniques 

are used to enhance solution quality. Local search and TSP methods are often used in this 

area and examples of the application of these strategies are detailed here.

Local search is a neighbourhood search technique, which begins with some initial solution 

and continually improves until no further improvement is possible. Two main 

implementations of local search exist. Firstly, random descent chooses a neighbouring 

solution at random and assesses its quality with respect to some predefined cost function. If
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the cost of the newly generated solution is more attractive it becomes the current solution. 

If not, another neighbour is sampled. The search terminates if no improvement has been 

detected for a number of sampled neighbours. With Steepest Descent, the entire 

neighbourhood is evaluated and the best move is chosen. The procedure stops when no 

improvement is possible. Local search is quick and easy to implement as a search 

technique. However, the search gets trapped in the first local minimum, thus often 

returning poor solution quality.

The TSP is a traditional combinatorial optimisation problem that has often been used as a 

testbed for ant algorithms. The TSP will feature prominently in Chapter 6 and has often 

been used, as stated above, as an approach to improve the student comfort dimension of an 

examination timetable. Examples of application of the TSP in the examination timetabling 

problem are as follows. White and Chan (1979) solved the examination timetabling 

problem as follows. Initially, clash-free exam groups were constructed using a relatively 

simplistic heuristic. These exam groups were allocated to timeslots using the TSP model to 

minimise second-order conflict. Steepest Descent was then used to determine whether any 

exams could be inserted into alternative timeslots. A move would be made if second-order 

improvement is detected and no direct conflict violation would result. The authors 

implemented a further phase of improvement. The swapping of each pair of exams was 

evaluated in order to see whether any swap would improve the second-order condition of 

the timetable, while not violating direct conflict. On each occasion, the best swap was 

selected and the solution updated accordingly.

Colijn (1997) considered the impact of higher-order conflicts. The author felt that students 

who were required to sit three or four consecutive exams suffered considerably greater 

emotional stress than those sitting back-to-back exams. The higher-order problem was still 

modelled as a TSP but storage facilities become problematic. Typically, C3̂  represents 

the number of students writing exams in period i , j  and A:. To store all permutations of i , j  

and k  would require a three dimensional matrix of size t3 (let t represent the number of 

timeslots). Meanwhile, White and Haddad (1983) use White and Chan (1979) as the basis 

for their work on the day and evening courses problem. The two sets of courses are 

scheduled independently and merged once constructed. A random descent procedure leads 

to a reduction in the number of students that sit two exams in a day.
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Other examples of utilising local search and/or TSP to improve solution quality are as 

follows. Patnaik and Hosking (1985) presented a solution method to minimise the number 

of clashes in an examination timetable using APL (A Programming Language). The 

problem was modelled using graph colouring and a greedy heuristic that allocates an exam 

to the feasible colour that is least likely to be required by a neighbour. Attempts were made 

to minimise the number of direct conflicts subject to the number of timeslots being fixed. 

Local search was then used to improve solution quality. Eiselt and Laporte (1987) use 

random descent to improve the solutions that were generated by their algorithm. Work 

presented in this paper was based on Laporte and Desroches (1984). The most notable 

aspect of Laporte and Desroches (1984) resides with the use of aversion and proximity 

costs. The former is explained as follows. For each examination e and each timeslot t, the 

scheduler can quantify an aversion cost p et. The larger the aversion cost, the less attractive 

the insertion of exam e within timeslot t. Proximity costs are used to space the exams 

evenly through the timetable in order to reduce second and higher conflicts for the 

students. The program (known as HORHEC) assigns each pair of examinations with a cost 

ws, where s represents the number of timeslots separating the two exams. The program 

deals with five costs, defined as follows.

W]=16, W2 =8 , W3=4, W4 =2 , ws= 1

If a student is required to sit back-to-back exams then a penalty of 16 is incurred, two- 

timeslot difference presents a cost of 8 and so on. The overall cost function is a weighted 

sum of the aversion and proximity costs.

The proximity costs can also be found in later literature e.g. Carter et al. (1996), Caramia et 

al. (2000), and have been used as a standard cost system to compare against standard 

algorithms. This cost function will be used in conjunction with work in Chapter 7.

Burke et al. (1995c) presented a memetic algorithm that utilised local search to improve 

the solutions constructed via genetic algorithms. Additionally, Section 2.4 shows that local 

search is beneficial to the success of ant algorithms. Such evidence indicates that applying 

AS to the examination timetabling will also yield superior solution quality through local 

search or some other repair facility (see Chapter 6).
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The use of local search may not achieve the desired solution quality since searches get 

trapped in local minima. Several variants have been proposed to overcome this 

disadvantage. Multi start algorithms investigate different parts of the solution space but do 

not benefit from any gathered knowledge. More sophisticated methods such as Simulated 

Annealing, Eglese (1990), and Tabu Search, Glover (1989), have been investigated and 

gained much popularity over the last couple of decades.

2.3.5 Genetic algorithms

Recent years have seen the development of evolutionary methods as solution methods. 

Focus is naturally placed on Ant Algorithms throughout this thesis, but, here, attention is 

paid to another population based meta-heuristic, Genetic Algorithms. A formal definition 

of this approach can be found in Appendix 2.2 and a detailed discussion coupled with 

application of Genetic Algorithms can be found in Dowsland (1996).

A standard application of GA to the examination timetabling problem would be as in 

Burke et al. (1994a). Initially, a random population of feasible timetables are created using 

a variation on a graph colouring heuristic. Each timetable is then assessed according to the 

fitness criterion used e.g. the length of the timetable, linear penalty function. Timetables 

are then chosen (according to rules such as roulette, tournament, top percent etc...) to be 

the basis of the next generation, with good timetables having a greater probability of being 

selected. Burke et al. (1994a) use an advanced crossover function which selected two 

random crossover points i and j .  Exam assignments xj, ..., and xj, ...,xn are taken from 

parent 1. The remaining exams xit ...,jcj.i are allocated as close to their assignments in 

parent 2 as possible. A mutation operator is applied to randomly change the period (and 

the room), while maintaining feasibility.

There are essentially two types of representation that have been used, which vary in the 

way that the timetable is encoded. Come et al. (1993) tackle a problem at Edinburgh 

University involving around 40 exams to be scheduled into 28 time periods. The authors 

used a traditional approach (direct representation) where each gene represents the time at 

which each particular exam takes place. Uniform crossover and standard mutation produce 

good results using 300 generations and a population size of 50. However, this examination 

scheduling problem is relatively small. Paechter et al. (1994) use a place-and-seek method
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to allow the gene to not only specify when the exam is taken but search for a new period if 

the exam is causing conflict after crossover (implicit representation). If the exam cannot be 

placed, it is left unscheduled and thus, prevents infeasible timetables being part of the 

population. Burke et al. (1994a) argue that when infeasible timetables are allowed there is 

a danger of conflicting information and poor solution quality may result, however Burke et 

al. (1995d) point out that restricted search spaces may make the best timetable harder to 

obtain.

Burke et al. (1994a) did not fix the number of timeslots but did penalise each additional 

timeslot above a preferred maximum within a linear penalty function (also accommodated 

the number of back-to-backs and spare seating capacity per timeslot). If a correct balance 

of weights is used then the search would bias towards shorter timetables. Burke et al. 

(1995b) discussed a modified crossover operator that suits the constrained environment of 

the examination timetabling problem. The operator takes each period in turn and allocates 

exams to each period (for the child) that featured in the same period for both parents. Other 

exams are then allocated to periods (dependent on feasibility) according to some graph 

colouring heuristic. Unplaced exams are then considered for the next period.

Burke et al. (1995d) presented specially designed operators to suit the examination 

timetabling problem - Late (to reduce length of timetable), Spread (to aid the second-order 

condition of the timetable) and Proximity (to maintain the proximity of the exams if it is 

recognised that the distance between exams is beneficial). Combinations of these operators 

have also been proposed. However, these operators do not offer any significant additional 

constructive power, Burke and Petrovic (2002).

Ross and Come (1995) concluded that Simulated Annealing and Stochastic Hillclimbing 

outperformed the basic Genetic Algorithm model. It has been recognised that the use of 

local search is needed to repair chromosomes before the information is injected into the 

population. See Jog et al. (1989) and Radcliffe and Surry (1994) for discussions. Moscato 

and Norman (1992) first coined the term memetic algorithm to describe a hybridisation of 

an evolutionary algorithm and local search. The motivation derived from the notion of a 

meme as a unit of information that reproduces itself as people exchange ideas. The main 

difference between a meme and a gene is as follows. Before a meme is passed on to 

offspring it is adapted according to problem knowledge (Lamarckian evolution theory, see
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Chapter 6). Conversely, genes get passed on whole. Reeves (1994) suggest that the 

decision to apply local search to a solution should be a stochastic one due to the 

characteristic difference that exists between the parent and offspring solutions. Burke et al. 

(1995c) uses a combination of mutation and local search to search the solution space. The 

authors detail two forms of mutation operators, light and heavy. The former moves a few 

individual exams into alternative feasible timeslots, while the latter focuses on timeslots 

where large direct conflicts exist.

To fully evaluate the quality of a timetable that attempts to accommodate all the 

constraints, a multi-weighted fitness function is sometimes used, Come et al. (1994), 

Colomi et al. (1990). A typical example of a fitness function is presented in Burke et al. 

(1998) and Burke and Petrovic (2002).

Cost(t)=5000 *unscheduled(t)+3 *sameDay(t)+overnight(t) (2.13)
i
If
| where unscheduled(t) stores the number of exams not scheduled in a valid period,
i

sameDay(t) and overnight(t) holds the number of second-order conflicts during the same 

day or overnight respectively. In this instance, the authors stipulate that a student who 

encounters back-to-back exams during the same day is three times worse than successive 

exams which include an overnight break. Ross et al. (1994) also acknowledges that a 

weighted linear function is appropriate, however the selection of weights is crucial. 

Typically, assigning weights of 1 and 0.1 for first and second-order clashes respectively 

would suggest that the removal of eleven second-order clashes is marginally better than the 

removal of one first-order clash. The authors suggested that weights of 1 and 0.01 would 

be more reflective of the balance between the two priorities. However, Di Gaspero and 

Schaerf (2000) state that fixed weights do not work well when applying Tabu Search to the 

examination timetabling problem. To counteract this, the authors suggested using a shifting 

penalty mechanism, which determines the appropriate times during a search when a weight 

w should be scaled by some factor y.
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2.4 Ant Algorithms

The first examples of Ant Algorithms can be associated with the Ant-Density, Ant- 

Quantity and Ant-Cycle algorithms (all discussed in Chapter 1). Dorigo et al. (1991) is the 

forerunning paper on these procedures and proved that Ant-Cycle is the superior technique 

and consequently, acts as the basis for subsequent research in the field of Ant Algorithms. 

This section of the literature review charts the various Ant Algorithms and applications 

that have been researched since its introduction in 1991. The structure of this section is as 

follows. Initially, we regard the issues that concerned the researchers during the early 

stages of development e.g. parameters, synergistic role. Such concerns play pivotal roles 

now and need to be addressed here. Then we consider extensions to the algorithm that have 

been incorporated to improve the search abilities of the algorithm(s) such as elitism and 

ranking ants. To illustrate the use of ants in practice, applications of Ant Algorithms to 

combinatorial optimisation problems are reviewed. Many of the studies discussed in the 

following section refer to the TSP, which is a traditional combinatorial optimisation 

problem that has been extensively studied in literature. This, coupled with the natural 

parallelism between the routing problems and the basic analogy of ants suggests that the 

TSP is a suitable testbed for Ant Algorithms. All examples will use the TSP unless stated 

otherwise.

2.4.1 Early considerations

This subsection addresses the main areas of interest during the infancy of Ant Algorithms. 

Parameter Settings

The success of the search depends upon the choice of parameter settings. The standard 

parameters or, P  and (1-p) refer to the level of trail bias, desirability bias and evaporation 

respectively. These parameters are normally used as constants during a search and can be 

selected by the user, however White et al. (1997) do suggest that the parameters could be 

altered during a run through the use of Genetic Algorithms. With respect to the bias 

parameters, it is important to obtain a suitable balance. For example, high levels of a  

places too much emphasis on the trail and will potentially limit ant exploration and the ants
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will exhibit stagnation-like behaviour (all ants construct the same path). This is undesirable 

since no improved solution will be found after the onset of stagnation. Conversely, using 

too low a value of a  reduces the algorithm to a stochastic multigreedy algorithm and the 

impact of the ants’ feedback will be lost and no exploitation will take place. The inclusion 

of the desirability function exploits the inherent structure of a problem type. With respect 

to the TSP, the knowledge of distances between cities can be advantageous in a greedy 

manner and its inclusion is worthwhile. However, stipulating a high desirability bias 

parameter will also reduce the relative impact of trail.

Dorigo et al. (1991) investigated the impact of parameter settings on solution quality. Tests 

were performed for Ant-Density, Ant-Quantity and Ant-Cycle algorithms for a range of a, 

p  and p. It is observed that there is a significant disparity in solution quality for a,p=0 and 

a,p>0 for all algorithm types. The preferred settings are a=l and p~10 for Ant-Density, 

a=0.5,p=20 for Ant-Quantity and a=l,p=5 for Ant Cycle. With respect to pheromone 

evaporation, the preferred settings of p  are 0.999, 0.999 and 0.5 for Ant-Density, Ant- 

Quantity and Ant-Cycle respectively. The authors stated the different preference of p  could 

be attributed to the style of reward these algorithms impose. Ant-Density and Ant-Quantity 

replenish trails on a local level, which is a function of the desirability function, thereby 

emphasizing the greedy aspect of the algorithms. In contrast, the reward function of the 

Ant-Cycle technique represents the tour length of a solution (global). After a number of 

updates, the ants exploit this global information to the benefit of solution quality. However, 

the search process also benefits from some exploration. Thus, to prevent the trail becoming 

too dominant and to allow the use of desirability information, a reduced measure of p  

seems fairly intuitive. Dorigo et al. (1991) added that high values of a  encourages the 

algorithm to perform stagnantly from relatively early stages of the search and limits the 

ability to construct competitive solutions. In addition, they observed that if not enough 

importance was allocated to the trail then the algorithm could not obtain very good 

solutions either. In practice, there is not a definite rule for these parameters and are 

normally problem specific. The a  and p  settings chosen by Costa and Hertz (1997) for the 

ANTCOL algorithm are discussed in Chapter 3.
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Synergistic Effect

Dorigo et al. (1991) investigated the influence of population size on solution quality. It was 

observed that too few ants were not appropriate and optimality was reached when the 

number of ants per cycle approached the number of cities in the graph. Beyond this 

optimality point, solution quality improvements dampen and consequently, runtimes 

unnecessarily inflate. The authors also suggested that ant-starting points should not be 

limited to one city, but rather be uniformly distributed. So, if the number of ants equals the 

number of cities then one ant should start from each city.

2.4.2 Enhancements of the Ant System

In this section, modifications that have been made to AS to enhance solution quality are 

discussed.

Elitism

De Jong (1975) first applied the concept of elitism in his PhD thesis, which has proved 

pivotal in the development in GA theory. The basic idea behind elitism is to give extra 

emphasis to the best solutions found. Dorigo et al. (1991) used the concept of elitism and 

introduced elitist ants (ASeiite), which is equivalent to sending a certain number of ants over 

the best solution. The update philosophy is as follows.

(< + l)=/3.rj,(0  + Ari,+ A r j,.* (2.15)

where At,,. = V A r ,k and Ar„k = \ rkij ij ij 1^
jY  i f  ant k travels on edge (z, j )  ^  j ̂ ) 

0 otherwise

i f  edge{i,j)is part o f the best solution found 

0 otherwise

where A t,* is the increase of trail level on edge (ij)  caused by the elitist ants 
cr is the number of elitist ants 
L is the tour length of best solution found 
Q is a fixed constant
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White et al. (2003) proposed that the number of elitist ants used should be equal to (l/6)th 

of the number of cities (vertices in problem). However, the authors noted that experiments 

were only performed on smaller data sets and further testing would be required to test the 

(1/6)^ rule on larger data sets. The authors suggested that altering elitism from a global 

perspective to a local one encourages superior solution quality. Such an approach requires 

extra time for solution convergence but the search has a great probability of obtaining the 

global optimum due to a reduced chance of getting trapped in local minima during the 

early stages of the search. Bullnheimer et al. (1999) suggested that the number of elitist 

ants should equal the number of cities. Dorigo et al. (1991) indicated that a range of elitist 

ants could be used. Tests performed on a 30 city problem showed that setting the number 

of elitist ants between 2 and 16 returned the optimal solution, while using no elitist ants 

returned relatively poor solutions. Therefore, the opinions of the authors do vary and 

researchers are advised to perform their own fine-tuning.

Bullnheimer et al. (1999) noted a valid drawback of the elitist system. If solution quality 

increases and the differences between individuals decrease, then consequently the 

difference in selection probabilities also decreases and, in return, exploitation is not as 

potent as desired. If this occurs then the ants tend to discover good but sub-optimal 

solutions. The groundbreaking work presented by De Jong (1975) demonstrated that 

elitism is beneficial to overall solution quality. Elitism will play a vital role in this thesis.

Ranking Ants

Bullnheimer at al. (1999) claimed that elitism directs the search process towards 

suboptimality and consequently introduced the concept of ranking ants. ASrank allows 

further differentiation between solutions, which the authors claimed reduces the danger of 

inflated trails on wrong paths because they are part of sub-optimal solutions. The 

framework of ASrank is as follows. After m ants construct solutions, the ants are ranked 

according to fitness. The contribution of an ant to the trail level is weighted according to 

its’ rank ju, while only the best co ants contribute to the trail. The best ant is equipped with 

a weight cr and the f l h ant uses a weight (cr-ju) with co= /J.-1, therefore the minimum weight 

is set as one. The update philosophy is as follows.

r tj (t + 1) = p.Tv + Ar„ + A r /  (2.18)
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<7-1

where ArlV = Y  Ar,, and!/ Z—< !/*=1

k _ I ia  ~ i f  theuth best ant travels on edge (<i , j ) ^

0 otherwise

<7.- r̂ i f  edge (/, y) w part o f the best solution found ^  20)

0 otherwise

I where Azy is the increase of trail level on edge (i,j) caused by the elitist ants
cr is the number of elitist ants 
L is the tour length of best solution found 
p  is the ranking index

Comparative tests for basic AS, ASeiite, ASrank, SA and GA methods were presented in 

Bullnheimer et al. (1999). For ASeiite the number of elitist ants was set to the number of 

cities, while six elitist ants (for problem sizes varying from 30 cities to 132 cities) were 

used for AS^k. Five test problems were tackled and ASeiite and ASrank outperformed SA 

and GA methods on the larger data sets and were consistently better than basic AS, with 

ASrank performing marginally better than ASeiite-

Parallelisation Strategies
|

Bullnheimer et al. (1997d) extended the inherent parallelism of the AS by introducing a 

worker system. A worker can be defined as a processing unit and this approach employs 

numerous workers. Ants are sent out from each worker, solutions are constructed and the 

associated fitness evaluated and passed to the master unit, which assesses the information 

and the elite information is passed back to the workers and used in subsequent 

investigations. The main objective behind parallelisation is to achieve good quality 

solutions in reduced computational times. Bullnheimer et al. discussed synchronous and 

partially asynchronous strategies. A synchronised system dictates that workers pass 

information to the master unit after each iteration. The master unit evaluates the solutions 

and selects the best, then updates the trails appropriately and passes the information to the 

workers. Once accomplished, ants perform more explorations. An asynchronised system

and A z f  = <
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reduces the number of worker-master slave information exchanges that are performed. The 

timing of exchanges can vary, based on criteria e.g. after a specified number of local 

iterations or after the observation of an improved solution. Stutzle (1998) extends the work 

presented by Bullnheimer et al. (1997d) by considering alternative schemes of speeding up 

runs of ACO algorithms that use local search algorithms. He proposed the exploitation of 

parallelisation to experiment with different algorithmic parameter settings. The success 

(with respect to solution quality) of any meta-heuristic is heavily influenced by the 

i parameters used. Consequently, employing a system that tests a range of experimental

I values will potentially remove the concern of selecting inappropriate parameter settings.
ii
[

In a similar vein, Michel and Middendorf (1999) detailed the island model when tackling 

the Shortest Common Supersequence Problem. The island model allowed colonies to work 

independently for some time until an exchange of best solutions is performed. For each 

colony, the associated trails are updated according to the feedback function used. The 

island model is a variant of elitism as proposed by Dorigo et al. (1991) and detailed in 

Bullnheimer et al. (1999).

2.4.3 Ant Colony Optimisation (ACO)

ACO represents a family of ant-based algorithms. The development of more sophisticated 

algorithms to become suitable and adaptable to a variety of problem types required a more 

general classification. In addition, the use of local search to enhance solution quality has 

given rise to a range of hybrid methods.

Ant-Q

Gambardella and Dorigo (1995) introduced Ant-Q, which strengthens the connection 

between Reinforcement Learning, Q Learning in particular, and Ant Systems. Watkins 

(1989) introduced the method of reinforcement learning called Q Learning, which is 

defined as follows. An agent exists within a world that can be modelled as a Markov 

Decision Process. It observes discrete states and executes discrete actions. Each discrete 

time step, an agent observes a state x , takes action and observes a new state y  and receives 

reward r. Transitions are made probabilistically according to suitable distributions.
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Ant-Q differed from AS in three ways.

1. The action choice rule

The Ant System used the random proportional rule. However, Ant-Q introduced the 

pseudo-random proportional rule, which combined the AS choice rule with the pseudo­

random rule in Q-leaming. The pseudo-random proportional rule works as follows: at 

some vertex insertion decision point, there is a probability qo that a vertex is chosen 

deterministically and the random-proportional rule is used with probability (1-qo), with

2. Type of global reinforcement

The best performing ant (all ants contribute to feedback in AS) in the current iteration 

contributes to global reinforcement. The reward function is proportional to the length of 

the tour (with respect to TSP).

3. Trail reinforcement

The trail update rule is as follows:

AQ(r,s) refers to the Ant-Q trail levels present on the edge (r,s) and Jk(s) is a list of the

and the discount factor respectively. The reinforcement term AAQ is always zero except 

after each ant has completed its tour (global update). This (delayed) term is the inverse of 

the best solution, weighted by some constant. The discount factor A.Max AQ(s,z) is greater 

than zero at each local update stage (i.e. trail updates when an ant is constructing a 

solution).

Dorigo and Gambardella (1996) quantify the dimension of the solution space that is 

covered by the ants by the use of the A-branching factor of vertex r, which is defined as

qQe[0,l].

AQ(r,s) = (l-a ).A Q (r,s) + alAAQ(r,s)+A,Max (2.21)

cities to be visited from city s for the kfh ant. Parameters a  and X represent the learning step
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follows. Let AQmax(r,s) and AQmin(r,s) be the largest and smallest trail values respectively 

on all edges connecting an exiting vertex r and potential vertex s {seS, where the set S 

contains all the vertices that are obtainable after the exiting vertex r) and let 8r=AQmax(r,s)- 

AQmin(r>s)' For (/), 0 <</)<!, the 2-branching factor of vertex r is represented by the number 

of vertices exiting from r with a trail (AQ) value greater than <f).Sr+AQmin(r,s). The lower 

the 2,-branching factor, the nearer the search is to stagnation, Stiitzle and Hoos (1996), and 

consequently, the ants concentrate their efforts in smaller areas of the solution space. The 

authors claimed that a near stagnation environment is desirable since the ants’ exploit the 

high concentrates of pheromone on certain trails and this leads to the construction of 

solutions that are built around a core group of solution characteristics. Stiitzle and Hoos 

(1996) use the 2-branching factor to determine whether local search should be applied to 

ant-based solutions. Their rule was as follows. When 2 <2, local search should be used on 

all solutions since best achievable solutions are found during a near-stagnation 

environment. When 2>2, local search is applied to selected solutions.

Ant Colony System (ACS)

ACS, Dorigo and Gambardella (1997), superseded Ant-Q and differs by one key factor. 

The discount factor in equation 2.21 is replaced by a constant, defined as To, due to the 

insignificant differences in solution quality. ACS is preferred to Ant-Q due to its relative 

simplicity.

Min Max Ant System (MMAS)

Stiitzle and Hoos (1996) introduced the concept of MMAS, which can be seen as a more 

rigorous, direct and quicker search than AS. MMAS allows a population of ants to 

construct solutions but only the best ant is permitted to update the trails after each iteration 

on either a local or global basis. This system is a greedier version of AS and consequently, 

some trail levels could become exorbitant and lead the process into stagnation. To help 

prevent this unwanted occurrence, Stiitzle and Hoos imposed trail limits. An upper trail 

limit, Tmax, prevents large trails, while the lower trail limit rmin, encourages the selection of 

less commonly chosen solution characteristics. Each trail strength is limited to the interval

[ Tmin, Tmax\.
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The value zmax is defined as a geometric series and is calculated as follows:

z = —!— U  (2.22)max 1 /'Z  \  /
I - p  / w

where p  is the rate of evaporation and f(s) refers to the fitness of the global-best solution. 

The parameter zmax is modified according to the conditions of the run. At the start of the 

run experiment, zmax is set at some arbitrary high value to ensure that, after the completion 

of the first iteration, all trail levels adhere to zmax.

Stiitzle and Hoos indicated that the determination of suitable lower trail limits could be 

quantified (theoretically) through monitoring the convergence of the search. They claimed 

that a run of the MMAS has converged if  the best solution is constructed with a probability 

significantly higher than 0, which was defined as pbest• They also stated that when 

stagnation occurs, the trails associated with solution characteristics (edges in TSP for 

example) would correspond to the upper trail limit zmax and other solution components will 

be approximately equal to zmin.

The authors made a series of assumptions and simplifications to arrive at a theoretical 

value of zmin. They stated reasonably that when an ant constructs the best found solution, it 

is required to make, at each decision point, the ‘right’ decision. Each decision depends on 

the distribution of trails, since the bias towards some decisions will be stronger than others 

and also will be indirectly determined by the lower and upper trail limits. The authors 

assume though that these decisions (making the right choice) are constant across all 

decisions that the ants have to make. This probability is defined as pdec• The probability 

that an ant constructs the best solution again is Pdec(n I\  as an ant has to make n-1 decisions 

to construct a solution. By equating

= Ptea (2-23)

then pdec is defined as

P*ec="-4pZ  (2-24)

It was assumed that the ants have to choose between n/2 cities and on average among avg 

cities, which yields
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r max + aVg * mi n

After rearrangement we have

r,”“  = P*. (2.25)

= rma>̂  C ^  (2.26)avg.p

To avoid the sensitivities of parameter settings, Stiitzle and Hoos (1996) suggested the 

smoothing o f  trails, which increases the trails proportionally to the difference between Ty 

and zmax if  stagnation of the algorithm is detected.

Stiitzle and Hoos (1996) detailed the following smoothing o f trails strategies:

Proportional update: the trail intensity on each edge is increased by a proportion of the 

difference between the upper trail limit and the current trail intensity.

Lift minimum', the lower trail limit is increased by some measure and those trails below the 

updated zmin are set to zmin.

While Stiitzle and Hoos (1997) acknowledged the potential of these philosophies, it was 

observed that setting all trails to zmax achieved the best results (when stagnation is 

detected). This strategy reinitialises the feedback passed to the trails and achieves the same 

as re-starting the ant searches.

At each update phase, the iteration-best or global-best ant updates the trails with the reward 

that is proportional to the fitness of the solution. The authors observed that the use of the 

iteration-best ant would allow greater exploration, while the global-best ant will encourage 

early stagnation.

Fast Ant System (FANT)

Taillard and Gambardella (1997) proposed another ACO type algorithm for the Quadratic 

Assignment Problem (see below). FANT uses only one ant per cycle with no heuristic
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information and aims to achieve good solutions quickly. The trails are not evaporated and 

are updated as follows.

rj/(< + l) = rj,(f)+>-.Ar,y + r ’. 4 r /  (2.27)

The parameters r and r* refer to the relative importance of the current and global-best 

solution. Additionally, we set A t̂ I  or Azifb=l for each (i,j) component of the current and 

global best solutions respectively. An ant search system that uses only one ant per cycle 

will be more susceptible to stagnation due to the inherent lack of variation that exists with 

limited ant searches. Consequently, the use of Intensification and Diversification strategies 

play decisive roles in the success (with respect to solution quality). These search aids are 

managed through the dynamic variation of the weight r. Typically, after the return of a new 

global best solution, the relative weight of the current solution is set to 1 and all 

pheromone trails are reinitialised. The authors claim that this action has the effect of 

intensifying the search in the neighbourhood around the new global best solution. Also, 

when lack of exploration is detected, more weight is placed on r, which encourages greater 

exploration. To enhance solution quality further, local search is applied to all generated 

solutions.

2.4.4 Major Applications

This section will demonstrate the flexibility of Ant Algorithms through reviewing a range 

of literature of real-life practical applications.

University Course Timetabling Problem (UCTP)

The university course timetabling problem is the closest relative to the examination 

timetabling problem. It is only recently that ant-based UCTP related literature has 

appeared, indicating the infancy of research in ant-related university timetabling. A typical 

feasible timetable is one that satisfies the following hard constraints.

1. No student or lecturer can attend more than one event as the same time.

2. No room can host two lectures at the same time.

3. Seating capacities must be observed.
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Typical soft constraints are

1. Minimising the number of students that have two lectures in a row.

2. Minimising the number of students that have just one lecture in a day.

The UCTP is described graphically. The vertices in the graph represent the timeslots and 

edges joining two vertices indicate that the two courses cannot be allocated to the same 

timeslot. Socha et al. (2002) applied the MMAS to the UCTP. The authors address two 

pheromone matrix representations (used as two separate approaches). The first trail 

considers the absolute position of events. Trails are stored in events by timeslots matrix. 

The second trail regards the relative position of events and measures the value of placing 

or not placing certain events together. Trails are stored in events by events matrix, which 

mirrors the representation presented by Costa and Hertz (1997). It is the second trail that 

the authors claim that has the greater potential to succeed. The authors argue that, given a 

perfect timetable, many permutations of timetables can be obtained without affecting 

overall solution quality, thus the absolute position of events is not critical but relative. It is 

claimed that quicker learning is evident through this style of trail representation. Despite 

favouring the mechanics of the second representation, results indicate that the first type of 

representation performs significantly better.

In Socha et al. (2002), the usual MMAS conditions apply. Only the best ant contributes to 

trail level updates and no heuristic information is used in favour of local search. Trails 

[Tmin, Tmax] were limited to [0.0078, 3.3] for smaller data sets and [0.0019, 5.5] for medium 

and large data sets. Universal parameter settings are applied for the following: p=0.30, 

a=l and the number of ants is fixed at 10. There is no p  parameter due to the absence of 

heuristic information (feature of MMAS in this instance).

A further ant-related study was presented in Socha et al. (2003). This paper discusses the 

differences in application and effectiveness of MMAS and ACS. These algorithms differ in 

the manner in which heuristic information, update procedures (both global and local 

updates performed for ACS, with only global for MMAS) and local search is utilised. 

Differences in parameter settings do exist.
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For ACS, a=0.1, p=0.1 and the number of ants per iteration is set to 10. The global 

pheromone update rule is as follows.

{e,t)
(l -  p\r{e,t)+  p.------ . — r i f  (e,t) is in global best

1 + q[Globalbest) ^  ^

( l-p } r (e ,t)  otherwise

The parameter q represents the number of constraint violations with respect to the global 

best solution and g  is a scaling factor that was given a value of 1010.

The local update equation follows the form that has been described previously in this 

Chapter.

For MMAS, the global update rule is as follows.

in global best 
{ (l -  p \r(e ,t) otherwise

The same trail level restrictions (the interval [zmin, rmâ \) are imposed as in Socha et al. 

(2002)

For both MMAS and ACS, trail is stored in an events by timeslots matrix.

It is demonstrated that MMAS is better in all problem instances and does particularly well 

on large problems in comparison to established methods. It can be seen that the key factor 

in result disparity between MMAS and ACS is the use of local search. With MMAS, the 

solution that causes the fewest number of constraint violations is selected for improvement 

through local search (10,000,000 step allowance). With ACS, all ants are subjected to local 

search improvement. A two-phase strategy is used here. If the current iteration is less than 

a pre-specified value j  (set to 11) then sj (50,000) local search steps are allowed, otherwise 

S2 (20,000) steps are permitted. A lower step size S2  suggests that less timetable repair is 

required at latter stages of the ant search given that solution quality improves (until some 

dampening point) as the search matures. The authors also indicated that the gulf in solution
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quality could be narrowed through modifying ACS. Heuristic information1 is removed and 

the number of timetables that is repaired is reduced. Solution quality is improved to the 

extent that ACS competes with MMAS.

Quadratic Assignment Problem

For the QAP, we are given n locations and n facilities and each facility is required to be 

assigned to a location. There are given distances between the locations and given flows 

between the facilities. The objective is to generate a location-facility assignment in such a 

way that the sum of the product between flows and distances is minimal. Mathematically 

the problem is defined by three matrices of dimension nxn .

D=MvJ» which stores the distances between locations i and h.

F=[$t], which stores the flows between activities j  and k.

C=[cij], which stores the assignment costs of activity j  to location i.

Ahuja et al. (2000) discussed the QAP for the Campus Planning Problem and this 

application will act as an illustration of the QAP in practice. There are new facilities to be 

constructed on campus and the objective is to minimise the walking distance for staff and 

students. We suppose that there are n available sites and n facilities to locate. With respect 

to the above formulation, we define dai as the walking distance from sites i and h, while fa  

represents the number of people per week that travel between facilities j  and k. A cost cy is 

incurred if there is some on-site fixed cost of locating facility j  at site i.

The problem is formulated to accommodate a matrix X  that is dimensioned by activities 

and locations. An element xy=l indicates that activity j  is assigned to location i.

The objective function now becomes.

m n  (2-3o>
f=l j =1 *=1 k=1 :=1 j =1

Subject to the constraints

1 Heuristic information represented the number of constraint violations caused by the insertion of a course 
within the partial solution. Parameters (3 (3.0) and y (2.0) weighted the hard and soft constraints respectively.
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2 > „ = 1  Y/ = l  n (2.31)
/=1

=1 V/ = l,...,n (2.32)
y=i

^ = O o r j c ^ = l  Vi-1,...,w V/=1,...,/i (2.33)

AS was initially applied to the TSP and the QAP is a generalization of the TSP, hence the 

extension of AS to the QAP was a natural progression. Maniezzo et al. (1994) first applied 

AS to the QAP (AS-QAP). Facility i was assigned to location j  on a probabilistic basis 

biased according to the product of pheromone trail and desirability. The latter is defined as 

riij=l/eij, where ey=f.dj, which represents the product of the distance potential of location i 

and flow potential of facility j .  Two vectors d and /  are calculated in which the ith member 

represents respectively the sum of the distances between location i to all other locations 

and the sum of the flows between facility i to all other facilities. The AS-QAP uses the 

random proportional rule and for all location-facility couplings, the pheromone update rule 

is as follows:

m

*v{t + y)= /« v W  + £ AtV* (2.34)
*=1

Parameters within the above expression have been defined in Chapter 1. Aryk is the amount 

of pheromone that ant k deposits on coupling i,j and can be defined as:

a V = A  (2-35)

where J ¥k refers to the fitness value of the kfh ant solution and Q is the constant amount of 

pheromone deposited by the ant.

An improvement to the AS-QAP was presented in Maniezzo and Colomi (1999), defined 

as AS2-QAP. The key differences between these approaches are as follows.

The action choice rule is transformed into a linear function. Given a location y, ant k, the 

probability that facility i is assigned to this location is calculated through
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Pij = (2.36)

reNJ

where Nj refers to the list of facilities that can be assigned to location j.

This action rule was introduced to make the search process more efficient. The use of bias 

exponents in this function is expensive with respect to runtimes. This expense is magnified 

by the frequency of action rule usage since the majority of all solution insertions make 

reference to this probabilistic function. This topic will be investigated in greater depth in 

Chapter 3.

The desirability term in the above action rule was based on the Gilmore and Lawler bound 

(GLB). This bounding strategy evaluates the value of a completed assignment after the 

allocation of facility i to location j .  Maniezzo (1999) also used a lower bound strategy to 

evaluate the potential of an assignment when applying the Approximate Non-Deterministic 

Tree Search (ANTS) to the QAP. However, the GLB in Maniezzo (1999) was deemed 

computationally expensive and consequently, lead to the conception of a more efficient, 

but weaker lower bound, known as the LBD. It was shown that the LBD was good enough 

to guide the ants’ solution construction.

Both Maniezzo (1999) and Maniezzo and Colomi (1999) tackled the issue of stagnation. 

Trail update was based on a linear dynamic scaling function, Equation (2.37). After k 

solutions are available, a moving average zaver is computed. Each new solution zqurr is 

compared to zaver- If zcurr<zaver, the trail level of the last solution’s moves is increased, 

otherwise it is decreased.

= r „ .
\  _^_CURR LB

'AVER -L B
(2.37)

LB is a lower bound to the optimal solution cost and To is a constant. Maniezzo states that 

the use of a dynamic scaling procedure penalizes small achievement in the latest stage of
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the search, while avoiding a narrow search process after the observation of good solutions 

during the early phase of the search.

An alternative approach to the QAP, HAS-QAP (Hybrid Ant System for the QAP), was 

presented in Gambardella et al. (1999b). The pheromone trail is not used to construct 

solutions, but rather to modify random starting solutions through solution swaps. In a 

solution 77, an index r is chosen on a random basis, along with a second index s^r  and the 

elements 77r and IJS are swapped. Index s is selected deterministically with a probability qo 

or stochastically with a probability (7- qo) according to the following rule.

r .n, +7»n,

rFI; +T/U /
j * r

Each solution is further enhanced through the use of local search. Element swaps that 

generate improved fitness are accepted. HAS-QAP allows for Intensification and 

Diversification strategies. The former is managed as follows. After a new best solution is 

obtained, the intensification mechanism is activated. Each ant starts its iteration with the 

best permutation found and a search is performed in the neighbourhood where the new best 

solution is found. Meanwhile, the latter is managed as follows. If no improvement has been 

witnessed for S iterations then the pheromone trails are re-initialised.

In the spirit of ACS, only the best solution updates the trails at the end of each cycle. The 

reward function quantifies the quality of the solution obtained.

Job-Shop Scheduling (JS)

We have a set M={M], ..., Mmj  of machines, a set J={Ji, ..., Jn} of jobs and a set of 

operations 0={jdy}i (i j ) e l , where Ic[l,n]x[l,m ]. For an operation //y eO, there is a job 7, 

to which it belongs, a machine Mj on which it has to be processed and a processing time py. 

The objective is to create a schedule specifying when each task is to begin and what 

resources it will use that satisfies all the constraints while taking as little time as possible. 

The JS can be described graphically where each vertex represents the processing of a job 

by a machine. An extra vertex, labelled v0, is added to enable the specification of job
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ordering for a particular machine. The weight py is associated to each vertex, a directed 

edge represents precedence relations and undirected edges represent machine constraints.

Colomi et al. (1994) suggested that AS could be used to solve JS. All ants begin at vo and 

construct their permutations based on the balance of trail and desirability. Once a job is 

added to the ordering it is appended to a tabu list to prevent revisiting already scheduled 

jobs.

The discussion in Colomi et al. (1994) was concentrated on parameter sensitivity (Na, P 

and p) for a range of JS problem types. It was shown that setting NA to the number of jobs, 

<2=1, p=\ and p=0.7 were the optimum settings. It was stated that the best AS results were, 

on average, 10% away from the known optimums. Tests were performed on four different 

problems.

Frequency Assignment Problem (FAP)

The task in the FAP for cellular telephone networks is to allocate carrier frequencies to 

base stations in such a way that a possibly large amount of telephone traffic is supported 

and simultaneously a good quality of connections is guaranteed. This problem can be 

modelled as a generalised graph colouring problem (giving obvious parallels with 

ANTCOL). Vertices represent the connections and edges between the connection vertices 

indicate some minimal distance between the frequencies, as stored in a Channel Separation 

Matrix (CSM) for all pairwise combinations of connections. Maniezzo and Carbonaro 

(2000) applied the ANTS heuristic to the FAP. The framework of this study was based on 

the work presented by Maniezzo (1999). Please refer to the ANTS heuristic for QAP for 

methodology. The ANTS strategy was compared with DSatur, TS and SA and the results 

presented were very competitive. Of the 35 data sets used for experimentation, 23 of them 

were the best-known results. Additionally, such solutions can be achieved in relatively 

efficient runtimes.

Sequential Ordering Problem (SOP)

The main objective of the SOP is to obtain a sequence of jobs that minimises the total 

makespan time subject to precedence constraints. The SOP can be formulated as an 

Asymmetric Travelling Salesman Problem (ATSP) with the cities representing the jobs and
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the distance between the cities symbolising the waiting time between the end of one job 

and the start of another. A tour must begin at city 0 and end at city n, while visiting all the 

intermediate cities once in an order that minimises total distance. Gambardella and Dorigo 

(2000) introduced the HAS-SOP, which combines the construction methodology of ACS 

and a Local Search procedure. The trail related issues (e.g. update, reward) are the same as 

presented before. Local Search carries each ant-based solution towards the local minimum 

and achieves this by exchanging edges. A k-exchange deletes k  edges from a solution 

creating k disjointed paths that are reconnected by k new edges. The authors discussed the 

lexicographic path preserving edge exchange, which only allows feasible edge exchanges 

(subject to precedence constraints). Comparative analysis with alternative methods proved 

that HAS-SOP is very competitive. Thirteen small (=100 vertices) problems were tested 

and it was shown that HAS-SOP returns the optimal solution on nine occasions. Nine big 

(>100 vertices) problems were used for experimentation, with optimal solutions being 

found for three of them.

Shortest Common Supersequence Problem (SCS)

The official definition of the SCS is as follows. Given a finite set L of strings over an 

alphabet £, find a string of minimal length that is a supersequence of each string in L. For 

example, consider the alphabet Z={a, b, c} and the set of strings L={cbbc, abc, cba}. It can 

be seen that the shortest common supersequence is cbabc.

c b a b C

cbbc X X - X X

abc - - X X X

cba X X X _ _

Strings can represent various sequences of commands. An example is the genetic 

information of living creatures, which is stored in large DNA molecules and can be 

modelled as a string.

Michel and Middendorf (1999) introduced the AS-SCS heuristic. For the ith position in the 

string, an ant makes a decision of the symbol to allocate based on a balance between
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pheromone and desirability. AS-SCS differs from AS in the sense that it uses a lookahead 

function that evaluates the symbol that is associated with the maximum trail level in the 

succeeding state. This measure acts as the desirability 77. The Majority Merge (MM) 

heuristic is a traditional heuristic for the shortest supersequence problem. Its role within 

AS-SCS is to weight pheromone values in order to guide ants towards good solutions. AS- 

SCS with lookahead and the incorporation of the MM heuristic leads to new notation -  

j AS-SCS-LM.
f
!

Ant System for the Vehicle Routing Problem (VRP)
i

| The VRP is an extended version of the TSP. The VRP can be represented by a weighted
i
| undirected graph G=(V,E,d) where V={vo, vj, V2,...,vn}  is a set of vertices and E={vit vp
i

irf} is a set of edges. The vertex vo symbolises the depot, while the other vertices represent 

the cities/customers. A weight dy on an edge that connects v,- and vj quantifies the distance 

between the two cities. Additionally, customer v,- is equipped with a demand q( and a 

service time <$. The main objective of the VRP is to find an allocation of vehicles to routes 

while minimising costs. Additionally, each customer is only visited once and all vehicles 

begin and end at the depot. Routes are also subjected to total length and vehicle capacities.

Solutions are constructed by successively choosing cities to visit. A new tour is started 

(from the depot) when the selection of another city would lead to an infeasible solution 

(through capacity violation).

Bullnheimer et al. (1997b) recognised that the inclusion of savings and capacity utilisations 

would enhance solution quality. However, due to the computation efficiency concerns, 

these characteristics were incorporated within the desirability function, defined as the 

parametrical saving function. Let /  represent the savings and g, the capacity utilisation. 

The desirability is defined as:

Tjij — dio + doj g.dij f  / dio doj /  (2.39)

Meanwhile, Bullnheimer (1997c) reverted to the desirability function as suggested by 

Dorigo et al. (1991) and incorporated savings and capacity functions for the VRP. Savings 

measure the suitability of including two cities Vj and Vj in a tour and is quantified as 

follows:
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Mu = dio + doj-dij (2.40)

High Mu indicates that visiting vy after v,- is a good choice.

A capacity term, Ky, encourages the high utilisation of vehicles.

^  = ( 2 4 1 )

Where Qi -  total capacity used, including customer v,- 

Qj -  utilisation of customer vy 

Q -  total capacity on route

To accommodate these terms, the random proportional rule becomes:

= (2.42)

hen

where the set Q  contains all the cities that can be visited after city i. Both Bullnheimer 

(1997b) and Bullnheimer (1997c) incorporated elitism. Bullnheimer (1997c) reduced tour 

lengths further through a 2-opt Sweep Local Search algorithm (which is not detailed here).

Multiple Ant Colony System for VRP with Time Windows (MACS-VRPTW)

VRPTW differs from VRP by its objective function. VRPTW minimises the number of 

vehicles and then the total travel time. Gambardella et al. (1999a) detailed the MACS- 

VRPTW, which uses two near independent ACS based colonies, labelled ACS-VEI and 

ACS-TIME. The former (major objective) attempts to lower the number of vehicles while 

the latter minimises vehicle movements.

When a global best solution of k  vehicles is obtained through ACS-VEI, ACS-TIME 

constructs tours that use k vehicles while minimising the total time required to visit all the
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customers. Meanwhile, ACS-VEI searches for a solution that serves all customers with k-1 

vehicles. Once an improved solution is observed (i.e. one with k-1 vehicles) in ACS-VEI, 

ACS-VEI and ACS-TIME are reinitialised and two new colonies are activated that attempt 

to solve the problem with respect to the reduced number of vehicles.

At the end of each cycle, the global best solution is used to update each trail and the 

infeasible solution with the highest number of visited customers is also used to update 

ACS-VEI.

[|
| At each customer-decision stage, the desirability rjy is computed by taking into account the

| travelling time ty and the number of times a customer j  has not been inserted into solutions,

thus favouring the customers that have had less prior involvement.

A similar study was presented in Doemer et al. (2001) when an ACO approach is proposed 

for minimising total costs in a transportation network. Two trails were again used. The first 

(master) minimises fleet size, while the second (slave) minimises vehicle movement costs. 

In Gambardella et al. (1999b), only the global best ant contributes towards pheromone 

levels, whereas in Doemer et al. (2001) the top a ants contribute to each trail. Good 

solutions are injected solely from the slave into the master population. Therefore, there is 

more cooperation between the colonies in this instance in comparison to MACS-VRPTW.

i 2.4.5 Less Relevant Studies
I
■ Ant Algorithms have been applied to non-combinatorial optimisation problems. Examples

of such studies are as follows.

1. Ant Colony Optimisation for Virtual-Wavelength-Path Routing and 

Wavelength Allocation -  Varela and Sinclair (1999)

2. Distributed Stigmergetic Control for Communications Networks -  Di Caro 

and Dorigo (1998)

3. Load Balancing in Tele-Communication Networks -  Schoonderwoerd et al.

(1994)
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Therefore, it is evident that ant algorithms are becoming increasingly popular by their 

application to problem types other than combinatorial optimisation.

2.5 Conclusion

This Chapter has examined a cross section of literature that is relevant to the investigation 

within this thesis. Copious amounts of examination scheduling literature exist and some 

date back to the 1960’s. Approaches vary from basic heuristics, tailor made heuristics and 

off-the-peg techniques. However, the latter class is rare due to the different nature of the 

problem at different institutions, see Burke et al. (1995a). However, it should be stated here 

that exact methods are not viable options due to the computational difficulty (classified as 

NP-Hard) of the examination timetable.

Many pieces of examination literature propose heuristic techniques that utilise single phase 

or multi phase methods. The former tackles the problem in one sweep of the algorithm and 

does not use a lookahead facility. Consequently, large costs may be encountered towards 

the latter end of construction. The latter solves the problem in stages, with each stage 

focusing on one objective. Solution quality will potentially increase as a result, however, 

decisions made in earlier phases remain fixed for latter stages and may lead to poorer 

solutions than desired. These drawbacks led to the use of improvement strategies to 

enhance solution quality. Local search and TSP have played prominent roles here. 

Simulated Annealing is a more sophisticated variant of local search and has been applied 

successfully recently to examination scheduling. The same can be said of Tabu Search.

Recently, research has been carried out in the field of evolutionary algorithms. The last 

decade has observed the onset of genetic algorithms as a scheduling tool. It has been 

demonstrated by a series of authors that the basic form of GA’s is not appropriate, but that 

hybridisation with local search offers much potential. The need for more research is clear.

It has been shown that various applications of Ant Algorithms to real-life practices have 

been very encouraging and, in some cases, results outstrip previous benchmark solutions. It 

has been noted that this search technique has not been applied to examination scheduling 

and consequently, leaves room for research and forms the basis of this thesis. However, it
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should be noted that MMAS (and ACS to an extent) has been applied to the course 

timetabling problem.

The relevance of the graph colouring problem can be seen through the numerous 

applications to the examination timetabling problem. Section 2.2 showed that graph 

colouring was the underlying model of ANTCOL and consequently, plays a pivotal role 

within this thesis.

Vesel and Zerovnik (2000) argue that the ANTCOL algorithm is not competitive as a 

graph colouring solution method when placed in comparison with the Petford-Welsh 

algorithm, Petford and Welsh (1989). The authors claim that a simple repeated RLF for 

larger graphs is also superior to ANTCOL. However, Costa and Hertz (1997) does not 

suggest that ANTCOL is the ultimate graph colouring method since they acknowledge the 

marginal superiority of an alternative method, a GA-Steepest Descent hybrid, Costa et al.

(1995). Additionally, it should be clarified that the ANTCOL algorithm is used merely as 

the raw framework of an examination timetabling solution method. The frequent use of 

graph colouring heuristics as examination timetabling methods suggest that the ANTCOL 

variant is a wise starting point for the task at hand.

This literature survey has shown that wide-ranging solution methods have been used. The 

examination timetabling problem is still open to further research and the intention here is 

to assess the suitability of a relatively new evolutionary heuristic as a general solution 

method.
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Chapter 3

Precursory Investigation

3.1 Introduction

Chapter 1 discussed the ANTCOL algorithm as introduced by Costa and Hertz (1997). In

this chapter we gain insight into the mechanics of the procedure. The components of the

algorithm are analysed and conclusions regarding appropriate parameter settings and the

[ efficiency of the method are drawn. The results generated through this investigation will
|
| provide the basis for future work.
i
1

The structure of this chapter is as follows. Firstly, the data1 sets are introduced and then we 

examine the basic mechanics of the algorithm, which encompasses the influence of the 

various parameter settings and the benefit of using trail accumulation over the basic single 

pass heuristic. We then note the advantage of using a random proportional rule (RPR) in 

contrast to a deterministic rule. Due to the computational expense of the ant algorithm, 

some speed-saving implementations are proposed to increase the attractiveness of the 

algorithm and to allow for a greater number of experiments.

3.1.1 Data Sets

This thesis will use a group of twelve data sets, which are publicly available from the 

Internet (ftp://ftp.mie.utoronto.ca/pub/carter/testprob/). These data are used in order to 

make cross comparison possible to assess the suitability of the ant-based method. 

However, these data do not come accompanied with the side constraints, such as pre­

assigned and time-windowed exams, usually associated with the examination scheduling 

problem. To compensate, two real-life data sets are added to the ‘data pool’, namely 

Swan2000 and Swan2002, which as the dataset names suggest originate from the 

University of Wales Swansea. These data are accompanied by some side constraints and 

maximum seating capacities. All fourteen data sets are described below.
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Code Location Abbrev. Exams Students Enrolments Sessions Density
Car-s-91 Carleton

University
C91 682 16925 56877 35 12.8%

Car-f-92 Carleton
University

C92 543 18419 55522 32 13.8%

Ear-f-83 * Earl Haig 
Collegiate

EAR 189 1125 8109 24 26.7%

Hec-s-92 * Ecole des 
Hautes

HEC 80 2823 10632 18 42.0%

Kfu-s-93 King Fahd 
University

KFU 461 5349 25113 20 5.6%

Lse-f-91 London 
School of 

Economics

LSE 381 2726 10918 18 6.3%

Rye-f-92 Ryerson
University

RYE 486 11483 45051 23 7.5%

Sta-f- 83 St Andrews STA 139 611 5751 13 14.4%
Tre-s-92 * Trent

University
TRENT 261 4360 14901 23 5.8%

Uta-s-92 Toronto
University

Arts&Science

UTA 622 21266 58979 35 12.6%

Ute-s-92 Toronto
University

Engineering

UTE 184 2750 11793 10 8.5%

Yor-f-92 York Mills 
Collegiate

YOR 181 941 6034 21 28.9%

Swan2000 Swansea
University

Swan2000 313 4611 15857 20 10.33%

Swan2002 Swansea
University

Swan2002 722 6388 31094 36 4.20%

Table 3.1 -  Data set information

Individual investigations do not utilise the full data pool since this would involve large 

computational effort and consequently, attention is consistently paid to a core of three data 

sets (marked by single asterisk) to enable parameter calibration. The conclusions drawn 

from these studies are then applied universally to the other data sets within the data pool.

HEC was chosen because it is arguably the most difficult data set since it has the highest 

density (defined below) and the size of its largest clique (defined below), 17, is near to the 

number of timeslots, 18. EAR was selected given that there are many maximum cliques 

(37 of 22 vertices), thus increasing colouring difficulties. Meanwhile, TRENT has a lower 

density but has a greater number of exams and consequently, this allows insight into the 

computational efficiency of methods.

The density of a graph can be computed as follows.

total number o f  edges 1 1  ^
7 7\ x l U U  ( 3 . 1 )

n[n -1 )
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where n represents the number of vertices

A clique relates to a subset of vertices that form a complete subgraph (all pairs of vertices 

are joined by an edge) where each vertex requires a distinct colour. Therefore, the 

maximum clique is often used as a lower bound in colouring problems. However, this 

thesis will often refer to benchmark results for evaluation of proposed methods.

3.1.2 Computer Facilities

I
I The attractiveness of solution quality will depend not only on the perceived fitness of the

timetable but also on the speed of computation. There is no real outstanding benefit in 

achieving a very good solution that requires exorbitant runtimes to achieve. Computational 

effort is recorded in seconds.

Due to the volume of computations and storage required for Ant Algorithms, it is possible 

that inefficient use will lead to excessive runtimes. Therefore, much focus is placed upon 

computational effort throughout this thesis.

Work has been performed on Pentium III Mertec Systems. Due to the volume of 

experiments that have been performed, the use of more than one terminal was necessary.

Programs were initially written in Visual Basic 6 and then were converted to Salford
I
! Fortran 95 to improve runspeeds. It was observed that runspeed could be quickened further
|

through the use of the Optimiser (to maximise efficiency of object code) facility. Only 

executables were used to run the experiments. It is possible to use any machine (even if 

Fortran 95 is not installed) that has the salflibc.dll system file within the appropriate folder.

Five independent runs were performed for each experiment.

3.2 Basic Mechanics of the Algorithm

In this section, we examine the basic elements of the algorithm -  sensitivity of solution 

quality through changes in bias parameters, the number of ants per cycle and the number of 

cycles.
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3.2.1 Graph Colouring Heuristics

Initially, solutions were constructed using RLF and DSatur based graph colouring 

heuristics, as presented in Chapter 2. These results allow for future comparison and 

indicate whether the use of trail offers any significant benefit to solution quality. The 

results are tabulated below.

Av -  average numbers of colours across five experimental runs. 

Best -  minimum number of colours across five experimental runs.
I
f
i

HEC EAR TRENT
Construction

Heuristic
Av Best Av Best Av Best

A 21.74 18 32.19 27 28.34 24
B 22.63 19 33.61 28 29.92 26
C 22.02 19 32.47 28 28.71 24
D 20.31 18 28.29 25 26.16 23
E 20.87 18 29.20 26 27.41 24
F 20.45 18 28.61 25 26.50 23
G 21.38 18 30.94 27 27.84 24
H 22.40 19 33.37 28 30.57 26

Table 3.2 -  Statistics describing Single Pass Heuristics

There is a distinctive trend with regards to the performance of the construction heuristics. 

Ranking the average scores shows that the construction heuristics perform similarly across 

the data sets (Appendix 3.1). Ranks 1-6 correspond to heuristics D, F, E, G, A and C 

respectively, with rank 1 relating to the lowest average score. Meanwhile, heuristic H is 

ranked 7 for HEC, 7 for EAR and 8 for TRENT and heuristic B is ranked 8, 8 and 7. Note 

that construction heuristics D, E and F occupy the top 3 ranks. These heuristics are 

Recursive Largest Degree First with the first vertex in each colour chosen according to the 

greatest degree in the uncoloured subgraph, while random selection of the first vertex does 

not fare so kindly.

3.2.2 Influence of Bias Parameters

From this juncture, trail is accumulated to represent the suitability of constructions. As 

detailed in Chapter 1, the ants construct solutions and the reward function evaluates the 

fitness of the solution and this acts as a feedback mechanism. Within each colour, the trail 

between each pairwise exam set is updated according to the level of additional trail 

(feedback) offered. At a vertex-colour decision stage, an ant makes an allocation biased to
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the level of trail between the feasible uncoloured vertex and coloured vertices within a 

colour group. The RPR is a balance between trail and desirability and bias is represented 

through parameters a  and p  respectively. In this section, we examine the sensitivity of 

solution quality as the bias parameters are varied.

The following discussion uses results that are presented in Appendix 3.2. Increasing p  does 

improve solution quality, but not to the extent that increasing a  offers. The row labelled 

a=0 presents the results when no trail is accumulated and only the construction heuristic is 

used to form solutions. As a  increases, there is a notable increase in solution quality. For 

a=0.5 and a=l, solutions are superior to a=0, however the marked improvement comes 

with a>2 (please refer to Table 3.3). For a=3 and a=4 solution improvement stagnates. 

Since larger exponents require increased computational effort (as detailed in Section 3.7) 

the selection of a -2  appears to be a sensible choice of this bias parameter. Generally, 

solution quality does improve as p  increases, however, such improvements are fairly 

minimal for higher settings of a  and consequently, this suggests that setting p= l should 

prove adequate.

Av Best
a = 0 a=0.5 a = l a=2 o=3 a=4 a= 0 a=0.5 a = l o=2 o=3 a= 4

A 21.74 21.21 20.42 18.14 18.18 18.10 18 18 17 17 17 17
B 22.63 22.29 21.72 19.25 18.81 19.13 19 19 18 17 17 17
C 22.02 21.22 20.66 18.09 18.19 18.10 19 18 18 17 17 17
D 20.31 20.13 20.18 19.06 19.81 19.80 18 17 18 18 18 18

w E 20.87 20.81 20.77 21.75 21.58 21.59 18 18 18 18 18 19
s F 20.45 20.24 20.07 20.02 19.06 19.62 18 18 17 18 18 18

G 21.88 20.93 20.25 18.21 18.38 18.17 18 18 17 17 17 17
H 22.40 22.14 21.79 21.17 20.92 20.80 19 19 18 17 18 18

21.54 21.12 20.73 19.46 19.37 19.41 - - - - - -

A 32.19 31.41 29.81 25.27 25.34 25.00 27 26 25 23 23 23
B 33.61 33.12 32.03 27.22 26.24 26.20 28 28 28 24 24 23
C 32.47 31.71 30.13 24.81 24.19 24.97 28 26 25 23 23 23
D 28.29 27.58 26.12 25.50 25.28 25.08 25 24 24 24 24 24

5 E 29.20 28.74 27.84 25.50 25.28 25.08 26 25 25 24 24 24
w F 28.61 27.91 26.31 25.51 25.69 26.24 25 25 24 24 24 24

G 30.94 29.80 27.96 24.88 24.46 24.13 27 25 24 23 23 23
H 33.37 33.02 32.52 31.12 30.61 30.48 28 28 28 26 26 25

31.09 30.41 29.09 26.23 25.89 25.90 - - - - - -

A 28.34 27.94 27.24 22.62 22.49 22.49 24 24 24 20 21 21
B 29.92 29.71 29.18 24.15 22.81 23.28 26 25 25 21 20 21
C 28.71 28.34 27.65 22.53 22.31 22.14 24 24 24 20 20 20

H D 26.16 25.74 24.40 23.70 23.30 23.48 23 23 21 22 22 22
E 27.41 27.26 26.64 24.76 24.91 25.45 24 24 23 23 23 23

H F 26.50 26.13 24.97 23.19 23.73 23.84 23 23 21 22 22 22
G 27.84 27.16 25.97 22.03 21.65 21.70 24 23 22 20 20 20
H 30.57 30.30 30.16 29.39 28.64 28.38 26 27 26 25 24 24

28.18 27.82 27.03 24.05 23.73 23.85 - - - - - -

Table 3 .3 -  Summary statistics across a  when P=1 fo r  each construction heuristic
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It is noted that the optimal solution for EAR (22 colours) was not obtained when 0=1, but 

as 0  gets bigger the number o f optimal solutions does not increase significantly. To gain 

greater insight into the performance o f the algorithm across the construction heuristics, a 

sequence o f barcharts have been constructed that display the proportion o f feasible 

solutions o f  all timetables (HEC - 18 colours or less, EAR -  24 colours or less and 

TRENT -  23 colours or less) produced for each data set for each experimental value o f  a.

