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SUMMARY

The Internet has opened the opportunity for geographically dispersed computer users to 

concurrently interact, collaborate and socialise in a virtual group environment. It has 

shifted the nature of Internet users from “individualistic net-surfers” to “active 

collaborative teamworkers”. But developing Internet-based collaborative applications is 

very laborious, tedious and time consuming. Besides patience, knowledge and skill in low- 

level network programming are required especially for managing interactions and 

communications.

This thesis presents a research on the construction of a development tool for collaborative 

multimedia applications. The tool, named JACIE (Java-based Authoring language for 

Collaborative Interactive Environments), is a script language which has been developed to 

support rapid implementation of a wide range of network-based interactive and 

collaborative applications. In particular, it facilitates the management of interaction and 

communication through simple communication primitives such as channels and interaction 

protocols, hence hiding much network programming from programmers. JACIE also 

features a template-based programming style, a single program for both client and server, 

and platform-independence by using Java as the target language. A compiler prototype has 

been developed that translates JACIE codes to Java. Several sample applications have 

been implemented in JACIE and are discussed in the thesis.

The major research contribution is a high-level abstraction language for collaborative 

multimedia applications that simplifies many programming tasks. JACIE can be a useful 

multimedia software engineering tool well-suited for a wide range of collaborative 

applications, be they stand-alone client/server applications or Web-based client/server 

applets.
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Chapter 1

Introduction

It is widely accepted that the Internet is the current information highway. As 

communication technologies develop, the Internet will turn into an information 

superhighway, or, even later, into an information hyperhighway. The Internet contains 

unimaginable amount of hypermedia information maintained by millions of hosts 

throughout the world. In fact, the Internet is more than just a highway and more than just a 

huge storehouse of hypermedia information; it is a medium for a global virtual community 

where social interactions take place among real human beings. Never before, in the history 

of mankind, have strangers around the globe been able to interact or collaborate freely 

with one another. It changes the normal rules for social interaction.

Collaboration is a deliberate activity. People collaborate for the enjoyment of the joint 

activity or furthering relationship. People collaborate by sharing each other’s views, 

knowledge and experience in a process of effective learning and working.

This research is about collaborative activities over the Internet. More specifically, a 

research tool is proposed for developing interactive and collaborative applications using 

the Internet as the communication infrastructure. This authoring tool, named JACEE (a 

Java-based Authoring language for Collaborative and Interactive Environments), allows 

rapid prototyping of net-centric, multimedia and collaborative applications.

1
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1.1 The Internet and Global Collaboration

Collaborative activities over the Internet commenced in the early history of the Internet. 

Electronic mail, or e-mail, has been used for research and education purposes from the 

very beginning of the Internet [84]. As more and more people came together to discuss 

and learn about matters of common interest, LISTSERV or automated mailing lists were 

developed [69]. E-mail and LISTSERV were seen as ideal tools for collaboration [133]. 

They have the speed of a telephone call with the ability to store an ongoing 

“conversation”. This means that e-mail, together with LISTSERV, are superior than the 

letter, fax and telephone in the support of collaborative working. Another Internet service 

similar to LISTSERV, but enhances group discussion, is USENET or newsgroup [69, 

143]. It is an asynchronous threaded discussion forum similar to a bulletin board system.

Talk [106] is known to be the first Internet service that allows synchronous interaction for 

two users. First present in Unix, Talk allows two parties at remote locations to 

communicate through keyboarding in real-time. Currently the VoIP (Voice over IP) [122], 

which allows sending of voice in digital form over the Internet rather than in analog form 

over the public switched telephone network, overshadows the text-based Talk. Extending 

Talk, the Internet Relay Chat (IRC) [113] allows real-time electronic conversations 

between hundreds of remote users. They can chat about or discuss all kinds of topics. 

Many academic institutions maintain local newsgroups and IRC channels to allow their 

students and staff, whether remote or local, to converse on specific topics — be they 

academic discussions, campus events or employee announcements. One such example, 

NetFace [154], has been developed at Monash University in Gippsland, Australia. NetFace 

simplifies user interaction and integrates these functions. This menu-driven environment 

was tailored for their requirements and conceptualised as a virtual university. NetFace 

presents the students with “unreal places to go (classes, cafes, forums, the Union, the 

Chapel) and real things to do in those places, such as working in study groups, circulating 

research proposals for comment, bringing in guest speakers” [154].



1.1 THE INTERNET AND GLOBAL COLLABORATION 3

Telnet [147] is another application that can be used for multi-user and collaborative work. 

One category of this type of applications is called MUD (Multi-user Dungeon) named 

after the original role-playing adventure game written by Roy Trubshaw and Richard 

Bartle, then students at Essex University [48]. Now MUDs, also known as Multi-user 

Dimensions or Multi-user Dialogues, are normally referred to as text-based networked 

virtual reality [36]. MUD applications provide an environment for synchronous, computer- 

mediated communication among many people. Each user takes control of a computerised 

avatar or character and can walk around, chat with other characters, explore dangerous 

monster-infested areas and solve puzzles [134]. There are many variations of MUDs: 

MUSH, MOO, MUSE and MUCK [see 21, 37, 36, 93, 136]. The most popular of all, 

which is being used for educational purposes, is MOO (MUD Object-Oriented). With its 

built-in object-oriented language, which is additional to normal MUD capabilities, users 

can also create new objects in virtual space like building a home, creating pets and 

programming new items that add up to the initial predefined objects. A well-known 

distance learning institution, the Virtual Online University, has used MOO since 1994 for 

Liberal Arts degrees [76].

A new generation of MUDs can support multimedia and virtual reality. This is as a result 

of integrating World Wide Web [18] and Virtual Reality Modelling Language (VRML) 

[75, 40] in MUDs [e.g. 98]. With the introduction of Java, a new breed of applications for 

collaborative environment has emerged. Sun Microsystems described Java as “a simple, 

object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high 

performance, multithreaded, and dynamic language” [138]. Besides most of its features 

are being equally comparable to other programming languages, its platform-independent 

and Internet-oriented features make it stand out and have great popularity. It simplifies the 

current practice of network programming.

Recently, more networked multi-user applications have been developed for many different 

fields that incorporate some real-time collaborative features. There are also many 

electronic collaboration tools — a new medium to facilitate human-human collaboration.
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Other than the ones developed for intra-departmental networks, all of the collaborative 

applications and electronic collaboration tools run over the Internet.

1.2 Project Overview

Despite the fact that the Internet is the main infrastructure for global electronic 

collaboration, initial research study showed that developing real-time Internet-based 

collaborative applications is still a very laborious and tedious task. Moreover, patience, 

knowledge and skill in low-level programming are generally required. Only after the 

introduction of the Java language with its built-in network support, has multi-user network 

programming been made simpler. However, it is not as simple as it first seems. It may be 

simpler for the hard-core system programmers but for non-specialist programmers this 

type of programming is still extremely difficult. It is even more difficult when the 

application to be developed requires some support of graphics or multimedia.

The current tools for developing real-time Internet-based collaborative applications are 

deficient. This research proposes a tool for average programmers to develop these kinds of 

applications in an easier manner.

1.2.1 Objectives

The objectives of this research are as follows:

• To identify issues surrounding real-time collaborative environments, e.g., the people 

(representing multiple collaborative users), the place (structuring shared worlds and 

visualisation), the activity (communication protocols between remote users within 

shared virtual worlds), and the development (programming these components to meet 

the collaboration objectives);
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• To critically evaluate existing models, mechanisms or tools and their applicability in 

the development of collaborative environment applications;

• To extend and demonstrate the suitability of the Java programming language as a base 

for developing collaborative environment applications;

• To propose a scripting language that acts as a programming interface, as well as 

preprocessor to the Java interpreter, that simplifies the programming process of 

collaborative applications;

• To design and develop a language interpreter that converts programs in the scripting 

language to Java and

• To demonstrate the usability of the language through the development of some 

practical applications.

1.2.2 Principles

The aim of this research project is to develop a new software technology for the rapid 

prototyping of Internet-based collaborative environment applications. The tool, a scripting 

(or authoring) language called JACIE, is built on top of the Java language to make use of 

the Java’s native support of the Internet. Two design principles of this language are as 

follows:

• Special Purpose — JACIE targets a collection of applications for which the existing 

programming tools would incur expensive development costs. These include 

groupware (e.g., collaborative management applications), courseware (e.g., 

educational teamwork courseware) and games (e.g. board and card games). These 

applications commonly feature real-time collaborative activities, a shared canvas or 

workspace, controlled access domains and structured communication. Requirements
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for graphics, multimedia, communication media and communication protocols are also 

considered.

• Programming Efficiency — A scripting language is considered. This Java-based 

language has add-on features but is much simpler than Java and at the same time does 

not sacrifice Java’s strength. This language hides the complexities of multi-user 

client/server programming by introducing high-level abstractions of various types of 

communication and interaction protocols. It uses a “single program” to specify both 

server and client. Higher-level grid-based graphic operations are provided in addition 

to basic graphic primitives. By simple specifications, it creates normal applications as 

well as applets that can be embedded in a Web page. Concentration is on collaborative 

communication protocols e.g., floor management, scheduling and synchronisation of 

shared objects and activities. Common user access is also considered for programming 

simplicity and for a familiar universal “look and feel” of all JACIE-generated 

applications

As a special-purpose language featuring efficient programming techniques, JACIE is 

anticipated to be an effective software development tool that enables networked interactive 

and collaborative applications to be developed at a very low development cost, within a 

short development period and by possibly inexperienced programmers.

1.3 Thesis Outline

This chapter provides the research background — the problems which need to be solved, 

objectives to be achieved and principles to be adhered to. It also spells out the outline of 

this thesis.

In Chapter 2, some related terms are introduced and the research related to the existing 

tools and implementations of collaborative environments are discussed. The discussion
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also highlights the significance of collaborative works, especially over the Internet, and 

the need for an alternative development tool for interactive and collaborative applications.

In Chapter 3, issues concerning synchronous networked interactive and collaborative 

applications are discussed. These include the JACIE’s classifications of interactive and 

collaborative applications, the design principles of the JACIE language and the language 

features in comparison to other alternative approaches.

Chapter 4 focuses on the formal specifications of the JACIE scripting language. This 

includes a general overview of the language, data types and expressions and the formal 

grammar. At the same time it shows how the issues discussed in the earlier chapters have 

been tackled and incorporated into the language.

Chapter 5 describes the development methodology and the implementation of the JACIE 

compiler. It also explains the software architecture of JACIE and software components of 

JACIE-generated Java programs for the client and the server.

In Chapter 6, three example case studies are described to demonstrate the viability of the 

proposed scripting language. Comparisons are made to show the simplicity and 

advantages of JACIE over Java. This chapter also shows the usefulness of the compiler.

The final chapter, Chapter 7, summarises the research work and the research results. 

Current contributions are described. Suggestions for enhancements are also discussed for 

future research work.



Chapter 2

Related Works

Throughout this thesis the word cooperate is used interchangeably with the word 

collaborate. This is due to the fact that most references in this research area used both 

words to describe a similar action. In Collins English Dictionary and Thesaurus [30], the 

word cooperate is defined as “work together” while the word collaborate is defined as 

“work with another on a project”. A sociologist cum educationist, Argyle [7] defined 

cooperate as “acting together, in a coordinated way at work, or in social relationships, in 

the pursuit of shared goals, the enjoyment of the joint activity, or simply furthering the 

relationship”. He further described that there are at least three reasons why people 

cooperate: for external rewards, to form and further relationships and to share the activities 

they are involved in.

2.1 Computer-Supported Cooperative Works

2.1.1 Definition

The term Computer-Supported Cooperative Work, or CSCW for short, was first used by 

Paul Cashman and Irene Grief in 1984 [67]. They organised a workshop attended by 

people from various disciplines sharing an interest in how people work with an eye to

8
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understanding how technology could support them. It is said that CSCW “started as an 

effort by technologists to learn from economists, social psychologists, anthropologists, 

organizational theorists, educators and anyone else who can shed light on group activity” 

[67]. By being multidisciplinary in nature, there is no agreed upon definition of CSCW. 

But, in general CSCW refers to “the field concerned with the design of computer-based 

systems to support and improve the work of groups of users engaged on common tasks or 

objectives, and the understanding of the effect of using such systems” [53]. CSCW 

facilities are by means of computer-mediated communication (CMC); its tools or 

applications are often referred to as groupware; and its activities are referred to as 

electronic collaboration [50, 19]. With increasing acceptance of the Internet and the World 

Wide Web [18], these two technologies are becoming the main infrastructure for CSCW 

(e.g. BSCW [12], Futplex [77] and Mushroom [93])

A space-time matrix [86] is often used to denote the two principle characteristics of 

CSCW. They are

• the form of interaction (synchronous versus asynchronous),

• the geographical nature of users (remote versus co-located).

Table 2.1 shows the matrix. This characterisation may be influenced by the broader work 

of DeSanctis and Gallupe [38].

Same Time Different Time

Same Place Face-to-face interaction Asynchronous

interaction

Different Places Synchronous distributed Asynchronous

interaction distributed interaction

Table 2.1 CSCW space-time matrix
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In short, collaborations can occur synchronously or asynchronously. Referring to the 

space-time matrix, a synchronous collaboration occurs in real-time (or “near” real-time if 

considering network latency) either at the same place or different places. If it occurs at the 

same place, a face-to-face collaboration can be easily conducted and if the participants are 

at different places, telephones, audio-visual conferencing or synchronous groupware (e.g. 

chat, shared workspace) are required. On the other hand, an asynchronous collaboration 

does not require participants to be available at the same time. If they are at the same place, 

collaboration is done through serial working but if they are at different places, letters or 

asynchronous groupware (e.g. e-mails, World Wide Web, threaded discussion forum) are 

required.

As this research focuses on Internet-based synchronous collaborations, unless mentioned 

otherwise, the term collaboration throughout the following chapters is referred to as 

remote (or networked) real-time (or synchronous) collaborations.

2.1.2 Advantages

Collaborations based on clear mutual goals and through proper implementations, either 

naturally face-to-face or electronically through information and communication 

technology (ICT), are recognised to be effective and efficient ways to achieve vital 

objectives. In management, many complex work processes require a variety of skills and 

experience to accomplish the objectives successfully. They require a team approach — 

individuals or groups of individuals collaborating on common objectives. Productivity 

increases and cost decreases when knowledge and expertise required in one area of the 

team is available to the entire team. With ICT working environment is no longer confined 

to physical office space — telecommuting is possible and CSCW makes it both efficient 

and effective.

In education, cooperative learning is a well-known approach for effective learning [99]. It 

encourages students to be active learners rather than passive observers. It involves
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working together on some tasks or issues in a way that promotes individual learning 

through processes of group collaboration. It also contrasts with the traditional educational 

system which encourages competition on a zero-sum basis — whatever one person wins, 

the other loses. On the other hand, in cooperative learning or non zero-sum learning 

situations, all learners can do equally well if they cooperate. A study by Johnson and 

Johnson [87] proved that cooperative learning methods lead to higher achievement than 

competitive and individualistic ones. Currently there is a growing acceptance for 

integrating Computer-Supported Cooperative Learning (CSCL) [96] in coursework 

enrichment activities as it promotes enjoyment of learning through interactive multimedia 

and collaboration. In distance learning, cooperative learning provides the necessary 

interaction and fosters a sense of community for those isolated by geography or other 

constraints [128]. The Internet is seen as the most potential technology to promote 

collaborative distance learning. In cyberspace, students as well as teachers can visualise 

and rehearse in real-time the activities of CSCL. Solving simulated or real world problems 

over the Internet will encourage group learning even though the participants are far apart. 

Related computer jargons like “virtual university”, “virtual campus” and “cyber campus” 

are now becoming common terms to many people.

Currently the Internet is also being exploited for collaborative games and leisure activities. 

A growing number of Web sites are hosting Web-based multi-player games, chat rooms 

and all forms of collaborative entertainments. One example is K asp orovC h ess.com  [90] 

which is designed by World Chess Champion Gary Kasporov where, in addition to 

playing online chess, members can have their own @ K asparovC hess.com  webmail 

addresses, a place to chat live, message boards, and interactive events where they can 

compete for prizes. Other examples are Yahoo! Games [155], MSN Gaming Zone [104] 

and PLAYSITE [118] that offer many different kinds of card games, board games and 

action games. There are also desktop computer games that support multi-players over 

LAN or the Internet (e.g. ChessMaster [102] and FIFA2000 [44]). With Internet-enabled 

features the whole world can be collaborative partners as well as rival “enemies”.
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2.1.3 Applications

Collaborative applications have developed over a period of time. Early applications can be 

traced back as early as in the ‘60s. Douglas Engelbart [47] demonstrated NLS (after oN- 

Line System) which contained what we now consider to be standard groupware 

applications: e-mail, shared annotations, shared screens, telepointers and audio/video 

conferencing. In the 70’ s there was a widespread deployment of asynchronous groupware, 

such as e-mail over the Arpanet (later the Internet) and threaded text conversations 

through conferencing systems and bulletin boards. In the 80’s and 90’s groupware became 

commercialised when products like Lotus Notes (and Domino, its Internet-age successor) 

[152], Novell Group Wise [110] and Netscape Collabra [107] (which is currently bundled 

with SuiteSpot) were launched. These groupware feature asynchronous collaboration 

facilities which, in addition to e-mail and threaded discussion system, are tools for 

development and deployment of document management system, workflow applications, 

group calendaring and scheduling. Support for collaboration of these products is very 

limited. Update propagation occurs according to predetermined schedules, precluding 

synchronous working.

There were also many Internet-based public domain and commercial groupware 

introduced during that period. One example is Cornell University’s CU-SeeMe [42] (now 

licensed by White Pine Software) which boasts not only of a whiteboard, a file-transfer 

utility and a text-based chat but also multipoint audio-videoconferencing. ICQ [80] is 

another example which features, in addition to basic collaborative tools, an automatic 

searching facility for on-line friends or associates on the Net. Other examples are Netscape 

Conference [108], Vocaltec IC Pro [74] and Intel ProShare [81]. When Microsoft flooded 

the market with their free NetMeeting [137] with features include chat, whiteboard, file 

transfer, audio-video conferencing, application sharing and remote-desktop sharing many 

people were exposed to the power of Internet collaboration. But all of the above 

groupware are general-purpose collaborative tools — they may help remote users to 

collaborate in one way or another but the “real” collaborative applications that directly 

support group’s collaborative work need to be designed and developed by professional
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programmers with special development tools and specialised working knowledge of the 

field.

There are many domain-specific networked collaborative applications developed to 

support diverse synchronous collaboration activities. The examples are enormous. Major 

applications can be found in the field of education. Groupware have been used to support 

group learning (including distance learning) delivery and management. Some examples 

are EDS [105], TurboTurtle [28], CoVis [62] and Global Change [56].

EDS Collaboration [105] shows how the integration of various common collaborative 

technologies leads to an effective and cost-saving alternative to face-to-face instructions. 

The tools used are e-mail, audio-videoconferencing, IRC [113], NetMeeting [137], Virtual 

Places [51] and WorldsAway [155],

TurboTurtle [28] is a good example of how collaborative application is used to explore 

science subjects or more specifically Newtonian physics. Students experiment in a 

simulation environment with concepts such as gravity, friction, force, velocity, etc. and see 

how changes in their value affect the moving object. Another notable example is CoVis 

(Collaborative Visualization) Project [62] where participating students study atmospheric 

and environmental sciences through inquiry-based activities in collaboration with remote 

students, teachers, and scientists. Using state-of-the-art scientific visualization software, 

specially modified for an appropriate learning environment, students can have access to 

the same research tools and data sets used by leading-edge scientists in the field.

Collaborative application is also used to promote the investigation of global warming 

concept within a fully immersive, 3-D, virtual reality based model of Seattle [56]. As 

expected, most students thoroughly enjoy their experiences with virtual global change 

phenomenon while enhancing their knowledge about the real environment they live in.

There are also many CSCW systems developed for the office environment. Examples of 

such systems are TeamWorkStation [82], GroupDesk [55], TeamRooms [124] and wOrlds
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[51]. There is also an application of a Group Support System (GSS) for cooperative 

policymaking [148].

Examples of different types of collaborative applications are collaborative Web browsing 

and group authoring, e.g. GroupWeb [63]. Last, but not least, there are also tools for 

collaborative video analysis, e.g. CEVA [27]. In short, the list of collaborative applications 

is only limited to human imagination.

Our study [71] showed that most of these collaborative applications fall into the following 

six groups:

(a) collaborative work environment (such as engineering design, visualisation, 

documentation);

(b) meetings, seminars and conferences over the Internet;

(c) simulation of face-to-face contacts where visual quality is critical (e.g. recruitment 

interviews)

(d) distance learning environments (course materials, tutorials, team projects);

(e) networked computer games;

(f) leisure and entertainment.

Each group typically requires different communication media through which remote 

collaboration can take place.

Table 2.2 summarises the different roles of communication media for different groups of 

applications. The first four media types are reasonably well supported by general-purpose 

groupware. In contrast, implementation of a shared interactive canvas or workspace is 

generally application-specific and usually requires considerable knowledge of system and 

network programming as well as knowledge in the subject field itself. This is reflected by 

the fact that applications in groups (a), (d) and (e) are poorly supported by the currently 

available development tools. As can be seen in Table 2.2, although the implementation of 

3D virtual space requires a range of modelling and programming skills in addition to
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media (a) (b) (C) (d) (e) (f)
text-based online chat y y y y y y y y y Y Y

voice conferencing Y Y y y y Y Y Y ss Y Y

video conferencing Y y y y y y y ss Y Y

shared applications y y y y y y y y sss Y Y

shared interactive canvas y y y y ✓ sss Y Y Y Y Y

3D virtual space and embodiments y Y Y s Y Y Y Y Y

y y y  \ n ecessary y y  ; desirable Y  : occasionally useful

Table 2.2 The role o f  communication media in different collaborative applications

powerful graphics hardware, there is limited practical interest in 3D virtual space except 

for applications in groups (e) and (f).

2.2 Collaborative Virtual Environments

2.2.1 Definition

The term virtual environment is directly related to virtual reality — a computer-based 

application that provides a human computer interface so that the computer and its devices 

create a sensory environment called the virtual world [89]. This sensory environment is 

dynamically controlled by actions of the individual in a way that the virtual environment 

appears real to the user. A network-based virtual reality allows virtual worlds in the server 

to be controlled and visualised by the remote client workstation.

Collaborative virtual environment (CVE) applications allow multiple users to interact over 

a network in real-time and participate in the shared activities in a virtual world [127]. CVE 

offers the sense of group awareness or telepresence through avatars: synthetic bodies that 

populate a 3D world. Each one views the virtual world through his or her own “eyes”.
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2.2.2 Related Research

The progress of CVE is directly related to the available technologies at its point of time. 

As briefly mentioned in Chapter 1, the early approach was through MUDs (originally 

stood for Multi-user Dungeon, but now popularly known as Multi-user Dimensions or 

Multi-user Dialogues) [48, 36, 134], MUDs, together with their offspring MUD Object- 

Oriented (MOO) [49], are still being used particularly for educational purposes (e.g. 

Virtual Online University [76]). Integrating with World Wide Web, MOOs were then 

transformed to WOOs (Web-based MOO) [see 39, 128]. One notable example is 

INSTRUCT [128] which stands for Implementing the NCTM School Teaching 

Recommendations Using Collaborative Telecommunications. It blends synchronous and 

asynchronous technologies like World Wide Web, MUDs and e-mails for distance teacher 

training in the area of mathematics education. With this, the teachers can connect to on

line hypermedia educational resources, attend synchronous “meetings” with other 

INSTRUCT users and join in asynchronous discussions. Early attempts for graphical 

CVEs were implemented through the X-Window systems (e.g. XTV [2]). There are other 

systems, like WTV [3], that replaced X-Window with Microsoft Windows but it limits the 

system to run only on one platform.

In Europe, probably the most acknowledged research project in CVEs is DIVE 

(Distributed Interactive Virtual Environment) [24, 68]. DIVE is an Internet-based multi

user VR system which allows participants to navigate in 3D space to see, meet and interact 

with other users and applications. Developed by the Swedish Institute of Computer 

Science (SICS), DIVE supports the development of virtual environments, user interfaces 

and applications based on shared 3D synthetic environments. The first version of DIVE 

appeared in 1991 and is still being referred to by many researchers.

There are many ongoing joint European projects in this area. COVEN (Collaborative 

Virtual Environments) [145] is a project of the European Union Advanced 

Communications Technologies and Services Programme. The target issues of the research 

are collaboration support within virtual environments (including awareness,
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communication, group interaction, etc.), corresponding requirements at network and 

platform level (involving concern for scalability and continuous media support), and 

aspects related to Human Factors. Another project, DEVRL (Distributed Extensible 

Virtual Reality Laboratory) [131] is funded by EPSRC (ROPA) with the aim of 

developing a shared and extensible virtual laboratory. Lancaster University, being one of 

the members, is developing a virtual physics laboratory that can be used for educational 

purposes as well as demonstrating physical principals of science in CVEs. Other 

significant projects are COMIC (Computer-based Mechanisms of Interaction in 

Cooperative Work) [123], funded by ESPRIT m  Basic Research Action for developing 

general techniques for CVEs, and UK’s VirtuOsi (Virtual Organisation) [10] project 

funded under the EPSRC/DTI CSCW Programme focusing on the industrial application of 

CVEs. Other notable projects are MASSIVE (Model, Architecture and System for Spatial 

Interaction in Virtual Environment) [64, 65]. Developed by University of Nottingham and 

funded by BT/JISC, these projects are the outcome of many pieces of research on CVEs.

DIVE is also one of the earliest tools designed for developing CVE applications. Being an 

early tool, it is platform specific and its latest version is currently available for SGI, Sun 

and Windows NT. Lancaster University has developed various tools and techniques for 

CVE. Some of the tools and techniques are AC3D [29] (a 3D modeller for developing 

virtual environments and objects), COLA [144] (A platform for sharing Cooperating 

Objects in Lightweight Activities), DNP [146] (Designer’s Notepad: a tool for 

visualisation and arrangement of ideas) and SOL [132] (Shared Interface Object Layer: a 

shared object toolkit for cooperative interfaces).

Yam Web [153] is one of the synchronous collaboration tools for World Wide Web. This 

Web-integrated electronic meeting system uses a separate X-Window for collaborative 

activities. Broil [20], on the other hand, proposed an extension to VRML to enable the 

support of collaborative virtual environments. Since VRML integrates nicely with Web 

browsers with proper plug-ins, a Web-based interactive multi-user virtual reality is proven 

real.



2.3 DISTRIBUTED ENVIRONMENTS AND COLLABORATIVE TOOLS 18

2.2.3 Virtual Realism Versus Effective Multimedia, Interaction and 

Communication

From the discussion presented above we have seen that enormous efforts are focused on 

3D virtual environments and other issues related to virtual environments, such as 

awareness, scalability and human factors. From the standpoint of this research, the 

fundamental objective of most collaborative applications is to facilitate effective 

interaction and communication among users who are engaged in joint activities. The most 

important elements of such applications are their multimedia contents, users’ interaction 

with computers and their communication with one another. This research recognises that 

the effort for making the virtual world to look real must not undermine the effectiveness of 

the elements of multimedia, interaction and communication.

2.3 Distributed Environments and Collaborative Tools

Developing synchronous collaborative environment applications can be extremely 

difficult. Implementing even the simplest system is a lengthy and tedious process. Among 

others, every application must deal with creating and managing socket connections, 

parsing and dispatching inter-process communication, locating other users on a network 

and connecting to them, and keeping shared resources consistent between users [125]. By 

using conventional programming tools a lot of low-level code must be written before 

getting to the logic-specifics of the application.

2.3.1 Distributed-processing Environments

Programming distributed-object systems that take into account heterogeneous machine 

architectures at physically distant locations is undeniably complicated. A number of 

distributed processing environments have been introduced to reduce the complexity of 

these tasks. Some leading ones are the OSF’s DCE [114], the OMG’s CORBA [129] and
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Microsoft DCOM [46]. These defacto standards are in addition to the ISO and ITU-T 

standard known as Reference Model for Open Distributed Processing (RM-ODP) [83].

The Open Software Foundation’s (OSF) Distributed Computing Environment (DCE) 

[114] provides a series of services for distributed programming. Despite the fact that some 

parts of its design and implementation are superior, its lack of support for object-oriented 

programming makes it unpopular.

The OMG’s Common Object Request Broker Architecture (CORBA) [129] is more 

widely accepted. Despite its immaturity in some areas, their adoptions of a fully object- 

oriented architecture ensure their dominance over DCE [8].

Microsoft’s Distributed Component Object Model (DCOM) [46] is a popular choice in 

Microsoft products environment. DCOM is among several software components that use 

COM technologies to provide interoperability with other types of COM components and 

services. Microsoft dominance over the “standard” slows down the adoption of this 

specification by other vendors. With the wide availability of Microsoft products (e.g. 

Windows, Internet Explorer, Office, NetMeeting and all Microsoft software development 

tools), the Component Object Model (COM) and its related COM-based technologies of 

DCOM, COM+, MTS and ActiveX comprise probably the most widely used component 

software model in the world. To promote COM-based technologies, Microsoft is assisting 

Metrowerks in porting COM to the Apple Macintosh, and the company is also working 

with Bristol and MainSoft to port COM to Unix [103]. However, at present, using COM 

objects (including DCOM) limits the platforms on which the application will run.

The ISO - ITU-T Reference Model for Open Distributed Processing (RM-ODP) [83] is an 

open standard. Like many formal standards the acceptance is driven by industry support. 

Unfortunately, none of the distributed-processing environments above implements all the 

specifications described by RM-ODP. Each one is a closed environment and it allows 

interoperation with other objects from the same environment.
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Nevertheless, the many standards discussed above are only useful if supported by the 

development tools used by the programmers.

2.3.2 Java for Developing Collaborative Applications

The first alpha version of Java was published by Sun Microsystems on the Internet in May 

1995 [22]. Since then it has received one of the most enthusiastic responses of any 

programming language in the history of computing. Much of the enthusiasm arose because 

Java was introduced when the then-emerging World Wide Web were overloaded (and still 

are) with all kinds of plug-ins and helper applications that need to be searched, 

downloaded and installed before the visitor can actually see any of the information on that 

site. Java solved this burden by allowing the Web publishers to publish both information 

and the application and by doing so the application can be delivered automatically to the 

visitor’s site regardless of what platform the visitor was using. For that reason Java is 

known as “the programming language for the Internet” [13]. Also its “write once, run 

anywhere” [119] proved to be one of the biggest strengths of Java.

Java networking is based on the open standard protocol suite of the Internet known as 

TCP/IP (Transmission Control Protocol/Internet Protocol). Java includes several 

networking interfaces for Web-based and socket-based network communications. Java 

network programming can also exploit higher-level method calls like its native Remote 

Method Invocation (RMI) and CORBA distributed-object technologies. With RMI it is 

possible to invoke methods on objects in the remote virtual machine just as if they were 

normal local objects. Java's support for CORBA, the industry standard for distributed 

objects, makes it possible to interoperate with other CORBA objects developed in other 

languages.

As the only high-level language with cross-platform, secure, object-oriented, network- 

centric and native Web browser support, Java is the best language for developing network
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applets or applications. Likewise, developing Internet-based synchronous collaborative 

applications in Java is the most practical choice.

2.3.3 Java-based Collaborative Frameworks

Java-based collaborative frameworks sit on top of Java networking interfaces. Many 

current collaborative frameworks are developed around the Java language which make 

them platform independence and nicely integrated with the World Wide Web. Abdel- 

Wahab [1] introduced mechanisms to intercept, distribute and recreate user events that 

allow single-user Java programs to be shared among collaborative participants. Calling 

their prototype JCE, after Java Collaborative Environment, the architecture is based on the 

“replicated architecture” of application sharing where a copy of the shared applications 

runs locally at each site and input events to each application are distributed to all sites. 

Replacing the standard java.awt toolkit by their coilawt toolkit, in addition to the 

standard methods, the new component can handle communication issues, conference 

management issues and floor control issues. As each event by a participating user is 

triggered to all other remote users, this approach may introduce network storms.

Another similar tool is NCSA Habanero [25]. It is known as an object-sharing framework 

which can be used by developers to transform single-user applications into multi-user 

shared applications. This framework has been used for developing collaborative 

applications like shared whiteboarding, text and audio chat, collaborative text editing, 

voting tool and collaborative games. One limitation of Habanero is that integration with 

the Web is through helper applications — not directly as applets embedded on the Web 

page. The Habanero project has taken its course when the DARPA grant that funded the 

effort ended.

Sun Microsystems introduced comparable collaborative framework called Java Shared 

Data Toolkit (JSDT) [54]. Although it was developed by the creator of Java, JSDT is a 

toolkit, independent of Java extension. The JSDT’s strength lies in the monitoring and
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controlling of multiple clients as they join and leave shared objects. It also has the ability 

to link participants intending to do collaborative works. This is unlike RMI which enables 

connecting two participants with method calls while letting the participants find each 

other. Confidence in JSDT among developers is fading due to the problem of support and 

licensing from the Sun Microsystems (refer to JSDT mailing list archive [139]).

Other Java-based collaborative frameworks which adopt a different approach from JCE, 

Habanero and JSDT are TANGO [9] and Promondia [57]. Sponsored by US Air Force 

Rome Laboratory, TANGO is extensive in features as its support asynchronous and 

synchronous collaborative communication. It is also extensible for C/C++ and Javascript. 

Promondia, on the other hand, is an early attempt to exploit the elegance and portability of 

Java code. Its focus is on group conferencing using a shared whiteboard, video and chat 

systems. There are also commercial Java collaborative tools available but their features are 

comparatively inferior to JCE, Habanero TANGO and JSDT. They are Eventware by 

Collaborative Systems Research [35] and Hesse by Praxis Technical Group [121].

The Java-based collaborative frameworks discussed above can minimise programming 

difficulties in a limited way. Knowledge of the programming language where these 

collaborative frameworks would be embedded is still required. An alternative 

programming technology must be studied to make further simplification possible.

2.4 Scripting Languages

Coding in scripting languages is known to be a “quick and dirty” way of doing 

programming. Nevertheless scripting has gained its popularity. It is predicted that scripting 

languages will handle many of the programming tasks in the 21st century in much better 

ways than system programming languages [116]. One of the factors that boosts the 

acceptance of scripting languages is the Internet.
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Comparing the “traditional” programming languages with scripting languages, the creator 

of the scripting language Perl, Larry Wall [43], described the former as being about 

orthogonality or minimalism (express in the least number of features everything one might 

want to do), whereas the latter are about shortcuts and shortcuts are about going at an 

angle or diagonal, in metaphorical terms. The fundamental concept of a scripting language 

is simple, direct to the point — the primitive operations have greater functionality than the 

conventional ones. Scripting languages are normally interpreted [117] and many 

emphasise “gluing” external applications written in other languages. Thus, scripting 

languages are sometimes referred to as glue languages or system integration languages 

[116].

Ever since the Unix shell scripts [95], there have been many scripting languages 

introduced. One famous scripting language is HyperTalk, a scripting language of Apple 

Macintosh’s HyperCard environment [6]. This fairly easy-to-leam scripting language 

became popular due to the fact that it was bundled free with every Macintosh sold and it 

appeared during the time when people were enthusiastic about hypertext. Even though the 

designer of HyperCard, Bill Atkinson, admitted that it was not really a hypertext product 

from the beginning, HyperCard was said to be the most famous hypertext product in the 

world in the late 1980s [109]. Due to its popularity, the expectation that scripting 

languages simplify programming tasks became more apparent.

Currently the “big three” [97] scripting languages are Perl, Tel and Python. Newer 

languages are VBScript and JavaScript. In the Internet environment some scripting 

languages are used extensively within the Web server programming interface and as back

end gateway to other services. There are also scripting languages used as a user front-end 

and within the Web client-user interface [91]. With scripting languages, Web pages are no 

longer simply static HTML but also active scripted applications. This facility allows more 

processing at the client (and the server) and, thus, reduces wasteful use of network 

bandwidth. Other lesser-known scripting languages include Rexx, Scheme, Guile and 

Icon.
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2.4.1 Perl, Tel and Python

Perl (Practical Extraction and Report Language) [149] is freely available for many 

operating systems. Perl’s powerful text-manipulation functions makes it suitable for many 

system command languages. Recent popularity for programming dynamic World Wide 

Web with on the fly HTML page creation promotes it to be “the” language for the 

Common Gateway Interface (CGI) — a standard for external gateway programs to 

interface with information servers such as HTTP [15] servers.

Tel (Tool Command Language) [115] is another strong scripting language. Tel features are 

represented by commands. Commands can be of built-in (statements, expressions, control- 

structure) or of created command procedures written in C or C++. There are also 

numerous extension packages that can be incorporated into any Tel application. One of the 

best known extensions is Tk (hence also known as Tcl/Tk), a programming environment 

toolkit for creating graphical user interfaces under X-Window, Windows and MacOS. Due 

to the fact that Tel and Tk are easy to learn, yet powerful, and contain many sophisticated 

features, they have dramatically reduced development time for much GUI programming.

Python [150] is another scripting language which is gaining popularity. Unlike Perl and 

Tel, Python has a strong model of object-oriented programming and is said to be most 

suitable for “programming in the large” [97]. It includes many modem programming 

language features together with many useful standard packages. Programmers may extend 

Python to interface to other arbitrary software components. Python can be used for CGI 

scripts, system administration, code generation, graphical user interfaces, file-format 

conversions and for general software engineering and product development.