100 T

20  -

Heuristic

Figure 3.1 -  Proportion o f  Feasible Solutions across a  when f3 -  I fo r  HEC

100
80

60

40

20

0 1
D E

Heuristic

E 0.5 n  1 □  2 □  3 n  4

Figure 3.2 -  Proportion o f  Feasible Solutions across a  when (3 = 1  fo r  EAR
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100
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v  40
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Heuristic

0 O . 5 i 1 d 2 q 3 | 4

Figure 3.3 -  Proportion o f  Feasible Solutions across a  when (3 = 1  fo r  TRENT

Figures 3.1-3.3 consider p = l  for a range o f  a ., while the Figures relating to other settings 

o f p  can be viewed in Appendix 3.3 (Figures A3.1-A3.9). Firstly, heuristic C  appears to be 

the forerunner o f the construction heuristics (this is shown further in Appendix 3.1). Each 

barchart shows that using the ant algorithm while utilising construction heuristic C  

generates a high number o f  feasible solutions. We also note that the construction o f 

solutions with the number o f  colours equal to the chromatic number is also possible 

through this heuristic. Heuristics A, C  and G are the superior heuristics and outstrip D, E  

and F  that were the leading single pass heuristics (when no trail was used). Heuristics D -F  

do produce some feasible solutions, but these construction heuristics encourage stagnation 

and this factor alone could have a detrimental effect on future investigations due to lack o f 

ant exploration. It appears that randomising the selection o f  the first vertex allocated to a 

colour enhances the search process o f the ants. Evidence supporting this can be found in 

Section 3.3. Heuristics D  and F  perform well for the EAR data set. Heuristic E  struggles, 

while H  returns the poorest solutions o f  all construction procedures.

Within each graph, each construction type has been broken down into values o f a. As 

hinted before, the Figures suggest that a=2,3,4  produce superior solutions but encourage 

results o f  similar quality and suggest that no great advantage is gained in increasing the 

measure o f a. Increasing p  does appear to enhance solution quality. Heightening p  places 

greater influence on the desirability scores and compensates, to some extent, when low a  is 

used but as a  is increased the additional benefit on solution quality for higher p  is minimal. 

Figures A3.10-A3.12 (Appendix 3.3) illustrate the Average Colours versus Cycle 

relationships for each o f the data sets. These Figures depict the quicker improvement in
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solution quality as a  increases. Generally, achieving good quality solutions as early as 

possible is beneficial but this may encourage stagnation, which in the context of this 

chapter is desirable but when multiple objectives are considered stagnation becomes less 

favourable due to lack of exploration.

Figures 3.4-3.6 illustrate the average number of colours required to colour the graph over 

each cycle for each construction heuristic (with a=2, J3=l). Each Figure represents one 

data set (HEC, EAR and TRENT). The three Figures depict common trends. Solution 

quality improves as the search matures. Consequently, this indicates that the ants deposit 

feedback that is used positively by other ants later in the search. Generally, the average 

colours versus cycle graphs exhibit learning, sometimes intense, during the infancy of the 

search. The improvement in solution quality dampens as the search matures. This varies 

between the construction heuristics but it is safe to conclude that improvement stops 

relatively early in the full allocation of 100 cycles. As stated previously, heuristics D-F 

choose the first vertex deterministically in each new colour and this contributes to the 

superior starting solutions. However, these heuristics are hindered by the lack of additional 

variation and the Figures show the early experience of stagnation while using these 

heuristics. Meanwhile, the heuristics with superior finishing solutions begin with relatively 

poor starting solutions.

Unless stated otherwise, a=2, fi=l and construction heuristic C will be used in future 

studies. A comparison with the results published in Costa and Hertz (1997) can be found in 

Section 3.4.

3.2.3 Influence of Evaporation Factor

The evaporation factor p  allows the user to gain a balance between exploration and 

exploitation. The factor p  represents a rate of learning experienced by the ants. The higher 

the learning/retention rate the greater amount of trail that is made available to future ants as 

they construct solutions. Very small measures of p  indicate that decisions are biased only 

to the recently generated solutions. The results tabulated in Table 3.4 represent varying p  

with a=2 and p= l under the construction environment of heuristic C. Further results can 

be obtained in Appendix 3.4.
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HEC EAR TRENT
p Av Best Av Best Av Best

0.01 17.77 17 24.60 23 22.29 20
0.1 18.08 17 24.96 23 22.38 20
0.3 18.30 17 25.13 23 22.19 20
0.5 18.05 17 25.23 23 22.29 20
0.7 18.45 17 25.37 23 22.98 20
0.9 18.65 17 26.07 22 24.39 20

0.99 19.37 17 27.88 23 26.42 22
Table 3.4 — Summary statistics across p  with construction heuristic C

Generally, p s [ 0 .0 1 ,  0 .7 ]  is fairly robust since solution quality is consistent. Relatively 

good average solutions appear to be achievable with little memory. A common theme is 

the deterioration of average solution quality for higher p . Despite this, the optimum 

solution of 22 colours was obtained for the EAR data set when p = 0 .9 .  However, this was 

a ‘one-off observation and not a general occurrence. Costa and Hertz suggested that p - 0 . 5  

is suitable. This parameter setting may not produce the best solution but results are very 

robust within [0 .0 1 , 0 .7 ]  and, consequently, it does seem counterproductive to argue for 

p ^ 0 .5 .

3.2.4 Efficiency of Method

In this section we will gain insight into the speed of convergence to the optimum or best- 

run solution during each run for each of HEC, EAR and TRENT. Table 3.5 shows the best- 

found solution and the cycle when it was first found. The results have been obtained under 

the run conditions of construction heuristic C, N a = N c = 1 0 0 , a = 2 ,  p = l  and p = 0 .5 .

HEC EAR TRENT
Run Best First Found Best First Found Best First Found

1 17 10th cycle 23 14th cycle 21 18th cycle
2 17 72nd 23 14th 21 20th
3 18 5to 24 10th 20 22nd
4 17 8th 23 13th 21 20th
5 17 8th 23 9th 20 20th

Table 3 .5 -  Statistics describing the timing o f  discovery o f  run-best solution

With the exception of one experimental run (HEC -  Run 2), the best run solutions were 

discovered early. For HEC, four experimental runs returned the optimal solution with three 

of these runs achieving this mark within ten cycles. For EAR, the algorithm failed to 

generate the known optimal solution of 22 colours. However, four runs managed to colour 

the graph in 23 colours, which is still lower than the timeslot threshold of 24 colours.
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Again, these run-best solutions were found early on but the additional search time allowed 

did not result in improving these solutions. For TRENT, the optimal solution was observed 

during two of the runs, while the other three runs noted run-bests of one colour above the 

optimal (21 colours). The run-best solutions were generally found around the 20th cycle 

mark. So, the bulk of the search was obsolete and consequently, computationally 

inefficient.

To conclude, the run-best is not always the optimal solution but advancements that are 

made (as detailed in Chapter 4) to the ant algorithm will prove that the optimal solution is 

achievable. This is desirable since better solution quality (at this stage) will potentially 

allow greater flexibility when considering additional and alternative objectives e.g. second- 

order conflict (see Chapter 5). It has been demonstrated that the run-bests were generally 

found during the infancy of the search and this suggests that Nc could be lowered. 

However, Nc=100 will still be used during future studies since solution method 

enhancements will require the use of extra runtime.

3.2.5 Ants per Cycle N a

When solving the TSP, Dorigo et al. (1991) for example, suggested that the number of ants 

per iteration should be set near to the number of cities to achieve optimal results while 

Gambardella et al. (1999a) set the number of ants equal to the number of vehicles for the 

Vehicle Routing Problem. Such comments would suggest that, in general, the number of 

ants should be approximated near to the size of the problem, in our case the number of 

exams (vertices). The number of ants per cycle, NA, influences both solution quality and 

the computational expense of the algorithm. The computational effort will vary linearly 

within each cycle according to the volume of ants chosen. In this section, we will detail the 

influence of Na through Table 3.6 (Appendix 3.5 provides a more detailed tabulation of 

solution according to Na and by construction heuristic).
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HEC (vertices=80) EAR (vertices=189) TRENT (vertices=261)

Na Av Best Opt
Runs

Time

(Secs)

Av Best Opt
Runs

Time

(Secs)

Av Best Opt
Runs

Time

(Secs)

I 18.91 18 - 1.05 27.93 25 - 3.02 25.25 22 - 6.32

5 18.59 18 - 5.26 26.55 23 - 15.08 23.52 21 - 31.60

10 18.29 17 4 10.53 25.79 23 - 30.16 23.26 20 1 63.21

25 18.13 17 4 26.31 25.01 23 - 75.40 22.36 20 2 158.02

50 18.38 17 4 52.63 25.16 23 - 150.80 23.01 20 2 316.05

75 17.99 17 4 78.94 24.85 23 - 226.20 22.52 20 3 474.07

100 18.23 17 4 105.25 25.27 23 - 301.60 22.67 20 3 632.09

150 18.01 17 5 157.88 24.67 22 1 452.40 22.49 20 3 948.14

200 18.13 17 5 210.50 24.82 22 1 603.20 22.68 20 3 1264.18

Table 3 .6 -  Statistics describing the influence o f  the Number ofAnts p er  Cycle

With the HEC and TRENT data sets, optimal solutions were discovered with relative ease. 

In both instances, setting NA=10 achieves the desired results while a larger cycle 

population is needed for EAR to obtain the optimal solution of 22 colours. The Opt Runs 

columns represent the number of independent runs that observed at least one optimal 

solution. This statistic is used to represent a measure of efficiency of the algorithm. If a 

scheduler wished to apply the ANTCOL algorithm to a problem instance then they may 

desire to perform only one run and the Opt Runs statistic indicates the likelihood of 

observing the optimal solution in any particular run. For all data sets, we note that as Na 

increases Opt Runs also increases. However, the influence of Na on average solution 

quality does dampen as NA gets larger (as illustrated by the Av statistics). Despite this, 

observing that larger NA does not have a detrimental effect on solution quality, it could be 

argued that a bigger Na will increase the probability of obtaining at least one feasible 

timetable per run. With HEC, a greater number of runs observe the optimal and this can be 

associated to the size of the data set. More successful runs are observed with TRENT than 

EAR, but this can be attributed to the greater difficulty of the EAR data set as represented 

by the higher density. As stated earlier, Dorigo et al. (1991) suggested that putting the 

number of ants equal to the number of cities in the TSP is a sensible guideline. Similarly, 

Costa and Hertz (1997) used cycles of 100 ants for graphs with 100 vertices. However, 

Table 3.6 indicates that relatively good quality solutions can be achieved via Na that is 

smaller than the size of the problem, thus reducing computational effort. However, it 

appears plausible that more difficult data sets will require extra ants per cycle to enhance 

the overall exploratory power of the ants. The difficult EAR data set is an example of this.
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It is demonstrated that the relationship between Na and runtime is linear. For example, 

N a ~ 1 0 0  requires twice the effort that N a = 5 0  does.

Unfortunately, there is no exact rule that can be applied to deducing NA. The choice of this 

parameter depends on the size of the problem and the difficulty of solving the problem. If 

the scheduler wishes to perform a series of experiments then a little trial and error will 

point towards a sensible setting of Na, which will allow for faster computation.

3.2.5.1 Na-Nc Trade-Off

In this section, we note the benefit of cyclic trail updates on solution quality. For each 

Na e[1, 5, 10, 25, 50, 75, 100, 150, 200] and each Nc e[10, 25, 50, 75, 100] the average 

and minimum number of colours needed to colour the HEC, EAR and TRENT graphs are 

presented. This cross tabulation will highlight two points, firstly, the importance of Nc on 

solution quality and secondly, if the overall number of ants is limited then how many 

cycles should be used to accommodate these ants.

Av Best
Na/Nc 10 25 50 75 100 10 25 50 75 100

1 20.32 19.48 18.86 18.65 18.51 18 18 17 17 17
5 20.38 19.50 19.02 18.84 18.74 18 18 18 18 17
10 20.23 19.94 18.92 18.68 18.52 18 18 17 17 17

r j 25 20.18 19.25 18.75 18.54 18.45 18 17 17 17 17
H 50 19.98 19.14 18.64 18.46 18.37 17 17 17 17 17
93 75 19.77 18.91 18.52 18.38 18.31 17 17 17 17 17

100 19.80 18.91 18.44 18.29 18.21 17 17 17 17 17
150 19.98 19.22 18.75 18.61 18.54 17 17 17 17 17
200 19.98 19.28 18.90 18.78 18.72 17 17 17 17 17

1 29.82 27.82 26.56 25.98 25.67 27 25 23 23 23
5 28.50 26.36 25.30 24.97 24.79 24 23 23 23 23
10 28.23 26.10 25.13 24.81 24.64 24 23 23 23 23
25 27.79 25.93 25.13 24.85 24.72 24 23 23 23 23

%w 50 27.61 25.84 25.05 24.77 24.61 23 23 23 23 23
75 27.47 25.80 24.90 24.55 24.37 24 23 23 23 23

100 27.45 25.86 25.18 24.96 24.85 23 23 23 23 23
150 27.44 25.84 25.19 24.95 24.82 23 23 23 23 23
200 27.56 25.94 25.15 24.87 24.73 23 23 23 23 23

1 26.96 25.31 24.32 23.89 23.61 24 22 21 20 20
5 26.48 24.65 23.60 23.20 22.98 23 21 21 21 21
10 26.12 24.25 22.95 22.42 22.11 22 21 20 20 20

H 25 25.82 23.89 22.72 22.31 22.11 22 20 20 20 20
50 25.64 23.65 22.47 22.06 21.84 21 20 20 20 20

H 75 25.45 23.62 22.51 22.13 21.93 21 20 20 20 20
100 25.45 23.56 22.55 22.20 22.03 21 20 20 20 20
150 25.44 23.51 22.45 22.09 21.92 21 20 20 20 20
200 25.57 23.73 22.43 21.97 21.73 22 20 20 20 20

Table 3.7 -  Cross Tabulation o f  NA against Nc
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Table 3.7 indicates that higher Nc improves solution quality but as Nc increases the 

improvement dampens. This represents the early intense learning phase by the ants and 

then the inability to improve solution quality during the later stages of the search. These 

observations have been noted before.

If the number of ants is limited and distributed over different Nc, Table 3.7 indicates that 

higher Nc is preferable. Let us consider three examples, which are bolded. Firstly, for 

HEC, if the total number of ants is levied at 1000 ants, it is noted that allocating 100 ants 

across 10 cycles returns an average solution of 19.80 colours while, placing 10 ants over 

100 cycles needs an average of 18.52 colours. Secondly, for EAR, if the number of ants is 

set at 750, allocating 75 ants in 10 cycles requires an average o f 27.47 colours while the 

reverse, produces an average of 24.81 colours. Finally, for TRENT, setting NA to 50 and 

Nc to 25 needs an average 23.65 colours while setting Na to 25 and Nc to 50 gives an 

improved average of 22.72 colours. These examples represent a common trend and 

highlight the importance of trail replenishment updates, which when performed frequently 

enough directs a more focussed search process and encourages better solution quality. 

Greater cyclic trail replenishment updates will incur greater computational effort but the 

increase is not significant and should not deter a user from increasing Nc if the total 

number of ants is fixed. It is concluded here that for a fixed number of ants, it is more 

efficient to allow for a greater number of trail updates i.e. allow for more Nc. However, 

limitations to this rule of thumb do exist.

3.3 Stochastic Importance

At a vertex-colour decision point, each feasible vertex is labelled with a probability that 

represents the potential benefit of inserting a vertex into the solution at that stage. These 

probabilities are generated through the RPR and decisions are made according to the well- 

known ‘roulette wheel’ philosophy, see Goldberg (1989) for discussion. Thus, ant 

algorithms, to some extent, hold a stochastic basis and do not simply select 

deterministically the ‘perceived best’ vertex insertion at a vertex-colour decision point. 

This deterministic score would represent the largest combined score of trail and desirability 

(biased to powers a  and j3 respectively). In this section, we note the improved solution 

quality that a stochastic approach offers, which is illustrated in the Figures 3.7-3.9.
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Figure 3 .7 -  Deterministic against stochastic comparison fo r  HEC
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Figure 3 .8 -  Deterministic against stochastic comparison fo r  EAR
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Figure 3.9 -  Deterministic against stochastic comparison fo r  TRENT

Figures 3 .7 -3 .9  depict sim ilar traits. Both procedures show  evidence o f  learning during the 

infancy o f  the searches. Improvement dampens relatively early in the explorations. The  

determ inistic approach generates superior starting solutions, w hich is to be expected since, 

as the first cyc le  in any search does not u tilise any trail information, all constructions are
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made according to the desirability factor alone. A deterministic method will intuitively 

create better solutions at the start of the search due to the more controlled environment it 

offers i.e. biasing selection towards desirability scores. Randomisation encourages wider 

exploration and explains the better final solutions that are constructed. The stochastic 

method does allow for a greater combination of constructed timetables and encourages the 

avoidance of stagnation that is commonplace with deterministic approaches. 

Randomisation plays a pivotal role in the success of method since it ensures wider 

exploration, which is proven to be key when observing additional objectives such as 

second-order conflict (Chapter 5).

3.4 Comparison with Costa and Hertz (1997)

Since the ANTCOL variant (first) presented in Costa and Hertz (1997) forms the basis of 

not only the work in this chapter but the entire thesis, it is sensible to draw comparisons 

with the results stated in the above mentioned paper. Initial experiments were performed 

on 20 graphs of 100 vertices with a density of 50%. The authors showed that setting a=2 

and 2<p<4 for RLF based tests derived superior results. However, the impact of p  was not 

too dissimilar to that witnessed through experiments in this chapter, although it has been 

suggested here that P=1 is more suitable due to the advantage of reduced runtimes. 

Meanwhile, it was claimed in Costa and Hertz (1997) that a=l was more favourable for 

applications of DSatur. The authors also noted that better solutions were obtainable for 

RLF heuristics D, E  and F  than A, B and C for lower a  but the reverse applies for higher a. 

Results suggest that the effectiveness of the construction heuristics is similar to what has 

been experienced here. Construction heuristic C is again the forerunner but there is a 

greater similarity between A and B than witnessed in our trials. With respect to DSatur, G 

outperforms H  with G again competing with the better RLF heuristics (those that insert 

first vertex in a colour on a random basis). It was also demonstrated that setting p=0.5 is 

the more appropriate setting but it was observed that this parameter does not influence the 

performance of ANTCOL, which corresponds to our observations. The authors noted that 

solution quality improves as the number of ants per cycle approaches the size of the graph. 

However, if  Na goes above the size of the graph, the effect on solution quality is minimal, 

but not detrimental. But, the authors did quote that large NA could lead to slower search 

convergence when applying DSatur based construction heuristics. During our experiments, 

this has been noted but on a smaller scale. Finally, similar conclusions have been drawn
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regarding the importance of randomness during construction. The authors demonstrated 

that significantly poorer results are achieved through deterministic selection of vertices at 

each vertex-colour decision stage. In summary, many of the conclusions reached here 

correspond to those presented in Costa and Hertz (1997).

It should be noted here that the graphs used within this thesis are different in nature to 

those presented in Costa and Hertz (1997) and therefore, may lead to any dissimilar 

conclusions that have been presented. Costa and Hertz used random graphs whereas the 

graphs used here are of examination timetabling origin and will undoubtedly contain larger 

maximal cliques, thus increasing difficulty, Carter et al. (1994).

3.5 Mixing Construction Heuristics

From previous investigations, it was proven that the capabilities (when used in conjunction 

with trail) of the eight construction heuristics were similar when compared across the data 

sets. Construction heuristics A , C and G were consistently the better achievers across the 

data sets, while E and H  were consistently poor. However, it has been demonstrated that 

heuristics D, E and F are the superior single pass heuristics (see Appendix 3.1). The 

reasoning is associated with the superior starting solutions that these heuristics generate. 

This section attempts to take advantage of this characteristic. During each cycle, two pre­

selected heuristics are made available for use. If there are Na ants per cycle and if n ants 

use one construction heuristic during a cycle then (Na-ti) ants use an alternative heuristic.

Heuristic C has been observed the forerunner when used with trail and will initially be 

used along with the other superior heuristics A and G. We will find that these amalgams do 

not offer any significant extra constructive power for EAR and TRENT and consequently, 

heuristic C is used along with the more efficient single pass construction heuristics, D and 

F. The FG amalgam was also attempted due to the promising characteristics that these 

heuristics exhibit when used independently with TRENT. However, these results will not 

be presented here, as the results were not superior to those experienced with CG.

Each cycle is divided into two parts with C a ants utilising heuristic C, while A a , G a , D a or 

Fa ants using heuristics A, G, D or F  respectively. The amount of ants allocated to each
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heuristic type is varied and we will observe the sensitivity in solution quality as a result of 

this variation.

Construction H euristic Amalgams
CA CD CF CG

CA - Av Best Av Best Av Best Av Best
0 100 18.14 17 19.06 17 20.02 18 18.21 17
10 90 18.21 17 19.24 17 18.88 17 18.38 17

rj 30 70 18.21 17 18.49 17 18.65 17 18.29 17
U 50 50 17.99 17 18.54 17 18.38 17 18.31 17
X 70 30 18.32 17 18.25 17 18.21 17 18.30 17

90 10 18.15 17 17.97 17 18.00 17 18.16 17
100 0 18.09 17 18.09 17 18.09 17 18.09 17
0 100 25.27 23 25.50 24 25.51 24 24.85 23
10 90 25.21 23 25.30 24 25.17 23 24.84 23
30 70 24.80 23 24.28 23 25.13 24 24.62 23

<w
50 50 25.11 23 24.76 23 24.35 23 24.81 23
70 30 25.08 23 24.25 22 24.04 22 24.79 22
90 10 24.85 23 23.94 22 24.10 22 25.02 23
100 0 24.81 23 24.81 23 24.81 23 24.81 23

0 100 22.62 20 23.70 22 23.19 22 22.03 20
10 90 22.52 20 22.98 21 22.67 21 21.89 20

H 30 70 22.55 20 22.67 21 23.03 21 21.99 20

1
H

50 50 22.52 20 22.58 21 22.16 21 21.89 20
70 30 22.49 20 22.00 20 22.25 20 22.30 20
90 10 22.64 20 22.32 20 22.33 20 22.53 20
100 0 22.53 20 22.53 20 22.53 20 22.53 20

Table 3 .8 -  Statistics describing efficiency o f selected construction heuristic amalgams

The above set of results show that there is some benefit from using two construction 

heuristics, however any improvements are minor. In particular, construction heuristic 

amalgams CD and CF offer additional solution building power when Ca = 7 0  and 90  and 

notably, the optimal solution of 22  colours  is observed with the EAR data set. The 

amalgam CG generates better solution quality for TRENT. The best result for each set is 

bolded. Figures 3.10-3.12 illustrate these best results for the average versus cycle 

relationship for each data set.
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Figure 3.11 -  Average solution quality fo r  heuristics C, D and amalgam CD fo r  EAR
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Figure 3.12 -A verage  solution quality with heuristics C, G and amalgam CG fo r  TRENT

The lines labelled CD in Figures 3 .10  and 3.11 indicate that more focused learning occurs 

during the infancy o f  the search process and this can be associated with the involvem ent o f  

the more greedy H euristic D. D ue to the majority o f  the ants utilising H euristic C the 

superior constructive pow er still remains and is enhanced due to the m ore determ inistic  

nature o f  Heuristic D. W ith regards to overall final average solution, the CD amalgam does 

not enhance solution quality w ith HEC but an im provem ent is certainly notable with the
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EAR data set, which suggests that colouring harder graphs may benefit from such a 

heuristic collaboration. With respect to TRENT, it was discovered previously that the best 

heuristic was G and the superior RLF heuristic that deterministically selects the first vertex 

in each colour group was F. Based on the success of the CD amalgam one would expect 

similar success when using FG for TRENT. However, the results indicated otherwise and 

the best results belonged to the CG amalgam. To generalise this approach, it seems wise to 

suggest the use of the CD amalgam due to its consistency over all data sets. The use of 

three heuristics within cycles has been attempted but did not offer any additional 

constructive power.

3.6 Trail Potency

Here we examine the extent that trail levels influence the selection procedure of ants 

during the search. A measure of quality (Equation 3.2) was introduced in order to quantify 

the impact of good solutions and the effect that good or poor solutions have upon the 

direction of the search. Such a measure was considered for each pair of vertices vr and y, 

over each cycle. Given m ants per cycle, the colourings generated within that time are 

S],...,sm and Srs c:{si,...,sm} denotes the subset of solutions in which vr and v5 were 

allocated to the same colour group. Let qt be the number of colours used in st (1 <t<m) and 

worst represents the solution of poorest quality observed during an experimental run. A 

random non-adjacent pairwise set (vr,vs) from the HEC data set is used to illustrate the 

relationship between the two factors of interest.

Qualityrs = {worst - q t) (3.2)

Each score (Quality) represents the sum of the difference between the worst observed 

colouring and each observed colouring returned by individual ants -  the higher the 

measure, the more potent the relationship.

Analysis is performed that examines the impact of quality for a pair of vertices in the nth 

cycle and the response in the number of ants that allocate the same colour to that pair of 

vertices during the n+ lth cycle. It was felt that a good relationship during one cycle should 

bias the ants during the following cycle.
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Figure 3.13 demonstrates the quality o f a pair o f vertices in the nth cycle does determine, to 

a certain extent, the volume o f ants that consider the same pair o f vertices in the n + l,h 

cycle. The positive relationship suggests that an increase in quality during the nth cycle 

encourages more ants to include the same pair o f vertices within the same colour group. 

The relationship appears to be fairly linear and does not exhibit a step function appearance 

that would indicate that different rates o f impact upon the number o f ants across intervals 

o f quality.
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Figure 3.13 -  Number o f  Ants versus Quality

The correlation coefficient associated with the information displayed in Figure 3.13 was 

calculated as 0.65, which is significant at the 5% level. This confirms that a positive linear 

relationship exists between quality in the n h cycle and the number o f ants selecting a 

pairwise set in the (n+ l)lh cycle and importantly indicates that the trail is biasing the 

decisions o f the ants.

3.7 Speed Related Issues

This section is inspired by the computational expense that is associated with the ant 

algorithm, which immediately reduces the attractiveness o f the procedure. Here, we 

attempt to speed up the process, which will enable the completion o f more experiments and 

will make a real-life examination timetabling solution method more attractive to users. The 

greatest computational time consumer is the calculation o f exponents and hence, great 

focus is placed on this.

The manner in which solution quality is represented now changes. Given that examination 

timetabling deals with feasib le  timetables, it was felt justified to record the volume o f
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feasible solutions achieved rather than average number of colours. A feasible solution 

(timetable) is one that allocates all the vertices (exams) within a maximum number of 

colours (timeslots) without violating any hard constraints (e.g. direct conflict). Within this 

section, the terms Feasible and Time will frequently be used and can be defined as follows.

Feasible -  Average number of feasible timetables across five experimental runs.

Time -  Average runtime across five experimental runs.

3.7.1 Revising the RPR

Experiments are only performed on the trail factor component in the RPR with the 

desirability factor acting as a constant i.e. raised to the power of 1. Firstly, it is proven that 

representing the value x a as a complete multiplicative term x.x.x..x reduces computational 

effort with no sacrifice to solution quality. The runtimes (in seconds) are presented below 

for both the full multiplicative and exponent based RPR expressions when a=2 and a=3.

a=2 a=3
M ultiplicative Exponent M ultiplicative Exponent

H EC 90.13 105.25 175.49 223.82
EAR 301.60 413.75 504.25 757.94

T R E N T 475.75 632.09 898.23 1291.80
Table 3.9 -  Runtimes o f multiplicative and exponent based RPR expressions

It has been shown that significant computational effort can be saved by expressing terms 

multiplicatively rather than in exponent form.

Additionally, expensive computational effort is required to accommodate the decimal 

places associated with the trail scores and consequently, the effort required to process each 

cycle magnifies as the cycle count increases. In the early stages of a run, allowing the trail 

factors to be defined to a high degree of accuracy is critical due to the small differences in 

trail levels. Therefore, losing accuracy at this stage will have a detrimental influence on the 

overall success of the run and the algorithm reduces to a basic single pass heuristic. 

However, as the run matures the trail levels between options become wider and some 

accuracy can be lost without influencing solution quality greatly. Here, we investigate the 

benefit of reducing the degree of accuracy associated with the trail factor scores. An initial 

‘run-in’ period will be allowed without accuracy manipulation and then the trail factors 

will be reduced to integers. The RPR is represented on a multiplicative basis due to the
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above discussion. With HEC, runtime is reduced to 44.50 seconds with no decline in 

solution quality. Runs with the TRENT data set do not suffer on a quality basis and the 

required runtime reduces from 475.75 to 366.52 seconds. However, solution quality is lost 

with the harder EAR data set. The proportion of feasible solutions drops from 76.22 to 

32.13 timetables per cycle but, positively, the average runtime reduce from 301.60 to 

235.14 seconds.

This section illustrates what basic modifications can made be to the raw program set-up in 

order to reduce runtimes, but these tests have only been performed on Fortran 95 and 

assumptions cannot be made to alternative programming languages. In conclusion, it is 

demonstrated that using multiplicative terms rather than power exponents reduces 

computational effort. Additionally, it appears that simplifying the RPR that uses integer 

trail values is not suitable for the harder data set - EAR.

3.7.2 Linear Interpolation

Linear interpolation (LI) is a method that can be used for predicting an unknown value if 

you know any two particular values and assume the rate of change between these values is 

constant. LI will be used to estimate the trail component (scaled by the number of coloured 

vertices in colour under construction) of the RPR when raised to the bias parameter a. This 

trail component will be denoted by x. Continuous score x  lies in the interval [0, xmaJ  with 

Xmax determined through preliminary investigation. This range is divided into sub-intervals i 

labelled by inti[x] with start point xs and endpoint xe. These interval extreme points are 

applied to f(x), with f(x)=xa and Vxe [0,xmaxJ and stored. The interpolated f(x) for x 

between the extremities is calculated as follows:

/ ( * )  = / ( inti k D +  { /(in t([xeD - / ( in t ,[x,D }* (x - in t ,[x, ]) (3.3)

After some preliminary investigation, it was decided that xs and xe will be fixed one unit 

apart. Reducing the length of interval [xs, xe]  requires inefficient runtimes, while increasing 

the length sacrifices solution quality. The values off(x) are read-in from a data file and act 

as a look-up table and are extracted when required and f(x) is then interpolated 

accordingly. To illustrate the benefit of this approach, a range of values of a  were
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compared and the results are presented in Table 3.10. These results are compared directly 

against runs of the algorithm where no time saving implements are incorporated.

Time Feasible
a Full LI Full LI

HEC 2 105.25 65.10 83.58 84.91
3 223.82 62.34 93.68 71.15

EAR 2 413.75 339.64 81.32 78.91
3 757.94 344.28 85.24 88.52

TRENT 2 632.09 542.42 86.59 80.83
3 1291.80 544.15 94.42 91.70

Table 3 .1 0 -  Feasibility and runtimes for Full and LI methods

The reduction in runtimes is significant with a very encouraging trade-off with solution 

quality i.e. the feasible timetables for Full and LI are not significantly different. The LI 

method appears to be attractive with the only drawback being the determination of the 

range of * values, which can be obtained with minimal effort. The use of LI for higher a  

should be treated with caution given that interpolation is performed within bigger intervals 

off(x). Typically, when a=2 and x=1.5 we are required to interpolate between f ( l ) - l  and 

f(2)=4, however when a=5 and x=1.5 it is necessary to interpolate between f(l)= l and 

f(2)=32. Therefore, a greater scope for inaccuracies exists.

3.7.3 Candidate Lists

Dorigo et al. (1991) suggested the use of a candidate list structure when the Ant-Cycle 

algorithm was applied to the TSP. When at city xh the choice of the next city xt+i to visit is 

restricted to a group of n cities, which belong to the candidate list. These n cities have the 

smallest desirability scores i.e. the smallest distance between city xt and potential city xt+h 

A candidate list implementation is also used in conjunction with the Tabu Search (TS) 

meta-heuristic, Glover (1989). This tabu list is used to prevent repeating a recently 

constructed solution. This approach attempts to avoid stagnation and consequently, 

encourage search diversity.

Here, a candidate list structure is used to reduce the number of probabilities that are 

generated at a vertex-colour decision point. Each probability is computed through the RPR, 

which has components (trail and desirability) that are raised to bias powers, and the use of 

power exponents adds to the computational expense of Ant Algorithms. Since all vertex- 

colour assignments, except for the allocation of the first vertex in each colour group, makes
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reference to the RPR, the additional computational expense is large and consequently, 

introducing means to reduce the use of RPR seems appropriate.

A series of lists with different attributes have been employed and we assess the trade-off 

between solution quality and computational saving. Candidate list membership will depend 

on the following attributes:

• Trail -  at each vertex-colour decision point the vertices with the higher trail factor 

scores are selected.

• Desirability -  at each vertex-colour decision point the vertices with the higher 

desirability factor scores are selected.

• Random -  at each vertex-colour decision point no preference to any bias is given.

Lists of varying length and attribute combinations are investigated and the results are 

presented below.

HEC EAR TRENT
Candidate List Feasible Time Feasible Time Feasible Time

No List 83.60 105.25 76.22 413.75 83.61 632.09
10 Trail 70.14 82.59 32.94 324.57 87.73 542.84
20 Trail 87.24 97.60 35.70 365.89 87.46 574.44
30 Trail 86.95 100.35 32.03 360.07 90.14 603.33

10 Desirability 88.98 70.40 88.26 349.49 96.02 516.94
20 Desirability 91.71 120.72 87.74 432.33 93.55 632.70
30 Desirability 89.09 137.51 86.85 446.86 93.20 679.44

10 Trail/10 
Desirability

69.83 108.56 84.77 427.32 92.32 647.45

10 Tra/10 
Vis/10 Ran

89.17 121.87 84.03 455.03 91.77 630.47

10 Random 39.22 48.24 0.57 263.11 10.16 458.21
20 Random 58.23 53.72 55.09 290.46 69.67 495.38
30 Random 70.13 63.19 68.03 321.58 82.61 542.86

Table 3.11 -Feasibility and Runtimes fo r  Full and Candidate list constitutions

Some candidate list constitutions are computationally more efficient. Candidate lists with 

members included only due to trail score are consistently faster than running the algorithm 

without a candidate list. Trail based constitutions generate very good solution quality for 

HEC and TRENT data sets but these constitutions struggle for the EAR data set. Candidate 

lists made purely of desirability-biased members improve solution quality with a list size 

of 10 reducing runtimes. The amalgam constitutions [10 Trail/10 Desirability, 10 Trail/10 

Desirability/10 Random] are more than satisfactory with regards to solution quality but the
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additional sorting that is required to identify members encourages runtimes greater than the 

no list scenario. Lists consisting of Random entrants reduce computational effort 

drastically but results do not compare with criteria-based list membership. As an example 

of the effectiveness of criteria-based candidate lists let us compare two list types - 1 0  

Desirability and 30 Random. With HEC, 10 Desirability generates an average of 88.98 

feasible solutions in 70.40 seconds while 30 Random needs an average run completion of 

63.19 seconds and produces 70.13 timetables per 100 ants. With EAR, 10 Desirability 

constructs 88.26 feasible solutions (over 12 more than no list) in a time of 349.49 seconds, 

while 30 Random requires a slightly less time o f 321.58 seconds to produce an inferior 

68.03 feasible solutions. The most striking result is associated with TRENT. 10 

Desirability produces a significant 96.02 feasible solutions in an efficient 516.94 seconds 

while, 30 Random requires more runtime (542.86 seconds) to generate a lower number of 

feasible solutions (82.61).

In conclusion, it can be seen that criteria-based candidate lists often encourage better 

solutions and, in some cases, require less computational effort to do so. From the candidate 

list constitutions evaluated, it seems that limiting ants at each decision vertex-colour 

allocation point to 10 Desirability-biased vertices, if 10 feasible vertices are available, is 

the superior option.

A hybrid time conservation method has also been investigated. LI (when a=2) along with 

the preferred candidate list with respect to quality-time trade-off, 10 Desirability, are used 

in one approach. Table 3.12 presents Time and Feasible information comparing the hybrid 

and candidate list methods.

Time Feasible
Hybrid 10 Desirability Hybrid 10 Desirability

HEC 53.38 70.40 86.93 88.98
EAR 298.78 349.49 88.95 88.26

TRENT 483.70 516.94 95.86 96.02
Table 3.12 -  Time and Feasible statistics fo r  Hybrid and 10 Desirability time conservation methods.

The results in Table 3.12 indicate that additional time efficiency can derive from 

estimating the trail factor scores of 10 Desirability vertices via LI. In addition, the 

differences between the Feasible rates between methods are insignificant, thus 

emphasizing the suitability of this application.
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3.7.4 Limiting Trail Levels

High trail concentrates reduce the exploratory abilities of the ants due to the obvious bias 

towards certain components. Thus, small sections of the solution space may be 

investigated. This is commonplace as the search matures. Stutzle and Hoos (1997) 

attempted to overcome limited ant foraging by stipulating maximum trail levels (rmajc) in 

the MMAS for the TSP. The authors also imposed a minimum trail level (rwl-„) in order to 

encourage the selection of less popular edges within constructions, thus allowing for a 

wider search of the solution space. While it is always beneficial to produce diverse solution 

types, the use of a maximum trail level will be used purely for the purpose of reducing 

computational effort here. The storage of large trail scores is expensive and placing an 

upper bound on pheromone levels will have an effect of improving runtimes. However, we 

are also concerned in the trade-off with solution quality. Experiments have been performed 

for a small range of zmax to gain an insight of the influence. The same rmax have been used 

for each of the data sets as trail levels are fairly standard across data sets (see Figure 5.28 

for trail levels).

m̂ax
No Limit 10 50 100

Time Feasible Time Feasible Time Feasible Time Feasible
HEC 105.25 83.60 45.68 1.17 70.83 47.61 77.67 77.93
EAR 413.75 76.22 244.17 0.58 282.02 40.93 266.27 61.73

TRENT 632.09 83.61 475.05 2.79 478.63 66.68 455.27 83.07
Table 3 .1 3 -  Feasibility and Runtimes fo r fu ll and various w

The results indicate that the handling of larger trail levels slows the run speed of the 

algorithm. The aim is to impose a limit rmax that quickens runtimes but does not 

significantly reduce solution quality. It is observed that setting rmax =100 allows for a very 

good trade-off between the factors of interest. For example, with TRENT, imposing a 

setting of Tmax=100 reduces the runtime from 632.09 (with no limit) to 455.27 seconds 

while maintaining very similar feasibility levels. However, lower rmax returns relatively 

poor solution quality. Typically, rmax=10 could not be used due to low feasibility despite 

relatively low runtimes. To gain perspective of the levels of highest trail, refer to Figure 

5.28.
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3.8 Conclusion

The aim of this chapter was to examine the influence of various components of the 

ANTCOL variant and to establish an appropriate environment as the basis for future 

experimentation. Studies within this chapter provide insight of the capabilities of the 

algorithm and the appropriate conditions that lead to superior search processes. It has been 

demonstrated that the trail bias parameter a  has a significant influence on the capabilities 

of the algorithm. The desirability bias parameter ft is pivotal for lower a  but becomes less 

significant as a  increases. The other main parameter of the ANTCOL variant, p  (which 

dissipates trail levels proportionately), has little effect on solution quality. Another great 

determinant on search potency is the type of construction heuristic that is used. It is 

demonstrated that heuristic C is the most suitable due to its superior performance when 

considering all test data sets. Additionally, some extra constructive power can derive from 

mixing construction heuristics within a cycle. It is shown that using heuristics C and D 

within cycles generates the best results and superior performance can be attributed to the 

exploitation of the deterministic nature of D. However, it is demonstrated that limited use 

of this heuristic enhances solution quality the greatest. Under arguably the most 

appropriate settings a=2, (3=1 and p=0.5 and construction C (or Amalgam CD), optimal 

or near-optimal solutions can be achieved at relatively early stages in the search. 

Additionally, the Best solutions achieved are always better than the stipulated number of 

timeslots, which allows for greater flexibility when additional objectives are introduced, 

such as second-order conflict (Chapter 5).

A further study was performed to examine the effects of exploitation and exploration. 

Complete exploitation uses the vertex insertion probabilities in a deterministic manner and 

at each vertex-colour decision stage, allocation corresponds to the largest combined trail 

and desirability factor value. Meanwhile, exploration is achieved through stochastic 

implementation and vertex-colour decisions are obtained with reference to the roulette 

wheel. It was demonstrated that exploration enhances search capabilities.

To make ANTCOL a more attractive solution method, runtime conservation was 

considered. Some authors, Maniezzo (1999) for example, suggested that the RPR could be 

transformed into an additive linear function and thus, remove the computational expense of
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power exponents. A similar philosophy was attempted here but the search lost its potency 

and poor solution quality resulted, which can be attributed to the difficulty of the 

examination timetabling problem. Therefore, alternative time saving implementations were 

tackled. Firstly, it has been noted that simply writing commands in different forms lead to 

quicker runtimes. Secondly, a series of values, a fixed length apart, were raised to a power, 

stored and read-in as a data file. This file acted as a look-up table. At each vertex-colour 

decision stage, each respective trail/desirability factor value was noted and the relevant 

interval in the look-up was pinpointed. Linear interpolation was then used to estimate that 

factor value when raised to some power. It was shown that the trade-off between time and 

solution quality was favourable. Thirdly, the choice of the next vertex was restricted to a 

subset of vertices to reduce the number of computations required of the RPR. This subset 

was defined as a candidate list and vertices were deemed eligible via some pre-defined 

criteria. It was observed that small candidate lists of vertices with better desirability scores 

not only reduced runtime but also improved solution quality. Fourthly, the storage of large 

trails slows the construction process and this is particularly noticeable as the search 

matures (handling larger trail scores). Imposing a suitable trail level maximum Tmax not 

only maintains solution quality but also reduces computational effort.

It has been demonstrated that the ant system is proving successful at finding feasible 

solutions and are comparable to other benchmark results. For example, our Best results are 

better than Merlot et al. (2002) -  18 for HEC, 24 for EAR and 21 for TRENT, and 

comparable with Carter et al. (1996) and Caramia et al. (2000) -  17 for HEC, 22 for EAR 

and 20 for TRENT.
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Chapter 4

First-Order Conflict and Enhancement Techniques

4.1 Introduction

Chapter 3 provided insight into the capabilities of the ANTCOL algorithm and showed that 

the algorithm has the potential to be the basis of a good scheduling method. The biggest 

drawback lies with the computational effort that is needed and it has been demonstrated 

that savings can be made through amendments to the random proportional rule (RPR). In 

this chapter, alterations are made to the ANTCOL algorithm to enable application to the 

examination-scheduling problem and consequently, we redefine the name of the algorithm 

to AS-EXAM. However, firstly, ANTCOL is considered as an examination solution 

method. The objective of this study, referred to as the Non-Determined Timeslot Case, is to 

minimise the number of timeslots that are used. Secondly, extensions are made to the graph 

to allow the accommodation of additional constraints such as time-windowed and pre­

assigned exams. In this study, the Determined Timeslot Case, timeslots are fixed according 

to the number pre-specified by the relevant institutions (refer to Table 3.1). In both cases, 

methods of solution enhancement are incorporated. Additionally, computational effort is 

discussed to determine the efficiency of an approach. Further data sets, in addition to HEC, 

EAR and TRENT, are used to illustrate the suitability of methods.

4.2 First-Order conflict

The main concern of any examination scheduler is to avoid the possibility of any student 

being required to sit two exams during the same sitting. This is known as the first-order 

conflict problem. To use a constructed timetable practically, there must be no such 

occurrence. Otherwise, the timetable is deemed as infeasible. Chapter 2 gave examples of 

literature, Broder (1964) and Mehta (1981) typically, that discussed techniques to tackle 

the first-order problem.

The first-order problem is an example of a hard constraint (those that cannot be violated). 

Another form of such a constraint is seating (room) capacity. A timetable is also classified 

infeasible if, for at least one timeslot, the number of students scheduled to sit exams 

exceeds the maximum seating capacity per timeslot for that institution. This binding
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constraint is also detailed in Chapter 2. Examples of literature that discuss this topic are 

Lofti and Cerveny (1991) and Carter et al. (1994).

4.3 Non-Determined Timeslot Case

In some instances, although rare, institutions do not specify the number of timeslots that 

the exams need to be allocated to. Instead, minimising the number of timeslots may be the 

desired objective and is considered here. The aim of this section is to generate clash free 

timetables while minimising the number of timeslots. The basic algorithm (as described in 

Chapter 3) is used in addition to some modified versions of the basic algorithm that 

incorporate enhancement techniques -  these are the standardisation of the reward function, 

elitism and hill climbing. These enhancement strategies are discussed below and related 

numerical results are presented in section 4.3.4.

4.3.1 Reward function

The role of the reward function is to quantify the perceived fitness of a constructed 

solution. This function passes quality information back to the trail and given that levels are 

instrumental in representing solution quality, the reward function itself is critical to the 

success of the method. Costa and Hertz (1997) suggested a reward function that is the

inverse of the number of colours (nq) required to colour the graph — . Chapter 3 showed
nq

that the ANTCOL algorithm performed well as a solution method. However, a drawback 

does exist. The range of nq scores varies between data sets. Therefore, it is harder to 

differentiate between an optimal and a near-optimal solution for some data sets. For 

example, let us consider two data sets, HEC and EAR. With HEC, an optimal solution is 

17 colours, leading to a reward of 1/17, while a near-optimal solution could have 18 

colours and a reward of 1/18. Here, the reward disparity is 0.00328. However, with EAR, 

an optimal solution is 22 colours, leading to a reward of 1/22, while a near-optimal 

solution could have 23 colours and a reward of 1/23. Here, the reward disparity is 0.00198. 

Taking this discussion one stage further, let us consider a problem with an optimal of 40 

colours and a near optimal of 41 colours, the reward disparity is 0.00061. Therefore, the 

higher the number of colours required, the smaller the disparity between solutions, which 

may lead towards poorer solution quality due to the reduced ability to differentiate between 

solutions. This evidence suggests the need for reward standardisation between data sets.
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Additionally, work presented later in this chapter will discuss the Determined Timeslot 

Case where examination timetabling problems have a prespecified number of timeslots. 

Therefore, alternative reward functions are needed to overcome the disadvantage of only 

colouring to the first timeslot colours. This will be discussed in further detail in Section 

4.4.

Two proposed alternative reward functions are:

* where remain refers to the number of vertices that cannot be allocated
(remain + 1)

to the first timeslot colours. In the Non-Determined Timeslot Case, extra timeslots 

are created if necessary. However, since the number of timeslots is fixed in the 

Determined Timeslot Case unallocated exams are scheduled in the period which 

leads to the smallest number of direct clashes. Otherwise, such exams would not be 

subject to any trail increase, which is counter-intuitive, as unallocated exams 

should have a higher trail increase, therefore, making them more likely to be 

scheduled early. This is addressed later in the chapter.

   r . This reward function interprets the difference between the number
(nq -  best + 1)

of colours required to colour the graph and the best-known solution, which for 

HEC, EAR and TRENT is equal to the size of the maximum clique.

Experiments have been performed that utilise the two proposed reward functions and will 

be made in direct comparison to the original reward function.

HEC EAR TRENT
Label Reward

Function
Best Av Best Av Best Av

R l 1

nq

17 18.09 23 24.81 20 22.53

R2 1

(remain +1)

17 17.92 23 24.66 20 21.79

R3 1

(nq -  best + 1)

17 17.93 23 24.74 20 21.89

Table 4.1 -  Average and best solution quality fo r  proposed reward functions R l, R2 and R3.
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The results confirm the intuition behind the investigation. Using a standardised reward 

function does generate better results than the raw counterpart, R l. Figures 4.1-4.3 illustrate 

the average solution quality versus time (cycle) relationship for the three proposed reward 

functions R l, R2 and R3 for HEC, EAR and TRENT respectively. These Figures indicate 

that while the finishing solutions o f all reward functions for HEC and EAR are similar 

across all reward functions, the performances o f R2 and R3 during the infancy o f  the 

searches are superior, especially for HEC. Meanwhile, the overall solution capabilities o f 

R2 and R3 are considerably superior for the TRENT data set. It is observed that the 

performance o f R2 and R3 are similar across all data sets with R2 generating marginally 

better results.
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Figure 4.1 -  Average Colours versus Cycle Plots fo r  Proposed Reward Functions Rl, R2 and R3 fo r  HEC.
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Figure 4.2 -A verage Colours versus Cycle Plots fo r  Proposed Reward Functions R l, R2 and R3 fo r  EAR.
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Figure 4.3 -  Average Colours versus Cycle Plots fo r  Proposed Reward Functions Rl, R2 and R3 fo r  TRENT.

This section has shown that some additional benefit can be obtained through using a 

standardised reward function and the reward function R2 will be used in all future 

experiments.

4.3.2 Elitism

Dorigo et al. (1991) showed that strengthening trails belonging to good solutions 

encouraged better overall solution quality (see Chapter 2 for description). During a run, a 

permanent copy o f  the ‘elite’ solutions is stored and extra pheromone replenishment is 

allocated to the trails associated with these solutions. It is believed that components o f the 

‘elite’ solutions could feature in the optimal solution and consequently, it is desirable to 

increase the probability o f  such components being selected throughout the run. The update 

philosophy can be described as follows.

Tt ( t  +  \ )  =  p . r t { t )  + L t v + A r /  (4.1)

m

where A = V Ar,, and A =V V V
*=1

-2 - i f  ant k  travels on edge (/, j )  ( 9 . 

0  otherwise

and A r(> = < 7 i f  edge ( i , j ) i s  part o f  the best solution found  
L

0  otherwise

where Azy is the increase o f trail level on edge (i j )  caused by the elitist ants 
a  is the number o f elitist ants
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L*is the tour length of best solution found 
Q is a fixed constant

No precursory investigation is performed to obtain the appropriate parameter settings (cr 

and Q) since elitism will feature heavily in later parts of the thesis. One copy of the best 

global solution will be kept related experiments for the Non-Determined Timeslot Case 

(results displayed in Section 4.3.4).

4.3.3 Hill Climbing

Hill Climbing (Hill) is used to improve solution quality after solution construction has 

been completed. It accepts only improving moves, hence the name, and terminates when 

no further improvements are possible. Hill is performed as follows. Let us consider a 

timetable with nq colours (timeslots). The exams, en allocated to timeslots numbered 

best+1 to nq, where best is the best-known solution, are stored in Le. Each ereLe is 

originally allocated to a timeslot m. The number of neighbours in each timeslot t for each 

exam er is evaluated, subject to t<m. The e ft  combination with the lowest direct clashes 

that allows the reallocation of each neighbour in timeslots numbered less than m-1 is 

selected. Thus, er is inserted into t and the neighbours of er are inserted into other identified 

timeslots. In the event of a tie, a random allocation is made. After the relevant insertions, 

Le is updated and the next exam is selected. If at any stage timeslot nq becomes empty then 

nq=nq-L Hill terminates when no improving is found. Hill Climbing is applied to each 

feasible timetable.

4.3.4 Summary of results

All the above techniques along with Amalgam CD, which mixes heuristics C {90% of ants) 

and D {10%) in each cycle as proposed in Section 3.5, have been considered. These 

methods will be compared against single pass heuristic C, the basic ANTCOL algorithm 

and benchmark examination timetabling heuristics -  Carter et al. (1996), Caramia et al. 

(2000) and Merlot et al. (2002). Details regarding the more specific nature of these 

algorithms have been given in Chapter 2. Elitism and Hill Climbing are applied as 

discussed in Sections 4.3.2 and 4.3.3. To fully assess the success of the proposed methods, 

a wider range of data sets are considered.
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Since the stated authors have not used the Swansea data sets, it was felt reasonable to 

exclude them from consideration here (but will feature later). Table 4.2 presents the best 

solutions found.

Data Set Construction 
Heuristic C

Basic Amalgam
CD

Elitism Hill Carter et 
al.

Caramia 
et al.

Merlot 
et al.

C91 42 29 28 29 28 28 28 30
C92 39 28 28 28 28 28 28 31
EAR 28 23 22 22 22 22 22 24
HEC 19 17 17 17 17 17 17 18
KFU 21 19 19 19 19 19 19 21
LSE 19 17 17 17 17 17 17 18
RYE 24 22 21 22 21 21 21 22
STA 13 13 13 13 13 13 13 13

TRENT 24 20 20 20 20 20 20 21
UTA 42 31 31 31 31 32 30 32
UTE 10 10 10 10 10 10 10 11
YOR 23 21 20 20 19 19 19 23

Table 4.2 -  Best statistics fo r  Graph Colouring, Basic Ant System, Basic Ant System with Enhancement Techniques and
Benchmark Results.

These statistics prove that the basic ant algorithm (Basic) outstrips the single pass heuristic 

and again, emphasises that the ant algorithm does improve solution quality. The bolded 

figures note when the best-known solution has been reached. Basic performs well in direct 

comparison to the benchmark heuristic methods. Results are very competitive for 7 of the 

data sets [C92, HEC, KFU, LSE, STA, TRENT and UTE], but the Basic does not find the 

best-known result with C91, EAR, RYE, UTA and YOR. Mixing construction heuristics C 

and D in each cycle does improve solution quality above Basic. Out of the 5 data sets 

where the optimum was not found, 3 of them are discovered through Amalgam CD [C91, 

EAR and RYE]. Meanwhile, both Amalgam CD and Elitism reduce the best result for YOR 

by the same measure, drops from 21 to 20 colours. The most successful enhancement is 

Hill, which enables the best-known result to be found with all data sets except UTA.

Overall, the results are pleasing and indicate that ANTCOL, with the aid of some 

enhancements, can be taken seriously as a basic examination-scheduling tool on an 

uncapacitated first-order level when the aim is to minimise the number of timeslots.

4.4 Determined Timeslot Case

In this section, we discuss the Determined Timeslot Case. Each exam data set comes 

equipped with a predetermined number of timeslots that must feasibly accommodate all the 

exams. In this section, we extend the graph to accommodate timeslot vertices. This
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provides the scheduler with greater flexibility and can accommodate side constraints such 

as pre-assigned and time-windowed exams. Edges inserted between an exam vertex i and a 

timeslot vertex j  indicates conflict, therefore i cannot be allocated to j .  For example, if an 

exam i is pre-assigned to timeslot j , the graph can accommodate this by forming conflict 

between the exam vertex i and all timeslot vertices other than j.  Additionally, the timeslot 

vertices form a clique, which allows only one timeslot vertex to be accommodated within 

each colour group. Balakrishnan (1991) detailed the extension of the graph while using the 

Recursive Largest Degree First, see Leighton (1979) and Appendix 2.1, graph colouring 

based heuristic to schedule exams at the Freeman School of Business at Tulane.

The idea of including timeslot vertices can be problematic if distinction is not made 

between exam and timeslot vertices. Dowsland et al. (2002), detailed in Appendix 4.1, 

discussed that, in some cases, the degree of some exam vertices may be larger than 

timeslot vertices if there are a small number of pre-assignments and time-windows. In 

theory, the allocation of higher degree vertices earlier in the construction process increases 

solution quality. However, a comparative analysis was performed that proved that selecting 

timeslot vertices first per colour group, irrespective of degree, produces more feasible 

results than not. Experiments were performed on two real-life data sets, Swan2000 and 

Swan2002 (description of data sets can be found later in this chapter) and it was found that 

Swan2000 had a feasibility rate of 23.20% when the first vertex to be coloured was not 

certain of being the timeslot vertex and when the first vertex in each colour group had to be 

a timeslot vertex feasibility improved to 95.20%. For Swan2002, the feasibility rate 

jumped from 47.20% to 93.60% for the same comparison.

Timeslot vertices can be selected randomly or according to degree. Since it has been 

shown that randomness plays an important part in ant systems, it is appropriate to stipulate 

that each timeslot vertex is chosen on a random basis.

Due to the structural change of the graph, it seems advisable to observe the influence of the 

two major determinants on solution quality (as discussed in Chapter 3) - bias parameters 

and construction heuristic. For each construction heuristic, the timeslot vertex is chosen 

randomly. For heuristics A, B and C the first exam vertex is selected random- 

proportionately (biased according to trail), while it is chosen deterministically (according 

to maximum degree) for D, E and F. Appendix 4.2 presents the results for a, P e  [1, 2, 3,
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4] and the eight construction heuristics. These results still conform to the similar study that 

was performed in Chapter 3. The strongest construction heuristic is C, while similar 

findings to Chapter 3 regarding the bias parameters are observed. Increasing a  encourages 

the production of more feasible timetables, while p  has a similar influence. As before, the 

bias parameter a  is a critical factor with respect to solution quality and stipulating a>2 is 

necessary to produce the desired volume of feasible timetables and the (general) 

improvement in solution quality slows down across p  as a  gets bigger.

Each ant will construct timetables up to the number of timeslots that are specified. Any 

unallocated exam will be placed into the timeslot that creates the minimum number of 

direct conflicts. Such practice is necessary for the work detailed in the next chapter to 

estimate the second-order score of an infeasible timetable. However, as mentioned earlier, 

it does create a problem regarding trail updates. Each pairwise exam set, and those 

involving direct clashes, is updated according to reward function R2. Solution 

characteristics belonging to infeasible timetables are penalised collectively, however no 

individual penalties are placed on the unallocated exams. This is counter-intuitive, as we 

intend to make these ‘difficult to colour’ vertices more attractive so that they are coloured 

earlier in the process, before being blocked by their more appealing neighbours. The 

results presented in Appendix 4.2 indicate that feasibility is maintained despite this 

obvious drawback. However, work presented in Section 4.4.1.3 demonstrates that 

allocating additional trail to the unallocated exams increases solution quality.

4.4.1 Solution enhancement

When using the algorithm in its basic form, the standard of solution quality is good but it is 

possible to improve solution quality further through enhancement methods. The simplest 

approach to enhance solution quality is to increase the bias exponents on the trail and 

visibility factors in the RPR function. By imposing a=4 and p= l typically, the rate of 

feasible timetables jumps from 86.58 (rate per 100) to 94.62 timetables, 81.32 to 94.01 

timetables and 86.59 to 95.81 timetables for HEC, EAR and TRENT respectively. These 

statistics are lifted from Appendix 4.2. Many of these extra feasible timetables contain 

near-identical characteristics but the production of reoccurring optimal solutions is still a 

reflection of the algorithms ability to generate the desired solutions (a study on the 

diversity of solution characteristics can be found in Section 4.4.1.3). Another proven

97



Chapter 4 First-Order Conflict and Enhancement Techniques

method of enhancing first-order solution quality was Candidate Lists as discussed in 

Chapter 3. Lists with constitutions biased to desirability scores increase feasibility rates. 

Typically, lists with ten members, ordered according to desirability generate average 

Feasible of 88.98, 88.26 and 96.02 for HEC, EAR and TRENT respectively, which in all 

cases are superior to the Basic system. It is demonstrated in Chapter 3 that the 

incorporation of particular lists reduces runtimes due to the reduced number of probability 

calculations performed by the RPR.

The work performed in conjunction with time saving procedures in Chapter 3 highlighted 

the computational expense of increasing bias. In this section, we discuss alternative 

approaches to solution quality enhancement while attempting to make it attractive with 

regard to computational effort.

4.4.1.1 Basic Trail Reinforcement (BTR)

In this section, a relatively basic form of elitism is introduced. After the production of each 

feasible solution, the trails associated with the solution are reinforced by some constant, rc. 

The aim is to bias future ants to select pairwise exam sets that feature within a feasible 

solution, thus, (potentially) leading to an increased proportion of feasible solutions being 

generated. Negatively, such a method depends on the generation of feasible timetables 

before trail reinforcement can be performed, but positively, the ant algorithm generally 

constructs feasible timetables with relative ease and the runtimes associated with such 

experiments differ minimally from the basic algorithm.

HEC EAR TRENT
rc Unallocated Feasible Unallocated Feasible Unallocated Feasible
1 0.29 86.58 0.83 81.32 0.68 86.59
2 0.26 88.52 0.81 81.89 0.66 87.30
3 0.26 88.22 0.79 83.82 0.63 87.85
5 0.23 89.79 0.76 86.21 0.62 87.48
10 0.24 88.45 0.75 85.72 0.58 87.96
20 0.23 88.61 0.82 80.34 0.60 85.69
30 0.20 90.92 0.79 82.17 0.62 84.00
50 0.22 88.90 0.80 81.20 0.63 82.88

Table 4.3 —Unallocated and Feasible fo r  Range o f  rc.

Table 4.3 presents the average number of unallocated exams per timetable and the average 

number of feasible timetables per 100 (.Feasible) for an experimental range of rc. When 

rc= l, no additional reward is given and will act as a comparison against alternative rc. The

98



Chapter 4 First-Order Conflict and Enhancement Techniques

values bolded refer to best Feasible for each data set. It appears that incorporating a basic 

form of trail replenishment enhances the number of feasible timetables that are generated, 

while, in some cases, allowing large trail replenishments actually lowers solution quality. 

Imposing strong trail replenishment reduces the exploratory power of the ants as they 

become biased towards certain constructions and consequently, the ants have an inability 

to explore sufficiently to find alternative feasible constructions, thus lowering the overall 

number of feasible solutions obtained. For HEC, the number of feasible solutions increases 

from 86.58 to 90.92 when rc=30. For EAR, feasible solutions raises from 81.32 to 86.21 

| when rc- 5 and for TRENT, 86.59 to 87.96 when rc= 10.III

There is no discemable pattern for rc across the data sets. However, it can be stated that 

solution quality improves as rc increases for relatively small rc. Solution quality then 

maximises for some rc and solution quality eventually deteriorates for relatively large rc. 

The preferred values of rc here varies between data sets but a good compromise setting for 

all data sets is rc=5.

4.4.1.2 Elitism

A more sophisticated form of rewarding superior solutions is Elitism, Dorigo et al (1991). 

The method has been touched upon earlier in this chapter and a slight variant of elitism 

will be used here (see Section 5.5.3 for further discussion) to improve the volume of 

feasible solutions that are generated. In this section, two factors will be examined -  the 

number of elitist ants e and a weight component w, such that each elite solution is 

magnified by w. A copy of the e best solutions are stored and used to reinforce the trails at 

the end of each cycle during a run of the algorithm. During a search, the e best solutions s
i

are ordered sj, S2,...,se according to fitness criterion. Each newly observed solution sn is 

compared against the fitness of the lowest ranked elite solution se. If sn is deemed superior 

to se then sn replaces se in the elite list and the process continues. Firstly, experiments are 

performed to deduce sensible settings of e when w=l (one extra copy per solution), and 

secondly, the influence of w is examined and e is chosen according to the findings 

previously presented.

Results for various e are presented in Table 4.4.
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HEC EAR TRENT
e Unallocated Feasible Unallocated Feasible Unallocated Feasible
0 0.29 86.58 0.83 81.32 0.68 86.59
1 0.29 87.00 0.76 85.28 0.66 86.52
2 0.28 87.97 0.75 84.74 0.66 86.93
3 0.30 85.36 0.75 84.91 0.68 86.42
5 0.30 85.73 0.85 84.79 0.69 86.20
10 0.31 84.76 0.76 85.17 0.69 85.40
15 0.29 86.53 0.77 84.10 0.73 84.78
20 0.33 84.32 0.79 84.05 0.76 83.00
30 0.36 82.30 0.86 81.90 0.76 82.92

Table 4.4 - Unallocated and Feasible fo r  range o f  e.

The benefit of replenishing trails with a set of elite solutions seems limited, however it is 

noted that e>0 is superior to e=0. The best results are discovered for low e. Generally, 

allowing large e does not encourage enough differentiation between solutions and 

consequently, the exploitation capabilities of the ants are reduced. However, the disparity 

in solution quality across e is insignificant. Now we test the influence of w. For each 

experimental w, e is set at 2, as this setting produced the general best solution across the 

data sets in the previous study.

HEC EAR TRENT
w Unallocated Feasible Unallocated Feasible Unallocated Feasible
1 0.28 87.87 0.75 84.74 0.66 86.93
2 0.27 88.30 0.77 84.60 0.65 87.32
3 0.27 87.99 0.77 84.04 0.69 86.09
5 0.31 84.29 0.83 78.99 0.75 82.11
10 0.33 82.70 1.01 67.49 0.89 80.52
15 0.44 75.10 1.17 61.10 0.93 78.24
20 0.64 61.29 2.13 24.32 1.02 68.34
30 1.10 44.85 1.57 46.76 1.63 52.98

Table 4.5 - Unallocated and Feasible fo r  Range o f  w.

Minimal benefit can be achieved by setting w>l i.e. incorporating more than one additional 

copy of an elitist solution. Results indicate that larger w leads to poor solution quality. 

During the infancy of the search, higher w encourages the ants to learn quicker and 

consequently, solution quality improves at a faster rate for large w. However, large w will 

have a saturation effect and high levels of trail are laid covering approximately e solutions. 

After some stage, ants become trapped into producing the same subset of solutions and this 

is represented by the inability to produce a greater level of feasible solutions after a certain 

stage of the run. The Average Unallocated rate across five independent runs for HEC were 

averaged and plotted (in Figure 4.4) against Cycle for two experimental values of w. This 

is used to illustrate the problems experienced for larger w.
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Cycle

w=20

Figure 4.4 -  Average Unallocated Exams per Timetable versus Cycle Plots fo r  w=2 and w=20 fo r HEC.

This section  has been inform ative since it indicates the detrimental influence o f  placing too  

m uch em phasis on better trails. H ow ever, the results achieved here have been  

disappointing and do not com pete w ith the less sophisticated BTR  technique as detailed in 

section  4 .4 .1 .1 .

4.4.1.3 Problematic Exam Trail

Construction heuristics attempt to insert potentially m ore difficult vertices/exam s into 

solutions earlier in the construction process e.g. it is deem ed logical to insert vertices o f  

higher degrees as early as possib le. H ow ever, heuristics do not have the ability to leam  and 

the u se o f  the trail aids the construction process by biasing the ants to insert exam s at 

particular exam -tim eslot decision  points. Here, w e com bine the characteristics o f  trail and 

construction heuristics in order to im prove the capabilities o f  the solution construction  

process further.

Until this juncture, after an ant has constructed a tim etable, exam s not allocated in the 

prespecified  number o f  tim eslots are inserted into the tim eslots that create the m inim um  

direct clashes. A ll pairwise exam s are then subjected to trail updates according to the 

reward function R2. Therefore, tim etable characteristics are penalised collectively . Here, in  

addition to normal trail updates, exam s are penalised individually in order to quantify  

difficu lty  o f  allocation. I f  the sam e exam s are left unallocated over a series o f  tim etables, 

concerted attempts need to be m ade to build constructions around these exam s to ensure 

feasib ility . W e introduce P ro b lem a tic  Exam Trail (PET), w hich can be described as an 

in telligent diversification function that guides the search aw ay from solutions in w hich the



Chapter 4 First-Order Conflict and Enhancement Techniques

previously uncoloured vertices fail to be coloured by increasing their probability of being 

chosen.

To avoid confusion within this section, the exams that could not be accommodated within t 

timeslots due to hard constraint violations will be defined as problem exams. Those exams 

that are not (yet) accommodated within the current partial solution (i.e. not all timeslots 

have been constructed) will be classed as unallocated.

PET introduces a trail matrix which stores the ‘problematic’ trail between a problem exam 

u and all other exams v. For an exam u, high trail levels indicate the need for early 

insertion during the construction process.

Let sj, S2 , ." jN a be the timetables obtained during a cycle and let R2a (see Section 4.3) 

represent the fitness of timetable sa. After the completion of each infeasible timetable, let 

the set U store the problem (those not allocated) exams and the set V store the allocated 

exams. The values PETUV in PET are updated as follows.

APETUV = APETW + R2a Vu eU, Vv eV  (4.4)

After the completion of each cycle, the PET matrix is subjected to an evaporation 

parameter, (I-P2 ), in order to accommodate potential construction changes during the 

search.

PETm = p 2.PETm + APETm (4.5)

Meanwhile, the RPR is altered to accommodate PET(s[k - l \ i )  which quantifies the level 

o f ‘problematic’ trail. Let the set W contain the unallocated but feasible exams.

/ . a = r(s[k - 1], i, j f  d A k ~ 1. » F  -PET(s[k - l p )

L  r (4* -  ’1 *> rT  “  4  rY  •PET(s[k - 1], i, r)
refV

The PET term is used as a coefficient and is not raised to a bias parameter and can be 

calculated as follows.
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P E T (s[k -l\i)  = Z P E T »  (4.7)
veQ

where Q  is the set of all other exams.

Experiments have been performed for the main three data sets across a range of p 2 .

HEC EAR TRENT
P2 Unallocated Feasible Unallocated Feasible Unallocated Feasible

None 0.29 86.58 0.83 81.32 0.68 86.59
0.01 0.21 89.38 0.49 87.09 0.50 88.44
0.10 0.19 90.90 0.42 89.82 0.29 91.07
0.30 0.17 91.34 0.38 91.61 0.25 93.10
0.50 0.16 92.81 0.36 92.10 0.23 93.87
0.70 0.16 92.45 0.35 92.81 0.22 94.11
0.90 0.16 93.08 0.35 92.49 0.18 94.90
0.99 0.15 93.26 0.33 92.95 0.18 94.50
1.00 0.14 93.38 0.32 93.19 0.19 94.48

Table 4 .6 -  Unallocated and Feasible fo r  Range ofp2.

The general relationship between p 2  and solution quality is clear. Solution quality 

improves as p 2 increases. Forcing the early introduction of problem exams has a positive 

influence. Even the allowance of minimal PET information (i.e. when p2=0.01) enhances 

results. However, stipulating a generic setting of p 2 =l appears beneficial. The extra effort 

required above Basic is minimal and this is demonstrated by the runtimes presented in 

Section 4.4.1.5.

To evaluate the diversity of the distribution of vertex-colour/exam-timeslot assignments 

over a population of solutions entropy values, Fleurent and Ferland (1996), values (as 

described in Equations 4.8 and 4.9) could be used.
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where t is the number of timeslots, nv is the number of exams, P  is the number of feasible 

solutions and riy is the number of solutions in P  that exam i is allocated to timeslot j. 

Entropy values are normalised in the interval [0,1]. A population of ants returning identical 

solutions will generate an entropy value of 0, while a uniform distribution will have a value 

of 1. The entropy values and Feasible rates (both averaged per run) for each of the 

experimental runs is presented in Table 4.7.

Entropy Feasible
Basic PET Basic PET

HEC 0.051 0.051 85.97 94.76
EAR 0.042 0.044 76.64 92.50

TRENT 0.095 0.096 87.13 94.42
Table 4.7 -Entropy and Feasible

Table 4.7 demonstrates that the entropy values for both systems are close to 0 for the data 

sets. This suggests that many solutions have similar characteristics. Experiments when 

using AS-EXAM often converge (exploitation) to a set of solution characteristics and 

convergence is detected relatively early (as discussed in Chapter 3) in the allocation of 100 

cycles. Therefore, the entropy values will be lower as a result. Table 4.7 shows that the 

disparity in entropy values between Basic and PET is minimal and this indicates that the 

introduction of PET does not lower solution diversity, but rather guides the search away 

from solutions that fail to colour certain exams.

A benefit of PET is the construction of feasible timetables earlier in the search. Table 4.8 

presents the absolute difference of the cycle numbers when the first feasible timetable was 

observed between the Basic and PET systems (the results in parentheses are the actual 

cycle numbers, with the first value relating to the Basic system). Each independent run is 

considered.

Experimental Run
1 2 3 4 5

HEC 1 (3-2) 1 (4-3) 1 (3-2) 0 (3-3) 0 (2-2)
EAR 6 (10-4) 7(11-4) 6 (10-4) 4 (9-5) 7 (10-3)

TRENT 7 (9-2) 6 (8-2) 8 (10-2) 4 (7-3) 6(9-3)
Table 4.8 -A bsolu te  Difference o f  Cycle Numbers when First Feasible Solution was observed between Basic and PET

Systems.

Table 4.8 shows that feasible timetables are achieved earlier in the search through the PET 

system. This demonstrates that the benefit of PET on the search is almost immediate. .
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Gambardella et al. (1999a) proposed a similar concept to PET with respect to the Vehicle 

Routing Problem with Time Windows (VRPTW). A detailed account can be found in 

Chapter 2. In VRTPW, the desirability rjy is calculated by taking into account the travelling 

time ty between locations i and j, the time window associated with location j  and a vector 

that stores the number of occasions that location j  has not been inserted into the solution. 

This latter component is the one of interest.

4.4.1.4 Hill climbing (Hill)

Methods that influence trail levels have been introduced in order to enhance solution 

quality. In this section, Basic is used with no trail enhancement strategies and 

improvements to timetables are performed through a simple hill climbing strategy, which 

differs slightly from the approach taken in Section 4.3.3. After the completion of each non- 

feasible timetable, attempts are made to schedule the unallocated exams within the first 

timeslot colours with the reallocation of neighbours being subject to the same restriction. 

Hill continues until no feasible insertions are viable.

HEC EAR TRENT
Strategy Unallocated Feasible Unallocated Feasible Unallocated Feasible
No Hill 0.29 86.58 0.83 81.32 0.68 86.59

With Hill 0.11 94.88 0.39 89.55 0.30 93.96
Table 4.9- Unallocated Exams and Average Feasible for Basic and Hill.

It is clear that the use of Hill does generate better results than No Hill (Basic), but the 

trade-off is the additional runtime that is required (See Section 4.4.1.5). Reducing the 

number of timetables that are improved would naturally lower runtimes since less use of 

Hill is required. However, this section intends to illustrate the solution quality benefit of 

certain implementations when no usage restrictions are enforced.

Based on the results presented in Sections 4.4.1.3 and 4.4.1.4, it is shown that the PET 

philosophy generates better solutions than Hill while requiring less runtime. However, the 

efficiency of PET depends on the quality of the solutions generated by the basic algorithm. 

The presence of many unallocated exams will result in the update of numerous trails in the 

PET matrix. Since the aim of PET is to identify a subset of problem exams, limited 

differentiation between exams will occur and the benefit of PET will be reduced. 

Experiments were performed for a less efficient ant based system; When a -J  and fi=l for
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HEC, runs of Basic produced an average unallocation rate of 4.06 exams and an average 

production of 0.14 feasible timetables per cycle. Incorporating the P E T  technique, with no 

evaporation, did improve the standard of solution quality, but not significantly. The 

unallocation rate drops to 2.61 with a feasible score of 3.74 timetables per cycle. This 

evidence shows the importance of a high quality basic construction process so that the PET  

concept can be beneficial. Meanwhile, the H ill procedure fares better (which is expected) 

under the same bias parameter conditions. Due to the allocation of fewer exams, the direct 

conflict scores per timeslot will be lower. Consequently, the placement of unallocated 

exams and reallocation of neighbours is easier during the early stages of H ill, although, 

insertions are more difficult as time progresses. However, the greater flexibility of this 

method will lead to the production of more feasible timetables and a lower unallocation 

rate. For comparison, the H ill strategy improved the basic system from an unallocation rate 

of 4.06 to 1.82 exams and the volume of feasible timetables per cycle increases from 0.14 

to 43.58.

4.4.1.5 Summary of Results

With respect to solution quality, the superior improvement techniques are P E T  and Hill. 

These approaches will be used when other members of the data pool are considered here 

(see Chapter 3 for data pool information). Additionally, a combined approach of P E T  and 

H ill is implemented. The reasoning for this amalgam is as follows. PE T  has been shown to 

enhance solution quality considerably when good parameters are chosen for the algorithm 

itself while H ill also performs well but requires additional runtime. After the construction 

of a timetable, if it is classified as infeasible, it will be subject to the improvement strategy 

Hill. Since H ill will attempt to insert fewer exams into the constructions due to the 

goodness of PET , the runtimes will become smaller and the volume of feasible timetables 

will increase. The average Feasible timetable rate per 100 timetables and average Time (in 

seconds per experimental run) for the four methods are presented below.
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BASIC PET HILL PET/HILL
Data Set Feasible Time Feasible Time Feasible Time Feasible Time

C91 84.06 6851.30 94.13 6690.01 91.39 40488.50 96.19 14121.30
C92 83.97 3891.51 93.70 3523.25 93.91 17524.80 95.87 6851.86
EAR 76.64 188.23 92.50 184.89 89.54 410.25 95.33 236.91
HEC 87.13 35.69 92.42 35.46 94.88 45.98 96.75 38.96
KFU 83.70 1622.72 96.94 1595.88 94.58 3865.17 98.49 1798.58
LSE 78.90 839.42 96.07 823.73 91.71 2359.18 97.55 979.55
STA 95.63 98.71 98.92 95.56 98.91 102.17 99.43 98.51

TRENT 85.97 296.59 94.76 290.84 93.99 671.13 97.61 374.06
UTA 83.58 5721.80 94.65 5574.11 96.17 34908.10 96.56 10576.90
UTE 60.77 149.90 95.21 146.05 88.88 224.92 98.24 157.66
YOR 52.72 169.96 89.10 169.65 81.54 473.55 93.77 234.99

Table 4.10 -Feasible and Runtimes fo r  Extended Number o f  Data Set comparing Enhancements.

Introducing some form of enhancement technique has a positive influence on solution 

quality. These strategies increase the number of feasible timetables for each of the data 

sets. Note the vast improvement experienced with YOR. This is a particularly difficult data 

set and the benefit of some form of enhancement technique is obvious. It is also shown that 

the PET technique is generally marginally superior to Hill but the runtimes are non­

comparable. The computational times recorded for PET are insignificantly different from 

Basic. Since the runtime disparity between Basic and Hill is large, the selection of PET as 

a solution improvement technique is logical, particularly when used in conjunction with 

larger data sets. Additionally, the amalgam of PET and Hill improves solution quality 

further, while requiring notably shorter average runtimes than Hill. The reasoning for 

efficient runtimes is a consequence of PET reducing the number of problem exams and 

thus, less use of Hill is required.

4.5 Determined Timeslot Case - Capacitated

Uncapacitated examination timetabling problems are not realistic since institutions do not 

have an unlimited amount of seating capacity. Consequently, the amount of total room 

space must be a binding constraint since it cannot be violated. Burke et al. (1995a) stated in 

their survey paper that 94% of institutions regard seating constraints as their biggest 

concern (when direct clashes are not considered). In addition, institutions often impose 

other criteria such as non-split (students sitting the same exam must be allocated to the 

same room) exams and one exam per room, which all contributes to make scheduling an 

examination timetable even more difficult. Burke et al. (1995c) and Burke et al. (2000) 

presented memetic and multistage approaches respectively to the capacitated examination-
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timetabling problem and generated timeslot capacities for some of the data sets used here. 

A capacity was created by dividing the total number of students sitting the exams by the 

number of sessions and adding 5% slack, Merlot et al. (2002). This rule is applied to all the 

data sets. The capacities are as in Table 4.11.

Data Set Capacity
C91 1550
C92 2000
EAR 350
HEC 650
KFU 1995
LSE 635
STA 465

TRENT 655
UTA 2800
UTE 1240
YOR 300

Table 4.11 -  Timeslot capacities fo r  each data set

Within the AS-EXAM algorithm, no formal part of the algorithm encourages solutions that 

satisfy room constraints. Allocations are not allowed if  they break the room constraints. 

The structure of Section 4.4.1.5 is repeated here, but for capacitated problems. PET 

maintains the same structure, while Hill is modified slightly to restrict exam moves that 

would violate the timeslot capacities. The PET-Hill amalgam is again tested. These 

approaches are compared against the Basic, non-enhancement, algorithm. The results are 

as follows.

BASIC PET HILL PET-HILL
Data Set Feasible Time Feasible Time Feasible Time Feasible Time

C91 0.00 7361.50 0.00 7825.91 0.49 103356.00 0.03 82132.90
C92 59.98 4669.08 86.96 4679.72 77.34 29150.80 90.16 11738.70
EAR 0.00 325.24 53.43 352.48 2.92 1657.41 58.05 907.11
HEC 0.00 63.56 0.00 77.80 0.20 250.32 0.10 263.19
KFU 81.54 1430.64 96.75 1852.46 93.03 4502.63 98.30 2067.43
LSE 29.85 1539.29 71.44 1606.64 42.72 6219.69 84.51 3113.86
STA 15.56 135.52 26.38 141.62 16.98 366.12 38.45 304.51

TRENT 0.26 430.64 21.48 448.46 2.02 2148.74 29.89 2470.92
UTA 79.37 6281.35 93.44 6369.14 87.65 72134.70 95.98 15326.51
UTE 25.48 123.62 64.30 125.09 34.55 276.55 70.64 186.75
YOR 0.00 209.64 35.71 220.19 6.78 1046.33 45.63 721.40

Table 4.12 -  Feasible and Runtimes fo r  Extended Number o f  Data Sets fo r  Capacitated Model comparing Enhancements

These experiments highlight the benefit of enhancement techniques and illustrated the 

potency of the trail based PET  approach. This method performs consistently better than 

Hill. This stresses the benefit of an efficient construction process rather than simply
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obtaining complete solutions and then attempting to deal with the problematic exams via 

exam moves. These capacitated problems are considerably more constrained than their 

uncapacitated counterparts. Solution qualities associated with some of the data sets are not 

affected by timeslot capacity e.g. KFU and UTA, however, the majority are and emphasise 

the role of the enhancement techniques. However, all associated results of HEC and C91 

are of unacceptable standard. However, the improvement observed with EAR does provide 

some compensation.

It should be noted here that capacitated-related experiments regarding five of the above 

data sets (with respect to the second-order problem) have been performed by Merlot et al. 

(2002), Burke et al. (1995c), Caramia et al. (2000) and Di Gaspero and Schaerf (2000). In 

most instances, the number of timeslots correspond to the absolute upper limit specified by 

the institution and therefore, do not correspond to the related information presented in 

Table 3.1. For C91, 51 timeslots are used instead of 35, for C92, 40 slots are used in place 

of 32, for TRENT, 35 are used instead of 23 and for UTA, 38 timeslots are used in place of 

35. The number of timeslots used for KFU remains unchanged. The extra timeslots used 

indicate the additional difficulty of observing capacities and therefore, go some way to 

explain the scheduling troubles with C91 and TRENT. Encouragingly, at least one feasible 

solution is returned for all data sets and relaxing the number of timeslots will enhance 

solution quality further.

Figures 4.5-4.6 illustrate the number of students per timeslot within a feasible timetable for 

two sample data sets, EAR and TRENT. It is observed that the number of students equals 

the timeslot capacity for many timeslots. For EAR, 13 timeslots (of 24) use the maximum 

seating capacity of 350 students. For TRENT, 20 timeslots (of 23) require the use of the 

upper limit of 655 seats. Additionally, high percentages of the seating capacities are used 

within all the other timeslots for both examination problems (EAR and TRENT). These 

diagrams emphasize the difficulties that exist when attempting to obtain clash-free 

timetables that observe tight (5% slack) seating capacities. Therefore, a method that is able 

to generate a stream of feasible timetables, such as capacitated AS-EXAM, should be 

highly regarded.
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Figure 4.5 -An Example o f  Number o f  Students per Timeslot fo r  a Feasible Timetable fo r  EAR (Max 350 Students)
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Figure 4 .6 -An Example o f  Number o f  Students per Timeslot fo r  a Feasible Timetable fo r  TRENT (Max 655 Students)

4.6 Swansea data sets

Two University o f Wales Swansea data sets are used within this thesis -  January 2000 

(Swan2000) and May 2002 (Swan2002). The descriptive statistics regarding these data sets 

are detailed in Chapter 3. Given that these data sets contain examples o f the side 

constraints associated with real life examination timetabling problems, it was felt wise to 

apply some o f the techniques introduced within this chapter to those Swansea data sets 

when regarding the Determined Timeslot Case.

Swan2000

This data set contains 313 exams that need to be scheduled within 20 timeslots. There are 

14 preassigned and 20 time windowed exams. There are 22 simultaneous exam 

combinations.
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Swan2002

This data set contains 722 exams that need to be scheduled within 34 timeslots. There are 

27 preassigned and 47 time windowed exams. There are 148 simultaneous exam 

combinations.

The techniques applied to each instance are Basic, PET, Hill and PET-Hill. The studies 

relating to each Swansea data set are sub-divided according to whether seating capacities 

(994 seats) are observed (see Table 4.13). There is 20.24% and 13.11% seating capacity 

slack for Swan2000 and Swan2002 respectively.

BASIC PET HILL PET-HILL
Data Set Capacity

Observed?
Feasible Time Feasible Time Feasible Time Feasible Time

Swan2000 Y 70.74 405.68 98.83 406.82 73.09 873.81 99.15 424.88
N 89.54 401.88 98.89 406.24 98.64 625.46 99.83 418.54

Swan2002 Y 45.42 4097.39 98.49 4114.10 46.69 6184.74 98.71 4524.15
N 88.53 4090.70 98.93 4103.31 99.84 10235.60 99.99 4455.17

Table 4.13 -Feasible and Runtimes for Swansea Data Sets for Uncapacitated and Capacitated models comparing
Enhancements.

Table 4.13 shows that Basic is able to produce good volumes of feasible timetables for data 

sets that come accompanied with time-windowed and pre-assigned exams. This also 

applies when seating capacities need to be observed. Table 4.13 again demonstrates the 

capabilities of the PET trail with respect to improved solution quality and with minimal 

extra computational effort. Improved feasibility rates are possible through Hill, but these 

are insignificant when capacities are observed. For Hill, the trade-off with computational 

effort is not favourable, especially in comparison with PET. The PET-Hill approach does 

produce the best feasibility rates (as expected) in all cases but the improvement over PET 

is insignificant while requiring a little additional computational effort.

4.7 Conclusion

This chapter has demonstrated that a modified ANTCOL algorithm is capable of 

scheduling timetables on a first-order level. This chapter has investigated two scenarios.

Firstly, the Non-Determined Timeslot Case, in which the number of timeslots is minimised, 

was tackled. The basis of the ANTCOL algorithm was used along with techniques that 

enhanced solution quality. These ANTCOL variants were compared against some
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benchmark methods. It was shown that the basic ANTCOL algorithm {Basic) 

outperformed the best-found single pass heuristic (heuristic C) and returned the optimal for 

seven data sets (out of twelve). Improvements to Basic were obtained through mixing 

construction heuristics {Amalgam CD), trail intensification {Elitism) and hill climbing 

{Hilt). Amalgam CD observed optimal solutions for ten data sets, Elitism returned eight 

and Hill, eleven. These results compare very well in comparison to benchmark results.

Secondly, the Determined Timeslot Case, in which the number of timeslots is stipulated, 

was investigated. The graph was extended to accommodate timeslot vertices to 

accommodate additional constraints such as pre-assigned and time-windowed exams. A 

series of enhancement techniques were used and it was shown that the introduction of a 

trail that penalised difficult exams worked very well, which indicated the benefit of 

maximising the efficiency of the construction process rather than relying on repair 

facilities. When no timeslot capacities were observed, Hill was competitive (in comparison 

with PET) with respect to solution quality. However, the superiority of PET is evident 

when problems are constrained by seating capacities. In addition, PET based experiments 

require similar runtimes to Basic and significantly lower runtimes than Hill, thus 

increasing the attractiveness of PET. One disadvantage of PET resides with the efficiency 

of the algorithm itself. Success depends on the appropriate selection of parameter settings 

and construction heuristic since inefficient search environments will increase the number 

of problem exams and consequently, PET loses effectiveness (through differentiation).

PET was only applied to the Determined Timeslot Case in this chapter. However, scope 

does exist to utilise this diversification technique in the Non-Determined Timeslot Case. 

The user could specify the number of timeslots n and any exam allocated to a timeslot 

greater than n could be subject to trail replenishment. Alternatively, a simple greedy 

heuristic could be used to produce an upper bound n on the minimum number of timeslots. 

The ant algorithm can then be used in attempt to produce a solution in n-1, n-2 colours 

etc.. .until no solution can be found.

It is also demonstrated that standardising the reward function aids the search process. The 

fitness function used in Costa and Hertz (1997) is inappropriate and can be explained as 

follows: for two given data sets with solutions an identical distance away from their 

optimum, the rewards will be different if the optimum number of colours differ also.
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Therefore, reduced differentiation between solutions exists for the some problems (data 

sets with bigger optimums). The reward function in Costa and Hertz (1997) is substituted 

with the function that quantifies the number of exams not allocated to the first timeslot 

colours.

This chapter shows that the ANTCOL algorithm with modifications is capable as an 

examination timetabling tool on a first-order level. To represent the application of ants to 

this problem area, the notation AS-EXAM is used forthwith.
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Chapter 5

Minimising Second-Order Conflict

5.1 Introduction

Chapter 4 has proven that ants can successfully schedule examination timetables on a first- 

order level. In Chapter 5, we extend this methodology to accommodate second-order 

considerations. Second-order constraints are soft and aim to create a friendlier timetable. 

The definition of ‘second-order’ varies between institutions. For this investigation, we will 

use the criteria used at University of Wales Swansea and the second-order conflicts score 

of a timetable will be the number of occasions that students have to sit back-to-back 

exams. A student sitting two exams in adjacent timeslots crossing two exam days will be 

classified in the same way as two exams in adjacent timeslots on the same day. The 

objective is to minimise the second-order score of a timetable, thus giving the students as 

much revision time as possible.

Chapter 4 indicated that ants, when used collectively, were capable of producing large 

volumes of feasible timetables and it may be possible that a good solution with respect to 

second-order conflict may result. But, these would be produced by chance rather than by 

any pre-determined method. Therefore, this chapter aims to introduce methods to bias the 

ants towards areas of the solution space that contain feasible good quality timetables.

This chapter has the following structure. Firstly, it is demonstrated that the order in which 

the timeslots are constructed has an influence on the second-order efficiency of a timetable. 

Secondly, the second-order characteristics of a timetable are passed to the trail through the 

introduction of a modified reward function that quantifies both first and second-order 

attributes. Thirdly, a factor is introduced to encourage insertion of exams in timeslots that 

will result in lower second-order scores. Fourthly, the trail is intensified to enhance good 

solutions or more specifically good solution characteristics. Since exploitation techniques 

reduce the exploratory power of the ants, it is demonstrated that limiting trail levels 

improves the search conditions for the ants. Fifthly, the greater suitability of the DSatur 

heuristic for the examination timetabling problem is discussed but it is shown that the RLF 

heuristic is preferred due to its first-order superiority. Finally, the chapter refocuses with
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the introduction of a second trail, which attempts to exploit good second-order 

characteristics.

It is worth noting the component settings of the basic method that are used in this chapter.

Component Setting
a 2

fi 1

P 0.5
Construction heuristic C

n a 100
Nc 100

Table 5.1 — Component Settings to be used unless otherwise stated.

The enhancement techniques that have been introduced in Chapter 4 do not feature here. It 

has been observed that the first-order performance of the basic algorithm is satisfactory 

(when we consider uncapacitated problems) and since the objective of this chapter is to 

improve second-order condition of timetables, it is felt justified, at this stage, to remove the 

first-order enhancements in order to place as much focus on the second-order problem as 

possible.

5.2 Second-Order Capabilities of First-Order Trail Model

The simplest way of reducing second-order conflict is to change the order in which 

timeslots are considered. Typically, filling them in order leads to high numbers of clashing 

exams in the initial periods and relatively empty late periods. In this section, we will 

contrast the results of filling timeslots in order with the results of filling timeslots in other 

orders.

In this section, second-order statistics are recorded when using the Uncapacitated Non- 

Determined Timeslot Case (Section 4.3) and do not accommodate any techniques to 

enhance second-order quality. These results will act as comparison for second-order 

enhancement strategies that are introduced later in this chapter. Strategies titled Ordered, 

Random and OddEven investigate different methods of selecting which timeslot to 

construct and illustrate the influence upon second-order quality of a timetable. These 

strategies are defined as follows. Ordered takes each timeslot in ascending sequence and 

allocates exams appropriately. With respect to second-order, the main disadvantage lies

115



Chapter 5 Minimising Second-Order Conflict

with the exams to timeslots distribution. The majority of the exams are scheduled during 

the early phases of the timetable and will consequently inflate the second-order scores. 

Meanwhile, Random randomly selects which timeslot to construct next. The reduction in 

second-order conflicts is axiomatic and can be related to a more equal distribution of 

exams throughout the timetable. The third strategy, OddEven, fills the timeslots to create 

an uneven exam to timeslot distribution. The odd numbered timeslots are filled first and 

then the even numbered timeslots are dealt with. The selection of each timeslot is 

performed randomly within the Odd or Even group. This construction strategy encourages 

lower back-to-back conflicts due to the lower number of exams that are allocated to the 

even numbered timeslots. Results associated with these three ordering philosophies are as 

in Table 5.2.

HEC EAR TRENT
Strategy Av Best Feasible Av Best Feasible Av Best Feasible
Ordered 2344.05 1458 87.08 2512.71 1953 62.71 2350.40 1923 79.86
Random 1972.82 939 87.39 2221.78 1572 72.78 1977.74 1491 85.27
OddEven 1646.40 926 86.15 1745.50 1430 73.38 1649.83 1255 81.07

Table 5.2 -  Second-Order Statistics fo r  Ordered, Random and OddEven Strategies.

Av represents the average second-order score over all feasible timetables, Best refers to the 

best ‘one-off observation and Feasible quantifies the average number of feasible 

timetables constructed per cycle. These statistics will be used forthwith.

Table 5.2 indicates the benefit that can be gained by selecting the appropriate method, 

which decides the timeslot to construct next. It is the framework OddEven that produces 

constructions that contain the lower second-order conflict scores and will be used 

forthwith. Any differences in the feasibility rates can be attributed to the randomness in the 

experiments.

Figures 5.1-5.3 present the average number of students per timeslot that are due to sit 

exams in adjacent timeslots for each of the proposed timeslot ordering strategies.
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Figure 5 .1-Average Second-Order conflicts per timeslot across construction methods fo r  HEC.
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Figure 5.2 - Average Second-Order conflicts per timeslot across construction methods fo r  EAR.
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Figure 5.3 - Average Second-Order conflicts per timeslot across construction methods fo r  TRENT.

The three construction procedures produce varying distributions o f  students to tim eslots, 

w hich can b e traced to the order that the tim eslots are filled . O rd ered  exhibits a skew ed  

distribution that inflates back-to-back conflicts during the first tim eslo ts/2  tim eslots. A s
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expected the volume o f students tails o ff towards the latter phases o f the timetables due to 

the lack o f exams allocated to those timeslots. However, the second-order conflicts 

experienced during the infancy o f  the timetable are costly and contribute to relatively high 

overall second-order conflicts scores. Random  is a more suitable ordering technique since 

it encourages variation and consequently, the exam to timeslot distribution is more even 

and reduces the volume o f students experiencing back-to-back exams as compared to the 

Ordered method. W hen using OddEven , the selection o f  the next timeslot to schedule is 

chosen in a pseudo-random manner. As detailed above, the odd numbered timeslots are 

placed in the first group o f  slots, with the even numbered timeslots allocated to the second 

group. W hen the first group becomes an empty set we move onto the second group. The 

probability o f  selecting a timeslot within these groups is purely random. This approach 

attempts to reduce the second-order scores, by design, through allocating higher numbers 

o f exams to the odd timeslots and also, incorporates the Random  method to encourage 

partial randomness. W ork in Chapter 3 stressed the importance o f variation.

Figures 5.4-5.6 represents the average second-order quality among feasible timetables over 

cycles for each o f  the timeslot selection strategies. As indicated by the statistics in Table 

5.2, the performance o f  the selection strategies is consistent across the data sets with 

OddEven returning the more favourable results, followed by Random  and then Ordered. 

We also note the lack o f  second-order improvement during the process, which indicates the 

need to incorporate second-order characteristics. Additionally, it is noted that the search 

stagnates with Ordered  at a very early stage.

3000

2500

2000

1500

M 1000

Cycle

Ordered Random OddEven

Figure 5.4 - Average Second-Order Score per Cycle across Construction Methods fo r  HEC
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Figure 5.5 - Average Second-Order Score p e r  Cycle across Construction Methods fo r  EAR.
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Figure 5 .6 - Average Second-Order Score p e r  Cycle across Construction Methods fo r  TRENT.

The plots within Figures 5.4-5.6 start after the first cycle. Each starting point reflects when 

feasible timetables were first observed for all methods. This style of representation will be 

commonplace for the reminder of the thesis.

A possible variant of the OddEven ordering strategy is to construct the Odd timeslots and 

then allocate exams to exam blocks and allocate these exam blocks deterministically to the 

timeslots according to a greedy method that minimises second-order conflict. Like all 

greedy methods, large costs will be experienced towards the end of the procedure. If no 

second-order enhancement techniques are incorporated then such a variant is appropriate, 

however it will reduce the randomness within the search and future second-order 

enhancement methods presented will undoubtedly benefit from greater inherent variability 

(evidence detailing the influence of randomisation is presented in Chapter 3). Additionally,
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this greedy technique would require the removal of timeslot vertices from the graph, which 

are required for the accommodation of pre-assigned and time-windowed exams.

Socha et al. (2002) discussed the importance of relative and absolute position of exams 

within a timetable. Please refer to Chapter 2 for a review of this paper. It can be seen that 

despite the importance of the relative position of exams with respect to second-order 

conflict, the knowledge of a preferred timeslot adds extra search potential. The inclusion of 

timeslot vertices within the graph allows the accommodation of both relative and absolute 

trail information. Therefore, not only the trails between pairwise exams within each 

timeslot are modified at each update stage but also the trail between the timeslot vertex and 

all exams belonging to that timeslot. Evidence of this additional benefit can be seen later in 

this Chapter (Section 5.7).

5.3 Combined reward function (CRF)

Chapter 4 discussed that the reward function used by Costa and Hertz (1997) could be 

improved through standardisation. It was suggested that the reward function should relate 

to the number of exams that could not be accommodated within the first t timeslots (where 

t equals the pre-specified number of timeslots or known-best solution). The reward 

function used is described in Equation 5.1.

where K  equals the number of unallocated exams. Equation 5.1 was used in the 

Determined Timeslot Case, which constructs up to timeslot groups and then inserts the 

unallocated exams into the timeslots that create the lowest direct clashes. This approach is 

important since infeasible timetables are allowed to contribute to the trail and estimates of 

the second-order scores of infeasible timetables are necessary. However, it was noted in 

Chapter 4 that infeasible timetables are penalised collectively through Equation 5.1 and no 

extra trail is placed on the unallocated exams. Consequently, PET was introduced as a 

diversification tactic to move the search away from solutions that fail to colour certain 

exams by weighting the trail of unscheduled exams. It was demonstrated that the rate of
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feasibility did increase through PET, however it is proposed here that PET is not used at 

this juncture in order to place more emphasis on the second-order problem.

In the nature of AS, all ants contribute to the trail (whether their solutions is feasible or 

not) due to the better solution quality that is experienced. However, some authors, for 

example Burke et al. (1994a), suggest otherwise.

In this section, we extend Equation 5.1 and introduce a weighted linear function to describe 

the perceived goodness of a timetable based on the balance between first and second-order 

priorities. The weights applied represent the relative unsuitability of constraint violation. 

For example, it is imperative that feasibility is observed and therefore, the penalty 

associated with first-order violations will be of the highest value. The reward function 

becomes the CRF and is as follows

- E -  + ------ - ------  (5.2)
K +1 Sec _ Score

where, K  refers to the number of exams not allocated to a timetable, Secjscore quantifies 

the second-order conflicts score of the timetable and 8  is a selected constant. When K>0, 

the timetable is deemed as infeasible. Equation 5.2 is formed to represent a balance 

between first and second-order and conforms to a simple linear penalty-weighted sum as 

advised by Come et al. (1994). However, some authors, such as Taillard (1993) and Di 

Gaspero and Schaerf (2000), disagree with the use of fixed weights and propose that 

dynamic weights can be used instead to adjust according to the nature of the problem and 

the structure of fitness landscape that the problem imposes. With respect to our study, it 

will be observed that feasibility is achieved relatively easily and consequently, greater 

attention is paid to minimising the second-order scores of timetables and therefore, it was 

felt unjustified to utilise dynamic weights at this stage.

The second-order component in Equation 5.2 is weighted by 8  in order to find a balance 

between the first and second-order reward contributions. Too much weight places extra 

emphasis on the second-order characteristics of a timetable and dilutes the influence of the 

first-order information provided. Conversely, too little weight reduces Equation 5.2 to an
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approximate first-order reward function and offers minute second-order communication. 

The second-order statistics for a range o f  8 are presented in Table 5.3.

H EC EA R T R E N T

8 Av Best Best 10 Av Best Best 10 Av Best Best 10
0 1601.45 942 1057.36 1773.62 1362 1491.20 1604.21 1268 1330.72
i 1748.81 895 1045.60 1744.91 1299 1454.88 1586.04 1247 1320.06

10 1745.09 910 1025.88 1748.50 1360 1495.68 1581.70 1235 1319.66
25 1649.92 890 1063.00 1751.02 1423 1504.60 1603.99 1235 1318.86
50 1687.64 916 1007.64 1791.28 1386 1537.34 1605.35 1208 1317.90
75 1507.56 933 1011.44 1780.80 1414 1495.50 1593.75 1195 1297.12

100 1667.44 912 1063.34 1648.71 1318 1452.14 1628.40 1289 1349.82
250 1684.85 894 1029.85 1761.68 1332 1505.84 1632.20 1234 1333.82
500 1501.12 868 1074.38 1793.56 1282 1505.86 1626.88 1222 1341.80

1000 1711.20 940 1061.18 1776.23 1297 1597.04 1633.63 1236 1324.38
25 0 0 1703.98 841 1158.66 1753.03 1386 1502.46 1602.00 1211 1341.80
5000 1559.62 858 1156.64 1682.70 1323 1481.00 1607.36 1263 1342.48

Table 5.3 -  Second-Order Statistics fo r  Range o f  8  on the CRF

Best 10 refers to the average second-order conflicts score for the best 10 timetables per 

independent run.

Table 5.3 demonstrates that the influence o f £ seems negligible, even for high 8. This could 

be attributed to the problem o f conflicting information. The trail is trying to evaluate, for a 

pairwise set o f vertices, how good the solution is if  they are together, but this has no direct 

affect on how good the solution is in terms o f second-order. Despite this, it seems intuitive 

that 8>1 since some representation o f second-order should be present. The percentage o f 

feasible timetables across the experimental range o f  8 is illustrated in Figure 5.7.

Second-Order Weight
B  HEC □  EAR □  T R E N T

Figure 5.7 - Percentage o f  Feasible Timetables across Second-Order IVeight S.
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The results in Table 5.2 contradict the writer’s intuition regarding the influence of 8  on 

second-order solution quality. It was anticipated that increasing 8  would have a positive 

effect on the second-order scores. However, the results appear rather insensitive to the 

choice of 8 . In addition, there is a negative impact on feasibility as 8  increases. These two 

observations would suggest that there is no benefit in incorporating any second-order 

information within the fitness function. However, future enhancement techniques will 

demonstrate that improvement, regarding second-order performance, is achievable and 

consequently, some degree of second-order representation (see above also) is required. An 

arbitrary measure of 8=100 is selected here. Subsequent studies will consequently calibrate 

other parameter settings accordingly.

Differences in the raw second-order scores (across all data sets) do exist and stating a 

universal value for 8  across all data sets could be misleading and a precursory investigation 

that examines feasibility rates for various 8  is suggested. However, all experiments 

performed in the remainder of this thesis will set 8 = 1 0 0  and additionally, this can be used 

as an initial value if any fine-tuning is performed when obtaining 8  for alternative data sets.

5.4 Second-Order Bias Term

The RPR is extended to accommodate a bias term, [rj(b[k -l],e,f)] (where b[k-l] relates to 

the partial solution at the kfh stage), that influences the ants to choose exams e that are 

favourable for insertion into timeslot t with respect to second-order. There are two 

definitions for this term and they vary according to the stage of the construction. When the 

odd numbered timeslots are being filled, \rf{b\k -l],e,f)] = 1 since there are no exam 

members in the even numbered timeslots. When the even numbered timeslots are regarded, 

[ri(b[k -l],e,f)] is interpreted as the inverse of the total clashes involving an exam e 

available for insertion in timeslot t and all exams in adjacent timeslots t- 1  and t+ 1  while 

weighted by some constant 0. Let T be the set of unallocated exams that can still be 

inserted into timeslot t. Formally, the probability (pet) of allocating exam e to timeslot / 

now becomes
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[r(b[k -  1 \e ,t ) ] a ■ [v{b[k -  ■ [rj(b[k -  l],e,f)]

e.')]" - W # “ 'W )]}
reT

When constructing timeslot r, there will be set o f exams allocated to timeslot t-1 and a set 

o f exams inserted in timeslot t+1. A matrix C is used, which refers to the number o f 

students in common for each pairwise exam set. We have

r j(b [k - \] ,e ,t)  =

1 fo r  odd timeslots

0  , . (5.4)
—= ----- 7------ r---= —t-----r—  otherwise

£  C (m ,e)+  ]£ c (> i,e )+ l
me(/-l) ne(l+1)

A range o f  # is  examined and the associated results are presented in Table 5.4.

H E C E A R T R E N T

Q A v Best Best
10

A v Best Best
10

A v Best Best
10

0 1684.85 894 1029.85 1648.71 1318 1452.14 1628.84 1289 1349.82
1 1493.80 864 1029.06 1757.13 1420 1501.68 1513.87 1167 1257.92

10 1571.83 887 962 .86 1610.44 1299 1423.93 1522.23 1161 1249.94
25 1438.29 859 914 .54 1744.47 1426 1550.95 1489.45 1180 1239.60
50 1444.72 859 917 .16 1691.32 1343 1483.05 1507.54 1140 1224.60
75 1444.96 859 918 .30 1748.61 1343 1607.83 1520.21 1141 1242.46

100 1444.06 859 916 .60 1712.64 1306 1525.30 1533.53 1121 1251.88
25 0 1442.99 859 916 .04 1699.38 1317 1517.40 1547.78 1121 1268.48
500 1441.66 859 916 .04 1695.85 1297 1517.58 1548.04 1125 1270.56
1000 1440.30 859 914 .72 1705.44 1303 1530.63 1552.31 1224 1270.88
2500 1440.97 859 915 .58 1751.22 1304 1568.30 1544.92 1114 1264.38
5000 1442.09 859 916 .24 1696.98 1304 1436.15 1548.91 1110 1271.40

Table 5.4 -Second-Order Statistics fo r  range o f  S on Bias Term.

When 0= 0, the bias constant is redundant and the related statistics will act as a comparison 

for alternative experimental values o f 6. The inclusion o f bias does improve solution 

quality. However, this claim is tenuous with respect to the EAR data set. With respect to 

HEC, setting 6>25 produces A v  solutions that are approximately 200 lower than the no bias 

system and there is a slight improvement o f the Best solution. As 6 increases, the 

improvement in solution quality stagnates. With respect to TRENT, improvement o f Av  is

124



Chapter 5 Minimising Second-Order Conflict

observed but not as significantly as for HEC. Setting 0>1 encourages Av  qualities that are 

approximately 100 lower than 0=0. However, the improvement o f the Best solution is very 

encouraging, with the exception o f  0=1000. Each best Best and best Av, for the data sets, 

have been bolded.

100 ,

80 ILn ILn IU1 ILn ILri i-n ILn ILn ILn n n n
60  -

4 0  -

20 I | ; i
o 111.1, M1L1, 111, II 1 11, LI 111 111 Ml 11 111 1-1 11-

O — 0 « " > © V > © 0 0 0  © ©
— c N w i r - o v i © © © ©—• rs © >/■> o— tN

Weight

B H E C D EAR □  TRENT

Figure 5.8- Percentage o f  Feasible Timetables across Bias Weight 0

Figure 5.8 presents the volum e o f  feasib le tim etables for each o f  the main data sets across

bias w eight 0. A s 0  increases, there is a m inim al drop in the feasib le tim etable rate with

HEC and TRENT. This small reduction in first-order quality is profitable due to the 

average im provem ent in the second-order quality o f  the tim etables. H ow ever, w ith EAR, 

there is a grave drop in first-order solution quality w hen 0  gets large and no real 

com pensation is evident w ith respect to second-order im provem ent. It is felt justified  to use  

0=100 in future experim ents since this setting im proves second-order quality, maintains 

first-order feasib ility  and allow s the search em phasis to remain w ith  the ants rather than a 

determ inistic greedy rule.

5 .5  T ra il in ten sifica tion

Until this stage, trail replenishm ents have been linear and based upon the CRF. This 

section  d iscusses m ethods o f  further differentiating betw een solutions based upon their 

perceived level o f  quality. The concepts discussed  here have been  inspired through either 

basic intuition or m ethods published in literature. Firstly, a static approach to additional 

trail replenishm ent is introduced. The trails associated w ith the ants that construct 

tim etables w ith second-order conflict scores below  the upper bound are intensified by

JsCQ
O
E
H
_o3
s
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some predetermined value %. Secondly, the natural progression to a dynamic approach is 

made. The upper bound is sensitive to the conditions of the run. Thirdly, a Modified Elitist 

Strategy, e.g. Dorigo et al. (1991), is incorporated within the algorithm. During a run, some 

solutions are regarded as favourable and the trails associated with these are intensified 

according to the weighting parameters used.

5.5.1 Static approach

I.
I The CRF is a linear function and consequently, the marginal increase in reward from one
|

| unit of fitness to the next is identical. This section introduces a basic method of placing

greater reward on a subset of solutions. Components of the ‘superior solutions’ will have a 

greater probability of involvement in future constructions due to the increased trail levels.

In this section, we will employ a static approach that places extra reward upon solutions 

that have second-order scores below a predetermined upper bound (UB). The new reward 

function is defined mathematically as follows

1 ■ + - —  ------ ><X (5-5)K +1 Sec score

where

[ X i f  Sec score < UB 
X = \ ~ (5.6)

[1 otherwise

and X and UB are constants that are varied. UB was chosen according to the general range 

of solutions returned for each of the data sets. All ants are eligible for trail intensification.

The results for various UB and X are presented in Appendix 5.1 but a summary of averaged 

statistics is presented in Table 5.5. Both UB and X are divided into broad groups. For all 

data sets, the following intensity levels {X) apply: Low - X=5, 10 and 15, Medium - X=20, 

25, 30 and 35 and High X=40, 45 and 50. The upper bounds for HEC are as follows: Low
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-  £75=1000, Medium - £75=1250, High - £75=1500 and Very High - £75=1750. For EAR 

and TRENT, the bounds are: Low -  £75=1250, Medium -  £75=1500, High -  £75=1750 and 

Very High -  £75=2000. Results are also compared again None (2=1).

Upper Bound Level
Intensity Level L ow M edium H igh Very H igh

N one 1571.32

HEC L ow 1477.05 1249.37 1299.89 1320.24
M edium 1234.99 1236.45 1245.49 1320.51

H igh 1197.49 1184.01 1204.48 1304.22
N one 1650.19

EAR L ow 1650.19 1642.62 1585.95 1585.30
M edium 1650.19 1570.87 1560.00 1627.31

H igh 1650.19 1532.79 1392.56 1604.09
N one 1397.87

TRENT L ow 1396.98 1414.44 1424.12 1493.73
M edium 1371.26 1379.32 1435.89 1473.97

H igh 1372.05 1317.30 1421.43 1491.98
Table 5.5 -Averaged Second-Order Scores fo r  various Intensity and Upper Bound Levels.

The results indicate that some form of trail intensification is advantageous. The Av 

solutions do lower for HEC and EAR across all settings of £75 as 2 increases. Better ‘one- 

o ff solutions are also possible (see Appendix 5.1). With respect to all data sets, poorer 

solution quality is obtained through Very High in comparison to Medium and High and 

occasionally Low. This demonstrates the (potential) benefit of placing extra emphasis on a 

small subset of solutions.

The feasibility rates do drop as 2 increases due to the higher reward of good second-order 

attributes and the reduced emphasis placed on the first-order condition of the timetable.
I
I The £75 does also have a controlling role on feasibility. A higher £75 allows for a greater 

number of eligible solutions that are intensified by 2. Consequently, the relative 

differences between solution qualities are closer to the non-intensified system than desired. 

This leads to limited improvement (with respect to second-order) but the maintenance of 

feasibility.
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□ UB=1000 ajUB=1250 n UB=1500 a UB=1750

Figure 5.9 - Percentage o f  Feasible Timetables across Intensification Weight X fo r  HEC

Figure 5.9 provides an illustration o f the impact o f A and UB on feasibility. It can be seen 

that feasibility deteriorates as A increases. The influence o f UB is interesting in this 

instance. It can be seen that higher feasibility is maintained for the largest value o f UB (i.e. 

UB=1750) for higher A, which corresponds to what has been stated above.

This section has illustrated the influence o f placing extra reward on a subset o f  solutions. 

The second-order improvement is not as great as desired but some solution enhancement 

has been shown. The biggest lesson is the impact on feasibility, which demonstrates the 

need to be cautious in future studies that offer additional replenishment for trail associated 

with good second-order components.

5.5.2 Dynamic approach

The drawback o f  Section 5.5.1 resides with its static nature. Before such a method can be 

employed, insight into the typical range o f second-order conflict scores for each data set is 

needed. Only then can the upper bounds be determined and the static approach performed. 

The implementation o f a dynamic approach removes the need for any pre-investigation 

runs, but does require the definition o f some acceptance criterion -  a method that defines 

the upper bound. The approach in this section has been inspired by the work detailed in the 

Record-to-Record Travel (RRT), Dueck (1992), which derives from the Great Deluge 

Algorithm (GDA), which was presented in the same paper as RRT. Both algorithms are 

one parameter optimization heuristics that set acceptance rules for worse intermediate 

solutions while exploring a solution space. The author proposed the GDA and the RRT
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algorithms to provide alternatives to Threshold Accepting (TA) and Simulated Annealing 

(SA).

Pseudo-code for the RRT algorithm is as follows, as from Dueck (1992). This is a 

maximisation problem and will be edited for minimisation.

Choose an initial configuration 

Choose an allowed DEVIATION>0 

Set RECORD=quality of initial configuration 

DO

Choose a new configuration, which is a stochastic small perturbation of the old 

configuration

Compute E=quality (new configuration)

If E>RECORD-DEVI ATION

THEN old configuration=new configuration 

If E>RECORD

THEN RECORD=E 

UNTIL there has been no improvement for a predetermined number of iterations

RRT, like GDA, requires the selection of one parameter for good performance compared to 

a sequence of parameters like some methods. The RRT provides the basis to the work in 

this section: a dynamic upper bound approach to trail intensification. Here, the algorithm is 

applied to minimization of costs (second-order) rather than any maximization problem. 

Firstly, the upper bound that is used to decide eligibility for trail intensification is some 

measure (deviation) away from the run-based minimum. The trail associated with any 

solution that has second-order costs below the upper bound is intensified by some factor 0. 

When a feasible solution is lower than the run-based minimum then the minimum is reset 

as the newfound run based minimum. The pseudocode for this approach is as follows:

Choose an allowed percentage deviation s  

Choose a replenishment rate 6

Intensify First Solution and set Best Solution=First Solution 

DO
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Set Upper Bound=Best Solution + f*Best Solution 

Generate next solution and calculate quality E 

If E<Upper Bound Then

Reward =  h------------------x 6
K +1 Sec score

Else

Reward = ------- + -----------------
K +1 Sec Score

Endif

If E<Best Solution Then 

Best Solution=E 

Endif

UNTIL all predetermined number o f ants have constructed timetables

Results across f a re  as follows in Table 5.6. The row in italics refers to the system 

described in section 5.4 when 6=100.

H E C E A R T R E N T

£ A v B est B est
10

A v B est B est
10

A v B est B est
10

- 1444.06 859 916.60 1712 .64 1306 1525 .30 1537.53 1121 1251.88
0.05 1581.02 752 995.12 1749.87 1326 1559.43 1451.65 1108 1182.68
0 .10 1593.69 845 1024.76 1478.77 1175 1289.20 1423.48 1106 1181.44
0 .15 1381.17 788 903.76 1472.19 1261 1311.10 1345.59 1071 1134.10
0 .20 1464.79 925 972.20 1626.75 1278 1480.40 1412.95 1149 1202.36
0 .25 1404.14 841 961.88 1640.05 1427 1488.50 1385.44 1101 1180.24
0 .30 1508.70 721 1100.44 1672.04 1356 1484.80 1440.84 1044 1204.18
0.35 1193.60 803 897.62 1587.82 1256 1382.68 1440.54 1102 1211.96
0 .40 1271.90 762 896.38 1603.67 1304 1474.27 1519.98 1135 1266.70
0.45 1294.73 847 1012.28 1462.43 1464 1548.00 1479.43 1142 1228.00
0 .50 1179.23 814 886.92 1593.45 1282 1440.40 1511.20 1157 1268.44

Table 5 .6 - Second-Order Statistics fo r  a range o f  e

Generally, the results associated with the dynamic method seem similar to those achieved 

with static intensification. A potential downside o f this approach lies with the use o f a run- 

minimum. If a ‘freak’ good quality second-order quality timetable is produced early in the 

search no real benefit is gained from this approach since a limited number o f ants intensify 

their trails. Thus, here we propose the use o f a local-minimum rather than the run- 

minimum. The minimum score from the previous 5, 10 and 20 cycles is used. Before the 

5th, 10th and 20th cycles the run-minimum is used. With respect to the pseudocode
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presented above the only alteration belongs to the Best Solution. While the Best solution 

found naturally remains the Best Solution, for the purposes o f localising the minimum 

used, Best solution becomes Best so lu tion^ , which is defined as the Best solution found 

during the previous n cycles, when in cycle c. For these experiments the 8 values used are 

0.25 for HEC, 0.10 for EAR and 0.15 for TRENT. These seemed sensible for the first and 

second-order quality trade-off.

H EC EA R T R E N T
n A v B est B est

10
A v B est B est

10
A v B est B est

10
- 1404.14 841 961.88 1478 .77 1175 1289.20 1345.59 1071 1134.10
5 1324.60 720 907.70 1651.54 1317 1428.85 1348.54 1064 1156.80

10 1345.73 778 941.86 1536.97 1334 1413.85 1361.98 1028 1121.20
20 1366.64 837 962.58 1476.09 1180 1286.50 1333.47 1018 1119.22

Table 5 .7 - Second-Order Statistics fo r  a sample o f  n

The minimums for both run and localised conditions are illustrated in Figures 5.10-5.12 for 

HEC, EAR and TRENT. These diagrams provide reasoning behind the results displayed in 

Table 5.7 There is an increase in solution quality with HEC through localising the 

minimum but not with EAR or TRENT. There is a notable disparity between the run and 

localised minimums used with HEC (see Figure 5.10) but not with EAR or TRENT. 