2.4.2 JavaScript and VBScript

JavaScript [52], originally called LiveScript, was developed by Netscape Corporation for 

use in its browser Netscape Navigator. Currently Microsoft Internet Explorer also supports
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the feature. The syntax of this scripting language is based on Java but is made more 

concise and simpler. The source code written in JavaScript is placed into a Web page and, 

since the interpreter is built into a Web browser, the source code can run without being 

compiled. JavaScript uses objects but it is not an object-oriented programming language. 

There are standard objects that enable the programmer to access features of the browser 

(e.g. windows, documents, frames, forms, links, and anchors) directly. Some common 

uses of JavaScript are embedding dynamic information, validating forms for CGI 

processing and making pages interactive. This scripting language also poses some security 

concerns which, among others, information on client system can be sent to the Web server. 

JavaScript is suitable for small applications such as to make the static HTML [16] “alive”.

JScript [85] is Microsoft’s implementation of JavaScript. JavaScript and JScript served as 

the basis for ECMAScript [45] — the only standard scripting language on the Web. The 

ECMAScript specification outlines an object-oriented programming language for 

performing computations and manipulating objects within a host environment, such as the 

browser.

Microsoft Visual Basic Scripting Edition (VBScript) [130] is a subset of Microsoft Visual 

Basic for Application (VBA). Its lightweight interpreter is used in Microsoft Internet 

Explorer and other applications that use Microsoft ActiveX controls (formely called OLE 

controls) [26]. Like JavaScript, the VBScript interpreter processes source code embedded 

directly in HTML. Unlike JavaScript, VBScript can also be used for Web server scripting. 

VBScript talks to host applications using ActiveX Scripting. Technically, ActiveX 

controls are among Microsoft’s Component Object Model (COM) technologies that 

provide interoperability with other types of COM components and services [103]. 

Together with DCOM (refer 2.3.1), VBScript can be an important part of client/server 

programming. One major concern about VBScript is that it is only being supported by 

Microsoft Internet Explorer (through MSIE Object Model) at the client side and Microsoft 

Internet Information Service (through Active Server Object Model) at the server side. Its 

platform-dependence makes it somehow unpopular.
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2.4.3 Other Scripting Languages

Other examples of scripting languages are Rexx, Scheme, Guile and Icon. Rexx’s [59] 

strength is its historical base in IBM commercial systems. It may not be adequate for 

modem problems. Scheme [135] and Guile [61] are in the LISP family and are quite 

popular in GNU projects. It may only be suitable for those who are familiar with LISP. 

Icon [66] is a good language for text processing but its popularity is overshadowed by 

Perl.

2.4.4 Scripting Language for Interactive and Collaborative Applications

All scripting languages mentioned above are general-purpose languages. Other than as 

“glue languages”, they are not well-suited for developing real-time, complex 

multithreaded shared-memory or large applications. They are meant to complement 

system programming languages with which software components are built. While Python 

can be extended to support distributed objects [8], a system programming language like 

Java is currently still the best. Java with its “object-oriented, distributed, robust, secure, 

architecture neutral, portable, high performance, multithreaded, and dynamic” [138] 

features is the best language for creating collaborative components. These components can 

be glued with a “simple, direct to the point” scripting language. A new language which 

employs the design philosophy of scripting language and built on top of the strength of 

system programming language Java is seen favourable and promising.

2.5 Summary

This chapter has shown that collaboration is an effective way to share views and to 

synergise efforts among a group of people in the pursuit of a common goal. With 

electronic collaboration, temporally and geographically dispersed users can carry out 

collaborative activities beyond regular practices. The Internet together with various
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collaborative frameworks have given rise to the development and the deployment of many 

collaborative applications. If integrated with the Web, participants don’t just surf for 

resources on the Internet but actively and interactively contribute to exploring innovative 

ideas and building relationship globally.

While collaborative frameworks reduce programming difficulties, scripting languages are 

the way forward in programming. Programming in scripting language, which is high level 

in nature, requires less code, effort and development time. A special-purpose scripting 

language for developing networked interactive and collaborative applications can also be 

an effective tool for the casual programmer in the era of the Internet. However, scripting 

languages alone cannot solve all the computer-supported problems. As “glue” languages, 

the scripting languages have to be used (or built) on top of or side by side with other 

system programming languages. Java is currently the best language for Internet-based 

client/server programming. Java collaborative framework components can be integrated or 

developed on the fly by the scripting language, thus hiding from the programmer the 

details of real-time multi-user network programming.



Chapter 3

Design Considerations

The dynamic nature of networked interactive and collaborative applications promises a 

potentially powerful facility for human-computer interactions and human-human 

collaborations. With the Internet as the infrastructure, interactions can occur either 

synchronously or asynchronously beyond physical boundaries and normal practices. The 

dynamic nature of such applications also leads to a potentially chaotic environment for the 

remote end users as well as the active server. Without a careful and comprehensive study 

of the design and implementation of this type of applications, as well as the underlying 

means that drive the interactions and collaborations, effectiveness and efficiency can 

hardly be achieved. Furthermore, the most important question is how to provide these 

facilities so that they can be within the reach of many casual programmers.

This chapter first looks at typical interactive and collaborative applications so as to 

understand their features and requirements. It then elaborates on the design principles of 

the JACIE language, which are special purpose and programming efficiency. It also 

discusses some design issues and how they promote towards the design principles. The 

design issues are:

(a) Why do we resort to scripting language for developing interactive and 

collaborative applications? How does it simplify the task?

(b) Why do we use template-based structure and what are its essential components?

28
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(c) What are the interaction protocols and how do we handle various protocols

efficiently?

(d) What are the required communication channels and how can JACIE overcome any

inherent weakness?

(e) What are the optimum graphic supports that balance out between powerful features

and the need for simplicity?

(f) What are other considerations that can promote simplicity but not at the expense of

user and programmer requirements?

3.1 Typical Applications

The understanding of the nature of typical interactive and collaborative applications has 

provided the sound basis for this research. It gives an idea of various modes of 

interactions, special feature requirements and the right tools for the development.

While most common basis for the categorisation of collaborative applications is by where 

and when the interaction takes place (refer [41,67,86] and the space-time matrix discussed 

in Section 2.1), this research has categorised the applications according to their mode of 

interactions [see 71]. Partly influenced by the Cooperative Work Framework (Figure 3.1) 

of Dix et al. [41], this study classified the interactive and collaborative applications into 

three categories — server-based interaction, server-mediated interaction and group 

collaboration.

participai

understanding

direct communication

control and 
feedback

feedthrough

artefacts of work

Figure 3.1 Framework o f  cooperative work
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Modes and Features Typical Applications
Server-based Interaction: On-demand or time-scheduled presentation (slide, audio and/or video)
comm, sync.: not essential Server-based interactive courseware, and online testing
display sync.: not essential Online services, such as shopping, banking, and server-based

computer games
Accessing and modifying shared information (e.g. group calendar, 
distributed databases, online voting system, etc.)

____________________________ Audio/video on demand ,____________________________________
Server-mediated Interaction: Text, voice and video conferencing
comm, sync.: desirable Multi-user slide presentation
display sync.: necessary Unstructured shared space, such as public chat place, shared

whiteboard
Unstructured multi-player games (such as distributed architecture 
walks)

____________________________ Group decision support systems________________________________
Group Collaboration: Teamwork courseware
comm, sync.: essential Collaborative authoring (writing, programming, etc.)
display sync.: essential Structured multi-player games (such as remote card games)

Other collaborative applications with structured shared space or 
____________________________ multiple inter-related displays__________________________________

Table 3.1 Types o f  interactive and collaborative applications

Table 3.1 summarises the features of each category together with some example 

applications. The term communication synchronisation refers to the requirement for 

handling inter-process cooperation [142] among remote clients (and the server), whereas 

display synchronisation refers the requirement for maintaining what you see is what I see 

(WYSIWIS) [41] principle also among remote clients.

3.1.1 Server-based Interactive Applications

The server-based interactive mode is a type of interactivity where information or an 

application is placed on a server to be accessed and executed by any user on the network. 

Even though many users can access and execute the application at the same time, each 

user is treated individually and interactions only occur between the users and the server. In 

this mode, the server role is minimum. Since each active client application is independent 

of the others, neither communication synchronisation nor display synchronisation is
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needed. Theoretically, any number of users can be connected simultaneously. The only 

restrictions are the server hardware and network resources. For that reason it is probably 

wise for the programmer to limit the number of active users.

As shown in Table 3.1, some of the applications in this category are: on-demand or time- 

scheduled networked presentations; interactive server-based courseware; online testing; 

single user networked games and other network-based services like online banking, 

shopping, group calendaring and voting. For the last example, even though the remote 

users are accessing and updating a common database, there is no direct interaction 

between users.

Figure 3.2 shows graphically how the interactions between the client users and the server 

take place. There are four clients currently interacting with the server but none of them is 

interacting with each other.

Client 2

Client 1

^  Server ^

Client 3

Client 4

Figure 3.2 Client-server interactions in server-based interactive applications
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3.1.2 Server-mediated Interactive Applications

An interaction is said to be server-mediated when the server plays an additional active role

are a little more complex than the first category as the server needs not only to maintain 

the state and behaviour of individual connections but also the state and behaviour of some 

common resources and operations. It becomes necessary for the server to maintain the 

consistency of the information viewed by all concurrent users. In most cases of such 

applications, it is desirable (if not necessary) to manage the communications among users 

in an orderly manner. A real-time turn control may be required to ensure coordination and 

synchronisation.

Table 3.1 shows some examples of server-mediated interactive applications which include: 

teleconferencing (text, voice or video conferencing); unstructured shared space; such as 

public chat place; shared whiteboard; multi-player games; multi-user coursewares; 

decision support systems, etc.

as a mediator to a number of interacting online users. Applications of this type normally

Client 3

Client 2
O Client 4

Client 1

© -  T, O

Client 5

W

o
Client 6

Figure 3.3 Multi-user interactions in server-mediated interactive applications
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Figure 3.3 shows how interactions between remote clients take place with the server which 

acts as the mediator. In this five active client situation, Client 1 is interacting with Client 6, 

Client 3 is trying to interact with Client 4 but Client 4 is interacting with Client 5 and 

Client 2 is interacting with the server. Another possible scenario not shown in Figure 3.3 

is where one client can broadcast to all the other clients.

3.1.3 Group Collaborative Applications

The final category of networked interactive applications is of type group collaboration or 

teamwork type. In this category the server is responsible for coordinating inter-group 

communications as well as intra-group communication and coordination. This extra role 

is in addition to maintaining individual connection and real-time turn control, if required 

by the application. Normally for this kind of applications, the application logics are 

divided into three — the client specific, the ones common to the group in which the client 

belongs and the ones common to all.

Some examples of this type of interactive applications are teamwork courseware, group 

collaborative authoring (writing, programming, etc.), group multi-player games and other 

collaborative applications with group support with or without private and public 

communication channels.

Figure 3.4 shows some typical interactions within the framework of group collaborations. 

The example shows eight active clients, divided into four groups with two members in 

each group. Client 1 of Group 1 is interacting with Client 2 of Group 2. Client 3 is 

interacting with all members in Group 3, namely Client 4 and Client 5. Client 6 is 

interacting with its own group 4 member, Client 7. Client 8 is interacting with the server. 

Also, not shown, it is possible that any one client can broadcast to all other clients.
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ClientGroup 2

Group 3Client 4

Client 2

Client 5Client 1 Server

Client

Client 8Group 1
Client 7 Group 4

Figure 3.4 Interactions in group collaborative applications

The three categories of interactive and collaborative applications mentioned above are the 

ones targeted by the JACIE language. Some of the related issues need to be considered are 

the number of on-line users supported, the nature of their interactivity — whether they are 

independently interacting users (Category I), or they are interacting with each other 

(Category II), or they are grouped so that there are inter-group and intra-group interactions 

(Category III). For categories II and III, the protocols of interactions that define the rules 

that govern the means of interactions between users are required. Other issues are the 

communication channels to be used, the ways to handle shared resources and the 

application development.

3.2 Scripting Language for Interactive and Collaborative Applications

JACIE is designed to be a development tool for the above type of applications. While 

there are many programming approaches that can be adopted, JACIE was chosen to be a 

scripting language. Currently it is the only scripting language, among many scripting 

languages available, that is designed for this specific purpose.
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3.2.1 Scripting Versus Other Alternative Programming Approaches

The most common approach for developing this kind of application is to use conventional 

programming languages. They are rich in features, robust, flexible and tailorable to strict 

user requirements. But, programming these network applications is tedious, time- 

consuming and requires an in-depth knowledge in low-level programming. Even Java, 

which is designed with the network support in mind, is not within the reach of many when 

it comes to network programming.

Another programming approach that simplifies coding is by introducing another layer to 

the programming language or by providing a software API library that is ready to be 

integrated into the code. Commonly known as called a software framework, this approach 

still requires the knowledge of programming techniques. The currently available 

collaborative frameworks (refer to Chapter 2) are still designed and adopted by researchers 

and hard-core programmers.

Another possible approach is a preprocessor. But none in the market adopts this 

programming style for developing collaborative applications. One possible reason is that 

the knowledge of the programming language, in which the preprocessor is embedded, still 

requires much effort.

Programming through scripting may be seen as the most appropriate approach if we were 

to allow more people to develop this kind of application. Even though, there is no specific 

scripting language designed for collaborative applications, the acceptance of general 

scripting languages available (e.g., JavaScript and VBScript) has been overwhelming. As 

scripting is simple and direct to the point, the primitive operations of a scripting language 

have greater functionality than the conventional ones. Many common features required by 

such applications — like handling and managing multiple users, managing interactivity 

through a predefined protocol, managing shared resources, managing channels through
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which the communicating parties interact — can be hidden from the programmers but 

accessible through simple scripting specifications.

However, there is also an alternative technology that uses a visual programming style that 

reduces the burden of coding through graphical representations and manipulations. While 

the currently available visual programming tools are of general purpose and not suitable 

for developing networked applications, they are also normally built on top of 

programming languages. The knowledge of coding in a scripting language can be a good 

introduction to future visual programming technology for networked interactive and 

collaborative technology.

3.2.2 The JACIE Scripting Language

The decision on whether JACIE should be a scripting language or another programming 

approach has been made based on the following factors:

(a) A software library/framework will not solve entirely the problems faced by the 

developers. The knowledge on the programming language, where a software 

library/framework would be embedded, will still hold the key to the effort and cost 

incurred.

(b) Currently, the many scripting languages available (including the ones with Web- 

based support) have demonstrated their effectiveness and popularity. In most cases, 

the development of a scripting language involves a software library/framework in 

the target language to support the compilation of common functions. It is easy for a 

scripting language to provide a software library/framework as a side product, but 

not vice versa.

(c) Visual programming for collaborative applications will be a natural progress from 

a scripting language. The key features of the scripting language can be made 

available through, possibly, graphical representations for easy manipulations.
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In short, coding in the JACIE language suits the programmer of the above type of 

applications who may appreciate the short learning cycle of a scripting language. It 

promotes programming efficiency by reducing the complexity and inflexibility in function 

calls and parameter passing with traditional software libraries or frameworks.

3.3 Template-based Programming Style

3.3.1 What is a template-based programming style and how does it simplify 

programming tasks?

A template-based style divides each program into a set of standard components. While the 

recent programming approaches do not adopt template-based style programming, many 

programmers practice “template-based” in their programming work. Many programmers 

use, modify and expand the available codes without realising how the operations take 

place. The “free-form” style programming has become template-based in a semantic sense. 

Therefore, a carefully designed template-based language with common components 

related directly to the needs of the application developed should provide a better 

alternative to programming. For networked interactive and collaborative applications, a 

“single program” for the client and the server is possible if the template provides a proper 

placing for the client code and the server code within the same program. The coordination 

in programming codes for the client process and the server process will become simpler. 

In the “free-form” style programming, separate programs are required for the server and 

the client. Protocols (to be discussed in greater detail later) are required for coordination of 

interactivity. Separate programs for the server and the client, where each one has many 

classes or components, make the program more complex even for a simple client/server 

application.
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3.3.2 JACIE’s Template-based Programming Style

JACIE employs a template-based style in its scripting language. Adopting this technique, a 

coding task is just a matter of “fill in the form”. A template-based style also allows a 

networked client/server program to be written as a “single program” to specify both server 

processes and client processes (as opposed to normal client/server programming). The 

three main components of the template are the application configuration, the client 

implementation and the server implementation. The application configuration is for 

statements that specify basic networking and interaction parameters. The client 

implementation and the server implementation, on the other hand, are for statements that 

define the logic of the application. The three components are further subdivided into 

various constructs that simplify the coding tasks. A detailed discussion of these 

components, constructs and statements is presented in Chapter 4.

3.3.3 The Template Structure of the JACIE Language

The template structure of the JACIE language has been designed in consideration of the 

transition states through which a server and a client go in typical client/server interactions. 

The transition state diagram is shown in Figure 3.5.

The transition states for the server are as follows:

i. Starting state — This is the initial state for the server process. In this state 

some initial housekeeping matters may be performed.

ii. Waiting state — This is the state in which the server waits and listens to the 

socket for clients to make connection.
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SERVER
START starting

SERVER
END

SESSION
START

reinitializing w aiting establishing

SESSION
END

MAIN
SESSION

terminating interacting

(a)

starting

establising w aiting

terminating

SESSION
START

MAIN
SESSION

SESSION
END

(b)

Figure 3.5 Transition state diagrams fo r (a) server process and (b) client process

iii. Establishing state — When a client starts the communication, the server 

process goes into this state. If more clients are expected it will go back to the 

waiting state or otherwise it will proceed to the next state.
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iv. Interacting state — This is the heart of the transition state. In this state 

messages are exchanged during the active session. The connection remains in 

this state until either the client or the server wants to terminate the session.

v. Terminating state — When the connection is in this state, some house 

cleaning for the specific client may be performed before closing the link.

vi. Reinitialising state — This is the state where all client connections are 

gracefully terminated. Some house cleaning matters may be performed before 

the server goes back to the waiting state and ready for the next action.

The transition states for the client are similar, and directly related, to the transition states 

for the server.

i. Starting state — This is the initial state for the client process. In this state 

some initial housekeeping matters may be performed.

ii. Establishing state — This is the state in which the client requesting a 

connection to the known server. Upon acceptance, depending on the state of 

the server made known to the client, it will go to the waiting state or to the 

interacting state.

iii. Waiting state — This is the state in which the client process is put on hold 

while waiting for a signal from the server to move to the next state.

iv. Interacting state — Similar to the interacting state of the server, this is the 

heart of the transition state for the client. In this state messages are exchanged 

during the active sessions. The connection remains in this state until either the 

client or the server wants to terminate the session.

iv. Terminating state — In this state, some house cleaning may be performed

before closing the link. Several messages may be exchanged before the 

connection is gracefully terminated and the application is properly closed.

The transition states demonstrate that program codes which represent processes of 

interactive and collaborative environment applications can also be divided into the 

following program codes:
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i. program codes when the server process starts,

ii. program codes when the client first establishes its connection,

iii. program codes for the main client-server interaction during the active session,

iv. program codes when the client leaves the session,

v. program codes when all the clients leave the session and reinitialise the server

process.

The template-based programming suits the target applications which share a set of 

common features. The above divisions reflect the template structure of the JACIE 

language. The five subdivisions are considered in the server implementation component. 

Since the first and the last items are for the server process, the client implementation only 

includes the second to the fourth. With template-based programming, coding in JACIE is 

just a matter of identifying and specifying which tasks are to be implemented in which 

states. As mentioned earlier, to a certain degree, coding in JACIE becomes form-filling. Its 

“single program” style eliminates the need for constructing server and client programs 

separately. This also facilitates better correlation between server and client functionality 

and easier software maintenance.

3.4 Protocol Handling

3.4.1 Overview of Protocols

A protocol, in general, is an agreed upon set of rules by which computers exchange 

information. An interaction protocol defines the rules that govern the means of interactions 

between user-user and user-server in a collaborative environment [71]. Without protocols, 

interactions and manipulations of shared resources can be chaotic, leading to unachievable 

collaboration objectives. Protocols promote coordinated actions in a multi-party 

environment. Except for low-level protocols, none of the available development tools has
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a built-in support for high-level protocols. Each programmer has to design his or her own 

high-level protocol for each networked application he or she develops.

3.4.2 JACIE’s Protocol Handling

In the context of JACIE, while low-level protocols are dealt with in the background, many 

high-level protocols are introduced. In general these protocols are either used by the server 

to execute its functions or are mechanisms for coordinating user-user interactions. This 

research categorises these protocols based on the functions which are session management 

protocol, delivery management protocol, floor management protocol and group 

management protocol. JACIE adopts and defines “standard” protocols so as to hide the 

complexities and potential errors in programming. Also, as one form of a high level 

abstraction, the “standard” protocols promote simple and direct to the point operations. 

The session management protocol and the delivery protocol form the software architecture 

of JACIE-generated programs and are discussed in Chapter 5.

3.4.3 Floor Management Protocol

In any situation where there are many people working collaboratively on some common 

tasks, unless there is an agreed upon rule that restrict each other’s actions, it is likely that 

they may end up in a chaotic situation. Floor control is about restricting actions or, in 

terms of collaborative applications, restricting access to shared objects or any other 

common resources so that the collaborative process is coordinated and synchronised. 

JACIE employed a moderated style floor control where the floor control manager 
decides who has control access of the resources at any point in time. In other words, based 

on the predetermined floor control protocol, the floor control manager coordinates 

users’ turns. By doing so this facility provides some kind of mediated access that can 

prevent unnecessary mistakes, unauthorised access and conflicting changes. Considering 

that there are situations when coordination is not required or situations whereby users are
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to be involved in some kind of competitive activities, JACIE also allows the absence of

floor control manager.

Various natural interaction and collaboration techniques have been studied [70] and made 

available as features of floor control protocol in JACIE language. The study observed that 

the most common collaborative technique practised is in turn or also known as token 

passing or round-robin. As each person gets his or her turn sequentially, this guarantees a 

fair chance to everybody. The drawback of this technique is when the person who is 

having the turn does not pass it to the next person. This leads to another technique, a timed 

token. This way the person is allocated a fixed time for him or her to act. If the time is 

over, whether or not he or she uses it, the turn will be passed on to the next person. These 

two techniques are also unfavourable in some situations because the time allocated may be 

wasted when the person who is having the turn has nothing to contribute to the group.

Another practical technique is reservation. This technique is customarily used in 

classroom (by the teacher) or during a question and answer session in conference (by the 

chairperson). By this protocol whoever wants to take part must raise his or her hand as a 

mean of attracting attention from the moderator (the teacher or the chairperson). The 

moderator will then reserve their turns in a queue and allow them to participate on a first- 

come-first-served basis. The only drawback of this technique is that passive participants 

will not be motivated to get involved in the activity.

There are also other collaboration techniques commonly practiced. One such technique 

could be referred to as tapping. This technique is normally used in game-like activities 

where the person who has a turn is expected to decide who gets the next turn. Another 

technique is randomly-directed (random for short) where one central figure randomly 

assigned the turn to any participant without any order. The last in the category of 

commonly used collaboration techniques is contention. In this style of interaction, as its 

name implies, there is no coordination at all. This technique is commonly used in 

competition-style activities. As expected, this uncoordinated technique can sometimes lead 

to chaos.
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The JACIE language supports all the above mentioned natural interaction and 

collaboration techniques which are named as round-robin, timed token, reservation, 

tapping, random and contention. It is up to the programmer to choose any one of the 

techniques suitable for the specific application to be developed. As far as the JACIE 

scripting is concerned, besides just specifying the floor control protocol to be adopted, 

there is no other code required. The JACIE’s floor control manager which coordinates 

floor control is generated accordingly by the compiler and is ready to support the server 

process on execution.

3.4.4 Group Management Protocol

Teamwork or group collaborative applications require protocols for grouping as well as 

protocols for intra-group and inter-group interactions. Naturally groups may be formed 

through mutual agreement among participants where a leader for each group is appointed 

and group members are determined through the consultation of these group leaders. 

Another technique for grouping is through time of arrival. In this way participants are 

grouped in alternate order of his or her arrival; e.g., if six participants are to be divided 

into three groups, the first person to arrive will be in group 1, second in group 2, third in 

group 3, forth in group 1, fifth in group 2 and sixth in group 3. Another grouping 

technique is random assignment where a mediator will assign participants into different 

groups by a random order.

JACIE supports all the three grouping protocols under the name user-defined, alternate 

and random respectively. The same floor control protocols described above are also 

applicable to inter-group interactions. For intra-group protocol, in JACIE, the group 

members are allowed to decide among themselves which floor control protocol is to be 

adopted. Negotiation is expected to be made through private communication channels. 

Since the intra-group floor control protocol is not automated when the group receives its 

turn, any member of the group may act on behalf of the group. Also, considering that
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Figure 3.6 Networked noughts and crosses game

multiple steps may be required to be executed by the group during its turn, a pass turn 

facility is provided as a flag that the group has completed its turn. Upon receiving this 

flag, the floor control manager will then assign a turn to another group. In addition to 

the private communication channels made available for intra-group communications, the 

public communication channels can also be used for inter-group communications. Section

3.6 describes in more detailed various communication channels implemented in JACIE.

3.4.5 Interaction Protocols: A Case Study

The identification of interaction protocols discussed above is the result of a case study 

carried out at the early stage of the research work. A collection of networked noughts and 

crosses (tic-tac-toe) games were implemented in Java prior to the development of JACIE. 

Figure 3.6 shows the screen shots of the applets.

All games were designed to run across the Internet and users on different computers were 

interacting through Web browsers. Each game implemented a different rule that simulated 

a possible floor management protocol. Table 3.2 lists the main features of a selection of 

these games in this case study.
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Name Players Board Turn Control Cell Control W inning
Traditional

Game
2 players 3x3 cells Each player places his/her symbols in 

turn.
One symbol in 
an empty cell 
each time.

The first one getting 3 o f 
his/her symbols in a line 
wins the game.

Generalised
Game

2 players 8x8 cells Each player places his/her symbols in 
turn.

One symbol in 
an empty cell 
each time.

The first one getting 3 o f 
his/her symbols in a line 
wins the game.

Speed Fight 2 players 8x8 cells Players place their symbols as fast as 
they can. No turn control.

One symbol in 
an empty cell.

The first one getting 5 o f 
his/her symbols in a line 
wins the game

Vicious Fight 2 players 8x8 cells Players place their symbols in any 
cells as fast as they can. No turn 
control.

An existing 
symbol can be 
replaced.

The first one getting 8 o f 
his/her symbols in a line 
wins the game.

Gentlemen’s
Fight

2 players 8x8 cells Each player signals the other player if 
he would like to play, and cannot 
place his symbols until he receives 
the permission from the other player 
(or the server).

One symbol in 
an empty cell 
each time.

The first one getting 5 o f 
his symbols in a line 
wins the game

Dictator’s
Entertainment

2 players 8x8 cells Each player must receive a signal 
from the dictator (the server) before 
placing a symbol, the dictator 
randomly selects a player each time 
using a random number generator

One symbol in 
an empty cell 
each time.

The first one getting 5 o f 
his/her symbols in a line 
wins the game

Group Game 2 groups, 
2 players 

each group

8x8 cells Each player places his/her symbols in 
turn.

One symbol in 
an empty cell 
each time.

the first group getting 3 
o f his/her symbols in a 
line wins the game. |

Table 3.2 Different versions o f noughts and crosses in the case study for interaction protocols

The interaction method used in traditional and generalised versions of the game, where 

each player makes his or her move in turn, is an example of a round-robin (or token 

passing) protocol. For speed fight and vicious fight versions, the players make their moves 

as fast as they can (or practically as fast as the system allows) and without the restriction 

of turn control. The interaction method is what we call contention. The rule adopted by the 

gentlemen’s fight version is an example of a tapping protocol. The dictator’s 

entertainment version, where the server dictates who gets the turn, is an example of a 

random protocol. The group game version differs from the rest as players are divided into 

two groups. Both the inter-group and intra-group interaction rules adopt round-robin 

protocol. As mentioned earlier this particular study has helped the formulation of JACIE’s 

built-in interaction protocols.

Briefly, protocol handling in Java is a unique and innovative feature that well suits the 

target applications and covers a range of commonly used interaction protocols. This also
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reduces substantially the complexity and potential programming errors in specifying and 

implementing interaction protocols using low-level language constructs.

3.5 Event-driven Programming

3.5.1 Overview of Event-driven Programming

Many modem development tools support event-driven programming. The event process 

spends much of its time idling, waiting for an event to occur and when an event occurs, an 

event handler responds to the event [60]. With event-driven programming, the 

programmers are expected to sense the events and manage the event accordingly upon 

activation. Many of the common events supported by many development tools are user- 

interface events, but none considers having interactive and collaborative events as 

standard features. A number of programming tools allow the programmer to define new 

events and event listeners, but, as expected, this feature only introduces extra complexity 

for casual programmers.

3.5.2 JACIE’s Event-driven Programming

The JACIE language adopts event-driven programming style. The transition states 

discussed in Section 3.2 represent some main events handled by this language. When 

events are generated at different points of the sub-processes, statements for event listeners 

would be able to respond accordingly and could pass to specific program codes 

appropriately and efficiently.

The research also recognised that, in addition to the five main events described above, 

there are also other events commonly used in collaborative applications. Some of these are 

session events defined in support of interaction protocols adopted. Others are low-level
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events. Table 3.3 lists all the events handled by the JACIE language. It also shows how 

they are generated.

The event handling facility simplifies much coding effort as it promotes high-level 

abstraction as opposed to low-level construct. As far as the programming step is 

concerned, the programmers just need to be aware of what kinds of events expected and 

what are the steps to be taken, rather than how to generate the events and how to notify the 

active events. As can be seen, for session events, some of them are directly related to the 

protocol adopted, e.g., turn, group turn, request control and reservation. Also, 

related to the events, the JACIE language provides many system variables to be accessed 

by the programmer. Detail discussion is presented in Chapter 4.

Main Events
s e r v e r  s t a r t triggered when the server process is started and ready to listen to incoming 

connection
s e s s io n  s t a r t triggered when connection is successfully established
s e s s io n triggered when enough participants are online
s e s s io n  end triggered when the participant disconnects his/her session or the process is 

terminated naturally or the physical connection is interrupted
s e r v e r  end triggered when all client connections are terminated
Session Events
w a i t in g triggered when the required number of online users has not been reached
o b s e r v e r  c o n n e c tio n triggered when a remote user is assigned an observer status; normally it will 

be used by server process to send the current states of the session
tu r n triggered by the server when the current turn is the user's turn
g ro u p  tu r n triggered by the server when the current group turn is the user's group turn
re q u e s t  c o n t r o l triggered by the user to flag the server to request for turn (in reservation 

floor control management)
r e s e r v a t  io n triggered when the user has made request control but yet to get his turn (in 

reservation floor control management)
c l i e n t  a b o r t triggered when the client abort the program in the middle of the execution
s e r v e r  a b o r t triggered when the server abort the program in the middle of the execution
new m essage triggered when message queue is not ernpty
Mouse Events
mouse c l i c k e d triggered when the user clicks a mouse button on the canvas
mouse p r e s s e d triggered when the user presses a mouse button on the canvas
mouse r e l e a s e d triggered when the user releases a mouse button on the canvas
Key Input Event
t e x t  e n te r e d triggered when the user types into text field bar and presses enter

Table 3.3 JACIE-supported events
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3.6 Communication Channels

3.6.1 Overview of Communication Channels

Communication channels or collaborative tools are nothing new for interacting and 

collaborating users across the network. Many general-purpose collaborative tools and 

services are available for network users to take advantage of. Microsoft NetMeeting [137], 

for example, has a chat channel, a audio/video channel, a whiteboard channel and a 

program sharing facility. These features are both practical and effective ways for any 

networked user-user communication.

Interactive and collaborative applications often require these facilities to effectively 

complement the collaborative working activities over the Internet. While it is possible to 

integrate a tool like NetMeeting in an interactive and collaborative application (through 

low-level COM programming), many interactive and collaborative application developers 

normally design their own channels. The programming process is undoubtedly tedious.

3.6.2 JACIE’s Communication Channels

Realising that in a networked application, user-user and user-server communications may 

take place in a number of different forms of media, the JACIE language has a built-in 

support for various communication channels — chat, whiteboard, voice, video, shared 

workspace and message. It is just a matter of specifying which channel needs to be 

integrated in the application. More than one channel can be used at one time.

Chat Channel

Chat channel is used in for online text-based communications. Normally it is implemented 

as a window or a dialog box with a text input area and message display area. Text entered
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Figure 3.7 A chat channel

by any user will be sent to the server which then broadcasts to other users to be displayed 

in a message display area. The messages in the message display area typically contain 

some indication of their senders. In a group environment the chat channel normally has 

two message display areas and two text input areas — one for public messages and the 

other one for private or group messages. Figure 3.7 shows a chat channel with public and 

private messages. Through this channel general and group communications may take place 

in support of other collaborative activities.

Whiteboard Channel

Whiteboard channel is a dedicated shared canvas on which arbitrary drawings are placed 

by communicating users. Common sketching tools (e.g. pen, brush, line, rectangle, circle, 

colour palette, text, etc.) are normally provided. To differentiate among concurrent users, 

each user may also control a different pointer. The channel is normally implemented in a 

special window and in a group environment an additional whiteboard window is used for a 

private drawing canvas. Figure 3.8 shows a whiteboard channel used for scribbling 

medium.
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Figure 3.8 A whiteboard channel

Voice Channel

Voice channel is used for online voice-based communications. Voice information from 

different clients are combined at the server which then broadcasts to all clients. Voice 

control may be adjusted locally and turn control may be exercised in a traditional “one 

speaks, the rest listen” manner. Figure 3.9 shows the volume adjuster for a voice channel.

Figure 3.9 A voice channel volume adjuster
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Video Channel

Figure 3.10 shows a video channel in action. A video channel is used for online video- 

based communications. With a camera attached to the computers, remote users view one 

another as the collaborative application is running. Video quality varies depending upon 

the type of network connection, window size and graphics capabilities. This channel may 

be desirable to use but since it requires extra cost for the facility as well as high network 

bandwidth, it may not be applicable to all situations.

Shared Workspace

All communication channels described above are just tools for real-time computer- 

mediated conferencing. The real collaborative application could not be carried out just by 

employing them. A shared workspace is therefore required. Shared workspace or canvas 

channel is a workspace designed specifically to display and interact with shared objects for 

predefined collaborative activities under the control of predefined interactive protocols. In
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Figure 3.11 A sample application employing a shared workspace

3D virtual environments, it may be represented as a virtual room with objects and 

embodiments. In an image-based environment, it may be represented by a common canvas 

with a notion “what you see is what I see” (WYSIWIS). This workspace can be used to 

implement the three types of networked interactive and collaborative applications 

discussed earlier in this chapter.

Generally speaking, all graphical interactive and collaborative applications require some 

shared workspace in which collaborative activities can be accomplished. JACIE with its 

graphics support offers a satisfactory and straightforward solution. Figure 3.11 shows an 

application employing a shared workspace.

Message Channel

Message channel is mainly for message passing between a client machine and a server 

host. It can be used for channelling system messages that form the collaboration
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Figure 3.12 A sample application employing input/output messages

infrastructure. It can also be used for channelling user-defined messages that work in 

collaboration with a canvas channel or any other text input-output facility. The arrival o f  

system messages through this channel will activate the corresponding event handler and 

for user-defined messages they will be queued and be processed in a manner specific to 

the application. Figure 3.12 shows message bars for user’s text input and server’s text 

output employed by an application.

From the above discussion, a set o f built-in channels in the JACIE language provides the 

basic communication needs for collaborative applications. In addition to “static” channels, 

JACIE’s workspace channel provides some facility’ for the dynamic collaborative 

applications. The channels also reduce the complexity in programming with different APIs 

which are required in communication and user interface design.

3.7 Support for Graphics

This research observed that images and simple drawings are likely to dominate the graphic 

requirements o f the three categories o f interactive and collaborative applications described 

earlier. The research concluded that the graphics in most o f these applications involve 

mainly images and simple 2D graphic drawings, since the use o f  complex 3D graphic 

modelling in such applications would not be cost-effective in terms o f expertise and effort. 

In fact, the very same assumption is made by most hypermedia authoring tools
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except for Virtual Reality Modelling Language (VRML) [75] that was designed for 3D 

graphics. This assumption allows JACIE to reduce the complexity of its display functions, 

a desirable feature for any scripting language.

In order to facilitate effective canvas management and device-independent display, JACIE 

places its emphasis on a set of grid-based operations to support the display of and 

interaction with images and graphic primitives including lines, text and rectangles. Grids 

on a graphic canvas or image provide a higher-level coordinate system. Instead of 

addressing each pixel of the graphic displays of various resolutions, the grid system gives 

a more logical and manageable means to developers and end users alike.

The JACIE language may be limited in graphics but it suits the applications for which 3D 

graphics plays an insignificant role. In terms of programming efficiency, it manages to 

prevent JACIE from becoming an excessively complex and big language.

3.8 Common User Access

Common user access is important as it could provide a familiar and universal “look and 

feel” for all JACEE-generated applications. The design of this graphical user interface has 

taken into account all the requirements and the features of common image-based 

interactive and collaborative applications. To promote user-friendliness, simplicity is also 

another factor that has been taken into consideration.