Therefore, similar volumes o f  ants intensify solution trails with EAR and TRENT across 

the types o f minimums used but, with HEC, fewer solutions are intensified with the use o f 

the run-minimum. Figures 5.10-5.12 indicate that not a large amount o f ant communication 

is required in order to find the overall Best since it is found during the early stages o f  the 

search.
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Figure 5.10 -  Run, 5, 10 and 20 Cycle Minimums fo r  HEC
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Figure 5.11 -  Run, 5, 10 and 20 Cycle Minimums fo r  EAR
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Figure 5.12 -  Run, 5, 10 and 20 Cycle Minimums fo r  TRENT

5.5.3 Elitist Ants

The use o f elitism in evolutionary combinatorial methods was first suggested in De Jong 

(1975) and was then first applied to AS through the TSP problem by Dorigo et al. (1991). 

Elitism was touched upon in Chapter 4 when applied to the first-order problem. Its benefit 

was overshadowed by alternative solution enhancement techniques but evidence o f 

improvement was presented. Additionally, Sections 5.5.1 and 5.5.2 demonstrated that 

benefit could be derived from intensifying top solutions. However, the decision to intensify 

was based on criteria that offered drawbacks. So, here we apply a method that intensifies a 

top percentage o f solutions. Work in this section will demonstrate the additional exploiting
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power that elitism offers and how crucial this method is with respect to lowering the 

second-order scores of a timetable.

When exploring a solution space, an elitist strategy places additional reward on solutions 

that are deemed ‘elite’. Typically, an ‘elite’ solution refers to the best solution according to 

some criteria. For example, Dorigo et al. (1991) reinforced the edges on the best solution

with additional trail quantity where e is the number of elitist ants, Q is some
L

predetermined constant and L* is the length of the best tour constructed.

Preliminary experiments observed that applying elitism as in Dorigo et al (1991) and 

Dorigo et al. (1996) does not generate the results as desired. Therefore, the true form of 

elitism will not be applied here. Instead of intensifying the best solution e times, the top 

global e solutions will be considered and weighted by a factor cr. This allows the majority 

of the information to be passed on by the global fittest members of the population and 

relates to tournament selection technique in Genetic Algorithms where only the n fittest 

members produce offspring, Goldberg (1989). Non-elitist ants are still permitted to 

contribute in order to encourage diversity of search.

With respect to the examination timetabling problem, depositing additional pheromone on 

pairwise exam sets belonging to the Best solutions will potentially bias future ants to insert 

these pairwise exam sets into the same timeslot. The underlying aim of this approach is 

that the combination of this bias and the stochastic nature of the algorithm will lead to the 

construction of the optimum or near optimum solutions.

The elitist approach used here will attempt to reduce the amount of experienced second- 

order conflicts. This section will take the following structure. Firstly, the criterion for 

elitism is based on second-order scores only. Secondly, the definition for elitism is altered 

to accommodate the first-order aspects of the problem. The criterion for inclusion within 

the ‘elite’ list is consequently based on the Elitist Reward Function (ERF). Thirdly, and 

finally, this approach is extended to include additional second-order bias.
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5.5.3.1 Second-Order Elitist Strategy

At each trail update stage per run (at the end of each cycle), the elite list is revised to 

contain ant members that have constructed timetables with the lowest second-order conflict 

scores. At each update stage, the trails associated with the e elitist ants are reinforced, 

while the level of trail between pairwise exam set (ij) during cycle t+ 1  can be computed 

as;

M * + i ) = P-Tu(t) + A zv + Ari/ (5-7)

The level of trail at cycle t is subjected to an evaporation rate p  and a replenishment update 

A Ty (as before). The set of e elite ants passes additional information to r  via A r j , which 

can be defined as;

100

A r J  =< Sec_ score where a> l (5.8)

0 otherwise

g  represents the quantity of additional trail replenishment and Sec_score relates to the 

second-order score of a timetable. A constant 100 has been chosen based on the second- 

order component of the CRF used in previous experiments and has been held static for ease 

of comparison with the results derived from previous investigations.

To implement this strategy, some parameters need to be deduced - the unknowns that have 

been mentioned above. Firstly, the extra emphasis that is placed on the trail (cr) and 

secondly, the number of elitist ants used (e) per run. To achieve suitable estimates for these 

parameters some precursory information is necessary.

Only one parameter is varied at any one time while the other parameter remains as stated 

below. These original settings have been selected based on previous experiments and 

literature. Dorigo et al. (1991) indicated that a range of e could be chosen and return 

similar results. Meanwhile, White et al. (2003) used (l/6)th of the amount of cities in the
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TSP. In this section, we will use 10% elitist ants and allow adjustment if necessary. 

Meanwhile, Section 5.5.1 revealed that an intensification weight of 15 is a good 

compromise between first and second order conditions and so should be regarded as a 

sensible starting point for these experiments.

Param eter Setting
e 10

<j 15
Table 5 .8 - Experimental settings o f  e and a

Influence o f (J

We now vary the trail replenishment rate o and the results are presented in Table 5.9.

HEC EAR T R E N T

a Av Best Best 10 Av Best Best 10 Av Best Best 10
I 1428.13 830 925.12 1678.23 1367 1472.39 1507.29 1174 1291.78
5 1618.53 823 973.56 1640.85 1341 1447.73 1490.10 1122 1227.98
10 1574.17 829 934.02 1566.70 1332 1416.68 1444.22 1107 1172.30
15 1377.89 649 861.78 1556.22 1257 1402.50 1383.68 1087 1142.18
20 1246.18 814 893.88 1325.47 1155 1162.40 1373.52 1055 1142.22
25 1292.24 684 955.28

No feasible solutions

1397.19 1046 1176.86
30 1320.66 747 935.50 1316.34 1119 1171.64
35 1067.88 740 964.85 1336.79 1010 1157.73
40 1145.80 692 767.73 1247.78 1049 1099.02
45 1036.98 690 870.33 1365.48 1065 1209.43
50 1393.44 734 1100.25 1245.18 1015 1101.83

Table 5.9- Second-Order Statistics describing influence o f  a

There is an encouraging improvement in the second-order conflict scores of the feasible 

timetables constructed as cris increased. Overall, the average scores decrease and there is a 

noticeable improvement in the Best solution. However, as is commonplace with timetables 

of ‘better’ second-order scores, there is a marked decrease in the volume of feasible 

timetables generated. For a  > 25, no feasible timetables were recorded for EAR and the 

volumes associated with both HEC and TRENT are also reduced (see Figure 5.13).

As o  increases, non-elitist feedback becomes less influential. In consequence, the AS- 

EXAM system moves closer to the ACS and MMAS frameworks that only use the global 

best solution to update trails. The use of lower cr in AS-EXAM allows non-elitist solutions 

to have a greater role and thus, encourages greater diversity and effectively more 

exploration.
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Figure 5.13 -  Percentage o f  Feasible Timetables fo r  range o f  crfor Second-Order Elitism

There is no exact approach to the deduction o f appropriate parameter settings and there is 

no exception here.

A summary o f  results for each data set is a follows.

HEC

For a  > 15, feasible timetables with superior second-order scores are constructed. The Best 

scores are as low as 649, which is very good. The trade-off with feasible timetable count is 

quite severe. For cr >25, the percentage drops considerably. Initially the proportion drops 

to approximately 20%  and decrease below a 1% average when o  = 50. However, the 

improvement in second-order quality dampens as <j  reaches higher intensities. Setting a  = 

[15,20] here seems appropriate. Even though the Best score (814) associated with <j = 20 

is not near the best score observed, encouragement comes from a satisfactory Best 10 score 

(893.88) and a reasonable feasibility rate.

EAR

As stated above runs performed with cr >  25 are not suitable due to the inability o f the 

method to generate one feasible timetable. For weight intensities below 25, the second- 

order statistics improve progressively as a  increases. In response, as stressed previously, 

the volume o f  feasible timetables decrease. The most satisfactory second-order results for
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EAR are returned when cr= 20 but only 10.81% of the timetables are deemed as feasible. 

However, despite this, cr will be set at 20 when using the EAR data set as we only need to 

produce one good solution.

TRENT
i
ij
I Increasing cr does reduce the volume of feasible timetables generated but the decrease is

j  not as drastic as for the other data sets. Firstly, feasible timetables are constructed for all

settings of cr. Additionally, for the most intense setting experimented (cr = 50), a relatively 

respectable 15.03% of the timetables are feasible. With respect to second-order statistics, 

there is an improvement as cr is increased. However, the benefit slows for relatively small 

settings of cr. Consequently, with the first and second-order trade-off in mind, a range of 

settings 15 <<j<25 appear justifiable.

In general, setting cr=20 seems appropriate for all datasets, however there may be potential 

problems with the feasibility rates of difficult data sets. Thus, a value of 15 has been 

chosen here, and in practice, a weight could be selected which adapts as the search 

progresses according to the number of feasible timetables being produced.

Influence of e
We now investigate the sensitivity of varying the number of elitist ants (e) used per run. 

The trail intensification rate, cr, is set at 15 for all data sets. The results are tabulated here:

Number of elitist ants (e)
1 5 10 15 20 30 50

HEC

Average 1333.44 1351.37 1377.89 1462.01 1383.91 1355.73 1277.22
Best 845 727 649 697 762 795 691

Best 10 933.03 973.34 861.78 956.15 933.26 930.34 847.88
Worst 10 2239.07 2106.30 2408.30 2153.68 2286.00 2403.80 1924.55

EAR

Average 1768.43 1529.58 1556.22 1566.24

N/a N/a

1305.98
Best 1425 1265 1257 1315 1140

Best 10 1535.23 1377.20 1402.50 1406.50 1681
Worst 10 2057.13 1748.57 1778.13 1901.70 1598.40

TRENT

Average 1443.85 1423.71 1383.68 1441.84 1339.06 1335.48 1438.65
Best 1141 1056 1087 1146 1055 1009 1075

Best 10 1229.08 1192.60 1142.18 1226.06 1145.12 1120.88 1277.70
Worst 10 1819.80 1794.94 1782.66 1815.36 1724.86 1717.98 1708.62

Table 5.10-  Statistics describing influence o f  e
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G enerally, the second-order perform ance o f  the algorithm im proves as the proportion o f  

elitist ants increases. H owever, such a statement should be taken tentatively. The 

indifferences o f  the second-order statistics for various e are such that any e >  5 appears 

acceptable. This can be explained as fo llow s. S ince the criterion for elitism  rests on ly  with  

the second-order score o f  a tim etable, the elite list contains tim etable constructions that 

have good  second-order quality, irrespective o f  feasibility status. M em bers o f  elite lists are 

solutions o f  sim ilar second-order quality and also, not too dissim ilar constitutions. After 

som e search tim e has elapsed, the pherom one levels  associated w ith certain (good  second- 

order) solution characteristics play dominant roles and have a strong influence the 

decisions o f  subsequent agents. Ants becom e trapped within infeasib le regions o f  the 

solution space due to the attempts to exploit (strong) feedback that has been passed to the 

trail by previous ants. This strong feedback originates from the elite ants, w hich  have the 

objective to identity good second-order characteristics. The influence on feasib ility  rates 

for experim ental e can be seen in Figure 5.14.

J5 60

H 40 -

£  30

m M ii
10 15 20

e Elitist Ants
30 50

B H E C B EAR □  TRENT

Figure 5 .1 4 -  Percentage o f  Feasible Timetables fo r  range o f  e fo r  Second-Order Elitism

Placing additional reward on a subset o f  trails that belong to ‘better’ tim etables appears to 

im prove the overall second-order solution quality o f  the tim etables generated. Increasing  

the trail intensification w eight, cr, has a p ositive influence on second-order aspects, w h ile  

the im pact o f  varying the number o f  elitist ants, e, holds less power. M agnifying both  

parameters has a detrimental effect on the first-order capabilities o f  the algorithm across all 

data sets. O bserving the first-order statistics provides interesting insight. For exam ple, w ith  

the EAR data set, w hen feasib le tim etables are difficult to com e by, the average number o f  

unallocated exam s at mature phases o f  a run can be greater than 5 w hich, indicates 

attention needs to be paid to the first-order requirements o f  the problem. This w ould
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require neglecting second-order aspects. Adaptive weights are an option, which slackens 

the focus placed on second-order importance at strategic times of the search i.e. at the 

observation of infeasibility. However, due to the search time limit (i.e. 100 cycles), 

observing the benefit of sensitised elitist weights or the number of elitist ants is unlikely.

Observing the first-order problems during this phase of investigation became the 

springboard for the following piece of study: an elitist strategy that considers first and 

second-order characteristics. To complete this section, parameter settings that perform 

robustly are cr=15 and e=J0.
\

5.5.3.2 Elitist Reward Function (ERF)

Section 5.5.3.1 concluded that an elitist strategy, with second-order bias, prompts the 

construction of timetables with second-order qualities better than previously experienced. 

While this was encouraging, the major flipside was the decrease in the feasibility rates that 

resulted. Within this section, we attempt to address the balance between first and second- 

order priorities. The membership of the elite list is no longer solely dependent on the 

second-order quality of the timetable but now it is based on a modified version of the CRF.

Similar to the previous section, the level of trail between pairwise exam set (ij)  during 

cycle t+1 can be defined as in Equation 5.9;

T t ( t  +  l )  =  p . T tl{ t ) + b T t  + A r /  (5.9)

Whereas, A t ., now can be defined as;

A t .. —y

cr. ERF

0 otherwise
where d> 1 (5.10)

This additional replenishment depends on the ERF and trail intensification rate cr. ERF is 

defined as:
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ERF = —?— + + —-  where <%>0 (5.11)
K +1 Sec score

with cr representing the quantity of additional trail replenishment, Sec_score relating to the 

second-order score of an ‘elite’ timetable and 8 2  is the additional weight that raises the 

importance of the second-order condition of the timetable and is used for bias towards 

solutions of better quality.

During precursory investigation the parameters are set at the following;
II

Parameter Setting
e 10
S2 0
cr 15

Table 5 .11- Experimental settings o f  e, S2and cr.

Influence of e

We now investigate the sensitivity of varying the number of elitist ants, e, used per run. 

The trail intensification rate, cr, is set at 15 for all data sets. The results are presented in 

Table 5.12.

Num ber o f elitist ants (e)

1 5 10 15 20 30 50

HEC

Average 1209.22 1070.83 1264.16 1225.31 1191.46 1187.57 1272.97
Best 746 111 743 703 780 793 767

Best 10 826.74 799.64 863.26 828.82 840.06 839.76 834.48
Worst 10 2139.98 2274.54 2483.36 2437.18 2385.5 2551.46 2402.62

EAR

Average 1608.43 1548.28 1580.27 1455.76 1453.9 1557.06 1553.38
Best 1240 1249 1208 1088 1148 1220 1212

Best 10 1337.6 1284.2 1322.4 1196.6 1234 1281.4 1310.4
Worst 10 2016.92 1987.92 2071.36 1945.02 1946.46 1993.14 1960.38

TRENT

Average 1404.05 1309.22 1405.28 1387.21 1322.6 1301.47 1435.68
Best 1077 1013 1076 1034 1011 1021 1118

Best 10 1163.86 1072.2 1152.64 1156.76 1078.5 1063.14 1177.76
Worst 10 1825.32 1823.64 1882.34 1863.66 1869.46 1838.9 1897.9

Table 5 .12- Second-Order Statistics describing influence o f  e

There is no distinctive pattern in the second-order statistics generated for various e. The 

Average and Best results for each of the data sets have been highlighted to emphasise the 

lack of pattern that exists amongst the results. With HEC, the most appealing average
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second-order score is when e=5, while the Best result was generated for e=15. 

Consequently, no definite selection of e can be chosen when considering this data set. 

Similar statements can be made for the other data sets. Since the best solutions for HEC 

and EAR were produced when e-15  and a competitive best was found for TRENT at this 

setting we shall conclude that e=15 is arguably the more favourable of the settings of e. 

Encouragingly, the first-order capabilities are markedly better than experienced in Section

5.5.3.1.

As an aside, we should note that it is advisable to achieve a balance between exploration 

and exploitation. A small proportion of elitist ants will encourage stagnation since a small 

subset of solutions will dominate and bias future explorations strongly to form certain 

constructions. Conversely, a large number of elitist ants will limit the differentiation 

between types of solutions and the underlying aim of elitism will be lost.

Influence of 62

A weight 8 2  has been introduced to place additional importance on the second-order 

condition of a timetable. Previously, the weight 8  in the CRF has been set at 100. However, 

by placing additional weight on the second-order component of the reward function, the 

elite list will become more susceptible to members dominated by their relatively good 

second-order scores. Consequently, less emphasis will lie with the first-order domain of a 

timetable. Increasing 8 2  has a positive influence on the overall second-order capabilities of 

the search. The Av, Best 10 (statistics in Table 5.13 have been omitted) and Worst 10 

solutions decrease encouragingly as the second-order bias is intensified. The most notable 

improvement lies with the Worst 10 solution score. Typically, with regard to the HEC data 

set, Worst 10=2483.36 when 8 2 = 0  and when 8 2  raises to 2900, for example, Worst 

10=1497.63. This provides an indication of the drop in Worst 10 scores when the weight of 

8 2  is increased, showing the positive influence of increased measures of 8 2 . However, it is 

not common to be concerned with the quality of the poorer solutions since we are only 

generally interested in the Best solution.

The results are presented in Table 5.13.
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HEC EAR TRENT
82+100 Av Best Worst

10
Av Best Worst

10
Av Best Worst

10
100 1264.16 743 2483.36 1580.27 1208 2071.36 1405.28 1076 1882.34
250 1221.60 656 2462.46 1469.30 1132 1983.20 1322.53 1007 1860.26
500 1280.52 725 2472.50 1429.86 1149 1907.78 1323.13 1003 1810.46
750 1121.60 754 2247.94 1328.36 1022 1777.35 1277.37 1019 1731.20

1000 1119.08 701 2330.28 1425.11 1161 1832.70 1302.75 1007 1794.06
1500 1029.31 676 2102.54 1279.98 1086 1599.15 1237.71 983 1722.70
2000 1111.25 732 2004.14 N/a N/a N/a 1303.83 1019 1773.38
2500 999.46 736 1719.55 1357.46 1177 1760.00 1248.83 999 1699.70
3000 908.01 732 1497.63 1337.01 1131 1717.40 1200.38 947 1690.04
3500 947.28 645 1535.73 1347.11 1247 1723.60 1233.81 949 1678.38
4000 1048.09 695 1990.20 1231.89 1111 1617.90 1251.04 1020 1709.20

Table 5.13- Second-Order Statistics describing influence o f S2

The trade-off for improved second-order search capacity is the reduction in the volume of 

feasible timetables (see Figure 5.15). On occasions, increasing 8 2  reduces the ant’s first- 

order ability to an extent that no feasible timetables can be constructed. In such 

circumstances, since no diversification criterion is used, the ants remain trapped within the 

infeasible areas of the solution space. As before, EAR proved to be the more difficult data 

set due to the number of infeasible runs for higher settings of 8 2  - when 8 2 = 1 9 0 0  (i.e. 

£2+100=2000), the algorithm did not generate one feasible timetable across five runs. For 

8 2 =2400, 2900, 3400 and higher, four infeasible runs are recorded. Infeasible runs are 

observed for the HEC data set, but to a lesser extent than EAR. However, no such 

problems are realised with experiments on TRENT. All runs across all predetermined 

settings of 8 2  return at least one feasible timetable.

Figure 5.15 illustrates the percentage of feasible timetables across 8 2 . A downward trend is 

observed as 8 2  is increased. Feasibility rates drop considerably for higher 8 2  with HEC and 

EAR. Typically, for 8 2 >1 0 0 0 , the feasibility rate for EAR is lower than 30%, when 

8 2 =2 0 0 0 , no feasible timetables are constructed. Meanwhile, the percentage proportion of 

feasible timetables for TRENT does lower slightly as 8 2  is intensified, but the percentage 

remains fairly consistent. A robust setting of 8 2 +100 is 750 and will be used in future 

experiments, when appropriate.
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Figure 5.15 -  Percentage o f  Feasible Timetables across ERF Weight 82+ 100

Influence of G

Varying cr provides a w ay o f  further differentiating betw een solutions. The higher the 

weight, the larger the disparity in solution  reward. Increasing the intensity im proves the 

average perform ance o f  the search. The average second-order conflicts score and the 

average B est 10  score drops fairly consistently  as cr is m agnified, although, interestingly, 

there is no im provem ent in the averaged W orst 10  solutions. The W orst 10  scores are 

stagnant across the experim ental values o f  cr.

Increasing cr does not influence the first-order success o f  the algorithm. The percentage  

rate o f  feasib le tim etables generated (see  Figure 5 .16) is stable across the values o f  cr. This 

is to be expected  given  the trails that cr intensifies. A ll trails are linear com binations o f  first 

and second-order reward. Intensifying the trail w ithin pairw ise sets o f  exam s not only  

indicates second-order suitability but first-order as w ell. C onsequently, this explains the 

robustness o f  the rate o f  feasib le tim etables. The summary statistics for this investigation  

are presented in Table 5.14.
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H E C E A R T R E N T

CT Av Best Best
10

Av Best Best
10

Av Best Best
10

1 1361 .15 83 7 9 1 8 .3 6 1 703 .72 1265 142 1 .6 6 1452 .27 1123 1195 .92
5 1 299 .94 74 9 8 6 7 .3 4 1553 .03 1176 131 9 .6 4 1 382 .62 1074 1 1 3 5 .4 6
10 1 245 .77 7 5 6 8 4 4 .6 6 1551 .18 1081 1 282 .02 1 303 .07 9 2 0 1069 .82
15 12 6 4 .1 6 745 8 6 3 .2 6 15 8 0 .2 7 1208 1 353 .72 1387.21 1094 1 1 5 6 .7 6
20 1 262 .54 72 4 8 5 1 .1 6 1411 .05 1105 118 0 .8 2 1335 .73 1013 1 1 1 3 .0 0
25 1064 .28 7 3 6 8 1 9 .7 6 1457 .45 1080 12 4 8 .8 4 1 341 .35 1050 11 0 6 .1 4
30 1165 .98 7 75 8 3 3 .6 0 1457.91 991 1 211 .58 1 304 .12 9 8 6 10 7 9 .0 0
35 1 151 .17 70 4 8 1 1 .4 6 1421.51 1049 1166 .78 1 370 .32 1093 11 4 7 .1 0
40 11 3 2 .0 0 803 8 3 0 .7 0 1461 .58 1142 1 2 5 8 .1 4 132 6 .4 7 1001 1092 .88
45 1105.61 7 8 2 8 0 6 .7 0 1426 .75 1110 12 2 0 .1 0 13 0 1 .7 0 1019 1 0 8 2 .6 6
50 1077.41 713 7 7 6 .3 4 1 478 .16 1159 1 2 6 4 .8 0 13 4 2 .3 6 9 8 9 10 9 7 .8 2

Table 5.14- Second-Order Statistics describing influence o f  a

Figure 5 .16 details the percentage o f  feasib le tim etables across the three data sets for a 

range o f  cr.

45

Sigma
B HEC n  EAR □  TRENT

Figure 5 .1 6 -  Percentage o f  Feasible Timetables across Trail Intensification Weight cr

To avoid wasted precursory investigation, generalised settings w ill be used. H ence, the 

finalised parameter settings are as follow s:

P a r a m e t e r S e t t in g
e 15

100+S2 7 5 0

a 30
Table 5.15- Robust Elitist Settings

T hese settings have been used and run on the data sets. The results are presented in Table 

5.16.
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Av Best Best 10 Feasible
HEC 935.66 673 711.28 76.84
EAR 1296.94 1037 1104.02 62.83

TRENT 1259.89 985 1039.48 71.45
Table 5 .16- Second-Order Statistics fo r  Robust Elitist Settings

The results are more than satisfactory and indicate that the elitist settings are robust. They 

will subsequently be known as Robust Elitist Settings. The statistics in Table 5.16 are 

considerably superior to those generated through non-elitist systems and are only bettered 

by some results linked with the usage of higher values of the second-order bias parameter 

8 2 . However, as we have seen above, the first-order quality of constructed timetables 

suffers when 8 2  increases and explains the setting chosen, 1 0 0 +8 2 = 750.

To adapt 82 to the disparities of scale between data sets and to construction difficulties, a 

management system that fine-tunes 82 is suggested. This parameter could vary according to 

the level of feasibility, the second-order performance of the search or the width of 

exploration. This concept is discussed at greater length in Chapter 7.

5.5.3.3 Additional Second-Order Bias

Section 5.5 has shown that the use of trail intensification has a positive effect upon solution 

quality. The approach discussed in Section 5.5.3.1 has the potential to produce good 

second-order solutions but neglects the first-order priorities of the problem. Meanwhile, 

Section 5.5.3.2 seems to address the balance between the first and second-order priorities. 

In this section, we attempt to improve the second-order fitness of the results achieved in 

Section 5.5.3.2 by incorporating a second list as in Section 5.5.3.1.

The work detailed in Section 5.5.3.1 is used as a basis and s ants are placed in a second 

‘elite’ list. Membership is according to the second-order score of a timetable rather than its 

combined trail (first list). The aim is to recognise pairwise sets of exams that could 

contribute towards feasible low second-order conflict timetables. The set of 15 elite ants, e, 

from the previous section remain and we now vary s, the size of the second elite set. The 

parameters used for this investigation follow the Robust Elitist Settings.

Here the influence of varying s is tested and the results are presented in Table 5.17.
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HEC EAR TRENT
s Av Best Best

10
Av Best Best

10
Av Best Best

10
0 9 3 5 .6 6 673 7 1 1 .2 8 1 29 6 .9 4 1037 1 104 .02 1 259 .89 98 5 1 039 .48
5 8 9 9 .6 0 671 6 9 7 .6 4 1 25 1 .3 9 1002 1 074 .37 1 302 .62 1046 1 076 .24
10 890.63 6 3 2 6 9 5 .3 8 1310 .63 1104 1 12 5 .6 0 1261 .05 9 9 2 1 058 .02
15 1 039 .67 6 9 6 7 6 6 .3 6 1156.04 932 9 6 7 .5 5 1 283 .76 98 8 1 0 5 9 .1 0
20 9 1 5 .6 0 620 6 9 1 .4 8 136 8 .8 0 1115 1 159 .45 1247.25 9 6 2 10 3 6 .8 6
30 1 066 .39 705 7 3 9 .0 2 1 38 8 .5 9 1049 11 6 0 .3 2 1263 .98 946 1 006 .32

Table 5.17- Second-Order Statistics describing the range o f  s

It can be seen that incorporating a second elite list does produce occasional better results, 

but the improvement is not as significant as anticipated. The best Best results have been 

bolded and it is observed that relatively large 5 is needed to make an impact. For HEC, the 

best Av  solution is seen when s=10  and the best Best at s=20. However, it is worth noting 

that the results achieved for s=15 is no superior to s=0. For EAR, both the best Av solution 

and the best Best are observed when s=15. But, there is no real pattern across s. Typically, 

for EAR, the results returned at s=10 and s=J5  are inferior to s=0. For TRENT, the results 

are rather indifferent, but marginally superior for larger s. The percentage o f  feasible 

timetables across s is presented in Figure 5.17.

80 ,
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S Ants
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Figure 5.17 -  Percentage o f  Feasible Timetables across S Ants

For all data sets, the distribution o f  the percentage o f feasible timetables across s exhibits a 

bi-modal like distribution. Higher percentages are observed at s=5  and s=30  and lower 

rates between these values o f s. An intuitive reason is as follows. As s increases, greater 

reward is placed on elite solutions chosen solely on second-order scores and thus, 

detracting from the first-order problem and consequently, feasibility rates suffer. In section

5.5.4.1, increasing the number o f elitist ants had a detrimental effect on feasibility rates. 

However, this was not observed for bigger s within this section. Increasing the size o f the 

second-order elite list limits differentiation between solutions and since more focus is also
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placed on feasibility (through the ERF) the ants do not get trapped within infeasible 

regions of the solution space.

Section 5.5 has shown that trail intensification improves solution quality significantly, 

relative to what results have been observed previously. Stiitzle and Hoos (1996) stressed 

that elitism is necessary to enhance solution quality when using the ant system. It was 

demonstrated that the introduction of an Elitist Reward Function with an additional 

second-order bias 8 2  not only improves the second-order quality of the timetables 

generated but also maintains feasibility. In addition, a set of parameters were obtained that 

were robust to all datasets evaluated. The elite list was constructed according to the e best 

global solutions, however some authors, e.g. White et al. (2003) and Stiitzle and Hoos 

(1996), do claim that better search environments can be obtained through classifying elite 

on a local basis. However, it was observed through preliminary tests that quicker 

convergence was possible with global elitism and importantly, better solution quality 

within the allocated 100 cycles. If extended runs were permitted then the use of local 

elitism could prove beneficial given the additional diversity that it would yield. 

Alternatively, a system that alternates between global and local elitist lists has the potential 

to succeed. However, subsequent work within this chapter and Chapter 6 aims to increase 

the diversity of ant searches and therefore, fully evaluating the efficiency of local- 

influenced elitist lists is not felt warranted.

5.5.4 Ant Synergy

Figures 5.18-5.20 provide evidence of the positive communication between ants with 

respect to second-order when using the ERF with Robust Parameter Settings. The average 

and running best scores against time (cycle) for feasible constructions are plotted for each 

of the three data sets. These statistics have been averaged across five runs. Each line graph 

begins at the cycle when all five runs return at least one feasible timetable.
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Figure 5.18 -A verage  and Best Second-Order Score versus Cycle p lot fo r  HEC under Elitist conditions
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Figure 5.19 -  A verage and Best Second-Order Score versus Cycle p lot fo r  EAR under Elitist conditions
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Figure 5.20 -A verage and Best Second-Order Score versus Cycle p lot fo r  TRENT under Elitist condition

Figures 5.18-5.20 show the strong learning capabilities o f the ants that use the ERF  

method. Solution improvement continues for longer and is more intense than previously 

experienced (plots not presented for other systems e.g CRF).
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5.6 Ant Convergence

A characteristic of the ant system is that agents do not generally converge to a common 

timetable. The inherent probabilistic nature of the algorithm reduces the possibility of 

stagnation occurring. However, as a search matures, the diversification of the ant 

investigation is reduced. Concentration is placed on a subset of the solution space and 

consequently, a greater number of common solution characteristics between timetables 

occurs. The underlying aim of such search processes is to find that balance between 

exploration and exploitation. This balance has been examined through the use of two 

studies. Firstly, we will take a look at the standard deviation of an example run from each 

of the three data sets. Secondly, we will investigate the branching possibilities as the search 

matures.

5.6.1 Standard Deviation

Figures 5.21-5.23 plot the cyclic standard deviations of the second-order scores for two 

search environments. The first search process uses the Elitist Reward Function (ERF) 

under the Robust Elitist Settings (i.e. the number of elitist ants, e, is 15, while the second- 

order bias IOO+S2 is 750 and the trail intensification weight cr is 30). The second search 

environment uses the Combined Reward Function (CRF) with a second-order component 

weight, S, of 100. These figures show that the levels of diversification of the different 

search types and demonstrate whether the ants are converging on the same solutions.

Generally, the standard deviation rate reduces until some stage and then dampens. These 

characteristics indicate that the search becomes more focused as it matures and this can be 

attributed to the exploitation of ‘good’ feedback by the ants. For HEC and TRENT, the 

cyclic standard deviations are lower for the ERF than the CRF search environment. This 

observation suggests that the use of elitism reduces the options of the ants since extra 

reward is placed on an ‘elite’ subset of solutions and subsequent ant decisions are inclined 

towards these more heavily rewarded solution characteristics. Reducing the number of 

choices for the ants is not necessarily detrimental and can lead to better solution quality as 

greater exploitation is performed in certain subsections of the solution space. 

Encouragingly, Figures 5.21-5.23 show that the ants do not converge to the same solution 

types and there is at least some search variability at mature stages of the search process.
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The average number o f students taking each exam (#Studs/Exam ) is 120.03, 42.77 and 

57.08 for HEC, EAR and TRENT respectively. This ordering o f #Studs/Exam  corresponds 

to the scales on the Std Dev axis on each o f the Figures below. The disparity between the 

plots within each Figure could be attributed to the average change in second-order costs 

per exam move. For example, with HEC, large deviations associated with the CRF system 

indicate that a large range o f second-order scores is obtainable, given #Studs/Exam, if  no 

exploitation characteristics (with respect to second-order) are exhibited. Therefore, 

narrowing the solution space that is explored through the ERF leads to smaller changes 

between solutions and consequently, a drastic drop in standard deviation is experienced. 

Similar statements, but to a lesser extent, can be made regarding TRENT. However, with 

EAR, the standard deviations o f the ERF and CRF are similar. This may be attributed to 

the difficulty o f the problem and consequently, the feasible timetables that are produced 

may be closer in characteristics when compared to the other data sets. This theory is 

supported by the Entropy values presented in Section 4.4.1.3, which show that EAR 

timetables have the smallest diversity.
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200

100
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Figure 5.21 -  Cyclic Standard Deviations o f  Second-Order Scores fo r  ERF and CRF fo r  HEC.
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Figure 5.22- Cyclic Standard Deviations o f  Second-Order Scores fo r  ERF and CRF fo r  EAR.
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Figure 5.23 -  Cyclic Standard Deviations o f  Second-Order Scores fo r  ERF and CRF fo r  TRENT.

5.6.2 Branching Factors

To demonstrate the focus o f the search, we will examine the mean branching factor A , 

Gambardella and Dorigo (1995). The aim o f the search process is to obtain a balance 

between exploitation and exploration. Stiitzle and Hoos (1997) suggested that best 

solutions are found near stagnation environments since the ants concentrate on a small 

subset o f the solution space. If A represents the dimension o f the solution space that is 

being investigated, it is claimed by the above authors that lowering A to some mark is 

desirable. The mean branching factor was defined formally in Chapter 2 (Pages 40 -  41) 

and will be revisited here.

Let AQ max(r,s) and AQmin(r,s) be the largest and smallest trail values on all feasible 

pairwise vertices (r,s), where Sr=AQmax(r,s)-AQmin(r,s). The mean branching factor for a 

vertex r is represented by the number o f  vertices s, with a pairwise trail score greater than 

A.Sr+AQmin(r,s). It was suggested by Stiitzle and Hoos (1997) that setting A = 0.05 is 

appropriate and will be used here. Figures 5.24-5.26 plot the cyclic mean branching factors 

for the ERF and CRF.
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Figure 5.24 -  Cyclic Mean Branching Factor when using ERF and CRF fo r  HEC.
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Figure 5.25 -  Cyclic Mean Branching Factor when using ERF and CRF fo r  EAR.
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Figure 5.26 -  Cyclic Mean Branching Factor when using ERF and CRF fo r  TRENT.

Figures 5.24-5.26 show that the dimension o f the solution space reduces as the search 

matures for both the ERF  and the CRF  related environments. For all data sets, the mean 

branching factors for the ERF  and CRF  are similar from roughly the 30th cycle. Prior to this 

mark, the mean branching factors for EAR and TRENT are consistently lower for ERF  

than the CRF , which indicates that the area o f the solution space that is explored by the 

ants is smaller during the early phases o f the search and (potentially) more focused. This
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can lead the ants to investigate better quality regions of the solution space as the search 

matures due to the more efficient investigations during the earlier stages of the search. A 

slightly different pattern occurs with HEC, the ERE cyclic mean branching factor is lower 

from the onset of the search. However, by approximately cycle 10, the CRF system has the 

lower mean branching factor and this continues until cycle 30. However, the lower 

branching factor suggests that the search is more focused during the infancy of the search 

and this is significant with respect to obtaining overall better solution quality.

Each experimental run that has been performed (on the ERF and the CRF) is analysed here 

(Table 5.18) to show the benefit of the ERF over the CRF and consequently, emphasises 

the overall benefit of a proficient search process during the early phases of the search.
thAlong with the fundamental statistics in Table 5.18, the Best solution at the 30 cycle is 

also recorded. This statistic has been included to assess the improvement witnessed after 

the dampening point (as seen in Figures 5.24-5.26).

ERF CRF
Run

Number
Cycle o f  

1st 
feasible

Overall
Best

Best 
found  @ 

cycle

Best @ 
30th 

cycle

Cycle o f  
I s‘ 

feasible

Overall
Best

Best 
found  @ 

cycle

Best @  
30th 

cycle
1 8 693 49 698 10 945 34 947

rj 2 9 770 47 792 8 1013 20 1013
W 3 10 712 61 776 9 987 20 987
9 4 6 673 65 765 10 912 42 946

5 6 694 85 752 4 969 36 975
1 14 1095 93 1198 - - - -

2 12 1144 65 1314 13 1404 85 1490
%u 3 11 1150 97 1349 13 1319 75 1354

4 13 1037 54 1182 14 1568 28 1568
5 14 1038 98 1206 12 1381 56 1463
1 7 1098 99 1265 3 1438 34 j 1465

H 2 7 1069 87 1248 2 1445 15 1445
i 3 9 994 92 1139 2 1455 11 145506
H 4 8 983 87 1188 3 1289 79 1399

5 7 991 87 1227 3 1413 18 1413
Table 5.18 -  First and Second-Order Statistics describing the effectiveness o f  the ERF over the CRF

Table 5.18 demonstrates the benefit of using the ERF based system ahead of the CRF. The 

quality of the best solution found is significantly better for ERF than CRF. It can be seen 

that, in all cases, the best solution at the 30th cycle for the ERF is better than the overall
thbest solution for the CRF. It is shown that improvements of the best solution after the 30 

cycle are commonplace for ERF but only occur in 8 out of the 15 instances for the CRF, 

with only 4 of these occurring after the 50th cycle (suggesting that the second half of these 

searches are often obsolete).
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The use of the first-order component in the ERF allows for the maintenance of feasibility 

and, in some cases, improves feasibility rates. The 1st run of EAR is an example of this. 

The CRF system does not generate one feasible timetable, while ERF leads to the 

construction of (at least) some feasible timetables. The ability of the ERF to encourage 

more feasible timetables will be discussed further in Section 6.4. Additionally, the timing 

of the observation of the first feasible timetable is noted. It can be seen that the statistics 

for ERF and CRF are similar for HEC and EAR. However, there is a disparity with 

TRENT, but the trade-off for slower feasible return is the significant improvement of 

second-order quality.

This section has shown that the ants that construct timetables during the latter cycles will 

benefit considerably if more focused searches are performed within the infancy of the 

search. Placing more reward on ‘elite’ solutions narrows the investigations of the ants, thus 

leading to better solutions in the short term. Subsequent ants then exploit (as the mean 

branching factor gets smaller) the trails in desirable areas of the solution space and these 

actions allow for the further improvement of best-found solutions during later cycles.

5.7 Influence of Timeslot Vertices

Section 5.2 suggested that incorporating a trail between exams and timeslots offers 

additional search potency and such trail has been incorporated in this Chapter. In this 

section, evidence confirming this statement is provided. The ERF with Robust Elitist 

Settings system is used for three search environments. The first updates the trails between 

pairwise exam sets and the pairwise exam-timeslot sets (labelled El), which conform to the 

system used in Section 5.5.3.2. The second environment only updates the trails between 

pairwise exam sets (labelled E2) and the third only updates the trails between pairwise 

exam-timeslot sets (labelled E3). Results for these environments are presented in Table 

5.19.
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Environment Best Feasible

HEC
E l 673 76.84
E2 770 68.53
E3 804 28.00

EAR
El 1037 62.83
E2 1216 64.52
E3 - 0.00

TRENT
El 985 71.45
E2 1210 67.50
E3 1150 64.56

Table 5.19 -  Quality Statistics fo r  Three Trail Update Environments

Table 5.19 presents the following observations. On a first-order level, El is marginally 

superior to E2 and both El and E2 significantly outperform E3. This indicates that the 

relative position of exams is more important that the absolute position when regarding the 

feasible timetables. Meanwhile, it can be seen that the second-order results regarding E3 

are comparable with El and E2. The exception here is the EAR dataset due to the 

construction of no feasible timetables. Importantly, the results presented in Table 5.19 

emphasise the benefit of accumulating feedback regarding both the relative and absolute 

positions of exams in timetables. Therefore, environment El will be used in all future 

studies.

5.8 Weighted Construction Heuristic

As detailed previously in this thesis, the choice of the exam to allocate depends primarily 

on the balance between trail accumulation and the level of visibility, along with the 

inherent randomisation. Exam selection is also influenced by a constant, which represents 

the impact on the second-order score of the timetable by allocation of that exam to some 

timeslot.

In Chapters 3 and 4, it was proven that the choice of construction heuristic has a big 

influence on the first-order capabilities of the algorithm. It was deemed that the most 

appropriate individual heuristic (when used along with ants) was type C (see Chapters 2 

and 3 for interpretation and definitions of construction heuristics), which evaluated the 

degree of an uncoloured vertex within the uncoloured subgraph. It is a dynamic structure 

and the degree of each uncoloured vertex is updated after the colouring of a vertex. 

However, in this section we modify heuristic C with respect to the examination timetabling 

problem and weight the degree of an exam by the number of student clashes with other
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exams belonging to the uncoloured subgraph. Arani and Lofti (1989) ordered exams 

according to their weighted degree and performed exam-timeslot allocations in the manner 

of a traditional heuristic, e.g. Leighton (1979), to obtain an initial solution in their three- 

phase approach to the examination timetabling problem. The authors described the 

weighted degree as in Equation 5.12.

W, (5-12)
k

where dt is the degree of exam i and ^  aik the total number of students that take exam i
k

and all other exams in conflict with exam /. With respect to this investigation, the aim of 

this heuristic is to deal with higher weighted degree exams earlier in the timetable. 

Therefore, it is idealised that higher clash exams will be allocated to the Odd timeslots 

(with respect to the OddEven construction process) and thus will increase the possibility of 

a reduction in second-order conflicts. All other components of the algorithm remain 

unchanged. This construction heuristic will be used to quantify the desirability score of a 

vertex at some vertex-colour decision point. This component will again be raised to the 

bias parameter p  and /? is now varied to assess influence on solution quality. The trail bias 

a  will again be set at 2. Table 5.20 displays the results.

R obust E litist 
Settings

W eighted Construction H euristic

P 1 1 2 3 4

HEC

A v 935.66 1127.48 1185.37 1210.28 1205.24
Best 673 607 649 624 638

Best 10 711.28 672.02 700.44 722.50 726.14
Worst 10 2237.92 2278.84 2316.02 2335.92 2354.40

EAR

A v 1296.94 1328.09 1362.81 1358.13 1509.69
Best 1037 977 1011 1014 1125

B est 10 1104.02 1044.04 1066.54 1086.20 1187.74
Worst 10 1788.42 1910.66 1905.62 1918.38 1912.46

TRENT

A v 1259.89 1258.30 1258.04 1339.41 1380.71
B est 985 989 900 910 985

B est 10 1039.48 1026.14 957.84 947.50 1071.84
Worst 10 1801.48 1802.92 1809.84 1840.74 1801.28

Table 5.20 -  Second-order statistics fo r  heuristic C and Weighted Construction Heuristic under Preferred Elitist
Conditions

For the purpose of comparison, the results under the Robust Elitist Settings using heuristic 

type C are also presented in Table 5.20. We note that better Best results can be obtained 

through the weighted construction heuristic method despite poorer average second-order
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scores. Since the Best 10 and Worst 10 scores are competitive via the weighted 

construction heuristic, it suggests that the ants explore a greater area o f the solution space, 

which is desirable. Generally, the influence o f y3 is reasonably small. For HEC and EAR, 

P=1 is the best result, while p=2  is the most appropriate setting for TRENT {p= l has 

comparable solution quality with those achieved via construction heuristic Q . Only for 

EAR, when p=4, do we experience a significant deterioration in solution quality. Figure 

5.27 presents the percentages o f feasible timetables for range o f p  for the three main data 

sets is presented. The first-order capabilities o f heuristic C is also charted for comparison 

purposes.

□  HEC n EAR □  T R E N T

Figure 5.27 - Percentage o f  Feasible Timetables across Bias Parameter (5 - Weighted Construction Heuristic

The percentage o f feasible timetables is fairly consistent across p. It has been demonstrated 

in Chapter 3 that increasing any power exponent leads to slower runtimes. Therefore, 

maintaining lower p  is preferred given that there is no real trade-off with solution quality. 

Given this, P=1 will be used for all data sets.

5.9 Limiting Exploitation

Even though the use o f  elitism does not generally result in stagnation, the method does 

reduce the area o f the solution space that is explored. This is desirable to some level, but it 

is advisable to encourage as much diversification as possible while retaining the focus on 

better solutions. An approach to tackle this was suggested by Stiitzle and Hoos (1997) who 

detailed the MMAS that imposed lower, tmin, and upper, tmax, limits for trail levels. The 

authors proved that such a controlled search environment could produce some very good 

solutions. The trail limits were modified dynamically when certain search characteristics,
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such as stagnation, were recognised. The authors also suggested that resetting all trails to 

tmax when appropriate led to superior search conditions for the ants. The use o f trail limits 

is imperative when using MMAS due to the use o f only the best ant to update trails, which 

encourages reduced diversity and relatively poor final solution quality. A review o f 

MMAS is presented in Chapter 2. The use o f a trail limiting restrictive mechanism will be 

used within this section to encourage greater diversity. Focus is placed on imposing an 

upper bound since preliminary tests demonstrate that negligible benefit can derive from the 

use o f  a lower bound.

At the end o f each cycle, the average highest trail measure was recorded and has been 

plotted below (Figure 5.28). This chart provides an indication o f the range o f trail levels 

that are present and the highest level o f  trail that may be required to achieve the results that 

have been presented in Section 5.7. Figures 5.18-5.20 illustrate the improvement o f 

solution quality over time, for the non-weighted construction heuristic, and the averaged 

best plots show that the probability o f observing a new best solution is reduced after the 

early phases o f the search. On Figure 5.28, this is represented by the low gradient part o f 

the curves. In this section, we will experiment with tmax levels below the point where trail 

levels dampen. As an aside, let us note the limited disparity between the trail levels o f the 

data sets. The HEC trail curve is predominately larger due to the higher reward that is 

passed to the trail (in comparison to EAR and TRENT) due to the good volume o f 

timetables and relatively lower second-order scores. Meanwhile, the trail level for TRENT 

is greater than for EAR due to the lower unallocated exam count and consequent higher 

reward. This is the main difference between the data sets as the second-order scores are not 

too dissimilar.
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Figure 5.28 -  Cyclic Highest Trail Levels

It should also be noted that varying the number o f  ants per cycle does not have a 

significant influence on the highest trail levels.

Various upper trail levels are evaluated here and dealt with on a static basis. Upper limits 

o f  50 units apart were considered. Results for selected tmax are as follows.

H E C E A R T R E N T

T max A v B est B est 10 A v B est B est 10 A v B est B est 10
- 1127.48 607 674.02 1328.09 977 1044.04 1258.30 989 1026.14

200 1394.79 780 890.96 1648.08 1192 1334.98 1612.88 1230 1371.14
300 1315.70 733 814.64 1525.09 1045 1197.56 1486.29 1078 1172.52
400 1071.26 604 682.82 1358.45 977 1083.26 1341.90 943 996.24
500 961.44 640 672.46 1281.90 939 1024.50 1268.33 921 977.72
550 868.24 584 614.02 1314.31 982 1066.04 1233.91 936 972 .24
600 1028.14 638 672.46 1282.46 917 1028.56 1276.72 952 1006.76
700 941.63 608 650.46 1276.23 1006 1057.32 1209.87 908 960 .20
800 882.89 657 699.22 1304.21 959 1086.24 1190.45 914 946 .78
850 947.13 694 719.42 1296.04 953 1060.60 1212.10 878 978 .30
900 887.92 673 703.50 1341.44 1050 1123.22 1196.62 889 968.96

1000 911.61 704 742.62 1317.11 972 1097.38 1211.12 923 996.22
Table 5.21- Second-Order statistics across range o f  t ^

The italics row refers to runs where no trail limit was imposed and the weighted 

construction heuristic was biased to /?= /. Imposing an upper limit on the trail does 

improve solution quality. However, this depends on the appropriate selection o f tmax. Low 

tmax does not allow significant differentiation between pairwise exam sets and 

consequently, the search process experiences a lack o f focus and solution quality suffers. 

Table 5.21 supports this claim. Across the data sets, tmax=200 and 300 leads to poorer 

solution quality than the unrestricted trail model. However, higher measures o f tmax do lead 

to better solutions, which support restricting trail levels. The bolded statistics refer to the
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best results found. For HEC, tmax=550 leads to the best ‘one-off and average solution, 

while, for EAR, tmax=600 generates the best individual solution and tmax=700 produces the 

best average solution, however, average solutions for tmax=500 and 600 are in the same 

region. For TRENT, higher tmax is needed to find the best search conditions. Settings o f 800 

and 850 generated the best average and minimum solutions respectively. Generally, as tmax 

approaches 1000, solution quality deteriorates again.

Imposing tmax=550, 600 and 850 seems appropriate for HEC, EAR and TRENT 

respectively. We note here that the preferred setting o f tmax seems to increase with the size 

o f the problem and consequently, it is suggested to exploit this relationship when 

attempting to deduce tmax. A little trial and error could be then performed to deduce more 

accurate tmax settings.

Stipulating an upper limit W  does have a major influence on the first-order capabilities o f 

the algorithm. Figure 5.29 presents a sample o f tmax.

Tmax

a  HEC B EAR □ TRENT

Figure 5.29 -  Percentage o f  Feasible Timetables fo r  range o f  tmax

The relationship between tmax and the percentage o f feasible timetables is clear -  the higher 

the value o f tmax, the greater the volume o f feasible timetables. In Section 5.6.2, we 

examined the relationship between the area o f the solution space that is examined and the 

quality o f solutions found. Here, we measure the influence o f imposing trail limits on the 

dimension o f the solution space. The cyclic mean branching factor is again used to 

measure the width o f exploration and compares the ERF  environment with the ERF  

environment that imposes trail limits (tmax=x, where x  is the upper trail limit). The results 

are illustrated in Figures 5.30-5.32.
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Figure 5.30 -  Cyclic Mean Branching Factor fo r  ERF and ERF when tmax=550for HEC
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Figure 5.31 -  Cyclic Mean Branching Factor fo r  ERF and ERF when tmax=600for EAR
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Figure 5.32- Cyclic Mean Branching Factor fo r  ERF and ERF when tmax=850for TRENT
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Figure 5.33 -  Cyclic Mean Branching Factor from 3(fh cycle fo r  ERF and ERF when tmax=850for TRENT

Figures 5.30-5.32 present mean branching factors across the independent runs for all 100 

cycles. These Figures demonstrate the inherent extra exploratory power that exists by 

imposing trail limits. This is shown by higher mean branching factors towards the end o f 

the search. The ERF  and tmax=x  systems exhibit similar behaviour during the infancy o f the 

search. This is advantageous since narrower explorations in the early stages o f  a search 

lead to superior results (evidence has been presented in Section 5.6.2, which compared 

CRF  and ERF  systems). However, the ERF  and tmax=x  systems differ from approximately
ththe 10 cycle for the data sets, with the latter demonstrating wider exploration. This is the 

reason behind the superior results. The disparity o f the mean branching factors between the 

ERF  and tmax=x systems for EAR and TRENT do not appear significant but this can be 

attributed to the scales used on these Figures. To illustrate the true difference between the 

systems, an illustration o f the mean branching factors during the latter stages o f the 

searches for the TRENT data set has been presented in Figure 5.33. It is demonstrated that 

an exploration disparity between the systems does exist and greater exploration is 

performed, thus leading to superior results.

5.10 Degree of Saturation

Until this juncture, the heuristic type C has been used extensively due to the superior 

number o f solutions that it generates. However, the basic structure o f  the Degree o f 

Saturation (DSatur) heuristic is a more suitable framework when considering second-order 

conflict. The selection o f exam then timeslot allows greater flexibility and consequently,
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gives one the ability to (potentially) manipulate exam-timeslot relationships. Costa and 

Hertz (1997) detailed two variants of DSatur, which have been described in Chapter 2.

Work performed in Chapters 3 and 4 showed that construction heuristic G performed 

consistently better than H  and, the use of H  on highly constrained examination timetabling 

problems would result in volumes of infeasible timetables. This observation is unfortunate 

as the inherent structure of H  provides one with the greater range of choice of colour. To 

remind the reader of the difference between the construction heuristics, a brief description 

of G and H  is provided here. Heuristic G allocates exams to the minimum feasible timeslot, 

cmin, biased according to the cumulative trail between an exam and the exams belonging to 

Cmin, while H  selects an exam and then allocates that exam to the timeslot (from a set of 

feasible timeslots) biased according to the accumulated trail.

Despite the inferiority of H  (in comparison to G) with respect to solution quality, it has 

been used as the framework for the first DSatur related examination timetabling 

construction procedure.

5.10.1 Greedy DSatur

In this section, the population of ants is removed from consideration and the structure of H  

is exploited. The approach is defined as follows. The probability of selecting exam e (pe) is 

weighted by the degree of saturation, [v(b[k -l],e)], and biased by p  (in order to increase 

the marginal influence of the degree of saturation). It is defined as

H b [k - l \e ) Y

with T referring to the set of exams available for allocation at some exam-timeslot decision 

point.

After the selection of exam e, it is assigned to timeslot t that contributes the minimum 

amount of second-order conflicts to the timetable.
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This approach has some pertinent drawbacks. Due to the absence o f a controlling driving 

force i.e. trail; the prospect o f  obtaining a feasible timetable is drastically reduced. Since 

such a result is the overriding concern it will limit the attractiveness o f  this strategy. 

Experiments showed that not limiting the number o f exams available for allocation 

produces very poor results. These results are not re-produced here. Achieving feasible 

timetables was rare and this pointed towards the incorporation o f some constraining 

condition that truncates the volume o f exams free for scheduling. Here we employ a 

candidate list that allows a number n exams to be considered at an exam allocation 

decision point. The unscheduled exams are sorted according to degree o f saturation and 

only the exams with the higher saturation scores are permitted for allocation. The size o f 

the candidate list has been varied and the results are displayed in Table 5.22

H EC EA R T R E N T
n A v B est A v B est A v B est
1 1301.43 916 1976.76 1961 1870.60 1657
2 1152.08 697 1790.10 1271 1723.03 1236
3 1141.72 681 1741.54 1229 1644.23 1211
5 1144.33 734 1682.41 1377 1563.77 1171
10 - - - - 1485.27 1173

Table 5.22 -  A verage and Minimum second-order scores fo r  various n

The percentage o f Feasible timetables for the experimental candidate list sizes for each o f 

the main data sets is presented in Figure 5.34.
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Figure 5.34 -  Percentage o f  Feasible Timetables fo r  various List Sizes (n).

Large lists are not worthwhile since the bias towards bigger saturation-degree exams is 

reduced and increases the potential o f ‘problem atic’ exams being dealt with towards the 

end o f the construction process. It is shown that the size o f list is required to be around 2 or

164



Chapter 5 Minimising Second-Order Conflict

3 in order to produce a significant volume of feasible timetables, however, in consequence, 

the variation in timetables is limited. With respect to second-order conflict, lower list sizes 

generate better solutions. For HEC and EAR, a list size of 3 produces the best quality 

feasible timetable, while for TRENT, a list size of 5 does likewise. These ‘best’ results are 

superior to those presented in Table 5.1, but do not compete with elitist based methods.

To generate greater feasibility, the use of trail is required. It should be remembered though, 

that Chapter 3 illustrated that heuristic H  was the weakest of all the construction 

procedures proposed and the feasible timetable count was low. Consequently, candidate 

lists were included to enhance feasibility rates as such modification was proven to be 

beneficial above. Again, the candidate list membership depends on the degree of 

saturation. After the exam is chosen, the choice of timeslot is biased by a combination of 

trail and an inverted partial second-order clash score, which corresponds to the level of 

additional second-order conflicts that the timetable will encounter by the allocation of that 

exam to that timeslot. The level of weight placed on the second-order clash score is robust 

and does not influence solution quality, although, incorporating a bias parameter y (2 and 3 

were experimented) does generate marginally better solutions. Overall though, the results 

are poor and consequently, a slightly different approach was attempted. RLF and DSatur 

type heuristics (.RLF_DSatur) were mixed within each cycle. RLF heuristic type C has 

been shown to have the ability to produce feasible timetables, and through the appropriate 

second-order techniques, the ants clearly co-operate to enhance the second-order quality of 

the timetables. Within each cycle, a percentage of ants use the DSatur heuristic, while the 

remainder use RLF. Feedback contributions are made to the same trail and intuitively, the 

DSatur based ants would benefit from the trails laid by the RLF based ants. The percentage 

of DSatur ants within each cycle was varied and it was found that this proportion had a 

major role in determining the volume of feasible timetables. The higher the percentage, the 

lower the first-order capabilities, while lower candidate sizes encouraged greater feasible 

timetable scores, but lower variation within the timetable structures. If no candidate list 

structure is used then the feasible timetable count reduces to below 10%. This statistic has 

been generated for uncapacitated problems, thus tight seating capacities will lower that 

figure further.
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The PET  technique that was discussed in Chapter 4 was shown to increase the volume of 

feasible timetables. This approach did improve first-order statistics but, as a result, the lack 

of exploration did not lead to better quality feasible timetables.

5.10.2 DSatur Type 1 [Cmjn]

Chapters 3 and 4 showed that heuristic G was capable of producing very good first-order 

solutions. Heuristic G observes cmin and allocates exams to the lowest feasible colour. Here, 

we regard a manipulation of the structure of cmin. We observe Secmin, which is the feasible 

timeslot with the lowest second-order conflicts.

The results do not compete with the previous best-found solutions and are not given here.

In conclusion, despite the potential of exploiting the structure of the degree of saturation 

heuristics, the weak first-order statistics associated with this approach are poor and indicate 

unsuitability as an examination scheduling solution method.

5.11 Two Populations

Until this juncture, only one population has been used to tackle the examination 

timetabling problem at any given time. In this section, we use more than one colony of ants 

to investigate the problem. Michel and Middendorf (1999), Doemer et al. (2001) and 

Gambardella et al. (1999a) all discussed models that used more than one population. 

These approaches are discussed in depth in Chapter 2. The use of a second ant colony 

introduces a second trail, which allows additional focus to be placed on particular 

objectives, typically, second-order conflict. At regular intervals (end of each cycle 

typically), information from the second trail will be injected into the first trail. The 

structure of this section is as follows. Firstly, two trails accumulate information with 

respect to the same reward function (ERF). This is performed for comparative purposes 

(for other dual population methods presented) and attempts to exploit the inherent 

randomisation within the algorithm. Secondly, the two populations search the solution 

space while observing different objectives. In this section we resort to a system that uses 

construction heuristic C and no trail limits.
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5.11.1 Same Reward function!

This investigation begins by employing two colonies (in parallel) that use the same
j

feedback mechanisms. The aim is to exploit any favourable solution characteristics that are 

| generated via a second population. The inherent randomisation means that the second
I
I population will certainly reach different solutions than the first colony. The stochastic

| element of ant algorithms can play a big role in solution quality and this influence is

j exploited here.
j
iI

To avoid both trails converging on the same set of solutions, information exchange
!

between the trails is not two-way. At each update stage, a subset of best solutions is passed 

from the 2nd trail to the 1st trail. Additionally, ‘elite’ ants with regard to both colonies are 

stored and extra replenishment is passed to the trails belonging to the ‘elite’ solutions. Let 

us denote ej as the number of elitist ants associated with the 1st trail and e2 as the number of

I elitist ants that passes information to the 1st trail from the 2nd trail. The e2 elitist ants also
| d
i deposit extra (elitist-based) pheromone on 2 trail solutions. These parameters have been

| chosen as follows: firstly, when ej=8 and ef=7, the original setting of 15 elitist ants has
i

been approximately evenly distributed between the two trails. Secondly, when ei=15, 

e2=5, ej=15, e2=10 and ej=15, e2=15, the original 15 ants associated with the 1st trail have 

been maintained and an additional set of ‘elite’ ants associated with the 2nd trail has been 

introduced. The size of this extra set is varied and the results are presented in Table 6.1. 