Figure 3.13 shows the standard layout of the user interface components within JACIE- 

generated applications. On top of the layout is the menu bar. It consists of two important 

buttons — connect and disconnect. Visually sensible image icons have been used to 

replace the Java-standard text only buttons. These follow text labels and text fields for 

displaying or specifying the hostname where the server program resides, the port number 

where the networked application service takes place and the username of the client. The 

menu bar also consists of image icons representing buttons for each of the communication
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text input area local message display area server message display area

Figure 3.13 JACIE’s standard user interface components

channels employed by the applications. Again the image icons have been carefully 

designed for better visual effect. During the active session, clicking on any o f these 

buttons will open a dialog window for the particular channel. Two other buttons are user 

list button and the optional help button. The user list button is only applicable to 

collaborative applications o f  types 2 and 3. During the active session, clicking on this 

button will open a dialog window listing all the online users and observers (if  applicable). 

In a group environment the dialog window will also list all the members within each 

group. The last button in the menu bar, namely the help button also known as the about 

button, is used for displaying help text. Depending on how the help text is being specified 

in the application program, clicking on this button can display a one-line text on a local 

message bar or a separate dialog window with multiple lines o f help text.

In the middle o f  JACIE’s standard layout is shared workspace or canvas channel. This is 

where most o f  the interactive and collaborative activities take place. All the JACIE’s

connect button user list buttonhostname

channel buttons help buttondisconnect button port number username

Username

Text Input 
Local Message 
Server Message
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graphic facilities are also applicable within this space. This component can be an option if  

the application does not require any graphic support as interaction can also occur through 

text only basis.

The message bar, at the bottom, accommodates text input area and two message display 

areas. The text input area provides the facility for users to enter text. The two message 

display areas are for local messages and server messages. Unlike the text input area that 

will be made available only if text input is required, the two message display areas are 

standard in all JACIE-generated programs. They are manipulated by JACIE scripts. The 

server message display will also display system messages throughout the active session.

Two variations o f the menu bar are implemented to accommodate requirements for two 

interaction protocols if  they are in use. As shown in Figure 3.14, if the floor management 

protocol in use is tapping, the user who has the turn should be able to pass the turn to other 

user (or group) o f his choice. By selecting the username (or group number) from the 

choice list and clicking the pass turn button, a special message will be sent to the server 

signalling who should get the next turn. In another situation, if the floor management 

protocol in use is reservation, the user has to signal the server that he wants to reserve for 

his turn. This is done by clicking the reservation button. On reservation, the reservation

pass turn button 

user list or group
choice

|  Q  Q  Host CZ ......... I Port | 1 Username [ I 1 Next 1 MD:3 O  S3 O  O j |

reservation button

reservation indicator 
(colour coded)

Host Port Username j ■ O D D
1

Figure 3.14 Variations o f  JACIE’s menu bar to accommodate (a) tapping protocol

or (b) reservation protocol
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indicator will change from green to red. The indicator will change its colour to green again 

when the user gets his turn.

3.9 Summary

This chapter has discussed the design considerations of the JACIE language. Two 

important principles for this research, namely special-purpose and programming 

efficiency, have been focused. Features like scripting, single program, template-based, 

built-in channels, limited graphics and interaction protocols are the highlights of this 

research. They are valuable features for many interactive and collaborative applications. 

The features, handled nicely by the language and the compiler, provide programming 

efficiency to casual as well as hard-core programmers. The JACIE’s common user access 

provides sufficient functions to many applications.



Chapter 4 

Language Specifications

JACIE, a Java-based Authoring language for Collaborative Interactive Environments, is a 

scripting language designed to support rapid prototyping and implementation of net- 

centric, multimedia and collaborative applications. These types of applications typically 

incur expensive development as they involve low-level programming and require highly 

skilled programmers. The JACIE language is also designed for developing applets or 

applications in the Internet environment as the Internet has become a standard 

communication infrastructure for client-server human-computer interactions and multi

user human-human communication.

The JACIE language is rich in features. It is similar to other programming languages as it 

has some standard data types, operators, expressions and a choice of basic statements. Its 

strength is distinctively reflected in its high-level abstraction of various types of 

communication and interaction in collaborative applications, thus hiding to a great extent 

the complexities of network programming from application developers. This language 

also features choice of graphics and multimedia capabilities which makes it suitable for 

developing user-friendly and effective graphical applets or applications. This chapter 

discusses in detail the features of the JACIE scripting language.

59
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4.1 Template-based Scripting Language

As mentioned in Chapter 2, unlike most of the Internet-based programming languages or 

software development tools which require separate programs for server and client, JACIE 

simplifies programming effort by employing a “single program” to specify both server 

processes and client processes. It is the compiler’s job to generate server and client 

programs to run on different computers. Further simplification is made through a template- 

based programming style which divides each program into a set of standard components. 

Figure 4.1 shows the three main components of a JACIE program. Each of these 

components is described below.

J A C IE  {

ap p let name X;
ap p letlaun ch er image "X.gif"  
co n fig u ra tio n  { . . . }  
messages { . . . }

c l i e n t  im plem entation { 
d ec la ra tio n  { . . . }  
on canvas { . . . }  
on s e s s io n  s ta r t  { . .  .} 
on s e s s io n  {. . .} 
on s e s s io n  end { . . . }

}

server  im plem entation { 
d ec la ra tio n  { . . . }  
on serv er  s ta r t  { . . . }  
on s e s s io n  s ta r t  { . . . }  
on s e s s io n  { . . . }  
on s e s s io n  end { . . . }  
on server  end { . . . }

}

SYSTEM CONFIGURATION COMPONENT
Define program type (applet or application) and name. 
Define launcher (optional for applet)
Specify networking parameters, channels, protocols, etc. 
Declare message identifiers.

CLIENT BODY COMPONENT
Declare variables and methods.
Initialise canvas such as drawing a background image. 
Perform processes upon established connection.
Main client session control.
Perform processes upon session termination.

SERVER BODY COMPONENT
Declare variables and methods.
Initialise server processes.
Perform processes upon each user’s connection. 
Main server session control.
Perform processes upon user’s session termination. 
Housekeeping processes upon all users termination.

Figure 4.1 A set o f standard JACIE components



4.1 TEMPLATE-BASED SCRIPTING LANGUAGE 61

4.1.1 System Configuration Component

The first component is for system configuration statements. It contains statements that 

specify program name and type as well as some basic networking and interaction 

parameters. Besides the predefined messages, the JACIE programmer may also define 

message identifiers in its component that will be used for message transfers between the 

client processes and the server processes.

4.1.2 Client Body Component

In a client/server environment, processes acting as clients and servers are normally 

distributed on different computers. In the second component the client body of a JACIE 

program specifies the code for a client process. All interactions between the client and the 

server are through message transfers by means of message identifiers declared earlier. The 

client body consists of several program constructs. The first construct, d e c la r a t io n ,  is 

for declaring all variables and methods used within the component. The on ca n v a s  

construct follows the d e c la r a t io n  construct. This construct specifies the default 

workspace canvas (such as background image) on which all user-defined interactions and 

collaborations will take place. The canvas image may be changed at a later stage during 

the execution by other graphics statements. The next three constructs which are on 

s e s s i o n  s t a r t ,  on s e s s i o n  and on s e s s i o n  end define the main interaction and 

communication activities of a client process.

4.1.3 Server Body Component

The server body component specifies code for a server process. It consists of six 

constructs. The functions of the d e c la r a t io n ,  on s e s s i o n  s t a r t ,  on s e s s i o n ,  and on  

s e s s i o n  end are very similar to those in the client body. The two additional constructs, 

namely on s e r v e r  s t a r t  and on s e r v e r  end, are used to interact with the operating
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system for maintaining the system status of the server. The on s e r v e r  s t a r t  construct 

initialises the server process upon invocation of the server program. The server process 

will stay alive, waiting for the client to establish connection from that point on. The on  

s e r v e r  end construct performs some house cleaning operations when all client 

connections are terminated and sets the server back to the waiting state for next actions. 

Details of all configuration statements will be discussed in Section 4.3.

4.2 Data Types, Operators and Expressions

The JACIE language is a strongly typed language, i.e., every variable and expression has a 

type that is known at compile time. Types limit the values a variable can hold and restrict 

the resulting expression. It also limits the operations supported on those values and helps 

detect errors at compile time.

4.2.1 Data Types

The language has five primitive data types and one compound data type. The five 

primitive types in are i n t ,  f l o a t ,  b o o le a n , im age and s t r in g .  A character is represented 

by a string of length 1. It also supports arrays as its compound type. It is a means of 

collecting and managing the primitive types. Table 4.1 describes each one of the primitive 

types in JACIE.

IB finutiW iiw e^-
i n t 32-bit 2's complement Integer
f l o a t 32-bit IEEE 754 Single-precision floating point
b o o le a n tr u e  or f a l s e Boolean
im age g i f  or jp e g  typed images Image
s t r i n g a series of characters between 

double quotation marks
Character string; a character is represented 
by a string of a single character

Table 4.1 JACIE’s primitive data types
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Arithmetic1 O b e r a to ii^ I f  j f I . ^ " ' - i f f i f i f g i T f t V  *  2 ? .*  s ' " ' ,  ' \  >

+ addition / division
- subtraction/negation % modulus
* multiplication

Relational and Conditional Operators * . . -  ■ : i  . . . •  '  . v :

> greater than | or
>= greater than or equals to & and

< less than exclusive or
<  = less than or equals to 1 1 logical or

equals to ScSc logical and
! = not equals to | ! not

Table 4.2 JACIE’s operators 

4.2.2 Operators and Expression

Like any other programming languages, JACIE has various types of operators that can be 

used to form expressions. Basically the operators can be divided into arithmetic operators 

and relational and conditional operators. Table 4.2 shows all the operators supported by 

JACIE.

All the arithmetic operators, except %, can be applied to any arithmetic expressions. 

Operator % (for remainder of division) can only be applied to in t  expressions. Operator + 

can also be used to concatenate s tr in g  values. JACIE neither supports tertiary conditional 

operators nor bitwise operators. All JACIE expressions and operator precedence follow 

the rules of Java.

4.3 Grammar

An extended BNF notation will be used to describe JACIE’s grammar in addition to the 

description of each one of the JACIE statements and features. Table 4.3 shows the meta

symbols used throughout the chapter. With the same convention, meta-symbols are 

distinguished from keyword symbols by plain and bold fonts respectively.
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Symbols v S T
< > non-terminal
: : = “is defined as”

bold terminal
1 alternation

[ ] “optional”
{ } “zero or more occurrences”

{ }+ “one or more occurences”

Table 4.3 Meta-symbols o f  BNF

4.3.1 Main Constructs

A JACIE program starts with a keyword JACIE followed by an open brace “{” and ends

with closed brace Using the syntax shown below, the programmer can specify

whether to create an application or an applet for the client program.

<JACIE program> : : = JACIE {
ccreate application> | ccreate applet>

}
ccreate application> ::= application name cidentifier> ; 

configuration {
cprogram configuration>

}
messages {

cmessage definition>
}client implementation {
cclient program implementation

}server implementation {
cserver program implementation

}
ccreate applet> ::= applet name cidentifier> ;

[ ccreate applet option ] 
configuration {

cprogram conf iguration
}messages {
cmessage definition>

}client implementation {
cclient program implementations

}server implementation {
cserver program implementations

}
ccreate applet option> ::= appletlauncher

ctext button launchers | cimage button launchers ;

ctext button launcher> ::= text cstrings

<image button launcher> ::= image cstrings
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JACIE {
applet name Puzzle2;
appletlauncher text "click here to display the puzzle"; 
configuration {

// system configuration statements

}
messages {

// a list of user-defined message identifiers

}
client implementation {

// client implementation statements

}server implementation {
// server implementation statements

}
}_______________________________________________________

Figure 4.2 A sample code showing JACIE's main construct

If the client program is an applet to be embedded in a Web page, the programmer may 

specify a text launcher or an image launcher from which a separate applet window will be 

opened on activation.

A sample code fragment depicting the main construct is shown in Figure 4.2.

4.3.2 System Configuration Statements

System configuration statements are defined under the configuration construct. The 

statements are as follows:

<program configuration> ::= { <configuration statements }

<configuration statement> : := <specify hostname>
| <specify port number>
| <specify username>
| <specify channel> 
j <specify about>
| <specify number of users>
| <specify number of observers> 
| <specify protocol>
| <specify number of groups>
| opecify group protocol>
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The first three statements of the configuration statements are the most important 

statements as they specify the host where the server program will reside, the port number 

where the communication service will take place and the username of the client.

<specify hostname> : := host
<string> | prompt ;

<specify port number> : := port
cinteger number> | prompt ;

<specify username> ::= username
<string> | prompt ;

The hostname can be a string representing a valid Internet address under either the domain 

name or the dotted decimal IP address. Integer numbers above 1024 are suggested for a 

port number to avoid conflicting with well-known TCP ports. Alternatively, the keyword 

prompt may be used to allow the end-user to specify the hostname, port number or his/her 

username during execution. The standard user interface for connect/disconnect and text 

fields for specifying hostname, port number and username is shown in Figure 4.3.

JACIE supports five communication channels through which remote users can interact 

while engaging in some collaborative activities. The channels are canvas, chat, 

whiteboard, voice and video. One or more channels can be specified as follows:

<specify channel> ::= channel <channel name> { , <channel name> } ;

<channel name> ::= canvas | chat | whiteboard | voice | video

^ J A C IE _ U I Fram e

Username

Disconnect Button

Connect Button

Figure 4.3 Standard user interface for connection/disconnection in 
JACIE-generated programs
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By specifying any of the channel names, other than canvas, a button for the 

communication channel will be included in the program’s user interface. During an active 

session, a dialog window for any particular channel will be opened when the user clicks on 

the channel button. By default, canvas channel will also be included if any graphics 

statement is specified in the program code. Figure 4.4 shows the channel buttons and 

canvas workspace.

The JACIE language also allows programmers to specify a one-line text or a filename of a 

text file for the description or the help file of the application being developed. This facility 

is made available through the “about” button of the JACIE interface. The effect of clicking 

on this button, if it is a one-line text, is that the text string will be displayed on the local 

message bar. Alternatively, if it is a file, a dialog box will display the whole text. The 

statement is an about statement and is written as follows:

<specify about> ::= about
<string> | <about file> ;

<about file> ::= file <string>

Another useful configuration statement is the number of users statement. This statement 

specifies the number of concurrent users allowed and is used either because of the 

requirement of the application being developed or a restriction is imposed in order to 

achieve acceptable server performance. The programmer may specify a fixed number or a 

range of numbers as follows:

Chat Button

Whiteboard Button

Voice Button

Video Button
Canvas

Figure 4.4 Standard buttons for communication channels 
in JACIE-generated programs
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<specify number of users> ::= number of users
cinteger number> | <specify minimum users> |
<specify maximum users> |
<specify range number of users> ;

<specify minimum users> ::= minimum <integer number>

<specify maximum users> :: = maximum cinteger number>

cspecify range number of users> ::= cspecify minimum users> cspecify maximum users>

The number of observers can also be specified in a JACIE program. In JACIE terms an

observer is a remote user whose connection is established after the number of users’ limit 

has been reached. An observer has no active role in the session except as a passive viewer. 

An observer may join at any time to get the current state of the session and will not 

interrupt the session flow upon leaving it. The statement that specifies the number of 

observers is as follows:

cspecify number of observers> ::= number of observers cinteger number> ;

A floor management protocol is specified in the p r o t o c o l  statement. All the protocols 

discussed in Chapter 3 are implemented in JACIE. The protocols are c o n te n t io n ,  

ro u n d ro b in , r e s e r v a t io n ,  random, ta p p in g  or timed token. In case of to k en , the 

number specified is in seconds.

cspecify protocol> : := protocol
contention | roundrobin | reservation | 
random | tapping | ctimed token> ;

ctimed token> ::= token cinteger number>

For applications that require group collaboration, the number of groups and the method for 

grouping can be specified. The two configuration statements relate to groups which are: 

number o f  g ro u p s and p r o t o c o l  o f  group.

cspecify number of groups> : := number of groups cinteger number> ;

cspecify group protocol> : : = protocol of group
userdefined | random | alternate ;
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If u s e r d e f  in e d  protocol is chosen, the first remote users assigned to each group will be 

the leaders and these leaders are required to choose the members (one at a time) before the 

actual session can take place. If the group protocol is random, the server will assign the 

groups in a random order and if the group protocol is a l t e r n a t e ,  users are grouped 

according to the order of connection time. The default p r o t o c o l  o f  group  is a l t e r n a t e .

Other than the h o s t ,  the p o r t  and the usernam e statements, not all of the above 

configuration statements are needed in all applications. It depends on the type of 

application to be developed. For applications of type single-user server-based interactions, 

no other statements are necessary. However, the number o f  u s e r s  statement can be used 

to limit the concurrent users and prevent performance degradation. Applications of type 

“multi-user server-mediated interactions” require number o f  u s e r s  and p r o t o c o l  

statements. If the remote users require some means of communication, the ch a n n e l  

statement can be used. The number o f  grou p s and p r o t o c o l  o f  group  statements are 

only required in group collaborative applications. The number o f  o b s e r v e r s  statement is 

only applied to multi-user and group collaborative applications. The a b o u t statement is an 

option for all types of applications.

Following c o n f ig u r a t io n  is the m essa g es construct. This construct contains an optional 

list of identifiers that represent the message definition. This message definition is used in 

communication statements for interaction between the client and the server.

cmessage definition? ::= [ <identifier> {, cidentifier? } ]

JACIE {
configuration {

host "csbean.swan.ac.uk"; 
port 3333; 
username prompt; 
about "2 player puzzle"; 
channel chat, canvas; 
number of users 2; 
protocol contention;

}
messages {

puzzleBlock, remoteX, remoteY;
}

} ____________________________________________________________

Figure 4.5 A sample code showing JACIE's configuration statements
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Two of the communication statements that rely solely on this message definition are sen d  

and r e c e i v e ,  and will be discussed later in this chapter. Figure 4.5 illustrates some related 

statements applied under the c o n f ig u r a t io n  and m e ssa g es  constructs of one JACIE 

program.

4.3.3 Client Implementation and Server Implementation Constructs

The c l i e n t  im p le m e n ta t io n  and s e r v e r  im p le m e n ta t io n  of JACIE codes are defined 

by the following syntax:

cclient program implementation ::= declaration
< variable and method declaration list> 

on canvas
ccompound statement> 

on session start
ccompound statement> 

on session
ccompound statement> 

on session end
ccompound statement>

cserver program implementation ::= declaration
c variable and method declaration list> 

on server start
ccompound statement> 

on session start
ccompound statement> 

on session
ccompound statement> 

on session end
ccompound statement> 

on server end
ccompound statement>

cvariable and method declaration list> ::=
{ cvariable declaration list> 
cmethod declaration list> }

The d e c la r a t io n  construct is where all the variables and methods within the respective 

implementations are to be declared. The on ca n v a s  construct contains mainly graphics 

statements that make up the default shared workspace. This is where user-defined 

interactions and output displays will take place.
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on s e r v e r  s t a r t triggered when the server process is started; untriggered when server process 
ready to listen to incoming connection

on s e s s io n  s t a r t triggered when the user clicks connect button and a connection is successfully 
established; untriggered when start session flag being signalled

on s e s s io n triggered when start session flag being signalled; untriggered when the statements 
in on session construct terminates naturally or the user clicks disconnect button or 
physical connection interrupted

on s e s s io n  end triggered when the statements in on session construct terminates naturally or the 
user clicks disconnect button or physical connection interrupted

on s e r v e r  end triggered when all the active clients leave the session

Table 4.4 JACIE’s main events

As mentioned earlier, the on s e s s i o n  s t a r t ,  the on s e s s i o n  and the on s e s s i o n  end  

are the three main events in JACIE applications. They consist of statements that need to 

be executed at different times and states of the active session. Some statements are also 

applied to only one of the states. The on s e r v e r  s t a r t  and the on s e r v e r  end contain 

statements for housekeeping operations of the server. The former is for initialising the 

server process before the first remote user establishes its connection and the latter is for 

reinitialising the server process after all client connections are terminated.

Table 4.4 shows how the events are being triggered and untriggered. The choices of 

statement within main events are critical to make the generated codes executable.

4.3.4 Variable Declaration Statements

Being a strongly-typed language, JACIE requires all variables to be declared before they 

can be referred to. The scope of the variables is within the implementation ( c l i e n t  

im p le m e n ta t io n  or s e r v e r  im p lem en ta tio n ). Local variable declarations are allowed 

but are limited within method declaration and in f o r  statement. In general, variable 

declarations should follow the syntax:
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cvariable declaration list> : : = {[shared] cdata types> cvariable declarator> ;}

cdata types> : : = cprimitive typo | ccompound type>
cprimitive type> : : = int | float | boolean | image | string

ccompound typo : : = cprimitive type> [ cexpression> ]
| ccompound type> [ cexpression> ]

cvariable declarator> : : = cidentifier> [ = cvariable initialiser> ]

cvariable initialiser> : : = cexpression> | carray initialiser>
carray initialiser> : : = { cvariable initialiser list> }

cvariable initialiser list> : : = { cvariable initialiser;-, }cvariable initialiser

JACIE’s variable declaration format resembles Java’s. The difference between JACIE and 

Java lies in the modifier keyword. Modifier s h a red  in JACIE is used in the context of 

s e r v e r  im p le m e n ta t io n  where the single-copy sh a red  variables are referred to by all 

instances of remote users. On the contrary, the “unshared” variables are local to each 

client connection.

JACIE {
client implementation {

declaration {
int gridx;
int gridy
int xfree = 5;
int yfree = 5;
image blank = "blank.jpg";
image [2] [6] [6] / P =
\
{{"limOO.jpg" ,"limlO.jpg","1im2 0.j pg", "lim30.jpg","lim40.jpg","lim50.jpg"},
{"limOl.jpg" ,"limll.jpg","lim21.jpg","lim31.jpg","lim41.jpg","lim51.jpg"},
{"lim02.jpg" ,"liml2.jpg","lim22.jpg","lim32.jpg","lim42.jpg","lim52.jpg"},
{"lim03.jpg" ,"liml3.jpg","1im2 3.j pg", "lim33.jpg","lim43.jpg","lim53.jpg"},
{"lim04.jpg" ,"liml4.jpg","lim24.jpg","lim34.jpg","lim44.jpg","lim54.jpg"},
{"lim05.jpg" ,"liml5•jpg","lim25•jpg"i "lim35.jpg","lim45.jpg","blank.jpg"}}

{{"rimOO.jpg" ,"rimlO.jpg","rim20.jpg","rim30.jpg","rim40.jpg","rim50.jpg"},
{"rimOl.jpg" ,"rimll.jpg",Mrim21.jpg","rim31.j pg","rim41.j pg", "rim51.jpg"},
{"rim02.jpg" ,"riml2.jpg","rim22.jpg","rim32.jpg","rim42.jpg","rim52.jpg"},
{"rim03.jpg" ,"riml3.jpg","rim23.jpg","rim33.jpg","rim43.jpg","rim53.jpg"},
{"rim04.jpg" ,"riml4.jpg","rim24.jpg","rim34.j pg","rim4 4.j pg", "rim54.jpg"},
{"rim05.jpg"

};

}

}

}

,"riml5.jpg","rim25.jpg","rim35.jpg","rim4 5 .jpg","blank.jpg"}}

Figure 4.6 A sample code showing JACIE's variable declaration statements
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Another difference between JACIE and Java in term of variable declarations lies in array 

declarations. Unlike Java, JACIE’s array size and dimension have to be specified in the 

declaration construct. Variable size multi-dimensional arrays are not allowed in JACIE. 

Similar to Java, initialisation of an array (single or multi-dimensional) with multiple 

values is allowed. A distinct feature of JACIE is that it allows assignment of a single value 

to an array.

The image and s t r i n g  are primitive types in JACIE. For image declarations, unlike other 

programming languages, JACIE allows assigning a string literal (or a list of string literals 

in the case of an array) to an image variable. These string literals represent filenames of 

graphic images. This language supports graphics files in the GIF and JPG formats. Figure

4.6 shows some sample variable declaration statements from one JACIE program.

JACIE allows the use of expressions in variable declarations. The syntax for expressions is 

as follows:

<expression> : : = cassignment expression>
<assignment expression> : : = cconditional expression> | cassignnient>

cconditional expression> : : = cconditional or expression>

cconditional or expression> : : = cconditional and expression>
| cconditional or expression> || 
cconditional or expression>

cconditional and expression> : : = cinclusive or expression>
| cconditional and expression> && 
cconditional and expression>

cinclusive or expression> : : = cexclusive or expression>
| cinclusive or expression> | 
cinclusive or expression>

cexclusive or expression> : : = cand expression>
| cexclusive or expression> 
cexclusive or expression>

<and expression> : : = cequality expression>
| cand expression> & cand expression>

cequality expression> crelational expression>
| cequality expression> == 
cequality expression>

| cequality expression> 1= 
cequality expression>



4.3 GRAMMAR 74

crelational expression>

<additive expression>

<multiplicative expression>

<unary expression>

<unary expression not plus minus>

<postfix expression>

<pnmary>

<literal>

cmethod invocation> 

<argument list> 

<array access> 

<name>

<additive expression>
<relational expression> <
<relational expression>
<relational expression> >
<relational expression>
<relational expression> <=
<relational expression>
<relational expression> >=
<relational expression>

<multiplicative expression>
<additive expression> + <additive expression> 
<additive expression> - <additive expression>

<unary expression>
<multiplicative expression> * 
cmultiplicative expression>
<multiplicative expression> / 
cmultiplicative expression> 
cmultiplicative expression> % 
cmultiplicative expression>
cunary expression>
- cunary expression> 
cunary expression not plus minus>

:=cpostfix expression>
| I cunary expression>

cprimary>
| cname>
| rnd ( cexpression> )
| csystem variable>

cliteral>
| ( cexpression> )
| cmethod invocation>
| carray access>

cint literal>
| cfloat literal>
| cboolean literal>
| cstring literal>
| cnull literal>
cname> ( {cargument list>} )
{ cexpression> , } cexpression>

cname> { [ cexpression> ] }+

cidentifier> | java_cidentifier>

4.3.5 Method Declarations

The d e c l a r a t i o n  construct also allows methods to be defined. Like any other 

programming language a method declaration either specifies the type of value that the 

method returns or keyword v o i d  which has to be used to indicate that the method does not
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return a value. JACIE also allows method overloading as long as the overloaded method 

has different signature. In general, method declaration in JACIE should follow this syntax:

cmethod declaration list> : := {[shared] cmethod header> cmethod body> }

cmethod header> ::= cdata type>cidentifier> ( [cformal parameter list>] ) 
| void cidentifier> ( [cformal parameter list>] )

cformal parameter list> ::= { cformal parameter> , } cformal parameter>

cformal parameter> ::= cdata typo cidentifier>

cmethod body> := ccompound statement>

An example of method declarations in JACIE is shown in Figure 4.7.

4.3.6 Basics Statements

JACIE adopts comments format similar to C, C++ or Java. Basically it can either be a 

traditional multi-line comments that start with /* and end with */ or an end-of-line 

comment that start with / /  and end with a line terminator. JACIE also adopts Java-style 

documentation comment. A separate tool can be developed for program documentations. 

All comments will be ignored by the compiler and will not appear in the generated Java 

codes.

JACIE {
client implementation { 

declaration {
void moveDown(int block, int xclick, int yclick, int yfree) { 

for (int y = yfree; y > yclick; y=y-l)
p [block] [xclick] [y] = p [block] [xclick] [y-1]; 

p[block][xclick][yclick] = blank;
}void moveRight(int block, int xclick, int yclick, int xfree) { 

for (int x = xfree; x > xclick; x=x-l)
p[block] [x] [yclick] = p [block] [x-1] [yclick]; 

p[block][xclick][yclick] = blank;
}

}

}

} ________________________________________________________________

Figure 4.7 A sample code showing JACIE's method declaration
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JACIE features all the basic constructs of procedural programming languages. These 

includes an assignment statement, a method invocation and control flow statements. Most 

of the syntax closely follows the Java style with some exceptions for simplification 

purposes.

The grammar syntax below shows some basic statements in JACIE. The details of each 

statement will be described in different sections of this chapter.

<comment>

ctraditional comment> 
<end of line comment> 
documentation comment> 
ccompound statement> 

cstatement list>
<statement>

{ctraditional comment>}
| {cend of line comment>}
| {cdocumentat ion comment >}
/ *  {ccomment content>} */
// {ccomment content:*} cline terminator>
/** {ccomment content>} * /

{ [cstatement list>] }

{ cstatement> }+
cexpression statement> 

cif then statement:* 
cif then else statement> 
cfor statement> 
cwhile statement> 
creturn statement:* 
cexit statement> 
ccompound statement> 
ctext input statement> 
cprint text statement> 
cclear message bar statement> 
cforeground colour statements 
crefresh screen statements 
cclean canvas statements 
cmove to statements 
cdraw grid statements 
cpaint grid statements 
cdraw line statements 
cdraw image statements 
cdraw string statements 
ccanvas definition statements 
cspecify canvas statements 
cevent control statements 
cpause statements 
csend statements 
cpass turn statements 
cabort session statements

In JACIE, simple assignments to a variable or an array are allowed but compound 

assignments (e.g. +=, -=, *=, /=, etc) and auto-increment/decrement (++, --)  are not. All 

binary operators except assignment operator are left associative. Control flow statements
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for conditional execution of a statement and looping statements for iterations operate the 

same way as in other programming languages. JACIE does not support switch-like 

statement that transfers control to one of several statements.

Syntaxes for assignment and control flow statements are shown below. A sample code 

fragment involving flow control statements is shown in Figure 4.8.

<expression statements ::

<statement expression> ::
<assignment>

<assignee> ::
<if then statement>
<if then else statement>
<for statement>

<for init> :::

<local variable declarations 
<for updates ::
<statement expression lists 
<while statements 
creturn statements :::
<exit statements ::=

= <statement expressions ;

= <assignments | <method invocations 
= <assignees = <assignment expressions 

= <names | <array accesss 
= if ( <expressions ) <statements

= if ( <expressions ) <statements else <statements
= for ( [<for inits] ; [<expressions] ; [<for updates]) 

<statements

= <statement expression lists 
| <local variable declarations

::= <data types <variable declarators
= <statement expression lists

{ estate expressions , } estatement expressions
= while ( eexpressions ) <statements
= return [eexpressions] ;
exi t ;

4.3.7 Input-Output Statements

The JACIE interface includes a one line text field bar for text input and two message bars, 

namely l o c a l m e s s a g e  bar and s e r v e r m e s s a g e  bar, for text output. The two message bars 

are standard features in JACIE-generated programs but the text field bar will only be 

created when the text input statement is in use. By default, a print statement will print on 

l o c a l m e s s a g e  bar. The s e r v e r m e s s a g e  bar will also display system messages throughout 

the active session. The syntax for text input-output statements is shown below.
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on session {
on MOUSECLICK {

if (localBlock == 0 && GETGRID == puzzleGridl) {

if (gridx == xfree) {

if (gridy > yfree)
moveUp(localBlock,gridx,gridy,yfree); 

if (gridy < yfree)
moveDown(localBlock,gridx,gridy,yfree);

}
else if (gridy == yfree) {

if (gridx < xfree)
moveRight(localBlock,gridx,gridy,xfree); 

if (gridx > xfree)
moveLeft(localBlock,gridx,gridy,xfree);

}
}
else {

}

Figure 4.8 A sample JACIE code with flow control statements

ctext input statement> ::= input creceiver list> ;
creceiver list> : : = { cassignee> , } cassignee>
cprint text statement> ::= print [cmessage bar>] [cexpression list>] ;
cclear message bar statement> ::= clear cmessage bar> ;
cmessage bar> ::= servermessage | localmessage

Figure 4.9 shows a complete JACIE program that makes full use of the input-output 

message bars. The program named Echo2, on connection establishment, allows a user to 

type in a string of characters on text input bar and send it to the server. On receiving the 

string, the server will then echo back to the user which will then display it on the server 

message bar. The interaction may continue until the user clicks the disconnect button. 

Figure 4.10 shows the Echo2 program in action.
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J  k  k

* Programmme : Echo2.jacie
* Description : This program creates an application which allows user to send a text
* string to the server. The server then echoes the string back to
* the client.
k  k  j

JACIE {
application name Echo2;
configuration {

host prompt;
port 2222;
username prompt;
about "Echo application by Abdul Samad Haji Ismail"; }

messages {
EchoMe, ServerEcho }

client implementation {
declaration {

string TypeMessage;
string EchoedMessage; }

on canvas { }
on session start { }
on session {

print "Please enter your text";
input TypeMessage;
send EchoMe TypeMessage;
receive ServerEcho EchoedMessage;
print servermessage EchoedMessage; }

on session end {
clear localmessage;
clear servermessage; } }

server implementation {
declaration { string ClientMessage; }
on server start { }
on session start { }
on session {

receive EchoMe ClientMessage;
send ServerEcho ClientMessage; }

on session end { }
on server end { } }

}

Figure 4.9 A sample JACIE program utilising input-output message bars

Usemam*: I Tarcan

| You're a parrot!

Local Mesiage: | Pleaxc entci your text

Server Message: |M e, Tarzan

Figure 4.10 The running Echo2 client program
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Figure 4.11 Standard canvas area for JACIE-generated programs 
with its coordinate system

4.3.8 Graphics Statements

All graphics statements are executed on canvas channel. JACIE’s default canvas 

resolution is 632 by 360. The default size of the resolution of the canvas is in 

consideration to the default resolution for all the JACIE-generated client programs which 

is 640 by 480. The default resolution can be redefined, if necessary, by using canvas 

size statement. The syntax is as follows:

ccanvas size statements ::= canvas size <pair expression> ;

Graphic objects can only be drawn within this area. The coordinate system for the canvas 

starts from (0,0) at the upper left comer with X coordinate increasing to the right and Y 

coordinate increasing downward. Figure 4.11 shows the canvas area of JACIE-generated 

programs with its coordinate system.

JACIE has a sufficient number of graphics statements that can be used for primitive 

graphics and image manipulations. It facilitates effective canvas management and device

independent display by placing its emphasis on a set of grid-based operations. Grids on a
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canvas provide a higher level coordinate system. Instead of addressing each pixel of the 

graphic displays at various resolutions, the grid system gives more logical and manageable 

means to developers and end users alike.

The first two graphics statements are foreground and background. These statements set 

the foreground colour and the background colour of the canvas. There are 13 predefined 

colours in JACIE. If any of the primitive graphics statements do not specify explicitly the 

graphic colour, the foreground colour will be used. By default, the foreground colour is 

black and the background colour is white. The syntax is shown below:

<foreground colour statement> := foreground ccolour name> ;
<background colour statement> := background <colour name> ;
<colour name> := black | blue | green | cyan | red | magenta | 

white | gray j darkgray | lightgray | orange
yellow | 
| pink

crefresh screen statement> := refresh ;
<clean canvas statement> := clean ;

A JACIE-generated program refreshes the canvas after each main event. But there are 

times when a screen refresh is needed at once. The refresh statement is to be used to 

refresh the canvas at any point of execution. The clean statement, on the other hand, is 

used to restore the canvas to the original initial state as defined in on canvas construct. 

This statement is used when more than one canvas is in use (as defined by define 
canvas) and the program logic requires the program to use the original canvas or at any 

other time the canvas needs to be restored to the initial graphic state.

As mentioned earlier, JACIE’s emphasis is on grid-based graphic operations on top of 

absolute positioning operations. The statement that defines the grid location and 

parameters is draw grid. This statement specifies the name of the grid, the upper left 

position of the grid, the number of rows and columns, the cell size, and the grid lines’ 

width and colour. The defined grids are then referred to by name and the cells coordinate 

system. Just like the canvas coordinate system, the upper left cell is referred to as (0,0) 

with X coordinate increases to the right and Y coordinate increases downward.
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Syntactically, it is allowed to define a grid that overlaps with other grids. Extra precaution 

has to be made when defining overlapping grids as only the last operation on the 

overlapped cells is visible and mouse events on overlapped cells may result in unexpected 

outcome. Another graphics statement directly related to grid is paint grid. It will paint 

the specified cell with the given colour name. The syntax is shown below:

<draw grid statement> : : = draw <grid name> [<draw at>] '<draw step>]
[<draw size>] [<draw colours [<draw width>] ;

<grid name> : : = grid <identifier>
<draw at> : : = at <pair expression>
<draw step> : : = step <pair expression>

<draw size> : : = size <pair expression>
<draw colour> : : = colour <colour name>

<draw width> : : = width <expression>

<paint grid statement> : : = paint <grid name> [<draw at>] [<draw colour>] ;

The canvas and the defined grids maintain the state of the drawing context in terms of 

foreground colour and current active coordinate. For the current active point or cell (for 

grid-based), by default, it starts from (0,0). This active point or cell can be set to other 

coordinate by using move to statement as below:

<move to statement> ::= move to [<grid name>] <pair expression> ;
<pair expression> ::= <expression> , <expression>

The current active point or cell is the default value for all primitive graphics statements, 

i.e. draw from for draw line Statement, or draw at for draw image and draw string 
statements. Alternatively these graphics statements may specify explicitly the coordinate 

points required.