Setting ej=15 and e2 =n/a refers to the one-trail Robust Elitist Settings system.

ei <?2 Average Best Best 10 Feasible

HEC

8 7 900.31 702 741.46 81.01
15 5 919.07 633 734.06 74.39
15 10 950.92 656 697.30 72.83
15 15 913.29 661 718.56 62.51
15 N/a 935.66 673 711.28 76.84

EAR

8 7 1299.97 1044 1110.88 62.52
15 5 1307.76 1057 1122.62 64.69
15 10 1294.34 1080 1122.94 64.78
15 15 1262.57 987 1080.19 60.17
15 N/a 1296.94 1037 1104.02 62.83

TRENT

8 7 1363.37 981 1057.20 60.49
15 5 1282.43 951 1043.64 64.95
15 10 1284.36 933 1027.38 64.10
15 15 1359.57 992 1069.84 57.87
15 N/a 1259.89 985 1039.48 71.45

Table 5 .23- Second-Order Statistics fo r  Two-Trail Philosophy when Robust Elitist Settings are used fo r  both trails and ej
and e2 are varied.
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These results indicate that the use of a second population does bear some favourable 

influence on second-order solution quality. The bolded statistics are used when 

improvement is noted above the one-trail Robust Elitist Settings system. There is a 

reduction in first-order quality, but this is small. However, the use of two populations does 

have some drawbacks. Firstly, solutions constructed by the second population may be 

inferior to those deriving from the first population. In consequence, relatively poor 

solutions may be injected into the first trail from the second trail. Secondly, the increase in 

computational effort that is needed. Allowing two populations to perform construction 

automatically doubles the runtimes. Ant algorithms can be fairly computationally 

expensive on occasions and doubling this expense is unwelcome while considering the net 

second-order conflict gain.

5.11.2 Different Objectives

Here, we change focus slightly. The role of the second trail (refer to a specific fitness 

function) will be altered to become more similar to the work discussed by Doemer et al. 

(2001). The first trail will use the CRF and will be biased towards solving the first-order 

problem. Meanwhile, the second trail will utilize the second-order reward function (SOF)

--------------- , which attempts to construct timetables that are biased towards lower second-
Sec _ Score

order scores.

5.11.2.1 Second-Order Function

Introducing an additional trail with a second-order biased reward function (SOF) will only 

mean benefit if the second-order scores of timetables constructed are lower than those 

previously experienced. By the nature of ants, the higher the trail level that is placed, the 

greater the probability to create a timetable with lower second-order conflict scores. 

Initially, we observe this additional benefit through experiments that use the reward

function --------------- . Only one trail is used here. Also note that no trail enhancement
Sec Score

techniques have been incorporated and consequently, the results in Table 5.3 act as direct 

comparison to those presented below.
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H E C E A R T R E N T

5 Av Best Best
10

Av Best Best
10

Av Best Best
10

/ 1457 .23 831 9 5 2 .5 8 1 704 .75 1330 1519 .18 1464.21 1090 1 194 .04
10 13 0 8 .4 9 7 7 4 101 5 .0 6 1 741 .29 1455 1571 .03 144 9 .6 0 1117 1 254 .68
25 14 4 9 .4 4 86 2 9 6 9 .0 0 17 2 9 .5 9 1405 1557 .14 1450 .03 1203 1233 .42
50 15 8 4 .0 6 828 9 9 1 .9 5 17 6 1 .4 7 1426 1575 .23 1 500 .92 1132 1257 .36
100 1416 .13 819 9 6 9 .2 0 1 588 .09 1280 141 6 .4 0 1514 .83 1142 1264 .92
250 13 2 7 .5 2 839 9 5 2 .1 4 1701 .15 1421 154 2 .4 0 1551 .13 1267 1 333 .36
500 12 5 6 .8 2 751 9 0 4 .9 0 1 628 .79 1308 1 448 .40 1 444 .08 1142 1 206 .80
1000 13 4 9 .8 9 75 8 11 6 1 .1 6 1 687 .47 1330 1 520 .58 1461 .17 1146 1 207 .06
2500 1 339 .32 7 8 9 9 6 7 .7 0 1 636 .87 1288 1 424 .88 1530 .45 1125 1262 .24
5000 1451 .95 7 5 4 9 3 7 .7 0 1824.31 1460 1637 .43 1 462 .42 1106 1 219 .30

Table 5.24- Second-Order Statistics fo r  SOF when One Trail is used.

We note here the reduction in average second-order scores (in comparison to the CRF 

system), in particular the differences in results with the HEC data set. Additionally, there 

seems an improvement in the ‘best’ timetable second-order scores. This seems more 

obvious with both HEC and TRENT. Noticeably though, the results appear rather 

insensitive to the weight ^placed on the reward function (observed earlier in Chapter).

However, despite the presence o f no first-order criterion, the feasibility rate is acceptable 

(see Figure 5.35), although there is no pattern across the weights evaluated. Since the trails 

represent purely second-order feedback, the first-order constructional behaviour depends 

heavily on the single pass construction heuristic that is used.

Weight

□ HEC b EAR □ TRENT

Figure 5.35 -  Percentage o f  Feasible Timetables across all data sets fo r  range o f  don SOF.

Let us gain some insight into the full benefit (with respect to second-order quality) this 

reward function could offer. Below are plots (Figures 5.36-5.38) o f the average second- 

order scores for all timetables (irrespective o f feasibility status) when using SOF and CRF. 

Each cycle observation point is averaged across five runs.
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Figure 5.36 -A verage Second-Order Score versus Cycle Plot comparing SOF and CRF fo r  HEC.
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Figure 5 . 3 7 - A verage Second-Order Score versus Cycle Plot comparing SOF and CRF fo r  EA R.
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Figure 5 .38- Average Second-Order Score versus Cycle Plot comparing SOF and CRF fo r  TRENT.

There is a quality gap across the data sets. For each example, the use o f  SO F  rather than 

CRF  generates timetables o f superior second-order performance. For HEC and EAR, the 

jum p in quality is clearly evident. As improvement tails-off, there is a quality difference o f
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approximately 150 students. A smaller difference exists with the TRENT data set. The 

results and illustrations presented above suggest that some exploitation of SOF is 

warranted.

5.11.2.2 CRF and SOF

We will look at using the CRF for the first population and the SOF for the second. A 

subset of solutions belonging to the second trail is used for extra replenishment for the first 

trail. However, no additional feedback is passed to the second trail since its aim is to 

optimise timetables with respect to second-order and consequently, any additional 

information could dilute the second-order knowledge gathered. The following set of Tables 

present the influence of the number of ants, a, that pass information from the second trail 

to the first and the weight of replenishment, cr.

HEC EAR TRENT
a Av Best Best

10
Av Best Best

10
Av Best Best

10
1 1501.23 801 989.54 1754.30 1343 1500.12 1499.87 1154 1234.32
5 1475.07 861 939.44 1689.19 1231 1481.38 1497.90 1078 1219.20
10 1551.70 825 918.78 1712.95 1362 1488.16 1566.23 1196 1290.56
15 1486.17 779 932.86 1710.43 1316 1496.48 1504.73 1138 1233.86
20 1512.26 848 977.88 1633.43 1318 1413.03 1541.47 1209 1266.90
30 1605.23 807 995.24 1710.07 1294 1492.13 1448.83 1113 1191.42

Table 5 .25- Second-Order Statistics across a ants when CRF and SOF are used fo r  the 1st and 2nd trail respectively.

The results appear rather insensitive to the choice of a. However, based on previous 

findings, the number of exchange ants, a, is set at 15 for all data sets for the following set 

of experiments. We now vary the replenishment rate cr.

HEC EA R TRENT

CT Av Best Best
10

Av Best Best
10

Av Best Best
10

5 1544.75 843 901.76 1656.48 1341 1517.00 1437.82 1105 1190.54
10 1295.14 754 910.34 1390.44 1232 1261.20 1405.56 1129 1231.02
15 1172.91 728 923.68 1427.99 1190 1284.00
20 1325.55 819 990.47 N /a 1639.34 1423 1510.70
30 N/a N/a

Table 5 .26- Second-Order Statistics across intensification weight a  when CRF and SOF are used fo r  the 1st and 2nd trail
respectively.

Increasing the replenishment weight cr severely reduces the first-order capabilities of the 

first trail. When higher weighted second-order feedback is passed from the second trail, it
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has the effect o f creating an imbalance between first and second-order priorities for the 

first trail. Consequently, the first trail will struggle to construct feasible timetables and 

explains the ‘blanks’ in the above Table. The ‘N /a’ applies when not one feasible timetable 

has been observed. For higher settings o f cr, the number o f infeasible runs is high and the 

volume o f feasible timetables is consequently low. The volume o f feasible timetables is 

presented in Figure 5.39, which highlights the first-order problem. It appears that <j=10 is 

robust for all data sets.

W eight

q  HEC uE A R  □ TRENT

Figure 5.39 -  Percentage o f  Feasible Timetables across Intensification Weight cr

As acknowledged above and consistently throughout this chapter, additional attention to 

the second-order problem reduces the first-order effectiveness o f the search. Even though 

the overall task is to construct one timetable o f perceived good second-order quality, it 

appears sensible here to readdress the balance between first and second order issues. 

Consequently, extra attention will be paid to the first-order problem. Section 5.5.3 showed 

that the ‘elitist’ intensification o f trails, with appropriate parameter settings, had a dual 

influence -  the improvement o f second-order scores along with the maintenance o f  good 

levels o f feasibility. The settings o f a and cr remain (<a=15, a=10) for the 2nd trail and the 

number o f elitist ants for the 1st trail is set at 15, but here we vary the intensification weight 

cr/. The results are tabulated below.
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H E C EAR T R E N T
A v B est B est

10
A v B est B est

10
A v B est B est

10
I 1172.91 728 923.68 1390.44 1232 1261.20 1465.56 1129 1230.02
5 1144.89 702 768.58 1327.10 1094 1142.28 1348.90 1019 1103.52
10 1162.81 673 746.68 1409.75 1094 1190.16 1339.53 1027 1090.42
15 1219.92 710 777.42 1479.24 1041 1221.10 1285.97 966 1041.78
20 1088.41 651 727.72 1476.88 1135 1259.30 1346.14 1000 1081.34
30 974.97 692 731.42 1331.94 1079 1158.64 1300.25 999 1084.24

Table 5 .27- Second-Order Statistics across CRF Intensification Weight cr, when CRF and SOF are used fo r  the 1st and
2nd trail respectively.

There is a marked improvement in solution quality through the use o f elitism with the first 

trail. Encouragingly, the trade-off between first and second-order priorities is favourable. 

The following Figure, which illustrates the percentage o f  feasible timetables that are 

generated, provides evidence o f the impact o f 0 7 . When no additional trail intensification 

(cr/=7) is applied to the first trail, the percentage o f  feasible timetables is low (HEC -  

7.03%, EAR -  1.90% and TRENT -  6 .8 6 %) but there is a marked increase in the feasible 

timetable count when 07  is set greater than 1. Second-order solution quality increases for 

0 7 >7 but, this is a consequence o f increased feasibility.
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Figure 5.40 -  Percentage o f  Feasible Timetables across Intensification Weight cr,

It has been demonstrated that the use o f  a second-trail that attempts to optimise the second- 

order problem (irrespective o f feasibility) does have the potential to generate better quality 

(with respect to second-order) solutions. Table 5.24 and Figures 5.36-5.38 have shown 

this. Figure 5.35 indicates that the feasibility rate is reasonable considering that no first- 

order feedback is passed to the trail. Although, the introduction o f trail intensification 

reduces the first-order capabilities further (Figure 5.39). Overall, solution quality o f the 

one trail system is generally better. Additionally, since the one-trail environment requires
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lower computational effort, the reason for utilising two independent trails becomes 

obsolete.

5.12 One Population - Two Trails

In Section 5.11, we discussed the use of two populations that addressed different 

objectives. The second population injected information regarding the best solutions into the 

first population. This action aimed to diversify the search while attempting to exploit 

feedback that potentially could contribute towards better second-order scores. Also, it 

suggests another form of elitism since pairwise exams with relatively large accumulations 

of pheromone, with respect to the second trail, would be made available to ants belonging 

to the first trail and these accumulations will consequently have the potential to bias the 

search. In this section the two-trail philosophy remains but the focus changes.

The second trail will accumulate pheromone between exams that have been allocated to 

adjacent timeslots rather than between pairwise exam sets that have been scheduled in the 

same slot. The ambition is to recognise the exams that when scheduled in adjacent slots, 

contribute to ‘better’ second-order conflict scores.

5.12.1 Second-Trail Formulation

Let us define the first trail as F  and the second as S. S is represented as an n by n matrix 

(n=number of exams) which is updated at predetermined times during the search. Given 

two exams er and eh the value Srt in S is proportional to the quality of the timetables 

obtained by placing er and et in adjacent timeslots. Like F, the trail stored in S evaporates 

progressively as time goes by. The coefficient of evaporation is denoted by (1-s). Let 

hj, ...,bnants be the timetables obtained at the end of the cycle and let Brt e  

{ b b n a n t s }denote the subset of solutions in which er and et are allocated one timeslot 

apart. Let fitness be the defined fitness of the timetables used in bd (.l<d<nants). The values 

Srt in S are updated as follows

Srl = e • S rt + Y  fitness (5.14)
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Given a partial solution s[k-l]=(ei,...,eq), with q referring to the number of exams in the 

partial solution, an unallocated exam e and a feasible timeslot t, the second-order trail 

factor <j(s[k-l],e,t) is calculated as follows

1

<j(b[k-l\e,t)=<

where if/j represents the number of exams allocated to the ith timeslot. As detailed in 

previous chapters, the solutions are built probabilistically on the basis of the knowledge 

drawn from previous solutions. The underlying concept remains the same here. The

I probability of allocating exam e to timeslot t (pet) is defined as follows
|
j

[t(b[k -  if,e,<)]“ ■ [v(b[k - \ \ e , • [a(b[k -1  \e,t)]r

| “ Z ■ [v(*[*-'1 e>r)Y • KM* -'i \ e>r)Y}
| rsTtI

[
i In Section 5.4, the bias constant [q(b[k - 1],e, ̂ )] was introduced and its involvement was

aimed to bias exam insertions towards timeslots of lower second-order scores. One 

| disadvantage to this technique rests with its utilisation. Using the OddEven approach to

timeslot ordering in conjunction with RLF construction will only use this constant when 

the even numbered timeslots are being filled. A second drawback is the absence of a 

learning facility, which encourages greediness. Despite these pitfalls, results have shown 

that this bias constant did offer some benefit with respect to second-order scores. This 

leads one to incorporate a similar concept but introduce a learning facility in the form of a 

second-trail matrix. The role of the bias constant will be obsolete here and the trail S will 

be used instead.

The second trail factor (as defined in equation 5.15) is raised to the bias parameter y and 

will be used in the following study.

i f  (t - 1) and (t + 1) are empty

Y s  Y s  (5-15)
/  i  xe /  i xe

x e t-1____ |_ xet+\

Wt-1 V'z+I
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5.12.2 Sensitivity of y

The definition of fitness used here is the standard CRF expression. This reward expression 

is used for both trails. Additionally elitism is used and the relevant parameters are levied at 

the Robust Elitist Settings. The standard parameter settings of a=2, (3=1 and p=0.5 are 

used here.

In this section, we test the sensitivity of y, which is the bias parameter associated with the 

second trail matrix. The results are as follows.

Y Av Best Best 10 Worst 10 Feasible

HEC
0.5 888.94 681 728.96 2351.76 83.12
1 1032.17 637 720.32 2410.10 81.95
2 1044.46 667 733.66 2448.78 80.63

EAR
0.5 1399.28 1087 1199.02 1968.50 72.20
J 1350.86 1109 1172.30 1868.70 72.77
2 1360.16 1085 1172.82 1903.52 75.93

TRENT
0.5 1360.93 1033 1102.44 1985.10 79.50
1 1320.47 1019 1090.56 1908.00 78.67
2 1320.88 1056 1085.44 1955.50 77.07

Table 5.28- Examining the Sensitivity o fy

The choice of y seems unimportant to the overall success of the search. Subsequent 

experiments will use y=l. The feasible timetable rate is favourable and while, the second- 

order performances are acceptable, the results do not compete with the solution quality 

associated with some previous studies in this chapter.

5.12.3 Different Objectives

In this section, we attempt to place extra emphasis on second-order. The second trail now 

refers to the SOF (with the first trail referring to the CRF) as the feedback mechanism. 

Elitism is used once more to emphasise relatively superior trails. The Robust Elitist 

Settings are used for the first trail while elitist related experiments are performed in relation 

to the second trail. The reward associated with each elitist solution belonging to the second 

trail is weighted by a constant a  A range of a  and then the number of elitist ants, e, are 

tested and the statistics associated with a subset (involving parameter settings near the 

observed Best) can be viewed below. When cr is varied, e is set to 15.
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HEC

The results for various cr are displayed in Table 5.29.

<7 A v B est B est 10

25 0 1015.03 773 800.52
500 1036.03 643 737.04
750 1007.61 680 769.40

Table 5 .29- Influence o f  cron second-order solution quality fo r  HEC

Setting <j =500 generates the best results and this setting is used to test the influence of 

varying the number of elitist ants. The results are presented in Table 5.30.

e Av Best B est 10

3 991.38 734 803.84
5 986.38 599 728.68

10 978.92 635 745.30
Table 5.30- Influence o f  e on second-order solution quality fo r  HEC

Reducing the number of elitist ants below 15 does improve solution quality marginally. 

The search process benefits from the reduced trail concentrates that result from fewer elitist 

ants.

EAR

Results, when cr is varied, are presented in Table 5.31.

cr A v B est

500 1370.60 1160
750 1332.24 1061

1000 1369.09 1076
Table 5.31 -  Influence o f  cron second-order solution quality fo r  EAR

There is no emerging pattern as cr is varied but the best Best is observed at cr=750 and this 

setting is used when e is varied.
;

e A v Best B est 10
5 1375.33 1080 1199.78
10 1396.08 969 1176.56
15 1332.24 1061 1191.54

Table 5 .32- Influence o f  e on second-order solution quality fo r  EAR
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The best Best observation of 969 is achieved when e-10. 

TRENT

Results, when a  is varied, are presented in Table 5.33.

a Av Best
500 1281.86 1013
750 1329.20 1010

1000 1359.45 1082
Table 5.33 -  Influence o f  a  on second-order solution quality fo r  TRENT

The best Best result is achieved when cr=750 and this setting is used when e is varied and 

those results are displayed in Table 5.34.

e Av Best
15 1329.20 1010
20 1289.57 968
25 1294.43 1001

Table 5.34 -  Influence o f  e on second-order solution quality fo r  TRENT

The influence of cr appears limited and some improvement can be achieved by resetting the 

number of elitist ants.

Overall, the use of elitism in conjunction with the multiplicative second-trail does offer 

benefit to solution quality. However, this influence is not very significant. Experiments 

associated with the results displayed (Tables 5.29-5.34) above have shown that appropriate 

settings of cr across the data sets are robust and optimum settings of e appear to increase as
i
! the size of problem does likewise.
!

In summary, it is demonstrated that the use of the second-trail does have the ability to 

construct better solutions than observed with the one-trail system, but not to a very 

significant level. Solution Bests have improved as follows. For HEC, the one-trail Best of 

673 compares to the two-trail Best of 599, for EAR, 1037 drops to 969 and for TRENT, 

985 is marginally poorer than 968. An intuitive reason for these (marginal) improvements 

is as follows:
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At each decision stage, the first and second trail factors contribute to the construction of 

probabilities. Experiments were performed where the ith ant in each cycle was monitored. 

All first and second trail factor scores were stored and when Pearson’s correlation was 

applied, it was found that the relationship between first and second trail factors exhibited 

positive correlation (0.67, 0.54, 0.51 for HEC, EAR and TRENT respectively)3 and this 

association was deemed statistically significantly in each case. This observation may 

indicate why the search process benefited marginally from the inclusion of a second trail. 

Let us consider the array of first and second trail factor scores associated with feasible 

uncoloured exams at some exam-timeslot decision stage. In many cases, these scores are 

related with respect to rank but on rare occasions, a strong second trail factor score will 

lead to the insertion of an exam that otherwise would have a low probability of selection at 

that stage of the construction process.

It is noted here that experiments have been performed on the second trail evaporation 

factor. It has been found that this parameter plays no influence upon solution quality. 

However, this is no surprise due to the conclusions that were drawn regarding the trail 

evaporation parameter p  in Chapter 3.

5.13 Conclusion

This chapter has focused on the second-order problem when scheduling examination 

timetables. It detailed a series of enhancement techniques that could be used to construct 

feasible timetables of better second-order quality. Initially, the reward function was altered 

to incorporate second-order characteristics of a timetable. Improvement was limited and 

consequently, it was shown that trail intensification was needed to enhance solution 

quality. Subsets of ‘better’ timetables were identified and extra trail was laid on these 

solutions. Basic static and dynamic intensification techniques were used. The Record-to- 

Record algorithm inspired the latter. These techniques showed hints of solution 

improvement. Consequently, more sophisticated techniques of trail intensification were 

applied - namely Elitist Strategy. The latter was attempted in a variety of ways. Focus was 

initially placed on the second-order fitness, but this was to the detriment of first-order

2 Sample sizes for HEC, EAR and TRENT were large enough to allow use of parametric calculation.
3 Correlation coefficient resides in interval [0,1]. Above Pearson’s statistic deemed significant due to sample 
size used (18204 for HEC, 47601 for EAR and 62387 for TRENT).
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quality. In consequence, the Elitist Reward Function (ERF), which placed additional 

reward on both the first and second-order characteristics of the timetable, was used. 

Additional bias was then placed on the second-order component of the ‘elite’ timetables. 

Satisfactory universal settings {Robust Elitist Settings) were achieved for the ERF. 

However, it is not assumed that these can be applied genetically. This method clearly 

showed that the ants communicated to enable the construction of feasible timetables with 

better second-order quality. However, elitist based methods can lead to higher trail 

intensities and limit the exploration of the ants. To counteract this, trail limits were 

imposed and superior results were achieved through the wider exploration performed. 

Also, additional improvement was gained through weighting the construction heuristic by 

the number of student clashes.

It was discussed that the framework of the DSatur heuristic has greater potential to 

manipulate timetables of improved solution quality than the RLF type heuristics. However, 

this approach was deemed as unsuitable due to the difficulty of generating feasible 

timetables.

In this chapter, a second population was introduced that searches the solution space 

according to the cost function that minimises second-order. It was demonstrated that 

marginally superior (than achieved through the ERF system) solutions were manageable by 

allowing two colonies to work in parallel and exchange information at specific times. 

However, the solution quality-computational effort trade-off is not favourable. The focus 

was then altered to use one population of ants but utilised a second trail that used a 

different update procedure, which allocated pheromone to pairwise exams belonging to 

adjacent timeslots. It is demonstrated that trail intensification is needed to generate 

relatively good solutions but these results are only marginally better than the one trail ERF 

based system.

This chapter has investigated methods of encouraging ant colony optimisation to produce 

good quality, feasible examination timetables by changes to the algorithm itself. However, 

other researchers (see Chapter 2 for examples) have found that ant colony optimisation has 

required additional assistance to produce extremely good results and the following chapter 

investigates such ideas.
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Chapter 6

Improvement Strategies

6.1 Introduction

Chapter 5 introduced means to reduce the number of second-order conflicts present within 

a feasible timetable. A variety of methods were employed and many encouraged second- 

order scores lower than those timetables constructed under purely first-order conditions. 

However, literature that details the application of meta-heuristics to the examination- 

timetabling problem has shown the benefit of a hybrid or memetic approach -  for example 

Burke (1995c), Thompson and Dowsland (1998). The meta-heuristics construct timetables 

with respect to first and second-order conflicts and some Add-On procedure is used as a 

repair facility to improve the fitness of a timetable with respect to some criterion e.g. 

minimizing second-order. Additionally, ant-based procedures for various problem types 

have also used hybrid methods, for example the Hybrid Ant System for the Quadratic 

Assignment Problem (HAS-QAP), Gambardella et al. (1999b), and for the Sequential 

Ordering Problem (HAS-SOP), Gambardella and Dorigo (2000). The uses of hybrid 

methods for meta-heuristic examination timetabling solution algorithms and for ant-based 

approaches for a variety of problem types strongly suggest that AS-EXAM will also 

benefit from the use of an Add-On. This chapter will discuss a collection of Add-On 

procedures. Firstly, a TSP based model will be used to reduce second-order conflict scores. 

The timeslots will be rearranged to an order that minimizes the back-to-back scores. 

Secondly, exam exchanges are performed through local search. Exams are allocated to 

alternative timeslots if a reduction in the second-order score will be observed in 

consequence. Finally, exam exchanges are made based on the well-respected graph 

theoretic Kempe Chain method. To symbolise the incorporation of an Add-On, the 

examination timetabling method discussed within this thesis will now become the Hybrid 

Ant System for the Examination Timetabling Problem (HAS-EXAM).

The structure within each distinct section is inspired by three different evolutionary 

strategies -  Darwinian, Baldwinian and Lamarckian. In Darwinian evolution, learning does 

not play a significant role in the evolutionary process. Any traits learnt by the individuals 

of one generation are not passed onto the next. An advancement was first made by Jean 

Baptiste Lamarck, in 1815, when he claimed that all traits passed from one generation to
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the next consist of both innate and acquired characteristics of the parents. James Baldwin, 

who introduced the Baldwin Effect, Baldwin (1896), took the middle ground between 

Darwin and Lamarck. His idea was that the fitness value of the improved individual could 

be transferred to the individual, without actually changing its genotype4. The link between 

these traditional evolutionary theories and evolutionary algorithms is a natural one. When 

using Darwinian theory, modifications are made to the solutions, however new 

characteristics and improved fitness values are not inherited by future constructed 

solutions. Conversely, when using Lamarckian theory, after modifications are made to 

solutions, both the new characteristics and bettered fitness values are passed on to future 

solutions. As stated above, Baldwinian theory takes the middle ground between Darwin 

and Lamarck. Here, modifications are still permitted but no solution characteristics are 

inherited by future constructions. However, the fitness value is associated with the original 

solution. In other words, Baldwinian strategy attempts to recognise constructions that offer 

the potential to produce better constructions after modification. The obvious application of 

these evolutionary theories is Genetic Algorithms (GA). Each time a chromosome is 

generated, an improvement strategy examines some nearby chromosomes and the best of 

these replaces (Lamarck) the original or transfers information to the original (Baldwin). 

Bull and Fogarty (1994) and Coyne and Paton (1994) both discussed the value of the 

principle of talkback (Lamarck), also see Burke et al. (1995c) for a memetic algorithm for 

examination timetabling, which enables the recoding of the genotype, based on searches 

performed. Meanwhile, Julstrom (2000) interestingly compared all three theories when 

considering a genetic algorithm for the 4-cycle problem5. The work performed in that 

paper inspired the structure of this chapter. Lamarckian theory has also been used with ant 

algorithms, for example Gambardella and Dorigo (2000), but, in most cases, it has been 

performed implicitly. When Lamarckian theory has been used, the ants construct solutions 

and these solutions are modified according to the criterion used. Pheromone trail 

replenishment is executed with respect to the modified solution.

After each of the Add-On types have been discussed while compared across Darwinian, 

Baldwinian and Lamarckian evolutionary strategies, the trade-off between solution quality

4 The internal genetic code carried by all living organisms. This information is passed from one generation to 
another.
5 The objective of the 4-cycle problem is to observe the shortest collection of disjoint 4-cycles on a set of 
points in the plane (see Julstrom (2000) for details).
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and computational effort is investigated and a direct comparison between the Add-Ons is 

performed. Towards the end of the chapter, the quality benefit gained through a selection 

of the methods introduced in both Chapters 5 and 6 are run on extra data sets. These 

results, along with some previous solutions, are assessed to deduce whether significant 

improvements in solution quality are gained. A preferred approach will be identified and a 

direct comparison of this will be made to solutions generated through a Simulated 

Annealing -  Kempe hybrid strategy.

In this chapter, ant constructions will be based on the Elitist Reward Function system as 

described in Section 5.5.4.2.

The same five random number seeds are used for each set of experiments. Therefore, the 

same set of starting solutions (before Add-On is applied) between runs will be produced 

for the Darwinian study. However, starting solutions will differ between runs for the other 

evolutionary theories due to the nature of Baldwinian and Lamarckian theory.

6.2 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) has been defined in Appendix 1.2 but the 

definition will be revisited here. The TSP is the problem of a salesman who wants to find, 

starting at his home city, the shortest possible route through a set of customer cities and to 

return to his home city. More formally it can be represented by a complete weighted graph 

G = (V,E) with V being the number of vertices, representing the cities and E  being the set 

of edges that connect the vertices. Each edge is assigned a weight dy, which is the length of 

the edge (ij) e  E, and represents the distance between cities i and j ,  with i j  e  V. The TSP 

is the problem of finding a minimal length Hamiltonian circuit of the graph, where a 

Hamiltonian circuit is a closed tour visiting each of the n cities once (where n represents 

the number of cities).

6.2.1 TSP for the Examination Timetabling Problem (TSP-ANT)

White and Chan (1979), Colijn and Layfield (1995) and Johnson (1990) have all have 

shown that the TSP can be applied to the examination timetabling problem. Once a feasible
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timetable has been constructed, the towns represent the timeslots and the distance between 

the towns equates to the ‘back-to-back’ second-order clash scores between time periods. 

We rearrange the order of the timeslots such that the total second-order score is minimised. 

It should be noted here that, unlike the traditional TSP, the tour does not return to the start 

town and consequently, a path is constructed rather than a complete circuit. Additionally, 

no individual exam movements are allowed.

Rearranging the timeslots in such a manner makes intuitive sense but there is a drawback. 

The examination timetabling problem is highly constrained and any scheduler is usually 

required to accommodate pre-assigned and time-windowed exams. Such exams reduce the 

flexibility of the TSP approach. It only requires one exam to be fixed to a pre-assigned 

timeslot and the scheduler is forced to work around that timeslot. Other methods, which 

deal with exam rather than timeslot moves, have a higher potential to succeed. However, 

the TSP is suitable for data sets such as HEC, EAR and TRENT, which have no known 

side constraints.

The TSP is known to be NP-hard and as the number of towns increases the computational 

effort increases exponentially. Dorigo et al. (1991) proposed that an ant algorithm (Ant- 

Cycle) could be successfully applied to the TSP with runtimes that are minimal when 

compared to exact TSP method. The TSP-ANT philosophy will be used to tackle the 

examination scheduling problem. It could be argued that problems with small numbers of 

timeslots could be solved exactly, however such cases are rare and a heuristic TSP method 

is warranted for many examination problems.

Much attention will be paid to the TSP in this chapter. Since the TSP is the traditional 

testbed for ACO algorithms, it was felt warranted here to provide a more rounded 

investigation and almost treat the TSP as a second combinatorial optimization problem in 

its own right rather than solely an enhancement technique for the examination scheduling 

problem. Conclusions regarding the success of TSP as a repair mechanism will be drawn 

later after alternative approaches have been assessed.

It should be noted here that the TSP is suitable for the reduction of back-to-back conflicts. 

However, if a scheduler wishes to accommodate alternative student comfort criteria then an 

alternative cost function would have been used e.g. the cost function described in Carter et
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al. (1996). If the timeslot structure differs (e.g. three slots per day with the aim of 

minimising back-to-backs within the same day) then a different method of enhancement 

may have to be used (see Chapter 2 for examples).

6.2.2 AS Algorithm for the TSP

An ant is an agent that moves from town to town on the TSP graph. When at town t, it 

determines town t+1 using a probabilistic function combination of trail accumulated on the 

edges and of a heuristic value, which is a function of the length of the edges. Ants prefer 

shorter edges with a high concentration of pheromone trail. Initially, n ants (with n 

representing the number of ants per iteration) are placed uniformly on the towns and each 

ant constructs a tour that visits each town once. Each ant chooses the next town in its tour 

based on the following random proportional rule:

Pa =
M o ]“-

E M ') ̂jeallowed
“k ? '

(6 .1)

where allowed refers to the set of cities that can be visited after city i. This set must 

obviously not contain already visited cities and could exclude some not-yet visited cities at 

time t based on factors such as ordering constraints or candidate list structures, Dorigo et 

al. (1991).

The probability (py) of an ant going from town i to town j is an amalgam of trail (%•) and a 

visibility score (77,y), which are biased by powers a  and /? respectively. The visibility score 

is a function of the distance (d) between one town and the next.

(6.2)
d u

Each edge (ij) on a constructed tour is updated according to the following reward function, 

which comprises the ratio between some quantity Q and the total distance of the tour Dt\
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ATi j=ATiJ+-^~ (6.3)

This feedback is stored in a temporary trail matrix Ar. Each edge (ij) is subjected to trail

deposits and pheromone evaporation (p) at the end of each cycle and is modified according 

to the following equation:

T ^ p - T y + A T ,  (6.4)

6.2.3 Precursory Investigation

As has been commonplace with ACO, some preliminary investigation that deduces suitable 

parameter settings is required. The unknowns are:

1. The weight, Q, in the reward function.

2. The bias parameters a  and p.

3. The evaporation rate (1-p).

4. The number of ants per cycle (A^).

5. The number of cycles (Nc).

Only one parameter is varied at any given time and the remaining settings are as stated 

below (Table 6.1). Initial settings have been selected based on previous investigations and 

evidence from the literature. The weight, Q was suggested in Dorigo et al. (1991) along 

with the number of ants approximating the number of cities while it has been shown that 

the parameters a , /?, and p  encourage good algorithmic performance when set at 2, 1 and

0.5 respectively. Therefore, these values provide a sensible starting point for this 

investigation.

Parameter Setting
Q 100
a 2
0 1

P 0.5
Ants per cycle 20

Cycles 50
Table 6.1 Fixed experimental param eter settings fo r  TSP
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After the construction of a solution by an ant, the ant-based TSP procedure improves the 

solution further. The Best solution observed during the TSP acts as the final solution. 

Statistics that are presented consider only the final solutions. Typically, Av relates to the 

average final solution across all the ants that have been improved via the TSP.

6.2.3.1 Weight Q

Table 6.2 presents the results of TSP related experiments for varied reward function weight

HEC EAR TRENT

Q Av Best Best
10

Av Best Best
10

Av Best Best
10

l 967.43 694 761.66 1567.97 1143 1263.78 1464.34 1219 1271.46
100 720.62 553 595.32 1476.94 913 1000.94 1331.70 1066 1115.44
500 765.33 549 615.60 1423.89 952 1084.06 1341.19 1067 1121.98
1000 765.74 561 624.94 1432.08 979 1110.38 1348.00 1058 1128.16
5000 780.87 552 632.72 1419.93 984 1090.97 1355.39 1074 1133.52

Table 6.2 Statistics describing the influence o f  reward function weight Q in TSP,

Robust solutions are produced for £ > 1 0 0 ,  with lower Q generating inferior solutions. 

This is true for each of the data sets. It seems safe to conclude that Q=100 is an appropriate 

setting. Such experiments were presented in Dorigo et al. (1991) for Q e{l, 100, 10000} 

when using the Ant-Cycle algorithm. Favourable conclusions were made when Q=100.

6.2.3.2 Bias Parameters

We vary the bias parameters a  (trail) and ft (desirability) and the results are as presented in 

Tables 6.3-6.5 for HEC, EAR and TRENT respectively:
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HEC

P
a 1 2 3 4

A v 707.89 707.55 1023.23 1054.37
B est 538 546 715 754

1 B est 10 586.4 584.44 765.66 815.94
W orst 10 853.08 887.36 1283.7 1275.36

A v 720.62 707.12 942.47 1038.32
B est 553 543 555 709

2 B est 10 595.32 578.56 664.92 798.18
W orst 10 891.10 889.02 1285.14 1274.94

A v 759.2 740.08 827.13 1019.44
B est 554 551 575 685

3 B est 10 603.88 590.04 616.7 763.26
Worst 10 983.82 970.4 1210.8 1283.3

A v 783.6 765.06 829.19 959.88
Best 560 551 588 587

4 B est 10 610.4 597.32 630.44 665.32
Worst 10 1032.3 1036.72 1152.4 1289.88

Table 6.3 -  Statistics describing the influence o f  bias parameters a  and (3 fo r HEC

EAR

P
a 1 2 3 4

A v 1445.52 1505.07 1653.12 1627.35
B est 957 1016 1225 1224

1 B est 10 1132.02 1170.78 1374.36 1349.06
Worst 10 1701.26 1799.96 1909.30 1874.72

A v 1476.94 1420.41 1649.65 1642.24
B est 913 954 1156 1214

2 B est 10 1000.94 1071.90 1344.16 1360.95
W orst 10 1712.48 1776.50 1936.5 1894.4

A v 1552.96 1537.27 1643.47 1634.99
Best 989 1000 1123 1173

3 B est 10 1130.68 1161.14 1264.10 1337.96
Worst 10 1869.70 1880.44 1949.98 1899.18

A v 1548.87 1600.73 1641.88 1641.34
Best 991 1009 1060 1259

4 B est 10 1173.32 1211.64 1257.68 1403.30
Worst 10 1875.87 1918.62 1943.62 1929.78

Table 6.4 -  Statistics describing the influence o f  bias parameters a  and (3fo r EAR in TSP.
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TRENT

3
a 1 2 3 4

A v 1377.65 1371.71 1474.55 1469.65
B est 1089 1122 1205 1225

1 B est 10 1131.20 1171.14 1272.94 1268.72
Worst 10 1500.56 1606.96 1721.12 1700.76

A v 1331.70 1344.44 1489.53 1483.36
B est 1066 1068 1191 1209

2 B est 10 1115.44 1120.04 1263.74 1261.14
W orst 10 1565.14 1068 1191 1209

A v 1407.73 1406.08 1406.07 1495.36
B est 1115 1112 1095 1216

3 B est 10 1165.64 1148.84 1148 1256.90
Worst 10 1649.80 1675.42 1675.40 1728.86

A v 1436.89 1438.84 1460.61 1499.61
B est 1140 1110 1104 1177

4 B est 10 1189.16 1171.36 1187.86 1265.56
Worst 10 1681.32 1707.00 1739.28 1739.16

Table 6.5 — Statistics describing the influence o f  bias parameters a  and /?fo r  TRENT in TSP.

The results generated by the parameter constraints a  < 2 and p  < 2  (represented by italics 

in Table 6.3-6.5) are superior to other bias settings. The quality disparity for a  and p  

combinations when a  <2 and p < 2 is minimal. This contrasts with the results achieved for 

the parallel study for the ANTCOL algorithm in Chapter 3, where it was shown that there 

is a significant jump in solution quality between a=l and a=2. This can be attributed to 

the difficulty of the examination scheduling problem, which requires additional emphasis 

to be placed on the trail factor.

Chapter 3 demonstrated that raising random-proportional rule components (i.e. trail and 

heuristic) to a power greater than 1 has a detrimental effect on runtimes. Consequently, 

justified parameter settings here are a= l and p=l.

6.2.3.3 Evaporation Rate

The TSP trail not only accumulates information during the search process but loses some 

exploration knowledge as well. This allows the ants to be more focused on the recently 

accumulated information and dilutes the influence of poorer solutions found earlier in the 

search. Both Dorigo et al. (1991), for the Ant-Cycle algorithm, and Costa and Hertz
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(1997), for the ANTCOL algorithm, suggest a setting of 0.5. Experiments have been 

performed where the evaporation rate ( 1 -p )  has been varied and its influence has been 

assessed.

HEC EAR TRENT

p A v B est B est
10

A v B est B est
10

A v B est Best
10

0.1 758.05 552 607.82 1418.46 1038 1090.58 1366.08 1104 1144.98
0.3 738.62 559 602.50 1508.57 1024 1149.80 1357.93 1089 1137.84
0.5 765.74 561 624.94 1432.08 979 1110.38 1348.00 1058 1128.16
0.7 750.85 552 609.04 1463.44 1001 1122.20 1337.60 1076 1123.16
0.9 716.77 541 582.88 1422.04 990 1106.62 1325.81 1047 1119.32

0.99 755.08 557 620.54 1412.61 982 1110.60 1323.17 1067 1124.60
Table 6 .6 -  Statistics describing the influence o f  evaporation rate p  in TSP.

Solutions seem a little insensitive to the setting of p. The only set of results that suggests p 

holds any influence is with the TRENT data set. As p increases, the second-order statistics 

lowers. Notably, using p=0.9 generates the best observed results. However, this evidence 

does not warrant a change of p from its original setting of 0.5. Within this thesis, work in 

Chapter 3 indicated that p=0.5 is a suitable choice. Since this version of the TSP is using a 

global updating rule and a cyclic framework, like the work detailed in Chapter 3, this adds 

extra weight to the argument that p=0.5 is appropriate.

6.2.3.4 Ants per Cycle

Dorigo et al. (1991) and Colomi et al. (1996) suggested that the number of ants should be 

set to the number of cities. This is a suitable rule that can be used when no time is available 

for some precursory investigation, which is a disadvantage of the use of ants. However, 

Table 6.7 presents the solutions that suggest that increasing the number of ants per cycle 

above the number of cities improves solution quality. The number of cities is 18, 24 and 23 

for HEC, EAR and TRENT respectively.
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HEC EAR TRENT
Na Av Best Best

10
Av Best Best

10
Av Best Best

10
1 1028.31 698 754.16 1698.32 1235 1355.84 1544.82 1202 1531.34
5 842.07 605 655.22 1574.18 1098 1212.08 1451.96 1133 1192.22
10 806.60 564 631.18 1473.16 1020 1126.98 1411.32 1102 1171.34
20 765.74 561 624.94 1432.08 979 1110.38 1348.00 1058 1128.16
30 712.23 522 597.32 1372.67 971 1076.28 1285.32 1001 1087.94
50 713.02 525 598.60 1365.25 965 1063.85 1298.60 1023 1096.08
100 716.77 559 598.30 1351.16 962 1045.54 1265.83 998 1083.08

Table 6.7 -  Statistics describing the influence o f  the number o f  ants per  cycle in TSP.

A robust setting of the number of ants per cycle has been selected as 30. The solution 

| improvement appears to dampen as NA increases. Even though the aim is to produce a

timetable of good second-order quality, the TSP is only being used as an improvement 

strategy and consequently, the number of ants per cycle will be limited to make runtimes

I more attractive. Computational effort will be discussed in greater detail in Sections 6.2.9
I
| and 6.2.10 but it should be noted that increasing the number of ants per cycle influences

runtimes linearly. For example, 50 ants per cycle will require twice the runtime that 25 ants 

per cycle will need. This provides evidence of the benefit of reducing the number of ants 

| per cycle.

6.2.3.5 Number of Cycles

The average latest cycle that a new best solution is found is tabulated:

Data Set Average Latest Cycle
HEC 22.34
EAR 28.71

TRENT 23.65
Table 6 .8 -  Statistics describing the average latest cycle that a new best solution was found in TSP.

Observing that, on average, the final new bests are found before the 30th cycle and minimal 

improvement is achieved beyond this cycle number suggest that the number of cycles used 

in future experiments could be reduced from 50. This will have the benefit of reducing 

computational effort while not sacrificing solution quality.
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6.2.3.6 Parameter settings

Based on the findings presented above, suitable parameters settings are as follows:

Parameter Setting
Q 100
a 1
{3 1

P 0.5
Ants per cycle 30

Cycles 30
Table 6 .9 -  Final parameter TSP settings

6.2.4 Enhancing Solution Quality

Much work has been detailed regarding trail intensification strategies in the previous 

chapter. It was shown that allowing ‘elite’ ants to deposit extra levels of pheromone 

encouraged solutions of better second-order quality. This observation coupled with the 

benefit that elitism brings to the traditional TSP, Dorigo et al. (1991), suggests that the 

application of elitism to the TSP algorithm is a natural avenue of investigation. Applying 

elitism requires the parameterisation of some unknowns:

1. The number of elitist ants (e)

2. The weight placed on elitist trails (cr)

Like Section 5.5, some preliminary investigation, which determines the appropriate 

settings for these unknowns, is needed. Each parameter is varied independently and the 

other parameter is fixed as follows:

Parameter Setting
e 3
a 15

Table 6 .10- Fixed experimental parameter settings fo r  Elitist TSP

The parameter e has been chosen based on the 10% rule discussed in Section 5.5. The 

number of TSP ants per cycle has been set at 30, which explains e=3. Meanwhile, the 

weight parameter cris fixed at 75 due to the investigation presented in Section 5.5.
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Influence of e

The influence of a range of e has been investigated. A copy of the e best solutions are 

stored and additional replenishment is passed to the trail according to these ‘elite’ 

solutions. The results are presented in Table 6.11.

HEC EAR TRENT

e Av Best Best
10

Av Best Best
10

Av Best Best
10

i 720.86 544 599.08 1554.73 1041 1214.20 1283.96 1022 1068.44
2 703.27 546 594.54 1459.83 1053 1137.83 1228.81 985 1044.10
3 696.44 541 590.62 1409.59 1043 1125.53 1204.51 957 1023.12
5 687.96 534 587.64 1365.56 1008 1102.23 1182.64 945 1009.42
10 682.29 537 583.10 1344.03 1034 1096.13 1169.30 959 1007.36
15 682.08 534 582.92 1347.92 1024 1091.80 1168.69 960 1004.58
20 681.81 535 583.74 1357.71 1036 1098.90 1171.95 956 1006.18
25 682.47 534 582.18 1335.99 1000 1109.65 1322.36 1075 1145.98
30 763.34 554 628.66 1338.23 1000 1094.60 1386.45 1098 1171.64

Table 6.11 -  Statistics describing the influence o f the number o f elitist ants e in TSP.

Across the data sets, restricting the number of elitist ants appears wise. Higher e generates 

poorer solutions for HEC and TRENT. Too many elite ants place higher concentrates of 

pheromone on a wider selection of edges. In consequence, the search becomes less focused 

on better solutions. Limiting the number of elitist ants to 5 across the data sets is suggested 

because the Best results are of high quality across all data sets.

Influence of cr

The influence of the trail intensification weight cr has been investigated. The trails 

associated with each elite solution are magnified by some constant to equip them with 

more influence. A similar study has been detailed in Section 5.5 and increasing cr improves 

solution quality.

HEC EAR TRENT

<7
Av Best Best

10
Av Best Best

10
Av Best Best

10
1 804.52 543 617.02 1678.17 1330 1428.83 1398.63 1083 1162.52
5 708.91 534 593.40 1635.75 1194 1306.85 1315.04 1009 1075.90
10 698.30 541 590.18 1505.59 1053 1161.38 1233.78 1004 1038.48
15 696.44 541 590.62 1409.59 1043 1125.53 1204.51 957 1023.12
20 695.46 546 592.32 1367.13 1023 1104.45 1193.09 986 1020.62
30 681.47 537 581.88 1322.99 1021 1084.75 1160.33 947 1002.36

Table 6 .12 - Statistics describing the influence of trail intensification weight a
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The results displayed in Table 6.12 provide evidence that increasing the trail weight 

improves solution quality. As cr reaches 15, its marginal influence reduces. Since higher cr 

could encourage stagnation, cr will be set to 15,

6.2.5 Best Possible Search Conditions

The ant system has incorporated the elitist strategy during the construction phase and trail 

intensification has also been employed during the Add-On phase to encourage tours of 

smaller length, thus producing timeslot sequences of smaller second-order quality.

Data Set Av Best Best 10 Worst 10
HEC 647.39 512 558.06 793.18
EAR 1130.76 842 939.20 1413.02

TRENT 1135.61 930 971.38 1354.84
Table 6 .1 3 -  Statistics associated with the best search conditions

Table 6.13 illustrates the important role that the ants can play if the searches are efficient 

and biased towards superior areas of the solution space. Let us make direct comparison to 

the results presented in Tables 6.3-6.5. These data correspond to TSP improvements made 

to solutions originally constructed when biased only to first-order conditions. The statistics 

presented in Table 6.13 are clearly superior and emphasise the importance of good ant- 

based solutions.

6.2.6 Heuristic Bias Only

The analogy of ants is based on the pheromone deposits, which represents solution fitness. 

Running the algorithm without these pheromone trails will provide an indication of the 

additional search potency that such ‘bias’ provides. Such runs will mimic the structure of 

the ANT-TSP and the selection of the next city in the tour will again be random 

proportional but now will be biased only according to the visibility score i.e. distance 

between two cities.
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D ata  Set Av Best Best 10 W o rst 10
HEC 8 5 4 .3 5 6 2 0 6 9 6 .6 4 10 0 9 .1 6

(8 .6 9 ) (7 .8 8 )
EAR 119 9 .0 4 9 1 9 9 8 7 .9 0 1 5 2 0 .2 0

( 7 . 5 4 ) (1 1 .3 8 )
TRENT 1184 .42 96 3 1 005 .34 1489 .31

(5 .9 9 ) (2 .2 3 )
Table 6 .1 4 -  Statistics describing the heuristic bias only conditions

The removal o f pheromone has a detrimental effect on solution quality. Direct comparison 

can be made with Table 6.13. However, the use o f  a heuristic only system does yield 

solutions notable superior than the Elitist Reward Function system in Section 5.5.3.2 (See 

Table 5.16). The percentage improvement is represented by the terms in parentheses and 

these values indicate that the heuristic only procedure does provide overall benefit to 

solution quality.

6.2.7 Ant synergy

Figures 6 .1-6.3 illustrate the cyclic best second-order scores averaged over all feasible 

timetables during the TSP improvement phase. Comparison is made between the search 

that uses both trail and desirability (with pheromone) and the search that utilizes only the 

desirability function (without pheromone). The plots represent one complete run with 

identical starting solutions being used (derived from same random number seeds).

2000
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O o o o

T SP  Cycle

_ .  .  .  With Pherom one . . . .  Without Pherom one

Figure 6.1 -  A verage Second-Order Scores fo r  both with and without pheromone conditions fo r  HEC
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Figure 6.2 -A verage Second-Order Scores fo r  both with and without pheromone conditions fo r  EAR
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Figure 6.3 -  Average Second-Order Scores fo r  both with and without pheromone conditions fo r  TRENT

The with pheromone line represents the benefit o f ant synergy. The negative gradient 

signifies the improved averaged second-order score as the search matures. The zero 

gradient without pheromone plot further highlights the improvement in solution quality. 

Table 6.14 suggests that acceptable results are possible with heuristic only bias. The results 

presented in Table 6.14 are clearly superior to those displayed in Table 5.16.

6.2.8 Relationship between Before and After TSP scores

The underlying aim is to generate one feasible exam timetable o f ‘good’ second-order 

quality. This suggests that the application o f the TSP improvement approach could be 

refocused to a subset o f timetables rather than, as to this juncture, each feasible timetable. 

Reducing the volume o f timetables that are subject to TSP improvement will certainly 

reduce the computational effort required. A criterion that identifies a suitable subset o f
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timetables is investigated here. Therefore, it is interesting to determine whether a 

meaningful relationship between Before TSP (the ant-based solution before TSP is used to 

improve quality) and After TSP (best solution after TSP is used to improve quality) scores 

exists. To minimise the volume o f data and eliminate noise elements the Before TSP data is 

ordered and assigned to intervals o f width 100. Within each interval, these data are 

averaged along with the associated After TSP data. The following set o f Figures illustrates 

the Before TSP and After TSP relationship. Each Figure depicts a positive trend, which 

suggests that lower Before TSP scores encourages lower After TSP scores. However, the 

possibility o f a timetable with a high Before TSP score becoming a modified timetable with 

a ‘relatively’ low score does exist, although Figures 6.4-6 .6  suggest that such an 

observation is rare. Some timetables are constructed with a low number o f  ‘high conflict’ 

pairwise exam sets that are scheduled one timeslot apart and these significantly contribute 

towards a ‘poor’ score.
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Figure 6 .4 -  Before TSP and After TSP relationship fo r  HEC
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Figure 6.5 -  Before TSP and After TSP relationship fo r  EAR
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Figure 6.6 -  Before TSP and After TSP relationship fo r  TRENT

HEC

The scatterplot for HEC depicts a trend that is furthest removed from linear than any other 

data set. Generally, the trend is positive and the gradient dampens for Before TSP greater 

than approximately 1350 instances o f students sitting back to back examinations.

EAR

The scatterplot represents a monotonically increasing relationship between the variables o f 

interest. Figure 6.5 has crudely been split into two distinct regions and linear lines have 

been applied to each region. The gradient (6.87) in the Before TSP interval [1085,1300] is 

steeper than the gradient (1.56) belonging to the interval [1300,1767], therefore indicating 

the greater scale o f improvement that belongs to the latter interval as the Before TSP drops. 

Therefore, if  we wished to model this relationship, piecewise linear could be used on an 

ad-hoc basis to segregate the Before TSP into a series o f intervals and conduct linear 

regression on each interval. This method would provide the marginal benefit that one less 

Before TSP unit could have on the After TSP score.

TRENT

The TRENT data set exhibits a similar trend to EAR - a rapid gradient for lower Before 

TSP scores (approximately less than 1200) and then the gradient lowers past this mark. The 

gradient appears smaller than experienced with EAR.
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Attempts have been made to model and quantify the relationship between Before TSP and 

After TSP scores. Regression models that attempt to predict After TSP given Before TSP 

have been produced. The superior model type, due to the explained variation, is linear (see 

Appendix 6.1). However, this model, along with the other tried model types, fail the 

regression assumptions such as errors being normally distributed and consequently, if 

extensive use of these models were made then the conclusions drawn could prove 

unreliable. Not conforming to such assumptions may not be too surprising given the nature 

of the data set. The Before TSP and After TSP scores cannot be classified as a random 

sample as is required with statistical modeling. Members of the data set are biased 

according to the fitness criterion used by the ants during the searches. Towards the latter 

stages of the search ants produce a number of timetables of biased ‘good’ quality. 

Consequently, the data set is clearly biased. However, devising models that determine the 

relationship between Before TSP and After TSP scores would be useful if a generalised 

model type for any data set was possible -  to quantify relationships. However, scale 

disparities between data sets suggest such a model will be impossible to create and 

individual models will have to suffice.

It was stated above that the regression models generated for each of the data sets did not 

observe the regression validity assumptions. Additionally, the distribution of second-order 

scores within each data set is clearly not Normal. Histograms and the Kolmogorov- 

Smimov Test produced for both variables across the data sets prove this comprehensively. 

Given such observations, correlation tests will be non-parametric. Spearman’s Rank will 

be used to quantify the strength of association between Before TSP and After TSP 

variables. The correlation coefficients are as follows.

Data Set Spearman’s Rank 
Correlation Coefficient

HEC 0.80
EAR 0.99

TRENT 0.95
Table 6.15- Spearman's Rank Correlation Coefficient quantifying Before TSP and After TSP relationship

All correlations are significant at the 0.01% level and indicate that lower Before TSP 

scores lead to better After TSP scores.

199



Chapter 6 Improvement Strategies

The evidence presented indicates that the relationship between Before TSP and After TSP 

could be exploited to reduce the number o f timetables that are improved, thus saving 

computational effort. This study is detailed in Section 6.2.9.

An interesting relationship is Before TSP versus Savings, where Savings relates to the 

number o f back-to-back clashes eliminated in the timetable after the application o f TSP. As 

above, the Before TSP data is ordered and assigned to intervals o f  width 100. These data 

are averaged along with the associated 100 Savings data points. Plots for each o f the data 

sets are presented below:
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Figure 6.7 -  Before TSP and second-order conflicts savings relationship fo r  HEC
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Figure 6.8 -  Before TSP and second-order conflicts savings relationship fo r  EAR
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Figure 6.9 -  Before TSP and second-order conflicts savings relationship fo r TRENT

Figures 6.7-6.9 depict a greater linear association than presented in Figures 6.4-6.6. 

Figures 6.7-6.9 all illustrate a striking positive relationship. For relatively low Before TSP 

scores, for each o f the data sets, the marginal improvement slows down and does not 

appear to conform to a linear association. However, for larger Before TSP scores, the 

relationship appears to be almost perfectly linear. Through applying simple linear 

regression, we can see that the positive linear trend for each data set is statistically 

significant. The explained variation statistics, R2, for each model is deemed as statistically 

significant at the 1% level o f  significance. However, the residuals validity checks strongly 

suggest that these regression models cannot be accepted and alternative modeling 

strategies are recommended. Please refer to Appendix 6.1 for details on the regression 

model. As above, we turn to non-parametrics in attempt to quantify the strength o f these 

associations. Table 6.16 presents the Spearman’s Rank Correlation Coefficients for each 

data set.

D ata  Set S p e a rm a n ’s R an k  
C o rre la tio n  C oefficient

H E C 1
EAR 1

TRENT 0.99
Table 6.16 -  Spearman's Rank Correlation Coefficient quantifying Before TSP conflicts savings relationship

All data sets have strongly significant relationships between the Before TSP and Savings 

variables, accepted at 0.001% level o f  significance.

To conclude this section, evidence suggests that applying the TSP algorithm as an 

improvement strategy improves the acceptability o f a timetable dramatically. Larger back-

201



Chapter 6 Improvement Strategies

to-back reductions originate from the timetables with larger Before TSP scores and the 

marginal improvement can almost be classified as linear. However, even though relatively 

poor Before TSP timetables can be transformed into relatively good After TSP timetables, 

the most suitable After TSP timetables are those that had superior Before TSP scores. 

However, Figures 6.7-6.9 indicate that improvement is limited for very good Before TSP 

timetables, thus almost removing the need of the TSP improvement technique for such 

timetables, but emphasizing the benefit of very good ant-based (Before TSP) solutions.

| 6.2.9 Quality-Time Trade-Off
|

Evidence has shown that better After TSP timetables originate from superior Before TSP 

timetables. Since the aim of a scheduler is to generate one feasible timetable of acceptable 

quality, it seems excessive to apply the TSP improvement strategy to all constructed 

feasible timetables. In this section, we will assess the trade off between quality and 

computational effort. The Before TSP timetables are ranked according to second-order 

fitness and the top t timetables are improved. The value of t varies according to the 

number of eligible timetables. If the Before TSP score is lower than a deviation above the 

run-minimum (the current best solution within each independent run) then TSP is applied 

such that

If Before TSP < Run-Minimum*(l+8) {0<8<1} Then 

Improve via TSP 

| End If

Table 6.17 displays the solutions achievable given the deviation level used. The statistics 

have been averaged across five independent runs. Results regarding each individual run 

can be viewed in Appendix 6.2.

A range of deviations has been investigated and a selection is presented. The results are 

directly comparable against all other displayed deviations. Additionally, the percentage 

difference between the observed Best and Time of each deviation used and infinite 

deviation (no limit) are recorded.
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Deviation Average Best % from Best % fromTime
Infinite 647.39 512 0.00 0

0 647.71 561 9.57 85.49
1 633.88 526 2.73 82.02

M 3 631.23 526 2.73 75.18
W 5 634.76 526 2.73 64.17
NM 10 636.97 512 0.00 50.60

20 641.47 512 0.00 31.59
30 642.51 512 0.00 22.63
50 644.22 512 0.00 15.87

Infinite 1130.75 842 0.00 0
0 1085.70 895 6.29 64.17
1 1086.60 895 6.29 63.98
3 1084.82 868 3.09 63.01

3H 5 1089.18 868 3.09 60.32
10 1104.63 852 1.19 45.00
20 1123.62 842 0.00 15.47
30 1129.10 842 0.00 4.24
50 1130.68 842 0.00 0.08

Infinite 1135.61 930 0.00 0
0 1109.22 986 6.02 55.21
1 1110.02 986 6.02 55.06

H 3 1101.22 969 4.19 54.41
5 1101.59 957 2.90 53.02

H 10 1114.14 957 2.90 44.42
20 1130.89 953 2.47 20.49
30 1134.83 942 1.29 6.39
50 1135.57 942 1.29 0.26

Table 6.17 -  Second-Order After-TSP statistics for range o f deviation scores

Table 6.17 suggests that much computational effort is wasted if attempts are made to 

improve every timetable. Acceptable timetables are possible for low deviations and since 

the number of modified timetables is reduced, runtimes are cut greatly. Therefore, the 

quality-time trade-off is encouragingly one-sided and this is observed across all runs for all 

data sets (see Appendix 6.2). However, to observe the known Best solution, higher 

deviations are sometimes required. Typically, for HEC -  during one run, a deviation of 

50% returns the best-known solution of 557 instances of students sitting back-to-back 

exams. Otherwise, with this data set, only smaller deviation measures are required to 

discover the known best. Similar statements can be said for EAR and TRENT. Generally 

though, the percentage errors from the infinite Best are small and the time saving 

percentages for deviations below or equal to 10 are consistently large and using a dynamic 

deviation method is advised. To generalise, a deviation score of ten appears a good 

compromise between solution quality and computational effort.
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6.2.10 Speed of Solution Return

This section extends the study of Section 6.2.9 and considers the computational effort 

required to first achieve salient or Best solutions while using the deviation concept 

discussed above.

It has been found that there is a relationship between the Before TSP and After TSP scores. 

Additionally, it has been proved that relatively good After TSP solutions can be discovered 

via low deviation scores. This, in consequence, encourages reduced runtimes due to the 

I smaller number of feasible timetables that are improved through the TSP strategy. We have 

assumed the condition that the predetermined number of cycles will be completed. 

However, the scheduler may wish to alter this approach. The scheduler may allow for a 

diversification tactic such as: if the overall best solution has not been bettered for a number 

of iterations or a set time interval then trails are reinitialized and a new ant search is 

permitted. This section examines whether it is warranted to use higher deviations and allow 

for diversification in order to minimise computational expense. A subset of the percentage 

deviations has been selected (with Infinite representing the improvement of all feasible 

solutions, irrespective of Before TSP score) along with solutions equivocal to or better than 

the Best solution returned through 0% deviation. In order to make efficiency comparisons, 

the runtimes when each tabulated solution was observed are also presented.

The results are presented as follows.
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For example, a best solution o f 575 was found after 60.08 seconds

V 0 1 5 10 20 Infinite
Run Score Secs Score Secs Score Secs Score Secs Score Secs Score Secs

579 10.72 579 10.78 579 10.85 579 11.04 579 11.36 579 12.701 574 38.27 574 48.89 574 78.65 574 142.11
584 20.74 584 20.93 584 21.76 584 24.13 575 20.06 575 26.46

579 58.15 578 39.48 574 87.02 562 47.80
578 91.85 576 91.75 571 458.65 557 71.80

Z
575 192.51
574 307.33
571 317.91

575 60.08 561 22.63 561 24.68 568 19.13 568 23.93 550 32.49
552 35.20 537 122.99 550 35.94 533 157.960 550 89.47 533 132.45 533 222.56 512 528.36
539 108.47 512 193.31 512 315.81

4 561 31.30 526 24.74 526 25.76 526 26.86 520 24.32 520 45.60
617 31.47 617 32.04 617 36.91 580 10.07 580 10.33 580 11.79

5 602 39.33
592 41.81

Table 6.18- Solution timing information for HEC.

0 1 5 10 20 Infinite
Run Score Secs Score Secs Score Secs Score Secs Score Secs Score Secs

973 86.14 973 86.25 973 86.70 973 87.37 973 89.29 973 91.20
1 944 104.58 944 107.39 936 369.24 936 112.27 936 118.91

936 277.52 935 214.58 919 130.55
1038 359.41 1038 360.42 1031 201.53 1031 234.62 1018 93.38 1018 96.65

2 1023 249.47 1000 260.82 1000 341.07
1019 294.69 990 604.36 990 980.50

1019 76.00 1019 76.11 1019 76.78 1019 78.47 1019 79.37 1019 79.37
3 970 98.87 970 101.00 970 109.56 970 138.94 970 150.64

948 626.43 948 935.38 948 976.34
991 274.46 991 275.93 981 111.49 981 114.42 981 122.07 981 129.16

4 961 223.91 932 271.81 903 219.05 903 240.99
958 349.52 905 417.86

895 155.56 895 155.79 895 156.57 895 158.60 895 164.90 895 168.62
5 868 204.27 861 222.17 852 644.21 852 689.12

852 445.68 842 955.22 842 1024.65
Table 6.19- Solution timing information for EAR.
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1 0 1 5 10 20 Infinite
Run Score Secs Score Secs Score Secs Score Secs Score Secs Score Secs

/

1046 544.74 1042
1028

435.19
453.72

1015
1012
999

306.09
409.13
457.35

1015
999
997
989

341.55
554.01 
581.47
614.01

998
980
930

546.64
646.42
703.52

973
930

586.04
780.65

999 285.01 999 286.10 999 296.36 999 337.81 990 349.87 990 349.07
2 969 373.45 996 403.06 969 587.06 969 587.06

969 436.18 963 982.38 942 982.38
1016 556.02 1016 557.44 1015 348.03 1011 372.98 986 272.31 986 298.71

3 998 758.26 965 627.39 965 714.23

986 460.47 986 462.98 957 274.92 957 299.24 953 368.51 986 199.24
4 953 436.15

991 208.58 991 209.34 991 212.94 991 226.69 991 264.77 991 292.48
5 990 513.05 990 515.12 990 539.78 983 622.85 980 276.19 980 306.95

956 847.90 956 1048.53
Table 6.20 -  Solution timing information for TRENT.

If the scheduler changes the focus of the search to allow diversification then the 

conclusions formed through Section 6.2.9 could alter. After analysing a breakdown of 

significant solutions and the clocked runtimes we notice that good, quickly produced 

solutions can be generated via small deviations. However, it is demonstrated that better 

solutions are often observed via larger deviations and still within a respectable time limit. 

This suggests that the production of one good After TSP timetable is discovered early in 

the search and its origins belong to a timetable of perceived lower Before TSP quality. This 

proves that some ant-constructed timetables (irrespective of the evidence in Figures 6.4- 

6.6) can be deemed of poor quality but reasoning can be attributed to a small of number of 

pairwise exams that are allocated to adjacent timeslots with a relatively high number of 

students in common.

It has been shown that using larger deviations leads to the observation of Best solutions at 

earlier stages of the search and the introduction of a stopping criterion/diversification tactic 

would lead to the minimisation of wasted computational effort. However, it is shown that a 

relationship exists between Before TSP and After TSP and consequently, the introduction 

of an inappropriate stopping criterion that prevents the construction of superior Before TSP 

timetables by stopping the search too early will potentially lead to poorer solution quality. 

Therefore, it is proposed here that no stopping criterion is imposed and lower deviations 

are used as proposed previously.
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6.2.11 Baldwinian and Lamarckian systems

Until this juncture, the TSP strategy has been used to repair timetables with regards to 

second-order quality but subsequent ants have not used any feedback derived from this 

improvement phase (known as Darwinian theory). Within this section, we alter our focus 

slightly and allow the trail to incorporate information accumulated during the Add-On 

phase. Let us consider two approaches, Baldwinian and Lamarckian. The former allows the 

TSP to repair selected (dependent on deviation rule) ant-based solutions and, for a given 

timetable, the resultant new level of fitness is used within the feedback mechanism (see 

Equation 5.11). However, the pairwise exams that are updated originate from the Before 

TSP timetable. The latter also utilises the After TSP fitness score within the feedback 

mechanism, but the pairwise exams belonging to the After TSP timetables are updated. 

Table 6.21 presents After TSP second-order statistics relating to each of the evolutionary 

theories for the TSP.

Data Set Strategy Av Best Best 10 Worst 10 Feasible

HEC
Darwin 647.39 512 558.06 793.18 76.84
Baldwin 684.51 526 621.20 789.04 4.16
Lamarck 647.59 484 521.18 820.62 50.52

EAR
Darwin 1130.76 842 939.20 1413.02 62.83
Baldwin 1198.21 941 1102.50 1293.76 2.46
Lamarck 1250.36 892 969.76 1572.70 33.64

TRENT
Darwin 1135.61 930 971.38 1354.84 71.45
Baldwin 1180.71 1009 1061.36 1316.14 33.18
Lamarck 1179.67 919 996.90 1385.18 39.57

Table 6.21 -  After TSP Statistics for different fitness strategies across all data sets.

For Baldwinian strategy, the volume of feasible timetables drops drastically. However, 

despite this low number, solution quality is maintained to a relatively acceptable level. An 

intuitive reason for this is as follows. Drastic solution changes are possible through the 

TSP and consequently, it is feasible to generate a significantly lower second-order score 

than originally achieved. However, the ant-based solution structure, along with the 

modified fitness, is used for trail feedback, which leads to mixed communication and 

consequently, greater exploration and potentially less exploitation. However, even though 

the feasibility rate is poor, good quality feasible timetables are recorded.

Lamarckian strategy encourages the production of relatively good timetables. The area of 

the solution space widens as a result of this evolutionary theory, which is indicated by the
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indifferent average second-order scores but better Best solutions. The volume of feasible 

timetables falls, but not as severely as for Baldwinian. Given the first and second-order 

statistics, it is difficult to see any advantage in using Baldwinism or Lamarckism ahead of 

Darwinism in conjunction with TSP.

6.2.12 Data Sets with Side-Constraints

When an exam scheduler receives the data representing the exams to be timetabled it 

usually comes equipped with a list of side constraints requested by a specific lecturer or 

department. The most common demand is the allocation of an exam to a certain day or to a 

timeslot belonging to a subset of time periods. These are known as pre-assigned and time 

windowed exams respectively. The acceptance of such requests limits the effectiveness of 

the TSP strategy to reduce back-to-back conflicts. Since each timeslot/city contains a set of 

exams, if  at least one exam is pre-assigned or time-windowed then the movement of that 

timeslot/city is severely restricted or non-existent. A number of such ‘problematic’ exams 

has the potential to reduce the effectiveness of the TSP model.

To illustrate this discussion, two real-life data sets are used and comparisons between the 

unrestricted and restricted cases are made. Data representing January 2000 and summer 

2002 exams, Swan2000 and Swan2002 respectively, at the University of Wales Swansea 

have the following characteristics:

Swan2000 Swan2002
Exams 313 722

Timeslots 20 36
Students 4611 6388
Density 10.33% 4.20%

Table 6.22 -  Data set characteristics for Swan2000 and Swan2002.

The parameters were levied as follows:
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Table 6.23 -  Parameter information

The algorithm was run, with the above parameter settings, and two scenarios were 

considered -  the restricted and the unrestricted case.

Illustration of the restricted case

The reorganisation of the timeslots is restricted by pre-assigned and time windowed exams. 

Tables 6.24 and 6.25 detail the number of exams pre-assigned to each timeslot for the 

Swan2000 and Swan2002 data sets respectively.

Timeslot Exams Timeslot Exams Timeslot Exams Timeslot Exams
1 0 6 0 11 1 16 0
2 1 7 0 12 0 17 1
3 1 8 0 13 2 18 1
4 1 9 1 14 1 19 0
5 0 10 1 15 1 20 2
Table 6.24- Information regarding the frequency ofpreassigned exams per timeslot for Swan2000.

With respect to Swan2000, 12 timeslots are fixed in each timetable due to the demands 

associated with 14 exams. The scheduler has the flexibility of reallocating only 8 ‘free’ 

timeslots. It is possible to move timeslots 1, 5, 6, 7, 8, 12, 16 and 19 without violating 

these pre-assignment requests. Additionally, there are 20 time windowed exams that can, 

on average, be placed in 8 timeslots.
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Timeslot Exams Timeslot Exams Timeslot Exams Timeslot Exams
1 3 10 1 19 3 28 1
2 0 11 3 20 1 29 3
3 1 12 2 21 6 30 3
4 0 13 3 22 2 31 0
5 2 14 3 23 2 32 0
6 2 15 1 24 4 33 3
7 2 16 0 25 2 34 0
8 0 17 4 26 2 35 0
9 3 18 1 27 4 36 0
Table 6.25- Information regarding the frequency ofpre-assigned exams per timeslot for Swan2002.

With respect to Swan2002, 27 timeslots are fixed in each timetable. The scheduler is 

allowed to shift only 8 timeslots within the timeslot sequence due to the demands of 67 

pre-assigned exams. Despite the increased number of timeslots, less flexibility exists in 

comparison to Swan2000. Also, there are 47 time-windowed exams that can, on average, 

be placed in approximately 26 timeslots.

Reduced flexibility does reduce the size of the problem and consequently, limits the 

number of cities that need to be considered. The lower the number of cities, the bigger the 

argument for an exact based TSP technique. However, it has been stated in Section 6.2.1 

that since the TSP is the traditional testbed for ACO algorithms it is warranted here to treat 

the TSP as a second combinatorial optimization problem. Therefore, it is justified to apply 

ants in all such cases given the nature of this study.

Results

Table 6.26 presents the results for both scenarios for Swan2000 and Swan2002. The 

reduction in flexibility results in higher second-order conflict scores as expected.

Av Best Best 10

Swan2000 Restricted 341.45 121 124.61
Unrestricted 257.92 65 86.65

Swan2002 Restricted 705.88 331 375.81
Unrestricted 661.40 193 235.50

Table 6.26- Statistics comparing solution quality for restricted and unrestricted case.

The inclusion of side constraints does inhibit the success of the TSP but not as severely as 

the evidence in Tables 6.24 and 6.25 suggest.
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It has been shown that the TSP is capable as an improvement strategy. Large 

enhancements are possible and correspond to the positive conclusions drawn by authors 

such as White and Chan (1979) and Colijn and Layfield (1995). However, it has been 

demonstrated that a scheduler can be disadvantaged when side constraints, which limit the 

flexibility of the TSP, exist.

6.3 Exam exchange methods

The previous section described how the order of the timeslots could be re-arranged via the 

TSP to reduce the second-order conflicts score of the timetable. It regarded each timeslot 

as a single entity and no within entity alterations were permitted. Although, the quality of 

the timetables did improve due to TSP involvement, the method itself is a little restrictive. 

Exam movements, rather than timeslot movements, is intuitively more flexible. A greater 

permutation of timetables from one starting solution (ant constructed solution) is viable 

leading to a greater probability of achieving superior final solutions. In this section, we will 

discuss two exam exchange strategies. Firstly, a relatively simple local search variant is 

used. Exams that inflate the second-order score the greatest are recognized and placed 

(potentially) within a feasible timeslot that will consequently reduce the overall second- 

order score of the timetable by the greatest amount. Secondly, exam movements based on 

the graph theoretic Kempe Chains is discussed. As in Section 6.2, each technique is 

subjected to a series of studies. For both techniques, the influence of the three evolutionary 

theories is assessed and means of reducing the usage of these exam movement Add-Ons is 

investigated.

6.3.1 Local search

One form of local search is Hill-Climbing. This method will not accept worsening moves 

and only has the ability to search a very limited section of the solution space. It is however 

fast compared to other improvement methods and will not produce a solution worse than 

the original. For these experiments, both Random Descent and Steepest Descent were 

considered and it was observed that the latter encouraged the better results with the former 

requiring less runtime. Given that runtimes for both descent methods are significantly 

lower than experienced with methods presented in Sections 6.2 and 6.3.2, it was felt wise 

to proceed with the strategy that generated superior solution quality -  Steepest Descent.
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Darwinian, Baldwinian and Lamarckian evolutionary theories are applied and compared 

with respect to this descent method. In Section 6.2, we used terms such as Before TSP and 

After TSP, these will be replaced with Before Loc and After Loc.

6.3.1.1 Steepest Descent

Steepest Descent is defined as follows. A neighbourhood of a solution x  is denoted by N(x) 

and members of N(x) are those solutions that can be reached by making one sequential 

change to x while retaining solution feasibility. Every member of N(x) is examined and the 

exam move that creates the biggest reduction in second-order conflict scores is selected 

and a new solution x is defined. The procedure continues until no improving moves are 

possible. Local search is defined in greater depth in Appendix 6.3.

After Loc statistics for the three evolutionary theories are presented in Table 6.27.

Data Set Strategy Av Best Best 10 Worst 10 Feasible Std Dev

HEC
Darwin 726.18 587 654.80 1359.26 76.84 66.57
Baldwin 646.94 552 623.62 1502.85 77.76 95.53
Lamarck 679.58 575 646.95 1523.61 75.22 91.59

EAR
Darwin 1053.22 826 947.92 1436.36 62.83 65.22
Baldwin 946.73 819 922.12 1554.69 67.91 88.08
Lamarck 941.49 799 892.62 1554.43 66.58 89.27

TRENT
Darwin 960.40 770 831.98 1426.06 71.45 83.63
Baldwin 889.60 750 827.78 1540.15 72.68 94.79
Lamarck 883.63 740 820.59 1522.45 71.99 97.91

Table 6.27- Statistics describing After Loc performance of Steepest Descent strategy for three evolutionary theories.

An improvement in solution quality is observed when repair information is integrated, to 

some degree, in the trail. Av, Best and Best 10 statistics provide indication that Baldwinian 

and Lamarckian fitness philosophies enhance the second-order fitness of the timetables and 

future ant based searches should consider these strategies. The first-order performance of 

the searches is fairly consistent across the evolutionary theories for all data sets. The 

standard deviation of the second-order conflicts score has been recorded. This statistic has 

been averaged over 5 independent runs. Generally, the standard deviations for Baldwin and 

Lamarck are higher than for Darwin. Therefore, it is perceivable that a greater range of 

second-order scores is generated through Baldwinian and Lamarckian strategies (further 

illustrated by the difference in Best 10 and Worst 10 statistics). This suggests that 

Baldwinian and Lamarckian philosophies broaden the investigation around the local
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minima and consequently, increase the chances of forming a timetable of relatively 

superior second-order quality.

Since Baldwinian and Lamarckian philosophies impose alternative fitness strategies, the 

constructions drafted by the ants (.Before Loc statistics) will differ. Consequently, we will 

analyse the Before Loc statistics for each of the fitness techniques.

Data Set Strategy Av Best Best 10 Worst 10 Std Dev

HEC
Darwin 935.66 673 711.28 2237.94 195.71
Baldwin 1048.42 611 644.52 2427.58 307.66
Lamarck 1102.76 610 663.62 2403.10 288.12

EAR
Darwin 1296.94 1037 1104.02 1788.46 104.66
Baldwin 1225.66 950 1017.38 1784.80 109.48
Lamarck 1241.08 935 999.00 1807.14 112.29

TRENT
Darwin 1259.89 985 1039.48 1801.28 120.51
Baldwin 1204.11 894 963.84 1792.60 124.53
Lamarck 1189.43 904 960.04 1767.02 126.36

Table 6.28- Statistics describing Before Loc performance of Steepest Descent strategy for three evolutionary theories.

The results are promising. The use of Baldwinian and Lamarckian theories do generate 

superior solutions - we note the improved Best and Best 10 results. However, there is no 

discemable improvement in Av scores and a deterioration in the Worst 10 statistics, which 

suggest that the ant searches widen. This intuition is consolidated by the standard deviation 

of second-order scores (for feasible timetables) statistics. These figures suggest that 

Baldwin and Lamarck not only avoid searching in a smaller subset of the solution space 

but actually encourages the ants to widen the search (Section 6.3.2.5 performs a study 

regarding the width of exploration) around local minima. This leads to a greater variety of 

timetables produced and consequently, a wider variety of After Loc timetables, which 

further explains the results presented in Table 6.28.

6.3.1.2 Relationship between B efo re  L o c  and A fte r  L o c

Here we revisit the style of investigation performed in Section 6.2.8 -  to determine if a 

relationship between Before Loc and After Loc exists and consequently, (if appropriate) 

exploit this relationship as to reduce the number of timetables that are repaired, thus 

lowering computational effort. For each data set, the Before Loc and the corresponding 

After Loc scores across all runs were collated and ordered according to Before Loc. Both 

variables were grouped according to Before Loc into intervals of size 100 and averaged.
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Spearmans Rank Correlation statistic is 0.24, 1 and 1 for HEC, EAR and TRENT 

respectively. The corresponding p-values of significance are 0.02, 0 and 0 respectively. 

Thus, each of the Spearmans statistics is deemed as statistically significant despite the 

relatively low correlation statistic for HEC i.e. 0.24.

Representing Before Loc and After Loc graphically (not shown here to avoid repetition of 

section 6.2.8) shows that the relationship appears closer to linear than any other form. 

Consequently, to quantify the effect of Before Loc on After Loc, least squares regression 

has been performed and can be viewed in Appendix 6.4. Given the positive trend between 

the variables, it seems logical to apply local search to the fitter timetables in order to 

reduce the computational effort required. Section 6.3.1.3 will investigate this. For 

completeness, the relationship between Before Loc and the reduction in second-order 

conflicts (Saving) is analysed. Like Section 6.2.8, the relationship is strongly linear (can be 

shown graphically) across the data sets. Computation of Spearmans Rank produces non- 

parametric correlations of 1 for each of the data sets. This highlights that the Steepest 

Descent Strategy can repair poorer solutions substantially, however, to produce solutions 

of ‘better’ After Loc quality requires ‘better’ Before Loc solutions.

6.3.1.3 Quality-Time Trade-Off

Section 6.3.1.2 demonstrated that a strong positive relationship between Before Loc and 

After Loc is present. In consequence, this suggests that only a subset of fitter Before Loc 

timetables are needed to produce a ‘successful’ timetable. The study discussed in Section 

6.2.9 will be applied here. After the construction of each feasible timetable, the second- 

order conflicts score is computed. If it lies within a percentage deviation of the run 

minimum for feasible timetables then local search is used to repair the timetable. Each of 

the fitness philosophies are analysed since reducing the number of repairs will bear an 

influence on the trail levels when used with Baldwin and in particular, Lamarckian 

strategies and consequently, have an impact on solution quality. The results for each of the 

data sets are tabulated in Tables 6.29-6.31.
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Run % Dev 
Run Min

Av Best Best 10 Worst
10

Eligible Time %Dev
Best

%Dev
Time

Infinite 726.18 587 654.80 1359.26 7684 166.65 - -

0 763.24 658 707.78 812.98 18.40 84.05 12.10% -49.57%
1 708.46 657 685.16 862.36 223.00 86.25 11.93% -48.24%

| 3 702.33 645 679.12 868.12 634.60 90.69 9.88% -45.58%
5 703.09 645 677.22 877.56 1228.00 97.08 9.88% -41.75%

3 10 706.31 638 665.64 900.74 2698.20 112.93 8.69% -32.24%
20 710.21 631 661.64 965.68 4181.20 128.91 7.50% -22.65%
30 714.31 631 660.86 1025.24 5176.00 139.63 7.50% -16.22%
50 720.19 631 659.54 1085.68 6195.80 150.62 7.50% -9.62%

Infinite 646.94 552 623.62 1502.85 7776.80 189.33 - -

0 826.23 612 786.78 961.27 18.60 102.62 10.87% -45.80%
1 730.70 648 753.96 951.07 104.60 104.65 17.39% -44.73%1 3 713.82 606 733.75 970.13 218.20 104.03 9.78% -45.05%

a 5 689.35 596 729.64 998.59 636.00 108.29 7.97% -42.80%

§ 10 701.18 558 724.43 1024.16 887.00 110.26 1.09% -41.76%
20 655.50 584 695.28 1064.62 3280.40 136.95 5.80% -27.67%
30 674.47 588 701.96 1167.60 4125.00 148.84 6.52% -21.39%
50 643.97 551 651.55 1285.17 4471.00 154.35 -0.18% -18.48%

Infinite 679.58 575 646.95 1523.61 7521.80 192.04 - -

0 826.23 612 786.78 961.27 18.60 102.75 6.43% -46.50%
1 725.96 582 747.73 972.15 59.20 104.66 1.22% -45.50%
3 712.97 622 739.79 990.22 50.00 108.15 8.17% -43.68%

1 5 709.82 618 729.83 1022.99 375.40 107.96 7.48% -43.78%

3 10 669.69 594 706.82 1043.45 1848.70 124.93 3.30% -34.95%
20 665.65 587 691.18 1093.82 2355.20 128.35 2.09% -33.16%
30 682.75 586 707.87 1154.14 2296.60 131.90 1.91% -31.32%
50 692.42 573 702.26 1235.72 4849.80 158.87 -0.35% -17.27%

Table 6.29 -  Statistics describing achievable results for dynamic min+deviation rule for HEC.

215



Chapter 6 Improvement Strategies

Run % Dev 
Run Min

Av Best Best 10 Worst
10

Eligible Time % Dev 
Best

%Dev
Time

Infinite 1053.22 826 947.92 1436.36 6283.00 718.86 - -

0 1053.47 826 1005.06 1096.00 17.40 374.76 0% -47.87%
1 1048.99 826 982.08 1149.84 41.00 376.05 0% -47.69%
3 1029.62 826 967.24 1185.72 162.20 382.71 0% -46.76%
5 1025.00 826 961.64 1215.68 436.00 397.75 0% -44.67%

5 10 1029.62 826 954.98 1250.96 1889.40 477.57 0% -33.57%
20 1042.39 826 949.40 1296.30 4950.20 645.66 0% -10.18%
30 1049.80 826 948.80 1309.16 5929.40 699.44 0% -2.70%
50 1052.97 826 947.92 1310.80 6275.20 718.43 0% -0.06%

Infinite 946.73 819 922.12 1554.69 6791.00 678.35 - -

0 1156.95 907 1154.03 1257.62 16.40 305.37 10.74% -54.98%
1 1114.99 871 1111.31 1276.12 25.60 306.75 6.35% -54.78%

| 3 1040.25 855 1058.31 1323.10 119.00 309.65 4.40% -54.35%

9 5 1001.84 863 1055.24 1341.18 420.20 328.94 5.37% -51.51%

§ 10 937.71 770 976.54 1398.07 2074.60 415.21 -5.98% -38.79%
20 971.21 784 987.75 1474.27 4522.80 549.27 -4.27% -19.03%
30 954.76 757 970.53 1523.08 5853.40 623.93 -7.57% -8.02%
50 944.45 801 954.70 1574.05 6774.60 676.80 -2.20% -0.23%

Infinite 941.49 799 892.62 1554.43 6658.20 732.53 - -

0 1124.31 834 1107.10 1255.57 17.80 325.82 4.38% -55.52%

b
1 1074.35 828 1080.91 1256.85 33.00 326.49 3.63% -55.43%
3 997.98 836 1039.18 1244.01 100.00 332.98 4.63% -54.54%

1 5 983.12 834 1021.28 1298.38 255.80 343.49 4.38% -53.11%

s 10 951.21 829 991.19 1362.82 1546.20 412.50 3.75% -43.69%
20 937.79 781 960.86 1466.85 4318.00 582.28 -2.25% -20.51%
30 928.04 793 933.80 1535.64 6061.20 698.48 -0.75% -4.65%
50 945.58 833 954.76 1582.40 6677.20 727.94 4.26% -0.63%

Table 6.30 -  Statistics describing achievable results for dynamic min+deviation rule for EAR.
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Run % Dev 
Run Min

Av Best Best 10 Worst
10

Eligible Time % Dev 
Best

%Dev
Time

Infinite 960.40 770 831.98 1426.06 7145.00 2096.15 - -
0 971.72 814 900.62 1052.48 22.40 633.39 5.71% -69.78%
1 962.66 814 876.28 1106.84 47.40 638.52 5.71% -69.54%

D
A

RW
IN 3 933.65 808 855.80 1143.72 164.60 662.59 4.94% -68.39%

5 923.67 800 848.42 1159.16 416.00 714.22 3.90% -65.93%
10 922.21 775 836.96 1208.92 1851.20 1008.97 0.65% -51.87%
20 940.72 770 832.32 1288.04 5093.60 1674.86 0.00% -20.10%
30 953.43 770 832.18 1375.60 6620.80 1988.50 0.00% -5.14%
50 959.98 770 831.98 1329.76 7131.40 2093.36 0.00% -0.13%

Infinite 889.60 750 827.78 1540.15 7268.80 2257.82 - -
0 1066.49 843 1039.33 1214.93 19.40 778.93 12.40% -65.50%

s. 1 1013.89 837 997.06 1230.94 37.40 782.49 11.60% -65.34%

1 3 930.66 751 927.19 1258.19 124.60 800.43 0.13% -64.55%

a 5 919.69 774 928.83 1299.78 250.20 822.69 3.20% -63.56%

oq 10 859.94 735 868.67 1387.00 1137.80 997.56 -2.00% -55.82%
20 863.85 712 851.55 1465.91 4454.80 1663.53 -5.07% -26.32%
30 867.58 728 853.03 1538.59 6132.80 1995.03 -2.93% -11.64%
50 884.78 744 858.51 1522.24 7238.40 2252.43 -0.80% -0.24%

Infinite 883.63 740 820.90 1522.45 7199.20 1526.95 - -
0 1051.76 794 1011.70 1203.30 18.40 536.04 7.30% -64.89%

8
1 1029.16 829 993.57 1251.34 37.60 538.76 12.03% -64.72%
3 942.12 783 939.57 1269.00 123.40 553.04 5.81% -63.78%

1 5 909.83 769 898.75 1317.99 274.60 574.21 3.92% -62.39%

3 10 867.52 756 866.59 1354.34 1146.00 682.95 2.16% -55.27%
20 880.32 761 877.65 1472.31 3771.60 1020.6 2.84% -33.16%
30 883.42 763 858.70 1509.65 6011.00 1340.01 3.11% -12.24%
50 880.29 747 850.47 1555.83 7061.60 1483.31 0.95% -2.86%

Table 6.31 -  Statistics describing achievable results fo r  dynamic min+ deviation rule fo r  TRENT.

It is shown that Baldwinian evolution is the superior evolutionary theory. This can be 

attributed to the restrictive nature of Steepest Descent and is explained in greater depth in 

Section 6.6. Additionally, Lamarckian theory outstrips Darwinian. Limiting improvement 

(to selected ant-based solutions) does, on occasions, generate superior solutions than 

improving every feasible solution (particularly with Baldwinian theory). This suggests that 

the use of repair information in more limited measures can actually lead to better Best After 

Loc solutions. This indicates that the improvement of a smaller number of good ant-based 

solutions allows for a greater differentiation between solutions, thus enabling the discovery 

of better solutions. Similar statements can be made regarding Before Loc solutions (See 

Appendix 6.5). For HEC, at 50% deviation with Baldwinian theory, a Before Loc 

observation of 580 is noted, but with infinite deviation, the best observation is 611 

students. For EAR, at 10% with Baldwinian theory, a best of 875 is noted but the best 

infinite deviation result is 950. Similar statements can be made regarding Lamarckian.
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6.3.1.4 Comparison of Local Search with TSP

Here we compare the TSP and Local Search methods with regards to solution quality. TSP 

produces better solutions for HEC, but does not compete when dealing with EAR and 

TRENT. Intuitively, it can be explained as follows. HEC is the denser graph and the 

feasible reallocation of individual exams is more difficult due to the greater number of 

direct conflicts. Meanwhile, the rearrangement of timeslots does not, at any time, violate 

these first-order concerns. Consequently, such freedom associated with the TSP leads to 

better results. However, research has shown that solution quality with the less dense EAR 

and TRENT data sets is superior with the exam exchange approach.

Additionally, the computational effort required for local search is less. This is to be 

expected due to the nature of these improvement strategies. Steepest Descent local search 

terminates when the local minimum is obtained. The ANT-TSP system, even though 

quicker than exact TSP, has a predetermined number of cycles to complete. Stopping the 

algorithm after n non-improving cycles would reduce runtimes but local search would still 

be more efficient. It should be noted here that much computational expense could be saved 

if Steepest Descent was used to re-order the timeslots. However, the desire behind this 

thesis is to use ants as much as possible and provides reason why the ANT-TSP algorithm 

has been applied. Local search and, in the next main section, Kempe chain descents have 

been used to move individual exams since it is not feasible to use ants for such a task.

6.3.1.5 Further Illustration of Role of Ants

It has already been demonstrated that the quality of the ant constructed solution influences 

the quality of the final solution (after an enhancement technique has been applied). 

Consequently, this highlights the critical role that the ants play. To further appreciate the 

importance of the ants, extra experiments have been performed.

The algorithm was run allowing solely first-order fitness as the trail feedback mechanism 

(see Chapter 4). As before, following the construction of a feasible timetable, local 

improvement is performed. The Lamarckian Steepest Descent technique was applied and 

the second-order results were collated. These are presented below.
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Data Set Av Best Best 10 Worst 10
HEC 913.05

(20.47)
633

(7.27)
710.94 1539.36

EAR 1331.77
(20.92)

951
(13.14)

1117.58 1749.12

TRENT 1004.19
(4.36)

813
(5.29)

856.20 1591.76

Table 6.32 — Statistics describing solution quality with Steepest Descent applied to poorer starting solutions.

The terms in parenthesises refer to the percentage change in second-order quality between 

these experiments and the tests that incorporated the second-order fitness feedback (Table 

6.28, Darwin rows). Table 6.32 indicates the importance of better ant-based solutions to 

the overall performance of the search. A more efficient ant-based search generates lower 

After Loc second-order conflict scores. With HEC, the average solution score improves by 

a factor of 20.47%, with EAR, 20.92% and with TRENT, 4.36%. Meanwhile, the best 

solutions improve by 7.27%, 13.14% and 5.29% for HEC, EAR and TRENT respectively. 

These improvements illustrate the importance of encouraging the ants to construct good 

second-order feasible timetables, highlighting the importance of the efficiency of a good 

ant based search, which validates the role of the ants.

6 3 .1 .6  TSP -  Local Search Hybrid (TSP-Local)

In this section, we consider a TSP and Steepest Descent hybrid, see for example White and 

Chan (1979) and Colijn and Layfield (1995). Such a collaboration of techniques will allow 

the movement of both individual exams and timeslots. This method allows room for further 

improvement since it eliminates some of the restrictions of the methods when applied 

independently. Typically, the TSP approach has a main drawback of not permitting the 

reallocation of exams to alternative timeslots, while the Steepest Descent strategy 

terminates when no improving individual movements can be performed.

After the construction of a feasible timetable, the timeslots are reorganised via the TSP 

strategy. After the predetermined number of TSP cycles has been fulfilled, improvements, 

if  possible, are made through applying Steepest Descent to the movement of individual 

exams. The order of strategy application has been chosen to minimise runtimes. Since the 

TSP technique completes a predetermined number of cycles and the Steepest Descent 

strategy terminates as soon as no further improvements are possible, it seems realistic to 

experience shorter runtimes through this approach.
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Darwinian, Baldwinian and Lamarckian philosophies are again applied. The results are 

tabulated below:

Data Set Strategy Av Best Best
10

Worst
10

Feasible

Darwin 588.50
(18.96)

467
(20.44)

506.18 719.16 77.40

HEC Baldwin 567.12
(12.34)

446
(19.20)

483.86 724.94 70.80

Lamarck 573.38
(15.63)

427
(25.74)

461.74 729.04 51.35

Darwin 921.64
(12.49)

722
(12.59)

772.28 1143.30 63.24

EAR Baldwin 892.50
(5.73)

724
(11.60)

756.92 1126.60 63.47

Lamarck 937.54
(0.42)

720
(9.89)

759.72 1211.84 29.24

Darwin 886.34
(7.71)

724
(5.97)

766.96 1059.92 70.71

TRENT Baldwin 870.55
(2.14)

715
(4.67)

742.00 1058.82 72.98

Lamarck 901.56
(2.03)

725
(2.03)

768.58 1059.74 26.82

Table 6.33 -  Statistics describing final solution quality fo r  the TSP-LOCAL hybrid strategy.

The bracketed terms represent the percentage change in solution quality improvement 

when comparing the TSP-Local hybrid to the Steepest Descent strategy (Table 6.27). 

Larger improvements are experienced for HEC and EAR, while limited quality 

enhancement is experienced with TRENT. Generally, the hybrid strategy assists Darwinian 

philosophy greater than the other evolutionary strategies. This can be attributed to the 

nature of these theories. It has been demonstrated that the ants could construct better 

Before Add-On (Before Add-On and After Add-On are generalized terms for the second- 

order scores recorded before and after improvement is applied to a timetable) solutions if 

After Add-On feedback (Baldwin and Lamarck) is passed to the trail. Therefore, this leads 

to better After Add-On solutions due to our conclusions regarding the relationship between 

Before Add-On and After Add-On solutions. Thus, the benefit that can be derived from TSP 

based improvement (in addition to local search) is going to be smaller for Baldwinian and 

Lamarckian systems than Darwinian. Discussion of runtimes can be found later in this 

chapter.

The use of this hybrid is warranted, as the following statistics will testify. With HEC, a 

best of 427 (Lamarck) with TSP-Local compares with a best of 551 (Baldwin) with Local
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and 484 (Lamarck) with TSP. With EAR, a best of 720 (Lamarck) with TSP-Local 

contrasts with a best of 757 (Baldwin) with Local and 842 (Darwin) with TSP. With 

TRENT, a best of 715 (Lamarck) measures against a best of 712 (Baldwin) with Local and 

919 (Lamarck) with TSP. Despite a marginally better performance (for TRENT) with 

Local over TSP-Local, it is worth noting the Best 10 statistics of the relevant methods 

(TSP-Local and Local), which are 742.00 and 851.55 respectively. These statistics indicate 

the benefit of the TSP-Local hybrid. On a generic level, Lamarckian theory is the superior 

method when regarding the TSP-Local hybrid. One reason can be attributed to the wider 

exploration that derives from Lamarckian evolution (as demonstrated later in this chapter).
i
i

6.3.2 Kempe Chains

6.3.2.1 Introduction

An Add-On uses the ant-based solution as a starting solution and searches the 

neighbourhood. Since neighbourhood structure will have a direct influence upon the 

quality of the final solution, its definition plays a critical role. In this chapter, we have 

already detailed local search but, the solution space landscape is spiky and the ability to 

reach some solutions is limited. Thompson (1995) discussed means to extend the 

neighbourhood structure and enhance the reachibility of some solutions. Thompson 

claimed that the use of a graph theoretic exam exchange method, namely Kempe Chains, 

improved solution quality. Kempe Chains has the same influence as flattening the terrain 

around solutions, thus allowing for greater exploration. Also, Morgenstem and Shapiro 

(1989b) stated that neighbourhood definition is more important than the nature of the
i

! solution method and therefore, a suitable Add-On technique here should have benefits. 

Johnson et al. (1991) stated that the implementation of Kempe Chains does require 

additional computational effort but the trade-off with solution quality compensates for this.

An ideal neighbourhood should ensure that solutions are reachable, yet be small enough to 

be searched efficiently. Morgenstem (1989a) discussed a method that swapped a number 

of vertices in two colours while maintaining feasibility. If a vertex vr is to be moved from 

colour class ci to C2 , the move is only feasible if no vertices adjacent to vr are currently 

coloured C2 . Exchange moves would be feasible if only one such vertex v* in q  existed and
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provided no other vertices in cj were adjacent to v5. Kempe Chains were introduced by 

Kempe (1879) and can be defined as any connected component of the subgraph consisting 

of only the vertices in two distinct colour classes. To form a Kempe Chain, the subgraph 

consisting of only the vertices in two given classes is produced. Exchanging the colours of 

all vertices from a feasible colouring produces another feasible colouring. Consequently, a 

neighbourhood based on Kempe Chains will maintain feasibility and acts as a suitable

j improvement strategy for feasible ant constructed solutions.

| A move consists of swapping the colours of the vertices in the Kempe Chain such that 

those coloured cj are now coloured C2 and those coloured C2  are now coloured cj. As stated 

above, all exchanges will not violate feasibility. Let us consider a member vr of a Kempe 

chain. If a vertex in vr 's new class is adjacent to vr then it is deemed infeasible. However, 

all vertices in vr’s new colour class and neighbours of vr are recoloured, which means the 

new colouring will be feasible.

Each Kempe Chain is sampled as in Johnson et al. (1991). Two colours cj and C2 are 

randomly chosen as well as a single vertex vr from cj. Adjacent vertices to vr coloured C2  

are noted and added to the chain. The next vertex on the chain is examined and neighbours 

in cj and C2 are added to the chain. This procedure continues until the chain is complete 

and no members of the chain have a neighbour in cj or C2 . The Kempe Chain is labeled (cj, 

C2 , vr) which represents the chain with colour classes ci and C2 and beginning with vertex 

vr. Thompson (1995) showed that the above sampling procedure was the more appropriate 

and will be used here.
!

A solution achieved after application of Kempe chains is referred to as After Kempe, while 

the ant-based solution is labelled Before Kempe.

6.3.2.2 S-Chains

Morgenstem (1989a) indicated that the neighbourhood structure could be extended further 

through the use of S-Chains. Whereas Kempe chains are connected components of the 

subgraph induced by two colour classes, S-Chains originate from S different colour 

classes, where S>2.
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S distinct colours are randomly generated, with 2<S<q (with q equal to the number of 

colours). A starting vertex is chosen at random from the first colour group and all adjacent 

vertices to the current vertex and in the next colour group are identified. This continues 

with the next vertex and the chain is completed when no further additions can be made to 

the Sth colour class.

The neighbourhood structure of S-Chains is defined as follows. A solution is achieved if 

every member of the S-Chain is moved forward one colour class. A neighbouring solution 

will always be feasible as any adjacent vertex in the subsequent colour class will itself be 

recoloured, thus maintaining feasibility.

Increasing S lowers the manageability of the neighbourhood and encourages extortionate 

computational times. Additionally, S-Chains can make large solution changes but can miss 

small, very good solution changes. Conclusions regarding S-Chains in Thompson (1995) 

suggest that the simpler Kempe Chains are better on both computational and solution 

quality fronts and therefore, Kempe Chains rather than S-Chains will be used here.

6.3.2.3 Application to Examination Timetabling

Moves in the Kempe Chain neighbourhood retain feasibility. This observation fits nicely 

within the examination timetabling framework. Since Kempe Chains are applied to feasible 

ant based solutions, the resultant timetables will be first-order feasible. Additionally, the 

large changes that are possible to solutions could result in large drops in second-order 

conflict scores. However, it is impossible to deduce in advance whether the generated 

timetables will be feasible with respect to binding constraints such as seating capacities. 

Consequently, much computational effort may be wasted generating infeasible moves.

If a Kempe chain contains a time-windowed exam vertex then a timeslot vertex will be 

added to the chain. Furthermore, another timeslot vertex will be added as the timeslot 

vertices form a clique. A Kempe chain move will exchange the colours of the timeslot 

vertices. The colouring will still be feasible because the time-windowed exam vertex will 

still be the same colour as the timeslot vertex.
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6.3.2.4 Sample Size

The starting vertices of Kempe chains are randomly sampled. A sampled Kempe chain is 

deemed successful if  the second-order score of the timetable is better than previously 

experienced. If no improved solutions are observed with a sample of size n then no more 

chains are sampled until the next applicable timetable (feasible). Conversely, if 

improvement is observed, exam swaps between timeslots are performed and chains relating 

to the best-improved solution are sampled. In this section, we observe the influence of 

sample size n with respect to both solution quality and computational effort. The statistics 

refer to Kempe modified timetables and are presented in Table 6.34.

Sample n Av Best Best 10 Worst 10 Time

HEC

10 874.05 624 749.71 1950.92 106.53
50 733.04 508 642.44 1109.93 370.09
100 686.40 501 609.13 977.26 786.90
200 640.04 477 574.24 888.04 1635.85
500 608.35 466 547.26 824.56 3635.09
1000 592.85 438 535.91 804.32 6305.13

EAR

10 1213.72 932 1158.49 1818.94 292.29
50 1110.72 879 1044.55 1534.51 1050.43
100 1030.19 823 979.97 1407.18 2184.36
200 967.89 780 914.71 1304.78 4882.73
500 921.70 722 869.42 1231.07 13484.70
1000 886.19 708 841.16 1171.92 25494.20

TRENT

10 1241.64 978 1164.85 1808.58 473.07
50 1119.92 927 1076.44 1504.35 1685.47
100 1050.06 839 994.44 1409.89 4958.45
200 978.72 801 931.61 1304.21 11581.40
500 916.15 751 878.56 1208.74 30640.50
1000 891.96 736 861.05 1150.96 56021.30

Table 6.34 -  Statistics describing the influence o f  Kempe sample size on solution quality and runtime.

The trade-off between solution quality and computational effort is clear. Large sample 

sizes require relatively expensive runtimes and the suitability depends on the time a 

scheduler is prepared to allow. Second-order enhancement is certainly noted through 

sampling more chains but relatively greater gains are observed for increases in n when n is 

small. Due to the runtime excess for high n, it has been decided to set n=100 for the 

remainder of this study.

TSP and Local Search procedures have shown comprehensively that there exists a 

relationship between the second-order scores of ant-based and Add-On solutions. This 

emphasises the importance of the quality of the ant solution and, as investigated

224



Chapter 6 Improvement Strategies

previously, the application of the computational expensive Kempe Chains should be 

limited to the better ant-based solutions.

In addition, there is a strong positive relationship between quality improvement and 

computational effort. Appendix 6.6 presents scatter diagrams that represent this 

relationship for each of the data sets. The Spearmans Rank correlation statistics are 0.67, 

0.98 and 0.96 for HEC, EAR and TRENT respectively, which emphasises the strength of 

association. In consequence, if time limits are imposed on an investigation, this 

relationship suggests the pertinence of applying an Add-On to fitter ant based solutions.

6.3.2.5 Restricting Kempe Improvements

In this section, we consider the influence of limiting the number of timetables that are 

improved through Kempe Chains. As in Sections 6.2 and 6.3, the run-minimum is 

observed and Kempe Chains are applied to those feasible timetables that have second-order 

scores within a percentage deviation of the run-minimum. Additionally, the three 

evolutionary theories, Darwinism, Baldwinism and Lamarkism, are scrutinized. Only one 

entry (for infinite deviation) per data set is regarded for Darwin to reduce the amount of 

data presented. With respect to Darwinism, the best Best statistic is always recorded when 

infinite deviation is applied. Consequently, no better solutions are missed by not recording 

the deviation related statistics. However, a time versus solution quality trade-off becomes 

impossible. Since it has been noted that Baldwinism and Lamarckism are the preferred 

evolutionary theories (by previous investigation), the benefit of a detailed breakdown of 

Darwin-deviation statistics becomes obsolete. The results are as follows:
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Run %  D ev  
Run M in

A v B est B est 10 W orst
10

E lig ib le Time %  D ev  
B est

%  D ev  
Time

D A R W IN Infinite 686.40 501 609.13 977.26 7684.00 786.90 - -

Infinite 683.60 494 567.60 971.50 7117.80 871.10 - -
0 713.31 572 710.73 784.89 17.60 68.14 15.79 92.18

s . 1 660.16 572 667.30 784.62 83.60 72.88 15.79 91.63

1 3 653.01 538 651.76 809.52 327.40 92.20 8.91 89.42
Q 5 695.62 557 683.18 820.47 110.20 75.51 12.75 91.33

10 642.72 506 608.80 853.17 1088.80 159.51 2.43 81.69
20 671.21 489 611.33 906.03 1927.20 247.33 -1.01 71.61
30 661.97 503 598.32 920.00 3603.60 423.41 1.82 51.39
50 674.37 501 598.58 938.66 4418.00 521.15 1.42 40.17

Infinite 646.57 454 531.59 931.41 3261.80 421.14 - -

0 695.58 562 695.03 774.38 20.25 65.53 23.79 84.44
1 700.62 565 701.01 785.68 37.80 66.15 24.45 84.29
3 667.34 506 662.96 792.90 46.20 67.17 11.45 84.05
5 710.37 545 706.93 804.12 27.80 67.65 16.70 83.94

3 10 683.94 520 663.88 840.19 68.20 70.82 14.54 83.18
20 641.00 503 605.92 853.68 248.20 85.94 10.79 79.59
30 657.01 495 616.19 867.08 337.80 98.20 9.03 76.68
50 641.57 475 576.63 893.78 1021.80 165.98 4.63 60.59

Table 6.35 -Influence o f  evolutionary theory, Kempe and deviation rule on solution quality fo r  HEC.

Run % D e v  
Run M in

A v B est B est 10 W orst
10

E lig ib le Time %  D ev  
B est

%  D ev  
Time

D A R W IN Infinite 1030.19 823 919.91 1407.18 6283.00 2184.36 - -

Infinite 1042.37 829 929.41 1394.96 6546.20 3532.64 - -

0 1084.09 888 1090.28 1168.55 13.00 332.62 7.11 90.38
1 1055.41 874 1067.81 1201.71 37.80 342.08 5.42 90.32

1 3 1039.56 888 1054.76 1224.14 90.00 363.25 7.11 89.72

3 5 1006.29 845 1004.09 1241.28 269.40 432.19 1.93 87.77
10 1027.37 852 1000.00 1319.48 1698.60 1057.29 2.78 70.07
20 1036.50 811 978.24 1377.27 4774.40 2523.30 -2.17 28.57
30 1052.07 841 978.11 1423.17 5891.20 3237.96 1.45 8.34
50 1045.14 838 970.55 1423.73 6557.40 3538.35 1.09 0.16

Infinite 976.42 736 858.47 1396.81 2912.20 1524.33 - -

0 1066.71 837 1069.66 1186.51 20.40 301.12 13.72 80.25

&
1 1057.73 816 1066.55 1197.31 27.20 303.86 10.87 80.07
3 1064.18 858 1076.45 1217.16 36.20 306.17 16.58 79.91

1 5 988.32 795 992.94 1220.21 129.20 331.32 8.02 78.27

3 10 988.48 800 981.81 1276.58 315.80 387.11 8.70 74.61
20 980.59 776 936.39 1319.41 858.00 611.58 5.43 59.88
30 955.18 739 906.14 1350.51 1913.80 951.15 0.41 37.60
50 982.48 782 909.05 1399.43 2398.00 1275.46 6.25 16.33

Table 6.36 -Influence o f  evolutionary theory, Kempe and deviation rule on solution quality fo r  EAR.
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Run % Dev 
Run Min

Av Best Best 10 Worst
10

Eligible Time %Dev
Best

% Dev 
Time

DARWIN Infinite 1050.06 839 994.44 1409.89 7145.00 4958.45 - -

Infinite 1059.28 857 947.51 1381.40 6864 7563.71 - -

0 1111.88 913 1116.15 1218.96 19.60 522.93 6.53 93.09
1 1080.25 917 1095.90 1227.89 32.20 531.61 7.00 92.97

1 3 1055.13 902 1066.65 1262.81 94.00 576.41 5.25 92.38

9 5 1043.67 854 1042.54 1291.01 177.80 644.79 -0.40 91.48

§ 10 1035.63 854 1008.28 1329.88 812.60 1164.20 -0.40 84.61
20 1053.56 852 994.36 1390.88 3720.40 4139.90 -0.60 45.27
30 1053.83 833 986.04 1402.37 5778.60 5996.73 -2.80 20.72
50 1057.06 836 982.51 1418.41 6933.40 8497.79 -2.45 12.55

Infinite 1059.86 831 930.98 1387.76 3688.20 7643.01 - -

0 1138.21 928 1139.33 1203.10 13.80 802.47 11.67 89.50

rv

1 1108.41 862 1114.41 1225.05 20.60 815.15 3.73 89.30
3 1094.20 915 1105.33 1260.53 36.20 839.49 10.11 89.00
5 1083.69 864 1079.85 1292.92 63.00 885.29 3.97 88.42

3 10 1051.30 856 1027.72 1323.83 218.80 1115.52 3.00 85.41
20 1057.06 848 1004.39 1376.52 954.40 2382.71 2.05 68.83
30 1034.76 827 964.39 1403.54 2710.20 5305.71 -6.48 30.58
50 1057.18 812 973.72 1421.09 3472.20 7020.54 -2.25 8.14

Table 6.37 -Influence o f  evolutionary theory, Kempe and deviation rule on solution quality fo r  TRENT.

Results indicate that limiting the use of Kempe chain application does not have a 

detrimental effect on solution quality. Of the three theories, Lamarckism appears the 

superior (as highlighted by the Best solutions that are bolded). Additionally, the number of 

timetables eligible for Kempe improvement is drastically reduced through this evolutionary 

theory. This can be attributed to the wider search processes (see Section 6.6 for further 

discussion). In consequence, the number of feasible timetables is reduced and, from these 

feasible solutions, a greater range of ant-based second-order scores is experienced. With 

regards to the latter point, ant searches are capable of producing a subset of very good 

solutions. In terms of the decision to improve an ant-based solution via Kempe chains, any 

future ant based solutions must be of relatively first-class quality to qualify for 

improvement. These factors contribute to a lower number of timetables that are permitted 

Kempe based improvement, leading to quicker runtimes. Table 6.38 emphasises some of 

the above points. Please note the results associated with HEC and EAR. In both instances, 

the Av and Worst 10 statistics are inferior for Lamarck than Darwin but the Best and Best 

10 results are superior. This highlights the comment regarding the distribution of ant-based 

second-order scores and the standard deviation scores that are presented confirm this.

Returning to Tables 6.35-6.37, it appears that a general deviation rate of 30% is a 

reasonable compromise between solution quality and computational expense. It has already

227



Chapter 6 Improvement Strategies

been discussed that Lamarckian theory is superior and it is observed that at 30% deviation, 

great computational effort is saved in return for minimal reduction in solution quality 

(when compared with infinite deviation). The evidence is as follows. For HEC, there is a 

9.03% lowering in solution quality in return for a time saving of 76.68%. For EAR, there is 

a minimal 0.41% difference in the respective Best solutions in return for a runtime 

decrease of 37.60%. For TRENT, there is an improvement in solution quality by 6.48% 

and a reduction in computational effort of 30.58%.

Data Set Strategy Av Best Best 10 Worst 10 Feasible Std Dev

HEC
Darwin 935.66 673 711.28 2237.94 76.84 195.71
Baldwin 1381.77 785 888.12 2514.64 71.18 260.94
Lamarck 1384.57 546 659.50 2660.68 32.62 361.76

EAR
Darwin 1296.94 1037 1104.02 1788.46 62.85 104.66
Baldwin 1432.94 1046 1201.00 1819.52 65.46 86.66
Lamarck 1305.28 830 927.46 1934.88 29.12 185.08

TRENT
Darwin 1259.89 985 1039.48 1801.28 71.45 120.51
Baldwin 1453.69 1133 1204.66 1818.32 68.64 91.98
Lamarck 1512.94 1099 1180.14 1920.88 36.88 122.03

Table 6 .3 8 -  Statistics describing the influence o f  evolutionary theories on ant-based searches.

Figures A6.1-A6.3 presented in Appendix 6.6 indicate that extra computational effort is 

required to generate bigger second-order improvements. Consequently, better ant-based 

solutions will not only contribute to the generation of improved Kempe solutions but will 

require less runtime to execute. Therefore, the use of Lamarckism will lead to better 

solution quality and will require lower computational effort than the other evolution 

theories.

6.3.2.6 Width of Exploration

By previous study, it has been determined that the incorporation of evolutionary theories 

(Darwin, Baldwin and Lamarck) bears a strong influence on solution quality. Results 

suggest that Baldwinian and, in particular, Lamarckian theory enhance the exploratory
I

powers of ant-based searches. Consequently, a greater diversity of solutions is obtained. 

This has two benefits. Firstly, since good feasible timetables receive a greater reward 

weighting, the ants tend to favour the allocation of good (with respect to fitness) pairwise 

exams within the same timeslot. This exploitation characteristic, along with improved 

diversity, leads to improved solution quality. Secondly, a greater variety of feasible 

timetables, some of fitter quality, will lead to better After Add-On solutions. Figures 6.10-
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6.12 illustrate one reason for better solution quality with Lamarckian evolutionary theory. 

The standard deviation statistic o f second-order scores within each cycle is plotted to 

indicate the level o f diversity that is achieved and demonstrate that ants do not converge to 

the same solution. The Figures depict a common appearance. Lamarckism offers the 

greatest exploration, followed by Baldwinism and then Darwinism. This ordering 

corresponds to the quality o f best solutions obtained with each o f the evolutionary theories.

400

300 -

1 0 0  -

Cycle

Lamarck D arw in  Baldwin

Figure 6.10 -  Within cycle standard deviation fo r  evolutionary theories when using Kempe fo r  HEC

200

Q 100 ■o

Cycle

 D arw in  Baldw in Lamarck

Figure 6.11 -  Within cycle standard deviation fo r  evolutionary theories when using Kempe fo r  EAR
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100

Cycle

 Darwin Baldwin Lam arck

Figure 6.12 -  Within cycle standard deviation fo r  evolutionary theories when using Kempe fo r  TRENT

To demonstrate the width o f the search, we will examine the mean branching factor X - 

first proposed in Gambardella and Dorigo (1995). The aim o f any ant-based search process 

is to obtain a balance between exploitation and exploration. Stiitzle and Hoos (1997) 

suggested that best solutions are obtained in a near stagnation environment since the ants 

concentrate on a small subset o f the solution space. Since X indicates the dimension o f  the 

solution space that is being investigated, it is claimed by the above authors that lowering 

X to some mark is desirable. The mean branching factor is defined formally in Chapters 2 

and 5 but will be revisited here.

Let AQmax(r,s) and AQmin(r,s) be the largest and smallest trail values on all feasible 

pairwise vertices (r,s) and dr=AQmax(r,s) -  AQmin(r,s). The mean branching factor ( X ) for a 

vertex r is represented by the number o f vertices s, with a pairwise trail score greater than 

X. dr+AQmin(r,s),  with X=0.05. Figures 6.13-6.15 plot the cyclic mean branching factors 

across the three evolutionary theories for each data set.

40 -

Cycle

 Darwin Baldwin Lam arck

Figure 6.13 -  Cyclic mean branching factor for evolutionary theories when using Kempe fo r  HEC
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120  -

Cycle

 D a rw in  B aldw in  Lam arck

Figure 6 .1 4 -  Cyclic mean branching factor fo r  evolutionary theories when using Kempe fo r  EAR.

 D a rw in  B aldw in  Lamarck

2 5 0  -

200

Cycle

Figure 6.15 -  Cyclic mean branching factor fo r  evolutionary theories when using Kempe fo r  TRENT.

Each figure depicts a similar pattern. For each evolutionary theory across each o f the data 

sets, X reduces as the search matures. This is a desirable attribute and indicates the search 

is narrower and consequently, the trails are being exploited, thus (generally) leading to 

better quality solutions. Stiitzle and Hoos (1996) demonstrated that better search conditions 

exist in a near-stagnation state (i.e. X «0), however the authors imposed a diversification 

technique that reset the trails when no improvement had been detected after a 

predetermined number o f iterations. Since no diversification strategy is used here, reaching 

a near stagnation environment too early in the search will limit the exploratory powers o f 

the ants. The benefit o f widening the search has already been demonstrated in Section 5.9, 

which, indicates the benefit o f  obtaining a search environment that produces values o f X 

which suggest that a balance between exploitation and exploration is being achieved.
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Lamarckian evolution exhibits a wider search than the other theories and can be attributed 

to the extending the neighbourhood through Kempe Chains (see Section 6.6 for discussion 

relating to suitability o f  Baldwinism for Local Search and Lamarckism for Kempe Chains). 

Wider search is demonstrated by the predominately larger A factor over the cycles and the 

slower reduction o f A per cycle. Unquestionably, the use o f Lamarckian theory enhances 

solution quality above the other theories and this suggests that wider search processes are 

beneficial to the type o f  search environment imposed on the ants.

It has been determined that the use o f  Lamarckian theory when used with Kempe Chains 

maintains good levels o f exploration after the infancy o f the search. Solution quality 

improves as a consequence o f this diversity. However, in this section, an attempt to further 

improve solution quality is made through increased exploitation during the latter stages o f 

the search. Section 5.5.3.2 illustrated that increasing a second-order weight cfe on the ERF 

(Elitist Reward Function) improves the quality o f the timetables that are generated. A 

trade-off, however, is a drop in timetable feasibility. The influence o f d2 on ant 

performance is the key for its involvement here. This bias parameter is varied and the 

investigation is twofold. Firstly, we gain insight into the drop in diversity, through the 

mean branching factor, and secondly, the impact on solution quality.

Figures 6.16 and 6.17 plot the cyclic mean branching factor for a selection o f A for HEC 

and EAR respectively. Increasing d2 does appear to bear influence on diversity in these 

examples. In Figure 6.16, the narrowest search is demonstrated when d2=2000, while in 

Figure 6.17, the same setting generates less diversity and consequently, more exploitation 

characteristics. These settings generate the better Best results as produced in Table 6.39.
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Figure 6 .1 6 -  Cyclic mean branching factor fo r  selection o f  d2fo r  HEC.
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Figure 6.17 -  Cyclic mean branching factor fo r  selection o f  d2fo r  EAR.

The mean branching factor plots for TRENT do not show any signs o f  extra exploitation. 