JACIE provides three statements for specifying graphic primitives. They are draw line, 
draw image and draw string. The syntax is as follows:

<draw line statement> ::= draw line [<grid name>] [<draw from>] to
<pair expression> [<draw colour>]
[<draw width>] ;



4.3 GRAMMAR 83

<draw image s t at ement > : : = draw image [<grid name>] <expression list> 
[<draw at>] [<draw size>] [<draw flip>] ;

<draw string statement> : : = draw string [<grid name>] <expression list> 
[<draw at>] [<draw font>] [<font size>] 
[<font style>] ;

<draw f rom> : : = from <pair expression>

<draw flip> : : = flip <flip choice>

<flip choice> : : = horizontally | vertically | diagonally
<draw font> : : = font <font type>

<font type> : : = arial | courier | times

<font size> : : = <expression>

<font style> : : = plain | bold | italic | bolditalic

A  line is drawn with the draw line statement by either specifying only the terminal point 

(in this case the current active coordinate or cell will be used as the starting point) or the 

starting point and the terminal point. If a line is to be drawn on the named grid, the starting 

point and the terminal point will be in the middle of the cells. The line colour and the 

thickness can also be specified.

The draw image statement allows an image to be drawn either directly on the canvas or 

relatively on the cell grid. The image can be scaled to a preferred size and can be flipped 

horizontally, vertically or diagonally.

The last primitive graphics statement in JACIE is draw string. This statement will draw 

the specified string either on the canvas or on the grid cell. If the string is drawn on 

canvas, the specified coordinate is the position of the lower left comer of the text. If it is 

drawn on the grid, the text will be on the specified cell two pixels away from the grid lines 

(horizontal and vertical). The font size, type and style can also be specified. The three 

standard font types are arial, courier and times.

In addition to the default canvas specified in on canvas constmct, JACIE also allows 

multiple canvases to be defined. These canvases, specified by define canvas statement, 

may contain primitive graphics statements as well as other statements which can be called 

and displayed, with use canvas statement, at any time during execution. This facility
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allows graphic primitives to be drawn behind the scenes. It also allows different canvases 

to be displayed, be hidden and redisplayed, useful for the purpose of working on different 

canvases or to create animation effects. The syntax for these two statements are shown 

below:

<canvas definition statement> 
<specify canvas statement>

define canvas <identifier> ccompound statement> ; 
use canvas <identifier> ;

Like all other JACIE statements, the graphics statements of JACIE will be translated to 

Java statements. In Java, Abstract Window Toolkit (AWT) drawing system controls when 

and how a program can draw. It also requires rapid execution of p a i n t  and u p d a te  

methods of j a v a .  awt .G r a p h ic s  [60]. As this is not the problem of JACIE, when coding

client implementation { 
declaration {

}
on canvas {

draw image bground at 4 0,0;
draw grid puzzleGridl at 54,60 step 6,6 size 4 0,40 colour lightgray width 1; 
draw grid puzzleGrid2 at 334,60 step 6,6 size 40,40 colour lightgray width 1;

}on session start {
print "Displaying the puzzle pieces... please wait"; 
for (int i=0;i<6;i=i+l) 

for (int j=0;j<6;j=j+1)
draw image grid puzzleGridl p[0][i][j] at j,i; 

for (int i=0;i<6;i=i+l) 
for (int j =0;j <6;j =j +1)

draw image grid puzzleGrid2 p[l][i][j] at j,i;

}
on session {

on MOUSECLICK {
if (localBlock == 0 && GETGRID == puzzleGridl) { 

gridx = GETGRIDX; gridy = GETGRIDY; 
if (gridx == xfree) {

if (gridy > yfree)
moveUp(localBlock,gridx,gridy,yfree); 

if (gridy < yfree)
moveDown(localBlock,gridx,gridy,yfree);

}
}

}for (int i=0;i<6;i=i+l) 
for (int j=0;j<6;j=j+1)

draw image grid puzzleGridl p[0][i][j] at i,j; 
for (int i=0;i<6;i=i+l) 

for (int j=0;j<6;j=j+1)
draw image grid puzzleGrid2 p[l][i][j] at i,j;

}

} ____________________________________________________________________________

Figure 4.12 A sample JACIE code with some graphics statements
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in JACIE, extra care has to be made when mixing the graphics statements with the event 

control statements (to be described below). Otherwise it may destroy the perceived 

performance of the program.

A sample JACIE code employing graphics statements is shown in Figure 4.12. Notice the 

different circumstances where the statements are being used, getgr id , getgridx  and 

getgridy  are predefined system variables (refer the following section).

4.3.9 Event Control Statements

JACIE provides the means to handle different kinds of events generated by some 

predetermined runtime behaviour. In addition to the main events described in Table 4.4, 

other events can be categorised into session events, mouse events and keyboard events.

Table 4.5 lists all the events and describes how the events are triggered. The statement that 

handles these events accordingly is on < e v e n t  > statement, where < e v e n t  > is one of the 

thirteen recognised events.

on WAITING triggered when the required number of online users has not been reached
on OBSERVERCONNECTION triggered when a remote user is assigned an observer status; normally it will be 

used by server process to send the current states of the session
on TURN triggered by the server when the current turn is the user's turn
on GROUPTURN triggered by the server when the current group turn is the user's group turn
on REQUESTCONTROL triggered by the user to flag the server to request for turn (in reservation floor 

control management)
on RESERVATION triggered when the user has made request control but yet to get his turn (in 

reservation floor control management)
on CLIENTABORT triggered when the client abort the program in the middle of the execution
on SERVERABORT triggered when the server abort the program in the middle of the execution
on NEWMESSAGE triggered when message queue is not empty
Mouse Events t ' o ,
on MOUSECLICK triggered when the user clicks a mouse button on the canvas
on MOUSEPRESS triggered when the user presses a mouse button on the canvas
on MOUSERELEASE triggered when the user releases a mouse button on the canvas
Kev Input EvenfS??
on TEXTENTERED triggered when the user types into text field bar and presses enter

Table 4.5 JACIE-handled events
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<event control statement> : = on <event> <statement>
<event> : = WAITING | OBSERVERCONNECTION | TURN | GROUPTURN | 

REQUESTCONTROL | RESERVATION | SERVERABORT | 
CLIENTABORT | NEWMESSAGE | MOUSECLICK | MOUSEPRESS | 
MOUSERELEASE | TEXTENTERED

<pause statement> :=wait <expression> ;

JACIE-handled events are closely related to some JACIE system variables. These system 

variables can be referred to in place of expressions (refer <e x p r e s s i o n  syntax). The 

predefined system variables are shown below:

<system variable> : : = USERNAME | USERNUMBER | GROUPNUMBER |
CURRENTTURN | CURRENTGROUPTURN | MESSAGEID |
GETX | GETY | GETGRID | GETGRIDX | GETGRIDY |
GETTEXT

As their names imply, username returns the username as specified by the remote user 

itself and usernumber returns the usemumber assigned by the server upon establishing 

connection, groupnumber returns the user’s group number assigned by the server in a 

group environment when the required number of online users has been met. currentturn 

returns the current turn assigned by the server in non-contention server-mediated 

interaction environment. Similar to currentturn, the groupturn returns the current 

group turn. In contention-style floor management, currentturn and groupturn are not 

applicable.

Other system variables are to be used in conjunction with event statements. Initially these 

system variables have null values. When the expected events are triggered, the respective 

system variables will return a value which can be referred to accordingly. On mouse 

events for example, getx and gety will return the absolute coordinate of the canvas at 

which the event occurred. If it has occurred on the defined grid, the grid name referred to 

as getgrid  and the cell coordinates referred to as getgridx  and getgridy  will return the 

required values. Similarly, gettext will return a string after the user presses enter key at 

the text field bar. On the other hand, m essageid  can be used in conjunction with on 

newmessage statement or independently before r e c e i v e  statement to ensure that the right
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on session start { 
on WAITING {

// statements executed while waiting for more users

}
// statements executed after number of expected users met

}
on session {

on MOUSECLICK {
if (localBlock == 0 && GETGRID == puzzleGridl) { 

gridx = GETGRIDX; gridy = GETGRIDY;

}

}
on NEWMESSAGE {

}
} ____________________________________________________________________________

Figure 4.13 A sample JACIE code showing some event control statements

message is read from message queue. A sample code fragment involving event control 

statements, together with the related system variables, is shown in Figure 4.13.

4.3.10 Communication Statements

The final category of JACIE statements is communication statements. These statements 

specify interaction primitives for communicating client processes and server processes. 

The two important statements are send  and r e c e i v e .  Since every sent message needs to 

be received, and vice-versa, they must be used in pair. The interaction should occur within 

the same session construct of c l i e n t  im p le m e n ta t io n  and s e r v e r  im p le m e n ta t io n .  

Failure to ensure this pair operates in synchronisation will lead to a runtime error.

Each pair of sen d  and r e c e i v e  statements should specify the message identifier defined 

earlier in m e ssa g e s  construct. This is followed by the data to be sent or received. JACIE 

allows any type of data to be sent. Implementation-wise, this data will be converted and 

wrapped before it can be sent, and it will be unwrapped and reconverted before it can be 

received. A list of data separated by commas can be sent through one send statement and
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the received statement has to receive the list accordingly. The syntax for communication 

statements is shown below.

<send statement> ::= send <identifier> [<expression list> 
[ to <send choice> ] ] ;

<send choice> ::= server | all | others | group

creceive statement> ::= receive <identifier> [creceiver list>] ;
<pass turn statement> := pass turn [<expression>] ;

<abort session statement> : = abort ;

The send statement also allows sending of data either in point-to-point or one-to-many 

mode. By default a sen d  statement specified at the client is directed to the server, and a 

sen d  statement specified at a server is directed to the client. But if there are times when 

sending of data is meant for all the online users (including the client itself), t o  a l l  phrase 

can be used. On the other hand, if sending of data is meant for all the online users except 

for the client, t o  o t h e r s  phrase is to be used. Sending of data can also be made to 

members of the group with t o  group phrase.

Another important communication statement which is used in multi-user and group 

interactions is p a s s  turn . The statement p a s s  tu rn ,  without parameter, will inform the 

server that the client has used his turn and it is up to the server to determine the next turn. 

The client can also pass his turn to a specific user by specifying the other party’s 

usernumber. In inter-group interaction, if one member of the group passes the turn his 

action will represent the group decision. The subsequent p a s s  tu r n  statement by the 

group members will be ignored by the server.

The final communication statement in JACIE is a b o r t .  This statement will abandon the 

current session state and move to the next state. If it occurs at client logic, the server will 

be notified. Similarly, if it occurs at server logic, the client will be notified.

A sample JACIE code fragment with communication statements highlighted is shown in 

Figure 4.14. Notice how the sen d  and r e c e i v e  statements are handled in pairs.
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messages {
puzzleBlock, remoteX, remoteY

}
client implementation { 

declaration { ... }
on canvas { ... }
on session start {

receive puzzleBlock localBlock;

}on session {
on MOUSECLICK {

send remoteX gridx; send remoteY gridy;

}
on NEWMESSAGE {

receive remoteX rgridx; receive remoteY rgridy;

}
on session end { ... }

}server implementation { 
declaration { ... }
on server start { ... }
on session start {

block = USERNUMBER - 1; 
send puzzleBlock block;

}
on session {

on NEWMESSAGE {
receive remoteX x; receive remoteY y;
send remoteX x to others; send remoteY y to others;

}
}on session end { ... }
on server end { ... }

Figure 4.14 A sample JACIE code showing communication statements

4.4 Interfacing to Java Language

Considering that some applications may require functions which JACIE cannot supply, 

JACIE compensates this by providing a means to interface with the Java language. This 

facility enables experienced programmers to utilise Java for the implementation of 

complex code segments, for example, complicated graphics, numerical computation, or 

logic control. All reference to a Java class should have Java_*  prefix. Java codes can also 

be embedded in the JACIE script by a special tag as follows and will be copied directly to 

the client or the server program.
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int x [5] = {100, 200, 250, 50, 100}; // JACIE code
int y [5] = {50, 50, 200, 200, 50}; // JACIE declaration and

// initialisations
Java { // Java code

public void paint (Graphics g) { // calling Java method
g.setColor(Color.blue);
g .fillPolygon(JACIE_x, JACIE_y, 5) ;

}
}

// JACIE code

Figure 4.15 A sample Java code segment in a JACIE program

<embedded java code> : := Java {
<java codes>

}

All reference to JACIE variables within the Java construct should have j a c i e _* prefix. 

Figure 4.15 shows a sample Java code segment in a JACIE program.

4.5 Summary

This chapter has described the specifications of the JACIE language. The design 

specifications of this language are based on the design principles discussed in Chapter 3. 

With its template-based style, a syntax-directed editor [92] could be developed to simplify 

the coding of JACIE scripts. The chapter has also showed how the scripting language of 

JACIE, with many high level abstractions, simplifies the process of developing interactive 

and collaborative environment applications. To ease the programming effort further, 

JACIE uses a “single program” to specify both server and client processes. It is the 

compiler’s job to generate server and client programs to run on different computers. With 

its capability to interface with Java, many other Java high-level data types can be used in 

addition to its simpler built-in low-level data types. This feature also enables experienced 

programmers to utilise Java for the implementation of complex code segments. A 

prototype JACIE compiler has been developed based on this specification.



Chapter 5 

Compiler Implementation

A prototype of the JACIE Compiler has been developed to translate JACIE source codes 

into Java as the target language. Conventional abstractions and programming interfaces 

were considered in the design process so that it would be much easier to understand and 

implement. This chapter discusses the compiler construction methodology used 

throughout the development process.

5.1 Application Frameworks

The JACIE compiler adopts certain frameworks for its generated target codes. While this 

is hidden from the JACIE programmers, the effective and efficient frameworks determine 

the usefulness of the compiler as well as the effectiveness and the efficiency of the 

generated codes.

5.1.1 Session Management Protocol and Delivery Management Protocol

The JACIE’s session management protocol and delivery management protocol are in 

addition to floor management protocol and group management protocol previously 

introduced in Chapter 3. Unlike the floor management protocol and the group management

91
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protocol, which are high-level protocols, the session management protocol and the 

delivery management protocol are low-level protocols.

JACIE adopts Transmission Control Protocol (TCP) for its session management. TCP has 

been chosen instead of User Datagram Protocol (UDP) because it provides a number of 

mechanisms which implement quality of service (QOS) over the connectionless, non

guaranteed Internet Protocol (IP) layer. Some mechanisms of TCP [79] among others, 

which directly contribute to JACIE-generated applications are as follows:

• virtual streams — The connection-oriented stream socket is continuously open for 

communication at all time. This facility provides an active point-to-point connection 

between the client machine and the server machine.

• guaranteed unique delivery — A sequence number is assigned to each segment 

transmitted. Upon receiving the segment a checksum is performed. Based on this 

checksum, the receiving end either responds with acknowledgement (ACK) (if data is 

intact) or retransmission required (if data is corrupted or missing). After all the 

segments have been fully transmitted they are reordered to form the original TCP 

packet. This facility ensures reliable data transmission.

• full-duplex transmission — TCP connections simultaneously transmit and receive data. 

This facility saves transmission time compared to a half duplex connection which 

requires a turnaround signal.

JACIE does not reserve any specific port for its network service. It is up to the application 

programmer to assign a port number. As long as each one has a different port number and 

this number is not in conflict with active well-known ports, any number of JACIE- 

generated server processes can be run concurrently. In short, TCP may involve network 

overhead but a reliable data transfer is of more importance for JACIE-generated 

applications.

Delivery management deals with message transfers from the client to the server and vice- 

versa during the interactivities. Messages of various types have to be delivered, interpreted
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Figure 5.1 JACIE message in relation to other network layers

and responded to accordingly. JACIE manages messages by appending a header to any 

message to be transmitted. The header is a message identifier and, as its name implies, 

identifies the type of message to be delivered. Upon receiving this message the respective 

session handler (to be called later as session assistant) will recognise the type of 

message and will act accordingly or will forward to the logic handler (called delivery 

assistant, if it is on a server, or the client program, if it is on a client) for further 

actions.

Figure 5.1 shows how a JACIE message is encapsulated within TCP/IP protocols before it 

is delivered. It also shows a message identifier as the header for the JACIE message. In 

general JACIE message identifiers are classified as either of type system-defined or of 

type user-defined. The system-defined message identifiers are associated with JACIE 

standard messages while the user-defined message identifiers are those defined by the 

application programmer and are to be used in application logic. Each one of the system- 

defined message identifiers will be explained in Section 5.1.4. User-defined message 

identifiers are to be used in conjunction with send and receive facilities.
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5.1.2 Socket Programming and JA CIE’s Collaborative Architecture

Socket programming [33,79] has been chosen for the underlying network programming 

structure for this research. It is expected to give better performance, and through higher- 

level abstractions of the JACIE language, the complexities are not apparent. Another 

strong, but complicated feature of Java is multithreading which has been encapsulated in 

the JACIE language. The multithread issues such as synchronisation (i.e., to prevent 

deadlock, race condition and starvation) and scheduling of resources has been made 

invisible to the JACIE programmer.

In a normal stream socket networking model of a client/server environment [33,79], a 

server process runs on a specific computer and has a socket that is bound to a specific port 

number. The server waits and listens to the socket for a client to make a connection 

request. Any client computer requesting a connection should know the hostname of the 

server or its IP address on which the server process is running and the port number to
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Figure 5.2 General model for network connections between clients and server



5.1 APPLICATION FRAMEWORKS 95

which the service is connected. If the client’s request is accepted, the server allocates a 

new socket for a private connection. Further communications between the client and the 

server are through this private connection. The server then continues to listen to the 

original socket so that more clients can establish connection and make use of the offered 

network service. Figure 5.2 illustrates the network connections between clients and server.

Besides handling new connections and assigning new sockets, the server has to read from 

or write to many sockets which are connected to many clients. The server can service them 

simultaneously through the use of a multiple thread — one main thread which handles 

new connections and another thread per client for a private connection.

As shown in Figure 5.2, the role of client handlers is self-contained to a particular client. 

The client/server interaction for individual connections can take place independent of 

other connections. The application logic may also be placed in this client handler.

Realistically, the model shown in Figure 5.2 is inadequate if it is to be applied to most 

interactive and collaborative applications. This research has shown that the role of the 

server is often more than just to establish and to maintain clients’ connections. In addition 

to managing active connections, the server for an interactive and collaborative application 

is also responsible for:

i. managing the shared and individual program logic,

ii. managing multiple clients’ interactivities in an orderly manner,

iii. managing inter-group and intra-group collaboration.

The new extended model is introduced and adopted in consideration of the server’s 

multiple roles and is illustrated in Figure 5.3.
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Figure 5.3 Extended model for networked interactive and collaborative applications

As shown in Figure 5.3 the server’s multiple roles are manifested by different managers 

and assistants. On the server side there are session manager, session assistant, 

delivery manager, delivery assistant, floor control manager and group 

manager. On the client side there is a client session assistant which is the front-end 

of the client program. Table 5.1 lists the function of each manager and assistant.
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Manafier/Assistajat Names 4̂S.*. î'./l-w:--,.,:. 1- I-,..-*--. ,'.f. •, . f V a

Session Manager Manages joining of remote users at arbitrary time; keeps track of all client 
handlers.

Session Assistant Handles the active connection of each specific client; informs Session 
Manager of departing client; forwards client messages to and from 
Delivery Assistant

Delivery Manager Manages the shared server application logic; maintains program states and 
behaviours

Delivery Assistant Handles private or client-specific application logic; maintains client- 
specific program states and behaviours

Floor Control Manager Coordinates users’ turn accordingly in multiuser and group environments
Group Manager Manages grouping and intra-group interaction
Client Session 
Assistant Client’s front-end communicator; forwards server messages to and from 

client program.

Table 5.1 Functions o f  Managers and Assistants in interactive and collaborative applications

The extended model also shows the use of queues between s e s s i o n  a s s i s t a n t  and 

d e l i v e r y  a s s i s t a n t ;  c l i e n t  s e s s i o n  a s s i s t a n t  and c l i e n t  program. Queues are 

needed to guarantee the order of message deliveries.

5.1.3 Multithreading

Threads are adopted to allow parallelism or pseudo-parallelism to be combined with 

sequential execution and blocking system calls [141]. Threads (or sometimes called 

lightweight processes) are normal features in distributed applications [79,112,142].

Implementation based on the above models is made possible with the use of multiple 

threads. The concurrent running threads solve the problem of hanging while the server is 

waiting for new connections. Another benefit of threading is, by having a thread 

associated with each client, the client’s connection and application logic can be dealt with 

independently. Referring to the extended model, the s e s s i o n  manager’s process will also 

be running in the main thread. It will continuously listen for client connection requests on 

the server socket. For each successful client connection two other threads are created — 

one for the s e s s i o n  a s s i s t a n t  and one for the d e l i v e r y  a s s i s t a n t .  Hence the 

interactions (reading and writing) between the server s e s s i o n  a s s i s t a n t  and the c l i e n t
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s e s s i o n  a s s i s t a n t  may proceed through the data socket. Upon receiving messages from 

the client, if the messages are related to the application logic they will be sent to the 

message queue which will be picked up by the d e l i v e r y  a s s i s t a n t  for actions and 

response.

In server-mediated interactive applications and group collaborative applications, the 

d e l i v e r y  a s s i s t a n t  coordinates its tasks with other managers. It has to refer to the 

d e l i v e r y  manager for shared resources. It has to inform the f l o o r  c o n t r o l  manager  

upon completing his turn so that the f l o o r  c o n t r o l  manager will assign a new turn 

accordingly and inform all other active clients through the s e s s i o n  manager. It also 

refers to the group manager for groupwork activities.

The benefit from multiple threads is not without a cost. Performance of the server may be 

degraded if  it is not implemented carefully. New problems may arise when attempting to 

share resources which may lead to unexpected results. And above all, programming 

multithreaded applications is a real challenge.

Race condition may occur between the threads when attempting to access data more or 

less simultaneously and getting the wrong result [112,141]. This problem can occur in the 

queues employed between the s e s s i o n  a s s i s t a n t  and the d e l i v e r y  a s s i s t a n t  as well 

as between the c l i e n t  s e s s i o n  a s s i s t a n t  and the c l i e n t  program. Race condition 

may also occur in the d e l i v e r y  manager which maintains some shared resources to be 

accessed by all instances of the d e l i v e r y  a s s i s t a n t s .

Another issue that needs to be considered in multithreaded programming is to ensure 

fairness to several concurrent threads which are competing for common resources. By 

definition, a system is fair when each thread gets enough access to limited resource to 

make reasonable progress [23]. Part of being fair is to prevent starvation and deadlock. 

Starvation is a situation in which all the programs continue to run indefinitely but fail to 

make any progress [111,141]. This is a common phenomenon in any kind of resource 

allocation scenario. Deadlocks in distributed systems, like the proposed model, are similar
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to deadlocks in single processor systems, only worse. They can be communication 

deadlocks and resource deadlocks [142]. In multithreading programming a deadlock 

happens when a thread holding a lock is waiting for a lock that is held by another thread 

while the other thread is waiting for a lock held by the first thread [112,120]. Referring to 

the above model, the situation can happen in all the managers and the assistants.

JACEE has addressed these complexities and issues of multithreading by hiding it 

completely from the user but at the same time has used it wisely and safely in the 

generated Java codes.

5.1.4 JACIE-aware Interactivities

Network connection messages are communication messages operating at the system level. 

This type of message deals with connection and disconnection of the virtual stream socket. 

The collaborative system messages are application messages predefined in JACIE to 

support basic interactivities between the client and the server. These messages are 

distinguished by their system-defined message identifiers. Unlike network connection 

messages, not all predefined collaborative system messages are used by the applications. 

Different types of collaborative applications require different collaborative system 

messages. The last type of messages, namely application messages, are application- 

specific messages and are to be delivered, interpreted and responded by the running client 

and server processes. As mentioned above, the application messages are distinguished by 

their user-defined message identifiers. The proposed scripting language JACIE allows the 

declaration of these message identifiers so that they can be used in conjunction with send 

and receive statements. The first two message types are hidden behind the scenes and the 

generated programs will handle these messages accordingly.

Detailed discussions of the three categories of messages and their purposes are presented 

below. Since client-server interactivities start when a client computer issues a connection 

request from a waiting server, only three main events are considered. The events are on
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Figure 5.4 Server-based interactivities

session start, on session, and on session end. The other two server events, on server start 

and on server end, are mainly for housekeeping purposes.

Server-based Interactivities

Figure 5.4 shows typical server-based interactivities. Among the different types of 

interactivities this is the simplest of all. Besides the standard network connection messages 

for establishing and terminating the connection, there are some minimal collaborative 

systen messages involved. These collaborative system messages are for [oooi] sending 

usermme, [0002] receiving acknowledgement that the username is being accepted, 

[ooii] receiving start session flag to indicate that the session may start and [0018] 

infoming the server of end of session. The numbers in square bracket “ [ ... ] ” represent
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system-defined message identifiers. Another system message that may be applicable to 

this type of interactivity is [0005] number of users exceeded. This message may be sent 

by the server to a new client if the application limits the number of concurrent users and 

this limit has been reached. The figure also shows that message passing for application 

messages may take place during the three main events. These are the only messages that 

need to be dealt with by the JACIE programmer.

Server-mediated Interactivities

Figure 5.5 shows some typical server-mediated interactivities. As expected this type of 

interactivity is more complicated than the first one. The network connection messages are 

standard features. During an on s e s s i o n  s t a r t  more system messages are passed 

between the server and the clients. Besides the regular [0001] username, [0002] 

username accepted and [0011] start session, other collaborative system messages 

involved are [0007] user number, [0008] online users, [0009] waiting and [0010] 

waiting over. The user number message sent by the server contains the client’s user 

number which later is used in conjunction with turn message to determine whether the 

current turn is his or her turn. Also, during this stage, the client will receive several online 

user messages which contain information on the current online users — their usernames 

and user numbers. The server will also inform other online users of his or her presence. If 

the number of users imposed has not been reached, the server will also send a waiting flag 

to notify all online users to wait for more new connections. As expected, a waiting event 

will be generated. Again if a new connection is successfully established the new online 

users will be notified to all. System message waiting over will be sent to all if  enough 

users are currently online and only then the session will start.

During the active session at least two more collaborative system messages will be in use 

(if floor control protocol is not contention). The messages are [0014] turn and [0016] 

pass turn. The turn message carries the current turn number from which a turn event will 

be generated if the current turn number matches the user number. When the user passes his
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Figure 5.5 Server-mediated interactivities

or her turn, a pass turn message will be sent to the server, and the server (with the help of 

floor control manager) will notify others of a new turn. The process goes on until the 

session is ended.

Also shown in Figure 5.5, message passing for application messages can occur in many 

situations. The first one is when waiting event is generated and the second is after the 

number of users set has been reached but before the main session starts. During the active
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session message passing can occur in at least 3 situations — at any time during the session, 

during his or her turn and after he or she passes the turn. Not all situations need to be 

considered by the JACIE programmer. It all depends on the application requirements.

There are also other messages that may be delivered but not shown in the figure. They are 

[0003] username accepted with observer status, [0004] username similar to the existing 

online user, [0005] number of users exceeded, [0006] number of users and observers 

exceeded and [0017] reserve turn. The proposed tool supports the management of online 

users with an observer status. Unlike the regular users, the observers can get the current 

state of the running application but as passive viewers they are not part of the collaborative 

users. The observers can join and leave at any time without interrupting the active session 

flow. JACIE also requires the username to be unique. When the server recognises that the 

username sent is similar to the existing user or the number of users exceeded or the 

number of observers exceeded, the client computer will be notified, a special message will 

be displayed and the connection will be terminated gracefully. A reserve turn message is a 

special message used in conjunction with the reservation floor control protocol. This 

message is issued by the client and the server, upon receiving it (with the help of f l o o r  

controL manager), will place the user’s turn in queue.

Group Collaboration Interactivities

Interactivities between clients and servers in group collaboration applications are quite 

similar to the server-mediated interactivities discussed above. As shown in Figure 5.6 the 

obvious difference is two additional messages in on s e s s i o n  s t a r t  phase. The messages 

are [0012] user’s group number that notifies which group the user belongs to and 

[0 0 1 3 ] user-group information that associates all online users with available groups.

As mentioned earlier, in JACIE’s group management, the server does not determine an 

individual group member’s turn but rather it needs to be resolved at the group level. For 

that reason, in on s e s s i o n  phase, the turn message is replaced with [0015] group turn. In
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Figure 5.6 Group collaboration interactivities

effect, if one member of the group sends [0016] pass turn message, his action will 

represent the group decision. Other p a s s  tu r n  messages sent by any of the group 

members will be ignored by the server.
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Identifier: Identifier Definition ‘f y  * , . Interaction Type :

0001 Username / / /
0002 Username accepted / / /
0003 Username accepted with observer status / /
0004 Username similar to the existing online users / /
0005 Number of users exceeded / /
0006 Number of users and observers exceeded / /
000 7 User number / /
0008 Current online users (their user numbers and names) / /
0009 Waiting for more users / /
0010 Enough users -  ready to start / /
0011 Start session / / /
0012 User's group number /
0013 User-group information (User numbers and group numbers) /
0014 Turn number /
0015 Group turn number /
0016 Pass turn / /
0017 Reserve turn / /
0018 Terminate connection / / /

Table 5.2 JACIE's system-defined message identifiers

Table 5.2 lists all the system-defined message identifiers supported by JACIE. As far as 

the JACIE programmer is concerned, all these are carried out behind the scenes.

5.2 Compiler Tools

5.2.1 Java-based Compiler Tools

There are several Java-based compiler development tools. They include JavaCC (Java 

Compiler Compiler, which previously was known as Jack), JLex (Java Lexical Analyzer), 

JFlex (Java Fast Lexical Analyzer) and CUP (Constructor of Useful Parsers). JavaCC 

[140] which was released by Sun is used to automatically generate parsers with an 

integrated lexical analyser. During the initial development stage of the JACIE Compiler, 

the JavaCC release 0.5 was an unfinished product [100], Recently its new release showed 

many improved features. One of the significant features of JavaCC is in its capability to 

generate top-down (recursive descent) parsers as opposed to bottom-up parsers generated 

by yacc-WkQ tools. Additional features are the integration of lexical and grammar
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specifications in one file, a tree building preprocessor, documentation generation, etc [101, 

151].

JLEX [14], developed at Princeton University, on the other hand, was quite a mature 

product even at its early release. This lexical analyser generator works together with CUP 

[78]. JLex and CUP follow closely to the well-known lex and yacc [11]. An optimised 

version of JLex, JFlex, [94] provides a faster and efficient implementation. Due to the 

wide availability of reference materials on JLex/JFlex and CUP [5] they were adopted in 

the development of JACIE compiler. JFlex was chosen for its faster operations as 

compared to JLex.

5.2.2 JFlex —  Java Fast Lexical Analyser

JFlex uses regular expressions for specifying lexical tokens. This abstraction is used in 

many modem compilers. The formalism adopted by JFlex is the finite automaton. The 

specifications include keywords, operators, comments and literals. JFlex specifications 

also include lexical rules, regular expressions and actions (written in Java code) which are 

executed when the scanner matches the associated regular expression. The language- 

specific regular expressions were converted to nondeterministic finite automata (NFAs) 

and then converted to deterministic finite automata (DFAs). The final output of JFlex is a 

Java class named s c a n n e r  — a lexical analyser that interpretes the DFA and returns the 

token values to be used in the next phase of the compiler.

5.2.3 CUP —  Constructor of Useful Parsers

Like JFlex, CUP also complies with another useful abstraction used in the modem 

compilers for parsing - context-free grammars. It is a tool for generating Look-Ahead 

Left-to-Right (LALR) parsers from simple specifications. It serves the same role as the 

widely used yacc [88], CUP written in Java, uses embedded Java codes, and produces 

parsers which are implemented in Java. The CUP specifications consist of package and
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import specifications, user code components, symbol (terminal and non-terminal) lists, 

precedence declarations and the language grammar.

The package specification is optional and is used to bundle related classes generated by 

the CUP. The import specification is also optional and the package name specified will be 

copied to the source file for the parser class allowing various classes from that package to 

be used directly in user-supplied action codes. A series of optional declarations that allow 

user code to be included as part of the generated parser is specified in user code 

components. The symbol lists, precedence declarations and the grammar are for syntax 

analysis and semantic actions.
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Figure 5.7 Software architecture o f  JACIE
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5.3 JACIE Compiler Environment

Figure 5.7 illustrates the software architecture of JACIE. It shows the different layers of 

processes that a JACIE script has to go through before it can be deployed. In general, like 

any other compiler environment, the JACIE scripts will undergo a lexical analysis and a 

syntax parsing process. During the code generation process, several JACIE compiler 

classes will be used. The explanation below gives a detailed outlook of the development 

environment.

5.3.1 Lexical Analysis

Lexical specifications of the JACIE language have been written in JFlex format. They 

consist of macro declarations which are abbreviations for regular expressions.

The code below is one part of the JFlex specifications for the JACIE language.

/* main character classes */
LineTerminator = \r|\n|\r\n 
InputCharacter = [A\r\n]
Whitespace = {LineTerminator} | [ \t\f]
/* comments */
Comment = {TraditionalComment} | {EndOfLineComment} | {DocumentationComment}
TraditionalComment = "/*" [**] (CommentContent} \*+ "/"
EndOfLineComment = "//" {InputCharacter}* {LineTerminator}
DocumentationComment = "/**" {CommentContent} \*+ "/"

CommentContent = ( [A*] | \*+[A*/] )*
/* identifiers */
Identifier = [:jletter:] [:jletterdigit:]*

/* integer literals */
IntegerLiteral = 0 | [1-9] [0-9]*

/* floating point literals */
FloatLiteral = {FLitl}|{FLit2}|{FLit3}|{FLit4}

FLitl = [0-9]+ \. [0-9]+ {Exponent}?
FLit2 = \. [0-9]+ {Exponent}?
FLit3 = [0-9]+ {Exponent}
FLit4 = [0-9]+ {Exponent}?
Exponent = [eE] [+\-] ? [0-9] +

/* string literals */
StringCharacter = [A\r\n\"\\]__________________________________________________



5.3 JACIE COMPILER ENVIRONMENT 109

The macros shown are for comments, identifiers and numeric data literals. As shown 

above and as described in Chapter 4, JACIE supports three types of comments, namely 

T rad it iona lC om m en t,  EndOfLineComment and DocumentationComment. This is 

followed by the i d e n t i f i e r  macro which matches each string that starts with a character 

of j l e t t e r  followed by zero or more characters of class j l e t t e r d i g i t .  The j l e t t e r  and 

j l e t t e r d i g i t  correspond to the Java function C h a r a c te r ,  i s  J a v a l d e n t i f  i e r S t a r t  and 

C h a r a c t e r . i s J a v a l d e n t i f  i e r P a r t .  Also shown are macros for I n t e g e r L i t e r a l  and 

F i o a t L i t e r a i .  They follow the standard formats for integer and floating point literals.

The following JFlex code shows some of the lexical rules that represent keywords, 

literals, comments and identifiers for the JACIE language. The returned token values will 

be used by CUP.

/* keywords */
11 int"
"float"
"boolean"
"string"
"image"
"JACIE"
"java"
"application"
"applet"
"app1et1aunche r" 
"text11 
"name"
"conf igurat ion" 
"messages" 
"client"
"server"
"implementation"

{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol
{ return symbol 
{ return symbol
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol 
{ return symbol

sym.INT); } 
sym.FLOAT); } 
sym.BOOLEAN); } 
sym.STRING); } 
sym.IMAGE); }
sym.JACIE); } 
sym.JAVA); }
sym.APPLICATION); }
sym.APPLET); }
sym.APPLETLAUNCHER); }
sym.TEXT); }
sym.NAME); }
sym.CONFIGURATION); }
sym.MESSAGES); }
sym.CLIENT); }
sym.SERVER); }
sym.IMPLEMENTATION); }

/* separators */11 ̂ II 
11 J II 
II | II 
II | II

{ return symbol(sym.LPAREN) 
{ return symbol(sym.RPAREN) 
{ return symbol(sym.LBRACE) 
{ return symbol(sym.RBRACE)

/* operators */II _ II 
II >  II 
II ̂ II 
II | It

return symbol(sym.EQ); 
return symbol(sym.GT); 
return symbol(sym.LT); 
return symbol(sym.NOT);
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/* boolean literals */ 
"true"
"false"

{ return symbol(sym.BOOLEAN_LITERAL, new Boolean(true)); }
{ return symbol(sym.BOOLEAN_LITERAL, new Boolean(false)); }

/* null literal */ 
"null" { return symbol(sym.NULL_LITERAL); }

/* string literal */ 
\" { yybegin(STRING); string.setLength(0); }

/* numeric literals */ 
{IntegerLiteral} { return symbol(sym.INTEGER_LITERAL, new Integer(yytext())); }

{FloatLiteral} { return symbol(sym.FLOATING_POINT_LITERAL,
new Float(yytext().substring(0,yylength()-1))); }

/* comments */ 
{Comment} { /* ignore */ }

/* whitespace */ 
{WhiteSpace} { /* ignore */ }

/* identifiers */ 
{Identifier} { return symbol(sym.IDENTIFIER, yytext()); }

5.3.2 Syntax Parsing

A CUP specification has a preamble. This preamble declares list of terminal and non

terminal symbols, followed by the JACIE grammar rules.

There were 166 terminal symbols and 169 non-terminal symbols declared in the prototype 

of the JACIE compiler. Below are parts of the code from the jacie. cup file that declare 

the terminal and non-terminal symbols. The terminal symbols are related to the ones 

defined in the lexer described earlier.

terminal JACIE;
terminal JAVA;

terminal APPLICATION;
terminal APPLET;
terminal APPLETLAUNCHER;
terminal TEXT ;
terminal NAME;
terminal CONFIGURATION;
terminal MESSAGES;
terminal CLIENT;
terminal SERVER;
terminal IMPLEMENTATION;

// data types
terminal INT, FLOAT, BOOLEAN, STRING, IMAGE;
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// symbols
terminal LPAREN, RPAREN, LBRACE, RBRACE, LBRACK, RBRACK; 
terminal SEMICOLON, COMMA, UNDERSCORE, EQ;

// literals
terminal java.lang.Number INTEGER_LITERAL; 
terminal java.lang.Number FLOATING_POINT_LITERAL; 
terminal java.lang.Boolean BOOLEAN_LITERAL; 
terminal java.lang.String STRING_LITERAL; 
terminal java.lang.String IDENTIFIER; 
terminal NULL LITERAL;

// expressions
non terminal Expression assignment; 
non terminal Expression assignment_expression; 
non terminal Expression conditional_expression; 
non terminal Expression conditional_or_expression; 
non terminal Expression conditional_and_expression; 
non terminal Expression inclusive_or_expression; 
non terminal Expression exclusive_or_expression;

// statements
non terminal Statement compound_statement; 
non terminal StatementList compound_statement_option; 
non terminal StatementList statement_list; 
non terminal Statement statement;
non terminal Statement expression_statement; 
non terminal Statement if_then_statement; 
non terminal Statement if_then_else_statement; 
non terminal Statement for_statement; 
non terminal Statement while_statement; 
non terminal Statement return_statement; 
non terminal Statement exit_statement; 
non terminal Statement text_input_statement; 
non terminal Statement print_text_statement;

Below is another extract from the j a c i e .  cup file. It shows a sample of JACIE grammar 

rules for c l ie n t_ p r o g r a m _ im p le m e n t a t io n  and ser v er_ p ro g r a m _ im p le m en ta t io n .

client_program_implementation
::= DECLARATION variable_and_method_declaration_statement

ON CANVAS LBRACE compound_statement_option:slistl RBRACE 
{: new OnCanvasStatement(slistl); :}
ON SESSION START LBRACE compound_statement_option:slist2 RBRACE 
{: new OnSessionStartStatement();
OnSessionStartStatement.init(slist2,1); :}
ON SESSION LBRACE compound_statement_option:slist3 RBRACE 
{: new OnSessionStatement();
OnSessionStatement.init(slist3,1); :}
ON SESSION END LBRACE compound_statement_option:slist4 RBRACE 
{: new OnSessionEndStatement();
OnSessionEndStatement.init(slist4,1); :}
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server_program_implementation
::= DECLARATION variable_and_method_declaration_statement

ON SERVER START LBRACE compound_statement_option:slistl RBRACE 
{: new OnServerStartStatement(slistl); :}
ON SESSION START LBRACE compound_statement_option:slist2 RBRACE 
{: OnSessionStartStatement.init(slist2,2); :}
ON SESSION LBRACE compound_statement_option:slist3 RBRACE 
{: OnSessionStatement.init(slist3, 2) ; :}
ON SESSION END LBRACE compound_statement_option:slist4 RBRACE 
{: OnSessionEndStatement.init(slist4,2); :}
ON SERVER END LBRACE compound_statement_option:slist5 RBRACE 
{: new OnServerEndStatement(slist5); :}

Since a compiler should do more than recognising whether or not a sentence belongs to the 

grammar of a language, a semantic analysis is required.

5.3.3 Semantic Analysis and Translation

Semantic actions of the JACIE language are encoded as fragments of Java program code 

attached to grammar productions of CUP specifications. Referring to the above CUP 

specifications, these semantic actions appear in the right side as code strings within {: ... 

:} delimiters. Whenever the parser reduces a rule, it will execute the corresponding 

semantic action fragment. Abstract syntax of JACIE statements are among other codes 

specified in these fragments. The translation of abstract syntax into Java codes completes 

the JACIE compiler processes. Since the target language is Java which is a high level 

language, other phases of a compiler are not implemented in the JACIE compiler.

Table 5.3 lists all the supporting components of the JACIE compiler together with their 

corresponding descriptions. The compiler consists of a collection of Java codes generated 

by JFlex and CUP, abstract syntax of JACIE statements and Java code templates for client 

and server programs. Other files are supporting Java classes called during the compilation 

of JACIE programs and some precoded classes automatically integrated into the client and 

server programs.
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J)escriDtionI • „ , . /*
jacie.flex The JFlex lexical specification of the JACIE language.
jacie.cup The CUP specification that contains the JACIE grammar 

rules and semantic actions.
Scanner.j ava JACIE lexical analyser class (generated by JFlex upon 

compilation of jacie. flex)
parser.j ava The Java class that contains a production table and an action 

table (generated by CUP upon compilation of j acie. cup)
sym.j ava The java class that contains symbol constants (generated by 

CUP upon compilation of j acie. cup)
Lexer.j ava An interface class called by scanner .java (supplied by 

CUP)
EscapedUnicodeReader.java A utility class to handle UNICODE characters (supplied by 

CUP)
Timer.java A utility class to determine compilation time (supplied by 

CUP).
jaciec.bat A DOS batch file that provides a shortcut for compilation of 

programs written in JACIE script.
JACIECParser.j ava The JACIE parser -  the main program for the JACIE 

compiler.
JACIECConfig.java A utility class used by the JACIE compiler to maintain 

application parameters.
JACIECVariableTable.j ava A utility class used by the JACIE compiler to maintain 

variable symbol table for type checking.
JACIECMessageTable.j ava A utility class used by the JACIE compiler to maintain 

message identifier symbol table.
JACIECGridTable.java A utility class used by the JACIE compiler to maintain 

JACIE grid symbol table.
JACIECStatement.j ava Abstract syntax of all JACIE statements with translation to 

Java code.
JACIECExpression.java Abstract syntax of all JACIE expressions with translation to 

Java code.
JACIECChannel.java A utility class that contains channel constants.
JACIECFloorMgmtProtocol.java A utility class that contains floor management protocol 

constants.
JACIECGroupProtocol.j ava A utility class that contains group protocol constants.
JACIECPrintFile.j ava A utility class for printing to output file.
JACIECFilecopy.j ava A utility class for copying precoded class files to a target 

directory.
JACIECApplicationTemplate.java A template that creates a class for the main structure of the 

JACIE-generated client application (x. java).
JAClECAppletTemplate.java A template that creates a class for the main structure of the 

JACIE-generated client applet (x. java) and the 
corresponding HTML file (x.html).

JACIECFrameTemplate.j ava A template that creates a window frame class used by 
applications or applets with launchers (xFrame .java).

JACIECContainerTemplate.java

■

A template that creates container class to be embedded in 
web page or the frame and in which most client logics are 
specified (x_Container. j ava).

Table 5.3 JACIE compiler files.
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I'Fil'e nameV;̂ *''
JACIECMenuBarTemplate.java A template that creates custom designed menubar that 

contains standard user-interfaces for connection/ 
disconnection, channel buttons, a userlist button and 
about/help button (x_MenuBar. j ava).

JACIECCanvasTemplate.java A template that creates canvas upon which all graphics 
are performed and to be in the container 
(x_Canvas. j ava).

JACIECMessageBarTemplate.java A template that creates the text input bar, the local 
message bar and the server message bar
(x_MessageBar. j ava).

JACIECClientSessionAssistantTemplate.java A template that creates a class that is responsible for 
handling message transfers for the client program 
(x_SessionAssistant.java).

JACIECUserListTemplate.java A template that creates window frame class that 
displays users and groups (xuserList .java).

JACIECChatChannelTemplate.j ava A template that creates window frame class for chat 
channel (x_ChatChannel. java).

JACIECNetMeeting.java A program that creates special class that can interface 
to Microsoft NetMeeting (xvconf .java).

JACIECServerTemplate.java A template that creates a class for the main structure of 
the JACIE-generated server application
(x Server. j ava).

JACIECSessionManagerTemplate.java A template that creates a server class that is responsible 
for establishing new client connections
(x_Server_SessionManager.j ava).

JACIECDeliveryManagerTemplate.java A template that creates a server class that handles all 
shared server logics
(x_Server_DeliveryManager.j ava).

JACIECFloorManagerTemplate.java A template that creates a server class that handles floor 
management (x_Se'rver_FloorManager .java).

JACIECGroupManagerTemplate.j ava A template that creates a server class that handles group 
management (x_Server_GroupManager. java).

JACIECSessionAssistantTemplate.java A template that creates a server class that handles each 
client connection (x_Server_SessionAssistant. java).

JACIECDeliveryAssistantTeraplate.java A template that creates a server class that handles most 
client specific server logics 
(x_Server_DeliveryAssistant.java).

JACIEBox.java A precoded class used by some JACIE user-interface 
that draws etched rectangle with or without a title.

JACIEImageButton.j ava A precoded class for custom designed buttons that 
support images.

JACIEGrid.j ava A precoded class for maintaining and manipulation of 
JACIE grids.

JACIEAboutHelp.j ava A precoded class for frame that displays program help 
file.

JACIEMessage.j ava A precoded class for JACIE delivery messages.
JACIEMessageQueue.java A precoded class for handling JACIEMessage in queue.

Table 5.3 JACIE compiler files (cont).
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In addition to the files described in Table 5.3, there are also button images which form part 

of the JACIE standard user-interfaces. They are c o n n e c t . g i f ,  D i s c o n n e c t . g i f ,  

C h a t . g i f ,  W h i t e b o a r d .g i f ,  V o i c e . g i f ,  V i d e o . g i f ,  U s e r s . g i f  and A b o u t .g i f .  They 

are grouped in the g r a p h ic s  directory of the JACIE compiler and are copied as needed by 

the JACIE compiler to the target directory.

5.3.4 JACIE-generated Java Programs

As mentioned earlier, the JACIE compiler generates Java source codes to be further 

compiled by any Java compiler to produce bytecodes — the platform-independent codes 

interpreted by any Java interpreter which is also known as Java Virtual Machine (JVM).

For the purpose of illustration, an arbitrary collaborative application written in the JACIE 

language is named x . j a c i e .  By compiling the JACIE script using the following 

command,

j a c i e c  x . j a c i e

the JACIE compiler will generate files which adhere to naming conventions shown in 

Table 5.4.

x .j ava a Java applet or application that defines the main structure of the client program;
x_* . j ava a set of application specific classes in Java generated by the compiler for supporting 

client operations;
x.html an HTML file with a tag that includes the corresponding applet in the Web page;
x_server.j ava a Java application that defines the main structure of the server program;
x_server_*.java a set of application specific classes in Java for supporting server operations;
x_vconf.j ava a program which is written in Java for supporting voice, video and whiteboard 

channels through Microsoft NetMeeting, and is generated only if there are such 
channels defined in x . j a c ie .

JACIE*.java A set of precoded classes in Java for supporting client and server operations

Table 5.4 Naming conventions o f  JACIE-generated files
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The x _ * . j a v a  classes consist of x_Frame, x _ C o n ta in e r ,  x_MenuBar, x_Canvas,  

x_M essageB ar, x _ S e s s i o n A s s i s t a n t ,  x _ U s e r L is t  and x_C hatC hannel.  The 

x _ s e r v e r _ * . ja v a  classes are x _ se r v e r _ S e s s io n M a n a g e r ,  x _ ser v er_ F lo o rM a n a g e r ,  

x _ s e r v e r _ D e l iv e r y M a n a g e r ,  x_server_G roupM anager, x _ s e r v e r _ S e s s i o n A s s i s t a n t  

and x _ s e r v e r _ D e l i v e r y A s s i s t a n t . The classes with names starting with j a c i e  are 

precoded files and are to be copied, if required, during compilation. They are j a c ie b o x , 

JACIEImageButton, JACIEGrid, JACIEAboutHelp, JACIEMessage and 

j a c i EMe s sa geQ u eu e . All of these precoded classes are to support client operations, except 

for the JACIEMessage and the JACiEMessageQueue which are also used for server 

operations. The detailed descriptions of these files will be discussed in the following 

section.

During the early development of the JACIE prototype compiler, Microsoft NetMeeting 

has been chosen as part of the system for its wide availability and its support for a range of 

videoconferencing hardware. Microsoft Visual J++ has been used for integration of Java 

with Microsoft ActiveX APIs [103]. Platform-independent voice, video and whiteboard 

channels are feasible in the future implementation.

5.4 Software Components of JACIE-generated Java Programs

Utilising the object-oriented nature of Java programming, the Java codes generated by the 

JACIE compiler are organised in such a way that they become a collection of flexible, 

modular and reusable classes. This is important to simplify the code generation process of 

the JACIE compiler and to provide a manageable means for JACIE programmers to 

understand, modify or enhance the generated codes, if  required.
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5.4.1 Types of JACIE-generated Java Programs

The JACIE scripting language can produce one of four types of client programs — an 

applet, a separate window invoked by an image launcher within an applet, a separate 

window invoked by a text button within an applet, and a normal application (refer to 

previous sections for details). For the purpose of illustration we will call these four client 

programs jcAppieti, JCAppiet2, JCAppiet3 and JCApp respectively.

Figure 5.8 shows the screen shots of different types of JACIE-generated client programs.

Recycle Bin

Text Input 

Loo jI Message: 

Server M essage:

J |  Stall | ( J O *  BjComptet Co... [ g 'T ex lP ad  • [C...| ffiJAVA | [ & X  Fiame ^ > ^ ^ 1 2 : 5 3

Figure 5.8a The user interface for JACIE-generated application (JCApp)



5.4 SOFTWARE COMPONENTS OF JACIE-GENERATED
JAVA PROGRAMS

118

3  X2 Microsoft Internet Explorer
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C ] Applet started Q  Trusted sites
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Figure 5.8b The user interface for JACIE-generated applet ( J C A p p i e t i )
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Figure 5.8c The user interface for JACIE-generated applet with an image button launcher ( j C A p p i e t 2 )
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Figure 5.8d The user interface for JACIE-generated applet with a text button launcher ( j C A p p i e t 3 )

5.4.2 Software Components of JACIE-generated Client Programs

JACIE employs a composite design pattern for its standard user interface [58]. Figure 5.9 

shows the nested layout of the components. The very outmost component is an applet 

window itself (if it is an applet) or a frame (if it is an application or an applet with a 

separate window). This applet or frame has a container that holds all other components. 

Basically there are three main panel components — menu bar, canvas and message bar. 

Each one of these panels are surrounded by a special box, an etched rectangle, for better 

visual appearance.
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JACIEImageButtoi

x_Frame/Applet

x_Container

x_MenuBar

x_Canvas

JACIEBox

x_M essageBar

Figure 5.9 Nested layout diagram o f JACIE user interface

Figure 5.10 and Figure 5.11 show the class diagram of the client programs. Referring to 

Figure 5.10, the first client program is the x i  class, a Java applet that runs within a Java- 

enabled browser. This class creates and contains an x Container object, a subclass of 

Java Abstract Window Toolkit (AWT)’s container (j ava. awt .Container) holds all the 

GUI components of the client program. The x Container class also implements 

java.lang.Runnable, a standard Java interface for thread control. The second and the 

third client programs are the x2 and the x3. These two small applets only contain a 

launcher that creates x Frame, a window object for the client program. The fourth client 

program, x, the application, also uses this x Frame. The x Frame, which is a subclass of a 

java.awt.Frame, creates and contains an x Container, the same container used by the 

applet xi.
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java .awt. 
Frame

java .awt. 
Container

x_Frame

interface
x_Containerjava.lang.

Runnable

Figure 5.10 A class diagram o f  JACIE-generated client programs (I)

interface

interface java.awt.
Panel java.lang.

Runnable JACIEMessage
JACIEMessage

Queuejava .awt.event. 
Action Listener

SessionAssistant

JACIEImage
Button

x_MenuBar
x_UserList

x_Container x_ChatChannelsx_Canvasjava.awt.

Component

x_vconfx_MessageBarjava.awt.
Canvas JACIEAbout

Help JACIEBox

interface

java.awt.event.
MouseListener java.awt.

Panel JACIEGrid java.awt.

Dialog/Frame

Figure 5.11 A class diagram o f JACIE-generated client programs (2)
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Refering to Figure 5.11, x _ C o n ta in e r  creates and contains three major components — 

x_MenuBar, x_Canvas and x_M essageBar. x_MenuBar and x_M essageB ar are subclasses 

of j a v a . a w t . P a n e l ,  while x _ ca n v a s  extends j a v a . a w t . Canvas. Besides these three 

class components, the JACIE compiler also creates other supporting classes namely

JACIEBox, JACIEImageButton, JACIEAboutHelp, x _ S e s s i o n A s s i s t a n t ,  x _ U s e r L is t ,  

x_C hatC hannel,  x _ v c o n f , JACIEMessage and JACIEMessageQueue.

The JACIEImageButton, a lightweight component to enhance the Java text-only standard 

button, extends j a v a .a w t  .Component. Since Java limits the j a v a . a w t  . D i a l o g  class to 

be called by j a v a . a w t . Frame, the JACIEAboutHelp, the x _ U s e r L is t  and the 

x _ c h a t c h a n n e l  classes are implemented as subclasses of j a v a .a w t  . D i a lo g  if they are 

being embedded in x_Fram e , but become subclasses of j a v a . a w t . Frame if they are being 

embedded in x_ j a c i e Ap p l e t .

Another class is the x _ S e s s i o n A s s i s t a n t ,  which extends j a v a .  la n g .T h r e a d .  An 

instance of this class handles all the communication interfaces with the server program 

over the network. This object also creates an instance of JACIEMessageQueue, which is 

used to guarantee the order of message delivery and execution. JACIEMessageQueue 

object handles JACIEMessage objects and these objects are to be removed and executed by 

x _ C o n ta in e r .

The last class is the x _ v c o n f ,  a special class that uses Microsoft NetMeeting SDK to 

enable the JACIE-generated client program to interface to Microsoft NetMeeting, if 

necessary. If the client program is an applet, the JACIE compiler will also create an 

HTML file, with a tag that includes the corresponding applet in the Web page.
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5.4.3 Software Components of JACIE-generated Server Programs

Java server classes produced by the JACIE compiler have been designed with 

consideration of client-server interactivities (refer to Chapter 3). The main server class is 

named as x _ s e r v e r . j ava, where x  is the name given by the JACIE programmer. Refering 

to Figure 5.12, this x _ S e r v e r  class will create x _ S erv e r_ S ess io n M a n a g e r ,  x _ S e r v e r _  

D eliv ery M a n a g er ,  x _ S erv e r_ F lo o rC o n tr o lM a n a g e r  and x_Server_GroupM anager.  

Since x _ s e r v e r _ S e s s io n M a n a g e r  is executed in independent threads, it extends 

j a v a . l a n g . Thread.

Not all of these managers are to be generated at compile time. Besides 

x _ s e r v e r _ s e s s io n M a n a g e r ,  the others will be generated depending on the interaction 

protocols being adopted. During runtime, the x _ S e r v e r _ s e s s io n M a n a g e r  will create 

many instances of x _ s e r v e r _ s e s s i o n A s s i s t a n t  depending on the number of remote

x_Server

Java.lang.
Thread

x_S erver_
DeliveryManager

x_ Server_ 
FloorManager

’ x_ Server_ 
GroupManager

x_S erver_
SessionM anagerinterface

Java.lang.
Runnable

interface

’ x_ Server_ 
DeliveryAssistant,

' x_ Server_ 
SessionAssistant Java.lang.

Runnable

JACIEMessage
Q ueueJACIEMessage

Figure 5.12 A class diagram o f  JACIE-generated server programs
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clients. This connection handler object maintains each client in one thread, and because of 

this the class is specified as a subclass of j a v a . la n g .T h r e a d .  Each client will also be 

allocated with a x _ S e r v e r _ D e i i v e r y A s s i s t a n t  object. This is where most of the server 

logics are located. The x _ s e r v e r _ D e i i v e r y A s s i s t a n t  extends 

x _ s e r v e r _ D e i iv e r y M a n a g e r  which contains all the shared variables and methods. Since 

the x _ s e r v e r _ D e i i v e r y A s s i s t a n t  is performing separate tasks executed in parallel, the 

class is also made to implement j a v a . la n g .R u n n a b le .  Another important JACIE- 

generated class for supporting the server programs is JACIEMessageQueue whose instance 

will be used by each instance of x _ s e r v e r _ s e s s i o n A s s i s t a n t  and 

x_S e r v e  r _ D e l iv e  ryAs s i  s t  a n t .

5.5 Running the JACIE Compiler

5.5.1 Configuring the JACIE Compiler

The minimum requirements for the JACIE compiler are the runtime versions of the two 

compiler tools adopted, JFlex and CUP, and any Java 1.1 development tool. Theoretically, 

since the JFlex and the CUP were written in the Java language and the newer versions of 

Java are compatible with older versions, any computer platform that supports Java Virtual 

Machine (JVM) 1.1 can be used to run the JACIE compiler. For this research, JFlex, CUP 

and the Sun’s Java Development Kit (JDK) 1.1.8 have been installed and configured on an 

IBM compatible PC. A normal text editor has been used to create the JFlex and the CUP 

specifications as well as other supporting Java classes for the JACIE language (refer Table 

5.3).

The JFlex specification of the JACIE language was named j a c i e . f l e x .  Figure 5.13 

shows the output of running the JFlex. As shown, the s c a n n e r ,  j a v a  file was generated 

and this scanner was used by the CUP and the compiler operations.
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Reading "C:\jaciec\jacie.flex" 
Constructing NFA : 1245 states in NFA 
Converting NFA to DFA :

717 states before minimization, 690 states in minimized DFA 
Writing code to "C:\jaciec\JACIEScanner.java"

Figure 5.13 Output o f running the JFlex tool on JACIE specifications

Opening files...
Parsing specification from standard input...
Checking specification...
Building parse tables...

Computing non-terminal nullability...
Computing first sets...
Building state machine...
Filling in tables...
Checking for non-reduced productions...

Writing parser...
Closing files...
-------  CUP vO.lOi Parser Generation Summary -------

0 errors and 0 warnings
166 terminals, 169 non-terminals, and 351 productions declared, 
producing 664 unique parse states.
0 terminals declared but not used.
0 non-terminals declared but not used.
0 productions never reduced.
0 conflicts detected (0 expected).
Code written to "parser.java", and "sym.java". 

------------------------------------------------------  (vO.lOi)

Figure 5.14 Output o f running the CUP tool on JACIE specifications

The CUP specification of the JACIE language was named j a c i e .  cup. Running the CUP 

produced p a r s e r ,  ja v a  (which contains the parsing table) and sym. ja v a  (which contains 

the symbol constants). Figure 5.14 shows the output of running the CUP.

All the JFlex-generated files, the CUP-generated files and other supporting files were 

compiled using the Java compiler. These compiled Java classes constituted the JACIE 

compiler. A short batch file, named j a c i e c . b a t ,  has been created to simplify the 

compilation of any JACIE script in DOS/Windows environment. Basically, this batch file 

runs JACiEParser program with the specified JACIE script as the argument.



5.5 RUNNING THE JACIE COMPILER 126

5.5.2 Compiling JACIE Scripts

Any text editor can be used to write a JACIE program. Typically, this program has . j a c i e  

as the filename extension. Assuming that the JACIE compiler files have been placed in the 

j a c i e c  directory of the root, at the system command line and in this JACIE compiler 

directory, the command to compile the JACIE script is as follows:

C:\jaciec>jaciec f i l e n a m e.jacie

Upon compiling the JACIE script, if the file does not contain any errors, a directory named 

after the application or applet name will be created. Two other subdirectories under this 

directory, namely c l i e n t  and s e r v e r ,  will also be created as a storage space for all the 

generated Java codes for the client and the server processes respectively. All the necessary 

graphic images (for the standard buttons and the application/applet-specified graphics) 

will be copied to the c l i e n t  subdirectory. If the generated client program is meant to be 

an applet, the HTML file will also be generated and included in the c l i e n t  subdirectory. 

Practically speaking, this HTML file inside which the applet is placed, only contains the 

bare minimum HTML code. It is up to the JACIE programmer to add more HTML code 

to make it more presentable. All the Java files are to be compiled with a Java 1.1 compiler 

to produce Java classes in bytecodes. The server’s compiled codes can then be copied to a 

server machine on which the server process will be running. If the client program is a 

stand-alone application, the client’s compiled codes should then be copied to all clients’ 

machines before the client program can be run. In the case of an applet, the client’s 

compiled codes should be copied to the HTTP (or Web) server on which the applet will be 

called by means of the HTML file. Constrained by the Java security restriction [23], the 

HTTP server is also the host on which the server process will be running.

As an example, Figure 5.15 shows an output of compiling P u z z le 2  . j a c i e ,  a two-player 

game that requires remote players to compete rearranging scrambled pieces. All the JACIE 

compiler-generated Java codes, were placed in a subdirectory named after the applet
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name, P u z z ie 2 ,  under j a c i e c  directory. Figure 5.15 also lists all the files generated and 

copied by the JACIE compiler. These files were then compiled using Sun’s JDK and the 

compiled java classes (together with the corresponding HTML file) were copied to the 

Web server.

5.5.3 Running JACIE-generated Client and Server Programs

Like any other client/server programs, the server program has to be started first before the 

client program can communicate with it. The server machine’s name (or also known as the

Start compiling JACIE Programme...
Applet name: Puzzle2
with text launcher: Click here to display the puzzle 
Copying marina2.jpg to Puzzle2\client ...
Copying blank.jpg to Puzzle2\client ...
Copying lim00.jpg to Puzzle2\client ...
Copying liml0.jpg to Puzzle2\client ...
Copying lim20.jpg to Puzzle2\client ...
Copying lim30.jpg to Puzzle2\client ...
Copying lim40.jpg to Puzzle2\client ...
Copying lim50.jpg to Puzzle2\client ...

Creating client applet with text launcher Puzzle2.java in Puzzle2\client ... 
Creating Puzzle2_Frame.java in Puzzle2\client ...
Creating Puzzle2_Container.java in Puzzle2\client ...
Copying JACIEGrid.java to Puzzle2\client ...
Creating Puzzle2_MenuBar.java in Puzzle2\client ...
Copying Connect.gif to Puzzle2\client ...
Copying Disconnect.gif to Puzzle2\client ...
Copying Users.gif to Puzzle2\client ...
Copying About.gif to Puzzle2\client ...
Copying JACIEImageButton.java to Puzzle2\client ...
Creating Puzzle2_Canvas.java in Puzzle2\client ...
Creating Puzzle2_MessageBar.java in Puzzle2\client ...
Creating Puzzle2_SessionAssistant.java in Puzzle2\client ...
Copying JACIEMessage.java to Puzzle2\client ...
Copying JACIEMessageQueue.java to Puzzle2\client ...
Copying JACIEBox.java to Puzzle2\client ...
Creating Puzzle2_UserList.java in Puzzle2\client ...
Creating HTML file Puzzle2.html in Puzzle2\client ...
Creating server application Puzzle2_Server.java in Puzzle2\server ... 
Creating to Puzzle2_Server_SessionManager.java in Puzzle2\server ...
Creating to Puzzle2_Server_SessionAssistant.java in Puzzle2\server ... 
Creating to Puzzle2_Server_DeliveryAssistant.java in Puzzle2\server ... 
Copying JACIEMessage.java to Puzzle2\server ...
Copying JACIEMessageQueue.java to Puzzle2\server ...

End of compilation
No errors. Parsing took 10s 380ms

Figure 5.15 Output o f  compiling P u z z l e 2 . j a c i e  program
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host), on which the server program will be running, has to be the one specified by the h o s t  

statement in the c o n f i g u r a t i o n  construct. If the h o s t  name is specified as prompt, the 

host name should be known by the communicating clients by other means to enable the 

clients to connect to this server. This is because the client’s user interface does not specify 

the name of this host.

The server program is run using the Java interpreter as follows

java filename_Server (if port number is specified in the

conf igurat ion construct)

or with port number argument,

java filenamejserrver portnumber (if port number specified in the

configuration construct is prompt)

As mentioned in the earlier chapters, the port number is the socket through which the 

client-server communication services will take place. Once the server process is running, it 

will stay waiting and listening to the socket for remote clients to make connection 

requests.

There are two ways to invoke the client program. These depend on the type of the client 

program. If the client program is an application, the copied client codes can be run using 

the Java interpreter as follows:

j ava filename

The standard JACIE frame will be displayed and by providing all the required connection 

information (h o s t ,  p o r t  and usernam e) followed by clicking on the connect button, the 

client-server connection can be established.
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C :\jacie\Puzzle2>j ava Puzzle2_Server 
Server name: Puzzle2_Server 
Server process started on port 3333 
Session Manager process started

Figure 5.16 The running process o f  Puzzle 2 Server

If the client program is an applet, the HTML file is loaded by specifying the URL of the 

HTML file in the Java-enabled Web browser’s location or address field. Alternatively, an 

appietviewer command (provided in the JDK) can also be used as follows:

appletviewer URL

Figure 5.16 shows the waiting server process of Puzzle2_Server running on HTTP 

server named asahipc2 on port 3333. Figure 5.17 shows the screen shot of the running 

client program within a Web browser. More examples will be shown in Chapter 6.

F’uzzle2 f lam e

U sernam e:

Local M essage: |You're playing th e  right block

Server M essage: Iw aiting over:

Warning: Applet Window

3  P u z z le ?  M icrosoft In te rn e t  E xplorer

SJ] Done j i j  Local intranet

3 Q S ta it | $  ^ 3  ► djM y Computer | Windows M eda... | dj^JAVA | ^ P u z z le 2  M ic ... ||j3 P u z z te 2 F i... 20.13

Figure 5.17 The Puzzle2 applet running in Microsoft Internet Explorer

Click here

File £drt View Favorites lo o ts  Help

'r* „ ^  ,
Back Forward

Address |iT ) http://asahip



5.6 SUMMARY 130

5.6 Summary

About 80 percent of JACIE language features have been implemented in this compiler 

prototype. Several programs written in JACIE scripts have been successfully translated to 

Java codes using this compiler. Compilation time was remarkably fast. The generated Java 

codes could be easily comprehended by a Java programmer with some experience in 

network programming. Compilation of these Java codes was smooth and error-free. The 

client programs as well as the server programs were executed correctly and interactions 

between them took place accordingly.

The JACIE compiler verifies that the JACIE scripting language can be a viable tool for 

developing interactive and collaborative applications. More importantly a rapid protyping 

of net-centric, multimedia and collaborative applications is now made possible.



Chapter 6 

Example Applications

Several interactive and collaborative applications have been written in JACIE to prove the 

concept and to demonstrate the usability and functionality of the language and the 

compiler. They also test the compiler and the underlying component classes of the server 

and the client programs. The scripts were compiled with the implemented JACIE compiler 

which produced Java programs for the respective clients and servers. These Java programs 

were compiled with Sun’s JDK1.1.8, deployed and executed on various client and server 

machines over the department’s local area network (LAN). For the applets which were 

embedded in Web pages, Microsoft Internet Explorer has been used as the Web browser. 

Technically, any Web browser can also be used as long as it supports the Java Virtual 

Machine (JVM).

This chapter reports the development and the execution of three example applications 

implemented in JACIE. They were chosen on the basis of their distinctive interactive 

modes and their diverse feature requirements. For one simple application, comparisons 

with Java codes will be made to highlight the statements used (in Java and JACIE) and the 

programming steps required. At the same time the versatility and the advantages of 

JACIE over Java will be discussed and demonstrated. The three example applications are:

1) networked knock knock j okes,

2) multi-user network troubleshooting,

3) collaborative scrabble.
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6.1 A Server-based Interactive Application: 
Networked Knock Knock Jokes

Knock knock jokes are the all-time brainteaser for all ages. The client/server 

implementation of these jokes is a simple example of server-based interactive applications. 

The application can be designed in such a way where the server does the “knocking” and 

serves up the jokes and the client does the “questioning”. A sample knock knock jokes 

could be expressed in the following format:

Server Knock! Knock!
Client Who’s there?
Server Atch
Client Atch who?
Server Bless you!

For the purpose of comparison, the implementation of this application in Java as written 

by Campione and Walrath [23] has been used for adaptation in JACIE. This simple 

example illustrates how sockets are created and dealt in Java and JACIE. It also 

demonstrates how reading and writing are carried out between a client program and a 

server program.

1 SUsUsi
Ha* li nl lal jaJ jfjs aJ

;JAVA

Figure 6.1 The running KnockKnock client program as implemented by Campione and Walrath
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Figure 6.1 shows the screen shot of the running client program of the KnockKnock 

application as implemented by Campione and Walrath. It also shows the interaction 

between the server and the client during the “knocking” and the “questioning” session.

6.1.1 Java Implementation

In Java (as implemented by Campione and Walrath) this application which supports 

multiple client requests consists of four classes -  the server program implemented by three 

classes, KKMultiServer, KKMultiServerThread and KnockKnockProtocol, and the 

client program implemented by a single class, KnockKnockciient.

Program 6.1a is the Java code for KKMultiServer class, the first class for the server 

program. As shown, two Java packages are referred to: java.net and java.io. The 

java.net package provides the serversocket class which implements a socket that 

servers can use to listen for and accept connections to clients. The java.io package 

provides the facility for reading and writing to and from the socket.

Program 6.1a Java implementation o f  Knock Knock Jokes

import java.net.*; 
import java.io.*;

public class KKMultiServer {
public static void main(String[] args) throws IOException { 

ServerSocket serverSocket = null; 
boolean listening = true;

try {
serverSocket = new ServerSocket( 4444 ) ;

} catch (IOException e) {
System.err.println("Could not listen on port: 4444."); 
System.exit(-1) ;

}

while (listening)
new KKMultiServerThread(serverSocket.accept()).start() ;

serverSocket.close();
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As shown, the code uses an exception for error-handling capability. KKMultiServer loops 

forever, listening for client connection requests on a serversocket. Each client’s request 

is queued at port 4444 and consequently come into the same serversocket. For each 

request KKMultiServer accepts the connection, creates a new KKMultiServerThread 

object to process it, hands it the socket returned by the method accept and starts the new 

thread.

Program 6.1b shows the code for KKMultiServerThread, the second class for the server 

program. The KKMultiServerThread extends Threads because for each client an instance 

of this class will be created. The independent KKMultiServerThread object 

communicates to the client by reading from and writing to the socket. This program 

requires the use of exception handling.

Program 6.1b Java implementation o f Knock Knock Jokes (cont)

import java.net.*; 
import java.io.*;

public class KKMultiServerThread extends Thread { 
private Socket socket = null;

public KKMultiServerThread(Socket socket) { 
super("KKMultiServerThread") ; 
this.socket = socket;

}

public void run() {
try {

PrintWriter out = new PrintWriter(socket.getOutputStream(), true) ; 
BufferedReader in = new BufferedReader(new InputStreamReader( 

socket.getlnputStream()));
String inputLine, outputLine;
KnockKnockProtocol kkp = new KnockKnockProtocol();

outputLine = kkp.processlnput(null) ; 
out.printIn(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processlnput(inputLine) ; 
out.println(outputLine); 
if (outputLine.eguals{"Bye")) 

break;
}

out.close{); 
in.close(); 
socket.close();

} catch (IOException e) { 
e.printStackTrace();

}

}

}
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The last class for the server program of Knock Knock Jokes implemented by Campione 

and Walrath is KnockKnockProtocol. As shown in Program 6.1c, the program gets the 

socket's input and output stream and opens readers and writers on them. A 

KnockKnockProtocol object is created with which the current joke and the current state 

within the joke are tracked. Interactions between the client and the server occur as long as 

the client and the server still have something to say to each other.

Program 6. Id is the Java class for the client program of Knock Knock Jokes. The instances 

of KnockKnockciient speak to the KKMultiServer mentioned above. The program needs 

to open a socket that is connected to the server running on a specific hostname and a 

specific port. In the given example, the hostname is “taranis” and the port number to 

which KKMultiServer is listening to is 4444. Since the server speaks first, the client must 

listen first. The client does this by reading from the input stream attached to the socket. It 

then displays the text to the standard output and waits for a response from the user who 

needs to type into the standard input. After the user has typed a carriage return, the client 

sends the text to the server through the output stream attached to the socket. The 

interaction continues until the server says "Bye.".