The low density o f the TRENT graph may be the reason for this. However, the use o f 

higher d2 does lead to improved solution quality for all data sets. Table 6.39 presents the 

Best statistics for both Before Kempe and After Kempe solutions. Placing more weighting 

on d2 does enhance both Before Kempe and After Kempe solution quality. The best 

solutions have been bolded. Surprisingly, results are common across the data sets. 

Allowing d2=2000 generates superior Before Kempe results for all three data sets, while 

similar statements can be made regarding After Kempe results, thus emphasising the 

relationship between these two variables. It can be seen that the disparity between Best 

Before Kempe and Best After Kempe solutions is not that large. This suggests that the ants 

learn (through Lamarckian theory) from the repairs that are made through the Add-On 

strategy {Kempe Chains). Additionally, we have determined that Lamarckian strategy 

encourages search diversity and the number o f  ant-based solutions eligible for 

improvement is reduced as a result. Further improvement to Best Before Kempe solutions 

will reduce the volume o f eligible solutions even more. Small differences between better 

Before Kempe and After Kempe coupled with lower eligibility rates will reduce runtimes 

further.

Before Kempe After Kempe
d2 HEC EAR TRENT HEC EAR TRENT

750 548 7 7 9 9 6 0 4 9 5 7 3 9 8 2 7
1500 4 8 9 7 4 4 859 4 6 9 7 2 6 7 4 6
2000 475 731 784 4 6 3 718 699
2500 4 7 6 843 803 461 7 8 5 7 5 0
3000 5 19 841 921 4 8 8 7 5 7 78 7

Table 6.39 -  Best Before Kempe and After Kempe solutions fo r  experimental d2 across data sets.
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6.4 Comparison across Methods

! In this section, we compare some of the methods that have been discussed within Chapter 5
I
| and this current chapter. The aim is to demonstrate the benefit that different theories,

enhancement techniques and theoretical modifications can offer with respect to solution

j quality. Six cases are considered. Firstly, we take the first-order case (labelled M l, Section

5.1), where second-order statistics are just recorded and no improvements with regard to

j  second-order are made. Secondly, the algorithm is modified to accommodate second-order

fitness and a second-order bias constant is incorporated (labelled M2, Section 5.4). Thirdly, 

the Elitism Reward Function is used and parameters are set according to the Robust Elitist 

Settings (labelled M3, see Section 5.5.3.2). Fourthly, the hybrid of TSP and Local Search is 

utilised with both Before Add-On and After Add-On statistics recorded (labelled M4i and 

M4ii, Section 6.3.1.6). Fifthly, the graph theoretic Kempe chains is considered (labelled 

M5i and M5ii for Before Kempe and After Kempe solutions respectively, Section 6.3.2). 

Finally, it has been shown that increasing the sample size of chains does increase solution 

quality. However, the trade-off is the exorbitant runtimes. To compensate for this, an ad- 

hoc diversification strategy has been incorporated (labelled M6i and M6ii for Before 

Kempe and After Kempe solutions respectively). If a new best solution has not been 

observed for ten cycles then the run is terminated prematurely and a new independent run 

is started. For each eligible feasible timetable, 5000 Kempe Chains (arbitrary large 

amount) are sampled. No precursory investigation has been performed for this strategy due 

to the large runtimes. Both the TSP-Local hybrid and Kempe Chains are used in 

conjunction with Lamarckian evolution theory and Before Add-On solutions are deemed 

eligible according to the 30% deviation rule. Each of these cases has been applied to
j
j  members of the data set pool (as described in Chapter 3) and the results are in Table 6.40.
j
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Data
Set

Statistic M l M2 M3 M4i M4ii M5i M5ii M6i M6ii

C91

Best 2478 2464 2140 1963 1361 2248 1738 2558 1477
Average 3237.57 3199.99 2847.92 2614.71 1634.14 3176.84 2283.35 3373.55 1807.16
Feasible 84.06 71.33 62.36 64.84 - 51.04 - 2.90 -

Time 6771.35 7444.75 7544.00 21489.43 - 69735.20 - 83757.46 -

C92

Best 2495 2442 2031 1787 1411 2000 1668 2393 1465
Average 3441.53 3233.99 2725.30 2629.19 1930.76 3033.05 2075.82 3203.13 1668.56
Feasible 83.99 46.95 53.93 40.46 - 31.36 - 0.01 -

Time 3520.71 3920.79 3933.93 10106.54 - 17044.00 - 78594.90 -

EAR

Best 1430 1370 1037 1242 747 779 739 1162 694
Average 1745.50 1715.36 1296.94 1775.80 967.90 1272.95 955.18 1640.61 854.14
Feasible 76.73 7218 62.83 34.03 - 29.12 - 9.88 -

Time 188.23 201.47 220.78 510.23 - 951.15 - 1814.32

HEC

Best 926 723 673 758 467 548 495 741 442
Average 1646.40 1503.46 935.66 1596.00 615.74 1394.39 657.01 1363.83 558.99
Feasible 87.08 81.15 76.84 52.03 - 32.62 - 12.24 -

Time 35.69 42.11 42.89 63.20 - 98.20 - 222.07 -

KFU

Best 2162 2094 1616 1994 1135 1426 1079 1715 921
Average 3351.87 3272.10 2415.22 3255.31 1619.88 2603.16 1407.29 2983.73 1150.57
Feasible 83.70 40.32 63.45 22.89 - 25.54 - 4.61 -

Time 1671.29 1933.28 1909.32 2442.91 - 4061.30 - 59523.90 -

LSE

Best 863 807 798 921 501 719 570 925 508
Average 1293.39 1238.21 1050.80 1404.88 644.24 1274.25 757.58 1369.87 625.97
Feasible 78.70 46.99 56.23 31.09 - 15.41 - 0.84 -

Time 784.55 927.46 932.04 1257.64 - 1867.09 - 5124.18 -

STA

Best 3079 3048 3021 3021 3021 3021 3021 3022 2975
Average 3274.81 3268.45 3120.54 3118.68 3081.52 3148.50 3041.35 3161.78 3026.64
Feasible 95.63 88.17 94.68 95.28 - 91.82 - 81.40 -

Time 89.72 112.36 108.42 451.29 - 602.88 - 11173.20 -

TRENT

Best 1255 1215 985 1215 752 960 827 1154 712
Average 1649.83 1578.24 1259.89 1603.03 905.24 1442.89 1034.76 1515.10 863.09
Feasible 85.90 71.77 71.45 31.19 - 36.58 - 26.30 -

Time 296.59 301.24 338.71 722.58 - 5305.71 15102.38

UTA

Best 2424 2281 1962 1889 1420 2109 1724 2552 1480
Average 3219.35 2941.63 2569.74 2646.36 1691.03 2951.58 2123.63 3081.41 1725.98
Feasible 83.58 65.10 53.48 51.55 - 28.94 - 0.64 -

Time 5456.48 5992.69 6103.69 18712.89 - 30435.30 - 61475.60 -

UTE

Best 1546 1845 1088 1478 903 628 579 689 523
Average 3099.76 3248.28 2033.06 3201.70 1522.70 2472.14 1055.75 2355.86 816.58
Feasible 60.77 41.93 70.70 31.09 - 46.31 - 24.76 -

Time 133.90 164.26 165.77 192.73 - 278.66 - 15603.20 -

YORK

Best 911 875 839 906 680 711 642 818 596
Average 1220.72 1194.89 1056.75 1261.84 846.83 1088.88 804.95 1180.42 718.37
Feasible 52.77 43.98 60.86 27.74 - 35.14 - 4.97 -

Time 169.96 184.72 201.74 360.99 - 727.84 - 5449.06 -

Table 6.40 -  Comparison o f methods for data pool.
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A hyphen (-) is used in the Feasible and Time rows for M4ii, M5ii and M6ii strategies. 

These approaches are associated exclusively with M4i, M5i and M6i respectively and 

consequently, the same Feasible and Time statistics are recorded. Instead of duplicating 

results, a hyphen is used.

Best Solutions -  Ant-Based Solutions (M l, M2 and M3)

Case Ml is consistently the poorest performer. This is to be expected since no attempt to 

cater for the second-order problem is included within the construction process. Case M2 

does generally produce better solutions than M l, but not on one occasion (UTE). An 

average improvement of 2.79% is not significant. However, the use of a second-order 

component within the feedback facility is crucial. There are some M2 results that stand out. 

A 21.92% improvement is experienced (HEC), but, confusingly, a 19.34% worsening is 

observed with UTE. The inclusion of elitism (Robust Elitist Settings) improves solution 

quality considerably. The average percentage improvement between Ml and M3 and M2 

and M3 are 18% and 15% respectively. Notable improvements are with EAR, KFU and 

YOR (this data set is dealt with later).

Best Solutions -  Improvement Strategies

Before Add-On

The use of smaller sample Kempe chain (M5) leads to higher quality ant-based solutions, 

while referring to M l, M2 and M3 and is significantly better than M6 (large sample). 

Populous samples diversifies the search further and also lowers feasibility -  both 

contribute to lower solution quality. An average solution disparity between M4 and M5 of 

16.09% exists in favour of the latter case. However, M4 is superior in the instances of C91, 

C92 and UTA, which coincidently are the larger data sets.

After Add-On

Despite poor ant-based solution quality, M6 generates the superior final solutions. With 

respect to final solution quality, Case M6 is 10.53% superior to M5 and 6.78% better than 

M4. It can be argued that large sample Kempe chains could obtain suitable final solutions
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from random poor solutions, thus, eliminating the need for good quality ant-based 

solutions. Also, M4 performs 4.51% superior than M5. This latter result is useful when 

data sets have limited or no side constraints and illustrates the benefit that can be gained 

through a less constrained environment.

Feasibility

As expected, Ml generates the greater volume of feasible timetables. Ml has one purpose, 

to achieve feasibility. The incorporation of second-order functions (M2) has the influence 

of lowering feasibility rates. In some cases, the drop is fairly significant (see KFU for 

example). The inclusion of elitism, even with extra second-order bias (parameter d2) 

improves first-order capabilities. In three cases (STA, UTE and YOR), the feasibility rate 

of M3 is better than M l. Due to the first-order replenishment component of elitism, the 

introduction of Lamarckian theory does not relegate the search process to infeasibility once 

again. For all data sets, Case M6 lowers feasibility capabilities. This is expected due to the 

moves across the solution space that are viable through large Kempe samples.

Computational Effort

As expected, the incorporation of any improvement technique leads to increased runtimes. 

The relative difference between M l, M2 and M3 is small. The use of an Add-On bears a 

significant influence on runtimes. Very large samples require huge effort and 

consequently, put the observed solution quality into perspective. However, it does show 

the benefits of increasing sample size. The key is to increase sample size to a level that 

does not require unrealistic runtimes while still exploiting the relationship between Before 

Add-On and After Add-On solutions. Additionally, it has been observed that less 

computational effort is required to improve better quality ant-based solutions. It is 

demonstrated that the TSP-Local hybrid generates relatively excellent solutions, while 

requiring less runtime than Kempe. As stated previously, this hybrid acts as an attractive 

alternative when limited side constraints have to be observed.

It has been demonstrated that an improvement phase is imperative to solution quality. It 

has also been observed that the best final solutions are generated from large sample 

Lamarckian Kempe Chains, however the runtimes are excessive. Meanwhile, TSP-Local
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does perform marginally better than smaller sample Kempe in smaller runtimes. However, 

it is interesting to note the solution quality performance of these strategies when data sets 

(Swan2000 and Swan2002) with side constraints are considered. The 30% deviation rule is 

applied in each case. Runtimes are not available since experiments were performed in 

parallel and efficiencies between machines make computational efforts incomparable.

Add-on Average M inim um

SW AN2000
Local 190.15 98

TSP-Local 143.26 68
Kempe 100.90 54

SW AN2002
Local 273.89 224

TSP-Local 250.32 187
Kempe 199.93 126

Table 6.41 -  Add-on results fo r  SWAN2000 and SWAN2002

Based on solution quality alone, it is suggested here that Lamarckian Kempe with 30% 

deviation (Case M5) is the most suitable method. However, even when side constraints are 

imposed, the results achieved through the TSP-Local hybrid are more attractive.

6.4.1 Comparison of Exam Exchange Methods

Both Local Search and Kempe Chain Descent are exchange methods that move exams to 

different timeslots if an improvement in solution quality is possible while maintaining 

feasibility. It has been observed that Kempe (generally) outperforms Local Search and 

reasoning can be associated with the neighbourhood structure since extra solutions are 

accessible. However, through comparison of Tables 6.29-6.31 and Tables 6.35-6.37, it can 

be seen that Steepest Descent returns very competitive results. The After Loc statistics are 

superior to the After Kempe statistics for TRENT. The good performance of Steepest 

Descent is based upon the efficiency of the ant search. However, despite these promising 

results, Kempe Chain descents, by nature, has the greatest potential to succeed. A Kempe 

chain neighbourhood allows the searching of a greater part of the solution space around the 

ant-based solution (starting solution). Consequently, a greater variety of solutions are 

investigated and the result is better After Add-On quality due to improved solution 

accessibility. The following sequence of Figures plots within cycle standard deviation (of 

second-order scores of feasible timetables) against cycle number while comparing Kempe 

Chains against Local Search. It is demonstrated that a constant level of solution variability 

is present as the search matures while using Kempe chains, which is a desirable
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characteristic. Conversely, Local Search feedback actually limits ant searches. Intuitively, 

this can be explained as follows. During the early stages of the run, the ant searches lack 

focus, however, as the search matures the ants learn and exploit small areas of the solution 

space. Consequently, ants return not too dissimilar solutions. The application of Local 

Search will further enhance similarities between solutions due to the limited 

neighbourhood structure. The characteristics of these identical or near identical solutions 

are passed to the trail, thus limiting the foraging capabilities of future ants. The variation 

that exists can be associated with the feasible timetables that are not improved (deviation 

criteria) and the infeasible solutions. The scales of Std Dev on Figures 6.18-6.20 can be 

attributed to the average number of students per exam (see Section 5.6.1 for related 

discussion).
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Figure 6 .1 8 -  Within cyclic Standard Deviation comparing Local Search and Kempe fo r  HEC.
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Figure 6.19 -  Within cyclic Standard Deviation comparing Local Search and Kempe fo r  EAR.
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Figure 6.20 -  Within cyclic Standard Deviation comparing Local Search and Kempe fo r  TRENT.

For further indication of the extra exploratory power that Kempe Chains offers, the 

frequency of vertex colour changes per ant between the Before Add-On and After Add-On 

solution has been computed for both Kempe Chains and Steepest Descent Local Search. 

Larger frequencies suggest a greater ability to search larger areas of the solution space 

around the starting solution (ant-based solution), thus, making better After Add-On 

solutions more accessible. The statistic in question is averaged for each feasible timetable 

that is deemed eligible for improvement over five independent runs.

HEC EAR TRENT
Kempe 41.48 100.75 148.21
Local 7.93 31.64 49.89

Table 6.42 -  Number o f  vertex colour changes between ant-based andfinal solution p er  eligible ant

These statistics indicate that a greater range of solutions (originating from an ant-based 

starting solution) is obtainable through Kempe, which emphasises the wider 

neighbourhood structure that is associated with this strategy. The disparities between data 

sets is linked to the size of data set.

6.4.2 Comparison with Simulated Annealing

It has been demonstrated that solution quality can be drastically improved via a series of 

‘second-order improving’ methods. However, comparison against an alternative 

optimisation technique is required here to enable overall conclusions regarding the success 

of the application to be made and to determine whether HAS-EXAM is a valid 

examination scheduling method. It has been recognised that the use of Kempe Chains (with
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Lamarckian evolutionary theory) enhances both Before Add-On and After Add-On. Kempe 

Chains played a pivotal role in Thompson (1995) when applying Simulated Annealing to 

the Examination Timetabling and consequently, seemed a sensible choice for a comparison 

method in this section.

The method

Simulated Annealing is an improved local search technique, which searches a wider part of 

the solution space. The analogy of the method stems from statistical thermodynamics, 

Metropolis et al. (1953), and was recognised as a basis for an optimisation technique, 

Kirkpatrick et al. (1983) and Cemy (1985). When applying Simulated Annealing, 

sequential movements are made across the solution space via small alterations to solutions. 

Moves are accepted automatically if an improved solution is observed, but acceptance of 

poorer solutions is dependent on a probabilistic function. More detail regarding this 

technique can be found in Appendix 6.7.

Kempe Chains with Lamarckian evolutionary theory and the 30% deviation rule is used 

when applying ants. For SA, a starting temperature of 20 and a cooling ratio of 0.99 are 

used, with 1000 iterations at each temperature and a finishing temperature of less than 

0.01. Comparative Best statistics are presented in Table 6.43.

Data Set Ant Best Simulated Annealing Best
C91 1738 2660
C92 1668 2315
EAR 739 1182
HEC 495 635
KFU 1079 1746
LSE 570 970
STA 3021 2560
TRE 827 990
UTA 1724 2440
UTE 579 1648
YOR 642 1000

Table 6.43 -  Statistics comparing SA and AS-EXAMsecond-order scores

It can be observed in Table 6.43 that the use of ants can lead to very competitive solutions 

and, with respect to this comparison, outperform established methods. Regrettably, 

runtimes are not available for SA and a full evaluation of algorithm efficiency cannot be 

assessed here. However, the quality of solution alone is encouraging. The main advantage
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of the ant approach is the manner in which the solution space is explored. The probabilistic 

nature of the algorithm encourages greater diversity and explorations that are biased will 

lead to the production of ‘fit’ timetables. Consequently, the superiority in solution quality 

over S A can be attributed to the additional diversity of search.

6.5 Justification of Parameter Settings

The work performed in Chapters 5 and 6 has used the parameter settings (a=2, p -1 ,  

p=0.5) that were determined in Chapter 3 and, to a lesser extent, in Chapter 4. However, it 

is perceivable that different values of a  and p  may have been appropriate for different 

investigations, but addressing such sensitivities for each method would be computationally 

impossible. Therefore, to justify the use of these parameters, the influence of bias 

parameters on Best solution quality with respect to the final solution method (Lamarckian 

evolutionary method using Kempe with 30% deviation) is tested. Table 6.44 presents the 

best After Kempe second-order scores for HEC, EAR and TRENT for ae{0, 0.5, 1, 2, 3, 4} 

and p e { l, 2, 3, 4}.

HEC EAR TRENT
a /p 1 2 3 4 1 2 3 4 1 2 3 4

0 - - 584 522 - - - - - 1024 936 894
0.5 - 557 584 556 - - - - - 956 921 861
1 564 511 530 521 - 907 855 874 981 815 814 842
2 495 461 455 511 739 754 794 813 827 714 751 765
3 459 443 462 484 743 782 783 783 718 729 746 749
4 453 467 454 477 743 709 719 773 752 743 735 773

Table 6.44 -  Best second-order statistics across a  and (3fo r Lamarckian evolutionary method with Kempe at 30%
deviation.

A hyphen signifies that no feasible timetables were observed at those parameter settings.

Generally, increasing a  does enhance solution quality. However, the influence of a  does 

dampen when a>2, which corresponds to what has been observed in Chapters 3 and 4. The 

impact on solution quality when p  is increased is negligible. These findings re-assure that 

the used parameters are acceptable.
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6.6 Conclusion

This chapter has demonstrated that Add-On techniques enhance solution quality further 

(than witnessed in Chapter 5). This is not surprising since it has been recommended that 

local search is used in conjunction with Genetic Algorithms, Burke et al. (1995c) for 

example. However, it has been demonstrated that the efficiency of the ant-based searches is 

vital with respect to Best solution quality, thus validating the role of the ants. Three 

mainstream Add-On strategies have been used. It has been shown that all techniques are 

capable of reducing second-order scores, however it is the graph theoretic Kempe chains 

that has the greatest capacity to succeed due to its ability to widen the neighbourhood 

around solutions. It is shown though that better solutions are generated through larger 

Kempe samples, which does require extra computational effort.

The use of the TSP-ANT algorithm to re-order timeslots showed promise but the method is 

restricted the accommodation of difficult exams (pre-assigned and time-windowed) which, 

reduces the flexibility of the TSP approach. Meanwhile, Steepest Descent is relatively 

computationally efficient but is limited in its application. Searches get trapped in local 

minima, which increase the probability of returning disappointing results. A hybridisation 

of the TSP model and local search was shown to be very competitive with respect to 

solution quality while needing smaller runtimes than Kempe.

Traditional evolutionary concepts were used to vary the feedback mechanism when 

considering each of the Add-On techniques. It was shown that passing information, 

regarding the modified solution, to the trail is beneficial to the overall solution quality. It 

has been demonstrated that Before Add-On and After Add-On have a positive relationship. 

Since these evolutionary theories lead to improved Before Add-On solutions, the After 

Add-On solutions are even more superior in consequence.

It was found that Steepest Descent performed better through Baldwinian evolution and 

Kempe Chain descents through Lamarckian. The reasoning can be attributed to the 

following. The neighbourhood definition of Local Search is relatively narrow (in 

comparison to Kempe Chains) and the fitness landscape exhibits a spiky structure. 

Therefore, the greater variability associated with Baldwinism widens the basin around the 

minima and enables the reachability of better solutions. Lamarckian evolution will, by
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nature, encourage similar solutions due to the restricted neighbourhood and consequently, 

limits the options for the ants (in comparison to Baldwinian). Meanwhile, the structure of 

the landscape with Kempe Chains is flatter and consequently, the neighbourhood structure 

is far wider. In this instance, the exploitation nature of Lamarckism (i.e. associating the 

Add-On fitness score with the Add-On solution) actually leads to greater exploration (see 

Figures 6.17-6.18). Extending the neighbourhood through Kempe Chains allows for a 

greater range of After Add-On solutions, therefore, there is a wider distribution of 

pheromones across solution characteristics, thus, giving the ants more options. With 

respect to Baldwinism, the range of solution characteristics obtained through Kempe Chain 

descents are not passed to the trail (only the fitness score is) and consequently, this reduces 

the diversity of the search.

The relationship between Before Add-On and After Add-On has been exploited to reduce 

the number of timetables that are modified through an add-on strategy, thus reducing 

computational effort. In some cases, it is found that better solutions are achievable by 

lowering the number of Before Add-On solutions that are modified since there is a resultant 

greater differentiation between solutions. The number of modified solutions could be 

lowered further if low exploration is identified. Reduction in the width of the search will 

result in the construction of similar solutions of close qualities. These Before Add-On 

timetables will potentially qualify for repair and consequently, a series of similar After 

Add-On solutions are produced. This leads to the unnecessary inflation of runtimes. 

Therefore, it is proposed that an Add-On is used infrequently during periods of narrow 

exploration. This may be suitable for Steepest Descent, however, there is enough evidence 

of good exploratory width for the Lamarckian Kempe system (as illustrated in Figures 

6.13-6.15), thus a range of timetables is constructed at all stages of the search. Therefore, it 

is felt that limiting the timetables that are modified, even at mature stages of the search, is 

unjustified.

In addition to reducing the number of timetables eligible for improvement, it is possible for 

the user to control runtimes. The number of Kempe chain descents can be limited and/or 

the experimental run could be stopped earlier than pre-specified and the user could still 

expect a relatively good solution as opposed to SA for example, which tends to generate 

good solutions at the end of a run when temperatures are lower. Another option is to allow
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the run to be performed overnight, which is of limited inconvenience to the user given that 

institutions only need to construct timetables two to three times annually.

It is observed that (potentially) different bias parameter values are appropriate for different 

problem types. Typically, within this thesis, it has been shown that a>2 is required to 

generate good solution quality (see Chapters 3 and 4) for the examination timetabling 

problem but setting a=l is sufficient for the TSP. This evidence shows the need for some 

precursory investigation for new problem areas or the introduction of some decision­

making system that deduces a  according to the search environment, Ross et al. (1998) and 

White et al. (1997). Applying a standard trail bias parameter to all problem types could 

lead to poor solution quality.

i
lI

i
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The work in this thesis has demonstrated the potential of an ant-based method (HAS- 

EXAM) to solve the multi-objective examination timetabling problem. HAS-EXAM is 

particularly effective in dealing with hard constraints and performs well in accommodating 

the second-order limitations inherent in the problem. In this work, we have introduced 

methods of enhancement to improve solution quality further (with respect to hard and soft 

constraints) and have provided a solution method framework that will return consistently 

good results.

It has been shown that the balance between exploitation and exploration is the key to 

solution quality. Too much exploration limits the focus of the search, while too much 

exploitation reduces the area of the solution space that is investigated, thus similar solution 

copies are constructed and the remainder of the experimental run becomes obsolete.

The HAS-EXAM algorithm is a two-phase approach where the first phase allows the ants 

to construct solutions. The role of the second phase is to improve the second-order 

condition of the timetable through a repair facility (known as an Add-On). The success of 

the second phase is based on the neighbourhood definition around the starting solution 

(ant-based solution) and the volume of repaired solution information that is incorporated 

within the trail. It is demonstrated that a wider neighbourhood leads to superior solution 

quality during the second phase. It is shown that the Kempe chain neighbourhood is 

particularly suited to phase two due to its ability of moving from one feasible solution to 

the next.

The work described in this thesis has outlined a general solution approach to the 

examination timetabling problem which allows the incorporation of a wide range of 

constraints and objectives. The HAS-EXAM algorithm could be developed into user- 

friendly software. It has been demonstrated that aspects such as room constraints and time- 

windowed exams are dealt with satisfactorily. The disadvantage of HAS-EXAM lies with
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the required computational expense. Runtimes can be minimised through sensible 

parameter settings [i.e. a  (trail), P (desirability), Na (number o f  ants per cycle) and Nc 

(number o f  cycles per run)], conservative Add-On application and the implementation of 

runtime conservation methods. Additionally, the scheduler can terminate runs before the 

completion of Nc and normally obtain good quality solutions. It has been observed that 

HAS-EXAM is adept at achieving competitive solutions in relatively quick times. 

However, since the examination timetabling problem is generally solved on only a few 

occasions per year, the computational requirements (within reason) should not be a valid 

drawback. In instances where hours (with larger data sets) of runtime are required, 

overnight experiments can be performed to the limited inconvenience of the scheduler.

Chapter 3 laid the foundations for future investigations in this thesis. It was shown that the 

construction heuristic and the bias power exponents had a large influence on solution 

quality. Construction heuristic C (Recursive Largest Degree First heuristic) was 

consistently superior across the test data sets and also stipulating cc>2 (where a  is the trail 

factor bias) led to the same conclusion. It is seen that the influence of p  (desirability bias) 

is vital for small a, but the role of p  is reduced as a  increases. It was also observed that 

higher power components inflate computational effort. Therefore, it was reasoned that a -2  

and P=1 was appropriate and these settings were applicable to all construction heuristics 

under consideration in Chapter 3.

It was felt wise to determine means of conserving runtimes in order to allow for the 

processing of more experiments and to make ant methods more attractive as a scheduling 

tool. It was demonstrated that the use of Linear Interpolation (LI), to predict the trail and/or 

desirability factors when raised to a power exponent, not only reduces computational effort 

but also maintains feasibility rates. Experiments also showed that runtimes could be 

reduced through limiting the options at each exam-timeslot decision stage through 

Candidate Lists. It was shown that the use of particular list constitutions increases 

feasibility but runtime conservation is not as great as for LI.

It is shown in Chapter 3 that the basic ANTCOL algorithm, Costa and Hertz (1997), can be 

used for scheduling and produces very good results. ANTCOL comprehensively 

outperforms the graph colouring heuristics discussed within this thesis and optimal results
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were returned for some of the test data sets (HEC and TRENT). Additionally, near 

optimum solutions (optimum+1) are produced for the other test data set, EAR. In all 

instances, the Best solutions were better than the number of timeslots stipulated for each 

data set, indicating that ANTCOL has the potential to be the basis of a capable examination 

timetabling solution method.

iI
[

I Other parameters of interest are the number of ants per cycle (NA) and the number of cycles

(Nc) per experimental run. It was demonstrated that setting NA approximately equal to the
i

[ number of vertices in the problem, Dorigo et al. (1991), is not always required. Lower NA

can achieve the optimum result in some instances, however this is associated with easier

data sets. If a scheduler wishes to limit iterations, it is demonstrated that a bias towards

larger Nc is more beneficial to overall solution quality due to the greater number of trail 

updates. However, limits to the success of this do exist e.g. when Nc is large and NA is too 

small.

An interesting study in Chapter 3 was mixing the construction heuristics that are used per 

cycle. Typically, if a number n ants use one construction heuristic then (NA-ri) ants use 

another. It was shown that mixing construction heuristics C and D is particularly 

successful. Reasoning was attributed to the use (in moderation) of a more deterministic 

type heuristic (D).

Chapter 4 showed that modifications to the graph allowed the incorporation of important 

examination timetabling objectives. An additional set of vertices was added to the graph to
f

represent the timeslots, as described in Balakrishnan (1991). Consequently, the insertion of

| edges would symbolise whether an exam was time-windowed within a set of timeslots, or

! pre-assigned to a particular timeslot. Additionally, sets of simultaneous exams were
i

! merged into one supervertex. All edges incident to all simultaneous exams were also

incident to the supervertex. The manner in which these constrained exams can be dealt 

with in the graph rather than the algorithm itself simplifies the problem. The extra 

constraints can be incorporated into the underlying model, thus fundamental changes to the 

algorithm are not required.
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It was shown that standardising the reward function improves quality further. This was 

reasoned by the observation that a problem with a larger optimum number of colours does 

I not differentiate between solutions as greatly as one with a lower optimum.

To fully evaluate ANTCOL as an examination timetabling solution method on a first-order 

level, two cases were considered. The first was the Non-Determined Timeslot Case that
i
| attempted to minimise the number of timeslots, while in the second case, the Determined
i
i Timeslot Case, the number of timeslots was fixed. It was demonstrated that, in both cases,I
! the search process benefited from enhancement techniques. It was shown that an enhanced
i

ANTCOL (AS-EXAM) obtained the optimum solution for 11 (out of 12) data sets and it 

was observed that these results were very competitive with the benchmark methods. When 

the timeslots were fixed, the results were again very good. However, the inclusion of 

seating capacities constrained the problem further. The introduction of a second trail, 

known as PET, which forces the accommodation of difficult exams earlier in the 

construction process improved solution qualities substantially. It is shown that PET 

outperforms Hill and stresses the benefit that can result from a more efficient construction 

process rather than a repair facility. It is also demonstrated that PET requires very little 

extra computational effort, unlike Hill.

Chapter 4 also proved that time-windowed and pre-assigned exams are easily dealt with. 

Tests performed on the Swansea data sets illustrate this.

Chapter 5 addressed the second-order problem and in response, the order of timeslot 

construction was altered to favour second-order and the reward function was modified to 

allow feedback of second-order characteristics. The influence on second-order quality was 

| immediate. Chapter 5 showed that trail intensification bears a large influence on solution

I quality. A series of methods were tested and it was demonstrated that elitism was the

| superior approach. An elite list with membership subject to the Elitist Reward Function

(ERF) not only maintains feasibility but places importance (through a second-order bias 

weight 8 2 ) on second-order characteristics. Increasing this weight does reduce the second- 

order conflicts per timeslot, but on a downside, lowers feasibility. The trails associated
1

with the elite solutions were also magnified by a weight cr. In practice, this reduces the 

number of ants that contribute influential feedback to the trail.
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Chapter 5 demonstrated that, despite extra trail intensities, stagnation is not reached and 

some exploration is still being performed towards the latter end of the search. It is shown 

that the success of the elitist method is associated with the more controlled feedback 

passed on during the early phase of the search. More focus during the infancy of a search 

leads subsequent ants into more beneficial areas of the solution space.

Extra advancements are firstly, presented through a weighted construction heuristic that 

encourages the dealing of higher clash exams earlier in construction process and secondly, 

imposing upper trail limits allows for greater exploration.

Chapter 5 regarded the use of a second trail that was issued with different search objectives 

e.g. construct timetables with the objective of minimising second-order conflict 

exclusively. Two studies were performed which differed in the way the trails were 

updated. The first study allowed for two populations that searched the solution space in a 

near-independent manner. At strategic points during the search, the second population 

injects information into the first population. Despite the potential of this approach, it was 

found that providing the populations with different search objectives does not work as well 

as using the ERF with both populations. This can be attributed to the efficiency of the ERF 

as a feedback mechanism and improved solutions over the one-trail system can be 

associated with the exploitation of the inherent randomisation in the algorithm. The second 

study allowed only one population but changed the update mechanism of the second trail to 

replenish the trails of pairwise exams in adjacent timeslots. This information was 

represented at each decision stage through a second trail factor that was incorporated into 

the RPR. It was shown that better results were achievable but not significantly superior and 

this can be associated with the following reasoning. It was demonstrated that a significant 

positive relationship exists between first and second trail factors and, in many cases, these 

scores are related with respect to rank. As a result, the decision of which exam to insert 

according to the first trail factor would generally correspond to the second trail factor. 

Therefore, only on rare occasions does a relatively strong second trail factor score lead to a 

different exam insertion that would normally be performed under the one-trail system.

The aim of Chapter 6 was to introduce means of improving solution quality further. This 

was managed through the use of an Add-On strategy and the exploitation of evolutionary 

theory. It is found that the general best improvement technique is Kempe chains and this
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can be attributed to the greater reachability of solutions from a given starting solution (ant- 

based solution). However, searches using Kempe chain neighbourhoods are relatively 

computationally demanding and it has been shown that comparatively good solutions can 

be found relatively quickly through TSP and in particular, local search. Additionally, a 

TSP and local search hybrid (TSP-Local) is found to be very competitive with respect to 

solution quality while requiring lower runtime than Kempe chains. However, the 

disadvantage of TSP-Local rests with its unsuitability for institutions that impose some 

other student comfort criteria. Typically, if an institution wishes to minimise the number of 

students that sit consecutive exams during the same day, the TSP becomes no longer 

suitable (Chapter 2 details examples of this). The Local Search strategy can easily be 

adapted to such student criteria but is inherently (see Section 6.4.1) inferior to Kempe 

chains with respect to solution quality and this can be attributed to neighbourhood 

definition. Local searches are performed within narrow areas since the solution space is 

spiky by nature. Meanwhile, the Kempe chain neighbourhood is flatter and increases the 

reachability of solutions. It is recommended here that Kempe chains should be used within 

an ant-based generalised university timetabling solution method.

It is demonstrated that feeding information regarding modified solutions into the trail is 

beneficial to the ant-based search. Both Baldwinian and Lamarckian philosophies lead to 

better ant-based solutions than Darwinian. It is shown that these searches maintain a wider 

neighbourhood that is explored by the ants, while evidence that the searches become 

narrower (which is a desirable characteristic since exploitation is increased) over time is 

also presented. It is shown that the nature of Baldwinian theory can lead to production of 

some volatile results and this can be attributed to the nature of this evolutionary 

philosophy, which associates the ant-based solution with the modified solution fitness 

score. However, this volatility is suitable for narrower neighbourhoods. The basin around 

the minima widens and better quality solutions result. The superiority of Baldwinian over 

Lamarckian when using Steepest Descent illustrates this. However, Lamarckian performs 

better when in conjunction with a Kempe Chain neighbourhood. The significant increase in 

reachability through sampling Kempe chains encourages a greater diversity of information 

to be passed back to the trail, thus broadening the ant search. Lamarckian evolution used in 

conjunction with Kempe produces the fittest solutions.
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Chapter 6 also exhibits evidence that a strong relationship exists between the fitness scores 

of the ant-based and modified solutions for all add-ons. This indicated that computational 

effort could be reduced through improving a proportion of the relatively better ant-based 

solutions. It was demonstrated that repairing those solutions that were within 30% of the 

run-best solution was the best compromise between quality and computational effort. It 

was shown that reducing Add-On application actually improves ant-based solution quality 

further, which can be associated with the resultant additional differentiation between 

solutions. As a result of improved ant-based solution quality, overall solution quality also 

improves.

Extra important conclusions that can be drawn from Chapter 6 are as follows. Firstly, It is 

demonstrated that Before Add-On and After Add-On are significantly positively related. 

Therefore, the efficiency of the ant-based system is critical to the quality of the overall best 

solution. Secondly, fitter ant-based solutions will require less repair time than poorer 

solutions, thus, reducing overall computational effort and increasing the attractiveness of 

the method. To mark the incorporation of on Add-On, AS-EXAM is redefined as HAS- 

EXAM (Hybrid Ant System for the Examination Timetabling Problem).

To emphasise the potential of HAS-EXAM as an examination timetabling solution method, 

a comparison exercise that showed that HAS-EXAM outperformed SA was presented in 

Chapter 6 and a second comparative study is shown here. Carter et al. (1996) presented an 

uncapacitated version of the examination-timetabling problem. The number of timeslots 

was fixed and an objective function was used to space out the students’ exams. The 

objective function applies a weighting scheme that corresponds to the proximity costs that 

were first presented in Laporte and Desroches (1984). A penalty wt is applied to a 

timetable whenever a student has to sit two exams scheduled t timeslots apart, with w/=16, 

W2 =8, W3 =4, W4=2 and wy=l. A more detailed explanation of these weights can be found in 

Chapter 2. In Carter et al. (1996), the total penalty is divided by the number of students and 

will be defined here as Carter Cost. The resulting score acts as the fitness value for a given 

timetable. No differentiation between consecutive exams within the same day and 

overnight is made.

It should be noted here that the Carter Cost was not applied throughout this thesis due to 

unavailability of benchmark results (see Table 7.1) during the early stages of research.
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i
II
| HAS-EXAM (Lamarckian theory, Kempe, 30% Deviation) is used for this study,

j However, in order to accommodate this new weighted objective function, some of the
i
! parameter settings that have been used in this thesis are no longer applicable due to
l

differences of scale. Typically, it was shown that a robust setting of the weight 8 2  in the 

ERF is 750. However, this parameter setting was finalised with respect to second-order 

[ scores and now we are considering different fitness values.

| The reward function is now defined as
i1

K  +1 Carter Cost

and the ERF is now defined as

1 3̂ ,d+ ---------   (7.2)
K  +1 Carter Cost

where 8 3 ^ 8 ^ 8 2  and refers to the weight placed on the Carter Cost for data set d. Here, a 

combined term, rather than two separate terms, 8  and 8 2  is examined due to time 

constraints.

Since time constraints prevent comprehensive precursory investigation, an estimate of 8 2  is 

required. Merlot et al. (2002) tabulates the Average costs for the data sets of interests for 

four different approaches. This information not only allows insight of the standard of 

solutions to expect but also hints towards the weights of 8 3 4  that should be used. In 

Chapters 5 and 6, a static 100+ 8 2  weight was used due to the absence of priori information 

regarding typical second-order scores for each of the data sets. Even though a robust 

parameter is desirable and the setting used was suitable for the three test data sets, doubts 

regarding the setting of 100+ 8 2  = 750 generically are warranted due to differences of scale 

between data sets i.e. second-order scores variations. Section 7.2 discusses the potential of 

adaptive weights, which would deal with this concern. Please refer to Appendix 7.1 for the 

actual 83td settings that were used and how these parameter settings were computed.
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The methods described in Merlot et al. (2002), Caramia et al. (2000) and Carter et al. 

(1996) have been described in Chapter 2, while Di Gaspero and Schaerf (2000) and White 

and Xie (2000) discussed Tabu Search methods for the examination timetabling problem. 

Carter Costs for these methods, along with HAS-EXAM, are presented in Table 7.1.

Data Statistic HAS- M erlot et Carter et Caram ia Di W hite &
Set EXAM al. al. et al. Gaspero

&
Schaerf

Xie

C91
B est 6.16 5.10 7.10 6.60 6.20 -

A verage 7.16 5.20 8.38 - 6.50 -

C92
B est 5.48 4.30 6.20 6.00 5.20 -

A verage 6.22 4.40 7.04 - 5.60 4.70

EAR
B est 36.32 35.10 36.40 29.30 45.70 -

A verage 39.21 35.40 40.92 - 46.70 -

HEC
B est 9.55 10.60 10.80 9.20 12.40 -

A verage 11.54 10.70 15.04 - 12.60 -

KFU
B est 13.84 13.50 14.00 13.80 18.00 -

A verage 15.13 14.00 18.76 - 19.50 -

LSE
B est 10.62 10.50 10.50 9.60 15.50 -

A vera g e 11.41 11.00 12.36 - 15.90 -

STA
B est 157.03 157.30 161.50 158.20 160.80 -

A verage 157.11 157.40 167.14 - 166.80 -

TRENT
B est 8.30 8.40 9.60 9.40 10.00 -

A verage 8.61 8.60 10.78 - 10.50 -

UTA
B est 4.16 3.50 3.50 3.50 4.20 -

A verage 4.78 3.60 4.80 - 4.50 4.00

UTE
B est 24.97 25.10 25.80 24.40 29.00 -

A verage 25.74 25.20 30.78 - 31.30 -

YOR B est 36.33 37.40 41.70 36.20 41.00 -

A vera g e 38.26 37.90 45.60 - 42.10 -

Table 7.1 -  Carter Costs fo r  five  benchmark methods and HAS-EXAM

The results presented in Table 7.1 demonstrate that the HAS-EXAM algorithm is a very 

good examination timetabling solution method in comparison with other published 

methods. Results presented by Caramia et al. (2000) and Merlot et al. (2002) are the 

forerunners but the results associated with HAS-EXAM are also impressive. It is shown 

that a new Best solution is observed on two occasions (STA and TRENT) with HAS- 

EXAM. The largest disparity in quality is associated with the EAR data set. Caramia et al. 

(2000) returned a Best cost solution of 29.30, while the HAS-EXAM method managed a 

Best of 36.32. However, HAS-EXAM outperforms two of the benchmark methods for 

EAR. The runtimes are not presented here but correspond to the times that have been 

presented in Table 6.40, Column M5i and consequently, in some cases, need hours of 

computational effort. However, full experimental runs can be achieved in significantly less 

than one day and guarantee very good solution quality. It should be noted here that
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experiments relating to Table 7.1 include timeslot vertices, whereas the other authors did 

not incorporate these and this will bear an influence on runtimes.

7.2 Future Work

Chapter 2 introduced the term ACO (Ant Colony Optimisation), which referred to a family 

of ant based algorithms. For example, Stutzle and Hoos (1996) and Maniezzo et al. (1998) 

presented the MMAS and ANTS systems respectively. A comparative analysis of such 

algorithms, along with ANTCOL, could be performed to assess the suitability of each type 

of method for the examination timetabling problem.

Chapter 4 introduced the intelligent diversification function PET that guides the search 

away from solutions that fail to accommodate certain vertices within the colouring on a 

frequent basis. It was stated in Chapter 4 that PET could also be applied in the Non- 

Determined Timeslot Case (in addition to Determined Timeslot Case) where the vertices in 

the x  highest numbered colours receives additional trail. This has obvious uses in 

alternative graph colouring modelling type problems.

Chapter 6 demonstrated that solution quality improvements could be made to ant- 

constructed timetables through Add-On techniques. Extending the neighbourhood through 

Kempe chains has been shown to the most beneficial to overall quality. Since it has been 

proven that there exists a positive relationship between Before Add-On and After Add-On 

scores, it is proposed here that the Best After Add-On solution could be treated as a starting 

solution and further improvement could be made through a more sophisticated local search 

technique such as Simulated Annealing. Given that the solutions achieved through HAS- 

EXAM are very good, it is perceivable that limited additional search would improve 

solution quality further. However, it should be pointed out that such incorporation reduces 

the overall influence of the ants and given the context of this thesis (Examination 

Scheduling Using The Ant System) lowers the attractiveness of such a collaboration of 

search methods.

Chapter 6 demonstrated that rearranging timeslots (in an appropriate manner) lowers 

second-order scores by notable margins. Given the nature of this thesis, it was deemed 

suitable to use an ant-based TSP to manage the re-organisation of the timeslots. However,
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it is suggested here that an exact TSP could also be used given that the number of timeslots 

in most examination timetabling problems is not excessive. Consequently, exorbitant 

computational effort would not be required.

In Section 6.4, we compared three Add-On procedures {Local, TSPJLocal and Kempe) 

when using the Swansea data sets. However, runtimes were not detailed due to the 

differences in machine efficiencies (experiments run in parallel). This could be overcome 

through the introduction of a scaling factor that indicates the level of relative 

computational efficiency of a machine.

Chapter 5 used elitism to improve solution quality. It was shown that the use of a joint 

elitist function, known as the Elitist Reward Function, performed very well with respect to 

the overall objective. It was observed that the second-order weight, 8 2 , played a significant 

role on quality of second-order scores, but the trade-off was the reduction in feasibility. 

Research to obtain a system of adaptive 8 2  was restricted to a superficial level but it is felt 

that the development of a suitable 8 2  management system would aid solution quality. 

Chapter 6 proved that higher 8 2  reduces the area of the solution space that is investigated as 

represented through the mean branching factor (X), Gambardella and Dorigo (1996). It is 

proposed here that X could be used to monitor the use of 8 2 . At the start of an experimental 

run let 8 j=g (g is a parameter). We observe this parameter setting until X dampens when 

8 2 =g+f (where /  is a parameter). In theory, X should continue to decrease due to the 

heightened exploitation that is possible through higher 8 2 . A disadvantage of this approach 

will be the overall reduction in exploration that will result through higher 8 2 . To counteract 

this, it is suggested that all trails should be set at Tmax (some upper trail level), Stutzle and 

Hoos (1997), if no improvement has been observed for S  cycles. This is a diversification 

tactic and removes the need of numerous independent experimental runs since one run with 

diversification is adequate.

Static bias parameters {a and p) have been used throughout this thesis. It has been proven 

that settings of a= 2 and p= 1 generate very good solution quality. However, favourable 

conclusions regarding these values were the result of precursory investigation and, to our 

current knowledge, can only be applied to examination timetabling problems. To develop 

Ant Algorithms (or HAS-EXAM) into a robust solution method that could be applied to a
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plethora of problem types, some intervention of artificial intelligence is required. Burke 

and Petrovic (2002) and Ross et al. (1998) claim that the future of meta-heuristic solution 

methods belongs with hyper-heuristics. One heuristic is treated as the management system 

to decide the appropriate solution method to use given the search environment. The use of 

hyper-heuristics could be used to decide the appropriate bias parameter settings. White et 

al. (1997) indicate that Genetic Algorithms could be used to chose appropriate a  and /?.

For completeness, the HAS-EXAM algorithm could be extended to allocate exams to 

rooms. A trail that is dimensioned exams by rooms could be introduced to evaluate the 

quality of solutions obtained by placing an exam i into a room j.

The general framework of HAS-EXAM could be evaluated for other multi-objective 

scheduling problems. It will be of interest to deduce the adaptability (positive signs are 

shown through good Carter Costs that are generated) and generality of this solution 

method with respect to other problem types. Main areas of concern would include fitness 

representation (reward function), trail intensification strategies and the widening of the 

neighbourhood around the ant-based solution. A typical area of application is the nurse- 

scheduling problem. The University of Wales Swansea has based with local hospitals and 

accumulated much relevant data and applied a variety of solution methods to this problem 

area. The most recent was a successful study involving Genetic Algorithms, which 

consequently has generated results that could be used comparatively and therefore, used to 

test the effectiveness of such an ant-based solution method for any future application.

7.3 Final Conclusion
iI
|

This thesis has demonstrated that the HAS-EXAM algorithm is a very successful 

examination timetabling solution method on both first and second-order levels. However, 

drawbacks do exist. Precursory investigation is required to deduce parameter settings that 

are instrumental in contributing to overall solution quality. Mis-specification of parameters 

could lead to poor results. Additionally, exorbitant runtimes can result through inefficient 

use of the solution method. However, it is concluded that the solution quality that is 

achievable through HAS-EXAM outweighs these disadvantages.
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Appendix 1.1 

GLOSSARY OF TERMS

This section defines terms that will enable a clearer understanding of this work. This 

glossary has been divided into two main sections, timetabling terms and graph theoretic 

terms.

Timetabling Terms

A feasible timetable accommodates all the exams within the prespecified number of 

timeslots without requiring any student to sit at least two exams during the same sitting.

Two exams are said to be in conflict if they have common students. Two exams are 

clashing if they are in conflict and are currently scheduled for the same timeslot.

An exam is time-windowed if it cannot be scheduled in a subset of timeslots.

An exam is pre-assigned if it must be scheduled in a certain timeslot.

Graph Theoretic Terms

A graph G{VJZ) consists of the set of vertices V and edges E. If an edge connects vertices 

v; and v2 then v; is said to be adjacent to or a neighbour of v2 and v2 is said to be adjacent 

to or a neighbour of v/.

The degree of a vertex is the number of vertices adjacent to it.

A clique is a set of vertices, which are all adjacent to one another. The maximum clique is 

the clique containing the most vertices in a given graph G.

A vertex colouring of a graph (graph colouring) is the allocation of colours to vertices such 

that no pair of adjacent vertices are placed within the same colour group.
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The degree of saturation of a vertex vy is equal to the number of colours used on the 

coloured neighbours of vy.

If the computational effort increases exponentially as the size of the problem increases, the 

problem is said to be NP-hard.

|
| A meta-heuristic is a search strategy, which guides the operation of a subordinate heuristic.

The guiding principle of a meta-heuristic is usually derived from artificial intelligence

| studies (Al), mathematics, biological science or physics.
i
ii

| ANTCOL Terms
iI|
s a  represents the bias exponent of the trail factor.

[ p represents the bias exponent of the desirability factor,

p represents the level of evaporation. 

t symbolises the trail factor.

r) symbolises the desirability (also known as visibility).

Na refers to the number of ants used per cycle.

Nc refers to the number of cycles used per experimental run.
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Appendix 1.2

The Travelling Salesman Problem (TSP)

The TSP is extensively studied in literature. The TSP is the problem of a salesman who 

wants to find, starting at his home city, the shortest possible route through a set of 

customer cities and to return to his hometown. More formally, it can be represented by a 

complete weighted graph G=(V,E), with V being the vertex set (representing the cities) and 

E  the set of edges that connects the vertices. Each edge is assigned a weight dy, which is 

| the length of the edge that connects vertices (representing the distance between the cities). 

The TSP is the problem of finding a minimal length Hamiltonian circuit of the graph, 

where a Hamiltonian circuit is a closed tour visiting each of the cities once.
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Appendix 2.1

Definitions of RLF and DSatur

Section 1.4 discussed eight variants of the ANTCOL algorithm, which differed according 

to the construction heuristic, that were used. Two main construction heuristics formed the 

basis of these variants and will be defined here.

Recursive Largest First Degree (RLF, Leighton (1979))

The RLF heuristic constructs each colour group in turn. RLF is a dynamic procedure, 

which means that the choice of colour for a vertex at step k depends on the colour 

assignments for other vertices during the previous k-1 steps.

Let set D represent vertices belonging to the uncoloured subgraph.

Let c represent the colour group that is being filled.

Let V, be the ith vertex belonging to D.

Let m be the number of members in D.

Let degD(v) represent the degree of a vertex v with respect to the set D.

Initialise c=0

1. Set c=c+l. Choose first member of colour c according to max{degD(v)}

2. Set m=m-l. If m=0 then Goto 5.

3. Order D in descending order according to dego(v).
n

4. Consider each vertex v, (for i=l,...,m) in turn. When ^ d e g (v f,ve) = 0 (where
e - \

«=number of vertices coloured in c) is observed, v,- is inserted into c. Goto 2. If no 

insertion is possible. Goto 1

5. End routine as all vertices have been coloured.

Degree of Saturation (DSatur. Brelaz (1979))

DSatur fills ’active’ colour groups concurrently.
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Let A represent the set of vertices in the uncoloured subgraph.

Let q represent the number of colours used.

Let c min(v) represent the lowest feasible colour for vertex v.

Let m be the number of vertices in A.

Let degsat(u) represent the degree of saturation of vertex u.

Let degA(v) represent the degree of vertex v with respect to the set A.

1. Choose first vertex v according to max{degA(v)} and allocate v colour 7.

2. Set m=m-l. If m -0  then Goto 4.

3. Allocate the vertex v that satisfies max{degsat(v)} with colour cmin. If 

degsat(vi)=degsat(v2), for two vertices vj and V2, then differentiate according to degA. 

If equality still exists, then choose randomly. Update degsat(u) and cmin(u) V 

neighbours (of v) ueA. Neighbours u are dealt with in descending order according 

to degsat(u). The above tiebreaker rules apply. If no cmin(u) can be found such that 

cmin(u)<q then set q=q+l and allocate cmin(u)=q.

End of routine
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Appendix 2.2 

Genetic Algorithms

Genetic Algorithms (GA) is an evolutionary optimisation approach to non-linear models, 

which stochastically develops generations of coded solution (a classical genetic algorithm 

represents individuals by strings) populations using a fitness statistic.

Holland (1975) is acclaimed as the originator of GA in its current form. GA is a 

probabilistic search approach, based on the ideas of evolutionary processes. The GA 

analogy is based on the Darwinian principle of survival of the fittest. An initial population 

is created containing a predefined number of solutions (chromosomes), each represented 

by a genetic string. New populations are achieved through the combination of genes from 

different population members (crossover) or by altering existing members of the 

population (mutation). Each solution has a fitness value.

It is conceptualised that the fittest members of a population will produce fitter offspring.

GA’s consist of four main stages: Evaluation, Selection, Crossover and Mutation.

Evaluation -  Measure the fitness of individual solutions and assigns them fitness scores. 

Selection -  Pseudo-randomly selects individuals of current population for development of 

next solution, bias according to fitness level.

Crossover -  Takes two selected individuals of current population and combines about a 

crossover point thereby creating two individuals. Asexual reproduction is also possible. 

Mutation -  Randomly modifies the genes of an individual subject to a small mutation 

factor.

The algorithm terminates when a predetermined criteria has been satisfied e.g. time, set 

number of populations.
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Appendix 3.1

Efficiency of construction heuristics

In this section we evaluate the potency of the construction heuristics that provide the basis 

of solution construction. The heuristics are regarded under two conditions -  with and 

without pheromone. The former environment has parameter settings of a=2, p= l and 

p=0.5. For each construction heuristic, the average number of colours required to colour 

the graph is used as the benchmark statistic and is ranked in a range of 1 (best) to 8 (worst).

HEC EAR TRENT
Construction

Heuristic
Single
Pass

With
Trail

Single
Pass

With
Trail

Single
Pass

With
Trail

Mean
Single
Pass
Rank

Mean
With
Trail
Rank

A 5 2 5 3 5 3 > 5 2.67
B 8 5 8 6 7 6 7.67 5.67
C 6 1 6 1 6 2 6 1.33
D 1 4 1 4 1 5 1 4.33
E 3 8 3 8 3 7 3 7.67
F 2 6 2 5 2 4 2 5
G 4 3 4 2 4 1 4 2
H 7 7 7 7 8 8 7.33 7.33

Figure A3.1 -  Rank statistics fo r  eight construction used with and without trail across data sets

The mean ranks indicate that the best construction heuristic to use with trail is construction 

heuristic C.
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Appendix 3.2

The following sequence of Tables present the average and minimum number of colours 

required to colour the graphs representing HEC, EAR and TRENT respectively for

combinations of the bias parameters a  and /? across the eight construction heuristics.