As can be seen, four Java classes are defined to achieve a manageable Java coding for the 

implementation of Knock Knock Jokes application. Some of the Java features used are 

different network sockets, various input/output streams, exception handling, multiple 

threads and various modifiers in class and member variable declarations.
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Program 6.1c Java implementation o f  Knock Knock Jokes (cont)

import java.net.*; 
import java.io.*;

public class KnockKnockProtocol {
private static final int WAITING = 0; 
private static final int SENTKNOCKKNOCK = 1; 
private static final int SENTCLUE = 2; 
private static final int ANOTHER = 3;

private static final int NUMJOKES = 5; 
private int state = WAITING; 
private int currentJoke = 0;

private String[] clues = { "Turnip", "Little Old Lady", "Atch", "Who", "Who" };

private String[] answers = { "Turnip the heat, it's cold in here!",
"I didn't know you could yodel!",
"Bless you!",
"Is there an owl in here?",
"Is there an echo in here?" };

public String processlnput(String thelnput) {
String theOutput = null;

if (state == WAITING) {
theOutput = "Knock! Knock!"; 
state = SENTKNOCKKNOCK;

} else if (state == SENTKNOCKKNOCK) {
if (thelnput.egualsIgnoreCase("Who's there?")) { 

theOutput = clues[currentJoke]; 
state = SENTCLUE;

} else {
theOutput = "You're supposed to say V'Who's there?\"! " + 

"Try again. Knock! Knock!";
}

} else if (state == SENTCLUE) {
if (thelnput.equalsIgnoreCase(clues[currentJoke] + " who?")) {

theOutput = answers[currentJoke] + " Want another? (y/n)"; 
state = ANOTHER;

} else {
theOutput = "You're supposed to say \"" + 

clues[currentJoke] +
" who?\"" +
"! Try again. Knock! Knock!"; 

state = SENTKNOCKKNOCK;
}

} else if (state == ANOTHER) {
if (thelnput.equalsIgnoreCase("y")) {

theOutput = "Knock! Knock!"; 
if (currentJoke == (NUMJOKES - 1)) 

currentJoke = 0; 
else

currentJoke++; 
state = SENTKNOCKKNOCK;

} else {
theOutput = "Bye."; 
state = WAITING;

return theOutput;
}

}
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Program 6. Id Java implementation o f Knock Knock Jokes (cont)

import java.io.*; 
import java.net.*;

public class KnockKnockClient {
public static void main(String[] args) throws IOException {

Socket kkSocket = null;
PrintWriter out = null;
BufferedReader in = null;

try {
kkSocket = new Socket("taranis", 4444);
out = new PrintWriter(kkSocket.getOutputStream() , true);
in = new BufferedReader(new InputStreamReader(kkSocket.getlnputStream())); 

} catch (UnknownHostException e) {
System.err.println("Don 11 know about host: taranis.");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn1t get I/O for the connection to: taranis."); 
System.exit(1);

}

BufferedReader stdln = new BufferedReader(new InputStreamReader(System.in)) ; 
String fromServer;
String fromllser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye.")) 

break;
fromUser = stdln.readLine{); 
if (fromUser != null) {

System.out.println{"Client: " + fromUser);
out.println(fromUser);

}

}
out.close(); 
in.close(); 
stdln.close(); 
kkSocket.close();

6.1.2 JACIE Implementation

The whole programming steps for this application have been simplified significantly in 

JACIE. The four Java classes above have been reduced to one JACIE script with less code 

and less hassle.
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Program 6.2a JACIE implementation o f  Knock Knock Jokes

JACIE {
application name KnockKnock; 
configuration {

host "taranis"; 
port 4444; 
username prompt;
about "Knock Knock Jokes adapted from The Java Tutorial and rewritten in JACIE";

}
messages {

ClientMessage, ServerMessage
}

The JACIE’s implementation of the application starts with system configuration 

statements. Program 6.2a shows the related statements.

All JACIE programs start with a keyword jacie followed by an open brace and ends 

with closed brace The statement

application name KnockKnock;

simply means that this is an application (not an applet) named KnockKnock.

Under the configuration construct the statements

host "taranis"; 
port 4 44 4; 
username prompt;
about "Knock Knock Jokes adapted from The Java Tutorial and rewritten in JACIE";

specify the host where the server program will reside (in this case, “taranis”), the port 

number where the communication service will take place (in this case, 444 4) and the 

username of the client. Syntactically, the username statement is optional. By design, 

JACIE-created programs require the client’s username to be specified before connection 

can be established. The statement username prompt means that the username will be 

provided at runtime. Alternatively, since this application is meant for a single-user 

interaction (even though the server can handle multiple clients concurrently) and a unique 

username is unnecessary, a generic username can be used, e.g. username

"KnockKnockClient";.
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Program 6.2b JACIE implementation o f  Knock Knock Jokes (cont)

client implementation {
declaration {

string fromServer;

\
string fromUser;

i
on canvas { }
on session start {

i
receive ServerMessage fromServer;

j
on session {

if (fromServer == "Bye.")
abort;

print servermessage "Server: "+fromServer;
input fromUser;
print "Client: "+fromUser;
send ClientMessage fromUser;

i
receive ServerMessage fromServer;

;
on

}
session end { }

Similarly, the about statement is also optional but if specified an “about” button will be 

generated on the client user interface from which the about message will be displayed 

when clicking on it.

The messages construct Consists of ClientMessage, ServerMessage which refers to 

message identifiers that will be used during the message passing between the client and 

the server. The ClientMessage is the identifier for the messages sent by the client to the 

server and the ServerMessage is the identifier for the messages sent by the server to the 

client.

JACIE’S configuration and messages constructs are followed by a client 

implementation construct. The related statements are shown in Program 6.2b.

The client implementation starts with a declaration of variables and methods used by 

the client program segment. In this case no method is involved.

As shown, the two variables involved are fromServer and fromUser. As their names 

imply, the fromServer maintains the messages sent by the server (in this case the “Knock 

knock” and the “jokes”) and the fromUser maintains the messages sent by the client (in 

this case the “questions”).
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Since no graphic canvas is involved for this application, the on canvas construct contains 

no statement.

The next construct, on session start, contains the following statement:

receive ServerMessage fromServer;

Basically the statement means that the first action to take on established connection 

receives a fromServer message which is a type ServerMessage. This fromServer 

message is used in the next phase of interactivities.

The on session construct that follows contains statements for the main interactivities 

between the client program and the server program. By design this language construct is a 

loop that will exit when the user clicks the disconnect button or will disconnect naturally 

through certain statements. The statements for this construct are shown below:

if (fromServer == "Bye.") 
abort;

print servermessage "Server: "+fromServer;
input fromUser;
print "Client: "+fromUser;
send ClientMessage fromUser;
receive ServerMessage fromServer;

In this case, the loop exits naturally when the server sends a serverMessage with 

fromServer text value “Bye.”. Otherwise, the client displays the text to the JACIE’s 

standard servermessage output area and then reads the response (the fromUser) from the 

user who types into the JACIE’s standard input area. After the user types a carriage return, 

the fromUser text is Sent tO the server as ClientMessage.

The final construct of the client implementation is on session end. In our example, 

no statement is required in this construct.
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The client implementation is followed by a server implementation construct. 

Program 6.2c and Program 6.2d show the statements in this construct.

Program 6.2c JACIE implementation o f Knock Knock Jokes (cont)

server implementation {
declaration {

string inputLine;
string outputLine;
int WAITINGSTATE = 0;
int SENTKNOCKKNOCK = 1;
int SENTCLUE = 2;
int ANOTHER = 3;
int NUMJOKES = 5;
int state = WAITINGSTATE;
int currentJoke = 0;
string[5] clues = {"Turnip", "Little Old Lady", "Atch", "Who", "Who"};
string[5] answers = {"Turnip the heat, it's cold in here!",

"I didn't know you could yodel!",
"Bless you!",
"Is there an owl in here?",
"Is there an echo in here?"};

string processlnput(string thelnput) {
string theOutput = null;
if (state == WAITINGSTATE) {

theOutput = "Knock! Knock!";
state = SENTKNOCKKNOCK;

} else if (state == SENTKNOCKKNOCK) {
if (theInput=="Who's there?") {

theOutput =  clues[currentJoke] ;
state = SENTCLUE;

} else {
theOutput = "You're supposed to say V'Who's there?\ " ! " +

"Try again. Knock! Knock!";
\;

} else if (state == SENTCLUE) {
if (thelnput == (clues[currentJoke] + " who?")) {

theOutput =  answers[currentJoke] + " Want another? ( y/n ) "  ;
state =  ANOTHER;

} else {
theOutput =  "You're supposed to say \ " "  + clues[ currentJoke] +

" who?\"" + " !  Try again. Knock! Knock! " ;

state = SENTKNOCKKNOCK;
i;

} else if (state == ANOTHER) {
if (thelnput = =  "y") {

theOutput = "Knock! Knock!";
if (currentJoke = =  (NUMJOKES -  1))

currentJoke =  0;
else

currentJoke =  currentJoke+1;
state =  SENTKNOCKKNOCK;

} else {
theOutput = "Bye.";
state = WAITINGSTATE;

}
}
return theOutput;

}
}



6.1 A SERVER-BASED INTERACTIVE APPLICATION:
NETWORKED KNOCK KNOCK JOKES

142

Program 6.2d JACIE implementation o f  Knock Knock Jokes (cont)

on server start { } 
on session start {

outputLine = processlnput(null) ; 
send ServerMessage outputLine;

}
on session {

receive ClientMessage inputLine; 
if (inputLine==null) 

abort;
outputLine = processlnput(inputLine); 
send ServerMessage outputLine; 
if (outputLine=="Bye.") 

abort;
}

on session end { }
on server end { }

}

}

Similar to the c l i e n t  im p le m e n ta t io n ,  the s e r v e r  im p le m e n ta t io n  Starts with a 

declaration of variables and methods used by the server program segment. In this case the 

variables and the methods used are very much the same as implemented by 

K nockK nockProtocol described before. Since the K nockK nockProtocol is a class (or in 

JACIE’s terms a method which is a procedure) that provides the server’s response to a 

client’s questions, not much simplification can be done in JACIE. As seen, the method 

declaration in JACIE is similar to Java’s. The code above also illustrates some minor 

difference between JACIE and Java in terms of array declaration. For JACIE the size of 

the arrays (in the example c l u e s  and a n sw ers)  have to be explicitly specified.

The next construct o f the s e r v e r  im p le m e n ta t io n  is on s e r v e r  s t a r t .  No Statement is 

in use for this application.

This is followed by on s e s s i o n  s t a r t  construct. The statements for this construct are 

shown below:

outputLine = processlnput(null) ; 
send ServerMessage outputLine;

As expected, statements within the on s e s s i o n  s t a r t  of the s e r v e r  im p le m e n ta t io n  

work in pair with the statements within the on s e s s i o n  s t a r t  of the c l i e n t
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im p le m e n ta t io n .  In this example application, o u tp u tL in e  has a value returned by the 

method p r o c e s s l n p u t  ( n u l l )  which is “Knock! Knock!” . This text string will be sent to 

the client as ser v erM essa g e .  Refering to the statement within the on s e s s i o n  s t a r t  of 

the c l i e n t  im p le m e n ta t io n ,

receive ServerMessage fromServer;

on arrival of the ser v erM essa g e ,  the from S erver  gets the value of the text string which 

will be displayed by the p r in t  statement.

The next construct of the s e r v e r  im p le m e n ta t io n  is on s e s s i o n .  Similar to the one in 

the c l i e n t  im p le m e n ta t io n ,  by design it is a loop, and it exits when the user or the 

server issues disconnection or abort:

receive ClientMessage inputLine; 
if (inputLine==null) 

abort;
outputLine = processlnput(inputLine) ; 
send ServerMessage outputLine; 
if (outputLine=="Bye. ") 

abort;

As shown, the communication statements ( r e c e i v e  and send) within this construct work 

in tandem with the corresponding construct of the c l i e n t  im p le m e n ta t io n .

The KnockKnock application does not require any statement within the last two constructs: 

the on s e s s i o n  end and the on s e r v e r  end. This completes the JACIE script for the 

application.

6.1.3 Compilation and Execution

Figure 6.2 shows the output of compiling the KnockKnock. j a c i e  script. As can be seen, 

on compiling this script with the JACIE compiler, Java classes for the client program and 

the server program were generated. These Java classes were then compiled, deployed and
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Figure 6.2 The output o f compiling the KnockKnock.jacie script

executed. The generated Java codes are not identical to the ones implemented by 

Campione and Walrath, as mentioned above, but they are of similar functionalities.

Figure 6.3 shows the KnockKnockServer running on “asahipc2” (the hostname 

“taranis” has been changed to “asahipc2” to correspond to the machine on the LAN). 

Figure 6.4, on the other hand, shows a series of screen shot of the running client program 

of the KnockKnock application. The major difference is in the JACIE’s standard user 

interface (compare this figure with Figure 6.1).
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Figure 6.3 The KnockKnockServer program running on asahipc2
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Figure 6.4 The running KnockKnock client program

6.1.4 Summary

Java has rich features for developing network applications. This “simple” application has 

demonstrated some typical Java features required in the implementation of any server- 

based interactive applications. Some of the features used are network socket 

communication handling, various types of input/output streams, exception handling, multi

threading operations and various modifiers in class and member variable declarations. 

With exception to advanced system programmers, these “rich” features are not within the 

reach of the rest of the programmers’ community.
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JACIE’s implementation shows how these features can be tackled sensibly. With 

comparable indentation, the four Java classes with 161 lines of code have been reduced to 

one JACIE script with 106 lines of code. In terms of number of words, about 30 percent 

less code have been achieved. If we disregard the class or the function that returns the 

different response to different user’s input (K nockK nockProtocol for Java and 

p r o c e s s l n p u t  for JACIE) where nothing much can be simplified, JACIE boasts 50 

percent less code. But the obvious absence of Java’s strong-but-complex features 

demonstrated further the simplicity of the JACIE language.

6.2 A Server-mediated Interactive Application: 
Multi-user Network Troubleshooting

The second example application is a multi-user network troubleshooting (referred to as 

NTS). It is designed as a piece of teamwork courseware with which multiple concurrent 

users (in this case remote students) can engage in a collaborative activity of diagnosing 

simulated network problems. This type of application can be used to support teaching and 

learning of basic network troubleshooting.

Students are given the description of a problem in a set of interconnected networks. Each 

student is given control of one network and, thus, can only manipulate network devices 

under his control (e.g., examining individual device status, switching the device on or off, 

connecting or disconnecting the cable links, issuing “ping” command from any host within 

his control to local or remote hosts and performing software configuration). As no single 

user has the overall control of all networks, collaboration among participants is essential 

for successful troubleshooting. Some kind of communication channel is required.

Such a collaborative application is best served by JACIE. A canvas channel can be used 

for displaying a collection of interconnected networks -  both for a global view and a local 

view. The global view is meant for displaying the overall topology of the networks, 

whereas the local view is where the individual student interacts and manipulates the 

devices under his control. A chat channel can be employed to facilitate communication
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among participants. Due to the JACIE’s current implementation of the video channel 

which is based on NetMeeting videoconferencing facility, the video channel may also be 

employed only if two students are involved.

Figure 6.5 shows the screen capture of the NTS. As displayed, the canvas is in the global 

view with all the network devices and their interconnections are shown. The three main 

buttons on top of the network layout are global v i e w, local vie w and pro blem. They 

are used to toggle from one view to another and to display the current troubleshooting 

problem.
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Figure 6.5 The global view o f Network Troubleshooting course
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Program 6.3a JACIE implementation o f  Network Troubleshooting

JACIE {
applet name NetTrouble;
appletlauncher text "Collaborative Network Troubleshooting Training"; 
configuration {

host "asahipc2";
port 3333;
username prompt;
channel canvas, chat;
about file "NetTrouble.txt";
number of users 3;
protocol contention;

}

messages {
roomAssigned, problemStatement, checkDevice, userRequest, 
deviceConfig, problemSolved, exitProgram

6.2.1 Implementation

The NTS application has been implemented as a JACIE script. It is meant for three-student 

collaboration. The NTS employs a contention protocol for its user-user interactions. 

Remote users (clients) can send messages to the server at any time without the need of 

turn control. The system configuration component of the JACIE script has the statements 

shown in Program 6.3a.

Unlike the first example application, the NTS is an applet. The following first two 

statements are related to this.

applet name NetTrouble;
appletlauncher text "Collaborative Network Troubleshooting Training";

The first statement specifies the client program type (which is an applet) and the program 

name (which is N etT ro u b le ) .  The second statement simply means that a text button will 

be embedded in a Web page from which a separate applet window will be opened on 

activation. Within the c o n f i g u r a t i o n  construct the h o s t  and p o r t  statements specify the 

host name where the server program will reside and the port number where the
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communication service will take place. Since this is a multi-user application, the username 

of each participant has to be unique. The statement

username prompt;

means that the username will be supplied at runtime and by default the system will impose 

this constraint.

Also, unlike the first example application, the NTS employs two communication channels 

-  ca n v a s  and ch a t .  This is reflected in its statement:

channel canvas, chat;

The canvas is where all simulated network devices are drawn and user-system interaction 

for checking device status and configuration takes place. The user interaction through the 

canvas medium is in addition to JACIE's built-in text input/output message channel. Each 

user has his or her own network devices under his or her control. Thus the local canvas is 

designed particularly for each user but since the networks are interconnected, the 

connection/disconnection and configuration/reconfiguration of devices under his or her 

control affect the whole networks. A chat channel is therefore used for user-user 

communication. A user can convey his or her diagnostic report to one another or can 

suggest to other users some possible steps to be taken. By doing so, they collaboratively 

diagnose and locate the malfunctioning part.

The next statement:

about file ’’NetTrouble. txt" ;

basically generates an “about” button but, unlike the first application, at runtime clicking 

this button opens a dialog box that displays text from “N e t T r o u b i e . t x t ” file. This file is 

a help file which contains, among others, the syntaxes of commands for interaction with 

the system.
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The following statements are another new features differing from the first application:

number of users 3; 
protocol contention;

Since this is a multi-user server-mediated interactive application, the JACIE language 

requires specifications for the number of concurrent users allowed and the user interaction 

protocol (or floor management protocol) to be employed. This application is designed for 

three users and by employing a contention protocol, its participants can send messages to 

the server at any time without the need of turn control.

There are a number of message identifiers used in the NTS. Some of them are as follows:

messages {
roomAssigned, problemStatement, checkDevice, userReguest, 
deviceConfig, problemSolved, exitProgram

}

The room A ssign ed  message will be initiated by the server program and will be sent to the 

client program to notify which room the user is assigned to. The client program will then 

limit the user's local view as well as control network devices in this specific room. The 

p ro b le m S ta te m en t  message is also initiated by the server to alert all the active users of 

the “network problem”. This message is to be sent at the start of each troubleshooting 

session. The user may also enquire about the “problem” at a later stage. During an active 

session, other message transfers (each one with its own unique message identifier) are also 

involved which, among others, are to check configuration (denoted by ch e c k D e v ic e ) ,  to 

reconfigure (denoted by u s e r R e q u e s t  and d e v ic e C o n f ig ) ,  etc.

The client body of the NTS consists of several program constructs. Like any other JACIE 

script, this c l i e n t  im p le m e n ta t io n  component begins with a d e c l a r a t i o n  construct 

where all the variables and methods used within the component are declared. An example 

extracted from the NTS application is given in Program 6.3b.
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Program 6.3b JACIE implementation o f  Network Troubleshooting (cont)

client implementation { 
declaration {

int roomNumber; 
string problem;
int currentView = 1; // 1 = Global, 2 = Local
string instruction; 
string deviceName; 
string config;
image globalViewLayout = "Layout.gif"; 
image globalViewOn = "GlobalOn.gif"; 
image globalViewOff = "GlobalOff.gif"; 
image localViewOn = "LocalOn.gif"; 
image localViewOff = "LocalOff.gif"; 
image problemlcon = "ProblemIcon.gif";

string extractWord(string theText, int pos) {
// this method parses theText and returns the word at pos position 
string word = 
int firstSep; 
int secondSep; 
int numberOfWords; 
if (theText==null |l theText=="") 

numberOfWords = 0; 
else if (Java_theText.indexOf(" ")==-l) 

numberOfWords = 1; 
else if (Java_theText.indexOf(" ")==Java_theText.lastlndexOf(" ")) 

numberOfWords = 2; 
else numberOfWords = 3; 
if (pos <= numberOfWords) {

firstSep = Java_theText.indexOf(" "); 
secondSep = Java_theText.lastlndexOf(" "); 
if (pos==l) {

if (numberOfWords==l) 
word - theText; 

else
word = Java_theText.substring(0, firstSep);

}
else if (pos==2) {

if (number0fWords==2)
word = Java_theText.substring(firstSep+1); 

else
word = Java_theText.substring(firstSep+1,secondSep);

}

}
return word;

}

string deviceType(string deviceName) {
// this method returns the device type denoted by deviceName 
if (deviceName=="WSll" || deviceName=="WS12" || deviceName=="WS13"

|| deviceName=="WS21" || deviceName=="WS22" || deviceName=="WS23") 
return "workstation"; 

else if (deviceName=="S31" II deviceName=="S32" || deviceName=="S33") 
return "server"; 

else if (deviceName=="PI" || deviceName=="P2") 
return "printer"; 

else if (deviceName=="Hubl" || deviceName=="Hub3") 
return "hub"; 

else if (deviceName=="Gateway") 
return "gateway";

else
return "unknown";

}

}
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While the JACIE’s variable declaration format for numeric and string data types is similar 

to many other programming languages, it differs greatly in terms of image declarations. 

JACIE allows assigning a string literal to an image variable. These string literals represent 

filenames of graphic images.

Some of the examples extracted from Program 6.3b are as follows:

image globalViewLayout = "Layout.gif"; 
image globalViewOn = "GlobalOn.gif"; 
image globalViewOff = "GlobalOff.gif";

Program 6.3b shows two methods declared for client implementation, namely 

e x t r a c t w o r d  and d ev iceT y p e .  The e x t r a c tw o r d  method simply parses the given text 

string and returns the word at the specified position. The method, utilised in conjunction 

with the instruction typed in by the user, identifies the syntactically correct instruction 

used. The method also shows how Java features are integrated in this JACIE script (as 

denoted by the prefix Java_). This is due to the fact that JACIE has no built-in facility for 

string manipulation. Some of Java’s string accessor methods used in the example are 

i n d e x O f () ,  l a s t l n d e x O f () and s u b s t r i n g ().

The second method, d ev iceT y p e ,  returns the type of the network device. The method is 

used on the client-side to ensure the right instruction is used on the right device before this 

instruction is sent to the server for further information or configuration. The method also 

shows a simple string comparison in JACIE, as opposed to Java, e.g.,

if (deviceName=="S31" || deviceName=="S32" || deviceName=="S33") 
return "server"; 

else if (deviceName=="Pl" || deviceName=="P2") 
return "printer";

The recognised command instructions to be used by the communicating NTS users are 

shown in Table 6.1. Users can also refer to the syntax of these commands from the 

program’s “about” facility. Except for getting the information, the current implementation 

of NTS does not allow the gateway to be reconfigured.
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: F o r  se rv ers , w orkstations o r  p rin te rs , .. . . .....................
switch on to turn on the device
switch off to turn off the device
change IPAddr x.x.x.x To change the IP address o f the device where x.x.x.x is the new IP 

address
change NetMask x.x.x.x To change the netmask of the device where x.x.x.x is the new 

netmask
change DefaultGateway x.x.x.x To change the default gateway o f the device where x.x.x.x is the 

new default gateway
! F o r  se rv ers  o r  workstations,

p i n g  <DeviceName> where <DeviceName> is the remote device name to ping (to test 
reachability)

; F o r  hubs,
switch on to tum on the hub
switch off to tum off the hub

F o r  cables,
connect cable to attach the cable to the network
disconnect cable to detach the cable from the network

Table 6.1 The NTS command instructions for network configurations

The following declaration is the on canvas construct. This construct specifies the default 

workspace canvas on which user-defined interactions and output displays will take place. 

Some statements in this construct are shown in Program 6.3c.

Program 6.3c JACIE implementation o f  Network Troubleshooting (cont)

on canvas {
foreground gray;
define canvas globalView {

draw grid Viewlcons at 10,10 step 100,25 size 3,1; 
draw image grid Viewlcons globalViewOn at 0,0;
draw image grid Viewlcons localViewOff at 1,0;
draw image grid Viewlcons problemlcon at 2,0; 
draw image globalViewLayout at 10,35;

}

define canvas localViewl {
draw grid Viewlconsl at 10,10 step 100,25 size 3,1; 
draw image grid Viewlconsl globalViewOff at 0,0; 
draw image grid Viewlconsl localViewOn at 1,0;
draw image grid Viewlconsl problemlcon at 2,0;
// draw detail objects in room 1

}
define canvas localView2 {

// draw ViewIcons2 grid
// draw detail objects in room 2

}

define canvas localView3 {
// draw ViewIcons3 grid
// draw detail objects in room 3

)

use canvas globalView;
}
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As shown, four canvases are defined, namely g lo b a lV ie w ,  l o c a i v i e w i ,  i o c a i v i e w 2  and 

i o c a i v i e w 3. (Since the third example application will depend heavily on graphic features 

of JACIE, the graphic features explained in this section will not be stressed).

As can be seen, most of the statements used in d e f i n e  canvas are graphics statement 

(e.g. draw g r id ,  draw image, etc.).

The statement

use canvas globalView;

within the on can vas  construct specifies that the default canvas is the g lo b a lV ie w .  Other 

canvases will be used at a later stage and also depend on the assigned roomNumber. With 

this set of statements, an initial global view is drawn onto the canvas (as shown in Figure 

6.5).

The next construct (as shown in Program 6.3d) is the on s e s s i o n  s t a r t .  Typical of any 

client-side interactive multi-user program, it has an event control statement on w a itin g  

to handle any action if the required number of online users has not been reached. In this 

case, it will only print a message indicating that the system is waiting for more remote 

users.
Program 6.3d JACIE implementation o f  Network Troubleshooting (cont)

on session start { 
on WAITING {

print "Waiting for other remote users";
}
print "Now we have enough people to perform network troubleshooting - enjoy!"; 
wait 5;
print "Open chat channel for interaction with other players"; 
wa i t 5;
use canvas globalView;
receive roomAssigned roomNumber;
print "You've been assigned room number "+roomNumber; 
receive problemStatement problem; 
deviceName = "notSelected"; 
define canvas localView { 

if (roomNumber==l)
use canvas localViewl; 

else if (roomNumber==2) 
use canvas localView2; 

else
use canvas localView3;
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on WAITING {
print "Waiting for other remote users";

}

As soon as the alert from the server is received (behind the scene), notifying that enough 

users are online, the statements following the on w a itin g  will be executed:
print "Now we have enough people to perform network troubleshooting - enjoy!"; 
wait 5;
print "Open chat channel for interaction with other players"; 
wait 5;
use canvas globalView;
receive roomAssigned roomNumber;
print "You've been assigned room number "+roomNumber; 
receive problemStatement problem;

It will print a message, wait for 5 seconds and print another message. The default graphic 

canvas to be displayed is g lo b a lV ie w  which has been defined in the previous construct. It 

will also receive, from the server, the assigned room number and the problem to be 

diagnosed.

The statement

deviceName = "notSelected";

is simply an assignment statement to set an initial value to deviceN am e to indicate that the 

user has not selected any network device for information or configuration. Selection of the 

network device is made by clicking on the icon in the l o c a l  v ie w  mode.

The statements

define canvas localView { 
if (roomNumber==l)

use canvas localViewl; 
else if (roomNumber==2) 

use canvas localView2; 
else

use canvas localView3;

will restrict the user to a specific l o c a i v i e w  canvas based on the roomNumber assigned by 

the server.
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Program 6.3f JACIE implementation o f  Network Troubleshooting (cont)

on session {
if (currentView==l) {

use canvas globalView; 
on MOUSECLICK {

if (GETGRID==ViewIcons) 
if (GETGRIDX==0)

print "You are in Global View"; 
else

if (GETGRIDX==1) 
currentView = 2; 

else
print "[Problem] "+problem;

}
}

else { //currentView = 2 
use canvas localView; 
on MOUSECLICK {

if (GETGRID==ViewIcons) 
if (GETGRIDX==1)

print "You are in Local View"; 
else

if (GETGRIDX==0) 
currentView = 1;
// exit and refresh screen 

else
print "[Problem] "+problem;

// request information of the selected device from the server

send checkDevice deviceName;
}
on TEXTENTERED {

input instruction;
clear localmessage;
if (deviceName=="notSelected")

print "Please select the device by clicking on its icon"; 
else if (instruction=="switch on" || instruction=="switch off") { 

if (deviceType(deviceName)=="cable" || deviceName=="gateway")
print "Invalid instruction-Cannot switch on/off a cable or a router"; 

else
send userRequest deviceName, instruction;

}
else // handle connect cable, disconnect cable

else // handle change ipaddress, change netmask, change defaultgateway

else if (extractword(instruction,1)=="ping") {
if (deviceType(deviceName)=="workstation"

I| deviceType(deviceName)=="server") 
if (deviceType(extractword(instruction,2))=="cable"

I deviceType(extractword(instruction, 2))=="hub") 
print "Invalid instruction - You may only ping to a remote "+ 

"workstation, server, printer or gateway";
else

send userRequest deviceName, instruction;
else

print "Invalid instruction-You may only ping from a workstation or "+ 
"a server";

}
else

print "["+deviceName+"] Invalid instruction entered";
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Program 6.3g JACIE implementation o f  Network Troubleshooting (cont)

on NEWMESSAGE {
if (MESSAGEID==deviceConfig) {

receive deviceConfig deviceName, config; 
print servermessage "["+deviceName+"] "+config;

}
else if (MESSAGEID==problemSolved) { 

receive problemSolved;
print servermessage "The network problem has been solved!";

}
else // new problem to be diagnosed

else // exit

}
}

}

Programs 6.3f and 6.3g show the main construct of NTS. As shown in 6.3f, if the user’s 

c u r r e n t v ie w  is l  (for global view), he or she can switch to local view by clicking on the 

local view icon ( getgridx== i ) of the v ie w ic o n s  grid. He or she can also display the 

problem by clicking on the problem icon and the problem will be displayed on local 

message bar (as depicted by the statement p r i n t  " [ Problem] " + p ro b iem ;)

Three events are captured within the on s e s s i o n  construct if the user is in a local view -  

on MOUSECLICK, on TEXTENTERED and on NEWMESSAGE. If the event is on MOUSECLICK, 

depending on the clicked icon, it will respond by displaying the problem statement (if it is 

the problem icon) or toggling to global view from local view, or sending a request to the 

server for information of the selected network device (a workstation, a printer, a server, a 

hub, a gateway or a cable). The selected device will be the active device and can be 

reconfigured through one of the NTS command instructions. The operations are shown by 

the following statements:

on MOUSECLICK {
if (GETGRID==ViewIcons) 

if (GETGRIDX==1)
print "You are in Local View"; 

else
if (GETGRIDX==0) 

currentView =1;
// exit and refresh screen 

else
print "[Problem] "+problem;

// request information of the selected device from the server

send checkDevice deviceName;
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A command instruction for configuring the network device is entered on the text input bar. 

It is handled by the on textentered  statement:

on TEXTENTERED {
input instruction;
clear localmessage;
if (deviceName=="notSelected")

print "Please select the device by clicking on its icon"; 
else if (instruction=="switch on" || instruction=="switch off") { 

if (deviceType(deviceName)=="cable" || deviceName=="gateway")
print "Invalid instruction-Cannot switch on/off a cable or a router"; 

else
send userRequest deviceName, instruction;

}
else // handle connect cable, disconnect cable

else // handle change ipaddress, change netmask, change defaultgateway

else if (extractWord(instruction,1)=="ping") { 
if (deviceType(deviceName)=="workstation"

I| deviceType(deviceName)=="server")

else
print "["+deviceName+"] Invalid instruction entered";

As shown, with the help of extractW ord  and d ev iceT y p e  methods, it will check the 

syntax of the instruction and the validity of the operation. It will send the u s e r R e q u e s t  

message to the server, together with the currently active deviceN am e and the 

i n s t r u c t i o n  to be performed.

The code also demonstrates another event control statement, namely on newmessage. The 

statement handles all incoming messages from the server and executes different statements 

depending on the message identifiers (as shown by the system variable message i d ):

on NEWMESSAGE {
if (MESSAGEID==deviceConfig) {

receive deviceConfig deviceName, config; 
print servermessage "["+deviceName+"] "+config;

}
else if (MESSAGEID==problemSolved) {

receive problemSolved;
print servermessage "The network problem has been solved!";

}
else // new problem to be diagnosed 

else // exit

}
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Program 6.3h JACIE implementation o f  Network Troubleshooting (cont)

on session end {
clear servermessage;

}

One of the messages is d e v ic e C o n f ig ,  which carries the information of the selected active 

device or the current reconfigured information of the device. The information is then 

displayed on the server message display area.

The last construct of the c l i e n t  im p le m e n ta t io n  of NTS is on s e s s i o n  end. Program 

6.3h shows the code. The only statement in use is c l e a r  s e r v e r m e s s a g e  to clear the 

server message bar.

The s e r v e r  im p le m e n ta t io n  component specifies code for a server process. It starts 

with declarations of variables and methods. As mentioned in Chapter 4, JACIE variables 

and methods can be declared as sh a red  -  meaning that there will be only one copy 

referred to by all instances of remote users. The “unshared” variables, on the other hand, 

are local to each client connection. Program 6.3i and 6.3j are excerpts from the NTS script. 

Some of the variable declarations specified are as follows:

shared string problem; 
shared int problemNumber; 
shared string [31] netDevice = { ... };

= {"WSll","WS12","WS13","PI","Hubl",
"Cablell","Cablel2","Cablel3","Cablel4","CablelS",
"WS21","WS22","WS23","P2",
"Cable21","Cable22","Cable23","Cable24",
"Cable25","Cable26","Cable27","Cable28",
"S31","S32","S33","Hub3",
"Cable31","Cable32","Cable33","Cable34",
"Gateway"};

shared string[31] [4] netConfig
= {{"on","161.139.67.1","255.255.255.0","161.139.67.250"}, // WSll 

{"on","161.139.67.2","255.255.255.0","161.139.67.250"), // WS12 
{"on","161.139.67.3","255.255.255.0","161.139.67.250"}, // WS13 
{"on","161.139.67.4","255.255.255.0","161.139.67.250"}, // PI 
{"on","na","na","na"}, // Hubl
{"connected","na","na","na"}, // Cablell
{"connected","na","na","na"}, // Cablel2

{"on","161.139.67.250","161.13 9.68.250","161.139.69.250"}}; // Gateway

shared int[31][31] reachability =1; // l=reachable
int roomNumber; 
string instruction; 
string deviceName; 
string deviceStatus;

// devices 
// devices

// devices

in room 1 
in room 2

in room 3
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Program 6.3i JA CIE implementation o f Network Troubleshooting (cont)

server implementation { 
declaration {

shared string problem; 
shared int problemNumber;

shared string[31] netDevice
= {"WSll","WS12","WS13","PI","Hubl",

"Cablell","Cablel2","Cablel3","Cablel4","Cablel5",
"WS21","WS22","WS23","P2",
"Cable21","Cable22","Cable23","Cable24",
"Cable25","Cable26","Cable27","Cable28",
"S31","S32","S33","Hub3",
"Cable31","Cable32","Cable33","Cable34",
"Gateway"};

shared string[31][4] netConfig
= {{"on","161.139.67.1","255.255.255.0","161.139.67.250"}, // WSll 

{"on","161.13 9.67.2","255.255.255.0","161.139.67.250"}, // WS12 
{"on","161.139.67.3","255.255.255.0","161.13 9.67.250"}, // WS13 
{"on","161.139.67.4","255.255.255.0","161.139.67.250"}, // PI 
{"on","na","na","na"}, // Hubl
{"connected","na","na","na"}, // Cablell
{"connected","na","na","na"}, // Cablel2

{"on","161.139.67.250","161.13 9.68.250","161.139.69.250"}}; // Gateway
shared int [31] [31] reachability = 1;
shared void createProblem(int problemNumber) {

// this method generates a problem from a predefined set

}

shared string extractWord(string theText, int pos) {
// this method parses theText and returns the word at pos position

}

shared int findDevicelndex(string deviceName) {
// this method returns the index of deviceName as maintained by netDevice 
// or -1 if not found

}

shared string checkStatus(int devicelndex) {
// this method returns current information of the devicelndex device 

int i = devicelndex; 
if (i==-l)

return "device not found"; 
else if (i==0 || i==l || i==2 || i==3

|| i==10 || i==ll || i==12 || i==13
j j i==22 | j i==23 j| i==24)

if (netConfig[i][0]=="off") 
return "Status=off"; 

else
return "Status=on"

+ " IPAddress="+netConfig[i] [1]
+ " netMask="+netConfig[i] [2]
+ " defaultGateway="+netConfig [i

}

shared string checkStatus(string deviceName) {
return checkStatus(findDevicelndex(deviceName));

}________________________________________________

// workstations/printer in room 1 
// workstations/printer in room 2 
// servers in room 3

// devices 
// devices

// devices

in room 1 

in room 2

in room 3
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Program 6.3 j JACIE implementation o f Network Troubleshooting (cont)

shared string reconfigure(string deviceName, string parameter, string value) { 
// This method reconfigures the network device named deviceName with parameter 
// and value specified. It will also check reachability of devices due to the 
// new reconfiguration

int i = findDevicelndex(deviceName); 
int j ;
string newStatus = 1111 ; 
if (value=="on") {

if (netConfig[i][0]=="on")
newStatus = "Status=on (no change)"; 

else {
netConfig[i][0] = "on"; 
newStatus = checkStatus(i);
// reconfigure reachability 
if (deviceName=="Hubl")

for (j = 0; j < 31; j=j+l) {
if (netConfig[j] [0]=="on") { 

if (netConfig [0] [0]=="on") { 
reachability[j][0] = 1; 
reachability[0][j] = 1;

}

// if Hubl is switched on

/ /
/ /
/ /

if WSll is on, 
all online device 

can connect to it

}
else if (deviceName=="Hub3") // if Hub3 is switched on
else

for (j=0; j<31; j=j+l) { 
if (netConfig[j] [0]=="on") 

reachability[i][j] = 1; 
reachability[j] [i] = 1;

}

// if other device 
// all online device 
// can connect to it

}
}else if (value=="off") {

// handle reconfiguration and reachability

}
// handle other instructions

return newStatus;

void replylnstruction(string deviceName, string instruction) {
// this server method responds to the instruction given by the client

if (instruction=="switch on")
// switch on the respective device 
config = reconfigure(deviceName,null,"on");

else if (extractWord(instruction,1)=="change"
& extractWord(instruction,2)=="ipaddress")

// reconfigure IPAddress for the respective device
config = reconfigure(deviceName,"IPAddress",extractWord(instruction,3)); 

else
else if (extractWord(instruction,1)=="ping") {

// ping remote device

send deviceConfig deviceName, config;

}

int roomNumber; 
string instruction; 
string deviceName; 
string deviceStatus;
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As shown above, the shared variables are p rob lem , problemNumber, n e tD e v ic e ,  

n e tC o n f ig  and r e a c h a b i l i t y .  They are common to all client connections. The “private” 

client-specific variables are roomNumber, in s t r u c t i o n ,  deviceN am e and d e v ic e S ta t u s .  

This can be understood because each user is assigned a different room number and during 

the active session he or she is dealing with different command instructions, different 

device names, and different device statuses.

The array n e tD e v ic e  maintains the names of all the devices and the two-dimensional 

array n e tC o n f ig  maintains the current status of each device. The first value is the 

online/offline or, if cables, connected/disconnected status. This is followed by the IP 

address, the netmask and the default gateway. For the gateway, these are the IP addresses 

of the network interfaces. The two-dimensional array r e a c h a b i l i t y  simply determines if 

two devices are reachable from one another. Notice the simple way JACIE handles 

initialisation of arrays.

Program 6.3i and 6.3j also show some shared methods. They are c r ea te P ro b ie m ,  

ex tra ctW o rd , f in d D e v ic e ln d e x , c h e c k S ta tu s  and r e c o n f ig u r e .  As its name implies, 

cr e a te P r o b ie m  defines the problem to be solved by the communicating users. Three 

problems have been hardcoded for the users to troubleshoot. It is also possible (but not 

implemented in this version) for the problems are to be randomly generated from a set of 

common network problems. The method ex tractW ord  is the same as the one defined in 

client implementation and it serves the same purpose except at the server side. The two 

c h e c k S ta tu s  methods are examples of how methods can be overridden. They simply 

check the n e tC o n f ig  array with the help of f in d D e v ic e ln d e x  method. The method 

r e c o n f ig u r e  reconfigures n e tC o n f ig  and redefines the reachability among devices.

Another method, r e p iy in s t r u c t io n ,  is “private” to each client. It is designed in such a 

way that it can send messages directly to the respective client (denoted by the use of sen d  

statement in the method). If it is made “shared” the server will not be able to know which 

client is to receive the message. The method updates n e tC o n f ig  and r e a c h a b i l i t y
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values accordingly by calling r e c o n f ig u r e  method. This example also shows the 

importance of a correct choice of shared or “unshared” methods and variables.

Program 6.3k shows the two constructs that follow d e c la r a t io n  in s e r v e r  

im p le m e n ta t io n . They are on s e r v e r  s t a r t  and on s e s s i o n  s t a r t .  In NTS, once the 

server first starts its process or after reinitialisation when all users have left the sessions, it 

will set the problemNumber to i  and create the first problem. It stays alive, waiting for the 

new client to establish connection from then on.

Once a new client successfully established its connection to the server, the following 

statements in the on s e s s i o n  s t a r t  construct will be executed.

roomNumber = USERNUMBER; 
send roomAssigned roomNumber; 
send problemStatement problem;

usernumber is a system variable that being assigned to each user upon connection. In this 

case, the roomNumber takes the usernumber value so that the first remote user gets Room 

1, and so on. With the sen d  statements, the user is then notified of his or her assigned 

room and the problem to be solved. Since this is a multi-user application, the server will 

stay at this state until the specified number of users have been reached.

Program 6.31 shows the main session of the NTS, the on s e s s i o n  construct. This 

construct mainly responds to the incoming message (denoted by the event control 

statement on new m essage) depending on the m essage id . A s many of the operations have 

been defined in methods, the code has reasonably been simplified.

Program 6.3k JACIE implementation o f  Network Troubleshooting (cont)

on server start {
problemNumber = 1; 
createProbiem(problemNumber);

}
on session start {

roomNumber = USERNUMBER; 
send roomAssigned roomNumber; 
send problemStatement problem;

}___________________________________________________________________________
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Program 6.31 JACIE implementation o f Network Troubleshooting (cont)

on session {
on NEWMESSAGE {

if (MESSAGEID==checkDevice) {
receive checkDevice deviceName; 
deviceStatus = checkStatus(deviceName); 
send deviceConfig deviceName, deviceStatus;

}else if (MESSAGEID==userRequest) {
receive userRequest deviceName, instruction; 
replyInstruction(deviceName, instruction);

}

Program 6.3m JACIE implementation o f  Network Troubleshooting (cont)

on session end {
}

on server end {
problemNumber = 1; 
createProbiem(problemNumber);

}
}____________________________________________________________________________________

The two types of messages are c h ec k D ev ice  and u se r R e q u e st . On receiving a 

c h e c k D e v ic e  message, the server will call the c h e c k S ta tu s  method and will reply with 

the d e v ic e C o n f ig  message. If a reconfiguration is to be made, as indicated by the 

u se r R e q u e s t  message, the r e p l y i n s t r u c t i o n  method will be called. As mentioned 

before, this method updates n e tC o n f ig  and r e a c h a b i l i t y  values accordingly and replies 

with the message.

The last two constructs of server body are shown in Program 6.3m. The constructs are on  

s e s s i o n  end and on s e r v e r  end. No statement is required for the former. The latter, 

executed when all users leave the session, simply resets the problemNumber variable and 

calls the c r e a te P r o b ie m  method so that the server is ready for the next action. This 

completes the NTS coding in JACIE.



6.2 A SERVER-MEDIATED INTERACTIVE APPLICATION:
MULTI-USER NETWORK TROUBLESHOOTING

165

6.2.2 Compilation and Execution

After compiling this script using the JACIE compiler, Java classes for the client program 

and the server program were generated. Table 6.2 and Table 6.3 list these Java classes. 

The many different classes are due to the fact that JACIE employs a composite design 

pattern for its standard user interface in the client program (refer section 5.4.2), while in 

the server program these classes represent different components that make up the server 

process (refer to sections 5.1.2 and 5.4.3).

C lass N am e D escription

NetTrouble.j ava The main Java applet.

NetTroubleFrame.j ava The window opened by the Java applet.

NetTroubleContainer.j ava The container for the window.

NetTroubleMenuBar.j ava The menu bar embedded in the container.

NetTroubleCanvas.java The graphic canvas embedded in the container.

NetTroubleMessageBar.j ava The message bar embedded in the container.

NetTroubleClientSessionAssistant.java The client session assistant used by the container for communication.

NetTroubleUserList.java The user list dialog box.

NetTroubleChatChannel.java The chat channel dialog box.

NetTroubleAbout.j ava The help dialog box

JACIEGrid.j ava The class for grid handling in JACIE-generated programs.

JACIEImageButton.j ava The class for custom-built image button in JACIE-generated programs.

JACIEMessage.j ava The class for the client/server message in JACIE-generated programs.

JACIEMessageQueue.java The class for queue handling o f the JACIEMessage.

JACIEBox.java The class for better visual effects o f JACIE-generated programs.

NetTrouble.html The Web page that called NetTrouble.java applet.

Table 6.2 The Java classes fo r the client program o f  the Network Troubleshooting Application

C lass Nam e D escription

NetTroubleServer.j ava The main server program.

NetTroubleServerSessionManager.j ava The session manager o f the server program.

NetTroubleServerSessionAssistant.java The client-instance session assistant.

NetTroubleServerDeliveryManager.java The delivery manager o f the server program.

NetTroubleServerDeliveryAssistant.j ava The client-instance delivery assistant.

JACIEMessage.j ava The class for the client/server message in JACIE-generated programs.

JACIEMessageQueue.j ava The class for queue handling o f  the JACIEMessage.

Table 6.3 The Java classes for the server program o f  the Network Troubleshooting Application
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These classes were then compiled and deployed to the host machine, i.e., asahipc2. The 

host machine was also the Web Server. The server program was then activated at port 

3333.

The NTS has been tested for execution. Three remote users have accessed the client 

program by means of the NetTroubie.html page generated by the JACIE compiler. 

Figures 6.6, 6.7 and 6.8 show screenshots of the three users on local view.

As mentioned earlier, diagnosing network problems in NTS is to be performed 

collaboratively. Utilising simple instructions to check and configure/reconfigure network 

devices under their control, users can converse among themselves in a process of finding 

the right solution to the given problem. Conversations are done through JACIE’s standard 

chat channel.
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Figures 6.9 and 6.10 present the transcripts of the conversation along with the actions 

taken during a test run. The conversations are done through JACEE’s built-in chat channel.

Problem Statement: Server S31 can't access Printer PI.

(Note that S31 is in Room 3 and PI is in Room 1)

Captured conversation [and actions taken]

(Remote users' names are Abdul, Chen and Mark and have been designated Room 1, Room 2 and 
Room 3 respectively).

Mark: Abdul, can you check i f  PI is online?

Abdul: [checking the status by clicking on PI; the device status is displayed stating the on/off status, 
together with the IP address, netmask, default gateway]
Yes, it's on.

Chen: I  will try to ping the printer from this room.

Chen: [clicking on WS23 to make it the active device; the device status is displayed; issuing the ping 
instruction to PI]
I've tried to ping PI from WS23. It couldn ’t be reached either.

Mark: Why don 'tyou check the hub?

Abdul: [clicking on Hubl to make it the active device; the device status is displayed] 
Yes, the hub is online.

Abdul: OK, let me try to reach the printer from one o f  the machines here.
[clicking on WS13 to make it the active device; the device status is displayed; issuing the ping 
instruction to the printer]
Aha... I  can't access either.

Chen: Are you thinking what I'm thinking? Abdul, why don't you check the cable connection.

Abdul: [clicking on Cable 14; the connect/disconnect status shows that the cable is disconnected] 
Yes, the cable is disconnected.
[issuing connect cable instruction]
OK, I've connected the cable.

Chen: [issuing the ping instruction to the printer] 
OK, now I  can ping to that printer.

Mark: [issuing the ping instruction to the printer]
I  can reach the printer as well. Thank you Abdul.

Abdul: You're welcome Mark. And thanks to you too, Chen.

Figure 6.9 Transcript o f  the conversation fo r problem 1



6.2 A SERVER-MEDIATED INTERACTIVE APPLICATION:
MULTI-USER NETWORK TROUBLESHOOTING

169

Problem Statement: Workstation WS12 can't access Server S32. 

(Note that WS12 is in Room 1 and S32 is in Room 3)

Captured conversation [and actions taken]

(Remote users' names are Abdul, Chen and Mark and have been designated Room 1, Room 2 and 
Room 3 respectively).

Mark: [checking the status by clicking on S3 2; the device status is displayed stating the on/off status, 
together with the IP address, netmask, default gateway]
I ’ve checked S32. The server is on, the IP address is 161.139.68.12, the netmask is 255.255.255.0 
and the default gateway is 161.139.68.250.

Abdul: Let me try to ping S32 from WS12.
[clicking on WS12 to make it the active device; the device status is displayed; issuing the ping 
instruction to the server]
Yes, it says unreachable.

Chen: Abdul, why don’t you try pinging S32 from other machines in your segment?

Abdul: I  will...

Abdul: [clicking on WS11 to make it the active device; the device status is displayed; issuing the ping 
instruction to server S32]
Yes, successful.

Chen: So that means there is nothing wrong with your network segment and your hub.

Mark: Abdul, why don ’tyou check the cable connection from WS12 to the hub?

Abdul: [clicking on Cable 12; the connect/disconnect status shows that the cable is connected] 
Yes, the cable is connected.

Chen: [Toggling from local view to global view]
I  realised you ’re using twisted pair cables unlike my segment which uses coax cables. Have you 
checked the hub, Abdul?

Abdul: OK, let me try.
[clicking on the hub to make it the active device; the device status is displayed] 
Yes, there is nothing wrong.

Mark: Abdul, can you check again the network configuration o f  WS12?

Abdul: [clicking on WS12 to make it the active device; the device status is displayed stating the on/off 
status, together with the IP address, netmask, default gateway]
OK, the IP address is 161.139.67.2, the netmask is 255.255.255.0 and the default gateway is 
161.139.68.250.

Figure 6.10a Transcript o f  the conversation for problem 2
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Chen: [Toggling back from global view to local view; clicking on WS23 to make it the active device; the
device status is displayed stating the on/off status, together with the IP address, netmask, default 
gateway]
The netmask and the default gateway are just like mine.

Mark: Oh, that’s the culprit. Segment in Room 1 shouldn't have the same default gateway as in Room 2,
because they are in different subnets. Let me check the router configuration.
[clicking on the Router (the Gateway); the device status is displayed , together with each NIC’s 
configuration - the IP address, netmask, default gateway. Then, toggling to global view to double 
check which workstations belong to which subnets; and then toggling back]
Segments in Room 2 and in Room 3 are in the same subnet. The default gateway fo r  all the 
workstations, servers and printers in this subnet is 161.139.68.250. But the workstations and the 
printer in Room 1 should have 161.139.67.250 as the default gateway. Abdul, you can check if  the 
configuration is correct on other workstations in your segment.

Abdul: [clicking on WS11 to make it the active device; the device status is displayed, together with the IP 
address, netmask, default gateway -  as this is the workstation which was able to access the server] 
Yes, you 're right Mark. The default gateway is 161.139.67.250. So I will change the configuration 
ofWS12.
[clicking on WS12 to make it the active device; the device status is displayed; issuing change 
default gateway configuration instruction for this workstation]
OK, I  did it.

Chen: Abdul, why don’t you try pinging S32 again?

Abdul: [issuing the ping instruction to the server]
Yes, S32 is alive!
I can reach S32 now. We have successfully diagnosed and fixed the problem.

Mark: One fo r all, all fo r one...

Figure 6.10b Transcript o f  the conversation fo r  problem 2 (cont)

The two transcripts show the steps taken by the collaborative users during troubleshooting 

process of the simulated network problem. By doing so they have successfully diagnosed, 

located and fixed the malfunctioning part.

6.2.3 Summary

Even though most of the collaborative activities in this network troubleshooting 

application were by means of a chat channel (which may not seem trivial) but a chat 

channel alone is inadequate as the interconnection and interdependency of network 

devices needs to be represented and logically maintained. JACIE with its standard chat
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and canvas facilities, together with simple scripting language features, provides the 

mechanism for easy coding of the application.

Comparing with Java’s implementation of this application (as produced by the JACIE 

compiler or if hardcoded by any experienced programmer), all the rich Java features used 

in the first type of interactive application (see 6.1.4) are required. In addition to these, 

multiple threads are used and they need to be carefully synchronised as to guarantee 

fairness as well as to prevent performance degradation. The Java-based JACIE language 

manages to handle this with a high degree of simplicity and versatility.

The NTS, which has been implemented in JACIE, is only an example of a server-mediated 

multi-user application. Practically many other server-based multi-user applications can be 

implemented using this scripting language. Among others are collaborative courseware 

and networked multi-user games.

6.3 A Group Collaborative Application: Collaborative Scrabble

The third example is a collaborative scrabble game. Unlike the second application 

described above, this Internet-based game has typical features of group collaborative 

applications. In this kind of application, users are organised into groups and they 

communicate with each other for the purpose of coordinating their activities as well as 

promoting a sense of community, friendship and group competition.

Different from the traditional scrabble game [126], this collaborative scrabble game has 

been designed for two groups with two players in each group. Each player (who is also a 

member of an assigned group) is given four tiles. The group competes for the highest 

score by collaboratively forming a word (or words) using members’ available tiles and 

placing the tiles on the standard scrabble board during the group turn. Communications 

between group members (as well as among all players) are via a chat channel. In this 

version of the scrabble game, the server is responsible for “drawing” the tiles and 

“sending” them to the players, assigning turn, calculating the group score from the word
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Figure 6.11 The Collaborative Scrabble game in action

(or words) formed upon completion of the group turn and informing all players of a new 

score. Figure 6.11 shows the screen capture of this game.

Program 6.4a JACIE implementation o f Collaborative Scrabble

JACIE {
applet name Collabrabble; 
configuration {

host "asahipc2"; 
port 2345; 
username prompt;
about "Collaborative Scrabble Game";
channel canvas, chat;
number of users 4;
protocol roundrobin;
number of groups 2;
protocol of group alternate;
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6.3.1 Implementation

Program 6.4a shows JACIE script’s configuration component of the collaborative scrabble 

game. As shown, this game is an applet named coiiabrabbie (after Collaborative 

Scrabble) which will be embedded directly in a Web page (unlike the previous example 

which is displayed on a separate applet window, activated by a text button embedded in a 

Web page). Like any other JACIE script, it uses host, port and username statements to 

specify the hostname, the port number and the username -  the basic requirements for any 

client/server application. The applet uses canvas and chat channels. As expected, the 

canvas is where the game board will be displayed and also in which the user-system 

interactions will take place. The chat channel, on the other hand, is used for user-user 

communication and since groups are involved, the chat channel facility generated by the 

JACIE compiler reflects the requirement for public as well as private or group messages.

The inter-group interaction protocol (or floor management protocol) is round-robin (or in 

turn). As mentioned in Chapter 3, for intra-group protocol, the group members are to 

decide among themselves which floor control protocol is to be adopted. Negotiation is 

expected to be made through private chat channels. Also in this game, the players are 

grouped in an alternate order of his or her arrival -  the first person to establish connection 

will be in group 1, second in group 2, third in group 1 and forth in group 2. The JACIE 

statements related to these requirements are:

number of users 4; 
protocol roundrobin; 
number of groups 2 ; 
protocol of group alternate;

Some of the message identifiers used in this game are as follows:

messages {
newTile, myMove, myTile, myPartnerMove, myPartnerTile, 
myOpponentMove, myOpponentTile, score, opponentScore

}
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Program 6.4b JACIE implementation o f Collaborative Scrabble (cont)

client implementation { 
declaration {

string[15][15] board 
string[27] letter

: ; // * = empty grid
A M 11311 11C" »dm 11E" nFn HG M "H” n j •• "jn ii K" nLn

string[15] num

int[12][2] redSquare

int[17][2] yellowSquare =

int [8 ] [2] greenSquare

int[24][2] blueSquare

10","11","12","13","14","15"};
0.0},{7,0},{14(0},{0,7},{14,7 } ,{0,14},
7,14},{14,14}};
3,0},{11,0},{6,2},{8,2},{7,3},{0,3},{14,3}, 
2,6 },{6 ,6 },{8 ,6 },{12,6 },{3,7},(11,7},{2,8 }, 
6,8},{8,8},{12,8},{0,11},{7,11},{14,11},
6 ,12 }, {8 ,12 } , {3,14}, {11,14 } } ;
I,1},{2,2}, {3,3}, {4,4}, {13,1}, {12,2},
II,3},{10,4},{7,7},{4,10},{3,11},{2,12},
1, 13} , {10,10},{11,11} , {12,12},{13,13}} ; 
5,1}, {9,1}, {1,5}, {5,5},{9,5}, {13,5},
1,9},{5,9} , {9,9}, {13,9},{5,13} , {9,13}};

int[4] currentTile 
boolean formingWord 
string chosenTile; 
int letterlndex;

= - 1 ;
= false;

// - 1  means not available

To mention just a few, the n ew T ile  is associated with a message sent to each client 

containing the tile (or letter) “drawn” randomly by the server, the myMove and the m yT ile  

messages sent by the player to the server during his or her turn correspond to the board 

coordinate and the tile placed on the square respectively, whereas the s c o r e  and the 

o p p o n e n tsc o r e  messages are passed by the server to inform the group scores.

The client body component of the collaborative scrabble script starts with the declaration 

construct. Some of the variables used are shown in Program 6.4b.

The declaration statements, declare and initialise the variables used in the script. Just like 

the previous example application, the statements also show some distinctive features of the 

JACIE language in terms of initialising variables of an array type.

string[15][15] board = // * = empty cell
string [27] letter = {"A","B","C","D","E","F","G","H","I","J","K","L",

string[15] num
X V  ,  X X  , X X  ,  X  J  ,  X**  ,  X  J  J ,

= {{0,0},{7,0},{14,0},{0,7},{14,7},{0,14}, 
{7,14},{14,14}};

int[8 ][2] greenSquare
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The declaration of the two-dimensional variable board  shows how a single value can be 

initialised to each of the array element. The declarations of l e t t e r ,  num, g reen S q u a re  

and other array variables, on the other hand, show how different values can be initialised 

to the array elements using curly braces ({ and }). The asterisk assigned to board  marks 

that the cell is empty. It will be used later to handle client-side processing which prevents 

the user from placing a tile in an occupied cell. The two-dimensional g reen S q u a re  (and 

other coloured squares, not shown) maintains the coordinates of all the green squares on 

board. This is important as each colour represent a different score value.

Following d e c la r a t io n  is the on ca n v a s construct. Like any other JACIE script, this 

construct specifies the default workspace canvas on which all user-defined interactions 

and collaborations take place. For the collaborative scrabble game, the statements in this 

construct basically display the board, the scores and the player drawn tiles. Most of these 

graphic primitives employed grid-based operations.

Program 6.4c JACIE implementation o f  Collaborative Scrabble (cont)

on canvas {
// draw board 
foreground white;
draw grid scrabbleBoard at 30,30 step 15,15 size 20,20 colour black width 1; 
for (int i=0; i<15; i=i+l) {

draw string letter [i] at 37+i*20,25 font arial size 10; 
draw string num[i] at 15,42+i*20;

}
for (int i=0 ;i<8 ;i=i+l)

paint grid scrabbleBoard
at greenSquare[i][0],greenSquare[i][1] colour green; 

for (int i=0;i<24;i=i+l) 
paint grid scrabbleBoard

at blueSquare[i][0],blueSquare[i][1] colour blue; 
for (int i=0;i<17;i=i+l) 

paint grid scrabbleBoard
at yellowSquare[i][0],yellowSquare[i][1] colour yellow; 

for (int i=0 ;i<1 2 ;i=i+l)
paint grid scrabbleBoard

at redSquare[i][0],redSquare[i][1] colour red;

// display the score values for premium squares (designated by different colours)
// display the scores

// display the tiles' rack
draw string "YOUR TILES" at 360,300 size 18;
draw grid myTile at 360,310 step 4,1 size 20,20 colour black width 1; 
draw string "click here to pass turn" at 495,318 size 10;
// draw pass turn button
draw grid passTurnPoint at 600,310 step 1,1 size 20,20 colour lightgray width 1; 
paint grid passTurnPoint at 0,0 colour lightgray;
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Program 6.4c shows some statements used by the on ca n v a s  construct. Some of the 

graphics statements employed are:

foreground white;
draw grid scrabbleBoard at 30,30 step 15,15 size 20,20 colour black width 1; 
for (int i=0; i<15; i=i+l) {

draw string letter[i] at 37+i*20,25 font arial size 10; 
draw string num[i] at 15,42+i*20;

}for (int i=0 ;i<8 ;i=i+l)
paint grid scrabbleBoard

at greenSquare[i][0],greenSquare[i][1] colour green; 
for (int i=0;i<24;i=i+l) 

paint grid scrabbleBoard
at blueSquare[i][0],blueSquare[i][1] colour blue;

The first graphics statement simply colours the canvas white. The second statement 

defines grid for the scrabble board. The scrabble board starts at absolute coordinate 30,30. 

It is a 20 by 20 grid with the size for each cell is 15 pixels by 15 pixels. One-pixel black 

lines are drawn to mark the grid.

The next statement is a f o r  loop statement that displays letters and numbers across and 

downward the scrabble board. Even though there is no similar feature on the conventional 

game board, the letters and numbers are used for referencing purposes among remote 

players. The next f o r  loops with p a in t  g r id  statements simply colour the cells 

accordingly.

There are also other grids defined on the canvas. They are named m yT ile  and 

p a ssT u rn P o in t . They are used in the following context:

draw string "YOUR TILES" at 360,300 size 18;
draw grid myTile at 360,310 step 4,1 size 20,20 colour black width 1; 
draw string "click here to pass turn" at 495,318 size 10;

draw grid passTurnPoint at 600,310 step 1,1 size 20,20 colour lightgray width 1; 
paint grid passTurnPoint at 0,0 colour lightgray;

The m yT ile grid is defined at an absolute position (360,310). It consists of four cells with 

each one having the size of 20 pixels by 20 pixels. It is coloured light gray.
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Program 6.4d JACIE implementation o f  Collaborative Scrabble (cont)

on session start { 
on WAITING {

print "Waiting for other players";
}
print "Now we have enough people to play this game - enjoy!"; 
wait 5;
print "Open chat channel for interaction with other players"; 
wait 5;
for (int i=0; i<4; i=i+l)

receive newTile currentTile[i];

As expected this m yT ile  grid represents “the tile rack” that holds all the player’s current 

tiles. The p a ssT u rn P o in t is a special grid that will be used later to indicate that the group 

has formed the word and ready to pass the turn to the other competing group.

The next construct, on s e s s i o n  s t a r t ,  has the statements shown in Program 6.4d. Like 

any other JACIE script that supports multi-user operations, the on w a itin g  statement is 

used so that some text messages can be displayed to inform the player that the application 

is still waiting for more players before the game can start.

When enough players are online, each player will get the first four tiles to begin with. The 

players are also reminded to open a chat channel for private discussion among group 

members or public chat with other group members. The statements that handle these 

operations are:

print "Now we have enough people to play this game - enjoy!"; 
wait 5;
print "Open chat channel for interaction with other players"; 
wait 5;
for (int i=0; i<4; i=i+l)

receive newTile currentTile [i];

The on s e s s i o n  construct that follows is where other user interactions and client-server 

communications take place. Program 6.4e shows a code segment extracted from the game.
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Program 6.4e JACIE implementation o f Collaborative Scrabble (cont)

on session {
// display tiles on the rack
// display the current board 
for {int i=0; i<15; i=i+l)

for (int j = 0; j<15; j=j+l) { 
if (board[i][j] !="*") {

paint grid scrabbleBoard at i,j colour orange;
draw string grid scrabbleBoard board[i][j] at i,j size 20;

}
}

on TURN {
print servermessage "It is your turn 
on MOUSECLICK {

gridX = GETGRIDX; gridY = GETGRIDY; 
if (GETGRID == myTile) {

// forming a word
formingWord = true;
letterlndex = currentTile[gridX];
chosenTile = letter[letterlndex];
print "You've clicked on "+chosenTile;
selectedTileLoc = gridX;

}

else if (formingWord && GETGRID==scrabbleBoard) {
// update the board
board[gridX][gridY] = chosenTile;
// inform server of the move 
send myMove gridX, gridY; 
send myTile letterlndex;
// update the rack

}
else if (GETGRID==passTurnPoint) {

// pass turn
print "passing turn to next player 
pass turn;
formingWord = false;

}
}

}

As shown in the code, this JACIE script makes use of many graphics and event control 

statements. The grid-based operations of graphic primitives promote more readable and 

manageable code (as opposed to normal graphic primitives that used absolute positioning). 

The event handling mechanism of the JACIE language also simplifies user’s interactions 

with the shared workspace.

on TURN {
print servermessage "It is your turn ..."; 
on MOUSECLICK {

}
}
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The captured on turn event will execute all statements under it when the group gets its 

turn. This is the only time when the player can interact with the game board. However, the 

players can converse among themselves through the chat channel at any time.

During its group turn, the m ouseclick  event is captured:

on MOUSECLICK {

gridX = GETGRIDX; gridY = GETGRIDY;
if (GETGRID == myTile) {

// forming a word
formingWord = true;
letterlndex = currentTile[gridX];
chosenTile = letter[letterlndex];
print "You've clicked on "+chosenTile;
selectedTileLoc = gridX;

}
else if (formingWord && GETGRID==scrabbleBoard) {

// update the board
board[gridX][gridY] = chosenTile;
// inform server of the move 
send myMove gridX, gridY; 
send myTile letterlndex;
// update the rack

else if (GETGRID==passTurnPoint) {
// pass turn
print "passing turn to next player ..."; 
pass turn;
formingWord = false;

}
}

If the mouse click is on the rack, specified as m yT ile  grid, a tile is selected and it is to be 

moved by the following mouse click. If the mouse position is in the board area (specified 

as scr a b b le B o a r d  grid) and as the second click, the selected tile will be placed at the 

appropriate grid. If the grid is p a ssT u rn P o in t grid, this signifies that the group has 

completed its move and the turn is to be passed to the next group. All these grid-based 

operations are performed with the help of system variables g e tg r id , getgridx  and 

getg r id y . If mouse click is on the position of the defined grid, getgrid  returns the name 

of the grid. At the same time getgridx  and getgridy  will hold the value of the relative 

coordinate.
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Program 6 A t JACIE implementation o f Collaborative Scrabble (cont)

on session {

on NEWMESSAGE {
if (MESSAGEID == myOpponentMove) {

// update the board to reflect the opponent move
receive myOpponentMove rgridX, rgridY;
receive myOpponentTile remoteLetterlndex;
board[rgridX][rgridY] = letter[remoteLetterlndex];
refresh;

}if (MESSAGEID == myPartnerMove) {
// update the board to reflect the partner move

if (MESSAGEID == newTile) {
// update the rack

}if (MESSAGEID == score) {
// update the group score

}if (MESSAGEID == opponentScore) {
// update the opponent score

}

Different actions are also taken if the client program receives new messages from the 

server which is reflected by the on newmessage statement as shown in Program 6.4f. 

Some of the message types received from the server (as depicted by the system variable 

MESSAGEID) are myOpponentMove, myPartnerM ove, n ew T ile , s c o r e  and o p p o n en tS co re . 

As needed, the board and the canvas will be updated accordingly.

The final construct of the client body component (on s e s s i o n  end) only prints the “The 

End” message. This is shown in Program 6.4g.

Program 6.4g JACIE implementation o f  Collaborative Scrabble (cont)

on session end { 
print "The End"; 
wait 3 ;

}
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Program 6.4h JACIE implementation o f Collaborative Scrabble

server implementation { 
declaration {

// boardScore: 4 = triple word, 3 = double word,
// 2 = triple letter, 1 = double letter
shared int[15][15] boardScore

shared int[27] numberOfLetters 

shared int[27] letterScore

shared void initialiseGame() {

}

shared void updateBoard(int x, int y, int z) {

}
shared int calculateScore(int tilesUsed) { 

int score = 0 ; 
boolean doubleWord = false; 
boolean redoubleWord = false; 
boolean tripleWord = false; 
boolean retripleWord = false;
// calculate the main word's score

// calculate other words' scores

return score;
}
shared int drawTileO { 

int drawnTile = -1;
// draw a tile randomly

return drawnTile;
}

int moveX; int moveY; 
int letterlndex; 
int currentScore = 0; 
int moreTiles = 0;

}______________________________________________

The server body component of the collaborative scrabble game performs many functions. 

For this game, the main functions of the server are to maintain the “bag” of available tiles, 

to randomly draw a tile at a time for all players, to calculate the group score and to 

mediate the communications among clients (be they inter-group or intra-group

= {{4,0 , 0 , 1 , 0 , 0 , 0 , 4,0 , 0 , 0 , 1 , 0 , 0 , 4}, 
{ 0 , 3 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 } ,  
{ 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 } ,  
{ 2 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 2 } ,  
{ 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 } ,  
{ 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 } ,  
{ 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 } ,  
{4,0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0,4}, 
{ 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 } ,  
{ 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 } ,  
j o , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 } ,  
j 2 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 2 } ,  
j o , 0,3,0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 } ,  
j o , 3 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 3 , 0 } ,  
j 4 , 0 , 0 , 1 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 4 } } ;

= {9,2,2,4,12,2,3,2,9,1,1,4,2,6,
8 , 2 , 1 , 6 , 4 , 6 , 4 , 2 , 2 , 1 , 2 , 1 , 2 } ;

= {1,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3, 
1 0 , 1 , 1 , 1 , 1 , 4 , 4 , 8 , 4 , 1 0 , 0 } ;
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communications). Program 6.4h is an extract of the first part of the server body

component.

shared int[27] numberOfLetters = {9,2,2,4,12,2,3,2,9,1,1,4,2,6,
8,2,1,6,4,6,4,2,2,1,2,1,2}; 

shared int[27] letterScore = {l,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3,
10, 1,1, 1,1, 4,4,8,4,10,0};

As shown, the tile bag is defined by two arrays, i.e., n u m b erO fL etters and l e t t e r S c o r e .  

The n u m b erO fL etters basically maintains the distribution of each letter, whereas the 

l e t t e r S c o r e  keeps the letter values of the tiles. The tile can be drawn with the 

d ra w T ile  () method. As may be expected, the n u m b erO fL etters will be updated 

accordingly when the d ra w T ile  () is called.

// boardScore: 4 = triple word, 3 = double word,
// 2 = triple letter, 1 = double letter
shared int[15][15] boardScore = {{4,0,0,1,0,0,0,4,0,0,0,1,0,0,4},

{0,3,0,0,0,2,0,0,0,2,0,0,0,3,0},
{0,0,3,0,0,0,1,0,1,0,0,0,3,0,0},
{2,0,0,3,0,0,0,1,0,0,0,3,0,0,2},
{0,0,0,0,3,0,0,0,0,0,3,0,0,0,0},
{4,0,0,1,0,0,0,4,0,0,0,1,0,0,4}};

There is also an array that maintains the board score of the game, named b oard S core . 

Like the conventional scrabble game [126], the b o a rd S co re  has additional premium 

values used when placing tiles on premium squares, e.g., double letter, triple letter, double 

word or triple word. As can be seen, the JACIE’s multi-dimensional array initialisation 

has been nicely used in this declaration statement.

Program 6.4i JACIE implementation o f  Collaborative Scrabble (cont)

on server start { 
initialiseGame();

}
on session start {

for (int i=0; i<4; i=i+l) 
send newTile drawTile(); 

moreTiles = 0;
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Another important feature of the JACIE language to be noted is the use of sh a red  

modifier, where the single-copy sh a red  variables and methods are to be referred to by all 

instances of remote players.

Some of the methods declared are in i t ia l i s e G a m e ,  u pd ateB oard , c a lc u la t e S c o r e  and 

d ra w T ile . As their names imply, these methods are to be used to perform server 

operations.

The next two constructs of the server body component are shown in Program 6.4i. The 

in i t ia l i s e G a m e  () method is invoked upon starting the server process. At the start of the 

game session four tiles will be drawn by the server and then sent to the individual players. 

This is done through the d ra w T ile  () method and the sen d  statement.

Other constructs shown in Program 6.4j are the main features of the game. The code 

shows main message passing between the server process and the client process. Each 

move that the user made will be notified to other group members and opponents. The 

server updates the current status of the board with the u p d ateB oard  method.

Program 6.4j JACIE implementation o f Collaborative Scrabble (cont)

on session { 
on TURN {

receive myMove moveX, moveY; 
send myOpponentMove moveX, moveY to others; 
send myPartnerMove moveX, moveY to others; 
receive myTile letterlndex; 
send myOpponentTile letterlndex to group; 
send myPartnerTile letterlndex to group; 
updateBoard(moveX,moveY,letterlndex); 
moreTiles = moreTiles + 1;

}
currentScore = currentScore + calculateScore(moreTiles); 
send score currentScore;
send opponentScore currentScore to others; 
for (int i=0; icmoreTiles; i=i+l) 

send newTile drawTile(); 
moreTiles = 0;

}
on session end { }
on server end { }

}
}_______________________________________________________________________
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Upon completing the turn the score will be calculated with the c a lc u la t e S c o r e  method 

and all players will be informed of the new score. New tiles will be drawn and sent to the 

respective player. From this code a normal programmer can easily see the simplicity of the 

JACIE language as compared to other programming languages.

6.3.2 Compilation and Execution

The script has been successfully compiled with the JACEE compiler. It took less than ten 

seconds to generate the client and the server programs. The Java classes for the client and 

the server program are listed in Table 6.4 and Table 6.5. These Java classes were then 

compiled and deployed to the host machine, i.e. a sa h ip c 2 . The server program was then 

activated at port 2345. The host machine was also the Web Server. Accessing the client 

program is by means of the Web page generated by the JACIE compiler.

C lass N am e D escription

Collabrabble.java The main Java applet.

CollabrabbleContainer.java The container for the Java applet.

CollabrabbleMenuBar.j ava The menu bar embedded in the container.

CollabrabbleCanvas.java The graphic canvas embedded in the container.

CollabrabbleMessageBar.j ava The message bar embedded in the container.

CollabrabbleClientSessionAssistant.java The client session assistant used by the container for communication.

CollabrabbleUserList.j ava The user list dialog box.

CollabrabbleChatChannel.java The chat channel dialog box.

JACIEGrid.j ava The class for grid handling in JACIE-generated programs.

JACIEImageButton.j ava The class for custom-built image button in JACIE-generated programs.

JACIEMessage.j ava The class for the client/server message in JACIE-generated programs.

JACIEMessageQueue.java The class for queue handling o f the JACIEMessage.

JACIEBox.java The class for better visual effects o f JACIE-generated programs.

Collabrabble.html The Web page in which Collabrabble applet is embedded.

Table 6.4 The Java classes for the client program o f the Collaborative Scrabble game
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C lass N am e D escription

CollabrabbleServer.j ava The main server program.

CollabrabbleServerSessionManager.j ava The session manager o f the server program.

CollabrabbleServerSessionAssistant.java The client-instance session assistant.

Col1abrabb1eServerDe1iveryManager.j ava The delivery manager o f the server program.

CollabrabbleServerDeliveryAssistant.java The client-instance delivery assistant.

CollabrabbleServerFloorManager.java The floor manager o f the server program.

CollabrabbleServerGroupManager.java The group manager o f the server program.

JACIEMessage.java The class for the client/server message in JACIE-generated programs.

JACIEMessageQueue.j ava The class for queue handling o f the JACIEMessage.

Table 6.5 The Java classes for the server program o f the Collaborative Scrabble game

6.3.3 Summary

This example application has illustrated many graphic features offered by the JACIE 

language. It is also a good example of how group collaborations operate and are handled. 