Av B est
a/P 0 1 2 3 4 0 1 2 3 4

A

0 22.60 21.74 20.95 20.35 19.91 19 18 18 17 17
0.5 22.19 21.21 20.40 19.83 19.19 19 18 18 17 17
1 21.44 20.42 19.67 19.24 18.99 18 17 17 17 17
2 18.59 18.14 17.84 17.72 17.98 17 17 17 17 17
3 18.18 18.18 18.13 18.29 18.08 17 17 17 17 17
4 18.01 18.10 18.27 18.13 18.18 17 17 17 17 17

B

0 22.60 22.63 22.62 22.58 22.55 19 19 19 19 19
0.5 22.19 22.29 22.32 22.32 22.31 19 19 19 19 19
1 21.44 21.72 21.87 21.94 21.99 18 18 18 19 18
2 18.59 19.25 19.80 20.38 20.80 17 17 17 17 18
3 18.18 18.81 19.47 19.79 20.04 17 17 17 17 18
4 18.01 19.13 18.99 19.53 18.89 17 17 17 17 17

C

0 22.60 22.02 21.44 20.93 20.53 19 19 18 18 18
0.5 22.19 21.22 20.52 20.34 19.97 19 18 18 18 17
1 21.44 20.66 19.94 19.47 19.15 18 18 17 17 17
2 18.59 18.09 18.22 18.34 18.14 17 17 17 17 17
3 18.18 18.19 18.28 18.08 18.11 17 17 17 17 17
4 18.01 18.10 18.11 18.27 17.92 17 17 17 17 17

D

0 20.80 20.31 19.92 19.62 19.41 18 18 17 17 17
0.5 20.68 20.13 19.74 19.48 19.31 18 17 17 17 17
1 20.44 20.18 19.67 19.71 19.69 18 18 18 17 17
2 20.97 19.06 19.24 19.79 19.60 18 18 17 17 17
3 20.61 19.81 19.23 18.63 19.40 18 18 18 18 18
4 20.41 19.80 19.60 19.59 19.02 18 18 18 18 18

E

0 20.80 20.87 20.91 20.97 21.01 18 18 18 18 18
0.5 20.68 20.81 20.93 21.04 21.10 18 18 18 18 18
1 20.44 20.77 21.09 21.13 21.20 18 18 18 18 18
2 20.97 21.75 21.58 20.82 20.99 18 18 18 19 18
3 20.61 21.58 21.98 21.59 20.62 18 18 18 19 19
4 20.41 21.59 21.21 21.20 20.82 18 19 19 19 17

F

0 20.80 20.45 20.12 19.83 19.62 18 18 17 18 17
0.5 20.68 20.24 19.87 19.61 19.42 18 18 18 17 17
1 20.44 20.07 20.02 19.60 19.06 18 17 18 17 17
2 20.97 20.02 18.86 19.41 19.23 18 18 18 18 17
3 20.61 19.06 19.99 18.83 19.20 18 18 18 18 17
4 20.41 19.62 19.22 18.82 19.60 18 18 18 18 18

G

0 21.72 21.88 21.09 20.82 20.58 18 18 18 18 18
0.5 21.27 20.93 20.63 20.39 20.21 18 18 18 18 17
1 20.55 20.25 19.98 19.77 19.69 18 17 17 17 17
2 18.42 18.21 18.53 18.68 18.15 18 17 17 17 17
3 18.42 18.38 18.36 18.20 18.36 18 17 17 17 17
4 18.32 18.17 18.50 18.50 18.65 18 17 17 17 17

H

0 22.75 22.40 22.05 21.68 21.35 19 19 18 18 18
0.5 22.51 22.14 21.76 21.39 21.05 19 19 18 18 17
1 22.22 21.79 21.39 20.99 20.65 19 18 18 18 18
2 21.66 21.17 20.74 20.34 20.02 18 17 17 17 17
3 21.40 20.92 20.51 20.16 19.85 18 18 17 17 17
4 21.27 20.80 20.43 20.07 19.75 18 18 17 17 17

Figure A3.2 -A verage and minimum colours fo r  range o f  a  an d  f t fo r  H E C
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Av Best
a/P 0 1 2 3 4 0 1 2 3 4

A

0 33.57 32.19 30.84 29.69 28.71 28 27 25 25 25
0.5 33.01 31.41 29.90 28.62 27.66 29 26 25 24 24
1 31.68 29.81 28.13 26.87 26.06 26 25 23 23 23
2 25.94 25.27 24.16 23.84 23.59 23 23 22 23 23
3 25.75 25.34 24.28 23.88 24.24 23 23 22 23 23
4 25.61 25.00 24.88 23.82 24.00 23 23 23 22 23

B

0 33.57 33.61 33.60 33.56 33.52 28 28 29 28 28
0.5 33.01 33.12 33.15 33.16 33.15 29 28 28 28 28
1 31.68 32.03 32.27 32.46 32.57 26 28 28 28 28
2 25.94 27.22 28.37 29.57 30.19 23 24 24 25 26
3 25.75 26.24 27.02 28.03 28.78 23 24 24 25 24
4 25.61 26.20 27.44 27.45 27.92 23 23 24 24 23

C

0 33.57 32.47 31.33 30.29 29.40 28 28 27 26 25
0.5 33.01 31.71 30.36 29.16 28.22 29 26 25 25 24
I 31.68 30.13 28.47 27.13 26.36 26 25 24 23 23
2 25.94 24.81 24.20 23.47 23.96 23 23 22 22 22
3 25.75 24.19 24.15 23.67 23.81 23 23 23 23 23
4 25.61 24.97 24.21 23.78 24.18 23 23 23 23 23

D

0 29.40 28.29 27.50 26.46 25.81 26 25 24 24 23
0.5 28.93 27.58 26.42 25.48 24.86 26 25 23 23 23
1 27.75 26.12 24.16 23.70 23.40 25 24 23 23 23
2 26.53 25.50 24.47 23.69 23.46 25 24 23 23 23
3 27.43 25.28 24.27 23.84 23.83 26 24 23 23 23
4 27.42 25.08 24.65 23.84 23.83 25 24 23 23 23

E

0 29.40 29.20 29.01 28.87 28.77 26 26 26 26 26
0.5 28.93 28.74 28.61 28.52 28.46 26 25 26 26 26
1 27.75 27.84 28.01 25.70 25.40 25 25 25 23 23
2 26.53 25.50 24.47 23.69 23.46 25 24 23 23 23
3 27.43 25.28 24.27 23.84 23.83 26 24 23 23 23
4 27.42 25.08 24.65 23.84 23.83 25 24 23 23 23

F

0 29.40 28.61 27.79 27.05 26.45 26 25 25 24 23
0.5 28.93 27.91 26.91 26.04 25.44 26 25 24 23 23
1 27.75 26.31 24.44 24.03 24.30 25 24 23 23 23
2 26.53 25.51 24.15 23.73 24.04 25 24 23 23 23
3 27.43 25.69 24.67 23.86 24.04 26 24 23 23 23
4 27.42 26.24 24.66 24.05 24.04 25 24 23 23 23

G

0 31.56 30.94 30.38 29.85 29.36 27 27 26 26 25
0.5 30.48 29.80 29.23 28.71 28.28 27 25 25 25 24
1 28.68 27.96 27.47 27.08 26.76 25 24 24 24 24
2 25.00 24.88 24.67 24.52 24.54 23 23 23 23 23
3 24.76 24.46 24.41 24.39 24.17 23 23 23 23 23
4 24.90 24.13 24.30 24.05 24.25 23 23 23 23 23

H

0 34.10 33.37 32.61 31.88 31.19 29 28 28 27 26
0.5 33.78 33.02 32.20 31.45 30.73 29 28 28 27 26
1 33.37 32.52 31.66 30.82 30.07 28 28 27 26 25
2 32.14 31.12 30.26 29.47 28.79 27 26 26 25 24
3 31.52 30.61 29.83 29.09 28.42 26 26 25 24 24
4 31.33 30.48 29.66 28.93 28.26 26 25 25 24 24

Figure A3.3 -Average and minimum colours for range o f a  andpfor EAR
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Av Best
a/p 0 1 2 3 4 0 1 2 3 4

A

0 29.95 28.34 26.93 25.83 25.01 26 24 23 22 22
0.5 29.72 27.94 26.41 25.24 24.45 25 24 23 22 21
1 29.13 27.24 25.56 24.37 23.65 25 24 22 21 21
2 23.54 22.62 22.12 22.08 21.90 20 20 20 20 20
3 22.65 22.49 21.74 21.97 21.59 20 21 20 20 20
4 22.59 22.49 21.82 22.00 21.44 20 21 20 20 20

B

0 29.95 29.92 29.88 29.85 29.81 26 26 26 26 26
0.5 29.72 29.71 29.69 29.66 29.66 25 25 25 26 26
1 29.13 29.18 29.22 29.27 29.31 25 25 25 25 25
2 23.54 24.15 24.95 26.31 26.92 20 21 21 22 22
3 22.65 22.81 24.37 23.34 24.28 20 20 22 20 21
4 22.59 23.28 23.80 23.81 24.55 20 21 21 21 20

C

0 29.95 28.71 27.53 26.56 25.84 26 24 23 23 22
0.5 29.72 28.34 27.03 25.99 25.25 25 24 23 23 21
1 29.13 27.65 26.18 25.07 24.42 25 24 22 22 21
2 23.54 22.53 22.29 21.67 21.64 20 20 20 20 20
3 22.65 22.31 21.86 21.36 21.68 20 20 20 20 20
4 22.59 22.14 22.12 21.39 21.87 20 20 20 20 20

D

0 27.51 26.16 25.02 24.17 23.55 24 23 21 21 21
0.5 27.34 25.74 24.41 23.52 22.95 24 23 21 21 21
1 26.71 24.40 23.03 22.26 21.72 23 21 21 20 20
2 24.59 23.70 22.87 22.44 21.86 23 22 21 21 21
3 25.08 23.30 21.91 22.40 21.29 23 22 21 20 20
4 25.26 23.48 22.66 21.66 21.64 24 22 21 20 21

E

0 27.51 27.41 27.34 27.28 27.25 24 24 24 24 24
0.5 27.34 27.26 27.21 27.16 27.13 24 24 24 24 24
1 26.71 26.64 26.63 26.66 26.67 23 23 23 24 23
2 24.59 24.76 24.93 25.47 25.14 23 23 23 23 23
3 25.08 24.91 25.27 25.29 25.27 23 23 23 24 24
4 25.26 25.45 24.71 25.26 25.03 24 24 23 24 23

F

0 27.51 26.50 25.59 24.87 24.36 24 23 22 22 22
0.5 27.34 26.13 25.05 24.25 23.73 24 23 22 21 21
1 26.71 24.97 23.47 22.60 22.03 23 21 21 20 20
2 24.59 23.19 22.52 21.93 21.16 23 22 21 21 20
3 25.08 23.73 23.06 22.26 21.66 23 22 21 21 20
4 25.26 23.84 22.87 22.26 22.05 24 22 21 20 21

G

0 28.47 27.84 27.25 26.71 26.25 25 24 23 23 22
0.5 27.89 27.16 26.54 26.00 25.59 24 23 23 22 22
1 26.78 25.97 25.35 24.85 24.50 23 22 22 22 21
2 22.11 22.03 21.52 22.13 21.45 20 20 20 20 20
3 21.82 21.65 21.86 22.39 21.41 20 20 21 21 20
4 22.32 21.70 22.07 21.94 21.86 21 20 20 20 20

H

0 31.35 30.57 29.76 29.00 29.00 27 26 25 25 24
0.5 31.19 30.30 29.55 28.76 28.04 27 27 25 24 24
1 31.01 30.16 29.29 28.45 27.69 27 26 25 24 23
2 30.44 29.39 28.32 27.42 26.66 26 25 24 23 23
3 29.78 28.64 27.71 26.88 26.18 25 24 23 22 22
4 29.54 28.38 27.49 26.69 25.99 25 24 23 22 22

Figure A3.4 -Average and minimum colours for range o f a  and/3for TRENT
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A p p en d ix  3.3 

Performance across a  and p

4 0

Heuristic

Figure A3.1 -  Proportion o f  Feasible Solutions across a  when [3 = 2 fo r  HEC

20  -

Heuristic

Figure A3.2 -  Proportion o f  Feasible Solutions across a  when (3 = 3 fo r  HEC

Heuristic

Figure A3.3 -  Proportion o f  Feasible Solutions across a  when /3 = 4 fo r  HEC
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oo ,

40 -

Heuristic

Figure A3.4 -  Proportion o f  Feasible Solutions across a  when [ 5 - 2  fo r  EAR

40

Heuristic

Figure A3.5 -  Proportion o f  Feasible Solutions across a  when J3 = 3 fo r  EAR

Heuristic

Figure A3.6 -  Proportion o f  Feasible Solutions across a  when [5 = 4 fo r  EAR
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Figure A3.7 -  Proportion o f  Feasible Solutions across a  when ( 3 - 2  fo r  TRENT
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Figure A 3 .8 -  Proportion o f  Feasible Solutions across a  when ( 3 - 3  fo r  TRENT
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Figure A 3 .9 -  Proportion o f  Feasible Solutions across a  when (3 = 4 fo r  TRENT
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A p p en d ix  3.4 

Sensitivity of p

P
H euristic 0.01 0.10 0.30 0.50 0.70 0.90 0.99

A
B est 17 17 17 17 17 17 17
A v 18.23 18.24 18.14 18.14 18.17 18.73 19.26

B
B est 17 17 17 17 17 17 18
A v 18.75 18.80 19.29 18.91 19.25 19.89 20.67

C
B est 17 17 17 17 17 17 17
A v 17.77 18.08 18.30 18.05 18.45 18.65 19.37

D
B est 18 18 18 18 17 18 18
A v 19.43 19.42 19.64 19.07 19.27 19.85 19.61

£
B est 19 19 19 19 18 18 18
A v 21.58 21.95 21.56 21.00 21.92 22.01 21.64

F
B est 18 18 18 18 18 18 18
A v 19.81 19.43 19.83 19.62 19.83 19.63 19.23

G
B est 17 17 17 17 17 17 17
A v 18.07 18.16 18.21 18.21 18.97 18.90 19.92

H
B est 18 18 18 17 18 18 18
A v 21.17 21.17 21.16 21.17 21.17 21.22 21.34

Table A 3 .5 —Average and Best colours fo r  range o fp fo r  HEC

P
H euristic 0.01 0.10 0.30 0.50 0.70 0.90 0.99

A
B est 23 23 23 23 23 23 23
A v 25.09 25.09 24.82 25.05 25.27 26.20 27.82

B
B est 24 24 24 24 24 24 25
A v 26.89 27.11 27.18 27.12 27.47 28.33 29.99

C
B est 23 23 23 23 23 22 23
A v 24.60 24.96 25.13 25.23 25.37 26.07 27.88

D
B est 24 24 24 24 24 24 24
A v 25.47 25.10 24.91 25.32 25.49 25.73 25.69

£
B est 25 25 25 25 25 25 25
A v 25.74 26.47 26.87 27.07 26.42 27.08 27.27

F
B est 24 24 24 24 24 24 24
A v 25.48 26.05 25.12 25.52 25.74 25.84 26.18

G
B est 23 23 23 23 23 24 24
A v 24.29 24.28 24.67 24.85 24.93 26.45 28.42

H
B est 26 26 26 26 25 26 27
A v 31.10 31.10 31.11 31.12 31.17 31.44 31.84

Table A3.6 -  Average and Best colours fo r  range o f  p fo r  EAR
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P
Heuristic 0.01 0.10 0.30 0.50 0.70 0.90 0.99

A B est 20 20 20 20 20 20 22
A v 21.90 21.65 22.00 22.45 22.79 24.01 25.98

B B est 21 21 21 20 20 21 24
A v 23.79 23.69 23.92 23.94 24.59 26.60 28.08

C B est 20 20 20 20 20 20 22
A v 22.29 22.38 22.19 22.29 22.98 24.39 26.42

D B est 22 22 22 22 22 21 21
A v 23.47 23.11 23.11 23.52 23.38 23.34 23.79

E B est 23 23 23 23 23 23 23
A v 24.54 24.72 24.76 24.97 24.82 24.94 25.47

F B est 22 22 22 22 22 22 22
A v 23.31 23.15 23.70 23.54 23.75 23.64 24.15

G B est 20 20 20 20 20 20 20
A v 21.47 21.64 21.37 22.03 22.05 24.47 27.05

H B est 25 25 25 25 25 25 25
A v 29.39 29.39 29.37 29.39 29.42 29.59 29.83

Table A 3 .7—Average and Best colours fo r  range o f  p fo r  TRENT

\

i
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Appendix 3.5 

Sensitivity of NA

n a
Heuristic 1 5 10 25 50 75 100 150 200

A B est 18 17 17 17 17 17 17 17 17
A v 19.09 18.30 18.64 18.15 18.34 17.97 18.22 18.31 18.19

B B est 18 18 18 17 17 17 17 17 17
A v 20.29 19.60 19.36 19.14 19.48 19.29 19.03 18.97 19.33

C B est 18 18 17 17 17 17 17 17 17
A v 18.91 18.59 18.29 18.13 18.38 17.99 18.23 18.01 18.13

D B est 19 18 18 18 18 17 18 18 18
A v 19.87 19.64 19.83 20.00 19.06 19.63 18.88 19.25 19.81

E B est 19 19 19 19 18 18 19 18 18
A v 20.85 20.81 21.00 21.21 21.37 21.96 21.00 21.56 21.40

F B est 18 18 18 18 18 17 18 18 18
A v 20.01 19.05 20.60 20.00 19.25 20.15 19.62 19.44 19.26

G B est 17 17 17 17 17 17 17 17 17
A v 18.51 18.74 18.52 18.45 18.37 18.31 18.21 18.54 18.72

H B est 20 19 18 18 18 18 17 18 18
A v 24.55 21.67 21.33 21.24 21.19 21.17 21.17 21.14 21.14

Table A 3.8 -  Average and Best colours fo r  range o f  ants per cycle fo r  HEC

n a
Heuristic 1 5 10 25 50 75 100 150 20 0

A B est 25 24 23 23 23 23 23 23 23
A v 27.92 26.14 25.92 25.61 25.40 25.47 24.93 25.30 25.17

B B est 26 25 24 24 24 24 24 24 23
A v 30.13 28.50 27.57 27.49 27.44 27.31 27.37 27.31 26.99

C B est 25 23 23 23 23 23 23 22 22
A v 27.93 26.55 25.79 25.01 25.16 24.85 25.27 24.67 24.82

D B est 25 24 24 24 24 24 24 24 24
A v 27.00 25.76 25.40 24.97 25.14 25.13 25.31 25.65 24.94

E B est 26 26 26 25 25 25 25 25 25
A v 28.00 27.35 27.53 26.92 26.73 27.44 27.06 27.07 26.35

F B est 26 25 24 24 24 24 24 24 24
A v 27.48 26.33 25.60 25.91 25.19 25.17 25.17 24.95 25.16

G B est 23 23 23 23 23 23 23 23 23
A v 25.67 24.79 24.64 24.72 24.61 24.37 24.85 24.82 24.73

H B est 31 28 27 26 27 27 26 26 25
A v 41.27 33.53 31.86 31.26 31.17 31.13 31.12 31.09 31.07

Table A3.9 -A verage and Best colours fo r  range o f  ants p e r  cycle fo r  EAR
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n a
Heuristic 1 5 10 25 50 75 100 150 200

A B est 22 21 20 21 20 20 20 20 20
A v 25.11 23.39 22.90 22.54 22.57 22.47 22.63 22.26 22.35

B B est 23 22 21 20 21 21 21 21 21
A v 27.19 26.10 25.17 24.57 24.18 24.25 24.43 24.34 24.11

C B est 22 21 20 20 20 20 20 20 20
A v 25.25 23.52 23.26 22.36 23.01 22.52 22.67 22.49 22.68

D B est 24 22 22 21 22 22 21 21 22
A v 25.47 23.61 23.61 23.19 23.01 23.33 23.17 23.52 23.34

E B est 24 24 23 23 23 23 23 23 23
A v 26.27 25.58 25.13 25.17 24.80 24.78 25.31 24.96 25.47

F B est 24 22 21 22 22 21 22 22 22
A v 25.77 24.03 22.94 23.12 23.77 22.67 23.21 23.57 23.36

G B est 20 21 20 20 20 20 20 20 20
A v 23.61 22.98 22.11 22.11 21.84 21.93 22.03 21.92 21.73

H B est 28 28 26 26 25 25 25 25 25
A v 37.78 32.41 30.28 29.55 29.42 29.40 29.39 29.56 29.35

Table A3.10 -A verage and Best colours fo r  range o f  ants per cycle fo r  TRENT
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Appendix 4.1

Proceedings of the 4th International Conference on the Practice and Theory of Automated 

Timetabling. Eds Burke. K. and De Causmaecker. P., (2002), pp397-399.

Examination Timetabling with Ants.

Kathryn A. Dowsland , Nicholas Pugh and Jonathan Thompson

1 9Gower Optimal Algorithms Limited and University of Nottingham, University of Wales 
Swansea, University of Wales, Cardiff. Email: ThompsonJMl@cardiff.ac.uk

Introduction

This paper is concerned with the potential of ant algorithms as a useful tool for the solution 

of examination scheduling problems. Ant algorithms are a family of evolutionary meta­

heuristics loosely based on the way that ants cooperate by laying pheromone trails. Initially 

applications focussed on routing and related problems where the analogy between the 

biological metaphor and the optimisation problem is a natural one. However, there is a 

growing interest in applications in other areas. The decision to experiment with ant 

algorithms for examination scheduling was motivated by the following observations.

One of the basic requirements of the approach is a greedy construction heuristic that can be 

randomised so that the next option is chosen with a probability proportional to its 

perceived quality (referred to as the visibility). These probabilities are changed as the 

algorithm progresses using a suitably defined ‘trail’ that encapsulates the important 

features of the solution. In the first cycle a population of solutions are generated using the 

randomised greedy approach. These are then used to update the trail, such that elements of 

higher quality solutions receive more trail, and those that appear in poorer solutions or not 

at all receive less trail. The trail is then used to adjust the probabilities for the randomised 

greedy construction in future cycles so that the probability of selecting elements of 

previous good solutions is increased. Thus an ant algorithm can be seen as a way of fine- 

tuning the probabilities in a greedy construction approach. This is encouraging as there has 

been considerable success in the solution of examination scheduling problems based on 

greedy construction heuristics. Although some of the earliest approaches using greedy 

construction alone cannot compete with today’s state of the art approaches, many more 

recent implementations combine a greedy approach with other heuristics to provide
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improved performance. For example, Ross et al. [4] use a GA in combination with a 

greedy or randomised greedy construction, while Carter et al. [1] describes a system based 

on greedy construction with some backtracking.

Further encouragement is provided by Costa and Hertz [2]. It is well known that the 

underlying model for examination scheduling is that of graph colouring. In [2] it is 

suggested that ant algorithms can be used for a variety of allocation type problems and the 

graph colouring problem is used to illustrate a family of algorithms they refer to as 

ANTCOL. Other successes in related areas include Maniezzo and Carbonaro’s [3] work on 

the frequency assignment problem. However, it should be noted that Vesel and Zerovnik 

[6] report the results of a set of experiments that disagree with the conclusions of [2].

The scope of the investigation.

Although the graph colouring problem can model most of the constraints found in a typical 

instance of the examination-scheduling problem, it cannot incorporate secondary 

objectives such as second order conflict. Any successful approach to the problem must 

obviously be able to deal with such issues. However, in the work described here we restrict 

ourselves to finding feasible timetables, as defined by those features that can be included 

within the graph-colouring model. The rationale behind this is to get an insight into the 

behaviour of the algorithm in seeking out clash-free timetables before deciding on the best 

approach for tackling the more complex problem of conflicting primary and secondary 

objectives. This is in line with the points made by Ross, Hart and Come [5] when 

analysing the reasons for the relatively poor performance of a particular GA approach to 

the problem. Our intention is to investigate the performance of a family of algorithms 

based on the ANTCOL family of Costa and Hertz, but with modifications and 

enhancements, many of which exploit the additional knowledge inherent in the 

examination-scheduling problem. If successful the more promising performers will then be 

used as the basis for future work in the development of an ant algorithm that is able to 

accommodate secondary objectives and additional constraints.
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The experiments.

Our experiments use a set of graphs derived from examination scheduling data. Costa and 

Hertz [2] suggest 8 variants of ANTCOL, all with the same definition of the trail, but using 

a number of different definitions of visibility based on successful greedy approaches from 

the graph-colouring literature. Given the conflicting views of Vesel and Zerovnik [6], and 

the fact that examination scheduling graphs tend to have a different structure to that of 

randomly generated graphs we repeat some of their experiments on our data and compare 

the performance of these 8 basic implementations with a series of modifications as follows.

1. A series of different definitions of the quality of a solution used to determine the 

strength of the trail. In the original implementations the number of colours required 

is used as a measure of quality. In examination scheduling we usually know the 

number of timeslots available. This allows a number of different quality measures, 

for example the number of additional colours needed to colour the graph, or the 

number of vertices still uncoloured when all the available colour sets are full.

2. A new measure of visibility for the first vertex in each new colour group based on 

the dummy vertices commonly used to add time-window constraints to the basic 

graph colouring model.

3. A diversification strategy to encourage the colouring of uncoloured vertices.

4. The use of candidate lists to limit the vertices considered to those with the highest 

trail factor or highest visibilities.

5. The use of a different trail factor

The ANTCOL family and reasons for introducing each of these modifications will be 

described in full and the results of the experiments reported. Conclusions as to the best 

candidates for further development, based on these results together with a discussion as to 

the suitability of the different underlying greedy strategies for incorporating second order 

conflict, will be drawn.
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Appendix 4.2

Sensitivity of a  and (3 with timeslot structure

Statistic definition

Feasible -  Number of feasible timetables per 100 created. 

Unallocated -  Average number of exams not scheduled per timetable.

Feasible Unallocated
Heuristic a/p 1 2 3 4 1 2 3 4

A

1 3.89 2.05 1.85 18.38 0.13 2.65 8.72 1.36
2 68.98 78.94 87.57 89.07 0.53 0.32 0.18 0.15
3 90.61 92.52 92.93 94.53 0.20 0.13 0.11 0.08
4 93.79 77.08 95.36 96.13 0.14 0.29 0.08 0.06

B

1 0.00 0.00 0.00 0.00 5.45 5.44 5.41 5.44
2 48.71 0.46 0.02 0.00 1.10 2.98 3.80 4.03
3 81.09 40.04 1.15 0.03 0.41 1.03 2.26 3.25
4 90.53 71.85 19.23 0.32 0.25 0.52 1.34 2.57

C

1 0.14 2.52 12.46 23.59 4.06 2.88 1.99 1.49
2 86.58 91.30 92.38 92.83 0.29 0.18 0.132 0.11
3 93.68 95.27 96.16 96.45 0.16 0.11 0.08 0.07
4 94.62 95.74 96.21 96.79 0.13 0.09 0.07 0.06

D

1 3.85 12.88 27.04 39.68 2.94 2.02 1.43 1.07
2 90.27 89.21 92.63 93.42 0.21 0.19 0.14 0.12
3 96.58 94.73 96.49 96.97 0.10 0.11 0.07 0.06
4 96.09 58.70 97.18 97.06 0.10 0.46 0.05 0.05

E

1 0.00 0.00 0.00 0.00 10.56 10.34 9.65 8.64
2 0.00 0.00 0.00 0.00 9.42 9.23 8.56 7.99
3 0.00 0.00 0.00 0.00 9.13 8.72 8.01 7.51
4 0.00 0.00 0.00 0.00 8.71 8.13 7.23 6.87

F

1 0.02 17.89 58.23 67.23 7.77 1.98 1.11 0.86
2 85.32 86.42 92.71 96.54 0.34 0.29 0.08 0.04
3 91.72 90.54 95.63 98.56 0.09 0.10 0.05 0.02
4 96.87 97.45 97.84 99.01 0.04 0.03 0.03 0.02

G

1 0.54 1.42 2.98 4.53 3.36 2.90 2.54 2.29
2 77.72 81.65 81.42 81.72 0.42 0.33 0.31 0.29
3 89.63 89.46 90.56 89.41 0.20 0.20 0.17 0.18
4 86.65 92.88 75.76 93.38 0.24 0.24 0.32 0.12

H

1 0.00 0.00 0.08 0.33 5.80 4.93 4.15 3.51
2 0.23 0.96 2.79 5.80 3.90 3.25 2.71 2.25
3 0.59 1.74 4.49 8.36 3.51 2.95 2.45 2.06
4 0.77 2.31 5.23 8.95 3.40 2.84 2.38 2.01

Table A 4.1 -  Average feasible rate per 100 and average unallocated exams p er  timetable fo r  selected range o f  a  and (1
across all construction heuristics fo r  HEC data set.
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Feasible Timetables Unallocated
Heuristic a/p 1 2 3 4 1 2 3 4

A

1 0.00 0.00 0.052 0.62 9.64 7.18 5.24 3.82
2 39.05 78.20 85.22 85.82 1.74 0.66 0.40 0.32
3 74.03 92.45 94.63 93.71 0.79 0.31 0.21 0.17
4 64.07 91.43 95.07 94.03 0.92 0.29 0.18 0.16

B

1 0.00 0.00 0.00 0.00 11.69 11.38 11.23 11.19
2 6.56 0.00 0.00 0.00 3.78 6.26 7.92 8.94
3 40.01 0.4 0.00 0.00 1.58 3.36 5.37 6.63
4 34.11 0.09 0.00 0.00 1.54 3.02 4.27 4.88

C

1 0.00 0.00 0.83 8.48 9.79 7.14 4.88 3.18
2 81.32 89.44 94.10 95.32 0.83 0.43 0.25 0.18
3 85.24 94.97 96.31 96.73 0.51 0.25 0.17 0.14
4 94.01 95.10 96.62 97.35 0.33 0.22 0.15 0.12

D

1 7.14 1.76 0.73 0.29 0.12 40.54 66.88 84.63
2 2.41 0.22 0.10 0.07 17.12 94.66 97.17 97.48
3 2.94 0.16 0.08 0.05 0.05 96.84 98.25 98.74
4 2.72 0.15 0.07 0.05 0.04 97.21 98.46 98.76

E

1 0.00 0.00 0.00 0.00 10.91 10.60 10.53 10.47
2 0.00 0.00 0.00 0.00 6.75 7.56 8.43 9.92
3 0.00 0.00 0.00 0.00 7.82 7.66 7.77 7.43
4 0.00 0.00 0.00 0.00 8.04 8.10 7.17 7.97

F

1 0.01 23.82 43.46 51.69 8.14 2.71 1.46 1.07
2 49.35 93.47 95.15 96.47 1.13 0.28 0.17 0.11
3 37.42 95.12 97.33 98.15 1.77 0.22 0.13 0.08
4 0.00 77.61 97.69 98.26 3.45 0.37 0.11 0.08

G

1 0.00 0.00 0.02 0.04 7.35 6.52 5.84 5.26
2 43.27 42.86 48.68 44.15 1.47 1.38 1.28 1.28
3 58.19 61.29 75.82 76.21 1.13 0.81 0.62 0.56
4 61.89 80.85 74.02 66.19 0.99 0.52 0.60 0.63

H

1 0.00 0.00 0.00 0.00 15.51 13.03 11.01 9.42
2 0.00 0.03 0.11 0.40 8.31 6.84 5.74 4.99
3 0.01 0.08 0.31 0.86 6.98 5.93 5.08 4.46
4 0.01 0.13 0.34 1.00 6.78 5.70 4.95 4.29

Table A4.2 -  Average feasible rate p er  100 and average unallocated exams per timetable fo r  selected range o f  a  and ft
across all construction heuristics fo r  EAR data set.
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Feasible Timetables Unallocated
Heuristic a/p 1 2 3 4 1 2 3 4

A

1 0.00 0.51 11.52 36.10 7.96 4.56 2.25 1.12
2 76.38 88.41 92.94 95.15 1.02 0.32 0.14 0.08
3 92.08 95.44 97.25 97.64 0.39 0.16 0.07 0.05
4 94.14 96.37 97.90 98.19 0.29 0.13 0.06 0.04

B

1 0.00 0.00 0.00 0.00 11.41 11.18 11.17 11.21
2 53.58 14.78 0.00 0.00 2.63 4.33 7.19 9.29
3 86.80 82.57 51.98 23.78 0.79 0.92 1.56 2.30
4 91.92 86.53 73.66 43.33 0.50 0.62 0.89 1.59

C

1 0.00 0.60 13.40 39.19 8.40 5.12 2.54 1.28
2 86.59 92.64 95.87 97.06 0.68 0.26 0.12 0.07
3 94.42 96.45 97.49 98.38 0.32 0.15 0.08 0.05
4 95.81 97.21 98.00 98.62 0.25 0.12 0.07 0.04

D

1 3.82 50.30 81.88 93.50 4.64 1.08 0.32 0.10
2 91.88 96.68 98.63 99.30 0.29 0.09 0.03 0.01
3 76.58 97.74 98.98 99.42 0.38 0.07 0.02 0.01
4 96.05 98.07 99.08 99.46 0.17 0.06 0.02 0.01

E

1 0.00 0.00 0.00 0.00 10.39 9.95 9.58 9.37
2 12.00 32.60 30.21 0.29 2.65 1.97 3.11 3.91
3 18.51 52.67 36.60 0.09 1.77 1.77 2.72 4.39
4 55.66 0.02 18.77 0.15 1.17 2.98 3.58 4.80

F

1 0.50 19.95 56.45 77.44 6.56 2.46 0.90 0.40
2 90.66 95.49 97.75 98.11 0.40 0.15 0.07 0.04
3 95.61 97.18 98.44 98.90 0.23 0.11 0.05 0.03
4 77.26 78.53 98.63 98.96 0.39 0.29 0.05 0.03

G

1 0.05 0.22 0.96 3.60 6.33 5.26 4.25 2.43
2 83.39 83.65 83.16 83.76 0.67 0.53 0.49 0.43
3 92.68 92.60 92.22 88.80 0.32 0.29 0.25 0.28
4 93.57 92.65 93.19 94.04 0.27 0.25 0.21 0.18

H

1 0.00 0.00 0.00 0.00 16.44 13.42 10.89 8.83
2 0.00 0.02 0.26 1.02 9.59 7.42 5.57 4.73
3 0.05 0.24 0.88 3.04 7.27 5.96 4.93 3.94
4 0.09 0.37 1.31 3.65 6.75 5.65 4.57 3.76

Table A 4.3 -  Average feasible rate per 100 and average unallocated exams p er  timetable fo r  selected range o f  a  and f3
across all construction heuristics fo r  TRENT data set.
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Appendix 5.1

Static Trail Reinforcement

Results for the HEC data set with upper bounds of 1000,1250,1500 and 1750 are as 

follows:

UB=1000 UB=1250 UB=1500 UB=1750
X Average B est A verage B est A verage B est Average B est
1 1571.32 824 1571.32 824 1571.32 824 1571.32 824
5 1549.11 841 1272.05 800 1250.22 818 1314.05 769

10 1495.67 796 1333.34 780 1428.69 800 1362.16 783
15 1386.37 834 1142.71 816 1220.77 808 1284.51 813
20 1361.37 798 1188.29 765 1360.60 892 1342.33 833
25 1138.33 753 1287.63 810 1161.70 717 1407.50 822
30 1133.65 739 1230.24 816 1303.35 818 1298.38 848
35 1306.62 743 1239.64 807 1156.29 785 1433.83 830
40 1120.11 797 1216.61 776 1224.81 803 1400.00 834
45 1081.14 796 1312.62 880 1210.01 847 1112.91 709
50 1376.22 832 1024.59 760 1178.63 743 1399.74 863

Table A5.1— Statistics fo r  range o f  X on bias term fo r  various UB fo r  HEC

Results for the EAR data set with upper bounds of 1250, 1500, 1750 and 2000 are as 

follows:

UB=1250 UB=1500 UB=1750 UB=2000
X Average Best Average Best Average Best Average Best
1 1650.19 1292 1650.19 1292 1650.19 1292 1650.19 1292
5 1650.19 1292 1642.10 1257 1531.31 1255 1598.40 1191

10 1650.19 1292 1686.89 1371 1599.33 1348 1572.20 1261
15 1650.19 1292 1598.87 1278 1627.20 1348 N/a N/a
20 1650.19 1292 1632.19 1303 1590.13 1342 1606.24 1247
25 1650.19 1292 1531.01 1205 1591.57 1370 1707.73 1442
30 1650.19 1292 N/a N/a N/a N/a N/a N/a
35 1650.19 1292 1549.40 1190 1498.29 1139 1567.95 1319
40 1650.19 1292 1567.04 1200 N/a N/a 1668.03 1419
45 1650.19 1292 1450.19 1192 N/a N/a 1571.68 1295
50 1650.19 1292 1581.15 1234 1392.56 1182 1572.57 1244

Table A5.2— Statistics fo r  range o f  X on bias term fo r  various UB fo r  EAR
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Results for the TRENT data set with upper bounds of 1250, 1500, 1750 and 2000 are as

follows:

UB=1250 UB=1500 UB=1750 UB=2000
X Average Best Average Best Average Best Average Best
1 1397.87 1083 1397.87 1083 1397.87 1083 1397.87 1083
5 1414.89 1096 1473.36 1112 1454.54 1084 1525.24 1167
10 1379.34 1043 1411.68 1076 1405.24 1072 1454.02 1143
15 1396.71 1061 1358.29 1068 1412.59 1041 1501.94 1172
20 1382.47 1044 1402.37 1058 1396.33 1048 1529.40 1192
25 1371.03 1003 1368.60 1070 1451.49 1155 1449.89 1090
30 1383.50 1045 1324.20 1060 1425.02 1096 1472.26 1164
35 1348.03 1027 1422.10 1149 1469.51 1141 1444.32 1115
40 1361.85 1022 1355.12 1113 1430.94 1120 1497.15 1211
45 1377.80 1032 1370.66 1143 1444.23 1133 1480.75 1148
50 1376.51 1036 1376.12 1106 1389.13 1078 1498.05 1110

Table A 5 .3 - Statistics fo r  range o f  A on bias term fo r  various UB fo r  TRENT
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Appendix 6.1 

Regression Analysis (TSP)

This section quantifies the relationship between Before TSP and After TSP. Figures 6.4 -  

6.6 depict a positive trend relationship between these variables. For each data set, the 

scores from all runs were combined and sorted according to Before TSP score. This sort 

was extended to the associated After TSP scores. These data were grouped into intervals of 

size n and averaged to produce 100 data points.

A simple linear relationship is a little spurious due to the differing gradients in each graph, 

however a series of regression analyses were performed (quadratic, cubic, logarithmic) and 

simple linear regression accounts for the largest variation (R2).

HEC EAR TRENT
R2 0.57 0.84 0.73

Regression Constant 574.19 762.43 936.38
Regression Slope 0.08 0.28 0.16

K-S Z 1.79 0.66 1.15
Sig 0.00 0.78 0.15

Table A 6.1 -  Regression analysis o f  Before TSP versus After TSP

Interpretation

The simple linear regression equations are as follows:

HEC: After TSP = 574.19 + 0M*Before TSP

For each unit increase in the Before TSP score, the After TSP score increases by a measure 

0.08.

EAR: After TSP = 762.43 + 0.2%*Before TSP

For each unit increase in the Before TSP score, the After TSP score increases by a measure 

of 0.28.
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TRENT: After TSP = 936.38 + 0A6*Before TSP

For each unit increase in the Before TSP score, the After TSP score increases by a measure 

of 0.16.
I

j  The R2 values are encouraging and suggest the appropriate use of simple linear regression
|
| for the relationship between the variables in question. As Figure 6.4 indicated, the

association for HEC is not as strongly linear as the other data sets.

i
i

Each of the gradient coefficients is positive, so, highlighting the increasing relationship 

between Before TSP and After TSP scores. The intercept (constant) terms are a little 

misleading. If there are no Before TSP second-order clashes then there it is impossible to 

have any After TSP clashes. However, the predicted After TSP scores are 574.19, 762.43 

and 936.38 for HEC, EAR and TRENT respectively. The regression models have been 

formed to represent the data sampled and assume that future forecasting/prediction 

exercises will use Before TSP scores near to the interval of data sampled and limited 

extrapolation will be performed.

After each model was produced residual analysis was performed to check the validity of 

the model. The One-Sample Kolmogorov-Smimov Test was used. The statistics of interest 

are Z and Sig. These are interchangeable. The higher Z, the lower Sig. The closer Sig is to 

zero, the closer to non-normality the residuals lay. In this section, if Sig>0.05 then we 

deduce that the residual distribution is normal. The model for EAR has residuals that are
I

soundly normal (Sig=0.78) and TRENT is acceptable to have Normal residuals (Sig=0.15), 

while HEC is significantly non-Normal (Sig=0.00), which raises doubts regarding the 

validity of the model.

Figures 6.7-6.9 illustrate the relationship between Before TSP and Savings. The former 

variable refers to the Before TSP adjustment second-order score while the latter relates to 

the number of second-order conflicts removed from a timetable. Once again the data were 

sorted and averaged into 100 intervals. The least squares statistics are as follows:
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HEC EAR TRENT
R2 1 0.97 0.99

Regression Constant -574.19 -762.43 -936.38
Regression Slope 0.92 0.72 0.84

K-S Z 1.79 0.66 1.15
Sig 0.00 0.78 0.17

Table A6.2 -  Regression analysis o f  Before TSP versus Savings

Interpretation

I

| The simple linear regression equations are as follows:
ii
;

HEC: Savings = -574.19 + 0.92*Before TSP

For each unit increase in the Before TSP score, the Savings score increases by a measure 

0.08.

EAR: Savings = -762.43 + $.12*Before TSP

For each unit increase in the Before TSP score, the Savings score increases by a measure 

of 0.28.

TRENT: Savings = -936.38 + 0M * Before TSP

For each unit increase in the Before TSP score, the Savings score increases by a measure of

0.84.

Firstly, we should note the similarity in the statistics between Savings and After TSP 

models. The absolutes of each of the constants are the same and adding each slope would 

equal 1 (i.e. HEC, 0.92+0.08=1). This is to be expected since these models derive from the 

same data sets. The most notable outcome of this study is the explained variation. The R 

statistics suggest perfect linearity.
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Appendix 6.2
A fte r  T S P  second-order statistics when using min+deviation rule

Run % D e v  
Run M in

A v B est B est 10 W orst
10

E lig ib le Time % D e v
B est

%  D ev  
Time

Infinite 687.16 574 582.20 850.80 7995 596.33 0 0
0 677.05 579 647.50 707.00 19 85.07 0.87 85.73
1 647.62 579 586.00 717.70 277 101.61 0.87 82.96
3 654.20 579 584.20 740.90 1249 163.91 0.87 72.51

1 5 658.16 574 582.20 752.30 1746 195.77 0 67.17
10 663.13 574 582.20 772.70 2286 230.38 0 61.37
2 0 670.99 574 582.20 806.30 3205 289.29 0 51.49
30 673.82 574 582.20 827.70 3733 323.14 0 45.81
50 677.45 574 582.20 833.80 4227 354.80 0 40.50

Infinite 637.21 557 570.90 795.00 7604 486.66 0 0
0 640.00 584 617.70 661.50 18 84.49 4.85 85.18
1 631.98 579 588.40 699.70 234 98.33 3.95 82.74
3 629.83 579 581.60 707.80 1103 154.04 3.95 72.98

2 5 629.96 578 580.40 714.90 2172 222.56 3.77 60.95
10 632.52 571 574.70 737.20 4337 361.34 2.51 36.61
2 0 634.79 571 574.40 751.90 6870 523.70 2.51 8.12
30 635.21 571 574.40 757.10 7094 538.06 2.51 5.60
50 636.08 557 572.50 765.30 7305 551.58 0 3.23

Infinite 629.45 512 523.60 793.00 7765 580.23 0 0
0 625.13 575 596.30 657.90 24 84.03 12.30 85.52
1 617.07 561 572.10 689.20 102 89.03 9.57 84.66
3 612.64 550 560.80 702.80 314 102.62 7.42 82.31

3 5 612.84 539 551.50 713.70 686 126.47 5.27 78.20
10 611.35 512 525.90 724.00 1999 210.63 0 63.70
2 0 620.48 512 523.60 741.90 4014 339.79 0 41.44
30 624.44 512 523.60 756.90 5861 458.18 0 21.03
50 628.38 512 523.60 764.70 7420 558.16 0 3.81

Infinite 595.61 520 531.50 762.00 7355 552.36 0 0
0 614.54 561 588.90 62.30 13 81.74 7.88 85.20
1 575.14 526 539.90 668.20 901 138.66 1.15 74.90
3 578.45 526 539.10 682.50 1610 184.11 1.15 66.67

4 5 583.62 526 538.50 687.30 4121 345.06 1.15 37.52
10 586.89 526 537.00 689.60 5128 409.61 1.15 25.84
20 592.15 520 532.90 706.30 6504 497.81 0 9.88
30 593.29 520 532.90 706.80 6855 520.31 0 5.80
50 594.08 520 532.00 718.20 7092 535.50 0 3.05

Infinite 687.50 580 582.10 846.00 7982 594.79 0 0
0 681.82 617 653.40 712.50 17 84.23 6.38 85.84
1 697.59 617 635.30 742.60 111 90.26 6.38 84.83
3 681.02 592 603.10 761.30 425 110.39 2.07 81.44

5 5 689.23 592 601.50 787.50 838 136.86 2.07 76.99
10 690.95 580 591.50 802.70 1905 205.25 0 65.49
20 688.95 580 588.30 809.70 3619 315.12 0 47.02
30 685.77 580 583.80 813.70 4741 387.04 0 34.93
50 685.10 580 583.20 821.40 5315 423.84 0 28.74
Table A 6 .3 -  Statistics describing After TSP results fo r  min+deviation rule fo r  HEC.
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Run % D e v  
Run M in

A v B est B est 10 W orst
10

E lig ib le Time %  D ev  
B est

%  D ev  
Time

Infinite 1149.03 919 937.90 1460.20 6866 1147.57 0 0
0 1105.87 973 1046.20 1168.10 23 377.40 5.88 67.11
1 1087.18 944 995.60 1191.40 55 381.00 2.72 66.80
3 1084.51 944 978.60 1217.90 187 395.86 2.72 65.50

1 5 1089.61 936 955.10 1259.80 588 440.99 1.85 61.57
10 1102.14 936 946.10 1308.40 2187 620.95 1.85 45.89
2 0 1132.88 935 941.10 1404.30 5148 954.21 1.74 16.85
30 1144.38 919 937.90 1429.00 6457 1101.54 0 4.01
50 1148.86 919 937.90 1443.10 6859 1146.78 0 0.07

Infinite 1175.43 990 1004.90 1464.00 7453 1195.99 0 0
0 1128.40 1038 1078.50 1178.3 20 359.41 4.85 69.95
1 1136.55 1038 1069.80 1214.7 29 360.43 4.85 69.86
3 1136.66 1031 1046.40 1248.4 83 366.50 4.14 69.36

2 5 1141.85 1031 1042.70 1288 176 376.97 4.14 68.48
10 1156.63 1019 1032.30 1379.5 705 436.51 2.93 63.50
2 0 1168.06 990 1005.60 1432.9 3189 716.08 0 40.13
30 1173.14 990 1005.10 1444.5 5824 1012.65 0 15.33
50 1175.36 990 1004.90 1464 7429 1193.29 0 0.23

Infinite 1152.78 948 963.10 1432.70 5793 990.47 0 0
0 1133.29 1019 1092.60 1168.40 14 340.05 7.49 65.68
1 1113.23 970 1038.00 1192.40 30 341.85 2.32 65.49
3 1114.79 970 1001.20 1269.00 133 353.44 2.32 64.32

3 5 1114.86 970 983.50 1286.10 447 388.78 2.32 60.75
10 1131.29 948 965.60 1346.90 2640 635.60 0 35.83
2 0 1150.13 948 963.10 1424.90 5424 948.94 0 4.19
30 1152.57 948 963.10 1432.70 5769 987.77 0 0.27
50 1152.78 948 963.10 1432.70 5789 990.02 0 0.05

Infinite 1131.01 903 926.30 1385.60 6091 1087.83 0 0
0 1069.29 991 1044.00 1092.80 14 403.87 9.75 62.87
1 1078.12 991 1014.00 1151.40 33 406.01 9.75 62.68
3 1080.66 977 993.60 1191.50 142 418.28 8.19 61.55

4 5 1090.42 958 979.70 1216.40 415 449.00 6.09 58.73
10 1107.25 905 939.40 1273.20 2168 646.30 0.02 40.59
20 1124.14 903 926.30 1332.20 5175 984.74 0 9.48
30 1130.51 903 926.30 1374.20 5987 1076.12 0 1.08
50 1130.94 903 926.30 1385.60 6087 1087.38 0 0.04

Infinite 1045.52 842 863.80 1322.60 5417 1100.65 0 0
0 991.63 895 948.20 1034.30 16 492.77 6.29 55.23
1 1017.93 895 930.20 1118.70 30 494.35 6.29 55.09
3 1007.50 868 912.40 1156.60 104 502.68 3.09 54.33

5 5 1009.18 868 896.80 1182.80 324 527.44 3.09 52.08
10 1025.82 852 879.90 1211.20 1585 669.36 1.12 39.18
20 1042.89 842 863.80 1252.30 4761 1026.82 0 6.71
30 1044.89 842 863.80 1298.00 5366 1094.91 0 0.52
50 1045.44 842 863.80 1322.60 5414 1100.31 0 0.03

Table A 6 .4 -  Statistics fo r  After TSP results fo r  dynamic min +deviation rule fo r  EAR.
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Run % D e v  
Run M in

A v B est B est 10 Worst
10

E lig ib le Time %  D ev  
B est

% D e v
Time

Infinite 1155.22 930 964.40 1361.50 6710 1360.84 0 0
0 1142.78 1046 1093.30 1192.20 23 631.30 12.47 53.61
1 1138.75 1028 1065.10 1213.10 44 633.59 10.54 53.44
3 1134.33 999 1046.80 1238.00 134 643.41 7.42 52.72

1 5 1134.57 999 1017.80 1258.70 370 669.16 7.42 50.83
10 1143.93 989 1007.10 1304.90 1782 823.21 6.34 39.51
20 1153.71 930 971.40 1351.70 5040 1178.65 0 13.39
30 1154.72 930 964.40 1361.50 6448 1332.26 0 2.10
50 1155.21 930 964.40 1361.50 6707 1360.51 0 0.02

Infinite 1105.17 942 966.50 1338.0 7259 1409.27 0 0
0 1092.04 999 1034.60 1153.0 26 620.16 6.05 55.99
1 1100.86 999 1026.40 1190.5 44 622.13 6.05 55.85
3 1096.81 969 991.70 1250.0 154 634.13 2.87 55.00

2 5 1091.80 969 989.00 1256.9 355 656.06 2.87 53.45
10 1101.19 969 982.40 1300.0 1438 774.21 2.87 45.06
20 1106.84 963 974.30 1324.2 4160 1071.18 2.23 23.99
30 1106.73 942 969.40 1333.3 6062 1278.68 0 9.27
50 1105.19 942 966.50 1338.0 7220 1405.02 0 0.3

Infinite 1152.18 965 985.10 1358.80 7120 1399.40 0 0
0 1126.05 1016 1060.10 1190.80 21 625.04 5.29 55.34
1 1121.79 1016 1036.60 1209.00 34 626.46 5.29 55.23
3 1110.95 1016 1029.20 1226.30 110 634.75 5.18 54.64

3 5 1105.67 1015 1026.80 1255.90 281 653.41 3.42 53.31
10 1117.71 998 1015.70 1299.00 1555 792.40 0 43.38
20 1144.11 965 988.30 1337.20 5073 1176.20 0 15.95
30 1150.90 965 985.10 1355.90 6714 1355.23 0 3.16
50 1152.16 965 985.10 1358.80 7105 1397.89 0 0.10

Infinite 1136.01 953 970.90 1350.30 7258 1410.80 0 0
0 1086.43 986 1028.60 1144.10 21 621.26 3.46 55.96
1 1092.91 986 1015.20 1192.30 44 623.77 3.46 55.79
3 1080.27 985 1001.60 1207.10 86 628.35 3.36 55.46

4 5 1093.12 957 993.00 1235.10 172 637.73 0.42 54.80
10 1106.27 957 982.10 1262.80 789 705.05 0.42 50.03
20 1127.00 953 971.20 1307.30 3588 1010.41 0 28.38
30 1133.86 953 970.90 1331.20 5965 1269.74 0 10.00
50 1135.88 953 970.90 1350.30 7174 1401.64 0 0.60

Infinite 1129.46 956 970.00 1365.60 7035 1387.51 0 0
0 1098.81 990 1028.80 1170.60 21 622.30 3.56 55.15
1 1095.79 990 1003.50 1227.40 43 624.70 3.56 54.98
3 1083.73 990 998.90 1251.30 137 634.95 3.56 54.24

5 5 1082.81 990 996.30 1261.50 332 656.23 3.56 52.70
10 1101.60 983 990.90 1292.30 1425 775.47 2.82 44.11
20 1122.81 956 975.80 1350.20 4400 1100.04 0 20.72
30 1127.94 956 970.00 1358.20 6089 1284.30 0 7.43
50 1129.41 956 970.00 1365.60 7002 1383.91 0 0.26

Table A6.5 -  Statistics fo r  After TSP fo r  dynamic min+deviation rule fo r  TRENT.
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Appendix 6.3 

Local Search

Let us consider the objective of minimizing a function F(x) for a discrete optimization 

problem, where x  is a member of X, the finite set of solutions. A neighbourhood structure 

N(x) is defined as the set of solutions which are adjacent to any solution x eX. Local search 

begins from a solution s and another solution, s1, from the neighbourhood of s is generated, 

usually randomly. These solutions are then compared and if F(s)  <F(s) then s1 replaces s, 

otherwise s remains. This is known as random descent and is defined as follows.

1. Select s1 eX

2. For steps n=l, 2, ...,sn let sn denote the current solution
/  na. Choose randomly s from neighbourhood N(s )

b. I fF(s‘)<F(s") then s"+,=s'; else sn+'=s"

c. If there no improvement is observed for n steps then stop.

Steepest Descent has been used in Section 6.3.1 due to the superior solution quality over 

Random Descent. Steepest Descent differs from Random Descent since it evaluates the 

cost function value of every neighbour. The neighbour producing the largest decrease in 

the cost function is accepted as the new solution and the search continues until the 

neighbourhood contains no improving moves.

Local search is relatively simple to implement with four factors that have to be deduced: 

solution space X , starting solution s1, cost function F(x) and the neighbourhood structure 

N(x). The manner in which these factors are defined has a major influence on solution 

quality. With respect to the implementation of Steepest Descent Strategy in Section 6.3, s1 

represents the ant-based (Before Loc) solution, F(x) refers to the second-order score of the 

current solution x, N(x) is the set of feasible solutions that can be reached from current 

solution x  through changing the timeslot of one exam. The solution space X  refers to all 

combinations of examination timetables.

303



Appendices

Appendix 6.4

Regression Analysis (Steepest Descent)

Appendix 6.4 mirrors the study of Appendix 6.1. On this occasion, the results generated 

from Steepest Descent (Section 6.3.1) are used. We attempt to quantify the relationship 

between Before Loc with After LociSavings.

The statistics for the relationship between Before Loc and After Loc are as follows:

HEC EAR TRENT
R2 0.31 0.99 0.99

Regression Constant 526.11 453.66 226.14
Regression Slope 0.21 0.46 0.58

K-S Z 1.99 0.99 1.62
Sig 0.00 0.28 0.01

Table A 6 .6 -  Regression analysis o f  Before Loc versus After Loc

Interpretation
[
I

HEC: After Loc = 526.11 +0.2\*Before Loc

For each unit increase in the Before Loc score, the After Loc score increases by 0.21.

EAR: After Loc = 453.66+0.46*Before Loc

For each unit increase in the Before Loc score, the After Loc score increases by 0.46. 

TRENT: After Loc = 226.14+0.58^Before Loc

For each unit increase in the Before Loc score, the After Loc score increases by 0.58.

The R measures for EAR and TRENT are strong, while the same statement cannot be 

made for HEC. The positive slope highlights that better Before Loc scores encourage better 

After Loc scores. This is a generalized interpretation and cannot account for ‘odd’ good 

After Loc scores that have derived from relatively poor Before Loc timetables.
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The HEC and TRENT models do not observe the assumptions regarding normality of 

residuals. The Sig values suggest clear non-Normality.

The same study is performed to describe the relationship between Before Loc and Savings. 

The regression statistics are tabulated below:

HEC EAR TRENT
R2 0.86 0.99 0.97

Regression Constant -526.11 -453.66 -226.14
Regression Slope 0.79 0.54 0.42

K-S Z 1.99 0.99 1.62
Sig 0.00 0.28 0.01

Table A 6 .7 - Regression analysis o f  Before Loc versus Savings

Interpretation

HEC: Savings = -526.11+0.79*Before Loc

For each unit increase in the Before Loc score, the Savings score increases by 0.79.

EAR: Savings = -453.66+0.54^Before Loc

For each unit increase in the Before Loc score, the Savings score increases by 0.54.

TRENT: Savings = -226. X4+0A2*Before Loc

For each unit increase in the Before Loc score, the Savings score increases by 0.42.

As with the parallel study in Appendix 6.1, the R values are strong and indicate the 

predictive power of the variable Savings given Before TSP. Despite this, the normality 

assumptions are not observed on two counts, thus placing doubts on the models. As 

expected, each model is the inverse of the mirrored model in the Before Loc!After Loc 

study. This is due to the derivation of both model types being from the same original 

variables.
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A note on Normality

For the purpose of this study, the validity of each model is not essential. If these analyses 

were used for any future investigation then regression assumptions would have to be 

observed. The main reason behind these appendices is to quantify the relationships 

between the variables discussed so the reader can visualize the potential importance of 

encouraging the ants to visit profitable areas of the solution space.
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Appendix 6.5

B efo re  L o c  second-order statistics for Baldwinian and Lamarckian theories

Run %Dev 
Run Min

Av Best Best 10 Worst
10

Infinite 1048.42 611 644.52 2427.58
0 1045.95 667 716.22 2282.04

1
1 1033.68 667 707.36 2296.48
3 983.66 652 695.30 2409.04

9 5 1040.10 634 690.14 2372.34
10 1029.47 636 696.66 2381.18
20 1056.73 660 667.62 2419.80
30 1031.69 628 682.38 2398.62
50 997.55 580 639.00 2360.10

Infinite 1102.76 610 663.62 2403.10
0 1063.16 585 719.20 2373.68
1 1005.88 594 704.02 2345.92
3 1001.54 668 696.68 2326.56

1 5 1035.95 663 691.70 2308.28
10 1008.39 617 674.20 2414.84
20 1007.47 639 671.72 2381.76
30 1165.29 639 701.70 2424.28
50 1047.60 658 719.56 2328.80

Table A6.8 -Before Loc second-order statistics fo r  Baldwinian and Lamarckian theories fo r  HEC

Run %Dev 
Run Min

Av Best Best 10 Worst
10

Infinite 1225.66 950 1017.58 1748.80
0 1336.24 1027 1130.40 1786.74
1 1357.06 1023 1116.16 1792.24

1 3 1298.97 982 1075.10 1810.04

g 5 1268.05 1004 1083.62 1784.54
10 1219.36 975 1014.44 1787.78
20 1273.79 962 1056.08 1793.22
30 1237.24 910 1015.14 1793.28
50 1217.43 912 1005.84 1785.08

Infinite 1241.08 935 999.00 1807.14
0 1307.67 961 1084.14 1782.48

tv*

1 1308.56 945 1089.44 1800.38
3 1262.18 975 1050.40 1801.60
5 1248.71 924 1038.08 1801.92
10 1235.39 996 1030.16 1791.66
20 1222.61 907 1008.00 1788.22
30 1221.16 953 994.14 1835.02
50 1228.02 950 1016.12 1802.18

Table A 6.9—Before Loc second-order statistics fo r  Baldwinian and Lamarckian theories fo r  EAR
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Run %  D ev  
Run M in

A v B est B est 10 W orst
10

Infinite 1204.11 894 963.84 1792.60
0 1341.90 1020 1078.20 1813.50

1
1 1306.42 997 1052.04 1803.08
3 1240.19 908 981.40 1793.80

a 5 1244.06 923 988.96 1805.08
10 1172.98 884 935.90 1810.96
20 1182.19 881 944.06 1785.56
30 1202.59 897 960.14 1780.78
50 1190.12 910 949.08 1791.72

Infinite 1189.43 904 960.04 1767.02
0 1300.83 990 1051.76 1783.40
1 1310.20 985 1045.76 1791.68
3 1245.66 921 1006.26 1790.98

1 5 1205.54 917 962.30 1782.00

3 10 1166.90 886 926.24 1780.70
20 1201.71 847 952.26 1771.04
30 1200.08 931 957.80 1768.28
50 1189.29 879 891.60 1762.88

Table A6.10-Before Loc second-order statistics fo r  Baldwinian and Lamarckian theories fo r  TRENT
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A ppendix 6.6

Relationship between computational effort and improvement
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Figure A6.1 -  Relationship between Computational Effort (secs) and Improvement (students) fo r  HEC.
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Figure A6.2 -  Relationship between Computational Effort (secs) and Improvement (students) fo r  EAR.
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Figure A6.3 -  Relationship between Computational Effort (secs) and Improvement (students) fo r  TRENT.
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Appendix 6.7 

Simulated Annealing

Simulated Annealing, see Eglese (1990) for a detailed account, is a local search technique 

that searches a wider part of the solution space than Steepest or Random Descent, thus 

increasing the probability of observing superior solutions. It enables the search process to 

escape from local minima.

Origins

The principles behind Simulated Annealing stem from statistical thermodynamics theory, 

where, annealing cools a melted body in a controlled manner and the cooling rates are 

varied such that the structure of the solid is altered. Metropolis et al. (1953) modeled this 

process by examining the internal atomic structure of such bodies and the manner in which 

atoms rearrange as the state changes from melted and high energy (atoms move freely with 

respect to one another), to solid and low energy (atoms lack movement). A slow rate 

cooling process results in a minimal energy solid but faster cooling produces suboptimal 

atomic structures.

During the cooling process, some inferior atomic re-arrangements, which have a higher 

energy than previous arrangements, are visited. Metropolis et al. simulated this observation 

using a conditional probability function defined as

p(d) = exp b (A6.1)

where p(S) is the probability of accepting the inferior atomic arrangement

F(s) and F(s)  are the energies of state before and after the proposed change 

k represents the Boltzmanns constant 

t is the temperature of the system.

Kirkpatrick et al. (1983) and Cemy (1985) used this an analogy for an optimization 

technique. The solution space of a problem represents all possible arrangements of atoms.
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Each solution has a corresponding energy to its cost function. A small alteration is made to 

the current solution and the resulting solution is accepted if it generates a decrease in the 

cost function. If an increase is observed, then acceptance is based probabilistically 

according to Metropolis criterion p(S), which when calculated, is compared with a value, v, 

with v e  [0,1]. If v<p(8)  then the move is accepted, otherwise there is no change to the 

solution.

When using SA, Boltzmanns constant can be removed from Metropolis criterion and the 

parameter t is lowered during the run. This lowers the probability of accepting inferior 

solutions. Parameter t is lowered until no uphill (worsening) moves are likely to be 

accepted.

There is a trade-off between solution time and quality. The cooling rate is required to be 

slow enough to achieve good solutions but quick enough to avoid the execution of an 

exorbitant number of iterations.

Usually, the final solution may not be the best solution found during the run as the search 

may become trapped in a relatively poor local optimum.
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Appendix 7.1 

Derivation of 8 3 ,4

Derivation of 8 3 4  values used in Section 7.1,

750
3,d Av Sec score3̂ .d ~ „ x Av bench,d (A7.1)

Av Sec_score refers to the Average second-order score across all data sets (Chapter 6).

AVbench,d refers to the Average Carter Cost across the available benchmarks for all data sets.

Equation A7.1 is formed through the following. A generic setting 8 2  = 750 is used and this 

is applied to all data sets, so we assume that the average condition of each timetable is 

approximately the same, hence the presence of Av Secjscore in Equation A7.1. The ratio 

of these values are scaled by the Average benchmark Carter Cost per data set d.

Merlot et 
al.

Carter et 
al.

Di 
Gaspero 

et al.

White & 
Xie

Average
Performance

Average
Second-
Order

83,d

C91 5.20 8.38 6.50 - 6.69 2283.35 2.20
C92 4.40 7.04 5.60 4.70 5.44 2075.82 1.96
EAR 35.40 40.92 46.70 - 41.01 955.18 32.20
HEC 10.70 15.04 12.60 - 12.78 657.01 14.59
KFU 14.00 18.76 19.50 - 17.42 1407.29 9.28
LSE 11.00 12.36 15.90 - 13.09 757.58 12.96
STA 157.40 167.14 166.80 - 163.78 3041.35 40.39
TRE 8.60 10.78 10.50 - 9.96 1034.76 7.22
UTA 3.60 4.80 4.50 4.00 4.23 2123.63 1.49
UTE 25.20 30.78 31.30 - 29.09 1055.75 20.67
YOR 37.90 45.60 42.10 - 41.87 804.95 39.01

Table A7.1- Estimates o f 83̂
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