Essential issues relating to group collaboration, like display synchronisation and 

communication synchronisation, are handled without much effort and consciousness. 

Representation of inter-group and intra-group communication management has been 

realised at a very high level of programming abstraction. This example application also 

shows, using JACIE, the only major obstacle of designing this kind of applications is at its 

application logic, not on the communication and collaboration sides.

6.4 Result Analysis

The three examples of networked interactive and collaborative applications presented 

above provide some ground for comparison. While at first look, these applications may be 

too difficult to develop, the JACIE codes, in fact, are much simpler to understand than any 

other programming code in different programming languages. As a basis for comparison, 

Table 6.6 lists all the required language constructs used by the applications if they are to 

be developed in the Java language.
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Applications Required Java Features

Networked Knock Knock Jokes • Server Socket
• Socket
• Exception handling
• Threads
• Event handling
• Various input/output streams
• Various class imports
• Various classes
• Various member modifiers

Multi-user Network Troubleshooting • Server Socket
• Socket
• Exception handling
• Multiple synchronized threads
• Event handling
• Various input/output streams
• Various class imports
• Various classes including abstract window toolkit
• Various member modifiers
• New semantic events
• Double buffering

Collaborative Scrabble • Server Socket
• Socket
• Exception handling
• Multiple synchronized threads
• Event handling
• Various input/output streams
• Various class imports
• Various classes including abstract window toolkit
• Various member modifiers
• New semantic events
• Thread grouping

Table 6.6 The Java constructs required fo r developing example applications

From Table 6.6, we can conclude that many advanced Java features are required to 

develop these applications. Highly technical knowledge is exceptionally required. 

Fortunately, none of these features are transparent from the JACIE programmers’ point of 

view.
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6.5 Chapter Summary

Three example networked interactive and collaborative applications are described in this 

chapter. The first application represents applications which employ server-based 

interactive mode. As mentioned in Chapter 3 this type of mode, where information or an 

application is placed on the server and to be accessed and executed by any user on the 

network, is the simplest of all. This is due to the fact that there is no direct interaction 

between concurrent executing client programs. Nonetheless, looking at the Java code, this 

type of application still requires some “low-level” programming. The Java and JACIE 

codes compared, clearly shown how JACIE’s implementation managed to hide many 

advanced, but complicated, features of the Java language.

The second application represents applications of type server-mediated interactive mode 

where multiple users are interacting with each other in a process of collaborative learning 

and working. As illustrated, things are becoming more complicated as the server, which 

acts as the mediator, needs to handle user-user communication as well as to manage 

common resources. This is additional to managing the flow and the state of the running 

application. JACIE, developed in consideration of different transition states that take place 

throughout the active client-server connection, has encapsulated much communication 

process handling behind the scene and, thus, hiding the very detail of multi-user network 

programming as opposed to Java or any other programming languages.

The third example application which implements group collaborative mode adds another 

programming complexity, as its support an intra-group communication in addition to an 

inter-group communication. The conventional way of programming this kind of 

application is unquestionably challenging. JACIE handles it elegantly. As this application 

also requires some graphic facilities, the built-in graphic features have simplified further 

the programming process.

All in all, the three example applications demonstrated above have shown the simplicity 

and the versatility of JACIE language.



Chapter 7

Conclusion

The programmer community has changed. In the era of personal computers and the 

Internet, more and more novice and casual programmers have joined the all-time 

sophisticated programmers who are armed with high system programming skills and 

sophisticated programming tools. This research recognises the increasing need of novice 

and casual programmers for tools that can simplify their programming tasks. Scripting 

languages can be the answer for their desire.

This research has proposed a novel scripting language named JACIE that is specifically 

designed for developing net-centric, multimedia collaborative applications. Focusing on 

the management of interactions and communications, JACIE offers a practical solution to 

programming difficulties involved in the implementation of this kind of applications.

7.1 Work Summary

The design and the proposed JACIE language specifications have been through many 

stages of work. The work done can be summarised as follows:

188
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• The background study has provided a good idea of what interactive and collaborative 

applications are, the benefits they offer and the cost of developing these applications. 

Available technologies for developing these kind of applications have been studied and 

evaluated.

• Many interactive and collaborative applications have been investigated. Their different 

modes of interactions, their general features and their distinctive programming 

requirements have been determined. Some design principles have been stated so as to 

guide towards a better programming alternative as compared to the available solutions.

• The programming language of Java that has been chosen for the new tool to be built 

upon natively supports Internet protocols, is robust and it promotes platform- 

independence. The low-level networked multi-user programming requirements, which 

typically involved sockets handling, network input/output streams, multi-thread 

scheduling, shared resource management and event management, have been studied 

but at the same time taking into consideration these requirements are to be made 

hidden from programmers.

• The scripting language of JACIE has been formally specified. Guided by the particular 

design principles, the language constructs are then proposed which featured, among 

others, high-level abstractions of many interaction and communication tasks.

• In a process of constructing the JACIE compiler, several application frameworks and 

programming interfaces have been studied and adopted. The constructed prototype 

compiler recognises about 80 percent of the JACIE language features.

• Several example applications have been implemented to test and verify the viability 

and versatility of the language as well as the correctness of the compiler. The JACIE’s 

implementations of the applications have become the basis for comparisons.

7.2 Result and Contribution

The two design principles laid out at the beginning of this research, namely special

purpose and programming efficiency, have been the main focus of the work and eventually
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have become the main contributing factor to the features of the language. The main

features of the language are as follows:

• Scripting — The scripting programming style suits the target programmers who wish 

to develop the target applications. These programmers may appreciate the short 

learning cycle of a scripting language, in contrast to a general-purpose language, a 

software library, a framework or a preprocessor. Programming efficiency is achieved 

by reducing the complexity and inflexibility in function calls and parameter passing 

with traditional software libraries. Unlike some scripting languages that use cryptic 

characters and justifying them by “economy of expression”, JACIE encourages 

programmers to write readable (and thus maintainable) code by providing neat and not 

overly cryptic notations.

• Template-based — The template-based programming style suits the target applications 

which share a set of common features as identified in this research. It also promotes a 

“single program” code for the development of client/server applications, thus, suits the 

target programmers many of whom may lack network programming experience. From 

the perspective of programming efficiency, this eliminates the needs for constructing 

server and client programs separately. It also facilitates better correlation and 

coordination between server and client functionality and promotes easier software 

maintenance. To a certain degree, programming becomes form-filling.

• Interaction Protocols — JACIE introduces many high-level interaction protocols that 

have been designed to emulate various natural interaction and collaboration 

techniques. Two types of these protocols, which are floor management protocols and 

group management protocols, have been the main features highlighted in this 

language. These innovative features, unique to the JACIE language, suit the target 

applications that normally require one or both of the facilities. Programming-wise, 

these facilities reduce substantially the complexity and potential programming errors 

in specifying and implementing interaction protocols using low-level language 

constructs.

• Built-in Channels —JACIE supports five communication channels, namely canvas, 

chat, whiteboard, voice and video. These built-in channels provide the basic



7.2 RESULT AND CONTRIBUTION 191

communication needs in the target applications. Adopting one or more channels is just 

a matter of a simple specification. This reduces the complexity in programming with 

different APIs for requirements in communication and user interface design.

• Event-driven — While the common user-interface events may not be unique to the 

JACEE language, the high-level events are exclusive to it and will help the target 

programmers considerably. Programming efficiency is achieved by reducing the 

complexity of defining, sensing and handling of events, which typically require 

considerable knowledge and expertise.

• Limited Graphics — This feature suits the target applications for which 3D graphics 

play an insignificant role. This also prevents JACIE from becoming a complex and 

extensive language.

• Web-ready — JACIE also recognises the fact that the Web has become an integrative 

technology. Thus, JACIE-created interactive and collaborative applets can run within 

any Java-capable Web browser. The choice of developing either application or applet 

client is a matter of one keyword.

• Java-based and Java Extensibility — Being Java-based, JACIE is portable. JACIE- 

created interactive and collaborative applications can run on any platform containing 

the Java Virtual Machine (JVM). The feature that allows Java codes to be incorporated 

in the JACIE script promotes extensibility.

Many of the typical interactive and collaborative applications previously mentioned in 

earlier chapters could be implemented in JACIE. In general, these applications have been 

classified into three types — a server-based interaction type, a server-mediated interaction 

type and a group collaboration type. Some of the applications of the server-based 

interaction type are on-demand slide presentations, server-based interactive courseware 

and online testing, server-interaction computer games, group calendaring and online 

voting systems. Some examples of the server-mediated interaction type applications are 

text, voice and video conferencing systems, multi-user slide presentation, public chat 

place, shared whiteboard, multiplayer games and decision support systems. Many group 

collaborations can also be implemented using JACIE. They are, among others, teamwork
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courseware, team-based games and other collaborative applications with structured image- 

based shared space or multi inter-related displays.

The three example applications reported in the last chapter are among the applications 

implemented in JACIE. They were selected to represent the three classifications of 

interactive and collaborative applications — the target applications for this scripting 

language. The example applications have demonstrated how the high-level abstractions of 

JACIE successfully handle low-level programming tasks. Typical low-level programming 

tasks, such as socket handling, exception handling, multiple threads synchronisations, 

event handling, message passing through networked input/output streams and graphics 

primitives including double buffering, are concealed from the eyes of the programmers. In 

return, JACIE provides simpler language constructs that can accomplish remarkable 

results in only a few lines of code. The syntax is also designed to be logical and readily 

understood.

Despite its strength, the current implementation of the JACIE language is not without 

limitations. The first limitation is that even though the programmer may specify multiple 

communication channels, the language does not allow the use of more than one of the 

same communication channels in one application, e.g. two whiteboard channels or two 

independent canvas channels. For the canvas channel, even though one may define 

multiple canvases, they can only be switched back and forth and manipulated individually 

within the same standard window. Another limitation of JACIE relates to graphic images 

to be incorporated in the script. These image files have to reside in the same directory as 

the JACIE script. Then and only then the image files can be copied to the target directory 

of the generated Java codes. Also, for the canvas, the JACIE language constructs only 

provide some basic graphic primitives. It does not support high-level GUI components 

such as buttons, check boxes, lists, text fields, text panels, graphic panels, etc. Thus, 

JACIE is not meant for the development of applications that are highly laden with GUI 

components. One such example application is a collaborative authoring editor.



7.2 RESULT AND CONTRIBUTION 193

The JACIE language has no native support of file handling. Hence, while it is possible to 

maintain the state of the running applications in memory, it is not possible to save the state 

permanently on a secondary storage medium for future callbacks. Multiplayer games 

created in JACIE, for example, are those that are to be played in one running session, as 

the games will be restarted at every session opening. Also, JACIE does not support the 

interface to external databases. There is no language construct that can be used for 

developing collaborative applications that need to make query to a database server. 

Alternatively, accessing to external files and databases can be made possible indirectly 

with the help of the JACIE's Java integration feature. Finally, JACIE does not have a 

facility that enables running applications on one machine to be shared and manipulated by 

collaborating remote users. This handy facility that allows meeting participants to view 

and work on documents of common interest simultaneously can be a new communication 

channel for the future implementation of JACIE.

The three types of interactive and collaborative applications can also be developed using 

conventional system programming languages, such as C, C++ and Java. Among these 

three languages, Java may be the most popular choice for its architecture-neutral, secure, 

network-centric and native Web browser support features. Java’s support for many GUI 

components and its support for external file handling as well as database connectivity 

overcome all the limitations of JACIE mentioned above. Unfortunately, as discussed 

earlier, the rich language of Java is not within the grasp of many novice programmers. 

Alternatively, available collaborative frameworks, e.g. JCE, Habanero, JSDT, TANGO 

and Promondia, can also be used side-by-side with the Java language for developing 

interactive and collaborative applications. While it may remove some programming tasks, 

knowledge of the programming language where these software frameworks would be 

embedded is still required.

Study has also been done to investigate if the available scripting languages can provide a 

better alternative to normal programming languages in the development of interactive and 

collaborative applications. This research has established the fact that the currently 

available scripting languages, i.e. JavaScript, VBScript, Perl, Tel and Python, are not
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suitable development tools for the target applications. As general-purpose “glue” 

languages, they are not well-suited for developing real-time, complex multithreaded 

shared-memory applications — the very nature of the synchronous collaborative 

applications. Nevertheless, the philosophy of scripting languages, which is simple and 

direct to the point, has become the essence of the JACIE language.

Development Tools Advantages
Programming languages 
prior to Java (e.g. C, C++, 
etc.)

Used by many old-time 
programmers; compile to native 
machine code (thus, faster).

Platform-dependent; developing 
interactive and collaborative 
applications requires very low- 
level system programming 
knowledge.

Java A programming language 
designed for the Internet; very 
rich in features; platform- 
independent.

Requires a good working 
knowledge of object-oriented 
programming.

Java collaborative 
frameworks (e.g. JCE, 
Habanero, JSDT, TANGO, 
etc)

Provide software components for 
collaborative tasks; ready to be 
integrated with custom-built 
applications.

A good working knowledge of 
Java programming language is 
still required so as to integrate the 
framework adopted and to use 
other language features.

Scripting languages (e.g. 
JavaScript, VBScript, Perl, 
Tel and Python, etc)

Their programming style suits 
especially novice programmers.

They are not suited for 
developing collaborative 
applications — they are meant to 
complement system programming 
languages with which software 
components are built.

JACIE A Java-based scripting language 
that combines the simple style of 
scripting languages and the 
strength of Java; provides many 
high-level abstractions for the 
handling of common interactive 
and collaborative processes; has 
built-in support of various 
communication channels that can 
be used for collaboration tools.

The basic language constructs 
lack strong graphic support and 
file/database integration (but can 
be implemented via the Java 
integration feature); the 
communication channels only 
provide some basic features.

Collaboration tools (e.g. 
Microsoft NetMeeting)

Commercial strength tools that 
allow users in the Internet or 
intranet to communicate via chat 
window, shared whiteboard, 
audio and video facilities; some 
tools also allow application 
sharing and file transfer among 
remote computers.

Requires highly-skilled 
programmers to integrate the 
facilities in custom-built 
collaborative applications (i.e. 
through COM/DCOM 
programming); platform- 
dependent.

Table 7.1 The advantages and the disadvantages o f  available software tools for the development o f
interactive and collaborative applications
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Table 7.1 compares the advantages and the disadvantages of various available software 

tools, including JACIE, which can be used for the development of interactive and 

collaborative applications. The table also lists some popular collaboration tools — even 

though they are not software development tools per se. They are included only for 

comparison purposes.

This research has also proposed a programming model for developing interactive and 

collaborative applications. Extended from the normal socket-programming technique, the 

model utilises threads and queues for an effective, efficient, secure and manageable result.

Two conference papers, which are the outcome of this research, have been presented in 

two international conferences [71,72]. The second paper has received a worthy 

acknowledgment from the international community and has been published in a special 

volume Journal of Annals of Software Engineering (ASE) on Multimedia Software 

Engineering [73].

7.3 Future Work

After the period of research on the construction of JACIE, a software tool for the 

development of interactive and collaborative applications, some further research prospects 

are anticipated. Future research work can be continued based on the achievements of 

JACIE.

7.3.1 A Full Implementation of a Fully Reliable Compiler

Any programming language is insignificant without a fully effective and efficient 

compiler. Currently not all the features in the JACIE language are implemented by the 

compiler prototype. Full compiler development allows greater selection of applications. 

The codes generated should be fully optimised. An optimised Java code will provide a
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better performance as opposed to a “baggy” code. The compiler should also support 

extensive error checking that simplifies the script debugging process. A syntax-directed 

editor can also be built so that a syntax error checking can be done even during the script 

editing process.

7.3.2 Exploring the Possible Benefits of Visual JACIE

The textual scripting language of JACIE can be awkward for some programmers and 

requires some programming experience to code significant functionality. Programming 

some features of JACIE, graphics in particular, can be made more intuitive and easy to use 

with a visual scripting language. A Visual JACIE development environment may help 

bridge the usability gap between the graphical programming environment and its script 

language by cognitively simplifying the scripting task. It can promote easier and faster 

way of doing programming and visual code can be easier to understand.

7.3.3 Extending the Web Server Feature with Collaborative Engine

The World Wide Web has become an integrative technology. More and more 

asynchronous collaborative applications are having new face lift with the Web. This is 

possible through the adoption of many scripting languages used within the Web server 

programming interface and as back-end gateway to other services. The time has come for 

the Web server to extend its feature to support synchronous collaborative application 

natively. A standard web server collaborative engine can be proposed. The engine should 

not only provide the communication and interaction infrastructure for common electronic 

collaboration tools, but also any domain-specific collaborative application. Software tools 

for collaborative applications can be used and JACIE can be one of them.



Appendix 

The JACIE Language Specifications

Data Types and Operators

Primitive Types Size/Format Description 1
i n t 32-bit 2's complement Integer 1
f l o a t 32-bit IEEE 754 Single-precision floating point 1
b o o le a n tr u e  or f a l s e Boolean 1
im age g i f  or jp e g  typed images Image |
s t r in g a series of characters between 

double quotation marks
Character string; a character is 1 
represented by a string of a single 
character

Compound Types Description
array array for managing and collecting primitive types

Arithmetic Operators
+ addition / division
- subtraction/negation % modulus
* multiplication

Relational and Conditional Operators
> greater than 1 or

>= greater than or equals to Sc and
< less than A exclusive or

< = less than or equals to II logical or
== equals to ScSc logical and
i = not equals to J not

Comments
<one line comment> // comment text Implemented

<multiple line /*
comment> comment text Implemented

*/

197
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Language Constructs

Configuration Statements
cJACIE program> JACIE {

<create application> | <create applet>
}

Implemented

ccreate application> application name <identifier> ; 
configuration {

<program configuration>
}
messages {

cmessage definition>
}
client implementation {

cclient program implementation
}server implementation {

<server program implementation>
}

Implemented

<create applet> applet name <identifier> ;
[ <create applet option ] 
configuration {

<program conf iguration
}messages {

cmessage definition
}
client implementation {

cclient program implementations
}server implementation {

cserver program implementations
}

Implemented

<create applet 
option>

appletlauncher
ctext button launchers | cimage button launchers

Implemented

<text button 
launcher>

text cstrings Implemented

<image button 
launcher>

image cstrings Implemented

<program 
configuration>

{ cconfiguration statements } Implemented

<configuration 
statement>

cspecify hostnames
| cspecify port numbers 
| cspecify usernames 
j cspecify channels 
| cspecify abouts 
| cspecify number of userss 
| cspecify number of observerss 
j cspecify protocols 
| cspecify number of groupss 
| cspecify group protocols

Implemented

<specify hostname> host
cstrings | prompt ;

Implemented

<specify port 
number>

port
cinteger numbers | prompt ;

Implemented

<specify username> username
cstrings | prompt ; |

Implemented
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<specify channel> channel cchannel name? { , cchannel name? } ; Implemented
<channel name> canvas | chat | whiteboard | voice | video Partially

implemented
<specify about> about

cstring? | cabout file? ;
Implemented

<about file> file cstring? Implemented
<specify number of 
users>

number of users
cinteger number? | cspecify minimum users? | 

cspecify maximum users? | 
cspecify range number of users? ;

Partially
Implemented

<specify minimum 
users>

minimum cinteger number? Not
implemented

<specify maximum 
users>

maximum cinteger number? Not
implemented

<specify range 
number of users>

cspecify minimum users? cspecify maximum users? Not
implemented

<specify number of 
observers>

number of observers cinteger number? ; Not
implemented

<specify protocol? protocol
contention | roundrobin | reservation | 
random | tapping | ctimed token? ;

Partially
implemented

<timed token? token cinteger number? Not
implemented

<specify number of 
groups?

number of groupd cinteger number? ; Implemented

<specify group 
protocol?

protocol of group
userdefined | random | alternate ;

Partially
implemented

cmessage definition? [ cidentifier? {, cidentifier? } ] Implemented

Client Implementation and Server Implementation Constructs
cclient program 
implementat ion?

cserver program 
implementat ion?

cvariable and method 
declaration list?

declaration
c variable and method declaration list? 

on canvas
ccompound statement? 

on session start
ccompound statement? 

on session
ccompound statement? 

on session end
ccompound statement?

declaration
c variable and method declaration list? 

on server start
ccompound statement? 

on session start
ccompound statement? 

on session
ccompound statement? 

on session end
ccompound statement? 

on server end
ccompound statement?

{ cvariable declaration list? 
cmethod declaration list? }

Implemented

Implemented

Implemented
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Variable Declaration Statements

cvariable 
declaration list>

<data types>
cprimitive type>

ccompound type>

cvariable
declarator>

cvariable
initialiser>

carray initialiser?

cvariable 
initialiser list?

{ [shared] cdata types? cvariable declarator? ;}

cprimitive type? | ccompound type?
int | float | boolean | image | string
cprimitive type? [ cexpression? ]
| ccompound type? [ cexpression? ]

cidentifier? [ = cvariable initialiser? ] 

cexpression? | carray initialiser?

{ cvariable initialiser list? }

{ cvariable initialiser?, Jcvariable initialiser?

Implemented

Implemented
Implemented

Implemented

Implemented

Implemented

Implemented
Implemented

Expressions

cexpression? cassignment expression? Implemented
cassignment 
expression?

cconditional expression? | cassignment? Implemented

cconditional
expression?

cconditional or expression? Implemented

cconditional or 
expression?

cconditional and expression?
| cconditional or expression? || 

cconditional or expression?
Implemented

cconditional and 
expression?

cinclusive or expression?
| cconditional and expression? && 

cconditional and expression?

Implemented

cinclusive or 
expression?

cexclusive or expression?
| cinclusive or expression? | 

cinclusive or expression?
Implemented

cexclusive or 
expression?

cand expression?
| cexclusive or expression? 

cexclusive or expression?

Implemented

cand expression? cequality expression?
| cand expression? & cand expression?

Implemented

cequality
expression?

crelational expression?
| cequality expression? == cequality expression? 
| cequality expression? != cequality expression?

Implemented

crelational
expression?

cadditive expression?
| crelational expression? < 

crelational expression?
| crelational expression? > 

crelational expression?
| crelational expression? <= 

crelational expression?
| crelational expression? >= 

crelational expression?

Implemented
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<additive
expression>

cmultiplicative
expression>

cunary expression>

<unary expression 
not plus minus>

<postfix expression>

<primary>

<literal>

<method invocation> 
<argument list> 
<array access> 
<name>

<multiplicative expression>
| <additive expression? + <additive expression? 
| <additive expression? - <additive expression?
<unary expression?
| cmultiplicative expression? * 

cmultiplicative expression?
| cmultiplicative expression? / 

cmultiplicative expression?
| cmultiplicative expression? % 

cmultiplicative expression?
+ cunary expression?
| - cunary expression?
| cunary expression not plus minus?

cpostfix expression?
| I cunary expression?

cpnmary?
| cname?
I rnd ( cexpression? )
| csystem variable?
cliteral?
| ( cexpression? )
| cmethod invocation?
| carray access?
cint literal?
| cfloat literal?
| cboolean literal?
| cstring literal? 
j cnull literal?
cname? ( {cargument list?) )
{ cexpression? , } cexpression?
cname? { [ cexpression? ] }+

cidentifier? | java_cidentifier?

Implemented

Implemented

Implementer

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented
Implemented
Partially
implemented

Method Declaration
cmethod declaration 
list?
cmethod header?

cformal parameter 
list?
cformal parameter? 
cmethod body?

{ [shared] cmethod header? cmethod body? }

cdata type?cidentifier? ( [cformal parameter 
list?] )
| void cidentifier? ( [cformal parameter list?] ) 

{ cformal parameter? , } cformal parameter?

cdata type? cidentifier? 
ccompound statement?

Implemented

Implemented

Implemented

Implemented
Implemented
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Basic Statements
<compound statement> { [<statement list>] } Implemented
<statement list> { <statement> }+ Implemented
<statement> <expression statement>

| <if then statement>
| <if then else statement>
| <for statement> 
j <while statement>
| <return statement>
| <exit statement>
| <compound statement>
| <text input statement>
| cprint text statement?
| cclear message bar statement? 
| ccanvas size statement>
| <foreground colour statement> 
| crefresh screen statement> 
j cclean canvas statement>
| <move to statement>
| <draw grid statement>
| cpaint grid statement> 
j cdraw line statement>
| <draw image statement>
| <draw string statement>
| ccanvas definition statement> 
| cspecify canvas statement?
| cevent control statement?
| cpause statement? 
j csend statement?
| cpass turn statement?
| cabort session statement?

Partially
implemented

<expression 
statement>

cstatement expression? ; Implemented

<statement 
expression>

cassignment? | cmethod invocation? Implemented

<assignment> cassignee? = cassignment expression? Implemented
<assignee> cname? | carray access? Implemented
<if then statement> if ( cexpression? ) cstatement? Implemented
<if then else 
statement>

if ( cexpression? ) cstatement? else cstatement? Implemented

<for statement> for ( [cfor init?] ; [cexpression?] ; 
[cfor update?]) 
cstatement?

Implemented

<for init> cstatement expression list?
| clocal variable declaration?

Implemented

<local variable 
declaration>

cdata type? cvariable declarator? Implemented

<for update> cstatement expression list? Implemented
<statement 
expression list>

{ estate expression? , } cstatement expression? Implemented

<while statement> while ( cexpression? ) cstatement? Implemented
<return statement> return [cexpression?] ; Implemented
<exit statement> exit ; Implemented
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Input-output Statements
<text input 
statement>

input creceiver list> ; Implemented

creceiver list> { cassignee> , } cassignee> Partially
implemented

<print text 
statement>

print [cmessage bar>] [cexpression list>] ; Implemented

cclear message bar 
statement>

clear cmessage bar> ; Implemented

cmessage bar> servermessage | localmessage Implemented

Graphics Statement
ccanvas size 
statement>

canvas size cpair expression? ; Not
implemented

cforeground colour 
statement>

foreground ccolour name? ; Implemented

cbackground colour 
statement?

background ccolour name? ; Implemented

ccolour name? black | blue | green | cyan | red | magenta | 
yellow | white | gray | darkgray | lightgray | 
orange j pink

Implemented

crefresh screen 
statement?

refresh ; Implemented

cclean canvas 
statement?

clean ; Not
implemented

cdraw grid 
statement?

draw cgrid name? [cdraw at?] [cdraw step?]
[cdraw size?] [cdraw colour?] [cdraw width?] ;

Implemented

cgrid name? grid cidentifier? Implemented
cdraw at? at cpair expression? Implemented
cdraw step? step cpair expression? Implemented
cdraw size? size cpair expression? Implemented
cdraw colour? colour ccolour name? Implemented
cdraw width? width cexpression? Implemented
cpaint grid 
statement?

paint cgrid name? [cdraw at?] [cdraw colour?] ; Implemented

cmove to statement? move to [cgrid name?] cpair expression? ; Not
implemented

cpair expression? cexpression? , cexpression? Implemented
cdraw line 
statement?

draw line [cgrid name?] [cdraw from?] 
to cpair expression? [cdraw colour?] 
[cdraw width?] ;

Implemented

cdraw image 
statement ?

draw image [cgrid name?] cexpression list? 
[cdraw at?] [cdraw size?] [cdraw flip?] ;

Implemented
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<draw string 
statement>

draw string [<grid name>] <expression list> 
[<draw at>] [<draw font>] [<font size>] 
[<font style>] ;

Implemented

<draw f rom> from <pair expression> Implemented
<draw f lip> flip <flip choice> Not

implemented
<f lip choice> horizontally | vertically | diagonally Not

implemented
<draw font> font <font type> Implemented
<f ont type> arial | courier | times Implemented
<font size> <expression> Implemented
<f ont style> plain | bold | italic | bolditalic Implemented
<canvas definition 
statement>

define canvas <identifier> <compound statement> ; Partially
implemnented

<specify canvas 
statement>

use canvas <identifier> ; Partially
implemented

Event-control Statements
<event control 
statement>

on <event> <statement> Implemented

<event> WAITING | OBSERVERCONNECTION | TURN | GROUPTURN | 
REQUESTCONTROL | RESERVATION | SERVERABORT | 
CLIENTABORT | NEWMESSAGE | MOUSECLICK | 
MOUSEPRESS | MOUSERELEASE | TEXTENTERED

Partially
implemented

<pause statement> wait <expression> ; Implemented
<system variable> USERNAME | USERNUMBER | GROUPNUMBER |

CURRENTTURN | CURRENTGROUPTURN | MESSAGEID | 
GETX | GETY j GETGRID | GETGRIDX | GETGRIDY | 
GETTEXT

Partially
implemented

Communication Statements
<send statement> send <identifier> [<expression list> 

[ to <send choice> ] ] ;
Implemented

<send choice> server | all | others | group Partially
implemented

<receive statement> receive <identifier> [<receiver list>] ; Partially
implemented

<pass turn 
statement>

pass turn [<expression>] ; Implemented

<abort session 
statement>

abort ; Implemented

Interfacing to Java language
<embedded java code> Java {

<java codes> }
Partially
implemented



Glossary

Alternate group protocol A group management protocol that defines grouping according 
to an alternate order of the participants’ arrival time.

Applet A small Java program that can be embedded in an HTML page.

Asynchronous collaboration A form of collaboration that does not require participants to 
be available at the same time.

Authoring language A high level programming language which requires less technical 
knowledge to master and are used exclusively for applications that present a mixture 
of textual, graphical and audio data

Browser A program run on a client computer for viewing World Wide Web pages.

Chat channel A communication channel that allows online text communication between 
remote users.

Client A computer or a program that connects to and requests information from a server.

Client-Server protocol A communication protocol between networked computers in 
which the services of one computer (the server) are requested by the other (the 
client).

Collaboration (or Cooperation) Working together in a coordinated way in the pursuit of 
shared goals.

Common User Access A familiar and universal “look and feel” of an application’s user 
interface layout.

Communication channels The media through which user-user and user-server 
communications take place.

Compiler A program that translates a source code written in one programming language 
to a target code of a particular machine language or other intermediate language.
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Contention protocol A floor management protocol that imposes no turn control among 
participants.

CSCW (acronym) Computer-Supported Cooperative Works. The field concerned with the 
design of computer-based systems to support and improve the work of groups of 
users engaged on common tasks or objectives.

CVE (acronym) Collaborative Virtual Environment. A virtual environment that supports 
multiple interacting users.

Cyberspace Currently used to describe the whole range of information resources available 
through computer networks.

Delivery Assistant A JACIE software component that assists the delivery manager for 
handling client-specific resources and application logics.

Delivery Manager A JACIE software component that handles shared resources and 
shared application logics.

Delivery protocol A low-level protocol adopted by the JACIE architecture to handle the 
delivery of messages from clients to a server and vice-versa.

Domain name The unique name that identifies an Internet site in a hierarchical system of 
delegated authority -  the Domain Name System, without requiring to know the true 
numerical address.

Email Electronic Mail. Messages, usually text with or without attachments, sent from one 
person to another via computer.

Event An action or occurrence detected by a running program.

Event-driven programming A kind of programming that offers built-in support of 
various event handlers.

Floor Control Manager (or Floor Manager) A JACIE software component that imposes 
the adopted floor management protocol.

Floor management protocol A protocol of coordinating participants’ turns during the 
running session and synchronizing access to shared resources.

Gateway Computer hardware and software that allow users to connect from one network 
to another.

GIF (acronym) Graphics Interchange Format. A common format for image files. 

Graphics Two- or three-dimensional images, typically drawings or photographs.
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Group collaboration (or Teamwork) A type of interactivity where the server is not only 
managing shared application and resources but also responsible for coordinating 
inter-group communication as well as intra-group communication and coordination.

Group Manager A JACIE software component that imposes the adopted group 
management protocol.

Group management protocol A protocol for grouping participants.

Host Any computer on a network that is a repository for services available to other 
computers on the network.

HTML (acronym) HyperText Markup Language. The coding language used to create 
Hypertext documents for use on the World Wide Web.

HTTP (acronym) HyperText Transfer Protocol. A set of instructions for communication 
between a server and a World Wide Web client.

Hypertext A document that contains links to other documents that can be chosen by a 
reader and which cause another document to be retrieved and displayed.

In turn protocol (refer round robin protocol)

Information superhighway The term to describe a possible upgrade to the existing 
Internet through the use of high speed data transmission.

Interaction protocol A protocol that defines the rules that govern the means of
interactions between user-user and user-server in a collaborative environment.

internet (Lower case i) A network of networks - internetworking.

Internet (Upper case I) A global network of networks through which computers 
communicate by sending information in packets using the TCP/IP protocols.

Internet Explorer A browser developed by Microsoft.

Intranet A part of the Internet used internally within a company or organisation.

IP address (acronym) Internet Protocol Address. A unique number consisting of 4 parts 
separated by dots that identifies every computer on the Internet.

IRC (acronym) Internet Relay Chat. The system allowing Internet users to conduct online
text based communication with one or more other users.
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Java A programming language created by Sun Microsystems for developing applets and 
applications that are capable of running on any computer regardless of the operating 
system.

JavaScript A programming language that is mostly used in web pages, usually to add 
features that make the web page more dynamic.

JDK (acronym) Java Development Kit. A software development package from Sun 
Microsystems that implements the basic set of tools needed to write, test and debug 
Java applications and applets.

JPEG (acronym) Joint Photograhic Experts Group. A common format for image files.

LAN (acronym) Local Area Network. A network of computers confined within a small 
area, such as an office building.

Listserv An electronic mailing list typically used by a broad range of discussion groups.

Message channel A communication channel for channeling system messages and user- 
defined messages.

MOO (acronym) Mud Object Oriented. One of several kinds of multi-user role-playing 
environments.

MUD (acronym) Multi-User Dungeon or Dimension. A (usually text-based) multi-user 
simulation environment in which users can create things that stay after they leave 
and which other users can interact within their absence, thus allowing a world to be 
built gradually and collectively.

Multimedia A combination of media types on a single document, including text, graphics, 
animation, audio and video.

MUSE (acronym) Multi-User Simulated Environment. One kind of MUD - usually with 
little or no violence.

Netscape Navigator A browser developed by Netscape Communication.

Newsgroup The name for discussion groups on USENET.

Newsreader A program designed for organizing the discussion threads received from a 
mailing list or newsgroup.

NNTP (acronym) Network News Transfer Protocol. A protocol that defines how news 
articles are passed around between computers.
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Observer A remote user that has no control over the running application except as a 
viewer.

Packet A unit into which information is divided for transmission across the Internet.

Ping A program for determining if another computer is presently connected to the 
Internet.

Pixel Short for picture element - the smallest unit of resolution on a monitor. Commonly 
used as a unit of measurement.

Port A number representing a service that an Internet server listens on.

Protocol An agreed upon set of rules by which computers exchange information.

Random-directed protocol (or Random protocol) A floor management protocol that 
assigns participants’ turn in random order.

Random group protocol A group management protocol that defines grouping through a 
random order.

Reservation protocol A floor management protocol that allows participants to reserve 
their turn in a queue and allow them to participate on first-come-first-served basis.

Round robin protocol A floor management protocol that allocates users’ accessibility one 
after the other (a.k.a in turn or token passing protocol)

Session Assistant A JACEE software component that assists the session manager by 
handling one particular active session.

Session Manager A JACIE software component that manages the establishment of new 
connections.

Session protocol A low-level protocol adopted by the JACIE architecture to handle 
client/server connections.

Scripting language A relatively simple programming language which provide greater 
functionality through simple constructs and normally emphasises on “gluing” 
external applications written in other languages.

Shared workspace channel (or workspace channel) A special communication channel 
on which collaborative application can be designed and user-user interactions can 
take place.

Server A computer or a program that provides a service to another client computer or 
program.
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Server-based interactions A type of interactivity where information or an application is 
placed on a server to be accessed and executed by independent users on the network.

Server-mediated interactions A server-based interaction but the users are interacting 
with one another and are coordinated by the server.

Synchronous collaboration A form of collaboration that occurs in real-time.

Tapping protocol A floor management protocol that allows the participant that is having 
the turn to decide (or tap) who gets the next turn.

TCP/IP (acronym) Transmission Control Protocol/Internet Protocol. A suite of protocols 
that defines the Internet.

Telnet The command, program and protocol used to login from one Internet site to 
another.

Template-based language A programming language which imposes a set of standard 
components.

Timed token protocol A variation of a token passing protocol with time restriction.

Token passing protocol (refer round robin protocol)

URL (acronym) Uniform Resource Locator. The standard way to give the address of any 
resource on the Internet that is part of the World Wide Web (WWW).

USENET A world-wide bulletin board system of discussion groups or newsgroups.

User-defined group protocol A group management protocol that defines grouping 
through mutual agreement among participants.

Video channel A communication channel which allows online video-based
communication.

Virtual environment A virtual world that is dynamically controlled by actions of the 
individual in a way that it appears real to the user.

Voice channel A communication channel which allows online voice-based
communication.

VR (acronym) Virtual Reality. A computer-based application (usually in 3D graphics) that 
provides a human computer interface so that the computer and its devices create a 
sensory environment.



211

VRML (acronym) Virtual Reality Modelling Language. A language to represent 3D 
compositional graphics on the Web.

Whiteboard channel A communication channel where a dedicated shared canvas is used 
on which arbitrary drawings are made by communicating users.

WWW (acronym) World Wide Web, or simply Web. A service on the Internet which uses 
a combination of text, graphics, audio and video (multimedia) to provide information 
on any subject.

WYSIWIS (acronym) what you see is what I see. The notion of display synchronization 
such that all remote participants are viewing the same thing.
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